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Series Editor’s Foreword 

In a broad sense design science is the grammar of a language of images rather 
than of words. Modern communication techniques enable us to transmit and 
reconstitute images without needing to know a specific verbal sequential lan¬ 
guage such as the Morse code or Hungarian. International traffic signs use 
international image symbols which are not specific to any particular verbal 
language. An image language differs from a verbal one in that the latter uses a 
linear string of symbols, whereas the former is multidimensional. 

Architectural renderings commonly show projections onto three mutually 
perpendicular planes, or consist of cross sections at different altitudes capable 
of being stacked and representing different floor plans. Such renderings make it 
difficult to imagine buildings comprising ramps and other features which dis¬ 
guise the separation between floors, and consequently limit the creative pro¬ 
cess of the architect. Analogously, we tend to analyze natural structures as if 
nature had used similar stacked renderings, rather than, for instance, a system 
of packed spheres, with the result that we fail to perceive the system of organi¬ 
zation determining the form of such structures. 

Perception is a complex process. Our senses record; they are analogous to 
audio or video devices. We cannot, however, claim that such devices perceive. 
Perception involves more than meets the eye: it involves processing and orga¬ 
nization of recorded data. When we name an object, we actually name a con¬ 
cept; such words as octahedron, collage, tessellation, dome, each designate a 
wide variety of objects sharing certain characteristics. When we devise ways of 
transforming an octahedron, or determine whether a given shape will tessellate 
the plane, we make use of these characteristics, which constitute the grammar 
of structure. 

The Design Science Collection concerns itself with various aspects of this 
grammar. The basic parameters of structure such as symmetry, connectivity, 
stability, shape, color, size, recur throughout these volumes. Their interactions 
are complex; together they generate such concepts as Fuller’s and Snelson’s 
tensegrity, Lois Swirnoff s modulation of surface through color, self-reference 
in the work of M. C. Escher, or the synergetic stability of ganged unstable 
polyhedra. All of these occupy some of the professionals concerned with the 
complexity of the space in which we live, and which we shape. The Design 
Science Collection is intended to inform a reasonably well educated but not 
highly specialized audience of these professional activities, and particularly to 
illustrate and to stimulate the interaction between the various disciplines in¬ 
volved in the exploration of our own three-dimensional, and, in some in¬ 
stances, more-dimensional spaces. 

XV 



XVI Series Editor’s Foreword 

Shaping Space is a polyhedral anthology. Like the conference of the same 
name which inspired it, it is polyglot and polydisciplinary. It is unlikely that as 
many scholars and artists actively involved with polyhedra will be together 
again in the near future; it was therefore deemed important to leave a physical 
imprint of the event by means of publication of this book, and to share its 
concerns with a broader audience. The volume reflects the exuberance of the 
conveners of that conference, George Fleck and Marjorie Senechal. Its high 
picture-to-word ratio characterizes the visual character of the gathering. Sene¬ 
chal and Fleck strived to preserve much of the spirit of the event without 
producing a mere transcript of the proceedings (which, at best, would have 
been a pale reflection). To this purpose the editors, with the cooperation of the 
contributors, adapted and modified the original contributions. It is hoped that 
the reader will not remain passive, but will be stirred into action by the recipes, 
and will be challenged by some of the as yet unsolved problems. The confer¬ 
ence was a participatory one; the book should be the same. 

Shaping Space addresses itself to designers, artists, architects, engineers, 
chemists, mathematicians, bioscientists, crystallographers, earth scientists—in 
short, to all scholars and educators interested in, and working with, two- and 
three-dimensional structures and patterns. There is a broad range of abstrac¬ 
tion; some readers may find the more mathematical chapters challenging, but 
the editors have endeavored to entice the readers to rise to that challenge. 
Conversely, we know that at least one of the contributing mathematicians took 
off time from his purely mathematical research to gain “hands-on” experience 
in building polyhedral models. 

Shaping Space celebrates the coming of age of polyhedrics; with it we must 
note with a certain regret the passing of youth. A discipline experiences sigmoi¬ 
dal growth; a slow initial phase followed by a period of rapid growth, and finally 
saturation characterized by an asymptotically decreasing growth rate. During 
the initial slow-growth phase workers tend to operate individually and in isola¬ 
tion. As pioneers they must fashion their own tools, and their products may in 
retrospect appear crude and dilettantish. We should not forget, however, that 
asking the right significant questions is usually more difficult than finding the 
answers to these questions, and that the pioneers generate the questions which 
characterize the discipline. Rapid growth usually results when the isolated 
groups find each other and communicate; the conference at Smith College 
catalyzed such communication. In this phase the “professionals” from older 
disciplines enter to help in finding answers. Thus we find, in Shaping Space, 

some mathematicians referring to “folklore.” The mathematicians help codify 
the discipline, identify (and sometimes fill) the gaps, and ask new questions 
generated by the solutions to the old ones. On the other hand, every discipline 
needs cross-fertilization for long-term survival. When the folklorists cease to 
come up with significant questions, the discipline will settle into its terminal 
saturation phase. It is evident from this volume that polyhedrics is not yet 
prepared to enter old age. 

Cambridge, Massachusetts Arthur L. Loeb 



Preface 

Shaping Space: A Polyhedral Approach is inspired by the Shaping Space Con¬ 
ference, which was held at Smith College on April 6-8, 1984. The conference 
was very successful, attesting to the aesthetic and intellectual appeal of its 
subject matter. It attracted a broad audience of all ages (see Figs. P-l-P-3) 
including elementary school, middle school, high school, college, and graduate 
students, teachers, artists, scientists, mathematicians, engineers, architects, 
model-building enthusiasts, mystics, and townspeople. The three days of ex¬ 
hibits, workshops, and lectures were designed for a wide variety of interests 
and levels of expertise. 

The exhibits ranged from a display of polyhedra made by children at the 
Smith College Campus School (see Fig. P-4) through the beautiful multicolored 
creations of Morton Bradley, Jr. (see Figs. P-5, P-6). They included several 
rooms of models brought by conference participants, and a very impressive 
exhibit of fake artifacts from the history of polyhedra, “discovered” by a group 
of Smith College mathematics majors. Photographs of many of the models 
exhibited at the conference are included in this volume. Five of the workshops 
are recreated in Part I. The main lectures of the conference are presented (in 
slightly adapted form) in Part II. Parts III and IV deal with research material 

Fig, P-1. Brian Julin of Holyoke, Massachusetts. Photograph by Stan Sherer. 

xvii 



xviii Preface 

Fig. P-2. Audience at a general session of the Shaping Space Conference. Photograph 

by Stan Sherer. 

Fig. P-3. R. M. Langer of Arlington, Massachusetts. Photograph by Stan Sherer. 

presented in the conference sessions titled “Applications of Polyhedra” and 
“Theory of Polyhedra.” 

This book, however, is much more than the proceedings of the Shaping 
Space Conference. In addition to trying to translate the spirit and substance of 
the conference onto the printed page, we have added material not presented at 
the conference itself to ensure that the book will be accessible to a broad 
audience. The book also reflects the continuing evolution of our ideas of the 



Preface XIX 

Fig. P-4. A decorated icosahedron in the Campus School exhibit. Photograph by Stan 
Sherer. 

Fig. P-5. Morton Bradley sculptures, exhibited in the Clark Science Center at the 

Shaping Space Conference, courtesy of the artist. Photograph by Stan Sherer. 

roles that three-dimensional geometry can play in the curriculum at all levels 
(see Part V). 

We hope you will join us on this exploration of the world of polyhedra, 
beginning with an introductory “Visit to the Polyhedron Kingdom” (Chapter 1) 
and concluding with an examination of the significance of polyhedral models in 
contemporary science and a survey of some recent advances and unsolved 
problems in mathematics. 



XX Preface 

Fig. P-6. Morton Bradley, Jr. Photograph by Stan Sherer. 

The conference was the first stage of a three-part project. The publication of 
this book completes the second stage, and we will soon embark on the third 
stage, the development of an interdisciplinary high school geometry course 
which emphasizes the study of three-dimensional forms and their roles in sci¬ 
ence, technology, mathematics, and art. 

We are pleased to have this opportunity to acknowledge the advice and 
assistance which we have received from our colleagues, students, and other 
friends at every stage of this project, including A. Lee Burns of the Smith 
College Art Department, who co-organized the Shaping Space Conference with 
us (Robert Whorf, the creator of Symmetries, was also a co-organizer; his 
untimely death has saddened all who knew him); the conference speakers and 
other participants; and the many people who have sent us suggestions for this 
book. H. S. M. Coxeter, A. C. Laan, R. O. Erickson, Joseph Malkevitch, 
Godfried Toussaint, Gerry Segal, and Timothy Brown read portions of early 
drafts of the manuscript and offered helpful criticisms. Special thanks are due 
to Wendy Klemyk, Smith College Class of 1987, without whose dedicated and 
efficient assistance this book would never have been completed; to Stan Sherer 
for conveying the breadth and spirit of the Conference through his expert pho¬ 
tography; and to Arthur Loeb for his encouragement and advice over many 
years. The financial support of the National Science Foundation (Grant DPE 
84-00339) is gratefully acknowledged. 

Northampton, Massachusetts Marjorie Senechal 

George Fleck 
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1 

A Visit to the Polyhedron Kingdom 

Marjorie Senechal 

What is a polyhedron? If you would like to 
know, we invite you to join us on a fanciful 
visit to the Polyhedron Kingdom. Although 
you may not have heard of it before, you will 
find that this Kingdom is nearly as vast, and as 
varied, as the animal, mineral, and vegetable 
kingdoms (and that it overlaps all three of 
them). You will meet aristocrats and workers, 
families and individuals, old polyhedra with 
long and interesting histories and young poly¬ 
hedra who were born yesterday or the day be¬ 
fore. You will even catch a glimpse of some 

polyhedral ghosts who live in four-dimen¬ 
sional space. You will take a brief walking 
tour of polyhedral architecture, visit a nature 
preserve and an art gallery, and end the visit 
by browsing at an artisans’ polyhedra fair. 

The boundaries of the Polyhedron Kingdom 
are in dispute (as are those of most kingdoms) 
but it is safe to visit the border areas. You 
need not worry about the nature of the dis¬ 
putes until later in this book. 

The language of the Polyhedron Kingdom is 
mathematics, but for this brief first visit you 

Fig. 1-1. Cube with face, by a fifth-grade student at the Smith College Campus School, exhibited at the 

Shaping Space Conference. Photograph by Stan Sherer. 
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4 Marjorie Senechal 

Fig. 1-2. A polyhedral monster, also in the Campus 

School exhibit. Photograph by Stan Sherer. 

VERTEX 

Fig. 1-3. The cube has six faces, twelve edges, and 

eight vertices. 

can get by if you learn three important words: 
face, edge, and vertex. The word polyhedron 

comes from the Greek and means an object 
with many faces. In Figs. 1-1 and 1-2 we see 
polyhedra with faces. But this is not what we 
mean when we speak of the faces of a polyhe¬ 
dron. For our purposes, the faces of a polyhe¬ 
dron are the polygons from which it is con¬ 
structed. The edges of a polyhedron are the 

lines bounding its faces; its vertices are the 
corners where three or more faces (and thus 
three or more edges) meet (Fig. 1-3). You will 
see as we go along that these terms can have 
somewhat more general meanings, but the defi¬ 
nitions just given are adequate for the mo¬ 
ment. As you tour the Polyhedron Kingdom, 
you will become more comfortable with an in¬ 
creasing vocabulary and with a wider range of 

common usages. 
We begin our tour with a visit to the rulers 

of the Kingdom. 

The Regular “Solids” 

At the gates of the Kingdom live its rulers, the 
famous and venerable regular “solids” pic¬ 
tured in Fig. 1-4. Each of these polyhedra is 
called regular because of certain very special 
properties: its faces are identical regular poly¬ 
gons,’ and the same number of polygons meet 
at each vertex. So the faces of each polyhe¬ 
dron are all alike and their vertices (or, more 
precisely, the arrangements of polygons at 
their vertices) are all alike. 

There is a simple argument, given by Euclid 
(300 B.C.), which shows that there are only 
five regular polyhedra. Let’s try to build poly¬ 
hedra with the regularity property just de¬ 
scribed; we will quickly find that there are 
only five possibilities. We start by construct¬ 
ing polyhedra whose faces are equilateral tri¬ 
angles. Eirst, we can put three triangles to¬ 
gether to form one vertex of a polyhedron. If 
we continue this pattern at all the other cor¬ 
ners we obtain a pyramid that has four triangu¬ 
lar faces, four vertices, and six edges; this is 
the regular tetrahedron (Eig. l-4a). If we put 
four triangles at each vertex, we can build an 
octahedron (Fig. l-4b); if we put five together 
then we get the icosahedron (Fig. l-4c). Six 
equilateral triangles fit together around a point 
to form a plane surface, not a closed polyhe¬ 
dron. And if we try to fit seven or more to¬ 
gether—well, try it and see what happens! So 
these three polyhedra are the only regular 
ones that can be built out of equilateral trian¬ 
gles. Now let us try to build a regular polyhe¬ 
dron out of squares. We see that there is just 
one possibility, the cube (Fig. l-4d), in which 
three faces meet at each vertex, because four 
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squares in a plane fit together around a point. 
(What happens if we try to fit five?) If we use 
regular pentagons, we can again build just one 
solid, the pentagonal dodecahedron (Fig. 
l-4e). We cannot continue this procedure with 
regular polygons with a greater number of 
sides because three regular hexagons lie flat, 
three or more heptagons or octagons buckle, 
and so forth. We conclude that there are no 
other regular polyhedra. 

The regular polyhedra are also known as the 
“Platonic solids” because the Greek philoso¬ 
pher Plato (427-347 b.c.) immortalized them 
in his dialogue Timaeus. In this dialogue Plato 
discussed his ideas about the “elements” of 
which he believed the universe to be com¬ 
posed: earth, air, fire, and water. Today when 
we think of “element,” we usually think of the 
chemical elements in the Periodic Table. (We 
recognize the solid, gas, plasma, and liquid 
states of matter.) But notice that we still speak 
of needing protection from the “elements,” 
and when we say this we mean snow, wind, 
lightning, and rain. In Timaeus, Plato argued 
that the geometric forms of the smallest parti¬ 
cles of the elements are the cube, the octahe¬ 
dron, the tetrahedron, and the icosahedron, 
respectively. (The fifth regular solid, the do¬ 
decahedron, was assigned to the Great All, the 
cosmos.) This association of the regular solids 
with the elements has captured the imagina¬ 
tion of many people from Plato’s time to this. 
We see the interpretation of the astronomer 
Johannes Kepler (1571-1630) in Fig. 10.32. In 
our own time, the artist M. C. Escher has pre¬ 
sented it in various ways. Figure 1-5 shows an 
icosahedral candy box decorated by Escher. 
Figure 1-6 might be subtitled “Platonic Puz¬ 
zle,” because all of the five Platonic solids 
appear in it in one form or another! 

Plato aside, do the regular polyhedra have 
any special significance outside the Polyhe¬ 
dron Kingdom? Maybe not. About four hun¬ 
dred years ago, the astronomer Johannes 
Kepler believed that he had at last discovered 
their true meaning. He wrote that the spheres 
in which they can be inscribed, nested one 
inside another, were the divine model for the 
orbits of the six planets. This was the reason 
why there were only six planets! (Kepler’s 
ideas are discussed in detail by H. S. M. Coxe- 
ter in Chapter 3.) The beauty of the regular 

a 

Fig. 1-4. The regular polyhedra and their plane 

nets. From Mathematical Models by Henry Mar- 

tyn Cundy and A. P. Rollett, 2nd edition, 1981, 

published by Oxford University Press. 
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Fig. 1-5. Icosahedron with Starfish and Shells, a Ballantine Books, 1976). © M. C. Escher Heirs c/o 

candy box by M. C. Escher. From Bruno Ernst, Cordon Art-Baarn-Holland. 

The Magic Mirror of M. C. Escher (New York: 

Fig. 1-6. Reptiles. Woodcut by M. C. Escher. © M. C. Escher Heirs c/o Cordon Art-Baarn-Holland. 

polyhedra has led scientists astray in our own 
time as well. A patterned octahedron was the 
first model proposed for the molecular struc¬ 
ture of proteins, by Dorothy Wrinch in 1934 
(Fig. 1-14); unfortunately the structures of 

proteins have turned out to be much less ele¬ 
gant (see p. 10). 

Still, once you have become acquainted 
with them, you will find that you meet the reg¬ 
ular polyhedra in the most unexpected places: 
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Fig. 1-7. Soap films, made by dipping a tetrahedral 

wire frame into a soapy solution. Notice that the 

tetrahedral bubble has curved faces. From Peter S. 

Stevens, Patterns in Nature. (Boston: Little, 

Brown and Company, 1974). Reprinted by permis¬ 

sion. 

for example, in the soap films shown in Fig. 
1-7 (if we agree that a polyhedron can have 
curved faces and edges), in decorative orna¬ 
ment (Fig. 1-8), in ordinary viruses (Fig. 1-9) 
and, if we agree that edges and vertices alone 
can constitute a polyhedron, perhaps even in 
outer space (Fig. 1-10). The shapes of many 
molecules are thought to be closely related to 
the regular polyhedra (Fig. 1-12). Many crys¬ 
tals have cubic, octahedral, or dodecahedral 
forms; others are tetrahedral or icosahedral. 
But most dodecahedral (and icosahedral) crys¬ 
tals, like the pyrite crystals in Fig. 1-11, are 
not regular. (Indeed, until November 1984, it 
was believed that regular dodecahedral and 
icosahedral crystals could not exist, because 
their symmetry is theoretically impossible for 
a crystal. Then some crystals with this sym¬ 
metry were discovered, posing some challeng¬ 
ing problems for symmetry theory!) Perhaps 
to make up for its limited role in the mineral 
kingdom, the regular dodecahedron with its 
twelve faces has been used by people in imagi¬ 
native ways, such as streetcorner recycling 
bins in France (Fig. 1-13). 

Today we believe that it is not the classical 
form of the regular polyhedra that is signifi¬ 
cant: instead it is the high degree of order 
which they represent. Indeed, by now you 
have noticed that the regular “solids” are not 
always found in solid form. In some contexts, 
they have hollow interiors; in others, they 
have perforated surfaces; in yet others they 
have no faces, but appear as skeletons made 
of edges and vertices. Still, they are usually 
recognizable because of their high degree of 
symmetry. For example, all of the regular 
polyhedra have mirror symmetry: they can be 
divided into mirror-image halves in many dif¬ 
ferent ways. They also have rotational sym¬ 

metry: there are many ways in which they can 
be rotated without changing their apparent po¬ 
sition. Both the mirror symmetry and rota¬ 
tional symmetry are due to the fact that, for 
each of these polyhedra, every face, every 
vertex, and every edge is like every other. In 
other words, they are highly organized; this is 
one of the reasons that they are found so often 
in nature. This organization is also aestheti¬ 
cally pleasing, and it is largely because of their 
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Fig. 1-8. The icosahedron and other polyhedra of¬ 

ten appear as decorative elements in Baroque ar¬ 

chitecture; here, the church of Santissimi Apostoli 

by Borromini. From Paolo Portoghesi, The Rome 

of Borromini: Architecture as Language (New 

York: George Braziller, 1968). Photograph by cour¬ 

tesy of Electa, Milano. 

Science Times With 
Education. 
Style. Arts 

jJorkSimcs ® 

Fig. 1-9. The icosahedron is a common form of viruses. From The New York Times, Tuesday, February 

12, 1985. © 1985 by The New York Times Company. Reprinted by permission. 
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""Icpovt S?IRAU GAt-AXte-S YooVE 
5^ ^LUtf-fiCA CiALyyiES...'' ' 

Fig. 1-10. Sidney Harris, All Ends Up: Cartoons by 

S. Harris from American Scientist (Los Altos, Cali¬ 

fornia: William Kaufman, Inc. 1970). Reprinted by 

permission. 

Fig. 1-11. Pyrite crystals. From Cedric Rogers, 

Rocks and Minerals. London, Triune Books, 1973. 

Used by permission. 

Fig. 1-12. An artist’s conception of a methane molecule. From Linus Pauling and Roger Hayward, The 

Architecture of Molecules, San Francisco, W. H. Freeman, 1964. Used by permission. 
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Fig. 1-13. Dodecahedral recycling bin for glass, on a street corner in Paris, France. Photograph by 

Marjorie Senechal. 

Fig. 1-14. The model for protein structure proposed by Dorothy Wrinch in 1934. Sophia Smith Collection, 
Smith College. Used by permission of Schenkman Books. 
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symmetry that they are considered to be beau¬ 
tiful. The regular solids have the highest possi¬ 
ble symmetry among pOlyhedra that are finite 
in extent. This is one reason why we can justly 
say that the regular solids are the rulers of the 
Polyhedron Kingdom. As you read through 
this book you will learn a great deal about 
symmetry. 

Direct Descendants 

There are many variations on the theme of the 
regular polyhedra. First let us meet the eleven 
(in Fig. 1-15) which can be made by cutting off 
{truncating) the corners, and in some cases 
the edges, of the regular polyhedra so that all 
the faces of the faceted polyhedra obtained in 
this way are regular polygons. These polyhe¬ 
dra were first discovered by Archimedes (287- 
212 B.c.) and so they are often called Archime¬ 
dean solids. Notice that vertices of the 
Archimedean polyhedra are all alike, but their 
faces, which are regular polygons, are of two 
or more different kinds. For this reason they 
are often called semiregular. (Archimedes 
also showed that in addition to the eleven ob¬ 
tained by truncation, there are two more 
semiregular polyhedra: the snub cube and the 
snub dodecahedron (see Fig. 1-15).) 

According to our definition, prisms (see Fig. 
1-16) with regular polygonal bases and square 
sides are semiregular solids too. Prisms are 
quite common in nature and in architecture, as 
we will see later on in the tour. Antiprisms 

also have two identical polygonal faces, but 
the “top” face is rotated relative to the “bot¬ 
tom” one, so that the two polygons are joined 
by triangles (see Fig. 1-17); when its faces are 
regular polygons, an antiprism is a semiregular 
polyhedron. 

Perhaps the most elaborate variations on 
the theme of the regular polyhedra are those of 
the sixteenth-century Nuremberg goldsmith 
Wenzel Jamnitzer, who engraved a fascinating 
and extensive series of polyhedra in honor of 
Plato’s theory of matter. In his book Perspec- 

tiva Corporum Regularium, published in 1568, 
each of the five regular solids is presented in 
exquisite variation. Can you tell which solid is 
being varied in Fig. 1-18? Jamnitzer’s figures 
show us that polyhedra need not be convex'. 

Fig. 1-15. The Archimedean or semiregular polyhe¬ 

dra; The first eleven can be obtained from the regu¬ 

lar polyhedra by truncation. Redrawn from Mathe¬ 

matical Models by Henry Martyn Cundy and A. P. 

Rollett, published by Oxford University Press. 

16. Three semiregular prisms. 

Fig. 1-17. Three semiregular antiprisms. 
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Fig. 1-18. Plate D.II. from Wenzel Jamnitzer, Perspectiva Corporum Regularium, 1568; facsimile repro¬ 

duction, Akademische Druck- u. Verlagsanstalt, 1973, Graz, Austria. 

that is, they can have indentations. Regular 
polygons that are not convex, such as the fa¬ 
mous pentagram (Fig. 1-19), are familiar to 

Fig. 1-19. The pentagram has equal sides and equal 

angles. 

most of us. Such “star polygons” can be used 
to build regular “star polyhedra.” There are 
exactly four regular star polyhedra (see Fig. 
1-20). Notice that all their faces are regular 
polygons and the same number of faces meet 
at each vertex. In this case, however, either 
the faces or the vertex arrangements are pen¬ 
tagrams. The lineage of these polyhedra can 
be traced to fourteenth-century Venice (see 
Fig. 1-21), but no general theory seems to 
have been developed at that time. Later 
Kepler investigated regular star polyhedra and 
found two of them; after that star-shaped poly- 
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Fig. 1-20. The four regular star polyhedra. From Mathematical Models by Henry Martyn Cundy and A. P. 

Rollett, 2nd edition, 1961, published by Oxford University Press. 

Fig. 1-21. Marble tarsia (1425-1427) in the Basilica of San Marco, Venice, attributed to Paolo Uccello. By 

courtesy of Scienza e Tecnica 76, Mondadori. 
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Fig. 1-22. Courtyard of Borromini church. From Paolo Portoghesi, The Rome of Borromini: Architecture 

as Language (New York: George Braziller, 1968). Photograph by courtesy of Electa, Milano. 

hedra (not necessarily regular) became ubiqui¬ 
tous (see for instance Fig. 1-22). But it was not 
until the early nineteenth century that two 
more regular star polyhedra were found and 
the French mathematician Augustin-Louis 
Cauchy (1789-1857) showed that there are no 
others. 

The uniform polyhedra are polyhedra, star 
or otherwise, whose vertices are all symmetri¬ 
cally equivalent. (They are generalizations of 
the Archimedean polyhedra.) Perhaps the 
most spectacular uniform polyhedron is the 
Yog-Sothoth, shown in Fig. 1-23. Although its 
existence had been predicted (on theoretical 
grounds) for many years, no one had ever seen 
it until one was built by Bruce Chilton several 
years ago. Chilton’s Yog-Sothoth was pre¬ 
sented to society for the first time at the Shap¬ 
ing Space Conference, and it was a spectacu¬ 
lar success. It has 112 faces: 12 are 
pentagrams, 40 are triangles of one type, and 
60 are triangles of another. Despite its com¬ 
plexity, the Yog-Sothoth has the symmetry of 
the icosahedron and dodecahedron, no more 
no less! 

There are many other interesting lines of de¬ 
scent from the regular solids. For example. 

there are polyhedra whose faces are all alike 
but whose vertices are not. Closely related to 
the semiregular solids, these polyhedra are es¬ 
pecially important in the study of crystal 
forms. But it is time to move on to other parts 
of the Kingdom. 

An Architectural Walking Tour 

The first polyhedral buildings we see on our 
tour are perhaps the most famous of all: the 
pyramids of Egypt, built about 2500 b.c. (Fig. 
1-24). Yes, a pyramid is a polyhedron; one of 
its faces is a polygonal base (of 3, 4, 5, . . .,n 

sides) and the others are congruent isosceles 
triangles joined to the base along its edges, 
meeting above it in a single point. The bases of 
the Egyptian pyramids are squares. 

As we walk along, we see several buildings 
based on prisms. Shown in Fig. 1-25 is a Hun¬ 
garian hut, a triangular prism resting on one of 
its rectangular sides (like our modern A- 
frames). Nearby we see a notorious pentago¬ 
nal prism located near Washington, D.C. (Fig. 
1-26), and a much older building in the form of 
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Fig. 1-23. Three plan views of the Yog-Sothoth, George Olshevsky, How to Build a Yog-Sothoth 

along five-, three-, and twofold axes, drawn by (George Olshevsky, P.O. Box 11021, San Diego, 

Bruce L. Chilton. From Bruce L. Chilton and Calif, 92111-0010, 1986). Used by permission. 

Fig. 1-24. The pyramids of Mycerinus, Chefren, and Cheops at Giza. Photograph by Hirmer Verlag, 

Munich. 



16 Marjorie Senechal 

Fig. 1-25. This hut in Hungary is a triangular prism 

resting on one of its rectangular faces. Photograph 

by Werner Bischof. Magnum Photos, New York. 

Fig. 1-27. The Baptistry of S. Giovanni, Florence. 

Photograph by D. Anderson. Alinari/Art Resource, 

New York. 

Fig. 1-26. The Pentagon is an enormous pentagonal 

prism. U.S. Air Force Photo by Eddie McCrossan. 

an octagonal prism (Fig. 1-27). It is rare to see 
a prismatic building with more than eight flat 
sides, but if we allow the meaning of “prism” 
to include polyhedra with curved sides, then 
we find that they are quite common. Actually, 
most buildings are prisms, since the rectangu¬ 
lar “boxes” that constitute much familiar ar¬ 
chitecture are prisms with rectangular bases. 

Even boxes can become interesting polyhe¬ 
dral structures when juxtaposed in imagina¬ 
tive ways, as in the “Habitat” housing project 
in Montreal shown in Fig. 1-28. 

Interesting polyhedral structures are often 
designed for world fairs (later to be moved to 
their permanent sites in the Kingdom). The 
Coca-Cola Building (Fig. 1-29), designed by 
Erwin Hauer for the 1964 New York World 
Eair, is a prism with many curved sides. The 
detail of the outer grill shown in Eig. 1-30 
shows that the design can be considered a 
slice though a packing of truncated octahedra. 
Other interesting polyhedral buildings are al¬ 
most spherical in form. In Eig. 1-31 we see one 
of Buckminster Fuller’s geodesic domes, the 
United States Pavilion at Expo ’67 in Mon¬ 
treal. Its faces are triangles, grouped into hex¬ 
agons and pentagons (see Chapter 3). The geo¬ 
desic dome has been the inspiration for 
countless buildings, large and small. The 

Fig. 1-30. Detail of the Coca-Cola Building at the 

1964 World Fair, showing a slice through a tight 

packing of opaque acrylic truncated octahedra. By 
Irwin Hauer. 



Fig. 1-28. Polyhedral “Habitat” housing project by dian Architecture 1960170 (Toronto: Burns and 

Moshe Safdie in Montreal, Quebec. Photograph MacEachern, Ltd., 1971). 

by Carol Moore-Ede, from C. Moore-Ede, Cana- 

Fig. 1-29. Coca-Cola Building at the 1964 World Fair. By Irwin Hauer. 

SSafialalB 
fissums 
ESSSSISli 
SSKiiili Fig. 1-31. The U.S. Pavilion at the Expo ‘67 World 

Fair Montreal. Courtesy of the Buckminster Fuller 

Institute, Los Angeles. 
17 
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Fig. 1-33. Baer’s fused triple rhombicosidodecahe- 

dra at Drop City, Colorado. Domebook 2 (Bolinas, 

Calif.; Shelter Publications, 1971). Reprinted by 

permission of Steve Baer. 

Fig. 1-32. Geodesic dome house under construction Fig. 1-34. The Five-College Radio Astronomy Ob- 

in Hadley, Massachusetts. Photographs by Wendy servatory is the largest millimeter-wavelength radio 

Klemyk. telescope in the United States. Photograph by 

Steve Long. University of Massachusetts Photo¬ 

center. 

house shown in Fig, 1-32 was recently con¬ 
structed by a family in Hadley, Massachu¬ 
setts. Many other interesting domes are de¬ 
scribed in do-it-yourself publications (see, for 
instance. Fig. 1-33). The faces of some dome 
structures are deliberately arranged in asym¬ 
metric ways. For example, the dome grid 
(shown in Fig. 1-34) of the Five-College Radio 
Astronomy Observatory at Quabbin Reser¬ 
voir, Massachusetts, is deliberately random to 
prevent interference patterns with the incom¬ 
ing signal. 

Once your eyes are opened, you will find 
many interesting examples of polyhedral ar¬ 
chitecture in your own neighborhood. Shown 
in Fig. 1-35, for example, are some “geomet¬ 
ric” student residences at Hampshire College 
in Amherst, Massachusetts. 

The rulers of the Polyhedron Kingdom have 
recently instituted a Polyhedral Hall of Fame 
to honor human beings who use polyhedra in 
especially unexpected and delightful ways. 
The first person to be elected to the Hall was 
the Israeli architect Zvi Hecker, cited for his 
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Fig. 1-35. Modular residences, Hampshire College, Amherst, Mass. Photographs by Wendy Klemyk. 

Fig. 1-36. Synagogue in the Negev Desert, Israel, 1969-1970. (a) Exterior view, (b) Interior view. Zvi 

Hecker, architect. 
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Fig. 1-37. Housing complex in Ramot, Israel, 1972-1980. Designed by Zvi Hecker. 

Fig. 1-38. Former highway bridge, St. Louis Bay, 

Duluth, Minnesota-Superior, Wisconsin. David 

Plowden, Bridges: the Spans of North America. 

(New York; The Viking Press, 1974; W. W. Norton 

and Co., 1984). Reprinted by permission of Curtis 

Brown, Ltd. Copyright © David Plowden 1974. 

multipolyhedral synagogue in the Negev des¬ 
ert (Fig. 1-36) and his dodecahedral housing 
complex in Ramot, Israel (Fig. 1-37). 

Architecture reminds us that the most im¬ 
portant part of some polyhedral structures is 
the network of edges and vertices. If we agree 
that such networks themselves constitute 
polyhedra, then we see (Figs. 1-38-1-40) that 
many bridges are polyhedra, and so are com¬ 
mon (and uncommon) jungle gyms (such as 
those shown in Figs. 1-41 and 1-42). In fact 
there is no end to the polyhedral structures 
around us. 

The Nature Preserve 

The nature preserve is a vast region of the 
Polyhedron Kingdom, whose known extent 
keeps growing larger as it becomes possible to 
study structures on increasingly smaller 
scales. On this brief visit we will only have 
time to glance casually at some natural poly- 

----^ 

Fig. 1-40. Bridge with polygonal entrances, Cara- 

basset River, North New Portland, Maine. David 

Plowden, Bridges: the Spans of North America 

(New York: The Viking Press, 1974; W. W. Norton 

and Co., 1984). Reprinted by permission of Curtis 

Brown, Ltd. Copyright © David Plowden 1974. 
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Fig. 1-39. Boston and Maine Railroad Bridge, Con¬ 

necticut River, Northampton, Mass. David Plow- 

den, Bridges: the Spans of North America (New 

York: The Viking Press, 1974; W. W. Norton and 

Co., 1984). Reprinted by permission of Curtis 

Brown, Ltd. Copyright © David Plowden 1974. 



Fig. 1-41. Jungle gym at the Nonotuck Community 

Child-Care Center adjacent to the Smith College 

campus. Photograph by Wendy Klemyk. 

Fig. 1-42. Children surrounded by polyhedra at the 

Bleecker Street Playground in New York. Marilynn 

K. Yee/The New York Times. 

Fig. 1-43. Quartz crystals. From Wolf Strache, 

Forms and Patterns in Nature (New York: Pan¬ 

theon Books, a Division of Random House, Inc., 

copyright 1956). 

Fig. 1-44. Icositetrahedral leucite crystal. From 

Vincenzo de Michele, Minerali (Milan: Istituto 

Geografico de Agostini-Novara, 1971). 

r 

-o 
Fig. 1-45. Benitoite crystal. From Earl H. Pember¬ 

ton, Minerals of California (New York: Van Nos¬ 

trand Reinhold Company Inc., 1983). 

22 
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Fig. 1-46. Drawings of crystals of gold. From Viktor Goldschmidt, Atlas der Krystallformen (Heidelberg: 

Carl Winters, 1912). 

hedra which can be seen with the naked eye or 
with a simple microscope. 

Our first stop is at a mine, where polyhedral 
crystals of many different kinds can be found. 
Look carefully in Fig. 1-43 at crystals of the 
familiar mineral quartz. Quartz crystals are es¬ 
sentially prisms with terminating facets, which 
are arranged in interesting ways. In Fig. 1-44 
we see a leucite crystal in the shape of an 
icositetrahedron; it has 24 trapezoidal faces. 
In other crystals, the faces are truncated, as in 
the crystal of benitoite shown in Fig. 1-45. 
Some kinds of crystals come in many forms. 

Sixteen drawings of gold from the famous 
twenty-volume Atlas der Krystallformen are 
shown in Fig. 1-46. 

The polyhedra that occur as plants and ani¬ 
mals are usually less standard in form than 
polyhedral crystals, but are no less intriguing. 
The purple sea urchin of Peru (shown in Fig. 
1-47) combines features reminiscent of both 
star polyhedra and geodesic domes. The puf- 
ferfish is a polyhedron of uncommon charm 
(see Fig. 1-48). Radiolaria are single-celled sea 
creatures whose skeletons have very interest¬ 
ing polyhedral forms. The sketches in Fig. 
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Fig. 1-47. Purple sea urchin, “front” and “back.” Photograph by Dr. V. J. Stanek. From V. J. Stanek, 

Krdsy pnrody/The Beauty of Nature (Prague: Artia, 1955). 

Fig. 1-48. Inflated spiny pufferfish. Photograph by Carl Roessler. 

1-49 were made by Ernst Haeckel on his trip 
aboard H.M.S. Challenger with Charles 
Darwin. Some insects—for example, the 
bees—build polyhedra for their own pur¬ 
poses. Among the culinary delights of the Na¬ 
ture Preserve are its many honeycombs. As 
shown in Fig. 1-50, a comb is an aggregate of 
half-open polyhedra. 

Aggregated polyhedra are also found in 
plants. How would you describe the examples 
shown in Fig. 1-51? Aggregates of polyhedra 
will be discussed in more detail later on this 
tour and in this book (see Chapter 5). 

This concludes our tour of the Nature Pre¬ 
serve. A much deeper discussion of polyhedra 

in nature is found in Chapters 9 and 10. 
At the edge of the Nature Preserve, we 

come to the Gallery of Polyhedral Art. 

The Gallery of Polyhedral Art 

Polyhedral art can be found throughout the 
world. In honor of your visit to the Kingdom, 
a small but exquisite collection of sculpture, 
paintings, and graphics in which polyhedra are 
an important theme has been assembled. The 
Renaissance and Modern exhibits are espe¬ 
cially strong. We see in Fig. 1-52 the famous 
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Fig. 1-49. Radiolaria. E. Haeckel, The Voyage ofH.M.S. Challenger {Berlin: Georg Reimer, 1887), plates 

12, 20, and 63. 
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Fig. 1-50. A honeybee comb. Photograph by Lawrence Conner, Ph.D., entomologist. 

Fig. 1-51. (a) Carex grayi. (b) Adonis pernalis. (c) Cornus kousa. Karl Blossfeldt, Wundergarten der Natur 
(Berlin: Verlag fiir Kunstwissenschaft, 1932.) 

engraving Melencolia I by Albrecht Diirer 
(1471-1528). This work simply groans with 
symbolism, not all of it understood. In particu¬ 
lar, the meaning of the enormous polyhedron 
continues to be disputed. 

Renaissance artists seem to have been very 
fond of the regular polyhedra, both because of 
their association with Plato and because they 
offered opportunities for the study of perspec¬ 
tive (see Chapter 4). We saw one of Jamnit- 
zer’s engravings in Fig. 1-18; Leonardo da 
Vinci (1452-1519) also drew many polyhedra. 
Polyhedra often appear in Renaissance paint¬ 

ings; the gallery is proud to display Jacopo de 
Barbari’s portrait of Fra Luca Pacioli (author 
of Divina Proportione), shown in Fig. 1-53. 
The mazzocchio, a doughnut-shaped polyhe¬ 
dral hat popular in fourteenth-century Flor¬ 
ence, appears in many paintings by Paolo Uc¬ 
cello; details of two of his paintings are 
reproduced in Fig. 1-54. The mazzocchio was 
revived for the Shaping Space Conference, 
and you will see it at the Polyhedral Artisan 
Fair (see Figs. 1-55 and 1-89). 

In the exhibition of modern polyhedral art, 
we find three striking paintings by Salvador 



Fig. 1-52. Melencolia I. Dated 1514. Albrecht Durer, German, 1471-1528. Engraving, 243 x 187 mm. 

Centennial gift of Landon T. Clay. 68.188. Courtesy, Museum of Fine Arts, Boston. 

Fig. 1-53. Jacopo de Barbari, Portrait of Fra Luca Pacioli and His Student Guidobaldo, Duke of Urbino. 

Museo e Gallerie Nazionali di Capodimonte, Naples. Illustration by permission of Soprintendenza ai 

B.A.S. di Napoli. 
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Fig. 1-54. Top: Paolo Uccello, The Rout of San 

Romano (1456-60, tempera on panel. Louvre, 

Paris.), detail. Musee de Louvre, Paris. Bottom: 

Paolo Uccello, After the Flood (Frescoed lunette in 

terraverde. Green Cloister of Santa Maria Novella, 

Florence), detail. Alinari/Art Resource, New York. 

Dali: The Sacrament of the Last Supper (Fig. 
1-56), Cosmic Contemplation (Fig. 1-57), and 
Corpus Hypercubicus (Fig. 1-58). At first 
glance the polyhedron in the second of these 

appears to be a pentagonal dodecahedron (cf. 
Plato), but then we notice that it has one hex¬ 
agonal face. Such a structure is impossible 
(see Chapter 3)! How do you think Dali envi- 
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Fig. 1-55. Busts of scientists Florence Sabin, Smith 

College Class of 1893 {left), and Dorothy Mott 

Reed, Smith College Class of 1895 {right), wearing 

the Shaping Space version of a fourteenth-century 

mazzocchio (see Fig. 1-89). The busts, by Joy 

Buba, are in Sabin-Reed Hall of Smith College. 

Photographs by Stan Sherer. Used by permission 

of the Trustees of the Smith College. 

Fig. 1-56. 1963.10.115 The Sacrament of the Last Supper. Salvador Dali. National Gallery of Art, Wash¬ 

ington. Chester Dale Collection. 
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Fig. 1-57. Salvador Dali, Cosmic Contemplation. Watercolor and ink, 1951. The Salvador Dali Founda¬ 
tion, Inc., St. Petersburg, Fla. 

Fig. 1-58. Salvador Dali, Corpus Hypercubicus, Fig. 1-59. Fall-Out from tht series Unsculptable hy 

1954. Oil on canvas. 16h X 48f in. #55.5. Metro- Mary Bauermeister. Photograph supplied by artist, 
politan Museum of Art, New York. Gift of the 
Chester Dale Collection. © S.P.A.D.E.M., Paris/ 
V.A.G.A., New York. 



I. A Visit to the Polyhedron Kingdom 31 

Fig. 1-60. Pablo Picasso, Girl with a Mandolin 

(Fanny Tellier). Paris, early 1910. Oil on canvas, 
391 X 29". Collection, The Museum of Modern Art, 
New York. Nelson A. Rockefeller Bequest. 

Fig. 1-61. Georges Braque, Maisons a I’Estaque, 

1918. Kunstmuseum Bern/Hermann and Margrit 
Rupf-Stiftung. Copyright © 1985, 1986 by Cosmo- 
press, Geneva; A.D.A.G.P., Paris; V.A.G.A., 
New York. 

Fig. 1-62. Roger de la Fresnaye, The Conquest of 

the Air, 1913. Oil on canvas. 7'8g" x 6'5''. Collec¬ 
tion, The Museum of Modern Art, New York. Mrs. 
Simon Guggenheim Fund. 

Fig, 1-63. Josef Albers, Structural Constellation. 

Reproduced by permission of Mrs. Anni Albers and 
the Josef Albers Foundation, Inc. 

sioned its other side? A well-known impos¬ 
sible structure appears in the painting by Mary 
Bauermeister reproduced in Fig. 1-59. 

The gallery’s exhibit of cubist painting is 
very good; it includes works by Pablo Picasso 
(Fig. 1-60), Georges Braque (Fig. 1-61), and 
Roger de la Fresnaye (Fig. 1-62). There are 
also important works by Josef Albers (Fig. 
1-63) and M. C. Escher (Figs. 1-64 and 1-65). 
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Fig. 1-67. Charles O. Perry, Eclipse. The helical 
explosion of every face rotating from a dodecahe¬ 
dron through the icosidodecahedron to the small 
rhombicosidodecahedron. Hyatt Regency Hotel, 
San Franciso. Photograph by Jeremiah O. Brag- 
stad. 

Fig. 1-64. M. C. Escher, Waterfall. © M. C. Escher 
Heirs c/o Cordon Art-Baarn-Holland. 

Fig. 1-65. M. C. Escher, Order and Chaos. © M. C. 
Escher Heirs c/o Cordon Art-Baarn-Holland. 

Fig. 1-66. Isamu Noguchi, Red Rhombohedron, in 
the plaza of the Marine Midland Bank Building, 
New York. Photograph by permission of the Ma¬ 
rine Midland Bank, Corporate Communications 
Group. 

. .f 
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Fig. 1-68. Top: Arthur L. Loeb standing next to his 
sculpture Polyhedral Fancy in the lobby of Burton 
Hall, Smith College. Photograph by Stan Sherer. 
Bottom: Polyhedral Fancy, a part of the permanent 
collection of Smith College, is a copper tetrahedron 
within a Plexiglas® cube within an octahedral 

The crowded sculpture court contains a 
wide variety of noted works, several of which 
were exhibited at the Shaping Space Confer¬ 
ence. The largest sculptures in the court are 
Isamu Noguchi’s Red Rhombohedron (Fig. 
1-66) and Charles Perry’s Eclipse (Fig. 1-67). 
There is also Polyhedral Fancy by Arthur 
Loeb (Fig. 1-68) and Tetrahedron by Lee 
Burns (Fig. 1-69). The gallery is also proud to 
display Hugo Verheyen’s sculpture with mov¬ 
able parts (Fig. 1-70) and Max Bill’s Construc¬ 

tion with 30 Equal Elements (Fig. 1-71). 

framework within a brass cross-section of a 
sphere.^ Photograph reproduced from Arthur L. 
Loeb, Space Structures: Their Harmony and Coun¬ 

terpoint (Reading, Mass.; Addison-Wesley, Ad¬ 
vanced Book Program, 1976). 

It is perhaps here in the sculpture court that 
we first become acquainted with the bound¬ 
aries of the Polyhedron Kingdom. As we 
move away from the center of the Kingdom, 
the population variation becomes greater and 
greater, until we cannot really say what is a 
polyhedron and what is not. Is Eclipse a poly¬ 
hedron? If not, why not? Figures 1-72 and 1-73 
are two sculptures by Erwin Hauer. Is either 
of them a polyhedron? What about Alan 
Holden’s Ten Tangled Triangles (Fig. 1-74)? 

Before leaving the gallery, take a close look 
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Fig. 1-69. A. Lee Burns, Tetrahedron. A polished 
brass tetrahedral “soap bubble,” inspired by a soap 
bubble in a tetrahedral frame (recall Fig. 1-7). Pho¬ 
tograph by Stan Sherer. 

Fig. 1-70. IRODO, an expandable polyhedral sculp 
ture based on the impandable rhombic dodecahe 
dron. Hugo F. Verheyen. 

Fig. 1-71. Max Bill, Construction with 30 Equal Elements, from Gyorgy Kepes, The New Landscape in Art 

and Science (Chicago: Paul Theobald and Company, 1956). 
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Fig. 1-72. Erwin Hauer, Rhomhidodeca. An ex¬ 

cerpt from an infinite, continuous and periodic sur¬ 

face, WPI. The inner labyrinth is expressed as a 

solid volume. Produced of organic composite mate¬ 

rials, 28 X 26 X 26 inches. Photograph by Erwin 

Hauer. 

Fig. 1-74. Alan Holden, Ten Tangled Triangles, 

Smith College, sent by the artist as his surrogate 

representative to the Shaping Space Conference. 

Photograph by Stan Sherer. 

Fig. 1-73. Erwin Hauer, Obelisk, also an excerpt 

from WPI, but along the diagonal bisectors of the 

constituent cubes. The outer labyrinth is maxi¬ 

mized in volume and appears as the large perfora¬ 

tions through the sculpture. The shallow exterior 

spaces are what remains of the inner labyrinth. Pro¬ 

duced in cast stone, 1 inch thick, the sculpture mea¬ 

sures 9 X 2 X 2 ft. Photograph by Erwin Hauer. 
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Fig. 1-75. Harriet E. Brisson sitting in the Trun¬ 

cated 600-Cell, a four-dimensional form made by 
Harriet E. Brisson and Curtis LaEollete, 1984. Pho¬ 

tograph by Bob Thayer. © 1984 by the Providence 
Journal Company. 

(in Fig. 1-75) at the Truncated 600-Cell by 
Harriet Brisson. The 600-cell is the name of a 
four-dimensional polyhedron whose 600 
“faces” are three-dimensional regular tetrahe¬ 
dral The viewer entering the large tetrahedron 
is surrounded by mirror images approximating 
the experience of the fourth dimension ex¬ 
tending to infinity. It is fascinating to think 
about the ways in which four-dimensional 
polyhedra can be represented in our three-di¬ 
mensional world (see Chapter 17). 

Fig. 1-76. Ginger and Fred by Robinson Freden- 
thal. Photograph supplied by the sculptor. 

A Note on Polyhedral Society 

Polyhedra communicate with one another in a 
variety of subtle ways (see Fig. 1-76). Indeed, 
the sociology of polyhedra is extremely com¬ 
plicated, as polyhedra tend to be related to 
one another through many different kinship 
structures. Some of them are related by geom¬ 
etry; for example, some can be inscribed in¬ 
side one another, as in Fig. 1-68. 

Others can be grouped into families whose 
members are related by truncation, that is, by 
successively slicing off larger and larger cor¬ 
ners and edges (see Fig. 1-77). (As we have 
seen, this is the way that the Archimedean 
polyhedra are related to their regular fore¬ 
bears.) 

Crystals of the same kind are often related 
by truncation, and the discovery of this fact by 
J. B. L. Rome de Lisle in 1783 was a milestone 
in our understanding of crystal structure. 
Some such relationships are recorded in Fig. 
1-78. 

A major eighteenth-century discovery was 
that of Leonhard Euler (1707-1783), who 
found a simple equation that has great theoret¬ 
ical importance. Euler discovered that for 
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Octa (1): 83 

Fig. 1-79. There are seven polyhedra which have 

six faces. Classified according to numbers of verti¬ 

ces, edges, and faces—the triple of integers (V, E = 

V + F — 2,6)—they belong to four families. 

Fig. 1-77. From cube to octahedron. From William 

Blackwell, Geometry in Architecture, p. 155. Copy¬ 

right © 1984 by John Wiley & Sons, Inc. Reprinted 

by permission of John Wiley & Sons, Inc. 

Fig. 1-78. Drawings of pyrite. From Viktor 

Goldschmidt, Atlas der Krystallformen (Heidel¬ 

berg: Carl Winters, 1912). 

every convex polyhedron, the numbers of 
faces (F), edges (F), and vertices (V) are re¬ 
lated by the equation V - E + F = 2. This 
suggests another way of classifying polyhedra 
into families; classification according to the 
triple of numbers {V, E, F) (see Fig. 1-79 and 
Part IV). Yet another important relationship 
among polyhedra is duality, which is rather 
intimate, and about which there is still a great 
deal to be learned (see Chapter 13). 

In addition to belonging to such families, 
polyhedra often form voluntary associations 
to provide important services to nature and to 
society. Like human and animal associations, 
these associations require a great deal of con¬ 
formity but can be very effective in achieving 
their goals. Bubbles in a froth have polyhedral 
forms which, although appearing to be quite 
varied, have a very restrictive property: in 
each bubble, exactly three faces must meet at 
every vertex. You can see some explorations 
into the nature of soap films in Figs. 1-80 and 
1-81. Froths are important models for many 
biological structures (see Chapter 9). Crystal 
architecture is another cooperative polyhedra 
endeavor (see Chapter 5). The atoms in a crys- 
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Fig. 1-80. Top: A. Lee Burns leading the Gala Soap Bubble Workshop at the Shaping Space Conference. 

Bottom: Godfried Toussaint creating a polyhedral bubble. Photographs by Stan Sherer. 

Fig. 1-81. Soap bubbles in a froth. From Peter S. 

Stevens, Patterns in Nature (Boston; Little, Brown 

and Company, 1974). 

tal come together in more or less regular ar¬ 
rays, like building blocks, to form the crystals 
that we see with our eyes. With an electron 
microscope, we can “see” the arrays them¬ 
selves (Fig. 1-82). The Russian crystallogra- 
pher E. S. Federov showed 100 years ago that 
there are exactly five polyhedral building 
blocks. That is, there are five types of polyhe- 
dra whose copies fill space completely when 
they are stacked face to face in parallel posi¬ 
tion; they are shown in Fig. 1-83. Many other 
examples of polyhedral cooperation are found 
in human-constructed architecture. We have 
already seen some examples on our walking 
tour. And of course the bees’ cells stack to¬ 
gether to make the honeycomb in Fig. 1-50. 
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Fig. 1-82. Electron micrographs of crystals, show¬ 

ing arrays of individual molecules. Protein from 

southern bean mosaic virus (magnification 30,000) 

{left). Protein from tobacco necrosis virus (magnifi¬ 

cation 73,000) (right). Photographs by R. W. G. 

Wyckoff. 

New relations among polyhedra are being 
found all the time (for example, how are the 
polyhedra of the family in Fig. 1-84 related to 
one another?) This will continue as the theory 
of polyhedra expands to include the study of 
function as well as form (see Chapter 9). 

The Polyhedral Fair 

Our tour concludes with a stop at one of the 
polyhedral artisan fairs that are held from time 
to time in the Kingdom. Here you can browse 
among the many delightful items that the more 

Fig. 1-83. The five kinds of polyhedra which fill 

space in parallel position. 

Fig. 1-84. Cardboard models of twelve deltahedra-regular polyhedra by Lucio Saffaro. 
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Fig. 1-85. Wooden Puzzles: “Rhombics” display at 

Shaping Space Conference. Photograph by Stan 

Sherer. 

Fig. 1-86. M. C. Escher contemplating a home¬ 

made polyhedron. Reproduced from Bruno Ernst, 

The Magic Mirror of M. C. Escher (New York: 

Ballantine Books, 1976). © M. C. Escher Heirs do 

Cordon Art-Baarn-Holland. 

Fig. 1-88. A plywood dome, from Domebook 2, © 

1971 by Shelter Publications, Inc., Bolinas, Califor¬ 

nia. Reprinted by permission. 

Fig. 1-87. Uttara Coorlawala and Matthew Solit at 

the Shaping Space Conference, building a tetrahe¬ 

dron with Rhombics parts. Photograph by Stan 

Sherer. 

artistic natives of the Polyhedron Kingdom 
have created for your enjoyment. As you wan¬ 
der among the many displays, you will find 
such things as: 

• Wooden puzzles (see Fig. 1-85) 
• Polyhedra kits. Kits for building star polyhe- 

dra (and other polyhedra, too) are sold in 
many stores. In Fig. 1-86 we see M. C. 
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Fig. 1-89. The fourteenth-century mazzocchio was 

adapted for the Shaping Space Conference by 

Helen Connolly, who prepared a do-it-yourself kit. 

Photograph by Stan Sherer. 

Fig. 1-90. Lampshade inspired by the hexagonal 

structure of a poem by Rumi (1207-1273), teacher 

of Islamic Sufiism. By Bahman Negahban, archi¬ 

tect, and Ezat O. Negahban, calligrapher. 

Escher contemplating a polyhedron eon- 
structed from parts provided in such a kit. 
Uttara Coorlawala and Matthew Solit are 
shown (in Fig. 1-87) building a Rhombics 

structure. 
• Dome kits. Figure 1-88 shows a dome built 

from instructions in Domebook 2. 

• Minerals 
• Polyhedral jewelry 

Fig. 1-91. Corner-posed cubical vase by unknown 

Kyoto potter, 1964: collection of A. Taeko Brooks. 

Photograph by Wendy Klemyk. 

• The mazzocchio. A modern adaptation is 
shown in Figs. 1-55 and 1-89. 

• An unusual lampshade is shown in Fig. 1-90, 
inspired by the rhythm and repetition of a 
Persian mystical poem. 

• Vases and other pottery (see Fig. 1-91). 
• “Total photos.” A total photo is reproduced 

in Fig. 1-92. 
• Unusual toys. Deltahedra are polyhedra 

whose faces are equilateral triangles but 
which are not regular because the numbers of 
triangles at the vertices can vary. One of 
them seems to have been the inspiration for 
the crawl-through toys shown in Fig. 1-93. 
You can build this deltahedron and all the 
other convex ones by following instructions 
in Chapter 2. 

But if you do not have time to linger at the 
fair, do not be disappointed; you will find 
many delightful polyhedra for sale in shops 
everywhere. 
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Fig. 1-92. Total photo. Unfolded dodecahedron total photo of the Chicago Art Center. Reprinted by 

permission of Dick A. Termes. 

An easy-to-build crawl-through toy 
^ Ht I I iriant;i(“s oui ol ■) <‘\- 
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I* *T oo ('(|nr. kcMiiul rdm's slit>htlv 
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in< h li<j!rs (ju uw) sid<-s; 2 have ' j- 
iiuh }iol«'s on tljnc site's. TIk'S' 

arc Kn < tl to<>filirr uitli (ord. 

To flrill Ijolcs in triangles, damp 
all 11 of them togftluT and dpill 
holes on two sides hist 'Sjjaeing 
tlK'in Oil ,S-im:h eentet's about I-?' 

ineh from ih<- edges. 
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and hnish drilling holes on the 
third si<le. Sand, .st^al. and ^ini^h 
will) exterior trim paint. 
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Versatile tunnel toy 
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A 

Fig. 1-93. Plywood crawl-through toys, with construction plans. Reprinted from Better Homes and Gar¬ 

dens Christmas Ideas. Copyright Meredith Corporation, 1957. All rights reserved. 
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Where to Go from Here 

There is much more to see in the Polyhedron 
Kingdom, and much more to learn about it; 
indeed, as you go through this book you will 
be surprised to learn how much of it is still 
unexplored. But first, before reading further, 
we urge you to build a few of the polyhedra 
you have met, with your own hands; a famous 
Chinese proverb says; “I hear, I forget; I see, 
I remember; I do, and I understand.” In Chap¬ 
ter 2 you will find “recipes” for making poly¬ 
hedra; some are for beginners, other recipes 
are intermediate or advanced. You can use 
these recipes, or devise your own, or consult 

any of a number of excellent books (see Chap¬ 
ter 20). We are sure you will enjoy building the 
models, and that doing so will give you a much 
deeper understanding of the chapters which 
follow. 

Notes 

' Regular polygons are polygons whose edges 

have equal lengths and whose angles have equal 

measure. Thus a regular polygon of three edges is 

an equilateral triangle, of four edges a square, and 

so on. 
^ Plexiglas® is a registered trademark of Rohm 

and Haas, Philadelphia, for acrylic safety glazing. 
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Five Recipes for Making Polyhedra 

In this section five of the world’s greatest 
polyhedra chefs explain some of their remark¬ 
able creations. The creations range in diffi¬ 
culty, from beginning to advanced. Take the 
time now to make one—or more—yourself! 
Sources of additional recipes can be found in 
the list of Resources at the end of this book. 

A. Constructing Polyhedra without Being 
Told How to! 

Marion Walter 

Getting Started: How to Attach 
Polygons 

Put some cut-out regular polygons on a table. 
Put a little glue on a flat tile, a plastic lid, or a 
piece of plastic, and spread out the glue a little 

so that you can dip a whole edge of a polygon 
into the glue. 

Choose two polygons that you want to glue 
together along an edge, and dip one of these 
edges in the glue. Dip lightly; if polygons don’t 
stick well it is usually because there is too 
much glue (Fig. 2-Al). 

Hold the two edges together firmly. The 
joint will remain flexible but the polygons will 
stick together (Fig. 2-A2). 

If you find later that you need extra glue on 
an edge of a polygon that you have already 
attached, you can (lightly) dip a toothpick or 
applicator stick in the glue to smear some 
along an edge. 

What Shape Are You Going to Make? 

It is most fun and most rewarding to make a 
shape you yourself create, rather than foliow- 

Fig. 2-Al. Fig. 2-A2. 

44 
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Fig. 2-A3. pjg_ 2-A4. 

Fig. 2-A5. 

ing someone else’s plans. How can you do 
this? 

There are many ways to start. One way is to 
limit yourself to using only one or two differ¬ 
ent shapes—say triangles, or triangles and 
pentagons, or triangles and squares.' What 
shapes can you make using triangles and only 
one pentagon? (See Fig. 2-A3.) 

In Fig. 2-A4 is the first shape the boy pic¬ 
tured made; the base is a pentagon and all the 
sides are triangles. It is called a pentagonal 
pyramid. Now make up another question of 
your own. What will your first shape look 
like? When you experiment freely, you may 
get a few surprises and you will learn a lot. For 
example, six triangles lie flat. 

What a surprise: the shape in Fig. 2-A5 lies 
flat too! Notice that the twelve triangles that 

surround the hexagon help to make a bigger 
hexagon. The student shown in the photo¬ 
graph also had a surprise after she attached 
only six triangles to the hexagon. Do you think 
it will make a pyramid with a hexagonal base? 

What shapes can you make with hexagons 
and squares? (See Fig. 2-A6 and 2-A7.) 

Making shapes requires thinking ahead. Try 
to make a shape using only pentagons. What a 
relief: the two edges in Fig. 2-A8 really do 
seem to meet! How will the boy shown go on? 
Do the girls in Fig. 2-A9 and 2-AlO seem to be 
making the same shape? 

The shape in Fig. 2-All is made entirely 
of pentagons: how many of them were used? 
Turn it around and look at it. How many edges 
does it have? How many corners? How many 
edges meet at one corner? How many faces 
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Fig. 2-A8. Fig. 2-A9. 

Fig. 2-AlO. 



2 / A. Constructing Polyhedra without Being Told How to! 47 

Fig. 2-All. Fig. 2-A13. 

Fig. 2-A12. 

meet at a corner? This shape is a dodecahe¬ 

dron. 
When you are experimenting, don’t expect 

that your shape will always close! (Figure 
2-A12.) Some shapes may have holes that you 
cannot fill with the shapes that we have; re¬ 
member that we are using only regular poly¬ 

gons. 

Shapes You Can Make with Triangles 

The shape in Fig. 2-A13 is only one of the 
many you can make using just triangles. It is 

Fig. 2-A14. 

an icosahedron. Look at it from many sides. 
How many faces, edges, and corners does it 
have? Compare these numbers to the corre¬ 
sponding numbers you found for the dodeca¬ 
hedron. 

In Fig. 2-A14 two identical shapes are being 
glued together. Each is made of four triangles 
without a base. The finished shape will be an 
octahedron. What other shapes can you make 
with triangles? 
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Fig. 2-A15. 

A Note to the Teacher 

Every problem leads to new observations and 
questions. For example, even the simple prob¬ 
lem “Make all possible convex shapes using 
only equilateral triangles” is very rich in pos¬ 
sibilities. These shapes are called deltahedra, 

after the triangular Greek letter A. Usually, 
after some experimentation, students will dis¬ 
cover the tetrahedron, the octahedron, the tri¬ 
angular and pentagonal bipyramids, and the 
icosahedron. Later the search also yields the 
12-, 14-, and 16-sided deltahedra. Figure 
2-A15 shows a 14-sided deltahedron. 

The observation that each deltahedron has 
an even number of faces leads to the question 
of why this should be so. The reason is 
straightforward once one sees it! Each triangle 
has three edges. If the shape has F faces, then 
there are 3F edges altogether. These 3F edges 
are glued in pairs, so there must be an even 
number of edges. Hence 3F and therefore F 

must be even. Noticing that there exist 4-, 6-, 
8-, 10-, 12-, 14-, 16-, and 20-sided deltahedra 
immediately sets off a search for an 18-sided 
one. Can an 18-sided deltahedron be made? It 
was not until 1947 that the answer was proved 
to be no. 

Looking at deltahedra is one thing; visualiz¬ 
ing them without models is quite another. I 
found it difficult to close my eyes and visualize 
the 12-, 14-, and 16-sided deltahedra. One day, 
while I was looking at a cube made from appli¬ 
cator sticks and glue,^ I decided to pose prob¬ 
lems by using the “What-If-Not Strategy.”^ 
The idea is that one starts with a situation, a 
theorem, a diagram, or in our case an object, 
lists as many of its attributes as one can, and 
then asks, “What if not?” For example, 
among the many attributes (not necessarily in¬ 
dependent) of a cube that I had listed were the 
following: 

1. All edges are equal. 
2. All faces are squares. 
3. The object is not rigid. 
4. The top vertices are directly above the bot¬ 

tom ones. 
5. Opposite faces are parallel. 

While working on attribute 4, I asked my¬ 
self: “What if the top vertices were not di¬ 
rectly above the bottom ones?” And because 
the contact glue gives movable joints, it was 
easy to give the top square a twist. As my 
twist approached 45°, I began to see an anti¬ 
prism emerge. I attached sticks to complete 
the antiprism, but the shape wasn’t rigid. The 
obvious thing to do to make it rigid was to add 
diagonals to the top and bottom squares. Since 
all the applicator sticks are of the same length, 
I had to squeeze the squares into “dia¬ 
monds.” The resulting shape was rigid—and 
was built of 12 equilateral triangles! (See Fig. 
2-A16). 

How else could I have made the antiprism 
rigid? I hastily removed the top diagonal, and 
added four sticks which meet above the 
square to form a square pyramid (Fig. 2- 
A17a). Lo and behold, I had made a 14-sided 
deltahedron! From there it was a quick step to 
remove the bottom diagonal also, build an¬ 
other four-sided pyramid, and thus obtain the 
16-sided deltahedron (Fig. 2-A17b). 
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Fig. 2-A17. Fig. 2-A18. Alice Shearer, a participant in Marion 

Walter’s workshop at the Shaping Space Confer¬ 

ence, beginning construction of a model. Photo¬ 

graph by Stan Sherer. 

Fig. 2-A19. By the end of the workshop, many lovely models had been created. Jane B. Phipps contem¬ 

plating a polyhedron constructed from MATs. Photograph by Stan Sherer. 
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Not only have these deltahedral “villains” 
now become friends, I see now that they are 
closely related to one another. One can also 
place the icosahedron in this family, since it is 
a pentagonal antiprism capped with two pen¬ 
tagonal pyramids. (Indeed the octahedron it¬ 
self is an antiprism, and the tetrahedron can be 
viewed as an antiprism in which the two bases 
have shrunk to an edge. As Arthur Loeb has 
pointed out, two opposite edges may be con¬ 
sidered degenerate polygons, which are here 
in antiprism orientation.) That leaves us only 
with the 6- and 10-sided deltahedra as “odd 
ones out,” but they are both bipyramids and 
are easy to visualize.'^ 

A Word about Materials 

Cardboard always works well; you should ex¬ 
periment with different weights. I prefer 
MATs, described in the next paragraph. All 
the polygons shown in these photographs are 
MATs. A glue used for carpets, such as Flexi¬ 
ble Mold Compound—Mold It® is excellent, 
as is the English Copydex.^ 

Adrien Pinel found that hexagonal card¬ 
board beer mats (used in English pubs) were 
excellent for making polyhedra with holes 
and, when augmented by triangles and squares 
cut from the hexagons, became even more 
useful. It was not long before the Association 
of Teachers of Mathematics of Great Britain 
had regular polygons of three, four, five, six, 
and eight sides produced from the same easy- 
to-glue material as the beer mats. They call 
them Mathematics Activity Tiles (MATs for 
short). They also produce rectangles and isos¬ 
celes triangles. The polygons may be ordered 
separately or in two different kits: Kit A has 
100 each of equilateral triangles, squares, pen¬ 
tagons, and hexagons, and Kit B has 200 each 
of triangles and squares and 50 each of penta¬ 
gons, hexagons, and octagons.^ 

Acknowledgments: Photographs in Figs. 2-Al, 
2-A3, and 2-A15 are by Ken R. O’Connell. Photo¬ 
graphs in Fig. 2-A2 and Figs. 2-A4-2-A14 are by 
Marion Walter. 



2 / B. Constructing Pop-Up Polyhedra 51 

B. Constructing Pop-Up Polyhedra* 

Jean Pedersen 

Required Materials 

• One 22 x 28 inch piece of brightly colored 
posterboard 

• Six rubber bands (of the type that come 
around the morning newspaper in some lo¬ 
calities) 

• One yardstick or meter stick 
• One ballpoint pen 
• One pair of scissors 

General Instructions for Preparing the 
Pattern Pieces 

Begin by drawing the pattern pieces on the 
posterboard as shown in Fig. 2-BI. Press hard 
with the ballpoint pen so that the posterboard 
will fold easily and accurately in the final as¬ 
sembly. Label the points indicated. Be certain 
to put the labels on what will become the cube 
(or octahedron) when the model is finished— 
not on the paper that surrounds it. Cut out the 

* I should like to thank Les Lange, Editor of Cali¬ 
fornia Mathematics, for giving permission to use in 
this article some of the ideas that were originally 
part of “Pop-up Polyhedra,” California Mathemat¬ 
ics (April 1983): 37-41. 

pattern pieces and snip the notches at A and B 
(but not the notches at C and D). 

Constructing the Cube 

1. Crease the pattern piece with square 
faces on all of the indicated fold lines, remem¬ 
bering that the unmarked side of the paper 
should be on the outside of the finished cube. 
Thus each individual fold along a marked line 
should hide that marked line from view. 

2. Position the pattern piece so that it forms 
a cube with flaps opening from the top and the 
bottom as shown in Fig. 2-B2. 

3. Temporarily attach the two rectangles to¬ 
gether inside the cube with paper clips. Then, 
with the cube still in its “up” position, cut 
through both thicknesses of paper at once to 
produce the notches at the positions which 
you already labeled C and D. 

4. Connect three rubber bands together as 
shown in Fig. 2-B3. 

5. Slide one end-loop of this chain of rubber 
bands through the slot which you labeled A, 
and the other end-loop through the slot labeled 
B, leaving the knots on the outside of the 
cube. 

6. Stretch the end loops of the rubber bands 
so that they hook into slots C and D as shown 
in Fig. 2-B4. The bands must produce the right 
amount of tension in order for the model to 
work. If they are too tight the model will not 

8 Fig. 2-Bl. 
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go flat and if they are too loose the model 
won’t pop up. You may need to do some ex¬ 
perimenting to obtain the best arrangement. 

7. Remove the paper clips when you are sat¬ 
isfied that the rubber bands are performing 
their function. 

8. To flatten the model push the edges la¬ 

a 

beled E and F toward each other as shown in 
Figure 2-B4b and wrap the flaps over the flat¬ 
tened portion as in Figure 2-B4c. 

9. Holding the flaps flat, toss the model into 
the air and watch it pop up. If you want it to 
make a louder noise when it snaps into posi¬ 
tion, glue an additional square onto each visi¬ 
ble face of the cube in its “up” position. This 
also allows you to make the finished model 
very colorful. 

Constructing the Octahedron 

1. Crease on all the indicated fold lines so 
that the marked lines will be on the inside of 
the finished model. 

2. Position the pattern piece so that it forms 
an octahedron with triangular flaps opening on 
the top and bottom, as shown in Fig. 2-B5a. 
Don’t be discouraged by the complicated look 
of the illustration; the construction is so simi¬ 
lar to the cube that once you have the pattern 
piece in hand, it becomes clear how to pro¬ 
ceed. 

3. Secure the quadrilaterals inside the octa¬ 
hedron with paper clips and cut through both 
thicknesses of paper to make the notches at C 
and D. Angle these cuts toward the center of 
the octahedron (so that the rubber bands will 
hook more securely). Gluing the quadrilaterals 
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inside the model to each other in their proper 
position produces a sturdier model. 

4. Connect three rubber bands together as 
shown in Fig. 2-B3. 

5. Slide one loop-end of the rubber band ar¬ 
rangement through the slot A and the other 
loop-end through the slot B, leaving both 
knots on the outside of the octahedron. 

6. Stretch the end loops of the rubber bands 
so that they hook into the slots at C and D. 
Some adjustment in the size of the rubber 
bands may be necessary, so experiment to find 
the best arrangement. 

7. Remove the paper clips when you have a 
satisfactory arrangement of rubber bands. 

8. To flatten the model put your fingers in¬ 
side and pull at the points A and D so that you 
are pulling those opposite faces away from 
each other until each one is folded along an 
altitude of that triangular face. Then wrap the 

triangular flaps over the flattened portion so 
that it looks like Fig. 2-B5b. 

9. Holding the triangular flaps flat, toss the 
model and watch it pop up. Just as with the 
cube, this model will make more noise if you 
glue an extra triangle on the exposed faces. Of 
course, if you use colored pieces the resulting 
model is more interesting. 

