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INTRODUCTION 

Georg Cantor's creation of the theory of sets was a develop¬ 

ment of the utmost importance for all of mathematics and for 

modern analysis in particular. His work appears to differ from 

other mathematical discoveries in that it came into being 

without being preceded by a long evolutionary period such 

as is associated with calculus or non-Euclidean geometry, for 

example. Often in mathematics several people make similar 

discoveries at about the same time; this was not thecasewith 

Cantor's discoveries. Although others made important con¬ 

tributions to set theory soon after Cantor started his work, 

the creation of the theory appears to be Cantor's alone. 

The purpose of this study is to trace the history of set theory 

and its influence on the foundations of mathematics from its 

earliest beginnings up to the start of the axiomatic theories. 

It begins with a delineation of the work done by Cantor and 

follows its influence on other mathematicians'work. Conjec¬ 

tures made by Cantor in the course of his studies became 

fruitful areas of research for other workers in set theory. The 

paradoxes which unexpectedly arose from his work have 

been the cause of important study in the foundations of 

mathematics. In discussing this sequence of events, primary 

emphasis is devoted to the basic features of the general theory 

of sets as opposed to the theory of point sets. The main interest 

is in the subject matter such as that found in Kamke's Theory 

of Sets.1 Since the study is built around Cantor's work and its 

consequences, however, an attempt is made to discuss in 

some measure all areas of settheory to which Cantor contrib¬ 

uted. 

Hopefully, a history of one area of mathematics mightstimu- 

late interest in that area and, more largely, in the history of 

mathematics as a whole. A history of set theory in its naive or 

intuitive form should prove particularly worthwhile to teach¬ 

ers of mathematics at all levels. Although some parts of the 

book will not be readily understood by one without back¬ 

ground in thefoundationsof mathematicsorsettheory,these 
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parts can be skimmed without loss of continuity and the 

reader can still profit from the overall picture of the history. 

Finally, the study should prove helpful to people interested in 

research in the foundations of mathematics. 

The history is primarily concerned with set theory as devel¬ 

oped by Cantor in its naive or intuitive form in contradistinc¬ 

tion totheaxiomatictheorieswhich developed using Cantor's 

work as a base. Although some account is given of the devel¬ 

opment of the axiomatic theories, the major portion of the 

work is concerned with the genesisand early development of 
set theory as fostered by Cantor. 
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GEORG CANTOR 

Georg Ferdinand Ludwig Philipp Cantor was born on March 

3, 1845 in St. Petersburg (now Leningrad), Russia, but should 

properly be ranked among the German mathematicians, 

having spent the greater part of his life in German universities. 

His parents were the prosperous merchant, Georg Waldemar 

Cantor and his artistic wife, Maria Boehm. The father was born 

in Copenhagen, Denmark, but moved to St. Petersburg while 

still a young man. Because of pulmonary disease, Cantor's 

father retired in 1856 to Frankfurt, Germany, where he died 

in 1863. Maria Cantor outlived her husband by thirty-three 

years. 

The mathematician Georg Cantor was the eldest of three 

children born to the Georg Waldemar Cantors. All three 

children had artistic natures: Georg's brother, Constantin, 

who became a German Army officer, was a fine pianist; the 

sister, Sophie Nobiling, was an accomplished designer; Georg 

was a mathematician who was also interested in philosophy. 

The artistic temperaments of the children seem to have come 

from the mother's side ofthefamily. Her grandfather, Ludwig 

Boehm, was a conductor, whose brother, Josef, in Vienna, was 

a teacher of the famous violinist Joachim; her brother was a 

musician; her sister Annette had a daughter, Olga, whowasa 

painter and teacher at the Munich Kunstgewerbeschule. 

Cantor's father was born a Jew but became a convert to Pro¬ 

testantism at least as early as 1845. Cantor's mother was a 

staunch Catholic. Cantor, brought up as a Protestant, was also 

deeply interested in his mother's faith. The differing religious 

backgrounds of his parents did not produce religious indif¬ 

ference in Cantor, but, on the contrary, fostered a strong 

religious sense. He was a devout Christian and knowledgeable 

theologian. 

Cantor's first instruction was at home under a private tutor, 

followed by attendance at an elementary school in St. Peters¬ 

burg. Although he showed an early burning desire to take 



A HISTORY OF SET THEORY 

up the study of mathematics, his father wanted him to study 

engineering for the purpose of earning a livelihood. The son 

submitted at first and went in 1860 to the Grossherzogliche 

Hoehere Gewerbeschule (Grand-Ducal Higher Polytechnic, 

later changed to Technische Hochschule) at Darmstadt. Before 

this he had briefly attended the Wiesbaden Gymnasium as 

well as private schoolsin Frankfurtandthen in 1859theGross- 

herzoglich Hessiche Provinzialrealschule in Darmstadt. When 

he left the Darmstadt Realschule in September, 1860, he was 

given the following certificates: "Mathematics: his industry 

and zeal exemplary; his knowledge of lower mathematics, 

including trigonometry, is very good" ... "Descriptive Geo¬ 

metry: industry, attentiveness and achievements special." 

After leaving the Polytechnic in August, 1862 with a view to 

getting a maturity-certificate in languages and natural 

sciences, he devoted himself in the fall of 1862 to these sub¬ 

jects and secured the mark "sehr gut" (the highest mark 

given) in most subjects.1 

On the occasion of Cantor's confirmation in 1860, his father 

sent him a long letter expressing the high hopes which his 

parents and "all the other family connections in Germany 

as well as in Russia and Denmark" had placed on him. The 

father stated that they "expect from you nothing less than that 

you become a Theodor Schaeffer and later, perhaps, if God 

so wills, a shining star in the engineering firmament."2 Despite 

the elder Cantor's wish that his son become an engineer, 

however, the deep interest which the younger Cantor had in 

mathematics finally had its effect on the father, and he drop¬ 

ped his objection to the son's pursuing a career in mathe¬ 

matics. For his father's permission to seek a university career 

in mathematics, Georg was deeply thankful. In a letter to his 

father dated May 25, 1862 his oldest known letter, Cantor 

writes: 

My Dear Papa! 

How much your letter pleased me, you can imagine for your¬ 

self; the letter settles my future. The last days were for me 

ones of doubt and indecision; I could not come to any deci¬ 

sion. Duty and inclination moved in continual conflict. Now I 

8 
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am happy when I see that it will not displease you if I follow 
my feelings in my choice. I hope you will livetofind pleasure 
in me, dear father; for my soul, my whole being, lives in my 
calling; what a man wishes to do, and that to which an inner 
compulsion drives him, that will he accomplish.3 

In the fall of 1862 Cantor began his higher studies at Zurich, 

but left after the first term in the spring of 1863 because of the 

death of his father. In the fall of 1863 he entered the University 

of Berlin, where he studied mathematics, physics, and philo¬ 

sophy. The three great mathematicians at Berlin, Ernst Eduard 

Kummer, Karl W. T. Weierstrass, and Leopold Kronecker, 

attracted some of the best minds to study there; and because 

of the comparatively small number of students, they were able 

to give considerable help and suggestions to their pupils. 

Kronecker stimulated a lively interest in number theory in 

Cantor, but by farthegreatestinfluenceon Cantor's scientific 

career was exerted by Weierstrass. With respect to the two 

disciplines other than mathematics which Cantor studied at 

this time, there is no exact knowledge available of his interest 

in physics, but it is known that he had an astounding familia¬ 

rity with philosophical literature.4 During his stay at Berlin, 

Cantor was away only during the summer term of 1866when 

he attended the University of Goettingen,followingthe usual 

German custom of studying for a time at another university. 

According to E. Lampe, Cantor belonged in his Berlin period, 

in addition to the Mathematical Association (Mathematischer 

Verein), to a smaller circle of young colleagues who met 

every week in Rahmel's wine house.5 Apart from occa¬ 

sional guests, this circle included also Henoch (later editor 

of "Fortschritte"), E. Lampe, F. Mertens, Max Simon, and L. W. 

Thome, Thome developed a special attachment to Cantor. 

Another well-known colleague of Cantor at Berlin was Her¬ 

mann Arnandus Schwarz, who was two years older than 

Cantor. Contrary to the example of his teacher Weierstrass, 

Schwarz later met Cantor's ideas with great distrust. 

On 14 December 1867 Cantor received the degree of doctor 

on the basis of a severely classical dissertation based on a 
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study of the Disquisitiones Arithmeticae of Carl Friedrich 

Gauss as well as on the number theory of Adrien-Marie 

Legendre. This work was written on a difficult point which 

Gauss had left aside concerning the solution in integers x, 

y, z of the indeterminate equation 

ax2 + by2 + cz2 = 0, 

where a, b, c are any given integers. Entitled "De aequa- 

tionibus secundi gradus indeterminatis" ("On Indeterminate 

Equations of the Second Degree"), the thesis was dedicated 

to his guardians, Eduard Flersheimand Bernhard Horkheimer. 

In the customary disputation against opposing doctors, Can¬ 

tor defended three theses against his colleagues Hennoch, 

Simon, and Lampe, who had already received their degrees. 

The three theses were: 

1. In arithmetica methodi mere arithmeticae analyticis 

longe praestant ("In Arithmetic Merely Arithmetic 

Methods Far Surpass Analytical Methods"). 

2. Num spatii ac temporis realitas absoluta sit, propter ipsam 

controversiae quaestionem pluris facienda est quam 

solvendi ("Since It Is Disputed, the Question of the 

Absoluteness of Space and Time Is More Important Than 

Its Solution"). 

3. In re mathematica ars propoenedi quaestionem pluris 

facienda est quam solvendi ("In Mathematics the Art of 

Proposing a Question Must Be Held of Higher ValueThan 

Solving It"). 

Cantor's doctoral dissertation, and indeed all his early works 

until the early 1870s, although excellent, gave no hint of 

the great mathematical originator which he was to become. 

That he had ability was obvious, but it was only around 1871 

that the life of Cantor began to exceed the up-to-that-time 

normal development of a gifted scientist. 

After earning his doctorate, it appears that Cantor taught for 

10 
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a short time at a girls' school in Berlin. At any rate, after passing 

the required state examination for teachers, he was a mem¬ 

ber of Schellbach's Seminar for Teachers of Mathematics in 

1868. In the spring of 1869 he established himself as Privat- 

dozent at the University of Halleonthe Basisofthepaper"De 

transformatione formarum ternariarum quadraticarum" 

("On the Transformation of Ternary Quadratic Forms"). This 

paper, his fifth, was in number theory, as his first four had 

been. Although he was especially attracted to the beauty and 

purity of number theory, he rarely came back to this area 

later. He became Extraordinarius at Halle in 1872 and Ordinar- 

ius in 1879. In 1905 he was releasedfrom his official dutiesand 

in 1913 he resigned his post altogether. It was during these 

years at Halle that he published his great and immortal works 

on set theory. 

Although he did not spend much time in preparation, Can¬ 

tor's lectures were clear, orderly, lively, and stimulating ac¬ 

cording to his students, at least during times of normal health. 

He did the best job in the areas which were of most interest 

to him. Function theory, much in the background at Halle, 

was not one of his stronger interests, but he showed great 

interest in group theory. Only occasionally did he lecture 

about his works in set theory. The number of studentsattend- 

ing his lectures was often quite small: not infrequently he had 

only one to three students in class. Although strict, Cantor was 

a warm and faithful friend to his students. 

Cantor trained a large number of candidates for the state 

examination for theteacher'sdiploma, butcomparativelyfew 

produced doctoral dissertations under his direction. Appar¬ 

ently Cantor immediately carried out the ideas that occurred 

to him and did not leave much for his students to explore. He 

did not produce any appreciable number of researchers at 

Halle. Coming mainly from Berlin, most doctoral candidates 

arrived at Halle with their dissertations ready and received 

their degrees after a brief stay. 

In 1872, on one of his trips to Switzerland, which apparently 
were not rare in hisyoungeryears,CantormetRichard Dede- 

11 
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kind, one of the most prominent contributors of the nine¬ 

teenth century to the theory of algebraic numbers. A warm 

friendship developed between the two men.Theyfrequently 

met in person, mostly in Harzburg, and also carried on a cor¬ 

respondence from which numerous letters are preserved 

from 1873-1879 and from 1899. The mathematical content of 

the letters is limited, but they give a good idea of Cantor's 

working habits and mood of that time as well as the contrasts 

in the nature of the two men. Cantor wrote in his first letter 

about his need to talk with Dedekind about scientific objects 

and to come closer to him in a personal relationship. In a letter 

dated 31 August 1899, Cantor mentioned the inspiration 

which he received from Dedekind's classic writings. To a 

greater extent than becomes evident from the letters, how¬ 

ever, the differences in Cantor's early and later publications 

dealing with set theory show how deeply Dedekind's abstract, 

logical way of thinking influenced Cantor.Thefriendship was 

as important to Cantor professionally as it was personally. 

Another important event in Cantor's personal life was his 

meeting with his future wife, Vally Guttmann, who lived in 

Berlin with her three brothers. They became engaged in the 

spring of 1874 and were married in the summer of thesame 

year. On their wedding trip the young couple went to Inter¬ 

laken, Switzerland, where they saw a lot of Dedekind. At 

Halle, Cantor's wife helped provide a comfortable musical 

atmosphere and pleasant company in their home for his own 

students as well as students of other disciplines. The Cantors 

had two sons and four daughters, none of whom had a specific 

mathematical gift. After the birth of the children, Cantor 

spent vacations with his family in the Harz, where he could 

engage in one of his favorite pastimes, hiking. One of the 

Cantors' daughters, Frau Gertrud Vahlen, was especially help¬ 

ful to Fraenkel in his writing of the biography of Georg Cantor, 

which, as previously mentioned, is the primary authority for 
the present biographical sketch of Cantor. 

When Cantor went to Halle, the mathematician Heine wasan 

Ordinarius there. Of decisive importance to Cantor's profes¬ 

sional career was Heine's imspiring his young colleague to 

72 
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take up the study of trigonometric series soon after hisarrival 

in Halle. Cantor attacked the subject with zeal and met with a 

considerable number of successes. His papers six through 

ten, as well as some later papers, dealt with trigonometric 

series. But more important than the successes in work with 

trigonometric series per se was the fact that thiswork led him 

to the theory of point sets, and at the same time, to thetrans- 

finite ordinals, as is shown in his tenth paper. These papers 

contain both the first basic ideas of the theory of point sets 

and the work which, in addition to set theory, has made Can¬ 

tor immortal: the theory of irrational numbers as fundamental 

series. The tenth paper also shows Cantor's recognition of the 

necessity to use in geometry an axiom which is known today 

under the name Cantor's Axiom. At the same time and in¬ 

dependently of Cantor's work, Dedekind's "Stetigkeit und 

irrationale Zahlen" ("Continuity and Irrational Numbers") 

was published, a topic with which Cantor occupied himself 
again and again. 

Cantor's eleventh paper proved a frequently-used theorem in 

algebra for which no proof was given in textbooks. His twelfth 

paper dealt with the history of the calculus of probability, 

which had already occupied him for several years, although 

he had never done research in any branch of applied mathe¬ 

matics.6 He was directed to this subject by the intention to 

read a paper to the Naturforschende Gesellschaft (Society of 

the Friends of Nature) of Halle, the theme of which had 

to be understandable to all. 

In 1874 an article appeard in Crelle's Journal that marks the 

hour of the birth of set theory. A subsequent work, in 1878, 

remained in the publishing room of Crelle's Journal longer 

than usual for that time, apparently due to Kronecker's 

skeptical view of Cantor's idea. Kronecker was on the editing 

staff of the journal then as in 1874. This delay seems to have 

been quite irritating to Cantor. He was tempted to withdraw 

the manuscript and publish it as a special article, but Dedekind 

persuaded him against this action. Cantor complained to 

Dedekind that the printing was delayed, in spite of the prom¬ 

ises of the editors, "in a manner which is utterly unexplain- 

13 
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able to me", and thata workwhich hadarrived later wasgiven 

preference. Weierstrass defended the work, according to 

Cantor. The differences at Crelle's were solved and the work 

appeared on time, butafterthe unfortunateeventssurround- 

ing the publication of Cantor's paradoxical result (considered 

paradoxical at that time), he never published anotherarticle 

in Crelle's journal. 

As Cantor's work became more and more advanced, Kro- 

necker's opposition grew. Weierstrass, on the other hand, 

showed complete understanding of Cantor's endeavors. 

Cantor believed that both Weierstrass and Charles Hermite 

had early prejudices against him, systematically stimulated 

by Kronecker, but that they both completely overcame these 

prejudices.7 Indeed, Weierstrass applied some of Cantor's 

theory to part of his own work. 

According to Fraenkel, a surprisingand little-known observa¬ 

tion by Cantor seems to prove that as early as the beginning 

of the 1870s he had the scope of his theories, as well as the 

opposition to them, clearly in mind. In 1870 the idea of the 

transfinite numbers came to him for the first time. In 1873 he 

recognized the significance of the possibility of counting and 

the connection between it and the continuum. In the period 

1879-1884, he published practically his complete theory of 

sets, of which some of the fundamental points had been given 

before. This period was Cantor's most intesive working period 

during which he brought forth the incredible development 

of his ingenious ideas; it was also the time of the most difficult 

crisis in his life, which affected him until his death. 

