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Polytopes, Graphs and Optimisation 

This is the first book devoted to the combinatorial theory of 

polyhedra, an important branch of applied mathematics. The 

basis of the work is an examination of combinatorial, geo¬ 

metrical and algebraic properties of polyhedra in close 

connection with optimisation problems. There is a full account 

of the classic results (the Euler-Роіпсагё formula, Minkowski 

and Weyl duality theorems, Dehn-Sommerville equations) as well 

as an interesting presentation of new questions emerging from 

optimisation problems: polyhedral aspects of the theory of 

matroids and polymatroids, the structure of integer polyhedra 

from various combinatorial problems, minimax theorems of 

combinatorics and the connections between linear programming 

and combinatorial topology. Four basic problems of the combi¬ 

natorial theory of polyhedra are isolated and examined in 

detail: (1) The classification and enumeration of polyhedra. 

(2) The study of the meaning of polyhedron vector functions, 

the components of which give the number of faces of relative 

size. (3) The determination of graphical characteristics of 

polyhedra. (4) Constructing convex hulls of discrete sets. 

There are a great number of challenging exercises provided 

throughout the text. This book will be an essential purchase 

for all those working in the areas of combinatorics, operations 

research and computer science with an interest in optimisation 

and linear programming. 
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INTRODUCTION 

Polytopes have been studied since ancient times. The thirteenth 

book of Euclid is devoted to the five regular polytopes known as the platonic 

solids. In his work 'On Polyhedra', Archimedes described all semi-regular 

polyhedra (Archimedean solids). 

The first result in the combinatorial theory of polytopes, and 

one of the classical results of mathematics, is the formula connecting the 

number of vertices, edges and faces of a three dimensional polytope obtained 

by Descartes and later, independently, by Euler in 1736. Poincare gave the 

generalization of this result for convex polytopes of any dimension. This 

was a fundamental result of combinatorial topology. 

The study of the figures formed by the vertices and edges of 

any three-dimensional polytope led to another discipline - Graph Theory. 

Graph Theory and Combinatorial Topology established themselves 

as independent branches of mathematics and supplied the apparatus for study¬ 

ing the problems which arose at the end of the last century in the combina¬ 

torial theory of polytopes as a result of studying multidimensional 

parallelotopes (convex polytopes). The characterization of convex bodies by 

means of convex polytopes remains a basic research technique even today. 

The effectiveness of such an approach is due to the fact that polytopes are 

characterized by a finite set of data. We always understand a convex poly¬ 

tope to be the convex linear hull of a finite number of points inn-dimen- 

sional Euclidean space. 

The work of Voronoi, Zolotarev, Korkin and Minkowski (1910) on 

the geometry of numbers led to the study of new classes of problems on 

polytopes, namely problems concerning the distribution of integral points in 

polytopes. Some of these problems arose from the geometrical investigations 

of the well-known Russian crystallographer Fyedorov. The classical theorems 

of Minkowski and Kronecker give criteria for the existence of an integral 

point in a convex body which is symmetrical relative to the origin of 
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coordinates. The problem of the existence of an integral point in a polytope 

is equivalent to the existence of a solution to a system of linear diophan- 

tine inequalities. 

The work of Alexandrov (1950) in the middle of the present 

century brought to completion the study of the metrical theory of polytopes 

initiated by Cauchy and was followed by the creation of the general theory 

of convex surfaces by Pogorelov (1969). 

In the nineteen forties discrete mathematics emerged in the 

forefront of mathematical science as a foundation of cybernetics (Yablonski 

& Lupanov 1974 » Yablonski 1979). This led to the establishment of combina¬ 

torial and discrete geometry as an independent scientific discipline which 

studied problems of finding the 'best' configuration of a finite system of 

points or geometrical figures (Hadwiger & Debrunner 1964 ; Soltan 1976 ; 

Boltyanski & Soltan 1978). The problems of combinatorial geometry are 

typically concerned with calculating the number of geometrical figures which 

can adopt a configuration which is acceptable for the problem. Most 

problems in combinatorial geometry involve convex bodies and in particular 

the properties of polytopes are used in the solution of many such problems. 

This stimulated research into the combinatorial and metrical properties of 

polytopes and their interelationships. As a result of this a new branch of 

the theory of convex polytopes, the combinatorial theory of polytopes, 

emerged in the forefront of study in the early nineteen fifties. 

The combinatorial theory of polytopes is concerned with extremal 

properties of polytopes and studies the set of faces of all dimensions as a 

single complex. 

The contemporary trends in the new problem areas of the combina¬ 

torial theory of polytopes were partly reflected in the monographs of 

Grunbaum (1967), McMullen & Shephard (1971), Bartels (1973) and in papers 

which were read at the Vancouver Mathematical Congress (Klee 1974 » 

McMullen 1974). 

However these monographs, as well as many survey papers 

(Grunbaum 1970), do not deal with many problems of current interest in the 

study of polytopes which arose at the end of the nineteen fifties under the 

mutual influence of two important areas of applied mathematics - the theory 

of systems of inequalities and optimization theory. We believe that a most 

important problem now is the solution of combinatorial problems which are 

presented in analytical form using systems of linear inequalities rather 

than in purely geometrical or topological form. Some of these problems 
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have been solved completely - for instance, the problem of determining the 

maximum number of inequalities in an analytic description of a polytope 

with a specified number of vertices. Other problems are still under 

current study - for instance, the problem of determining the diameter of 

a polytope or of finding the 'best' simplex method in linear programming. 

The basic objects of study in this book are combinatorial 

problems in the theory of linear inequalities with both real and integer 

variables and coefficients. General as well as special systems of linear 

inequalities are studied. Almost all of the results in this book which 

are given a geometrical interpretation can be reformulated in terms of the 

theory of linear inequalities. 

The systematic study of polytopes as solution sets of finite 

systems of linear inequalities began at the end of the last century, 

although isolated properties of systems of linear inequalities can be 

found in earlier works due to Fourier (method of elimination), Ostrograd- 

sky (a connection with analytical mechanics) and Farkas. However, the 

general problem of studying the geometrical properties of polytopes 

defined by finite systems of linear inequalities apparently only emerged 

after the work of Voronoi (1908a). In particular, Voronoi (1908b,1909) 

obtained a criterion for the consistency of a system of strict inequalities 

and for the dimension of the polytope defined by its feasible points. 

Subsequently many prominent mathematicians, such as Minkowski (1911) and 

Weyl (1935), were attracted to the study of systems of linear inequalities. 

Soviet mathematicians made a significant contribution to the development 

of this theory. In particular, mention should be made of Chernikov (1968), 

Yeremin (1976,1979) and Charin (1978). 

A feature of the present work is that the study of the 

combinatorial properties of polytopes (sets of solutions to systems of 

linear inequalities) is closely interrelated with optimization problems 

which have important applications. Both the classical works of Kantorovich 

(1939) and Dantzig (1963) and the more recent works of Klee (1965) and 

Khachian (1980) reveal the role of combinatorial characteristics of feasible 

sets in constructing effective methods for solving linear programming 

problems. Thus, in presenting the material of this book we have emphasized 

the connection between the combinatorial and topological aspects of polytope 

theory and the analytical aspects and, ultimately, with the theory of linear 

and discrete programming. 
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A central problem in the combinatorial theory of polytopes is 

the enumeration and classification of polytopes with a given face structure. 

The combinatorial properties of polytopes can be characterized more 

precisely by means of the concept of combinatorial equivalence (isomorphism 

of polytopes). 

Euler solved a number of enumeration problems for certain types 

of triangulated polytopes in the plane. Nevertheless, there are still 

important problems in polytope enumeration which remain unsolved. The 

greatest efforts have been directed to the enumeration of 3-dimensional 

polytopes with a given number of vertices for this is the case with the most 

numerous applications. The enumeration of 3-dimensional polytopes was 

studied by Kirkman(1855), Steiner (1881), Bruckner (1900) and others. By a 

theorem of Steinitz (§2.1), this problem is equivalent to the problem of 

counting the number of triply-connected planar graphs. But even in this 

case the problem has not been completely solved (Tutte 1973). At the 

present time only the d-dimensional polytopes whose number of vertices does 

not exceed d + 3 have been enumerated (§3.2), where d is arbitrary. 

The problem of enumerating and classifying the combinatorial 

types of polytopes given in analytical form is studied here for the first 

time. When such a form is used, the use of the traditional apparatus of 

marked face-complexes of polytopes leads to a number of difficulties. To 

overcome them we introduce a new technique of enumerating and classifying 

polytopes by means of semi-matroids of polytopes which yields information 

about the incidence relations between vertices and faces of maximal dimen¬ 

sion (facets). By using this technique we obtain criteria for the 

combinatorial equivalence of marked polytopes (§3.1). The use of semi- 

matroids of polytopes enables us to establish the combinatorial type of 

the polytope of a set of constraints in many important applied problems 

such as the standardization problem and extremal problems on permutations 

(Chapter 5). Another fundamental concept which is useful for identifying 

the combinatorial type of a marked polytope is that of the spectrum of a 

pair of polytopes (§3.1). This idea was particularly useful in determining 

the various combinatorial properties of transportation polytopes (§§6.6-6.9). 

Since the time of Euler, a second important problem in combina¬ 

torial polytope theory has been the determination of the range of values of 

the vector function f(M) , where the components of the vector f are the 

numbers of faces of the polytope M of each dimension. As we have already 

noted, the Euler-Poincare formula was the first result which showed that the 

4 



f-vectors of all polytopes of a given dimension lay in a particular hyper- 

plane. It was later shown that there are no linear relations, other than 

the Euler-Poincard formula, which are satisfied by the components of all 

f-vectors of polytopes. 

Attempts were made to find non-linear relations or to find 

linear relations which were satisfied for special subclasses of polytopes. 

Of these the best known are the Dehn-Sommerville equations for simplicial 

polytopes (§1.5). 

The study of polytopes was greatly stimulated by two conjec¬ 

tures about the maximum and minimum numbers of faces in the class of all 

d-dimensional polytopes with a fixed number of vertices which were proposed 

in about 1957. Both of these conjectures gave rise to an extensive 

literature (for a survey see Grunbaum 1970). The first of these was 

completely solved by McMullen in 1970, while the second was partially 

solved by Barnette in 1971 (for the case of simplicial polytopes) (§§3.3,3.4) 

The range of values of f-vectors for special classes of polytopes is still 

being studied. It should be noted that the range of the function f(M) is 

only completely known for d-dimensional polytopes whose number of vertices 

does not exceed d + 3 and also for certain special combinatorial types of 

polytopes : simplexes, prisms, pyramids, etc. The transportation polytopes, 

which have important applications, are studied closely in this book. In 

particular, the so-called classical transportation polytopes (Chapter 6) 

are classified according to their numbers of faces : we distinguish classes 

with extremal values of the f-vector and we also find criteria for a 

transportation polytope with a fixed number of faces to belong to the 

class of polytopes having minimum or maximum numbers of vertices. Using 

these criteria we are able to solve a series of well-known problems and 

conjectures in the combinatorial theory of transportation polytopes. Some 

of the results obtained for the classical transportation polytopes can be 

extended to the case of multi-indexed transportation polytopes (planar and 

axial). Transportation polytopes with additional constraints and with 

bounded flow conditions are studied separately. 

A third problem is the study of properties of the graphs 

(l-skeletons) of polytopes (Chapter 2). The theorem of Steinitz and 

Balinski are fundamental here. The first of these states that a graph is 

a 1-skeleton of a 3-dimensional polytope if and only if it is planar and 

3-connected, while the second states that the graph of a d-dimensional 

polytope is d-connected. 
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The most interesting graph-theoretic characteristics of 

polytopes are the diameter, radius and height of a polytope. The diameter 

D(M) of a polytope is the smallest integer к such that there is a chain 

of length not greater than к joining any pair of its vertices. Let 

h(d,n) denote the maximal diameter in the class of d-dimensional poly¬ 

topes with n facets. It has been conjectured that A(d,n) £ n-d ; 

this is the maximat diame.te.n con j cctune.. It has not been proved in the 

general case. The following bounds are known for A(d,n) : 

[(n-d)- (n-d)/[5d/4] ] + 1 < A(d,n) < 2^ '‘n. 

This shows how little is still known about the maximal diameter. It has 

been shown that it suffices to verify the conjecture for the case n=2d. 

There are a number of special results which evaluate max D(M) for the 

case where M is restricted to lie in certain special classes of polytopes 

such as the bi-stochastic matrix polytopes (§5.1). the travelling sales¬ 

man polytopes (§5.2), the standardization polytopes (§5-5) and the 

permutation polytopes (§5.3). This raises the important question of 

isolating new classes of polytopes for which either the maximum diameter 

conjecture can be verified or which yield lower estimates of A(d,n). 

Significant progress has been made in studying the maximum diameter 

conjecture in the case of the transportation polytopes (§6.4). 

The converse problem of characterizing the set of polytopes 

with a given diameter or radius is also of considerable interest. This 

problem has only been completely solved in the case of polytopes whose 

radius or diameter is equal to two. 

We note that there is a close connection between the metrical 

properties of the graph of a polytope and the estimation of the number of 

iterations and the effectiveness of simplex-type algorithms for solving 

linear-programming problems. If it is required to extremize a linear 

function on a polytope M with n facets, then the maximum number of 

vertices in the class of polytopes with n facets is an upper bound on 

the number of iterations. The diameter and the radius of a polytope give 

the maximum number of iterations for the 'best' simplex algorithm using 

the worst and the best starting points respectively. The most accurate 

characterization of the effectiveness of simplex algoritms is given by the 

'height' of a polytope. The height л(М) of a polytope M is defined to 

be the length (number of edges) of the longest chain in the graph G(M) 

6 



such that there is a linear function which is strictly monotonic along it. 

Thus the height of a polytope can be interpreted as the exact number of 

iterations required by the worst simplex algorithm using the worst initial 

vertex. Klee and Minty showed that 

an^d//2^ < max п(М) < 6n^-d//2^ , 

where the maximum is taken over all d-dimensional polytopes with n 

facets and a,6 are constants depending on d. In particular it is shown 
J 

that n(M) > 2-1 and an example is given of a linear programme for which 

this bound is attained. 

The classical theorem of Weyl and Minkowski asserts that a 

set M C En is a polytope if and only if it is bounded and is the inter¬ 

section of a finite number of closed half-spaces. A minimal family of 

closed half-spaces whose intersection is M is determined by the set of 

hyperplanes which are the affine hulls of the facets of M. The Weyl- 

Minkowski theorem implies that there are two ways of specifying a polytope; 

the first, as the convex hull of a finite set of its points (a parametric 

representation), and the second, as the solution set of a finite system of 

inequalities (an analytic representation). The smallest set of points 

whose convex hull is M is precisely the set of vertices of M, and an 

irreducible system of inequalities determining M corresponds to the 

facets of M. 

A fourth problem area in the combinatorial theory of polytopes 

is concerned with finding an effective way of passing from one type of 

polytope specification to another. To pass from an analytic specification 

of a polytope to a parametric specification it is necessary to find all the 

vertices of the polytope. In some cases this can be done explicitly, but 

more often only certain properties of the verticies are studied. A 

particularly important case is where it can be estblished that all vertices 

of a polytope have integer coordinates ; such a polytope is called іпіе.дяаі. 
* A 

Integral polytopes play a fundamental role in integer programming. The 

problem of describing all systems of linear inequalities which determine 

integral polytopes is unsolved. However a deep connection has already been 

revealed between integral polytopes and many important problems of graph 

theory and hypergraph theory, such as the strong conjecture of Berge 

concerning perfect graphs (§4.5). Any result to do with integral polytopes 

automatically implies a series of results in graph theory. Thus in 
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Chapter 4 almost all of the important theorems about coverings and 

matchings in graphs, such as the theorems of Konig, Whitney, Menger, 

Gale and others, are derived from properties of integral polytopes. Many 

well-knowm theorems about matroids and polymatroids are also derived from 

the integrality properties of the corresponding polytopes. The concept 

of а-modular matrices, introduced in Chapter 4» enables us to extend known 

cl.asses of integral polytopes. In Chapter 4 we also systematically study 

classes of polytopes some of whose integral vertices have properties which 

enable us to solve integer programming problems using simplex-type 

algorithms. Among such polytopes are those encountered in such important 

applied problems as the p-median problem, the problem of packing the edges 

of a hypergraph and the location problem. 

The transformation of a parametric specification of a poly¬ 

tope into an analytic specification has great significance for problems 

of discrete optimization, for it enables us to formulate them as a linear 

programming problem. To do this it is necessary to describe all the 

facets of a polytope. For most discrete optimization problems an explicit 

representation of all the facets has not yet been found. The most inter¬ 

esting results have been obtained for the polytopes which occur in the 

packing problem, the maximum matching problem in a graph, the travelling 

salesmen problem and the knapsack problem (these are considered in Chap.4), 

Of great theoretical interest is the problem of describing analytically 

the convex hull of the integral solutions of a system of linear inequali¬ 

ties, that is, of the integral points in a polytope. Hilbert's theorem 

on the finite basis of a ring of polynomials shows that such a description 

should be possible in principle but efficient means of finding such a 

description have not yet been obtained. In §4-1 we present a method of 

constructing analytical and parametric specifications of the integral 

points of a polytope based on the determination of generating sets of 

semigroups. 

In Chapter 4> besides considering general approaches to the 

construction of convex hulls we also use the specialized theorems of 

Birkhoff and Rado on permutation matrices to obtain an analytical specifi¬ 

cation of polytopes whose vertices have components which are permutations 

of a given vector. Such polytopes arise in the theory of scheduling. 

Another feature of the book lies in the connections establi¬ 

shed between polytopes and combinatorial analysis (see Todd 1976). In 

particular the relations between multi-indexed assignment problems and 
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orthogonal systems of latin cubes are studied. Similarly, properties of 

polytopes are related to finite geometries (§8.3) 

Thus in this book an extensive body of work on the combina¬ 

torial properties of the feasible sets of a variety of optimization 

problems is systematized and presented from a unified viewpoint. 

Each chapter ends with a list of auxiliary and more special¬ 

ized results. They are formulated as exercises whose solutions can mostly 

be found in the reference literature. Among the problems are some (indica¬ 

ted by a star) whose solution is not known to the authors. 

The book ends with a list of unsolved problems and conject¬ 

ures. Some of these are well known but most of them are presented for 

the first time. 
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1 CONVEX POLYTOPES 

§1 CONVEX SETS 

The purpose of this section is to recall certain properties of 

convex sets and also to enable the reader to appreciate the place of convex 

polytopes in the context of convex sets in general. For proofs of the 

classical results given here the reader is referred to Fenchel 1953» 

Maltsev 1970, Rockafellar 1970, Stoer & Witzgall 1970, Karmanov 1975 or 

Pshenichny 1980. 

1.1 Affine Sets 

A subset A of the real d-dimensional Euclidean space E^ is 

called an a-f.-f.ine. tet if it contains the line passing through any two of its 

distinct points, i.e. if x,ysA then Xx + (l-X)y e A for all XeE-^. 

Affine sets which contain the origin (denoted by 0) are linear spaces. 

The mapping a: -*• E^ defined by the rule 

a(x) = Ax + а , xeE^ 

where A is а (kxd)-matrix and aeE^, is called an affine mapping. If A 

is a nonsingular matrix the map a is called а попліпдиіап mapping, 

otherwise it is called ліпдиіап. 

If ACE. and aeE the set A+a = {x+a : xeA} is called 
d d 

a tnan^tation of the Aet A thnough the vecto/i a. Two affine sets are 

called pa/iattei tet* if one of the sets is a translation of the other set 

or of one of its subsets through some vector. Two sets A and A' are 

called affinetg equivalent if a nonsingular affine mapping a exists such 

that a(A) = A'. Every non-empty affine set is parallel to a unique 

subspace, namely 

L = {x-a : xeA} , aeA. 
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A linear combination £ A.x1 of points x1,..^11 in E. is 
i=l 1 d 
n 

called an a£line combination if £ A. = 1 where \.eE, . A finite set of 
i=l 1 11 

points is called bineanby (aJLJLineby) inde.pe.nde.nt if none of its points 

can be expressed as a linear (affine) combination of the others. It is 

clear that the set of points {x^,..,xn} is linearly (affinely) dependent 

if the origin can be expressed in the form У A.x1 with some A. i 0 
i=l 1 1 

n 
(and with У A. = 0 in the case of affine dependence). The maximum 

i=l 1 

number of linearly independent points in the set {х^,..,хП}, where 

x'' = (х^j , .. ,Хд^ ) e Ед, is equal to the rank of the (dxn)-matrix (x^). 

The maximum number of affinely independent points equals the rank of the 

((d+1)xn)-matrix whose columns consist of the vectors 

x^ = (хд.,..,Хд.,1). The maximum number of linearly independent points in 

Е^ is d while the maximum number of affinely independent points in Ед 

is d + 1. 

A linear space (affine set) is called d-dimensional if the 

maximum number of linearly independent (affinely independent) points in it 

is d (or d+l). The dimension of a set A is denoted by dim A. It is 

clear that the dimension of an affine set A equals the dimension of the 

linear space whose translation yields A The empty set is defined to have 

dimension -1. Affine sets of dimension 0,1 and 2 correspond to points, 

lines and planes respectively. 

Let S be an arbitrary nonempty subset of Ед. Then the set 

of all affine combinations of points taken from S is an affine set called 

the а££іпе hull of S and denoted by aff S. Clearly, if S is an 

affine set then aff S = S. 

The following theorem shows that in constructing affine hulls 

it is not necessary to take affine combinations of all possible subsets. 

It suffices to consider only certain subsets called gene/iating *et/>. 

Theorem 1.1 An a{.£ine k-dimen^ionab лet A 9 i-Ae 

atline kubb o£ any -iub^et S С А соплілііпд o£ k+1 af.£inety independent 

pointл and сопиеплеіу. 
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An affinely independent set of points S which generate the 

set A, as in Theorem 1.1, is called an а££іпе Laviv of A. 

Given any two affine bases there is a unique nonsingular affine 

mapping which maps one basis onto the other. 

A (d-l)-dimensional affine set in E^ is called a hyperp Lane. 

Every hyperplane HCE^ may be represented by an equation of the type 

ax = 8 , where aeE^, a^O, BeE-^ ; the vector a is called the normaL ventor 

to the hyperplane H. Hyperplanes are called Line.an.Ly independent hyper- 

pLanev if their normal vectors are linearly independent. 

Theorem 1.2 Every a££ine vet o£ dimension d-k in E^ may Le 

rep revented av the intervention o£ к LinearLy independent hyperpLanev. 

ConverveLy, the intervention о/ к LinearLy independent hypenp Lanev in 

E^ iv an a-ttine vet о/ dimenvion d-k. 

Let the vector beE^ and the (mxd)-matrix A of rank m be 

given. Then, the non-empty solution set of the system of linear equations 

Ax = b (1.1) 

is a (d-m)-dimensional affine set in E.. 
d 

1.2 Convex Sets 

The Line vegment joining the points х,уеЕ^ consists of the 

set of points Ax + (l-A)y, where A ranges over all real numbers between 

0 and 1 inclusive. We will denote such a line segment by [x,y]. 

The set WCE, is called a nonvex. vet if it contains the 
- d 

line segment joining any two of its points. 

The following are examples of convex sets. 

1 Affine sets. 

2 The ray {xsE^ : x = a + bt , t^O} with endpoint aeE^ 

and direction b^O. 

3 The nLoved haL£-vpanev H+ = {xeE^ : ax>;B} and 

H = {xeE^ : ax^B), defined by the hyperplane H = {xeE^ : ax=B). 

12 



4 The doted tpkene S(a,r) = {xeE^ : Hx-all^r) with centre 

at the point a and radius r^O. 

Since the intersection of any number of convex sets is a 

convex set, the set of solution points of any (finite or infinite) system 

of linear inequalities a^x^S^, i=l,2,3»... is either convex or empty '(if 

the system is inconsistent). 

The solution set of a finite system of linear inequalities 

is called a poiyke.dn.on. 

Two convex sets ^d are ca^--*-et^ tepanaHle if a 

hyperplane H C exists such that lies in one and lies in the 

other of the two closed halfspaces defined by H ; the hyperplane H is 

called a tepanating kypenplane. Further, the two convex sets W,,W„ С E, 
12 d 

are called ttnongly tepanaHle if a separating hyperplane H exists such 

that W-^ and W^ are contained in the corresponding open half-spaces. 

If is contained in an open half-space corresponding to the hyperplane 

H and is contained in the other half-space (possibly closed), then 

we say that the kypenplane H ttnictly tepanatet the tet /nom the 

tet Wg. 

We will formulate an important assertion about convex sets. 

This assertion plays a fundamental role in the proofs of many of the basic 

facts in the theory of convex sets. 

We recall that a set is called Hounded if it is contained 

within some sphere. 

Theorem 1.3 (Separation Theorem). Let W^,W£ <Le any two 

doted convex, tett in with no pointt in common and tuck that at leatt 

one of. them it Hounded. Then W^ and ane ttnongly tepanaHle. 

Corollary 1.4 Let W^ and He anHLtnany convex tett 

with no poinit in common, then they ane tepanaHle. 

The Separation Theorem has important corollaries known as 

supporting hyperplane theorems. 

13 



Let ¥ be a non-empty set in E^. The hyperplane H is 

called a -bapponting hypenp Lane. to the set W if H has at least one 

point in common with W and if W is contained in one of the two closed 

half-spaces H+ and H- defined by H. The half-space containing W is 

called а -bapponting hat{--bpace to W. 

Corollary 1.5 Топ. eveny cto-bed Hounded convex -bet W C 

thene exi-bt-b a bapponting hypenp Lane to W with, any given nonmat vecton. 

A pnojnotion о/ a point x on the. convex bet ¥ is a point 

x at which the infimum, inf 11x-y || , is attained. Such a point is 
. yeW 

unique. J 

Corollary 1.6 Let ¥ He a ctobed (Lounded convex -bet and tet 

x He a point, x^¥. 1 hen thene exibtb a bapponting hype/ip Lane H to ¥ 
I I 

which btnictty bepanateb x {nom . ¥ and {.on which x e НП¥, whene x 

ib the pnojection o{ the point x on the -bet VI. 

Theorem 1.7 Eveny cto-bed convex -bet ¥ { E^ can He nepneben- 

ted a-b the inten-bection o{ a /amity o{ cto-bed hat{-bpaceb. 7o define the 

{amity it bujLJLiceb to take att the -bapponting hat{--bpace-b to ¥. 

Thus any closed bounded convex set in E^ can be defined by 

means of a (possibly infinite) system of linear inequalities. 

The dimen-bion o{ a convex -bet ¥ C E^ is defined to be the 

dimension of its affine hull. The set of all interior points of a set 

¥ C is denoted by int ¥ and is called the intenion о/ the -bet ¥. 

Clearly, if a convex set VI has a non-empty interior in E^ then the 

dimension of ¥ equals d. If ¥ has dimension less than d then ¥ 

does not have any interior points in E^. But, relative to its affine 

hull aff ¥ , a convex set ¥ does have interior points. The interior 

of a set ¥ С E, relative to its affine hull, whose dimension is less than 
d 

d , is denoted by rel int ¥. If a set ¥ C E^ is convex, then its 

closure ¥ and its relative interior rel int ¥ are also convex sets. 

The set ¥ \rel int ¥ ,i.e. the boundary of the convex set ¥ , is 
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denoted by 

the set W 

rel bd W is the boundary of rel bd W . If dim W = d , then 

in and is written bd W . 

ш , 
The linear combination £ X.x1 of points x1, 

i =1 1 

m 

m 
,x e E , 

d 

called convex if \. > 0 , У A. = 1. 
1 = i=l 1 

E^. The set of all convex combinations 

Let S be a non-empty set in 

of points taken from S is a 

is 

convex set called the convex kutl of S , denoted by conv S . The 

convex hull conv S of a set S С E, is the smallest convex set contain- 
~ d 

ing S . A set W is convex if and only if W = conv W . 

The following classical result, due to Caratheodory (1907,1911) 

shows that in constructing the convex hull of SCE^ it is not necessary 

to take combinations of more than d + 1 points. 

Theorem 1.8 Ike. convex kail о/ a -bet S C E^ i-b tke union о/ 

att convex comHination-b o£ att puH^et-b o{. S containing no mo/ie than 

d + 1 point-b. 

A point x of a convex set W is called an extneme point 

if it is not an interior point of any line segment with distinct endpoints 

in W . 

Theorem 1.9 A non-empty cto-bed Hounded, convex -bet in E^ 

po-b-be-b-be-b ext/ieme point-b and i-b tke convex kutt о/ tke -bet о/ it-ь ext/ieme 

point-b. 

1.3 Convex Cones 

A subset К С E, is called a cone if Ax e К for all 
— d 

x e К and A > 0. A convex cone, is a cone which is also a convex set. 

Thus every linear space in E^ is also a convex cone. A half-space in 

defined by a hyperplane passing through the origin is also a cone. 

Since any intersection of convex cones is also a convex cone, the set of 

solutions of a finite system of homogeneous linear inequalities is also a 

convex cone called a potyked/iat cone . 

m 
A point x = I X.x1 , A. > 0 , i = l,...,m, is called a 

i=l 1 1 
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conical combination of the points x , . ..,xm. 

Let S be a non-empty set in E^. The set con S of conical 

combinations of all subsets of S is a convex cone called the cone, 

gene/iated by S . A convex cone generated by a finite set of vectors is 

called multifaceted . A convex cone is called a pointed cone if it does 

not contain any non-null sub-spaces. A pointed cone does not contain any 

lines. A pointed multifaceted cone has a unique (to within positive scalar 

multiples) generating set whose elements are called the batit of the cone. 

The following fundamental result in the theory of convex 

cones and the theory of linear inequalities is due to Weyl (1935). 

Theorem 1.10 A convex, cone К it po lyhednal if and only if 

it it multifaceted. 

§2 CONVEX POLYTOPES 

In this section we list some elementary facts about polytopes 

(Griinbaum 1967 , McMullen & Shephard 1971) and present the classical 

Weyl-Minkowski theorem. 

Definition 2.1 The convex hull of a finite set of points V 

in E^ is called the convex polytope generated by the points of V. 

Since, in the sequel, we will be considering only convex 

polytopes and cones, we will omit the word 'convex' from now on. 

2.1 Vertices 

Let H be a supporting hyperplane of the polytope M . 

Definition 2.2 The set F = M ГІ H is a face of the polytope 

M , generated by H . If dim F = i then F is an 1-face of the 

polytope M . The 0-faces are called the ve/iiicet of M . The set of 

all vertices of M is denoted by vert M . 1-faces are called edget of 

M . The empty set 0 and M itself are called imp/iope/i facet ; all 

other faces are ряоре/i facet of M . If dim M = d then (d-l)-faces of 

M are called facett of M . They are proper faces of maximal dimension. 

Theorem 2.1 A polytope hat a finite numben. of distinct facet 

and each of itt facet it ittelf a polytope. 

P/ioof. Suppose that the polytope M = conv V , where V = (x^,...,xn}. 
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Let H = {x e : ax = 6} be a supporting hyperplane to M generating 

the face F . For simplicity let НГІѴ = {х"1", . . . , xS}. 

We show that F is a polytope. To this end, we show that 

F = conv (x^,...,xs ). For any point x e M we have 

n . n 
x = I X.x1 , I X. = 1 , X. > 0 Vi e N 

i=l 1 i=l 1 

Thus 

n . n n n 
ax = I X.ax1 = В I X. + I X.6. = 3 + [ X.&. , 

i=l 1 i=l 1 i=l 1 1 i=l 1 1 

where 6. = ax1 - 3. Let MCH+ . Then x^ e H+ , Vi e N . Clearly 
l n J 

x1 / H for i = s+l,...,n. Thus 6. = 0 Vi e N , while 6. > 0 , 
1 s 1 

i = s+l,...,n. But x e F if and only if ax = 3 . This last equation 

is possible if and only if = 0 for i = s+l,...,n. Hence 

F = conv (x\...,xs) i.e. F is a polytope. The set V is finite, and 

since every face is generated by a subset of V we see that the number of 

faces is finite. // 

The following theorem may be proved similarly. 

Theorem 2.2 A poiytope. іл the. c.onve.x. kail о/ it/> ие./ііісе.л. 

Corollary 2.3 Lve./iy -f.ac.e- F of a potytope La the convex. 

h.uti of Li.A ventLceA, i.e. F = conv vert F . 

Corollary 2.4 7he ventLceA of a poiytope ane LtA onty 

extneme poLntA. 

Theorem 2.2 and Corollary 2.4 allow us to give an 

equivalent definition of the vertices of a polytope. 

Definition 2.3 A point of a polytope M is a ventex if 

it cannot be represented as a convex combination of any other two distinct 

points of M . 
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2.2 The Weyl-Minkowski Theorem 

Theorem 2.5 (Minkowski 1897, i.'eyl 1935) 7 h.e Aet M it a 

polytope. and only L-/L M іл a Hounded po lyhednon. 

P/ioo£. (i) Let M be a polytope. Without loss of generality suppose 

that M is a d-polytope in . This prevents us from having to 

consider rel int M . Let F } be the set of all facets of M 
_L S 

and let H^,...,H be the supporting hyperplanes to M generating the 

facets F-^,...,Fs . Let H^,...,H* be the supporting half-spaces to M 

corresponding to the hyperplanes H,,...,H . We show that 

M = П Ht . (2.1) 
i=l 1 

It is clear that M is contained in the intersection of the 

half-spaces fit , i = 1.з . 

We establish the reverse inclusion. Suppose this inclusion 

s + 
is false, i.e. suppose there is a point x e П H. such that x i M . 

i=l 1 

Consider the affine hulls A of each (d-l)-subset w of the set 
ш 

vert M and of the point x . Let A = 1) A . Since dim M = d and 
w ш 

since dim A^ < d-1 , there exists a point у such that у e int M and 

у i A . Since x 4- M there is a unique point z in the intersection of 

the segment [x,y] with bd M . We show that z belongs to some facet 

F^ . Indeed, if z belongs to a j-face of smaller dimension, then 

Theorems 2.1 and 2.2 imply z c conv(x\...,xS) where x^,...,xS are 

certain vertices of this face, and where, by Caratheodory's Theorem 

(Th. 1.8) s £ j + 1 and so s £ d - 1 . Thus, z e A . But, by the 

way the set A was constructed, x e A and hence the entire segment 

[x,y]e A . But this contradicts the choice of the point у . Hence, z 

belongs to some facet F^ , but then z e . Since у e int M С h! , 

we have x t НІ . This contradiction shows that x e M and hence 

equation (2.1) holds. 
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(ii) Let M П H. be a bounded polyhedron, where H,,..., 
i=l 1 1 

H+ are closed half-spaces. Without loss of generality assume that 
s * 

dim M = d and that there are no redundant НІ among the half-spaces. 

Let F. = M П H. . Then 
l l 

n н! Пн. = П (н!пн ) . (2.2) 
j=l J / 1 j^i V J X' 

Since M is a bounded set and because of (2.2), F^ is a bounded poly¬ 

hedron for each i . 

The proof uses induction on d . A bounded polyhedron 

MCE^ is obviously either a point or a line segment. In the first case 

M = {x} = conv {x}, while in the second case M = [x\x^] = conv {x\x^}. 

Suppose the theorem is true for the space Е^_-^ . Since dim F^ < d-1, 

the inductive assumption shows that F. is a polytope. By Th. 2.2 
s 

F. = conv vert F. . Let V = L) vert F. . Since VCM and since M is 

convex, conv VCM. 

We establish the reverse inclusion. Let x e M . Suppose 

first that x e bd M . Every point in bd M lies in thp boundary of one 

+ s 
of the H. . It is clear that bd M = N F- • Thus x e F. for some 

1 i=1 1 

i, 1 < i < s . By the inductive assumption x e conv vert F^ and hence 

x e conv V . Next suppose that x e int M . Consider a line passing 

through x . This line intersects bd M (M is a bounded convex set) in 

I и I и 
two points x and x . By the above x ,x e conv V and hence 

i и .. 
x e conv (x ,x ) also belongs to the set conv V . Thus, conv V = M . // 

Corollary 2,6 £ue/iy d-potytope in with m /acat-4 ІЛ 

an inte./iAe.ction o-t m cto4e.d half.-лрас.е.л. 

Corollary 2.7 Le.t M в-е. a potytope. in and te.t A He. 

an atJLine -iet in E^ . Then A DM i-i ai/>o a potytope. 
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2.3 Faces 

Proposition 2.8 Let M-^,Mg А г. polytopep puch that M^C . 

1£ F ІР a /ace 0-/L the. polytope » then F П Mg i-4 a /асе o£ the 

polytope М2 (poppULly ітр/іорел. ). 

Pnoof.. The proposition is obvious if F is an improper face of . 

Otherwise, let H be the supporting hyperplane of the polytope which 

generates the face F . Then either MgП H = 0 , or H is a supporting 

hyperplane to Mg . In the first case H ПMg = 0 is an improper face of 

Mg . In the second case H ПMg = F ПMg is a proper face of Mg . Ц 

Theorem 2.9 Let F^.Fg <Le £aeep o£ the polytope M, 

Fg C F^ . 1 hen Fg Ip a JLaee 0/ the polytope F^ . ConuenPely, ijl F^ 

ip a JLace o£ the polytope M and Fg Ip a £ace o£ the polytope F^ , 

then Fg ІР a ’.ace o£ the polytope M . 

P/100JL. The first part of the theorem follows directly from Proposition 

2.8 . We prove the second part. Without loss of generality suppose 

0 e Fg and that M is a d-polytope in E^ . Let a^ be the normal 

vector to the hyperplane generating the face F^ , with MCE^ . Let 

the vector ag e be such that F^C{xeH^ : agX^O} and Fg = F^ П Hg , 

where Hg = {xeH^ : agX = 0} is an affine set of dimension d-2 . Let 

Hg = {xeE^ : (a^,+6ag )x = 0} . Then HgI3Hg3Fg for all 6 . Let 

a = max{|agx| : x e vert M\vert F-^} , 8 = min{a^x : x e vert M\vert 

a^x>0}. We show that if 0 < 6 < 8/2a (0<6 if a=0), then Hg is а 

supporting hyperplane to M and Fg = MDHg . Indeed, if x e vert M\ 

vert F^ , then (a^ + 6ag)x > 3 - dot > 3/2 > 0 , and if x e vert F^\ 

vert Fg , then (a-^ + 6ag)x = 6agX > 0 ; finally, if x e vert Fg , then 

(a^ + 6ag)x = 0 , i.e. x e Hg . Ц 
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Theorem 2.10 Let F-,..... F Ре а PamiPy о£ Pace* о/ a 
-L S 

poP.yi.ope M . Then. F = P) F. i* aP*o a Pace о/ M (po**iHPy imp/iopen). 
i=l 1 

Pnoop. If F = 0 or s = 1 the theorem is obvious. Let F 0 0 and 

s 0 1 . Without loss of generality suppose that the F^ are proper faces 

of M and that the coordinate system is chosen so that 0 e F . Let 

IL = {xeE^ : a^x=0} be the supporting hyperplane of M generating the 

face F^ with MCEL i=l,...,s . Let H = {xeE^ : ax = 0} where 

a = £ a. . Then MCH and, since ОеНПМ, H is a supporting hyper- 
i=l 

plane of the polytope M . It remains to show that F = МПН . For every 

x e F we have a^ = 0 , i=l,...,s, so x e МПН . Hence FCMDH . On 

the other hand, if x e M\F then a^x>0 for at least one i , so 

ax>0 . Hence x 0 МПН and therefore MDHCF . // 

Corollary 2.11 Lveny (d-2)- Pace oP a d-poPytope i* the 

inte/i*ection oP two oP it* (d-1) -Pace*. 

Theorem 2.12 Let F^ P.e a p/iopen i~Pace oP the d-poPytope 

M and. Pet j <. к < d-1 . Then F^ i* the inten*ection oP at Pea*t 

k-j+1 к-Pace* oP M which contain F^ . 

PnooP. Vie show first that there exist j-, (j+l)-,...,(d-l)-faces F*', 

.F^ ^ of M satisfying the inclusions F^' C F^+"*‘C . . . C F^-1 . 

To do this we note that if F^ is a proper face of M then F^ is also 

a face of some (d-l)-face. For, take a point x e rel int F^ . Then 

x e bd M since F*1 C bd M . But in the proof of Theorem 2.5 we saw that 

bd M is the union of all (d-l)-faces of the polytope M. Hence there is 

\ d-1 
a (d-l)-face F which contains x . Let H be the supporting hyper¬ 

plane of M which generates F^”^. Since x e rel int F^'^D H and H 

i 1 d-1 
is a supporting hyperplane of M , it follows that F CH. Hence FJCF 

and by Theorem 2.9 F^ is a face of the polytope F^ ^ . Continuing by 
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induction we deduce that F^' is a face of some face ^ of the poly¬ 

tope F^ ^ and so on . 

Let F^ + ^ be a (k+l)-face containing F^ (if k=d-l then 

F^+^=M). Then every (k-l)-face, including F^ \ of the polytope F^+^ 

is the intersection of two of its к-faces (Cor.2.11). Every (k-2)-face, 

including F^"^ , is in turn an intersection of two (k-l)-faces of F^+^ 

and so on. Eventually we find that the face F^ is the intersection of 

k+1 
not less than k-j+1 к-faces of F , which by Theorem 2.10, are 

faces of M . // 

Corollary 2.13 tve/iy ]-£асе о/ a d-/?o lytop e ІА the inten- 

Aection о/ not leAA than d-j о/ ііа -f.ace.tA. 

Proposition 2.14 Let F He a j-/ace of a d-/?o t. у tope M . 

then thene екІАІА a (d-j-1)-£ace F' of M Auch that 

dim conv (FUF1) = d . 

Pnoof. First note that from the definition of dimensionality it follows 

that FnF'=0. If F is a (d-l)-face of M then for F' we select 

a vertex not belonging to F . If dim F = j < d-2 , then F is contained 

in some (d-l)-face G of M and by the inductive assumption there exists 

a (d-j-2)-face G' of G such that dim(FUG') = d-1 . Let F' be a 

(d-j-1 )-face of M which contains G' but which is not contained in G . 

The existence of such a face is obvious, since G' is contained in some 

(d-l)-face of M , distinct from G . Then F1 is the required face of 

M since dim conv (FUF1) > dim conv (FUG1) = d - 1 . Ц 

Proposition 2.15 Let M He a polytope and tet 

W С V = vert M . Then conv W ІА a face о/ M if and only if 

(aff W) П conv (V \W) = 0 . 

The proof of this simple proposition is left to the reader. 
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2.4 Examples of Polytopes 

The simplest type of polytopes are the simplexes. 

Definition 2.4 The convex hull of an affinely independent 

set of points is а літріех . A d-simplex is denoted by T^ . 

Every face of a polytope is the convex hull of some subset of 

its vertices. Since a subset of an affinely independent set is also 

affinely independent, it follows that every face of a simplex is also a 

simplex of some dimension. Let T^CE^ . Then every d-subset W of 

vert T^ determines a hyperplane in which obviously supports T^ . 

Therefore conv W is a facet of T^ . Since, by Theorem 2.9 , every face 

of the simplex conv ¥ is a face of T^ , we obtain the following 

proposition by induction. 

Proposition 2.16 Let 0 < к < d-1 . tveny (k+1 )-лиЧлеі of 

the ue/ittce4 of a d-simpLex dete/тіпел a к-JLa.ee. Ike nu.rn.L-en f^(T,) of 

к-;іасел of a simplex T^ equals 

Clearly, any two k-simplexes in E^ , k<d , are affinely 

equivalent. Indeed, if T^ and Tj£ are two k-simplexes in E^ then the 

О к 0 к 
set of their vertices x ,...,x ,y ,...,y may be extended to affine 

bases x^,...,x^ and y^,...,y^ in E^ . There exists a non-singular 

affine map a which maps one basis onto the other : a(x1) = y1 , i=0,..,d. 

Hence, the simplexes T^. and TjJ. are affinely equivalent. 

The simplex T^ has d+1 facets and a coordinate system can 

be chosen in E^ such that T^ is given by the following inequalities : 

d 
J x. < 1 , x, 0 i —1,2, ..., d . 

i=l 1 1 

Such a simplex is called a negutan simplex . 

Definition 2.5 A polytope is called літрLiciaL if all its 

proper faces are simplexes. 

A subset of points VCis said to be in genenaL position 

if all of its (d+1 )-subsets consist of affinely independent points. If 
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the set of vertices of a d-polytope is in general position, then there is 

no hyperplane in containing more than d vertices of M . 

It follows that every facet of such a polytope is a simplex. 

Thus the convex hull of a set of points in general position is a simplicial 

polytope. Note that there exist simplicial polytopes whose vertex set is 

not in general position : more than d vertices may lie in the same hyper¬ 

plane H provided that H is not a supporting hyperplane of M . (Fig.l) 

Every j-face of a d-polytope is, by Theorem 2.12, the inter¬ 

section of not less than d-j facets. We consider the class of d-poly- 

topes whose facets are in general position. This implies that every 

j-face is determined by the intersection of exactly (d-j) facets. 

Definition 2.6 A d-polytope is a simple, polytope if each 

of its vertices lies in exactly d facets. 

We will see later that simple and simplicial polytopes are 

closely related and are the duals of each other in a certain sense. 

We will consider one of the most interesting examples of 

simplicial polytopes. In E^ define a curve by the parametric equations 

x(x) = (x1(t).Хд(т)) , where x^x) = x1 . 

Definition 2.7 The convex hull of n distinct points in E^ 

lying on the curve x(x) is called a cyclic polytope. , denoted by 

C(d,n) . 

Cyclic polytopes play an important part in the combinatorial 

theory of polytopes. They were introduced in 1907 by Caratheodory (1907) 

and were rediscovered in 1956 by Gale (1956, 1963) ; see also 

Shashkin (1963). 
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Proposition 2.17 A cyclic polytope іл бітріісіаі. 

Pn.oo-1 We show that the vertices of 

general position. Thus, take d+1 

T1 T2 ... 
Td+1 

2 
T1 

2 
T2 • • * 

2 
Td+1 

Д = • • • • . . 
d 

Ti 
d 

T2 * • * 
d 

Td+1 

i 1 ... 1 

a cyclic 

vertices 

polytope C(d,n) are 

x(T!x(xd+1) • 

in 

Then 

is Vandermonde's determinant and hence Д / 0 . Hence, the points x(x^) 

are affinely independent and every proper face of a cyclic polytope is 

a simplex // 

Definition 2.8 A polytope M is called Y.-neigk(Lou/ily if 

every к-subset of its vertices is the vertex set of some proper face 

of M . 

For example, a d-simplex is d-neighbourly and every polytope 

is 1-neighbourly. 

Proposition 2.18 Ike. cyclic polytope. C(d,n) i-i 

[d/2 ]-n ei ghlou/ily. 

P/ioo£. Let m = [d/2j. For an arbitrary m-subset 

V = {x(x¥) : i=l,...,m} , where x? < ... < t* , of vertices of a cyclic 
mi i m 

polytope C(d,n) we introduce the polynomial 

g(T) = П (x-x*)2 = S0 + 31x + ... + S2mx2m * 
i=l 

Let H = (xeS^ : ax=-Sg} be the hyperplane with normal vector 

a = (B1,...,8d) , where = 0 if d=2m+l . Clearly, x(xf) e H , 

i=l,...,m , while for all other vertices of C(d,n) we have 

m ? 
ax(x') = -Sn + П (x' _x¥) > -0n . 

u i=l 1 u 
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Thus, H is a supporting hyperplane of C(d,n) and H Overt C(d,n) = . 

This means that the vertices V generate the face F = HflC(d,n) . // 
П1 

Corollary 2.19 

fpcfd.n)) = (j^) 

§3 OPERATIONS ON POLYTOPES 

3.1 The Simplest Operations 

Let and Mg be polytopes in . The set 

M = {xeE^ : х=х^+Х2 » x-^eM-^ , XgSMg} 

is the aam of the polytopeA and Mg denoted by M-^ + Mg . Evidently 

the operation of summation of polytopes can be generalized to the case of 

arbitrary convex sets. Such sums will also be convex sets. 

We can use this operation to generalize Theorem 1.10 as follows 

Theorem 3.1 The po lyhed/ion P 0/ ao tutionA of a non-homo gene- 

ouA Ay-item of Aimultane.ou.-i tinea/L ineyuatitieA can (Le /іер/ieAented aA a Aum 

P = M + К of a po tytope M and a muttifaceted cone К which ІА identical 

with the polyhednat cone of ao tutionA of the conneAponding AyAtem of 

homo geneouA ineguatitieA. 

The set 

Vi £ K[d/2] • 

{(x^Xg) : xieMi , i=l,2} 

is called the product of the polytopeA МлС E, and M„C E, . 
_L a 1 -c a 2 

A pnojective mapping of а space into E 

given by the rule 

is a map т 

t (x) 
ax + 6 

x e E 

where a is an affine map from to E^ , a is a d-vector and 6 is 

a real number. A projective map т is called non-Aingutan if the 

26 



associated affine шар a : Ed+1 -*• Ek + 1 defined by the rule 

a(x,l) = (a(x) , ax+0 ) 

is non-singular. The projective шар т is called £е.а.4І&.е.е. foe tke леі W 

if МПН = 0 , where H = {xeE^ : ax + 0 = 0} . 

Let t be a projective map feasible for a polytope MCE^ , 

then the set t(M) is called a peojective image of M . 

Proposition 3.2 The JLo (.lowing a/ie po Іуіорел : 

l) 7he лат о/ a finite леі of. роіуіорел; 2) Ike convex, kali 

of. a finite леі of роіуіорел; 3) 7ke non-empty іпіеялесііоп of a finite 

леі of роіуіорел; 4) 7ke p/iodact of a finite леі of роіуіорел; 5) 7ke 

affine image of a polytope", 6) 7ke peoj ective image of a polytope. 

The first four assertions are obvious. The fifth and sixth 

follow from the definitions of affine and projective maps and from the 

obvious properties a(M) = conv a(vert M) , t(M) = conv x(vert M) . 

3.2 Polars 

According to Theorem 2.2 a polytope is completely determined 

by its vertices. Thus it is natural to associate with a given polytope a 

second polytope given by the intersection of a set of closed half-spaces 

whose normal vectors correspond to the vertices of the first polytope. 

Definition 3.1 Let W be a non-empty set in . The set 

W* given by 

W# = {yeE^ : xy < 1 , x £ W) 

is called the pola/i of W . 

We consider some examples of polars of certain convex sets. 

1 Let a be a point in E^ , then a* = (ysE^ : ay < 1} is a 

halfspace in E^ . Also 0* = E^ . 

2 The polar of the halfspace H = {xeE^ • ax < 13} is the 

segment (H )* = (yeE^ : у = at , 0 < t <. 1/0} if 0 > 0 , and the ray 

(H-)* = {yEE^ : у = at , t > 0} , if 0^0. 

3 The polar of the sphere S(0,r) with centre 0 and radius 

r is the sphere S(0,l/r) with the same centre and radius l/r . 
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According to definition 3.1 the polar W* is the intersection of the 

closed half-spaces H = {yeE, : xy < 1} , VxeW , i. e. W# = П H . 
x a xeW x 

Consequently, the polar of any non-empty set (not necessarily convex) is 

a closed convex set. The following Lemma also follows directly from 

defintion 3.1 . 

Lemma 3.3 Lut 0 f W, C . 7h.e.n W* D W* . 

Theorem 3.4 M be. a potytope. tuck that 0 e int M , 

th.e.n tke. pola/i M* i-4 аіло a potytope.. 

~j g 
Рлоо£ Let vert M = (x ,...,x } . We show first that 

s • s 

m* = П (x1)* = П {yeEd : хху i i) • (3.1) 
i=l i=l 

Since vert MCM , by Lemma 3.3 

s 
M* C (vert M)* = П (x1 )* . 

i=l 

Conversely, let у e (vert M)* , that is, the inequalities 

x^y < 1 VieN 
J = s 

are satisfied. Let aeM . Then 

and so 

s 
У A. =1 , A. >0 , 1 < i < s 

. n 1 l = — — 

x=l 

s . s . 
ay = I (A.x1)y = I A.x у < 1 . 

i=l i=l 

Thus yeM* and so M*Э(vert M )# . This proves (3-1). 

It remains to show that M* is a bounded polyhedron. 

Since 0 £ int M , 3r>0 such that the sphere S(0,r) is contained in M . 

The polar of S(0,r) is the sphere S(0,l/r) . By Lemma 3*3 

M*CS(0,l/r) and so, by Theorem 2.5, M* is a polytope. // 
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Lemma 3.5 Let the polytope M contain, the. onigin 0 (not 

песелла/іі ly аб an intenion point) . Then M** = = M . 

Pn.oo-1 We show first that MCM** . Let xeM . Then for all yeM* we 

have <<
 

X
 

ІІЛ
 

H
 

Thus xeM** . Hence MCM**. 

Next we show that M**CM . Suppose, for contradiction, that 

3 aeM** such that a0M • Let a' be the projection of the point a on 

M . Then the hyperplane 

H = {xeE^ : (a-a')x = a} 

passing through a' is a supporting hyperplane of 

We have (a-a')x <, a for all xeM , but (a-a')a > 

that a < < (а-а')а then, since OeM , we have 

xeM we have cx < 1 , where c = (a-a')/a^ . Thus 

yeM* we must have the inequality ay < 1 , whereas 

Hence M**CM . // 

M (Corollary 1.5) • 

a . If is such 

> 0 . So, for any 

ceM* . But for any 

ас > 1 . 

Lemma 3-6 Let F le a {.ace. o{ the potytope M and let 

0 e int M . 1 hen the Aet 

<I>(F) = {yeM* : xy = 1 VxeF} (3.2) 

it a {ace o{ the polytope M* . 

?noo{ It follows from (3.2) that ф(0) = M* and that ф(M) = 0 . Now 

suppose F is a proper face of M . Let x e rel int F . Then the 

hyperplane H = {yeE^ : x°y=l} is a supporting hyperplane of M* so that 

F* = M* П H is a face of M* . Also ф(Р)СР* . We will show that 

Ф (F ) Э F* . Let у e M*\<I>(F) . Then 3x^eF such that 
1 0 

x У < 1 . 

Since x e rel int F , 3 x eF such that x° = (l-A)x^ + 
■v 2 
AX , o < 

Since y°eM* 
о 2 

«ух < 1 and so 

0 0 
у X (1-Л)у°х1 + Ay°x2 < 1 . 

Thus y°0F* , Hence F* = ф(Р) and ф(Р) is a face of M* • // 
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3 • 3 Duality 

Duality is one of the fundamental concepts in the theory of 

convex sets and, in particular, in polytope theory. Different aspects of 

duality have been investigated by many authors, notably by Motzkin (1933). 

Weyl (1935), Fenchel (1953) and Kutateladze & Rubinov (1976). 

Definition 3.2 The polytope M° is said to be duat to the 

polytope M if there is a bijective map ф between the sets of faces of 

all dimensions of M and M° respectively 'with the property : 

Fx C F2 «> ф(?х) Э *(F2) 

Such a map between the faces of the two polytopes is called an anti- 

ілотоярЬілт. 

An example of a dual pair of 3-polytopes is given by the cube 

and the octahedron (Figure 2). Two other examples are given in Figures 3 

and 4- A simplex is clearly self-dual. 

It follows from definition 3.2 that 

dim M = dim M° = dim F + dim b(F) + 1 

for any face F of the polytope M . 

The following theorem answers the question : does every 

polytope have a dual? 

Theorem 3.7 Let MCE^ He a potytope and tet 0 e int M . 

Then the роНая M* i-i a potytope which ІЛ duat to M . 

Ряоо-f. We show that the map ф , defined by equation (3*2) is the anti¬ 

isomorphism required by definition 3.2 . If F^CF^ then Lemmas 3.3 

and 3.6 imply that ф^-^Эф^^) , If we now show that Ф(Ф(Р)) = F , the 

theorem will be established. 

By definition 

Ф(Ф(Р)) = (xeM** : yx=l Vyeb(F)} 

Since M**=M (Lemma 3.5) we have FCb(b(F)) . 

Let the face F be generated by the supporting hyperplane 

H = (xeE^ : ax=l} with HCH* , Clearly аеф(Р) . If x°eM\F then 

ax° < 1 and x° i ф(ф(Р)) . Consequently ф (Ф (F)) Q F // 
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cube 

(a) 

Fig. 2. 

octahedron 

(b) 

Fig. 3. 

Fig. 4. 
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Corollary 3 . 8 Иге duat o-f. а Pimp ticiai poiytope ip РІтрІе. 

1 tie. dual. o£ a pimpie poiytope. ІР РІтріісіаІ. 

3•4 Construction of Supporting Hyperplanes 

Lemma 3.5 yields an algorithm for representing a poiytope as 

the intersection of a finite number of closed half-spaces. Indeed, let 

the d-polytope MCE^ be given by 

M СОПѴ (3.3) 

We consider the auxiliary poiytope 

u /10 n 0, = conv {v -v ,...,v -v } 

where the vector v^ is chosen so that 0 e int . Such a vector 

exists because of the condition int M 0 0 . The polar M* of is 

given by the following system of inequalities : 

(v^-v^)x £ 1 , i = l,...,n 

By Theorem 3.4 » MJ is a poiytope and sc 

M* 
Г 1 S, 

conv {u ,...,u } 

1 s 
where (u ,...,u } is the set of vertices of MJ 

is now given by the constraints 

The poiytope 

u x < 1 1-1, , s 

By Lemma 3.5 MJ# = . Thus the poiytope M = + v will be given 

by the following system of inequalities : 

i . , , i 0 
U X < 1 + U V i = 1,..., s (3.4) 

Thus in order to obtain the analytical representation (3-4) of the poiy¬ 

tope M from the parametric representation (3.3), one requires a means of 

constructing the vertices of its polar or the vertices of the polar of the 

auxiliary poiytope M-^ if M does not contain 0 in its interior. 
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§4 THE SOLUTION POLYTOPE OF A SYSTEM OF LINEAR INEQUALITIES 

The Weyl-Minkowski Theorem (Theorem 2.5) shows that every 

polytope in a fixed coordinate system can be specified by means of a 

finite system of linear inequalities. This allows us, on the one hand, to 

utilise the well developed apparatus of the theory of linear inequalities 

to study polytopes and on the other hand, to give an algebraic interpreta¬ 

tion of the geometrical properties of polytopes. In this section we 

examine ways of specifying polytopes by means of various systems of linear 

inequalities. 

4.1 Specifications of Polytopes 

Let M be a d-polytope and let f^ ^(M) = n . Then by 

Theorem 2.5 M is the intersection of n half-spaces ut in E^ given 

by the inequalties 

A. x > 
l 

b. 
l 

A. eE , 
l d i=l, • *n (4.1) 

If the dimension d of M 

in which it is defined, M 

dent hyperplanes 

is less than the dimension of the space E 
^ m 

is the intersection of m-d linearly indepen- 

A.x 
l 

b. 
l 

and of n half-spaces 

A.eE , i=l,...,m-d , 
l m 

(4.2) 

A. x > 
l — 

b. 
l 

A.eE , i=m-d+l.m-d+n 
l m 

(4.3) 

In linear programming a d-polytope M is usually viewed as a 

subset of a space whose dimension equals the number n of its (d-l)-faces. 

Moreover the chosen basis of the space E is taken to be the set of 

vectors orthogonal to the hyperplanes which generate the polytopes (d-1)- 

faces. Using such a coordinate system in En the polytope is given by 

the following set of constraints 

A.x = b. , A.eE , i=l,...,n-d (4-4) 
1 l in 

x > 0 . (4.5) 
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Such a polytope may be denoted by M(A,b) . On the other hand, any 

bounded subset of determined by n linear inequalities (4.1) in d 

variables is a polytope M such that dim M < d and f^ -^(M) < n . 

Definition 4-1 If a polytope is given by a system of inequa¬ 

lities (4-1) we call this system а поятаі specification of the polytope. 

If a polytope is given by a system (4*4)»(4-5) we call the system a 

canonical specification of the polytope. 

It is easy to transform a canonical polytope specification 

into a normal polytope specification by means of a singular affine map,and 

conversely. Let a polytope M be given by a system of constraints (4-4)» 

(4-5). Then we can use equations (4-4) to solve for r of the variables 

in terms of the others, where r is the rank of the system (f.f). Let 

these be the first г variables, then we obtain a system of the special 

form 

b. 
1 

+ 
n 

l 
j=r + l 

a. . x . 
ij J 

V ieN 
r 

which gives the normal form of the affine set determined by (4-4) which in 

matrix form is 

x 
В 

B_1b - B_1HxH 

where В is a basis of column-vectors for the column space 

A and Xg,x^ are vectors made up of the components of x 

to the indices of the columns of 3 and H respectively. 

If we then replace the inequalities Xg>0 by 

n 
У a..x. > -b. , VieN (-B Нхи 2 

j=r+l iJ J - 1 H 

and adjoin the remaining inequalities 

> 0 , j=r+l.n (xH > 0) , 

we obtain a normal specification of the polytope in . 

To transform from a normal specification (4*1) of a polytope 

M to a canonical specification it suffices to write x. = x. - x. , VjeN, 
J J J ** 

and to introduce n slack variables x,,. VieN . The system 
d+i n 

of the matrix 

corresponding 

-B_1b) 
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A.x - A.x" 
l l 

- x 
d+i 

= b. VieN 
n 

xt > 0 , x' > 0 xd+. > 0 VjeNd , VieNn 

is clearly a canonical specification of the same polytope M . 

Definition 4-2 The i-th constraint in the system (4-2),(4-3) 

is called а лtigid con^tnaint for the polytope M if the coordinates of 

every point of M satisfy the constraint as an exact equality. 

Clearly, all the constraints (4-2) and (4.4) are rigid 

constraints. However, some of the constraints (4*3) or (4*5) may also be 

rigid constraints. To show that the i-th constraint is not rigid it 

suffices to exhibit a point of the polytope whose coordinates satisfy this 

inequality strictly. 

The matrix whose rows are the normal vectors A. of the 
l 

hyperplanes (supporting or non-supporting) is called the conttnaint 

mat/іік of the polytope. 

The following proposition is a consequence of Theorem 1.2 and 

the definition of the dimension of a convex set. 

Proposition 4.1 Ike dimension о/ the polytope MCE^ in 

loth nonmal and canonical лресі-іісаііопл іл n-г , wke/ie г іл the /tank 

of the rn.atn.ix. of. nigid conptnaintz of the poly tope. 

The number of facets of a d-polytope M defined by some 

system of constraints is not necessarily equal to the number of non-rigid 

constraints since some of these may be redundant. A nedundant con^tnaint 

is a constraint (either equality or inequality) which may be omitted from 

the constraint set without altering the solution set (the polytope). It 

is difficult to search analytically for such constraints. Therefore, in 

studying polytopes given by concrete systems of equations and inequalities 

we will allow them to include redundant constraints. A redundant 

constraint A^x > b^ defines geometrically a hyperplane 

H^. = {xeT^ : A^x = b^} which either has zero intersection with the poly¬ 

tope M or has a non-zero intersection such that dim(MDH^) < d-1 . 

Clearly if the rank of a system of rigid constraints equals the number of 

such constraints then none of them are redundant. We give without proof a 

fundamental criterion for the existence of redundant constraints due to 

Minkowski (1897) and Parkas (1902). 
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is nedundant in the. Theorem 4.2 Ike. inequality A^x <. 

system. A^x <. , V ieN^ , i-f- and only LJL theee exist non-negative numlens 

X. such that 
l 

I X. A. 
i£k 1 1 ifk 

X.b. 
1 x 

Definition 4.3 The system (4.2), (4-3) is called ieneducille 

if the rank of the system of rigid constraints equals the number of such 

constraints and if there are no redundant inequalities in (4-3). 

Clearly, if (4*2),(4.3) is an irreducible system, then the 

polytope it defines has dimension d , while the number of its facets 

equals the number of non-rigid constraints. On the other hand, if the 

polytope has dimension equal to the dimension of the underlying space, 

then in this case the polytope has a unique irreducible specifying system. 

Let the system (4-2).(4*3) be irreducible. According to 

Corollary 2.13 every j-face of a d-polytope MCE^ is an intersection of 

some of its facets. Thus a system specifying a j-face can be obtained by 

changing some of the inequalities (4-3) into equalities in such a way 

that the number of linearly independent constraints equals equals m-j . 

For ease of reference we formulate this fact as a Proposition. 

Proposition 4.3 А. sulset F о4 the notation set о/ the. 

system (4.2), (4*3) defining a d-polytope M is a j-/асе о/ M if. and 

only it thene a/ie m-j linea/ily Lnde.pe.nde.nt constraints in (4.2), (4-3) 

which, are satisfied ly ait points xeF ал equalities. 

In particular, a point xeF is a vertex of a polytope M 

if and only if among the constraints (4.2),(4-3) defining M there are 

m linearly independent constraints which are satisfied by x as equali¬ 

ties. Each vertex corresponds to a combination of m linearly indepen¬ 

dent equations in и variables and each distinct vertex corresponds to 

a distinct combination of equations. Take the rigid constraints of a 

polytope and replace some of the inequalities by equalities so as to 

obtain a system of m linearly independent equations. If the unique 

solution of this system satisfies the remaining constraints (inequalities) 

we have found a vertex of the polytope. 
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4* 2 Bases, Feasible Bases 

We examine in more detail how the vertices of a polytope 

given in canonical form (4.4).(4-5) are determined. Let A be the matrix 

of equality constraints (4>4)< We assume that there are no rigid constr¬ 

aints in the set (4*5). In order to obtain a system determining the 

coordinates of a vertex of the polytope M the equality constraints- (4*4) 

must be supplemented by equations 

Xj = 0 J E JH (4.6) 

where J„ is a d-subset of the set N such that the rank of the constr- 
n n 

aint matrix (4*4)»(4-6) equals n . This clearly occurs when the rank of 

the submatrix В of matrix A consisting of columns with indices 

j e Jg .where Jg = Nr\ Jg , equals n-d . 

Let the rank of the matrix A of equality constraints of the 

polytope M equal m . 

Definition 4.4 A set of m linearly independent columns of 

A is called а Іаліл о/ the polytope. M . 

Every basis В of a polytope defines a system of n linearly 

independent equations 

BxB = b 
(4-7) 

x. = 0 
J (4.8) 

A solution 0) of this system is called а Іадіс solution It is 

a point at which a 

A basic solution is 

components of x2 
о 

that is 
XB * 

system of linearly independent hyperplanes intersect, 

a vertex of the polytope M if and only if the 

(the basic variables) satisfy the remaining constraint s 

We denote the class of polytopes given by a system (4.4)»(4*5) 

by /7(m,n) where m=n-d . Let 3(A,b) be the number of bases of the 

polytope 

M(A,b) = (xeE^ : Ax=b » x>0) 

in the class /Ч(ш,п) , assuming that the system (4-4).(4-5) is irreducible. 
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At first sight it appears that S(A,b) depends only on the matrix A. But 

this is not quite true since for some b the system (4.4)*(4-5) may be 

reducible or even inconsistent. 

The following problem arises : to describe the range of the 

function B(A,b) on the set /7(m,n) and to characterize the class of 

polytopes M(A,b) in /7(m,n) with a fixed number of bases (KowaJjow & 

Milanow 1976, Kovalev , Milanov & Isachenko 1978, Kowaljow & Milanow 1979) 

The problem is sometimes posed in a more general context. To 

do this we introduce the concept of a matroid, introduced by Whitney (1933). 

Definition 4.5 A mainoid fl is a pair (j,i?) , where J is 

a non-empty finite set and В is a non-empty collection of subsets of J 

(called bases) satisfying the following conditions : 

1) No basis contains another basis as a proper subset ; 

2) If J' and J" are bases and eeJ' then 3 feJ" such that 

(j'\e)U{f) is a basis 

It is easily shown that any two bases of a matroid fl contain 

the same number of elements. This number is called the /tank 0/ the 

matno id fl . 

If J is a finite set of vectors in В , for example - the 
m 

columns of an (mxn)-matrix A , then taking as our bases all possible 

maximal linearly independent subsets of J , which span , we obtain a 

matroid which is usually called a ve.ci.on. mainoid . 

Thus a more general problem consists in characterising the 

range of values of 3(/7) (the number of bases of the matroid П) in the 

class of all matroids of rank m over an n-set J and in enumerating 

the non-isomorphic matroids of fixed rank. Note that a basis of a vector 

matroid given by the columns of a matrix A is the same thing as a basis 

of a polytope H(A,b) . 

It is clear that the number of bases of a polytope of class 

/7(m,n) cannot exceed . Let n>m . We indicate a method of construc¬ 

ting an (mxn)-matrix A of rank m with exactly bases. With m=l 

and any n such a matrix is given by any (lxn)-matrix with non-zero 

components. Suppose the ((m-1 )xn)-matrix A has ( П-, ) bases. Let 

AC = l Л? AJ’ 
i e T J i 
J 3 

be the exoansion of column A relative to the basis В . 
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Consider the row-vector A = (a ..a ) whose first m-1 components 
m ml mn r 

are arbitrary nonzero numbers and whose remaining components am^ are 

distinct from each of the numbers 

I 
j£jB 

,B 
A . ,a . 

Here В can be any basis constructed from the first 

m-1 rows of the matrix A . Let 

£-1 columns and 

A = 

We show that 3(A) = ^ j . Suppose 

singular (mxm)-submatrix В of A . 

largest index. Since В is singular 

the contrary. Let there exist a 

Let AS bp the cloumn of В with 

we have 

I H1A‘i 

jeJp\ s J 
ms 

I U .a . (4.9) 

Here As , A^ are vectors consisting of the first (m-l) components of 

the vectors As , V Since the expansion of a vector A relative to 

the basis 3 consisting of the columns iJ with indices in Jg\s is 

,B 
unique, we have ц. = A. 

J Js 

of the number a 
ms 

Hence, equation (4*9) contradicts the choice 

Another way of describing a matrix with the maximum possible 

number of bases is obtained by carrying out an induction on n . Let the 

(mxn)-matrix A possess the required property. Consider the set of ( тПр) 

(m-1)-dimensional linear subspaces of Em generated by all possible 

combinations of (m-1) columns of A . It is obvious that it is always 

possible to choose an m-vector *An+^ which does not belong to any of 

these subspaces. For instance, it suffices to put 

,n+l 
I A.AJ 

J-l J о ■( *f)J 
where p and q are the minors of order m of 

absolute value. 

of greatest and least 
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Definition 4-6 А літріех аяяау of a matrix A is a matrix 

Ap = (A? ■ ) , s В lj mx(n-n) 

of expansion coefficients, relative to a basis В , of the column vectors 

of A which are not in В . That is Ag = В "^H where A = (B,H) . 

Proposition 4-4 7 he (m хп)-mat/iix. A 

питНея о/ Надел if and only if at leaAt one 

haA all of itA тіпояА diAtinct f/iom zeno • 

haA the maximum. ролліНІе 

of itA АІтрІек аяяаул 

The proof follows from the fact that a set of m-vectors 

{, . . . , Am} is linearly independent if and only if the set {BA'1', .. . , BAm} 

is linearly independent for any nonsingular matrix В . 

The range of values of 3(A,b) on /7(m,n) has only been 

described in the simplest cases (Kowalyow & Milanov 1976), Thus, for 

/7(2,n) the function B(A,b) can only take values in the set 

12 r 2 n ) 
g(n - £ uf) : £ u. = n , u^ > ... > un > 0 , u.-integer / 

i=l1i=l1 n 1 ) 

This result follows from the fact that the columns of any (2xn)-matrix can 

be partitioned into groups of collinear vectors, the i-th of which 

consists of u. vectors 
l 

It is not difficult to calculate the number of bases of a 

unimodular matrix, that is, a matrix for which det В = ^1 for any basis B. 

itA Надел 

Proposition 4,5 
T 

ециаід det(AA ) . 

If А ІА a unimodulan таіяіх, the питНея of 

The proof follows from the well known Binet-Cauchy formula 

det AB = ^ ] det A^ det Bjin , 

J C Nn * Ш 

I J|=m 

where A is an (mxn)-matrix and В is an (nxm)-matrix with n > m. 
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Definition 4.7 A basis of a polytope M is а 

Наліл if the basic solution satisfies the inequalities (4*5), i.e. if 

the basic variables are non-negative. If В is a feasible basis, the 

corresponding solution of the system (4-4),(4*5) is called а Надіс 

£е.алі&.1е. solution. 

The enumeration of the feasible bases of a polytope of class 

/V(m,n) is a complex problem. As will be seen in the sequel, this prob¬ 

lem is not always identical with the problem of enumerating the vertices 

of a polytope. We will examine one possible method of enumerating the 

feasible bases. 

Let В be a basis. Consider the cone con В generated by 

the column-vectors A^ which comprise В . The basis В is feasible if 

and only if be con В . Thus the problem of counting the number of 

feasible bases of a polytope M(A,b) (denoted by 3*(A,b)) is equivalent 

to the problem of counting all the cones con В containing the vector b. 

We illustrate a method of calculating 3*(A,b) for the case 

m = 3 when all the vectors A^ have non-negative components (Kowaljow & 

Milanow 1976 , Kovalev , Milanov & Isachenko 1978). Consider the intersec¬ 

tion of the cone con A in E with the plane 

m 
I x. = 1 . (4.10) 

j=l J 

Then every cone con (A^,A^,AS) will correspond to a triangle whose 

vertices are the intersections of the vectors A^,A^,AS with the plane 

(4-10). If be con В , then the point of intersection of b with the 

plane (4-10) will lie within this triangle. 

Fig. 5. 
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The problem of determining the range of values of B*(A,b) 

can now be given the following geometrical interpretation : n points 

^1’ • * *' are §iven an the plane > it is required to find the number of 

triangles 

will not change if we move each of the points A. along the ray origina- 
J 

ting at В and passing through A. . We may therefore assume that all of 
J 

the points A . lie on a unit circle with centre В . On each chord 
y J 

4^/2^. we define an orientation such that the point В lies on the right- 

hand side of the chord. The set of points and oriented chords obtained in 

this way (Fig.5) is called the diagram. of the. polytope M(A,b) . 

Proposition 4.6 Ike. питЯе/і of £e.as>L(Lle. Яалел 3#(A,b) of 

the poLytope M(A,b) of еіалл Я! (3»п) іл given Яу the. £о/ітиЯа 

The proof is based on the well known formula for the number 

of cyclic triplets in a tournament (Beinecke 1974)- 

4.3 Degenerate Polytopes 

Definition 4.8 A basic feasible solution of a polytope is 

called nonde.ge.ne./Late. if the number of constraints which it satisfies as 

an equality is equal to n , (the dimension of the underlying space). If 

a basic feasible solution satisfies more than n constraints as an 

equality it is called a degene/iate notation . A vertex of a polytope M 

corresponding to a degenerate basic feasible solution is also called a 

degene/iate ѵе/ііек . A system which possesses at least one degenerate 

feasible solution is a degene/iate />pecL£ieation of. the potytope M and 

such a polytope is a degene/iate potytope . 

Degeneracy of a canonical specification of a polytope corres¬ 

ponds to the case in which a basic feasible solution exists in which at 

least one of the basic variables is zero. 

A polytope M may have a degenerate specification in two 

ways. Firstly, the number of supporting hyperplanes of M which intersect 
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the vertex may exceed the dimension of the polytope. Thus any non-simple 

polytope has only degenerate specifications. Also, every non-degenerate, 

irreducible system of constraints defines a simple .polytope. 

Secondly, if a system of constraints is reducible, that is, 

if it contains superfluous constraints, then it is degenerate. Thus we 

may assert the following proposition. 

Proposition 4• 7 A polytope M іа degenerate it and only it, 

La not a Aimple polytope., on. the AyAtem. ot conAtnaintA 

the polytope contalnA a Aapen.tln.ouA conAtnaint. 

If a polytope is degenerate then more than one feasible basis 

corresponds to each degenerate vertex . 

4.4 Polytopes with few faces 

The class /7(m,n) can be divided into subclasses /7(m,n,k) 

of polytopes with a fixed number of facets : 

M(A,b) e /7(m,n,k) <^> f^ -^(M(A,b)) = d + к 

The problem of finding an irreducible system specifying a polytope M(A,b) 

reduces to the problem of finding the class /7(m,n,k) to which a particu¬ 

lar polytope M(A,b) belongs (Kovalev & Isachenko 1978). 

Let В be a feasible basis of the polytope M(A,b) . 

Definition 4. 9 The simplex-array Ag is called \a-n.egulan. 

(keN ), if the minimum 
m 

: ieJQ, A?.>0 
3’ ij 

is attained at exactly к distinct i's for all values of j e • 

Lemma 4.8 I/. there екІАІА a teaAille la A 4 А В о/ a non¬ 

degenerate polytope M(A,b) ^о/г. which Ag La a 1-n.egulan. АІтрІек. annay, 

then thene іа an l >. к Auch that M(A,b) e /7(m,n, l) . 

Pnool Let the minima in (4.11) for all values of attained at 

indices i in the set J?c:jD . Then it is clear that in the feasible 

basis В we may interchange every column-vector A for i e Jg with 

(4>ieJ 
B_1b (4.11) 

в 
mm 
i 

AB 
Ai0 

AB. 
1J 

eithen. M 

Apecitying 
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some column-vector VjeJg and we again obtain a feasible basis. 

Consequently, the sets 

F. = {xeM(A,b) : x.=0} ieJ~ 
1 lb 

are nonempty and together with the sets F. for jej^ are facets of 

M (A , b) . // 

Definition 4.10 The simplex arrays Ag , and Ag„ are 

called к-iimltan if they are both к-regular and if J°, = J°lt 

The following theorem follows from Lemma 4-8. 

Theorem 4• 9 the. Atmpte.x. а/і/іауд o-fL att tLe-a^ULle. &.але.л o£ 

the potytope. M(A,b) але к-літііа/i, then М(А,Ъ) £ /^(m.n.k) . 

It follows quickly from Theorem 4-9 that the polytope M(A,b) 

is a simplex if and only if the simplex arrays of all feasible bases В 

of the matrix A are 1-similar. It is easy to see that the last state¬ 

ment holds if the simplex array of at least one feasible basis is 1-regular. 

For example, let В be such a basis and let = {к} . Then an irreduci- 
D 

ble system specifying the polytope M(A,b) is given by 

, г л В .В 
х, + > л, . х. = А, п , 
к j£JH ^ J к0 

Хі = ЛІ0 ’ ieJBXk ; xji° * j£jHUk • 

Theorem 4-9 implies that if a simplex array of a feasible 

basis В of A is 1-regular then all simplex arrays are 1-similar. It 

follovrs that the polytope M(A,b) £/7(m,n,2) if and only if the simplex 

arrays of all feasible bases are 2-similar. 

§5 THE f-VECTOR OF A POLYTOPE 

Let M be a d-polytope and let i be an integer, ieN, • 

As usual, we denote the number of i-faces of M by f^(M) . When it is 

clear which polytope we are considering we write simply f^ . Thus, with 

each d-polytope M we have associated a d-dimensional vector f(M) = 

(fo’fl.^d 1 ) ‘ call this the f-vecto/i о/ a poiytope . 
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Definition 5.1 Two polytopes M and M' are f-e.quivale.nt 

if their f-vectors are identical ; f(M) = f(M') . 

The problem naturally arises of determining the classes of 

f-equivalent polytopes and of describing the range of values of the 

function f for different classes of d-polytopes. 

5.1 The luler-Poincare Formula 

In 1752 Suler (1752) published a formula connecting the com¬ 

ponents of the f-vector of a 3-polytope : 

fo - fl + f2 " 2 . 

It is interesting to note that this formula was already known to 

Descartes about a hundred years earlier ; however, his manuscript was 

lost and a partial copy of it was only found in I860 among Leibnitz's 

papers. Poincare (1893) generalized Euler's formula to arbitrary 

d-polytopes. Poincare used a topological proof. The elementary geometri¬ 

cal proof of the Euler-Poincare formula given here is due to Grunbaum 

(1967). Other proofs of the formula can be found in Hilbert & Cohn-Vossen 

(1952) and Ashkinuze (1963). 

Theorem 5.1 (Euler-Poincare) Le.t M &.e. a d-potytope.. 7h.e.n 

d-1 
I (-D^ (M) = 1 + (-1) 

i = 0 1 

d-1 

P/ioo-f. lie use induction on d . The theorem is true when d = 1 since 

fQ(M) = 2 . Suppose the theorem is true for all polytopes whose dimension 

is no greater than d-1 (d^2). 

Let M be a d-polytope in E^ with n vertices. Let 

a e be any vector which is not perpendicular to any of the 1-faces 

of M . Let 3 be a hyperplane with normal vector a . Construct n 

hyperplanes p> each of which is parallel to H and contains 

exactly one of the vertices of M . (This is possible from the way H 

was chosen). Let ..H£n 2 be hyperplanes parallel to H and 

such that for all к e N ^ the hyperplane lies between H^ p and 

^2k + l * ^ is c^-ear ^hat the hyperplanes and ^ are supporting 
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hyperplanes of M , while for each i = 2,4»»»»»2n-2 the set NL = MП 

is a (d-1)-polytope (Fig.6). 

Fig. 6. 

For each j-face F of M , j e ^» and ^or each polytope 

, i = 2,4»•••»2n-2, we define the function 

!0 if M. Orel int F = 0 

1 
1 if Mi Пrel int F 0 0 

The first and last hyperplanes intersecting a given j-face 

F have odd indices. Let these indices be 24-1 and 2m-l respectively 

where 40m when j0O. Consequently, for i = 24,...,2m-2 we have 

П rel int F 0 0 and so M. fl F is a (j-l)-face of NL (Proposition 2.8). 

Hence, for every j-face F of M , if ¥(F,M.) = 1 for r even indices 

i , then 4* (F,) = 1 for (г-l) odd indices i . Thus 

2n-2 
I (-1 )14' (F, M. ) = 1 

i=2 1 
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or alternatively 

2n-2 
I I (-1)14'(F,M. ) = f (M) 
F i=2 1 J 

J e N 
d-1 (5.1) 

Here, the sum is taken over all j-faces F of M . Consequently 

d-1 . 2n-2 . d-1 
1 (.1)31 I (-1) 14'(F,M. ) = I (-l)Jf (M) 

j=l Fi=2 1 j=l J 
(5.2) 

Vie will find another expression for the left-hand side of 

equation (5.1) by changing the order of summation. Note that if i is 

even or if j > 1 then every (j-l)-face of the polytope PL 

if i 

is an 

intersection of a j-face of M with the hyperplane H. 

and J = 1 then one of the vertices of M. is a vertex of M 

other vertices of 

obtain 

M. 
x 

are intersections of 1-faces of M with 

is odd 

and the 

H. . We 
x 

Ifn(M.) - 1 if j=1 and i is odd , 
0 i 

fj q(M^) otherwise . 

It follows that 

1 d-1 

d-1 \ l (-i)Jf\. л (M. ) + 1 i-odd 

1 (-1 )JI У (F, M. ) - / J=1 J 
\ d-1 

J=1 F / l (-DJf- Лм.) 
( j=l J 

i-even 

(-Dd-X i-odd 

= (-1 )d_1 - 1 i-even 

The last equality follows from the inductive assumption applied to the 

(d-1 )-polytopes NL , i=2,...,2n-2 . 

Thus we have 

2n-2 .d-1 . • j -] 
I (-1)1 I (-1)J£ ЧЧР.М.) = (-l)d“1 - 1 - (n-2) . 

i=2 j=l F 

Substituting the last expression in (5.2) and replacing n by fn(M) we 

obtain finally 

V(-Djf,(M) = i + (-i)d-1 - fQ(M) . 
j=l J 

This concludes the proof. Ц 
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Note : If we define f ,(M) = 1 , f, (M) =1 to count the 
-1 d 

improper faces of M , then the Euler-Poincare formula takes the simple 

form 

d 
I (-l)Jf.(M) = 0 . 

j=-l J 

The Euler-Poincare formula establishes a linear dependence 

between the components of the f-vector of any d-polytope. The following 

theorem shows that there are no other linear relations between the 

f-vector components of an arbitrary polytope of fixed dimension. 

Theorem 5.2 The aJL-tlne hu.il 0-/L the s>et ojL f-vecto/іл о/ all 

d-poly top ел ha<i dimension d-1 . 

According to the Euler-Poincare formula the f-vectors of all 

d-polytopes lie in a (d-1)-dimensional hyperplane. We must show that 

every linear equation 

d-1 

I “•f•(M) = 8 (5.3) 
j=0 J J 

which holds for all d-polytopes M , is equivalent to the Euler-Poincare 

equation. Before proving Theorem 5.2 we will establish the form of the 

f-vectors for two special classes of polytopes. 

Definition 5.2 A pynamid is the convex hull of a polytope 

Q , called the Нале о/ the pyn.am.Ld , and. a point x i aff Q , called the 

ventex of the pyramid. 

Proposition 5.3 Let M <Le a d-pynamid with Чале Q and 

ventex v , then 

VM) fк(Q) + fk_i(Q) 

whene f^ ^(Q) = 1 . 

к e N 
d-1 

PnooJL Let F be a к-face of M generated by the supporting hyperplane 

H , so that F = МПН . Since vert M C vert (QUv) there are two 

possibilities. 
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1. v i vert F. Then by Corollary 2.3 F is a к-face of the 

base Q . 

2. v e vert F. Then vert F \v c vert Q is the vertex set of a 

(k-l)-face Q ПН = FDH of Q (Proposition 2.8). 

Conversely, by Theorem 2.9 every face of Q, including Q 

itself, is a proper face of the pyramid M . // 

Definition 5.3 A d-Hipy/iamid is the convex hull of a 

(d-1)-polytope Q (the base) and a line segment [a,b] such that 

rel int Q Orel int [a,b] is a single point. (Fig.7) 

We may verify that every face of a bi-pyramid M is either 

a proper face of Q , or a pyramid with a face of Q as a base and either 

a or b as a vertex, or one of the vertices a or b on its own. 

This gives the proposition : 

Proposition 5 • 4 Let M He а 6.-НІpyramid wli-h. Нале. Q and 

dim Q = d-1 . Then. 

f j (M) = f j(Q) + 2fj_1(Q) J£Nd-2 

= 2fd-2<1!> • 

We return to the proof of Theorem 5.2. Suppose the theorem 

is true for f-vectors of polytopes of dimension not greater than d-1 

(the theorem is trivial for d=l ). Let M* be a d-pyramid with base Q 
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and let be a d-bipyramid with the same base Q . Their f-vectors 

satisfy 

d-1 

I a f (M*). = 8 (5.4) 
j=0 J J 
d-1 

I a.f.(M**) = 8 . (5.5) 
j=0 J J 

According to Propositions 5-3 and 5.4 the f-vectors of the pyramid M# 

and the bipyramid M** take the form 

f (M*) (l+f0(Q),f0(Q)+f1(Q), 
,fd-3(Q)+fd-2(Q),fd-2(Q)+1) 

f(M**) = (2+f0(Q),2f0(Q)+f1(Q) 
2fd-3(e) + fd-2(!!>'2fd-2<«»- 

Subtracting equation (5-4) from (5-5) we obtain 

d-2 

До Vifj(9) a 
d-1 

a 
0 

Excluding the trivial case, when (5.3) is an identity and using the induc¬ 

tive assumption on the (d-1 )-polytope Q , we have 

“j = (-1)J'“0 J e Nd_1 and aQ = (-l)d"1ad_1 

Substituting in (5.3) the values of f.(M) for a d-simplex, we find 
d J 

8 = (1 - (-1)q)o(q . Hence, equation (5-3) is equivalent to the Euler- 

Poincare formula. 

5.2 The Dehn-Sommerville Equations 

Theorem 5.2 established that there are no linear relations, 

other than the Euler-Poincare formula, connecting the components of 

f-vectors of arbitrary d-polytopes. However the f-vectors of certain 

special classes of polytopes may satisfy other linear relations. Of these 

the most important are the Dehn-Sommerville equations for Simplicial 

polytopes. Dehn (1905), a pupil of Hilbert, showed that the f-vector of a 

simplicial polytope satisfied two linearly independent equations when d=4 

and three such equations when d=5 . He made the hypothesis that the 

number of such equations for arbitrary d was f(d+l)/2] . Subsequently, 

the English geometer Sommerville (1927) found the equations for any d . 
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poiyiopz. 

Theorem 5.5 (Dehn-Sommerville) Lzt M iz а літрlizial 

7 kzn 

d 1 

l_ (-Dj (k+l) fj(M) = (-1)Й_1^к(М) , k=0,l,..,d-2. (5.6) 
j _k 

к i 
P/iooJL For every к-face F and j-face FJ of M (O^kjcj <4-1) we define 

the function 

6(Fk,FJ" ) 
0 if Fk £ FJ' 

1 if Fk C fJ 

To calculate the sum 

Y(-l)^ l l 5(Fk,Fj) (5.7) 
j=k FkFj 

(the sum is taken over all к and j faces of M , with к fixed) we 

need the following Lemma. 

Lemma 5.6 Lzt -6/ie- P°£y£°P2- M and izt 

^(F^.F^) kz thz -izt о/ ail JLazzt F о/ M диск that F^CFCF^ . 7h.zn 

thznz zxi-it-i a poiytopz (dznotzd tLy M(F^,F2)) о/ dimzn-ilon 

dim F2 - dim F-^ - 1 -iuc/i that tkznz i-i a iijzction ф tLztwzzn thz -jLazz-i 

o-i M(F-pF2) an-d- ^е. -izt F(F-^,F2) w<d.A d.Az. pnopznty 

F'C F" <=> ф(F ' ) С ф(F" ) 

P/ioo£ o£ Lzmma By Theorem 2.9 F^ is a face of F^ • Let F^ be the 

polytope dual to F2 • Then by Lemma 3.6, the face 

4>(F-^) = (yeF| : xy=l VxeF-^} of F^ has dimension dim F^ - dim F^ - 1 . 

We also have <i>(F2) £ 4>(F-^) С ф(0) = F* . Thus, if we transform from the 

polytope <t>(F-^) to its dual (<t>(Fn))*, we obtain the required polytope 

M(F1,F2) .(Fig.8). // 

Thus, to each face F^ of M for which 6(Fk,F^) = 1 , 

there corresponds a (j-k-l)-face of the (d-k-1)-polytope M(Fk,M) and 

conversely. Hence £ 6(Fk,F^') gives the number of (j-k-1)-faces of the 

pj 

polytope M(Fk,M) and so, by the Euler-Poirrcare equation 

I (-DJ l 6(Fk,FJ) = (-l)d_1 

j=k FJ 
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Fg - cube 
F1-FCF2 M(F1,F2) 

Fig. 8. 

Note that the case j=k corresponds to the improper face 0 = M(Fk,Fk). 

Hence, summing over the к-faces of M , 

l ^(-l)* I 5(Fk,FJ’) = (-1 )d-1fi (M) . (5.8) 
pkj=k Fj 

On the other hand, £ 6(Fk,F^) equals the number of k-faces 

Fk . 

of the j-polytope F^ and since F^ is a simplex 

Jk6<Fk.Fj) = (Hi) 

Thus 

Z Z <5(Fk,FJ‘) = ІЩ) fj (M) . (5.9) 

F J* Fk 

Substituting (5.9) into (5.7) and using (5.8) we obtain equation (5.6) . // 

From now on equations (5-6), together with the Euler-Poincare 

formula (k=-l), will be called the De.h.n-Somme./iuilte. e.quation.A and will 

be written in the form 

df (-l)J [Hi) fj(M) = (-l)d-1fk(M) (5.10k) 

where k=-l, 0,1,... ,d-2 with f ^(M) = 1 . Among the Dehn-Sommerville 

equations not less then [(d+l)/2] equations are linearly independent. 

Indeed, if d is even then for j=0,1,...,d/2 - 1 the term f2j(M) о riLy 
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occurs in the first j+1 of the equations (5.10 ± ),(5.101),...(5.10d ^). 

Thus all of these equations are linearly independent. Similarly, if d 

is odd then the inhomogeneous equation (5.10 and the equations (5.10^), 

...,(5.10d_2) in which the term f2j-l G N(d-l)/2 occurs only .in the 

first j+1 equations, are linearly independent. We show that there are 

exactly [(d+l)/2] linearly independent.equations. To this end we 

construct [d/2] + 1 simplicial polytopes with affinely independent 

f-vectors. Consider the cyclic polytopes C(d,n),C(d,n+1),...,C(d,n+k), 

where к = [d/2]. Their f-vectors are affinely independent, because the 

determinant 

1 
(?) (2) ••• (?) 

D = 
1 
m 

• • • • • 

(T) 

1 
(n;k) (:h 

constructed from the first к components of their f-vectors, is non-zero 

(in fact, D = l). This is easily verified by successively subtracting 

each row from its successor. Combining this result with the earlier 

result that not less than [(d+1) /2] Dehn -Sommerville equations are 

linearly independent, we obtain the following result 

Theorem 5.7 To/i d.>l e>tact t у [(d+l)/2] dehn-Somrue/iuitte 

equation A ane tinea/ity indep endent. Q eomet/ilcatly, thiA imptieA that the. 

a££ine huit 0/ the. Aet о/, f-uectonA o£ АІтр ticiat d.-potytopeA haA 

dimension [d/2]. 

5.3 Solutions of the Dehn-Sommerville Equations 

The rank of the Dehn-Sommerville system equals [(d+1)/2] so 

that we can solve for [(d+l)/2] of the variables f^ in terms of the 

others. Obviously there are many possible sets of linearly independent 

columns of the matrix of this system of equations, so that there are a 

variety of different schemes for solving these equations in the literature. 

The following variant, in which the second half of the list of variables 

f. is expressed in terms of the first half, is presented in McMullen & 

Shephard (1971). We adopt the convention that the binomial coefficient 

^ ^ ^ is zero if b<0 or b>a . 
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Theorem 5.8 7he f-uedo/t o£ any simplicial d-polyto p e 

satisfies the following equations 

p+q+1 л ^ 4 m-q-1 
when d=2m 

f 
m+p 

when d=2m+l 
m-q-1 

m-1 and wke/ie p = 0,l 

We remark that Stanley (1980) has recently given a complete 

characterization of the f-vectors of simplicial polytopes. 

5.4 3-Polytopes 

For simplicial 3-polytopes the Dehn-Sommerville equations 

take the form 

0 2 

or f1 = 3fq — 6 , f2 = 2f0-4 • 

Theorem 5 • 9 7he uecto/i (fQ,f^,f2) is an f-uecto/i о/ a 

simplicial 3-polytope iJL and only 4/ 

fl = 3f0 " 6 and f2 = 2f0 ‘ 4 • 

P/Lool It suffices to show that for any vector (fg,f^,f2) satisfying the 

conditions of the theorem, there exists a simplicial 3-polytope with this 

f-vector. We use induction. If f =4 we have a 3-simplex with vector 

(4,6,4)- If" fg>4 suppose M is a simplicial polytope such that 

f(M) = (fq-1,3(fq-1)-6,2(fq-1)-4) • Let v*eE^ be a point which does not 

lie in any of the planes generated by the vertices of M and which is 

strictly separated from M by precisely one of the supporting planes 

which generate the 2-faces of M . Then it is easily verified that the 

simplicial polytope M* = conv (MUv*) has the f-vector 

f (M*) (fQ , 3fQ-6 , 2f0-4) - // 
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Transforming the simplicial polytopes into their duals, 

namely, the simple 3-polytopes, we obtain the following Corollary. 

Corollary 3.10 7 he f-vecto/is о/ simple 3>-polytopes take the 

tonm. 

(2f2-4 , 3f2-6 , f2), f2 = 4,5,6,- 

In the general case we have the following theorem due to 

Steinitz (1922). 

Theorem 5.11 7he vecton. (fQ,f-^,f2) 44 an f-vecton o-f. a 

3-polytope it and onty L-fL the whole namlens fg,f^,f2 satisfy the 

■/Lollowing conditions : 

fl = fo + f2 " 2 ' 4 < f0 < 2f2 - 4 , 4 < f2 < 2f0 - 4. 

EXERCISES 

1* Show that the following is an equivalent alternative defini¬ 

tion of a vertex of a polyhedron : the point x°eP is a vertex of the 

polyhedron P if there exists a vector c such that max {cx : xeP} is 

attained only at the point x° . 

2. Let v be a vertex of a polytope M and let H+ be a 

closed half-space such that v e bd H+ and such that all edges incident 

to v belong to H+ . Show that H+ is a supporting hyperplane of M . 

3. Let M be a d-polytope in Ед and let т be a projective 

map in (not necessarily non-degenerate). Is it true that 

fi(t(M)) < f±(M) , ieNd ? 