Note 

If you store either the cube or the octahedron 
in its flattened position for several hours, or 
days, it may fail to pop up when tossed in the 
air. This is because the rubber bands lose their 
elasticity when stretched continuously for 
long periods of time. If the rubber bands have 
not begun to deteriorate, the model will be¬ 
have normally as soon as you let the rubber 
bands contract for a short while. 
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C. The Great Stellated Dodecahedron 

Magnus Wenninger 

The great stellated dodecahedron (Fig. 2-Cl) 
makes a lovely Christmas decoration or in¬ 
deed an interesting ornament for any time or 
place. It is very attractive, and when made as 
suggested here it is also very sturdy and rigid, 
even though it is entirely hollow inside. The 
pattern to use for making this model is simply 
an isosceles triangle with base angles of 72° 
and a vertex angle of 36°. The length of the 
base should be between 1 and 2 inches (be¬ 
tween 2.5 and 5.0 cm). The angular measures 
just given will automatically make the equal 
sides of the triangle r times longer than the 
base, where r is 1.618034 (the golden section 
number). You will need 60 such triangles to 
complete one model. Very attractive results 
can be obtained by using different colors of 

index card, namely ten triangles of each of six 
different colors. Astonishingly beautiful 
results can be obtained by using glitter film 
with pressure sensitive adhesive backing to 
cover the index card.^ 

Getting Started 

Begin the work by first cutting all the glitter 
film triangles to exactly the same size. You 
can lay out a tessellated network of such trian¬ 
gles by marking the back or waxy side of a 
sheet of glitter film with a scoring instrument 
and then cutting out the triangles with scis¬ 
sors. Next peel off one corner of the waxy 
backing from the film and attach this to a piece 
of index card. Finally, remove the entire back¬ 
ing while you smooth out the film on the card. 
Now trim the card with scissors, leaving a bor¬ 
der of card all around the film. A quarter inch 
or so is suitable (about 7 or 8 mm). Next trim 

Fig. 2-Cl. Smith College student Katherine Kirkpatrick studying models made in Magnus Wenninger’s 
workshop at the Shaping Space Conference. Photograph by Stan Sherer. 
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the vertices of the triangle as suggested in Fig. 
2-C2. You will now find it easy to bend or fold 
the card down along the edges of the film even 
without scoring the card. This edging of card 
serves as a tab for joining the triangles to¬ 
gether. Use ordinary white paper glue (such as 
Elmer’s Glue-All®^) for this purpose. 

Assembling the Model 

Glue three triangles together as shown in Fig. 
2-C3. Shape this part into a triangular pyramid 
without a base. This will then form one trihe¬ 
dral vertex of the great stellated dodecahe¬ 
dron. The color arrangement for ten vertices is 
as follows; 

(1) B Y G (6) B W G Y 
(2) O B Y (7) O W Y B 
(3) R O B (8) R W B O 
(4) G R O (9) G W O R 
(5) Y G R (10) Y W R G 

W 

yellow or gold 
blue 
orange 
red 
green 
white or silver 

The first five vertices or triangular pyramids 
are joined in a ring with the bottom edges of 
the middle Y, B, O, R, G of (1), (2), (3), (4), 
(5), forming an open pentagon. Then the next 
five parts are added to each edge of this penta¬ 
gon, so that the W of (6) is glued to the Y of (1) 
and so on around. This completes half the 
model. You may find it a bit tricky to get the 
colors right at first, but the arrangement sug¬ 
gested here makes each star plane the same 
color. The triangles are star arms, so once you 
get started right it is not hard to continue. 

The remaining ten vertices or parts have 
their colors in reverse order. They are the mir¬ 
ror image arrangement of the first ten. To 
make these just read the color table in reverse 
order and from right to left. For example, ver¬ 
tex (11) will be R W Y, the reverse of (10) 
which is Y W R. And this is glued in place 
diametrically opposite to its counterpart on 
the model. Watching the colors of the star 
arms will help you get all the remaining parts 
in their proper places. As the model closes up 
it is helpful to use tweezers to get the tabs to 
adhere. The secret is to do only one pair of 
tabs at a time. On the last part glue one pair of 
tabs first. Then, when this has set up firmly. 
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Fig. 2-C5. Magnus Wenninger leading a workshop at the Shaping Space Conference. Photograph by Stan 
Sherer. 

put glue on the remaining two sets of tabs and 
close the triangular opening. The model now 
has sufficient rigidity so that the tabs will ad¬ 
here by applying gentle pressure from the out¬ 
side with your hands. An extra drop of glue at 
the base of each pyramid corner will provide 
extra strength where you may perceive a small 
opening remaining. 

You should now see, if you have not already 

noticed this, that parallel star planes are the 
same color. Hence twelve star planes com¬ 
plete this model, two of each of the six colors. 
The twelve stars give this model its name: stel¬ 
lated dodecahedron (Fig. 2-C4). It is called 
“great” because it is the final stellation of the 
dodecahedron, truly a beautiful thing to be¬ 
hold! 

“A thing of beauty is a joy forever.” 

n 
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D. Creating Kaleidocycles and More 

Doris Schattschneider 

The transition from a flat pattern to a three- 
dimensional form can be fascinating to ex¬ 
plore. Even the youngest child can shape a 
simple basket by cutting squares from the cor¬ 
ners of a rectangular piece of construction pa¬ 
per and folding it up. But except for this well- 
known pattern learned as a preschool 
exercise, the two-dimensional pattern of an 
unfamiliar three-dimensional object often 
seems to yield little information about the ob¬ 
ject. Perhaps part of the reason for this is that 
we are rarely asked to imagine what shape will 
result from folding up a flat pattern. The fol¬ 
lowing exercises provide hands-on explora¬ 
tion of some of the relations between flat nets 
and three-dimensional forms, and provide an 
extra surprise in the creation of kinetic forms. 

Folding Strips of Triangles 

Begin by constructing strips of four connected 
congruent triangles like the one sketched in 
Fig. 2-Dl. You should construct several dif¬ 
ferent kinds of strips—those whose triangles 
are (1) equilateral triangles, (2) isosceles acute 
triangles, (3) isosceles right triangles, (4) isos¬ 
celes obtuse triangles, (5) scalene triangles (a 
strip of acute triangles, or of right, or obtuse). 
Note: If you are in a hurry, use graph paper 
for rapid layout of the strips of congruent tri¬ 
angles. If more time is available, carry out 
rule-and-compass construction of the strips 
(brush up on the congruence theorems!). 

Question: For each of the constructed nets, 
what three-dimensional shape will be formed 
when the net is folded along the common 

edges of its triangles? 
First guess at the answers to this question. 

Then score the connecting edges of the trian¬ 

gles (use a medium ballpoint pen held against a 
straightedge), cut out the strips of triangles, 
and fold each of them to see what happens. 
(All folds should be of the same type, folding 
the pattern back-to-back.) 

After this, other strips of four triangles can 
be explored: for instance, a strip of four trian¬ 
gles, all acute, but not all congruent; a strip of 
triangles with some triangles right, others 
acute, and so forth. Exploring what happens 
when these nets are folded up leads to some 
natural questions: 

1. When will four congruent triangles form a 
tetrahedron? 

2. What must be true of four triangles if they 
are to form a tetrahedron? 

3. Are there different flat nets (other than the 
strips of four triangles) that will fold up to 
make the same shapes as those formed by 
the strips of four triangles? 

Kaleidocycles 

Next, we will create and explore nets of con¬ 
nected strips of triangles. For ease and accu¬ 
racy of construction, large paper and long (18 
inch) rulers should be used. Graph paper can 
be purchased in size 17 x 22 inch, just right for 
two constructions. Drawing paper can easily 
be purchased in large sizes. Fay out each of 
the two grids shown in Figs. 2-D2a and 2-D3. 
The grid in Fig. 2-D2a is made up of six con¬ 
nected vertical strips of congruent isosceles 
triangles which are characterized by the prop¬ 
erty that base equals altitude. The grid is eas¬ 
ily laid out using graph paper; it is also easily 
constructed with ruler and compass because 
of the simple defining property of the trian¬ 
gles. (There is a grid of squares which under¬ 
lies the triangular grid; this is shown in Fig. 
2-D2b). 

The grid in Fig. 2-D3 is made up of twelve 
connected vertical strips of isosceles right tri¬ 
angles, where the top and bottom triangles 
have been cut in half. This grid is obviously 
based on a grid of squares, and so is easily laid 
out on graph paper or constructed with ruler 
and compass. 

Before the grids are turned into three-di¬ 
mensional objects, ask yourself the question 
that was asked earlier for the single strips. 
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Fig. 2-D3. 

Question: From each of the constructed nets 
(as in Figs. 2-D2a and 2-D3), what three-di¬ 
mensional shape will be formed when they are 
folded along the common edges of the trian¬ 
gles? 

Of course, you will need to use the earlier 
answers to the question in attempting to an¬ 
swer the question for the more complex nets. 
An auxiliary question that is worth asking is; 
Will all of the lines in the grid (which are com¬ 
mon edges of pairs of triangles) play the same 
role in the three-dimensional form? 

Now score all the lines in each grid (use a 
medium ballpoint pen), and cut out the nets 
around the outline (be sure to cut around the 
tabs). Fold the nets as follows: 

1. Fold the net face-to-face (valley fold) on all 
vertical lines, including those to which the 
tabs are attached. 

2. And fold the net back-to-back (mountain 
fold) on all diagonal lines. 

Then cup the folded net in both hands, and 
gently squeeze it to encourage the top and the 
bottom to come together. 

The net in Fig. 2-D2a should come together 
easily, with the half-triangles labeled as tabs 
completely covered. A chain of linked tetrahe- 
dra is formed. (Glue or tape the edges of the 
tetrahedra fitted over the tabs.) Holding the 
ends of the chain, bring the ends of the chain 
together, fitting the tabs at one end of the 
chain into the open edge at the other end of the 

chain. (If the chain does not come together 
easily, turn it until it does.) Glue or tape these 
last two edges to the tabs, completing the 
model. 

The ring of six linked tetrahedra is a (care¬ 
fully) crinkled torus (doughnut), and has the 
property that it can be endlessly turned 

through its center hole. Simply grasp the 
model in both hands and turn the tetrahedra 
inward, pushing the points through the center 
hole! 

The Isoaxis 

The net in Fig. 2-D3 will not come together 
to form a closed three-dimensional form, but 
rather it will form a (carefully) crinkled cylin¬ 
der that will also turn through its center hole, 
changing its shape and appearing to “bloom” 
as it is turned. This form was discovered by 
graphic designer Wallace Walker, and is called 
Isoaxis®.^ Assemble Isoaxis as follows. Gen¬ 
tly squeeze the scored and folded net, so that 
it begins to curl and collapse along the fold 
lines. When fully collapsed, it will look like an 
accordion-folded paper with square cross sec¬ 
tion. (One method of achieving this state of 
the model is to begin at one end of the net, 
collapsing the net along the folds to form a 
square cross section, and holding the col¬ 
lapsed part between thumbs and forefingers, 
“gathering” the rest of the net into the col- 
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Fig. 2-D4. Corraine Alves and Diana Weimer making kaleidocycles in Doris Schattschneider’s workshop 
at the Shaping Space Conference. 

lapsed state with the middle fingers.) The ac¬ 
cordion-folded net should be pressed firmly; it 
is best if it can be pressed under a heavy object 
for 12 hours or more to set the folds fully. The 
two ends of the folded net are then joined (use 
tape or glue), matching tabs to the inside of 
opposite triangles. Join one tab at a time; the 
model will be tight, and so turn it through its 
center to join the second tab. To rotate this 
model, hold it in both hands and bring points 
to the center; push on the points. The crinkled 
cylinder will turn continuously through its 
center hole! 

Further Exploration 

There are many avenues for follow-up. A few 
are suggested below. 

1. Explore the symmetry properties of the 
three-dimensional models. This can be en¬ 
hanced by decorating the faces of the 
models to display various symmetries. One 
question that will need to be answered is: 
What faces in the fat net are adjacent (or 
become adjacent during rotation) in the 
three-dimensional forms? 

2. Create other similar nets, varying the kinds 
of triangles chosen, and the number of tri¬ 
angles in the net. Fold in the same manner 
to see what three-dimensional forms result. 
A good challenge that can be met using only 
a knowledge of elementary geometry is: 
create other rings of tetrahedra having more 

tetrahedra, but such that the center hole in 
the ring is (in theory) a point, as is the case 
for the model in Fig. 2-D2. (The model in 
Fig. 2-D2 has been called a “hexagonal 
kaleidocycle” by Walker and Schatt- 
schneider, because the center cross section 
of the assembled form is a regular hexa¬ 
gon.'*’ 

Information on Construction Materials 

The basic necessities for the above construc¬ 
tions are 

• Paper 
‘ 18-inch ruler 
• Medium ballpoint pen 
• Scissors 
• White glue or tape 

If the models are to be decorated, then color¬ 
ing materials that will not weaken or warp the 
paper should be used. Since the models rotate, 
the paper chosen must not easily tear or break 
when bent repeatedly. Ordinary construction 
paper is not suitable. In addition, the paper 
should be heavy enough so that the three-di¬ 
mensional models have suitable firmness. Me¬ 
dium-weight drawing paper, 100% rag, is ex¬ 
cellent, and takes decoration well. Ordinary 
graph paper is too thin, but there is an excel¬ 
lent gridded layout bristol (made by Tara) that 
comes in large sizes. The nets should not be 
made too small, or they become very difficult 
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to put together and to manipulate. A good size 
for the nets is 2.5 to 3 inches width for each 
“panel” of linked triangles for Fig. 2-D2, and 
1.25 to 1.75 inches for each “panel” of linked 
triangles for Fig. 2-D3. The overall width of 
the nets should be in the range of 15 to 22 
inches. 

White glue seems to be best for assembling 
the models; in any case, the glue chosen 
should not warp the paper, nor should it be the 
“instant hold” variety since tabs need to be 

manipulated into place before the glue sets. If 
tape is used, then it must be of the type used 
for hinging (such as Mylar®"); ordinary clear 
plastic tape will break after a few turns of the 
model. 

Giftwrap paper which has a pattern based 
on a square grid can be laminated (use spray 
glue) to drawing paper to create a nice all-over 
decorated Isoaxis. (The square grid of the pat¬ 
tern must be carefully followed for the lines of 
the net of Isoaxis.) 
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E. The Rhombic Dodecahedron: 
Its Relation to the Cube and the 
Octahedron 

Arthur L. Loeb 

This is a recipe for constructing modules that 
generate the rhombic dodecahedron in two 
fundamentally different ways. The first con¬ 
struction stellates a cube with six square pyra¬ 
mids; the second stellates a regular octahe¬ 
dron with eight triangular pyramids. 

The Pyramids 

The first step is the construction of the sides of 
the pyramids. The square pyramids have an 
apex angle whose cosine equals 1/3, while the 
triangular pyramids have an apex angle whose 
cosine equals -1/3. In order to produce mutu¬ 
ally congruent dodecahedra by both methods, 
we construct the template shown in Fig. 2-El 
by the following steps: 

1. Draw two mutually perpendicular lines. 
Call their intersection O. 

2. Choose a point A, different from O, on one 
of the mutually perpendicular lines. 

3. Draw a circle having radius equal to three 
time the distance OA, whose center is lo¬ 
cated on A. 

4. Call the intersections of this circle with the 
extension of the line OA C and B, as 
shown. Call an intersection of the circle 
with the line perpendicular to OA D, as 
shown. 

5. Connect C and D, as well as B and D. 

The resulting template furnishes the follow¬ 
ing linear and angular dimensions: 

• The length of the line segment CD is the edge 
length of the octahedron to be built. 

• The length of the line segment BD is the edge 
length of the cube to be built. 

• The triangle CAD is the shape of the sides of 
the triangular pyramids to be built. 

• The triangle BAD is the shape of the sides of 
the square pyramids to be built. 

Construction of the Polyhedra 
r 

1. Construct a regular octahedron whose edge 
length equals the length of line segment CD. 

2. Construct a cube whose edge length equals 
the length of line segment BD. 

3. Construct eight triangular pyramids whose 
bases are equilateral triangles having edge 
length equal to the length of line segment 
CD, and whose sides have the shape of tri¬ 
angle CAD. 

4. Construct six square pyramids whose bases 
are square having edge length equal to the 
length of line segment BD, and whose sides 
have the shape of triangle BAD. 

Juxtaposition of Polyhedra 

Arrange the six square pyramids so that their 
square bases are in the configuration shown in 
Fig. 2-E2. Hinge them together so that they 
can rotate with respect to each other around 
their shared edges. When the pyramids are 
folded inward until their six apices touch, they 
will form a cube congruent with the cube also 
constructed. 

Arrange four of the triangular pyramids with 
their triangular bases in the configuration 
shown in Fig. 2-E3, and hinge them together 
as above. When folded in till their apices 
touch, they will form a regular tetrahedron. 
Repeat for the remaining four tetrahedra. 

Place the six square pyramids around the 
cube, square faces joined to square faces. 
Place the eight triangular pyramids around the 
octahedron, with the equilateral triangles 
joined. The result should be two mutually con¬ 
gruent rhombic dodecahedra. Note that the 
cube edges constitute the shorter, the octahe- 
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dron edges the longer, diagonals of the rhom¬ 
bic faces. 

Place two square pyramids with their square 
bases joined. The result is an octahedron 
which is not regular, because its faces are not 
equilateral. Six of these irregular octahedra 
can be put together to form a rhombic dodeca¬ 
hedron. {Note: this would require twelve 

square pyramids rather than the six already 
constructed.) 

Space-Fillers 

Of the polyhedra constructed, the following 
will fill space without interstitial spaces. 

• Cube 
• Rhombic dodecahedron 
• Square pyramid 
• Irregular octahedron 
• Regular octahedron combined with eight tri¬ 

angular pyramids 

Combinations of these (say cube in combi¬ 
nation with square pyramids) are, of course, 
also possible. 

A Note on Materials 

Contributed by Jack Gray 

Any useful polyhedral model is formed on the 
spectrum between “a rough sketch” and “a 
long-lasting work of art.” The position on the 
spectrum is determined by the choices of ma¬ 
terials, tools, and techniques as well as by the 
time and care used in the construction pro¬ 
cess. A rough sketch is always a valid precur¬ 

sor to a work of art. Expect to make a few 
mistakes on the sketch, and then try to con¬ 
quer those in a second model. 

Transparent tape is a good hinging material, 
while paper tape is thicker and more cumber¬ 
some. Use permanent tape, taking care to po¬ 
sition it as follows. Place a strip of tape, sticky 
side up, on a flat surface. The strip should be 
longer by a good amount than the edge to be 
hinged. Weight down the ends of the tape so 
that it cannot move while you are connecting 
the polyhedron to it. 

Carefully lower the edge of the first polyhe¬ 
dron to the tape. Before letting it contact, 
make sure that it is in the center of the width 
and the length of the tape. Make contact along 
the whole length of the edge. 

Orient the second polyhedron to the first. 
Slide the second polyhedron down the face of 
the first until its edge touches the tape; then 
rotate it about that edge, so that contact with 
the tape is made along the entire edge. Trim 
off the excess tape with an X-Acto®'^ knife or 
a single-edge razor blade. 

Flip over the pair of joined polyhedra and 
inspect the tap hinge. Burnish it with your fin¬ 
ger to complete contact along the full surface 
of the tape. 

Place another piece of tape of the same 
length on the flat surface. This will be used to 
tape the other side of the joined edges, creat¬ 
ing a hinge that is equally strong on both sides. 
The tape should be weighted down as before, 
and care should be taken in centering the al¬ 
ready-joined edges on the strip of tape before 
making contact. Let the joined faces lie flat 
against the tape to make contact along the full 
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Fig. 2-E4. Arthur L. Loeb demonstrating his models in his workshop at the Shaping Space Conference. 
Photograph by Stan Sherer. 

width of tape surface. Remove the excess tape 
and burnish as before. 

If your sketch looks like a work of art, plan 
a finished model. Visit a local art store or 
hobby shop to examine the sheet materials 
that are available. 

Various colored art papers, colored and 
transparent acetate, mirrored Mylar®, oak tag, 
and construction paper can be found. Fine rice 
papers are good for finishes, though they are 
too flexible for the body of such models. (In 
adding a surface finish of thin sheet material to 
your model, cut out each polygonal face so 
that it will not go across the hinge. Otherwise, 

the finish material will buckle when flexed.) 
Your experience making a sketch model will 
prepare you to pick materials “by feel.” 

Thicker sheet materials like mat board and 
Plexiglas®'^ need to have their edges mitered 
to half the dihedral angle between faces to pre¬ 
vent the thickness of the material from creat¬ 
ing inaccuracies. Great care should be used in 
gluing such joints, so that glue does not spill 
onto the surfaces. 

On a finished model, the hinging should be 
done with transparent polyester hinging tape. 
Cloth tape can be used on larger models. 

o 
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Notes (for Chapter Two) 

' These types of starting points were suggested 
by Adrian Pinel. For many more suggestions for 
polyhedra-making activities, see Pinel’s 24-page 
booklet Mathematical Activity Tiles Handbook 

(Association of Teachers of Mathematics, Kings 
Chambers, Queen Street, Derby DEI 3DA, United 
Kingdom), ISBN 0900095-59-8, $2.50. 

^ Use sticks all of the same length. Some drug¬ 
stores sell applicator sticks which are ideal; be sure 
to get the kind without cotton at each end. Hobby 
and craft stores often sell small-diameter wooden 
dowel rods which work well. Put a small amount of 
contact glue on the ends of the sticks and let it dry 
for about 15 minutes, until the glue is tacky. Then 
the sticks will join well and yet stay flexible. Don’t 
be surprised if a cube or dodecahedron made of 
applicator sticks won’t stand up, however. Unlike 
structures built entirely of triangles, these struc¬ 
tures are nonrigid. 

^ S. I. Brown and M. I. Walter, The Art of Prob¬ 
lem Posing (Hillsdale, N.J.; Lawrence (Erlbaum, 
1983). 

Marion Walter, “On Constructing Deltahe- 

dra,’’ Wiskobas Bulletin, Jaargang 5/6 [I.O.W.O., 
Utrecht] (Aug. 1976). 

^ Mold It® is a registered trademark of Joli Plas¬ 
tics and Chemical Corporation, 14922 Garfield Ave¬ 
nue, Paramount, Calif. 90723. 

^ MATs may be ordered from the Association of 
Teachers of Mathematics, Kings Chambers, Queen 
Street, Derby DEI 3DA, United Kingdom. Kit A 
costs £5.75 plus postage. Kit B costs £6.90 plus 
postage. 

’ This is obtainable from Coburn Corporation, 
1650 Corporate Road West, Lakewood, N.J. 08701. 

^ Elmer’s® is a registered trademark of Borden, 
Inc., Columbus, Ohio, for a white liquid adhesive. 

^ Isoaxis® can be obtained from Wallace 
Walker, 41 West 46 Street, New York, N.Y. 10036. 

D. Schattschneider and W. Walker, M. C. 
Escher Kaleidocycles (New York: Ballantine 
Books, 1977); Tarquin Publications, Stradbroke, 
Diss, Norfolk, IP21 5JP, United Kingdom, 1982; 
Pomegranate Artbooks, Corte Madera, Calif., 
1987. 

" Mylar® is a registered trademark of E. I. du 
Pont de Nemours and Company, Wilmington, Del. 

X-Acto® is a registered trademark of the X- 
Acto Company, Long Island City, N.Y. 

Plexiglas® is a registered trademark of Rohm 
and Haas, Philadelphia, for acrylic safety glazing. 
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Regular and Semiregular Polyhedra 

H. S. M. COXETER 

The cube, the octahedron, and the tetrahedron 
obviously have been admired for thousands of 
years. It is impossible to say who first de¬ 
scribed them. Certainly the Pythagoreans 
knew all about them. I understand that a do¬ 
decahedron was found in Italy which was ap¬ 
parently made in 500 b.c. or perhaps even ear¬ 
lier, and that icosahedral dice were used by 
the ancient Egyptians. They can be seen in the 
British Museum, although there is some doubt 
about their exact date. All the five so-called 
Platonic solids are described in the later books 
of Euclid. Subsequent writers have made it 
much easier to see that the number of Platonic 
solids is just five. 

First of all, perhaps, one should define what 
one means by a regular solid. It is rather 
strange that not many people realize how very 
simple the definition can be. If one starts in the 
plane defining a regular polygon, one can say 
that a polygon is regular if it has a circumcircle 
and an incircle which are concentric. All the 
vertices lie on a circle and all the sides touch a 
circle and those two circles have the same 
center. That is a very obvious way of defining 
a regular polygon. The same thing works in 
the analogous situation for a polyhedron in 
three dimensions. A polyhedron is regular if it 
has three spheres, all with the same center: 
one through all the vertices, one touching all 
the edges and one touching all the faces. And 
that is all one needs. It is very easy to show 
from this that the faces are regular polygons 
and that they are all alike. 

Of course, if you are dealing with a honey¬ 
comb (that is, a tessellation of the plane with 

regular polygons), you have to make the defi¬ 
nition a little bit different and say that the 
polygons are regular and all alike. And then 
you know that the ways of filling the plane 
with regular polygons are just three: triangles, 
six at a vertex, which I call {3,6}; squares, four 
at vertex, which I call {4,4}; and hexagons, 
three at a vertex, which I call {6,3}. Those are 
what we call Schlafli symbols. The first entry 
is the number of sides of a face and the second 
is the number of faces at a corner. So a cube, 
for instance is called {4,3}. Figure 3-1 gives 
such symbols for all five Platonic solids. 

There is a very nice book on the history of 
these things by van der Waerden called Sci¬ 

ence Awakening.' He has a fine chapter about 
Pythagoras, and he says that an Etruscan do¬ 
decahedron made of soapstone was found 
near Padua, dated from before 500 b.c. The 
faces of a dodecahedron are pentagons. You 
know that if you draw the diagonals of a penta¬ 
gon you get a star pentagon inside. The star 
pentagon is the ancient symbol of the Pythago¬ 
reans. The story is told in van der Waerden’s 
book that one of the Pythagoreans was lying 
on his deathbed in a foreign country, unable to 
pay the man who had taken care of him. And 
he advised this man to paint a star pentagon on 
the door of the house so that any Pythagorean 
who might enter would make inquiries. And 
many years later, a Pythagorean did come, 
and the man was richly rewarded. A rather 
nice little story. 

Coming to much more recent times, Rene 
Descartes (1596-1650) wrote a book called De 

Solidorum Elementis.^ Although the manu- 
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dodecahedron 

Fig. 3-2. The regular solids (and others) in Kepler’s 
Harmonices Mundi (Linz, 1619). 

script was soaked for three days after a ship¬ 
wreck on the river Seine, it was copied in 1676 
by Leibniz before it was lost forever. His copy 
was lost too, but that loss was only temporary; 
two hundred years later Leibniz’s copy was 
found in Hannover, Germany. Shortly before 
Descartes came Leonardo da Vinci and Luca 
Pacioli. Pacioli wrote a book called Divina 

Proportione in which he had pictures of regu¬ 
lar and Archimedean solids based on models 

made by da Vinci. 
Johannes Kepler was very interested in 

these things, and his Harmonices Mundi of 
1619 contains one of his famous illustrations. 
In Fig. 3-2 you see at the top (Mm) his attempt 
to fill the plane with polygons of various kinds 
such as a dodecagon with hexagons and 
squares around it. Next you see a tetrahedron, 
and then two halves of an octahedron (Oo) 
showing that the octahedron is just two square 
pyramids put base to base. Rr is the dodecahe¬ 
dron and here he has divided it into two parts 
by cutting along a set of ten edges which form 
a Petrie polygon. See how they fit together. 
And in Qq the cube is divided by a skew hexa¬ 
gon, which is its Petrie polygon. Those two 
halves fit together to make the cube. Pp is the 
icosahedron with little caps taken off the top 
and bottom, leaving a pentagonal antiprism 
between the two pentagonal pyramids. Alter¬ 
natively, just take the antiprism and stick the 
two pyramids on top and bottom and there is 
the icosahedron. 

One of the ideas that Kepler got from the 
ancient Greeks was making four of the five 
Platonic solids correspond to the four ele¬ 
ments: earth, air, fire, and water. In Fig. 3-2 
you see the tetrahedron with a bonfire drawn 
on it because the tetrahedron represents fire; 

the octahedron, representing air, has birds; 
the icosahedron has a lobster and fishes be¬ 
cause the icosahedron represents water; and 
you see a hoe and spade on one face of the 
cube, a carrot on another and a tree on a third, 
because the cube represents earth. Well of 
course there was a fifth solid and no fifth ele¬ 
ment, so the ancients just said that the dodeca¬ 
hedron should correspond to the whole uni¬ 
verse. That was curiously echoed by the 
Japanese; I have a model in which, if you look 
closely, you find that on the twelve faces are 
drawn the twelve Japanese signs of the Zo¬ 
diac. It’s a little bit different from the Greek 
Zodiac: one sign is a dragon, one is a doe, one 
is a dog, one is a chicken, and so on. 

In Fig. 3-2 you see also two stellated do- 
decahedra, each derived from the convex do¬ 
decahedron by extending the planes of the 
faces. Kepler’s drawings Tt of the great stell¬ 
ated dodecahedron are a little bit inaccurate. 
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Fig. 3-3. The small stellated do¬ 
decahedron. 

Fig. 3-4. The cube and the octa¬ 
hedron. 

Fig. 3-5. The great icosahedron. 

but they give us the right idea. In Ss we see 
two views of the simpler small stellated do¬ 
decahedron. Somewhere in Italy there is an 
elaborate floor on which a picture of this poly¬ 
hedron appears, nicely drawn in 1420 as a mo¬ 
saic (Fig. 1-21). So the small stellated dodeca¬ 
hedron may have been discovered by Paolo 
Uccello, two centuries before Kepler. Figure 
3-3 shows a different view of the same polyhe¬ 
dron. 

Kepler seems to have understood the nature 
of reciprocation: the idea that the cube and the 
octahedron are reciprocal, and the dodecahe¬ 
dron and the icosahedron are reciprocal. Fig¬ 
ure 3-4 shows a shaded cube and white octahe¬ 
dron with corresponding edges crossing each 
other at right angles. You see that each corner 
of the cube emerges through a face of the octa¬ 
hedron and vice versa. Curiously enough, al¬ 
though Kepler had that idea, he did not pursue 
it in the matter of the star polyhedra. If you 
think of a Schlafli symbol, whereby the cube is 
called {4,3} and the reciprocal octahedron 
(3,4), then it would be natural to call the small 
stellated dodecahedron {5/2,5} because the 
faces are star pentagons corresponding to the 
fraction 5/2, and there are five at each corner. 
And similarly the great stellated dodecahe¬ 
dron is {5/2,3}. The faces are pentagrams again 
and there are three of these at every corner. 
Turn these symbols around and you have 
{5,5/2} and {3,5/2}. {3,5/2}, the great iscosahe- 
dron, is shown in Fig. 3-5. These were not 
discovered until two hundred years later, by 
the Frenchman Louis Poinsot, but when they 

finally were there, it became clear they were 
reciprocal to Kepler’s {5/2,5} and {5/2,3}. 

I have a little more to say about Kepler, 
because of his interest in mystical connections 
between the Platonic solids and astronomy. Of 
course, he was very interested in astronomy. 
He had a curious idea about the orbits of the 
planets which is very nicely described in a 
book by Arthur Koestler,^ the man who wrote 
Darkness at Noon. Koestler said: “Into the 
orbit or sphere of Saturn he inscribed a cube.’’ 
Now let’s say exactly what that means. You 
think of the orbit of Saturn as the equator of a 
big sphere and similarly the orbit of Jupiter as 
the equator of a smaller sphere inside. Kepler 
was a sufficiently good astronomer to know 
that the orbits were not really circles, but 
more like ellipses, so that there is a minimum 
distance and a maximum distance from the 
sun in each case. What he did was to imagine a 
sphere in space that was made as a shell, not a 
mathematical sphere but a solid shell with an 
outer radius corresponding to the maximum 
distance of the planet and an inner radius to 
the minimum distance. So it is a hollow 
sphere. And he would take the minimum dis¬ 
tance of Saturn and divide it by the maximum 
distance of Jupiter to get the ratio of the cir- 
cumradius and inradius of a cube. For the six 
planets known to Kepler, Table 3-1 gives the 
distances from the sun in millions of mules for 
comparison with the circumradius qR and inra¬ 
dius 2R of each Platonic solid. For instance, in 
the case of Saturn and Jupiter the astronomi¬ 
cal result is 1.69 as an approximation to the 
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Table 3-1. Distances of the planets from the sun in millions of miles, together with 
ratios needed for examining Kepler’s theory of the solar system. 

Planet 
Maximal 
distance 

Minimal 
distance Ratio Polyhedron 0R/2R 

Saturn 935 837 

^=1.69 
507 

Cube V3 = 1.73 

Jupiter 507 459 
459 
— = 2.98 
155 

Tetrahedron 3 

Mars 155 128 

•^=1.35 
94i 

Dodecahedron V(15 - 6V5) = 1.26 

Earth 94i 9U 

9-li=1.35 
68 

Icosahedron V(15 - 6V5) = 1.26 

Venus 68 67 

^=1.54 
43 

Octahedron V3 = 1.73 

Mercury 43 28 

square root of 3. So let me go on quoting from 
Koestler: 

Into the orbit, or sphere, of Saturn he inscribed a 
cube, and into the cube another sphere which was 
that of Jupiter. Inscribed in that was the tetrahe¬ 
dron, and inscribed in that the sphere of Mars. Be¬ 
tween the spheres of Mars and Earth came the do¬ 
decahedron, between the Earth and Venus, the 
icosahedron, between Venus and Mercury, the oc¬ 
tahedron. Eureka!. . . This is the ultimate fascina¬ 
tion of Kepler, both as an individual and as a case 
history. For Kepler’s misguided belief in the five 
perfect bodies was not a passing fancy, but re¬ 
mained with him in a modified version to the end of 
his life, showing all the symptoms of a paranoid 
delusion; and yet it functioned as the vigor matrix, 

the spur, of his immortal achievements. 

I think it is rather nice to see how Koestler 
acknowledged that, although all this is non¬ 
sense, if Kepler hadn’t had these curious fan¬ 
tasies he might never have gone on to do all 
the great things that he did. 

Symmetry 

One of the most remarkable things about the 
regular and Archimedean solids is their sym¬ 
metrical nature. In his little book Symmetry, 

Hermann Weyl'* mentions that the old problem 
of enumerating the five kinds of Platonic solids 
was superseded in the 1870s by the problem of 
enumerating the five kinds of rotation groups. 
I would like just to run through the details 
because this is a beautiful piece of pure mathe¬ 
matics that Felix Klein did a hundred years 
ago, in his book Lectures on the Icosahedron.^ 

Klein considered rotations of the sphere 
into itself, the way an eyeball rotates in its 
socket, but continued through a whole turn. 
There are rotations of various periods. A half 
turn is a rotation of period 2; a quarter turn is a 
rotation of period 4, and so on. Suppose that 
you have a rotation of period p, greater than or 
equal to 2. The axis of rotation penetrates the 
sphere at two opposite poles of that same pe¬ 
riod p. Working on a sphere, you may have 
poles of various periods, and a given group of 
rotations will transform various poles into one 
another; you get a certain class of equivalent 
poles. If the total order of the group (the total 
number of rotations altogether, including the 
identity) is N, then in each class of equivalent 
poles, if they are p-gonal poles, there will be 
Nip poles. That is because if you take a point 
close to a pole and just move it by that rota¬ 
tion, you get a little p-gon around that point. It 
is rotated by a rotation of period p. And so all 
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the rotations in the group, when applied to this 
point near one of the poles, will give you a lot 
of p-gons all over the place. As there are N of 
these points altogether, there are N/p equiva¬ 
lent poles in each class. 

The next thing to observe is (thinking of all 
the rotations in the group), for each axis of 
period p there are p - 1 rotations not including 
the identity. Turn through one pth of a turn 
and then two pths and so on. There are p - 1 
rotations for each axis. And as there are two 
poles at opposite ends of every axis, there are 
ip — l)/2 for each pole. Now as there are N/p 

poles in each class of equivalent poles, the 
number of rotations for each class is 

N(p-I) N/ _ n 
p 2 2 V pj- 

Not counting the identity, the whole rota¬ 
tion group consists of A - 1 rotations, so you 
simply put them together. Summing over the 
various classes of equivalent poles, you have 

where N is the total number of rotations in the 
group. Just twist that over by a little more 
algebra and you get 

This is summed over the classes of equivalent 

poles. 
How many will there be? Well, if A = 1 that 

is a trivial case, of course, where there is no 
pole. So from now on we can suppose the 
number of rotations in the whole group is 
greater than or equal to 2. And if that is so, 
then you get this inequality: 

1 < (2 - 2/A) < 2. 

Now we have this sum, 

Ed- 

Could there be only one term? No, there 
couldn’t be only one, because (1 - 1/p) < 1, 
while the summation has to be greater than or 
equal to 1, and also less than 2. Could there be 
as many as four terms in this summation? No, 
because four terms, each 1/2 or more, would 
add up to two or more. So we know that this 
sum has two or three terms. 

Take two terms and you have 

2 - 2/A = (1 - 1/p) + (1 - \/q). 

Cancel the 2 = 1 -H 1, multiply all through by 
A and you get this curious little equation: 

A/p + N/q = 2. 

But as we saw right at the beginning. A/p is 
the number of poles in a class of equivalent 
poles. So A/p is a whole number. Similarly A/ 
p is a whole number. And those two whole 
numbers add up to 2. So there is no conclusion 
except that they are both 1: N = p = q. And 
that means that if there are only two terms in 
this sum, you have a group of order p with 
only one axis but two poles, one at each end of 
that axis. That is Cp, a cyclic group, the group 
that you get by having a p-gonal rotation and 
all its powers, and that is all. 

Now suppose there are three terms in this 
summation, say 

(1 - 1/p) + (1 - \/q) + (1 - Mr) = 2 - 2/A, 

so that 

1/p -I- Mq + Mr = \ + 2/A. 

Since 1/3 1/3 + 1/3 = 1, the three periods, 
p, q, r cannot all be 3 or more. So at least one 
of them is 2, say r = 2, and you have 

1/p + Mq = M2 + 2/A. 

Multiplying through by 2pq, you get 

2q + 2p = pq + Apq/N, 

whence 

(p - 2){q - 2) = 4 - 4p^/A. 

So (p - 2) and {q - 2) are two nonnegative 
integers whose product, being less than 4, can 
only be 0 or 1 or 2 or 3. Assuming, for conven¬ 
ience, that p ^ q, you may have (q - 2) = 0, 

but otherwise the “two nonnegative integers” 
can only be 1 and 1, or 2 and 1, or 3 and 1. It 
follows that, apart from the cyclic group Cp, 

the only finite rotation groups (p,q,r) are the 

• Dihedral group (p,2,2) with A = 2p 
• Tetrahedral group (3,3,2) with A = 12 
• Octahedral group (4,3,2) with A = 24 
• Icosahedral group (5,3,2) with A = 60 

If you think of figures possessing this kind of 
symmetry, you soon see that each {p,q,2) is 
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Fig. 3-6. The nine circles of symmetry of the cube. 

the group of rotatory symmetry operations of 
the polyhedron {p,q] and of its reciprocal 
{q,p}. The inequality 

{p - 2){q - 2) < 4 

gives you at the same time a proof that there 
are only five Platonic solids: {3,3}, {4,3}, {3,4}, 
{5,3}, and {3,5}. 

The planes of symmetry of such a solid {p,q] 

decompose its circumsphere into a pattern of 
2N spherical triangles (with angles Trip, irlq, 

ttI2) which may be vividly distinguished by 
blackening N of them. The rotation group per¬ 
mutes the N triangles of either color. For in¬ 
stance, (4,3,2) yields Fig. 3-6, which is really 
simpler than it looks at first sight. Simply draw 
a circle to indicate the sphere, put in one el¬ 
lipse, then another; then draw their major axes 
and two diagonal lines bisecting the angles be¬ 
tween them. And now you see that the sphere 
has been divided into little triangles with an¬ 
gles 7r/4, 7r/3, ttI2: 24 white and 24 black, half 
of them visible and the rest hidden behind. 
The angle at P is 45° because it belongs to four 
triangles of each color. Six such points (in¬ 
cluding the antipodes of P) are the vertices of 
the octahedron {3,4}. The angle at Q, which 
belongs to three triangles of each color, is 60°. 
Eight such points are the vertices of the recip¬ 
rocal cube {4,3}. The twelve points where right 
angles occur are the vertices of the cuboctahe- 

dron, an Archimedean solid whose faces con¬ 
sist of six squares and eight triangles. 

The Archimedean solids are polyhedra 
which have regular faces of two or three 
kinds, while all the vertices are transformed 
into one another by one of the rotation groups 

described above.* Thus the cycle of faces 
round a vertex is the same for all the vertices 
of each solid, and the numbers of sides of the 
polygons in this cycle provide a concise sym¬ 
bol. For instance, the symbol for the cubocta- 
hedron is 3 • 4 • 3 • 4 or (3 • Af, because each 
vertex belongs to two triangles and two 
squares, arranged alternately. The p-gonal 
prism is 4^ • p and the p-gonal antiprism is 3^ • 
p. The books of Archimedes on this subject 
were lost. So it was left to Kepler to give 
names for them. The name “cuboctahedron” 
is rather natural: it is a combination of the 
words cube and octahedron. Similarly, he 
called the common part of the dodecahedron 
and the icosahedron an icosidodecahedron. It 
has twenty triangles and twelve pentagons. 
Four others are shown in Figs. 3-7-3-10. The 
whole list of thirteen is as follows: 

• The truncated tetrahedron 3 • 6^ 
• The truncated cube 3 • 8^ 
• The truncated octahedron 4 • 6^ 
• The truncated dodecahedron 3-10^ 
• The truncated icosahedron 5 • 6^ 
• The cuboctahedron (3 • AY 

• The icosidodecahedron (3 • 5)^ 
• The rhombicuboctahedron 3 • 4^ 
• The rhombicosidodecahedron 3 • 4 ■ 5 • 4 
• The truncated cuboctahedron 4 • 6 • 8 
• The truncated icosidodecahedron 4 • 6 • 10 
• The snub cube (cubus simus) V • 4 
• The snub dodecahedron {dodecahedron 

simum) Y ■ 5 

Before Klein there was another German, 
A. F. Mdbius, who observed that the use of 
Fig. 3-6 (as above) to construct the vertices of 
the cube, octahedron, and cuboctahedron can 
be extended to yield all the Platonic and Ar¬ 
chimedean solids. One of the black triangles in 
Fig. 3-6 is marked PQR in Fig. 3-11. Its angles 
have been bisected so as to yield points S 
(equidistant from the great circles RP, PQ), T 
(equidistant from PQ, QR), U (equidistant 
from QR, RP), and V (equidistant from all 
three sides of the triangle PQR, so that V is the 
center of the inscribed small circle). When the 
planes of the great circles RP and PQ are taken 
to be mirrors, the images of S in this two- 

* Prisms and antiprisms satisfy this definition, but 
are not usually considered Archimedean. 
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Fig. 3-11. Typical vertices of seven polyhedra. Fig. 3-12. Vertices S of the truncated cube. 
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Fig. 3-13. Vertices T of the truncated octahedron. Fig. 3-14. Vertices U of the rhombicuboctahedron. 

Fig. 3-15. Vertices V of the truncated cuboctahe- 
dron. 

Fig. 3-16. Vertices W of the snub cube. 

mirror kaleidoscope are the vertices of a regu¬ 
lar octagon. Introducing a third mirror QR, we 
get Mobius’s three-mirror kaleidoscope in 
which the images of S are the vertices of the 
truncated cube, as in Fig. 3-12. Other Archi¬ 
medean solids can be derived similarly from 
the points T, U, V, as in Figs. 3-13-3-15. Fig¬ 
ure 3-16 shows points derived from a point W, 

different from V, by applying the octahedral 
rotation group (4,3,2) of order 24, which is a 
subgroup of index 2 in the kaleidoscopic group 
of order 48. In other words, the 24 vertices of 
the snub cube 3'' • 4 are points situated like W 
in all the black triangles. 

Figure 3-17 shows six of the nine great cir¬ 
cles in Fig. 3-6 or 3-18; they yield the tetrahe- 
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Fig. 3-17. Six of the great circles of Fig. 3-6, related 
to the group (3,3,2). Drawn by Patrick DuVal for 
his book Homographies, Quaternions and Rota¬ 

tions (London: Oxford University Press, (1964)). 

Fig. 3-18. Great circles related to the group (4,3,2). 
Drawn by Patrick DuVal for his book Homograph¬ 

ies, Quaternions and Rotations (London: Oxford 
University Press, (1964)). 

Fig. 3-19. Great circles related to the group (5,3,2). 
Drawn by Patrick DuVal for his book Homograph¬ 

ies, Quaternions and Rotations (London: Oxford 
University Press, (1964)). 

dral rotation group (3,3,2) and the truncated 
tetrahedron. Figure 3-19 shows the analogous 
set of great circles related to the icosahedral 
group (5,3,2). This “icosahedral kaleido¬ 
scope” yields the complicated polyhedra; for 
instance, points suitably placed in all the black 
triangles now yield the snub dodecahedron. 

It is interesting to see how one could work 

Fig. 3-20. The snub cube 3'* • 4. 

out coordinates for the vertices of a snub 
cube. Let us begin with a large cube in its 
natural position for Cartesian coordinates, so 
that the vertices of the cube, are, shall we say, 
(1,1,1), and the same with various changes of 
sign: one vertex is (1,1,1) and another one is 
(—1,1,1) and so on. In a concise notation, the 
eight vertices are (±1,±1,±1). A smaller 
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Fig. 3-21. Pentakisdodecahedron, {3,5+}],]. Fig. 3-22. {3,5+}2,i 

Fig. 3-23. {3,5+}3,o 

square inside the face (1,±1,±1) of the cube 
may be supposed to have vertices (l,y,A:), 

where x > y, 
this being in the face where the first coordinate 
is 1. (In Fig. 3-20, (l,-x,y) appears as Ixy.) 
These four points are the vertices of a square 
that is inside one square face of the cube, but 
twisted around through a certain angle. And 
you ask that these points and others analo¬ 
gously situated in other faces of the cube 
should be at the same distance from their 
neighbors, so that the distance from one point 
to another is the same in those various pairs. 
One pair gives you xy + y + x = 1, whence 

X = (1 - y)/(l + y). 

Another yields 

X = y(l + y)/(l - y). 

Multiplying these together, you get 

x^ = y. 

Substituting x^ for y in xy 4- y -f x = 1, you are 
left with the nice cubic equation 

X^ + X^ + X = 1. 

You can work this out in various ways and 
find X to be about 0.543689. Then you have to 
take the point with coordinates (l,x^,x), apply 
all the cyclic permutations, put in an even 
number of minus signs, and put them in a dif¬ 
ferent order with an odd number of minus 
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Fig. 3-24. H. S. M. Coxeter. Photograph by Stan Sherer. 

signs; that gives you all the 24 vertices of the 
snub cube (Fig. 3-20). 

The late R. Buckminster Fuller, a great en¬ 
gineer and architect, was very interested in 
the structures that he called geodesic domes 

and they were often made by modifications of 
the icosahedron and dodecahedron. In Fig. 
3-21 you see one of those, where you simply 
take a dodecahedron and put a small pentago¬ 
nal pyramid onto each of its faces, so that you 
have altogether 5 x 12 = 60 triangles. Al¬ 
though they are not equilateral, they are all 
congruent and so you get an attempt toward 
finding a sixth regular solid. Of course it is not 
regular, because there are five triangles 
around some points, and six triangles at other 

points. But at least this is the sphere covered 
with a large number of triangles that are all 
nearly equilateral and nearly alike. And Fuller 
went on doing this in more and more elaborate 
ways. Figure 3-22 is a slightly different one of 
the same sort, with nearly equilateral trian¬ 
gles, nearly the same number around each cor¬ 
ner. If you look closely you see that at some 
corners there are six triangles coming together 
and at others there are five. And so you can 
classify these polyhedra by seeing how you 
can go from one place where there are five 
triangles to another place where there are also 
five triangles. To go from one to the other is a 
sort of modified knight’s move; two steps this 
way and then one step that way, and you get 
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Fig. 3-25. A truncated octahedron, in the Campus Fig. 3-26. Professor Coxeter showing Figure 3-19 
School Exhibit. Photograph by Stan Sherer. during his lecture. Photograph by Stan Sherer. 

Fig. 3-27. Professor Coxeter talking with members of the audience after his lecture. Photograph by Stan 
Sherer. 
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another pentagonal point. Everywhere in be¬ 
tween there are six triangles at a vertex. It is a 
rather nice consequence of the theory of poly¬ 
hedra that just as the icosahedron has twelve 
vertices, each one of which belongs to five 
triangles, even after you have put in all these 
extra triangles it is still true: there are just 
twelve points on the sphere where the number 
of triangles is only five instead of six. And that 
essentially, is a consequence of Euler’s for¬ 
mula. The number of vertices minus the num¬ 
ber of edges plus the number of faces of a 
polyhedron is two. If you fiddle with that for¬ 
mula a little you can see it always must be 
true; that if you have a polyhedron whose 
faces consist entirely of triangles, six coming 
together at some vertices and five at others, 
then the number of vertices where there are 
five triangles coming together is exactly 
twelve. You might ask the question, how 
many of the other kind will there be? That was 
answered by a very able geometer, Branko 
Griinbaum, who showed that if a convex poly¬ 
hedron has only triangles for faces, five or six 
round each vertex, then the number of verti¬ 

ces where you’ve got six triangles coming to¬ 
gether may be any number except one.^ It can 
be two or anything greater. Such a polyhedron 
is a remarkable generalization of the Platonic 
solids. 

Notes 

‘ B. L. van der Waerden, Science Awakening, 

rev. ed. (Leiden; Noordhoff International Publish¬ 
ing; New York: Oxford University Press, 1974). 

^ P. J. Federico, Descartes on Polyhedra (New 
York: Springer-Verlag, 1982). 

^ A. Koestler, The Watershed (Garden City, 
N.Y.: Anchor Books, 1960), from Koestler’s larger 
book. The Sleepwalkers. 

^ H. Weyl, Symmetry (Princeton, N.J.: Princeton 
University Press, 1952). 

^ F. Klein, Lectures on the Icosahedron, English 
trans., 2nd ed. (New York: Dover Publications, 
1956.) 

^ B. Griinbaum and T. S. Motzkin, “The Number 
of Hexagons and the Simplicity of Geodesics on 
Certain Polyhedra,’’ Canadian Journal of Mathe¬ 

matics 15, (1963):744-51. 
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Milestones in the History of Polyhedra 

Joseph Malkevitch 

Considering the fact that polyhedra have been 
studied for so long, it is rather surprising that 
there has been no exhaustive study of their 
history. But we are very lucky that the four 
modern classics on the theory of polyhedra 
have had authors (Bruckner, Coxeter, Fejes- 
Toth and Griinbaum) who were interested in 
historical information and provided detailed 
historical notes in their books. I propose to 
present an outline of the milestones in the his¬ 
tory of the subject, putting together the thread 
of what happened as the theory developed. I 
will pay special attention to regularity con¬ 
cepts. 

I would like you to imagine what might hap¬ 
pen if, a thousand years from now, someone at 
an archaeological site should find a Rubik’s 

cube. What would the archaeologists, histo¬ 
rians, and mathematicians of that future time 
deduce about our knowledge of geometry 
from this one object? We can get some idea 
from an Ed Fisher cartoon from The New 
Yorker (Fig. 4-1). It shows a museum statue 
labeled “man”; it has three legs, two heads, 
and misplaced feet and hands. There are two 
“Martian” creatures looking at it; one is say¬ 
ing: “It certainly is amazing what our scien¬ 
tists can reconstruct from just a few bones and 
fragments.” I think that is the state of our 
knowledge in studying polyhedra in ancient 
times. 

Fet me begin with what perhaps are the 
most famous of polyhedral objects, the pyra¬ 
mids of Egypt (Fig. 1-24). They are awesome. 

"It certainly is amazing what our scientists can 
reconstruct from just a few bones and 
fragments.” 

Fig. 4-1. From The New Yorker, January 6, 1968, p. 29. Drawing by Ed Fisher; © 1968 The New Yorker 
Magazine,' Inc. 

80 
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and the engineering accomplishment involved 
in having made them raises the question as to 
exactly what kinds of information the geome¬ 
ters of Egypt had about polyhedra. Our 
knowledge of Egyptian geometry comes down 
to us from two sources, from two papyri. One 
is called the Rhind mathematical papyrus and 
the other one the Moscow mathematical papy¬ 
rus. There are some problems on the Rhind 
papyrus showing computations about the rela¬ 
tion between what we would call today the 
slant height of the pyramid and the height. The 
Moscow papyrus has a calculation that illus¬ 
trates the kind of detective work one has to do 
when one looks at these papyri. The authors 
did not spell out: “We will now do this calcu¬ 
lation.” Instead there are some symbols and 
sometimes an accompanying diagram, and the 
modern historian has to try to determine what 
it was that they were trying to do. In this par¬ 
ticular instance, it seems that they may have 
been calculating the volume of the truncated 
pyramid. This is the first milestone in the his¬ 
tory of polyhedra. 

O 
Volume of Truncated Pyramid 

1. (c. 1890 B.c.) Problem 14 of the Moscow 
Papyrus suggests Egyptians may have known 
how to compute the volume of a truncated 
square pyramid, using: 

V — + ab + b^) 

(where a and b are sides of the square bases 
and h is the height of the pyramid). 

The calculation seems to follow the modern 
formula for the volume of the frustrum of a 
pyramid. There is quite a bit of scholarly de¬ 
bate as to whether this formula was actually 
known to the Egyptians, but I will not get in¬ 
volved in that particular thicket. Part of the 
reason for the controversy is that we have no 
real basis for trying to determine how the 
Egyptian geometers might have arrived at that 
result. Furthermore, the papyri do not contain 
any problem which calculates the volume of 
an untruncated pyramid! They did not seem to 
be in possession of anything like calculus. 

How else might they have found the formula? 
We know from modern work that you cannot 
find the volume of a tetrahedron by the 
method of cutting it up into a finite number of 
pieces and reassembling them into something 
whose volume can be computed easily. (This 
follows from Max Dehn’s solution to Hilbert’s 
problem on equidecomposability.) Various 
proposals have been made for what the Egypt¬ 
ians did do; all are very speculative. 

Let me briefly describe what actually seems 
to be the history of the development of the 
theory of the volume of a pyramid, because it 
is certainly not an intuitive result. It was quite 
an accomplishment for ancient peoples; we 
can consider it to be the second milestone. 

Archimedes referred to the fact that Democri¬ 
tus, who flourished at the end of the fifth cen¬ 
tury B.C., knew that the volume of the pyra¬ 
mid was one-third the area of the base times 
the height, and that the proof was devised by 
Eudoxus. Eudoxus’s method is known as the 
method of “exhaustion” and his approach is 
the one Euclid follows in the Elements. 

<S> 

Volume of a Pyramid 

1. Democritus (fl. end 5th century b.c.) discov¬ 
ers that volume of a pyramid is equal to 
Karea of base)(height). 

2. Eudoxus (c. 409-c. 356 b.c.) proves above 
result using method of “exhaustion.” 

(Achimedes confirms Eudoxus’ role). 

Let us turn now to the origin of regularity 
concepts. More specifically, we might ask the 
extent to which ancient peoples had knowl¬ 
edge of regular solids and theories of regular 
solids. Before attempting to answer this ques¬ 
tion, let me clarify what I mean by “regular.” 
As the theory of polyhedra has developed, the 
meaning of the word “regular” has broad¬ 
ened. There are two major uses of the word. 
One approach to regularity is “local”: it re¬ 
quires congruence of faces and/or vertex-fig¬ 
ures (that is, the pattern of faces at a vertex) 
and/or edge-figures. The other approach con¬ 
siders the polyhedron as a whole: a polyhe¬ 
dron is regular if its symmetry operations act 



82 Joseph Malkevitch 

transitively on its vertices, edges, or faces. 
For example, vertex transitivity would mean 
that any vertex of the polyhedron could be 
moved to any other vertex by a symmetry op¬ 
eration of the polyhedron. In either approach 
we are primarily interested in the case where 
the faces are regular polygons. The second ap¬ 
proach is very modern (nineteenth century) 
and almost certainly was not the approach 
used by the Egyptians or Greeks. Henceforth, 
when the word regular is used, it will refer to 
the first approach to regularity. As near as I 
am able to determine, there was no knowledge 
of individual regular solids, and no theory of 
them in ancient Egypt; I will have some more 
comments about that later. 

As we know from Professor Chieh’s essay 
on crystallography (Chapter 5), many very 
beautiful polyhedral forms occur in nature as 
crystals. Eluorite crystals often grow as octa- 
hedra and there are pyrite (combinatorial) do- 
decahedra. Examples of such crystals must 
have been known in ancient times. The oldest 
man-made dodecahedral object is generally at¬ 
tributed to pre-Pythagorean times. It is a do¬ 
decahedral shape with incised markings on it, 
discovered in an excavation on Mt. Loffa in 
Italy near Padua. Nobody knows what the 
symbols actually mean. There is some linguis¬ 
tic evidence that the dodecahedron was not 
known by the name dodecahedron in early 
days, but instead was referred to as “the 
sphere of 12 pentagons.” That may have had 
something to do with how the theory actually 
developed. 

There is a tradition, which goes back into 
Greek history, that assigns knowledge of the 
five “Platonic solids” to the Pythagoreans. 
Eudemus of Rhodes referred to Pythagoras 
himself as having discovered the five regular 
polyhedra. But modern scholars seem to dis¬ 
count this. In a scholarly thesis in 1917, Eva 
Sachs gave some cogent arguments suggesting 
that, in fact, the Pythagoreans did not know all 
of the five Platonic solids. Many modern 
scholars argue that the proper history is based 
on a scholium or comment in an extended edi¬ 
tion of Euclid’s Elements which reads as fol¬ 
lows: “In this book, the 13th [the thirteenth 
book of Euclid], are constructed five figures 
called Platonic, which do not however belong 
to Plato. Three of these figures, the cube, pyr¬ 
amid and dodecahedron, belong to the Pythag¬ 

oreans, while the octahedron and icosahedron 
belong to Theatetus.” But the history is com¬ 
plicated by an understanding of what “belong 
to” means. The Greeks were very interested, 
as we know, in ruler-and-compass construc¬ 
tions. The question arises as to whether this 
quotation means that Theatetus had found 
ruler and compass constructions for these 
polyhedra. Perhaps all five solids were known, 
as objects, earlier. 

Professor Waterhouse gives' some very in¬ 
teresting linguistic and other arguments in fa¬ 
vor of a later date than the Pythagoreans for 
the origins of actually thinking of the regular 
solids as a family and singling them out for 
study. Theatetus (415-369 b.c.) seems to have 
looked at this collection of solids not merely 
as isolated objects; he considered the question 
of discussing them as part of a theory {Mile¬ 

stone 5). On the other hand, as we have seen, 
these polyhedra are often referred to as the 
Platonic solids. Plato, who was a friend of 
Theatetus, built them into his cosmology in 
the dialogue Timaeus {Milestone 4). This is 
important for the history of polyhedra because 
one of the threads that kept polyhedra alive 
during the Renaissance was the renewed inter¬ 
est in classical studies. (See, for example, 
Raphael’s painting The School of Athens, in 
which he showed the geometers at work.) The 
association of Plato with these solids probably 
helped keep this knowledge alive for a long 
period of time. 

<S> 
Theatetus (c. 415-369 B.c.) 

1. Develops a general theory of regular solids, 

specifically adding the octahedron and ico¬ 

sahedron to solids known earlier. 

Plato (427-347 b.c.) 

1. In the dialogue Timaeus Plato incorporates 

his knowledge of the five regular polyhedra 

into his philosophical system. 

(His popularity and influence result in their 

becoming known as “Platonic solids.”) 
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By the time we get to Euclid, we already 
have a fairly full-blown theory of solid geome¬ 
try. In Book XI of Elements, Euclid gave a full 
treatment of metric properties of polyhedra, in 
Book XII he discussed the volume of prisms 
and pyramids including Eudoxus’ proof, and 
in Book XIII he showed how to construct the 
regular convex polyhedra and “proved” that 
there are only five of them {Milestone 5). I use 
quotation marks because Euclid never told us 
what a polyhedron was. This raises the ques¬ 
tion of what people at various times have had 
in mind when they used the word “polyhe¬ 
dron.” It is my contention that throughout the 
history of the development of regularity con¬ 
cepts, the notions of polygon and polyhedron 
have diversified. This diversification has been 
the driving force behind creating a lot of the 
theory that we know today. 

Euclid (fl. 323-285 b.c.) 

1. Book XI of the Elements treats metric proper¬ 

ties of polyhedra. 

2. Book XII of the Elements discusses the vol¬ 

ume of prisms and pyramids. 

3. Book XIII of the Elements treats the five reg¬ 

ular polyhedra, concluding with a “proof” 

that there are exactly five. 

The sixth milestone is the description by Ar¬ 
chimedes, in a manuscript that now is lost, of 
what we today call the semiregular or Archi¬ 
medean solids (Milestone 6). By some miracle 
or another, Pappus (whose works unfortu¬ 
nately don’t appear to exist in English) gave 
an account (Milestone 7) of the lost book of 
Archimedes which dealt with the semiregular 
solids. It is significant that he explicitly men¬ 
tioned that there are thirteen of them, and de¬ 
scribed them in terms of how many polygons 
each has with various numbers of sides at a 
vertex. We will see that this turns out to be 
rather significant at a later time. 

Archimedes (c. 287-212 b.c.) 

1. Describes 13 “semi-regular” solids in a now 

lost treatise. 

0 
Pappus (fl. 4th century) 

1. (320 A.D.) Pappus’ Collection (Book V) gives 

an account of the 13 “semiregular” solids dis¬ 

covered by Archimedes. 

In the period between the time that Archi¬ 
medes lived and through the time of Pappus, 
polyhedral objects of various kinds and types 
were made. Fortunately some of these objects 
can still be seen today. I had the big thrill of 
examining some of them personally at the 
Metropolitan Museum of Art in New York. 
There I saw regular icosahedral objects in¬ 
cised with the first 20 letters of the Greek al¬ 
phabet (Figs. 4-2 and 4-3). Four similar ico- 
sahedra used to be on display in the Egyptian 
rooms of the British Museum in London. The 
exact origins and provenance of these objects 
is not known. It is, however, fairly certain that 
they are not indigenous to Egypt, that they are 
probably not even of Greek origin. They may 
date from the Roman period. Claims in the 
literature about Egyptian knowledge of regu¬ 
lar solids appear to be false extrapolation from 
the assumption that these icosahedra were 
made in Egypt. 

There are also other objects, from perhaps a 
somewhat later period, that have been cited 
by scholars. Most of these were found in En¬ 
gland, France, and Italy, and have dodecahe¬ 
dral shapes. Figure 4-4 shows a bronze do¬ 
decahedron dug up in 1768 in Carmarthen, 
typical of about fifty which have been found in 
the northwestern provinces of the Roman em¬ 
pire. It has been suggested that they were used 
as surveying instruments.^ There is consider¬ 
able controversy about their origins and uses; 
the best guess is that they were candle hold¬ 
ers.^ I have never actually seen an original of 
one of these, but from photographs some of 
them appear to be quite handsome objects. A 
large collection of such polyhedral objects has 
been described,'’ including a rhombic triacon- 
tahedron, opening to question the claims that 
nobody had seen such a thing until Kepler’s 
time. The best estimate for when these objects 
were made is about 500 a.d. 

There does not seem to have been any sys¬ 
tematic account of polyhedra from the time of 
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Fig. 4-2. Steatite icosahedron with Greek letters Fig. 4-3. Faience icosahedron with Greek letters 

incised on the faces. The Metropolitan Museum of incised on the faces. The Metropolitan Museum of 

Art, New York. 27.122.5, Fletcher Fund, 1927. Art, New York. 37.11.3, Museum purchase, 1937. 

Fig. 4-4. Bronze dodecahedron found in Car¬ 

marthen 1768, and now in the possession of the 

Society of Antiquaries of London. Overall height 4g 

Pappus until the Renaissance. As we know, a 
lot of mathematical traditions died during that 
period. As I mentioned earlier, what ulti¬ 
mately resuscitated these ideas was the re¬ 
newed interest in Plato. So I will jump to the 
Renaissance period. I would like to single out 
the work of Albrecht Diirer for Milestone 8. 

inches. Photograph reproduced by courtesy of the 

Society of Antiquaries of London. 

This is the concept of studying polyhedra by 
drawing what are today called nets. By folding 
a planar piece of cardboard along prescribed 
lines and joining the edges of the figure, the 
net becomes a polyhedron. Diirer made nets 
for the dodecahedron and for other regular 
and semiregular solids. 
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<3> 
Albrecht Durer(1471-1528) 

1. Invents the concept of the “net” of a polyhe¬ 
dron. 

(A net of the cube.) 

The situation during the Renaissance is ex¬ 
tremely complicated. A great many scholars, 
artists, and artisans discovered and rediscov¬ 
ered various Platonic and Archimedean solids 
{Milestone 9). Some of them drew what ap¬ 
pear to be star-shaped solids; others drew 
compounds; others drew convex polyhedral 
solids. In discussing this period it is very diffi¬ 
cult to reach any firm conclusions about who 
discovered what and when. For example there 
is a picture of a solid in the famous Jamnitzer 
pictures (published in 1568) that some say was 
discovered by Kepler about 1619. Professor 
Coxeter alluded to the book of Luca Pacioli’s 
work on the regular and semiregular poiyhe¬ 
dra which was illustrated by Leonardo da 
Vinci. There are indications that Pacioli actu¬ 
ally made polyhedron models of glass; there is 
a painting which shows Pacioli with a picture 
of a glass model of the rhombicuboctahedron. 
The important thing to realize in discussing 
this period is that these ideas were very much 
in the air. The real issue is not who discovered 
a particular star poly tope first. I am not sure 
that that approach is particularly profitable. I 
think it is more interesting to try to understand 
why it was that all of this activity was going on 
at this particular time. Why was there so much 
interest in poiyhedra, and why did the subject 
flourish during that period? The answer seems 

related to the emergent study of perspective 
and the renewed interest in the Greek classics. 

<E> 
Renaissance artists, architects, artisans and 

scholars such as: 

Paolo Uccello 

Wentzel Jamnitzer 

Lorenz Stoer 

Daniel Barbaro 

Piero della Francesca 

Luca Pacioli 

Leonard da Vinci 

Albrecht Diirer 

Simon Stevin 

Frangois de Foix 

R. Bombelli 

“Discover” and “rediscover” various Platonic 

and Archimedean solids, star-polyhedra, 

compounds, and other polyhedral objects. 

The tenth milestone in our history is the 
work of Johannes Kepler, which Professor 
Coxeter discusses in Chapter 3. Kepler drew 
tilings of the plane in which he used noncon- 
vex and nonsimple polygons. He also gave a 
very elaborate, case-by-case, proof that there 
are thirteen semiregular poiyhedra. It is inter¬ 
esting that Pappus didn’t describe the prisms 
and the antiprisms which, as we know, are 
two infinite families which are also semiregu¬ 
lar poiyhedra. But Kepler explicitly both drew 
and discussed them. It is also interesting that 
in modern times we refer to thirteen Archime¬ 
dean solids because we adopt the regularity 
definition based on symmetry, although al¬ 
most certainly this was not the definition used 
by Archimedes and Pappus nor by Kepler. 
With the congruent vertex figure definition, 
Archimedes and Pappus missed one: the 
pseudo-rhombicuboctahedron. Kepler’s de¬ 
tailed work on the semiregular poiyhedra ap¬ 
pears in Book II of Harmonices Mundi. Here 
he finds only thirteen semiregular solids (plus 
the prisms and antiprisms). However, in an 
offhand remark in the “Six-Cornered Snow¬ 
flake” he refers to fourteen semiregular solids! 
No supporting detail is given, however. 
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<8> 

Johannes Kepler (1571-1630) 

1. Studies tilings of the plane using convex, non- 

convex, non-simple polygons. 

2. Proves there are 13 “semiregular” polyhedra 

(plus two infinite families, prisms, and anti¬ 

prisms). 

3. Constructs: 

(A) Stella octangula 

(B) Two (regular) stellated polyhedra 

(C) Rhombic dodecahedron 

(D) Rhombic triacontahedron. 

Kepler also constructed the rhombic do¬ 
decahedron and the rhombic triacontahedron 
and, as Professor Coxeter mentioned, two 
“new” “regular” (star) polyhedra. At least, 
today we call them regular; it is hard to tell 
whether Kepler really thought of them as be¬ 
ing regular. It is my impression that perhaps 
he did not. I also have some questions as to 
whether he really understood fully reciproca¬ 
tion and duality notions, as has been claimed. 
Since he was so careful, one might guess that 
if he understood these matters, he would have 
also constructed the two remaining regular 
star polyhedra and the duals of the Archime¬ 
dean polyhedra. But that is my purely subjec¬ 
tive view. 

Unfortunately, there appears to be a pattern 
for many of the great discoveries about poly¬ 
hedra, even for geometry in general: all too 
often people do very great things and then the 
work “goes to sleep” for long periods. Eu¬ 
clid’s work went to sleep, the work of Archi¬ 
medes went to sleep; Kepler’s work, as mod¬ 
ern in spirit as it seems to be, in fact, wasn’t 
looked at seriously until relatively recently. 
Although people constantly refer to Kepler’s 
work, it does not really seem to have affected 
the history of polyhedra in any direct way. 

Another person who made major contribu¬ 
tions to the theory of polyhedra was Rene 
Descartes. Professor Coxeter talked about the 
famous story of the lost manuscript (Chapter 
3). In that manuscript {Milestone 11) there ap¬ 
pears a tantalizing theorem about polyhedra: 
the sum of the defects of the vertices is Att, 

where the defect of a vertex is defined to be 
180° minus the sum of the face angles at the 
vertex. (Of course no one knows what kind of 

polyhedra Descartes was really taking about, 
but presumably he had convex three-dimen¬ 
sional polyhedra in mind.) 

Rene Descartes (1596-1650) 

1. (1619-1620) (Manuscript lost, but copy by 

Leibniz published in 1820). 

Main Theorem: 

If P is a (convex) 3-dimensional polyhedron, 

then the sum of the defects at the vertices is 

360°. {Defect of a vertex is 180° minus the sum 

of the face angles at the vertex.) 

It turns out that one can very quickly get 
from that theorem of Descartes to the very 
famous polyhedral formula of Euler, V — E + 

F = 2, and vice versa. The fact that Descartes’ 
theorem is logically equivalent to Euler’s for¬ 
mula has created the widespread impression 
that Descartes actually knew the formula, al¬ 
though scholars over and over again have said 
that this is not so. You can find in the papers 
of Lebesgue from the 1920s that he does not 
believe Descartes knew Euler’s formula. You 
can find the same statement in Polya,^ and in a 
very nice paper by Peter Hilton and Jean Pe¬ 
dersen.^ More recently Federico has written a 
whole book^ on the contribution of Descartes 
to the theory of polyhedra, including an En¬ 
glish translation of the manuscript and an ex¬ 
tensive summary of this debate. In this con¬ 
nection it is helpful to remember remarks of 
Jacques Hadamard. He wrote, concerning 
some of his own work, that “two theorems, 
important to the subject, were such obvious 
and immediate consequences of the ideas con¬ 
tained therein that, years later, other authors 
imputed them to me, and I am obliged to con¬ 
fess that, as evident as they were, I had not 
perceived them.”^ 

Evidently there is a strong tendency on the 
part of many people who know of Descartes’ 
theorem to assume that if Descartes had only 
gone one tiny step further, he would have dis¬ 
covered this or that. But if you look carefully 
at the work of Descartes, it is very clear that 
he did not think of polyhedra as combinatorial 

objects. It was not a tiny step that was needed. 
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but a big one. That great leap forward was 
made in part by Euler. 

I might mention that Descartes is another 
example of a person whose work went to 
sleep. (His work was literally lost.) 

Aside from the material that fuels the 
Euler-Descartes controversy, Descartes 
talked about the semiregular polyhedra. He 
didn’t enumerate all thirteen of them, only the 
eleven that can be obtained from the Platonic 
solids by truncation. Nor did any of those art¬ 
ists and artisans, who were obviously bright 
and talented people, discover all thirteen of 
the semiregular solids. On the other hand, 
Kepler explicitly referred to the fact that these 
objects were Archimedean solids. So we know 
that he had seen Pappus’s work describing 
what Archimedes had done. Kepler had a very 
big assist in knowing that thirteen solids ex¬ 
isted. One wonders what would have hap¬ 
pened during this period if people had had 
wide access to Pappus’s work. Of course, one 
can only speculate. 

I was originally going to refer to landmarks 
rather than milestones, and I think that Mile¬ 

stone 12 really deserves the title landmark: 

Euler’s letter to Christian Goldbach in 1750 in 
which he referred to his discovery of the fact 
that the number of vertices of a polyhedron 
minus the number of edges plus the number of 
faces equals two. Like Euclid and Descartes, 
however, he did not say what kinds of polyhe¬ 
dral objects he had in mind, and that omission 
has created a long list of further controversies 
about the history of this subject. Suffice it to 
say that Euler, although he found his formula, 
was not successful in proving it. 