The editor of the Mathematische Annalen performed a bold 

deed, but also gained immortal merit, in publishing Cantor's 

six-part treatise of 1879-1884. There was tremendous opposi¬ 

tion to his work by Kronecker and other prominent mathe¬ 

maticians of that time. In the words of Cantor's biographer, 

this treatise "belongs to the events in history where a com¬ 

pletely new idea of epochal thought which stands in total 

opposition to the ideas of the past and present bursts forth 

and crystallizes with increasing clearness, becoming all the 

14 
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time clearer to its creator in its boldness and newness."8 

Fraenkel comments further that this treatise belongs, at least 

in its fifth part, not only to the field of mathematics and philo¬ 

sophy, but is of importance altogether for the history of 
science and human thinking. 

Some passages from the fifth part of Cantor's treatise give a 

hint of the hard fight which took place in those years and 

which was greatly responsible for the decline in his health. 

Therein he speaks of the necessity for extending the number 

concept and says that without such extension it would be 

impossible to execute the smallest step forward in settheory. 

He uses this as his justification for introducing apparently 

strange or foreign ideas into his considerations. He acknow¬ 

ledges that he places himself in his enterprise in a certain 

contrast to widely held ideas about the infinite. 

The fifth part of the treatise, a work of utmost importance, 

was also published separately with an added preface.9 In the 

preface Cantor states that he most certainly does not believe 

that he can speak the last work about such a complicated, 

difficult, and encompassing subject as that presented by the 

infinite. However, he continues, since he has cometocertain 

conclusions about this topic in his many years of research, and 

since these conclusions have become more and more firm 

during the course of his studies, he feels that he has a certain 

obligation to put them in form and to make them known. 

In retrospect, the delay in getting his important paper of 1878 

accepted and the hard struggle to gain recognition for his 

works of 1879-1884 appear to be major causes for the com¬ 

plete breakdown that Cantor suffered in the spring of 1884. 

The formidable array of influential colleagues against Cantor's 

work, chief of whom was Kronecker, was almost certain to 

have an adverse effect on Cantor. Kronecker enjoyed an 

almost undisputed respect at that time and it is natural that 

a substantial number of colleagues would beonhissideinthe 

contest between him and Cantor. In addition, Cantor was only 

moderately satisfied with his appointment as regular pro¬ 

fessor at Halle and would have preferred the wider field of 

75 
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work offered by Berlin. But his attempts to get transferred to 

the University of Berlin were frustrated by the opposition of 

Schwarz and, especially, of Kronecker. lntheyear1884alone, 

he wrote as many as fifty-two letters to G. M. Mittag-Leffler 

attacking Kronecker. In one of these (26 January 1884), he 

referred to Kronecker's writings as "miserable scribblings."10 

Later he said in another letter to Mittag-Leffler that only time 

would tell which ideas would prove more fruitful, his or Kro¬ 

necker's. Cantor's work of 1883—againstthe natural numbers 

playing so great a role and in favor of freedom of mathe¬ 

matical creation—was unmistakably directed against Kro¬ 

necker. Cantor's relations with Kronecker seem to have been 

good until about 1880. 

Possibly Kronecker has been blamed too much for Cantor's 

breakdown; it has been seen that there were a number of 

contributing causes to this condition. While it is popularly 

held that Kronecker's animosity toward Cantor was personal, 

it appears that Kronecker's attacks came at least partly from 

his own scientific convictions and were not directed against 

Cantor the man as much as has often been supposed. Cantor's 

bitterness toward Kronecker was considered by his family and 

physician to be the chief cause of his psychical disease, and 

they persuaded Cantor to seek a reconciliation with Kro¬ 

necker. The reconciliation was effected, but it was not real, 

as Cantor soon realized. Odd as it may seem, Cantor became 

diffident and developed a lack of faith in the value of his own 

work during this period. In this year of mental crisis, 1884, he 

actually applied to be allowed to lecture on philosophy in¬ 

stead of mathematics. But at the beginning of 1885 his mental 

crisis was essentially over and his confidence in his own work 

was reestablished. Although some of Cantor'sworksafterthis 

time are certainly important, Fraenkel states that the most 

significant and fruitful period of Cantor's life ends with the 
year 1884. 

The successful attempts of Kronecker and other prominent 

mathematicians to keep him suppressed probably had much 

to do with Cantor's part in the founding of the Deutsche 

Mathematiker-Vereinigung in 1890. The association was in- 

16 
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tended to protect young researchers against the possibility 

of being injured by the overpowering influence of some 
mathematicians. 

Even in the year of his death, 1891, Kronecker remained crit¬ 

ical of Cantor's work. In a lecture to his students in summer 

semester of that year he very adversely criticized Cantor's 

mathematical papers. This act on Kronecker's part was cer¬ 

tainly inexcusable. It is not generally considered quite cricket 

for one scientist to deliver a savage attack on the work of a 

contemporary to his students; there are journalsavailablefor 
objectively handling such disagreements. 

The death of Kronecker, coupled with the sincere friendship 

of such an influential man as Mittag-Leffler and the affection 

which Weierstrass always felt for him, were probably helpful 

in making life more tolerable for Cantor. He was soon to 

begin receiving the recognition which he deserved. 

Public recognition of Cantor and his theory before the very 

end of the nineteenth century was meager, even in his own 

country. In 1869 he received regular membership in the 

Naturforschende Gesellschaft of Halle. In 1878 he became a 

corresponding member of the Society of Sciences in Goet¬ 

tingen, apparently the only German academy or university 

outside of Halle which honored Cantor's merits publicly. In 

the same year he received a call to the academy in Muenster, 

which he declined. As already mentioned he was appointed 

to the Ordinariats at Halle in 1879, a newly established post 

there. In 1885, the year in which Cantor essentially recovered 

from his mental crisis, his ideas were beingtaken upby others, 

among the first of whom were A. Harnack, M. Lerch, and E. 

Phragmen. But it was not until 1897, at the first International 

Congress of Mathematicians, held at Zurich, that Cantor was 

generally recognized. There A. Hurwitz openly expressed his 

great admiration of Cantor and proclaimed him as one by 

whom the theory of functions has been enriched. Jacques 

Hadamard expressed his opinion that the notions of the 

theory of sets were known and indispensable instru¬ 

ments. 
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Applications of Cantor's ideas also began to find places in 

papers and books. The second edition of Meyer's Elemente 

der Arithmetik und Algebra, published in 1885, was influ¬ 

enced by Cantor's work in transfinites; the work introduced 

especially the number concept in a set-theoretic manner. 

Henri Poincare and G. M. Mittag-Leffler made useof his ideas 

in some of their work. In France, L. Couturat's L'infini mathe- 

matique of 1896 used Cantor's notions and has a thorough 

appendix dedicated to the ideas of Cantor. The theory found 

a place in Enzyklopaedieder Mathematischen Wissenschaften 

in a separate article of 1898, in E. Borel's Lecons sur la tbeorie 

des fonctions of 1898, and in R. Baire's Sur les fonctions der 

variables reelles of 1899. The first text books on set theory 

seem to have been A. Schoenflies' Entwickelung der Lehre 

von den Punktmannigfaltigkeiten, 1900; The Theory of Sets 

of Points by Professor W. H. Young and his wife Dr. G. C. 

Young, 1906; and Hausdorff's Grundzuege der Mengenlehre. 
Numerous other books and papers have been written which 

show the influence of Cantor's set theory. His work is now 

accepted as a fundamental contribution to all mathematics 

and particularly to the foundations of analysis. 

The early twentieth century saw Cantor being accorded re¬ 

cognition of another kind by foreign countries. He was made 

an Honorary Member of the London Mathematical Society in 

1901 and of the Mathematical Society of Charkov, and cor¬ 
responding member of the Reale Istituto Veneto di Scienze, 

Lettere ed Arti of Venice. The Christiana University in 1902 

and the St. Andrews University in 1911 conferred honorary 

doctors' degrees on him. In 1904 the Royal Society of London 

awarded him its Sylvester Medal. In 1915 his seventieth birth¬ 

day was celebrated as an event of international importance. 

In spite of the war, German mathematicians from near and 

far took part in the celebration. At that time a marble bust of 

Cantor was subscribed to. It was placed on the staircase atthe 
University of Halle in 1928. 

Certainly Cantor was pleased with the honors which belatedly 

came to be bestowed upon him. Part of a letter from him to 

Professor W. H. Young was translated and read by Young in 
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the Presidential Address to the London Mathematical Society 

on 13 November 1924. The letter is probably indicative of the 

gratitude which Cantor felt for all the honors and awards 

bestowed upon him. In the letter he says, "I shall always re¬ 

main grateful to the London Mathematical Society for the 

award of the Sylvester Medal, ..He goes on to say that he 

feels himself at one with the high-minded inhabitants of 

Great Britain, but that it is quite otherwise with the Germans, 

"who do not know me, although I have lived among them 
fifty-two years."11 

Some comments about Cantor by a few leading mathemati¬ 

cians will be of interest. Writing of Germany's neglect of Can¬ 

tor's theory, Schoenflies noted that, while Cantor possessed 

in the Annalen a ready outlet for his publications, before the 

year 1884 he had hardly any scientific influence on others.12 

Schoenflies expressed the opinion that mathematical science 

would ever remain indebted to Cantor for his ceaseless belief 

in and defense of his creations. Fraenkel said that a great 

pioneer of science was given to the mathematical world in 

Georg Cantor. He stated further that Cantor's work had open¬ 

ed up entirely new, rigorous, and revolutionary avenues of 

research for analysis. The ideas of the theory of pointsetshave 

even been of value for physical applications. David Hilbert 

quoted Hermann Minkowski as saying that future history 

wouid regard Cantor as oneofthemostdeep-thinkingmathe- 

maticians of those times. Minkowski also expressed regrets 

that the opposition by Kronecker on grounds not purely 

mathematical could disturb the joys of Cantor in his scientific 

researches.13 Hilbert and Minkowski, along with Hurwitz, 

were probably the first in Germany to recognize the originality 

and significance of Cantor's set theory. Professor W. H. Young 

pointed out that at the turn of the century Mengenlehre was an 

all but unknown term, but that a complete change has come 

overthe field of mathematics and that it would nowbehardto 

find a writer on analysis who does not directly or indirectly 

utilize the concepts and even the theorems of the theory of sets 

of points.14 Much more testimony could be cited to showthe 

deep respect which has come to be accorded to the mathe¬ 

matical genius of Cantor and the regard for the importanceof 

his results. 
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Cantor's illness recurred throughout his life; he died in the 

psychiatric clinic at Halle on 6 January 1918. He had lived long 

enough to seethe beginning of the tremendous impact which 

his theory was destined to have on the mathematical world 

and to enjoy the pleasure of the belated recognition which he 

so much deserved. 
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CANTOR'S 

SET-THEORETICAL 

WORKS 

The birth of set theory can now be recognized in Cantor's 

paper (13). Insofar as set theory is concerned it was preceded 

only by his work with trigonometric series, out of which grew 

the consideration of point sets. Hispaper(10),tobediscussed 

later, contained, among other things, the first basic ideas of 
pointsets. 

The paper (13) immediately makes clear that it is possible to 

distinguish different kinds of infinity. In the naive infinite, 

different orders of infinity do not exist; if something is infinite, 

it is infinite. In this paper, however, Cantor shows thatthere 

are at least two different orders of infinity: the set of real 

algebraic numbers can be put in one-to-one correspondence 

with the set of natural numbers (positive whole numbers), 

whereas the same is not true of the set of real numbers. 

According to Fraenkel, Cantor himself had first thought that 

the continuum could be put in one-to-one correspondence 

with the set of natural numbers. 

The set of all real roots of ordinary algebraic equations of the 

type 

a0xn + ajXn 1 + a2xn 2 + ... + an_jX + an = 0, 

where n is a natural number, a, an integer, / =0,1,... ,n,and 

a0 > 0, are called algebraic numbers. To see that this set of 

numbers can be put into one-to-one correspondence with 

the set of natural numbers, define the index of an equation 

such as the above as the natural number 

a0 + |a i! + |a2| + • • • + lan-ii + lanl + n- 

Since both n and a0 are at least 1, there exists exactly one 
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equation of index 2, namely x = 0, so that the only root of 

equations of index 2 is the number zero. The only equations of 

index 3 are 2x = 0, x ± 1 = 0,x2 = 0,yielding rootsO, —1,1. For 

each index there exists only a finite number of equations and 

hence a finite number of roots corresponding. Any non-real 

roots are rejected. Thus the set of real algebraic numbers can 

be arranged in a sequence by arranging the numbers cor¬ 

responding to the index in order of magnitude, and then 

arranging the various indices in their order of magnitude. In 

arranging the numbers any number that was a root of an 

equation of lower index may be rejected. Since every equa¬ 

tion has an index all algebraic numbers appear in the 

sequence and the proof is completed. 

The proof in the paper (13) that the set of real numbers cannot 

be put in one-to-one correspondence with the set of natural 

numbers is not the familiar one using Cantor's famous 

diagonal process. Cantor proved the theorem for the first time 

using nested intervals. The following proof, simpler and per¬ 

haps now more common than hisfirst proof, is essentially due 

to his later work (30). 

Suppose by way of contradiction that there exists a one-to- 

one correspondence between the set of natural numbersand 

the set of real numbers. Denote the real number paired with 

each natural number n in this correspondence by rn. Also let 

the digit in the nth decimal place of rn be denoted byann. Leta 

real number r =0. ax a2 a3 ... an ... be defined such that, for 

each n, an =1 if ann 4 1, and an =2 if ann =1. Since r is a real 

number, it must itself be an rn, say r(. But r, has a/ as the /th 

decimal digit, whereas r has a different digit a,. Fromthiscon- 
tradiction it must be concluded that there does not exist a 

one-to-one correspondence between the set of natural 
numbers and the set of real numbers. 

Cantor remarks in the introduction to (13) that by combining 

these two theorems (the algebraic numbers can be put in 

one-to-one correspondence with the set of natural num¬ 

bers whereas the reals cannot) there results a proof of the 

theorem first proved by Liouville that in each given interval 
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there exist infinitely many transcendental (non-algebraic) 
real numbers. 

The concept of one-to-one correspondence between sets is 

the fundamental idea in Cantor's memoir (14). Some import¬ 

ant theorems pertaining to this kind of relation between 

various sets are given and suggestions are made of a classifi¬ 
cation of sets on this basis. 

At the beginning of the work Cantor introduces the idea of 

equivalence, and based on this explains the concept of power 

in a more concrete manner than he does later in the system¬ 

atic presentation (32). If two well-defined sets can be put 

into one-to-one correspondence, they have the same power 

(Macbtigkeit) or are equivalent. Cantor borrowed the term 

powerfrom Jakob Steiner, who used it in a special, but allied, 

sense. When a set is finite, the notion of power corresponds to 

that of number, for two finite sets have the same power if and 

only if the number of their elements is the same. 

A subset (Bestandteil) of a set is defined as any other set whose 

elements are also elements of the original set (the present 

meaning of proper subset). A subset of a finite set always has 

a power less than that of the set itself. That this is not the case 

with infinite sets was first noticed by Bernard Bolzano several 

years earlier, and was used in a definition of infinite by 

Dedekind, independently of Bolzano and Cantor, in 1887.1 

For example, it is easy to see, as Cantor points out, that 

the set of natural numbers has the same power as that subset 

of it consisting of the even natural numbers. Hence, from the 

circumstance that an infinite set M is equivalentto a subset of 

N, it can only be concluded that the power of M is less than 

that of N if it is known that these powers are unequal. 

The collection of sets having the smallest infinite power is an 

extraordinarily rich and extensive system. It is easy to show 

that the set of natural numbers has the smallest infinite power. 

Moreover it is also easy to show that if M is a set having this 

power, then any infinite subset of M has this same power. 

Cantor also gives here the theorem that if M', M", M'",... is 
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any finite or simply infinite sequence of sets each having the 

power of the natural numbers, then thesetresultingfromthe 

union of these sets has this same power. Also included in this 

paper is Cantor's interesting and well-known proof that the 

set of rational numbers has the smallest infinite power. These 

are some of the principal theorems in the paper concerning 

sets having the power of the natural numbers (Cantor will 

later use the term countable to refer to such sets). 

The proof that the real number continuum is not countable 

has already been discussed. The idea of going over from the 

one-dimensional to the multi-dimensional to get higher 

transfinite powers had previously occupied Cantor in 1874, 

as his correspondence with Dedekind shows. To see a prob¬ 

lem here at all required a new attitude since itwascommonly 

assumed that points in two-space cannot be traced back to 

one-space. Yet Cantor proceeded to prove in his paper (14) 

the independence of the power of the continuum from its 

number of dimensions. That this fact surprised even himself 

is evident in another of his letters to Dedekind priorto publi¬ 

cation of the proof. Cantor observes that the result can be 

expanded to the case of a countable (later terminology) in¬ 

finity of dimensions. He also conjectures that the two powers 

of the rational numbers and the real numbers exhaust all 

possibilities for infinite subsets of the continuum. Time has 

shown that he was overly optimistic in that it has now been 

shown in the realm of axiomaticsettheory thatthe conjecture 
is neither provable nor disprovable. 