4« Let F, , C F, , where F, and F, ,, are faces of a 
k-1 k+1 k-1 k+1 

d-polytope M of dimension k-1 and k+1 respectively. Show that : l) 

there are exactly two к-faces of M which contain and which are 
Ф 

contained in + ; 2) for any кеЫд there is a (d-k)-face of M which 

does not contain к specified vertices of 

d-polytope is contained in exactly ( 

M ; 3) an i-face of a simple 

j-faces, where O^ij^j^d-l • 

5. A d-parallelepiped is the sum of d non-parallel line 

segments with a common endpoint. The simplest d-parallelepiped is the 

unit d-cule (denoted by Яд). The cube Ад is a polytope which is the 

sum of d mutually orthogonal line segments of unit length, i.e. 
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= с onv (0,е-^, . . . ,) {ееЕ, : 0<х.<1 , VieN,} . 
а — і— а 

Неге 
’1 ’ 

^ is an orthogonal basis of 

d-kU)- 

E Show that 

W =2 

Let 

d * 

к = 0,1.d-1 . 

E Q be a (d-l)-polytope in E^ and let the line segment 

I= [0,a] be not parallel to the hyperplane aff Q . Then the sum 

M = Q + I is called a d-рлілт with base Q . It is easy to see that the 

prism M is the convex hull of the base Q and the set a +Q . Every 

к-face of the prism M either coincides with a к-face of Q or of a + Q , 

or is the sum of the segment I and a (k-l)-face of Q . Conversely, 

every proper face of Q and of a + Q is a face of M ; the sum of I 

and any face of Q is also a face of M . Show that 

k= 0,1,...,d-l . fk(M> 2fk(Q) + fk_i(Q) 

The simplest example of a d-fold bi-pyramid is the 

d-ocitah.e.dn.on which is the convex hull of d line segments which are 

mutually orthogonal and which have a common interior point. Show that 

,k+l / d \ 
\k+1 ) ’ fk(«d) = 2' к = 0,1,...,d-l . 

7. (Griinbaum 1967). Let к and s be integers such that 

1 < r , s^d-1 . The d-polytope M is called г-літ.р ticiat if all its 

г-faces are simplexes, and s-літріе. if every (d-l-s)-face is contained 

in exactly s +1 facets of M . We say that M is of type (r,s) if it 

is г-simplicial and s-simple. Show that: 

(1) a simplicial d-polytope is pf type (d-l,l) and a 

simple d-polytope is of type (l,d-l) ; 

(2) an i-simple polytope is also j-simple for all j £i ; 

(3) if M is a d-polytope of type (r,s) with r+s^d+1 

then M is a simplex; 

(4) the polytope given by the intersection of a (d+l)-cube 

d+1 
in E, ,, with the hyperplane £ x. = k is of type (2,d-2) ; 

i=l x 

(5) the d-polytope given by the conditions 

d 
I <. d - 2 , = +1 , Vi e ITj , where there are an odd number of 

i=l 

equal to 1 , is of type (3,d-3) 
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so that the 8. Let T and T, be simplexes located in E, 
г d-r r d 

intersection r is a single point belonging to 

rel int T^flrel int Т^_г , where r ^ [d/2] . Show that the polytope 

=conv(TrUr) is siraplicial and calculate f^(T^) for all i . 

9. Let A Cand DCE^ be non-empty sets and let A* and D* 

be their polars. The set A = А* П D is called antillocking relative to 

D . In studying minimax relations in integer programming it is important 

to know conditions under which A= A , i.e. under which A and A are a 

pair of antiblocking sets (Fulkerson 1971). Note that relative to E^ 

the antiblocking set of A coincides with the polar <4* . Show that 

A-A relative to a closed convex set D with OeD if and only if there 

is a closed convex set CCE such that /?=CDD and D*CC . Let 
+ " n 

A = (xeEn : Ax^e} , where A is a matrix with non-negative elements which 

does not contain a zero column. Show that A- A relative to the set D= 

E+ and that A = {xeE+ : Bx<e} where В is a matrix whose rows are the 
n n = 

coordinates of the vertices of the polytope A . 

10. Let the polytope M be defined as the intersection of closed 

halfspaces: M = (xeE^ : А^х<Д. , VieNn) . Show that M* =conv(A^,...,An ) . 

11. Specify the dual polytope of the cyclic polytope C(d,n) as 

an intersection of supporting half-spaces . 

12. Let Q be a self-dual (d-1)-polytope. Show that a d-pyramid 

with base Q is also self-dual. 

13. Generalize tha polytope duality theorem (Th. 3.7) to the case 

of polyhedra. 

14. Does there exist a polytope all of whose non-rigid constraints 

are redundant? 

15. A Aection o-/L a polytope. M is a set МПА where A is 

some affine set. Show that any d-polytope with n facets (n^d+l) is a 

section of an (n-l)-simplex. 

16. Let the polytope M*(A,b) be given in E^ by an irreducible 

system Ax < b , where A e EinXn . An r-dimensional ІалІА Aet of M*(A,b) 

is a set of solutions of a system consisting of n -r linearly independent 

equations of the form A^x = b^ , Vi e IcNm . A la a i. a point is a 

0-dimensional basis set. If an r-dimensional basis set has a non-empty 

intersection with the polytope, then this intersection is a face of the 

polytope. 

Bartels (1973) proved that: 
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(l) the minimum number of basis points of мМА,Ь) is given 

by 
2m-1(n - m + 2) if m < n ; 

2n”3(m - n + 2) (m - n+4) if m > n and 3
 

i
 

II
I о
 

(m od 2 ) ; 

2n"3(m -n+3)2 if m > n and 

1—1 
III 

Д 1 3
 (mod 2) ; 

(2) if M#(A,b) has the minimum number of basis points, 

then the components of its f-vector are given by 

( 2m_1(n - m + 2 ) if m < n , 

f- = < 0 
' ■ ' ' if m ,> n , 211 ^ (m - n + 4 ) 

r 

l 2 
i = 0 

2n-r-2 

+ 2n ” 

m-i-1 m-1 /n-m+2\ 
•-i+lj 

(m-n+4) (np2) 

(”:*) ■ 

nn-r-l 
+ 2 

if n > m ; 

if m < n , 

(m-n+4)(£ll) + 

(3) the maximum number of r-dimensional basis sets of 

M*(A,b) is equal to (n_^_r) t 

(4) the minimum number of r-dimensional basis sets of 

M*(A,b) is given by 

if m < n ; 

2n-r-3(»-n+4)(n;2) * г,‘г'1(-*<)(;:21)' 2n~r(i:l) 

if m>n , m-n E 1 (mod 2); 

2“-r-3(»-nt3)(n;2) * 2t-'-1(.-uu)(;:21) + 2n-r(^:2) 

if m>n , m-n = 0 (mod 2). 

17. Let /7k(m,n) be the class of polytopes M (a ,b) e П (m ,n ) for 

which there exists a basis В such that the rank of the simplex-matrix 

Ag is equal to к . Show that: min(m.n-m) 

(1) if M(A,b) e/7(m,n) , then g(A,b)=l+ I is^AB^ ’ 
s-1 

where i (Ad) is the number of nonzero minors of order s of the simplex- 
Я D 

(2) if M(A,b) e /7k(m,n) , then В (A,b ) < 1 + 1^“) (nsm ) 

L s w В 
matrix A 
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where the bound can be attained; 

(3) if M(A,b)e/7 (m,n) then the function 3(A,b) can only- 

take the values l + s(n-m) , Vs e N . 
m 

18. Let П be a matroid on the set N of rank г . Let i(/7) 
n 

be the number of independent sets of the matroid and let 3 (/7) be the 

number of bases of the matroid. Show that: 

(l) if the integer t is such that ^ 3 (/?) ^ , then 

1 + (i) (?)*!«»> *!♦(?) 
( n 
lt+1 ) - 

(2) every matroid of rank 2 is a vector matroid. 

19• Find a condition which ensures that the set of columns of an 

(mxn)-matrix of rank m can be partitioned into к pairwise non-intersec- 

ting linearly independent subsets. Generalize the condition to the case 

if matroids. 

20. Let x be a non-degenerate vertex of a polytope M in En 

for which the rank of the system of rigid constraints is equal to m . 

Then the number of edges which are incident to x equals n - m . Give 

examples which show that if x is a degenerate vertex of M then the 

number of edges incident to x can be greater than n - m . An i-face F 

of a polytope M is called de.gene/iate if all points in F satisfy more 

than n-i of the inequalities defining M as equalities. If the 

d-polytope M has a degenerate face, does it follow that M is a degen¬ 

erate polytope? If M has a degenerate i-face, does it follow that M 

has a degenerate q-face for q < i ? 

21. (Chernikov 1968). When n £ 5 or m^2 the number of 

vertices of a non-degenerate polytope in En given by the constraints 

Ax <b , AeEnXm uniquely determines the remaining components of the 

f-vector. Give examples with m >2 or n>5 for which this assertion is 

not true. 

22. (Klee 1964, Griinbaum 1970). Verify the following non-linear 

relations satisfied by the f-vectors of simplicial d-polytopes: 

(k?h i (f°V-kk-r - 

<kti>(rh i (f°trk)t(kti-r>i'k-r-i-fk-r-i) • 

where r = 0,1,...,k and к = 0,1,...,d . 
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23. (McMullen 1977). The following is a generalization of the 

Euler-Poincard formula. Let F be a к-face of the d-polytope M. Then 

d-1 . j.i 
I (-l)Jh.(F) = (-1Г 1 . 

j=k 3 

where h.(F) is the number of j-faces of M which contain F . 

24. (Griinbaum 1967). Let P be a polyhedron of dimension d 

and let f°(p) be the number of bounded k-faces and fk(P) be the number 

of unbounded к-faces. Then the following formulae are true: 

df (-і)Х°(Р) = 1 . I (-i)if?(P) = 1 > 
i=0 1 i=0 

I (-l)if,(P) = 0 
i = 0 1 

f.(P) = f°(P) + f”(P) 

25. (Griinbaum 1967). Obtain the following relations from the 

Dehn-Sommerville equations: 

if d = 2m 

L2m-1 

and 

"2m 

m-1 

l (-D 
i = 0 

m-1 

l (-D 
1 = 0 

m-1 

l (- 
i = -l 

m-1 

2 I (- 
i = -1 

m-i+l i+1 /2m-i\ - 
m+1 \ m j fi ’ 

m-i+l i+1 / 2m-2-i\ - 
m \ m-i / fi’ 

i—
i i 

•H
 

в I—1 

2m-i+l\ - 
m + 1 / 4 ’ 

jjm-i + 1 ^ 2m-i-l\ - 
m / l ’ 

if d = 2m + 1 . 

26. The Dehn-Sommerville equations yield the following relations 

for the f-vector components of simplicial 4- and 5-polytopes: 

f, ■ f, - f, d = 4 f2 2fl ‘ 2f 0 

27 

following: 

■3 " A1 " x0 ’ 

12-‘'"|'1_х“‘1'0тли ' ’ х4-л,х1 

The Dehn-Sommerville equations are equivalent to the 

d = 5 . f 0 = 4^ - 1 Of n + 2 0 , f^=5f-| -15fg + 30 , f^=2f^-6fg+12. 

i—1 

for k = 0,l,...,[(d-l)/2] . 
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28. If d =2m then the affine hull of the f-vectors of simpli- 

cial d-polytopes is identical with the affine hull of the m +1 vectors 

h^ , where h^ = (h^, . . . ,h2m ^ ) and 

hi = (l+i-k) ’ i = 0,1, ... ,2m-1 , к = 0,1, . .. ,m . 

29. For the case of simple d-polytopes the Dehn-Sommerville 

equations take the form 

l (-l)i+d-r-1 
i = 0 

i1?’*) f • = \ d-r / r-i 
(-l)d_1fr , 

or 

f 
(Kd~V) f • = \ d-r / r-i 

fr((-l)d_1 - (-l)d'r-1) , 
i=l 

for reN[d/2]. 

30. The f-vector of any simplicial d-polytope satisfies the rela 

tions : 

d-m-2 
f = у 

m+P i=-l 

d — m—1 , . . , -1 , 

i <-uktl+1d 
k=0 va 

к \ /d-l-i\ f + 
-m-1-р/\ d-k / і 

for p = 0,...,d-m-l . 
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2 GRAPHS OF POLYTOPES 

The pair consisting of the set of vertices and the set of 

edges (l-faces) of a polytope M is called the g/iaph o£ the. potytope. and 

is denoted by G(M) . 

Polytope graphs have may interesting properties. In studying 

them we encounter many problems of interest in graph theory, combinatorial 

theory, topology, geometry and also in the theory of linear programming. 

A graph G is called a d-po lyh.e.d/La.1 g/iaph if and only if 

it is isomorphic to the graph of some d-polytope M . In this case, we 

say that the polytope M is a realization of the polytope graph G(M). 

The first and most basis problem in the theory of polyhedral graphs 

consists in describing the properties of these graphs. The case in which 

d=2 is trivial. Indeed, the graph G is 2-polyhedral if and only if 

G is a cycle with п^З vertices. The 3-polyhedral graphs have also been 

characterized completely by Steinitz (1922). In the general case a nota¬ 

ble result is the theorem concerning the number of non-intersecting chains 

in a d-polyhedral graph due to Balinski (1961) which was obtained indepen¬ 

dently by Remesh & Steinberg (1967) and Medyanik (1972). 

A second problem, which has greatly influenced the theory of 

polyhedral graphs, is connected with the problem of determining the 

efficiency of linear programming methods and consists in finding upper and 

lower bounds for such metric characteristics of polyhedral graphs as the 

diameter, radius, height, etc. 

§1 CONNECTEDNESS OF POLYHEDRAL GRAPHS 

Many results are known concerning characterizations of 

d-polyhedral graphs but for the case d^4 a complete solution of the 

basic problem has so far not been found. The only general result is due 

to Balinski and concerns the connectivity of polyhedral graphs. 
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1.1 Definitions 

To avoid terminological confusion we present some of the 

standard definitions of Graph Theory (Harary 1969). A gnaph is a pair 

(V,E) consisting of a finite, non-empty set V , whose elements are 

called venti сел (or node* ) and a set E of unordered pairs of distinct 

vertices of V . Each pair of vertices e = (i,j) , i,jeV , in E is 

called an edge, (or anc ) of the gnaph G . We say that i and j are 

adjacent venticeл which are Incident to the edge e . 

In a polytope graph, neighbouring vertices belong to the 

1-faces (edges) of the polytope. We call such vertices adjacent venti- 

сел of the potytope. By considering different specifications of a poly¬ 

tope we can obtain different criteria for vertices to be adjacent. Thus, 

if a polytope M is given in En in canonical form (the most common 

method) by 

Ax = b , x > 0 (1.1) 

then an edge is a non-empty set of points of the polytope which satisfy 

the additional conditions 

x. = 0 Vjeu) (1.2) 
J 

where ш is a subset of Nn such that the number of linearly independent 

equations in (1.1) and (1.2) is n-1 . This leads to the following defin¬ 

ition of adjacent vertices of a polytope, which is equivalent to the 

previous definition. 

Definition 1.1 Two vertices of a polytope M , given in 

canonical form, are adjacent if their corresponding feasible bases 

differ by only one column. 

A лиЧдпарЬ of a graph G is a graph all of whose vertices 

and edges belong to G . A subgraph which contains all the vertices of a 

graph G is a spanning лиЧдпарІх of G . If S is a subset of the 

vertices of a graph G then the maximal subgraph of G having vertices 

S is called the qnaph generated Ly S (written G(S)) . A chain L 

in a graph G between the vertices u and v is a subgraph with 

vertices u=vn,v..v =v and edges (v. -,,v.) ieN where all the 
0 1 n ° l-l l n 

edges are distinct. If in a chain vg=vn then the chain is called a 

cycte . If all the vertices in a chain L are distinct, then L is a 
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The simple chain . If, in addition, vQ~Vn ^hen L is а simple cycle. . 

graph G is connected if there is a simple chain connecting any two 

vertices of G . Two simple chains between the vertices u and v are 

called non-uentex-inte/iPectin g if they have no vertices in common, other 

than u and v . A graph G is d-connected if there are d non¬ 

vertex-intersecting chains connecting any pair of its vertices. 

If we remove a vertex v from a graph G we obtain a sub¬ 

graph G which contains all the vertices of G other than v and all 

the edges of G except for those which are incident to v . The 

following theorem due to Whitney (1933) gives a criterion for the 

d-connectedness of a graph. 

Theorem 1.1 A gnaph G іл d-connected if. and only if. the 

&u.bg/iaph of G obtained by removing any d-1 uenticeA ІЛ connected. 

The deg/iee of a ventex v of a graph G is the number of 

edges which are incident to v (written deg v ). Clearly, in any d- 

connected graph, every vertex has degree not less than d . 

1.2 Balinski's Theorem 

Theorem 1.2 The gnaph of a d-po lytope i/> d-connected. 

P/ioof By Theorem 1.1 it suffices to show that the removal of any d-1 

vertices does not destroy the connectedness of the polytope graph. Let 

T d 1 
{x ,...,x } be any set of d-1 vertices of a d-polytope M and let 

G*(M) be the subgraph of the graph G(M) obtained by removing the 

, . 1 d-1 
vertices x , . .. , x 

We show that G*(M) is a connected graph. Let 

Q = aff (x1,...,xd ■*■) . There are two cases : a) Q П int M = 0 , 

b) Q П int M ! I . 

Case a). Let F = QDM be a face of M (dim Q < d-l) and 

let H be a supporting hyperplane which generates F . Consider the 

opposite supporting hyperplane H' which is parallel to H . Every 

vertex x of the graph G*(M) either lies in H' , or there exists a 

vertex x' adjacent to it such that the distance of x1 from H' (in 

the Euclidean metric) is strictly less than the distance of x from H'. 
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Indeed, if x i H* then the required vertex x' exists, otherwise the 

hyperplane passing through x which is parallel to H' would be suppor- 

ing to M , which is impossible (see Problem 2, Ch.l). If x' i H' then 

there is a vertex x" adjacent to x' .whose distance from H' is less 

than that of x' , etc. Eventually we construct a chain in G*(M) from 

the vertex x to some vertex x* e H1 . Similarly, for any other vertex 

y^x in G*(M) , there is a chain which connects it to some vertex 

у* e H' . Since Н'П M is a polytope, its graph is connected and there 

is a chain in the graph G(HTI M) connecting y* and x* . Thus, there 

is a chain connecting any two vertices у and x in the graph G*(M) ; 

that is, G*(M) is connected. 

Case b). Let H be a hyperplane which contains the affine 

set Q and some other vertex u of M . Such a hyperplane exists, since 

dim Q < d-1 . Consider the two supporting hyperplanes H' and H" to 

the polytope M which are parallel to H . Let x and у be arbitrary 

vertices of M distinct from x^,...,x^ ^. The case in which x and у 

both belong to one of the closed half-spaces generated by H ia analagous 

to case a). So, let x and у belong to distinct half-spaces generated 

by H . As in case a) we can find a chain in G*(M) connecting x and 

u and another chain connecting у and u . Their union is a chain 

connecting x and у . Hence G#(M) is a connected graph. // 

Corollary 1.3 7he. g/iaph oltaine.d £/іот. a po lytope. g/iaph. Ay 

n.e.moving all the. о/ an anAitnany lace. l-ь conne.c.te.d. 

To prove the corollary we construct two supporting hyper¬ 

planes H and H' to M which are parallel and one of which generates 

the face F containing the vertices which have been removed. A chain 

connecting any two vertices x and у may then be found as in the proof 

of case a) in Theorem 1.2. 

1.3 Steinitz's Theorem 

A graph is called ptana/i if it can be represented in the 

plane in such a way that no two of its edges intersect. 

Theorem 1.4 (Steinitz (1922)) A g/iaph І6 J-poiyhzcL/iai if. 

and only it ІЛ planan. and 3-conne.cte.d. 
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The significance of Steinitz's Theorem is that it enables us 

to replace the syudy of 3-polytopes by the study of 3-connected planar 

graphs. 

P/ioo£ The necessity of Steinitz's conditions is obvious. The assertion 

that every graph of a 3-polytope is 3-connected is a special case of 

Theorem 1.2. A realization of a 3-polytope graph on the plane can be 

obtained as follows. Excise one of the faces of the polytope and deform 

the remaining faces such that they are brought to lie in the plane of the 

excised face. The regions delineated by the graph on the plane are 

called the /асг^ о/ the g/iaph . The unbounded region is called the 

екіеяіод. -/Lace. , while the other regions are iate/iion. hLaceA . 

It is clear that the faces of the graph of a 3-polytope M are bijective- 

ly related to the facets of M . 

The sufficiency of Steinitz's conditions is the hard part of 

the theorem. The known proofs use induction on the number of edges e of 

the 3-polytope which corresponds to the given 3-connected graph. The 

assumption that G is 3-connected implies that е^б and equality is only 

possible when G=K^ > 'the complete graph on 4 vertices. (In a comp tete 

g/iaph any pair of vertices are connected by an edge). In this case G 

corresponds to a 3-simplex. The common step in the inductive proof is 

divided into two stages. First, it is shown how any 3-connected planar 

graph with more than 6 edges can be associated with a graph G* of the 

same type but having fewer edges than G . Second, it is shown how to 

construct a 3-polytope M corresponding to G by using a 3-polytope 

corresponding to G* . The known proofs differ in the methods used in the 

second stage. 

We now examine the details of the proof of sufficiency. For 

brevity we introduce the notation 

v = fQ(M) , e = f2(M) , p = f2(M) . 

Let v^ be the number of vertices of a polytope M of degree к and 

let p^ be the number of facets of M which have к vertices (k-poly- 

gons). Then 

v = I vi 
k>3 

and I Pk 
k>3 

and Euler*s formula takes the form v-e+p = 2 . Since each edge is the 

66 



intersection of two facets, we have 2e = £ kp^. and similarly, since 
k>3 

each edge is incident on two vertices, we have 2e = £ kv, . This gives 
1 . q iv 
k>3 

l kPk + L kvk = 4e=4v + 4p-8 = 4lv, + 4 • I pv - 8 . 
k>3 K k>3 k>3 k k>3 k 

Hence 

8 + I (k-4) (vi+pv) > 8 , 
к >5 

k,iJk 

that is, every 3-polytope M has at least eight trivalent elements 

(triangles or vertices of degree 3). 

The /ie.duc.tion o-ji a g/iaph. G is a procedure for obtaining, 

from a given planar, 3-connected graph G and a fixed trivalent element 

in it, another graph G* which is also planar and 3-connected. If the 

fixed trivalent element of G contains a vertex of degree 3 which is 

incident to a triangle, then the reduction will reduce the number of edges 

of G by at least one. If the graph does not contain such a vertex, then 

we show that there is a finite sequence of reductions which will lead to a 

graph having a vertex of degree 3 which is incident to a triangle. The 

reduction of the graph in the case where a vertex of degree 3 is fixed is 

shown in Figure 10. The case where a triangle is fixed is shown in 

Figure 9- It is clear that any graph G* .obtained by reducing a planar, 

3-connected graph G, is also planar and 3-connected. Also, after using 

the reductions , ieN^ , or » ieN^ , the graph G contains i 

fewer edges than G . 

Fig. 9. 
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Fig. 10. 

We describe a general method of reconstituting M from its 

'reduced' image. Let M* be a 3-polytope whose graph G(M*) is iso¬ 

morphic to G* .We show how to construct a polytope M corresponding to 

the graph G . For the reductions the polytope M is obtained from 

from M# by cutting away the vertex v* with a plane. For the reduc¬ 

tions M is the convex hull of M* and a point v which is 

strongly separated from M* by a single plane aff F . In the case of 

the reduction , the point v is chosen such that it coincides with 

the point of intersection of the planes generating the faces of M* 

adjacent to the new triangle (if such a point does not exist, as in the 

case of parallel planes, then we apply a preliminary projective transfor¬ 

mation to M*). In the case of reduction , the point v lies in the 

intersection of only two of the planes, and for the reduction v 

lies in only one such plane, while for » v lies in none of these 

planes. 

Let G be a planar, 3-connected graph. We define a graph 

l(G) as follows : the vertices if l(G) are the edges of G . Two 

vertices of 1(G) are connected by an edge if and only if their corres¬ 

ponding edges in G have a common vertex and are incident to a common 

face in the realization of G on the plane. It is clear that the graph 

l(G) is also planar and 3-connected and that each vertex has degree 4* 

There is a bijective correspondence between the faces of the graph l(G) 

and the set of vertices and faces of G , that is, p(l(G)) = p(G) + v(G). 

Two faces of 1(G) have a common edge if and only if their corresponding 

vertex and face in G are incident. A к-polygon in 1(G) corresponds to 
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either a к-polygon in G or to a vertex of degree к . 

Let G be a 3-connected, planar graph all of whose vertices 

have degree 4. We say that the edge (i,j) has a dinect continuation 

(j,k) in G if the edges (i,j) and (j,k) in a planar realization of 

G separate the other two edges incident to vertex j . A chain Jo'^l’* * 

. , j in G is a ge.ode.4ic line if VlceN^ ^ the edge (j т »J k+1) as-a 

direct continuation of It as a doted geodetic line if, in 

addition, .in=i and (i ,jn) is a direct continuation of (i , j ). 

A subgraph L of G is a lent if the following conditions 

are satisfied : 

1) L consists of a cycle l , called the loundang o-f. tke lent 

L , and of the vertices and edges xjhich lie in the interior of l in a 

plane realization of G ; 

2) The cycle l consists of two geodesic lines ip,i-^,...,i ,j^ 

and j о» J'i»• • • » Jm« ifl such that in the subgraph L the only edges incid¬ 

ent to the vertices iQ and j Q are (iQ, ^), (j ,ig), (i » j Q), (j q» j;]_) • 

In Figures 11a and lib the diagrams represent lenses. The diagram in 

Figure 11c is not a lens. 

(a) (b) (c) 

Fig. 11. 
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A lens L is an i/ineducidte tens, if it does not contain a 

lens as a proper subgraph. Every graph G contains at least one irreduc¬ 

ible lens. If L is an irreducible lens, then n=m and every vertex 

i^ ,keN}i> is connected to a unique vertex j o ,seNn> by a geodesic line 

lying in L and called a section o-l the іепл . Two sections and 

, k/r , intersect in at most one of the interior points of the lens L . 

Every interior point belongs to exactly two sections. 

We consider the class of all subgraphs of G which contain a 

simple cycle composed of at most two geodesic lines and of the vertices 

and edges of G in the interior of the cycle. Clearly, the members of 

this class which are minimal with respect the numbers of vertices are 

irreducible lenses. 

Lemma 1.5 Cveny i/ineduci dte ten-i L containл a tniangte 

which i-6 incident to Ha dounda/iy. 

Pnoo-f. If L has no interior vertices, then the face of L incident to 

ig is a triangle. Let the lens L have interior vertices d-^,...,d 

edch of which is adjacent to some vertex i, . Let h(d.) be the number 
К 1 

of faces of L contained in the region i^i^.d^ bounded by the two 

sections and t^ which intersect at d^ and by the boundary of the 

lens. Let h(d ) = min {h(d. ),...,h(d )} . Then the vertices d ,i *i. 
n 1 r n s к 

determine a triangle which is incident to the boundary of L . // 

Let g(G) be the minimum number of faces in any irreducible 

lens L of l(G). We have 

2 < g(G) < *p(l(G)) = £(p(G) +v(G) ) < e(G) . 

If g(G)=2 then the corresponding irreducible lens is as depicted in 

Fig. lib. In this case the graph G contains a triangle which is incident 

to a vertex of degree 3 . so that one of the reductions ш or n , ieN., 
l l 5 

may be applied to G . 

To complete the proof of Theorem 1.4 it remains to show that 

for a graph for which g(C-) >2 we may use reductions or Пд to 

transform G into a graph G* such that g(G*) < g(G) . 

In 1(G) consider a lens L with g(G) faces. By Lemma 1.5* 
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there is a triangle T in L which is incident to the boundary of L . 

According to whether T corresponds to a triangle in G or to a vertex 

of degree 3 . we use one of the reductions or u)q • In both cases, 

it is easily verified that g(G*) < g(G) . This completes the proof of 

Steinitz's Theorem. // 

A maximal planan. gn.aph is a graph which ceases to be a 

planar graph if any one edge is added to the graph. Whitney showed that 

any maximal planar graph with v > 4 vertices is 3-eonnected, (see Harary 

1969). 

Corollary 1.6 Lveny maximal planan. gnaph with, at leatt toun. 

venticeA іл 3-polyhe.dn.al. 

Let G be a 3-connected, planar graph. Its dual graph G* 

may be constructed as follows : in each region of the planar realization 

of G (including the unbounded exterior) we locate a vertex of G* . If 

two regions have a common edge e , join the corresponding vertices by an 

edge e* which intersects e only. In this way we obtain a planar graph 

which is also 3-connected. This gives the following corollary. 

Corollary 1.7 Dual 3-c.onneeted, planan. gnaphi G and G* 

an.e nealized ly dual po lytopeA. 

§2 DIAMETERS OF POLYTOPES 

An interest in the study of metric properties of polyhedral 

graphs has arisen quite recently and has been evoked by the wide interest 

in the techniques of Linear Programming. 

Recall that the distance r(u,v) between the vertices u 

and v of a connected graph G is the length (i.e. the number of edges) 

of the shortest chain connecting u and v . 

Definition 2.1 The» diameten. o£ a g/iaph G is the smallest 

integer к such that the distance between any two of its vertices is no 

greater than к . The diame.to.n- o£ a polytope (diam M) is the diameter 

of its graph G(M). 

2.1 The Maximum Diameter Conjecture 

We denote by A(d,n) the maximum diameten. of any polytope 

in the class of all d-polytopes with n facets. The problem of determin- 
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ing A(d,n) is closely connected with the estimation of the number of 

iterations of the simplex algorithm in Linear Programming. А іітрігк 

aigo/iithm is an algorithm based on the construction of some chain between 

an initial vertex (assumed to be chosen arbitrarily) and an optimal 

vertex. In such an algorithm, every iteration consists of a choice 

(according to a variety of rules) of the following vertex in the chain 

from among those vertices which are adjacent to the current vertex. If 

x and у are vertices of the polytope M such that r(x,y) = diam M , 

then if we take a linear function cx whose maximum is attained at у 

and if we use the vertex x as our initial vertex, we find that the 

number of iterations of the simplex algorithm in solving the problem of 

finding max {cx : xeM} can not be less than diam M . In this sense, 

the quantity A(d,n) gives the number of iterations required to solve 

the 'worst' linear programming problem using the 'best' simplex algorithm 

(Klee & Minty 1972). We are assuming, of course, that the 'best' algo¬ 

rithm can be constructed. 

The conjecture that A(d,n) £ n-d has become widely known. 

It has been proved only in special cases. First, it is obvious that 

A(2,n) = [n/2] . 

It has also been shown by Klee and Walkup (1967) that 

Д(3,п) = [2n/3] - 1 . 

It has also been proved (Klee & Walkup 1967) that the conjecture is true 

in the case n < d+5 • We show that it suffices to prove the maximum 

diameter conjecture for simple polytopes. We begin by introducing a con¬ 

struction which permits us to transform any polytope into a simplicial 

polytope with the same number of vertices and with no less faces of any 

dimension than the original. The construction was proposed by Eggleston, 

Grunbaum & Klee (1964). 

We say that a point v° is />e.pa/iate.cL (лі/iictty />e.pa/iate.dL) 

£/iom M by a facet F of a d-polytope M , if the hyperplane aff F 

separates (strictly separates) the point v° from M . 

Definition 2.2 Let v be a vertex of a d-polytope M and 

let v°^M be strictly separated from M by the facets of M which are inci¬ 

dent to v . We say that the polytope M° = conv (MUv°) has been 
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obtained from M by means of a /light di-ip tace.me.nt о l the. ve/itex. 

(Figure 12). 

v 

Lemma 2.1 Let the &-pobytope M° C He obtained l/iom. the 

d-pobytope M by a eight di-ip bacement ol the ve/itex. v to the ve/itex. v° 

Then, eveey i-/асг о/ M = conv(MUv°) i-i ol one ol the two lobbowing 

type-i : 

1) An i-lace F о/ M i-i a lace ol M° il and onby il F i-i 

a lace ol лоте lacet not containing the ve/itex. v . 

2) An 1-pyeamid F° with ue/itex. v° and Ьале F іл a lace ol 

M° il and onby il F іл an (i-l)-/ace which doeл not contain v , but 

which ІЛ a lace ol a lacet ol M which Ьоел contain v . 

Peool Clearly, every face of M° is either a face of M or the convex 

hull of the point v° and some face of M . It is also obvious that the 

face F of M is a face of M° if and only if case l) of the lemma 

holds. 

We prove assertion 2). (i) Let F be an (i-l)-face of M 

and let F° = conv (FUv°) be an i-face of M° . Then F = M П aff F° . 

Let x° e rel int F , y° e int M and let E = aff (v°,x°,y0) be the 

plane containing the points v°,x°,y0 . Then M = ЕПМ is a 2-polytope 

(polygon). The line L = aff (x°,v°) is the intersection of the plane 

E with aff F° and F = LflM is either an edge (Fig.13)» or a vertex 

(Fig.14) of M . 

The case in which F = LflM is an edge of M is impossible 

since then v° e aff F C aff F and consequently i = dim F° = dim F 

= i-1 . 
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Fig. 13. Fig. 14. 

If F is a vertex it coincides with x° and the point v° in the plane 

E is strictly separated by one edge and not separated by the other edge 

of the polygon M which are incident at x° . Hence, if F^ and F^ 

are facets of M containing respectively these edges, then the point v° 

in E, is strictly separated from M by one of the facets F-, or F„ , 

say F-j- , and not separated by the other. By definition 2.2 the facet F^ 

contains the point v . 

(ii) Now, let F be a face of M satisfying condition 2) of the 

lemma. We show that F° = conv (F Uv° ) is a face of 
w 0 
M If 

0 
V e aff F, 

this is certainly true. Let v 0 i aff F and let F^ and V 
x 2 

be facets 

of M such that F C F 
ПР2 

and F^ strictly separates 
0 

V from M , 

while F„ does not seoarate v° from M . Let H. = aff F. and let H0 
2 l l 0 

be a supporting hyperplane which generates the face F . We rotate the 

hyperplanes about H.П Hg towards Hq until the new hyperplanes H? 

satisfy the condition HfПМ = F and the point v° is strictly separated 

from M by H? but not separated from M by H|. More precisely, if 

= {xeE^ : c^x = 0} i=0,l,2 

(assuming for simplicity that 
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then, putting 



Ад = sup { А : (c1+Ac°)v° < О } , 

А2 = sup { А : (с2+Ас°)ѵ° > 0 } 

we obtain the desired hyperplanes 

H* = {xeEd : (c1+o°Ai/2)x = 0} , i=l,2. 

The hyperplane Hg = aff (ѵ°ІІ(Н*ПН*)) contains the point v° and gener 

ates the face F . Further, since 

H* П M° = Hg Dconv (MUv°) = conv (FUv°) = F° 

F° is a face of M° . Ц 

Theorem 2.2 7he./ie. e.x.i-it.6 a -iimpte. 6,-potgtope. with n £асе.іл 

having diame.te./i A(d,n) . 

P/ioo-jL We begin with a definition. The /ace.-diame.te.ri of a d-polytope is 

the smallest integer к such that given any two facets F and G there 

is a sequence of facets F = Fq,F^,...,F^ = G such that F. д П F^ is a 

(d-2)-face for ieN^. • Such a sequence is called a JLace-chain . 

Clearly, the face-diameter of a polytope equals the diameter of the dual 

polytope. 

Let M be a d-polytope such that diam M = A(d,n) . Let M* 

be the dual of M . The d-polytope M* may be transformed into a simpli 

cial polytope M° by means of right displacements of its vertices 

(Lemma 2.1). Moreover, the face-diameter of M° is easily seen to be no 

less than that of M* . Thus (M°)* is a simple polytope with n facets 

for which diam (M0)* > diam M . // 

We now calculate the diameter of the product of two polytopes 

(see Chapter 1, §3 for the definition). We use the symbol r^(x,y) when 

we need to emphasize which polytope M the distance r(x,y) refers to. 

Lemma 2.3 

diam (M1®M2) = diam Мд + diam M2 
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where v^,v^ Psioo£ Let (v1,v2), (v{,v^) be two vertices of t^® Mp , 

are vertices of M. , i-1,2. If v.=v°.v^v..' is the shortest chain 

between the vertices v. and v| of , i=l>2, then 

is a chain 

of M1®M2 

(vl’v2)=(vl’v2) 

of length k-^+kp 

. Consequently 

k, n kp 
.. , (vii,v2) = (v-[,v2),. . , (v{’V2‘ ) = (v| ,vp 

between the vertices (vq’v2^ and ^V1,V2^ 

м1® ((v 
1* 2 

)» (v 
1* 2 

)) (v 
l’vl 

) + (v 2’ 2' 

Further, if (u1,u2),(u|,up is a pair of adjacent vertices 

in M1®M2 , where u^uJ e Mj_ > i=l»2, then either u-L=u-[ and Up,u^ 

are adjacent vertices of M2 , or Up=u^ and uq,uq are adjacent vertices 

of M-^ • Hence 

rM1®M2((vl’V2)’(vl*V2)) ^ \(ѵГѴѴ + rM2(v2’V2} • 

Consequently 

diam (M-,®M2) = diam + diam Mp . // 

Lemma 2.4 

A(d1+dp,n1+n2) > A(d^,n^) + A(dp,np) . 

In f>a/itinuian 

Д(d+1,n+2 ) > Д(d,n ) + 1 . 

PnooS Let be a d-polytope with n^ facets and let diam 

A(d.,ni) , i=l,2 . Since dim M^® Mp = d-^+dp , f^ +£j = 
1 2 

we have, by Lemma 2.3 

ѴП2 

A(d,+dp,n1+n2) > diam (M-^®Mp) 

= diam M + diam Mp = A(d^,n^) + A(dp.n^) • 
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Since Д(1,2) =1 we have A(d+l,n+2) > A(d,n) + 1 . // 

Definition 2.3 A wedge on a d-potgtoре M eelatiue 

k-Sace. F (0;<k<d) is a (d + 1)-polytope W = H+П (M®L) , where L 

H is a halfspace containing M and such that H DM = F , and 4 

hyperplane which intersects the interior of M ® L . An example of 

is shown in Figure 15- 

to it* 

= [0,00) , 

is a 

a wedge 

иррел. Надел 

a vertex x 

base with x®L . If 

facets, then the wedge 

The d-faces M and 4 D(M®L) are called the Іошел and 

respectively. With each vertex xeM , x^F , we may associate 

1 of the upper base which is the intersection of the upper 

M is a simple d-polytope and F is one of its 

W is also a simple polytope. By Lemma 2.3 and 

considering the manner of construction of the wedge 

equality diam W = diam M . 

)efinition 2.4 A non-eetuenlng chain 

of a polytope M is a sequence of adjacent vertices 

W we have the 

property that if a vertex 
j+1 

r« І F then also vJ 'iV t F J+* 
belongs to a facet 

, keN . . 
s-J 

G(M) 

Ltl 

and the vertex 

in the graph 
1 s 

v .v with the 

Definition 2.5 A Dantzig d--ligu/ie. is a triple (M,x»y) 

where M is a d-polytope with 2d facets of which d are incident to 

vertex x and the other d are incident to vertex у . 

Klee and Walkup (1967) gave a number of equivalent formula¬ 

tions of the maximum diameter conjecture. 
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Theorem 2.5 The {о ііоыіпд z>tatementz> ane equivatent : 

1. Any two ventice* o-i any дітріе potytope can He. joined Hy a 

non-netanning chain ; 

l. A(d,n) < n-d {.on. any d,n, 1<о1<п ; 

3. A(d,2d) < d for all d ; 

4. Ton ait dantzig &-{ідипел (M,x,y), we have r(x,y) = d . 

Pnoo{ l) => 2). Let arbitrary vertices x and у of a simple d-polytope 

be incident to к (0^k<d-l) common facets. Then, from the definition of 

a non-returning chain it follows that r(x,y) £ n-d-k . Hence diam M <. 

n-d-k < n-d . Since M is arbitrary and using Theorem 2.2 we deduce that 

assertion 2) follows. 

2) => 3). It suffices to put n = 2d . 

3) => 4)* Assertion 3) implies that r(x,y) < d . On the 

other hand, since vertices x and у are not incident to a common facet, 

r(x,y) > d . Hence r(x,y) = d . 

4) => 1). Let M be a simple d-polytope with d+ra facets 

and let x and у be any two of its vertices. Put У=Уд and consider a 

face Fq of smallest possible dimension containing both x and у . Let 

dim F = d' 
о fa. ^(Fq) = d'+m' d *<d m ' <m 

Since there are no (d'-l)-faces of Fn containing both x and у , we 

have m = d'+k , where к is the number of (d'-l)-faces which are not 

incident to either x or у . If k>0 

not containing either x or у 

let G be a (d'-l)-face of F 

on F Construct the wedge 
0 

0 
relat- 

F^ has k-1 facets which are ive to its face G . The (d 1+1)-polytope 

not incident to x or to y^ - a vertex in the upper base of the wedge 

F^ . By repeating this process of replacing a polytope by a wedge with 

a smaller number of faces not incident to the selected vertices we obtain 

after at most к steps a Dantzig (d'+k')-figure ^k,x,^k^‘ 

By assumption r^ (х,у^) = m' = d'+k . From definition 2.5 

it JkdlLows that there exists a" non-returning chain between the vertices 

x and y^ of the Dantzig figure F^ . It is easily seen that to each 

non-returning chain C of the wedge W on M there corresponds a non¬ 

returning chain in M obtained from C by replacing each vertex on an 

upper base by its corresponding vertex on a lower base. Thus, to each non¬ 

returning chain between the vertices x , y^ of the corresponding Dantzig 

figure there corresponds a non-returning figure between x , у in M . Ц 
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2.2 An Upper Bound for the Diameter 

The bound given below is due to barman (1970). 

Theorem 2.6 Ц d > 3 , than. A(d,n) < 2d'\ . 

Mote that the slightly improved bound 

?d-3 , 
A(d,n) < z-j- (n-d+ |) 

which was announced in 1974 (Barnette 1974a) has been queried (Barnette 

1974b). 

Lemma 2.7 7 he maximum diametee in the. сіалл o£ d-po lyto /? ел 

with n venticeA doe-6 not exc.ee.cL [(n-2)/d] + 1 . 

Pnoo-f. Choose any two vertices in a d-polytope with n vertices. By 

Theorem 1.2 there exist at least d non-intersecting edge chains connec¬ 

ting them. Hence the length of the shortest edge chain connecting the 

chosen vertices cannot exceed [(n-2)/d] + 1 . // 

Lemma 2.8 

A (3»n) 1 (2.1) 

PnoojL By Theorem 2.2 it suffices to consider only simple 3-polytopes. By 

Corollary 5*10 of Ch. 1 , the number of vertices of a simple 3-polytope 

with n facets is given by fg = 2n - 4 • Hence, using Lemma 2.7 we have 

the following chain of inequalities : 

A(3,n) = A(3,f2=n) = A(3,f0=2n-4) < ^--^~2j+l < ГДЛ - 1 . // 

We note, although we will not use this in the sequel, that 

the bounds in these Lemmas are exact. Indeed there are even simplicial 

polytopes for which the bound in Lemma 2.7 is attained. 

Consider the following extremal construction (Klee Sc Walkup 

1967). The d-polytopes P(d,j) , j=l,2. are convex hulls of j+1 

(d-1)-simplexes which are located in parallel hyperplanes in such a way 

that successive simplexes are anti-homothetic and their relative boundary 

lies on the boundary of P(d,j) Thus, Pig.16(a) shows P(3»2) and 
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Fig. 16. 

Fig.16(b) shows P(3»2) from above. 

Mote that the d-polytope P(d,j) has d(j+l) vertices and 

(2^-2)j + 2 facets. It is easily seen that on P(d,j) the bound of 

Lemma 2.7 is attained. Also, the polytopes P(d,j) have tacet diameten 

(i.e. the diameter of the corresponding dual polytope) equal to (d-l)j+2 . 

(see also Exercise 11). 
12 s 

Let M be a d-polytope and let C = {v ,v ,...,v } be a 

chain in the graph G(M) . А иіліі o£ a cha.in C to a /ace. F is a 

subchain v^, v^, . . . , v1' \v^' of C such that v^cF , i^t^j , 

v^ \v^+^F. We say that the. chain C vititA the £ace F к timeA if 

C contains exactly к different visits to F . 

Let F be a face of M . The distance r(x,F) from the 

vertex x to the face F is defined to be the quantity min{r(x,у):yeF}. 

We use the symbol r^x.F) when we wish to emphasize that the distance is 

measured on the polytope M . 

d-potytope 

than 

Lemma 2.9 Between any two venticeA x and у о£ а Aimpte 

M , d.>3 . thene іа a chain which ѵіаііа each £acet not топе 
0d-3 . • , 2 timeA 
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Р /іо о £ We use induction on d . For d=3 from (2.1) we have 
2 

diam M <. n - 1. Hence, by Theorem 2.5, the Lemma is true. 

Let the length of the shortest face-chain between vertices 

x and у be к and let F, be the first facet of one of these chains. 

Among all the face-chains from x to у of length к and beginning with 

F-, we select a face-chain with second facet F„ such that r„ (x,F, flF_) 
1 2 Fn 1 2 

1 1 
is minimal. Let x be a vertex of the (d-2)-face F-, П F„ such that 

1 -L/C 

Tj, (x,x ) = Гр (x,F^flF2) • Further, among all the face-chains from x 

to у of length к which begin with the pair F^,F2 we select a face- 

1 2 
chain with third face F0 such that r„ (x ,F„ F_) is minimal. Let x 

3 F2 2 3 

be a vertex of F,DF, such that r_ (х'Чх2) = r„ (x^.F^DF-) . Continu- 
2 5 F2 F2 2 3 

ing this process, we construct a face chain F_^,F2, . . . ,F^ such that 

xeF-^ , yeF^. • Let C^ , ieW^ denote the shortest chain between x^'-'*' 

and x^ , which are vertices of F. (x^=x,xlC=y). The union of the chains 

C^, ieN^ , yields a chain C in the polytope M . It is clear that 

С. П C. ,, 
l l+l 

VieN 
k-1 

Consider any facet F of M . If F coincides with one of 

the facets F. , ieN, , the chain 
l к 

visits F once along the chain C. 
ь l 

and, by the inductive assumption, since dim(F^DF^+^) = d-2 , not more 

than ,d-4 times along the chain С.л . 
° l + l 

Suppose F does not coincide with one of the F^ , ieN^ . 

If F intersects only one of these faces, say F^ , then by the inductive 

assumption, the chain C^ visits the face F F^ of F^ not more than 

2^-^ times, since dim(FflF^) = d-2 . This follows from the fact that 

the polytope M is simple. 

Clearly, the facet F can intersect at most three facets 

among the shortest face-chain F-^,F2,...,F^ . Also, if F does intersect 

three facets, then these must form a triple F^_-^,F^,F^+^ . This implies 

that FflC is contained in C.^U C^U C.+^ . 

We now show that FflC is contained either in C. .UC. or 
l-l l 

in C.UC.n . Indeed, if F has points in common with С. n and С. , л 
l l+l l-l l+l 

(it will meet C^ ^ in some vertex other than x^ "^), then replacing F^ 

by F in the face chain F^»F2>....F^ we find a contradiction of the 
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rule whereby F^ was chosen. 

Thus, for example, let 7 ПС C C^U + ^ . Then, if 

F DF. ф 0 , then dim (FflF.) = d-2 and by the inductive assumption the 
a t d “ Z. 

chain C. visits the face FflF. of F. not more than 2 4 times. 
l i a d - 3 

Thus, the chain C visits face F not more than 2 times. // 

Р/іооf. o-fL 7 keonem 2.6. By Theorem 2.2 we may restrict our attention to 

simple d-polytopes. 

Let x,y be arbitrary vertices of the d-polytope M with 

n facets. By Lemma 2.9, there is a chain C = {x^, x"^,. . . , x^} , x =x , 

x^=y which visits each facet of M not more than 2^ ^ times. Moreover 

as we pass from vertex x^ to vertex x"'' + ^ , the chain C terminates its 

visit to some facet and begins its visit to some other facet. Thus, if 

p > 2^"^n , there is at least one facet of M which is visited by the 

chain C more than 2^ ^ times and this contradicts the choice of C . 
d- 3 

Hence, p < 2 n and since the vertices x and у are arbitrary, 

A(d,n) < 2^ ^n . // 

2.3 A Lower Bound for the Maximal Diameter 

We refer to Adler (1974)- Let and Mg be simple 

d-polytopes. 

Definition 2.6 The join of these polytopes &.y the ventieeA 
1 2 

v ,v (denoted by M-^ Ѳ Mg) is the polytope obtained by carrying out the 

following procedure. 
1 2 

1. Select the vertices v and v in M-^ and Mg . 

2. Remove the vertices v± by means of right cuts (see 

Definition 1.3, Ch.3) thereby forming the polytopes with simplicial 

faces F. = M. ПН. , i=l,2, where are the hyperplanes used to remove 

the vertices v1 . 

3. Let be a projective map which maps the hyperplane HJ , 

which is parallel to and which passes through v1 , to infinity. 

Construct the polytope x^(MJ) such that all of its edges which inter¬ 

sect t^(F^) are parallel. 

4. By means of suitable affine maps a. construct polytopes 
2 ^ 

Mi = а^(т^(М|)) , in which every facet intersecting ou(t^(F^)) is 

orthogonal to it. 
2 

5. Find an affine map a^ of M^ which transforms the face 

<*1 (Ti (Ff)) into a2^T2^2^ but wbich leaves the faces which intersect 

al(Ti(^i)) perpendicular to it. 
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6. Position and а^(Мд) so that “3(a±(т-д(F1))) and 

a2(T2(F2) ) coincide and so that the interior of does not intersect 

the interior of a^(M^) . 

Note that all faces of Мд which do not contaiji v1 will be 

faces of Мд ѲM2 and that the d facets of Мд containing v1 together 

with the d facets of М2 containing v^ form (after the transformation) 

the remaining d facets of М^ФМ^ (Figure 17). 

Fig. 17. 

It follows directly from the definitions that 

dim(M10M2) = d , fd_1(M1®M2) = fd_1(M1) + ^.д^) - d . 

Note also that the polytope M, ФM0 is uniquely defined and depends on 
l1 2 

the choice of the vertices v ,v . 

Lemma 2.10 7Лгле іл a join 0/ the two d-po lytopet Мд and 

M2 ^ach that 

diam Мд + diam M2 - 1 < diam(M1®M2) < diam Мд + diam M2 • 

PnooJL Let vj ' vi e Mi ^e vertices such that rM. ^vi,V:P = diam Мд , 

i=l,2. Let Мд ФM2 be the join of Мд and M2 by the vertices vq»v2 * 

Let v? , v. be adjacent vertices of M. , then since r„ (v.,vJ) = 
i i 0 1 M. 1 1 

diam Мд , we have r^ (v?,v^) = diam Мд or diam Мд - 1 , i=l,2. Every 
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ѵѳгѣвх of М-| adjacent to v ^ is adjacent in M^ © М2 bo exactly one 

vertex of Mg • The result of the Lemma follows. // 

Lemma 2.11 

A(d,n^+n2~d) > A(d,n^) + Atd^g) - 1 

Я/too/ Let 1L be a d-polytope with n^ facets having maximal diameter, 

that is, diam = A(d,ni) , i=l,2. By Lemma 2.10, if we join these 

polytopes suitably we have 

A^n^+ng-d) > diam (M-^ © Mg) 

> diam M^ + diam М2 - 1 = A(d,n^) + A(d,n2) - 

This establishes the Lemma. // 

Theorem 2.12 

A (d., n) > 

[■ d 

Я/too/ Denote the right-hand side of the inequality of the Theorem by 

Z(d,n). We use induction on d . For d<2 we have A(d,n) = [n/2] 

> Z(d,n) . Suppose that A(d-l,n) > Z(d-l,n) for some d-1 > 2 and all 

n > d . By Lemma 2.4 and the inductive assumption 

A(d,n) > A(d-l,n-2) 

Suppose d^O (mod 4). 

Z (d-1, n-2) + 1 = ^n 

Thus, in this case, for 1 < n-d < 

> Z (d, n) . 

+ 1 > Z(d-1,n-2) + 1 . 

Then 

[5d/4] we have that Z(d-1,n-2) + 1 

Suppose d=0 (mod 4)- Then 

Z(d-1,n-2) + 1 d 
n-d-1 1 , , 
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Thus, in this case, for 1 < n-d < 5d/4 we have that Z(d-l,n-2) + 1 > 

Z(d,n) . 

Suppose that d=0 (mod 4). Then 

Z (d -1, n - 2) + 1 

and, as in the previous case, 

A(d,n) > Z(d,n) when n-d < [5d/4] - 1 

Further, since d=0 (mod 4) and A(4.9)=5 (Exercise 15), 

we have, using Lemma 2.4» that 

A(d,d+^-)=A(|.4,|-9) > |д(4,9)= = Z(d,d+^) . 

We have thus shown that when n-d <. [5d/4] the theorem is true . 

Now suppose that A(d,n) >, Z(d,n) for all n^n0 » where 

nQ > d + [5d/4] . Let nQ - d = b (mod [5d/4] ) , that is 

nQ-d-b = k[5d/4] , 0 < b < [5d/4] 

By Lemma 2.11 and the inductive assumption 

A(d,n +1) > A(d,n -b) + Д(d,b+d+1) - 1 

> Z(d,nQ-b) + Z(d,b+l+d) - 1 

* ["o-b-d- -|fd74j] + 1 * [b+1+d-d- b[5d+/vf ] 

* k[5d/i] - b * [b+d- -рЭТт] * d 

Г n +l-d 1 

= no+1-d- #74jl+ 1 = Z(d,no+l) . // 

+ 1 1 

2.4 Thickness 

Definition 2.7 The thickneлл o£ a poiytope. M (denoted by 

A(M) is the number of vertices in the longest simple chain in the graph 

of a polytope. Equivalently, A(M) = u(M) + 1 , where u(M) is the 

length of the longest simple chain in the polytope graph. 
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If the graph G(M) has a simple spanning cycle C, then G is called a 

Harni (.Ionian gnaph. and C is a Hamidonian сус(г. . Thus, if M is a 

Hamiltonian graph, the thickness X(M) is equal to the number of vertices 

of the polytope M . We remark, that the study of Hamiltonian graphs 

actually originated in the study of graphs of polytopes. Hamilton constr¬ 

ucted simple cycles which contained every vertex of a 3-polytope (dodeca¬ 

hedron). In 1880, Tait conjectured that every 3-polyhedral graph is 

Hamiltonian. The truth of Tait's conjecture would imply the truth of the 

four-colour theorem. This led to a large amount of work directed towards 

proving the Hamiltonian property of polyhedral graphs. The first counter¬ 

example to Tait's conjecture was constructed by Tutte in 1964. Tutte's 

graph is shown in Figure 18. 

Fig. 18. 

We note that for any d and n , with n > d+1 , there 

exists a d-polytope with n vertices whose graph is Hamiltonian. An 

example of such a polytope is the cyclic polytope C(d,n) . For d > 3 

every cyclic d-polytope is 2-neighbourly (i.e. any two vertices are 

connected by an edge) and so its graph is clearly Hamiltonian. When 

d = 3 , it is also easily shown that C(3,n) is Hamiltonian using a 

characterization of the edges. Thus, the maximum thickness of a d-poly- 

tope with n vertices is exactly n and this thickness is attained on 

the simplicial polytopes. 
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7 hen 

Proposition 2.13 Let M He a d-po Hgtope with n £a сеіл. 

X(M) < 

7hi-i Hound i-i attained on the. літріе d-po HytopeA 

The proof will follow from results in §3, Ch.3. 

Proposition 2.14 7he minimum. thickneAA in the еИалл oi 

ліпрИе d-роНуіорел with n JLaeet-b іл no gneaten than (d-l)(n-d) + 2 . 

Pnoo£ Let x be a vertex of M and let the hyperplane H strongly 

separate x from the set conv(vert M\x) . We say that the polytope 

M ПН+ has been obtained from M by a night out at the vertex x . It 

is clear that if M is a simple polytope, the face МПН of M ПН+ is a 

simplex. Consider the polytope Q(d,n) which has been obtained from a 

d-simplex after n-d-1 successive right cuts at vertices. It should be 

noted that if the graph of the simple d-polytope Q(d,n-l) is Hamiltonian 

then the graph of Q(d,n) obtained by taking a right cut at a vertex of 

Q(d,n-l) is also Hamiltonian. It is easily verified that Q(d,n) has n 

facets and (d-l)(n-d) + 2 vertices. This proves the proposition. // 

Definition 2.8 The H-thickne44 ot a po tyto ре M is the 

number of edges in the longest chain x^,...,xS of the graph G(M) for 

which there exists a linear function £(x) = cx such that cx^<cxd<...< 

cxs . The largest ^-thickness in the class of d-polytopes with n facets 

will be denoted by H(d,n). 

Klee and Minty (1972) obtained the following bounds : 

n£d/2l < H(d,n) < 6^ , n > d (2.2) 

< lim inf H[£$j < lim sup < ТГ72ТГ (2<3) 
П+» nL J П+00 nL J L J- 

In applications, it is interesting to know not only the 

^-thickness of a polytope but also the closely associated simplex thick- 

пелл which is defined to be the maximum number of iterations of the 

standard simplex method in solving any linear programming problem on the 

polytope M . Let 0(d,n) denote the maximum simplex thickness in the 

87 



class of all d-polytopes with n facets. Clearly 0(d,n) < H(d,n) . It 

turns out that 0(d,n) satisfies the same bounds as H(d,n) in (2.2) and 

(2.3). 

Finally we present an example of a polytope, obtained by 

slightly deforming a d-cube (0<e<£), whose ^-thickness is equal to 2d-l , 

where £(x) = xd (Fig.19) : the defining inequalities are 

0 < x^ < 1 , 

exq i x0 < 1 - ex^ , 

ex2 <, x2 £ 1 - CX2 . 

Exd-1 * xd * 
1 - ex 

d-1 

Fig. 19. 
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EXERCISES 

1. Let (a^,b^) , ... , (a^.b^) be any m distinct pairs of 

vertices in the graph of a d-polytope, where m = [(d+l)/3] . Show that 

there exist non-vertex-intersecting chains joining these vertex pairs. 

Show that in the case of simplicial d-polytopes one can take m = [(d + l)/2]. 

2. Any graph of a simplicial d-polytope has the complete graph 

Kd_i , i = 0,1,...,d-l as a subgraph. 

3. A' three-connected graph with p>6 vertices is planar if and 

only if it does not contain a subgraph which is homeomorphic to the 

bi-partite graph ^ . 

4- (Barnette & Griinbaum 1969). Every 3-polyhedral graph 

contains a spanning tree whose vertices have degree not exceeding 3 . 

5*. Prove or disprove the following two conjectures of Barnette 

(see Barnette & Griinbaum 1969): 

(1) the graph of any simple 4-polytope is Hamiltonian;(the 

following theorem due to Tutte partially vertifies the conjecture: every 

4-connected planar graph is Hamiltonian). 

(2) if all the facets of a simple 3-polytope have an even 

number of edges, then its graph is Hamiltonian. 

6. For every d > 3 there is a d-polyhedral graph which is not 

Hamilt onian. 

7. (Griinbaum 1975 ). Show that: 

(1) the minimum number of vertices or edges of a 3-polytope 

whose graph does not contain a hamiltonian cycle is equal to 11 or 18 

respectively; 

(2) the minimum number of facets in a 3-polytope whose graph 

does not contain a hamiltonian cycle is equal to 9 ; 

(3) if the 3-polytope is simplicial then the corresponding 

numbers in (l) are 11 and 27 respectively. 

8. There are many results, going back to Eberhard’s Theorem 

(Eberhard 1891), concerning the problem of the existence of 3-polytopes 

with a specified number p^ of facets with к edges and a specified 

number v^ of vertices of degree к (for further details see Griinbaum 

(1975)). We list a number of such results: 

(l) Euler's formula implies directly that the sequences 

Pk , vk satisfy the conditions 

I (6-k)p. + 2 l (3-k)v = 12 , 
k>3 k>3 K 
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I (4-k)(pk+v,) = 8 ; 
k>3 

(*) 

(2) let the non-negative integers , ..• , pn satisfy 

the conditions > 8 and 

I (6-k)p, = 12 , (**) 
k>5 

then there is a simple 3-polytope M such that pk(M) = for к> 5 i 

(3) let the non-negative integers P3 > P^ > P^.Pn 

satisfy the condition I (4-k)p, = 8 , then there is a 3-polytope M 
k>3 

such that pk(M) = pk for к f 4 and v^(M) = fq(M) ; 

(4) if M is a 3-polytope such that \ pv(M)>3 , then 
k>7 K 

Pg(M) > 2 + ip^(M) - ip^(M) - [ pk(M) 

3p6(M) > 12 - 2p4(M) - 3p5(M) + I ([Hk+1)]-6)pk(M) ; 

(5) let p^»•••*Pn»v^,...,vm be non-negative integers which 

satisfy conditions (#) and for which \ kv, = 0 (mod 2) , then there is a 
k>3 

3-polytope M such that pk(M)=pk апс* vk^^=vk ^or a^ k^4 ; 

(6) let the sequence (pk) satisfy the condition (**), then 

there is a number mn<L3 У p, such that for all 
U kf6 k 

Рб = mQ + 2m , where m 

is a positive integer, there is a simple 3-polytope M such that 

Pk(M) =Pk * 

9. (Griinbaum 1975). The graph of every 3-polytope has at least 

three edges e1 = (vq>v2) ^or ea°h of which deg v^ + deg v^ < 13 • A 

simplicial 3-polytope has at least 6 such edges. 

10. Let e^j be the number of edges in the graph of a polytope 

whose end-vertices have degrees i and j respectively (i^j). Then, 

for a simplicial 3-polytope we have the following inequality: 

120 <. e^ * 25e^4 + l6e^^ + 2013e^y + 5e^g + 512e^g + 2e^ 20e44 + lle^^ + 

+ 5e46 + 5e47 + 5e48 + 3e49 + 8e55 + 2e56 + 2e57 + 2e58 * 

In particular, if e^k = 0 for j + k<: 12 , then ез qo = 60 . 
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11. The maximum diameter in the class of d-polytopes with n 

vertices is equal to [(n-2)/d] +1 and there exists a simplicial d-poly- 

tope with n vertices having this diameter. When d =3 the maximum 

diameter is attained by triangular prism with four-faced caps on the 

upper and lower base triangles when n = 2 (mod3). In the remaining cases 

one or both caps can be omitted. 

12. Most of the propositions formulated below have been proved by 

V.Klee (Klee & Walkup 1967): 

(1) the maximum diameter in the class of simple d-polytopes 

with n vertices equals [(n-2 )/d] + 1 for d < 3 and is not less than 

(d-1) [(n-2)/(2d-2)] + 1 for n>2d ; 

(2) the maximum diameter in the class of simplicial d-poly¬ 

topes with n facets equals [(n-2d)/(2d-2)] +2 for d ^ 3 . When d ^ 4 

the maximum diameter is not less than this quantity and is not greater 

than min{n-d , (n+2d(d-1) )/d(d-1)} ; 

(3) the minimum diameter in the class of simplicial d-poly¬ 

topes with n vertices is equal to 2 when d=3 and is equal to 1 

when d > 4 • 

13. The /ladiuA R(M) of a polytope M is defined to be the 

radius of its graph G(M) , that is, the smallest integer r such that 

the chain length from some vertex of G(M) to any other vertex is no 

greater than г . Show that: 

(1) R(M) <diam M < 2R(M) ; 

(2) the minimum radius in the class of d-polytopes with n 

vertices is not less than ]log^ ^((d-2)n+2)/df and is equal to this 

number if n = 2 (mod (d-l)) ; 

(3) the minimum radius in the class of d-polytopes with n 

vertices equals ]log^_^((d-l)(d-2)n - d^ - 3d^ - 2)/d[ ; 

(4*) the maximum radius in the class of 3-polytopes with 

n>6 vertices is greater or equal to [(n+4)/4] . (Yukovich-Moon conjec¬ 

ture ). 

14. (Grunbaum 1975). Show that: 

(1) the maximum thickness in the class of simplicial 

d-polytopes with n facets is bounded above by + d and is 

equal to this bound if n = 2 (mod d-l); 

(2) the minimum thickness in the class of d-polytopes with 

n facets is bounded below by 21og2(n+4) /2 ; 
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(3) the number 31og2(2n+l) -6 is a lower bound for the 

minimum thickness in the class of simple 3-polytopes with n edges; 

(4) the minimum thickness in the class of 3-polytopes with 

n vertices is bounded below by 21og£n - 5 ; 

(5) there exist constants a < 1 , c and a simple 3-polytope 

M with n vertices such that there is a simple chain in the graph G(M) 

which contains at least cna vertices. 

15. The g/iaph о/ a potyhe.d/ion (an unbounded polytope) is a 

graph generated by the vertices and the bounded edges of the polyhedron 

(it is assumed that the polyhedron has at least one vertex). The maximum 

diameter of the graph of a d-polyhedron with n facets is denoted by 

A*(d,n) . The following relations hold (Klee 1974): 

(1) A*(2,n) = n - 2 . A* (3,n) = n - 3 , A*(4.4) = 5 . 

A* (4,8) = Д(4,9) = 5 ; 

(2) A*(d + l,n + l) > A*(d,n) , A*(d,n+l) >A*(d,n) ; 

(3) A*(d,2d) > d + [d/4] ; 

(4) A* (d ,n) > n - d + min{ [d/4] , [(n-d)/4]J » thus the maximum 

diameter hypothesis is not true for d-polyhedra when d > 4 • 

16. The equivalence of the following assertions was established by 

A.N. Isachenko: 

(1) the simple d-polytope M has d+2 facets; 

(2) diam M = 2 ; 

(3) M . Tk0Td_k , кска . 

17. Every simple d-polytope of radius 2 is a wedge whose base 

is a (d-1)-polytope of radius 2 . 
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3 COMBINATORIAL PROPERTIES OF THE FACE COMPLEX 

OF A POLYTOPE 

§1 COMBINATORIAL TYPES OF POLYTOPES 

In addition to the analytical study of polytopes, in which 

they are defined by means of inequalities, there has also developed a 

topological interpretation of polytopes as complexes. The well developed 

apparatus of combinatorial topology enables us to solve certain classifi¬ 

cation problems of polytopes (Alexandroff 1956, Pontryagin 1976). The 

first section introduces the basic definitions and concepts. 

1.1 Combinatorial Equivalence 

Definition 1.1 A comptcx. is a finite set К of polytopes 

in E^ satisfying the conditions : 

1) If the polytope M is in H then any face of M is also in 

К . 

2) The intersection of any two polytopes in K. is a face of 

both of them. 

The maximal dimension of any polytope in К is called the 

dimcnpion o-jL the. comptex. , a k-dimensional complex is a к-comptex. If 

every element of K. is a simplex, then K. is а pimp lie. Lai comptex. 

Let M be a d-polytope in Ed and let к be an integer in 

the range Ckk^d . The set of all faces of M whose dimension does not 

exceed к is a complex. It is called the к -pketeton o£ the potytope M 

and is denoted by skel^ M . The (d-1)-skeleton of M is called the 

/Lace, comptex of M , denoted by F(M) . The 1-skeleton of M is, of 

course, its graph. 

Two complexes K. and К' are ipomon.ph.ic. сотрісксл if 

there is a bijective map ф between them such that 

F1 C F2 ** ф^1^ c * 
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Given a complex K- in E , we can ask if there exists a 
r n 

polytope M in En whose face-complex F(M) is isomorphic to K. ? If 

such a polytope exists, we say that the complex. И іл /ie.alize.cL Ну the 

polytop e M . 

The characterization of complexes which are realizable by 

2-polytopes is trivial. Clearly, such a complex must be 1-dimensional. A 

1-complex is realizable by a 2-polytope if and only if it consists of s 

distinct points v1.vs, s>3 , and s line segments [v^ hv1] isNs 
... Os 

with v =v 

There are not many results known concerning the realization 

problem. These are mainly necessary conditions which a complex must sat¬ 

isfy if it can be realized. 

Definition 1.2 Two polytopes M and M' are comHinatoei- 

ally equivalent (written M = M'), if their face complexes ^(M) and 

F(M') are isomorphic. 

Fig. 20. Fig. 21. 

In other words, two polytopes M and M' are combinatorially 

equivalent when there is a bijective map ф between their face complexes 

which preserves inclusions : F^C F^ ® ф(F-^) С • Thus (Fig.20) a 

triangular prism, a truncated triangular pyramid and a wedge are combina- 

torially equivalent. 

We also say that two combinatorially equivalent polytopes are 

polytopes of the same type. The most important problem in the combinator¬ 

ial theory of polytopes is the determination of all possible combinatorial 

types of d-polytopes with a given number of vertices or a given number of 

facets. The number of combinatorial types of polytopes was studied by 

Euler, Steiner (1882) and Cayley (1862). For d=2 the problem is trivial : 
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two polygons are combinatorially equivalent if and only if they have the 

same number of vertices. However, despite its great practical significan¬ 

ce in crystallography, the problem of enumerating all combinatorial types 

of 3-polytopes is still not fully solved. We will be returning to this 

enumeration problem throughout this chapter. 

The following facts about combinatorially equivalent polytopes 

are easily established. 

1. If M = M' then dim F = dim ф (F) and F = <t>(F) . 

2. If M = M' and {F^,...,F } is a set of faces of M , then 

n n 
♦( П F.) = П Ф(F.) . 

i=l 1 i=1 1 

3. Let a be а non-singular affine map of E^ into itself and 

let M be a polytope in , then M = ol(m) , that is, if two polytopes 

are affinely equivalent then they are combinatorially equivalent. 

4- If t is a non-singular projective map then M = t(M) . 

In particular, since all d-simplexes are affinely equivalent, 

they are all of the same combinatorial type. 

We will require later two elementary theorems about the 

realizability of sub-complexes of the face-complex of a polytope. First 

note an obvious fact. If M = M-^ , M* = and if M and are dual, 

then the polytopes and MJ are dual. Conversely, if the polytopes 

M-j^ and are both dual to a polytope M* , then • 

Let M be a polytope with face complex F(m) . Let F-^ and 

F£ e F(M) be such that F-^ C F2 • Then the sub-complex of F(m) 

consisting of all faces F of M such that F-^C FC F2 is denoted by 

F(M,F^,F2) • In our new terminology. Lemma 5-6 of Chapter 1 takes the 

form : 

Theorem 1.1 Ike лиісотр lex F(M,F-^,F2) 4^ Ltomonphic to the 

lace complex ol ike polytope M(F#^,F2) 0/ dimension dim F2~dim F^-l . 

Corollary 1.2 11 F-^ C F2 S F^ ал.е Іасел ol a polytope M , 

then the polytope M(F^,F2) 4-6 comlinatonially equivalent to лоте lace of. 

the polutope M(F-^,F^) • 

Let x be a vertex of a polytope M and let the hyperplane 

H strongly separate x from the set conv(vert M\x). 
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Definition 1.3 The polytope МПН is called a section ol 

M at the. v&ntex. x and is written M (see Fig.21 - the polytope M is 
X x 

hatched). 

The concepts of section and right cut at a vertex are widely 

used in proving many theorems about polytopes. 

Theorem 1.3 The section at x о/ a polyiope M U a polyt- 

ope which ІЛ comtinato nialty equivalent ot the. po lytope M(x,M). 

Р/іоо/ The hyperplane H required in definition 1.3 is constructed as 

follows. Let x' be the projection of the vertex x on the polytope 

conv(vert M\x) . Then H is a hyperplane with normal vector x-x ' which 

intersects the line segment [x,x!] at an interior point. H intersects 

the relative interior of every face containing x and for any pair of 

such faces c we have 0 0 F^fl H C П H . In this way we estab¬ 

lish a bijection between the faces of M containing x and the faces of 

the section at x . (Fig.21). // 

Corollary 1.4 The. section о/ a simple d-po tytope at any 

ѵепіек it a (d-1)-simplex.. 

Theorem 1.3 enables us to construct the polytope M(F^,F£) 

by taking successive cuts at vertices. In fact, if F^ is a j-face of M 

then, as in the proof of Theorem 2.12 of Chapter 1, we construct a sequence 

of 0-, 1-,..., (j-1)-faces F^,F^,...,F^ 1 of M such that F^ C F^" C ..c 

F^ ^ . Now, if Fg is a к-face containing F-^ , then for every i = 0,1, 

...,j the polytope M(F1,F2) is combinatorially equivalent to a section 

of M(F^ ^>F2) the vertex corresponding to F^ , with F ^ = 0 , 

F^ = Fj . In this way we inductively construct the polytope M(F-^,F2) • 

A polytope is completely defined by its vertices. Hence, in 

order to specify a complex К in , it suffices to exhibit the 

vertices of all of its polytopes and to indicate those vertex subsets 

whose convex hulls give the polytopes of К . In establishing an iso¬ 

morphism, the geometrical position of the vertices is of no importance. 

By neglecting the positions of the vertices of a complex, we arrive at the 

following definition. 

Definition 1.4 An аілі/iact complex. is a family *P of 
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subsets of a finite set V (also called ad-it/iact potytope.6) with the 

properties : 

1) all single element subsets of V lie in У and are called 

ve./iiic.e.<t> . 

2) if F and F' e У then F П F' z У . 

Clearly, every complex K. corresponds to a unique abstract 

complex У . Indeed, the face complex of a polytope M corresponds to 

the abstract complex У(М) for which V = vert M and the family У 

consists of all subsets vert F where F is any face of M . Clearly, 

two polytopes M and M’ are combinatorially equivalent if and only if 

their abstract complexes are isomorphic. 

An abstract complex У is realized by a d-polytope M if 

V = У(М) . The problem of identifying whether or not a given abstract 

complex is realizable by a polytope and the enumeration of all combinator¬ 

ial types of d-polytopes with a given number of vertices is algorithmically 

solvable (Griinbaum 1967) 

1.2 Pontryagin’s Theorem 

An abstract complex У is called an yblmpllclal 

compte.x if, given any abstract polytope in У (called an ai^t/iact 

дітріе.к) all of its subsets are also in У . 

If an abstract simplex У = {vn, v-, ,. . . , v } has s+1 verti- 

ces, then s is called its dLme.ns>lon , The largest dimension of all 

abstract simplexes contained in an abstract simplicial complex У is 

called the dimension of the. сотрів-х. У . 

The question of the realizability of abstract simplicial 

complexes is easily resolved. Let У be an abstract simplicial complex 

with.vertices vnfv,,...,v and let T be an n-simplex in E with 
0 1 n n ^ n 

vertices x^,x^.xn . With each abstract simplex У = {v. ,..,v. } 
s x0 xs 

i0 1s 
of У we associate the face Tg = conv(x ,...,x ) of T^ . It is 

clear that the collection K. of simplexes so obtained constitutes a 

complex, for faces of T^ satisfy condition 2) of definition 1.1 . The 

geometrical realization H so obtained for the abstract simplicial 

complex is called its naiu/iat KQ.allzation . 

The following theorem, due to Pontryagin (1976), shows that 

an abstract simplicial complex also admits other realizations, distinct 

from the natural one. 
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Theorem 1.5 Any аіліпасі літр tidal n-comp lex can le 

nealizecl a-6 a complex, in E2n + 1 ' ^oneoven, the venticet o£ the. complex 

can <Le chosen anlitnani lу in E2n + 1 , pnovided that they ane in general 

position. 

Pnool Let vo,v3_ * • • • *vr be the vertices of an abstract simplicial 

n-complex У . With each vertex we associate a point х1еЕ2п+^ such 

that the system x^x1.xr is in general position in -E2n + 1 . With 

each abstract simplex У = {v. ,v.,v. } in У we associate the 
s ln 1-, 1 

0 1 s 

in in i 
simplex Т(Уд) = conv(x ,x .x s) . We need to show that the set K. 

of simplexes in Е2п+1 so obtained is a simplicial complex, i.e. K. 

satisfies conditions l) and 2) of definition 1.1 . The fact that each 

element of К is a simplex is clear from the manner of construction. The 

condition 1) of definition 1.1 is satisfied because of the definition of 

an abstract simplicial complex. We show that condition 2) is also satis¬ 

fied . 

Let У and У be two abstract simplexes in У and let 
Г s ^ q 2_ 

Т(Уг) and Т(Уд) be their corresponding simplexes in K. . Let x ,x ,.. 

. , x'*' be the set of all vertices in ^2n + l which are vertices of the 

simplexes Т(У ) or Т(У ) . Since the dimension of У is equal to n , 
Г s Q t 

r<n and s^n so that t<2n+l . Thus the simplex T^ = conv(x ,...,x ) 

exists in ^2n + l ’ although, of course, it does not necessarily belong to 

the set K. . The simplexes Т(У ) and Т(Уд) are faces of the simplex 

T^ and so they satisfy condition 2) of definition 1.1 . Thus К is a 

complex which realizes the abstract complex У . // 

The following theorem shows that any n-complex, not just 

simplicial n-complexes, are realizable in E,-,n + ^ . 

Theorem 1.6 7o even у n-complex in E^ tkene connetpond* an 

ілотопркіе n-complex in E„ ,, . 
2n+l 

Note that the question of the realizability of a complex 

C E^ in a space of different dimension is not a trivial one. For 

example, the n-skeleton of the simplex ^2n + 2 as n°t realazable even in 

E2n • 

Pnoof. Assume that d > 2n+l , otherwise there is nothing to prove. For 
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апУ F.,F. е К. the affine set H„ = aff(F^UFj) has dimension not 

greater than 2n+l < d-1 . Hence the space E^ contains a one-dimension¬ 

al space L which is not contained in any of the and which is not 

parallel to any H.. . Let H be a subspace of dimension d-1 in E, 
i J d 

which does not contain L , and let т be the projective map' of onto 

H parallel to L . Then the complex {t(F) : FC/f} is isomorphic to K. 

and is contained in E 
d-1 

The proof is completed by induction. // 

1.3 Semi-Matroids 

The k-skeletons of d-polytopes when к is close to d are 

rather cumbersome objects to study. The 1-skeletons (polytope graphs) 

only take into account the incidence relations between vertices and edges 

and when d>3 this is insufficient for identifying the combinatorial type 

of a polytope. We examine a new method of studying polytopes by means of 

semi-matroids - a sort of net based on the incidence relations between 

vertices and facets of a polytope (Kovalev 1979. Kowaljow & Isatchenko 

1979). 

Definition 1.5 A ^e.ml-matn.0 id of rank d is a pair 

(F,V) , where T is a non-empty finite set whose elements are called 

{.ace.* and У is a family of nonempty subsets of T called 

ve.ntice.6 . Faces and vertices must satisfy the following axioms : 

1) every vertex v contains exactly d abstract faces 

{F-^.F^} . We say that the faces F^ , ieN^ » and the vertex v are 

incident to each other. 

2) .given any abstract face F , incident to a vertex v e V , 

there is a unique abstract face F' e T\v such that {v\(F})U{F'} is 

also a vertex. 

Property 2) in definition 1.5 can be replaced by the equiva¬ 

lent property : 2') given any subset of d-1 abstract faces, either 

there exist two vertices to which they are all incident or there exists no 

such vertex. 

We show the equivalence of axioms 2) and 2'). Suppose 2) 

holds. An arbitrary (d-l)-subset GCF cannot belong to a single vertex 

v , which in this case will be incident to the faces in G and to some 

other face F . Otherwise, for the face F £ v there would not exist a 

face F' such that (v\{F})U(F'} = G U(F') is a vertex. If G is con¬ 

tained in more than two vertices, say v^ = G U{F) , = G U(F'} , 

= G U{F"} , then this contradicts axiom 2) which guarantees the 
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uniqueness of the face F'. Hence, either G belongs to exactly two 

vertices or it does not belong to any. 

Conversely, let v be a vertex having properties l) and 2') 

and let F be an arbitrary face incident to v . Then, the (d-l)-subset 

G = v\{F} is, by property 2'), contained in v and in precisely one 

other vertex v^ . Thus the face F' = v^\G is the unique face associa¬ 

ted with F and v as in property 2). 

Two semi-matroids P = (T,V) and P' = (F',^') are called 

ілото/iphic if there is a bijection ф between T and T' , V and F ' 

preserving incidence. 

Let M be a simple d-polytope, i.e. all its vertices are 

incident to exactly d facets. The pair {T,V) , where T is the set of 

facets of M and У is the set of its vertices, is a semi-matroid. We 

call it the 4emi-mat/io id o-jL the potytope M and denote it by F(M). 

Theorem 1.7 The -bimpte potytopeл M and M' ane eomtina- 

to/iiatty equiuatent and only i./ theln 4em.l-m.at/io id-i P (M) and /5(M') 

a/ie ідото/iphic. 

We will give another formulation of Theorem 1.7 in more 

concrete terminology. 

Definition 1.6 We call a polytope M a та/iked potytope if 

each of its facets is given a mark, say, for example, the numbers 1,2,.., 

fd ^(М) . Two marked polytopes M and M' are eyuiuatent (written 

M ^ M') if there is an isomorphism of their face-complexes which preserves 

the marks on their facets. 

Theorem 1.7 implies that two simple polytopes are equivalent 

if and only if there is an isomorphism of their semi-matroids preserving 

marks. Hence the equivalence of two simple polytopes implies their 

combinatorial equivalence. Usually the concept of equivalence of polyto¬ 

pes is used in situations in which the polytope is given in canonical form. 

In this case the facets of the polytope M(A,b) are non-empty sets 

F. = (xeM(A,b) : x.=0}, jeN . We mark each of them with the number j . 
J J ^ 

Thus, combinatorial equivalence of polytopes M(A,b) is invariant with 

respect to non-singular affine maps of the space En , but equivalence is 

not invariant with respect to such maps. 

We will establish an equivalence criterion for polytopes in 

the class /7(A) of non-singular polytopes M(A,b) in En with a fixed 
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matrix A (we denote such polytopes by M(b)). Let the rank of the 

(mxn)-matrix A be m and let the constraints x>0 be non-rigid. 

Consequently, dim M(b) = d = n-m . We assume, without loss 

of generality, that F.00 , jeNn . Let JH be a d-subset of Nn and let 

Jg = Nn\Jg • Let В be the submatrix consisting of the columns of the 

natrix A with indices in JD and let H denote the remaining columns 

of A . The set defines a vertex (xg.x^) = (B b,0) of the poly¬ 

tope M(b) if and only if det В 0 0 and the vector b belongs to the 

cone con В , generated by the columns of В , that is, when В is a 

feasible basis of M(b) . Hence, using Theorem 1.7 , we have Droved the 

Lemma : 

Lemma 1. 8 Ike роіуіорел M(b),M(b') in the сіалл /7(A) a/ie 

equivalent if and. only if а fea^ille Іаліл of one polytope іл аіло a 

feasible Іалі-і of the otken. 

P/ioof of. Ikeonem 1.7 . We will prove sufficiency only, that is, we will 

show that the face complexes F(M) and F(M') are isomorphic. Let ф 

be an isomorphism of the semi-matroids Р(М) and P(M') , that is, a 

bijection between T and T1 , I/ and V' such that for every vertex 

v = {F. ,...,F. } e V we have ф(ѵ) = (ф(Р. ),...,ф(Р. )) e I/’ . Every 
11 1d X1 1d 

proper face F of M can be represented either as an intersection of a 

certain set ш of facets (Corollary 2.13» Ch.l) : F = f)F- » or as the 
іеш 

convex hull of its vertices vert F (Corollary 2.4» Ch.l) : F = 

conv vert F . We define a map ф of the face complex F(M) such that 

for any proper face F e F(m) 

Ф(F) = fU(F±) . (Ф(0) = 0 , Ф(M) = M') . 
іеш 

Since ф is an isomorphism of the semi-matroids P(m) and P(M') , we 

have 

ф (vert П F.) vert П Ф(Р.) ш С 7 , 
іеш іеш 

Ф (vert f| F. ) = vert П Ф'1^. ) ш С Т'. 
іеш 1 іеш 

These equalities imply that Ф is i а bijection between the face compL 

F(M) and F(M') which preserves inclusion relations. Thus M and 

are combinatorially equivalent polytopes. Ц 
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Definition 1.7 The Apect/ium S(b^,b2) о/ the роіуіорел 

M(b1) , M(b2) e /7(A) is the set of all numbers A e (0,1) such that the 

polytope M(b^) is degenerate. Here b^ = Ab-^ + (1-A)b2 • 

The polvtope M(b,) is degenerate when the vector b 

belongs to a cone generated by less than m column vectors of the matrix 

A . 

Theorem 1.9 Two polytopez in the. сіалл /7(A) a/ie equivalent 

i£ and only ifi thein. Apectnum i <h empty. 

P/ioo£ l) Sufficiency. Let the spectrum S(b^,b2) of M(b^) and 

M(b2) e /7(A) be empty. Suppose, for contradiction, that the marked 

polytopes M(b1),M(b2) are not equivalent. Then Lemma 1.8 implies the 

existence of a basis В of the matrix A which is feasible for M(b-^) 

and infeasible for M(bp) . We show that the segment Ab-^ + (1-X)b2 , 

CKA^l , has a point of intersection b^ with a face of the cone con В . 

Let (8|,...,8^) , (3^,...,8^) be the components of the 

vectors B’^b-^ and B^bp respectively. By assumption all 8^>0 while 

among the 8" there are negative numbers. Let J = (i : 0V<0} and 

J+ = {i : 8V>0) . Since M(bp) is non-singular, none of the 8V are 

equal to zero. Clearly we have for all A>0 , that A0! + (1-A)8'.' > 0 , 

• t+ 11 ieJ 

Let Xq = min{-0H/(8^-8У) : ieJ ) and let the minimum be 

attained at i=s . It is easily seen that 0<Aq<1 . From the way in which 

Xq was chosen and from the non-singularity of M(b^),M(b2) it follows 

that I> 0 i e J+ 

= 0 i = s (1.1) 

> 0 i e J \s . 

The inequalities (1.1) show that В is a feasible basis for the polytope 

M(b, ) , and that for the vertex determined by the basis В , the s-th 
о 

coordinate, at least, is equal to zero. Thus M(b, ) is a degenerate 
о 

polytope. This contradiction establishes the sufficiency of the conditions 

in the theorem. 

2) Necessity. Let M(b^) a. M(b?) . By Lemma 1.8 , every 

feasible basis В of M(b-^) is feasible for M(bp) and conversely. 

This means that the vectors b-^ and bp belong to precisely the same 

102 



cones con В which are generated by the matrices В consisting of m 

columns of the matrix A . Thus, the vector b^ lies within these cones 

and does not belong to any other cone. // 

§2 GALE DIAGRAMS 

The method of Gale diagrams is one of the few general methods 

for studying the combinatorial structure of polytopes (Gale 1964). In 

this section we present the basis of the method and we illustrate how it 

enables us to enumerate the combinatorial types of polytopes. In particu¬ 

lar we obtain enumeration results for d-polytopes with d+2 and d+3 

vertices. 

2.1 Gale Sets 

Let M be a d-polytope in and let V = vert M = 

{v^,...vn} . We examine the space L(V) of all solutions (A^.An) 

of the following system of linear homogeneous equations : 

Z V1 = 0 ’ Z = 0 . (2.1) 
i=l 1 i=l 1 

Let a^,...,an d-"*- be a basis of L(V) . Here a^ = (а^д,. . ., ou n) * 

ieNn д 2 * Let A(V) be а ((n-d-1)xn)-matrix whose rows are the vectors 

a\...,an_c^ ^ . For each jeNn , denote the jth-column of the matrix 

A(V) by vJ and let it have components (a^.,...,an ^ p j) • For every 

subset ZCV we denote by T(Z) the set {v^ : v^ eZ} . 

Definition 2.1 The set Г (V) is called the Gale, />et of the 

polytope M . Different vertices of M may correspond to the same point 

in the Gale set. Thus, with each point v^ t Г(Ѵ) we associate the multi¬ 

plicity m. = |r-1(vJ')| . 

Clearly, the Gale set is not uniquely defined. If we choose 

different bases of the space I*(V) , we will obtain different Gale sets 

(related by a linear map). 

Definition 2.2 The set ZCV is a eo-laee of the polytope 

M , if F = conv(V\Z) is a face of M . 

Theorem 2.1 7 he леі ZCV Ls> a co-^lace o£ the po lytope M 

if. and only L£ 0 e rel int conv f(Z) . 
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Ряооі By Proposition 2.15 ,Ch.l , Z is a co-face of M if and only if 

aff(V\Z) П conv Z = 0 (2.2) 

1 s 
Suppose that Z = {v ,...,v } is not a co-face of M , that is 

convfv1,...,VS) n aff(vS+1.vn) 0 0 . Then, there is a point x 

such that 

and 

x = 
i=l 

X. v 
l 

s 
I X. 

i=l 1 
1 X. > 0 VieN . 

1 = s 
(2.3) 

l (-X- )' I (-X.) 
i^s+l ± i=s+l 

From (2.3) and (2.4) we obtain 

(2.4) 

J] X.v^ = 0 , l X. = 0 . (2.5) 
i=l 1 i=l 1 

But (2.5) implies that the vector X = (X^,...,X ) e L(V) . Hence 

n-d-1 
X = I • Let у = (y-^» • . •»Yn d p) • Then, by definition 2.1, 

X^ = уГ(ѵ^) , ieNn , so that, by (2.3), Yl’(vi) > 0 , ie:Ns . Since at 

least one of the X. , ieN , is strictly positive, it follows that at 
1 ^ i 

least one of the points Г(ѵ ) lies in the open half-space yx>0 , while 

the others lie in the closed half-space yx>0 . Thus 

0 i rel int conv(Г(v1),...,Г(vS) ) . 

Sufficiency is proved by reversing the argument. // 

only Lt /on 

Corollary 2.2 The d-po tyto p e M C La ALmplLcLat L-l and 

each hypenptane H C E^ ^ contaLnLng the o/iLgLn, we have 

0 i rel int сопѵ(НПГ(Ѵ)) 

о/i eguLualently 

dim conv T(Z) = dim conv Г(Ѵ) 

/on eueny non-empty co-/ace Z . 
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The following theorem characterizes certain point sets in 

^n-d-1 which are Gale sets of some polytope. 

Theorem 2.3 Let V = {v^, . . . ,vn} te a Aet of points in E 
s 

uiith the pnopentieA : 

1) 1^ = 0; 
i=l 

2) Any open ha tf--брасе. H* , genenated <Ly a hy penp tane H 

containing 0 , containл at tea/>t tuio points of. V . 

Then V ы a Gate, -bet of лоте (n-s-1) -po tytope. 

Pnoof Let A = (v^,...,vn) be the (sxn)-matrix whose columns are the 

vectors v^,...,vn . The system of equations Ay = 0 has n-s-1 

affinely independent solutions, say y1,...,yn-s. By condition l) the 

system certainly has the solution e = (l,...,l) . Let A be the 

n x (n-s-l) matrix whose columns are the vectors y1 , and let 

V = {v^,...,vn} be the rows of A . By condition 2) and Theorem 2.1 we 

see that every point in V is a vertex of the polytope conv V . Thus 

V is a Gale set for conv V . Ц 

Theorem 2.4 7he po lyto ре M іл a py/iamicL with apex, v if 

and onty if Г(ѵ) = 0 . Tunthen, if M ІЛ a py/iamid with Нале Q , then 

Г(Q) = Г(V) \ Г(v) 

Pnoof Let M be a pyramid with base Q and apex v . Then v i aff Q , 

that is, the coefficient of v in (2.1) is always zero. Thus, the matrix 

A(vert M) is obtained from the matrix A(vert Q) by the addition of a 

zero column corresponding to the point v . Sufficiency is shown similar¬ 

ly by reversing the argument. // 

Definition 2.3 An v-fotd d-pynamid is a pyramid M whose 

base Q is an (r-l)-fold (d-l)-pyramid ; a 1-fold d-pyramid is a 

d-pyramid. 

Theorem 2.4 generalizes in an obvious manner to the case of 

an r-fold pyramid : a polytope M is an r-fold pyramid when the multi¬ 

plicity of 0 in the Gale diagram Г(M) is equal to r . 

We give one of the possible geometric interpretations of Gale 

sets. Let E, and E , be orthogonal subspaces of E and let 
d n-d-1 6 ^ n-1 
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Tn be an (n-1)-simplex centred at the origin. If V is the orthogonal 

projection of the set vert Tn_1 on Ed and V is the orthogonal pro¬ 

jection of vert Tn_1 on En_d_1 , then V = Г(V) and conversely 

V = Г(Ѵ) . 

2.2 Gale Diagrams 

Among the various Gale sets of a polytope it is convenient to 

select one. 

Definition 2.4 Two point sets V = {v^,...,vn} and 

U = {u1,. . . .u11} in En d ^ , such that 0 e int conv V , 0 e int conv U , 

are called iAomosiphic if the correspondence ф : vx -*■ ux has the 

property that for any pair of subsets Z С V , b(Z) C U either 

0 e rel int conv Z and 0 e rel int conv ф(Z) , or 0 i rel int conv Z 

and 0 i rel int conv b(Z) . 

For example, all the Gale sets of a polytope generated by 

different bases of the space L(V) are isomorphic. In particular, if 

у > 0 , then the set U = {y^v^,...,unvn} is isomorphic to the set V . 

Definition 2.5 A Qate. diagram. D(M) of a d-polytope 

M C Ed with n vertices v^.vn is a set of points v^,...,vn e 

En_d d defined by the rule : if Г(ѵ^) = 0 ; v ^ = Г (v^)/|| Г (v^ )|| 

if Г(ѵ^) f 0 . Each point v^ e D(M) is given the mark пь = |Г ^(v^)|. 

Thus, a Gale diagram consists of a subset of points in the 

set Sn ^ ^ U {0} , where gn-d-2 ds unj^ Sphere in E , with 
n-d-1 

centre at the origin. 

The following important result follows from Theorem 2.1 and 

Definitions 2.4 and 2.5 . 

Theorem 2.5 Two poiytope.4 M and M1 a/ie. comiinaio/ііаііу 

e.quivaie.nt iff and onLg iji th.e.in Qate. diagnam4 aw. i^omonp/iic. 

The concepts of isomorphism of Gale sets and of Gale diagrams 

of a given polytope enable us to reformulate all the results on Gale sets 

in terms of Gale diagrams. We will combine these results in one theorem. 

Let Z C vert M , then the set of points in the Gale diagrams 

D(M) which correspond to points in Z will be denoted by Z . 
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Theorem 2.6 

1) 7 he Pet Z C vert M ІР a co-tace о/ the po lytope M it and. 
A 

only it 0 e rel int conv Z ; 
A 

2) 1 he Pet V C En ^ ^ > conpipting ot n pointp, ІР a Qale 

diag/iam ot Pome d-polytope M with n uenticeP it and only it eveny 

open halt-Ppaee, gene/iated &y a hype/iplane which containP the onigin, 
A 

contain p at leapt two pointp о-t V ; 

3) Let F le a tacet ot the po lytope M and let Z (Le itp 
A 

connePponding co~ta.ce, then Z ІР the uentex. Pet ot а рітріек which 

containp the onigin in Up nelative intenion. 

4) 7he polytope M ІР Pimplicial it and only it ton eueny 

A 

hypenplane H containing 0 , 0 t rel int conv(VDH) ; 

5) 7he polytope M ІР an v~t°Ldpynamidil and only it the 

onigin hap multiplicity r in itp Qale diagnam. 

2.3 Polytopes with d+2 vertices 

The Gale diagram of a d-polytope with d+2 vertices in 

(n-d-1 = l) lies in the set {-1,0,1} . Let the points -1,0,1 have 

multiplicities m ,respectively (Fig.22). By Theorem 2.6 

гсіф>0 , m^>2 , m -^>2 , mg+m^+m ^ = d + 2 . (2.6) 

Conversely, any triple {m -^.т^.т^} satisfying the conditions 

of (2.6) is obtained, by the second part of Theorem 2.6 , from some 

d-polytope with d+2 vertices. According to Theorem 2.5 , two d-poly- 

topes M and M' with d+2 vertices are combinatorially equivalent if 

and only if (т_^,m^,) = (m^,m^,m|) or (m^,mg,m_^) = (m^, m^,m|) , 

where (m ^,mg,m^) and (m ' ^,mm|) are the multiplicities of the points 

(-1,0,1) in the Gale diagrams of M and M' respectively. 

m 

0 
♦ 

+ 1 
—• 
m ]_ = 2 

Fig. 22. 
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By part 4 of Theorem 2.6 , M is a simplicial polytope if and 

only if mQ = 0 . Thus, the number of partitions of d into two 

positive integral parts gives the number of combinatorial types of 

simplicial polytopes. Hence there are [d/2] types of simplicial d-poly- 

topes with d+2 vertices. The simplicial d-polytope whose Gale diagram 

has multiplicities r + 1,0 and d-r + 1 , rsNr^^j ’ denoted by T^ . 

If m0>0 > the polytope M is an mQ-fold pyramid whose base 

is the (d-mg)-polytope Td_m 

above we have : 

where e N 
[(d-mQ)/2] 

Summarizing the 

Theorem 2.7 7he/ie ane 

ol &-polyto ред with. d + 2 ѵепііеед. 