<8> 

Leonard Euler (1707-1783) 

1. Euler discovers that polyhedra obey: 

Vertices + Faces - Edges = 2 

Let me briefly point to the long list of very 
distinguished and very interesting work that 
was done on Euler’s polyhedral formula 
(Milestone 13). The first proof was provided 
by Legendre. (There are claims that Meyer 
Hirsch gave a correct proof prior to Legendre. 
I believe that this is an error that came about 

due to a misreading of something in Max 
Bruckner’s book). Many people contributed 
to the theory of the formula by figuring out 
what happens for different types of polyhedra 
and providing different proofs. What is impor¬ 
tant about this development is, first, that it 
provided the roots of modern topology, and it 
was clearly the interest in Euler’s polyhedral 
formula, and the more general idea of the 
Euler characteristic, that brought about im¬ 
portant developments. Second, much of the 
impetus for studying higher dimensional poly¬ 
hedra grew out of the work on the Euler poly¬ 
hedral formula. 

Development of the Theory of Euler’s Poly¬ 

hedral Formula by: 

1. Adrian-Marie Legendre (1752-1833) 

First proof 

2. Augustin-Louis Cauchy (1789-1857) 

3. J. D. Gergonne (1771-1859) • 

4. S. Lhuilier (1750-1840) 

5. J. Steiner (1796-1863) 

6. Von Staudt (1798-1867) 

7. Many others! 

The next milestone. Milestone 14, is Poin- 
sot’s 1810 discovery of the four regular stel¬ 
lated polyhedra. It is clear that Poinsot under¬ 
stood that there was a sense in which these 
were regular polyhedra. Poinsot’s work on the 
star polyhedra grew out of his work on star 
polygons. He seems neither to have looked at 
Kepler’s original work nor to have been aware 
of Kepler’s discovery of two star polyhedra. 
(There have been allegations, however, that 
Poinsot plagiarized Kepler.) Other contribu¬ 
tors to the theory of star polyhedra were A. 
Cauchy (1811), J. Bertrand (1858), and A. 

Calyey (1859). 

<8> 

Louis Poinsot (1777-1859) 

1. In his 1810 Memoire, Poinsot discovers four 

“regular” stellated polyhedra, using both 

star-shaped vertices (i.e. {5,1} and {3,f}) and 

star-shaped faces (i.e. {f,5} and {1,3}—already 

known to Kepler). 
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Milestone 15 followed about a year later, 
when Cauchy made major contributions to the 
theory of polyhedra. He gave what is the most 
common proof of Euler’s formula using graph- 
theoretic ideas, and he also proved his famous 
result about simplicial 3-polytopes being rigid. 
He also gives a “proof” that there are no regu¬ 
lar star polyhedra other than those found by 
Kepler and Poinsot. 

<8> 

Augustin-Louis Cauchy (1789-1857) 

1. Cauchy “proves” that simplical 3-polytopes 

are rigid. 

2. Gives a graph-theoretic approach to proving 

Euler’s formula. 

3. Shows there are 9 “regular” polyhedra. 

The first systematic account of duality of 
polyhedra that I have found is in the work of 
Catalan in 1865 (Milestone 16). In a long ar¬ 
ticle he described, very explicitly, the duals of 
the semiregular polyhedra. It is curious that 
researchers never cited this paper. In other 
words, this was a paper that also went to 
sleep. One finds Catalan’s work mentioned 
only in historical footnotes of books written in 
the twentieth century. Nobody earlier seems 
to have paid any attention to it. 

<8> 

Eugene Charles Catalan (1814-1894) 

1. Catalan gives a systematic account of the 

duals of the Archimedean solids. 

In the middle to late 1800s there was a tre¬ 
mendous flourishing of geometric activity. 
Max Bruckner published a book (Milestone 

17) in which he summarized all of what was 
known at the time and also gave some exten¬ 
sive historical notes on the subject. It has very 
beautiful pictures of uniform polyhedra, which 
served as an inspiration to people later. (The 
uniform polyhedra are those—not necessarily 
convex—that have regular polygons as faces 

and symmetries that are transitive on the ver¬ 

tices.) 

<8> 

Max Bruckner (1860-1934) 

1. Bruckner publishes an extensive summary of 

the known results on polygons and polyhe¬ 

dra, with historical notes. 

Let me breeze through more recent work. I 
have indicated that perhaps Kepler had known 
the pseudo rhombi-cuboctahedron. This is 
certainly possible. This polyhedron is often re¬ 
ferred to as Miller’s solid; sometimes the Rus¬ 
sian mathematician Ashkanazy is given credit 
for discovering it. But George Martin was kind 
enough to call my attention to a paper in 1905 
of D. M. Y. Sommerville (you may know his 
work on Az-dimensional space) in which there 
are Schlegel diagrams for both the rhombi- 
cuboctahedron and the pseudo one (Milestone 

18). The significance of this milestone is that 
many proofs in this area of geometry require a 
delicate interplay of both theory and case-by- 
case analysis. Here is one of many situations 
where earlier work was not fully correct. 

<8> 

D. M. Y. Sommerville (1879-1934) 

1. Sommerville describes the pseudo rhombi- 

cuboctahedron. 

By far the most important early twentieth- 
century contributor to the theory of polyhedra 
was Ernst Steinitz. Steinitz, about 1916, de¬ 
veloped a combinatorial characterization of 
convex three-dimensional polyhedra (Mile¬ 

stone 19). This work appeared in an encyclo¬ 
pedia of mathematics that was published in 
German and in French translation. Steinitz 
also wrote a book on polyhedra, which was 
almost finished at the time of his death; it was 
completed by Rademacher and published in 
1934. As is typical of our subject, although 
Steinitz’s main result is extremely important. 
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there were almost no references to it before 
1963. Why does it happen so often that impor¬ 
tant work in geometry attracts so little atten¬ 
tion? 

<i^ 
Ernst Steinitz (1871-1928) 

1. Characterizes 3-poly topes combinatorially. 

2. Rademacher’s completion of Stenitz’s almost 

completed book on polyhedra is published. 

Next we come to Professor Coxeter’s very 
important work on regularity {Milestone 20). 

He and various others did work on the stel¬ 
lated icosahedra, and he developed some very 
important regularity concepts which allowed 
skew, nonplanar, and infinite polygons. His 
famous work on uniform polyhedra has been 
referred to several times. He also combined 
algebraic with geometrical techniques in poly¬ 
hedral group theory, which led to many impor¬ 
tant results in several branches of mathemat¬ 
ics in addition to polyhedra theory. Much of 
this work is summarized in his Regular 

Poly topes. 

H. S. M. Coxeter (1907- ) 

1. Coxeter (et al.) develops “regularity” con¬ 

cepts for polyhedra allowing skew and infinite 

polygons as faces. 

2. Coxeter (et al.) conjectures that there are 75 

“uniform polyhedra” (+ classical examples). 

3. Coxeter pioneers work in “polyhedral” 

group theory. 

4. Regular Polytopes summarizes all known 

work, explores new material (emphasizes 

higher dimensions). 

A somewhat overlooked contribution to the 
theory of polyhedra is George Dantzig’s dis¬ 
covery of the simplex method in 1947 {Mile¬ 

stone 21). Dantzig’s work resulted in a big ex¬ 
plosion of attempts to study the path structure 

on polyhedra which was very important to the 
development of the combinatorial theory. 

<$> 
George Dantzig (1914- ) 

1. Develops the “simplex method” for solving 

linear programming problem, which stimu¬ 

lates interest in path problems for polyhedra. 

Then there is a surprisingly neglected sub¬ 
ject. What convex polyhedra exist all of 
whose faces are regular convex polygons? 
(There is the classical work that we have dis¬ 
cussed here, and the rediscovery by Freuden- 
thal and van der Waerden that there are eight 
convex polyhedra with equilateral triangles 
for faces.) Norman Johnson, about 1960, con¬ 
jectured that there are 92 such solids, in addi¬ 
tion to the Platonic and Archimedean ones, 
including the prisms and antiprisms. In a se¬ 
ries of papers Johnson, Griinbaum and Zalgal- 
ler proved the conjecture. The final version in 
English of that proof appeared in 1969! This 
work, taken together, is Milestone 22. 

Regular Faced Polyhedra 

1. Classical work. 

2. H. Freudenthal and B. L. van der Waerden 

show there are eight 3-polytopes with equilat¬ 

eral triangles for faces. 

3. N. W. Johnson conjectures there are 92 regu¬ 

lar faced 3-polytopes (-f- prism -h 

antiprisms -i- platonic and Archimedean 

solids). 
4. Johnson, Griinbaum, J. A. Zalgaller et al. 

prove Johnson’s conjecture. 

Finally, let me mention some of Griin- 
baum’s major contributions to our subject 
{Milestone 23). The extremely important 
work of Steinitz was resurrected by Griin- 
baum in about 1962 when he realized that he 
could rephrase Steinitz’s work in graph-theory 
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terminology, making it possible to do all the 
combinatorial theory of three-dimensional 
polytopes in the plane. This means that those 
of you who can’t see things in 3-space and are 
interested only in the combinatorial theory 
can study anything you want in the plane. 
Griinbaum summarized what he knew on the 
subject of convex polytopes in 1967 in his 
beautiful book. Then, building on work of Pro¬ 
fessor Coxeter, he published an article in 1977 
in which he described a very general notion of 
regular polyhedra which allowed very general 
kinds of “regular” polygons as faces, not nec¬ 
essarily ones that can be spanned by mem¬ 
branes of any sort. Just within the last two 
years Andreas Dress proved that, aside from a 
small omission, the list of regular polyhedra 
that Griinbaum gave is complete. 

<$> 
Branko Griinbaum (1929- ) 

1. Restates Steinitz’s characterization of 3-poly- 

topes: a graph G is 3-polytopal if and only if G 

is planar and 3-connected. 

2. Publishes Convex Polytopes, an exhaustive 

account of the combinatorial theory of poly¬ 

topes. 

3. Publishes a very general framework to study 

“regular” polyhedra, building on ideas of 

Coxeter. 

I think we can see by the success of this 
conference that the subject will not go to sleep 
again in the way it all too often has in the past. 

Notes 
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of the British Museum and Dr. Maxwell Anderson 

of the Metropolitan Museum of Art for their coop¬ 
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early man-made polyhedra. J. Wills (Siegen) pro¬ 

vided me with a copy of Lindemann’s paper and 

Robert Machalow (York College Library) helped 

obtain copies of many articles, obscure and other¬ 

wise. 
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Polyhedra and Crystal Structures 

Chung Chieh 

I have long been interested in searching for 
interesting relationships between polyhedra 
and crystal structures, especially with the ap¬ 
plication of polyhedra as units for crystal 
structures. Crystallography uses geometry as 
a foundation. As a crystal scientist, I am inter¬ 
ested in understanding how and why certain 
crystal structures are built the way they are, 
particularly from a geometric veiwpoint. I am 
also constantly searching for relationships 
among the various crystal structures. 

Shapes, colors, and geometry have histori¬ 
cally been subjects of great interest to philoso¬ 
phers, mathematicians, and scientists. We are 

here to understand, to construct, to design, to 
create, to appreciate, and to love the shapes 
and forms of various kind. Among various 
shapes, perhaps polyhedra are especially in¬ 
teresting to us all, and we may also develop an 
affection for the aesthetic shapes of some very 
nice crystals such as those shown in Figs. 5-1- 
5-4. My interest is in the arrangements of at¬ 
oms, molecules, and ions in those crystals, 
and how the arrangements are related to ge¬ 
ometry and polyhedra. 

The crystalline state is the most common 
form of all matter at sufficiently low tempera¬ 
tures. In modern terms, crystals consist of at- 

Fig. 5-1. A wulfenite crystal: an orange flattened octahedron. 

93 
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Fig. 5-2. Crystals of vanadinite: red hexagonal prisms. 

Fig. 5-3. Hematite-stained quartzoids: polyhedra Fig. 5-4. Chrome alum: perfect octahedron, weigh- 

with threefold symmetry. ing 867 grams. 
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oms, molecules, or ions arranged in a peri¬ 
odic, repeated manner. For a crystal visible to 
the naked eye, there may be more than a mil¬ 
lion repeating units in each of the three direc¬ 
tions. Those periodic arrangements may be 
described by symmetry operations such as 
one-, two-, three-, four-, and sixfold rotations, 
mirror and glide planes, screw axes and cen¬ 
ters of inversion.’ Their structures are fasci¬ 
nating from both the architectural and geomet¬ 
ric viewpoints. However we look at them, the 
crystal structures are beautiful, three-dimen¬ 
sional repetitive patterns. 

Figures 5-1-5-4 show some representa¬ 
tive crystals. Their shapes are certainly re¬ 
lated to some familiar polyhedra. The almost- 
perfect octahedral alum crystal was grown by 
a high school student, and it weights 867 
grams. After the publication of a picture of 
this crystal by the Chem 13 News (a monthly 
publication of the University of Waterloo 
Chemistry Department), the editor received 
pictures of even larger alum crystals from 
which coffee tables, seats, and other interest¬ 
ing things had been made. (These crystals 
stand up to normal use when their surfaces are 
protected by varnish.) 

The interesting external shapes of crystals 
must certainly be related to their internal 
structures. What are the basic units from 
which these wonderful and geometrically in¬ 
teresting crystals are built? Perhaps inspired 
by the beauty of crystals, the philosopher 
Plato (427-347 b.c.) associated the regular 
polyhedra with the primal substances from 
which everything is derived. Aristotle agreed 
that earth, air, fire, and water are the primal 
substances; however, he disagreed with Pla¬ 
to’s associating these substances with four of 
the regular solids. During the seventeenth cen¬ 
tury there was lively discussion about the ba¬ 
sic units of crystals. Johannes Kepler (1571- 
1630), Erasmus Bartholin (1625-98), Rene 
Descartes (1596-1650), and Robert Hooke 
(1635-1703) suggested that spheres are the ul¬ 
timate particles. Today, packings of spheres 
are used as models for the discussion of crys¬ 
tals made up of atoms, but no one knows the 
real shape of atoms. Certainly the electronic 
configuration of each constituent atom has the 
symmetry of the electrostatic environment of 
that atom. In a crystal that environment is 
never spherical. 

Fig. 5-5. Transformation of a packing of circles in a 

plane to a packing of triangles. The equivalent 

three-dimensional transformation is between 

spheres and polyhedra. 

Figure 5-5 shows the packing of circular 
disks in a two-dimensional space, and the 
gradual transformation from packing of circles 
to that of triangles. In three-dimensional 
space, the transformation can be made from 
spheres to polyhedra. In Fig. 5-6, we see the 
packing of spheres as a model of the crystal 
structure of common table salt. This is also a 
model of the structures of many binary com¬ 
pounds. Yet, we still like to think of the unit as 
a little cube. We tend to find interesting the 
relationship between the packing of spheres 
and the packing of polyhedra. Are crystal 
structures really packings of spheres, or are 
they packings of polyhedra? The choice for 
crystal science is very much a matter of con¬ 
venience and a matter of aesthetics. The parti¬ 
tion of space into shapes, even within a crys¬ 
tal, is a subject of interdisciplinary interest, 
involving art, mathematics, and science. 

Some highly symmetrical polyhedra such as 
the Archimedean truncated octahedra have 
been used by crystallographers and mineralo¬ 
gists to represent complicated crystal struc¬ 
tures. Zeolites are natural architectures some¬ 
times employed as chemical ion exchangers 
and molecular sieves. These natural three-di- 



96 Chung Chieh 

Fig. 5-6. The packing of spheres as a model of crys¬ 

talline sodium chloride, common table salt. The 

small spheres represent sodium cations, and the 

large spheres represent chloride anions. The unit 

cell, a cube, is sketched with straight lines. 

mensional structures are beautiful in their own 
right. They are silicates with some silicon at¬ 
oms replaced by aluminum atoms with a gen¬ 
eral formula (Al,Si)„02„. We can easily iden¬ 
tify a cagelike unit formed by connecting 
(Si04/2) groups of atoms. The silicon atoms in 
the crystal structure are located at the vertices 
of Archimedean truncated octahedra. These 
large cages are interconnected in many ways; 
Fig. 5-7 shows one of the open packings or 
connections of them. The square faces are 
separated at distances equal to the length of 
the edges of these polyhedra, thus making the 
square faces the faces of cubes. Of course, the 
structure may also be considered to be an 
open packing of cubes. Figure 5-7 shows only 
part of the framework, and there are millions 
of these truncated octahedra in any direction 
in a real crystal. The possible ways that these 
polyhedra may interconnect is an interesting 
topological problem. 

Mathematicians have contributed greatly to 
the study of crystallography, and their meth¬ 
ods are used for the description of crystal 
structures.^ Because of the periodic nature of 
a crystal, description of the large structure is 
simplified by considering the crystal to be built 
up by repetition, in all directions, of the struc¬ 

Fig. 5-7. A portion of the open-framework packing 

of Archimedean truncated octahedra, a model that 

represents the structures of many zeolites. 

ture enclosed within a parallelepiped (the unit 

cell). Although there are standard conventions 
for selecting the unit cell, the choice is not 
unique. As a crystallographer, I am interested 
in finding out how a particular structure is 
formed, what are the basic units (not necessar¬ 
ily the unit cells) that build a specific struc¬ 
ture, and why a structure type is of common 
occurrence. I would like to find a general geo¬ 
metric scheme by which crystal structures are 
formed. Because crystal structures are three- 
dimensional patterns, they are too compli¬ 
cated to illustrate my approach to the problem 
of finding the basic units. Thus I shall use 
some two-dimensional artworks to demon¬ 
strate my search. Let us start by looking at 
one of Escher’s drawings. Fish and Birds, re¬ 
produced as Fig. 5-8. 

There are many ways to choose a basic unit 
that can be used to build these beautiful pat¬ 
terns of fish and birds. Let me show how crys- 
tallographers would choose unit cells from a 
pattern like this. There are various choices as 
indicated in Fig. 5-9. Choices 5-9a and 5-9b are 
arbitrary, and 5-9c is somewhat obscure, yet 
each is legitimate because each is a parallelo¬ 
gram. None of these choices is unique. But 
there is a unique way of defining a different 
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Fig. 5-8. Fish and Birds by M. C. Escher. © M. C. Escher Eleirs do Cordon Art-Baarn-Holland. 

Fig. 5-9. A variety of ways (a to c) to choose the basic repeating “crystallographic unit cell” in an array of 

fishes and birds. The Dirichlet domain (d) of that array. 
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Fig. 5-10. The seven polyhedra used as crystallographic unit cells for the seven crystal systems. Unique 
parameters: (1) Triclinic—a, b, c, a, (i, y, (2) Monoclinic—a, b, c, ^ or y depending on choice, (3) 
Orthorhombic—a, b, c; (4) Tetragonal—a, c; (5) Cubic—a; (6) Hexagonal—a, c (y = 120°); (7) Rhombo- 

hedral—a, a. 

Fig. 5-11. Black and White Knights by M. C. Escher. © M. C. Escher Heirs do Cordon Art-Baarn- 
Holland. 

kind of basic unit. It was first suggested^ by 
the German mathematician G. Lejeune Dirich- 
let (1805-59). In his method, a particular point 
in the pattern is chosen, for example the eye of 
a bird, and then it is connected to all other 
similar points (eyes of birds). We then draw 
bisection lines of these vectors, and the small¬ 

est area enclosed by the bisection lines is a 
unique unit called the Dirichlet domain. In 
two-dimensional space these domains are 
polygons (Fig. 5-9d), whereas in three-dimen¬ 
sional space they are polyhedra. Note that the 
Dirichlet domain for a two-dimensional pat¬ 
tern usually is not a parallelogram, and that of 
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Fig. 5-12. The geometric plan for Escher’s Black and White Knights as depicted by Dirichlet domains. 

a three-dimensional crystal structure is usu¬ 
ally not a parallelopiped. 

The eyes of the birds (or any other set of 
translationally equivalent points) constitute a 
two-dimensional lattice. Similarly, a three-di¬ 
mensional lattice is a set of points generated 
by three noncoplanar vectors. Classified by 
symmetry, there are seven types of coordinate 
systems. They are often depicted by unit cells 
(see Fig. 5-10). In the nineteenth century, Bra- 
vais studied the symmetries of poiyhedra and 
of lattice points, and he came to the remark¬ 
able conclusion that there are only fourteen 
symmetry types of point lattices. Nowadays, 
we take the fourteen lattices for granted, and 
in many books, the fourteen Bravais lattices 
and their relation to the unit cells are dis¬ 
played together. (There are fourteen Bravais 
lattices and only seven symmetry types of unit 
cells; seven of the unit cells contain more than 
one lattice point.) Therefore, we ask the ques¬ 
tion: What are the units if we divide the crystal 
structures according to the fourteen lattices, 
instead of by unit cell shape? The Dirichlet 
method gives unique shapes, but the difficulty 
is that there are more than fourteen different 
poiyhedra because different axis ratios of the 
same lattice type give rise to Dirichlet do¬ 
mains with various shapes. I shall return to 
this problem later. 

Let us return to two dimensions. Applying 
the Dirichlet technique, I shall illustrate the 
geometric plan for Escher’s Black and White 

Knights, shown in Fig. 5-11. If we choose a 
point along a certain line (equivalent to a glide 

line) on this artwork, we can see that the 
drawing is made up of two types of units, a 
black knight and a white knight. There is just 
one catch, which was pointed out to me by a 
little boy looking over my shoulder when I 
placed the Dirichlet domains over the Black 

and White Knights', if the center of the poly¬ 
gon is an arbitrarily chosen point, then the pat¬ 
terns within the polygon (arrangement of at¬ 
oms in the polyhedron in case of crystal 
structures) may no longer be related (by cry- 
stallograhic and color symmetry). 

Let us return to the very beautiful Archime¬ 
dean truncated octahedron, one of my favorite 
poiyhedra, as the unit for the cubic crystal 
system. This is a system in which the unit cell 
is a cube. There are three Bravais lattices in 
this system. In one case, the “primitive” lat¬ 
tice, the cell does not contain any lattice point 
in the cube, but the vertices are marked by the 
lattice points. In the “body-centered” lattice 
there is a lattice point at each cube center as 
well as at the vertices. In the “face-centered” 
cubic lattice, there is a lattice point in the cen¬ 
ter of each cube face, but none in the center of 
the cube. 

For the body-centered cubic lattice, the 
Dirichlet domain is the Archimedean trun¬ 
cated octahedron. When we used it to repre¬ 
sent the structures of zeolites, we did not em¬ 
phasize the fact that they pack together to fill 
the entire space, leaving no gaps. But they do. 
Figure 5-12 illustrates the packing of these 
semiregular poiyhedra. Suppose we make 
transparent poiyhedra of the same size and 
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Fig. 5-13. Close packing of four “different” types 
(different, perhaps, because of color) of Archime¬ 
dean truncated octahedra in the formation of a face- 
centered lattice. 

O o O o Q o 

Fig. 5-14. A geometric unit of the y-brass crystal 
structures, consisting of inner and outer tetrahedra 
(a and b), an octahedron (c), and a cuboctahedron 
(d). The composite of all these is shown in (e). 

shape, and put a structural feature in each. 
Then we may use these polyhedra to build 
three-dimensional structures, as Escher put 
fish and birds together to make patterns. For 
the discussion of crystal structures, the poly¬ 
hedra are only conceptual units; they repre¬ 
sent clusters of packed atoms, ions, or mole¬ 
cules. A packing of one type of Archimedean 
truncated octahedron gives rise to a cubic 
body-centered lattice, a packing of two types 
according to a specific order gives a primitive 
lattice, and a packing of four types as shown in 
Fig. 5-13 gives a face-centered cubic lattice. If 
we put some configurations of certain symme¬ 
tries into these transparent polyhedra, we can 
build structures having various kinds of sym¬ 
metry compatible with the symmetry of the 
cubic lattice. 

By assuming that we have one, two, or four 
types (due to the enclosed configuration of at¬ 
oms) of units all having the shape of Archime¬ 
dean truncated octahedra, we are able to clas¬ 
sify all cubic space groups, and eventually all 
cubic crystal structures. The details of the 
classification have been published. 

We shall now see some examples of atomic 
arrangements of the cubic crystals. Let us 
look at the atomic arrangement within one of 
these polyhedra, within the structure of one 
geometric unit. This unit comes from the crys¬ 
tal structure of a y brass, an alloy.^ Starting 
from the center of the unit, there are four at¬ 
oms arranged tetrahedrally as outlined in Fig. 
5-14a. Given the symmetry, or point group, 
there should be a limited number of ways to 
build a geometric unit from the center, keep¬ 
ing in mind that atoms in most metallic crys¬ 
tals maintain definite equilibrium distances 
among each other. A beautiful way to add at¬ 
oms to the unit is to place them at each face of 
the existing small tetrahedron, resulting in a 
larger one. This is followed by arranging six 
atoms in an octahedron outside the two tetra¬ 
hedra, and finally arranging twelve atoms in a 
cuboctahedron to complete the unit. The 
model (using spheres as atoms) in Fig. 5-15 
shows how these units are fitted together. In 
one, the two units are slightly separated for 
clarity. It should be pointed out that these 
units stack in a three-dimensional fashion, 
rather than linearly. 
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Fig. 5-15. Packing of the geometric units in y brasses, isolated (left) and close-packed (right). 

All cubic y brasses belong to one of only 
three space groups, and they have one, two, 
and four types of units respectively. The 
atomic arrangements in these units are very 
similar from a purely geometric viewpoint; the 
differences arise because of the elements 
which occupy the vertices of the tetrahedra, 
octahedra, or cuboctahedra. 

Metallic crystals are not the only structures 
which can be described or represented by the 
idea that the units actually have the shape of 
an Archimedean truncated octahedron. Or¬ 
ganic molecules such as hexamethylene¬ 
tetramine, C6H12N4 (see Fig. 5-16), are natural 
units. These units pack in a cubic space group, 
and the Dirichlet domain for the molecule as a 
whole is an Archimedean truncated octahe¬ 
dron. This does not mean that the shape of this 
molecule is that of an Archimedean truncated 
octahedron; molecules do have bumps and 
craters on the surface. The birds and fish, or 
black and white knights in Escher’s drawings, 
are not polygons either, but they do fit to¬ 
gether forming a two-dimensional “crystal” in 
the way polygons do. 

Let us turn to other crystal systems, and at 
this point look at some Dirichlet domains of 

Fig. 5-16. The shape of an organic molecule, hex¬ 
amethylenetetramine. The volume occupied by this 
molecule in its crystal approximates that of an Ar¬ 
chimedean truncated octahedron. 

tetragonal, rhombohedral, and hexagonal lat¬ 
tices.^ Polyhedra for Dirichlet domains of te¬ 
tragonal lattices depend on the shape of the 
unit cell. A tetragonal lattice may be described 
by the lengths of two vectors a and c. Three of 
the four possible shapes of the Dirchlet do¬ 
mains are shown in Fig. 5-17a (c > V2u), 
5-17b (c = V2a) and 5-17c (c < V2u). Actually, 
Fig. 5-17b shows a cubic face-centered lattice. 
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Fig. 5-17. Dirichlet domains of tetragonal (a-c), 

rhombohedral (d and e), and hexagonal (f) lattices. 

a special case of both rhombohedral and te¬ 
tragonal lattices. The fourth shape is the Ar¬ 
chimedean truncated octahedron described 
earlier, where the tetragonal system may be 
metrically the same as that of a body-centered 
cubic lattice. Depending on the rhombohedral 
angle, there are two types of polyhedra. The 
Dirichlet domain for a rhombohedral lattice in 
which the angle is less than 60° is shown in 
Fig. 5-17d, whereas Fig. 5-17e is the Dirichlet 
domain for one whose rhombohedral angle is 
greater than 60°. Of course, the special cases 
when the angle is 60° or 90° are included in the 
cubic system. The Dirichlet domain for a hex¬ 
agonal lattice is the hexagonal prism in Fig. 
5-17f, but the conventional unit cells are of 
course parallelopiped. 

Something becomes apparent when the 
Dirichlet domains of various types of lattice 
are depicted. A three-dimensional point lattice 
is a set of points generated by translations de¬ 
fined by three noncoplanar vectors. It has six 
parameters, three each of angles and magni¬ 
tudes of the vectors. The variations of these 
parameters generate an infinite number of lat¬ 
tices, but they fall into the 14 Bravais symme¬ 
try types. Thus, each of these six parameters 
may vary independently, but the six-dimen¬ 
sional space may be divided into 14 regions, 
within each of which the symmetry of the 
Dirichlet domains is the same. However, there 
is still a variation of the shapes of the polyhe¬ 
dra representing the Dirichlet domains in each 
region. 

The partition of a crystal structure into units 
according to Dirichlet domains is an interest¬ 

ing strategy for their study. However, there 
are many ways to choose the points from 
which the Dirichlet domains are derived. For 
example, the lattice points (which are not 
unique) could be chosen as the centers of at¬ 
oms, or the gravitational centers of molecules. 
A reasonable method should keep all the units 
for a structure the same shape and size; the 
packing patterns of these units should apply to 
perhaps many structures for easy memory. 
Furthermore, the arrangement of atoms or 
molecules in this unit takes advantage of the 
symmetry properties, and all units for a struc¬ 
ture have the same symmetry. Keeping these 
criteria in mind, we may derive the Dirichlet 
domains from points of the highest symmetry 
in a structure and call them geometric units. I 
have been concerned about the ways these ge¬ 
ometric units pack, and the possibility of clas¬ 
sifying crystal structures using geometric units 
and their packing patterns. This concern led 
me to study the space groups. I tried to clas¬ 
sify them according to the packing of geomet¬ 
ric units, since they represent hypothetical 
crystal structures. I termed the study of this 
scheme “geometric properties or geometric 
plans of space groups.” Space groups theoret¬ 
ically classify all crystal structures according 
to their symmetry, and the study of space 
groups for their geometric plans is therefore a 
study of crystal structures for the same. 

Using Dirichlet polyhedra derived from 
sites of highest symmetry of the tetragonal 
crystal system, we may proceed in a similar 
way to those of the cubic space groups to 
work out the geometric plan of the tetragonal 
space groups. The polyhedra used as units 
may vary in shape due to the axial ratio of the 
tetragonal system. The arrangements of units 
are shown using a plane perpendicular to the 
X + y, and x directions respectively (repre¬ 
sented by (110) and (100)) as given in Fig. 5-18. 
The details of classification of these space 
groups have been published in the form of a 
table.’ I note that there are nine types of ar¬ 
rangement for 68 space groups, and the nine 
packing patterns are also given in Fig. 5-18. 

As an illustration, I will choose a series of 
organometallic compounds,^ tetraphenyl de¬ 
rivatives of the group IV elements C, Si, Ge, 
and Pb. The molecules of these compounds 
belong to the same point group, and they oc- 
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Fig. 5-18. Nine packing types of geometric units in the tetragonal crystal system. 

cupy sites of the same symmetry in the space 
group. The molecules are natural geometric 
units. The packing of these molecules in solid 
state is shown in Fig. 5-20. 

After working on the analysis of spatial ar¬ 
rangements in the tetragonal system, we have 
been able to apply the knowledge gained for 
the solution of an interesting tetragonal crystal 
structure, that of anhydrous zinc bromide. 
The geometric units can be seen as cubes or 
large tetrahedra, Zn4Br6Br4/2 (see Fig. 5-19). 
The real structure belongs to a space group 
that is too complicated for theoretical calcula¬ 
tion in the analysis of its infrared spectrum. At 
this point, I realized that these units may be 
packed together in more than one way, as ex¬ 
emplified by illustration in Fig. 5-19, which 
shows two types of stacking related to two 
very common crystal structures, ice and dia¬ 
mond. In ice, the tetrahedron is made up of an 
oxygen atom in the center, and four shared 
hydrogen atoms at the vertices OH4/2, 

whereas in diamond, each tetrahedron repre¬ 
sents a carbon atom, which is connected to 
four others in a tetrahedral fashion. The ice 
structure belongs to a hexagonal lattice, but 
the diamond structure belongs to a cubic one. 
Let us return to the ZnBr2 structure. By a sim¬ 
ple change in the orientation of these large tet- 

Fig. 5-19. The crystal structure of ZnBr2. The geo¬ 

metric unit of this compound consists of a large unit 

with a formula Zn4Br6Br4/2 that can be viewed as a 

large tetrahedron made up of four small ones (a). 

There are many ways to connect tetrahedra, and 

crystal structures may be represented by these con¬ 

nections; (b) ice, (snow), (c) diamond. 

rahedral units, Zn4Br6Br4/2, we manage to re¬ 
duce the complexity of the calculation by 
using another space group, to which the struc¬ 
ture approximates. 

Further variations of packing of tetrahedra 
are indicated in Fig. 5-21. The interconnected 
tetrahedra at three of their vertices form a 
layer 5-2la; the fourth vertex and every three- 
connected point are for interlayer connec¬ 
tions. If another layer of the same type is used 
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Fig. 5-20. Molecular packing of tetraphenyl deriva¬ 

tives of the group IV elements (C, Si, Ge, and Pb). 

The molecule at the center of the diagram is moved 

up by a half period in the direction perpendicular to 

the paper, and because of the orientation difference 

of this molecule with respect to one at the origin, 

the structure belongs to a primitive lattice. 

a be 

Fig. 5-21. Layer packing of interconnected tetrahe- 

dra: (a) a layer of interconnected tetrahedra, (b) a 

double layer, and (c) a triple layer. 

but turned upside-down, then we have a dou¬ 
ble layer 5-2lb. The ice structure is simply a 
back-to-back stacking of these double layers 
on top of each other. However, a third layer 
may be added to the double layer in a fashion 
shown in Fig. 5-21c. By varying the positions 
of interlayer connections, we can stack a se¬ 
quence of any length. This aspect of geometry 
is richly demonstrated in the natural crystal 
structures. 

The foregoing discussion about crystal 
structures indicates that I agree with Plato’s 
argument that all matter is the result of combi¬ 

nations and permutations of a few basic {poly¬ 

hedral) units. Nowadays, we know a lot more 
about crystal structures than Plato did. My as¬ 
sociation of these structures with polyhedra is 
partly for the ease of recognition and partly for 
providing a minimum inventory to get the 
maximum diversity in application. The intri¬ 
cate shapes of crystals stimulate us to study 
geometry, but geometry is the most important 
tool for the understanding and systematic clas¬ 
sification of crystal structures. 

My heartbeat increases whenever I see art 
by M. C. Escher. I have tried to find out how 
some of his exciting works were created. Es¬ 
cher has fantasized geometry and symmetry 
into visually stimulating forms. It can also be 
said that crystal structures are the artwork of 
God or nature. I am as curious about the for¬ 
mation of crystal structures, and about the ge¬ 
ometric design of those structures, as I am 
about Escher’s art. 

In conclusion, I am excited to see so many 
people enthusiastically making contributions 
in terms of models, in terms of educational 
materials, and in terms of teaching me how to 
understand and appreciate geometric units. 
Your effort has made it a little easier for me to 
understand the crystal structures or natural 
three-dimensional patterns in terms of their 
geometric plan, something that I wanted to 
comprehend. 
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Polyhedra: Surfaces or Solids? 

Arthur L. Loeb 

It is a great pleasure to note how the network 
of polyhedrists is growing. Many of us started 
in isolation and others wondered what it was 
all about, this matter of polyhedra. Most peo¬ 
ple still wonder, but at least we are not so 
singular anymore; we seem to be becoming 
connected. 

To begin with, what is a polyhedron? Since 
I am especially interested in the relationship 
between concepts and images, I decided to ap¬ 
proach the subject from that point of view and 
to try to relate mathematical concepts and im¬ 
ages. A polyhedron is an image of many, many 
different concepts, some of them inconsistent 
with each other. 

In Fig. 6-1 you see our friend Escher, whose 
spirit seems to hover over the Shaping Space 
Conference. He is contemplating the question 
of the apparent solid on the left and, on the 

right, the surface. When we talked about this 
print, he often said that it is very curious, it is 
really the reflectivity of a surface that matters. 
Even when material is transparent, some of 
the light is bounced off; some of it is transmit¬ 
ted, but it is modified when it is transmitted. 
So we really cannot tell unequivocally what 
goes on inside. The one on the right is totally 
impenetrable. Everything bounces off the 
white surface. We cannot tell anything about 
the inside. Figures 6-2 and 6-3 show that Es¬ 
cher, who as we know was very much con¬ 
cerned with plane tessellations, was very 
much aware of the difference between tessel- 
lating a plane and tessellating a sphere; we 
shall return to this later. 

Escher was enormously skilled as a graphic 
artist and his fame rose considerably in the 
time of conceptual art. He was truly a concep- 

Fig. 6-1. M. C. Escher contemplating the apparent © M. C. Escher Heirs c/o Cordon Art - Baarn - 

solid on the left and the surface on the right. Three Holland. 

Spheres II. Lithograph. M. C. Escher, April 1946. 
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Fig. 6-2. Sphere with Angels and Devils. Stained maple. M. C. Escher, 1941. © M. C. Escher heirs c/o 
Cordon Art - Baarn - Holland. 

Fig. 6-3. Angels and Devils. Pencil, India ink, crayon, and guache. M. C. Escher, 1941. © M. C. Escher 

Heirs c/o Cordon Art - Baarn - Holland. 
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tual artist, but unlike a good many conceptual 
artists who had essentially become minimal¬ 
ists and had no more physical substance to 
their art, Escher had the skill to express his 
ideas and his concepts visually. What Escher 
never did (and he said he could not) was to 
relate the visual concepts to equations. Never¬ 
theless, we have here a projection of a concept 
in a language that is not mathematical in the 
sense of verbal formulas of sequences of sym¬ 
bols, but nevertheless is very important as a 
visual language. 

The surface is most important. The two 
ways I am going to try to approach polyhedra 
have a certain duality in the very broadest 
sense (though not in the strict mathematical 
sense). On the one hand there is the point of 
view of a set of connected items of different 
dimensionalities, and on the other that of a set 
of very rigorously defined points. The first 
gives us the connectivity point of view, the 
second the symmetry point of view. We can 
inscribe vertices of zero dimension, edges of 
single dimension, faces of two dimensions, on 
a surface. The edges then do not have to be 
straight and the faces do not have to be flat; 
that of course means we leave the domain of 
defining incircles and outcircles. We simply 
talk about networks on a surface. Then it mat¬ 
ters very much how this surface is connected, 
whether we have a sphere or the analog to a 
sphere, or whether we have a toroid such as 
the hat that has been designed for this confer¬ 
ence and that was worn in Florence many cen¬ 
turies ago (see Chapter 1). We call a sphere 
singly connected because it has no hole, a 
doughnut doubly connected because it has a 
hole. If one travels inside a doughnut, and 
wants to travel past its hole, one must choose 
one or the other of two distinct kinds of paths 
in order to avoid the hole. Inside a sphere one 
can travel between two points along an infinity 
of different routes, and these routes may in 
principle differ one from the next one by an 
infinitesimal amount. Inside a doughnut there 
is also an infinite number of routes between 
two points, but they divide into two distinct 
groups, those going around the hole on one 
side or on the other. It is like driving from 
Northampton to Cambridge, Massachusetts: 
there are many ways, but one must go either 

north or south of the Quabbin Reservoir. Simi¬ 
larly, a pretzel, having three holes, is quadru- 
ply connected. 

One of my students, Beth Saidel, observing 
that connectivity relationships are the same 
for all singly connected surfaces regardless of 
their exact shapes, decided to use the Ukrain¬ 
ian technique of Easter-egg painting to apply 
some tessellations which we had discussed 
(see Fig. 6-4). 

Consider a finite number of vertices V on a 
surface. Connect them by a number of lines, 
called edges. To be exact, an edge is a curve 
(not necessarily a straight line) which joins 
two vertices, but does not contain any vertex 
except at either end. No edges cross each 
other: their crossing would imply a vertex at 
the intersection. The number of edges is called 
E. A region of the surface surrounded by a 
closed circuit of alternating edges and verti¬ 
ces, which does not contain either edges or 
vertices except on its boundary, is called a 
face. The number of faces on the surface is 
called F. For a surface of connectivity g 

V~E + F=2-2g. (6.1) 

It is amazing how much practical information 
can be derived from this equation. For our 
purposes it will be convenient to translate it 
into an expression relating valencies. If we 
call r the number of edges coming into any one 
vertex and n the number of edges (hence also 
the number of vertices) surrounding any one 
face, then we can add up the total number of 
edges in two different ways. One way is to find 
the number of vertices, Vr, having valency r. 
The total number of edges coming into a ver¬ 
tex having valency r equals rV,. If we then 
sum over all possible values of r we would get, 
not the total number of edges, but twice that 
amount, because every edge terminates at two 
vertices, hence would have been counted 
twice. Therefore 

2E=^rV,, (6.2) 
r 

and analogously 

2E=^nF„. (6.3) 
n 
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Fig. 6-4. Tessellations in the style of Ukrainian Eas- sual Arts, Harvard University. Reproduced with 

ter-egg painting, by Beth Saidel. From the Teach- permission of the Curator, 

ing Collection in the Carpenter Center for the Vi- 

We can define weighted averages for both r 

and n: 

ray = ' y ; (6-4) 

S nFn 

■ A7av = (6.5) 

Dividing Eq. (6.1) by IE and then substituting 
Eqs. (6.2)-(6.5) into Eq. (6.1) produces' 

1 1112^ 

rav ^ nav 2^ E E- ^ ^ 

Both Eq. (6.1) and (6.6) will prove useful. To 
begin with, consider the tiling of a singly con¬ 
nected surface {g = 0) with nothing but penta¬ 
gons and hexagons, three tiles meeting at each 
vertex; in that case r = 3. Therefore 2E = 3V. 

Moreover, F = Fs + F^. Hence Eq. (6.1) be¬ 
comes 

F5 + F^ = 2 + —. (6.7) 

Counting edges by summing over all hexagons 
and pentagons, and remembering that every 
edge is shared by two faces: 

5Fs + 6F(, = 2E. (6.8) 

Solving Eqs. (6.7) and (6.8) by eliminating 
Fe, we find that we automatically eliminate E 

as well and obtain F5 = 12. This is a startling 
result: it tells us, for example, that a soccer 
ball must have exactly twelve pentagonal 
(usually black) faces. We also find that there 
are berries having exactly twelve pentagonal 
faces in the company of hexagonal faces. It 
has been shown^ that the number of hexagons 
can be any positive integer except 1. These 
results are noncommittal about the number of 
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Table 6-1. Solutions of Eq. (6.6) for regular 

structures. 

r n E Comments 

2 n n A polygon having n sides 

r 2 r A pumpkin-like structure having 
r diagonal faces join at each of 
two points 

3 3 6 Tetrahedron 

3 4 12 Cube 
4 3 12 Octahedron 

3 5 30 Pentagonal dodecahedron 

5 3 30 Icosahedron 

3 6 00 Hexagonal tiling of the plane 

6 3 00 Triangular tiling of the plane 

4 4 00 Square tiling of the plane 

Source: This table and several of the line drawings in this 
chapter are from Arthur L. Loeb, Space Structures: Their 
Harmony and Counterpoint (Reading, Mass. Addison- 
Wesley, Advanced Book Program, 1976). 

hexagons, but emphatically limit the number 
of pentagons to twelve. 

Two structures are called duals to each 
other if to each vertex of one there corre¬ 
sponds a face of the other, and vice versa. The 
dual of the pentagon-hexagon tessellation is 
dealt with by interchanging V and F, and n and 
r. The duals therefore must have n = 3, hence 
triangular faces. If a Fuller dome were built 
extending all the way around a sphere instead 
of being anchored in the soil, it would have 
exactly twelve 5-valent vertices, together with 
a large number of hexagons that determines 
the size of the dome. Accordingly, the occur¬ 
rence of the number 12 in connection with ber¬ 
ries, domes, and soccer balls is not a coinci¬ 
dence, but is in fact a fundamental property of 
the space in which we live, and a constraint 
with which we need to be familiar if we desire 
to shape that space. 

Structures having all vertices equivalent to 
each other, as well as all faces equivalent to 
each other, are called regular (see Chapter 3). 
For such structures r^^ and are integers, as 
of course is E. For regular structures Eq. (6.6) 
has the solutions given in Table 6.1. No other 
solutions are possible; this table exhaustively 
enumerates all regular structures. Neither r 

nor n can exceed 6 except when n, respec¬ 
tively r, equals 2. The cases n = 2 (digonal 
faces) are very real once we accept the possi¬ 
bility of curved edges. There are many objects 

in nature which are digonal polyhedra (for in¬ 
stance pumpkins, which have r digonal faces 
meeting at the stem and at the bottom), and 
there are many pods which are digonal trihe- 
dra. Five of the solutions correspond to the 
Platonic solids. Interesting are the three solu¬ 
tions having infinitely many edges. If the faces 
are to be finite in area, these solution can only 
be realized on a sphere having infinite radius. 
Such a sphere would be experienced as a 
plane, much as we experience the surface of 
our globe in our immediate environment as 
flat. Note that there is no solution having n 

equal to five and E infinite; the implication is 
that there can be no regular pentagonal tessel¬ 
lation of the Euclidean plane. 

Note in Table 6-1 that interchange of n and r 

transforms a regular structure into its dual; the 
symmetry of Eq. (6.6) in r and n implies that, if 
a structure represents a solution of Eq. (6.6), 
then so will its dual. 

For doubly connected surfaces {g = 1), we 
derive from Eq. (6.1): 

r av Uav ^ 

When Eqs. (6.6) and (6.9) are compared, it is 
observed that the solutions to Eq. (6.9) are 
just those of Eq. (6.6) with E equal to infinity. 
This means that the toroid (the Florentine 
hat), for example, may be tessellated just like 
the plane, which is not true of a sphere having 
a finite radius. 

Besides the regular structures there are the 
semiregular structures and their duals, which 
have either all faces mutually equivalent or all 
vertices mutually equivalent, but not both. It 
has been shown^ that Eq. (6.6) still yields an 
enumerable set of solutions when either r^^ or 
Mav is an integer, which is characteristic of 
these structures. Once more we find a number 
of solutions corresponding to infinitely many 
edges, which again may be interpreted as 
plane tessellations. It is remarkable that so 
many of the structures shown in this book cor¬ 
respond to the solutions of the remarkably 
simple Eq. (6.6), and can be so listed and clas¬ 
sified. 

These structures may all be represented on 
a planar surface by means of a Schlegel dia¬ 
gram. You can think of Schlegel diagrams vis- 
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ually; if you hold a polyhedron so close to 
your face that one of its faces frames the entire 
polyhedron so that you see all the edges be¬ 
sides that frame just receding inside that 
frame, then you have a Schlegel diagram. An¬ 
other way of looking at a Schlegel diagram is 
this. You can think of, say, a truncated octa¬ 
hedron beautifully inscribed on a spherical 
blackboard and then you suddenly realize that 
it didn’t matter where you put the vertices and 
edges, it was just how they were connected. 
You could then think of this as a peculiar kind 
of string bag—you could slide everything over 
to one side of your spherical blackboard, con¬ 
tracting all edges into a very tiny figure. If you 
realize that our whole earth is really a gigantic 
sphere of very large radius, you could draw a 
gigantic truncated octahedron on the surface 
of the earth, and shrink it into a portion of that 
gigantic sphere which would just happen to be 
a blackboard. Then you would have a Schlegel 
diagram on your blackboard. Since n and r are 
only the valencies of the vertices and faces, it 
doesn’t matter where these elements are lo¬ 
cated; we can say from our point of view of 
connectivity that a Schlegel diagram is en¬ 
tirely equivalent to the polyhedron itself. 
There is no difference because we don’t care 
where the vertices are. And so I will show you 
a number of solutions of Eq. (6.6) in the form 
of Schlegel diagrams. 

In Fig. 6-5, on the left, is the Schlegel dia¬ 
gram of a square antiprism: a square face has 
become extremely extended and frames the 
rest. All the other connections are there and 
you could almost solve these equations graph¬ 
ically just by taking a point, taking the proper 
valency, putting the lines in and then extend¬ 
ing those lines until a face is created; interest¬ 
ingly enough, by following that procedure and 
not even thinking about what the polyhedron 
looks like, you can get your solutions directly 
as Schlegel diagrams. Now the question is: 
What about the dual? The polygon that frames 
the whole Schlegel diagram really represents a 
face corresponding to everything else in the 
plane—the entire universe in the plane. The 
reason? Remember we slid the polyhedron 
over to one side. But all the rest of the huge 
sphere is still a face, and if we now take a dual 
graphically, we have to put a vertex in each 
face (Fig. 6-5, right). Emanating from that ver- 

Fig. 6-5. Schlegel diagram of a square antiprism 

(left) and of its dual (right). 

tex must be the same number of edges as sur¬ 
round the original face, and each edge has to 
cross one of its companions. Then what hap¬ 
pens when we get to the outer polygon? We 
have a whole cycle of faces just inside it, each 
of them in dualizing becoming a vertex which 
then has to be connected to a vertex corre¬ 
sponding to that outer face. Notice that what I 
have done is to put arrows across the outer 
framing. Those arrows indicate that some¬ 
where in the universe there is a vertex way out 
at the other pole of our infinitely large sphere 
and that is where the arrows will connect. I 
could have put it off center within this figure 
and connected everything, but it makes for a 
very unattractive, very ugly unsymmetrical 
kind of dual Schlegel diagram. I call these dia¬ 
grams dual Schlegel diagrams because they 
are not Schlegel diagrams; they do not have 
everything framed by an outside face. We 
have in the dual Schlegel diagram a represen¬ 
tation in which we have a vertex, which repre¬ 
sents a real vertex, outside of that frame. But 
it is perfectly easy to deal with those; you of¬ 
ten can visualize much better what the dual 
polyhedron looks like by imagining the poly¬ 
hedron flattened out, and the faces which meet 
at the “backside” vertex folded out. 

Figure 6-6 shows a Schlegel diagram of a 
snub figure. It is the same one that Professor 
Coxeter showed (Chapter 3), in which he cal¬ 
culated the coordinates when the square was 
rotated. In this case, I happened to orient it so 
that the outer square is the rotated one and 
you see the whole tier of triangles surrounding 
each of those squares. So this one is the snub 
cube, one of the solutions of that Diophantine 
equation. In Fig. 6-7 you see it again in the 
upper right, but here I put it in the company of 
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Fig. 6-6. Schlegel diagram of a snub cube. 

c 

Fig. 6-7. (a) Snub tessellation of triangles and hexa¬ 

gons, having 5-valent vertices, (b) Snub cube, (c) 

Snub dodecahedron. 

Fig. 6-8. Schlegel diagrams of (left) a pentagonal 

icositetrahedron (dual of the snub cube) and {right) 

a pentagonal hexacontahedron (dual of the snub do¬ 

decahedron). 

Fig. 6-9. Schlegel diagram of a stellated icosahe¬ 

dron. 

its family having increasing numbers of edges, 
so corresponding to the snub cube there is a 
snub dodecahedron with still a finite but much 
larger number of edges, and finally the plane 
tessellation. All of these figures have in com¬ 
mon their chirality, a very important property. 
This means they exist in forms that are distinct 
from their mirror images. So I could have 
drawn either one or I could have flipped the 
figure and then we would have had the other 
form of it. In Fig. 6-8 you see that I have taken 
the duals of the snub cube and snub dodecahe¬ 
dron in the form of the dual Schlegel diagrams. 

Figure 6-9 is a stellated icosahedron and 
again that does very well in its dual Schlegel 
representation; in the center you can see the 
structure very well, but like a polar projection 
it is distorted toward the outside. But if you 
want to build these figures, these dual Schlegel 
diagrams help a lot. You get your actual poly¬ 
hedron from the Schlegel representation by 
lifting up the arrows radiating out to infinity 
and bringing them together. 

Figure 6-10 shows a pentagonal tessellation 
of the sphere. This is a model made by Brett 
Tomlinson. Next in the family is the limiting 
pentagonal tessellation (Fig. 6-11) in which E 

equals infinity. Incidentally, as we saw previ¬ 
ously, there can be no regular pentagonal tes¬ 
sellation of the plane. But here we have a 
semiregular pentagonal tessellation and we 
have valencies in this case of 6 and of 3. You 
can tell fairly easily that this is also a figure 
that has chirality. What you have to do is 



6. Polyhedra: Surfaces or Solids? 113 

Fig. 6-10. A model of a pentagonal tessellation of a 

sphere, by Brett Tomlinson. From the Teaching 

Collection of the Carpenter Center for the Visual 

Fig. 6-11. Pentagonal tessellation of the plane with 

«i = 4, ^2 1, ''I = 3, r2 = 6. 

make a distinction, not only between the verti¬ 
ces having different valencies, but also be¬ 
tween different 3-valent vertices. You find 
that some of these 3-valent vertices are con¬ 
nected to a 6-valent as well as to two 3-valent 
vertices, whereas others are connected to 3- 
valent vertices only. Those vertices are defi¬ 
nitely distinct. Their contexts are different 
even though their valencies are the same. And 
so as we go around the pentagon, you will 
notice that we have five vertices and we have 
to make a choice, whether we are going to put 
one of each type of 3-valent vertices on the 
right-hand side or on the left-hand side. That 
means that we are forced to create a tessella¬ 
tion that has chirality, because we have these 
different types to distribute. That choice has 
to be made and depending on how we make it, 
we get this tessellation or its mirror image. 
Figure 6-12 shows two of the pentagonal tes¬ 
sellations about which Doris Schattschneider 

Arts, Harvard University. Reproduced with per¬ 

mission of the Curator. 

plane, each with n\ = 3, rii = 1, rj = 3, ^2 = 4. 

is an expert. You see again that we are dealing 
with a family of E increasing toward infinity. 
Polyhedra and tessellations are very closely 
related. 

Now I am going to take the symmetry point 
of view. That is a totally different concept 
which again leads to the images of a polyhe¬ 
dron. We have already heard a great deal 
about symmetry. I want to talk a bit about how 
we can tell symmetry to a computer; this is 
becoming very important. We have to face the 
fact that computers do not easily visualize. 
And we should not try to teach the computers 
to visualize in the way that we visualize. We 
should develop languages; actually this is how 
I started to get into this field 25 years ago, 
when I tried to develop a language for the de¬ 
scription of crystal structures. We probably 
should modify our language somewhat so that 
communication with the computer becomes 
more convenient. 
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Fig. 6-13. A collection of wooden polyhedra, each 

with the symmetry of a cube. Each polyhedron has 

been oriented with a threefold axis vertical. 

Let us first think about the board in Fig. 
6-13. You see on this board a number of poly¬ 
hedra, all of which have exactly the same sym¬ 
metry: they all have the symmetry of a cube. 
The cube is placed in a rather interesting ori¬ 
entation, having its threefold axis vertical; 
that is done on purpose. Each polyhedron has 
been put there with a threefold axis vertical. 
We now want to think about the question: If 
they all have the same symmetry, then how 
are we going to distinguish among them? 

One way of distinguishing is by the process 
of truncation. When we talk about this we can 
think of ordinary knives slicing pieces of 
cheese. But it is very difficult to tell a com¬ 
puter how to slice cheese. It just does not 
know about slicing cheese and I don’t think it 
is too useful to teach it to do this. So it would 
be nice if we could now get a different point of 
view of these truncations. I am going to look 

at the coordinates of these vertices. It is these 
configurations, made by the atoms and ions in 
the crystals, that give us the so called coordi¬ 
nation polyhedra. 

Suppose that we have a point whose coordi¬ 
nates are x, y, and z. If this point is part of a 
structure having threefold rotational symme¬ 
try, then there must be two other points whose 
coordinates are cyclic permutations of x, y, 
and z; and which are related to the point (xyz) 
by threefold rotational symmetry. The three 
points form the vertices of an equilateral trian¬ 
gle whose coordinates are, respectively: xyz, 
yzx, and zxy. 

Cubic symmetry moreover implies mirrors 
diagonally through the cartesian axes, hence 
an additional triplet whose coordinates are 
zyx, xzy, and yxz. Reflection of these six 
points in each of the coordinate planes pro¬ 
duces 48 points whose coordinates are those 

Table 6-2. Special cases in which the symmetry elements of a cube do not produce 48 

distinct vertices. 

Coordinates of 

generating point 

Special 

condition 

Number of 

vertices Polyhedron generated Figure 

xyz None 48 Greater rhombicuboctahedron 6.14 

xxy, y > X X = y 24 Lesser rhombicuboctahedron 6.15 
xyO z = 0 24 Truncated octahedron 6.16 
xxy, y < X y = z 24 Truncated cube 6.17 
xxO II II o

 

12 Cuboctahedron 6.18 
XXX II li 8 Cube 6.19 
xOO y = z = 0 6 Octahedron 6.20 
000 X = y = z = 0 1 A single point 
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of the above six combined with the eight pos¬ 
sible combinations of plus and minus. These 
48 points constitute the vertices of a greater 
rhombicuboctahedron (Fig. 6-14). 

There are special circumstances under 
which the symmetry elements of the cube do 
not generate a full complement of 48 distinct 
vertices. This happens when x, y, or z have 
special values which cause these vertices to lie 
precisely on a symmetry element. For in¬ 
stance, a point lying on one of the threefold 
axes would have x = y = z, with the result 
that the six points whose coordinates were all 
the permutations of x, y, and z have fused into 
a single point, which, when reflected into the 
cartesian planes, produces merely the eight 
vertices of a cube. All special cases are listed 
in Table 6-2 together with the names of the 
polyhedra whose vertices are defined by the 
resulting special combinations of coordinates. 
These polyhedra are shown in Figs. 6-14-6-20. 
Here we call the initial point on which the cu¬ 
bic symmetry elements act to generate the en¬ 
tire point complex the “generating point.” 

The computer can very quickly perform all 
the permutations inherent in the cubic symme¬ 
try, regardless of the specific values of x, y, 
and z, and then determine how many distinct 
points are generated. Table 6-1 translates that 
number into the name of the appropriate poly¬ 
hedron; the computer recognizes the polyhe¬ 
dron on the basis of the number of distinct 
vertices, a task at which it is much more adept 
than that of slicing cheese. 

Table 6-2 shows three different polyhedra 
having 24 vertices. It is easy enough for the 
computer to distinguish them: if one of the 
coordinates is zero, then the polyhedron is a 
truncated octahedron, otherwise it is either a 
lesser rhombicuboctahedron or a truncated 
cube, depending on the relative magnitudes of 
u and w. This latter distinction appeared to me 
rather subtle for two apparently so different 
polyhedra and hence prompted me to compare 
the two. As a result, I came upon a previously 
unrecognized relationship between the two 
forms. This relationship is based on the cir¬ 
cuits traced by the edges of either polyhedron 
on a (spherical) surface on which it may be 
projected. The lesser rhombicuboctahedron 
has triangular, rectangular, and square faces, 
and truncated cube triangular and octagonal 

Fig. 6-15. Lesser rhombicuboctahedron. 

Fig. 6-16. Truncated octahedron. 

Fig. 6-17. Truncated cube. 



Fig. 6-18. Cuboctahedron. 
Fig. 6-19. Cube. 

oox 

Fig. 6-20. Octahedron. 

Fig. 6-21 Model of truncated cube, designed and 

constructed by Jonathan Lesserson. Photograph by 

C. Todd Stuart. From the Teaching Collection of 

the Carpenter Center for the Visual Arts, Harvard 

University. Reproduced with permission of the Cu¬ 

rator. 

Fig. 6-22. Model of lesser rhombicuboctahedron, 

designed and constructed by Jonathan Lesserson. 

Photograph by C. Todd Stuart. From the Teaching 

Collection of the Carpenter Center for the Visual 

Arts, Harvard University. Reproduced with per¬ 

mission of the Curator. 
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faces. If, however, we look at a square face on 
the former, we note that its four vertices are 
also vertices of four triangles whose bases 
combine with four additional edges to form an 
octahedron. If we take the eight triangular 
faces on either form and flip them upside 
down, changing the relationship between u 

and w, then we interchange the squares and 
octagons, and transform one form into each 
other. A model of this transformation has been 
built, confirming the close relationship be¬ 
tween the two forms (Figs. 6-21 and 6-22). 

Notes 

' The division of both sides of Eq. (6-1) by the 

summation is based on the assumption that rav and 

rtav remain finite even in the limit of infinite number 

of vertices and edges. The detailed justification of 

this assumption is beyond the scope of this paper, 

but it is limited to surfaces in which the density of 

vertices and edges (averaged over a region whose 

area is large compared to that of a face) is reason¬ 

ably uniform throughout the structure. Obviously 

this assumption is valid for periodically repeating 

structures. 

^ B. Griinbaum and T. S. Motzkin, “The Number 

of Hexagons and the Simplicity of Geodesics on 

Certain Polyhedra,” Canadian Journal of Mathe¬ 

matics 15 (1963);744-51. 

^ Arthur L. Loeb, Space Structures: Their Har¬ 

mony and Counterpoint (Reading, Mass.: Addison- 

Wesley, Advanced Book Program, 1976). 
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Spatial Perception and Creativity 

Janos Baracs 

I come from Montreal, where I belong to a 
group called the Structural Topology Re¬ 
search Group. “Structural topology” is an of¬ 
ten criticized term, but we are stuck with it. 

In their paper Duality of Polyhedra (this 
book. Chapter 13), Branko Griinbaum and 
Geoffrey Shephard talk about misconceptions 
that may arise when amateurs get mixed up in 
mathematics; they named the result “mathe¬ 
matical folklore.” I like this label and I admit 
that I am a folklorist. 

Now I will prove this point for you: I will 
discuss spatial perception and creativity. This 
term suggests some competence in the fields 
of psychology, philosophy, logic, and so forth, 
and I have none. But my experience has led to 
some success in understanding the creative 
process in morphology. We study this through 
a sequence of actions that are translated in 
geometric terms. 

Let me start by defining the field with which 
we are dealing. When we talk about spatial 
perception we can talk about the physical, so¬ 
cial, and other types of spaces. We narrow our 
interest to the geometrical space, in the struc¬ 
tural and formal sense. By structural percep¬ 
tion, I mean the combinatorial study of the 
topological, projective, affine, and metrical 
properties of configurations, of spatial models. 
In formal perception, we are interested in 
quantitative properties, such as ratios, propor¬ 
tions, measures, and coordinates. This part of 
the field is very interesting and involves work¬ 
ing with sculptors and architects. In this chap¬ 
ter, however, we consider only about struc¬ 
tural perception. 

Figure 7-1 is a diagram describing the three 
major, distinct phases that should occur, when 
we start with the exposure to a spatial model 

and end with the perception of the spatial 
model. These phases are the creation of an 
image, the imagery, and the imagination. 

Studying the first phase, required very little. I 
asked an ophthalmologist to help me find out 
whether there are people who have some defi¬ 
ciencies in stereoscopic vision. He gave me a 
very simple tool, a little booklet with polariz¬ 
ing glasses. With this instrument, I was able to 
code everybody’s stereoscopic vision. I gave 
the test to students, to colleagues, to every¬ 
body whom I could find. I found that an ex¬ 
tremely small percentage of people have defi¬ 
ciencies in stereoscopic vision.* So the 
problem is not that some of us have difficulties 
in creating images. 

The next two phases are imagery and imagi¬ 

nation. Imagery is a phase of comprehension, 
of understanding space. The last phase, imagi¬ 
nation, is the process of intervention, which is 
the creative process or, in our profession, the 
design. 

For many years I have been teaching 
courses like descriptive geometry and struc¬ 
tural topology, and I have also worked with 
architects and sculptors. Eventually—I think 
it is a sign of age—one starts to analyze the 
mental process. The diagram in Fig. 7-1 is a 
result of such an analysis. I divided the second 
phase, imagery, into three actions, and the last 
phase, imagination, also into three actions. I 
will go through a simple form in space with 
you and show at each step what I am propos¬ 
ing. We have six clearly defined geometrical 
actions. They are visualization, structuration. 

* Note: R. Buckminster Fuller and the Series Edi¬ 
tor of this book, A. L. Loeb, have been in this ex¬ 
tremely srnall group having such visual deficiency. 
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Fig. 7-1. Three phases: the creation of an image, the imagery, and the imagination. 

Fig. 7-2. Janos Baracs demonstrating a model of a polyhedron with movable vertices in his lecture at the 

Shaping Space Conference. Photograph by Stan Sherer. 

transfiguration, determination, classification, 

and application. Next to the actions I have 
written those terms which we call skills or ap¬ 
titudes. The actions to be performed are 
linked to these aptitudes. What we have been 
trying to do in the last two or three years is to 

devise exercises in order to introduce people, 
young and old, to these skills. 

The model shown in Fig. 7-2 may not be as 
attractive as others at this conference, but it 
does something that other models do not do. I 
don’t want to present the shape in a frozen. 
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Fig. 7-3. Matrix of representations of a spatial model. 

rigid form with particular metric properties; I 
want you to view it as I slide the vertices as a 
movable object which I can continuously 
transform. I can change lengths and angles at 
will, I can change symmetries, I can study 
many different properties. 

If you can create an imagery which is mov¬ 
able, transformable, which you can manipu¬ 
late, that is the best start for imagination and 
creation. This is the beginning of the voyage, 
an excursion in space. The model is a particu¬ 
lar combinatorial structure composed of six 
vertices, nine edges, and five faces, and I will 
subject it to different motions. 

Before describing the six actions, I should 
clarify the meaning of “spatial model.” Figure 
7.3 is a matrix of representations of a spatial 
model. We may use a topological model, a 
projective model, an affine model, or a metric 
model. Each model exhibits only those prop¬ 
erties which are conserved during the proper 
transformations in a particular phase. These 
are the modes of representation. The media of 
representation may be physical (like the model 
in Fig. 7-2), linguistic (a verbal or written de¬ 
scription), geometric (mapping or different 
types of projections) and finally algebraic (ma¬ 
trices or lattices). It is worth mentioning my 
surprise when I noticed in my experiments the 
link between linguistic abilities and the apti¬ 

tude of spatial perception; students with lim¬ 
ited verbal skills also proved to be handi¬ 
capped in creating geometric imagery! We 
shall return to this representation matrix when 
we discuss action 3: transfiguration. 

And now let us go on with the description of 
the six actions listed in Fig. 7-1. 

Action 1. The first action is visualization (Fig. 
7-4). There are two distinct steps because in 
architecture you are either “outside” or “in¬ 
side.” If you are outside you have to walk 
around the object to receive a complete image, 
while if you are inside you have to turn 
around, unless you have 360° vision. In both 
cases, you have to integrate partial images. 
There are various simple tests and exercises to 
show that this integration is not a simple pro¬ 
cess. In a cubic space the process is well exer¬ 
cised, but we may not be living in cubes for the 
rest of our lives. 

The next step is to memorize images. If we 
cannot store a mental image of a seen object, 
then I think we are stuck. This can be tested 
easily. (People with excellent memories some¬ 
times fail, while others who have very poor 
memories can be excellent here.) In the third 
step we are looking for composite images. For 
instance in Kepler’s drawing, the icosahedron 
was shown as a pentagonal antiprism with two 
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Fig. 7-4. Action 1; Visualization. 

2, Structuration (AbstractionJ) 

Fig. 7-5. Action 2: Structuration. 

pentagonal pyramids; this is a composed im¬ 
age to help you memorize the structure. This 
completes the first action. 

Action 2. The second action is structuration 

(Fig. 7-5). Here we want to study the topologi¬ 
cal, projective, and affine structures of the ob¬ 
ject. Remember that we do not measure in this 
phase, we do not care about angles or dis¬ 
tances, we do not study symmetries. 

As a first step, we recognize and classify 
incidences. In the second step, we integrate 
these incidences in a combinatorial structure, 
in the topological, projective, and affine 
modes. The third step is a synthesis of the two 
completed actions: visualization and structur¬ 
ation. We should now possess a geometric im¬ 
agery of the spatial model in the topological, 
projective, and affine modes. 
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Fig. 7-6. Action 3: Transfiguration. 

Action 3. Our next action is transfiguration 

(Fig. 7-6), an apprenticeship to communica¬ 
tion. In the first step we are using the repre¬ 
sentation matrix of Fig. 7.3. A spatial model in 
a given mode and medium will be transferred 
into another (or the same) mode and medium. 
For instance we may ask to prepare the per¬ 
spective drawing (projective mode, geometric 
medium) of a triangular prism (affine mode, 
linguistic medium). Or we may start with an 
incidence matrix (topological mode, algebraic 
medium) and decide to produce the graph of 
the polyhedron (topological mode, geometric 
medium). Essentially, we decide on a method 
or representation of a given model, taking into 
account the purpose of the representation and 
the type of properties we wish to exhibit. 

The second step is codification (standard or 
created for a particular task) with a legend that 
allows our representation to be read by others. 
The third and final step is the prepared repre¬ 
sentation. This passage from our mode and 
medium to another mode and medium is more 
than mere communication; it is an essential 
process in order to perceive the model itself. 

Action 4. Action 4 is determination (Fig. 7-7). 
The problem is rooted in combinatorial geom¬ 
etry and linear algebra. The example pre¬ 

sented here is for metric determination; the 
same action, however, can be equally applied 
for projective or affine properties. 

The first step is to enumerate the (metric) 
invariants of the spatial model. As you can 
see, the seven types of invariants (distances 
and angles) result in 148 pieces of information 
in the case of the truncated tetrahedron. 

Now we need to know the least number of 
invariants that uniquely determine the polyhe¬ 
dron in space. If we exclude the Euclidean 
motions (six degrees of freedom), we need ex¬ 
actly nine invariants (this number, Q, is equal 
to the number of edges in the case of a spheri¬ 
cal polyhedron). The number of necessary in¬ 
variants is reduced if we impose a symmetry 
group on the polyhedron. For instance, we 
have the choice of one invariant only, if we 
wish the truncated tetrahedron to be realized 
as a semiregular triangular prism. 

Going back to our general position, the 
choice of nine invariants out of 148 elements is 
a terrific number (7.32 x 10*^). It is our duty in 
the third step to select a combination whose 
elements are linearly independent. This selec¬ 
tion was done intuitively (Fig. 7.7, section 4c) 
in our example. Thus determination is an inte¬ 
gral part of the perception process and also an 
important practical tool to design and to real¬ 
ize (to construct). 



7. Spatial Perception and Creativity 123 

Fig. 7-7. Action 4: Determination. 
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Fig. 7-8. Action 5: Classification. 

Action 5. Classification is the fifth action. We 
now have reached a point in our actions where 
we are able to classify the available options of 
our model into multiple groupings (Fig. 7-8). 
In the first step we gave as examples topologi¬ 
cal, projective, affine, and metric groupings. 
The derivation of the combinatorial types (af¬ 
fine in this example) is shown in the second 
step, where the option of parallelism is ex¬ 
plored. 

The third step is symmetrization or regular¬ 
ization. Shown in the figure is the semiregular 
triangular prism and all its symmetry sub¬ 
groups. Faces, which have to be regular poly¬ 
gons for each group, are also indicated. 

Action 6. The last action—application—is 
the least understood and the most mysterious 
of all. It is the action of conception, creation, 
or (in my profession) design. The three steps 
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Fig. 7-9. Action 6: Application. 

shown in Fig. 7-9 represent three levels of ap¬ 
plication in an increasing order of complexity. 

The first level is the resolution of a given 
problem, which requires a certain degree of 
imagination. At the second level, the creative 
process is more advanced. Teachers will con¬ 
cur with me, that finding a good problem usu¬ 
ally is harder and more rewarding than solving 
one. 

We named the last step “creative manipula¬ 
tion.” To demonstrate it, we use again the tri¬ 
angular prism, which in this example was 
“manipulated” into a creative toy, the ser¬ 
pent, by Erno Rubik. 

We propose these six actions as a logical, 
sequential mental process to shape space. The 
first three actions represent the analytic per¬ 
ception of a spatial model, resulting in an im¬ 
agery. The last three actions, the synthetic 
perception of the model, provokes the imagi¬ 
nation, ending in a creative application. Dur¬ 
ing the six actions, we applied topological, 
projective, affine, and metric transformations 
in a gradual fashion to a given spatial model. 

The actual process of design in my profes¬ 
sion is somewhat different: it does not begin 
usually with a given spatial model. It starts 
with a program that describes functions, crite¬ 
ria and so forth. So the first step is to generate 
the spatial model itself, which fulfills the func¬ 
tions and satisfies the criteria. This model 

should be quite general, free of details, pos¬ 
sessing only some essential, intrinsic geomet¬ 
ric properties. It follows that I am proposing a 
topological model, to be found by enumerating 
the available options. We refine this model 
through projective, affine, and metric transfor¬ 
mations, ending up with the desired product. 

The process is illustrated in Fig. 7-10. To 
make this presentation brief, the example is 
simplified. The selected topological model is a 
closed curve with six labeled vertices (a, b, c, 
d, e, and f): no lengths, no angles, no parallel¬ 
ism, not even straight lines are specified in this 
original choice. As a result, we have a large 
family of figures (all the plane and spatial hex¬ 
agons) by selecting a few properties, which 
are, however, the most intrinsic ones of this 
family. Let us now imagine that our model is a 
rubber band marked with the six vertices. 
While stretching this rubber band, adjacent 
vertices will remain adjacent and the band will 
stay as a closed curve. This type of transfor¬ 
mation is called a continuous mapping, while 
the invariant properties are adjacency and 
continuity; we are in the realm of topology. 
With so few properties to scrutinize, it is sur¬ 
prising how rich the content of topology re¬ 
mains. 

