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PREFACE 

The  present  book  was  out  of  print  less  than  five  years  after  its  public¬ 

ation  in  1953,  which  suggests  that  it  met  an  actual  demand.  Accordingly, 

in  this  second  edition  the  arrangement  in  general  lines  has  remained  un¬ 

changed  .  As  before,  the  book  is  chiefly  intended  for  undergraduate  students 

of  mathematics,  for  graduates  in  philosophy,  and  for  highschool  teachers. 

However,  essential  changes  of  detail  on  almost  every  page  have  been 

made  for  several  reasons.  The  text  underwent  a  complete  revision  which 

renders  the  first  sections  more  concise ;  many  remarks  of  secondary  im¬ 

portance  and  references  to  literature  of  minor  significance  were  dropped ; 

for  some  matters  of  principle  the  reader  is  now  referred  to  the  author’s 

and  Y.  Bar-Hillel’s  Foundations  of  Set  Theory  (Amsterdam,  North- 
Holland  Publishing  Co.,  1958).  Part  of  the  space  saved  was  used  to  add 

new  material  in  the  text  and  the  exercises  and  to  utilize  pertinent  public¬ 

ations  which  appeared  in  the  decade  1950-1959. 

To  a  still  higher  degree  the  Bibliography  has  been  reduced,  for  the 

items  referring  to  the  book  Foundations  and  some  philosophical  material 

which  is  no  more  topical  could  be  omitted.  The  recent  relevant  literature 

inserted,  extending  to  1959,  constitutes  but  a  small  fraction  of  the 

material  dropped.  Only  those  works  appear  in  the  Bibliography  which 

are  actually  referred  to  in  the  book. 

For  the  readers  of  Foundations  who  do  not  have  at  their  disposal  the 

first  edition,  at  the  end  of  the  present  book  a  list  is  added  which  contains 

the  literature  items  missing  in  this  edition. 

In  spite  of  the  new  material,  the  size  of  the  book  has  diminished  from 

479  to  295  pages. 

Regarding  the  method  of  exposition,  a  middle  course  has  again  been 

steered  between  Cantor’s  naive  attitude  prevailing  in  the  current  text¬ 

books,  and  a  formal  axiomatic  development.  Zermelo’s  axioms  in  a 

slightly  improved  form  are  introduced  at  suitable  junctures,  accompanied 

with  appropriate  arguments  justifying  them;  the  axiom  of  choice  appears 

relatively  late  for  obvious  didactic  reasons.  Yet  the  derivation  of  the 

material  from  the  axioms  is  explicitly  carried  out  in  those  cases  only 

where  it  seemed  desirable  as  a  matter  of  principle.  The  antinomies  are 

merely  touched;  in  Foundations  they  are  treated  in  detail. 



VI 
PREFACE 

Even  freshmen  will  understand  the  book,  provided  they  take  pains  to 

advance  from  the  easy  arguments  of  the  first  sections  to  the  more  abstract 

concepts  and  proofs  of  the  later  ones.  Before  entering  a  rather  difficult 

proof  the  student  should  realize  what  is  its  aim,  why  a  proof  is  necessary, 

and  which  is  the  nature  of  the  difficulties  to  be  overcome.  The  method  of 

exposition  in  the  book  is  intended  to  facilitate  this  approach. 

The  author  has  gratefully  taken  into  account  a  few  of  the  suggestions 

made  in  some  reviews  of  the  first  edition.  However,  he  has  not  seen  fit  to 

give  partly  ordered  sets  preference  over  Cantor’s  “ordered  sets”  and 
has  also  left  §  9  essentially  unchanged:  certain  misunderstandings  arose 

from  overlooking  that  in  the  bulk  of  §  9  point  sets  are  regarded  as  ordered 

abstract  sets  without  being  imbedded  in  a  space.  The  procedure  of  the 

definition  by  transfinite  induction  (§  10,  2)  has  been  fully  formalized, 

while  the  direct  derivation  of  comparability  from  the  axiom  of  choice 

(§  11,  7)  remains  unchanged. 

The  text  should  be  completely  comprehensible  without  the  footnotes. 

Their  task  is  to  supply  further  details  and  literature  regarding  special 

problems,  to  furnish  historical  information,  and  to  provide  advanced 

readers  with  stimuli  and  bibliographical  material  for  research  problems. 

Finally  I  wish  to  thank  my  friend  and  colleague  Abraham  Robinson 

who  read  the  first  proof  of  the  book. 

Jerusalem,  December  1959  (40  years  after  the  first  publication  of 
Einleitung  in  die  Mengenlehre) 

Abraham  A.  Fraenkel 
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INTRODUCTION 

“I  protest . . .  against  the  use  of  infinite  magnitude  as  if  it  were  something 
finished;  this  use  is  not  admissible  in  mathematics.  The  infinite  is  only  a 

fagon  de  parler:  one  has  in  mind  limits  approached  by  certain  ratios  as 

closely  as  desirable  while  other  ratios  may  increase  indefinitely.”  4) 
C.  F.  Gauss,  presumably  the  foremost  mathematician  of  the  19th  century, 

expressed  this  view  in  1831  in  reply  to  an  idea  of  Schumacher’s  and  hereby 
uttered  a  horror  infiniti  which  up  to  almost  the  end  of  the  century  was 

the  common  attitude  of  mathematicians  and  seemed  unassailable 

considering  the  authority  of  Gauss.  Mathematics  should  deal  with 

finite  magnitudes  and  finite  numbers  only  while  the  treatment  of  actual 

infinity,  whether  infinitely  great  or  small,  might  be  left  to  philosophy. 

It  was  the  mathematician  Georg  Cantor  

(
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)
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2)  who  dared 

to  fight  this  attitude  
and,  in  the  opinion  

of  the  majority  
of  20th  century 

mathematicians,  

has  succeeded  
in  the  task  of  bestowing  

legitimacy  
upon 

infinitely  
great  magnitude.  

Besides  
the  creative  

intuition  
and  the  artistic 

power  of  production  
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which  guided  Cantor  in  his  work,  an  enormous 

amount  
of  energy  

and  perseverance  
was  required  

to  carry  through  
the 

new  ideas,  
which  

for  two  decades  
were  rejected  

by  his  contemporaries  

4) 
with  the  arguments  

that  they  were  obscure  
or  meaningless  

or  false  or 

x)  Briefwechsel  Gauss-Schumacher,  vol.  II  (1860),  p.  269;  Gauss'  Werke,  vol.  VIII 
(1900),  p.  216. 

2)  Cf.  the  biography  Fraenkel  30  and  the  edition  of  Cantor’s  Collected  Papers 
(including  notes  of  E.  Zermelo  and  a  shorter  biography)  Cantor  32;  cf.  also  Schoenflies 

22  and  28,  Ternus  29,  Cantor-Dedekind  37. 

All  literature  references  in  this  book,  composed  of  the  author's  name  and  the  year  of 
publication,  apply  to  the  Bibliography  at  the  end  of  the  book.  In  the  dates  of  the  20th 

century  the  initial  digits  19  are  suppressed.  —  The  literature  references  are  given  for 
the  benefit  of  readers  interested  in  the  sources  or  in  additional  details;  the  text  is 

self-contained  without  them. 

3)  Cf.  the  motto  annexed  to  the  (Latin)  Habilitationsschrift  of  1869  by  which  he 
won  the  admission  as  a  lecturer  at  the  University  of  Halle:  Eodem  modo  literis  atque 

arte  animos  delectari  posse.  (Cantor  32,  p.  62.) 

4)  Especially  by  Kronecker.  However,  two  others  of  the  leading  mathematicians 
of  that  time,  Weierstrass  and  (contrary  to  an  erroneous  tradition)  Hermite,  turned 

their  initial  distrust  soon  into  appreciation  and  even  admiration.  Still  before,  Mittag- 

Leffler  had  given  Cantor  active  support  by  inducing  Poincare  and  others  to  translate 

Cantor’s  papers  into  French  (cf.  Mittag-Leffler  28);  these  translations,  published  in 

1 



2 INTRODUCTION 

“brought  into  the  world  a  hundred  years  too  early”  x).  Not  only  Gauss 

and  other  outstanding  mathematicians  were  quoted  in  evidence  against 

actual  infinity  but  also  leading  philosophical  authorities  such  as  Aristotle, 

Decartes,  Spinoza  and  modern  
logicians *  

2).  Set  theory  was  even  charged 

with  violating  the  principles  of  religion,  an  accusation  rejected  by  Cantor 

with  particular  vigor  and  minuteness  3).  Only  in  the  last  years  of  the  19th 

century,  when  Cantor  had  just  ceased  engaging  in  mathematical  research, 

did  set  theory  begin  to  infiltrate  many  branches  of  mathematics  4). 

A  chief  purpose  of  the  present  book  is  to  show  how  definite  and 

distinct  infinitely  great  magnitudes  can  be  introduced  and  handled  in 

mathematics  —  another  evidence  of  free  creation  which  is  characteristic 

of  mathematics  to  a  higher  extent  than  of  other  sciences.  It  is  no  mere 

accident  that  at  the  birth  of  set  theory  (1883)  the  slogan  was  coined:  the 

very  essence  of  mathematics  is  its  freedom  5). 

volume  2  of  Ada  Mathematica,  contributed  much  to  propagate  Cantor’s  ideas. 
The  first  applications  (cf.  also  below,  §  12)  to  the  theory  of  functions  and  to  geometry 

are  found  inHurwitz  1883,  Poincare  1883,Mittag-Leffler  1884,Scheeffer  1884  and  1884a. 

Bendixson’s  papers  of  the  same  years  (1883,  1883a,  1884,  1884a)  took  a  course  parallel 

to  Cantor’s  work. 

x)  According  to  Cantor-Stackel  1897,  this  was  the  argument  with  which  the  Ada 

Mathematica,  previously  so  appreciative  of  Cantor’s  ideas,  rejected  the  final  exposition, 
which  later  (as  Cantor  1895-97)  appeared  in  the  Mathematische  Annalen.  Even  the 

papers  1874  and  1878  had  only  been  published  after  much  hesitation  and  delay  by 

Kronecker  (cf.  Schoenflies  22,  p.  99).  As  late  as  1908  Cantor  complained,  in  a  letter  to 

W.  H.  Young,  of  the  lack  of  appreciation  given  to  his  work  in  Germany,  as  in  contrast 

to  Great  Britain  (Young  26,  p.  422). 

2)  A  few  important  philosophers  who  affirmed  actual  infinity  were  overlooked 
by  Cantor,  in  particular  Lucretius  (cf.  Keyser  1 8)  and  Chasdai  Crescas  (cf.  Wolfson  29). 

3)  Cf.  Cantor  1879-84  (particularly  V),  1886,  1887-88;  Gutberlet  1886  and  1919; 
Temus  26.  It  goes  without  saying  that  the  concept  of  infinity  has  its  origin  in  religious 

thought;  it  was,  at  least  within  the  occidental  civilization,  introduced  into  science  only 

by  the  Greeks.  In  medieval  scholastic  theology  and  philosophy  on  the  whole  (not  only 

in  the  treatment  of  infinity)  one  finds  trains  of  thought  which,  in  their  subtlety  and  in 

the  preference  given  to  logical  analysis  over  existential  questions,  are  kindred  with 

set-theoretical  methods.  In  fact  Cantor  (and  still  more  Bolzano,  somehow  his  prede¬ 

cessor)  had  a  good  scholastic  training.  Cf.  Isenkrahe  20,  Klein  26  (pp.  52  and  56), 

Bodewig  32,  Bochenski  34,  38,  and  56. 

For  the  history  of  the  problem  of  actual  infinity  in  general  the  reader  is  referred, 

also  for  literature,  to  Russell  14/26,  Keyser  16  (Chapter  VIII),  Weyl  26/49,  31,  32; 

for  the  prehistory  and  early  history  of  set  theory  to  Jourdain  05-14,  Schoenflies  00-07, 

13,  Young-Young  06,  Hessenberg  06,  Cavailles  38. 

4)  First  in  France,  where  the  appendix  of  Couturat  1896  and  the  classical  works 
Borel  1898  and  Baire  1899  spread  the  knowledge  of  set  theory  in  wide  circles. 

5)  Cantor  1879-84V,  p.  564;  cf.  the  preceding  paragraphs  of  this  paper.  The  book 
edition  of  this  paper  has  a  foreword  touching  by  its  humility. 
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How  distinctly  the  revolutionary  character  of  his  research  was  realized 

by  Cantor  at  an  early  period  and  how  confident  he  then  was  of  the  ult¬ 

imate  victory  of  his  ideas  over  all  objections  may  be  gathered  from  the 

following  passage  which  opens  his  decisive  paper  1879-84V: 

The  previous  exposition  (namely  I— IV)  of  my  investigations  in 

the  theory  of  manifolds  x)  has  arrived  at  a  spot  where  the  continua¬ 
tion  becomes  dependent  upon  a  generalization  of  the  concept  of 

real  integer  beyond  the  usual  limits;  a  generalization  which  takes  a 

direction  that,  as  far  as  I  know,  nobody  has  as  yet  looked  for. 

I  depend  upon  that  generalization  of  the  number  concept  to  such 

an  extent  that  without  it  I  should  hardly  be  able  freely  to  take  even 

the  least  step  forward  in  the  theory  of  sets;  may  this  serve  as  a 

justification  or,  if  necessary,  an  apology  for  my  introducing  seemingly 

strange  ideas  into  my  considerations.  In  point  of  fact  the  venture  is 

to  generalize  or  to  continue  the  series  of  real  integers  beyond  the 

infinite.  Daring  as  this  might  appear,  I  do  express  not  only  the  hope 

but  the  firm  conviction  that  in  due  time  this  generalization  will  be 

received  as  a  quite  simple,  suitable,  and  natural  step.  Still  I  am  well 

aware  that  by  taking  this  step  I  put  myself  in  a  certain  opposition 

to  wide-spread  views  of  the  infinite  in  mathematics  and  to  current 

opinions  regarding  the  nature  of  number. 

It  will  be  up  to  the  reader  to  form  his  own  judgment,  on  account  of  the 

systematic  development  given  from  §  2  on,  whether  this  generalization  of 

the  number  concept  is  legitimate  and  has  been  sufficiently  restricted  to 

secure  consistency. 

!)  This  term  (Mannichfaltigkeit)  was  earlier  used  by  Cantor  for  what  he  later, 

even  in  the  same  paper,  called  Menge  (set;  ensemble  in  French).  In  English,  earlier  the 

term  aggregate  was  used  synonymously  with  set. 



CHAPTER  1 

FOUNDATIONS.  THE  CONCEPT  OF  CARDINAL  NUMBER 

§  1.  Examples.  Cantor’s  Set  Concept 

Cantor’s  attempt  to  define  the  concept  of  set  shall  be  analyzed  in  view 
of  the  following  simple  examples  of  sets.  These  informal  examples  do  not 

form  part  of  the  system  we  are  going  to  develop  from  §  2  on. 

a)  Consider  a  collection  of  concrete  objects,  for  instance  of  the  apples, 

oranges,  etc.  in  a  fruit  shop.  We  may  call  it  a  set  of  fruit,  the  individual 

apples  etc.  being  the  members  (or  elements)  of  the  set.  Conceiving  the 

collection  as  a  new  single  concept  is  an  elementary  intellectual  act. 

We  may  attach  to  each  piece  of  fruit  a  label  with  a  number,  using  the 

positive  integers  1,  2,  3,  etc.,  in  an  arbitrary  way,  but  attaching  different 

integers  to  different  pieces  of  fruit.  By  contemplating  the  set  whose 

members  are  the  integers  used  in  this  process  we  obtain  a  set  of  numbers 

instead  of  the  set  of  fruit.  Hereby  a  set  of  abstract  members  has  been 

obtained;  there  is  a  definite  (one-to-one)  correspondence  between  the 

members  of  both  sets  by  which  to  each  piece  of  fruit  a  single  number  is 

related  and  conversely  —  up  to  the  last  integer  used  for  labelling  the 

fruit.  Hereby,  using  the  natural  order  of  integers  according  to  magnitude, 

we  may  also  introduce  a  certain  succession  of  the  pieces  of  fruit  whereas 

originally  no  definite  succession  was  defined  in  either  set. 

Taking  into  consideration  the  succession  thus  defined  or  any  other 

succession,  while  disregarding  the  nature  of  the  members,  i.e.  their 

being  pieces  of  fruit  or  integers,  we  obtain  a  scheme  of  order:  first, 

second,  third,  etc.,  i.e.  an  ordered  set  of  units;  moreover,  in  both  cases 

the  same  ordered  set.  If  we  disregard  the  succession  also,  a  plain  collection 

(set)  of  units  evolves  which  determines  a  certain  (cardinal)  number, 

namely  the  number  of  the  members  contained  in  the  collection.  This 

number  evidently  is  independent  of  whether  the  original  members  are 

fruit  or  integers. 

Nothing  essential  is  changed  if  in  the  shop  there  is  one  piece  of  fruit 

only,  say  one  apple.  We  may  attach  the  integer  1  to  this  apple.  The  set 

containing  the  apple,  being  an  abstract  concept,  should  be  distinguished 

4 



CH.  I,  §  1] 
EXAMPLES.  CANTOR’S  SET  CONCEPT 5 

from  the  apple  itself  and  the  same  applies  to  the  set  whose  only  member  is 
the  integer  1. 

b)  While  the  number  of  members  contained  in  the  sets  just  considered 

is  finite  however  large  our  shop  may  be,  the  situation  fundamentally 
changes  if  the  set  contains  as  its  members  all  integers  1,  2,  3,  4,  .... 

That  is  to  say,  every  member  of  the  set  is  a  positive  integer  and  each 

such  integer  is  contained  in  the  set.  This  set  of  all  positive  integers  (or 
natural  numbers)  has  infinitely  many  members  and  is  therefore  called 

an  “infinite  set”,  in  contrast  with  the  “finite  sets”  of  example  a)  — 
whatever  the  logical  meaning  of  the  notions  “finite”  and  “infinite” 
may  be:  cf.  §  2,  5. 

If  in  example  a)  we  take  integers  as  the  members  of  the  set  we  may 

designate  the  set  by  writing  down  all  its  members.  While  this  way  of 

completely  designating  a  set  by  its  members  becomes  impracticable  if  the 

finite  set  contains  very  many  members,  for  an  infinite  set  it  is  impossible 

in  principle;  one  then  uses  the  word  “etc.”  or  dots  as  above.  Thus  the 
set  of  all  positive  integers  may  be  denoted  by 

{1,  2,  3,  4,  . . .}  or  {. . .,  4,  2,  3,  l},  etc. 

It  is  not  accidental  that  for  an  example  of  an  infinite  set  we  have  used 

members  of  a  mathematical  character  (integers).  In  fact  recent  develop¬ 

ments  of  science,  particularly  of  physics  and  astronomy,  suggest  that  any 

set  whose  members  are  drawn  from  nature  will  be  finite,  owing  to  the 

atomic  structure  of  matter  and  energy  and  to  the  limitation  of  matter  in 

nature  (and  possibly  to  the  nature  of  the  physical  space  itself).  On  the 

other  hand,  it  may  seem  as  if  collecting  all  integers  to  a  set  were  psycholog¬ 

ically  simpler  than,  say,  collecting  just  a  billion  numbers  —  though  the 

latter  collection  is  finite ;  for  in  this  case  we  contemplate  a  huge  number 

of  distinct  individuals  while  the  set  of  all  integers  only  involves  an  initial 

number  (1)  and  the  general  law  of  proceeding  from  any  integer  n  to  its 

successor  n  +  1. 

In  almost  all  branches  of  mathematics,  especially  in  analysis  (for 

instance,  in  the  theory  of  series  and  in  calculus,  also  called  “infinitesimal 

calculus”),  the  term  “infinite”  occurs  frequently.  However,  mostly  this 
infinite  is  but  a  fagon  de  parler  (see  above  p.  1);  the  statement 

1 

lim  —  =  0 n n->  co 
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asserts  nothing  about  infinity  (as  the  ominous  sign  oo  seems  to  suggest) 

but  is  just  an  abbreviation  for  the  sentence:  —  can  be  made  to  approach n 

zero  as  closely  as  desired  by  sufficiently  increasing  the  positive  integer  n. 

In  contrast  herewith  the  set  of  all  integers  is  infinite  (infinitely  comprehen¬ 

sive)  in  a  sense  which  is  “actual”  (proper)  and  not  only  “potential”. 
(It  would,  however,  be  a  fundamental  mistake  to  deem  this  set  infinite 

because  the  integers  1,  2,  3,  . ..,  n,  ...  increase  infinitely,  or  better, 

indefinitely.) 

To  illustrate  the  abyss  between  finiteness  and  actual  infinity  as  appearing 

in  an  infinite  set  we  may  use  the  following  utopian  but  would-be  intuitive 

idea  which  goes  back  at  least  to  E.  E.  Kummer.  1000  different  types  for 

consonants,  vowels,  digits,  punctuations-marks  etc.  as  well  as  for  the 

empty  space  may  serve  as  the  raw  material  for  printing  books.  Consider¬ 

ing  that  “short”  books  can  be  extended  by  adding  spaces  and  “long” 
books  decomposed  into  several  volumes,  we  may  define  as  a  book  any 

distribution  (with  repetitions)  of  the  types  among,  say,  a  million  available 

spots  on  paper.  Though  most  of  such  books  are  just  meaningless  accumul¬ 

ations  of  types  and  spaces,  also  all  real  books,  poems,  advertisements, 

menus,  etc.  published  in  the  past  or  to  be  published  in  any  future  —  among 

them  the  Bible,  Euclid,  Shakespeare’s  dramas,  logarithm  tables,  reports 

on  the  first  manned  flight  to  the  Moon  —  constitute  each  a  “book”. 

The  “Universal  Library”  of  all  such  books,  even  if  printed  on  the 
thinnest  paper  available,  would  fill  the  universe  beyond  the  farthest 

visible  stars;  nevertheless  the  Library  constitutes  a  finite  set  of  books, 

containing  exactly  lOOO1-000’000  volumes. 

Hence,  adding  the  utopian  assumption  that  there  were  infinitely  many 

celestial  bodies  (say,  corresponding  to  all  positive  integers)  where  intel¬ 

ligent  beings  lived  and  wrote  books  on  mathematics,  we  should  conclude 

that  upon  infinitely  many  different  stars  identical  mathematical  books 

with  the  same  author,  publishing  firm,  even  the  same  misprints  ought  to 

appear ;  for  all  books  —  at  least  one  mathematical  book  for  each  star  — 

are  contained  in  the  Universal  Library  which  contains  a  finite  number 

only  of  different  books. 

c)  Draw  an  arbitrary  segment  (see  fig.  1)  and  denote  its  middle  by  Pi. 

$  %  % 

Fig.  1 
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Bisect  one  of  the  halves  (say,  the  left-hand  half  as  in  fig.  1),  calling  its 
middle  P2,  and  proceed  so  indefinitely,  denoting  the  middles  of  the  left 

halves  by  P3,  P4,  . . . ;  the  »th  step,  where  n  denotes  any  positive  integer, 

will  then  produce  a  point  Pn  and  on  its  left  a segment  whose  length  is 
1 

2n 

of  the  original  segment. 

The  plain  (un-ordered)  set  of  all  points  Pn  differs  from  the  set  of  all 

positive  integers  (example  b))  only  by  the  nature  of  the  members,  as 

we  see  by  relating  the  point  Pn  to  the  integer  n.  Even  conceived  as 

ordered  sets,  both  sets  yield  the  same  scheme  of  order  if  the  succession 

of  integers  is  taken  from  smaller  to  greater  numbers  and  the  succession 

of  points  in  fig.  1  from  the  right  to  the  left. 

We  may  also  interpret  fig.  1  as  a  possible  scheme  for  the  race  between 

Achilles  and  the  Tortoise,  which  has  proven  stimulating  in  mathematics, 

physics,  and  philosophy  from  its  invention  by  Zenon’s  Eleatic  School  in 

the  fifth  century  B.C.  to  our  days  x). 

For  this  purpose  we  may  conceive  the  right-hand  end  of  the  original 

segment  as  the  starting-post  of  Achilles,  P\  as  the  starting-post  of  the 

Tortoise,  and  the  segment  from  Pn  to  Pn+ 1  as  the  «th  step  in  the  Tortoise’s 
race.  Also  the  set  whose  members  are  all  these  segments  is  an  infinite  set 

of  the  same  kind  as  the  set  of  all  positive  integers  or  of  all  points  Pn. 

d)  The  set  considered  in  b)  is  certainly  included  in  the  set  of  all  real 

numbers.  Postponing  further  treatment  of  the  concept  of  real  number  to 

§§  4  and  9,  we  here  only  remark  that  a  real  number  is  either  rational,  i.e. 
m 

of  the  form  —  (where  n  is  a  positive  integer  and  m  any  integer),  or  else n 

an  irrational  real  number.  The  integers  are  the  rationals  of  the  form 
m 

m  =  Y  where  m  is  positive,  negative,  or  0. 

A  set  of  geometrical  nature  which  is  closely  related  to  the  set  of  all 

,  .  ,  ft  l  ,  ,  .  , 
-4  -3  -2  -1-2.  0  l\2  2  3  4 

Fig.  2 

J)  There  exists  a  multitude  of  literature  dealing  with  this  race.  A  few  of  the  more 

recent  treatments  are :  Russell  03  (pp.  346  ff.)  and  Hasse-Scholz  28  for  the  mathematical, 

Morris  29,  Weiss  38  (pp.  232  ff.),  Shiraishi  54,  Griinbaum  55  for  the  philosophical 

viewpoint. 
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[CH.  I real  numbers  is  obtained  as  follows.  On  a  given  straight  line  (fig.  2)  we 

choose  first  an  arbitrary  point  Po  of  the  line  to  be  also  denoted  by  0, 

secondly  one  of  the  two  possible  directions  on  the  line  to  be  called  the 

positive  direction  (in  fig.  2  the  direction  rightwards),  thirdly  an  arbitrary 

unit  of  length.  Proceeding  from  0  in  the  positive  direction  by  the  unit 

we  reach  a  point  Pi  which  shall  be  denoted  by  1 ;  through  laying  off 

further  units  we  obtain  points  2,  3,  ...  corresponding  to  the  positive 

integers,  while  by  proceeding  from  0  in  the  negative  direction,  i.e.  opposite 

to  the  positive,  we  reach  points  to  be  denoted  by  —1,  —2,  —3,  .... 

Furthermore  we  divide  the  unit-segment  (0,1)  into  two,  three,  four,  . . . 
k 

equal  parts,  thus  obtaining  points  which  are  denoted  by  —  (0  <  k  <  n) ; 

by  transferring  the  same  division  to  all  other  segments  (m  —  1,  m)  we 
m 

arrive  at  all  rational  points  — .  However,  for  a  rather  “natural”  concep- n 

tion  of  the  notion  point  of  a  line  (see  §  9,  1)  the  rational  points  are  not 

sufficient;  by  adding  others,  the  so-called  irrational  points  (among  them, 

for  instance,  the  point  V  2),  the  set  of  all  points  of  the  line  is  established. 

The  concept  “point  of  a  line”  is  hereby  extended  just  so  as  to  relate 
a  single  point  to  each  real  number  and  conversely.  This  allows  us  alternat¬ 

ively  to  use  the  set  of  all  real  numbers  and  the  set  of  all  points  of  a  line 

(line  of  numbers).  Our  correspondence  includes  a  corresponding  order 

if  the  real  numbers  are  arranged  according  to  magnitude  and  the  points 

in  fig.  2  in  the  direction  from  the  left  to  the  right.  Cf.  §  9, 1. 

e)  A  last  example  serves  the  double  purpose  of  illustrating  certain 

complications  of  the  set  concept  and  of  preparing  an  important  applic¬ 

ation  of  set  theory  to  mathematical  analysis. 

Every  root  x  of  the  algebraic  equation 

a0xn  +  a\xn  ~  1  +  . . .  +  an  -  i  x  +  an  —  0  (a0  A  0) 

with  a  positive  integral  degree  n  and  integral  coefficients  au  (k  —  0,  1, 

...,«)  is  called  an  algebraic  number.  Here  and  later  we  restrict  ourselves, 

for  the  mere  sake  of  simplicity,  to  real  algebraic  numbers,  though  there 

are  also  others,  e.g.  the  roots  of  the  equation  x2  +  1  =0:  imaginary 

and  complex  algebraic  numbers.  Certainly  every  rational  number  —  is 

algebraic,  viz.  the  (only)  root  of  lx  —  m  =  0;  the  equation  x2  —  2  =  0, 
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for  instance,  shows  that  there  are  also  irrational  algebraic  numbers, 

in  our  case  V  2  and  —  V  2  (see  §  9).  Finally,  every  (real)  number  which 

is  not  algebraic  is  called  transcendental.  (Here  again  the  restriction  to 

real  numbers  is  not  essential.) 

These  definitions  do  not  reveal  anything  about  the  existence  of  tran¬ 

scendental  numbers,  a  question  which  had  remained  open  until  the  middle 

of  the  nineteenth  century  and  which  shall  be  answered  in  the  affirmative 

in  §  4.  Yet  even  independently  of  the  answer  we  may  contemplate 

the  set  of  all  (real)  transcendental  numbers;  if  there  existed  none  at  all 

then  the  set  in  question  would  be  empty,  a  case  with  which  we  shall  deal 

in  §  2.  A  real  difficulty,  however,  lies  in  the  fact  that  there  is  no  general 

method  of  deciding,  with  respect  to  each  “given”  real  number  r  (given, 
e.g.,  as  a  decimal  or  as  a  regular  continued  fraction  with  a  law  yielding 

the  successive  digits  or  denominators),  whether  r  is  algebraic  or  transcen¬ 

dental.  While  the  algebraic  nature  of  a  number  r  can  be  confirmed  by 

producing  an  algebraic  equation  satisfied  by  r,  the  proof  of  its  transcen¬ 

dency  is  in  principle  an  “impossibility  proof”,  showing  that  r  is  not  a 

root  of  any  such  equation;  this  accounts  for  the  difficulty  of  the  problem. 

In  fact,  only  in  the  last  decades  of  the  nineteenth  century  were  such 

well-known  numbers  as  e  and  n  proven  to  be  transcendental. 

Nevertheless,  the  notion  of  the  set  of  all  real  transcendental  numbers 

should  be  admissible  and  logically  clear.  Any  given  real  number  is  either 

algebraic  or  transcendental,  no  matter  whether  we  can  find  out  which 

one,  and  in  the  second  case  it  has  to  be  allotted  to  our  set. 

In  the  light  of  these  examples  we  are  able  to  appraise  Cantor's  de¬ 

finition  of  the  concept  of  set.1)  It  reads  (translated  from  the  German): 

A  set  is  a  collection  into  a  whole  of  definite,  distinct  objects  of  our  in¬ 

tuition  or  of  our  thought.  The  objects  are  called  the  elements  (members) 

of  the  set. 

One  can  hardly  regard  this  reference  to  the  primitive  process  of 

collecting  individual  objects  to  a  new  unit  as  a  definition  proper;  it 

rather  is  a  paraphrase  of  the  notion  “set”.  Still  less  can  the  reference  to 

our  intuition  and  thought  be  considered  part  of  a  definition;  it  just 

means  that  anything  may  serve  as  a  member  of  a  set.  (It  might  be  prefer¬ 

able  to  restrict  the  members  to  mathematical  objects  or  even  to  sets 

i)  Given  in  Cantor  1895,  p.  481,  at  the  start  of  the  final  exposition  of  his  life
-work 

in  set  theory.  For  earlier  attempts  to  define  the  concept  see  Cantor  1879— 84III,  pp. 

1 14  ff.  and  V,  p.  587. 
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alone.1))  The  significant  ingredients  of  Cantor’s  definition  are  the 
restrictions  contained  in  the  attributes  definite  and  distinct. 

The  meaning  of  the  latter  is  simple.  It  states  that  any  two  objects  which 

appear  as  members  of  the  same  set  are  different',  in  other  words,  that  an 

object  may  belong,  or  not  belong,  to  a  set  but  cannot  “more  than 

belong”,  for  instance  belong  repeatedly,  as  may  be  the  case  in  a  sequence 

such  as  the  sequence  (|,  1,  f,  1,  f,  1,  . . .)  which  contains  the  member 

1  infinitely  many  times.  (The  concept  of  sequence  is  essential  to  analysis 

but  far  less  to  set  theory;  see  p.  19.) 

The  meaning  of  “definite”  is  more  involved.  It  expresses  that,  given  a 
set  s,  it  should  be  intrinsically  settled  for  any  possible  object  x  whether  x 

is  a  member  of  s  or  not.  Here  the  addition  “intrinsically”  stresses  that 
the  intention  is  not  to  actual  decidability  with  the  present  (or  with  any 

future)  resources  of  experience  or  science;  a  definition  which  intrinsically 

settles  the  matter,  such  as  the  definition  of  “transcendental”  in  the  case 
of  the  set  of  all  transcendental  numbers,  is  sufficient.  To  be  sure,  we  thus 

essentially  use  the  Aristotelian  principle  of  the  excluded  middle  which 

guarantees  that  for  a  given  object  there  is  no  third  case  additional  to 

those  of  its  belonging,  or  not  belonging,  to  the  set  in  question.2) 
Yet  the  main  question  connected  with  the  above  definition  is  whether 

the  reference  to  the  logical  act  of  collecting  individuals  with  the  purpose 

of  forming  a  “higher”  unit  which  comprehends  the  individuals  is  ad¬ 
missible  without  further  ado.  The  philosophers  and  mathematicians  of  the 

nineteenth  century  were  inclined  to  answer  in  the  affirmative  without  even 

thinking  it  worth  while  to  enter  into  a  serious  investigation;  they  would 

have  added  that  this  logical  act  was  familiar  to  primitive,  pre-scientific 

thinking  and  not  given  to  a  further  analysis.3)  Therefore  it  was  one  of 

the  worst  shocks  in  the  history  of  logic  and  mathematics  —  somewhat 

comparable  to  the  shock  caused  in  the  Pythagorean  school  of  the  fifth 

pre-Christian  century  by  the  discovery  of  incommensurable  (irrational) 

magnitude,  yet  apparently  far  more  resistent  to  possible  remedies  — 

when  about  the  turn  of  the  nineteenth  century  contradictions  and  anti- 

x)  See  §  2, 1  and  Foundations,  pp.  28-31.  Throughout  the  present  book,  Foundations 
always  refers  to  the  book  Foundations  of  Set  Theory  (Fraenkel-Bar  Hillel  58  in  the 
Bibliography). 

2)  Chapter  IV  of  Foundations  deals  with  neo-intuitionism,  a  mathematical  doctrine 
which  rejects  the  principle  of  the  excluded  middle. 

3)  For  an  interesting  remark  of  Dedekind’s  regarding  his  and  Cantor’s  conceptions 
of  set,  cf.  Dedekind  30-32  III,  pp.  447-449.  (The  remark  dates  from  1887.) 
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nomies  of  various  kinds  were  discovered  which  directly  or  indirectly 

originate  from  the  notion  of  set,  i.e.  from  collecting  individuals  to  a  unit. 

In  the  course  of  the  present  book  we  shall  occasionally  touch  upon 

some  of  those  contradictions;  a  more  comprehensive  discussion  with  a 

full  bibliography  is  contained  in  Chapter  One  of  Foundations. 

During  many  decades  the  attempts  to  “improve”  Cantor’s  definition 
have  remained  utterly  unsuccessful,  and  it  has  become  inevitable  to 

renounce  a  definition  of  the  general  concept  of  set.  The  possible  remedies 

for  this  situation  are  mainly  three,  namely:  to  conceive  and  define  the 

concept  of  set  in  so  narrow  a  sense  that  most  of  “classical”  mathematics 
(analysis,  geometry,  set  theory)  will  become  meaningless  or  inadmissible; 

or  to  adopt  a  penetrating  reform  of  logic  as  the  basis  of  mathematics, 

a  way  involving  difficulties  which  have  not  been  overcome  so  far;  or  to 

take  recourse  to  the  axiomatic  method,  which  in  other  branches  of 

mathematics  serves  as  an  alternative  to  a  definitory  approach  but  here 

would  constitute  the  only  way  out. 

These  three  attitudes  are  exhibited  in  detail  in  Chapters  Four,  Three, 

and  Two  of  Foundations,  yet  they  seem  too  complicated  for  the  present 

elementary  book.  The  current  textbooks  of  set  theory  x)  content  them¬ 

selves  with  explicitly  or  implicitly  starting  from  Cantor’s  definition,  yet 
using  it  with  caution,  viz.  only  to  an  extent  which  seems  to  escape  the 

antinomies  known  to  us. 

In  the  present  book  we  shall  steer  a  middle  course  between  formal 

axiomatics  and  the  intuitive  way  of  other  expositions.  At  appropriate 

junctures  certain  Principles  or  Axioms  will  be  introduced  which  chiefly 

correspond  to  the  “general”  axioms  of  the  system  Z  developed  in  Chapter 
Two  of  Foundations.  As  a  rule  we  shall  restrict  ourselves  to  sets  which 

can  be  proven  to  exist  on  account  of  these  axioms  and  occasionally  sketch 

this  connection  explicitly.  When  exceptionally  a  collection  of  objects  in 

the  naive  intuitive  sense  is  mentioned  we  shall  use  the  logical  term 

“class”  instead  of  “set”.  Hence,  if  the  existence  of  a  set  is  mentioned, 

e.g.  in  Axioms  II-VII,  this  will  stress  that  we  have  in  mind  a  set  in  the 

stricter  sense  and  not  merely  a  class.  However,  lest  the  exposition  become 

too  involved  or  pedantic,  in  general  we  shall  proceed  more  freely  without 

i)  The  comprehensive  works  are  Hausdorff  14(49)  and  27(57),  Sierpinski  28  and  58 ; 

Kamke  28(50)  and  H.  Bachmann  55  are  shorter  good  textbooks.  Cf.  also  Littlewood  26, 

Eyraud  47,  Beth  59  (ch.  14),  and  particularly  Bourbaki  51-56.  Schoenflies-Baire  09 

and  Kamke  39  are  concise  encyclopaedic  expositions.  Haalmeijer-Schogt  26  is  a 

Dutch,  Kuratowski-Mostowski  52  a  Polish,  Cuesta  59  a  Spanish  textbook. 
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[CH.  I reference  to  the  axioms  while  strictly  avoiding  the  spots  of  danger  that 

derive  from  exploiting  Cantor’s  definition  in  an  unrestricted  manner. 
We  shall  not  enter  into  a  discussion  of  the  logical  character  of  the 

objects  called  “sets”  or  “classes”1);  the  particular  attitude  taken  has  no 
effect  on  the  mathematical  theory  of  sets,  just  as  arithmetic  is  independent 

of  the  various  logical  (and  psychological)  theories  dealing  with  the  nature 

of  number. 

Fundamental  mathematical  concepts  such  as  group,  ring,  field  are 

obtained  by  specializations  from  the  concept  of  set.  For  an  extension  of 

this  remark,  regarding  concepts  such  as  number,  function,  mapping, 

see  §  12;  cf.  §  4,  6;  §  7,  2;  §  2,  4;  etc. 
Whenever  one  does  not  care  about  what  the  nature  of  the  members  of 

the  set  may  be  one  speaks  of  an  abstract  set.  Throughout  this  book, 

except  for  parts  of  §  9  and  incidental  examples  not  properly  belonging  to 

the  subject-matter,  we  shall  deal  with  abstract  sets  only.  While  abstract 

set  theory  2)  is,  of  course,  the  substratum  of  every  theory  where  particular 
assumptions  about  the  nature  of  the  members  are  made,  such  theories 

deviate  early  from  the  theory  of  abstract  sets  owing  to  the  problems 

originating  from  the  specific  nature  of  the  members.  The  most  important 

specialization  deals  with  sets  of  points  or  of  (real,  complex)  numbers; 

cf.  §  9. 

§  2.  Fundamental  Concepts.  Finite  and  Infinite  Sets 

1.  The  Membership  Relation.  Equality.  Set  theory  as  developed  in  this 

and  the  following  sections  is  based  on  a  single  primitive  relation,  the 

membership  relation,  to  be  denoted  by  e.  It  is  a  dyadic  (binary)  relation, 

i.e.  it  has  two  arguments  x  and  y;  x  e  y  may  be  read  “x  is  a  member  (or 

element)  of  y ”  or  “x  is  contained  in  y”  or  “x  belongs  to  y”,  or  “y  contains 

x  (as  a  member)”.  The  negation  of  x  e  y  is  denoted  by  x(y  (“x  is  not  a 

member  of  /’).  In  the  light  of  Cantor’s  definition  (p.  9)  the  membership 
relation  would  appear  to  be  defined;  yet  since  we  abandon  this  definition 

T  The  reader  interested  herein  is  referred  to  Chapter  17  of  Russell  19  where  sets 

are  considered  to  be  “logical  fictions”  rather  than  proper  “objects”;  cf.  Stebbing  30, 
p.  453.  This  attitude  is  partly  influenced  by  Occam's  razor  (“ entia  non  sunt  multiplicanda 
praeter  necessitatem" ) .  For  a  comprehensive  survey  with  references  to  literature  see 
Foundations,  Chapter  V,  §  8.  —  The  term  “fiction”  used  by  Russell  has  nothing  to  do 
with  its  use  in  Vaihinger’s  Philosophy  of  the  Als-ob. 

2)  “Theory  of  abstract  sets”  would  be  more  logical. 
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e  should  be  rather  considered  to  be  an  undefined  (primitive)  relation  and 
used  only  as  far  as  justified  by  the  axioms. 

We  shall  in  general  also  contemplate  one  sort  only  of  objects  which 
are  admissible  as  arguments  of  the  membership  relation;  these  objects 
shall  be  called  sets  and  can,  save  for  one  exception  which  will  be  stated 
in  Theorem  2,  be  characterized  as  those  ̂   for  which  at  least  one  x  exists 
such  that  x  e  s  is  true. 

We  assume  that  at  least  one  object  exists,  i.e.  that  our  theory  is  not 
void.  To  be  sure,  we  shall  frequently  deal  with  numbers,  functions, 

points  etc.  as  members  of  a  set.  Yet  integers  can  easily  be  conceived  as 

sets,  hence  all  kinds  of  numbers  and  also  functions  etc.,  as  will  be  seen 

later  (in  particular  in  §§  7  and  11).  Besides,  such  objects  are  mostly  used 

as  mere  illustrations  and  not  as  integral  parts  of  the  systematic  develop¬ 
ment. 

The  relation  of  equality  (identity)  between  sets  (objects),  a  =  b, 
shall  be  conceived  in  the  sense  which  at  least  since  Leibniz  has  been 

generally  adopted,  namely  as  identitas  indiscernibilium;  that  is  to  say, 

a  and  b  are  equal  if  they  cannot  be  distinguished  within  the  system.  Since 

the  membership  relation  is  the  only  primitive  relation  of  the  system  this 

means  that  a  =  b  holds  if  and  only  if,  for  every  set  x,  a  e  x  implies  hex 

and  vice  versa.  Accordingly  the  equality  relation  is,  as  usual,  reflexive 

( a  =  a),  symmetrical  (a  =  b  implies  b  —  a),  and  transitive  {a  —  b  and 

b  =  c  imply  a  —  c);  left-hand  substitutivity  (i.e.,  a  e  x  and  a  =  b  imply 

b  e  x)  is  part  of  the  very  definition  while  right-hand  substitutivity  will 
emerge  below  (Axiom  I). 

As  usual,  we  denote  the  negation  of  a  =  b  by  a  A  b,  read  “a  is  different 

from  h”. 

2.  Subsets.  We  start  with  two  simple  definitions. 

Definition  I.  If  every  member  of  .S'  is  also  a  member  of  T 
(i.e.  if,  for  every  x,  x  e  S  implies  x  e  T)  S  is  called  a  subset  of  T, 

or  included  in  T.  If,  in  addition,  T  has  at  least  one  member  that  is 

not  a  member  of  S  then  S  is  also  called  a  proper  subset  of  T. 

The  subset  (inclusion)  relation  is  expressed  by  S  2=  T;  if  we  wish  to 

emphasize  that  A  is  a  proper  subset  we  write  S  <=  T. 
It  is  essential  to  distinguish  between  the  relations  of  membership  and  of 
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inclusion  (part-whole  relation)  which  formerly  were  frequently  confused, 

owing  to  equivocal  use  in  everyday  language.  (T  “contains”  S,  or 

“comprehends”  S 1),  seems  to  mean  both  S  e  T  and  S  c  T,  and  the  use 

of  the  copula  “is”,  e.g.  in  “man  is  an  animal”,  has  further  contributed 

to  confusion.)  Frege  and  Peano  have  succeeded  in  making  the 

distinction  between  both  relations  recognized  and  accepted. 

From  our  definition  we  immediately  conclude 

Theorem  1.  Every  set  is  a  subset  of  itself,  and  a  subset  of  a  subset  of  T 

is  also  a  subset  of  T.  In  symbols:  S  S;  R  £  S  and  S  <=  T  imply  2) 
R^T. 

Hence  the  relation  c  is  reflexive  and  transitive  (but  not  symmetrical) 

while  the  relation  <=  evidently  is  irreflexive,  asymmetrical  (i.e.,  if  S  ̂   T 

is  true,  T  ̂   S  is  false),  and  transitive. 

Definition  II.  If  the  sets  S  and  T  have  no  common  member 

they  are  called  disjoint  sets 3).  A  set  such  that  every  two  of  its  members 
are  disjoint  is  called  a  disjointed  set.  (Hence  any  set  with  no  more 

than  one  member  may  be  considered  disjointed.) 

In  order  to  develop  set  theory  we  start  with  three  axioms  4). 
Axiom  (or  Principle)  of  Extensionality  (I).  Two  sets  which  contain  the 

same  members  are  equal. 

Using  symbols  we  express  this  in  the  form:  if,  for  every  x,xe  S implies 

xeT  and  vice  versa,  then  S  —  T\  or  on  account  of  Definition  I,  A  <=  T 

and  T  c  S  together  imply  S  =  T. 

Hereby  an  additional  characteristic  of  equality,  not  contained  in  the 

definition  of  p.  13,  is  postulated.  In  fact,  the  axiom  states  that  a  set  S  is 

*)  Still  more  ambiguous  is  the  term  “consists  of”.  A  train,  while  consisting  of 
carriages,  does  certainly  not  contain  carriages  as  members ;  whether  its  carriages  may  be 

regarded  as  subsets  is  a  matter  of  convention.  The  question  of  a  unit-set,  i.e.  of  a  set 
containing  a  single  member,  will  be  raised  presently. 

2)  Throughout  this  book  the  term  “implies”  is  used  in  the  sense  of  “if  —  then  — ”. 

3)  For  a  generalization  to  “almost  disjoint  sets”  see  Sierpinski  28a;  also  exercise  8) 
on  p.  125. 

4)  The  axioms  stated  in  the  present  book,  called  principles  in  the  first  edition,  are 
roughly  Axioms  I-VII  introduced  in  Chapter  II,  §§  2-5,  of  Foundations.  However,  they 
appear  here  in  a  different  succession,  motivated  by  didactic  (and  not,  as  in  Foundations, 
by  systematic)  reasons ;  only  the  axiom  of  extensionality  is  the  first  in  both  cases. 
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determined  by  the  totality  of  its  members  a,  b,  c,  . . . ;  hence  we  shall 

denote  5  also  by 

{a,  b,  c,  . . . }  4) 

where  the  brackets  {  }  hint  at  the  membership  relation.  Within  these 

brackets  either  all  members  of  5  are  written  or,  if  this  is  not  possible  or 

practical,  dots  are  used  to  hint  at  all  members  in  an  unmistakable  way. 

Axiom  I  has  the  effect  —  which  may  be  considered  desirable  or  re¬ 

grettable,  according  to  the  purpose  in  mind  —  that  no  more  than  one 

set  can  exist  that  is  empty,  i.e.  has  no  member  at  all.  In  fact,  each  of  two 

empty  sets  is  a  subset  of  the  other  by  Definition  I. 

For  purposes  where  several  different  “individuals”,  i.e.  objects  which 
have  no  member,  are  required  one  may  weaken  Axiom  1  so  as  to  apply 

only  to  “proper  sets”,  namely  sets  with  members.  For  our  exposition, 
which  in  its  systematic  parts  does  not  use  individuals  except  that  of 

Theorem  
2  below,  

no  such  modification  
of  the  axiom  

is  

required *  

2). 

Apart  from  the  special  problem  of  individuals,  Axiom  I  has  a  general 

significance.  It  ensures  that,  no  matter  how  a  set  is  defined,  it  is  deter¬ 

mined  by  the  totality  of  its  members.  Certainly  “the  set  of  all  even  prime 

numbers”  and  “the  unit-set  containing  2”  are  logically  different  designa¬ 

tions,  
yet  since  either  

set  has  2  as  its  only  member  
they  are  

equal3 4). 

This  feature  of  equality  is  more  striking  when  a  less  trivial  or  even  an 

unsolved  mathematical  problem  is  involved;  for  instance,  the  question 

whether  the  set  of  all  positive  integers  n  for  which  the  Diophantic  equation 

with  the  unknowns  x,  y,  z 

xn  -) -  yn  —  zn 

has  integral  solutions  x,  y,  z,  equals  the  set  {1,  2}  or  not,  depends  on  the 

question  (unanswered  as  yet)  whether  Fermat’s  Last  Theorem  is  true  4). 

1)  It  is  true  that  here  the  members  appear  in  a  certain  succession  while  the  concept 

of  set  does  not  include  order.  But  this  is  only  caused  by  man’s  inability  to  name  or 

write  things  simultaneously.  Since  no  order  of  the  members  is  intended  by  the  above 

notation,  {c,  a,  b,  . . . }  etc.  will  do  as  well. 

2)  For  a  comprehensive  discussion  of  the  possible  attitudes  towards  the  equality 

relation  and  the  admission  of  individuals  cf.  Foundations,  pp  28-33. 

3)  Cf.  Specker  54,  pp.  235  f. 

4)  The  formulation  “a=Z>  if  a  and  b  denote  the  same  object”  is  not  helpful  in  this 
context.  Cf.  the  discussion  between  Alice  and  the  Pigeon  about  girls  being  serpents, 

owing  to  the  Pigeon’s  definition  of  serpents  as  animals  having  long  necks  and  eating 

eggs. 
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[CH.  I Returning  to  the  theme  of  subsets,  it  should  be  stressed  that  Definition 

I,  while  enabling  us  to  ascertain  whether  one  of  two  given  sets  is  a  subset 

of  the  other,  is  of  course  no  instrument  for  producing  subsets',  for  instance, 
for  producing  from  the  set  of  all  integers  the  subset  of  all  odd  integers. 

True,  the  naive  attitude,  going  back  to  Cantor  and  still  prevailing  in 

textbooks  of  set  theory,  fancies  that  by  taking  some  of  the  members  of  a 

set  one  obtains  a  subset.  However,  already  more  than  fifty  years  ago 

this  attitude  led  to  antinomies  of  the  semantical  type  ( Foundations , 

Chapter  I).  Therefore  a  stricter  method  has  to  be  adopted,  as  expressed  in 

Axiom  (or  Principle)  of  Subsets  (II).  For  any  set  S  and  any  predicate  P 

(in  other  words,  any  condition  on  x,  P(x))  which  is  meaningful  („definite”) 
for  all  members  x  of  S  there  exists  the  set  S  that  contains  just  those 

members  a;  of  A  which  satisfy  the  predicate  P  (the  condition  P(x)). 

The  set  A  —  like  the  sets  introduced  in  the  following  axioms  —  is 

uniquely  defined  in  view  of  extensionality  (Axiom  I)  and  is  a  subset  of  S. 

It  shall  be  denoted  by  S  =  Sp. 

The  concept  of  “definite  predicate”  requires  some  precisifying.  Obvi¬ 

ously  predicates  such  as  “odd”,  “greater  than  — ”,  “prime”,  “transcen¬ 

dental”  are  meaningful  if  A  is  a  set  of  numbers  *),  but  not  “green”, 

“eternal”,  “quadrilateral”.  Since  1921  lively  discussions  around  this 

concept  
have  

arisen  
which  

we  need  
not  go  into  

here *  

2).  xet  and  x  =  «as 

well  as  their  negations  are  certainly  meaningful  conditions  on  x,  whatever 

the  fixed  sets  t  and  u  may  be. 

If  we  take  for  P(x)  the  condition  “x  is  a  member  of  S”,  or  any  other 
condition  satisfied  by  each  member  of  S,  we  obtain  S  itself  as  the  subset 
S  of  S.  But  what  happens  if  no  member  of  A  satisfies  the  condition? 

(This  case  is  realized  most  simply  by  taking  the  predicate  “is  not  a  member 

of  5”;  if  S  is  the  set  of  all  integers  we  may  also,  for  instance,  use  the 
predicate  “is  irrational”.)  In  this  case  the  set  S,  which  certainly  exists  on 
account  of  Axiom  II,  contains  no  member  whatsoever.  Moreover,  this 

set  is,  according  to  extensionality,  the  only  set  without  members;  by 

x)  Naturally,  “meaningful”  does  not  involve  that  for  every  *  it  can  actually  be decided  whether  x  satisfies  the  predicate;  cf.  the  remark  on  p.  10  regarding  the  set  of transcendental  numbers. 

2)  A  historical  and  logical  survey  with  references  to  the  literature  is  given  in 
Foundations,  pp.  38^12.  The  concept  “condition  on  x"  is,  for  instance,  defined  in 
Rosser  53,  p.  200.  In  the  above  formulation  the  predicate  is  assumed  to  be  monadic, 
i.e.  to  have  a  single  argument;  however,  the  axiom  may  also  be  extended  so  as  to 
allow  additional  arguments  to  enter  P. 
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Definition  I  it  is  a  subset  of  every  set,  for  the  definition  is  fulfilled  “vacu¬ 

ously”.  Hence  we  have 

Theorem  2.  There  exists  one  and  only  one  set  which  has  no  member. 

It  is  a  subset  of  every  set. 

We  call  this  set  the  null-set  or  the  empty  set  and  denote  it  by  O *). 

Theorem  2  derives  from  stating  Axiom  II  without  exception;  exceptions  which  are 

so  familiar  in  grammar  are  abhorred  by  the  mathematician  and  can  as  a  rule  be 

avoided  by  defining  in  an  appropriate,  if  sometimes  unaccustomed  or  even  paradoxical 

way.  A  few  philosophers  have  raised  objections  against  subsuming  under  the  concept 

of  set  a  set  which  contains  no  member  (and  even  against  calling  a  set  a  subset  of  itself, 

which  corresponds  
to  calling  an  integer  a  divisor  of  

itself)* 2).  

Such  objections  
derive 

from  misunderstanding  the  nature  of  a  definition,  which  is  not  a  statement  (true  or 

false)  but  an  abbreviating  convention  (useful  or  not).  Only  the  advantage  brought 

about  by  the  definition  can  justify  it,  and  in  the  case  of  the  null-set  the  advantage  is 
obvious,  as  seen  above  (with  respect  to  Axiom  II)  and  frequently  later  (for  instance, 

in  the  following  paragraph  and  in  Definitions  III  and  IV  below).  Asking  whether  it 

is  true  that  the  empty  set  constitutes  a  set  is  as  absurd  as  discussing  whether  man  is  an 
animal  or  not. 

According  to  Definition  I,  Axiom  II,  and  Theorem  2  the  set  {1,  2,  3} 

has  8  =  23  subsets,  namely 

{1,  2,  3},  {1,  2},  {2,  3},  {3,  1},  {1},  {2},  {3},  O. 

We  shall  see  in  §§  5  and  7  that  this  statement  about  the  number  of  subsets 

is  a  special  case  not  only  of  a  well-known  theorem  of  combinatorial 

analysis  but  of  a  far-reaching  theorem  of  set  theory  which  equally  holds 
for  finite  and  infinite  sets. 

Our  example  suggests  two  general  remarks.  First,  clearly  the  set  {1} 

differs  from  the  number  1,  and  “in  general”  one  has  to  distinguish  between 

an  object  a  and  its  unit-set  {a}.  The  question  remains  open  whether  there 

exist  “extraordinary”  objects  (sets)  a  such  that  {a}  =  a.  In  the  present 

book  such  sets  do  not  occur;  the  question  in  principle  is  raised  in  Foun¬ 

dations,  Chapter  II,  §  5. 

More  pressing  for  our  system  is  the  question  whether  each  of  the  eight 

sets  named  above  exist  (independently  of  Cantor’s  definition  of  set),  i.e. 

whether  they  constitute  sets  and  not  just  “classes”.  With  regard  to  O 

!)  The  null-class  was  first  used  in  symbolic  logic ;  cf.  the  historical  sketch  Cipolla  37. 

In  set  theory  the  null-set  was  introduced  only  at  the  beginning  of  the  present  century  by 

Russell,  Zermelo,  and  others.  Besides  O,  other  symbols  (e.g.,  0  or  A)  are  in  use. 

2)  Some  of  these  objections  originate  from  confusion  between  the  membership 

and  the  inclusion  relations;  e.g.,  Carmichael  43. 
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the  answer  is  in  the  affirmative.  Assuming  the  existence  of  the  starting-set 

{1,  2,  3},  the  other  six  sets  are  easily  obtained  by  means  of  the  axiom  of 

subsets  through  predicates  of  the  form  “equal  to  —  or  — ”  for  the  sets 

with  two  members,  and  of  the  form  “equal  to  — ”  for  the  unit-sets. 

However,  given  the  objects  1,  2,  3,  Axioms  I  and  II  do  not  yield  the  set 

{1,  2,  3}  nor  similar  sets  if  two  or  more  objects  are  given.  A  partial 

instrument,  which  (in  conjunction  with  Axiom  IV,  below)  will  prove 

sufficient  with  respect  to  finitely  many  given  objects,  is 

Axiom  (or  Principle)  of  Pairing  (III).  For  any  two  different  objects  a 

and  b  there  exists  the  set  that  contains  just  a  and  b. 

It  is  called  the  pair  of  a  and  b  and  denoted,  according  to  p.  15,  by 

{a,  b}  or  by  {b,  a). 

Axiom  III  is  formulated  for  the  case  a  b  only.  If  a  =  b,  i.e.  if  the 

existence  of  the  unit-set  {a}  of  one  object  a  is  concerned,  we  can  prove 

the  statement.  For  according  to  Theorem  2  and  Axiom  III x)  there 

exists  the  pair  {a,  O},  from  which  by  means  of  the  predicate  “equals  a” 

(or  “is  different  from  0”)  the  set  {a}  emerges.  Hence 

Theorem  3.  For  any  given  object  a  there  exists  the  unit-set  {a}  which 

contains  a  and  no  other  member. 

In  the  example  of  p.  17  a  set  with  three  members  was  used  in  an  infor¬ 

mal  way  only,  for  even  if  three  different  objects  a,  b,  c  are  given  we  cannot 

assert  the  existence  of  the  set  {a,  b,  c}  with  the  resources  (axioms)  at  our 

disposal.  (It  will  be  ensured  in  3.)  On  the  other  hand,  assuming  that  a  com¬ 

prehensive  enough  set  is  given,  any  finite  subset  containing  a,b,c,  ...  ex¬ 

ists  by  Axiom  II,  through  predicates  of  the  form  “equals  a  or  b  or  c  . . .”. 

3.  Union,  Intersection,  Difference.  If  A  and  T  are  sets  we  may  ask  for 

the  sets  which  contain  either  the  members  that  belong  to  any  one  of  them 

or  those  that  belong  to  each  of  them.  The  first  operation  corresponds  to 

logical  
disjunction  

(“or”* 2)),  

the  
second  

to  logical  
conjunction  

(“and”: 

x)  This  proof  fails  if  a  =  O.  But  in  this  case  the  axiom  of  power-set  (§  5,  3),  which 
yields  the  set  containing  all  subsets  of  a  given  set,  produces  the  set  {(?},  since  the  empty 
set  has  no  subset  but  itself. 

2)  The  intention  is  to  “alternation”,  i.e.  to  “at  least  one  of  both”,  and  not  to  the 

exclusive  disjunction  which  means  “just  one  of  both”.  Confusion  has  been  created  by 
the  defectiveness  of  many  languages  which  use  the  same  word  (or,  ou,  oder,  etc.)  for 

both  kinds  of  disjunction;  in  Latin,  however,  alternative  disjunction  is  denoted  by 

vel,  exclusive  by  aut.  For  the  use  in  logic,  the  alternative  disjunction  is  more  suitable. 

Compare  the  use  of  “or”  in  the  sentences  “in  this  or  the  next  block  you  will  find  a 

cab”  and  “the  child  just  born  is  male  or  female”. 
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members  belonging  to  both  S'  and  T).  If  in  fig.  3  the 

- set  of  all  points  belonging  to  the  horizontal  rectangle 

is  denoted  by  S  and  the  set  of  those  of  the  vertical  rec- 

- tangle  by  T  then  the  first  operation  yields  the  set  of  all 

_  points  contained  in  the  cross-shaped  figure,  the  second 

Fig.  3  the  set  of  those  in  the  inner  square  alone. 

We  shall  now  generalize  these  operations,  first  from  two  sets  to  any 

finite  number  of  sets,  secondly  to  any  (infinite)  sequence  of  sets.  (As 

usual  in  mathematics,  a  sequence  means  an  ordered  collection  which 

contains,  for  each  positive  integer  n,  an  «th  member,  while  conversely 

every  member  of  the  collection  is  the  nth  for  a  certain  n.  This  definition  of 

sequence  allows  a  repeated  occurence  of  the  same  member,  in  contrast 

with  sets  as  remarked  on  pp.  10  and  14.)  A  generalization  to  any  infinite 

set  of  sets  will  be  given  in  §  6,  2. 

Definition  III.  Let  be  given  finitely  many  sets  Si,  S2,  . . . ,  Sn 

or  a  sequence  x)  of  sets  (Si,  S2, . . .,  Sn,  ■  .  .)•  The  set  U  of  all  members 

contained  in  at  least  one  Sk  is  called  the  union  of  the  given  sets,  the 

set  1  of  all  members  contained  in  each  Sk  is  called  the  intersection  of 

the  given  sets. 

W
e
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*
 
 

2) U  =  Si  U  S2  U  . . . ,  I  =  Sin  S*  n  .... 

According  to  this  definition,  each  term  Sk  is  a  subset  of  the  union  while 

the  intersection  is  a  subset  of  each  term  Sk- 

Examples. 

1)  Si  =  {1,  2,  3,  . . . },  S2  =  {2,  3,  4,  . . .},  Sk  —  {k,  k  +  1,  k  +  2,  . . .} 

for  every  positive  integer  k.  The  union  of  all  Sk  is  Si,  the  intersection  is 

the  null-set;  for,  n  denoting  any  member  of  Si,  there  are  sets  in  which  n  is 

not  contained,  namely  all  Sk  with  k>  n. 

!)  A  sequence  is,  as  usual,  denoted  by  round  parentheses  ( ),  in  contrast  with  a  set 

which  is  denoted  by  curly  brackets  {  }.  Though  the  notion  of  sequence  fundamentally 

differs  from  that  of  set  we  shall  in  §  6  (Definitions  III  and  VI)  use  a  method  of  incorpor¬ 

ating  sequences  in  the  terminology  of  sets;  therefore  it  is  unnecessary  to  mention 

sequences  in  Axiom  IV  below. 

2)  Many  (in  particular,  French  and  Polish)  authors  use  the  symbols  +  and  • 

respectively  for  our  u  and  n  ;  so  does  also  Kleene  52.  This  notation  has  its  origin  in  a 

partial  analogy  mentioned  later  in  this  subsection;  for  +  also  in  Definitions  II  and  III 

of  §6. 
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2)  Si  =  {1,  2,  3,  . . . },  52  =  1,  f,  2,  f,  . . . }  (all  positive  multiples 

of  i),  S3  =  {i,  f,  1,  f,  Sk  =  {},  The  union  of  all 

Sic  is  the  set  of  all  positive  rational  numbers,  the  intersection  is  Si. 

3)  Let  Si  be  the  set  of  all  real  numbers  except  the  integers,  S2  the  set 

Si  except  the  rationals  with  the  denominators  1  and  2,  and  Sic,  for  any  k, 

the  set  Si  except  the  rationals  with  the  denominators  1,  2,  3,  . . .,  k.  The 

union  is  Si,  the  intersection  the  set  of  all  irrational  numbers. 

The  examples  1)  and  3)  show  that  the  intersection  of  a  sequence  of 

infinite  sets,  each  of  which  is  a  proper  subset  of  its  predecessor,  may  be 

either  empty  or  contain  members  (even  infinitely  many).  This  remark  will 

prove  useful  in  §  5,  4.  Incidentally,  example  1)  again  shows  the  expediency 

of  having  an  empty  set  (the  null-set)  at  our  disposal;  otherwise  the 

intersection  of  given  (not-empty)  sets  would  not  necessarily  be  a  set. 

However,  we  have  not  yet  ensured  the  existence  of  the  sets  (union  and 

intersection)  defined  above.  To  achieve  this  in  an  even  wider  sense  (as 

required  in  §  6)  we  introduce 

Axiom  (or  Principle)  of  Sum-Set  (IV).  For  any  set  A  of  sets  x)  there 
exists  the  set  that  contains  just  the  members  of  the  members  of  A. 

This  set  is  called  the  sum-set  of  A  or  the  union  of  the  members  of  A, 

and  denoted  by  U  A  or,  if  a,  a! .  are  the  members  of  A,  by  a  U  a'  U ... . 
Axiom  IV  guarantees  not  only  the  existence  of  the  union  but  also  of  the 

intersection  of  the  members  of  A  which,  in  addition  to  the  notation  of 

Definition  III,  shall  also  be  denoted  by  fl  A.  In  fact,  let  a  be  an  arbitrary 

member*  

2)  of  A,  and  P(x)  
be  the  condition  

“x  is  a  member  
of  each  

member 

of  A”.  Then  we  obtain,  according  to  the  axiom  of  subsets,  a  subset 
ap  of  a  which  is  the  intersection  of  the  members  of  A,  according  to 

Definition  III  (even  for  any  set  A  of  sets). 

Given  finitely  many  different  sets  si,  sz,  . . .,  sn,  we  are  now  in  a 

position  to  form  the  set  which  contains  them.  The  method  will  become 

sufficiently  clear  by  taking  n  —  4  and  n  =  3. 
By  the  axiom  of  pairing  the  sets 

{si,  *2}  =  A,  {ss,  s4}  =  S',  {S,  S'}  3) 

*)  The  words  “of  sets”  are  essentially  superfluous;  they  only  serve  the  purpose  of 
easier  understanding.  Besides,  as  pointed  out  in  1,  systematically  we  use  no  other 
objects  than  sets. 

2)  It  is  evident  that  the  set  ap  is  independent  of  the  particular  member  a  chosen. 
We  may  as  well  avoid  the  arbitrariness  of  a  and,  instead  of  a,  start  from  the  sum-set 
U  A;  our  condition  P(x)  then  yields  the  same  subset,  namely  the  intersection. 

3)  Since  the  Sk  were  assumed  to  be  different  we  have  S  i=-  S'. 
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exist,  hence  by  the  axiom  of  sum-set  also 

\J{S,S'}  =  SVS'={s1,S2,  S3,  s*}. 

To  obtain  the  set  {51,  s2,  53}  we  use,  instead  of  S',  the  set  {53}  which 
exists  by  Theorem  3. 

Though  the  formal  laws  valid  for  the  operations  of  Definition  III  are 

formulated  only  in  §  6  in  full  generality,  it  is  preferable  to  anticipate 
their  simplest  cases  at  this  juncture. 

The  commutative  laws 

Si  u  S'.  =  S2  U  Si,  Si  n  S2  =  S2  n  Si 

which  state  that  the  result  of  the  operations  is  independent  of  the  order 

of  the  terms  (and  which  also  hold  for  any  number  of  terms)  need  not  be 

proven  since  no  order  of  the  terms  occurs  in  Definition  III  (“at  least 

one  S*”,  “each  St”).  This  situation  differs  fundamentally  from  that  in 
arithmetic  where,  for  instance,  the  addition  of  two  numbers  is  defined  in 

an  inductive  way  which  distinguishes  between  the  first  and  the  second 

term  (cf.  §  10,  2);  hence  in  arithmetic  the  commutative  law  is  a  theorem 

requiring  a  proof. 

The  associative  laws 

(Si  U  S2)  U  S3  =  Si  U  (S2  U  S3)  =  Si  U  S2  U  S3, 

(Si  n  S2)  n  S3  =  Si  n  (S2  n  S3)  =  Si  n  S2  n  S3 

require  proofs  also  in  the  present  case  —  even  proofs  additional  to  those 

of  arithmetic,  where  a  +  b  +  c  is  just  an  abbreviation  for  the  common 

value  of  (a  -f  b)  +  c  and  a  +  (b  +  c ),  while  here,  for  instance,  Si  U  S2  U  S3 

is  independently  defined  by  Definition  III.  It  will  be  sufficient  to  prove 

two  of  the  above  statements  as  the  proofs  of  the  two  others  are  almost 

verbatim  the  same. 

To  prove  (Si  U  S2)  U  S3  =  Si  U  S2  U  S3  we  have  to  show,  according 

to  extensionality,  that  the  left-hand  and  the  right-hand  sets  contain  the 

same  members.  If  x  belongs  to  (Si  U  S2)  U  S3  it  belongs  either  to 

Si  U  S2  or  to  S3  (or  to  both) :  hence  x  belongs  to  Si  U  S2  U  S3.  If  the 

latter  is  the  case  then  x  belongs  to  at  least  one  of  the  sets  Si,  S2,  S3, 

hence  to  Si  U  S2  or  else  to  S3,  hence  to  (Si  U  S2)  U  S3. 

The  proof  of  (Si  P>  S2)  n  S3  =  Si  n  S2  n  S3  is  quite  similar,  x 

belonging  to  the  left-hand  set  means  that  x  belongs  to  both  Si  n  S2  and 

S3,  hence  to  both  Si  and  S2,  hence  to  Si  n  S2  n  S3.  Conversely,  if  x 

belongs  to  the  latter  set,  i.e.  to  each  of  the  sets  Si,  S2,  S3,  then  x  belongs 
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to  Si  n  S2  as  well  as  to  S3,  hence  to  (Si  n  S2)  n  S3.  Herewith  the 

proof  is  completed. 

Finally,  the  operations  of  Definition  III  are  connected  with  each  other 

by  the  following  two  distributive  laws 

Si  n  (Si  u  S3)  =  Si  n  S2  u  Si  n  S3,  *) 
Si  u  S2  n  S3  =  (Si  u  S2)  n  (Si  u  S3). 

In  fact,  if  x  belongs  to  Si  n  (S2  U  S3),  i.e.  to  both  Si  and  S2  U  S3,  x  be¬ 

longs  to  both  Si  and  S2  or  to  both  Si  and  S3,  hence  to  Si  n  S2  U  Si  n  S3; 

the  converse  direction  is  confirmed  as  easily. 

For  the  second  law  we  show  that  any  x  belonging  to  Si  or  to  both  S2 

and  S3  also  belongs  to  the  right-hand  expression;  in  fact,  in  either  case 

x  belongs  to  both  Si  U  S2  and  Si  U  S3.  The  proof  in  the  direction  from 

the  right  to  the  left  is  analogous. 

All  these  formal  laws,  with  one  exception,  correspond  to  the  formal 

laws  of  arithmetic  —  if,  for  instance,  we  take  addition  instead  of  union 

and  multiplication  instead  of  intersection.  The  corresponding  arithmetical 

laws  are  written  in  the  forms 

u\  <22  —  02  ~b  0.1,  a\a2  —  a2ai,  (ai  +  02}  -f-  03  —  Qi  T~  (a2  b-  03), 

(aia2)a3  =  01(02^3),  cti(a2  +  #3)  =  ̂ 1^2  +  aia3. 

The  exception  is  the  second  distributive  law  whose  counterpart  ai  +  0203 

=  (ai  +  ai)(ai  +  az)  is  not  valid  in  arithmetic.  (Had  we  replaced  union 

by  multiplication  and  intersection  by  addition  then  the  first  distributive 

law  would  be  the  exception.) 

There  is  an  intrinsic  reason  for  the  exception.  In  contradistinction  to 

the  operations  of  union  and  intersection,  which  are  parallel  to  each  other 

and  even  dual  (see  §  6,  9),  arithmetical  multiplication  is  based  on  addition 

—  in  the  simplest  cases  just  defined  as  repeated  addition,  and  not  vice 
versa. 

We  conclude  with  a  notion  of  limited  importance  only. 

Definition  IV.  If  S0  is  a  subset  of  the  set  

S

*

 

 
2),  the  set  of  those 

members  

of  S  which  
do  

not  
belong  

to  S0  
is  called  

the  
difference  

of  S 

and  
So  and  

denoted  

by  
S  —  So. 

b  Here,  as  in  the  arithmetical  notation  ab  +  ac,  parentheses  for  Si  n  S2  etc.  are 
omitted. 

2)  Some  authors  drop  this  condition.  However,  for  our  purposes  a  more  general 
definition  is  not  required. 
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The  difference  exists  by  the  axiom  of  subsets  through  the  predicate 

“is  not  a  member  of  So”.  If  So  =  S  we  have  S  —  S0  =  O. 

4.  Mapping  and  Equivalence.  In  the  first  example  of  §  1  we  dealt  with 

a  certain  correspondence  between  a  set  of  fruit  and  a  set  of  numbers. 

Such  correspondences  may  be  regarded  as  the  basis  of  the  concept  of 

finite  number  and  we  shall  see  in  §  4  that  by  their  means  also  the  concept 
of  infinite  number  can  be  introduced. 

The  notion  of  unique  (single-valued)  correspondence  or  function  is  well- 

known  inside  and  outside  mathematics.  A  thermograph  is  an  instrument 

which  notes  the  temperature  T  for  every  moment  (at  a  given  place,  during 

a  given  week).  The  function  T  =  f(t )  marked  by  the  thermograph  is 

single-valued,  for  to  every  moment  t  corresponds  a  uniquely  defined 

temperature.  If,  however,  we  ask  at  what  time  a  certain  temperature 

(say,  within  the  temperature-range  in  question)  has  been  reached  then  the 

answer  is  given  by  a  function  —  the  inverse  of  the  function  T  =  f{t)  — 

which  in  general  is  not  single-valued  because  the  same  temperature  may 

be  reached  at  different  moments.  The  concept  of  a  single-valued  but  not 

uniquely  invertible  function  is  much  used  in  mathematical  analysis; 

cf.  §  7. 

However,  in  practical  fife  as  well  as  in  science  one  also  uses  correspond¬ 

ences  with  an  additional  property.  Anthropologists  tell  us  of  primitive 

tribes  where  only  three  numerals  are  known,  viz.  one,  two,  many.  To 

compare  nevertheless  heaps  of  apples  the  notion  of  “proper  subset” 
may  prove  sufficient.  Yet  a  decisive  step  towards  the  creation  of  the 

number-concept  is  taken  when,  for  the  purpose  of  barter,  a  heap  of 

apples  is  compared  with  a  multitude  of  eggs.  To  attach  (relate)  a  single 

egg  to  each  apple  is  not  enough  because  then  to  different  apples  the  same 

egg  might  correspond.  It  is  necessary  to  use  one-to-one  (biunique,  that 

is  to  say  single-valued  and  uniquely  invertible)  correspondences,  i.e. 

such  as  attach  a  single  egg  to  each  apple  and  different  eggs  to  different 

apples;  hereby  also  a  single  apple  is  attached  to  each  egg  x).  If  two  heaps 

have  the  property  that  such  a  correspondence  between  them  exists  then 

there  exist  various  correspondences,  save  for  the  trivial  case  where  the 

“heap”  contains  a  single  object  only. 

J)  In  a  polygamic  society  husbands  are  uniquely  related  to  their  wives,  in  a  mono- 

gamic  society  even  biuniquely;  in  the  latter,  therefore,  the  set  of  married  women  is 

“equivalent”  to  the  set  of  married  men  in  the  sense  of  Definition  V. 
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of  mathematical  processes  but  to  the  most  primitive  and  fundamental 

activities  of  human  mind  in  general.  They  yield  the  notion  of  number  as 

positive  integer  or  “cardinal  number”  which  answers  the  question  “how 

many?”;  for  multitudes  of  arbitrary  objects  between  which  a  one-to-one 

correspondence  exists  may  be  defined  to  possess  “the  same  cardinal 

number”,  hence  cardinal  number  can  be  introduced  as  the  common 

characteristic  of  such  multitudes  1). 

A  well-known  example  of  achieving  such  a  process  for  multitudes 

which  are  not  finite  is  given  in  example  d)  of  §  1 .  Further  examples  will 

appear  in  this  and  the  following  sections. 

The  very  concept  of  finite  cardinal  number  as  developed  in  this  way 

—  a  way  whose  importance  for  the  beginnings  of  civilization  in  general 

can  hardly  be  over-estimated  —  also  provides  us  with  a  universal  and 

inexhaustible  kind  of  objects  to  be  used  as  general  mediators,  thus 

sparing  us  the  direct  comparison  of  multitudes  of  different  objects.  These 

mediators  are  the  integers  1,  2,  3,  ....  They  have  the  advantage  of  not 

possessing  accidental  properties,  as  they  are  just  qualified  for  the  process 

of  counting  and  yield  “normal”  sets  to  which  multitudes  of  any  objects 
can  be  compared. 

Without  introducing  a  (superfluous)  limitation  to  finite  multitudes 

(sets)  we  therefore  define : 

Definition  V.  If  the  members  of  a  set  T  can  be  related  to  the 

members  of  a  set  >S  in  a  one-to-one  (biunique)  correspondence,  i.e.  so 

that  a  single  member  of  T  corresponds  to  each  member  of  S  and 

vice  versa,  we  speak  of  a  (one-to-one)  mapping 2)  of  S  onto  T.  In  this 

case  the  set  T  is  called  equivalent 3)  to  the  set  S,  written  T  ~  S. 

b  For  a  non-technical  exposition  of  this  subject  for  finite  sets  and  numbers  cf., 
for  instance,  Russell  19  or  Dantzig  30.  A  stricter  treatment  that  includes  infinite  sets 

is  given  below  in  §  4. 

2)  In  the  present  book  no  other  mappings  are  used,  hence  the  attribute  “one- 

to-one”  will  usually  be  dropped.  Some  authors  say  “representation”  instead  of 
“mapping”. 

We  shall  distinguish  between  correspondence  (between  the  members  of  the  sets)  and 
mapping  (between  the  sets). 

3)  True,  the  term  “equivalent”,  introduced  by  Cantor  in  this  sense,  is  overladen 
by  its  various  meanings  in  logic  and  mathematics.  We  shall  avoid  misunderstandings 

by  using  “ equipollent ”  (instead  of  “equivalent”)  for  logical  equivalence. 
Some  authors  use  “similar”  for  set-theoretical  equivalence.  Yet  we  shall  need 

“similar”  for  a  different  purpose  (§  8). 
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Mappings  are  usually  denoted  by  Greek  letters  such  as  <p,  y/,  0  etc. 

To  prove  that  given  sets  are  equivalent  it  is  sufficient  to  define  a 

certain  mapping  (among  various,  even  infinitely  many,  mappings  which 

may  exist).  However,  for  the  proof  that  T  is  not  equivalent  to  5  we  cannot 

rely  upon  the  failure  of  an  attempt  to  construct  a  mapping  but  have  to 

show  that  every  such  attempt  is  bound  to  fail.  Cf.  §  4,  3. 

When  finite  sets  are  concerned  a  mapping  can  be  defined  by  listing, 

for  each  member  of  the  one  set,  the  image  in  the  other  to  which  it  shall  be 

related.  This  is  impossible  with  respect  to  infinitely  many  members;  then 

the  correspondence  can  only  be  defined  by  a  law  (function),  i.e.  by  a  rule 

which,  though  formulated  in  a  finite  way,  defines  to  each  of  the  infinitely 

many  members  of  the  one  set  its  image  in  the  other.  Also  for  finite  sets 

which  contain  a  considerable  number  of  members  a  law  is,  as  a  rule, 

preferable  to  a  complete  list. 

Equivalence  as  defined  above  is  not  a  property  but  a  relation J),  more 

strictly,  
a  

dyadic *  

2)  (binary,  
two-place)  

relation  
X  ~  Y with  two  arguments, 

i.e.  free  variables,  X  and  Y  for  which  sets  can  be  inserted.  A  relation 

may  have  certain  properties;  we  shall  now  prove  that  the  equivalence 

relation  has  the  properties  of  reflexivity,  symmetry,  and  transitivity. 

Equivalence  is  reflexive,  i.e.  for  every  set  S  holds  S  ~  S.  This  is  proven, 

for  instance,  by  the  identical  mapping  which  relates  each  member  of  S  to 

itself.  (The  null-set  is  also  called  equivalent  to  itself.) 

Equivalence  is  symmetrical,  i.e.  from  T  ~  S  follows  S  ~  T.  This  is 

an  immediate  consequence  of  the  fact  that  our  correspondences  are 

biunique  (one-to-one);  for  if  t  e  T  corresponds  to  s  e  S  then  vice  versa 

s  e  S  corresponds  to  t  e  T,  whereby  a  mapping  of  T  onto  5  is  produced. 

J)  Greek  philosophy,  and  even  medieval  and  modern  philosophy  until  the  later 
part  of  the  nineteenth  century,  have  not  become  aware  of  the  distinction  between 

properties  and  relations,  owing  to  the  similarity  in  the  grammatical  structure  of 

sentences  expressing  property  or  relation  statements.  Only  with  the  development  of 

Symbolic  Logic  (cf.  Foundations,  Chapters  II  and  III)  was  the  fundamental  importance 

of  relations  recognized.  An  unforgettable  device  for  stressing  the  distinction  between  a 

property  and  a  dyadic  relation  is  provided  by  the  following  joke.  A  woman  calls  on 

her  friend  who  has  born  twins  and  says,  your  children  are  so  beautiful,  particularly 

the  one  on  the  left.  Then  another  friend  calls  and  remarks,  your  children  are  so  alike, 

particularly  the  one  on  the  left.  Grammatically  the  sentences  are  equally  shaped,  but 

“beautiful”  expresses  a  property,  “alike”  a  relation. 

2)  Cf.  the  beginning  of  §  2.  There  are  also  triadic  relations  and  such  with  more 

places.  Triadic  is,  for  instance,  “the  point  y  lies  between  the  points  x  and  z”  or  “the 
number  z  is  the  sum  of  a  and  i.e.  z  =  x  +  y.  Properties  (predicates)  may  be 

regarded  as  monadic  (one-place)  relations. 
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The  symmetry  of  the  equivalence  relation  allows  us  to  treat  S  and  T 

homogeneously,  that  is  to  say,  to  speak  of  the  equivalence,  and  of  a  map¬ 

ping,  between  the  sets  S  and  T  (and  of  a  one-to-one  correspondence 

between  their  members)  or  to  state  that  S’  and  T  are  equivalent. 

Finally,  equivalence  is  transitive,  i.e.  from  S  ~  T  and  T  ~  U  follows 

S'  ~  U.  In  view  of  the  symmetry  we  may  formulate  transitivity  also  in  the 
form:  if  two  sets  S  and  U  are  equivalent  to  the  same  set  T,  they  are 

equivalent  to  each  other;  for  U  ~  T  implies  T  ~  U. 

To  prove  transitivity  let  tp  be  an  arbitrary  mapping  between  S  and  T, 

ip  an  arbitrary  mapping  between  T  and  U.  In  the  following  we  shall 

stick  to  these  mappings  and  refer  to  them  in  speaking  of  “the  image”. 
Now  if  t  e  T  is  the  image  of  an  arbitrary  s  e  S  and  u  e  U  the  image  of 

t  e  T  then  a  one-to-one  correspondence  x  between  the  members  of  S 

and  of  U  is  produced  by  relating  u  e  U  to  s  e  S.  From  the  assumption 

it  follows  that  the  correspondence  defined  is  unique;  that  it  is  even  bi¬ 

unique  results  from  t  e  T  being  the  image  of  we  (7  and  s  e  S  the  image 

of  t  e  T.  Hence  /  is  a  mapping,  i.e.  S  ~  U.  This  proof  contrives  to 

eliminate  the  mediating  set  T  by  a  direct  transition  from  S  to  U  (hence 

the  term  transitive).  Thus  we  have  proven 

Theorem  4.  The  equivalence  between  sets  is  a  reflexive,  symmetrical, 

and  transitive  relation.  Hence  in  a  collection  of  sets  such  that  each  set  is 

equivalent  to  a  definite  set,  each  is  also  equivalent  to  any  other. 

The  various  meanings  in  which  the  term  “equivalent”  is  used  in 
different  branches  of  mathematics  and  of  logic  have  the  common  feature 

that  the  respective  relations  have  the  three  properties  expressed  in 

Theorem  4.  (Naturally  any  equality  relation,  for  instance  the  equality 

of  sets,  is  also  an  equivalence  relation.)  These  properties  are  not  inde¬ 

pendent',  for  S  ~  T  implies  T  ~  S,  hence  (by  transitivity)  S  ~  S.  Accord¬ 

ingly,  if  for  every  S  there  exists  a  T  such  that  S  ~  T,  reflexivity  is  a  con¬ 

sequence  of  symmetry  and  transitivity.1). 
Later  (in  §§  5  and  8)  we  shall  deal  with  relations  which  have  other 

properties,  e.g.  such  as  are  irreflexive,  non-symmetrical,  or  even  asym¬ 

metrical  ;  also  the  membership  relation  e  has  none  of  the  above  properties. 

Prior  to  a  more  general  treatment  in  §  6,  we  here  state  the  following 

properties  of  equivalence  in  connection  with  concepts  introduced  earlier 
in  this  section. 

x)  Cf.,  however,  exercise  5)  at  the  end  of  this  section. 
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1)  A  given  mapping  between  S  and  T  maps  every  proper  subset  of  S 
onto  a  proper  subset  of  T. 

2)  If  Si  and  S 2  are  disjoint  sets  and  if  the  mappings  (pi  and  (p2 

respectively  map  Si  and  S2  onto  the  disjoint  sets  Ti  and  T2  then  Si  U  S2 

is  mapped  onto  1\  U  T2  by  the  “ union ”  of  the  mappings  (pi  and  (p2,  which 
union  is  also  a  mapping.  Hence  Si  U  S2  ~  T\  U  T2. 

The  proofs  follow  from  the  very  definition  of  mapping. 

Finally,  a  question  of  principle  with  respect  to  the  equivalence  relation  shall  be 

raised.  In  subsection  1  we  stated  that  our  system  of  set  theory  is  based  on  a  single 

primitive  relation,  the  membership  relation  e.  Flowever,  in  Definition  V  a  new  relation, 

that  of  mapping  or  equivalence,  has  been  introduced.  Is  this  compatible  with  the  earlier 
statement? 