роіуіоред T^ , г e N dy0 , and the. 

"t X* 
T,’ whoAe Надел ane the літріісіаі 

d 

[d2/4] dlJLJLenent 

01 thePe, [d/2] 

/lemalnden ane the 

potytopeл Tj_r * 

comHinato/iiat typep 

a/ie the дітрНісіаі 

t-£otd pynamldp 

r E N[(d-t)/2] ' 

We remark that the number of simplicial d-polytopes \Jith d+2 

vertices was established by Schlegel (1891). 

Let us calculate the number of к-faces of the simplicial 

d-polytope T^ . A к-face of T^ is a к-simplex and its coface has d-k+1 

vertices of which at least one corresponds to -1 and one corresponds to +1 

in the Gale diagram , (statement 3 in Th. 2.6). Thus for each к e Nd_^ 

we have 

fk(Td> ■ l 
u+v=d-k+l 

u,v>l 

) П / d+2 W r+1 \ /d-r+l\ 
\d-k+l/\d-k+l/~\d-k+1/ 

"Ь 2? 
From this we find that the number of к-faces of the t-fold pyramid T .' 

Г ^ 
with base T^ is given by the formula 

i 

/d+2 \ /r +t+1\ /d-г+1\ , / t+1 \ 
ld-k+li " \d-k+l/ " \d-k+l/ + \d-k+l/ 

For any d-polytope M with d+2 vertices, it is easy to 

establish the following inequalities 

fk(Td"2,1) = fk(M) ^ fv(T,°'Cd/2]) = fv(Tjd/2]) , к e Nd_ = •Lkw,/ = АкѵМ d-1 * 
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is combina- We will see later (§3) that the polytope 

torially equivalent to the cyclic polytope C(d,d+2) . 

2.4 Polytopes with d + 3 vertices 

The Gale diagram of a i-polytope with d+3 vertices consists 

of points located on the unit circle in and at its centre. Draw the 

diameters through every point in a Gale diagram. There are a number of 

operations which may be carried out on a Gale diagram without changing the 

isomorphism class of the diagram. Firstly, we can alter the angles 

between the diameters provided we do not alter their relative ordering. 
A 

Secondly, if two neighbouring diameters have points of V at only one end 

of the diameter, then these diameters can be coalesced, provided we 

increase the resultant multiplicity correspondingly (Fig. 23). 

Fig. 23. 

Definition 2.6 A Atanda/id Qate. diagnam of a d-polytope 

with d+3 vertices is a diagram consisting of the vertices of a regular 

polygon inscribed in a unit circle and labelled according to the following 

rules : 

1) every label is a non-negative number and the sum of the 

labels is d+3-t , where t is the label of the centre of the circle; 

2) no two diametrically opposite vertices of the polygon are 

both labelled zero; 

3) no two neighbouring vertices are both labelled zero; 

4) the sum of the labels of the vertices lying in any open half¬ 

space, whose boundary passes through the origin, is not less than two. 
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Fig. 24. 

Note that rule 4) is automatically satisfied when n>5 . 

Figure 24 shows all possible Gale diagrams for simplicial 4-polytopes 

with 7 vertices. 

Two d-polytopes with d+3 vertices are combinatorially equi¬ 

valent if and only if their standard Gale diagrams are isomorphic (that is, 

they coincide after a suitable rotation or reflection). Thus the problem 

of enumerating the number of combinatorial types of such polytopes reduces 

to the problem of enumerating all standard Gale diagrams. 

In the standard Gale diagram of a simplicial d-polytope with 

d+3 vertices, the centre of the circle has label zero and on each diame¬ 

ter only one end-point has a non-zero label. This somewhat simplifies the 

problem of counting Gale diagrams of simplicial d-polytopes. The methods 

of enumerating non-isomorphic standard Gale diagrams in the plane are the 

same as those used in the problem of counting graphs. The group of permu¬ 

tations acting on the vertices of a Gale diagram is introduced and then, 

using Polya-Burnside enumeration theory, the number of permutations 

invariant under every possible symmetry (reflections and rotations) is 

counted. 

Using such techniques it has been found (Griinbaum 1967) that 

the number of combinatorial types of simplicial d-polytopes with d+3 

vertices is given by the number 

2[d/2'l d + 4 
2 4 (d + 3) 

I 4>(h)2(d + 3)/h 
h 

where the summation is carried out over all odd divisors of d+3 , and 
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Ф(h) = h П (1 -7O is Euler's ѣоѣіепѣ fuction. 
P I h p 

In 1970 Lloyd (1970) calculated the number of all combinator¬ 

ial types of d-polytopes with d+3 vertices. 

§3 MAXIMUM NUMBER OF FACES 

The problem of describing the range of values of the f-vectors 

of polytopes in the general case is unsolved. Attempts have been made to 

find upper and lower bounds on particular components of the f-vector when 

the values of the other components are fixed. An abundant literature has 

been devoted to the problem of finding the exact upper bound $^(d,n) for 

the number of к-faces of a d-polytope M when the number of vertices is 

equal to n : 

b^(d,n) = max|f^(M) : dim M = d , fg(M) = nj , f<k<d<n 

In 1957, Motzkin (1957) conjectured that (^(d.n) = f^(C(d,n)) , keN^ ^ . 

In other words, among all d-polytopes with a fixed number of vertices, the 

corresponding cyclic polytope has the largest number of faces of all 

dimensions. The conjecture was proved to be true by McMullen (1970). The 

conjecture had been proved for special choices of the parameters d and 

n in many previous works (they are listed in Grunbaum (1967) and in 

McMullen & Shephard (1971)). 

It suffices to prove the conjecture for simplicial polytopes. 

Theorem 3-1 Let the poZytope M° Z.e oZ.taiae.dL JL/iom the 

d-poZytope M Zy a eight di-ьрZacemeat oZ each of. it-i veetice-i. 1 hen 

M° i-i a -bimpZiciaZ po Zytope with the p/iopeetie-i 

f0(M°) = f0(M) , f^M0) > f±(M) i e Nd-1 . 

The proof follows directly from the definitions and propert¬ 

ies of a pyramid and Lemma 2.1, Ch.2 . 

3.1 Transformation of the Dehn-Sommerville Equations. 

Let M be a simplicial d-polytope. Consider the polynomial 

f(M,t) = I (-l)j+1f. (M)tJ’+1 . 

j=-l J 
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It is clear that the Dehn-Sommerville equations are equivalent to the 

identity 

f(M,i-t) = (-i)df(M,t) . (3.1) 

In addition to the polynomial f(M,t) we introduce another polynomial in 

t of degree d 

g(M,t) = (l-t)df(M,t/(t-l)) . (3.2) 

The coefficients of this polynomial are denoted by g^(M) ; 

g(M,t) = I g, (M)tk+1 . (3.3) 
k = -l K 

Lemma 3.2 7o pnove the. uppen Hound conjectune it ли££ісе.л to 

pnove the. inequalities 

6k(M> S ТТГ k * "d-1 <3-4) 

ton eveny simplicial d-polytope Loith. n ve.ntice.yb. 

?noo{. We establish some relations between the coefficients of the poly¬ 

nomials f(M,t) and g(M,t) . Equating coefficients of equal powers of 

t in (3.2) and (3.3) we find that 

6k(M) - .) <-1>к-3 (tin) fj<M> • (3-5> 
J 

On the other hand, from (3.1) and (3.2) we have 

tdg(M,t_1) = td(l-t_1)df(M,t“1/(t"1-l)) 

= (t-l)df(M,l-t/(t-l)) = (l-t)df(M,t/(t-l)) = g(M,t) . 

Hence 

tdg(M,t_1) = g(M,t) . (3.6) 

From (3.3) and (3.6) we conclude that 
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k=-l,0,1,.... [d/2]-1 . (3.7) gk(M) °d-k-2 (M) 

It is easy to verify that f(M,t) = (1-t )g(M,t/(t-l)) so that 

f • (M) І /d-k-1 

ki-1 W-J-1 
gk(M) (3.8) 

We have established a correspondence between the numbers 

fj(M) and gk(M) and obtained a system of equations (3.7) which are 

equivalent to the Dehn-Sommerville equations. The equations (3.7) are 

independent for odd d ; when d=2m is even, the (m-l)-st equation is 

clearly redundant. Using (3.7), equations (3.8) can be written in the 

form 

f .(M) 

m -1 

l 
k = -l 

g k (M) (3.9) 

[d/2] . The coefficients of where 6. . is the Kroneclcer delta and m 
ij 

gk(M) in (3.9) are non-negative for all j and for j^m-1 are positive 

for each к . 

For cyclic polytopes we have (Corollary 2.19, Ch.l) that 

fj(C(d,n)) = (j+p) » j=-l,0,1,...,m-l, so that 

gk(C(d,n)) = j(d-k-i) (j+l) = ( k+lk) * (З.Ю) 

Equation (3-10) is most simply proved by noticing that 

f(M,t) and (l-t)n are polynomials which only differ in terms of degree 

higher than m . The same is true for the polynomials g(M,t) and 

(1-t )^ (І-t/(t-1) )n = (1-t) , and the coefficient of t^+^" in the 

latter expression equals (Пк+р^ ) • 

Equations (3.9) and (3.10) imply that the inequalities 

f.(M) < f.(C(n,d)) , jeNd ^ , are a consequence of the inequalities 
J J 

/w\ . n-d+k 
§k(M) = k+i 

к e N 
d-1 ' 

(3.11) 

In addition, gg(M) = n-d . Hence (3.11) is true if the 

inequalities (3.4) are true. // 
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3.2 Shelling the Boundary Complex 

A shelling of the. LoundLa/iy complex T (M) of a polytope M 

is a listing of its facets, say F1»...,Fu (u=fd_1(M)) with the following 

property : for s=2,...,u-l , the set 

is homeomorphic to a (d-2)-ball. 

It follows from this definition that for seN , , U F, is 
U -X ^ t. 

homeomorphic to a (d-l)-ball. 

Bruggesser & Mani (1971) showed that the boundary complex of 

any polytope can be shelled. An outline of their method can be described 

as follows. Take a curve L which intersects in distinct points all the 

supporting hyperplanes which generate the facets of the polytope M and 

which also intersects the interior of M , Let a point z move along the 

curve L , beginning from a point in L Пint M and successively intersec¬ 

ting the supporting hyperplanes H^,...,Hu generating the faces F-^, . . . , 

Fu . It may then be shown that F,,...,F is a shelling of M (Fig.25). 

Fig. 25, 
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Let M 

Let 

= U Ft 
t=l г 

F-,.F 1 u be a shelling of the simplicial d-polytope 

belon^imr to M 

and let f.(M ) be the number of i-faces of 
j s . J 

Further, let 

M 

gk(Ms} 1(-i)k_J(d-ili)£‘j (ms) * k=-1'°«1.d~1 

We calculate the quantity gk(Mg) - gk(Ms_]_) > putting g^(Mg) = 0 . The 

set F DM , is topologically a (d-2)-ball in the boundary of the 

(d-1)-simplex F , and so F П M , is the union of some (d-2)-faces of 

F . Let the intersection of these faces be a (d-r-2)-face F' 
s 

Proposition 2.14, Ch.l , the polytope Fg has an r-face 

FPIF1 = 0 . When we add the face to the shelling M 

By 

such that 

we are 
s '' 0 ‘ s-1 

adding faces which contain the r-face F . The number of such j-faces is 

equal to f. r ^(M(F,Fg)) = (rj~j~q) » since M(F,Fg) is a (d-r-2)-simplex 

(Corollary 1.2). Hence 

gk^Ms^ “ gk^Ms-l^ = ^(d-k-l j=_l \ 
f.(M )-f.(M , ) 
. J s j 4 s-1y 

(3.12) 

6kr 

where 
kr 

j=-i J j=-i J 

is the Kronecker delta. Equation (3.12) is also satisfied in 

M the extreme cases s=l,r = -l and s=u,r=d-l. Thus in passing from и , 

to M the coefficient g increases by unity, whereas the remaining g, , 
SI* J£ 

k^r , remain unchanged. From (3.12) we find that g, (М) = ) > 0 . 

Lemma 3.3 Let M be а літрtl-fiobytope. Then 

gk(M) < gk-i(M) k = -1'0»1.d’1 

P/ioo£ Let x be a vertex of M and let Mx be a section of M at the 

vertex x . We prove the Lemma by evaluating the sum I g. (M ) in 
xevertM x 

two ways. First, using the relation 

I fi-l(Mx) 
xevertM ^ 

(j+1) f . (M) , 
J 

and calculating the value of g^-^M ) by (3.5) we obtain 
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(3.13) 
z +/к-1(Мх) 

xevertM 
(k+l) gk(M) + (d-k) gk_x(M) . 

The truth of (3.13) may also be seen from geometrical considerations. A 

shelling of the complex 7"(M) will induce a shelling of each of the 

complexes F(M ) • Let F1>...,Fu be a shelling of F(M) and, by adding 

F to И i to obtain M , let us increase g (M) by unity, leaving 
s s-1 s r 

all the other g^(M) unchanged. By examining the polytopes , let us 

see what happens in this process to the quantities Sk(M ) • For r+1 of 

them we clearly add a unit to g^ ^(M ), thanks to the (r-l)-face of the 

r-face which does not contain x , the point at which the cut was taken : 

for the remaining d-r-1 of them we add a unit to g^CM^) . Summing over 

all x e vert M we arrive at (3-13)• 

Next, we establish the inequality 

xevertM 
gk-l(Mx} = ngk-l^ (3.14) 

To do this we consider a shelling of M in which for some s , M con- 

sists of all the faces containing the vertex x and only then are the 

remaining faces added. We see easily that in the induced shelling of 

F(Mx) the addition of unity to gk_^(M ) gives rise also to the addition 

of unity to g^. 1(M) for F(M). Thus ^(Mx) i §k ^(М) , and summing 

over all vertices of M we obtain the inequality (3-14). Comparing 

(3.13) and (3.14) we obtain the inequality of the lemma. // 

Theorem 3.1 and Lemmas 3-2 and 3.3 yield the solution of 

the Upper Bound Conjecture. 

Theorem 3.4 7 he cyclic po lyto рел have 

/Lace* о/ all dimension л in the сіалл о/ й-ро lytope-i 

ol ventice-i. 

the maximum numle/i о£ 

Loith a £ixed numlen 

C(d.n) 

3.3 The f-vector of a Cyclic Polytope 

Some of the components of the f-vector of a cyclic polytope 

were found in §2, Ch.l . 

fk(c(d,„>) . (k;2) к e N 
[d/2] • 

The 

the 

remaining components can be found by 

Dehn-Sommerville equations (Theorem 

substituting f^. , keN ^/2] 

5.8, Ch.l). However, it turns out 
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that it is very tedious to simplify the expressions obtained. Below we 

give a method for calculating the number of к-faces of a cyclic polytope 

C(d,n) for all к , based on a set of necessary and sufficient conditions 

satisfied by subsets of vertices which generate faces. The method was 

proposed by McMullen & Shephard (1971). 

Theorem 3. 5 Ike numben o£ k-^ace-4 (l^k^d-l) о/ a cyclic 

d-polytope C(d ,n) ІЛ given by the екрпелліопл 

fk(C(d,n)) 
к+І-j ) * 

j+1 ) 
k+l-j / ' 

if d=2m 

if d=2m+l 

(3.15) 

The proof consists of two parts. In the first part we estab¬ 

lish properties of subsets of vertices which generate к-faces and in the 

second part we enumerate such subsets. 

Let the vertices x1=x(t^) , ieNn * have the same ordering as 

the parameter values T. . Let W C vert C(d,n) . The subset V C W is 

called connected if 3 i,jeN , i<j , such that V={x1,x1+ ,...,x^} , 

x1 , x^+^W . 

Subsets Y^.Yg Q W of the form 

Y^ = {x^,...,x^} , xi + 1 i W 

Y2 = {x^,...,xn} , X-5-1 i W 

are called terminal . Clearly, every proper subset ¥ C vert C(d,n) may 

be represented uniquely in the form W = Y-^UV^U... UV^UY^ • where 

0<Л< [(n-1 )/2j , the are connected sets and Y-^,Yp are terminal sets. 

The set ¥ is called an (r,s )-леі if |w|=r and exactly s of its 

connected subsets contain an odd number of elements. 

Lemma 3.6 Let W C vert C(d,n) , n^d + 1 . 7ken conv W іл a 

Ѵ.-£асе о/ the cyclic polytope il and only І/. W u a (k+1, s)-леі {.on. лоте 

s , O^s^d-k-1 . 

?noo£ By Proposition 2.17, Ch.l , C(d,n) is a simplicial polytope. Thus 

if conv W is a к-face of the polytope C(d,n) then |w| = k+1 . 
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Then the Consider first the case k=d-l . Let |W| - d . 

points of W are affinely independent. So H = aff W is a hyperplane in 

E, . Since the curve х(т) C 5, , the points of W divide it into d+1 
d a 

arcs which lie successively on opposite sides of H . Further, conv W is 

a face of C(d,n) if and only if the hyperplane H is supporting to 

C(d,n) ; that is, when the points vert C(d,n)\W all lie in one of the 

half-spaces generated by H (Proposition 2.15, Ch.l). Clearly this is 

the case if and only if there are an even number of points of W between 

every pair of points of vert C(d,n)\w . In turn, this is equivalent to 

the statement that W is a (d,0)-set, that is, it does not contain any 

connected subsets with an odd number of elements. 

Now consider the general case. Let W Cvert C(d,n) and let 

IWI = k+1 . If ¥ has no more than d-k-1 connected subsets with an odd 

number of elements, then it is possible to find a subset T of points on 

the curve x(x) such that TDC(d,n) = 0 , |Т| = d-k-1 and TUW as a 

subset of the (n+d-k-1,0)-set T Uvert C(d,n) has only connected subsets 

with an even number of elements. Then the hyperplane H = aff (T UW) is 

is supporting to the cyclic polytope C(d,n+d-k-1) = conv (T Uvert C(d,n)) 

Consequently Hflvert C(d,n) = VI and C(d,n) С C (d,n+d-k-1) . By 

Theorem 2.2, Ch.l , the hyperplane H generates a face of C(d,n) . 

The conditions are also necessary, for by Theorem 2.12, Ch.l 

if conv W is a face of C(d,n) , then it is also a face of some facet 

conv W' , where M CW1 Cvert C(d,n) . Since W has no connected subsets 

with an odd number of elements, it is clear that ¥ cannot have more than 

d-k-1 connected subsets with an odd number of elements. // 

We now try to count the number of different (k+l,s)-sets 

W Cvert C(d,n) where s < d-k-1 . 

We introduce an auxiliary concept. An n-cycle. is a set of 

n distinct points taken on a closed oriented curve. Every point in an 

n-cycle has a unique successor and a unique predecessor. The n^-success- 

or of each point is itself. Connected subsets of an n-cycle are defined 

in the same way as connected subsets of the vertices of a cyclic polytope. 

We say that W is an (r,s)-set of an n-cycle V , if WCV , |w| = r 

and W contains exactly s connected subsets with an odd number of 

elements. 

Let d=2m , V = vert C(d,n) and let W be a (k+1,s-1)-set 

or a (k+1,s)-set where s = k+1 (mod 2). We convert the set V into an 

n-cycle by identifying the points x(t-^-e) and х(тп+е) , £>0 , of 
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the curve х(т) . In other words, we consider x-^ to be the successor of 

xn in . Then ¥ becomes a (k+l,s)-set ¥^ of the n-cycle V1 (if 

W is a (k+1,s-l)-set of V , then, the condition s = k+1 (mod 2) means 

that the union of the two terminal subsets yields a connected subset with 

an odd number of elements). Let z(n,k+l,s) be the number of distinct 

(k+l,s)-sets W-^ of an n-cycle . If to each of the s connected 

sets with an odd parity we add its first successor, then the given 

(k+l,s)-set ¥^ becomes a (k+s+1,0)-set • Since s = k+1 (mod 2), 

the number k+s+1 is even. Let k+s+l=2j . Partition the set into 

j pairs of neighbouring points of . To each set ¥^ there corres¬ 

ponds {$) distinct subsets ¥-, which are obtained by removing the second 

point in each of s pairs, arbitrarily chosen from the given n pairs. 

Since the number of subsets ¥^ is z(n,2j,0) , we obtain the relation 

z(n,k+l,s) = z(n,2j,0) , 2j =k+s +1 . (3.16) 

Let us calculate z(n,2j,0) . If we remove one point from 

each of the j pairs in » we obtain a subset ¥^ of an (n-j)-cycle 

V2 , with I¥,I=j . The number of such subsets ¥^ is clearly equal to 

( The correspondence between the number of distinct subsets ¥^ and 

¥^ is obtained as follows. 

Let r be the number of cyclic permutations acting on 

which leave the subset ¥^ invariant. It is clear that the number of 

cyclic permutations acting on V-^ which leave ¥2 invariant is also r . 

Thus, the cyclic permutations of V2 , applied to ¥^ give (n-j)/r 

distinct subsets V^ > and the cyclic permutations of V-^ , applied to 

¥2 , give n/r distinct (2j,0)-subsets . Consequently 

z (n, 2 j , 0) = (y) (3.17) 

From (3.16) and (3.17) we obtain 

z(n,k+l,s) = jSj (n"j) ( j ) , 2j=k+s+l . (3.18) 

From Lemma 3-6 we have 

2m-k-l 
f,(C(2m,n)) = £ z(n,k+l,s) . (3.19) 

K s = 0 
sH(k+1)mod2 
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Substituting for z(n,k + 1,s ) from (3.18) into (3.19) and summing with 

respect to j rather than s , we obtain (3.15) for the case of even d . 

Now let d=2m+l . In contrast to the case of even d we 

construct a (n+l)-cycle V-^ by adding a fictitious point xn + ^ between 

the vertices xn and x1 , so that x‘n + 1 is the successor of xn and x1 

is the successor of xn+^ . For a given (k+1,s-1)-set or (k+l,s)-set 

(with sEk (mod 2)) of vertices of the cyclic polytope, we define, as in 

the previous case, a (k+2,s)-set W, of the (n+l)-cycle V, where W, 
n + 1 

contains the additional point x . From (3.19) it follows that the 

number of such subsets is equal to 

2m-k 
I z(n+l,k+2,s) = fk+1(C(2m+2,n+l)) . (3.20) 

s = 0 
s=kmod2 

For each (k+2,s)-set (sEk (mod 2)) let г be the number 

of cyclic permutations acting on which leave invariant. The 

cyclic permutations, acting on relative to , give (n+l)/r 

distinct (k+2,s)-subsets of the (n+l)-cycle . The removal of one of 

the k + 2 points of W-^ transforms the cycle into an n-set V , and 

each subset yields (k+2)/r distinct (k+1,s-l)-subsets (or 

(k+1,s)-subsets depending on the position at which the point is removed) 

¥ of the vertices of C(d,n) . Thus the total number of distinct 

(k+l,s)-sets (s<2m-k) is, using (3.20), 

fk(C(2m+l,n)) = fk+1(C(2m+2,n+l)) . 

Substituting the value of f k+-^ (C (2m+2, n+l)) already found and changing 

the summation index from j to j-1 , we obtain (3.15) for odd d . // 

The following important result follows from these theorems. 

Theorem 3.7 Let fk(M) He the питПе/і o£ к -/Laee-ь (l^k^d-l) 

о/ an a/iHLtna/iy d-po Hytope. M loith n ue/itice-i. 7hen 

( m 

(V) (k+1-j ) 
fk(M) < 

1 -±T d = 2m , 

j Г k + 2 

j=on'j (Jii) (k+j-l) 
,i£ d = 2m+l 



§4 MINIMUM NUMBER OF FACES 

4•1 The Lower Bound Conjecture 

Not much is known about the lower bound y, (d,n) of the 

number of к-faces of an arbitrary d-polytope with n vertices. First, 

using the upper bound for the number of facets of a d-polytope, it is 

easy to obtain the relation 

(d,n) = min{r : f(3_i (C (d. r )) > n} 

Also, the following inequalities are proved in Griinbaum (1967) 

Uk(d,dtS) > Uk{d.d+r) >0 ♦ (^i)- , 

where к e N, , , r e N . r , s>r . 
d-1 mm{4.d} 

Let y^(d ,n) be the lower bound of the numbers of к-faces of 

simplicial d-polytopes with n vertices. V.Klee suggested that 

U^_i(d,n) = (d-l)n - (d+1) (d-2) . (4-1) 

Griinbaum conjectured further that 

U^d.n) = (*)n - (^i)k , keNd_2 . (4.2) 

The relations (4.1) and (4.2) are known as the Lower Bound 

Conjecture. They can be stated in dual form as follows : the f-vector of 

a simple d-polytope satisfies the inequalities 

fQ > (d-Df^ - (d+1)(d-2) (4.1') 

f 
d-k 

> keNd_2 (4.2') 

The Lower Bound Conjecture was proved in 1973 by Barnette 

(1973). In this paper there are references to earlier work in which the 

conjecture was proved for special cases. An outline of Barnette's proof 

is the following : the conjecture is first proved for the number of 

vertices of a simple polytope (inequality (4.1')) or, equivalently, for 

the number of facets of a simplicial d-polytope. Next, the lower bound is 

proved for the (d-2)-faces of a simple polytope and this proves the con¬ 

jecture for the number of edges of a simplicial polytope. Finally, it is 
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shown that if the conjecture is true for a d-polytope in the cases k=l , 

k=d-l , then it is true for the remaining к . 

4•2 Lower Bound for the Number of Vertices of a Simple Polytope 

We establish a lower bound for the number of vertices of a 

simple d-polytope with a fixed number of facets. 

We begin by carrying out some auxiliary constructions. The 

sub-complex 7 1 of the face-complex F(M) of a simple d-polytope M is 

a connected pal-complex if there is an enumeration F, , . . . ,F of the 
1 n 

facets in 7' such that + i ^ 0 for each i , that is, it is a 

(d-2)-face of the polytope M . We say that the vertex x is an oaten 

ventex o£ the connected, complex 7' if it belongs to only one of the 

facets of the complex 7' (Figure 26) 

Fig. 27. 

Let x be a vertex of the polytope M . Let ast(x.M) be 

the set of all к-faces (0<k^d-l) which do not contain x . This is called 

an anti-ptan of£ the £ace complex . 

Let 7 ' be a connected complex and let x be a vertex 

belonging to some facet F t 7' . By /r,/ast(x,F) we mean the connected 

complexes into which the set ast(x,F) topologically separates the 

complex 71 (Figure 27). 

Lemma 4• 1 4et 7’ le a connected pal-complex ol the £ace 

complex о £ a pimple <l-polytope M , and let 7' have at leapt one oaten, 

ventex. Then, thene exiptp an oaten ventex x lelonging to pome lacet F 
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in 7' -iuch that the. *et 7'/ast(x.F) con-iitt* pnecitety ol two 

connected complexes, one o£ which conti-bt* pnecitety о/ the lacet F . 

PnoojL Suppose the contrary. Suppose that for any outer vertex x of the 

complex 7 the set F/ast(x,F) consists of three connected complexes 

{F} , В and В^ . Then, for x we choose that outer vertex of 7' for 

which the connected complex В has the maximum number of facets. If 3^ 

has no outer points other than those contained by F , then the removal of 

these vertices makes the graph of the polytope M disconnected, which is 

a contradiction. If В^ has an outer vertex x which does not belong 

to F , then this is also an outer vertex for the connected complex 7 . 

Let x^eF^ , where F-^ is a facet of 7 . Since 5U{F} is a connected 

complex consisting of the faces of F/ast(x^,F-^) we have obtained a 

contradiction to the definition of x . // 

Let x be a vertex of a simple polytope M of dimension d 

and let 7 = ast(x,M) . Clearly, 7 is a connected subcomplex of the face 

complex of M . We show that 7 must have an outer vertex. Since there 

are d non-intersecting chains connecting x with any arbitrary vertex 

in 7 , there are exactly d edges not in 7 each of which is determined 

by the intersection of exactly d-1 facets of M . These edges are inci¬ 

dent to exactly d vertices of 7 , each of which is an outer vertex of 

7 , 
Because of Lemma 4-1 we may carry out the following proce¬ 

dure. Select an outer vertex x^ in 7 such that the set F/ast(x\F^) 

consists of two connected subcomplexes 7^ and a facet F^ containing 

x1 . The set S-^ = F-^П F^ is called Aepanating . Further, we choose an 

outer vertex x^ of the connected complex F^ belonging to a face F^ 

of 7.l such that the set F^/ast(x^,7^) consists of two connected sub¬ 

complexes F2 and F2 ! the separating set F2 П7^ is denoted by S^ • 

Continuing this process we obtain three sequences : the connected complex¬ 

es F=Fq ’ Tl’"■",Tn ’ seParating sets s1>...,Sn and the facets F^, 

...,Fn where n = f^ ^-d-1 (Figure 28). 

Lemma 4.2 7o/i any two connected comp texe-i F^ , F^^ 0/ the 

sequence conttnacted, the/ie exix>t d-1 distinct ventice-ь v^,...,V^_q 

with the pnopentie* : a) vj^ ix> an oaten, ventex o£ the comptex 7^ ; 

b) v£ ix> not an oaten ventex o-jL the comptex 7^ ^ . 
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Ряоо/. Let F? be a facet in T^ having a non-empty intersection with 

the facet F^ . Let x^ be a vertex in F? not belonging to . Then 

there are d-1 non-intersecting chains between the vertices x1 and x^ 

in the graph of the (d-1)-complex T. ^ . Let v^ be the first vertex in 

the k-th chain from x-1 to x^ which belongs to the separating set . 

Then the preceding edge in the k-th chain is formed by the intersection of 

d-1 facets not belonging to T. Thus v?; is an outer vertex of the 
i 1 к 

complex /^ . Since v^eS^ » it cannot be an outer vertex of the complex 

Theorem 4 • 3 4-e-d M te. a simple, d-po Lytope., tke.n 

f0(M) > (d-l)fd_1(M) - (d+l)(d-2) . 

Ряоо£ The result follows directly from Lemma 4.2 . Indeed 

f0(M) > (d+l) + (d-l)n = (d+l) + (d-l)(fd_1(M)-d-l) 

= (d-l)fd_1(M) - (d+l) (d-2) . // 

4•3 Lower Bound for the Number of (d-2)-faces of a Simple Polytope 

Theorem 4.4 4e.t M Че. a simple. d~poiyiope, tke.n 
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an 

fd_2(M) > d fd_1(M) - d2 - d . 

P/looI We continue to use the notation of the last section. Consider 

arbitrary facet F^ in the sequence F^,...,F constructed above. Let 

Ft be a (d-1)-polytope dual to Fi and let x^,...,x^ be the vertices 

of Ft which are dual to the (d-2)-faces of Fi belonging to S. . Let 

be the (d-2)-face of the polytope Ft dual to the vertex x1 . Take 

a point w1 strictly separated from Ft by the hyperplane which gene¬ 

rates G. such that w1 is close to the centroid of the face G. . Then 
i l 

the graph consisting of the union of the graph of the polytope Ft and 

the vertex w1 connected by edges with the vertices of the face G^ , is 

the graph of the (d-1)-polytope conv(F? Uw1) . In this graph there are 

d-1 non-intersecting chains Г^,...,Г^ between the vertices w1 and 

x-^ . For each chain , let Xq be the last vertex encountered in 

traversing the chain from w1 to x-J before meeting the first of the 

vertices х|,...,х^ . The vertices Xq will be distinct and so their 

dual (d-2)-faces in M are also distinct. We note also that the inter¬ 

section of the separating set S^ with each of these (d-2)-faces is a 

(d-3)-face of M . A (d-2)-face with this property is called facial . 

Thus, the polytope M has at least (d-l)(f^ ^-d-l) facial (d-2)-faces. 

The next step in the proof consists in counting the (d-2)- 

faces of M which belong to separating sets. We show that every separa¬ 

ting set has at least one (d-2)-face which is not facial. Mote that 

a (d-2)-face of a separating set S^ is regular only if its intersection 

with some other separating set is a (d-3)-face. Consider successively all 

separating sets S^. , j>i , whose intersection with S^ contains a (d-3)- 

face Let the set П contain a (d-3)-face F . Since M is a 

simple d-polytope, the face F is the intersection of precisely three 

(d-l)-faces F^ , F^ and some F^ . The set F^flF^ is not empty, so it 

is a (d-2)-face. Since the set S^ topologically separates the connected 

complex also separates . Select a connected complex В from 

S^ which is separated by the separating set S^ and which contains a 

(d-2)-face which does not become facial when we remove F^ . Then there is 

some other separating set S^ which intersects the complex В and the 

intersection of three (d-l)-faces F^ , F^ and F^ , say, gives a (d-3)- 

face F' in 3 . Clearly, F^flF. is a (d-2)-face in S^ . 

If F^flF^ does not belong to the complex В then the (d-2) 

-face F.fl F^ of 3 intersects the (d-2)-face F^Л F. in a face not 
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belon^in? to В and then F' is contained in the separating set S. 

which intersects 
J 

Different separating sets have different (d-2)-faces. Thus 

we have at least four (d-2)-faces which contain F' : two in S^ and one 

each in and S^ . This is a contradiction. 

Hence the set F.flF belongs to В . Then S separates 
l m ъ m 

the complex В and at least one of its subcomplexes contains a (d-2)-face 

which does not become facial when F is removed. Repeating this process 

we eventually arrive at a (d-2)-face in the separating set which is 

not facial. Thus a lower bound for the number of (d-2)-faces is 

(d-l)(fd_1-d-l) + fd-1 - d - 1 = d fd_1 - d2 - d . // 

4.4 Lower Bound for the Number of Edges 

Lemma 4-5 /£ f^(M) > dn - к Ion any simplicial d-polytope 

M with n uentices, whene the constant к depend.s only on d , then 

f1(M) > dn - d(d2+1' (4-3) 

Pnoof. Suppose that for a simplicial polytope M with n vertices the 

relation (4-3) does not hold, that is 

fd(M) dn 
d2+d 

where r is a positive integer. Let the facet F of M be generated by 

the supporting hyperplane H . Let M1 be the union of the polytope M 

and its mirror image relative to H . The set M' is not necessarily 

convex, but if we first deform M by means of a suitable non-degenerate 

projective transformation then M' will be a simplicial d-polytope 

(Figure 29). Since F is a simplex, the number of edges of M' is equal 

to 2dn-d2-d-2r-(d2-d)/2 = (2n-d)d-(d2+d)/2 - 2r . 

Since the number of vertices of the d-polytope M' is equal 

to 2n-d , the relation (4-3) does not hold for M' either. Similarly, 

if we take the mirror image of M* relative to a hyperplane H which 

generates some facet F , we obtain a simplicial d-polytope M" for which 

(4.3) does not hold and such that the right hand side differs from the 

required number by 4r . Continuing this process we obtain a contradic¬ 

tion to the assertion that the constant к depends only on d . // 
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Fig. 29. 

The following theorem is proved by taking the dual of M in 

Theorem 4-4 and then applying Lemma 4*5 . 

Theorem 4.6 Ike Howen Hound, conjeetu/ie 4-6 tnue in the сале 

о/ edget о/ літрliciai poHytope*. 

4•5 Minimum Number of Faces of a Simplicial Polytope 

Lemma 4.7 If. tke Howen Hound conjectu/ie 4-6 tnue fon the 

1-/.асел Hedges) of а літрНісіаі d-poiytope, it 4-6 tnue fon tke face/> of 

aii dimen-bionA. 

Pnoof We use induction on d . The lemma is certainly true for d=3 • 

Suppose that (4-2) is true for simplicial (d-1)-polytopes with k=l . 

Then it is also true for k=2.d-2 . Let M be a simplicial d-polytope 

with n vertices and let x1 be any vertex of M . Suppose that the 

vertex x1 is formed tthe intersection of n^ facets. By the induc¬ 

tive assumption the number of (k-l)-faces in a section of M at x1 is 

not less than -^(d-l,n^) . Hence the vertex x1 is incident to at 

least uj -^(d-l,n^) к-faces of M . The number of incidences of vertices 

and к-faces of M is equal to 

n 
г s l Uk. 

i=l * 
1(d-l,ni) > (k-1) 
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From relation (4.2) with k=l we have 

У n. = 2f, > 2dn - - d 
i=l 1 1 = 

Substituting this in equation (4-4) we obtain 

Z d^_l(d_1»ni) > ( k-1 )(2dn-d'i-d) - n^Vk-1) 

> к(k+1) 

> (J)n(ktl) - (^)k<k+l) . 

(4-4) 

On the other hand, since H is a simplicial polytope the 

number of incidences of vertices with к-faces is equal to (k+l)f^ . 

Hence 

This completes the proof. // 

к = 2,...,n-2 . 

Theorem 4• 8 Ike minimum numfe/i of ~k.-fa.ceA in tke cfaAA of 

АІтр ticiat d-po iyto peA with n ve/iticeA ІА given fy tke fonmula 

U^(d,n) 
(d-l)n - (d+1)(d-2) foe k=d-l . 

fon. keN, 0 

Pnoof Combining the results of Theorems 4-3,4*4, Lemma 4*7 and Theorem 

4.6 we see that the number u^(d,n) is a lower bound for the number 

f^(M) in the class of simplicial d-polytopes with n vertices. 

We show that these bounds are attained. To do this we 

exhibit a simple d-polytope with n facets for which the inequalities 

(4.1'),(4-2') are satisfied as equalities. Such a polytope is given by 

applying n-d-1 successive right sections of vertices. Ц 

EXERCISES 

1. (Grunbaum 1967). If the k-skeletons of the polytopes M and 
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M' are isomorphic for k> [d/2] where d = dim M , then dim M' =d . If 

the (d-2)-skeletons of the polytopes M and M' are isomorphic then M 

and M' are combinatorially equivalent. 

2. A connected d-complex K. in (1<Д<п) is called літріе. 

if all of its i-faces (Q<i<d) are contained in precisely d - i +1 distinct 

d-faces. Show that К is a simple d-complex if and only if K. is iso¬ 

morphic to the complete face complex of a simple (d+1)-polytope. 

3. (Griinbaum 1967). The d-complex K. is called dimeriAionalty 

unde.te./im.ine.d if there are two polytopes M' and M" of different dimen¬ 

sion such that H is isomorphic to both of their d-skeletons. Give 

examples of dimensionally undefined complexes. Show that: 

(1) the i-skeleton of a d-polytope with i > [d/2] is not 

dimensionally undetermined; 

(2) for all i and d (l<i<[d/2]) there is a d-polytope 

whose i-skeleton is dimensionally undetermined. 

4- Let M' and M" be two polytopes and let ф be a bisection 

between vert M' and vert M" with the following property: the set 

AC vert M' generates a face F’ of M' (that is A = vert F') if and 

only if there is a face F" of M" such that ф(А) =vert F" . Show that 

M' = M" . 

5. Let M' and M" be combinatorially equivalent polytopes in 

En and let 6(F) be the face of M" which corresponds to the face F 

of M' under this equivalence. Show that there is an affine map a such 

that a(F) = <b(F) for every face F of M' . 

6. The d-polytope M is called protectively unique if every 

d-polytope M' which is combinatorially equivalent to M is protectively 

equivalent to M . Using Gale diagrams show that a 3-polytope M is 

projectively unique if and only if M has at most 9 edges. 

7. (Griinbaum 1967). Using Gale diagrams show that for any 

d-polytope M with at most d +3 vertices there is a polytope combina¬ 

torially equivalent to M all of whose vertices in E^ have rational 

coordinates. Construct an 8-polytope with 12 vertices such that there is 

no polytope combinatorially equivalent to it all of whose vertices in Eg 

have rational coordinates. 

8. Establish the following relations: 

ѴФ <fk(Td>< ••• <fk(Td> -fk(Tdtl) = • 
= f /ф [^ /2] \ 

xkud ' 

where к < [d/2] , fd (T Jd/2^ ) = [(d+2 )2/4 ] . 



Let M be a d-polytope with d+3 vertices (d=2n) such 

that f*k(M) = f k(C (d ,d+3 )) , к = n-1,...,2n-l . Show that M = C(d,d+3). 

9. (Altschuler & McMullen 1973, McMullen 1974), Use Gale dia¬ 

grams to derive the following formula for the number of simplicial 

n-neighbourly (2n+l)-polytopes with 2n +4 vertices : 

2 [(n-1)/2] + I <S>(h) 2(n + 2)/h , 

where the summation is taken over all odd h which divide n + 2 and 

4>(h) is Euler's function. 

Verify that the number of general (not necessarily simplicial) 

n-neighbourly (2n+l)-polytopes with 2n +4 vertices is given by 

±{ (5 + (-1 )n )3 t(n+l)/23 + 6} + I 4>(h) (3 Cn+2 ) /In _ ]_) f 

where again the sum is taken over all odd h which divide n + 2 . In 

proving these formulae it should be verified that in a Gale diagram of an 

n-neighbourly (2n+l)-polytope with 2n+4 vertices the sum of the multi¬ 

plicities of points at the ends of a diameter is not greater than two and 
2 

that the points on the circle S are uniformly distributed. 

10. Simplify the expressions for the number of к-faces of a 

cyclic polytope for selected values of к , for example, show that 

or 

fm(C(d,n)) 

fd_1{G{d,n)) 

fj^Cfd.n)) 

n-m -2 
m+1 

n-m-2 
m 

n 
n-m 

n-m-1 
m 

[(d+1) / 2] 
n-d 

+ 

for d = 2m+l 

for d = 2m ; 

for d = 2m , 

for d = 2m+l 

^ n- [(d+2)/2] j 

11. The facets of the cyclic d-polytope C(d,n) can be ordered 

in a sequence Fi»F2 * • • • »FU * u = fd-1 (d ,n )) so that F.^GF. is a 

(d-2)-face of C(d,n) . 

12. Show that u^(2,n) =n if n^3 . 

13. Use the known characteristics of the f-vectors of 

3 polytopes to show that: 
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U1(3,n) = [(3n+l)/2] , u2(3,n) = [(n+3)/2] , n>4. 

14. Find a simplicial d-polytope M with n vertices such that 

fjc(M)=y^(d,n) , where n > d > к > 0 . 

15. (Klee 1974). Construct a d-polyhedron with n facets and 

n - d +1 vertices and show that n - d +1 is a lower bound for the number 

of vertices in the class of simple polyhedra P of dimension d with n 

facets (vert P / 0). A 'simple ' polyhedron P is a polyhedron such that 

every vertex of P is given by the intersection of d facets. The mini¬ 

mum number of vertices in the class of simple d-polyhedra with n facets 

and v unbounded facets is equal to (v-n-2)(d-l) +2 . 

16. An al^teaet poly tope, is defined to be a semi-matroid (7 ,V) 

with the property that to every pair of vertices V* , V** there 

corresponds a sequence of vertices =V* , , ... , =V** such that 

ІѴ.ПѴ.,, I = d - 1 , V* ПѴ**СѴ. , Vi e N, , . 
' l l+l1 l k-1 

The g/iapfi o-fL a 6em.i-m.at/ioid is a graph whose vertex set 

is in one-to-one correspondence with the set of vertices of the semi- 

matroid and where two vertices V' , V" are adjacent if and only if 

|V ' П V" I = d - 1 . 

An al^t/iaet /ace of dimension d - к , к < d , of the semi- 

matroid (7,4) is a pair (7(w),V(w)) where w is an arbitrary k-subset 

of 7 , M(w ) = (V : VC T\w , V Uxtf e M} , F(w)=_U V . 
VeM(w) 

Show that a semi-matroid is an abstract polytope if and only 

if the graph of each of its faces is connected. 

17. The maximum diameter conjecture for abstract polytopes is 

formulated in Altschuler & McMullen (1973); namely 

Д (d, n ) < n - d . 
a = 

In Adler,Dantzig & Murty (1974) and in Altschuler & McMullen 

(1973) it is shown that the conjecture is true for the case Д (2,n) = 

[n/2] . Theorem 2.5 of Ch.2 generalizes to the case of abstract polytopes. 

For arbitrary complexes the maximum diameter conjecture is false. A 

counter-example was constructed by Walkup (1978). 

18. Give examples of abstract d-polytopes which are not realiz¬ 

able as simple d-polytopes. Show that all abstract d-polytopes on d+k 

(k^<3) symbols are realizable. 

19. The number of pairwise combinatorially non-equivalent poly¬ 

topes of dimension d (d:>2) of radius 2 is given by the formula 
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where 

n - d - j 

d-3 2d+l 2d-n+1 
[d/2] + I [(d-i)/2] + I I Y__d_,(d-j) 

1 = 0 n=d+4 j = 0 n a J 

Yn-d-j (d‘j 
positive 

) is the number of partitions of the number d - j 

integers. This result is due to A.N.Isachenko. 

into 
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4 INTEGRAL POINTS OF POLYHEDRA 

Every point x e all of whose coordinates are whole num¬ 

bers is called an inte.gnai point or an Lnte.g/ial ѵгоіол. . The set of 

all integral points in En is denoted by and is called the inte.gnat 

lattice. (Cassels 1959). 

Several classical problems are connected with the distribu¬ 

tion of integral points in polyhedra. The first problem consists in 

finding criteria for the existence of integral solutions of systems of 

linear inequalities. If integral points do exist in a polyhedron, the 

problem arises of counting them and of finding conditions for their uni¬ 

form distribution. The classical theorems of Kronecker and Minkowski 

yield partial solutions to this problem. The first problem is the subject 

matter of the Geometry of Numbers and of Mathematical Crystallography and 

is only partially concerned with the qualitative theory of Integer Pro¬ 

gramming (Belousov 1977). The other two problems are directly connected 

with Integer Programming. 

The second problem includes a range of problems connected 

with the construction of convex hulls of integral points of polyhedra. 

The main problem is to develop methods of constructing systems of linear 

inequalities which define the convex hull of the integral points for 

special classes of polyhedra, for ultimately this allows us to reduce the 

problem of integer linear programming to ordinary linear programming. 

Further, the duality theorem of linear programming enables us to obtain 

important combinatorial and graph-theoretic theorems. 

The third problem consists in characterizing systems of 

linear inequalities which determine polyhedra having integral points as 

vertices. We remark that not every combinatorial type of polytope in En 

can be specified so that all its vertices are integral points (see 

Exercise 7, Ch.3). 

The second and third problems are, in a certain sense, dual 
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to each other. In one of them a system of inequalities is fixed and we 

wish to establish the integrality of the vertices of the polytope deter¬ 

mined by this system : in the other, integral points of a polytope are 

given and we wish to find, in explicit form, a set of linear inequalities 

which specify the polytope. Chapters 4 and 5 are concerned with these 

last two problems. 

§1 INTEGRAL SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES 

This section is concerned with an algebraic characterization 

of sets which are intersections of polyhedra and the integral lattice. 

The set of integral points in a set W is denoted by • 

1.1 

addition. 

The Polyhedral Semigroup 

The integral lattice Z 
B n 

forms a semigroup with respect to 

Definition 1.1 The semigroup К consisting of the integral 
z 

points of the polyhedral cone К = {xeEn : Ax^O} is called a poIghednal 

Pemignoup . A semigroup В of integral vectors is called finitely 

gen enated , if 

В = {x : x= I z.qj , z.eZ+ , jeN.} . 

j=l J J 

Here q , ...,q are given integral vectors, called a genenating леі o£ 

the. летідпоир В , which, in this case, is denoted by В (q^, . . . , q^) . 

Not every polyhedral semigroup is finitely generated. For 

example, the semigroup of integral points in E^ which are located in the 

first quadrant between two half-lines drawn from the origin and having 

irrational angular coefficients is not finitely generated. Conversely, 

not every finitely generated semigroup is polyhedral (see Exercise 5). 

The results which follow originate in Hilbert's theorem on 

the existence of a basis of polynomials (Hilbert 1890). These results 

have been repeatedly rediscovered and generalized (Presburger 1930, 

Fiorot 1972, Petrova 1976, Jeroslow 1978, Petrova 1978). The proofs of 

most of the theorems given are due to Shevchenko & Ivanov (Shevchenko 1970, 

Ivanov & Shevchenko 1975, Shevchenko & Ivanov 1976). 

Theorem 1.1 Let К = (xeEn : Ax^O} Le a po LyhedL/iat. cone, 

and Let A Le a nat/іік with national elements. Then the polyhednal 
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Аеті g/ioup i-i tinitety genenated. 

Pnoof. Without loss of generality we can assume that A is a matrix with 

integral elements. By Theorem 1.10. Ch.l . on the representation of 

polyhedral cones, we have К = con(q1.q1") where, because A is inte¬ 

gral, we may chose the vectors q^.q^, which generate the cone, to 

have integral components. We show that the set {q1,...,q^} , augmented 

by the integral points of the half-open 'parallelepiped' 

Q = 5 y£E y= 1 M3 
i=l 1 

0<A.<1 
- i 

ieN, 

is a generating set of the semigroup K7 . Let x be an arbitrary ele- 
1 t ^ 

ment in K„ . Since q ,...,q generate the cone К , there are A.>,0 , 
Li І 

ieN^ such that 

t 
x I X.q1 

1=1 1 

Consider the vector 

x' = t {Ai}q1 = x - I OJq1 . 
i=l 1 i=l 1 

Then x'eQ^ • We have 

x = x' + I [A.Jq1 
i=l 1 

which shows that any element in can be represented as a linear 

combination, with non-negative integral coefficients, of the vectors 

q .. and an integral point of the 'parallelepiped' Q . It is 

easily seen that the set Q contains a finite number of integral points. 

Thus {q"*-.q^}U Q_ is a finite generating set of the semigroup К . // 

We extend the results of Theorem 1.1 to the case of a 

system of inhomogeneous linear inequalities. 

Theorem 1.2 Let M = {xeE* : Ax^b} &e a potyhed/ion, iohe/ie 

the mat/іік A ha-i /ia.tLon.at. etementA. 1 hen the/ie екІАІА a finite Aet o-fL 
1 s 

Lnteg/iat vecto/iA G and a t-initety generated Aemig/ioup 3(p ,...,p ) 

Auch that any integnat point о/ the potyhed/ion can He nep/ieAented in the 

tonm 
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X . 3 e N (1.1) g + І z,PJ’ . 

3=1 J 

z . e Z 
J 

whe./ie. gsG • 

Рлооі As usual, if b^O , we convert the inhomogeneous system Ах>Ъ 

into a homogeneous system : 

(A,-b)x > 0 

n+1 

x e Z 
n+1 

(1.2) 

(1.3) 

The set of integral vectors x satisfying (1.2) forms a polyhedral semi- 
—1 —к 

group which, by Theorem 1..1, has a finite generating set {q ,...,q } . 

Thus, any integral point in the cone given by (A,-b)x > 0 may be written 

in the form 

к 
x = £ z .q^ 

3=1 J 

z. e Z+ , 3 e N, (1.4) 

and, conversely, any vector of the form (1.4) is a solution of (1.2). To 

find the solution of the system (1.2),(1.3) we have to add the constraint 

n + 1 

к 
£ z.q^ ,, = 1 

;=1 J n+1 
(1.5) 

where Is the (n+l)-th component of the vector q^ . Since 

q^ + ^>0 , jeN^. , it follows from (1.5) that when q^+^=0 the coefficient 

Zj can assume arbitrary non-negative integral values, and when qjj + -^=l 

then z.=l , but this is true only for one such j - for the others 
J —]_ — ]{• 

z.=0 . From the generating set (q ,...,q } select all the vectors with 
J 

■ ^ =0 or 1 . Let components q^+,= 

G = {^i.^ : ^І+1=1 • jENk} * 

P = {(q|,...,q£) : д^+1=0 * jeNk} * 

(1.6) 

(1.7) 

Then, every integral point of the polyhedron M , where b^O and the sets 
1 s 

G and P = {p ,...,p } are defined by (1.6) and (1.7), takes the form 

(l.l). Note that P is a generating set of the polyhedral semigroup 
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K„ = (xeZ : Ах>.0} 
Zj п 

If b=0 then G=0 and by Theorem 1.1 we have that x = 

jeN for all xeM„ . // 
S Zi 

l Zn-Pj > z1-eZ+ , 
j =1 J J 

Corollary 1.3 Let 

s 

g 
= Iх : x=g+ I z.pJ" , z.eZ + , j eN } . 

’ j=l J J S) 

Linden the. aAAumptionA made in 7heo/iem 1.2 we have that 

M = (J В 
z gVa g 

Remarks l) The integral points of the polytope M(A,b) = 

(xeE* : Ax=b} also may be represented parametrically in the form (l.l). 

To show this, it suffices to represent the set M(A,b) in the form 

{xeE+ : Ax>b , -Ax>-b} . 
n = — 

2) If the elements of the matrix A and the components of the 

vector b are real numbers, then Theorem 1.2 remains true except that 

the sets G and P may be infinite. 

3) Theorem 1.2 also follows from the results of Presburger 

(1930) on the solvability of arithmetic systems. 

1.2 Convex Hulls of Integral Points of Polyhedra 

Theorem 1.4 Let M = (xeE* : Ax^b} Le a potyhednon and Let 

A Le a mat/iix with nationat element6. Then, i{. the -bet о/ integ/iat 

point4 о/ M ІЛ non-empty, thein. convex, hutt іл аіло a potyhednon. 

If M is a polytope, then since the set M is finite, 
z 

Theorem 1.4 is true even when the elements of A are real. If M is 

unbounded and if some of the elements of M are irrational, then, 

generally speaking, the set cannot be characterized by a finite 

system of inequalities. For example, the set {(x,y)eZ2 : x-/2y>0,x^-1} 

is not a polyhedron. 

Pnoof of. Theo/iem 1.4 By Corollary 1.3 we have M„ = U В . Hence 
L ГТГ r, S 

conv conv И В 
geG g 

c onv U conv В 
geG g 
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We show that the set conv 3 coincides with the set of 
g 

points xeE representable in the form 

= g + I 
j=l J 

Л. > 0 , Vj e N.. (1.8) 
J 

Clearly, every point x e conv 3 ^ is representable in the form (1.8). 

Now let x be given by (1.8). Then 

, t 
x = t” £ x1' 

j=l 

where x^ = g + tA.p1' , V jeN. . We show that x^ e conv 3 , VjeN, . To 
J ъ g z 

do this consider the points 

x^ = g + t[Aj]pJ , xJ = g + t([A.]+l)pJ 

which belong to 3 , Clearly x^ = (l-{A.})x^ + (A.)x^ . Thus, 
S J J 

x^ e conv 3 which implies that x e conv 3 . Hence 
g g 

conv M„ = (x : x= I u g + I A.pJ, £ u =1,u >0,A .>0,VieN.} 
L geG 3 j=l J geG g s J ъ 

and, by Theorem 3.1, Ch.l, this means that conv is a polyhedron. // 

We remark that even though the proof of Theorem 1.4 is 

constructive, there are as yet no efficient algorithms for finding a 

system of inequalities generating conv • 

1.3 Solvability of Linear Diophantine Equations 

We consider one of the methods of solving systems of linear 

equations in whole numbers, based on the reduction of a matrix A to 

normal diagonal form (Smith 1861). 

Definition 1.2 An integral matrix D = (d..) is called 
- ° ij mxn 

no/mai. dLLagonat if for some r < min(m,n) the diagonal elements d^ 

are positive integers (VieNr) and all other elements d^ =0, where also 

d . ,, . - = 0 (mod d. . ) l+l,l+l li V i e N 
r-1 ' 

(1.9) 

that is, every d^ divides d^ when j<i . 
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Theorem 1.5 Qiven any integ/ial mat/іік A , the/ie екілі 

un imodula/i mat/іісел U and V -iuch that the. mat/іік D = UAV i-i no/imal 

diagonal.. Clo/ieoue/i, the mat/іік D ІЛ unique/. 

P/ioo£ To prove the existence of D we describe a constructive procedure 

using a sequence of three types of transformations (called elementa/iy /iou> 

ope/iationл ) : a) interchange of rows, b) adding an integral multiple of 

one row to another, c) multiplication of a row by -1 . Similar operat¬ 

ions on columns are called elementa/iy column оре/іаііопл . 
Every elementary row (column) operation can be carried out by 

multiplying the matrix on the left (right) by the corresponding elementa/iy 

mat/іік U . U is obtained from the identity matrix I by applying to I 

the same operation. Note that any elementary matrix has determinant equal 

to +1 , that is, such a matrix is unimodula/i . 
The method of constructing the normal diagonal form of A is 

carried out in two stages. 

In the first stage we diagonalize A in r steps where 

r = rank A . The first step is to define two unimodular matrices and 

such that 

By using row and column operations of type a) we make a^ equal to that 

element in the first row or first column of A which has least absolute 

magnitude. We then subtract = [a^./a^] times the first column from 

the j*''1 column (j^l) and subtract vu = [а^/ац] times the first row 

from the i^*1 row (i^l). This yields a matrix in which all elements in 

the first row or the first column (other than a^ ) are either zero or 

have absolute magnitude less than 41 This procedure is continued 

until we obtain a matrix of type (1.10). Let the matrices P,,...,P and 
-L S 

Q1,...,Qp correspond to the successive row and column operations respect¬ 

ively. Let = Ps*..P^ and V-^ = Qq*.*Qp • Then the matrix 

has the form (1.10). The remaining steps are analagous. Note that at 

each stage of the diagonalization of A we are actually finding the 

highest common factor of the elements in the corresponding row and column. 

Let 6 be the highest common factor of the elements in the first row of 
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A (б =h. с. f• (a^^ , * • • ,Э.Д-^)) • Let 9 ^ ^ Then there exist 

coprime integers y. such that £ a-,.y. =1 and there is a unimodular / • I • 

J j=i !j J 
whose first column consists of the numbers у^,...,у matrix V-^ 

the matrix AV-^ has a first row of the form (6,6 3 • • • • > ^in) • Now 

Thus, 

putting 
'l 

0 
■012 ** 
1 

"8l,n-l 'Sln 
0 0 

V2 = 
0 0 1 0 

0 0 0 1 

we find that the matrix 
AV1V2 

will have a 

(6,0,... ,0) . Repeating these operations on 

obtained, we construct a matrix of type (1.10). 

In the second stage we normalize the diagonal matrix 

11 

22 

b 0 
rr 

L 0 0 ... 0 0 J 

obtained in the first stage, that is, we transform to a matrix satisfying 

i>j . SO condition (1.9). If some number b.. does not divide b.. 
J J 

that b.. = Ab. . + q , 0<q<b.. , then we carry out a sequence of elemen- 
ii JJ 4 4 JJ ^ 4 

tary operations on the rows and columns numbered i and j , which for 
,U, j) the corresponding (2x2)-submatrix В 
(i »j } 

takes the following form 

b. . 0 
J J 

0 Ab . . +q 
JJ 4 

b . . 0 
JJ 

Ab . . Ab. .+q 
J J J J 4 

b.. -b . . 
J J J J 

Ab . . q 
J J 4 

q Ab . . 
4 J J 

-b 
J J 

b . 
J J 

(1.11) 

The matrix so obtained can be diagonalized as in the first stage. As a 

result we will either have a diagonal matrix B' with b!. 

dividing bJ^ , or the element b!. will be less than q and the 

sequence of operations (1.11) can be repeated. This procedure is repeated 

until condition (1.9) is satisfied. 

Thus, by means of a finite sequence of elementary operations 

we obtain a normal diagonal matrix D and unimodular matrices U and V 
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which correspond to these operations. 

We will establish some invariants of the elementary operat¬ 

ions which will ensure the uniqueness of the normal diagonal form of the 

matrix A . 

Let Д^(А) denote the highest common factor of all the vbb 

order minors of the matrix A . 

Lemma 1.6 Let D = UAV u/ie/ie U , V ane unimodutan 

matn.ice.-f>. Then. Д (A) = Д ,(D) , V veN , r = rank A . 
V V r 

P/ioo-t It suffices to examine the case D = UA . Let be a square 

sub-matrix, with |l| = |j| = v . By the Cauchy-Binet formula 

det Dj = 1 det det A^, 

where the sum is taken over all subsets I'CN with the property 

111 I = v . Hence Д^(А) divides det for all subsets I and J of 

order v . It follows that Д (A) divides Д (D) . Further, since 
v v 

A = U-1D , we see that Ay(D) divides Ду(А) • Hence Ду(А) = AV(D) . // 

The uniqueness of the normal diagonal form D of the matrix 

A follows from the fact that Lemma 1.6 implies that its elements are 

uniquely expressible in terms of the common factors Ду(А) according to 

the formulae : 

dll = Aq(A) » = ДІ(А)/ДІ_1(А) , i=2,...,r. 

This completes the proof of Theorem 1.5 . // 

Using the nor іаі diagonal form of the matrix A ve obtain 

the general form of the integral solutions of the system 

Ax = b * A e Zm,n » b e Zm * (1-12) 

Let us multiply the system (1.12) on the left by the unimodular matrix U 

and then make a change of variables x = Vy : this gives the system 

Dy = Ub . (1.13) 
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Since V is a unimodular matrix, the affine map x = Vy is 

a bijection between the integral solutions of (1.13) and the integral 

solutions of (1.12). Thus a necessary and sufficient condition for the 

integral solvability of (1.12) is that d^ should divide the i^h com¬ 

ponent (Ub)^ of the vector Ub . Using Lemma 1.6 and Theorem 1.5 we 

have the following criterion. 

Theorem 1.7 The AyAtem о/ tinea/i equation.a 

Ax = b , A e Z , b e Z (1.12) 
ш f n m 

i an integ/iat ao tut ion if. and only if 

(A) = Ay ((A ,b)) , VvcNr 

uhene r = rank A . 

Let R = . Then the system (1.13) defines a vector 

yR =(Уі’---'Уг^ ’ where У° = (Ub)i/dii , ieNr . Then the general form 

of the integral solutions of (1.12) is 

,,R о . ,,R о . ,,R 
x = V yR + V yR = x + V yR 

where x° = V^yR is a particular integral solution of (1.12) and V^yR 

is the general solution of the homogeneous system Ax=0 which depends on 

n-r integer parameters yR = (уг+і»•••»УП) • Thus, the set of integral 

points of the polyhedron M(A,b) is in one-to-one correspondence x = Vy 

with the set of integral points of the polyhedron given by the following 

system of inequalities : 

We remark that efficient (polynomial) algorithms have recent¬ 

ly been proposed for finding the general integral solutions of a system of 

equations with integer coefficients ; see, for example, Votyakov & Frumkin 

(1976). • 
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1.4 Aggregates 

The problem of the existence of and the search for a vector 

teSm such that the simplex T(t,A,b) = {xeE* : tAx = tb} has the same 

integral points as the polyhedron M (A, b ) is called the Aggnegate Pnollem 

In other words, we wish to find a linear combination of the integral 

system (1.12), called the aggnegated eguation , which will have the same 

solution set in the non-negative integers as the original system. The 

first results on the aggregate problem were obtained by Mathews (1897). 

The interest in the problem grew in connection with the reduction of the 

integer linear programming problem to the knapsack problem (Ivanov 1975, 

Padberg 1979). The aggregate problem was fully solved in Shevchenko 

(1976) and Veselov & Shevchenko (1978). 

Theorem 1.8 Let cbn A Re a pointed, cone. 1 den tdene ІЛ a 

vecto/i t £ Z sued that 
m 

Mz(A,b) = Tz(t,A,b) . 

Note that for all teE we have the inclusion 
m 

Mz(A,b)CTz(t,A,b) . The reverse inequality is proved using the following 

result. 

Lemma 1.9 The equality M^A.b) = T^t.A.b) do id* i( and 

only i( the dypenplane H = (ueE^ : tu = tb) doeл not contain any point4 

u e 3(h) , except, ролліііу, (.on b . 

Pnoo( o( Lemma (i) Let there exist a point u° , u°/b , such that u°eH 

and u°e5(A) . Since u°c3(h) there is an x£Mr,(A,u°) where x^M^A.b) 

since u°^b . On the other hand, xeT,., (t, A, b) since u°eH and 

Mz(A,u°)CTz(t,A,u°) . 

(ii) If there is a vector у such that у^МгДА.Ь) but 

yeT^t.Ajb) then construct the vector v=Ay . Then v^b,ve5(A) and 

tb = (tA)y = t(Ay) = tv . This proves the Lemma. Ц 

In place of a proof of the Theorem we will examine some 

possible methods of finding an aggregate. According to Lemma 1.9 , to do 

this it is necessary to find an equation tu = tb which has the unique 

solution u = b on 3(h) . It is difficult to construct such an equation 
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so instead one usually finds equations with a unique integral solution on 

some set ft 33(A) . The set ft is usually taken to be the lattice Z* . 

In practice all methods of aggregation are based on the 

following two principles which we illustrate for the case of aggregating 

two equations. 

rirst Principle Let h.c.f.(t^,t^ ) = 1 and let t^ not 

divide y^(x) = I a2'x' ~ ^2 ^or апУ xEZn ’ anc* ^2 no^ divide 
i =1 ^ ^ 

n J + 

y-^(x) = ^ aljxj " ^1 ^or апУ xeZn • Then the equation 

^/‘Лі * V2j)xj ■ tlbl * ‘Л (1.14) 

is equivalent cn to the system : 

n 
I a..x. = b. , i=l,2. (1.15) 

j=l iJ J i 

Second Principle Let h.c.f.(t^,t^) = 1 and let 

t-^ > sup{y,,(x) : xeZ*} , t^ > sup{y-^(x) : x£Z*} • Then (1.14) and (1.15) 

are equivalent on Z+ . 
4 n 

From Theorem 1.8 we can obtain the following discrete 

analogue of the Farkas-Minkowski Lemma. 

Corollary 1.10 Let con A He а pointed cone. 1 den 

M^tA.-b) ^ 0 it and onty it tb £ T7(t,A,b) Vt. 

Clearly, the boundedness of the set M(A,b) is necessary in 

order that an aggregate should be possible. Indeed, if M^(A,b) ^ 0 , 

rank A > 2 and if the cone con A is not pointed, then, as is shown by 

Shevchenko (1976), there is no vector teZ such that M„(A,b)=T„(t,A,b). 
m Z l 

Additional information about the range of values of the 

functions y^(x) will naturally enable us to reduce the values of the 

coefficients * Nonetheless, all known aggregation methods lead to 

a rapid increase in the values of the m coefficients in the aggregation 

equation with m . The following theorem accounts for this phenomenon. 

The or em 1.11 (given any integenA m,deZ+ , m>.2 , the/ie i/> a 

Py/>tem о/ type (1.12) Mich that any agg/iegation equation da4 m coetti- 

cient4, each о/ which i.i gneate/i than o/i equat to (d+l)m ^ . 
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P/iooji Let the system (1.12) have the property that there exist m 

linearly independent columns, say, A1,...,Am , such that 

b = 
m 
I a.aJ 

j =lJ 

A . >d 
J = 

A .eZ 
J 

We show that in this case the coefficients a. 
J 

gate equation satisfy the inequalities 

У t.a. . in the aggre- 
1=1 1 ^ 

P = Uq 

a. > П (A.+1) 

J i/j 1 

Since the system 

. ,A ) , the equation 

> (d+1 )m_1 

ш 
I AJx. = b 

, VJ'eNm • d*16) 

has the unique solution 

m m 
У a.x. = an = У t.b. . (1.17) 

J J 0 i=l 11 

must also have the unique integral solution (A^,...,A ) . We show that 

this is possible only in the case when the inequalities (1.16) hold. 

Suppose, on the contrary, that for some к , ot, < П(А.+1) . Then we can 
i^k 1 

prove that equation (1.17) has an integral solution, distinct from p . 

For every integral point of the parallelepiped 

H = {(yi..••.Ук_1»Ук+1.Уп) : Oly1lAi) in En_1 , we find integers 

h(y) and r(y) such that 

I <*.y. = h (y )a, + r(y) , 0 < r(y) < a,-l . 
i/k 1 1 * * 

Since |H_I = П (A.+l) and since the function r(y) can take no more 
Z i^k 1 

than aj, distinct values, there must exist y'eH^ . y"eH^ such that 

y'/y" but r(y')=r(y") . Hence 

У a • У •' 
i^k 1 1 

h(y')uk + У аіУ^ - h(y")ak • 
ifk 

Suppose, for definiteness, that h(y') > h(y") . It is easy 

to see that q = (Aq-yq+yq.^k-l_yk-l+yk-l’Afc+h(у')-h(у"), 

^k + l_^k + l+^k + l ’ ’ ’ ’’^т-^т+^т ^ a s0^^011 equation (1.17) and that 
q^p . This contradiction proves the theorem. // 
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§2 CONDITIONS FOR A POLYHEDRON TO BE INTEGRAL 

In this section we investigate the problem of recognizing, 

from its algebraic formulation, the property that the coordinates of all 

vertices of a polyhedron are integers. Polyhedra, all of whose vertices 

have integral coordinates, are called inte.gn.al . The problem of charac¬ 

terizing systems of linear inequalities which determine integral poly¬ 

hedra is, as yet, unsolved. A simpler problem is to describe classes of 

constraint matrices for which the corresponding polyhedra are integral for 

any right hand side. We give such conditions for integral vertices of 

polyhedra in terms of unimodular matrices. 

2.1 The Dantzig-Veinott Criterion 

The first integral polyhedron criterion was obtained by 

Hoffman & Kruskal (1958). To facilitate the proof we begin the exposition 

with a criterion proposed by Veinott & Dantzig (1968). 

Theorem 2.1 Let A e Z . 7h.e po tyh.ed.non 
Ш f n 

M(A,b) = {xeE^ : Ax=b » x^O} 

І6 integnal £on all vectonA beZ^ and only i/ the matniK А ІЛ 

unimodulan. 

Pnoof. (i) Sufficiency. Each vertex (basic feasible solution) 

x = (x-^,...,xn) of the polyhedron M(A,b) is uniquely determined by 

specifying the indices of the basic variables (without loss of 

generality we can assume that rank A = m ). Let В be a feasible basis 

containing columns with numbers • Then the components 

x / ' (x 
J1 

Bx,, = b . 

4B 
. x. 

J, 
of the basic feasible solution x are defined by 

b g - ^ . By assumption det В = ±1 and b is an integral vector. 

Then Cramer's rule implies that x^ is an integral vector. Since the 

remaining components of x are zero, x is an integral vector. 

(ii) Necessity. It is required to prove that if В is a basis 

and is an integral vector for any beZ , then det В = ±1 . Let the 

vector y£Zm have the property 

у + В e. > 
j i = ieN_ (2.1) 
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Consider the system 

Az = b° , b° = By + e± . (2.2) 

Since В is a basis of A , the system (2.2) is consistent. The basic 

solution of (2.2) with non-zero components given by Zg = B~^(By+e^) = 

у + В ^e^ is non-negative by (2.1) and is therefore a vertex of the 

polyhedron M(A,b ) . By assumption, the polyhedron M(A,b) is integral 

for any b , including b=b° . Thus zR is an integral vector. Since 
a -1 

the left hand side of the equation zn-y = В e. is an integral vector, 
-1 th и -1 1 -1 

so is В e. which is the i column of В . Thus В is an integral 
1 _q 

matrix. Then, since the determinants В and В are integers and since 

det В . det В ^ = 1 , we have det 3 = ±1 . // 

Definition 2.2 A matrix is called at-ло tutety unimoduta/i if 

all of its non-zero minors are equal to 1 or -1 . 

Theorem 2.2 Let A £ Z . 7 h.e po tytope 
- m,n 

M(A,b1,b2,d1,d2) = (xeEn ; b^Ax^b2 , d^x^d2} 

12 12 
г-4 integeat f.on. arty vecto/іл b ,b £ , d ,d e Zr it and onty if- the 

mat/іік А г-4 at^o tutety un imoduta/i. 

Theorem 2.2 follows from Theorem 2.1 if we transform from the 
12 12 

normal specification of the polytope M(A,b ,b ,d ,d ) to the canonical 

specification by introducing artificial variables and using the obvious 

assertion that : a matrix A is absolutely unimodular if and only if the 

matrix (A,I ) is unimodular, where I is the (mxm)-identity matrix. 

2.2 a-Modular Matrices 

Definition 2.4 A matrix A of rank m is called a-moduta/i 

if all of its mu -order non-zero minors are equal to ±a .(where at is 

positive). 

The following result is contained in Kowaljow, Nguen Ngia & 

Kiihn (1977) and Kovalev, Isachenko & Nguen Ngia (1978). 

Theorem 2.3 Let A He a QL-moduta/i mat/іік.. Idea the poty- 

hed/ion M(A,b) г-4 integ/iat i{. and onty it M(A,b) ka-4 at tea^t one 

integnat ue/ite,x. . 
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The necessity of the condition is obvious. Before demonstra¬ 

ting its sufficiency we list some properties of а-modular matrices. 

Lemma 2.4 Ike following s*tatements* a/ie equivalent : 

(1) A is* an a-modulan matnix; 

(2) Let В He any (Las*is> о/ the matnix A . 1 ken В ^A is* a 

unimodula/i integnal rn.atn.lx. 

(3) В H La an als*o lately unimodulan matnix -/Lon any las*is* В of 

the matnix A ,wkene H is* the s*ulmatnix fonmed <Ly the columns* of. A 

lokick ane not included in the las*is> В . 

(4) Ike matnix A may le nepnes*ented as* the pnoduct of a non- 

s*ingulan matnix D (det D =a) and a unimodulan matnix V . 

Pnoof of the Lemma (2)»{3). The matrix В ^A is the matrix of coeffi¬ 

cients of the expansions of the columns of A relative to the basis В . 

After suitable interchanges of columns, it takes the form (B H,I ) 
m 

where I is the (mxm)-identity matrix. Hence (2) and (3) are equivalent. 

(l)=K2). Note first that if В is a basis of an a-modular 

matrix, then every element of the matrix В A is either 0 or ±1 . 

Indeed, let В = (A ^,...,A m) and let A^' be a column not in the basis. 

Then solving the system of equations 

m i. 
AJ = I A.A 1 , 

i=l 1 

we obtain A^ = -1,0 or 1 . The unimodularity of an arbitrary basis 

В 1 (A "*■, . . . , А ш) of the matrix В "'"A follows from the relations 
-1 к, к 1 к. к 

det(B A ,...,B A m) = det В . det(A .A m) = +1 , which depend 

upon the definition of an а-modular matrix and the theorem on the deter¬ 

minant of a product of matrices. 

(2M4). If B-^A is a unimodular matrix, then putting 

D=B , we have A = DB "'‘A = DV , where V = В ^A. 

(4)=Kl)• Any basis В of a matrix A representable in the 
i-, i 

form A=DV , takes the form (DV ,...,DV m) . By the unimodularity of 
i, i 

V we have det В = det D . det(V ,...,V m) = det D , that is, A is 

an а-modular matrix. // 

Thus to establish the а-modularity of a matrix A it suffices 

to establish the unimodularity of В-±А or the absolute unimodularity of 
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В 1Н for any basis В of A . As the proof of Lemma 2.4 shows, if 

there is a basis В such that the matrix of components of the columns of 

A expanded relative to the basis В is unimodular, then for any basis U 

of A , U "'"A is unimodular. 

Pnoof of sufficiency in Iheo/iem 2.3. Let В be a basis such that 

(B b,0) is an integral vertex of the polyhedron M(A,b) . Consider the 

system Ax=b and the equivalent system 

B_1Ax = B_1b . (2.3) 

By Lemma 2.4 В ^A is an integral unimodular matrix and by the condi¬ 

tions of the theorem В ^b is an integral vector. Further, by Theorem 

2.1 all basic solutions of (2.3) are integral. It follows that all basic 

solutions of Ax=b are integral, that is the polyhedron M(A,b) is 

integral. // 

Corollary 2.5 Let A Le. an a-moduta/i matnix and let В (Le 

an a/ii-itnany Lasis о/ A . 7Лея, the. potyhednon M(A,b) І4 integnat fo/i 

ait vectors b such that В "^b is an integnat vecton. 

For example, if the augmented matrix (A,b) is a-modular, 

then В b is an integral vector and so M(A,b) is an integral poly¬ 

hedron . 

2.3 (t1)-matrices 

A matrix A all of whose elements are equal to ±1 is called 

a (±1)-matnix and denoted by A + -^ . We consider for what vectors b 

the polyhedron M(A+^,b) is integral. 

We say that the components of the vector b = (b-^,...,b ) 

have the лате panity if they are all either odd or even, that is, 

b,Hb„=...Hb (mod 2). 
12 m 

Theorem 2.6 i). If. M(A + ^,b) is an integnat potyhednon 

then the components of b have the same pa/iity. ii). If the components 

of b have the same panity and if A + ^ is a 2 -modutan (mxn) -matnix, 

then M(A + -^,b) is an integnat potyhednon. 
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The proof depends on the following Lemma, which follows from 

the matrix diagonalization procedure described in §1. 

Lemma 2.7 Let B + -^ le a non-6 in gulan (mxm )-matnix who-ье 

element* ane equal to ±1 . Then, thene i* a uniraodulan (mxm) -matnix V 

*ueh that the rn.atn.LK H = B + -^V {the. RenmitLan fопт. of B+^) take.* the 

fопт : 

hil 

h. . 
ij 

h. . 
ij 

±1 

0 

0 

, VieN 

(mod V (i,j) e NmxNm , i > j . j / 1 

V(i,j) £ NmxNm « i < j • 

Pnool о/ Theonem 2.6. Since the matrix V is unimodular, for any basis 

В the system Bxg = b has an integral solution if and only if the system 

Hy = b (2.4) 

has an integral solution. These solutions are connected by the rule 

Xg = Vy , у = V 1xR . The structure of the matrix H , given by Lemma 

2.7 , demands the equal parity of the components of b in order that (2.4) 

should be solvable in integers. 

If A is a 2m ^"-modular matrix then h.. = ±2 for all i > 2. 
li 

Thus in this case the condition that the vector components are of the same 

parity is sufficient for the solvability of (2.4). 

В of. onclen 

C orollary 2.8 If ail the element4 of the попліпдиіап matntK 

m>.2 ane equal to ±1 . then det В = 0 (mod 2Л ^). 

§3 ABSOLUTELY UNIMODUALAR MATRICES 

Clearly, an absolutely unimodular matrix can only have compo¬ 

nents equal to 0 , +1 or -1 . The class of all such (mxn)-matrices is 

denoted by C 
J m, n 

3•1 Criteria for Absolute Unimodularity 

Definition 3.1 A matrix is called an Eulenian matniK if 

the sum of the elements in each of its rows and each of its columns is 

even- 
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Theorem 3.1 The lоllowing state.me.nts aee equivalent : 

) A u ал absolutely unimodulae mateix. 

) Given a vectoe x with components 0 , ±1 , the/ie is a 

with components 0 , ±1 such that 

II
I 

(mod 2) , (3.1) 

V = 
0 , 

±1 , 

il A. x 
l 

il A. x 
l 

- 0 (mod 2) 

= 1 (mod 2) 
(3.2) 

Ion. all nows 

3) 

A. ol A. 

Iveny squane, eulenian sub-matnix ol A is singula/i. 

4) tveey mino/i ol A is eithen ze/io on. is an odd numle/i. 

5) Toe any non-singular sub-mateix. А^ о/ A the following 

condition holds : h.c.f.{ 

all ze/io. 

У A.a. . : iel) = 1 lo/1 all X. e {0,±1} not 

jeJ J J 

1 

2 

vector1 y 

Peool We follow the scheme : (1) =K2 ) =>(3 ) =Kl) , (1) =г>{ 4) =K 3 ) . (1) =*{5 ) =K3 ). 

The criteria (2)—(5) for absolute unimodularity were proposed respectively 

by Padberg (1976) , Camion (1965) , Gomory (1969) and Chandrasekaran (1969) 

(l)=s>(2). Let A be an absolutely unimodular matrix. Then, 

is an arbitrary vector with components 

i—
1 

+1 

О
 define 

о , if X
 

II
I 
О
 

(mod 2), 

dY = 
i 

(x.-l)/2 , if X. HI 
1 

(mod 2) , v=l. 

(x.+l)/2 , if X.S1 (mod 2) , v=2, 
l 1 

ai/2 , if 

о
 

III •
r

 
cd (mod 2), 

bY = 
1 

(ai-l)/2 , if a. El (mod 2) , v=l. 

(a.+l)/2 , if a.El 
l 

(mod 2) , v=2, 

where 
11 

i. = 2 a-• By Theorem 2.2 , the non-empty polyhedron 

1 j=l 1J J 

M = 

12 12 
M(A,b ,b ,d ,d ) is integral. Hence, there is an integral vector x'eM . 

Let 

Then, the vector у 

(2M3). — "p 
be a vector with components x^. =1 

exists a vector y^O such that A^y 

x - 2x' satisfies conditions (3.1).(3.2). 
J 

be an eulerian sub-matrix of A . Let 

jeJ and х^=0 * j• Then there 

0 for iel and this means that 

the rows of the matrix are linearly dependent , so that det А^ = 

(З)^!). Suppose that the matrix A is not absolutely 
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unimodular. Further, let В be the minimal (sxs)-submatrix of A such 

that det В ^ 0,±1 . Consider the matrix В = В ^det В . Take any of its 
+■ V| — ІЛ — 1/- 

columns, say the к , В Then BB = det В . From the rule for 

calculating inverse matrices and from the assumption that all proper sub¬ 

matrices of В are absolutely unimodular, it follows that В e C 

Permute the rows so that the vector В takes the form (d,0) , where all 

components of d are ±1 . For the submatrix D of В consisting of 

the columns of В corresponding to the vector d we have Dd = BB = 

e, . det В . 
к 

Since det В ^ 0 there is a non-singular submatrix D' of 

D such that D'd = e^ det В , where e^ are the components of e^ corres¬ 

ponding to the submatrix D' . Since the components of d equal ±1 , 

then, if we replace one of the columns of D' by e^. det В and expand 

the determinant of the matrix D" so obtained by this column, we have 

0 ^ det D' = ±det D" = ±det В . The final equality follows from the 

absolute unimodularity of any proper submatrix of В . 

By the minimality property of В we deduce that D1 = В , 

d = В . Hence, since к is arbitrary, the components of every column of 

В are ±1 . Thus В is a ±l-matrix. Then, by Corollary 2.8 , 

det В = 0 (mod 2s ^) . On the other hand, det В = (det B)sdet В ^ = 

(det B)s_1 . So, det В = 0 (mod 2) 
—к 

At the same time BB = e, det В , from which it follows that 
th k 

the sum of the elements in the к row, and hence in any row, is even. 

It can be shown similarly that the sum of the elements in any column of В 

is even. Thus, В is an eulerian matrix. But this contradicts the 

supposition that det В / 0 , 

(l)=K4). Obvious. 

(4)z5>(3) • Proof by contradiction. Let an eulerian submatrix 

В of A be non-singular. Then, adding together all the rows of В we 

obtain a nonzero row all of whose elements are even numbers. Thus det В 

is even. This contradicts (3). It follows that (4)^3). 

(l)=K5). Suppose that for a non-singular submatrix a£ and 
J- J 

for some A. e {0,+l,-l} the statement in (5) is not satisfied. In AZ. 

replace a column s , for which As/0 , by a column with elements 

I A.a. . . In so doing we obtain a matrix В such that 
jeJ J 1J 

0 ^ det A1! = ±det В = det B'(h.c.f.{ I A.a. . : iel} ) , 
jeJ J 
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where В' is an integral matrix. This contradicts the assumption that 

det Aj = ±1 . 

(5)=K3). Suppose there is a non-singular eulerian submatrix 

Aj of A . The statement in (5) is true for all choices of A.e{0,l,-1}, 

and in particular for A. =1 . Then h.c.f.{ £ a. . : iel} = 1 

J jeJ 1J 
which contradicts the condition £ a. . = 0 (mod 2) . // 

jeJ 1J 

3.2 Eulerian Matrices 

In Theorem 3.1 , a central place is taken by the algebraic 

characterization of absolutely unimodular matrices by means of eulerian 

submatrices. We give an additional such characterization in the next 

theorem. 

Theorem 3.2 Ike following statement* ane equivalent : 

1) А i* an atL*o lately unimodulan matnix. 

2) Топ evenu лдиапе eulenian *u<Lmatnix o-L AeC , ike лит o( 
m ,n 

a(( tke element* i* a multiple о/ /ом. 

Pnoot (l)=>(2). Let Aj be an eulerian submatrix of the absolutely 

unimodular matrix A . Then J a. .x. = 0 (mod 2) , iel , where all x.=l. 
jeJ J J 

By (2) of Theorem 3.1 there is a vector у with components 1 or -1 

such that I a..y. =0 , iel . Let the vector w be obtained from у 
jeJ 1J J 

by replacing all the elements -1 by +1 . Since the number of non-zero 

components in any column of an eulerian submatrix is even, we have 

0 

which gives 

I I a.. = 0 (mod 4)• (3-3) 
ieljeJ 

(2)=Kl). By (3) of Theorem 3.1 it suffices to show that if 

equation (3.3) is satisfied for an eulerian submatrix A^ , then det A^ 

is zero. Suppose that an eulerian submatrix В of A exists for which 

(3-3) is satisfied, but that det В jt 0 . Let В have minimal order 

among all matrices having the stated property. Then, every proper euler¬ 

ian submatrix of В is singular and so all proper submatrices of В are 

absolutely unimodular (Theorem 3.1 ). 

= I l а. .у. = l l a..w. (mod 4) 
ieljeJ J J ieljeJ J J 
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Let b = ATe , where e is a vector of ones. Replace any 
1 j 

column, say the last, of the matrix by the column b . Then, the 

matrix so obtained, 3 , will be absolutely uniraodular. Hence, by (2) of 

Theorem 3-1 , there is a vector у such that yB = (0,0,...,0,4k) , where 

к is an integer. Thus det A^ = det В = ±4k . Since, by assumption, 

det Aj ^ 0 , we have |det A^| >4 • 

To complete the proof we need the following Lemma, due to 

R.Gomory (see Camion (1965)). 

Lemma 3.3 Let AeC and let I det A I >2 , then the/ie 

ex.i6t6 a 6q.ua/Le. бив-matnix. Q о/ A 6uch that |det Q| = 2 . 

P/iooL о/ the Lemma. Let D = (A, I ) and let K.C.C „ be the class of 
n n, 2n 

matrices which can be obtained from D by multiplication on the left by a 

unimodular matrix and contains I as a submatrix. 
n 

Let FeK. have the property that in the first n columns of 

F there are the maximum possible number of unit column vectors. At least 

one column vector F , k^n , is not a unit vector since there are no 

matrices in K. of the form (I ,G) because Idet AI > 2 . 
n i 

Let this be the column F and let the set J contain 1 

and the indices j , j<n , of unit column vectors F^ of F . 

Consider the (nxn)-submatrix of F consisting of the columns 

A^ , jeJ , and of any of the remaining unit column vectors of the remain¬ 

ing part of F . Clearly, there are n - |j| such submatrices. Among 

them there is at least one non-singular matrix, for otherwise the matrix 

determined by the first n columns of F is singular, which contradicts 

the assumption |det A| > 2 . Without loss of generality suppose that the 

submatrix 

is non-singular. Because U is non-singular ru^O , so ппе{1»-1} . 

Suppose for definiteness that Пр=1 • Then the matrix U has the form 
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The matrix U ^F i K. since it contains in its first n columns one unit 

vector more than F . Hence, among the elements of the matrix U^F 

there is at least one which is not equal to 0 or ±1 . We represent the 

unimodular matrix U ^ as a product of elementary matrices U , ...(Ug» 

where 

ding on the sign of 

the q^ row. Thu: 

" 1 0 . • • o' ' 1 0 ... o" 

-П2 
1 . • • 0 0 1 .. . 0 

0 0 . • * 0 t ... , U 
n 

0 0 .. . 0 

0 0 . 1 -n 0 .. . 1 
- n Ш 

be the smalle st intege r such that one of the elements 

q* * " V 
is not equal t о 0 , ±1 . The operation 

mat rix U 
q 

is the add ition (or subtrac ti on, depen- 

nq 
) of the fir st row of the mat rix U 

q -1* ‘ ' 
U2F to 

the ele ments of W wh ich are not equal t о 0 , ±1 
th 

must be equal to ±2 and they are all in the qUii row, moreover the 

elements corresponding to these in the first row must be non-zero. Let 

W*®' = ±2 . Note that in the first column of W , the element = 0 . 
q q 

Thus W contains a submatrix 

which lies in the intersection of the 1S^ and columns with the 
.st , th 
1 and q rows. 

Let S be the set whose elements are the numbers k,j and 

the numbers of the (n-2) unit columns which do not have units in their 

ls^ and qth rows. Then det DS = det WS since the matrix Ws is 

obtained by multiplication on the left by some unimodular matrix. Since 

D = (A,In) , det Ds coincides with the determinant of some sub-matrix Q 

of A . Thus det Q = ±2 . This proves the Lemma. // 
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3.3 Unimodular Hypergraphs 

We consider conditions for absolute unimodularity of Boolean 

matrices. Every Boolean Matrix is an incidence matrix of a hypergraph. 

The terminology of hypergraphs is taken from Berge (1970) and Zykov (1974). 

A pair H = (I,E) is a hypengnaph if I is a finite set 

and E is a family of non-empty subsets of I . The elements of I are 

called ventices and the subsets E. of the family E are edges of the 

hypengnaph . 

Let I* Cl . The hy pengnaph genenated by the ventices of 

I' is the pair H^, = (I'.Ej,) , where E^, = {E^DI1 : Е^-Л1'00} 

We say that the hypergraph H is bichnomatically balanced 

if its vertices are coloured in two colours in such a way that for each 

edge the number of vertices coloured in the first colour is either equal 

to the number coloured in the second colour or differs from it by one. 

Definition 3.2 The hypergraph H = (l,E) is called 

unimocLulan if the hypergraph H^, = (lT,Ej() generated by any subset of 

vertices I'Cl is bichromatically balanced 

The following criterion was apparently first obtained by 

Ghouilla-Houri (1962). 

Theorem 3• 4 7 he following statements ane equivalent : 

1) А is an absolutely unimodulan Boolean matnix. 

2) A is an incidence matnix of a unimodulan. hypengnaph. 

3) fveny subset I of the now indices of. a Boolean matnix A 

can be pa/ititioned into two subsets I ' , Iм such that 

I A. - I A. 
iel' 1 iei" 1 

whene A. is the i^ now of A . 
l ^ 

Pnoof The equivalence of 2) and 3) is obvious. 

(l)s£>(2). Let H be the hypergraph generated by the matrix 

A by regarding A as an incidence matrix. (That is, the rows correspond 

to the vertices of H and the columns correspond to the edges of H and 

a..=l means that the i^*1 vertex lies in the set, while a. . = 0 means 
J th th . 

that the i vertex does not lie in the j edge set). By Theorem 3.1, it 

suffices to show the equivalence of statement (2) of Th.3.1 and statement 

(2) of the above theorem. We reformulate statement (2) of Theorem 3.1 in 
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the following form : for any subset I of the row indices of the matrix 

A , there is a vect or у satisfying 

Уі = 0 ѴШ , (3.4) 

Уі = ±1 Viel , (3.5) 

yAJ" 0 , ±1 Vj . (3.6) 

With each vector у whose components satisfy the relations (3-4)-(3.6), 

we associate a colouring of the vertices of the hypergraph in two 

colours, according to the values of the components y^ , iel . The 

relation (3-6) guarantees that the hypergraph is bichromatically 

balanced. Conversely, every bichromatically balanced hypergraph generated 

by the vertices of I corresponds to a vector у satisfying conditions 

(3.4Ы3.6). // 

Example : On a line L let there be given a set of points I 

and a finite family of subsets of I 

.. ,b. 
1 1 ' 

ХЕІ 

1 1 

H = (l,E) , where 

a.<x<b. 
i= = l 

ieN 

E = {E 
a. ,b. 
l l 

ieN } 
n 

is called a The hypergraph 

kype-ng/iaph. o£ Lnte./ivais>. Clearly, a hypergraph of intervals is unimodular. 

The required colouring can be obtained by colouring the points of I 

successively in order as one moves along the line. By Theorem 3*4 the 

incidence matrix of the hypergraph is absolutely unimodular. 

A subset I' of vertices of a hypergraph H = (l,E) is 

called Lnne./i-AtalLLe. if 111 П E . | ^ 1 for every edge E . eE . The inne./i 
. J J 

Atai.il.ity numie./i a(H) of a hypergraph H is defined to be the largest 

number of vertices in any inner stable set of H . The oute./i Ataiility 

numie./i p(H) of H is the smallest number of edges which cover all 

vertices of H . 

Corollary 3• 5 (Berge 1970) Le.t H ie. a unimodulan. hype.ng/iaph, 

the.n ІІА inne/i and ou.te./i Ataiitity numie./iA a/ie. e.guat. 

P/loo£ Let x = (x^,...,xn) be the characteristic vector of an inner- 

stable set. Then, if A is the incidence matrix of the hypergraph H , 
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we have, by Theorems 3.2 and 3.4 that ot(H) = max{ex : xA<e , x>0}. The 

dual problem min{ey : Ay>e , y^O}, by the unimodularity of the matrix A , 

also has an integral solution y* , whose components are 0 or 1 . 

Hence, by the duality theorem of Linear Programming, we have a(H) = p(H).// 

A chain ol length q in a hypergraph H is a sequence of 

distinct vertices and edges of the form v]_' ’ v2 ’ ^2 ’ " * * ’ ^q ’ Vq + 1 ’ suc^ 

that 
vk’vk+l 

Г TP e *ik VkeN 
q 

• If 
Vi 

= v^ , then the chain is called 

cycle o-L length q . An odd. c-y cle o£ a hypen. gnaph is a cycle whose 

length is odd • 

Propos ition 3.6 u a hyp e/ignaph doet not contain any odd 

cycle-i , then it іл animodula/i • 

Pnool Let th e edge E. 
l 

of the hypergraph H consist of the v ertices 

{vi'-‘ 

n. 
11 

• . vL } , where n. = 
l l£i 1 . C ons ider the graph G = (V,E) where 

E = I (v^,v? ),...,(vi 
2[п±/2]-1 2[п±/2] 

’Vi 
) , ieN. 

Suppose the graph G contains an odd cycle. Then, consider 

an odd cycle p of minimal length. If the cycle p contains two edges 

(v ,v ,, ) and (v,,v, ,,) belonging to some edge E. of the hypergraph 

H , then we break it up into two chains of odd length of the form 

vl’v2’*’'’vs,vt’vt+l'*'-,V1 ’ vl’'*‘,vs,vt+l.V1 ’ In this ѵаУ we 
obtain a sequence of chains of odd length which together define an odd 

cycle of the hypergraph H , which contradicts the hypothesis. Thus, the 

graph G contains no odd cycles and hence is bichromatic (see Corollary 

4.3). Since G has a bichromatic colouring it follows that the hyper- 

graph H and any hypergraph generated by a subset of its vertices is also 

bichromatically balanced. Thus, H is a unimodular hypergraph. Ц 

§4 UNIMODULAR INCIDENCE MATRICES 

If the incidence matrix of a graph is absolutely unimodular, 

then an extremal problem on such a graph reduces to a linear programming 

problem which implicitly guarantees the existence of simple and effective 

algorithms for finding an extremum. Moreover, the duality theorem of 

linear programming is true for such problems and this gives rise to many 

important combinatorial theorems. 
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4-1 Criteria for Absolute Unimodularity 

Let C* be the set of all matrices of class C which 
m»n m, n 

contain exactly two nonzero elements in each column. It is clear that 

every matrix A t C* n is an incidence matrix (vertices-edges) of some 

mixed graph G(A) which may have both oriented and non-oriented edges. 

Without loss of generality we assume that A has no columns in which both 

non-zero elements are negative. Such columns could be multiplied by -1 ; 

this would only change the signs of some of the minors of A . 

Theorem 4.1 Let A e C* . The tollowina ctatementc are 
-— m,n и 

equivalent : 

1) A ic an abcolately unimodular matrix ! 

2) А ic the incidence matrix o£ a mixed graph G(A) in which 

every cycle, conflicting о/ both oriented (dicregardin g о dentation ) and 

unoriented edgec, hac an even number o£ uno/iiented edgec ; 

3) (Heller & Tompkins 1958) The atowc о/ A can He partitioned 

into two disjoint cetc and cuch that i-fL the two non-null 

elementc in a given column have the came cign then they belong to di-fL-lenent 

cetc, while 4/ they have oppocite eigne then they belong to the came cet. 

Proof. l) => 2). Let G(A) contain a cycle C in which there is an odd 

number l of unoriented edges. Let В be the (kxk)-submatrix of A 

corresponding to the cycle C . We calculate the determinant of В . 
th 

= 1 to the ith- To do this, add the p -row, containing the element a 
th Pe 

row, containing the element a. = -1 . The e -column now contains only 

one non-zero element, namely a^e . Now expand the determinant by this 

column and obtain det В = ±det B' , where B' is the (k-1)x(k-1)-matrix 

which corresponds to the cycle C 1 which is obtained from C by removing 

the vertex i and shrinking the edge e . Continuing this process, we 

eventually obtain an (^x^)-matrix which is the incidence matrix of a 

cycle consisting of l #non-oriented edges. This matrix, after suitable 

row and column permutations, takes the form 

—
1

 

0 0 . . . l" 

1 

1—
1 0 . . . 0 

0 1 1 . . . 0 

. 
О
 

_
1

 

. 
о
 0 . . . 