We now enter the second phase in shaping 
our hexagon. While the properties established 
in the topological phase are kept unchanged. 
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Fig. 7-10. An illustration of the actual process of design. 

we decide that the curved edges shall be 
straight lines, all in one plane, and we choose 
some particular incidences among them. Let 
the lines af, be, and cd meet in the point s, 
arranged in such a way that the common point 
p of the lines ab and ef, the common point q of 
the lines be and de, and the common point r of 
the lines ac and df are on one line. Many other 
choices and their combinations are possible, 
each set of choices representing a distinct hex¬ 
agon with a visual impact on its shape. If we 
now project this figure from a point onto an¬ 
other plane, the projected figure will preserve 
all the chosen properties. We may state that in 
projective geometry, we study properties of a 
figure which are invariant under central pro¬ 
jections. These new projective properties are 
incidences and flatness (straight lines and 
plane surfaces). 

We continue to refine the shape of the hexa¬ 
gon by choosing new properties in the third 
phase, but again all previous choices—at this 
time topological and projective properties— 
are kept invariant. The option in this phase is 
the selection of certain lines to be parallel. An¬ 
other way to phrase it is to say that certain 
chosen points are moved to infinity along their 
incident lines. For instance, we choose the 
points r and s to be moved to infinity. The 
point r is common to three lines (ac, pq, and 
df), which are now parallel, and similarly the 

lines be, af, and cd become parallel because 
their common point s is at infinity. If we now 
project this figure with parallel rays onto any 
other plane, the projected figure will preserve 
all the properties chosen so far. In affine ge¬ 
ometry, we study properties of a figure that 
are invariant under parallel projection. The 
new affine properties are parallelism and con¬ 
vexity. 

We have gone through three new geome¬ 
tries by now, but the most familiar geometric 
properties, such as distances and angles, have 
not yet been mentioned. These choices are left 
for the fourth and last phase of our program. 
Let us choose the line be to be perpendicular 
to the line pq. This decision will force the lines 
cd and af to be also perpendicular to the line 
pq, since these lines were parallel in the affine 
phase. Just as before, we do not alter choices 
made in a previous phase. The last choice we 
make now concerns distances; we want the 
line pq to bisect the segments be, cd, and af. 
An important new property has emerged in 
this final shape of the hexagon; if you consider 
the line pq as a “mirror-line,” the vertices f, e, 
and d are the mirror-views of the vertices a, b, 
and c respectively or, simply, the hexagon 
possesses bilateral symmetry. The reflection 
of a figure in a line preserves distances and 
angles. Such an operation is called an isomet¬ 
ric transformation. If all the distances of a fig- 
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ure are preserved, so are all the other geomet¬ 
ric properties. In metric geometry, we study 
properties of figures, which are invariant un¬ 
der isometric transformations. The new metric 
properties are distances and angles. 

We have completed a sequential approach 
to shape a simple plane figure. Within each of 
the four geometries sketched above, certain 
properties of a figure may be determined quite 
simply by counting, for instance, the number 
of vertices, edges, incident lines in a point, the 
number of lines parallel to each other, the 
number of equal distances and angles. These 
properties are the subject matter of the combi¬ 
natorial theory, which has been introduced on 
the mathematical scene in the last fifty years. 

You might say now, yes it is a nice proce¬ 
dure, but why not start simply at the other end 
and just draw a hexagon that has a mirror sym¬ 
metry? This could be done for a simple exam¬ 
ple like a plane polygon. But if I had chosen a 
polyhedron, even one with not more than six 
or seven faces, you would not recognize im¬ 
mediately, for instance, how to manipulate the 
planes of the faces in order to arrange them 
according to certain symmetry groups; it 
would be an extremely difficult task. However 
if you go through this process, you will be¬ 
come aware of the available options, you will 
be able to control your form, you will be in 
charge of it. Usually, the forms are in charge 
of us. We have to reverse the process. We 
should not have to use catalogs and say, “I 
want this form, I want that form” as if we 
were shopping in a supermarket! We should 
be in full, complete control; we should be able 
to shape space, as the title of this book says. 

As we progressed from the topological fig¬ 
ure to the metric figure of the hexagon, the 
invariant properties have been increasing 
while including all the previous properties. We 
have been progressing from the most general 
toward the most specific. This concept is also 
supported by illustrating the necessary and 
sufficient drafting tools to produce the draw¬ 
ings in Fig. 7-10. Only a pencil is needed to 
draw a topological figure of the hexagon; a 
straight edge is required in projective geome¬ 
try. To draw parallel lines in an affine figure, a 
new instrument is necessary, a straightedge 
gadget that slides on the first one. The symbol 
of a right triangle is used in the illustration. 

being the standard tool in the drafting practice 
(but remember that perpendicularity is irrele¬ 
vant in affine geometry). Finally we have to 
add a compass to our repertoire of instruments 
to draw a metrically equivalent (isometric) 
figure. 

The methods (practical applications in our 
profession) listed in Fig. 7-10—graph theory, 
perspective, axonometry, and symmetry oper¬ 
ations—presently are used mostly to analyze 
and communicate preconceived forms. We are 
convinced that geometries can do much more 
for us; we propose to apply them in the syn¬ 
thetic process of conceiving forms. 

I have presented the six actions to perceive 
a spatial model and the gradual transforma¬ 
tions to design a product. At first glance this 
methodology may seem to you as one of those 
fashionable intellectual exercises based on 
personal beliefs and prejudices. That is not so! 
As I mentioned earlier, these methods evolved 
during these decades of professional practice 
and teaching, which gave me ample opportu¬ 
nity to test their didactic and practical use. I 
hope the following slides will convey the mes¬ 
sage: I do try to practice what I preach! 

Figure 7-11 is a picture of my office. The 
scenery changes every year. After the yearly 
clean-ups, I keep some souvenirs and make 
room for the new projects. These models are 
important because I believe in the old Chinese 
saying: “I hear, I forget; I see, I remember; I 
do and I understand.” But, there is a draw¬ 
back. Meaningful models are painstakingly 
slow to build, to take apart and to transform. 
To solve this problem, I designed five kits, 
which are now in constant use at my faculty 
and elsewhere. They allow fast assembly, 
easy transformation, and high precision. 

Figure 7-12 shows a kit named Poly-Form. 
It is a topological and projective kit; its pur¬ 
pose is to demonstrate through simple manip¬ 
ulations the links between the concepts of 
polyhedral graph, adjacency matrix, embed¬ 
dings, projective conditions, and projective 
realizations. I tried Poly-Form with 8- to 12- 
year-old children with a result surprising to 
me. At first I was wary of explaining it to 
them; I found it hard to avoid the fancy terms. 
Then I was chagrinned when I realized how 
fast they grasped the concepts and how hap¬ 
pily they went on to explore. College students 
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Fig. 7-11. . . I do and I understand.” 

Fig. 7-12. Poly-Form; From graphs to projective polyhedra. 

(ages 18 to 20) sometimes are slower than 
those kids and certainly are more inhibited 
about exploration! These and other experi¬ 
ments with younger children and college stu¬ 
dents led to the following proposals for teach¬ 
ing geometry: 

1. Spatial geometry should be introduced at an 
early age (10 to 12 years). 

2. The subject matter should be polyhedra. 
3. The starting notions should be topologic 

and projective, to be followed later with af¬ 
fine and metric properties. 

Figure 7-13 shows Poly-Kit No. 1. The die- 
cut cardboard polygons are to be attached 

with rubber bands to form the five regular 
polyhedra, the thirteen semiregular polyhe¬ 
dra, six of the family of prisms and antiprisms, 
four of the semiregular duals, the five parallel- 
ohedra, and all other polyhedra with regular 
faces. (The 92 convex polyhedra with regular 
faces enumerated by V. A. Zallgaller include 
the regular and semiregular polyhedra.) 

Poly-Kit No 2 (Fig. 7-14) is a space-filling 
kit. Here the special connection between the 
die-cut cardboard polygons makes it possible 
to attach three or more faces along an edge. 
The circular holes in the polygons allow the 
user to inspect the incidence structure of the 
juxtaposition. Poly-Kit No. 2 allows a fast as¬ 
sembly of the space-fillings by the 5 parallel- 
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Fig. 7-13. Poly-Kit No. 1; Metric polyhedra. Fig. 7-14. Poly-Kit No. 2: Space-filling polyhedra. 

Fig. 7-15. Poly-Kit No. 3: Affine polyhedra Fig. 7-16. Poly-Kit No. 4: Geometric rigidity of 

(zonohedra). braced grids. 

ohedra and others where the component poly¬ 
hedron is composed of regular faces. 

Figure 7.15 shows the die-cut cardboard 
bands of Poly-Kit No. 3. This kit was con¬ 
ceived for building a fascinating, infinite fam¬ 
ily of polyhedra called zonohedra. (A zonohe- 

dron is a convex polyhedron; all of its faces 
are parallelograms). The repetitive use of one 
type of band is sufficient to build any zonohe- 
dron. This is a truly affine kit, because the 
models that can be built allow the affine mo¬ 
tions of the zonohedron to be demonstrated; 
the model retains its central symmetry during 
the deformations. Another type of band in the 
same kit may be used to build all polyhedra 

that can be realized with equal edge lengths 
(equilateral polyhedra). 

Poly-Kit No. 4 (Fig. 7-16) also serves two 
purposes. It can be used to demonstrate the 
geometric rigidity of regular grids composed 
of bars or bars and tension members. The 
same kit can also be used to build polyhedra 
projected onto a sphere. 

My students complete their apprenticeship 
using the different kits, then move on to build 
large-scale models. In this phase they are con¬ 
fronted with structural and technological con¬ 
siderations. Figures 7-17 and 7-18 show an 
“octet” spaceframe and its detail built with 
wooden bars and plastic joints, injected for 
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Fig. 7-17. “ Octet” spaceframe (student project). 

Fig. 7-18. Joint detail of “octet” spaceframe. 

this particular project. In Fig. 7-19 we see a 
dome built with tubular aluminum rings. The 
geometry is based on the inscribed circles of 
the faces of a dualized semiregular polyhe¬ 
dron. The joints are all of one type and despite 
their articulations (they are “hinged” to each 
other), the dome when attached to the ground 
becomes rigid. 

The last few figures are examples from my 
professional practice. I selected five projects 
where the geometric content is evident, and I 
had the good fortune to work with truly tal¬ 
ented and adventurous architects and sculp¬ 
tors. My duties included proposing a geomet¬ 
ric concept, calculating the stresses, and 

devising modes of fabrication and erection 
while respecting the ever-present budgetary 
constraints. 

In Fig. 7-20 we see the main theme building 
Man the Explorer of Expo ‘67 in Montreal. It 
is a giant, integrated steel spaceframe, based 
on the juxtaposition of truncated tetrahedra 
and tetrahedra. Figure 7.21 is also a theme 
building of Expo ‘67 {Man in the Community.) 

Here concentric hexagonal plywood-box rings 
are superposed; the reduction in size results in 
a logarithmic silhouette. Eigure 7-22 is a pre¬ 
fabricated concrete spaceframe with the tetra¬ 
hedron-octahedron geometry, built for a shop¬ 
ping center in Montreal. 
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Fig. 7-19. Articulated ring-dome (student project). 

Fig. 7-20. Man the Explorer. Theme building, Expo 

‘67, Montreal. Architects: Affleck, Desbarats, Di- 

makopoluos, Lebensold, and Size. Structural engi¬ 

neers: Eskenazi, Baracs, de Stein, and associates. 

Fig. 7-21. Man in the Community. Theme building. 

Expo ‘67, Montreal. Architects: Erickson and Mas¬ 

sey. Structural engineer: J. J. Baracs. 

The last two projects are large-scale sculp¬ 
tures. The first one (Fig. 7-23) is a set of juxta¬ 
posed general zonohedra built with identical 
hexagonal aluminum frames, articulated at 
their joints. The integrated lighting system 
adds to the visual impact for this Montreal 
subway station. The last figure shows a sculp¬ 
ture in the enclosed mall of a large public 
building in Quebec City (Fig. 7-24). It is inter¬ 
esting to note that each of these last two sculp¬ 
tures, despite their different appearances, is 
based on one of the 230 space groups: three 
mutually perpendicular screw motions with 
half-turns. In the first case, the hexagonal 
frames, in the second case the extruded H 
beams are subjected to the same symmetry 
operations. Even the orientations of the bolts 
and nuts are consistent with the motions. 

The German mathematician Felix Klein 
gave an overall view of geometries in his fa¬ 
mous address at the University of Erlangen in 
1872. He was the first to propose transforma¬ 
tions as criteria to distinguish geometries. This 
concept was applied by the Swiss psychologist 
Piaget. He demonstrated that growing chil¬ 
dren perceive space in a sequential fashion. 
They go through a topological stage until the 
age of 6, then progress through a projective 
stage (at ages 6 to 10); the perception of affine 
and metric properties begins around the age 
of 10. 

The results of my own experience and re¬ 
search in the field of the synthetic process of 
creating form led me to a similar approach: in 
order to exploit fully the stunning richness of 
three-dimensional space, the initial method for 
conceiving form is a sequential series of com¬ 
binatorial choices taken at the different levels 
of geometries in the order of topology, projec¬ 
tive, affine and metric geometry. But, despite 
the clearly established hierarchy of the geome¬ 
tries, creating form can not be simplified to a 
linear thinking process. Certain early choices 
in the topological and projective level are de¬ 
pendent on affine or metric criteria, imposing 
simultaneous considerations. This linking of 
seemingly unconnected concepts (bisociation) 
is the theme of Arthur Koestler’s famous 
book. The Act of Creation. 

Essentially, we are trying to promote a 
stronger link between geometry and creative 
design. The only obstacles are attitudes. The 



7. Spatial Perception and Creativity 131 

widespread opinion of today’s artists and ar¬ 
chitects was well described by the Soviet crys- 
tallographer Shubnikov: they have “a horror 
of the words law, order, symmetry, geometry; 
they prefer harmony, beauty, style, rhythm, 
unity, although the true meaning of these 
words differ very little from that of the 
former.”' In turn mathematicians do not help 
either to narrow the gap, and we agree with 
the recent observation of the mathematicians 
Griinbaum and Shephard: ‘‘Current fashions 
in mathematics applaud abstraction for its 
own sake, regarding it as demeaning to work 
on problems related to elementary geometry 
... It seems to us to be foolish and presump¬ 
tuous to believe that ours is the first genera¬ 
tion which needs no more the inspiration that 
can be found in studying simple geometric ob¬ 
jects and their mutual relations.”^ 

The indifferent or hostile attitude toward ge¬ 
ometry is probably rooted in the choice of cur¬ 
ricula for our schools. The little geometry that 
is taught is limited to Euclidean geometry, giv¬ 
ing the student an inventory of axioms, theo¬ 
rems, and proofs, related to the forms of static 
‘‘frozen” figures. What baffles the mind is that 
in the last five centuries, many new, important 
geometries have emerged which are well-doc¬ 
umented in our libraries, but which somehow 
have not penetrated into the public knowl¬ 
edge. The curriculum in schools should be re¬ 
vised to include chapters of more recent ge¬ 
ometries based on the contrasting notions of 
change and conservation, motion and invari¬ 
ance. This approach, where the structure of 
forms is studied rather than the forms them¬ 
selves, stimulates the imagination and appears 
to be more conducive to creative design. I 
used the term ‘‘creative design”; it may seem 
that the adjective ‘‘creative” is redundant, but 
I do not think so. Take a look at our cities, 
buildings, and objects: they are the results of 
‘‘design,” but in most cases, with little sign of 
creativity. Many interesting books and essays 
have been written on the theme of creativity, 
and any definition is obviously subject to de¬ 
bate. I like what the mathematician-philoso¬ 
pher D. R. Hofstadter wrote in a recent ar¬ 
ticle: ‘‘Making variations on a theme is really 
the crux of creativity.”^ This statement con¬ 
firms our geometric view on morphology: cre¬ 
ating form is not an invention, it is a process of 

Fig. 7-22. Plaza Cotes des Neiges. Shopping cen¬ 
ter, Montreal. Architects: Mayers and Girvan. 
Structural engineers: Baracs and Gunther. 

Fig. 7-23. Sculpture, station Namur, Montreal. 
Sculptor: Pierre Granche. Structural engineer: J. J. 
Baracs. 

Fig. 7-24. Sculpture, Palais de Justice, Quebec. 
Sculptor: Louis Archambault. Structural engineer: 
J. J. Baracs. 
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transformations. The same article began with 
a quotation of G. B. Shaw: “You see things, 
and you say ‘why?’ But I dream things that 
never were; and I say ‘why not’?”"’ It certainly 
takes a poet to express so well the contrast of 
minds: the analytical versus the synthetic, the 
critic versus the designer. 

Notes 
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^ George Bernard Shaw, Back to Methuselath, 

London; Constable (1921). 
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Why Study Polyhedra? 

Jean Pedersen 

There are many good reasons for studying 
polyhedra. They are, of course, simply inter¬ 

esting in themselves. The visual perception of 
their symmetries delights the eye and the un¬ 
derlying structure stimulates the mind. We 
would be completely justified in studying them 
if these were their only attributes, though per¬ 
haps the study would not then take place in 
the mathematics classroom. In fact, polyhedra 
are incredibly rich in mathematical content, 
thus providing an introduction to and links 
among several branches of mathematics. Stu¬ 
dents who are not exposed to experiences 
with polyhedra, and the mathematics con¬ 
nected with them, have every right to feel edu¬ 
cationally deprived. 

Studying polyhedra is fun! When I talk to 
students about polyhedra, they don’t ask, 
“Why do we have to study such things?” 
They aren’t bored by exploring these wonder¬ 
ful ideas. When students ask, “Why do we 
have to do this?” they really mean, “I’m 
bored, teacher.” In our current educational 
system, whenever students really enjoy math¬ 
ematics and don’t ask, “What’s this good 
for?” we may have to answer to suspicious 
administrators and bureaucrats! Outsiders 
don’t ask, “Why must they do this?” when 
mathematics students suffer by executing a 
dreary algorithm for days, or weeks. But when 
students enjoy mathematics, the principal or 
sometimes even a parent will say: “Your stu¬ 
dents should be doing more real mathematics. 
Why are you teaching them this?” The preva¬ 
lence of such attitudes made me think more 
carefully about the totality of reasons why we 
study polyhedra, and to find reasons we could 

give to administrators and parents to justify 
study of such exciting mathematics. 

The first reason for studying polyhedra is 
that they are tangible. This is particularly im¬ 
portant to secondary students who do a lot of 
things that are neither mathematical nor tangi¬ 
ble. Students who build models naturally want 
to know more about their creations. Just the 
act of constructing a model raises questions 
about it. This is how real mathematics be¬ 
gins—with questions! 

Some idiosyncratic looking Platonic solids 
are shown in Fig. 8-1. Each was constructed 
by braiding together straight colored strips of 
paper on which appropriate fold lines had 
been drawn.' It is easy to verify^ that 

• If we require that every edge on the com¬ 
pleted model is covered by at least one strip, 
that every point on the interior of every face 
must be covered by at least one thickness 
from the strips, and that the same total area 
(hence color) from each strip must show on 
the finished model, 

• Then you can braid the tetrahedron from two 
strips, the hexahedron (cube) from three 
strips, the octahedron from four strips, the 
icosahedron from five strips, and the dodeca¬ 
hedron from six strips. 

I do not know a general explanation for this 
intriguing pattern. 

If we adhere to these rules, the dodecahe¬ 
dron we construct (shown in Fig. 8-1) is not as 
pleasing as we have come to expect a dodeca¬ 
hedron to be. The dodecahedron in Fig. 8-2 is 
much more attractive. It, too, is braided from 
six identical straight strips, but whereas the 
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Fig. 8-1. The Platonic solids. Clockwise, from up- bands), hexahedron (three bands), octahedron (four 

per left: icosahedron (five bands), dodecahedron bands). 

(six bands, faces bi-colored), tetrahedron (two 

Fig. 8-2. The golden dodecahedron, braided from six bands. The faces have pentagonal holes. 

dodecahedron of Fig. 8-1 has its symmetry 
group reduced to that of the tetrahedron (a 
group with only twelve elements) because of 
its surface coloring, the coloring of the do¬ 
decahedron in Fig. 8-2 preserves the underly¬ 
ing icosahedral symmetry (its symmetry group 
has sixty elements). For most of us, the loss of 
symmetry reduces our satisfaction corre¬ 
spondingly. 

I will eventually take these models apart to 
prove the assertions I have made about 
them—you might say it is my “proof by de¬ 
struction”! One of the especially interesting 

things about these particular models is that 
their construction does not require the use of a 
straightedge or a compass. The pattern pieces 
were made simply by systematically folding 
straight strips of paper. 

A second reason for the study of polyhedra 
is that they provide an interesting introduction 
to combinatorial geometry. An ordinary con¬ 
vex polyhedron would turn into the surface of 
a ball if its faces were made of rubber and it 
were inflated. It is easily observed by begin¬ 
ners that if V, E, and F are the number of 
vertices, edges, and faces, respectively, of a 
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given convex polyhedron, then V ~ E + F = 

2. It would be only a little more sophisticated 
for them to observe that 2E > 3F (and, like¬ 
wise, that 2E > 3V). Many such pretty and 
useful formulas can be discovered by students 
at the high school or beginning college level, 
and there are nice explanations^ which are un¬ 
derstandable for these students. 

A third reason for studying polyhedra is that 
they can serve as a vivid introduction to group 
theory.'* 

Yet another reason for studying polyhedra 
is to introduce more general topological 
ideas.^ We may then study manifolds whose 
faces are not necessarily flat or which are not 
necessarily homomorphic to the surface of a 
sphere. Figure 8-3 illustrates two such sur¬ 
faces. We might also generalize this to higher 
dimensions. 

One of the most compelling reasons for 
studying polyhedra is that one is led toward 
ideas that are deeply and intimately connected 
with other parts of mathematics. Peter Hilton 
and I have recently done some joint research 
of a predominantly number-theoretic nature 
that was originally motivated by our study of 
polyhedra.^ In geometry if we speak of gener¬ 

alizing when we increase the dimensions of a 
given problem, then it is natural to speak of 
specializing when we reduce the dimensions 
of a problem. It was in this sense that Peter 
and I specialized the concept of constructing a 
regular polyhedron in space in order to look 
carefully at the construction of regular convex 
polygons’ in the plane. We asked whether 
straight strips of paper could be systematically 
folded to construct regular convex polygons. 
During our investigations we used, among 
other things, some well-known results from 
number theory (including properties of the 
Euler <p function) and even PHopital’s rule. 
We were motivated to ask (and were able to 
answer) what we believe are new questions in 
the theory of numbers. Often it was the geo¬ 
metric considerations in our original problem 
that helped indicate the direction of proof for 
these purely number-theoretic results which 
were not directly related to our original geo¬ 
metric motivation. Such cross-fertilization is 
characteristic of creative mathematics. 

Our search for a systematic algorithm for 
constructing all regular convex polygons was 

successful, and the algorithm also gave us the 
most efficient way to fold any regular star 
polygon.* 

I offer one more reason for studying polyhe¬ 
dra. The Bourbakist idea of “imposing a struc¬ 
ture on a set” is basic to mathematics. The 
esthetic and intellectual appeal of a symmetric 
object seems to be universal, even if the fur¬ 
ther structure we impose on it is not. Sensitiv¬ 
ity to this appeal is part of the pleasure we 
derive from looking at polyhedra—and this 
common experience motivates us to want to 
understand each other, even though we come 
from different disciplines, use different nota¬ 
tions, and express ourselves in different 
terms. 

Let me give some specific examples, focus¬ 
ing first on some group theory and combina¬ 
torics. I shall begin with a puzzle^ made by my 
daughter Jennifer when she was a ninth-grade 
geometry student. (Construction details are 
given later in this chapter.) In some settings it 
is natural to talk about the proper rotations of 
objects in space. Thus, for example, let us ex¬ 
amine this finished puzzle cube. One practical 
reason is that we may want to know how many 
ways it can be put in a box, on a shelf or into a 
drawer where it fits snugly. A useful definition 
of a proper rotation is any rotation of an object 
that leaves it occupying exactly the same 
space; we regard two rotations as the same if 
their effect on the object is the same. Let us 
examine all possible proper rotations for the 
cube. 

• First we notice that there are three axes of 
symmetry that pass through the centers of 
opposite faces. Each axis is related in the 
same way to the rest of the cube, so we ob- 
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c d 

Fig. 8-4. Proper rotations of the cube about one of 

three axes of symmetry passing through the centers 

of opposite faces. 

c 

Fig. 8-5. Proper rotations of the cube about one of 

the four axes of symmetry passing through opposite 

vertices. 

2ti 

2 

a b 

Fig. 8-6. Proper rotations of the cube about one of the six axes of symmetry passing through the centers of 

opposite edges. 

tain a prototype by discussing the distinct 
proper rotations about any one of those axes. 
For example, we may focus on the vertical 
axis of symmetry as shown in Fig. 8-4. The 
cube can be rotated about this axis through a 
quarter turn (27r/4) in either direction (±) as 
shown in Figs. 8-4b and 8-4c so that, in Fig. 
8-4b, the front face is moved to the left, 
while, in Fig. 8-4c, the front face is moved to 
the right. Thus we see that the rotations in 
Figs. 8-4b and 8-4c do produce distinct 
results. Taking into account all three axes of 
this type, we see that they produce a total of 

six distinct rotations. Furthermore, we can 
also rotate the cube about this same axis 
through a half-turn {2ttI2) in either of two 
directions (±), but both of these rotations 
would produce exactly the same final result, 
as illustrated in Fig. 8-4d. So in this case, we 
regard these rotations as the same and list 
only one proper rotation, which we denote 
2ttI2. This type of rotation thus accounts for 
a total of three distinct rotations. 

• Next observe that there are four axes of sym¬ 
metry passing through opposite vertices. 
Since each axis is related in exactly the same 
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way to the rest of the cube, we only need 
discuss the proper rotations about one of 
these axes (see Fig. 8-5). With the cube in 
hand we readily verify that a proper rotation 
of this type is obtained by rotating through a 
one-third turn (27r/3) in either of two direc¬ 
tions (±). Each direction produces a distinct 
position of the cube (as seen in Figs. 8-5b and 
8-5c). There are four such axes, and thus 
eight distinct rotations of this type. 

• There are also six axes of symmetry passing 
through opposite edges. Again, each such 
axis is related to the cube in exactly the same 
way, so we look at just one of them (see Fig. 
8-6) and observe that the only proper rotation 
of the cube about this axis is through a half¬ 
turn {IttH). Since positive and negative half¬ 
turns yield the same result and since there 
are six pairs of opposite edges, we conclude 
that there are six distinct rotations of this 
type. 

• Finally, we have the easiest proper rotation 
of all: just let the cube sit as shown in parts 
(a) of Figs. 8-4-8-6. This is the lazy rotation, 
usually called the identity. Table 8-1 summa¬ 
rizes the results. 

There are thus 24 distinct symmetry opera¬ 
tions for the cube. Is the fact that 24 = 4! an 
accident? Or is there something significant 
about 4!? It is the number of permutations of 
four objects—and the group of such permuta¬ 
tions is the well-known symmetry group on 
four symbols, denoted S4. Perhaps we should 
list the different types of permutations of four 
objects (which we call A, B, C, D) and see if 
there is any connection. 

• First there are the four-cycle permutations, 
which we may indicate by writing (A-). 
Then there would be three choices for the 
second position, followed by two choices for 
the third position, and the last position is 
then determined. So we get six 4-cycle per¬ 

mutations. 
• We next look at the collection of permuta¬ 

tions of the form (__)(--)—that is, the two 2- 
cycle permutations. Again it is no restriction 
to write such a permutation as (A_)(__). 
There are three choices for the other element 
in the first cycle. Once that choice is made 
there are no other choices. Thus we see that 

Table 8-1. Proper rotations of the cube. 

Symmetry 
operation 

Number of operations 
of this type 

Rotations 
Axis passes through 

opposite faces ±277/4 6 
opposite faces 277/2 3 
opposite vertices ±277/3 8 
opposite edges 277/2 6 

Identity 1 

Total 24 

Table 8-2. Rotations of four objects. 

Number of rotations 
of the given type 

Description of the 
type of rotation 

6 (-) 
3 (--)(—) 
8 (-—)(-) 
6 (--)(-)(-) 
1 (_)(_)(_)(_) = Identity 

24 Total 

there are precisely three permutations of the 
form (-_)(--). 

• To count the number of permutations of the 
form (_)(_) we may think of first selecting 
the element that stays fixed. This can happen 
in four ways. Having made this choice any 
one of the three remaining elements can oc¬ 
cupy the first place in the three-cycle. The 
last two elements can then be arranged in 
exactly two ways. Thus the total number of 
(_)(_) permutations is seen to be eight. 

• It remains to count the number of permuta¬ 
tions of the form (__)(_)(_)• This we do by 
selecting the two that are permuted. The 
number of ways we may do this is six. 

• There is just one identity, so that we have 
accounted for the expected 24 permutations. 
The results of our count are presented in Ta¬ 
ble 8-2. 

Comparison of data in Tables 8-1 and 8-2 
reveals a striking resemblance between the 
lists of numbers. This cannot be an accident. 
Then what are the four things that are being 
permuted when we rotate the cube? Hint: 

Look at Fig. 8-7. 
It is a straightforward exercise to verify that 

the four strips forming the “diagonal” cube in 
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Overlap 

Four strips like thisxan be braided together 

Fig. 8-7. Four strips braided together to form a di¬ 

agonal cube. 

Fig. 8-7 constitute a set of four objects that are 
permuted, producing exactly the types of rota¬ 
tion shown at the right of Table 8-2, when the 
cube is rotated according to the specifications 
in the left two columns of Table 8-1. Other sets 
of four objects, related to the cube, permute in 
this way. One particularly nice feature of the 
diagonal cube is that the four strips are easy to 
“see” (in contrast, for example, to the four 
interior diagonals of the cube, which are also 
permuted by any rotation). 

Let us look at just one other aspect of this 
example. “Open” one face of the cube con¬ 
structed in Jennifer’s puzzle so that one of the 
two inscribed tetrahedra can be seen sitting 
inside it (with its vertices coinciding with four 
of the eight vertices of the cube). If we now 
take all of the proper rotations of the cube that 
leave the inscribed tetrahedron occupying the 

same space we obtain all twelve of the possi¬ 
ble proper rotations of the tetrahedron. This is 
a vivid, concrete demonstration of the fact 
that the proper rotation group for the tetrahe¬ 
dron (known as the tetrahedral group) is a sub¬ 
group of the proper rotation group of the cube 
(known as the octahedral group). Of course 
the group in question is S4, and the subgroup is 
A4, of index 2 in S4, also called the alternating 
group on four symbols. 

+ 4 unbounded trihedral regions 
from its vertices 

+ 4 unbounded truncated trihedral 
regions from its faces 

= 1 bounded region + 14 unbounded regions 

= 15 regions 

Fig. 8-8. Partition of space by extension of the face 

planes of a tetrahedron. There is one bounded re¬ 

gion (the tetrahedron itself) and 14 unbounded re¬ 

gions. 

Let us now turn our attention to some com¬ 
binatorial aspects of the diagonal cube. Notice 
that the centers of the faces are surrounded by 
four different colors and the vertices are sur¬ 
rounded by three different colors. Some natu¬ 
ral questions to ask are; 

• In how many distinct ways can four colors be 
arranged in a cyclic order? 
Answer: Six, and each of those ways occurs 
on exactly one of the six faces of this cube! 

• In how many distinct ways can three of four 
distinct colors be arranged in a cyclic order? 
Answer: Eight, and each of those ways oc¬ 
curs at exactly one of the eight vertices of 
this cube! 

• Suppose you gave each student in a large 
class (in practice three students will gener¬ 
ally suffice) four strips of paper (each strip 
being a different color) and ask them to 
weave the strips together to form a diagonal 
cube. How many different kinds of cubes 
could you get? Cube X is considered differ- 



8. Why Study Polyhedra? 139 

ent from cube Y if there does not exist a 
proper rotation that will make the coloring of 
all the faces on cube X coincide with the col¬ 
oring of all faces on cube Y. 

Answer: There will be just two, and they are 
mirror images of each other. This can be 
proved using the Polya enumeration theo¬ 
rem, but you will be convinced that it is true 
if you conduct the experiment. You will find 
that the two cubes are distinguished by how 
the strips overlap (clockwise or anticlock¬ 
wise) to form the first square. 

To demonstrate another combinatorial as¬ 
pect of these braided models (and to reinforce 
the deep connections that polyhedra share 
with combinatorial mathematics) let us turn to 
a question that I first heard about from John E. 
(Jack) Wetzel. A few years ago he and Jeanne 
W. Kerr coauthored a paperwhich consid¬ 
ered the question: If the face planes of a Pla¬ 
tonic solid are extended, into how many re¬ 
gions (both bounded and unbounded) will 
space be partitioned? 

Jack visited the University of Santa Clara to 
give a talk on the problem and to work with 
Gerald Alexanderson on natural generaliza¬ 
tions of the question." Jack borrowed one of 
my dodecahedra as a “prop,” and we dis¬ 
cussed the question he planned to talk about. 
After looking at some models, I realized that 
surfaces of my braided models can be inter¬ 
preted so that the answer to the original ques¬ 
tion involving the unbounded regions of the 
cube, octahedron, and dodecahedron can sim¬ 
ply be read off.*^ 

Let us see how this is done, looking first at a 
tetrahedron. We see, from Fig. 8-8, that there 
is just one bounded region and 4 + 6 + 4 = 

14 unbounded regions produced by the ex¬ 
tended face planes. Of course, this is a very 
special case, since the tetrahedron is the only 
Platonic solid having faces that do not occur in 
pairs lying in parallel planes. In fact, it is this 
feature of the other Platonic solids that en¬ 
ables us to use the braided models for count¬ 
ing the unbounded regions produced by the 
extended face planes of that solid. By studying 
the illustrations in Fig. 8-9 you may begin to 
see how the braided cube in the figure relates 
to the unbounded regions for the extended 
face planes of the cube. 

1 
1 
1 
J_ 

_ 

-1— 
! 
1 
J- 

i 
1 

z: 
cube + 6 unbounded square prisms 

from its faces 

+ 12 unbounded wedges + 8 unbounded trihedral regions 
from its edges from its vertices 

= 1 bounded region + 26 unbounded regions 
= 27 regions 

Braided cube, made from 
three strips like this 

0^ 
-1- 

1 
1 

h 

Fig. 8-9. Drawings showing one bounded region 

and 6 + 12 -I- 8 = 26 unbounded regions produced 

by the extended face planes of the cube. 

The face planes of the regular octahedron, 
when extended, form a slightly more compli¬ 
cated division of space." First, eight tetrahe- 
dra appear on the octahedron’s faces; these, 
together with the original octahedron, form 
Kepler’s “stella octangula.” Then the un¬ 
bounded regions are formed. A new feature is 
that not all the unbounded regions grow 
straight out of a vertex, edge, or face of the 
original octahedron; some grow out of verti¬ 
ces, edges, or faces of the tetrahedra that oc¬ 
cur on the faces of the original octahedron. 
The complete count is 9 bounded regions plus 
50 unbounded regions for a total of 59 regions. 

Now consider the braided diagonal cube of 
Fig. 8-7. The small square hole shown in the 
center of each face represents an unbounded 
polyhedral region; the portion of the diagonal 
from the center of each face to the vertex of 
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Fig. 8-10. Extended planes identified by edges of 

the 10 identical strips woven about the “ghost” of a 

dodecahedron intersect inside this model to form 

the regular icosahedron. The 362 unbounded re¬ 

gions formed by those 20 planes are (a) 15 x 12 

trapezoid-like regions with four infinite faces, (b) 

5 X 12 parallelogram-like regions with four infinite 

faces, (c) 1 X 12 polyhedral regions with five infi¬ 

nite faces, (d) 5x12 trihedral regions, (e) 20 poly¬ 

hedral regions with six infinite faces from the verti¬ 

ces of the ghost, and (f) 30 regions with four infinite 

faces from the edges of the ghost. 

the cube represents an unbounded wedgelike 
region, and so on. Now let us return to the 
question posed by Kerr and Wetzel, looking at 
the surface of the “golden dodecahedron,” so 
named because on the folded tape from which 
it is made the ratio of the long fold lines to the 
short fold lines is the golden ratio. The do¬ 
decahedron in Fig. 8-1 is constructed so that 
the short fold lines become edges on the com¬ 
pleted polyhedron; the dodecahedron in Fig. 
8-2 is constructed so that the long fold lines 
become edges on the completed polyhedron. 
If tape of the same width is used to construct 
the great stellated dodecahedron and the 
golden dodecahedron, then each of these 
models has exactly sixty isosceles triangles 
visible on its surface and the great stellated 
dodecahedron fits inside the golden dodecahe¬ 
dron with the vertices of its pentagrams coin¬ 
ciding with the vertices of the golden dodeca¬ 

hedron. With the models in hand, it is easy to 
see that each of the six pairs of parallel planes 
from the original dodecahedron intersects the 
other five pairs of parallel planes on the sur¬ 
face of the golden dodecahedron. No more 
bounded regions can be produced, and the un¬ 
bounded regions may be read off the golden 
dodecahedron. 

So we have answered the question about the 
regions created by extended face planes for all 
of the Platonic solids except the icosahedron. 
Do you suppose there is a braided model that 
will help to answer the question in that case? 
It is a lot harder to draw the finite regions in 
this case;''' and fifty-nine stellations give a 
very large number of finite regions! 

Let us be a little less ambitious and try to 
find a model that delineates the unbounded re¬ 
gions created by the extended face planes of 
the icosahedron. Since the icosahedron has 
twenty faces, which occur in sets of parallel 
planes, the problem is to find ten straight 
strips that can be braided together to give a 
completed figure with the symmetry of the ico¬ 
sahedron. Then we could just count up the 
number of different types of region on the sur¬ 
face of the braided model. 

There it is, in Fig. 8-10! The strips go around 
the “ghost of a dodecahedron.” We can com¬ 
pute the number of strips on this model. There 
are three visible sections on every strip cross¬ 
ing the face closest to our view, so there must 
be six sections in every strip. But since each 
of the 12 faces of the ghost host is crossed by 
five sections, there are in all 60 sections; 
hence there must be exactly ten strips. This is 
the model we need. In fact, the planes deter¬ 
mined by the top and bottom of these ten 
strips interpenetrate each other in the center 
of this model to form the faces of a little ico¬ 
sahedron. Just as with the other braided 
models, these planes cannot cross each other 
again to form any bounded regions, so this 
model can be used to count up the number of 
unbounded regions created by the extended 
face planes of the icosahedron. 

I have discussed just a few examples of 
what studying polyhedra can lead to within 
mathematics. But people other than mathema¬ 
ticians and scientists are also fascinated by 
polyhedra and by the symmetries of real-life 
objects. In Kuala Lumpur they play a game 
with the Sepak Tackraw ball. As I understand 
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Fig. 8-11. Temari balls by Kazuko Yamamoto, Los Gatos, California. 

Fig. 8-12. The braided diagonal cube coming apart. 

it, the ball is hit only with your feet or your 
head, and that makes the game a very exciting 
spectator sport. This object has precisely the 
same symmetry as the golden dodecahedron. 

There are many other examples of regular 
symmetries in nature and in man-made ob¬ 
jects,'^ but I would like to show you just one 
more. Figure 8-11 illustrates some Temari 
balls. Temari balls have been made in China 
and Japan for over a thousand years. The most 

authentic ones have a center composed of rice 
hulls about which some material is wrapped. 
Threads are wound round it until the whole 
becomes spherical in shape. Then guidelines 
are laid out on the surface and designs are 
sewn on. Many of these designs have cyclic, 
icosahedral, or octahedral symmetry. 

And, now, as I promised, I will take apart 
some of the braided models. (See Figs. 8-12- 
8-14.) 
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Fig. 8-14. Jean Pedersen demonstrating her “proof by destruction” in a workshop at the Shaping Space 

Conference. Photograph by Stan Sherer. 

a b c 

Fig. 8-15. (a) Seven braided models. On the left are 

the pentagonal bipyramid, the trigonal bipyramid 

and the ring of rotating tetrahedra (see Chapter 21). 

(b) The triangular bipyramid (in the left hand) com¬ 

ing apart into 19 triangles, and the pentagonal bi¬ 

pyramid coming apart into 31 triangles, (c) The ring 

of rotating tetrahedra comes apart. (See Chapter 2.) 

Fig. 8-16. Collapsing three polar collapsoids. 
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Figure 8-15a shows seven additional 
models. The pentagonal bipyramid is made'^ 
from a straight strip of 31 equilateral triangles. 
And the triangular bipyramid is made from a 
straight strip of 19 triangles (Fig. 8-15b). The 
rotating ring of 10 tetrahedra'^ comes apart 
into two long strips of equilateral triangles 
(Fig. 8-15c). 

The other models in Fig. 8-15a, which I call 
“the collapsoids,” resulted from my impa¬ 
tience in building polyhedra. When I wanted 
to know more about a rhombic dodecahedron, 
I thought it would be easier to build something 
“like” it in which each face was replaced with 
a pyramidlike cell made of four equilateral tri¬ 
angles. When the model was almost finished, 
my son picked it up, played with it, and an¬ 
nounced: “Look, Mom! It folds up!” That in¬ 
trigued me. I named these models “collap¬ 
soids” and I made others that were “like” 
some of the other regular rhombic polyhedra, 
also known as zonohedra.'^ Figure 8-16 shows 
how the 12-, 20-, and 30-celled polar collap¬ 
soids fold up. The same idea works for other 
zonohedra. 

It is surely difficult to believe that anyone 
who has been exposed to the delights of con¬ 
structing polyhedra and studying them could 
ask, “Why should we study polyhedra?” I 
have these models in my office and students 
come in and beg to know how to make them. 
They never ask, “What are they good for?” 
They know! And we know too. As George 
Polya has said, “In the plane you have poly¬ 
gons—and, if plane geometry is interesting,— 
then solid geometry is more interesting!”'^ 

Jennifer’s Puzzle 

Jennifer’s Instructions 

Instructions: Try It! 

1. You get all of the little strips of five trian¬ 
gles each (there should be eight) and braid 
them into four tetrahedra. 

2. Then you get the four strips of seven trian¬ 
gles each and braid an octahedron (that is 
an eight-faced polyhedron). 

3. Now you take the two big strips of five tri¬ 
angles each and braid a large tetrahedron as 
before, but in this one you put the four little 
tetrahedra and the octahedron. 

a 

L 

b 

c 

Fig. 8-17. Eight strips like (a) and four strips like (b) 

are required; these may be of lightweight paper. 

Two strips like (c) and three strips like (d) should be 

cut from heavier material. The lengths e and 8 are 

determined experimentally. 

4. Finally, take the three strips of five squares 
each and braid a cube into which you put 
the large tetrahedron. 

GOOD LUCK! 

Jennifer Pederson 
9th Grade Geometry Project 
Castillero Junior High School 

How to Make the Puzzle Pieces 

Seventeen strips of paper are required. The 
choice of material for the strips shown in Figs. 
8-17a and 8-17b is not important, so long as it 
has enough bulk and crispness to hold a good 
fold. The puzzle will be visually more interest¬ 
ing if different colors are used. For strips 
shown in Figs. 8-17c and 8-17d the material 
must be as substantial as lightweight card- 
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a 

Fig. 8-18. Making the valley folds, (a) First draw a 

60° line, (b) and (c) Form a crease by folding the 

paper with top edge aligned along the 60° line, (d) 

Succeeding folds are made by aligning an edge with 

a previously formed crease, being sure to avoid 

covering any part of the crease produced by the 

previous fold. 

Fig. 8-19. Constructing a tetrahedron from two 

strips of paper. 

board. The thicker the material, the greater 
the problems with folds. 

Each pattern strip should be scored so that 
all dotted lines are valley folds. To fold the 
triangles, start with a strip longer than the fin¬ 
ished piece and draw a line as shown in Fig. 
8-18. Then fold the paper so that edge A lies 
along the 60° line. Along the fold is a crease 
whose width depends of the thickness of the 
paper; do not cover this crease when making 

the next fold. Continue making folds until the 
required number of triangles has been made. 

The small tetrahedra and the octahedron 
must be braided and fitted together before the 
strips shown in Fig. 8-17c are made. The 
length 2L + e is determined by measuring the 
length required so that the configuration of 
small polyhedra will fit into the completed 
large tetrahedron. The crease will be wider 
when heavier material is used; this width may 
be determined experimentally. 

Strip 8-17c can be easily constructed by us¬ 
ing a pattern triangle (cut from lightweight pa¬ 
per) to draw the fold lines, leaving an appro¬ 
priate space between successive triangles for 
each crease. Score the crease lines firmly so 
that the strip will fold easily. Fold each strip 
so that the score lines will be on the inside of 
the completed model. 

The three strips (8-17d) for the cube are con¬ 
structed in the same way. The length IL + b 

of the diagonal of a pattern square is deter¬ 
mined by measuring the edge of the completed 
big tetrahedron. The allowance for the crease 
should be twice as wide as with the big tetra¬ 
hedron, since the strips of the cube wrap 
around each other when the model is con¬ 
structed. 

Assembling the Polyhedra 

Tetrahedron. Use two strips like the ones in 
Figs. 8-17a or 8-17c. On a flat table top, lay 
one strip over the other strip as shown in Fig. 
8-19; the two strips should stay in contact dur¬ 
ing the assembly. Each fold line should be a 
valley fold as viewed from above. Think of 
triangle ABC as the base of the tetrahedron 
being formed; for the moment, ABC remains 
on the table. Fold the bottom strip into a tetra¬ 
hedron by lifting the two triangles marked X 
and overlapping them so that C' meets C, B' 
meets B and D' meets D. This produces a tet¬ 
rahedron with three triangles sticking out from 
one edge. Complete the model by carefully 
picking up the whole configuration, holding 
the overlapping triangles X in position, wrap¬ 
ping the protruding strip around two faces of 
the tetrahedron, and finally tucking the Y tri¬ 
angle into the open slot along edge BC. 
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Octahedron. Use four strips like 8-17b. Begin 
with a pair of overlapping strips held together 
with a paper clip as indicated in Fig. 8-20a. 
Fold these strips into a double pyramid by 
placing triangle ai under triangle A,, triangle a2 

under triangle A2 and triangle b under triangle 
B. The overlapping triangles b and B are se¬ 
cured with another paper clip so that the con¬ 
figuration looks like Fig. 8-20b. Repeat this 
process with the other two strips. 

Next place one pair of “braided” strips 
over the other pair of braided strips as shown 
in Fig. 8-20c, making certain that the flaps 
with the paper clips are oriented exactly as 
shown. Complete the octahedron by following 
(in order) the three steps indicated in 8-20c. 
An octahedron is formed by step 1; then step 2 
places the flap with a paper clip against a face 
of the octahedron. In step 3 you should tuck 
the flap inside the model. 

When you become adept at this process, 
you will be able to slip the paper clips off as 
you perform the last three steps. This is only 
an aesthetic consideration, since the clips 
would otherwise be concealed inside the com¬ 
pleted model. 

Cube. Use three strips like the one in Fig. 
8-17d. Fold one strip and use a paper clip to 
fasten together the end squares. Fold a second 
strip around the outside of the “cube” so that 
one square covers the clipped squares and the 
two end squares cover one of the square 
holes. Secure the end squares of the second 
strip with a paper clip, giving the configuration 
shown in Fig. 8-21a. Be sure that the overlap¬ 
ping squares of the second strip do not cover 
any squares from the first strip, and that the 
first paper clip is covered. 

Slide the third strip underneath the top 
square so that two squares stick out on both 
the right- and the left-hand sides of the cube. 
Tuck the end squares of this third strip inside 
the model through slits along the bottom of the 
cube (see Fig. 8-21b). 

Putting the Puzzle Together 

The four small tetrahedra and the octahedron 
fit together (see Fig. 8-22) to form a tetrahedral 
cluster. The large tetrahedral model is braided 
around this arrangement of little polyhedra. 

a 

Fig. 8-20. Constructing an octahedron from two 

strips of paper. 

Fig. 8-21. Constructing a cube from three strips of 

paper. 

Fig. 8-22. Assembling the puzzle. The four small 

tetrahedra fit face-to-face against the octahedron 

(a); the large tetrahedron is made to fit around this 

configuration. The large tetrahedron then slips into 

the cube (b). 
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Fig. 8-23. H. S. M. Coxeter at Jean Pedersen’s lecture. Photograph by Stan Sherer. 

The completed cube can be opened by turn¬ 
ing it upside-down, pulling (pull firmly, since 
this square is attached inside the model with a 
paper clip) on the strip that covers the top 
face, and folding back the flaps that were the 
last to be tucked inside. The large tetrahedron 
can then be inserted into the cube. The paper 
clips are no longer needed when the tetrahe¬ 
dron is inside. With some construction mate¬ 
rials, friction alone holds the cube together 
even without the tetrahedron inside. 

Variations and Modifications 

If the cube is constructed with three strips, 
each a different color, the cube will have op¬ 
posite faces with the same color. You can use 
the same strips to braid a cube in which pairs 
of adjacent faces are the same color. In this 
construction, each strip goes over two strips 
and then under two as it travels around the 
cube. 

If the inner polyhedra turn out to be slightly 
too large for the puzzle to fit together, there is 
a way to salvage the project. If both edges of 
the strips are trimmed slightly, the resulting 

model has truncated vertices and can be ac¬ 
commodated in a space that would otherwise 
be too small. 
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Form, Function, and Functioning 

George Fleck 

Polyhedra are objects worthy of study and ad¬ 
miration in their own right. They have been 
inspirations for mathematicians, artists, and 
architects, and have also served as models for 
abstract notions about the biological and phys¬ 
ical world. The sophistication of such model¬ 
ing has evolved over the centuries, influencing 
both physical and mathematical theories. In 
studying polyhedra we see over and over 
again ways in which theory is inspired by na¬ 
ture, and ways in which science is inspired by 
theory. 

The Polyhedron Kingdom lies within the 
realm of mathematics, and polyhedron theory 
deals with precise ways of talking about poly¬ 
hedra, ways which seem comfortable to math¬ 
ematicians (see Part IV). Some of polyhedron 
theory treats properties of space. Much of 
polyhedron theory has developed within the 
minds of mathematicians as old problems have 
suggested new ones. This theory sometimes 
appears connected only tenuously with the 
natural world. 

Science and engineering are also fields of 
investigation in which abstract theory is for¬ 
mulated within people’s minds, but the con¬ 
nections with the real world seem—to many 
nonmathematicians at any rate—both more 
necessary and more various than in mathemat¬ 
ics. We shall look at some contemporary in¬ 
vestigations in botany, microbiology, ro¬ 
botics, and chemistry (each discussed at the 
Shaping Space Conference) in which polyhe¬ 
dra play central roles, investigations which il¬ 
lustrate ways that the geometry formulated by 
mathematicians is related to the geometry 
used by scientists and engineers. This symbi¬ 
otic relationship is dynamic and mutually en¬ 
riching. 

Does Form Explain Function? Science 
Looks to Geometry for Models 

Geometry has been considered a fundamental 
source of insight into the nature of the uni¬ 
verse since the time of Pythagoras (who died 
about 500 B.C.). We shall note how geometric 
ideas, and polyhedra especially, have been 
employed by some of the most creative and 
influential contributors to the development of 
natural philosophy (as natural science used to 
be called) and the contemporary sciences, 
providing models for atoms, viruses, robots 
. . . even the solar system. 

Plato’s Ideas 

Plato (427-347 b.c.) argued in his Timaeus' 
that fire, earth, air, water, and the quintes¬ 
sence are the kinds from which all in the uni¬ 
verse is compounded. “It is plain I presume,’’ 
wrote Plato, “that fire and earth and water and 
air are solid bodies.’’ He argued that the form 
in which fire has come to exist is tetrahedral, 
that the form of earth is cubic, of air octahe¬ 
dral, of water icosahedral, and of the quintes¬ 
sence dodecahedral.^ Plato then related these 
forms to the properties, functions, and trans¬ 
formations of all matter, constructing an inclu¬ 
sive natural history based on what were later 
to be called the Platonic solids. Thus Plato 
modeled a richly featured, diverse, and con¬ 
stantly changing world in terms of a small 
number of geometric solids whose features de¬ 
rived only from numbers, lines, and triangles. 
Plato made use of the polyhedron theory of his 
day, and it is likely that his use inspired the 
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variations later introduced into the theory by 
such persons as Archimedes (2877-212 b.c.). 

Johannes Kepler (1571-1630) in his Myste- 

rium Cosmographicum^ modeled the solar 
system of planets in terms of that same set of 
Platonic solids. (Kepler’s representation of 
this model is shown in Fig. 10-32.) Though 
manifestly incorrect, Kepler’s model is de¬ 
tailed, quantitative, and provocative. Most 
importantly, the model is visually stimulating, 
giving a pictorial vocabulary for discussing 
ideas that might otherwise be too abstract for 
easy communication. The model captured the 
imaginations of many persons beyond those 
with special expertise in quantitative astron¬ 
omy (see Chapters 3 and 4). 

Spheres and Polyhedra as Models 
for Matter 

It is appealing to think of the material world as 
composed of very small building units. With 
little information about the nature of those 
building blocks, early theorists speculated 
quite freely about them. We noted that Plato 
thought of them as the regular solids. Since 
earliest days, some theorists about the nature 
of matter have explicitly described the shapes 
of such building units as spheres, and others 
have described them as polyhedra. Sometimes 
particular units were chosen for convenience, 
without regard for a perfect correspondence 
between theory and reality, though surely 
some investigators intended their models to be 
faithful to the natural world. 

Another issue which has been of concern 
for two millennia in various guises is whether 
matter must fill all space, or whether there can 
be interstitial voids between the building units. 
Plato seems vague about whether he thought 
there can be empty space, but Aristotle (384- 
322 B.c.) rejected empty space as inconsistent 
with his theory of motion. However, Epicurus 
(342-270 B.c.) and Lucretius'* (99-50 b.c.) ar¬ 
gued that motion is impossible unless there is 
empty space between particles of matter. 

If there is no void, spheres alone cannot be 
the building units of condensed matter; two 
spheres can come no closer together than to 
touch at one point, and consequently some 
space in any packing of spheres is empty. 
Some combinations of polyhedra fill space 

completely; certain of those combinations 
have been known since antiquity. But a satis¬ 
factory theory of matter must be able to ac¬ 
count for change. Thus if the units do fully fill 
space without void, they must somehow be 
able to deform and transform to permit both 
motion and chemical change. We shall see that 
detailed modeling of such transformations is 
an important part of current scientific re¬ 

search. 

Spheres and Whirlpools as Models for 
Atoms and Molecules 

Modern chemistry dates from the late eight¬ 
eenth century. One of the first modern chem¬ 
ists was John Dalton (1766-1844) who, as 
early as 1810, constructed physical models 
which he could hold in his hands, modeling 
atoms and compounds of atoms with spheres 
joined with connecting rods. Dalton used 
these models as teaching tools, but we do not 
know how faithful to reality he believed these 
spheres to be. There is no evidence that he 
believed there to be any relationship between 
the shapes of his models and the shapes of 
what we now call molecules. 

Ball-and-stick models became popular with 
many chemists during the last half of the nine¬ 
teenth century. Chemists were rapidly acquir¬ 
ing structural information about molecules 
from the laboratory, and as the century closed 
their models were increasingly intended to 
portray the three-dimensional geometry of 
molecules. August Wilhelm Hofmann (1818- 
92) used a collection of elaborate croquet-ball 
models to illustrate his 1865 lectures at the 
Royal Institution in London (see Lig. 9-1). In 
his models, the centers of the croquet balls 
were coplanar; Hofmann seems to have used 
his models to represent only connectivity of 
atoms, not their three-dimensional geometry. 
Benjamin Collins Brodie (1817-80), the con¬ 
troversial Oxford chemist, strongly urged his 
colleagues during the 1860s and 1870s to avoid 
use of ball-and-stick models, warning that the 
models depicted much more detail about mol¬ 
ecules than was warranted by experimental 
data. His warnings drew a mixed response. 
The majority of physical chemists in the late 
nineteenth century explicitly rejected geomet- 
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Fig. 9-1. Models of molecules, made from croquet 
balls, used to illustrate a lecture in 1865. After A. 
W. Hofmann, “On the Combining Power of At- 

ric ideas about molecules, but most organic 
chemists of the same period found ball-and- 
stick models to be increasingly useful. The 
balls depicted atoms, the sticks were bonds, 
and the shapes of the models were usually 
thought to represent the shapes of real mole¬ 
cules. By the turn of the century it was an 
almost universal article of faith in organic 
chemistry that all possible molecules can be 
modeled faithfully with balls and sticks. 

Many late-nineteenth-century scientists 
modeled the molecules of gases by billiard-ball 
spheres, but most of these theoreticians con¬ 
sidered the billiard balls to be models of only 
certain properties of the gases. For example, 
the balls were good models of idealized tem¬ 
perature-pressure-volume behavior, but not of 
the chemical reactivity of the components of 
the gases. 

The arguments of Epicurus and Lucretius 
about the void became in the nineteenth cen¬ 
tury arguments about the existence (and the 
properties) of various types of aether, and this 
controversy extended into the twentieth cen¬ 
tury. The billiard-ball model of a gas seems to 
require the notion of empty space between 
particles of a gas. Yet from the beginning of 
the nineteenth century proponents of the wave 
theory of light argued persuasively for a 
plenum (the subtle fluid which they called the 
aether) to transmit those waves, and by 1880 
the luminiferous aether had become dogma. 

The nature of the space within ordinary 
matter was widely and ‘enthusiastically de¬ 
bated. As the nineteenth century closed, the 
luminiferous aether was joined by a whole col¬ 
lection of electromagnetic and dielectric ae- 

oms,” Proceedings of the Royal Institution of 
Great Britain 4 (1865):401-30. 

thers invented to explain phenomena such as 
radio waves, magnetic waves, and even gravi¬ 
tational waves. Speculations about the proper¬ 
ties of aether produced a theory of vortex at¬ 
oms which attempted to combine features of 
the continuous and discontinuous theories of 
matter and space. William Rankine (1820- 
1872) proposed^ a theory of molecular vortices 
in 1849, and Hermann von Helmholtz (1821- 
1894) derived^ mathematical expressions 
which show that in a frictionless, isotropic 
fluid of uniform density, vortices once formed 
would retain their identity forever. Both Lord 
Kelvin^ (1824-1907) and Peter Tait (1831- 
1901) developed these ideas about whirlpools 
in the aether further. In his investigations of 
vortices, Tait combined mathematical theory 
with physical models. It has been said* that a 
lecture demonstration of smoke rings by Tait 
(to illustrate Helmholtz vortex motion) early 
in 1867 gave Kelvin the idea of the vortex 
atom. Tait described^ an apparatus to produce 
smoke rings, telling about various ways those 
rings could model properties of atoms. Kel¬ 
vin’s theory, in turn, led Tait to extend his 
investigations on the analytic geometry of 
knots,'® Tait believing that a mathematical 
theory of intertwining and knotting of vortices 
was necessary for understanding vortex 
atoms. 

James Clerk Maxwell (1831-1879) proposed 
a gear-and-idle-wheel mechanical model of 
vortices in aether (Lig. 9-2), remarking that his 
model “serves to bring out the actual mechan¬ 
ical connections between the known electro¬ 
magnetic phenomena; so that I venture to say 
that any one who understands the provisional 
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Fig. 9-2. Maxwell’s mechanical model for the ae¬ 
ther, using small idle wheels to permit all vortices 
to revolve in the same direction. The idle wheels 
represent electrical particles. Reprinted from Phil¬ 

osophical Magazine, series 4, 21, (1861): Plate V, 
Figure 2. 

R3 

Fig. 9-3. Two interpenetrating tetrahedra presented 
by J. H. van’t Hoff as a model for a molecule with 
a carbon-carbon single bond and six different 
groups R\ . . .Re bonded to the carbons. Each 
carbon atom is at the center of one tetrahedron and 
at the vertex of the other, van’t Hoff suggested that 
such models could be constructed from hard rubber 
tubes as edges, hollow hard rubber balls as vertex 
connectors, and sealing wax to bond the parts to¬ 
gether. J. H. van’t Hoff, The Arrangement of At¬ 

oms in Space, 2nd ed. (London: Longmans, Green, 
1898), p. 54. 

and temporary character of this hypothesis, 
will find himself rather helped than hindered 
by it in his search after the true interpretation 
of the phenomena.”" 

The quantitative models developed for the 
aether yielded predictions for its properties, 
and some scientists set out to test the models 
by experimental measurements. A series of 
experiments designed to measure predicted 
drift of the aether, conducted between 1880 
and 1930 by Albert Michelson, Edward Mor- 
ley, and Dayton Miller,'^ were widely inter¬ 
preted as demonstrating that there is no ae¬ 
ther. Without a detectable aether to swirl 
around, the vortex-atom theory died, but the 
questions that it attempted to answer remain 
with us. Listeners to conversations of present- 
day chemists about physical interpretations of 
chemical quantum theory have reason to con¬ 
clude that the issue of whether there are voids 
in matter has not been resolved. 

Polyhedra as Models for Atoms, 
Molecules, and Viruses 

One of the most productive ideas of modern 
chemistry has been the model of an atom as a 
polyhedron. This model has been central to 
structural chemistry since the last decades of 
the nineteenth century when it was introduced 
into the mainstream of European chemistry in¬ 
dependently by Joseph Le Bel (1847-1930)" 
and Jacobus Henricus van ’t Hoff (1852- 
1911)." Plato had considered the ultimate 
units of matter to be polyhedra, but Le Bel 
and van’t Hoff extended this idea by showing 
how organic substances could be modeled by 
joining polyhedra in systematic ways to form 
molecules of great variety and complexity. 
The notion of three-dimensional molecular ge¬ 
ometry was popularized by van ’t Hoff, who 
considered carbon atoms to be situated at the 
centers of tetrahedra. He encouraged chem¬ 
ists to construct cardboard tetrahedra to ex¬ 
amine the various geometrically possible ar¬ 
rangements of atoms." The balls of the 
Daltonian models become the vertices of tet¬ 
rahedra. But the polyhedral model did more 
than simulate the environment around single 
carbon atoms. A carbon-carbon single bond 
was modeled by two tetrahedra interpenetrat¬ 
ing at vertices (Fig. 9-3), a carbon-carbon dou- 
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ble bond was modeled by two tetrahedra inter¬ 
penetrating along edges (Fig. 9-4), and a 
carbon-carbon triple bond was modeled by 
two tetrahedra sharing a common face (Fig. 
9-5). These ideas were extended to include a 
wide range of molecules (see Chapter 10), and 
“the tetrahedral atom” became a central uni¬ 
fying concept of organic chemistry. Joined tet¬ 
rahedra are still used by chemists for visualiz¬ 
ing molecular form; see the representations by 
Hargittai and Hargittai (Fig. 10-10) and by 
Pauling and Hayward (Fig. 9-6). Indeed, a ma¬ 
jor contemporary journal of organic chemistry 
is titled Tetrahedron (see Fig. 9-7). 

Polyhedral models are widely used also in 
inorganic chemistry. The spatial theory of mo¬ 
lecular structure, based on polyhedra, was 
readily adaptable to the compounds of many 
elements. Nitrogen, depending on its oxida¬ 
tion state, could be modeled with tetrahedra 
or cubes. Alfred Werner (1866-1919) used oc- 
tahedra to model metal complexes.'^ In 1902 
Gilbert Newton Lewis (1875-1946) found it 
useful in teaching general chemistry to model 
atoms with cubes,'’ and later developed the 
cubic model in a more formal manner.'^ This 
polyhedral model of the atom placed an elec¬ 
tron at each vertex of the cube and provided a 
context for discussing the role of electrons in 
chemical bonding. The Lewis model became 
known as the octet theory for chemical bond¬ 
ing, and the eight dots at the vertices became 
known as Lewis dots. 

More recently, in the 1930s and later, Linus 
Pauling developed, utilized, and popularized a 
theory of coordinated polyhedra to predict 
structures for crystals. To visualize the conse¬ 
quences of this theory, he often built elaborate 
models. An example is Pauling’s model for the 
structure of the mineral sodalite shown in Fig. 
9-8. 

Polyhedra play a significant role in contem¬ 
porary research. Very recently, a simple and 
successful polyhedral model for molecules— 
the valence shell electron pair repulsion 
(VSEPR) model—has been developed. As 
well as a guide for chemical researchers, the 
VSEPR model has become an important peda¬ 
gogical tool for teaching about molecular 
structure. The geometric problem posed by 
the VESPR model is well-known to geometers 
as “The Problem of Tammes.” VSEPR theory 

Fig. 9-4. A tetrahedral model of a compound with a 
carbon-carbon double bond. J. H. van’t Hoff, The 

Arrangement of Atoms in Space, 2nd ed. (London: 
Longmans, Green, 1898), p. 97. 

Fig. 9-5. A tetrahedral model of the compound 
Ri—C=C—R2 with three equivalent bonds joining 
the carbon atoms. J. H. van’t Hoff, The Arrange¬ 

ment of Atoms in Space, 2nd ed. (London: 
Longmans, Green, 1898), p. 104. 

is described by Hargittai and Hargittai in 
Chapter 10. An indication of the perceived im¬ 
portance of polyhedral chemical models is that 
a major journal of inorganic chemistry is titled 
Polyhedron (see Fig. 9-7). The structures of 
certain molecules reinforce that perception; 
especially interesting is the structure (see Fig. 
9-9) of the 60-carbon cluster molecule named 
Buckminsterfullerene! 
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Fig. 9-6. Artistic conception of the forms of ethyl¬ 
ene and acetylene molecules. From Linus Pauling 
and Roger Hayward, The Architecture of Mole¬ 

cules. W. H. Freeman and Company. Copyright © 
1964. 

POLYHEDRON 

C H q 9TKES 

V«A « «»>m • «iMHuR 
• ti • T«k«* • TawiB 

Fig. 9-7. International journals of chemistry have the titles Tetrahedron and Polyhedron. Reproduced by 
permission of the publisher, Pergamon Press. 
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Fig. 9-8. A model of the mineral sodalite, utilizing 

coordinated polyhedra. Reprinted from Linus Paul¬ 

ing, The Nature of the Chemical Bond and the 

Structure of Molecules and Crystals, 2nd ed. Copy¬ 

right 1939, 1940, by Cornell University. Used by 

permission of the publisher, Cornell University 

Press. 

Fig. 9-9. A computer-generated depiction of the Spurlino and Florentine A. Quiocho, Department 

truncated icosahedral structure suggested for the of Biochemistry, Rice University. 

C6oLa molecule. Used by permission of John C. 
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Fig. 9-10. A drawing by D. L. D. Caspar illustrating 

strict equivalence in a shell with icosahedral sym¬ 

metry constructed from sixty identical left-handed 

units. The three classes of connections in this sur¬ 

face lattice are represented by the specific bonding 

relations: thumb-to-pinkie = pentamer bond; ring 

finger-to-middle finger = trimer bond; and index 

finger-to-index finger = dimer bond. Any two of 

these classes of bonds would hold the structure to¬ 

gether. The triangles drawn under the hands define 

equivalent subdivisions defined by the three- and 

fivefold axes at their intersections. 

Fig. 9-11. A geodesic dome built on a plan of a T = 

12 icosahedral surface lattice. 

The polyhedral models, which have proved 
so valuable in discussing atoms and mole¬ 
cules, have also been useful in investigating 
structures larger than single molecules. At the 
Shaping Space Conference, Donald L. D. Cas¬ 
per spoke^*^ about his three decades’ long fas¬ 
cination with the coincidence between the Pla¬ 
tonic polyhedra and the structures of viruses. 
It began in 1956 when Crick and Watson^' sug¬ 
gested that the design of “spherical” viruses, 
built from large numbers of identical protein 
subunits, would be based on the symmetry of 
the Platonic polyhedra. That same year Cas¬ 
par obtained experimental evidence in Cam¬ 
bridge for an icosahedral structure of one of 
the small isometric plant viruses. Icosahedral 
symmetry requires sixty identical parts, and at 
that time the symmetry of icosahedral viruses 
was thought to be a consequence of specific 
bonding among identical units. Such a struc¬ 
ture is illustrated in Fig. 9-10. 

Caspar and his colleague Aaron Klug ar¬ 
gued that the essential idea in the design of 
viral structures is that they “build them¬ 
selves,” that the design is embodied in the 
specific bonding properties of the parts. 
Given the bonding rules, the units combine to 
form the structure automatically. The problem 
faced by the investigators was that most of the 
icosahedral viruses are not built of sixty iden¬ 
tical subunits; indeed, by 1962 electron mi¬ 
croscopy had revealed regular surface arrays 
of morphologic units that were neither multi¬ 
ples nor submultiples of 60. Their question 
was then twofold: Why icosahedral symme¬ 
try? What are the design possibilities for such 
icosahedrally symmetric structures? 

The clue to the answer formulated by Cas¬ 
par and Klug in 1962 was based on an icosa- 
geodesic dome (see Fig. 9-11) which, were it a 
complete sphere, would be divided into 720 
truncated triangular facets grouped to form 12 
pentamers and 110 hexamers. If a hand (such 
as one of those in Fig. 9-10) were placed in 
each of these triangles, one could imagine 
(with a certain amount of flexibility either in 
bonding or in the structure units themselves) 
that identical units could be connected accord¬ 
ing to the requirements of bond specificity, but 
allowing for some departure from strict equiv¬ 
alency. The term that Crick and Watson pro¬ 
posed for this was “quasi-equivalence.” The 



9. Form, Function, and Functioning 159 

units would be deformed in slightly different 
ways in symmetrically distinct but quasi¬ 
equivalent positions. 

The design for such structures can be de¬ 
scribed by the ways that the plane hexagonal 
net can be folded into polyhedra. These de¬ 
signs can be enumerated completely and non- 
redundantly by the triangulation numbers 

T = {h^ + hk + k^), 

which designate the number of symmetrically 
distinct but quasi-equivalent situations for the 
607 units in a design. The indices h and k can 
be any positive integers; one may be zero. 
These designs for indices 0, 1, and 2 (that is, 
for T = \,T — 3, and T = 1) have been recog¬ 
nized for a number of icosahedral viruses. 
Some are built on the 7 = 1 plan. The 7=3 
plan is also very common. 

These surface lattices can be represented as 
icosadeltahedra, polyhedra consisting of 207 
equilateral triangular facets. Capsid models 
can be built of 607 identical subunits grouped 
to form 12 pentamers and 10 (7 - 1) hexamers 
with quasi-equivalent bonding in the 7 sym¬ 
metrically distinct environments. It is inform¬ 
ative to build both rigid and flexible models of 
these structures. 

A number of small tumor viruses are built 
on the 7 = 7 plan. But, to everyone’s great 
surprise, a radical departure from the idea of 
quasi-equivalence was revealed with the dis¬ 
covery that the 7=7 icosahedral polyoma vi¬ 
rus capsid is built of 72 pentamers^^ instead of 
the predicted 12 pentamers and 60 hexamers. 
Bonding specificity apparently is not con¬ 
served in this structure. Caspar described a 
polyhedral model of the polyoma capsid con¬ 
structed from 72 pentagons connected using 
three more equivalent types of contacts which 
correspond to switching of bonding specific¬ 
ity. He said that this idea was so incompatible 
with the expectations of his theory that the 
referees who reviewed the paper said the 
model was not suitable for publication. “The 
theory was so good. Why throw away a good 
theory with experiments that haven’t been 
thoroughly tested?’’ 

However, further experiments have con¬ 
firmed the structure, a design which appears 
inscrutable in geometric terms but which obvi¬ 
ously has biological logic. Caspar commented: 

“The theories we have formulated in the past 
have given a very good explanation of why 
icosahedral viruses are icosahedral. Now we 
don’t know!’’ 