In close connection with the work (14) just discussed stands 

the attempt in Cantor's paper (15) of a proof of the following 

theorem: If two regions Cmand Cn of the dimension numbers 

m andn relate to each other continuously so that toeach point 

of Gm at least one point of Gn, to each point of Gn at most one 

point of Gm corresponds, then n > m. This theorem would 

include the general theorem of the invariance of the number 

of dimensions. It had been proved by Lueroth for the cases 

m = 1 and m = 2.2 He had received the idea through Cantor's 

work (14). Cantor refers in this paper to corresponding en¬ 

deavors of Thomae and Netto and also to Lueroth's work. 
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Evidently only Brouwer first brought an absolute proof of the 
invariance of the dimension numbers.3 

The foremost line of ancestry of Cantor's theory of point sets 

has to be traced back to the very important sequence of essays 

(16). Insofar as the theory of point sets specifically is con¬ 

cerned, it was preceded only by the introductionofafewless 

important concepts in (10). His paper (10) shows clearly 

how the consideration of general point sets grew out of his 

research into trigonometric series. 

It has already been mentioned in Chapter 2 that Cantor's 

theory of irrational numbers stems from (10). At first these 

numbers were not a purpose in themselves, but an instru¬ 

ment; he comes back to them more thoroughly in his fifth 

essay of (16). The first introduction of limit points and deriva¬ 

tives of point sets is also contained in (10). For a set of points P 

in a finite interval, a limit point (Grenzpunkt) of P is any 

point of the straight line such that in any interval within 

which this point is contained there are an infinity of pointsof 

P. Cantor called every point of P which is not a limit point of P 

an isolated point. Every point of P either is or is not a limit point 

of P. The set of all limit points of P is called the first derived 

system (erste Ableitung) P'. If P' is not finite, a second derived 

system P" can be deduced by the same process, and so on. 

These notions will be used in (16). 

In the first essay of the sequence (16), Cantor submits linear 

sets to a close analysis by classifying them according to certain 

principles. He stresses that the idea of derived sets can be 

extended to several dimensions. Sets are divided according to 

three points of view: 

a. According to their behavior when continuingthe deriva¬ 

tion process. In this connection, a point set Pr is said to be 

of the first kind and yth species if P(^ consists of merely a 

finite set of points. It is of the second kind if the sequence 

P', P", , ..., P(d, ... is infinite. 

b. According to their behavior in a given interval. The sets 
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which are dense everywhere in the interval are different 

from those which are not dense everywhere. Paul du Bois 

Reymond independently used the same idea.4 A pointset 

P is defined to be everywhere dense in a closed interval if 

every subinterval of the interval contains points of P. 

c. According to power. Cantor puts in the background for 

the time being the question whether the countable and 

the continuous exhaust all infinite point sets, and gives 

a somewhat simpler proof than in (13) that the linear con¬ 

tinuum is not of the first (infinite) power. 

In his third essay in the sequence (16) Cantor extends the 

concepts previously developed for linear sets to sets situated 

in continua of n dimensions, especially the concepts of limit 

points, of derivatives, and of density. There is a passage at the 

beginning of the essay which deals with the linear point sets 

as being given. The general character of the power concept is 

stressed. There are some reflections as to under what circum¬ 

stances an infinite set is "well-defined." He explains that a 

set of elements belonging to any sphere of thought is well- 

defined when, in consequence of its definition and of the 

logical principle of the excluded middle, (i) it must be con¬ 

sidered as intrinsically determined whether any object be¬ 

longing to this sphere belongs to the set or not, and (ii) 

whether two objects belonging to the set are equal or not, in 

spite of formal differences in the manner in which they are 

expressed. Cantor says that the concept of power may be 

considered an attribute of every well-defined set. 

Also in the third essay of (16) is the first use of the word 

countable (denumerable, enumerable) to describe a set 

which can be put in a one-to-one correspondence with the 

set of positive integers and is consequently of the first infinite 

power. Cantor mentioned in a letter to Jourdain that he first 

formed the idea of countability in 1873.5 Also in this essay is 

the theorem that in an n-dimensional space an infinite set of 

n-dimensional continuous subregions, separated from each 

other and meeting at most at their boundaries, is countable 

(with every subregion the points of its boundary are con- 
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sidered as belonging to it). Finally Cantor makes the interest¬ 

ing remark that if from an n-dimensional continuum any 

countable and everywhere dense set is removed, the re¬ 

mainder U, if n > 2, does not cease to be continuously con¬ 

nected, in the sense that any two points N, N' of U can be 

connected by a continuous line composed of circular arcs all 
of whose points belong to U. 

Cantor used the concept of countability in his paper (20). He 

adapted some of the most elementary set-theoretical under¬ 

standings to a problem of analysis which was suggested 

by Weierstrass. The problem dealt with producing, from a 

function having in a certain place some singularity, functions 

having the same kind of singularity at a countable and every¬ 

where dense set in a given real interval. 

In the fourth essay of the sequence (16) Cantor introducesthe 

concept of the isolated (n-dimensional) point set and states a 

few facts about it. If a set Q (in a continuum of n dimensions) 

is such that none of its points is a limit point, it is isolated. He 

proceeds to prove six theorems on countable point sets. 

As was mentioned in Chapter 2, the fifth essay of (16) was also 

published separately, with extra notes, as Grundlagen einer 

allgemeinen Mannichfaltigkeitslehre. In a note to the Grund¬ 

lagen, Cantor remarked that he meant by the term Man¬ 

nichfaltigkeitslehre a doctrine embracing very much which 

before he had attempted to develop only in the special form 

of an arithmetical or geometrical theory of sets (Mengen- 

lehre). By a manifold or set he understood generally any 

multiplicity which can be thought of as one, that is, any totality 

of definite elements which can be bound up into a whole by 

means of a law. Cantor repeatedly emphasized this character 

of unity. 

The Grundlagen begins by drawing a distinction between two 

types of infinity which appear in mathematics. The term 

improper infinite (Uneigentlich-Unendliches) is used for a 

magnitude which either increases above all limits or decreases 

to an arbitrary smallness, but always remains finite; so that 
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it may be called a variable finite. The proper infinite (Eigent- 

lich-Unendliches) is typified by the infinite real integers, and, 

to emphasize this, the old symbol "oo," which wasand is used 

also for the improper infinite, was here replaced by "oo." 

Cantor points out that, although it would be contradictory to 

speak of a greatest number of the set of positive integers, 

there is nothing objectionable in imagining a new number, 

oo, which is to express that the entire set of positive integers is 

given by its law in its natural order of succession. He goes 

on to develop larger numbers of this type by what he calls 

"generation and limitation principles." These numbers 

are, of course, recognized now as ordinal numbers; he re¬ 

turns to a discussion of them later and so names them. Cantor 

observes here that in the case of finite sets this conception 

of number coincides with power, but these two concepts 

diverge in the case of infinite sets. This new concept of 

number serves to make precise the concept of power which 

Cantor had used often already. Cantor is able in this context 

to define his new numbers independently of the theory of 

derivatives. Without this extension of the concept of number, 

Cantor says that it would hardly be possible for him to make 

without constraint the least step forward in the theory of sets. 

He says that he was logically forced to these new numbers 

almost against his will. He stresses the important idea thatthe 

fact that these numbers do not have all the qualities of the 

finite numbers or have certain qualities which cannot gowith 

the finite numbers cannot be reason enough to reject them. 

Each enlargement of a basic principle, he says, brings the loss 

of certain characteristics; he refers to the example of the 

complex numbers as an enlargement of the reals. The devel¬ 

opment of Cantor's new numbers and the distinction be¬ 

tween this concept and the concept of power is of significance 

for the theory of all (finite and infinite) arithmetic. 

Any well-defined set whose elements have a given definite 

succession such that there is a first element, a definite 

element that follows every other (if it is not the last), and to 

any finite or infinite set a definite element belongs which is 

the next following element in the succession to them all 

(unless there are no following elements in the succession) 
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is called by Cantor a well-ordered set. Two well-ordered 

sets are similar (using Cantor's later terminology) if a one- 

to-one correspondence is possible between them such that, 

if a and b are any two different elements of the one, and a' 

and b' are the two corresponding elements of the other, if a 

precedes or follows b, then a' respectively precedes or follows 
b'. 

There is an interesting discussion in the Grundlagen of the 

conditions under which the introduction into mathematics 

of a new concept, such as a>, is to be regarded as justified. 

Cantor says that mathematics is, in its development, quite 

free; that it is only subject to the self-evident condition that its 

concepts be both free from contradiction in themselves and 

stand in fixed relations, arranged by definitions, to previously 

formed and tested concepts. In the introduction of new 

numbers, in particular, it is only obligatory to give such 

definitions of them as will afford them such a definiteness, 

and under certain circumstances, such a relation to the older 

numbers, as permits them to be distinguished from one an¬ 

other in given cases. He says that a number, as soon as it satis¬ 

fies all these conditions, can and must be considered as 

existent and real in mathematics. 

The Grundlagen gives a good account of the slow and sure 

way in which the transfinite numbers forced themselves on 

the mind of Cantor and also shows to a considerable degree 

Cantor's philosophical and mathematical traditions. Both 

here and in Cantor's later works are discussions of opinions 

on infinity held by mathematicians and philosophers of all 

times. Such names as Aristotle, Rene Descartes, Baruch (or 

Benedict) Spinoza, Thomas Hobbes, George Berkeley, John 

Locke, Wilhelm Leibniz, Bernard Bolzano, and many others 

are found in his works. There is evidence of deep erudition 

and painstaking search after new views on infinity to analyze. 

Many pages have been devoted by Cantor to the schoolmen 

and the fathers of the church. 

There is some lack of attention in details to be noticed in 

Cantor's fifth essay of (16), possibly due in some measure to 
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the turmoil through which his life was going at this time. Some 

of the mathematics found here is later treated far more com¬ 

pletely and is drawn upwithfarmoreattentiontologicalform 

than was the Grundlagen. Of course, much of this increased 

attention to details later may be due to the seasoning of the 

ideas in Cantor's mind over the years. 

In the fifth essay, as in the third, Cantor rejects the actually 

infinitely small. He also opposes the finitistic concept of 

Kronecker. Cantor recognized certain methodical advantages 

by Kronecker, but he thought some of Kronecker'sideaswere 

not only basically unproductive with reference to the prog¬ 

ress of science but were even wrong. 

Cantor defines addition and multiplication of transfinite 

numbers and mentions some of the basic properties. He will 

return to a fuller investigation of transfinite arithmetic in 

later papers. 

Finally, in the rather lengthy Grundlagen, Cantor discusses 

and defines the concept of "continuum." He explains that he 

intends to give a strictly mathematical analysis without going 

into the metaphysical side. He briefly refers tothe discussions 

of the continuum concept of Leucippus, Democritus, Aris¬ 

totle, Epicurus, Lucretius, and Thomas Acquinas. He emphas¬ 

izes that he will not draw upon the concepts of time or space 

for the understanding of the continuum since one needs 

instead, in the opposite direction, for the understanding of 

space and time, a mathematically exact definition of the 
continuum. 

He starts, supported by the arithmetical concept of the real 

number, from the arithmetical space Gn: (x^ x2, x3, ..., xn), 

where each x can assume any real value from -oo to + oo 

independently of the others. Every such system is an "arith¬ 

metical point" of Gn, and the "distance" of two such points is 
defined by 

+ VW - *i)2 + (*2' x2)2 + ... + (xn' - xn)2. 
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By an "arithmetical point set" P contained in Cn is meant any 
set of points Gn selected out of it by a law. 

A point set P is closed if every limit point of P is a point of P. 

The set P is perfect if P is closed and if every point of Pis a limit 

point of P. (This language differs from Cantor's; the word 
closed was used later.) 

Perfect sets are not always everywhere dense. Cantor gave an 

example of a bounded perfect point set which is everywhere 

dense in no interval. The example, in anotherform, had been 

published already in 1875 by H. J. S. Smith but obviously was 

not known to Cantor.6 Since perfect sets are not always every¬ 

where dense, they are not fitted for the complete definition of 

a continuum, although the continuum certainly must be 

perfect. Cantor defined a point set P to be connected if, for t 

and t'any two points of Pand e a given arbitrarily small positive 

number, a finite number of points tx, t2, t3,... ,tnof Pexistsuch 

that the distances ttlf txt2/ t2t3,..., tnt' are all less than e. Cantor 

comments that all the geometric point-continua known to us 

are connected. He says that he believes the two properties 

perfect and connected are the necessary and sufficient char¬ 

acteristics of a point-continuum. In a note Cantor stresses the 

independence of his definition of the continuum from the 

dimension. He observes that the set of all continuous func¬ 

tions has the power of the continuum (and probably also the 

set of all integrable functions). It should be mentioned that 

Cantor was critical of Bolzano's treatment of the continuum. 

It also seemed to him that Dedekind only emphasized a pro¬ 

perty of a continuum, namely that which it has in common 

with all other perfect sets.7 

The last paragraphs of the fifth essay give, on the basis of 

Cantor's generation and limitation principles, a sketch of the 

theory of the numbers of the "second number class." The first 

number class has the smallest infinite power and Cantor pro¬ 

ceeded to show that the totality of the numbers of his second 

number class has the next higher power. From these re¬ 

searches into ordinal numbers and powers Cantor derived the 

idea that any set whatsoever can be well-ordered, and this he 
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stated with a promise to return to the subject later. Cantor also 

gives a proof of the equivalence theorem for sets of the power 

of the second number class: If M isany well-defined set of the 

second power, M' is a subset of M and M" is a subset of M', 

and M" has the same power as M, then M' has the same 

power as M and hence as M". Cantor remarked that this 

theorem has general validity and promised to return to it 

later; obviously the proof is still lacking in the total presenta¬ 

tion (32). 

Cantor's sixth essay in the sequence (16) is especially rich in 

mathematical contents. He begins with a general explanation 

of the interval nesting method. He observes that the interval 

nesting method developed by him is, according to its basic 

ideas, very old and is used in newer times by Joseph-Louis 

Lagrange, Adrien-Marie Legendre, P. G. Lejeune Dirichlet, 

and Augustin-Louis Cauchy, and, in some treatises, by 

Bolzano and Weierstrass. Certain objections (Kronecker's) 

against this method of proof are compared by Cantor with 

the false conclusions of Zeno. 

Cantor gives proofs in the sixth essay of a few assertions of 

the preceding essay. Several theorems concerning countable 

sets are stated and proved. Among these is the theorem that a 

perfect set is not of the first (infinite) power. The treatise (22), 

previously published, also gives a proof of this theorem as well 

as proofs of two other theorems contained in the sixth essay. 

The concept closed was introduced in the sixth essay (using 

this term). Cantor showed that each closed set can be pre¬ 

sented as the derivative of a set. Cantor's paper (25) contains a 

generalization of sets which are not closed. The concept 

dense in itself was also introduced in the sixth essay. A non¬ 

empty point set M is dense in itself if M is contained in its 

derived set M'. 

Some of Cantor's work in the sixth essay of (16) deals with 

content theory.8 Also, a small part of his paper (23) deals with 

content theory. In the latter paper Cantor observes that he 

needs his content theory for investigations in the dimensions 
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of continuous sets. A dimension theory on this basiswas later 

developed by Hausdorff.9 At the same time that Cantor's 

paper came out Stolz published a work wherein there is a 

content definition (for linear sets) which agrees with that of 

Cantor.10 Cantor used an integral to give a definition of con¬ 

tent for an n-dimensional point set P. In the sixth essay, he 

proved essentially only the theorem that the content of the 

point set P is the same as the content of the derived set P'. He 

drew attention to the existence of perfect sets of content 0, 

which are nowhere dense, while a perfect set which is no¬ 

where dense can very well have a positive content. Cantor's 

definitions were intended to apply to the case of closed sets. 

According to his opinion closed sets should be sufficient for 

general observation. His beginnings of the continuum prob¬ 

lem are essentially conditioned by the over-estimation of the 

closed set. When F. Bernstein's dissertation reduced thesigni- 

ficance of these sets in a decisive manner, Cantor was very 

surprised and shortly after interrupted certain power in¬ 

vestigations that he had been busy with at that time. A devel¬ 

opment of content theory, based on the work of Cantor and 

others, may be found in Young's The Theory of Sets of 

Points." Such mathematicians as Otto Stolz, A. Harnack, 

Camille Jordan, and Emile Borel, among others, also investi¬ 

gated the content of sets. 

Part of the sixth essay of (16) deals with Cantor's researches 

on the power of perfect sets. The beginning of the paper 

(23) is also dedicated to examining the power of perfect 

sets. The construction procedure which Cantor uses in the 

sixth essay of the linear sets that are nowhere dense has 

special significance for the theory of real functions of a 

variable.12 Cantor himself makes an important use of this 

in (23) by constructing a continuous monotone function 

whose derivative disappears everywhere outside the no¬ 

where dense, perfect set P. Especially interesting is the case 

that P possesses Cantor's content 0 (Lebesque's measure 0). 

At the end of the sixth essay Cantor comes back again to the 

continuum problem. After his researches into the power of 

perfect sets, he feels that the power of the continuum as 
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the second transfinite can be determined by making use also 

of some former theorems. As is known from a letter to Mittag- 

Leffler, Cantor considered, as starting point of the proof, a 

closed set of the power Kj. This construction he did not 

succeed in establishing, however. 