The  answer  is  that  the  equivalence  relation  can  be  reduced  to  the  membership  re¬ 

lation})  Restricting  
ourselves  

to  the  case  where  the  given  sets  S  and  T  are  

disjoint*  

2), 

we  can  easily  prove  (cf.  §  6,  5)_the  existence  of  the  set  P  of  all  pairs  (s,  t}  with  s  e  S  and 

t  e  T.  Possibly  P  has  subsets  P  of  the  following  property  n :  each  member  of  S  w  T 

appears  in  one  and  only  one  member  of  P.  Any  such  subset  P  can  be  regarded  as  a 

mapping  _between  S  and  T.  In  fact,  for  a  given  s  e  S  there  is  a  single  member  (a  pair 

(s,  t }  of  P)  which  contains  s,  and  the  other  member  t  of  the  pair  may  be  considered  to 

be  related  to  5  by  the  mapping  P ;  moreover,  according  to  the  property  n  every  t  eT 

is  related  in  this  way  to  a  single  s  e  S.  We  therefore  have  S'  ~  T.  If  no  such  subset  P 
exists  then  the  sets  S  and  T  are  not  equivalent.  Hereby  equivalence  is  defined  through 

the  membership  relation. 

By  means  of  Axiom  VI  and  the  axiom  of  subsets  it  can  easily  be  shown  ( Foundations , 

p.  1 26)  that  the  set  of  all  subsets  P  of  P  with  the  property  n  exists.  If  it  contains  members 

then  each  is  a  mapping  between  S  and  T;  if  it  is  empty  S  and  T are  not  equivalent. 

5.  Finite  and  Infinite  Sets.  Up  to  now  we  have  used  the  terms  „finite” 

and  “infinite”  sets  or  “finitely”  and  “infinitely”  many  objects  in  a  naive 
way,  as  they  are  presupposed  in  other  branches  of  mathematics.  Set 

theory,  however,  is  connected  with  the  notion  of  infinity 3)  to  such  an  extent 
that  a  stricter  discussion  cannot  be  further  delayed,  and  the  concept  of 

equivalence  proves  helpful  for  this  discussion.  To  be  sure,  throughout  the 

present  book  we  shall  not  cease  discussing  the  notion  of  infinity,  which 

discussion  is  also  the  intrinsic  subject  of  the  book  Foundations. 

To  be  sure,  for  this  purpose  an  axiom  is  required  which  in  §  5,  3  is  introduced 

for  a  more  general  purpose,  viz.  Axiom  VI  (the  axiom  of  power-set). 

2)  If  they  are  not  disjoint  a  more  complicated  device  has  to  be  used;  see  Foun¬ 
dations,  pp.  126  f. 

3)  H.  Weyl,  one  of  the  foremost  mathematicians  of  the  last  generation,  begins  his 
paper  25  with  the  slogan :  mathematics  is  the  science  of  infinity.  This  may  suggest  that 

mathematics  in  its  entirety  should  be  based  upon  set  theory,  which  in  fact  is  the  opinion 

of  many  mathematicians  (though  it  was  not  Weyl’s  own  opinion);  cf.  §  12. 
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[CH.  I The  most  obvious  way  is  to  refer  to  the  concept  of  integer  and  to 

define  as  follows: 

Definition  VI.  A  set  I  is  called  finite  and  more  strictly,  inductive 

if  there  exists  a  positive  integer  n  such  that  /  contains  just  n  members. 

The  null-set  O  is  also  called  finite.  —  A  set  which  is  not  inductive  is 

called  infinite  (non-inductive) . 

Objections  to  using  the  concept  of  integer  may  be  of  two  kinds.  Either  the  objection 

is  based  on  the  conviction  that  a  main  purpose  of  set  theory  is  to  base  the  concept  of 

integer,  hence  this  concept  must  not  appear  in  basing  set  theory,  whether  explicit  or 

implicit;  yet  it  seems  difficult  to  see  how  any  abstract  doctrine  can  be  developed  without 

some  (possibly  intuitive)  use  of  the  notion  of  number  (cf.  §  10,  6).  On  the  other  hand, 

the  objection  may  mean  that  the  concept  of  integer  should  not  be  presupposed  but 

derived  from  (actually  or  seemingly)  more  general  concepts.  Though  on  the  whole 

this  attitude  is  not  taken  in  the  present  book  in  view  of  its  elementary  character,  the 

explicit  reference  to  the  number  concept  in  Definition  VI  can  easily  be  eliminated,  for 

instance  in  the  following  way  due  to  Bertrand  Russell : 

a)  A  set  of  (cardinal)  numbers  is  called  hereditary  if  its  containing  a  number  n 

implies  that  it  contains  n  +  1.  (+  1  has  to  be  conceived  by  using  the  concept  of  union; 

cf.  §  6,  Definition  II.) 

b)  A  number  (cardinal)  is  called  inductive  if  it  belongs  to  every  hereditary  set  that 
contains  0. 

c)  A  set  is  called  inductive  if  its  cardinal  is  inductive. 

Simpler  definitions  were  given  later,  for  instance  the  following  definition  due  to 

Tarski:1)  I  is  inductive  if  every  non-empty  set  K  of  subsets  of  /  has  at  least  one  max¬ 
imal  member,  i.e.  a  member  which  is  not  a  subset  of  any  other  member  of  K. 

While  we  shall  occasionally  use  well-known  statements  of  finite 

arithmetic  without  proving  them,  an  explicit  proof  of  the  following 

theorem  will  be  given  in  view  of  its  great  importance  in  the  present 
context. 

Theorem  5.  An  inductive  set  I  is  not  equivalent  to  any  proper  subset  of  I. 

Proof.  The  theorem  is  clearly  true  if  /  contains  no  member  (/  =  O) 
or  a  single  member;  in  the  first  case  because  O  has  no  proper  subset,  in 

the  second  because  its  only  proper  subset  is  O,  and  a  set  containing  one 
member  is  not  equivalent  to  the  empty  set. 

To  prove  the  theorem  generally  we  use  the  method  characteristic  of 

arithmetic  of  finite  numbers  (positive  integers),  namely  mathematical 
induction.  While  this  method  will  be  treated  in  detail  in  §  10,  2  where  it 

0  Tarski  25;  cf.  also  A.  Levy  58  and  58a.  Tarski  proves  in  an  “elementary” 
way,  i.e.  without  the  axiom  of  choice  (§  6,  5),  that  this  definition  is  equipollent  to 

Russell’s,  see  §  10,  6. 
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appears  as  a  particular  case  of  a  far  more  general  method  peculiar  to  set 

theory,  we  here  only  use  the  elementary  statement  of  arithmetic  that  a 

theorem  on  finite  (inductive)  numbers  is  true  if  it  is  true  for  a  least 

number,  usually  0  or  1,  and  if  its  truth  for  any  number  n  implies  its  truth 

for  n  +  1. 

Let  us,  therefore,  assume  the  statement  of  Theorem  5  to  be  true 

for  all  inductive  sets  containing  n  members,  n  denoting  any  given  positive 

integer,  and  let  S  be  any  set  of  n  +  1  members,.  We  shall  show  the 

truth  for  S  of  the  statement  of  Theorem  5  by  indirect  proof,  i.e.  by 

presupposing  the  contrary  and  then  deriving  a  contradiction. 

We  assume  5”  to  be  equivalent  to  So  c  S  and  (p  to  be  a  certain  mapping. 
Possibly  there  is  a  member  of  S  which  also  belongs  to  So  and  which  is 

related  to  itself  by  <p;  then  by  dropping  this  member  from  both  S  and  So 

we  obtain  a  mapping  (namely  a  part  of  <p)  between  a  set  of  n  members 

and  a  proper  subset  of  this  set,  contrary  to  our  assumption.  If  S  contains 

no  member  of  the  aforesaid  kind  then  let  a  be  an  arbitrary  member  of  S 

which  is  not  contained  in  the  proper  subset  So.  By  dropping  a  from  S' 

and  the  image  of  a  in  So  (by  (p)  —  say,  b  —  from  So  we  again  obtain  a 

mapping  between  a  set  containing  n  members  (namely  S  —  {a})  and 

its  proper  subset  So  —  { b }. 
The  contradiction  ensuing  from  our  presupposition  in  both  cases 

shows  that  the  statement  of  Theorem  5,  if  true  for  the  sets  containing  n 

members,  is  also  true  for  those  containing  n  +  1  members.  Since  it  is 

true  for  every  unit-set  the  theorem  has  been  proven. 

While  Definition  VI  is  one  of  the  possible  ways  of  characterizing  infinite 

sets,  namely  as  non-inductive  sets,  in  medieval  philosophy  *)  and  more 

strictly  by  Galileo  ( Discorsi  I,  Opere  Complete  XIII)  another  characteristic 

of  infinity  was  pointed  out  which  much  later,  by  Peirce  and  Dedekind 

(independently)*  

2),  
was  

proposed  

for  
defining  

infinity,  

viz. 

Definition  VII.  A  set  R  is  called  infinite  and  more  strictly, 

reflexive  if  R  has  a  proper  subset  that  is  equivalent  to  R.  A  set  which 

is  not  reflexive  is  called  finite  (non-reflexive)  ;  in  other  words,  a  non¬ 

empty  set  is  non-reflexive  if  every  mapping  into  itself  is  a  mapping 

onto  itself. 

*)  Cf.  Thomas  58. 

2)  Peirce  33,  pp.  210-249  (published  in  1885),  also  p.  360  (cf.  Keyser  41);  Dedekind 

1888.  Cf.  also  Bolzano  1851  (§  20)  and  Cantor  1878. 
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example  of  an  infinite  set  considered  in  §  1,  b),  namely  the  set  N  of  all 

positive  integers.  If  No  is  the  set  of  all  integers  greater  than  1  we  have 

No  c  N  and  No  ~  N,  as  is  shown  by  the  mapping  that  relates  every 

n  e  No  to  (n  —  1)  e  N,  hence  every  n  e  N  to  (n  +  1)  e  No-  This  mapping 

is  illustrated  by  the  scheme 

N:  l  2  3  ...  n  —  1  n  ... 

ill  1  i 
Nt,:  2  3  4...  n  n  +  1  .  .  . 

The  reluctance  of  many  a  beginner  to  accept  the  possibility  of  such 

mappings  has  its  origin  in  a  rather  nebulous  conception  as  if  each  member 

of  the  one  set  should  be  related  to  itself  in  the  other.  Obviously  no 

mapping  onto  a  proper  subset  can  be  managed  in  this  way;  it  is  therefore 

important  to  thoroughly  comprehend  the  above  example,  which  will  be 

followed  in  the  next  sections  by  many  other  mappings  between  a  set  and 

a  proper  subset. 

That  also  some  trained  philosophers  have  taken  the  same  reluctant 

attitude  may  be  explained  by  their  adherence  to  the  classical  principle 

totum  parte  maius  (the  whole  is  greater  than  a  part).  This  principle  in  its 

proper  meaning  is,  however,  limited  to  the  domain  of  finite  sets  (Theorem 

5);  its  invalidity  in  the  domain  of  infinity  x)  is  just  characteristic  of  the 
latter.  Unfortunately,  dogmatic  adherence  to  that  principle  has  seriously 

hampered  the  growth  of  set  theory,  even  in  the  hands  of  a  pioneer  as 

daring  as  Bolzano  (cf.  §  12). 

An  immediate  consequence  of  Definitions  VI  and  VII  is 

Theorem  6.  A  set  which  is  equivalent  to  a  finite  ( infinite )  set  is  also 

finite  (infinite). 

Leaving  the  proof  to  the  reader  as  far  as  Definition  VI  is  concerned, 

we  show  that  a  set  S  which  is  equivalent  to  a  reflexive  set  R  is  reflexive  as 
well. 

x)  The  paradoxical  impression  deepens  when  the  phenomenon  of  equivalence 
between  sets  of  obviously  different  sizes  is  transferred,  as  it  were,  to  real  life.  Of  course 

such  would-be  reality  is  fictitious;  for  instance  the  story  of  Tristram  Shandy  who 
writes  his  autobiography  so  pedantically  that  the  description  of  each  day  takes  him 
a  year.  If  he  is  mortal  he  can  never  terminate;  but  did  he  live  forever  then  no  part 
of  his  biography  would  remain  unwritten,  for  to  each  day  of  his  life  a  year  devoted  to 

that  day’s  description  would  correspond. 



CH.  I,  §  2] FUNDAMENTAL  CONCEPTS.  FINITE  AND  INFINITE  SETS 

31 

R,  being  reflexive,  has  a  proper  subset  Ro  c  R  such  that  R  ~  Ro. 

According  to  our  assumption  there  is  a  mapping  (p  between  S  and  R 

and  (p  maps  Ro  onto  a  proper  subset  So  of  S  (see  1)  on  p.  27).  But  the 
relations 

S  ~  R,  R  ~  Ro,  Ro  ~  So 

yield  S  ~  So  by  the  transitivity  of  equivalence;  hence  S  is  equivalent  to 

its  proper  subset  So,  i.e.  S  is  reflexive. 

Therefore,  by  logical  inversion,  a  set  which  is  equivalent  to  a  non¬ 

reflexive  set  is  non-reflexive. 

We  shall  now  examine  the  connection  between  Definitions  VI  and  VII, 

which,  besides  the  material  difference,  are  also  formally  heterogeneous 

inasmuch  as  VI  starts  with  finiteness  and  conceives  infinity  as  its  negation 

while  in  VII  infinity  is  the  primary  concept  and  finiteness  secondary.  The 

equipollence  between  both  definitions,  to  be  shown  below,  is  dependent 

on  a  rather  profound  theorem  whose  natural  place  is  in  the  following 

section  (Theorem  4  of  §  3);  of  course,  in  the  proof  of  that  theorem  no 

use  will  be  made  of  the  present  results. 

According  to  Theorem  5  above,  every  inductive  set  is  non-reflexive, 

hence  every  reflexive  set  non-inductive.  The  remaining  question  is, 

therefore,  whether  there  are  sets  which  are  neither  inductive  nor 

reflexive  (“mediate”  sets).  To  exclude  their  existence  we  prove  that 

every  non-inductive  set  S  is  reflexive. 

In  short  the  proof  runs  as  follows.  A  subset  S*  of  S  which  is  equivalent 

to  the  set  of  positive  integers  has  a  proper  subset  equivalent  to  S*,  as 

shown  on  p.  30.  By  separating  S  into  5*  and  S  —  S*  one  also  obtains 

a  proper  subset  of  S'  which  is  equivalent  to  S. 

We  now  describe  this  in  detail.  According  to  Theorem  4  of  §  3,  S  has  a  subset  S* 

which  is  equivalent  to  the  set  N  of  all  positive  integers.  Taking  a  definite  mapping 

between  S*  and  N  and  marking  the  members  of  S*  by  the  corresponding  indices  we 

may  write 

S*  =  {si,  Sz,  ■  ■  .,  Sk,  ...}• 

If  S-S*  =  S'  (hence  S'  =  O  in  the  case  S*  =  S )  we  have  S  =  S*  U  S',  where  S* 

and  S'  are  disjoint. 

By  dropping  si  from  the  set  S*  we  obtain  a  proper  subset  S*  —  {si}  =  So  whi
ch 

proves  equivalent  to  S*  in  view  of  the  mapping  that  relates  +  i  e  So  to  S/teS’,  just 

as  on  p.  30.  Moreover,  S'0  U  S'  =  So  is  a  proper  subset  of  S  since  si  e  S  but  si  4  So. 

Finally,  we  have  S*  VJ  S'  ~  So  U  S',  i.e.  S  ~  So,  in  view  of  the  above  mapping 

between  S*  and  S*0  on  the  one  hand,  of  the  identical  mapping  between  S'  and
  S'  on 

the  other;  according  to  2)  on  p.  27  we  thus  obtain  a  mapping  between  S  and  its  prope
r 

subset  So,  which  proves  our  statement. 
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Pending  the  proof  of  Theorem  4  of  §  3,  “inductive”  and  “non-re¬ 

flexive”,  as  well  as  “non-inductive”  and  “reflexive”,  have  been  shown 
to  be  equipollent  concepts.  Accordingly,  we  shall  henceforth  speak 

plainly  of  finite  sets  and  of  infinite  sets,  without  distinguishing  between 

Definitions  VI  and  VII.  For  more  subtle  distinctions  regarding  the 

concepts  “finite”  and  “infinite”  (sets  and  numbers)  the  reader  is  referred 
to  §  10,  6  and  to  Foundations  (especially  Chapter  II,  §  4). 

We  conclude  this  section  with  a  remark  of  principle  regarding  the 

existence  of  infinite  sets.  By  means  of  the  axioms  introduced  hitherto 

we  are  not  able  to  prove  that  there  exists  an  infinite  set.  While  Axiom  I  is 

certainly  of  no  avail  for  this  problem  Axiom  II  yields  only  subsets 

of  sets  previously  secured  and  Axiom  III  sets  with  two  members; 

Axiom  IV  starts  with  a  given  set  A  of  sets,  and  if  A  as  well  as  its  members 

are  finite  the  same  holds  for  the  sum-set  U  A.  We  therefore  introduce 

Axiom  (or  Principle)  of  Infinity  (V).  There  exists  an  infinite  (reflexive)  set ; 

for  instance,  the  set  N  of  all  positive  integers  (1,  2,  3,  . . .}. 
That  N  is  reflexive  was  shown  above. 

The  explicit  use  of  the  concept  of  integer  in  the  axiom  of  infinity  can  be  avoided 

(cf.  p.  28)  by  postulating  the  existence  of  at  least  one  set  Z  that  satisfies  the  following 
two  conditions : 

a)  0<rZ 

b)  if  aeZ  then  also  (aJeZ.1) 
Though  Z  is  not  uniquely  determined  by  a)  and  b)  one  can  prove  (by  also  using 

Axiom  VI  in  §  5,  3)  the  existence  of  a  uniquely  defined  least  set  Zo  satisfying  a)  and  b). 
Zo  contains  just  the  members 

O,  {O},  {{O}},  {{{O}}},  . . . 

which  prove  different  from  each  other. 

By  writing  1  for  O,  2  for  {O},  etc.,  generally  k  +  1  for  {k},  one  perceives  that  Z0 
is,  save  for  the  notation,  the  set  of  all  positive  integers.  For  the  proof  of  these  remarks 
see  Foundations,  p.  83.  Cf.  below  §  11,  2. 

Exercises 

1)  Prove  that  the  following  relations  between  sets  are  equipollent: 

a)  A  c  T,  S  =  S  n  T,  S  u  T  =  T; 

b)  S  =  Tand  S  n  T  =  S  U  T; 

c)  A  £  T  c  u  and  A  u  T  =  T  n  U. 

J)  This  is  the  procedure  of  Zermelo  08a  (his  Axiom  VII).  Somewhat  different  is 
von  Neumann’s  procedure  (cf.  below,  §  11,  2). 
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2)  Given  a  mapping  between  two  equivalent  sets,  are  there  any 
other  mappings?  (Give  some  examples.)  Are  there  any  exceptions  to 
the  answer?  Specialize  to  the  case  of  mapping  a  set  onto  itself. 

3)  Is  it  possible  to  use,  respectively,  the  functions 

y  =  3x  +  5,  y  =  x2,  y  =  V x,  y  =  sin  x 

to  map  the  set  of  the  argument-values  x  onto  the  set  of  the  function- 

values  y,  in  the  sense  of  a  one-to-one  mapping?  When  this  is  impossible, 
can  the  purpose  be  effected  by  suitably  restricting  the  variability  of  x, 
say  to  an  interval  etc.? 

4)  Note  that  to  define  a  relation  one  has  to  fix  the  domains  of  varia¬ 

bility  for  the  arguments  of  the  relation.  For  instance,  the  symmetry  of 

the  relation  “x  is  a  brother  of  y”  depends  on  the  domain  taken  for  y, 
as  shown  by  the  examples:  x  =  Moses,  y  either  =  Aaron  or  =  Miriam. 

5)  The  connection  between  the  properties  of  dyadic  relations  called 

“reflexivity”,  “symmetry”,  and  “transitivity”  is  more  intricate  than  it 
would  seem  in  view  of  the  remark  on  p.  26,  as  shown  by  the  following 

example:  The  dyadic  relation  “x  and  y  are  prime  numbers”,  where  the 
domain  of  both  arguments  is  that  of  positive  integers,  is  symmetrical  and 

transitive.  However,  it  is  not  fully  reflexive;  “6  and  6  are  prime  numbers” 

is  not  true.  This  remark  leads  to  a  distinction  between  “reflexivity”  and 

“total  reflexivity”.1) 

6)  Why  is  it  suitable  to  start  the  proof  that  non-reflexive  and  reflexive 

sets  cannot  be  equivalent  (p.  30/1),  with  a  reflexive  set? 

§  3.  Denumerable  Sets 

1.  Denumerability.  In  this  section  we  shall  deal  with  the  simplest  type 

of  infinite  sets,  viz.  the  denumerable  sets. 

Definition  I.  A  set  which  is  equivalent  to  the  set  of  all  positive 

integers  is  called  denumerable  (or  countable).  If  its  members  are 

ordered  according  to  the  magnitude  of  the  integers  related  to  them 

one  speaks  of  an  enumerated  (ordered)  set. 

J)  See  the  profound  investigations  in  Scholz-Schweitzer  35,  §  5,  and  in  Aubert  49 
and  52.  In  these  papers  not  only  dyadic  but  also  n-adic  or  2/z-adic  relations  are  con¬ 

templated.  A  comprehensive  treatment  of  w-adic  relations,  including  their  classifica¬ 

tion,  is  given  in  Fraisse  55.  Of  earlier  investigations  cf.  Peano  24,  Padoa  30,  Ito  33-35. 
xy  A  0  is  an  interesting  example  of  a  relation  which  is  symmetrical,  transitive,  and 

also  reflexive,  but  not  totally  reflexive  (say,  for  real  x,  y ). 
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With  respect  to  the  totality  of  the  members  of  a  denumerable  set  it 

is  often  convenient  to  say  “denumerably  many”,  just  as  with  respect  to 

the  members  of  a  finite  set  one  says  “finitely  many”. 
If  N  is  the  set  of  all  positive  integers  and  D  any  denumerable  set  there 

exist,  according  to  the  definition,  mappings  between  N  and  D.  Of  these 

(incidentally,  infinitely  many)  mappings  let  an  arbitrary  one  be  denoted 

by  (p  and  let  dn  be  the  member  of  D  that  is  related  by  (p  to  the  integer 

n  (n  =  1,  2,  3,  . . .);  the  index  n  of  dn  is,  then,  the  image  in  N  (by  (p)  of  dn, 

which  for  short  is  also  called  “the  nth  member  of  D ”.  Thus  every  positive 
integer  occurs  as  the  index  of  a  single  member  dn  of  D  and  only  these 

members  dn  belong  to  D. 

Hence  we  can  write  D  in  the  form 

{d\,  dz,  dz,  . . dn,  . . .} 

without  hereby  expressing  an  order  in  D,  in  accordance  with  the  concept 

of  set  which  involves  no  notion  of  order.  If,  however,  the  dn  shall  be 

arranged  according  to  increasing  values  of  n  we  obtain  the  sequence  x) 
or  the  enumerated  set 

(di,  dz,  dz,  . . .,  dn,  . . .). 

Though  we  shall  deal  with  ordered  sets  in  general  only  in  §  8,  the  notion  of 

enumerated  set  will  prove  useful  before. 

An  immediate  consequence  of  Definition  I  is  that  a  set  equivalent  to  a 
denumerable  set  is  itself  denumerable.  A  denumerable  set  is  infinite  both 

in  the  sense  of  Definition  VI  and  of  Definition  VII  of  §  2.  The  axiom  of 
infinity  ensures  that  there  exist  denumerable  sets. 

2.  Simplest  Examples  and  Theorems.  Any  set  M  that  originates  from  N, 
or  from  any  denumerable  set,  by  dropping  finitely  many  members  is 

also  denumerable-,  to  form  a  mapping  onto  N  we  have  only  to  relate  the 
first  remaining  member  to  1,  the  second  to  2,  etc.  The  particular  case  of 

dropping  a  single  member  was  described  on  p.  30. 

The  result  is  not  restricted  to  the  case  where  finitely  many  members  of  a 

denumerable  set  are  removed  but  remains  valid  if  this  is  done  for  infinitely 
many  members,  provided  the  remainder  is  still  infinite.  Thus  the  set  E 

0  Yet  not  every  sequence  is  an  enumerated  set  because  in  a  sequence,  in  contrast 
with  a  set,  the  same  member  may  occur  repeatedly.  An  (infinite)  sequence  may, 
then,  contain  finitely  many  different  members  only. 
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of  all  even  positive  integers  is  obtained  from  N  by  dropping  all  (infinitely 
many)  odd  integers.  A  mapping  is  marked  by  the  scheme 

N:  1  2  3  ...  n  ... 

Ill  I 
E:  2  4  6  ...  2 n  ... 

In  other  words,  every  n  e  N  is  related  to  (2 ri)  e  E  and  every  e  e  E  to  -  e  N. 
Generally  we  have 

Theorem  1.  Any  subset  of  a  denumerable  set  D  is  either  finite  or 
denumerable. 

Proof.  Let  again  D  =  {di,  d2,  d3,  ...,  dn,  . . . }  and  let  D0  be  any 

subset  of  D.  If  Do  is  empty  it  is  finite;  otherwise  let  ni  be  the  least  integer  *) 

for  which  dUl  e  Do,  n2  the  least  integer  for  which  dnt  e  (D0  —  {dnf),  and 
so  forth,  according  to  mathematical  induction.  We  distinguish  between 
two  cases. 

a)  A  certain  step  of  the  procedure,  say  the  kth,  is  the  last  because  the 

set  Do  —  {</„,,  dn2,  ...,  dnk }  is  empty.  Then  D0  =  {dUl,  dn%,  . . .,  dnJ, 
i.e.  Do  is  a  finite  set. 

b)  The  procedure  can  be  continued  indefinitely,  i.e.  to  each  positive 

integer  k  corresponds  a  member  dnk  e  Do.  Then  by  the  above  definition 

Do  is  denumerable,  which  completes  the  proof. 

However,  also  a  set  which  is  more  comprehensive  than  N  may  be 

denumerable.  We  again  start  with  an  example,  namely  the  set  /  of  all 

integers  which  also  contains  0  and  the  negative  integers.  Arranged  ac¬ 

cording  to  the  magnitude  of  the  numbers  this  set  is  not  enumerated  since 

every  integer  is  preceded  by  infinitely  many  smaller  negative  (and 

possibly  some  positive)  integers.  Yet  we  obtain  an  enumeration,  i.e.  a 

proof  that  /  is  denumerable,  by  placing  every  negative  integer  —  n  im¬ 

mediately  after  the  corresponding  positive  n  and  by  letting  0  precede 

all  other  integers.  Thus  a  mapping  between  /  and  N  emerges  according 

to  the  following  scheme 

I:  0 1 

-  1 

2 

-  2 

n 

—  n 

t 
I I 1 1 1 

t 
i I 

N:  1 2 3 4 5  .. 
2  n 

2n  +  1 

where  n  ranges  over  the  positive  integers. 

x)  Here  we  use  the  arithmetical  fact  that  in  every  non-empty  set  of  positive  integers 
there  is  a  least  integer. 
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By  this  example,  in  which  no  other  property  of  integers  is  used  than 

the  denumerability  of  N  and  /  —  N,  we  perceive  that  the  addition  of 

denumerably  many  (all  the  more,  of  finitely  many)  members  to  those  of  a 

denumerable  set  produces  a  denumerable  set. 

Since  this  procedure  may  be  repeated  any  finite  number  of  times  we  have 

Theorem  2.  The  union  of  finitely  many  sets  each  of  which  is  finite  or 

denumerable,  and  one  at  least  denumerable,  is  a  denumerable  set. 

Theorem  2  is  a  counterpart  of  Theorem  1 ;  the  latter  deals  with  “re¬ 

ductions”,  Theorem  2  with  certain  “extensions”  of  a  denumerable  set. 

3.  The  Set  of  all  Rationals.  To  obtain  an  essentially  stronger  result 

we  again  start  with  an  example,  namely  with  the  set  R  of  all  rational 

YYi numbers  (or  common  fractions)  —  where  n  A  0.  It  is  preferable  to  consider n 

the  rationals  in  the  reduced  form  only  where  the  denominator  n  is  a 

positive  integer  and  the  positive  or  negative  numerator  m  is  prime  to  n; 
0 

the  number  0  is  then  represented  in  the  form  — •  The  reduced  rationals 

fl'lX  7772 
_ and  —  are,  therefore,  equal  only  if  mi  =  m2  and  n\  —  m. 
»i  «2 
Arranging  the  rationals  according  to  their  magnitude  we  observe  that 

7771  7772 
between  any  two  different  rationals  — and  —  there  are  infinitely  many 

«i  n2 
777  1  7772 

different  others ;  for  if  —  <  —  we  may  divide  the  positive  difference 
«i  «2 

777  2  777l 
—  —  —  into  two,  three,  . .  ,,k,  ...  equal  parts  which  are  also  rational, 
«2  »l 

777 1  777l 
and  by  adding  them  to  —  we  obtain  rationals  greater  than  —  and  less 

«i  »x 7772 

than - Thus  the  set  of  all  rationals  is  in  a  definite  sense  infinitely  more 

«2 

comprehensive  than  the  examples  contemplated  above. 

Nevertheless  R  turns  out  to  be  also  denumerable.  One  of  many  ways  to 

show  this  is  the  following.  In  a  plane  we  draw  denumerably  many  horizon¬ 

tal  straight  lines  and  denumerably  many  vertical  lines,  either  system 

corresponding  to  all  integers.  (See  fig.  4.)  Denote  an  arbitrary  horizontal 

and  an  arbitrary  vertical  line  respectively  by  0,  the  lines  upwards  and 
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-4 

-i 

? 
i  < 

i 

Fig.  4 

rightwards  of  0  successively  by  1,  2,  3,  . . the  lines  downwards  and 

leftwards  of  0  by  —  1,  —  2,  —  3,  ....  Every  intersection  between  a 

horizontal  and  a  vertical  line  is  called  a  lattice  point.  Each  lattice  point  is 

determined  by  the  respective  horizontal  and  vertical  lines  m  and  n,  and  to 

every  ordered  pair  of  integers  m  and  n  belongs  a  uniquely  determined 

lattice  point,  to  be  denoted  by  (m,  n). 

To  enumerate,  first,  the  lattice  points  we  follow  the  broken  bold  line 

drawn  in  fig.  4  from  its  starting-point  (0,  0)  via  (1,  0),  (1,  1),  (0,  1)  etc. 

We  arrange  the  points  in  this  order,  thus  obtaining  all  lattice  points  as  the 

members  of  a  sequence.  (Usually  the  procedure  of  rearranging  a  sequence 

of  sequences  to  a  single  sequence  is  called  the  diagonal  method  of  Cauchy , 

cf.  §  6,  8.)  From  this  sequence  we  drop  all  those  lattice  points  (m,  n) 

yj'l 

for  which  the  corresponding  —  is  not  a  reduced  rational,  in  particular 
n 

those  for  which  n  is  0  or  a  negative  integer.  Finally  we  conceive  the 
m 

infinitely  many  remaining  points  (m,  n)  as  the  corresponding  rationals  — ; n 

they  also  form  a  sequence  (Theorem  1),  the  denumerable  set  of  all  ( re¬ 

duced)  rationals.  Its  numeration  according  to  the  procedure  just  used 

begins  with 
1  0  _l_2i__.l_2.33. 

1’  1’  1’  V  2’  2’  1’  1’  2’  -  " 

This  arrangement  fundamentally  differs  from  that  according  to  magni¬ 

tude,  as  illustrated  by  the  line  of  numbers  (fig.  2,  §  1);  had  we  taken  the 

rationals  in  the  latter  arrangement  then  no  enumeration  would  have 

emerged. 

No  geometrical  argument  was  essential  in  forming  our  enumeration 
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of  the  rationals.  Nevertheless  we  shall  also  give  a  (slightly  different) 

enumeration  of  the  rationals  based  on  an  arithmetical  description. 
w 

To  every  positive  reduced  rational  —  we  relate  the  sum  a  =  m  +  n n 
m 

which  is  a  positive  integer.  While  a  is  uniquely  determined  by  —  the  con- n 

verse  does  not  hold.  Still  to  a  given  positive  integer  a  there  exist  only 
til 

finitely  many  positive  reduced  rationals  —  such  that  m  +  n  =  a,  namely n 

those  among  the  fractions 

a—  la  —  2  2  1 

1  ’  2  ’  '“’a  -  2  ’  a  —  1 

which  are  reduced,  and  the  same  rational  cannot  occur  more  than  once, 

namely  related  to  a  single  a  only. 

Hence  we  may  enumerate  all  positive  rationals  according  to  increasing 

values  of  a  =  2,  3,  4,  . . . ;  for  a  definite  a  we  use,  say,  the  above  arrange¬ 

ment  according  to  increasing  denominators.  If  we  begin  with  0  = 
0 

T 

and  let  every  positive  rational  —  be  succeeded  by  the  negative  —  —  then n  n 

an  enumeration  of  all  rationals  emerges  which  slightly  differs  from  the 

previous  one;  it  begins  with 

0-i  —1-2  _  2  1  _  1.  3  _3.1  _i-4  _  4  3 
l’l’  l’l’  1’  2’  2  ’  1’  1’  3’  3  ’  1  ’  1’  2’  '  '  '  ‘ 

til 

The  mapping  of  the  set  of  all  rationals  r  =  —  onto  the  set  of  all  posit- 

77 

ive  integers  n,  in  either  way,  is  conspicuous  enough,  yet  for  large  r  it  is 

not  easy  to  calculate  the  integer  n  to  which  r  is  related.  For  this  purpose 

single-valued  and  uniquely  invertible  functions  n  =  f{r)  have  been 

constructed  in  various  ways.1) 
Finally,  what  has  been  achieved  in  this  subsection  is  an  enumeration 

not  just  of  the  rationals  but  more  generally  of  any  sequence  of  sequences. 

In  fact,  we  have  used  no  special  properties  of  the  positive  rationals 

q  Faber  05,  Oglobin  29  (cf.  Boehm  29),  Godfrey  38,  Johnston  48,  Hanani  55. 
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but  only  their  property  of  forming  a  sequence  (for  n  =  1,  2,  3,  . . .)  of 

where,  for  each  n,  m  ranges  over  a  sequence  of  positive 

integers.  We  may,  therefore,  express  our  result  in  the  following  form 
which  extends  the  result  of  Theorem  2: 

Theorem  3.  The  union  of  denumerably  many  different  sets  each  of 

which  is  finite  1)  or  denumerable,  is  a  denumerable  set. 

4.  The  Set  of  all  Algebraic  Numbers.  We  saw  in  3  that  between  any  two 

different  rationals  there  are  infinitely  many  others.  In  view  of  a  one-to-one 

mapping  between  the  real  numbers  and  the  points  of  a  line  (§  1,  fig.  2) 

this  means  that  the  subset  of  those  points  of  the  line  which  are  related  to 

rational  numbers  —  in  short,  the  subset  of  all  rational  points  —  is  (infinite¬ 

ly)  dense,  a  term  to  be  defined  in  §  9, 1  for  ordered  sets  of  points  in  general. 

Yet  it  was  pointed  out  in  §  1  that  in  spite  of  their  density  the  rational 

points  do  not  exhaust  the  notion  “point  of  the  line”.  We  shall  now, 

through  an  example  which  was  Cantor’s  first  discovery  in  set  theory, 
enlarge  the  set  of  all  rationals  to  a  still  more  comprehensive  (and  dense) 

set  of  numbers  which  will  also  prove  denumerable.  The  question  whether 

the  corresponding  set  of  points  constitutes  the  totality  of  the  points  of  the 

line  (or  at  least  whether  this  totality  is  denumerable)  will  then  assume 

an  additional  urgency.  In  fact,  during  his  earliest  study  of  the  problem 

Cantor  took  the  result  of  the  present  subsection  as  suggesting  the  de¬ 

numerability  of  the  set  of  all  points  of  the  line.  Therefore  the  (contrary) 

answer  which  is  given  in  §  4  will  constitute  the  corner-stone  of  set 

theory  as  a  new  branch  of  mathematics  and  at  the  same  time  the  first 

important  application  of  this  theory  to  other,  classical  domains  of 
mathematics. 

As  defined  in  §  1,  every  root  of  the  algebraic  equation  of  the  degree 

n  >  0 

(1)  ao  xn  +  a\  x'w_1  +  . . .  +  an-i  x  +  an  =  0  (ao  A  0) 

with  integral  coefficients  a*  is  called  an  algebraic  number.  Such  a  root 

need  not  be  real;  however,  since  the  inclusion  of  imaginary  and  complex 

*)  This  extension  of  our  result  is  clearly  admissible  in  view  of  Theorem  1,  without 

the  condition  (stated  in  Theorem  2)  that  at  least  one  of  the  sets  be  denumerable. 

In  fact,  infinitely  many  different  finite  sets  yield  an  infinite  union. 
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transcending  the  geometric-intuitive  frame  of  the  points  of  a  line),  we  shall 

for  the  sake  of  simplicity  restrict  ourselves  to  real  algebraic  numbers 

and  always  conceive  the  term  algebraic  number  with  this  (somewhat 

artificial)  restriction. 

The  rationals  are  the  algebraic  numbers  which  are  roots  of  linear 

equations  (n  =  1);  the  totality  of  all  algebraic  numbers  contains,  in 

addition,  the  roots  of  equations  with  the  infinitely  many  degrees  2,  3, 

4,  . .  T).  Cf.  §  9,  2. 

In  the  proof  of  this  subsection  we  shall  not  use  the  so-called  fundamen¬ 

tal  theorem  of  algebra  which  is  rather  profound  and  states  that  every 

algebraic  equation  of  a  positive  degree  has  a  (real  or  complex)  root, 

but  only  the  following  quite  elementary  theorem:  an  algebraic  equation  of 

the  degree  n  has  not  more  than  n  real  roots. 

In  fact,  if  we  denote  the  polynomial  on  the  left-hand  side  of  (1)  by  p(x)  and  if  n  is  a 

real  root  of  (1),  the  division  of  p{x)  by  a:  —  n  yields 

(2)  p(x)  =  {x  —  ri)  pi(x)  +  si. 

Inserting  n  for  a:  in  (2)  gives  0  =  0  +  si,  i.e.  si  =  0.  Repeating  this  procedure  with 

regard  to  a  real  root  n  (if  any)  of  the  equation  pi(x)  =  0  and  proceeding  further  in 
the  same  way,  we  finally  arrive  at  an  identity  of  the  form 

(3)  p(x)  =  (x  —  n)  {x  —  r2)  ...  (x  —  rk)  Pk(x) 

where  pk(x)  =  0  has  no  real  root  and  k  <  n.  (If  the  polynomial  pk(x)  is  a  constant 

we  have  Ic  =  n  and  pn(x)  =  ao.) 

(1)  has  no  real  root  in  addition  to  n,  rz,  . . . ,  rk\  in  fact,  for  any  other  real  x  =  rk  +  i 

each  factor  of  the  right-hand  side  of  (3)  is  different  from  0,  hence  also  p(rk  +  i)  ̂   0. 

To  prove  that  the  set  of  the  algebraic  numbers  is  
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task  
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attach  
to  the  equation  

(1)  not  its  degree  
but  the  positive  

integer 

(4)  h  =  (n  —  1)  +  |  ao  |  +  |  ax  \  +  . . .  +  |  an  \ 

To  be  sure,  m\l  is  also  a  root  of  (infinitely  many)  equations  with  degrees  >  1, 

e.g.  of  the  equation  l2x 2  —  m2  =  0.  Yet  to  each  degree  there  exist  algebraic  numbers 

which  are  not  roots  of  equations  with  a  lower  degree  —  a  fact  not  required  for  our 

argumentation  here. 

2)  The  proof  is  essentially  that  of  Cantor  1874,  §  1.  For  an  explicit  enumerating 
function  cf.  Vandiver  36. 
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where  |  ak  |  denotes  the  absolute  value  of  au  (i.e.  the  non-negative 

integer  equaling  +  a*);  h  will  be  called  the  amount  of  the  equation  (1). 

For  instance,  2  x2  —  3  x  +  1  =  0  has  the  amount  1  +  2  +  3  +  1  =  7, 

x3  =  0  the  amount  2+14-0  +  0  +  0  =  3. 

While  every  algebraic  equation  has  a  definite  positive  integer  for  its 

amount  we  shall  now  prove  that  to  a  given  positive  integer  h  there  belong 

only  finitely  many  algebraic  equations  with  the  amount  h.  First,  the 

degree  n  of  such  an  equation  cannot  exceed  h  because  of  (4)  and  of 

|  ao  |  >1.  Hence  there  are  no  more  than  h  +  2  terms,  at  most,  on  the 

right-hand  side  of  (4).  But  obviously  the  positive  integer  h  can  be  decom¬ 

posed  into  the  sum  of  at  most  h  +  2  non-negative  terms  in  a  finite 

number  of  ways  only.  These  decompositions  may  be  arranged  in  a 

definite  order  by  giving  n  successively  the  values  h,  h  —  1 ,  . . . ,  2,  1  and 

by  taking,  for  each  single  value  of  n,  for  |  a*  |  always  the  respective 

maximal  positive  integer  still  admissible,  including  0  if  k  >  0.  Finally, 

when  all  non-negative  integral  solutions  Ak  of  the  diophantine  equation 

h  =  (n  —  1)  +  Ao  +  Ai  +  . . .  +  An  ( h  and  «(</*)  given,  Ao  0) 

have  been  obtained  in  this  way,  then  the  respective  solutions  a*  of  (4) 

emerge  by  taking  independently 

ao  —  +  ̂4o,  <?i  —  +  A\,  . . .,  On  —  +  An', 

this  yields  at  most  2n  +  1  different  solution  systems  (just  2n  +  1  if  all  Ak 

are  different  from  0).  Thus  all  equations  (1)  with  the  amount  h  have  been 

arranged. 

Example,  h  =  3;  the  degrees  n  =  3,  2,  1  only  come  into  consideration. 

We  have,  then,  to  consider  the  diophantine  equations 

3  =  {n  —  1)  +  |  ao  |  +  . . .  +  |  dn  | 

for  each  of  the  values  n  =  3,  2,  1  and  with  the  restriction  ao  ̂   0.  The 

following  seven  solutions  are  obtained: 

3  =  2+  l+  0  +  0  +  0  (^  =  3) 

=  l+  2  +  0  +  0=  l  +  l  +  l+  0=  l  +  l+  0+  l  (n  =  2) 

=  0  +  3  +  0  =  0  +  2+  1  =  0+  1  +2.  (n=  1) 

Finally,  for  each  of  these  solutions  we  have  to  distribute  independently 

the  signs  +  and  —  on  all  terms  ̂   0,  except  for  the  first  term  which 
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refers  to  the  degree.  For  instance,  the  first  solution  yields  the  two  de¬ 

compositions  corresponding  to  (4) 

3  =  2+  |  1  |+0+0+0=2+|— 1  |+0  +  0  +  0 

and  the  third  solution  yields  the  22  =  4  decompositions 

3=1  +  |1|  +  |1|+0=1  +  |  —  1  |  +  |  1  |  +  0 

=  i  +  |i|  +  |  —  i|+o=i  +  |  —  i|  +  |  —  i|+o. 

The  corresponding  algebraic  equations  are  respectively 

x3  =  o,  -  x3  =  0,  x2  +  x  =  0,  -  x2  +  x  =  0,  x2  -  x  =  0,  -  x2  -  x  =  0. 

Evidently  the  seven  solutions  obtained  above  yield  a  total  of 

2  +  2  +  4  +  4  +  2  +  4  +  4  =  22  formally  different  algebraic  equa¬ 

tions,  and  these  are  all  equations  with  the  amount  3. 

Hereby  all  algebraic  equations  are  enumerated  in  a  definite  way, 

namely  by  taking  the  equations  corresponding  to  the  infinitely  many 

amounts  h  —  1,  2,  3,  ...  in  this  order  and  by  arranging,  for  each  h,  the 

finitely  many  equations  with  the  amount  h  in  the  way  shown  above. 

Hence,  by  Theorem  3,  we  obtain  a  sequence  which  contains  all  algebraic 

equations. 

The  last  step  is  the  transition  from  the  equations  to  their  (real)  roots, 

i.e.  to  the  algebraic  numbers.  Since  each  equation  has  finitely  many 

roots  only  (namely  an  equation  of  the  degree  n  at  most  n  different  roots) 

we  may  conceive  these  roots  to  be  arranged  anyway;  for  instance, 

according  to  magnitude.  Thus  a  sequence  is  obtained  which  contains 

all  real  algebraic  numbers.  True,  hereby  the  same  number  is  listed 

several  (even  infinitely  many)  times ;  for  instance,  the  number  2  as  a  root 

of  the  equations  with  different  amounts 

x  -  2  =  0  (h  =  3),  x2  -  4  =  0  (h  =  6),  x4  -  16  =  0  (h  =  20),  etc. 

and  also  as  the  root  of  equations  with  equal  amounts,  e.g.  x  —  2  =  0 

and  —  x  +  2  =  0.  To  obtain  a  sequence  that  contains  different  numbers 

only,  we  drop  from  the  above  sequence  every  number  which  has  occurred 

before;  then  each  algebraic  number  appears  among  the  roots  of  one 

equation  with  a  minimal  amount.  Hereby  we  have  proved: 

The  set  of  all  (real)  algebraic  numbers  is  denumerable. 

In  a  way  similar  to  the  enumerations  of  rationals  defined  above,  this 
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enumeration  of  the  algebraic  numbers  thoroughly  destroys  the  “natural” 
order  of  numbers  according  to  their  magnitude.  For  instance,  the  numbers 

—  —  0.125  and  V  7  =  2.645  ...  as  roots  of  the  equations  with  the 
amount  9 

8  x  +  1  =  0  and  x2  —  7  =  0 

appear  near  each  other  in  our  numeration  whereas  —  L-Ooi  (though 

differing  but  little  from  —  L)  occurs  much  later  among  the  roots  of  the 
equations  with  the  amount  9001. 

5.  Applications  to  Infinite  Sets  in  General.  While  so  far  we  have  dealt 

with  denumerable  sets  for  themselves  we  shall  now  use  denumerability 

as  a  tool  for  the  investigation  of  infinite  sets  in  general.  The  spring-board 

from  which  we  may  leap  is  the  following  theorem  which  has  a  fun¬ 
damental  character  and  will  attract  our  attention  also  later. 

Theorem  4.  Every  infinite  set  has  a  denumerable  subset. 

We  used  this  theorem  already  for  proving  the  equipollence  between  two 

definitions  (VI  and  VII)  of  infinity  and  finiteness  in  §  2,  5.  Hence  we  must 

not  use  this  equipollence  in  proving  Theorem  4;  in  fact,  we  have  to 

produce  separate  proofs  according  as  “infinite”  in  Theorem  4  is  con¬ 

sidered  to  mean  “non-inductive”  or  “reflexive”.  The  proofs  have  thor¬ 
oughly  different  character  and,  as  the  reader  will  verify,  it  is  proof  A 

(and  not  proof  B )  which  shows  the  equipollence  between  our  definitions  of 

infinity. 

Proof  A.  Let  5  be  a  non-inductive  set;  that  is  to  say,  a  non-empty  set 

which  cannot  be  exhausted  by  dropping  k  members  where  k  denotes  any 

positive  integer. 

First,  we  shall  show  by  mathematical  induction  that,  for  every  positive 

integer  n,  there  exists  a  subset  of  S  containing  just  n  members.  For  n  —  1 

this  is  clear  since  by  assumption  S  is  not  empty  and,  for  any  5i  e  S,  Si  =  {si} 

is  a  suitable  subset.  If  k  is  any  positive  integer  we  assume  the  state¬ 

ment  to  be  true  for  n  =  k;  this  means  that  Sk  =  {si,  s%,  . . .,  sk}  is  a 

subset  of  S.  By  assumption  this  subset  does  not  exhaust  S,  hence 

S  —  Sic  ¥=  O.  Let  Sk  +  i  be  an  arbitrary  member  of  S  —  Sk",  then 

Sk  +  i  =  (si,  52,  . . .,  sk,  sk  +  1}  is  also  a  subset  of  S  and  contains  k  +  1 

members.  Thus  the  above  statement  has  been  shown  to  be  true  for  n  =  1 

and,  if  true  for  n  —  k,  also  for  n  =  k  +  1 ;  by  mathematical  induction, 

then,  it  is  true  for  every  n.  Moreover,  the  finite  subsets  Sk  of  S  produced 
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Secondly,  the  sets  Sk  for  k  =  1,  2,  3,  ...  form  a  sequence  of  subsets 

of  S,  and  their  union  which  contains  all  members  Sk,  for  k  —  1,  2,  3,  . . ., 

constitutes  a  denumerable  subset  S  of  S.  (S  =  S  is  not  excluded.) 

Hereby  the  proof  A  of  Theorem  4  is  completed. 

This  proof,  seemingly  quite  simple,  relies  upon  a  procedure  not 

ordinarily  used  in  mathematics  and  certainly  not  included  in  our  above 

axioms,  namely  upon  an  infinity  of  choices  of  arbitrary  members  of  S. 

In  fact,  for  every  k  we  have  chosen  an  arbitrary  Sk  to  produce  the  sets  Sk- 

We  shall  return  to  this  point  in  §  6,  5  and  §  11,6. 

Proof  B.  Let  S  be  a  reflexive  set,  i.e.  S  ~  S  <=  S,  and  let  (p  be  an 

arbitrary  mapping  of  S  onto  its  proper  subset  S;  cp  will  be  retained 

throughout  the  proof.  The  member  of  S  which  by  (p  corresponds  to  an 

s  e  S  shall  be  denoted  by  cp  (5). 

Let  ti  be  an  arbitrary  member  of  the  non-empty  set  S  —  5.  We 

successively  define  the  members 

h,  (p(h)  =  t2,  (p{t2)  =  t3,  ...,  (p(tk )  =  t  k+i,  .... 

After  h  has  been  chosen  these  members  are  uniquely  determined ;  they  all 

belong  to  S,  except  for  t\  which  belongs  to  S  —S,  hence  not  to  S. 

Thus  we  obtain  a  denumerable  subset  {ti,  t2,  t3,  . . .}  of  S  provided  these 

members  are  different.  We  shall,  therefore,  show  by  an  indirect  proof  that 

t £  A  i tc  if  i  A  k. 

If  the  tk  were  not  all  different,  let  tm  be  the  first  tk  which  equals  a 
preceding  tv. 

(1)  tm  =  ti.  (I  <  m,  hence  m  >  1) 

tm,  then,  belongs  to  S  and  is  therefore  different  from  t±;  hence  also 
ti  A  ti,  i.e.  /  >  1.  In  view  of  the  definition  of  the  members  tk  we  have 

h  =  (p{ti  -  1)  and  tm  =  cp{tm  -  1). 

Writing  (1)  in  the  form  <p(tm  _  1)  =  <p(tt  _  x)  and  utilizing  the  biunique¬ 
ness  of  the  mapping  cp  we  conclude  tm-i  =  ti-i.  But  this  contradicts 

our  assumption  by  which  tm  is  the  first  tk  which  equals  a  preceding  one. 
The  contradiction  shows  that  no  tk  equals  a  preceding  one;  that  is  to  say, 
all  members  tk  (k  =  1,  2,  3,  . . .)  are  different. 

Hence  {t\,  t2,  t3,  . . .}  is  a  denumerable  set  and  a  subset  of  S,  which 
completes  the  proof. 

In  contrast  with  the  proof  A,  in  the  present  proof  only  a  single  member 
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of  the  set  desired  has  been  chosen  arbitrarily,  namely  ti.  It  is  not  dif¬ 

ficult  to  show  (cf.  Foundations ,  Ch.  II,  §  8)  that  the  axioms  introduced 

hitherto,  when  supplemented  with  Axiom  VI  (§  5,  3),  are  sufficient  for 

proof  B  —  but  not  for  proof  A  in  which  the  axiom  of  choice  (§  6,  5)  is 
utilized. 

Theorem  4  enables  us  to  prove  for  any  infinite  x)  sets  certain  properties 
which  are  analogous  to  those  expressed  for  denumerable  sets  by  Theorems 
1  and  2. 

Let  S  be  any  infinite  set  and  So  a  finite  or  denumerable  subset  of  S 

such  that  S  =  S  —  So  still  is  an  infinite  

set*  

2).  We  shall  show  that  S  ~  S. 

Let  S'  be  a  denumerable  subset  of  S  (Theorem  4)  and  S  —  S'  =  S". 

(S"  may  be  infinite,  finite,  or  empty.)  This  means 

S  =  S'  U  S".  (S'  and  S"  disjoint  sets) 

Hence  any  member  of  S  belongs  to  a  single  of  the  pairwise  disjoint  sets 

So,  S',  S'. 

Now  we  construct  a  mapping  of  the  set  S  =  So  U  S'  U  S"  =  (So  U  S') 

U  S"  onto  its  subset  S  =  S'  U  S"  by  relating  every  member  of  S" 

(if  any)  to  itself  

3 *)  

and  by  mapping  
So  U  S'  onto  S'  in  view  of  Theorem 

2.  Hence: 

Theorem  5.  By  dropping  from  an  infinite  set  S finitely  many  members,  or 

denumerably  many  members  such  that  still  infinitely  many  members  are 

left,  one  obtains  a  set  which  is  equivalent  to  S. 

From  Theorem  5  we  immediately  conclude: 

Theorem  6.  By  adding  to  an  infinite  set  finitely  many  or  denumerably 

many  members  one  obtains  a  set  which  is  equivalent  to  the  original  set. 

This  follows  by  taking  the  new  (more  comprehensive)  set  as  the  set  S 

of  Theorem  5. 

Theorems  5  and  6  contain  nothing  new  (cf.  Theorems  1  and  2)  if  the 

x)  After  having  completed  the  equipollence  proof  of  pp.  31-32  by  Theorem  4,  we 

shall  no  more  distinguish  between  inductive  and  non-reflexive,  or  non-inductive  and 

reflexive,  sets  but  simply  speak  of  finite  and  infinite  sets. 

2)  If  So  is  finite  this  condition  is  superfluous.  For  denumerable  So,  however,  it 

may  be  required;  if  S  is  the  set  of  all  positive  integers  and  So  the  set  of  the  integers 

>  1010  then  the  condition  is  not  satisfied. 

3)  We  have  to  use  this  identical  mapping  since  we  know  nothing  about  the  nature 

of  S'. 
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infinite  set  in  question  is  denumerable.  Their  importance  will  show  when, 

in  §  4,  the  existence  of  non-denumerable  infinite  sets  is  ensured;  for  these 

sets  S  the  condition  of  Theorem  5  (“such  that. . .”)  becomes  superfluous. 

Exercises 

1)  Prove  that  the  set  of  all  terminating  decimal  fractions,  or  the  set  of 

all  algebraic  numbers  between  0  and  1,  is  denumerable. 

2)  Illustrate  the  arithmetical  way  of  enumerating  the  rationals  (in  3) 

with  regard  to  the  lattice  points  of  fig.  4. 

3)  Prove  that  the  set  of  those  points  of  the  plane  whose  Cartesian 

coordinates,  with  respect  to  a  given  pair  of  axes,  are  rational,  is  denumer¬ 
able. 

4)  Represent  any  given  denumerable  set  as  the  union  of  denumerably 

many  pairwise  disjoint  denumerable  sets. 

5)  Enumerate  the  set  of  all  algebraic  equations  by  means  of  the 

following  method  (which  essentially  differs  from  Cantor’s).  Assign  to  the 

polynomial  /  (x)  =  ao  +  a\x  -j-  .  .  .  +  anxn  with  integral  coefficients  a & 

the  positive  integer  N(f)  =  piA«  p%A i  . . .  p„+x  where  pk  denotes  the  k\h 

prime  number  (i.e.  pi  =  2,  /?2  =  3,  p3  —  5,  etc.)  and  where  the  non-negat¬ 

ive  integers  Ak  are  obtained  from  the  a*  by  mapping  the  set  of  all 

integers  onto  the  set  of  the  non-negative  integers.  Examine  whether  this 

correspondence  between  polynomials  and  positive  integers  yields  a  one- 

to-one  mapping. 

6)  What  denumerable  subset  of  S  evolves  if  proof  A  of  Theorem  4  is 

used  subject  to  each  of  the  following  rules: 

a)  S  is  the  set  of  all  positive  integers;  the  arbitrary  member  to  be 

chosen  in  S  and  its  subsets  shall  be  the  least  integer  of  the  respective  set. 

b)  S  is  the  set  of  all  positive  integers ;  the  arbitrary  member  shall  be  the 

least  integer  divisible  by  5. 

c)  S  is  the  set  of  all  positive  integers ;  the  arbitrary  member  shall  be  the 

least  prime  number. 

d)  S  is  the  set  of  all  positive  rationals  written  as  reduced  fractions 

— ;  the  arbitrary  member  shall  be  the  fraction  with  the  least  sum  m  -f  n, n 

and  if  this  sum  corresponds  to  various  fractions  then  the  least  (according 

to  magnitude)  among  those  fractions. 

7)  What  denumerable  subset  of  5  evolves  if  proof  B  of  Theorem  4 

is  used  subject  to  this  rule:  S'  is  the  set  of  all  positive  integers,  S  the  subset 
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of  all  even  integers,  cp  the  mapping  that  relates  x  e  S  to  (2x)  e  S,  and 
ti  =  5. 

8)  (Cf.  Theorem  5)  Show  that  from  every  given  infinite  set  one  can  drop 

denumerably  many  members  such  that  still  infinitely  many  members  are 
left. 

9)  Prove  Theorem  6,  without  referring  to  Theorem  5,  in  a  way  ana¬ 

logous  to  the  proof  of  Theorem  5. 

10)  Assuming  that  there  exist  infinitely  many  (real)  transcendental 

numbers,  show  that  the  set  of  all  transcendental  numbers  is  equivalent 
to  the  set  of  all  real  numbers. 

Exercises  11)  —  13)  are  for  advanced  readers 

11)  
We  call  two  closed  intervals,  say  on  the  line  of  numbers  (§  1), 

non-overlapping  
if  they  have  no  common  point,  except  possibly  for 

end  points.  Prove  that  any  set  of  non-overlapping  
closed  intervals  on  the 

line  is  at  most  denumerable  
(i.e.,  finite  or  denumerable).  

(Hint:  given  the 

closed  interval  a  ̂   x  ̂   b,  let  k  be  the  least  integer  greater  than  - — - — >  and b  —  a 

l  —  [ k-a ] x) ;  relate 
l+l 

k 
to  the  given  interval.) 

It  is  easy  to  generalize  the  theorem  from  the  line  to  the  plane  (using 

two-dimensional  intervals,  i.e.  rectangles)  or  to  spaces  of  three  and 
more  dimensions. 

12)  Prove  that  an  infinite  set  of  points  (say,  of  a  line  or  a  plane)  which 

has  a  finite  number  only  of  accumulation  points  (§  9,  5)  is  denumerable, 

and  show  by  an  example  that  this  statement  cannot  be  inverted. 

1 3)  Prove  that  a  monotonic  function  has  at  most  denumerably  many 

points  of  discontinuity.  (Hint:  for  a  positive  integer  n  there  are,  in  any 

closed  interval,  only  finitely  many  jumps  with  an  amount  greater  than  A.) n 

§  4.  The  Continuum.  Transfinite  Cardinals 

1.  Further  Examples  of  Equivalent  Sets.  In  the  subsections  1-4  of  §  3 

we  contemplated  several  sets  of  apparently  very  different  sizes  which,  by 

means  of  various  devices  with  increasing  artfulness,  proved  to  be  equival¬ 

ent,  namely  denumerable.  By  comparing  this  situation  to  the  properties 

L)  As  usual,  [c]  denotes  the  integer  c  and  next  to  c. 
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of  finite  sets,  where  dropping  or  adding  members  produces  sets  which  are 

not  equivalent  to  the  original  set,  the  suspicion  is  raised  that  any  two 

infinite  sets  might  be  equivalent.  This  would  mean  that  there  is  only  one 

infinite  cardinal  number  “infinity  (oo)”.  Every  gifted  schoolboy  of 
fifteen  has  arrived  at  this  notion  and  has  contemplated  relations  such  as 

oo  +  oo  —  oo  and  oo  •  oo  —  oo  which  seem  to  correspond  to  Theorems  2 

and  3  of  §  3.  If  so,  infinite  sets  would  be  trivial  with  respect  to  their 

equivalence  (extent,  cardinal  number)  and  could  certainly  not  be  the 

subject  of  a  new  branch  of  mathematics. 

We  shall  now  even  strengthen  this  suspicion  by  presenting  further 

essentially  different  examples  of  sets  which  in  spite  of  their  obviously 

unlike  extent  prove  to  be  equivalent.  These  examples,  however,  will  be 

followed  in  subsection  2  by  an  exposition  of  Cantor’s  discovery  (of  1874) 
that  there  exist  infinite  sets  which  are  not  equivalent.  This  surprising  and 

dramatic  discovery,  which  is  at  the  bottom  of  Theory  of  Sets,  is  rendered 

more  prominent  by  the  following  examples. 

We  are  contemplating  sets  the  members  of  which  are  points.  Given 

two  segments  *)  of  different  length,  AB  and  CD  (fig.  5),  let  M  denote 

the  set  of  all  points  of  AB,  N  the  set  of  all  points  of  CD,  including  the 

endpoints.  We  prove  that  M  ~  N. 

A  mapping  can,  for  instance,  be  established  in  the  following  way. 

Drawing  the  segments  parallel  to  each  other  as  in  fig.  5  we  connect  C  and 

A,  as  well  as  D  and  B,  by  straight  fines  which,  on  account  of  the  different 

length  of  the  segments,  will  intersect  in  a  point  P.  Any  ray  drawn  from  P 

intersects  either  both  segments  or  neither;  in  the  former  case  the  inter¬ 

section  point  with  AB  shall  be  related 

to  the  intersection  point  with  CD,  where¬ 

by  clearly  a  one-to-one  correspondence 

between  the  points  of  both  segments 

evolves.  Hence  M  ~  N. 

This  proof  illustrates  two  earlier  re¬ 

marks.  First,  by  laying  off  AB  on  CD 

we  may  consider  ¥  to  be  a  proper 
subset  of  N  and  thus  obtain  a  new 

example  of  equivalence  between  the 

whole  and  a  part  (§  2,  5).  Secondly, 

*)  For  the  sake  of  simplicity  we  take  straight  segments,  but  arcs  of  a  circle  or  of another  curve  would  do  as  well. 
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objections  to  our  proof  of  M  ~  N  have  been  raised,  claiming  that  one 

“ought”  to  establish  a  correspondence  between  the  points  of  M  and  N  by 
drawing  parallels  (for  instance,  parallels  to  the  line  AC)  instead  of  rays 

with  the  center  P.  True,  hereby  we  would  not  obtain  a  one-to-one 

correspondence,  for  there  will  remain  points  on  CD  to  which  no  image  on 

AB  corresponds.  This  supposed  failure,  however,  has  no  significance 

with  regard  to  our  proof.  As  every  highschool  student  knows  there  is 

always  a  large  variety  of  ways  by  which  one  will  not  succeed  in  proving  a 

given  (true  or  false)  mathematical  theorem;  they  are  insignificant,  for 

what  counts  is  either  the  one  way  (or  several  ways)  that  leads  to  success, 

or  else  a  general  proof  showing  that  no  way  can  lead  to  success  (as  the 

proof  of  Theorem  1  given  below  in  2). 

A  fact  still  more  surprising  than  M  ~  N  is  the  equivalence  between  an 

(open)  segment  to  be  regarded  as  the  set  K  of  its  points  or  of  the  corre¬ 

sponding  numbers,  and  the  set  L  of  all  points  of  an  unlimited  (infinite) 

line  or  of  all  real  numbers.  A  mapping  which  shows  the  equivalence  may 

be  constructed  as  follows  (see  fig.  6).  Denoting  the  straight  line  with  s, 

the  segment  with  AB,  and  its  center  with  C,  we  bend  the  segment  (as 

though  it  were  a  thin  wire)  in  C  and  lay  it  upon  s  so  that  C  becomes  a 

point  C'  of  s  and  that  A  and  B  —  in  the  new  position,  A'  and  B'  —  lie  on 
the  same  side  of  s  (in  fig.  6,  above  s)  in  equal  distance  from  s.  Finally, 

the  middle  of  A'  B'  (which  segment  does  not  appear  in  the  figure)  shall  be 
denoted  by  S. 

A  simple  one-to-one  correspondence  between  the  points  of  the  open 

segment  A '  C'  B'  and  the  points  of  the  line  5  can  be  established  by  drawing 
rays  from  S.  Any  such  ray  will  either  intersect  both  the  open  segment  and 

s,  or  intersect  neither.  In  the  first  case,  the  points  of  the  segment  and  of 

the  line  belonging  to  the  same  ray  shall  be  related  to  each  other;  in  fig.  6, 

for  instance,  P  and  P*,  Q  and  Q *,  R  and  R*  (while  C'  corresponds  to 

itself).  Thus  a  mapping  is  constructed  which  shows  the  equivalence  be- 
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comprehensive  than  the  former. 

Our  particular  method  of  mapping  is  suitable  for  the  open  segment 

(without  its  ends  A  and  B)  and  not  for  the 

closed  segment 1).  Yet  according  to  Theorem 

6  of  §  3,  5,  the  equivalence  also  holds  after 

the  addition  of  the  ends  or  of  one  of  them. 

Instead  of  the  geometrical  definition  we 

may  use  an  analytic  method,  for  instance 

the  trigonometric  function  y  =  tan  x  (fig.  7). 

If  x  is  restricted  to  the  open  interval 

n  n 
—  -  <  x  <  - 

2  2 

(i.e.  from  —  90°  to  90°),  y  is  monotonically 

increasing  and  assumes  every  real  value.  This  function,  then,  produces 

a  mapping  of  the  set  of  all  real  numbers  onto  the  finite  open  seg- 

.  71  7Z 
ment  from  —  —  to  . 

2  2 

2.  Proof  that  the  Continuum  is  not  Denumerable.  We  have  repeatedly 

dealt  with  the  set  N  of  all  positive  integers  and  the  set  (continuum)  C  of 

all  points  of  a  segment  or  interval  and  with  many  sets  which  proved 

equivalent  to  N  or  to  C.  We  may  also  conceive  C  as  a  set  of  numbers,  viz. 

of  all  real  numbers  of  an  interval.  The  suspicion  expressed  in  subsection  1 

would  include  that  N  might  be  equivalent  to  C. 

We  shall  now  refute  this  conjecture  by  proving  that  N  and  C  are  not 

equivalent,  hence  that  there  are  non-equivalent  infinite  sets.  As  mentioned 
before,  this  is  the  fundamental  result  from  which  the  theory  of  (infinite) 

sets  is  starting. 

It  makes  no  difference  what  interval  we  use  as  the  continuum  (cf.  1) 

and  whether  we  include  the  ends  or  one  of  them.  For  practical  reasons 

which  will  show  presently  we  choose  for  C  the  “semi-closed”  interval 
0<x  <1  of  the  positive  real  numbers  up  to,  and  including,  1.  It  is 

convenient  to  conceive  the  members  of  C  as  numbers  t  rather  than  as 

points;  we  shall  write  the  numbers  as  decimal  fractions  (decimals)  —  not 

because  this  representation  of  the  real  numbers  is  superior  to  other 

x)  In  fact,  the  rays  from  S  through  A'  and  B',  being  parallel  to  s,  do  not  intersect  s. 
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representations,  e.g.  as  continued  fractions,  but  because  this  is  the  one 

that  every  reader  is  familiar  with. 

Here  and  later  we  shall  use  the  following  auxiliary  theorem  from  the 

theory  of  decimals: 

Every  positive  x)  real  number  A  has  one  and  only  one  expansion  into  an 

“ infinite ”  decimal 
A  —  m.ci  C2  C3  . . .  Ck  . . . 

where  m  is  a  non-negative  integer  and  the  digits  Ck  can  assume  the  values 

0,  1 ,  2,  .  . . ,  9,  with  the  proviso  that  after  every  Ck  digits  different  from  0 

will  appear.  (This  proviso  is  expressed  by  infinite ;  otherwise,  i.e.  if  from  a 

certain  place  on  only  zeros  appear,  we  speak  of  a  terminating  decimal.) 

Therefore,  two  infinite  decimals  which  are  not  identical  represent  different 
real  numbers. 

A  positive  real  number  that  can  be  expanded  into  a  terminating  

d
e
c
i
m
a
l
1
 
 2) 

rn  .C\C<iCz  
...  Cn  (cn  A  0) 

is  equal  to  the  infinite  decimal 

m.ci  C2  C3  ...  (cn  —  1)  999  . . . 

(or,  if  it  is  the  positive  integer  m,  to  (m  —  1).  999  . . .)  3). 
While  these  facts  are  well  known  from  their  use  in  school,  their  rigorous 

proof  cannot  be  given  without  an  analysis  of  the  concept  of  real  number. 

For  this  proof,  therefore,  the  reader  is  referred  to  introductory  text¬ 

books  (cf.  also  §  9,  1).  —  The  existence  of  real  numbers  with  two  non¬ 

identical  decimal  expansions  (one  infinite  and  one  terminating)  is  an 

inconvenience  which  renders  continued  fractions  superior  to  decimals  for 

various  purposes. 

According  to  this  theorem,  our  interval  C  may  also  be  defined  as  the 

set  of  all  infinite  decimals  of  the  form  0.  ci  C2  C3  . . .  Ck  . . .  (which  includes 

the  number  1  =  0.999. . .). 

1)  The  number  0,  to  be  sure,  has  no  infinite  expansion.  This  is  why  we  have  not 
included  0  in  our  interval. 

T1X 

2)  As  is  well  known,  this  holds  for  the  rationals  —  whose  denominator  in  the  re- 72 

duced  form  is  divisible  by  no  other  prime  than  2  and  5. 

3)  The  reader  who  should  find  this  surprising  may,  for  instance,  comprehend  the 

equality  1  =  0.999  .  . .  through  multiplying  by  9  the  equality  =0.111  .... 
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prove  the  following 

Lemma.  Given  any  denumerable  subset  C0  of  C,  there  
exist 

members  of  C  which  are  not  contained  in  Co;  that  is  to  say,  Co  is  a  proper 

subset  of  C.  In  other  words,  there  is  no  denumerable  set  that  contains  all 

members  of  C. 

(To  be  sure,  there  exist  denumerable  proper  subsets  of  C;  for  in¬ 

stance,  the  set  of  all  positive  periodic  decimals  between  0  and  1,  whose 

members  are  rational  numbers.) 

Proof  of  the  lemma  1).  Co  being  denumerable  means  that  there  exist 

mappings  between  Co  and  the  set  N  of  all  positive  integers.  We  choose 

such  a  mapping  (p  and  express  it  by  the  following  scheme : 

members  of  Co 

0 .  an  ai2  ai3  au 

\ 
0 . 021  022  023  024 

\ 

0 . 031  032  O33  O34 

\ 

0 . 041  042  043  044 

\ 

\ 

n  < - >  0  .  Onl  Oji2 . Own  .  .  . 

members  of  N 

1  < — 

2 

3 

4 

The  decimal  related  by  (p  to  the  integer  n  is  here  denoted  by  0  .  an i  an 2 

an  3  ....  Generally  the  first  index  i  of  a  digit  o «  refers  to  the  “number” 
of  the  decimal  considered,  i.e.  to  the  integer  to  which  the  decimal  is 

related,  while  the  second  index  k  marks  the  place  after  the  decimal  point 

')  We  follow  essentially  the  method  of  Cantor  1892,  which  is  the  simplest  demon¬ 
stration  of  Theorem  1  and  most  convenient  for  generalization  (cf.  subsection  7). 

The  earliest  demonstration  is  given  in  Cantor  1874,  simplified  in  1879-84  I;  cf.  the 

ingenious  method  of  Poincare  10.  All  these  proofs  are  in  nuce  similar,  namely  based  on 

the  diagonal  method  (see  below). 



CH.  I,  §  4] THE  CONTINUUM.  TRANSFINITE  CARDINALS 53 

where  the  digit  ou-  appears  in  the  /th  decimal.  The  right-hand  side  of  the 

scheme  may  be  described  as  an  “infinite  square”  extending  rightwards 
and  downwards  from  the  vertex  an- 

The  “diagonal”  digits  an,  022,  an,  ...  (i.e.  the  for  which 
k  =  i),  marked  in  our  scheme  by  arrows,  shall  serve  to  define  a  decimal 

d  =  0  .  d\  d%  d$  . . .  di  . . . 

in  the  following  way :  in  general  di  shall  equal  1 ;  only  if  an  =  1 ,  di  shall 

equal  2.  In  other  words,  for  every  n  =  1,  2, . . . ,  dn  =  1  or  ==  2  according 

as  ann  f  1  or  —  1.  Then  d  is  a  member  of  C  not  contained  in  Co.  First, 
d  is  an  infinite  decimal  between  0  and  1.  Furthermore,  d  is  different  from 

all  members  of  Co,  i.e.  from  the  oth  member  (the  member  related  to  n 

by  (p)  for  all  n  =  1,2,  . . . ;  in  fact,  the  «th  digit  of  the  /?th  member  is  ann 

while  the  nth  digit  of  d  is  dn  ̂   ann,  and  since  both  the  nth  member  and  d 

are  infinite  decimals  they  also  represent  different  real  numbers. 

Hence  Co  is  a  proper  subset  of  C,  which  completes  the  proof  of  the 

lemma. 

Finally,  the  lemma  expresses  the  following  property  of  the  set  C  of  all 

real  numbers  x  with  0  <  x  <  1 : 

Theorem  1.  C  is  not  denumerable .  i.e.  not  equivalent  to  the  set  N  of 

all  positive  integers. 

Thus  we  have  confirmed  the  existence  of  two  infinite  sets  which  are  not 

equivalent. 

3.  Remarks  and  Supplements  to  the  Proof.  Certain  features  of  the  proof 

require  additional  remarks. 

Beginners  are  often  inclined  to  maintain:  well,  a  real  number  d  not 

contained  in  Co  has  been  constructed  but  its  addition  to  the  members  of 

Co  will  not  impair  its  property  of  being  denumerable,  in  accordance  with 

Theorem  2  of  §  3.  This  is  a  gross  misunderstanding  of  the  logical  character 

of  the  proof.  Even  if  only  a  single  member  of  C  not  belonging  to  Co  were 

produced  our  aim  would  have  been  attained.  For  the  mapping  (p  refers 

to  N  and  any  denumerable  subset  of  C,  including  more  comprehensive 

ones  than  Co.  The  meaning  of  the  proof,  then,  is  that  no  denumerable  set 

exhausts  C. 

The  reader  will  rightly  ask,  what  is  the  special  role  of  the  digits  1  and  2 

in  the  proof  and  why  has  1  been  favored  versus  2?  The  answer  is,  no 
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special  role  at  all!  (The  purpose  of  our  particular  procedure  will  be 

explained  presently.)  d  might  as  well  have  been  defined  by  the  rule: 

let,  for  every  i,  di  be  any  digit  different  from  the  diagonal  digit  an,  which 

rule  produces  infinitely  many  numbers  d.  Proceeding  in  this  way  we 

should  only  exert  caution  regarding  the  digit  0,  either  by  excluding  di  =  0 

altogether  or  by  ensuring  that  not  finally  all  di  (i.e.,  all  from  a  certain 

i  =  k  on)  equal  0;  for  otherwise  d  might  be  a  terminating  decimal,  which 

would  render  the  ultimate  argument  of  the  proof  illusory  because  d  might 

then  equal  one  of  the  infinite  decimals  of  Co. 

Why,  then,  the  restriction  to  the  digits  1  and  2  in  our  proof?  Just  to 

kill  the  prejudice,  found  in  some  treatments  of  the  proof,  as  if  the  method 

were  purely  existential,  i.e.  as  if  the  proof,  while  showing  that  there  exist 

decimals  belonging  to  C  but  not  to  Co,  did  not  allow  to  construct  such 

decimals.  The  arbitrary  way  of  singling  out  the  digits  1  and  2  enables 

us  to  form  a  uniquely  defined  such  decimal,  though  it  has  no  preference 

over  others;  in  4  we  shall  give  a  quasi-practical  application  of  this  con- 

structivity. 

In  our  proof  decimals  have  been  used.  It  is  clear  that  the  choice  of  the 

base  10  cannot  have  a  mathematical  reason.  The  use  of  the  decadic  (dec¬ 

imal)  scale  of  notation,  including  decimal  fractions,  in  our  civilization  (in 

contrast  to  the  old  peoples  of  Mesopotamia  and  other  civilizations  who 

used  6  or  8  etc.  as  bases)  relies  on  the  fact  that  man  has  ten  fingers 

with  which  he  used  to  count  and  reckon.  Any  positive  integer,  with  the 

exception  of  1  the  powers  of  which  do  not  increase,  is  as  well  fit  to  serve 

as  base:  the  mathematician  gives  preference  to  the  least  possible  base, 

namely  2  (cf.  §  7),  which  is  also  favored  in  many  applications  from  the 

Morse  system  to  electronic  computers x).  The  use  of  system  fractions  with 
any  base  >  3,  instead  of  decimals,  would  not  change  our  proof  even  in 

its  details;  only  the  base  2  requires  a  slight  modification  since  then  for 

the  anc  and  di  only  the  values  0  and  1  are  available,  which  affects  our  rule 

about  excluding  zeros.  (Cf.  exercise  2)  at  the  end  of  this  section.) 

Because  of  the  part  played  by  the  diagonal  digits  an  in  our  proof, 

its  method  is  called  (Cantor’s)  diagonal  method.  It  is  one  of  the  strongest 
and  most  famous  methods  in  modern  mathematics  and  we  shall  use  it 

at  various  
junctures  

in  the  
present  

exposition  

of  set  

theory *  

2).  Objections 

b  For  practical  arithmetic,  2  proves  too  small;  in  the  dyadic  system  already  27 
would  be  written  with  five  digits,  namely  as  11011. 

2)  Also  outside  abstract  set  theory  the  method  is  used,  for  instance  in  the  theory  of 
sets  of  points  and  of  orders  of  infinity. 
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to  the  diagonal  method  have  been  raised  on  a  lower  J)  and  a  

higher *  2) 

level,  but  its  use  for  proving  our  lemma  is  legitimate  even  from  intuition- 

istic  points  of  view  3)  (which  object  to  Theorem  1  because  they  would 
not  admit  the  continuum  C  as  a  mathematical  object). 

Judged  in  the  light  of  mathematical  technique,  the  proof  of  our  result 

by  means  of  the  diagonal  method  is  surprisingly  simple  in  comparison 

with  its  far-reaching  consequences  within  and  without  set  theory  (cf. 

subsection  4).  The  simplicity  and  lucidity  of  many  of  Cantor’s  fundamen¬ 
tal  proofs  constitute  a  particular  charm  of  set  theory  and  contrast 

favorably  with  more  difficult  and  technical  proofs  of  important  theorems 

in  other  branches  of  mathematics,  including  the  branch  which  in  many 

ways  is  congenial  with  theory  of  sets,  namely  theory  of  numbers. 

Finally,  the  character  of  our  result  as  an  impossibility  statement  should 

be  pointed  out.  In  §  3  and  subsection  1  of  §  4  many  results  showing  the 

equivalence  of  different  sets  were  obtained  by  the  construction  of  suitable 

mappings.  In  contrast  herewith,  Theorem  1  asserts  that  it  is  impossible  to 

produce  a  mapping  between  the  sets  N  and  C. 

In  many  branches  of  mathematics  problems  of  impossibility  have  been 

raised  and  partly  been  solved  —  the  oldest  among  them  being  problems 

of  Greek  geometry  such  as  duplicating  the  square,  trisecting  the  angle, 

squaring  the  circle  (these  three  with  restriction  to  the  use  of  ruler  and 

compasses),  proving  Euclid’s  postulate  of  parallels;  all  these  were  solved 
(in  the  negative)  in  the  nineteenth  century  only.  The  difficulty  (and  the 

charm)  of  most  impossibility  proofs  has  its  root  in  the  need  of,  as  it  were, 

scrutinizing  all  possible  ways  of  solution  and  of  showing  their  futility. 

By  this  feature  the  proof  of  Theorem  1  is  distinguished  from  the  earlier 

equivalence  proofs. 

This  difference  in  principle  between  proofs  of  equivalence  and  of  non¬ 

equivalence  is  missing  in  the  comparison  between  finite  sets.  Here,  as 

even  children  know  from  experience  in  playing,  a  single  failure  in  attempt¬ 

ing  to  form  a  mapping  is  sufficient  for  stating  the  non-equivalence,  just 
as  one  success  shows  the  equivalence.  Does  this  contradict  what  was  just 

pointed  out? 

Not  at  all.  The  difference  in  principle  remains.  That  it  does  not  become 

visible  in  dealing  with  finite  sets  is  due  to  a  particular  property  of  these 

J)  For  instance,  by  Bentley  32  and  Bridgman  34.  These  objections  are  refuted  in 
Rust  34  and  Fraenkel  35. 

2)  See  in  particular  Kreisel  50. 

3)  See  Foundations,  chapter  IV. 
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characteristic  of  arithmetic,  viz.  mathematical  induction.  In  the  beginning 

of  §  8  we  shall  express  this  property  as  follows:  to  a  given  finite  cardinal 

number  there  belongs  only  a  single  corresponding  ordinal  number; 

in  other  words,  in  whatever  different  ways  the  members  of  a  finite  set  may 

be  arranged,  there  always  emerges  the  same  scheme  of  order:  a  first, 

second,  ...,  «th  member  with  the  same  concluding  n.  On  account  of 

this  property,  one  failure  in  mapping  shows  that  every  attempt  is  bound 
to  end  in  failure. 

To  show  the  completely  different  behaviour  of  infinite  sets  it  is 

sufficient  to  refer  to  our  experience  with  the  rational  numbers  (§  3,  3). 

If  they  are  ordered  according  to  magnitude  there  is  no  least  rational  and 

between  any  two  given  rationals  there  are  infinitely  many  others.  But  if 

we  enumerate  them  there  is  a  first,  and  every  rational  is  immediately 

succeeded  by  a  uniquely  defined  other.  These  are  just  two  of  infinitely 

many  essentially  different  ways  of  ordering  the  set  of  rationals  (see  §  8, 6); 

for  more  comprehensive  infinite  sets  the  variety  is  increasing.  Accordingly 

there  are  many  ways  of  attempting  to  form  a  mapping  between  infinite 

sets  and  one  failure  proves  nothing.  On  the  contrary,  as  we  saw  in  §  2,  5, 

every  infinite  set  is  equivalent  to  a  proper  subset ;  hence  besides  the  one-to- 

one  correspondences  between  the  members  of  two  equivalent  sets  there 

are  others  which  exhaust  the  members  of  one  set  but  not  of  the  other. 

A  proof  of  non-equivalence,  therefore,  is  intrinsically  an  impossibility 

proof. 

4.  Extension  of  Theorem  1.  The  Transcendental  Numbers.  In  1  we 

saw  that  intervals  of  different  length,  when  considered  as  the  sets  of  all 

real  numbers  (or  points)  contained  in  the  open  (or  closed,  or  semi- 

closed)  interval,  are  equivalent  to  each  other  and  also  to  the  set  of  all 

real  numbers  (all  points  of  a  line).  The  property  of  being  non-denumerable 

is  not  changed  by  the  transition  to  an  equivalent  set. 

Calling,  as  usual,  each  of  the  sets  just  mentioned  a  continuum  (of  num¬ 

bers  or  points)  —  and  even  the  continuum  as  far  as  the  properties  common 

to  these  sets  are  concerned  —  we  may  formulate 

Theorem  2.  The  continuum  is  an  ( infinite )  non-denumerable  set. 

To  be  sure,  we  have  not  affirmed  the  existence  of  the  continuum,  which 

cannot  be  proved  by  means  of  the  five  axioms  (including  the  axiom  of 

infinity)  introduced  so  far.  The  existence  of  the  continuum  will  result  by 
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means  of  an  additional  axiom  (VI)  to  be  introduced  in  §  5,  3  for  a  more 

general  purpose. 

We  shall  now  give  an  important,  and  at  its  time  most  surprising, 

application  of  our  result  to  a  problem  outside  set  theory. 

The  concept  of  real  transcendental  number,  as  a  real  number  which  is 

not  algebraic,  was  introduced  in  §  1.  Up  to  the  first  quarter  of  the  present 

century,  before  the  discoveries  of  Gelfond,  Siegel,  and  others  *),  little  was 

known  about  transcendental  numbers,  and  the  proofs  that  numbers  such 

as  e  and  n  are  transcendental  (1873/1883)  are  difficult.  Though  the  orig¬ 

inal  method  (Liouville,  1851)  of  proving  the  existence  of  transcendental 

numbers  yields  a  whole  class  of  such  numbers,  a  more  far-reaching  and 

most  surprising  result  is  obtained  by  our  relatively  simple  methods. 

The  set  C  of  all  real  numbers  is  the  union  of  the  disjoint  sets  of  all 

real  algebraic  numbers  (A)  and  all  real  transcendental  numbers  ( T ); 

C  =  A  U  T.  Applying  
Theorem  

5  of  §  

3 *  

2)  we  have  T  ~  C,  for  A  is 

denumerable.  Hence 

Theorem  3.  The  set  of  the  real  transcendental  numbers,  or  of  the 

transcendental  numbers  of  an  arbitrary  interval,  is  equivalent  to  the  set  of 

all  real  numbers. 

One  might  say,  a  real  number  is  “normally”  transcendental  and  “in 

exceptional  cases  only”  algebraic. 
The  restriction  to  real  numbers  is  insignificant  as  previously.  The 

result  is  surprising,  for  the  numbers  mathematicians  have  been  studying 

and  using  are  “almost  all”  algebraic  3). 
To  prevent  the  impression  as  if  Theorem  3  were  a  merely  existential 

statement  we  refer  to  what  was  said  in  3.  Let  in  the  proof  of  the  lemma 

Co  be  an  enumeration  of  the  set  of  all  algebraic  numbers  as  constructed  in 

§  3,  4.  Then  the  uniquely  defined  decimal  d  is  a  transcendental  number, 

obtained  in  a  constructive  way.  True,  we  do  not  know,  in  their  entirety 

and  simultaneously,  the  decimal  expansions  of  all  algebraic  numbers  in  a 

x)  Cf.,  for  instance,  Schneider  59. 

2)  The  profound  theorems  4  and  5  of  §  3  are  not  required  for  proving  that  T  is  an 

infinite  non-denumerable  set,  for  from  the  elementary  Theorem  2  of  §  3  it  follows  that  T 
cannot  be  finite  or  denumerable. 