Modeling Condensed Matter 

Polyhedra have been used not only in mod¬ 
eling molecules but also in modeling the 
space-filling qualities of whatever it is that 
forms the condensed states of matter. In crys¬ 
tals, polyhedra have been considered to be the 
units that repeat in three dimensions to fill 
space. As we have seen, a continum model (a 
model in which there is no empty space) for 
crystals of a pure substance (an element or a 
compound) cannot be achieved with spheres. 
But there are only a few polyhedra that fill 
space by periodic repetitions of themselves. 
There are even greater difficulties in modeling 
arbitrary mixtures of different substances with 
polyhedra, since most collections of different 

polyhedra do not fill space. 
Theories about structure of the solid state 

have long been involved with the question of 
how polyhedra can be packed to fill three-di¬ 
mensional space. Bricklayers have known 
about the packing of parallelopipeds since an¬ 
tiquity, but they have generally not been con¬ 
cerned about theories of the structure of mat¬ 
ter. Aristotle (refuting Plato) asserted that, of 
the regular solids, both the cube and the tetra¬ 
hedron fill space; he was wrong, however. 
Kepler considered the shapes of space-filling 
polyhedra which would be obtained if closely 
packed spheres were uniformly compressed; 
we shall see that this strategy for investigating 
the shaping has been fruitful in recent years. 
The quite complicated general question of 
how space can be filled by repetition of identi¬ 
cal polyhedra has not yet been solved. 

One experimental way to prepare space-fill¬ 
ing collections of different polyhedra is to use 
the method of Kepler and compress a collec¬ 
tion of plasticene balls.Another way is to 
start with a packing of spherical objects, and 
increase the size of the spheres without in¬ 
creasing the volume of the collection; Stephen 
Hales (1677-1761) used this strategy in study¬ 
ing the shapes of peas which were swollen in a 
closed container.It appears that the unfin- 
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ished task of describing general collections be¬ 
longs largely to the mathematicians, but their 
intuitions have benefited from these physical 
experiments. 

Clearly the solid state cannot be described 
by a single geometric model. Some solids are 
almost perfectly ordered in a simple manner at 
the atomic scale, and others are almost com¬ 
pletely random. Most solids have structures 
between these two extremes. Only the perfect 
crystalline structures—which do not really ex¬ 
ist—are well understood. The structure of the 
solid state has been a subject of inquiry in 
which the interaction between geometry and 
the physical sciences has been particularly 
fruitful. Lord Kelvin took a very empirical ap¬ 
proach in investigating “the division of space 
with minimum partitional area”^^ Extending 
experimental methods used by Plateau,he 
observed and manipulated intersecting soap 
films in imaginative ways, and his paper is an 
instructive example of how a physical model 
can guide a geometric investigation, and how 
mathematics can permit generalization from a 
few simple physical observations.^* Lord Kel¬ 
vin concluded that space could reasonably be 
divided into modified truncated octahedra 
with 14 faces (eight hexagons and six squares); 
he called these polyhedra tetrakaidecahedra, 

and argued that they would pack to fill space 
with minimum partition area. Kelvin’s shapes 
are not classical polyhedra; the edges are not 
straight lines and the faces are not plane sur¬ 
faces. 

Static space-filling units probably cannot 
model simultaneously both the space-filling 
qualities (such as the quasi-crystalline regions 
sometimes found near apparently chaotic re¬ 
gions in liquids, or the orientation of polar sol¬ 
vent molecules near solute ions) and the dy¬ 
namic aspects (such as fluid flow, or diffusion 
of solvent and solutes) of liquid solutions. It 
would be interesting to try to model such sys¬ 
tems with dynamically transforming polyhe¬ 
dra. Meanwhile, sphere-packing models con¬ 
tinue to be useful. 

Packing of Spheres of Various Sorts 

Twentieth-century models of atoms, with a 
very small nucleus surrounded by wavelike 
electrons, have spherical symmetry (probably 

instantaneous spherical symmetry, but cer¬ 
tainly at least time-averaged spherical symme¬ 
try) in isolation. The sphere is an excellent 
model for isolated atoms and has been devel¬ 
oped by many investigators as a model for at¬ 
oms in molecules, and for molecules in liquids 
and solids. 

When pressed, few chemists insist that a 
collection of spheres with interstices is a real¬ 
istic model for combinations of atoms, 
whether crystalline arrays or discrete mole¬ 
cules. They say that their ball-and-stick 
models are merely conveniences, that their 
ball-and-stick drawings are artistic conven¬ 
tions, and that their tables of covalent and 
ionic radii are just conventional ways of pre¬ 
senting data concisely. Yet it would be naive 
to believe that the ubiquitous presence of 
spherical models for two centuries has had no 
influence on the concepts held by chemists. 

Much effort has been spent examining the 
consequences of spherical models for atoms, 
calculating atomic-radii for these spheres, and 
discussing how spheres of various sizes can 
pack together. William Barlow (1845-1934) 
observed^^ that there are two “closest- 
packed” ways of arranging identical spheres 
in space, one with cubic symmetry and the 
other with hexagonal symmetry. He was con¬ 
vinced that a thorough understanding of crys¬ 
talline solids would necessarily involve both a 
geometrical theory of space groups (to which 
he contributed) and a complementary mechan¬ 
ical theory of crystal structures (toward which 
he worked for several decades). Lord Kelvin 
examined the problem of close-packing 
spheres with oriented binding sites.Pauling 
developed in detaiP' the model of atoms-as- 
spheres, using what he called “covalent radii” 
to correlate distances within molecules and 
crystals among quite diverse compounds of 
particular elements. 

Spherical models for atoms have been use¬ 
ful, even though atoms within an environment 
of “touching” nearest-neighbor atoms are not 
spherical, and even though the electrons in 
such environments fill space without inter¬ 
stices. All this has stimulated mathematical 
studies of sphere packings in spaces of three 
and higher dimensions. These studies, in turn, 
have surprising and important applications in 
coding theory. 
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Polyhedra as Models for Plant 
Structures 

Ralph Erickson spoke^^ at the Shaping Space 
Conference about botanical research in which 
polyhedra have been used as models for plant 
cells. These models suggested novel experi¬ 
ments, involving such unlikely materials as 
lead spheres and soap bubbles. The experi¬ 
ments in turn have stimulated mathematical 
speculation. 

Parenchymal tissues such as are found in a 
plant stem have cells that pack closely to¬ 
gether. The cells are not classical polyhedra; 
there probably are no plane faces nor any 
straight edges in these cells. Erickson de¬ 
scribed experiments^^ in which James Marvin 
obtained single-cell geometric data about pith 
cells from the Joe-pye weed. Marvin then con¬ 
structed paper polyhedral scale models of 
those cells. Previous investigators had taken 
Kelvin’s tetrakaidecahedra^'* as a model for 
such space-filling cells, but the data of Matzke 
and co-workers showed that the real botanical 

world was more complex. A fundamental 
question is the extent to which the shapes of 
such cells are determined by geometry alone, 
and the extent to which the shapes are the 
results of other factors. 

Erickson described studies in which Matzke 
and Marvin used lead shot and soap bubbles to 
model plant cells. In a series of Kepler-type 
experiments, Matzke^^ and Marvin^^ com¬ 
pressed collections of spherical lead shot with 
enough pressure to force the initially spherical 
pieces of lead into shapes that together fill 
space without interstices. As Kepler had 
shown centuries earlier, spheres transform 
into polyhedra when forced to be space filling. 
If uniform spheres were packed as a face-cen¬ 
tered cubic array and compressed, rhombic 
12-hedra resulted. If the lead shot were poured 
into the container “randomly,” a distribution 
of irregular polyhedra (averaging about 14 
faces) resulted. Matzke and Marvin undertook 
their studies in attempts to model cell shapes 
in plant tissue in terms of the polyhedra ob¬ 
served in the shot-deformation studies. 

8. 3-6-4 C36) 

23. 2-8-5 (24) 

9. 3-7-2-1 (1) 12. 0-12-2 (39) 13. 1-10-3 (73) 14. 2-8-4 (64) 

Fig. 9-12. Camera lucida drawings of representative 

soap bubbles from the center of a foam. Each draw¬ 

ing is specified by listing the numbers of rectangu¬ 

lar, pentagonal, hexagonal (and heptagonal) faces. 

In parentheses is the frequency of occurrence of 

the polyhedron class in a group of 600 bubbles stud¬ 

ied. From E. B. Matzke, “The Three-Dimensional 

Shape of Bubbles in Eoam—An Analysis of the 

Role of Surface Eorces in Three-Dimensional Cell 

Shape Determination,” American Journal of Bot¬ 

any 33 (1946):70, Eigs. 27-46. Reprinted by permis¬ 

sion. 
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1. 3-6-2 (2) 2. 0-12-0 (50) 3. 2-8-2 (15) 

16. 3-6-5 (17) 17. 3-7-3-1 (8) 

23. 2-8-5 (24) 

30. 0-12-4 (10) 31, 1-10-5 (4) 32. 2-8-6 (1) 33. 2-9-4-1 (3) 35. 3-7-5-1 (1) 36. 2-8-7 • (2) 

8. 3-6-4 (36) 6. 1-10-2 (118) 7. 2-8-3 (19) 

12. 0-12-2 (39) 

26. 3-7-4-i (5) 

13. 1-10-3 (73) 

27. 4-4-7 (2) 

14. 2-8-4 (64) 

28. 4-5-5-1 (2) 

15. 2-9-2-1 (4) 

22. 1-11-2-1 (2) 

29. 5-3-6-1 (2) 

Fig. 9-13. Schlegel diagrams of central bubbles 12. Pentagons are shaded. Viewpoints are chosen 

(some from Fig. 9-12) tabulated by Matzke. The to demonstrate symmetries when possible. Used by 

numbering corresponds to the numbering in Fig. 9- permission of Ralph O. Erickson. 

Matzke^^ also used another model, reminis¬ 
cent of the 1880s’ work of Lord Kelvin. Sev¬ 
eral thousand soap bubbles were assembled in 
a transparent container, and the interior bub¬ 
bles were examined microscopically (Fig. 9- 
12). These soap films partition space. We can 
distinguish between the filling of space by a 
collection of geometric shapes and the parti¬ 

tion of space by surfaces that can be consid¬ 
ered to be the faces of polyhedra. Matzke 
made detailed comparisons of these polyhe¬ 
dra, the polyhedra from the lead-shot experi¬ 
ments, and the polyhedra observed in plant 
cells. 

Erickson noted that accurate visualization 
of models is difficult, even when the models 
(such as polyhedra) are apparently tangible. A 
difficulty in using two-dimensional representa¬ 
tions of stick models or solid models of poly¬ 
hedra on the printed page is that all faces can¬ 
not be shown simultaneously. To understand a 

three-dimensional model, a person must pick 
up the physical object and turn it around. 
Erickson constructed paper models of 
Matzke’s soap bubbles to aid visualization and 
he drew Shlegal diagrams^^ '^' (Eig. 9-13) to aid 
classification. Shlegel diagrams distort shape, 
but they allow simultaneous viewing of all 
faces and of their connectivity. Many of these 
Shlegel diagrams have obvious symmetry. 
Consider number 0-12-2. It is highly symmetri¬ 
cal, with two hexagonal faces opposite each 
other, more or less as in an antiprism. But it is 
not an antiprism. The sides are pentagons. 
Symmetries are very prominent in these poly¬ 
hedra; only 44 of the 600 bubbles are in the 
symmetry group that contains just the identity 
element. 

Visualization becomes less of a problem 
when the investigators use several different 
schemes which appear to model the same ge¬ 
ometry. Erickson constructed paper models 
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so that he could look at them from all direc¬ 
tions. He also used stick structures (represent¬ 
ing the same polyhedra) built from semiflexi- 
ble plastic tubing and four-arm connectors, 
the arms at the 109.5° tetrahedral angle. 

All edge intersections of soap films are nec¬ 
essarily tetrahedral intersections. So by build¬ 
ing models with these rigid connectors and 
semiflexible tubes, the model approximates 
the minimum-surface models. Lord Kelvin'**’ 
went to some pains to point out that in the 
packing of soap bubbles the edges of the cells 
which he visualized were plane and curved, 
alternate edges curving in alternating ways. 
This very delicate structure of the Kelvin 14- 
hedron is only approximated by these skeletal 
models. 

Kelvin’s tetrakaidecahedron alone is not a 
sufficient model for either plant cells or soap 
bubbles. The tetrakaidecahedron has no pen¬ 
tagonal faces, whereas the majority of natural 
cells do have pentagonal faces. Matzke’s data 
on 600 bubbles, probably the largest sample of 
such cells that exists in literature, reveal 36 
polyhedral forms; some contain one heptago- 
nal face. Erickson built them all both as stick 
models and also as cardboard models. 

Figure 9-14 displays the fantastic differ¬ 
ences in the frequency of the polyhedra. Some 
of them occurred only once in Matzke’s 600 
cells. Amazingly, a 13-sided polyhedron (1-10- 
2) occurred 118 times. 

Does Form Explain Dynamic 
Functioning? Science Looks to Geometry 
for Mechanistic Models 

Growth of a rigid plant stem, self-assembly of 
a virus, functioning of a robot arm; such dy¬ 
namic processes are being simulated with dy¬ 
namic polyhedral models which focus on 
transformations. Ralph Erickson, Donald Cas¬ 
par, and Godfried Toussaint spoke at the 
Shaping Space Conference on aspects of their 
research in this frontier area in which the sym¬ 
biotic relationships among theory, mechanical 
models, and the natural world are strikingly 
evident. We shall examine some of their 
work. 

Fig. 9-14. Frequencies of polyhedral forms among 

600 central bubbles. Each bar is labeled with the 

number of faces of the polyhedron. Unshaded por¬ 

tions of bars indicate frequencies of polyhedra hav¬ 

ing one heptagonal face. Asterisks indicate forms 

[(0-12-1), (1-10-0); (1-10-1)] which cannot be built. 

Five bars are hidden: (0-12-3); (0-12-4); (1-10-4); 

(1-11-2-1); and (1-10-5). 

Plant Growth and Polyhedral 
Transformations 

A rigid arrangement of parenchymal plant 
cells is a dynamic system with very interesting 
spatial properties. The plant cells divide as the 
tissue grows. If those cells are space-filling 
polyhedra, the polyhedra must be capable of 
local transformations which result in changing 
the number of packed polyhedra without 
weakening the plant structure. We would ex¬ 
pect that division of a single cell would occur 
with minimal disruption of intersections and 
edges in adjacent cells. 

An advantage of the skeletal, stick models 
discussed by Erickson for modeling transfor¬ 
mation of plant cells is that these models can 
be manipulated and transformed rather easily. 
A face can be added by breaking a couple of 
connections and inserting three edges and two 
connectors. Another operation which is very 
helpful in exploring the possible transforma¬ 
tional forms consists of disconnecting and 
then reconnecting an edge and its four neigh¬ 
boring edges. The result is promotion of 
square faces to pentagons and demotion of 
two hexagons to pentagons. Other 14-hedra 
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can be found by carrying out similar manipula¬ 
tions on the edges. R. E. Williams has pro¬ 
posed'*^ a model for a cell packing based on 
repetition of this neighbor-switching opera¬ 
tion, creating cells with two square faces, 
eight pentagons, and four hexagons. 

Erickson noted that a puckered surface can 
be traced through the packing of the truncated 
octahedra. It consists of hexagons and 
squares, going up and down like valleys and 
ridges. The squares, most interestingly, are 
oriented at 90° to each other along a path. 
Neighbor-switching operations within this 
packing can be used'*^ to discuss dislocations 
in cellular structures as well as creation and 
annihilation of cells. He proposed that it 
should be possible to orient two puckered sur¬ 
faces properly, connect them appropriately, 
and create a uniform packing of polyhedra 
which will fill space. With a different orienta¬ 
tion and edge-connections, another space-fill¬ 
ing packing of 14-hedra would be created. This 
can be done extensively, if not exhaustively. 
The convincing way to do that is with stick 
models; there are too many possibilities and 
transformations for cardboard models to be 
feasible for this task. Erickson said that his 
models covered half of the kitchen floor! 

Polyhedral Models for Self-Assembly 
of Viruses 

Caspar has used a variety of model-building 
strategies to explore both the geometry and 
the energetics of protein assemblies.'*'* Caspar 
and Klug first illustrated'*^ their idea of self- 
assembly with a dynamic model with wooden- 
peg subunits designed to assemble in the T = 

3 icosahedral surface lattice. The structural 
unit, and various stages in assembly, are 
shown in Eig. 9-15. 

This model shows that it is possible to de¬ 
sign a single unit with bonds that can be 
switched by interaction with identical copies 
of itself to bond in the three different environ¬ 
ments of the 7=3 lattice. Such a model is too 
simple to explain all features of the control 
mechanisms that were postulated for icosahe¬ 
dral virus self-assembly, but it does display 
some of the essential interaction properties of 

a structural unit designed to form an icosahe¬ 
dral capsid. 

The model shown in Eigs. 9-15 and 9-16 il¬ 
lustrates some of Caspar’s further ideas about 
designing mechanical models to represent the 
dynamics of macromolecules. Such models 
should illustrate how the energy of interaction 
is distributed throughout the structure. One 
strategy has been to underdesign, so that the 
structure is not unintentionally overdeter¬ 
mined. The construction of a mechanical 
model is often a trial-and-error process. This 
is, in fact. Nature’s way for adaption and evo¬ 
lutionary development. Analogies with human 
technology and behavior have indeed pro¬ 
vided essential keys for understanding the op¬ 
eration of biological systems, and, conversely, 
analogizing Nature’s methods is a natural way 
to make analogs of Nature’s machines. 

Caspar concluded by discussing another bi¬ 
ological structure at a higher level of organiza¬ 
tion, an all-pentamer radiolarian skeleton in 
which there are 5-around-] arrangements, 6- 
around-1 arrangements, and paired pentamers 
next to each other. The skeleton is a regular 
organized structure without obvious symme¬ 
try. He suggested that in nature where there is 
regularity, with structures built of identical 
parts, there are likely to be regular plans. Geo¬ 
metric considerations are always important in 
these plans, and sometimes they predominate. 
However, satisfactory a priori predictions 
about what in fact happens in nature cannot be 
made. The only way to find out is to look. 

Robotics and Motions of Polyhedra 

Godfried Toussaint spoke'*^ about dynamic 
computational geometry, a new area in com¬ 
puter science which has evolved from work in 
graphics and visual design, inspired by ro¬ 
botics and problems of movement. A funda¬ 
mental problem in robotics theory involves 
the ways in which a set of objects can be 
moved without collisions. Toussaint and 
others have been studying how sets of poly¬ 
gons in the plane can be translated without 
collisions.'*^ Toussaint discussed some aspects 
of his work in generalizing such studies to 
three-dimensional movement of polyhedra. 
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Fig. 9-15. Constituent parts of Caspar’s self-assem¬ 

bly model, (a) On the left: a pentamer and hexamer; 

center, part of a hexamer or pentamer; right, a tri- 

mer and two trimers bonded together, (b) The same 

units with more bonds formed, (c) Misassembly of 

eight pentamers attempting to form a 7 = 1 shell. 

Models made by Charles Ingersoll, Sr. Photographs 

by Fred Clow. 

Fig. 9-16. Completed 7=3 self-assembly model viewed down: (a) twofold axis, (b) fivefold axis, (c) 

threefold axis. Models made by Charles Ingersoll, Sr. Photographs by Fred Clow. 
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Fig. 9-17. An illustration of a failure of the line- 

sweep heuristic for a set of isothetic rectangles. 

Note that rectangle D cannot be translated before 

rectangle C in direction /, even though d occurs 

before c on line /. 

Fig. 9-18. When the objects are circles of the same 

size, their centers yield the same ordering as their 

support points. The line-sweep heuristic gives a 

valid ordering for this set. 

He began with a problem: Can all members 
of a set of nonintersecting rectangles in the 
plane with their edges parallel to the x and y 

axes (such rectangles are called isothetic) be 
translated in the same direction by some com¬ 

mon vector to a final destination, subject to 
the constraints that the rectangles are moved 
only one at a time, and that no collisions oc¬ 
cur? (A collision occurs whenever the interi¬ 
ors of two rectangles intersect.) 

The answer is yes."*^ There always exists 
(for any direction) at least one order in which 
the polygons can be moved to permit such a 
translation. This property holds for every fi¬ 
nite set of convex polygons, and the ordering 
can be determined by computation. We say 
that convex polygons in the plane exhibit the 
translation-ordering property. 

Efficient computation of translation order¬ 
ing is important for a robot who is given the 
task of separating such polygons. A simple, 
intuitive algorithm which sometimes works is 
the line-sweep heuristic illustrated in Fig. 9- 
17. The vector / is the desired direction of 
translation. Lines perpendicular to / are con¬ 
structed to intersect the rectangles at support 

vertices a, b, c, and d. According to the line- 
sweep heuristic, the translation ordering is the 
order of the projections of the support vertices 
on /. The algorithm fails in this particular case, 
since the method requires D to move second, 
even though it is blocked by C. 

But is there a class of objects for which the 
line-sweep heuristic always works? It works if 
the objects are all circles of the same size, and 
with a slight modification (use of centers in¬ 
stead of support points) for any set of circles 
of arbitrary sizes (see Fig. 9-18).In three di¬ 
mensions, this method is called the plane- 

sweep heuristic; it works for sets of spheres 
and for some sets of isothetic polyhedra. 

This problem can be generalized^*^ for other 
types of polygons, and for motions other than 
simple translations. When the convexity con¬ 
straint is relaxed, there results a class of prob¬ 
lems concerning interlocking polygons. It be¬ 
comes interesting to ask whether a collection 
of polygons is “movably separable” in a spec¬ 
ified sense. 

In three-dimensional space, four isothetic 
rectangular polyhedra can be arranged so that 
no translation ordering exists for some direc¬ 
tions. Such an arrangement is shown in Fig. 9- 
19.^' Some sets of convex polyhedra interlock 
in all directions, with no translation ordering 
in any direction. Such a configuration can be 
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built from 12 long, flat, very-thin sticks. The 
first step is to construct a set of three inter¬ 
laced sticks A, B, and C (a triplet) on the xy 

plane as shown in Fig. 9-20, with their lengths 
parallel to a, (3, and y directions. Define a 
“hole” at the center of the configuration, and 
three “overlap” regions where the sticks 
touch each other. Three more triplets are con¬ 
structed (see Fig. 9-21) on planes perpendicu¬ 
lar to the xy plane, planes individually parallel 
to the a, (3, and y directions. The key feature 
of the final configuration is that each new trip¬ 
let added embraces an overlap region of two 
sticks in the original triplet; each overlap re¬ 
gion of the original triplet lies in the central 
hole of an embracing triplet. 

Inspection of Fig. 9-21 reveals that there is 
no direction in which more than two of the 
dozen sticks can be translated. Even though 
each polyhedral stick can be individually 
translated away from the configuration with¬ 
out disturbing the others, there exists no 
translation ordering in any direction. 

Are there sets of polyhedra in which no 
member can be moved out without disturbing 
the others? If the constraint that the polyhedra 
be rectangular solids is relaxed, a configura¬ 
tion of twelve convex polyhedra can be con¬ 
structed in which no polyhedron can be trans¬ 
lated in any direction without disturbing the 
others.K. A. Post found an example of six 
convex polyhedra that interlock in such a way 
that no one can be moved without disturbing 
the others. 

Toussaint discussed problems which arise 
in generalizing results from polygons in the 
plane to polyhedra in 3-space. Star-shaped 
polygons generalize in a straightforward way 
to star-shaped polyhedra. Any two star¬ 
shaped polygons can be separated with a sin¬ 
gle translation,and this property also holds 
for star-shaped polyhedra in 3-space.The 
situation is more complicated with monotonic 

figures. (A polygon is monotone if there exist 
two extreme vertices in some direction con¬ 
nected by two polygonal chains in which the 
vertices of the chain occur in the same order 
as their projections onto a line in that direc¬ 
tion.) Any two monotone polygons can be sep¬ 
arated with a single translation in at least one 
direction. 

Fig. 9-19. A set of isothetic convex polyhedra that 

does not allow a translation ordering in the direc¬ 

tion X + y. This example was discussed by Guibas 

and Yao.^' 

Fig. 9-21. Three more triplets added to the basic 

one. 
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Fig. 9-22. Two polyhedra (components of an ari- 

kake joint) strongly monotonic with respect to 

PL(z). The only way to separate this pair is to trans¬ 

late either P or Q in the z direction. 

The property of monotonicity does not gen¬ 
eralize straightforwardly and uniquely to three 
dimensions. Toussaint defined a polyhedron 
as weakly monotonic in a direction if the inter¬ 
section (with the polyhedron) of each plane 
perpendicular to that direction is a simple 
polygon, a line segment, or a point. These 
weakly monotonic polyhedra can be classified 
in terms of the properties of the polygons of 
intersections. It turns out that two polyhedra 
weakly monotonic with respect to a common 
direction can interlock under all motions. Fur¬ 
ther, a polyhedron is strongly monotonic with 
respect to a direction PL(/) if the polygons 
which result from the intersection of planes 
parallel to / are all monotonic in a direction 
orthogonal to /. Figure 9-22 illustrates two 
polyhedra, P and Q, which are strongly mono¬ 
tonic with respect to PL(z). It is known in Jap¬ 
anese carpentry as the ari-kake joint,a dove¬ 
tail which can be separated only by a 
translation in the z direction. Such polyhedra 
are always separable if they share a common 
direction of monotonicity. It is an open ques¬ 
tion whether they are necessarily separable 
when they do not share such a common direc¬ 
tion. 

Polyhedron Theory Accommodates 
Changing Expectations 

What can we expect when time and change are 
included in polyhedron theory? What are the 
new questions, and what might be the form of 
the answers? 

We have seen that static polyhedral units 
probably do not suffice as bases for chemical 
modeling of the dynamic aspects of solution 
structure. More needs to be known about the 
transformational properties of three-dimen¬ 
sional arrays of nonidentical polyhedra. Some 
important questions are: What local transfor¬ 
mations can be achieved without disrupting 
long-range structure? In an array, can a rota¬ 
tion of one polyhedron be achieved by interac¬ 
tions only with its nearest neighbors? Under 
what conditions can a polyhedron migrate 
through a space-filling array of transformable 
polyhedra? 

We have looked at skeletal models for trans¬ 
formations of the polyhedra which serve as 
models for plant cells in growing tissue. Their 
detachable, rigid tetrahedral connectors and 
flexible tubing model both the individual plant 
cells and the transformations of individual 
cells, as well as the packing of cells into large 
arrays and transformations within arrays. 
These arrays have long-range patterns which 
can be seen, for instance, as paths along 
puckered surfaces. Their short-range transfor¬ 
mational possibilities are seen in the neighbor¬ 
switching operations which produce disloca¬ 
tion, creation, or annihilation of cells. Such 
tangible models are suggestive, but general 
conclusions seem elusive. In this fundamental 
research further collaboration between bota¬ 
nists and geometers will surely be fruitful. 

Nineteenth-century scientists effectively 
used billiard-ball models to discuss gases, 
without necessarily abandoning belief in an 
aether that pervaded the space in which those 
billiard balls moved. Since no model of reality 
is complete, realists should notice that com¬ 
plementary models, although inconsistent in 
detail, may yield complementary information 
about the natural world. Thus a chemist, or a 
botanist, or a biophysicist may see in Tous- 
saint’s dynamic computational geometry ap¬ 
plications beyond robotics to more general 
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Fig. 9-23. A mechanical model illustrating rigidity 

in a r = 3 icosahedral lattice, built of 90 identical 

pieces of ^-inch-thick sheet aluminum bent to rep¬ 

resent dimers connected by pentamer/hexamer 

bonds. The diameter along the threefold axis is 11.5 

problems about how objects move and how 
they become bound to one another. Biochem¬ 
ists are concerned about how complex, stable 
structures are assembled by bringing together 
(in the proper orientations) individual mole¬ 
cules which one might have expected to be 
moving randomly in solution. Geometers with 
various perspectives may see beyond these 
qualitative connections. 

One central fact of biology is that living sys¬ 
tems build structures in the midst of apparent 
molecular chaos. Biochemical explanations of 
such structure creation are, at best, incom¬ 
plete and inadequate. Figure 9-23, in which a 
representation of Plato is held before us by a 
mechanical model of a chemical system, may 
well be an appropriate image for an appropri¬ 
ate strategy for future symbiotic progress in 
natural science, in engineering and in mathe¬ 
matics. It is clear that many fields of inquiry 
are enriched by both the results and the ques- 

inches, and the model weighs 2 pounds. Its shape 

approximates a truncated Platonic icosahedron, 

and it supports without distortion a 32-pound plas¬ 

ter bust of Plato. Model made by Charles Ingersoll, 

Sr. Photograph by William Saunders. 

tions from other disciplines. It is also clear 
that the possibilities for learning from the 
work of others are vast. 
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Polyhedral Molecular Geometries 

IstvAn Hargittai and Magdolna Hargittai 

Professor Coxeter writes: “the chief reason 
for studying regular polyhedra is still the same 
as in the times of the Pythagoreans, namely, 
that their symmetrical shapes appeal to one’s 
artistic sense.”' The success of modern mo¬ 
lecular chemistry affirms the validity of this 
statement; there is no doubt that aesthetic ap¬ 
peal has contributed to the rapid development 
of what could be termed polyhedral chemis¬ 
try.^ The late Professor Muetterties movingly 
described his attraction to boron hydride 
chemistry, comparing it to Escher’s devotion 
to periodic drawings: 

When I retrace my early attraction to boron hy¬ 
dride chemistry, Escher’s poetic introspections 
strike a familiar note. As a student intrigued by 
early descriptions of the extraordinary hydrides, I 
had not the prescience to see the future synthesis 
developments nor did I have then a scientific appre¬ 
ciation of symmetry, symmetry operations, and 
group theory. Nevertheless, some inner force also 
seemed to drive me but in the direction of boron 
hydride chemistry. In my initial synthesis efforts, I 
was not the master of these molecules; they seemed 
to have destinies unperturbed by my then amateur¬ 
ish tactics. Later as the developments in polyhedral 
borane chemistry were evident on the horizon, I 
found my general outlook changed in a characteris¬ 
tic fashion. For example, my doodling, an inevita¬ 
ble activity of mine during meetings, changed from 
characters of nondescript form to polyhedra, fused 
polyhedra, and graphs. 

I (and others, my own discoveries were not 
unique nor were they the first) was profoundly im¬ 
pressed by the ubiquitous character of the three- 
center relationship in bonding (e.g., the boranes) 
and nonbonding situations. I found a singular uni¬ 
formity in geometric relationships throughout or¬ 
ganic, inorganic, and organometallic chemistry: 

The favored geometry in coordination compounds, 
boron hydrides, and metal clusters is the polyhe¬ 
dron that has all faces equilateral or near equilat¬ 
eral triangles.^ 

Molecular geometry describes the relative 
positions of atomic nuclei. Although positions 
may be given by position vectors or coordi¬ 
nates of all nuclei in the molecule, chemists 
usually give the positions by bond lengths, 
bond angles, and angles of internal rotation. 
This second way greatly facilitates the under¬ 
standing and comparison of various struc¬ 
tures. The most qualitative but nonetheless a 
very important feature of molecular geometry 
is the shape of the molecule. Polyhedra are 
especially useful in expressing molecular 
shapes for molecules with a certain amount of 
symmetry. 

The molecules AS4 and CH4 both have tetra¬ 
hedral shapes (Fig. 10-1) and 7^ symmetry, but 
there is an important difference in their struc¬ 
tures. In As4 all nuclei are at vertices of a regu¬ 
lar tetrahedron and each edge of this tetrahe¬ 
dron is a chemical bond. Methane has a 
central carbon atom, with four chemical bonds 
directed from it to vertices of a tetrahedron 

Fig. 10-1. The molecular shapes of AS4 and CH4. 

172 



10. Polyhedral Molecular Geometries 173 

where the protons are located; no edge is a 
chemical bond. The AS4 and CH4 molecules 
are clear-cut examples of the two distinctly 
different arrangements. Such distinctions are 
not always so unambiguous. An interesting 
example is zirconium borohydride, Zr(BH4)4. 
Two independent studies'* describe its struc¬ 
ture by the same polyhedral configuration, but 
give different interpretations (Fig. 10-2) of the 
bonding between the central zirconium atom 
and the four boron atoms at the vertices of a 
regular tetrahedron. In one interpretation,^ 
there are four Zr—B bonds; according to the 
other,^ each boron atom is linked to zirconium 
by three hydrogen bridges, and there is no di¬ 
rect Zr—B bond. 

Real molecules ceaselessly perform intra¬ 
molecular vibrations. In even small-amplitude 
vibrations, nuclear displacements amount to 
several percent of the internuclear separa¬ 
tions; large-amplitude vibrations may permute 
atomic nuclei in a molecule. In describing a 
molecule by a highly symmetric polyhedron, 
we refer to the hypothetical motionless mole¬ 
cule. The importance and consequences of in¬ 
tramolecular motion in the polyhedral descrip¬ 
tion of molecules are discussed in the final 
section. 

Boron Hydride Cages 

All faces of boron hydride polyhedra are equi¬ 
lateral or nearly equilateral triangles. Boron 
hydrides with a complete polyhedral shape are 
called closo boranes (Greek closo: ‘closed’). 
One of the most symmetrical and most stable 
of the polyhedral boranes is the Bi2H|2^“ ion; 
its regular icosahedral configuration is shown 
in Fig. 10-3. Table 10-1 presents structural 
systematics of B„H„^“ closo boranes and the 
related C2B„_2H„ carboranes in which some 
boron sites are taken by carbon atoms.^ The 
so-called quasi-c/o56> boranes are derived from 
the closo boranes by replacing a framework 
atom with a pair of electrons. 

Figure 10-4 shows the systematics of borane 
polyhedral fragments obtained by removing 
one or more polyhedral sites from closo bo¬ 
ranes.* Since all faces of the polyhedral skele¬ 
tons are triangular, they may be called 
deltahedra.^ The derived deltahedral frag- 

Fig. 10-2. The molecular configuration of zirconium 
borohydride, Zr(BH4)4, in two interpretations but 
described by the same polyhedral shapes. 

Fig. 10-3. The regular icosahedral configuration of 
the Bi2Hi2^“ion. Only the boron skeleton is shown. 

ments are the tetrahedron, trigonal bipyramid, 
octahedron, pentagonal bipyramid, bisdisphe- 
noid, symmetrically tricapped trigonal prism, 
bicapped square antiprism, octadecahedron, 
and icosahedron. Only the octadecahedron is 
not a convex polyhedron. 

A nido (nestlike) boron hydride is derived 
from a closo borane by removal of one skele¬ 
ton atom. An arachno (weblike) boron hy¬ 
dride is derived from a closo borane by re¬ 
moval of two adjacent skeletal atoms. In 
either case, if the starting closo borane is not a 
regular polyhedron, then the atom removed is 
the one at a vertex with the highest connec- 
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Table 10-1. Structural Systematics of B„H„^ closo Boranes 
and C2B„2H„ closo Carboranes after Muetterties^ 

Polyhedron and point group Boranes Dicarboranes 

Tetrahedron, T,i (B4CI4)* — 

Trigonal bipyramid, Dy, — C2B3H5 
Octahedron, Of, B6H62- C2B4H6 
Pentagonal bipyramid, Dsi, B7H72- C2B5H7 
Dodecahedron (triangulated), Djj BsHs^ C2B6H8 
Tricapped trigonal prism, B9H92- C2B7H9 
Bicapped square antiprism, £>4^ C2B8H10 
Octadecahedron, Ciu C2B9Hn 
Icosahedron, !>, Bniif- C2B,oH,2 

* No boron hydride 

tivity. Complete nido and arachno structures 
are shown^ together with starting boranes in 
Fig. 10-5. 

Polycyclic Hydrocarbons 

Fundamental polyhedral shapes are realized 
among polycyclic hydrocarbons where the 
edges are C—C bonds and there is no central 
atom. Such bond arrangements may be far 
from the energetically most advantageous,**^ 
and particular arrangements may be too unsta¬ 
ble to exist. Yet the fundamental character of 
these shapes, their high symmetry, and their 
aesthetic appeal make them an attractive and 
challenging playground** for organic chemists. 
These substances also have practical impor¬ 
tance as building blocks for such natural prod¬ 
ucts as steroids, alkaloids, vitamins, carbohy¬ 
drates, and antibiotics. 

Tetrahedrane (Fig. 10-6a) is the simplest 
regular polycyclic hydrocarbon. The synthesis 
of this highly strained molecule may not be 
possible. Its derivative, tetra-tert-butylte- 
trahedrane (Fig. 10-6b), is amazingly stable,*^ 
perhaps because the substituents help “clasp” 
the molecule together. Cubane (Fig. 10-6c) has 
o- 
Fig. 10-4. Closo, nido, and arachno boranes. The 
genetic relationships are indicated by diagonal 
lines. Reprinted with permission from Ralph W. 
Rudolph, “Boranes and Heteroboranes: A Para¬ 
digm for the Electron Requirements of Clusters?” 
Accounts of Chemical Research, 9 (1976):446-52. 
Copyright 1976 American Chemical Society. 
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Fig. 10-5. Examples of closolnido and closolarachno structural relationships, (a) Closo-Beiif,^- and nido- 
B5H9. (b) C/o^o-ByHy^'and arachno-BsHw. 

Fig. 10-6. (a) Tetrahedrane, (CH)4. It has very high strain energy and has not (yet?) been prepared, (b) 
Tetra-ter/-butyltetrahedrane, {C[C(CH3)3]}4. (c) Cubane, (CHlg. (d) Dodecahedrane, (CH)2o. 

been known for some time.’^ Dodecahedrane 
(Fig. 10-6d), prepared only recently,''* was 
predicted'^ two decades ago to have “almost 
ideal geometry . . . practically a miniature 
ball bearing!” Its carbanion was predicted to 
be stabilized by a “rolling charge” effect, de¬ 
localizing the extra electron over twenty 
equivalent carbon atoms. 

In the (CH)„ convex polyhedral hydrocar¬ 
bons, each carbon atom is bonded to three 
other carbon atoms; the fourth bond is di¬ 

rected externally to a hydrogen atom. Around 
the all-carbon polyhedron is thus a similar 
polyhedron whose vertices are protons. The 
edges of the inner polyhedron are C—C 
bonds. Because four bonds would meet a car¬ 
bon atom at the vertices of an octahedron, and 
five in an icosahedron, the enveloping-polyhe- 
dra structure is not possible for these Platonic 
solids. For similar reasons, only seven of the 
14 Archimedean polyhedra can be considered 
in the (CH)„ polyhedral series. 
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Fig. 10-7. (a) Triprismane, (CH)^. (b) Pentapris- 
mane, (CH)io. (c) Hexaprismane, (CH)i2, not yet 
prepared. 

O 0 
o H 

Fig. 10-8. Ice crystal structure {top) and the iceane 
hydrocarbon, C12H18 {bottom). 

Cubane may also be described as tetrapris- 
mane, composed of eight identical methine 
units arranged at the corners of a regular te¬ 
tragonal prism with Oh symmetry, bound into 
two parallel four-membered rings conjoined 
by four four-membered rings. Triprismane, 
(CH)6, has D^h symmetry,'^’’’ and pentapris- 
mane, (CH)io, has Dsh symmetry.’* The quest 
for pentaprismane is a long story.'* Hexapris¬ 
mane, (CH)i2, the face-to-face dimer of ben¬ 
zene, has yet to be prepared. The molecular 
models are shown in Fig. 10-7. 

Structural varieties become virtually end¬ 
less if one reaches beyond the most symmetri¬ 
cal convex polyhedra. There are 5,291 iso¬ 
meric tetracyclic structures of C12H18 

hydrocarbons; only a few are stable.'^ One is 
iceane (Fig. 10-8), which may be visualized as 
two chair cyclohexanes connected by three 
axial bonds; it can also be described as three 
fused boat cyclohexanes. The name iceane 
was proposed by Fieser^” almost a decade be¬ 
fore its preparation. Considering water mole¬ 
cules in an ice crystal, he noticed three verti¬ 
cal hexagons with boat conformations. The 
emerging horizontal (H20)6 units possess 
three equatorial hydrogen atoms and three 
equatorial hydrogen bonds available for hori¬ 
zontal building. He noted that this structure 

suggests the possible existence of a hydrocarbon of 
analogous conformation of the formula C|2Hig, 
which might be named ‘’iceane.” The model indi¬ 
cates a stable strain-free structure analogous to ad- 
amantane and twistane. “Iceane” thus presents a 
challenging target for synthesis. 

The challenge was met.^' 
The adamantane molecule, C|oH|6, and the 

diamond crystal are closely related. Diamond 
has even been called the “infinite adamantylo- 
gue of adamantane.The high symmetry 
of adamantane is emphasized when its struc¬ 
ture is described^^ by four imaginary cubes 
packed one inside the other; two are shown in 
Fig. 10-9. 

Structures with a Central Atom 

Fig. 10-9. Adamantane, CioHif or (CH)4(CH2)6. 
Tetrahedral AX4 molecules belong to the point 
group Td. Successive substitution of the X li¬ 
gands by B ligands leads to other tetrahedral 
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configurations of the following symmetries: 

AX4 AX3B AX2B2 AXB3 AB4 
Td C'iv Cjv Tj 

If each substitution introduces a new kind of 
ligand, then the resulting tetrahedral configu¬ 
rations will have the following symmetries: 

AX4 AX3B AX2BC AXBCD 
C3„ C, C, 

Important structures may be derived by join¬ 
ing two tetrahedra or two octahedra at a com¬ 
mon vertex, edge, or face (Fig. 10-10). Ethane 
(H3C—CH3), ethylene (H2C=CH2) and acet¬ 
ylene (HC=CH) may be derived formally in 
such a way. Joined tetrahedra are even more 
obvious in some metal halide structures with 
halogen bridges.^"* 

Complex formation has similar conse¬ 
quences in molecular shape and symmetry. 
The H3N-A1C13 donor-acceptor complex^^ has 
a triangular antiprismatic shape with sym¬ 
metry (Fig. 10-11). Complex formation can be 
viewed as completion of the tetrahedral bond 
configuration around the central atoms of the 
donor (NH3, C3„) and the acceptor (AICI3, 
£>3/,). The structure of the mixed metal-halo¬ 
gen complex potassium tetrafluoroaluminate, 
KAIF4, can be viewed as formed from KF and 
AIF3, with completion of the aluminum tetra¬ 
hedron. The tetrahedral tetrafluoroaluminate 
structural unit is relatively rigid, whereas the 
position of the potassium atom around the 
AIF4 tetrahedron is rather loose. The most 
plausible models are shown in Fig. 10-12; the 
model with two halogen bridges best approxi¬ 
mates the experimental data.^’ The KAIF4 

molecule is representative of a class of com¬ 
pounds of growing practical importance: the 
mixed halides have much higher volatility than 
the individual metal halides. 

The prismatic cyclopentadienyl and ben¬ 
zene complexes of transition metals are remi¬ 
niscent of the prismanes. Figure 10-13a shows 
ferrocene, (C5H5)2Fe, for which both the bar¬ 
rier to rotation and the free-energy difference 
between the prismatic (eclipsed) and antipris¬ 
matic (staggered) conformations are very 
small.Figure 10-13b presents a prismatic 
model with D(,h symmetry for dibenzene chro¬ 
mium, (C6H6)2Cr. Molecules with multiple 

Fig. 10-10. Joining two tetrahedra (and two octahe¬ 
dra) at a common vertex, edge, or face. 

Fig. 10-11. The triangular antiprismatic shape of the 
H3N-A1C13 donor-acceptor complex. 

Fig. 10-12. Alternative models of the KAIF4 mol¬ 
ecule. 

Fig. 10-13. (a) Prismatic (Dsh) and antiprismatic 
(Dsj) models of ferrocene, (b) Prismatic model (D^h) 

of dibenzene chromium. 
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Fig. 10-14. The square prismatic model of the 

[Re2Cl8]^“ ion. 

Fig. 10-15. The paddlelike structure of the anhy- Fig. 10-16. (a) [2.2.2.2]-paddlane, C10H16, not yet 
drous dimolybdenum tetra-acetate, Mo2(02CCH3)4. prepared, (b) [l.l.l]-propellane, C5H6. 

bonds between metal atoms often have struc¬ 
tures with beautiful and highly symmetric 
polyhedral shapes.One example is the 
square prismatic [Re2Cl8]^" ion^° which played 
an important role in the discovery of metal- 
metal multiple bonds (Fig. 10-14). Another is 
the paddlelike structure^' of dimolybdenum 
tetra-acetate, Mo2(02CCH3)4 (Fig. 10-15). 

There are hydrocarbons called paddlanes 

for their similarity to the shape of riverboat 
paddles.The most symmetrical, highly 
strained [2.2.2.2]-paddlane (Fig. 10-16a) has 
not yet been prepared. The most unusual par¬ 
ent hydrocarbon known is the related [1.1.1]- 
propellane^^ (Fig. 10-16b) in which interac¬ 
tions between bridgehead carbons have been 
interpreted^'^ by three-center, two-electron or¬ 
bitals. The hydrocarbon skeleton seems to be 
electron deficient, while extra electron density 
is on the outside of the skeleton. 

Regularities in Nonbonded Distances 

There is no chemical bond between bridge¬ 
head carbons of [l.l.l]-propellane, even 
though the atoms are in a pseudobonding situ¬ 
ation with proper bonding geometry. A re¬ 
verse situation is seen in the ONF3 molecule 
(Fig. 10-17), an essentially regular tetrahedron 
formed by three fluorines and one oxygen, 
each bonded to the central nitrogen atom. The 
nonbonded F • • • F and F • • • O distances are 
equal within experimental error.^^ 

Certain intramolecular 1,3 separations (the 
1,3 label referring to two atoms each bonded 
to a third) are constant throughout a series of 
related molecules. The 1,3 distance may re¬ 
main constant even though bond distances and 
bond angles in the rest of the molecule change 
considerably. A controversy between two 
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Fig. 10-17. The molecular geometry of ONF3. (a) 
Bond lengths and bond angles, (b) Nonbonded dis¬ 
tances. 

Fig. 10-18. The molecular geometry of (a) sulfones, 
XSO2Y, (b) sulfuric acid, H2SO4, and (c) metal sul¬ 
fates, M2SO4. 

structure determinations of tetrafluoro-1,3- 
dithietane, 

was settled by considering the F • • • F non¬ 
bonded distances.The mean of the F---F 
1,3 distances in 40 molecules containing a CF3 
group was found to be 2.162 A, with a stan¬ 
dard deviation of 0.008 A! 

The O • • • O nonbonded distances in XSO2Y 
sulfones are remarkably constant at 2.48 A in 
a series of compounds^^ in which the S=0 
bond lengths vary by 0.05 A and the 0=S=0 
bond angles by 5°. Geometric variations in the 
sulfone series can be visualized (Fig. 10-18a) 
as if the oxygen ligands were firmly attached 
to two vertices of the ligand tetrahedron 
around the sulfur atom, and this central atom 
were moving along the bisector of the 
0=S=0 angle, depending on the X and Y 
ligands.^* 

The oxygen atoms in a sulfuric acid mole¬ 
cule, (H0)S02(0H), form a nearly regular tet¬ 
rahedron around the sulfur (Fig. 10-18b). The 
largest difference between the O • • • O dis¬ 
tances is 0.07 A, even though the SO bond 
distances differ by 0.15 A, and the OSO bond 

angles^^ by 20°. Structures of alkali sulfate 
molecules were written in old textbooks as 

Na—O O 
\ / 

S 
/ \ 

Na—O O 

In fact, the SO4 groups in such molecules are 
nearly regular tetrahedral,and the metal 
atoms are located on axes perpendicular to 
the edges of the tetrahedra; this structure is 
bicyclic (Fig. 10-18c). Sulfate and tetra- 
fluoroaluminate structures are markedly 
similar; each has a well-defined tetrahedral nu¬ 
cleus around which atoms occupy relatively 
loose positions. 

The VSEPR Model 

Why is a methane molecule tetrahedral, 
whereas xenon tetrafluoride is planar? Why is 
ammonia pyramidal rather than planar? Why 
is water bent, rather than linear? 

A simple and successful model,'*' designed 
to answer just such questions about molecules 
with a central atom, is based on the following 
postulate: The geometry of the molecule is de¬ 

termined by the repulsions among the electron 
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Fig. 10-19. Points-on-a-sphere configurations. 

Fig. 10-20. Shapes of groups of balloons. 

Fig. 10-21. Walnut clusters drawn by the artist 
Ferenc Lantos. 

pairs in the valence shell of its central atom. 

We shall illustrate the utility of this valence 
shell electron pair repulsion (VSEPR) model, 
showing the importance of the polyhedral de¬ 
scription of molecular structure. 

If the electron distribution around a central 
atom has spherical symmetry, then all the 
electron pairs in its valence shell will be equi¬ 
distant from the nucleus. Distances among the 
electron pairs will be maximized in the follow¬ 
ing arrangements; 

Number of Electron Pairs Arrangement 

2 Linear 
3 Equilateral triangle 
4 Regular tetrahedron 
5 Trigonal bipyramid 
6 Octahedron 

The arrangements are shown in Fig. 10-19 
where electron pairs are represented by points 
on a sphere. For four or more electron pairs, 
the arrangements are polyhedral. Of the three 
polyhedra in Fig. 10-19, two are regular. The 
trigonal bipyramid is not a strongly unique so¬ 
lution; the square pyramidal configuration for 
five electron pairs is only slightly less advanta¬ 
geous. The space requirement and mutual re¬ 
pulsion of electron pairs are nicely simulated 
by balloons'*^; a natural simulation is provided 
by nut clusters on walnut trees.(see Figs. 10- 
20 and 10-21.) 

To predict the bond configuration around a 
central atom, the number of valence shell elec¬ 
tron pairs must be known. The formula of a 
binary compound AX„ may be given as 
AX„E„j, E denoting a lone pair of electrons. 
For methane (CH4 or CH4E0), ammonia (NH3 
or NH3E1), water (OH2 or OH2E2) and hydro¬ 
gen fluoride (FH or FH1E3), n -b m = 4; ac¬ 
cordingly, each has a tetrahedral electron-pair 
configuration. The corresponding nuclear con¬ 
figurations are tetrahedral, pyramidal, bent, 
and linear. The ideal tetrahedral bond angles 
of 109°28' occur only when all electron pairs 
are equivalent. A double bond or a lone elec¬ 
tron pair requires more space than a single 
bond, repelling neighboring electron pairs 
more strongly. A bond to a strongly electro- 



10. Polyhedral Molecular Geometries 181 

negative ligand such as fluorine has less elec¬ 
tron density and repels electron pairs more 
weakly than a bond to a less electronegative 
ligand such as hydrogen. 

Do differences in electron-pair repulsions 
influence the symmetry of a molecule? The 
AX4, AX3E, and AX2E2 molecules have T^, 

Cju, and C2v symmetries, regardless of the 
ligands. For trigonal bipyramidal systems 
where « -h m = 5, however, the nature of the 
ligands may be decisive in determining the 
symmetry. The axial and equatorial positions 
in the £>3/, trigonal bipyramidal configuration 
are not equivalent. While the PF5 molecule as 
an AX5E0 system has £>3/, symmetry, it is not 
trivial to predict the symmetry of the SF4 mol¬ 
ecule as an AX4E] system. The question is: In 
which of the two possible positions will the 
lone electron pair occur? The lone pair has the 
larger space requirement, and the equatorial 
position is more spacious than the axial; thus 
the lone-pair position is equatorial, and the 
SF4 structure has €2^ symmetry. For the same 
reason, lone pairs are equatorial in CIF3 

(AX3E2) and XeF2 (AX2E3). Double bonds re¬ 
quire more space than single bonds, and be¬ 
have in the VSEPR model similarly to lone 
pairs (Fig. 10-22). 

Consider octahedral arrangements in which 
a central atom has six electron pairs in its va¬ 
lence shell. The symmetry is unambiguously 
O/, for AX6 ; an example is SF6. The IF5 mole¬ 
cule (AX5E1) is a tetragonal pyramid; the elec¬ 
tron pair may be at any of the six equivalent 
sites. When there are two lone pairs, they oc¬ 
cupy positions maximally distant; thus XeF4 

(AX4E2) is square planar, £>4/, (Fig. 10-23). Dif¬ 
ficulties encountered with five-electron-pair 
valence shells are intensified for the case of 
seven electron pairs. Seven vertices cannot 
describe a regular polyhedron; the number of 
nonisomorphic polyhedra with seven vertices 
is large, but no one is relatively very stable. 
One of the early successes of VSEPR model 
was that it correctly predicted the nonoctahe- 
dral structure of XeFe, as it is indeed a seven- 
electron-pair case (AXJSi). 

Complete geometrical characterization of 
the valence shell configuration for a molecule 
with more than one lone pair requires more 
than specification of the bond angles. Some- 

AX5 AX4E AX3E2 AX2E3 

F 
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Fig. 10-22. Molecules with trigonal bipyramidal and 
related configurations. 

AXg AX5E AX4E2 

F F 

Fig. 10-23. Molecules with octahedral and related 
configurations. 

Table 10-2. Calculated Angles in a Series of Tetra¬ 
hedral Molecules'*^ 

AF4E0 

SiF4 

AF3E1 

PF3 

AF2E2 

SF2 

AFE3 

CIF 

AF0E4 

Ar 

FAF 109.5°* 96.9° 98.1° _ _ 

FAE — 120.2° 104.3° 101.6° — 

EAE — — 135.8° 116.1° 109.5°* 

* By virtue of symmetry 

times, though by far not always, the angles 
made by lone pairs may be attainable from ex¬ 
perimental bond angles. For example, the 
E—P—F angle of PF3 can be calculated from 
the F—P—F angle by virtue of the sym¬ 
metry. On the other hand, the E—S—E and 
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Fig. 10-24. Matisse, Henri, Dance (first version). York. Gift of Nelson A. Rockefeller in honor of 

(1909, early) Oil on canvas. 8'6 1/2" x 12'9 1/2". Alfred H. Barr, Jr. 

Collection, The Museum of Modern Art, New 

O metal 

O halogen 

Fig. 10-25. Equilibrium versus average structures of metal halide molecules with low-frequency, large- 

amplitude deformation vibrations. 

E—S—F angles of the C2v SF2 molecule can¬ 
not be calculated from the F—S—F bond 
angle. 

Even when angles between lone pairs can 
be calculated from experimental data or de¬ 
duced from quantum mechanical calculations, 
they are often ignored. Proper application of 
the VSEPR model should direct at least as 
much attention to angles of lone pairs and 
their variations as to bond angles.'^'* As an ex¬ 
ample of the consistency of variations in all 
angles of a series of tetrahedral molecules. Ta¬ 
ble 10-2 presents a set of results from quantum 
chemical calculations. 

Consequences of Intramolecular Motion 

Imagine watching the dynamic dance shown in 
Matisse’s Dance (Fig. 10-24). As choreo¬ 
graphed, one dancer jumps out of the plane of 
the other four. As soon as this dancer returns 
into the plane of the others, it is the role of the 
next to jump, and so on. The exchange of roles 
from one dancer to another throughout the 
five-membered troupe is so quick that a photo¬ 
graph with slow shutter speed would give a 
blurred picture; only a short exposure can 
identify a well-defined configuration of 
dancers. Matisse’s Dance simulates the 
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pseudorotation of the cyclopentane molecule, 
which has a special degree of freedom 

in which the out-of-plane carbon atom ex¬ 
changes roles with one of the four in-plane 
atoms. The process is equivalent to a permuta¬ 
tion of two carbon atoms (and their hydrogen 
ligands), and is also equivalent to a rotation by 
27r/5 about the axis perpendicular to the plane 
of the four coplanar carbons.'*^ 

It is an extreme approach to disregard intra¬ 
molecular motion. The motionless state, al¬ 
though hypothetical, is well defined: it is the 
equilibrium structure, the structure with mini¬ 
mum potential energy, a structure that 
emerges from quantum chemical calculations. 
Yet real molecules are never motionless, and 
experimentalists study real molecules. As 
with Matisse’s Dance, the relationship be¬ 
tween the lifetime of a configuration and the 
time scale of the investigating technique has 
crucial importance."^ 

Large-amplitude, low-frequency intramo¬ 
lecular vibrations may lower the molecular 
symmetry of the average structure versus the 
higher symmetry equilibrium structure. Some 
examples from metal halide molecules are 
shown in Fig. 10-25, although it is not yet un- 

Fig. 10-26. Interconversion of nuclear positions in 

bullvalene. 

Fig. 10-27. Interconversion of nuclear positions in 

hypostrophene. 

Fig. 10-28. Berry-pseudorotation of PFs-type molecules. 
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a 

a 

Fig. 10-29. (a) The Lipscomb model of the re¬ 
arrangements in polyhedral boranes, and (b) an ex¬ 
ample of icosahedron/cuboctahedron/icosahedron 
rearrangement. 

Fig. 10-30. Ortho-, meta-, and para-dicarba-c/o^o- 
dodecaboranes. Whereas the ortho isomer easily 
transforms into the meta, the para isomer is ob¬ 
tained only under more drastic conditions and only 
in small amounts. 

Fig. 10-31. The structure of [Co6(CO)i4]'*“in two 
representations, (a) The octahedron of the cobalt 
cluster possesses six terminal and eight triply bridg¬ 
ing carbonyl groups, (b) An omnicapped cube of the 
carbonyl oxygens envelopes the cobalt octahedron. 

ambiguously determined whether those are in¬ 
deed the equilibrium structures. Today it is 
only supposed that the experimentally deter¬ 
mined structures occur because of averaging 
over all molecular vibrations.No permuta¬ 
tions of the nuclei are involved in these intra¬ 
molecular vibrations on the time scale con¬ 
sidered. 

Rapid interconversion of nuclei takes place 
in a molecule of bullvalene, (CH)io, under 
very mild conditions (Fig. 10-26). Bonds are 
made and broken, but nuclei shift only 
slightly. Four different kinds of carbon posi¬ 
tions interconvert simultaneously.'*^ Hypo- 
strophene (Greek hypostrophe: ‘turning 
about’, ’recurrence’) is a (CH)]o hydrocarbon 
whose trivial name was chosen to reflect its 
behavior.^** The molecule ceaselessly under¬ 
goes intramolecular rearrangements indicated 
in Fig. 10-27. The atoms have a complete time- 
average equivalence, yet hypostrophene could 
not be turned into pentaprismane. 

Permutational isomerism among inorganic 
trigonal bipyramidal structures was discov¬ 
ered by Berry.Although the D^h trigonal bi¬ 
pyramid and the tetragonal pyramid have 
very different symmetries, they are easily in- 
terconverted by bending vibrations (Fig. 10- 
28). Permutations in an AX5 molecule (e.g., 
PF5) are easy to visualize as the two axial li¬ 
gands replacing two equatorial ones, while the 
third equatorial ligand becomes axial in the 
transitional tetragonal pyramidal structure. 
Rearrangements quickly follow one another, 
with no position being unique. The form 
originates from a structure and yields an¬ 
other D^h form. A similar pathway was estab¬ 
lished^^ for the (CH3)2NPF4 molecule in which 
the dimethylamine group is permanently 
locked into an equatorial position whereas the 
fluorines exchange in pairs all the time. The 
PF5 rearrangement also well describes the per¬ 
mutation of nuclei in five-atom polyhedral bo¬ 
ranes.In one mechanism^'* for rearrange¬ 
ments of polyhedral boranes, two common 
triangular faces are stretched to a square face. 
This intermediate may revert to the original 
polyhedron with no net change, or may turn 
into a structure isomeric with the original (Fig. 
10.29). This mechanism is illustrated by inter¬ 
conversion of the ortho and meta isomers of 
dicarba-c/o^^o-dodecaborane-’’^ (Fig. 10-30); the 
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Fig. 10-32. The planetary system of Johannes Kepler, detail. From Kepler’s Mysterium Cosmographicum 
(1595). 

para isomer is obtained under more drastic 
conditions and only in small amounts. A simi¬ 
lar model has been proposed^^ for carbonyl¬ 
scrambling in Co4(CO)i2, Rh4(CO))2, and 
Ir4(CO),2. 

Rapid interconversion among different 
modes of carbonyl coordination is possible, 
even in the solid state,in transition-metal 
carbonyl molecules of the form Mw(CO)„. The 
usually small m-atom metal cluster polyhe¬ 
dron is enveloped by another polyhedron 
whose vertices are occupied by carbonyl oxy¬ 
gens.^* An attractive example is [Co6(CO)i4]‘’“ 
in which the octahedral metal cluster has six 
terminal and eight triply bridging carbonyl 
groups (Fig. 10-3la). This structure may also 
be represented^^ by an omnicapped cube en¬ 
veloping an octahedron (Fig. 10-3lb). These 
models are a reminder of another model in 
which polyhedra envelop other polyhedra; 
that model is Kepler’s planetary system^® (Fig. 
10-32). 
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Introduction to Polyhedron Theory 

Marjorie Senechal 

This part of the book is concerned with the 
mathematical theory of polyhedra at the re¬ 
search level. The broad spectrum of current 
research presented at the Shaping Space Con¬ 
ference is reproduced here essentially in its 
original form. By way of assistance this chap¬ 
ter provides a brief introduction to some rele¬ 
vant aspects of polyhedron theory; after that 
you are on your own. The part concludes with 
a collection of unsolved problems, solicited by 
Douglas Dunham (Chapter 18). We hope that 
these chapters and problems will be of interest 
both to specialists and to nonspecialists who 
are interested in learning about current work 
in this field. 

What Is a Polyhedron? 

You have met enough polyhedra by now to be 
able to guess that this question will not be easy 
to answer. In fact, there is not one answer, but 
many. The problem in choosing a definition 
was explained many years ago by Robert 
Frost in his poem “Mending Wall”: “Before 
I’d build a wall. I’d want to know what I was 
walling in, and what I was walling out.” 

The delightful book Proofs and Refutations, 

written in the form of a classroom discussion, 
is required reading for all polyhedron enthusi¬ 
asts.' In it the author, Imre Lakatos, shows 
how a careful examination of the implications 
of a definition forces us to construct our walls 
very carefully. Consider, for example, the fol¬ 
lowing excerpt: 

GAMMA: A polyhedron is a solid whose surface 

consists of polygonal faces . . . 

DELTA: Your definition is incorrect. A polyhedron 

must be a surface: it has faces, edges, vertices, it 

can be deformed, stretched out on a blackboard, 

and has nothing to do with the concept of “solid.” 

A polyhedron is a surface consisting of a system of 

polygons. 

TEACHER: For the moment let us accept Delta’s 

definition. Can you refute our conjecture (Euler’s 

formula, F — E + V = 2, which the class is trying 

to prove) now if by polyhedron we mean a surface? 

ALPHA: Certainly. Take two tetrahedra which 

have an edge in common. Or, take two tetrahedra 

which have a vertex in common. Both these twins 

are connected, both constitute one single surface. 

And, you may check that for both V - E + F = 3. 

DELTA: I admire your perverted imagination, but 

of course I did not mean that any system of poly¬ 

gons is a polyhedron. By polyhedron I meant a sys¬ 

tem of polygons arranged in such a way that (1) 

exactly two polygons meet at every edge and (2) it 

is possible to get from the inside of any polygon to 

the inside of any other polygon by a route which 

never crosses any edge at a vertex. Your first twins 

will be excluded by the first criterion in my defini¬ 

tion, your second twins by the second criterion. 

Delta believed that Alpha’s twin tetrahedra 
are not polyhedra, but “monsters” which can 
and must be barred by a proper definition. 
Monster-barring, argued Lakatos, is often the 
reason that complicated, abstract definitions 
like Delta’s second one appear in mathemat¬ 
ics. (Unfortunately they are usually presented 
to the student in a take-it-or-leave-it way, with 
no explanation of how or why anyone would 
ever come up with them.) 

So, if you wish to define “polyhedron,” you 
should think about the kinds of objects that 
you are willing to accept as polyhedra. For 
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example, you might (or might not) want to in¬ 
clude 

• Star polyhedra 
• Toroidal polyhedra 
• Infinite polyhedra 
• Polyhedra whose faces are skew polygons 
• Either pair of Delta’s tetrahedral twins 
• A finite capped cylinder (it has three faces, 

two edges, and no vertices!) 

Of course, you might want to include some 
of these in some cases, and exclude them in 
others, depending on what properties you are 
studying. 

A widely accepted definition of “polyhe¬ 
dron” is that given^ by Branko Griinbaum; it is 
based on the following definition of a polygon: 

Definition 11.1. A finite polygon is the figure 
formed by a finite sequence of vertices in E^, 

V\, V2, , V„, together with the edges, [V,, 
Phi], / = 1,2, . . . ,n - 1, and [P„,P,]. (An 
infinite polygon is defined in a suitably analo¬ 
gous way.) 

Definition 11.2. A polyhedron P is any family 
of polygons (called faces of P) that has the 
following properties: (i) Each edge of one of 
the faces is an edge of just one other face, (ii) 
The family of polygons is connected; that is, 
for any two edges E and E' of P there exists a 
chain E = Eq, Pu Eu P2, E2, . . . ,Pn,En = 
E', of edges and faces of P, in which each Pi is 
incident with E,-i and with E, . (iii) Each com¬ 
pact^ set meets only finitely many faces. 

(How does this definition compare with 
Delta’s second one?) 

Notice that Definition 11.1 does not require 
the vertices of a polygon to be coplanar. Thus 
the polyhedra permitted by Definition 11.2 
may have skew nonplanar “faces”—and 
there may be infinitely many of them! Defini¬ 
tion 11.2 is broad enough to include most of 
the polyhedra you have met in this book, and 
then some. On the other hand, it may be too 
broad for some purposes: for example, we 
may want to restrict ourselves to convex poly¬ 
hedra. It might not be broad enough for other 
purposes, however. Do we really want to ex¬ 
clude the twin tetrahedra which share only a 

vertex, for example? They have been used to 
interpret molecular structures. Other impor¬ 
tant applications call for polyhedra with mov¬ 
able parts. Will this definition be able to ac¬ 
commodate the demands of scientists for a 
broader theory? (See Chapter 9.) 

Why a Theory of Polyhedra? 

Why don’t we simply take them as we find 
them, admiring them for their beauty and the 
wonderful things that they represent? Of 
course, one could do this, but then our under¬ 
standing would be extremely limited. In this 
section we will discuss some of the reasons, 
besides intellectual curiosity and aesthetic 
pleasure, why mathematicians are engaged in 
polyhedral research. 

Many practical problems involve polyhedra 
built to specification, either by nature or by 
man. To understand these structures, and to 
be able to create new ones, we must know 
what the specifications are, why they are nec¬ 
essary, and what sorts of objects are charac¬ 
terized by them. For example, if we want to 
design bridges and buildings that stay up, we 
must study the form and dynamics of trusses 
and braces, and this leads to questions about 
polyhedral stability. Problems like these have 
been a focus of research in the Structural To¬ 
pology Research Group in Montreal for many 
years. Other problems motivated by the needs 
of science and technology are discussed in 
Chapter 9. 

Moreover, the need for a theory of polyhe¬ 
dra arises almost spontaneously when we try 
to make clear to colleagues and students what 
we are talking about. For example, if someone 
asks what we mean by the word “polyhe¬ 
dron” we might begin, like Gamma and Delta, 
by specifying certain characteristics we think 
all polyhedra have in common; these are usu¬ 
ally characteristics of the polyhedra that we 
already know. Having listed them, it is then 
natural to wonder, like Alpha, whether all ob¬ 
jects which have these characteristics are nec¬ 
essarily things that we want to call polyhedra. 
Or, we might ask whether there are new, as 
yet undiscovered, structures which also have 
these properties. 
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This line of questioning often leads us to 
generalize familiar concepts. For example, 
Definition 11.1 implies that there are many 
kinds of regular polygons in addition to the 
convex and star plane polygons: it implicitly 
permits regular prismatic and antiprismatic'* 
polygons, and regular infinite polygons whose 
edges lie on straight lines, or zigzag, or are 
helical. By a careful analysis of the possible 
regular polyhedra with such polygons as 
faces, Griinbaum found that, in addition to the 
regular convex and star polyhedra, there are 
six additional families: the infinite regular 
plane tessellations, the Petrie-Coxeter poly¬ 
hedra, a class of nine regular polyhedra with 
finite skew polygons as faces, infinite regular 
polyhedra with finite skew polygons as faces, 
regular polyhedra whose faces are infinite zig¬ 
zag polygons, and regular polyhedra whose 
faces are infinite helical polygons! In this way 
our understanding of regular three-dimen¬ 
sional polyhedra has been greatly enriched. 

Polyhedra can be generalized in other ways. 
One of these is to investigate their ana¬ 
logues—“polytopes”—in higher dimensions. 
The regular convex polytopes in n dimensions 
were discovered by Ludwig Schlafli in the 
early 1850s. In spaces of five or more dimen¬ 
sions, there are only three of them: the higher 
dimensional analogues of the tetrahedron, the 
cube, and the octahedron. But in four-dimen¬ 
sional space, there are six regular convex 
poly topes: the three just mentioned, one with 
120 dodecahedral cells (cells are three-dimen¬ 
sional “faces”), one with 600 tetrahedral 
cells, and one with 24 octahedral cells. These 
six polytopes are not easy for us to visualize, 
but there are various geometric and algebraic 
techniques which, together with computer 
graphics, can help a great deal. One of the 
most interesting of these is described by 
Thomas Banchoff in Chapter 16. 

Or we may generalize the definition of regu¬ 
larity to apply to a broader class of polyhedra. 
In Chapter 14, Jorg Wills discusses such a gen¬ 
eralization of the regular solids, called Pla- 
tonohedra. Here the polyhedra are “equive- 
lar”; that is, their faces are regular k-gom and 
q meet at each vertex, but the polyhedra can 
be toroidal or indeed of any genus.^ The 
“symmetries” of these objects include some 
transformations which preserve their combi¬ 

natorial structures but, strictly speaking, not 
their metrical properties. 

Sometimes problems are generalized be¬ 
cause the original problem is too hard. The 
ancient question: “Which polyhedra fill 
space?” is one of these. The difficulties are so 
severe that it makes good sense to begin with 
the more tractable one: “Which combinatorial 
types of polyhedra fill space?” Progress on 
this question has recently been made by Egon 
Schulte (Chapter 12). 

Another impetus for the development of a 
theory of polyhedra is the need to clarify fun¬ 
damental concepts. As we have seen, the his¬ 
tory of polyhedra is long and it has many 
roots. On close examination, we sometimes 
find that well-entrenched definitions and clas¬ 
sifications are not as clear as we once thought. 
Or, as new classes of polyhedra are discov¬ 
ered, we may find old characterizations inade¬ 
quate. This confusion leads to new questions 
about what it is we are talking about, and 
these questions generate research. For exam¬ 
ple, as Griinbaum and Shephard point out in 
Chapter 13, there is no problem reconciling 
the several widely held (but distinct) concepts 
of duality as long as we are talking about con¬ 
vex polyhedra, but with more general types of 
polyhedra it is no longer even clear what 
“dual” is supposed to mean. 

Finally, it often happens that in the course 
of investigating one problem, surprising and 
illuminating links are found with others. The 
equivalence of the seemingly unrelated con¬ 
cepts of convex polyhedra, Dirichlet tessella¬ 
tions, and “spider webs” discussed in Chap¬ 
ter 17 is an exciting example.^ 

Polyhedral Themes 

In addition to the variety of motivations for 
studying polyhedra theory, several themes 
run throughout the following papers and 
problems. 

Symmetry. The aesthetic link between sym¬ 
metry, beauty, and perfection was undoubt¬ 
edly the reason why the regular polyhedra 
were first noticed and singled out for atten¬ 
tion. A great deal has already been said about 
symmetry in this book, so we will not review 
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the basic concepts here. The following re¬ 
marks, however, may be helpful to keep in 
mind while reading the following chapters. 

Symmetry theory is not a museum piece, 
but a valuable tool in the study of polyhedra. 
We have just seen that symmetry often sug¬ 
gests interesting generalizations. It can also be 
a guide in searching for new kinds of polyhe¬ 
dra. The semiregular polyhedra discovered by 
Archimedes were (at that time) a new class of 
highly symmetrical polyhedra, and Archi¬ 
medes probably used symmetry consider¬ 
ations to ensure that this would be so. In fact, 
the eleven that can be obtained from the Pla¬ 
tonic “solids” by truncation are obtained by 
truncating symmetrically: first a vertex (or 
edge) of a solid is truncated in such a way that 
its contribution to the symmetry of the polyhe¬ 
dron is not destroyed, and then all the other 
vertices are truncated in exactly the same 
way. This ensures that the truncated polyhe¬ 
dron has all the symmetries of the original reg¬ 
ular one. 

A requirement of symmetry can also help us 
to restrict a problem to a reasonable size. Ob¬ 
viously all sorts of idiosyncratic constructions 
are admitted under Definition 11.2; we cannot 
hope to survey them all. By focusing on those 
that have some symmetry properties, how¬ 
ever, we obtain a manageable class of objects. 
And because symmetry is a hierarchical con¬ 
cept, we can broaden our study later by omit¬ 
ting its restrictions one by one. Symmetry can 
help to organize and present complex informa¬ 
tion. Several authors (H. S. M. Coxeter in 
Chapter 3, Arthur L. Loeb in Chapter 6, and 
Barry Monson in Chapter 15) point out the 
effectiveness of symmetry arguments in char¬ 
acterizing the coordinates of certain polyhe¬ 
dra; in his short note Monson points out an 
interesting connection between this problem 
and the theory of numbers. (Indeed, the the¬ 
ory of polyhedra has connections with, and 
implications for, almost every branch of math¬ 
ematics.) 