-
1

 
• 

1—
1 
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It is easily seen that det В* = 1 + (-1)^ \ so that if i is odd, then 

det В = ±det B* = ±2. This contradiction shows that l) => 2). 

2) =>3 ) • Let G(A) be a connected graph (the connectivity 

is understood to ignore orientation), otherwise carry out all constructions 

on the connected components of G and assume, in this case, that the 

matrix A has a block structure. Select an arbitrary vertex i of the 

graph G(A). Construct two sets of vertices J-^ and as follows : J-^ 

consists of the vertex i and all vertices which can be connected to i 

by a chain with an even number of non-oriented edges; consists of all 

vertices which can be connected to i by a chain with an odd number of 

non-oriented edges. By condition 2) and since G(A) is connected, each 

vertex lies in one and only one of the subsets J-^ and Also, there 

are no non-oriented edges connecting vertices in the same set J-^ or J^ 

and any oriented edge must connect vertices in the same set, otherwise 

there would be a cycle with an odd number of non-oriented edges. Thus, we 

have obtained a partition of the rows into the required sets and • 

3) =>l). We use induction on the dimension of an arbitrary 

(kxk)-submatrix В of the matrix A . Statement 1) is true for k=l 

since all a^j = 0,±1 . Suppose that all minors of order к are equal to 

0,±1 and consider any (k+1)x(k+1)-submatrix В . If В contains a zero 

column, then det В = 0 . If В has a column with a single nonzero ele¬ 

ment then, expanding the determinant of 3 along this column, we have 

det В = 8' , where S' is plus or minus the cofactor of the nonzero ele¬ 

ment. By the inductive assumption 8' = ±1,0 . It remains to consider the 

case where each column of В has two non-null elements. Then, by 

statement 3) 

l К 
is 

l К • 
ie J. 

'1 "ou2 

Thus, the rows of В are linearly dependent, so that det В = 0 . All 

conclusions remain valid in the case where one of the sets is empty.// 

Corollary 4.2 The incidence mateix. о/ any oniented g/iaph 

ІЛ a&.Aolu.tety un imoduian. 

This result was already formulated by Poincare (1901). 

A соiou/iin g о/L a g/iaph is an assignment of colours to its 

vertices such that no two adjacent vertices receive the same colour. Thus, 
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a colouring of a graph with к colours partitions the set of vertices 

into к disjoint classes in each of which there are no adjacent vertices. 

The ch/iomatic num&e/i y(G) of a graph G is the smallest к for which 

the graph G has a colouring in к colours. A graph which can be colour¬ 

ed in two colours is called tichnomatic. 

Corollary 4.3 A g/iaph La £L chn.om.atic it and only L£ it doeA 

not contain any odd cyc£eA, 

A sufficient condition for the unimodularity of a matrix, due 

to Heller (1957), follows from Theorem 4•1• 

Corollary 4.4 A mat/iix. whoAe cotumnA a/ie. the. coondinateA o£ 

the edgeA o£ а Aimpteic nelative to а £аАІА сопАІАІІпд о/ a AutAet o£ the 

edgeA o£ the Aimptex. іа unimoduian. 

Pnoo£ Let the simplex T^ ^ be given by the conditions 

n 

I X. 

i=l1 
= 1 x. > 0 

1 — 

Any edge £ of Tn ^ is the intersection of 

= 0 , i^p,; where p,seNn. Any normal to 

ieN . 
n 

Tn_-^ with hyperplanes 

£ has components 

1 and the other a. , i^p,s , arbitrary. The direction vector 

a = (a^,...,a ) of the edge 

conditions aa = 0 Hence 

£ (of either orientation) satisfies the 

a. = 0 , i^p,s , a = ±1 , -a = ±1 . The 
1 p s 

matrix A consisting of the vectors a for each of the sides £ of the 

simplex T^ ^ is absolutely unimodular by Theorem 4*1* By Lemma 2.6, the 

matrix of coefficients in the expansions of the non-basic vectors relative 

to any basis В is absolutely unimodular. This proves the corollary. // 

4.2 Bipartite Graphs 

Non-oriented graphs with absolutely unimodular incidence 

matrices play an important role in a number of applications of graph 

theory. 

Definition 4.1 A (Lipantite gnaph is a graph G = (U,V,E) 

in which the set of vertices is partitioned into two disjoint subsets U 

and V such that every edge (ifj)eE joins some vertex ieU with a 

vertex j eV . 
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If any two vertices ieU , jeV of G are joined by an edge 

(i,j) then the graph is called a dom.pte.te. tipantite g/iaph and is 

denoted by К , where m = |u| , n = |V| . 
■' ra, n 

The equivalence of statements 2) and 3) of Theorem 4-1 

implies that a graph G is bipartite if and only if all of its simple 

cycles have even length. 

The incidence matrix R of a complete bipartit e graph 

К takes 
m, n 

the form 

-L • • . 1 0 . . . 0 . . . 0 . 0 " 

0 . . . 0 1 . . . 1 . . . 0 . 0 

R = 0 . . . 0 0 . . . 0 . . . 1 . 1 

1 . 0 1 . . . 0 . . . 1 . 0 

0 . . . 1 0 . . . 1 . . . 0 . 1 

From the equivalence of statements l) and 3) of Theorem 

4.1 we obtain : 

' orollary 4• 5 7he incidence mat/iix of a non-0niented g/iaph 

G ІЛ at/>otutety unimoduta/i if and onty if. G i-i a tipantite gnaph. 

In the theory of bipartite graphs a fundamental role is play¬ 

ed by Konig's Theorem which we present here in a matrix interpretation. 

A tine in a matrix is a row or a column of the matrix. Two 

elements of a matrix are non-cottinea/i if they do not lie in any one 

line. 

Theorem 4.6 (Konig's Theorem) 7he maximum num&en of раіпшіле 

non-соttinean ипііл of any Bootean matnix ix> eguat to the minimum numten 

of tine/> which coven att the unitt in the matnix. 

Pnoof To find the maximum number of pairwise non-collinear units of the 

(mxn)-Boolean matrix (c..) , it suffices to find 
ij 

m n 
max T J c. .x. . 

i=l j=l ^ ^ 

subject to the constraints : 
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1 (4.1) I x.. < 1 
i=l ^ - 

n 

I X. . < 1 

j=l 1J - 

X. . 
1J 

0 or 1 

VjeNn . 

VieN * , 
m (4.2) 

V(i,j)eN xN . 
d m n 

The minimum number of lines covering all units of the matrix 

(c^.) may be found by solving the problem : 

m n 
min l u. + 

i=l1 
l 

j = 

u. 4 V . > c. . l J = ij 

u. ,v 
X 

. = 0 
J 

or 

olution (uf 
1 

V (i,j)eN x N , 
4 J ' m n 

V (i, j )eN xN . 
4 J m n 

(4.3) 

minimum covering consisting of the set I of rows for which u? = 1 and 

the set J of columns for which v¥ = 1 . 
J T 

The coefficient matrices A and A of left hand sides 

of (4.1).(4.2) and (4.3) are absolutely unimodular since they are incidence 

matrices of a bipartite graph (see Corollary 4-5). Thus we can replace 

the requirement that the variables be integral by the requirement that the 

variables be non-negative. We then have a pair of dual linear programming 

problems and by the duality theorem we have 

m n 
I c. . xf. 

i=l j=l ^ 

m n 

I u| + I v* . 
i=l 1 j=l J 

This proves the theorem. // 

It should be noted that Konig's Theorem remains true if 

instead of Boolean matrices we consider non-negative matrices, i.e. matri¬ 

ces with non-negative elements. Of course, in this case we consider sets 

of lines covering all the positive elements of the matrix. 

A diagonal ot the. (n xn)-mai/iix. (c^. ) is a sequence of 

elements c, ,...,c , any two of which are non-collinear. The follow- 
ІТТ, П7Т J 

X n 
ing result, due to Frobenius, will be used later. 

Corollary 4.7 Let A le an (nxn) -non -negative matnix. 1 den 

eveny diagonal o£ A include.* a zeno element itt and only If. A da* a 

zeno (sxt) -*u&.mat/iix, udene s+t .> n+1 . 
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P/loo£ (i) Suppose that every diagonal includes a zero element. Then, 

by Konig's theorem, the minimal number of lines, p , covering the positive 

elements of A , satisfies the inequality p < n . Among these lines let 

there be r rows and l columns. Then, using the remaining lines, 

there is a null submatrix which has s = n-r rows and t = n-t columns. 

Hence s+t = n-r+n-^ = 2n~p > n . 

(ii) Now suppose that the matrix A has a zero (sxt)-submatrix 

Aj with 111 +1JI = s+t > n . Suppose, further, that the matrix A has a 

diagonal which contains no zero element. Then, in the columns with 

indices in J , the diagonal elements must lie in the ((n-s)xt)-submatrix 

\I and» consequently, t < n-s . But t > n-s and we have a contra- 
n ' 

diction. // 

4.3 Theorems on Flows 

Let G = (V,E) be an oriented graph (dignaph) with two 

distinguished vertices s and t called, respectively, the -bounce and 

the ліпк . To each directed edge (i.jJeE of G we associate a weight 

d^j 0 called the £low capacity . A /£ow of magnitude Ѳ in the 

digraph G is a set of numbers { (x^^ ) : (i,j )eE} satisfying the following 

conditions. 

I x. . 
i : (i, j )eE i;) 

I x. i 
Jk 

< d. . 
ij 

k: (j,k)eE 

V(i,j)eE . 

■Ѳ for j=s 

Ѳ for j=t 

0 f or j^s,t. 

■ Ѳ assumes it 

rtex set of the 

(4.4) 

(4.5) < x. . 
ij 

The flow (x. . ) is a max 
ij 

possible magnitude. 

G into two disjoint subsets S and T such that seS and teT . Then 

the set of directed edges (i,j)eE with ieS.jeT is called a cutset о/ the 

digraph G . The capacity o£ the cutset (S,T) is the sum of the flow 

capacities of the edges in the cutset. The following theorem, due to Ford 

and Fulkerson (1962), is widely known as the Max.Flow-Min.Cut Theorem. 

Theorem 4.8 (Ford-Fulkerson) The maximum Ііош, Ѳ , in a 

digraph G І4 equaL to the capacity о/ the minimum cutset in G . 
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1 

Pnoof We introduce dual variables u^ , ieV , corresponding to the 

constraints (4-4) and variables w„ , (i,j)cE , corresponding to constr¬ 

aints (4.5). Then, the dual of the maximum flow problem takes the form 

min \ d . .w. . 
(i, j )eE ^ ^ 

-u + u, > 1 , 
s t = 

-u. 
1 

+ u. + w. . > 0 
J ij = 

•H
 

>
 »j)eE , 

w. . 
1J IIV

 

0
 •H 

>
 ,j)eE . 

The constraint matrix in (4*4) is clearly the incidence 

matrix of the digraph G and, by Corollary 4-2, it is absolutely unimodu- 

lar. Hence, the optimal solution of the dual problem is integral. 

Furthermore, from Cramer's Rule it follows that the components of the 

optimal solution are equal to 1 or 0 . From this optimal solution we 

define a cut (S,T) by ieS if u^ = 1 and ieT if u^ = 0 . It 

follows that w.. = 1 if ieS.jeT and w.. =0 otherwise. The statement 
!J ij 

of the theorem follows from the duality theorem. // 

)orollary 4• 9 If the flow capacities 

then thene is an integnal maximum flow. 

a/ie whole numlens 

The following corollary, known as Menger's Theorem (Ford & 

Fulkerson 1962) follows from Theorem 4*8 and Corollary 4-9. 

Corollary 4-10 (Menger) Let S and T fe two disjoint 

subsets of the ventex set of a gnaph G . The maximum numlen of disjoint 

chains fnom S to T is ec'ual to the minimum numlen of ventices in any 

(S ,T)-sepanating set, that is, a set of. ventices which Hocks all paths 

fnon S to T . 

A second variant of Menger's Theorem was published by Whitney 

(Ford & Fulkerson 1962) 

Corollary 4.Ю1 (Whitney's Theorem) Any pain of ventices in 

a gnaph G can Le joined ly at least n disjoint paths if and only if 
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the -imatte-it numLe/i о£ venticeA wko-ье. /ie.rn.ovat woutd. Lead to an. unconnected 

g/iaph. i-ь n • 

A consequence of Theorem 4*8 is the Theorem of Supply and 

Demand. Suppose that, instead of two vertices s and t as source and 

sink, we designate two subsets of vertices S and T . To each vertex 

ieS there corresponds a number a^ > 0 (the supply at source i ) and 

to each vertex jeT there corresponds a number b. > 0 (the demand at 

sink j ). The question arises : is it possible, using the flow capacities 

of the directed edges, to satisfy the demand at the sinks using the supply 

at the sources. This is equivalent to determining whether or not the 

following system of constraints is consistent : 

I x. . 
j:(i,j)eS ^ 

< a^, if ieS, 

I x.. = 0, if iffS.i^T, 

J' : ,i)eE < -bi, if ieT, 

(4.6) 

0 < x. . < d. . 
~ ij = ij 

V(i,j)eE . (4.7) 

This question is answered by the following theorem, due to 

Gale (Ford & Fulkerson 1962). 

Theorem 4*11 7he con-itnaintj (4.6), (4*7) a/ie соплі-btent і/ 

and onty і£, /on. any *et ІСѴ it І4 t/iue that 

l _bi - l J*-* 1 l _d.. (4.8) 
іеТПІ ieSDI 1 (i.jjelxl J 

uikene I = V\l . 

V/ioo£ (i) Suppose that the system (4-6), (4-7) has a solution (x. .) , 

then multiplying each of the inequalitites in (4-6) with ieT by -1 and 

then summing them over iel , we obtain 

I _b. 
іеТПІ x 

I a. < 
ieSni 1 (i . , j^eVx! ij" (i,j^el: i, j'SelxV*1-5 

(i,jfelxl*1^ (i,j?eIxIXlj 

I _d. . . 
(i.j)elxl 1J 

(i , j ІеІхІ 1J' 
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Thus conditions (4-8) are necessary. 

(ii) To prove sufficiency, consider the digraph G* with vertex 

set V* = VU{s,t} and with directed edges E* = EU{(s,i):ieS}U{(i,t): 

ieT} . Define the flow capacities of the edges of the new graph by 

Sj ' 

V 
if i=s , jeS, 

d* . = 
ij 

if ieT , j=t, 

d. . , 
i iJ 

if (i,j)eE . 

We show that the set (T.t) defines a minimal cut in the graph G* 

Indeed, let (U,U) be any cut in G# . Then, putting I = U\s , I = U\t, 

we obtain a cut (l,l) in the graph G , for which 

У _d*. - У d*. 
(i,j)eUxU 13 (i.j)eTxt 13 

= У d*. + У _d*. + У _d*. - У d*. 
(i.J)Elxt 13 (i.j)esxl 13 (i.j)elxl 13 (i,j)eTxt 13 

= У b. + Уа.+ У d. . У b. 
ieTDI 1 ieSm 1 (i,j)elxl 13 jeT 3 

= - У _b. + У _a. + У d. . > 0 . 
j еТЛІ 3 ieSfll 1 (i.j)elxl 13 

From the Ford-Fullcerson Theorem applied to the digraph G* , there exists 

a flow x* of magnitude У d*. whose restriction to the set E 
(i.j)eTxt 13 

clearly satisfies the constraints (4.6), (4.7). // 

In particular, if G is a bipartite graph and if У a. = 
ieS 1 

У b. , then Theorem 4*11 takes the following form : 
jeT 3 

Corollary 4.12 The system 

n 
Ух.. = a. 

j-1 1J 

Ух.. = b. , 
i=l 13 3 

0 < X. . < d. . , (4.9) 
= ij = ij 

in which a.,b.,d. . a/ie aiven nonze/io numlens, is сопл intent ii and only 
i J ij 

^ m n 

l ai = I bi 
i=l 1 j=l 3 

and one. oi the io llowing equivalent conditions is satisiied : 

1) у max(0,b . - yd,.) 
j=l 3 iel 13 

< I_ai 
iel 1 

V Ic N i 
m 
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m 
2) I min (a., Id..) > I b. VJCN . 

i=l 1 j e J 1J jeJ J 

If a.,b.,d.. are all integers and if the conditions of 
1 J 1J , 

Corollary 4-12 are satisfied, then, since the constraint matrix of (4*9) 

is unimodular, there is an integral solution of system (4-9). Thus, when 

d„ = 1 , Corailary 4.12 implies the following result, known as Ryser's 

Theorem (Ford & Fulkerson 1962), on the existence of Boolean matrices 

with given sums of elements in each line. 

Corollary 4.13 Ike AyAtem of tinea/i ineguatitieA 

n 
Ух.. < a. 

j=l 1J “ 1 

m 
VieN , У x.. > b. 

m i=i ^ - J 
VjeNn, 

i—
1 

v
|| 

•г"Э 
•H

 
X

 

V
ll 

о
 V(i,j)eNmxNn 

hat an integnai Aoiution if and onty if 

s s 
У b. < У VseN , 

j=l J = J 

uikene a* ІА the numfen. of. etementA a,,..., a not leAA than 
J 1 m j and 

Let I = {v-,,...,v } be a given finite 

given a family E of subsets of I , E^,...,E , not 

The set {e-^,...,e }CI is called a Aet of distinct 

(s.d.r) of the family E if e^eE^, VjeN^ and all 

set and let there be 

necessarily distinct. 

nepneAentatiueA 

the e. are distinct. 
J 

Corollary 4.14 (Hall's Theorem) A Aet of diAtinet nepneAen- 

tatlveA ех.ІАІА fon the Aui-AetA E = {E^,...,E } of the Aet I if and 

onty if fon any AuH-Aet JCN 

U E. 
jeJ J 

IJ I • (4.Ю) 

Pnoof The necessity of (4-10) is obvious. To prove sufficiency we use 

d. . 
ij 

. = b. = 1 
i J 

and 

1. if e. 
x 

E V 
o. if e. 

l i£ E. . 
J 

// 
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§5 COVERING, PARTITIONING AND PACKING POLYTOPES 

Partitioning, covering and packing problems are mathematical 

models for many theoretical and applied problems such as graph colouring, 

the construction of perfect codes and of minimal disjuctive normal forms, 

the formation of block-schemes, information retrieval, the organisation of 

train, ship and airplane timetables and of regional administration (Ford 

6 Fulkerson 1962, Balas & Padberg 1972 & 1975 , Sapozhenko et al. 1977). 

In this section we consider the basic properties of polytopes which are 

convex hulls of the characteristic vectors of partitions, coverings and 

packings. 

5.1 Problem Formulation 

Let I = {v-^,...,vm) be a given finite set and let E = 

{E-,,...,E } be a family of subsets of I . Let E' = (E. , ...,E. } be a 
^ 1 ^ s 

subfamily of the family E . If every element v^ is contained in not 

more (not less) than one of the subsets E. of E' , then E' is called 
J 

a packing \coucning) о/ I . A covering which is also a packing of I 

is called a pa/itition o-l I .Let A = (a. .) be the incidence matrix 
ij mxn 

of the elements I and the subsets E. : a.. = 1 if v.eE. , and a.. = 0 
; J ij i J ij 

if ' Every subfamily E' of the family E can be given by means 

of a cha/iactcni yitic uccton for which x. = 1 if E. lies in E' and 
J J 

x. = 0 otherwise. Thus, there is a one-to-one correspondence between the 
J 

coverings, partitions and packings of a set and the integral solutions of 

one of the following systems of linear inequalities : 

l) Ax > e 2) Ax = e 3) Ax < e (5.1) 

where 0 ^ x <. e . (5-2) 

The polytopes of solutions to each of the systems (5-1)»(5.2) are denoted 

respectively by M=(A,e) , M_(A,e) , M=(A,e) according to which sign is 

chosen in (5.1). We have the following three problems : 

max (ex : xeM=|(A,e)} the packing pn.oHte.rn. ; 

min {ex : xeM^(A,e )} the partition ing pnottem 

min {ex : xeM=|(A,e)} the covering pnoHtem. . 
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Definition 5.1 The convex hull of the set M^(A,e) is 

called the packing poIgtope . The pa/itition in g polgtope and the 

couening polgtope are similarly defined. The convex hulls of the sets 

M=(A,e) , M (A,e) and M=(A,e) are called the nelaxecl polgtope.л of 

coverings, partitionings and packings respectively. 

We study coverings and packings in graphs. Usually, in 

covering (packing) problems in graphs, the set I to be covered (packed) 

consists either of the set of vertices or of the set of edges. 

Let the graph G = (V,E) be given with m vertices and n 

edges. We explain some terminology. A packing made up of edges of G is 

called a matching in the g/iaph , in other words, a matching is a set of 

non-adjacent edges. A matching which covers all the vertices in a graph 

G is called a complete matching . A packing made up of vertices of a 

graph G is called an innen italic. />et and a covering is an oaten 

ліаііе />et . In other words, an inner stable set of a graph G is a 

subset of its vertices no two of which are adjacent, and an outer stable 

set is a subset of vertices which cover all edges. 
T 

Let Aq be the (mxn )-incidence matrix of G and let A^ be 

its transpose. Then the most important graph characteristics are defined 

by the relations : 

v(G) = max (ex 

p(G ) = min (ex 

a(G) = max (ex 

t(G) = min {ex 

xeM=(AG,e)} 

xeM^(Ar, ,e)} 

хем|(А^,e )} 

хеМ^Ц^ ,e )} 

the matching number; 

the edge covering number; 

the inner stability number; 

the vertex covering number. 

When the relaxed polytopes of coverings, packings or partit¬ 

ionings are integral, the duality theorem applied to these graph charac¬ 

teristics leads to important relations in graph theory. 

Note that, by Corollary 4.5* the polytopes М=(А^,е) and 

M=(AG>e) are integral if G is a bipartite graph. 

Thus, Konig's theorem may be reformulated as follows : 

Theorem 5.1 // G іл a lipantite gnaph, then v(G) = t(G) . 

We now describe other important classes of integral polytopes M-(A,e) . 
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5.2 Cliques in an Intersection Graph 

We formulate conditions for the relaxed packing polytope 

M=(A,e) to be integral. We introduce thq intersection graph G of the 
A 

Boolean matrix A as follows : the vertices of ' G^ correspond to the 

columns of A and two vertices к and j , corresponding to columns A^, 

A^ are joined by an edge if the scalar product A^A^ > 1 , that is, if 

the two columns A and AJ have a non-zero component in the same row, 

say a., = a. . = 1 . Let A„ be the incidence matrix of the intersection 
1K ij i* < < 

graph Ga . It is easily checked that M|r(A,e) = M=(A^,e) . Thus, the 

packing problem for an arbitrary incidence matrix A is equivalent to the 

packing problem for the vertices of the intersection graph G^ . One of 

the first results related to the problem of constructing the packing poly¬ 

tope is the following theorem due to Fulkerson (1971). 

A digue in a graph is a maximal complete subgraph. 

Theorem 5.2 7 he ineguatity 

I X, < 1 KCN (5.3) 
j eK j 

defines a /acei of. the. n-packing poZytope conv M^(A,e) if and oniy if К 

is the. set of vertices of лото. cZigue of the. intersection graph of the 

mat/іік A . 

Proof (i) Sufficiency. Let К be the set of vertices of a clique in 

G^ . Then, in the graph Gд for any i,jeK there is an edge (i,j). 

Thus, inequality (5.3) is satisfied for all xeM^(A,e) . We show that the 

dimension of the face (5.3) equals n-1 . Consider |k| points x1 = e1 , 

ieK, and n-|К| points x1’^, ieK , vjsNn\K , (i,j)^E for each of which 

the components x^ = x^ =1 and the other components are zero. The ver¬ 

tex i exists since, by definition, a clique is a maximal complete sub¬ 

graph. The points so constructed satisfy (5*3) as an equality and are 

linearly independent. 

(ii) Necessity. Note first, that the subgraph generated by the 

vertices of К is complete. Suppose that this subgraph is not a clique 

of the graph G^ . Then we can suppose that the vertices of the set 

KU{i) form a complete subgraph. Then the inequality £ x. < 1 is 
jsKU{i} •* 

satisfied as an equality at all points which satisfy (5-3) as an equality 

and by at least one extra point x = e^ . Thus (5.3) cannot be an 

(n-l)-face. // 
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The digue matziix o£ a gziapk is the incidence matrix of 

crraph vertices and cliques, that is a. . 
3 p 4 ij 

1 if the vertex v. belongs 
J 

to the clique K. and a.. = 0 otherwise. It follows from Theorem 5-2 
1 <1J 

that for the polytope M=(A,e) to be integral, assuming the irreducibility 

of the system, it is necessary that the matrix coincide with the clique 

matrix of its intersection graph. If the defining system of the polytope 

M=(A,e) contains redundant constraints, then, in addition to rows of A 

corresponding to the cliques of the intersection graph, there may be rows 

which dominate them (in the vector sense). We will describe a class of 

matrices A for which these conditions are also sufficient. 

5.3 Perfect Graphs 

The maximum number of elements in a clique of a graph G is 

called the pІитрпедд of G , denoted by <ju(G) . The graph G is called 

pe./ile.ci if, for any subgraph G' induced by G , the chromatic number 

x(G') equals the plumpness to(G') . 

Let G be the graph which has the same vertices as G and 

which is such that two vertices in G are adjacent if and only if they 

are not adjacent in G . Then G is called the complement of G . 

Note that since every inner stable set of G corresponds to 

a clique of G and conversely, then a(G) = uj(G) . 

Theorem 3.3 Let A &.e the digue matziix о/ a gziaph G . 

Ike following statement/) azie equivalent : 

(1) G i'i a peniect gziapk; 

(2) Ike zielaxed. packing polytope M=(A,e) І4 integral', 

(3) G it a penned gziapk. (Berge's Conjecture) 

Pzioo£ We follow the scheme (l) =K2 ) =K3) =K2 ) =Kl). The equivalence of (1) 

and (2) was proved by Fulkerson (1971) and the equivalence of (1) and (3) 

by Lovasz (1972). Our proof follows that of Lovasz (1979). 

(1)=>(2). Let G be a perfect graph and let A be its 

clique matrix. Let x be a vertex of the polytope M=(A,e) . The compo¬ 

nents of x are clearly rational numbers so that there is an integer к 

such that the vector kx = (p^.pn) is integral. Let v^ be any 

vertex of the perfect graph G for which p^ > 0 . Replace each such 

vertex v^ by the complete graph К and join each vertex of К by 
Pi Pi 

means of an edge with each of the vertices of G which were adjacent to 
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. It is easily verified that the graph G' so obtained is perfect. 

Let K' be a clique of the graph G' and let К be the subgraph of G 

which corresponds to K' . Then |K'| < J p. = к £ x. < к . Since G' 
ieK* 1 ieK 1 

is a perfect graph, x(G') = w(G') < k . Let {V|,...,V'} be a col ouring 

of the vertices of G' in k colours, that is, all the vertices in a 

subset VJ are all given the same colour. Let be the subset of 

vertices of G corresponding to V.' and let y1 be its characteristic 

vector. Each vertex v^ belongs to exactly p^. of the subsets VI . 

Therefore 

k 

k~ l У1 = x . (5.4) 
i=l 

Since x is a vertex of the polytope M=(A,e) and y1£M=(A,e) VieN, , 
. . i k k 

equations (5.4) can hold only if x = у = ... = у , that is, x is an 

integral point. 

(2)=K3). Let M=(A,e) be an integral polytope. It is clear 

that each of its faces is also an integral polytope. Thus, it suffices to 

show that if M=(A,e) is an integral polytope then x(^) = w(G) • Since 

K=(A,e) is an integral polytope and A is the clique matrix of the graph 

G , we have 

a(G) = max {ex : xeM=(A,e)} . (5.5) 

All optimal solutions of problem (5.5) belong to the face F generated by 
n 

the supporting hyperplane £ x. = a(G) . The face F is the intersec- 
i=l 1 

tion of a certain collection of facets, among which there must be at least 

one facet generated by the hyperplane : [ x.= 1 , where К is some 
ieK x 

clique of G . The clique К has exactly one vertex in common with every 

inner stable set of maximum cardinality a(G) . Hence a(G\K) = a(G) - 1. 

Continuing in this manner we see that there are a(G) cliques which form 

а covering of all the vertices in the graph G . This is evidently the 

smallest number of cliques which cover the vertices of G . We call this 

the clique, nurnle/i and denote it by 0(G). Thus, we have shown that 

a(G) = 0(G) . Every clique in the graph G corresponds to an inner stable 

set in the complementary graph G and conversely. Hence x(^) S 9(G) 

and a(G) = co(G) . But also x(G) i w(G) and consequently x(^) = w(G) 

which was to be proved. 
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The implications (3 ) Ц2 ) =Kl) are proved analagously by 

replacing the perfect graph G by the perfect graph G . // 

The following characterization of perfect graphs follows from 

the proof of Theorem 5-3. 

C orollary 5 • 4 The gnaph G i-i penjlect if- and only if the. 

clique numlen B(G') of uny лиід/iaph G1 о/ G іл equal to it-ь innen. 

Atalility numlen a(G') . 

A characterization of the class of integral matrices M=(A,e) 

in terms of forbidden submatrices has been proposed by Padberg (1973, 1974, 

1979). 

Let В be a non-degenerate Boolean (mxk)-matrix (m^k). 

Definition 5.2 We say that the matrix В has pnopenty тт^ ^ 

if the following conditions are satisfied : l) В contains a non-singular 

(kxk)-submatrix B' such that the sum of the elements in every line of В 

is equal to 0 ; 2) every row which is not included in B' either has an 

element sum which is strictly less than S or is identical with one of 

the rows of В ' . 

Theorem 5.5 The polytope M=(A,e) i-f> integral if and oniy 

it the mat/iix A doez not contain an (mxk)-4utLmat/iix В with pnopenty 

7T0 , with 3^2 , З^к^п . 

The proof of the theorem is based on a characterization of 

the bases of the matrix (A,J ) which generate the non-integral vertices 

of the polytope M=(A,e) (see Зх.іб) 

The conditions formulated in Theorem 5.5 for the relaxed 

packing polytope do not suffice to ensure the integrality of the relaxed 

covering polytope M=(A,e) . Such conditions were obtained by Berge (1972), 

A Boolean matrix is called a tatanced matnix. if it does not contain any 

square submatrices of odd order such that the sum of the elements in each 

row and each column is equal to two. If A is a balanced matrix then 

M=(A,e) is an integral polytope (see problem 18). 

Finally we present a well-known conjecture of graph theory 

about perfect graphs which is known as the Strong Berge Conjecture (Berge 

1970). A chondLe6/> cycle of a graph G is a cycle each of whose 

vertices in G is incident to only two vertices of the cycle. Berge's 
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conjecture states that a graph G is perfect if and only if neither it 

nor its complement contain any chordless cycles of odd length besides 

triangles. As yet, Berge's conjecture has only been proved for planar 

graphs (Tucker 1973). 

A partial verification of Berge's conjecture is given by the 

following result proved by Padberg (1973). 

Theorem 5.6 Tor everu JCN let 
- — n 

T(J) = {jeNn\J : AkAJ' > 1 £or лоте. keJ} . 

Then l-jL in the intersection graph, о/, the matrix A J is 1) an odd 

chordless cycle other than a triangle, or 2) the complement о £ such a 

cycle, then there exist integers 3- , 0 < 3. < s , such that 

defines a £acet o-fL the polytope conv M^(A,e) . here s = (|j|-l)/2 in 

case l) and s=2 in case 2). 

5.4 The Matching Polytope 

We recall that the matching polytope of a given graph G 

is the convex hull of the characteristic vectors of all matchings of the 

graph G (the sets of non-intersecting edges). Such a polytope will be 

denoted by M(G) . In other words M(G) = conv M^(Ap,e) , where A^ is 

the incidence matrix of G (rows correspond to vertices and columns to 

edges). The polytope M=(A^,e) contains the matching polytope M(G) but 

only coincides with it when G is a bi-partite graph (Corollary 4*5). 

Otherwise, as can be seen from the proof of theorem 4-1 » the polytope 

M=(A^,,e) contains vertices with coordinates equal to h . By carefully 

examining the proof of theorem 4*1 we can establish the following fact. 

let 

not 

Proposition 5.7 Let Cj,...,C be distinct odd cycles and 

P be a matching in the subgraph generated by the vertices which do 

occur in C. 
i 

VieN 
P 

1/2, 
1. 
0 

Then the vector 

u 
x with components 

e. eC, U . . . U C , 
l 1 p 

it e.zP, 
l 

otherwise 

(5.6) 
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ІА а ve/itex. о{ the potytope M=(AG,e) and all о{ itA ventieeA take, the 

{.опт. ( 5 • 6 ). 

Thus, in order to construct a set of inequalities which 

specify M(G) we need to construct hyperplanes which cut off the vertices 

(5.6) with p>l from M=(A^,e) . Such a description of the convex hull 

M(G) was first given by Edmonds (1970). 

The or em 5.8 7he matching poiytope M(G) o{ a g/iaph G ІА 

given &.y the {ollowing Aet o{ inegaalitieA : 

x. > 0 
J - 

VjeNn, (5.7) 

n 
У a. .x . < 1 

j=l 1J J = 
VieNm, (5.8) 

j x < J.s.1-1 

j :e .eG(S) J 
J 

VSCV, | S | -odd. (5.9) 

Pnoo{ We note first that the characteristic vector of every matching in 

the graph G satisfies inequalities (5.7)-(5.9). We will show further 

that every facet of the n-polytope is generated by one of the supporting 

hyperplanes whose equation is obtained by converting one of the inequali¬ 

ties (5.7)—(5.9) into an equality. Thus, let the hyperplane H with 

equation 

n 
I a.x. = b , (5.Ю) 

j=1 J J 

generate the facet F of M(G) and let M(G) lie in the half-space H~. 

Case 1. Let there be an index in such that a. < 0 . Then 
0 J0 

every matching x which belongs to F must satisfy x. = 0 , otherwise 
J 0 

H would not be a supporting hyperplane. Consequently, dim F < n-1 so 

that case 1 is impossible. 

Case 2. Let a. > 0 for all i and let there exist a 
J = J 

vertex v^ of G such that every matching lying in F contains an edge 

incident to v^ . Then every such matching satisfies the equation 

n 
l ax = 1 , (5.11) 

3=1 13 3 

which corresponds to one of the inequalities (5.8). 
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Case 3. Let > 0 VjeN^ and for each vertex of G let 

there exist a matching which does not contain it but which belongs to the 

facet F . Let G' be the graph formed by the edges e. for which 

a^ > 0. We will assume that G' is connected, otherwise our constructions 

are to be carried out on each connected component of G1 . We show that 

every matching which belongs to F fails to cover exactly one vertex of 

G' . Suppose that P^ is a matching belonging to F which does not cover 

vertices u,veV. We use induction on the distance between u and v . 

If u and v are adjacent in G' we have an immediate contradiction. 

If u and v are not adjacent, choose a vertex z on the shortest chain 

connecting u and v . Let be a matching belonging to F which does 

not cover z . By the inductive assumption Pcovers z and covers 

both u and v . Consider the two connected components of the graph 

/3^U/°2 which contain the vertices u and v respectively. These will be 

chains. One of them, say chain C , does not contain z . Let 

P' = (P1-(Pinc))U(P2nc) 

pe = (v^ncWP.nc) . 

Then P' and P" are matchings which satisfy 

2b > j a.x.+ J a.x.= У a.x.+ У a.x. 
i: e.zP' 1 1 i :e. zP" 1 1 iie.e/5-, 1 1 i :e.e/> 1 1 

l l x 1 l 2 

= 2b . 

Thus the matching P" lies in the facet F and does not 

cover z and either u or v . This contradiction shows that the graph 

G' has an odd number of vertices and that every matching belonging to F 

satisfies the equation 

г ы -x 
l x. = J±— 

i:eieG(S) x 

where S is the set of vertices of the graph G' 

and (5-9) will be identical. // 

(5.12) 

Thus equations (5.12) 

§6 POLYMATROIDS 

In this section we study a special class of integral polyt¬ 

opes - the polymatroids. The simplicity of construction of the face 
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complex of a polymatroid enables one to solve efficiently the problems of 

maximizing (minimizing) linear and convex functions on the set of integral 

points of a polymatroid. Polymatroids were introduced by Edmonds (1970) 

who also obtained the basic results about their structure. 

6.1 Submodular Functions 

We introduce a partial ordering on the set En by defining 

the order x^y to mean the coordinatewise inequalities x^<y^ * Vie:Nn ’ 

Let DCE+ . The element x°eD is called a minimal (maximal) e.le.me.nt o£ _ n 

the pantially o/idened лet D if there is no distinct element xeD such 

that x<,x0 (x^x0). Let x,yeE^ , then xVy denotes the vector with coor¬ 

dinates max(x. ,jr^) and the symbol хЛу is the vector with coordinates 

min(x.,y. ) . 

Definition 6.1 A bounded, po lymat/io id in En is a polytope 

M with the properties : (l) if O^y^x , xeM then yeM ; (2) for any 

vector aeE , all maximal elements of the set M = {xeM : x<a} have the 
n a = 

same component sum. 

A maximal element of the set M is called а Нале o£ the 
a 

veeton a , and the sum of its components is called the /tank. of the 

vector, denoted by r(a) . The function r(a) , defined on E + , is 

called the nank £unetion o£ the polymat/ioid . 
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Definition 6.2 An unbounded po lymatno id in is a poly¬ 

hedron Q with the properties : (l) if y>x and xeQ , then yeQ ; 

(2) for any vector aeE* , every minimal vector in the set Q& = {xeQ : 

x>a} has the same component sum, called the ra'nk r(a) of the vector a . 

Bounded and unbounded polymatroids are shown in E* in 

Figures 30 and 31 respectively. 

We investigate how polymatroids may be described by means of 

linear inequalities. 

Definition 6.3 A real function 

AuHmodulan if it satisfies the inequality 

N 
defined on 2 is called 

p(u) + p(V) > p(uuv) 1(nnv1 

and ^upenmodulan if the reverse inequality is satisfied. 

Theorem 6.1 The polytope. MCE^ і-ь a Hounded po lymatno id L/L 

and only il the/ie exi^t-6 a non-dec/ieating Aulmodula/i -/Lunation р(ш) 
N 

defined on 2 , with p(0) = 0 , -buck that M = M(p) , whene 

M(p) = jxeE* : J x. < р(ш) VcoCNnj . (6.1) 
1 ie w 

P/iool (i) Necessity. Let M be a polymatroid with rank function r . 

Define the function р(ш) by the rule p(0) = 0 and p(w) = max| £ x. : 

xeM? . It is clear that р(ш) is a non-decreasing, non-negative function 

We show that p(u>) is a submodular function. For U,VCN , let u and 
n 

v be defined by 

if jeU, 

if j0U, 

if jeV, 

if j0V. 

It is easily seen that p(U) = r(u) , p(V) = r(v) , p(UUV) = r(uVv) and 

р(иПѴ) = r(uAv) . To show that p(w) is submodular, it suffices to show 

that 

r(u) + r(v) > r(uVv) + r(uAv) . (6.2) 

u . 
J 

V . 
J 

p(j). 

p(»n), 

p(j). 

P(»n), 
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Let a be a base of the vector иЛѵ . Then, from the definition of a 

polymatroid it follows that there is a vector beM such that a <, b <, 
n 

uVv with r(b) = I b. = r(uVv) . Hence a = ЪЛ(иЛѵ) which gives 
i=l 1 

a + b = (ЬАи) + (bAv) . But ЬЛи , ЬАѵ e M and ЬАи < и , bAv < v . 

Hence 

n n 
r(uAv) + r(uVv) = £ a. + [ b. 

i=l 1 i=l x 

<. r(u) + r(v) . 

This proves inequality (6.2). It remains to show that M = 

M(p). From the definition of р(ш) it follows that MCH(p). We show 

that M(p)CM. Let xeM(p) but x^M . Then choose a base и of the 

vector x with the largest number of components u^ less than x^ . 

Let w = (u+x)/2 and let J(u) = {ieN : u.<x.}. Then u<w<x . Clearly, 

и is also a base of the vector w . Then r(x) = r(w) and every base w 

is also a base of the vector x . For tuCN define the vector хш with 
— n 

coordinates x. = x. , View and x. = 0 , VieN \ш . Since 
11 i n 

= l (ЬЛи). + I (bAv) 
i=l 1 i=l 1 

I u. 
iej(u) 1 

the vector uAx^U^ 

it to a base wAx^u^ 

< I w. < p(J(u)) , 
ieJ(u) 1 “ 

cannot be a base of the vector 

, we obtain a base и of the 

* J (u) 
wAx 

vector w . 

Extending 

Since 

I u. > I u. 
ieJ(u) 1 ieJ(u) 1 1=1 

u. 
l 

i=l 
u. 

1 

then IL < u^ for some i?fj(u) . The last inequalities contradict the 

choice of the vector и as a vector of maximal cardinality in the set 

J(u) . Hence, M = M(p) . 

(ii) Sufficiency. Let the polytope M(p) be given by a submodular 

non-decreasing function р(ш) , with p(j0) = 0 . Property (l) of 

Definition 6.1 is clearly satisfied. Suppose that for some vector z e 

there are bases u,v for which property (2) does not hold, i.e. r(u)<r(v). 

Let J(u) = {ieN : u.<v.} . Then for e e J(u) there is a set ш CN 
nil e — n 

such that ееш and 
e 

1ЕШ 

и. 
1 P("e) (6.3) 
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Let ш be a maximal subset N 
n 

the submodularity of р(ш) it follows that 

with the property (6.3). By 

I u. = р(шІ_Іш ) . 
iecoUu)e 

From this it is clear that if е£ш , then ш is not a maximal set with 

property (6.3). Hence ееш . Since e is an arbitrary element of J(u), 

J(u)Cij . But then р(ш) = [ u. < 1 v. , and this contradicts the fact 
іеш іеш 1 

that v e M(p) . // 

If the function р(ш) is submodular, the function р'(ш) = 

p(N ) - p(Nn\w) is supermodular. Thus, the set 

Q(p') = {xeE^ : £ x. > р'(ш) VucN } 
іеш 1 n 

is an unbounded polymatroid if and only if the set M(p) is a bounded 

polymatroid. 

Theorem 6.2 Ike po lykednon Q C ІА an unlounded polyma- 

tnoid i £ and only LJL tkene ІА a non-decneaAing Aupenmodulan function 

p'(u)) , p'(j0) = O , лаек tkai Q = Q(p') . 

6.2 Vertices of a Polymatroid 

For everv permutation (it, , . . . ,тг ) e S we define the sets 
n J r Inn 

ui = 0 , uis = {тг, ,...,тг } VseN 
я я 1 s n 

Theorem 6.3 Ike point x La a ventex. 0-/L the {bounded on. 

unbounded) polymatnoid M(p) і£ and only it tkene ІА a pennutation 

я e and an Lntegen 0 <. к < n Auck that the componentA о£ x ane 

given ly 

CO 

X
 = р(ш®) - р(ш®-1) VseN, , 

к 
(6.4) 

хя 
s 

= 0 VseN \N, . 
n к 

Pnoof. It suffices to prove that for an arbitrary vector c = (c^,. . . ,cn) 

the maximum in the linear programming problem 

max 
n 
f C . X . , 

=1 1 1 

(6.5) 
i 
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(6.6) X. < p(w) 
іеш 

x. > О 
1 = 

V ш С N , 
— п 

VieN 

is attained at a point given by (6.4) (see Problem 1, Ch.l). 

Consider the problem 

(6.7) 

min I p(w)y , 
Ш CN 

— n 

v > 0 
* 0) = 

(6.8) 

(6.9) 

(6.10) 

which is the dual of (6.5)-(6.7) and where the sum in (6.10) is taken 

.. ,T 

Define 

I У 2c. 
ш C N ш 1 

i!u)n 

Vco CN 

VicN 

over all subsets шСЦ t^hich contain the number i . Let (it, ,...,tt ) 
— n I n 

be a permutation with the property c >... >c >0.>c >... >c 
"l 77 к k + 1 % 

the components of the vector y* by 

r* = c - c 
s tt it ., 

w s s +1 
7T 

VssN 
k-1’ 

= c 

= 0, ш / w1 
7T 

VieN, 

It can be verified directly that y# satisfies the constr¬ 

aints (6.9)»(6.10) and that 

l P(w)y* = l c.x* 
u)CNn ш i=l 1 1 

where the components of the vector x* are given by (6.4). By the 

duality theorem, the vectors x* and y# are optimal solutions of the 

primal and dual programmes respectively. This proves the theorem. // 
N 

If the function p(w) on 2 n takes only integral values, 

then the polytope M(p), is an integral polymatroid. 

6.3 The Facets of a Polymatroid 

For definiteness we suppose that M = M(p) is a bounded 

polymatroid. The extension to the case of an unbounded polymatroid is 
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obvious. 

Definition 6.4 The subset ш°С is called p-cHoAed if 

for all , шС N , ue have р(ш°) < р(ы) . The subset u°CN is 
^ n 

p-AepanaHie if р(ш°) = p(w|) + р(ш°) where U = ш° » = 0 . 

Otherwise ш° is р-попАера/іаНіе. 

It may easily be verified that the polymatroid M(p) in S* 

has dimension n if and only if the empty set is p-closed. If the dimen¬ 

sion of a polytope M in E^ is equal to n , there is a unique irredu¬ 

cible system of linear inequalities such that M is its solution set. 

Each of these inequalities determines a facet of M . 

Theorem 6.4 Let the empty Aet He p-doAed -JLo/i the function 

р(ш). Then, the £aeetA о/ the n-po lymat/ioid M(p) aee AetA o£ the type 

F. = {xeM(p) : x.=0} , 
J J 

■{.on. any and. o-f. the type 

= {xeM(p) : I x. = p(w)} 
іеш 

{.on. any р-cHoAed and p-nonAepa/iaHHe AuHAet wCN^. 

6.4 Intersections of Polymatroids 

The following theorem describes a class of integral polytopes 

whose constraint matrix is not absolutely unimodular. 

Theorem 6.5 Let M-^ and He two integ/iaH po Hymat/io idA 

in E+ . Then the potytope М,ПМп La integral. 
П ± <c 

P/ioo£ We show first that if the vector x° e M(p) satisfies the equation 

I x? = p(U) , I x? = P(V) , 
ieU 1 ieV 1 

then either UDV = 0 , or 

I x,° = р(иПѴ) . 
іеиПѴ 1 

(6.11) 

Suppose for definiteness that M(p) is a bounded polymatroid, 
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that is, p is a submodular function. From the submodularity of p it 

follows that 

p(UUV) + р(иПѴ) < p(U) + p(V) = I x° + I x? 
ieU 1 ieV 1 

= I x? + I x? < p(UUV) + p(UnV) . 
ieUUV 1 іеиПѴ 1 

The equality (6.11) follows. 

Let x° be an arbitrary vertex of the polytope 

where = M(p^) , i=l,2 . Then its nonzero coordinates are 

the system of equations 

Z хі = Рд_(ш) VojeV-^, 

ieo) 

I X. = Р2(ш) ѴшеѴ2, 
iew 

where V-^,V2 are families subsets of . By the property proved 

above, any two subsets in are either disjoint or their intersection 

also lies in V. . Thus, if A is the matrix of coefficients of the 
l 

system (6.12 ),(6.13) then, by subtracting suitable rows from other rows 

in each group , we can obtain a matrix A' of the type described in 

statement (3) of Theorem 4.1. Thus A' is absolutely unimodular. Thus, 

system (6.12 ),(6.13 ) has an integral solution. Ц 

We remark that the intersection of three or more integral 

polymatroids may have non-integral vertices. 

6.5 Matroid Polytopes 

The theory of matroids generalizes many results of graph 

theory, projective geometry and the theory of electrical networks. Many 

different optimization problems, and especially optimization problems on 

networks, can be formulated as extremal problems on matroids. We will 

show that most constraint polytopes for extremal problems on matroids are 

integral. 

Definition 6.5 A mat/iold П is a pair (J,F) in which J 

is a finite set and T is a family of subsets of J , called inde-pe-nde-ni 

ле.І4 , having the properties : l) any subset of an independent set is 

independent; 2) if ш is any subset of J , then all independent sets 

contained in ш , which are maximal with respect to inclusion, have the 

same number of elements. 

(6.12) 

(6.13) 

мхпм2 , 

solutions of 
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Independent sets in J which are maximal with respect to 

inclusion are called late.* of the matroid. The /tank. r(w) of the set 

cjCJ is the (unique) cardinality of a maximal independent subset of ш . 

We leave it to the reader to show the equivalence of defini¬ 

tion 6.4 and of definition 4.5 of Chapter 1. 

We give some examples of the most important types of matroids 

In §4 of Chapter 1 we studied the so-called ue.cto/i mat/ioid in which the 

set J consisted of the column vectors of a matrix A and T consisted 

of all linearly independent subsets of these vectors. 

Let J be the set of edges of a graph G and let T con¬ 

sist of subsets of the edges which constitute an acyclic subgraph of G 

(/о/іе.<ііл). The pair ft = (J.F) is a matroid, called a g/iaphicat mat/ioid 

The bases of a graphical matroid are the maximal forests, or, when G is 

a connected graph, the maximal trees. 

Let the finite set J be partitioned into m distinct sub¬ 

sets En,...,E and let a non-negative integer d. be associated with 

each of these sets. Consider the family F C 2J such that every IeF 

contains not more than d. elements of the set E. , VieN . The pair 

ft = (J,F) is a matroid called a pa/itition matnoid . In the case d^ = 1 

VieN , the partition matroid is called a t/iunAve./i-bal mat/ioid and the 

independent sets are called pa/itiat t/ian/>ue.nAat/> and the bases are 

called Ay-6te.mA o£ distinct ne.pne.-be.ntative.-b. 

A matching mat/іо id is defined on the set of vertices of a 

given graph. Here, the independent sets are those subsets of vertices for 

which there exists a complete matching in G . 

Let П = (J,7) be a matroid and let г(ш) be its rank func¬ 

tion. From the definition of a matroid it follows that r(0) = 0 and 

that r(u)) is a non-decreasing function. 

We show that the rank function of a matroid is submodular : 

r(UUV) + r(UDV) < r(U) + г(V) . 

Let be a maximal independent subset of UDV . Since an 

independent subset of U , it can be extended to a maximal independent 

subset toy of U . Similarly, may be extended to a maximal indepen¬ 

dent subset °f UUV . Since the set шиПѴ ^aS an 

independent subset of V , it follows that 
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p(unv) + p(UUV) - p(U) , 

r(V) > г(шипѵи(шииѵ\^и)) 

= IшипѵI + IшииѵI " IшиI 

which was to be proved. Hence, by Theorem 6.1 , the polytope 

М(г) = {xcE+ : У x. < г (ш) VojCN } , n=|j| 
' n . L 1 = n 

1ЕІ1) 

is a polymatroid. We call this the po iytope о/ the matnoid П . 

Theorem 6.6 The uentieeA o-t a matroid potytope a/ie р/іесілеіи 

ike cka/iacte/іІАІІе uecio/iA о/ ike independent Аеіл o£ ike matno id. 

P/ioo£ Let x° be the characteristic vector of any independent set F of 

a matroid M . Then we have 

У x? < r(w) VojCN , .L 1 = ' ' n 
1ЕШ 

since the set шПр is an independent subset and so 

Ух? = r (ooflF ) < r (ш) . 
i ЕШ 

A vertex of the polytope M(r) is the unique solution of a subsystem of 

rank n , obtained by replacing some of the inequalities defining M(r) 

by equalities. It is easily seen that the vertex x° is a solution of 

the following system of rank n : 

xi = 0 i^F, 

x. = r(i) ieF. 
l 

Thus, the vector x° is a vertex of the matroid polytope M(r) . 

The converse follows from Theorem 6.3 about the characteri¬ 

zation of the vertices of the polymatroid M(r) and from the obvious 

property of the rank function : r(i) = 1 if {i}eT” . // 

From Theorems 6.5 and 6.6 we obtain the following description 

of sets which are independent in both of two given matroids. 
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Theorem 6.7 Let and de the po lytope-i defined dy 

the. matnoidt and = (J ,T. Then the venticet о/ the 

polytope ane рпесілеіу the chanacteniAtic uectonA o£ ait AetA 

which ane independent in doth and • 

In particular, it follows from Theorem 6.7 that the vertices 

of the polytope 

n 
1 x. <. г(ш) VojCN , У x. = r(N ) 

. “ 1 — n . 1 n І£(і) i—1 

are in one-to-one correspondence with the bases of the matroid П = (j,T) 

with rank function r(oj) . 

6.6 Duality Theorems 

The dual polytope to an integral polytope which is the inter¬ 

section of two polymatroids is not, in general, integral. However, the 

following theorem shows that the linear programming problem which is dual 

to the problem on M^TII7^ has an integral optimum. 

Theorem 6.3 Let c. He integenA, 

de the integnal /tank. -/LunctionA о/ the matno idA 

dually nelated linean pnogn.anm.ing pnodlemA have 

x*,y* with cx* = ry* : 

jeNn , and let r^aO.r^w) 

/^1' ^2 ' the following 

optimal integnal АОlutionA 

(P) 

(D) I 
< 

n 
max J c .x . 

j=iJ J 

ІХ. < r,(w) 
jea) J 

VojCN , 
n 

(6.14) 

1 x. < г„(ш) 
jeu J 

V ш C Nn , 

x. > 0 
J = 

V j e N . 
J n 

min 1 (г,(ш)у,(w) + Гр(ш)ур(ш)) 
wCN 

— n 

I (уп(ш) + У,(ш)) > с. 
i еш С N 1 J J — n 

V j e N , j n (6.15) 

у^ш) > 0 , у2(ш) i 0 vwCNn- 
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Рлоо-І It suffices to show that the constraint polytope given by (6.15) 

has an integral vertex at which ry is minimized. Then from the duality 

theorem and from theorem 6.5 on the integrality of the polytope given by 

the intersection of two polymatroids, we obtain the assertion of the theo¬ 

rem . 

Let y° be an optimal solution of problem (6.15). Consider 

two linear programming problems for s=l and s=2 as follows 

min I r (w)y (ш) , (6.16s) 
ш C N S S 

— n 

l У„Ы i vjeNn, у (e) i 0 V ш C N , 
i ^uC N J j — n 

where 

there is a 

ence 

s 
c . 

j 

Let 

= l У°Ы • 
jeu)CNn 

y* be an optimal 

such that the sets 

solution in (6.16s). By theorem 6.3 

ш for which у*(ш) / 0 form a sequ- 

ws C 
2 аз C 
s 

(6.17) 

r y* < 
sJ s = 

г у0 
SJ s 

Since 

for 
" s 

s=l,2 

satisfies the constraints (6.16s), we have 

so that ry* ry1 At the same time 

for all jeN . Consequently satisfies the constraints 
1 , 2 

c . + c . > c . 
J = J 

(6.15) so that 

there is an optimal solution of problem (6.15) satisfying condition (6.17). 

Its nonzero coordinates satisfy the system of equations 

is an optimal solution of the problem (6.15). Thus, 

l y(wf) + I y(w?) 
j ew. 

= c 
J 

VjeNn (6.18) 
теш. 
" l “l 

The columns of the matrix of coefficients 

partitioned into two subsets V-^ and Vp 

Aq,Ap of one set we have either Aq > Ap 

(see Problem 11), the matrix A is absolutely unimodular so that у 

an integral optimal solution of problem (6.15). // 

When c.=l and г-,(ш),г?(ш) are rank functions of matroids, 

we obtain the following well known result from theorem 6.8. 

A of constraints (6.18) can be 

such that for any two columns 

or Ap > Aq . Consequently 

is 
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Theorem 6.9 (Tutte, 1971). Let П± = (J,^) and П2 = (jJ ) 

ke matnoidA with /tank, function а г^(ш) and 7 hen 

max I to I = min [r, (oj) + г„(Аш)] . 
ш u>CJ 1 

Theorem 6.9 generalizes such dual assertions of combinatorial 

analysis as Konig's Theorem (Th.4-6), Hall's Theorem (Cor.4.14) and the 

Max-Flow — Min-Cut Theorem (Th.4«8). 

Covering problems can be considered on an arbitrary matroid 

PI = (J.?-) in which the set to be covered is J and the covering sets are 

members of 7 . Similarly, partitioning and packing problems can be con¬ 

sidered on a matroid. We give some results which are essentially corolla¬ 

ries of theorem 6.8 and which are concerned with partitionings of a 

matroid. 

The orem 6.10 Let И = (J,7) ke a matnoid with. nank tunction 

г(ш). Then J can He. pantitioned into no топе, than к independent Auk- 

AetA i£ and onty it |ш| < кг(ш) ton any uCJ . 

When the matroid is a graphical matroid. Theorem 6.10 is 

equivalent to the Nash-W lliams Theorem on the disection of a graph into 

non-intersecting forests. Theorem 6.10 has the following generalization 

due to Rado (Edmonds, 1970) 

Theorem 6.11 Let П. = (J ,7. ) ke matno idA with nank tu-nc- 
- l i 

, ieN^. . then the Aet ICJ can ke pantitioned into к 

Auch that I^e7\ ancL оп^У *-t ton any AukAet шСІ we 

M < I r.W . 
i=l 1 

§7 locally integral polytopes 

The main aim of this section is to introduce classes of poly¬ 

topes whose adjacent integral vertices remain adjacent after taking the 

convex hull of all the integral points of the polytope. 

7.1 Quasi-integral Folyfcopes 

Definition 7.1 A polytope M is called диаАІ-integnak if 

t i ОПА Г^(ш) 

AukAetA I. 
1 

have 
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every edge of conv is also an edge of M or, in other words, if the 

graph G (conv ) is a subgraph of G(M) . 

Quasi-integral polytopes are studied in Trubin (1969), 

Kovalev (1977), Kovalev et al. (1977,1978). An interest in studying such 

polytopes was aroused for the following reason : in solving an integer 

programming problem whose feasible set is the set of integral points of a 

quasi-integral polytope, we can use the simplex method with the following 

amendment. Since conv is an integral polytope, it is possible, 

using the standard simplex method, to attain the optimum by starting at 

any vertex and moving from vertex to vertex along the edges of conv Mr, • 

From the definition of a quasi-integral polytope, it follows that this 

path will also exist on the polytope M . Thus, our version of the simplex 

method, called the inte.gn.ai дітріек method , consists of the following : 

choose any integral vertex as an initial basic feasible solution and, at 

each iteration step choose a new basic variable such that, l) the cost 

function is reduced, and 2) the new basic solution is integral. The 

procedure terminates when there are no further candidates for a new basic 

variable satisfying conditions 1) and 2). In this way the optimal solution 

of the integer programming problem is obtained. 

Fig. 32. 

An example of a quasi-integral polytope is a polytope which 

has an integral face containing all of its integral points. Figure 32 

shows a quasi-integral polytope whose integral points do not all lie in 

one face. Nevertheless, since the integral faces of the polytope M are 

faces of conv . the following is a sufficient (but not necessary, see 

Fig.32) condition for quasi-integrality. 

190 



Proposition 7.1 Let M^Cvert M . If, given any two 

lnte.gn.at venticeA of the polytope M the/ie ІА an integral face containing 

them, then M ІА а диаАІ-integ/ial polytope. 

7.2 The Relaxed Partition Polytope 

It was shown by Trubin (1969) that the relaxed partition 

polytope, introduced in §5, is quasi-integral. The relaxed partition 

polytope M (A,e)CEn is given by the constraints 

Ax = e , x > 0 (7.1) 

where A is a Boolean (m*n)-matrix. Without loss of generality we may 

assume that A does not contain any zero columns or rows. 

Theorem 7.2 7he nelax.ed pa/itition polytope іа диалі-integ/ial. 

Pnoof Since A is a Boolean matrix without any zero columns, we have for 

any xeM_(A,e) that x^<l VieNn » that is, M (A,e) is contained inside 

the (0,l)-cube. Thus, any integral point of M~(A,e) is a vertex of this 

cube and so, by Proposition 7.1, to prove the theorem it suffices to show 

that any two integral vertices x',x" of M~(A,e) belong to an integral 

face. We partition the index set Nn into three mutually disjoint sub¬ 

sets 

Jn={j :x!=x'!=0}, J,={j:x!=x"=l}, J„={ j :x !/x’!} . 

Consider the family of hyperplanes 

x. = О V j eJq, (7.2) 

x. = 1 VjeJ,, (7.3) 

each of which is supporting to the polytope M (A,e) . Thus, the set of 

points of M~(A,e) satisfying conditions (7.2) and (7.3) constitute a 

face (which may be all of M (A,e) , for example, if JqUJ^ = $)• Denote 

this face by F . To show that F is integral it suffices to check that 

the matrix A is unimodular. The vector x° = (x'+x")/2 e M (A,e) . So 
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2 = I a. . (x ! +x'J) = I a. . , 
jsJ ^ J J jeJ, ^ 

J2 
that is, every row of A contains exactly two elements equal to 1 . 

J2 
Partition the columns of A into two disjoint sets : in the first, put 

those columns for which x! = 1 and in the second, put those for which 
J T 

J 2 
Xj = 1 . Thus, the matrix A satisfies, after suitable transpositions, 

the conditions of Theorem 4*1 and is therefore absolutely unimodular. Ц 

Corollary 7.3 Let D &.e a non.-n.ega.tLve, Lntegeal (mxn)- 

,7ia.tn.Lx.. 7 hen M(D,e) = {xeE^ : Dx=e , x^O} La а quaAL-Lnte.gn.at polytope.. 

Рл.оо£ Let Jq be the set of indices of those columns of D which contain 

an element not less than two. Then, by Theorem 7.2 the face 

F = (xeM(D,e) : x^=0 VieJ^} 

is a quasi-integral polytope. But a polytope which has a quasi-integral 

face containing all of its integral points is itself quasi-integral. // 

7.3 The Simplest Location Problem 

The problem is formulated as follows 

m n 
min У У (c..x.. + c.y.) 

i=1j£1 ij ij 

n 
У x. . = 1 VieN 

j=l 

0 < x. . < y. 
= = ■’i 

V (i, j)eN xN 
4 0 m n 

У± = 1,0 VieN 

In matrix form, the constraints (7.4)»(7.5) take the form 

(7.4) 

(7.5) 

(7.6) 

A*x = b*. 

where 

= (: ■11’ t 1 > • ml mn >У 1’ ■УпЛ b* = (1.1,0.0), 
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Here J^. is a unit (kxk)-matrix, -e is a column vector of dimension n 

all of whose components are equal to -1 . Denote by M(A*,b*) the poly¬ 

tope of constraints (7.4)»(7.5). 

Theorem 7.4 7ke polytope. M(A*,b*) /0/1 th.e літр le^t location, 

pnollem Іл диалі-integral. 

All integral points of M(A*,b*) are vertices. Thus, by 

Proposition 7.1 , to prove the theorem it suffices to prove the following 

Lemma. 

Lemma 7.5 Алу two integral ѵе/ііісел x',x" o£ the polytope 

M(A*,b*) lelong to an integral £ace 0/ the polytope. 

Pnool Consider the face ГСх'д") of the polytope given by the constr¬ 

aints (7.4)»(7.5) and by y^ = yJ for those i for which y.' = yV , 

and x. . = x.' . for those i.i for which x.'. = x'.'. . 
ij ij J ij ij 

After excluding the fixed variables and the constraints 

which are identities, we obtain a system 

Ax < b, 

x > 0, 

defining the domain of variation of the non-fixed variables in the face 

F(x',x") (these variables make up the vector x ). The point x^ = 

(x'+x" )/2 augmented by the fixed components, belongs to the face F(x',x" )• 

Thus, in each of the first m rows of the matrix A there are exactly 

two non-zero elements which are equal to 1 . In the remaining rows of A 

there are also exactly two nonzero elements, equal to 1 and -1 . As in 

the proof of Theorem 7.2 , we partition the columns of A into two sub¬ 

sets such that the conditions of Theorem 4*1 are satisfied, so that A is 

an absolutely unimodular matrix. Thus, F(x',x") is an integral polytope. 

This proves the Lemma and hence the Theorem. Ц 
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7.4 Connected Integral Polytopes 

We study a class of polytopes which is wider than the class 

of quasi-integral polytopes but which, nevertheless, has properties which 

allow us to locate local extrema in integer programming problems by using 

the integer simplex method. 

Definition 7.2 The polytope M is called connected Lnte.gn.at 

if the subgraph of the graph G(M) generated by its integral vertices is 

a spanning subgraph of the graph G (conv M7). 

In other words, M is a connected integral polytope if : 

1) vert conv M7 C vert M ; 2) the subgraph of the graph G(M) generated 

by its integral vertices is a connected graph. 

Note that if all the integral points of a polytope M are 

vertices of M , then condition 1) is automatically satisfied. Clearly, 

every quasi-integral polytope is connected integral (Fig.33b), but the 

converse is not generally true (Fig.33a). In both diagrams the polytope 

conv is shaded. 

Fig. 33. 

Consider the polytope M(A,e') = (xeE^ : Ax = e' , x^O} , 

where A is a Boolean matrix , e' = (к,1,...,1), к is an integer greater 

than or equal to 2 . The polytope M(A,e') is a generalization of the 

relaxed partition polytope. 

Theorem 7.6 1/. /on eueny к-ли/леі w о/ the леі 

= {jeNn : aij=1^ /асе F (w) = {xeM(A,e 1) : x.=l j ew} о/ the poty- 

tope M(A,e') It non-empty, then M(A,e') ІЛ connected Lntegnat. 
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The proof uses the following two lemmas. 

Lemma 7.7 // the -bet F(wj i-b not empty, then F(w) i-b a 

yua-bi-integ/iaL po iytope. 

Pnool Putting —1 Vjew, х^=0 VjeJ^Xw in the system Ax=e ' and 

removing those constraints which become identities, we obtain a system of 

constraints Ax=e , x>0 , which, together with the fixed variables, deter¬ 

mine the face F(w) . Here A is a Boolean matrix and e=(l,...,l). By 

Theorem 7.2, F(w) is a quasi-integral polytope. Ц 

Lemma 7.8 Let w',w" C , |w'nw"| = k-1 , and. Let 

x'eF(w') and x"eF(w") (Le integral ve/itice-ь o{. the potytope M(A,e’) . 

Then, the £ace F(w',w") = {xeM(A,e') : x^.=l Vjew'flw"} i-b a yua-bi- 

integnai potytope which contain-b the ventice-b x'.x" . 

P/iooS. The face F(w',w") is given by the following system of constraints 

x. = 1 
J 

V j ew Tlw" , 

x. 
J 

= 0 VjeJ-jXCw'Uw" ), 

where v = 

polytope. 

I x 
jev j 

= 1, 

I a. . x . = 1, 
j^Vw'Uw") 1J 3 

(w ’Uw" )\(w Tlw" ) . By Theorem 7.2, 

// 

i 2 * « • • f ro f 

F(w',w") is a quasi-iptegral 

Рлоо£ o£ Theonem 7.6 All integral points of the polytope M(A,e') are 

vertices. It is therefore sufficient to show that between any two inte¬ 

gral vertices x',x" of M(A,e’) there is a path in its graph which 

passes only through integral vertices. Consider the face F(w') , where 

w' = {jeJ^ : xj=l} > which contains the vertex x' , and the analagous 

face F(wM) which contains the vertex x" . Let the sequence w,=w,,.., 

. I =k and I w^flw^ + ^ I =k-l for any w =w" be such that w'Dw" C w. C J, , 
s 1 l 

ieN . From the conditions of the theorem F(w.)00, VieN and hence, by 

Lemma 7.7, F(w.) is a quasi-integral polytope. Also, by Lemma 7.8, the 

face F(w^,wi+-^) VieNs ^ is also a quasi-integral polytope. Thus, if we 
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choose an integral vertex x1 on each face F (w^ ) then, in the graph 

generated by the integral vertices of M(A.e'), there is a path connecting 

the vertices x1 and xi + 1. Taking the union of these paths we obtain a 

path connecting the vertices x' and x". // 

7.5 Medians of Graphs 

Let M(k,n) be the polytope given by the conditions 

I x. . = 1 

j=l 1J 
n 
£ x.. = k, 

i=l 11 

x.. - X. . < 0 
ji li = 

x. . > 0 
ij = 

VieV 

V(i,j)eNnxNn , i^j 

V(i,j)eNnxNn . 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

The integral points of the polytope M(k,n) constitute the feasible set 

for the problem of the location of the к-medians in a graph (Christofides 

1975), which has important applications. We therefore call the polytope 

M(k,n) the g/iaph m.e.diariA polytope. . The к-median problem consists in 

specifying к vertices (median centres) in a given weighted graph such 

that the sum of the edge weights along chains connecting the specified 

vertices with the remaining vertices of the graph is minimized. Let 

(c..) „ be the matrix of shortest distances between the vertices of a 
lj nxn 

graph. Then, the к-median problem consists in finding 

min 
n n 

l l 
i=l j=l 

C. .X. . 
iJ iJ 

subject to the constraints (7.7)-(7.10) and the additional condition that 

x^. are integers. Equations (7.7) guarantee that the following condition 

is satisfied : every vertex j of the graph G is attached to only one 

median centre. The constraints (7.9) ensure that vertex j is not 

attached to vertex i if i is not a median centre. And finally, con¬ 

straints (7.8) guarantee that there will be exactly к median centres. 

We study the polytope M(k,n) and show that it is connected 

integral. We rewrite the constraints (7.7)-(7.10) in the matrix form 

Ax < b , where x = (хц, . . . ,xnl>. . . ,xln.xnn ), b = (l,...,l,k,0.0), 

and 
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A = 

Неге is а ((n-1)xn)-matrix obtained from the unit matrix 
n-1 by 

inserting a column vector, all of whose elements are equal to -1 , 

between the (k-l)-th and k-th column vectors of J 
n-1* 

We note first that the polytope M(k,n) is not integral, 

When n>2 and k/n-1 , M (k *n) has vertices with fractional coordinates 

of the following type. Fix two distinct indices s,peN . Now consider 

the system composed of the constraints (7.7)-(7.10) and the conditions 

X. . 
1J 

=0 for all (i,j) such that i/j , j^s , (i,j)/(s,p) and x. = x 
is ss 

for all i^s . This system can be written in the form : 

n 

II •H
 

•H
 

X
 

1—1 
K

I
 

II 
•H

 

k. 

X + X 
ss sp 

= 
l. 

X. . + X. 
11 IS 

= l. i^s, 

X . 
IS 

= X f 
ss 

i^s, 

X. . 
1J 

= 0 for the remaining (i.j) • 

The rank of this system is 
2 

n Hence, its solution 

n-k- 
is n-2 

1 
t X. . = 

11 

k-1 k-1 
n-2 sp n-2 

о
 II •ГЭ 
•H

 
X

 for the remaining (i,j), 

is a vertex of M(k,n) • 

Proposition 7. 9 7Л e gnaph median potytope M(k,n) i/> 

inte.gn.at /on. k=l and k=n -1 . 
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P/ioof. i) Let k=l . If x° = (x?j ) is a non-integral point of 

M(l,n) then, by (7.7)-(7.10), all the components in any column are equal, 
n 

Hence x° = У X x , where X = x° and x is an integral vector of 
tS sss ° 

s =1 

the polytope M(l,n) with nonzero components x. =1 , ieN . Thus, any 
is n 

nonintegral point x° can be represented as a convex combination of 

vertices xS of M(l,n) and so cannot be a vertex. Thus M(l,n) is an 

integral polytope. 

ii) Let k=n-l . To show that M(n-l,n) is integral we establish 

the relation conv M„(n-l,n) = M(n-l,n) . With each integral point of 
Li 

M(n-l,n) we associate a pair of indices x ’ , (s,k)eNn><Nn , s^k . Here 

the index s indicates the number of the column with all components 

zero, and the index к is the number of the column containing two non- 
s к 

null components. In other words, the point x ' has nonzero components 

x. . = 1 
и 

V ieN \s, 
n 

x , = 1 . 
sk 

Every point x e conv M7(n-l,n) can be represented in the form 

s, к 
x = 

n 

Z l 
s=l kfs 

Xskx^ 
(7.11) 

where 

n 

I J Lk * 1 
s=l kfs 

and X , > 0 . 
sk = 

Now, considering the structure of the integral points of M(n-l,n) , we 

have 

x = 

sfl k^s 

Л21 

sk 12 

sf2 k#s 

nl 

sk 

In 

2n 

n2 
s?n kfs 

sk 

198 



On the other hand, let x° be an arbitrary point of M(n-l,n) . Since 

dim M(n-l,n) = n -n-1 , from the specification of M(n-l,n) we can list 

n dependent variables : 

x?. 
n 

1 - 
kfi 

x 0 
xik 

VieN . 
n 

The sum of all the diagonal elements of x° is equal to n-1 . Hence 

= 1 . 
n 

I l 
s=l k?s 

Hence, the diagonal elements of x° can be expressed in the form 

li 

n 
У У x° - У x° 
£ .A xsk , 4. ik 

s=l ki^s kfi Sfi k/s 
sk 

Clearly, if we put Xgk = x?k for k^s , then 

n 

£ Л Xsk 
s=l k£s 

l 
s=l k/s 

sk 
= 1 . 

It is also clear that X , > 0 . Hence, any point x° e M(n-l,n) may be 
s к 

represented in the form (7.11), and so x° e conv M^n-l.n) . Thus 

M(n-l,n) = MgCn-^n) . // 

Theorem 7.10 Ike gnapk mediana po tytope M(k,n) іа 

connected integnat £.0/1 any keNn • 

This theorem could be proved by transforming the constraint 

system (7.7) — (7-10) into a system defining a polytope M(A,e') and 

showing that the property of integrality is preserved by this transforma¬ 

tion. However, it is simpler to obtain the analogues of Lemmas 7.7 and 

7.8 for the polytope M(k,n) itself and its connected integrality will 

follow. 

Lemma 7.11 Ait integnat pointA о/ tke potytope M(k,n) ane 

venticeA tke integnat {.aceA F(w) = (xeM(k,n) : x^ = 0 VieNn\w} ^o/i 

each k-AuH-Aet w о/ N . 

To prove this lemma it suffices to show that the matrix of 

the constraint system 
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I 
jew 

x. . 
ij 

1 , 

X 
ij 

> о , 

i t W , 

i І W , jew , 

which defines the domain of variation of the nonfixed variables in the 

face F(w) , is absolutely unimodular. 

Lemma 7.12 Let w1 ,w" CN , w'D w" = k-1 and let x' and 

x" le two integ/ial points, belonging ne.4pe.ctive.ly to the {.aces, F (w' ) and 

F (xM ) o{ the polytope M(k,n) . then, the/ie is, an integnal {ace F(w',w") 

which contains, loth x' and x" . 

Pnoo{ F(w',w") wi 11 be defined as a face of M(k,n) defined by some 

supplementary constraints. The domain of variation of the nonfixed 

variables in the face F(w' ,w") is the polytope M(k,k+l) . By 

Proposition 7.9 the face F(v7,fw" ) is an integral polytope. Also it is 

clear that x' and x" belong to F(w',w"). // 

EXERCISES 

1. (Minkowski 1910). Let WCE be a convex set which is 
n 

symmetric with respect to the origin of coordinates and whose volume is 

greater than 2n . Then ¥ contains at least one integral point distinct 

from the origin. 

2. (Belousov 1977). The set W is called uni{o/im if there 

exists a number n > 0 such that there is a point x° e in the 

П-neighbourhood of any given point x e W . The straight line L = 

(xeE^ • *2 =^x^l . which has only one integral point (0,0) , is not a 

uniform set. 

An integral lasts, o{ a s>u.ls>pace is a basis of the space 

which consists of integral vectors. Each of the following two conditions 

is a necessary and sufficient condition for a linear subspace L to be 

uniform : (l) L has an integral basis; (2) L can be specified by means 

of a system of linear equations with integral coefficients. 

Show that an affine set, which contains an integral point, is 

uniform if and only if it can be specified by means of a system of linear 

equations with constant coefficients. Let the polyhedron M be given in 

the form 

M = (xeE : Ax<b) , Ъ e E , A z Z 
n = m m ,n 
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Then, if M contains an integral point, it is uniform. 

3. The integer programming problem max{cx : xeM^,} is solvable 

if there is a vector x° z such that cx0 =sup{cx : xeM^J• If the 

polyhedron N is specified by an integral constraint matrix then the 

condition sup{cx : xeM^} < +°° implies that the integer programming problem 

has a solution (Meyer 1974, Belousov 1977). 

In order to analyse the efficiency of algorithms for the 

solution of this type of optimization problem it is necessary to estimate 

the number of vertices in the convex hull of the integral points of a 

polytope. Interesting results in this area were obtained by Shevchenko 

(1979): 

(1) if every integral point x of a polytope МСЕц 

satisfies х.<Л.-1 ,VieN , , then 
J = J J n-1 

num 

n-1 
|vert conv M„ I < П (l + log,-, Д.) ; 

Z j=1 2 J 

(2) let ag:>max{a^,...,an}=a , a^. e Z and let v be the 

ber of vertices of the polytope conv|xsZn : £ ajxj =aoj ' Then 

v < I (1 + [log2(aQ/ai +1)]) ; 
i=l 

(3) 

v < 

if, in addition, a^ > a(a-l) 

n (l + log- a. + n - 2 

i*I 21 
i =1\ n-1 

then 

4. The equation cx = a has an integral solution if and only if 

the highest common factor of the coefficients c-^,...,cn divides a . 

Several criteria for the solvability of a system of linear 

homogeneous diophantine equations in non-negative integers, going back to 

Stiemke's theorem of 1915, are given by Stanley (1974)- 

T = (xeE 
n n 

The number 

cx < a , x > 0} 

n I 
n 
П c 

i=l 

a of integral non-negative points in the simplex 

lies between the bounds (Beged-Dov 1972) 

(a + I c.)n 

a < -- 
= n 

n I П c . 
i=i1 

A necessary and sufficient condition for the system of linear 

Ax =b to be solvable for any vector beis given by: equations 



rank A = in Д (A) = 1 . 
m 

Let Ax = 0 , A e Z ,m<n be a system of linear equations 
m, n 

and let Ѳ be a number such that |а^ | ^Ѳ for all i,j . Then there 

exists a non-trivial integral solution such that 

Ix. J < 2(пѲ)га^п_т^ . (Siegel's Lemma) 
J 

5. Not every finitely generated semigroup of integral vectors is 

polyhedral. For example, the semi-group 3 generated by the vectors 

= (2,0) , q2 = (0,2) , q^ = (l,l) is not polyhedral. Conditions for an 

arbitrary (not necessarily polyhedral) semi-group В of integral vectors 

to be finitely generated are given by the following theorem: the semi¬ 

group В CZn is finitely generated if and only if there is a matrix A 

with rational elements such that con В = {xeEn : Ax^O} and if for any 

rational vector vecon В there is an integer d such that dveВ 

(Trubin 1969, Petrova 1976). A generating set of a semigroup is called 

i/1/ie.ducilLle. if no proper subset of it is generating. If con В is a 

pointed cone then В has a unique irreducible generating set. The 

irreducible generating set of the polyhedral semigroup (where К 

is a pointed cone) consists of the integral points of a half-open 

parallelepiped Q which are minimal elements relative to the following 

partial order : x >-x' if > Л J , Vi e where at least one of these 

inequalities is strict. Here, A^ and A} are the coefficients in the 

t i t i 
expansions x= £ A.q , x' = J A.'q in terms of the generators q ,..., 

i=l 1 i=l 1 

q^1 of the cone К . This theorem may be generalized (Shevchenko & Ivanov 

1976). If the convex cone C (not necessarily polyhedral) in En is 

pointed, then the set of minimal elements of C^ is the unique irreducible 

generating set of the semigroup . 

6. The (nxn) integral matrix T is called H.z/imitLan if 

t..=0 , 1 < i < i < n and t. . > t. . > 0 . Show that every non-singular 

integral matrix A can be uniquely represented in the form T = AV 

(A =TV ^), where V is a unimodular matrix and T is Hermitian. 

7. (Veselov & Shevchenko 1978). Let x^ e {0,1} and let the 

2n 
equation I o-x^ = aq have the same solution set as the system 

X2^_-j_+X2:j_=l , Vi e N^. Then a q >. 2n~^ . 
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8. Let M be an integral d-polytope and let n be a positive 

integer. Let nM denote the sum (§3,Ch.l) of n polytopes M . Also, 

let v(m) and v(int M) be the number of integral points in M and 

int M respectively. The following assertions are true (Ehrhart 1977): 

(1) v(nM) is a polynomial P^(n) of degree d in n ; 

(2) v(int nM) = (-І)^Рэд(-п). (reflexive law) 

9* Show that: 

(1) the expansion coefficients of any column of a matrix A 

relative to any basis of A are equal to 0 , +1 if and only if A is an 

а-modular matrix; 

(2) the matrix A is unimodular if and only if A has a 

unimodular basis В and B'^A is absolutely unimodular. 

10. (Heller 1963). A subset U of a linear space is called a 

ипіто<іи.£ал ле.£ if any two of its bases are related by a unimodular trans¬ 

formation. In other words, the coordinates of a vector aeU relative to 

any basis of U are integers. Partially order the family of unimodular 

sets by means of the inclusion relation C . Show that the number of 

distinct elements in a maximal unimodular set ICE is at most n(n+l) , 
n 

where the bound is attained only by maximal sets formed by the edges of an 

n-simplex taken with all possible orientations. 

11. (Heller 1957). Suppose that the rows of a Boolean matrix A 

of dimension mxn can be partitioned into two disjoint classes 1^ and 

І2 with the following property: if rows i and q belong to the same 

class and if there is a column with index к such that 

either a. . > a . , V i £ N , or 
ij = qj n 

absolutely unimodular matrix. 

a., = a , =1 then 
lk qk 

. . < a . , Vj e N . Then A is an 
i.i = qj n 

12. (Brown 1977). Let A be an absolutely unimodular (n*n)- 
(k) 
v + к which is composed of all 

д(п-1) an abgolutely 

matrix. Let Av be the matrix of order 

the k-th order minors of the matrix A . Then 

unimodular matrix. 

13. Let A e C 
m, n 

for any pair of vectors w , v e C, such that wA = v , we have 
-L f П 

If the polytope M(A.b^.b2.d^.d2) f 0 , then 

b. + u _ - _ u 

i:w.=-l 1 j:v.=l ^ i:w.=l 
1 J 2 1 

d*7 lb t + l df < I bj + I 

im 

The following assertions are equivalent: 

(1) A is an absolutely unimodular matrix; 
12 12 

(2) for all b <b and d < d the given inequality 

plies that M(A,b1,b2,d^,d2) ^ 0 ; 
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(3) if М(А ,Ъ^ ,b2 ,d'^ ,d2 ) ф 0 for integral vectors b^^b2 , 

d1<d2 then Mz(A,b1,b2,d1,d2) t 0 . 

14. (Pulleyblank & Edmonds 1974). The inequality 

I x. < (|S I - l)/2 for SCV , ISI = 1 (mod 2) , 
i:e.eG(S) 1 

1 

determines a facet of the matching polytope M(G) if and only if the 

subgraph G = (V,E) generated by the set S is 2-connected and the graph 

G(S) has a perfect matching for any veS . 

15- (Padberg 1974» Lovasz 1972). A c/iitically non-pe./i£e.c.t gnaph 

is a non-perfect graph such that all subgraphs which it generates are 

perfect. Show that the strong Berge conjecture is equivalent to the 

following: every critically non-perfect graph is either an odd cycle 

without chords of length greater than or equal to five, or the complement 

of such a graph. Show that: 

(1) a critical non-perfect graph has 1+cs(G)cj(G) vertices; 

(2) if A^ is the clique matrix of a critically non-perfect 

graph G , then the polytope M=(A^,e) has only one non-integral vertex 

all of whose coordinates are equal to 1 /00(G) . 

16. (Chvatal 1975). An edge e of a graph G is called 

а-onitioat if a(G\e) >a(G) . Let G be а graph with n vertices whose 

а-critical edges form a spanning connected subgraph. Then the inequality 

n < 
I x. <a(G) determines а facet of the polytope conv lfe(A_,e) . 

i = l Z b 

17. Let Aq be the incidence matrix (vertices-edges) of a graph 

G= (V,E) with m vertices and n edges. Show that the following four 

assertions are equivalent; 

(1) G is a bipartite graph; 

(2) M=(AQ,e) is an integral polytope; 

(3) M-(Aj,e) is an integral polytope; 

(4) M=(Aq,e) is an integral polytope. 

is 

C 

The assertion 

(5) M=(AG»e) is an integral polytope 

not equivalent to (l) but is equivalent to 

(l1) either G is a bipartite graph or 

of G we have M=(AG^G>e) = 0 . 

for every odd cycle 
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18. (Fulkerson, Hoffman & Oppenheim 1974). Let A be a Boolean 

matrix. Then the following conditions are equivalent: 

(1) A is a balanced matrix; 

(2) for every proper submatrix A' of A the polytopes 

M=(A',e) , M=(A',e) , M=(A',e) are integral; 

(3) A is the incidence matrix of a balanced hypergraph 

(a hypergraph is called &.a£ance.d if every odd cycle has an edge which 

containes at least three vertices of the cycle); 

(4) the intersection graph Gд of A does not contain odd 

chordless cycles. 

Show that every absolutely unimodular matrix is balanced and 

that every balanced matrix is perfect. 

19. Suppose that the Boolean matrix A is such that the linear 

programming problem min{ex :xeM=(A,b)} has an integral solution for any 

Boolean vector b . Then this problem has an integral solution for any 

non-negative integral vector b . Use this fact to prove the implication 

(l) =^(2) in Theorem 5.3. 

20. (Ivanov 1974). The set of integral points in any polytope 

M(a,b) , AeZ , beZ coincides with the set of integral points of the 
m,n m 5 r 

relaxed partition polytope M=(B,e) , where В is the submatrix obtained 

from the matrix AQ by removing its first row. Here 

l—1 
rQ

 i 

A 
-V1 

-b +1 
m 

0 ... 0 i 

and Q is a matrix whose column vectors form a generating set of the 

polyhedral semigroup В = (xeZn + -^ : Ax>0} , where the first of the inequali¬ 

ties in Ax > 0 is taken as an equality. A bisection between the points 

x e M^A.b) and ueM^fB.b) is given by the mapping x = Qu . 

< T 
21. Let x° be a vertex of the polytope M=(A ,e) which 

maximizes the function ex . Then there is a vertex x' of the polytope 

conv Nfe^Ap.e) which maximizes the same objective function and whose 
CJ Lr 

components, corresponding to the integral components of x° , have the 

same values. 



22. (Berge 1970). Let H = (l,E) be a hypergraph. We say that 

the function h(v) defined on I is лtochattic if 

0 ^ h (v) <^ 1 V v e I, 

£ h (v) = 1 VisN , m = IE I . 
veE. m 

l 

Show that (1) not every hypergraph H has a stochastic function; 

(2) every stochastic function h(v) defined on a unimodular 

hypergraph H can be represented in the form 

m m 
h(v) = £ A.h.(v) , where A. > 0 , £ A. = 1 and h.(v) is a stochastic 

i=l 1 1 i=l1 1 

function taking the values 0 or 1 . 

23. Let G = (V,E) be a graph with m vertices such that every 

vertex v^ is assigned a non-negative integral weight b^ . A Ъ-matchin g 

in a graph G is a subset of edges such that no more than b^ are 

incident to the vertex v^ . The b-matching polytope can be defined by 

analogy with the matching polytope. Show that it is given by the following 

system of inequalities: 

x . _> 0 , Vj £ К , n = IE I , 
j — J n 11 

1 a. . x . 
Iq J 

< b. 
= 1 

Vi e N 

I x < H I b - 1) VSeF , 
j:e. gG(S) j i:v. eS 
J J i 

where T = j S С V , \ b. E1 (m od 2 ) I . 
' i:v. eS 1 ’ 

l 

24. (Lovasz 1979). A non-empty proper subset S of the vertices 

of a di-graph G = (V ,E ) is called a dLL-cut if (i , j ) i E , V (i , j ) e SxS . 

Let G be a di-graph with the property that if (i»j) eE then (j,i) i E. 

Then the maximum number of distinct di-cuts in G equals the minimum 

number of edges which cover all di-cuts. 

25. (Saigal 1969). The <ih.o/ite.4t-ch. ain po (.ytope. of the di-graph 

G =(V,E) is given by the following system of inequalities: 

m ш 
1 X,- 

j=l 
- 1xu = 1, 

j=l 

m m 
1 x. . 

1J 

[ X.. = 0 , 
j=l J1 

1 2)•«•f 
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V(i’j)eVNm 

m m 
Ух.- Ух. =-1, x..>0 

j=l mj j=l Jm 1J = 

where m is the number of vertices in G and where the shortest chains 

are sought between the vertices numbered 1 and m . Show that the 

maximum distance conjecture is true for the shortest-chain polytope. 

26. Let a be a positive integral n-vector and let a be а 

n 
positive integer satisfying the conditions a. < a and У a. >ct , Vj eN . 

J j=i J n 

The following two assertions are equivalent: 

(1) M(a,a) = {xeEn : ax <a , O^x^e) is an integral polytope; 

(2) (a,a) =A(e,k) , where A and к are positive integers. 

27. (Hoffman 1979). Let A be the incidence matrix of a graph 

G having the following property : every pair of odd cycles contains 

respectively vertices v^ and v^ such that either v^, = v^ or and 

are adjacent. Show that if the system Ax =b , where b is an 

A I 0 
, has both a non-negative solution and integral vector and A = 

an integral solution, then it has a non-negative integral solution. 

28. (Hoffman 1979). Let G = (V,E) be a di-graph and let T be 

a family of subsets of V such that if S,T e T , SDT^0 and SUT / V 

then SDT zT and SUT cT . Let p be an integral supermodular function 

defined on T . Then, if 

given by the conditions 

a„ , d^ . , V(i,j) eE are integers, the polytope 

a. . < x . . < d. . 
iJ " ij = iJ 

V (i , j ) e E , 

У _x.. - У _ x.. > p(S) 
i,j)eS*S 1J (i.j)eSxS 

VS e T 

is integral. 

29. 

Let (aij)nxm 

(Welsh 1976). Let П be a matroid on 

be the incidence matrix of elements in the set 

J - {e,e^,...»en) • 

J\e and 

cycles in the matroid which contain e . Define an e-/£ow in the. natnoid 

FI to be a vector u = (u, ,...,u ) which satisfies the conditions 

where d^ 

the. {.іоы 

m 
У a. ,u. < d. , Vi e N , u. > 0 , vj e N 

j=l J = 1 n J ~ J m 

is the flow capacity of the element e. eJ . 

m 
is defined to be У u. . The set CCJ is a 

i=l 1 

The magnitude о,i 

cocycte of the 
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matroid П if C is a cycle in the dual matroid /7* , that is, in the 

matroid whose bases are precisely the complements of the bases of FI . 

Let C* be a cocycle of the matroid FI which contains e . The 

capacity o-f. the. cocycte C* is the number \ d. . Show that if FI 

i:e. eC* 1 
l 

is a regular matroid then the maximum flow magnitude of an e-flow equals 

the minimum flow capacity of cocycles containing e . 

30. (Hoffman 1979). Let L be a partially ordered set with 

commutative binary operations Л and V such that: 

a-<b => аЛЬ=а , aVb=b ; 

аЛЬ-Ча , а ЛЬ 4b , a 4aVb , b -4 aVb . 

Let the map ф:Е-*2^ , J = satisfy 

(1) a 4b 4c => ф(а)Пф(с)сф(Ь) ; 

(2) ф (a V b ) U ф (а Л b ) С Ф (a ) U ф (b ) ; 

or (21) ф(аѴЬ)иф(аЛЬ)Эф(а)иф(Ь) ; 

(3) Ф (a V b ) П ф (а Л b ) 13 ф (a) П ф (b ) . 

Show that if p is a non-negative supermodular (submodular) 

integral function, then the polytope determined by the inequalities 

OSKjid. .VjU (d. ez+). 

I X, ^ p(a) , VaEL , 
j e ф (a ) ^ = 

is integral. 

31. Let G = (U,V,E) be a bipartite graph and let Fl^ and Fl^ 

be matroids on E whose independent sets are respectively the subsets ш 

which do not contain any edges incident to one vertex of U or V . Then 

the intersection of the matroid polytopes M-^ , М2 is a feasible set for 

an assignment problem. 

32. Let M be an integral polymatroid all of whose vertices 

have coordinates consisting of 0's and l's. Then there exists a matroid 

FI whose corresponding polytope is M . 

33. Find conditions on the functions р^(ш) and P2(w) which 

are necessary to ensure that the polymatroids M(p^) and M(P2) are 

combinatorially equivalent. Characterize those polymatroids which have 

the maximum number of vertices. 

34. (Ehrhart 1977). Let FI-^=(J,7^) and ^w0 ?^ven 

matroids where J = N , and let г, (ш) and г„(ш) be the rank functions 
n 1 2 

of these matroids. Let г(ш) =min{r^) + г2 U =ш} . 
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Show that the vertices of the polyhedron M = {xeE : У x. >r(N )-r(N\aj) , 
n . 1 = n n 

l ею 
VwCN^}, and only these points, are the characteristic vectors of the 

common independent sets of maximum cardinality of the matroids /7^ and 

П2 - 
35. Let T be a family of subsets of the set . Then, if T 

contains the sets )Й and J , and if it contains UDV whenever it' 

contains U and V , then the polytope in given by the conditions 

I x- < р(ш) , Vtо eF , is a polymatroid for any submodular non-negative 
ІЕШ 

non-decreasing function p (ou) . Its rank function r(a) is given by 

r(a) -min{ I a^z^ + £ р(ш)у(ш) :z.+ l р(ш)у(ш) > 1 , Vj e J} . 
ieJ weF ^ 

36. In the works of Kovalev (1977), Kovalev (1980), Kovalev & 

Yemelicheva (1975) there is constructed a theory of discrete-convex 

programming in which it is established that in convex integer programming 

polymatroids play the same role as do convex sets in the theory of convex 

programming. 

Let M be a polymatroid in . The separable function 

f (x) = £ f^ (x^) , defined on , is called di-6c/ieie.£y conue.x , if 
i = l 

Д^(х):>Ді(у) when x < у , where A^(x)=f^(x + l)-f^(x). The quantity 

Д. (x) is called the i-g/iadient of the. function. f (x) . 
1 0 

Starting from the point x = 0 , the gradient algorithm 

generates a sequence of points x^ according to the rule x^=хЛ ^ +e. , 
xk 

where the index i^ corresponds to the largest positive i-gradient, among 

k + 1 
those i for which x +e. c M„ . If such an index does not exist, then 

1 L 

the algorithm terminates and the vector obtained is optimal for the prob¬ 

lem of maximizing a separable discrete convex function on the polymatroid 

M . 

If the set M is not a polymatroid but M 

first defining condition of a polymatroid, then, if x^ 

obtained by the gradient algorithm, we have 

rB' 

f(x*) = 

£(Ma) 

A1** 
n 

where 

satisfies the 

is the vector 

M ={xeM„ : x < a} , h(M) = max] £ x. : x £ M, , £(M) = min< [ x. :xeM 
a Z (i=l 1 Z) (i=l 1 

209 



x + e ^ i , V i e Nn > are the maximum and minimum 'heights ' of the set • 

It is clear that the maximum and minimum heights of each of the subsets 

M of the polymatroid M coincide. 
3. 

If, in addition, the discrete-convex function f(x) is not 

separable, then we have the estimate 

f(x») - f(xS 
f (x*) - f(0 

х \*(M) 

hWT) 

Further details on the maximization of non-linear functions 

on the intersection of polymatroids can be found in Kowaljow & Girlich 

(1978) and Girlikh & Kowaljow (1981). 
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5 PERMUTATION POLYTOPES 

In the previous chapter we solved the problem of constructing 

the convex hull of the integral points of a polyhedron. Theorem 1.4» 

originating in the work of Hilbert, showed that the convex hull of the 

integral points could be represented as the solution set of a system of 

linear inequalities with rational coefficients and hence, as the intersec¬ 

tion of a finite family of halfspaces. In this chapter we give methods 

for constructing such half-spaces for the case of polytopes associated 

with permutation matrices. In addition to the classical permutation poly¬ 

topes introduced by Rado (1952), and the bistochastic polytope of Birkhoff 

(1946), we study newer classes of permutation matrices : the travelling 

salesman polytope, the standardization polytope and the assignment poly¬ 

tope. Permutation polytopes play an important part in combinatorial 

analysis (Sachkov 1977), scheduling theory (Tanaev & Shkurba 1975) and the 

theory of extremal problems on substitutions (Suprunenko & Metelski 1973). 

§1 BISTOCHASTIC POLYTOPES 

In this section we study a polytope defined by the constraints 

of the assignment problem and its generalizations, which is well known and 

has been widely studied. 

1.1 Birkhoff's Theorem 

Definition 1.1 A square matrix with real, non-negative 

elements is called ILL л to chaotic, if the sum of the elemets in any line 

(row or column) is equal to one. Bistochastic Boolean Matrices are called 

r>e.n.muta.tion matnLce.-b. 