3)  It  is  noteworthy  that  in  his  paper  of  1 874  Cantor  mainly  stresses  the  first  of  the 
two  results  contained,  namely  the  denumerability  of  the  set  of  the  real  algebraic 

numbers  —  a  result  which  seems  to  us  almost  trivial.  The  second,  incomparably 

profounder  result,  viz.  the  non-denumerability  of  the  set  of  all  real  numbers,  appears 
there  rather  as  an  application  of  the  first  to  the  problem  of  transcendental  numbers. 
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way  comparable  to  our  knowledge  of,  say,  the  periodic  decimals.  But  we 

have  at  our  disposal  laws  for  constructing  the  nth  digit  of  the  nth  algebraic 

number  in  our  enumeration  for  every  positive  integer  n  and  can  according¬ 

ly  compute  the  nth  digit  of  the  transcendental  number  d.  To  make  this 

obvious  we  constructed  d  as  done  above,  by  taking  just  the  digits  1  and  2. 

To  be  sure,  after  having  advanced  to  any  n  we  are  not  in  the  possession 

of  a  transcendental  number,  for  we  may  then  continue,  for  instance,  in  a 

periodic  way  and  hereby  obtain  a  rational  number.  Yet  objections  of 

this  kind  have  no  weight;  the  situation  is  similar,  e.g.,  for  the  number  n 

of  whose  decimal  expansion  we  know  finitely  many  digits  only  (in 

contradistinction,  for  example,  to  the  expansion  of  rational  numbers). 

It  is  the  law  underlying  the  construction  of  d  (or  of  n)  which  defines  the 

expansion  uniquely.  On  the  other  hand,  the  construction  naturally  has 

only  a  theoretical  character  and  does  not  yield  a  transcendental  d  in 

an  intuitive  way. 

5.  The  Concept  of  Cardinal  Number.  The  Cardinals  No  a°d  N-  From 

Theorem  1  we  have  drawn  an  important  conclusion  and  other  applications 

will  be  given  later.  Now,  however,  we  shall  concentrate  upon  its  con¬ 

sequence  within  set  theory  proper  and  point  out  in  what  sense  the  theorem 

should  be  considered  the  very  basis  of  set  theory.  This  is  done  first  in  an 

informal  way;  in  subsection  6  a  more  elaborate  analysis  of  the  subject 

will  be  given. 

In  §  2,  4  a  procedure  was  outlined  which  leads  from  equivalent  finite 

sets  to  the  concept  of  their  common  cardinal  number,  as  was  done  in  the 

seventeenth  century  by  Descartes  and  later  in  a  more  satisfactory  way 

by  Hume.  Conversely,  if  two  finite  sets  have  the  same  number  of  members 

they  are  equivalent. 

Since  that  procedure  does  not  utilize  the  finiteness  of  the  sets  it  is 

natural  to  attribute  the  same  cardinal  to  any  equivalent  sets,  no  matter 

whether  they  are  finite  or  infinite.  While  the  existence  of  non-equivalent 
finite  sets  is  well  known,  in  the  case  of  infinite  sets  it  is  Theorem  1  which 

renders  the  procedure  non-trivial  by  ensuring  that  there  exist  infinite 

sets  which  are  not  equivalent,  hence  infinite  cardinals  which  are  different. 

(Nobody  before  Cantor  has  even  ventured  to  prove  this  although  mathe¬ 

maticians  had  dealt  with  infinite  sets  and  one-to-one  correspondences 

between  their  members  long  before.)  The  existence  of  different  (as  we 

shall  see  in  §  5,  infinitely  many  different)  infinite  cardinals  imposes  upon 

us  the  task  of  comparing  the  cardinals  and  calculating  with  them. 
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But  first  of  all  we  have  to  define  infinite  cardinals.  The  situation  in  the 

realm  of  finite  quantities  (sets  and  numbers)  suggests  to  distribute  the  sets, 

whether  finite  or  infinite,  into  classes  (sets)  of  sets  *)  such  that  sets  of  the 
same  class  are  equivalent  and  sets  of  different  classes  are  not.  Now,  says 

Cantor  in  his  final  exposition  of  the  
theory* 2),  

the  cardinal  of  a  set  S 

should  be  understood  to  be  the  general  concept  (universal)  which  by 

means  of  our  “active  mental  power”  arises  from  the  set  5  by  abstracting 
from  both  the  special  nature  of  the  members  of  A  and  the  order  in  which 

they  may  occur  in  S.  This  would  reflect  just  what  is  common  to  all  sets 

equivalent  to  S,  i.e.  to  all  sets  of  the  class  to  which  S  belongs. 

To  be  sure,  Cantor’s  formulation  will  hardly  be  acknowledged  as  a 

definition  of  cardinals.  Yet  one  might  proceed  to  a  definition  by  conceiving 

the  very  classes  defined  above  as  the  cardinals,  i.e.  by  defining: 

(A)  The  cardinal  of  a  set  S  is  the  class  (set)  of  all  sets  that  are  equival¬ 
ent  to  S. 

This  definition  seems  somewhat  paradoxical.  However,  such  definitions 

are  nowadays  a  matter  of  course  in  mathematics;  for  instance,  a  real 

number  is  defined  as  a  set  of  sequences  of  rationals  with  certain  properties, 

and  a  rational  number  as  a  set  of  pairs  of  integers  with  certain  properties. 

Hence  objections  to  (A)  maintaining  that  “integers  are  far  simpler 

objects  than  sets  of  sets”  need  not  be  taken  seriously.  On  the  other  hand, 

the  “set  of  all  sets  equivalent  to  S”  is  apt  to  involve  antinomies  unless 

certain  precautions  are  taken;  for  these  see  Foundations,  chapters  II  and 

III. 

The  logician  certainly  prefers  an  explicit  definition  of  cardinal  such  as 

(A).  For  the  mathematician,  however,  the  explicitness  of  the  definition  is 

not  a  foremost  requirement,  for  he  is  rather  concerned  with  handling  the 

mathematical  objects  than  with  exploring  their  nature  —  somewhat 

similar  to  the  chessplayer  who  does  not  care  what  the  bishop  or  the  pawn 

“mean”  but  how  one  operates  with  them.  Many  divergent  philosophical 

theories  have,  for  instance,  been  proposed  to  clarify  the  nature  of 

integers,  but  the  rules  of  arithmetic  are  independent  of  which  theory  one 

adheres  to.  Also  with  regard  to  cardinals  it  is  sufficient  to  give  a  working 

definition  3)  such  as  the  following,  mentioned  for  finite  cardinals  above: 

1)  The  term  “class”  means  here  nothing  different  from  “set”  and  is  adopted  for 
the  sake  of  simpler  expression  only. 

2)  Cantor  1895,  p.  481. 

3)  For  this  concept  and  its  significance  in  mathematics  cf.  Carnap  27,  Weyl  26/49. 
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(B)  The  sets  Si  and  S2  are  said  to  have  equal  cardinals  if  they  are  equi¬ 

valent,  i.e.  if  Si  ~  S2.  Otherwise  their  cardinals  are  called  different. 

As  may  be  expected  in  view  of  ordinary  arithmetic  and  will  be  confirm¬ 

ed  in  the  following  sections,  all  relations  between  cardinals  can  be  re¬ 

duced,  in  addition  to  the  membership  relation  for  sets,  to  the  equality 

and  inequality  of  cardinals,  hence  in  view  of  (B)  to  the  equivalence  and 

non-equivalence  of  sets  as  defined  in  §  2.  Accordingly  we  need  not  fix 

what  a  cardinal  is  and  may  translate  statements  on  cardinals  into  the 

language  of  sets. 

One  may  take  an  additional  step  by  altogether  avoiding  the  use  of 

cardinals,  restricting  oneself  to  corresponding  sets  and  their  equivalence. 

For  ordinary  purposes  of  set  theory  and  most  of  its  applications  this 

would  cause  considerable  inconvenience,  though  no  difficulty  of  principle, 

but  in  axiomatic  set  theory  (see  Foundations,  chapter  II,  §§  1-5  and  8) 

this  way  proves  to  be  practicable. 

By  developing  the  general  concept  of  cardinal  and  ensuring  the 

existence  of  different  infinite  cardinals  we  are  enabled  to  answer  the 

question  “how  many  members  are  contained  in  the  set?”  for  infinite  sets 
in  an  equally  definite  sense  as  for  finite  sets  and  not  just  with  the  vague 

expression  “infinitely  many”.  To  be  sure,  there  is  between  finite  and 
infinite  sets  the  specific  difference  that  the  answer  to  the  above  question  is 

not  necessarily  changed  when  additional  members  are  inserted  into  an 

infinite  set,  as  is  the  case  for  finite  sets;  this  is  due  to  the  fact  that  an 

infinite,  but  not  a  finite,  set  is  equivalent  to  a  proper  subset. 

The  cardinals  of  infinite  sets  are  called  transfinite  cardinals.  For  their 

notation  in  general  we  shall  use  bold  letters,  as  far  as  possible  correspond¬ 

ing  to  the  notation  of  sets  whose  cardinals  they  are ;  thus  the  cardinal  of  S 

or  5  will  be  written  s,  etc.  Frequently  the  general  notation  also  includes 

finite  cardinals,  i.e.  cardinals  of  finite  sets;  yet  when  we  confine  ourselves 

to  finite  cardinals  we  use  italics,  e.g.  k,  n.  It  is  often  convenient  to  follow 

Cantor’s  custom  who  from  1887  on  denoted  the  cardinal  of  the  set  S 

by  S  {=  s);  the  double  bar  hints  at  disregarding  both  the  special  nature 
of  the  members  and  their  succession. 

To  denote  particular  transfinite  cardinals,  corresponding  to  the  notation 

of  the  finite  cardinals  0,  1,2,  . . .,  one  has  universally  adopted  Cantor’s 
mode  of  writing  (Alef),  the  first  letter  of  the  Hebrew  alphabet,  with  a 

suitable  index,  e.g.  ̂ 0,  &i,  &«.  This  will  prove  impracticable  in  the  case 

of  the  cardinal  of  the  continuum  (also  called  the  power  of  the  continuum. 
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see  §  5  and  §  11,7)  for  which  we  therefore  write  X  without  index,  following 

Hausdorflf  (and  not  Cantor).  The  cardinal  of  denumerable  sets  will 

prove  to  be  the  least  transfinite  cardinal  (§  5)  and  is  denoted  by  Xo- 

6.  Further  Analysis  of  the  Concept  of  Cardinal.  Cantor’s  (latest)  quasi-definition 
of  the  concept  was  quoted  above  4).  The  essence  of  his  definition  by  abstraction  as 

expressed  by  the  symbol  S’  is  not  peculiar  to  set  theory.  Wherever  in  mathematics  or 

elsewhere  a  relation  R  occurs  which  is  reflexive,  symmetrical,  and  transitive  (see  §  2, 

4),* 2) 

a  new  concept  may  be  formed  “by  abstraction”,  as  shown  by  the  following  examples. 
Through  the  relation  of  (directed)  parallelism,  the  set  of  all  rays  yields  the  concept  of 

direction;  through  the  relation  of  (geometrical)  similarity,  the  set  of  all  plane  polygons 

yields  the  concept  of  shape;  through  the  relation  of  congruence  modulo  m,  the  set  of  all 

integers  yields  the  congruence  classes;  etc.  In  our  case,  the  (finite  and  infinite)  sets  yield, 

through  the  relation  of  equivalence  in  the  sense  of  §  2,  4,  the  concept  of  cardinal.  If  we 

express  the  validity  of  xRy  by  saying,  x  and  y  are  of  the  same  R-type,  we  may  call 

the  new  concept  “the  R-type”  of  the  objects  concerned;  that  is  to  say,  the  R-types  of  x 

and  y  are  equal  if  and  only  if  xRy  holds  true.  Or,  closer  to  Cantor’s  formulation,  the 
R-type  is  formed  by  disregarding  the  properties  of  the  objects  concerned  save  those 

based  on  the  relation  R;  accordingly  the  cardinal  of  S  would  mean  the  totality  of 

just  those  properties  of  S  which  are  shared  by  all  sets  equivalent  to  S. 

This  definition  by  abstraction  is  a  particular  (most  important)  case  of  the  definitorial 

procedure  
which  sometimes  

is  called  the  creative  
mathematical  

definition 

3 4).  

Still,  from 

the  logical  point  of  view  the  foundation  of  defining  by  abstraction  as  given  in  the 

preceding  paragraph  can  hardly  be  regarded  as  satisfactory4);  it  has  been  redeemed 
by  Frege  and  Russell  independently. 

4)  Essentially  the  same  explanation  is  found  in  Cantor  1887,  p.  82,  where  he  refers 
to  similar  formulations  in  a  lecture  in  Freiburg  (1883)  and  in  a  letter  to  Kurd  Lasswitz 

of  1884.  Yet  in  his  earlier  papers  1878  and  1879-84  Cantor  avoids  an  explicit  definition 

and  contents  himself  with  the  working  definition  (B).  Moreover,  in  his  review  (1885) 

of  the  fundamental  book  Frege  1884  (reprinted  in  Cantor  32,  pp.  440-441)  he  uses  a 

definition  similar  to  Frege’s. 
The  difference  of  opinion  between  Cantor  and  Frege  on  this  point  is  trifling  and 

can  hardly  substantiate  the  tension  prevailing  between  these  great  scientists.  In  particul¬ 

ar,  the  review  mentioned  does  neither  justice  to  Frege’s  intentions  nor  to  the  importance 

of  his  ideas.  The  mathematical  fashion  of  that  period  deprecated  Frege’s  attitude  and 
endeavored  to  conceive  numbers  as  mere  signs  on  paper,  thus  confusing  concepts 
and  their  notations. 

2)  Ore  42  shows  what  extensive  theory  can  be  developed  on  the  basis  of  this 

concept.  Cf.  also  Dubreil-Dubreil  39. 

3)  So  in  Weyl  26/49,  No.  2;  cf.  already  Pasch  1 882,  p.  40;  the  pith  of  the  procedure 

can  be  traced  back  to  Leibniz.  Since  the  turn  of  the  century,  also  in  general  philosophical 

literature  the  classical  (Aristotelian)  conception  of  definition  by  genus  proximum  and 

differentia  specifica  has  been  shifting  to  a  functional  conception,  based  on  the  relations 

between  the  definiendum  and  other  concepts;  cf.  Cassirer  10,  Schlick  25,  Nagel  39. 

In  a  more  general  context,  the  importance  of  the  process  of  abstraction  (and  even  of 

the  identification  of  distinct  concepts)  inside  and  outside  mathematics  has  been 

stressed  by  Meyerson  31  (cf.  Lichtenstein  32). 

4)  It  is  significant  that  a  scholar  as  strict  and  careful  as  Dedekind,  to  justify  the 

definition  by  abstraction,  appeals  to  the  creative  power  of  man  (“we  are  of  divine 

origin”)  and  opposes  a  conception  in  the  sense  of  (A);  see  Dedekind  30-32  III,  p.  489. 
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Russell’s  
procedure * 2 3  4)  is  quite  general.  He  uses  the  term  principle  of  abstraction 

rather  in  the  sense  of  replacing  Cantor’s  conception  by  an  exact  logical  argument,  the 
essence  of  which  is  as  follows.  Given  a  symmetrical  and  transitive  

relation  R,  there 

exists  a  one-to-many  relation  
2)  R*  such  that  xR y  implies  zR*x  and  zR*>>  where  z  is 

uniquely  determined  by  x  (or  y)  but  not  
conversely,  z  is  called  the  R-type  

of  x,  hence 
of  any  u  for  which  uRx.  If  R  is  equivalence  between  sets  then  

z  is  the  cardinal  of  x. 

With  the  methods  of  modern  logic,  e.g.  those  of  Principia  Mathematica,  the  existence 

of  R*  can  be  proven;  thus  the  cardinals  are  vindicated. 

Frege’s  vindication  3),  which  preceded  Russell’s  but  is  restricted  to  finite  cardinals, 

is  still  closer  to  (A)  than  Russell’s.  However,  like  Frege’s  logical  system  in  general  also 
his  definition  of  cardinals  was  ignored  until  Russell  pointed  out  its  importance  4). 

As  to  (B)  of  5,  it  has  already  been  stressed  that  this  is  a  “working  definition”.  One 

must  not  discredit  the  use  of  “incomplete  symbols”  introduced  through  such  definitions 
by  the  claim  that  in  principle  it  should  be  possible  to  eliminate  any  symbol  introduced 

through  a  definition  —  which  is  just  another  expression  for  asking  what  the  new 

concept  is  and  not  what  task  it  performs.  At  any  rate  for  mathematics  this  claim  goes 

too  far,  as  shown  by  the  inductive  definitions,  based  on  mathematical  or  transfinite 

induction  (see  §  10,  2);  here  the  elimination  is  in  general  impossible. 

Finally  one  might  propose  to  define  cardinals  by  means  of  effective  examples, 

namely  as  particular  objects  (sets)  among  those  mentioned  in  definition  (A)  —  in 
some  analogy  with  the  definition  of  the  unit  of  length  through  the  normal  metre  kept 

in  Paris.  The  particular  object  would,  then,  represent  the  cardinal  of  every  set  equivalent 

to  it.  At  first  sight  this  method  (representing  the  cardinal  3,  say,  as  the  set  {sun,  earth, 

moon})  seems  arbitrary  and  impracticable.  In  §  11,  2,  however,  we  shall  see  that  along 

the  lines  of  von  Neumann  this  method  can  be  carried  out  generally,  though  it  is  not 

practical  for  all  purposes.  Its  gist  may  be  grasped  from  the  particular  case  of  a  finite 

cardinal,  which  can  be  defined  as  the  set  of  all  smaller  cardinals  including  0,  i.e. 

n  =  {0, 1,  2,  n  —  1}. 

While  the  preceding  explanations  make  it  obvious  that  the  attacks  of  various  philo¬ 

sophers  upon  the  concept  of  (transfinite)  cardinal  are  unsubstantiated,  the  attitude  of 

(neo-)intuitionists  that  there  do  not  exist  altogether  non-equivalent  infinite  sets  —  in 

particular  not  the  continuum  —  is  consistent,  though  almost  suicidal  for  mathematics; 
see  Foundations,  chapter  IV,  §  6. 

There  still  remains  the  question  whether  our  axioms  enable  us  to  construct  cardinals. 

The  answer  is  in  the  negative.  Hence,  if  a  strictly  axiomatic  foundation  of  set  theory 

(and  not  a  semi-axiomatic  one  as  in  the  present  book)  is  intended 5)  one  of  two  ways 
has  to  be  taken.  Either  one  renounces  the  explicit  use  of  cardinals  and  contents  oneself 

with  contemplating  the  equivalence  and  non-equivalence  of  sets;  this  is  the  way  of 

*)  Russell  03,  pp.  166  and  120;  Whitehead-Russell  10-13  I,  72.66.  Cf.  Russell  19, Nicod  22. 

2)  Cf.  §  2,  4.  “z  is  the  father  of  x”  is  such  a  relation. 

3)  Frege  1884,  especially  §§  63-68.  The  criticism  of  Frege’s  logic  in  Smart  45  is 
unjustified. 

4)  The  monograph  Scholz-Schweitzer  35  (cf.  F.  Bachmann  34)  gives  a  compre¬ 
hensive  account  of  Russell’s  and  Frege’s  vindications  of  the  definition  by  abstraction, 
together  with  a  criticism  of  Cantor’s  and  other  older  procedures.  An  extension  to 
relations  with  2 n  arguments  is  also  included. 

5)  An  axiomatization  of  cardinals  independently  of  axiomatic  set  theory  is  given in  Baer  29. 
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Zermelo  *)  and  his  followers.  Or  else  one  introduces  cardinals  as  particular  sets  in  the 
sense  of  von  Neumann  and  his  followers;  these  sets  can  be  secured  by  admission  of  an 

additional  axiom,  the  axiom  of  substitution  or  replacement  (see  §  11,  2).  However, 

even  in  this  case  it  is  preferable  for  many  purposes  to  operate  with  sets  rather  than  with 

cardinals.  The  reader  interested  in  these  questions  of  principle  is  referred  to  Foundations, 

chapter  II. 

7.  The  Set  of  all  Functions  and  its  Cardinal.  So  far  we  have  dealt 

with  two  transfinite  cardinals  Xo  and  X-  We  shall  now  construct  a  third 

one. 

We  consider  the  closed  interval  I  defined  by  0  <x  <  1.  A  single-valued 

real  function  / (x)  is  defined  in  /  when  by  a  suitable  rule  to  every  x  of  / 

a  uniquely  determined  real  number  / (x)  =  y  is  attached.  One-to-one 

correspondence  between  x-  and  j^-values  is  not  required. 
Let  F  be  the  set  of  all  such  functions  / (x).  (Here  F  is  taken  just  as  an 

example;  the  proof  that  F  exists  on  account  of  our  axioms  including  the 

axiom  formulated  in  §  5,  3  is  based  on  concepts  introduced  in  §  7.)  Two 

members  of  F,/i(x)  and /2(x),  are  considered  different  if  and  only  if  there 

is  at  least  one  x  =  xo  in  /  for  which  /i(xo)  ¥=  hixo)- 

There  are  proper  subsets  of  F  which  are  equivalent  to  the  continuum, 
for  instance  the  set  of  those  functions  that  are  constant  in  I.  To  show  this 

we  may  relate  the  constant  function  /(x)  =  c  to  the  real  number  c. 

Hence,  at  any  rate  F  is  not  denumerable. 

To  prove  that  F  is  not  even  equivalent  to  the  continuum  we  use  the 

diagonal  method.  Let  C  be  the  set  (continuum)  of  all  numbers  of  the 

interval  I  and  Fo  any  subset  of  F  that  is  equivalent  to  C;  it  will  be  sufficient 

to  prove  that  Fo  is,  by  this  assumption,  a  proper  subset  of  F,  i.e.  that  there 

are  functions  in  F  which  do  not  belong  to  Fo.  (Cf.  subsections  2  and  3 

above.)  Using  an  arbitrary  mapping  <P  between  Fo  and  C,  we  shall  name 
such  a  function. 

The  function  (member  of  F0)  which  by  <P  corresponds  to  the  real 

number  c  e  C  shall  be  denoted  by  fc  (x) ;  f_  (x),  for  instance,  is  the  function 

related  by  #  to  f  e  C.  cp{x)  shall  be  the  “diagonal”  function  which,  for 

each  xo  e  C,  equals  the  function  /z0(x);  in  short,  <p(x)  =fx(x).  In  other 

words,  to  determine  the  value  <p (c)  of  (p(x )  for  x  =  c  we  have  to  take  the 

function  
fc  (x) ;  its  value  

for  x  =  c,  i.e./c  
(c),  is  

(p{c)*  

2).  Hereby  
the  function 

cp(x)  is  uniquely  determined. 

q  Zermelo  08a. 

2)  For  instance,  if  /j  (x)  =  x2  +  2  we  have  <p  (f)  =  f\  (f)  =  (f)2  +  2. 
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Finally,  y/(x)  shall  be  a  function  of  F  which  everywhere  differs  from 

q>(x);  e.g.,  y/(x)  =  cp(x)  +  1.  ij/(x)  does  not  belong  to  Fo.  For  let/c(x)  be 

any  member  of  Fo ;  then  ig(x)  ̂   fc(x)  because,  for  x  —  c,  fc(x)  has  the 

value  fc{c)  and  ig(x)  the  value  <p(c)  +  1  =  fc(c)  +  1  ±  fc(c).  Hence  Fo  is 

a  proper  subset  of  F,  which  means 

Theorem  4.  The  set  F  of  all  single-valued  real  functions  f(x)  defined  for 

0  <  x  <  1  has  a  cardinal  f  *)  which  is  different  from  both  Ko  and  K  ( while 
F  has  a  subset  of  the  cardinal  K ) . 

The  reader  will  observe  the  far-reaching  analogy  between  the  proofs  of 

Theorem  4  and  of  the  lemma  in  subsection  2.  While  the  diagonal  method 

of  that  proof  used  digits,  i.e.  positive  integers,  here  the  integers  are 

replaced  by  real  numbers ;  instead  of  an  we  here  have  fc(c). 

One  may  even  consider  the  very  proof  of  Theorem  4  to  be  a  proof  of  the 

lemma,  i.e.  of  the  non-denumerability  of  the  continuum,  by  interpreting 

the  present  proof  in  a  new  light  without  formally  changing  it.  For  this 

purpose  we  regard  the  functions  /  (x)  as  arithmetical  functions  whose 

argument  x  ranges  over  the  positive  integers  and  which  assume  positive 

integral  values  only.  If 

D  =  {/i(x),/2(x),  . .  .,/n(x),  . . .} 

is  any  denumerable  set  of  arithmetical  functions  then  the  proof  of  Theorem 

4  shows  that  the  arithmetical  function  /(x)  =  fx{x)  +  1,  where  x  ranges 

over  the  positive  integers,  is  not  contained  in  D.  Hence  the  set  of  all 

arithmetical  functions  is  not  denumerable.  On  the  other  hand,  one  easily 

realizes  that  the  concepts  of  arithmetical  function  and  of  real  number 

essentially  coincide ;  cf.  §  7,  5. 

In  §  7  we  shall  see  that  the  proof  of  Theorem  4  rests  upon  the  enormous 

generality  and  arbitrariness  of  our  functions,  which  permits  the  construc¬ 

tion  of  the  rather  “pathological”  function  ̂ (x).  In  ordinary  analysis  one 
hardly  uses  such  functions  and  for  the  cardinal  of,  for  instance,  the  set  of 
all  continuous  functions  we  shall  obtain  a  different  result. 

Exercises 

1)  Give,  by  means  of  rational  functions,  mappings  between  the  follow¬ 

ing  continua  (cf.  1) 

T  We  shall  see  later  why  f  has  not  been  denoted  by  means  of  an  aleph. 
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a)  the  set  of  real  numbers  between  a  and  b  and  the  set  of  real  numbers 

between  c  and  d  {a,  b,  c,  d  denoting  different  real  numbers); 
b)  the  set  of  real  numbers  between  0  and  the  positive  number  a  and 

the  set  of  real  numbers  which  are  greater  than  the  positive  number  b. 

2)  Prove  the  non-denumerability  of  the  set  of  real  numbers  when 
expanded  into  dual  fractions 

a)  directly  by  a  modification  of  the  diagonal  method  as  used  in  2; 

b)  by  using  Theorem  5  of  §  3. 

(Hint  regarding  a) :  insert  digits  1  into  the  diagonal  fraction  d  so  as  to 

exclude  a  finite  dual  fraction.) 

3)  Prove  that  the  set  of  all  irrational  real  numbers  and  the  set  of  all 

sequences  of  natural  numbers  have  the  cardinal  X- 

4)  Show  that  the  set  of  all  points  of  the  circumference  (or  an  arc) 

of  a  circle  (ellipse,  hyperbola)  has  the  cardinal  X-  (By  means  of  a  suitable 
concept  of  curve  this  statement  may  be  generalized.) 

5)  What  modification  has  the  proof  of  Theorem  4  to  undergo  if  the 

functions  /  (x)  are  defined  for  all  real  x  instead  of  for  0  <  x  <  1? 

6)  How  may  the  proof  of  Theorem  4  be  changed  in  order  to  show 

that  F  is  not  equivalent  to  any  subset  of  the  continuum  C?  (Cf.  foot¬ 

note  2)  on  p.  68.) 



CHAPTER  II 

EQUIVALENCE  AND  CARDINALS 

§  5.  Arrangement  of  Cardinals  by  Magnitude 

1.  Definition  of  Order.  Among  finite  cardinals  there  is  a  simple  definition 

stating  which  of  two  different  cardinals  is  less  than  the  other,  namely: 

if  S  and  Tare  finite  sets  and  if  S  is  equivalent  to  a  proper  subset  of  T then 

the  cardinal  of  S  is  less  than  the  cardinal  of  T.  In  particular,  the  cardinal 

of  a  proper  subset  of  T  is  less  than  the  cardinal  of  T.  For  example,  3  <  5 

because  {ji,  S2,  ̂ 3}  is  equivalent  to  a  proper  subset  of  {/1,  t%,  tz,  ti,  t$). 

(Cf.  also  the  end  of  subsection  4.) 

Our  task  is  to  arrange  the  finite  and  transfinite  cardinals  in  a  corre¬ 

sponding  way,  i.e.  to  order  them  “according  to  magnitude”.  Clearly  the 
above  way  of  defining  will  not  do  because  a  set  may  be  equivalent  to 

a  proper  subset;  then  it  has  a  cardinal  equal  to  the  latter’s. 
To  define  a  suitable  order  relation  in  our  case  we  shall  add  a  new 

condition  which  incidentally  will  relieve  us  of  the  restriction  to  proper 

subsets.  The  additional  condition  might  be  non-equivalence  between 

the  two  sets,  but  it  proves  more  convenient *)  to  take  the  following  way 
introduced  by  Cantor: 

Definition  I.  If  the  set  S  is  equivalent  to  a  subset  of  the  set  T  while 

T  is  not  equivalent  to  any  subset  of  S  then  the  cardinal  s  of  S'  is 
called  less  (smaller)  than  the  cardinal  t  of  T.  In  symbols, 

s  <  t,  or  S  <  T. 

Evidently  this  is  in  accordance  with  the  usual  arrangement  of  finite 

cardinals  with  respect  to  magnitude.  We  shall  now  examine  how  far  this 

*)  In  view  of  the  equivalence  theorem  (subsection  4,  see  particularly  Theorem  4) 
both  ways  of  defining  are  equipollent.  For  the  present  definition  includes  the  non¬ 

equivalence  between  S  and  T  while  the  equivalence  theorem  asserts  that,  if  S  is  equiva¬ 
lent  to  a  subset  of  T  but  not  to  T  then  T  is  not  equivalent  to  any  subset  of  S.  Yet 

pending  the  proof  of  the  equivalence  theorem  the  present  definition  is  preferable. 

66 
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order  relation  shares  the  properties  of  order  relations  in  mathematics  in 

general  (cf.  §  8,  2). 

a)  The  relation  is  irreflexive,  i.e.  s  <  t  implies  s  ̂   t.  For  s  =  t  means 

S  ~  T,  contrary  to  the  second  condition  of  the  definition. 

It  follows  that  the  subset  of  T  mentioned  in  the  first  condition  is  in  any 

event  a  proper  subset  (as  in  the  definition  of  order  for  finite  cardinals 

mentioned  before). 

b)  The  relation  is  transitive  (§  2,  4),  i.e.  (with  a  slight  extension) 

S  <T  x)  and  T<W  together  imply  S<  W.  To  prove  this  we  start,  in 
accordance  with  the  assumption,  from  mappings  of  S  onto  a  subset 

(proper  or  not)  of  T  and  of  T  onto  a  subset  of  W,  or  —  as  we  henceforth 

shall  say  for  short  —  from  a  mapping  of  5  into  T  and  a  mapping  of 

T  into  W\  together  they  produce  a  mapping  of  S  into  W.  On  the  other 

hand,  W  is  not  equivalent  to  any  subset  of  S ;  for  otherwise,  by  combining 

a  mapping  of  W  into  S  with  a  mapping  of  S  into  T,  we  would  obtain  a 

mapping  of  W  into  T,  contrary  to  the  assumption  T<W. 

c)  The  relation  is  asymmetrical,  i.e.  s  <  t  and  t  <  s  are  incompatible. 

For  by  b)  their  conjunction  would  imply  s  <  s,  contrary  to  a). 

d)  From  s  <  t,  s  =  s',  t  =  t'  follows  s'  <  t'  (substitutivity).  This  is 
not  a  special  property  of  the  order  relation  defined  above  but  required 

of  any  relation  in  mathematics,  namely  that  a  true  statement  containing 

the  relation  remains  true  when  an  argunent  is  replaced  by  an  equal  one. 

In  the  present  case  the  condition  is  clearly  fulfilled,  for  s  =  s'  means 

S  ~  S'  etc.,  and  our  definition  of  order  depends  on  equivalence  properties 
only. 

For  finite  sets,  the  properties  a)  —  d)  also  apply  to  the  relation  “is 

equivalent  to  a  proper  subset  of”,  hence  to  the  order  of  finite  cardinals. 
The  advantage  of  our  definition  of  order  is  its  appropriateness  for  both 

finite  and  transfinite  cardinals. 

While  the  symmetry  of  the  equivalence  relation  permits  to  write 

also  T  ~  S  instead  of  S  ~  T,  the  property  c)  prevents  such  interchange 

for  <.  To  express  the  statement  s  <  t  by  starting  with  t  we  have,  then, 

to  introduce  a  new  symbol.  As  usual  in  arithmetic  we  write  t  >  s  (t  is 

greater  than  s),  which  is  not  a  new  relation  but  merely  another  expression 

for  s  <  t;  s  <  t  and  t  >  s  are  just  different  ways  of  formulating  the 

same  “inequality”  statement.  Hence  the  properties  a)  —  d)  hold  for  > 
also. 

x)  As  usual,  this  means  <  T  or  S  =  T" . 
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However,  by  no  means  have  we  by  a)  —  d)  accomplished  our  purpose 

of  proving  that  the  order  relation  defined  here  has  the  usual  properties  of 

order  relations.  In  fact,  given  the  cardinals  s  and  t,  from  a)  and  c)  it  fol¬ 
lows  that  at  most  one  of  the  statements 

s<t,  s  =  t,  s>t 

holds  true.  What  we  wish  to  prove  is  that  just  one  of  them  holds ;  hence 

we  have  still  to  show  that  at  least  one  of  them  holds,  in  other  words,  that 

for  two  different  cardinals  s,  t  either  s  <  t  or  t  <  s  is  true  ( connexity  of 

the  relation  or  comparability  of  cardinals). 

We  are  unable  to  prove  connexity  at  this  juncture.  While  in  the  present 

section  (see  4)  some  progress  will  be  made,  only  at  the  end  of  the  book, 

and  with  a  considerable  detour,  shall  we  accomplish  the  aim.  Cantor 

ever  attempted  to  accomplish  it  and  never  succeeded ;  this  is  why  he  used 

the  more  neutral  term  “ Mdchtigkeit ”  (power,  puissance )  rather  than  the 

term  “cardinal”  which  should  entail  comparability. 

2.  Immediate  Consequences.  Regarding  the  transfinite  cardinals  introduc¬ 

ed  so  far,  we  first  prove  Xo  <  K-  Conceiving  Xo  and  X  as  the  cardinals 

of  the  sets  N  of  all  positive  integers  and  of  the  set  C  of  all  real  numbers 

respectively,  we  have  N  <=  C.  Yet  by  Theorem  1  of  §  3  any  subset  of  N 

is  either  finite  or  denumerable,  hence  not  equivalent  to  C,  which  shows 

N<C. 

Secondly,  we  prove  ft  <  f  where  f  is  the  cardinal  of  the  set  F  of  functions 

introduced  in  §  4,  7.  The  above  set  C  with  the  cardinal  X  is  equivalent  to  a 

subset  of  F,  namely  to  the  set  of  all  constant  functions.  On  the  other  hand, 

as  shown  there,  F  is  not  equivalent  to  C *)  and  one  easily  extends  this 

so  as  to  show  
that  

F  is,  a  fortiori,  
not  equivalent  

to  any  
subset  

of  

C *  

2). 

Hence  X  <  f  holds  true. 

Of  more  general  results  we  start  with 

Theorem  1.  There  exists  a  least  transfinite  cardinal,  namely  Xo. 

Every  finite  cardinal  is  less  than  every  transfinite  cardinal. 

Proof.  By  Theorem  4  of  §  3  every  infinite  set  has  a  subset  of  the  cardinal 

T  Strictly  speaking,  the  proof  of  §  4  referred  to  a  set  (continuum)  equivalent  to  C, 
which  amounts  to  the  same  thing. 

2)  With  respect  to  a  subset  Co  c  C  one  may,  for  instance,  define  y/(x)  for  the 
members  x  of  Co  as  done  in  §  4,  7,  and  for  other  x  in  an  arbitrary  way,  e.g.  y/{x)  =  1. 
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No-  On  the  other  hand,  a  non-denumerable  (infinite)  set  is  certainly  not 
equivalent  to  a  subset  of  a  denumerable  set,  which,  by  Theorem  1  of  §  3, 
has  only  finite  and  denumerable  subsets.  Hence  for  a  transfinite  s  A  Xo 
we  have  Xo  <  s. 

If  n  is  a  finite  cardinal,  by  the  definition  of  order  we  have  n  <  Xo-  The 
transitivity  of  <,  then,  yields  n  <  s  for  every  transfinite  s,  which  com¬ 
pletes  the  proof. 

Since  the  proof  A  of  Theorem  4  of  §  3  depends  on  the  axiom  of  choice  (cf.  §  6,  5) 
we  show  how  far  one  can  prove  Theorem  1  without  using  this  axiom.  In  fact, 
for  non-inductive  cardinals,  i.e.  cardinals  of  non-inductive  sets  (§  2,  5),  the  second 
statement  of  Theorem  1  can  be  seen  to  be  true  as  follows.1)  If  A  is  a  non-inductive 

set  and  ao  e  A,  the  set  A  —  {ao}  is  not  empty.  If  ai  is  a  member  of  the  latter  set, 

A  —  {ao,  ai}  is  not  empty.  This  procedure  can  be  continued  any  finite  number  of 
times;  hence  by  means  of  a  finite  number  of  choices  only  we  obtain,  for  every  finite  k, 

an  inductive  subset  of  A  which  contains  just  k  members.  On  the  other  hand,  A  is  not 

equivalent  to  a  subset  of  an  inductive  set;  hence  k  <  ~A,  i.e.  every  finite  (inductive) 
cardinal  is  less  than  every  non-inductive  cardinal. 

For  the  cardinals  of  reflexive  sets  the  proof  B  of  Theorem  4  of  §  3  is  sufficient  to 

yield  our  theorem,  and  this  proof  uses  a  single  choice  only. 

The  inequality  Xo  <  X  raises  the  question  whether  a  cardinal  s  exists 

between  Xo  and  X  such  that  Xo  <  s  <  X,  or  whether  X  is  the  cardinal 

next  to  Xo-  For  the  last  eighty  years  mathematicians  have  been  trying  to 

answer  this  question,  but  so  far  in  vain.  The  question  may  also  be  given 

the  form  whether  every  non-denumerable  infinite  subset  of  the  continuum 

is  equivalent  to  the  continuum  or  not.  (An  analogous  question  arises 

with  respect  to  cardinals  between  X  and  f.)  Cantor  was  from  the  begin¬ 

ning  2)  convinced  that  X  was  next  to  Xo;  in  1884  his  desperate  efforts  to 
enforce  a  proof  of  this  conviction  were  partly  responsible  for  a  dangerous 

break-down  of  his  health.  Further  information  with  respect  to  this 

“continuum  hypothesis  of  Cantor”  is  given  in  (§  7,  3  and)  §  11,7;  fora 
profounder  treatment  see  Foundations ,  pp.  72  and  92flf. 

3.  Cantor’s  Theorem.  The  Power-Set.  A  question  which  is  closely  con¬ 

nected  with  the  one  just  raised  and  which  may  seem  still  more  impor¬ 

tant  was  solved  by  Cantor  in  one  of  his  last  papers 3) ;  namely  the 

1)  As  to  the  first  statement,  cf.  §  10, 6  and  Foundations,  pp.  62  ff.  (mediate  cardinals). 

2)  Cf.  Cantor  1878  and  many  of  his  subsequent  papers. 

3)  By  a  different  method,  which  is  much  more  complicated  and  uses  resources  not 
at  our  disposal  by  now,  Cantor  had  even  earlier  (1883)  arrived  at  the  main  result. 

See  §  11,  5. 
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question  whether  to  every  transfinite  cardinal  there  exist  still  greater 

cardinals.  The  comprehensive  and  elegant  answer  is  given  by 

Theorem  2  (Cantor’s  Theorem).  To  every  set  S  there  exist  sets  of 

cardinals  greater  than  S;  in  particular,  the  set  whose  members  are  all 

subsets  of  S  is  of  this  kind.1) 

This  set  shall  be  denoted  by  CS 2)  and  called  the  power-set  of  S  (for  a 

reason  which  becomes  obvious  partly  below  and  more  generally  in 

§  7,  3). 

According  to  Theorem  2  there  exists  no  greatest  cardinal.  Just  as  the 

series  of  finite  cardinals,  beginning  with  0,1,  . . .,  continues  without  limit 

so  does  the  (or,  a)  series  of  transfinite  cardinals  beginning  with  Xo-  Yet  it 

will  turn  out  (cf.  Theorem  7  of  §  6)  that  in  the  domain  of  transfinite 

cardinals  the  multiplicity  is  by  far  greater  than  in  the  finite  domain. 

Proof 3)  of  Theorem  2.  First,  a  subset  of  CS  equivalent  to  S  may  be 

defined  as  the  set  of  all  unit-sets  {s}  where  s  ranges  over  the  members  of  S; 

relating  {5}  e  CS  to  s  e  S  one  obtains  a  mapping  as  required. 

The  second  part  of  the  proof  of  S  <  CS  consists,  according  to  the 

definition  of  order,  in  showing  that  CS  is  not  equivalent  to  any  subset  of 

S.  To  render  the  argument  conspicuous  we  shall  prove  that  CS  is  not 

equivalent  to  S  itself  and  as  an  afterthought  add  the  slight  modification 

required  for  the  (simpler)  case  of  a  proper  subset  of  S.  We  shall  again 

use  the  diagonal  method  (cf.  §  4,  3). 

Let  (p  denote  any  fixed  mapping  of  S  onto  a  subset  Co  of  CS;  we 

have  to  prove  that,  by  the  assumption  S  ~  Co,  Co  is  a  proper  subset. 

(p  relates  to  every  member  of  S  a  certain  subset  of  S;  hence  it  will  he 

sufficient  to  produce  a  subset  c*  of  S  which  is  not  related  by  tp  to  any 

s  e  S,  for  then  c*  4  Co. 
In  view  of  tp  we  distribute  the  members  of  S  to  two  categories:  of  those  s 

which  are  a  member  of  the  subset  related  to  s  by  (p  (members  of  the  first 

kind)  and  of  those  s  which  are  not  a  member  of  that  subset  (members  of 

the  second  kind).  The  set  c*  of  all  members  of  the  second  kind  is  certainly  a 

')  Accordingly,  the  theorem  seems  to  have  a  constructive  character.  However,  the 
general  concept  of  subset  is  not  constructive;  cf.  Foundations ,  chapter  II.  For  the 

difficulty  of  reconciling  the  theorem  with  a  theory  of  types  see,  for  instance,  Quine  37 

and  in  general  Foundations,  chapter  III. 

2)  We  have  adopted  C  alluding  to  Cantor’s  name.  Zermelo,  Kleene,  and  others  use 
II  with  reference  to  the  German  Untermenge  (subset). 

3)  Cf.  Hessenberg  06,  pp.  41^42  and  Zermelo  08a,  p.  276;  the  basic  idea  is  found  in 
Cantor  1892  (cf.  his  letter  to  Dedekind  of  1899,  published  in  Cantor  32,  p.  448). 
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subset  of  S  (the  null-set,  if  all  s  e  S  are  of  the  first  kind);  we  shall  now 

show  that  c*  does  not  belong  to  Co. 

If  c*  belonged  to  C0  there  would  be  an  s*  e  S  related  to  c*  by  tp ;  this  must 
be  either  of  the  first  or  of  the  second  kind.  The  former  case  expresses  that 

5*  c  c*,  contrary  to  the  definition  of  c*  by  which  c*  contains  members  of 

the  second  kind  only.  But  if  s*  is  of  the  second  kind  this  means  that  s*  does 

not  belong  to  c*,  which  again  contradicts  the  definition  by  which  c*  con¬ 

tains  all  members  of  the  second  kind.  Hence  the  assumption  c*  e  C0  yields 
a  contradiction,  which  completes  the  proof  that  CS  is  not  equivalent  to  S. 

The  argument  used  here  may  appear  paradoxical  to  the  reader  and  will  do  still  more 

if  we  use  a  similar  argument  to  produce  the  antinomy  of  Russell  (1902;  see  Foundations, 

p.  6).  We  start  with  the  alternative,  seemingly  sound  for  any  set  s,  that  s  is  one  of  its 

own  members  (first  kind  of  sets)  or  is  not  (second  kind),  i.e.  s  c  s  or  s  4  s.  The  set  of  all 

letters  printed  in  this  book  is  certainly  of  the  second  kind  since  it  is  not  a  letter.  As  a  set 

of  the  first  kind  one  may  regard  the  set  of  all  sets  or  the  set  of  all  abstracts;  yet  for  our 

argument  it  does  not  matter  whether  sets  of  both  kinds  exist. 

Now  let  R  be  the  set  of  all  sets  of  the  second  kind.  R  is  either  of  the  first  or  of  the 

second  kind.  In  the  former  case  we  have  R  e  R,  contrary  to  the  definition  of  R;  in  the 

latter  case  we  have  R  4  R  which,  by  the  definition  of  R,  just  implies  that  R  e  R.  Our 

result  is  that  R  is  a  member  of  R  if  and  only  if  R  is  not  a  member  of  R  —  a  glaring 
contradiction  derived  from  plausible  assumptions  by  a  sound  argumentation. 

Similar  as  the  proof  of  c*  4  Co  and  the  derivation  of  Russell’s  antinomy  may  seem, 
the  difference  between  them  is  fundamental.  In  the  former  case  we  have  by  indirect 

proof,  i.e.  by  arriving  at  a  contradiction,  refuted  a  certain  arbitrary  assumption,  viz. 

S  ~  CS.  In  the  latter  case,  however,  we  started  with  a  rather  vague  set  R ;  if  we  do  not 

venture  to  refute  the  principle  of  the  excluded  middle,  asserting  that  R  e  R  or  R  4  R, 

or  other  logical  arguments  used  (for  instance,  attributing  sense  to  Re  R  for  each  or 

for  some  R)  then  the  antinomy  proves  that  the  very  definition  of  R  is  inadmissible. 

This  only  shows  that  Cantor’s  definition  of  set  (§  1)  has  to  be  abandoned;  as  a  matter 

of  fact,  this  was  an  important  result  of  Russell’s  discovery.  Our  axioms  obviously  do 
not  enable  us  to  construct  R  or  a  set  of  similar  structure. 

To  complete  the  proof  of  Theorem  2  we  have  to  show  that  CS  is 

not  equivalent  to  any  subset  of  S  either.  For  this  purpose,  the  distinction 
between  members  of  the  first  and  the  second  kind  should  be  restricted  to 

the  members  of  the  subset.  Yet  in  view  of  Theorem  3  or  4  below,  this 

supplement  becomes  unnecessary  altogether. 

Theorem  2  is  naturally  valid  also  for  finite  sets.  The  power-set  of  the 

null-set  0  (which  has  the  cardinal  0)  is  { 0 }  since  the  null-set  has  no  subset 

save  itself;  as  { 0 }  has  the  cardinal  1  our  theorem  expresses  0  <  1.  For  a 

unit-set  {a}  (with  the  cardinal  1),  for  instance  {0},  we  haveC{a}  =  (0,  {«}}; 

thus  the  theorem  means  1  <  2.  For  a  pair  such  as  {a,  b }  or  {0,  {0}}, 

the  power-set,  i.e.  (0,  {a},  {b},  {a,  b }}  or  {0,  {0},  {{0}},  {0,  {0}}}, 

contains  four  members ;  in  general,  the  power-set  of  a  set  of  n  members 
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contains  2”  members,  which  is  a  well-known  theorem  of  arithmetic  (proven 

by  mathematical  induction);  this  gives  a  provisional  explanation  of  the 

name  “power-set”.  Hence  for  finite  sets  of  a  cardinal  >  1  the  power-set 

has  not  the  next-greater  cardinal,  in  contrast  with  Cantor’s  hypothesis  for 
denumerable  sets  (end  of  2). 

The  inequalities  Ko  <  X  <  f  (see  above)  are  particular  cases  of 

Theorem  2.  For,  as  shown  in  §  7,  5/6,  the  continuum  may  be  conceived 

as  the  power-set  of  a  denumerable  set,  e.g.of  the  set  of  all  integers,  and  the 

set  of  all  functions  as  the  power-set  of  a  continuum. 

Theorem  2  refers  to  a  procedure  of  set  formation  which  is  not  jus¬ 

tified  by  the  axioms  introduced  so  far.  True,  individual  subsets  of  a 

given  set  are  warranted,  at  least  to  a  great  extent,  by  the  axiom  of  subsets 

(§  2,  2) ;  yet  this  does  not  entitle  us  to  unite  the  subsets  to  a  new  set  whose 

members  they  are.  The  principle  required  for  this  purpose  is 

Axiom  (Principle)  of  Power-Set  (VI).  Given  a  set  S,  there  exists  its 

power-set,  i.e.  the  set  whose  members  are  all  subsets  of  S. 

In  particular,  this  axiom  guarantees  the  existence  of  the  continuum, 

namely  of  the  power-set  of  a  denumerable  set,  which  is  ensured  by  the 

axiom  of  infinity  (§  2,  5). 

Certain  logical  difficulties  involved  by  the  interdependence  between 

the  axioms  of  subsets  and  of  power-set  are  discussed  in  Foundations, 

chapters  II  and  III. 

4.  The  Equivalence  Theorem.  At  the  end  of  subsection  1  the  connexity 

of  the  order  relation  between  cardinals  was  left  open.  We  now  resume  this 

question  by  specifying  all  possible  cases  with  respect  to  two  given  sets 

S  and  T  in  view  of  the  definition  or  order  *),  as  illustrated  by  the  following 
scheme. 

T  is  equivalent  to  a 

subset  of  A 

T  is  not  equivalent  to 

any  subset  of  S 

S  is  equivalent  to  a  sub- 
set  of  T first  case third  case:  S<T 

S  is  not  equivalent  to 

any  subset  of  T second  case:  T <  S fourth  case 

*)  This  logical  procedure,  sometimes  called  complete  disjunction,  was  first  used  in 
set  theory  for  the  present  purpose:  Cantor  32,  p.  450  (letter  to  Dedekind  of  1899,  cf. 

Schoenflies  22,  pp.  lOlf.)  and  Borel  1898,  pp.  102f. 



CH.  II,  §  5] ARRANGEMENT  OF  CARDINALS  BY  MAGNITUDE 73 

While  this  scheme  exhausts  all  possible  cases  according  to  the  principle 

of  the  excluded  middle  it  does  not  affirm  that  each  case  is  realizable. 

The  definition  of  order  expresses  that  in  the  second  case  the  cardinal 

of  T  is  less  than  that  of  S  and  in  the  third  case  the  cardinal  of  S  less  than 

that  of  T.  To  examine  the  comparability  of  sets  with  respect  to  their 

cardinals  we  then  have  to  consider  the  first  and  the  fourth  case.  The  an¬ 

swer  regarding  the  first  is  given  by 

Theorem  3  (Equivalence  Theorem).  If  each  of  two  sets  is  equivalent 

to  a  subset  of  the  other,  then  the  sets  themselves  are  equivalent,  i.e.  their 

cardinals  equal. 

In  addition  to  its  fundamental  significance,  the  equivalence  theorem 

has  also  practical  value  inasmuch  as  it  ensures  the  equivalence  of  sets 

between  which  it  is  difficult  to  establish  a  mapping  directly  while  it 

proves  easy  to  map  each  onto  a  subset  of  the  other.  A  characteristic 

example  will  be  given  in  §  7,  6. 

We  present  two  fundamentally  different  proofs  of  the  equivalence 

theorem.  Afterwards  we  shall  compare  their  methods  and  survey  the 

history  of  the  theorem. 

First  proof.  Assuming  S  ~  Ti  c  T  and  T  ~  Si  S1)  we  have  to 

prove  S  ~  T. 

Any  mapping  of  T  onto  Si  maps  the  proper  subset  T\  onto  a  proper 

subset  S2  c  Si  <=  S  (p.  27),  hence  S2  <=  S.  From  S  ~  7i  and  7\  ~  S2 

we  infer  S  ~  S2.  Taking  this  relation  as  the  assumption  of  the  theorem 

we  may  express  its  statement  as  S  ~  Si,  because  of  Si  ~  T.  The  equival¬ 

ence  theorem  thus  assumes  the  seemingly  simpler  form:  if  S  is  equivalent 

to  its  proper  subset  S2  then  S  is  also  equivalent  to  every  set  Si  „be tween" 

S2  and  S  (i.e.  which  satisfies  S2  c  Si  c  S). 

The  understanding  of  the  proof  will  be  simplified  by  writing  A  for  S2, 

B  for  Si  —  S2,  and  C  for  S  —  Si.  Hence  we  have 

Si  =  A  U  B,  S  =  A  U  B  u  C 

where  A,  B,  C  are  pairwise  disjoint  sets.  The  equivalence  theorem,  then, 

asserts  that  from  A  U  B  U  C  ~  A  follows  A^jByjC~A\JB. 

Let  y/  be  an  arbitrary  mapping  of  A  U  B  U  C  onto  A.  By  applying  y/ 

i)  Obviously  the  assumptions  of  the  theorem  refer  to  proper  subsets  because 

otherwise  nothing  is  left  to  prove.  Hence  the  theorem  is  void  for  finite  sets
  which 

cannot  be  equivalent  to  proper  subsets. 
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separately  to  the  complementary  subsets  A,  B,  C  of  the  former  set  we 

obtain  pairwise  disjoint  subsets  Ai,  Bx,  Cl  of  A  such  that 

A  ~  A i,  B  ~  2?i,  C  ~  Ci,  A\  U  i?i  U  Ci  =  A. 

The  second  step  consists  in  analogically  using  a  mapping  yjx  of  A  onto 

Ax-  ysx  may  be  chosen  as  a  part  of  y/  and  a  corresponding  remark  holds  for 

the  further  mappings  y/k-  By  applying  y/x  separately  to  the  subsets  Ax,  Bx, 

Ci  of  A  we  obtain  pairwise  disjoint  subsets  A%,  Bz,  Cz  of  Ax  such  that 

Ax  ~  Az,  Bx  ~  Bz,  Ci  ~  Cz,  Az  U  Bz  U  Cz  —  Ax. 

Continuing  this  procedure,  we  use  for  the  kth  step  (k  =  3,  4,  5,  . . .) 

a  mapping  y/k-x  (part  of  y/)  of  Ah-  2  onto  Ak  -  1  which,  separately 

applied  to  the  subsets  Ak  -  1,  Bk  -  1,  C*  -  1  of  ̂ 4*  _  2,  yields  pairwise 

disjoint  subsets  Ak,  Bk,  Ck  such  that 

Ak  -  1  ~  Ak,  Bk  -  1  ~  -Bfc,  Ck  -  1  ~  C*;,  U  Bk  uCi  =  -  1. 

This  procedure  can  be  continued  indefinitely,  i.e.  for  all  positive  integers 

k.  For  though  Ak  is  a  proper  subset  of  Ak  -  1,  the  successive  steps,  far 

from  exhausting  the  sets  Ak,  do  not  even  diminish  their  cardinals,  as 

shown  by  the  relations 

A  ~  Ax  ~  Az  ~  ...  ~  Ak-x  ~  Ak  ~  ..., 

to  which  we  add,  for  later  use,  the  relations 

(1)  C~  Ci  ~  C2  ~  ...  ~  Ck- 1  ~  Ck  ~  .... 

Our  procedure  may  be  illustrated  by  fig.  8. 

Now  two  cases  are  possible.  Either  there  exist  members  common  to 

A s  c 

B,  C , 

A 2 

b2  c2 

Aj  Bj  Cg 

Fig.  8 
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all  sets  Ak,  i.e.  the  intersection  of  all  these  sets  is  not  empty;  the  small 

rectangles  on  the  left  hand  of  fig.  8  hint  at  this  common  part  of  all  Ak. 

Or  else  there  are  no  common  members,  then  the  intersection  is  the  null- 

set  and  the  rectangles  are  reduced  to  strokes.  That  either  case  may 

occur  is  shown  by  the  examples  of  pp.  19/20.  In  both  cases  the  intersec¬ 
tion  shall  be  denoted  by  M. 

Whichever  case  holds,  the  original  set  5  or  A  U  B  U  C  is  the  union  of 

the  denumerably  many  (pairwise  disjoint)  sets 

M,  C,  B,  Ci,  B\,  . . .,  Ck,  Bk,  .... 

For  an  x  e  Ak  -  i  which  belongs  neither  to  Bk  nor  to  Ck  belongs  to  Ak', 
hence  an  x  e  A  which  belongs  to  no  Bk  or  Ck  belongs  to  each  Ak,  therefore 

to  the  intersection  M.  On  the  other  hand,  A  U  B  arises  from  A  U  B  U  C 

by  dropping  C,  i.e.  A  U  B  is  the  union  of 

M,  Ci,  B,  C2,  Bi,  . . .  ,Ck  +  1,  Bk, 

(The  permutation  of  every  two  contiguous  terms  has  been  made  for 

practical  reasons  and  is  insignificant  in  view  of  the  commutativity  of  the 

union  operation;  see  §  2,  3.) 

After  these  preparations  the  proof  of  the  equivalence  theorem  is  easy. 

To  form  a  mapping  of  A  U  B  U  C  onto  A  U  B,  as  required,  we  first 

relate  M  and  each  Bk  (including  B)  to  itself,  while  C  shall  be  related  to  Ci 

and  each  C*  to  Ck  +  1.  Then  the  union  A  U  B  U  C  can  be  mapped  onto 

the  union  A  U  B  by  using  the  identical  mapping,  which  relates  every 

member  to  itself,  with  respect  to  M  and  the  sets  B,  Bk',  as  to  C  and  Ck,  we 

rely  on  the  equivalence  relations  (1)  above  which  are  ensured  by  suitable 

parts  of  the  mapping  y/  that  was  the  starting-point  of  our  proof.  Since 

each  member  of  A  U  B  U  C  belongs  to  one  and  only  one  of  the  sets 

M,  C,  B,  Ck,  Bk,  and  the  analogue  holds  true  for  A  U  B,  a  one-to-one 

correspondence  between  the  members  of  both  sets  has  been  established, 

which  completes  the  proof  ofAUBuC~AuB. 

Two  sets  are  called  effectively  equivalent  if  a  mapping  between  them  can  not  only  be 

shown  to  exist  but  can  be  constructed.  Accordingly  a  set  is  called  effectively  denumerable 

(or  “enumerable”)  if  a  mapping  onto  the  set  of  positive  integers  can  be  constructed. 

These  concepts  are  frequently  used  when  the  mere  existence  is  not  considered  sufficient, 

particularly  by  mathematicians  who  identify  mathematical  existence  with  construc¬ 

tion  x). 

The  proof  just  completed  shows  that,  if  y/  is  given,  a  mapping  between  A  u  B  vj  C 

i)  Cf.  Borel  19,  Sierpihski  21  and  32,  and  the  exposition  in  Foundations,  pp.  56-59 
and  299ff. 
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and  A  yj  B  can  be  constructed.  Hence  the  equivalence  theorem  states  that,  if  each  of 

the  sets  S  and  T  is  effectively  equivalent  to  a  subset  of  the  other,  also  S  and  T  are 

effectively  equivalent. 

Second  proof})  From  the  assumptions  of  our  theorem,  by  which  there 

is  a  mapping  <p  of  the  set  S  onto  Tx  <=  T  and  a  mapping  x  of  the  set  T 

onto  Si  c  S,  we  shall  infer  that  there  are  subsets  So  ̂   S  and  To  c  T 

such  that  (p  maps  So  onto  To  and  x  maps  T  —  To  onto  S  —  

So *  

2).  Since 

any  member  of  S  belongs  either  to  So  or  to  S  —  S0  and  the  situation  re¬ 

garding  T  and  To  is  analogous,  Banach’s  theorem  yields  a  mapping 
between  S  and  T  as  stated  by  Theorem  3. 

To  obtain  the  sets  So  and  To  we  first  relate  to  every  subset  Z  <=  S  a 

subset  X*  c  s  in  the  following  way:  by  cp,  to  X  <=  S  corresponds  a  set 
Y  cr  Ti  <=  T,  and  by  x,  to  T  —  Y corresponds  a  set  3)  S  —  X*  <=  Si  c:  S. 

Thus  X*  c=  S  is  uniquely  determined  by  X  <=  s. 

Our  aim  is  to  obtain  an  X  for  which  X*  =  X.  For  this  purpose  we 
prove : 

(a)  If  X\  and  Z2  are  subsets  of  S'  and  if  Xi  c  x2,  then  Z*  c  X2 
For  by  the  nature  of  cp,  Xi  c=  z2  implies  Yi  c  Y2,  hence  T  —  Y2  c 

T—  Yi.  From  this,  by  the  nature  of  /  we  conclude  S  —  X2  <=  5  _  x\, 

hence  X\  <=  X2.  Naturally  from  Xi  =  X2  follows  X*  ==  Z*  since  Z*  is 
uniquely  determined  by  Z.  This  completes  the  proof  of  (a). 

An  Z  <=  s  shall  be  called  distinguished  if  Z  c  Z*.  There  exist  dis¬ 
tinguished  subsets  of  S,  for  instance  the  non-empty  set  S  —  Si  =  Dx. 
In  fact,  by  mapping  T  onto  Si  through  x  we  obtain  members  of  Si 

and  not  of  Dx ;  therefore,  if  cp  relates  Dx  <=  S'  to  Yi  c  Tx  and  x  relates 

T—  Yi  to  S  —  D*,  then  S'  — Dj  contains  no  member  of  £>1.  Hence,  in 
view  of  Di  cr  S,  we  have  Dx  c  D*,  i.e.  Dx  is  distinguished. 

Let  So  be  the  union  of  all  distinguished  subsets  of  S.  For  every  dis¬ 

tinguished  subset  D  we  then  have  D  c  So,  hence  by  (a):  D*  c  S^. 
In  other  words,  for  every  distinguished  D  cz  s  we  have 

D  s  D'  c  S*0. 

The  relation  D  c  S*0,  holding  true  for  every  distinguished  D,  holds  as 
well  for  the  union  So  of  all  D' s,  i.e. 

(b)  <=  S*, 

b  Beginners  may  skip  this  proof  at  the  first  reading. 

2)  This  theorem  which  has  many  applications  is  due  to  Banach;  see  Banach  24 cf.  Sikorski  48  and  Bruns-Schmidt  58. 

)  Since  T  —  T  c  T,  %  maps  T  —  Y  onto  an  S'  £  Sx  <=  S.  Hence  we  have 
X  =S  -  S'. 
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hence  by  (a)  :  S*0  c  (S*)\  This  means  that  S*0  is  also  distinguished; 
hence  by  the  definition  of  So  :  c  So-  Together  with  (b)  this  shows  that 

5;  =  So. 

Thus  we  have  reached  our  aim.  According  to  the  definition  of  X *  by 
means  of  X,  tp  maps  So  <=  S  onto  To  c  T,  and  x  maps  T  —  To  onto 

S'  —  So,  which  completes  the  proof. 

The  proof  may  be  summarized  as  follows.  We  call  “distinguished” 
those  subsets  X  <=  S  for  which,  if  (p  maps  X  onto  Y  c:  T  and  x  maps 

T  —  Y  onto  S  —  Z,  X  ̂   Z  holds  true;  then  the  union  X  of  all  distin¬ 

guished  sets  is  again  distinguished  and  for  this  X  we  have  Z  =  X. 

The  fundamental  difference  between  our  two  proofs  of  the  equivalence 

theorem  lies  in  that  the  first  proof  essentially  rests  upon  properties  of  the 

sequence  (or  set)  of  positive  integers  while  this  sequence  does  not  enter 

the  second  proof.  In  fact,  the  mapping  established  by  the  first  proof 

uses  Theorem  2  of  §  3  (or  the  relation  Ko  +  1  =  Ko,  see  §  6,  4).  The 

second  proof,  on  the  other  hand,  has  a  more  abstract  character  and 

utilizes  a  procedure  which  will  appear  in  §  11,  7  in  wider  generality; 

in  the  present  case  the  chief  point  is  forming  the  union  of  a  set  of  sets.1) 
It  will  prove  useful  to  express  the  equivalence  theorem  in  another  form. 

If  the  set  S’  is  equivalent  to  a  subset  of  T  there  remain  (cf.  the  scheme  of 
p.  72)  two  exclusive  possibilities:  that  T  is  also  equivalent  to  a  subset  of 

S,  or  that  T  is  not  equivalent  to  any  subset  of  S.  In  the  first  case,  according 

to  the  equivalence  theorem  we  have  S  ~  T,  i.e.  S  —  T\  in  the  second, 

by  the  definition  of  order  S<T.  Hence: 

*)  Most  proofs  of  the  equivalence  theorem  belong  to  one  of  these  two  types.  The 

first  complete  proof  published  was  given  by  F.  Bernstein  in  1897  (cf.  Cantor  32,  p.  450) 

and  appeared  in  Borel  1898,  pp.  103  IT. ;  it  essentially  coincides  with  the  first  proof 

given  above.  A  similar  proof  proposed  at  the  same  time  by  E.  Schroder  turned  out  to 

be  defective;  see  Korselt  11. 

The  first  proof  of  the  second  type  was  given  by  Dedekind  in  1887  and  1899  but  not 

published  until  1932;  see  Dedekind  30— 32III,  pp.  447^149  and  Cantor  32,  p.  449. 

Essentially  the  same  proof  was  independently  rediscovered  by  Peano  (06)  and  Zermelo 

(08a,  pp.  271f.).  To  the  second  proof  given  above  cf.,  for  instance,  Banach  24,  J.  M. 

Whittaker  27,  Reichbach  55. 

The  proof  of  J.  Konig  06,  belonging  to  the  first  type,  is  distinguished  by  its  lucidity, 

see  below  exercise  4);  it  has  yielded  remarkable  generalizations,  in  particular  the 

theory  of  equivalence  with  respect  to  classes  of  mappings  (cf.  §  8,  3)  —  an  important 
field  that  contains  all  results  of  equivalence  theory  which  are  independent  of  the 

axiom  of  choice  (§  6,  5).  Cf.  Sierpinski  22  and  46/47,  Banach  24,  Kuratowski  25, 

Rosenfeld  25,  D.  Konig  26,  Lindenbaum-Tarski  26,  Ulam  29,  Otchan  42,  Kurepa  53a, 

and  in  particular  Tarski  28,  29,  30,  48  (pp.  94-98). 
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Theorem  4.  Let  s  and  t  be  respectively  the  cardinals  of  the  sets  S  and  T. 

If  S  is  equivalent  to  a  subset  of  T,  either  s  =  t  or  s  <  t,  and  vice  versa. 

The  last  statement  is  evident  in  view  of  the  definitions  of  the  equality 

and  the  order  of  cardinals. 

While  we  inferred  Theorem  4  from  Theorem  3,  the  converse  is  done  as 

easily.  Both  theorems,  then,  are  equipollent. 

According  to  Theorem  3  or  4,  the  definition  of  order  can  now  be 

expressed  as  follows:  if  S  is  equivalent  to  a  subset  of  T  but  not  to  T itself, 

the  cardinal  of  S  is  less  than  the  cardinal  of  T.  This  is  also  a  possible 

definition  of  order  for  finite  cardinals  in  arithmetic. 

5.  The  Problem  of  Comparability.  Among  the  cases  contained  in  the 

scheme  of  p.  72,  the  fourth  case  alone  remains  unsettled.  The  reader 

reflecting  upon  it  will  deem  it  rather  paradoxical.  If  this  case  occurred 

it  would  mean  that  the  sets  were  incomparable ;  ensuring  that  any  two 

sets  can  be  compared  with  respect  to  their  cardinals  means  excluding  the 
fourth  case. 

The  resources  at  our  disposal  by  now  are  not  sufficient  to  prove 

comparability.  Only  by  the  end  of  this  book  (§  11,  6  and  7)  shall  we  be 
able  to  reach  this  aim  and  to  state : 

Of  any  two  sets,  one  at  least  is  equivalent  to  a  subset  of  the  other. 

Hence  of  two  different  cardinals  one  is  less  than  the  other. 

Exercises 

1)  Prove  that  the  validity  of  the  inequalities  between  cardinals  s  <  t 

and  t  <  w  implies  the  validity  of  s  <  w  (cf.  b)  on  p.  67). 

2)  Regarding  the  classification  of  the  members  of  S  utilized  in  the 

proof  of  Theorem  2,  specify  members  of  the  first  kind  and  of  the  second 

kind  under  various  assumptions  about  the  subset  C0 ;  in  particular  under 

the  assumption  Co  =  C S  (which  means  an  indirect  proof,  by  reductio  ad 
absurdum,  of  the  theorem). 

3)  How  far  can  the  proof  of  Theorem  2  (and  of  its  special  cases 
mentioned  on  p.  72)  be  simplified  by  using  Theorem  4? 

4)  (For  advanced  readers)  Let  be  given  a  mapping  of  S  onto  Tx  <=■  T 

and  a  mapping  of  T  onto  Si  cj  as  assumed  in  the  equivalence  the¬ 

orem,  and  let  correspond  by  them  h  e  Ti  to  ie  S',  <?2  e  Si  to  t\  e  T, 
tz  €  7i  to  S2  e  S,  54  e  Si  to  tz  e  T,  etc.  We  thus  obtain,  starting  with  an 
arbitrary  s  e  S,  a  uniquely  determined  sequence  (s,  h,  s2,  h,  54,  . . .).  If, 



CH.  II,  §  6] ADDITION  AND  MULTIPLICATION  OF  CARDINALS 79 

in  particular,  s  belongs  to  Si  as  well,  then  we  may  also  continue  the 

sequence  leftwards  by  putting  the  image  of  s  (in  T)  before  s\  if  this 

image  belongs  also  to  T\  we  may  take  an  additional  step  leftwards,  etc. 

Construct  a  one-to-one  correspondence  between  the  members  of  S 

and  those  of  T  by  distinguishing,  for  any  s  e  S,  between  the  following 

three  cases: 

a)  the  sequence  can  be  continued  leftwards  indefinitely; 

b)  the  sequence,  after  having  been  continued  leftwards  as  far  as 

possible,  starts  with  a  member  of  S; 

c)  in  the  same  sense,  the  sequence  starts  with  a  member  of  T. 

(Hint :  relate  to  s  either  its  right-hand  or  its  left-hand  neighbor.) 

Compare  this  proof,  which  essentially  is  that  of  J.  Konig  06,  with  the 

first  proof  in  4. 

5)  Let  us  suppose  that  the  cardinal  of  the  union  of  any  two  sets  one  of 

which  at  least  is  infinite,  is  <  the  cardinal  of  one  term.  Show  that  this 

supposition  guarantees  the  comparability  of  cardinals.  (To  the  suppos¬ 
ition  itself  cf.  §  11,  5.) 

§  6.  Addition  and  Multiplication  of  Cardinals  x) 

1.  Introduction.  After  having  studied  the  comparison  of  cardinals  we  now 

consider  operations  with  them,  extending  the  operations  with  positive 

integers.  We  shall  succeed  not  only  in  defining  such  operations  but  even 

in  proving  for  them  the  natural  extensions  of  most  formal  laws  of  arith¬ 

metic,  

notably *  

2)  of 

a  +  (b  +  c)  =  (a  +  b)  +  c,  a(bc )  =  (ab)c  (associative  laws) 

a  -f-  b  —  b  +  a  ab  =  ba  (commutative  laws) 

a(b  +  c)  =  ab  +  ac  (distributive  law) 3). 

On  the  other  hand,  we  shall  see  that  the  inverse  operations,  e.g.  sub¬ 

traction,  cannot  be  defined  generally  for  transfinite  cardinals.  Also  in 

1)  Most  of  the  contents  of  §§  6  and  7  are  due  to  Cantor;  see  in  particular  Cantor 
1895. 

2)  For  the  formal  laws  of  exponentiation  see  §  7. 

3)  The  other  distributive  law,  viz.  ( a  +  b)c  =  ac  +  be,  which  has  significance  in 

systems  with  non-commutative  multiplication,  follows  from  the  above  law  by  the 

commutative  law  of  multiplication.  For  a  weaker  form  of  the  distributive  law  cf. 

A.  Robinson  41 .  —  Below  in  subsection  9  a  different  kind  of  distributivity  (for  sets)  is 

considered. 
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ordinary  arithmetic  they  can  be  carried  out  only  after  suitable  extensions 

of  the  domain  of  positive  integers  which  are  not  practicable  in  the  present 
case. 

It  is  not  surprising  that  part  of  ordinary  arithmetic  —  and  a  far  greater 

part  when  operations  with  transfinite  order-types  are  concerned,  see 

§8  —  cannot  be  preserved  in  the  arithmetic  of  transfinite  cardinals. 

When  the  domain  of  numbers  and  of  the  operations  with  them  is  expanded 

so  fundamentally  as  to  admit  transfinite  numbers  and  infinite  sums  and 

products  of  them  one  should  not  expect  the  new  operations  to  submit  to 

the  old  laws  in  their  entirety.  In  mathematics  just  as  in  any  theory  the 

generalization  (extension)  of  a  concept  involves  abandoning  part  of  the 

properties  of  the  original  concept.1) 

According  to  H.  Hankel’s  once-famous  principle  of  the  permanence 
of  formal  laws  which  implicitly  or  explicitly  ought  to  guide  the  extension 

of  concepts  and  relations  (operations)  in  mathematics,  the  operations 

for  transfinite  numbers  should  be  defined,  as  far  as  possible,  in  a  way 

preserving  the  laws  of  ordinary  arithmetic.  But  after  having  defined  the 

operations  the  mathematician  cannot  go  on  prescribing  (postulating)  the 

formal  laws  of  these  operations;  on  the  contrary,  he  has  to  examine  how 

far  the  laws  of  arithmetic  continue  being  valid  and  to  what  extent  they 

are  modified.2)  Hence  it  is  rather  a  pleasant  surprise  that  the  laws  of 
finite  arithmetic  prove  valid  to  a  great  extent  in  the  domain  of  transfinite 
cardinals. 

The  failure  to  perceive  this  situation  has  from  the  beginning  handicap¬ 

ped  the  acceptance  of  Cantor’s  ideas.  The  following  sentences  from  a 

letter  of  Cantor’s  3)  are  characteristic  both  of  his  own  and  of  his  opponents’ 
attitudes:  All  pretended  proofs  against  the  possibility  of  actually  trans¬ 

finite  number  are  ...  faulty  in  this  respect  —  and  here  lies  their  ngcbrov 

J)  For  a  stricter  formulation  of  this  (sometimes  misinterpreted)  rule  see,  for 
instance,  Bolzano  1837  (§  20),  Dubislav  31  (§  63). 

2)  Cantor  had  this  in  mind  when  he  prefaced  the  final  exposition  of  his  theory  with 
the  motto:  Neque  enim  leges  intellectui  aut  rebus  damus  ad  arbitrium  nostrum,  sed 
tanquam  scribae  fideles  ab  ipsius  naturae  voce  latas  et  prolatas  excipimus  et  prescribimus 
(1895,  p.  481).  Cf.  Thesis  III  affixed  to  his  Habilitationsschrift  (cf.  p.  1):  Numeros 
integros  simili  modo  atque  corpora  coelestia  totum  quoddam  legibus  et  relationibus 
composition  efficere  (Cantor  32,  p.  62),  and  a  passage  from  a  letter  written  by  Cantor 
in  1884:  As  to  everything  else  [except  the  art  of  style  and  the  economy  of  exposition] 
this  is  not  my  merit;  with  respect  to  the  contents  of  my  research  work  I  am  only  a  kind 
of  reporter  and  secretary.  (Cf.  Schoenflies  28,  pp.  15ff.) 

3)  Of  1885,  addressed  to  G.  Enestrom  (translated  from  the  German  original). See  Cantor  1886,  p.  226. 
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y/suSoc;  —  that  from  the  first  they  impute  to,  or  rather  enforce  upon, 

the  numbers  in  question  all  properties  of  finite  numbers,  whereas  the 

actually  transfinite  numbers  —  if  they  shall  be  conceivable  at  all  —  must, 

by  their  contrast  to  finite  number,  constitute  an  entirely  new  kind  of 

number  whose  nature  completely  depends  on  the  situation  and  should 

be  the  object  of  our  investigations  but  not  of  our  discretion  or  prejudice.1) 

2,  Union  of  Sets.  While  in  this  and  the  following  section  emphasis  is  laid 

upon  operations  with  cardinals,  these  operations  are  defined  by  means  of 

operations  with  sets.  First  we  shall  generalize  the  concept  of  union  of 

sets  introduced  in  §  2,  3. 

Definition  I.  If  A  is  an  arbitrary  set,  the  set  that  contains  all 

members  which  belong  to  at  least  one  member  of  A  2)  is  called  the 

sum-set  U  A  or  the  union  of  the  members  of  A.  If  a,  a',  a",  . . . 
are  members  of  A  one  also  writes 

U  A  =  a  u  a'  U  a"  u _ 

Accordingly  U  A  is  independent  of  whether  some  of  its  members  belong 

to  one  or  to  more  of  the  members  of  A. 

The  existence  of  U  A  to  any  given  A  is  expressed  by  the  axiom  of 

sum-set  (§  2,  3). 

Example.  Relate  to  each  point  of  a  straight  line  a  segment  of  the 

length  1,  extending  from  the  point  rightwards.  The  union  of  these  seg¬ 

ments,  each  conceived  as  the  set  of  its  points  (including  or  excluding  the 

ends),  is  the  set  of  all  points  of  the  line.  —  This  example  extends  beyond 
the  bounds  of  Definition  III  of  §  2. 

The  key  for  the  transition  from  the  sum-set  to  the  sum  of  cardinals 

lies  in  the  following  remark.  If  A  and  B  are  equivalent  sets  of  sets  and  if, 

in  view  of  a  definite  mapping,  the  image  in  B  of  ae  A  is  denoted  by  tp(a), 

let  us  assume  a  ~  tp(a )  for  each  aeA.  This  clearly  does  not  ensure  that 

q  The  controversy  as  to  whether  the  conceptions  of  mathematics  are  our  creations 

or  (as  Cantor  presumes)  have  an  existence  independent  of  the  human  mind,  somehow 

like  Platonic  ideas,  is  no  less  topical  in  present  mathematics  than  it  was  in  the  days  of 

Cantor  and  Kronecker.  The  question  may  be  formulated  as  follows:  do  we  invent  or 

discover  mathematical  objects?  Cf.  Hessenberg  08,  Bays  46,  Hermes  56,  and  the 

discussion  in  several  passages  of  Foundations,  in  particular  p.  333. 

2)  Hence  members  of  A  which  are  not  sets,  as  well  as  the  null-set  if  it  belongs  to  A, 
contribute  nothing  to  U  A. 
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the  sum-sets  U  A  and  U  B  are  equivalent,  as  shown  by  trivial  instances 

such  as 

A  =  [ax,  az},  B  =  {bx,  b2}, 

ax  =  {1,  2,  3},  az  =  {4,  5},  bx  =  {6,  7,  8},  b2  =  {8,  9} 

in  which  case  U  A  contains  five  members  and  U  B  four. 

Yet  if  we  moreover  assume  A  and  B  to  be  disjointed  sets  then  U  A  ~ 

U  B  can  be  proven  as  follows.  Let  y y(ct)  be  a  mapping  between  the  equi¬ 

valent  sets  a  e  A  and  cp(a)  e  B  x)  and  let  x  be  any  member  of  U  A.  Since  A 

is  disjointed,  x  belongs  to  a  definite  a  e  A,  and  by  x  is  related  to  a 

uniquely  determined  y  e  cp(a)  e  B\  moreover,  the  correspondence  between 

x  e\J  A  and  y  e  U  B  is  biunique  since  B,  too,  is  disjointed.  By  mapping 

U  A  onto  U  B  through  these  correspondences  for  every  x  e  U  A  we 

have  proven  U  A  ~  U  B,  i.e. 

Theorem  1.  If  A  and  B  are  equivalent  disjointed  sets  such  that  a  certain 

mapping  relates  each  aeA  to  an  equivalent  be  B  (i.e.  a  ~  b)  then 
we  have  U  A  U  B. 

3.  Addition  of  Cardinals.  To  illustrate  the  problems  arising  presently  in 

the  light  of  a  simple  instance  we  start  with  the  addition  of  two  cardinals 

only. 

Definition  II.  Given  two  (finite  or  transfinite)  cardinals  ai  and 

a2,  let  Ax  and  Az  be  disjoint  sets  such  that  Ak  =  a*  (k  =  1,  2;  Ak 

is  called  a  representative  of  a/c).  Then  the  cardinal  s  =  Ax  U  A2 

of  the  union  is  called  the  sum  of  the  cardinals  ai  and  a2',  we  write 

s  =  ai  +  a2. 

The  following  remarks  to  this  definition  will  prove  useful. 

1)  The  definition  clearly  conforms  to  the  addition  of  non-negative 

integers  (finite  cardinals)  as  defined  in  arithmetic.  Hence  it  is  a  gener¬ 
alization  of  that  addition. 

2)  The  definition  seems  ambiguous  because  of  the  relative  arbitrariness 

of  the  representatives,  hence  of  their  union.  Yet  in  view  of  Theorem  1 

x)  There  arises  the  question  of  obtaining  definite  mappings  for  all  aeA 
simultaneously.  In  fact,  if  A  is  infinite  the  axiom  of  choice  is  required  for  this  purpose; 

cf.  the  remark  on  p.  91  and  the  exposition  in  Foundations,  pp.  60-62. 
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this  arbitrariness  does  not  affect  the  sum.  For  if  A\  and  Az  are  other 

disjoint  representatives,  hence  A\  ~  A\  and  A%  ~  Az,  then  we  have 

A\  U  A2  ~  A\  U  Ao!  and  obtain  the  same  sum  s. 

3)  Apparently  it  would  be  preferable  to  begin  the  definition  with 

“given  a  pair  {ai,  82}  of  cardinals”,  which  would  enable  us  to  begin 

Definition  III  with  “given  a  set  of  cardinals”.  Yet  even  for  Definition  II 
this  would  not  do  because  for  ai  =  a2  we  have  not  a  pair,  while  certainly 

sums  such  as  3  +  3  or  Xo  +  Xo  have  to  be  considered. 

The  above  formulation  virtually  means  “given  the  pair  {1,  2}  to  each  of 

whose  members  a  cardinal  is  assigned” ;  it  is  this  conception  which  will  be 
generalized  in  Definition  III. 

4)  In  the  sum  ai  +  a 2 ,  ai  occurs  first  and  a2  second.  Yet  this  is  not  an 

intentional  succession;  it  is  due  to  the  deficiency  of  man  who,  orally  or  in 

writing,  cannot  express  words  simultaneously  but  only  successively. 

Instead  of  ai  +  a2  we  may,  according  to  the  definition  of  union,  as  well 

write  a2  +  ai.  (The  situation  is  different  in  arithmetic  where  the  sum 

m  +  «2  of  positive  integers  is  defined  inductively,  starting  with  m  +  1 ; 

here  from  the  first  the  succession  is  essential  and  only  subsequently  is 

ni  +  «2  =  «2  +  «i  proven.) 

Addition  of  cardinals  in  general  is  introduced  by 

Definition  III.  Let  be  given  a  system  of  (not  necessarily  dif¬ 

ferent)  cardinals  c <  by  means  of  a  single-valued  function  /  which 

assigns  to  each  member  t  of  a  non-empty  “auxiliary  set”  T  a  cardinal 
/  ( t )  =  c t.  To  form  the  sum  of  the  given  cardinals  replace  each 

c t  by  a  set  C<  (representative  of  c* )  of  the  cardinal  c<  such  that,  for 

ti  ̂   t2,  Ct1  and  C«2  are  disjoint  sets.  The  cardinal  s  of  the  union  of  all 

representatives  C«  for  t  e  T  is  called  the  sum  of  the  given  cardinals 

(terms) ;  one  writes 

s  =  2  cf  =  c'  +  c"  +  ... IeT 

where  c',  c",  ...  are  some  of  the  given  cardinals. 
In  short,  the  sum  of  cardinals  is  the  cardinal  of  the  union  of  disjoint 

sets  with  the  respective  cardinals : 

5>  =  U 
teT  teT 

The  remarks  2)  and  4)  annexed  to  Definition  II  remain  valid  here.  In 
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fact,  in  view  of  Theorem  1  the  sum  is  independent  of  the  particular 

choice  of  the  representatives  Ct,  and  the  symbol  2  contradistinction 

to  the  same  symbol  as  used  in  arithmetic  and  analysis)  does  not  refer  to 

a  definite  succession  of  the  terms  c t x). 

The  remark  3)  has  been  utilized  in  the  formulation  of  Definition  111 

as  far  as  the  function /is  concerned.  Equal  cardinals  c «  occur  in  a  multiplic¬ 

ity  corresponding  to  a  subset  of  T,  namely  to  the  multiplicity  of  equal 

functions-values  f  (t) ;  if,  for  instance,  T  is  the  set  of  the  real  numbers 

of  the  interval  0  <  t  <  3  and  if  /  is  defined  by  f(t)  =  1  for  integral  t, 

f{t)  =  2  for  non-integral  rational  t ,  / (t)  =  Ko  for  irrational  t,  then  the 

term  1  appears  four  times,  the  term  2,  Xo  times,  the  term  Xo,  ̂   times. 

If  a  sequence  of  cardinals  is  given  one  may  take  for  T  the  set  of  all  pos¬ 

itive  integers.  —  As  to  the  concept  of  single-valued  function  used  in 

Definition  III,  its  reduction  to  the  concept  of  set  is  sketched  below  in  §  7 

(cf.  above  p.  23)  and  discussed  in  detail  in  Foundations,  chapter  II. 

Definition  III,  and  analogically  Definition  VI  below,  are  apt  to  arouse  the  question 

of  whether  representatives  Ct  in  a  sufficient  quantity  are  available.  This  question  has 

two  different  aspects.  First  it  may  mean  asking  whether,  c t  being  given,  a  set  of  this 

cardinal  can  be  produced  — which  is  mistaking  the  logical  relation  between  set  and 

cardinal ;  a  cardinal  is  given  as  the  cardinal  of  a  set  and  in  this  logical  order  cardinals 

were  introduced  in  §  4.  On  the  other  hand,  the  question  is  justified  if  meaning  how 

sufficiently  many  representatives  of  c t  can  be  produced;  in  the  above  example  we  need  a 

set  of  the  cardinal  N  of  representatives  having  the  cardinal  No,  i.e.  N  different  and 

pairwise  disjoint  denumerable  sets.  This  can  be  achieved  in  the  following  way.  If  Ct 

is  a  definite  set  with  the  cardinal  Ct  and  the  members  of  Ct  are  denoted  by  ct  then  the 

sets  of  all  ordered  pairs  ( ct ,  t )  for  each  t  e  T,  with  ct  ranging  over  Ct,  are  pairwise 

disjoint  representatives  of  ct  in  a  quantity  corresponding  to  the  cardinal  of  T. 

In  fact,  for  ti  #  t%  any  two  ordered  pairs  (c/,  ti)  and  ( c"t2 ,  tf)  are  different,  even  in  the 

case  c't1  =  c"t2.  — As  to  ordered  pairs,  they  are  easily  reduced  to  pairs,  i.e.  to  sets; see  §  8,  2. 