Cantor used the term adherent to denote any isolated poi nt of 

a set and the term coherent to denote any limiting pointthat 

is also a point of the set. The set of all the adherents he called 

the adherence and that of all the coherents the coherence. 

Some of the work which Cantor did on his theory of adher- 

ences and coherences may be found in Young's The Theory of 

Sets of Points. Early applications of the theory of point sets to 

the theory of functions were made by C. Jordan, T. Broden, W. 

F. Osgood, R. Baire, C. Arzela, A. Schoenflies, and many 

others. The next endeavor here will be to trace Cantor's devel¬ 

opment, during the years 1883 to 1895, of the theory of the 

transfinite cardinal and ordinal numbers. 

Cantor's papers (26), (27), and (28), which speak especially to 

a philosophical circle of readers, give an account of the devel¬ 

opment that the theory of transfinite numbers underwent in 

his mind from 1883 to 1890. A large part of the discussion is 

concerned with philosophers' denials of the possibility of 

infinite numbers as well as extracts from letters to and from 

philosophers and theologians. Cantor contends that all so- 

called proofs denying the possibility of actually infinite 

numbers are false in that they begin by attributing to the 

numbers in question ail the properties of finite numbers, 

whereas the infinite numbers must constitute quite a new 
kind of number. 

In 1883 Cantor had begun to lecture on his view of cardinal 

numbers and types of order as general concepts related to sets 

and that arise from these sets by abstractions from the nature 

of the elements. He said that every set of distinet things can be 

regarded as a unitary thing in which the things first mentioned 

are constitutive elements. By abstracting both from the nature 

of the elements and from the order in which they are given, 

the cardinal number, or power of the set is obtained. The 
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cardinal number of the set is a general concept in which the 

elements, as so-called units, have so grown organically into 

one another as to make a unitary whole in which no one of 

them ranks above the others. Two different sets have the same 

cardinal number when and only when they are equivalent to 

one another. Cantor further said that there is no contradiction 

when, as often happens with infinite sets, two sets of which 

one is a subset of the other have the same cardinal number. He 

regarded the non-recognition of this fact as the principal 

obstacle to the introduction of infinite numbers. In dealing 

with ordered sets, if the act of abstraction referred to is only 

performed with respect to the nature of the elements, so that 

the ordinal rank in which these elements stand to one another 

is kept in the general concept, the organic whole arising is 

what Cantor called order (ordinal) type, or in the special case 

of well-ordered sets an ordinal number. This ordinal number 

is the same concept that Cantor had referred to earlier, under 

another name, in his Crundlagen. Two ordered sets have the 

same order type if they are similar to each other. Cantor said 

that these are the roots from which develops with logical 

necessity the organism of transfinite theory of types and, in 

particular, the transfinite ordinal numbers. He proclaimed 

that he hoped soon to publish the theory in a systematic 

form.13 

In a letter of 1884 Cantor pointed outthatthecardinalnumber 

of a set M is the general concept under which fall all sets 

equivalent to M. He said that one of the most important prob¬ 

lems of the theory of sets consists of determining the various 

powers of the sets in the whole of nature, insofar as they can 
be know. He thought he had solved this problem as to its prin¬ 

cipal part in his Grundlagen by the development of the gen¬ 

eral concept of ordinal number. (Another term was used in 

the Grundlagen).14 

In this same letter, which was writtern to Kurd Lasswitz and 

whose contents had been given in a lecture in Freiburg, 

Cantor departed from the custom followed in the Grundlagen 

for writing the product of two ordinal numbers. He now wrote 

the multiplier on the right and the multiplicand on the left. 
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The importance of this alteration is that now a^-av = a^ + y 

whereas the notation of the Grundlagen would yield aG aT 

= ar + Z3 (for ordinal numbers, /5 + y ^ y + /3).15 

Both at the end of this letter and in a letter of 1886 Cantor dis¬ 

cussed the sense in which co may be regarded as the limit to 

which the variable finite whole number n tends. He noted that 

co is the least transfinite ordinal number that is greater than 

all finite numbers in the same way that\/2 is the limit of certain 

variable, increasing, rational numbers, except for the fact that 

the difference between \J2 and these approximating fractions 

becomes as small as desired, whereas co — n is always equal 

to co. This difference between co and y72 does not in any way, 

however, alter the fact that co is to be considered as definite 

and completed as is y/2, and that co has no more trace of the 

numbers n which tend to it than y/2 hasof the approximating 

fractions. Cantor said that the transfinite numbers are in a 

sense new irrationalities. He felt the best method of defining 

finite irrational numbers to be the same in principle as his 

method of introducing transfinite numbers. He said that 

the transfinite numbers stand or fall with finite irrational 

numbers, that in their inmost being both are alike, both being 

definitely marked off modifications of the actually infinite. 

He pointed out that while co may be considered the limit of 

the increasing, finite, whole numbers n, co is not a maximum 

of the finite numbers, for there is no such thing. Indeed, any 

number n, however great, is quite as far from co as the least 
finite number.16 

In two letters of 1886 Cantor returned in great detail to the 

distinction between the "potential" and "actual" infinite of 

which he had made a great point under the names "im¬ 

proper" and "proper" infinite, respectively, in his Grundlagen. 

It will be recalled that the improper (here "potential") infinite 

is a variable finite; in order that such a variable may be comp¬ 

letely known, the domain of variability must be determinable, 

and this domain can only be, in general, an actually infinite set 
of values. Thus every potential infinite presupposes an actual 

infinite. The "domains of variability" which arestudied inthe 

theory of sets are the foundations of arithmetic and analysis. 
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Further, besides actual infinite sets, natural abstractions from 

these sets must be considered in mathematics; these form the 

material of the theory of transfinite numbers.17 

By 1885, Cantor had developed to a large extent his theory of 

cardinal numbers and order types. In his paper (28) he laid 

particular stress on the theory of order types and entered into 

details which he had not published before concerning the 

definition of order type in general, of which ordinal number 

is a particular case. Here he introduced the notation A/T to de¬ 

note the cardinal number of a set M, indicating by the double 

bar that a double act of abstraction is to be performed. The 

ordinal number of M he denoted by M, thus denoting that a 

single act of abstraction is to be performed. 

In dealing with the theory of cardinal numbers. Cantor de¬ 

fined theaddition and multiplication of two cardinal numbers 

and proved the funadamental laws about them. It is charac¬ 

teristic of Cantor's views that he distinguished very sharply 

between a set and acardinal numberthatbelongstoit: “Does 

not the first-mentioned [the set] stand opposite as the object 

while the last-mentioned [the belonging cardinal number] 

is an abstract image of it in our mind?"18 The addition and 

multiplication of order types and the fundamental laws are 

also dealt with in (28). The addition and multiplication of car¬ 

dinal numbers and order types and the fundamental laws 

about them are treated much the same as in his memoir of 

1895. Fortunately, the memoir of 1895 is available in transla¬ 

tion.19 

The idea of power may be explained on the basis of the notion 

of equivalence, but in the context of (28) the fact that equiv¬ 

alent sets have the same power becomes a provabletheorem. 

Also, Cantor again affirms comparability, again without 

proof. 

The notion of the n-ple ordered set (an ordered set of any 

finite number of dimensions) is introduced in (28). On this 

concept he bases the idea of n-ple order types. In an n-ple 

ordered set, Cantor says, “If we make abstraction of the 
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nature of the elements, while we retain their rank in all the 

n different directions, an intellectual picture, a general con¬ 

cept, is generated in us, and I call thisthen-pleordertype."20 

Cantor had previously defined similarity (although he did not 

use this term) of two well-ordered sets. Here he defines two 

n-ply ordered sets M and N to be similar if it is possible to 

make their elements correspond uniquely and completely so 

that, if E and E' are any two elements of M, and F and F' are the 

two corresponding elements of N, then for y = 1, 2,.. ,,n the 

relation of rank of E and E' in the yth direction inside the set 

M is exactly the same as the relation of rank of F to F' in the yth 

direction inside the set N. 

A part of (28) deals with finite sets and their cardinal numbers. 

Complete induction proves that a finite set cannot be equiva¬ 

lent to any subset. 

Cantor gave some interesting criticisms of the number con¬ 

cept as advanced by H. von Helmholtz and Kronecker. Cantor 

had arrived at a very clear notion that the most essential part 

of the number concept lay in the unitary idea. In essays of 1886 

Helmholtz and Kronecker started with the last and most un¬ 

essential feature in the treatment of ordinal numbers: the 

words or other signs which are used to represent these 

numbers. 

In one of the letters in the essay (28), Cantor elaborates on a 

short remark made in the Grundlagen about the infinitely 

small. He gives a detailed (but incomplete) proof of the non¬ 

existence of actually infinitely small magnitudes, which 

Fraenkel says is hardly absolutely valid. 

Hermann Schwarz's "Ein Beitrag zur Theorie der Ordnung- 

stypen" of 1888, stimulated by an 1887 lecture of Cantor's, 

simplifies Cantor's respective ideas and continues them in a 

more general manner. In this respect a representation of the 

finite order types by G. Vivanti is also worth noting. 

The immediately preceding papers of Cantor's which have 

been discussed dealt with philosophical questions to aeon- 
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siderable extent. The conclussion of thetreatisesby Cantorto 

set theory are formed by two purely mathematical works. 

Cantor's paper (30) deals with an important question in the 

theory of transfinite numbers. Cantor stresses that by means 

of generalization of the diagonal procedure used to prove 

the non-countability of the reals, it is possible to form from 

one set another set having greater power. This proof, already 

accomplished in the Grundlagen by means of number classes, 

of the existence of infinitely many powers is accompanied by 

a much simpler deduction, which avoids the detour over the 

ordinal numbers. Cantor takes as an example for the proof of 

the general theorem that the set of all single-valued real func¬ 

tions defined on the closed interval 0 to 1 has a greater power 

than the continuum. In the proof Cantor uses comparability 

of powers. He apparently was not quite so conscious of the 

difficulties connected with comparability as in his next publi¬ 

cation (32). In the terminology introduced in (32), it can be 

said that the memoir (30) contains a proof that 2, when expon¬ 

entiated by a transfinite cardinal number, gives rise to a cardi¬ 

nal number which is greater than the cardinal number first 

mentioned. In (30) can be seen the origins of the concept of 

"covering" (Belegung) which is defined in (32). The introduc¬ 

tion of this concept is probably the most striking advance in 

the principles of the theory of transfinite numbers from 1885 

to 1895. 

The great double treatise (32) isthe lastwork of hisownwhich 

Cantor published. Free of the philosophical and critical en¬ 

cumbrances of (28) it was destined for a mathematical public. 

The two memoirs were published in 1895 and 1897. Some of 

the early principal advances in set theory since 1897 will be 

given in a later chapter. 

Fraenkel points particularly to (32) along with (16) as the "two 

quite great and immortal works of Cantor." He mentions that 

of the "classical" theorems of abstract sets, there is lacking in 

(32) only the equivalence theorem. He also notes that from 

(16) to (32) there is a considerable movement from the obser¬ 

vation of the sets to that of the numbers. There is also progress 
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to be noted in the direction of clarification and systematiza¬ 

tion which makes (32) didactically very usable even today. 

Cantor begins the paper with the well-known set definition: 

A set (Menge) is any collection into a whole M of definite and 

separate objects m of our intuition or thought. The objects 

are called the elements of M. 

Cantor follows the definition by noting what is meant by the 

union of several disjoint sets into a single set.21 The definition 

which he gives of "subset" (A subset of a set M is any other set 

M, whose elements are also elements of M) is what is today 

called a proper subset—the term subset is used in this chapter 

in the Cantorian sense. He follows thiswiththeobviousstate- 

ment that if M2 is a subset of and M, isasubsetof M,then 

M2 is a subset of M. 

The notation M to denote the cardinal number, or power, of 

M is retained in this paper and is still in use today.Theequiva- 

lence of sets is also discussed again. 

There is the express remark here by Cantor that in this build¬ 

up comparability is neither self-understood nor provable. It 

will be recalled that earlier he had used comparability. He 

says that while, for cardinal numbers a and b, of the three 
relations 

a = b, a < b, b < a, 

each one of them excludes the others, the theorem that one 

of these three relations must necessarily be realized is by no 

means self-evident. He stated that the theorem that if a and 

b are any two cardinal numbers, then either a = b, a > b, or 

a<b will be capable of proof only after we have gained a 

survey over the ascending sequence of the transfinite numb¬ 

ers and an insight into their connection.22 Some theorems 

concerning equivalence are mentioned as being easily de¬ 

rived once this theorem is known. Among them is the Bern¬ 

stein equivalence theorem: If A and B are sets such that A is 

equivalent to a subset B, of B and B is equivalent to a subset 
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A1 of A, then A and B are equivalent. F. Bernstein proved the 

theorem in Cantor's seminar in 1898; it was also proved inde¬ 
pendently by E. Schroder.23 

A section on the addition and multiplication of powers is fol¬ 

lowed by a section on the exponentiation of powers. The sec¬ 

tion on exponentiation of powers contains the important 
definition of covering. "By a covering of the set N with ele¬ 

ments of the set M we understand a law by which with every 

element n of N a definite element of M is bound up, where 

one and the same element of M can come repeatedly into 

application." Cantor is able to introduce the idea of function 
in a quite general form. 

After giving the formal laws of operation which hold for ex¬ 

ponentiated powers, Cantor points out that by means of 2*° 

= c, which he proved, and by quite short purely algebraic 

calculations, the whole contents of his paper (14) become 

deducible. In this connection it is noted that the facts c>’ = c, 

where y is any finite number, and c*° = c mean that both the 

y — dimensional and the K0 - dimensional continuum have 

the power of the one-dimensional continuum. Cantor proved 

both these equalities. 

A treatment in the sense of (28) of thefinitecardinal numbers 

is followed by a theory of the countable sets. Among the 

theorems proved in the section dealing with finite cardinal 

numbers is the one that states that in every set of different 

finite cardinal numbers there is a smallest. The first proof 

given in section six of the paper, dealing with countable sets 

and entitled "The Smallest Transfinite Cardinal Number 

Aleph-zero," implicitly uses the Axiom of Choice. (Given any 

collection of disjoint, non-empty sets, there exists a set having 

exactly one element from each of the given sets.) This axiom 

was commonly used in mathematics without question and 

without an explicit statement that such a principle was being 

used. The first explicit statement of the axiom was given by 

Ernst Zermelo in 1904 for the purpose of proving the famous 

and still controversial well-ordering theorem.24 Cantor's im¬ 

plicit use of the axiom is obvious in the proof that every trans- 
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finite set contains a countably infinite subset. Immediately 

following this theorem isthetheoremthatanytransfinitesub- 

set of a set S having cardinal number N0 also has cardinal 

numberN0. 

The essential difference between finite and transfinite sets, 

to which Cantor had referred in (14) and to which he also 

points here, is brought out most clearly in two other theorems 

of the section on countable sets: 

1. Every finite set is such that it is equivalent to none of its 

subsets. 

2. Every transfinite set has subsets which are equivalent to it. 

For every transfinite cardinal number, there exists a nextone 

greater, and also to every unlimitedly ascending well-ordered 

set of transfinite cardinal numbers there is a nextone greater. 

Cantor points to 1882 as the date of his discovery of this fact 

and mentions that it was exposed in his Crundlagen as well as 

in volume 21 of theAnnalen. As a firm foundation for showing 

that cardinal numbers have these properties, he sets forth 

his theory of order types. 

Fraenkel points out that the obvious link to (30) and the ap¬ 

plication to finite sets are left out of the theory of power. Fie 

contends that this in the only way that Cantor could have 

overlooked the purposefulnessand necessity of the introduc¬ 

tion of the empty set. The empty set had been used before in 

the algebra of logic, but it only later found its place in set 
theory (by means of Zermelo's work). 

Cantor's observations here of order types is limited to simply 

ordered sets. A set M is simply ordered if a definite order of 

precedence rules over its elements m, so that, of every two 

elements m, and m2, one takes the "lower" andtheotherthe 

"higher" rank. Of three elements m^ and m3, for example, 

if m, is of lower rank than m2,andm2is of lower rank than m3, 

if then mx is of lower rank than m3. The order type of a set M is 
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denoted by M. Two ordered sets M and N are defined as being 

similar if they can be put into a biunivocal correspondence 

with one another in such a manner that, if m1 and m2 are any 

two elements of M, and n1 and n2 are the corresponding ele¬ 

ments of N, then the relative rank of mx to m2 in M is thesame 

as that of Oj to n2 in N. If an ordered set with order numbera 

has all the relations of precedence of its elements inverted, 

the order number of the newly obtained set is denoted by 

Cantor as *a, a notation still in use. The order types oo and 

*oo + or are also discussed. 

To the basic concepts which had already been introduced in 

(28) Cantor adds the idea of a type class. New also in com¬ 

parison with (28), and mostly also in comparison with (16), are 

the sections 9-11. Section 9 discusses the order type rj of the 

set of all rational numbers which are greater than 0 and less 

than 1, in their natural order of precedence. It is shown that 

the order type r/ is established by the qualities countably in¬ 

finite, with no element in the set being either lowest or high¬ 

est in rank, and the set's being everywhere dense (between 

every two elements of the set there are others). 