Permutation (nxn)-matrices and permutations 1T£Sn are connec¬ 

ted as follows : every permutation (тг^, .. . , ) corresponds to a permuta¬ 

tion matrix (x. .) whose components are defined by x. .=1 if і=тг. and 
ij ij J 

x. .=0 otherwise. 
ij 
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Theorern 1. 1 (Birkhoff) The Aet M o£ all llAtochaAtic 

(n*n)-matniceA La a polytope in. E ^ uihich haA the. penmutation matn.Lc.eA 
. . , . n ал it A venticeA. 

Pnoof. Let xeM^ • The theorem statement is clearly true if x is alrea¬ 

dy itself a permutation matrix. We use induction on the number of posi¬ 

tive elements of x to show that x is a convex combination of permuta¬ 

tion matrices. We first show that the matrix x has at least one diagonal 

consisting entirely of positive elements. Indeed, if the matrix x 

contains a zero submatrix x'J , then all nonzero elements in the rows with 

1 N\J 
indices in the set I lie in the submatrix xT , so that the row sums 

N \J 1 
of the matrix 

matrix is | I 

xNn\J is 

are all Hence, the sum of all elements of this 

Similarly, the sum of all the elements of the matrix 
N\J j 

But, the submatrices x^ and \ j have no elements 

in common, while the sum of all the elements of x is n , hence 

111 + IJI < n . Thus, by Frobenius ' Theorem (Corollary 4.7» Ch. 4) the 

matrix x contains a diagonal all of whose elements are positive. 

Let A be the smallest element in one such diagonal of x 

and let P be the permutation matrix with unit elements in the positions 

corresponding to this diagonal. Clearly 0<A<1 and у = (x-AP)/(l-A) 

is a bistochastic matrix with at least one less positive element than x . 

By the inductive hypothesis, у is representable as a convex combination 

of permutation matrices. Then x = AP + (l-A)y is also a convex combina¬ 

tion of permutation matrices. Thus, the set Mn is a polytope generated 

by the permutation matrices. 

Obviously, no permutation matrix can be represented as a 

convex combination of other permutation matrices, and so the permutation 

matrices are vertices of Mn . H 

The constraint matrix R of the constraints 

ij i0 
Vi,jeNn, (1.1) 

Ij *1 
VjcNn. (1.2) 

ij = 1 VieNn’ (1.3) 

written in the standard form Rx = e , where 
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takes the form 

(ХП* * ' • ,Xln.xnl.xnn) e E 2 * 

1 . . 1 

1 

. 1 

where R is a (2nxn )-matrix in every column R^" of which there are 

precisely two units, the other elements being zero. 

The matrix R is the incidence matrix of a complete bipartite 

graph К 
n, n 

Thus, the permutation polytope M is identical with the 

partition polytope conv M^R^) of the edges of a complete bipartite 

graph Kn n . Since the matrix R is absolutely unimodular (Corollary 

4.5, Ch. 4)» M = conv M„(R,e) = M (R,e) . This is another proof of 

Birkhoff's theorem. 

The polytope Mn can be regarded as the convex hull of the 

complete pairings in a complete bipartite graph. The characteristic vec¬ 

tors x of such pairings can be represented as a matrix in which the rows 

correspond to one vertex set of the graph Kn and the columns corres¬ 

pond to the second vertex set. 

The polytope Mn is the feasible set in the assignment prob¬ 

lem, which has important applications, and it has therefore been studied 

by many authors. Most of the results obtained are elementary in character 

and follow from the theory of permutation matrices. Here we follow 

Balinski & Russakoff (1972) in giving a graph-theoretical proof of a basic 

theorem about polytopes M . This is the diameter theorem which is based 

on a simple criterion for testing for adjacency of vertices. 

It is easily verified that rank R = 2n-l . Since the point 

x° , all of whose coordinates are equal to l/n , is an interior point of 

M relative to the affine set defined by equations (1.2),(1.3), it follows 

that dim M = (n-1 )^ . 
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Proposition 1.2 7he ІаАеА {-j.eaAll.le ІаАел) о/ the polytope 

М а/іе la one-to-one co/ineApondence with the. Apannlng tneeA о/ the 
n 

К (the Apannln g tneeA containing a complete 
П f n 

oj к ). 
n,n 

complete llpaatlte gnaph 

palnln g 

Pnooj With each basis В of Mn we associate a spanning subgraph T(B) 

of the graph n which contains edges (i, j ) such that the columns R1^ 

lie in the basis В . If the graph T(B) has a cycle, then the columns 

Rij' corresponding to the edges of the cycle form a submatrix (B',0)^ , 

where B' is the incidence matrix of the cycle. The determinant of B' 

is zero (see §4 > Ch.4)> and this contradicts the linear independence of 

the column vectors in the basis. It is clear, that if the spanning tree 

T(B) does not contain a complete pairing of the graph К , then the 
П f n 

basis В is not feasible. 
T 

Conversely, let T be a spanning tree of and let R 

be the set of columns R1^ of R corresponding to the edges (i,j)eT . 

Consider the equation J R1^!.. = 0 . Since T is a tree, it has a 
(i,j)eT 1J 

vertex, say i , of degree 1 . Let the vertex i be incident to the 

unique edge (i,j) . Then it is easily seen that A^. = 0 . Removing the 

edge (i,j) with vertex i from the tree T and using the same argument 

for the remaining part of the graph T , we find that all A.. = 0 . Thus 
" rp J 

the columns of R are linearly independent, that is R is a basis. If 

the tree T contains a complete pairing P , then 

if (i,j)zP, 

otherwise. 

T 
This means that R is a feasible basis. // 

Let G(x) be the complete pairing corresponding to the 

permutation matrix x . 

Theorem 1.3 two uentlceA x^y о/ the polytope a/ie 

adjacent IjL and only Ij. the Aalgnaph G(x)UG(y) containa only one cycle. 

P/iooJL (i) Every vertex in the subgraph G(x)UG(y) has degree equal to 

either 1 or 2 . Thus, every connected component of G(x)UG(y) is 

either an edge or a cycle with an even number of edges. Suppose that 

there is more than one cycle among the connected components. Let T(x), 
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т(у) be any spanning trees containing the pairings G(x),G(y) . Then the 

graph T(x)UT(y) also contains more than one cycle. Thus the feasible 

bases A^x^ and A^^ differ by more than one column-vector and so are 

not adjacent. 

(ii) Now let the graph G(x)UG(y) consist of a single cycle C 

and a set E of isolated edges. Let |E|=p ; then |c| = 2n - 2p . Let 

Let F be a set of p edges of Kn which do not belong to G(x) G(y) 

but which connect together all the connected components of G(x)UG(y) . 

Choose two adjacent edges (s,r) and (r,t) from the cycle C . Let 

(r,s)eG(x) , (r,t)eG(y) . Add the edges of F to the subgraph G(x)UG(y) 

and then form two graphs by removing the edge (r,s) in one case and the 

edge (r,t) in the second case. We thus obtain two spanning trees T(x) 

and T(y) . The submatrices A^'x^ and A^^^ are feasible bases 

corresponding to the vertices x and у respectively. These bases 

differ only by one column-vector and are therefore adjacent. // 

Since every permutation matrix x corresponds uniquely to a 

permutation тг , Theorem 1.3 can be reformulated as follows. 

Corollary 1.4 7he ѵе/ііісел a and т о/ the. aAAignment 

polytope, a/ie adjacent and only the pe/imutation тг — о "^т contains 

exactly one cycle. 

1.2 Diameter of M 
_n 

Let G(Mn) be the graph of the polytope Mn . Two vertices 

x and у of a graph are called літііал. if there is an automorphism a 

of the graph such that a(x) = у (a is a permutation of the vertices of 

the graph which preserves adjacency relations). The graph is ventex- 

луттеіпіс if any pair of its vertices are similar. 

Proposition 1.5 G(M ) a ve/itex Aymmet/iic gnaph. 

P/ioojL Let x , у be vertices of the graph G(M ) , that is, permutation 

matrices. Let ф be the permutation of the columns of x which trans¬ 

forms x into у or, equivalently, ф is a permutation of one of the 

parts of the graph К which transforms the pairing G(x) into the 

pairing G(y) . Define the mapping a which maps the vertex (z^j ) of 

G(Mn) to the vertex a(z) = (z^^) • It is clear that a preserves 

adjacency of vertices in G(Mn) and that a(x) = у . Thus a is an 

automorphism of G(Mn) . // 
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Corollary 1.6 The degnee о/ each ѵеяіек о/ the. gnaph G(Mn) 

(i.e. the. питНея о/ adja.ce.nt ueetice-b to each, veetex. o£ ) ІЛ egaat to 

n-2 / \ 

Jo (0("-k-1,! • 

P/iool By Proposition 1.5 the degrees of all the vertices of G(M^) are 

equal. Thus it suffices to determine the number of adjacent vertices to 

the vertex (x..) with coordinates x.. =1 for all i and x.. = 0 
. iJ 11 iJ 

for ifj . By Theorem 1.3 . the number of vertices у adjacent to x 

such that the pairing G(y) has no edges in common with G(x) is (n-l)|, 

and the number such that G(y) has one edge in common with G(x) is 

^j(n-2)! . The number such that G(y) has к edges in common with 

G(x) is ^j(n-k-l)! . Summing over keNn ^ we obtain the desired 

formula . II 

Theorem 1.7 The diamete/i ojL the potytope M /о/i n J> 4 

i* 2 . 

P/ioo£ It suffices to prove that given any two non-adjacent vertices x 

and у of Mn , there is a vertex which is adjacent to both. We note 

that non-adjacent vertices x and у of Mn only exist for n > 4 • 

Let G(x),G(y) be pairings in the graph Kn corresponding 

to the vertices x and у . We examine the subgraph G(x)UG(y) . By 

Theorem 1.3 , G(x)UG(y) contains at least two cycles. If the pairings 

G(x),G(y) have at least one edge (i,j) in common then, putting xij=-'- 

we obtain the assertion of the theorem by an induction on n . Thus, 

suppose that G(x)UG(y) is the union of p (p,>2) cycles C^,...,C . 

It is easy to see that these cycles have no edges in common and that each 

of them consists of edges which belong successively to G(x) and G(y) . 

By removing one edge e.eG(y) from each of the cycles C. , we obtain p 

_ 1 P 1 
disjoint chains C. and G(x) C [J C. . Let E be a set of p edges of 

1 i=l 1 _ _ 
the graph К which connect all of the p chains C, ,...,C into one 

0in,n Ip 
simple cycle. Note that the edges in E and the edges e^ which have 

been removed also form a simple cycle. Let eeE . Then T(x) = C\e is a 

spanning tree of the graph Kn n which determines a feasible basis for 

the vertex xeM 
n 

We show that if an arbitrary edge feG(x) is removed from 
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the cycle C , then the spanning tree so obtained defines a feasible basis 

of a vertex z of Mn which is adjacent to the vertex x because their 

bases differ by one column. Indeed, the tree so constructed contains a 

complete pairing consisting of the edges of the set E augmented by n-p 

edges of the pairing G(y) belonging to the cycle C . Thus, the vertex 

z which we have constructed is adjacent to x but it is also adjacent to 

у , for the graph G(y)UG(z) has a cycle formed by the edges e^.e 

and the edges in E , while the remaining edges in the pairings G(y) and 

G(z) are common to both. // 

Noting that diam Mn = 1 for n<3 , we can assert that the 

diameter conjecture for polytopes of bi-stochastic matrices is true. 

1.3 Symmetric Permutation Matrices 

Birkhoff's theorem describes the convex hull of the permuta¬ 

tion matrices. The following theorem, due to Cruse (1975) describes the 

convex hull of all symmetric permutation matrices (х^.=х^) . 

Definition 1.2 The convex hull of the set of symmetric 

permutation (nxn)-matrices is called the Aymmet/iic pe.Kmu.ta.tion polytope 

and is denoted by M* . 

Theorem 1.8 1 tie Aymmetnic penmutation polytope 

ly the conAtnaint AyAtem 

M* 
n 

la gtven 

1 l 
ieS jeS\i 

x. . < 
ij - 

Is| - 1 vs zT, (1.4) 

X. . > 
1J = 

0 vi» jeNn, (1.5) 

n 

X. . = 
1J 

x.. 
Ji 

Vi,jeNn, (1.6) 

i 
i=l 

X . . = 
1J 

1 VjeNn, (1.7) 

;CN : |S 
— n 1 l>3 , 1 s 1 = 1 (mod2)} . 

P/loo£ The proof consists in constructing a graph G , such that every 

symmetric permutation matrix is an adjacency matrix of some pairing, and 

conversely. It then only remains to use the theorem on the convex hull 

of the characteristic vectors of pairings in G and to replace the 

characteristic vectors of pairings by their adjacency matrices. 
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We define a graph G with vertex set V = and edge set 

E = { (i, j ) : i,jeNn or i=j (mod n)}. In other words, G consists of 

the complete graph Kn , with every vertex i adjacent, in addition, to 

the edge (i,i+n) . 

Let (x.„ be a symmetric permutation matrix. We 
ij nxn J ^ 

associate it with the complete pairing G(x) of G ,whose characteristic 

vector у has components 

X. .=x . . 

X. . 
11 

for i,j eNn, 

for i = j (mod n) 
(1.8) 

for e = (i,j) e E . Analagously, if P is a complete pairing of G and 

у is its characteristic vector, then we associate it with a symmetric 

permutation matrix through the same formula. By Theorem 5.8, Ch.4 , 

characteristic vectors of complete pairings satisfy the system of inequa¬ 

lities 

I yo < ( ISI — 1) /2 VS cv , ISI =1 (mod 2) (1.9) 
eeG(S) e 

where G(S) is the subgraph of G = (V,E) generated by the vertices in 

S . The inequalities in (1.9) which correspond to subsets S which 

generate connected subgraphs G(S) of G are superfluous (see Prob. 14, 

Ch.4)« Thus we may certainly exclude from (1.9) those inequalities 

corresponding to subsets S which contain vertices with indices greater 

than n . If we now transform the remaining inequalities, using (1.8), to 

inequalities in the variables x^ . , we obtain the system (1.7). Ц 

§2 THE HAMILTONIAN CYCLE POLYTOPE 

An important role in discrete optimization is played by the 

travelling salesman problem. In this section we examine the possibility 

of linearizing the problem, that is, of constructing the convex hull of 

its feasible solutions. 

2.1 The Symmetric and Unsymmetric Travelling Salesman Problem 

Let G = (V,E) be a graph with n vertices. A simple 

spanning cycle C in G is called a Hamiltonian cycle. , and a graph 

which contains such a cycle is called a Hamiltonian gnapk . Any hamil- 

tonian cycle can be characterized by means of its adjacency matrix ^X^nxn* 

where x^ . =1 if the edge (i,j)eC and x^ = 0 otherwise. Any 
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adjacency matrix of a hamitonian cycle is a symmetric Boolean matrix. 

Definition 2.1 The convex hull in S 2 of the adjacency 
n 

matrices of the hamiltonian cycles of a" given graph G will be called the 

Ram.iiton.iaa cycle, polytope of the graph G . 

The hamiltonian cycle polytope of a graph G is a face of 

the hamiltonian cycle polytope of the complete graph Kn . Thus, in what 

follows we study only the hamiltonian cycle polytope of the complete graph 

Kn . We denote this polytope by . 

The polytope is the convex hull of a certain subset of 

the integral points of the polytope 

I x. . = 2 
i=l ^ 

0 < x. . = x. . < 1 
ij Ji = 

VjENn, 

Vi,jeNn, 

x 
ii 

0 VieN . 
n 

Taking account of the equalities x^ = x. ^ we can associate 

tonian cycle with a point in , where m = n(n-l)/2 . Let 

the incidence matrix of the complete graph on n vertices Kn 

of hamiltonian cycles of Kn is in one-to-one correspondence 

integral points of the polytope of solutions of the following 

inequalities : 

every hamil- 

W denote 

. The set 

with the 

system of 

Wx = 2e 0 £ x < e, 

I x. . < ISI - 1 V S C N (2.1) 
i, jeS ^ - 

i<j 

The constraints (2.1) serve to eliminate those cycles which are not 

spanning cycles. 

Now let K* be the complete digraph on n vertices (any 

pair of vertices i,j is connected by the directed edges (i,j) and (j,i)) 

A Hamiltonian toun is a spanning di-chain in which all the vertices are 

different, with the exception of the first and the last. The adjacency 

matrix of a hamiltonian tour is a permutation matrix. Clearly, not every 

permutation matrix corresponds to a hamiltonian tour. However, every 

permutation matrix which satisfies the conditions 
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. I *ij І Isl - 1 ¥SCV <2-2> 
i.JeS j 

is easily seen to yield a hamiltonian tour. Also it may be verified that 

every hamiltonian tour satisfies the constraints (2.2). We remark that 

the inequalities (2.2) for the subsets S and S = Nn\S are equivalent 

because of the equations (1.2),(1.3). From the relations 

l хіі = l I I L x±1 
i.jeS 1J ieS j=l i£S jeS 1J 

it follows that conditions (2.2) are equivalent to the following 

I l_ x.. > 1 V SCN , S/0 . 
ieS j cS 1J 

Definition 2.2 The convex hull in En2 of the adjacency 

matrices of the hamiltonian tours in the digraph K* is called the 

hamiltonian toun po lytope. , denoted by MaS . 

Hamiltonian tours may be characterized by a list of directed 

edges, by an adjacency matrix and by the permutation corresponding to this 

matrix. In what follows we will use whichever description is convenient 

and the hamiltonian tour so given will be called, simply, a toun . A 

permutation corresponding to a tour is called cyclic . A cyclic permuta¬ 

tion ir can be written in the form tt = <i,,...,i > , which is interpre¬ 

ted to mean that x. . =1 VkeH , where i .,=i, . 
1k1k+l n n+1 1 

One of the problems in polyhedral combinatorial theory is to 

construct a system of inequalities which defines the polytopes and 

. To do this it is necessary to find the equations of hyperplanes 

which cut away the vertices of the bi-stochastic polytope Mn which are 

not tours. The study of the faces of Mas and MS was begun in the 

early 1950's by J.Heller who investigated the possibility of finding a 

minimal weighted cycle or tour using the techniques of linear programming. 

The problems are better known as the symmetrical and unsymmetrical 

travelling salesman problem. 

The hamiltonian cycle polytope is the feasible set in the 

symmetric travelling salesman problem, while the hamiltonian tour poly¬ 

tope is the feasible set for the unsymmetric travelling salesman problem. 

Later, the problem of linearizing the travelling salesman problem was 

widely studied : Heller (1955), Kuhn (1955), Norman (1955), Heller (1956), 
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Padberg & Rao (1974). Maurras (1975), Savage et al. (1976), Grotschel & 

Padberg (1977), Sarvanov (1977), Papadimitrou (1978), Grotschel 6 Padberg 

(1979). 

Every hamiltonian cycle defines precisely two tours corres¬ 

ponding to the two distinct orientations of the cycle. Thus there is a 

connection between the two polytopes and M^s . The following 

theorem establishes connections between the faces of MS and the faces of 
„ „ n 

Theorem 2,1 l). 7/ the inequality 

У a. .x. . £ a, 
l<i<j<n ^ ^ - C 

de-tine* a taee ot the po lytope , then the inequality 

!<if j<n 
a. .x. . < a„ 
ij i] " 0 

cl S 
detine* a tac.e о/ the polytope M in the ea*e whe/ie a. . = a.. 

n ij Jl 
2). (Heller 1955). It t-de inequality 

111?Jin 
a. .x. . £ an 
ij ij = o 

detine* a (d-1 )~tuee ot the polytope Mn , then the inequality 

У (a. .+a .. )x. ./2 < a 
.. ij ji ij 

1ii<Jin 

detine* a (d'-l )~tace ot the polytope it and only it the mat/іік with 

element* 

b. . = 
ij 

I I akt (n-1) I (aik+ak,) У (afci+a fc) 
k=l t=l k=l lic k=l 

n(n-2) n(n-2) ’ lfJ' (n-1) (n-2) 

0, i = J 

9. S • S 
i* *ymmetn.ie. Rene d = dim M , d’ = dim M 

w n n 
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2.2 Dimension 

Many authors have found a basis for the affine hull of 

hamiltonian tours ; Maurras (1975). Grotschel & Padberg (1977), Sarvanov 

(1977). In proving the following theorem we follow Maurras. 

Theorem 2.2 Ike dimension о/ tke kamittonian tou./i polytop e 

MaS ІЛ equat to n2 - 3n + 1 , n>3 • 

P/ioo£ For every tour we have the equations 

x 
ii 

0 VieN . 
n (2.3) 

The equations Rx = e together with (2.3) form a system whose rank is 

3n-l . Hence dim Mas < n2 - 3n + 1 = d . 
n = 

We show that we have equality ; dim Ma = d . For n=3 

this can be checked directly. We assume n^>4 • 

Suppose the contrary, that is dim Mas < d . Then, there 

must exist a hyperplane containing Ma and given by a linear equation 

n 

l 
1 f 4т1 

1ЯЗ 

a. .x. . 
ij ij 

= b (2.4) 

which is linearly independent of the system Rx = e . By subtracting 

suitable linear combinations of the equations of the system Rx = e from 

(2.4) we can ensure that 

a^j ^"li a23 Q, i 2,3,... ,n. (2.5) 

Now consider the tours <i213...*> and <il23....>,i>3 • 

Here the dots stand for identical directed chains joining the vertex 3 

to vertex i so that both become hamiltonian tours. Since both tours 

satisfy (2.4) we have : a^2 + a2i + арз = aqq + aq2 + a23 ’ 

implies that a^2 = 0 for all i>3 • Similarly, using the tours 

<31j2....> and <3jl2....> we find а^=0 for all j>3 • Then, from 

pairs of tours of the form <ijl2....> and <ilj2....> we have a „ =0 , 

i^j , i,j>3 and so forth. Eventually we discover that all the coeffic¬ 

ients in (2.4) are zero. This contradiction proves the theorem. Ц 

The following theorem has a similar proof. 
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Theorem 2.3 The dimen-blon of the hamiltonian cycte po iytope 

і-ь equat to n(n-3)/2 . 

2.3 Diameter 

The diameter of a hamiltonian tour polytope was established 

by Padberg & Rao (1974) even though a criterion for adjacency of vertices 

of Mas is still not known. Also, Papadimitriou (1978) showed that the 

problem of establishing adjacency is NP-complete. 

Theorem 2.4 The cLiamete/i of. the po iytope Mas іл equai to 

2 when n > 6 ( diam Mas = 1 /ол n < 5). 

PeooLet x1 and x" be non-adjacent vertices of Mas . We show that 

there is a vertex у which is adjacent to both x1 and x" . We conduct 

the proof in the language of permutations. Let p and t be cyclic 

permutations on the set N . We show that there exists a cyclic permuta- 
n -1 -1 

tion a such that the permutations ф = p a and ф = о т satisfy the 

conditions of Corollary 1.4» that is, the vertices p,o and o,x are 

adjacent on Mn and so are also adjacent on Mas . 

It is well known that any permutation can be represented 

uniquely as a product of disjoint cycles. Let p~^T be expressible as a 

product of t cycles : p = <i^ j д_* • • ><^2^2 ‘ ’ * > ’ ‘ * <^t^" t * * * > ' Since P 

and T are not adjacent vertices, t>2 . Also, since p and т are 

cyclic permutations, the length of each cycle <i js...> is greater than 

or equal to two. Without loss of generality suppose that l^i-^i^.. <i^<n 

Let 

^ — <^2^2‘’*> 
if t=2. 

= <i^ j 2' * ' ^2 ^ 3 * * * at-1^ t" " * at^ 1 * * " > ^ <^t**"al> 

' -1 
By definition, ф and ф are cycles satisfying the condition фф = p т . 

Hence, putting о = рф = тф ^ , we find that, by Corollary 1.4» the 

vertices p,a and also o,t are adjacent on Mas . It remains to show 

that о is a cyclic permutation. We consider separately the cases in 

which t is odd or even. Without loss of generality suppose that 

t = <12...n>. 

Suppose t is odd. Then, putting ф = <i,...i-^> and 
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ф <i-LJ2...i2j^-ІѢ^1> and о = рф , we find that 

о — тф — <l*..l-^...l|^»».l^_...n^<l^l2»..l^^ 

= <1. .І,ІЧ + 1. .І«І ,+1. .І. І,+1. .І-І.+1. .І ,ІГ+1. .І, ,І, +1. ,П> 
12 5 4 tl А 1 45 t-1 t 

which is a cyclic permutation. 

Suppose t is even. Let i^ + -^ be "the last component of the 

cycle <i^ j ^. . . i^+-^> (if this cycle has length two we consider that 

j^=i^+j). Clearly i^ < i^+]_ ,1 n • Define ф = <i^ + -^i^.. .. i^> and 

Ф = <i^j2 *•* ^2^ 3 **• ^t-l^ t‘‘‘ at + 1 ^1 > * Putting о = тф"1 = рф we find 

a = <1.. 
V V '4+1* * *n><il12’ ‘ *1t1t+l> 

= <1.. i^i2+l. .іоід+1. • і^^і-^+І. . i^^+l* '^4a5+^' • i-^t+^" * "n> 

which is a cyclic permutation. 

Thus, diam Mas < 2 for n > 4 • We prove that diam Mas=2 
n = = c n 

for n > 6 . To do this we consider the cyclic permutations : 

t = <12...n> , p = <1324657.•.n> , 

a’ =<1324...n> , o" = <1234657...n> . 

It can be checked directly that both p and т are adjacent on Mn to 

both o' and a" . At the same time neither p and т nor o' and a" 

are adjacent on Mn . Also, the equation p/2 + x/2 = o'/2 + a"/2 

shows that the minimal dimension of a face of M or of M which 
n ai 

contains all four vertices is equal to 2 . Hence, diam Mn =2 for n>6. 

It remains to observe that the equation diam Mas = 1 for 

n<3 can be checked directly. Ц 

2.4 Faces 

We will describe some classes of linear inequalities which 

define facets of the d-polytope Mas . To show that the inequality 

ax < an determines a face of Ma it suffices to show that Ma belongs 

to a half-space generated by this inequality and to exhibit a tour for 
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which ax° = an . To show that ax < an defines a facet of Mas , we 
и — U n 

need to do some preliminary work. To prove the following theorem we use 

ideas in Maurras (1975). 

The or em 2,5 £ach of the. ine.qualitie.-b 

X. . 
1112 

+ x. . <1 
1211 

for n>5, (2.6) 

x. . 
1112 

+ X. . + X. . + X. . + 
1113 1213 1214 

x. . <2 
1412 

f or n>6, (2.7) 

2x. . +x. . +2x. . 
1112 1114 1211 

+x. . +x. . +x. . +x. . 
1211 1213 1311 1412 

i 3 for n>5, (2.8) 

x. . 
1112 

+ x. . + x. . + У 
1.1. 1_X„ . i. . 
13 32 

x. . < n-2 
ij - 

for n>4, (2.9) 

X. . +x. . +x. . +x. . +x. . +x. . 
1113 1311 1112 1211 1213 1312 

< 2 for n>5, (2.10) 

defines a facet of the po Zytope MaS . dene, the indice-b i. 

He any painuii-be distinct uaZue-b fnom 1 to n . 

can 

Pnoof The fact that any tour x eMa satisfies the inequalities (2.6)- 

(2.10) can be verified directly. It is rather more difficult to show for 

each of these equations that they determine a facet. 

We illustrate how this can be done by using the procedure 

used in the proof of theorem 2.2. 

Consider any inequality of the type (2.6). For example, 

consider the inequality 

x12 + X21 = ^ (2.11) 

Suppose that it does not determine a facet of Mas . Then 

there is a hyperplane given by an equation of type (2.4) which is linearly 

independent of the equations Rx = e and of equation (2.11). But every 

tour satisfying (2.11) must also satisfy (2.4). As in the proof of 

theorem 2.2 we suppose that a^ = a^ = a^ = 0 , i^l . Then, consider¬ 

ing the appropriate pairs of tours we have 
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ai2=°. i>4 (tours <il23...>,<i213.. .>); 

a2i=0, i>5 (tours <421i...>,<412i ...>); 

a32 = 0 
(tours <3215...>,<3125. ..>); 

a24 = 0 
(tours <5214...>,<5124.. •>). 

Finally, considerin 

we obtain a..=a., 
ij Jk 

are all equal. It 

g the tours < 

, that is, for 

is now easily 

ij12k...>, <il2jk...>, 

all p^q, p,q>3, the c 

seen that equation (2.4) 

the following 

i,j,k>3, 

oefficients a 
pq 

is equivalent to 

l 
i. j>3 

X. . 

1J 
n-3 

which is linearly dependent on equation (2.11) and on Rx = e . This 

contradiction shows that equation (2.11) defines a facet. // 

It should be noted that the classes of inequalities (2.6)- 

(2.10) given in the theorem do not give a complete linear description of 

the polytope Mn . At the same time, it is easily seen that the differ¬ 

ent classes of equations define distinct facets. Also, in each of the 

classes of inequalities (2.7),(2.8), each inequality generates a different 

facet. 

Finally, we present some classes of linear inequalities which 

have recently been obtained by Grotschel & Padberg (1979) for describing 

the convex polytope Ms . 

Theorem 2.6 A JLacet o£ the potytope MS 
n 

each o-JL the Jto ttowing іпеуиаіИіел : 

іл dete/uriined Hy 

x. . 
ij 

< 1 Vi.j sNn , i < j. 

X . . > 0 Vi,jeNn, i<j, 

I X. . 
i.jeS 

< |S | - 1 VSCN , ISI > 

к i<j к 
I 1 x. . 

s=0 i.jevg 4 

< |V0| ♦ Г (ІѴ l-i) - i±i , 
s =1 
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u)he./ie. (Vq.V^) г-4 a 'tootke.d' 4уліе.т о/ ле.іл, that 

лиИле.£л о/ N tuck that : 
n 

1) к i-6 odd ; 

2) Ѵ0ПѴІ 0 0 Vi e Nk ; 

3) V±£ V0 Vi e Nk ; 

4) ѴІП V = 0 Vi.j e Nk , i0j 

§3 THE PERMUTATION POLYTOPE 

Let the vector a = (a-^.a ) be given. 

a, > a~ > ... > a 20. 

i-6, a family 00 

We assume that 

(3.1) 

As usual.let S be the 
n 

each permutation тт = (тт 

a^ = (x-^,...,xn) where 

Definition 

{aTT = (am ) : 
1 n 

and is denoted by M (a) 

depicted in Figure 34- 

set of permutations of the numbers N . With 
r n 

-,,...,77 ) e S we associate the point 
Inn ^ 

3.1 The convex hull of the points 

it z Sn) in En is called a pe./imutation potytope. 

. The polytope M,(a) with a = (1,2,3,4) is 

1234 

Fig. 34- 
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It is clear that the permutation polytope Mn(a) is the 

image of the assignment polytope Mn under the singular affine mapping 

Л : En 2 En , where 

... 0 ... 0 ... 0 

... a ... 0 ... 0 
n 

a. ... a 0 
1 n 

0 ... 0 a^ 

0 0 

3.1 Rad о 1s Theorem 

Theorem 3-1 Ike pe/imu.tatLon poiytope M^(a) i-i given &.y tke 

JLo ttoioing луліет oj. соплі/іаіпіл : 

|ш I 
I x. < I a. 
-■ 1 - i=l 1 хеш 
n 
I x. 

i=l 1 

V a) C N , 
n 

(3.2) 

n 
I a. . 

i=l 1 

This theorem follows from a result of Rado (1952). Before 

formulating Rado's theorem we introduce the concept of the majorization 

of vectors. 

Definition 3.2 The vector x = (x^»...*x ) is majonized 

by the vector у = (y^,...,yn) (written x-<y), if 

n n 

l хі = l У a > (3-4) 
i=l 1 i=l 1 

and if there are permutations т e S and n e S such that 
r n n 

V 

I 
i —1 

< 

i=l 
ТГ . 

1 
V v e N 

n-1 

The following lemma, due to Schur (see Hardy, Littlewood & 

Polya, 1952) gives necessary and sufficient conditions for the majoriza¬ 

tion of vectors. 

and onty 

x = Ду . 

U 

Lemma 3.2 

tke/ie іл a 

Tke veeton 

Hi-piochaz>iic 

x i-i maj onized (Ly 

mat/iix Д = (6 . . ) 

ike vecto/i у 

„ .buck tkat 
nxn 

и 
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Р/loo/. 

have 

1) Sufficiency. Without loss 

>. x , y, > . .. > у 
— n J 1 = = J n 

Let = l <5. . 
i=l ^ 

Since 

of generality we may assume that 

Д is a bistochastic matrix we 

0 < < 1 , t = £ w^ . 
- 3 ~ A i 

Sufficiency is established by the following chain of relations : 

v v v v n 

1 - l хі = l У± - l l A. -y- 
1 1 i=l 1 i=l j=l 1J J i=l i=l 

V n 

l y± - l wYy = 
i=l 1 j=l J J i=l 

L У,-(1-w.) - I w.y. 
i=v+l 

n 
> £ у (1-w.) - £ w.y = у (v - £ w. ) = 0. 
= л/ѵ' 1 . L,,T Г V ■’v' . *•, l' 

1=1 1=V+1 1=1 

2) Necessity. Vie use induction. When n=l the vectors x 

and у have one component each, xi = Ур » an<i the required matrix Д 

clearly exists. Suppose that the theorem is true for (n-1)-vectors and 

consider two n-vectors x and у such that x Чу . From the condition 

x^ < y-^ and equation (3.4) it follows that yn x-^ < у^ . Thus there is 

a к such that 

k+1 £ xi i Уі (3.5) 

Thus for some X (0< X<1) 

= 4y, + (l-X)y 
k + 1 

(3.6) 

Now use the vectors 

x 1 = (x~,,x ) , 

and to define two (n-1 )-vectors 

У' - (У]_«••’Ук-1,ук+ук+1'х1,ук+2’ 
, у ) 
" П ' 

It follows from (3.5) that the components of y' are in 

order of decreasing magnitude. We also have the relation х'Чу' . Thus, 

by the inductive assumption, there is a bistochastic matrix 

= (6««) 
ij ' (n-l)x(n-l) 

such that A 'y or, in full 

ks+l 
= 6 

3lyl + ••• + 6s,k-lyk-l + 6вк(Ук+Ук+1-х1) 

+6s,k+lyk+2 
+ 6 у 

s ,n-lJ n 
Vs e N 

n-1 
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from equation (3-6), we obtain Substituting for x^ 

bs+l 6slyl + + бзк(1-Л)Ук + 6skXyk+l 

+ <"’s,k+lyk+2 
+ ... +6 

s,n-lyn 
V s e N 

n-1 

Taking equations (3.6) into account, we find easily that the vectors x 

and у are connected by the bistochastic matrix 

Д = 11 12 SikU-A) 
1-Л 

6lkA 
. 6 

0 

l,n-l 

6 , , 6 , _ 6 , , (l-A) 6 , , X . 
n-1,1 n-1,2 n-1,к n-1,к 

. 6 
n-1,n-1 

This completes the proof of the Lemma. Ц 

Theorem 3.3 (.Rado's Theorem) The. point x e M (a) L£ and 

onty i/ the. ue.cto/i x ІЛ majonize.d &.y the. ve.cton a . 

P/ioo£ Let x -< a . Then, by Lemma 3.2, there is a bistochastic matrix Д 

such that x = Да . By Birkhoff's Theorem 

Д = 
tteS 

Л Д 
7Г TT l 

TreS 
0 < A 

- ТГ V ТГ e S 

where Д^ is the permutation matrix corresponding to the permutation тг 

Consequently, 

У А Д a 
Ч, тг тг 

TreS 
n 

I A a 
n тг тг tteS 
n 

that is xeMn(a) . Necessity is proved by reversing the argument. Ц 

3.2 The f-vector 

We investigate the combinatorial properties of the permuta¬ 

tion polytope. The most important of these is the fact that the combina¬ 

torial type of a permutation polytope does not depend on the vector a , 

provided all of its components are distinct. 
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Theorem 3.4 А set о/ solutions о/ the system (3.2), (3.3) is 

an 1-lace (0 ^ і ^n-2) о£ the permutation polytope Mn(a) it and only it 

ton. each such solution, the inequalities (3*2) ane satisfied as equalities 

only ton subsets ш]_»ш2 » • * * »шп ± i ^och that 

Ш, С Ш0 C . . . С ш . ,cs 
1 2 n-i-1 n (3.7) 

Pnoot The system of inequalities (3.2) plus the equalities 

КI 

Іа. V к e N.. 

j=l J 
l x. 

J£Ujk J 
n-1 

(3.8) 

where 

M (a) 
n-i 

, is consistent and so determines a face of the polytope 

The rank of the system (3.8) is equal to n-i and also, all of 

the inequalities in (3.2) with ш Vk e ^ can be satisfied strictly 

j e N are all 
° n 

(here, it should be remembered that the numbers a. 

distinct). Hence, the face defined has dimension i . 

We prove the converse. Let the face F of the permutation 

polytope be given by equations (3.8). Suppose, for contradiction, that 

the inclusions (3.7) do not hold for the sets that is, there is a 

pair of index sets ш , ш such that neither of the inclusions 
P q 

hold. Then, for any arbitrary point x°eF we have 

ш С ш 
P q 

Ш 

f 
1=1 

a. 
l 

i=l 
a. 
l I 

іеш 
x? 
i 

іеш Uu) 
P q 

іеш Пш 
P q 

x.° < 
l - 

l 

іеш 
c 

I ш Uu) I 
P- * 

) a. 
i=l 1 

x? 
1 

Iш Пш 

PI " 
i=l 

a. 
l 

On the other hand, because of (3.1) we have 

шиш 
p q 
У a« + 

i=l 1 

Iш Пш 
p„ q 

ІШ Ш 
- * rP 
l ai < . t ai 

w 

+ fa.. 
i=l 1 i=l A i=l 

This contradiction shows the necessity of conditions (3.7) in the theorem. 

Corollary 3.5 Ton all penmutations it e the point a^ is 

a ventex. 0-/L the polytope M^(a) . 
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It is easily verified that dim M (n) = n-1 . 

Corollary 3-6 All permutation po lytopes o{ the дате. dimen- 

si on are comlinatorially eguivalent. 

Theorem 3.7 The components o{ the £-vector o{ the permuta¬ 

tion polytope M^(a) are given (Ly 

f.(M (a)) 
i n ѣі!ѣ2! 

,t .1 
П-1* 

VieNn_1 (3.9) 

where the sum is carried out over alt positive integral solutions о{ the 

equation t-^+1.2 + • • • +tn ^ = n . 

Proo{ By theorem 3-4» every partition Q-^»...»Qn ^ of the set Nn into 

n-i non-empty subsets determines, through equations (3.8), an i-face of 

M (a) with 
n 

к 

u 
s=l 

Let this face be denoted by F (Q-^, . . . ,Qn ^). It is well known from 

combinatorial analysis, that the number of distinct partitions of a set of 

n elements into n-i 

elements is given by 

subsets each of which contains s e N 
n-i 

П! 
t, I t„l . . .t .1 

1- 2- n-i- 

This proves the theorem. // 

Let Qj,...,Qn_^ be a partition of Nn into n-i non-empty 

subsets. Let S(Q-^,...Qn ^) be the set of all permutations which permute 

the elements of each subset Q among themselves. Let S-’'" (Q, , . . . ,Q .) 

be the set of permutations which are the inverses of permutations in 

S (Qj.Qn_i ) • 

Corollary 3-8 The {ace F(Q,,...Q .) is generated ly the 
1 1 П-1 

permutations a^ {.or all it e S (Q^.^). 

Proo{ We show that the vertex a^ for тг £ S-^ (Q-^,. . . ,Qn ^) lies in the 

face F(Q^.Qn ^) . Indeed, let x = a7T • Then, from the definition of 
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S'1(Q1,. 

coincide 

к 
, Q • ) , the sets {тг. : i e (J Q } 

l s=1 s 

that is, we have the equalities 

I x, 
1ЕШ, 

I a . L 7T . іесо^. l 

|шк' 
l a. 

i=l 1 

and 
{1,2.ѣ1+' * ' +ѣк} 

V к E N 
n-i 

where ш, = U Q„ • On the other hand, if тг S-1(Q-..Q .) , then the 
K S=1 1 n_1 

vertex a^ does not satisfy the inequalities (2.2) for ш=, кeNn ^ , 

as equalities and so it does not lie in the face F(Q^,...,Qn ^) . // 

which is 

■/Lon лоте. 

Corollary 3.9 7he. uentices adjacent to the ventex. a = 
ТГ 

a^ ) a/ie the ve/itices which connespond to the penmutation ттк 

obtained t/iom тг by transposing the к and k+lb components, 

к e N 
n-1 * 

Pnool Any 1-face (edge) F = F (Q-^ . . . , ) , where Qg = {тг^, . . .лтг } , 

Vs 0 , and Qs = {тг^, . . . ,tts + ^} , Vs e Nn_-j\N^ , is, according to 

theorem 3-4» given by the constraints (3.2),(3.3) and by the following 

equations : 

s s 

I xn = I ai s=l,.. . ,k-l,k+l.n . 
i=l Ti i=l 1 

By corollary 3-8 , the vertices a ^ and a ^ belong to 

тг" тг о 
± , where тт — ( tt^ , • • •, 7T^) and tto — (тт^,.*.,тг^ l,^k‘fl,^kf2,***,^n^ * 

The permutations тг"’*' and тг0clearly differ by a transposition of the 

k^ an(j k+1^ components. // 

Corollary З.Ю The diameter ojL the permutation po by tope 

Mn(a) is equab to n(n-l)/2 . 

The proof is by induction. 

3.3 The Permutation Polymatroid 

The constraints defining a permutation polytope are similar 

to the constraints used to define a polymatroid. We show that this is not 

fortuitous. Indeed, a permutation polytope is a face of some polymatroid. 
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First, note that if equation (3.3) is satisfied, the inequalities (3.2) 

are equivalent to the following : 

I 
ieu) 

x. 
1 

> 

i=l 
a . . , 
n-i+1 

VioCN 
n 

(3.11) 

and 

Theorem 3.11— 1 he. po lytope given Hy the constraints (3-2) 

x± > 0 Vi E Nn (3.12) 

is a Hounded polymatroid, Ike polyh.edn.on, given Hy the constraints (3.11) 
« 

is an unbounded po lymatroid. 

Proof. We have to show that the functions 

p(w) = t a. , р'(ш) 
i=l 1 

l 
i=l 

a . ,, 
n-i+1 

are non-negative, non-decreasing and, respectively, submodular and super- 

modular functions. The first two properties hold because the numbers a^ 

i eNn are non-negative. The submodularity of the function р(ш) follows 

from the following inequality : 

I J IUJ iru 
l a. 

i=l 1 
+ 1 a. 

i=l 1 
> 1 a. + 
= i=l 1 

I a. , 
i=l 1 

which follows from (3.1). The function p *(ш) can be represented in the 

form P 1 (to) = p(Nn) - p (N^\ w) and is therefore supermodular. // 

Definition 3.3 The polytope defined by the constraints (3.2) 

and (3.12) is called a Hounded permutation polymatroid . The polyhedron 

given by the constraints (3.11) is called an unHounded permutation poly- 

matroid . 

The following theorem is a consequence of theorems 3.1 and 

3.11. 

Theorem 3.12 A permutation po lytope is the intersection of a 

Hounded and an unHounded polymatroid. 

A permutation polymatroid is shown in Fig. 35. The polytope 

M^(3,2,l) is shaded. 
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Fig. 35. 

3.4 The Even Permutation Polytope 

If, in a permutation, the number i lies to the left of the 

number j and if i > j then these numbers are said to be inverted. If a 

permutation contains an even number of inversions it is called an even 

penmutation , otherwise it is an odd permutation . Clearly, if a single 

transposition is carried out on a permutation then its parity is altered. 

The sets of even and of odd permutations in Sn are denoted by and 

Sn respectively. 

,a ) for all 
n 

Definition 3.4 The convex hull of the points 

+ 
it £ S is called the even pe-n.muta.tion. polytope 

(атг' 

M*(a) 

Fig. 36 shows the polytope ^(4,3,2,1) . 

The polytope M (a) can be obtained from the permutation 

polytope Mn(a) by cutting out the vertices for all ТГ e S and ens- 
TT — " ~n 

uring that no new vertices are formed. This is easily done. Indeed, by 

corollary 3-9, if 7T e S then its adjacent vertices 
^ "I- 

of them) are associated with the permutations oe S 
v n 

^ (there are n-1 

Thus, the hyper¬ 

plane H 
7Г 

which passes through the vertices aQ strictly separates a^ 

from the polytope convla^. : т e Sn\ir} which it supports. Thus, the inter¬ 

section of the polytope Mn(a) and all the half spaces , тг e is 

precisely the polytope M+(a) . The hyperplane is uniquely defined 

‘ ' a are 
a 

by the vertices aQ which are adjacent to for the points 
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4132 4321 

2431 

Fig. 36. 

affinely independent. Putting 

C1 al ’ c2 a2 ' ci ci-l 

(a ,-a )(a-,-a„) 
n -1 n 1 2 

3. • i-i - a • I о 
n-i+1 n-i+2 

we find that the desired hyperplane is given by the equation 

n n 
У c x. = У c.a + (a , -a )(a-,-a0) . 

.7Г. l . l n-i + 1 n-1 n 1 2 
i=l l i=l- 

We have thus established the following theorem. 

The orem 3 • 13 7 tie. even permutation polytope M*(a) is given 

tLy the inequalities (3.2), (3.3) and. 

n n 
Ус x. 2 У c.a . ,, + (a ,-a )(a,-a0) VtteS- . (3.13) 

7Г. l = .Ln i n-i + 1 n-1 n 12 n 
i=l l 1=1 

l£ n > 4 then every inequality (3.13) defines a -/Lace . 

§4- THE ARRANGEMENT POLYTOPE 

In this section we study the projection of the permutation 

polytope onto a space of lower dimension, in fact, projections onto an 

intersection of coordinate planes. 
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413 423 

Fig. 37. 

4.1 

satisfy 

Algebraic Description 

Let the vector a = (a-^ a ) 
n 

be given whose components 

al > a2 > 
> a > 0 . 

n (4.1) 

An m-a/i/ian gement is an ordered choice of m distinct ele¬ 

ments (m<.n) from the set N . With each m-arrangement тт = (it, ,..,tt ) 
— n i m 

we associate the point x = (x,,...x ) by the rule x. = a . This point 
^ 1 m J i тт. ^ 

is denoted by a 1 J TT 

Definition 4.1 The convex hull in E of the points a 
-— m ~ тт 

for all m-arrangements it of Nn is called an a/inan gement potytope and 

is denoted by M™(a) . 

Fig. 37 depicts M^(4,3,2,1) . 

Theorem 4.1 7he a/inangement potytope Mn(a) is the solution 

■bet of. the fo llowing system of inequalities : 

10)1 |o)| 

Z 
ІЕШ 

Z a . , < I x. < Z a. 
. П-1-1 = . 1 = . , 1 
1=1 1EW 1=1 

men 
m 

(4.2) 
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We first reformulate the theorem in terms of majorization of 

vectors. To do this we generalize the concept of majorization, introduced 

in the previous section, to the case of vectors of different dimensions. 

We say that the m-vector x = (x1,...,xm) is majorized by the n-vector 

m ~n 
У = (y^.yffi, . . . »УП) if there are permutations т E Sn and it e such 

that x > ... > x 
T1 = 

у > 
J 7Tn = T ‘,TT-,= = ^ ТГ = 

ml m 

v 

l X < 
i=l Ti 

V 

l XT 
i=l m-i+l 

V 

I у 
i=l "i 

V 

> I 

> У. 

V v e N 

Vv e N 
i=l n-i+1 

(4.3) 

(4.4) 

Definition 4.2 The matrix Д = (6..) 
-11— mxn 

ybtoc.h.aAtic if it satisfies the constraints 

is called див.- 

n 

I 6. . 

j=l 1J 
I 5 < 1 , б > О V (i, j ) e N x N . 

j_=j_ ij ij m n 

Lemma 4.2 Ike m-uecdoe x іл maj o/iized dy tke n-veeto/i у 

Ljt. and oniy i;i tkene іл a z>udz>tocka<btlc mat/ilx. Д = (6. .) Auek that 
lj mxn 

x = Ду . 

PnooS (i) Sufficiency is proved in a similar way to that given in 

lemma 3*2. 

(ii) Necessity. We extend the m-vector x with additional compo¬ 

nents 

x . . = c , VjeN 
m + j J n-m 

(n m \ 

. ^уі " . ^Xi ) / (n-m ) * 

Denote the new n-vector by x° . We show that if the m-vector x is 

majorized by the n-vector у , then the n-vector x° is majorized by the 

n-vector у . Clearly 

n n 

I xi = l У± • 
i=l 1 i=l 1 

It remains to verify the inequalities 

(4.5) 

v v 

l X» < l у 
i=l фі - i=l "i 

V v e N 
n — 1 ’ 

(4.6) 
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where the permutation фe S is such that x? > ... > x° 
П Ф.. — = 

Let "Ф ' 
x n 

X. > c , v=l,...,s , x, = c , v=s+l.. and x, < c for the remain- 
v vv фѵ 

ing v . Then, conditions (4.3) imply that the inequalities (4.6) are 

true for v = l,...,s . For v>p the inequalities (4-6) follow from 

(4.4) and (4.5) . For v = s+l,...,p we prove (4-6) by contradiction. 
v v 

Suppose there is a number v (s<v<p) such that I x“ > £ у . Then 

the equality (4-5) implies that 
i=l i=l 

ТГ. 

n n 

I XJ < l y-n • 
i=v+l фі i=v+l 71 i 

Since inequalities (4-6) have been established for v < s and v>p we 

obtain the inequalities 

v v 

° > l У l x; 
i=s+l vi i=s+l 71 i i=v+l фі i=v+l "i 

Then, taking into account the equations 

x“ < ТГ . 

І x° c(v-s) , 
i=s+l i • XT Ф- 

1=V+1 

= c(p-v) , 

we have 

1 г f 
V-S . ^,,^7T. C p-v . xi^TT. ’ 

1=S+1 1 * 1=V+1 1 

whereas 

l г , l V - ) у > - ) у 
V-S . ‘‘.-.•'тг. = p-v . 

1 = S+1 X ^ 1=V+1 1 

This contradiction establishes the truth of (4*6) for all ve q • By 

lemma 3-2 we can write x° = Д°у , where Д0 is a bistochastic (nxn)- 

matrix. Consequently, «х = Ду where Д is the substochastic matrix 

formed by the first m rows of Д° . Ц 

We reformulate theorem 4*1 in terms of majorization of 

vectors. 

Theorem 4.3 The point x e M™(a) i£ and only L£ the veeto/i 

x ІЛ majonized Чу the uecton a . 
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Proo/. First note that every m-arrangement тг = (тт^ , . . . , tt^ ) corresponds 

to a substochastic Boolean (mxn)-matrix Д = (6^.) whose components are 

defined by the rule : 6. . = 1 if i = тг and 6. . =0 otherwise. 

Conversely, every substochastic Boolean (mxn)-matrix corresponds by the 

same rule to an m-arrangement. We will refer to substochastic Boolean 

(mxn )-matrice s as m-a/i/ian ge.me.nt matrices . By Birkhoff's theorem it 

follows that the set of all substochastic matrices coincides with the 

convex hull of the m-arrangement matrices. Also, every vector a^ , where 

тг is an m-arrangement, can be represented as a = Д a . Here Д is 

the corresponding arrangement matrix. Now, as in the proof of theorem 3-3 

for any point xeM^(a) we have 

x = У A a = J И a = Да, 
L ТГ 7Г L IT TT 
ТГ TT 

where the sum is taken over all m-arrangements тг of . Hence, by 

lemma 4-2, the vector x is majorized by the vector a . Ц 

The following is a consequence of theorems 4-1 and 3.11. 

Auction о/ a 

pe.yim.utat ion 

respectively 

Corollary 4.4 7he arrangement potytope M (a) 
1 ^ 

Hounded, permutation po tymatroid M (a ) and an 
2 ® q 

po tymatro id M (a ) ishere the vectors a and 

о/ the JLirst and the Last components о/ 

is the inter- 

untounded 
2 . , 

a consist 

a . 

This corollary indicates the possibility of describing the 

faces of the arrangement polytope by using the techniques of polymatroids. 

However, we will not dwell on that here since later we will show the 

combinatorial equivalence of the arrangement polytope and the combinator¬ 

ial polytope. We merely note that when m^n the dimension of M^(a) is 

equal to m . 

4•2 Adjacent Vertices 

Theorem 

arrangement potytope 

9.-1 •••••cl • 8. .-)•••• 
1 s n-r+1 

4.5 The vector 

i-t and onty i£ 

,a , where 
n 

x e Mm(a) is a vertex оt the 
n 

it is a permutation ojL the numbers 

O^s^m , 0^r£m , s+r = m . (4.7) 
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Proof. i) Necessity. We use proof by contradiction. Suppose there is 

a vertex a = (a , ...,a ) such that there is an index tt. with 
1 m х 

s+l <. tk <_ n-r where s+1 and n-r are respectively the smallest and 

largest numbers in which are not present in the arrangement tt = 

(tt^,...,it ) . Let tt * and тг" be two arrangements which differ from tt 

only in the component with number tt. ; and let this number be respectively 

equal to s+l and n-r . Then with X = (a -a )/(a -a .,) we have 
n-r tt. n-r s+l 

l 
a^ = Aa^ , + (l-X)a ,, , 0 < X < 1 . Then, since 0 < X < 1 , this equality 

means that the point a^ is not a vertex of the polytope M™(a) • 

ii) Sufficiency. Suppose that for the vector a = (a ,..,a ) 
1 m 

the conditions of the theorem are satisfied. Then the arrangement 

(tt^ , . . . , тг^ ) is composed of the numbers 1,2 ,. . . , s ,n-r+l, . .. ,n where the 

numbers s and r satisfy conditions (4.7). Define the hyperplane 

I 
3=1 

C . X . 
J 2 

l 
3=1 

c -a 
1 TT . 
J 3 

(4-8) 

Here the coefficients c. are arbitrary real numbers satisfying the 

conditions 

> c > c > 0 > c 
n-r+1 

> c (4.9) 

where т = тт”"*' . Using the relations (4.9) for the coefficients 

(4-1) for the numbers a^ and using the inequality of Problem 3 

vector aQ = (aQ ,...,ac ) , a j tt , we have 
U1 m 

c. and 
3 

for any 

m 

І 0 -ап 
• i 3 0 • 
3=1 J 3 

m 

l c .a 
• n 1 tt . 
3=1 J 3 

M™ (a) . // 

This means that equation (4*8) defines a supporting hyperplane to the 

arrangement polytope M™(a) at a^ . Thus, a^ is a vertex of ”m 

The following theorem solves the problem of establishing that 

two vertices of the arrangement polytope are adjacent. 

Theorem 4.6 Let the питЧегл s and. r have property (4*7) 

and Let a^ 4e the vertex of the potytope M^(a) /ол which the arrange- 

ment тг = (tt^ , . . . , тг^ ) іл a permutation о/ the питЧегл l,2,...,s ,n-r + 1, 

...,n . Then every adjacent vertex, to a , л ay a . , ІЛ defined Чу an 
TT 

241 



annangement тт1 , l^i^S-1 , (n-r+l ^i^n) oH.talne.dL f/iom the annangement 

тг ly transposing the components equal to i and i + 1 (i and i-1), o/i 

if. i = s (i = n-r+l) ly rep lacin g the component equal to s (n-r+l) ly 

n-r (s+l) . 

Proof We show first that for any i the segment joining the vertices a^ 

and a . is an edge of the polytope Mm(a) . In equation (4*8) let all 
7Г 

coefficients c be defined by the following rule, depending on the 
l 

value of i : 

c 
l Ti+1 

for 

1—1 1 CO 

i—1 
II 

•H
 

c = i 
T . 

1 
0 f or i=s or n-r+l, 

c 
1 Ti-1 

f or i=n-r+2,...,n. 

Then the hyperplane defined by equation (4-8) is supporting to M™(a) and 

its intersection with the polytope is the edge joining the vertices a^ 

and a . 
l 

n 
We now show that any segment [a^,aQ] , where a is an 

arrangement distinct from тг and тт1 , is not an edge of M™(a) . 

Consider the vector equation 

s n 
У a.(a .-a ) + J a. (a.-a) 

• i „1 тг' L _ iv i тг' 
1=1 тт i=n-r + l тг 

= a„ - a 
О ТГ 

from which we find 

a. 
l - I -a.) 

1+1 l т=1 T. J 
d J 

i e N , 
s 

n-i 
- I (a^ -a.) ieN , , U {0} . 
i . -a . . L . a t n-r+l 
n-i+1 n-i т=п-і t. J 

From (4*1) it follows that all a. >0 . Since a тт and о ^ тг1 , we have 
l = 

s n 
I a + I a > 1 . 

i=l i=n-r+l 

Putting 

A = 
s n 

l + I 
i=l 1 i=n-r+l 1 

0. = Aa. , 
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we obtain 

Аал + (l-A)a 
а 7Г I 3. a : + I 

• nil L 
3 • a . 

i=l 'L irJ' i-n-r + 1 1 7Г1 

Hence, the segment [a^a^] is not an edge of M™(a) , since there is a 

point of this segment which is a convex combination of the points a , . // 
m1 

Theorems 4*5 and 4-6 have the corollary: 

Corollary 4*7 1 he polytope M^(a) Іл simple. 

4•3 Combinatorial Description 

The or em 4.8 7 he ann.aage.m2.nt po iytope M™(a) with m <n and. 

£on any veeton а і-ь eomtLinatonially equivalent to the penmutation poly¬ 

tope o-f. dimension m . 

Pnoo£ The proof is in two parts. We first demonstrate the combinatorial 

equivalence of the polytopes Mra(a) and M ,(b) , where b 
13 t _L (bl**,bm+l) 

with b^ > . .. 

Mm ,, (b ) and 
m+1 

> bm + q » and we then show the combinatorial equivalence of 

M ,,(c) . The faces of Mm(a) are defined as follows : 
m+1 n 

FI (a ) = {x e M™ (a ) I x. = f a. } 
iel 1 i=l 1 

Fj (a) {X e Mn (a ) I 

The faces 

vertex a 

F|(b) and F|J(b) of 

ie J 

,m 

) a . , 
. L, n-i+1 
1=1 

} 

V I CN 

V JC N 

M“ + -^(b) are similarly defined. Every 

ТГ 
where тг is a permutation of the numbers 1,. .., s ,n-r+l,.., 

..,n (s and r satisfy (4-7)), is the point of intersection of the 

faces Fi1(a).FIs(a),FJs+i(a)’”'’FJm(a) ’ ^еГе Ik = (Tl.Tk) ’ 
к e N , J, ={t, т } , Vk e N \N . Here т = тг b . Let b be a 

s к k+1 m m s a 
vertex of M°+^(b) , where a is a permutation of the numbers l,...,s, 

m-r+2, .. . ,m + 1 , which has the property a b = тг b = т . Then, the faces 

of 

I, and 
к 

map 

Wb> 

Ф 

which are incident to bQ are defined by the same subsets 

which were used to define the faces of M™(a) . Thus, the 

a -► b , F' (a) -*■ F' (b) VkeN , F" (a) ■* F'| (b) Vk e N \N 
7T o s ^ ms 

sets up a one-to-one correspondence between the vertices and faces of 
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of M™(a) and M° + -^(b) which preserves incidence properties of faces. 

Thus, by Theorem 1.7 of Chapter 3, the polytopes M™(a) and M°+^(b) are 

combinatorially equivalent. 

Consider the permutation polytope Mm + -^(c) f°r an arbitrary 

vector c whose components obey condition (4.1)* The polytope Mm + -^(c) 

is given by the constraints 

1 X. 
l“l 

* X C. Vo)CN ±1 , (4.9') 
iecj 1=1 1 m + 1 

m+1 m + 1 
1 X. 

i=l 1 
= I ci • 

i =1 1 
(4.Ю) 

Since dim Mm + -^(c) 

x . л 
m+1 

m , we can solve for 

m+1 

l 
i=l 

c. 
1 

m 

1 
i=l 

X . 
1 

X XT 
m+1 

from (4.10) 

and substitute for x into the inequalities (4*9') which contain it. 
m+1 

We obtain the inequalities 

7 
i=l 

'n-i+1 < l 
1ЕШ 

X . 
1 

V ш C N , 
— m 

which together with the inequalities 

l 
ieu) 

x. 
l 

< 
0) 

l C 
=1 

V Ш CN , 
m 

not containing xm+q > give an algebraic description of the polytope 

Mm,n(c) . Clearly, the exclusion of redundant constraints does not alter 
m+1 J 

the combinatorial type of the polytope. Thus, the arrangement polytope is 

combinatorially equivalent to the permutation polytope of the same 

dimension. // 

Corollary 4»9 Ike. пит.Иг./і о/ i-/ace^ (0 <: i < m ) о/ the. 

a/1/iaaga.me.at poiytope. іл gtue.n &.y 

f. (Mm(a)) 
l n •E 

(m+1)! 

t-|lt^l..«t • I n I 
l- 2- m-i+l- 

V i e N 
m 

иЛг/іе the. лит ІЛ take.n ove./i atl positive. inte.g/iai ло Ѵ.иііопл o£ the. e.guation 

Ѣ1 + + t . , = m 
m-i + 1 
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Corollary 4-10 

diam M™(a) = m(m+l)/2 . 

§5 THE STANDARDIZATION POLYTOPE 

The first papers dealing with the optimal standardization 

problem appeared in 1968-1970. Current interest is centred on the problem 

of improving the efficiency of known methods (Beresnev et al. (1978)). A 

mapping of the feasible region of the standardization problem into a space 

of smaller dimension was given by Girlikh & Kovalev (1974) and this led to 

a significant reduction of dimension. The study of the affine image of a 

certain polytope led to a new class of problems in polyhedral combinato¬ 

rics. 

5•1 The Affine Image of Stochastic Matrices 

Let 

m 

Gm,n = {(xij)mxn:.^1xir1 ' xij^° Ѵ(і.ЛеѴѴ 

be a set of stochastic matrices and let F(w) be a non-empty face of the 

polytope G defined by the relations x..=0 V(i,j)eu> , where ш 
Ш , П 1 J 

is some given subset of index pairs (i,j). Consider the polytope H (ш) 

which is the image of the polytope F(w) under the singular affine map , 

given by the relations 

Уі 

n 

I 
j=l 

a . x. . 
J iJ 

Vi e N 
m 

where a^ > 0 V j e Nn . 

It is shown in Girlikh & Kovalev (1974)» Yemelichev & Kovalev 

(1970,1972) and Kowaljov & Girlich (1977) that the polytope Нт(ш) is a 

feasible set of the standardization problem for suitable choice of the set 

ш and of the map A 

by means of linear inequalities. It is convenient to specify the set ш 

by means of a Boolean (mxn)-matrix Q = (q^. ) for which q^ . =0 if 

(i,j) e a) and qij. =1 otherwise. We sometimes use the symbols F(Q) and 

H (0) in place of F(w) and H (ш) . Note that since we assumed that 

the set F(Q) was non-empty we have the inequalities 

We study ways of describing the polytope H (ш) 

m 

I q±1 
i=i 

V j e N (5.1) 
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plane. 

Theorem 5.1 The. polytope H^(Q) in lies in the hypen- 

m 

l y± 
i=l 1 

= 
n 

l a, 
j-1 J 

(5.2) 

and is given tLy one the JLolloiding systems o£ linea/t inequalities 

l s 
ІЕШ(j) 

Уі i 1 ai 
jeJ J 

VJCN , 
— n 

(5.3) 

Уі 
> 0 V i в N ; 

m 

l 
iel 

Уі 
> 1 a. 

jev(I) J 

V I C N ; 
— m (5.4) 

I 
iel 

Уі 
< 1 a. 

jeu(l) J 
V I C N , 

m 
(5.5) 

wke/ie u)(J)={ieN : £ q. .>1} , v(l)={jeN 
m -eJ n 

: У q .=0}, u(I) = {j eN : 1 q 
ij?I 1J iel 

>1} . 

P/iooJL We introduce auxiliary variables z.. =a.x.. V(i,j) eK xH 
ij J ij J m n • 

Consider the system of linear equations and inequalities 

m n 

l У A 
1=1 1 = 

l a.- , 
j=l J 

(5.6) 

n 
V . 
w 1 

l z. . 

j=l 1J 

Vi e N , 
m 

(5.7) 

m 
a . 

J 
~ 1 z. . 

i=i ^ 
V j e N , j n (5.8) 

0 £ z . . < Cq• • 
ij - iJ 

V(i,j) e N xn , 
J m n (5.9) 

where 4 is some sufficiently large positive number. It is clear that 

the vector у = (y^,...,ym ) eH (Q) if and only if the system (5.6)-(5.9) 

has a solution. Consistency conditions (Corollary 4-12 Ch. 4) and the 

fact that =0 or 1 yield the equivalent system (5-3) — (5-5 )• // 

The polytope H (Q) lies in the hyperplane (5.2), thus its 

dimension is less than or equal to m-1 . Note that if the matrix Q has 

= 1 then for all yeH (0) 

is the only non-zero element 

a column with only one non-zero element q„ =1 then for all у e H^fQ) 

we have y. 2a. . If also the element 
J l = l 

in the ith row then we have 
1J 

a. . In the latter case dim H (Q) < 
l m = 

m-2 In what follows we will assume that 
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(5.1’) I Чі * ^ 
i=l 1J 

V j e N 
0 n 

The assumption (5.1') is an essential feature of the stan¬ 

dardization problem. 

Theorem 5.2 

1) 7 ke po tytope defined Hy the ineguatitie-6 (5.5) arid Hy 

у. > 0 , i e N , i-6 a Hounded po tymatnoid, 

2) Ike potykedsion defined Hy the ineguatitie-ь (5*4) 4-4 an 

unbounded potymatn.0id. 

P/ioo-f. To prove the first part of the theorem it suffices to show that the 

function p(l) = \ a. is a non-negative, non-decreasing, submodular 
jeu(l) J 

function (Theorem 6.1, Ch. 4). The first two properties of p(l) follow 

from the positivity of the numbers a. , j z N , and from the fact that r J j 0 n 

u(l)Cud') when I Cl1 . Further, from the definition of the sets u(l), 

ICN , we have the relations 
m 

u(l'UI") = u(l')Uu(l"), 

ud’fll") C u(I' ) П u(I" ) . 

The submodularity of p(l) then follows from the following chain of 

inequalities : 

pd'UI") + р(і'ПГ') < E a. + E a. 
jeuddUud" ) J jeu(I' )Du(l") J 

jeu^I') ^ jeu(I") 
a = p(l') + p(l") 

J 

It can be shown similarly that the function p'(l) = £ a. is non- 
jev(l) J 

negative, non-decreasing and supermodular. // 

Corollary 5.3 (Kovalev & Girlikh 1980) 

1) 7ke ^tanda/idization potytope Hm(Q) 44 the intersection о£ 

a Hounded po tymat/io id P(p) and an unHounded potymatnoid P(p') . 

2) 7 ke potytope Hffl(Q) is the £ace о/ each о/ the po lymatro id* 

P(p) and P(p') generated Hy the supporting kyperptane (5.2). 
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The polymatroid structure of the standardization polytope 

enables us to identify quite easily its combinatorial type and to study 

the way its vertices are constructed. 

5.2 Vertices 

Theorem 6.3 (Ch. 4) and Corollary 5*3 enable us to give a 

constructive description of all the vertices of the polytope H (Q) . 

Indeed,from the system (5.2),(5.5) which defines H (Q) we deduce that 

the vertex x is given by the following equations 

where 

(тг^, • • 

I 
ІЕШ 

шо = 0 , шз 

•’\>)eSm • 

X . 
1 

= 0) 

= P(O)g) 

s-lU{7Ts} , SEN m 

Vs E N , 
m 

and the permutation 

Theorem 5.4 Ike vecton x L-f> a ue/itex. oJL tke polytope 

H (0) 4/ and only tke/ie і-ь a penmatation (тг_,...,тг ) eS -back that 
m 1m m 

I 
j EU (o)g_i) 

Vs e N . 
m 

We consider another means of constructing all the vertices of 

H (Q) which does not involve calculating the function p(u>) but which 

uses only the matrix Q and the vector (a^,...,a ) . 

Define the operator Ф by the relations : 1 ® 0 = 1 , 

101 = 0 , 001 = 0 , 000=0 . Let (tt, ,. . . ,tt ) e S . We consider a 
"th m 

procedure ф ( tt ) whose к step (l^k^m) consists in the following : 

calculate the m^-th component of the vector у according to the rule 

into the matrix (q^)) according to 

ij 

V (k-1) 
У = / a .q 

*k 3=1 J V 

and transform the matrix (q^--*-)) 

the rule ij 

(k-1) 

lij 

(k-1) 
= q 

ij 

The result of carrying out the procedure ф(тт) is to obtain a vector у 

which we denote by у(тг). 
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po lytope 

У = У (тс) . 

Theorem 5.5 7he uecton у = (y^, . . . ,y ) i-i a uentex o-i. the 

H (Q) i/L and. only it thene 1-6 a /7e.nm.atation tt z S лach that 
m m 

Рпоо/ l) Necessity. Let у 

show that among the positive components of у 

be a vertex of H (Q) . It suffices to 

there is a component 

Ук У a .q. . . 
L J4kj 

j=l 

Then, putting тт^ = к we construct, by induction, a permutation tt e 

with the property that у (тг) =y . Suppose the opposite. Suppose that for 

any positive component y, of у , for some pre-image х = Л'^(у) there 

is a component x^. = 0 , even though = 1 . This enables us to con¬ 

struct a cycle (k^,j^),(k^,),(k2,j2),...,(k^,) in which the compon¬ 

ents x.. in the odd positions are zero and also q.. =1 , while the 

components x^ in the even positions are positive (more precisely, equal 

to one, for the pre-image of the vertex yeH^CQ) under the affine map 

Л must be a vertex of the polytope F(Q)). If we subtract a sufficiently 

small number from the numbers in the even positions and add the same 

number to the numbers in the odd positions, we obtain a new preimage of 

the vertex у which is not a vertex of F(Q) and this is impossible. 

2) Sufficiency. Let у=у(тг) be a vector obtained through the 

procedure ф (тг) . Clearly у e H^fQ) . We show that у e vert H (Q) . 

Suppose the opposite, that is, suppose у e Ay1 + (l-X)y" where y',y"£ 

, y'^y" , 0 < X < 1 . Let x',x" eF(Q) be pre-images of у' ,y" 

respectively. Then x° =Xx' + (l-X)x" is a pre-image of у . It follows 

from the definition of the procedure ф(тт) that in the matrix Q we have 

q .=0 , (k,j) e N ,xN(tt ) N(tt ) = {jeN : q .=1} . Hence, for all 
J m-1 ' m m J m ^rrmj 

preimages x of у we have x , = 1 , j e N(tt ) . Using similar consid- 
^m^ m 

erations for rows tt ,,...,tt, , we show the uniqueness of the preimage of 
m-1 1 ^ 

Hence _ „ о = Xx1 + (l-X)x" . But by construction is a vertex of 

the polytope F(Q) . This is a contradiction. // 

Corollary 5.6 Iveny ventex o£ the polytope H^CQ) haл a 

anique pneimage in F(Q) 
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5.3 Maximum Number of Vertices 

It follows from Theorem 5.5 that ml is an upper bound for 

the number of vertices of a standardization polytope. We show that this 

bound is attainable and that all polytopes H (Q) with m| vertices are 

combinatorially equivalent to the permutation polytope. 

Definition 5.1 A Boolean matrix Q =(q..) _ is called 
1J ш^п 

complete if it has as a submatrix a matrix which is the incidence matrix 

of a complete graph with m vertices . 

A complete matrix contains at least m(m-l)/2 columns. 

Theorem 5.7 The polytope. H^CQ) Кал the max.Lmu.rn. numlen m 

o£. ve/iticeA LJL and only I/ the mat/iix Q La complete. 

Pnool l) Necessity. Let fg(Hm(Q)) = m! . Suppose the opposite. 

Suppose that the matrix Q has only к (k<m(m-l)/2) distinct columns 

each of which contains exactly two units. There are two cases k= 0 and 

к + 0 . 
Suppose that the matrix Q has no column with two non-zero 

elements. Assume that Q does not contain any column with a single non¬ 

zero element. But, if each column of Q contains not less than three 

units, then every set of m-2 rows of Q form a submatrix which has at 

least one unit in every column. Thus, the vectors у (it) and у(тт') 

which are generated by the procedures ф (тг) and ф (тг1) , where тг = 

(тг,,...,тг , , тт ) , тт* = (тг, , . . . , тг , тг , ) coincide. Thus, in this case 
1 m-1 m 1 m m-1 

f0(Hm(Q)) < m' . 

Let the distinct columns of Q with two units form a 

(mxk)-submatrix Q' . Since k<m(m-l)/2 , there are at least two rows 

0 and Q such that Q Q = 0 . Thus, the vectors у (тт) and у (я1) 
]Э S s 

where тг=(тт^,...,ттт_2»р»8) , it ’ = (тг^,. . ., тг £ , s , p) coincide. Hence 

fo(Hm(Q)) <ш! • This establishes necessity. 

2) Sufficiency. We use induction on m . If m=2 , there is a 

column j of the complete matrix Q such that q-^. = q^. =1 . Then, the 

components of the vectors y' =y(l,2) and y" =y(2,l) satisfy the follow¬ 

ing relations 

У{=Ь + a. , y^ = c ; y£ < b , y£ > c + a^. , (5.10) 

which imply that y' f y" since the numbers a^,...,a are non-negative. 
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Thus f 0(Hm(Q)) = 2 

obtained from Q by 

i such that 5.. =1 
J ij 

n 

If the 

removing 

is also 

(mxn)-matrix Q is complete, then the matrix 

the i^h row (i - arbitrary) and all columns 

complete. _ Thus, if we fix i and put 

y. = 2 a-q-• > then, by the induction hypothesis, we may use the proce- 

1 j=l J 1J 

dure ф (7Г) , where ir = (i,a) and a is any permutation of the numbers 

1, . . ., i-1,i + 1,.. .,m to obtain a set V(i) consisting of (m-і)! distinct 

vertices of Hffl(Q) with the same i^ component. We show that if y1 e 

V(s) , yeV(r) , r^s then y'^y" . Since in a complete graph any two 

vertices are joined by an edge, there is a column j of Q such that 

q . = q . =1 , q. . = 0 , i ^ s ,r. Thus, relations of the type (5.10) hold 
^ J ^ J 1 J 

for the components у , у of the vectors y(s,a) and y(r,a) . from 
s г 

which it follows that у1 f y" . Thus, all m| vertices constructed 

through the procedures ф (1 ,a),..., ф (m, a) are distinct. // 

Theorem 5.8 Let Q le a com.pte.te. mat/iix, then, the polytope 

Hm (Q) ІА comlinato/iially equivalent to a penmutation polytope. 

P/ioo£ By Theorem 5.1 the polytope Hm(Q) is given by equation (5.2) and 

by the inequalities 

1 
iel 

< l a. 
jeu(l) J 

V IC N . 
m 

(otj) 

We show that if Q is a complete matrix then each of the constraints (a^) 

determines a (d-l)-face of the d-polytope Hm(Q) . By Theorem 6.4 of Ch.4 

and by Corollary 5.3 it suffices to show that each set ICNm is 

p-closed and p-nonseparable. 

Let 11 С I"C N . Since the matrix Q contains a submatrix 

which is the incidence matrix of a complete graph, for a row ідеІ"\І' 

there is a column jn such that q. . =1 and q. . =0 for all 
u 1J0 

1 eN \I". Thus u(l')U jgC u(l" ) and, consequently 

jeu(I") jeu(I') jeu(I') 

which establishes the p-closure of the set I' . 

I is p-nonseparable. Suppose that for some 

and T such that 

We show that any subset 

ICN there are sets S 
m 
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S ит I SDT = 0 , 

(5.11) 

Since u(l) = u(S)Uu(T) and since for any i'eS , i" e T there is a 

column jn such that q.t. = q.„. = 1 , we have u(S)Du(T) f 0 . 
u 1 Jo 1 J0 

Since a. >0 we see that equation (5.11) is impossible. Thus, each of 

the inequalities (a^) determines а facet of the d-polytope Hffl(Q) . By 

Theorem 3.1, every facet of the permutation polytope M (a) is defined by 

one of the inequalities 

and conversely, for each ICNm the inequality (Bj) determines a facet of 

Mm(a). Let ф : (ot^ , ) (3^,) be a bisection between the set of facets 

of M'm(a) and Hm(Q) . If we show that this map preserves incidence 

relations between faces and vertices then, by Theorem 4-7 (Ch.l), we will 

have established the equivalence of Hffl(Q) and Mm(a) • Indeed, since 

Hffl(Q) and Mffl(a) are faces of their associated polymatroids (Theorem 

3.12 and Corollary 5.3), then Theorem 6.3 (Ch.4) on the characterization 

of the vertices of a polymatroid implies that the sets I^ = {i-.} , 
к k-1 _L 

I = I U (і^.) , k=2,...,m-l determine faces which are incident to some 

vertex of both Hm(Q) and Mm(a) . Thus, the intersection of the facets 

with indices В В , determine a vertex of M (a) if and only if 
-|- —L ^ ID “ _L HI 

the intersection of the facets with indices a ,,..., a determine а 
I I 

vertex of Hm(Q) . This completes the proof. Ц 

Since the f-vector and the diameter of a permutation poly¬ 

tope are known (Theorem 3.7, Corollary 3.10), these characteristics are 

also known for the polytope Hra(Q). 

Cor ollary 5.9 Let the rn.atn.ix Q Le complete, then 

whene the summation La cannied. oat oven, all aolutionA о/ the equation 

t, + . . . + t . = m in positive whole numlenA. 
m _ -i ' 1 "* m-i 

2) diam H (Q) = m(m-l)/2 . 
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5.4 A One-Parameter Problem 

In the one-parameter standardization problem the feasible set 

is a polytope Нщ(д) such that Q = Q1 , where Q is a triangular matrix. 

In other words, Hm(Q-^) is the image of the polytope 

F(Q1) = j(xij}mxn : J^ir1 ' Xij^° V(i'j)£NmXNn ' xij=0 ’ i <jj 

under an affine map Л . It follows from Theorem 6.3 (Ch.4), Theorem 5.1 

and Corollary 5.3, that the polytope H(Q^) belongs to the hyperplane 

(5.1) and is given by the following irreducible system of inequalities 

> 0 VieN , , 
m-1 (a.) 

i 
< 1 a. 
- j£l J 

V i e N , . 
m-1 (6i) 

Theorem 5.Ю 7h.e polytope Hm(Q-^) i-4 comlinatonially 

equivalent to an (m-1 )-cu(Le. 

P/looS Let the cube ti be given in S , by the constraints 
-1 m-1 J 

X
 

K
i¬

 

ll v
 

0 Vi e N , 
m-1 W[) 

x. < 
l = 

1 V i i—
1 1 В
 

lx) (3)) 

Every vertex x of the cube can be given by specifying the indices 
“V 

...,a.’ ,3.' ,...,3' of the faces whose intersection defines x . 
1k 1k+l 1m-l 

Here (ix.i i) e Sm ^ . Similarly, every vertex у of H(Q^) is 

determined by the indices a. ,...,a. ,3. ,...,3. of the faces whose 
11 1k 1k+l 1m-l 

intersection gives у . Thus the map ф : ou-»-a) З^+З) establishes an 

isomorphism of the polytopes К and Hm(Q^) . By Theorem 1.7 (Ch.3), the 

polytope H (Q^) is combinatorially equivalent to the cube. Ц 

Corollary 5.11 

1) fi(Hm(Q1)) = 2m"i_1 (m.1) i = 0.m-2; 

2) diam Hn(Q^) = m-1 . 
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EXERCISES 

1. (Balinski & Russakov 1972). Show that 

(1) to each vertex of the bistochastic polytope Mn there 

correspond 2n "*"nn ^ feasible bases; 

(2) it is possible to pass from any feasible basis of the 

polytope to any other feasible basis in not more than 2n - 1 steps. 

Moreover, in the sequence of bases so constructed, every pair of neigh¬ 

bouring bases differ in only one column vector and all the bases will be 

feasible ; 

(3) the graph of the polytope Mn is Hamiltonian. 

2. Every i-face (i e ^ , d =dim M ) of the polytope Mn is 

representable in the form F = {xeM^ : x^ = 0 , V(i,j ) e шС Nn*Nn} ' 

Conditions for F to be non-empty are given by Hall's Theorem (see Cor. 

4.14»Ch.4)- In Brualdi & Gibson (1976 , 1977) the properties of the faces 

F of the polytope Mn are studied in detail. In particular the follow¬ 

ing results are obtained: 

(1) every i-face of F has no more than three (i-l)-faces; 

(2) if the face F is a 2-neighbourly polytope, then F is 

affinely equivalent to M^ > 

(3) the i-face F has i +2 vertices if and only if one of 

the following conditions is satisfied: (i) i=2 and F is a rectangle; 

(ii) i > 3 and either F is affinely equivalent to the polytope or 

F is a pyramid with a rectangular base; 

(4) the i-face F is an i-parallelepiped if and only if F 

does not contain a 2-face which is a triangle. 

3. (Suprunenko & Metelski 1973). Let C = (c..) „ be a matrix 
1J nxn 

with real elements. The assignment problem consists in finding 

( n n \ 
mm l 

i=l j=l ^ ij 
(x. . ) 

ij 
e M 

Let г 

vectors 

form 

be the rank of the matrix C . Then, there exist r pairs of 
11 Г Г 

(ах,1>) , ... , (a ,br) such that the assignment problem takes the 

minimize 
n n , , 

i i («X ♦.. 
i=l j=l 1 J 

r.r \ 
.. + a . b . )x 

i J 
.. : (x. . ) e M 
ij ij n 

In particular, when the rank of the matrix C equals 1 , 

then the assignment problem is easily solved : the optimal permutation 

matrix x* is determined by the conditions xtr . =1 ,VkeN , and 
Vk 
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=0 for the remaining (i,j) , where the permutations (i^,...,in) , 

) are determined by the conditions a?" <...^af , 
1 1. _ 

n 

b. > . . . > b. . Moreover, if the components of the vectors a'*' and b^ 
J1 Jn 

are all distinct, then x* is the unique optimal solution. 

4. (Suprunenko & Metelski 1973, Leontiev 1979). The following 

assertions are equivalent: 

n n 
(l) У Ус..x.. = const for all x e M ; 

j=i iJ 1 11J n 

(2) cij = ou +, Vi,j eNn ; 

(3) c +1 I u )/n - (u +v )/n = 0 , u = I c , v = I c . 
\i=l 7 1 J 1 j=l 1J J i=l 1J 

An analagous result for multi-dimensional matrices was 

obtained by Mikulski (1974). 

5. (Leontiev 1975, 1979). Let c^ = 0 , Vi e Nn . The following 

statements are equivalent: 

n n 
(1) У У с. .x.. = const for all x e Mb ; 

i=l. j=l 1J 1J n 

(2) cij. = ou + 0 , Vi,jeNn , i^j ; 

1 П 1 1 
(3) C. . + 7 T-r-7 У U. - —Г-—;r-r(u.+V.) - —7 7-v(u.+V.) 

1J (n-1) (n-2) i^1 1 n (n-2) ' 1 У n (n-2) J 1 

= 0 , Vi,j e Nn , i / j . 

6. If, in the assignment problem, the matrix (c^. )nxn is suc^ 

that I j -i I £ (0,1} =>c „ > 0 , and | j -i | i { 0,1}=> c „ = 0 , then the optimal 

value of the cost function Fn can be found by means of the following 

recurrence relation: 

Ft Ft-1 +min*ctt ’ ct-l,t " Ct-l,t-lXt-l,t-l* ' 

where t=2,...,n, and (x7 ) is the nermutation ma.trix which minimizes 
ij 

t t 
the function \ \ c..x.. on the polytope M. . 

i=l j=l 1J 1J Ъ 

7. (Sachkov 1975). Let M** be the symmetric bistochastic 

11 

polytope defined by M** = {(x. . )eE 2 : \ x.. =1 , x. . = x.. > 0 , Vi,j e N }. 
11 11 ±=1 ^ J-1 11 
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It is clear that М**СМ9 . Show that the polytope M** is the convex 
n n n 

T 
hull of the set of all matrices (x + x )/2 , where x is an (nxn)-permuta 

tion matrix. The number of vertices of M** is given by: 

f 0 (M**) 
n 

n 

l 
k=0 

I>-k)/2]_nj_ 

j = 0 j!(n-k-2j)!2n'k“J’ 

к 

I 
£ = 0 

1/41/4 + t - l\ 
к-£Д / J 

or by the following asymptotic formula: 

2 tin! 
-г , as n о» . 

Г(1/4)n4 

8. (Sachkov 1977). For the permanent of the linear hull of two 

permutation matrices Д^ and Д^ we have the equality 

per(аД. + 6Д,) 
к e. e. 
П (a 1 + 8 1) , 

i = l 

where a , 6 are real numbers and e. , ... , e, are the lengths of the 
-Iх K 

cycles of the permutation тг тг^ . Here тг^ and тг2 are the permuta- 

tations corresponding to the matrices Д^ , Д^ . 

9. (Koontz 1978). Let the non-negative real numbers m,n,t 

satisfy the constraints l/m < 1-t , l/t >l/n . Show that the polytope 

Qn = {xeMn : l/m < x „ < l/t Vi.jef^} , 

which is the intersection of a bistochastic polytope and a parallelepiped 

is the convex hull of the set of all matrices whose elements are equal to 

l/m or l/t with the possible exception of the elements of a single row 

(or column) in which all elements are equal to the same number. 
T sl s 

10. The vertices x and x of the polytope Mn are adjacent 

T T 
If the vertices (x-^+x^)/2 and (х2+х^)/2 are adjacent, then the 

following vertex pairs (x1*x2) , (x^x^) . (x^,x2) , (x^,x2) , (x^x^) , 

(x2,x2) of the polytope Mn are also adjacent. The number of adjacent 

vertices to any vertex of the polytope MS is not less than C(n —2 ) /2]! 

(Savage, Weiner & Bagchi 1976). 

11. (Heller 1956). The adjacency dimension, k(M) , of the 

polytope M is defined to be the smallest number r such that any two 

vertices of M belong to a к-face with к< r . Show that the adjacency 

dimension of the bistochastic polytope Mn is equal to [n/2] , and of 

the hamiltonian tour polytope is equal to: 
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k(Mas) 

2m if n = 4m + 2 and n > 8 , 

[n/2] if n ф 4m + 2 and n .> 8 , 

2 if n = 6 , 7 , 

1 if n = 3,4.5. 

12. (Grotschel & Padberg 1979). The inequalities defined by the 

toothed systems of sets (Vq.V-^.V^) and (Nn\Vg,V^.V^) define 

exactly the same face of the hamiltonian cycle polytope Ma . Show that 

the number of distinct faces of which are generated by toothed 

systems of sets is given by the formula: 

a-3 i , . n-q , . min (i ,k)/ к ,, x Л q , . , к ,, \ 

I Ло<-і,,о-,р • 
Verify, that the inequality defined by the toothed system Vq= ... =, 

when к =1 coincides with Dantzig's inequality. 

13. (Leontiev 1979). The following system of 510 inequalities 

and 14 equations determines the polytope M 
as 

5 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

= 0 (5 equations); 

5 5 
£x..= £ x.. = 1 (9 independent equations); 

11 i=l J1 i=l ij 

х^^ > 0 , i / j (20 inequalities ); 

x. . + x.. <1 , i<i (10 inequalities ) ; 
ij Ji= f 4 

-X..-X..+X ,+x, -x 2-1 (60 inequalities); 
ij j l st tr rs = n 

x. +x .+x -x. -x .-2x..-2x.. >-2 (120 inequalities); іг si rs jr SJ IJ jl = 

x..+x. +x ..+x . +x .+x . +x. .+x >1 (60 inequalities); 
ij іг ji js ri rt tj sr — 4 

x. . +2x. +x. +x, .+x, +x..+x.,+x ,+x +x .+2xo. > 2 
ij іг is tj ts ji jt rt rs n si— 

(120 inequalities); 

(9) x-.+x. +x +x .+2x . .+2x .+x . <3 (120 inequalities), 
ij js sr ri ji si sj = 4 

where i , j , s , r , t E L . 

14. (Leontief 1979). The polytope is given by the following 

system of equations and inequalities: 

(1) x. . =x.. , i/j (15 equations); 
1J J 

(2) x.^=0 (6 equations); 

6 
(3) I x.. = 2 (6 equations); 

i=l 1J 
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(4) x±. >0 (15 inequalities); 

(5) < 1 (15 inequalities); 

(6) x. .+x., +x, .+x . +x. +x, ,, < 4 (120 inequalities); 
v ij lk ki ip j q kl = ^ 

(7) x^.+x.^+х^ < 2 (10 independent inequalities). 

The polytope My is completely specified by a system of 9 

types of inequalities, the first seven of which are analagous to those 

given for M* and the remaining two of which take the following form: 

(8) 

(9) 

x. .+x., +x, .+x. +x. +x +x +x < 5 (1260 constraints); 
lj jk ki ip lq pq pr qr - 

2x. .+2x., +2x, .+2x. +x +x .+x , +x .+2x, +2x. < 9 
ij jk ki ip pq qi pk pj kr jr- 

(2520 constraints). 

15. (Maurras 1975). The inequality £ x.. < 9 defines a facet 

i.j 1J 

of the 35-polytope M^q where the sum is taken over all edges (i,j) of 

Petersens's Graph constructed on 10 vertices. 

16. (Bowman 1972). A di-graph is called а tou/inament if, given 

any pair of vertices i , j it contains either the directed edge (i.j) 

or the directed edge (j,i) but not both. The tournament is called 

acyclic if it does not contain any tours (cycles). The convex hull in 

Sn2 of the adjacency matrices of all acyclic tournaments is called the 

acyclic toa/inament polytope . Such a polytope is given by the following 

system of constraints: 

x. . > 0 , Vi.jeN ; x..=0,VieN ; 
ij = J n 11 n 

x. . + x. . = 1 , Vi.jeN ,i^j ; 
ij j l J n J 

x. . + x., + x, . < 2 , Vi.j.keN , i^j^k . 
ij j к ki = J n 0 

17. (Sarvanov 1977). Let A be an (nxn)-matrix and let be 

a permutation matrix. The convex hull of the set of points Д^АД”"*' for 

all г e Sn is called the q.uad/iatic choice, p/iollem polytope and is deno¬ 

ted by W(A) . 

Let C be the permutation polytope corresponding to the 

cycle <12...n> , L= (i-j) „ and let R be the matrix J * V о'nxn 

/° Ek\ 
R = I 1 , where E. is the 

\Ei o / 

equal to unity. Then W(C) =M^S 

(ixi)-matrix all of whose elements are 

and the polytopes W(L) and W(R) are 
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* the feasible sets for the problem of linear rearrangements of a graph and 

for the problem of disconnections of a graph respectively. For any matrix 

A the graph of the polytope W(A) is regular, i.e. all its vertices have 

the same degree. Moreover, for the polytope W(C) =M^S , the degree of 

every vertex is greater than 2[(n-2)/2]| , while for the polytope W(L) 

the degree of every vertex is greater than 3x2n-3 -1 (n _> 3). The graph 

of the polytope W(R) is complete. 

18. The set of hamiltonian directed chains in the directed graph 

G(V,E) is given by the intersection of three matroids: /7 = (E,F-^) , the 

graph matroid, and = (E.F^) , Pl^ = (E,T, which are partition matroids 

where the independent sets are subsets of directed edges which do not 

contain edges both pointing towards or both pointing away from the same 

vertex, respectively. Using this fact Kovalev & Kotov (1981) showed that 

in the maximum-distance travelling salesman problem, the gradient algorithm 

always leads to a tour whose length is not less than a third of the 

optimal length. 

19- Let F = F (Q^, . . ., Qn be an i-f.ace of the permutation 

n-i 
polytope. Then fn(F) = П t. , where t. = |Q.| . 

u j =p J J J 

20. The f-vector of the polytope M*(a) of even permutations is 

given by the relations: 

fj_ = n! (n-2 ) (n + l)/8 , 

f2 = f2(Mn(a)) +n! (n-2)(n-3)(2n-5)/24 , 

7Г . 

J 

fi “ fi(Mn(a))+n2(i+l) ’ 1 3.n"3, 

fn_2 = 2 (2n-1 - 1) + (n! )/2 . 

21. Let S (j ) be the set of permutations n £ Sn 

Ф j , j e . The convex hull of the points a^ = (a^ ,. 

for which 

am } * 
n 

Vtt e S (j ) is called thef pe./im.ui.ation potytope. with the. j-th 

M„(j) 

«„(j) 

and is denoted by Each of the 

Sn(j) is a vertex of the polytope 

(n-l) (n-1)! points 

When 2 < j < n-l 

И„(о) has the analytical representation 

n n 
I x. = la. 

i=l 1 i=l Х 
\ x. > I a . ,, 

. “ l = . L-, n-x + 1 
іеш i=l 

VuCN 

p/iohilLition. 

a , 7Г e 
ТГ 

the polytope 
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(ѵі-ѵі>іі,Л + 4 + (arai*i)“j-i • ѵ“свп • 

j ^ W » IШ I = j - 1 . 

When j =1 or j =n the last class of inequality should be 

replaced by the following: 

n-1 n-2 

xl<a2 or Jxxi= J-^i+Si ' 

This result is due to A.N.Isachenko. 

22. (Kovalev & Girlikh 1978). In the two-parameter standardiza- 

Q has the form 

'«1 
0 0 ... o" 

% «1 
0 ... 0 

«1 
0 Qp ••• 0 

. • . • 

Л 
0 0 ... 0 

where Q1 is a triangular (qxq)-matrix, n =pq . The following recurrence 

relation holds: 

fn(H (0)) = 2 (P-1 Hq-1) + (p_i )2 ^p~2 ) (l-1) + 
0 pq 

+ [(p-l)2^p“2^ +2^P_1^t]f0(HT 
"t — 1 

(Q)) , 0 p,q-t 

from which, by means of generating functions, it is possible to obtain the 

explicit formula: 

f 0(Hpq <Q)) - 2 (P-3 > 'l-1 ’-1 (p - 4(”i))<PH"'lp’*»))<'1 t 

+(p V?p^8))tPt^(P,t8»q'1 

in particular, 

f0(H2q(Q)) = (1 -/3/2H3 ->/3)q"1 + (1 +/3/2)(3 +/3)q_1 . 

23. (Girlikh & Kovalev 1974). Let AR be the incidence matrix 
m 

of the graph Km and let a= (a,...,a) . Then all vertices of the poly¬ 

tope Hm(AK ) take the form Уі=а(т-1ті) » Vi e Nm , it e Sm . Using this 
m 

result, show that the standardization problem ШІП l f,(y,) 
ycHB(AK ) 1=1 

where 
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f\ (у) are concave functions, is equivalent to the assignment problem 

with matrix (f ± (a (m-j )))mXm • 

24. Show that the combinatorial type of the polytope H(Q) does 

not depend on the vector a= (a^,...,an) , but depends solely on the 

matrix Q . 

25. In the class of polytopes H (Q) where the matrices Q have 

m 
the property £ q.. >r +1 , the maximum number of vertices is given by 

i=l 1J 

(m-r)!^™j . Moreover, this maximum is attained by the polytopes H^CQq) » 

where Qq is an r-complete Boolean matrix, that is, a matrix, which has 

as a submatrix the incidence matrix of an r-complete hypergraph with m 

vertices, i,e. a hypergraph, such that every subset of r+1 vertices is 

an edge and there are no other edges. Show that the polytope H^Qq) has 

m - 1 + 
m-r-1 

Jl (") 
facets. 

26. The f}e./im.ane.nt of the matrix A = (a. . ) „ is the sum 
ij nxn 

Per A = \ а1тг,а2іт ‘ ‘ ,аптг * 
ireS 12 n 

n 

In 1926 van der Waerden conjectured that min per A = (nj)/nn , where the 
AeM 

the minimum is attained if and only if a„ = l/n , V i, j e . 

A proof of the truth of this conjecture is given in 'A 

solution of van der Waerden's conjecture' by G.P.Yegorychev, Krasnoyarsk, 

1980. Another proof is given by D.L.Flikman, 'A proof of van der Waerden's 

conjecture on the permanent of a doubly stochastic matrix', Matematicheskie 

Zametki, 1981, 29 , N0.6. 
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6 CLASSICAL TRANSPORTATION POLYTOPES 

Among the polytopes associated with linear programming 

problems, the transportation polytopes have been extensively studied, 

especially the polytopes of the classical transportation problem. 