4.  Formal  Laws.  Examples.  The  commutative  law  of  addition  requires  no 
proof  since  no  order  of  the  terms  enters  the  definition;  cf.  §  2,  3  and 
remark  4)  in  3. 

As  to  the  associative  law  of  the  addition  of  cardinals,  there  is  a  differ¬ 

ence  of  principle  between  our  case  and  that  of  arithmetic.  In  arithmetic, 

primarily  the  addition  of  two  terms  only  is  defined;  after  proving  the 

associative  law  (a  +  b)  +  c  =  a  +  (b  +  c)  and  its  generalization,  the 

T  This  “commutativity”  may  more  elaborately  be  expressed  as  the  possibility  of 
mapping  the  argument-set  T onto  itself  or  an  equivalent  set;  cf.  Hausdorff  14,  pp.  37f., 
or  exercise  7)  at  the  end  of  this  section.  The  same  applies  to  the  commutativity  of  the 
multiplication  of  cardinals  as  introduced  in  Definition  VI. 
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definition  can  be  extended  to  any  finite  number  of  terms.  This  method 

does  not  suffice  for  the  addition  defined  here,  first  because  there  may  be 

infinitely  many  (even  more-than-denumerably  many)  terms  and  secondly 
because,  for  instance,  the  equality  a  +  b  +  c  =  {a  +  b)  +  c  which  in 
arithmetic  is  a  definition  must  here  be  proven  as  a  theorem. 

In  the  present  case  the  problem  is  rather  that  of  formulating  the 
associative  law  than  of  proving  it.  We  go  back  to  Definition  I  upon  which 
the  addition  of  cardinals  is  based  and  decompose  the  set  A,  whose  sum-set 

U  A  we  consider,  arbitrarily  into  complementary  and  pairwise  disjoint 
subsets 

(1)  A  =  KkjL\jMkj _ 

Hence  every  a  e  A  is  either  a  k  e  K  or  an  /  e  L  or  an  m  e  M  etc.  The 

general  associative  law  for  unions  of  sets,  then,  runs 

(2)  im  =  ua:uuluumu.... 

Contrary  to  arithmetic,  we  need  not  consider  other  decompositions  than 

the  arbitrary  one  on  the  right-hand  side  of  (2),  for  the  proof  of  (2) 

shows  that  every  other  decomposition  also  yields  U  A.  (The  analogue  of 

U  A  for  a  finite  number  of  terms  is  initially  not  available  in  arithmetic.) 

To  prove  (2),  i.e.  to  show  that  every  member  of  the  left-hand  union  is  a 

member  of  the  right-hand  union  and  conversely,  we  take  into  account 

that  every  x  e  \J  A  belongs,  according  to  (1),  either  to  a  k  e  K  or  to  an 

/  e  L  or  to  an  m  e  M  etc.,  hence  either  to  U  K  or  to  U  L  or  to  U  M  etc. 

Conversely,  every  x  e  U  K  belongs  to  U  A,  etc. 

For  (2)  we  have  no  need  to  assume  A  to  be  disjointed  (nor  even  the 

subsets  K,  L,  M,  ...  to  be  pairwise  disjoint).  Now  we  make  these 

assumptions  for  the  purpose  of  applying  (2)  to  Definition  III,  conceiving 

A  as  the  set  of  all  representatives  Ct  \  then  the  transition  from  (2)  to  the 

cardinals  of  U  A,  U  K,  U  L,  U  M ,  ...  yields  general  associativity  for 

the  addition  of  cardinals,  say  in  the  form 

2  ct  =  2  c<  +  2 c*  +  2 c*  +  •  •  • teT  teP  teQ  teR 

where  T  is  the  union  of  the  paarwise  disjoint  sets  P,  Q,  R,  etc. 

Examples  for  the  addition  of  cardinals.  In  a  slight  generalization  of  the 

remark  1)  on  p.  82,  the  addition  of  finitely  many  positive  integers  (i.e.  of 
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finite  cardinals  different  from  0)  as  defined  in  arithmetic  is  in  accordance 

with  Definition  III.  However,  now  we  can  also  form  the  sum  of  infinitely 

many  such  numbers,  which  has  nothing  to  do  with  the  infinite  sums  or 

series  of  analysis,  hence  involves  no  question  of  convergence;  for  instance, 

we  obtain 

1+2  +  3+  . ..+&+...=  No 

by  taking,  in  accordance  with  Definition  III,  {ao},  [a\,  <22},  {Q3,  (U,  05}, . . . 

as  the  representatives  of  1,  2,  3,  ...  respectively;  the  members  ak  are  here 

arbitrary  save  for  the  condition  ak  ̂   am  for  k  +  m.  In  the  same  way  we 

obtain  for  a  sequence  of  terms 

n  +  n  +  11  -f  •  •  •  =  No  in  finite,  ̂   0) 

and  in  particular 

(3)  1  +  1  +  1  +  . . .  =  No- 

Regarding  the  term  0,  we  have  s  +  0  =  s  for  every  cardinal  s.  Conversely 

one  can  only  state  that  the  validity  of  s  +  x  =  s  for  every  cardinal  s 

implies  x  =  0. 

Passing  over  to  transfinite  terms,  we  obtain  the  results  (n  finite) 

(4)  No  +  n  =  No  +  No  =  No+  No  +  ...  +  No  (finitely  many  terms) 

=  No  +  No  +  No  +  ...  (sequence  of  terms)  =  No 

in  view  of  Theorems  2  and  3  of  §  3. 

The  far  stronger  Theorem  6  of  §  3  gives  for  every  transfinite  cardinal  c: 

(5)  c  +  n  =  c  +  No  =  c; 

in  particular  for  the  cardinal  of  the  continuum 

(5')  X  +  n  =  N  +  No  =  X- 

The  second  relation  (5')  is  in  accordance  with  the  fact  that  the  union  of 
the  sets  of  all  real  transcendental  numbers  (Theorem  3  of  §  4)  and  of  all 

real  algebraic  numbers  (§  3,  4)  is  the  set  of  all  real  numbers. 

No  general  theorem  enables  us  so  far  to  evaluate  sums  in  which  the 

term  N  occurs  several  times.  Yet  for  this  purpose  we  may  utilize  Theorem 

2  of  §  4;  taking  as  representatives  of  finitely  many  terms  N>  or  of  a 

sequence  of  such  terms,  linear  continua  of,  say,  unit-length  we  obtain 

(

6

)

 

 

X  +  X+  •••  +  X  =  X  +  X  +  X+  •••  (sequence)  =  N- 
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5.  Cartesian  Product.  The  Axiom  of  Choice.  To  introduce  the  multi¬ 

plication  of  cardinals  we  need  a  new  operation  with  sets,  whose  result 

is  usually  called  “Cartesian  product”. 
The  connection  between  this  concept  and  a  product  of  cardinals  derives 

from  a  well-known  consideration.  Multiplication  in  arithmetic  is  defined 

as  repeated  addition;  e.g.,  3-4  as  3  +  3  +  3  +  3  (or  4  +  4  +  4).  To 

evaluate  m  •  n  according  to  Definition  III  would  then  require  represent¬ 

atives  which  together  contain  m  ■  n  different  members.  Yet  we  may 

reduce  this  to  m  +  n  members  only  by  starting  with  the  disjoint  sets 

(ai,  a2,  . . . ,  am },  {bi,  b2,  . . . ,  bn}  and  by  considering  the  set  of  all  combin¬ 

ations  {a*,  bi),  i.e.  pairs  of  one  member  out  of  each  set.  Dropping  the 
restriction  to  finite  sets  we  arrive  at 

Definition  IV.  Given  the  disjoint  sets  R  and  S,  the  set  P  of  all 

pairs  {r,  with  r  e  R  and  s  e  S  is  called  the  Cartesian  product  of 

R  and  S  and  denoted  by  P  =  R  x  S.  R  and  S  are  called  factors  of 

the  product. 

Other  expressions  for  “Cartesian  product”  are  “combination  set”  or 

“outer  product”  (as  distinguished  from  the  intersection  as  “inner 

product”).  Cantor,  who  introduced  the  concept  for  the  present  purpose, 
called  it  Verbindungsmenge,  while  calling  the  union  Vereinigungsmenge. 

Example:  R—  set  of  all  positive  integers,  S=  {si,  $2}-  We  have 

R  X  S  =  {{1,  si},  (1,  s2},  {2,  si},  (2,  s2},  (3,  si},  . . .}  which  is  also  a 
denumerable  set. 

For  the  purpose  of  multiplication  of  cardinals  we  generalize  Definition 

IV  in  two  different  directions.  The  one  is  nothing  new:  we  introduce  any 

multitude  of  factors  in  the  same  way  as  done  in  the  beginning  of  Definition 

III,  namely  by  means  of  an  auxiliary  set  T;  it  will  turn  out  that  in  the  case 

of  multiplication  this  method  is  desirable  not  only  for  cardinals  but  even 

for  sets,  in  contrast  with  the  operation  of  union  where  (Definition  I)  it  is 

sufficient  to  consider  a  set  of  sets. 

The  second  generalization  involves  a  more  delicate  problem.  For 

certain  applications  it  is  advantageous  to  get  rid  of  the  condition  that 

R  and  S  be  disjoint,  and  in  the  general  case,  that  any  two  factors  be  disjoint 

sets.  This  present  a  difficulty,  for  if  n  and  r2  are  members  of  both  R  and  S 

we  should  distinguish  between  the  pair  {r%,  1-2}  with  n  e  R  and  r2  e  S, 

and  the  pair  {r2,  ri}  with  r2  e  R  and  n  e  S  —  though  according  to 

extensionality  {n,  r2}  =  {r2,  ri}.  Moreover,  taking  n  from  both  R  and  S 
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we  do  not  get  a  pair  at  all.  For  instance,  if  R  =  {1,2}  and  S  =  {1,  2,  3} 

then  R  x  S  would  contain  only  the  three  pairs  {1,  2},  (1,  3},  {2,  3}  and  in 

addition  the  unit-sets  {1}  and  {2},  instead  of  six  pairs  as  intended. 

This  difficulty  may  be  solved  in  two  ways.  First,  one  might  consider 

ordered  pairs  ( r ,  5),  stipulating  that  r  be  a  member  of  R  and  s  a  member  of 

5  and  making  an  extra  provision  that  includes  pairs  of  the  form  ( r ,  r). 

While  in  the  case  of  Definition  IV  this  appears  feasible  (cf.  the  end  of 

subsection  3)  it  would  not  be  sufficient  for  the  general  case  of  Definition 

V  where,  instead  of  ordered  pairs,  ordered  sets  in  general  are  needed. 

The  reduction  of  the  concept  of  ordered  set  to  the  set  concept  is  an 

intricate  matter  (§  8)  and,  which  is  more  important,  the  introduction  of 

order  at  this  juncture  is  not  pertinent  to  our  subject  since  order  does  not 

enter  the  concept  of  Cartesian  product. 

A  more  relevant  method  is  marking  the  members  of  the  pairs  occurring 

in  Definition  IV  explicitly  as  members  of  the  respective  set  (R  or  S ).  This 

may  be  done  through  replacing  the  members  by  pairs  consisting  of  the 

member  and  the  respective  set,  i.e.  by  writing  {{r,  R},  {5,  S}}  instead  of 

(r,  5}  in  Definition  IV.1)  Then  the  “loss”  of  pairs  (members  of  the  Car¬ 
tesian  product)  as  cited  above  cannot  occur;  if,  as  assumed  above,  r  1  and 

r-2  are  members  of  both  R  and  S  then  the  four  pairs  in  question  will  now 
be  written  as 

{{/■!,  R},  K  5}},  {{a,  R},  {r2,  S’}},  {{r2,  R},  {n,  S}},  {{r2,  R},  {r2.  S'}}. 

Though  this  method  is  unobjectionable  it  is  far  simpler,  and  sufficient 

in  principle,  to  consider  disjoint  factors  only.  Yet  for  certain  applications, 

especially  to  the  concept  of  power  (§  7),  this  restriction  proves  inconvenient ; 

even  equal  factors  are  then  used. 

From  the  case  of  two  factors  we  thus  proceed  to 

Definition  V.  Let  S'  be  a  non-empty  set  of  sets  s;  more  generally, 
consider  a  system  of  (not  necessarily  different)  sets  st  given  by 

means  of  a  single-valued  function  /  which  assigns  to  each  member  t 

of  a  non-empty  set  T  a  set  f(t )  =  st.  The  set  whose  members  are  all 

T  In  certain  “pathological”  cases  where  not  only  r  «  R  but  at  the  same  time  Rer, 
one  ought  to  take  ordered  pairs  instead  of  plain  pairs.  Even  this  does  not  mean  the 

method  which  was  rejected  in  the  preceding  paragraph  because  it  does  not  involve 

ordered  sets  in  general ;  an  ordered  pair  is  a  quite  simple  concept  not  requiring  order 
(see  §  8,  2). 
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different  sets  ( complexes )  that  contain  a  single  member  out  of  each 

s  or  st,  is  called  the  Cartesian  product  of  all  sets  ( factors )  s  or  St 
and  is  denoted  by 

PS,  or  H*.  *) teT 

If  stlf  stt,  . . .  are  some  of  the  factors  we  also  write 

= stl  x  sti  x  — 
teT 

The  term  “complex”  is  adopted  ad  hoc  as  an  abbreviation  for  a  set  that 
contains  one  member  out  of  each  factor.  If  the  factors  are  not  pairwise 

disjoint  the  equality  between  complexes  should  be  understood  according 

to  what  was  said  above,  with  reference  to  the  same  members  out  of  the 
same  sets. 

For  the  existence  of  the  Cartesian  product  see  footnote  3)  on  p.  90. 

Examples. 

a)  S={{  1,2},  {3,4},  {5,6},  ...}, 

i.e.  a  denumerable  disjointed  set  of  pairs.  Then 

PS  =  {1,  2}  x  {3,  4}  x  {5,  6}  x  . . .  = 

{{1,3, 5,...},  {2, 3,5,...},  {1, 4, 5,...},  {2, 4, 5,...},  {1,3, 6,... },...} 

which  set  will  prove  to  have  the  cardinal  of  the  continuum  (§  7). 

b)  5=  {{1,  2},  {3,  4},  {5},  {6},  {7},  ...}.  Then 

PS  =  {{1,  3,  5,  6,  . . . },  {2,  3,  5,  6,  . . . },  {1,  4,  5,  6,  . .  .},  {2,  4,  5,  6,  ...}}, 

i.e.  a  set  of  the  cardinal  4. 

If  the  null-set  O  occurs  among  the  members  of  S  or  among  the  factors 

st  then  the  Cartesian  product  is  clearly  the  null-set  because  no  complex 

exists,  for  no  member  can  be  chosen  from  O.  One  will  ask  whether  this 

statement  can  be  inverted,  i.e.  if  the  Cartesian  product  is  non-empty 

provided  each  factor  is  non-empty.  This  question,  apparently  quite 

simple,  is  one  of  the  most  discussed  problems  in  modern  mathematics. 

*)  The  symbol  n  is  usually  applied  to  products  of  numbers  (cardinals)  and  not  to 
Cartesian  products  of  sets.  But  in  view  of  the  close  relation  between  these  (see  Definition 

VI)  and  since  no  confusion  will  arise  we  shall  not  introduce  a  new  symbol  for  the 

present  purpose. 
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The  answer  seems  to  lie  in  choosing  a  single  member  in  each  factor  and 

uniting  the  chosen  members  to  a  set;  this  set,  then,  is  a  complex,  i.e.  a 

member  of  the  Cartesian  product,  which  shows  that  this  product  is  not 

empty. 

However1),  on  account  of  the  axioms  introduced  so  far  we  seem  to  be 

unable  to  choose  members  as  described,  except  when  the  members  of  A 

are  unit-sets  or  when  S'  is  a  finite  set 2).  To  render  the  situation  more 

perspicuous  let  us  assume  A  to  be  a  disjointed  infinite  set  of  non-empty 

sets;  then  every  complex,  if  any,  is  a  subset  of  the  union  U  A,  namely  a 

subset  with  the  property  n  that  its  intersection  with  each  member  of  A 

is  a  unit-set.  Yet  the  axiom  of  subsets  (§  2,  2)  does  not  yield  the  construct¬ 

ion  of  such  a  subset;  in  fact,  save  for  trivial  cases  there  is  not  a  single 

subset  with  the  property  n  but  infinitely  many.  (True,  by  means  of  the 

axioms  of  subsets  and  of  power-set  one  can  form  the  Cartesian  product, 

that  is  to  say  the  set  that  contains  all  subsets  of  U  A  with  the  property  n, 

but  this  does  not  involve  that  the  product  is  different  from  O,  i.e.  that 

there  exists  a  subset  of  U  5  as  desired.3)) 
We  therefore  introduce  a  new  axiom,  the  last  one  used  in  this  book. 

Axiom  (VII)  of  Choice,  or  Multiplicative  Principle.  The  Cartesian 

product  PA  of  a  disjointed  set  A  which  does  not  contain  the  null-set  is 

different  from  the  null-set.  In  other  words,  the  union  U  A  contains  at 

least  one  subset  which  has  a  single  member  common  with  each  member 

of  A,  these  members  assumed  to  be  non-empty  sets. 

If  A  is  not  disjointed  then  the  corresponding  statement  must  be  ex¬ 

pressed  in  a  different  way;  for  instance,  as  affirming  the  existence  of  a 

single-valued  function  which  assigns  to  each  member  x  of  A  a  member  of 

x.  This  generalized  form  can  be  derived  from  the  above  axiom  by  means 

of  our  other  axioms,  as  Zermelo  has  shown. 

The  multiplicative  principle  for  disjointed  sets  A  was  formulated  by 

Bertrand  Russell  in  1906.  Previously,  in  1904,  the  axiom  had  been 

formulated  and  utilized  by  Zermelo  without  assuming  A  to  be  disjointed; 

in  1908,  it  was  given  the  general  (“functional”)  form  by  Zermelo,  from 

0  The  following  arguments  up  to  Theorem  2  are  somewhat  difficult  and  may  be 

skipped  by  beginners  at  the  first  reading. 

2)  Regarding  the  latter  eventuality,  we  may  start  with  the  case  that  S  contains  a 
single  member  and  proceed  to  any  finite  set  by  mathematical  induction. 

3)  For  explaining  this  in  detail  and  pointing  out  the  problems  connected  with  the 
axiom  of  choice  in  general,  see  Foundations,  pp.  45  IT.  (Add  Fraisse  58  to  the  literature 

there  given.)  The  Cartesian  product  is  just  the  subset  of  those  members  of  the  power- 

set  of  U  S  (i.e.,  of  those  subsets  of  U  S )  which  have  the  property  n. 
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whom  originates  the  name  “choice”  in  the  sense  of  choosing  a  single 

member  out  of  each  member  of  S.1) 
Implicitly  we  have  used  the  axiom  of  choice  previously,  notably  in  the 

first  proof  of  Theorem  4  of  §  3  and  in  the  proof  of  Theorem  1  on  p.  82 

upon  which  the  addition  of  cardinals  is  based.  As  to  the  latter  proof, 

cf.  the  footnote  on  p.  82.  (While  the  set  of  all  mappings  y /<“>  between  a 
and  (p{a ),  and  even  the  set  which  contains  all  these  sets  for  each  a  e  A, 

can  be  shown  to  exist  on  account  of  the  preceding  axioms,  the  axiom  of 

choice  is  required  to  simultaneously  choose  a  single  such  mapping  for 

each  a.) 

By  joining  the  multiplicative  principle  (hence  its  name)  to  the  remark 

on  the  bottom  of  p.  89,  we  obtain 

Theorem  2.  The  Cartesian  product  of  a  disjointed  set  S  is  the  null-set 

if  and  only  if  the  null-set  is  a  member  of  S. 

To  pass  over  from  Cartesian  products  to  the  multiplication  of  cardinals 

we  need  the  analogue  of  Theorem  1 .  If  A  and  B  are  equivalent  sets  of 

sets  2)  and  if,  in  view  of  a  definite  mapping,  the  image  in  B  of  a  e  A  is 

denoted  by  (p{a ),  let  us  assume  a  ~  <p{a )  for  each  a  e  A.  We  prove 

PA  ~  P B  as  follows.  Let  y/W  be  a  mapping  3)  between  the  equivalent 

sets  a  e  A  and  <p(a )  e  B  and  let  x  be  a  member  of  PA,  i.e.  a  complex;  then 

x  biuniquely  determines,  by  simultaneous  mappings  ys^  of  the  members 

of  A  onto  the  corresponding  members  of  B,  an  image  which  is  a  complex 
of  PB.  Hence 

Theorem  3.  If  A  and  B  are  equivalent  sets  of  sets  such  that  a  certain 

mapping  relates  each  a  a  A  to  an  equivalent  b  e  B  {i.e.  a  ~  b)  then 

we  have  PA  ~  PB. 

6.  Multiplication  of  Cardinals  and  its  Formal  Laws.  Theorem  3  enables  us 

x)  Zermelo  04,  08,  08a;  Russell  06. 

2)  In  contrast  with  Theorem  1,  disjointedness  is  not  required  since  every  member 

of  a  complex  is  conceived  as  a  member  of  the  respective  set  (i.e.  of  a  member  of  A  or  B). 

By  speaking  of  “sets  of  sets”  we  refer  to  the  first  formulation  in  the  opening  of 
Definition  V ;  if  the  use  of  functions  /  (with  the  same  auxiliary  set  T)  is  necessary  the 

argumentation  is  not  changed. 

3)  Here  again  the  axiom  of  choice  is  used.  Without  it  we  can  form  the  set  whose 

members  are  the  sets  of  all  mappings  y/w  while  a  ranges  over  A ;  yet  we  need  the 

axiom  to  choose  a  single  mapping  for  each  a.  By  uniting  the  chosen  mappings  we 

obtain  the  correspondences  desired  between  the  complexes  of  PA  and  PB. 
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to  define  the  multiplication  of  cardinals  in  a  way  largely  analogous  to 

their  addition  (Definition  III). 

Definition  VI.  Let  be  given  a  system  of  (not  necessarily  dif¬ 

ferent)  cardinals  ct  by  means  of  a  single-valued  function  /  which 

assigns  to  each  member  t  of  a  non-empty  set  T  a  cardinal  / ( t )  =  c 

To  form  the  product  of  the  given  cardinals  replace  each  c «  by  a  set 

Ct  ( representative  of  c«)  of  the  cardinal  ct.  The  cardinal  p  of  the 

Cartesian  product  of  all  representatives  C«  for  t  e  T  is  called  the 

product  of  the  given  cardinals  ( factors );  one  writes 

p  =  =  c'  c"  . . . teT 

where  c',  c",  . . .  are  some  of  the  given  cardinals. 
In  short,  the  product  of  cardinals  is  the  cardinal  of  the  Cartesian 

product  of  sets  with  the  respective  cardinals : 

i> = no. teT  teT 

In  contrast  with  Definition  III,  there  is  no  need  to  take  for  the  re¬ 

presentatives  disjoint  nor  even  different  sets,  for  the  reason  given  on 

p.  91.  Analogically  to  Definition  III,  the  product  is  independent  of  the 

particular  choice  of  the  representatives  in  view  of  Theorem  3,  and  also 

independent  of  a  possible  succession  of  the  factors  (see  p.  84).  In  the 

case  of  finitely  many  finite  factors,  the  definition  clearly  conforms  to  the 

multiplication  of  non-negative  integers  as  defined  in  arithmetic. 

As  to  the  associative  law  of  the  multiplication  of  cardinals,  the  situation 

is  similar  to  that  described  in  the  beginning  of  4.  To  formulate  the  law 

let  S,  as  in  Definition  V,  denote  the  set  whose  Cartesian  product  PS  shall 

be  formed,  and  let 

(1)  S  =  K'ULUM'U... 

be  any  decomposition  of  S  into  complementary  and  pairwise  disjoint 

subsets  J).  Hence,  every  s  e  Sis  either  a  k e K or  an  /  e  L  or  an  m  e  M  etc. 
The  general  associative  law  for  Cartesian  products  of  sets,  then,  runs 
(cf.  subsection  4) 

(2)  PS  ~  VK  x  PL  x  PM  x  .... 

b  Starting  from  the  more  general  (second)  formulation  of  Definition  V,  one  has  to 
decompose  the  auxiliary  set  T\  for  the  rest  the  argumentation  remains  unchanged. 
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Clearly  this  equivalence  cannot  be  transformed  into  an  equality,  for  the 

members  of  PS1  are  complexes  each  of  which  has  the  cardinality  of  S 
while  the  members  of  the  right-hand  set  have  only  the  cardinality  of  the 
set  that  contains  the  subsets  K,  L,  M,  ...  which  appear  in  (1). 

To  prove  (2)  we  relate  to  each  member  (complex)  x  of  P*S,  which 

according  to  Definition  V  contains  a  single  member  out  of  each  member 

of  S,  the  complex  belonging  to  the  Cartesian  product  on  the  right-hand 

side  of  (2)  whose  members  contain  the  same  members  as  x  J).  We  thus 

obtain  a  one-to-one  correspondence  between  the  Cartesian  products  on 
both  sides  of  (2),  which  expresses  their  equivalence. 

To  illustrate  this  proof  let  S  be  disjointed  and  =  {si,  j2,  sz,  sa,  .ss} 

(s/c  ̂   O),  K  =  {ji,  sz,  ̂ 3},  L  =  {j4,  55},  hence  S  =  K  U  L.  If  Gkesk, 

the  above- defined  correspondence  relates 

{01,  <72,  <73,  <74,  <75}  €  PS  to  {{<71,  <72,  <73},  {<74,  <75}}  €  (P/f  X  PL). 

In  this  case  we  may  express  the  associative  law  (2)  by 

Si  X  Sz  X  Sz  X  Si  X  S5  ~  C?i  X  S2  X  .S3)  x  (54  X  J5). 

With  a  view  to  applications  in  §  7  we  shall  write  the  associative  law  (2) 

in  another  form,  using  the  symbol  jQ  for  the  Cartesian  product  of  sets 

as  done  in  Definition  V.  First,  expressing  (2)  through  the  factors  rather 

than  through  the  sets  of  factors,  we  replace  (2)  by 

(3)  Y\y  ~  n>’ x  TJy  x  Y\y  x  •  •  •  • 
yeS  yeK  yeL  yeM 

Still  the  formulations  (1),  (2),  (3)  suffer  from  the  use  of  dots,  owing  to  the 

expression  of  the  decomposition  (1)  (as  also  of  (1)  on  p.  85)  by  the 

casual  letters  K,  L,  etc.  This  shortcoming  is  easily  redressed  by  writing 

(1)  in  the  form  S  =  U  {.  .Kt. .},  where  T  is  a  suitable  auxiliary  set  to 
teT 

whose  members  t  the  complementary  and  pairwise  disjoint  subsets 

Kt  are  assigned;  {.  ,Kt. .}  means  the  set  of  all  Kt  for  teT.  Then  (3)  can 
be  written  as 

(4)  rb~n(rw. 
ysS  teT  yeK t 

where  S  is  the  union  of  the  pairwise  disjoint  sets  Kt. 

J)  As  pointed  out  on  p.  88,  if  S  is  not  disjointed  then  each  member  of  the  members 
j>e5  has  to  be  taken  with  regard  to  its  belonging  to  y,  say  as  a  pair  one  of  whose 
components  is  y. 
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Finally,  since  the  cardinals  of  equivalent  sets  are  equal,  the  transition 

from  any  of  the  equivalence  statements  (2),  (3),  (4)  between  sets  to  the 

respective  cardinals  yields  the  full  associative  law  for  the  multiplication 

of  cardinals  c t,  say  in  the  form 

n*=n*  ri*  ]>••• teT  teP  teQ  teR 

where  T  is  the  union  of  the  pairwise  disjoint  sets  P,  Q,  R,  . . .. 

The  distributive  law  connecting  addition  and  multiplication  of  cardinals 

may  be  expressed  in  the  following  form  which  is  sufficient  for  the  needs 

of  the  arithmetic  of  cardinals: 

(5)  c  =  2(c>c<)- teT  teT 

In  view  of  the  commutativity  of  the  multiplication  we  may  also  let  the 

sum  precede  c  (“second”  distributive  law). 
To  prove  (5)  we  replace  the  cardinals  c  and  c t  by  pairwise  disjoint  set- 

representatives,  the  sums  by  unions,  the  products  by  Cartesian  products; 

then  obviously  the  originating  left-hand  and  right-hand  sides  are  even 

equal  (not  only  equivalent)  sets. 

Joining  these  results  to  those  of  4,  we  have 

Theorem  4.  Addition  and  multiplication  of  cardinals  are  commutative 

and  associative  operations  connected  by  the  distributive  law  of  arithmetic. 

The  insertion  “of  arithmetic”  excludes  the  second  distributive  law  of 
Boolean  algebra  (below,  subsection  9). 

Obviously  the  multiplication  with  1,  even  any  number  of  times,  does 

not  change  the  result;  cf.  the  second  example  on  p.  89.  Conversely 

one  can  only  state  that  the  validity  of  c  •  x  =  c  for  every  cardinal  c  implies 
x  =  1. 

In  arithmetic,  multiplication  is  usually  defined  not  according  to 

Definitions  IV  and  VI  but  as  repeated  addition.  This  procedure  can  be 

generalized  from  two  to  any  finite  number  of  factors  by  mathematical 

induction  but  is  not  convenient  for  the  general  case  of  Definition  VI; 
instead  it  shall  now  be  introduced  as  a  provable  theorem. 

Let  us  first  stipulate  that  in  the  product  ab  the  first  factor  a  be  regarded 
as  multiplicand  and  the  second  b  as  multiplier.  This  (arbitrary)  stipulation, 

though  insignificant  in  the  present  case  because  of  the  commutativity  of 
multiplication,  will  prove  essential  in  §  8. 
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We  prepare  the  general  case  by  taking  one  of  the  two  factors  as  a 

finite  cardinal  n  A  0.  Then  the  equality,  valid  for  any  cardinal  c, 

(6)  c  +  c  +  . . .  +  c  =  c  •  n 

n  terms 

expresses  that  a  set  representing  the  left-hand  sum  is  equivalent  to  the 

Cartesian  product  of  sets  of  the  cardinals  c  and  n.  To  show  this  let 

Ck  (k=  1 ,  2,  . . n )  be  pairwise  disjoint  sets  with  the  cardinal  c,  whose 

union  has  the  cardinal  c  +  c  +  •  •  •  +  c.  Taking  fixed  mappings  of  Ci 

onto  each  other  Ck,  we  denote  an  arbitrary  member  of  Ci  with  ci  and  its 

image  in  Ck  by  those  mappings  with  ck.  If  F=  {f\,h,  ■  ■  .,/»}  is  a  set 

of  n  members  which  do  not  belong  to  a  Ck  then  the  Cartesian  product 

Ci  X  F  is  equivalent  to  the  union  of  the  Ck,  as  shown  by  relating 

ck  e  Ck  to  {ci,fk}  e  (Ci  X  F);  this  equivalence  is  another  expression 

for  the  equality  (6). 

In  the  general  case,  i.e.  for  any  multiplier  d,  the  proof  is  quite  similar. 

For  let  c  and  d  be  represented  by  the  disjoint  sets  C  and  D\  {c,  d }  may 

denote  the  members  of  the  Cartesian  product  C  x  D.  If  d*  is  a  fixed 

member  of  D,  the  pairs  {c,  d }  with  c  e  C  for  which  d  =  d*,  form  a  subset 

ofCxfi  which  is  equivalent  to  C;  hence,  if  d *  ranges  over  all  members 

of  D,  we  obtain  a  set  equivalent  to  D  of  pairwise  disjoint  subsets  of  CxD 

each  of  which  is  equivalent  to  C;  C  X  D  is  the  union  of  these  subsets. 

According  to  Definition  III  the  cardinal  cd  of  C  X  D  is,  then,  represented 

as  a  sum  each  of  whose  terms  equals  c  and  such  that  the  terms  occur  in 

the  multiplicity  (cardinal)  d.  In  particular,  if  C  is  a  unit-set  (hence 

C  X  D  ~  D),  we  obtain  the  cardinal  of  D  in  the  form  of  a  sum  each 

term  of  which  is  1 .  Hence 

Theorem  5.  The  product  cd  of  two  cardinals  *)  can  be  obtained  by 

reiterated  addition  of  the  term  c  “d -times",  i.e.  according  to  an  auxiliary 

set  of  the  cardinal  d  in  the  sense  of  Definition  III.  In  particular,  any  cardinal 

d^O  can  be  obtained  by  repeated  addition  ( according  to  d)  of  the  unity  1. 

Of  course,  we  may  derive  the  latter  statement  also  directly  from 

Definition  III  by  taking  c t  =  1  for  each  t  e  T,  and  Ct  =  {t}.  On  the  other 

hand,  one  obtains  the  first  statement  from  the  second  by  multiplying  by 

c  and  using  the  distributive  law. 

i)  properly  we  should  condition  d  ̂   0.  Yet  by  the  commutativity  of  multiplicati
on 

we  may  include  d  =  0,  stipulating  that  “adding  0-times  means  obtaining  the 
 sum  0. 
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Theorem  6.  A  product  of  cardinals  equals  0  if  and  only  if  at  least  one  of 

the  factors  equals  0. 

This  theorem  is  well  known  from  arithmetic  where  (besides  its  being 

restricted  to  finitely  many  finite  factors)  it  is  based  on  the  distributive 

law  (for  “if”)  and  the  possibility  of  division  (for  “only  if”).1)  In  the 

present  case,  however,  “if”  derives  straight  from  Definition  V  (see  p.  89) 

and  “only  if”  from  the  axiom  of  choice. 
Theorems  4,  5,  6,  the  analogues  of  which  hold  in  arithmetic,  show  that 

the  definitions  of  addition  and  multiplication  (III,  V,  VI)  are  natural 

and  appropriate. 

7.  Inverse  Operations.  Inequalities.  In  contrast  with  the  success  reached 

for  the  “direct”  operations  of  addition  and  multiplication,  their  inversions 
can  generally  not  be  carried  out  for  cardinals. 

That  one  cannot  subtract  b  from  a  or  divide  a  by  b  if  b  >  a  is  trivial, 

since  no  “negative  cardinals”  or  “fractions”  2)  exist  according  to  the 
introduction  of  cardinals  as  cardinals  of  sets.  (For  the  case  a  >  b  see 

Theorem  5  of  §  3  and,  more  generally,  §11,5  and  7.)  But  also  in  the  case 

a  =  b  subtraction  and  division  yield  no  definite  results,  as  shown  by  the 
equalities  (where  n  is  any  finite  cardinal  A  0,  c  any  transfinite  cardinal) 

No  +  0  —  No  +  n  —  No  +  No  =  No 

X  +  0  =  x  +  n  =  X  +  Xo  =  X  +  X  =  X 

c  +  0  =  c  +  «  =  c  +  No  =  c 

Xo  •  n  =  Xo  •  Xo  =  Xo 

X  •  n  =  X  •  Xo  =  X  •  X 

(p.  86) 

(P-  86) 

(P-  86) 

(p.  95) 
(pp.  95  and  103) 

For  more  far-reaching  equalities  of  the  same  kind  cf.  §  11,  5. 
At  the  bottom  of  the  impossibility  of  inverse  operations  lies  the 

equivalence  of  infinite  sets  to  proper  subsets,  which  is  also  responsible 

0  The  arguments  in  arithmetic  are  in  short  as  follows: 

a)  a  •  0  =  a  (0  +  0)  =  a  •  0  +  a  •  0,  hence  a  -  0  =  0.  Analogically  one  proves 0  •  a  =  0. 

b)  ab  =  0  with  b  A  0  implies,  in  view  of  a) : 

2)  For  special  limited  purposes  “transfinite  rationals”  have  been  introduced  in Olmsted  45. 
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for  the  deviation  of  inequalities  between  cardinals  from  the  simple  situ¬ 
ation  in  arithmetic. 

From  the  inequalities 

(1)  ai  ̂   bi,  a2  ̂   b2 

it  still  follows  that 

(2)  3i  -{-  32  ̂   bi  +  b2,  aia2  ̂   bib2, 

as  in  arithmetic  for  non-negative  a&,  bk.  To  prove  this  we  take  as  re¬ 

presentatives  disjoint  sets  A i,  A2  and  disjoint  sets  Bi,  B2;  by  (1)  there  exist 

subsets  2?,  £  Bi  and  B2  c  b2  such  that  A\  ~  Bv  A2  ~  B2.  Hence  by 
Theorems  1  and  3 

A\  U  A2  ~  5,  U  B2,  A\  X  A2  ~  5,  x  B2. 

Since  B{  U  B2  £  B\  U  B2  and  B{  x  B2  £  B\  x  B2,  the  last  equivalences 

mean  ai  +  a2  <  bi  +  b2,  aia2  <  bib2  by  Theorem  4  of  §  5. 

It  is  easy  to  extend  the  inequalities  (2),  as  consequences  of  (1),  to  any 

(finite  or  infinite)  number  of  terms  and  factors;  see  exercise  3)  at  the  end 
of  this  section. 

Yet  in  arithmetic  stricter  inequalities  hold,  namely  (for  positive  af) 

(3)  ai  <  bi  and  a2  <  b2  imply  a\  +  a2  <  b\  +  b2,  a\a2  <  b\b2, 

and  in  particular  (for  non-negative  a*) 

(4)  ax  <  bi  and  a2  <  b2  imply  a\  +  a2  <  by  +  b2,  a\a2  <  bib2. 

Clearly  the  inequalities  (3)  do  not  hold  for  transfinite  cardinals,  as 

shown  by  instances  such  as  X  +  »  =  X  +  Ko,  K  •  «  =  X  •  No  (for  n  ̂   0) 

in  spite  of  ̂   n  <  Ko-  The  inequalities  (4)  do  hold  for  transfinite 

cardinals  but  can  be  proved  only  by  means  of  essentially  different  and 

more  profound  resources  as  developed  in  §  11,  5  and  7  1). 

An  almost  evident  statement  which,  however,  has  far-reaching  con¬ 

sequences  is  expressed  by 

Theorem  7.  If  C  is  a  set  of  cardinals  among  which  there  is  no  greatest 

one  then  the  sum  s  of  the  cardinals  of  C  is  greater  than  any  member  of  C. 

r)  Not  only  does  the  proof  of  (4)  for  transfinite  cardinals  require  the  axiom  of 
choice  but,  as  shown  in  Tarski  24,  this  axiom  can  also  be  derived  from  either  inequality 

(4). 
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Proof.  We  have  c  <  s  for  every  c  e  C,  by  Definition  III  (and  Theorem 

4  of  §  5).  If  there  existed  a  c*  e  C  such  that  c*  =  s  then  every  other 

ceC  were  less  than  c*,  i.e.  c*  were  the  greatest  cardinal  of  C. 

Remark.  One  may  also  prove  our  theorem  by  assuming  that  for 

every  c  e  C  there  is  a  greater  cardinal  in  C.  Yet  this  assumption  is  slightly 

stronger,  pending  a  proof  of  the  comparability  of  cardinals. 

Theorem  7  expands  the  domain  of  cardinals  in  the  following  sense. 

Cantor’s  Theorem  (2  of  §  5)  yields,  for  any  given  cardinal,  a  greater  one ; 

by  the  axiom  of  infinity,  then,  there  exist  infinitely  many  transfinite 

cardinals.  Beyond  this,  Theorem  7  secures,  for  any  given  set  of  cardinals, 

a  greater  one:  if  there  is  a  maximum  in  the  set  then  the  cardinal  yielded 

by  Cantor’s  theorem,  and  otherwise  the  sum  of  the  cardinals  contained 
in  the  set.  Hence  the  variety  of  transfinite  cardinals  incomparably 

surpasses  that  of  finite  cardinals. 

In  connection  herewith  arises  the  antinomy  of  the  set  of  all  cardinals', 

this  “set”  satisfies  the  condition  of  Theorem  7,  hence  it  should  yield  a 

cardinal  “greater  than  any  cardinal”.  Cf.  Foundations,  chapter  1,  §  2. 

Skipping  various  more  special  inequalities  *)  we  conclude  with  a  most 
general  one,  which  is  remarkable  both  for  its  strange  structure  and  for 

its  (somewhat  difficult)  proof  based  on  the  diagonal  method. 

Let  us  first  remark  that  if  two  sequences  of  cardinals  (a*)  and  (bt) 

with  a h  <  bjk  for  each  k  —  1,  2,  3,  ...  are  given  then  one  cannot  conclude 

<  2^*  or  r>  <'  only  ^  and  ^  FM. 
k  k  k  k  k  k  k  k 

We  have,  for  instance,  equality  between  the  sums  and  between  the  products 

if  a*  =  k,  b*  =  k  +  1.  The  following  theorem,  however,  states  inequality 

if,  in  addition  to  a*  <  b*,  we  compare  the  sum  of  the  a*  with  the  product 

of  the  b/t  —  even  in  more  general  cases  than  sequences. 

Theorem  8.  ( Inequality  of  Konig- Jo urdain-Zermelo  3 ) . )  If  the  single¬ 

valued  functions  f  and  g  assign  to  each  member  t  of  a  non-empty  set  T 

cardinals  f(t)  =  a«  and  g{t)  =  bt  such  that  a t  <  b/  for  each  teT,  then 

2a  *  <  I> 
i  t 

T  Cf.,  for  instance,  Bernstein  05,  §  3;  Lindenbaum-Tarski  26,  §  1.  Cf.  also  below 

§n. 
2)  The  products  may  even  be  equal  if  a  further  assumption  regarding  the  quantity 

of  the  bfc  is  added;  see  Tarski’s  result  mentioned  in  §  7,  4. 

3)  J.  Konig  05;  Jourdain  08;  Zermelo  08a,  p.  277.  The  theorem  was  proven  by 
Konig  for  sequences  only,  with  a  view  to  an  application  to  the  continuum  problem. 
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Proof})  As  representatives  of  the  cardinals  at,  b<  we  take  sets  At,  Bt 

of  these  cardinals  respectively  such  that  the  sets  Bt  are  pairwise  disjoint 

and  that 

At  <=  Bt,  hence  Ct  =  Bt  —  At  ̂   O. 

Accordingly,  the  sets  At  are  also  pairwise  disjoint.  The  union  S’  of  all 

At  has  the  cardinal  'fa t,  the  Cartesian  product  P  of  all  Bt  has  the t 

cardinal  ]^[b<.  According  to  Theorem  4  of  §  5  it  is  sufficient  to  prove  that 
t 

a)  S  is  equivalent  to  a  subset  of  P, 

b)  S  is  not  equivalent  to  P  itself. 

Ad  a).  Using  the  axiom  of  choice,  we  choose  in  every  Ct  =  B «  —  At 

an  arbitrary  member  ct  which  shall  henceforth  remain  fixed;  for  ti  ̂   t% 

we  have  ct  ̂   c*2.  Particular  members  of  P,  i.e.  complexes  that  contain 

one  member  out  of  each  Bt  =  At  U  Ct,  shall  be  formed  as  follows:  for 

a  single  t  =  x  the  member  shall  be  any  aT  e  Ar,  while  for  every  t  ̂   x  we 

take  the  fixed  ct  e  Ct.  To  make  this  rule  perspicuous  we  write  some  f’s  as 
1,2,  . . .,  k,  . . . ;  then  corresponding  particular  complexes  of  P  have  the 

form 

{ai,  c2,  . . eic,  . . .}  (cue  A  i) 

{Cl,  02,  ■  ■  ■ ,  Ck,  . . .  }  («2  e  A 2) 

{ci,  C2,  . . ajc,  . . . }.  (flfc  e  Ah ) 

The  set  of  those  complexes  in  which,  for  a  certain  t,  at  ranges  over  the 

set  At  is  obviously  a  subset  of  P  equivalent  to  At.  These  subsets  are 

pairwise  disjoint;  for  if  t'  +  t"  then  the  set  of  the  complexes  with 

at>  e  At'  and  the  set  of  the  complexes  with  at"  e  At"  have  no  common 

member  since  Af  and  At"  are  disjoint.  Hence  the  union  of  all  those 

subsets  of  P  is  equivalent  to  the  union  S  of  all  sets  At,  i.e.  S  is  equivalent 

to  a  subset  of  P. 

Ad  b).  Assume  Po  ̂   P  to  be  equivalent  to  S.  We  shall  prove  that  this 

implies  Po  +  P- 

Let  (p  be  a  fixed  mapping  of  S  onto  P0;  we  split  P0  into  its  complemen¬ 

tary,  pairwise  disjoint  subsets  which,  in  view  of  (p ,  correspond  to  the 

x)  Beginners  may  skip  this  proof  at  the  first  reading. 
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subsets  At  <=  S,  and  we  denote  the  subset  of  Po  corresponding  to  a 

certain  At  by  PqW;  then  Po(t)  ~  At.  The  members  of  Po,  hence  of  each 

Po(+  are  complexes  which  contain  a  single  member  out  of  each  Bt;  yet 

by  means  of  the  diagonal  method  we  shall  show  that  not  all  such  com¬ 

plexes  belong  to  Po. 

Let  t  =  r  be  a  fixed  member  of  T.  The  special  member  belonging  to 

Bz  of  a  member  (complex)  h  of  Po(t)  shall  for  short  be  called  a  diagonal 

member-,  the  diagonal  member  bT  of  h.  (The  first  index  r  refers  to  the 

subset  Po(t)  <=  P  to  which  h  belongs,  the  second  to  the  factor  Br  of  P 

to  which  bzz  belongs.)  The  set  Dz  of  all  diagonal  members  bz  T  occurring 

in  the  complexes  h  of  Po(t)  is  a  subset  of  PT  and  has,  in  contrast  with  the 

cardinal  bT  of  Bz,  a  cardinal  <  aT  only;  for  P0(r)  ~  Az,  and  the  diagonal 
members  belonging  to  different  complexes  h  are  not  necessarily  different. 
Hence  for  each  r  the  difference 

Ez  =  Bz-Dz^O 

since  even  the  cardinal  of  Dz  is  less  than  that  of  Bz  by  our  initial  assump¬ 
tion  a t  <  b t. 

Finally,  using  the  axiom  of  choice,  we  choose  a  single  member  et  in 

each  Et\  these  members  are  different  because  the  sets  Bt,  hence  also  Et, 

are  pairwise  disjoint.  The  set  e*  of  all  chosen  et  is  a  member  (complex)  of 

P,  for  e*  contains  a  single  member  out  of  each  factor  Bt  =  Dt^J  Et. 

We  maintain  that  e*  is  not  contained  in  the  subset  P0  of  P.  In  fact,  every 
member  (complex)  h  of  P0  belongs  to  a  certain  P0<*>  <=  p0  as  defined 

above,  and  the  member  of  h  belonging  to  the  particular  factor  Bt  —  name¬ 

ly  the  diagonal  member  btt  —  is  contained  in  Dt  c  Bt,  contrary  to  the 

member  of  e*  belonging  to  Bt,  which  has  been  chosen  from  the  comple¬ 
ment  Et  c  Bt.  Hence  h  +  e*  for  every  h  eP0;  in  other  words,  P0  is  a 
proper  subset  of  P,  which  completes  the  proof. 

As  an  example  for  Theorem  8  we  take  the  sequence  of  inequalities 
0<  1 ,  1  <  2,  ...,&<&  +  1,  ...;we  obtain 

0+1+2  +  ...  +  P+  ...(=  Ko)  <  1  •  2  •  3  •  ...  •  k  •  .... 

The  analogue  applies  to  any  sequence  of  increasing  (finite  or  transfinite) 
cardinals.  For  further  examples  see  §  7,  5  and  6. 

8.  Examples  of  the  Multiplication  of  Cardinals.  The  Cardinal  of  a  Two- 

Dimensional  Continuum.  In  analogy  to  the  multiplication  table  of 
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arithmetic  we  calculate  the  products  of  the  transfinite  cardinals  Xo  and 

X  by  themselves  and  by  finite  cardinals  ̂   0.  (For  the  factor  0  see  Theorem 

6.)  Most  results  are  easily  obtained  by  means  of  Theorem  5. 

In  accordance  with  (4)  and  (6)  of  subsection  4  we  have  for  finite 

n  ̂   0 

Xo  •  n  =  Xo  +  Xo  +  •  •  •  +  Xo  =  Xo,  Xo  •  Xo  =  Xo  +  Xo  +  •  •  •  =  Xo, 

X*»  =  X  +  K+  ...+X  =  X,  K*Xo  =  X  +  X+  •■•=«• 

As  an  example  for  obtaining  these  results  directly  from  Definitions 

IV  —  VI  we  illustrate  the  equality  Xo  *  Xo  =  Xo  by  the  “diagonal 

method  of  Cauchy”,  i.e.  the  re-arrangement  of  a  double  sequence  to  a 
simple  one,  according  to  the  following  array  (cf.  §  3,  3): 

The  sets  of  all  odd  and  of  all  even  positive  integers  are  here  used  as 

representatives  of  the  two  equal  factors  Xo,  Xo-  —  Of  course,  the  result 

is  also  contained  in  Theorem  3  of  §  3. 

The  product  X  •  X  cannot  be  evaluated  in  the  same  way.  Its  geometrical 

meaning  is  the  cardinal  of  the  set  of  all  points  of  a  square  or  of  a  plane 

(cf.  Theorem  2  of  §  4).  If,  for  instance,  we  consider 

(see  fig.  9)  the  unit-square  (whose  side  is  1)  and  re¬ 

gard  each  interior  point,  including  the  points  of 

two  adjacent  sides  (say  the  upper  and  the  right-hand 

sides  with  their  intersection),  as  the  ordered  pair  *) 

of  its  coordinates  (x,  y)  then  the  Cartesian  product 

5  required  contains  all  pairs  of  real  numbers  x  and 

y  from  the  intervals  0<  x  <  1,  0<y<l.  (As  the 

axes  we  have  chosen  the  lower  and  the  left-hand 

i)  For  the  transition  from  ordered  pairs  to  plain  pairs  cf.  §  8,  2.  In  the  present  case 

we  may  also  contemplate  the  unit-square  defined  by  0  <  x  |  and  2  <  y  3, 

whereby  the  factors  of  the  Cartesian  product  with  the  cardinal  X  '  X  become  disjoint 

sets;  then  plain  pairs  {x,  y }  are  sufficient.  Hence  we  shall  simply  speak  of  pairs 
 . 
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sides  of  the  square.)  Thus  we  arrive  (cf.  §4, 2)  at  a  one-to-one  correspond¬ 

ence  between  all  members  (points)  of  S  and  all  pairs  of  infinite  decimals 

beginning  with  0.  . . . ,  viz. 

*  =  O.X1X2  . .  .Xk  . . .,  y  =  0.yiy2  . . .  yk  — 

By  interlacing  these  decimals  we  obtain  the  following  decimal  of  the 

corresponding  interval  0  <  z  <  1 

z  =  0.x!yix2y2  . . .  xkyk 

a  result  which  obviously  is  based  upon  the  equality  Ko  +  Ko  =  Ko  (cf. 

§  7,  6).  Thus  we  have  related  to  every  pair  (x,  _y)  a  uniquely  determined  z; 

different  pairs  yield  different  values  of  z. 

This,  however,  does  not  yet  produce  a  one-to-one  mapping  of  the 

unit-square,  i.e.  the  set  of  the  pairs  (x,  y),  onto  the  unit-segment  (say,  the 

square  side)  containing  the  members  z.  While  to  each  (x,  y)  a  single  z 

corresponds,  there  are  values  of  z  to  which  by  the  above  procedure  no 

pair  of  infinite  decimals  (x,  y)  corresponds ;  namely  those  z  in  whose 

expansion  at  all  odd  or  at  all  even  places,  from  a  certain  place  on,  the 

digit  0  occurs.  For  instance,  for 

z  =  0.123405060506  . . .  our  procedure  yields  x  =  0.13,  y  =  0.245656. . .. 

Yet  pairs  of  an  infinite  and  a  terminating  decimal  are  not  members  of  S. 

Our  rule,  then,  defines  a  mapping  of  the  square  into  (not  onto)  the  square 
side. 

There  are  various  methods  of  redressing  this  shortcoming.  Presumably 
the  simplest  one  consists  in  using,  for  the  transition  from  z  to  (x,  y)  and 
vice  versa,  groups  of  digits  ending  with  a  digit  ̂   0  whose  predecessors 

equal  0  (which  includes  single  digits  A  0)  instead  of  the  single  digits 
used  above.  Accordingly,  for  instance, 

z  =  0.3  |  5  |  07  |  9  |  001  |  2  |  6  |  0004  |  . . . 

yields  the  pair  of 

x  =  0.3070016. . .,  y  =  0.5920004. . . ; 

thus  terminating  decimals  x,  y  are  excluded  and  a  one-to-one  mapping 
is  established.  Hence  we  have 
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Theorem  9.  X  •  X  =  X-  In  other  words,  the  set  of  all  points  of  a  square, 

or  of  all  points  of  a  plane  —  in  short,  a  two-dimensional  continuum  —  is 

equivalent  to  a  one-dimensional  continuum,  for  instance  to  the  set  of  all 

points  of  a  segment. 

Naturally,  one  may  express  our  equivalence  relation  in  various  other 

ways;  for  instance,  by  taking  a  rectangle  etc.  instead  of  a  square,  or  by 

taking  the  set  of  the  complex  numbers  x  +  ty  instead  of  the  set  of  the 

pairs  (x,  y). 

The  history  of  Theorem  9  is  remarkable x).  Cantor,  after  having 

proved  in  1874  that  there  exist  infinite  sets  which  are  not  equivalent,  by 

showing  that  the  one-dimensional  continuum  is  not  denumerable  (see  §4), 

looked  for  transfinite  cardinals  different  from  Xo  and  X-  His  first  guess 

was  progressing  from  the  one-dimensional  continuum  to  multi-dimen¬ 

sional  continua.  When  his  attempt  to  prove  X  ’  X  ̂   N  remained 

unsuccessful  he  conferred  with  some  leading  mathematicians  who  advised 

him  that  this  inequality  was  self-evident  and  required  no  proof;  otherwise 

there  would  be  no  distinction  between  functions  of  one  and  of  more  vari¬ 

ables  or  between  different  dimensions.  Only  after  three  years  of  fruitless 

efforts  did  he  become  convinced  that  his  guess  was  false.  A  first  proof  of 

^  ̂   ^  by  means  of  decimal  expansions  (1877)  suffered  from  the 

shortcoming  mentioned  above;  then  the  publication  of  a  correct  proof 

(Cantor  1878)  met  with  a  delay  caused  by  Kronecker  and  was  finally 

made  possible  only  with  the  help  of  Weierstrass.  The  result  was  a  surprise 

for  Cantor  himself  who  wrote  to  Dedekind :  je  le  vois,  mais  je  ne  le 

crois  pas. 

As  a  matter  of  fact,  Cantor’s  result  and  its  easy  generalization  to  any 

finite  number  of  dimensions  and  even  to  Xo  dimensions  (see  §  7,  6),  far 

from  destroying  the  concept  of  dimension  as  Cantor  had  supposed, 

paved  the  way  for  clarifying  this  concept  in  a  logico-mathematical  and 

not  merely  intuitive  way.  Dedekind  at  once  stressed  the  importance  of 

continuous  mappings  in  this  context,  confirming  Leibniz’  assertion  that 

space  constitutes  an  order  and  not  just  an  aggregate  (set).  In  the  years 

following  

Cantor’s  

publication  

it  was  
proven,  

notably  
by  

Liiroth*  

2), 

that  continua  of  one,  two,  and  three  dimensions  cannot  be  related  by 

1)  The  original  proof  (by  means  of  expansions  into  continued  fractions)  is  fou
nd  in 

Cantor  1878.  For  the  following  cf.  Cantor-Stackel  1897  and  Cantor-Dedekin
d  37, 

pp.  20-41. 

2)  See  the  comprehensive  exposition  Liiroth  07.  An  attempt  made  by  Cantor  in 

1 879  proved  a  failure. 
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one-to-one  and  continuous  (for  short,  homeomorphic)  mappings  x).  The 

general  case,  meaning  the  proof  for  any  m-  and  w-dimensional  continua, 

is  a  profound  problem  of  topology  and  was  only  solved  in  1911  2);  but 

even  for  m  =  2,  n  —  3  the  proof  is  not  too  simple. 

The  problem  does  not  belong  to  our  subject-matter  since  the  notion  of  continuity  is 

outside  abstract  set  theory.  Yet  the  reader  may  grasp  the  gist  of  the  problem  even  in 

the  quite  simple  case  m  =  1,  n  =  2,  for  which  we  prove 

Theorem  10.  There  is  no  single-valued  continuous  real  function  z  =  fix,  y)  of  two 

real  arguments  x,  y  which  yields  a  one-to-one  correspondence  between  the  ordered  pairs 

(x,  y)  and  the  values  z  (i.e.  which  assumes  different  values  for  different  argument-pairs) . 

In  short,  a  one-dimensional  continuum  ( say,  a  line)  cannot  be  mapped  continuously  onto  a 

two-dimensional  continuum  (a  plane) . 

Remark.  As  the  following  proof  shows,  we  need  not  assume  /  to  be  continuous 

in  both  arguments;  it  is  sufficient  that  /is  a  continuous  function  of  either  argument 
when  the  other  remains  constant.  As  to  the  domain,  instead  of  infinite  lines  and  planes 
we  may  consider  bounded  closed  continua;  for  instance,  the  square  —  1  <  x  1, 

—  1  y  <  1  in  the  plane  and  a  segment  which  contains  the  points  /(—  1,0)  and 
/(l,  0)  on  the  line  (cf.  the  proof). 

We  prove  the  theorem  indirectly,  assuming  that  / (*,  y)  were  a  function  with  the 
properties  mentioned  and  deriving  a  contradiction  from  this  assumption.  By  taking  y 
constant,  =  0,  we  obtain  the  continuous  function  of  a  single  argument  fix,  0)  =  (pfx)\ 
let  (pi— 1)=  a,  <pi\)  =  b.  By  hypothesis  a  f  b.  According  to  a  well-known  theorem 
on  continuous  functions,  tpix)  assumes  each  real  value  between  a  and  b  as  x  increases 

from  -  1  to  1.  Hence,  by  hypothesis,  z  =  fix,  y)  does  not  assume  any  value  of  the  inter¬ 
val  (a,  b  >  ii.e.,  a  =§  z  <  b)  when  y  0. 

The  remaining  task  is  to  make  use  of  a  value  *  =  c  for  which  fix,  0)  assumes  an 
interior  value  of  the  interval  <  a,  b  > ;  then,  by  its  continuity,  /  (c,  y)  will  assume  a 

x)  For  bounded  closed  sets,  the  biuniqueness  and  continuity  (in  one  direction)  of the  mapping  implies  that  it  is  also  continuous  in  the  other  direction.  That  this  is  not 
the  case  for  more  general  sets  was  shown  by  Kuratowski  21. 

Yet  if  the  mapping  is  only  unique  (defined  by  a  single-valued  function)  then  the 
additional  property  of  continuity  is  not  sufficient.  In  fact,  the  surprise  caused  by 
Cantor  s  proof  was  increased  when  Peano  defined  a  plane  curve  —  in  other  words,  a 
couple  of  single-valued  continuous  functions  fit),  git),  or  a  continuous  motion  of  a 
point  —  which  passes  through  every  point  of  a  square  (Peano  1 890) ;  this  means  that  the 
points  of  a  square  can  be  related  to  the  points  of  a  segment  in  such  a  way  that  different 
segment-points  correspond  to  different  square-points  and  neighboring  square-points  to 
neighboring  segment-points  while  to  neighboring  square-points  do  not  always 
correspond  neighboring  segment-points,  and  sometimes  the  same  square-point 
corresponds  to  different  (incidentally,  to  not  more  than  four)  segment-points. 

Hilbert  1891  gives  a  geometrical  form  to  Peano’s  analytical  proof;  cf.  Hahn  13, 
Kamiya  27.  For  a  generalization  to  n  dimensions,  which  means  a  movable  point  pass¬ 
ing  through  every  point  of  an  ̂ -dimensional  space,  see  Sierpinski  36. 

2)  Brouwer  1 1,  cf.  13.  For  the  history  of  the  problem  and  its  general  background cf.,  for  instance,  Menger  28,  Alexandroff  32,  Hurewicz-Wallman  41.  The  first  serious 
attempt  to  define  dimension  had  already  been  made  in  Bolzano  1851  (see  n  80  of  the 
1920  edition). 
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value  still  belonging  to  <  a,  b  >  when  y  is  slightly  shifted  from  0.  Let,  therefore, 

a  ~\~  b 
x  =  c  be  the  value  in  <  —  1, 1  >  for  which  <p  (c)  =  f  ( c ,  0)  =  — - — .  By  hypothesis, 

a  +  b 

f{c,  y)  =  w(y)  is  a  continuous  function  of  y  for  which  ̂ (0)  =  — — — ;  hence  a  y 

which  is  ̂   0  but  sufficiently  close  to  0  will  yield  a  value  y/(y)  =  f  ( c ,  y)  which  still 

belongs  to  <  a,  b  >.  Since  this  contradicts  the  end  of  the  preceding  paragraph. 

Theorem  10  has  been  proved. 

In  contrast  with  the  homeomorphic  mappings  used  to  show  the 

invariance  of  dimensionality,  the  mapping  used  to  prove  Theorem  9  is  just 

biunique  and  not  continuous;  the  points  of  the  segment  corresponding 

to  neighboring  points  of  the  square  are,  in  general,  not  neighboring  points, 

and  conversely.  Yet  the  mapping  used  in  proving  Theorem  9,  in  spite  of 

its  arbitrariness,  still  defines  a  function  of  the  segment-points  which  is 

continuous  at  every  irrational  point.1) 

9.  Intersection  of  Sets.  Boolean  Algebra.2)  Of  the  operations  with  sets 
defined  in  §  2,  3  we  used  in  this  section  union  only  and  added  to  it  the 

Cartesian  product,  but  the  operation  of  intersection  was  disregarded ;  for 

while  intersection  (in  concurrence  with  union)  is  important  in  many 

fields  of  mathematics  it  has  no  significance  for  the  arithmetic  of  trans- 

linite  numbers.  Still  we  shall  here  generalize  and  extend  what  was  said 

about  intersection  and  its  connection  with  union  in  §  2,  thus  enabling 

the  reader  to  comprehend  the  problems  in  question. 

The  definition  of  intersection  can  be  generalized  to  any  set  A  of  sets 

just  as  the  definition  of  union  is  generalized  by  Definition  I  on  p.  81. 

The  existence  of  the  intersection  Pi  A  —  a  n  a  '  n  . . .  in  this  general 

case  is  proven  by  means  of  our  axioms,  in  particular  the  axioms  of  sum- 

set  and  of  subsets,  verbatim  as  on  p.  20.  While  commutativity  is  con¬ 

tained  in  the  very  definition,  the  associativity  of  the  operation  can  be 

formulated  in  full  analogy  to  (1)  and  (2)  on  p.  85  and  proven  just  as 

there.  Both  distributive  laws  of  p.  22  may  be  generalized  and  proven  in 

the  same  way;  cf.  example  1)  below.  The  examples  given  in  exercise  1)  of 

§  2  (cf.  exercise  4)  of  §  7)  for  the  connection  between  inclusion,  union, 

and  intersection  are  also  generalized  easily. 

We  call  a  sequence  (Sn)  of  sets  ascending  if,  for  every  n,  Sn  S  Sn  + 1 

and  descending  if  always  Sn  +  i  £  Sn.  As  is  easily  seen,  the  union  of  the 

*)  This  rather  surprising  result  is  due  to  Sierpinski  27. 

2)  This  subsection  is  not  used  in  the  following  sections. 
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sets  of  any  sequence  ( Tn )  can  be  represented  as  a  union  of  ascending  sets, 

the  intersection  as  an  intersection  of  descending  sets,  as  follows : 

Ti  u  t2  u  r3  u  . . .  =  Ti  u  (7i  u  72)  u  (Ti  u  r2  u  r3)  u  . . . 

n  n  r2  n  t3  n  . . .  =  Ti  n  (7i  n  r2)  n  (Ti  n  r2  n  r3)  n 

Starting  with  an  arbitrary  “ universal ”  set  F  we  consider  its  subsets  S' 

and  their  complements  S'  =  F  —  5.  Clearly  we  have  F'  =  O  and 

(S')'  =  S'.  If  S*  (A;  =  1,  2,  ...,«)  are  finitely  many  subsets  of  F we  obtain 

V=  (Si  u  S2  u  ...  u  Sn)  u  (S't  n  S2  n  ...  n  Sn)  = 

=  (Si  n  S2  n  . . .  n  s»)  u  (Sj  u  S2  u  . . .  u  S'n). 

For  each  member  of  F  belongs  either  to  at  least  one  Sk,  hence  to  their 

union,  or  else  to  no  Sk,  hence  to  the  intersection  of  their  complements 

Sk.  This  proves  the  first  equality;  the  second  follows  from  it  if  the  Sk, 

which  are  arbitrary  subsets  of  F,  are  replaced  by  their  complements  Sk. 

These  equalities,  called  de  Morgan's  laws  (but  known  already  to  Occam), 
state:  the  complement  of  a  union  of  sets  is  the  intersection  of  their 

complements;  the  complement  of  an  intersection,  the  union  of  the 

complements.  Obviously  these  laws  remain  valid  for  infinitely  many  sets. 

(The  restriction  to  subsets  of  V  is  irrelevant  since  this  universal  set  can 

be  chosen  as  comprehensive  as  desired.) 

Hence  we  obtain  the  following  law  of  duality.  Let  C  be  a  set  secured 

from  sets  Sk  by  repeated  operations  of  union  and  intersection.  Then  the 

complement  C  is  obtained  by  replacing  the  sets  Sk  with  their  complements 

S'k,  union  with  intersection,  and  intersection  with  union.  Since  S  —  T 

implies  S'  —  T',  any  equality  resulting  from  these  operations  remains 
true  if  those  replacements  are  carried  out  on  both  sides.  The  result  can 

be  extended  to  inequalities  (relations  of  inclusion)  expressed  by  c ;  for 

S’  c:  T  implies  S'  T'  (which  is  another  expression  for  T'  <=  S’),  hence 
we  have  yet  to  replace  c  with  =>  and  vice  versa. 

For  instance,  S  U  S'  =  V  yields  S'  n  S  =  O. 
If  we  start  from  an  identity  between  the  subsets  Sk  of  V,  i.e.  from  an 

equality  which  is  true  for  any  choice  of  these  sets,  we  need  not  replace 

the  sets  by  the  complements;  the  dual  identity  is  obtained  by  a  mere 

exchange  of  union  and  intersection.  Moreover,  if  we  have  an  inequality 

using  c  then  in  addition  <=  and  =>  must  be  exchanged.  To  be  sure,  if 
constant  sets  occur  in  the  identity,  they  must  be  replaced  by  their  com- 
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plements;  for  instance,  from  S  U  O  =  S  we  conclude  5n  V  —  S\  from 

S  n  O  =  O,  S  U  V  =  V;  from  S  ̂   V,  S  ̂   O. 

Examples.  1)  From  the  distributive  law  *) 

S  n  (Ti  u  r2  u  . . .  u  Tn)  =  5  n  Ti  u  S  n  r2  u  . . .  u  S  r\Tn, 

which  is  proven  (even  for  infinitely  many  sets  Tn )  just  as  in  §  2,  3,  we 

obtain  the  dual  distributive  law 

5  u  7i  n  Tz  n  ...  p  r„  =  (s  u  h)  n  (S  u  r2)  n  ...  n  (s  u  rB). 

2)  The  associative  law  of  union  yields,  as  its  dual,  the  associative 

law  of  intersection,  and  vice  versa. 

3)  From  S  £  S  U  T  we  obtain  S  ̂   S  n  T. 

4)  The  characteristic  functions  introduced  in  §  7,  3  and  exercise  4)  of  §  7. 

It  is  noteworthy  that  all  statements  based  on  inclusion,  union,  inter¬ 

section,  and  complementation  can  be  formally  derived  from  a  few  of 

them,  without  reference  to  the  meaning  of  these  relations  and  operat¬ 

ions;  for  instance,  taking  union  and  complement  as  primary,  from  the 

commutative  and  associative  laws  of  union  and  the  law 

(S'  u  T')'  U  (S'  u  T)'  =  S. 

Then  we  may  define  the  intersection  S  r\  T  by  (S'  U  T')'  and  the  inclusion 
S  c  Tby  S  UT=T.  Abstract  systems  whose  members  satisfy  the  three 

laws  mentioned,  or  else  laws  equipollent  to  them,  are  called  Boolean 

algebras *  

2)  after  
G.  Boole  

who,  
together  

with  A.  de  Morgan,  
created  

the 

logical  calculus  to  be  described  presently.  These  algebras  play  an  important 

part  in  mathematics  3)  and  logic;  during  the  last  decades  they  have 

yielded  new  branches  such  as  the  theory  of  lattices  (cf.  §  8,  2). 

B  For  certain  independence  questions  regarding  distributivity  see  Wernick  30, 

Tarski  35. 

2)  For  the  introduction  and  axiomatic  foundation  of  Boolean  algebra  it  may 

suffice  to  refer  to  Stone  35,  Tarski  35  and  38,  Birkhoff-MacLane  53.  For  an  important 

extension  (Boolean  rings)  see,  for  instance,  Mostowski-Tarski  39;  for  connections  with 

topology  and  abstract  algebra,  Stone  34  and  37,  von  Neumann-Stone  35,  Tarski  38b. 
Cf.  also  some  references  in  §  8,  2. 

3)  Including  applied  mathematics,  e.g.  probability,  insurance,  switching  circuits; 

see,  for  instance,  Broderick-Schrodinger  40,  Koopman  40,  Berkeley  37,  Shannon  38. 

The  latter  paper  has  started  a  series  of  important  researches  in  this  and  other  fields  of 

electronics. 
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Disjunction  and  conjunction  are  the  logical  equivalents  of  union  and 

intersection  *)  (cf.  §  2,  3),  which  explains  the  significance  of  Boolean 
algebra  in  logic.  To  obtain  equivalents  of  other  notions  used  above  let  us 

remember  the  axiom  of  subsets  (§  2,  2),  which  by  definite  properties 

determines  subsets  of  a  given  set.  If  for  the  latter  we  take  the  universal 

set  V  then  V  corresponds  to  properties  fulfilled  by  each  member  of  V. 

If  S  c  v  is  determined  by  a  given  property  then  the  

contrary *  

2)  property 

determines  the  complement  S',  which  accordingly  corresponds  to  logical 
negation.  Similarly  inclusion  corresponds  to  implication,  in  other  words 

to  “all  s  are  for  if  S  c  T  then  the  members  s  of  S,  i.e.  the  objects 
with  a  property  characteristic  of  S,  have  also  properties  characteristic  of 

T,  which  is  logically  expressed  by  “S'  implies  T”  or  “if  S  then  T 
By  the  operations  of  disjunction,  conjunction,  negation,  and  implicat¬ 

ion  (with  their  derivations)  a  broad  field  of  logic  is  covered,  which 

frequently  is  called  algebra  of  logic  and  can  be  formalized  by  our  symbols. 

The  following  instances  will  be  sufficient  to  show  this. 

Logical  statement  A  corresponding  set-theoretical  statement 

There  is  no  s 

Every  object  is  an  s 
Some  s  are  t 

Some  s  are  not  t 

There  is  neither  an  s  nor  a  t 

Law  of  contradiction 

Law  of  excluded  middle 

S=  O 

s=v 
S  nT  O 
s  n  r  #  o 

s  U  T  =  O  (or  S'  n  T  =  V) 

s  n  S'  =  o 
s  u  S'  =  V.3) 

Exercises 

1)  Show  that  the  sum  of  denumerably  many  finite  cardinals  A  0 
equals  £<o. 

2)  Evaluate  the  sums  f  +  X  and  f  +  f  where  f  is  the  cardinal  defined  in 

§4,  7. 

Set  operations  can  also  be  related  to  the  transfinite  extensions  of  logical  dis¬ 

junction  and  conjunction,  viz.  to  existential  and  universal  quantification  (“some”  and 
“all”);  see  Kuratowski-Tarski  31. 

2)  “Contrary”  is  taken  in  the  sense  of  mere  negation;  the  contrary  of  ‘black’  is  not 
‘white’  but  ‘not-black’. 

3)  For  a  more  detailed  and  profound  elaboration  of  this  and  related  points  see 
Sierpinski  51,  in  particular  §  19. 
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3)  Let  to  each  member  t  of  a  non-empty  set  T  be  assigned  cardinals 

at  and  such  that  at  <  prove  that  ̂   at  <  ̂  b «  and  ]  J  at  <  pjb^. 
IeT  teT  teT  teT 

4)  Prove  Xo  •  Xo  =  Xo  by  decomposing  the  set  of  positive  integers 
into  denumerably  many  pairwise  disjoint  denumerable  subsets  and  show 

that  there  are  infinitely  many  such  decompositions. 

5)  Prove  that  the  set  of  all  finite  sets  of  positive  integers  is  denumerable 

(in  contradistinction  to  the  set  of  all  such  sets). 

6)  Show  that  the  universal  library  described  on  p.  6  is  a  denumerable 

set  of  books  if  the  restriction  imposed  on  the  size  of  a  (finite)  book  is 

dropped,  or  if  Xo  different  types  are  admitted. 

7)  Let  the  set  T,  occurring  in  Definitions  III  and  VI,  be  replaced  by  a 

set  U  ~  T,  and  let  ys  be  an  arbitrary  mapping  of  T  onto  U.  Denoting  by 

y/{t)  the  u  e  U  that  corresponds  by  y/  to  t  e  T,  assign  to  y/(t)  e  U  the 

cardinal  /  ( t )  assigned  in  Definitions  III  and  VI  to  t  e  T.  (Hence  every 

term  or  factor  occurs  in  the  new  sum  or  product  in  the  same  quan¬ 

tity  as  in  the  old  one.)  Prove  that  this  transition  from  T  to  U  leaves 

the  sum  and  the  product  unchanged,  and  reflect  in  what  sense  this 

statement  may  be  considered  to  express  the  commutative  laws  of  the 

addition  and  multiplication  of  cardinals. 

8)  Prove  x  •  X  =  X  by  expanding  real  numbers  into  continued 

(instead  of  decimal)  fractions.  What  is  the  advantage  of  this  procedure? 

9)  Generalize  the  method  of  proving  Theorem  9  so  as  to  map  the  set 

of  all  points  of  a  cube  or  of  the  three-dimensional  space  onto  a  segment. 

§  7.  Exponentiation  of  Cardinals.  Transfinite  Numbers  and 

Infinitesimals 

1.  Exponentiation  as  Repeated  Multiplication.  Exponentiation  shall  first 

be  introduced  in  the  same  way  as  in  the  arithmetic  of  positive  integers, 

namely  by  repeating  the  operation  of  multiplication. 

To  form  c2  =  c  •  c  for  cardinals  c,  according  to  Definition  VI  of  §  6, 

we  have  to  take  sets  Si  and  S'2  with  Si  =  £2  =  c;  c2  is  then  the  cardinal 

of  the  Cartesian  product  Si  X  S'2.  Restricting  ourselves  at  present  to  the 
case  that  the  factors  of  the  Cartesian  product  are  different  (for  equal 

factors,  see  2),  we  generalize  the  case  of  a  pair  (Si,  S'2}  of  factors  by  the 
following 
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Definition  I.  To  form  the  power  cd,  where  c  and  d  are  any 

cardinals  (d  ̂   0) 1),  let  D  be  a  set  of  the  cardinal  d  each  member  of 
which  is  a  set  with  the  cardinal  c.  The  cardinal  of  the  Cartesian 

product  P D  is  called  the  d th  power  of  c  and  denoted  by  cd;  c  is 
called  the  base  and  d  the  exponent  of  the  power. 

According  to  Definition  VI,  cd  is  a  product  in  which  each  factor  equals  c 
and  the  multitude  of  the  factors  is  d.  We  need  not  prove  that  the  power  is 

independent  of  the  choice  of  D,  for  this  folllows  from  Theorem  3  of  §  6. 

2.  The  Insertion-Set.  We  now  turn  to  the  method  by  which  Cantor 

originally  introduced  the  power  cd,  a  method  which  is  more  convenient 
for  applications  than  Definition  I  and  also  reveals  the  close  connection 

with  the  concept  of  function. 

Given  the  non-empty  sets  S  and  T,  consider  the  single-valued  functions 

s  =  f{t)  whose  argument  t  ranges  over  T  while  the  values  s  belong  to  S. 

(We  shall  chiefly  be  interested  in  the  cardinality  of  the  set  of  all  functions 

/ (/).)  The  nature  of  such  functions  shall  be  illustrated  by  three  examples; 
the  first  two  are  rather  trivial. 

1)  Four  dice  shall  be  marked  respectively  by  1,2,  3,  4.  An  individual 

throw  of  the  set  of  dice  may  be  regarded  as  a  function  s  =f(t)  where 

t  (=  1,  2,  3,  4)  denotes  the  numeral  of  the  respective  die  and  s  the  number 

of  spots  shown  by  the  die  t ;  accordingly  s  is  one  of  the  values  1 ,  2,  3, 4,  5,  6, 

and  different  dice  t  may  assume  the  same  value  y.  Two  functions  are 

considered  equal  only  if  the  same  s  =/(/)  is  assumed  for  each  t.  According 

to  the  preceding  paragraph  we  have  S  =  (1, 2,  3, 4,  5,  6},  T—  {1,  2,  3,  4}. 
As  the  result  related  to  each  die  is  independent  of  the  others,  there 

are  64  different  functions  s  =  f(t)  each  of  which  biuniquely  corresponds 
to  a  certain  throw;  for  short,  these  functions  may  be  denoted  by  the 

ordered  set  (jj.,  s^,  .S3,  ■s'4)  where  St  is  the  result  regarding  the  die  t.  (To  be 
sure,  our  definition  of  equality  differs  from  the  usual  practice  of  the  game 

according  to  which,  for  instance,  the  throws  (1,  2,  3,  6)  and  (6,  3,  2,  1) 
are  considered  equal.) 

2)  An  example  the  terminology  of  which  is  more  similar  to  the  mathem¬ 

atical  applications  is  a  musical  “program”,  i.e.  a  set  Tof  pieces  of  music 
such  that  each  member  s  of  a  certain  set  S  of  musicians  can  perform 

x)  The  case  d  =  0  has  here,  in  contrast  with  arithmetic,  but  little  importance. 
We  define  c°  =  1  for  c  ̂   0,  though  the  reasons  for  this  definition  in  arithmetic 
(division,  continuity  of  the  function  cx)  are  absent;  cf.,  however,  Theorem  2  below, 
c  =  d  =  0  remains  excluded  altogether. 



CH.  II,  §  7] EXPONENTIATION  OF  CARDINALS 
111 

any  piece  of  T.  A  definite  cast  for  the  program  is  formed  by  assigning  a 

single  musician  to  each  piece  of  the  program  (possibly  the  same  artist  to 

several  pieces),  i.e.  by  relating  one  s  e  S  to  each  t  e  T.  We  may  call  this, 

inserting  the  set  S'  of  musicians  into  the  program  by  means  of  a  single¬ 

valued  function  s  —  f{t)  where  t  ranges  over  T  and  the  values  s  are  taken 

from  S.  The  set  of  all  possible  casts  with  respect  to  given  sets  T  and  S  has 

the  cardinal  s*  where  s  =  S  and  t  =  T,  because  each  piece  of  T  can  be 

performed  by  any  musician  of  S  independently  of  the  performances  of  the 

other  pieces. 

In  the  examples  1)  and  2),  where  the  sets  S  and  T  are  finite,  the  set  of  all 

functions  (insertions)  coincides  with  a  well-known  notion  of  combinatorial 

analysis,  namely  the  set  of  alt  ways  of  placing  s  objects  into  t  holes  or 

drawers  (the  set  of  t  th-class  variations  of  s  objects). 

3)  A  mathematically  significant  example  is  presented  by  decimal 

fractions  (or  similar  expansions).  A  given  decimal  D  =  so-  .  .  .  Sk  ■  ■  ■ 

with  sk  =  0,  1,  2,  . . .,  9  (which  is  an  infinite  or  terminating  expansion 

of  a  real  number  x  of  the  interval  0  <x  <  10)  may  be  conceived  as  a 

certain  insertion  of  the  set  of  digits  S  =  (0,  1,2,  . . .,  9}  into  the  denumer¬ 

able  set  (sequence)  of  places  T  =  (0,  1,  2,  . . .,  k,  . . in  other  words, 

as  a  certain  function  s  =f(t)  with  t  ranging  over  T,  which  assumes 

values  out  of  S'.  The  totality  of  all  such  functions,  also  named  the  insertion- 

set  of  5  into  T,  contains  all  decimals  D  as  defined  above.  Accordingly 

two  decimals  Di,  £>2  are  considered  equal  only  if  they  are  identical  (and 

not  also  if  they  are  expansions  of  the  same  real  number,  as  are  £>1  =
 

0.4999. . .  and  £>2  =  0.5). 

Using  the  notion  of  complex  as  introduced  in  Definition  Y  of  §  6,  we 

may  conceive  the  decimals  D  as  complexes  which  in  the  present  cas
e  are 

infinite  sequences  of  digits  (so,  si,  52,  . . Sk,  •  •  •)  with  s*  e  S.  In  the 

same  sense  every  throw  of  the  dice  (example  1))  and  every  cast  for  t
he 

program  (example  2))  constitutes  a  complex,  which  in
  both  cases  is  a 

finite  sequence.  In  these  cases  we  have  to  regard  the  complexes  
either  as 

ordered  sets  or  else  as  plain  sets  of  ordered  pairs  (s,  t),  t  ranging  over  T. 

In  the  light  of  these  examples  we  introduce  the  general  notion  o
f  an 

insertion-set'.  Cantor’s  term  was  Belegungsmenge.  Staiting,  as  in  the 

beginning  of  this  subsection,  with  non-empty1)  sets  5  and  T,  we  de
note  by 

(S  |  T)  the  set  of  all  insertions  of  S  into  T,  i.e.  the  
set  of  all  functions 

i)  Only  T  +  O  is  actually  required.  If  S  =  O  then  
nothing  can  be  inserted,  i.e. 

no  complex  exists;  hence  the  insertion-set  is  the
  null-set,  in  accordance  with  0‘  =  0 

for  t  ̂   0. 
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s  —  f  ( t )  with  t  ranging  over  T  and  the  s  belonging  to  S.  Two  insertions 

are  equal  if  and  only  if  the  same  s  is  assigned  to  each  t  e  T;  this  is  in 

accordance  with  equality  between  functions  in  analysis.  Every  member  of 

the  insertion-set  may  be  written  as  a  set,  equivalent  to  T ,  of  ordered  pairs 

{. . .  {s,  t)  . . where  each  t  e  T  appears  as  the  second  component  of  a 

single  pair  while  the  first  components  belong  to  S.  According  to  Definition 

V  of  §  6,  the  set  of  all  these  sets,  i.e.  ( S  \  T),  is  the  Cartesian  product 

defined  by  the  auxiliary  set  T  if  to  each  t  e  T  the  set  S  is  assigned,  i.e.  the 

product  S  x  S  x  S  X  ...  where  T  defines  the  multitude  of  the  factors. 

Comparing  this  with  Definition  I  of  subsection  1,  we  have 

Theorem  1,  simultaneously  Definition  II.  The  power  s‘  is  the  cardinal 

of  an  insertion-set  ( S  \  T)  with  S  =  s  and  T  —  t,  i.e.  of  the  set  of  all  single- 

valued  functions  s  =  f(t)  where  t  ranges  over  a  set  of  the  cardinal  t, 

and  the  values  s  belong  to  a  set  of  the  cardinal  s. 

The  paragraph  preceding  this  theorem  gives  a  set-theoretical  definition 

of  the  notion  of  a  single-valued  function  s  =f(t)  by  means  of  the  set  T 
of  the  arguments  and  of  the  set  S  of  the  function- values :  a  function  is 

conceived  as  a  set,  having  the  cardinal  T,  of  ordered  pairs  as  specified 

above.  (Ordered  pairs  may  also  be  regarded  as  plain  pairs;  see  §  8,  2.) 
The  advantage  of  this  new  definition,  in  view  of  its  easy  applicability, 

becomes  manifest  in  the  following  subsections. 

3.  The  Power-Set.  Returning  to  the  concept  of  power-set  (§  5,  3), 
we  now  conceive  an  arbitrary  subset  To  of  T  as  the  insertion  into  T  of  a 

set  of  two  members,  say  {1,  0}  or  (yes,  no}:  1  (or  “yes”)  shall  be  assigned 
to  those  t  e  T  that  belong  to  To,  0  (or  “no”)  to  the  other  t  e  T.  Conversely, 
any  such  insertion  defines  a  certain  subset  of  T.  {T  or  the  null-set  corre¬ 

sponds  respectively  to  the  assignment  of  1  or  0  to  each  t  a  T.)  Accordingly 

the  power-set  CT,  i.e.  the  set  of  all  subsets  of  T,  may  be  regarded  as  the 
insertion-set  ({1,  0}  |  T)  and  has  the  cardinal  2‘.  Hence,  in  view  of 

Cantor’s  theorem  (Theorem  2  of  §  5)  we  have 

Theorem  2.  For  any  set  T  of  the  cardinal  t,  the  power-set  CT,  i.e.  the  set 

of  all  subsets  ofT,  has  the  cardinal  2*.  CT  may  be  conceived  as  the  insertion- 
set  ( p  |  T)  where  p  is  a  pair. 

Hence  we  have  2‘  >  t  for  every  cardinal  t. 

While  the  theorem  has  been  proved  for  t  A  0  only,  it  is  also  true  for 

t  =  0  because  of  CO  =  {O},  2°  =  1.  (Cf.  the  footnote  on  p.  110.) 
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The  meaning  of  the  theorem  for  finite  T  was  touched  upon  on  pp.  71/2. 
Theorem  2  may  be  considered  a  particular  case  of  the  inequality  of 

Zermelo  (Theorem  8  of  §  6).  For  if  we  take  the  constant  functions  /(t)  =  1 

and  g  (t)  =  2  for  t  e  T  then  the  inequality  states  T  1  <  Y\  2,  hence  by 
teT  teT 

Theorem  5  of  §  6  and  Definition  I  above,  t  <  2*. 

If  t  is  finite  and  >  1,  2*  is  greater  but  not  next-greater  than  t.  The 

conjecture  that  for  every  transfnite  t  the  power  2*  is  next  to  t  is  called  the 

generalized  continuum  hypothesis',  for  t  =  it  signifies  (see  subsection  5) 

that  ̂   =  2No  is  next  to  Xo-  (Cf.  §  5,  2;  §  1 1,  7;  Foundations,  pp.  72  and 
92-94.) 