As preparation for the next task of the paper, Cantor intro¬ 

duces "fundamental series of the first order." For any simply 

ordered transfinite set M those subsets which have the types 

oo (typified by the natural numbers in their usual order) and 

*oo (typified by the negatives of the natural numbers in their 

usual order) are called fundamental series of the first order 

contained in M. With their help, he defines the concepts 

"dense in itself," "closed," and "perfect." If there exists in 

M an element m0 which has such a position with respect to 

the ascending fundamental series {ar} that 

a. for every y, ay precedes m0, 

b. for every element m of M that precedes mQ there exists 

a certain number yQ such that ay succeeds m, for y ;> yQ, 

than m0 is a limiting element of {ay} in M. 
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If a set M consists of limiting elements, it is dense in itself. If 

to every fundamental series in M there is a limiting element 

in M, then M is a closed set. Any set that is both dense in itself 

and closed is a perfect set. Using these concepts enables 

Cantor, at the end of (321), to characterize very simply the 

order type 6 of the linear continuum of all real numbers be¬ 

tween Oand 1 inclusive: An ordered set M which is perfect and 

in which a countable subset is densely situated (between any 

two elements of M there are elements of the subset) has the 
order type 0. 

The continuation (3211), devoted to the well-ordered sets, 

gives in new systematic garb much that was contained in the 

Grundlagen. Only the beginning is occupied with general 

theory (sections 12-14). Cantor begins with a definition of 
well-ordered set which, apart from the wording, is identical 

with that which was introduced in (16V). Several elementary 

theorems are then stated and proved, among which are the 
following: 

1. Every subset of a well-ordered set has a first element. 

2. If a simply ordered set is such that both it and everyone 

of its subsets have a first element, then the set itself is 

well-ordered. 

3. Every subset of a well-ordered set is also a well-ordered 

set. 

4. Every set which is similar to a well-ordered set is also a 

well-ordered set. 

The introduction of the concept of segment of a well-ordered 

set is followed by a chain of theorems about the similarity of 

well-ordered sets and their segments. If/isany element of the 

well-ordered set F that is different from the initial element 

fu then the set of all elements of F which precede f is defined 

as a segment (Abschnitt) of F. That a well-ordered set is similar 

to no subset of any oneof its segments isamongthe theorems 
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proven. Perhaps in this sequence of theorems the theorem 

should be stressed that states that two well-ordered sets are 

similar if for each segment oftheonethereisa similar segment 

of the other, and vice versa. Comparability of ordinal numbers 

(order types of well-ordered sets) follows readily by way of 
disjunction from the following theorem: 

If F and C are any two well-ordered sets, then either 

a. F and C are similar to each other, or 

b. there is a definite segment B, of C to which F is similar, or 

c. there is a definite segment A, of F to which C is similar; 

and each of these three cases excludes the two others. 

After citing several equalities and inequalities for working 

with ordinal numbers, Cantor goes into the addition of in¬ 

finitely many ordinal numbers. He concludes this part with a 

proof for an earlier-mentioned statement that all simply 

ordered sets of given finite cardinal number haveone and the 

same order type. 

Beginning with section 15, the remainder of the work is de¬ 

voted to Cantor's second number class. (It will be recalled 

that he dealt with this topic in the Grundlagen.) The second 

number class is the designation for the totality {a} of order 

types a of well-ordered sets of the cardinal numberK0. By the 

first number class is understood the totality {y} of finite ordinal 

numbers. The second number class is proven to have a least 

number which is designated by o>. The power of the second 

number class is proven to be the second greatest transfinite 

cardinal number, Xj. 

While Cantor's publications were here finished, his occupa¬ 

tion with set theory was not. Notable is his continuing cor¬ 

respondence with Dedekind, especially concerning his en¬ 

deavors with the continuum problem. The continuum prob- 
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lem had a deep impression on Cantor and even produced 

doubts in his mind whether set theory in its present form 

could be maintained as a scientific build-up. However, the 

positive influence which Cantor's work has had, and con¬ 

tinues to have, on all of mathematics is undeniable. 
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THE PARADOXES 

Cantor's initial development of set theory was not built up 

explicitly on the basis of axioms. Analysis of his proofs, how¬ 

ever, indicates that almost all of the theorems proved by 

him can be derived from three axioms: (1) the axiom of ex- 

tensionality for sets, (2) the axiom of abstraction, and (3) the 

axiom of choice.1 The axiom of extensionality states that two 

sets are identical if and only if they have the same members. 

The axiom of abstraction says that, given any property, there 

exists a set whose members are just those entities having that 

property. The axiom of choice states that, given a collection 

of mutually disjoint, nonempty sets, there exists a set which 

has as its elements exactly one element from each set in the 

given collection of sets. The paradoxes, or antinomies, which 

arose on the heels of Cantor's set theory were important in 

motivating the development of new, restricted axiomsforset 

theory.2 

In the late nineteenth century, paradoxes began to be dis¬ 

covered in the fringes of Cantor's general theory of sets. The 

discovery of these paradoxes was one of the most profoundly 

disturbing crises in the foundations of mathematics and has 

still riot been resolved to the satisfaction of all concerned. 

A study of mathematics from Greek antiquity to the present 

reveals that the foundations of mathematics has undergone 

two other crises which have been resolved. Neither of them 

was easily nor quickly settled, however.3 

The first crisis arose in the fifth century B.C., precipitated by 

the unexpected discovery that not all geometrical magni¬ 

tudes of the same kind are commensurable with one another. 

The discovery that like magnitudes may be incommensurable 

proved to be highly devastating, since the Pythagorean de¬ 

velopment of magnitudes was built upon the firm intuitive 

belief that all like magnitudes are commensurable. The 

entire Pythagorean theory of proportion with all its con¬ 

sequences had to be scrapped as unsound. This crisis was 

resolved in about 270 B.C. By Eudoxus's revised theory of 
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magnitude and proportion. Eudoxus's treatment of incom- 

mensurabies coincides essentially with the modern exposition 

of irrational numbers that was given by Richard Dedekind in 

1872. Many of Eudoxus's theorems are contained in Euclid's 

Elements; Eudoxus's treatment of incommensurables may be 

found in the fifth book of the Elements. 

The second crisis followed the discovery of calculus by Isaac 

Newton and Gottfried Wilhelm Leibniz in the late seven¬ 

teenth century. It was easy to be carried away by the power 

and applicability of the new tool: the successors of Newton 
and Leibniz failed to consider sufficiently the solidity of the 

base upon which the subject was founded. With the passage 

of time paradoxes arose in increasing numbers, revealing a 

serious crisis in the foundations of mathematics. That the 

edifice of analysis was being built upon sand became more 

and more apparent. Finally, in the early nineteenth century, 

Augustin-Louis Cauchy took the first steps toward resolving 

the crisis by replacing the hazy method of infinitesimals with 

the precise method of limits. With the subsequent so-called 

arithmetization of analysis by Karl Weierstrass and hisfollow- 

ers, it was felt that the second crisis in the foundations had 

been overcome. 

The third crisis in the foundations of mathematics material¬ 

ized with shocking suddenness in the late nineteenth century. 

The discovery of paradoxes in set theory naturally cast the 

validity of the whole foundational structure of mathematics 

in doubt, since so much of mathematics is permeated with 

set concepts to the extent that it can be said to have settheory 

as a basic foundation. 

The first of the modern paradoxes was published by the 

Italian mathematician Cesare Burali-Forti in the year 1897.4 

His formulation of the paradox was not altogether satisfac¬ 

tory, as he had confused Cantor's well-ordered sets with his 

own "perfectly order sets." Burali-Forti defined a set u to be 

perfectly order if: u has a first element; every element of u 

(provided it is not the last) has an immediate successor; where 

x is any element of u, either x has no immediate predecessor, 
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or there is an element y of u such that y precedes x, y has no 

immediate predecessor, and only afinite number of elements 

of u lie between y and x. Although Burali-Forti's definition of 

perfectly ordered set was not the equivalent of Cantor's 

definition of well-ordered set, the paradox could still be 

established on the basis of Cantor's definition of well- 

ordered set. Burali-Forti himself soon realized his error and 

published a note admitting the mistake and pointing out that 

the contradiction still holds with the correct definition. 

In the theory of transfinite ordinal numbers, it is shown that 

every well-ordered set has a unique ordinal number; every 

segment of ordinals has an ordinal number which is greater 

than any other ordinal in the segment; and the set of all 

ordinal numbers in natural order is well ordered. The Burali- 

Forti paradox may be stated as follows: consider the ordinal 

number of the set of all ordinals. Since this ordinal number 

must itself be an element of that set, it must be the order type 

of the segment of all ordinals less than itself. Therefore the 

set of all ordinal numbers is similar to one of its own segments, 

which is impossible.5 

Fraenkel says that Cantor himself had come across the para¬ 

dox in 1895 at the latest—two years before Burali-Forti pub¬ 

lished his result—and had communicated it to Hilbert in 1896. 

Although Copi points out the uncertainty surrounding this 

claim of priority, he yet accepts it as being probably true. 

Assuming that Cantor did discover the paradox first, there is 

the question of why he nevertheless attacked Burali-Forti's 

article. Supposition as to the reason for Cantor's attack on the 

article if he was already familiar with the contradiction is at 

best guesswork.6 What is certain, however, is that whoever 

first discovered the paradox, Burali-Forti does have the dis¬ 

tinction of having been the first to publish a modern instance 

of the logical paradoxes. 

When the Burali-Forti paradox first appeared, it did not create 

the sensation that might be expected. This fact is probably 

largely due to Burali-Forti's mistaken definition of well- 

ordered set in the original presentation, which would naturally 
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serve to render the whole matter suspect. Certainly contra¬ 

dictions can be easily obtained if mistakes are allowed in the 

derivations. 

Copi points out several other reasons why Burali-Forti's deri¬ 

vation of the contradiction, even after the required correc¬ 

tions are made, did not bring forth more response. Burali- 

Forti's formulation of the paradox was not in the most 

convincing form possible. Also the result was not presented 

as a contradiction demanding resolution, but, rather, was 

presented as part of an attempted proof thatordinal numbers 

are not necessarily comparable. Cantor had already proved 

the comparability of the ordinals, however, and his proof was 

convincing. 

The division alluded to in Chapter 2 between Cantor and 

Kronecker may be still another reason why Burali-Forti's 

contradiction did not get more attention. It appears that 

those mathematicians who at that time were at all concerned 

with matters pertaining to the foundations of mathematics 

were pretty much either on the side of Cantor and his 

followers—accepting and working with the multiple infini¬ 

ties involved in the theory of point sets and transfinite 

cardinals and ordinals—or on the side of Kronecker and 

his followers—rejecting the infinities of Cantor and the non¬ 

constructive methods freely used by the Cantorians. The 

Burali-Forti paradox appeared as a minor skirmish in the 

larger war of what constitutes admissible methods in mathe¬ 

matics. It is not overly surprising, in the mathematical en¬ 

vironment of that time, if both sides may have experienced 
some lapse of objectivity. 

Another reason which Copi mentions for Burali-Forti's result 

receiving no more attention than it did was the tendency to¬ 

ward narrow specialization among mathematicians during 

the nineteenth century. There was a tremendous prolifera¬ 

tion of mathematics during the century, and no one person 

could be expected to master the whole of thefield.To mathe¬ 

maticians tied down to their own specialties the Burali-Forti 

article, written in the logical symbolism of G. Peano, was 
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quite unlikely to be very much noticed. The language itself 

was new and strange, and not intelligible to a large number 
of mathematicians. 

In view of the circumstances just described, it seems likely 

that Burali-Forti's contradiction would have received little 

serious attention if it had been the only one to appear. After a 

short while, however, other paradoxes began to appear in 

abundance. The importance of these paradoxes in motivating 

the development of new, restricted axioms for set theory will 
be dealt with in the next chapter. 

As early as 1899 Cantor discovered that a paradox arises by 

considering the set of all powers (cardinal numbers) or the 

set of all that is conceivable. The result was not published 

until 1932 (posthumously). 

Cantor's paradox, very similar to the Burali-Forti paradox, 

may be stated as follows: Consider the cardinal number of the 

set of all sets. It is clear that this is the greatest possible cardinal 

number. But by a standard theorem of intuitive set theory, the 

set of all subsets of a set has a greater cardinal number than 

the set itself. Therefore, the cardinal number of the set of all 

subsets of the set of all sets is greater than the greatest pos¬ 

sible cardinal number, an obvious contradiction. 

Whereas Burali-Forti's and Cantor's paradoxes involve results 

of set theory, in 1902 Bertrand Russell discovered a paradox 

based on just the concept of set itself. Russell's antinomy was 

also discovered independently by Ernst Zermelo.7 The para¬ 

dox comes about by considering the setofallsets which have 

the property of not being members of themselves. For ex¬ 

ample, the set of all men is not a man, whereas the set of all 

sets is a set. 

Suppose the set of all setswhich are membersof themselves is 

denoted by M, and the set of all sets which are not members 

of themselves is denoted by N. Note that the axiom of abstrac¬ 

tion would guarantee such a set. Does N belong to M? If N is 

a member of itself, then N is a member of M and not of N, and 
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N is not a member of itself. Contrariwise, if N is not a member 

of itself, then N is a member of N and not of M, and N is a 

member of itself. Since either case leads to a contradiction, a 

paradox is apparent. 

Russell also showed howto recast hisparadoxinpurelylogical 

instead of set-theoretic terminology. A property is "predic¬ 

ate" if it applies to itself, "impredicable" if it does not apply 

to itself. For example, the property "abstract" applies to it¬ 
self and hence is predicable. On the other hand the property 

"concrete" is also abstract and not concrete. The paradoxical 

consequence follows that "impredicable" is impredicable if 

and only if "impredicable" is not impredicable. 

Russell communicated his paradox to Gottlob Frege just after 

the latter had completed the last volume of his great two- 

volume treatise on the foundations of arithmetic. Frege's 

work, which stemmed from the need of a sounder basis for 

mathematics, used the concepts of set and set of all sets. His 

consternation can be judged from his acknowledgment of 

Russell's communication at the end of his treatise: 

A scientist can hardly meet with anything more undesirable 

than to have the foundation give way just as the work is 

finished. In this position I was put by a letter from Mr. Bertrand 

Russell as the work was nearly through the press.8 

There are many popularized forms of the Russell paradox 

appearing in the literature. One of the best known of these 

forms was given by Russell himself in 1919. A certain village 

barber shaves everyone in the village who does not shave 

himself. The question is, does the barber shave himself? If he 

shaves himself, then he should not according to the given 

principle; if he does not shave himself, then he should ac¬ 
cording to the principle. 

Another well-known popularization of the Russell paradox is 

the catalogue paradox. Suppose the Librarian of Congress 

compiles, for inclusion in the Library of Congress, a biblio- 
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graphic catalogue of all those bibliographic catalogues in 

the Library of Congress which do not list themselves. Doesthe 

catalogue list itself? This popularization is due to Ferdinand 
Gonseth in 1932.9 

The two popularizations can be dispensed with. In the first 

case the village barber just could not do what the principle 

says, and in the second case the library could not make a 

catalogue satisfying the stated requirements. But these ex¬ 

planations do not apply to the Russell paradox; in terms of 

logic as it was known in the nineteenth century, the situation 
is inexplicable. 

Except for the popularizations given of Russell's paradox, the 

paradoxes considered so far are logical or mathematical para¬ 

doxes. The popularizations would be referredtoassemantical 

(sometimes "epistemological") paradoxes. The English 

logician F. P. Ramsey proposed this distinction in 1925. Curry 

holds that Ramsey was not quite correct in his view that 

mathematics does not have to take account of the semantical 

paradoxes, in that some of the most significant results of 

modern logical have come from a deeper study of them.10 

Roughly speaking, logical paradoxes arise from purely 

mathematical constructions, whereas semantical paradoxes 

arise from direct consideration of the language used totalk 

about mathematics or logic. 

Quite a number of other paradoxes arose in the early years 

following Burali-Forti's result. Some of these modern para¬ 

doxes, falling more or less within the context of set theory, 

can be seen to be related to several ancient paradoxes of 

logic. For example, the Cretan philosopher Epimenides (sixth 

century B.C.) is supposed to have made the statement, 

"Cretans are always liars."11 This statement, if true, makes the 

speaker a liar for telling the truth. The Epimenides paradox, 

known also as "the liar," appears in stark form in the state¬ 

ment attributed to Eubulides (fourth century B.C.): "This 

statement I am now making is false." The quoted statement 

can neither be true nor false without entailing a contradic¬ 

tion.12 
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Another of the semantical antinomies, significant since it is a 

sort of caricature of Cantor's diagonal method, was the 

Richard paradox of 1905, due to Jules Richard.13 An essentially 

instructive and ingenious simplification of Richard's paradox 

is due to G. G. Berry in 1906. Consider the expression, 

"the least natural number not nameable in fewer than 

twenty-two syllables." This expression names in twenty-one 

syllables a natural number which by definition cannot be 

named in fewer than twenty-two syllables. Various modifica¬ 

tions exist. 

In 1908 K. Grelling and L. Nelson called attention to a paradox 

which they regarded as only a variant of Russell's paradox. 

The Grelling paradox can be stated quite simply. Among 

English adjectives there are some that have the property that 

they denote, such as "short," "polysyllabic," and "English." 