Symmetry theory can also be used to study 
properties of polyhedra which are inade¬ 
quately characterized by their geometry. For 
example, we have seen that a carbon atom is 
often represented as a regular tetrahedron, be¬ 
cause it is 4-valent. But when an atom joins 
with other atoms in a molecule or crystal, its 

four bonds may no longer be equivalent. To 
incorporate this information into the geometry 
of the tetrahedron, we can color its vertices or 
faces in such a way that equivalence is prop¬ 
erly indicated. This leads us to the concept of 
“color symmetry,” which has been exten¬ 
sively studied both for polyhedra and for 
tessellations of the plane. The colored tilings 
of interlocking creatures designed by M. C. 
Escher are typical examples of patterns with 
color symmetry, but less orderly colorings are 
important too. Again we must decide what we 
want to wall in and what we want to wall out. 
In a lecture at the Shaping Space Conference, 
David Marker argued that there are many in¬ 
teresting colored polyhedra which do not sat¬ 
isfy even the least restrictive definitions that 
have been proposed. Clearly the theory is still 
evolving.^ 

Networks. By now you are very familiar with 
Euler’s deceptively simple formula for the 
vertices, edges, and faces of a convex polyhe¬ 
dron, V - E + F = 2. This formula turns out 
to have a wealth of implications, even though 
it says nothing whatever about angles, edge 
lengths, or other metric properties of polyhe¬ 
dra, being concerned only with the networks 
formed by edges and vertices. For example, it 
implies that there are at most five regular poly¬ 
hedra (in addition to the so-called digonal 
polyhedra and dihedra). It is very surprising 
that this ancient and famous result does not in 
fact depend on either the symmetry or metric 
properties of the polyhedra, but only on their 
combinatorial properties. 

The numbers of faces, vertices, and (conse¬ 
quently) edges of a polyhedron constitute its 
f-vector {V, E, F). Some of the questions one 
might ask about /-vectors are: If V, E, F are 
integers which satisfy the Euler relation, are 
there any corresponding polyhedral networks 
of edges and vertices? For example, there is 
no polyhedron with /-vector (0, 4, 6), but there 
are two very different polyhedra with/-vector 
(8, 12, 6). (One is the cube; what is the other?) 
Thus the relation V-£'-l-F=2isa neces¬ 
sary condition for the existence of a polyhe¬ 
dron with/-vector (V, E, F) but it is not always 
sufficient. As Margaret Bayer explains in 
Chapter 18, the additional conditions that 
must be satisfied by V, E, and F have been 



11. Introduction to Polyhedron Theory 195 

found for the three-dimensional case, but the 
analogous problem in higher dimensions re¬ 
mains unsolved. 

Another important question is: If a polyhe¬ 
dron with/-vector (V, E, F) does exist, what 
kinds of faces does it have? (How many trian¬ 
gles, how many quadrilaterals, and so forth?) 
In other words, what is its face sequence [/], 
/: = 3, 4, 5, 6, . . . , whereis the number of 
/:-gonal faces of the polyhedron? A famous 
equality which is a direct consequence of 
Euler’s formula states that if the polyhedron is 
trivalent (that is, if three edges meet at each 
vertex), then 

3/3 + 2/4 + /5 = \1 + ^{k - 6)fk. (11.1) 
k>6 

This is a condition that the face sequence of a 
polyhedron must satisfy, but it does not guar¬ 
antee that a polyhedron with such a face se¬ 
quence exists. 

Euler’s formula has been generalized to 
polyhedra of higher dimension, and of other 
genera. Eor a polyhedron of genus g, the for¬ 
mula becomes 

V-E + F=2-2g. (11.2) 

Thus for the torus the right-hand side is zero. 
A great deal of effort has been, and is being, 
devoted to finding analogues, for polyhedra of 
genus greater than one, of Eberhard’s theo¬ 

rem, which is closely related to Eq. (11.1): For 
every finite sequence of nonnegative integers 
\fk, k>?>, k f E\ satisfying Eq. (11.1) there are 
values of /6 such that a polyhedron with face 
sequence \fi^ exists. Peter Gritzmann found a 
toroidal analogue in 1983 (see Chapter 18). 

Next we might ask: “How many distinct 
combinatorial types of polyhedra belong to 
each sequence [f^]?’’ This is an unsolved prob¬ 
lem. The numbers of combinatorial types be¬ 
longing to each /-vector are known only for 
polyhedra with eleven or fewer faces.^ There 
is no apparent pattern to these numbers, but 
Eli Goodman and Richard Pollack have re¬ 
cently found surprisingly low bounds for the 
number of combinatorially distinct polytopes 
(of a certain type) with n vertices in <i-dimen- 

sional space.® 

Geometric Realization. Even when a polyhe¬ 
dron network exists, it may happen that poly¬ 
hedra with straight edges and planar faces can¬ 

not be constructed according to these plans. If 
the edges of the digonal networks, for exam¬ 
ple, are straightened out, they all collapse to a 
single line. This raises the question of deter¬ 
mining the conditions under which a polyhe¬ 
dron with certain properties can be realized 

geometrically. 

In studying the problem of realization, a 
fundamental theorem is that of Steinitz, which 
characterizes the types of planar graphs'® 
which correspond to convex polyhedra in 
three-dimensional space. Among the unsolved 
problems in polyhedron theory are several 
concerning realizations of combinatorial poly¬ 
hedra of higher genera. The long-range goal of 
such research is of course to find appropriate 
analogues of Steinitz’s theorem. 

Realization questions lead to the study of 
other properties of polyhedra. Polyhedra were 
originally studied from the metric point of 
view. Later, Euclid explained how to con¬ 
struct the regular solids. Descartes’ work on 
polyhedra was concerned with the relations 
among the polygonal angles of polyhedral 
faces and the dihedral angles between faces. 
Most polyhedron models have definite angles 
and edge lengths; most buildings are built to 
precise architectural plans. It would be easy to 
cite other cases in which the metric properties 
of polyhedra play an indispensable role. But 
because of the power and comparative sim¬ 
plicity of the combinatorial approach, the met¬ 
rical theory has been relatively neglected for 
many years. 

The theory of the rigidity of polyhedral 
frameworks is enjoying a renaissance in this 
decade, due in large measure to the work of 
the Structural Topology Research Group. 
Older theories are being reexamined from a 
modern point of view, and new techniques are 
being applied to them. The work is well repre¬ 
sented in this book. 

A Word of Warning 

Specialized discussions of problems in polyhe¬ 
dron theory use technical mathematical termi¬ 
nology. If you are a nonspecialist, it may be 
helpful if we explain, in intuitive language, 
some of the less familiar mathematical terms 
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that you will encounter. (You should skip the 
next two paragraphs if you are already under¬ 
stand the italicized words.) 

We already defined the word polygon (Defi¬ 
nition 11.1). Since this word has metric conno¬ 
tations (e.g., angles and edge-lengths can be 
defined) which are not needed in the purely 
combinatorial theory of polyhedra, some au¬ 
thors prefer to speak of a 2-cell, a floppy poly¬ 
gon that can be deformed into a circle. You 
can think of a 2-manifold as a two-dimensional 

surface in three-dimensional space, such as a 
plane, an infinitely long cylinder, a sphere, or 
a torus, possibly deformed. Similarly, the 2- 
sphere is the ordinary sphere in three dimen¬ 
sions (surface only, of course). The prefix 
“2-” emphasizes the fact that the surface is 
two-dimensional, as opposed to three-, four-, 
or n-dimensional. A 2-cell complex is a 2-man- 
ifold every point of which belongs to the inte¬ 
rior or boundary of a 2-cell. 

The terms “closed,” “bounded,” and 
“boundary” can lead to confusion unless you 
remember that each of them has a precise 
mathematical meaning. A subset of space is 
bounded if it is of finite extent, that is, if it can 
be entirely enclosed in some sphere of finite 
radius (even if the radius has to be very large). 
On the other hand, to say that a set is bounded 
does not mean that it contains or even has a 
boundary! The word boundary refers to an 
intrinsic property of the set, whereas 
“bounded” refers to the space in which the 
set lies. A set of points is closed if it contains 
all its boundary points. For example, the set of 
points in the plane interior to a circle is not 
closed, although it is bounded, because it con¬ 
tains points arbitrarily close to the circle itself, 
but the points of the circle do not belong to it. 
A set is compact if it is closed and bounded; 
for example a circle together with its interior 
points is a compact set. But the (infinite) plane 
is not compact because it is not bounded. Fi¬ 
nally, you can think of an orientable manifold 
as a two-sided surface; the plane, the sphere, 
and the torus are orientable, but the Mobius 
band is not. As mentioned earlier, the genus of 
a manifold is its number of holes; “hole” is 
used here in the sense that a torus has a hole; 
it is not the kind of hole which punctures the 
manifold. 

You can test your understanding of this ter¬ 
minology by trying to decipher and interpret 
the definitions of the word “polyhedron” that 
are given below (all taken from papers in this 
section). We leave it to you to determine 
which shapes are walled in by each of them, 
and which are walled out. Study the defini¬ 
tions carefully before deciding! It is easy to be 
misled. For example. Delta did not seem to 
realize that her definition did not exclude poly¬ 
hedra like our toroidal hat, which she despised 
(she called them “non-Eulerian pests”)! 

Definition 11.3. A (convex) polyhedron is a 
bounded subset of which can be expressed 
as the intersection of a finite number of closed 
half-spaces. 

Definition 11.4. A polyhedron is a cell com¬ 
plex whose point set is a closed orientable 2- 
manifold, each of whose 2-cells is an affine 
polygon that is not coplanar with any adjacent 
2-cell. 

Definition 11.5. A polyhedron (in three-dimen¬ 
sional space) is a compact 2-manifold that has 
no boundary and can be expressed as a finite 
union of plane polygonal regions. 

Notes 

' Imre Lakatos, Proofs and Refutations (New 

York: Cambridge University Press, 1976) 

^ B. Grunbaum, “Regular Polyhedra, Old and 

New,” Aequationes Mathematicae 16 (1977); 1-20. 

^ The term compact is defined later in the 
chapter. 

'' A prismatic, or antiprismatic, polygon is a fi¬ 

nite nonplanar zigzag polygon whose vertices are 

the vertices of a prism or antiprism, respectively. 

The genus of a polyhedron is the number of its 

holes. Convex polyhedra have genus zero, like the 

sphere; toroidal polyhedra have genus one, and so 

forth. Note that the plural of genus is genera. 

^ I am delighted that the Shaping Space Confer¬ 

ence provided an opportunity for the authors to 
complete this research! 

For more details, see B. Grunbaum and G. C. 

Shephard, Tilings and Patterns (San Francisco: W. 
H. Freeman, 1986). 
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* See P. Engel, “On the Enumeration ofPolyhe- 

dra,” Discrete Mathematics 41 (1982):215-18. 

^ J. E. Goodman and R. Pollack, “There Are 

Asymptotically Far Fewer Polytopes Than We 

Thought,” Bulletin (New Series) American Mathe¬ 

matical Society 14, no. 1 (January 1986): 127-29. 

A planar graph is a network, or \-skeleton of 

edges and vertices. The 1 indicates the one-dimen¬ 

sionality of the edges, which can be drawn in the 

plane without any unintended crossing of edges. 

Schlegel diagrams are planar graphs; star polygons 

are not. 
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Combinatorial PrototUes 

Egon Schulte 

Tiling problems have been investigated 
throughout the history of mathematics, lead¬ 
ing to a vast literature on the subject. Our 
present knowledge of tilings of the plane is 
quite good, though there are of course many 
open problems even in the comparatively ele¬ 
mentary and easily accessible levels. Much of 
the work on plane tilings has been done by 
Griinbaum and Shephard in the last ten years; 
it will be summarized in their forthcoming 
book about tilings and patterns.* 

As soon as we raise the dimension of the 
space from two to three or higher, our knowl¬ 
edge about tilings becomes comparatively 
poor. This is probably due to the fact that it is 
much harder to visualize the situation. In par¬ 
ticular, considerations about the local struc¬ 
tures of tilings are needed. 

Before turning to the subject of this chapter, 
let us recall some definitions and notations. 
Although most of the results I will discuss can 
be extended to higher dimensions, I will re¬ 
strict my considerations to ordinary three-di¬ 
mensional space. Thus the underlying space 
for our tilings will be Euclidean 3-space, E?, 

and we will tile this space by convex 3-poly¬ 
topes, that is, with bounded convex polyhe- 
dra. A tiling of Euclidean 3-space is a family of 
convex 3-poly topes, called the tiles of the til¬ 
ing, which cover the space without gaps or 
overlaps. This means that every point in space 
is contained in a tile, and no two tiles have 
common interior points. 

To avoid pathological situations, we will al¬ 
ways assume that our tiling is locally finite. By 
a locally finite tiling, we mean a tiling that has 
the following property: every point in space 

has a neighborhood that meets only finitely 
many tiles. Of natural interest are those tilings 
which respect the facial structure of the tiles 
or, more precisely, the facial structure of the 
boundaries of the tiles. These are exactly the 
face-to-face tilings. A tiling is cd\\e,A face-to- 

face if the intersection of any two tiles is either 
empty or a face of each; this means that two 
tiles may share a vertex, an edge, or a facet. 
Note that this definition of a face is slightly 
different from the usual one. Here a face can 
be 0-, 1-, or 2-dimensional. I will use the word 
“facet” to mean a two-dimensional face of a 
3-poly tope. (More generally, a facet oiQ.{d + 

l)-polytope will be a ^/-dimensional face.) 
A tiling of E‘^ is called normal if its tiles are 

uniformly bounded, that is, if there are two 
positive real numbers r\ and r2 such that each 
tile contains a ball of radius rj and is contained 
in a ball of radius ri. Obviously, normal tilings 
are necessarily locally finite. If each tile in a 
tiling happens to be congruent to one of the 
tiles in a finite family of k poly topes, then we 
say that the tiling has k isometric prototiles. 
Clearly such a tiling must be normal. 

Finally, we recall that two polytopes P and 
Q are isomorphic, or combinatorially equiva¬ 

lent, or of the same combinatorial type, if 
there is an inclusion preserving bijection be¬ 
tween the set of faces of P and the set of faces 
of Q (for 3-polytopes, that means, between the 
set of vertices, edges, and facets of P, and the 
set of vertices and edges and facets of Q). For 
example, the polytope in Fig. 12-1 is combina¬ 
torially equivalent to the octahedron. Its faces 
are 3-gons and they fit together exactly the 
same way as the faces of the octahedron. Thus 

198 
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combinatorially these polytopes are the same, 
although they have totally different shapes. 
Notice, for instance, that the base of the poly¬ 
hedron does not lie in a plane. If every tile of a 
tiling is combinatorially equivalent to a given 
3-polytope P, we say that the tiling is mono- 

typic. The type of the polytope is the combina¬ 

torial prototile of the tilings. 

Nontiles 

One of the main problems in the theory of til¬ 
ings of Euclidean 3-space is to characterize 
those convex polytopes, congruent copies of 
which tile space in a face-to-face manner. In 
other words, we are interested in finding those 
poly topes which play the role of triangles, 
quadrangles, pentagons, and hexagons in the 
plane. The answer to this extremely difficult 
problem is completely out of reach at the mo¬ 
ment; we don’t even know whether there are 
only finitely many combinatorial types of 3- 
polytopes that give such a tiling. Now when¬ 
ever people cannot solve a problem, they 
study related problems and hope that by doing 
so they will get additional information about 
the original one. 

Thus we will discuss the three-dimensional 
analogue of the well-known fact, first ob¬ 
served by Schlegel in 1883, that for each n >3, 
the Euclidean plane can be tiled by convex n- 

gons. Now the tiles in a tiling of the plane by 
n-gons, although they all have the same num¬ 
ber of edges, cannot be congruent if n> 6 (and 
indeed the tiling cannot be normal). Thus the 
tiles in such a tiling are combinatorially equiv¬ 
alent, but not congruent. 

The combinatorial analogue of the tiling 
problem for higher dimensions was posed by 
Ludwig Danzer at a symposium^ on convexity 
in 1975. He suggested replacing the require¬ 
ment of congruence for the tiles of a tiling of 

by the much weaker requirement of combi¬ 
natorial equivalence of the tiles. This raises 
the following question: 

Given a convex 3-polytope P, is there a locally 
finite tiling of space by convex polytopes iso¬ 
morphic to P7 

Fig. 12-1. A combinatorial octahedron. The dotted 

line indicates that the four median vertices are not 

coplanar. 

In other words, we would like to know 
whether every polytope is combinatorial pro¬ 
totile of a monotypic tiling of three space. In 
particular, we would be interested to find face- 
to-face tilings—tilings that respect the facial 
structure. 

Just as in the plane, this problem would be 
nonsense with combinatorial equivalence re¬ 
placed by congruence of the tiles. But as long 
as we are only interested in combinatorial iso¬ 
morphism, we have much freedom in the 
choice of the particular metrical shape of the 
tiles, so this is actually a reasonable problem. 
The general belief was that the answer to this 
problem should be positive, even in the 
strongest sense. That is, eve-v convex three 
polytope was assumed to be a combinatorial 
prototile of a monotypic face-to-face tiling of 
three space. However, this is not true; in fact, 
the cuboctahedron, which is a very well- 
known polyhedron (Eig. 12-2), is not the com¬ 
binatorial prototile of a face-to-face tiling: 
There is no (locally finite, face-to-face) tiling 

of space by convex polytopes combinatorially 

equivalent to the cuboctahedron. 
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Fig. 12-3. The facet of a spherical complex deter¬ 

mined by a cuboctahedron with vertex X. 

The proof is as follows. Let us look at the 
vertices of the cuboctahedron. They are all 4- 
valent and they are all surrounded by triangles 
and quadrangles in an alternating way: if we 
go around a vertex then we meet a triangle, a 
quadrangle, a triangle, and a quadrangle. Thus 
it is natural to associate to the vertices of the 
cuboctahedron the type [3, 4, 3, 4]. It is impor¬ 
tant that it is of alternating type. 

Now let us assume that there is a tiling of 
Euclidean space by polytopes that are combi¬ 
natorial cuboctahedra and that fit together in a 
locally finite face-to-face manner. We fix one 
particular vertex of the tiling, that is, a vertex 
of one of the tiles, and call it X. This vertex is 
contained in many tiles. We choose a suffi¬ 

ciently small sphere centered at that vertex 
and consider the intersection of the sphere 
with the tiling. Now the tiling cuts out a 
spherical complex on our sphere. The facets 
of the spherical complex are just the intersec¬ 
tions of the sphere with the tiles of the tiling 
which contain the fixed vertex X. 

We will show that this spherical complex 
has quadrangular spherical facets and that 
each vertex is even-valent. This will immedi¬ 
ately give us a contradiction, since Euler’s 
theorem implies that a spherical complex 
without triangular facets must have a 3-valent 
vertex. (To see this, write Euler’s formula in 
the form 2F — 2E + 2V = 4, or (2F — E) + 

(2L - F) = 4. If the complex has no triangu¬ 
lar facets, then counting the edges of the com¬ 
plex by going around each facet, and taking 
into account that each edge is shared by two 
facets, we have 2E > 4F, so 2F — F < 0. Simi¬ 
larly, if the spherical complex has no 3-valent 
vertices, then 2V - F < 0. But these inequali¬ 
ties are not simultaneously compatible with 
Euler’s formula.) This means that our spheri¬ 
cal complex cannot exist and so the tiling can¬ 
not exist. So all we have to do is to show that 
our spherical complex has spherical quadran¬ 
gles and even-valent vertices. 

The first is easy. Why does the spherical 
complex have quadrangular facets? Recall 
that the facets are just the intersections of the 
sphere with the tiles that contain the fixed ver¬ 
tex X. Since the polytopes in our tiling are 
combinatorially cuboctahedra, the vertex X 

has valence 4 in each polytope that contains it. 
Thus the sphere cuts out a spherical quadran¬ 
gle in each polytope, and so the spherical com¬ 
plex has spherical quadrangles as facets (Fig. 
12-3). 

Next, why are the vertices even-valent? 
The vertices of the spherical complex are just 
the intersections of the sphere with the edges 
of the polytopes that contain the fixed vertex 
X. What are the edges of the spherical com¬ 
plex? They are just the intersections of the 
sphere with the facets of the tiles that contain 
X. The facets of our tiles are triangles and 
quadrangles because the tiles are all combina¬ 
torial cuboctahedra and so, since the tiling is 
face to face, we can assign to each edge of the 
spherical complex one of the labels 3 or 4, 
according to the number of vertices of the 
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facet which defines the edge. And now comes 
the main point: since the vertices of the cuboc- 
tahedron are surrounded by triangles and 
quadrangles in an alternating way, the vertices 
of the spherical complex must also be sur¬ 
rounded in an alternating way. That means the 
edges which come together in the vertex X can 
be labeled 3, 4, 3, 4, . . . in an alternating 
way. But this means the complex has even- 
valent vertices, and, as we have seen, quad¬ 
rangular facets. This spherical complex can¬ 
not exist, and so the tiling cannot exist. 

In fact, this is a very strange result, because 
one would expect that such a nice symmetric 
polytope should give such a tiling. Indeed, the 
tetrahedron, octahedron, icosahedron, and 
dodecahedron, which are not isometric space- 
fillers, are combinatorial prototiles of mono- 
typic tilings. The cube is even an isometric 
space-filler. Our counterexample reveals a 
very strange and very interesting aspect of the 
theory of tilings by convex polytopes: there 
seems to be no intrinsic relation between the 
regularity or symmetry properties of the poly¬ 
tope and its tiling properties. In fact, in higher 
dimensions (seven or higher) it turns out that 
the regular crosspolytope (the higher dimen¬ 
sional analogue of the octahedron) does not 
give a face-to-face tiling by combinatorially 
equivalent polytopes. 

Once we have a counterexample to our 
problem, we can ask to what extent we can 
expect positive results. The ideal situation 
would clearly be to give a characterization of 
all those polytopes which give a tiling, but this 
seems to be rather hopeless. The next best 
thing would be to try to determine certain 
classes of polytopes which do or do not give 
such tilings. For example, with the techniques 
used in the proof above we can prove the fol¬ 
lowing generalization^: 

Theorem 12.1. Let F be a convex 3-polytope 
and X,, X2, . . . , x^ the vertices of F, all of 
even valence. Assume that it is possible to 
assign to each x, (/ = 1, 2, . . . , A) its type 

[P/.i, P/,2, • • • , P/,2m] in such a way that 

I {P/.l, P/,3, • • ■ , P/,2m-l}| 
/=! 

n { 1!J Pi,4, • • • , P/,2m}} = 0- 
/=! 

Fig. 12-5. The polytope P5. The dotted lines indi¬ 
cate a median cross section (they are not hidden 
edges). 

Then F is a nontile. That is, P does not give a 
locally finite face-to-face tiling. 

With the help of this theorem, it is easy to 
construct many nontiles. If we start with a 
simple 3-polytope without triangular facets 
and cut off its vertices up to the midpoints of 
the edges incident with them, we obtain a non¬ 
tile. (This operation, due to Steinitz, is de¬ 
noted /(G) in Grunbaum.'*) For example, start¬ 
ing in this way from the octahedron and 
icosahedron we obtain the cuboctahedron and 
icosidodecahedron (see Figs. 12-2 and 12-4). 
Also, an infinite sequence of nontiles F„ can be 
obtained by applying the operation 1(G) to 
prisms over n-gons, when n > 4; see Fig. 12-5. 
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Fig. 12-6. A fundamental region for the symmetry 

group of the regular tessellation of by cubes. 

The resulting polytopes have 3n vertices and 
3n + 2 facets. All vertices are 4-valent and of 
type [3, 4, 3, n]. For n = 4 we get a polytope 
combinatorially equivalent to the cuboctahe- 
dron. One might conjecture that the cubocta- 
hedron (with 12 vertices and 14 facets) is the 
“smallest” nontile in three dimensions. It is 
worth noting that no simple or cubical nontiles 
are known yet. (A 3-polytope is called simple 
or cubical, if all its vertices are 3-valent or all 
its facets are quadrangles, respectively.) I 
conjecture here that simple nontiles exist, but 
I doubt the existence of cubical nontiles. 

As an example of a class of 3-polytopes 
which do tile E^, Branko Griinbaum, Peter 
Mani, and Geoffrey Shephard have shown 
that all simplicial polytopes give locally finite 
face-to-face tilings.^ 

Constructions of Monotypic Tilings 

One can also find very nice tilings of E? by 
projections of convex 4-polytopes. Intuitively 
we expect certain connections between the 
properties of 3-polytopes which are the combi¬ 
natorial prototiles of monotypic tilings of E^ 
and 3-polytopes which are the 3-facet types of 
equifaceted 4-polytopes in E'^. (A {d + 1)- 
polytope is said to be equifaceted of type P if 
all its facets are isomorphic to a single i/-poly- 
tope P. P is a nonfacet if it is not the facet-type 
of an equifaceted {d + l)-polytope.) 

Certainly a combinatorial prototile will not 
be a facet type in general, since this does not 
even hold in dimension 2; in fact, by Euler’s 
theorem, a 3-polytope cannot have all its 
facets /i-gons with n > 5, while on the other 
hand there are no restrictions on n for tilings 
of the plane by convex «-gons. However, it 
has been proved^ that the reverse is true: 
every 3-polytope that is the facet-type of an 
equifaceted 4-polytope is also the combinato¬ 
rial prototile of a locally finite face-to-face til¬ 
ing of E^. (It follows that all of the nontiles 
described above are also nonfacets!) The 
monotypic tiling of E^ is obtained from the 
4-polytope by an infinite sequence of projec¬ 
tions. The construction works equally well in 
higher dimensions. Unfortunately this projec¬ 
tion method produces non-normal monotypic 
tilings. However, in some instances another 
projection method provides normal face-to- 
face tilings with only finitely many isometric 
prototiles: 

Theorem 12.2. Let the convex 3-polytope P be 
realized as the facet-type of an equifaceted 
convex 4-polytope Q with at least one 4-valent 
vertex. Let m denote the number of facets of 
Q. Then P is the combinatorial prototile of a 
monotypic face-to-face tiling of E^ with only 
m — 4 isometric prototiles. 

To prove this, let Z be a 4-valent vertex of Q 
and T the 3-simplex whose vertices are the 
four neighboring vertices of X in the boundary 
complex of Q. By projecting Q centrally from 
X onto the affine hull of P, we get a face-to- 
face dissection of T into convex polytopes iso¬ 
morphic to P. The 3-polytopes in the dissec¬ 
tion are the images of facets of Q under the 
projection. 

Next, we make use of the well-known fact 
(see, e.g., Coxeter^) that the fundamental re¬ 
gion for the symmetry group of the regular 
tessellation of E^ by cubes is a 3-simplex T 
(see Fig. 12.6). Mapping T affinely onto T we 
turn the dissection of T into a dissection of T. 
Then, if we apply all the symmetries of the 
tessellation, we obtain a tiling of the whole 
space, in which each tile is congruent to one of 
the 3-polytopes in the dissection of T. Since 
the number of 3-polytopes in this dissection 
equals the number of facets of Q not contain- 
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ing X, that is, m — 4, the tiling has at most 
m — 4 isometric prototiles. In particular, the 
tiling is monotypic of type P, since P is the 
facet-type of the equifaceted 4-polytope Q. 
The tiling is face-to-face because T is a funda¬ 
mental region for the symmetry group of the 
tessellation of by cubes, and that group is 
generated by the reflections in the planes 
bounding T. 

Another generalization of the tiling problem 
would be to relax the condition that the tiling 
be face-to-face. That is, we can ask: Is every 
polytope the combinatorial prototile of a tiling 
that is not necessarily face-to-face? And here 
we get the surprising result that the answer is 
definitely positive. But the construction of 
these tilings is too complicated to discuss it in 
detail here; for further discussion, see the first 
reference in note 3. 

Finally, if we are willing to relax the condi¬ 
tions that our tiles must be convex, then we 
get some nice things. Figure 12-7 is a tiling by 
hexagonal pyramids, derived from the hexago¬ 
nal tiling of the plane. It has only three types 
of pyramids; one of them is not convex. 

Related Problems 

So far our investigations of monotypic tilings 
were restricted to the case where the tiles of 
the tilings were topological balls, generally 
convex polytopes. But of course, we can as 
well consider combinatorial prototiles of other 
homeomorphism types, and we can ask if they 
admit locally finite tilings of the Euclidean 
space or not. Of particular interest is the case 
where the polytope F is a “polyhedron” in 
bounded by a closed polyhedral 2-manifold, 
for example a toroid. There are examples^ of 
space-filling toroids! On the other hand, the 
existence of toroidal nontiles is almost trivial. 
In fact, if a toroid has only vertices of valence 
> 5, then isomorphic copies of it will not fit 
together to form a vertex-figure of a locally 
finite face-to-face tiling: this is an easy conse¬ 
quence of Euler’s theorem applied to the 
spherical complex determined by the vertex- 
figure. Polyhedra with this property have re¬ 
cently been studied.* 

Another direction for research is offered by 
replacing the Euclidean space as the underly- 

Fig. 12-7. A face-to-face tiling of by hexagonal 
pyramids with three prototiles, derived from the 
usual hexagonal tessellation of the plane. To each 
hexagon F of the tessellation belong seven pyra¬ 
mids with a common apex Z. One has base F and is 
surrounded by six congruent pyramids, whose 
bases Fe share an edge e with F and lie in planes 
orthogonal to F. To each vertex X of the tessella¬ 
tion corresponds a nonconvex hexagonal pyramid 
with base Q^. By taking suitable layers of this ar¬ 
rangement a tiling of E^ by hexagonal pyramids 
arises. 

ing space of the tilings by a topological 3-mani- 
fold M, and investigating monotypic tilings of 
M by topological polytopes or tiles of another 
homeomorphism type.^ 
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Duality of Polyhedra 

Branko Grunbaum and G. C. Shephard 

An author who wishes to use material from 
mathematical folklore' faces two unpleasant 
alternatives; either to quote the result (quali¬ 
fied by a phrase such as “it is well known 
that”) or to prove it. The latter course may 
lead a referee or reviewer to ridicule the ef¬ 
fort, and possibly identify it with an ancient 
result from the Upper Slobbovian Journal of 

Recreational Mathematics, or some other 
equally obscure source. Usually the situation 
is even worse because much folklore is impre¬ 
cisely formulated (if, indeed, one can say that 
it is formulated at all) and quite frequently it is 
definitely wrong. The purpose of this note is to 
show that many of the “well-known facts” 
about duality of polyhedra are of latter kind, 
and it is well worth some effort to clarify the 
situation and arrive at the truth. 

So far as we can ascertain, some, if not all, 
of the following “facts” are generally ac¬ 
cepted among working mathematicians: 

1. For every polyhedron P there exists a dual 
polyhedron P*, and the dual of P* is equal 
to P, or at least similar to it. 

2. If a polyhedron P has any convexity, sym¬ 
metry, transitivity, or regularity properties, 
then the same is true, possibly in an appro¬ 
priately modified form, for P*. 

3. The dual of a polyhedron can always be ob¬ 
tained by reciprocation with respect to a 
suitable sphere or more general quadric. 

4. Duality between polyhedra is consistent 
with the combinatorial duality of their 
boundary complexes, that is, the cell com¬ 
plexes whose cells are the proper faces of 
the polyhedron. Moreover, in the particular 
case of polyhedra in three-dimensional Eu¬ 

clidean space, duality is consistent with the 
duality of planar graphs. 

5. With appropriate interpretations, projective 
duality, duality in algebra and duality (con- 
jugacy) in functional analysis are consistent 
with duality for polyhedra. 

Before we examine these statements in de¬ 
tail, it is necessary to define some of the terms 
that we shall use. For simplicity we restrict 
attention to polyhedra in Euclidean space of 
three dimensions, that is to say, to compact 2- 
manifolds in which have no boundary and 
can be expressed as a finite union of plane 
polygonal regions. If these regions are such 
that no two adjacent ones are coplanar, then 
they are called the faces of the polyhedron; 
the edges and vertices of the polyhedron are 
the edges and vertices of its faces. We shall 
sometimes use words like “convex” and 
“star-shaped” to describe a polyhedron P 

though, strictly speaking, these terms apply to 
the polyhedral solid bounded by P. A vertex, 
or an edge, of P is said to be convex if the 
intersection of the polyhedral solid bounded 
by P with a sufficiently small spherical ball, 
centered at the vertex or at an interior point of 
the edge, is a convex set. 

By the elements of a polyhedron P we mean 
the family consisting of all the faces, edges, 
and vertices of P. Two polyhedra P\ and P2 

are isomorphic (or combinatorially equiva¬ 

lent, or of the same type) if there exists a one- 
to-one correspondence (bijection) between the 
elements of P\ and the elements of P2 which 
preserves the relation of inclusion between the 
elements. In a similar manner, P\ and P2 are 
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called combinatorial duals of each other if 
there exists a bijection that is inclusion-revers¬ 
ing; this is the concept referred to in statement 
4. It extends in a natural way to topological 
complexes more general than polyhedra (in 
particular, to planar graphs or maps, and to 
maps on other 2-manifolds). The notions have 
their roots in the eighteenth-century works of 
Euler (see Federico) and Meister (see Briick- 
ner).^ Dual polyhedra are called reciprocals 

with respect to a sphere S (see statement 3) if 
each face of one is the polar^ with respect to S 

of the dually corresponding vertex of the 
other. 

Now let us examine statements 1 to 5. The 
first of these is formulated in a misleading way 
since it seems that, in general, it is impossible 
to define in any useful or canonical way a 
unique polyhedron P* as the dual to a given 
polyhedron P. In other words, though polyhe¬ 
dra that are combinatorial duals of P may ex¬ 
ist, there appears to be no reasonable way in 
which one of these can be singled out and 
called the dual polyhedron to P. At best, we 
must therefore think of duality as a relation 
between isomorphism classes of polyhedra 
rather than between individual polyhedra. In 
this generalized sense, the second part of 
statement 1 is true, but most parts of state¬ 
ment 2 become vacuous. 

If we consider only convex polyhedra— 
which may be thought of as a very simple spe¬ 
cial case—reciprocation can always be ap¬ 
plied; as the center of the reciprocating sphere 
S we may take any point in the interior of the 
polyhedral solid enclosed by the polyhedron. 
In this way we can construct a convex polyhe¬ 
dron P* dual to P, but even this does not lead 
to a unique dual since there is arbitrariness in 
the choice of the center and the radius of the 
sphere S. In fact all the duals obtained in this 
way are projectively equivalent to each other, 
so the same difficulties as before still arise ex¬ 
cept that projective equivalence classes, 
rather than isomorphism classes, need to be 
considered. 

In this connection we remark that recipro¬ 
cation is the only known method of actually 
constructing a polyhedron P* dual to a given 
polyhedron P. In some special cases which we 
shall now examine, reciprocation can lead to 
an essentially unique dual polyhedron, and 
then statements 1 to 4 become true for this 

restricted meaning of duality. It seems likely 
that the existence of these special cases, and 
the emphasis on them by many authors, has 
led to the misconception that these statements 
are true more generally. 

The first special case is when P is one of the 
five regular polyhedra. Such polyhedra have a 
natural center O which is the circumcenter, 
incenter, and centroid of P. If we choose S as 
any sphere centered at O, then the reciprocal 
is a dual polyhedron P* (defined within a simi¬ 
larity, its size depending upon the radius of S) 

which is also regular. The reciprocal of P* 

with respect to the same sphere S is P, and 
assertion 1 is true. In particular, if S is chosen 
so that the edges of P are tangent to it, then 
the edges of P* have the same property, and 
intersect those of P at right angles. This leads 
many authors to describe a certain regular oc¬ 
tahedron as the dual of a given cube, a certain 
regular icosahedron as the dual of a given reg¬ 
ular dodecahedron, and a regular tetrahedron 
as self-dual. Similar is the situation concerning 
the Archimedean (uniform) polyhedra and the 
polyhedra reciprocal to them. 

There are more general cases in which a nat¬ 
ural center of P exists. Suppose P is isogonal; 

that is, the symmetry group of P is transitive 
on its vertices. Then all the vertices of P lie on 
a sphere S which may be used in the process 
of reciprocation. To each vertex of P corre¬ 
sponds a face of the reciprocal P*, and the 
planes of these faces are the tangent planes to 
S at the vertices of P; moreover, P* is isohe- 

dral; that is, its symmetry group is transitive 
on its faces. Similar considerations apply if P 

is isohedral and then P* is isogonal, or if P is 
isotoxal (the symmetry group of P is transitive 
on the edges of P, which are therefore tangent 
to a sphere) and then P* is isotoxal as well. In 
a similar way, if P has an axis of rotational 
symmetry R, or a plane of reflective symmetry 
E, then reciprocation with respect to a sphere 
centered at a point of V?, or of E, will lead to a 
dual polyhedron P* which has the same sym¬ 
metry as P. Therefore in all these cases state¬ 
ments 1 to 4 are true. 

It should be carefully noted that the discus¬ 
sion in the previous two paragraphs depended 
essentially on the fact that only convex poly¬ 
hedra are under consideration. All the situa¬ 
tions in which statement 5 can be successfully 
applied also deal with such polyhedra only. If 



13. Duality of Polyhedra 207 

we drop the convexity restriction, then de¬ 
spite some encouraging signs, things go sadly 
awry. 

These encouraging signs appear when we 
consider examples such as the following, 
which are culled from the rather meager litera¬ 
ture on nonconvex polyhedra. The icosahe¬ 
dron in Fig. 13-la (see lessen'^) and the do¬ 
decahedron in Fig. 13-lb (see Ounsted, 
Stewart, and Griinbaum and Shephard^) are 
duals of each other and have the same group 
of symmetries. The first is isogonal and the 
second is isohedral; nonconvex edges of both 
correspond to each other. Another dual pair 
consists of the well-known Csaszar polyhe¬ 
dron (see, for example, Csaszar, Griinbaum, 
Gardner, and Stewart^) and the less well- 
known but remarkable Szilassi polyhedron 
(see Szilassi, Gardner, Stewart and Gritz- 
mann’). We recall that the Csaszar polyhedron 
is a triangulation of the torus with 7 vertices, 
21 edges, and 14 triangular faces and the Szi¬ 
lassi polyhedron is toroidal with 7 hexagonal 
faces, 21 edges, and 14 vertices. These poly¬ 
hedra are not only duals of each other but also 
have analogous symmetry and convexity 
properties. Such examples may seem to vindi¬ 
cate the folklore and imply that it may be pos¬ 
sible to prove the statements listed at the be¬ 
ginning of this paper once we have learned 
how to deal with nonconvex polyhedra and, in 
particular, how to construct their duals. 

This last is, in a sense, the nub of the prob¬ 
lem: there is no difficulty finding topological 
complexes that are duals of any given polyhe¬ 
dron, but finding a dual polyhedron is a much 
more elusive goal. An indication that this goal 
may be unattainable is implied by recent 
results concerning isohedral and isogonal 
polyhedra (Griinbaum and Shephard*): isohe¬ 
dral polyhedra are always star-shaped and 
have star-shaped faces, whereas isogonal 
polyhedra have convex faces but need not 
even be simply connected. Hence these kinds 
cannot be related by duality. 

To illustrate some of the difficulties we shall 
consider a very simple example. In Fig. 13-2a 
we show a polyhedron P which may be de¬ 
scribed as a cube with a four-sided pyramid 
adjoined to one of its faces. Reciprocation 
with respect to a suitable sphere (for example, 
the circumsphere of the cube) leads to the 
truncated octahedron of Fig. 13-2b, which is 

Fig. 13-1. A dual pair of nonconvex polyhedra: (a) 
an isogonal icosahedron; (b) an isohedral dodeca¬ 
hedron. 

therefore a dual P* of P. In this particular case 
it happens that P and P* are isomorphic, so P 

is self-dual, though this fact is only incidental 
to the following discussion. Now consider the 
nonconvex polyhedron P\ of Fig. 13-2c. Since 
this is isomorphic to P, every dual of P\ will be 
isomorphic to P*. However it is not hard to 
see that no such dual has corresponding con¬ 
vexity properties: P\ has four nonconvex 
edges meeting at a vertex, so a dual ought to 
have four nonconvex edges bounding a quad¬ 
rangular face. Further, the four congruent 
nonconvex vertices of P\ ought to correspond 
to four congruent nonconvex quadrangular 
faces of its dual. Examination of the various 
possibilities, such as those shown in Fig. 13-2d 
and 13-2e, shows that no such dual exists. 
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Fig. 13-2. An illustration of the problem of duality 
for nonconvex polyhedra. The convex polyhedra 
illustrated in (a) and (b) are duals of each other, but 
the isomorphic nonconvex polyhedra in (c), (d), 
and (e) have no duals which preserve convexity 
properties. 

Hence, even in this very simple case, convex¬ 
ity properties cannot be preserved in duality. 

It may seem that there is a very simple way 
out of this impasse. Let us start with any poly¬ 
hedron P and then construct Q in the following 
way. After choosing a sphere S centered at an 
interior point of P, we define the vertices of Vf 

of Q as the polars with respect to S of the faces 
Fj of P. If two faces F\ and F2 of P meet in an 
edge, then the join of corresponding vertices 
V* and V* is defined to be an edge of Q. If F\, 

F2, . . . , Fr is a circuit of adjacent faces 
round a vertex of P, then the corresponding 
vertices of Vf, Vf, . . . , Vf are coplanar and 
so may be used to define a face of Q. Proceed¬ 
ing in this way, all the elements of Q may be 

defined, and so Q is completely determined. 
(Alternatively, and equivalently, the construc¬ 
tion may be reversed: consider the set of 
planes which are the polars of the vertices of 
P, and then the edges and vertices of Q are 
defined as intersections of suitable subsets of 
these planes.) It is easy to verify that this pro¬ 
cedure can be carried out for all polyhedra P, 

and that Q has the same symmetry and con¬ 
vexity properties as P. So it appears that Q is 
an obvious candidate for the dual of P. Unfor¬ 
tunately this is not the case since in general 
(and, in particular, if P is not convex) Q will 

not even be a polyhedron as we have defined 

the word. The union of the faces of Q will not 

form a manifold either because they are not 

polygons or because they are mutually inter¬ 

secting. 
We illustrate these assertions by an example 

that is chosen so as to be computationally and 
graphically easy to follow. It is not, in any 
sense, unique as the reader will discover by 
using the same procedure to find “duals” of 
the polyhedra in Figs. 13-2c, 13-2d, and 13-2e 
or of the toroidal isogonal polyhedra described 
in our paper cited in note 5. Consider the poly¬ 
hedron P in Fig. 13-3a. It is obtained from the 
octagonal prism in Fig. 13-3b by replacing its 
mantle of 8 rectangular faces by one of 16 tri¬ 
angles. The polyhedron P has convex faces 
and is isogonal, but since some of its edges 
and all of its vertices are nonconvex, so a dual 
P* (if it exists) should have convex vertices, 
nonconvex faces, and be isohedral. Let us at¬ 
tempt to find such a dual by applying the con¬ 
struction for Q described in the previous para¬ 
graph. Take S (the reciprocating sphere) as the 
sphere that passes through the vertices of P. 

The set of planes tangent to 5" at these vertices 
(their polars) is easily visualized; it is the set of 
planes determined by the faces of a regular 
octagonal bipyramid. These will be the face 
planes of Q. To determine the edges and verti¬ 
ces of Q we proceed as described above. 
There is an immediate simplification: the fact 
that P is isogonal implies that Q will be isohe¬ 
dral, so it is only necessary to determine one 

face of Q. The other faces will then arise by 
applying the symmetries of P to this face. Let 
the plane 7 be tangent to S at the vertex A' of 
P. Apart from the tangent plane to S at the 
point F, which is parallel to 7, each of the 
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Fig. 13-3. A nonconvex isogonal antiprism (a), with the same vertices as a prism (b). There exists no 
polyhedron dual to the antiprism, if “polyhedron” is understood in the usual sense. 

Fig. 13-4. The arrangement of 14 lines in a plane, which can be used to prove the nonexistence of a 

polyhedron dual to the antiprism in Fig. 3(a). 

Other 14 face planes will meet 7 in a line. In 
Fig. 13-4 we show the arrangement of 14 lines 
in 7'obtained in this way. Each line is marked 
with a letter indicating the vertex of 7* at which 
the corresponding plane touches 5'. The four 
faces b, c, d, and e of 7* contain a vertex A', so 

the corresponding points b*, c*, d*, and e* 
(defined as intersections of appropriate sets of 
lines in T) are the vertices of Q that lie in 7. 
Since b, c, d, e form a circuit of faces at the 
vertex A' of P, the points b*, c*, d*, e* (in this 
order) should form a circuit of vertices around 
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the corresponding face of Q. This is the non- 
convex quadrangular face that we have been 
seeking. Unfortunately, it is not only noncon- 
vex, but it is also self-intersecting. Hence it is 
not a polygon and so it is not acceptable as a 
face of any polyhedron. This Q is not a poly¬ 
hedron, and our attempt to find a dual of P has 
failed. 

We can summarize the situation by saying 
that in trying to establish a dual of each three- 
dimensional polyhedron we can either pre¬ 
scribe the character of the polyhedron as a 2- 
manifold, or we can adopt a wider definition of 
“polyhedron” admitting mutual intersections 
and self-intersections of the polygonal faces. 
In the later case, as we have seen, duals can 
always be constructed by polarity. Then, if 
interpreted in a suitable manner, statement 2 
at the beginning of this chapter will be true. It 
is interesting to note that this generalization of 
the concept of a polyhedron was adopted in 
part some 120 years ago by Mdbius, and has 
often been applied (without any explicit defini¬ 
tions) in the study of regular, uniform, or other 
very special polyhedra. (See, for example, 
Hess, Coxeter, Coxeter, Longuet-Higgins, 
and Miller, Skilling, Wenninger, Bruckner, 
and Norgate.^) However it seems that no sys¬ 
tematic study of “polyhedra” in this sense has 
ever been carried out, although there seems to 
be no reason why a completely satisfactory 
theory could not be developed. 

So it appears that the various statements 
concerning duality made at the beginning of 
this chapter are mutually incompatible, and 
that the folklore is only a superstition! It may 
well be that this is the case; the brunt of our 
thesis is that, with the approaches to duality 
followed so far, this incompatibility is inescap¬ 
able. It is not impossible, of course, that with 
some suitable generalizations, a theory might 
be formulated in which all the different as¬ 
pects will fall into place so that folklore will be 
vindicated. We would like to suggest that the 
chief need at present is a theory of topological 
2-manifolds in which faces may mutually in¬ 
tersect and even self-intersecting polygons are 
admissible as faces. We know of no attempts 
at such a theory, but it seems that it would be 
worth the effort to develop it, especially as it 
could have far-reaching applications and im¬ 
plications for other branches of mathematics. 
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Polyhedral Analogues of the Platonic Solids 

J. M. Wills 

In this chapter we investigate polyhedra in Eu¬ 
clidean 3-space, E^, without self-intersections 
and with some local and global properties re¬ 
lated to those of the Platonic solids. A polyhe¬ 

dron is the geometric realization of a compact 
2-manifold in such that its 2-faces are (not 
necessarily convex) plane polygons bounded 
by finitely many line segments. Adjacent faces 
and edges are not coplanar. A flag of a polyhe¬ 
dron P is any triple consisting of a vertex, an 
edge, and a face of P, all mutually incident. 

Perhaps the most important property of the 
Platonic solids is that the set of their flags is 
transitive under the corresponding full Pla¬ 
tonic symmetry group, consisting of all the ro¬ 
tations and reflections. There are no other 
compact (i.e., finite) and self-intersection-free 
polyhedra in E^ with this property, so in order 
to carry the theory further one has to weaken 
this strict condition. A first step in this direc¬ 
tion is to replace the global algebraic property 
of flag transitivity by the local property that all 
flags are combinatorially equivalent: 

Definition 14.1. An equivelar manifold (i.e., 
with equal flags) is a polyhedron with the 
property: All faces are p-gons; all vertices are 
(7-valent (p > 3, ^ > 3). Notation {p, q; g}, 
where g denotes the genus of the manifold. 

For g = 0 (the sphere) one obtains the five 
Platonic solids, and for g = 1 (the torus) one 
obtains infinite series of tori, which were in¬ 
vestigated long before. So in the following, all 
new polyhedra have genus g > 1. 

In the definition it is not required that the 
faces are regular or congruent to each other. 

and indeed all known equivelar manifolds con¬ 
tain at least one nonregular face. It has been 
shown' that there exist infinitely many equive¬ 
lar manifolds (see also Problems at end of this 
chapter). So equivelarity alone is too weak to 
yield close analogues to the Platonic solids 
and one has to find appropriate further condi¬ 
tions. It turns out that global algebraic condi¬ 
tions seem to be the most successful condi¬ 
tions, namely transitivity properties under 
certain symmetry and automorphism groups. 
{Symmetries are isometries of E^ which map 
the polyhedron onto itself, and auto¬ 

morphisms are combinatorial isomorphisms.) 
Among the various possibilities we choose 
one in the following section which leads to 
nice polyhedra. 

Platonohedra 

Definition 14.2. A Platonohedron is an equive¬ 
lar manifold such that a group isomorphic to 
its symmetry group acts transitively on its ver¬ 
tices or faces. 

Simple combinatorial arguments show that 
there are only finitely many Platonohedra. 
Seven have been found so far: {3, 8; 3}, {3, 8; 
5}, {4, 5; 7}, {5, 4; 7}, {3, 9; 7}, {9, 3; 7}, and {3, 
8; 11}. Figures 14-1-14-4 show some of them. 
We let /= (/o, /i, f^} denote the number of 
vertices, edges, and faces. Because of their 
equivelarity the Platonohedra can be repre¬ 
sented in a flag diagram (Fig. 14-13), explained 
later. The Platonohedra have the same rota- 

212 
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Fig. 14-1. The Platonohedron {4, 5; 7}; 
/= 12(4, 10, 5). 

Fig. 14-2. The Platonohedron {5, 4; 7}; 
/= 12(5, 10, 4). 

Fig. 14-3. The Platonohedron {3, 9; 7}; 
/= 12(2, 9, 6). 

Fig. 14-4. The Platonohedron {9, 3; 7}; 
/= 12(6, 9, 2). 

tion group as the corresponding Platonic 
solids, whereas the usual reflection in a plane 
is replaced, in the case of vertex-transitivity, 
by a reflection in a plane and a simultaneous 
inside-outside inversion. For the face-transi¬ 
tive Platonohedra the analogous reflection- 
inversion can be described for the normal- 
vector. 

Let us consider the simplest cases, {4, 5; 7} 
and {5, 4; 7} (see Figs. 14-1 and 14-2). The 48 
vertices of the {4, 5; 7} lie pairwise on 24 rays 
which have their common endpoint at the ro¬ 
tation center. The inside-outside inversion in¬ 
terchanges the “inner” and “outer” vertices. 

The situation for the {5, 4; 7} is analogous: its 
48 faces fall into two classes of 24 “outer” and 
24 “inner” faces and each “outer” face corre¬ 
sponds to one “inner” face. The inside-out¬ 
side inversion interchanges the corresponding 
“inner” and “outer” faces. Clearly the inside- 
outside inversion is no isometry. Nevertheless 
it has a geometric meaning and is not a purely 
combinatorial automorphism. This corre¬ 
sponds to the fact that the usual reflection is 
an improper movement. 

If one restricts the conditions in Definition 
14.2 and requires transitivities only under 
symmetries, then there exist no face-transitive 
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Fig. 14-5. (a) The two kinds of pentagons used in 
construction of the Platonohedron {5, 4; 7}. (b) The 
nonregular hexagonal face used in the construction 
of the regular polyhedron {6, 4; 6}. 

polyhedra with ^ > 0, as Griinbaum and 
Shephard have shown.^ But they found three 
remarkable vertex-transitive Platonohedra {3, 
8;g},^ = 3, 5, 11. 

The first vertex-transitive polyhedron with 
g > 0 to be discovered was the flat torus (g = 
1), which Brehm found in 1978; it is vertex- 
transitive under the dihedral group.^ It is 
three-dimensional; its name comes from the 
fact that the Gauss-curvature in its vertices is 
zero. It was rediscovered by Griinbaum and 
Shephard, who found two more polyhedra 
with vertex-transitivity under symmetries''; 
those polyhedra have two combinatorially dis¬ 
tinct types of faces, and so they are not con¬ 
sidered here. 

In contrast with the three Platonohedra of 
genus 3,5, and 11, the four others (of genus 7) 
have two metrically different types of vertices 
and faces. This ‘’disadvantage” corresponds 
to the “advantage” that they occur in dual 
pairs and that both their vertex-figures and 
their faces have one additional symmetry. 

Construction of the Platonohedra 

Figures 14-1-14-4 give an impression of four 
Platonohedra,^ but clearly models of card¬ 

board make it easier to understand them. Here 
is a brief description of their construction. 

•{4, 5; 7} is the simplest Platonohedron. It 
consists of 18 exterior squares of edge-length 
<3,18 interior squares of edge-length b, and 24 
trapezoids (in the tunnels) of edge-length a, 

b, and c. Suitable choice: a = 9 cm, b = 6 

cm, c = 4.2 cm. 
• {5, 4; 7} consists of 24 outer and 24 inner 

pentagons. Their shape is shown in Fig. 14- 
5a. One should start with blocks of four outer 
and four inner pentagons and then fit the six 

blocks together. 
• {3, 9; 7} is easy to construct if one regards the 

following: the outer 12 vertices are those of a 
regular icosahedron; the 12 inner vertices are 
of a distorted icosahedron. Both types of ver¬ 
tices lie on two concentric cubes, where the 
exterior has, say, twice the edge-length of 
the interior one. From this it is easy to deter¬ 
mine the coordinates of the vertices and so 
the five different edge-lengths of {3, 9; 7}. 

• {9, 3; 7} This “disdodecahedron” consists of 
12 outer and 12 inner nonagons. It is much 
harder to construct than the three others, so 
we omit the construction. 

The remaining Platonohedra belong to the 
family {3, 8; g}, g = 3, 5, 11. Grunbaum and 
Shephard give a figure of {3, 8; 5} from which a 
three-dimensional construction is possible.^ A 
precise construction of {3, 8; 3} has been de¬ 
scribed.^ 

Regular Polyhedra 

In this section we consider equivelar mani¬ 
folds with flag transitivities under certain auto¬ 
morphism groups; this has been done by many 
authors in spaces other than E'^ and in abstract 
configurations. We use the same notation as 
above. The case g = 0 corresponds to the five 
Platonic solids and g = 1 to the regular toroi¬ 
dal polyhedra, which were found by Coxeter 
and Moser. Thus we consider g > 1; seven of 
them are shown in Figs. 14-6-14-12. If one 
considers only polyhedra in and requires 
further that the polyhedron has, besides its 
automorphism group, a nontrivial symmetry 
group (for example, a Platonic group or a nor- 
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Fig. 14-6. The regular polyhedron (3, 7; 3}; 
f= 4(6, 21, 14). 

Fig. 14-8. The regular polyhedron {5, 4; 5}; 
f= 8(5, 10, 4). 

Fig. 14-10. The regular polyhedron {6, 4; 6}; 
/= 10(3, 6, 2). 

Fig. 14-7. The regular polyhedron {4, 5; 5}; 
/= 8(4, 10, 5). 

Fig. 14-9. The regular polyhedron {4, 6; 6}; 
f= 10(2,6, 3). 

Fig. 14-11. The regular polyhedron {4, 8; 73}; 
/= 144(1,4, 2). 
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Fig. 14-12. The regular polyhedron {8, 4; 73}; 
/= 144(2, 4, 1). 

Fig. 14-13. The flag diagram. The numbers denote 
the genera; large circles denote the five Platonic 
solids ig = 0), the pentagrams denote the four 
Kepler-Poinsot polyhedra, the frames denote the 
three regular tilings of the plane and tori (g = 1), 
small circles denote the seven known Platonohedra 
with g > I, and squares denote seven of the known 
regular polyhedra with g > 1. 

mal subgroup of it), then at least six of Coxe- 
ter’s finite skew polyhedra can be realized in 

as equivelar manifolds, namely by suitable 
projections. If A and S denote the orders of 
their automorphism group and of their symme¬ 

try group, respectively, we find: 

{4, 5; 5} and {5, 4; 5), A = 320, 5 = 8 
{4, 6; 6} and {6, 4; 6}, A = 240, S = 24 

{4, 8; 73} and {8, 4; 73}, A = 2,304, 5 = 48. 

Coxeter* showed that the last four can be 
realized in and the first two in E^ with the 
appropriate symmetry group. The geometric 
construction traces back to Alicia Boole- 
Stott.^ The projections into E^ were first given 
by McMullen, Schulz, and Wills'® in 1982; it 
has since been shown that they are the projec¬ 
tions of Coxeter’s regular skew polyhedra." 

The seventh and most spectacular example 
is the polyhedral realization of Felix Klein’s 
famous quartic (a complex algebraic curve) as 
a polyhedron of genus 3. Because it is not easy 
to explain the construction we refer for more 
details to a paper by Schulte and Wills.It is 
remarkable that this polyhedron has the same 
number of vertices, edges, and faces (and so 
the same genus) as our Platonohedron {3, 7; 
3}, although the polyhedra differ combinato- 
rially. This close coincidence was one motiva¬ 
tion for finding the “Klein polyhedron.” So 
far we know one infinite series and five single 
combinatorially regular polyhedra of genus 
g > 1. (See also Problems at end of chapter). 

We now describe the construction of the 
{6, 4; 6} (Fig. 14-10). This polyhedron has four 
regular hexagonal faces of edge-length a and 
four regular hexagonal faces of edge-length 
ha. Further it has 12 nonregular hexagonal 
faces which are all congruent to each other. In 
Fig. 14-5b we show one of these faces (with 
a = 3). Three of these hexagons are fitted to¬ 
gether along their edges of length 5.5 to make 
four tunnels. The four tunnels are first joined 
with the small regular hexagons (along the 
edges of length 3), and then the tunnels must 
be joined with the four large regular hexagons 
(see Fig. 14-10). 

The Flag Diagram 

A survey of equivelar and regular polyhedra is 
given by the (p, q')-diagram or flag diagram 
(Fig. 14-13). On the p-axis of the diagram the 
values p of the p-gons (p > 3) are plotted; on 
the qr-axis are the valences q of the vertices 
{q ^ 3), the number of edges incident with the 
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vertex. Thus, for example the tetrahedron can 
be found in /? = <7 = 3; the usual 3-cube can be 
found in p = 4, <7 = 3, and so forth. (Clearly, 
polyhedra with different types of faces or ver¬ 
tices—as, for example, the Archimedean 
solids—cannot be shown in the flag diagram.) 
The labels in the flag diagram denote the gen¬ 
era: thus g = 0 for the Platonic solids. In par¬ 
ticular, the flag diagram shows in a very sug¬ 
gestive way the three types of polyhedral 
geometry, due to the values of p and q. 

The hyperbola 1/p -h l/<7 = 1/2 dissects the 
lattice points (p, ^), p > 3, ^ > 3 of the dia¬ 
gram into three subsets: 

• The elliptic case: 1/p = Mq > 1/2. Here we 
find the five Platonic solids and the two 
Kepler-Poinsot star polyhedra of genus 0 
(which are isomorphic to the dodecahedron 
and the icosahedron, respectively). 

• The parabolic or Euclidean case: 1/p 
l/<7 = 1/2. Here we find the three regular til¬ 
ings of the Euclidean plane, and the regular 
tori. 

• The hyperbolic case: 1/p -t- Mq < 1/2. Here 
we find the two Kepler-Poinsot star polyhe¬ 
dra of genus 4 and the three infinite regular 
Petrie-Coxeter polyhedra. Eurther we find 
here the Platonohedra and the regular poly¬ 
hedra of genus g > 1 mentioned previously. 

Problems 

We end this chapter with five open problems 
on equivelar manifolds and regular polyhedra. 
Although all of these problems are easy to un¬ 
derstand, their solution seems to be not too 
straightforward. Eor more details we refer to 

the original papers. 

1. Do equivelar manifolds exist with p ^ 5 and 

q > 5?'3 
2. Do equivelar manifolds exist with all faces 

being regular? (It has been shown'"* that for 
(7 = 4 no such manifold exists.) 

3. In McMullen, Schulz, and Wills’ “Polyhe¬ 
dral 2-Manifolds in with Unusually 
Large Genus” (cited in note 1), an equive¬ 
lar manifold with g = 577 and number of 
vertices /o = 576 < g is constructed. Are 
these the smallest possible numbers? (In 
there is one with g = 20 and/o = 19.) 

4. Are there more than seven Platonohedra of 
genus g > 1? 

5. Are there other combinatorially regular 
polyhedra (in E^ without self-intersection) 
for g > 1? In particular: Does the dual of 
Klein’s quartic exist as an intersection-free 
polyhedron? 
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Uniform Polyhedra from Diophantine Equations 

Barry Monson 

A simple set of coordinates eases the study of 
metrical properties of uniform polyhedra. For 
instance, the six vertices of the regular octahe¬ 
dron {3,4} have Cartesian coordinates (±1, 0, 
0), etc. where the “etc.” means “permute the 
coordinates in all possible ways.” I find it 
pleasing in such examples that the coordinates 
are given by systematic choices.' Observe fur¬ 
ther that the coordinates provide all integral 

solutions to the Diophantine equation 

+ y'^ + = N, (15.1) 

when N = 1. If instead N = 3, we obtain the 
eight vertices (±1, ±1, ±1) of the cube {4,3}. 
Less obviously, we get vertices for the cuboc- 
tahedron {4}* when N = 2 and the truncated 
octahedron /{3,4} when N = 5. Clearly, Eq. 
(15.1) is unchanged by the eight possible sign 
changes or six possible permutations of x, y, 
and z. Thus the 48 = 6 • 8 geometric symme¬ 
tries in the octahedral group are represented 
as algebraic symmetries of Eq. (15.1). In fact, 
for any N, we may thus construct a polyhe¬ 
dron with octahedral symmetry although it 
may be uninteresting; there usually is no uni¬ 
form way of defining its edges and faces. 

Interlude 

The remaining uniform polyhedra with octahe¬ 
dral symmetry pose another problem. For ex¬ 
ample, the truncated cube t{4,3} has typical 

* Coxeter’s notation for a quasiregular polyhedron 
in which p-gons and <?-gons alternate at each vertex 

- r.}- 

vertex (1,1, V2 — 1), but the irrational V2 - 
1 is not the sort of integer required in Eq. 
(15.1). We have tackled these cases with some 
(untidy) success using the ideas exploited in 
the next section. Also, Eq. (15.1) is invariant 
under the central inversion (x, y, z) {—x, 

-y, -z); thus a homogeneous quadratic must be 
replaced by some other equation when de¬ 
scribing polyhedra without central symmetry, 
such as the tetrahedron or the snub cube. 

Uniform Polyhedra with Icosahedral 
Symmetry 

The icosahedron {3,5} and its relatives have 
fivefold rotational symmetry (Fig. 15-1). 
Hence, our coordinates must somehow in¬ 
volve the number 

cos (Itt/S) = 1/2t = (V5 - l)/4, 

where the golden ratio t = (1 + V5)/2 satisfies 

t2 = t+1. (15.2) 

To reconcile this irrational with the integral 
nature of our equations we replace the rational 
field Q and its ring of ordinary integers Z by 
the quadratic number field Q(V5) and its ring 
of algebraic integers Z[t]. The ring Z[t] con¬ 
sists of all polynomials in t with integral coeffi¬ 
cients; using Eq. (15.2), any integers G Z[t] is 
uniquely expressed as x = xi + tx2, (xi, X2 G 
Z). See Hardy and Wright^ for the number- 
theoretic properties of the Euclidean domain 
Z[t] ; note that the arbitrary magnitude of the 
units ±T'',{n E. Z), complicates the solution of 
Diophantine equations over Z[t]. 

219 
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Fig. 15-1. The icosahedron {3,5}. 

The icosahedron has 12 vertices with Carte¬ 
sian coordinates (±t, ±1,0) and its cyclic per¬ 
mutations only. Now let us solve Eq. (15.1) 
for 

N = ± C + 02 = T ± 2. (15.3) 

Letting x = xi + txj, y = yi + ryi, z = Z\ + 

TZ2, we split Eq. (15.1) into its rational and 
irrational parts, then solve two simultaneous 
ordinary Diophantine equations in six vari¬ 
ables: 

X\^ -I- X2^ + y|2 ± y2^ + Z|2 -I- Z2^ = 2; (15.4) 

2xiX2 + ±2^ + 2yiy2 + yi^ + 2z]Z2 + Z2^ = 1. 
(15.5) 

Disappointingly, we find 24 solutions, namely 
all permutations of (±t, ±1, 0). But then we 
recall that our solution must have 48 octahe¬ 
dral symmetries whereas the icosahedron has 

120 symmetries. Since 120/48 = 2.5 we should 
have expected this incompatibility; the con¬ 
vex hull of the 24 points is a nonuniform trun¬ 
cation of {3,4} with two naturally inscribed 

{3,5}’s. 
Thus we must abandon Cartesian coordi¬ 

nates in favor of some system of oblique coor¬ 
dinates referred to a basis d\d2dT,. Much effort 
leads to the obvious choice of three vertices of 
a triangular face of {3,5}, say d\ = (r, 1, 0), 
d2 = (0, T, 1), di = (1, 0, t) in Cartesian co¬ 
ordinates (Fig. 15-1). 

A typical point u = xd\ ± yd2 + zdj, thus has 
squared length u ■ u = N, that is 

(x2 + y2 -t- 22)(2 ± t) 

± 2T(xy + xz + yz) = N. (15.6) 

This equation has built-in icosahedral symme¬ 
try, since each of the 120 symmetries pre¬ 
serves points with coordinates in the ring Z[t]. 
We solve Eq. (15.6) by splitting it into rational 
and irrational parts; some results are shown in 
Table 15-1. In the last case we find 60 superflu¬ 
ous solutions. 

It is unclear what is merely fortuitous in the 
last example. A more insightful account may 
appear elsewhere. Perhaps, however, the 
reader has enjoyed yet another duet played by 
geometry and number theory. 
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York: Dover Publications, 1973), pp. 50-53, 156- 
162. 

2 G. H. Hardy and E. M. Wright, An Introduc¬ 

tion to the Theory of Numbers, 4th ed. (London: 
Oxford University Press, 1960), pp. 221-222. 

Table 15-1. Solutions of Eq. (15.6). 

Polyhedron Symbol Vertices N Number of 
Solutions to 15.6 

Icosahedron {3,5} 12 2 + T 12 
Icosidodecahedron {5} 30 4 30 
Dodecahedron {5,3} 20 3 20 
Truncated icosahedron t{3,5} 60 10 + 9t 60 
Rhombicosidodecahedron 1'} 

60 6 + T 60 
Truncated dodecahedron /{5,3} 60 1 + At 60 
Truncated icosidodecahedron 

^{5} 
120 14 + .5t 180 
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Torus Decompositions of Regular Polytopes 
in 4-Space 

Thomas F. Banchoff 

When a regular polyhedron in ordinary 3- 
space is inscribed in a sphere, then a decom¬ 
position of the sphere into bands perpendicu¬ 
lar to an axis of symmetry of the polyhedron 
determines a corresponding decomposition of 
the polyhedron. For example, a cube with two 
horizontal faces can be described as a union of 
two horizontal squares and a band of four ver¬ 
tical squares, and an octahedron with a hori¬ 
zontal face is a union of two horizontal trian¬ 
gles and a band formed by the six remaining 
triangles. 

We may approach the study of regular fig¬ 
ures in 4-space in a similar way. The corre¬ 
sponding statement one dimension higher says 
that if a regular polytope in 4-space has its 
vertices on a hypersphere such that a symme¬ 
try axis coincides with the axis perpendicular 
to ordinary 3-space, then the polytope can be 
described as a union of polyhedra arranged in 
“spherical shells.” For example, a 4-cube 
with one cubical face parallel to 3-space can 
be described as a union of two cubes and a 
shell made from the remaining six cubes. Simi¬ 
lar shell decompositions have become a stan¬ 
dard means of describing the way various 
three-dimensional faces fit together in 4-space 
to form regular polytopes. (See for example 
D. M. Y. Sommerville’s description of the reg¬ 
ular polytopes in 4-space, or FI. S. M. Coxe- 
ter’s treatment.') In this chapter we examine 
an alternative way of describing regular fig¬ 
ures in 4-space, presenting them as unions not 
of spherical shells but of rings of polyhedra 
known as solid tori. Such torus decomposi¬ 

tions are especially convenient for studying 
symmetries of these figures and for investigat¬ 

ing their topological properties. A valuable 
tool in this project is a remarkable mapping 
discovered by Heinz Hopf which relates the 
geometry of circles on the hypersphere in 4- 
space to the geometry of points on the ordi¬ 
nary sphere in 3-space. One of the aims of this 
chapter is to give additional geometric insight 
into the Hopf mapping by describing its rela¬ 
tionship to torus decompositions of regular 
poly topes. 

Decompositions 

Decompositions of objects are often easier to 
visualize when we project them into lower¬ 
dimensional spaces. For a regular polyhedron 
inscribed in a 2-sphere centered at the origin, 
if we use central projection from the North 
Pole to the horizontal plane which passes 
through the origin, the images of the vertices 
and edges of the polyhedron form a Schlegel 

diagram of the polyhedron. In such a diagram 
we may identify the convex cells in a decom¬ 
position of the polyhedron corresponding to 
the decomposition of the 2-sphere into hori¬ 
zontal bands (Fig. 16-1). 

If we follow the same procedure one dimen¬ 
sion higher, we project centrally from a point 
on the hypersphere to our three-dimensional 
space and the images of the vertices and edges 
of a regular figure determine its Schlegel dia¬ 
gram. Just as the central projection of a cube 
to the plane leads to a “ square-within-a- 
square,” the central projection of a hypercube 
may appear as a “cube-within-a-cube” with 
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Fig. 16-1. Band decompositions of the cube and 
octahedron. 

Fig. 16-2. Cube-within-a-cube projection of the hy¬ 
percube. 

corresponding vertices connected in each 
case. The annular band in the plane formed by 
four trapezoids separating two squares corre¬ 
sponds to the region separating two cubes 
which is decomposed into six congruent trun¬ 
cated square pyramids (Fig. 16-2). 

The four vertical truncated pyramids in the 
central projection of the hypercube fit together 
to form a solid torus which is the image of a 
ring of four cubes on the hypercube in 4- 
space. The remaining four cubes also form a 
ring and the common boundary of these two 
rings is the surface of a torus formed by 16 
squares in the hypercube. This is the proto¬ 
type of a torus decomposition, and it is this 
sort of analysis we wish to carry out with re¬ 
spect to other regular poly topes in 4-space. In 
this chapter we pay special attention to the 24- 
cell, a polytope formed from 24 regular octa- 
hedra. This polytope is complicated enough to 
exhibit most of the interesting phenomena of 
torus decompositions and it is still relatively 
easy to visualize, especially when we use the 
techniques of computer graphics.^ 

The Cube and Its Associated Polyhedra 

Associated with the cube are other polyhedra 
with vertices at the centers of faces or edges of 
the cube. If we take the six centers of square 
faces, we obtain the regular octahedron in¬ 
scribed in the cube. If on the other hand we 
take the midpoints of the 12 edges of the cube, 
we obtain a cuboctahedron, a semiregular 
polyhedron with faces of two types: squares 
determined by the midpoints of the edges of 
the cube’s square faces and triangles deter¬ 
mined by the midpoints of the three edges 
coming from each vertex of the cube. 

If we project the cube into the plane by cen¬ 
tral projection, we can identify the projections 
of the octahedron and the cuboctahedron by 
joining images of centers of faces and edges of 
the cube (Fig. 16-1). The cuboctahedron in 
particular can be expressed as a union of a 
large square surrounding a small square, with 
the region between them subdivided into four 
squares and eight triangles (Fig. 16-3). This 
gives a “band decomposition” corresponding 
to the decomposition of the cube itself into 
two horizontal squares and a band of four ver¬ 
tical squares. 

The Hypercube and Its Associated 
Polytopes 

In a similar manner we may identify regular 
and semiregular polytopes associated with a 
hypercube by taking the midpoints of faces of 
certain dimensions. If we take the midpoints 
of the eight cubical faces, we obtain the verti¬ 
ces of a cube-dual determining the 16 tetrahe¬ 
dral faces of the 16-cell. If we take the mid¬ 
points of all 32 edges, we obtain a semiregular 
polytope with 24 cells: 16 tetrahedra connect¬ 
ing the midpoints of quadruples of edges ema¬ 
nating from each of the vertices of the hyper¬ 
cube, and eight cuboctahedra determined by 
the midpoints of edges of each of the cubical 
faces of the hypercube. 