By  means  of  the  new  notation  for  the  cardinal  of  the  power-set,  the 
process  of  attaining  ever  increasing  cardinals  (p.  98)  can  be  described 

more  simply.  Starting  with  any  finite  or  transfinite  cardinal  Co  and 

denoting  2ck  by  c*  +  i,  we  first  reach  cn  for  every  finite  n,  then  f_cn  with  n 
ranging  over  all  finite  n  \  this  sum  is  greater  than  each  cn  and  may  again 

be  used  for  a  start  instead  of  Co,  etc.  Starting  with  Co  =  0  we  thus  reach 

transfinite  cardinals  of  enormous  magnitude. 

The  functions  defined  by  the  insertion  of  a  pair  into  a  set  T  (Theorem  2) 

also  play  an  important  part  in  certain  applications  of  set  theory.  They 

correspond,  as  shown  above,  biuniquely  to  the  subsets  of  T  and  are 

called  characteristic  functions  1).  Cf.  exercise  4)  at  the  end  of  §  7. 

4.  Formal  Laws  of  Exponentiation.  In  arithmetic  the  following  formal 

laws  of  exponentiation  hold 

mn  •  mv  =  mn  +  p,  mn  ■  pn  =  ( mp)n ,  ( mn)v  =  mnp. 

They  are  also  valid,  in  a  more  general  form,  for  (finite  and  transfinite) 

cardinals,  namely 

Theorem  3.  If  a,  b,  c  are  cardinals  and  if  to  every  member  t  of  a  non¬ 

empty  set  T  a  cardinal  f  (t)  =  k«  is  assigned,  the  following  formal  laws  hold : 

2k« 

(1) 

]^[ake  = 
 stteT 

teT 

(2) 

nv  =  (fhA1 
teT  \teT  ) 

(3) 
(ab)c  =  abc. 

J)  See,  in  particular,  de  la  Vallee  Poussin  16. 
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Hence  in  particular 

(1')  akl  •  ak2  =  akl  +  k°,  (2')  kib  •  k2b  =  (kik2)b. 

Proof.  The  important  one  among  these  laws  is  (1),  from  which  (3) 

immediately  follows.  To  prove  (1)  we  use  the  associative  law  for  Cartesian 

products  of  sets  in  the  form  (4)  of  p.  93.  If  each  member  y  of  all  sets  Kt 

has  the  same  cardinal  a  and  if  Kt  =  kj  then  the  Cartesian  product  ]~ [  y 

yeKt 
has  the  cardinal  akt  by  Definition  I.  On  the  other  hand,  the  union  S 

has  the  cardinal  hence  the  Cartesian  product  on  the  left-hand  side 
tzT  ^ 

£kt 

of  (4),  the  cardinal  atsT  .  Since  equivalent  sets  have  the  same  cardinal, 

(1)  has  been  proven. 

(2)  is  less  important  and  will  be  used  in  the  form  (2')  only.  (2')  is 
almost  evident  in  view  of  the  associative  and  commutative  laws  of  the 

multiplication  of  cardinals ;  roughly  speaking,  one  relates  to  each  factor 

ki  a  corresponding  factor  k2,  on  account  of  the  equalling  exponents, 

and  then  unites  the  factors  kik2.  For  a  formal  proof  cf.  exercise  5)  at  the 

end  of  §  7.  —  The  general  form  (2)  can  be  proven  in  the  same  way. 

Finally,  if  in  (1)  the  same  cardinal  k«  =  b  is  assigned  to  each  t  e  T  and  if 

T  =  c  then  the  left-hand  side  of  (1)  becomes  (ab)c  by  Definition  I,  while 

the  exponent  of  the  right-hand  side  turns  to  be  by  Theorem  5  of  §  6. 

Inequalities.  We  found  in  §  6  that  at  <  b*  implies  PJ  at  <  |~I  b« tcT  _  teT 

(cf.  (2)  on  p.  97).  Hence,  if  at  —  a  and  b«  =  b  for  each  t  and  if  T  —  c  we 
have 

(4)  a  <  b  implies  ac  <  bc. 

In  view  of  the  footnote  on  p.  110  this  remains  true  for  c  =  0. 

An  analogous  inequality  follows  from  the  corresponding  assumption 

regarding  the  exponents.  Let  the  set  C  be  equivalent  to  Do  c  D,  i.e. 

c  <  d  where  c  —  C,  d  =  D,  and  write  D  —  Do  =  D\,  D\  =  di,  hence 

c  +  di  =  d.  By  (4)  we  have  for  every  cardinal  a  A  0 

ldl  <adl, 

which  after  multiplication  of  both  sides  by  ac,  in  view  of  ldl  =  1,  yields 

(5)  c  <  d  implies  ac  <  ad. 

This  also  holds  for  a  =  0  if  c  A  0. 
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The  difficulty  with  respect  to  “strict”  inequalities  is  analogous  to  the 
situation  found  in  §  6,  7.  One  still  might  expect  that  the  assumptions 

a  <  b,  c  <  d  would  imply  ac  <  bd;  this,  however,  is  false.1) 
That  the  latter  inequality  does  not  generally  hold  true  if  either  the  bases 

or  the  exponents  are  equal  is  obvious;  for  instance,  we  shall  presently 

prove  that 

XXo  =  X  (=  X1),  XXo  =  2K\ 

Regarding  the  particularly  important  base  2,  one  has  not  yet  succeeded 

in  proving  that  c  <  d  implies  2C  <  2d  —  not  even  by  using  the  axiom  of 

choice.2)  The  converse,  however,  easily  follows  by  means  of  the  axiom  of 

choice,  namely  through  the  comparability  of  cardinals  (see  §  11,  7).  For 

assume  that  2C  <  2d.  Then  d  <  c  cannot  hold  true  since  by  (5)  this 

would  imply  2d  <  2C;  hence  by  comparability  we  obtain  c  <  d. 

5.  The  Power-Set  of  a  Denumerable  Set.  We  start  with  evaluating  the 

power  10Xo.  Using  Definition  II,  we  insert  a  set  containing  10  members, 

say  M  =  (0, 1,2,  . . . ,  9},  into  the  denumerable  set  N  =  {1,2,  . .  .,/c,  . . .}. 

As  in  example  3)  of  2,  we  conceive  an  insertion  {a\,  az,  . . .,  a/c,  . . .) 

with  a/c  e  M  as  the  decimal  fraction  0.  a\  a%  . . .  a/c  . . . ;  then  the  insertion- 

set  (M  |  N ),  having  the  cardinal  10Xo,  is  the  set  D  of  all  (infinite  and 

terminating)  decimals  beginning  with  0.,  provided  that  decimals  differing 

formally  are  considered  different. 

Since  the  set  Do  of  all  infinite  decimals  of  D  has  the  cardinal  ft  of  the 

continuum  (§4,2  and  5)  and  the  set  Di  of  all  terminating  decimals,  as  a 

subset  of  all  rationals,  is  denumerable,  D  =  Do  U  D\  has  the  cardinal 

X  +  Xo  =  X-  Hence 

(1)  10x°  -  X- 

The  occurrence  of  10  in  this  formula  derives  from  a  biological  and  not 

mathematical  source,  namely  from  our  using  the  decadic  scale  of  notation, 

including  decimals,  in  accordance  with  the  number  of  our  fingers.  As 

mentioned  in  §  4,  3,  for  the  expansion  of  real  numbers  we  may  as  well 

use  system  fractions  with  any  base  n>  1,  in  particular  with  n  =  2 

(dual  fractions),  instead  of  n  =  10;  hence 

(2)  2Xo  —  X  =  «Xo-  (n  >  1) 

!)  Tarski  25a,  p.  10  shows  that  in  spite  of  these  assumptions  ac  =  bd  may  hold  true. 

2)  However,  this  statement  is  obtained  immediately  by  using  the  generalized 

continuum  hypothesis  (see  above,  3);  cf.  Sierpinski  34/56,  p.  167. 
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While  this  is  a  roundabout  way  of  proving  (2)  inasmuch  as  we  used,  in 

addition  to  the  expansion  of  real  numbers  into  decimals,  also  expansions 

into  other  system  fractions,  we  may  derive  (2)  straight  from  (1).  We 

restrict  ourselves  to  n  —  2;  any  n  can  be  treated  similarly. 

The  following  proof x)  establishes  a  mapping  of  the  set  F<i  of  all  dual 

fractions  into  the  set  Flo  of  all  decimals  and  a  mapping  of  Fio  into  Fo, 

wherefrom  follows  F%  ~  Fio  by  the  equivalence  theorem;  we  limit 

ourselves  again  to  fractions  between  0  and  1 .  F%  is  certainly  equivalent  to  a 

proper  subset  of  Fio  since  each  dual  fraction  may  formally  be  compre¬ 

hended  as  a  decimal  in  which  only  the  digits  0  and  1  occur.  On  the  other 

hand,  we  relate  to  each  decimal /io  a  dual  fraction  fo  by  the  rule  that  each 

digit  dk  of/io  shall  be  replaced  in  by  dk  zeros  followed  by  1  (hence 

dk  =  0  by  1).  Thus  Fio  is  mapped  onto  a  proper  subset  of  F2,  because  F2 
also  contains  dual  fractions  with  more  than  nine  consecutive  zeros. 

In  view  of  Theorem  2  we  may  formulate  (2)  as 

Theorem  4.  The  power-set  of  a  denumerable  set  has  the  cardinal 

2Xo  =  X  of  the  continuum.  More  generally,  nXo  =  X  for  every  finite  n>  1 . 

This  quantitative  conception  of  the  continuum  as  the  power-set  of,  say, 

the  set  of  non-negative  integers  is  closely  connected  with  example  3)  of  2 
on  the  one  hand  and  several  examples  in  6  and  in  exercise  7)  on  p.  125 
on  the  other. 

6.  Further  Examples  of  Exponentiation.  We  begin  with  powers  of  X- 

By  repeated  application  of  X  •  X  =  N  (Theorem  9  of  §  6)  we  obtain 

(1)  Nn  =  N-  (n  finite,  ̂   0) 

(1)  follows  also  from  Theorem  4  and  (3)  of  Theorem  3  by 

Xra  =  (2X°)W  =  2X°  • n  =  2X°  =  x 

Using  Xo  •  No  =  No  (§  6,  8)  we  even  obtain 

(2)  xNo  =  (2Xo)Xo  =  2Xo  •  x°  =  2Xo  =  X- 

Obviously  these  are  “logarithmic”  calculations  with  the  base  2, 
reducing  multiplication  and  exponentiation  respectively  to  addition  and 
multiplication  (as  also  done  in  the  proof  of  X  •  X  =  Nin  §  6).  When  Cantor, 

J)  Due  to  J.  Konig  14,  p.  219. 
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after  twenty  years  of  pioneer  work  in  set  theory,  presented  these  short 

and  rather  mechanical  calculations  J)  he  proudly  compared  them  with  the 
great  effort  he  had  displayed  in  1878  to  prove  (1),  then  meeting  with 

incredulity  and  antagonism  in  the  mathematical  world.  Such  operations 

with  cardinals,  including  the  use  of  their  formal  laws,  are  —  like  the 

operations  with  ordinals,  see  below  §§  8  and  1 1  —  but  another  pattern  of 

a  development  found  frequently  in  mathematics  (most  conspicuous  in 

calculus  and  its  applications):  the  invention  of  a  new  mechanism  which 

rather  automatically  carries  out  processes  that  had  previously  demanded 
creative  invention. 

In  §  6,  8  the  relation  ft2  =  ft  was  interpreted  geometrically  by  using 

coordinates.  In  the  same  way  ft3  is  the  cardinal  of  a  cube  or  of  the 

infinite  three-dimensional  space,  both  regarded  as  the  sets  of  their 

points,  and  ft71  or  ftXo  are  respectively  the  cardinals  of  the  set  of  points 

of  an  ̂ -dimensional  space  or  of  a  space  of  denumerably  many  dimensions. 

(In  the  latter  space  a  point  biuniquely  corresponds  to  an  infinite  sequence 

of  real  coordinates.)  Hence 

Theorem  5.  The  sets  of  points  contained  in  three-dimensional  space, 

n-dimensional  space,  fto- dimensional  space  have  each  the  cardinal  ft. 

The  same  applies  to  continuous  parts  of  these  spaces,  for  instance  cubes. 

The  surprising  aspect  of  this  result  may  be  expressed  by  saying  that  all 

points  of  space  can  be  related  in  a  one-to-one  correspondence  to  the 

points  of  an  arbitrarily  small  segment. 

Regarding  powers  of  fto,  we  first  generalize  fto2  =  fto  to  fto”  =  fto 

for  finite  «  A  0.  To  evaluate  ftox°  we  use  2Xo  =  ft  and  the  formal  laws 

(Theorem  3)  by  the  following  specimen  of  calculating 

ftox°  =  (fto  •  2f°  =  ft0Xo  ■  2X°  =  ft0Xo  •  2Xo  •  x°  =  ft0Xo  •  (2X°)X°  = 

=  (fto  •  2Xo)Xo  =  (fto  •  ft)x°  =  ftx°  (see  §  6,  8)  =  ft,  i.e. 

(3)  ftoXo  =  ft. 

As  shown  in  §  3,  3,  the  set  of  the  lattice-points  in  the  plane  has  the 

cardinal  ft„  =  fto,  and  the  same  applies  to  the  set  of  the  lattice-points  in 

the  ̂ -dimensional  space.  On  the  other  hand,  (3)  and  (2)  show  that  the 

set  of  the  lattices-points  in  fto  dimensions  has  the  same  cardinal  as  the 

x)  Cantor  1895,  p.  488.  Cf.  some  calculations  in  Holder  30. 
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quantitative  difference  whether  we  consider  the  space  in  its  entirety  or 

its  lattice-points  only. 

As  to  the  exponent  X>  i.e.  insertions  into  the  continuum,  Xx  is  the 

cardinal  of  all  single-valued  real  functions  /  (x)  whose  argument  x  runs 

over  a  continuum;  in  §  4,  7  this  cardinal  was  called  f.  A  logarithmic 

calculation  as  above  yields 

(4) 

Xx,  then,  is  the  cardinal  of  the  power-set  of  the  continuum,  i.e.  of  the 
set  of  all  sets  of  real  numbers.  Hence  Theorem  4  of  §  4  is  a  particular 

case  of  Cantor’s  theorem  (2  of  §  5). 
By  considering  functions  of  a  complex  variable  x  +  iy,  or  of  n  or 

denumerably  many  variables  xi,  X2,  . . . ,  xn(, . . . ),  we  obtain  argument 

sets  whose  cardinal  is  X>  according  to  (1)  and  (2).  Hence  a  set  containing 

all  such  functions  has  also  the  cardinal  f  =  Xx- 

Further  equalities,  some  of  which  were  proved  before  in  less  simple 

ways,  may  be  inferred  by  means  of  the  inequality  <  rib*  ̂  k k 

a  *  <  b*”  (p.  109)  or  of  (4)  on  p.  1 14.  For  instance,  nN°  =  x  follows  from 
2Xo  =  Xox°  =  Xi  in  the  same  way  we  obtain  1  •  2  •  3  •  . . .  k  ...  =  x 

(cf.  p.  100).1)  Similarly,  2N  =  Xx  yields  Xox  =  f.  Hence  it  makes  no 
difference  for  the  cardinal  of  the  set  of  all  functions  defined  on  a  con¬ 

tinuum  whether  the  functions  may  assume  all  real  values,  or  rational 

(or  integral)  values  only,  or  even  just  two  values,  say  0  and  1. 

One  might  suspect  that  the  reason  why  Xox°  is  greater  than  the  base 

Xo  while  Xx°  equals  the  base  X  (see  (2)  and  (3))  is  that  X  is  “too  great  to 

further  increase  through  the  exponentiation  by  Xo”.  This  is  not  true; 
there  are  two  types  of  cardinals  c,  those  with  cXo  >  c  and  those  with 

cNo  =  c,  and  both  types  include  cardinals  as  great  as  desired,2)  as  we  shall 
now  show. 

If  (c*;)  (k  =  1,  2,  . . .)  is  a  sequence  of  increasing  cardinals  (c*  < 

<  c*  +  i ;  ci  71—  0)  then  ]>c*  =  c  belongs  to  the  first  type  (and  is  of  an k 

arbitrarily  great  magnitude  since  the  choice  of  ci  is  arbitrary).  For  by 

*)  For  other  (transfinite)  factorials  cf.  Kurepa  54. 
2)  It  is  remarkable  that  the  distinction  between  these  two  types  is  important  for  a 

problem  of  field  theory  which  has  a  solution  for  the  second  type  only;  see  F.  K. 
Schmidt  33.  (For  applications  of  set  theory  to  abstract  algebra  in  general,  cf.  §  12.) 
For  another  effect  of  the  distinction  see  Rabin  59. 
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the  inequality  of  Konig  (Theorem  8  of  §  6)  we  have 

C  =  2C*  <  C2C3C4  .  .  .  <  C1C2C3C4 - 
k 

Denoting  the  latter  product  by  d,  we  have  (cf.  exercise  3)  on  p.  109)  in 

view  of  Ck  <  c  for  every  k 

d  <cXo. 

The  combination  of  c  <  d  and  d  <  cXo  gives  c  <  cXo. 

On  the  other  hand,  every  cardinal  of  the  form  c  =  bXo  with  any  base 
b  (however  great)  belongs  to  the  second  type  since 

qN'o  _  ((jNo)No  —  JjRo  •  No  -  Ij^'o  —  p 

Finally,  we  shall  use  the  equivalence  theorem  to  calculate  the  cardinal 

of  a  set  of  functions  not  contemplated  above,  viz.  the  set  C  of  all  con¬ 

tinuous  functions',  say,  of  the  continuous  real  functions  /( jc)  of  a  real 
variable.  We  only  need  the  following  property  of  continuity:  if  (x*)  is  a 

sequence  of  real  numbers  converging  towards  the  limit  x,  i.e.  lim  Xk  =  x, 

k  ->oo 

then  the  value  of  / (x)  for  x  =  x  is  uniquely  determined  by  the  totality 

of  values  /(x*).  (Actually  we  have  f(x)  =  lim  /  (x^),  yet  we  shall  not 

use  this.)  
fc_>c0 

Given  a  rational  or  irrational  x,  there  are  sequences  (xjt)  of  rationals 

such  that  lim  x*  =  x.  For  instance,  we  may  expand  x  into  a  decimal 
k-+  00 

fraction  and  take  for  Xk  the  terminating  decimal  obtained  by  stopping 

the  expansion  at  the  kth  place  after  the  decimal  point.  (For  more  general 

ways  cf.  §  9,  1  and  2.)  Hence  a  continuous  function  is  certainly  determined 

by  its  values  for  all  rational  arguments;  in  other  words,  two  such  func¬ 

tions  are  equal  if  they  coincide  at  every  rational  place.  One  cannot, 

however,  invert  this  in  the  sense  that,  given  any  assignment  of  values  of f 

for  each  rational  x,  there  exists  a  continuous  function  which  there  assumes 

these  values;  this  would  contradict  the  continuity  at  the  rational  places, 

whereby  the  values  at  these  places,  too,  are  determined  by  the  values  at 

neighboring  rational  places.  For  example,  there  exists  no  continuous 

function  equalling  x2  for  integral  x  and  x2  +  1  for  fractional  x.  Yet 

owing  to  our  applying  the  equivalence  theorem  we  need  not  enter  into  the 

intricate  problem  of  the  interdependence  of  the  values  for  rational  argu¬ 
ments. 
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We  consider  the  following  three  sets:  the  set  K  of  all  constant  functions, 

the  set  C  of  all  continuous  functions  as  introduced  above,  and  the 

insertion-set  ( D  |  R)  of  a  continuum  D  into  the  set  R  of  all  rational 

numbers.  Every  constant  function  is  continuous  but  not  conversely, 

hence  K  <=  C;  every  continuous  function  corresponds,  as  explained 

above,  to  a  certain  insertion  of  real  numbers  into  R  but  not  to  every  such 

insertion  does  a  continuous  function  correspond,  hence  C  ~  E  (D  \  R). 

K  has  the  cardinal  ft  (cf.  §  4,  7)  and  ( D  \  R)  has  the  cardinal  ftNo  =  ft; 

according  to  the  equivalence  theorem,  then,  C  has  also  the  cardinal  ft  x). 

(It  is  rather  difficult  to  specify  a  subset  E  of  (D  \  R)  which  can  effectively 

be  mapped  onto  C.)  Hence 

Theorem  6.  The  set  of  all  continuous  real  functions  of  a  real  variable 

has  the  cardinal  of  the  continuum.  In  other  words,  there  is  a  real  function 

F(x,  y)  of  two  real  variables  x  and  y  such  that  F  is  continuous  in  x  for  every 

fixed  y  and  that  any  given  continuous  function  f(x)  equals  F(x,  yo)  for  a 

single  yo. 

The  set  of  all  continuous  functions,  then,  has  a  cardinal  less  than  the 

cardinal  of  all  functions  (§  4,  7).  Hence  the  set  of  all  differentiable 

functions  has  also  the  cardinal  ft  as  every  such  function  is  a  fortiori 

continuous.  
The  same  

applies  
to  all  monotonic  

functions *  

2).  On  the  other 

hand,  contrary  to  a  guess  of  Cantor’s,  the  set  of  all  integrable  functions 

(even  in  Riemann’s  sense)  has  the  cardinal  f  of  all  functions3);  roughly 

we  may  then  say,  it  is  a  “normal”  property  of  a  function  to  be  integrable 
but  “abnormal”  to  be  differentiable  or  even  continuous. 

For  other  sets  of  functions  with  the  cardinal  ft  cf.  exercise  7)  at  the 
end  of  this  section. 

7.  The  Problem  of  Infinitesimals.4)  The  present  section  concludes  our 
treatment  of  transfinite  cardinals,  save  for  the  special  subjects  of  §  11, 
5  and  7.  Hence  this  seems  to  be  a  proper  opportunity  for  dealing  with  the 
question  raised  occasionally  in  mathematical  and  philosophical  literature: 

whether,  in  parallelism  to  infinitely  great  magnitudes  as  represented  by 

*)  Cantor  1879-84  V,  p.  590.  Regarding  an  effective  mapping,  see  Szymanski  44. 
2)  Hausdorff  06-07  II,  p.  111. 

3)  See  Jourdain  05,  pp.  178-179;  Schoenflies  13,  p.  367.  (Cantor  1879-84  V, p.  590.)  Cf.  Obreanu  47. 

4)  Readers  not  interested  in  the  subjects  of  7  and  8  are  advised  to  skip  these subsections.  Their  contents  are  not  used  in  the  later  parts  of  the  book. 
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transfinite  cardinals,  it  is  possible  and  useful  to  introduce  also  infinitely 
small  magnitudes,  and  what  the  possible  applications  of  such  magnitudes 
might  be. 

While  in  the  present  subsection  this  question  is  treated  from  a  general, 

in  particular  philosophic,  viewpoint,  in  8  we  shall  deal  with  a  certain 

mathematical  problem  related  to  this  subject. 

Cantor,  when  undertaking  a  “continuation  of  the  series  of  real  integers 

beyond  the  infinite”  (see  above  p.  3)  and  showing  the  usefulness  of  this 
generalization  of  the  process  of  counting,  refused  to  consider  infinitely 

small  magnitude  beyond  the  “potential  infinite”  of  analysis  based  on 

the  concept  of  limit.1)  The  “infinitesimals”  of  analysis,  as  is  well  known, 
refer  to  an  infinite  process  and  not  to  a  constant  positive  value  which, 

if  greater  than  zero,  could  not  be  infinitely  small  (cf.  however  8).2)  The 

process  of  counting,  even  if  starting  with  0,  jumps  to  (or  begins  with) 

1  without  an  intermediate.3) 

Opposing  this  attitude,  some  schools  of  philosophers  (notably  the  trend 

of  Neo-Kantians  headed  by  Hermann  Cohen,  in  full  vigor  in  the  beginning 

of  the  present  century)  and  later  sporadic  mathematicians  proposed 

resuming  the  vague  attempts  of  most  17th  and  18th  century  mathemat¬ 

icians  to  base  calculus  on  infinitely  small  magnitudes,  the  so-called 
infinitesimals  or  differentials.  After  the  introduction  of  transfinite  numbers 

by  Cantor  such  attitudes  pretended  to  be  justified  by  set  theory  because 

there  ought  to  exist  reciprocals  (inverse  ratios)  to  the  transfinite  numbers, 

namely  the  ostensible  infinitesimals  of  various  degrees  representing  the 

ratios  of  finite  to  transfinite  numbers.4) 

These  views  have  been  thoroughly  rejected  by  Cantor  5)  and  by  the 
mathematical  world  in  general.  The  reason  for  this  uniformity  was  not 

dogmatism,  which  is  a  rare  feature  in  mathematics  and  then  almost 

invariably  fought  off;  nobody  has  pleaded  more  ardently  than  Cantor 

*)  For  a  certain  use  of  the  limit  concept  with  regard  to  transfinite  cardinals  see 

Kaluza  17.  This  method  is  different  from  the  intuitionistic  (or  “naturalistic”)  attitude 
taken  in  Lusin  33,  p.  125. 

2)  Cf.,  however,  the  discussion  between  Leibniz  and  John  Bernoulli  as  quoted  in 
Weyl  26/49,  No.  7,  which  appears  to  us  extremely  strange,  used  as  we  are  to  the  triumph 

of  Leibniz’  attitude. 

3)  This  also  applies  to  Cantor’s  earliest  introduction  of  (finite  and  transfinite) 
ordinal  numbers:  not  as  ordinals  of  sets  but  as  orders  of  derivations  (see  §  9,  Definition 
V). 

4)  For  the  New-Kantian  attitude  see  Natorp  23  and  the  literature  cited  in  this  book. 
Cf.  Peirce  1892/1923  (especially  pp.  208  ff.  and  217  ff.),  also  Baer  32. 

8)  Notably  in  Cantor  1887-88,  1895a;  cf.  the  footnote  at  the  end  of  1879-84  III. 
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himself  that  liberty  of  thought  was  the  essence  of  mathematics  and  that 

prejudices  had  but  a  short  life.  The  argument  was  not  even  that  the 

admission  of  infinitesimals  was  self-contradictory  (cf.  8),  but  just  that  it 

was  sterile  and  useless  —  a  fact  at  which  Gauss  hinted  by  the  remark 

quoted  on  p.  1 .  A  repeated  challenge  to  prove,  for  instance,  the  Theorem 

of  Rolle  by  using  infinitesimals  instead  of  the  limit  method  has  never  been 

responded  to;  other  attempts,  e.g.  regarding  the  definition  of  the  (definite) 

integral,  led  to  similar  failure.  This  uselessness  strikingly  contrasts  with 

the  success  of  the  transfinite  numbers  regarding  both  their  applications 

and  their  task  of  generalizing  finite  counting  and  ordering. 

8.  Non-Archimedean  Domains.  The  incongruity  between  infinitely  great 

and  infinitely  small  magnitudes  should  not  be  exaggerated  to  mean  that 

the  latter  cannot  exist.  Certain  profound  and  impressive,  though  not 

always  consistent  foundations  of  geometry,  for  instance,  were  given  by 

means  of  using  infinitesimal  segments  of  various  orders,  in  addition  to 

points  and  finite  segments.1)  But  this  does  not  mean  inverting  the  trans¬ 
finite  magnitudes  of  set  theory  which,  as  shown  in  §  6,  7,  do  not  admit 

of  an  inversion  of  the  direct  operations. 

At  an  early  stage  of  Greek  mathematics,  in  the  fourth  century  B.  C., 

a  decisive  idea  was  initiated  by  Eudoxos  —  who  also,  in  some  connection 

with  this  idea,  was  apparently  the  first  to  originate  the  theory  of  propor¬ 

tions  found  in  the  fifth  book  of  Euclid’s  Elements  (cf.  §  9,  1)  and  the 
method  of  exhaustion  further  developed  by  Archimedes.  The  idea  is  the 

postulate,  later  called  the  Axiom  of  Archimedes,  that  the  difference 

between  any  two  different  magnitudes,  when  added  to  itself  a  sufficient 

number  of  times,  can  be  made  to  exceed  any  given  magnitude;  or  in 

modern  language:  given  positive  real  numbers  (or  segments)  a  and  b  with 

a  <  b,  there  is  an  integer  n  such  that  na>  b  {na  meaning  a  +  a  +  ...  -+-  a 

with  n  terms  a).  Obviously  this  means  the  exclusion  of  magnitudes  which 

are  infinitely  small  (or  infinitely  great)  in  comparison  with  others. 

While  this  postulate  plays  an  important  role  in  the  foundations  of 

ordinary  geometry  and  arithmetic  2),  systems  of  magnitudes  which  do  not 
satisfy  the  postulate  have  also  been  considered;  they  are  called  non- 

archimedean  domains.  In  such  domains,  then,  there  exist  magnitudes 
a  and  b  with  a  <  b  such  that  all  multiples  na  remain  below  b,  i.e.  that  a  is 

J)  Notably  in  Veronese  1891  and  Levi-Civita  1893.  Cf.  Wiener  20. 

2)  Cf.  Hilbert  1899/1930  (particularly  from  the  2nd  ed.  on)  and  its  Anhang  VI. 
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infinitely  small  compared  with  b.  An  example  treated  already  in  Greek 
antiquity  and  then  discussed  from  the  middle  ages  over  Newton,  Voltaire, 

Cantor  to  the  modern  foundational  researches  *)  is  the  theory  of  horn 
angles,  i.e.  angles  between  a  curve  and  its  tangent,  or  more  generally, 
between  two  curves  with  a  common  tangent.  A  more  recent  and  signific¬ 
ant  example  is  that  of  orders  of  infinity  regarding  the  growth  of  func¬ 

tions *  2);  this  subject,  broached  around  1880  by  Paul  du  Bois  Reymond, 

was  somewhat  connected  with  the  beginnings  of  set  theory.  An  almost 

trivial  example  of  a  non-archimedean  domain  is  that  of  polynomials 

p(x )  with,  say,  integral  coefficients,  if  one  defines  nx  <  1  for  every  n. 

Especially  in  modern  algebra  3)  such  domains  fulfil  an  important  task. 
Of  course,  the  cardinals  (and  ordinals,  see  §  11)  of  set  theory  also 

constitute  non-archimedean  domains  since,  /(#0)  being  a  finite  and  t  a 
transfinite  cardinal,  any  finite  sum  of  terms  /  is  less  than  t.  The  situation 

differs  from  other  non-archimedean  domains  chiefly  in  two  respects; 
first,  the  cardinals  and  ordinals  in  their  entirety  are  introduced  with  a 

view  to  their  counting  or  ordering  quality  and  thus  are  “natural” 
generalizations  of  the  integers;  moreover,  the  non-archimedean  character 

is  only  due  to  the  restriction  to  finite  sums  whereas  Theorem  5  of  §  6 

ensures  that  every  cardinal  can  be  reached  by  repeated  addition  of  the 

unity,  i.e.  of  the  least  cardinal  ̂   0.  This  contrast  explains  in  what  sense 

other  non-archimedean  domains  contain  “relatively  infinite”  magnitudes 

while  the  transfiniteness  of  cardinals  and  ordinals  is  an  “absolute”  one.4) 
The  difference  between  the  transfinite  domains  of  set  theory  and  non- 

archimedean  domains  in  general  is  somewhat  related  to  Cantor’s  distinc¬ 

tion  between  the  transient  and  the  only  immanent  reality  of  concepts.5) 

This  difference  explains  why  the  definitions  of  order  and  of  operations 

for  cardinals  and  ordinals  are  natural  and  quasi-compulsory,  in  contra¬ 

distinction  to  the  more  formal  and  arbitrary  definitions  in  general  non- 

archimedean  domains.  (Cf.  Cantor’s  words  quoted  in  §  6,  1.)  When 
infinitesimals  are  correctly  introduced  they  belong  to  the  second  category 

and  do  not  constitute  a  counterpart  to  transfinite  magnitudes. 

4)  Cf.  the  literature  given  in  Kasner  45. 

2)  Cf.  Hardy  24. 

3)  From  among  the  pioneer  work,  Hahn  07,  Artin-Schreier  27,  Baer  27  may  be 
mentioned. 

4)  Expert  readers  will  understand  that  this  assertion  is  not  opposed  to  the  so-called 

relativization  of  cardinals  in  the  sense  of  Skolem;  see  Foundations,  pp.  105-109. 

5)  Cantor  1879-84  V,  §  8. 
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1)  Show  directly,  without  using  Definition  I,  that  if  S  ~  S'  and 

T  ~  r  then  also  (S  \  T)  ~  (S'  \  Tj. 
2)  Prove  that  either  definition  of  exponentiation,  I  or  II,  imphes 

c1  =  c  and  lc  =  1  for  every  cardinal  c. 

3)  Prove  the  following  theorem  for  the  functions  (insertions)  introduced  in  2.  Let 

M  be  a  finite  set  and  Fthc  set  of  those  functions  /  (m)  defined  in  M  which  assume  values 

of  M,  subject  to  the  condition :  /  (m  )  =£  f  (m")  if  m'  ̂   m".  Then  there  exist  in  F  two 
functions  fi{m)  and  fzim)  such  that  each  function  of  Fean  be  obtained  by  reiterating  /i 

and  f-2.  a  finite  number  of  times. 

If  M  =  {1,2,  . . .,  k},  the  following  functions  may  be  used: 

/x(l)  =  k,fi(m)  =  m  —  1  for  m  ̂   1, 

fz(k  —  1)  =  k,fz{k )  =  k  —  1,  f%(m )  =  m  for  m  <  k  —  1. 

The  proof  is  not  as  simple  as  it  may  seem  at  first  sight.1) 

4)  Prove  the  following  properties  of  the  ch(aracteristic)  f(unction)s 

(see  3)  corresponding  to  the  subsets  of  a  given  set,  properties  which  show 

the  close  connection  between  ch.  fs.  and  the  operations  of  Boolean 

algebra  (or  logic) : 

a)  the  ch.  f.  corresponding  to  the  intersection  of  two  or  more  subsets 

is  the  product  of  the  ch.  fs.  corresponding  to  the  individual  subsets ; 

b)  the  ch.  f.  corresponding  to  the  union  of  two  or  more  pairwise 

disjoint  subsets  is  the  sum  of  the  ch.  fs.  corresponding  to  the  individual 
subsets. 

By  what  rule  has  b)  to  be  replaced  if  the  subsets  are  not  pairwise 

disjoint  (say,  in  the  simple  case  of  two  subsets)?  2) 

5)  Prove  the  formal  law  (2')  of  subsection  4 
a)  by  using  Definition  II  of  exponentiation, 

b)  by  using  the  associative  law  (4)  of  §  6,  6  (which  was  also  used 

for  proving  the  formal  law  (1)  of  4). 

Hint  to  b).  First,  regard  the  set  S  occurring  on  the  left-hand  side  of  (4) 
as  the  union  of  two  disjoint  equivalent  sets  and  assign  ki  to  each  member 

of  the  one,  k2  to  each  of  the  other.  Secondly,  after  having  chosen  a 

certain  mapping  between  these  sets,  use  pairs  of  corresponding  members ; 
the  union  of  all  pairs  then  equals  S.  In  view  of  (4),  these  two  procedures 
yield  sets  which  prove  equivalent. 

')  See  Piccard  35.  It  is  also  proven  there  that  if  the  condition  f(mj  F  f(m")  is 
dropped  then  three  primitive  functions  are  required  instead  of  two. 

2)  For  profounder  properties  of  the  ch.  fs.  cf.  Whitney  33,  Stone  45. 
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6)  Prove  XNo  =  X  without  formal  calculation,  analogically  to  the 
proof  of  X  X  =  X  in  §  6,  8. 

7)  Prove  that  each  of  the  following  sets  has  the  cardinal  X  • 

a)  the  set  of  all  sequences  of  positive  integers,  and  even  the  set  of 

the  sequences  which  emerge  from  the  single  sequence  (1,  2,  3,  . . .)  by 

merely  changing  the  succession  of  the  members ; 

b)  the  set  of  all  denumerable  subsets  of  the  continuum; 

c)  the  set  of  all  analytical  functions  of  a  complex  variable; 

d)  the  set  of  all  formal  (convergent  or  not)  power  series  with  real 

coefficients ; 

e)  the  set  of  all  functions  that  can  be  represented  as  series  of  con¬ 
tinuous  functions. 

Considering  that  the  set  of  all  integrable  functions  has  the  cardinal 

2N,  we  may  conclude  by  set-theoretical  arguments  that  “in  general”  an 
integrable  function  cannot  be  represented  as  a  series  (uniformly  conver¬ 

gent  or  not)  of  continuous  functions. 

8)  Two  subsets  of  a  denumerable  set  shall  be  called  almost  disjoint  if  their  intersection 

is  finite.  Prove  the  following  theorem  by  expanding  the  real  numbers  into  dual  fractions : 

The  set  of  the  positive  integers,  as  well  as  any  denumerable  set,  can  be  written  as  a 

sum-set  U  T  with  T  =  X,  the  members  of  T  being  pairwise  almost  disjoint  denumer¬ 

able  sets.  (Cf.  the  footnote  3)  on  p.  14;  the  literature  cited  there  [especially  Tarski] 
contains  generalizations  of  the  above  theorem.) 



CHAPTER  III 

ORDER  AND  SIMILARITY.  ORDER-TYPES  AND  ORDINALS 

§  8.  Ordered  Sets.  Similarity  and  Order-Types 

1.  Introduction.  So  far  infinite  sets  were  investigated  only  with  regard 

to  properties  common  to  equivalent  sets:  cardinal  numbers,  their  com¬ 

parison,  operations  with  them.  This  restriction  is  justified  by  the  simplicity 

of  transfinite  cardinals  which  shows  in  the  analogy  to  finite  integers,  and 

also  by  the  importance  of  their  applications. 

Yet  equivalent  sets  still  display  much  diversity,  apart  from  the  particular 
nature  of  the  members  which  shall  be  disregarded  as  hitherto.  The  trait 

of  diversity  with  which  the  remainder  of  this  book  deals  (except  for 
§  9,  5  and  6)  is  the  succession  or  order  in  which  the  members  occur  in  the 

set,  a  trait  which  was  neglected  purposely  up  to  now.  If,  for  instance, 

N  is  the  set  of  all  positive  integers  and  R  the  set  of  all  positive  rationals, 
each  ordered  by  the  succession  from  smaller  to  greater  numbers,  then 

the  sets  are  fundamentally  different  in  spite  of  N  ~  R;  N  has  a  first  (least) 
member  (1)  and  R  not,  each  member  of  N  but  none  of  R  has  an  immediate 

successor,  etc.  Incidentally,  this  diversity  does  not  derive  from  the  divers¬ 

ity  of  the  members  (integers  versus  rationals),  as  shown  by  the  possibility 
of  arranging  R  in  form  of  a  sequence,  i.e.  of  an  enumerated  set,  just  as  N 

(§  3,  3).  A  few  essentially  different  arrangements  of  the  set  of  all  integers 
are  x) 

a)  (...,  -3,  -2,  -  1,0,  1,2,3,  ...) 

b)  (0,  1,  -  1,2,  -2,  3,  -3,  ...) 

c)  (0,  2,  -  2,  4,  -  4,  . . .  1,  -  1,  3,  -  3,  . . .) 

d)  (...,-  8,  -  4,  0,  4,  8, . -  7,  -  3,  1,  5, . -6,-2, 
2,6, . -5,-  1,3,5,  ...). 

The  systematic  treatment  of  ordered  sets  beginning  with  subsection  2 

*)  T°  point  out  that  the  succession  of  the  members  is  not  disregarded  any  more, 
in  contrast  with  the  axiom  of  extensionality  (cf.  §  2,  2  and  §  4,  5),  we  shall  use  paren¬ 
theses  (  )  to  denote  ordered  sets,  instead  of  the  brackets  {  }  introduced  in  §  2  for  plain 
sets.  The  succession  between  the  parentheses  marks,  or  hints  at,  the  succession  in  the ordered  set. 
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shall  be  preceded  here  by  some  informal  preliminary  remarks.  Many 

discussions  have  been  devoted  to  the  question  whether  ordinal  or  cardinal 

number  is  the  primary  concept,  hence  whether  ordered  sets  should 

precede  plain  sets  4)  or  the  other  way  round.  We  shall  not  deal  here  with 
the  psychological  and  historical  aspects  of  this  question ;  there  is  hardly 

a  doubt  that  psychologically  the  ordered  set  is  primary,  owing  to  our 

experience  with  spatial  order  and  temporal  succession,  and  that  the 

plain  set  is  derived  by  an  abstraction.  From  the  logico-mathematical 

point  of  view  the  decision  is  less  simple.  On  the  one  hand,  the  plain  set 

is  the  more  general  and  abstract  notion,  based  on  membership  alone, 

and  since  the  systematic  exposition  in  mathematics  usually  proceeds 

from  the  general  to  the  particular  it  seems  natural  to  begin  with  plain 

sets  and  cardinals  and  to  introduce  ordered  sets  and  ordinals  by  adding 

the  order  relation  to  the  membership  (and  equivalence)  relation,  as  done 

in  the  present  book  and  in  most  expositions  of  set  theory.  On  the  other 

hand,  there  are  also  arguments  
for  the  converse  

direction,* 2)  

notably  
the 

problem  of  the  comparability  of  cardinals  (cf.  §  5,  5  and  §  11,  7)  which 

cannot  be  solved  without  the  explicit  or  implicit  use  of  order;  von 

Neumann  

3 4)  

was  the  first  to  base  the  definition  
of  cardinals  

upon  that  of 

ordinals. 

The  introduction  of  order  and  ordinals  is  motivated  by  the  needs  of 

mathematics.  Transfinite  cardinals  are  a  unilateral  extension  of  the 

concept  of  integer,  for  integers  serve  not  only  the  purpose  of  counting 

(cardinal,  how  many?)  but  also  that  of  enumerating  (ordinal,  marking 

succession).  In  the  domain  of  finite  number  this  distinction  is  hardly 

felt  owing  to  an  arithmetical  theorem  4),  which  states  that  one  ordinal  only 

corresponds  to  each  finite  cardinal  (cf.  below  p.  135);  in  other  words, 

that  any  arrangement  of  n  objects  always  terminates  with  the  same 

place  (an  nth  object).  This  enables  language  to  use  the  same  root  for 

corresponding  cardinals  and  ordinals  (“three”  and  “third”,  etc.),  except 
for  the  least  or  the  two  least  numbers;  our  being  accustomed  hereto  is 

1)  In  contrast  with  ordered  sets  as  considered  in  this  and  the  following  sections, 

we  shall  use  the  name  plain  set  when  referring  to  an  un-ordered  set  in  the  sense  of 

§§  2-7. 
2)  Cassirer  29  attributes  priority  to  ordinals  even  from  a  purely  logical  viewpoint. 

3)  In  particular  von  Neumann  25.  Cf.  below,  §  11,  2  and  5,  and  Foundations, 

pp.  lOlf. 

4)  Schroder  seems  to  have  been  the  first  who  stressed  this  fact  explicitly,  but  he 

erroneously  interpreted  it  as  empirical.  Proofs  of  the  theorem  (by  mathematical 

induction)  are  given  in  textbooks  of  arithmetic;  cf.  also  Russell  19. 
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responsible  for  often  overlooking  the  distinction.  The  introduction  of 

infinite  sets  and  numbers  compels  us  to  become  aware  of  it,  as  shown 
below. 

Cantor,  to  be  sure,  introduced  transfinite  ordinals  as  derived  from 

ordered  sets  in  his  later  publications  only  while  originally  he  had  con¬ 

ceived  them  as  a  continuation  of  the  finite  process  of  counting  with  a 

view  to  the  successive  derivations  of  an  un-ordered  set  of  points  (see 

§  9,  5).  We  here  follow  his  later  attitude  which  is  more  general  and 

corresponds  to  the  way  taken  for  cardinals. 

Besides  the  intrinsic  importance  of  ordered  sets  and  ordinal  numbers, 

especially  of  their  particular  kinds  dealt  with  in  §§  10  and  11,  the  order 

concept  is  also  significant  for  the  applications  of  set  theory  to  analysis 

and  geometry.  The  notion  of  order,  or  else  other  notions  such  as  neighbor¬ 

hood,  dimension  etc.,  are  indispensable  for  such  applications  because  the 

notion  of  equivalence  of  sets  alone  is  too  general,  eliminating  as  it  does 
the  more  delicate  differences  between  equivalent  sets;  cf.  subsection  3. 

In  §§  6  and  7  arithmetical  operations  were  defined  for  sets  and  cardinals 

and  in  the  present  section  certain  analogous  operations  are  introduced 

for  ordered  sets  and  their  “types”.  Thus  naturally  the  question  arises 
whether  one  may  cover  both  these  theories  within  a  common  comprehen¬ 

sive  frame.  This  problem,  though  less  simple  than  it  may  appear,  was 
tackled  with  some  success,  and  in  particular  interesting  results  were 

obtained  regarding  exponentiation.1) 

2.  Order-Relation  and  Ordered  Sets.  We  introduce  the  concept  of 
ordered  set,  as  usual  in  algebra  and  geometry,  by  means  of  a  rule  which 
for  any  two  distinct  members  of  the  set  states  which  one  precedes  the 
other.  Subject  to  certain  formal  properties  of  order  in  logic  and  mathe¬ 

matics,  the  rule  is  arbitrary  and  does  not  just  mean  order  “by  magnitude” 
as  in  §  5,  1.  As  a  neutral  linguistic  term  we  shall  use  “preceding”  (or 

“succeeding”)  instead  of,  for  instance,  “less”  (or  “greater”),  without 
implying  a  spatial  or  temporal  succession;  for  the  same  reason  we  use 

new  symbols  -<  and  >  instead  of  <  and  >  which  usually  mean  a  suc¬ 
cession  according  to  magnitude.  The  properties  required  are  contained  in 

Definition  I  (Definition  of  ordered  set).  Let  be  given  a  set  S 

b  Birkhoff  (37  and)  42;  cf.  Day  45.  These  theories  use  the  concept  of  partly 
ordered  set,  see  2.  Some  of  the  ideas  were  anticipated  in  Principia  Mathematica  (by 
means  of  its  theory  of  relations);  cf.  Whitehead-Russell  10-13  II,  §§  162  and  172. 
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and  a  rule  which  establishes,  for  any  two  members  a  and  b  of  S, 
a  relation  -<  ( relation  of  order )  such  that 

a)  if  a  ̂   b,  at  least  one  of  the  statements  a  -f  b,  b  -f  a  holds  true 
{connexity), 

b)  the  validity  of  a  -f  b  implies  the  invalidity  of  b  -f  a  ( asymmetry ), 
c)  for  no  a  does  a  -f  a  hold  {irreflexivity). 

d)  a  -fb  and  b  <  c  together  imply  a  <  c  { transitivity ), 

e)  a  -<  b,  a  =  a',  b  =  b'  together  imply  a '  «<  b'  { substitutivity ). 
The  conjunction  of  S  and  the  rule  for  -<  is  called  an  ordered  set , 

more  strictly  a  “simply  and  totally  ordered”  set.  (We  shall  content 
ourselves  with  “ordered”  since,  except  for  a  few  remarks  in  the 
present  subsection,  n-tuply  ordered  sets  or  partly  ordered  sets  hardly 
occur  in  this  book.) 

We  express  a  -f  b  by  “a  precedes  b ”.  According  to  b)  we  cannot 
express  this  statement  symbolically  by  starting  with  b;  therefore  we 

write  b  >•  a  (“ b  succeeds  a”)  synonymously  with  a  -f  b.1) 

As  to  the  conditions  a)  to  e),  asymmetry  is  a  consequence  of  transitivity 

and  irreflexivity  (see  §  5,  1).  Nevertheless,  it  would  not  be  practical  to 

drop  asymmetry,  since  for  certain  purposes  it  is  suitable  to  drop  trans¬ 

itivity  and  then  asymmetry  becomes  indispensable.  (Cf.  Definition  I  and 

exercise  1)  of  §  10.)  Connexity  is  just  the  condition  which  so  far  we  were 

unable  to  prove  for  the  arrangement  of  cardinals  according  to  magnitude; 

cf.  §  5,  1,  where  for  this  arrangement  b)  to  e)  were  proven  (while  here  the 

above  conditions  define  an  order  relation).  Substitutivity  is  a  property 

of  equality  rather  than  of  order  (and  quite  insignificant  in  the  present 

case  since  a  member  occurs  in  a  set  once  only). 

The  relation  which  orders  a  set  obviously  also  orders  each  subset. 

Hence  we  shall  always  consider  a  subset  of  an  ordered  set  to  be  ordered. 

From  our  definition  we  immediately  conclude 

Theorem  1.  If  a  and  b  are  members  of  an  ordered  set  then  one  and  only 

one  of  the  statements 

a  -fb,  a  =  b,  a'p-  b  (i.e.  b  -fa) 
holds  true. 

For  a  profounder  analysis  of  the  properties  of  the  order  relation  (or  serial  order) 

cf.  Carnap  34,  §  5,  and  58,  §  31. 
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We  shall  denote  ordered  sets,  as  plain  sets,  by  a  single  letter  S,  s,  T  etc. 

without  referring  to  the  rule  (order  relation)  separately.  For  the  notation 

by  means  of  the  members  see  the  footnote  on  p.  126. 

Definition  II.  The  ordered  set  S’  is  equal  to  the  ordered  set  T 

if  the  sets  are  equal  as  plain  sets  (§  2,  1)  and  the  ordering  rule  is  the 

same  in  both  sets  (i.e.  if  a  -<  b  in  S  implies  a  -<  b  in  T ). 

Clearly  this  equality  is  reflexive,  symmetrical,  and  transitive.  Hence¬ 

forth  we  shall,  as  a  rule,  drop  the  attribute  “ ordered ”  and  simply  speak  of 

“sets”  whenever  no  misunderstanding  is  possible. 
If  S  is  a  finite  set  the  rule  of  order  can  be  expressed  by  specifying, 

for  every  two  members  of  S,  which  one  precedes  the  other.  For  an 

infinite  set,  a  law  (formula,  function)  is  required,  just  as  for  a  mapping 

between  infinite  sets  (§  2,  4);  the  law  may  often,  also  for  a  finite  set,  be 

hinted  at  by  arranging  some  of  the  members  and  using  dots  for  the  rest. 

For  instance,  the  rules  of  order  defining  different  ordered  sets  which 

contain  all  integers  as  given  on  p.  126  may  be  formulated  as  follows: 

a)  smaller  integers  precede  greater  ones; 

b)  integers  with  a  smaller  absolute  value  precede,  and  of  two  integers 

with  equal  absolute  values  the  positive  integer  precedes ; 

c)  even  integers  precede  odd  ones,  of  two  even  or  two  odd  integers 

the  one  with  the  smaller  absolute  value  precedes,  and  in  the  case 

of  equal  absolute  values  the  positive  integer  precedes; 

d)  integers  of  the  forms  4 m  +  n  (0  <  n  <  4)  precede  each  other 

according  to  smaller  values  for  n,  and  in  the  case  of  equal  values  n 

the  smaller  integer  precedes. 

The  set  of  all  different  infinite  sequences  of  positive  integers  may,  for 

instance,  be  ordered  lexicographically  (cf.  7),  i.e.  just  as  words  are 

arranged  in  a  dictionary,  the  succession  of  letters  in  the  alphabet  being 

replaced  by  the  sequence  (1,  2,  3,  . . .). 

The  notion  of  order  becomes  insignificant  for  the  null-set  and  for 

unit-sets.  Nevertheless,  they  shall  also  be  considered  to  be  ordered  sets 

when  the  context  requires  it;  see,  for  instance,  subsection  5,  example  2. 

The  unit-set  {a},  then,  is  also  written  as  (a)  when  required  by  the  context. 

The  simplest  case  in  which  order  is  essential  is  that  of  an  ordered  pair-, 
from  the  pair  {a,  b }  we  obtain  the  different  ordered  pairs  (a,  b )  and  ( b ,  a). 

In  view  of  the  particular  importance  of  this  case  we  reduce  an  ordered 

pair  to  a  plain  set  by  identifying  (a,  b)  with  the  plain  set  {{«},  {a,  b}}\ 
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according  to  this  convention,  the  member  of  the  unit-set  has  precedence 

over  the  other.  (The  set  [a,  {a,  6}}  would  not  do  because  a  might  be  a  pair 

which  contains  the  member  {a,  b}.) x) 

Cantor  proposed  to  contemplate,  in  addition  to  simply  ordered  sets,  also  doubly 

and  n-tuply  ordered  sets  where  two  or  n  (positive  integer)  order  relations  are  defined 
independently  of  one  another,  each  being  irreflexive  and  transitive.  The  set  of  all 

complex  numbers  may  serve  as  an  example.  If  we  define 

a  +  ib  -<  a'  +  ib'  if  a  <  a',  or  if  a  =  a’  and  b  <  b' 

we  have  a  simply  ordered  set.  Yet  if  we  introduce  two  order  relations  «<  and  {  by 
defining 

a  +  ib  -<  a'  +  ib'  if  a  <  a';  a  +  ib  {  a'  +  ib'  if  b  <  b' 

then  two  different  complex  numbers  are  connected  by  at  least  one  and  in  general  by 

both  relations,  i.e.  we  have  a  doubly  ordered  set. 

Cantor  had  in  mind  far-reaching  applications  of  n-tuply  ordered  sets  but  his 

expectations  

have  
not  

materialized  

so  

far.* 2) 

Far  more  important  than  this  direction  proves  a  weakening,  hence 

extension  of  the  concept  of  ordered  set  by  renouncing  the  condition  of 

connexity.  Thus  partly  ordered  sets  are  obtained  in  which,  in  addition  to 

the  cases  a  -<b,  a  —  b,  b  -<  a,  the  incomparability  of  a  and  b  is  also 

admitted.  Some  authors  recently  say  “ordered”  for  what  here  is  called 

“partly  ordered”,  and  “totally  ordered”  (or  “chain”)  for  “ordered”  set. 
An  obvious  example  of  a  partly  ordered  set  is  the  power-set  C S  of 

any  finite  or  infinite  set  S  if  the  members  of  C S,  i.e.  the  subsets  s  of  S, 

are  ordered  by  the  rule:  5  -<  s'  if  5  s'.  Since,  of  two  given  subsets,  in 
general  neither  is  a  subset  of  the  other,  the  relation  does  not  satisfy 

condition  a)  of  Definition  I.  Finite  partly  ordered  set,  e.g.  CS  for  finite  S, 

are  conveniently  represented  by  graphs. 

During  the  last  decades  partly  ordered  sets  have  gained  an  ever 

increasing  importance  in  many  branches  of  mathematics.3)  In  particular, 
there  is  a  close  connection  between  partial  order  and  the  theory  of 

J)  For  the  history  of  this  concept  cf.  Quine  60,  §  53. 

2)  Cantor’s  and  his  students’  work  in  this  direction  is  found  in  Cantor  1887-88  II 
and  H.  Schwarz  1888;  cf.  Riesz  05  and  Stohr  42.  Blumberg  36  deals  with  the  principle 

of  induction  in  such  sets.  Lindenbaum  34  gives  an  important  extension  and  in  particular 

considers  w-tuply  well-ordered  sets  (§  10).  A  profounder  concept  of  w-tuply  ordered 
sets,  fit  for  applications  in  geometry,  is  introduced  in  Hudekoff  30;  cf.  G.  Schwarz  54. 

3)  The  significance  and  applicability  of  partly  ordered  sets  seems  to  have  been 
recognized  at  first  by  Hausdorff  (see  14,  pp.  139  ff.).  It  will  suffice  to  mention,  in 

addition  to  Birkhoff’s  researches  cited  at  the  end  of  1  and  in  the  following  footnote, 
Kurepa 35  and  37 ;  MacNeille  37 ;  Kurosh  39  (for  partly  ordered  finite  sets);  Kurepa  50 

(for  “partly  well-ordered”  sets,  each  ordered  subset  of  which  is  well-ordered);  Altwegg 
50  (for  an  axiomatic  treatment). 
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lattices,  which  were  already  studied  by  Dedekind  but  did  only  since  the 

20’s  show  their  significance  in  algebia,  topology,  projective  geometry,  and 
other  branches,  including  physics1);  Boolean  algebra  (§6,  9)  and  the 
theory  of  lattices  are  closely  related  subjects. 

The  transition  from  plain  to  ordered  sets  raises  two  questions  of 

principle. 

First,  can  every  set  be  ordered?  More  exactly,  given  any  plain  set  S, 

does  there  exist  a  relation  which  orders  S  in  the  sense  of  Definition  I? 

(The  meaning  of  “existence”  in  this  context  is  clarified  in  the  following 
paragraph.)  This  problem  of  ordering  is  discussed  in  detail  in  Foundations, 

Chapter  II,  §§  4  and  8 ;  in  general  it  cannot  be  solved  in  the  affirmative 

without  the  axiom  of  choice.  For  the  particular  way  of  well-ordering 

(§  10)  the  problem  will  be  solved  in  full  detail  in  §  11,  6.  The  question  is 

simple  for  finite  sets  S;  see  §  10,  6. 

Secondly,  order  has  above  been  defined  by  introducing  a  separate  order 

relation  -<,  contrary  to  our  procedure  in  §§  2-7  where  all  required  con¬ 

cepts  and  relations,  including  equivalence,  were  based  on  the  single 

primitive  relation  of  membership.  Hence  the  question  arises  whether 

the  order  relation  can  be  reduced  to  the  membership  relation.  If  so,  the 

possibility  of  ordering  a  given  set  S  means  the  existence  of  a  set  M  which, 

according  to  that  reduction,  establishes  an  order  in  S;  but  the  existence 

of  sets  is  established  by  means  of  the  axioms  of  set  theory  which  use  the 
membership  relation  only. 

In  point  of  fact,  a  reduction  as  required  is  possible,  even  in  different 

ways.  Moreover,  one  can  prove  without  the  axiom  of  choice  that,  to  a 
given  set  S  and  a  certain  way  of  reduction,  there  exists  the  set  M  whose 

members  are  all  possible  orders  M  of  S  in  the  way  adopted.  Yet  this 

result,  far-reaching  as  it  is,  does  not  answer  the  above  question  whether 
every  set  can  be  ordered,  for  without  the  axiom  of  choice  it  cannot  be 

proved  that  M  #  O,  i.e.  that  there  exists  an  order  M. 

The  reduction  of  order  to  membership  is  also  remarkable  beyond  the 
limits  of  mathematics,  for  it  shows  that  the  concept  of  order  is  independent 

of  temporal  or  spatial  ingredients,  contrary  to  views  sometimes  expressed. 
An  elegant  reduction,  due  to  Hessenberg-Kuratowski,  is  described  in 

b  Dedekind  30-3211,  pp.  103-147  and  236-271  (originating  from  1897/1900); 
cf.  certain  early  attempts  of  Peirce  reprinted  in  Peirce  33.  Of  modern  literature,  the 
comprehensive  expositions  Birkhoff  48,  Tarski  49  (§  15),  Hermes  55,  and  the  general 
analysis  in  J.  Schmidt  57a  should  be  mentioned. 
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Foundations,  pp.  127—131.  Another  one,  more  easily  handled  for  practical 
purposes,  is  outlined  below  at  the  end  of  4. 

Finally  we  introduce  a  few  abbreviating  terms  in  connection  with 
ordered  sets  S. 

a)  11  a  -<  b  -<  c  (short  for :  a  -<  b  and  b  -<  c)  one  says,  b  is  (lies)  between 
a  and  c  (or  c  and  a). 

b)  If  a  <  b  and  there  is  no  x  e  S'  with  a  «<  x  <  b  then  b  is  called 
the  sequent  of  a,  or  a  and  b  consecutive  members  of  S.  In  contrast,  “b  is  a 

successor  of  a  and  “a  is  a  predecessor  of  b"  are  just  other  expressions 
for  a  <  b ;  hence  a  member  has  at  most  a  single  sequent  but  in  general 
various  successors  in  S. 

If  b  is  the  sequent  of  a  then  a  may  be  called  the  “immediate  predeces¬ 

sor”  of  b.  The  term  neighbor  includes  both  sequent  and  immediate 
predecessor. 

c)  If  S  contains  a  member  a  such  that  a  -<  s  for  every  s  e  S  which  is 

¥=■  a,  then  a  is  called  th t  first  member  of  S;  clearly  a  is  uniquely  deter¬ 
mined.  Likewise  b  is  called  the  last  member  of  S  if  5  «<  b  for  every  other 
^  e  5.  If  5  has  both  a  first  and  a  last  member  they  are  called  the  ends  of  S; 
if  it  has  neither  a  first  nor  a  last  member,  5  is  called  open. 

d)  The  term  “sequent”  can  now  be  generalized  as  follows.  If  S'  <=  S 
and  the  subset  of  those  members  of  5  which  succeed  every  .s'  e  S'  has  a 

first  member  b,  then  b  is  called  the  sequent  of  S’  in  S.  (Accordingly  the 

first  member  of  S,  if  any,  is  the  sequent  of  the  null-set.)  Hence  if  S'  has  a 

last  member  a,  then  the  sequent  b  of  S',  if  any,  is  also  the  sequent  of  a, 
and  vice  versa.  Clearly  there  is  no  member  “between  S'  and  b The 

sequent  of  S'  is  uniquely  determined. 

If,  on  the  other  hand,  no  s  e  S  succeeds  every  s'  e  S'  then  S’  is  called 
confinal  with  S.  This  does  not  involve  that  all  s  e  S  which  succeed  a 

fixed  member  or  a  fixed  subset  of  S  must  belong  to  S’  (a  particular  case 

of  which  would  be  that  S  has  a  last  member  also  contained  in  S');  for 
instance,  the  subset  of  all  positive  even  numbers  is  confinal  with  the  set 

of  all  positive  integers  arranged  according  to  magnitude. 

e)  A  subset  S'  ̂   S  that  contains,  together  with  any  so  e  S',  also  all 

predecessors  of  so  in  S  (i.e.  all  s  e  S'  for  which  s  -<  so  in  S),  is  called  an 
initial  of  S.  Likewise  c  5  is  called  a  remainder  of  S  if,  together  with 

any  so  e  S',  all  successors  of  so  in  S  belong  to  S'.  S  itself  and  the  null-set 
are,  then,  both  initials  and  remainders  of  S;  an  initial  or  remainder 

different  from  S  is  also  called  a  proper  initial  or  remainder. 

A  particular  kind  of  initials  of  S  are  those  which  contain  just  the 
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members  that  precede  a  certain  member  s  of  S.  Such  an  initial  is  called  a 

section  of  S;  more  precisely,  the  section  of  S  determined  by  s.  (If  S  has  a 

first  member  then  this  determines  the  null-set  as  the  corresponding 

section.)  Accordingly,  S  is  not  a  section  of  itself. 

3.  Similarity.  We  proceed  from  ordered  sets  to  the  relation  of  similarity 

just  as  we  proceeded  from  plain  sets  to  equivalence  in  §  2,  4. 

Definition  III.  The  ordered  set  S  is  called  similar  to  the  ordered 

set  T,  in  symbols :  S  ~  T,  if  the  members  of  T  can  be  related  to  those 

of  S'  by  a  one-to-one  mapping  which  preserves  the  order ;  i.e.  by  a 
mapping  such  that,  si  and  sz  being  different  members  of  S,  t\  and  tz 

their  respective  images  in  T,  from  si  -<  S2  follows  ti  -<  t%  (hence 

also  vice  versa).  Each  such  mapping  is  called  a  similar  mapping  of 

T  onto  S. 

As  in  the  case  of  equivalence,  the  relation  of  similarity  is  reflexive, 

symmetrical,  and  transitive.  Hence  we  may  speak  of  similarity,  or  of  a 

similar  mapping,  between  S  and  T,  of  two  similar  sets,  and  also  of  a 

similar  one-to-one  correspondence  between  the  members  of  S  and  of  T. 

(Obviously  the  condition  that  si  «<  S2  implies  t\  «<  t2  would  enable  us 

to  do  with  the  uniqueness  of  the  mapping  only,  instead  of  its  biunique¬ 

ness;  yet  it  is  more  convenient  to  define  similarity  by  complementing 

equivalence  with  a  further  condition.) 

While  by  Definition  III  similar  sets  are  (all  the  more)  equivalent,  the 

converse  cannot  hold  since  equivalent  sets  need  not  even  be  ordered.  If 

they  are  then  in  general  they  are  not  similar.  For  instance,  the  sets 

M  —  (1,2,  3,  . . .)  and  N  —  (. . .,  3,  2,  1), 

though  containing  the  same  members,  are  not  similar  since  (for  example) 

M  has  a  first  member  (1)  and  N  not;  hence  no  mapping  between  them 

can  be  similar  because  to  the  true  statement  “1  «<m  for  every  m  e  M, 

m  /  1”  no  corresponding  statement  exists  for  a  possible  image  in  N  of 
1  e  M.  Generally,  a  set  which  is  similar  to  a  set  with  a  first  (last)  member 

has  clearly  itself  a  first  (last)  member. 

A  plain  set  which  is  equivalent  to  an  ordered  set  S  can  always  be 

ordered  (cf.  p.  140),  for  instance  similar  to  S;  we  need  only  take  a  certain 

mapping  between  the  equivalent  sets  and  arrange  the  images  of  the 

members  of  S’  according  to  the  order  in  S. 
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The  definition  of  an  infinite  set  as  a  set  equivalent  to  a  proper  subset 

(VII  of  §  2)  is  apt  to  raise  the  question  whether  every  infinite  ordered  set 

is  similar  to  a  proper  subset.  The  answer  is  in  the  negative.1) 

The  question  raised  on  p.  27  with  respect  to  equivalence  may  also  be  asked  here, 

namely  whether  the  concept  of  similarity  can  be  reduced  to  the  membership  relation; 

the  answer  is  again  in  the  affirmative.  Given  two  disjoint  ordered  sets,  the  set  of  all 

mappings  between  them  exists  as  shown  on  p.  27.  A  subset  of  this  set,  namely  the 

set  of  all  similar  mappings,  can  be  defined  by  using  the  concept  of  order  as  based  on 

membership  (p.  132);  hence  it  exists  on  account  of  the  axiom  of  subsets.  Finally, 

S  and  T  are  similar  if  and  only  if  the  set  of  all  similar  mappings  between  them  is  not 
empty. 

Subsequently  one  can  get  rid  of  the  condition  that  the  sets  be  disjoint;  cf.  Foundations, 
chapter  II,  §  8. 

The  far-reaching  parallelism  between  the  properties  of  equivalence  and  similarity 
and  even  of  analogous  relations  which  satisfy  additional  conditions,  suggests  the 

introduction  of  a  general  concept  of  relation  comprehending  those  mentioned  as 

particular  cases.  (Cf.  the  question  regarding  operations,  raised  at  the  end  of  1.)  The 

general  relation  will  then  be  “equivalence  of  sets  with  respect  to  a  class  (group)  2)  G 

of  mappings  or  functions”,  and  we  write  S  ~  T  if  there  is  a  function  in  G  which  maps G 

S  onto  T.  Of  course,  the  generality  of  this  concept  excludes  the  development  of  a 

theory  as  elaborate  as  the  theory  of  similarity;  nevertheless  a  theory  far  from  trivial 

can  be  based  upon  that  concept  and  certain  statements  regarding  ordinary  equivalence 

or  similarity  appear  in  this  theory  as  particular  cases.3) 
The  situation  is  somewhat  analogous  to  the  classification  of  various  geometries 

according  to  the  groups  of  transformations  characteristic  of  them  ( Erlanger  Programm ) . 

The  use  of  a  rather  comprehensive  group,  say  of  the  projective  (or  even  homeomorphic) 

transformations,  eliminates  geometrical  properties  which  are  still  invariant  relative  to 

a  subgroup,  for  instance  of  the  affine  or  the  similar  transformations.  Analogically 

most  properties  of  similarity  between  ordered  sets  are  lost  by  proceeding  from  the 

group  of  similar  mappings  to  the  more  comprehensive  one  of  plain  (equivalence) 

mappings.  Equivalence  is  an  isomorphism  with  respect  to  equality  only  (one-to-one 
correspondence),  similarity  an  isomorphism  with  respect  to  order. 

Examples  of  similarity.  1)  Any  two  equivalent  finite  ordered  sets,  for 

instance  any  two  ordered  sets  with  a  million  members,  are  similar. 

Moreover,  every  finite  set  can  be  ordered,  by  taking  first  an  arbitrary 

member,  then  any  member  of  the  remainder,  etc.  Both  are  theorems  of 

arithmetic  to  be  proven  by  mathematical  induction  (starting  with  defining 

a  finite  set  as  inductive ;  §  2,  Definition  VI).  Cf.  §  10,  6. 

2)  If  N  and  R  denote  the  sets  of  all  positive  integers  and  of  all  rationals 

respectively,  both  ordered  according  to  increasing  magnitude,  these 

x)  See  Dushnik-Miller  40  where  a  counter-instance  is  formed  by  means  of  the 
axiom  of  choice.  For  denumerable  ordered  sets,  however,  the  answer  is  in  the  affirmative. 

Cf.  §  10,  5. 

2)  See  exercise  10)  at  the  end  of  §  8. 

3)  Cf.  the  literature  cited  in  the  footnote  on  p.  77,  notably  the  papers  of  Tarski. 
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(denumerable)  sets  are  certainly  not  similar;  cf.  p.  126.  Yet  if  the  members 

of  R  are  rearranged  so  as  to  form  a  sequence  (§  3,  3)  then  we  obtain 

similar  sets ;  in  fact,  any  two  enumerated  sets  are  similar,  which  is  shown 

inductively  by  relating  the  first  members,  the  second  ones,  and  generally 

the  /cth  members  for  every  positive  integer  lc  to  each  other.  For  in¬ 

stance,  the  subset  (k,  k  k  2,  . . .)  of  N  is  similar  to  N. 

Moreover,  the  similar  mapping  established  is  the  only  similar  mapping 

between  two  enumerated  sets  —  in  contrast  to  mappings  between  equival¬ 

ent  plain  sets  with  more  than  one  member  where  always  various 

mappings  exist,  and  infinitely  many  between  equivalent  infinite  sets.  We 

shall  see  that  the  uniqueness  of  the  mapping  in  the  present  case,  as  well 

as  in  the  case  of  finite  ordered  sets,  is  a  particular  case  of  a  general  the¬ 

orem  (13  of§  10).  Yet  in  other  cases  there  are  different  similar  mappings 

of  a  set  onto  itself  or  a  similar  set,  as  shown  by  various  examples  in  the 

present  and  the  following  section. 

3)  Let  R  be  again  the  set  of  all  rationals  r,  Q  the  set  of  all  rationals 

except  those  of  the  interval  0  <  r  <1,  both  sets  ordered  according  to 

magnitude.  We  obtain  a  similar  mapping  (one  from  among  infinitely 

many)  of  R  onto  Q  by  the  following  rule:  each  negative  r,  as  well  as  0, 

is  related  to  itself,  while  a  positive  r  e  R  shall  be  related  to  (1  +  r)eQ 

(hence  a  positive  r  e  Q  to  (r  —  1)  e  R). 

We  shall  see  (§  9,  3)  that  similarity  continues  to  hold  between  these 

sets  if,  for  instance,  0  is  removed  from  Q.  If,  however,  1  is  added  to  the 

members  of  Q  then  the  new  set,  to  be  written  Q' ,  is  not  similar  to  R. 
For  then  0  and  1  are  consecutive  members  of  Q  while  R  has  no  pair 

of  consecutive  members,  because  between  any  two  rationals  (in  the 

sense  of  magnitude)  there  are  infinitely  many  rationals.  But  the  images  of 

consecutive  members,  in  view  of  a  similar  mapping,  are  also  consecutive; 

this  follows  just  as  shown  on  p.  134  for  first  (or  last)  members. 

The  addition  of  a  single  member,  then,  may  destroy  an  infinite  ordered 

set’s  similarity  to  another,  in  striking  contrast  to  plain  sets  for  which 

A  PC  Q  B 

Fig.  10 
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not  even  the  addition  of  denumerably  many  members  changes  the  validity 

of  an  equivalence  (§  3,  Theorem  6). 

4)  We  resume  a  procedure  used  in  §  4,  1  to  deduce  more  far-reaching 

conclusions  this  time.  Drawing  a  straight  line  /  and  a  segment  AB 

without  its  ends  (see  figure  10),  we  conceive  the  line  and  the  segment  as 

ordered  sets  L  and  M  respectively  of  their  points,  say  in  the  order  from 

left  to  right.  To  prove  that  these  sets  are  similar  we  bend  the  segment  in 

its  center  C  just  as  on  p.  49  and  lay  it  in  C  upon  the  line,  the  ends  diverg¬ 

ing  symmetrically  upwards  as  done  in  figure  10;  in  the  new  position  the 

segment  shall  also  be  considered  ordered  from  left  to  right.  Taking  the 

point  S,  midway  between  the  new  positions  of  A  and  B,  as  center  of  pro¬ 

jection  we  obtain,  precisely  as  in  §  4,  a  mapping  of  Lonto  M  by  relating 

to  each  other  the  intersections  with  every  (intersecting)  ray  from  S, 

for  instance  P  and  P',  Q  and  Q',  and  also  C  and  C  (related  to  itself). 
In  view  of  our  present  task,  we  perceive  that  the  mapping  is  also  similar, 

since  no  two  rays  from  S  intersect  one  another.  Hence  our  sets  of  points 

are  similar. 

Yet  the  sets  cease  being  similar  if  to  the  segment  one  of  its  ends  is 

added.  For  then  M  has  a  first  or  a  last  member,  in  contrast  with  L. 

By  means  of  the  “line  of  numbers”  (§  1,  fig.  2)  our  result  is  transferred 
to  sets  of  real  numbers  and  then  runs  as  follows:  the  set  of  all  real 

numbers  is  similar  to  the  set  of  the  numbers  x  of  any  open  interval 

a  <  x  <  b,  if  the  numbers  are  arranged  according  to  magnitude. 

5)  On  account  of  4)  we  may  form  a  similar  mapping  of  a  square 

'-axis 

Fig.  11 

■>-  x-axis 
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onto  the  infinite  plane,  each  regarded  as  a  (simply)  ordered  set,  as  follows. 

Let  OXZY  be  a  square  in  a  plane  with  a  system  of  Cartesian  coordinates 

(figure  11);  O  is  the  origin,  and  the  square  sides  OX  and  OY  with  their 

prolongations  are  the  x-  and  y-  axes  respectively.  The  set  S  of  the  points 
of  the  plane  and  the  set  T  of  the  points  of  the  square,  excluding  the 

points  of  the  sides,  shall  be  ordered  by  the  following  rule:  if  xi,  X2  are 

the  abscissae  and  y  1,  yz  the  ordinates  of  the  points  Pi  and  Pz  respectively, 

let  Pi  -<  Pz  if  xi  <  xz,  or  if  xi  =  X2  and  yi  <  yz.  In  figure  11,  then,  we 

have  for  instance  0-<Q-<Z-<P,  X  ̂ Z. 

To  map  S  similarly  onto  T  we  conceive  the  points  of  5  as  the  ordered 

pairs  of  their  coordinates  or,  which  amounts  to  the  same,  as  the  pairs  of 

the  respective  feet  on  the  axes,  i.e.  P  as  ( Px,Py ),  Q  as  ( Qx ,  Qy).  In  example  4) 

a  rule  was  formed  which  similarly  maps  the  entire  x-axis  onto  the  open 

square  side  OX  and  the  entire  y-axis  onto  the  open  square-side  OY; 

hence  to  each  point  ( Px  or  Py)  of  either  axis,  a  point  ( Qx  or  Qy )  of  the 

respective  square  side  corresponds  biuniquely.  Thus  a  mapping  of  S  onto 

T  is  formed  by  relating  to  the  point  P  —  ( Px ,  Py)  of  the  plane  the  point 

Q  =  (Qx,  Qy)  of  the  square,  and  this  mapping  is  clearly  similar,  for  if 
Pi  -<  Pz  then  we  have  for  the  respectively  corresponding  square  points 

Qi,  Q 2  also  Qi  -<  Qz. 

4.  Order-Types.  We  proceed  from  the  relation  of  similarity  to  the 

concept  of  order-type  just  as  we  did  from  equivalence  to  cardinal  number 

(§  4,  5  and  6).  Without  repeating  the  earlier  remarks  we  define  (cf.  (B)  on 

p.  60): 

The  ordered  sets  Si  and  Sz  are  said  to  have  equal  order-types  if 

Si  ~  Sz.  Otherwise  their  order-types  are  called  different. 
This  working  definition  may  be  extended  to  an  explicit  one  by  con¬ 

ceiving  an  order-type  as  the  plain  set  of  all  ordered  sets  which  are  similar 

to  a  given  set  (cf.  (A)  on  p.  59),  or  else  by  defining  the  order-type  of  a 

set  S'  as  a  new  symbol  uniquely  assigned  to  S,  subject  to  the  condition  that 
the  order-types  of  S  and  of  S'  are  equal  if  and  only  if  S  and  S'  are  similar. 

The  term  “order-type”  shall  be  shortened  to  type.  Transfinite  types , 
i.e.  those  of  infinite  ordered  sets,  will  be  denoted  by  small  Greek  letters, 
in  general  corresponding  to  the  letter  used  for  the  set;  e.g.,  the  type  of 
S  by  o. 

In  analogy  to  his  notation  of  cardinals  (p.  60),  Cantor  denoted  the 
type  of  the  ordered  set  S  by  S,  hinting  at  a  single  act  of  abstraction,  namely 
from  the  nature  of  the  members  but  not  from  their  succession.  Since  the 
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result  of  a  double  act  of  abstraction  is  the  cardinal  S,  consistently  S  =  s  is 

also  written  as  a,  a  being  the  type  of  S ,  and  a  is  called  a  type  of  the 

cardinal  s.  If  <x  =  No  (or  >  No)  we  speak  of  a  denumerable  (or  non- 

denumerable)  type  a. 

Since  any  two  equivalent  finite  ordered  sets  are  similar  (p.  135)  there  is 

a  one-to-one  correspondence  between  finite  cardinals  and  finite  types. 

This  is  why  both  finite  cardinals  and  types  may  and  shall  be  denoted  by 

the  same  symbols  0,  1,  2,  . . n,  . . . ;  in  fact,  n  is  apt  to  mark  the  type 

of  any  ordered  set  with  n  members.  (Since  the  null-set  and  unit-sets  are 
also  considered  to  be  ordered  sets  it  is  reasonable  to  admit  0  and  1  as 

types,  too.)  Incidentally,  there  is  no  danger  of  confusion  between  finite 

cardinals  and  types;  for  statements  containing  finite  numbers  only  are 

independent  of  whether  we  regard  them  as  cardinals  or  types,  and  if 

transfinite  numbers  (cardinals,  types)  enter  a  statement  we  have  to 

interpret  finite  numbers  in  the  statement  according  to  the  nature  of  the 

transfinite  ones. 

If  S  is  an  infinite  set  of  the  type  a  then  the  type  of  the  set  which  origin¬ 

ates  from  S  by  inverting  its  order  (i.e.  by  replacing  each  5i  -<  52  with 

5i  >  52)  is  denoted  by  *0.  (Whether  *0  A  o  or  *cr  =  o  depends  on  a.) 
In  particular,  the  type  of  an  enumerated  set,  e.g.  of  the  set  (1,  2,  3,  . . .), 

is  denoted  by  co.  Hence  we  have  a>  —  No ;  *co  A  co  since  co  has  a  first 

member  and  *co  has  not  (which  is  an  abbreviation,  used  frequently,  for 

“every  set  of  the  type  co  has  a  first  member”).  *co,  the  type  of  (. . .,  3,  2,  1), 
has  a  last  member. 

While  transfinite  order-types,  as  well  as  transfinite  cardinals,  constitute 

infinite  magnitudes  they  have  the  drawback  of  being  incomparable  in 

general.  (For  this  reason  they  are  not  called  numbers,  whereas  the  di¬ 

stinctive  title  of  “ordinal  numbers”  is  conferred  on  the  particular  types 
dealt  with  in  §§  10  and  11.)  In  fact,  the  analogy  to  cardinals  would 

suggest  to  call  o  “less  than”  r  if  o  is  similar  to  a  subset  of  x  but  x  not 

similar  to  any  subset  of  o  (which  again  is  short  for  “if  a  set  of  the  type  a 

is  similar  to  a  subset  of  a  set  of  the  type  r,  etc.”).  An  instance  as  simple  as 

(7  =  0),  r  =  *a>  illuminates  the  situation:  every  subset  of  *co  has  a  last 

member  as  in  contrast  to  co,  and  every  subset  of  co  has  a  first  as  in  contrast 

to  *co;  accordingly  no  judicious  comparison  between  co  and  *co  is 

conceivable.  Another  instance,  also  of  denumerable  types,  is  a  =  1  +  rj, 

x  =  rj  1  (see  §  9,  3).  Cf.  exercise  5)  at  the  end  of  §  8. 

Nevertheless,  one  may  profitably  introduce  a  partial  order  by  magnitude  between 

types  (p.  131)  by  defining  just  as  suggested  above;  namely,  if  S  and  T  are  sets  of  the 
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types  a  and  x  respectively,  we  call  <7  less  than  x  (a  <  x)  if  S  is  similar  to  a  subset  of  7" but 
7  not  similar  to  any  subset  of  S.1)  Then,  in  addition  to  a  =  x  and  a  <  x,  the  case  where 
either  set  is  similar  to  a  subset  of  the  other  while  the  sets  are  not  similar  should  be 

distinguished  as  a  third  case,  and  the  types  0  and  r  will  be  called  incomparable  only  if 

none  of  these  cases  applies,  as  for  o  =  oj  and  x  =  *co.2) 

The  following  theorem  3)  may  serve  as  an  example  of  applying  this  partial  order  of 
types :  there  exist  linear  sets  (§  9)  H  and  K  of  the  cardinal  X  such  that  H  <  K  while  no 

type  lies  between  them,  being  greater  than  H  and  less  than  K. 

Order-types,  i.e.  the  types  of  simply  ordering  relations,  constitute  a 

particular  case  of  general  relation-types.4) 

Theorem  2.  The  set  T( c)  of  all  different  types  of  a  given  cardinal  c 

satisfies  the  inequality 

7(c)  <  2C\ As  to  transforming  this  inequality  to  the  corresponding  equality,  it  can  certainly 

not  be  done  for  finite  c  >  0,  for  then  there  exists  only  a  single  type  of  the  cardinal  c 

while  the  right-hand  side  is  >  1.  For  c  =  No  we  shall  succeed  in  proving  the  equality 

by  means  of  the  addition  of  types  (6,  Theorem  5).  That  in  the  general  case  an  equality 

cannot  be  attained  with  “elementary”  resources  follows  from  the  remark  on  p.  132 
about  ordering  a  given  set;  if  this  is  not  generally  possible  there  remains  the  risk  of 

7(c)  =  O,  and  even  when  this  can  be  excluded  by  an  effective  example,  as  for  c  =  x 

(linear  continuum!),  still  considerable  difficulties  are  left.  Only  by  means  of  the 

well-ordering  theorem  (§  11,  6)  can  we  prove  that  c2  =  c  and  that  the  cardinal  of 

7(c)  equals  2C. 

Proof.  A)  Let  x  —  T  be  an  arbitrary  member  of  7(c)  —  which 
includes  the  existence  of  an  ordered  set  T  of  the  cardinal  c  —  and  denote 

by  S'  any  (not  necessarily  ordered)  set  with  the  cardinal  c.  Then  S  can  be 
ordered  according  to  the  type  x,  namely  by  establishing  in  S  the  order 

prevailing  in  T  by  means  of  a  mapping  of  S  onto  T. 

B)  Hence  7(c)  is  equivalent  to  a  subset  of  the  set  V  whose  members  are 

all  ordered  sets  containing  the  members  of  an  arbitrary  set  S  of  the  cardinal 
c.  For,  by  A),  every  type  of  the  cardinal  c  belongs  to  some  of  the  sets 

of  V ;  yet  as  different  sets  need  not  have  different  types  we  can  only 
speak  of  a  subset  of  V. 

x)  See  Fraisse  48.  More  simply  we  may  say:  there  is  a  similar  mapping  of  S  into 7  but  none  of  7  into  S. 

2)  Cf.  Ginsburg  54.  This  interesting  paper  chiefly  deals  with  fixed  points  of  ordered 
sets  S,  i.e.  members  of  S  which,  by  every  similar  mapping  of  S  into  S,  become  related 
to  themselves.  A  main  problem  is  the  occurrence  of  fixed  points  in  ordered  sums  and 
products  of  sets  which  possess  fixed  points. 

3)  See  Sierpinski  50b,  cf.  Ginsburg  53. 

4)  These  general  types  and  their  (relational)  addition  are  comprehensively  treated in  Tarski  56. 
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C)  Now  an  ordered  set  corresponding  to  5  may  be  considered  to  be 

a  certain  set  of  ordered  pairs  (si,  s  2)  with  e  S,  S2  e  S',  for  instance,  of  the 
pairs  (ji,  s 2)  for  which  si  -<  s2  holds  in  the  ordered  set  (which  implies  that 
the  pairs  satisfy  conditions  as  formulated  in  a)  —  d)  of  Definition  I). 
Hence  the  set  V  defined  in  B)  is  equivalent  to  a  subset  of  the  set  Y  whose 

members  are  all  sets  of  ordered  pairs  (ji,  ,s2)  out  of  S'. 
D)  As  shown  in  §  6,  5,  a  set  of  (ordered)  pairs  out  of  S  is  essentially  a 

subset  of  the  Cartesian  product  S  x  S.  Hence,  according  to  C),  V  is 
equivalent  to  a  subset  of  the  power-set  C (S  x  S)  which  has  the  cardinal 

2C  ’ c  (§  7,  3).  Therefore,  by  B),  J(c)  has  a  cardinal  <  2C\  as  maintained  in our  theorem. 

By  means  of  C)  and  D)  it  can  be  proven  that,  given  an  un-ordered  set  S,  there  exists 
the  set  whose  members  are  all  ordered  sets  containing  the  members  of  S.  (Cf.  above 
p.  132.)  This  proof,  as  well  as  the  proof  of  Theorem  2,  makes  no  use  of  the  axiom  of 
choice  but  uses  the  axiom  of  subsets  in  the  following  way.  In  C)  we  formed  the  set  Y 
whose  members  are  all  sets  of  ordered  pairs  out  of  S.  Among  these  sets  there  are  those 
which  correspond  to  the  conditions  of  order  expressed  in  Definition  I.  The  axiom  of 

subsets,  then,  yields  the  subset  Y’  c  y  which  contains  these  particular  sets  of  pairs. 
However,  as  pointed  out  above,  the  axiom  of  choice  is  required  to  prove  that  Y'  is  not 
empty. 