Let adjectives which have this property be called autological 

and all others be called heterological. In the latter class would 

be such adjectives as "long," "monosyllabic," "blue," and 

"hot." Paradoxically, the adjective "heterological" is heter¬ 
ological if and only if it is autological. 

One of the more interesting paradoxes, discovered in 1924 

by two distinguished Polish mathematicians, S. Banach and A. 

Tarski, depends on the axiom of choice for its derivation. The 

choice axiom, inadvertently used by Cantor and others, ap¬ 

pears to have been explicitly alluded to first in a paper of G. 

Peano in 1890 concerning an existence proof for a system of 

ordinary differential equations. He writes: 

However since one cannot apply infinitely many times an 

arbitrary law by which one assigns to a class an individual of 

that class, we have formed here a definite law by which, under 

suitable assumptions, one assigns to every class of a certain 

system an individual of that class.14 

In 1902 Beppo Levi alluded to such a principle while dealing 

with the statement that the union of a disjoint set t of non¬ 

empty sets has a cardinal number greater than or equal to the 
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cardinal number of t. The axiom of choice was introduced 

formally by Ernst Zermelo in 1904 for the purpose of proving 

the famous and still controversial well-ordering theorem. 
This theorem will be given in the next chapter. 

It is conventional to assign to any configuration a number 0, 

1, 2, or 3 to denote its dimensionality. The problem of decid¬ 

ing whether an object has 0,1, 2, or 3 dimensions appearsto 

be a simple and obvious one that can be solved intuitively 

without mathematical analysis. A remarkable paradox was 

uncovered, however, which shows that the intuitive ideas 

about dimensionality, as well as area, are lacking in precision 

and are often wholly misleading. 

A number, called a measure, can be uniquely assigned to 

every figure in the plane so that the following three condi¬ 

tions will be satisfied: (a) the word "congruent" being used in 

the elementary geometry sense, two congruent figures are to 

have the same measure; (b) if a figure is divided into two parts, 

the sum of the measures assigned to each of thetwo parts isto 

be exactly equal to the measure assigned to the orignal figure; 

(c) as a model for determining the method of assigning a mea¬ 

sure to each figure in the plane, the measure 1 is assigned to 

the square whose side has a length of one unit. The measure 

can be assigned analytically (by means of point sets) without 

using the traditional concepts of classical geometry. 

Now this same problem of assigning a measure to surfaces was 

found to be unsolvable and even led to paradoxes. The same 

methods which had been quite fruitful in investigations in the 

plane, when applied to the surface of a sphere proved in¬ 

adequate to determine a unique measure. 

It seems sensible to set up the following conditions in at¬ 

tempting to assign a measure to a surface: (a) the same mea¬ 

sure shall be assigned to congruent surfaces; (b) the sum of 

the measures assigned to each of two component parts of a 

surface shall be equal to the measure assigned to the original 

surface; (c) if S denotes the entire surface of a sphere of 

radius r, the measure assigned toS shall be 4nr2. 
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The German mathematician Felix Hausdorff showed that 

a measure cannot be uniquely assigned analytically to the 

portions of the surface of a sphere so that the listed con¬ 

ditions will be satisfied. He showed that the surface of a 

sphere can be divided into three separate and distinct parts, 

A, B, and C, so that A is congruent to B and B is congruent 

to C, and not only is A congruent to C, but also A is congruent 

to B + C. Thus, if a measure is assigned to A, the same measure 

must be assigned to B and to C and also to B + C, which 

implies that the measures assigned to A, B, and Care all equal 

to 0. But by the third condition listed above, the sum of the 

measures assigned to the parts of the surface of a sphere of 

radius r must be equal to 47rr2. 

Banach and Tarski have extended the implications of Haus- 

dorff's paradoxical theorem to three-dimensional space. 

Their conclusions are generally conceded to be rigorous 

and unimpeachable if the choice axiom is granted. 

Imagine two spheres in three-dimensional space, one very 

large (like the sun, for example) andtheotherverysmall (like 

a pea). Denote the large sphere by S and the small sphere by P. 

The entire solid spheres of both S and Pare being referred to, 

not just the surfaces of the two spherical objects. The theorem 

of Banach and Tarski holds that the following operations 

can theoretically be carried out. 

Divide S into a great many small parts. Each part is to be 

separate and distinct and the totality of the parts is to be finite 

in number. Designate these parts by s1,s2,s3,... ,sn. Together 

these small parts will make up the entire sphere S. Similarly 

P may be divided into an equal number of mutually exclusive 

parts, px, p2, p3,..., pn, which together make up P. The pro¬ 

position goes on to say that if S and P have been cut up in a 

suitable manner, so that the little portion sx of S is congruent 

to the little portion px of P, s2 congruent to p2, s3 con¬ 

gruent top3, uptosncongruenttopn,thisprocesswill exhaust 

not only all the little portions of P, but all the tiny portions of 
S as well.15 
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In other words, 5 and P may both be divided into a finite 

number of disjoint parts so that every single part of one is 

congruent to a unique part of the other, and so that after each 

small portion of P has been matched with a small portion of 

S, no portion of 5 will be left over. The paradox here lies 

not in the simple one-to-one correspondence between the 

elements of the two sets, but in the fact that each element 

is matched with one which is completely congruent to it. To 

state the result more generally, Banach and Tarski showed 

that in a Euclidean space of dimension greater than two, 

two arbitrary bounded sets with interior points are equivalent 

by finite decomposition, that is, the two sets can be de¬ 

composed into the same finite number of disjoint parts with 

a one-to-one correspondence of congruence between their 

respective parts.16 The Hausdorff result of 1914 and the 

Banach-Tarski paradox of 1924 induced many mathematicians 

to reject the axiom of choice, by means of which the state¬ 

ments were proved. 

The paradoxes cited, and others, have had a profound influ¬ 

ence on the foundations of mathematics. The influence 

exerted by the paradoxes on the foundations of set theory 

wiil be investigated in the next chapter. 
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SOME EARLY 

TWENTIETH CENTURY 

DEVELOPMENTS 

in 1904 Ernst Zermelo published his monumental proof that 

there exists a well ordering for any set whatsoever, a theorem 

which had been conjectured by Cantor.1 The axiom of choice, 

on which the proof of the well-ordering theorem hinges, 

was explicitly stated by Zermelo at the suggestion of Erhard 

Schmidt. Emile Borel pointed out that not only does 

Zermelo's proof depend on the axiom of choice, but indeed 

the theorem is actually equivalent to the axiom.2 

The paper by Zermelo touched off a controversy about the 

axiom of choice which still continues today. Cantor, and 

others, had used the axiom implicitly without being aware 

that a principle was being used that might be suspect. Use 

of the axiom is clear in proofs which say to select (without 

giving a rule for the selection) an element xx from an infinite 

set S, then x2 from S—Xlf and so on. It is easy to see how the 

axiom can be used implicitly. Today, most careful writers 

state when they are making use of the axiom of choice. 

A popular example—the original version of which was given 

by Bertrand Russell—serves to clarify the kind of circum¬ 

stances wherein the axiom of choice is needed. In an infinite 

collection of pairs of shoes, the axiom of choice is not needed 

to establish the existence of a set containing exactly one 

element from each of the pairs, for a rulecan begiven toselect 

the left shoes, for example. But in the case of an infinite 

collection of pairs of socks all alike as to size, color, and so 

on, no such rule is available; appeal must be made to the 

axiom of choice if the assertion is made that there exists a 

set containing exactly one sock from each pair. 

The proof of Zermelo's theorem is a proof of pure existence 

and gives no way for effectively carrying out the well order¬ 

ing. To appreciate the result, one need only consider the 

65 



A HISTORY OF SET THEORY 

set of real numbers between 0 and 1. This set is not well 

ordered using the relation "is less than" in the ordinary 

sense. No one has been able to effect a well ordering of the 

set of real numbers or any other set having cardinal number 

greater than the reals. 

Attitudes toward the axiom of choice run the gamut from 

total rejection, through various degrees of skepticism, to 

complete acceptance. In topology, the axiom is used un¬ 

hesitatingly: apparently little of this subject can be derived 

without its use. Although a large portion of analysis can be 

established without use of the choice axiom, measure theory 

and those parts of modern analysis which rely extensively 

on topological ideas also make use of the axiom. However, 

algebraists are inclined to proceed as far as possible without 

making use of the axiom. Proofs avoiding use of the axiom 

of choice are zealously sought for a number of famous 

theorems, particularly in analysis and in set theory. 

Since the axiomatization of set theory (to be discussed later), 

some particularly significant work has been done concerning 

the axiom of choice and also Cantor's continuum hypothesis. 

The developments concerning these two well-known state¬ 

ments are explained by analogy with non-Euclidean geo¬ 

metry in an article by Cohen and Hersh.3 

Godel proved in about 1940 that the axiom of choice is rela¬ 

tively consistent with a well-known postulate set of set 

theory; that is, if the other axioms of set theory are consistent, 

the addition of this axiom will not lead to a contradiction. 

Godel also achieved some progress on the continuum hy¬ 

pothesis, with which Cantor's efforts of the 1880s and 

Hilbert's of the 1920s had been unsuccessful. He showed 

that the (generalized) continuum hypothesis is relatively 

consistent with the other axioms of set theory. It should be 

noted that Godel's result does not constitute a proof of the 

continuum hypothesis, only a proof that it cannot be dis¬ 
proved. 

In 1963 Paul Cohen made a major breakthrough by construct- 
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ing an example in which the axiom of choice does not hold 
but the other axioms of set theory do. Thus, to Godel's proof 

that the axiom of choice cannot be disproved is added the 

result that it cannot be proved. Cohen also added the fact 

that the continuum hypothesis cannot be proved to Godel's 

discovery that it cannot be disproved. Thus two of the vexing 

questions of the foundations have been solved within the 
realm of axiomatic set theory. 

In the twentieth century a considerable amount of literature 

concerning the paradoxes has appeared, and numerous 

attempts at a solution have been offered. Despite the vast 

literature devoted to the paradoxes and the variety of ex¬ 

planations offered for them, however, there is at present no 

one explanation which is universally accepted. 

If the paradoxes discussed in the last chapter are examined 

carefully, it will be seen that most of them involve a set S 

and a member m of S whose definition depends upon S. Such 

a definition is called impredicative. Russell's paradox is a 

good example of an impredicative procedure, and his po¬ 

pularized barber paradox points this procedure out in a very 

lucid way. If S denotes the set of all members of the village 

and m denotes the barber, then m is defined impredicatively 

as "that member of 5 who shaves all those members and only 

those members of S who do not shave themselves." The 

definition of the barber involves the members of the village 

and the barber himself is a member of the village. 

Henri Poincare, whose views will be discussed later in con¬ 

nection with the intuitionist school of mathematics, con¬ 

sidered the cause of the paradoxes to lie in impredicative 

definitions. Russell enunciated the same explanation in his 

vicious circle principle: no set can contain members defin¬ 

able only in terms of this set, or members involving or pre¬ 

supposing this set. Outlawing impredicative definitions 

would rid set theory of the paradoxes dependent on such 

definition. Parts of mathematics which mathematicians would 

be extremely reluctant to discard, however, also contain 

impredicative definitions. For example, the least upper 
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bound of a given set of real numbers is defined as the smallest 

member of the set of all upper bounds of the given set. 

Hermann Weyl, in his 1918 book Das Kontinuum, undertook 

to find out how much of analysis could be constructed with¬ 

out the use of impredicative definitions. He was able to 

obtain a fair part of analysis, but not the important theorem 

that every nonempty set of real numbers having an upper 

bound has a least upper bound. 

Set theory can be rid of the known paradoxes by constructing 

the theory on a sufficiently restrictive axiomatic basis. Such 

a procedure suffers the natural criticism that it merely avoids 

the paradoxes instead of explaining them and that other 

kinds of paradoxes may still occur even when the known 

ones have been eliminated. Nevertheless, the development 

of axiomatic theories must be viewed as an important con¬ 

tribution to the further study of the problem. 

The historically first axiomatization of set theory was given 

by Zermelo in 1908. The troublesome axiom of abstraction 

was modified so as to avoid the paradoxes arising therefrom 

in the axiom schema of separation. Zermelo did not go so 

far as to reject impredicative definitions entirely. He calls 

a statement definite if it can be decided in a non-arbitrary 

way whether or not any object satisfies the statement. Slightly 

paraphrased, Zermelo's formulation of the axiom schema 

is: if a statement <p (x) is definite for all elements of a set 

M, then there is always a subset M of M which contains 

exactly those elements x of M for which <p (x) is true. The 

axiom schema permits the separating off of the elements of 

a given set that satisfy some property and forming a set 

consisting of just these elements. For example, if the set of 

animals is known to exist, the axiom schema of separation 

can be used to assert the existence of the set of animals that 
has the property of being human.4 

One alternative closely connected to Zermelo-Fraenkel set 

theory is von Neumann-Bernays-Godel set theory. J. von 

Neumann's axiom system was simplified by R. M. Robinson. 
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Considerable improvements and additions, together with 

a fundamental simplification, are due to P. Bernays. Godel 

modified Bernay's system chiefly for the purpose of proving 

the consistency of the generalized continuum hypothesis.5 

In the von Neumann-Bernays-Godel theory, no axiom 

schema of construction like that of separation is required. 

Instead a finite number of specific set and class constructions 

suffices. In this theory there is a technical distinction be¬ 
tween sets and classes; every set is a class, but not conversely. 

Those classes that are not sets are called proper classes, and 

their distinguishing characteristic is that they are not mem¬ 

bers of any other class. The class of all sets exists but is a proper 

class. Thus, the Cantor paradox cannot be constructed. 

Similarly, the class of all ordinal numbers exists but is a proper 

class, and the Burali-Forti paradox cannot be constructed. 

Similar remarks apply to the Russell paradox.6 

There are usually considered to be three principal present- 

day schools of mathematics: the intuitionist, formalist, and 

logistic schools.7 Naturally, each school must somehow come 

to grips with the paradoxes of set theory. The chief interest 

here will be in how the schools propose to deal with the 

paradoxes.8 

This division into schools is not intended to convey the idea 

that all mathematicians are members of one and only one 

of the three main schools or one of the lesser schools. Rather, 

it is an attempt to classify thought tendencies. It is highly 

likely that a given mathematician would not accept com¬ 

pletely all of the philosophyofanygivenschool,eventhough 

he might be considered a member of a particular school. 

The intuitionist school (as a school) originated about 1908 

with the Dutch mathematician L. E. J. Brouwer. Some of the 

intuitionist ideas had been voiced earlier by Kronecker, in 

the 1880s, and Poincare, from 1902 to 1906, among others. 

This school has exerted considerable influence on the think¬ 

ing concerning the foundations of mathematics and contains 

some eminent present-day adherents.9 

69 



A HISTORY OF SET THEORY 

The intuitionist thesis is that mathematics is to be builtsolely 

by finite constructive methods on the intuitively given 

sequence of natural numbers. Intuitionism is a self-generat¬ 

ing philosophy, not relying on other philosophies or logic. 

According to the intuitionist view, at the very base of mathe¬ 

matics lies a primitive intuition, allied to our temporal sense 

of before and after, that allows the conception of a single 

object, then one more, then one more, and so on endlessly. 

In this way unending sequences are obtained, the best known 

of which is the sequence of natural numbers. From this in¬ 

tuitive base of the sequence of natural numbers, any other 

mathematical object must be built in a purely constructive 

manner, employing a finite number of steps or operations. 

The intuitionists' insistence on constructive methods leads 

to a conception of mathematical existence not shared by 

a large number of mathematicians. For the intuitionists, an 

entity whose existence is to be proved must be shown to be 

constructible in a finite number of steps. Showing that the 

assumption of the entity's non-existence leads to a con¬ 

tradiction is not enough. 

The intuitionists' insistence upon constructive procedures 

does away with the paradoxes of settheory. Forthe intuition¬ 

ists a set must be considered as a law by means of which the 

elements of the set can be constructed in a step by step 

fashion. Thus a set cannot be thought of as a ready-made 

collection and such a concept as the "set of all sets" does 
not arise. 

The intuitionists hold that the law of excluded middle (either 

a statement is true or its denial is true) should not be em¬ 

ployed when dealing with infinite sets. A given proposition 

can be said to be true only when a proof of it has been con¬ 

structed in a finite number of steps; false only when a proof 

of this situation has been constructed in a finite number 

of steps. The proposition is neither true nor false until one 

or the other of these proofs is constructed, and the law of 

excluded middle is inapplicable. This rejection of the law of 

excluded middle is one of the most spectacular features in 

70 



CHAPTER 5 SOME EARLY TWENTIETH CENTURY DEVELOPMENTS 

Brouwer's intuitionism. An exampledueto Heytingwill make 

clear why the intuitionists deny the law of excluded middle 
for constructions involving an infinite totality. 

Consider the following two definitions: (i) k is the greatest 

prime such that k - 1 is also a prime, or Ac = 1 if such a 

number does not exist; (ii) m is the greatest prime such that 

m — 2 is also a prime, or m = 1 if such a number does not exist. 