There are dozens of names in the list of literature devoted 

to characterizing and counting the vertices and faces of the classical 

transportation polytope. The review of Klee & Witzgall (1968), which 

appeared over ten tears ago, should be noted first. This review contains 

the Simmonard-Hadley formula (Simmonard & Hadley 1959) for the number of 

bases of the transportation problem, Demuth's formula (Demuth 196l) for 

the minimal number of vertices of the transportation polytope in both the 

degenerate and the non-degenerate case, together with results due to the 

authors themselves : bounds on the number of faces and a qualitative 

(asymptotic) estimate of the maximum number of vertices. 

Serious difficulties were encountered in trying to obtain a 

formula for the maximum number of vertices ф(т,п) in the class of trans¬ 

portation polytopes of order mxn . Thus, in Klee & Witzgall (1968) a 

formula for ф(2,п) only is obtained, while in Likhachev & Yemelichev 

(1974) and in Likhachev (1975) upper bounds for ф(т,п) are obtained. 

In 1968 Klee & Witzgall conjectured that if m and n are 

coprime then the so-called central polytope. M(a*,b*) of order mxn , 

defined by the vectors a*=(n,n,...,n)eEm and b*=(m,m,...,m)eE , 

has the maximum possible number of vertices. For the cases n =mq + 1 , 

they derived a formula for calculating the number of vertices of a central 

polytope. This conjecture was verified by Bolker (1972) who formulated 

two further interesting conjectures concerning ф(т,п) and the asymptotic 

behaviour of the class of transportation polytopes with the maximum 

possible number of vertices. The first of these was proved by Yemelichev, 

Kravtsov & Krachkovsky (1977i) while the second was shown to be false by 

Krachkovsky (1979). 
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Recently, criteria have been obtained for a transportation 

polytope to belong to the class of polytopes with the minimum number of 

vertices (Yemelichev, Kravtsov & Krachkovsky 1977iii) and with the maximum 

number of vertices (Yemelichev & Kravtsov 1976iii, 1978); polytopes have 

been classified according to the number of their faces (Yemelichev & 

Kravtsov 1977, Kravtsov & Yemelichev 1976); criteria have been found for a 

non-degenerate classical transportation polytope with a fixed number of 

faces to belong to the class of polytopes with the minimum or maximum 

number of vertices (Yemelichev, Kravtsov & Krachkovsky 1978iii, 1979); the 

asymptotic behaviour of a number of classes of classical transportation 

polytopes with increasing order has been clarified (Yemelichev, Kravtsov & 

Krachkovsky 1978ii, Yemelichev & Krachkovsky 1978, Krachkovsky 1979) and a 

number of results have been obtained connected with estimating the diame¬ 

ter of the classical transportation polytope (Yemelichev, Kravtsov & 

Krachkovsky 1978ii) 

This chapter is devoted to describing these results. The 

criteria for maximality of the number of vertices of the transportation 

polytope and the apparatus for calculating this number are the central 

results of this chapter. To establish them we introduce the auxiliary 

concepts of equivalence, regularity and spectrum. 

§1 BASIC DEFINITIONS AND PROPERTIES 

Transportation type problems are among the most widely 

occuring of all linear programming problems. They arise in various dom¬ 

ains of economics, technology and industry. The transportation problems 

associated with planning the carriage of goods are well known. 

The classical transportation problem may be described as 

follows. There are m suppliers which can supply the same product and 

which must be delivered to n users. Let the i^*1 supplier produce a^ 

units of the product in unit time (a^ > 0) and let the j ^ user require 

exactly b. unit in unit time (b. >0). Suppose that it costs c.. units 
0 0 th 0 

to transport one unit of product from the i supplier to the jth user. 

The problem is to determine the quantity of product x.. to be transpor- 
t h t h 10 

ted from the i supplier to the j user. It is required to minimize 

the total transportation cost. Thus, the classical transportation problem 

of order mxn requires the minimization of the linear function 

m n 

I I e.,x.. 

1=1 0=1 
10 10 
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subject to the constraints 

m n 
У x. . = b. , j e N , У x.. = a. , i e N , (1.1) 

ij J J n’ >]_ ij i m 

x±j >0 , (i,j) eNmxNn . (1.2) 

Let a = (a, ..... a ) , b = (b, ..... b ) . We denote by M (a ,b) 
1 m 1 n J 

the set of matrices x= (x..) v whose elements satisfy constraints (1.1) 
1 J Ш xn 

and (1.2). It is easily seen that this set is non-empty if and only if 

i=l 
a. 
l 

n 

1 bj 
j=i J 

that is, the total supply equals the total demand. 

The set M(a,b) is clearly bounded. We will call it the 

еіаллісаі transportation polytope. of order mxn , determined by the vectors 

a=(a^,...,am) , b=(b-^,...,bn) or simply the transportation polytope. 

Proposition 1.1 1 he dimension о/ the transportation po lytope 

of. order mxn is (m-l)(n-l) . 

Proof Clearly, the inequalities (1.2) can be satisfied strictly. It is 

easily shown that the rank of the matrix R of constraints (1.1) is 

m +n -1 . Thus the proposition follows directly from Proposition 4*1 of 

Chapter 1. // 

Let R1^ be a column-vector of the constraint matrix R of 

(l.l), where R^' has a unit element in its i*'*1 and m + j^'1 rows. 

Then the system (l.l) can be written in the form 

l I H 
ij 

Xij 
(a,b)J 

i=l j=l 

Thus, the point (x..)_v„ e M(a,b) is a vertex of the polytope M(a,b) 
l j m n ^ . 

if and only if the vectors R J for which x^ . > 0 are linearly indepen¬ 

dent (§4. Ch.l). Thus, the number of positive components at any vertex of 

the transportation polytope of order mxn does not exceed m + n - 1 . 

Definition 1.1 A vertex of an mxn transportation polytope 

is called a non-d.egenen.ate vertex if it has exactly m+n-1 positive 

components, otherwise the vertex is degenerate . A transportation poly¬ 

tope is called non-degenerate if all its vertices are non-degenerate, 

otherwise it is degenerate . 
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It is clear that every non-degenerate transportation polytope 

is simple. The following example shows that the converse statement is 

false. Let a° = (m(n-1),1,1,, ...,1) , b0 = (m,nu ...,m>m-l) . It can be 

m-1 n-1 
checked directly that there are exactly (m-1)(n-1) facets which are 

incident to any vertex of the transportation polytope M(a°,b°) . Thus 

M(a°,b°) is a simple polytope. On the other hand, this polytope has a 

degenerate vertex x , whose components are defined as follows : x-^. = m , 

VjeMn_2 » x^n = 1 » i=2,3»...*m , x^ ^ = 0 otherwise. 

We formulate a widely known criterion for a transportation 

polytope to be non-degenerate. First we make the following definitions 

with respect to the polytope M(a,b) : 

U j(a»b) = I a - I b , ICN , JCN ; 
i,J iel 1 jeJ J m n 

<4(a.b) = {(l,J)e4mXn : j(a,b)=0}, 

where 

4„*„ ' KbJ) : 1EICN„ • 

Theorem 1.2 Ihe tnan-bpontation polytope M(a,b) о/ onden 

mxn іл non-degenenate i-jL and only L-/L 4(a,b) = 0 . 

The proof will use the following definitions and a lemma. 

11J1 2 J 2 m+n-lJ m+n-1 
Let R * R .R be a set of linearly 

independent columns of the matrix R containing those columns of R 

which correspond to the positive components of the vertex x of M(a,b) 

of order mxn . The set T(a,b,x) = : ^ e ^m+n 1^ ca^-^-e^ the 

Ha-bi-6 -bet о/ the. ventex. x e M(a,b) . 

When x is a non-degenerate vertex, T(a,b,x) is the set of 

those pairs (i,j) for which x^. > 0 . Note that if x is a degenerate 

vertex, the set T(a,b,x) is not uniquely defined. 

Lemma 1.3 Le.t T(a,b,x) Не а Наліл -bet 00 the venteк x о/ 

the tnan-bpontation polytope M(a,b) 00 onden mxn . Then, 0on eve/iy pain 

00 indices (k,r) eT(a,b,x) thene i-b a pain о/ -buH-bet-b (l,J) , 0 0 I Q N^ , 

J CN , J0N , -bach that x, =UT r(a,b) . 
n n кг I, J 

265 



Pnoo-jL For the pair (k,r ) z T (a, b, x) we introduce the following notation 

I1 = Ш 

Js = Js_1U{j : 

Is = Is"1 U{i : 

Let t be an index such that 

(lb,Jb) is the desired pair. 

J1 = 0 , 

j 0r , (i,j) eT(a,b,x) , ie Is”1} , 

(i,j) e T (a, b, x) , jeJS} , s>2 . 

Ib = f+b , Jb = + ^ . Then the pair 

// 

%P/ioo£ о/ 7ке.ояе.т 1.2. Necessity. Suppose that there is a non-degenerate 

transportation polytope M(a,b) for which /!(a,b) 0 0 . Let (L,P) e 

<4(a,b) . Without loss of generality we may assume that L = N. , P = N 
Л Г 

Adopt the following notation : 

a (ak+l’ak+2’••',am^ ' b “ ^br+l,br+2’'*•,bn^ * 

Since the vectors a and b have the same sums and since 

(L,P ) eA(a,b) , we find that the polytopes M(ab,bb) and M(a2,b2) are 

non-empty. 

M(ab,bb) 

M(a2,b2) 

Let T(ab,bb,xb) 

and let T(a2,b2,x2 

It is easily seen 

be a basis set for the vertex xb = (xb . ) e 
ij 

2 2 
) be a basis set for the vertex x = (x7.) e 

ij 
that the matrix x with components 

1 

ij 
if (i,j) e LxP, 

2 

ij 
if (itj) eLxP, 

t otherwise 

is a vertex of M(a,b) . Here L = N^XL , P = Nn\P . At the same time, 

because of the obvious equalities |T(ab,bb,xb)| =k+r-1 , |T(a2,b2,x2)| = 

m-k+n-r-1 , the number of its positive components is less than m+n-1 . 

Thus we have obtained a contradiction of the assumption that the polytope 

M(a,b) was non-degenerate. 
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Sufficiency. For any vertex x of M(a,b) , when /4(a,b)=0, 

we have, by Lemma 1.3* that x^ > 0 , (i,j) eT(a,b,x) . Thus, since 

IT (a , b, x) I =m+n-l for all vertices xsM(a,b) , we see that the polytope 

M(a,b) is non-degenerate. // 

The following is an important property of the transportation 

polytope. 

Proposition 1.4 1 he poly tope. M(a,b) ІЛ integral arid, 

only L£ the veeto/іл a and b a/ie Integ/ial. 

P/iooJL Sufficiency follows from Lemma 1.3. Necessity follows by the 

method of contradiction. // 

§2 BASES AND SPANNING TREES 

2.1 The Humber of Bases 

The following theorem was proved by Simmonard & Hadley (1959). 

Theorem 2.1 Ihe numle/i o-fL Іалел B(m,n) о/ the tnantpo/ita- 

tion polytope о/ onden mxn І4 given ly the tLo/imula 

В(m,n) m-1 n-1 
n m (2.1) 

Pnool Consider the ((m+n-1)xmn)-matrix R which is obtained from the 

matrix R (§1) by removing the (m+n)^*1 row. It was shown earlier that R 

had rank m+n-1 . Thus, since the matrix R is absolutely unimodular 

(§4* Ch.4)* we have, using Proposition 4*5 (Ch.l) that B(m,n) =det(RR ) . 

Carrying out elementary determinant operations, we have the 

following chain of equalities : 

n 1 i .. l" n -n .. -n Г 
n 1 i .. 1 n 1 

’ • 
n 1 i .. 1 n 1 

1 1 • • • 1 m 1 m 

1 1 ... 1 m 1 m 

1 1 • • • 1 m 

В 1 a
 i E
 1 

• (—1 Ш 

m n-l 
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n 
n 

m 
1 

n 
n 

1 
1 Ш 

n 
m 

m 

1 
n-1 m n-1 

n-1 Ш-1 

n-1 

Here, all elements not shown are zero. Ц 

2.2 Spanning Trees 

The following theorem establishes a connection between the 

bases of a transportation polytope and the spanning trees of the corres¬ 

ponding complete bipartite graph. 

Theorem 2.2 The/ie ід а Hijaction Hetween the деЬ о/ Spanning 

t/іеел of the complete та/iked Hipa/itite g/iaph n and. the деі of. Надел 

of the tnan/>pon.tation potytope of o/iden mxn . 

The proof is similar to the proof of Proposition 1.2 (Ch. 5) 

with the difference that instead of the complete bipartite graph n we 

need to consider the graph К . // 

Theorems 2.1 and 2.2 have the following corollary. 

rn.an.ked 

Corollary 

Hipantite gnaph 

2.3 The numHen. 

К ІД given 
m, n 

of Spanning t/іеед 

Hy the fon.mu.Ha 

of the comp Hete 

A(m,n) 
n-1 m-1 

m n (2.2) 
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There are many different proofs of formulae (2.1) and (2.2) 

in the literature (see, for example, Austin (I960), Scoins (1962), Szwarz 

& Wintgen (1965). Olah (1968), Moon (1969). Yemelichev & Kononenko (1970)) 

In deriving these formulae and their extensions, use has been made of 

Stirling numbers, Priifer numbers, generating functions and the Kirchoff 

and Binet-Cauchy formulae. 

Theorem 2.4 (Klee & Witzgall 1968) 7 ke 

t/іеел G(U,V) oi tke complete manked Lipantite g/iapk 

q>ll , f.on. Lokich tke condition deg i = q + 1 , i e U i-i 

(Ly tke namte/i (mq+1)! (mq+1 )m-^/(q \ )m . 

nunS.e/i o£ Spanning 

К , m>2 , 
m,mq+l = 

Aati-btied, ІА given 

We precede the proof of this theorem, which will be needed in 

§8, by the following lemma. 

Lemma 2.5 Let tke ve/iticeA o£ a g/iapk (Le та/iked witk tke 

num&e/LA l,2,...,m, m .> 2 . Let &e non-negative Lokole 

m 
numdenA Auck tkat £ l. = m-2 . 7ken, tke numken. 0/ spanning tneeA 04 tke 

i=l 1 
comp tete manked g/iapk /0/1 wkick deg i = £_^ + l , ieN^ , ІА given <Ly 

V (^!'^2’’'‘ 
(m-2 )! 

£,I £„l . . . £ I 
1' 2" m• 

P/iool 

£. > 0 
к 

We use induction on 

Let £-,>£„>...> I 
1=2= = m 

For m=2 the lemma is trivial. 

Let the number к be determined by 

l. 0 Fix a number r e N, Since the vertex with index m k+1 • - — “ --a— x о 

is a terminal vertex we have, by the inductive assumption, that the number 

of spanning trees containing the edge (m,r) is equal to 

(m-3)l/U,!/o!...* -,! (£ -1)! £ ,,!...£,!} . Now, summing over all r e N, v s,./ 2 r-1 ' r ' r + i к & к 
we obtain the assertion of the lemma. // 

P/1004. o4 7keo/iem 2.4* Fix a particular veV . Since G(U,V) is a tree, 

given any vertex i e U there is a unique path connecting the vertices i 

and v . Let (i,j(i)) be the edge in this path which is incident to i 

The forest obtained from the tree G(U,V) by the simultaneous removal of 

the edges (1,j(l)),(2,j(2)).(m,j(m)) will be denoted by RV(G) . 

Let 

Qv = (RV(G) : G(U.V) Dm>mq+1) , 
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which where Dm + G is the set of spanning trees of the graph 

satisfy the condition in the theorem. Since every connected component 

rY(G) of the forest RV(G) has one vertex ieU and q vertices in the 

set V\{v} which are neighbours of i , we have the equation 

|Q' 
Qq )! 

(q!)m 

(2.3) 

Further, for each tree G(U,V) e Db mq+q containing the graph 

RV(G) , we construct the tree G with vertices UU{v} according to the 

f oil owing rule : (i, v) e G if (i,v)eG(U,V) ; (i, j ) e G if either (i , к) 

e G(U,V) , (j , к) e rY (G) or (j,k)eG(U,V) , (i,k)eR^(G) . From our 

construction it follows that there exist non-negative whole numbers 

» £^ » i £ , such that 

V1 = deg^ v = degG(u>v) v , 

£ + 1 = deg^ i = I deg j - q + 1 , i e N , 
jeE. m 

where deg^r i is the degree of the vertex i in the graph G and 

= (j e V : (i, j ) e rY(G)} . 

On the other hand, it is easily verified that the tree G 

has the following properties : 

1) if the edge (i,j) eG , j ^v , is incident to the vertex i 

in the path joining vertex i to vertex v , then (i, j ) eG (U,V) for any 

к e rY (G ) ; 

2) if (i, j) e G , j=v , then (i,j)eG(U,V) . 

Since the number of vertices keRv(G) , keV , is equal to 

q , then by properties 1) and 2) the number of such trees is equal to 
m 

Ji*i 

q . By Lemma 2.5 and equation (2.3) this gives 

Id , I = iaaii 
m,mq+! ( , 

I £. 
_(ш-1)! _i=l 1 

m £A . .£ I £ I 4 
£.+..+£ \£ =m-l 1' m' v' 

1 m v 

E 

(q !) 
// 
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§3 FACES 

In this section we classify transportation polytopes accor¬ 

ding to their numbers of faces. Throughout this chapter a face of a 

transportation polytope of order mxn , m,n > 2 will be understood to be 

a face of maximal dimension (facet), that is a (d-l)-face where d = 

(m-l)(n-l) . Since a transportation polytope of order 2x2 has only two 

vertices, this case will be excluded in what follows. 

It is clear that the facets of the transportation polytope 

M(a,b) of order mxn must be point sets which belong to coordinate 

hyperplanes, that is, nonempty sets of the form 

Fsq(a,b) = (x = (xij )mxn E M(a’b) : Xsq = 0} ’ (s^)eVNn * 

The question arises as to what additional conditions the 

components of the vectors a and b should satisfy in order that the set 

F (a,b) should be a facet of the transportation polytope? Such a 
S q 

characterization is given by the following theorem due to Klee 6 Witzgall 

(1968). 

Theorem 3.1 1 he леі F (a,b) 
- sq 

tion polytope. M(a,b) of o/ide/i mxn , mn > 4 

4-4 a facet of- the t/ian-bpo/ita- 

, if and only if 

a + b 
s q 

m 

l 
i=l 

a. 
l 

P/ioof 1) Sufficiency. Since there is a matrix x' e M(a,b) with 

components x/. > 0 for all (i,j) t (s,q) , the only constraints which are 

satisfied as equalities on the whole set Fsq(a,b) are conditions (1.1) 

and x = 0 . It is easy to see that the determinant of the matrix 
sq J 

consisting of the coefficients of the unknowns x-, ,xn ,...,x x„ ,x , 
lp 2p mp, £q sq 

x-y for all j T^p.q . where p^q , It s , is equal to unity. Taking 

into account the known fact that any equation of the system (1.1) is a 

consequence of the remaining m+n-1 equations, we find that the rank of 

is 
sq • - 

equal to m+n . Hence, by Proposition 4*1 (Ch.l), the set F__(a,b) is a 

the system of constraints satisfied as equations on the set Fs (a,b) 

Hence, by Proposition 4*1 (Ch.l), the set F ta,b) 
sq 

facet of the polytope M(a,b). 

2) Necessity. Let xeF (a ,b) 
sq 

Then we have the relations 

m 

l x 
i=l iq ips iq xf- s 

a. 
i 
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Thus, b + a < У a. . This inequality can not be satisfied as an 
q s = i=i 1 

equality for otherwise the set F (a,b) would only contain one element. 
sq 

Since mn >4 this would contradict the fact that F (a,b) is a facet of 
sq 

the polytope M(a,b) . Ц 

The following theorem gives a criterion for a transportation 

polytope to belong to the class of polytopes with a given number of facets 

(Yemelicheva 6 Kravtsov 1977). 

Theorem 3.2 Let 2 <. m n , n ^ 3 , O^k^n . 1 he tnansponta- 

tion poly tope. M(a,b) о/ onden mxn hap (m-l)n + к facets iJL and only 

i£ the £оllowlng conditions ane satisfied : 

1) When к = n —1 

bo < l a. < b, , a < І b < a ; 
i=2 1 1 г j=2 J 1 

2) When 0_<k<n-m 

(3.1) 

< У a. < b 
. ~ l = r 1=2 

3) When n-m^k^n , к / n-1 , eithen (3.2) holds on 

(3.2) 

i . < У b. < a 
n-k+1 .iz j = n-k ’ 

ishene ai>a2>...>am , b^b^...^ , a0 = bQ = +=o , affl+1=bn+1 

(3.3) 

0 . 

Pnoot Sufficiency. Let к=n-1 . Then, putting с = У a^ , we 

have from conditions (3.1) : 

a. + b . 
i J 

> c , 

< C , 

if (i, j) = (1,1), 

if (i,j ) f (1,1). 

Hence, by Theorem 3-1 every set F^^(a.b) , (i,j) ^ (1,1) , and only these 

sets are facets of the polytope M(a,b) . Hence, f^ ^(M(a,b)) = mn - 1 . 

Now let к^n-1 . The following two cases can occur, 

a) Condition (3.2) holds for M(a,b) . Then 

an + b. > c , 
1 0 

j —l,2,...,n—k, 
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< С , j = n-k+l,n-k+2.n, a, + b. 
1 J 

ai + bj < c ’ i=2,3.m, j =1.2.n. 

By Theorem 3.1 this means that all sets 

(i.j ) t {(1,1),(1.2),....(l,n-k)} and only those sets 

M(a,b) . Hence f^_^(M(a,b)) = (m-l)n + к . 

b) Condition (3.3) holds for M(a,b) . This 

with in the same way as case a) . This completes the 

Fij(a,b) , 

are facets 

case may 

proof of 

of 

be dealt 

sufficien¬ 

cy. 

Before proving necessity we introduce the concept of a 

critical pair of a polytope and establish some of its properties. 

A pair (s,q) e N xN is called a critical pain ol the 
m n 

polytope M(a,b) о/ onden mxn if the inequality 

a 
s 

+ b 
q 

> l 
i=l 

a. 
l 

holds. Clearly, a pair (s,q) is a critical pair of a non-degenerate 

polytope M(a,b) if and only if for every matrix xeM(a,b) the component 

Lemma 3.3 Let (s,q) , (r,t) <Le cnitieal раіпл o£ a tnan/>pon- 

tation polytope о/L onden mxn , mn > 4 » then eithen s = r on q = t . 

n 
Р/too/ Let q / t . Then the inequality a +b > \ b. implies that 

S q j =1 J 
a >b, . Now suppose, in addition, that s fv , then in the same way we 

S и 

obtain b. >a . Since mn >4 it is clear that one of the inequalities 
ъ s 

a >b, , b. >a must be strict. This contradiction proves the lemma. Ц 

Pnoof. o£ NeceAAity in Jheonem 3.2. Let f^ -^(M(a,b)) = (m-l)n+k . Then, 

by Theorem 3.1* the number of critical pairs of M(a,b) is equal to n-k. 

By Lemma 3-3. in the cases m<n-k these pairs are given by (l»j) , 

j £ ^ , and in the cases m^n-k the pairs are given by either (l»j) . 

j e N , or (i.l) , i e N , (see Figures 38,39). It is easily seen that 

all the conditions of the theorem are satisfied. Ц 

Lemma 3.3 implies that the largest possible number of criti¬ 

cal pairs of a transportation polytope of order mxn , 2;<m^n , n>3 » is 

the number n . Consequently, theorem 3-1 shows that the minimal number 
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n-k 

of facets in the class of transportation polytopes of order mxn , 2 < m 

<n , n>3 equals (m-l)n • But for any transportation polytope M(a,b) 

of order mxn we have f^_^(M(a,b)) < mn . Thus, Theorem 3,2 has the 

following corollary. 

C or ollary 3.4 Ton 2<:m=<n , n ^ 3 a.ny integen о/ the fonm 

(m-l)n + к , whene 0 <. к .< n , and only Auch. inte.ye.nA, can equal th.e numlen 

of laceA of. a tnanApontation polytope of onden mxn . 

We also have the following theorem which is analagous to 

theorem 3-2. 

The orem 3 • 2 1 Let 2;<m:<n , n>3 , O^k^n . A non-degenen- 

ate tnanApontation polytope M(a,b) of onden mxn kaA (m-l)n+k facetA 

if and only if the condition a of theonem 3-2 ane AatiAfied and if the 

inecfualitieA (3.1)—(3.3) ane Atnict. 

§4 DIAMETER 

The diameter is an important characteristic of a polytope 

because it represents a bound on the maximum number of iterations which 

are necessary in solving a linear programming problem on the polytope. 

The classification of the non-degenerate transportation polytopes in the 

previous section according to the number of facets enables us now to 

evaluate the maximum and minimum diameter in each of these classes. 

4•1 Auxiliary Facts 

First, let us examine the process of passing from one vertex 

x = (x^. )mXn of the polytope M(a,b) to a neighbouring vertex. 
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Let (ilfЗх) be any index pair in the set (NmxNn)\T(a,b,x) . Let 

H = T (a, b, x) U { (i^, j.. )} . First, we delete those columns of the matrix 

x which contain only one element of H . Then, in the resulting matrix 

we delete those rows containing only one element of H . We then resume 

the same process on the columns and then on the rows etc.. We continue 

this process until we obtain a submatrix x of x such that in every line 

(row or column) of x there are at least two elements of H . It is 

easily seen that the pair (i-^.j^) together with other pairs correspond¬ 

ing to basis elements of x form a cycle L = ( (i-j_, j ±), (i2 »j 1), d2»J2 ) * • • 

. . ,(i , j ),(in , j )} . The uniqueness of the cycle follows from Theorem 

2.2. 

f ormulae 

We obtain a new vertex x' whose components are given by the 

x.' 
ij 

П 

П 

if (i,j) e {fig,Jq),(І3,j2) 

if (i, j ) e {(iq, jq ),(i2,j2) 

otherwise, 

(if.js)) 

<W} 

where n = min(x. . ,x. . ,...,x. . ,x. . ) . The operation of passing 
12J1 X3J2 1sJs-l 1lJs 

from the vertex x to the vertex x' is called а іпаплроліііоп thnough 

the cycle L . The vertices x and x1 are adjacent by definition 1.1 

of Ch.2. 

tite graph 

Similarly, 

correspond 

With each vertex x = (x. . ) „ 
ij mxn 

G (U,V) CK which contains 
x m,n 

we define the bipartite graph 

to the pairs (i , j ) eT(a,b,x). 

The following obvious lemmas 

e M(a,b) 

the edge 

GT (a,b,x) 

we associate 

(i,j ) if x 

(•U, V) whose 

will be required later 

a bipar- 

. . > 0 . 
ij 
edges 

Lemma 4.1 Let x and у le distinct uentice* o£ the 

tnan^pontation polytope M(a,b) . The £ollowing statement/) ane equivalent: 

1) the venticeA x and у ane adjacent; 

2) the g/iaph #Gx (U,V ) U (U,V ) containл a unique cycle; 

3) thene ane Іалі-ь Aet* T(a,b,x) , T(a,b,y) o£ the venticeA 

x and у tuch that the gnaph (a,b,x)^U*V^UGT(a,b,у)^U’V^ contains 

a unique cycle. 

Lemma 4.2 7/ thene езсілі two venticeл x and у о/, the 

nondegenenate tnan-ipontation polytope M(a,b) of. onden mxn which have 

t Іаліл ѵапіаііел in common, then diam M(a,b) >. m+n-t-1 . 
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4.2 Minimum Diameter 

Let /7(m,n,k) be the set of all non-degenerate transporta¬ 

tion polytopes of order m*n , 2 < m^_n with (m-l)n+k facets. Let 

d(m,n,k) = min diam M(a,b) . 
M(a,b)e/1/(m,n,k) 

Theorem 4-3 1 he minimum diameten. in the с(.алл o£ nondegene/i- 

ate t/ianApo/itation potytopeA о/ o/ide/i mxn , 2 < m < n , with (m-l)n+k 

JLaeetA ІЛ given ty the o/imutae 

( m + к - 1 к = 0,1, 
d(m,n,k) 

( m+1 £0/1 к —2^3>***|П* 

PnooJL Every vertex of M(a,b ) z П(m ,n, 0) with m ^n corresponds to a 

matrix constructed as in Figures 40 and 41 , where the case shown in 

Fig. 41 can only occur when m =n . Hatched positions correspond to posi¬ 

tive components at the vertex, while double hatching indicates positions 

corresponding to the critical pairs of the polytope (§3). Note that in 

any line which does not contain a critical pair there is only one positive 

component, which can occur in any position. Figures 42-46 show the cases 

which can occur corresponding to vertices in the class /7(m,n,l) . The 

cases in Fig. 44 and Fig. 45 can only occur when m =n while the case of 

Fig. 46 can only occur when n =m+1 . In Fig. 42 (44) for each row 

(column) with index к>2 there is a single positive component, except 

for one row (column) in which there are two such components. 

Thus, for any polytope M(a,b) eП(m,n,к) with к=0,1 , we 

have from the given structure of its vertices that 

p(a,b) = min |Т(a,b,x) ПT(a,b,y)I = n-k . 
x,yevert M(a,b) 

The structure 

west and north-east corner 

polytope of order mxn we 

It is not difficult to see 

class fl(mfn,0) and that 

/7(m,n,l) . Consequently 

of the vertices obtained by using the north- 

methods (see Problem 17) shows that for any 

have the inequality p(a,b);<n (m<n) . 

that p(a,b) =n only for polytopes of the 

p(a,b) =n-l only for polytopes of the class 
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3 12 

ІЙ 

Fig. 43. 

Fig. 45. 

Thus, by Lemma 4*2 we have 

f m + к - 1 
d(m,n,к) > J 

( m + 1 

for к = 0,1, 

for к =2,3, .. ., n. 

We now show that in each class /7(m,n,k) , 0 ^ к < n , there is 

a polytope whose diameter does not exceed m - 1 if к = 0 , or m if 

k=l or m+1 if 2<k<n. 
= = m 

Case 1. к = 0 . Let the condition У a. < b be fulfilled 
i=2 1 n 

for a polytope M(a,b) e/7(m,n,0) , (see Fig. 40). In the other possible 
n 

case for M(a,b) e/7(m,n, 0) in which У b. < a the proof is symmetri- 

3=2 J m 
cally analagous. It is clear that for any two distinct vertices x and 

у of M(a,b) we have |T (a ,b, x) П T (a ,b,y ) | = n + 4 where O^^^m-2 . 

Since x = (x, .) ^y , there is an index pair (s,p) eT(a,b,y )\T(a,b,x) , 
1J ШХП 

s>l . Then there is a pair (s ,q ) e T (a, b ,x) , p^q , and hence a vertex 
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x' eM(a,b) with components 

x.. - min(x, ,x ) , if (i,j ) e {(l,p),(s,q)}, 
-L J -L]J о Ц 

x.. + rain(x, ,x ) , if (i, j ) e {(l,q),(s,p)}, 
xj xp sq 

x. . , otherwise. 
ij 

Clearly, the distance r(x,x')=l and |T(a,b,x') T(a,b,y)| 

= n + t +1 . Thus, after m - t - 1 similar transformations we travel from 

vertex x to vertex у , that is r(x,y) < m - £ - 1 . Hence diam M(a,b) 

< m - 1 . 

Case 2. 1S^=n . Consider the polytope M(a,b) of order 

mxn such that 

n-1 
b , , -b < У b. - a, < min(a ,b . -b ) . 
n-k-1 n ,L-. и 1 m n-k n J=1 J 

(4.1) 

where a-, a^ ,>..•> am , b-^ >. b^ > • . . > b^ . These inequalities imply that 

M(a,b) e/7(m,n,k) (see Theorem 3.2') and that the set of vertices of 

M(a,b) is representable in the form 

k+1 
vert M(a,b) = U V, (a,b) , 

h=l n 

where V^(a,b) , l^h^k , is the set of those vertices of M(a,b) such 

that 

xlj> 0 ’ j =1.2,...,n-h,n-h+2,...,n, 

x, ~ 0 
l,n-h+l xi,n-h+l > 0 ’ i=2’3.m’ 

and such that there is exactly one positive component among the remaining 

components which can occur at any location (i,j) , i=2,3,...,m , 

j =1,2,...,n-h,n-h+2,...,n (see Fig. 47); also V^+^(a,b) is the set of 

vertices of M(a,b) such that x-y > 0 , j e , and such that in each row 

with index i , i=2,3,...»m , there is exactly one positive component 

which can be at any location in this row (see Fig. 48) with the exception 

of cases in which all the components of a column with index t , t = 

n-k+l,n-k+2,...,n are positive. 

Consider all possible ways in which the vertices x and у 

can belong to the classes V^(a,b), h e. 

Let x,yeV^(a,b) , 1 < h <: к , x^y . Then, by Lemma 4*1» 

the vertices x and у are adjacent. 
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Fig. 47. Fig. 48. 

Let x,y , x^y . Then the proof of the inequali¬ 

ty r(x,y)^m-l is carried out as in the case k = 0 with the difference 

that the index pair (s,p) e T (a ,b ,y )\T (a, b ,x) is chosen so that for some 

pair (s ,q) e T (a ,b ,x ) the inequality xSq <xip satisfied. The condi¬ 

tions (4-1) ensure that such a pair always exists. 

Now let x eVja.b) , 1 < h < к and у eV^^a.b) . Choose 

x° eV^+-^(a,b) such that r(x,x°) =1 . Then r(x°,y) < m-1 and so 

r(x,y) <m . 

¥e have thus shown that when к =1 we have the inequality 

diam M (a ,b ) < m . 

Finally, let xeV^(a,b) , ycV^(a,b) , 1 <, h < g < к . Let 

x° and y° be those vertices in Ѵ^+^(а,Ь) for which r(x,x°) =1 , 

г(у»У°)=1 • Then, since r(x°,yD) im-1 we have r (x ,y) < m + 1 . 

Thus we have shown that for 2< к<n we have 

diam M(a,b)!<m+1 . // 

If we examine the proof of the first part of Theorem 4*3 more 

carefully we notice that we have, in fact, proved a stronger result : a 

non-degenerate transportation polytope of order mxn , 2 < m < n . has 

minimum diameter m-1 if and only if it has the minimum number of facets. 

4.3 Lower Bound for Maximum Diameter 

Theorem 4.4 4 et З^т^п , n^>4 , 1 < к < n . In the. cta-i-i о/ 

non-d.egenen.ate tnan^pontation po tyto рел оonden mxn with (m-l)n +k 

£acet-b the max.im.um. diameten іл not te/>P than m + к - 1 . 
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P/ioof. First let 1 < к <n-l 

that 
n 

l 

i=1 j^n-k 

Consider a polytope M (a, b ) z fl(m ,n, к) such 

n-k 
b . 

J I bj 
0=1 J 

(4.2) 

which 

3.2 ', 

■23 
= 1 

2 and a 

'24 = У21 

Let x and у be the vertices of this polytope constructed 

by the north-west corner and the north-east corner methods respectively 

(see Problem 17). Then by condition (4*2) we have |T(a,b,x)ПT(a,b,у)| = 

n-k . Hence, Lemma 4.2 gives the inequality diam M(a,b)>m+k-l . 

Now let к = n . We examine first the particular case in 

(m, n) = 1 . Let a#=(n,n,...,n) , bif=(m,m,...,m) . By Theorem 

m n 

M(a*,b*)e/7(m,n,n) • 

For the case in which m = 3 and n = 4 there is a vertex x 

with positive components x-q = x^ = 3 , x-^ = x^ = 1 , x^p = x, 

vertex у with positive components У13 = У32 * ^ * У14 = У31 = 1 • У24 = У; 

=2 so that by Lemma 4*2 the theorem is true in this case. In the follow¬ 

ing we will assume that m > 3 , n ^ 5 . 

An e.te.me.nta/iy t/ianA£o/iniatLon o-f. a mat/iix. is any transforma¬ 

tion of the form : a) an interchange of any two columns; b) an interchange 

of any two rows. Clearly, any elementary transformation transforms a 

vertex of M(a*,b*) into another vertex of the same polytope. 

Let x be the vertex of M(a*,b*) constructed by the north¬ 

west corner method. Note that every column of the matrix x contains not 

more than two positive components. 

We show how to use a sequence of elementary transformations 

to pass from the vertex x to a vertex у which does not intersect it, 

that is, a vertex у such that Т(а*,Ь*,х)ПТ(а*,Ь*,у) = 0 . To do this 

To do this we interchange the columns in x with indices j and n-j+1 , 

for j =1,2,... n/2 . These transformations convert the vertex x into 

the vertex x' which would be constructed by the north-east corner 

method. It is easy to see that the sets T(a*,b*,x) and T(a*,b*,x*) 

p^b-row, where p^l,m, or in the (n + l)/2^b- intersect either in the 

column (if n is odd). 

In the first case we interchange the rows of numbered 

and If the vertex so obtained still intersects x then to find 

the desired vertex у it suffices to interchange successively the 

columns of x numbered j-1 and j , j =2,3>...,n . 
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In the second case (which can happen when m >4) we can 

interchange the columns of x' numbered (n+l)/2 and n to obtain a 

vertex which does not intersect x . Hence, by Lemma 4.2 diam M(a*,b*) 

> m + n - 1 . 

In the case (m,n) /1 , it is necessary to consider the poly¬ 

tope М(а',Ь') of order mxn , determined by the vectors a' = (n+(m-l)/m, 

n - l/m,... ,n - l/m ) and b' = (m,m.m) . By Theorem 3.2' M(a',b') e 

/7(m,n,n) . It is easy to see that all the reasoning given above for the 

case (m,n) =1 is still valid, for the first row of the matrix is not 

affected by the elementary transformations described above. Hence 

diam MfaSb1) >m + n -1 . // 

4•4 An Upper Bound for the Diameter 

The purpose of this section is to prove the following 

proposition. 

Theorem 4*5 7he diameten o-jt the і/іаплро/itation po tytope o{. 

onden mxn , m,n:>2 doe-ь not exceed mn . 

We recall that an upper bound on the maximum diameter 

A(s,y) in the class of s-polytopes with у facets was obtained in §2 , 

Ch.2 , and took the form 

A(s,y) < 2S-3y . 

It is easily seen that for the transportation polytopes this bound is too 

large. 

First, we prove the following analogue of theorem 2.2, Ch.2 . 

Lemma 4-6 Qiuen any degenenate tnan^pontation potytope, 

thene ехіліл a non-de.ge.ne.nate. tnanApontation po tytope о/ the лате onde/i 

and with, a diamete/i not Amatten than the diameten. oi the {.inAt potytope. 

P/ioof. Let M(a,b) be a degenerate transportation polytope of order mxn . 

It is clear that a sufficiently small number e can be found such that 

the polytope M(a(e),b(e)) defined by the vectors a(e) = (a-^ + e,&£+£»• • • 

,a +e) and b(e) = (b,,b_,...,b .,b +m ) will be non-degenerate (see 
m 1 n-± n 

Problem 1). 
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We show that each vertex x° = (xjj )mxn °f Lhe degenerate 

polytope M(a,b) can be associated with a vertex x°(e) of M(a (e ),b (e )) 

in such a way that x°(0) =x° . Indeed, let 

( = 0 , if x" > 0, 
c. .(x°) \ 1J 

( > 0 otherwise. 

It is obvious that the only vertex at which the minimum of 
m n 

of the function F(x) = У У с..(x°)x.. is attained is the vertex x° . 
i=l j=l ^ ^ 

Let F(x°(e)) = min F(x) . Then, from the 
x eM(a(e ) ,b(e)) 

« 

optimality criterion for the transportation problem (see Problem 13), it 

follows that F(x°(0)) = min F(x) . Hence x°(0)=x°. 
xeM(a,b) 

Let diam M(a,b) =r(x°,y°) . To prove Lemma 4-6 it suffices 

to establish the inequality r(x°,y°) < r(x°(e),y°(e )) . 

Since x° /^y° it follows that x°(e) ^y°(e) . Let the 

shortest chain connecting the vertices x°(e) and y°(e) contain s 

edges. If x(e) and y(e) are adjacent vertices of the polytope 

M(a(e),b(e)) then either x(0) =y(0) or x(0) and y(0) are adjacent 

vertices of the polytope M(a,b) . Thus there is a chain between the 

vertices x° and y° of M(a,b) whose length does not exceed s . // 

Р/loo-/?, о/ 7he.o/ie.m 4-5. By Lemma 4*6 we can restrict our considerations to 

the case of non-degenerate polytopes. 

We use induction on the number к = m + n . When к = 4 the 

theorem can be checked directly. 

For a vertex x = (x.,) of M(a,b) we introduce the 

notation 

R(x) = { (i , j ) s N xN : x. . =min(a. , b . )} 
J mn ij 4i j 

This set is clearly not empty for any vertex of M(a,b) . 

Let x = (x. .) „ and у = (у. .) ^ be arbitrary vertices of 
ij m*n J Jij m*n \ J 

M(a.b) • Let a = “in (x) xij , (i,/feR (y) * For definite¬ 

ness suppose that a = у = b 
^pq q 

except that Case 1 is the only possible case. 

If a = у = а the proof is similar 
■’pq P 

Suppose first that x = b 
pq q 

Let x and у denote the 
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matrices which are obtained respectively from x and у by deleting the 

q column. The matrices x and у are vertices of a non-degenerate 

polytope M(a,b) of order mx(n-l) defined by the vectors 

a 

b 

al’a2’ 

(bi,b2» 

’ap-l'ap"Vap+l.am) ’ 

,bq-l,bq+l’*-,,bn)' 

It is clear that r(x,y) < r(x,y) . 

have r (x,y) < m(n-l). 

Now let x < b . Let 
pq q 

ly the number of positive components 

of x , excluding the component x 

ness let m <n . 

Case 1 . Suppose that 

Hence by the induction hypothesis we 

s (x) and t (x) denote respective 
• P+u th q , ,, th¬ 
in the p -row and the q -column 

which may be positive. For definite 

s (x) 
P 

bq(x) < m There are two 

possibilities. 

a) x >0. We construct a vertex x' = (x '. . ) „ of M(a,b) 
pq ij m*n ' 

whose components are determined as follows : 

x^j - min(x^ »Xp£), if (i,j) e {(h,q),(p,£)}. 

x:. 
ij 

X.. . + min(xhq,xp£), if (i »J ) e {(p,q),(h,£ )}, 
ij 

ij 
otherwise, 

where x, = max x. > 0 
hq iq 

and 

l£i<m 

i^P 

= max 

11 jin 
jfq 

x . > 0. Clearly, the vertices 
PJ ' 

and 
V 

1 are adjacent and x' >x and one of the components x 
J pq pq y 

is zero. Continuing this process and noting that 
hq 

s (x)+t (x)£m , we construct a vertex z = (z. . ) v e M (a ,b) for which 
p CJ 1J ШХП 

z =b and r(x,z) < m-1 . 
pq q = „ 

b) Xp^ = 0. Then the pair (p,q) together with some pairs from 

the set T(a,b,x) forms a unique cycle. Performing a transposition 

through this cycle we obtain an adjacent vertex x' with 

s (x1) +tq(x*)<ni , (see paragraph l). Now proceeding as in a) we obtain 

a vertex z = (z..)„ e M (a, b) for which z =b and r(x,z) <m . 
ij mxn pq q 

Thus, in case 1 we can always construct a vertex z of 

M(a,b) whose distance from x is not greater than m and whose distance 

from у , by the induction hypothesis, is not greater than m(n-l). 
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Hence r(x,y) < mn . 

Case 2. 

an index ue (1,2,.,. 

then У x. < b 
.4 lq = u 
i/p 4 

x. >0 
iq 

obtain the inequality 

Suppose that s^(x) + t (x) = m +1 . Since there is 

q-l,q+l,...,n} such that x =b and b >b , 
4 4 pu u u= q 
Hence, repeating the arguments given in case 1 , we 

r(x,y)<mn . // 

§5 POLYTOPES WITH THE MINIMAL NUMBER OF VERTICES 

Although it is relatively easy to classify transportation 

polytopes according to the numbers of their facets, a similar classifica¬ 

tion according to numbers of vertices has not so far been obtained. In 

this section we describe transporation polytopes which have the minimal 

possible number of vertices in both the non-degenerate and degenerate 

cases. 

Throughout this section we will assume that the components of 

the vectors a and b are ordered as follows: 

an > a„ > . . . > a 
1=2= = m b, > b„ > . . . > b 

1=2= = n 

Since fg(M(a,b)) = fg(M(b,a)) we can also assume that m^n. 

5.1 Nondegenerate Polytopes 

The following theorem (Yemelichev & Kononenko 1971) gives a 

criterion for a non-degenerate transportation polytope of order mxn , 

2 £m <n , to belong to the class of polytopes with the minimum number 

nm of vertices. It was first obtained by Demuth (1961). 

Theorem 5.1 A non-degenenate tnan spontation polytope. 

M(a,b) о/ onden mxn , 2 <. m < n , n .> 3 has the minimal numlen nm ^ o-f. 

ventiees ijl and only i£ it has the minimal numlen 0-/L {.aeets, that is, the 

■/Lo llowing inequalities hold : 

1) when m < n 

У a. < b ; 
. l n 
1=2 

2) when m = n eithen (5.1) holds, on 

У b. < a 
.1=2 J 

(5.1) 

(5.2) 
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P/ioot£ We show first that for any polytope M(a,b) of order mxn , 2<:m:<n , 

n>3 satisfying conditions (5.1) or (5.2) the number of vertices is given 

ЬУ 

f0(M(a,b)) = n”"1 . (5.3) 

We assume that condition (5.1) is satisfied since when (5.2) 

is satisfied we can transform to the first case by considering M(b,a) 

instead of M(a,b). 

For any vertex x=(x..) _ of M(a,b) condition (5.1) 
ij m 

implies that x-^. >0 , j e . Hence, since the number of positive 

components of the vertex x is m + n - 1 , there must be exactly one 

positive component in each of the rows numbered i , i=2,3»...»m and 

this component can occur in any column (see Fig. 40). Let the nonzero 

element in the ibb-row occur in the i . -column. Then the number of 
0 l 

vertices of M(a,b) is equal to the number of (m-l)-tuples (j2’j3'•••* 

1 ) whose elements are chosen from N . This number is nm ^ . 

We now show that if M(a,b) is a polytope of order mxn , 

2 <m <n , n > 3 for which conditions (5.1) and (5.2) are not satisfied, 

then 

(5.4) fQ(M(a,b)) > n 
ra-1 

We use induction on the number p = m + n . When p = 5 the inequality 

(5.4) can be verified directly. Suppose it is true for p=m+n-l . 

We consider three possible cases. 

a) a^ >b^ , m<n . Then by (5-3), which has just been proved, 

we have by induction 

fn(M(a,b))> I f f|(M(ai ,bn )) > m (n-1 )m_1 > nm_1 , 
u i = l u 

where a1 = (alfa2.ai-1'ai“bn,ai+l” * *’am^ ’ b = (bq*b2*•■* *bn-i)* The 

final inequality can be verified using the well-known inequality 

(1 +l/k)k < 3 , к =1,2. 

b) a < b , m < n . Then 
m n = 

fQ(M(a,b))> I f0(M(a\bj)) > (n-l)nm-2 + f Q (M (am, bn )) , 

where am = (alfa2 ,. . . ,am_1) , bJ' = (b1,b2.bj .q,bj-am.b^ +1» • • • ,bn ) 
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m-1 
Since a <b , we have У a. > b -a . Thus, by the induction hypo- 

mn . 0 1 n m ^ J r 
i=2 

thesis we have fQ(M(ara,bn)) > nm ^ . Hence fg(M(a,b)) >nm ^ . 

c) a >b , m=n . This case reduces to case b) if we replace 

the polytope M(a,b) by the polytope M(b,a) . ¥e have already noted 

that fQ(M(a,b)) = f0(M(b,a)) . // 

Theorems 3.2' and 5.1 have the following corollary : 

Corollary 5.2 All polytopes in the. class /7(m,n,0) ane 

comlinatonially equivalent. 

5•2 Degenerate Polytopes 

Theorem 5.3 A de.ge.ne.nate. transportation polytope M(a,b) о/ 

order m><n , 2 < m < n has the minimum, numler n!/(n-m + l)! о/ vertices i-jL 

and only І-/І the following conditions are satisfied : 

1) when m=2,a=b; (5-5) 
m n 

2) when 3 £ m ^ n , am=b-^=b2 = ...=bn , a^ = (n-m+l)b-^ . (5.6) 

Pro о I If m=2 it is clear that fg(M(a,b))=n . Now let 3 ^ m ^ n . 

Then the number of vertices of M(a,b) is equal to the number of ways in 

which n objects can be distributed among m sets of which one contains 

n - m + 1 objects while the other sets contain one object each. Hence 

f0(M(a,b)) = n!/(n-m+1)! . 

To complete the proof it suffices to note that any degenerate 

transportation polytope M(a,b) of order mxn , 2 < m < n which does not 

satisfy conditions (5.5) or (5.6) satisfies the inequality fg(M(a,b)) > 

nj/(n-m+l)! . This inequality is proved in the same way as inequality 

(5-4) and will therefore be left to the reader. Ц 

Theorems 3.2 and 5.3 have the following corollary. 

C or ollary 5.4 Every degene/iate transportation polytope 0/ 

order mxn , 3 <. m ^ n with a minimum number 0/ vertices has а такітит 

number 0/ /aces. 

Note. Since for 3 <m < n we have n!/(n-m+l)! < nm ^ , 

every transportation polytope of order mxn , 3 < m< n with the minimum 

number of vertices is degenerate. 
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§6 BASIC CONCEPTS 

The central results of this chapter are the criterion for the 

maximum number of vertices of a transportation polytope and the apparatus 

for calculating this number. This section is devoted to explaining the 

concepts of equivalence, regularity and spectrum which will be needed in 

deriving our results. 

6.1 Eq uivalence 

With the vertex x = (x..) „ of the polytope M(a,b) of 
1J ЩХП IT ^ sr 

order mxn we associate the set 

/C(a,b,x) = { (i,j ) e Nm*Nn : x^. > 0} . 

When x is a non-degenerate vertex it is clear that 

#(a,b,x) = T(a,b,x) . Let M(a^,b^) and M(a\b^) be two polytopes of 

the same order. 

Definition 6,1 The vertices x^ e M(a ,b ) and x^ e 

M(a^,b^) are called equivalent venticeA if A!(a^,b^, x*”*) = Х(а^,Ъ^,х^) . 

If to each vertex of the polytope M(a^,b^) there corresponds an equiva¬ 

lent vertex of M(a^",b^) and conversely, then we say that these polytopes 

are equivalent polytopeA and write M(a%^) ^M(a\b^) . 

For a non-degenerate polytope it is easy to see that this 

definition is equivalent to definition 1.6, Ch.3 • 

As before let 

ui.j(a'b) = bj • ISV J-Nn • 

4 x * '<UJ) = 1=1 = ». ■ 
mxn 

Equivalent polytopes are described by the following theorem. 

Theorem 6,1 M(a^,b^) a, M(a^,b^) it and only LjL 

sign U-j- ^ j (a°, b°) = sign uI>J(a1,b1) V(l,j)edmXn * 

Pnoot Sufficiency. We introduce some auxiliary concepts. A line. 

о/ a rn.atn.ix. is, as before, any row or column of the matrix. A simple 

line is a line which contains a single nonzero component. 
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Let x^ = (x?.)mXn апУ ver^ex the polytope M(a^,b^) 

J , , ,, , 0,00 On , , 0 ,, 0 , 0 , On 
defined by the vectors a - . . . ,a^) and b = (b^,b£ »•••» ; . 

Since the number of positive components of any vertex of a transportation 

polytope of order mxn does not exceed m + n - 1 , the matrix x^ 

contains at least one simple line. This means that there is an index 

pair (s,k) such that x^, = min (a^,b?) . 
sx s x 0 0 th 

For definiteness suppose that a < b, , that is, the s -row 
0 s к 

of x is a simple line. 

Clearly, there are vertices of M(a\b"^) defined by the 

vectors a"*- = (a^,ai,. . . .a'*') and b^ = (b^.bi,. .. , b^) which have the 
12 m 12 n 

component x\ = min (a"'- ,b?) . But, because of our previous assumption and 
S iC S 2^ 

condition (6.1) we have a <. b, , so there is a matrix which is a vertex 
1 1 th s x 

of M(a ,b ) whose s -row is a simple line. 

If we now delete the s^-row of the matrix x^eM(a^,b^) , 

then among its remaining lines there must be at least one simple line. 

Continuing this process we construct a vertex x^eM(a\b^) which is 

equivalent to the vertex x^ . 

The above argument shows that to every vertex of M(a*\b^) 

there is an equivalent vertex of M(a\b^") and conversely. 

Necessity. Suppose that M(a^,b^) a, M(a^,b^) but that there 

exists a pair (L,P) eA 
mxn 

for which (6.1) is not satisfied. Without 

loss of generality we may consider only the case 

/ 0 , 0 N « 

UL,p(a ,b ) > 0 , 

uL,p(al»b1) < 0 . 

(6.2) 

(6.3) 

vertex 

the components 

The condition (6.2) implies that 

^ with components x.1 . = 0 x1 e M(a ,b ) 

x.' . 
ij 

ij 
(i,j ) e Lxp there is at 

On the other hand condition (6.3) 

vertices of 

equivalence of 

M(a1,b1) 
/ 0 v 0 N 

M(a ,b ) 

are equivalent to 

and M(a1,b1) 

x' . 

This 

there is at least one 

, (i,j)eLxp , while among 

least one positive component, 

shows that none of the 

But this contradicts the 

proves necessity. // 

Corollary 6.2 Le.t M(a^.b^) a, M(a^,b^) , tke.n 

M(a°,b°) a, M(Xa1 + (l-X)a° , Xb1 + (1-X)b°) , VX e [0,l] . 
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mxn Let M(a°,b^) be a transportation polytope of order 

and let p be a positive number, assumed small. We introduce a set of 

polytopes which are close, in some sense, to M(a°,b°) : 

QP(a^,b^) = (M(a,b) : max |a.—a91 < p , max |b.-b?| < p} . 
l<i<m 1 1 1<j<n J J 

We prove the following property of this set. 

Corollary 6.3 Let M(a^,b^) tle a non-degenenate t/ian лp о feta¬ 

tion po lytope o-fL o/iden mxn and let 

0 < p < min 
(I,j)eA 

Iui^jU0,*)0) I 

m + n 
mxn 

Then, any polytope M(a,b) eQP(a^,b^) i/> equivalent to M(a^,b^) . 

Pnool We have from the given condition 

WI,J^a°’b°^ ‘ P(III+IJI) = ui,j(a,b) 

< UI(J(a°,b°) + p (111 + IJ I ) V(l,j)eWmXn, 

which together with the obvious inequalities 

|иІ><т(а°,Ь°)| > p ( 111 + IJ I ) V (!, J) e ^mxn 

give 

sign uI>J(a°,b0) = sign j(a,b ) V(I,J) e A 
mxn 

By Theorem 6.1, this establishes the corollary. // 

6.2 Regularity 

Definition 6.2 The transportation polytope M(a,b) is 

called a k-degenenate polytope if | /2 (a,b ) J =k . A 1-degenerate poly¬ 

tope M(a,b) for which u, D(a,b) = 0 , is called (L,?) -degene/iate . 
L t r 

Let M(a^,b^) , M(ab,bb) be transportation polytopes of the 

same order. Let 
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= Xab + (1-X)ab , = Xbb + (l-X)b^ where 0< X<1 . 

Definition 6.3 A pair of non-degenerate transportation poly¬ 

topes M(ab,bb) , M(ab,bb) of the same order is called an (L,P)-negulan 

pain if there is a number Xйe (0,1) such that the polytope M(a^ ,b^ ) 

is (L, P)-degenerate while M(a\b^) is non-degenerate for all Xe (0,1) , 

X ф X* . The polytope M(a^ ,b^ ) is called the eentne о/ the (L,P )-neg- 

ulan pain. of polytopes M(ab,bl and M(ab,bb) . 

Let c=(c-^,C2»....c^) and let T C be a non-empty subset, 

then we define the vector с[t] to be made up of those components of c 

^hose indices belong to T . 

Let there exist a pair (L,P) e A for which цт „(a.b) = 0. 
mxn f г 

We define the number 

6L,P(a’b) = f0(M(a[L] ,Ъ[Р] ))f0(M(a[L],b[p])) . 

The following theorem lays the basis for treating the problem 

of enumerating the vertices of a transportation polytope. 

Theorem 6.4 Let M(a^,bb) and M(ab,bb) He an (L,P )-negu- 

Han pain. о/. tnanppontation po Hytopep with eentne M(a^ ,b^ ) , then 

patting 

YL,p(al»bl) = (n|L| - mIP I ) sign uL p(a1,b1) , 

we have 

f0(M(a1,b1)) = f0(M(a°,b°)) + 6р>р (aA* ,bX* ) YL f p (a1 .b1). (6.4 ) 

Before proving the theorem we examine two auxiliary lemmas. 

Lemma 6.5 The pain о/ tnanppontation potytopeP M(alb^) 

and M(a ,b ) ІР an (L,P)-neguian pain with eentne М(ал ,ЬЛ ) І/. and 

oniy І/ 

yL,P^&X ,t|A ^ = 0 » UL,P^a°,b°^UL p^&1*b1^ < 0 * 

yI>J(a0,b°)uI> J(a1,b1) > 0 /.on ali (l,j) f (L,P) . 

The proof uses the definition 6.3 and the linearity of the 

functions p(aA,bA) with respect to X . 

290 



Lemma 6.6 Let M(a,b) Le а tnan-ipontation po lytope o-f. o/iden 

m*n . 1 hen M(a,b) ha/> a ve/itex. who-ье -bmatte-bt positive component і-ь 

Ѣ = min |u (a,b)| 

(I.J) I,J 

whe/ie the minimum i-b taken oven ati pai/i-ь (l,J) , IC , JCN , /о/г. 

which цт T(a,b) ^ 0 . 

Р/too/ By Lemma 1.3 we have 

Ѣ < min min x.. . 
xEvertM(a.b) (i, j )eA!(a,b,x) 

Let t = luL>p(a»b)l • Choose a pair (k,r) such that 

Lxp, if uT D(a ,b ) = t 
(k,r) £ ] 

L f r 

Lxp, if L,p(a»b) 

C onsider the polytope M(a',b') defined by the vectors 

a' = (a-j^, 
a2’‘"*,ak-l’ak “t,ak+l.am) ’ 

b' = (ъг bn,...,b -j i b 
2 r-1 r “ѣ,Ъг+1'‘‘,bn) ' 

(6.5) 

Since p(a',b')=0 there is at least one vertex x ' e M(a ', b ') with 

components xJ^ =0 , (i,j)e (Lxp)u (Lxp) . Hence, there is a vertex x e 

M(a,b) with component x^r =t , that is 

t > min min x. . . (6.6) 
xEvertM(a,b) (i, j )e/C(a,b,x) 

The desired equality follows from the inequalities (6.5) and (6.6). Ц 

PnooS о/ Jheo/iem 6.4- Let VT „(aX ,bX" ) be the set of those vertices of 

M (a X , bX ) for which x^.=0 , (i,j)e (Lxp) U (Lxp) . Since M (aX , bX ) 

is (L,P)-degenerate we have 

lvLtp(aX\bX*)| = 6L>p(aX\bX#) , (6.7) 

|£(aX ,bXr,x)| = m+n-2 VxeV^ p(aX »bX ) . (6.8) 

By the linearity of the function yT B(aX,bX) with respect 
Lj f 1 

to X , given n > 0 there exists 6 > 0 such that 
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I у (аА,ЪА)| < П V X е Л = { X : |Х-Х* | < 6}. (6.9) 

Let 

О < л < min 
(I.J) 

I МI ^ J (а. ,Ъ ) , (6.10) 

where the minimum is taken over all pairs (l,J) , ICN^ , J C . for 

which Uj j(aA >bA ) ф 0 . Choose Xq,X-^ e ^ such that 0 < Xq < X* < X-^ < 1 . 

Xq Xq Xq^ X2 
Clearly, the pair of polytopes M(a ,b ) and M(a ,b ) 

is an (L,P)-regular pair with centre M(a ,bA ) . Hence, by Lemma 6.5, 

, A0 . Х0ч . / A1 , Л1ч 
sign ULjP(a ,b ) = - sign hL>p(a ,b ) . 

, Ap Xx 
Suppose first that sign uT D(a ,b ) =1 . Consider some 

J_J У r 

X^ 
vertex у eVT „(a ,b ) . By conditions (6.8)-(6.10) and lemma 6.6, for 

■U * r _ _ (ii) 
any pairs (i,j)eLxP and (i,j)eLxp there exist vertices x^ ’J ' t 

M(a 1,b "*■) and x^’^e M(a ^,b *"*) respectively, such that 

/C(aA ,bA , у ) U { (i, j )} 

Xq Xq X1 X1 
Since M(a ,b ) and M(a ,b ) are an (L,P)-regular pair with centre 

M(aA7 ,bA ) , we have by lemma 6.5 that for every pair (l,J) ф (L,P) 

Xq Xq Xj Xj 
sign PI>J(a ,b ) = sign Up j(a ,b ) . 

,b LxU-Jh if 

,ьХо,«ии), if 

Repeating the arguments used to prove sufficiency in theorem 6.1, it is 

not difficult to show that fp(M(a \b ^)) = fp(M(a ^,b ®)) + - Wq , 

where is the number of vertices x^’^ , (i,j)cLxP , 
x* 

у e ?l p(a ,b ) and Wn is the number of vertices '0 x (i.j ) , (i,j ) e Lxp , 

у eVT p(aA ,bA ) . Using (6.7) this gives 
■b 9 г 

f0(M(a 1,b X)) = fQ(M(a °,bX°)) + (n|L|- m|P|)6L>p(aA*,bA* ) (6.11) 
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A \ 

The case sign up p(a ,b ) =-1 may be dealt with 

similarly. We obtain 

f0(M(aAl,bAl)) = f0(M(aA°,bA°)) - (n|L| -m|P|)6L>p(aX#,bX#) (6.12) 

Combining (6.11) and (6.12) we obtain 

A1 A1 A0 A0 
fQ(M(a Х,Ъ ■*■)) = f n (M (a U, b u)) + 6T _ (aA*, bA* )yT _ (a”1 .b'1). 

L,P 
A1 

L, P 

To establish (6.4) it remains to show that 

f0(M(aA°,bA°)) 

f0(M(aAl,bAl)) 

f0(M(a°,b°)) , 

f 0(M(a1,b1)) . 

For any pair d<J) E,41Xn 

A 0 A 0 
sign \ij j(a ,b ) = sign 

A1 A1 
sign Uj j(a ,b ) = sign 

Then from theorem 6.1 

u, xo 0 ,0ч 
M(a ,b ) Пі M(a ,b ) , 

we have by lemma 6.5 

/ 0 , 0 \ 
Uj j(a ,b ) , 

( 1 ,1ч 
uI,J(a *b ) • 

M(a A,b 1) ^M(ab,bb) 

which concludes the proof of theorem 6.4- // 

Corollary 6.7 Let M(a^.b^) , M(a\bb) Le an (L ,P) -/ie.gu.tan. 

раіл. о£ tnan^pontation potytopet. Then fQ(M(a^,b^)) = ^(М(аЬ,ЬЬ)) 4/ 

and onty 4/ n ILI =m|p| . 

6.3 The Spectrum 

The concept of the spectrum of two transportation polytopes 

is a very fruitful one. This concept will enable us to obtain a number of 

incisive results in the following sections about both the numerical and 

the structural characteristics of transportation polytopes. 

Definition 6.4 The -bpeetnum. of two transportation poly¬ 

topes M(a^,b^) and M(ab,bb) of the same order is the set 
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S (a^ ,b ^, a"*-, ) of all numbers As (0,1) for which M(a\b^) is a 

degenerate polytope. 

We can formulate the criterion for two transportation poly¬ 

topes to be equivalent (theorem 1.9, Ch.3) in terms of their spectrum. 

Theorem 6.8 1 изо non-de.ge.ne.nate. tnan^pontation polytope/> a/ie 

equivalent L-jL and only thein лpe.ctnu.rn іл empty. 

Definition 6.5 The spectrum is called finite, if the number 

of its elements is finite, otherwise it is called infinite. . As before 

we will use the notation 

4(a,b) = {(I,j)ei4mxn : ^Ifj(a,b) = 0} . 

Proposition 6.9 7/i£ tpect/ium S (a b ^, a1, b''") іл Infinite. L£ 

and only І/ A(ab^)П A(a^,b^) ^0 . 

Pnoo£ Sufficiency follows directly from the linearity of yT T(a\b'>l) 

with respect to A . Necessity is easily shown using a proof by contra¬ 

diction and noting that the set A . is finite. // 
b mxn 

This proposition implies the following properties of the 

spectrum : 

a) two transportation polytopes, one of which is non-degenerate, 

have a finite spectrum; 

b) if the spectrum S(a^,b^,a^,b^) is finite, then 

IS(a°,b°,a1,b1)J < 2(2m_1-l) (2n_1-l) ; 

c) if the spectrum S(a^,b^>,a^,b"*') is infinite, it is equal to 

the entire interval (0,1) . 

Definition 6.6 The finite non-empty spectrum S(a^,b^,a^,b^) 

is called a simple. ^pectnum if every polytope M(a ,b ) , 

A e Sfa^bV^b'*') , is (1^, )-degenerate. An empty spectrum is also 

regarded as simple. 

Note that when the spectrum S (a^,b^,a\b) is not simple, 

there is at least one number Ae S(a%^,a\b^) such that | A (a^ ,b^) | > 2 . 

We state a theorem which guarantees the existence of a 

simple spectrum. 
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The or em 6.10 Let M(a^,b^) , M(a^,b^) He і/іаплро/itation 

po Нуіорел o-/L o/iden mxn . Let M(a^,b^) He a non-degene/iate poHytope and 

Het p He лаек that 

0 < p <, min 
(I,J)eA 

lui, j(a°’b°' 
m + n 

mxn 

Then, the/ie іл a poHytope M(a,b) eQP(a^,b^) лаек that the лресіяит 

S(a,b,a"^,b^) іл літріе. 

P/ioo£ Let В be the set of all subsets of A „ which contain not 
mxn mxn 

less than two elements. For each Dei? „ we define the set fi(D) of 
mxn 

all (m+n )-vectors (a,b) = (a-^,a2.am,b1 ,b9 ,. . . ,bn ) with real positive 
m 1 2' 

components such that 

m 
I a. 

i=l 1 

I a. 
ie I 1 

I b > 
3=1 J 

I b, 
jeJ J 

I a, i I b. 

V(I,J) eD , 

V(I,J) e A \ D . 
mxn' 

mxn 

iel -1- jeJ J 

From Proposition 4-1» Ch.l , we deduce that dim fi(D);<m+n-3 , D e i? 

Consequently, the dimension of any affine set A(D) generated by the 

vector (a^,b^) and the set f?(D) does not exceed m+n -2 . Thus, 

setting N = {M(a,b) : (a,b) e U A(D)} and recalling that &mXn is a 
Dei? _ 

mxn 

finite set and that dim{(a,b) : M(a,b)eQP(a^,b^)}=m+n-l , we find 

that N* = Qp(a°,b°)\N + 0 . 

It follows by our construction that for every polytope 

M(a,b)eN* the spectrum S (a ,b ,a^, b"*-) is simple. Indeed, suppose that 

for some polytope M(a',b')eN* this is not so. Then, there is at least 

one number X e S (a 1, b ', a"*- ) such that 

IA(Xa1 + (l-Xja'.Xb1 + (l-X )b ') | > 2 , 

that is M(a',b')0N* . This contradiction completes the proof. // 
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§7 POLYTOPES WITH THE MAXIMUM NUMBER OF VERTICES 

7.1 First Criterion 

Definition 7.1 The transportation polytope of order mxn 

determined by the vectors a*=(n,...,n) and b# = (m.m) , is called 

ce.ntn.al. m n 

Klee & Witzgall (1968) conjectured that the central transpor¬ 

tation polytope of order mxn had the maximum possible number of vertices 

when m and n were coprime. In 1972 Bolker (1972) verified this con¬ 

jecture. A generalization of this result is given by the following cri¬ 

terion for a transportation polytope of order mxn to belong to the class 

of polytopes with the maximum possible number, ф(т,п) , of vertices, (see 

Yemelichev & Kravtsov, 1976iii). 

Theorem 7.1 A tnanppontation polytope M(a,b) of. onden mxn 

кал tke maximum ролліііе numlen o{. venticeP, ф(т,п) , it and only it it іл 

non-degenenate and the ppectnum S(a,b,a#,b*) = 0 . 

We prepare for this theorem with a number of lemmas. 

Lemma 7.2 Let M(a,b) le any Y-degenenate (k^l) polytope 

о/ onden mxn , mn>4 • Then, tkene екіліл an l-degenenate (0^£<.k-l) 

polytope M(a',b') о/ tke лате onden, ласк that 

f0(M(a',b')) > f0(M(a,b)) . 

Pnoot Fix a pair (L,P) e>4(a,b) . For definiteness we will assume that 

max(ILI IPI,ILI IPI) = |l||p| . (7.1) 

Now choose an index pair (s,t) e LxP . Define vectors a' = (a|,a^., 

and b' = (b|,b^.b^) by 

a. .; 
I 1 ■ 

if i ( s 

( ai + n , if i = s 

b! . 1 
J 1 

i • 
if j 11 

! b . + n » 
J 

if j = t 
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where 0 < p < min min x.. 
xevertM(a,b) (i , j )e/C(a ,b , x) 1J 

Consider any vertex xeM(a,b) with components x.. =0 , 

(i* j) £ (Lxp) U (Lxp) . From the way n was chosen it is clear that to 

every pair (i,j)eLxp there corresponds a vertex x^’^eMta'.b1) such 

that K. (a ' ,b 1, x ^ ^ ) 3 /С (a, b, x ) U { (i , j )} . Hence the vertex x can be 

associated with the vertices in the set u _ x(i’j} , whose cardina- 
(i,j)eLxP 

lity is not less than two (since mn >4 and by assumption (7.1)). 

Further, for each vertex x e M(a,b) with component x ^ > 0 

there is a vertex x,eM(a',b') with components 

+ П I if (i,j ) * (s,t). 

ij 
ij 

x. . 
ij 

otherwise, 

Finally, let x be a vertex of M(a,b) such that x^ =0 

and such that there is at least one positive component in the set 

{x^. : (i, j ) e Lxp 

with components 

{x^j:(i,j)eLxp}. For each such vertex there is a vertex x' e M(a ' ,b ') 

x: . 
ij 

Xij "n ’ 

x.. +n , 

ij 

if i = s , j = t 
Г d Г- 

if i = s , i = t 
r r 

otherwise, 

, r = 0,1,...,k-l, 

, r = 0,1,...,k-1, 

in the case where the pair (s,t) and some pairs from the set tf(a,b,x) 

form a cycle : (s,t),(s,t^),(s1,^ ),(s1,t2).(sk_1,tr ),(sk>t) where 

s0 = s , t, =t . Otherwise, we define 
O k 

X.' . 
ij 

П 

x. 
ij 

if (i, j ) = (s,t), 

otherwise. 

Collecting all the results obtained, we have fQ(M(a',b')) >fg(M(a,b)) . Ц 

We define 

./ 0 , 0 1-,1\ 
W(a ,b ,a ,b J 0 4) 1 ,1ч Л(аХ»ЪЛ) • 

XeS(a ,b ,a ,b ) 

X ,_X< 
From the linearity of uT T(a ,b ) with respect to X the 

1 t О 

following lemma is obvious. 

Lemma 7.3 tet M(a^,b^) , M(a\b^) He. two tnanspontation 

polytopes o£ o/ide/i mxn and Het at (.east one. о£ these po ty topes He non- 
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-degene/iate. Then the. pain (L,P) e A 
mxn 

if. and only it 

ІЛ contained in A (a , a"*-,b^) 

Рь,р^а°,ь°^ь,р^а1,ь1^ < 0 ' 

0 , o. 
Lemma 7.4 Let M(a ,b ) Ae a non-degenenate tnanлропіаііоп 

potytope ot onden mxn and Let 

0 < p < min 
(I,J)cA 

Idp1 j(a°ib0) I 
m + n 

mxn 

Then t°n ап-У po tytope MCa^.b"*-) ot the лате o/ide/i we have 

A (ab^, a^, b1) = A (a,b, a^,b"'") V M(a,b) eQP (a°,b°) 

P/Loot Suppose that there exist polytopes M(a1,b1) and M(a,b) e Qp (a°,b°) 

such that A (aba"*-,b^ ) t A (a, b, a1, b1) . This means that there is a pair 

(L,P) e ^mXn for which one of the following cases occurs: 

a) (L,P) ^4(a0,b°,a1jb1) , (L,P) eA(a,b,a1.b1); 

b) (L,P) eЛ(a°,b0,a1,b1) , (L,P) i A(a,b,a1,b1). 

Case a). By Lemma 7.3 

Pp p(a,b)up p(a ' ^ ^ 0 . (7.2) 

By Corollary 6.3 , M(a,b) ^M(a°,b°) . Hence, by Theorem 6.1 we have 

Up p(a,b)up p(a^,b^) > 0 . Together with (7.2) this implies that 

UL p(a0,b0)uL p(a1,b1) < 0 , so that, by Lemma 7.3, (L,P) eA (a°,b°,a1,b1) . 

This contradiction proves the Lemma for case a). Case b) can be proved 

similarly. // 

Pnoot ot 7 heonern 7.1. Necessity. Note first that Lemma 7.2 shows that 

the polytope M(a,b) is non-degenerate. 

Suppose that S(a,b,a*,b* ) ф 0 . Consider the case where the 

spectrum S(a,b,a*,b*) is simple. List the elements of this spectrum in 

increasing order Xp < *2 < * ' • < XT ’ T = 1 ' Choose a number XQ such that 

Xp < XQ < 1 if T=1 and Xp c XQ < X2 if T>1 . Then, if aX = 

Xa + (l-X)a , bX=Xb + (l-X)b , then the pair of polytopes M(a,b) and 

and M(a ^,b ^) are (I. ,J. )-regular with centre M(a \b '*’) . 
Л1 A1 
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Applying Theorem 6.4 to this pair and using the obvious inequality 

(a ,b U)U- (a*,b*J > 0 

1 

we obtain fq(M(a ^,b ^))> fg(M(a,b)) =ф(ш,п) which is impossible. 

Now suppose that the spectrum S(a,b,a*,b*) is not simple. 

Since M(a,b) is non-degenerate, Corollary 6.3 and Theorem 6.10 show that 

there is a non-degenerate polytope M(a',b') such that S(a ' ,b ',a*,b*) 

is simple and fQ(M(a 1,b')) =fQ(M(a,b)) . 

Repeating the argumants of the previous case we again show 

the existence of a polytope whose number of vertices exceed ф(ш,п) . 

Thus necessity has been proved. 

Sufficiency. Let M(a',b') be a polytope with the maximum 

possible number of vertices. Then, by the necessity part of the theorem, 

the spectrum S (a 1 ,b ',a* ,b* ) = 0 . From this and from the fact that the 

spectrum S(a,b,a*,b*) is also empty we have 

/4(a,b,a',b') = 4(a*,b*) . (7.3) 

If 4(a*,b*) = 0 then the spectrum S(a,b,a',b') = 0 and by 

Theorem 6.8 we have fq(M(a,b )) = fg(M(a,,b')) = ф(m,n) . 

Now suppose Л(а*,Ъ*) ^0 . Consider first the case in which 

S(a,b,a',b') is a simple spectrum. Let the elements of this spectrum be 

A-^ < < . • . < A,p . Choose any тг^ such that A^. < тг+ < A+i1 , t = 0,l, . . . ,T, 

where Ag = 0 , А^ + -^ = 1 . Let 
t , t + 1 

Aa'+(1-A)a , bA=Ab' + (l-A)b . It 

^t-l ^t-l 
is clear that for each t eNj the pair of polytopes M(a ,b ) and 

7Г, 7ГI AI At 

M(a ,b ) is (I. ,J, )-regular with centre M(a ,b ) . From (7.3) we 
, At At 
have 

n 11. m U, Vt e N„ 

and hence, applying Theorem 6.4 bo any such pair of polytopes we have 

fQ(M(a,b)) =f0(M(a',b' )) = ф(т,п) . 

If the spectrum S(a,b,a',b’) is not simple then by Corollary 

6.3 and Theorem 6.10 there exists a non-degenerate polytope M(a",b")e 

QP(a',b’) such that the spectrum S(a,b,a",bM) is simple and fg(M(a",b") 

= fg(M(a',b')) • Since M(a",b") eQP(a ' ,b 1 ) we have by Lemma 7.4 that 
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A(a,b,a",b") =A(a,b,a ' ,b ') , whence, from (7.3) we have A(a,b,a",b" ) = 

W(a*,b*) . The argument now proceeds as in the previous case. // 

Since the central transportation polytope of order mxn is 

non-degenerate if and only if (m,n) =1 , we obtain immediately from 

Theorems 6.8 and 7.1 the following Corollary. 

Corollary 7.5 All tnanspontation polytopes of onden mxn 

uiith the. maximum possible numben of ventices ane equivalent if. and only if 

(m,n ) = 1 . 

7.2 Second Criterion 

Using the first criterion, Kononenko & Trukhanovsky (1978, 

1979) obtained conditions for the number of vertices of a transportation 

polytope to be maximal which were easier to check than those of Theorem 

7.1. 

Theorem 7.6 Let 2 <n , n ^ 3 , m = tp , n=tq mhene t 

is the highest common facton of m and n , 

ph - qg = 1 , 0<g<p-l , l<h<q , (7.4) 

al = a2 =■■*== am ’ bl = b2=”‘'=bn * (7‘5) 

Then the non-degenenate tnanspontation polytope M(a,b) ha* the maximum 

numben of ventices if and only if the inequalities* 

g+gp h + gq 
I a. < I b. , 6 = 0,1,2.t-2,(t-l)sign(q-l), (7.6) 

i=l 1 j=l J 
g+8p 

ane satisfied. (If g = 0 , 8=0 , me put \ a. = 0 .) 
i=l 1 

We remark that the numbers g and h can be calculated 

by the following formulae (Khinchin 1964): 

q£/p£ , if l is odd. 

(q-q£)/(p-p£) , if l is even 
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h = 1 f g = 0 if £ = 1 , 

where 

а 
p 

= [qx; q2’ 
... 

,q£] 
r . 

■ 57 - Cv* 2’ ’- *,q£-l] * 

Here q2, . . •»q il 
is a continued fraction expansion. 

We begin by proving the following lemma. 

Le mma 7. 7 Let the n ит&е/14 m,n,p ,q,t,h,g даti*ly the 

condit i on A 0/ tkeo/iem. 7. 6. Then we kaue 

Гак -ІІЕІ Г ah + В a I ’ (7.7) 
L m J n 1 

Va e N 
P 

, В = 0, 1,2,. . • »t -2, (t-1 )s ign(q-l). 

Pnoo{. If p = l the lemma is easily checked directly. Hence, assume that 

p >2 . In this case we show that (7.7) holds for any 6 = 0,1,2,.... 

Suppose first that a < p . Put 

ag + Bp = ms^ + r^ , 

ah + Bq = ns^ + r^ , 

0 £ г, < m-1 , 

0 <<n-1. 

where s-^ , s^ are whole numbers. Suppose s^ < • then 

m(ah+8q) -n(ag + 3p) >n . Hence, using (7.4) we obtain at > n . But since 

p < q , we have at < n , a e N , . This contradiction shows that S-, > s„ . 
r — p-1 1 — 2 
If we suppose s^ > s2 we similarly obtain the contradiction -at^m . 

Hence s^ = s2 • 

Now let a = p . Put p(g+B) = ms + r , O^r^m-1 . Then 

g+S = sd+r* , where r* = r/p is а whole number, O^r^^d-l . Thus, using 

(7.4) we have ph+Bq = q(g + 8 ) + 1 = sn + qr* + 1. This shows that 

s = [(ph + Bq )/n] , since qr#+l<q(d-l)+l<n . // 

P/loo/ o-f. Ikeo/iem. 7.6 Necessity. By Theorem 7.1 we have 

(n111 - mIJI)uj j(a,b ) > 0 , n|l|^ m|j| , (7.8) 

which is equivalent to 
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uI,j(a,b)< °* 111 < m - 1 , |J| = [n|l|/m] +1 . (7.9) 

Since g + Bp <m - 1 for 3 < Ѣ - 1 and since by (7.4) [n111/m] +1 = 

h + Bq for 111 =g + 3p . these inequalities imply that 

UIJ(a,b)<0; |l|=g + Bp , |j|=h+3q . 

3 = 0,1.2,...,t-2,(t-l)sign(q-1) , 

which is (7.6). 

have 

Sufficiency. From inequality (7.6) and conditions (7.5) we 

U j j (a, b) < 0 , |l|=g + 3p , IJ I = h + 3q 

6 = 0,1,2,...,t-2,(t-1)sign(q-1). 
(7.10) 

Thus, if 3 = 0 we have Uj j(a,b)<0 , 111 = g , |J| = h . Hence, by Lemma 

7.7 we have the inequalities 

Uj j (a ,b ) < 0 , 111 = r(ag/m) , | J | = r(ah/n) , a £ , (7.11) 

where r(v/w) is the remainder on dividing v by w . 

We now establish the following equalities 

Гг + 3p + r(ag/m)1 I"h + 3q + r(ah/n)l 
L m J L n J 

a = 0,1,2,...,p-l, 3 = 0,1,2,...,t-2,(t-l)sign(q-1). 

case a = 0 

by (7.7) 

Note first that equations (7.12) follow from (7.7) in the 

For every ae N and 3 =0,1,...,t-2,(t-1 )sign(q-1) we have 
Jr 

ag + 3p = ms(a,3 ) +r(ag + 3p/m) , 

ah + 3q = ns(a,3)+r(ah + 3q/n) . 

Thus, for any a eN , we have 
P-1 

[g + 3p + r(ag/m) 1 Г(a + l )g + 3p - ms(a,0)1 
L m J L m J 
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Г( S ( 01+1 , 6) - s(а , 0) )ш + г((a + 1 )g + 3o/m) 

= s(a+1,3 ) - s(a,0) . 

and we may obtain similarly 

[h + gq +^r(Sh/n)] = s(a+1>e) . ,(a,0) . 

Thus equations (7.12) have been proved. These equalities, together with 

inequalities (7.10) and (7.11) give 

Uj j (a ,b) < 0 . 111 =r(ag + 0p/m) , |j| = r(ah + 3q/n) , 

aeNp , 3 = 0,1,2,...,t-2,(t-l)sign(q-l) . 

It should also be noted that for any e N^ and e 

{ 0,1,2 ,. . . ,t-2 , (t-1 )sign (q-1)} we have r (o^g + 3-^/m) Ф r (a2g+02p/m ) , if 

al^ a2 or Oq ^ ^2 • Hence from the equality 

[nr(ag +3p/m)j + 2 = r(ah+0q/n) , 

we obtain (7.9) or equivalently (7.8) . Noting that M(a,b) is non¬ 

degenerate we conclude from Theorem 1.1 that the polytope contains the 

maximum number of vertices. // 

C or ollary 7.8 Let m and n Le copnime inte.ge.n6. Then the 

tnanApo/itation po tytope M(a,b) ot o/iden mxn ha/> the maximum numHen ot 

uentice6 it and onty it 

a h 
I a. < I b . (7.13) 

i=l 1 j=l J 

To prove this it suffices to verify that if m and n are 

coprime then (7.13) implies that the polytope M(a,b) is non-degenerate, 

since this polytope is equivalent to the central polytope M(a*,b*). 

7.3 Necessary Conditions 

Later, in §10 we will need the following simple indication of 

the maximality of the number of vertices of a transportation polytope. 
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Theorem 7.9 Let 2 ^ m < n , a. < < ... ^ bn. 

Then if M(a,b) іа any t/ianApoetation po tytope о/ oedee mxn with the. 

maximum numC.ee of veeticeA, the. fottowing ine.guaC.itie.A koCd: 

1) it m = n 

a < b, + b0 
m 12 

b < a, + a~ ; 
n 12 

2) if n=mq,q>l 

q+1 n 
a < У b. , У b. < a. ; 
Ш j=l J j = (m-1)q+2 J 

3) if n = mq + г , q > 1 , l^r^m-l 

q+1 n 
а<УЬ. , У b. < a, . 
• j=l J j=niqt2 J 1 

There are examples which show that in general these condi¬ 

tions are not sufficient. 

Peoof Each case has a similar proof. We will therefore consider only 

case l). Suppose that there is a polytope M(a,b) of order mxn with 

maximal number of vertices for which either a >b. +b_ or b >a, +a„ . 
m 1 2 n 1 2 

Clearly, if a_ > b-^ + b^ the spectrum S(a,b,a*,b*) contains 

the number (a -b.-bn)/(a -b,-b_+m) , while if b >a, +a„ it contains 
ml 2 m 12 n 1 2 

the number (b^-a.-a^ )/(b^-a..) • Hence the spectrum S(a,b,a*,b*) 

is not empty. Thus, by Theorem 7.1 Т^(М(а,Ь)) < ф(т,п) . But this 

contradicts the assumption that fg(M(a,b)) = ф(т,п) . Ц 

The following theorem establishes a connection between poly¬ 

topes with the maximum number of facets and polytopes with the maximum 

number of vertices. 

The orem 7.10 (Klee & Witzgall 1968) Lveey teanApoetation 

po tytope of. oedee mxn , mn >4 with, the maximum numC.ee of veeticeA haA 

the maximum numC.ee of facetA. 

Peoof Suppose that there is a polytope M(a,b) of order mxn with the 

maximum number of vertices such that f^_^(M(a,b)) <mn . Then, by 

Theorem 3-2' , we must have 

n 
a = max a. + max b. - У b. > 0 . 

l<i<m 1 l.< j <pi ^ j =1 ^ 
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From this 

mn > 4)» we obtain 

ct 

a+mn-m-n 

Hence, by Theorem 7.1 

and from the obvious inequality mn > m + n (for 

e S(a,b,a*,b*) . 

fg(M(a,b)) < ф(m,n) which is impossible. Ц 

§8 CALCULATION OF ф(ш,п) 

8.1 Enumeration Theorems 

We present here two approaches to the calculation of the 

maximum number ф(т,п) of vertices in the class of transportation poly¬ 

topes of order m*n . This will enable us to reduce the calculation of 

ф(т,п) to the calculation of the number of vertices of several polytopes 

of lower order. 

First Method. The basis of this method is Theorem 6.4 on 

the increment in the function fg(M(a^,b^)) as the parameter X passes 

through an element of the spectrum. 

Let the spectrum S(a,b,a*,b*) be simple. Then, for every 

X t S(a,b,a*,b*) the polytope M(a\b^') determined by the vectors 

a^ = Xa + (l-X)a* and b^ = Xb + (l-X)b* is (I^,J\ )-degenerate. Using the 

notation of §6 for X £S(a,b,a*,b*) we define the size of the increment 

6=6T j (a\b^)|n|l,|-m|«J.|| , which by Proposition 6.9 is always 
A I ^ > tl ^ А Л 

positive. 

Theorem 8.1 (Yemelichev & Kravtsov 1978) Let M(a,b) Le a 

non-degenenate tnanApo/itation potytope о/. onden m*n школе. Apectnum 

S(a,b,a*,b*) іа літріе. Then the max.im.um numHe/i o£ venticeA in the сіалл 

ol і/іаплро/itation potytopeA o{. o/ide/i m*n ІА given (Ly the io/imuta 

Ф(т,п) f0(M(a,b)) l 
XeS(a,b,a*,b*) 

Pnoo/. If S(a,b,a*,b*) =0 then the equality ф(m,n) =fq(M(a,b)) follows 

from Theorem 7.1. 

Now suppose S(a,b,a*,b*) f 0 . Let the elements of this 

spectrum be ordered: X^ < < . . . < X^, , T >_ 1 . Choose numbers such 
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that А^ < TT^t < ^t+1 * t = 0,l,2, . . . ,T, where Aq = 0 , A^^ = ^ * Since the 

spectrum is simple it follows that for each t z the pair of polytopes 

^+—1 ^4- _ "I ^4- ^4- 

M(a " ,b -±) and M(a ,b b) is (I. ,J. )-regular with centre 

a. 4 A_fc ѣ 
M(a ,b ) . Applying Theorem 6.4 to each of these pairs of polytopes and 

recalling that 

we obtain 

711 
sign yT T (a ,b ) = sign ux T (a*,b*) , t eМф , 

4 4 \ Xt 

ТГ, ТГ. TT, 7T, 

f0(M(a \Ь Ъ)) = fQ(M(a t_i,b t_1)) + 6^ , teNj . 

Whence 

fn(M(a T,b T)) = fn(M(a,b)) + £ 6 
A. 

t=l t 

H rji 
Since the polytope M(a ,b ) satisfies the condition of 

Theorem 7.1 it must have the maximum number ф(т,п) of vertices. Ц 

Second Method. This is based on the enumeration of special 

vertices of polytopes of lower order. These special vertices are those 

x = (x^j ) each of whose columns contains at least two positive components. 

We suppose that 2 ^ m n . Let n=mq+r where r is the 

remainder on dividing n by m . We introduce the notation 

+ 111 
K(t) = {keZm : \ k^=t} , t = 0,1,2,... ,m-r-l for r>0; 

i=l 

K(m-l) = {(1,1,...,1,0)}, 

m - 1 

K(t) = 0 , t =0,1,2,...,m-2 for r =0. 

m-r-1 
With each vector к = (k.,k„,...,k )e U K(t) we associate 

l ^ m t=Q 

к к ^ 
a polytooe M(a ,b ) of order mx (r + £ k.) associated with the vectors 

i=l 1 

a^ = (m^k,+rm-l,...,m^k ,+rm-l), 
1 m-1 

■i к _ / 2 2 2 \ 
D — \ш > m f •••fm / • 
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A vertex (xij )mxn of M(a,b) is called *peciai if 

for all i £ Nm and j £. Let y(a,b) denote the number of 

special vertices of the polytope M(a,b) .• 

The following theorem provides an apparatus for calculating 

the number ф(ш,п) . 

Theorem 8.2 (Yemelichev, Kravtsov & Averbukh 1976) Ike 

такітип пптЧе/і o£ venticeA in the С-іалл t/ian^pontation po lytope.4 o£ 

o/ide./i mxn іл given &.y 

I m-r-1 
ф(ш,п) = -I I 

(q!) t = 0 keK(t) 

Y(ak bk) ra k;L 1 
T^4)l } П П (q-p). 

r+tJ! i=l p=0 

к. -1 
l 

(8.1) 

(7/ к. = 0 we con-iiden. that П (q-p) = 1 . ) 
1 p = o 

pnool It follows easily from Theorem 7.1 that for any natural numbers m 

and n the polytope M(a,b) of order mxn , defined by the vectors 

a=(mn-l,...,mn-l,mn+m-l) , b=(m ,m ,. .. ,m ) has ф(т,п) vertices. 

Let O^t^m-r-l , k=(k^,k2*...*km)eK(t). The number of 

vertices of the polytope M(a,b) for which the condition 

I{jeNn:x^ . =m2} | =q - k^ , i £Nm , holds is equal to the number y(ak,bk) 

multiplied by the number of ways in which n elements can be distributed 

among (m + 1) sets of which the i^^-set (ieNm) contains q - k^ elements 

and the (m+l)^k-set contains r+t elements, namely 

, к , k\ 
Y(a ,b ) (8.2) 

П (q-k. )! (r+t)! 
i=l 1 

Summing (8.2) over all keK(t) and t = 0,1,2,... ,m-r-1 we 

obtain the following formula: 

1 (m ,n) = n! I I y(a ,b )[ m 
t = 0 keK(t) \(r+t)! П (q-kn. )! 

i=l 

(8.3) 

к. -1 
m i 

Now note that П (q-к.)! П (q-p) = (q! ) . This, together with 
i=l 1 p=0 

(8.3) yields the desired equation. // 
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8.2 Bolker's Conjecture 

We prove here a theorem which was proposed by Bolker(1972) in 

the form of a conjecture. 

Theorem 8.3 7he maximum numlen. of ѵе/ііісел ф(т,п) in the 

еіалл of tnanApo/itation polytope-ь of. o/iden. mxn , 2 <. m <. n , i/> given ly 

the -lonmula 

Ф (m, n) 
n ! 

(q ! )Г 
P(q,m,r) , 

wheyіе n = mq+r and r ii the nemainden. on dividing tu 

P(q,m,r) ІЛ a polynomial in q with leading teem mm ^qm Г ^ 

and 

P/ioof The formula (8.1) is easily transformed to the form 

>(m,n) = 
I"1-'1 „ _,E V *в(ч’п'г) I • <■•*> 

keK(m-r-l) (q!)m 

where R(q,m,r) is a polynomial in q of degree not greater than m-r-2. 

Let Hm i be the set of spanning trees of the graph 

2 , j £ V , is satisfied. Let К , for which the condition deg j 
m,m-l Б J 

Г(а^,Ь^) denote the set of special vertices of M(a^,b^) . Since 

H D , I then, by (8.4) and Theorem 2.4» Bolker's conjecture 
m-1,m1 J J m, m-11 

will be verified if we establish a bisection between the sets H and 

2 
m, m-1 

Г= [J Г(а^,Ь^) and also prove the relation Г(а^ , )ПГ(а^ ,b^ ) 
ksK(m-r-l) 

0 for any two distinct vectors kJ and in K(m-r-l) . 

It is clear that every special vertex x = (x. .) , , \ of 
* * ij mx (m-1) 

any non-degenerate transportation polytope of order mx(m-l) is construc¬ 

ted so that I{ieN :x. .>0} I = 2 , j e N , . Thus every such vertex 
1 m ij 1 J m-1 J 

corresponds with a graph G (U,V) eH ... 

We show that every graph G(U,V) e ш ^ can be associated 

with a vertex x in Г . Let G(U^',V^') and G(U^,V^') be those 

trees obtained from G(U,V) by deleting the vertex j eV together with 

the edges incident at j . Assume that the vertex numbered 1 belongs to 

the set . In order to construct the vertex we are seeking, consider 

the following system of linear equations determined by the tree G(U,V), 
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m - г - 1 , 

(8.5) 

m 

l К 
s=l b 

l к 

seU^ 

(ш-r + 1/ш)II - 1 
m ENm-l- 

Using induction on m we can show that the determinant of 

this system is +1 . Hence (8.5) has a unique integral solution k° = 

(k-j*, к I. . . . , k^ ) . From the fact that there is a unique basis of the 

transportation polytope of order mx(m-l) corresponding to each tree in 

Hm (Theorem 2.2), we can show, by contradiction, that the vector k° 

is non-negative. Thus k°eK(m-r-l). Then, by Lemma 1.3, the matrix 

x = (x^^ )m>< ^ with components 

x 
ij 

0, if (i,j) /G(U,V), 

I kgm + (r - 1/m ) I UJ'I - m | | , 

seU^' if (i,j) eG(U,V) , i e , 

I ksm + 1 + (r-l/m)|U^'| - m|V^| , 

seUJ’ if (i,j) e G (U, V ) , i e UJ' . 

к0 к0 
is a vertex of the polytope M(a ,b ) . Clearly x , the vector so 

constructed, lies in Г and G(U,V) = Gx(U,V) . 

We now show that if x-, / x„ then G (U,V) /G (U,V) . Let 
.I £ x ^ x2 

11 2 2 
Let х1еГ(а5с ,vk ) , х2еГ(ак ,bk ) , k1, к 2 e K(m-r-l) . 

Suppose that G (U,V) =G (U,V) . Then, by Lemma 1.3, it is easily seen 
X1 x2 

1 2 
that the vectors к ,k satisfy system (8.5) which has a unique solution. 

1 2 
Hence к = к which implies x^ = x2 • This contradiction completes the 

proof. // 

8.3 Explicit Formulae 

Explicit formulae for calculating <J>(m,n) have not yet been 

found in the general case. Such formulae are known only for special 

cases where n =mq , mq+1 , mq-2 . We consider the derivation of these 

formulae. 

Proposition 8.4 

(mq+l)m‘2 . Ф (m ,mq + l) 
(mq +1)! 

(q ! )” 

309 



P/ioof. By Theorems 2.4 and 7.1 it suffices to establish a bijection 

between the set of vertices of the central polytope M(a*,b*) of order 

m*(mq+l) and the set of spanning trees D (see §2.2). 
n r ° m,mq + 1 

Let x be a vertex of M(a*,b*) . Since every component 

x. . of this vertex does not exceed m , the number of positive components 
ij 

in each row of x is not less than q +1 . Hence, since the number of 

positive components of x is m(q+l) we see that the tree G (U.V) e 

D 
m,mq+l 

Gx,(U.V) ^ Gx„(U,V) . 

If x' , x" are two distinct vertices of M(a*,b*) then 

(U.V) . 