5.  Addition  of  Two  Order-Types.  Operations  with  types  can  be  defined 

to  a  certain  extent  —  addition  fully,  multiplication  partly  —  in  analogy 
to  the  operations  defined  for  cardinals  in  §  6.  However,  only  part  of  the 
formal  laws  there  proven  are  valid  in  the  arithmetic  of  types. 

Definition  IV.  To  add  the  types  a  and  z  in  this  succession,  the 

union  S  VJ  T  of  disjoint  set-representatives  with  S  =  o,T  ~  z  shall 
be  ordered  by  the  following  rule: 

a)  if  xi  and  x2  belong  both  to  S  or  both  to  Tthen  xi  -<  x2  holds  in 

the  union  if  it  holds  in  S  or  in  T; 

b)  If  x\  e  S  and  x2ef  then  xi  -<  x2  holds  in  the  union. 

This  rule  transforms  the  union  into  an  ordered  set  S  -f-  T  whose 

type  is  called  the  ordered  sum  a  +  z  of  the  given  types’,  S  +  T  is 
called  the  ordered  sum  of  S  and  T. 

In  short,  the  ordered  sum  of  types  is  the  type  of  the  union  of 

corresponding  disjoint  ordered  sets,  provided  that  in  the  union  the 

order  of  either  set  is  retained  and  the  members  of  the  first  term 

precede  those  of  the  second.  In  symbols,  S  +  T  =  S  -f  T.  (Cf. 

Definition  II  of  §  6.) 
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The  following  remarks  will  prove  useful. 

1)  While  the  disjointedness  was  required  in  §  6  for  the  sum  of  cardinals 

only  and  not  for  the  union  of  plain  sets,  it  is  here  also  necessary  for  the 

addition  of  ordered  sets ;  otherwise  the  rule  of  order  would  be  ambiguous 

(for  instance,  if  xi  «<  X2  in  S  and  X2  -<  xi  in  T). 

2)  Clearly  S  +  T  satisfies  the  conditions  of  order,  including  trans¬ 
itivity. 

3)  In  view  of  the  (arbitrary)  rule  b)  the  succession  of  o  and  r  must  be 

given  from  the  first;  hence  we  speak  of  ordered  sums. 

4)  The  symbol  +,  employed  for  the  addition  of  cardinals  in§  6,  is  here 

used  for  the  addition  of  types;  this  cannot  lead  to  confusion  since  the 

nature  of  the  terms  (cardinals  or  types)  clarifies  the  meaning  of  +  (except 

for  finite  a  and  z  for  which  the  meaning  is  indifferent). 

5)  Similarly  as  in  §  6,  o  +  z  is  uniquely  defined  by  o  and  r,  notwith¬ 

standing  the  arbitrariness  of  their  set-representatives.  For  the  following 

theorem  holds :  If  S  ~  S',T~  T',  and  if  S  and  T,  as  well  as  S'  and  T',  are 

disjoint  sets,  we  have  S  +  T~  S'  +  T .  This  theorem  is  proven  like 
Theorem  1  of  §  6  (for  pairs  A  and  B),  in  view  of  the  rules  a)  and  b)  of  our 

definition;  hence  S  +  T=  S'  +  T',  i.e.  the  sum  of  the  types  is  independ¬ 
ent  of  the  choice  of  the  representatives. 

6)  A  comparison  between  our  definition  and  Definition  II  of  §  6  yields 

<7  r  =  <7  -f-  7,  i.e.  the  cardinal  of  the  sum  of  two  types  equals  the  sum 

of  the  cardinals  of  the  types. 

Examples.  1.  Between  the  finite  order-types  3,  4,  7  we  have  the 

equalities  3  +  4  =  4  +  3  =  7,  as  follows  from 

(1,  2,  3)  +  (4,  5,  6,  7)  ~  (4,  5,  6,  7)  +  (1,  2,  3)  ~  (1,  2,  . . .,  7). 

These  statements,  and  generally  m  +  n  —  n  +  m  for  any  finite  types 

m,  n,  may  be  inferred  also,  instead  from  Definition  IV,  from  §  6  and  the 

one-to-one  correspondence  between  finite  types  and  finite  cardinals. 

Hence,  though  the  order  of  the  terms  essentially  enters  Definition  IV  (as  in 

contrast  with  the  addition  of  cardinals),  the  addition  of  two  finite  types 

is  commutative  and  yields  a  finite  sum.  The  same  applies  to  the  addition 

of  finitely  many  finite  types  in  the  sense  of  Definition  V,  below. 
2.  In  contrast  herewith  we  have 

co  +  1  f  1  +  (O  (=  co). 
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For,  using  the  sequence  of  increasing  positive  integers  as  representing  co, 
we  obtain 

co+l  =  (1,  2,  3,  . . .  0), 

i.e.  the  type  of  a  set  with  a  last  member,  while 

1  “t~  co  —  (0,  1,  2,  3,  . . .)  =  co. 

By  induction  we  obtain  n  +  co  =  co  and  *co  +  n  —  *co  for  every  finite 

n,  while  co  -f  m  ̂   co  f-  n  and  m  +  *co  #  n  +  *co  for  different  finite 

values  m,  n.  Likewise  we  have  co  +  co  A  co.  In  general,  then,  the  addition 

of  two  types  is  non-commutative  *),  and  a  type  may  be  changed  by  the 
addition  of  a  finite  or  a  denumerable  type,  in  contrast  with  the  cardinal 

equalities  No  +  n  =  No  +  Xo  =  Xo. 

Theorem  3.  The  addition  of  ordered  sets  and  of  types  according  to 

Definition  IV  is  associative,  i.e. 

(S  +  T)  -f-  U  =  S  4~  (T  +  U ),  (o  +  t)  -(-  o  =  a  +  (r  -f-  u). 

Proof  It  suffices  to  prove  the  statement  for  sets.  Since  forming  the 

union  of  plain  sets  is  an  associative  operation  (§  6,  4),  only  the  coincidence 

of  order  in  the  left-hand  and  right-hand  sets  has  to  be  shown.  If  xi  and  X2 

belong  to  the  same  of  the  sets  S,  T,  U  then  it  is  trivial  that  xi  «<  X2,  if  valid 

in  one  set,  is  valid  in  the  other.  Else,  if  x%  -<  X2  in  (S'  +  T)  +  U,  either  xi 
belongs  to  S  and  *2  to  T  or  U,  or  xi  belongs  to  T  and  X2  to  U.  In  the  first 

case  we  have  xi  -<  X2  in  S  +  (T  +  U ),  in  the  second  xi  -<  *2  in  T  +  U, 

hence  in  S  +  (T  +  U).  The  transition  from  right  to  left  is  verbally  the 

same. 

In  view  of  Theorem  3,  the  common  value  of  the  sums  of  types  may  be 

written  a  +  t  +  v. 

As  examples  we  take 

n  +  (co  +  co)  =  (n  +  co)  +  co  =  co  +  co  =  co  +  (n  +  co)  =  (co  +  n)  +  co 

for  any  finite  n;  while  these  sums  are  independent  of  n,  co  +  co  +  m  and 

co  +  co  +  n  are  different  for  m  A  n. 

q  Aronszajn  53  investigates  the  cases  in  which  the  addition  is  commutative,  a  task 

which  is  not  simple  at  all.  For  the  same  question  regarding  ordinal  numbers  see  the  end 

of  §  10,  4. 
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*co  +  m  is  the  type  of  the  set  of  all  integers  arranged  according  to 

magnitude;  for  finite  n  we  have 

(*o>  +  n)  +  co  =  *co  +  (n  +  co)  —  *co  +  oj, 

whereas  the  sums  n  -j-  *co  -j-  co  and  *a>  +  co  +  n,  different  from  one  an¬ 

other  if  n  A  0,  are  also  dependent  on  the  value  of  n. 

6.  General  Addition  of  Order-Types. 

Definition  V.  Assume  that  to  every  member  I  of  a  non-empty 

ordered  set  T  a  type  / ( t )  =  Qt  is  uniquely  assigned.  To  form  the 

ordered  sum  of  the  gt,  replace  each  gt  by  a  set-representative  Rt 

( Rt  =  gi)  such  that  Rtl  and  Rt2  are  disjoint  for  ti  A  tz-  The  union 
of  the  sets  Rt  shall  be  ordered  by  the  following  rule: 

a)  if  xi  and  xz  belong  to  the  same  Rt  then  xi  -<  xz  holds  in  the 

union  if  holding  in  Rt ; 

b)  if  xi  e  Rti  and  xz  e  Rt2  then  xi  «<  xz  holds  in  the  union  if 

ti  -<  tz  holds  in  T. 

This  rule  transforms  the  union  into  an  ordered  set  K  whose  type  k 

is  called  the  ordered  sum  of  the  given  types',  K  is  called  the  ordered 
sum  of  the  sets  Rt.  One  writes 

K  =  2  &' 

teT 

In  short,  the  ordered  sum  of  types  is  the  type  of  the  ordered  sum 

of  corresponding  disjoint  ordered  sets.  (Cf.  Definition  III  of  §  6.) 

The  remarks  1)  to  4)  added  to  Definition  IV  apply  also  to  Definition  V, 

which  includes  IV  as  a  particular  case.  4)  now  refers  to  the  symbol 

instead  of  +.  As  to  5),  k  is  uniquely  determined  in  view  of  the  analogue 

to  Theorem  1  of  §  6,  which  states  in  the  terminology  of  our  definition: 

if  Rt  and  R*  are  representatives  of  Qt,  hence  Rt  ~  R*,  then  the  ordered 

sum  of  the  sets  Rt  is  similar  to  the  ordered  sum  of  the  sets  R*;  accordingly 
the  sum  k  is  independent  of  the  chosen  representatives.  This  is  proven 

analogically  as  in  §  6,  2  with  the  supplement  given  on  p.  91 ;  by  means  of 

Axioms  I- VI  one  proves  that,  with  respect  to  similar  disjoint  sets  Rt 

and  R*,  there  exists  the  set  of  all  similar  mappings  between  them  (which 
may  be  finite  or  infinite  for  infinite  Rt,  in  contrast  with  mappings  between 
plain  sets),  and  even  that  the  set  exists  whose  members  are  all  such  sets  of 

similar  mappings  while  t  ranges  over  T;  however,  to  obtain  a  single 
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mapping  for  each  t  as  required  for  our  purpose,  here  also  the  axiom 
of  choice  is  required  in  general. 

By  comparing  Definition  V  with  Definition  III  of  §  6  one  easily 
extends  the  remark  6)  of  5  to  the  statement  that  the  cardinal  of  an  ordered 

sum  of  types  equals  the  sum  of  the  cardinals  of  the  single  types',  i.e., 

2  e*  =  2 teT  teT 

The  ordered  sum  of  types  as  defined  here  is  also  independent  of  the  auxiliary  set  T; 
it  only  depends  on  the  type  ofT.  In  a  more  elaborate  form:  if  T~  T*  and  the  image  of 
teT,  in  view  of  a  fixed  similar  mapping,  is  denoted  by  t*,  then  by  assigning  pt  to  t*, 
instead  of  to  t,  the  sum  k  is  not  changed.  This  is  obvious  because  the  new  ordered 

sum-set  with  the  same  representatives  is  (not  only  similar  but)  equal  to  the  original  one. 

While  Definition  IV  yields  examples  of  non-commutative  addition  only 
if  one  of  the  terms  is  transfinite,  in  the  present  case  addition  need  not  be 

commutative  even  if  all  terms  are  finite,  as  shown  below  in  example  2. 
However,  associativity  also  holds  in  the  general  case;  just  as  in  the  case  of 

cardinals,  the  problem  is  rather  the  formulation  of  the  associative  law 

than  its  proof  which  is  quite  simple. 

In  §  6,  4  the  formulation  was  simplified  by  the  use  of  the  operator  U 

for  sum-sets.  In  order  not  to  complicate  the  symbolism  excessively  we 
shall  here  use  an  operator  ad  hoc,  S,  to  denote  the  ordered  sum  of  an 

ordered  set  of  sets,  and  the  symbol  +  of  Definition  IV  also  for  more  than 

two  set-terms. 

Let  A  be  the  ordered  set  of  all  sets  Rt  introduced  in  Definition  V  and 

(1)  A  —  ...  +  isT  +  ...  -j-  L  -f  ...  +  M  +  ... 

an  arbitrary  ordered  decomposition  of  A  into  complementary  disjoint 

non-empty  subsets  (cf.  (1)  on  p.  85);  the  members  of  the  ordered  subset 

K,  for  instance,  precede  those  of  L,  according  to  the  order  fixed  in  A  by 

the  set  T.  Then  the  associative  law  for  the  ordered  sum  S A  should  be 

formulated  (cf.  (2)  on  p.  85)  as 

(2)  SA  -  . . .  +  SK  +  . . .  +  SL  +  . . .  +  SM  +  . . .. 

It  was  proven  in  §  6,  4  that  the  left-hand  and  right-hand  sides  of  (2) 

contain  the  same  members.  Hence  it  only  remains  to  show  that  they 

appear  on  both  sides  in  the  same  order,  which  is  done  in  analogy  to  the 

proof  of  Theorem  3  (p.  143).  With  respect  to  different  members  xi  and  x% 

of  S A  we  distinguish  between  three  cases: 

A)  xi  and  xz  belong  to  the  same  Rt  e  A; 
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B)  xi  e  Rtl  and  x2  €  Rt2  with  h  f  h,  but  Rtl  and  Rt2  belong  to  the 

same  term  on  the  right-hand  side  of  (1),  say  both  to  K; 

C)  xi  e  Rtl  and  x2  e  A«a,  where  Rtl  and  Rtz  belong  to  different  terms  of 

(1),  say  Rt±  e  K  and  Rt2  e  L. 
In  each  case  the  succession  between  xi  and  x2  is  the  same  on  both 

sides;  in  A),  on  account  of  a)  in  Definition  V ;  in  B),  on  account  of  b)  in 

Definition  V,  applied  to  SA  and  to  the  respective  term  on  the  right  (SAT) ; 

in  C),  on  account  of  the  succession  in  (1)  of  the  respective  terms  on  the 

right,  i.e.  because  the  members  of  K  precede  those  of  L. 

Since  (2)  implies  the  corresponding  associative  law  for  types,  we  have 

Theorem  4.  The  ordered  addition  of  sets  and  types  according  toDefinition 

V  is  associative,  in  the  sense  of  the  equalities  (1)  and  (2)  and  their  analogues 

for  types.  It  is,  however,  not  commutative  in  general,  except  for  the  addition 

of  finitely  many  finite  types. 

Theorem  4  includes  Theorem  3  with  the  qualification  that  now  finite 

sums  are  defined  independently;  while  in  view  of  Theorem  3  a  +  x  +  v 

is  defined  as  the  common  value  of  (cr  +  t)  +  n  and  a  -j-(r  +  v),  here  the 
equality  of  the  three  expressions  is  a  proven  statement. 

Examples.  1 .  Let  T  be  an  enumerated  set,  hence  T  =  co,  and  assign 

f(t)  =  co  to  each  t  eT.  The  sum  yco  =  cu  +  co-t-co-l-  ...  is  accordingly 
teT 

the  type  of  a  sequence  of  sequences.  (In  contrast  with  (1)  and  (2)  above, 

dots  appear  here  only  at  the  end  because  every  term  has  a  sequent.) 

According  to  Cauchy’s  diagonal  method  (p.  101)  we  may  obtain  a 
representative  of  our  sum by  first  writing  the  positive  integers  in  the  array 

1 2 4  7  11  16  . 

3 5 8  12  17  . 

6 9 13  18 . 
10 

14 
19 . 

15 
20 

21 

• 

and  then  arranging  them  according  to  successive  rows. 

If  f  (t)  =  co  +  co  is  assigned  to  each  t  eT  then  the  sum  clearly  remains 
unchanged  in  view  of  the  associative  law. 



CH.  Ill,  §  8] ORDERED  SETS.  SIMILARITY  AND  ORDER-TYPES 

147 
2.  Let  Tbe  an  arbitrary  non-empty  ordered  set  and  T  =  r.  By  assigning 

the  type  1,  and  as  its  representative  the  unit-set  {?},  to  each  t  e  T,  we 

obtain  just  the  sum  t  according  to  Definition  V.  Hence  any  type  z  ̂   0 

can  be  represented  as  an  ordered  sum  of  unities  1,  according  to  the  cardinal¬ 

ity  and  order  of  r,  (Cf.  Theorem  5  of  §  6.) 

If,  instead  of  1 ,  the  type  2  is  assigned  to  each  t  e  T  then  the  sum  will 

change  not  only  for  finite  T  but  in  general  also  for  infinite  T.  (In  certain 

cases,  e.g.  for  T  —  co,  it  does  not  change.)  For  example,  if  T  is  the  set  R 

of  all  rationals  r  between  0  and  1  ordered  by  magnitude,  and  if  T,  as 

usual,  is  denoted  by  //,  then  the  function  f(r)—  1  produces  the  “dense” 
sum  q  (cf.  §  3,  3  and  §  9,  1  and  3),  while  in  the  sum  corresponding  to 

f(r)  =  2  each  member  has  a  neighbor.  For  the  representative  of / (/•)  =  2 
we  may,  for  instance,  take  the  ordered  pair  ( r ,  1  +  r) ;  the  corresponding 

ordered  sum  shall  be  denoted  by  Q. 

Yet  if,  instead  of  R,  we  consider  the  ordered  set  R'  of  all  rationals  be¬ 

tween  0  and  2  except  for  1  (in  §  9,  3  we  shall  prove  R'  ~  R)  then  a  one-to- 

one  correspondence  between  the  members  of  Q  and  of  R'  is  formed  by 

relating  to  r  e  R’  and  (1  +  r)  e  R'  respectively  the  (equal)  members  of  the 

pair  ( r ,  1  +  r).  Thus  R'  differs  from  Q  by  its  order  only.  Since  R1  is  dense, 

the  types  of  Q  and  R'  are  different;  this  is,  then,  an  example  of  non¬ 
commutativity  in  a  case  where  all  terms  added  are  finite,  namely  unit-sets 
or  the  unity. 

The  rearrangement  of  R  (with  the  type  rj)  to  a  sequence  (see  §  3,  3)  is 

another  example. 

Now  we  are  in  a  position  to  essentially  improve  the  result  contained 

in  Theorem  2  (in  4)  for  c  =  No,  namely  to  prove 

Theorem  5.  The  set  J(N o)  of  all  denumerable  types  has  the  cardinal  N 

of  the  continuum. 

Proof.1)  Since  Theorem  2  states  that  the  cardinal  in  question  is 

<  2X°2  =  2Ko  =  N,  it  will  be  sufficient  to  prove  that  it  is  also  >  N-  This 
shall  be  done  by  presenting  a  subset  of  T(N o)  which  has  the  cardinal  N- 

(That  T(No)  is  not  empty  is  shown  by  co  e  J(N o)-) 

Writing  for  short  *co  +  co  =  C,  we  assign  to  every  sequence  of  positive 

integers  N  =  («i,  n2,  . . .,  nk,  . . .)  the  denumerable  type 

?N  —  til  +  C  +  n2  -)-  £  +  ...  +«&  +  £+  •••• 

!)  See  Bernstein  05  (partly  due  to  Cantor).  Cf.  Hausdorff  14,  pp.  97  f.,  also  Eyraud 
40.  —  For  the  problem  of  all  types  of  the  cardinal  of  the  continuum  see  Cuesta  45, 

Sierpinski  46a. 
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First  we  show  that  different  types  zn  correspond  to  different  sequences 

N,  i.e.  that 

(3)  N  +  N'  implies  tjv  A  i n'- 

To  prove  (3)  we  use  the  following 

Lemma.  If  R\,  R2,  Si,  S2  are  non-empty  ordered  sets  and  if  one  of  the 

assumptions  (a)  and  (b)  is  fulfilled 

(a)  Ri  +  Si  ~  i?2  +  S2,  Ri  and  R2  finite,  S\  and  S2  without  first  members, 

(b)  Si  +  Ri~  S2  +  R2,  Si  =  S2  =  C, 

then  R]  ~  R2  and  ( in  case  (a))  5i  ~  S>. 

In  fact,  a  similar  mapping  of  R\  +  Si  onto  R2  +  S2  according  to  (a) 

cannot  relate  an  r  e  Ri  to  an  s  e  S2  since  the  latter  is  preceded  by  infinitely 

many  members,  the  former  only  by  finitely  many;  hence  Ri  ~  R2  and 

Si  ~  S2.  The  same  impossibility  subsists  in  the  case  (b),  because  every 
r  e  Ri  is  then  preceded  by  a  subset  of  the  type  £,  i.e.  without  a  last 

member,  while  every  5  e  S2  is  preceded  only  by  subsets  with  last  members, 

namely  by  proper  non-empty  initials  of  S2;  hence  Ri  ~  R2,  which 
completes  the  proof  of  the  lemma. 

Now  (3)  follows  from  the  lemma  by  mathematical  induction  with 

respect  to  the  sums 

TN  =  «l  +  C  +  n2 .  +  C  +  •  •  • ,  Tzv'  =  «1+C+«2_t_C  +  •••• 

tjv  =  t n'  implies,  according  to  (a)  and  the  associativity  of  addition, 

hi  =  Hj  and  C  +  ”2  +  C+  •••  =  C  +  «2  +  C+  ••••  From  the  latter 
equality  likewise  follows  n2  +  C  +  ...  =  n2  +  C  +  ...  by  (b).  Thus  we 

obtain  h*  =  nk  for  each  k\  i.e.  tjv  =  tjv'  implies  N  —  N',  as  maintained 
by  (3). 

On  account  of  (3),  the  cardinal  of  the  set  T(Ko),  which  in  addition  to 

types  of  the  form  tjv  certainly  contains  other  types,  is  equal  to  or  greater 
than  the  cardinal  of  the  set  N  whose  members  are  all  sequences  N  of 
positive  integers.  Now  a  definite  N  is  an  insertion  of  integers  into  a 
denumerable  set  (§  7,  2);  hence  N  is  an  insertion-set  of  the  cardinal 

NoSo  =  N-  Accordingly,  the  cardinal  of  J(Ko)  is  >  X;  since  by  Theorem 
2  this  cardinal  is  <  Theorem  5  has  been  proven. 
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7.  On  the  Multiplication  of  Order-Types.  The  reason  why  in  §  6,  5  and 
6  the  usual  method  of  defining  multiplication  as  repeated  addition  was 
abandoned  is  here  missing,  because  we  shall  have  to  restrict  ourselves  to 
a  finite  number  of  factors.  Therefore  we  define  in  analogy  to  arithmetic 

Definition  VI.  If  in  Definition  V  to  every  t  e  T  the  same  type 

f(t)=Q  is  assigned  then  the  sum  k  =  ]>/(/)  is  called  the  product 

_  teT 
of  q  and  of  the  type  r  =  T  in  this  succession:  k  =  qt. 

To  include  the  case  T  —  O  we  define  £>•0  =  0  for  every  q.  In  view  of 
the  representation  of  a  type  r  as  an  ordered  sum  of  unities  1  (example  2 
in  6)  one  may  interpret  Definition  VI  to  mean  that  through  replacing  1 
by  q  one  obtains  the  sum  qt  instead  of  t. 

The  remarks  added  to  Definition  V  mean  for  the  present  case  that  qt 
is  not  dependent  on  the  nature  of  T  but  on  its  type  only  and  that 

qt  —  q  •  t  (cf.  Theorem  5  of  §  6).  This  is  expressed  in  Theorem  6,  below, 
in  a  generalized  form. 

Examples.  If  T  is  a  pair  to  each  of  whose  members  the  type  co  is 

assigned,  we  have  co  ■  2  —  co  co.  Yet  if  to  each  member  of  a  sequence  T 

(T  =  co)  the  type  2  is  assigned  then  the  product  2  •  co  evolves  which  may 
be  represented  by  the  enumerated  set 

(fli,  6i,  u^2,  b%,  . .  .,  ajcy  b]c,  . .  .), 

hence  2  •  co  =  co  A  co  •  2.  The  multiplication  of  two  types  is  in  gen¬ 
eral  non-commutative  —  except  for  the  multiplication  of  two  finite 
types. 

Therefore,  the  distinction  between  multiplicand  and  multiplier  (see 

p.  94)  becomes  here  essential.  To  regard  the  first  factor  q  as  the  multi¬ 

plicand  is,  of  course,  an  arbitrary  convention ;  it  was  adopted  by  Cantor 

finally  (originally  he  had  considered  the  first  factor  to  be  the  multiplier) 

and  is  now  generally  accepted. 

As  to  the  factor  1,  we  have  for  every  q 

Q  •  1  —  1  •  Q  —  Q- 

Q  •  1  =  Q  follows  from  Definition  V,  while  1  •  q  =  q  is  another  expression 
of  example  2  on  p.  147. 

The  type  introduced  in  example  1  on  p.  146  will  now  be  written  as 
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co  •  co.  Many  other  examples  of  products  of  types  will  appear  in  the 

following  sections. 

As  to  formal  laws,  we  saw  that  multiplication  is  not  commutative. 

The  distributive  law 

(1)  q  (a  +  t)  =  qo  +  qz,  or  more  generally  q  =  2 
teT  teT 

holds  true,  for  in  view  of  Definition  VI  it  is  nothing  but  a  particular 

case  of  the  associative  law  of  addition.  However,  the  “second”  distribut¬ 

ive  law,  which  in  arithmetic  runs  ( a  +  b)c  —  ac  +  be,  is  here  not  valid 

in  general,  as  shown  by  most  simple  instances;  we  have,  in  view  of  the 

associativity  of  addition, 

(co  +  1)  2  =  co  +  1  +  co+l=co  +  co+l  =  co  •  2  +  1, 
co-2+l-2  =  co,2  +  2; 

(co  +  co)co  =  co  +  a>  +  cD-fco  +  ...  =  co-co, 

co  •  co  +  co  •  co  =  (co  •  co)  2. 

But  obviously  co  •  2  -f-  1  A  co  '  2  +  2  and  co  •  co  A  (co  •  co)  2;  these  in¬ 

equalities  are  simple  cases  of  a  general  theorem  (14  of  §  10). 

The  associative  law  holds  for  the  multiplication  of  types,  but  it  shall 

be  proven  in  the  more  general  form  corresponding  to  Definition  VII 

below. 

In  §  6  the  definition  (IV)  of  multiplication  for  two  plain  sets  yielding 

the  Cartesian  product  was  merely  preparatory  to  its  definition  for  any 

number  of  factors.  As  will  presently  turn  out,  here  we  have  to  restrict 

ourselves  to  a  finite  number  of  factors,  no  matter  whether  the  method  of 

Definition  VI  or  another  is  adopted.  For  three  and  more  factors  it  is 

simpler  to  define  the  product  of  types  by  means  of  the  Cartesian  product; 

we  shall  do  so  (Definition  VII)  and  then  state  the  equipollence  to  Defin¬ 
ition  VI  as  a  theorem. 

The  problem,  of  course,  is  to  introduce  an  order  into  the  Cartesian 

product,  a  task  in  which  we  are  guided  by  Definition  VI.  To  define  a 

product  of  two  types  qt  we  shall,  analogically  to  §  6,  start  from  disjoint 

ordered  sets  R,  T  with  R  =  q,T  =  t  and  form  at  first  the  plain  Cartesian 

product  R  x  T  whose  members  are  all  pairs  {r,  t}  for  which  r  e  R,  t  e  T. 

To  obtain  the  order  provided  by  Definition  VI  we  must  produce  sets  of 

the  type  q  that  succeed  one  another  according  to  the  type  r.  Hence  for  a 

fixed  t,  the  ordered  pairs  (r,  t)  have  to  be  arranged  according  to  the  order 

of  the  members  r  in  R,  and  these  ordered  sets  shall  succeed  one  another 
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in  the  order  of  different  f  s  in  T;  in  other  words,  the  succession  of  ordered 

pairs  (n,  ti)  and  (r2,  t2)  is  determined  first  by  the  succession  of  t\  and  t2, 
and  afterwards,  namely  for  t\  =  t2,  by  the  succession  of  ri  and  r2. 

A  more  convenient  arrangement  according  to  “first  differences ”  is  made 
possible  by  inverting  the  order  in  the  pairs,  i.e.  by  expressing  qx  through 
the  set  of  all  ordered  pairs  ( t ,  r)  which  now  are  arranged  just  as  are  two- 

letter  words  in  a  dictionary  ( lexicographic  order)-,  that  is  to  say,  all  pairs 
with  the  same  first  component  t  are  joined  together  and  arranged  accord¬ 
ing  to  the  order  of  the  second  component  r  in  R,  while  these  ordered  sets, 
serving  as  representatives  of  the  type  q,  succeed  one  another  according  to 
the  order  of  t  in  T.  This  procedure  clearly  produces  a  set  of  the  type  qx. 
Now  this  method  can  be  generalized  without  change  to  the  case  of  any 

finite  number  of  factors;  the  “complexes”  (p.  89)  which  are  the  members 
of  the  Cartesian  product  must  then  be  ordered  inversely  to  the  given 
order  of  the  factors,  to  produce  the  desired  ordered  product  of  types  by 
lexicographic  order.  Thus  we  arrive  at 

Definition  VII.  To  form  the  ordered  product  qi  q2  .  .  .  Qn-i  Qn 

of  finitely  many  given,  not  necessarily  different  types,  replace  the 

types  Qjc  by  pairwise  disjoint  ordered  set-representatives  Rk  (i.e. 

Rk  =  Qk )  and  arrange  the  ordered  complexes 

(jn,  C n  -  1,  .  ■  . ,  r2,  n), 

where  rk  ranges  over  Rk,  in  lexicographic  order  (order  by  first 

differences) 1),  that  is  to  say  by  the  rule 

. . ,  r2  =  r2,  r1  «<  r'x  in  Rv 
or  if  rn  =  r. n’  rn  —  1  rn  —  1»  • 

1)  Had  we  ordered  the  members  of  the  complexes  in  the  given  succession  of  the 

factors  then  we  ought  to  arrange  the  complexes  in  “anti-lexicographic”  order,  i.e.  by 
last  differences.  —  A  general  examination  of  lexicographic  order  and  “lexicographic 

functions”  is  contained  in  J.  Schmidt  55a;  this  subject  is  closely  connected  with 
Birkhoff’s  researches  mentioned  at  the  end  of  subsection  1  above. 
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The  type  k  of  the  ordered  set  of  complexes  produced  by  this  rule 

(sometimes  named  “the  ordered  Cartesian  product  Ri  X  R2  X  ... 

X  Rn-i  X  Rn ”)  is  called  the  ( ordered )  product  of  the  types  Qi,  Q2, 

. - -,  Qn  -  1,  Qn  in  this  succession;  one  writes 

K  =  Q1Q2  ...  Qn  -  1  Qn- 

If  all  Qk  are  equal  =  q  then  one  writes 

k  —  Qn  (the  nth  power  of  the  type  q). 

Theorem  6.  For  n  —  2,  Definition  VII  conforms  to  Definition  VI. 

Generally  the  product  k  depends  only  on  the  factors  Qk  and  not  on  the 

chosen  representatives  Rk-  The  cardinal  of  the  ordered  product  of  finitely 

many  types  equals  the  product  of  the  cardinals  of  the  factors,  i.e. 

Q1Q2  -  ■  -  Qn  =  Ql  •  Q2  *  •  •  •  •  Qn- 

All  statements  of  this  theorem  follow  immediately  from  earlier  remarks. 

In  accordance  with  the  introduction  to  Definition  VII,  the  first  statement 

expresses  that  for  n  =  2  the  product  can  be  conceived  as  a  sum  every 

terms  of  which  equals  £1.  The  second  and  the  third  statements  are 

(inductive)  extensions  of  the  remarks  following  Definition  VI. 

To  prove  the  associative  law  for  the  multiplication  of  finitely  many 

types  it  is  sufficient  to  consider  the  case  of  a  decomposition  into  two 

factors,  from  which  it  can  be  extended  inductively  to  more  factors  —  in 

contradistinction  to  the  associative  law  of  addition  (Theorem  4)  where 

decompositions  into  infinitely  many  terms  had  to  be  considered.  We  shall 

prove 

(2)  Ql{Q2  -  -  -  Qn)  =  QlQz  •••  Qn', 

for  the  n  —  2  other  possible  decompositions  into  two  factors  (without 

changing  the  order),  viz.  (^1^2)  {Qz  -  -  ■  Qn)  etc.,  the  proof  is  the  same. 

Proof  of  (2).  First,  the  plain  Cartesian  products  of  set-representatives 

Ri,  R2,  -  -  -  ,  Rn  corresponding  to  the  factors  are  equivalent  (though  not 

equal);  this  is  shown  by  the  mapping  which  relates  the  complex  (( rn ,  . . ., 

r2),  ri)  to  ( rn ,  . . .,  r2,  '"i)>  where  rk  €  Rk-  Secondly,  if  (( rn ,  . . .,  r2),  r\)  and 
(rn,  . . r2,  r\)  are  another  pair  of  related  members,  the  latter  complexes 

will  respectively  either  both  precede  the  former  or  both  succeed  them, 

as  follows  from  Definition  VII;  hence  the  mapping  defined  is  similar. 

Since  the  types  of  similar  sets  are  equal,  (2)  holds  true. 
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Resuming  (1)  on  p.  150  and  the  remarks  appended,  we  have 

Theorem  7.  The  multiplication  of  finitely  many  types  is  associative  and, 

in  connection  with  the  addition  of  types,  distributive  in  the  sense  of  (1). 
On  the  other  hand,  except  for  finite  types,  it  is  in  general  neither  commutat¬ 
ive,  nor  distributive  in  the  inverse  sense. 

Products  of  two  types,  as  well  as  general  sums  of  types,  were  already 

introduced  by  Cantor  x).  But  only  his  successors,  in  particular  Hausdorff, 
did  become  aware  that  the  extension  to  products  of  infinitely  many  types 
meets  with  enormous  and  in  general  insuperable  difficulties  regarding  the 
introduction  of  an  appropriate  order  into  the  Cartesian  product.  Such 
order  should,  of  course,  constitute  a  reasonable  generalization  of  the 

order  defined  for  the  product  of  finitely  many  factors  by  Definition  VII. 

To  understand  the  difficulty  it  suffices  to  consider  the  supposedly 

simple  case  that  the  factor-types  are  given  as  members  of  a  sequence 
(Q i,  Q2,  Then,  extending  Definition  VII,  we  should  have  to 

deal  with  complexes  of  the  form  r  =  (...,  rk,  . . .,  r2,  n)  where  rk  e  Rk 

and  Rk  =  Qk-  The  lexicographic  order  between  r  and  another  complex 

r'k,  . . .,  r'2,  r\)  must  be  based  on  the  order  in  Rk  of  the  first 
pair  of  corresponding  different  members  r*  and  rk,  i.e.  on  the  greatest  k 

for  which  rk  ̂   r'k.  But  in  general  such  a  greatest  k  will  not  exist;  for 
instance,  if  rk  rk  for  each  k,  or  for  each  k  greater  than  a  certain  n,  or 

for  each  even  k.  In  fact,  a  closer  examination  reveals  that,  except  for 

certain  particular  orders  of  the  infinitely  many  factors,  there  exists  no 

suitable  arrangement  of  the  complexes  contained  in  the  Cartesian  product. 

This  includes  the  impossibility  of  an  appropriate  definition  of  powers  of 

types  with  a  transfinite  exponent,  e.g.  with  the  exponent  co. 

It  is  obvious  that  this  difficulty  is  not  caused  by  the  stipulation  made  in 

the  beginning  of  the  present  subsection  regarding  the  roles  of  multiplicand 

and  multiplier;  a  permutation  of  these  roles  would  psychologically 

complicate,  and  materially  not  change,  the  difficulty  inherent  in  infinite 

products  and  powers  of  types  such  as  2“  or  co ®. 

In  1904  
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2)  began  to  develop  an  ingenious  theory  of  what  may 

0  Cantor  1895,  §  8. 

2)  Hausdorff  04,  06-07,  08,  14  (Chapter  VI).  For  other  questions  of  the  theory 
of  ordered  sets  and  order-types  (besides  the  problems  treated  in  §§  10  and  11)  see, 
in  addition  to  the  more  comprehensive  textbooks  (p.  11).  the  papers  Mahlo  11  and 

17  (rich  in  interesting  material),  Lindenbaum-Tarski  26  (§  3),  Wrinch  29  and  29a, 

Kurepa  34,  Gleyzal  40-41.  See  also  P.  S.  Alexandroff  56. 
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be  called  pseudo-products  and  pseudo-powers  of  types.  The  purpose  is 

to  replace  the  respective  Cartesian  product  by  a  maximal  subset  such  that 

a  suitable  order  of  its  complexes  can  be  defined  (cf.  p.  204).  The  result 

of  these  complicated  investigations  is  meagre  enough,  for  in  general  the 

pseudo-product  has  a  cardinal  less  than  the  full  Cartesian  product.  The 

exceptions  do  not  possess  much  practical  significance;  for  instance,  if  the 

factors  are  given  in  the  order  *co *),  i.e.  . . .,  Qk,  ■  ■ £>2,  Qi,  then  the  ordered 
complexes  have  the  form  (n,  T2,  . . .,  r*,  . . .),  for  which  always  a  first 

rk  with  a  given  property  (here,  tp  ¥=  r'f)  exists. 
While  we  do  not  enter  into  the  theory  of  pseudo-products  in  general, 

we  shall  from  a  quite  different  viewpoint  arrive  at  the  (pseudo-)  powers 

(§  11,  3)  in  an  important  case,  namely  if  the  base  and  the  exponent  are 

ordinals  (§  10).  The  inadequacy  of  the  pseudo-operation  will  then  emerge 

most  painfully;  for  instance,  the  power  co03  has  the  cardinal  ̂ 0  and  not 

=  N-  Hence  the  last  statement  of  Theorem  6  does  not  hold  for 

those  infinite  products. 

Exercises 

1)  Complete  in  detail  the  proof  of  similarity  in  example  5)  of  3. 

2)  Elaborate  the  proofs  that  the  sum  of  sets  according  to  Definition  V 

and  the  product  of  sets  according  to  Definitions  VI  and  VII  are  ordered 
sets. 

3)  What  other  types,  instead  of  £  =  *co  +  co,  might  be  used  to  prove 
Theorem  5? 

4)  Complete  the  proof  of  the  associative  law  of  multiplication,  and 

prove  the  (first)  distributive  law  on  account  of  Definition  VII. 

5)  The  analogue  of  the  equivalence  theorem  (§  5,  4)  in  the  theory  of 
similarity  would  run :  if  each  of  two  ordered  sets  is  similar  to  a  subset  of 

the  other  then  the  sets  are  similar.  Give  a  few  examples  showing  that 

this  
statement  

is  

false.* 2) 

6)  What  are  the  inverse  types  of  a  +  /?  and  of  afi,  a  and  [I  being  any 
types?  Give  a  few  examples. 

7)  Show  that  a>  +  co2  =  (co  a>)  co  and  that  co2  •  2  ̂   co2. 
8)  Prove  the  theorem  3):  The  set  of  all  ordered  sets  of  the  cardinal  c 

is  equivalent  to  its  subset  containing  those  sets  whose  type  is  not  changed 

b  More  generally,  in  an  “anti-well-ordered”  succession;  see  §  10,  6. 
2)  For  a  partial  analogue,  see  Lindenbaum-Tarski  26,  §  3,  and  Lindenbaum  27. Cf.  Kurepa  48. 

3)  See  Chajoth  30. 
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by  the  removal  of  finitely  many  members.  (For  general  c,  the  proof 

requires  well-ordering  and  properties  of  well-ordered  sets,  see  §  11,5  and 6.) 

9)  Let  S  be  a  partly  ordered  set  (p.  131)  with  an  order-relation  R,  and  c  and  d 

different  members  of  S’  which  are  not  connected  by  R.  Prove  that  R  can  be  extended  to 
a  relation  R*  (which  includes  R)  such  that  c  and  d  are  connected  by  R*  in  a  given 
sense  (c  -<  d  or  d  -<  c).1)  —  By  combining  this  result  with  a  method  of  Kuratowski’s 
and  using  the  axiom  of  choice  one  can  infer  that  any  partial  order  of  a  set  can  be 
extended  to  a  total  order. 

10)  On  p.  135  the  relation  meaning  equivalence  of  sets  with  respect  to  a  non- G 

empty  class  G  of  functions,  was  introduced.  G  is  called  a  group  if  it  satisfies  the 

conditions:  a)  together  with /also  the  inverse  function  f~  1  is  contained  in  G;  b)  if  the 
functions /i  and/2  are  contained  in  G  then  the  same  applies  to  the  compound  function 

/1  X  /2,  i.e.  /1  performed  upon  fi.  Prove  that  ~  is  symmetrical  and  transitive  if  G  is  a 

group.  G 

§  9.  Linear  Sets  of  Points. 

The  notions  and  theorems  of  this  section  are  beyond  the  range  of  the 

present  book  inasmuch  as  we  here  deal  with  sets  of  points  (numbers)  and 

not  with  abstract  sets.  In  particular,  in  subsections  1-4  ordered  linear 

point  sets,  i.e.  sets  of  real  numbers,  are  our  subject.  In  5  and  6,  instead  of 

order  certain  concepts  peculiar  to  spaces,  hence  also  transcending  abstract 

sets,  are  used. 

This  digression  originates  from  the  wish  to  exhibit  the  power  of  set- 

theoretical  methods  as  applied  to  well-known  notions  of  elementary 

mathematics,  whose  full  analysis  is  made  possible  only  through  the  subtle 

tools  introduced  by  Cantor.  This  especially  applies  to  1-4  where  the 

restriction  to  linear  sets  of  points  is  rather  a  matter  of  easy  expression 

and  convenience  than  of  principle;  essentially  only  the  concept  of  (simple) 

order  and  not  that  of  (linear)  space  is  required  here. 

The  contents  of  §  9  are  not  used  in  the  following  sections  and  may  be 

disregarded  by  readers  familiar  with  topology  and  related  branches. 

1.  Dense  or  Continuous  Ordered  Sets.  In  subsections  1-4  we  deal  with 

ordered  sets  of  real  numbers  or  —  which  is  the  same  in  view  of  a  similar 

mapping  of  the  set  of  all  real  numbers,  ordered  according  to  magnitude, 

onto  the  ordered  set  of  all  points  of  a  straight  line  2)  —  with  ordered 

x)  Szpilrajn  30.  The  method  in  question  is  contained  in  Kuiatowski  22. 

2)  Roughly  such  a  mapping  was  introduced  in  example  d)  of  §  1.  There  are  different 
ways  of  a  more  penetrating  analysis.  For  instance,  starting  with  an  arithmetical 

introduction  of  real  numbers  (cf.  example  4  in  2)  one  may  define  the  points  of  the  line 
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sets  of  points  of  a  line.  We  denote  by  L  the  ordered  set  of  all  these  numbers 

or  points  and  by  -<  the  order  relation  in  L.  In  general  we  speak  of 

“points”  and  of  “linear  sets  of  points”  but  frequently  denote  the  points 

by  the  corresponding  numbers.  Every  definition  or  statement  may  be 

understood  in  the  arithmetic-analytical  as  well  as  in  the  geometrical 
sense. 

The  preceding  section  has  shown  that  abstract  ordered  sets  are  by  no 

means  restricted  to  subsets  of  L.  Neither  are  ordered  sets  of  points 

necessarily  subsets  of  L;  this  is  not  the  case,  for  instance,  for  multidimen¬ 

sional  point-sets  (cf.  example  5)  on  p.  1 37 /8)  or  for  sets  of  “points”  of  a  non- 

Archimedean  straight  line.  Another  example  is  a  set  of  “decimal  (dual) 

fractions”  in  which  the  sequence  of  digits  (af)  proceeds  according  to 

transfinite  ordinal  numbers  (§11)  restricted  by  f  <  a  for  a  given  a  >  co  *). 
On  the  other  hand,  the  points  of  a  closed  curve  such  as  an  ellipsa  in  one 

of  the  two  natural  arrangements  cannot  be  taken  as  an  example  because 

they  do  not  satisfy  the  conditions  of  an  ordered  set  (§  8,  2). 

Throughout  1-4  the  expression  “set  of  points”  means  a  subset  of  L 

with  at  least  two  members,  and  “two  points  of  a  set”  always  means  different 

points. 

Definition  I.  A  set  of  points  K  is  called  everywhere  dense,  or 

simply  dense,  if  between  any  two  points  pi,  p2  of  K  there  is  another 

P3  e  K. 

Hence  no  member  of  a  dense  set  has  a  neighbor  (§  8,  2).  From 

Pi  ~<P3  ■<  P2,  pi  -<  Pi  -<  P3  etc.  we  conclude  inductively  that  between 

any  two  points  of  a  dense  set  there  are  infinitely  many  points  of  the  set; 

a  dense  set,  then,  is  always  infinite.  A  set  which  is  similar  to  a  dense  set  is 
also  

dense.* 2) 

as  similarly  related  to  the  numbers;  or  else  one  may  proceed  from  an  axiomatic 

foundation  of  the  points  of  a  line  in  the  classical  sense,  ensuring  continuity  by  the 

axiom  of  Dedekind-Cantor  or  by  the  axiom  of  Archimedes  (Eudoxos)  and  Hilbert’s 
postulate  of  completeness,  and  then  prove  that  there  is  a  similar  one-to-one  corre¬ 

spondence  between  these  points  and  the  real  numbers. 

There  exists  a  vast  multitude  of  literature  on  this  subject.  We  mention  Dedekind 

1872,  Cantor  1872,  Hilbert  1899/1930  of  the  original  sources,  Courant-Robbins  43 

(chapter  II)  as  a  fine  specimen  of  a  modem  elementary  exposition. 

x)  See  Cuesta  42  and  43 ;  cf.  MaximofF  40. 

2)  For  an  important  logical  property  of  open  dense  abstract  sets  see  Skolem  20; 
Langford  27;  Tarski  35-3611,  p.  293;  for  an  application  to  dense  continuous  sets 

(Definition  III),  Langford  39  (cf.  Lewis-Langford  32,  pp.  405  ff.). 
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Definition  IT.  If  At  and  K»  are  non-empty  (disjoint)  subsets  of  a 
set  of  points  K  such  that  At  -f-  K2  =  K  in  the  sense  of  ordered 

addition  (Definition  IV,  §  8,  5),  one  speaks  of  a  cut  (At  |  K2 )  in  AT.1) 

Hence  every  point  of  K  belongs  either  to  Ki  or  to  K2,  and  each  point 
ot  At  precedes  each  of  Ko.  K\  is  an  initial  and  K2  a  remainder  of  K 

(§  8,  2).  To  determine  (A/i  |  K2)  it  suffices  to  specify,  besides  K,  either 
At  or  K2. 

By  logical  disjunction  we  obtain  four  mutually  exclusive  cases  which 

cover  all  kinds  of  cuts,  namely 

a)  At  has  a  last  member  ki  and  K2  has  a  first  k2, 

b)  K\  has  a  last  member  k\  but  K2  has  no  first, 

c)  At  has  no  last  member  but  Ko  has  a  first  k2, 

d)  At  has  no  last  member  and  K2  has  no  first. 

In  2  we  shall  see  that  each  of  these  logically  possible  cases  can  be 

realized  mathematically.  In  the  cases  a),  b),  c)  the  cut  (At  |  K2)  may 
simply  be  described  as  follows:  At  is  the  initial  of  AT  that  contains  k\ 

and  all  its  predecessors,  or  K2  is  the  remainder  of  K  that  contains  k2 

and  all  its  successors.  Hence  the  cut  is  determined  by  ki  or  by  k2  or 

(in  the  case  a))  by  either. 

Definition  III.  k\  in  cases  a)  and  b)  and  k2  in  cases  a)  and  c) 

are  said  to  produce  the  cut  (At  |  K2).  In  case  a)  the  cut  is  called  a 

jump,  in  case  d)  a  gap,  while  in  cases  b)  and  c)  the  cut  is  called 

continuous.  K  is  said  to  be  a  continuous  set 2)  if  every  cut  in  K  is 

continuous,  i.e.  if  there  are  neither  jumps  nor  gaps  in  K. 

2.  Examples.  We  begin  with  easy  examples  which  show  the  use  of 

the  concepts  introduced  in  1.  In  3  and  4  more  intricate  examples  are 

given. 

1.  Given  two  points  pi  and  p2  of  L,  let  K  be  the  open  interval  {pi,  pi), 

i.e.  the  set  of  all  points  between  pi  and  p2.  K  is  dense  and  retains  this 

property  if  one  of  the  points  pi  and  p2  or  both  are  added ;  in  the  latter 

x)  The  concept  of  cut  (or  section,  in  German  Schnitt )  was  introduced  in  Dedekind 

1872  (cf.  30-3211,  pp.  356-370)  where  the  theory  of  irrational  and  real  numbers  is 
based  on  cuts  in  sets  of  rationals,  see  below.  (Cantor  (1872),  Meray,  Weierstrass  and 

others  based  real  number  on  sequences  of  rationals.)  Modern  expositions  are  given, 

for  instance,  in  Perron  21/47  and  Graves  46/56. 

2)  For  a  reduction  of  this  concept  to  the  relation  of  inclusion  (subset)  see  Foradori 
33. 
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case  we  have  the  closed  interval  <  pi,  p2  >.  The  set  L  itself  is  also 
dense. 

2.  p  being  any  point  of  L,  we  form  the  cut  (L\  |  L2)  in  L  for  which  L\ 

contains  p  and  all  preceding  points,  hence  L2  all  other  points.  This  cut  is 

continuous  and  produced  by  p.  The  same  holds  true  if  p  is  allotted  to  L2. 

If,  however,  p  is  neither  allotted  to  L\  nor  to  L2  then  (Li  [  L2)  is  a  cut  in 

the  subset  L'  <=  L  obtained  by  dropping  p,  and  this  cut  is  a  gap  since 

clearly  L\  has  no  last  member  and  L2  no  first.  Hence  L'  is  dense  but  not 
continuous.  On  the  other  hand,  according  to  our  conception  of  a  line 

(footnote2)  on  p.  155/6),  L  itself  as  well  as  any  open  or  closed  interval  of  L 
are  continuous  sets;  any  cut  in  L  is  produced  by  one  and  only  one  member 

of  L. 
'ft  P2 

Fig.  12 

3.  Let  p  1  <p2  (cf.  fig.  12)  and  K  be  the  subset  of  L  which  contains, 

besides  pi  and  p2,  the  points  preceding  pi  and  the  points  succeeding  P2. 

The  cut  ( Ki  |  K2)  for  which  pi  is  the  last  member  of  Ki,  hence  p2  the  first 

of  K2,  is  a  jump  in  K  (which  set  “jumps”  from  pi  to  P2).  K  is  not  dense, 
and  it  is  obvious  that  no  set  with  a  jump  is  dense;  hence  a  dense  set  has  no 

jumps,  whereas  every  set  without  jumps  is  dense. 

However,  if  we  remove  p2  from  K  and  call  the  new  set  K' ,  then  the  cut 

(Kx  |  K2 )  in  K'  for  which  Kx  is  defined  as  Ki  above,  is  continuous.  K'  is  a 
dense  set  and  similar  to  L,  as  shown  by  the  mapping  which  relates  each 

point  of  Kx  —  Ki  to  itself  and  the  points  of  K2  to  the  points  of  L  that  succeed 

Pi- To  avoid  shocking  the  readers  who  are  acquainted  with  the  concept  of 

space,  let  us  already  here  stress  that,  according  to  the  attitude  taken  below 

in  5  and  6,  K'  is  not  dense  because  density  then  is  a  relative  property, 
referring  to  the  space  L.  Yet  according  to  the  purely  ordinal  attitude 

adopted  here,  there  is  no  difference  between  the  set  L  and  its  subset  AT'. 
The  same  holds,  of  course,  if  p2  is  retained  and  pi  removed. 

4.  Let  R  be  the  set  of  all  rational  points  r  of  L,  which  clearly  is  dense,  and 

C#i  |  ̂2)  be  the  cut  in  R  whose  remainder  R2  contains  all  positive  rationals 

for  which  —  >2.  This  cut  is  a  gap  in  R.  To  prove  this  we  shall  show n  «2 

that  (Ri  ]  R2)  is  not  produced  by  any  member  of  R.  Since  this  is  obvious 

for  r  <0  we  restrict  ourselves  to  positive  rationals  r. 
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As  is  well  known  there  is  no  r  with  
r* 2  =  2  *);  hence  a  positive  r  pro¬ 

ducing  the  cut  ought  to  satisfy  either  r2  <  2  or  r2  >  2.  But  in  the  first 

case  there  are  in  Ri  rationals  r'  >  r,  in  the  second  in  R 2  rationals  r'  <  r. 

One  may  prove  this  by  utilizing  the  irrational  point  Vi  (which  belongs  to 
L  though  not  to  R)  and  the  fact  that  between  any  two  real  numbers 

there  is  a  rational 2);  hence  in  the  first  case  there  is  a  rational  r'  such  that 

r  <  r'  <  V 2,  in  the  second  an  r'  such  that  Vl  <  r'  <  r,  which  means 

r'  e  Ri  or  r'  e  R2  respectively.  In  neither  case,  then,  does  r  produce  the  cut 
(Ri  |  Rz),  which  therefore  is  a  gap. 

In  the  same  way  as  by  V 2,  a  gap  in  R  is  created  by  every  irrational 

point  of  L,  while  the  cuts  in  R  produced  by  the  members  of  R  are  clearly 

continuous.  —  If  R  is  replaced  by  the  set  of  all  rationals  between  two 

fixed  points  the  situation  is  not  changed. 

Comparing  the  examples  2  and  4  we  find  that  a  dense  set  always  has 

continuous  cuts  and  may  have  gaps,  but  certainly  no  jumps;  it  may  be 

continuous  (as  1)  or  not  (as  4).  On  the  other  hand,  every  continuous  set  is 
dense. 

The  gap  {R\  |  R2)  defined  above  may  be  filled,  i.e.  transformed  into  a 

continuous  cut  by  adjoining  the  point  V  2  to  R,  allotting  it  either  to  Ri 

or  to  R2.  By  adjoining  all  irrational  points  to  the  rationals,  R  is  transformed 

into  a  continuous  set.  (The  same  may  be  achieved  for  any  abstract  dense 

set;  see  exercise  3)  at  the  end  of  this  section.)  The  attitude  here  taken 

')  This  fact,  discovered  by  the  Pythagoreans  and  referred  to  by  Aristotle,  is  proved 
by  Euclid  along  the  following  lines.  If  m  and  n  are  positive  integers  without  a  common 

fm\2
 

divisor  then  the  assumption  r2  =  I  —  1  =  2,  i.e.  in2  =  2 n2,  implies  that  m  is  even, 

hence  n  odd.  But  this  means  that  m2  is  divisible  by  4  while  In2  is  not  (since  n 2  is  odd); 

the  contradiction  shows  that  V 2  is  not  rational. 

m2 

This  result  is  easily  generalized  to  the  theorem  that  —  cannot  be  an  integer  if 

n 2 

n  >  1 .  The  importance  attributed  to  this  subject  by  the  Greeks  is  illustrated  by  Plato’s 
report  (in  the  dialogue  Theaitetos )  that  his  teacher  Theodoros  had  proved  the  irration¬ 

ality  of  V k  for  all  k  from  3  to  17  (except,  of  course,  4,  9,  16). 

2)  This  theorem,  used  also  in  4,  is  proven  most  easily  for  beginners  by  expanding 
the  real  numbers  into  decimals.  If  A  and  B  are,  say,  positive  real  numbers  between 

which  there  is  no  integer  and  if  A  <  B,  let  B  be  expanded  into  an  infinite  decimal 

(see  §  4,  2)  and  A,  if  possible,  into  a  terminating  decimal,  otherwise  into  an  infinite  one. 

Then,  for  instance,  the  terminating  decimal  which  results  by  stopping  the  expansion 

of  B  after  the  first  digit  that  differs  from  the  corresponding  digit  of  A,  is  a  rational 

greater  than  A  and  smaller  than  B. 

In  a  more  elegant  way  the  theorem  is  proven  by  the  method  indicated  in  exercise  11) 

at  the  end  of  §  3. 



160 ORDER  AND  SIMILARITY.  ORDER-TYPES  AND  ORDINALS 

[CH.  Ill 

presupposes  an  appropriate  foundation  of  irrational  numbers;  inciden¬ 

tally,  these  may  just  be  defined  as  the  gaps  in  R.  Since  the  set  of  the 

irrational  numbers  has  the  cardinal  X,  in  our  case  the  set  of  the  gaps  in 

R  has  a  greater  cardinal  than  R  itself;  this  phenomenon  is  not  surprising 

since  the  cuts  are  essentially  subsets  and  not  members  of  the  set.  By 

mere  spatial  intuition  or  classical  geometrical  attitudes  without  set- 

theoretical  methods,  the  phenomenon  can  neither  be  stated  nor  compre¬ 
hended. 

3.  The  Type  t|  of  the  Set  of  Rationals.  The  concepts  introduced  in  1  are 

sufficient  to  completely  characterize  some  of  the  most  important  and 

widely  used  types.  While  for  co  (or  *co)  and  *co  +  co  the  (rather  simple) 
proofs  shall  be  left  to  the  reader  (see  exercises  1)  and  2)  below)  we  deal  in 

the  present  subsection  with  the  type  of  all  rationals  ordered  by  magnitude, 

which  type  is  (after  Cantor)  denoted  by  r/. 

The  ordered  set  R  of  all  rational  points  of  L  clearly  has  the  following 

properties  (cf.  §  3,  3): 

a)  R  is  denumerable, 

b)  R  is  dense, 

c)  R  is  open,  i.e.  has  no  first  and  no  last  member. 

The  set  of  all  rational  points  between  two  arbitrary  (rational  or 

irrational)  points  a  and  b  of  L  has  the  same  properties  a)-c).  We  now 

prove 

Theorem  1.  The  properties  a)  —  c)  together  completely  determine  the 

order-type  of  R.  In  other  words,  any  abstract  ordered  set  5  which 
satisfies  these  properties  is  similar  to  R. 

The  proof,  accordingly,  will  not  presuppose  5  to  be  a  subset  of  L. 

Proof1)  Let  S  be  any  ordered  set  with  the  properties  a)-c)  and  let 

(a,  r2,  r3,  . . .,  rk,  rk  +  i,  . . .) 

be  an  arbitrary  enumeration  of  R;  for  instance,  that  of  §  3,  3.  In  view  of  a) 
there  is  a  sequence 

(Yi,  52,  S3,  .  .  .,  Sk,  Sk  +  1,  .  .  .) 

which  contains  just  all  members  of  S.  Naturally  there  is  no  connection 

*)  See  Cantor  1895,  §  9.  Extensions  (in  different  directions)  are  given  in  Skolem  20 
(§  4)  and  Fraisse  53.  For  a  remarkable  metamathematical  result  inferred  from  the 
theorem  see  Vaught  54. 
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between  the  succession  ot  the  rk  (and  s*)  in  these  sequences  and  their 
order  in  the  sets  R  (and  S ). 

To  establish  a  similar  mapping  of  R  onto  S  we  use  mathematical 
induction  along  the  sequence  (rk)  and  begin  with  relating  si  to  n.  The 
second  step,  then,  consists  in  relating  a  suitable  sm  e  S  to  r2  e  R.  We  have 
either  n.  -<  r2  or  r2  <  n  in  R,  and  since  sx  is  neither  the  first  nor  the  last 
member  of  S  (property  c))  there  are  members  of  S  preceding  and  suc¬ 
ceeding  si.  If  n  -<  r2  we  relate  to  r2,  among  the  successors  of  sx,  the  sm 
with  the  least  index  m,  and  if  r2  n,  the  predecessor  with  the  least 
index,  in  either  case  we  denote  by  s d)  the  (uniquely  determined)  image  in 
S  of  r2.  For  the  sake  of  uniformity  we  also  write  .yd)  for  s\.  Hence  .yd)  «<  ,y  (2) 
or  j<2>  «<  .yd)  holds  in  S  according  as  n  -<  r2  or  r2  -<  n  holds  in  R. 

For  the  third  step  we  notice  that  between  the  members  n,  r2,  r3  of  R 
six  different  orders  are  possible;  if  ri  -<  r2  we  have 

rz<ri<  r2  or  n  <  r3  •<  r2  or  n  <  r2  -<  r3, 

and  three  analogous  cases  if  r2  -<  n.  Now  there  exist  members  of  S, 
even  infinitely  many,  which  stand  in  the  same  order  to  .yd)  and  s<2>  in 

which  r3  stands  to  rx  and  r2\  if  r3  precedes  both  rx  and  r2  or  succeeds  them, 
this  follows  from  c),  whereas  it  is  a  consequence  of  b)  if  r3  is  between 

n  and  r2.  In  each  case  we  denote,  among  the  appropriate  sm’ s,  the  one 
with  the  least  index  m  by  and  relate  ̂ (3>  to  r3.  Then  the  order  of 

.yd*,  in  S  is  the  same  as  that  of  r±,  r2,  r3  in  R. 
For  the  inductive  procedure  we  assume  that  for  a  certain  k  we  have 

already  related  “suitable”  images  jd),  ,y<2>,  . . j<*)  to  the  first  k  members 
ri,  r2,  . . rk  of  the  enumeration  of  R,  i.e.  biunique  images  such  that  the 

orders  of  these  members  in  5”  conforms  to  the  order  of  the  respective 
rn  in  R.  We  show  that  to  rk  +  i,  too,  a  suitable  image  can  be  chosen  in  a 

well-defined  way.  rk  +  i  either  precedes  or  succeeds  all  n,  r2,  . . . ,  rk, 
or  else  rk  +  i  intervenes  between  two  of  them,  say  between  n  and  rm, 
so  that  none  of  the  members  n,  r2,  . . rk  is  between  n  and  rm.  There 

are,  in  view  of  the  properties  c)  and  b),  infinitely  many  members  of  S 

which  stand  in  the  same  order  to  .yd),  ̂ (2),  . . sm  as  r]c  +  1  stands  to 
n,  r2,  . . . ,  rk ;  the  one  with  the  least  index  among  those  members  shall  be 

denoted  by  +  D  and  related  to  rk  +  i.  Then  the  subset  of  R  containing 

ri,  r2,  . . .,  rk,  rk  +  i  is  similar  to  the  subset  of  S  containing  .yd),  s(2\  . . 

j’d),  $(Jc  +  i) _ 

Hence,  by  mathematical  induction,  to  any  n  first  members  of  the 

sequence  ( rk ),  n  images,  namely  members  of  the  sequence  (sk),  are  related 
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in  a  similar  one-to-one  correspondence,  and  for  a  given  n  these  5*  include 

those  chosen  in  the  preceding  steps.  Accordingly  there  exists  a  sequence 

(5(1),  5(2),  ...,5<*>,  5<*  +  D,  ...) 

which  contains  the  images  of  all  rk,  namely  the  union  of  the  denumerably 

many  sets  of  n  members  5<fc>  for  each  n.  (Cf.  the  corresponding  argument 

in  proof  A  of  Theorem  4  in  §  3,  5;  yet  here  our  method  is  strictly  construc¬ 

tive  without  using  the  axiom  of  choice.) *) 
However,  the  reader  should  not  think  that  hereby  the  proof  of  Theorem 

1  is  finished.  It  is  a  priori  evident  that  this  cannot  be,  for  we  have  not  yet 

exhausted  our  presuppositions ;  while  we  utilized  the  properties  a)  -  c)  of  S, 

regarding  R  so  far  a)  only  has  been  used.  In  fact,  what  has  been  proved 

by  now  is  that  there  is  a  similar  mapping  of  R  into  S ;  it  has  still  to  be 

shown  that  our  construction  exhausts  the  set  S,  i.e.  yields  a  mapping  of 

R  onto  S.  (One  might  save  this  second  half  of  the  proof  by  applying  the 

above  inductive  procedure  alternately  to  R  and  to  S;  but  this  would 

impair  its  lucidity.) 

The  member  5i(=  5(1))  of  S  has  been  used  in  our  mapping;  we  shall 

now  prove  that,  if  the  members  5i,  52,  . . . ,  5*  are  used,  also  5^  +  1  is 

being  used. 

Of  course,  in  general  more  than  k  steps  of  our  process  are  required  to 

reach  5*,  say  /  steps;  that  is  to  say,  Sk  =  5(Z>,  where  /  >  k.  5*  +  1  may 

accidentally  occur  among  the  members  5(!>,  . . . ,  5O,  in  which  case  nothing 
is  left  to  prove.  Else  we  contemplate  the  order  relations  which  subsist 

between  5*  +  1  and  the  /  members  just  mentioned;  as  above,  5*  +  1  may 

precede  or  succeed  all  of  them  or  may  intervene  just  between  two  of  them. 

Now  the  properties  b)  and  c)  of  the  set  R  guarantee  that  there  are 

members  rn  which  stand  in  the  same  relations  to  n,  . . . ,  ri  as  Sk  +  1  stands 

to  5<1>,  . . .,  5<0.  Let  ri  +  p  with  p  >  1  be  the  rn  with  the  least  index 

that  satisfies  those  relations.  Then  automatically  its  image  5(^  +  2?)  (which 

will  prove  to  be  Sk  +  1)  stands  in  the  same  relations  even  to  the  l  +  p-  1 
members 

5*1),  .  .  . ,  5<(),  ...  +  2>  -  1) 

in  which  n  +  p  stands  to  n,  . . .,  ri,  . . .,  n  +  v  -  1;  that  is  to  say,  none  of 

the  members  sV  +  1\  ...,  5O  +  P-1)  occurs  at  that  place  between 

')  On  a  much  higher  level,  with  transfinite  instead  of  mathematical  induction,  a 
corresponding  argument  is  used  in  §  10,  2. 
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•s(1),  sU)  which  is  taken  by  s<1  +  J».  For  otherwise,  in  view  of  the 
similar  correspondence  between  the  rn  and  s<n\  already  some  of  the 
members  n  +  1,  . . . ,  n  +  v  _  i  ought  to  stand  in  those  order-relations  to 

n,  r  i  in  which  n  +  p  was  found  to  stand,  and  rt  +  p  was  just  supposed 
to  be  the  one  with  the  least  index. 

Therefore,  according  to  the  first  half  of  our  proof,  Sk  +  1  is  the  image  of 
ri  +  p,  i.e.  Sk  +  i  =  sU  +  p) ;  this  shows  that,  together  with  si,  . . .,  Sk, 
also  Sk  +  i  participates  in  our  process  of  mapping  R  into  S.  Hence  all  sn 

participate,  i.e.  S  ~  R,  as  maintained  in  Theorem  1. 
From  Theorem  1  we  draw  a  number  of  conclusions  which  are  not 

evident  at  all  and  manifest  the  strength  of  the  theorem. 

First,  rj  =  R  is  as  well  the  type  of  the  set  of  the  rationals  between  two 
arbitrary  points  of  L  as  pointed  out  above.  But,  according  to  Theorem  1, 
also  sets  resulting  from  R  by  dropping  a  single  point,  or  a  finite  number 

of  points,  or  an  entire  closed  or  semi-closed  “interval”  of  R  (producing 
subsets  of  R  which  are  analogous  to  fig.  12  on  p.  158),  have  the  type 
t]  as  well. 

Furthermore,  according  to  Theorem  1,  we  have 

J7  =  77+1+7/  =  77  +  >7  =  ?/*h  (for  finite  n  ̂   0)  =  rj  •  co  =  rj  ■  p; 

for  the  last  two  statements  we  are  using  fto  •  Ko  =  Ko-  (Cf.  exercise  4) 
at  the  end  of  §  9.) x) 

The  three  properties  indicated  in  Theorem  1  are  obviously  independent. 

Hence  the  question  arises  what  results  evolve  if  one  of  the  properties  is 

dropped. 

Dropping  c)  causes  no  difficulty;  we  then  obtain  the  four  dense 

denumerable  types 

t],  1  +  rj,  rj  +  1,  1  +  //  +  1. 

Yet  dropping  a)  or  b)  while  retaining  or  not  retaining  c)  yields  the 

difficult  problems  of  all  dense  or  all  denumerable  types.  (To  the  latter  cf. 

Theorem  5  in  §  8,  6;  regarding  dense  sets  cf.  exercise  5)  at  the  end  of  §  9.) 

4.  The  Type  X  of  the  Linear  Continuum.  With  respect  to  the  historical 

and  philosophical  importance,  the  types  oj  and  rj  are  surpassed  by  the 

T  In  Franklin  25  mappings  between  different  sets  of  the  type  //  are  constructed  by 

means  of  continuous  monotonic,  or  even  analytic,  functions.  This  paper  also  deals 

with  the  analogous  task  regarding  Theorem  2  in  4.  -  As  to  generalizations  of  tj2  =  1, 
cf.  Davis-Sierpinski  52. 
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type  of  the  linear  continuum,  i.e.  of  the  ordered  set  L  of  all  points  on  a 

straight  line,  or  of  a  finite  interval  of  these  points.  As  in  3,  in  the  latter 

case  we  shall  exclude  the  ends  of  the  interval. 

The  importance  of  the  continuum  in  analysis  and  geometry  is  obvious. 

Even  before  its  mathematical  significance  was  emphasized  philosophers 

and  theologians  had  been  trying  to  reveal  the  nature  of  the  (linear) 

continuum  which  seems  to  constitute  continuity  in  spatial  and  temporal 

sense.  Yet  all  attempts  to  analyse  its  structure  remained  unsuccessful, 

and  even  mathematicians  were  inclined  to  assume  that  the  concept  of 

continuum  was  primitive  and  not  capable  of  an  exhaustive  logico- 

mathematical  analysis.  Some  philosophical  and  also  mathematical 

schools  endeavored  to  base  the  continuum  on  the  (extramathematical 

and  extralogical)  concept  of  time,  and  tendencies  towards  shifting  the 

problem  into  mystical  ground  were  not  missing. 

Characteristic  of  the  situation  at  the  time  when  Cantor  attacked  the 

problem  is  his  own  description  of  1883.  After  a  sketch  of  the  development 

throughout  antiquity  and  the  middle  ages  he  continues:  x)  “We  here 
perceive  the  medieval-scholastic  origin  of  the  view  that  the  continuum 

is  an  indivisible  concept  or,  as  others  express  it,  a  pure  aprioristic  intuition 

which  would  hardly  be  capable  of  a  definition  by  other  concepts;  any 

attempt  to  determine  this  mystery  by  arithmetical  methods  is  considered 

an  illicit  intrusion  and  emphatically  rejected.  People  of  a  timid  disposition 

thus  get  the  impression  that  the  continuum  constitutes  rather  a  religious 

dogma  than  a  logico-mathematical  concept.” 

“Far  be  it  from  me  to  renew  these  controversies,  the  more  since 
in  the  present  limited  frame  I  should  not  be  able  to  discuss  them  in 

sufficient  detail;  1  only  feel  bound  to  develop  the  concept  of  continuum  in 

the  logical  sobriety  required  for  its  conception  in  the  theory  of  aggregates, 

in  utmost  brevity  and  with  respect  to  mathematical  set  theory  only.  This 
attitude  has  not  been  easy  for  me  since  among  the  mathematicians  to 
whose  authority  I  like  to  refer  none  has  treated  the  continuum  in  the 

sense  
which  

I  here  

need.” *  

2) 

The  following  treatment  of  the  problem  in  its  general  lines  follows 

J)  Cantor  1879-84V,  §  10.  (Translation  from  the  German  original.) 
2)  Naturally,  to  a  great  extent  the  ground  for  Cantor’s  treatment  was  prepared  by 

the  methods  introduced  into  analysis  by  Cauchy,  Bolzano,  Weierstrass,  and  others. 
By  1880  these  methods  had  been  generally  accepted. 

For  the  connection  between  continuity  and  empiric  knowledge  cf.  Russell  14/26, 
chapter  V. 
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Cantor,  except  for  an  important  detail  stressed  below  (property  a))  and 
tor  the  use  of  (Dedekind  s)  cuts  instead  of  (Cantor’s)  fundamental 
sequences.  It  should  be  pointed  out  that  the  problem  is  conceived,  by 
Cantor  as  well  as  in  the  present  treatment,  in  the  frame  of  the  theory 
of  abstract  ordered  sets  and  types,  just  as  the  problem  of  //in  3;  that  is  to 
say,  a  full  description  only  of  the  linear  continuum  is  intended.  This 
altogether  differs  from  a  construction  of  the  continuum,  one  of  the  most 
intricate  (and  in  a  certain  sense  unsolvable)  problems  of  foundations  of 
mathematics;  in  fact  we  take  for  granted  the  existence  of  the  set  of  all 
points  of  a  line,  or  of  all  real  numbers.  (See  p.  72  and  Foundations,  in 
particular  chapter  IV,  e.g.,  pp.  247ff.) 

At  first  sight,  density  might  seem  to  be  the  characteristic  of  the  conti¬ 

nuum.  That  this  property  is  not  sufficient  shows  the  type  rj  which  is  dense 
but,  in  contrast  with  the  continuum,  denumerable.  Continuity  of  a  set  in 
the  sense  of  Definition  III  in  1  comes  certainly  nearer  the  object;  between 

the  1860’s  when  continuity  in  this  sense  was  first  formulated,  and  Cantor’s 
discovery  nobody  seems  to  have  doubted  that  this  was  the  best  possible 
characterization  of  the  linear  continuum.  We  shall  point  out  the  error  of 
this  belief,  amended  by  Cantor  through  postulating  /?)  of  Theorem  2, 
at  the  end  of  this  subsection. 

As  in  the  beginning  of  3,  we  start  with  stating  three  simple  properties 
of  the  open  linear  continuum  /  (bounded  or  not).  First,  no  cut  in  /  is  a 

gap  (which  is  included  in  its  being  continuous,  see  example  2  in  2); 
secondly,  /  contains  the  denumerable  subset  R  of  all  rationals,  and  be¬ 

tween  any  two  points  of  /  there  is  a  rational  point  (footnote 2)  on  p.  159); 
thirdly,  1  is  open,  i.e.  without  ends.  We  shall  show  that  these  properties, 
which  to  some  extent  are  analogical  to  the  properties  a)- c)  of  Theorem 
1  in  3,  completely  characterize  the  type  of  the  linear  continuum. 

Theorem  2.  Any  abstract  ordered  set  C  of  the  following  properties 
a )  no  cut  in  C  is  a  gap, 

P)  C  has  a  denumerable  subset  D  such  that  between  every  two 
members  of  C  there  is  a  member  of  D  (in  short,  a  denumerable  subset  D  is 
dense  in  C), 

y)  C  is  open, 

is  similar  to  the  open  linear  continuum  I,  for  instance  to  the  set  of  all  real 

x  with  a  <  x  <  b  ordered  by  magnitude,  a  and  b  being  arbitrary  numbers. 

Hence  the  properties  a)  -  y)  determine  a  type,  the  type  X  of  the  open  linear 
continuum. 
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Remarks.  The  theorem  includes  that  X  is  independent  of  the  choice  of 

a  and  b  and  is  also  the  type  of  the  entire  set  L.  As  to  a),  C  has  no  jumps 

either,  as  follows  from  /?),  namely  from  the  density  of  C;  hence  a)  ensures 

that  C  is  a  continuous  set.  Cantor  *)  had  determined  the  type  X  (in  fact, 

the  type  1  +  X  +  1  =  6)  by  demanding  C  to  be  “perfect”  instead  of 
continuous,  a  property  introduced  below  in  5  in  a  somewhat  different 

sense;  in  this  matter  he  was  guided  partly  by  his  own  theory  of  irrationals, 

but  continuity  and  Dedekind’s  theory  used  in  the  following  proof  are 
preferable. 

As  to  /?),  the  following  remark  is  important.  It  is  easily  seen  (cf. 

exercise  1 1)  at  the  end  of  §  3)  that  in  an  ordered  set  with  the  property  /?) 

there  are  at  most  denumerably  many  non-overlapping  intervals  (in  the 

sense  of  mere  order).  In  1919  M.  Souslin  raised  the  

question *  

2)  whether  
the 

latter  property,  in  addition  to  a)  and  y),  also  determines  the  type  X;  in 

spite  of  pursued  efforts  devoted  to  this  problem  of  Souslin  since  the  early 

30’s  it  has  not  been  solved  so  far  3). 
Proof  of  Theorem  2.  It  will  be  sufficient  to  sketch  the  proof,  which 

presents  no  actual  difficulty  after  Theorem  1  has  been  proven.  First  we 

show  that  any  subset  D  of  the  kind/?)  has  the  type  rj.  By  taking,  for  the 

members  of  C  mentioned  in  ft),  members  of  the  subset  D  we  see  that  D  is 

dense,  and  since  D  is  also  open  (by  /?)  and  y))  D  has  the  three  properties 

of  Theorem  1.  Hence  D  ~  R.  Let  tp  be  an  arbitrary  fixed  mapping  of  D 
onto  the  set  R  of  all  rationals  of  I. 

It  now  remains  to  relate  similarly  the  gaps  in  D  to  the  gaps  in  R.  If  c  is 

a  member  of  C  that  does  not  belong  to  D,  let  D\  be  the  set  of  those  d  e  D 

which  precede  c  in  C,  and  Dz  the  set  of  the  other  members  of  D.  ( Di  |  D2 ) 

clearly  is  a  gap  in  D,  and  by  the  mapping  <p  we  obtain  a  corresponding  cut 

(Ri  |  R2 )  in  R  which  is  also  a  gap.  But  a  gap  in  the  set  R  of  rationals 

*)  Theorem  2,  in  the  modified  form,  is  stated  and  proven  in  Cantor  1895,  §11; 
cf.  already  1879-84V,  §  10.  Cf.  Kuratowski  22a,  Webber  31. 

A  detailed  elementary  exposition  of  the  types  co,  r\,  X  is  given  in  Huntington  05-06; 
cf.  Veblen  05. 

2)  Souslin  20. 

3)  In  particular  Kurepa  (see  35  [especially  p.  124  and  §§  9, 11, 12],  48a,  50a  and  the 
papers  cited  there)  examined  this  problem  in  various  directions  and  stated  a  number 

of  equipollent  assertions.  Denjoy  53  (cf.  46— 54III)  can  hardly  be  considered  to  con¬ 

stitute  a  solution.  A  remarkable  progress  was  recently  made  by  Esenin-Vol’pin  54 
who  shows  that  the  problem  cannot  be  answered  in  the  affirmative  without  using  the 
axiom  of  choice. 

For  certain  other  problems  regarding  A,  partly  also  unsolved,  see  the  profound  and 

comprehensive  paper  Erdos-Rado  56. 
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uniquely  determines  a  real,  more  exactly  an  irrational  number  i  in  I 
which  fills  the  gap,  as  shown  in  example  4  of  subsection  2;  the  existence 
of  /  is  a  consequence  of  the  continuity  of  I.  i  shall  be  related  to  c  e  C. 
Evidently  this  rule  establishes  a  one-to-one  correspondence  between  all 
members  of  C  —  D  and  members  of  I  —  R  (i.e.  irrational  numbers). 
By  inverting  the  direction  one  realizes  without  difficulty  that  the  corre¬ 
spondence  even  comprehends  all  members  of  I  —  R;  hence  by  supple¬ 
menting  it  with  (p  we  obtain  a  mapping  of  C  onto  /. 

Finally,  this  mapping  is  similar,  as  follows  from  the  nature  of  the  above 
rule.  In  fact,  each  member  of  C  (not  only  of  C  —  D)  which  precedes 
ce  C,  i.e.  which  belongs  to  the  initial  of  the  cut  in  C  produced  by  c,  has 
an  image  in  /  which  precedes  the  image  of  c;  this  ensures  the  similarity 
and  completes  the  proof. 

From  Theorem  2  we  infer  that  1  +  2  +  1  =  6  is  the  type  of  the 
continuum  as  represented  by  a  closed  intervall  (a, by.  Obviously  types 
such  as  2  ■  n  (for  n  >  1)  and  2  •  co  are  different  from  2  and  from  each 
other,  for  different  finite  values  of  n;  for  instance,  2-2  has  a  gap“  in  the 

middle”.  It  is  not  difficult  to  see  that  2  •  2  has  also  gaps.  On  the  other 
hand,  6  +  9  has  a  jump  in  the  middle.  In  contrast  with  //,  by  dropping  a 
single  member  from  the  linear  continuum  one  creates  a  gap,  thus 
altering  the  type. 

Regarding  the  independence  of  the  system  of  properties  a)  —  y),  y) 
is  insignificant,  whereas  /?)  and  y)  without  a)  are  clearly  satisfied,  for 
instance,  by  the  type  rj.  The  interesting  point,  then,  is  dropping  /?),  the 

property  which  constitutes  Cantor’s  peculiar  discovery.  The  following 
example  of  a  (simply)  ordered  set  (not  a  subset  of  L!)  shows  that  p)  is 
not  redundant.  Conceive  the  square  OXZY  in  figure  11  (§  8,  3)  as  the  set 
of  all  its  points  including  the  points  of  the  sides,  with  the  exception 
of  O  and  Z;  order  the  set  as  done  in  §  8  by  arranging  them  according  to 
increasing  abscissae,  and  for  equal  abscissae  according  to  increasing 
ordinates.  The  set  is  open  and,  as  is  easily  seen,  also  continuous,  but  does 
not  satisfy  p).  For  even  if  to  each  subset,  containing  the  points  with  a 
fixed  abscissa,  but  a  single  member  of  D  belonged,  then  D  would  have  the 
cardinal  X  and  not  Xo- 

5.  Accumulation  Point  and  Related  Concepts.  While  the  subsections  1-4 
virtually  deal  with  abstract  ordered  sets  and  the  restriction  to  subsets  of 

L  was  merely  a  matter  of  convenience,  in  this  subsection  we  introduce  a 

subject  which  is  altogether  outside  the  scope  of  the  present  book  and 
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belongs  to  the  applications  of  set  theory  to  sets  of  points  or  to  topology. 

The  reasons  for  briefly  including  this  subject  are  twofold.  First,  it  seems 

desirable  to  give  the  reader  who  is  not  yet  acquainted  with  such  applicat¬ 

ions  of  set  theory  at  least  a  glimpse  of  some  extremely  simple  concepts 

and  problems  of  this  domain.  The  second  reason  is  rather  historical. 

The  concepts  and  examples  introduced  here  were  also  contemplated 

by  Cantor  himself,  but  chiefly  in  the  frame  of  abstract  sets;  this  in 

particular  applies  to  the  terms  occurring  in  Definition  VI.  Then,  to  be 

sure,  the  respective  notions  have  an  “absolute”  meaning  with  respect  to 
the  set  considered,  whereas  here,  in  accordance  with  the  attitude  prevailing 

to-day  which  is  most  useful  in  the  applications,  they  are  conceived 

relative  to  the  space  in  which  the  sets  are  imbedded.  Most  simply  we  may 

grasp  this  difference  through  example  3  of  2;  while  the  set  K'  defined 

there  is  dense  and  even  continuous,  it  is  not  dense-in-itself  or  perfect  in 

the  sense  of  Definition  VI  below.  Cf.  the  last  paragraph  of  5. 

The  concept  of  order  does  not  enter  the  following  considerations; 

instead  we  need  a  specific  new  concept,  transcending  the  membership 

relation  which  is  sufficient  for  abstract  sets.  It  would  be  most  suitable  to 

define  our  concepts  in  a  topological  (n-dimensional)  space  and  to  take, 

for  instance,  neighborhood  as  the  characteristic  primitive  concept.1)  Yet 

since  we  only  wish  to  give  an  idea  of  the  attitude  mentioned,  it  seems 

preferable  to  appeal  to  notions  well-known  to  everybody;  therefore 

we  restrict  ourselves  to  one-dimensional  metric  space  and  instead  of 

neighborhood  use  the  concept  of  distance  in  the  ordinary  sense,  which  is 

alien  to  topology. 

With  this  restriction  to  one  dimension  we  might  even  imbed  the  follow¬ 

ing  in  the  frame  of  abstract  ordered  sets,  in  view  of  Theorem  2.2)  Yet  we 

shall  not  proceed  in  this  way,  for  the  reasons  given  above  and  also  to 

enable  the  reader  to  interpret  the  concepts  introduced  in  Definitions 

IV- VI  in  the  (Euclidean)  plane  or  three-  or  n-dimensional  metric  spaces 

S ;  the  “points”  of  the  latter  are  ordered  n-tuples  (*i,  x2,  . . . ,  xn )  where  xk 
stands  for  a  real  number.  The  term  “a  set  K ”  in  the  following  definitions 
then  means  a  subset  K  of  S. 

Though  the  examples  given  in  6  are  taken,  for  the  sake  of  simplicity 

and  brevity,  from  a  one-dimensional  space  S,  the  reader  is  recommended 
to  conceive  the  following  definitions  with  respect  to,  say,  a  plane  S. 

*)  The  chief  classical  source  is  Hausdorff  14,  chapter  VII.  Instead  of  Definition  IV 
below,  a  neighborhood  of  p  would  then  mean  an  open  interval  containing  p. 

2)  Cf.  Haar-Konig  11. 
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Definition  IV.  Given  a  point  p  of  S,  the  subset  of  S  that  contains 

the  points  whose  distance  from  p  is  less  than  a  positive  number  d  is 
called  the  d-neighborhood  of  p. 

Definition  V.  Given  a  set  K,  a  point  p  of  S  (not  necessarily 
of  K)  is  called  an  accumulation  point  of  K  if  in  every  ̂ -neighborhood 

°f  P  —  for  short,  in  the  neighborhood  of  p  —  there  is  a  point  A  p 
of  K.  The  set  of  all  accumulation  points  of  K  is  called  the  derivation 

K'  of  K.  A  point  of  K  which  is  not  an  accumulation  point  of  K  is called  an  isolated  point  of  K. 

In  the  neighborhood  of  an  accumulation  point  p  of  K  —  i.e.  an  open 
linear  interval  if  S  is  one-dimensional,  a  circle  without  its  boundary  if  S 
is  two-dimensional,  etc.  —  there  are  infinitely  many  points  of  K.  For,  if 
Pi  e  K  is  in  the  c/i-neighborhood  of  p  and  if  d2  =  |  p  —  pi  \  <  d\  is  the 
distance  between  p  and  pu  then  by  definition  there  is  a  point  p2e  K 

(P2  A  pi)  in  the  ̂ -neighborhood  of  p;  generally,  if  dk  =  \  P  —  Pk  -i\, 
the  ̂ -neighborhood  of  p  contains  a  pk  e  K  which  differs  from  all  pn 
with  n  <  k,  in  view  of  dn  <  dn  _  i.  Hence  all  points  pk  with  k  =  1,  2,  3, 
...  lie  in  the  ̂ -neighborhood  of  K. 

(The  statement  may  as  well  be  proven  indirectly  by  supposing  that  only 
finitely  many  points  were  in  the  neighborhood  of  p  and  contemplating  the 

^-neighborhood  with  d  being  the  minimum  of  the  distances  of  p  from 
those  points.) 