Here (i) clearly defines a unique number, k = 3. On the other 

hand, there is no method at present for calculating m, since 

it is not known whether the sequence of pairs of twin primes 

is finite or not. Intuitionists therefore reject (ii) as a defini¬ 

tion of an integer; an integer is considered to be well-defined 
only if a method for calculating it is given.10 

It will be recalled that Kronecker, one of the early forerun¬ 

ners of intuitionism, was a severe critic of Cantor's ideas. 

The appearance of contradictions in set theory revived some 

of his objections. Poincare's writings, in particular, reflect 

Kronecker's outlook. Of Poincare's views the following are 

of particular significance here: every mathematical concept 

should be capable of explicit (finite) definition; existence 

of a mathematical entity should be verifiable by a finite pro¬ 

cedure; impredicative definitions should not be employed; 

mathematics cannot be based on logic. Poincare felt that 

most of the concepts and conclusions of Cantor's theory 

of sets should be excluded from mathematics. He rejected 

completely Zermelo's theorem, basing his rejection on the 

lack of definition of representative elements involved in the 

use of the axiom of choice.11 

While Brouwer and some other eminent mathematicians 

have been reluctant to accept results proved on the basis 

of the axiom of choice, there is a considerable body of mathe¬ 

matics that up to the present day cannot be derived without 

its use. Although most mathematicians would be hesitant 

to reject this as a tool, from the intuitionistic viewpoint, 

theorems have not been proved when their proofs depend 

on the choice axiom. 
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It is generally conceded that the intuitionist methods do not 

lead to contradictions. Up to now, however, much of mathe¬ 

matics that most mathematicians feel is valid has not been 

constructed with the intuitionistic approach, and some of 

what is obtained is so changed as to be almost unrecogniz¬ 

able. Intuitionist mathematics has turned out to be less 

powerful and in many ways harder to develop than classical 

mathematics. 

The thesis of the formalist school of mathematics holds that 

mathematics is concerned with formal symbolic systems. 

Mathematics is regarded by the formalists as a collection 

of abstract developments in which the terms are mere 

symbols and the statements are formulas involving these 

symbols. The ultimate base of mathematics is not considered 

to lie in logic but only in a collection of prelogical marks or 

symbols and in a set of operations using these marks. From 

this point of view, mathematics is devoid of concrete content 

and contains only ideal symbolic elements. Naturally, the 

establishment of the consistency of the various branches 

of mathematics becomes an important and necessary part 

of the formalist program. In the formalist thesis the axiomatic 

development of mathematics is pushed to its extreme. 

The formalist school was founded by David Hilbert after 

completing his postulational study of geometry. Later it was 

developed to meet the crisis caused by the paradoxes of 

set theory and the challenge to classical mathematics caused 

by intuitionistic criticism. Hilbert talked in formalistic terms 

as early as 1904, but it was not until after 1920 that he and his 

collaborators, Paul Bernays, W. Ackerman, J. von Neumann, 

and others, seriously started work on what is now known 
as the formalist program. 

Freedom from contradiction is guaranteed only by con¬ 

sistency proofs. Hilbert hoped to develop a direct test for 

consistency in his “proof theory" instead of the older con¬ 

sistency proofs based upon interpretations and models 

which merely shift the question of consistency from one 

domain of mathematics to another. It was thought that per- 
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haps by analyzing mathematical concepts and processes, 

both logical and otherwise, and representing them by an 

appropriate symbolism, as in a symbolic logic, one might be 

able to demonstrate that the formula for a contradiction 

can never be obtained from the fundamental formulas and 

the rules laid down for manipulating the symbols. Thus con¬ 
sistency would be assured. 

The development of the above-mentioned program was 

attempted by Hilbertand BernaysintheirtwovolumeCrunc/- 
lagen der Mathematik (1934, 1939). Unforeseen difficulties 

arose, however, and it was not possible to complete the proof 

theory and exhibit proofs of consistency for all classical 

mathematics as Hilbert would have liked. In fact, Godel 

showed, even before the publication of Grundlagen, that 

it is impossible for a sufficiently rich formalized deductive 

system, such as Hilbert's system for all classical mathematics, 

to prove consistency of the system by methods belonging 
to the system. 

Insofar as the axiom of choice is concerned, the formalist 

philosophy would perhaps allow the formulation of systems 

in which the axiom holds, the formulation of systems in which 

the axiom is not assumed, and systems in which the axiom 

fails. As to which of these is the most useful system, the for¬ 

malist wouid probably leave that question open. The impor¬ 

tant point would be that all of the systems are mathematics 

and should be considered as such. 

The thesis of the logistic (also called "logicistic") school is 

that mathematics is a branch of logic. In this view logic be¬ 

comes the progenitor of mathematics rather than just being 

a tool of mathematics. Mathematical concepts are to be 

formulated in terms of logical concepts, and all theorems 

of mathematics are to be developed as theorems of logic. 

The notion of logic as a science containing the principles 

and ideas underlying all other sciences dates back quite a 

few years in history, at least as early as 1666 with Leibniz. Such 

names as Dedekind, Frege, and Peano might be considered 
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the forerunners of the logistic school. Dedekind (1888) and 

Frege (1884-1903), engaged in the actual reduction of mathe¬ 

matical concepts to logical concepts. Peano (1889-1908) 

undertook the statement of mathematical theorems by 

means of logical symbolism. The logistic school receded its 

definitive expression in the monumental Principia Mathe¬ 

matics of Alfred North Whitehead and Bertrand Russell 

(three volumes, 1910-1913). This complex work purports 

to be a detailed reduction of the whole of mathematics to 

logic. Among others, Ludwig Wittgenstein, L. Chwistek, F. P. 

Ramsey, C. FH. Langford, R. Carnap, and W. V. Quine are 

some of the important names connected with supplying 

subsequent modifications and refinements of the program. 

Corresponding to the "undefined terms" and "postulates" 

of a formal abstract development, the Principia Mathematics 

starts with "primitive ideas" and "primitive propositions." 

These primitive ideas and propositions are to be regarded 

as, or at least accepted as, plausible descriptions and hy¬ 

potheses concerning the real world. Thus, a concrete rather 

than an abstract point of view prevails, and consequently 

no attempt is made to prove the consistency of the primitive 

propositions. Principia Mathematics aims to develop mathe¬ 

matical concepts and theorems from these primitive ideas 

and propositions, starting with a calculus of propositions, 

proceeding up through the theory of classes and relations 

to the establishment of the natural number system, and 

thence to all mathematics derivable from the natural number 
system. 

Principia Mathematics employs a "theory of types" toa\oid 

the paradoxes of set theory. Somewhat oversimply described, 

a theory of types sets up a hierarchy of levels of elements. 

The primary elements constitute those of type 0; classes of 

elements of type 0 constitute those of type 1; classes of 

elements of type 1 constitute those of type 2; and so on. In 

applying the theory of types, the rule is followed that all the 

elements must be of the same type. Adherence to this rule 

precludes impredicative definitions and thus avoids the para¬ 
doxes which arise from such definitions. 
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In order to obtain the impredicative definitions needed to 

establish analysis, a non-primitive and arbitrary axiom had 

to be introduced. The axiom drew forth severe criticism; 

much of the subsequent refinement of the logistic program 

lies in attempts to devise some method of avoiding this 
axiom. 

Probably most mathematicians who do not concern them¬ 

selves explicitly with foundational questions feel that es¬ 

sentially all the notions of number and set have a real exist¬ 

ence apart from our knowledge of them, and that classical 

mathematics, though it needs a more secure foundation, is 

not actually unsound. This is the position also of Frege and 

Russell, the pioneers in mathematical logic, and is defended 

today by some of the ablest logicians.12 

While there is no one explanation that is universally accepted 

as resolving the paradoxes of set theory, remarkable strides 

toward their resolution have been madesincetheyfirst began 

to appear. Considering the amount of time required to put 

the first two crises of mathematics to rest, it must be con¬ 

sidered remarkable that so much progress has been made 

on the third crisis in just a little more than half a century. 

By way of summary, it has been noted that Cantor's conjec¬ 

ture of the well-ordering theorem was followed not only by 

Zermelo's proof of the theorem in 1904, but also by a pre¬ 

cise statement of a principle often used implicitly, the axiom 

of choice, which was used in the proof. The axiom of choice 

has itself been a source of careful scrutiny, and also of con¬ 

troversy. The work of Godel and Cohen on both the axiom 

of choice and the continuum hypothesis is particularly note¬ 

worthy. While Cantor's efforts on the continuum hypothesis 

had been unsuccessful, Godel and Cohen have solved the 

question in the realm of axiomatic set theory. 

Finally, it has been seen that the paradoxes which arose from 

Cantor's work have been an important stimulus to the study 

of questions in the foundations of mathematics. The various 

schools of thought have contributed worthwhile dialogue 
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and diverse viewpoints on possible solutions to the para¬ 

doxes and on the question of what constitutes admissible 

methods in mathematics. The axiomatic theories which arose 

primarily because of the paradoxes are now important 

disciplines of study in their own right. 

The numerous developments following Cantor's work and 

related to it serve to show what a stimulus his research was 

for further research. The continuing influence of his work 

is its own best monument to Georg Cantor. 
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SET THEORY 

IN THE SCHOOL 

MATHEMATICS PROGRAM 

During the last two decades, mathematics education at the 

lower levels has undergone changes of revolutionary pro¬ 

portions. The ten-year period 1955-1965 was an especially 

fruitful time for influential work by a number of groups 

interested in curricular reform. The groups were generally 

willing to sacrifice somewhat the overemphasis on rote and 

manipulations in an attempt to bring about a gain in reason¬ 
ing ability. 

Most programs developed by the groups working in the 

1950s and 1960s have in common the use of set terminology 

and concepts as a means of clarifying and unifying the subject 

matter. Set theory per se has not been a subject of study 

at the lower levels, but concepts from the theory have gener¬ 

ally been used freely when they serve a useful purpose. Cer¬ 

tainly, situations should not be contrived just in order to use 

sets for the sake of being “modern." Some of the early inte¬ 

grated college algebra and trigonometry texts were guilty 

of having a first chapter devoted to sets and then never using 

the material in the rest of the book. 

Over the years, a number of groups have worked on the 

school mathematics curriculum and have made recom¬ 

mendations concerning it. One of the early groups making 

specific recommendations as to what mathematics should 

be in the school program was the 1893 Subcommittee on 

Mathematics of the Committee of Ten on Secondary School 

Subjects. The Committee on College Entrance Requirements 

in 1899 recommended specific mathematics courses for 

grades 7-12. The reports of these two committees seem to 

carry the first evidence of any concentrated thought devoted 

to the consideration of decompartmentalizing the organiza¬ 

tion of the mathematics curriculum. 
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The International Commission on the Teaching of Mathe¬ 

matics had reports published by the United States Bureau of 

Education between the years 1911 and 1918. This commission 

generally surveyed the field of secondary mathematics and 

noted two main needs: better preparation of teachers and 

reduction, if not elimination, of the waste of effort involved 

in independent and often inadequate treatment of funda¬ 

mental and broad questions by separate schools, colleges, 

or local systems. The Commission also made a study of ele¬ 

mentary mathematics in the college. 

The National Committee of Fifteen on Geometry Syllabus 

studied the problem of a syllabus for geometry. The Com¬ 

mittee reported its recommendations in 1911. 

The National Committee on Mathematical Requirements 

was organized in 1916 under the auspices of the Mathematical 

Association of America (MAA). The Committee was in¬ 

structed to study the whole problem of mathematical educa¬ 

tion on the secondary and collegiate levels. The Committee's 

final report came out in 1923. The Committee proposed a 

general outline by topics rather than a detailed syllabus for 

the junior high school, and recommended a body of elective 

material to meet the aims of the senior high school. 

A commission appointed in 1921 by the College Entrance 

Examination Board (CEEB) published reports in 1923 which 

made notable changes in requirements. In 1935 the Com¬ 

mission on Examinations in Mathematics of the CEEB com¬ 

pletely revised the type of examinations in mathematics. 

This notably increased objectivity in scoring and reduced 

emphasis upon the traditional compartmentalized treat¬ 

ment of mathematics. The CEEB has to continually strive 
to keep its tests appropriate for the times. 

The Joint Commission of the MAA and the National Council 

of Teachers of Mathematics (NCTM) to Study the Place of 

Mathematics in Secondary Education published its final 

report in 1940 in the Fifteenth Yearbook of the NCTM. In its 

report, the Joint Commission undertook to define the place 
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of mathematics in the modern educational program and 

then to organize a mathematical curriculum for grades 7-14. 

The Commission on Secondary School Curriculum was 

established in 1932 by the Progressive Education Association. 

Several committees were appointed by the Commission in 

the various subject fields, and among these was the Com¬ 

mittee on the Function of Mathematics in General Education. 

This committee's report was published in final form in 1940. 

The American Association for the Advancement of Science 

(AAAS) Co-operative Committee on the Teaching of Science 

and Mathematics, composed of representatives from several 

national societies, has been concerned with the problem 

of the preparation of teachers of science and mathematics. 

Several specific proposals were made in the 1946 report on 

"The Preparation of High School Science and Mathematics 

Teachers." The Committee also undertook to study the 

effectiveness of the teaching of science and mathematics 

as all levels. This effort served as the basis for a report in 

which appraisals were made of the science and mathematics 

programs from grades 1 through 12, and certain recom¬ 

mendations were made for improving the program. Included 

in the report were many pertinent recommendations for 

recruiting and training elementary and secondary school 

teachers of science and mathematics. A second report on 

the preparation of science and mathematics teachers, con¬ 

cerned with problems of the new curricula in secondary 

schools, was published in 1959. Typical curricula were out¬ 

lined and offered as desirable basic training programs for 

high school mathematics and science teachers. Other activi¬ 

ties of the AAAS were its Science Teaching Improvement 

Program, inaugurated in 1955, and a study of certification 

requirements for secondary school science and mathematics 

teachers, begun in 1959. 

Several committees worked during the World War II years 

primarily to organize and direct manpower for most efficient 

and effective service to the war effort. Some of the reports 
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of these committees had significant import for mathematics 

at the elementary and secondary levels. In 1944, the Com¬ 

mission on Post-War Plans was created by the Board of 

Directors of the NCTM to plan for effective programs in 

secondary mathematics in the postwar period. One of the 

reports of the Commission contained recommendations for 

improving mathematics in grades 1-14.1 

The University of Illinois Committee on School Mathematics 

(UICSM), under the capable direction of Max Beberman, was 

one of the early influential groups of the 1950s to work 

towards developing materials and training teachers for a new 

secondary mathematics curriculum which included set con¬ 

cepts. An outstanding feature of the Committee has been 

its freedom to experiment since its beginning work in 1952. 

The Committee has had a broad outlook due to its joint 

membership from the Colleges of Education, Engineering, 

and Liberal Arts and Sciences. Important financial support 

for the UICSM came from the Carnegie Corporation of New 
York. 

Although recently the UICSM has worked at the elementary 

school level, its early work was concerned with grades 9-12. 

The notation and some of the concepts of the algebra of sets 

were an important part of the course content. While topics 

from contemporary mathematics were used, more concern 

was given to consistency than just an attempt to appear 

modern. It was found that high school teachers could teach 

the newer concepts when given help. 

One of the important differences between the work of the 

older groups and the groups of the 1950s and 1960s was 

that some of the newer groups actually prepared and pub¬ 

lished textual materials whereas the older groups largely 

just made recommendations. The earlier groups were not 

fortunate in being heavily funded as were the groups of the 

1950s and 1960s. The UICSM textbooks emphasize con¬ 

sistency, precision of language, structure of mathematics, 

and understanding of basic principles through pupil dis¬ 

covery. The Committee believed that high school students 
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are greatly interested in ideas and that the understanding 

of basic principles and the acquiring of manipulative skill 
are complementary activities. 

The College Entrance Examination Board (CEEB) exerts a 

strong influence upon the mathematics curriculum through 

its examinations and their influence upon teachers and 

authors of textbooks. The Commission on Mathematics of the 

CEEB was formally established and began its work in August 

1955 under the chairmanship of Albert W. Tucker. The Com¬ 

mission issued a two-part report in the spring of 1959 on the 

secondary mathematics curriculum for college-capable stu¬ 
dents.2 

In its report, the Commission cited a number of factorsenter¬ 

ing into the urgent need for curriculum revision. A large 

body of new mathematics has been created just in this century 

alone, giving rise to specialized journals in areas that were 

little known to mathematicians a generation ago. Also, there 

has been reorganization of some of the older mathematics; 

for example, algebra is now thought of as the study of mathe¬ 

matical structure, or “pattern." A first-year graduate school 

course in algebra today bears little resemblance to that of 

forty years ago. The nature of contemporary mathematics 

is considerably different from the older mathematical point 

of view. Another important factor mentioned in the report 

is that there are a vast number of new applications of both 

the older and the newer mathematics. Besides serving the 

obvious areas of science and engineering, mathematics is 

being used increasingly in social science and business. Psy¬ 

chologists and economists make use especially of statistics 

as well as other advanced mathematical techniques. Statistics 

is also an important tool to industry, especially in the design 

and analysis of industrial research experiments and in sta¬ 

tistical quality control and sampling theory. A final compel¬ 

ling reason cited by the Commission for an improved college 

preparatory mathematics curriculum is the fast-growing need 

for people skilled in various branches of mathematics. All 

of these factors serve to point to the fact that the secondary 

school mathematics curriculum as it was at the time of the 
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Commission's report had lagged behind the growth and uses 

of mathematics. 