On the other hand, if we take the centers of 
all square faces of the hypercube we obtain a 
polytope which is regular. Each vertex of the 
hypercube is a vertex of six squares, each with 
a pair of sides chosen from among the four 
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Fig. 16-3, Band decomposition of the cuboctahe- 
dron. 

Fig. 16-4. Projection of the 24-cell. 

Fig. 16-5. Torus decompositions of the hypercube. 

edges emanating from the vertex. The mid¬ 
points of these six squares will be vertices of 
an octahedron. Moreover, the midpoints of 
the six square faces of a cube in the hypercube 
also determine an octahedron. We thus obtain 
a poly tope with 24 octahedral faces, 16 corre¬ 
sponding to vertices of the hypercube and 
eight corresponding its dual polytope. This po¬ 
lytope is called the 24-cell, and it is the main 
object of our study in this chapter. 

As in the lower-dimensional situation, we 
may identify the projections of these semire¬ 
gular and regular polytopes by referring to the 
central “cube-within-a-cube” projection of 
the hypercube (Fig. 16-2). In particular, the 
24-cell may be presented as a large octahedron 

surrounding a small octahedron, with the re¬ 
gion between them decomposed into six octa- 
hedra meeting vertex-to-vertex and 16 octahe- 
dra each meeting either the large octahedron 
or the small one along a triangular face. We 
may think of this polytope as consisting of one 
octahedron on each face of the small octahe¬ 
dron and one on each face of the larger one. 
Each octahedron of the first set shares a trian¬ 
gle with one octahedron of the other set. The 
gaps left between these 16 octahedra deter¬ 
mine the places for the remaining six octahe¬ 
dra (Fig. 16-4). 

The hypercube may be decomposed into 
two solid torus rings, each a cycle of four 
cubes meeting along square faces. In 4-space 
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c d 

Fig. 16-6. Torus decompositions of the 24-cell. 

the centers of the cubes in one of these rings 
will form the vertices of a square. In the cube- 
within-a-cube projection, the centers of four 
of these cubes lie on a vertical straight line and 
the other four centers are vertices of a hori¬ 
zontal square. The vertical line meets the hori¬ 
zontal square disc in exactly one point, and 
this fact implies that the line and the square 
are linked (Fig. 16-5a-c). 

Analogously we may express the 24-cell as a 
union of four solid tori, each a cycle of six 
octahedra meeting along triangular faces. The 
centers of the six octahedra in a ring will form 
a planar hexagon, with four vertices lying in 
two parallel edges of the hypercube and two 
opposite vertices from the dual 16-cell. Any 
two of these hexagons are linked, so that any 
hexagon meets the disc bounded by any other 
hexagon in exactly one point. We can identify 
such hexagonal cycles in the central projec¬ 
tion of a hypercube and its dual poly tope. One 
of the hexagons includes a vertex at infinity. 

so it is a straight line. The other three hexa¬ 
gons are arranged symmetrically about this 
line (Fig. 16-6a-d). 

Fold-Out Decomposition of the 
Hypercube and 24-Cell 

The decomposition of a hypercube into two 
solid tori with a common polyhedral boundary 
can be described in a different way by “folding 
the figure out into 3-space.’’ We may express 
a cube folded out into the plane by giving two 
squares together with a strip of four squares. 
The ends of the strip are to be identified to 
form a cylinder with two boundary square 
polygons, which will match up with the 
boundaries of the remaining two squares. The 
analogous decomposition of the hypercube 
starts with two solid stacks of four cubes. The 
ends of the stacks are to be identified by fold- 
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ing up in 4-space to obtain the two solid tori. 
The common boundary of these solid tori is a 
polyhedral torus which can be expressed as a 
square subdivided into 16 squares, with its left 
and right edges identified and its top and bot¬ 
tom edges identified (Fig. 16-7). 

The corresponding fold-out description of 
the 24-cell starts with a solid stack formed by 
six octahedra. The top and bottom triangles of 
the stack can be identified by folding up into 4- 
space to obtain a solid torus. The boundary of 
this solid torus can be expressed as a union of 
36 triangles arranged in a polygonal region in 
the plane, to be folded up in 4-space so that its 
left and right edges are identified and its top 
and bottom edges are identified (Fig. 16-8a-b). 

The remaining 18 octahedra in the 24-cell 
can be arranged into three other stacks, each 
with six octahedra. We can place the four 
stacks together in 3-space to indicate the way 
the four solid tori will be linked when the 
stacks are folded together in 4-space (Fig. 
16-9). 

Fig. 16-7. Fold-out decomposition of the hyper¬ 
cube. 

a 

Cartesian and Torus Coordinates 

To describe polyhedra in 3-space in coordi¬ 
nates, it is most convenient to parametrize the 
unit sphere by longitude and co-latitude (mea¬ 
sured down from the North Pole instead of up 
from the Equator). A point on the unit sphere 
then has Cartesian coordinates 

(cos(0)sin(yj), sin(0)sin((p), cos{(p)). 

Stereographic projection from the North Pole 
to the horizontal plane which passes through 
the origin sends a point to the intersection of 
the line through the North Pole and the point 
with the horizontal plane. The point whose co¬ 
ordinates are given above is then sent to 

(cos(0)sin((^)/(l - cosiif)), 
sin(0)sin((/5)/(l - cos((p)), 0) 

= (cos((9)cot((^/2), sin(0)cot((^/2), 0) 

(Fig. 16-10). Circles of latitude are sent to cir¬ 
cles centered at the origin and semicircles of 
longitude are sent to straight lines passing 
through the origin. A rotation or reflection of 
the sphere about the axis in 3-space corre¬ 
sponds to a rotation or reflection in the plane. 

b 

Fig. 16-8. A stack of six octahedra, (a) unfolded, (b) 
folded. 

Fig. 16-9. Four stacks of octahedra. 
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system on the 3-sphere is particularly well- 
suited to the study of the Hopf mapping, the 
final topic of this chapter. 

b ’--V, V 
I 

C ^-4^ \ 
p/ 

Fig. 16-10. Stereographic projection of the 2- 
sphere. 

A regular polyhedron with a vertical axis of 
symmetry will have its vertices on certain par¬ 
allels of latitude and the symmetries of the 
polyhedron preserving the axis will lead to 
symmetries of its Schlegel diagram in the 
plane. 

In 4-space the sphere of points at unit dis¬ 
tance from the origin can be parametrized in 
different ways.** In this exposition, we concen¬ 
trate on a coordinate system on the 3-sphere 
which has especially interesting geometric 
properties. In this torus coordinate system the 
coordinates of a point are 

ix,y,u,v) = {(cos(0)sin(y5), sin(0)sin((p), 
cos(i//)cos((p), sin(i/;)cos((p)} 

where 6 and i// run from 0 to In, and where 0 < 
(f < ttH. The points with (p = 0 give the unit 
circle in the («, v) plane and if ^ = ttH, the 
locus is the unit circle in the (x,y) plane. 

Points on the 3-sphere corresponding to 
other values of (p give tori on the 3-sphere. For 
example, if ip = 7r/4 we get a symmetric torus, 

(1/V2)(cos(0), sin(0), cos(i//), sin(i//)). 

This torus is the Cartesian product of two cir¬ 
cles, one lying in the xy-plane and the other in 
the Mu-plane. 

As <p moves from 0 to ttH, these tori sweep 
out the region between the two linked circles. 
In particular, the entire 3-sphere is then dis¬ 
played as a union of two tori, one correspond¬ 
ing to negative values of <p and the other corre¬ 
sponding to positive values. 

If we position the vertices of a regular poly¬ 
tope symmetrically with respect to this coordi¬ 
nate system, we obtain a torus decomposition 
of the regular polytope. The torus coordinate 

Coordinates for Polyhedra and Polytopes 

In three-dimensional space we may describe 
the cube by the eight vertices (±t, ±t, ±t) for 
a positive constant t. These points lie on the 
sphere of radius V3/. The centers of cubical 
faces will then be the points (±/, 0, 0), (0, ±t, 
0) and (0, 0, ±t), the vertices of a regular octa¬ 
hedron inscribed in a sphere of radius t. The 
midpoints of edges of the cube will have coor¬ 
dinates (±t, ±t, 0), (0, ±t, ±t) and {±t, 0, ±0, 
forming the vertices of a cuboctahedron in¬ 
scribed in a sphere of radius VZt. 

For the hypercube we may choose 16 verti¬ 
ces {±t, ±t, ±t, ±t) situated on the hypersur¬ 
face of a 3-sphere of radius It. In torus coordi¬ 
nates, these 16 points 

2t(cos(0)sin((^), sin(0)sin((p), cos(ifj)cos((p), 
sin((/;)cos(yj)) 

all lie on the torus with ip = ttIA. The coordi¬ 
nates are given by letting d and i// take on the 
values 7r/4 + kTrll for /: = 0, 1,2,3. Just as the 
3-sphere is expressed as a union of two solid 
tori with a common boundary torus, the 
boundary of the hypercube is expressed as a 
union of two solid tori with a common bound¬ 
ary. The boundary polyhedral torus can be ex¬ 
pressed as the Cartesian product of two 
square polygons. It includes all 16 vertices and 
all 32 edges of the hypercube as well as 16 of 
its squares. 

The centers of the eight three-dimensional 
cubical faces of the hypercube have coordi¬ 
nates (±t, 0, 0, 0), (0, ±t, 0, 0), (0, 0, ±t, 0) 
and (0, 0, 0, ±t), lying on a hypersphere of 
radius t. This gives coordinates for the regular 
16-cell in 4-space. The midpoints of edges of 
the hypercube will be the 32 points (0, ±t, ±t, 
±t), (±t, 0, ±t, ±t), {±t, ±t, 0, ±/) and {±t, 
±t, ±t, 0), lying on a hypersphere of radius 
V3r, giving the coordinates of the vertices of a 
semiregular polytope. 

The vertices of the regular 24-cell in 4-space 
can be given by the midpoints of square faces 
of the hypercube, with coordinates (±t, ±t, 0, 
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0), (0, ±t, 0, ±0, (±/, 0, ±t, 0), {±t, 0, 0, ±0, 
(0, 0, ±t, ±t) and (0, ±t, ±t, 0), lying on a 
hypersphere of radius V2/. Another set of co¬ 
ordinates for the 24-cell is given by taking the 
vertices of a hypercube (±.s, ±s, ±s, ±5) 
together with the vertices of a dual 16-cell 
(±25, 0, 0, 0), (0, ±25, 0, 0), (0, 0, ±25,0) and 
(0, 0, 0, ±25). These 24 coordinates lie on a 
hypersphere of radius 25. 

The Hopf Mapping 

Torus coordinates are especially well suited 
for describing the Hopf mapping, a mapping 
from the 3-sphere to the 2-sphere for which 
every point of the 3-sphere lies on a circle that 
is the preimage of a point on the 2-sphere. One 
the easiest ways to describe the Hopf mapping 
is to think of the 3-sphere as a collection of 
pairs of complex numbers with the squares of 
their lengths adding up to 1. We then have 

= {(x ± iy, u + iv), x'^ + = 1} 
= {[z,w], + w'^ = 1}. 

Hereafter we shall adopt the convention of us¬ 
ing square brackets to indicate the description 
of a point of by pairs of complex numbers 
and parentheses to indicate the usual descrip¬ 
tion in terms of quadruples of real numbers. 

To describe the Hopf mapping we send a 
pair of complex numbers to their quotient; 
that is, h[z,w] = w/z if z 0 and h[0, w] = 
the infinite point in the extended complex 
plane. If we write a point in in polar coordi¬ 
nates, then we have 

[z,vv] •= cos(v?)t’'^] and 

h[z,w] = 

if (f 9^ tt/2 and h[Q,w] = oc as before. 

To complete the description of the Hopf 
mapping we use inverse stereographic projec¬ 
tion to map the extended complex plane to the 
2-sphere. The effect of this is to map the point 
[z,w] = (x,y,u,v) to 

h[z,w] = [2zw, ww - zz] = (2xu ± 2yv, 

2xv - 2yu, -X- - y- ± + v^, 0). 

Here w = u - iv indicates the complex conju¬ 
gate. The coordinate wvv — zz is a. real number 

and the image of each point of 5^ lies in three- 
dimensional space. 

In torus coordinates, the Hopf mapping is 
given by 

h[sin{<p)e‘^, cos((p)e‘'f‘] 

= [sini2(p)e‘^‘^~^\ cos(2y5)]. 

It is clear from this form that the image of each 
point lies on the 2-sphere of radius 1 in 3- 
space, so we write 

h: S\ 

Under this mapping the unit circle in the xy- 

plane corresponding to ifj = ttI2 is sent to the 
point (0, 0, —1) and the unit circle in the uv- 

plane corresponding to y? = 0 is sent to point 
(0, 0, 1). The middle torus (1/V2)[c'^, e''^] cor¬ 
responding to (^ = 77/4 is sent to the Equator 

0]. The preimage of the point (1, 0, 0) 
on the Equator is the set of points with (p = 

77/4 and 6 = ifj. This curve lies on the sphere 
and in the plane given hy x = u and y = v,so it 
must be a circle. Similarly any point [e‘^, 0] on 
the Equator will be a circle determined by the 
conditions a = 77/4 and (p = 6 + More gen¬ 
erally for any point [sin(y)c'^, cosCy)] with 
sin(y) positive on the 2-sphere, the preimage 
under the Hopf mapping will be a circle deter¬ 
mined by the conditions cp = y/2 and \fj = 6 + 

/3. All of these circles will be great circles on 
the 3-sphere and no two of them will have a 
point in common. Since the discs bounded by 
these circles will meet only at the origin in 4- 
space, the circles will be linked. 

The Hopf Decomposition of the 
Hypercube 

We now consider the hypercube from the 
point of view of the Hopf mapping. In com¬ 
plex coordinates, the 16 vertices of the hyper¬ 
cube on the unit hypersphere may be given by 
1/2[±1±/, ±1±/].^ Under the Hopf mapping 
the images of these vertices will be four points 
on the Equator of S^, namely [±1, 0] and [±/, 
0] (Fig. 16-11). 

We indicate on the unfolded torus diagram 
two of the four quadrilaterals containing the 
vertices of the hypercube. These four quadri¬ 
laterals are squares in 4-space which we may 
call “Hopf polygons.” The edges of these 
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Fig. 16-11. Hopf polygons on the hypercube. 

Hopf polygons are diagonals in the square 
faces of the flat torus which is the preimage of 
the Equator under the Hopf mapping. One of 
the solid tori is the preimage of the upper hem¬ 
isphere and the other is the preimage of the 
lower hemisphere. 

Torus Decomposition of the 24-Cell 

We may now attempt a similar decomposition 
of the 24-cell. In the fold-out version we may 
identify three hexagonal helices on each stack 
of six octahedra corresponding to the four 
quadrilateral helices on the stacks of four 
cubes in the hypercube. Unfortunately these 
hexagons are not preimages of points of 
under the Hopf mapping, in either of the two 
coordinate systems we have described for the 
24-cell. The coordinates which we have given 
for the hypercube are sent by the Hopf map¬ 
ping to four points on the Equator and the 
eight vertices of the 16-cell are sent to the 
North and South Poles of 5^. Thus the 24 coor¬ 
dinates of one coordinate system on the 24- 
cell are sent to six points of situated at the 
vertices of a regular octahedron. Similarly if 
we use the coordinates of the 24-cell obtained 
by taking midpoints of square faces, again the 
images under the Hopf mapping are the same 
six vertices of an octahedron. In order to ob¬ 
tain the decomposition of the 24-cell into four 

solid tori each with six octahedra, we need to 
reposition the 24-cell so that its vertices are 
sent to the four vertices of tetrahedron under 

the Hopf mapping. 
To determine a rotation that will align the 

24-cell so that it is situated well with respect of 
the Hopf mapping, we carry out a closer ex¬ 
amination of the previously given coordinates 
of the 24-cell where we now consider the case 
t = 1 so the polytope lies on a sphere of radius 
equal to 2. If we project stereographically 
from the point (0, 0, 0, V2) then the image of a 
point {x,y,u,v) is {V^/(V2 - u)}(x,y,u). If u = 
0, then the image of {x,y,u,0) is ix,y,u). Thus 
the images of the 12 vertices of the 24-cell of 
the forms (±1, ± 1,0, 0), (± 1,0, ±1,0) and (0, 
± 1, ±1,0) will be the vertices of a cuboctahe- 
dron in 3-space. The six vertices of the form 
(±1,0,0, 1),(0, ±1,0, l),and (0,0, ±1, l)will 
be sent to the vertices of large octahedron 
containing the cuboctahedron, and the six ver¬ 
tices with fourth coordinate — 1 will be sent to 
a small octahedron contained within the cub- 
octahedron. 

The cuboctahedron has eight triangular 
faces, each only lying in one distorted octahe¬ 
dron with its opposite triangle on the small 
octahedron and another with opposite triangle 
on the large octahedron. This accounts for 18 
of the octahedra in the 24-cell. The remaining 
six each have four of the vertices on the 
square faces of the cuboctahedron, and one 
vertex on the large and one on the small octa¬ 
hedron. 

We may then identify one of the four tori in 
the toroidal decomposition by taking the small 
octahedron and two adjacent octahedra with 
their opposite triangles on the semiregular 
polyhedron. The octahedra opposite these 
three complete a cycle of six octahedra on the 
24-cell. We could for example take the large 
octahedron, with center (0, 0, 0, 1), the small 
one with center (0, 0, 0, -1), two others adja¬ 
cent to the small one with centers l/2( -1, -1, 
-1, -1) and 1/2(1, 1, 1, -1), and their oppo¬ 
site octahedra with center 1/2(1, 1, 1, 1) and 
l/2(-1, -1, -1, 1). These six vertices may be 
arranged in a hexagon so that the angle be¬ 
tween any two adjacent vertices is 120°, as 
shown in Fig. 16-12. 

We may label the vertices of the projected 
24-cell so that this cycle of six octahedra ap- 
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(0, 0,0,1) 

(0, 0, 0,-1) 

Fig. 16-12. A hexagon of centers of octahedra in a 
Hopf cycle. 

pears as five octahedra in a vertical stack, to¬ 
gether with the large octahedron. The remain¬ 
ing solid tori are obtained by taking a pair of 
octahedra meeting the central polyhedron in 
opposite square faces and then connecting 
them by two other pairs each with one octahe¬ 
dron inside and one outside the central poly¬ 
hedron. Once we have one of these we obtain 
the other two by rotating about the vertical 
line by angles of 120° and 240°. 

Fortunately it is possible to find a rotation of 
4-space which realigns the vertices so that 
their images are situated at the vertices of a 
regular tetrahedron in 3-space! To find one 
such rotation, we look for a linear transforma¬ 
tion T which sends the hexagon to a regular 
hexagon in the wu-plane in 4-space. We can let 
T fix the vector (0, 0, 0, 1) and let T send 1/2(1, 
1, 1, l)to (0,0, 3/2, 1/2) and l/2(-l, -1, -1, 1) 
to (0, 0, -^/2, 1/2). It follows that r(l/V^, 
1/V^, 1/V3, 0) = (0, 0, 1, 0). The vectors sent 
to (1,0, 0, 0) and (0, 1, 0, 0) by 7 must be a pair 
of mutually orthogonal unit vectors which are 
perpendicular to (0, 0, 0, 1) and (1/V3, l/VI, 

I/V3, 0) and we may choose these preimages 
to be (I/V2, -I/V2, 0, 0) and (1/^, 1/V6, 

2/V6, 0). This completely determines the ma¬ 
trix of 7, and we may then check that after this 
rotation, the vertices of the 24-cell do indeed 
lie in four (planar) regular hexagons in 4-space 
which are mapped to the vertices of a regular 
tetrahedron inscribed in the unit 2-sphere in 3- 
space under the Hopf mapping.^ 

The preimages of the four triangular faces of 
this spherical tetrahedron correspond to the 
four cycles of six octahedra described in the 
previous paragraph. To see how these four 
rings of octahedra fit together to fill out the 24- 

cell, we may shrink each ring toward the hexa¬ 
gon, with vertices at the centers of the six tri¬ 
angles between adjacent octahedra. We may 
interpolate linearly between the 24-cell and 
this union of four hexagons, constantly pro¬ 
jecting the vertices centrally to the hypersur¬ 
face of the 3-sphere. Illustrations of several 
stages of its deformation are shown in Figs. 
16-8-16-11. 

Note that the 24 centers of four hexagons 
may be obtained from the centers of the 24 
octahedra by a rotation in 4-space which 
moves each Hopf circle along itself by 60°. 
The comparable treatment of the hypercube 
shrinks the two rings of four cubes to the 
quadrilaterals determined by the centers of the 
eight squares where adjacent cubes meet in 
the two rings as shown in Figs. 16-5-16-7. 
These eight points may also be obtained from 
the centers of the cubes in the two rings by a 
rotation in 4-space moving each Hopf circle 
along itself by 45°. 

Conclusion 

The familiar central projection of the hyper¬ 
cube suggests a decomposition of the hyper¬ 
sphere into solid tori, and this decomposition 
carries over to other poly topes as well, in par¬ 
ticular the 24-cell. This investigation gives ad¬ 
ditional geometric insight into the properties 
of these polytopes and at the same time it elu¬ 
cidates some of the geometry of the Hopf 
mapping. 
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' D. M. Y. Sommerville, Geometry of n Dimen¬ 

sions (London: Methuen, 1929). H. S. M. Coxeter, 
Regular Poly topes, 3rd ed. (New York: Dover Pub¬ 
lications, 1973). 

^ Similar treatments of the 120-cell and the 600- 
cell are implicit in the work of several mathemati¬ 
cians, notably Coxeter whose Regular Complex 

Polytopes (Cambridge, England: Cambridge Uni¬ 
versity Press, 1974) is the primary source for all 
material of this sort. 

^ Compare p. 37 of Coxeter, Regular Complex 

Poly topes. 

'' One direct analogy with the usual coordinate 
system on the 2-sphere in 3-space would be to use 

(x,y,u,v) = (cos(0)sin(y5)sin(i);), sin(0)sih(<^)sin((//), 
cos((^)sin(i//), cos(i//)), 

which would suggest the same sort of decomposi¬ 

tion of the 3-sphere into “parallel 2-spheres of lati¬ 
tude.” Such a decomposition has been carried out 
by several authors (including D. M. Y. Sommer¬ 
ville), and an early computer generated film by 
George Olshevsky uses such an approach to dis¬ 
play the slices of regular polyhedra in 4-space by 
sequences of hyperplanes perpendicular to various 
coordinate axes. 

^ The coordinates for the 24-cell obtained in this 
way are very similar to those which appear in 
Coxeter’s discussion of the 24-cell in Twisted Hon¬ 

eycombs (Regional Conference Series in Mathe¬ 
matics, no. 4, American Mathematical Society, 
Providence, 1970), although he does not explicitly 
use the Hopf mapping in any of his constructions. 
Professor Coxeter pointed out that these coordi¬ 
nates also appear in a slightly different form in the 
1951 dissertation of G. S. Shephard. 
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Convex Polyhedra, Dirichlet Tessellations, and 
Spider Webs 

Peter Ash, Ethan Bolker, Henry Crapo, and Walter Whiteley 

Plane pictures of three-dimensional convex 
polyhedra, plane sections of three-dimen¬ 
sional Dirichlet tessellations, and flat spider 
webs with tension in all the threads are essen¬ 
tially the same geometric objects. At the root 
of this remarkable coincidence is a single geo¬ 
metric diagram that permits us to offer a uni¬ 
fied image of the connections among these and 
other objects. Some hints of these connections 
are more than a century old, but others are 
very recent. We begin with an historical 
sketch. 

In the nineteenth century, mathematicians 
and engineers investigated frameworks built 
from iron bars and pins to determine when 
they were rigid.' Their studies led them to 
consider static stresses: tensions and com¬ 
pressions in the bars in internal static equilib¬ 
rium. In 1864, James Clerk Maxwell discov¬ 
ered a geometric tool for studying the static 
equilibrium of forces on a plane framework 
with a planar graph: the reciprocal figure, a 
drawing of the dual planar graph with the dual 
edges perpendicular to the original edges and 
forces (see Fig. 17-1).^ Maxwell built this re¬ 
ciprocal by patching together the polygons of 
forces expressing the vector equilibrium at 
each joint. He then observed that this con¬ 
struction yields a polyhedron in space which 
projects onto the framework. These results 
belong to the field of graphical statics,^ a 
branch of graphical and mechanical science 
which withered around the turn of the cen¬ 
tury, along with much of projective geometry. 

Recent work on the statics of frameworks 
grows from these geometric roots.'* In particu¬ 
lar, we now know that a convex polyhedron. 

projected from a point on one face onto a 
plane parallel to this face, corresponds to a 
spider web: a framework with no crossing 
edges and some edges going to infinity, which 
has an internal static equilibrium formed en¬ 
tirely with tension in the members. In the 
plane, the spider webs are frameworks with 
convex reciprocals: reciprocals in which the 
convex polygons have disjoint (that is, non¬ 
overlapping) interiors (Fig. 17-2). Other recent 
work has extended some hints in the work of 
Maxwell and a conjecture by Janos Baracs, a 
modern structural engineer and geometer, to 
show that three-dimensional projections of 
convex 4-polytopes correspond to some, but 
not all, spider webs in 3-space. 

In the 1970s, computer scientists sought al¬ 
gorithms to recognize and draw correct pic¬ 
tures of objects in space. Several workers in¬ 
dependently observed^ that the existence of a 
reciprocal figure was the natural geometric 
condition for a correct picture of a polyhe¬ 

dron, noting that the reciprocal figure records 
the normals to the faces (Fig. 17-3). At first 
some critical topological details were not 
properly addressed, but this construction of 
plane reciprocals has now been refined to give 
a necessary and sufficient condition for cor¬ 
rect pictures of any oriented polyhedron.^ 

At about the same time, computer scientists 
were studying Dirichlet tessellations (also 
known as Voronoi diagrams): subdivisions of 
the plane (and of «-space) into the polygonal 
(or polyhedral) regions of points closest to 
given centers (Fig. 17-4). In 1979, Brown ob¬ 
served that a Dirichlet tessellation in the plane 
corresponds to a convex polyhedron with all 
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S* R* Q* 

b 

Fig. 17-1. A framework (a) in static equilibrium pendicular to the original edge Z, and a polygon 

with a set of external forces (the arrows), has a dual to the edges at each vertex of the original. 

Maxwell reciprocal figure (b) with dual edge Z* per- 

Fig. 17-2. A plane spider web (a) has an internal static equilibrium with tension in all members, and a 

convex reciprocal figure derived from this equilibrium (b). 
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faces tangent to a sphere, projected from the 
point of tangency of one face onto a plane par¬ 
allel to this face.’ He used this observation to 
develop efficient algorithms to compute the 
Dirichlet tessellation for a set of centers. Ash 
and Bolker observed that the diagram of cen¬ 
ters forms a classical reciprocal figure for its 
Dirichlet tessellation.^ More generally, a sec¬ 

tional Dirichlet tessellation, a plane section of 
a Dirichlet tessellation in 3-space, has a plane 
reciprocal formed by the orthogonal projec¬ 
tion of the spatial centers. At the 1984 Shaping 
Space Conference, Whiteley and Bolker 
forged the last link in the proof that sectional 
Dirichlet tessellations and plane spider webs 
coincide.^ This says, implicitly, that convex 
polyhedra projected from one face are just 
sectional Dirichlet tessellations, and con¬ 
versely. Independently, Edelsbrunner and 
Seidel gave an explicit construction of a poly¬ 
hedron which will correspond to a given sec¬ 
tional Dirichlet tessellation. 

Thus many of the results we present are not 
new. However, the unified picture is, and 
some new results follow from this unification. 
We highlight the reciprocal figure as the cen¬ 
tral geometric construction and some direct 
geometric arguments replace previous, seem¬ 
ingly accidental coincidences. We will sketch 
proofs when they are simple or illuminating; 
otherwise we will refer the reader to the liter¬ 
ature. 

In the next section, we carefully describe 
the equivalence of the following finite geomet¬ 
ric objects in the plane: 

• A plane section of a Dirichlet tessellation of 
3-space. 

• A plane section of a furthest-point Dirichlet 
tessellation of 3-space. 

• A projection of a convex polyhedron in 3- 
space from a point inside one of its faces onto 
a plane parallel to this face. 

• A plane framework, without self-intersec¬ 
tion, with a static equilibrium using tension 
in all members. 

• A plane drawing of a planar graph, with a 
planar reciprocal figure of disjoint convex 
polygons. 

We also describe the special correspondence 
between Dirichlet tessellations in the plane 

a 

C 

Fig. 17-3. The projection of a polyhedron (a) has a 

reciprocal figure (b) which places the vertex dual to 

the face C at the point given by the gradient c of this 

plane. 

Fig. 17-4. A set of centers {the circles) defines a 

Dirichlet tessellation {heavy lines) and a reciprocal 

diagram of centers {lighter lines). 

and convex polyhedra with all faces tangent to 
a sphere (or a paraboloid). Later we survey 
some infinite analogues and point out how 
most but not all equivalences remain true. 
Such infinite, but locally finite, structures oc¬ 
cur in the study of circle packings of the entire 
plane and in both periodic and aperiodic tilings 
of the plane. 

All of the questions we raise, and many of 
the answers, generalize to /r-space, but in this 
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chapter we limit ourselves to dimensions 1, 2, 
and 3. 

Each of the fields we touch on has its own 
favorite questions, results, and unsolved prob¬ 
lems. The connections we establish among 
these fields have important implications for 
those preoccupations. For example the ques¬ 
tion: “Which graphs can be realized (that is, 
constructed) as a Dirichlet tessellation in the 
plane?” now coincides with the classical prob¬ 
lem: “Which spherical polyhedra can be real¬ 
ized with all faces tangent to an insphere?” 
The question: “Which graphs can be realized 
as a sectional Dirichlet tessellation in the 
plane?” is answered by Steinitz’s theorem: 
adding the polygon at infinity must create a 
triply connected planar graph! We will draw 
out some of these implications as we proceed 
through the correspondences. 

This study represents geometry in what is 
for us its best sense: recognizing the kinship 
among classes of tangible, visible objects that 
one can draw, build, and manipulate. We feel 
pleasure in seeing a spider weave a many-fac¬ 
eted diamond, excitement in discovering the 
geometric basis of common algorithms to rec¬ 
ognize or create these patterns, horror in see¬ 
ing a building shake because it contains a 4- 
polytope, and satisfaction in knowing that a 
circle-packing is locally maximally dense be¬ 
cause the graph of the centers is a rigid spider 
web. 

Cell Decompositions and Reciprocal 
Figures 

Imagine cutting the plane into a finite number 
of convex polygons and unbounded convex 
polygonal regions (see Fig. 17-5a). A proper 

cell decomposition of the plane is a finite set of 
convex polygons and unbounded convex po¬ 
lygonal regions, called the cells, such that 

(i) every point in the plane belongs to at least 
one cell; 

(ii) the cells have disjoint interiors; 
(iii) the decomposition is edge-to-edge; that is, 

every edge of a cell is a complete edge of a 
second cell. 

For example, the Dirichlet tessellations de¬ 
scribed above are proper cell decompositions. 

Each proper cell decomposition D of the plane 
(henceforth in this section we shall omit “of 
the plane”) has an abstract dual graph D*. 
The vertices of D* are the cells of D; two ver¬ 
tices c and c' are joined by an edge just when 
the corresponding cells C and C' share an 
edge. It is clear that D* is always a planar 
graph, because it can be drawn in the plane 
simply by choosing a point inside each of the 
cells and joining the points in cells which share 
an edge (see Fig. 17-5b). For a Dirichlet tessel¬ 
lation, the centers are the vertices of a planar 
embedding of D* and the edge separating two 
cells C and C' is the perpendicular bisector of 
the segment cc' in this drawing of the dual (see 
Figs. 17-4 and 17-8b). 

This example suggests a way to try to draw 
the dual graph of a cell decomposition. A re¬ 

ciprocal figure for D is a plane drawing of D* 
in which the edges are straight-line segments 
which are (when extended) perpendicular to 
the (extended) edges of D. Figure 17-6 shows 
additional examples of cell decompositions 
with reciprocal figures. Note that we do not 

demand that the vertices of a reciprocal figure 
lie in the cells to which they correspond. 

So far our discussion of the reciprocal figure 
has concentrated on the graph: the edges and 
the vertices. The cell decomposition has verti¬ 
ces, edges, and cells, and we now restore this 
symmetry to the reciprocal. Around each ver¬ 
tex of the original decomposition we have a 
cycle of exiting edges and a corresponding 
polygon of orthogonal edges in D*. If all these 
dual edges have nonzero length, and the re¬ 
sulting polygons are convex and have disjoint 
interiors, we say we have a convex reciprocal 

figure. Figure 17-6a shows a convex reciprocal 
figure, while the cell decomposition in Fig. 17- 
6b has no convex reciprocal, because we have 
turned the edge between cells C and D. Fig¬ 
ures 17-6c and 17-6d show a single cell decom¬ 
position with a convex reciprocal (C) and a 
nonconvex reciprocal, in which the convex 
polygons are not disjoint (D). 

A set of parallel lines and the strips between 
them is a trivial cell decomposition which has 
no vertices (Fig. 17-7). Such decompositions 
are just perpendicular translations of cell de¬ 
compositions of the line. They have reciprocal 
figures in which all the dual vertices lie on 
some line perpendicular to the edges. For the 
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Fig. 17-5. Any proper cell decomposition of the plane (a) has a dual graph (b). 

Fig. 17-6. Some cell decompositions (light lines) 

with reciprocal figures (heavy lines). The cell de¬ 
composition in (a) has only convex reciprocals, but 

that in (b) has only nonconvex reciprocals. A single 
cell decomposition may have both convex (c) and 
nonconvex (d) reciprocals. 
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Fig. 17-7. A trivial cell decomposition of the plane 

(light lines) has a convex reciprocal which lies on a 

perpendicular line (heavy line). 

Fig. 17-8. Some cell decompositions with a convex 

reciprocal cannot be a Dirichlet tessellation (a), 

while others with a similar structure are Dirichlet 

tessellations (b). 

purposes of our theorems and constructions 
we call such a trivial reciprocal figure convex 
if the order of the dual vertices along the line 
matches the order of the strips along the line. 
We note that any nontrivial proper cell decom¬ 
position in the plane has at least one vertex on 
each edge. 

These trivial cell decompositions hint at the 
fact that our entire theory can be restated sim¬ 

ply for figures on the line. A cell decomposi¬ 
tion of the line is a set of line segments with 
disjoint interiors. A convex reciprocal is just a 
set of reciprocal points for these cells, which 
respect the order of the cells (see Figs. 17-9 
and 17-13). From time to time we shall use 
figures on the line to illustrate the concepts we 
are exploring for figures in the plane. 

Returning to the example of a Dirichlet tes¬ 
sellation, we see that the diagram of centers is 
a convex reciprocal figure. If all the vertices 
are 3-valent, the reciprocal will be a triangula¬ 
tion known as the Delauney triangulation." 
This observation is our first theorem. 

Theorem 17.1. A Dirichlet tessellation has a 
convex reciprocal figure. The converse of this 
statement is false. 

Figure 17-8a shows a proper cell decompo¬ 
sition which has a convex reciprocal figure but 
is not a Dirichlet tessellation: there is no way 
to position the centers so that the edges of the 
original decomposition bisect the edges of the 
dual (as in Fig. 17-8b). Experimental evidence 
is quite convincing; a proof will be found in 
Ash and Bolker’s “Recognizing Dirichlet Tes¬ 
sellations.”'^ 

To find a converse, we must broaden our 
search. 

A sectional Dirichlet tessellation is a plane 
section of a Dirichlet tessellation of 3-space. 
(We define a Dirichlet tessellation of 3-space 
by replacing “the plane” by “space” in our 
previous definition.) If we throw away any 
centers in space whose eells do not meet the 
slicing plane in a nonempty open set, the re¬ 
maining centers are in one-to-one correspon¬ 
dence with the cells of the sectional Dirichlet 
tessellation. Their orthogonal projections onto 
the slicing plane form a convex reciprocal fig¬ 
ure for the sectional Dirichlet tessellation (see 
Fig. 17-9 for the analogue on the line). This 
gives the result of Ash and Bolker’s “General¬ 
ized Dirichlet Tessellations’’'^ 

Theorem 17.2. A sectional Dirichlet tessella¬ 
tion has a convex reciprocal figure. 

These sectional Dirichlet tessellations, also 
called power Voronoi diagrams or Voronoi di¬ 
agrams in Laguerre geometry, model a simple 
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biological phenomenon. Suppose bacteria 
start to grow at center c at time C, with growth 
rate at the boundary inversely proportional to 
the distance from the center. If the colonies 
cannot overlap, the cells occupied by the colo¬ 
nies form the sectional Dirichlet tessellation 
on the plane z = 0 of the spatial tessellation 
with centers (c, V7^). If all the bacteria start at 
the same time, we have a Dirichlet tessella¬ 
tion. In this model each cell contains its cen¬ 
ter; this need not always be true. Other exam¬ 
ples and a more complete bibliography are 
given by Ash and Bolker.'^ 

We shall prove the converse of Theorem 
17.2 and discuss the furthest-point Dirichlet 
tessellations after we examine spider webs 
and projections of convex polyhedra. 

Spider Webs and Projections 

A proper cell decomposition is a spider web if 
it supports a spider web stress: a set of non¬ 
zero tensions in the edges which leads to me¬ 
chanical equilibrium at each vertex (Fig. 17- 
10a). More specifically, a spider web stress is 
a nonzero force Fve in each edge E at a vertex 
V, directed from V out along the edge, such 
that 

(i) for a finite edge E joining V and V', the 
forces at the two ends are equal in size: 

Fve = ~Fv'e; 
(ii) for each vertex V, the vector sum of the 

forces on the edges leaving V is zero. 

Spider webs are interesting and important. 
If they are built with cables, and pinned to the 
ground on the infinite edges, they are rigid in 
the plane.In fact they are the basic building 
blocks of all rigid cable structures in the plane. 
At the other extreme, if a plane bar-and-joint 
framework has the minimum number of bars 
needed to restrain |V| joints (|E| = 2|V| - 3), 
then the appearance of a spider web signals 
that it is shaky.Finally, recent work on 
packing circles of a fixed radius, without over¬ 
lapping, into a convex polygon has shown that 
such a packing cannot be made denser by a 
small jiggle if, and only if, the associated graph 
of centers and contact points is an infinitesi¬ 
mally rigid spider web.'*^ 

Fig. 17-9. Any section of a plane Dirichlet tessella¬ 

tion creates a sectional Dirichlet tessellation on the 

line {the black dots on the heavy line), with a con¬ 

vex reciprocal (the circles) given by the orthogonal 

projection of the plane centers. 

b c 

Fig. 17-10. The arrows in (a) show the tensions of a 

spider web stress on a cell decomposition. The 

polygons of forces for the equilibria at the vertices 

(b) are pieced together and rotated 90° to form a 

convex reciprocal figure (c). 

If a cell decomposition has a spider web 
stress, then the vanishing of the vector sum of 
forces at each vertex says that these forces 
can be drawn as a closed convex polygon (Fig. 
17-10b). If we rotate each such polygon clock¬ 
wise by 90° then each edge is perpendicular to 
the edge of the original figure to which it corre- 
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Fig. 17-11. A cell decomposition (light lines) can 

have two dissimilar convex reciprocal figures 

(heavy lines) given by free choices for the lengths of 

some reciprocal edges. 

spends. Since the forces at the two vertices of 
a finite edge are equal in size and opposite in 
direction, these polygons can be glued to¬ 
gether to make a planar drawing of the dual 
graph D* (Fig. 17-lOc); we have constructed a 
convex reciprocal.'^ Conversely, assume that 
a cell decom.position has a convex reciprocal. 
We turn this diagram 90° counterclockwise 
and use the length of each dual edge to define 
the size of the tension in the corresponding 
edge of the decomposition. The convex poly¬ 
gons of the reciprocal imply the vector equilib¬ 
rium of these tensions at each vertex. Thus we 
have proved^®: 

Theorem 17.3. A proper cell decomposition is 
a spider web if and only if it has a convex 
reciprocal figure. The convex reciprocal deter¬ 
mines the spider web stress, and the spider 
web stress determines the convex reciprocal, 
up to translation and rotation bv 180°. 

The trivial cell decompositions satisfy this 
theorem in an appropriately trivial way. They 
all have convex reciprocals, and require no 
tensions for edges with no vertices! 

Theorem 17-3 shows that if a proper cell 
decomposition has one convex reciprocal fig¬ 
ure, it has many. Any translation of a recipro¬ 
cal produces another reciprocal; clearly this 
translation has no effect on the tensions. If we 
turn the reciprocal by 180°, we also get a recip¬ 
rocal. In the classical literature, this turn cor¬ 
responds to a switch from tensions to com¬ 
pressions, but we have chosen to concentrate 
on the tensions. Any dilation converts a con¬ 
vex reciprocal to a new reciprocal; the stress 
corresponding to the new reciprocal is a scalar 
multiple of the one corresponding to the 
original. 

For some figures, we can freely choose the 
lengths of several different reciprocal edges 
and still complete the reciprocal. For the ex¬ 
ample in Fig. 17-11 the lengths of the recipro¬ 
cal edges be and ab are independent choices. 
The existence of such dissimilar convex recip¬ 
rocals reflects the fact that the set of stresses, 
which is a vector space, has dimension greater 
than 1. 

We now turn to study the projections of 
polyhedra. Consider the intersection of the 
upper half spaces of a finite set of nonvertical 
planes. The faces, edges, and vertices of this 
intersection form a convex polyhedral bowl. 

(Our choice of upturned bowls is simply a con¬ 
venient convention, as you will see below.) 
The vertical projection of a convex polyhedral 
bowl is a proper cell decomposition of the 
plane. 

To construct a convex reciprocal figure for 
such a projection, suppose that the boundary 
planes P and P' which meet at an edge E have 
equations 

Ax + By - z - C = 0, 

A'x + B'y - z - C = 0. 

Then the line joining the points (A,B) and 
(A',B') in the plane is perpendicular to the ver¬ 
tical projection of the edge E, because those 
points are the intersections of the plane and 
the normals to P and P' drawn from the point 
(0, 0, 1) (Fig. 17-12). The set of points (A,B), 

one for each face of the bowl (and thus one for 
each cell of the projected cell decomposition), 
form a reciprocal figure for the projection (see 
Fig. 17-13 for an example on the line). 
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The convexity of the polygons in the recip¬ 
rocal follows from the convexity of the verti¬ 
ces in the polyhedral bowl. Finally, observe 
that this reciprocal is also the vertical projec¬ 
tion of a dual object in 3-space. This dual poly¬ 

hedral bowl has vertices (A,.6,0 correspond¬ 
ing to the planes Ax + By - z - C = 0 of the 

original and boundary planes Px Qy - z - 

R = 0, one for each vertex {P,Q,R) of the 
original bowl. This dual bowl is created by a 
projective polarity about the Maxwell parabo¬ 

loid -H — 2z = 0. (Notice that a dual 
polyhedral bowl is also convex, but it has a 
cylinder of vertical planes dual to the points at 
infinity on the unbounded edges of the original 
bowl.) 

The converse is also true. If a proper cell 
decomposition has a convex reciprocal, then 
there is a convex polyhedral bowl projecting 
to this decomposition, with the normals to the 
faces given by the reciprocal vertices (or by 
the reciprocal turned 180°). Any single bound¬ 
ary plane of the bowl can be chosen freely 
(perpendicular to its known normal). Then the 
positions of the remaining planes can be de¬ 
duced (see Crapo and Whiteley^^ for a proof). 
Therefore: 

Fig. 17-12. These normals to the face planes at a 

polyhedral edge section to the gradients, and to a 

reciprocal edge perpendicular to the projection of 

the polyhedral edge. 

Theorem 17.4. A proper cell decomposition 
has a convex reciprocal if and only if it is the 
vertical projection of a convex polyhedral 
bowl. The convex reciprocal can be recon¬ 
structed from the bowl by taking the normals 
to the faces, and the convex reciprocal deter¬ 
mines the bowl, up to vertical translation. 

The trivial cell decompositions are projections 
of trivial convex polyhedral bowls formed by 
planes parallel to a line. The normals to the 
faces of such a bowl yield the trivial eonvex 
reciprocals as we defined them. 

A vertical scaling of a convex polyhedral 
bowl projecting to our cell decomposition 
(that is, changing all the z-coordinates by a 
positive constant factor) corresponds to a sim¬ 
ilarity transformation of the reciprocal by the 
same factor. The translations of a reciprocal 
come from a more subtle “rolling” of the an¬ 
gles of the planes (see Fig. 17-14a). If we re¬ 
flect the bowl in the xy-plane, the reciprocal 
turns 180°. We turn all our bowls up so that the 
reciprocals created match those for sectional 

Fig. 17-13. A polygonal bowl {heavy lines) projects 

to a cell decomposition of the line (given by the 

black dots), and the normals to the edges produce a 

convex reciprocal figure {the circles). 

Dirichlet tessellations, for which the dual edge 
cc' is oriented so that it crosses from cell C to 
cell C'. 

While the reciprocal figure is given by an 
Euclidean construction, the existence of a re¬ 
ciprocal is an essentially affine geometric 
property: any affine transformation of a cell 
decomposition with a convex reciprocal figure 
extends to an affine transformation of the cor¬ 
responding polyhedral bowl, which then gives 
the new reciprocal figure. (Alternatively, if the 
affine transformation of the cell decomposi¬ 
tion is AX, then the reciprocal vertices are 
transformed by (At)“'X'*'.) In fact, the invari¬ 
ance has projective overtones as well. If we 
add the plane at infinity to a nontrivial convex 
polyhedral bowl, we get a closed polyhedron 
in projective space, with the point of projec¬ 
tion on this added face. We can make this a 
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(0,2) 

b 

Fig. 17-14. If a reciprocal figure to a projected 

polygonal bowl {heavy lines in (a)) is translated 

(b to b') then the bowl is rolled {light lines in (a)). 

The same cell decomposition is also the projection 

of a closed polygon from a point on one edge (b). 

finite polyhedron by a projective transforma¬ 
tion that brings the plane at infinity to the 
plane z = 2, and leaves the xy-plane un¬ 
changed (Fig. 17-14b). The cell decomposition 
is now the projection of this polyhedron from 
a point on the face which is parallel to the xy- 
plane. This polyhedron is convex if the verti¬ 
cal direction is enclosed by the cone of nor¬ 
mals to the faces of the bowl, or equivalently, 
if the origin is in the convex hull of the vertices 
in the reciprocal. This can be arranged by a 
simple translation of the plane, so we have the 
following corollary to Theorem 17.5; 

Corollary 17.5. A nontrivial proper cell de¬ 
composition has a convex reciprocal figure if 
and only if it is the projection of a convex 
polyhedron from a point inside a face that is 
parallel to the projection plane. 

The Main Result 

We are now ready to work toward the con¬ 
verse of Theorem 17.2. Consider a proper cell 
decomposition with a convex reciprocal. This 

decomposition is the projection of a convex 
polyhedral bowl with faces of the form Ax + 

By - z - C = 0. Choose the centers in space 
to be the points^^ {A,b, V2C — — B^); if 
necessary, the bowl can be lowered by adding 
a constant d to all the C to make all these z- 
coordinates well-defined. It is a simple exer¬ 
cise to check that a point (x,y) is in the projec¬ 
tion of a face if and only if it is closest to the 
corresponding center (see Fig. 17-15), and 
therefore is in the cell of the sectional Dirich- 
let tessellation.^'* 

Theorem 17.6. Each sectional Dirichlet tessel¬ 
lation corresponds to a convex polyhedral 
bowl, and each convex polyhedral bowl can be 
vertically translated to correspond to a sec¬ 
tional Dirichlet tessellation. 

If we translate the bowl by a constant d, a 
center at height h moves to one at height h' = 
Vld + (provided that 2d + h?- is positive for 
all vertices). We are also free to choose the 
sign ±h for each center independently. This 
completes the converse^^ to Theorem 17.2: 

Corollary 17.7. A cell decomposition has a 
convex reciprocal if and only if it is a sectional 
Dirichlet tessellation. The centers in space can 
be chosen over the vertices of the convex re¬ 
ciprocal, and these centers are unique up to a 
vertical scaling of the form h' = v2d+l^. 

If we reflect the bowl through the xy-plane, 
and therefore turn the reciprocal by 180°, then 
the point (x,y) is in the region corresponding 
to {A',B') = {—A,—B) if the associated plane 
gives the minimum value of z. After rescaling 
all C by a vertical translation, our construc- 
tion shows that (A', B’, VlC - A'^ - B''^) 

gives the maximum distance from (x,y,0). Our 
cell decomposition is thus the section of the 
furthest-point Dirichlet tessellation of cen- 
ters;^^ that is, each point belongs to the cell of 
the center which is furthest from the point 
(Fig. 17-16). Our entire theory of reciprocal 
diagrams applies to these sectional furthest- 

point Dirichlet tessellations. In particular, our 
inversion of the bowl gives the following 
result: 

Theorem 17.8. Given a proper cell decomposi¬ 
tion D, the following are equivalent: (i) D is a 
sectional Dirichlet tessellation with projected 
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centers P. (ii) D is the sectional furthest-point 
Dirichlet tessellation with projected cen¬ 
ters ~P. 

This completes our chain of equivalences. 
We summarize: 

Theorem 17.9. Given a proper cell decomposi¬ 
tion D in the plane, the following are equiva¬ 
lent: (i) D has a convex reciprocal figure, (ii) D 
is a spider web. (iii) D is the vertical projection 
of a convex polyhedral bowl in 3-space, (iv) D 
is a sectional Dirichlet tessellation, (v) D is a 
sectional furthest-point Dirichlet tessellation. 
If D is nontrivial, these are also equivalent to 
(vi) D is the vertical projection of a convex 
polyhedron from a point inside one face into a 
plane parallel to this face. 

These equivalences have some interesting 
consequences. For example, if we build a 
proper cell decomposition from rubber bands, 
pin down the edges that go to infinity, and let 
the tensions position the vertices at a mechan¬ 
ical equilibrium, we will have drawn a picture 
of a convex polyhedral bowl; spiders really 
draw such pictures. Moreover, any plane pic¬ 
ture of a spider web in space is also a plane 
spider web, even if the spatial web is warped. 
Conversely, if we wish to design a rigid cable 
structure in the plane with a planar graph, we 
must build a spider web, so we can just use the 
picture of some convex polyhedron. 

The plane Dirichlet tessellations we first 
studied have very special reciprocals: ones 
whose dual edges are bisected by the edges of 
the tessellation. We will see that the polyhe¬ 
dral bowl which projects to a Dirichlet tessel¬ 
lation is correspondingly special; its faces are 
tangent to the Maxwell paraboloid. Consider 
such a Maxwell bowl. The point of tangency 
on each face is the spatial polar of this face 
(using the polarity described above for the 
dual bowl), so the plane Ax + By — z-C = 0 

meets the paraboloid at the point {A,B,z) = 

(A,/?,1/2(A^ + B'^)). Therefore C = 1/2(A^ + 
B^). Thus in the construction used in Theorem 
17.6, the height h = 'VlC — A^ + B^ = 0, and 
we have a Dirichlet tessellation (Fig. 17-17). 
This argument and its converse prove:^** 

Theorem 17.10. A proper cell decomposition 
is a Dirichlet tessellation if and only if it is the 
vertical projection of a Maxwell bowl. 

Fig. 17-15. A polygonal bowl projects to a cell de¬ 

composition with its reciprocal on the line (a) and 

the corresponding plane Dirichlet tessellation sec¬ 

tions to the same cell decomposition with the same 

reciprocal (b). 

Fig. 17-16. A set of centers (the circles) produces a 

furthest-point Dirichlet tessellation {heavy lines) 

with a reciprocal diagram of centers {medium 

lines). 

As we noted before, the furthest-point tes¬ 
sellation corresponds to taking the smallest z 

value among the planes over the point (x,y), or 
equivalently, the intersections of the lower 
half spaces of the planes. Thus a furthest-point 
tessellation is the projection of an inverse 
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Fig. 17-17. Each Dirichlet tessellation on the line is 

the projection of a polygonal bowl {heavy lines) cir¬ 

cumscribed about the Maxwell parabola. The cen¬ 

ters are the projections of the points of contact of 

the edges. 

Fig. 17-18. Each furthest-point tessellation on the 

line is the projection of an inverse polygonal bowl 

{the heavy lines at the bottom) with edges tangent 

to the Maxwell parabola. The centers are the pro¬ 

jections of the points of contact. 

bowl all of whose faces are tangent to the 
Maxwell paraboloid: a Maxwell inverse bowl 

(Fig. 17-18). (It is not the projection of the 
inverse of a Maxwell bowl, and is not a Dirich¬ 
let tessellation.) 

Theorem 17.11. A proper cell decomposition 
is a furthest-point Dirichlet tessellation if and 

only if it is the vertical projection of a Maxwell 

inverse bowl. 

The plane at infinity is also tangent to the 
Maxwell paraboloid at the infinite point of pro¬ 
jection. In the construction of Corollary 17.5 
the projective transformation converts this pa¬ 

raboloid into the sphere + {z - 1)^ = 1 • 
After a suitable translation of the Dirichlet tes¬ 
sellation and its centers, this creates a convex 
polyhedron with all faces tangent to the sphere 
that projects onto the Dirichlet tessellation 
from the point of contact (0,0,2) of a horizon¬ 
tal face (Fig. 17-19). This gives^*^ 

Corollary 17.12. A nontrivial proper cell de¬ 
composition is a Dirichlet tessellation of the 
plane if and only if it is the central projection 
of a convex polyhedron circumscribed about a 
sphere, from the point of contact of one face, 
onto a plane parallel to this face. 

We note a curious consequence of this vi¬ 
sion of Dirichlet tessellations. Given a convex 
polyhedron with all faces tangent to a sphere, 
we can turn the sphere so that any one face is 
parallel to the xy-plane, and project from the 
point of contact. This defines a new and un¬ 
usual equivalence relation among Dirichlet 
tessellations: a tessellation with n cells is 
equivalent to n other tessellations. 

It is easy to construct examples of proper 
cell decompositions of the plane which are not 
spider webs, or, equivalently, are not projec¬ 
tions of convex polyhedral bowls. Consider 
the cell decomposition of Fig. 17-20. If this 
were the projection of a convex polyhedral 
bowl, the three planes over the cells A, B, and 
C would meet in a point. This point would be 
at the intersection of the three lines separating 
these cells; this intersection does not exist. 
Equivalently, if this were a spider web, the 
three forces in these three separating edges 
would be in equilibrium (since the forces on 
any cut set in a spider web will be in equilib¬ 
rium) but three forces in the plane can reach 
equilibrium only if they are on concurrent 
lines. Finally, if this were a sectional Dirichlet 
tessellation, then the line of points equidistant 
from the spatial centers of the three exterior 
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cells would lie in the three planes separating 
these cells and the intersection with the plane 
would be three concurrent lines. 

Realizations of Abstract Graphs 

Given a proper cell decomposition of the 
plane, we can consider the vertices, edges, 
and cells as a combinatorial structure G 
(whose precise definition will be given soon) 
and ask: “Which realizations of G as proper 
cell decompositions have convex recipro¬ 
cals?” Work on plane stresses shows that an¬ 
swering this question is equivalent to finding 
the convex cone of entirely positive solutions 
to a homogeneous system of linear equations 
whose unknowns represent the positions of 
the vertices and the directions of the infinite 
edges.To be specific, we have a set of finite 
vertices, V, and infinite vertices V", one for 
each positive direction of an unbounded edge, 
as well as a cyclic order for these infinite verti¬ 
ces. The finite and unbounded edges are given 
in the obvious way, with two unbounded 
edges sharing an infinite vertex if they go in 
the same direction. We take all realizations as 
proper cell decompositions which respect the 
order of the cycle of infinite vertices (or its 
reverse). From general results on planar 
graphs, this graph structure uniquely deter¬ 
mines the possible cells. For such an abstract 
structure G there are five possibilities: 

(i) No realization of G as a proper cell de¬ 
composition has a convex reciprocal. 

(ii) Some realizations of G as proper cell de¬ 
compositions have a convex reciprocal; 
almost all small changes in the position of 
at least one vertex destroy the spider web 
stress. These special realizations must 
satisfy a geometric condition expressed 
by nontrivial polynomial equations in the 
coordinates of the vertices. 

(iii) Many realizations of G as proper cell de¬ 
compositions have a convex reciprocal; 
all realizations near a given spider web 
will also be a spider web. These correct 
realizations meet a qualitative condition 

expressed by nontrivial polynomial ineq¬ 
ualities in the coordinates of the vertices. 

Fig. 17-19. Each Dirichlet tessellation on the line is 

the projection of a convex polygon with an in¬ 

scribed circle, from the point of contact of one 

edge. The centers are the projections of the other 
points of contact. 

Fig. 17-20. This cell decomposition has no stress 

and no reciprocal figure, because the three ex¬ 

tended lines are not concurrent. 

(iv) Almost every realization of G as a proper 
cell decomposition is a spider web; certain 
special positions are improper. These im¬ 
proper positions, expressed by polyno¬ 
mial equations in the coordinates of the 
vertices, have zero tension in some edges. 

(v) Every realization of G as a proper cell de¬ 
composition is a spider web. 

Case (i) cannot happen. It is easy to check 
that all graphs of nontrivial proper cell decom¬ 
positions are also triply connected planar 
graphs, if we add the polygon at infinity. Theo¬ 
rem 17.9 tells us that graphs of nontrivial spi¬ 
der webs are all constructed from convex 
polyhedra, by projecting from a point inside 
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Fig. 17-21. Any arrangement of lines in the plane 

gives a cell decomposition (a) with a zonohedral 

cap as a convex reciprocal figure (b). 

one face onto a plane parallel to this face. A 
classical theorem of Steinitz shows that any 
triply connected planar graph can be realized 
as a convex polyhedron.^' 

Figure 17-20 illustrates case (ii). If a graph 
has |V| finite vertices, and |E| edges, then the 
general theory of plane frameworks guaran¬ 
tees that when |E| < 2|V| there are geometric 
conditions that must be satisfied if there is to 
be a stress on all members.If the graph has 
all vertices 3-valent, the conditions for a spi¬ 
der web can be expressed as a set of equa¬ 
tions, one for each finite cell in the graph. 
Eigure 17-6 illustrates case (iii). All realiza¬ 
tions near Fig. 17-6a will be spider webs, since 
the convexity of the reciprocal is preserved by 
small changes. Similarly, all realizations near 
Fig. 17-6b will have only nonconvex recipro¬ 
cals and will not be spider webs. 

We conjecture that case (iv) cannot occur. 

As evidence, we cite the study of White and 
Whiteley^'* in which the authors conjecture 
that such boundary events, where one tension 
must be zero, lead to nearby points where the 

sign of the stress in the edge switches. The set 
of realizations as proper cell decompositions 
forms an open convex cone, so both signs of 
stress must appear in proper cell decomposi¬ 
tions near the boundary event, putting us back 
in case (iii). 

Cell decompositions with no polygons illus¬ 
trate case (v). Examples are the trivial decom¬ 
positions and trees with all vertices at least 
3-valent. The interested reader can check di¬ 
rectly that such cell decompositions always 
have a convex reciprocal and thus are always 
the projection of convex polyhedral bowls. 
Some other graphs of cell decompositions 
share this property, but we have not been able 
to characterize them. A line arrangement 

yields a cell decomposition that is always a 
spider web. A finite set of lines in the plane 
creates a cell decomposition (Eig. 17-21a). If 
for each line we choose a nonzero tension and 
assign this tension to all segments of the line, 
we have created a spider web stress. (At each 
vertex on the line, the two tensions in the line 
cancel; this local cancellations gives the equi¬ 
librium.) Therefore this cell decomposition 
has a convex reciprocal. The reader can check 
that this reciprocal will be a drawing of the 
zonohedral cap corresponding to the line ar¬ 
rangement (Fig. 17-21b), and the dual bowl 
over this reciprocal will be a zonohedral cap 
as found in Coxeter.^^ 

What graphs have realizations that are non¬ 
trivial Dirichlet tessellations? By the theorem 
of Brown, such a realization, with the polygon 
at infinity added, must be the projection of a 
convex polyhedron with an insphere. There 
are theorems, also originating with Steinitz, 
which provide examples of graphs which can, 
and cannot, be the edge graphs of convex 
polyhedra with inspheres.From these we 
can conclude that while the graph of Fig. 17-22 
can be realized as a sectional Dirichlet tessel¬ 
lation, it cannot be realized as a Dirichlet tes¬ 
sellation since it is the projection of a polyhe¬ 
dron which cannot have an insphere. 

If a nontrivial graph can be realized as a 
Dirichlet tessellation, the realization must sat¬ 
isfy geometric conditions to be a Dirichlet tes¬ 
sellation; it must have a convex reciprocal 
with the dual edges bisected by the original 
edges. Ash and Bolker provide^'' a geometric 
characterization of proper cell decompositions 
that are Dirichlet tessellations. We will not at- 
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tempt here to connect their characterization 
with that of Theorem 17.10 or Corollary 17.12. 
There may be some nice geometry waiting for 
someone who wishes to explore the connec¬ 
tion. 

We can characterize those graphs which can 
appear as nontrivial furthest-point Dirichlet 
tessellations: they are the trees with all verti¬ 
ces at least 3-valent. To prove this, consider 
such a tessellation, its reciprocal figure, and 
the corresponding Maxwell inverse bowl. 
Look at the convex hull of the points of con¬ 
tact with the Maxwell paraboloid. The upper 
surface of this hull projects to the reciprocal 
figure. Since the points are on the paraboloid, 
this figure is a convex polygon with some inte¬ 
rior edges forming a “split polygon” (Fig. 17- 
23a) or it is a line segment. A split polygon is 
the dual of a tree (Fig. 17-23b) and a line seg¬ 
ment is the dual of the 2-cell trivial decomposi¬ 
tion. Conversely, every embedded tree has a 
split polygon as its dual, and we can arrange 
the points on the paraboloid to realize any 
combinatorial split polygon as the projection 
of an upper convex hull. Of course, the real¬ 
izations of a tree which form furthest-point 
Dirichlet tessellations must satisfy additional 
geometric conditions, but we have not seen 
these explicitly worked out. 

We close this section by remarking that all 
the results in it are special, convex cases of 
more general theorems. A planar graph that 
has a (possibly nonconvex) reciprocal is the 
projection of a general spherical polyhedron in 
3-space (possibly self-intersecting). The recip¬ 
rocal corresponds to a set of nonzero tensions 
and compressions in the edges of the graph, in 
a static equilibrium at each vertex. This gen¬ 
eral case wa:s the one first studied in graphical 
statics.These closing observations empha¬ 
size the important but often forgotten fact that 
statics and the equivalent theory of infinitesi¬ 
mal mechanics both truly belong to projective 
geometry.So too does the study of projected 
polyhedra and general reciprocal diagrams. 

Infinite Plane Examples 

In order to study packings of the plane by 
identical circles, a number of mathematicians 
have considered the locally finite graph in the 

Fig. 17-22. The cell decomposition in (a) cannot be 

a Dirichlet tessellation, by its graph, but it is a sec¬ 

tional Dirichlet tessellation, by the convex recipro¬ 

cal in (b). 

Fig. 17-23. Any split polygon (a) is the dual of a tree 

(b) which is the graph of some furthest-point 

Dirichlet tessellation. 
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Fig. 17-24. The graph of centers of this circle packing gives an infinite cell decomposition of the plane (a) 

which has a convex reciprocal figure (b) which is also an infinite cell decomposition of the plane. 

Fig. 17-25. A periodic Dirichlet tessellation of the 

plane {light lines) can section to a nonperiodic cell 

decomposition of the line {the black dots on the 

heavy line). 

plane which has the centers of the circles for 
vertices and an edge joining two vertices 
whenever the two circles touch (Fig. 17-24a). 
Connelly has discovered'*' that there is an inti¬ 
mate connection between the problems: “Is 
this diagram a spider web?” and “Is this pack¬ 
ing locally maximally dense?” He even uses 
convex reciprocal diagrams to study these ex¬ 
amples (Fig. 17-24b). 

Another class of infinite but locally finite ex¬ 
amples comes from the study of Dirichlet tes¬ 
sellations arising from periodic lattices in the 
plane. Surprisingly, there are also aperiodic 
sections of periodic tessellations of 3-space. 
(Figure 17-25 shows an example on the line.) 
To study these and other similar examples, we 
change the definition of a proper cell decom¬ 
position by allowing infinitely many cells, but 
we require local finiteness: no point belongs to 
infinitely many cells. 

We then refer to the cell decompositions of 
the previous section as finite decompositions. 

Our new infinite proper cell decompositions 

still have abstract dual graphs. The local finite¬ 
ness implies that the dual polygon for each 
original vertex is finite, so the definition of a 
convex reciprocal figure is unchanged. How¬ 
ever, since an unbounded cell of the decompo¬ 
sition may have infinitely many edges, the 
dual and the reciprocal may not be locally fi¬ 
nite. We still include the trivial examples 
formed by an infinite number of parallel strips 
and their reciprocals. 

An infinite set of centers, with only a finite 
number of centers in any bounded set, defines 
an infinite Dirichlet tessellation. More gener¬ 
ally, an infinite sectional Dirichlet tessellation 
is a plane section of an infinite Dirichlet tessel¬ 
lation of space. The argument used for finite 
tessellations still works to show the following. 

Theorem 17.13. An infinite sectional Dirichlet 
tessellation has a convex reciprocal figure. 

Since the definition of a spider web refers to 
tensions in equilibrium at each vertex, local 
finiteness guarantees that we have an immedi¬ 
ate extension of the definition and of Theorem 
17.3: 

Theorem 17.14. An infinite proper cell decom¬ 
position is a spider web if and only if it has a 
convex reciprocal figure. 

An infinite convex polyhedral bowl is the 
intersection of the upper half spaces of an infi¬ 
nite set of nonvertical planes such that 

(i) no finite region of space intersects an infi¬ 
nite number of the planes; 

(ii) this intersection includes points over all 
points (x,y). 
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With this definition, which ensures that the 
projection of such a bowl is a proper infinite 
cell decomposition, Theorem 17.4 remains 
true."*^ 

Theorem 17.15. An infinite proper cell decom¬ 
position has a convex reciprocal if and only if 
it is the vertical projection of an infinite con¬ 
vex polyhedral bowl. 

However, if we add the plane at infinity to 
an infinite Maxwell bowl, we do not create a 
closed polyhedron. There are no analogues of 
Corollary 17.5. Note that each element of an 
expanding sequence of finite subpieces of an 
infinite cell decomposition may have a convex 
reciprocal, while the entire structure has no 
convex reciprocal. (An example is shown in 
Fig. 17-26.) Thus these finite pieces of an infi¬ 
nite cell decomposition may each be the pro¬ 
jection of a convex polyhedral bowl, while the 
entire structure is not. 

If our cell decomposition has only bounded 
polygons, then it must have infinitely many of 
them. If a convex reciprocal covers the plane, 
it is also an infinite cell decomposition; this 
reciprocal and the original decomposition 
form a reciprocal pair (Fig. 17-24). Such a re¬ 
ciprocal pair corresponds to a full bowl for 
which the total curvature is Itt, since the nor¬ 
mals to the faces cover a hemisphere. For ex¬ 
ample Robert Connelly has observed that any 
infinite cell decomposition of the plane using 
only regular convex polygons as cells corre¬ 
sponds to such a bowl. In fact, the centers of 
the polygons form a reciprocal; the Dirichlet 
tessellation for the vertices of the regular poly¬ 
gons, as illustrated in Fig. 17-24b. How about 
the analogue of Theorem 17.6? For the spatial 
center corresponding to the plane 
Ax + By — z — C = 0 we took the point (A,R, 
V2C - - B^). To make all these z-coordin- 
ates well defined, we translated the bowl by 
adding a sufficiently large constant d simulta¬ 
neously to all values of C. With an infinite set 
of planes, this may be impossible, and there 
would be no Dirichlet tessellation to section. 
Consider the trivial example on the line 
formed by the plane polygon with vertices: 
. . . ,(0, 0), (1, -2), (2, -6), (3, -12), . . . , 
{n, -n(n + 1)), .... The face gradients have 
A: . . . ,2, 4,6, 8, . . . ,2n, . . . , and inter- 

Fig. 17-26. The cell decomposition in (a) has a local 

convex reciprocal for arbitrarily large finite sets of 

vertices, but all global reciprocals are nonconvex 

(b). 

cepts C: 0, -2, -6, . . . , -n{n - 1), ... . 
No constant d can make 2C + <7 - > 0 for 
all n. This example with this reciprocal cannot 
correspond to any sectional Dirichlet tessella¬ 
tion. Each finite segment of the cell decompo¬ 
sition is a sectional Dirichlet tessellation with 
centers in the plane over the reciprocal verti¬ 
ces, but the entire object is not. (However, it 
is a Voronoi diagram in the Laguerre geome¬ 
try, since this algebraic definition allows to 
be negative.'*^) 

The transformation from a sectional Dirich¬ 
let tessellation to a convex polyhedral bowl 
still applies. 

Theorem 17.16. Each infinite sectional Dirich¬ 
let tessellation corresponds to an infinite con¬ 
vex polyhedral bowl, determined up to verti¬ 
cal translation. 

Since it is not meaningful to talk about fur¬ 
thest-point Dirichlet tessellations for infinite 
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b 

Fig. 17-27. The aperiodic rhombic tiling (a) has a pentagrid of five families of parallel lines as a convex 

reciprocal (b). 

sets of centers, we have completed our chain 
of analogues. The following summarizes the 
limited analogue of Theorem 17.8. 

Theorem 17.17. Given an infinite proper cell 
decomposition D in the plane, the following 
are equivalent; (i) D has a convex reciprocal 
figure; (ii) D is a spider web; (iii) D is the verti¬ 
cal projection of an infinite convex polyhedral 
bowl in 3-space. 

For infinite Dirichlet tessellations, our con¬ 
struction did not require a vertical translation 
of the bowl and we have a complete analogue 
for Theorem 17.9. 

Theorem 17.18. An infinite proper cell decom¬ 
position is a Dirichlet tessellation if and only if 
it is the vertical projection of an infinite Max¬ 
well bowl. 

We note that a periodic cell decomposition 
may have only nonperiodic reciprocals, and 
that even a periodic cell decomposition with a 
periodic reciprocal may induce no periodicity 
in the spatial polyhedron or in the spatial 
Dirichlet tessellation it sections.'*'' Conversely, 
some of the interesting aperiodic tessellations 
of the plane are sections of periodic Dirichlet 
tessellations of some higher space, but neither 
the tessellation nor the reciprocal is periodic. 
For example, it has been observed''^ that a ver¬ 
sion of the nonperiodic Penrose tiling of the 
plane, drawn with rhombi (Fig. 17-27a), is a 
section of the regular cubic tessellation in R^. 

The corresponding reciprocal figure for this 
tiling consists of a line arrangement of five 
families of parallel lines (Fig. 17-27b), called a 
pentagrid**^; this pentagrid and the aperiodic 
rhombic tiling form a reciprocal pair. 

Finally, we do not know an infinite analogue 
of Steinitz’s theorem, so we cannot answer 
the question; “What infinite planar graphs can 
be realized as the edge skeleton of an infinite 
convex polyhedral bowl?” nor the equivalent 
question; “What infinite graphs can be repre¬ 
sented as spider webs?” We conjecture that 

any graph that can be realized as a proper 

infinite cell decomposition can also be real¬ 

ized as the edge skeleton of an infinite convex 

polyhedral bowl. 
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18 

Unsolved Problems 

The Shaping Space Conference concluded 
with a session on unsolved problems, orga¬ 
nized by Douglas Dunham. We present a se¬ 
lection of them here. 

A. Can Neighborly Polyhedra Be 
Realized Geometrically? 

John Reay 

In a 1940 Hungarian competition, the follow¬ 
ing question was asked of high-school age 
students: 

Prove that the tetrahedron is the only polyhedron 
with each pair of vertices joined by an edge. 