If  AT  is  a  set  of  rational  points,  i.e.  points  with  rational  coordinates,  then 

in  the  neighborhood  of  any  point  of  S  there  are  at  most  denumerably  many 

points  of  K.  In  other  cases,  for  instance  in  that  of  an  open  interval  (circle, 

sphere,  etc.)  K,  there  are  non-denumerably  many  points  in  the  neighbor¬ 
hood  of  an  accumulation  point  of  K,  which  in  this  case  is  also  called  a 

condensation  point  of  K.  The  ends  of  an  open  interval  are  accumulation 

(and  even  condensation)  points  of  the  interval;  this  example  confirms  that 

an  accumulation  point  of  K  need  not  be  a  point  of  K.  Another  example  is 

the  set  Ko  =  {1,  i,  2.,  •  •  -  )i  it  has  the  accumulation  point  0  which 

does  not  belong  to  Ko.  Every  point  of  Ko  is  an  isolated  point  of  Ko. 

Obviously,  an  isolated  point  of  K  may  also  be  characterized  by  its 

having  a  ̂ -neighborhood  in  which  no  other  point  of  K  is  contained. 

Definition  VI.  A  (non-empty)  set  K  is  called  dense- in- it  self 

x)  After  Hausdorff  we  use  hyphens  in  order  to  avoid  confusion  with  a  current 
terminology  which  refers  to  the  density  of  a  set  in  another. 
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if  every  k  e  K  is  an  accumulation  point  of  K,  i.e.  if  K  £=  K' ;  it  is 

called  closed *)  if  every  accumulation  point  of  K  belongs  to  K,  i.e.  if 

K'  c  K\  it  is  called  perfect  if  it  is  both  dense-in-itself  and  closed, 

i.e.  if  K'  =  K. 

Not  every  set  has  one  of  these  properties;  for  instance,  not  the  set  Ko 
defined  above. 

It  should  again  be  stressed  that  these  definitions  differ  in  principle  from 

those  given  in  1.  For  instance,  the  set  containing  the  points  x  satisfying 

0  <  x  <  1,  3  <  x  <  4,  and  x  =  2,  within  the  one-dimensional  space  S, 

has  according  to  Definitions  V  and  VI  the  isolated  point  2  and  is  neither 

dense-in-itself  nor  closed.  In  the  sense  of  Definitions  I  and  III,  however, 

i.e.  in  the  sense  of  abstract  ordered  sets,  it  is  not  only  dense  but  even 

continuous  and  of  the  type  2.  Cf.  also  example  4  in  6. 

6.  Examples.  In  the  following  examples  the  space  -S  shall  be  one¬ 

dimensional,  i.e.  S  is  the  set  of  all  points  of  a  straight  line. 

1.  If  K  is  the  open  interval  between  the  points  pi  and  pz  then  every 

point  of  K  is  an  accumulation  point  of  K,  hence  K  is  dense-in-itself; 

but  K  is  not  closed  because  pi  and  p%,  though  accumulation  points,  do  not 

belong  to  K,  hence  K  <=  K' .  Yet  the  closed  interval  <pi,/?2>  is  closed 
and  perfect. 

From  the  geometrical  point  of  view,  the  closeness  of  <  pi,  p%  )  is  a 

consequence  of  the  (axiomatic  or  otherwise)  conception  of  the  notion 

“points  of  a  line”;  cf.  the  footnote  2)  on  pp.  155/6. 
2.  The  set  R  of  all  rational  points  between  two  arbitrary  points  p\  and 

Pi  of  S  is  dense-in-itself  because  in  the  neighborhood  of  a  rational  point 

there  are  others.  However,  an  accumulation  point  of  R  “in  general”  does 
not  belong  to  R ;  more  precisely  (cf.  example  4  in  2),  R  has  N  accumulation 

points  of  which  only  No  (the  points  of  R)  belong  to  R.  Hence  R,  also 

after  the  addition  of  p\  and  pi,  is  not  closed.  The  term  closed  explains 

itself  similarly  as  “filling  the  gaps”  in  2;  by  adding  to  R  all  its  accumul¬ 
ation  points  we  obtain  a  closed  set. 

3.  Let  H  be  the  set  {0,  ±  1,  ±  2,  . . . }  of  all  integral  points  of  S  or, 

which  amounts  to  the  same,  any  infinite  set  of  equidistant  points.  H  is 

certainly  not  dense-in-itself,  all  its  points  being  isolated,  but  it  is 

T  There  is  no  danger  of  confusion  with  a  “closed  interval”  (subsection  2).  For  the 
connection  between  both  terms  cf.  examples  1  and  2  below. 
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closed,  for  H  —  O,  and  O  is  a  subset  of  every  set.  For  the  same  reason 
(having  no  accumulation  point)  every  finite  set  is  closed,  in  contrast  with 

the  set  K0  (p.  169)  which  does  not  contain  its  (only)  accumulation  point 
0  —  though  all  points  of  Kq,  like  those  of  H,  are  isolated. 

4.  Finally  we  consider  a  famous  and  widely  used  example,  called 

Cantor's  discontinuum  (or  perfect  and  nowhere-dense  set),  though  it  had 
been  introduced  by  H.  J.  S.  Smith  some  years  before  Cantor.1)  A  set  of 

points  will  be  called  nowhere-dense  (“dense”  taken  similarly  as  in  1)  if 
between  every  two  points  of  the  set  there  is  an  (open)  interval  —  at  least 

one  —  of  the  space  5  which  contains  no  point  of  the  set.  We  shall  content 
ourselves  with  briefly  sketching  a  few  interesting  properties  of  the  set. 

Oiii  i.  7  8  _l_ 
27  27  9  9  2727  3 

2.  J9  20  7.  JB  25  26  . 
3  27  27  9  9  27  27 

Fig.  13 

Let  us  take  a  special  type  C  of  Cantor’s  set,  from  which  more  general 
ones  are  easily  gathered.  Starting  with  the  closed  interval  <  0,  1  >  (see 

fig.  13)  we  “mark”  the  middle  third  <  i,  f  >  as  the  first  step.  Of  the 
two  thirds  which  remain  unmarked,  viz.  from  0  to  L  and  from  |  to  1,  we 

mark  the  middle  thirds  <  i  §  >  and  <  J,  J  >  as  the  second  step. 
The  third  step  then  consists  in  marking  four  closed  intervals  <  -dL  > 

etc.,  and  after  the  &th  step  2k  unmarked  open  intervals  will  remain,  in 
each  of  which  the  middle  third  shall  be  marked. 

C  shall  contain,  first,  the  ends  of  all  marked  intervals,  i.e.  L,  | ,  1,  . . . , 
including  the  ends  0  and  1  of  the  original  interval  <  0,  1  >,  and  in 

addition  all  points  of  <(  0,  1  )  which  are  not  contained  in  any  marked 

interval.  The  points  of  the  latter  kind  may  also  be  described  as  the  mem¬ 

bers  of  the  intersection  of  all  sets  C<*>  where  C<*>  contains  the  points 
which  at  the  kth  step  do  not  belong  to  a  marked  interval. 

C  is  nowhere-dense.  In  fact,  two  given  points  c i  and  c%  of  C  may  be  the 
ends  of  the  same  marked  interval,  in  which  case  no  point  of  C  is  between 

them.  Otherwise  at  least  one  marked  interval  (one  end  of  which  may  be 

ci  or  C2)  lies  between  them,  and  in  point  of  fact  even  infinitely  many 

marked  intervals.  Since  the  corresponding  open  intervals  contain  no 

point  of  C,  our  statement  is  true. 

Nevertheless,  C  is  dense-in-itself.  For  a  given  point  c  of  C  is  either  an 

x)  Smith  1875;  Cantor  1879-84V  (1883),  p.  590. 



172 ORDER  AND  SIMILARITY.  ORDER-TYPES  AND  ORDINALS 

[CH.  Ill 

end  of  a  marked  interval  or  does  not  belong  to  a  marked  interval.  On  the 

side  opposite  to  that  interval  in  the  first  case,  and  on  both  sides  of  c 

in  the  second,  there  are  in  the  neighborhood  of  c  certainly  marked  inter¬ 

vals,  according  to  the  definition  of  C,  and  their  ends  belong  to  C.  In  the 

neighborhood  of  c,  then,  are  even  points  of  the  denumerable  subset  of 

C  which  contains  the  ends  of  marked  intervals  only;  hence  c  is  an 

accumulation  point  of  C. 

The  fact,  surprising  at  first  sight,  that  C  contrives  to  be  dense-in-itself 

and  nowhere-dense  at  the  same  time  is  easily  explained.  For  those  points 

which  do  not  belong  to  a  marked  interval  it  follows  from  the  presence  of 

marked  intervals  in  every  neighborhood,  and  for  the  ends  of  marked 

intervals  the  same  still  holds  in  one  direction,  which  is  sufficient  for  the 

property  of  being  dense-in-itself  (though  not  for  density). 

Finally,  C  is  closed,  hence  perfect.  Any  accumulation  point  of  the 

original  interval  <  0,  1  >,  all  the  more  of  the  set  C,  belongs  to  <  0,  1  >. 

Hence,  to  prove  that  every  accumulation  point  a  of  C  belongs  to  C  we 

have  only  to  show  that  a  is  not  an  interior  point  of  a  marked  interval; 

but  this  is  evident  since  in  a  certain  neighborhood  of  such  interior  points 
there  is  no  point  of  C  at  all. 

To  prove  further  properties  of  Cantor’s  discontinuum  it  is  convenient 
to  represent  the  members  of  C  arithmetically,  namely  as  triadic  (instead  of 

decimal  or  dual)  fractions  (cf.  §  4,  3).  The  digits  admitted  are,  then,  0,  1,  2. 
But  the  above  definition  of  the  points  of  C  means  that  the  middle  digit,  1, 
is  excluded  by  the  successive  steps  and  only  0  and  2  are  admitted.  Hence  C 

can  be  conceived  as  the  set  of  all  those  (infinite  and  terminating)  triadic 

fractions  beginning  with  0.  in  which  the  digit  1  does  not  occur.  This  duly 
includes  the  ends  of  the  marked  intervals  and  the  points  0  and  1 ;  for  the 

corresponding  real  numbers,  save  for  0,  admit  two  triadic  expansions, 

one  infinite  and  one  terminating  (  §  4,  2),  and  the  left-hand  end  of  every 
marked  interval  (see  figure  13)  can  be  written  as  an  infinite  fraction 

without  the  digit  1,  the  right-hand  end  as  a  terminating  one.  For  instance, 
in  triadic  expansion, 

1  =  0.222. . .,  i  =  0.0222. . .,  §  =  0.2,  i  =  0.00222. . .,  |  =  0.02. 

From  this  representation  we  easily  infer  that  C  has  the  cardinal  X 
—  which  is  surprising  for  a  set  which  is  nowhere  dense  and  which 
has  the  property  stated  in  the  following  paragraph.1)  For  if  in  each 

0  F°r  a  remarkable  mapping  of  C  onto  the  set  of  all  denumerable  types,  which  has 
the  cardinal  X  (Theorem  5  of  §  8),  see  Kuratowski  37. 
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triadic  fraction  of  C  we  replace  the  digit  2  by  1,  we  formally  obtain 
the  set  of  all  infinite  and  terminating  dual  fractions  which  has  the 
cardinal  +  S‘o  =  K-1) 

Another  surprising  fact  is  that  the  sum  of  the  lengths  of  all  marked 
intervals  is 

l-Ll  i  22  I 

3  '  32  ̂   3"3  ̂  .  -f  2^l!  J_ '  3*  ' =  10  +i+(fr+--)=i-3=i- 
That  is  to  say,  the  sum  equals  the  length  of  the  original  interval  <(  0,  1  y. 
Hence,  in  accordance  with  the  usual  generalization  of  the  elementary 
concept  ot  length  (or  area,  etc.)  to  that  of  measure,  C  has  the  measure  0 
(though  the  cardinal  N). 

The  “ordinal”  subjects  of  1-4  and  the  “spatial”  subjects  of  5  and  6 
give  but  a  hint  of  the  wealth  of  applications  which  the  theory  of  sets  of 
points  has  found  in  the  theory  of  functions,  in  topology,  and  in  many 
other  fields  of  analysis  and  geometry.  (Cf.  §  12.)  For  these  applications2), 
as  well  as  for  the  theory  of  sets  of  points  itself,  the  reader  is  referred  to 

the  great  number  of  textbooks,  comprehensive  treatises,  and  encyclopedic 
expositions  of  these  subjects. 

Exercises 

1)  Prove  that  the  type  co  is  determined  by  the  following  properties  of  a 
corresponding  set 

a)  it  has  a  first  but  no  last  member, 

b)  every  cut  is  a  jump. 

2)  Prove  that  the  type  *co  +  co  is  determined  by  the  following  proper¬ 
ties  of  a  corresponding  set  3) 

a)  it  has  neither  a  first  nor  a  last  member, 

b)  every  cut  is  a  jump. 

J)  C =  X  is  a  particular  case  of  the  statement  that  every  perfect  set  P  of  points 
has  the  cardinal  K  The  proof  is  quite  easy  for  a  one-dimensional  P.  Then  P  may 
include  an  interval,  in  which  case  the  statement  is  trivial.  Otherwise  the  set  is  nowhere- 
dense;  then  it  is  not  difficult  to  show  that  P  or  a  subset  of  it  is  similar,  all  the  more 
equivalent,  to  C. 

2)  For  applications  in  metamathematics  see  Beth  59,  part  VII. 

3)  Among  the  methods  of  determining  this  type  by  Peano’s  relation  of  sequent, 
Devide  56  may  be  mentioned.  On  the  other  hand,  Ohkuma  54  shows  that  the  following 
property  is  not  sufficient  to  determine  *co  +  co:  a  and  b  denoting  any  two  members  of  a 
corresponding  set,  there  exists  a  single  mapping  / (a)  of  the  set  onto  itself  for  which 

/(«)  =  b. 
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3)  Show  that  every  (abstract)  dense  set  can  be  rendered  continuous  by 

filling  its  gaps  x)  (cf.  the  end  of  2). 

4)  Prove  that  tj  ■  a  =  rj  for  every  denumerable  type  

a
 
*
 
 

2). 

5)  Prove  that,  given  a  dense  set  D  and  a  denumerable  (ordered)  set  A, 

A  is  similar  to  a  subset  of  D.  (Hence  every  dense  set  has  a  subset  of  the 

type  rj.)  3 ) 
6)  A  set  S  of  sets  is  called  monotone  (or  a  chain ;  cf.  §  11,7)  if  of  any 

two  members  of  S  one  is  a  subset  of  the  other.  A  monotone  set  S  can  be 

regarded  as  an  ordered  set  by  interpreting  .sr  £2  as  si  -<  S2.  Prove 

the  following  theorem  4):  If  and  only  if  a  is  a  subtype  of  A  (i.e.  the  type 
of  a  subset  of  the  open  linear  continuum)  then  there  exists  a  monotone 

set  of  the  type  a  the  members  of  which  are  sets  of  positive  integers. 

7)  Examine  the  properties  of  the  types  (A  +  1)  (1  +  A  +  1)  and 

(1  +  A  +  l)2. 
8)  (Cf.  exercise  5))  Show  that  every  continuous  set  has  a  subset  of  the 

type  A. 

9)  Ascertain  the  derivation  K'  and  the  second  derivation  K"  =  ( K ')' 
of  the  sets 

a)  K  —  {0>  rb  ±  §>  •  •  •  >  i  ~pp-<  •  •  •  )> 

b)  K  —  the  set  of  all  terminating  decimal  fractions. 

10)  Examine  the  examples  of  6  in  the  light  of  the  concepts  introduced 
in  1. 

§  10.  General  Theory  of  Well-Ordered  Sets.  Finite  Sets 

1.  The  Concept  of  Well-Ordered  Set.  The  well-ordered  sets,  introduced 
in  this  subsection  in  various  ways,  constitute  a  kind  of  ordered  sets 

which  is  remarkable  for  its  simplicity  and  for  its  generalizing  certain 
properties  of  finite  sets.  The  order-types  of  well-ordered  sets  will  in  fact 

prove  to  be  similar  to  integers  in  many  respects;  the  most  important  ones 
are  comparability  and  applicability  of  induction. 

The  significance  of  the  well-ordered  sets  is  enhanced  by  the  fact  (see 

*)  A  generalization  of  this  method  is  given  in  Cuesta  54. 
2)  Cf.  Slupecki  54. 

3)  For  more  far-reaching  results,  including  a  generalization  from  No  to  any transfinite  cardinal,  see  Shepherdson  51,  p.  304;  Ginsburg  53,  p.  522;  Mendelson  58. 
Cf.  Gillman  58  and  the  literature  given  there.  —  For  an  analogous  but  far  profounder 
problem  see  Erdos-Rado  53  (where,  however,  the  generalized  continuum  hypothesis 
(§  11,7)  and  inaccessible  numbers  are  involved). 

4)  See  Sierpinski  32a. 
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§11,6  and  7)  that  the  well-ordering  theorem,  one  of  the  most  important 
and  most  useful  achievements  of  modern  mathematics,  allows  to  transfer 

the  properties  of  well-ordered  sets  to  any  (ordered  or  plain)  sets.  From 
the  beginning  Cantor  took  the  possibility  of  well-ordering  for  granted, 
without  seriously  attempting  to  prove  it.  One  of  the  consequences  is  an 

enormous  simplification  of  the  arithmetic  of  cardinals  (but  not  of  order- 

types). 

In  §  8  we  introduced  ordered  sets  and  order-types  by  refraining 

from  the  second  act  of  abstraction  that  in  §  4  led  us  to  the  concept  of 
cardinal,  namely  abstraction  from  the  order  in  which  members  succeed 

one  another.  Hereby  we  seemed  to  obtain  counting :  first,  second,  etc. 

Yet  general  order-types  do  not  resemble  the  process  of  counting;  this 

process  always  begins  with  a  first  object  to  be  counted,  and  every  object 

counted  is  followed  by  a  next  one,  whereas  in  an  ordered  set  there  is  in 

general  no  first  member  and  no  sequent  to  a  given  member. 

To  obtain  closer  resemblance  to  counting  we  have,  then,  to  add  to  the 

conditions  of  §  8, 2  a  further  one.  It  cannot  be  merely  beginning  with  a  first 

member  and  providing  each  member  save  possibly  the  last  with  a  sequent, 

for  this  would  yield  only  sequences  and  their  subsets.  The  additional 

condition  was  introduced  by  Cantor  *)  from  1883  on  in  various  forms, 
notably  those  of  Theorem  2  or  Definition  I;  he  also  coined  the  terms 

“well-ordered”  and  “ordinal  number”  (see  Definition  III  in  4).  More  than 
any  other  single  step  in  the  development  of  set  theory  has  the  theory  of 

well-ordered  sets  influenced  mathematics  in  its  entirety  since  the  turn  of 
the  century. 

Definition  I.  An  ordered  set  W  is  called  well-ordered  if  every 

non-empty  subset  of  W  has  a  first  member.  For  practical  reasons 
also  the  null-set  is  called  well-ordered. 

Hence  a  well-ordered  set  has  itself  a  first  member,  in  accordance 

with  the  first  feature  of  counting  stated  above. 

This  definition  has  become  customary  though  it  is  not  the  simplest  one  in  principle. 

In  fact,  the  transitivity  of  the  order  relation  (Definition  I  of  §  8)  becomes  redundant 

if  every  subset  is  required  to  have  a  first  member.  There  are  two  preferable  ways  of 

defining  a  set  W  as  well-ordered : 

a)  either  to  require  the  relation  «<  in  W  to  be  irreflexive  and  to  connect  every  two 

different  members  wr,  W2  by  a  single  of  the  relations  wi  -<  W2  and  W2  -<  wi,  in  addition 

to  which  every  non-empty  subset  of  W  shall  have  a  first  member; 

x)  Cantor  1 879-841 V,  and  V,  §§  2,  3,  1 1 ;  1897,  §  12. 
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b)  or  to  require  W  to  be  an  ordered  set  and  to  add  the  condition  of  Theorem  2, 

below  (cf.  the  Remark  on  p.  177). 

Originally  Cantor  had  taken  the  second  way,  replacing  it  later  by  Definition  I.  We 

shall  mostly  use  Definition  I  which  is  the  usual  one.1) 

From  the  definition  we  conclude 

Theorem  1.  Every  subset  of  a  well-ordered  set,  and  every  ordered  set 

which  is  similar  to  a  well-ordered  set,  is  also  well-ordered. 

The  simplest  instances  of  well-ordered  sets  are  the  finite  ordered  sets 

(cf.  6)  and  the  enumerated  sets,  i.e.  those  of  the  type  co.  (A  denumerable 

set  need  not  be  ordered  and,  if  it  is,  not  be  well-ordered;  for  example,  the 
set  of  all  integers  or  the  set  of  all  rationals,  ordered  according  to  magni¬ 
tude.)  Examples  of  infinite  well-ordered  but  not  enumerated  sets  are 
(cf.  also  p.  146) 

(0,  1,2,  3,  ...  -1,  -2,  -3,  ...) 

(1,  2,  3, 13.5.  1.24  ill 
2’  2’  2’  '  '  '  3’  3’  3’  •  '  ’  4’  4’  4’ 

More  intricate  examples  are  given  in  §  11,  3;  non-denumerable  well- 
ordered  sets,  however,  will  explicitly  appear  only  in  §  1 1 ,  5. 

We  shall  now  give  three  additional  definitions  of  the  concept  of  well- 
ordered  set.  To  show  that  they  are  equipollent  to  Definition  I  we  formulate 

them  as  theorems  of  the  form  “a  set  is  well-ordered  if  and  only  if _ ”. 
While  the  first  feature  of  counting  (p.  175)  is  stressed  by  Definition  I 

the  second  is  emphasized  in 

Theorem  2.  An  ordered  set  W  is  well-ordered  if  and  only  if  every  subset 

Wo  which  is  not  confinal  with  W  has  a  sequent  in  W.  (For  “confinal” 
see  d)  at  the  end  of  §  8,  2.) 

For  W  =  O  the  condition  is  satisfied  vacuously.  For  W0  =  O  the 
sequent  is  the  first  member  of  W.  If  the  subset  is  a  unit-set  (a),  either  a  is 
the  last  member  of  W  in  which  case  no  condition  is  imposed,  or  the 
condition  requires  a  to  have  a  sequent  which  is  the  second  feature  of 
counting  mentioned  above.  The  condition  of  Theorem  2,  then,  is  a 
generalization  of  this  feature. 

Proof  of  Theorem  2.  a)  If  W  is  well-ordered  let  W0  be  the  set  of  all 
ye  W  which  succeed  every  xe  W0.  By  assumption  W0  A  O;  hence, 

For  recent  generalizations  of  the  concept  of  well-ordered  set,  notably  with  a  view 
to  partly  ordered  sets  (§  8,  2),  cf.  J.  Schmidt  55  and  the  literature  given  there. 
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according  to  Definition  I,  Wo  has  a  first  member  which  evidently  is  the 
sequent  of  W0. 

b)  Let  the  condition  of  the  theorem  be  satisfied  by  the  ordered  set 

W  and  let  W'  be  a  non-empty  subset  of  W;  we  have  to  show  that  W'  has  a 
first  member.  If  W0  is  the  subset  of  W  that  contains  those  yeW  which 

precede  every  x  e  W' ,  then  Wo  has  a  sequent  s;  s  clearly  belongs  to  W' and  is  its  first  member.  Hence  W  is  well-ordered. 

Remark.  Theorem  2  characterizes  well-order  by  the  property  that 
every  non-empty  remainder  of  W,  defined  as  the  set  of  those  yeW  which 
succeed  all  members  of  a  subset  not  confinal  with  W,  has  a  first  member, 
namely  the  sequent  of  the  subset.  This  weakens  the  condition  of  Definition 
I  which  requires  the  same  property  of  every  non-empty  subset  of  W.  Hence 
the  characterization  of  Theorem  2  is  preferable  in  principle. 

Here  we  insert  an  almost  evident  theorem  on  ordered  sets  which  might 
have  been  formulated  as  well  in  §  8,  2  after  the  definition  of  section. 

However,  only  in  the  following  does  the  theorem  gain  importance. 

Theorem  3.  A  section  of  a  section  of  an  ordered  set  S  is  a  section  of  S, 

and  conversely,  of  two  different  sections  of  S  one  is  a  section  of  the  other. 

Proof.  The  first  statement  is  trivial.  To  prove  the  second  let  xi  and  x2 
be  different  members  of  S  which  determine  the  sections  Xx  and  X2 
respectively;  then  according  as  xi  <  x2  or  x2  <  xi,  Xi  is  a  section  of 
X2  or  X2  a  section  of  X\. 

While  every  section  of  S  is  an  initial  (§  8,  2),  the  converse  is  not  true. 
For  instance,  if  the  positive  integers  are  ordered  in  the  succession 

(1,  3,  5,  7, . 8,  6,  4,  2) 

then  the  ordered  subset  of  the  odd  integers  is  an  initial  but  not  a  section. 

If  S  is  the  ordered  set  of  the  points  of  a  fine,  the  same  applies  to  the 
subset  which  contains  a  definite  point  and  all  points  that  precede  it. 

For  well-ordered  sets  W,  however,  there  is  no  distinction  between 

initials  and  sections,  save  for  W  itself  which  is  an  “improper”  initial  of  W. 
For  we  have 

Theorem  4.  An  ordered  set  W  is  well-ordered  if  and  only  if  every  proper 

initial  of  W  is  also  a  section  of  W. 

W  is  an  initial  of  itself  but  not  a  section  because  it  has  no  sequent. 

Proof  (by  Theorem  2).  a)  Since  an  initial  which  has  a  sequent  in  W 

is  the  section  determined  by  this  sequent  we  have  to  show  that  every 
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proper  initial  of  a  well-ordered  set  does  have  a  sequent.  This  follows  from 
Theorem  2. 

b)  Assuming  that  the  condition  of  Theorem  4  is  satisfied  by  the 

ordered  set  W,  let  Wo  be  any  subset  of  W  which  is  not  confinal  with  W. 

To  prove  that  Wo  has  a  sequent  in  W  we  replace  Wo  by  the  set  /  which,  in 

addition  to  the  members  of  Wo,  also  contains  all  predecessors  in  W  of  any 

x  e  Wo.  /  is  a  proper  initial  of  W,  hence  a  section  by  our  assumption;  the 

member  that  determines  this  section  is  then  the  sequent  of  (I  and)  Wo, 

which  by  Theorem  2  expresses  that  W  is  well-ordered. 

Theorem  5.  An  ordered  set  W  is  well-ordered  if  and  only  if  it  has  no 

subset  of  the  type  *co. 

Proof  (by  Definition  I).  a)  If  W  is  well-ordered  then  every  non-empty 

subset  has  a  first  member,  hence  has  not  the  type  *co. 

b)  If  no  subset  of  W  has  the  type  *co  then  every  non-empty  subset 

has  a  first  member.  For  otherwise  it  would  include  a  sequence  (af)  such 

that  ak  +  i  -<  ak  for  every  k,  i.e.  it  would  include  a  subset  of  the  type  *co. 

Definition  I  and  Theorems  2,  4,  5  are  explicitly  unilateral  (asymmetrical) 

with  respect  to  order;  “first”  cannot  be  replaced  by  “last”  nor  “sequent” 

by  “immediate  predecessor”,  “initial”  by  “remainder”,  *co  by  co.  Of 
course,  by  introducing  ordered  sets  each  non-empty  subset  of  which 

has  a  last  member  one  would  obtain  a  completely  analogous  theory, 

yielding  nothing  new.  As  to  requiring  both  a  first  and  a  last  member,  see 
subsection  6. 

Finally,  as  well  as  the  theory  of  ordered  sets  also  the  general  theory  of 

well-ordered  sets  can  be  based  upon  our  axioms,  and  for  the  definition 

of  well-order  the  detour  via  order  (§  8,  2)  can  be  somewhat  curtailed. 

(See  Foundations,  pp.  128-134.)  Existential  statements,  however,  such  as 
those  occurring  in  §  11,  require  not  only  the  axioms  of  infinity  and  of 

choice  but  mostly  an  additional  axiom  of  “substitution”  (see  §11,2). 

2.  Transfinite  Induction.  In  this  and  the  following  subsection  we  deal 

with  the  two  most  important  subjects  of  the  general  theory  of  well- 

ordered  sets  —  in  contrast  to  existential  subjects  and  to  ordinal  numbers, 
treated  in  §  11.  The  proofs  of  Theorem  7  and  8  are  not  easy.  Beginners 
are  therefore  advised  to  postpone  the  former  until  they  arrive  at  §  11 
where  (in  3)  Theorem  7  is  referred  to  for  the  first  time.  As  to  Theorem  8, 
its  proof  is  not  essential  altogether,  for  in  §  11,  2  another  proof  of  this 
theorem,  easier  though  less  direct  and  typical,  will  be  given. 
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As  is  well  known,  the  characteristic  method  of  proving  and  defining  in 
arithmetic  is  mathematical  induction,  i.e.  the  method  of  generally  pro¬ 
ceeding  from  n  to  n  +  1,  provided  that  the  case  n  —  1  (or  =  0)  is  separ¬ 

ately  dealt  with.1)  After  the  order  between  the  positive  integers  n  has  been 
introduced  it  is  often  more  convenient  to  deal  with  n  +  1  on  the  assump¬ 
tion  that  all  preceding  values  (from  1,  or  0,  to  n)  are  dealt  with;  this  is 
the  form  analogous  to  Theorems  6  and  7.  Some  authorities  on  math¬ 

ematics  and  philosophy  maintain  that  mathematical  induction  is  the  very 
root  of  mathematics.  (Cf.  Foundations,  chapter  IV.) 

Obviously  mathematical  induction  is  not  sufficient  to  serve  (ordered) 

sets  which  are  neither  finite  nor  sequences  as  the  sequence  of  the  positive 

integers.  Yet  there  is  a  far-reaching  generalization,  called  “transfinite 

induction”,  which  is  fit  for  all  well-ordered  sets  and  their  types  (ordinals) 
and  can,  by  means  of  the  well-ordering  theorem  (§11,  6),  be  transferred 

to  infinite  sets  in  general.2) 

In  the  applications  of  set  theory  to  analysis  and  other  branches  of 

mathematics  no  tool  has  proved  as  important  and  powerful  as  transfinite 

induction.3) 

The  simplest  aspect  of  transfinite  induction,  namely  its  use  for  proving, 
is  contained  in 

Theorem  6  (Proof  by  Transfinite  Induction).  Let  be  given  a  well- 

ordered  set  W  and  a  condition  ( predicate ,  property)  ̂ )}(x)  defined  for  all 

members  x  of  W;  if  the  truth  of  ))3  for  the  members  of  every  section  of  W 

implies  its  truth  for  the  member  which  determines  the  section,  then  s)3  is 
true  for  all  members  of  W. 

An  equipollent  formulation  is:  given  a  well-ordered  set  W  and  a  set  S 

(not  necessarily  ordered)  which  contains,  together  with  the  members  of 

any  section  of  W,  also  the  member  which  determines  that  section,  then  S 

contains  all  members  of  W. 

1)  Occasionally  we  leaned  upon  proofs  by  mathematical  induction,  for  instance  in 
§  2,  5;  §  3,  5;  §  9,  3.  After  its  partial  use  by  Euclid  (book  IX,  prop.  8),  Gersonides  (Levi 

ben  Gerson),  and  others,  the  general  formulation  originates  with  Blaise  Pascal.  Cf. 
Freudenthal  53. 

2)  For  more  general  inductive  procedures  (which  include  mathematical  and  trans¬ 
finite  induction)  see  Bell  20,  Bennett  22,  Blumberg  36;  for  induction  in  the  (linear) 

continuum  Khintchine  23  and  Perron  26,  cf.  Duren  57  (see  footnote  3)  below);  for 

induction  in  partly  (well-)ordered  sets,  J.  Schmidt  53  and  55. 

3)  For  some  branches,  notably  algebra  and  topology,  alternative  methods  (equi¬ 
pollent  to  transfinite  induction)  were  recently  introduced.  Cf.,  for  instance,  Tukey  40, 

Birkhoff  42  and  48.  For  Zorn’s  principle  see  Foundations,  pp.  68-70;  cf.  J.  Schmidt  57. 
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According  to  the  assumption,  ^  is  true  for  the  first  member  wo  of  W 

(or  S'  contains  wo);  for  the  section  determined  by  wo  is  empty,  hence  the 
assumption  is  vacuously  fulfilled  by  wq. 

For  the  concept  of  a  condition *)  (predicate,  property)  ̂ (x)  cf. 

Foundations,  p.  27  (and  38-41);  for  its  use  here,  however,  no  logical 

analysis  is  needed.  (“)J3(x)  is  true”  is  just  another  expression  for  “x 

satisfies  the  condition  ̂ 3”.) 

The  (indirect)  proof  of  Theorem  6  is  almost  trivial.  If  the  theorem  were 

not  true  there  ought  to  exist  members  x  of  W  which  do  not  satisfy  ip, 

and  these  members  constitute  a  non-empty  subset  of  W  which  has  a 

first  member  xo.  But  then  the  members  of  the  section  of  W  determined  by 

x0  satisfy  ‘p,  hence  by  assumption  also  x0.  This  contradiction  shows  that 
the  theorem  is  true. 

For  the  task  of  indirect  procedure  in  this  and  other  proofs  of  the 
present  section  see  the  end  of  subsection  5. 

A  far  more  intricate  problem  than  proving  is  defining  by  transfinite 
induction.  The  situation  is  to  a  great  extent  analogous  to  that  in  the  realm 

of  positive  

integers *  

2);  yet  there  the  definition  
by  mathematical  

induction 

involves  the  additional  problem  of  ordering  the  integers  whereas  in  a 
well-ordered  set  the  order  is  presupposed. 

While  definitions  by  transfinite  induction  had  been  naively  used  by 

Cantor  3)  to  introduce  powers  of  ordinal  numbers,  only  in  the  twenties  did 
von  Neumann  4)  discover  and  fill  up  this  gap  in  the  theory  of  well-ordered 
sets  and  ordinals,  and  only  during  the  last  decade  did  a  rigorous  treatment 
enter  the  textbooks  of  set  theory.  The  nature  of  the  gap  becomes  evident 

*)  The  term  is  adopted  from  Rosser  53,  p.  200;  cf.  above,  p.  16. 
2)  The  definitions  of  addition  and  of  other  operations  were  for  the  first  time  strictly based  in  Dedekind  1888,  §  9;  cf.  Bernays  37-5411,  p.  11  and  Wang  57.  Peano’s  proced¬ 

ure  (from  1889  on,  cf.  Peano  1895)  is  not  sufficient  as  long  as  it  is  not  supplemented 
by  a  new  primitive  symbol  for  addition  or  by  an  appropriate  primitive  rule  of  inference ; 
otherwise  one  has,  as  here  in  Theorem  7,  to  prove  that  a  function  exists  which  satisfies 

Peano’s  recursive  definition.  Cf.  Landau  30,  Lorenzen  39,  Kalmar  40,  Church  52,  and the  comprehensive  analysis  given  in  Felscher-Schmidt  58  and  in  Beth  59  (chapter  6). 
3)  Cantor  1897,  pp.  23  Iff.;  cf.  Schoenflies  00-071,  p.  45  and  Hausdorff  06-071 pp.  127ff. 

4)  Von  Neumann  23  and  28.  —  A  method  of  rendering  inductive  definitions,  in  the sense  of  both  mathematical  and  transfinite  induction,  explicit,  is  given  in  Kleene  44 
(cf.  38).  This  is  a  question  of  principle,  because  inductive  definitions  cannot  simply 
be  eliminated  as  can  explicit  definitions  (cf.  above,  §  4,  6);  therefore,  in  a  proof  of 
non-contradiction  for  a  deductive  theory  ( Foundations ,  chapter  V)  inductive  definitions must  be  considered  separately  (cf.  Hilbert-Bernays  34,  p.  294). 
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from  Theorem  7  and  its  proof ;  previously  one  had  assumed  that  Theorem 
6  was  sufficient  for  defining,  too. 

We  precede  Theorem  7  with  a  definition  which  has  the  only  purpose  of 
formulating  the  theorem  in  a  simple  way. 

Definition  II.  A  rule  which  uniquely  assigns  values  to  all 

functions  defined  on  sections  of  a  well-ordered  set  W,  is  called  a 
recursive  rule  on  W.  A  function  /  defined  on  W  is  said  to  satisfy  a 
recursive  rule  p  on  W  if,  for  each  x0  e  W,  /(x0)  equals  the  value 
assigned  by  p  to  the  restriction  of  /  to  the  section  determined  by  xo. 

Theorem  7  ( Definition ,  or  Construction,  by  Transfinite  Induction).  For 

any  recursive  rule  p  on  a  well-ordered  set  W,  there  exists  one  and  only 
one  function  defined  on  W  which  satisfies  the  rule  p.  In  short,  a  recursive 
rule  uniquely  defines  a  function  on  W. 

Remarks.  /(x)  is  accordingly  defined  for  the  first  member  of  W  by  the 

recursive  rule,  just  as  in  the  case  of  Theorem  6.  There  are  various  ways  of 
defining  functions  on  W by  recursive  rules;  a  fixed  rule  from  among  them 
is  assumed  to  be  given. 

A  recursive  rule  p  on  W  is,  then,  a  function  y/( x0,  g)  where  x0  e  W 
and  g  ranges  over  functions  defined  on  the  set  of  all  x  e  W  which 

satisfy  x  -<  xo.  Given  a  function  /  defined  on  W,  let  us  denote  by 
C(f  x0)  the  restriction  of  /  to  the  section  of  W  determined  by  x0.  Thus 

C(f  x0)  is  the  set  of  all  ordered  pairs  (x,/(x))  where  xe  W  and  x<x0. 
That  a  function  /  satisfies  the  recursive  rule  p  requires  that  / (xo)  = 
i//(xo,  C(f  xo))  for  all  xo  e  W. 

Instead  of  saying  “/  satisfies  the  recursive  rule  p”  we  also  say  “/  has 
the  recursive  property  p”. 

Proof  of  Theorem  7.  We  start  with  proving  that  if  there  exists  a 

function  satisfying  the  recursive  rule  then  there  exists  one  only.  This 

follows  immediately,  just  as  in  the  proof  of  Theorem  6. 

In  fact,  let  /i(x)  and  /2(x)  be  two  functions  satisfying  the  rule.  If  there 

were  an  x  e  W  for  which  fi  differs  from  /2,  then  the  subset  of  W  that 

contains  all  such  x  would  have  a  first  member  x*.  But  /i(x*)  A  /2(x*), 

together  with  /i(x)  =  /2(x)  for  all  x  -<  x*,  contradicts  the  assumption  of 
recursiveness. 

To  show  the  existence  of  a  function  satisfying  the  recursive  rule,  we 

first  arrange  all  sections  of  W  according  to  the  order  in  which  the  members 

that  determine  the  sections  appear  in  W.  This  ordered  set  of  all  sections 
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is  similar  to  W,  hence  well-ordered,  and  it  retains  this  property  if  to  the 

sections,  succeeding  them,  W  itself  is  added ;  hereby,  according  to  Theo¬ 

rem  4,  the  well-ordered  set  /  of  all  initials  of  W is  obtained.  (This  transition 
from  the  members  of  W  to  its  initials  is  natural  because  the  recursive  rule 

connects  the  function  value  at  a  definite  place  xo  with  the  values  on  the 

whole  section  [initial]  determined  by  xo.) 

To  construct  the  function  desired  we  use  the  following 

Lemma.  Under  the  assumption  of  Theorem  7,  for  every  initial  i  of  W 

there  exists  a  function  fi{x),  defined  for  all  x  e  i,  which  satisfies  the  recursive 
rule  p. 

To  prove  this  statement  we  use  transfinite  induction  in  the  well- 

ordered  set  /  of  all  initials  of  W.  (For  the  first  initial,  namely  the  null-set, 

the  statement  is  trivial.)  We  assume  the  statement  to  be  true  for  all 

initials  (sections)  which  precede  a  particular  initial  i0.  To  show  that  it  is 

also  true  for  io  we  distinguish  between  two  cases. 

a)  i'o  has  a  last  member  z.  By  assumption  there  exists  a  function 
fifix)  satisfying  the  rule  p,  which  is  defined  on  the  section  if  of  i0  deter¬ 

mined  by  z.  But  according  to  the  nature  of  p,  the  function  value  v  for 

a  =  z  is  uniquely  defined  by  the  totality  of  values  fia,  on  if.  Therefore  we 
may  define  the  function  fio  as  coinciding  with  fio,  on  if  and  as  equalling  v 

for  x  =  z\  then  fifx)  is  a  function  satisfying  the  rule  p  and  defined  for 
all  x  e  io. 

b)  io  has  no  last  member.  Then  each  member  of  io  belongs  to  a  section 

if  of  io,  and  by  assumption  a  function  fio,  defined  on  if  exists  which 
satisfies  the  rule  p.  It  does  not  matter  which  section  if  is  taken,  for  all 
such  functions  coincide  for  the  same  argument;  in  fact,  if  if  and  if  are 
different  sections  of  i0  and  if  if  is  a  section  of  if  (Theorem  3),  both 
fi0'  and  fio,r  are  defined  on  if  and  coincide  there  in  view  of  the  uniqueness 
of  any  function  satisfying  the  rule  p,  as  proven  above.  We  can  therefore 
define  fifx)  on  i0  by  the  rule:  if  x  e  /0  belongs  to  the  section  if  of  i0  then 

fifx )  =fifix );  this  fio  also  satisfies  the  rule  p. 
Hereby  the  lemma  is  proven,  and  at  the  same  time  Theorem  7  since  W 

is  an  initial  of  itself. 

Theorem  7  deals  with  functions  of  a  single  argument  x.  The  extension  to  functions 
of  any  finite  number  of  arguments  involves  no  difficulty  of  principle;  in  this  case, 
instead  of  the  rule/(xo)  =  y/(xo,C(fxo))  (see  above),  we  shall  use  a  rule  of  the  form 

f(ai,  . . .,  an  -  i,  xo)  =  y/(au  ...,an-i,x0,  C(fx0 )) 

where  ai,  . . .,  an  -  i,  xo  belong  to  the  same  well-ordered  set. 



CH.  Ill,  §  10]  GENERAL  THEORY  OF  WELL-ORDERED  SETS.  FINITE  SETS 183 

In  contrast  to  the  successive  steps  of  inductive  procedure  at  many  junct¬ 
ures  in  arithmetic,  Theorem  7  gives  a  simultaneous  construction.  This  dif¬ 

ference,  to  be  sure,  is  mainly  of  a  psychological  nature  (cf.  §  1 1,  6)  and  is 

connected  with  certain  problems  of  principle  hinted  at  below  (p.  191/2). 

As  to  the  terms  “mathematical”  and  “transfinite”  induction,  the  former 
(as  well  as  the  term  “complete  induction”  used  instead  in  most  continen¬ 
tal  languages)  of  course  contrasts  not  with  the  latter  but  with  the  “in¬ 

complete”  induction  of  natural  science.  On  the  other  hand,  mathematical 
induction,  while  referring  to  an  infinite  (enumerated)  set,  is  distinguished 

by  the  fact  that  every  single  member  of  the  set  is  preceded  by  finitely  many 
members  only.  The  situation  is  different  for  transfinite  induction  where 

in  general  a  member  is  preceded  by  infinitely  many  members  —  more 

precisely,  by  a  set  with  a  transfinite  ordinal  number  (below,  subsection  4). 
Definition  by  transfinite  induction  occurs  explicitly  in  §  1 1,  for  instance 

in  3.  Implicitly  it  is  already  used,  and  based  without  reference  to  Theorem 

7,  in  the  proof  of  the  following  Theorem  8. 

3.  Comparability  of  Well-Ordered  Sets.1)  At  the  end  of  §  5  the  funda¬ 

mental  problem  of  the  theory  of  equivalence  was  left  open,  viz.  the  ques¬ 

tion  whether  every  two  (plain)  sets  can  be  compared  in  respect  of  their 

cardinals.  Regarding  similarity  instead  of  equivalence,  i.e.  order-types 

instead  of  cardinals,  the  corresponding  problem  for  ordered  sets  was 

raised  and  settled  in  the  negative  in  §  8,  4.  In  contrast,  the  most  important 

property  of  well-ordered  sets,  next  to  the  applicability  of  transfinite 

induction,  is  that  they  can  be  compared  indeed.  In  §  11,  5  and  7  this 

affirmative  answer  will  be  utilized  also  for  equivalence,  i.e.  for  comparing 
cardinals. 

Theorem  8  (Comparability  of  Well-Ordered  Sets).  Of  two  well- 
ordered  sets  which  are  not  similar,  one  is  similar  to  a  section  of  the  other. 

In  contrast  with  the  situation  in  §  5,  here  the  case  of  similarity  has  to 

be  singled  out  because  a  well-ordered  set  cannot  be  similar  to  a  section  of 

itself  (Theorem  14). 

Proof2)  We  begin  with  a  heuristic  remark.  If  A  and  B  are  similar 

x)  Beginners  are  referred  to  the  introductory  remark  of  2,  p.  178. 

2)  The  earliest  proofs  of  comparability  are  those  of  Cantor  1 897,  Baire  05,  Hessen- 

berg  06,  Young-Young  06.  The  proof  of  Hausdorff  14  (pp.  103-105),  which  makes  the 
detour  via  ordinal  numbers,  excels  in  lucidity ;  it  is  displayed  in  §  11,2  without  using 

the  present  proof  (which,  as  that  of  §  11,  7,  chiefly  leans  on  suggestions  made  to  the 

author  by  A.  Plessner  in  1927). 
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well-ordered  sets  then  a  similar  mapping  *)  relates  the  first  member  of  A 
to  the  first  of  B,  the  second  to  the  second,  etc. ;  if  the  sets  are  infinite,  also 

the  members  that  determine  sections  of  the  types  co,  co  +  1,  etc.  correspond 

to  each  other.  This  fact  leads  to  the  conjecture  that  a  similar  mapping  <p 

between  A  and  B  which  relates  a  e  A  to  b  e  B,  also  relates  the  section  of  A 

determined  by  a  to  the  section  of  B  determined  by  b,  in  the  sense  that  the 

latter  section  contains  just  the  images  by  cp  of  the  members  of  the  former. 

This  shall  serve  as  our  guiding  principle  for  constructing  a  rule  of 

correspondence  between  members  of  any  two  well-ordered  sets.  The  rule 

will  be  defined  along  the  lines  of  Theorem  7  and  our  proof  virtually 
follows  that  of  this  theorem. 

If  V  and  W  are  non-empty  well-ordered  sets  we  shall,  as  far  as  possible, 

attach  to  every  v  e  V  a  uniquely  defined  image  w  e  W  by  the  following 
rule: 

(*)  Let  x  be  an  arbitrary  member  of  V  and  X  the  section  of  V 

determined  by  x.  Assuming  that  to  every  member  of  X  an  image  in 

W  has  been  related,  denote  the  set  of  these  images  by  Y,  hence 
Y  £  W.  If  W  contains  members  which  succeed  all  members  of  Y 

then  the  sequent  y  of  Y  in  W  shall  be  related  to  x  e  V.  We  write 

y  =  <Pix). 

According  to  (*)  the  first  member  of  W  is  related  to  the  first  of  V 
because  either  determines  the  null-set  as  section. 

The  rule  may  fail  to  relate  an  image  to  xe  F,  viz.  when  Y  is  not 

succeeded  by  any  member  of  W.  Anyhow,  the  members  of  Fthat  do  have 

an  image  in  W  on  account  of  (*)  constitute  an  initial  of  V,  for  (*)  defines 
an  image  for  x  e  V  only  if  all  v  e  V  with  v  -<  x  have  images. 

Let  us  first  form  a  rough  idea  of  the  nature  of  our  rule  by  contem¬ 
plating  its  application  to  the  first  few  members  of  V.  If  v0  is  the  first 

member  of  V  and  w0  the  first  of  W  we  have  w0  =  cp(yd)  as  mentioned 
above.  The  second  member  vi  of  V  determines  the  section  Xx  =  (v0); 
since  the  corresponding  subset  (initial)  c  W  is  (w0),  the  image  of  vi 
is  the  sequent  of  (w0)  in  W,  i.e.  the  second  member  w±  of  W  (if  W  has 
more  than  one  member).  Analogically  we  find  that  the  image  of  the 
«th  member  vM  _  i  of  V  is  the  nth  member  \vn  _  i  of  W,  provided  neither 
set  is  exhausted  before.  If  V  is  neither  finite  nor  of  the  type  co  then  the 

initial  (v0,vi,  . . .,  v*, . . .)  of  Fis  the  section  determined  by  its  sequent  vw\ 

x)  Theorem  13  states  that  there  is  a  single  similar  mapping  only  between  them. 
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hence,  if  W  is  also  comprehensive  enough,  p(vj  =  is  the  sequent  of 
the  subset  (initial)  (w’0,  wu  ...,  wk,  . . .)  of  W. 

After  this  introduction  we  are  going  to  prove  two  fundamental  proper¬ 
ties  of  the  rule  (*).  For  this  purpose  only  (Lemmata  I  and  II),  an  initial 
A  of  F  all  members  of  which  have  images  in  W  on  account  of  (*),  shall 
for  short  be  called  “imageable”,  and  the  subset  Y  of  W  that  contains  the 
images  of  the  members  of  X  shall  be  called  the  “image-set”  of  A.  (We  shall 
not  later  use  these  terms.) 

Lemma  I.  If  xi,  x2  are  members  of  an  imageable  initial  X  of  V  and  yi,  y2 
their  images  in  Y  respectively,  then  xi  -<  x2  in  X  (and  V)  implies  71  -<  y2 
in  Y  (and  W).  Hence  (*)  defines  a  similar  mapping  of  any  imageable 
initial  of  V  onto  its  image-set. 

Proof.  If  xi  <  x2  then  by  (*)  the  image  y2  of  x2  succeeds  all  y  e  Y 
that  are  images  of  the  members  of  the  section  of  A  determined  by  x2;  yi 
certainly  is  among  these  images  because  yi  is  related  to  xi  which  precedes 
*2,  i-e-  Yi  <  Y2.  Hence  different  members  of  Y  are  related  to  different 

members  of  A;  accordingly  we  have  a  similar  one-to-one  correspondence. 

Lemma  II.  The  image-set  Y  of  any  imageable  initial  X  of  V  is  an 
initial  of  W. 

Proof.  Let  yx  be  a  member  of  Y  £  w  and  y0  any  member  of  W  which 
precedes  yi ;  we  have  to  show  that  e  Y. 

yic  Y  expresses  the  existence  of  an  xi  e  X  such  that  yi  =  <p(x  1),  and 

yo  -<  tp(x  1)  shows  that  there  exist  members  x  of  A  such  that  y0  <  (p(x)  in 
W.  Let  xo  be  the  first  of  all  these  x  e  A;  we  shall  show  that  <p(x0). 
By  the  definition  of  xo,  all  members  x  of  A  (or  V)  for  which  x  «<  xo, 

satisfy  ̂ (x)  <  y0  in  W.  But  by  the  definition  of  cp  in  (*),  <p(x0)  is  the  first 
member  of  W  that  succeeds  these  ̂ (x) ;  therefore  y0  -<  tp(x0)  is  impos¬ 

sible,  hence  yo  =  <p(x0),  and  this  means  y0e  Y,  as  our  lemma  states.  (ff>0 
is  the  first  member  of  W  then  x0  is  the  first  member  of  V  (and  A),  and 
yo  c  Y  becomes  evident.) 

From  the  lemmata  we  easily  infer  the  comparability  of  the  well- 

ordered  sets  V  and  IF  by  means  of  the  rule  (*).  As  noted  above,  the  subset 
A  c  y  of  those  members  which  have  an  image  in  W  is  an  initial  of  V, 
and  by  Lemma  II  the  set  Y  of  their  images  is  an  initial  of  W. 

Accordingly  we  have  the  following  alternative: 

1)  X  —  V.  Then  (*)  yields  a  similar  mapping  of  V  onto  an  initial  Y  of 
W  which  either  coincides  with  W  (first  case)  or,  by  Theorem  4,  is  a 



186 ORDER  AND  SIMILARITY.  ORDER-TYPES  AND  ORDINALS 

[CH.  Ill 

section  W'  of  W  (second  case).  In  the  first  case  we  have  V~  IV,  in  the 

second  V  ~  W'.  In  the  latter,  while  every  member  of  V  is  related  by  (*) 
to  a  certain  member  of  W  there  are  members  of  W  to  which  no  member 

of  V  corresponds,  namely  all  w  e  W  that  succeed  the  section  W'. 
2)  X  <=  V,  i.e.  Xis  a  proper  initial,  hence  a  section  V  of  V  (third case). 

In  this  case  the  set  Y  of  the  images  of  the  members  of  V  must  coincide 

with  W,  i.e.  V'  ~W\  for  if  Y  were  a  section  of  W  then  the  rule  (*)  would 
relate  the  member  of  W  which  determines  the  section  Y  to  the  member 

of  V  which  determines  the  section  X  —  V  —  contrary  to  the  definition  of 

X  =  V'  as  the  initial  of  all  x  e  V  which  have  images  in  W. 
In  analogy  to  the  scheme  of  possible  cases  regarding  equivalence 

between  plain  sets  and  their  subsets  given  in  §  5,  4,  we  here  present  a 

scheme  of  cases  regarding  similarity  between  well-ordered  sets  and  their 
sections. 

Y=  W Y  a  section  of  W 

X  =  V first  case :  V  ~  W second  case:  V  similar 

to  a  section  of  W 

X  a  section  of  V third  case:  W  similar  to fourth  case 

a  section  of  V 

In  §  5  we  were  unable  to  deal  with  the  fourth  case.  Yet  here  we  have 

succeeded  in  showing  its  impossibility,  hence  there  remain  only  the  three 

cases  specified  in  Theorem  8,  the  proof  of  which  is  now  completed.  (Why 
it  is  called  the  comparability  theorem  will  become  obvious  when  an  order 

between  the  types  of  well-ordered  sets  is  defined  in  §  11,  1.  Moreover,  in 
§  1 1,  5  we  shall  show  that  hereby  also  the  comparability  of  the  cardinals  of 
well-ordered  sets  is  ensured.) 

4.  Addition  and  Multiplication.  Ordinals.  The  operations  with  ordered 
sets  introduced  in  §  8  shall  now  be  specialized  to  well-ordered  sets.  We 

shall  not  use  Theorems  7  and  8  in  the  following;  as  to  Theorem  6,  we  do 
not  explicitly  refer  to  it  although  the  simple  argument  which  is  at  its 
bottom  will  be  frequently  used  in  5. 

Addition  and  multiplication  of  well-ordered  sets  and  their  types  are 
subsumed  under  Definitions  IV-VII  of  §  8.  The  obvious  question  here 
is  how  far  the  operations,  when  applied  to  well-ordered  sets,  yield 
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again  such  sets;  that  the  answer  is  not  generally  in  the  affirmative  follows 
from  example  2  on  p.  147  which  shows  that  any  ordered  set  can  be 
obtained  by  addition  of  unit-sets  —  which,  as  every  finite  ordered  set, 
are  well-ordered.  However,  we  shall  prove 

Theorem  9.  If  T  is  a  well-ordered  set  whose  members  are  pairwise 

disjoint  well-ordered  sets,  then  the  ordered  sum  K  (Definition  V  of  §  8)  of 
the  members  of  T  is  well-ordered.  Hence  the  addition  of  any  finite 
number  of  well-ordered  sets  yields  a  well-ordered  sum,  however  the  terms 
are  ordered. 

In  contrast  with  the  formulation  in  §  8  which  starts  with  types,  here  no 
advantage  is  gained  by  assigning  the  terms  (sets)  of  the  sum  to  the 
members  of  an  auxiliary  set. 

Proof.  We  show  that  every  non-empty  subset  K0  c  K  has  a  first 
member.  Those  members  of  T  which  contribute  to  K0,  i.e.  members  of 
which  are  contained  in  Kq,  form  a  non-empty  subset  of  T;  its  first  member 
shall  be  denoted  by  t0.  to,  then,  contains  at  least  one  member  of  K0 
while  no  predecessor  of  to  in  T  does.  Hence  the  first  member  of  the  well- 

ordered  intersection  to  n  K0  is  also  the  first  member  of  K0,  which 
completes  the  proof. 

Beginners  are  advised  to  facilitate  the  comprehension  of  this  proof  by 
first  assuming  T  to  be  an  ordered  pair. 

Definition  III.  The  type  of  a  well-ordered  set  is  called  an 

ordinal  number,  or  simply  an  ordinal,  if  the  set  is  infinite,  a  trans- 

finite  ordinal. 

The  dignified  title  of  number,  attributed  to  cardinals  with  some  reser¬ 

vations  (§  4,  5)  and  denied  to  general  order-types  (§  8,  4),  is  here  conferred 

on  the  types  of  well-ordered  sets  owing  to  their  comparability  (Theorem 
8,  more  explicitly  Theorem  3  of  §  1 1).1)  The  ordinal  of  a  well-ordered  set 
is  shared  by  all  similar  sets  and  by  these  only.  In  accordance  with  the 

introduction  to  §  10,  ordinals  constitute  a  most  natural  generalization 

of  non-negative  integers  beyond  the  domain  of  finiteness;  this  will  show 
particularly  in  §  11,  3. 

Since  for  finite  sets  cardinal,  type,  and  ordinal  virtually  coincide 

2)  We  shall  not  dwell  upon  the  distinction  made  by  Denjoy  41,  46,  and  46-54 
between  “types  of  well-ordered  sets”  and  “ordinal  numbers”  (meaning  “rank”),  which 
has  not  been  generally  accepted. 
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(§  8,  4;  cf.  below,  subsection  6)  the  symbols  denoting  the  positive  integers, 

including  0,  may  be  maintained  for  finite  ordinals.  Transfinite  ordinals, 

however,  are  distinct  from  cardinals  just  as  are  transfinite  types  in 

general.  It  will  turn  out  —  most  generally  in  §  11,  6  —  that  there  are 
always  (infinitely  many)  ordinals  among  the  types  which  correspond  to  a 

given  transfinite  cardinal. 

In  §  8,  6  we  found  that  2Xo  =  ft  different  types  correspond  to  Xo; 
how  many  ordinals  are  among  them  is  discussed  in  §  11,5  and  7.  Among 

the  examples  given  in  §  8,  1  which  order  the  set  of  all  integers  in  various 

ways,  b)  and  c)  have  the  ordinals  co  and  co  +  cu  respectively  while  the 

types  of  a)  and  d)  are  not  ordinals.  Neither  are  rj,  X,  and  generally  the 

types  of  dense  sets  which,  according  to  Theorem  2,  are  not  well-ordered. 
Theorem  9  may  now  be  formulated  as 

Theorem  10.  An  ordered  sum  of  ordinals  taken  in  well-ordered  arrange¬ 

ment,  i.  e.  as  assigned  to  the  members  of  a  well-ordered  set,  is  an  ordinal. 

Hence  the  same  applies  to  a  product  of  two  {or  of  a  finite  number  of) 

ordinals.  In  particular,  a  sum  of  finitely  many  ordinals  is  an  ordinal, 
however  the  terms  of  the  sum  are  ordered. 

The  statement  about  products  follows  from  the  first  statement  by 

taking  equal  terms  in  the  sum  and  applying  Definition  VI  of  §  8.  Therefore 

the  power  on  for  any  ordinal  o  and  finite  n>  0  is  an  ordinal  too.  Yet  the 
cases  of  a  product  with  infinitely  many  factors  or  of  <r  with  transfinite 

r  are  not  included;  see  §  8,  7  and  §  11,  3. 

Whereas  for  the  validity  and  invalidity  of  formal  laws  governing  the 
addition  and  multiplication  of  ordinals  nothing  need  be  added  to 

Theorems  4  and  7  of  §  8  x),  there  is  an  elaborate  system  of  arithmetic 
(including  subtraction  and  division)  of  ordinals;  see  §  11,4. 

x)  For  ordinals,  particular  questions  have  been  raised  and  partly  been  answered. 
For  instance,  the  pairs  a,  ft  of  different  transfinite  ordinals  which  satisfy  the  equations 
«  +  P  =  P  +  a  or  a/?  =  /fa  or  aP  =  pa  (the  latter  is,  among  finite  integers,  satisfied 
only  by  the  pair  2,  4)  are  investigated  in  Jacobsthal  07  (cf.  09a  and  Sierpinski  56); 
a  comprehensive  survey  is  given  in  H.  Bachmann  55,  §  22.  (It  is  easily  seen  that  the 
equation  x«=yx  is  satisfied  by  infinitely  many  pairs  of  cardinals',  see  Sierpinski  28 
p.  221.) 

For  the  second  distributive  law  for  ordinals  see  Zakon  53. 

Given  a  set  of  ordinals,  one  may  ask  what  well-ordered  arrangements  of  its  members 
yield  a  minimal,  or  maximal,  ordered  sum ;  the  interesting  answers  are  given  in  Rado 
54.  -  Erdos  50  (cf.  the  literature  annexed  in  the  present  book’s  Bibliography)  ascertains 
the  number  of  different  sums  that  originate  from  a  finite  number  of  ordinal-terms 
according  to  their  arrangements. 
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5.  Elementary  Properties  of  Well-Ordered  Sets.  Theorem  4  of  §  3 
states  that  every  plain  infinite  set  S  has  a  denumerable  subset;  its  proof 

was  not  simple  and  partly  non-constructive.  The  analogue  for  well- 

ordered  sets,  where  ,, denumerable”  is  replaced  by  “enumerated”,  is  far 
simpler  and  tully  constructive.  By  Theorem  2  of  the  present  section  an 

infinite  well-ordered  set  W  contains  a  first  member  wo,  a  second  wi, 
and  generally  an  Hth  member  wn  -  i  for  every  positive  integer  n ;  wn  -  i 

is  the  sequent  of  the  finite  subset  (wo,  wi,  . . . ,  wn  -  2)  of  W.  Hence  we 

conclude  (cf.,  for  instance,  §  9,  3)  that  the  uniquely  defined  enumerated 

set  W0  =  (w 0,  wi,  . . . ,  Wk,  . . . )  is  a  subset,  and  even  an  initial,  of  W.  Thus 
we  have 

Theorem  11.  Every  infinite  well-ordered  set  W  has  a  subset  of  the 

ordinal  co.  More  precisely ,  W  can  be  represented  uniquely  as  an  ordered 

sum  of  the  form 

(1)  W  =  Wo  +  Wj. 

where  Wo  —  co  ( while  W\  may  be  empty,  finite,  or  infinite). 
Hence  every  transfinite  ordinal  o  has  a  unique  additive  decomposition  of 

the  form 
o  =  co  +  <71 

where  the  ordinal  a  1  equals  0  if  and  only  if  a  =  co. 

The  almost  evident  fact  that  the  decomposition  is  unique  has  not 

been  stressed  in  the  proof  because  it  is  a  consequence  of  Theorem  12 

(or  13),  in  whose  proof  Theorem  11  is  not  utilized. 

We  use  Theorem  11  to  give  an  example  which  facilitates  the  under¬ 

standing  of  Theorem  12.  Every  infinite  well-ordered  set  can,  in  view  of 

(1),  be  similarly  mapped  onto  a  proper  subset  as  follows.  If  Wk  ( k  ̂  0)  is 

an  arbitrary  member  of  Wo  =  ( wo ,  wi,  . . .)  and  if  Wo'  =  (w*,  Wk  + 1,  ■  ■  ■) 

then  the  subset  Wo'  <=  Wo  is  similar  to  Wo;  a  similar  mapping  (the  only 

one  by  Theorem  13)  is  obtained  by  relating  wn  e  Wo  to  Wk  +  n  e  Wo'. 
Writing  W  in  the  form  (1)  and  using  the  identical  mapping  of  lEionto 

itself  we  obtain  a  similar  mapping  of  W  onto  its  proper  subset  Wo'  +  W\, 
which  has  the  following  property :  there  are  members  w  of  W  —  namely 

all  members  of  Wo  —  which  are  related  to  an  image  w'  in  the  subset 

that  succeeds  w,  i.e.  w  <  w'  in  W.  Of  course  there  may  also  be  members 
of  W  which  are  related  to  themselves,  as  are  in  our  case  the  members  of 

Wi  if  Wx  #  O. 
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Naturally  the  question  arises  whether  the  third  case  may  also  happen, 

namely  that  the  image  precedes  the  original  in  W.  The  (negative)  answer  is 

given  by  the  following  theorem  due  to  Zermelo,1)  which  may  serve  as  the 

keystone  for  the  general  theory  of  well-ordered  sets,  including  compara¬ 
bility. 

Theorem  12.  A  similar  mapping  of  a  well-ordered  set  W  onto  a  subset 

never  relates  to  a  member  w  of  W  an  image  that  precedes  w  in  W. 

Two  equipollent  formulations  are: 

a)  If  W  is  well-ordered  and  / (x)  a  single-valued  function  defined  on 

W,  assuming  values  of  W,  and  such  that  xi  -<  X2  implies  /(x  1)  -</(x 2), 

then  for  no  x  e  W  can  /(x)  «<  x  hold  true. 

b)  On  account  of  a  similar  mapping  of  a  well-ordered  set  W  onto  a 

subset,  the  image  of  a  w  e  W  either  coincides  with  w  or  succeeds  w  in  W. 

Proof  Let  (p  be  a  similar  mapping  of  W  onto  W'  £  W  and  let  the  image 

of  weW  in  W'  be  denoted  by  (p{w ).  If  there  were  at  least  one  x  e  W 
such  that  (p{x)  -<  x  then  there  would  be  a  first  such  x,  say  xo;  we  write 

(p{x 0)  =  xi.  In  view  of  the  similarity  of  <p  we  have,  in  addition  to 

<p(xo)  -<  *0,  also  <p(xi)  -<  xi.  Since  xi  -<  xo,  this  contradicts  the  assump¬ 

tion  that  xo  is  the  first  x  satisfying  (p{x)  «<  x;  hereby  Theorem  12  is 

proven. 

A  more  obvious  if  less  elegant  form  of  the  proof  consists  in  taking 

any  xo  with  the  property  (p{x 0)  -<  xo  and  successively  proceeding  to 

members  xi  (as  above),  X2,  . . . ,  thus  producing  a  sequence  of  members 

of  W  which  has  the  type  *co,  contrary  to  Theorem  5.2) 
Postponing  an  analysis  of  the  method  of  our  proof  to  the  end  of  this 

subsection,  we  draw  two  important  conclusions  from  Theorem  12. 

Theorem  13.  Between  two  similar  well-ordered  sets  there  exists  a  single 

similar  mapping  only.  Hence  a  well-ordered  set  can  be  similarly  mapped  onto 

itself  only  identically,  by  relating  each  member  to  itself 

Proof.  The  second  statement,  seemingly  a  particular  case  of  the  first, 

is  actually  equipollent  to  it.  In  fact,  if  (pi  and  (p2  are  similar  mappings  of  a 

well-ordered  set  V  onto  another  W,  let  <pi(v)  =  wi  and  <p2(v)  =  w2  be  the 
images  in  W  of  the  same  v  e  V.  Since  similarity  is  a  transitive  relation  we 

x)  Published  in  Hessenberg  06,  see  p.  V. 
2)  For  denumerable  sets  one  can  invert  Theorem  12  in  the  sense  that  a  denumerable 

ordered  set  with  the  property  of  the  theorem  is  well-ordered.  This  inversion  does  not 
remain  true  for  non-denumerable  sets,  cf.  Dushnik-Miller  40. 
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hereby  obtain  a  similar  mapping  y/  of  W  onto  itself  which  relates  wi  to 

W2.  Hence,  if  (pi  and  q>2  did  not  coincide,  i.e.  if  there  existed  a  v  e  V  for 

which  wi  ̂   W2,  then  i//  would  be  non-identical.  This  shows  that  the  first 
statement  also  follows  from  the  second. 

To  prove  the  second  statement  we  assume  that  there  existed  a  wi  e  W 

whose  image  1V2,  by  a  similar  mapping  of  W  onto  itself,  were  A  w\. 

Then  either  wq  -<  W2  or  h>2  -<  u'i,  but  each  case  contradicts  Theorem  12. 

The  property  expressed  by  Theorem  12  pertains  to  well-ordered  sets 

but  is  not  characteristic  of  them.  For  instance,  every  ordered  set  of  the 

type  co  +  1  -r  *co  has  clearly  the  same  property.  In  contrast,  cf.  exercise 
6)  at  the  end  of  §  10. 

Theorem  14.  A  well-ordered  set  W  is  not  similar  to  any  section  of  itself 

nor  to  a  section  of  any  subset  of  W.  Different  sections  of  W  are  not  similar 
to  one  another. 

Of  course,  W  may  have  proper  subsets  similar  to  W,  and  an  infinite  W 

always  has  (p.  189). 

Proof  The  first  statement  is  the  important  one,  but  as  it  is  a  particular 

case  of  the  second  (referring  to  a  section  of  a  subset)  we  prove  this 

second.  If  X  is  a  section,  determined  by  xe  W',  of  W'  c  \y,  then  we 

show  that  X  ~  W  cannot  hold.  Any  similar  mapping  of  W  onto  X 

would  relate  x  to  a  member  y  of  the  section  X,  which  implies  that  y  <  x 

in  W';  but  this  contradicts  Theorem  12  since  X  <=  W' . 
The  last  statement  of  Theorem  14  follows  from  the  first  in  view  of 

Theorem  3. 

Remark.  By  means  of  Theorem  8  —  which,  however,  we  proposed 

not  to  use  for  the  time  being  —  it  follows  from  Theorem  14  that  a  subset 

W'  of  W  is  similar  either  to  W  or  to  a  section  of  W.  For  otherwise  W 

ought  to  be  similar  to  a  section  of  W'  which  contradicts  Theorem  14. 
We  conclude  this  subsection  with  some  methodical  remarks  on  the 

proof  of  Theorem  (6  and)  12,  which  is  the  base  of  Theorems  13  and  14. 

We  there  used  the  indirect  method  of  proving  ( reductio  ad  absurdum) x) 

x)  We  shall  not  dwell  here  upon  the  general  problems  of  indirect  proof  in  their 

logical  and  didactic-psychological  aspects.  In  the  first  direction  it  will  suffice  to  refer 

to  Lowenheim  46  and  Goodstein  48.  In  the  second,  the  puzzling  question  arises  why 

an  indirect  proof  of  a  theorem  is  often  more  easily  grasped  than  a  direct  proof  though 

it  distorts  the  mind  towards  an  impossible  assumption.  As  examples  we  refer  to  the 

diagonal  method,  e.g.  in  §  4,  to  the  remark  on  p.  169,  and  also  to  the  proof  B  on  p.  44 

and  to  the  proof  of  IV  on  p.  227  (which  might  as  well  be  conducted  -  but  less  readily 

comprehended  -  in  a  direct  way). 
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which  is  typical  of  the  theory  of  well-ordered  sets  (and  of  parts  of 

arithmetic,  cf.  the  proof  of  Theorem  5  of  §  2).  To  prove  a  certain  property 

it{x)  for  all  members  X  of  a  well-ordered  set  W  one  assumes  the  contrary, 

namely  that  at  least  one  w  e  IT  has  the  property  non-7i;  then  the  set  of  all 

such  w,  being  a  non-empty  subset  of  a  well-ordered  set,  has  a  first 

member  wo.  Either  the  peculiar  nature  of  this  wo  or  — -  which  is  more 

characteristic  of  the  theory  —  the  fact  that  all  predecessors  of  wo  in  W 

do  have  the  property  n  yields  then  the  contradiction  required  for  the 

proof.  In  particular,  wo  may  be  the  first  member  of  W.  In  short,  the 

property  of  well-ordered  sets  expressed  in  Definition  I  enables  us  to 

replace  any  we  IT  by  a  definite  one  wo  in  order  to  refute  the  assumption.1) 

On  the  other  hand,  instead  of  making  use  of  indirect  procedures  in 

each  individual  case  as  in  the  proof  of  Theorem  12,  one  may  generally 

rest  upon  its  use  in  the  proof  of  Theorem  6;  this  is  what  is  called  “proof 

by  transfinite  induction”.  The  situation  is  analogous  for  the  proof  by 
mathematical  induction  in  arithmetic;  the  property  of  Definition  I  is 

then  replaced  by  the  property,  satisfied  by  every  set  of  positive  integers, 

of  containing  a  least  number.2) 

6.  On  Finite  Sets  and  their  Ordinals.  The  asymmetric  character  of  the 

definition  of  well-ordered  sets  was  pointed  out  above  at  the  end  of  1; 
in  addition  to  Theorems  2,  4,  5,  this  asymmetry  of  well-order  shows 

particularly  in  Theorem  12.  Imposing  the  inverse  asymmetry  (last 

member  instead  of  first,  “anti-well-ordered  sets”)  yields  nothing  new, 
and  the  condition  that  every  non-empty  subset  should  contain  a  first 

or  a  last  member  leads  only  to  a  slight  generalization  of  well-order.3) 
Yet  the  question  suggests  itself:  what  emerges  if  both  a  first  and  a  last 
member  are  postulated? 

The  expectation  that  these  “double-well-ordered  sets”  might  constitute 
a  new  interesting  kind  of  ordered  sets  is  not  fulfilled,  for  the  new  kind  is 
too  simple:  they  are  the  finite  sets.  By  applying  Theorem  5  in  both  direc¬ 
tions  we  conclude  that  a  double-well-ordered  set  contains  neither  subsets 

x)  For  induction  in  the  continuum  (see  footnote2)  on  p.  179),  the  greatest  lower bound  takes  the  part  of  the  first  member  wo.  (Cf.  also  Kurepa  54a.) 
2)  Lebesgue  04  (2nd  ed.,  1928,  p.  329)  gives  a  penetrating  analysis  of  the  parallelism and  the  difference  between  mathematical  and  transfinite  induction  and  of  the  role  of 

indirect  proof,  distinguishing  between  the  cases  where  either  a  bounded  number  of 
steps,  or  a  finite  but  indefinitely  great  number,  or  transfinitely  many  steps  are  required. 

3)  See  Steckel  28  and  exercise  4)  at  the  end  of  this  section.  Another  generalization proposed  by  Hausdorff  in  1901  has  not  gained  much  significance  either. 
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of  the  type  *co  nor  of  the  type  co,  which  implies  its  finiteness  in  view  of 
Theorem  11.  Another  method  of  showing  this  is  using  Theorem  12  in 

both  directions;  then  such  sets  prove  to  have  no  proper  similar  subsets 

and  also  no  proper  equivalent  subsets,  which  means  finiteness  in  the 

sense  of  non-reflexiveness  (Definition  VII  of  §  2).  (The  converse  state¬ 

ment,  namely  that  every  finite  [inductive]  ordered  set  is  double-well- 

ordered,  is  almost  trivial.)  Moreover,  as  Tarski  has  shown  (see  below), 

the  definition  of  finiteness  in  the  sense  of  double-well-ordered  is  elementary 

in  the  sense  that  it  proves  equipollent  to  inductiveness  (Definition  VI  of 

§  2)  without  the  use  of  the  axioms  of  choice  and  of  infinity  —  in  contra¬ 

distinction  to  non-reflexiveness  (*  from  which  inductiveness  can  be 
derived  only  by  means  of  the  axiom  of  choice  (§  2,  5  and  §  6,  5). 

The  new  definition  has  the  merit  of  imbedding  the  theories  of  finite 

sets  and  of  integers  in  the  general  theory  of  well-ordered  sets.  This  merit 

is  especially  significant  in  the  eyes  of  those  who  share  Zermelo’s  opinion 
that  finite  sets,  integers,  and  arithmetic  can  totally  be  based  on  set 

theory.* 2)  

This  is  not  a  thesis  of  the  present  
book,  and  readers  

interested 

in  this  controversy  are  referred  to  Foundations  (chapters  II-IV);  but  also 

if  arithmetic  is  considered  to  be  based  independently  one  might  find 

interest  in  its  re-development  in  the  frame  of  set  theory,  a  direction 

implicitly  taken  by  great  thinkers  from  Descartes  to  Peirce,  Dedekind, 

Frege,  and  Russell. 

True,  Poincare  3)  ridiculed  those  who  explore  the  realm  of  sets  by 
means  of  general  concepts  and  methods  with  disregard  of  integers,  to 

discover,  at  a  late  stage  of  their  excursion,  the  finite  sets  and  numbers  in  a 

remote  corner  of  the  huge  realm.  Yet  this  is  a  psychological  and  didactic 

rather  than  a  logico-mathematical  argument;  how  far  set  theory  can  be 

used  as  a  basis  or  a  frame  for  arithmetic  is  a  serious  and  profound 

problem,  except  for  intuitionistic  attitudes  ( Foundations ,  chapter  IV). 

From  the  1880’s  up  to  these  days  many  different  definitions  for  the 

*)  This  is  what  usually  is  called  “Dedekind’s  definition  of  finiteness”,  see  Dedekind 
1888.  However,  in  the  preface  to  the  second  edition  (1893)  of  this  classical  booklet 

Dedekind  mentions  another  definition  of  finiteness,  originating  from  1889,  which 

Dedekind  considered  complicated  and  unfit  for  a  basis  of  arithmetic;  yet  actually  it  is 

just  elementary  in  the  above  sense. 

Cf.  Dedekind  30-32III,  pp.  450-458;  Tarski  25;  Cavailles  32. 

2)  Of  course,  this  does  not  exclude  the  use  (and  the  independent  introduction)  of  a 
few  of  the  smallest  non-negative  integers.  It  is  the  general  concept  of  integer  whose 
foundation  is  under  discussion. 

3)  For  instance,  Poincare  08,  livre  II;  cf.  09. 
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finiteness  of  a  set  were  given  and  a  more  or  less  comprehensive  part  of 

arithmetic  was  derived  from  them.  These  definitions  may  be  classified 

according  to  various  points  of  view;  for  instance,  to  the  complexity 

of  the  concepts  entering  the  definition,  such  as  mapping  (Dedekind’s 

first  definition),  order  (double-well-ordered),  etc.,  or  to  the  psycholog¬ 

ical  simplicity  and  obviousness.  From  our  point  of  view  preference 

should  be  given  to  definitions  which  allow  to  derive  arithmetic  without 

using  principles  that  are  alien  to  finite  sets,  particularly  without  the 

axioms  of  choice  and  of  infinity.  Tarski  and  others  *)  introduced  and 

classified  such  definitions  systematically.  An  important  question  is  the 

interdependence  of  different  definitions  without,  or  by  means  of,  the 

axiom  of  choice;  in  particular,  how  far  the  equipollence  of  different 

definitions  constitutes  an  assumption  from  which  the  axiom  of  choice 

can  be  derived.  Accordingly,  a  hierarchy  of  definitions  with  respect  to 

this  axiom  may  be  given.  For  these  and  related  problems  see  Foundations, 

especially  pp.  53,  62ff.,  118,  where  further  literature  references  are  given. 

Exercises 

1)  Prove  that  in  every  set  that  satisfies  the  conditions  a)  of  p.  175  the 

relation  -<  is  transitive,  hence  constitutes  an  order  relation. 

2)  Let  V  and  W  be  similar  well-ordered  sets  and  w  be  the  image  in  W 
(see  Theorem  13)  of  v  e  V.  Prove  that  the  section  of  V  determined  by  v  is 
similar  to  the  section  of  W  determined  by  w.  (This  is  at  the  bottom  of  the 
proof  of  Theorem  8.) 

3)  Prove  that  if  to  every  section  of  the  well-ordered  set  V  there 

corresponds  a  similar  section  of  the  well-ordered  set  W  and  vice  versa, 

then  V  ~  W.  (Cf.  Theorem  8.) 

4)  Prove  that  every  non-empty  subset  of  an  ordered  set  5  has  a  first 
or  a  last  member  if  and  only  if  S  can  be  written  as  an  ordered  sum 

S  =  Si  +  S2  such  that  Si  is  well-ordered  and  S2  “anti-well-ordered” 
(see  the  beginning  of  6).  Is  this  representation  of  S  unique? 

5)  Prove  that  every  well-ordered  set  W  (but  not  every  ordered  set; 
give  a  counter-example!)  has  the  following  property:  every  set  T  of 

b  The  m°st  comprehensive  research  is  Tarski  25  (cf.  38a) ;  in  the  Annexe  of  25  the 
problems  connected  with  the  axiom  of  choice  are  outlined.  Of  earlier  investigations  we 
only  mention  Zermelo  09  and  Grelling  10,  where  for  the  first  time  the  theory  of  finite 
sets  and  numbers  is  derived  from  set-theoretical  axioms  without  assuming  the  existence 
of  an  infinite  set  (which  was  assumed  by  Dedekind);  cf.  Wang  53  and  57. 
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sections  of  W  contains  a  least  section,  namely  the  intersection  of  all 
members  of  T. 

6)  In  contrast  with  the  property  of  well-ordered  sets  expressed  by 

Theorem  13,  ordered  sets  of  types  such  as  *co  -f-  a>,  rj ,  etc.  admit  infinitely 
many  similar  mappings  onto  themselves.  Prove  this  and  look  for  the 
source  of  the  contrast. 

7)  A  member  s  of  an  ordered  set  S  shall  be  called  a  fixed  member  of  S 
if  every  similar  mapping  of  5  onto  itself  relates  j  to  itself.  According  to 
Theorem  13,  each  member  of  a  well-ordered  set  is  fixed;  the  same  holds, 
for  instance,  for  each  member  of  sets  of  the  type  co  +  n  -f  *co  with 

finite  n.  On  the  other  hand,  a  set  of  the  type  *co  -f-  co  has  no  fixed  member, 

a  set  of  the  type  *co  +  co-f-«  +  *co  +  co  has  n  fixed  members  (those  “in 
the  middle”). 

Prove  the  theorem1):  If  the  disjoint  ordered  sets  5  and  T  have  the 
fixed  points  s0  and  to  respectively,  then  s0  or  to  is  a  fixed  point  of  the 
ordered  sum  S  +  T. 

8)  Prove  Theorems  13  and  14,  instead  of  by  Theorem  12,  by  means 

of  the  fact  that  the  rule  (*)  of  3  is  satisfied  by  every  similar  mapping 
between  well-ordered  sets. 

9)  Starting  from  each  of  the  three  definitions  of  a  finite  set  pointed 

out  in  6  (double-well-ordered,  inductive,  non-reflexive),  try  to  prove  the 
two  others  as  criteria,  i.e.  in  the  form:  a  set  is  finite  if  and  only  if  — . 

10)  Discern  the  intrinsic  difference  between  these  definitions  of 

finiteness  by  proving,  in  view  of  each  of  them,  the  statement  that  the 

power-set  of  a  finite  set  is  also  finite. 

§  11.  Ordinals  and  Alephs.  Well-Ordering  and  Comparability 

1.  The  Arrangement  of  Ordinals  by  Magnitude.  While  the  equality 

between  ordinals  is  settled  by  its  definition  for  types  in  general,  their 
order  is  established  by 

Definition  I.  If  r  and  v  are  the  ordinals  of  the  well-ordered  sets 

T  and  W  respectively  and  if  T  is  similar  to  a  section  of  W,  then  r  is 

called  less  than  o.  In  symbols,  x  <  o. 

This  term  coincides  with  the  one  introduced  in  §  5,  1  for  ordering 

x)  Ginsburg  54,  p.  554. 
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cardinals  by  magnitude,  but  no  confusion  will  arise  owing  to  the  distinct 

notations  used  for  cardinals  and  ordinals  (except  for  finite  numbers  for 

which  the  respective  statements  in  both  cases  prove  to  concur,  see  below). 

Obviously  the  truth  of  x  <  v  does  not  depend  on  the  choice  of  the 

representatives  T  and  W;  therefore  one  may  choose  them  so  that  T  is 
itself  a  section  of  W. 

We  show  that  <  is  an  order  relation  in  the  usual  sense  (§  8,  2).  <  is 

irreflexive  because  W  is  not  similar  to  a  section  of  itself,  according  to 
Theorem  14  of  §  10,  5.  <  is  also  transitive  because  a  section  of  a  section  of 

W  is  itself  a  section  of  W.  Hence  <  is  asymmetrical;  for  the  conjunction 
of  t  <  o  and  v  <  r  would  imply  x  <  z,  contrary  to  irreflexivity. 

This  involves  the  need  of  a  new  symbol  >  for  expressing  r  <  v  by 

starting  with  v,  just  as  in  §  5,  1 ;  o  >  r  is  read  “u  is  greater  than  r”. 
So  far  the  properties  of  the  order  relation  are  based  chiefly  on  Theo¬ 

rem  14  of  §  10.  For  types  in  general  the  situation  is  different  because  an 

ordered  set  S  may  be  similar  to  a  section  of  S;  S  =  *co  +  n  and  S  =  rj 
are  simple  instances. 

What  is  still  missing  is  the  connexity  of  <,  i.e.  the  comparability  of 
ordinals:  either  x  <  o  or  a  <  r  for  r  =£  o.  This  follows  from  Theorem 

8  of  §  10,  but  we  shall  not  use  it  until  we  prove  it  by  a  new  method 
(Theorem  3,  below). 

Definition  I  clearly  settles  the  succession  of  finite  ordinals  in  the 
ordinary  sense,  hence  also  in  conformity  with  the  order  of  finite  cardinals. 
Therefore  it  does  not  matter  for  the  truth  of  the  statement  m  <  n  whether 
the  finite  numbers  m  and  n  are  conceived  as  cardinals  or  ordinals.  Further¬ 
more,  we  easily  obtain  without  using  comparability 

Theorem  1.  o  +  o  >  a  holds  for  every  o  and  every  v  0.  Conversely, 
if  z>  a  there  exists  a  v  #  0  such  that  r  =  a  +  v.  a  +  1  is  the  se¬ 

quent  of  c r;  that  is  to  say,  there  is  no  ordinal  v  “ between ”  a  and  a  +  1 
(i.e.  such  that  o  <  v  <  a  +  1).  co  is  the  least  transfinite  ordinal  and 
every  other  transfinite  ordinal  is  of  the  form  co  +  u  with  o  ̂   0.  Every 
finite  ordinal  is  less  than  every  transfinite  ordinal. 

Proof.  (Cf.  Theorem  1  of  §  5.)  If  S  +  W  is  a  representative  of  o  -j-  o 
then  the  first  member  of  W  determines  the  section  S,  which  means 
a<o  +  v.  On  the  other  hand,  if  t  >  a,  i.e.  if  the  well-ordered  set  T  of 
the  ordinal  r  has  a  section  of  the  ordinal  a,  then  T  can  be  written  as  an 

ordered  sum  T  =  S'  +  W  with  S  =  o,  W  =  o  f  0,  hence  x  =  a  +  o;  if 
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in  particular  W  is  a  unit-set  we  have  z  =  a  +  1,  and  in  general  z  >  a 
implies  z  >  a  +  1,  as  follows  through  considering  the  first  member  of  W, 

1. e.  the  member  of  T  which  determines  the  section  S. 