Let G (U,V ) e D 

M(a*,b*) such that 
m,mq+l 

¥e show that there is a vertex of 

G (U.V) = G(U.V) . (8.6) 

The deletion of any edge (i,j) splits the graph G(U,V) 

into two trees. The graph containing the vertex labelled i will be 

denoted by G(U..,V..) . By Lemma 1.3 the matrix x = (x..) , .,\ with 
' l] Ц ij mx(mq+l) 

c omponents 

0, 
x. . 
ij (mq + 1)IU. .I - m IV. . 

44 xj 1 ij 

if (i, j ) tfG(U.V), 

if (i, j) EG (U.V), 

is a vertex of M(a*,b*) . For this vertex the condition (8.6) is clearly 

satisfied. // 

The following is a direct corollary of Theorem 8.3. 

Corollary 8.5 

. , -1 \ (mq -1)! m-2 
Ф (m , mq-1) = am 

(q!)‘ 

The formulae for the number of vertices of the central 

polytope of order mxn when n = mq + 1 and n = mq-1 were first derived by 

Klee & Witzgall (1968). In 1972 Bolker (1972) showed that this polytope 

had the maximum number of vertices in these cases. 

Corollary 8.6 

, \ (mq )! m-2 m-1 
>(m,mq) = -»—±M- m q 

(q!)‘ 
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Pnoof. It follows from formula (8.1) that 

ф(m,mq) (mq)' 

(q ! )m(m-i)! 
у(a ',b ' )q 

m-1 

where a ' = (m - l/m, m - l/m.m - l/m, 1 - 1/m ) e E and b ' = (m.m)eE n 
m m -1. 

From Theorem 8.3 this gives у(a ' ,b ' ) = (m-1)!mm~2 which establishes the 

proposition. // 

Proposition 8.7 (Yemelichev, Kravtsov & Krachkovsky 1977ii) 

/_ \ (ma-2)! / m-2 , ф(т,т-2)\ 
(m ,mq-2 ) - . . ‘ (m q + , ‘ ) . 

*.. (,!)■ 4 ■ <— 

Pnoo/ Using (8.1) we have from Theorem 8.3 that 

j. / ^ (mq-2)! ! m-2_, yfa'.b'K Ф(т,тЧ_2) = (m qt Yj;4)j o . 

where a ' = (m - 1 - l/m ,m - 2 - l/m,. . . ,m - 2 - l/m) e E and b' = (m,m.m)e 

Em_2 • Since every vertex of M(a',b') is special we have, by Theorem 

7.1, the equality у (a ' ,b ' ) = ф (m,m-2 ) . // 

According to the previous proposition the calculation of 

ф(т,іщ-2) reduces to the calculation of ф(т,т-2) . The formula for 

b(m,mq-2) takes the form (Krachkovsky 1978) 

ф (m ,m-2) 
(m-1)! (m-2 )! г sS ~*~t^ ^ (m-s.-t )m ~s l 

(s,t) 
s jt j (m-s-t-l)! 

where the sum is taken over all numbers s and t satisfying the inequa¬ 

lities 1 < s < [m2/(2m + l)] , 1 < t < (m2/ (2m + l)] , s+t > [m2/ (2m+l)] . The 

derivation of this formula is left to the reader. 

§9 MINIMUM NUMBER OF VERTICES IN THE CLASS OF NON-DEGENERATE 

POLYTOPES ЦІТН A GIVEN NUMBER OF FACETS 

Throughout this section we assume that the components of the 

a and b are ordered as follows : a-, > a„ _>...>, a , b. > b„ > . . . 
1 — 2 — — m 1 — 2 — 

Theorem 9-1 (Yemelichev, Kravtsov 6 Krachkovsky 1977ІІІ and 

1978i) Let 2 .< m <. n , n .> 3 , 1 £ к <. n . Ike. minimum numle/i о/ иеяіісед in 

the сіадд о/ non-degene/iate іяапдро/itation polytopeP о/ onde/i mxn with 

(m-l)n + к £асеід ід equal to nra-'*' + k(mn - m - n) . 

vectors 

> b . 
= n 
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Ряоо-f. Let M(a°,b°) be a non-degenerate polytope of order mxn satisfy¬ 

ing the conditions 

n -1 
b° , ,, - b0 < У b?-a,° < min(a° , b° ,-b°) 
n-k+1 n .S ] 1 m n-k n' 

J=1 J 

(9.1) 

By Theorem 3.2' this polytope has (m-l)n +к faces. We show that it has 

nm_1 + k(mn - m - n) vertices. 

Conditions (9.1) imply that the elements in the first row of 

any matrix x = (xij)щХп e M(a°,b°) are constructed in the following way: 

a) xXj. > 0 , V j e Nn_k ; 

b) among the elements x-^. , j = n-k+1, ... ,n, only one can equal 

zer о. 
k + 1 

Hence vert M(a°,b°) = (J V (a°,b°) , where V (a°,b°) , 
s=l s s 

1 < s < к , is the set of those vertices of M(a°,b°) for which x-^ n_s + -^=0 

and Vk+-^(a°,b°) is the set of vertices of M(a°,b°) for which x^j >0 , 

Vj e N. It may be verified directly that every set V (a°,b°) , s e N, , 
n S iC 

contains (m-l)(n-l) elements while Vk + -^(a°,b°) contains (nra ^ - k) 

elements. Hence f q (M (a0 ,b 0)) = nm + k(mn - m - n ) . 

We show next that the number of vertices of any non-degenerate 

transportation polytope M(a,b) of order mxn , 2<m<n , n>3 with 

(m-l)ntk facets satisfies the inequality 

fQ(M(a,b)) > nm "*"+k(mn-m-n) (9.2) 

We prove this inequality by induction on the number p=m+ntk . For p < 8 

the inequality (9.2) can be verified directly, 
st 

1 Case. Suppose that for m+k<n the condition 

m 
0 < У a. - b , ,, < min (a ,b ) , 

.Ln l n-k+1 m n 
1=2 

is satisfied, while for m+k^n either (9.3) or 

n 
0 < У b. - a , < min (a ,b ) 

.Ln л n-k+1 m n 
j=2 J 

is satisfied. 

Let a = (a, ,. . . ,a ) , b = (b, ,.. . ,b„ ) where 
1 m in 

(9.3) 

(9.4) 
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- m - m X - , 
a. = a /( I a ) , b = b /( £ a ) . Also let ал = Aa + (l-A)a# , bA = Ab + 

s=l s J J S=1 s 

(l-A)b* where 0 < A < °° . Then since one of the conditions (9.3), (9*4) is 

satisfied there are numbers Л 1 >1 and 1 <^ <к > such that M(aA',bA')e 

П(m,n,k-£ ) . 

There are two possibilities. 

1) The spectrum S(a^ ,bA ,a,b) is simple. Then, there is a 

number 1 < 7T <. Л ' such that the polytope M (a71 .b71) e П (m ,n ,k-l) . Order 

the elements of the spectrum S (a77 , b77, a, b ) as follows : An < A„ < . . . < A: 

T > 1 . Choose any numbers тг^ such that X^ < < А^ + -^ 
1 2 ’ ‘ T ’ 

, t = 0,1,2,...,T, 

AT+1 — AT + 1 — 
where Хд = тг,а =a,b =b. For every t e N^, it is clear that 

the polytopes M(a " ,b ) and M(a ,b ) are a (I. ,J. )-regular 
A. A. 

4 Xt 
pair with centre M(a ,b ) . Applying Theorem 6.4 to any such pair of 

polytopes and noting the obvious inequalities 

у , (а Ѣ,Ь Ѣ) uT у (a*,b*) > 0 

V\ V 4 
VteL 

we obtain 

f 0 (M (а Ѣ,Ь Ѣ )) = f o (М (a t_1,b t~1))+&1 ^ (а Ѣ,Ь Ѣ ) |n 11л |-m|Jx | |, t e N?. 

At’ At Ѣ Ѣ 

Observing the inequality 

T XX 

l 6T г (а Ѣ,Ь Ѣ) |n11, |-m|j, I I > mn - m - n , 
t=l 1X,,JX, At At 

и Т» 

we have 

f д (M (a, b )) > f дСмСа^.Ь77)) + mn - m - n . 

Then, since fQ(M(a,b)) = fQ(M(a,b,)) , we have, using the 

induction hypothesis 

f g(M(a7T .b77)) > nm_1 + (k-1) (mn - m - n) . 

Thus inequality (9.2) is proved. 

2) The spectrum S(aA ,bA ,a,b) is not simple. Then by Theorem 

6.10 and Corollary 6.3, for every number p* satisfying the inequality 
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О < р* 
. . / min 

^ min( (I,J)cA 
mxn 

lUI.j(a'b)I 
m + n 

mm 
(I,J)eA 

mxn 

I / X' A* 
1^I,j (a »b 

m + n 

there is a polytope M(a',b')eQP (a-^ ,b^ ) such that a) S(a ' ,b ',a*,b* ) 

is a simple spectrum; b) fg(M(a ' ,b') ) = fg(M(a^ ,b^ )); 

с) M(a ' ,b ') eП(m,n,k-£ ) , where 1 £ ^ £ к • 

By the choice of the number p* there is a number 0 < тт < 1 

such that MCa^.b^) defined by the vectors a71 = тга 1 + (і-тт)а* and 

ья = 7тЬ 1 + (l-тт )b# belongs to QP (a,b ). By C or ollary 6.3 , M(aTT,b7T) e 

/7(m,n,k) and f (-)(M(aTT,b7T)) = fg(M(a,b)). Repeating the argument used in 

the first part we deduce that 

f0(M(a,b)) nm 1 + к(mn - m - n] 

2nc^ Case. Now suppose that conditions (9.3) and (9.4) are 

not satisfied for the polytope M(a,b) e fl(m,n,k) . We examine two possi¬ 

bilities. 

l) a <b . Note that in this case m>3 • It is easily 

checked that every polytope M(am,b^) 

ara = (a, ,a„,. . . ,a ,) and b^ = 

belongs to the class /’/(m-ljn.k) 

obtain the inequalities 

j £ N^ , defined by the vectors 

(Ь1,Ь2.Vl’Vam’Vl’-*''bn} 
. Hence, by the induction hypothesis, we 

n . „ , 
fn(M(a,b)):> )) f n(M(am ,b^ )) > n (nm ^+k(mn-2n-m+l)) >nm tk(mn-m-n) . 

U j=l 

The last inequality is true for 3 ^ m і: n , n>4 > 1 <k <n . 

2) a^ > b^ . Every polytope M(a1,bn) , i eN^ , given by the 

vectors a — (a^,»..,a_^ ^,a_^—b^,a^^-^,...,a^) and b (b-^,b2>...,b^ д^) 

belongs either to the class /7(m ,n-l,k-l) or to the class /7(m,n-l,k) . 

Hence, by the induction hypothesis we have for n > 5 

fQ(M(a,b))s> I f 0 (M(ai ,bn )) ^> m ((n-1 )m_1+(k-1) (mn-2m-n+l)) > nm "^+k(mn-m-n). 
i=l 

The last inequality may be checked directly for m=2,3,4»5 while for 

m > 6 it follows from the known inequalities 

(1 - l/m )m_1 > 1/3 , m =6,7,8. // 
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Theorems 5.1 and 9.1 have the following corollary. 

Corollary 9.2 (Yemelichev & -Kravtsov 1976i) 7kene La no 

non-de.ge.ne.nate. tnantpontation polytope M(a,b) о/ onden mxn , 2 < m _< n , 

n > 3 , u>ho-ie numlen of. uenticet Aati&fleA 

nm 1 < Гд(М(а,Ь)) < nm ^ + mn - m - n . 

In other words nm ^ + mn - m - n is the next largest ('almost' 

minimal) number of vertices after the minimum number in the class of non¬ 

degenerate transportation polytopes of order mxn , 2<m^n , n>3 . 

§10 ASYMPTOTICS 

In this section we examine the asymptotic behaviour of cer¬ 

tain classes of transportation polytopes. It is shown that as the order 

increases the ratio of the number of polytopes with the maximum number of 

facets to the total number of polytopes tends to unity, while the ratio 

of the number of polytopes with the minimum or maximum number of vertices 

to the total number tends to zero. 

We consider the open regular simplex in 

к 
U, = (c eE, : £c.=l,c.>0,ie N. } . 

if К ^ 11 K! 

Let 

W 
mxn 

U xU = {(a,b) : a e U , b £ II ) 
m n m n 

To each pair of vectors (a,b) eW^^ there corresponds a transportation 

polytope M(a,b) of order mxn . Let W^Xn denote the subset of pairs 

(a,b) in wmxn for which the associated polytopes possess the property 

E, . We say that almost all transportation polytopes have pnopenty E, , 

if 

lim 
m-*-» 
n+oo 

u(W 

uTw 
mxn' 

mxn' 
1 . 

If this limit tends to zero we say that almost none of the transporta¬ 

tion polytopes have this property. In what follows u(W) is the Lebesgue 

measure of the set W in the space 
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E , 0 
m+n-2 

{ (a,b) 
m 

l a. 
i=l 1 

l b. = 1} . 
i=l J 

Theorem 10.1 Almost ail teanApo/itation potytope-b have. the 

maximum numte/i о/ /асгі<5. 

Pa.oo£ Let £ represent the property of having the maximum number of 

facets. Then by Theorem 3.2 we have 

= {(a,b) e ¥ „ : max a. + max b. <1}. 
mXn mXn l<i<m 1 l<j<n 

Let 

U, (x) = {cell : max c.>x} , U. (x) = {ceU. : max c.=x} . 
k k l<i<k 1 k k l<i<k 1 

With this notation and using the obvious inequality max ^l/k we have 

\W? = (П (—)xu ) I I N 
mxn' mxn ' m 4 n n' ^ . V/ , w 

l/nKxfl (n-1 j/n 
W 

l<i<k 

(U (x)xU (1-x)) . 

From this, using the following well known properties of measure 

y(WxV) = y(W)xy(V) ; u(WUV)= y(W)+y(V) if WDV=0 ; y(W\V)=y(W) - 

U (V) if V CW ; and bearing in mind the equality 

Fk(x> 
u(uk(x)) , , .1-1 к ,, . ,k-l 

l (-1) . (l-ix) 
i=l 1 

which is proved in Feller (1957,1966), we find that 

y(w 

У (W 

5 
mxn 

mxn 

) 

T 
1 - 

m-1 / 

(n-l)/n 

l/m 
F'(x)F (l-x 

m n 
) dx 

where F'(x) is the derivative of F (x). 
m m 

Dividing the interval of integration into the two intervals 

[l/m, 1/2] and [1/2, ( n-l)/n3 and applying integration by parts to the 

first integral we obtain. 

/ 

(n-l)/n 

l/m 
F ' (x)F (l-x ) dx 

m n 
mn n 

m+n-2 n-1 
m 
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/•1/2 /•(n-l)/n 

"/ F (x)F'(l-x) dx + / FJ|(x)F„(l-x) dx . 
^ 1/m Ш П J 1/2 m n 

Hence, noting that Ffc (x ) = к (l-x )k_1 for £<x<l , and 

F^. (1-x ) = kx^ ^ for 1/k < x < £ . we find that 

u(w% ) mxn ^ 
u(Wmv ) - 

mxn 
m-1 „m+n-2 

n 2 m 

n Г1/2 
nTT , -(-1) 

1/m 

n-2 , 
x dx - 

/ 
(n-1 )/n 

1/2 
m(m-1)(l-x )m-2 dx 

(1_Hl_) n _ n ) 

( 2m-lH 2n _1 ‘ 

Taking the limit as m,n*“ and noting that u (W^ ) < 
b mxn = 

U (W ) we obtain the assertion of the theorem. // ш xn 
The following is a direct corollary of Theorem 10.1 and 

Theorem 5.1. 

Corollary 10.2 Ihene ane almost no non-de.ge.ne.nate. tnan^pon- 

tation po tytoрел with the minimum numHen o£ venticeA. 

Bolker (1972) posed the following question: is it true that 

almost all transportation polytopes have the maximum number of vertices? 

The following theorem due to Krachkovsky (1979) gives a negative answer to 

this question. 

Theorem 10.3 Ikene ane almost no tnan/>pontation potytopeA 

loith the такітит numHen o£ ventice-b. 

Pnool Assume for definiteness that m < n . Define the set W ^ CW u 
^ = mxn- mxn 

bv the condition (a,b) eif the components of the vectors a and b 
j mxn r 

satisfy the constraints: 

n-2 m-2 
a. + У b. < 1 , b. + У a. < 1 if m=n ; 

..=1 Jr- -h т-=1 хг 

q-1 m-1 
I b. + £ a. < 1 , a. + 

г Л_ _ г ІТ 

1 Г=1 Г 

n-q-1 
b. <1 

r=l r =1 r=l J. 
if n = mq , q > 1 ; 
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m-1 n-q-1 

1 r=l 1r 
b. + I a. <1 , a + I b <1 if n =mq +r , q >1 , 1 <r <m-l , 

Л __n -L n _1 J -v. -1 r=l 

where a. > a. > ... >a. , b. >b . > ... >b . 
X1 12 1m J1 J2 Jn 

By Theorem 7.9 every pair (a,b)eW for which the polytope 
mxn 

M(a,b) has the maximum number of vertices, belongs to WjjJ 

prove the theorem it suffices to show that 

t ^ 

Thus, to 

lim 
m-voo 
П-Ѵоо 

у (W v \W% ) 
4 mxn' mxn 
у (¥ v ) 

' mxn 

Consider the set of vectors U^(x) = {cell, : \ c. 
* ' K r=l 1 

> x , 

c. > c . 

£l= ^ 

>...>c. t , t < к . 
= xk* 

Using the obvious inequalitie s 

I °i = 
t/k , c e Uk , we have the inclusions 

r=l r 

um-2(nzljxTJ cw \w^ 
m n n~ mxn mxn 

f or m = n , 

um-l(n-q+l)xTJ cw \w5 
m n n— mxn mxn 

for n = mq , q 

уШ-1 (П_^2.)x у cw 
m n n 

\W? 
mxn mxn 

f or n = mq + r , 

Therefore 

u(w „ : 
mxn mxn 

u (w 5 
v mxn 

u(um-i(nza±i 
m n 

мТіП 

)) 

for m = n , 

for n = mq , q > 1 , 

Щ? 
for n = mq+r , r.q^l. 

Now, using the equality 

У( x(x)) 

“ <V 
у ^ ^k-i_к ! (ix-t )k~1_ 

t/x^i^k (k-i)! it! (i-t)! (i-t ^t^ ^ 
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with t/k^x^l , which is derived in Mauldon (1951), we find that 

1 

u (w v \irv ) 
mxn' mxn 

—uTw-)— 
v mxn 

1_L_ Bzl + _ 
2m-2 m-2 (m_2)mm‘2 

for m = n, 

1 
f or n = mq , q > 1, 

m-1 

i-i 

.mq+rj 
for n = mq+r, г,q^l. 

Thus, if m£n we have 

u(VPv ) 
. mxn 

lim u (w У 
m+-°° mxn 
n+-°° 

0 . 

The case m > n can be treated in a precisely analagous way. The statement 

of the theorem is now clear. // 

EXERCISES 

1. Let M(a,b) be a degenerate transportation polytope of order 

mxn . Show, that there exists a number б > 0 , such that for any л , 

satisfying 0<n < 5 , the polytope M(a(n),b(n)) , defined by the vectors 

a(n) = (a,+n,a0+n,...,a +n) and b(n) = (b-,,b„,...,b , ,b +mn ) , is non- 
X < m l z n-± n 

degenerate. 

2. (Orden 1956). Let M(a,b) be a transportation polytope of 

order mxn with whole number valued vectors a= (a^,a2,•.•,a ) and b= 

(bl,b2,•••»bn) • Then, the polytope M(a',b') , defined by the vectors 

a, = (a^,a2,...,am_-^,am+l) , b, = (b^+l/n,b2+l/n,...,b +l/n) can never 

be degenerate. 

3. If the transportation polytope M(a,b.) of order mxn has a 

unique degenerate vertex, then there exists a single pair of indices 

(s,t)eN xN such that , . г „ 
m n ag + bt = I a . 

i=l 

4. If the matrix x = (x..) e M(a,b) is a vertex, then it 
1J ШХП 

contains at least max(m,n) -min(m,n) +1 simple lines (see §6,1). 

c T . D /о1!'-1’! d12’^2 D1m+n-l’J’m+n-lx , , . , 
5. Let В = (R ,R ,...,R ) be a basis of the 

transportation polytope of order mxn , and let В be a (m+n-1 )x(m+n-1) 

matrix obtained from В by crossing out any row. Show, that by means of 

suitable permutations of the rows and columns of В , it can be trans¬ 

formed into a triangular matrix with components r..=l , Vi eN , ■, . 
11 m+n-i ’ 
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and r..=0 if i > j • 
ij 

6. The following properties of the bi-partite graph G(U,V) , 

IUI =m , IVI =n , are equivalent : (l) the graph is connected and has no 

cycles; (2) the graph has m+n-1 edges and no cycles; (3) the graph is 

connected and has m+n-1 edges; (4) the graph has no cycles, but the 

addition of one extra edge creates a unique cycle; (5) the graph is 

connected but the removal of any edge makes it disconnected; (6) any 

pair of vertices in the graph are connected by a unique chain. 

7. Show that: (l) the point x of the polytope M(a,b) is a 

vertex of this polytope if and only if the bi-partite graph Gx(U,V) has 

no cycles; (2) if the graph Gx(U,V) is a forest, consisting of t 

trees, then the vertex x of the polytope M(a,b) of order mxn has 

m+n-t non-zero elements. 

8. (Olah 1968). A graph is called an n-pa/itite g/iaph o£ o/ide/i 

^lX^2X""'X^n ’ ^ vei"^ex set can be partitioned into n pairwise 

disjoint subsets , U2.Un such that | IF | = t± , Vi e Nn , and such 

that every edge joins vertices lying in different subsets. The number of 

spanning trees in a complete marked (labelled) n-partite graph of order 

^lXt2X' 
• xt is given by the formula 

д (t]_« t2, • • • , tn) - 
n \n-2 

which generalizes (2.2). 

9. (Votyakov & Frumkin 1976). Show that the number of bases 

3(m,n) of a transportation polytope of order m*n satisfies the 

recurrence relation (m^n): 

m-1 
3 (m, n) = I 

j=l 

Hence derive the formula 

V(-Dr(3).re(«,j-r) . 

_ -1 m—1 
3 (m,n) = m I 

j=l 
Ji1(-Dr'J 
r = 0 

(j-r) 
m-1 

10. (Yemelichev 6 Kravtsov 1976ii). Consider the transportation 

problem : 
m n 

minimize F(x)= У У c..x.. 
ьі 4 4 

where x = (x..) e M(a,b) , and c.. are 
mxn ij i=l j=l 

given real numbers. The point of the polytope M(a,b) at which the 

minimum of F(x) is attained is called the optim.ai solution o£ the. 

t/ianApo/itation p/ioHLem . Establish the f oil owing as sertions : 
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(1) . If there exists a pair (£,t)eN XN such that 
m n 

Cit " c£t > тах(с_ - c£. ) , i=l,2,...,£-l,£+l,...,m , then, for any optimal 
j rt 

solution of the transportation problem we have x^ = min (a£ ,Ь^ ) . 

(2) . Let x= (xij )mxn be a P°inb °f the polytope M(a,b) 

such that x. . = 0 , V(i , j ) e DxE , where 0 0 D C N , 0 0 E C N . If there 
ij m n 

exists a pair (s,t)eD*E satisfying 

c , + 
st 

min _ c.. > 
:Пх IT ^ J 

max _ c.. + 

(i.j)eDxE 1J 

max c. . 
(i.j)eDxE 1J (i, j )eD*E 

then x . = 0 for any solution of the transportation problem, 
s z 

11. Put 6q . = c . - c . , p0q , j eN and assume that 6q, > 6q > 
PJ PJ qj ^ 4 J n pl= p2 = 

. . . > 6q . We define: Sq={jeN : i<k} , where the number к satisfies 
= pn p 0 n ° = 

к k+1 
the inequalities ^ b. <a < £ b. . The following assertions are true: 

J 1=1 J J =1 J 

(1) . (Kurtsevich & Kravtsov 1974). If Sq 0 0 for some pair 

p,r e , then there is an optimal solution of the transportation problem 

with components x . = 0 , Vi e Sq . 
y PJ J P 

(2) . (Yemelichev & Kravtsov 1976ii). If, for some pair 

p,q E N the set Sq = i j eSq : 6q . > 6q 
PJ 

p.ISpl+i 

0 0 , for any optimal solution 

of the transportation problem we have x . = 0 , Vj eS4 . 
P J P 

(3) . (Kravtsov 1973). If, for some qe Nm , the set 

Sq = П Sq f 0 , then there is an optimal solution of the transportation 

pEN P 
r m 

p^q 

problem for which x . =b. , Vj e Sq . 
qj J 

(4) . Let there exist non-empty sets L-^ , P, given by 

ich that У a = £ b. . Then, the 
qeL1 q jeP-L J 

solution of the transportation problem reduces to the solution of the 

following subproblems T (s=l,2): 

L1C\ • P1 - У П S4c»n sue 

minimize У У c..x.. subject tо У x..=b. , V j eP , 
Lr iA ij ij J j Jr iJ J J s teL jeP 

s 0 s 
ieL_ 

,Xxij ■ ai • ¥icLs • xij-° • *(i'il!W 
J s 
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where L~ = N \L, 
2 ml 

and 
P2 * N„4P1 

12. Fix a number p e N. 
m 

Define the numbers x?. 
ij 

by the rule : 

PJ 
b . 

J 

x°. . = mlr 
ij 

i?P 

n 

X?. 
IJ 

when i = p ; and 

in5 У (c..-c . )x. . : У x. . = a. , 0<.x. . <b . , Vj e N 
IЛ-1 ij PJ и i.1 i = 1.1= .1 J 
j=l j=l 

J = J 

Show, that the matrix x (x?.) w e M(a,b) is an optimal 
ij m*n r 

solution of the transportation problem if and only if xV > 0 , Vj e . 

13. The matrix (x..) „ e M(a,b) is an optimal solution of the 
4 ij mxn 

transportation problem (see Ex. 10) if and only if there exist numbers 

u. , i e N 
i . m 

v. , j £ N 
J J n 

u. +v.=c . . I 
i J ij 

such that 

if x..>0 ; u.+v.<c.. , if x..=0 . 
ij i J = iJ iJ 

This is a very well known criterion of optimality for the transportation 

problem. 

14. Let RCN The set 
(xij^mxn 

m 
У x. . 

i=l 1J 

b . , V j e N 
J J n 

Vi e R У x. . = a. 
j=l 1 

and only if У a^ < У b. < У 

У x. . <. a. , Vi eR 

J-l 1J“ 1 
x. J > 0 , V(i, j ) E NmxNn if 

ieR -1- jeN J icN 

15. 

n m 

(Shvartin 1978). Let n > 0 (p,q ) e N xN 
r H m n 

^cij ^mxn * ^cij ^mxn 

if 

Two matrices 

are called v\-n.eightLou/ity /ie.ta.tLve. to the pai/i (p,q) 

c:. = ct . for a. 11 (i*j)H(p»q) and if 0 ^ | c 1 -c2 | < q . Two j} . = c? . 
ij IJ pq pq 

transportation problems are called n-neighbourly relative to the pair 

(p,q) if their feasible sets are identical and if their cost matrices 

are q-neighbourly relative to the pair (p,q) • Show that: 

(l). Whatever the numbers q > 0 , N > 0 and the pair (p,q) 

e Nm*IJn , it is always possible to construct two q-neighbourly transpor- 

taion problems relative to the pair (p,q) such that if (x^. )mXn is апУ 

optimal solution of one of these problems and (x±j )nxn is апУ optimal 

solution of the other then У У I x. . - x.' . I > N ; 
i=l .1=1 4 ^ = 

(2). For any pair (p»q) e ^mx^n ant^ апУ Л > 0 it is always 

possible to construct two q-neighbourly transportation problems relative 
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to the pair (p,q) which have the same optimal solution. 

16. Consider the two transportation problems T (s=l,2) : 

m n 
minimize У У c.,x. , subject to (xf .) • e M(as, bS ) , where 

І=1 -5=1 1J mXn 

m m 

I a- = I • Let be an optimal solution of problem T , 
x i=l ± ш 11 s 

s =1,2. The following assertions are true: 

(1) . (Ogurtsova, Skaletskaya & Skaletsky 1973). If 

m n 

I I a? -a) I < Д , l |Ь*-ЪН<Д , then |х¥?-х*Н<Л , V (i , j ) e NxN . 
i=l ii J J ij 4 " m n 

(2) . (Intrator & Lev 1976). If a) < a? , Vi e N 

a1 > a2 , b) = b? , V j e N , then x* . > x* . , V j e N 
m=m j J n mj = mj J n 

17. Let U = { (ід^, j д^), (i2. j2 ) * • • • (imn>jmn )) be a listing of all 

the pairs in the set N xN in some order. Show that the following 
m n ° 

procedure constructs a vertex of the transportation polytope M(a,b) : 

Following the order of the pairs in the set U we define successively 

x. . =min(a. Jb. ) , x. . =min(a. - Ух. 
xi'Ji Ji 1t’Jt 1t (it,k) H- 

m-1 ’ 

. b . - I x. . ) , 
Jt (k,j.) k’Jt 

where the sum is taken over all pairs (i^,k) and (k,j^) which precede 

(it>j.) in the list U . 

When U = { (1,1), (1,2),-(l,n), (2,1), (2,2).(2,n). 

(m , 1), (m ,2 ), . . . (m ,n )} , this is usually called the Nonth-we-tt Co/ine/i 

t'le.thod , while, when U ={ (m ,n ), (m ,n-l),..., (m ,1), (m-l,n ), (m-l,n-l),... , 

(m-1,1),..., (l,n ), (1, n-l),..., (1,1)} , it is called the South-e.a-it 

Co/ine./i Пе-thod . 

18. For any polytope M(a,b) in the class /7(m,n,0) , 2 < m < n , 

we have the equations: 

fi(M(a,b)) =^mn-m-n+l-i) ’ i =mn-2m-n+2,...,mn-m-n . 

19. (Klingman & Russel 1974). Consider the problem of minimizing 

m n 
the function У Iе-.x.. subject to the constraints: 

i=l j=l 1J 

n n 
У X. . > a. , i = 1,2, . . . ,m, ; У x. . = a. , i = m, +l,m, +2.m„ ; 

J=1 1J 1 1 j=l 1J 

У x . . < a. , 

J-l 1J" 1 

m 
i= m„ + l,m0+2,...,m ; У x. . > b. , j =1,2, 

<■ < i=l " 
*nn 
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I x. . < b. , j = n„+l,n?+2,...,n , 
i=l 1J = J 

^ x. . - b. , j п-]+1»и-і^"2,...,Пр I 
j_=l J ± ± л 

xi3 > 0 , v(i,j) 0UmxSn . 

This problem can be reduced to the solution of the following 

transportation problem: 

m+1 n+1 n+1 
minimize I I c. .x. . , subject to £ x.. =a. , Vi eN ,, , 

• _ 4 • _ П 1,1 1, 4 - T 1J 1 II1T-L 
i=l j=l 

m +1 
I x.. = b , V j e N 

i=l 1J J 

j=l 

n+1 ’ xij = 0 ’ V j ^ e Nm+lXNn+l ’ 

where a 
m+1 

m n n 
a - [ a. , bn + 1 = a - £ b. , a > 2 £ b. 

i=l 1 = 1 J j=l J 1=1 J 

c. • ,-i ~ шіп c • • » i t 
1,11+1 l<j<n, ^ 2 

c . .-I ~ 0 
l ,n+l 

f l m 9 m 2.1 • • . ,111 f 

C ,-| . П1ІП C • • 9 j~l 1 "2 9 • • • 9^ 9 

m+1’J 1<І<Ш1 ^ 2 

c XI ■ = 0 m+1, j 
, j ~un + 1,n«+2 j <..,n , 

cm+l,n+l ® 

The connection between the optimal solutions of these two 

problems is given by the following formulae 

X у#* 
xij + Xi,n+1 

, if i e Nm , j e (t : c.t = min c..} , 
ij 

x?. = ( xt% + x#*, . , if i e {r : c . = min c . .} , j eN 
ij ij m+l,j 

ij 

l<.i<m-^ 

otherwise, 

where (x?.) is the optimal solution of the original problem and 
1 j mxn 

(xij ) (m+1 )x(n+1) °Ptimal solution of the second problem. 

20. (Yemelichev 1969, Yemelichev & Kovalev 1972). The function 

F(x) is called Schun concave. on the convex set M , if it satisfies the 

following conditions: (a) F(x) is a strictly concave function on the 

convex set M , i.e. F(Xx-^ + (l-Xjx^) > XF(x^) + (1-X)F(x2) , xp,x2 e ^ * 

X e (0,1) ; (b) F (x) is a symmetrical function, i.e. a function which 

does not change its value when the components of the vector x are permu¬ 

ted. 

The vertex x° of the polytope M(a,b) is called a local 

minimum point of the function F(x) , if F(x°) <F(x) for all vertices 

x which are adjacent to x°. 
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The vertex x e M(a,b) is called ida.ai if, given any 

triple of nonzero components x£p , x^ , x“p , one of the following inequa¬ 

lities holds : 

X» 2 x-F + X» 
kp = kq V. , x“ > x“ + x,° 

tq tq — kp kq 

Show, that a vertex of a transportation polytope is a local 

minimum point of a Schur concave function if and only if it is ideal. It 

follows from this that the location of local minimum points of Schur 

concave functions on a transportation polytope does not depend on the 

behaviour of the function but depends only on the geometry of the polytope. 

21. (Yemelichev 1965). The algorithm of Ex. 17 for constructing 

a vertex of a transportation polytope is called the gn.e.ate./>t e.(.e.me.nt 

meihod if the sequence U is defined in the following way : i is the 

index of the largest component of the vector a , and j ^ is the index of 

the largest component of the vector b and so on recursively. 

Show that a vertex of a transportation polytope, constructed 

by the greatest element method, is a local minimum point of a Schur concave 

function (see previous exercise). 

22. (Yemelichev & Kononenko 1971, Yemelicheva & Kravtsov 1977). 

Show that a vertex of a transportation polytope constructed by the great¬ 

est element method is a global minimum point of a Schur concave function 

on any polytope having the minimum number of facets. 

23. (Kravtsov 1979). Let (s,q) , (r,t) e , (s,q) ^ (r,t) . 

The set (x = (x. . ) v e M(a ,b) :x = x + =0} is a (d-2)-face of the 
lj mxn sq rt 

polytope M(a,b) of order 

following conditions are satisfied: ag < 

mxn , min (m ,n) >2 

b, 

j?q J 

mn > 4 . if and only if the 

b. when s^r , 
J 

a < 
r 

q^t ; a < 
s 

b < la. 
q _ i 

J rb , I 

j ft 
when s^r , q=t . 

3 < m < n 

)) b. when s=r , q^t 

Show that: 

(l) the non-degenerate transportation polytope of order mxn 

has the minimum number , (m^l)n ^ of (d-2)-faces if and 

only if it has the minimum number of vertices. 

(2) the transportation polytope of order mxn 

the maximum number , mi1 .of (d-2)-faces if and only if 

m ,n > 4 . has 

а1< 
J 

n 

I b 
=3 J 

m 
b-, < V a. 

1 i=3 1 

where a,>a0>...2a 
1= 2— — m 

b, >b„>...>b 
1= 2= = n 

(3) every transportation polytope of order mxn , m,n;>4 

having the minimum or the maximum number of vertices has the maximum 
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has the maximum number of (d-2)-faces. The converse is not generally true 

(4) the number of (d-2)-faces of any non-degenerate trans¬ 

portation polytope M(a,b) of order mxn , 3 <ш <n , mn > 9 , with 

(m-l)n + к facets (СКк<п) satisfies the inequalities 

('(-21M>k(m-l)(„-l)<fd.2(M(a,b))< ((m-1>n,k| , 

where the lower and the upper bounds are attainable. 

24. Let (s1,q1) , (s2>q2) , (s^.q^) e NmxNn * (Sq.qq) t (s2»q2^ ’ 

(s1,q1) f (s^.q^) , (s2,q2) f (s^,q^) . By analogy with Ex. 23, find 

conditions for the set {x = (x. . ) v e M (a ,b) :x_ _ = x. 
1 J Ш x n 

siqi S2q2 
= x =0} to 

s3q3 

be a (d-3)-face of the transportation polytope M(a,b) of order mxn and 

show that: 

(1) the transportation polytope M(a,b) of order mxn , m, 

n > 5 , has the maximum number, (^) » °f (d-3) -faces if and only if 

a, < У b. , b, < У a. , where a,>a„>...>a , b,>b„>...>b ; 
1 .L , л 1 .L, l 1= 2= = m 1= 2= = n 

j=4 J 'L i=4 

where 4 £ m £ n , n>5 , is given by 

(2) the maximum number of (d-3)-faces in the class /7(m,n,k) 
(m-l)n+kj 

25. Establish the following properties of equivalence for trans¬ 

portation polytopes: 

(1) M (a, b ) a, M (aa, ab ) for any a>0 ; 

(2) if M (a0, b0) а, M (a1 ,b 1 ) , then M (a 0, b0) а, м (a0 +a1, b °+b1). 

(The converse is not true). 

26. The following assertions are true: 

(1) the number of equivalence classes in the set /7(m,n,l) , 

2 £ m < n , is equal to ran(2m ^ - 1) when m < n - 1 and is equal to 

n(n-l)(2n~^-l) when m = n - 1 ; 

(2) Let o(m,n) be the number of equivalence classes in the 

set of all transportation polytopes of order mxn with the maximum number 

of vertices and with (m,n) ^1 . Then o(m,n) satisfies 

2|?(a*,b*)| < o(m,n) < 2 k(a*,b*)| 

where k(a*,b#)| = i I 
" )(y, 

Here, the sum is taken over all 
(x,y) 

integral solutions of the system my = nx , l^x^m-1 , 1 iy < n-1 
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(3) The number of equivalence classes in the set of all 

degenerate transportation polytopes of order mxn having the minimum 

number of facets is given by m(2n-l) when m<n , and by 2m(2m-l) when 

m=n . For the case of non-degenerate transportation polytopes with the 

minimum number of facets the number of equivalence classes is given by m 

if m < n , and by 2m if m = n . 

27. The 1-degenerate transportation polytope of order mxn has 

the minimum number of vertices (max(m,n ) )min’n^~1 if and only if 

M(a,b) is defined by vectors a and b such that: 

m 
(1) a. - max a. = min b. if m^n , 

i=l 1 l^i^m 1 l<;j<.n ^ 

n 
I b. - max b. = min a. if m>n ; 

j=l J l<j<n J l<i<m 1 

(2) M(a,b) has the minimum number of facets. 

28. The diameter of a non-degenerate transportation polytope of 

order mxn , 2 < m < n , with (m-l)n + l facets does not exceed m+1 . 

For non-degenerate transportation polytopes of order 2xn , n>3 > with 

n+k facets , 0 <, к < n , the diameter does not exceed k + 1 , if к = 0,1, 

. . . ,n-l , and does not exceed n if k=n . In particular, this proves 

the maximum diameter conjecture for the case of non-degenerate transporta¬ 

tion polytopes of order 2xn . 

29. (Balinski 1974)» diam M(a,b) = m+n-1 , if 3 ^m^n , and 

a = (q-^m+r ,q2m+i’» • • • »qmm+r ) , b=(m,m,...,m)eEn , where q^ ^ 1 is a whole 

m 
number ,n= £ q. + г , г = 1 or r = m-1 . 

i=1 1 

30. (Yemelichev, Kravtsov & Krachkovski 1979)* Every integer 

from m-1 to m+n-1 can occur as the diameter of a transportation poly¬ 

tope of order mxn , 3 <и <n . 

31. (Yemelichev, Kravtsov & Krachkovski 1978ii). Let the numbers 

m and n be relatively ,prime and let m,n^3 • Then the diameter of any 

transportation polytope of order mxn having the maximum number of verti¬ 

ces is not less than m+n-1 . 

32. If all the vertices of the transportation polytope M(a,b) 

of order 2xn , n>3 , are degenerate, then 

(1) ьх = b2 = .. . = bn , 

(2) the polytope has the maximum or the minimum number of 

facets. 
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33. A polytope all of whose facets have the same number of 

vertices, and all of whose vertices are incident to the same number of 

facets, is called лре.сіа.1 . The following transportation polytopes are 

special: 

(1) central polytopes ; 

(2) a non-degenerate polytope with the minimum number of 

vertices ; 

(3) a polytope of order mxn with the maximum number of 

vertices, where m and n are co-prime. 

34* Let M(a,b) be a degenerate transportation polytope of order 

mxn , 3 < m < n , with the minimum number of vertices. The number of verti¬ 

ces belonging to any facet F..(a,b) is given by the formula: 

(n-D! (n-i) 
(n-m+1)j 

Г0№ц(а,Ъ)) = 

if a. / max a 
1 . . s 

l<s<m 

(n-D! (m+l) 
(n-m+1)! 

if a. = max a 
1 l_<s<m s 

35. Every non-degenerate transportation polytope of order mxn , 

2 <n <n , has at least (m-l)n facets, each of which contains hot less 
,, m-2 , . 
than n vertices. 

36. (Yemelichev & Kravtsov 1978). Let M(a°,b°) , MCa^b1) be 

non-degenerate transportation polytopes of order mxn xjith the minimum 

and the maximum number of vertices respectively. If 2 <m <n , then these 

polytopes do not have any equivalent vertices. If m=n , then M(a°,b°) 

and MCa^b1) can have up to m! equivalent vertices 

37. Show that the condition in Theorem 7.10 is sufficient only 

when m + n <. 6 . 

38. Let ф (m,n) be the maximum number of vertices in the class 

of degenerate transportation polytopes of order mxri . Then the following 

relations are true (Kravtsov 1976i & 1976ii) : 

<t>v (m ,n ) > (mn-m-n+2 )ф (m-1 ,n-l) , m,n > 1 ; 

ф^(ш,п)<:ф(т,п)-тп+т+п , 3 < m ^ n , пт >9 ; 

»ѵ(2-”) = (”-М)(([„/2])-і) + 1 ■ 
When т and n are coprime we have (Kononenko & Trukhanovsky 1978) : 

Ф (m,n) > Ф(т,п) - (mq-qp-lU(p,qH(m-p,n-q) , 

where mq-np=l , 0<p<m , 0<q<n . 
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39. An analysis of the proof of Theorem 6.4 leads directly to the 

following result. Let M(a°,b°) and MCa^b1) be an (L,P)-regular pair 

of polytopes with centre M(aA*,bA*) , then putting a=max(|P|(m - |b|) , 

IL I (n - IP I )) - 1 , В = min ( I P I (m - |b|) , | L | (n - |P | )) -1 , we have 

f0(M(aA*,bX*)) = max(f0(M(a\b°)) , f Q (M (a1, b1))) - 

- a6L>p(aX*,bA*) = min(f0(M(a°.b°)),f0(M(a1,b1))) - B6L, p (a A\b A* ) . 

40. Let M(a°,b°) and M(a1,b1) be transportation polytopes of 

the same order, and let at least one of them be non-degenerate. Then 

IS(a 0,b0,a 1 ,b1 ) I = IA(a 0 ,b0,a1 , b1) | if and only if the spectrum 

S(a0,b0,a 1 ,b1 ) is simple. Here A(a 0,b0,a1,b1) = U 4(aA,bA) 
AeS(a 0,b °,a1,b1) 

41. Let Ap < A^ < . . . < Ap be the numbers in the simple spectrum 

S(a°,b°.а1.Ь1 ) , where a1 =a* , b*=b* , M(a°,b°) is a non-degenerate 

transportation polytope of order mxn , m < n .with the minimum number of 

vertices. Further, let < ^t < At+1 ’ t=0,l,...,T » AQ = 0 , AT+-, = 1 . 

The following assertions are true: 

(l) fd-1(M(a Ѣ,Ъ ^)) =fd_p(M(a ѣ ^, b ^ 1)) +1 if and only if 

there exists к e N 
n 

such that 

n 

l ь? +b 
i=l J 

0 

n-k+1 

n 
У b?+b° , ,, +mn-m-n 

J n-k+1 

where a,°>a3>...>a° , b-?>bi>...>b° ; 
1=2= = m 1=2= = n 

(2) if the number к in (l) exists, then 

fg(M(a ,b г)) = f0(M(a \b 1))+mn-m-n . 

42. (Yemelichev & Trukhanovski 1977). Let 2;<m<n , n >; 3 , and 

let к >mn be an integer. Define the vectors a and b by: 

a = (т(п-1)+1+(10к-1)"1(1-10“кп)-10"кп(10к-1)“1(1-10“к^га“1Ь , l+10“k^n+1\ 

1+10-k(n+2).i+10-k(n+m-l)} i 

b = (m+10 k , m + 10 ^k , ... , m + 10 nk) . Then, the spectrum S(a,b,a*,b#) is 

simple and the polytope M(a,b) is non-degenerate and has the minimum 

number of vertices. 

43. (Yemelichev & Trukhanovski 1977). Let M(a,b) be a non¬ 

degenerate polytope of order mxn , 2<m<n , n^3 , with the minimum 

number of vertices such that the spectrum S(a,b,a*,b#) is simple. Then 
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S(a,b,a*,b*) I 
m -1 

l 
k=l 

m-1 
k-1 

n-1 
У 

t = [kn/m^| +1 

Hence, by Theorem 6.4 , the number x(m,n) of distinct 

values of the function fg(M(a,b)) on the class of non-degenerate trans¬ 

portation polytopes of order mxn , 2 < m < n , satisfies the inequality 

t (m ,n) > 
n-1 

I 
t= [kn/m]+1 

n 
t 

+ 1 . 

44- (Yemelichev, Kravtsov & Krachkovski 1979). Let 2 <m <n and 

let l^kcn-m or к = n - 1 . The polyt ope M(a,b) e /7(m , n, к) has the 

maximum number of vertices if and only if the spectrum S (a,b,a^,b^) = 0 , 

where, у 
a = (mk+((m-l)n+l)(n-k-l) , n , n , ... , n) e E , 

m 

blc= ((m-l)n+l,...f(m-l)n+l,(m-l)n,m,m,...,m)eE . 

к" 

We note that in the remaining cases, where m = n or m <n , 

k^n-m , k/n -1 , n , the set /7(m ,n,k) can be partitioned into two 

subsets in each of which the class of polytopes with the maximum number of 

vertices can be characterized in a similar way. 

45. Let 2<m<n , O^k^n . The number of vertices in any poly¬ 

tope in the class /7(m,n,k) does not exceed the number 

m-2 k-1, , ,. ч 
n m (mn - km + к) . 

46. 

1 < к ^ n-2 . 

is equal to 

к > n/m . 

(Yemelichev, Kravtsov & Krachkovski 1979). Let 2 < m <n , 

Then, the maximum number of vertices in the class /’/(m,n,k) 

m^(n-k)m "*■ if k<n/m and is greater than m^(n-k)m-^ if 

& 1 * ^2 9 * 

47. (Kravtsov 1976i). Let the se quences of non-negative numbers 

. , a , B-,,8~.В satisfy the constraints: 
m 1 2 n J 

m n 

І = l 6- < i , 
i=l 1 j=l J 

(m ,n) ^ 1 => I a. f I 0. VI c N , JCN . 
iel 1 jcj ^ m n 

Then the polytope M(a,b) , defined by the vectors a= (n + ot-^ ,n+ot2 , . . ,n+ct ) 

and b = (m+Bj»m + 02 ’ * ' * ^ ’ ^as maximum number of vertices. 

48. (Yemelichev, Kravtsov & Krachkovski 1978ii). Show that the 

necessary conditions on Theorem 7.9 are also sufficient in the case 

n = mq + 1 . 
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49- (Klee 6 Witzgall 1968). Show tha i 

ф(т,п) > пф(т-1,п) , ш,п>1 , 

lim = 1 , 
т-н» log 6 (m , n ) 

П+оо 

where 8(m,n) is the number of bases of a transportation polytope of 

order mxn . 

50. Using Proposition 8.4 and Corollary 8.5 , show that 

(mq+1)! (mq+ir-V-1 <ф(т,тр+г) < laq+m-^j. „r-l VreN 

(q!)m “ (q j )Ш m"1 

The upper bound improves the estimate given in Likhachev & Yemelichev 1974 

and in Likhachev 1975. 

51. For every number t e (0,1,...,m-r-l} we define 

+ m m-r-1 
K(t) = {keZ : £ k. =t} . With each vector ke (J K(t) we associate a 

m i=l 1 t = 0 

к к 
polytope M(a ,b ) of order mx(r + £ k.) , defined by the vectors 

i=l 1 

ak = (k-^m+r .k^m+r ,. . . , k^m+r) and bk=(m,m,...,m) . Prove the following 

assertion, which is a generalization of Theorem 8.2 : the number of 

vertices of the transportation polytope M(a,b) of order mxn , 2 < m<n , 

defined by the vectors a = (q-^m+r ,q2m+r, . .. ,qmm+r ) and b = (m,m,...,m) , 

m 
where q^ > 0 is an integer and n= [ q. + r , O^r^m-1 , is given by 

I 

П q.l 
i=l 1 

m-r-1 
I I 

t=0 keK(t) 

i=l 

/ к ,k\ m ki 1 
i a >U n 

i=i p = o'^ 
П (q. - p) . 

(1974). 

When n = £ q. + m - 1 this gives the formula of Balinski 
i=l 1 

f 0(M(a,b )) = 
n ! m 

m -2 

m 

П q, I 
i=l 

l • 

52. (Balinski 1974). The number of vertices of the transportation 

polytope M(a,b) of order mxn , 2 < m< n , defined by the vectors 

a = (mq1+l,mq2+l.mq^+l) and b=(m,m.m) , where q^ > 0 is an 
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m 
integer and n= £ q. +1 ,is given bv 

i=l 1 
(n ! nm"2 ) / ^ n_^qi! j • 

53. There is a transportation polytope of order mxn , т,п>^2 , 

which has a facet containing at least (ш-1)!x(n-1)! vertices. 

54. (Kravtsov 1976i). We say that the vertex x of the trans¬ 

portation polytope M(a,b) of order mxn , 2 < m < n , has dege.ne/iacy о£ 

de.g/ie.e. к , O^k^m-1 , if |K(a,b,x)| = m+n-k-1 . There exists a trans¬ 

portation polytope of order mxn t 2 < m <n , among whose vertices there is 

a vertex of any degree of degeneracy from 0 to m-1 . Given any k , 

1<k<и-2 , there does not exist a transportation polytope of order mxn , 

3<m<n , for which all of its vertices have degeneracy of degree k . 

55. (Yemelichev, Kravtsov & Krachkovski 1978ii). Let 2<m<n , 

1 ^k^n . The polytope M(a,b) e/7(m,n,k) has the minimum number , 

nm + k (mn-m-n) , of vertices if and only if: 

(1) when m=2 , b ,,,<a„<min(b , , b ,-b ) ; 
n-k+1 2 n-k n-1 n 

(2 ) when 3 < m < n 

n-1 
b , , -b < У b. -a, <min(a 
n-k+1 n . i 1 4 m 

b , -b ) 
n-k n (*) 

(3) when m = n >; 5 either (*) holds, or 

m-1 
a , ,, - a < I a, -b, <min(b , a ,-a), 

m-k+1 m .L-, i 1 n m-k m 
i=l 

where a,>a„>...>a , b, > b„ > . .. > b ,b0 = aA = +a>. 
1=2= = m 1=2= =n 0 0 
56. (Kravtsov & Krachkovski 1978). For any k , 1 <, k < [2n/3] 

there does not exist any non-degenerate transportation polytope M(a,b) 

of order mxn , 2<;m<;n , n> 5 » whose number of vertices satisfies: 

nm X+ (k-l)(mn-m-n) < fg(M(afb)) < nm_^ + k(mn-m-n) . 

57. Let M(a,b) e П(m,n,k) , 2 <m < n , 0< k£n . Show that among 

its facets there are no more than k (d-1)-simplexes, and, in the case in 

which this polytope has the minimum number of vertices, the number of 

(d-l)-simplexes is exactly k . 

58. (Kravtsov & Krachkovski 1978). For the problem of minimizing 

a Schur concave function (see Ex. 20) on any transportation polytope of 

order mxn , 2< m< n , with the minimum number of vertices and with 

(m-l)n+k facets , 0 <. k < n , it is possible to designate k + 1 vertices 

one of which always provides the global minimum. 
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59. The graph of a polytope M(a,b) e /7(m,n,k) , 2<m<n,n>5 , 

having the minimum number of vertices is Hamiltonian. 

60. Th'e minimum radius of a non-degenerate transportation poly¬ 

tope of order mxn , 2 < m < n , n>3 , is equal to m-1 . 

61. For any s >1 the number of (s-l)-faces of an s-face of a 

transportation polytope does not exceed 6(s-l) (Gibson 1976). Using 

this result, it is shown in Krachlcovski & Yemelichev (1979) that the 

diameter of a transportation polytope of order mxn , 2 < m^n , is no 

greater than 2^m-^(n - m +1)(20m - 17) . 

62. (Yemelichev, Kravtsov & Krachkovsky 1977i). The constant 

term in the polynomial P(q,m,r) in Theorem 8.3 is ф(т,г)/г| . The 

remaining terms of this polynomial, other than the highest term, are not 

kn own. 

63. (Kononenko & Trukhanovsky 1978). Let m and n be co-prime 

integers. Then, there does not exist a non-degenerate transportation 

polytope of order mxn , 2<m<n , whose number of vertices satisfies the 

inequality a (m ,n ) < f q(M(a , b)) < <b (m,n ) , where o(m ,n ) = ф (m ,n) - 

Ф(p,q)Ф(m-p,n-q ) , and the numbers p and q satisfy the relations 

mq- np = l , 0<p<m, 0<q<n. (##) 

Hence, the number o(m,n) is the nearest possible vertex 

number to ф(т,п) ,i.e. it is the 'almost1 maximum number of vertices in 

class of non-degenerate transportation polytopes of order mxn , (m,n) =1. 

Show that the non-degenerate polytope M(a,b) of order mxn, 

2^m£n , has the 'almost' maximum number of vertices if and (m ,n) =1 

only if 

where > a 

D 1 a P 
1 a. < b. , fa. < b 

i=l 1 j = 1 J i = l 1 
t 

2 = • • * i am 9 "b — • • • < b 
= n 

conditions (#jt). 

q+1 

q-i 
+ l b. 

j=lJ 

and the numbers p and q 

64 • E of the Show that the Lebesgue measure in the space и . , 

set of vector pairs (a, b ) = (a-^ , a^ .... , a^ , b^ , b^ .... ,bn ) , which define 

degenerate transportation polytopes, is equal to zero. In particular, it 

follows from this that there are almost no transportation polytopes with 

the minimum number of vertices, since every transportation polytope of 

order mxn , т.п^З , with the minimum number of vertices is degenerate. 

65*. Find necessary and sufficient conditions for two classical 

tranSDortation polytopes of the same order to have the same number of 

vertices. 
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66#. Ia it true that the maximum number of vertices in the class 

of classical transportation polytopes of order m*n , 2<m <n , is not 

m-2 m-r-1 
q / (q ! )m . where n = mq +r , and r is less than the number n|m 

the remainder on dividing n by m ? This assertion is true for the 

cases r = 0 , 1 , m-1 , m-2 (see §8). 

67#. Let 2 < m < n , n > 5 , 1 £ к ,< n , d = (m-l)(n-l) . Is it true 

that a non-degenerate transportation polytope of order m«n with 

(m-l)n +k facets has the minimum number of vertices if and only if there 

are exactly к (d-1)-simplexes among its facets (see Ex. 57)? 

68. Theorem 7.1 can be reformulated as follows: the non-degener¬ 

ate transportation polytope M(a,b) of order mxn has the maximum number 

of vertices if and only if 

iel 1 jeJ 
l Qf < I b. 
с T A Ir.T J 

, if n 111 < m IJI ; J a. > ) b , if n|l| >m|j|, 
id 1 jeJ J 

where I C N , J C N 
m n 
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7 TRANSPORTATION POLYTOPES WITH SIDE CONDITIONS 

In this chapter we study the feasible sets of transportation 

problems with prohibitions and with bounded communication flows as well as 

generalized and symmetric transportation problems. For these polytopes we 

examine the possibility of representation as a product of polytopes of 

lower order. Existence theorems are formulated and limits on the number 

of facets are obtained. Polytopes of maximum dimension are determined as 

well as those which are simplexes. 

§1 TRUNCATED TRANSPORTATION POLYTOPES 

Transportation problems with bounded flows are widely known. 

This section is concerned with the feasible sets of such problems. 

Definition 1.1 A t/Lunc.ate.cl ілаплро/ііаііоп poiytope. of 

order mxn , m,n>l , is the feasible set of a transportation problem with 

bounded flows, that is. a s et of the form 

n 
M(a,b,D) = {X : = (x. . ) : £ x. . - a. , i e N 

ij mxn 
J-l 1J 1 

i 

m 
1 x. . = b . , j c N , 0 < x. . < d. . 

i=l ij J n “ IJ = ij 

where the components of the vectors a = (a^,a^,•••, 
am} 1 

b = (b-j^.bg, . . . ,bn) and the elements of the matrix D = (d 
ij mxn 

are posi¬ 

tive real numbers, and a. = \ b, 
l L 

i=l j=l J 

Note that if d. . >min (a.,b. ) , (i,j) E N xN then this poly- 
ij = ' i j mn r J 

tope coincides with a classical transportation polytope. 

From Gale's theorem (Corollary 4.12, Ch.4) we have the 

following criterion. 

335 



Proposition 1.1 The tnuncated t/ianspo/itation polytope. 

M(a,b,D) о/ o/iden mxn is not empty ll and only 1-/L 

I min (a , Id.) > I b JCN . (1.1) 
i=l 1 jaJ 1J jeJ J n 

1.1 Polytopes of Maximum Dimension 

In contrast to the classical transportation polytope of order 

mxn whose dimension is always (m-l)(n-l) , the truncated transportation 

polytope of order mxn , m,n>^2 , may have a dimension less than this. 

Theorem 1.2 (Kravtsov & Korzinkov 1979) The t/iuncated 

t/ianspo/itation poly tope M(a,b,D) о/ onde/i mxn , m,n;>2 , has такітит 

dimension (m-l)(n-l) L-/L and only i£ the following conditions ane 

satisfied : 

* Si iEB"' (1'2> 

l min (a. , I d ) > I b JCN . (1.3) 
i=l 1 jeJ 1J jeJ J n 

Pnoo£ Necessity. The necessity of conditions (1.2) is clear. 

We now establish the necessity of conditions (1.3). Since 

M(a,b,D) is non-empty, Proposition 1.1 ensures that the inequalities (1.1) 

are satisfied. Suppose there exists a subset JCN , J^N , such that 
^ n n 

This means 

hence that 

m 
l min(a. , I d . ) = I b. . 

i=l 1 jeJ jeJ J 

that there is an index i^eN such that a. > Id... 
m Ю 

for any matrix (n. .) with positive elements we have 
1J Ш ХП 

(1.4) 

and 

m 
I min(a. , I (d. . - Л• •)) 

i=l 1 jeJ 1J 
< I b. . 

jeJ J * 

that 

On the other hand, since there is a matrix xeM(a,n,D) such 

0 < 
ij 

< d. . 
ij 

V(i,j) e NmxNn , (1.5) 

there is a matrix 
mxn 

with positive elements such that 
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(1.6) 
m 
I min (a , I (d. . - n. .)) > 

i=l 1 jeJ 1J 
I b. . 

jeJ J 

This contradiction proves the necessity of condition (1.3). 

Sufficiency. From conditions (1.3) we have 

m 
Л = min( I min(a., Id.)- ) b ) > 0 , 

J i=l jeJ ^ jej *1 

where the minimum is taken over all proper subsets JCN^ • Let 

0<j <п/(mn) , (i,j ) e . Then the elements of the matrix D' = 

(d.. -n.-) „ satisfy the inequality (1.6) for any JCN and also for 
ij ij mxn J ^ J J n 

J = Nn by condition (1.2) . Hence, by Proposition 1.1, M(a,b,D')^0 • 

Hence there is a matrix xeM(a,b,D) satisfying (1.5). Therefore, by 

Proposition 4.1» Ch.l , the dimension of M(a,b,D) is (m-l)(n-l) . // 

1.2 A Representation Theorem 

The truncated transportation polytope M(a,b,D) of order 

mxn , m,n>2 , is called regularly truncated if its dimension is maximum, 

that is dim M(a,b,D) = (m-l)(n-l) . When at least one of the numbers m 

or n equals unity the polytope M(a,b,D) is called regularly truncated 

if d. . > min(a.,b.) , (i,i ) e N xN 
l j d m n 

When M(a,b,D) is a non-regularly truncated transportation 

polytope of order mxn we introduce the following sets : 

P = { (i, j ) e N xn : x. . = d. . Vx 
J m n ij ij 

Q = ((i,j) eM xN : x., = 0 Vx 
J m n ij 

Theorem 1.2 shows that P^0 in this case. 

(x. .) 
IJ 

(V 

mxn 

mxn 

£ M(a,b,D)} , 

£ M(a,b,D)} 

Theorem 1.3 tvery non-regularly truncated, non-empty trans¬ 

portation poly tope, о/ order mxn , m, n > 2 , which doet not degenerate to a 

tingle point, can le represented uniquely at the product o-f. a set o£ 

regularly truncated transportation poly to pet and a point, that it 

M(a,b,D) =M(a1,b1,D1) ®M(a2,b2,D2) Й ... 8M(ak,bk,Dk) 8R(P,Q) , where 

R(P.Q) it a point with coordinates 

u 

и 

(i. j ) e Q. 

(i,j ) e P. 
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Fig. 49. 

This means that after suitable permutations of rows and 

columns every matrix of such a polytope M(a,b,D) can be represented in 

the form depicted in Figure 49. Here the shaded region is the set PUQ 

of constant components, and x^ = (x?.). T . T is a matrix of the 
ieIp,J£jp 

polytope M(aP,bP,DP) , p£. 

The importance of this theorem resides partly in the fact 
m n 

that the problem of extremizing a function £ £ c..x.. on a non- 
i=l j=l 1J 1J 

regularly truncated transportation polytope which does not reduce to a 

point can be broken down into the solution of к problems of lower order: 

extr{ I I c..x?. : (x?.) £M(ap,bp,DP)} , p eN, . 
i£I iej K 

p p 

P/ioof of 7he.o/ie.m 1.3. Let M(a,b,D) be a truncated transportation poly¬ 

tope of order m*n such that 0<dim M(a,b,D) < (m-l)(n-l) . Then, by 

Theorem 1.2 either there is an i N such that У d.. = a. or there is 
m L ij 1 

a subset JC, for which equality (1.4) holds. 

as follows. 

We define the sets Iq • Jq » ^q » relative to M(a,b,D) 

n 
If I1 = {i £ Nm : I d = а±) f Ь , then T1 = , J] = Nn , 

Jq = U e Jq : I dii <V * 
X 1 ІЕІ, J 

j=l 

If У d. . > a. ,VieN .then among all the subsets JCN 
ij i m 6 n 
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satisfying (1.4) we choose a set J| of maximum cardinality. It is easy 

to see that such a set is unique. Indeed, if there are two such sets 

Jl^J{ • IJ!» I = II satisfying (1.4) then the set J|U J!^ will also 

satisfy (1.4). This contradicts the manner in which JJ^ was chosen. 

Further, we put J, = N \J* , I, = {i e N : У d. . < a.} , 
1 ” 1 1 m j eJJ 1J 1 

T1 = Nm4ll * J1 = (ieJl : JT dij < bj>* 

For the sets 1^, J-^, 1-^, , J| we define the following trans¬ 

portation polytopes 

«(ahblo1) - (Ьи)ІЕІі>]Е, У x..=a. - У d. . 
jEjq 4 1 j£j' 4 

i e I1, 

l x. . = b. , j e J-, , 0 < x. . < d. . , (i, j ) e I1xJ1), 
iel1 1J 

M(a1,B1,D1) 

ij ij 

(x..). т ,г7 : У x =a , iel , 
ij iel1,jeJ1 je4 ij 1 1 

Jl,' bS ' Ji dU ' Je,l ’ °-xi.i-di.i ’ (iUlEljXjp 

'1 

c. . 
IJ 

sets I. 

J1=fi • 

By definition we consider that M(ab,bb,Db) = 0 if one of the 

or is empty. Similarly M(ab,Bb,Db) =0 if = 0 or 

Clearly, M(ab,bb,Db) is a regularly truncated transportation 

polytope if 0 0 . 

Now consider the polytope M(ab,Bb,Db) . If it is empty then 

the theorem is proved (k=l). If it is a regularly truncated transportation 

poly tope then we put M(a^,b2,D^)=M(a1,Bd,D1) , P = I-^xJ' , Q=T^x 

((J^ U J|)\J-^) and the theorem is proved. If M(ab,6b,Db) is not 

regularly truncated then in a similar way we define the sets І£, J2 , , 3.-,, 

and the corresponding polytopes M(a^,b^,D^) , M(a^,B^,D^) . Clearly, 

after a finite number of steps we arrive at a polytope M(aS,Bs,Ds) which 

is either regularly truncated or empty. Since dim M(a,b,D) >0 , there 

are к , k^l , non-empty polytopes among the polytopes M(ap,bp,Dp) , 

P E Nc The sets P and Q are respectively 

РУі <Vjp> and (J (1><((J UJ')VT )) • 
p=l p P P P 
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The polytope M(a,b,D) is clearly uniquely expressible as a 

product of regularly truncated transportation polytopes. This completes 

the proof. Ц 

Corollary 1.4 

f0(M(a,b,D)) = П 
P=1 v 

fo(M(ap,bp,DP)) , 

d_1(M(a,b,D)) 
к 

= l fd _1(M(aP,bP,DP)) 
P=1 

k 
P 

diam M(a,b,D) = l 
p=l 

k 

diam M(ap,bp,DP) , 

dim M(a,bfD) = 1 
p=l 

dim M(ap,bp,DP) . 

Corollary 1.5 The po lyto pe M(a,b,D) іл simple, if and only 

if the. polytope.M(aP,bP,DP) , p £ , ane simple. 

1.3 Facets of a Regularly Truncated Polytope 

The facets of a regularly truncated polytope of order m*n 

are non-empty sets of the form: 

F7j(a,b,D) = {x e M(a,b,D) :х„=0} , (ifj)eNm><Nn , 

F ^ j (a, b, D) = {x £ M(a,b,D) : xij=dij.<min(ai,bj. )} , (i,j)eNmxNn 

The following lemma is obvious. 

Lemma 1.6 The *et F_.,(a,b,D) (F + j_ (a.b.D)) , (s.t)eN xN 
- st st m n 

ІЛ a facet о/ the negalanly tnuncated tnanApontation po lytope M(a,b,D) 

о/ onden m*n if and only if thene i<5 a mat/іік x £ F^ (a , b , D ) 

(x £Fgt(a,b,D)) tuck that 

0 < x. . < min (a.,b .,d. . ) /од all (i,j ) f (s,t) . 
**■ J “*■ J J 

Theorem 1.7 Тол. m,n.>3 > eueny integen о/ the fопт. 

(m-l)(n-l)+k , whene l^k^mn+m+n-1 and only thete іпіедепл can He 

the numlen of facetл о/ a negulanly tnuncated tnanApontation po lytope of. 

onden mxn . 
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Рл.оо4 The number of facets of any regularly truncated transportation 

polytope M(a,b,D) of order mxn clearly satisfies the constraints 

(m-1) (n-1) < fd_1(M(a,b,D)) < 2mn . 

The proof that any integer in this range equals the number of 

faces of some regularly truncated transportation polytope of order mxn 

will be carried out separately for the cases: k=l, 2 < к< (m-1)(n-1) +2 , 

(m-1) (n-1) + 3 ^k^mn+m+n-1 . 

Case 1. Let к =1. Consider the regularly truncated trans¬ 

portation polytope M(a1,b ',D ' ) of order mxn , m,n>2 , defined by the 

vectors a ' = ((n-1) (3m-2 ) + 1,3,3.3) , b' = (3m-2,...,3m-2) and the 

matrix D' with elements 

if i=l , j eNn_1 

if i=l , j=n, 

if i=2,3,...,m , j e Nn . 

By Lemma 1.6 we find that the facets of M(a,,b,,D') are given by the 

sets F7j(a ',b',D ' ) , (i,j) e {2,3.m^xNn-l » Fln'»b'»D') and only 

these. Consequently 

fd_1(M(a',b',D')) = (m-1) (n-1) + 1 . 

Case 2. Let 2 <k< (m-l)(n-l) +2 . Consider the regularly 

truncated transportation polytope M(a",b",D") of order mxn , m,n>2 , 

mn > 4 , defined by the vectors a" = (4m(n-l)-1,4,4»•••,4) > b" = (4m,4m,.. 

..,4m,4m-5) and by the matrix D" with elements 

if i=l , j e Nn_1 , 

if (i, j ) eH1U { (1,n)} , 

otherwise, 

where is some subset of pairs (i,j) taken from the set 

(2,3»• • • »m} xN^ ^ whose cardinality equals k-2 . As in the first case, 

by Lemma 1.6 we find that the faces of M(a",b",DM) are precisely the sets 

d" 
ij 

4m, 

2, 

4 
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Fin(a"’b"’D") , Fj.(a",b",D") , (i , j ) e {2,3 , . . . , m} xN^ , F*. (a" ,b" , D" ) , 

(i,j) eH1U {(l,n )} . Hence 

fd_l(M(a",b",D")) = (m-1) (n-1) + к . 

Case 3. Let (m-l)(n-l)+3^k<mn+m+n-l . In this case 

it suffices to consider the regularly truncated transportation polytope 

M(a3 ,b3, D3 ) of order mxn , m fn > 3 given by the vectors a3=(n,n,...n), 

b3 = (m,m,...,m ) and the matrix D3 with elements 

max ( 
m + 1 

m-1 

min (m,n) 

n + 1 \ 
n-1 1 

for (i,j) eH2 , 

for (i, j ) i H2 , 

where is some subset of pairs (i,j) e N XN oF cardinality k-m-n+1 

and to verify that 

fd-i(M(a3,b3,D3)) = (m-1) (n-1) + к . // 

Corollary 1.8 Among the negutanty tn.unc-ate.dL tnan^pontation 

potytope-6 of. oncLen mxn , m, n > 3 , tkene ane (m-1)(n-1) -літріекел. 

§2 (к,t)-TRUNCATED TRANSPORTATION POLYTOPES 

In this section we study the feasible set of a transportation 

problem with prohibitions; namely, we study polytopes ^(a,b) = 

{(x. .) e M(a,b) : x. . = 0 if n-t-1< j-i < k-m + 1} , where a = (a,,...,a ) 
ij mxn ii 1 m 

and b = (b^,b£»•••»b ) are vectors with real positive components, 

O^kjt^min (m, n ) - 1 and k,t are integers. 

The polytope ^.(a,b) is called a (k, t)-tnuncated. іпапл- 

pontation potytope of. oncLen mxn . 

Figure 50 shows schematically an arbitrary matrix belonging 

to Mk ^(a,b) (the shaded locations are those which can contain non-zero 

components). 

The polytope ^(а,Ъ) reduces to a classical transporta¬ 

tion polytope if к = t = 0 . 

2.1 An Existence Criterion 
m 

Recall that the equality £ a. 
i —1 1 

n 
l b. is a necessary and 

3=1 J 
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t 

к 

Fig. 50. 

sufficient condition for the existence of a solution to the classical 

transportation problem. But this equation does not suffice to guarantee 

that a (k,t)-truncated transportation polytope should be non-empty. 

Theorem 2.1 Let m,n>2 , k+t > 1 . The (k,t)-tnuncated 

t/ian spoliation potytope M^. ^(a,b) о/ onden mxn is non-empty L-/L and. 

onty i£ the /ottowing conditions a/ie satisfied: 

1) u kt > 0 

m n 

l 
i=l 

a. = 
l I b . 

j=i J 
(2.1) 

s s+n-t-1 

l 
i=l 

a. < 
l = l b 

J-1 J 
Vs e , (2.2) 

s s+m-k-1 

l 

J=l 

b. < 
J = 

l a. 
i=l 1 

Vs£Nk ; (2.3) 

2) и II О
 

t>0 (2.1) and (2.2) 

3) и 

о
 II 

-p k>6 (2.1) and (2.3) 

Necessity. The neces sity of (2.1) is obvious. Let t>0 , 

^mxn EMk, 
t(a,b) . Then from the way the matrix x° is 

Pnoo£ 

x° = (> 

constructed we have 

s s s+n-t-1 m s+n-t-1 
.Іа = I I x° < I I x°. = I b , Vs eN. , 
i-1 i=l j=l 1J j-1 i=l 1J j=l J ѣ 
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Thus, constraint (2.2) is satisfied. The constraint (2.3) may be checked 

similarly. 

Sufficiency. Let kt > 0 . Suppose that for the polytope 

^(a,b) the conditions (2.l)-(2.3) are satisfied. We will construct a 

matrix (x.°.) which is a point of the polytope M, , (a,b) . For 
1J Ш ХП К,Z 

definiteness suppose a < b . If b < a then consider the polytope m=n nm r j r 

^(b,a) instead of ^(a,b) . 

From the conditions of the theorem there is a number r such 

that O^r^ m-t-1 , and 

m m 
У a. <. b < У a. . 

i=m-r i=m-r-l 

Let x^ = 0 , j = k+1 ,k+2.n-1 . Also let x ?n = a^ * i=m-r,m-r+l,..,m, 

if г = m-t-1 , and 

x 
0 
in 

a. 
x 

b 
n 

m 

0 

for i =m-r,m-r+l,...,m, 

for i = m-r-1, 

for i < m-r-1 

if r < m-t-1. 

Consider the (ki,ti)-truncated transportation polytope 

M. , (a',b') of order (m-r-l)(n-l) defined by the numbers ti =t-1 , 
К 1 , 0 1 

ki 
k - r - 1 , 

0, 

if k-r-1 > 0 , 

if k-r-1 £ 0, 

and by the vectors a 1 = (a ' ,ai ,. . . ,a ' , ) , b ' = (b,1 ,b ' 
J 12 m-r-1 12 

m 
a.' = a. , i e N -,,if j a.=b , and 
l l m-r-1 . L l n 

i=m-r 

,b^_i) , where 

if 

a t 
i 

m 
I a. < 

i=m-r 1 
b 

n 

l 
i=m-r-l 

a. 
l 

b 
n 

b = b . 
J J 

j E N. 
n-1 

for ieN 0,r<m-2 
т-г-л 

for i = m-r-1, 

If ki =ti = 0 this polytope is a classical transportation 

polytope, and if ki tti^l then it is easily checked that all the condi¬ 

tions of the theorem are satisfied. Thus continuing the process described 
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we obtain a matrix (x?.) „ eH, , (a.b) • 
ij mxn k,t4 ’ ' 

When t = 0 or к = 0 the proof of sufficiency is similar 

except that the number г is given by the inequalities 

mm n n 
l a, < b < I a. , 0<r <m-l , or £ b < a < f b. , 0<r<n-l. 

i=m-r 1 i=l 1 j =n-r J m j=l J 

This completes the proof. // 

We remark that in the case m=n , к = t = n-2 , this theorem 

reduces to Theorem 1 in Lev (1972). 

2.2 Polytopes of Maximum Dimension 

Every vertex x=(x..) of M, . (a,b) is constructed so 
1J ЩХП iCfLi 

that x^j =0 if j-i > n —t —1 or if i-j >m-k-1 . From the equalities 

|{(i,j ) eNmxNn : i-j >m-k-1}| = k(k+l)/2 , 

I { (i , j ) e NfflxNn : j-i>n-t-l}| = t(t+l)/2 , 

we conclude that the maximum dimension of a (k,t)-truncated transportation 

polytope of order mxn cannot be greater than d = (m-l)(n-l) - 

{k (k+1) + t (t+1)}/2 . On the other hand for m,n>2 , m+n-k-t > 3 , a 

(k,t)-truncated transportation polytope whose dimension is d is given by 

М^. ^(a,b) where 

a. 
l l 

j=l 

i e N 
m 

b . 
J 

m 

= l 
i=l ij 

j e N о r 

Here 

x 0 

ij 

if k-m+1 >j-i >n-t-1, 

otherwise. 

Note 

polytope of order 

Thus 

polytope is given 

that when m+n-k-t <3 , a non-empty (k, t)-truncated 

mxn always degenerates to a point, 

the maximum dimension of a (k,t)-truncated transportation 

by the number d . 

Theorem 2.2 Let m,n >2 , k+t > 1 , m+n-k-t >3 . 7he follow¬ 

ing conditions ane ne.ce.ssa/iy and sufficient fo/i a non-empty ()att)-trunca¬ 

ted tnanspontation polytope ^(a,b) of. o/ide/i mxn to have maximum 
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<1іт.е.плі on : 

1) U 

s 

kt > 0, 

s+n-t-1 

l 
i=l 

s 

a. < 
1 

1 b. 

J-l J 
s+m-k-1 

I 
j=l 

b. < 
J 

1 a. 
i=l 

2) 4/ t = 0 , к > 0 the.n 

3) U 

0
 

II t > 0 tkzn 

Vs e Nn , (2.4) 

Vs e Nk ; (2.5) 

(2.5); 

(2.4). 

P/ioo£ Necessity. Case l). Suppose that one of the conditions 

(2.4) or (2.5) is not satisfied. Then, by Theorem 2.1, there is a number 

r e N 
r r+n-t-1 

, for which one of the equalities £ a. = £ b, or 
J max (k, t) . , jl 

r r+m-k-1 ^ 
£ b. = 1 a. is true. For definiteness suppose that the first of 

j=l J 1=1 1 
these is true. This means that for any point of ^(a,b) we have 

x. . = 0 , i=r+l,r+2,...,m , j =1,2,...,r+n-t-1 . Hence dim M. , (a ,b) < d. 
1 J K, t 

This contradiction shows the necessity of conditions (2.4)»(2.5). 

The proof for cases 2) and 3) is similar. 

Sufficiency. Consider the case kt > 0 . The other cases 

have a similar proof. Since ^(a,b) satisfies conditions (2.4) and 

(2.5)» for every pair (p,q)eQ = {(i,.j)e Nm*Nn : i-j < m-k-1 , j -i < n-t-1} 

there is a point x (p.q) = (x. .) ^ in M, , (a,b) for which x > 0 . 
ij mxn k,t pq 

Therefore the point x (x?.)= I 

1J (p»q )eQ Pq 
a__x^p’l^ of M^. ^.(a,b) , where 

£ a = 1 , 0 < a <1, satisfies the c onditions x?.>0 , (i, j ) e Q . 
(p,q)eQ pq pq 1J 

Hence the polytope ^(a,b) has maximum dimension. // 

2.3 A Representation Theorem 

Let m+n-k-t;>3 • Then the (k, t)-truncated transportation 

polytope ^(a,b) of order mxn is called /izguia/і if its dimension 

is maximum, that is 

dim ^.(a,b) = d = (m-l)(n-l) - §{k(k+l) +t(t+l)} . 

In particular, every classical transportation polytope is regular. 
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Clearly, any (к,ѣ)-truncated transportation polytope of order 

m*n with min(m,n) = 2 is either regular or degenerates to a point. 

For a (k, t )-truncated transportation polytope ^.(a,b) of 

order mxn we define the set Q = {(i,i)eN xN :x..=0, xe(x..)eM, , (a.b)} 
m n ij ij k, t 

The following theorem is analagous to Theorem 1.3. 

Theorem 2.3 toery (k,t)-truncated tranAportation poly tope. of 

order mxn , m,n >2 , which, ІА not regular and which doeA not degenerate 

to a point may He repreAented uniquely in the form of. a product of 

regular polytopeA, that ІА 

Mk,t^a’b^ = Mki ti (&1»ЬІ ) ®Mk2 t (a2»bZ)®**' ®Mk t (&P»bP) ®R(Q) . 
1,1 2,2 P’ P 

where R(Q) ІА a point with coordinateA x^ . =0 , V(i,j ) E Q. 

It is easily seen that any matrix of a (k,t)-truncated trans¬ 

portation polytope ^(a,b) which is not regular and which does not 

degenerate to a point takes the form given in Figure 51. Here the unshaded 

region represents the set of zero components and x 

some matrix of the polytope M, . (a£,b^) 
* Z £ 

UN 

1 - (Xе ) 
uij ;iEl£,jEj^ 

IS 
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Corollary 2.4 

f0(Mk,t(a.b>) i—
1 

Q*
 t=

J 
и 

и 

diam ^(a,b) 

i—
1 

j 
II 

II diam M, . (a^,b^) 
k£ * Ѣ£ 

dim M^. ^.(a,b) 
£=1 

dim Mv . (a^,b^) 
Kr t 

d-l^Mk,t^a,b)^ 
£=1 

f, ,(M, , (a*,b* 
d£-! k£, 

О I 
kene d. іл the dimension о/ the. potytope M, , (a ,b )). 

2.4 Simplexes 

Theorem 2.5 

Let к+ѣ > 1 , d = (m-l)(n-l) - Hk(k+l) +t(t+l)}. Among the 

negu.la/i (k ,t)-tnu.nea.ted tnan^pontation potytope* о/ onden mxn , m,n>2 , 

thene ane &-*imptex.e* onty in the ea*e* : 

1) m+n-k-t = 3 » 

2) (k-l)(t-l) = 0 ; 

3) min (m,n) = 3 , max (m,n)=>3 , max (k,t) = 2 ; 

4) m =n =4 , min (к,ѣ) = 0 , max (k,t) = 3 . 

Note that in the case of the classical transportation poly¬ 

topes of order mxn there are max(m,n)-simplexes only in the case 

min(m,n) =2 (see §5» Ch.6). 

PnooJL Clearly, a regular (k,t)-truncated transportation polytope 

^(a,b) of order mxn is a d-simplex if and only if it has d+1 

vertices. In case l) every regular (к,1)-truncated transportation poly¬ 

tope is a 0-simplex. 

Case 2). Let, for example, t=l . Consider the regular 

(к,1)-truncated transportation polytope ^(a°,b°) of order mxn where 

a° = (3n-4,3,3,...,3) , b° = (3,3,...,3m-4) • For any vertex x = (x^. )mXn 

of M, , (a0,b0) the inequalities x, . > 0 , j e N , , x. >0 , i = 2,3». . »m 
К»-L _LJ П—-L 1П 

are satisfied. Among the remaining components of the vertex x there is 
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only one positive component, which can occur at any of the places : (i, j ) e 

{2,3,. . . ,m}xNn_1 , i-j^m-k-l . Consequently, f0(Mk q(a°»b0)) = d+1 . 

Case 3). For definiteness, let m=3 , t=2 . Consider the 

regular (k,2 )-truncated transportation polytope 2(al»b1) of order 

3xn , n > 3 , defined by the vectors a1 = (4n-9,3,6) , b1 = (4,4,...,4) • 

It is easily seen that the elements of any matrix x s (x. . )^Xn e 1^ 

are constructed in the following way : xq• > ^ » j e Nn 2 ’ x2 n-1 > ® ’ 

x3,n-l > 0 ’ x3n > 0 * Thus f0^Mk,2^&1,l>1^ =d + 1 * 

Case 4) • For definiteness, let t = 0 . It is clear that 

f0(M0 ^(a2,b2)) = d+1 when a2 = (3.6.4.6) , b2 = (6,4,6,3) . 

Since any two vertices of a d-simplex are adjacent, to 

complete the proof it remains to show that in all remaining cases there 

are non-adjacent vertices in any regular (k,t)-truncated transportation 

polytope _j.(a,b) of order mxn . 

We suppose that aq = • If aq < b^ then consider 

^(b,a) instead of ^.(a,b) . 

Let the integer p satisfy the inequalities 

where 

2 < p < n - t 
p-i 
l b. < a 

3*1 
J “ 1 

b. . 

3=1 

Now let 

(ii.j 1) 

(i {»j 1) 

(l.p+l), 

(2,p-1) 

(m-l,£ ), 

(m,h) 

if p=2 , к = m-1 , m < n , 

otherwise, 

if x 0 * s - q,q+l, . . . ,n , 
Ш о 

otherwise, 

q = max(p+l,k+l) 

n 

if t = m-1 , m < n , 

otherwise, 

h = max{s : q < s < n-1 , xmg = 0}. 
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Since the parameters m,n,k,t do not satisfy conditions l)-4). there is 

a vector у = (у. . of Mv ,(a,b) with components y. . >0 , 
lj ШАІ1 л» l 

v.i .1 > 0 . Together with the obvious equalities x. = 0 , x.i .i = 0 , 
’’li.ji e 4 H.Ji H.Jl 

this implies that the vertices x and у are not adjacent. 

§3 THE DISTRIBUTION POLYTOPE 

Let a = (a^,a^,...,a ) be a vector with real non-negative 

components. 

Definition 3.1 The set 

M (a) (x = (x. . ) .. : 
n 
У X. . = 1 , ieN 

ij nxn j n 

n 
У a.x . . = a . 

’ j e Nn ' 
x. . > 0 

i=i 1 j ij = 

is called a c■LL&tn.OLution polytope of order nxn . 

This polytope is clearly always non-empty. 

If = &2 = • • • = an > 0 the distribution polytope M(a) 

reduces to the assignment problem polytope. Thus, in this case the number 

of vertices of M(a) is n! . 

Reverz (1961) conjectured that the number of vertices of a 

distribution polytope M(a) of order nxn defined by a positive vector 

a could not exceed n! . However, in 1964» Perfect & Mirsky (1964) 

proved the following theorem. 

Theorem 3.1 If all component/) of the. vecto/i a a/ie positive, 

and ane not all equal, then the. numlen of. у entice/ of the di/t/iLlution 

polytope M(a) of o/iden nxn , n >. 3 44 gneaten. than n! . 

Pnoof Without loss of generality we can assume that 6 = ap i a2= ••• =an 

= 1 . Then the non-singular affine map y^ . = a^x^j » i^j » 

у.. = a.(x.. -1) +1 maps the polytope M(a) into 
J J J J J 

R (a ) = {xeM : x . . > 1 - a. , ieN }. 
n 11= l n 

Thus to prove the theorem it suffices to show that the number of vertices 

of the polytope R(a) is greater than the number of vertices of the poly¬ 

tope Mn associated with the assignment problem. To do this we set up a 

bijection between the set of all vertices of Mn and a proper subset of 

the vertices of R(a) . 
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Let у = (у..) е vert М and let the permutati 
1 ] ПЛП П 

on 

TTi TT2 

n 
7T 

be such that 

if j = V. 

1J 

if j І ^ 

We describe a method of constructing a vertex v# = (y# . ) eR(a) 
D j ^1J nXn 

corresponding to the vertex у . To do this we express the permutation 

as a product of independent cycles tt = ^^.^2 * * * ^r ’ ^or each cycle <$ = 

<b,c,d,...,j,k> whose length is greater than 1 we define the quantity 

= max(l - a, ,1 - a ,1 - a, ,...,l-a.,l-a,). Clearly 0 £ < 1 . Let 

Уьь = Усс = ^dd = •" = yjj = Укк = y6 * 

Уьс = ^cd = ^de = ••• = yjk = УкЬ = 1-y6 ' 

and for every cycle 6(m) of unit length we let у*ш = 1 . All the 

remaining components are put equal to zero. 

We show that the matrix y* constructed in this way is a 

vertex of R(a). Suppose the opposite. Then there exist two distinct 

matrices z 1 = (zf^ )nXn » z2 = (z?j)nXn E^(a ) not equal to y# such that 

y#=(z1+z2)/2 . This implies that if y*.=0 or 1 then z*. = z? . = 

y*. . It remains to determine the positive elements in the rows and 

columns with indices b, c , d, . . ., j , к . 

Suppose, for definiteness that =1 - a^ . Then, since for 

any point of R(a) it is true that z^ i 1 - a^ , we have that У^Ь = zbb = 

z3, = 1 - a, . Examining in succession the components at the locations 
bb b ° 
(b,c),(c,c),(c,d).(j,J),(j»k),(k,k) and repeating this argument for 

each cycle 6 whose length exceeds unity, we obtain y* = z 1 =z2 . This 

contradiction proves that y* e vert R(a) . 

It is easily seen that the matrices у and y* have posit¬ 

ive off-diagonal elements in exactly the same positions. Hence y^/y2 

=> у* ф- у* . Thus, we have found n! distinct vertices of the polytope 

R (a) . 
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We now show that there is at least one vertex z of 

which is distinct from those already listed. Since the numbers 

. . ,a are not all equal there is an a <1 , where 1 < s < n-1 . 
n s = = 

examine two possible cases. 

Case 1. Let s =1 . Then 

Case 2. Let s >1 . Then if a , + a >1 
s -1 s = 

and if 

1 

1 

1 - a , 0 a .. 
s-1 s-1 

0 1 - a a 
s s 

a -] a 1-a -a , 
s-1 s s s-1 

1 

1 

s-2 n-s-1 

z 

R(a) 

• • • 

We 
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Here all elements not indicated are zero. It is easily 

verified that in each case z is a vertex of R(a) . Also, z is 

distinct from each of the vertices y* constructed above, since 

u(z ) +v(z ) >n + 1 and u(y* ) +v (y* ) =n , where u(x) is the number of 

diagonal elements of x equal to unity and v(x) is the number of 

positive off-diagonal elements of x . // 

Other results on the number of vertices of a distribution 

polytope have been obtained by Perfect 6 Mirsky (1964) and by Dubois 

(1973). These results are included in the exercises to this chapter. 

EXERCISES 

1. The regularly truncated transportation polytope M(a,b,D) 

order mxn is degenerate if and only if there exist partitions = 

IfU І£ , Nn =U, and also subsets (possibly empty) 

I.£ C (j : (i, j ) e Itx^t * dij < min (а±,Ъ. )} , C {i : (i , j ) e ltxJt , d± . < 

min(a^,b^.)} , t=l,2, such that 

(x = (x..). 
ij /iel+»jeJt • jejtXiJ &i ~ 

l x. , =b, - I d. . , V j e J, ,0 < x. . < d. . 

i«t10 
J iel^ 1J ij ij 

, Vi e It , 

, V(i,j) e f 0 t =1,2 . 

of 

2. Is it true that for every degenerate truncated transportation 

polytope of order mxn there exists a non-degenerate truncated transpor¬ 

tation polytope of the same order whose number of vertices is not smaller? 

3. (Kravtsov & Korzinkov 1979). For every non-degenerate 

classical transportation polytope M(a,b) of order mxn , 2^m;<n , there 

exists a pair of indices (s,t) e N xN and a matrix D = (d. .) „ such 
m n ij mxn 

that fq(M(a,b,D) > fg(M(a,b)) + (m-2)fg(M(as,b^)) , where as = (a^,a^, . .., 

as-l’as"bk,as+l" * *,am^ ’ b = ^bl’b2’•* *,bk-l,bk+l’* "’bn^ * Usingthis 

fact show that, for г^т^п-І the following inequality holds: 

ф (m ,n) > ф(т,п) + (т-2)((п-1)т b + (n-l)(mn-2m-n+l)) , 

where ф(т,п) is the maximum number of vertices in the class of regularly 

truncated transportation polytopes of order mxn . 

4. Let M(a,b,D) =M(a1,b1,D1)8M(a2,b2,D2)®...8M(ap,bP,DP)®R(P,Q) 

and m,n>2. A generalization of the first two assertions of Corollary 

1.4 are given by the following formulae: 
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fk(M(a,b,D)) l П f± (M(a ,b ,Db )) 
i,+i„+..+i =k s = l s 
12 p 
i, . .i >0 

1 P= 

for к = 0,1,2,...,ran-m-n . Here, by definition 

0, if i > (m'-1)(n '-1), 

f.(M(a ' ,b ' ,D ' )) = 
1 1, if i = (m ' -1) (n 1 -1), 

where the polytope MCa'.b'.D') has order m'xn' . 

5. (Kravtsov & Korzinkov 1979)- Let m,n.>2 , q. , h. , ieN be 
— l l m 

к к 
natural numbers such that J q. <ш , £ h . ^ n . Every number of the form 

i=l 1 i=l 1 
к . 

p = £ (q.-l)(h.-l) , and only these numbers, can equal the dimension of a 
,1=1 1 1 

truncated transportation polytope of order m*n . 

6. (Kravtsov & Korzinkov 1979)* Let n>3 . Every number of 

the form n+k , к = 0,1,2,...,n, and only these numbers can equal the 

number of facets of a regularly truncated transportation polytope of order 

2xn 

7. (Kravtsov & Korzinkov 1979). Let m,n>2 , ran > 4 , 

1 <. к < (m-l)(n-l) +2 . Then, the minimum number of vertices in the class 

non-degenerate regularly truncated transportation polytopes of order mxn 

with (m-l)(n-i) +k facets is given by k(m-l)(n-l) -k +2 . 

8. There is no non-degenerate regularly truncated transportation 

polytope M(a,b,D) of order mxn , п^п^З , whose number of vertices 

satisfies the inequalitiPs 

(m-1) (n-1) +1 < fQ(M(a,b,D)) < 2(m-l)(n-l) . 

9. Can any number t e Nn equal the number of vertices of a 

truncated transportation polytope of order mxn , 2 <m ^n ? 

10. Formulate conditions on the components of the vectors a and 

b and the elements of the matrix D which guarantee that a truncated 

transportation polytope reduces to a point. 

11. The number of bases of a (k,t)-truncated transportation poly¬ 

tope of order mxn is given by 

(m-l)!(п-l)! n-k-1 m-k-1 , „ , 
c * (ш - к -1) j (n-k-l)j m n ’ where 0<c<1 * 

12. Necessary conditions for a truncated transportation polytope 

M(a,b,D) of order mxn to be non-empty are given by: 
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Ш 

Д dijiai ■ ѴІЕ"ш > dijibj > Ѵ1«». • 

Show that these conditions are not sufficient when m,n> 2 . 

13. The feasible set for a transportation problem with prohibi¬ 

tions is a transportation polytope M(a,b,D) of order mxn with matrix 

D whose elements satisfy the conditions 

= 0 , if (i,j ) e a , 

if (i, j ) i a 

d. . 
ij > min (a.,b.) , 

1 J 
where a is the set of prohibited locations, that is, some non-empty sub¬ 

set of the set Nm><Nn . Such a polytope is called a-t/iuncaied . Using 

similar arguments to those used in the proof of Theorem 2.1, Ch. 6, obtain 

the following formula for the number of bases g'(m,n) of a non-empty 

а-truncated transportation polytope of order mxn , m,n_>2 (it is assumed 

that no column of the constraint matrix (l.l), Ch. 6, corresponding to an 

element in the set enters into the basis) 

61(m,n) 
n m 
Л I A 

j=2 i=l 1J 

n 

,\±Alj+Cll C12 
c 

n 

C21 ,LX2j+C22 •** 
J 

c 

n 

cml cm2 l X 

lm 

'2m 

where 

c. . 
ij -£ 

A., X., 
ik ,1 к 

s=z l x, 

A. . = 
ij 

0, 

1, 

if (i,j ) e a , 

if (i,j) i a . 

i=l 
ik 

It is clear that this formula gives the number of spanning 

trees of a marked (labelled) bipartite graph for which the numbers 

n- = I A,, , Vic N 

j=l 

m . = I A. . , V j e К 
J iJ n 

represent the degrees of the 

vertices and (A„ ) is the incidence matrix of the graph. 

> 1 , A 
ij 

For the case in which n = n, > n„ > . . . > n > 1 , m - m, > m0 >. .. . 
1=2— — m — 1—2 — 

0 => A., =0 for all к > i , Vi e N , a formula for the number 
ik d m 

of spanning trees is given by (Yemelichev, Kononenko 6 Likhachev 1972, 

lemelichev & Kononenko 1974): 
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3'(m,n ) 
n m 
П m . П n. . 

j=2 J i=2 1 

14. (Yemelichev & Kravtsov 1975). Consider the а-truncated poly¬ 

tope (see Exercise 13) for the case in which a is given by 

r =h 
ot- U(^mr_]_‘*'^>mr_]_+^’''*,mr^><^ns-r+h-l^^’ns-r+h-l+^,'‘',ns^ ’ a-!>0 » 

b.>0 , 2<h<t<s , 0=mn<m, <...<m. =m , 0 = n л < n, < ... <n =n . 
j = = = 01 t 01 s 

A necessary and sufficient condition for this polytope to be non-empty is 

given by: 

b. , r =h-l,h,...,t-l. 