As stated, the problem is false. The solution 
desired by the problem judges was to combine 
Euler’s formula v — e + f = 2 with 3f = 2e = 
v{v - 1) and eliminate variables to show that 
V = 4. This solution is valid if the polyhedron 
is homeomorphic to a sphere (for example, 
when it is convex). However, if we use the 
more general theorem of Euler-Poincare, v - 
e + f = 2(1 - g), where g is the genus of an 
orientable 2-manifold M, and assume that a 
neighborly simplicial cell complex is em¬ 
bedded on M, then we obtain 

(v - 3){v - 4) = I2g. (18.A1) 

We see that this equation has integer solutions 
when i; = 0, 3, 4, or 7 (mod 12) which raises 
the question of the possible existence of an 
infinite family of simplicial neighborly poly¬ 
hedra in E^. 

Historical Background 

Polyhedron in these problems means a cell 
complex whose point set is a closed orientable 
2-manifold, and each of whose 2-cells is an 
affine polygon which is not coplanar with any 
adjacent 2-cell. We will be primarily interested 
in polyhedra which are simplicial (each 2-cell 
is a triangle) and neighborly (each pair of ver¬ 
tices determines an edge). An arbitrary cell 
complex on a 2-manifold is realized geometri¬ 
cally if each of its 2-cells is an affine polygon, 
not coplanar with any adjacent 2-cell; that is to 
say, it is a polyhedron. The question raised in 
the title may now be stated precisely in the 
following problems: 

Problem 18.Al. If i; = 0, 3, 4, or 7 (mod 12) 
and u > 4, does there exist a simplicial neigh¬ 
borly cell complex with v vertices on the 
orientable 2-manifold of genus g = {v^ - Iv + 
12)/I2? 

Problem 18.A2. If the answer to Problem 
18.Al is yes, then can such a topological cell 
complex be realized geometrically? In other 
words, is the complex a polyhedron? 

Each of these problems has an interesting 
historical background. The first is a special 
case of the famous Heawood Map-Coloring 
Conjecture. Heawood' in 1890 gave an upper 
bound, the number 

V = [{1 + Vl + 48g)/2J 

obtained from Eq. (18.A1), to the number of 
colors necessary to “color” any map on a 

231 
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closed orientable 2-manifold of genus g ^ 1, 

and perhaps believed that this was also the 

lower bound. Thus the chromatic number of 

each such surface would be determined by 

producing suitable examples, for example 

showing in part that the answer to Problem 

18.A1 was yes. This famous conjecture stood 

open from 1890 to 1968. The part that answers 

the Problem 18.A1 affirmatively was done by 

Ringle, Youngs, and others between 1954 and 

1963. See Harary, Ringel and Youngs for his¬ 

torical details, references, and interesting ex¬ 

pository descriptions of this problem.^ 

Many people have conjectured that the an¬ 

swer to Problem 18.A2 is also yes, but it is 

unknown unless g = 0 or g = 1. Obviously the 

tetrahedron has v = 4 and g = 0. For the case 

g = I, Mobius stated as early as 1865 that T?, 

the neighborly triangulation of the torus using 

seven vertices, could be realized geometri¬ 

cally as a polyhedron by fitting together seven 

tetrahedra.^ Actual models were apparently 

constructed before 1885 by C. Reinhardt. 

Akos Csaszar, probably unaware of this ear¬ 

lier work, gave a constructive proof in 1949 

that T-j could be realized geometrically, and 

the polyhedron he described has been called 

the Csaszar polyhedron since that time.^ In a 

fine survey article in 1970, Richard Duke^ de¬ 

scribes how Tj can also be constructed geo¬ 

metrically by a suitable projection of a cyclic 

4-polytope with seven vertices into one of its 

tetrahedral facets, since its 2-skeleton con¬ 

tains a subcomplex isomorphic to Tj. Branko 

Griinbaum has constructed such a model of 

Tj. (Also see the papers of Altschuler.’) A 

picture of the Csaszar polyhedron and a pat¬ 

tern with directions for its construction ap¬ 

peared in the widely read Mathematical 

Games section of the Scientific American by 

Martin Gardner.* Gardner, describing work of 

Donald Crowe,^ showed how the Csaszar 

polyhedron is related to Steiner triple sys¬ 

tems, bridge tournaments, certain magic 

squares (Hadamard matrices), and other 

problems. 

Since the simplicial cell complex Tj on the 

torus has seven vertices (each of valence six) 

and 14 faces, its topological dual on the torus 

will have 14 simple vertices, 21 edges, and 7 

hexagonal faces. In 1977 Lajos Szilassi'® de¬ 

scribed a computer-generated geometric real¬ 

ization of this dual of Tj. It may be shown that 

no such geometric realization exists with con¬ 

vex hexagons as faces. This lack of convexity 

is clear in the picture of this model and the 

pattern for its construction which was shown 

by Martin Gardner in a later Scientific Ameri¬ 

can article.” 

Unsolved Problems 

Our first problem is the unsolved part of Prob¬ 

lem 18.A2. ^^(u) denotes the closed orientable 

2-manifold of genus g{v) = (v - 3)(v - 4)/12. 

Open Problem 18.Al. If 12 < u = 0, 3, 4, or 7 

(mod 12), can the neighborly (simplicial) 2- 

complex with u vertices on Sg^v), or its dual, be 

realized geometrically? 

Crowe” suggests that since u > 16 implies 

that the number of holes in such a polyhedron 

would exceed the number of vertices, its exis¬ 

tence is unlikely. The first open case using 12 

vertices on the sphere with six handles is par¬ 

ticularly tempting. The problem might be 

more tractable if we weaken the neighborly 

property. Altschuler and Brehm” have re¬ 

cently defined a cell complex on a 2-manifold 

to be weakly neighborly if each pair of vertices 

is contained in some 2-cell of the complex. If 

we restrict the point set of the complex to be 

the torus, then there are exactly five weakly 

neighborly complexes, three of which (includ¬ 

ing Ty) can be realized geometrically, and two 

of which cannot be realized geometrically in 

any Euclidean space. 

Open Problem 18.A2. What weakly neigh¬ 

borly cell complexes on Sg, with g > 1, are 

geometrically realizable? 

In another recent paper Altschuler and 

Brehm” have produced a cell complex on the 

torus which may be realized geometrically, 

but not as the Schlegel diagram of any convex 

4-polytope. In fact, this map on the torus is 

not isomorphic to a subcomplex of the bound¬ 

ary complex of any convex polytope. This 

shows the limitations of the technique men¬ 

tioned in the previous section, where Tq is re¬ 

alized geometrically by projecting an appro- 
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priate subcomplex of the cyclic 4-polytope 
with seven vertices into one of its tetrahedral 
facets. 

Let us return to this geometric realization of 
T-i. When a three-dimensional model is ob¬ 
tained as a projection into a tetrahedron, its 
convex hull has four vertices, which we call 
the exposed vertices. Csaszar’s model of the 
same polyhedron has five exposed vertices; 
the remaining two vertices lie interior to its 
convex hull. A suitable modification of 
Csaszar’s model exists with six exposed ver¬ 
tices. 

Open Problem 18.A3. Does there exist a geo¬ 
metric model of the Csaszar polyhedron with 
seven exposed vertices? That is, can each ver¬ 
tex of the polyhedron also be a vertex of the 
convex hull of the polyhedron? 

It seems likely that this problem has a nega¬ 
tive answer, but apparently no proof has been 
given. Each of the seven vertices may lie arbi¬ 
trarily close to the boundary of the convex 
hull, but apparently only at the expense of 
“making the hole small.” We can ask how 
large the hole can be. Let r be the radius of 
an infinite cylinder which may be placed 
“through the hole” of a geometric realization, 
and let R be the radius of a sphere containing 
the polyhedron. 

Open Problem 18.A4. What polyhedron maxi¬ 
mizes the ratio r/R for a Csaszar polyhedron? 
That is, what polyhedron maximizes the “size 
of the hole”? 

Problem 18.A4 appears to be another prob¬ 
lem that could be analyzed with a computer by 
considering small changes in the positions of 
the vertices of a known geometric realization. 
With this in mind, let us define two geometric 
realizations A and B of T-j to be equivalent if 
there exists a continuous transformation of the 
seven vertices of A into the vertices of B so 
that each intermediate position of the corre¬ 
sponding cell complex remains a geometric re¬ 
alization of Tj. 

Open Problem 18.A5. Are all geometric real¬ 
izations of Tj equivalent? 

The conjecture is that the answer to Open 
Problem 18.A5 is no. In particular, the conjec¬ 
ture is that A and B are not equivalent if they 
have a different number of exposed vertices. 
For example, the polyhedral model of Tj with 
six exposed vertices, obtained by “pulling” 
one of the interior vertices of the Csaszar 
model through a triangular face of the convex 
hull, does not appear to be equivalent to the 
Csaszar model itself. 
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B. How Many Faces Does a 
Polytope Have? 

Margaret Bayer 

Counting problems in polyhedral theory have 
intrigued mathematicians at least since Euler. 
Today they have taken on a new importance 
with the development of linear programming 
and related applications. Much of their appeal 
lies in the simplicity of the questions and in the 
wide range of techniques used to answer 
them. 

The f-vector of a convex r/-dimensional 
polytope P is the vector/(P) = (/o,/i, • • ■ , 

where fi is the number of /-dimensional 
faces of P. We can define a finer combinatorial 
measure by counting chains of faces of P. For 
S C {/], iz, . . . , is}, a subset of {0, 1, . . . , 
d — \], let fs{P) be the number of chains of 
faces 4> C F] C Fz C . . . C Fs C P with dim 
Fj = ij. (We shall drop the set brackets in sub¬ 
scripts.) Call the vector (/s(/’))iC{o,i,..,,rf-i} the 
extended f-vector of P. The overall problem is 
to characterize the {/-vectors} and extended /- 
vectors of arbitrary convex polytopes. 

The affine span of the /-vectors of all poly¬ 
topes is the hyperplane defined by Euler’s re¬ 
lation, 

/o - / + - + = 1 - (-1)''. 

For extended /-vectors the affine span is deter¬ 
mined by the generalized Dehn-Sommerville 
equations, given by Bayer and Billera.'^ 

Theorem. Let be a c/-dimensional polytope, 
and let 6" be a subset of {0, 1, . . . , ijf - 1}. If 
{/, A:} C 5 U {—1, } and S contains no j such 
that i < j < k, then 

§ (-iy-‘-fsuAP) =fsiP) • (1 - (-1)'-'-'). 
j=i+l 

Furthermore, these are all the linear relations 
holding on the extended /-vectors of all af-di- 
mensional poly topes, and the dimension of 
the affine span of these extended /-vectors is 
Cd — I, where q is the dth Fibonacci number 
{Cd = Cd-\ + Cd-2', Co = Cl = 1). 

inequalities that /-vectors and extended/-vec¬ 

tors must satisfy. 
In dimension three the vectors have easy 

characterizations. A vector {fo,f\,fz) is the/- 
vector of a three-dimensional polytope if and 
only if/o -/ + /2 = 2, 4 </o < 2/2 - 4 and 4 < 
fi ^ 2/0 - 4. The extended /-vector is deter¬ 
mined by the /-vector as follows: /oi = /02 = fn 

= 2/1 and/012 = 4/1. But already in four dimen¬ 
sions we do not have a characterization. (The 
projections onto two components of the /-vec¬ 
tors are known, and various necessary ineq¬ 
ualities are known.'^) 

A polytope is simplicial if every /-dimen¬ 
sional face is the convex hull of / + 1 points. In 
this case the extended /-vector depends lin¬ 
early on the /-vector. For /-vectors simplicial 
poly topes are extremal, that is, the /-vector of 
any t/-polytope with n vertices is bounded 
above by the /-vector of some simplicial d- 

polytope with n vertices. The most important 
recent result in the combinatorial theory of 
polytopes is the characterization of the /-vec¬ 
tors of simplicial poly topes. The theorem was 
conjectured by McMullen'^ in 1970, and then 
proved ten years later by Stanley (necessity) 
and Billera and Lee (sufficiency).'* The theo¬ 
rem is most easily stated in terms of the h- 

vector, obtained from the /-vector by a non¬ 
singular linear transformation. For 0 < / < i/. 

The /z-vector of a J-dimensional polytope P is 
then h{P) = {h^, h\, . . . , hd). The character¬ 
ization of the /i-vectors of simplicial polytopes 
requires the definition of a certain nonlinear 
operator as follows. For positive integers h 

and /, we note that h can be written uniquely in 
the form 

h = + 
n,-i 

/ — 1 
+ 

where «, > n;-i > ... > nj>j > 1. Define the 
/th pseudopower of h to be 

h<i> = Hi + \ 

i + 1 
n,-i + 1 

/ 
-h 

Uj + 1 

7 + 1 

Little else is known for arbitrary polytopes. Put = 0 for all /. Then the characterization 
and it would be particularly interesting to find is given by the following theorem. 
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Theorem. An integer vector (/zq, h\, ■ ■ ■ , hj) 
is the /7-vector of a simplicial c/-dimensional 
polytope if and only if 

(i) hi = hj-i, 0 < / < [dH]- 
(ii) hi+\ > /?, , 0 < 7 < [d/2] —1; and 

(iii) ho = 1 and /7,+ i - hi < (hi - /7,-i)<'>, 
1 < /• < [d/2] - 1. 

The linear equalities, known as the Dehn- 
Sommerville equations, and the linear inequal¬ 
ities, the generalized lower bound theorem, 
have combinatorial-geometric proofs. The ne¬ 
cessity of the nonlinear inequalities has been 

proved (by Stanley) only using a very difficult 
theorem of algebraic geometry. A combinato¬ 
rial proof of this result would be of great in¬ 
terest. 

The classification of /-vectors and extended 
/-vectors would be greatly advanced by the 
solution of these problems: 

1. Find a combinatorial proof of the nonlinear 
inequalities of the characterization of/-vec¬ 
tors of simplicial poly topes. 

2. Characterize the /-vectors and extended /- 
vectors of four-dimensional polytopes. 

3. Extend the generalized lower bound in¬ 
equalities to arbitrary polytopes. 
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C. Problems on the Realizability and 
Rigidity of Polyhedra 

Walter Whiteley 

Realizability 

A classical theorem of Steinitz characterizes 
the graphs of convex spherical polyhedra as 
the three-connected planar graphs.'^ How¬ 
ever, many built structures take the form of 
non-eonvex spherical polyhedral with two- 
connected planar graphs. 

Problem 18.Cl Whieh planar graphs can be 
realized as nonconuex spherical polyhedra 
with 

(a) convex plane faees and no self-intersec¬ 
tion? 

(b) nonconvex plane faces but no self-inter- 
section? 

(c) plane polygonal faces, with self-intersec¬ 
tion allowed? 

With the advent of space stations and other 
experimental designs, it is also interesting to 
ask about the graphs of other types of oriented 
polyhedra. 

Problem 18.C2. Which abstract oriented poly¬ 
hedra (graphs of the edges and vertices with 
an appropriate cycle structure of faces) can be 
realized as spatial polyhedra with plane faces 
(convex faces, or non-self-intersecting, etc.)? 

Infinitesimal Rigidity 

A triangulated polyhedron in space can be 
constructed with bars along the edges and uni¬ 
versal joints at the vertices. Such a bar-and- 

joint framework is infinitesimally rigid if every 
set of vectors at the joints (velocities) whieh 
preserves the lengths of the bars represents a 
Euclidean motion of the whole space.A the¬ 
orem of Cauchy and Dehn states that any con¬ 
vex triangulated sphere is infinitesimally rigid 
when built as a bar-and-joint framework. 
extension of Alexandrov shows that any con¬ 
vex spherical polyhedron is infinitesimally 

rigid when the faces are triangulated and the 
structure is built as a bar-and-joint frame¬ 
work.^^ As a consequence almost all spherical 
polyhedra are infinitesimally rigid when built 
this way even if they are nonconvex.^'* (A con¬ 
figuration almost always works if the set of 
realizations of the graph which work contains 
a dense open set in the set of all realizations.) 
Recently purely combinatorial proofs have 
been given for this general result. 

Conjecture 18.C1. The graph of a triangulated 
polyhedron is almost always infinitesimally 
rigid as a bar-and-joint framework in 3-space. 

We have a combinatorial proof of this con¬ 
jecture for toroidal polyhedra,but its com¬ 
plexity is awkward. These structures are going 
to be built, so it would be nice to understand 
them! 

Unique Realizability 

These rigidity results can also be interpreted 
as a local form of unique realizability—there 
is no second noncongruent realization nearby 
which has the same edge lengths. If we de¬ 
scribe a convex triangulated spherical polyhe¬ 
dron by giving all the edge-lengths, then by the 
general theorem of Cauchy, this will uniquely 
determine the convex polyhedron. However 
there will often be a noneonvex realization 
with the same edge lengths. 

Conjecture 18.C2. If all the edge-lengths of a 
nonspherical triangulated polyhedron realized 
in 3-space are given, then the polyhedron is 
uniquely realized, almost always. 

If we describe a nontriangulated convex 
polyhedron it may not be enough to just give 
the face structure and the edge-lengths, as in¬ 
dicated by the example of a cube moving into 
a parallelepiped. However, this failure is prob¬ 
ably rare. 

Conjecture 18.C3. Given a planar graph that 
can be realized as a spherical polyhedron with 
proper plane polygons as faces, almost all 
such realizations are locally uniquely deter¬ 
mined by the set of all edge-lengths. 
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Dihedral Angles and Locally 
Unique Realizability 

If we take a triangulated convex sphere, built 
as bar-and-joint framework, and drop one bar, 
the object has finite motion and is not uniquely 
determined, even locally. Can we return to a 
local unique description by specifying one of 
the dihedral angles between adjacent faces? 

Theorem (Whiteley). If all but one edge-length 
and any one dihedral angle are fixed in a 4- 
connected triangulated sphere then the poly¬ 
hedron is locally uniquely determined, almost 
always. 

In fact the result is more specific: the poly¬ 
hedron is almost always locally uniquely de¬ 
termined if the quadrilateral of the omitted 
edge and the quadrilateral of the dihedral an¬ 
gle are connected by four vertex disjoint 
paths. 

We can go further and ask which combina¬ 
tions of a set of dihedral angles and a set of 
edge-lengths will determine a locally unique 
polyhedron. 

Problem 18.C3. Characterize the patterns of 
minimal sets of edge-lengths and dihedral 
angles which will almost always determine a 
locally unique spatial polyhedron with plane 
faces. 

The following is an example of such a pattern. 

Theorem (Whiteley.If in any spherical 
polyhedron we fix the lengths of each edge in a 
set which forms a spanning tree in the graph of 
the polyhedron, and we fix the size of each 
dihedral angle in a set that forms a spanning 
tree in the dual of the polyhedron, then the 
polyhedron is locally uniquely determined, al¬ 
most always. 

Some work has been done on the maximum 
number of dihedral angles which can appear in 
such a minimal set. This requires, at least, an 
understanding of the isogonalities (maps of the 
polyhedron which preserve all dihedral and fa¬ 
cial angles of the polyhedron).We have re¬ 
cently found that there is a strong connection 
between the isogonalities of a spherical poly¬ 

hedron and an old static construction of “re¬ 
ciprocal diagrams” due to Maxwell,and this 
is now being exploited. In addition to such 
information we must know if maps preserving 
the dihedral angles must preserve the facial 
angles and be isogonalities. 

Conjecture 18.C4 (Stoker^®). There does not 
exist a pair of convex polyhedra with the same 
combinatorial structure, the same dihedral an¬ 
gles, and different facial angles. 

We have found a pair of nonconvex spheri¬ 
cal polyhedra with the same dihedral angles 
and different facial angles, and we actually 
disbelieve Stoker’s conjecture. However, we 
believe that this is locally rare. 

Conjecture 18.C5. If all dihedral angles of a 
polyhedron are fixed then all facial angles are 
determined, both locally and infinitesimally, 
almost always. 

Concluding Remarks on the Design of 
Spatial Polyhedra 

The search for minimal sets of angles and 
edge-lengths also has applications to the de¬ 
sign of polyhedra. Such sets are independent 
in the sense that we can make new choices for 
the values and still realize the polyhedron, at 
least if the total size of the changes is small. 
Certainly if the set is almost always dependent 
it is unreasonable to choose independent val¬ 
ues for these measurements and expect to 
build the object. 

To design a general polyhedron in space we 
will first choose a combinatorial structure 
(faces, vertices, edges) and then choose some 
edge-lengths, some dihedral angles and per¬ 
haps some other values (like facial angles, or 
nonadjacent faces to be parallel etc.). To make 
these choices intelligently we must know 
which are free choices and which will prevent 
any realization because the value is already 
determined by the previous choices. Some un¬ 
derstanding of the problems presented here is 
indispensable to this process. This problem 
also provides a coherent geometric program 
which includes, as special cases, the classical 
geometric theorems of Cauchy, Steinitz, and 
Maxwell. 
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D. Problems Concerning 
Polyhedral 2-Manifolds 

Peter Gritzmann 

A polyhedral 2-manifold P is a geometric cell 
complex (the 2-cells are planar convex poly¬ 
gons) in some Euclidean space, whose under¬ 
lying point-set is a closed connected 2-mani¬ 
fold. 

Let Vk{P) denote the number of ^-valent ver¬ 
tices and PkiP) the number of k-gondX facets of 
P. Furthermore let v{P) be the valence-value 
of P, i.e., 

v{P) = 2ik- 3)vk{P) 

If P is different from the sphere we have 

4 - x(P) ^ v(P) (18.D1) 

where x(P) is the Euler characteristic. In par¬ 
ticular for polyhedral tori P in 

6 < v(T). (18.D2) 

Obviously, inequalities (18.Dl) and (18.D2) 
are necessary conditions for the existence of 
polyhedral 2-manifolds. Inequality (18.D2) is 
best possible, but inequality (18.D1) is only 
“asymptotically” best possible. 

Problem 18.D1. Find sharp lower bounds for 
the valence values of polyhedral 2-manifolds 
different from the sphere and the torus. 

Once a sharp lower bound for v(P} is at¬ 
tained, one may hope to solve several prob¬ 
lems. In fact, inequality (18.D2) leads to a 
characterization of/-vectors of polyhedral tori 
in E\ 

Problem 18.D2. Characterize the /-vectors of 
polyhedral 2-manifolds different from the 
sphere and the torus. 

Inequality (18.D2) even gives the main condi¬ 
tion for a toroidal analogue to Eberhard’s the¬ 
orem.^' In fact, let j', pk (k < 3, k 6) be 
nonnegative integers; then there exists a poly¬ 
hedral torus Tin with p/P) = Pk{k 6) and 
v{T) = if and only if 

^ (6 — k) pk — 2s and s ^ 6. 
k^3 

Problem 18.D3. For which sequences (U3, U4, 

. . . ) does there exist a polyhedral torus P in 
E^ with Vk{T) = Vk2 

For arbitrary polyhedral 2-manifolds, in¬ 
equality (18.D1) clearly gives a necessary 
Eberhard-type condition and there exist some 
sufficient conditions, too. But in general the 
problem of characterizing possible numbers 
PkiP), VkiP) remains open. 

Problem 18.D4. Give analogues of Eberhard’s 
theorem for polyhedral 2-manifolds different 
from the sphere and the torus. 
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E. Extending the Conway Criterion 

Doris Schattschneider 

A sufficient criterion'*^ for a tile (a simple 
elosed curve and its interior) to fill the plane 
using only half-turns was formulated by John 
H. Conway: 

The Conway Criterion. A tile T can pave the 
plane by half-turns if there are six consecutive 
points E|, . . . , 1^6, at least three distinct, on 
the boundary of T (consecutive in the sense of 
traveling a cycle around the boundary) which 
satisfy the following conditions: 

(i) is congruent to 17^ by a translation r 
in which rivi) = vs and t(v2) — ^'4- 

(ii) 1^21^3, ^31^4, are centrosymmetrie. 

The Conway criterion characterizes those 
tiles that pave “nieely” by half-turns: If a tile 
T paves the plane by half-turns that leave the 
entire tiling invariant (this implies that the til¬ 
ing is periodic), then T satisfies the Conway 
criterion. 

Problem 18.El. If a tile T can pave the plane 
using half-turns only (the paving need not be 
periodic), must such a tile satisfy the Conway 
eriterion? 

Problem 18.E2. Is there a three-dimensional 
version of the Conway criterion for space- 
fillers? (Parallelepipeds, prisms, and suitable 
“halves” of these fill spaee using only half¬ 
turns—but what others do?) 
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Part V 
Further Steps 



Fig. 19-1. How do I measure, cut and glue pieces of 
cardboard to make a polyhedron that will stay to¬ 
gether? Photograph by Stan Sherer. 

Fig. 19-3. Can the faces of a polyhedron be ordered 
in a natural way? Photograph by Stan Sherer. 

Fig. 19-2. Do all the faces of a polyhedron point 
either “up” or “down”? Photograph by Stan 
Sherer. 

Fig. 19-4. What interesting polyhedral shapes can 
we make if we allow holes and tunnels? Photograph 
by Stan Sherer. 
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Polyhedra in the Curriculum? 

Marjorie Senechal and George Fleck 

We hope you have enjoyed this book: the in¬ 
troductory visit to the Polyhedron Kingdom, 
the lectures exploring the subject (its theory, 
its history, its applications, and its pedagogy) 
and the chapters describing many aspects of 
current research. We hope that you have 
made some beautiful models (in addition to 
looking at beautiful pictures), and have begun 
to ask and try to answer questions that may 
never have occurred to you before.' If so, then 
you will share our astonishment at the fact 
that virtually none of the topics in this book is 

included anywhere in our present school cur¬ 
ricula! 

From molecules to galaxies, from viruses to 
giant domes, from crystal architecture to 
large-scale housing projects: our world is em¬ 
bodied in geometric forms, many of them 
polyhedral. A wealth of activities, experi¬ 
ments, and experiences that involve the varied 
forms of our world is accessible through the 
study of polyhedra. Construction with 
wooden blocks is recognized by educators and 
parents alike as a valuable part of the educa¬ 
tion of young children, but it is an activity 
usually restricted to the kindergarten class¬ 
room and the toddler’s playroom. Few educa- 

‘ The children of the Smith College Campus 
School, who made polyhedral models for their ex¬ 
hibit at the Shaping Space Conference, obviously 
asked themselves some very interesting questions: 
How do I measure, cut, and glue pieces of card¬ 
board to make a polyhedron that will stay together? 
(Fig. 19-1) Do all the faces of a polyhedron point 
either “up” or “down”? (Fig. 19-2) Can the faces 
of a polyhedron be ordered in a natural way? (Fig. 
19-3) What interesting polyhedral shapes can we 
make if we allow holes and tunnels? (Fig. 19-4) 

tors seem to realize that this is in fact an intro¬ 
duction to the process of model building, the 
way we explore our surroundings throughout 
our lives. Both the small child playing with 
wooden blocks and the chemist constructing 
molecular models in the laboratory are testing 
their constructions against reality, and refining 
them in accordance with experience. Why 
isn’t model-building—both hands-on and con¬ 
ceptual—a central part of our education, from 
elementary school through college? (See, for 
example. Fig. 19-5.) 

It is widely agreed that in the United States 
there is a crisis in the teaching of geometry. 
The post-Sputnik restructuring of mathemat¬ 
ics curricula decreased its traditional role in 
American schools, and the more recent back- 
to-basics movement has coincided with fur¬ 
ther compression of geometry instruction. 
Throughout this period, the fraction of the 
K-I2 curriculum devoted to “mathematics” 
has remained reasonably constant, but there 
has been a marked shift of emphasis. Con¬ 
cerns that “Johnny can’t add” have brought 
pressure to spend more time on arithmetic in 
early grades, and the perception that our soci¬ 
ety demands greater computational skills has 
led to the introduction of statistics, comput¬ 
ing, and calculus in the upper grades. This 
shift is sometimes justified by pointing out that 
one of the traditional tasks of geometry educa¬ 
tion—to provide rigorous exercises in formal 
logical thought—is perhaps handled better in 
courses in computer programming. As a result 
of such pressures, solid geometry has been 
omitted from the curriculum, and the time 
spent on plane geometry has been reduced. 
This is a cause for serious concern. 
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Fig. 19-5. From the Shaping Space Conference: Smith College students Beth Thurberg and Libby Walker. 

Photograph by Stan Sherer. 

Fig. 19-6. The panel for the plenary discussion 
“Geometry in the Curriculum” at the Shaping 
Space Conference. From left to right: mathemati¬ 
cians Joseph Malkevitch, York College of The City 
University of New York; George Martin, State 

What can we do about it? At the Shaping 
Space Conference, a panel discussion (Fig. 
19-6) devoted to this question generated lively 
and interesting exchanges, but produced no 
conclusive answers. Nor did we expect any: 
the difficulties in effecting nationwide curricu¬ 
lar change are great indeed. Problems cited 
include our decentralized educational system, 
the tendency of textbook publishers to con¬ 
tinue printing familiar material for which a 
large market already exists, and the need for 
extensive in-service training for teachers. An¬ 
other central problem, of course, is deciding 
what the content of a revitalized geometry 
course should be. While it will take time to 

University of New York at Albany; Seymour 
Schuster (moderator), Carleton College; and Gerry 
Segal, Brooklyn College of The City University of 
New York. Photograph by Stan Sherer. 

solve any of these problems, we believe that 
the last one at least can and should be ad¬ 
dressed now. 

Our view, supported we believe by the ma¬ 
terial in this book, is that in a restructured 
geometry curriculum a central role should be 
given to the study of three-dimensional forms. 
We can envision, for example, a high-school 
course on the principles of three-dimensional 
structure. It would begin with a survey of sig¬ 
nificant forms, both from nature and those of 
human design: the polyhedral shapes such as 
pods and crystals, molecular and crystal struc¬ 
tures, and trusses and other bridge construc¬ 
tions. The next step would be to build some of 
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these forms, focusing on basic structural units 
and how they fit together. This would lead to 
important questions about the geometric prin¬ 
ciples on which these forms are based. Stu¬ 
dents would be led gradually to systematize 
and formalize their geometric knowledge. In 
turn, this would suggest further questions. 

We also believe that because spatial geome¬ 
try is one of the small group of subjects that 
truly comprise “the basics,” it should be inte¬ 
grated with instruction in art, biology, chemis¬ 
try, and physics. The study of three-dimen¬ 
sional shapes could provide students with 
profound understanding of topics as diverse as 
chemistry, the science of materials, physics, 
body movement, sculpture, and geography. 
The geometry of fundamental shapes and 
forms is a practical tool for the machinist; it is 
also an intellectual tool for anyone wanting to 
understand the arts and the sciences. Indeed, 
without fundamental spatial concepts, even 
the most academically successful students 
lack the tools for understanding the principles 
of structure presented in their high school sci¬ 
ence textbooks. The sense of bewilderment of 
students when confronting chemical theory 
should be dismaying to educators. Yet the mo¬ 
lecular models which teachers and students 
alike find so abstract are based in large part, as 
we saw in Chapters 5, 9, and 10, on the geome¬ 
try of tetrahedra, cubes, and octahedra. Stu¬ 
dents who have never before seen a tetrahe¬ 
dron or octahedron, and who have never 
examined a cube in detail, are quickly lost. 
Those who have built models and have studied 
them become absorbed in the problems of mo¬ 
lecular structure. 

Is there still a place for the traditional geom¬ 
etry curriculum? We would argue that some of 
the classical axioms, theorems, and construc¬ 
tions should be retained, not only because 
they are necessary for understanding (and 
constructing) geometric forms, but also be¬ 
cause they are part of our cultural heritage. 

Seen in this light, however, we are led to ask: 
Why only classical material? Many scientists 
and mathematicians, including contemporary 
ones, have made important contributions to 
elementary geometry. (We point out that in 
many cases these contributions were not exer¬ 
cises isolated from other intellectual pursuits. 

It is neither surprising nor coincidental that 
polyhedra have been found to be profoundly 
relevant to concerns about natural philoso¬ 
phy, systematic logic, representational art, the 
design of machines, and the architecture of the 
heavens.) 

This is a good time for the development of 
pilot projects at various levels, to serve as ex¬ 
amples of what might be done. One such ex¬ 
ample is Project Synergy: An Interdisciplinary 
Mathematics Experience for the Middle 
School, developed almost a decade ago by 
Gerry Segal, then a mathematics teacher at 
Robert F. Wagner Junior High School in Man¬ 
hattan. This successful curriculum, built 
around theories of Buckminster Fuller, takes 
an investigative approach to structures in 
space. Among the lessons: 

• Building a Newspaper Tower with Triangles 
• Stress and Triangulation in the Cube 
• Construction of a Tetrahedron with Tooth¬ 

picks and Marshmallows 
• Bonding of Molecules 
• The Platonic Solids and Crystallography 
• Space between Atoms in a Molecular System 
• Construction of a Geodesic Dome 
• The Golden Rectangle, the Icosahedron, and 

Laban Dance Notation 
• Euler’s Inventory of Crossings, Areas, and 

Lines 
• Construction of a Tetrakite 

The interdisciplinary, hands-on nature of the 
synergy curriculum was one of the reasons for 
its success with children; it touched on many 
aspects of the lives of the people in the class¬ 
room. Surely another reason for its success is 
that it focuses on space, the very place where 
we live our lives. 

Many other examples could of course be 
cited. More important, many new examples 
can be created. We hope that this book will 
inspire you to innovative curricular design, 
and that you will let us hear about it. 

The contributors to this book have given ex¬ 
tensive references for further study. The bibli¬ 
ography that follows is intended as an addi¬ 
tional resource for students, teachers, and 
scholars. We regret that it is incomplete, but 
we hope that it will provide a helpful be¬ 
ginning. 
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Crick, Francis H. C., 158 

Crosspoly tope, 201 

Crowe, Donald, 252 

Crystal 

architecture of, 37 

benitoite, 22 

chrome alum, 94 

gold, 23 

leucite, 22 

pyrite, 9, 37 

quartz, 22, 94 

relationships, 36 

structures, 93, 265 

systems, 98 

vanadinite, 94 

virus, 39 

wulfenite, 93 

Csaszar polyhedron, 207, 252 

Cubane, 175 

Cube, 4 

as Platonic element, 5 

as reciprocal of octahedron, 

69, 206 

as space filler, 62 

braiding of, 133 

construction of, 51, 143 

decomposition of, 221 

diagonal, 137 

plane net of, 5 

Plexiglas, 34 

relation to rhombic 

dodecahedron, 61 

rotations of, 135 

Schlegel diagram of, 112 

snub, 11, 72 

stellation of, 61 

stress in, 265 

triangulation in, 265 

truncated, 72, 115 

vertices of, 219 

with face, 3 

within octahedron, 34 

see also Snub cube 

Cube-dual, 222 

Cubes 

open packing of, 96 

tessellation by, 202 

Cube-within-a-cube projection, 

223 

Cubical nontiles 

existence questioned, 202 

Cubical vase, 42 

Cubist paintings, 31 

Cuboctahedron, 184 

as unit of crystal structure, 

100 
definition of, 72 

not combinatorial prototile, 

200 
truncated, 72 

vertices of, 219 

Cubus simus, 72 
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Curriculum, 131, 263 
Cycle 

Hopf, 229 
Cyclic permutations, 114, 137 
Cyclopentane 

pseudorotation in, 183 

Dali, Salvador 
Corpus Hypercubicus, 30 
Cosmic Contemplation, 30 
The Sacrament of the Last 

Supper, 29 
Dalton, John, 152 
Dance, 182 
Dantzig, George, 89 
Danzer, Ludwig, 199 
da Vinci, Leonardo, 68, 85 
de Barbari, Jacopo, 27 
Decomposition 

cell, 234, 246 
finite, 246 
Hopf, 227 
of cube, 221 
of hypercube, 223 
of octahedron, 221 
of poly topes, 221 

de Foix, Francois, 85 
Dehn-Sommerville equations, 

255 
de la Fresnaye, Roger 

The Conquest of the Air, 31 
della Francesca, Piero, 85 
Deltahedra-regular polyhedra, 

39 
Deltahedron 

borane as, 173 
construction of, 48 
definition of, 42, 48 

Democritus, 81 
Descartes, Rene, 67, 95, 195 
Design, 126 
Destruction 

proof by, 133, 142 
Determination as geometrical 

action, 119 
Diamond 

structure of, 103 
Dibenzene chromium, 177 
Dicarba-c/o5o-dodecaboranes, 

184 
Dice 

icosahedral, 67 
Dihedra, 194 
Dihedral angles, 257 
Dihedral rotation group, 71 

Dimolybdenum tetra-acetate, 
178 

Diophantine equation. 111, 219 
Dirichlet domain, 98, 101 
Dirichlet, G. Lejeune, 98 
Dirichlet tessellation, 231, 246 
Disdodecahedron, 214 
Distances, 125 
Dodecahedral crystal, 7 
Dodecahedral housing complex, 

20 
Dodecahedral recycling bin, 10 
Dodecahedrane, 175 
Dodecahedron, 5, 32 

as Platonic element, 5 
borane as, 174 
braiding of, 133 
bronze, 83 
carborane as, 174 
construction of, 47 
Etruscan, 67 
ghost of, 140 
golden, 133 
icosahedron as reciprocal of, 

69, 206 
isohedral, 207 
oldest, 82 
plane net of, 5 
snub, 11, 72, 112 
stellated, 54, 68, 140 
truncated, 72 
vertices of, 220 
see also Rhombic 

dodecahedron 
Dome, 40 

articulated ring, 129 
geodesic, 17, 18, 77, 265 

Doughnut, 108 
Dress, Andreas, 90 
Dual 

combinatorial, 206 
existence of, 207 

Duality, 37, 88, 108, 193, 205 
Duke, Richard, 252 
Dunham, Douglas, 251 
Diirer, Albrecht, 84 

Melencolia I, 27 

Earth, 5, 67, 70, 95, 151 
Easter egg 

tessellation of, 108 
Eberhard’s theorem, 195, 258 
Eclipse, 32 
Edge 

curved, 7 

definition of, 4, 108, 205 
length of, 256 

Edges 
number of, 37 

Edge skeleton, 248 
Egyptian pyramids, 15, 80 
Electron microscope, 38 
Element, 5, 34, 68 

definition of, 205 
see also Platonic solids 

Epicurus, 152 
Equivelar manifold, 212 
Erickson, Ralph O., 161 
Escher, M. C., xv, 5, 194 

Angels and Devils, 107 
Black and White Knights, 98 
Candy box, 6 
contemplating polyhedron, 40 
contemplating spheres, 106 
Fishes and Birds, 97 
Order and Chaos, 32 
Reptiles, 6 
Sphere with Angels and 

Devils, 107 
Three Spheres 11, 106 
Waterfall, 32 

Ethylene, 156 
Euclid, 4, 67, 81, 83, 195 
Euclidean 3-space, 198 
Euclidean geometry, 131 
Eudemus of Rhodes, 82 
Eudoxus, 81 
Euler characteristic, 258 
Euler, Leonhard, 36, 206, 265 
Euler-Poincare equation, 251 
Euler’s equation, 37, 79, 88, 

194, 200, 251 
generalization of, 195 

Exhaustion 
method of, 81 

Expandable sculpture, 34 
Exposed vertex, 253 
Extended/-vector, 254 

/-vector, 254 
Eace 

curved, 7 
definition of, 4, 108, 198, 205 
infinite helical polygon as, 193 
of cube, 3 
of poly tope, 254 
pentagonal hole in, 133 
skew polygon as, 193 
square hole in, 139 
tetrahedron as, 36 
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Face-centered lattice, 99 

Faces 

dihedral angles between, 257 

number of, 37 

ordering of, 263 

self-intersecting, 256 

Facet, 198 

Face-to-face tiling, 198 

Faience icosahedron, 84 

Fall-Out, 30 

Federov, E. S., 38 

Ferrocene, 177 

Fibonacci number, 254 

Fire, 5, 67, 95, 151 

Fisher, Ed, 80 

Fishes and Birds, 97 

Elag 

definition of, 212 

Elag diagram, 216 

Elatness, 125 

Flat torus, 214 

Fleck, George, 151-171, 263- 

265 

Florentine hat, 108 

see also Mazzocchio 

Foam, 38, 161 

Fold-out decomposition, 224 

“Folklore,” xvi, 118, 205 

Framework octahedron, 33 

Frameworks, 231 

Fredenthal, Robinson 

Ginger and Fred, 36 

Freudenthal, H., 89 

Frost, Robert, 191 

Froth, 38, 161 

Fuller, Buckminster, 16 

Geodesic dome, 17, 77 

see also Buckminsterfullerene 

Furthest-point Dirichlet tessella¬ 

tion, 240 

Galaxies, 9 

Genus 

definition of, 196 

Geodesic dome, 17, 77, 158 

construction of, 265 

house, 18 

Geometry 

curriculum, 131, 263 

molecular, 172 

teaching of, 127, 133 

Ghost 

polyhedral, 3 

Ghost of dodecahedron, 140 

Ginger and Fred, 36 

Girl with a Mandolin, 31 

Giza 

pyramids at, 15 

Glass polyhedra, 85 

Gluing joints, 44 

Gold crystals, 23 

Golden dodecahedron, 133 

definition of, 140 

Golden ratio, 140, 219 

Golden rectangle, 265 

Goodman, J. E., 195 

Granche, Pierre, 131 

Graph 

planar, 196 

Graphical statics, 231 

Gray, Jack, 62 

Great stellated dodecahedron, 

68, 140 

construction of, 54 

Gritzmann, Peter, 258 

Group, 71, 89 

point, 176 

theory, 135 

Griinbaum, Branko, 79, 90, 131, 

202, 205-211, 252 

Habitat housing project, 17 

Haeckel, Ernst, 25 

Hales, Stephen, 159 

Hampshire College 

modular residences, 19 

Hargittai, Istvan, 172-188 

Hargittai, Magdolna, 172-188 

Harker, David, 194 

Harris, Sidney, 9 

Hat, 108 

see also Mazzocchio 

Hauer, Erwin 

Coca-Cola Building, 17 

Obelisk, 35 

Rhombidodeca, 35 

Hayward, Roger, 9, 156 

Heawood, P. J., 251 

Hecker, Zvi, 19, 20 

Hexagon 

as a face, 45 

polytope analogous to, 199 

Hexagonal antiprism, 11 

Hexagonal kaleidocycle, 59 

Hexagonal lattice 

Dirichlet domain of, 102 

Hexagonal prism, 11 

vanadinite crystal, 94 

Hexagonal pyramid 

tiling of by, 203 

Hexahedron, see Cube 

Hexamethylenetetraamine, 101 

Hexaprismane, 176 

Hinges 

construction of, 62 

History of polyhedra, 80-92 

H.M.S. Challenger, 24 

Hofmann, August Wilhelm, 152 

Hofstadter, Douglas R., 131 

Holden, Alan 

Ten Tangled Triangles, 35 

Hole, 59, 108, 133, 139, 196, 263 

Honeybee comb, 26, 38 

Honeycomb, 67 

Hooke, Robert, 95 

Hopf decomposition, 227 

Hopf, Heinz, 221 

Hopf mapping, 227 

Hull, 254 

affine, 202 

convex,245, 253 

Hungarian hut, 16 

Hydrocarbons 

polycyclic, 175 

Hydrogen fluoride, 180 

Hypercube 

decomposition of, 223 

projection of, 222 

Hypersphere, 221 

Hypostrophene 

intramolecular rearrangements 

in, 184 

Ice 

structure of, 103, 176 

Iceane 

structure of, 176 

Icosadodecahedron, 32 

Icosahedral candy box, 6 

Icosahedral crystal, 7 

Icosahedral kaleidoscope, 75 

Icosahedral rotation group, 71 

Icosahedron, 4, 140, 184, 265 

as a deltahedron, 48 

as Platonic element, 5 

B|2H|2^^ as, 173 

borane as, 174 

braiding of, 133 

carborane as, 174 

construction of, 47 

dodecahedron as reciprocal 

of, 69, 206 

incised, 83 

isogonal, 207 

model of, xix 

plane net of, 5 

truncated, 72, 168 

vertices of, 219 
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Icosidodecahedron, 201 

definition of, 72 

truncated, 72 

vertices of, 220 

Icositetrahedral leucite crystal, 

22 
Identity operation, 137 

Image 

creation of, 118 

Imagery, 118 

Imagination, 118 

Impossible structure, 28, 30 

Incenter, 206 

Incidences, 125 

Incircle, 67 

Infinitesimal rigidity, 256 

Ingersoll, Charles, Sr., 165 

Intramolecular distances, 178 

Intramolecular motion, 182 

Ion exchangers, 95 

IRODO, 34 

Isoaxis 

construction of, 58 

Isogonal icosahedron, 207 

Isogonalities, 257 

Isogonal polyhedron, 208 

definition of, 206 

Isohedral dodecahedron, 207 

Isohedral polyhedron 

definition of, 206 

Isomerism 

permutational, 184 

Isomorphic polyhedra 

definition of, 205 

Isomorphism classes, 206 

Isothetic, 166 

Isotoxal polyhedron 

definition of, 206 

Jamnitzer, Wenzel, 11, 85 

Jennifer’s puzzle, 135, 143 

Joe-pye weed, 161 

Johnson, Norman W., 89 

Joints 

gluing of, 44 

taping of, 62 

Jungle gym, 22 

Jupiter, 69 

Juxtaposition of polyhedra, 61 

Kaleidocycle 

construction of, 57 

Kaleidoscope, 74 

Kelvin, Baron of Largs (Lord 

Kelvin), 153, 160 

Kepler, Johannes, 5, 12, 68, 85, 

95, 139, 152, 159, 217 

planetary system of, 69, 185 

Kinds, 151 

see also Platonic solids 

Klein, Felix, 70, 130, 216 

Klug, A., 158 

Knots, 153 

Koestler, Arthur, 69, 130 

Laban dance notation, 265 

Labyrinth, 35 

Lakatos, Imre, 191 

Lampshade, 42 

Lantos, Ferenc, 180 

Lattice, 99 

Lead shot, 161 

Le Bel, Joseph, 154 

Leibniz, Gottfried Wilhelm, 68 

Lesser rhombicuboctahedron, 

115 

Leucite, 22 

Lewis, Gilbert Newton, 155 

Line-sweep heuristic, 166 

Linear arrangement of electron 

pairs, 180 

Lipscomb, W. N., 184 

Local uniqueness, 257 

Loeb, Arthur L., xv-xvi, 

61-63, 106-117 

Polyhedral Fancy, 33 

Lucretius, 152 

Maisons a I’Estaque, 31 

Malkevitch, Joseph, 80-92, 264 

Man in the Community building, 

129 

Mani, Peter, 202 

Man the Explorer building, 129 

Map coloring, 251 

Mapping 

continuous, 124 

Hopf, 227 

Mars, 70 

Marshmallows 

as construction materials, 265 

Martin, George, 264 

Marvin, James W., 161 

Mathematics Activity Tiles, 50 

Matisse, Henri 

Dance, 182 

MATS, see Mathematics Activ¬ 

ity Tiles 

Matzke, E. B., 161 

Maxwell bowl, 241 

Maxwell, James Clerk, 153, 231, 

257 

Maxwell paraboloid, 239 

Mazzocchio, 28, 29, 42, 108 

Meister, A. L. F., 206 

Melencolia I, 27 

Mercury, 70 

Methane, 9, 172, 180 

Metric polyhedra, 128 

Metric properties, 125 

Michelson, Albert, 154 

Milestones, 80-92 

Miller, Dayton, 154 

Miller’s solid, 88 

Mirror symmetry, 7 

Mobius, A. F., 72, 210, 252 

Model 

affine, 120 

aluminum, 168 

ball-and-stick, 152 

billiard-ball, 153 

braiding of, 133 

cardboard, 39, 154 

construction of, 44, 51, 54, 

57, 62 

hard-rubber, 154 

Lipscomb rearrangement, 184 

mechanical, 153, 164, 168 

metric, 120 

of [LLl]-propellane, 178 

of [2.2.2.2]-paddlane, 178 

of [Co6(CO),4r-, 185 

of [RezClg]^-, 178 

of As4 molecule, 172 

of atom, 155 

ofborane, 174 

of y-brass atomic structure, 

100 
of capsid, 159 

of carbon-carbon bonds, 154 

of carborane, 174 

of dibenzene chromium, 177 

of ethane, 153 

of ferrocene, 177 

of gas molecule, 153 

ofHgN-AlClj, 177 

of icosahedron, xix 

of KAIF4, 177 

of macromolecular dynamics, 

164 

of methane, 153 

of methane molecule, 9, 172 

of methyl alcohol, 153 

of methylamine, 153 

of methyl chloride, 153 

of Mo2(02CCH3)4, 178 
of pentagonal bipyramid, 142 
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Model {cont.) 

of plant growth, 163 

of plant structure, 161 

of sodalite, 155 

of sodium chloride crystal 

structure, 96 

of sulfate ion, 179 

of tessellation of sphere, 112 

of tetrafluoroaluminate ion, 
179 

of trigonal bipyramid, 142 

of vortices in aether, 153 

of zeolite crystal structure, 96 

of zirconium borohydride, 173 
paper, 162 

plastic-tubing, 163 

projective, 120 

self-assembly, 164 

skeletal, 163, 173 

spatial, 120 

topological, 120 

VSEPR, 155, 179 

wooden, 114 

Modular residences, 19 

Modules for generating a rhom¬ 

bic dodecahedron, 61 

Molecular geometries, 172 

Molecular sieves, 95 

Molecule 

of [1.1.1 ]-propellane, 178 

of [2.2.2.2.]-paddlane, 178 

of acetylene, 156 

of adamantane, 176 

of As4, 172 

of dibenzene chromium, 177 

of dodecahedrane, 175 

of ethylene, 156 

of ferrocene, 177 

ofHjN-AlCb, 177 

of hexaprismane, 176 

of iceane, 176 

of KA1F4, ,177 

of methane, 9, 172 

of M02(02CCH3)4, 178 

ofONF3, 179 

of pentaprismane, 176 

of sulfone, 179 

of sulfuric acid, 179 

of tetrahedrane, 175 

of tetra-tert-butyltet- 

rahedrane, 175 

of triprismane, 176 

of zirconium borohydride, 173 

Monotonic figure, 167 

Monson, Barry, 219-220 

Monster barring, 191 

Morley, Edward, 154 

Moscow papyrus, 81 

Muetterties, Earl L., 172 

Mycerinus 

pyramid of, 15 

Negahban, Bahman, 42 

Negahban, Ezat O., 42 

Negev Desert 

synagogue in, 19 

Neighborly complex, 252 

Neighborly polyhedra 

definition of, 251 

Neighbor switching, 164 

Net 

invention of, 85 

of crawl-through toy, 42 

of cube,5 

of dodecahedron, 5 

of icosahedron, 5 

of kaleidocycle, 58 

of octahedron, 5 

of polyhedron, 84, 85 

of tetrahedron, 5 

of total photo, 42 

of triangles, 57 

of tunnel toy, 42 

Networks, 20, 194 

Noguchi, Isamu 

Red Rhombohedron, 32 

Nonconvex polyhedron, 207 

Nonfacet, 202 

Nontile 

definition of, 201 

toroidal, 203 

Obelisk, 35 

Octadecahedron 

borane as, 174 

carborane as, 174 

Octahedral rotation group, 71 

Octahedron, 4 

[Co6(CO),4]'“ as, 184 
as a deltahedron, 48 

as model for proteins, 6, 10 

as Platonic element, 5 

as space filler, 62 

as unit of crystal structure, 

100 

borane as, 174 

braiding of, 133 

carborane as, 174 

combinatorial, 199 

construction of, 47, 52, 143 

crosspolytope as analog, 201 

cube as reciprocal of, 69, 206 

decomposition of, 221 

electron pairs arranged as, 

180 

molecules shaped as, 181 

plane net of, 5 

relation to rhombic 

dodecahedron, 61 

stellation, 61 

truncated, 72, 95, 101, 115, 

160 

within sphere, 34 

wulfenite crystal, 93 

Octet 

of electrons, 155 

spaceframe, 128 

1-skeleton, 196 

Order and Chaos, 32 

Organometallic compounds, 102 

Orientable 

definition of, 196 

Pacioli, Luca, 68, 85 

portrait of, 27 

Packing 

of atoms, 265 

of circles, 95 

of cubes, 96 

of polygons, 67 

of polyhedra, 95 

of semiregular polyhedra, 99 

of spheres, 95 

of tetrahedra, 103 

of triangles, 95 

Paddlanes, 178 

Paper, see Cardboard 

Pappus, 83 

Papyrus 

Moscow, 81 

Rhind, 81 

Parallelism, 125 

Parenchymal tissues, 161 

Partition of space, 95, 138, 160, 

162 

Pauling, Linus, 9, 156 

Paving, see Tessellation; Tiling 

Peas, 159 

Pedagogy, 263 

Pedersen, Jean, 51-53, 133-147 

Pentagon 

as a face, 45 

building, 16 

polytope analogous to, 199 

Pentagonal bipyramid 

as a deltahedron, 48 

borane as, 174 
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carborane as, 174 

model of, 142 

Pentagonal dodecahedron, 5 

Pentagonal hexacositahedron 

as dual of snub 

dodecahedron, 112 

Schlegel diagram of, 112 

Pentagonal icositetrahedron 

as dual of snub cube, 112 

Schlegel diagram of, 112 

Pentagonal pyramid 

construction of, 45 

Pentagonal tessellation 

of plane, 112 

of sphere, 112 

Pentagram, 69, 140 

definition of, 12 

Pentaprismane, 176 

Perception 

spatial, 118 

structural, 119 

Permutational isomerism, 184 

Permutations, 114, 137 

equivalent to pseudorotation, 

183 

Perry, Charles O. 

Eclipse, 32 

Pests 

non-Eulerian, 196 

Petrie polygon, 68 

PF5 
pseudorotation in, 183 

Piaget, Jean, 130 

Picasso, Pablo 

Girl with a Mandolin, 31 

Pinel, Adrian, 50 

Planar graph 

definition of, 196 

Plane net, 5, 84 

Plane-sweep heuristic, 166 

Planets, 5, 69 

Plateau, Joseph A. F., 160 

Plato, 5, 82, 95, 151, 169 

Platonic element, 5 

Platonic solids, 5, 67, 82, 95, 

133, 151, 158, 265 

analogues of, 212 

Platonohedron 

construction of, 214 

definition of, 193, 212 

Playground polyhedra, 22, 

42 

Plexiglas cube, 34 

Poinsot, Louis, 69, 217 

Point group, 176 

Points-on-a-sphere config¬ 

urations, 180 

Pollack, R., 195 

Polya, George, 139 

Poly-Form, 126 

Polygon 

antiprismatic, 196 

definition of, 193 

Hopf, 227 

monotone, 167 

Petrie, 68 

prismatic, 196 

regular, 12, 67 

split, 245 

star, 12, 196 

zigzag, 196 

Polygon of forces, 231 

Polygons 

packing of, 67 

translation of, 164 

Polyhedra 

and crystal structures, 93 

and viral structures, 158 

animals as, 23 

Archimedean, 11 

as models for atoms, 155 

classification of, 36 

construction of, 40 

coordinated, 155 

coordinates for, 226 

design of, 257 

equivelar, 193 

four-dimensional, 36 

half-open, 24 

history of, 80-92 

isomorphic, 205 

isothetic, 166 

juxtaposition of, 61 

kinship structures involving, 

36 

movement of, 164 

neighborly, 251 

networks as, 20 

packing of, 95, 159 

Petrie-Coxeter, 193, 217 

plants as, 23 

recipes for making, 44-64 

relationships among, 36 

study of, 133 

theory of, 191 

transformations of, 163 

with seven vertices, 181 

Polyhedral art, 24 

Polyhedral bowl, 238 

Polyhedral Fancy, 33 

Polyhedral housing project, 

17 

Polyhedral molecular geome¬ 

tries, 172 

Polyhedral monster, 4, 191 

Polyhedral networks, 194 

Polyhedral society, 36 

Polyhedral torus, 258 

Polyhedral 2-manifold, 258 

Polyhedron 

affine, 128 

Archimedean, 11, 95, 101, 175 

as a solid, 106, 205 

as a surface, 106, 205 

braiding of, 133 

capped cylinder as, 191 

cardboard, 39 

colored, 194 

combinatorial dual of, 206 

combinatorial structure of, 

257 

convex, 11, 127, 196, 205, 231 

Csaszar, 207, 252 

definition of, 4, 191-192, 196, 

205, 210, 212, 251 

deltahedra-regular, 39 

digonal, 110, 194 

dual of, 205 

elements of, 205 

flag of, 212 

holes in, 196, 263 

hollow, 7 

infinite, 191 

isogonal, 206 

isohedral, 206 

isotoxal, 206 

Klein, 216 

metric, 128 

model of, 39 

molecule described as, 180 

nonconvex, 207 

perforated, 7 

picture of, 231 

pop-up, 51 

regular, 67 

regular skew, 216 

rigidity of, 256 

self-intersection of, 212 

semiregular, 11, 67, 83, 85 

simplicial, 251 

skeletal, 7, 173 

space-filling, 39, 62, 127, 128, 

159, 193 

spherical, 256 

star, 12, 191, 207, 217 

Szilassi, 207 

tessellation of, 110 

tetrahedral twins as, 191 

toroidal, 191 

toroidal isogonal, 208 

triangulated, 256 
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Polyhedron (cont.) 

uniform, 14, 88, 219 

with six faces, 37 

with skew faces, 191 

wooden, 114 

Polyhedron 

chemical journal, 155 

Polyhedron Kingdom, 3, 151 

Poly-Kit, 127 

Polytope 

definition of, 193 

equifaceted, 202 

faces of, 254 

regular, 89 

simplicial, 202, 254 

Polytopes 

combinatorially equivalent, 

198 

coordinates for, 226 

isomorphic, 198 

simplicial, 88 

Pop-up polyhedra, 51 

Post, K. A., 167 

Pretzel, 108 

Primal substances, 95 

see also Platonic solids 

Primitive lattice, 99 

Prism 

definition of, 11 

dibenzene chromium as, 

177 

ferrocene as, 177 

hexagonal, 11, 94, 176, 177 

octagonal, 208 

pentagonal, 176, 177 

semiregular, 11 

square, 11, 178 

triangular, 11, 176 

tricapped trigonal, 174 

with terminating facets, 23 

Prismanes, 176 

Prismatic building, 16 

Prismatic polygon 

definition of, 196 

Projective equivalence classes, 

206 

Projective properties, 125 

Project Synergy, 265 

Propellane, 178 

Proteins, 6, 10 

Pro todies, 198 

Pseudo-rhombicuboctahedron, 

85 

Pseudorotation, 183 

Pufferfish, 24 

Pumpkin 

as digonal polyhedron, 110 

Puzzles 

wooden, 40 

Pyramid, 14 

ammonia molecule as, 180 

as construction module, 61 

Egyptian, 15, 80 

pentagonal, 45 

square, 14, 62 

truncated, 81 

Pyrite, 9, 37 

Pythagoras, 82, 151 

Pythagoreans, 67 

Quadrangle 

poly tope analogous to, 199 

Quartz, 22, 94 

Quasi-equivalence, 158 

Quintessence, 151 

Quiocho, Florentine A., 157 

Radiolaria, 25, 164 

Radio telescope, 18 

Ramot, Israel 

housing complex, 20 

Rankine, William, 153 

Realization, 195, 243, 256 

definition of, 251 

equivalent, 253 

Rearrangement 

icosahedron/cuboctahedron/ 

icosahedron, 184 

in polyhedral boranes, 184 

Reay, John, 251-253 

Recipes for making polyhedra, 

44-64 

see also Construction 

Reciprocal diagram, 257 

Reciprocal figure, 231 

Reciprocation, 69, 206 

Rectangles 

isothetic, 166 

Recycling bins, 10 

Red Rhombohedron, 32 

Reed, Dorothy Mott, 29 

Regularity, 4, 82 

Regular polygon 

definition of, 67 

Regular polyhedron 

definition of, 67 

Regular poly tope, 89 

Regular solid 

definition of, 4, 67 

Regular star polyhedra, 13 

Reinhardt, C., 252 

Reptiles, 6 

Rhind papyrus, 81 

Rhombic dodecahedron, 34 

as space filler, 62 

construction of, 61 

relation to cube, 61 

relation to octahedron, 61 

Rhombicosidodecahedron, 32, 

72 

fused triple, 18 

vertices of, 220 

Rhombic tiling, 248 

Rhombic triacontahedron, 83 

Rhombicuboctahedron, 72 

lesser, 115 

Rhombidodeca, 35 

Rhombohedral lattices 

Dirichlet domains of, 102 

Rhombohedron, Red, 32 

Rigidity, 128, 256 

Ring 

of polyhedra, 221 

of tetrahedra, 142 

Robotics, 164 

Rome de Lisle, J. B. L., 36 

Rotational symmetry, 7 

Rotation group, 71 

Rout of San Romano, The, 28 

Rubik, Erno, 124 

Rumi, 42 

Sabin, Florence, 29 

Sacrament of the Last Supper, 

The, 29 

Safdie, Moshe 

Habitat, 17 

Saffaro, Lucio, 39 

Saidel, Beth, 108 

St. Louis Bay bridge, 20 

Salt, 95 

San Marco 

Basilica of, 13 

Santissimi Apostoli 

Church of, 8 

Saturn, 69 

Schattschneider, Doris, 57-60, 

259 

Schlafli, Ludwig, 193 

Schlafli symbols 

definition of, 67 

Schlegel diagram, 196 

definition of, 110 

dual, 111 

of bubbles in foam, 162 

of cube, 112 
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of pentagonal hexaco- 

sitahedron, 112 

of pentagonal 

icositetrahedron, 112 

of polyhedron, 221 

of snub cube, 112 

of snub dodecahedron, 112 

of square antiprism, 111 

of stellated icosahedron, 112 

Schlegel, V., 199 

Schulte, Egon, 198-204 

Schuster, Seymour, 264 

Sea urchin, 24 

Segal, Gerry, 264, 265 

Self-assembly model, 164 

Self-intersection, 256 

Semiregular antiprism, 11 

Semiregular polyhedra 

packing of, 99 

Semiregular polyhedron, 83, 85 

definition of, 11 

Semiregular prism, 11 

Senechal, Marjorie, 3-43, 191- 

197, 263-265 

Sepak Tackraw ball, 140 

Shape 

of [l.l.lj-propellane mole¬ 

cule, 178 

of [2.2.2.2]-paddlane mole¬ 

cule, 178 

of [Re2Cl8]^” molecule, 178 

of ammonia molecule, 180 

of As4 molecule, 172 

of dibenzene chromium mole¬ 

cule, 177 

of ferrocene molecule, 177 

of group of balloons, 180 

of H3N-A1C13 molecule, 177 

of hydrogen fluoride mole¬ 

cule, 180 

ofKAlK4, 177 

of methane molecule, 9, 172, 

180 

of Mo2(02CCH3)4, 178 

of sulfate ion, 179 

of tetrafluoroaluminate ion, 

179 

of walnut cluster, 180 

of water molecule, 180 

paddle-like, 178 

propeller-like, 178 

Shaw, George Bernard, 132 

Shephard, G. C., 131, 202, 205- 

211 
Shopping center, 129 

Shubnikov, A. V., 131 

Silicates, 96 

Simplex method, 89 

Simplicial polyhedron 

definition of, 251 

Simplicial polytope, 88, 202 

definition of, 254 

600-cell, 36 

Skeleton 

edge, 248 

models, 163 

of edges and vertices, 196 

of polyhedron, 7, 173 

of radiolarian, 23 

Skew face, 191 

Skew polyhedron 

projection of, 216 

Slicing, 36, 114 

Small stellated dodecahedron, 

69 

Smith College Campus School 

student artwork, xix, 3, 4, 69, 

262 

Smoke rings, 153 

Snub cube, 11, 72 

Schlegel diagram of, 112 

Snub dodecahedron, 11, 72 

Schlegel diagram of, 112 

Snub tessellation, 112 

Soap bubble, 34, 38 

Soap film, 7, 37, 160 

Sodalite 

model of, 155 

Sodium chloride, 96 

Solid 

Archimedean, 11, 72 

Miller’s, 88 

Platonic, 5, 67, 82, 95, 133 

polyhedron as, 106, 205 

regular, 4, 67 

Sommerville, D. M. Y., 88 

Space, 265 

Euclidean, 198 

partition of, 95, 138, 160, 162 

Space-filling polyhedra, 39, 62, 

127, 128, 159, 193 

Space-filling toroid, 203 

Spaceframe 

prefabricated concrete, 129 

wood and plastic, 128 

Space stations, 256 

Spatial perception, 118 

Sphere 

as model for atom, 160 

points on, 180 

rotations of, 70 

Spheres 

packing of, 95, 160 

Spherical blackboard. 111 

Spherical complex, 200 

Spherical polyhedron, 256 

Spider web, 231 

Spiny pufferfish, 25 

Spurlino, John C., 157 

Square 

as a face, 45 

Square antiprism, 11 

Schlegel diagram of. 111 

Square prism, 11 

Square pyramid 

as space filler, 62 

construction of, 61 

Star, see Pentagram; Stellated 

dodecahedron; Stellated 

icosahedron; Stellated 

polyhedra 

Star polygon, 12, 196 

Star polyhedron, 12, 191, 207, 

217 

regular, 13 

Statics, 231 

Steatite icosahedron, 84 

Steinitz, Ernst, 89, 201, 256, 257 

Stella octangula, 139 

Stellated dodecahedron, 68, 140 

construction of, 54 

Stellated icosahedron 

Schlegel diagram of, 112 

Stellated polyhedra, 88 

Stellation 

of cube, 61 

of octahedron, 61 

Stereoscopic vision, 118 

Stevin, Simon, 85 

Stoer, Lorenz, 85 

Structural Constellation, 31 

Structural perception, 119 

Structuration as geometrical ac¬ 

tion, 118 

Structure 

equilibrium vs. average, 182 

of tetrafluoro-l,3-dithietane, 

179 

see also Shape 

Stuart, C. Todd, 116 

Studying polyhedra, 133 

Subway station, 130 

Sulfates, 179 

Sulfones, 179 

Sulfuric acid, 179 

Swirnoff, Lois, xv 

Symmetry, 70, 95, 193 

color, 194 

mirror, 7, 114 

molecular, 172-188 

of polyhedron, 212 
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Symmetry {cont.) 

of uniform polyhedra, 219 

operation, 137 

rotational, 7, 114, 135 

spherical, 180 

Synagogue by Zvi Hecker, 19 

Synergy Project, 265 

Szilassi, Lajos, 252 

Szilassi polyhedron, 207 

Tait, Peter, 153 

Tammes 

problem of, 155 

Taping joints, 62 

Tarsia, 13 

Teaching geometry, 127, 133, 

263 

Temari ball, 141 

Ten Tangled Triangles, 35 

Termes, Dick A., 42 

Tessellation 

colored, 194 

Dirichlet, 231 

of by cubes, 202 

of egg, 108 

of plane, 67, 112 

of polyhedra, 110 

of sphere, 112 

snub, 112 

see also Tiling 

Tetrafluoroaluminate ion, 179 

Tetrafluoro-l,3-dithietane, 179 

Tetragonal crystal system, 103 

Tetragonal lattices 

Dirichlet domains of, 102 

Tetrahedra 

linking of, 58, 154, 177 

packing of, 103 

ring of rotating, 142 

Tetrahedral rotation group, 71 

Tetrahedral twins, 191 

Tetrahedrane, 175 

Tetrahedron, 4 

as a deltahedron, 48 

as face of polyhedron, 36 

as model of organic molecule, 

154 

as Platonic element, 5 

as self-dual, 206 

as unit of crystal structure, 

100 
B4CI4 as, 174 

braiding of, 133 

brass, 34 
construction of, 40, 143, 265 

electron pairs arranged as, 

180 

KAIF4 as, 177 

molecule as, 176 

ONF3 molecule as, 178 

plane net of, 5 

soap bubble as, 7 

sulfate ion as, 179 

tetrafluoroaluminate ion as, 

179 

truncated, 72 

within cube, 34 

Tetrahedron 

brass sculpture, 34 

chemical journal, 155 

Tetrakaidecahedra, 160 

Tetrakite 

construction of, 265 

Tetraphenyl compounds, 102 

T etra-tert-butyltetrahedrane, 

175 

Theatetus, 82 

Thomson, Sir William, see 

Kelvin, Baron of Largs 

3-space, 198 

Three Spheres II, 106 

Tiling 

by half-turns, 259 

face-to-face, 198 

locally finite, 198 

monotypic, 199, 202 

normal, 198 

of plane, 198, 259 

rhombic, 248 

see also Tessellation 

Timaeus, 5, 82, 151 

Tobacco necrosis virus, 39 

Tomlinson, Brett, 112 

Toothpicks 

as construction materials, 265 

Topological properties, 125 

Topology, 135 

Toroid, 108 

space-filling, 203 

Toroidal polyhedron, 191, 208 

Torus, 135 

flat, 214 

polyhedral, 257 

triangulation of, 207 

Torus coordinates, 225 

Torus decomposition, 221, 228 

Total photo, 42 

Toussaint, Godfried, 164 

Transfiguration as geometrical 

action, 119 

Transformations, 130 

models of plant growth, 163 

Tree 

dual of, 245 

Triangles 

as faces, 41, 45 

packing of, 95 

polytopes analogous to, 199 

Triangular antiprism, 11 

Triangular arrangement of elec¬ 

tron pairs, 180 

Triangular bipyramid 

as a deltahedron, 48 

Triangular prism, 11 

Triangular pyramid 

construction of, 61 

Triangulated polyhedron, 256 

Triangulation of torus, 207 

Tricapped trigonal prism 

borane as, 174 

carborane as, 174 

Trigonal bipyramid 

dicarborane as, 174 

electron pairs arranged as, 

180 

model of, 142 

molecules shaped as, 181 

nonequivalence of vertices, 

181 

pseudorotation in, 184 

Trihedral regions, 138 

Triprismane, 176 

Truncated cube, 72, 115 

vertices of, 219 

Truncated cuboctahedron, 72 

Truncated dodecahedron 

vertices of, 220 

Truncated icosahedron, 72 

vertices of, 220 

Truncated icosidodecahedron, 

72 

vertices of, 220 

Truncated octahedron, 72, 95, 

101, 115 

vertices of, 219 

Truncated pyramid 

volume of, 81 

Truncated 600-Cell, 36 

Truncated tetrahedron, 72 

Truncation, 36, 114, 194 

definition of, 11 

Tunnels in polyhedra, 214, 263 

Tunnel toy, 42 

12-celled polar collapsoid, 142 

12, frequent occurrence of, 

no 
24-cell, 222-229 

Twins 

tetrahedral, 191 

2-cell, 196 

2-cell complex, 196 
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2-manifold 

definition of, 196 

polyhedral, 257 

2-sphere 

definition of, 196 

Uccello, Paolo 

After the Flood, 28 

The Rout of San Romano, 28 

Ukrainian Easter egg painting, 

108 

Unbounded regions, 138 

Uniform polyhedron, 219 

Unit cell, 96 

Unsculptable, 30 

Valence, 108 

Valence shell electron repul¬ 

sion, 155, 180 

Vanadinite, 94 

van der Waerden, B. L., 89 

van ’t Hoff, Jacobus Henricus, 

154 

Vase, 41 

Venus, 70 

Verheyen, Hugo F. 

IRODO, 34 

Vertex 

definition of, 4, 205 

exposed, 253 

Vertices 

number of, 37 

permutation of, 219 

symmetrically equivalent, 14 

Vibrations, 183 

Villains 

deltahedral, 50 

Virus, 8 

icosahedral, 158 

self-assembly of, 164 

southern bean mosaic, 39 

spherical, 158 

tobacco necrosis, 39 

tumor, 159 

Visualization, 162 

as geometrical action, 118 

Void, 152 

von Helmholtz, Hermann, 153 

Voronoi diagram, 231 

Vortex atom, 153 

VSEPR, see Valence shell elec¬ 

tron repulsion 

Walker, Wallace, 58 

Walnut clusters 

shapes of, 180 

Walter, Marion, 44-50 

Water, 5, 67, 95, 151, 180 

Waterfall, 32 

Watson, James Dewey, 158 

Weakly neighborly complex, 

252 

Wenninger, Magnus, 54-56 

Werner, Alfred, 155 

Wetzel, John E., 139 

Weyl, Herman, 70 

What-If-Not strategy, 48 

Whirlpools in the aether, 153 

Whiteley, Walter, 231-250, 

. 256-257 

Williams, R. E., 164 

Wills, J. M., 212-218 

Wooden 

polyhedron, 114 

puzzles, 40 

World Fair 

Montreal 1967, 17, 129 

New York 1964, 17 

WPI, 35 

Wrinch, Dorothy, 6, 10 

Wulfenite, 93 

Yamamoto, Kazuko, 141 

Yog-Sothoth, 14, 15 

Zeolites, 95 

Zigzag polygon, 196 

Zinc bromide, 103 

Zirconium borohydride, 173 

Zodiac, 68 

Zonohedra 

juxtaposed, 130 

Zonohedral cap, 244 

Zonohedron, 143 

definition of, 128 
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