The nation was faced with low levels of mathematical com¬ 

petence at the time of the Commission's work. Publicaware¬ 

ness of this fact was spurred by the Russian Sputnik (October 

1957), but awareness of the problem by a number of people 

involved in mathematics education and the beginning of the 

Commission's study antedate Sputnik; so, not all the cur¬ 

ricular and instructional improvement in mathematics of the 

last decade should be viewed as a by-product of the post- 

Sputnik panic. 

While the Commission's work was concerned with grades 

9-12, it recognized the need for careful study of the mathe¬ 

matics program of grades 7 and 8 and lower. Although 

recommending certain subject matter for grades 7 and 8 as 

a proper foundation for its programs of grades 9-12, the 

Commission relied on other groups (such as the School 

Mathematics Study Group, the University of Maryland 

Mathematics Project, and the Curriculum Committees of 
the National Council of Teachers of Mathematics) to meet 

the needs of the earlier grades. 

The Commission outlined its major proposals as follows: 

1. Strong preparation, both in concepts and in skills, for 
college mathematics at the level of calculus and analytic 
geometry 

2. Understanding of the nature and role of deductive- 
reasoning—in algebra, as well as in geometry 

3. Appreciation of mathematical structure ("patterns'')— 
for example, properties of. natural, rational, real, 
and complex numbers 

4. Judicious use of unifying ideas—sets, variables, 
functions, and relations 

5. Treatment of inequalities along with equations 

84 



CHAPTER 6 SET THEORY IN THE SCHOOL MATHEMATICS PROGRAM 

6. Incorporation with plane geometry of some coordinate 

geometry, and essentials of solid geometry and space 
perception 

7. Introduction in grade 11 of fundamental trigonometry— 

centered on coordinates, vectors, and complex num¬ 
bers 

8. Emphasis in grade 12 on elementary functions (poly¬ 

nomial, exponential, circular) 

9. Recommendation of additional alternative units for 

grade 12: either introductory probability with sta¬ 

tistical applications or an introduction to modern 

algebra 

The overriding objective of the Commission was to produce 
a curriculum suitable for students and oriented to the needs 
of mathematics, natural science, social science, business, 
technology, and industry in the second half of the twentieth 
century. While new topics were to be introduced, the primary 
change was in the point of view used in presenting the usual 
topics. Some usual topics were suggested for elimination 
(for example, deductive solid geometry as a course in itself) 
and some change in emphasis was recommended (for ex¬ 
ample, deemphasize triangle solving in trigonometry and 
emphasize its analytical aspects). The recommendations of 
the Commission were taken as a guide for a gradual change 
in the CEEB examinations. 

Stating its belief that there is no ideal sequence of topics 
applicable to every school situation, the Commission gave 
suggested detailed outlines of its recommended courses. 
Some of the topics were expanded in the Commission's 
Appendices and some were prepared as classroom units 
by the Commission. The Commission recognized the vital 
role of teacher education in implementing its program, and 
went into detailed recommendations on what should be 
done to adequately prepare teachers to carry out the pro¬ 

gram. 
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The Commission's mathematics program for grade 9 starts 

with the notion of a set, and this is the first topic treated in 

appendix 1 (An introduction to algebra). The recommenda¬ 

tions of the Commission do not envisage changes in the 

mechanics or formal manipulations of algebra. The subject 

matter is intended to be much the same, with differences 

in concept, in terminology, in some symbolism, in graphs 

on a line, and in the inclusion of new work dealing with in¬ 

equalities. While the development of adequate skills must 

continue to be an important objective of the high school 

algebra course, there is to be a shift in emphasis from 

mechanical manipulations to the development of concepts, 

which is equally important. The object of the introductory 

appendix is to show how the first few weeks of instruction 

in algebra can be clarified and simplified by using the simple 

notion of a set. 

After the introduction to sets and set notation in appendix 1, 

appendix 2 (Sets, relations, and functions) provides an intro¬ 

duction to the use of sets in dealing with some old topics: 

equations, inequalities, graphs, loci, and functions. This 

material is related to the work of grades 9 through 12, in¬ 

clusive. Such concepts as subset, proper subset, intersection, 

union, universal set, empty set, and complement are intro¬ 

duced. In addition to the notion of set being a clarifying and 

simplifying concept as mentioned in appendix 1, the notion 

is mentioned here of its being a unifying concept. The concept 

of a set gives unity to the study of equations, inequalities, 

relations, and functions. 

Appendix 9 gives a more demanding exposition of the 

mathematics of collections of objects than is contained in 

appendix 2. Part of this material is related to the Commission's 

"Mathematics for grade 12" and part is needed for those 
studying probability. 

The University of Maryland Mathematics Project (UMMaP) 

textbooks use the notion of set in a natural way without at 

all belaboring the concept. When this project got underway 

in 1957, it was recognized that mathematics atthe junior high 
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level was perhaps the most unsatisfactory of all the mathe¬ 

matics courses offered. The UMMaP, under the directorship 

of John R. Mayor and with support from the Carnegie Cor¬ 

poration of New York, set out to remedy this situation.3 

The traditional mathematics program at grade levels 7 and 8 

placed heavy emphasis on the development of skills and the 

so-called social applications of mathematics. The subject 

matter was largely repetitive of what had been presented 

in the earlier grades. High and low achievers alike were not 

inspired by two more years of the same old stuff that they 

had been exposed to previously. 

Students using the Maryland experimental materials were 

found to do as well on traditional tests as students in the 

traditional courses while (rather naturally) doing a great deal 

better on tests covering the new material of the project. 

Teachers and students alike seemed to find the Maryland pro¬ 

gram more interesting than the traditional program. 

The sample courses of the Maryland program were prepared 

jointly by mathematicians at the University of Maryland and 

teachers in schools in neighboring areas of the University. 

A number of revisions were made in the courses after tryouts 

in the schools. Hardback texts were published in 1961. The 

books have been used in a large number of school systems 

and have had considerable impact on commercial texts. The 

UMMaP serves as a good example of the kind of success 

which can be obtained in curriculum improvement when 

mathematicians and mathematics educators work together. 

The work of the School Mathematics Study Group (SMSG), 

to be discussed next, serves as another example of the ex¬ 

cellent results which can be obtained from this kind of joint 

effort. 

The group having the greatest impact on modernizing the 

mathematics curriculum has been the SMSG. This impact has 

been due to a number of factors: financing by the National 

Science Foundation, national scope, interest in improvingthe 

teaching of mathematics in the schools at all levels, Advisory 
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Committee composed of representatives from diverse areas, 

writing teams composed of experienced high school and 

college teachers of mathematics, publication of experimental 

texts which has had great influence on the publishers of com¬ 

mercial texts, making available (at cost) the texts in non¬ 

commercial form when they were deemed satisfactory for 

classroom use, and the publication of materials for mathe¬ 

matics teachers. 

The work of the SMSGstarted in 1958atYale University under 

the direction of E. G. Begle. The work of the early years dealt 

with the secondary (9-12) and junior high (7-8) schools. For 

some reason, most groups which have worked on the cur¬ 

riculum for all grades have preferred to work from the top 

down. 

The task facing the SMSG writers of sample textbooks was to 

exhibit atotal curriculum thatwould be recognizably superior 

to the one in existence. The textbooks would have to be good 

enough to stimulate publication of commercial texts of a 

similar nature. SMSG did not wish or intend to supply text¬ 

books except on experimental and short-term bases. The 

program would need to be one which would be approved as a 

satisfactory replacement of the traditional program. With 

these constraints along with trying to get textbooks with the 

best and most appropriate mathematics available, the SMSG 

was faced with a formidable task. 

Although not bound by what had been done previously, the 

writing subgroups for the high school had recourse to the 

considerable amount of work done by the UICSM and the 

recommendations of the Commission on Mathematics of the 

CEEB as a point of departure. While this prior work was help¬ 

ful, it was still the job of each writing group to decide what 

should be done at its grade level. 

The ninth grade subgroup decided that its subject matter 

should be algebra. Neither the Commission on Mathematics 

nor the UICSM had seen any reason for suggesting a de¬ 

parture from what has traditionally been a part of the ninth 
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grade curriculum. The difficult questions of scope, sequence, 

and point of view remained to be worked out and would 

take some time to resolve. 

The tenth grade subgroup decided on geometry as the ap¬ 

propriate content for its grade level. It was decided that the 

subject matter would be synthetic Euclidean geometry, but 

with the addition of metric postulates. The textbook was to 

contain a short treatment of analytic geometry near the end of 

the book. 

The eleventh grade subgroup proposed some algebra and 

some trigonometry for this grade level. They wanted a book 

that would give some insight into the nature of mathematical 

thought and at the same time prepare the studentto perform 

certain manipulations with facility. 

The twelfth grade subgroup was divided intoteamswith each 

team taking responsibility for one topic. By the end of the 

first writing session, the twelfth grade subgroup had pro¬ 

duced an elementary treatment of sets, relations, and func¬ 

tions; a full outline of circular functions; and a full outline 

for a course in modern algebra with typical examples and 

exercises. 

The subgroup concerned with the seventh and eighth grades 

had a responsibility somewhat different from that of the high 

school subgroups. Instead of writing a syllabus for a course, 

they were to write a series of experimental units on single 

topics. The seventh and eighth grade subgroup was fortunate 

in having available the work of the UMMaP which had been 

under way for about a year when the SMSG started its work. 

The SMSG departed from what the UMMaP had done by 

treating algebra in its program. They decided to concen¬ 

trate on providing students with experiences emphasizing 

logical patterns, mathematical vocabulary, and informal 

deduction and induction. They also decided to associate 

suitable applications with the mathematical ideas developed, 

but to keep applications secondary to an understanding of 

basic concepts. An informal study of geometry was ruled 
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appropriate. A survey of the notions of measurement and 

approximation, elementary work with statistics and prob¬ 

ability, and the mathematics of the lever were other topics 

felt to be appropriate for the seventh and eighth grades. In 

some areas, the SMSG subgroup borrowed heavily from the 
UMMaP. The director of the UMMaP was also chairman of the 

subgroup. 

One fact of great importance that had been established by the 

end of the first writing session was that high school teachers 

and research mathematicians can work together to produce 

some really significant curricular changes. This excellent 

partnership was to continue and is one of the most important 

reasons forthesuccesswhich the SMSG has had. Fora number 

of years, research mathematicians had pretty much abdicated 

their responsibilities to the high schools in favor of their own 

research interests. The reblossoming of the more or less fruit¬ 

ful relationship between college and high school mathe¬ 

matics teachers that had existed many years earlier was at 

least as important as the preliminary materials prepared 

during the 1958 summer writing session. A fruitful dialogue 

between mathematicians and mathematics educators has 

been an important feature of the work of a number of the 

recent groups. Today the relationship among high school and 

college mathematics teachers and research mathematicians is 

far healthier than it was for a number of years before the work 

of the UICSM, the Commission, the UMMaP and the SMSG. 

In a number of universities, it is no longer chic for members of 

the mathematics department to look down their noses at their 

colleagues in the mathematics education department. Indeed, 

the two departments often have extremely good working 

relationships with each other and mutual respect for the 

important work of each department. The state of affairs as it 

exists now between mathematics and mathematics education 

is quite good, and it is impossible to overstress the importance 

of such a relationship in continually striving to improve the 

curriculum and teaching of mathematics. 

Following the considerable preliminary work done in the first 

writing session, the writers began in earnestto prepare actual 
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sample textbooks during the second writing session which got 

under way in the summer of 1959. Some work had been done 

during the academic year on the project, but most of the 

participants had been too busy with regular academic duties 

to do very much work on the project. An additional group 

of mathematicians and high school teachers had been 

recruited during the year to help in writing the textbooks. 

The second writing session produced sample textbooks for 

grades 7, 9,10,11, and 12. The eighth grade volume was con¬ 

sidered a series of experimental units rather than a textbook. 

The twelfth grade writing group prepared two textbooks. 

They scrapped the work that had been done earlier on a 

modern algebra course in favor of a second semester course 

on matrix algebra. The first-semester textbook for twelfth 

grade, Elementary Functions, started with a chapter which 

developed the function concept from the standpoint of sets. 

It was felt that students using the text at this time would be 

doing so without having had previous experience with setsor 

set concepts. Students coming along later through the SMSG 

program would be familiar with the set notion as the ninth 

grade sample textbook used set concepts and set notation 

wherever they would help clarify or make more precise a topic. 

Set notions also helped in relating numbers and geometric 

points. Despite vast differences in pointof view,thecontentof 

the ninth grade algebra was not new. When the SMSG later on 

got involved in elementary work, set concepts and notation 

were introduced at the very earliest levels of elementary work. 

After tryouts and revisions of the sample textbooks, they were 

made generally available. Intended forthe benefit of college- 

capable students, this phase of the work was not terminated 

with the publication of sample textbooks. A great amount of 

work has continued to be donetoaid these students aswell as 

those not going on to college. It should also be mentioned 

that the SMSG has published monographs by prominent 

mathematicians and in-service teacher training materials. 

The books prepared by the SMSG for the elementary grades 

differed from the traditional books even more radically than 
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the high school books had. Following the plan of working 

from the top down in attempting to improve mathematics in 

grades K-12, the SMSG prepared textbooks for grades 4-6 and 

then for the lower grades. The concept of sets is an integral 

part of the program. Book 1 introduces such concepts as the 

empty set, equivalence of sets, subsets, and uses sets to aid in 
understanding such notions as"morethan"and "fewerthan." 

A number of set concepts are used in the books in a natural 

way without contriving situations to use sets just for the sake 

of using sets. But there is no hesitance to use set concepts 

when they will aid in understanding. Materials for the early 

grades attempt to relate to the physcial world and the en¬ 

vironment of which children are aware. The texts move from 

the concrete to the abstract, from the specific to the general. 

That the SMSG sample texts have influenced those who pre¬ 

pare commercial elementary school texts to use set concepts 

is evident to anyone who has browsed through books at any 

fairly recent NCTM convention.4 

The Committee on the Undergraduate Program in Mathe¬ 

matics (CUPM) of the Mathematical Association of America 

is another group which has had profound influence on the 

school mathematics program. This group was appointed in 

1953 and reconstituted and organized into four panels in 1959. 

The Panel on Teacher Training has made recommendations 

and prepared course guides for the training of teachers of 

mathematics. That the work of this panel has had impact is 

evident from the number of books for pre-service and in- 

service mathematics teachers which reflect the panel's re¬ 

commendations. Advertisements and prefaces for such books 

are careful to point out that SMSG and CUPM recommenda¬ 

tions have been considered in writing the texts. 

The CUPM pamphlet Course Guides for the Training of 
Teachers of Elementary School Mathematics recommends 

that the notions of sets, with or without notation, be part of 

a course in the structure of the number system for teachers 

of mathematics in grades K-6. The introduction of set theory 

notation in one unmotivated section at the beginning of the 
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course is considered obviously undesirable. The pamphlet 

Course Guides for the Training of Teachers of Junior High 

and High School Mathematics recommends that a unit on 

logic and sets be included as a part of one of the courses 

recommended for teachers at these two levels.5 Such ideas as 

set equality, union, intersection, complement, universal set, 

null set, and subset should be taught along with some of the 

fundamental properties which hold for sets. Chapter 3 of the 

Twenty-Third Yearbook of the NCTM is an excellent exposi¬ 

tion on set notions with which secondary school mathe¬ 

matics teachers should be familiar.6 Naturally, set notions are 
also used in other chapters of the book. 

A large number of groups besides the ones already mention¬ 

ed started work of significance for the school mathematics 

program during the 1950s or 1960s. A few of the better 

known of these are the University of Illinois Arithmetic 

Project; various projects by Professors Patrick Suppes and 

Newton S. Hawley, including Set Theory in First Grade, Stan¬ 

ford University by Professor Suppes; the Madison Project; the 

Greater Cleveland Mathematics Project (differing from most 

in working from the bottom up in developing a K-12 mathe¬ 

matics curriculum); the Boston College Mathematics Insti¬ 

tute; the Ontario Mathematics Commission; Developmental 

Project in Secondary Mathematics at Southern Illinois Uni¬ 

versity; the Secondary School Curriculum Committee of the 

NCTM; the Ball State Teachers College Experimental Pro¬ 

gram; and the Cambridge Conference on School Mathe¬ 

matics.7 

All of the groups that have been referred to used set notions 

in their work. The use of sets now seems firmly entrenched in 

the school mathematics program. With so many groups ex¬ 

perimenting with curricular reform, it might be expected 

that a number of diverse programs would originate. Most of 

the programs have, however, in addition to the use of sets, 

much of the following in common: emphasis upon structure, 

a logical and sequential development, earlier introduction 

of topics and elimination of unimportanttopics, useof recent 
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developments in mathematics, greater abstraction, refine¬ 

ment of nomenclature and symbolism, use of the methodo¬ 

logy of logic, and expanded content.8 

With the increased emphasis of the last two decades on cur¬ 

ricular changes and increased teacher competency, prospects 

for the school mathematics program appear bright. To main¬ 

tain an excellent mathematics program will require continual 

scrutiny of the curriculum and teacher training programs 

and continual efforts towards improving both. 
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