‘з-г+ь-г1-1 J 

15. Consider the transportation problem T with constraints on 

partial sums of the variables: 

m n n 
minimize T Ус. .x. . ; subject to У x. . <.a. , Vi e N ; 

. 1.1 1.1 J 1Л = 1 m 

m n 
r s 

l a. > I 

i=l 1 j=nc 

i=l j=l j=l 

i Xn. . = b . , V j e ; I x^ > dq . , V (s , j ) e NkxNn ; x.. . > 0 , V (i , j ) e 
i=l ij J іеР ij = SJ ij 

N xN ; where c..>0,a.>0,b.>0,d.>0, И P = N , P П P = 0 , 
m n ij =* 1 J sj - j^1 s m s t 

for all s ^t . Necessary and sufficient conditions for this problem to 

have a solution are given by: 

m n n к 

Л, aii L bj ; ,1 ai=<L ds.i -vseNk; bj^_L dsj ’vJ'eNn 
i =1 -1- j=l J ' iePs 1 j=l SJ k J s=l SJ 

Show, that the solution of problem T reduces to the 

solution of a classical transportation problem of order mx((k+1)(n+1)) . 

16. Let 1C. , (J Pk-Nm , U Qr»»n . РкПР =Q HQ .0 for 
k=l r=l 

k^r . Consider the problem: 

m n m 
minimize I I c..x.. ; subject to £ x..=b. ,VjeN ; 

i=l j=l 1J i=l 1J J n 

У x..=a. ,VieR 

j=l 1J 1 

У x..<a. , V i e R 

j-1 1J= 1 
dkr = ^ £ xii =dkr ’ 
kr iePk jeQr 1J kr 

V(k,r ) e N xN, , x . . > 0 , V (i , j ) E N xN 
S L* IJ Ш П 
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Necessary and sufficient conditions for this problem to have a solution 

are given by : 

n m s 

I aiS I b.j i I a< '• l min(a ,y )> I 

ieR 1 j=l J i=l 1 k=l K K reL 
!г ; «к>0 , 3r > 0 , 

Vk e Ns ,VreNt , VLCNt , where 

“k 

t s 

ai - £ dkr ' Br = E bi - l dkr ' Yk = l (bkr "dkr) • 
iePk 1 r=l Kr r jeQ^, J k=l кг k reL kr kr 

17. Let Nm - U П P^ = 0 for к t t . Consider the problem: 

m n 
minimize \ \ c. .x. . > subject to (x..) eM(a,b) , and 

i=l j=l ij ij ij mxn 

dkj S Jp xij i d4 • VCfc.j ) e Ns«Nn . 
к 

The existence of an index r , 1 <, г ^ s , for which 

n 
£ a. = I d . , is a necessary and sufficient condition for this 

ieP 1 j=l rj 
r J 

problem to reduce to the solution of the following sub-problems: 

1) • min I I I c x : I x..=d" , VjeN , I 
(iePr j=l 1J 1J isPr 1J n j= 

Vi e Pr , х„ > 0 , V(i, j ) e PrxNn ? , 

2) . min ( L I 
( ieP_ j = 

x . . = a. , 
! ij 1 

c-,x. , : l_ x. . =b. -d" , VjeN , I 
ij ij ij J rj 

j=l 

x. . = a. 
ij i 

ViePr ’ dkj=i£Ep Xij=dkj * V(k-j) e (Ns\{r})xNn , 

x..>0 , V(i,j)eP xN / , where P = N \P 
ij = v J rnl r mr 

18. Formulate necessary and sufficient conditions on the components 

of the vectors a and b for the (k,t )-truncated transportation polytope 

to reduce to a point. 

19- The number of bases of а (к,к)-truncated transportation 

polytope of order nxn is given by {(2+/3)n - (2-/3)n}/2/3 . when k=n-2 

(Yemelicheva 1974)> and by n^n”^ (n-2 ) (n2-2n+2 ), when k = l . 
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20. (Yemelicheva 1974)- A necessary and sufficient condition for 

the (n-2,n-2)- truncated transportation polytope of order nxn to be 

degenerate is the existence of an index t , l^t^n-l , for which at 

least one of the following conditions is satisfied: 

t t-1 t t 
1). I a = I b , bQ = 0 , 2). I a = £ b. 

i=l 1 j=l J i=l j=l J 

t t+1 

3) I a. = I b. 

i=l 1 j=l J 

4). + a4- XT 1 t+1 
0 

t t-1 t t-1 
l a. = I b. +b.+1 , 5 ) I b = la 

i=l 1 J=1 J Ъ+1 j=l J i=l 

21. (Yemelicheva 1974). The minimum number of vertices in the 

class of non-degenerate (n-2,n-2 )-truncated transportation polytopes of 

order nxn is given by (n -2[n/2] +2 )з ^ . 

22. Every whole number from 0 to n-1 , with the exception of 

n-2 , and only these numbers, can equal the dimension of an (n-2,n-2)- 

truncated transportation polytope of order nxn , n > 2 . 

23. (Yemelicheva 1974). Every whole number у such that 

n + [n/2] -1<;у^2п-1 , and only these numbers, can equal the number of 

(n-2)-faces of a non-degenerate (n-2,n-2)-truncated transportation poly¬ 

tope of order nxn . 

24- (Yemelicheva 1974). Let the components of the vectors 

a=(a.,a_,...,a ) and b = (b,,b„,...,b ) satisfy the conditions a. = b. 
1 2 n 1 2 n J li 

for all i e Nn . Derive the following formulae : 

f0<Mr 
2(a,b ) ) = 2n_1 , if 

Un+1 ’ 
if 

n-r+1 

= u 1 u. + u 
1 

r i=l 

аі < a2 ' 
< a 

a. ~ a 0 —... — a or if a-.^>a0—a~-a —a , a.,^2 aj 
12 n 123 n l= 

,, У u. -u u 
n-r+1^2 1 ” 

if 

. th 

a <an—a0 — •••—a 
r 1 2 r-1 r+1 

r n-r+1 

=a 
n 

1 < r < n 

Here is the i -Fibonacci number. In particular, it follows from 

this that the number of vertices in the (n-2,n-2)-truncated polytope for 

the assignment problem of order nxn (a^=b.=l) equals the (n+1)^*1- 

Fibonacci number. 

25. Let m,n>3 , 0<;k,t^min(m,n) -3 . The maximum number of 

facets in the class of regularly (k,t)-truncated transportation polytopes 

of order mxn is given by the number 

mn 
к(k + 1) + t(t + 1) 

2 
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n n 
26. Consider the problem of minimizing F (x) = У У c x 

П i=l j=l ^ 

where x = (х± -j )mXn E Mn-2 ,n-2 ’b ^ ' and a. = b. =1 , VieNn . For a fixed 

ѣ , 1 < t < n , let хѢ be the optimal solution of the problem of minimiz¬ 

ing the function Ft(x) on the polytope Mt_2 t_2(a,b) . Derive the 

following recurrence relation: 

Ft(x )=min(Ft_1(x ) + ctt ’ Ft-2^x ^ +ct-l,t +ct,t-1^ ' 

for 3 <t <n . 

27. (Dubois 1973). When a = b we call the classical transporta¬ 

tion polytope M(a,b) aijmme.tn.ic.at , It is easy to see that such a poly¬ 

tope is a special case of a distribution polytope (when a^ > 0 , Vie N ) . 

The following statements are true: 

1) if 0 < a^ < a2 = a^ = . . . = an , then 

fП(M(a»b)) = ((n-1)! )2 Пу11/к! ; 
u k= 0 

2) if 0 < a, = a„ = ...=a , < a < 2a, , then 
1 2 n-1 n 1 

n-1 
f a(M(a,b)) = (n-1)! I 1/k! ; 

k=0 

3) if the symmetric transportation polytope M(a,b) has the 

maximum number of vertices, then the numbers a,,a_,...,a are all 
1 2 n 

distinct. 

4) the maximum number of vertices 

transportation polytopes of order n*n is 

in the class of symmetric 

n-1 „ 
not less than П (k +1) . 

k=0 

28. (Perfect & Mirsky 1964). Derive the following relations for 

the number of vertices of the distribution polytope M(a) of order nxn : 

fg(M(a))£n! , if a^ = 0 , ai>0 , i=2,3,...*n; 

fф(М(а)) >n^(n-k)! , if a^=a2=...=a^=0 , а^>0 , for 

i=k+l,k+2,... ,n, 2^k=<n-l; 

f Q(M(a)) > 2 (n-1) (n-1)! , if а1 = і f &±=1 , i > 1; 

f q(M (a )) = n| , if a2 = 0 , a2 = a^ = ... = an . 

29. The minimum number of vertices in the class of distribution 

polytopes of order nxn is equal to n( . Formulate necessary and 

sufficient conditions for a distribution polytope to have the minimum 

number of vertices. 
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is a 

se 

n 

30. A gene/ialized. teanzp о etatlon poly tope. of order mxn 

m 
Ѣ of matrices x = (x. .) „ satisfying У a. .x. . =1 , V j £ N , 

1.1 mxn J Б . S іл 1.1 J n 
i=l 

У 8. .x. . =1 , Vi e N , x..>0,v(i,j)eNxN , where (a. . ) and 
. t-, ij ij m ij = J m n i,i mxn 
j=l 

ij 

)mXn are matrices with real positive elements. Prove the following 

assertions : 

1) any whole number from (m-l)(n-l) to mn and only these 

numbers can equal the number of facets of a non-degenerate generalized 

transportation polytope of order mxn , п^п^З ; 

2) every whole number from 1 to m+n-4 can occur as the 

diameter of a non-degenerate generalized transportation polytope of order 

mxn , 2 <m <n , n>3 . 

31. The solution of the transportation problem with bounded flows: 

m n 
minimize У У c..x.. subject to (x..) w eM(a,b,D) , 

i“1 ij ij J ij mxn 

can be reduced to the following transportation problem with prohibitions: 

m(n+l) n(m+l) m(n + l) 
minimize У У с.x. . subject to У x..=b! , V j £ N , . \ , 

j=i 1J 1J i=l 1J J n(m+1) 

n (m+1) 
l X±J. = , Vi e (n+]_) * 2 0 * v (if J ) e a * xij = 0 > v (if j ) І a , 

J 

where 

t e N 
n 

a, V i 
l 

e N 
m (n+1) 

> X. . > 
IJ - 

a} = 
a. 

X 
if i £ N , 

m 
l 

dkt 
if i = m + (k 

b! = 
b. 

J 
if J £ N „ 

n 

J 
dkt 

if J = kn+t 

c= 
ij 

c, . 
kj 

if i = m+ (k 

0 otherwise, 

a = { (m + (k-1 )n+t,t):keN ,teN}U{(k,kn+t):keN ,t£N}U{(m+k,n+k):keN } 
m n m n mn 

The optimal solution of the original problem is given by the 

formula x,*. = x¥^ , where i=m+(k-l)n+j , keN , jeN , and (x*¥) is the 
kj ij J m J n ij 

optimal solution of the new problem having dimension (mn+m)x(mn+n) . 

32*. Prove or disprove the conjecture lim ф(m,n)/3(m,n) = 1 , 
m .n-*-0" 

where ф(т,п) is the maximum number of vertices in the class of regularly 
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truncated transportation polytopes of order m*n , and B(m,n) is the 

number of bases of a regularly truncated transportation polytope of order 

m*n (see Ex. 49» Ch. 6). 

33*. Is it true that almost all truncated transportation polytopes 

have the maximum number of facets? 

34*. Let k+t > 1 . Is it true that the number of vertices of any 

regular (k,t)-truncated transportation polytope of order m*n does not 

exceed the number 2<J> (m ,n )/{к(k+1) +t (t + 1)} ? 

35* Extend the results of §2 to the case of a transportation 

polytope with prohibitions of the following type: 

x^. = 0 , if t^-n+1 > i-j > m-k^-1 f 1 ^ r < s , l^q^p » where 1 < s , 

p < min (m,n)-l , 0 < t^ , k^<min(m,n)-l , k^ > k^ > . . • > kg and t^ > t^ > . . 

.. >t , к ,t are whole numbers. 
P r’ q 

36. Consider the feasible set of a transportation problem with 

prohibitions which are organized in a special way: 

Mmxn(a»b) = (x = (x. .) ; xeM(a,b) , x. . = 0 , V(i,j )eG} , where G = 
ш л II ± J IH л II _L J 

S 

(N xN )\U (R xQ ) 
m ns p=l P P 

Here, s >2 is a natural number, R = (m ,+l,m } 
P p-1 p 

Q = {n ,+l,n } , and m , n are numbers such that 0 = nn < n, < n0 < ... 
4p p-1 p p p 0 12 

< ns < ns+]_ = n , 0 = mg < m^ < m^ < • • • < ms = m . Every such polytope is called 

a tsianApo/itation po tytope. о/ o/ide.si mxn with s &.lock-i , Prove the 

following assertions: 

1) the polytope H^X[](aib) is non-empty if and only if the 

inequalities 

are 

l a± > l b- 
ieRp jeQp J 

satisfied, and at least one 

2) the polytope MS 
r r m n 

, V p e Ng , 

of them is satisfied strictly; 

(a,b) has maximum dimension d 

(*) 

where 

d =т(пз+і-пз) n + У (m -m , )(n -n , ) 
p=l P P"1 P P-1 

if and only if all of the inequalities (*) are strict. 

361 



8 MULTI-INDEX TRANSPORTATION POLYTOPES 

A natural generalization of the classical transportation 

problem is the following p-indexed m-fold transportation problem: 

minimize the expression 

n, n„ 
p 

V4 V4 ... у c. . x. . 
i =1 І =1 І =1 1l12'"'1p 1l12‘,’1p 
12 p 

subject to the constraints 

nki nk2 

l I 
ik =1 ik =1 K2 

m 
I x. . . -I іл„. 

l, =1 12 к 
m 

. l 

1l’••1k1-l 
* t 1 * i 

V1' V1 k2+1" Lk -l#1k +1‘ * 'хр 
mm ^ 

Vi eN , seN , s ^ k, ,k„ , . . . ,k 
s n p 12 m 

s r 

x. . . > 0 
x,i0 . . . і = 
12 p 

for all sets (i, ,i 
_L 

b. . „. 
11* ' ‘^-l Xk 1+l'* *ik2-l*ik2+l'*• 

c. . . are 
1112 *‘ ’xp 

given real numbers. 

, 1 < k, < k_ < . . . < к <p, 
=1=2= = m = ^ 

0,...,i ) , where 
2 p 

-] 7Г -| 
'1k -1 1k +1' 

m m 

and 

m is a given fixed number. 

1 < m <. p-1 , p ^ 2 , ng > 1 ,VseNp . When m = 1 the problem 

is called ptLanan. . When m = p-1 it is called a p-i.nde.xed t/ian ap о sta¬ 

tion p/io&.iem wiih axiai литл. 

Many practically important problems in various branches of 

science, technology and production reduce to planar transportation prob¬ 

lems . 
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Particularly well known are problems arising in planning the transporta¬ 

tion of different types of goods. 

Classical transportation problems arise in finding the 

optimal transportation scheme for carrying a homogeneous product from 

points of production to points of consumption. A triply-indexed planar 

transportation problem can arise in the transportation of an inhomogeneous 

product. A quadruply-indexed planar transportation problem occurs in 

considering models of transporting an inhomogeneous product using several 

means of transport. In general, if p factors have to be considered in 

solving a transportation problem, this gives rise to a p-indexed planar 

transportation problem. 

A p-indexed transportation problem with axial sums arises 

from a transportation problem in which the points of production produce a 

semi-finished product which requires finishing before delivery to the 

points of consumption. The finishing of the product is carried out at 

intermediate points which can be classified into p-2 groups. 

This chapter deals with the feasible sets of planar and axial 

transportation problems as well as the multi-indexed selection problem. 

The axial transportation polytopes are studied in §1 where we obtain 

degeneracy conditions, a criterion for a polytope to belong to the class 

of non-degenerate polytopes with the minimum number of vertices and a 

formula for the minimal number of integral vertices. Planar transportation 

polytopes are studied in §2 and well-known existence conditions are 

obtained. Bounds on the dimension are obtained together with conditions 

for the existence of simplexes. Section 3 is devoted to calculating the 

number of options in a multi-indexed selection problem. 

§1 AXIAL TRANSPORTATION POLYTOPES 

”lXn2X' 

<XilV 

1.1 Definitions and Basic Properties 

Definition 1.1 An акіаі t/ian^po/itation po iytope. 

. ,*n , p>2 , is a set M (a1 ,a , . . . , ap) of 'matrices' 
P 

. ) whose elements satisfy the following constraints: 

Ч=1 

s-1 

l 
xs-l 1 1s+l 1 

1S + 1 nD 

l ... l 
s 

X ~ £L 
i =1 ili2‘’*1p is 

P 

V i e N 
s n 

Vs e N 

of order 

x = 

(1.1) 
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(1.2) x. . > 0 for all p-tuples (i,,i~ 
1-і1л« • »1 -L <. 
12 p 

, s 
where a 

polytope. 

(a^ ,a^»..•») is a vector with real positive components, 
s 

When p =2 this is clearly a classical transportation 

Let 

n 

Vs e N 
P 

(1.3) 

Since the matrix x with elements 

x. 
l112‘ 

. l 

p i 
П a? /Kp , i e N , s e N 

s=l V s ns P 

satisfies the constraints (1.1) and (1.2) it is clear that the axial 

transportation polytope M(aP,a^,...,ap ) is non-empty if and only if the 

condition (1.3) holds. 

po tyto pe. 

Proposition 1.1 Ike. сІіте.пліоп о/ the. акіа(. t/іаплро/itation 

oJL 0/ide.n. n.xn.x. . ,xn L-ь e.au.at to 
12 p 

P P 
П n - l П + P - 1 . 

s=l s s=l s 

We omit the proof. It can be constructed exactly on the 

lines of the proof of Proposition 1.1, Ch. 6. 

1.2 A Criterion for Degeneracy 

It was shown in §1, Ch. 6 that a necessary and sufficient 

condition for a classical transportation polytope to be degenerate is the 

existence of at least one pair of non-empty subsets ICN^ , JCN^ , such 

that I a. = £ b. . In this section we generalize these conditions 
iel 1 jeJ J 

to the case of a multi-indexed axial transportation polytope and we show 

that they are sufficient for such a polytope to be degenerate. 

We need first to define some new concepts. 

Let there be given a system of vectors: 
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bs = 

n 
g 

(bl,b2.bn ^ 
s 

, s e N , such that 
P 

bf > 0 , i e N 
1s_ 3 ns ’ 

V s e N , 
P 

l 
i =1 

s 

b? = К , Vs e N 
xs P 

, and a vector r = (ri'r2.rp) , rs e N such 
ns 

that bs > 0 , V s e N r p 
s ^ 

. We transform the system of vectors ,1 ,2 , p 
b >b у»*»)!1 

into the system cs = 
/ s S S \ 

C1’c2’'‘’cn 
s 

, s e N , by the rule : 
P 

g 
bS 

1 Q 
if i + r , s s 

C . = и 
О 

_L 
s i S 

b. - a if i = r , 

where 0 < a < min bs 
l<s<p rs 

We say that the system of vectors bb,b2,...,bP is trans¬ 

formed into the system cb,c2 , . . . , c*3 by means of an £.t.e.me.n.ta/iy і/іапл- 

£o/imation , 

Definition 1.2 A system of vectors a\a2,...,aP which 

defines a non-empty polytope M (a\a2 , . . . , a^ ) , i.e. which satisfies the 

conditions (1.3) , is called а полтаі -ьуліе.т . 

Let t(a) denote the number of zero components of the 

vector a . 

Definition 1.3 A normal system of vectors a"*", a2 , . . . , a*3 is 

called к-ae-ducilLte. (k>l) if there is a sequence of к elementary 

transformations which transform the system a"*", a2 ,. . . , a*3 into the system 

a\a2.a^ for which f t(ab) >k . 
i=l 

When a = min bS the elementary transformation is called 
l<s<p rs 

а лре.с.іаі t/ian<bf.o/imatlon . Clearly a sequence of special transformations 

which transforms a system of vectors ab,a2,...,aP into a system of null 

vectors is at the same time a means of constructing a vertex of the poly¬ 

tope M(ab , a2 ,. . . , a*3) . Hence, a normal system of vectors ab,a2,...,aP 

is always L-reducible, where 

L = fn -p + 1 
s=l 

If a normal system of vectors ab,a2,...,aP is k-reducible 
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for some k< L then we will call it a /ie.du.cii.Le. луліет . 

Since the rank of system (1.1) is equal to L , every vertex 

of an axial transportation polytope of order n^xn^x...xn 

contains no more than L nonzero components. Thus a degenerate point of 

an axial transportation polytope of order n^xn^x.^xn^ has less than L 

positive components. 

Lemma 1.2 An ax.iaL tnanApontation poiytope M(a^ , a^, . . . , a^ ) 

іл degenerate i£ and oniy i£ the iy^tern o-fL vecto/іл a^,a^.a^ іг> 

/leduciiLe, 

The proof of the Lemma follows from the fact that the exist¬ 

ence of a degenerate point of a polytope implies the existence of a 

degenerate vertex. 

Definition 1.4 A normal system of vectors is called 

diviybiiLe if there are subsets Sq » s2 c Np » si П s2 = 0 , S-^U S2 / )J and 

non-empty subsets J C N , s e S-, U S„ such that 
J s n 12 

s 

I I as = I I as . 
seS-j^ jeJs J seS2 jeJg J 

12 D 
The orem 1.3 /0 the луліет о/ vecto/іл a ,a ,...,a” іл 

diviAiiLe then the ax.Lat transportation poLytope M(a\a^, . . . ,a^) is 

degenerate. 

Proof. By Lemma 1.2 it 
. 12 p 

vectors a ,a ,...,a^ 

number t = || + | S2 | 

assertion is trivial. 

Let 

I ai = as • L a- s b > s e S, U S? , 
j£js J j£js J 

where J = N \ J , and let у = min( min a , min b ) . 
s s seS1US2 s ssS1US2 s 

First suppose that y=a , s 0 e S, . Then there is a 
So 1 

sequence of special transformations which transforms the system of vectors 

suffices to show that every divisible system of 

is reducible. We prove this by induction on the 

(see Definition 1.4)- For the case t = 2 the 
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such that a"*-, , . . ., a^ into a system a^,a^,...,a^ 

l l a* 
seS-jX {s о} jeJ£ 

l l a* 

seS2 J'eJs J 

By the induction hypothesis, the system so Obtained is reducible. When 

s0 £the proof is similar. 

Now suppose that y=b . Assume, for definiteness, that 
S 0 

ls1l > |s2 
ISfl - |s2 

Choose a subset SCS^fso) whose cardinality is 

Then 

I l as 
seS^ j £Jg J 

l I a: 
r 
s 

seS^ jeJ.! ^ 

where 

SI = S-jXS 
S2 

s2u S , 

J' 
S 

Js ’ 

Js ’ 

if s e S , 

if s e (S-jX S) u s2 

Consequently, as in the previous case, there is a sequence of special 

transformations which transforms our system into a reducible system. // 

1.3 Polytopes with the Minimum Number of Vertices 

In this section we describe non-degenerate axial transporta¬ 

tion polytopes with the minimum number of vertices and we also derive a 

formula for determining this number. Corresponding results for classical 

transportation polytopes were obtained in §5, Ch. 6. In proving the 

results of this section certain technical complications arise. We there¬ 

fore note only the main liaes of the argument and do not dwell on the 

details. 

For the remainder of this section we assume that 

nx > n2 > . . . > n >1 , a^ > a® > .. . > a® , VseN , aq < aq+"^ if ns=ns+i * 
P ns P s 

(The case ai=ai+"^ cannot occur since the polytope M(a\a^ , . . . ,a^) 

is assumed to be non-degenerate (see §1.2)). 

We present some definitions which are necessary for this 

section. 
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1 2 
Definition 1.5 The axial transportation polytope M(a .a 

..a*5) of order n,xn x...*n is called лie.gu.Lan. if 
1 2 p 

s . г к 
a + > an 

n i 1 
s k=s+l 

> (p - s)K , V s e N 
P-1 

We recall that an axial transportation polytope of order 

nixn2x...xnp is non-degenerate if each of its vertices contains exactly 

f n - p + 1 positive components. IS 

Lemma 1.4 £ve./iy /іе.ди£а/і axiat іяаплро station po iytope. o£ 

оясіея n^xn^x. • - ХПр і-ь non-degeneeate. 

This lemma can be proved using induction on p . Note that 

the lemma is obvious when p = 2 . 

Let /7 denote the class of all regular axial transportation 

polytopes of order n^xn^x.^xn 

Lemma 1.5 !{. M(a"*‘,a^,...,al>)e/7 , then the. niunien о/ 

-1 
иеяііеел o-f. thi/> po 

P /s-1 \nc 
iytope ІЛ equai to П I П n. I ^ 

s=2 \i=l V 

xi°i°.. • i 0 -,i°ll. . .1 
1 2 s-1 s 

In proving this lemma we use the fact that every vertex 

,,a?)zfl has the following form: 
P 

V i e N ; 
1 n. 

J s s' 
-i such that 

s -1 

=0 for all 

x° = (x? . 
1112’’ 

.i } of 
P 

M(a1,a2 

1) x ? 
l-^ll. . . 

± > o , 

2) for any s e {2,3 

is a vector /. 0 • 0 
Ul* 2’ ‘ 

sre 

>0,x.°. . . ,, , 
1112’' ^s-l^-s11, " 

(i^, ±2 > • • • »lg_p ) / (ір'І2.13° 1^ ' Hence the number of vertices of any 

polytope M(a\a2.a*3) z is equal to the product of the number of 

choices of (n -l) numbers, with repetitions, from the sets 
s 

s-1 
n.J f s $ that is 

i=l 1 s 

P /s-1 \n 

bU 7 - 
-1 
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tope. M(a^,a^ 

Lemma 1.6 If. 

, . • •,ap) ІП 
-1 p 

the non.-degeneA.ate 

,then the number of. 

axial transportation poly- 

its vertices is greater than 

The proof of this lemma can be carried out along the lines of 

the proof of the analagous theorem for the classical transportation poly¬ 

topes (see §5, Ch. 6). 

Lemmas 1.5 and 1.6 yield immediately the following theorems. 

Theorem 1.7 (Yemelichev, Kononenko & Likhachev 1972) The 

minimum. number of vertices in the class of non-degenerate axial transpor- 

p /s-1 \n -1 
tation polytopes of order n-,xn„x...xn i-i equal to П ( П n.) s 

1 ^ p s =2 \ i =1 7 

Theorem 1.8 (Yemelichev, Kononenko & Likhachev 1972) A 

non-degenerate axial transportation polytope has the minimum number of 

vertices if and only if it is regular. 

1.4 The Minimum Number of Integral Vertices 

In this section we assume that the vectors a\a^,...,ap 

defining an axial transportation polytope are integral. 

As we have mentioned earlier (§1.2) a sequence of special 

transformations which transform the system of vectors a\a^,...,ap into 

a system of zero vectors gives, at the same time, a method of constructing 

a vertex of M(a^,a^ ,. . . ,ap) . Thus, in any polytope M(a\a^.ap ) 

defined by integral vectors, there exist integral vertices. On the other 

hand, since the constraint matrix in (l.l) is not unimodular for p >2 , 

we have by Theorem 2.1, Ch. 4, that there are polytopes with non-integral 
12 3 

vertices. An example of such a polytope is the polytope M(a ,a ,a ) of 
12 3 

order 2x2x2 defined by the vectors a =a =a = (1.1) . Indeed, the 

matrix (x. . . )„.«..« with elements 

1/2 if (i1,i2,i3) e {(1,1,1),(2,1,2), 

(1,2,2),(2,2,1)}, 
0 otherwise, 

is a vertex of this polytope. 

' -i "i i 

Х±11213 
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We solve here the problem of finding the minimum number of 

integral vertices in the class of axial transportation polytopes of order 

n,xn„x,..xn 
12 p 

Let fg(M) be the number of integral vertices of the 

polytope M . Later we will need the following lemma. 

Lemma 1 ■ 9 Let p .> 3 , l^r/k^p . 1 hen the numle/i o£ 

integral ѵепііеел oJL any акіаі tnanApo/itation polytope M(a ,a ,...,a") 

ol o/ide/i n,xn x...xn patiptie-i the inequality 
1 2 p 

f g (M (a1, al . . . , aP )) > fJCMCa^a2.ar_1,ar+1, . . . , ap )). f ZQ (M (ar, ak)). 

Рл 
t к 

оо/ Let x = (x^ ^ ) be a vertex of the polytope M(a ,a ) and let 
г к 

. ) be an integral vertex of the polytope У = (Уі i i i 1 
^Z’ - r-lr+l p 

M (a\a2 , . . . , ar ^ , ar + ^ , . . ., a^ ). We consider an algorithm for constructing 

the nonzero components of a vertex z = (z. . . ) of M(a"^a2.a^). 
12 p 

The t-th step (1<^_<п, ) in the algorithm is as follows. We define 

x. о 
l t 
r 

min x. t 
г 

У, o.o 
X1 2* 

,o i о 
^r-lr+l* 

. 0 . • 0 • 0 “ min у. . 
I 1 1 , П • • • 1 In 1 A • • • 1 -ll I -I ■ • • 1 -1 

k-1 k+l p 12 r-1 r+1 k-1 
ііч I 1 • # • x 

k+l p 

where the first minimum is taken over all indices i , 1 <i < n , for 
r = r = r 

which x. . > 0 , and the second minimum is taken over all vectors 
1 u 

^1,:LZ.1г-1’1г+1> * • * ’^-k-l^k+l' '-p 
,...,i_ ) for which 

> 0. • • • • m I m • 
1 T 1 л • • • 1 -I 1 i -I • • • 1 1 T W li I T • • • 1 

1 2 r-1 r+1 k-1 k+l p 

Let z . о • о -о -о . . о -o = At, where At = ІПІЛ...1 • • • 1 1 n ull . -1 • • • 1 
12 r k-1 k+l p 

min(x.o+ » у. оп- о . о о -о + • о . о). We transform the matrices 
r 12 r-1 r+1 k-1 k+l p 

x, у and the vectors a“*",a2 , . . . ,a^ according to the formulae 

x: 
i t 
r 

X . 

X . , 
1 t 
r 

f if i f i° 
r r 

- At , if i 
г 

= i° 
г 
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Уі1-••1r-l1r+l*•*1к-1ѢІк+1-'Лр 

V • ^Г-І^Т+І* * Лк-1ѢІк + 1' • ЛР 
At , if 

(І ^ » • • , i 1r-l’xr+1 

or = у 

91к-1* xk+l 9 • • 9 

It • • • 1_ -il I 1 • • • li n tl, I i • • • Jl 
1 r-1 r + 1 k-1 k+1 p 

p 

ti 

r-1’ r+1 
Г • • 9 1 i 0 •? 0 ) 

k-1 k+1 

—s 
a. 
l 

s 
a. 
l 

a? - ДѢ 9 
xs 

otherwise, 

if i / i0 , seN , 
s s P 

if i = i0 . seN , 
s s P 

where i£ = t . 
K — к th 

If a, > 0 we repeat the t step of the algorithm. If 

= 0 and t < n^ we proceed to the (t+l)x step of the algorithm. In 

—к 
the case a, = 0 and t =n, the algorithm terminates. 

t к e r k 
Thus from any integral vertices x e M(a ,a ) and у e 

M(a"*-, a2, . . . , ar ~'1', агЛ , . . ., a*5) it is always possible to construct an 

integral vertex z e M(ax,& ,...,a") . It is clear that distinct vertex 
г к i 

3 UryihU2.y2h wnere х^х^ии 

.1 .r-1 _r+l D> 

1 -2 aP; 

pairs (xj.yj^), (x2,y2), where x1,x2 e M(a1 ,ал) , У±’У2 e 

M(a1,...,ar~1,ar+1,...,ap) correspond to distinct vertices of 

M(a\a2.aP). This completes the proof. // 

The following theorem is due to Yemelicheva & Kononenko (1974X 

Theorem 1.10 Ike minimum, numben о/ integ/iaL ѵепіісел in ike 

ciaAA of. акіаі t/ianApontation potytopeA of o/icLen. n-^xn^x. . . xn^ , p>3 > 

ІА ecfuai to 

(( max n.)!)P ■*" 
_l<i<p 1_ 

p 
П ( шах n. - n + 1) ! 

S=1 l^i^P 1 

Pnoof Let n, = max n . By Lemma 1.9 we have the inequality 
l<s<p s 

fn(M(a1,a2.ap)) > П ^(Міа^а8)) . 
U s=2 u 
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This, and Theorems 5.1 and 5.3, Ch. 6, imply that 

fJ(M(a1,a2 ,ap)) > 

П (n-L-n +D! 
s=l 

For definiteness, let n^ >> . . 

axial transportation polytope M(a ,a^,...,ap) 

p > 3 defined by the vectors as = (n^-n +1,1,1 

By Theorem 1.3, this polytope is 

seen that every integral vertex x = (x^ ^ ^ 

constructed as follows: 

. >n >1 . Consider the 
= p = 

of order nnxn0x...xn 
±2 p 

.l) eE , seN 
n p 

s ^ 
degenerate. It is easily 

) e M(a1,a2,...,ap) is 

P 

x 
li 1 

2* * 

x 
2i 2 

2' * 

= 1, 

= 1, 

x 
n inl 
12 

1, 

and all other components are zero. Also, for any s e {2,3.p} the 

choice of the numbers i*, i2,. . . , in 1 from the numbers l,2,...,n , is 
s s s s 

made so that each of the numbers 2,3,...,n occurs exactly once. The 

converse is also true. Consequently 

f^MCa^a2 ,ap) 
P 
П 

s=2 
П (n,-i) 

i=l ± 

(n^P-1 

П (n-,-n +1)! 
s=l 1 s 

§2 PLANAR TRANSPORTATION POLYTOPES 

In this section, for the sake of simplicity, we will only 

consider triply-indexed planar transportation polytopes. The results 

obtained here can be extended to general multi-indexed polytopes. Some of 

these generalizations can be found in the problems for this chapter. 

Definition 2.1 A t/iip ty-Lnde.Ke.dL tsianApo/itatlon po iytope. of 

order mxn*k is the feasible set of a planar transportation problem, that 

is, a set М(А,В,С) of matrices x = (Xj--t^mxnxk ’ w^ose elements satisfy 
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the following conditions: 

n 

1 xiit 
j=i 

= a. , 
it V (i,t) e NfflxNk , (2.1) 

m 

i хіП 
i=i 

= b. . V (j ,t) eNnxNk , (2.2) 

к 

1 xi1t 
t=l 

= c . . 
1J 

V (i »j ) eNmxNn , (2.3) 

X . . . 
Ijt 

> 0 V (i.j.t) e NmxNnxNt , (2.4) 

where A = (a., ) , , В 
it mxx 

non-negative elements. 
= ^jt^nxk ' C = (c..) are matrices with 

ij mxn 
real 

2.1 Necessarv Conditions for a Non-empty Polytope 

Consistency conditions for a system of linear equations and 

inequalities are given by a well known generalization of the Kronecker- 

Capelli Theorem. However, these conditions are difficult to verify so 

that for a concrete system, such as, for example, (2.l)-(2.4) which 

determines the planar transportation polytope M(A,B,C) , the problem 

arises of obtaining simple, easily verified conditions for consitency, or, 

as we shall say, conditions for a non-empty polytope. 

At the present time only necessary conditions have been 

obtained for the planar transportation polytope M(A,B,C) to be non-empty. 

We present some of them here. 

The following conditions are obviously necessary for 

M(A,B,C) to be non-empty and we will assume from now on that they are 

satisfied: 

m 

i 
i=l 

a. , 
it 

n 

= l 
j=l 

-p 
,r~3 

rO
 V t e Nk , 

к 

l 
t=l 

a. . 
it 

n 

= l 
j=l 

V i e N , 
m 

к 

I 
t=l 

b-f 

m 

= l 
i=l 

V j e N 
J n 
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Scke.lt'-i Conditions (Schell, 1955 ) 

Let 

Г 
ijt min(ait’bjt’Cij)* 

(i,j,t) eN xN xN, . 
J m n к 

For the triply-indexed planar transportation polytope M(A,B,C) of order 

mxnxk to be non-empty it is necessary that the following conditions are 

satisfied : 

n 

c_
j. II H

 Гі j b 
a. , 
it 

V (i,t) e N XN, , 
Ш К 

m 

I 
i=1 

rijt 
J> b. , 

jb 
V (j ,t) e NnxNk , 

к 

1 
t=l rijb 

c. . 
ij 

V(i, j ) e NmxNn . 

x° < Г 
ijt = ijt 

Indeed, if (x ? ., ) 

(i,j,t) eN xN xw 
J m n к 

ijt mxnxk 
e M(A,B,C) then we must have 

so that Schell's conditions are satisfied, 

The following example shows that Schell's conditions are not, 

in general, sufficient. Let 

\ /! 3 3\ / 

td
 и 0 о
 

о
 

II 

' \3 0 0/ ' 

3 

i 

i 

It can be verified directly that Schell's conditions are 

satisfied. 

However, since a^^=a^^=l , b22 =b^^ =b^2 =b^^ =0 , we must 

have for any point (xi-jt^3x3x3 of> M(A>B>C) that хзі2 =X313 =1 * °n 

, + X,, p + хЯ1 о = с0т = 1 . Hence 

Thus M(A,B,C) 

32 

(хіпЬ*3*3 
the other hand, by (2.3) we have 

x^-q = “1 which contradicts (2.4). 

Let ГЬ., = min(a., ,b . , ,c. . ) 
ijt it’ jt’ ij 

r =1,2,3,... define the numbers 

'31 
is empty. 

(i,j,t) £ И xN xN, , and for 

y..t = max(0,(a.t ), (b 
PrJ 

j ipt jt Ijt 
Г/,+ ),(с,, - У V* )) , 

qft W 

ГУ!Ь = min(rT4+, (ап. + - l уГт>+),(Ь^ + - £ у ^.+ ),(e..- I y*.„)) • 
ijt’v it p^.'ipt"v jt ^ ij 

qrt ijq' 
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It is not difficult to see that if there is a number Г 
ijk 

which is negative than M(A,B,C) is empty. 

The following conditions are stronger than Schell's 

conditions. 

katey's condition* (Haley 1963) 

For a triply-indexed planar transportation polytope M(A,B,C) 

of order mxnxk to be non-empty it is necessary that there exist an index 

h > 1 for which the following conditions are satisfied: 

Г^- + ijt 
= 

rh + l 

ijt 
V (i , j , t) e NmxNnxNk , 

h h + 1 
V(i,j,t) e NmxNnxNk , 

Yijt Yijt 

Ш 

l 
i=l 

_< b.. 
Jt 

£ 
in 

l 
i=l 

f1? ., 
ijt 

V(j,t) e NnxNk , 

n 

l 
j=l 

£ a. , 
it 

£ 
n 

l 
j=l 

ijt 
V (i,t) e N xN , 

m к 

к 

l 
t=l 

£ c. . 
ij 

£ 
к 

l 
t=l 

r1? 
Ijt 

V (i,j) eN xN . 
0 m n 

The proof follows from the obvious fact that if M(A,B,C) 0 0 
r .. „ „г 

ij' 
for any number r=1,2,3,... we have the inequalities у.., <x.., <Г.., 

4 ijt = ijt = i.jt 
Moreover, as r increases the lower bound (i» j »t) e N xN xN, . 

J m n к 

is non-decreasing and the upper bound ^ is non-increasing. 

Before giving further necessary conditions for M(A,B,C) to 

be non-empty we introduce some notation. 

Let ICN , JCN . We denote the sum of the elements of 
m n 

the matrix (z..) „ for which the index i takes all values in I and 
ij mxn 

the index j takes all values in J by z(l,J) . Similarly, for ICN , 

JCN , TCN, we define the number z(l,J,T) = £ £ [ z... with 
n * iel jeJ teT 

respect to a given matrix ^ijt^mxnxk * 

7ke. Поп.аѵе.к.-Ѵtach. Conditions (Moravek & Vlach 1967) 

For the triply-indexed planar transportation polytope 

M(A,B,C) of order mxnxk to be non-empty it is necessary that the 

following inequalities be satisfied: 

a(l,T) - b(J,T ) + с(I,T ) > 0 ICN , JCN , TCN, . 
m n к 
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To prove this it suffices to note that for any subsets 

ICN , JCN , TCN, and for any matrix xeM(A,B,C) we have the 
m n к 

relations 

a(I,T ) x(I,J,T ) + x(I,J,T) , 

b(J,T) = x(I,J,T ) + x(l,J,T) , 

c(I,J) x(I,J,T ) + x(l,J,T) . 

We present an example which shows that Haley's conditions are 

not sufficient in general. 

Example., Let the planar transportation polytope M(A,B,C) 

of order 5*8x2 be defined by the matrices 

A 

1 7 

2 6 

7 1 

6 2 

6 2 

В 

1 4 

1 4 

1 4 

1 4 

4 1 

4 1 

4 1 

3 2 

C 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

It may be verified that Haley's conditions are satisfied for 

M(A,B,C ) : 

1 2 
Г... = ГГ., = 1 
ijt ljt 

1 2 n 
Yijt - XiJt = ° 

0 S v i 5 

0 < a. , <8 
= it = 

0 < c. . <2 
= ij = 

V(i,j,t) e N5xNgxN2 , 

V(i,j,t) E N5xNgxN2 , 

V (j,t) E NgxN2 , 

V (i,t) E N5xN2 , 

v (i*j ) e N^xNg . 

On the other hand, the Moravek-Vlach conditions are not 

satisfied for the subsets I={3,4,5} , J=(1,2,3) , T ={2} . Thus 

M(A,B,C) is empty. 
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The Haley and the Moravek-Vlach conditions have the following 

generalization. 

Smith.'/> Condition (Smith 1973) 

A necessary condition for a triply-indexed planar transporta¬ 

tion polytope M(A,B,C) of order nxnxk to be non-empty is the existence 

h > i for which the following conditions hold: 

r* 
rh+l 

ijt 
= r..t Ѵ(і,4,ѣ)еНшх»пхНк , 

h h+1 
= Tijt V(i.J.t) e »mx»„x»k , Yijt = Yijt 

y(l,J,T) + y(l,J,T) < а(Г,Т) - b(j,T) + c(l,j) 

< r(l,J,T) + r(l,J,T) V TCN, , IC N , JCN . (2.5) 
•Ю Щ П 

By Haley's conditions it suffices to establish the necessity 

of the inequalities (2.5). Let ICU^ , J C , T C . Then, by Haley's 

conditions we have the inequalities 

Y(I.J.T) +y(I.J.T) < a(I,T ) < r(l,J,T) +r(l,J,T) , 

Y(I.J.T) + y(I.J.T) < b(J,T) < Г(I,J,T) + r(T,J,T) , 

Y(I,J,T) + y(I,J,T) < c(T.J) < r(T,J,T) +r(I,J,T) . 

Now, using the Moravek-Vlach conditions we obtain the desired inequalities. 

2.2 The Polytope Dimension 

Let us note, first of all, that it is possible for a triply- 

indexed planar transportation polytope to degenerate to a point. To show 

this, consider the polytope M(A,B,C) of order mxnxk defined by the 

matrices 
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(x ) 
' ijѢ'mxnxk 

It is clear that the only point of this polytope is the point 

with elements : x = 0 , 
mil 

x ijt 

0 , if (i,j,t) e {1,2,..,m-l}x{2,3»••»n}x{2,3,••»k} 

1 otherwise. 

Let us now examine the question of determining the maximum 

dimension of a triply-indexed planar transportation polytope. The follow¬ 

ing theorem answers the question. 

Theorem 2.1 Ike. такітат. dimension о/ the tn.Lply-index.ed 

planan tnanApontation polytope. o£ o/ide/i mxnxk еуиаіл (m-1) (n-1) (k-1) . 

Pnoo I It is easily seen that the rank of the system of linear equations 

n 

I 
j-1 

x. . , 
ijt = ait • 

Vi e N \{1} , Ѣ i 
ra 

га 
l 

i=l 
X . . , = b.. 

J* 
v(j,t) E NnxNk , 

к 
1 X . . . = c. . V(i, j ) e N xN , 

t=l 
Ijt 1J d ran 

is equal to 3 =mk+nk+mn-m-n-k + l . On the other hand, since any 

m+n+k-1 equations of the system (2.l)-(2.3) are a consequence of all 

the remaining equations, the rank of the constraint matrix cannot exceed 

3 . Thus the rank of the system of linear equations (2.l)-(2.3) is equal 

to 3 . Hence, by Proposition 4-1, Ch. 1, the dimension of any triply- 

indexed planar transportation polytope M(A,B,C) of order mxnxk satis¬ 

fies dim M(A,B,C) < (m-1) (n-1) (k-1) . 

At the same time, a triply-indexed planar transportation 

polytope whose dimension is (m-1)(n-1)(k-1) is given by the polytope 

M(A#,B*,C*) of order mxnxk , given by the matrices 

(к к 

к к 
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since it contains a point (Xijt^mxnxk satisfying xijt>0 ' 

V(i, i ,t) e N xN хм . // 
J m n к 

2.3 Simplexes 

For classical transportation polytopes of order mxn there 

exist max(m,n )-simplexes only when min(m,n)=2 (§5. Ch.6). 

The following theorem is due to Fedenya (1977). 

Theorem 2.2 Among the. tn.Lpty-index.ed ptanan tnanApontation 

potytope-ь oJL onden mxnxk , m,n,k;>2 , thene exi-f>t (m-1)(n-1) (k-1)- 

/5imp texeA. 

Pnoof. Consider the triply-indexed planar transportation polytope 

M(Aq,Bq,Cq) of order mxnxk , given by the matrices 

n 3(n-1) +1 

3(n-1) +1 3 

3(n-1) +1 3 

m 3(m-1) + 1 

3(m-1) + 1 3 

3 (m-l) +1 3 

к 3(k-1) + 1 

3(k-1) +1 3 

3(k-1) +1 

It is clear that a vertex of M(Aq,Bq,Cq) is given by the matrix 

3 (n-1) + 1> 

3 

3(m-1) + 1 

3 

3(k-1) + 1 

3 

(x* ) 
' ijt mxnxk 

with elements 

xllt ~1 ’ 
t e N, , x к 

x*.i = 3 . i e m 

xilt = 3 * i e m 

Ijl 411 
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x?. , = 3 , j e N \ {1} , t e N,\(l} , x# . , = 0 otherwise • 
IJt. n X 1J U 

It is not difficult to see that every other vertex (x..,) „ of 
J ljt mxnxk 

M(Aq,Bq,Cq) has the form 

where 

1—
1 

1 -p
 

X
 if (i,j ,t)e K" , 

X . . , 
IJt 

= | ' Y# +1 
ijt ’ 

if (i,j,t) e K+ , 

X* otherwise , 

K" = 

*' 
Э 

1—
1 О
 

-P
 

i—
1 О
 

•H
 

1—1 о
 

•г-э 

О
 

•н
 0,t0),(1,1,1)} , 

K+ = {^0'0'^0^ i* j 0,l),(l,l,t0)} . 

Here (iQ.Jo'^o^ some fixe^ triple of indices taken from the set 

{2,3.m}x{2,3,...,n}x{2,3,...,k} . Consequently, M(Aq,Bq,C q) is a 

non-degenerate polytope and fq(M(Aq,Bq,Cq)) = (m-l)(n-1)(k-1) +1 . Thus, 

taking into account the fact that the dimension of any non-degenerate 

triply-indexed transportation polytope of order mxnxk is equal to 

(m-l) (n-1) (k-1) we conclude that M(Aq,Bq,Cq) is a (m-l) (n-1)(k-1)- 

simplex. // 

The following is an immediate consequence of Theorem 2.2. 

Corollary 2.3 7he. minimum. пит&.е.я of ѵе.яіісе.л in the. сіалл о/ 

non-cLe.ge.ne./iate. іяір ty - inde.x:e.d ріапая іяаплрояіаііоп po lytope.4 of оя<іе.я 

mxnxk іл e.q.ua.1. to (m-1) (n-1) (k-1) +1 . 

§3 PLANS FOR A MULTI-INDEXED SELECTION PROBLEM 

Just as the multi-indexed transportation problems are a 

natural generalization of the classical transportation problem, so the 

multi-indexed selection problem is a generalization of the well-known 

assignment problem. 

In this section we establish the connection between plans for 

a multi-indexed selection problem and orthogonal systems of multi-dimen¬ 

sional cubes and, in particular cases, with finite projective planes 

(Yemelichev & Kononenko 1974). 
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3•1 Orthogonal Systems of Cubes 

A p-cule. of order n is a set of n^3 elements each 

corresponding to a point in p-dimensional space whose coordinates are 

given by i.,i_,.. . ,i where i eN , seN . A 2-cube is naturally 
-1 < p s n p J 

called a scfuane. . We will denote a p-cube by A = (a. . . ) and we J l, . . .l n 
12 p 

will suppose that a. . . eN , n>2 , p>l . 
2 p 

Note that with any nr-vector with elements in N we can 
n 

associate a p-cube of order n by ordering the coordinates of the 

elements of the cube lexicographically. This correspondence is clearly a 

bisection. We will therefore formulate the following definitions and 

propositions both in terms of cubes and in terms of n^-column-vectors. 

Let us fix the values of the indices 

о 
X л _ 

s —1 s 
c oordinates 

1- 1’1s+l 1s+l'* 

i 0 
1 *1 ’ "2 "2 . 

The sequence of n points with 

...,i° , where i eN is called a 
p s n 

tine. of the p-cube A of order n . If every line of a cube A con¬ 

tains precisely the numbers 1,2,...,n in some order, then it is called a 

Latin p-cu&e of order n . The Latin cubes thus defined are a natural 

generalization of the Latin squares of order n . An example of a Latin 

cube is the p-cube with elements 

- о -о 
XV 2' 

. . , l = l 
„ P P„ 

i° ,i ,i0 ,, , 
s-1 s s+1 

a. . . = 1 + r 
1112 ' • ,:Lp \ s = l 

vi/n ,i eN ,seN , 
s s / s n p 

where the numbers v are coprime with n and r(u/v) is the remainder 
s 

on dividing u by v . 

For example, the 3-cubes of order 3 shown in Figure 52 are 

Latin cubes. 

Definition 3.1 A system of p-cubes of order n 

A1 , A2 , ... , Ap , where As = (a? . . ) , 
Іч Іл • • • 1 П 
12 p 

(3.1) 

is called o/itkogonat if all n^ possible p-tuples (a. . . , 
2 1 2 p 

af . ..at . . ) are distinct. 
i,i„—i ’ i.i0...i ' 

1 2 p 1 2 p p 
If we apply the same permutation of the n^ elements of each 

cube simultaneously in (3.1) the property of orthogonality is preserved. 

Let E1 = (ej . . ) , E2 = (e? . . ) . 

rP = foP 
1112' • m2-p 

І -1 io • • • 12 D 
(et . . ) be p-cubes of order n such that e. . . - i 

1 2 p 1 2 p 
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Fig. 52. 

Fig. 53. 

for all i eN and for all (i, ,i_ ,. .. ,i -,,i i ) . Such a 
Sn _L<d S - -L StI p 

system of cubes is called no/imal . 

For example, the two squares of order 3 given by 

1 

2 

3 

1 

2 

3 

2 

2 

2 

3 

3 

3 

form a normal system, Again, the three cubes of order 3 shown in Fig. 53 

also form a normal system. 

It is easy to see that a normal system of cubes is orthogonal. 
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Definition 3.2 A system of p-cubes of order n 

A 
1 

(p < t) (3.2) 

is called (t ,n, p)-o/ithogonai if any set of p cubes in (3.2) form an 

orthogonal system. 

If p=2 , the concept of a (t,n,p)-orthogonal system coin¬ 

cides with the usual concept of a set of t pairwise orthogonal square 

matrices of order n , whose existence is equivalent to the existence of 

t-2 pairwise orthogonal Latin squares (Ryser 1963» Hall 1967, Rybnikov 

1972). 

Obviously, the concepts of orthogonality and (t,n,p)-orthogo- 

nality can be applied equally to n^-column-vectors. In particular, the 

array consisting of p columns such that its rows constitute all possible 

p-tuples whose elements are in forms an orthogonal system of column 

vectors. 

We next establish the connection between the property of 

orthogonality and the property of being a Latin cube. 

Consider the (t,n,p)-orthogonal system (3.2). Given any 

fixed coordinate position with coordinates 

by the orthogonality of the system 

•0,0 

11’ 2’' 
»i there exists, 

j e N another coordinate 

position i-J , id ,. .. ,i 1 such that a? ,. , . , = i 0 , s e N . We inter- 
-L /С p P 

change the elements in each of these two positions in each of the cubes of 

the system (3.2). In doing this, as already noted, we do not violate the 

orthogonality of the system. 

As a result of a sequence of such transformations it is clear 

that the (t,n,p)-orthogonal system (3.2) can be reduced to the following 

canonical form : 

E1 , E2.Ep , DP + 1.Бѣ (3.3) 

where E,E*,...,EP is a normal system of cubes. 

We show further that every cube D1 , i =p+1,p+2,...,t of 

system (3.3) is Latin. To do this we establish that the elements in any 

line of are precisely the numbers 1,2.n in some order. 

L whos 

, 1 < r < p 

Consider the line L whose points have coordinates ij’.igi 
• 0 . . о 

f 1 I 9 • г-l r r+1 
i e N 
r n 
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By the definition of a normal system we have 

e?o.o -o • -o ,-o=i° » s=l,2,..,r-l,r+l,..,p, і eN 
1,1t .1 Л 1 .-,..1 s r n 

1 2 r-1 r r+1 p 

Thus all (p-l)-tuples 

1 
Ѳ . o • 0 • 0 

1112 ‘x 11 1 11 • r-1 r r+1 
.i0' 

r-1 
ei°i°. 

1112 
.i° -,i i° , , . 

r-1 r r+1 

r+1 
ei°i° i° i 

1112 • r-1 r 
i° i 0 • 
r+1 p 

p 
e . oiо ■ о 

r-l1r1r+l 
..i°) 

p / 

i e N 
r n 

are identical. On the other hand, the system of cubes Б’'" ,E^ , . . . ,Er ^,DX, 

Er X,...,E^ is orthogonal for any p+1<i < t . 

Consequently, the line L must contain all the numbers 1,2, 

. . . ,n in some order. 

We have proved the following theorem. 

Theorem 3.1 Ton. а system. о/ cutes (3.2) to te (t,n,p)- 

o/itho gonal, it is necessany that eveny cute. D1 , i = p+1, p+2 , . . . , t о/ its 

canonical £o/im (3.3) should le Latin. 

Theorem 3.2 The conditions о/ Tkeonem 3.1 ane su£.£icient 

only in the /оHousing two cases : l) t = p+1 , 2) p = 1 . 

Pnool In the two cases indicated the (t,n,p)-orthogonality of the system 

(3.3) follows from the definitions of a Latin cube and of a normal system. 

Let t^p+2 , p j> 2 and let D be a Latin p-cube of order 

n . It is then easy to see that the system E^,E2,,..E^ ^,D,D is not 

orthogonal so that the system e\e^ ,. . . ,E^,D.D is not (t,n,p)- 

orthogonal. // t-k 

Two (t,n,p)-orthogonal systems are called distinct if their 

canonical forms are distinct. Let G(t,n,p) denote the number of 

distinct (t,n,p)-orthogonal systems and let L(n,p) denote the number of 

Latin p-cubes of order n . 

The following useful corollary follows directly from Theorems 

3•1 and 3.2. 

G (t,n,p) = 

Corollary 3.3 G(t,n,p) < (L(n,p))^ ^ . Also 

(L(n,p))^ P only in tke two cases : t = p + 1 , 2) p = l . 
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3.2 The Selection Problem and Orthogonal Systems 

Le ѣ 1 £ m < p , n _> 2 . The -4 ejection psio (LH.e.m A (p, n, m ) 

(compare with the p-indexed m-fold transportation problem) consists in 

determining the extremum of some linear function subject to the 

constraints 

x. . . = 1 or 0 , 
l-i 1 /-» • • #1 
12 p 

V is e Nn ’ 3 e Np ’ 

n n 

v*vi 12 m 

= a. . 
1112‘ * •1k,-l*1k, +1" ,:Lk -l#1k tl""1? 

11 mm ^ 

(3.4) 

(3.5) 

for all i eN , s ^ k, , k„ ,. . . , к and for all m-tuples (k,,k„,...k ) 
sn 12 m ^ 12 m 

such that 

1 <L k, < k0 < . . . < к <.p . 
— 1 2 m — 

(3.6) 

The set of feasible selections for the problem <4(p,n,m) , 

that is, the set of cubes x= (x. . . ) satisfying conditions (3.4)» 
Ітіл» • »1 Г1 
12 p 

(3-5) will be denoted by T(p,n,m) . 

It follows directly from conditions (3.4) and (3.5) that any 

p-cube of order n from the non-empty set T(p,n,m) contains n^_m 

non-zero elements. 

Let x° = (x? . . ) ET(p,n,m) and let 
1112‘ ’ ^p n 

id) 

P 

,(2) 
P 

(3.7) 

.(nP-m) .(nP-m) 
11 ’ x2 

itnP’”) 

be the p-tuples for which 
X°i(j)i(j) 

12 

1 , j =1,2, »n 
p-m 
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The or em 3.4 x°eT(p,n,m) if and only if the. AyAtem of 

со lumn-vectonA in ta&le (3.7) іл (p,n,p-m )-o/itkogonal. 

Pnoof Note that there are n13 m distinct equations of type (3.5) with 

fixed k-^.k^,...,^ satisfying conditions (3.6). Thus, for the existence 

of a solution of such a system, satisfying conditions (3.4) , it is 

necessary and sufficient that for any (p-m)-tuple i-£, i “,..., i£ _^,i£ +]_>• 

there should exist an m-tuple i? , ....i,0 • ° -o t о 
’ xk -lflk +1.1p 

such that 

x.0io 
1112’ 

= 1 and 

'k ’ ’ 
k2 

x. о - о -0 i j о -o • -o 
1112" * ^k, -l1k11k1 +1 ’ ’ ’ 1k -l1k xk +1* 

111 m m m 

= 0 

for all (i, ,i 
K1 ~2 -m 

3.4 now follows directly. 

к ‘ 
k2 

,i^ ) ^ (i“ ,i° ,...f±£ ) . The statement of Theorem 
~ 12 m 

// 

Corollary 3.5 The. numlen of distinct selectionа /ол the. 

pnollem 4(p,n,m) 4-4 equal to the numlen of (p ,n ,p-m) -o/itko gonal AyAtemA 

of culeA. 

The selection problems <4(p,n,p-l) and 4(p,n,l) are called 

axial and planan p-indexed selection pnollemA о/ o/ide/i n respectively. 

For these problems. Corollary 3.5 can be made more specific using 

Corollary 3-3. 

Corollary 3.6 Ike p-indexed axial Selection p/iollem. of o/ide/i 

n kaA (n|)P ^ distinct AolutionA. 

Corollary 3.7 Ike numle/i of distinct ao lutionA of tke 

p-indexed plana/i Selection pnollem o-f. о/iden n ІА equal to tke numlen of 

(p-l)-dimenAional Latin culeA of o/ide/i n . 

For the case p = 3 these results were first obtained by 

Leue (1972). 

3.3 The Selection Problem and Finite Projective Planes 

A finite p/iojective plane is a system consisting of a 

finite number of 'points' and 'lines' which are connected by incidence 
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relations ('a point lies on a line' and 'a line passes through a point') 

which satisfy the axioms: 

1) two distinct points lie on one and only one line; 

2) two distinct lines pass through one and only one point; 

3) there exist four distinct points, no three of which lie on 

the same line. 

The concept of the order of a finite projective plane is 

introduced as follows. First, it is shown that if some line of the finite 

projective plane contains n+1 points, then every line contains n+1 

points. The number n is called the order of the finite projective 

ptane. 

Finite projective planes play a leading role in combinatorial 

theory. They are intimately connected with orthogonal Latin squares 

(Ryser 1963, Hall 1967, Rybnikov 1972). 

Theorem 3.8 A finite projective ptane of order n >. 3 екіліл 

if and onfy 7/ there екіліл a (n+l,n,2)-orthogonat луліет of луиагел о/ 

order n . 

This, together with Corollary 3.5, yields the following 

theorem. 

Theorem 3.9 A finite projective ptane о/ order n >3 екіліл 

if and onty if. the Aet of AetectionA for the proftem >4 (n + 1, n, n-1) i/5 

non-empty. 

Since there is no projective plane of order 6 it follows, in 

particular, that the selection problem <4(7,6,5) is insoluble, that is, 

T(7,6,5 ) = 0 • 

It is known that a finite projective plane exists if its 

order n is a power of a prime number (n .> 3)• The Theorem 3.9 implies 

the following. 

Corollary З.Ю Let n Le the power of a prime. Then, if 

n>3 there ІЛ a detection which лоіѵел the probtem A (n+1,n ,n-l). 
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EXERCISES 

1. (Yemelichev & Kononenko 1972). The inequality 

К> I n (see (1.3)) is a necessary condition for the axial transporta- 
s =1 

tion polytope of order n-^xn^x. . .xn to be non-degenerate. Show that the 

3 
converse of Theorem 1.3 is true only in the cases: l) p=2, 2) р=3» I n =6. IS 

2. Show that the following statement is false: a sufficient 

condition for the axial transportation polytope M(a^,a^,...,a^) of 

order ni*n2X’'Xnp , p>2 , to be non-degenerate is that for any 1 < к < 

(- <. p the classical transportation polytopes M(a^,a ) are non-degenerate 

3. (Yemelichev & Kononenko 1972). Let n, = max n , 

1 1 < s < p s 

max n >2 . The number, у , of facets of an axial transportation poly- 
2<s<p 

tope of order n^xn^x..,xn must be an integer satisfying 

P P P 
П ns ” ni = 7 <П n . 

s=l s=l 

4. The set of indices 

1 2 

R = (r, ,r0,...,r ) , r e N , s e N , 
12 p s ns p 

of the polytope M(a .a^, . . . ,a^) is called com.ple.ie. if \ a ^ (p-l)K. 
t г 

s=l s 
th 

Otherwise the set is incompLete . The s -coordinate of a complete set 

R is called r-complete if l) r=r <n ; 2) the sets (r,,r„.r , , 
s=s 12 s-1 

j,r r ) Vj eN are complete but are incomplete for j =r+l,..,n . 
S t _L p I* S 

Show, that an axial transportation polytope of order n^xn^x. 

P 
, _ __ . n_ > 2 . has y facets, where 

p 1= 2= - p 
.xn , n,>n0>...>n , n„>2 , has у facets, where nn - n, < у < ■p, j_ ~ 2 — — p 2 — Ls = 1 = 

S=1 
p 
П n , if and only if there exists a set of indices with an r-complete 

n S 

S" P 
coordinate, where r = П n -Y • When r = 0 , this condition is interpreted IS 

to mean the absence of any complete sets. 

5. (Yemelichev & Kononenko 1972). Establish the following 

properties: l) Every non-degenerate axial transportation polytope with 

the minimum number of vertices also has the minimum number of facets. 

2) For a non-degenerate polytope M(a\a2 , . . . ,a^) to have 

the minimum number of vertices, it is necessary and sufficient for any 

polytope M(a^ ^ + P,a^_^ + ^, . . . ,a^) , k=2,3,...,p , to have the minimum 

number of facets. 
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6. In the class of non-degenerate axial transportation polytopes 

of order Піхп2х...хпр , п± > n2 > . . . > n > 2 , n±>3 , p>2 , the mini nimum 

diameter is given by the number £ (n -1) . A non-degenerate regular 
s =2 s 

transportation polytope has the minimum diameter (see Definition 1.5). 

These results were obtained by V.M.Likhachev. 

7. Consider the following problem: 
n. n 

Minimize £ ... f 

L1 “P 

c. . x. . , subject to 1« • • 1 1 л • • • 1 
pi p i 1 j_ =1 It • •1- In . • .1 

nl ns-l ns+l 

I... 1 l . I—
1 

II l—
1 

•H
 

Ѵі = 1 1 s+l=1 

nl ns-l ns+l 
n 
p- 

l.. . 1 l •• .. I 
if1 1p-l 

> 0 for all sets (il’i; 

n 

ci,..i = ai ’ ViseNn ' seNp ' 
1 p s s v 

x. . £ b. . , i e N , s e N . , i eN 
I i-i**i _ i i s n ' p-1 p n 
Lip sp S P 

1 11 11 1, . .1 
s s p s p 1 p 

SS S 
are given real numbers and a. > 0 , d. . > 0 , b. . > 0 , c. . > 0 , 

l ii= ii= i-,...i = 

n s p s p Г 

\ a. = К , s e N . This problem has a solution if and only if the follow- 
i =1 1s p 

s 
ing inequalities are satisfied for all s e N : (Kravtsov & Kashinski 

1977) 

a3 > 
xs = 

f 4? . . L 11 
ip=P s P 

Vi e N 
s n 

a? > 

XP 

f d? • 
• _ T 11 
1s_1 3 P 

Vi eN 
P n 

f min (a? - f d? . , £ (b? . -d? . )) > I (a? - f df . ) ,VICN . 
• . _n l l . L_T li l l = . T l . ‘i, li — n 
І =1 

s 
's i =1 s p i el s p s p 

P y P 

■ T _L « -ill 
iel p i=l sp 

p ^ s ^ 

Conditions for the solvability of other special cases of 

multi-indexed transportation problems can be found in Kravtsov & Kashinski 

(1977) and Talanov & Shevchenko (1972). 

8. The solution of the triply-indexed transportation problem 

with axial sums : 

minimize 
m к n 
I I I (d.t+ht.)x.t. , 

i=l t=l j=l 
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к n m к 
l I xiti = ai . Vi e N , I I x = b. , V j e N , 

t=l j=l ltJ 1 m i=l t=l J n 

m n 

.I хitj=ct ’VteNk’ x.t. >0 , V(i,t,j)EVHkxNr 

can be reduced to the following pair of classical transportation problems 

l m к ) ( к n 

11 ,іпУі*^Л‘:<у“^ЕМ(а’0)Г) "іпЦі WEM(o’b> 

that is, a correspondence between the optimal solution of the first 

problem and the optimal solutions of problems l) and 2) is given by the 

formulae 

4t= l xitj • v(i’t)e VN* 
J=1 

in 
l X 

i =1 
itj .V(t.j)eHkxNn 

9. (Bolker 1976). The number of vertices of a planar transpor¬ 

tation polytope of order mxnx2x2x. . .x2 , m,n>2 , does not exceed the 

P-2 
, n-1 m-l„(p-2)(m-1)(n-l) 

number m n 2 r 

10. Formulate sufficient conditions on the components of the 

vectors aS , s e , such that the axial transportation polytope 

M(a"*-,a^ , . . . , a^ ) of order n-^xn^x . • .xn^ given by the integer-valued 

vectors a^,a^,...,a^ will have the minimum number of integral vertices. 

11. (Kravtsov 1979). The maximum number of integral vertices in 

the class of axial transportation polytopes M(a^,a^,...,a^) of order 

n,xn.x...xn 
12 p 

n, = max n , defined by the integral vectors 
l<s<p S 

1 2 
a , a . , a 

is not less than the number П Ф(n,,n ) , where ф(п,,п ) is the 
s=2 1 s 1 s 

maximum number of vertices in the class of classical transportation poly¬ 

topes of order n-^xng • 

12. (Kononenko, Mikulski & Trukhanovski 1976). Let n>m >k . 

Show that Schell's conditions are sufficient only in the cases к=2 , 

m =2,3* 

13. The Moravek-Vlach conditions are necessary and sufficient 

when min(m,n,к) =2. 

14. Exhibit a triply-indexed planar transportation polytope which 

satisfies Haley's condition but which does not satisfy Smith's condition. 
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15. The feasible set of a p-indexed, 1-fold transportation 

problem of order n-^xn^x . . . xn^ is called a p-Lnde.x.e.d ptuna/i tsianApo/itation 

potytope. оI o/ide./i n j_Xn2X * • * *np . Formulate and prove the analogues of 

the Schell, Haley, Moravek-Vlach and Smith conditions for a p-indexed 

planar transportation polytope of order n^xn^x.-.xn 

16. The triply-indexed planar transportation polytope M(A,B,C) 

of order mxnx2 is non-empty if and only if the following conditions are 

satisfied (Haley 1967): 

m 

l min (a±1 , j о ..)>_! b-i . VjCNn . 
i=l jeJ jeJ 

Trukhanovski (1979) generalized these results to the case of a p-indexed 

planar transportation polytope of order mxnx2x2x...x2 . 

17. For the triply-indexed planar transportation polytope 

M(A,B,C) of order mxnxk to be non-empty it is sufficient that at least 

one of the following conditions is satisfied: 
m 

x—\ a. x c, 
V(i,t) e N xN. 

n -i Eb . , C . . 

j=1 [ c . 
r=l r«> 

2> v - E 
І=1 I c. 

s=l 1£ 

3) 

a. , b . 
. = v ^ 

'Іj Z-J m 
Ѣ=1 I 

V(i , j ) e N XN 
4 J m n 

r=l 
rt 

18. Consider the triply-indexed planar transportation problem: 

min 
m n к 
l l l A 

i=l j=l t=l 

..,x.., :x = (x. . , ) v v1 e M (A ,B ,C ) 
ijt ijt ljt mxnxk 

where d... are given real constants. Show that the point (x..,) ^ e 
ijt 6 ^ ' ljt mxnxk 

M(A,B,C) is the optimal solution to this problem if and only if there 

it • (i.t)e V*k exist numbers ux x , (i , t) e NmxNv , v,^ , (j,t) e K^xN^ , w. . , (i,j ) e 

N xN 
m n 

such that 

u..+v..+w..=d... , if x. . . > 0 
it jt ij ijt lj.t 

ij 

u.,+v.,+w.. < d. . , , if x. .. = 0 . 
it jt ij = ijt ijt 

19. (Haley 1963). The solution of the axial transportation 

problem : 

minimize 
rank 

l l l A 
i=l j=l t=l 

• «4. ljt ijt 

subject to the conditions 
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m к m n 
У У x. . , = b. , i eN , У У x. . , = с. , t £ N , 
L L J d ri 7 u u _ lit. t. v 

i=l t=l 

n к 

i=l j=l 
'ijt 

,L A, Xijt = ai ’ ieNm ' xijt^° ’ (i.j.t)eNmxNnxN; 
j=l t=l 

can be reduced to the solution of the following triply-indexed planar 

transportation problem: 

m+1 n+1 k+1 
minimize 111 d...x... , subject to 

i=l j=l t=l 

m+1 

I .V(J.t)EBn+1xSk+1 
1=1 ^ d 

k+1 
У x. ., = c. . ,V(i,j ) e N ,,xN 

ij Ѣ ij d m+1 n+1 

n + 1 

, У x. .x =a., ,V(i,t) e N inxN, XT » ■ S lit it m + 1 k+1 
J=1 J 

' Xijt^° * V(i'j't) eNm+1xNn+1xNk+1 

20. (Yemelicheva & Kononenko 1974ii). Every integer у satisfy- 

P P P 
ing the relation п n -17 (n -1) ^ у <: П n , can equal the number 

s=l s s=2 s s=l s 

of facets of a p-indexed non-degenerate planar transportation polytope of 

order n,xn„x...xn , n, = max n 

12 P 1 l<s<p 3 

21. (Kononenko 1973). The number of bases of a p-indexed planar 

transportation polytope of order mxnx2x2x. . . x2 is 

mn-1nm-12(P-2)(m-l)(n-l) (m,n >2). 

22. (Motzkin 1952). Every p-inde3ced planar transportation poly¬ 

tope of order mxnx2x2x...x2 , defined by integral matrices is integral. 

23. (Fedenya 1977). Theorem 2.2 generalizes in the following way 

to the multi-indexed case: among the p-indexed planar transportation 

polytopes of order nixn2x, . xn there are 
/ P \ 
^ П (ng-l )J -simplexes in two 

cases : 1) n > 2 , s e N 
s = p 

p - odd ; 2 ) min n =2 
l<s<p s 

p - even. 

24* Let a be the minimum number of vertices in the class of 

non-degenerate p-indexed planar transportation polytopes of order 

п,хплх...хп , where p is even. Then a satisfies: 
1 2 p 
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п (n -1) +1 < о < 
8=1 

25. (De Werra 1978). Consider the system: 

n 

I 
j=l 

к n 

tL xljt * *ij ' VU.J) «».»*» 1 ,L xijt ■ “i 'ViEN»’tE"k 

m 

l 
i=l 

l x..t = 8. .Vj£Nn,ttNk, 

where a^ , , 8^ are given non-negative integers. A necessary and 

sufficient condition for this system to have an integral solution is: 

HI xx 

I a <kS. > V j e N , I a < ka , VieN . 
ji=l1J J n =i ij 1 m 

j=i 

£ 

26. Let RCN , M P = N , |J Q = N , P ПР =Q flQ =|1 
m p=l P m q=l q n P 9 P q 

when p^q . Also, let a^ , b^. , а^к , , dqq , d*q be given non-negative 

numbers. Consider the system: 

n t t m t t 

I 
i=l 

l x. ., < J b., 
k=l ^к“к=1 Jk 

, Vt £ N 
г 

m r 

l 
i=l 

l 
k=l xijk " bj • 

V j e Nn 

n r 

I 
j=l 

l 
k=l 

xljk - ai ' 
VieR 

L a. .. - L C 

r=i 1JJC k=l 

i j к 

“ j =1 k=l 

I j x = a. , VieR ; 

j=l k=l 

X..-, >0, V(i,j,k) e N xN xl ; ij к = m n r 

< I l xiJk < d+q , v(p,q) £ NSXN^ 
pq i£Pp j£Qq k= 

Necessary and sufficient conditions for this system to be consistent are 

given by: 

ieR 

r 

и ш 
< l Ь < I a , 

1 j-1 J i=l 1 

l a.,=a , VieR ; £ a ,<a , VieR ; 
k=l lJc 1 k=l lK 1 

a > 0 , 0 > 0 , V p £ N , q £ N, p q at 

I min (a , у ) > I В , VLCN. , where 
p=l P P q£L q 
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а = Іа--І^",В= У b. - I d” , у = I (d - d" ) . 
P iePp 1 q=l Pq q jeQq J p=l pq p qeL Pq Pq 

27. (Talanov & Ilichev 1979). Let a„ , , d . , g be given 

non-negative integers. Consider the system: 

l n 

k“x ljk ij m J n xjk= i m * 
j=l 

iI1xijk = dj ’VJeNn’keN£ ; Jk i В . v к e N£ ; i=l ij‘k= 3 ’ v J b “n ’ ~ "i 

xijk 2 o , V(i,j,k) e NmxNnxN£ . 

Necessary and sufficient conditions for this system to have a solution in 

integers are given by: 

m 
a. . < M. , Vi e N . У У £ 

i=l j=l 1J 

n m m n 
У a. . < Vo. , Vi e N , У a. . < id. , Vj e N , У У a. . < ig . 
L ij = l m ij = J j n L- L тт=б 

J-l 

28. (Talanov & Ilichev 1979). Let h , p , t^j , a^ , b^ be given 

non-negative integers. Consider the system: 

i 
У x.., = t. . , V (i, j ) e N x N , 

k^1 ijk ij J m n 

m 
У x..fe < 1 , Vj e Nn . к = 1,2,...,£h, 

i=l J 

n 
У x. .. < 1 , Vi e N , к = 1,2, . . . ,ih, 

j=l - m 

I I x ^ ъ- = P » k = l,2,...,£h, 
i=i d=i 1Jk 

n sh 

Л k-(.A)h« ^ 5 ** 
l . I . xiik i b • vj e N , s e N£ , 

i=l k= (s-1 )h+l J n 

xijke{0,1} ' 1 e Nm ’ J’ E Nn ’ k = 1,2,*,-,£h • 

Necessary and sufficient conditions for this system to be consistent are 

n m m n 
У t < ia . , VieN ; У t < Vo , Vj eN ; У У ѣ.. < £ph . 

j=l 4 1 m i=l J n i=l j=l 1J 
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29. (Yemelichev & Kononenko 1974). In the theory of Latin 

squares the following results are well known: l) the number of pairwise 

orthogonal Latin squares of order n can not exceed n-1 ; 2) pairs of 

orthogonal Latin squares of order 6 and of order 2 do not exist. 

Using these results, show that: 

1) for a (t,n,p)-orthogonal system of cubes to exist it is 

necessary that t-p < n-1 ; 

2) G(t,n,p)=0 , if 1 < p < t-1 , n = 2,6 ; 

3) G(t,n,p) = 0 , if t>n+p , p>l . 

30. Show, by means of an example, that when p>2 the p-indexed 

transportation polytope defined by equations (3.5) and the conditions 

, s e N , can have non-integral vertices. x. . . > 0 , Vi e N 
1ч ІЛ • • * 1 S П 

1 2 p s 

31. Let the vertices of the hypergraph 

(labelled) points in the set В = (J 
be given by the marked 

B, 
l<k1<k2<, <k <p klk2' 

m— 

В к,к»... к 
12 m 

= (b. . 
1112 ’ 

. l 
k-,-1 "‘"k-, +1" ‘ -1k -1 xk +l*',:Lp 

mm * 

} , І ЕЙ 
S П 

where 

s e N 

b. o± о 
1112' 

: .*4.. ‘ 

and where each edge consists of (Pj points of the form 

о # • о -o *i0 i 0 ’ <kp<. • • <k <p . 
, +1* * ,:Lk -1 +1* • p 1 2 m 
L m m r 

If no two edges of G are incident and if every vertex is 

incident to some edge, then the hypergraph G is called a com.pCe.te. 

(P j -combination.. The number of such hypergraphs is denoted by Г(р,п,т) . 

When p=2 , m=l , we obtain a graph which is called a complete paieing . 

Establish the following formulae : 

Г(р,п,т) = |T(p,n,m) I = G(p,n,p-m) , 

Г (p,n,p-l) = (n!)P 
-1 

Г(p,n,1) = L(n,p-1) . 

32. (Yemelichev & Kononenko 1974). The existence of a (t,n,2)- 

orthogonal system of Latin squares implies the existence of a (t+2,n,2)- 

orthogonal system of square matrices. However, an analagous assertion is 

not true even for 3-cubes. Show, by means of an example, that the exis¬ 

tence of a (4»3»3)-orthogonal system of Latin cubes D-^,D2»D^,D^ does not 

imply the existence of a (7,3,3 )-orthogonal system E-^ ,E2 ,E^ ,D^, D2 ,D^ ,D^ . 

33. Algorithms are known which solve the assignment problem of 

order nxn in O(n^) operations. (Dinitz & Kronrod 1969, Kravtsov, Sherman 

& Averbukh 1975). However, even for the triply-indexed axial selection 

problem effective algorithms are not known. 
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34*. Is it true that every integer from 0 to (m-1) (n-l)(k-1) , 

and only these integers, can equal the dimension of a triply-indexed 

planar transportation polytope of order mxnxk ? 

35*. Prove or disprove the following statement: there is no non¬ 

degenerate axial transportation polytope M(a^,a^.a^ ,P) of order 

W* 
satisfies 

, xn nl >n2 > > n >2 
= p = 

ni>3 whose number of vertices 

p 

П 
s=2\i=l 

, „ p /s-i \n -i p p 
<f (M(a ,a^.ap)) < П П n,1s + П n - I n + p - 2 

0 s=2\i=l V s=l s s=l 3 

36*. Is it true that every integer of the form (m-1) (n-l)(k-1) + t, 

where 1<t <, mk+nk+mn-k-m-n , and only these integers, can equal the number 

of facets of a non-degenerate planar triply-indexed transportation polytope 

of order mxnxk > m,n,k;>2 ? 

37*. Is the following statement true? There is no non-degenerate 

planar triply-indexed transportation polytope M(A,B,C) of order mxnxk , 

whose number of vertices satisfies the inequalities 

(m-1) (n-l)(k-1) +1 < f0(M(A,B,C)) < 2(m-1) (n-l) (k-1). 

38* Is it true that every integer from (n -1) to 

n, > n0 > . . . > n > 2 , 
1=2= = p = 

s=2 s —1 

-p + 1 , and only these integers can equal the diameter of a non-degenerate 

axial transportation polytope of order n^n„x.,,xn 

n1=>3 , p>2 ? 1 

39. (Smith 1973). For a planar transportation polytope M(A,B,C) 

of order mxnxk to be non-empty it is necessary for the following 

inequalities to be satisfied: 

b(j,K]_) + c(K2,J) - a(K) > 0 , V JC N 

(I,S1) +c(l,S2) -b(S) > 0 , VICNc 

a(P2,T) + b(P1,T) -c(P) > 0 , VTCN, 
к 

К CN хм 
- m к 

S CN xN. 
n к 

PCN xN 
— m n > ■* — 

where Кх = {t:(i,t)eK}, K2 = (i : (i,t)eK), Р2 = {j : (i,j)eP}, 

P2 = {i : (i,j )eP), S1={t:(j,t)eS}, S2 = (j : (j,t )eS}, and the symbol z(R ) 

denotes the sum of those elements of the matrix (z..) „ for which the 
ij mxn 

index pair (i,j) takes all values in the set R , RCNfflxNn . 

40. Let M(Aq,Bq,Cq) and M(A-^,B^,C^) be non-empty planar trans¬ 

portation polytopes of the same order, then every polytope M(A^,B^,C^) , 

0<A<1 , defined by the matrices A^ = AA-^ + (I-A)Aq , B^ = AB-^ + (l-A)Bg , 

CA = AC-^ + (I-A)Cq , is also non-empty. 
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PROBLEMS AND CONJECTURES 

1. Obtain necessary and sufficient conditions for the existence 

of a 3-polytope each of whose vertices has a specified number of adjacent 

vertices. In other words, describe those sequences which can be realized 

as the degrees of the vertices of a 3-polyhedral graph. Such sequences 

can be called polykednal леуиепсе-і . (Sainte Marie C. , Question 5 05 , 

Interned. Math., 1895, 2). 

2. Characterize those polyhedral sequences which correspond to a 

unique combinatorial type of polytope. 

3. (Ida. I Ah.' con j cetane.). The sequence a-,,...,a is called 
1 m 

unimodal if there does not exist i< i < к < l such that a. < a. > a, < a„ . 
J l j к l 

Is it true that the sequence (a^.) is unimodal if a^ is: (l) the 

number of к-faces of a polytope; (2) the number of non-isomorphic 

matroids of rank к on n elements? (Combinatorics. Proceedings Confer. 

Combin. Math., Oxford, 1972). (This conjecture was shown to be false by 

Bj orner A. 7he. unimodality conjectune /о/1 convex, polytope*. Bull. Amer. 

Math. Soc., 1981, 4> No.2) 

4- When d>4 , do there exist d-polyhedral graphs which uniquely 

determine a polytope up to combinatorial equivalence? 

5. Let the graph G be d'-polyhedral and also d"-polyhedral. 

Does this imply that G is d-polyhedral for all d'^d^d" ? 

6. Let M be a 3-polytope, C a simple cycle containing n 

vertices in the graph of M, and F a convex n-gon in the plane H . 

Then, there exists a polytope M' which is combinatorially equivalent to 

M , and an orthogonal projection 7T : Eq H such that тг(М') =F and 
-1 \ ^ 

7Г (bdF) coincides with the vertices and edges of M1 corresponding to 

the cycle C . 

7. For any integer d there exists a finite extension Q of 

the rational field Q such that every combinatorial type of d-polytope is 

realizable in . 
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8. (Maximum diameten. con.je.ctu/ie.), A(d,n)<:n-d . (see §2, Ch. 2) 

9. Construct simplex algorithms which will traverse the vertices 

of a non-returning chain. Will such algorithms be polynomial? 

10. (Pad.be/ig'л conjectu/ie). Let A be a Boolean matrix. Then 

the following assertions are equivalent: 

(1) the relaxed polytope M=(A,e) is integral; 

(2) A does not contain an (mxk)-submatrix A' which has 

the property ^ where 3 < к < n and 8=2, [k/2] , к - 1 (compare with 

Theorem 5-5, Ch.4). (see Padberg 1974» Ch.4). 

11. Find necessary and sufficient conditions for the polytope 

M(A,b) to be quasi-integral for any integral vector b . 

12. Find necessary and sufficient conditions for the polymatroids 

M(p1) and M(p£) to be combinatorially equivalent, where and p^ 

are submodualr functions. 

13. Obtain an analytical specification for the standardization 

problem polytope H (Q) for arbitrary (not Boolean) matrix Q . 

14. Which Of the following problems are NP-complete: check 

whether a given inequality ax < b defines a facet of the polytope which 

is the convex hull of the characteristic vectors of (1) the hamiltonian 

cycles of a given graph; (2) the vertex packings of a given graph; (3) the 

vertex coverings of a given graph? (See, Karp R.M. & Papadimitriou C.H., 

On Zinea/i cka/iacte/iizationA o£ comZinatoniaZ optimization p/ioZZem/>, MIT 

Lab. Comput. Sci. Techn. Mem., 1980, No. 154)* 

15. Obtain an analytical representation of the polytope 

conv (a^ :ireH} for the case in which: (l) H is the set of cyclical 

permutations; (2) H is the set of derangements; (3) H is the dihedral 

subgroup. In each case give a criterion for two vertices to be adjacent. 

16. Characterize the class of polytopes for which the diameter 

is equal to the radius. 

17. (SiegeZ'л conjectu/ie). If the maximum diameter conjecture is 

true for a given polytope then it is true for its intersection with a cube. 

18. (Q/iunZaum' л conjectu/ie -fLo/i the minimum numZe/i ojL £асел). 

«*«•»> - (kli)+ (Л)- (2kV) 
for all к e N, , d+1 < n < 2d . 

19. (Two con j ectu/іел о/ Ba/inette). (l) The graph of any simple 

4-polytope is hamiltonian. (2) If every facet of a simple 3-polytope has 

an even number of edges, then the graph of this polytope is hamiltonian. 
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20. The diameter of any non-degenerate classical transportation 

polytope of order mxn , 3<m<n , n>4 , with (m-l)n+k facets , 0<k<n , 

and having the maximum number of vertices is equal to m + к - 1 (see 

Yemelichev, Kravtsov & Krachkovsky 1979, Ch.6). 

21. Is it true that every whole number of the form m +t , where 

0^t<k-l , and only such numbers, are realized as the diameter of a non¬ 

degenerate classical transportation polytope of order m*n , 2 m ^ n , 

with (m-l)n+k facets for each ke ? 

22. Is it true that the graph of any classical transportation 

polytope is hamiltonian but is not pan-cyclic. 

23. The degenerate classical transportation polytope M(a,b) of 

order mxn , where m and n are coprime, has the maximum number of 

vertices if and only if it is 1-degenerate and the spectrum S(a,b,a*,b*) 

= 0 • 

24. Almost all classical transportation polytopes have the 

maximum number of edges. 

25. Let ф^(т,п) , Ф2(т,п) , ... , ф^(т,п) be a sequence of all 

possible values of the number of vertices of a classical transportation 

polytope of order mxn . 

(1) Find the number t . 

max u(WSv ) 
mxn 

(2) Is it true that lim — —rr;-?- = 0 ? Here, 
n^n-»-00 Wmxn 

U(W) is the Lebesgue measure of the set ¥ in the space Effi+n ^ , 

W® vv, = Ha ,b )eWmVvi : f (M(a,b )) = ф (m ,n)} , and WmVv, has the same meaning 
raxn mxn о s mxn ° 

as in §10, Ch.6. 

26. Let the set of all classical transportation polytopes of 

order mxn with the maximum number of vertices be partitioned into the 

classes of equivalent polytopes. When m and n are coprime there is 

only one such class, (see Cor. 7.5,Ch.6). Determine the number of equi¬ 

valence classes when (т,и) f1 (see Reverz 1961, Ch.7). 

27. The maximum number of vertices in the class of symmetric 

transportation polytopes of order nxn (see Ex.27, Ch.6) is not less 

n-1 j p 
than l П (k +l) (see Dubois 1973, Ch.7). 

j=0 k=0 

28. Let m,n>3 , 1 i к<mn+m+n-1 . The minimum number of vertices 

in the class of non-degenerate regularly truncated transportation polytopes 
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of order mxn with (m-l)(n-l)+k facets is equal to k(m-l) (n-l) - к + 2. 

This conjecture is true for 1 < к < (m-l)(n-l) +2 (see Ex.7 

Ch.7). 

29. 

numbers, are 

order mxn . 

30. 

n,xn„x...xn 
12 p 

Every whole number from 1 to m + n - 1 , and only these 

realized as the diameter of a transportation polytope of 

The axial transportation polytope M(a^,a^,...,a^) of order 
1 2 

, n, = max n , p >2 , defined by the integer vectors a ,a , 
l<s<p s 

...,a^, has the maximum number of integral vertices if and only if every 

classical transportation polytope M(a\a^) , i=2,...,p has the maximum 

number of vertices. 

31. The graph of any non-degenerate axial transportation polytope 

of order n,xn„x...xn with the minimum number of vertices is hamiltonian. 
12 p 

This conjecture is true when p=2 (see Ex.59,Ch.6). 

32. The planar triply-indexed non-degenerate transportation 

polytope M(A*,B*,C*) of order mxnxk defined by the matrices 

A* = 

n n 

'm m 
m m 

, m m 

has the maximum number of vertices. 

33. Is it true that every whole number from 1 to mk + nk + mn - 

- m-n-k+1, and only these numbers,are realized as the diameter of a 

planar triply-indexed transportation polytope of order mxnxk ? 

34. The maximum radius in the class of classical transportation 

polytopes of order mxn , п^п^З , coincides with the maximum diameter 

in the same class and is equal to m + n - 1 . 

35. Is there a simplex algorithm for which the number of itera¬ 

tions does not exceed the diameter of the polytope? 
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LIST OF SYMBOLS 

- submatrix of the matrix A formed from the rows with indices in the 
set I and the columns with indices in the set J . 

- incidence matrix of the graph G . 

- dimension of a polytope. 

- non-negative orthant in . 

- n-dimensionsional Euclidean space, 

the set of (mxn) -matrices with real elements. 

vertices. 

_m,n 
I = N \I , where ICN . 

s s 
- complete graph on m 

Km - complete bipartite graph. 

N = {1,2,...,s} . 
s 

ISI - number of elements in the finite set 
Sn - the symmetric group of permutations on n symbols. 

0, if a = 0, 
1, if a > 0, 

-1. if a < 0. 
= {0,1,2,...} . 

(Z*) - the lattice of integral points in (e!) n n 
e - a vector all of whose components are equal to unity. 
rank A - the rank of the matrix A . 
det A - the determinant of the matrix A . 
3(A) - semigroup, generated by the columns of the matrix A 

(n) - the number of combinations of objects taken n 

- the largest integer which does not exceed a . 
- the smallest integer which is not less than a . 
- the fractional part of a . 
- Kronecker's symbol. 

- the empty set. 

- the set of all subsets of the set I . 

- a (±l)-matrix. (149) 

A - affine hull of the column vectors of the matrix 

at a time. 

mxn 

n \ 
. . ,a ) 
(265) 

affine hull of the points 
1 

a ,. 
n 

*a 

A . (11) 

(11) 
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A (a, b) 
bd M 

В (q1,. . . , 
C 

m ,n 
C(d,n) 
c on A 

, 1 
oon(a , . . 

, 1 
conv (a ,. 
D ,, 
m,mq+l 

deg v 
diam M 
dim M 

fk(M) - 
f(M) 

GA 
G(M) 
G(S) 
G(t,n,p) 
G (x) 
G 
Gx(U,V) - 

GT(a,b,x) 

Hm(Q) - 

H+ (H-) - 
int M 
K{ a,b,x) 
L(n,p) 
M 

n 
M* 

n 
M*# 
П 

M 
n 

Mas 
Mn 
M 

x 
Mn(a) 

(265) 
boundary of the set M . (15) 

q^ ) - semigroup generated by integral vectors. (134) 
class of (m*n)-matrices with components 0 , +1 , -1 . (150) 

cyclic d-polytope with n facets. (24) 
conical hull of the columns of the matrix A . (16) 

..a11) - conical hull of the points aG,...,an. (16) 

..,an) - convex hull of the points aG,...,an. (15) 
- (270) 

degree of the vertex v in a graph. (64) 
diameter of the polytope M . (71) 
dimension of the set M . (11) 
number of к-faces of the polytope M . (44) 

face-complex of the polytope M . (93) 
intersection graph of a Boolean matrix A . (171) 

graph of the polytope M . (62) 
subgraph of the graph G , generated by the vertex set S. 

number of distinct (t ,n, p)-orthogonal systems. (384) 

(214) 
complement of the graph G . (172) 
(275) 

(U,V) - (275) 

the standardization polytope. (245) 

half-spaces determined by the hyperplane H . (12) 
interior of M . (14) 

- (287) 
number of Latin p-cubes of order n . (384) 
bistochastic polytope. (212) 

symmetric permutation polytope. (217) 

symmetric bistochastic polytope. (255) 

hamiltonian cycle polytopb. (219) 

hamiltonian tour polytope. (220) 

section at vertex x of polytope M . (96) 

permutation polytope. (227) 

M™(a) - arrangement polytope. (237) 

M^(a) - even permutation polytope. (235) 

M (A, e ) - 

M=(A,e ) - 

M= (A,e ) - 

M(A,b ) - 

M(A*,b*) 
M (a) 

relaxed partition polytope. (191) 

relaxed packing polytope. (170) 

relaxed covering polytope. (170) 

{xeE^ : Ax=b} = canonical form of a polytope. 

simplest location polytope. (193) 
distribution polytope. (350) 

(37) 

(63) 
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M(a,a) - symmetric transportation polytope. (359) 
M(a,b) - classical transportation polytope. (264) 
м(а*,Ъ*) - central transportation polytope. (262) 
M(a,b,D) - truncated transportation polytope. (335) 

M(a\ ...,a^) - p-indexed axial transportation polytope. (363) 
M(A,B,C) - triply indexed planar transportation polytope. (372) 
M(G) - matching polytope of a graph G . (175; 
M(k,n) - graph median polytope. (196) 

M(a\bX) 

M(A,b1,b2, 
M(p) 

мк>ѣ(а*Ь) 

Ml'+M2 - 
М1ѲМ2 - 

Mx ® M2 - 

M1'UM2 - 

мГ=м2 - 

d^d2) 

(290) 

- (147) 
polymatroid given by the submodular function 

(k,t)-truncated transportation polytope. 

(26) 

P • 
(342) 

and 

and 

M sum of the polytopes 

join of the poly topes M-^ 

product of the polytopes and 

equivalence of the polytopes M-^ 

combinatorial equivalence of polytopes 

(82) 

M2 
and 

(179) 

(26) 

. (100) 

, and М,- (94) 

(M,x,y) 

П (m ,n) 

/’/(m.n.k) 

П 
P 

P = {T,V) 
P(M) 

Q (p) 

Dantzig figure. (77) 
matroid. (38) 
class of (n-m)-polytopes with n facets, given in canonical 
form. (37) 

set of all non-degenerate classical transportation polytopes 
of order (mxn) with (m-l)ntk facets. (276) 
class of regular axial transportation polytopes. (368) 

semi-matroid. (99) 
semi-matroid of the polytope M . (100) 
unbounded polymatroid. (181) 

Qp(a,b) - (289) 
relbd M - relative boundary of the set M . (15) 
relint M - relative interior of the polytope M . (14) 
r(u,v) - distance between the vertices u and v of a graph. (71) 
r(u/v) - remainder on division of u by v . (302) 
T(p,n,m) - set of plans for a multi-indexed selection problem. (385) 
R - incidence matrix of a complete bipartite graph. (162) 

112 2 
S(a ,b ,a ,b ) - spectrum of two classical transportation polytopes 

M(a1,b^') and M(a2,b2) . (294) 
T(a,b,x) - basis set of vertex x of polytope M(a,b) . (265) 
T(p,n,m) - set of plans for a multi-indexed selection problem. (385) 

- simplex. (23) 

vert M - set of vertices of a polytope M . (16) 

W* 

WZ 
ct(G) 
В(Я) 
B(A,b) - 
8*(A,b ) - 

YL,P(a,b) 
A(d,n) 

polar of the set W . (27) 
set of integral points of the set W . (134) 

inner stability number. (170) 
number of bases in the matroid fl . (38) 
number of bases of the polytope M(a,b) . (37) 
number of feasible bases of the polytope M(a,b) . (41) 
- (290) 

maximum diameter in the class of d-polytopes with n facets. 
(6) 
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va> - 
6LfP(a>b) 
П (M) 
0(G) 
Uk(d,n) - 

Uk(d,n) 

yI,J(a'b) 
v(G) 
P(G) 
T (G) 

ф(ш,п) 

Фк(сі,п) - 

X(G) 
ш (G) - 

highest common factor of all vbb-order minors of matrix A . 

(141) 
- (290) 

height of the polytope M . (6) 
clique number of the graph G . (173) 

lower bound for number of к-faces of a d-polytope with n 
vertices. (121) 
lower bound for number of к-faces of a simplicial d-polytope 
with n vertices. (121) 

- (265) 

matching number of the graph G (170) 
edge covering number of the graph G . (170) 
vertex covering number of the graph G . (170) 
maximum number of vertices in the class of classical transpor¬ 
tation polytopes. (296) 
upper bound for number of к-faces of a d-polytope with n 
vertices. (Ill) 
chromatic number of the graph G . (l6l) 
plumpness of the graph G . (172) 

> - cycle. (220) 
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