Furthermore,  by  Theorem  11  of  §  10  every  transfinite  ordinal  a  can  be 

written  as  co  +  or;  hence  either  a  =  co  or  a  >  co,  i.e.  co  is  the  least 

transfinite  ordinal.  Finally,  n  <  co  (n  finite)  follows  from  Definition  I, 

and  the  conjunction  of  «  <  co  and  co  <  a  gives  n  <  o,  which  completes 
the  proof. 

While  every  ordinal  has  a  uniquely  fixed  sequent,  ordinals  such  as  co, 

co  •  2,  co  ■  co  are  not  sequents  of  ordinals.  Yet  if  n  A  0  is  finite  then  each 

of  the  ordinals  n,  co  +  n,  co  •  2  +  n,  etc.  has  an  immediate  predecessor 

whose  sequent  it  is ;  if  v  is  the  sequent  of  z  we  write  z  =  u  —  1  (without 

hereby  defining  an  operation  of  subtraction),  hence  (t>  —  1)  +  1  =  v. 

Definition  II.  An  ordinal  v  which  is  the  sequent  of  an  ordinal 

r  is  called  an  isolated  ordinal,  or  of  the  first  kind',  one  writes 
t  =  o  —  1.  Other  ordinals  o^O  are  called  limit-numbers,  or  of 
the  second  kind. 

Accordingly,  a  given  ordinal  a  is  either  0  or  isolated  or  a  limit-number. 

In  the  latter  case  a  is  the  sequent  of  a  non-empty  set  S  of  ordinals  in 

which  there  is  no  maximum;  one  writes  a  =  limy?.  However,  5  is  not 

determined  by  a;  for  instance,  if  a  =  co  we  may  take  for  S  the  set  of  all 
finite  ordinals  or  of  all  even  or  of  all  prime  numbers,  etc.  Additional 

illustrations  and  precision  are  given  in  2  (Theorems  2,  4,  6)  and  3. 

2.  The  Comparability  of  Ordinals.  Without  using  Theorem  8  of  §  10 

we  prove  the  fundamental 

Theorem  2.  The  set  of  all  ordinals  which  are  less  than  a  given  ordinal  a 

can  be  ordered  after  the  magnitude  of  its  members  ( Definition  I).  This 

ordered  set,  denoted  by  W(a),  is  well-ordered  and  has  the  type  ( ordinal )  a. 

First  we  illustrate  the  theorem  by  a  few  instances.  W( 0)  =  O  since  no 

ordinal  is  less  then  0,  and  in  fact  0  =  0.  W(  1)  =  (0),  and  (0)  =  1.  If  n 

is  any  finite  ordinal  we  have  W(n)  =  (0,  1,  . . .,  n  —  1),  which  set  has  the 
ordinal  n.  The  ordered  set  of  all  finite  ordinals,  i.e.  of  all  ordinals  <  co 

(Theorem  1),  is  the  sequence  (0,  1,2,  . . .)  and  has  the  ordinal  co.  The  set 

of  all  ordinals  less  than  co  +  1  is  W{co  +  1)  =  (0,  1,2,  ...  co),  and 

W(co  +  1)  =  co  +  1. 
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As  the  first  instances  show,  for  finite  a  the  simple  form  of  the  theorem 

depends  on  the  admission  of  the  null-set,  which  was  not  yet  introduced 
by  Cantor. 

Proof  of  Theorem  2.  Let  A  be  any  well-ordered  set  of  the  ordinal  a. 

By  Definition  I,  //  <  a  means  that  A  has  a  section  of  the  ordinal  m  —  incid¬ 

entally  one  section  only  (Theorem  14  of  §  10).  Therefore,  if  mi  and  /r2 
are  different  ordinals  <  a,  they  are  the  types  of  different  sections  of  A ; 
by  the  (almost  trivial)  Theorem  3  of  §  10  one  of  these  sections  is  a  section 

of  the  other,  hence  mi  <  M2  or  /r2  <  mi-  (This  result,  reached  without 
comparability,  is  due  to  the  assumption  that  both  ordinals  are  less  than 
the  same  ordinal  a.)  The  transitivity  of  this  order  also  follows  from 

Theorem  3.  Hereby  we  have  obtained  the  ordered  set  W(a)  of  all  ordinals 
<  a. 

We  are  now  going  to  establish  a  similar  mapping  of  fV(a)  onto  the 
well-ordered  set  A.  To  any  n  e  lV(a),  i.e.  to  any  /j,  <  a,  we  relate  the 
ae  A  that  determines  the  section  of  A  which  has  the  ordinal  //;  this  corre¬ 
spondence  is  biunique,  for  according  to  Definition  I  a  given  ae  A  deter¬ 
mines  a  section  of  A  whose  ordinal  is  less  than  a  =  A.  Finally,  the 
correspondence  is  similar.  For  let  ax,  a%  be  different  members  of  A,  say 
ax  <  a2,  and  mu  M2  their  respective  images  in  W(a );  then  mi  <  M2  (hence 
Mi  <  M2  in  lV(a))  holds  true  because  the  section  of  A  determined  by  ax  is 
a  section  of  the  section  determined  by  a2. 

Thus  we  have  shown  that  W(a)  ~  A;  since  A  is  well-ordered  and  of  the 
ordinal  a  the  same  applies  to  W(a),  as  Theorem  2  maintains. 

Readers  who  have  gone  over  the  proof  of  Theorem  8  of  §  10  will  notice  the  intrinsic 
analogy  between  that  proof  and  the  present  one,  though  the  latter  is  much  easier. 
In  fact  Theorem  2  will  yield  comparability  by  providing  standard  sets  of  a  given  ordinal. 

Theorem  2  allows  to  write  all  members  of  a  well-ordered  set  A  in  the 
form  a ̂   where  the  index  m  assumes  all  ordinals  less  than  A  =  a;  m  is 
the  member  of  W(a )  which  in  our  proof  was  related  to  au.  This  not¬ 
ation  is  a  natural  generalization  of  writing  sequences  as  (ak)  where  k 
ranges  over  the  non-negative  integers,  i.e.  over  the  ordinals  less  than  co. 

An  important  consequence  of  the  theorem  is  the  possibility  of  directly  defining  ordinals viz  of  conceiving  an  ordinal  a  as  the  well-ordered  set  IV(a)  of  all  ordinals  less  than  a 
(Hitherto  ordinals,  as  a  particular  kind  of  types,  were  only  defined  by  a  process  of abstraction  as  outlined  in  §  8,  4.)  Hence  it  is  sufficient  to  introduce  a  single  symbol  for the  least  ordinal  0;  this  may  be  denoted  by  the  null-set  O.  Hereby  ordinals,  i.e.  numbers are  represented  as  sets,  as  implied  in  the  beginning  of  §  2.  For  instance,  the  ordinals U,  I,  2,  3,  4,  ...  are  then  written  in  the  form 
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O 

{O} {O,  {O}} 

{O,  {O},  {O,  {O}}} 

{O,  {O},  (O,  {O}},  {O,  {O},  {O,  {O}}}} 

The  set  containing  all  (denumerably  many)  sets  of  this  kind  is  co,  and  co  +  1  is  the 

set  which,  besides  the  members  of  co,  also  contains  co  itself  as  a  member. 

These  plain  sets  may  also  be  regarded  as  (well-)ordered  sets;  ordering  them  by 
magnitude  is  easy  since,  of  any  two  different  ordinals,  one  is  both  a  member  and  a 

proper  subset  of  the  other.  Moreover,  any  ordinal  n  <  a  (i.e.,  n  e  a)  is  just  the  section 

of  a  determined  by  p.  However,  this  theory  of  ordinals,  developed  first  by  J.  von 

Neumann  in  1923  x),  requires,  in  addition  to  the  definition  by  transfinite  induction 

(Theorem  7  of  §  10),  a  further  “axiom  of  infinity”  which  may  roughly  be  formulated  as 
Axiom  of  Substitution  or  of  Replacement  (VIII).  For  any  set  S  and  any  single-valued 

function  /  with  a  free  variable  x  there  exists  the  set  that  contains  just  the  members / (x) 
with  x  e  S. 

For  a  stricter  formulation  and  for  the  use  of  the  axiom  in  set  theory  see  Foundations, 

chapter  II,  §§  5-8  (especially  p.  85).  The  axiom  fulfils  many  other  purposes,  all  of  a 

more  specific  character  than  those  fulfilled  by  Axioms  I-VII.  In  the  following  we  shall 
not  explicitly  refer  to  its  use. 

To  derive  comparability  from  Theorem  2,  let  a  and  (3  be  two  ordinals. 

Instead  of  comparing  any  well-ordered  sets  of  the  ordinals  a  and  (3  as 

done  in  §  10,  3,  we  now  compare  the  particular  sets  of  ordinals  W(a )  and 

W(J3).  Either  “begins”  with  the  members  0,  1,2,  etc.  and  we  are  going 
to  show  that  this  coincidence  of  the  members  continues  as  far  as  possible, 

namely  until  at  least  one  of  the  sets  is  exhausted. 

Let  V  be  the  well-ordered  intersection  of  W(a)  and  W(J3).  V  is  an 

initial  of  both  sets  because,  for  any  v  e  V,  every  member  of  W(a )  preceding 

v  belongs  to  W(J3)  and  vice  versa,  hence  also  to  V.  We  distinguish  between 

the  cases  V  =  1 V(a)  and  V  c  fV(a). 

In  the  first  case  I V(a)  is  either  =  W([3),  i.e.  a  =  (3,  or  a  proper  initial  — 

hence  a  section  —  of  W{j3),  which  means  a  <  f3. 

If  fc  then  V  is  a  section  of  1 V(a).  Since  V  £  W((3),  it  would 

seem  as  if  again  there  arose  an  alternative  between  V  =  W((3)  and 

V  <=  W(J3).  V  =  W(/3)  means  that  \ V((3)  is  a  section  of  IT(a),  hence  f3<a. 

But  V  «=  W((3 )  is  impossible,  for  then  V  were  also  a  section  of  W(/3),  i.e. 

the  ordinal  v  of  V  were  <  a  and  <  (3,  hence  v  e  V,  while  V  —  fV(v) 

x)  Von  Neumann  23;  also  25,  28,  28a.  Cf.  Quine  41,  p.  147.  —  For  an  axiomatic 
introduction  of  ordinals,  independently  of  ordered  sets  and  types,  see  Tarski  25b  and 

Lindenbaum-Tarski  26. 
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contains  only  ordinals  less  than  v.  (Cf.  the  corresponding  impossibility 

in  the  fourth  case  of  the  scheme  at  the  end  of  §  10,  3.)  Hence 

Theorem  3  (Comparability  of  Ordinals).  Of  two  different  ordinals 
one  is  less  than  the  other. 

This  theorem  coincides  with  Theorem  8  of  §  10.  In  the  terminology  of 

§  10  our  theorem  says:  if  fV(a)  and  W(P)  are  not  similar  then  one  of  them 

is  similar  to  a  section  of  the  other.  With  the  present  notation  the  scheme 
used  in  §  10,  3  assumes  the  form: 

1)  v  =  a,  v  =  /?,  hence  a  = 

2)  v  =  a,  o  <  f,  hence  a  <  /?; 

3)  d  <  a,  v  —  /?,  hence  /?  <  a; 

4)  u  <  a,  v  <  /?:  impossible. 

For  the  following,  a  few  additional  theorems  on  sets  of  ordinals  are 
needed. 

Theorem  4.  Any  set  of  ordinals  the  members  of  which  are  ordered  by 
magnitude  is  well-ordered.  Hence  every  set  of  ordinals  contains  a  least 
ordinal. 

Proof.  Let  R  be  such  an  ordered  set,  R0  a  non-empty  subset  of  R, 
and  q  an  arbitrary  member  of  R0.  The  (ordered)  intersection  I  of  R0  and 

JV(q)  is  empty  only  if  q  is  the  first  member  of  R0.  Otherwise  I,  being  a 
subset  of  the  well-ordered  set  f'V(q),  has  a  first  member  which  is  also  the 
first  member  of  R0.  Hence  in  either  case  R0  has  a  first  member,  which 
proves  the  theorem. 

Theorem  5.  Given  a  set  R  of  ordinals  ordered  by  magnitude,  the  ordered 
sum  of  the  members  of  R  is  either  greater  than  each  member  of  R  or  equal 
to  a  member  of  R,  namely  to  the  greatest  among  its  members. 

Proof.  Otherwise,  in  view  of  comparability,  there  ought  to  be  in  R  an 
ordinal  q  greater  than  the  sum  a,  which  itself  is  an  ordinal  (by  Theorem  4, 
and  Theorem  10  of  §  10).  Thus,  by  passing  from  ordinals  to  suitable  set- 
representatives,  we  would  have  a  set  of  the  ordinal  a  which  is  similar 
to  a  section  of  a  set  of  the  ordinal  q,  while  the  latter  set  is  a  subset  of  the 
former.  But  this  contradicts  Theorem  14  of  §  10. 

Remarks.  First,  if  the  sum  equals  one  of  its  terms,  this  clearly  is  the 
maximum  among  the  terms;  hence,  if  R  contains  no  maximum,  the  sum 
exceeds  each  ordinal  of  R.  (Cf.  Theorem  7  of  §  6;  here  the  situation  is 
simpler  because  the  members  of  R  are  known  to  be  comparable.)  More- 
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over,  Theorem  5  clearly  remains  true  if  the  terms  of  the  sum  are  given 
not  as  the  members  of  a  set  but  as  assigned  to  the  members  of  a  well- 

ordered  auxiliary  set  T(cf.  Definition  V  of  §  8);  this  slight  generalization 
leaves  room  for  equal  terms  in  the  sum. 

Theorem  6.  To  every  set  R  of  ordinals  there  exist  still  greater  ordinals, 

in  particular  a  sequent,  i.e.  the  least  of  all  ordinals  that  exceed  those  of  R. 
Proof.  R  either  contains  a  greatest  ordinal  (maximum)  p,  or  else  for 

each  q  e  R  there  is  a  greater  one  in  R.  In  the  first  case  p  +  1  is  the  sequent. 
In  the  second  case  let  o  be  the  ordered  sum  of  the  members  of  R  ordered 

by  magnitude;  then  o  is  greater  than  each  member  of  R.  If,  among  the 

members  of  W(a  +  1),  o0  is  the  least  that  exceeds  all  members  of  R, 
then  oo  is  the  sequent  of  R. 

We  use  Theorem  6  to  illustrate  Definition  II  (end  of  subsection  1). 

One  easily  sees  that  the  sequent  of  R  is  a  limit-number  if  and  only  if  R 

contains  no  maximum.  In  the  notation  a  =  lim  /?  for  limit-numbers  the 

set  S  of  ordinals  /?  was  not  fixed.  A  universal  method  is  choosing  S  =  JV(a), 

hence  writing  a  =  lim  /?;  yet  from  Theorem  6  we  infer  that  any  set  5 

P<  a 
of  increasing  ordinals  without  maximum  does  as  well,  a  denoting  the 

sequent  of  S’.  In  other  words,  every  set  of  ordinals  which  is  confinal  with 
I V(a)  may  replace  W(a).  If  fiv  ranges  over  such  a  set  then  we  write  for 

short  a  =  lim  f}y,  or  simply  a  =  lim  fiv. 
V 

In  view  of  Theorem  6  we  may  express  Theorem  2  also  in  the  following 
form : 

Theorem  7  (Corollary  to  Theorem  2).  A  set  of  ordinals  that  con¬ 

tains,  besides  any  member  v,  also  all  ordinals  <  o,  can  be  ordered  by 

magnitude.  This  ordered  set  W  is  well-ordered  and  its  ordinal  a  is  the 

sequent  of  its  members:  W  —  W(a )  with  a  =  W. 

This  form  is  more  far-reaching  than  Theorem  2,  for  it  does  not  start 

with  a,  which  ordinal  instead  emerges  from  the  given  “initial”.  Besides 

the  application  made  of  the  theorem  in  3  for  constructing  Cantor’s  series 

of  ordinals,  it  is  also  a  suitable  starting-point  for  von  Neumann’s  induc¬ 
tive  definition  of  ordinals  outlined  above. 

It  might  seem  as  if  Theorem  7  could  simply  be  expressed  in  the  form 

“any  initial  W  of  the  ordered  set  of  all  ordinals  is  well-ordered...”. 
However,  Theorem  6  (or  7)  reveals  the  shocking  result: 

The  totality  of  all  ordinals  does  not  constitute  a  set. 
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In  fact,  if  it  were  a  set,  by  ordering  its  members  according  to  magnitude 

we  would  obtain  a  well-ordered  set  whose  ordinal  were  greater  than  any 

ordinal,  hence  including  itself. 

For  the  third  time,  after  the  antinomy  of  Russell  (§  5,  3)  and  the 

antinomy  of  the  set  of  all  cardinals  (§  6, 7),  we  have  unintentionally 

arrived  at  a  contradiction,  the  antinomy  of  the  set  of  all  ordinals  called 

after  Burali-Forti.  (See  Foundations ,  p.  9.)  It  is  the  earliest  (1895/97)  of 

the  modern  so-called  logical  antinomies  and  —  like  the  antinomy  of 

§  6,  7  to  which  it  shows  a  remarkable  analogy  —  derives  from  technical 

set-theoretical  arguments,  in  contrast  with  Russell’s  antinomy  which  is 
based  on  logical  arguments  only.  The  contradictory  character  in  these 

instances,  particulary  those  of  the  sets  of  all  cardinals  and  of  all  ordinals, 

arises  from  conceiving  them  as  sets,  which  then  may  serve  as  members 

of  other  sets,  and  not  as  mere  totalities  or  classes  (see  the  end  of  §  1). 

However,  the  assumption  that  they  constitute  sets  only  leans  on 

accepting  Cantor’s  definition  of  set  as  the  basis  of  set  theory,  to  which 
definition  the  totalities  mentioned  conform.  If,  as  in  the  present  book, 

set  theory  is  explicitly  or  implicitly  based  on  axioms  which  restrict  the 

extent  of  the  set  concept  (for  instance,  the  seven  or  eight  axioms  intro¬ 

duced  here,  or  other  axiom  systems  as  described  in  chapters  II  and  III  of 

Foundations)  then  the  totalities  in  question  cannot  be  proven  to  constitute 

sets  and  assume  the  character  of  “classes”  which  are  not  available  for 
membership.  Hereby  they  cease  producing  mathematical  contradictions. 

When  speaking  of  the  totality  of  all  ordinals  in  subsection  3  we  shall 

call  it  not  “set”  but  “series”;  by  this  term  we  also  hint  at  the  succes¬ 
sion  of  ordinals  according  to  magnitude. 

3.  Exponentiation.  The  Series  of  Ordinals.  In  §  8  (end  of  subsection  7) 
the  difficulties  connected  with  the  multiplication  of  infinitely  many  order- 
types  and  with  the  exponentiation  of  types  were  outlined.  The  situation 

is  in  principle  not  different  for  ordinals,  nevertheless  their  exponentiation 
must  be  considered  here  in  detail.  General  products  may  be  introduced 
in  the  same  way,  yet  they  have  less  practical  importance. 

We  begin  with  a  remark  regarding  definitions  and  proofs  by  transfinite 
induction,  as  far  as  ordinals  are  concerned.  When  the  ordinals  less  than  a 

fixed  ordinal  a0  f  0  are  considered  it  is  often  useful  to  distinguish 
between  the  cases  that  a0  is  of  the  first  (isolated)  or  of  the  second  kind 
(a  limit  number);  see  Definition  II  above.  This  is  just  the  differentiation 
made  in  the  proof  of  Theorem  7  of  §  10  (about  definition  by  transfinite 
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induction);  there  we  distinguished  between  the  cases  that  the  initial  /0 

has  a  last  member  or  not.  To  an  isolated  ordinal  ao  we  proceed  from 

its  immediate  predecessor  a0  —  1,  to  a  limit-number  a0  from  a  set  of 

increasing  ordinals  whose  sequent  is  ao.  Hence,  instead  of  generally 

defining  oa  ( a  ̂   0)  as  the  least  ordinal  aP  •  a  for  /?  <  a  1),  we  prefer 
the  following  formulation  (which  was  introduced  by  Cantor  without  a 

justification  of  inductive  definition). 

Definition  III.  If  a  is  a  given  ordinal  >  1  the  power  p(a)  =  oa 
is  inductively  defined  by 

a)  P(P)  =  cr°  =  1, 

b)  p(a)  =  p(a  —  1)  •  a  =  oa  ~  1  •  a  for  isolated  a, 

c)  p(a)  =  lim  p(Jt)  =  lim  oP  for  limit-numbers  a  —  lim  /?. 
P  <  a  ft  <  a 

In  addition,  1°  =  1,  0“  =  0  for  a  >  0. 

In  c),  [}  <  a  means  that  /?  ranges  over  W(a )  or  another  set  of  increas¬ 

ing  ordinals  p  whose  sequent  is  a. 

To  illustrate  this  definition  we  remark:  For  finite  a  —  n  the  definition 

clearly  concurs  with  the  “elementary”  definition  valid  for  any  types  q 

(VII  of  §  8),  which  conceives  gn  as  obtained  by  repeated  multiplication. 

If  the  base  a  =  m  is  finite  and  >  1  then  is,  according  to  c),  the  sequent 

of  the  set  of  all  finite  ordinals  mn  for  n  <  oj,  hence  m<°  =  to.  Similarly  co“ 

is  defined  as  the  sequent  of  the  set  of  all  powers  con  (n  <  co);  since 

1  +  co  +  co2  +  •  •  •  +  con  —  con  we  may  also  write  <x>w  —  1  +  co  +  a»2 

+  ...  +  cok  +  ....  Furthermore 

na>  +  1  =  nco  .  n  =  (JT)  .  QJCO  +  1  —  QJCO  . 

Definition  III,  which  usually  serves  for  introducing  powers  of  ordinals  (for  another 

method  see  below),  requires  some  additional  explanation  in  view  of  our  method  of 

defining  by  transfinite  induction  (Theorem  7  of  §  10).  This  theorem  does  not  directly 

yield  the  existence  of  our  function  p(a );  for  the  rules  b)  and  c)  are  based  upon  two 
conditions  regarding  which  no  provision  is  made  in  that  theorem :  b)  makes  sense  only 

provided  p(a  —  1)  is  an  ordinal,  and  c)  requires  that,  for  a  limit-number  a,  the  values 
of  p(]i)  with  fi  <.  a  form  a  set  of  increasing  ordinals  without  a  maximum ;  otherwise 

the  expression  lim  p(fi)  would  be  meaningless. 

P  <  a To  guarantee  that  a  function  p(a)  satisfying  these  conditions  exists,  we  may  introduce 

a  Definition  III*  which  determines  a  function  in  full  accordance  with  Theorem  7  of 
§  10  and  then  prove  that  this  p(a)  has  indeed  the  properties  stated  in  Definition  III. 

For  instance,  we  may  stipulate  that  p(a  —  1)  •  a  in  b)  means  an  arbitrary  ordinal  when 

x)  In  just  this  form  one  can  define  a  product  of  ordinals  a\  which  are  assigned  to 

the  members  X  of  W(p)  with  a  fixed  p,  the  “exponent  of  the  product”. 
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p{a  —  1)  is  not  an  ordinal,  and  that  lim  />(/?)  in  c)  means  an  arbitrary  ordinal  when  the 
set  of  all  />(/?)  contains  a  maximum  (or  not  ordinals).  Then  p  is  uniquely  defined  for 
any  ordinal  a  provided  it  is  defined  for  the  ordinals  <  a,  whatever  the  values  for  these 
ordinals  may  be. 

Now  the  properties  of  p  are  easily  established.  All  values  of  p  prove  to  be  ordinals 

and  the  expressions  p(a  -  1)  •  a  and  “the  sequent  of  all  p{fi)  for  P<  a”  have  their 
ordinary  meanings.  Furthermore,/!  is  a  monotonic  function  (cf.  below),  i.e.  the  inequality 
y  <  6  implies  p(y)  <  p{8),  as  may  be  shown  by  induction  with  respect  to  8.  Hence  p  is 
in  accordance  with  the  rules  of  Definition  III;  the  uniqueness  of  the  function  described 

by  this  definition  follows  from  the  fact  that  all  values  of  any  such  function  p'  are  ordinals 

and  that  p',  accordingly,  has  the  properties  required  by  IIP  —  which,  by  Theorem  7  of 
§  10,  determines/?'  uniquely.  This  completes  the  proof  that  Definition  III  is  admissible. 

Definition  IIP  may  also  be  introduced  in  other  ways;  for  instance,  as  defining 

p{a)  to  equal  1,  p  ■  a,  or  the  limit  of  the  set  of  all  p(JJ)  with  ft  <  a  respectively,  according 
as  the  latter  set  is  empty,  contains  a  maximum  p,  or  contains  ordinals  without  a 
maximum.  That  the  function  defined  hereby  is  the  function  described  by  Definition  III 
can  be  proven  as  above,  except  that  the  proof  of  the  uniqueness  must  now  use  the 
monotony  of  any  such  function. 

A  more  general  and  comprehensive  treatment  of  definitions  by  transfinite  induction, 
which  includes  general  products  of  ordinals,  was  given  by  Kuratowski  and  Mostowski.1) 

Besides  the  inductive  introduction  of  powers  of  ordinals  originating 
from  Cantor,  Hausdorff  and  Hessenberg  paved  the  way  to  a  direct 
definition.  In  §  8,  7  we  outlined  the  difficulty  of  defining  products  of 
infinitely  many  order-types,  caused  by  the  impossibility  of  lexicograph¬ 
ically  ordering  the  respective  Cartesian  products.  The  seemingly  obvious 
device  of  instead  considering  the  maximal  orderable  subsets  of  the 
Cartesian  product  is  impracticable  because  there  are  different  such 
subsets  and  their  properties  are  unfit  for  the  purpose.  Nevertheless 
Hausdorff  succeeded  in  defining  quasi-products  of  types;  in  §  8,  7  it  was 
pointed  out  that  they  remain  short  of  the  goal.  Still  the  specialization  to 
products  of  infinitely  many  ordinals,  in  particular  to  powers  of  ordinals,2) 
yields  relatively  simple  results;  it  turns  out  that  hereby  one  obtains  just 
the  powers  (and  products)  defined  above  inductively.  We  refrain  from 
entering  into  tins  rather  involved  subject  and  refer  interested  readers  to 
the  literature.3) 

Just  as  infinite  products  and  powers  of  types  in  general,  also  powers 

1}  Kuratowski-Mostowski  52,  in  particular  p.  198.  The  exposition  of  the  subject  in this  Polish  textbook  is  rendered  in  English  in  Sierpinski  58,  notably  chapter  XIV §§  15-17.  Cf.  also  Montague  55. 

)  In  this  case  one  may  also  lean  on  the  (slightly  generalized)  representation  of 
ordinals  in  the  normal  form  (Theorem  11  of  §  11),  as  done  by  Hessenberg 

)  The  theory  originates  from  Hausdorff  06-071,  cf.  Hessenberg  07  and  Wrinch  20. 
Systematic  expositions  are  found  in  the  textbooks  Hausdorff  14  (chapter  VI)  and Sierpinski  58  (chapter  XIV). 
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(arid  products,  too)  of  ordinals  cannot  be  interpreted  cardinally,  no  matter 
which  way  the  power  is  defined;  more  presicely,  if  o  =  s  and  a  =  a, 

in  general  the  cardinal  of  oa  is  less  than  sa.  As  follows  from  previous 
remarks,  this  drawback  is  not  due  to  transfinite  induction  or  special 
properties  of  ordinals  but  derives  from  the  intrinsic  nature  of  ordered 

sets  and  their  types  which  excludes  comprehensive  enough  ordered 
products. 

That  in  general  era  <  cra  is  shown  by  the  examples  given  above.  For 

2“  we  have  oa  =  2N°  =  while  2^  =  a  =  Xo  <  X-  (Here  the  symbol  2 
for  the  base^denotes  first  the  ordinal  and  then  the  cardinal.)  As  to  com, 

we  have  eo“  =  Xox°  =  X ;  that  nevertheless  co"  =  tfo  may  be  shown 
directly  by  arranging  all  positive  integers  after  the  type  as  follows. 

1;  2,  3,  5,  7,  11,  ... 

4,  6,  10,  14,  ...;9,  15,21, 

8,  12,  20,  ...;  18,  30,  42,  . 

16,  24,  40,  . . .;  36,  60,  . . . 

;  25,  35,  55,  . . 
. . . ;  27,  45,  63, 
54,  ; 

After  1,  the  prime  numbers  follow  according  to  magnitude,  then  all 

products  of  2,  3,  ...  (equal  or  different)  primes ;  to  arrange  the  products 
of  n  primes  among  themselves  we  write  the  factors  in  the  order  of  in¬ 

creasing  magnitude  and  let  the  products  succeed  according  to  the 

magnitude  of  the  first  different  corresponding  factors.  Since  evidently 

the  set  of  all  integers  preceding  2k  has  the  type  (ordinal)  cok  ~  1,  the  entire 
set  has  the  type 

1  -f-  to  -f-  co2  -(-...  T-  -f-  . . .  =  cow. 

By  b)  and  c)  of  Definition  III  the  function  p(a )  =  oa,  for  a  >  1,  has  the 

properties 

A)  p(ai)  <  p(a2 )  for  ai  <  a2 

B)  p(lim  av)  =  lim  p{av). 
V  V 

A  function  p(a )  of  ordinals  with  these  two  properties  is  called  a  normal 

function 7)  (Disregarding  A)  we  obtain  the  more  general  concept  of  a 

T  For  the  early  use  of  this  concept,  which  was  introduced  by  Veblen  08,  see  Jacobs- 

thal  09  and  09a  (cf.  Sudan  31),  Hausdorff  14,  pp.  114ff.  For  recent  developments  and 

generalizations,  cf.  H.  Bachmann  50,  Ackermann  51,  Neumer  51,  Schiitte  54.  A  compre¬ 

hensive  exposition  of  the  theory  of  normal  functions  of  ordinals  is  given  in  H.  Bach¬ 
mann  55,  §§  5  and  7. 
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continuous  function  of  ordinals.1))  The  concept  of  normal  function  is 
to  a  large  extent  analogous  to  that  of  monotonic  and  continuous  function 

in  analysis  and  has  won  great  significance  for  the  arithmetic  of  ordinals. 

a  -f-  a  and  o  ■  a  (a  y  0)  are  normal  functions  of  a  but  not  a  +  o  (for  o  *0), 

a  •  cr  (for  a  >  1),  a2  (cf.  Theorem  8  in  4);  for  instance,  lim  n2  =  co  and n 

not  =  

co2 * *.  Every  normal  function  p(a)  satisfies  the  inequality  p(a )  >  a; 

cf.  the  proof  of  Theorem  
1 1 . 

We  conclude  this  survey  of  exponentiaton  by  proving,  by  means  of 

transfinite  induction,  the  formal  laws 

(1) afi  •  a7  =  afi  +  y, 

(2) 
(aP)s  =  aPs. 

Since  the  multiplication  of  (types  and)  ordinals  is  not  commutative, 

no  analogue  to  the  arithmetical  law  ac  ■  bc  =  ( ab)c  and  its  generalization 
for  cardinals  (§  7,  4)  can  be  expected;  even  in  a  case  as  simple  as 

a  =  co,  b  =  c  =  2,  we  have  co2  •  22  (co  •  2)2  =  co  (2  •  co)  2  =  co2  •  2. 2) 
We  sketch  the  proofs,  leaving  slight  completions  to  the  reader.  Incid¬ 

entally,  for  y  =  1,  (1)  becomes  the  rule  b)  of  Definition  III. 

Let  in  (1)  a  and  /?  be  fixed  ordinals;  we  prove  the  equality  by  transfinite 

induction  with  respect  to  y  (where  y  e  W(y)  for  an  arbitrary  ~y),  using a)  -  c)  of  Definition  III. 

(1)  is  true  for  y  =  0  since  a0  =  1  by  a).  We  assume  (1)  to  be  true  for  all 
ordinals  less  than  a  given  y0  y  0  and  prove  it  for  y0. 

If  y0  is  isolated,  hence  y0  =  (yo  —  1)  +  1,  then  (1)  holds  by  assumption 
for  y  =  yo  —  1 ;  therefore,  by  the  rule  b)  and  the  associative  law, 

aP ■  ay0  =  aP(av .-1  •  a)  =  (aP-ar0~ i) a  =  aP+  •  a  =  aV+ V”1  •  a  =  aP+r0; 

for  p  +  yo,  too,  is  isolated  and  is  the  sequent  of  /?  +  (yo  —  1). 

For  their  properties  cf.  Sierpinski  52. 

2)  In  this  context  it  is  worth  mentioning  that  Fermat’s  Last  Theorem,  constituting  a still  unsolved  problem  for  integers  (cf.  §  2,  2),  can  easily  be  refuted  for  ordinals;  more 
precisely,  the  equation  ̂   +  nx  =  has,  for  every  ordinal  ).  f-  0,  ordinal  solutions 
£.,V,C  even  above  any  given  bound.  See  Sierpinski  50;  the  proof  is  given  separately 
for  X  being  finite,  transfinite  of  the  first  kind,  and  of  the  second  kind.  In  the  same  paper 
Goldbach’s  conjecture  is  refuted  for  ordinals;  co  +  10  is  the  least  even  ordinal  which  is not  the  sum  of  two  primes  (see  below  p.  212). 
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Before  we  prove  the  truth  of  (1)  for  limit-numbers  yo,  let  us  remark 

that  the  following  equalities  are  easily  seen  to  hold  true: 

(3)  k  +  lim  Xv  =  lim  (/c  +  A„),  k  •  lim  Xv  =  lim  (acAv). 
V  V  V  V 

Hence  for  a  limit-number  yo  =  lim  yv,  the  assumption  that  (1)  holds  for 
V 

all  ordinals  <  yo  yields  in  view  of  the  rule  c): 

a.0  •  a.ya  —  a.P  •  lim  a>v  =  lim  (a.0  •  a>v)  =  lim  aP+vv  = 

=  alim(/?+yv)  —  QyS  +  lim)-v  _  ay?+y0. 

Hereby  the  proof  of  (1)  is  completed,  and  (2)  is  proven  quite  analog¬ 

ically.  Accordingly  we  have,  for  instance, 

(CO")"  —  CO"2,  (CO"”)" 
 =  OJc°n  +  1. 

Now  we  are  sufficiently  prepared  for  the  series  of  ordinals,  one  of 

Cantor’s  most  daring  and  most  beautiful  achievements,  which  constitutes 

his  “continuation  of  the  series  of  real  integers  beyond  the  infinite” 

(see  p.  3) 1). 
By  Theorem  7,  which  is  the  basis  for  each  single  step  in  constructing  the 

series  of  ordinals,  the  sequence  of  the  integers  is  followed  by  the  ordinal 

co  of  this  sequence.  Similarly  the  set  of  all  ordinals  co  •  k  +  /  with  k  —  0, 1 

and  /  =  0,  1,2,  ...  is  followed  by  co2,  and  the  sequence  (co,  co2,  . . ., 

con,  . . .)  by  lim  con  =  colim  n  =  co".  Thus,  if  k,  /,  m*  denote  finite  ordinals, 

the  series  begins  with 

0,  1,2,  . . .,  k,  ...  co,  co  +  1,  . . .,  co  +  k,  ...  co  •  2,  co  ■  2  +  1,  ...  co  -3, 

. . . ,  co •  k  +  /,  ...  co2,  co2  +  co  •  k  +  l,  ...  co2  •  k,  ...  co3,  ... a>k, 

. . . ,  cok  •  mk  +  cok  ~  1  •  m/c  -  i  +  •••  +  wo,  •  •  •  •  •  •  co"  •  k,  . . .  co"  + 1, 

. CO .  .  .  CO"'*,  ...  CO"",  .  .  .  CO"-'  ,  .  .  . 

Like  in  arithmetic,  co""  means  the  power  co<""),  and  not  (co")"  which 

equals  co"2;  it  is  the  sequent  of  the  sequence  (co,  co",  co"2,  co"3,  . . .). 

!)  The  constructive  character  of  the  process  becomes  still  more  obvious  in  the  light 

of  the  geometrical  construction  of  a  comprehensive  class  of  transfinite  ordinals  given 

by  Haenzel  34. 
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The  sequent  of  the  set  of  all  ordinals  hinted  at  above  is  also  the  sequent 
of  the  confinal  sequence 

.CO 

(1,  co,  co ",  to"",  . . co03-’  ,  . . .); 

it  is  usually  denoted  by  eo .  According  to  Definition  III,  c)  we  conclude 

that  coe0  is  the  sequent  of  the  sequence  (co,  co",  co"",  . . .),  i.e.  £o  =  coe0. 
Cantor  called  any  solution  e  of  the  equation  coe  =  e  an  epsilon-number  x); 

accordingly,  

eo  is  the  least  

epsilon-number *  

2). 

Contrary  to  what  might  be  expected,  we  shall  prove  in  subsection  5 
that  all  ordinals  mentioned  here  are  types  of  denumerable  sets. 

Let  us  again  survey  the  construction  of  the  “series  of  ordinals”. 
Owing  to  the  comparability  of  ordinals  (Theorem  3)  and  to  the  unique 

determination  of  the  sequent  of  every  “initial”  (as  the  ordinal  of  the 
initial;  see  Theorem  7),  the  series  can  be  continued  according  to  a 

well-defined  law  without  restriction  and  without  danger  of  furcating 
into  different  incomparable  directions.  Thus  Cantor’s  idea  of  continuing 
the  process  of  counting  beyond  co  has  been  carried  out  in  a  completely 
rigorous  way;  instead  of  a  hazy  notion  of  infinity  we  have  obtained 
distinct  and  comparable  transfinite  ordinals  which,  moreover,  can  be 

utilized  to  “enumerate”  the  members  of  any  well-ordered  set  through the  procedure  exhibited  in  the  proof  of  Theorem  2. 

4.  Arithmetic  of  Ordinals.  Abundant  material  regarding  the  arithmetic 
of  ordinals  has  accumulated  from  Cantor  to  our  days,  and  it  is  still 
increasing.  The  reader  interested  in  details  is  referred  to  more  compre¬ 
hensive  sources  3);  we  shall  restrict  ourselves  to  general  inequalities  and 
inverse  operations,  including  a  few  results  required  for  the  following subsection. 

Theorem  8.  (Inequalities  between  ordinals.) 

A.  ( Monotony  laws.)  If  a,  a,  z  are  ordinals  and  a  <  z,  then 
1)  ft  +  o  <  a  -f-  r, 

2)  cr  -f  a  <  t  +  a, 

b  For  a  related  kind  of  ordinals,  the  “delta-numbers”,  see  Sudan  46. 
2)  For  a  set  of  arithmetical  functions  with  the  type  eo  see  Skolem  57 
3)  Besides  Hausdorff  14  and  27  (English  edition,  1957),  H.  Bachmann  55  and Sierpinski  58  (chapter  XIV ;  for  alephs,  chapter  XV)  contain  a  great  wealth  of  arith¬ metical  statements. 
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3)  aa  <  ar  if  a  ̂   0, 

4)  era  <  r a. 

B.  ( Cancellation  laws.)  Conversely  we  have 

1)  a  +  <7<a  +  T,  o/-er  +  a<T  +  a,  implies  a  <  x, 
2)  a  +  a  =  a  +  r  implies  a  =  r, 

3)  aa  <  ar,  or  era  <  ra,  implies  a  <  x, 

4)  acr  —  ar  implies  a  =  x  if  a  ̂   0. 
C.  If  k  <  X  and  a  <  r,  r/jerc 

1)  re  +  cr  <  2  -f-  r,  2)  kg  <  2t. 

Proof  To  A.  By  Theorem  1,  cr  <  r  means  the  existence  of  a  £  7^  0 

such  that  cr  +  £  =  t;  hence  (1)  means  a  +  a<a  +  a-f-£,  3)  means 

acr  <  a(cr  +  £)  =  aa  +  a£,  and  both  inequalities  are  true  by  Theorem  1. 

As  to  2)  and  4),  let  A,  S,  T  be  sets  of  the  ordinals  a,  a,  r  respectively 

such  that  A  and  T  are  disjoint  and  S  is  a  section  of  T.  Then  we  have  for 

the  ordered  sums  and  Cartesian  products 

S  +  A  ̂   T  +  A,  S  x  A  c  T  X  A. 

(The  equality  refers  to  A  =  O .)  But  this  expresses  a  -f  a  <r  +  a,  aa<ra 

in  view  of  comparability  (cf.  the  Remark  on  p.  191). 

One  cannot  improve  2)  and  4)  so  as  to  obtain  strict  inequalities,  as 

shown  by  the  examples  0  +  «  =  n  +  co,  \  •  00  —  n  ■  co  (n  finite  and  ̂   0) 

To  B.  1)  -  4)  follow  from  A  1)  -  4)  in  view  of  the  comparability  of 

ordinals  (and  of  the  properties  of  equality  by  which  a  =  x  implies 

a  +  a  =  a  +  x,  etc.).  On  the  other  hand,  from  a  +  a  =  x  +  a,  or  aa  =  ra, 

one  cannot  draw  any  conclusion  regarding  the  order  between  a  and  r, 

as  shown  by  the  above  examples. 

To  C.  1)  follows  from  Al)  and  2),  2)  from  A3)  and  4).  For  instance, 

K  +  a<K  +  T<2  +  T.  The  assumption  k  ̂   0  clearly  becomes  super¬ 

fluous.  (Note  that  the  analogues  to  the  multiplicative  inequalities  do  not 

hold  true  in  the  arithmetic  of  integers,  where  negative  integers  exist.) 

Theorem  9.  (Subtraction.)  If  a  <  x  then  the  equation  a  +  £  =  x 

has  a  uniquely  determined  solution  C  which  is  written  as  C,  =  —  a  +  x. 

On  the  other  hand,  the  equation  £,  +  a  =  x  is  not  generally  solvable. 

Proof.  The  first  statement  follows  from  Theorem  1  and  (for  the 

uniqueness)  from  B2)  of  Theorem  8.  The  second  statement  is  evident  for 

a  >  x  and  is,  for  a  <  x,  illustrated  by  instances  such  as  ̂   +  n  =  co  with 

n  finite  ̂   0;  more  generally,  the  equality  has  no  solution  if  one  of  the 

ordinals  a,  x  is  isolated  and  the  other  a  limit-number.  (The  contrast 
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derives  from  the  fact  that  different  ordinals  always  are  “co-initial”  but  not 

“confinal”.)  If  in  the  second  equation  a  =  1,  its  solvability  means  that  t 

is  isolated  and  £  =  t  —  1  (Definition  II  at  the  end  of  1). 

If  the  equation  £  +  a  —  x  is  solvable  then  it  is  not  uniquely  solvable, 

except  for  finite  t.  For  instance,  co2  =  a>2  •  2  has  the  solutions 

co2,  co2  +  n,  co2  -f  co,  etc. 

Theorem  10.  (Division.)  For  any  given  ordinals  a  and  S  (<5  A  0)  there  is 

a  single  pair  of  ordinals  k,  q  such  that 

(1)  a  =  Sk  q  with  q  <  S. 

Obviously  k  =  0  if  and  only  if  a  <  6. 

hi  particular  (S  =  co)  there  is  a  uniquely  determined  finite  ordinal  r  such 
that 

(2)  a  =  cok  +  r. 

This  theorem  is  analogous  to  the  arithmetical  theorem,  fundamental  in 

multiplicative  number  theory,  that  states :  if  5  and  d  are  positive  integers, 

there  is  a  single  pair  of  non-negative  integers  q,  r  such  that  s  =  dq  r 
where  the  remainder  r  is  less  than  the  divisor  d. 

Proof  of  Theorem  10  *).  Our  first  aim  is  to  form  a  product  with  the 
left-hand  factor  (divisor)  S  which  exceeds  the  dividend  cr;  for  this  purpose 
the  right-hand  factor  r  =  cr  +  1  will  do,  for  by  d  >  1  and  A4)  in  Theorem  8 

St  =  S(o  +  1)  >  or  +  1  >  a. 

Let  D  and  T  be  disjoint  well-ordered  sets  of  the  types  S  and  r  respec¬ 
tively.  To  obtain  a  set-representative  of  St  we  lexicographically  order  the 
Cartesian  product  whose  members  are  the  ordered  pairs  ( t ,  d)  with 
teT,  de  D  (see  Definition  VII  of  §  8)  and  denote  this  well-ordered  set 

with  D  x  T;  then  D  x  T  =  St.  On  account  of  a  <  St  there  is  a  certain 

section  S  of  D  x  T  which  has  the  type  cr;  the  member  determining  this 
section  shall  be  denoted  by  (to,  do).  According  to  the  order  in  D  x  T,  S 
contains  all  pairs  ( t ,  d)  with  (d  e  D  and)  t  -<(  to  in  T,  and  in  addition  the 
pairs  (t0,  d)  with  d  <  do  in  D. 

X)  Division  for  genera /  types  naturally  is  much  more  intricate  than  for  ordinals.  We 
refer  the  reader  to  Sierpinski  48,  Ginsburg  55,  and  the  literature  cited  in  these  papers. 
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Now  let  k  be  the  type  (ordinal)  of  the  section  of  T  determined  by  to, 

q  the  type  of  the  section  of  D  determined  by  do.  In  view  of  the  properties 
of  the  section  5  of  D  x  T  we  have 

S  =  er  =  8k  +  q, 

where  q  <  8. 

This  representation  of  o,  with  the  left-hand  divisor  <5  and  with  q  <  S, 

is  unique.  For  assume 

Ski  +  Qi  =  Sk2  +  Q2.  (qi  <  S,  Q2<  S) 

If  ki  A  K2,  say  ki  <  K2  and  accordingly  k\  +  1  <  k-2,  then  on  account 

of  A3)  and  A2)  in  Theorem  8  we  would  obtain 

Ski  +  Qi  =  Sk2  +  {?2  ̂   S{k\  -f-  1)  +  Q2  —  Ski  +  (S  -f-  £2), 

which  by  Bl)  and  B2)  implies  £1  >  S  +  Q2,  contrary  to  our  assumption. 

Hence  k\  =  k%,  and  by  B2)  qi  =  Q2. 

The  last  statement  of  the  theorem  rests  upon  the  fact  that  the  ordinals 

<  co  are  finite.  From  this  statement  results 

Corollary.  An  ordinal  is  a  limit-number  if  and  only  if  it  is  leftwards 

divisible  by  co,  i.e.  if  in  (2)  r  =  0. 

Theorem  10  deals  only  with  left-hand  division  by  S.  Right-hand  division 

is  certainly  not  unique,  as  shown  by  1  •  co  =  2  •  co  =  . . .  =  co.  Cf. 
exercise  3)  at  the  end  of  §  11. 

By  taking  S  =  2  in  (1),  we  obtain  a  distinction  between  even  and  odd 

ordinals  2k  and  2k  +  1.  A  limit-number  is  not  only  even  but  left-hand- 

divisible  by  every  finite  ordinal  A  0  (and  by  co),  for  otherwise  it  would 

be  isolated  according  to  (1). 

Similarly  as  in  arithmetic  we  derive  from  Theorem  10  the  so-called 

algorithm  of  Euclid,  whose  availability  for  ordinals  is  not  self-evident;  the 

point  is  that  the  process  terminates  after  a  finite  number  of  steps.  Starting 

from  the  ordinals  <7  and  S  (S  A  0),  the  algorithm  has  the  well-known 

form  x) 

0  The  “continued  fraction”  defined  by  the  quotients  k,  ki,  . . .,  Kn  is  conceived  by 
a 

Hausdorff  06-071,  pp.  145ff.  as  representing  the  “rational  ordinal”  ;  the  correspond¬ 

ence  formed  hereby  is  biunique.  For  a  theory  of  rational  ordinals  see  Zakon  55. 
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S  =  SlKl  +  S2 

(Si  <  S) 

(S2  <  (5i) 

(Sn  <  Sn  -  1) 

After  finitely  many  steps  a  divisor  Sn  -  1  must  emerge  which  is  divisible 
by  the  corresponding  remainder  Sn,  for  otherwise  we  would  obtain  an 
infinite  sequence  of  decreasing  ordinals  Sk,  contrary  to  Theorem  4. 

An  ordinal  a  >  1  is  called  a  prime  number  if  it  cannot  be  decomposed 
into  a  product  of  two  ordinals  each  of  which  is  less  than  o. 1).  It  is 
easily  seen  that  every  ordinal  >  1  can  be  decomposed  into  a  product  of 
finitely  many  prime  numbers.  However,  this  decomposition  is  not 
unique;  for  instance,  co  •  co  =  (co  -f-  1)  co  although  both  co  and  co  +  1 are  evidently  prime. 

As  to  divisors  in  general,  an  ordinal  has  only  finitely  many  right-hand 
divisors2)  but  may  have  infinitely  many  left-hand  divisors;  cf.  the example  of  p.  211  and  exercise  3)  at  the  end  of  §  11. 

Another  feature  known  from  arithmetic,  called  by  Cantor  the  normal 
form  of  ordinals 3),  shall  be  treated  in  detail  because  we  are  going  to use  it  in  the  following  subsection. 

Theorem  11.  Every  ordinal  o  =4  0  can  be  uniquely  represented  in  the 
form 
(3) G  —  a>/1'  '  n  +  •  y2  +  ...  +  co^k  •  yk 

. .  .,  yk  are  finite  ordinals  ̂   0  and  the  exponents  satisfy 

where  k,  yh  y2,  . 

the  inequalities 
(4) 

A  >  h  >  •  • .  >  fa  >  0. 
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Obviously  this  representation  is  analogous  to  the  decadic  (or  g-adic, 
for  integers  g  >  2)  representation  of  integers  by  the  scale  of  10  in 
arithmetic.  For  every  number  a  one  has  finitely  many  (k)  terms,  the 
exponents  pn  are  decreasing,  and  the  coefficients  yn  are  less  than  the  base 
(here  co,  in  arithmetic  10  or  g).  P\  is  called  the  degree  of  cr;  we  shall  see 
that  the  degree  is  <  a.  (Contrary  to  arithmetic,  /?i  =  o  can  happen,  e.g. 
for  a  =  £o  =  coeo,  see  p.  208.) 

Theorem  1 1  holds  also  true,  and  is  proven  quite  analogically,  if  the 
base  co  is  replaced  by  any  transfinite  or  finite  base  a  >  2,  in  which  case 
yn  <C  a;  yet  for  applications  the  base  co  is  most  important.  For  a  =  2, 
already  a  =  co  equals  its  degree:  co  =  2m. 

Proof  of  Theorem  11.  We  begin  with  proving  that  for  every  P 

(5)  coP  >  p. 

Using  transfinite  induction,  we  first  see  that  (5)  is  true  for  P  =  0.  p0 
given,  assume  (5)  to  hold  for  all  p  <  p0.  If  p0  is  isolated  and  >  2  then  we 
have 

=  co*  -  1  •  m  >  (p0  -  1)  a  >  (p0  -  1)  +  1  =  p0,  i.e.  co >  Po, 

which  is  also  true  for  p0  =  0,  1.  For  limit-numbers  p0  =  lim  pv  we  infer 
from  c)  of  Definition  III:  v 

a/0  =  lim  oA  >  lim  Pv  =  p0,  i.e.  a/°>  p0. 

coEa  =  £0  shows  that  here  >  cannot  be  replaced  by  >.  Hence  (5)  is 
true  for  all  /?.  (5)  holds  also  if  co  is  replaced  by  any  base  >1.  —  The 
proof  may  also  be  conducted  by  using  Theorem  12  of  §  10. 

Since,  by  (5),  cuCT+1>cr-(-l><7  there  exists  a  least  ordinal  S  such  that 

co5  >  a.  This  6  cannot  be  a  limit-number  since  then  £  <  <5  implies 
i  -f  1  <  S,  hence  co$  +  1  <  o  and  cot  <  a,  from  which  by  c)  of  Definition 
III  follows 

co6  =  lim  co£  <  a, 

£<<5 

contrary  to  the  assumption  cos  >  a. 

Hence  6  is  isolated  and  by  the  definiton  of  S  we  have  for  Pi  —  3  —  1 : 

(6) a/1  <  <7  <  a/1  + 1 . 
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By  Theorem  10  there  are  ordinals  yx  (>  0)  and  o\  (<  a/1)  such  that 

(7)  o  —  a/1  •  yi  +  <7i. 

Hence  by  (6):  ft/1  •  yx  <  ct/1  +  *,  and  by  B3)  of  Theorem  8:  yi  <  <x>,  i.e.  yi 
is  finite  and  ̂   0. 

If  cri  —  0  then  a  =  ft/1  •  yi  is  the  representation  desired.  If  ai  >  0  we 
deal  with  oi  in  the  same  way  as  above  with  a  and  thus  obtain  successive 

equalities  of  the  form  (7) 

(8)  01  =  ft/ 2  •  y2  +  <72,  <72  =  ft/3  •  73  +  <73,  .  .  . 

where  pn  is  determined  by  an  -  i  as  is  /?i  by  a.  Accordingly  we  have 

<7  >  ft/1  >  <7i  >  ft/2  >  <72  >  ft/3  >  . .  ,  hence 

Pi  >  /?2  >  Pz  > 

Since  a  sequence  of  decreasing  ordinals  is  necessarily  finite,  the  process 
terminates  after  finitely  many  steps  by  yielding  aa»  =  0;  moreover,  all 
yn  are  finite  and  A  0. 

From  (7)  and  (8)  emerges  the  representation  (3)  of  Theorem  1 1 ;  it  still 

remains  to  prove  its  uniqueness.  The  assumption 

(a  =)  ft/1  yi  +  ...  +  ft/*  •  yk  =  ft/1  •  yi  +  ...  +  «/ *  •  y~k 

first  implies  Pi  =  pi;  for  Pi>  pi,  hence  /?i  >  pi  +  1,  would  mean 

<7  >  ft/1  +  1,  which  is  impossible  in  view  of  (6). 

Secondly,  p i  =  pi  implies  y i  =  yx;  for  ~y i  >  yu  i.e.  ~yi  =  yx  +  yi* 
with  yi*  ̂   0,  would  enable  us,  on  account  of  B2)  of  Theorem  8,  to 
suppress  ft/1  •  yi  on  both  sides  and  to  obtain 

ft/2  •  yz  +  ...  =  ft/1  •  yi*  +  c</2  •  "yi  +  ... 

which  is  impossible  because  of  p%  <  px.  This  argumentation  can  be 

continued  up  to  the  last  conclusion  k  =  k,  which  completes  the  proof 
of  Theorem  11. 

The  normal  form  of  ordinals  leads  to  the  notion  of  natural  sum 

introduced  by  Hessenberg.1)  Let  the  ordinals  cr  and  r  be  represented  as  in Theorem  10 

°  =  2  °^n '  Yn,  t  =  ̂  cofin  •  Sn. 
_ _  n  n 

0  Hessenberg  06,  Jacobsthal  09a;  cf.  the  exposition  in  H.  Bachmann  55,  §  23.  For 
recent  applications  in  algebra  see  Carruth  42  (with  the  literature  annexed)  and  Sikorski 
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Since  either  sum  contains  finitely  many  terms  only,  we  may  use  the  same 

exponents  pn,  admitting  coefficients  yn  =  0  and  Sn  =  0.  The  natural 
sum  of  a  and  z  is  defined  as 

S  (a,  t)  =  ̂   “  (y»  +  dn). n 

Hence  £>  (cr,  z)  =  Q  (z,  a)  because  the  yn  and  Sn  are  finite.  In  general, 
the  natural  sum  coincides  with  neither  of  the  ordered  sums  a  +  z,  z  +  cr. 

For  instance,  if  a  =  coi2  a>,  z  =  co2,  we  have 

S  (<7,  t)  =  CO3  +  CO2  4-  CO,  <7  +  T  =  CD3  +  CO2,  T  +  <7  =  CO3  +  CO, 

which  sums  are  different  from  each  other. 

In  5  we  shall  require  the  following  property  of  natural  sums:  For  a 

given  ordinal  q,  there  exist  finitely  many  pairs  a,  z  only  such  that 

S  (cr,  t)  =  q.  To  prove  this  let  the  normal  forms  of  q,  and  of  some  cr 
and  r,  be 

Q  =  ̂COan  •  Xn,  cr  =  2  •  yn,  T  =  ]>  CD*5"  *  £n. n  n  n 

It  easily  follows  from  Theorem  1 1  that  ©  (cr,  z)  —  q  entails  the  equations 

=  yn  +  £n,  where  the  required  solutions  yn,  £n  are  also  finite  (as  is 

Xn).  But  for  a  given  n,  this  equation  clearly  has  only  a  finite  number  of 

solutions  yn,  en  \  since  the  number  of  equations  is  also  finite  the  proof  of 

our  statement  is  completed. 

5.  Alephs,  Number-Classes,  Initial  Numbers.  In  this  subsection  we 
restrict  ourselves  to  some  fundamental  theorems  and  a  few  others  which 

are  important  for  the  applications;  for  additional  material  see  the  re¬ 

ferences  at  the  beginning  of  4.  Some  of  the  following  proofs  are  given  in 

an  abridged  form;  the  reader,  experienced  at  this  stage,  will  complete 

them  without  difficulty.  As  to  definitions  by  transfinite  induction  as  used, 

for  instance,  for  the  series  of  alephs,  cf.  the  remarks  above  in  3. 

The  cardinal  of  an  infinite  well-ordered  set  is  called  an  aleph  J).  The 

comparability  of  alephs  is  an  immediate  consequence  of  the  compara¬ 

bility  of  ordinals  (Theorem  3). 

x)  Aleph  the  first  letter  of  the  Hebrew  alphabet,  was  introduced  by  Cantor  for 

this  purpose.  So  far  we  have  used  Xo  for  the  cardinal  of  an  enumerated  (hence  well- 
ordered)  set,  and  therefore  of  any  denumerable  set.  X,  however,  was  used  for  the 

cardinal  of  the  continuum  which  is  not  well-ordered;  regarding  this  use  see  6  and  7. 
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Theorem  12.  The  cardinals  (alephs)  of  two  well-ordered  sets  are  either 

equal  or  one  is  less  than  the  other. 

Proof.  Let  S  and  T  be  well-ordered  sets  with  the  ordinals  cr  and  r  and 

the  cardinals  s  and  t.  According  to  Theorem  3  we  have  either  a  =  x  or 

a  <  r  or  r  <  <7.  In  the  first  case  S  and  T  are  similar,  all  the  more  equival¬ 

ent,  i.e.  s  =  t.  In  the  second  case  S  is  similar  to  a  section  of  T,  i.e.  S 

is  equivalent  to  a  subset  of  T\  hence  by  Theorem  4  of  §  5,  either  s  =  t  or 

s  <  t.  The  third  case  is  analogous  and  yields  t  =  s  or  t  <  s,  which 

completes  our  proof. 

Thus  the  “fourth”  case  of  incomparability  of  cardinals  (see  §5,4  and  5) 
is  excluded  for  well-ordered  sets.  According  to  our  proof,  o  —  x  implies 

cr  =  r,  and  o  <  x  implies  o  <  t,  while  vice  versa  a  <  r  implies  a  <  x 

and  <r  =  t  is  compatible  with  each  of  the  cases  a  =  x,  o  <  x,  x  <  a. 
Written  in  a  scheme: 

if  o  =  x cr  <  X O  —  X 
CT  <  r 

then  o  —  x 
cr  <  r no  conclusion 

cr  <  x 

We  have,  for  instance,  co  <  co2  <  co<°  while  co  =  afi  =  afi>  =  Xo. 
The  set  of  all  ordinals  which  have  a  given  aleph  c  as  their  cardinal, 

ordered  by  magnitude,  is  called  the  number-class  of  c  and  denoted  by 
Z(c).  (Notations  introduced  by  Cantor;  number  =  Zahl  in  German.) 
The  least  ordinal  of  Z(c)  is  called  the  initial  number  of  c  (or  of  Z(c)). 
Every  initial  number  is  a  limit-number;  for  otherwise  it  would  possess  an 
immediate  predecessor  which  ought  to  have  the  same  cardinal. 

For  finite  cardinals  the  concept  of  number-class  is  trivial  because 

there  is  only  a  single  ordinal  corresponding  to  a  given  finite  cardinal 
(§  8,  4).  After  Cantor  one  calls  the  ordered  set  of  all  finite  ordinals  the 

first  number-class  and  the  ordered  set  of  all  denumerable  ordinals  Z(Xo) 
the  second  number-class1)-,  the  initial  number  of  Z(X o)  is  co,  in  this 
context  also  written  co0.  Z(Xo)  is  a  subset  of  the  set  J(x o)  of  all 
denumerables  types,  and  generally  Z(c)  a  subset  of  J(c)  (Theorem  2  of 

§  8).  According  to  Theorem  5  of  §  8  we  have  Z(Xo)  <  X- 

])  The  monograph  Denjoy  46-54  chiefly  deals  with  this  number-class.  Kurepa  53 represents  its  members  (ordinals)  as  sets  of  rational  numbers. 
For  an  axiomatic  characterization  of  the  second  number-class  and  problems  con¬ 

nected  herewith  see  Church  27;  cf.  already  Veblen  05.  Kleene  36,  38,  44,  Church- 
Kleene  37,  Church  38,  Neumer  51  and  53-54,  Spector  55  are  some  of  the  papers 
dealing  with  the  intricate  problems  of  constructibility  in  the  second  number-class. 
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An  important  property  of  the  second  number-class  is  stated  by 

Theorem  13.  The  sequent  of  a  sequence  D  (D  =  co)  of  increasing 
ordinals  of  the  first  and  the  second  number-classes  belongs  to  the  second 
number-class. 

Proof  This  is  an  almost  immediate  consequence  of  Theorems  5  and  6. 

The  sum  o  =  ̂  bn  of  the  members  dn  of  D  (n  =  1,2,  . . .)  is  greater n 

than  each  Sn.  On  the  other  hand  (see  p.  145)  o  <  No  =  Ko  since  the  sum 

has  Nojerms  each  Gf  which  has  a  cardinal  <No;  but  a  is  transfinite, 
hence  o  —  No,  which  completes  the  proof. 

Theorem  13  shows  that  all  ordinals  constructed  above  in  3  belong  to 
Z(No);  among  them,  for  instance, 

cow  —  lim  con,  so  =  lim  (co,  ao<°,  . . .). 
n 

If  r  is  any  denumerable  ordinal  then  the  well-ordered  set  W(t)  (see 

Theorem  2)  has  the  ordinal  t;  hence  W( r)  is  denumerable.  On  the  other 

hand,  according  to  Theorem  7,  the  well-ordered  set  of  all  ordinals  of  the 

first  two  number-classes  is  W(coi)  where  coi  denotes  the  sequent  of  all 

denumerable  ordinals;  hence  coi  is  a  non-denumerable  ordinal.  Therefore 

oo i  is  the  aleph  that  immediately  succeeds  No  by  magnitude;  it  is  denoted 

by  Ni>  and  coi  is  its  initial  number.  The  cardinal  (aleph)  of  the  second 

number-class  Z(No)  is  Nil  for  by  Theorem  2,  W(coi)  =  coi,  hence 

V/(coi)  =  coi  =  Ni>  and  clearly  (cf.  Theorem  5  of  §  3)  ]V(aoi)  ~  Z(No). 

This  is  a  particular  case  of  a  general  statement  (Theorem  16,  below). 

Theorem  14.  Every  set  of  alephs  ordered  according  to  magnitude  is  well- 

ordered.  To  every  such  set  ( all  the  more  to  every  single  aleph )  there  exist 

greater  alephs,  in  particular  a  uniquely  determined  sequent  aleph. 

This  theorem  on  alephs  conforms  to  Theorems  4  and  6  in  2  which  state 

the  same  properties  for  ordinals.  The  term  “sequent”  has  the  same 
meaning  as  in  2. 

Proof.  The  first  statement  is  evident  since  the  alephs  may  be  replaced 

by  the  respective  initial  numbers,  whereby  we  obtain  a  well-ordered  set  of 

ordinals.  Let  A  be  any  set  of  alephs  ordered  by  magnitude  and  B  the 

set  which  contains  all  ordinals  belonging  to  an  aleph  of  A,  as  well  as  all 

smaller  ordinals.  B  is  a  set  of  ordinals  satisfying  the  condition  of  Theorem 

7  in  2;  if  /?  =  B  we  have  B  —  W(ji  ),  hence  /?  is  greater  than  all  ordinal 
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of  B  and  /?  is  an  aleph  exceeding  all  members  of  A.  Clearly  /?  is  even 

the  aleph-sequent *)  of  the  members  of  A,  for  the  initial  number  of  every 
aleph  less  than  /?  is  contained  in  B. 

Remarks.  First,  in  a  sense  similar  to  the  way  in  which  ordinals  were 

explicitly  defined  in  2,  viz.  as  certain  sets  which  ultimately  refer  to  the  null- 

set,  alephs  can  now  be  defined  as  initial  numbers,  in  view  of  the  one-to-one 

correspondence  between  an  aleph  c  and  the  initial  number  of  Z(c). 

According  to  the  well-ordering  theorem  (see  6)  this  yields  an  explicit 
definition  of  cardinals  in  general.  Thus  cardinals  can  be  introduced 

independently,  while  in  §  4,  5  they  were  introduced  only  as  “cardinals  of 

sets”  by  the  rather  involved  process  of  abstraction. 

We  have  not  used  Cantor’s  theorem  (2  of  §  5)  or  Theorem  7  of  §  6 
for  the  proof  of  Theorem  14  because  we  are  not  yet  able  to  demonstrate 
that  the  cardinals  resulting  from  those  theorems  are  indeed  alephs. 

Furthermore,  Theorem  14  enables  us  to  produce  the  series  of  alephs 
in  the  same  sense  as  the  series  of  ordinals  was  derived  from  Theorems  6 
and  7  in  3.  Beginning  with  the  least  aleph  we  thus  obtain  the  series 

No>  Xl>  •  •  ■>  •  •  •  Xco>  +  l!  •  •  • 

Each  aleph  is  denoted  by  the  letter  X  with  an  ordinal-index.  Ka  < 
corresponds  to  a  <  /?,  and  XT  (t  A  0)  is  the  least  aleph  that  exceeds  all 
XCT  with  a  <  r.  In  other  words,  the  index  a  of  Xa  is  the  ordinal  of  the 
(well-ordered)  set  of  all  initial  numbers  preceding  the  initial  number  of 

(This  may  be  taken  as  the  definition  of  the  indices  a,  whence  we 

infer  that  a<p  implies  <  #/>•)  The  initial  number  of  Xa  is  usually 
denoted  by  coa;  we  also  write  co0  for  co  (p.  216). 

Unfortunately,  the  analogy  to  the  series  of  ordinals  also  produces  the 
analogous  antinomy.  There  exists  no  set  that  contains  all  alephs  because 
otherwise  there  would  be  a  greater  aleph,  by  Theorem  14. 

Theorem  13  can  now  be  extended  to  the  form:  a  well-ordered  set  of  a  type  <  an, the  members  of  which  are  increasing  ordinals  <  an,  has  a  sequent  which  is  also 
<  <»i.  This  formulation  can  be  generalized  from  coi  to  any  initial  number  a>v  whose index  v  is  an  isolated  ordinal;  see  exercise  14)  at  the  end  of  this  section.  Yet  the  state¬ 
ment  does  not  generally  remain  true  for  limit-indices  v;  for  instance  not  for  a,^  In  fact 
hrn  con  (n  =  0,  1,2,  . . .)  is  not  less  than  but  equals  a)m.  Any  initial  number  for 

T  This  term  has  to  be  used  because  we  cannot  speak  of  “the  sequent”  of  plain cardinals  as  long  as  the  comparability  of  cardinals  has  not  been  proved  (which  will  be done  in  7). 
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which  it  holds  true  is  called  a  regular  (otherwise,  singular)  initial  number.  Besides  the 

cov  with  isolated  v,  also  coo  is  regular,  for  every  finite  sequence  of  increasing  finite 

ordinals  has  a  finite  sequent.  An  old  and  famous  problem  is  whether  there  exist  regular 

initial  numbers  with  a  limit-index,  which  are  also  called  inaccessible  ordinals',  for  these 
ordinals  and  the  corresponding  cardinals  see  Foundations,  pp.  87f.  (and  329ff.). 

The  arithmetic  of  alephs  is  far  simpler  than  the  arithmetic  of  plain 

cardinals.  The  reader  is  advised  to  consult  the  literature  given  at  the 

begining  of  4;  a  few  fundamental  equalities  only  are  proven  here. 

Theorem  15.  If  o  and  z  are  ordinals  with  a  <t  then 

(1) XCT  •  Xo  =  xa  •  XCT  =  X„, 

(2) 
XCT  +  XT  =  XCT  •  XT  =  Xti 

(3) 
2  =  no; 

$  <cr if  a  is  a  limit  number  then  we  can  replace  (3)  by  the  stronger 

(4)  2  Kt  =  K‘> 

f  <  O 

(5)  =  2“'. 

Proof  While  the  first  equality  (1)  is  almost  trivial  the  second  is  rather 

profound.  (2)  -  (5)  follow  easily  from  (1). 

According  to  the  Corollary  to  Theorem  10  we  may  write  the  initial 

number  of  in  the  form  toa  =  co  •  a.  By  transition  to  the  corresponding 
alephs  we  obtain 

XCT  =  No  •  a,  XV  •  Xo  =  Xo  '  a  =  No  *  a  =  XCT- 

Hence  also  for  every  finite  n  we  have  XCT  ‘  n  =  XCT- 

To  prove  *)  XCT2  =  Xo-  we  start  from  W(coa)  =  coa,  hence  W(coa)  =  XCT- 

Therefore  the  product  Xa  '  XCT>  i.e.  the  cardinal  of  a  corresponding 
Cartesian  product,  may  be  considered  to  be  the  cardinal  of  the  set  P  of 

all  ordered  pairs  (£,  Q  where  both  £  and  C  range  over  bV(coa).  We  shall 

prove  that  P  has  a  cardinal  <  XCT>  hence  the  cardinal  XCT. 

For  this  purpose  we  use  the  natural  sums  (see  the  end  of  4) 

S  (£,  0  =  2  ̂   ( Xn  +  20  ( xn ,  Zn  finite) n 

!)  First  proven  by  Hessenberg  06  (chapter  XX)  and  07.  Cf.  Lindenbaum-Tarski  26, 
pp.  308ff.  and  Zorn  44.  A  proof  by  transfinite  induction  is  given  in  Hausdorff  14,  pp. 
127f. 
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corresponding  to  the  members  £,  £  of  each  sum  arranged  accord¬ 

ing  to  decreasing  powers  of  co  and  therefore  containing  a  finite  number  of 

terms  only  with  xn  +  zn  ̂   0.  The  first  term  in  <3  (£,  £)  is  coK1(xi  +  21) 
where  at  least  one  of  the  finite  ordinals  xi,  z\  is  ̂   0;  hence 

6  (£,  0  <  ojK1  (xi  +  zi  +  1). 

Since  £  <  coa  and  £  <  coa  it  easily  follows  that  also  S  (£,  £)  <  coa. 

Hence  we  obtain  all  (£,  £)  e  P  by  taking  all  £  and  £  the  natural  sums  of 

which  assume  values  2  <  coa.  For  a  given  X  there  are  finitely  many 

solutions  of  the  equation  3  (£,  £)  =  X,  as  shown  at  the  end  of  4.  Since 

the  set  of  all  X  <  coa  has  the  cardinal  the  set  of  all  solutions  has  a 

cardinal  which  does  not  exceed  this  completes  the  proof 

of  Kct2  =  Therefore  for  every  finite  n. 
(2)  immediately  follows  from  (1)  in  view  of 

K  +  Kx  <  Kr  •  2  =  tfr,  •  N\  <  fc\2  =  S\. 
We  may  transform  (2)  into  a  inequality  as  follows.  If  X  <  /i  and  a  <  r, 

we  distinguish  between  2  <  cr  and  <x  <  2.  In  the  first  case  we  have  by  (2) 

=  fcsV  Na  •  =  K’ 

in  the  second 

Hence  in  either  case,  on  account  of  and 

(2a)  Na  +  NV  <  +  S%,  Ka  •  •  «t. 

In  (3)  the  terms  of  the  sum  form  a  well-ordered  set  of  the  type  a  +  1, 
hence  certainly  of  a  cardinal  since  the  terms,  too,  do  not  exceed 

the  sum  is  <  XCT2  =  Yet  it  is  also  >  because  itself  is  one  of 
the  terms.  For  the  same  reason  the  sum  in  (4)  is  <  that  it  equals  K 
follows  from  the  fact  that,  a  being  a  limit-number,  the  sum  exceeds  any 
aleph  that  is  less  than  In  particular  we  have 

(4a)  K0  +  «!+..•+  +  ...  =  SV 

To  prove  (5),  we  lean  on  Theorem  2  of  §  7  according  to  which 
2Nr  >  NT  >  NV 

Hence  by  (1),  and  by  (3)  of  §  7,  4 
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On  the  other  hand,  2  <  XCT  implies  2X*  <  Thus  the  proof  of 
Theorem  15  is  completed. 

To  be  sure,  (5)  is  not  an  equality  between  alephs  since  powers  of  alephs 
need  not  be  alephs  on  account  of  the  methods  developed  so  far.  This  is  in 

accordance  with  our  having  used  here,  save  for  the  aleph-relation  (1), 
only  results  of  the  arithmetic  of  cardinals  (§§  6  and  7). 

One  may  raise  the  question  whether  there  are  alephs  >  Xo  which  are 

neither  of  the  form  XCT  +  i  nor  of  the  form  cN*  with  a  finite  or  infinite  base 

c.  (Cf.  §  7,  6.)  The  answer  is  in  the  affirmative;  for  instance,  X^  is  such 

an  aleph.  First,  its  index  is  a  limit-number.  Secondly,  since  Xw  <  X*,, 
the  inequality  of  Konig  (§  6,  7)  yields  in  view  of  (4a) 

(4b)  X„  =  No  +  Ni  +  N2  +  •  •  •  <  N/°. 

Now  if  Xjo  =  cn't  were  true  then  we  would  infer  by  (1) 

N/o  =  c*  •  *>  =  c*  =  X* 

contrary  to  (4b),  which  proves  our  statement  about  X^-  Hence,  in  particular, 

X«,  IS  not  the  cardinal  X  =  2No  of  the  continuum. 
Finally  we  can  now  prove 

Theorem  16.  The  number-class  Z(Xcr),  ordered  according  to  the  magni¬ 

tude  of  its  ordinals ,  has  the  cardinal  (aleph)  Nff  +  i  and  the  type  (ordinal ) 

coa+ 1- 

Proof  Z(XCT)  contains  the  ordinals  a  which  satisfy  co0  <a  <  coa  +  x; 

hence  we  have,  in  the  sense  of  ordered  addition  of  ordered  sets, 

(6)  Wojj  +  Z(XCT)  -  W(coa  +  1). 

If  Z(XCT)  is  denoted  by  (6)  yields  by  Theorem  2 

(7)  coa  +  ̂   =  coa+1,  hence  X*  +  ?  =  Nff  +  i- 

This  shows  that  £,  <  XCT  +  i-  But  ̂   <  XCT  +  i  would  means  ̂   <  X*  which, 

in  view  of  (2)  of  Theorem  15,  contradicts  (7).  Therefore  we  have  £  =  XCT+i> 

hence  £  >  coa  +  v  Since  £  >  coa  +  1  is  excluded  by  (7),  the  proof  is 

completed. 

Theorem  16  comprises,  as  a  particular  case  ( o  =  0),  the  statement  of 

p.  2 1 7  regarding  the  cardinal  of  the  second  number-class  Z(Xo).  Analogous 

specializations  result  for  the  third  number-class  Z(Xi),  etc. 

q  Cf.  Kurepa  54. 
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6.  The  Well-Ordering  Theorem.  Notwithstanding  the  far-reaching 

results  of  the  theory  of  ordered  and  well-ordered  sets,  we  have  not  been 

able  to  solve  the  central  problem  of  comparability  formulated  in  §  5 :  is, 

of  two  given  different  cardinals ,  one  less  than  the  other?  For  alephs  the 

question  is  answered  in  the  affirmative  by  Theorem  12  above,  and  this  is 

why  the  arithmetic  of  the  (types  and)  cardinals  of  well-ordered  sets  is  so 

simple.  Because  the  ghost  of  incomparability  regarding  the  cardinals  of 

plain  sets  continued  alarming  them,  Cantor  and  his  successors  refrained 

from  endowing  these  cardinals  with  the  title  of  cardinal  numbers  and 

preferred  the  paler  term  “power”  ( Machtigkeif,  power  of  the  continuum, 

etc.)  while  reserving  “cardinal  number”  for  the  alephs. 
The  gap  separating  the  lucid  and  simple  domain  of  well-ordered  sets 

with  their  ordinals  and  cardinals  from  the  vaguer  one  of  other  sets  will 

be  bridged  if  every  set  can  be  shown  to  be  equivalent  to  a  well-ordered  set. 

This  would  mean  (see  below)  the 

Well-Ordering  Theorem.  For  any  (plain  or  ordered)  set  there  exists 

a  well-ordered  set  with  the  same  members.  In  short,  any  set  can  be  well- 
ordered. 

The  superiority  of  the  first  formulation  is  due  to  the  haziness  of  the 

term  “can”  in  the  second.  What  sets  exist  is  a  well-defined  question,  to  be 
answered  on  account  of  a  suitable  system  of  axioms  upon  which  set 

theory  is  based;  yet  “can  be  well-ordered”  is  open  to  subjective  inter¬ 
pretations.  On  the  other  hand,  by  no  means  does  the  theorem  maintain 

that  a  well-ordered  set  of  the  quality  desired  can  be  constructed,  a  differ¬ 
ence  overlooked  by  most  critics  of  the  well-ordering  theorem  during  many 
years  after  its  first  proof  in  1904;  see  below  and  Foundations,  pp.  54-59. 

The  well-ordering  theorem  may  as  well  be  expressed  by  saying  that, 
given  a  set  S,  there  exists  a  well-ordered  set  which  contains  all  members 

of  S.  For  then  the  set  which  contains  just  the  members  of  S'  is  a  subset  of 
a  well-ordered  set,  hence  also  well-ordered.  The  existence  of  a  well- 
ordered  set  equivalent  to  S  is  sufficient  too,  because  any  mapping  of  the 
latter  onto  S  yields  a  well-ordering  of  S. 

Cantor x)  had  called  the  well-ordering  statement  a  “fundamental 
logical  law  of  great  consequence,  noteworthy  for  its  universal  validity”; 
at  the  same  time  (1883)  he  promised  to  prove  it,  which  promise  has  never 

x)  Cantor  79-84V,  §  3.  For  the  history  of  the  theorem,  including  Jourdain’s  own (unsuccessful)  attempts  to  prove  it,  cf.  Jourdain  22. 
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been  fulfilled.  Also  when  at  the  Third  International  Congress  of  Mathe¬ 

maticians  (1904,  just  before  the  publication  of  Zermelo’s  proof)  an 

erroneous  application  of  Konig’s  inequality  (§  6,  7)  seemed  to  prove  the 
existence  of  sets  which  cannot  be  well-ordered,  Cantor  refused  to  abandon 

his  conviction.1)  The  first  proofs  (1904  and  1908)  of  the  theorem  by 
Zermelo  constituted  one  of  the  most  dramatic  (and  most  disputed) 

events  in  the  history  of  mathematics  and  logic. 

What  Cantor  had  in  mind  was  an  argument  of  the  following  type.  Take 

out  of  5  an  arbitrary  member  si  as  the  first,  of  the  remainder  S  —  {.si} 

any  member  S2  as  the  second,  etc.;  if  S  is  infinite,  then  an  arbitrary 

member  sw  of  S  —  (vi,  £2,  . . . ,  Sk,  . . . }  shall  be  placed  after  all  Sk. 
Continue  in  this  way  according  to  indices  gathered  from  the  series  of 

ordinals,  until  S  is  exhausted. 

Three  objections  may  be  raised  against  this  argument.  First,  against 

the  use  made  of  the  questionable  “series  of  ordinals”,  with  the  apparently 
groundless  assumption  that  the  ordinals  are  sufficient  to  exhaust  any  given 

set,  however  comprehensive  it  may  be.  Secondly,  against  the  arbitrary 

character  of  the  members  taken  out  of  S'  in  the  successive  steps  of  the 
above  procedure.  Finally,  against  the  infinity  of  choices  of  members  sv 

without  a  law  defining  them  simultaneously,  which  seems  to  ask  for  an 

infinite  amount  of  time. 

Of  these  objections,  the  first  is  serious  and  can  be  met  only  by  a  proof 

which  avoids  the  series  of  ordinals  and  ensures  that  the  given  set  will  be 

indeed  exhausted ;  such  a  proof  will  be  given  below.  The  second  difficulty 

is  nothing  new  for  us;  it  arose  several  times,  notably  in  the  first  proof  of 

Theorem  4  of  §  3,  in  the  proofs  of  Theorems  1,  2,  3  of  §  6,  etc.  The  answer 

in  all  those  cases  was  the  axiom  of  choice,  which  also  answers  the  present 

case  as  will  be  seen  below.  To  be  sure,  historically  this  answer  was 

produced  just  in  connection  with  the  well-ordering  theorem,  while  in 

other  cases  the  existence  of  a  problem  had  been  overlooked  altogether. 

The  third  objection  has  a  psychological  rather  than  a  logico-mathematical 

character.  In  principle,  mathematical  operations  should  be  imagined 

not  to  require  time ;  whenever  we  apply  a  procedure  which  is  not  arbitrary 

but  defined  by  a  given  law,  such  as  the  determination  of  the  successive 

digits  in  the  decimal  expansion  of  n,  the  result  of  infinitely  many  steps  is 

anticipated  without  scruples.  The  main  psychological  difficulty  here 

consists  in  that  every  successive  step  is  dependent  on  the  steps  taken 

2)  See  Schoenflies  22,  pp.  lOOff. 
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before;  this  “temporal”  uneasiness  is  also  removed  by  the  axiom  of  choice, 
which  transforms  infinitely  many  successive  arbitrary  steps  into  simul¬ 

taneous  ones,  while  hereby  increasing  their  multitude  far  beyond  the 
actual  need. 

We  shall  now  state  the  axiom  of  choice  in  the  form  suitable  for  the 

present  purpose  (cf.  §  6,  5) 1). 

Principle  of  Choice.  For  every  set  S  there  exists  a  “choice-function”/ 

—  at  least  one;  in  fact  many,  except  for  trivial  cases  —  which  assigns 
uniquely  to  each  non-empty  subset  So  of  S  a  member  of  So: /(So)  e  So. 
/  (So)  is  called  the  chosen  or  the  distinguished  member  of  So  ̂   S  (with 

respect  to  /). 

This  principle  is  not  comprised  in  the  “multiplicative”  form  introduced 
in  §  6  as  Axiom  VII,  since  different  subsets  of  S  need  not  be  disjoint. 
On  the  other  hand,  it  is  not  as  general  as  the  form  mentioned  on  p.  90 
after  Axiom  VII. 

If  S  is  a  finite  set  then  the  principle  can  be  proven  without  introducing  a 
new  axiom;  yet  S  can  anyhow  be  well-ordered  in  this  case  by  means  of 
mathematical  induction  alone. 

The  set  of  all  non-empty  subsets  of  S  has,  for  an  infinite  S  with  S  =  s, 

the  cardinal  2s  (§  7,  3).  This  multitude  of  choices  is  provided  by  our 
principle  whereas  actually  only  s  choices  are  required,  as  is  shown  by 
the  following  proof.  The  excessive  multitude  is  the  price  paid  for  simul¬ 
taneous  choices  instead  of  successive  ones. 

We  shall  rather  closely  follow  Zermelo’s  first  proof2).  The  well¬ 
ordering  of  S  obtained  by  the  (following,  or  any  other)  proof  essentially 
depends  on  the  arbitrary  choice-function  used.  There  is,  then,  in  general 

no  “standard”  well-ordering;  hence  the  well-ordering  theorem  is  useful 
only  for  such  conclusions  as  hold  true  for  any  well-ordering  of  the  given set. 

Proof  of  the  Well-Ordering  Theorem.  Let  be  given  a  set  .Sand  a  choice- 
function/.  In  accordance  with  Zermelo  we  start  with  a  special  tool defined  as  follows. 

B.  Levi,  E.  Schmidt,  and  E.  Zermelo  were  the  first  (1902-1904)  to  state  the 
axiom;  Schmidt  and  Zermelo  for  the  very  purpose  treated  here.  For  its  history  and  for 
the  derivation  of  this  and  more  general  forms  from  the  multiplicative  form  (Russell 1906),  see  Foundations,  chapter  II,  §§  4,  7,  8. 

2)  Zermelo  04.  For  his  second  proof  of  190&  see  subsection  7.  Cf.  Tarski  39,  also Banaschewski  53.  Bernays  gave  a  comparative  analysis  of  these  and  other  proofs including  his  own;  cf.  Foundations,  p.  117,  and  Bernays-Fraenkel  58. 
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A  subset  r  of  5  is  called  a  gamma-set  (of  S,  with  respect  to/)  if 
a)  r  is  well-ordered, 

b)  for  every  section  A  of  A  determined  by  a  e  r,  f(S  —  A)  =  a. 

(S  —  A  is  the  plain  set-difference;  it  cannot  be  empty,  even  if  S, 
since  A  is  a  section  of  A) 

The  condition  b)  shall  be  illustrated  by  a  few  examples.  The  case 

r  =  O  in  which  both  conditions  are  satisfied  vacuously  is  insignifiant. 
If  c0  =f(S)  is  the  distinguished  member  of  5  itself,  (c0)  is  a  gamma-set; 
for  the  null-set  O  is  the  only  section  of  (co),  determined  by  co,  and  in  fact 

f(S  —  0)  =  c0.  In  the  same  way,  denoting  / (S  —  {c0}) x)  by  ci,  we 
obtain  the  gamma-set  (c0,  ci);  it  is  well-ordered  and  satisfies  the  two 

conditions  f  (S  —  O)  =  Co  and  f (S  —  {co})  =  ci,  in  accordance  with 
(c0)  being  the  section  of  (co,  ci)  determined  by  ci.  Thus  we  perceive  that  co 
is  the  first  and  ci  the  second  member  of  any  gamma-set.  In  addition 

to  all  finite  gamma-sets  (c0,  c i,  . . . ,  cn  -  i)  where,  for  each  k,  ck  = 

f(S—  (co,  ci,  . .  .,ck- 1}),  we  obtain  the  enumerated  gamma-set  (co,  ci, . . . , 

cn,  . . .)  =  rm;  if  rw  <=  S,  we  denote  f(S  —  AJ  by  cw  and  obtain 

rm  + 1  =  (c0,  c1?  ...  cj.  Every  infinite  gamma-set,  then,  has  the  initial 

As  shown  by  these  examples,  the  condition  b)  means  that  any  given 

gamma-set  A  which  does  not  exhaust  S,  is  enlarged  to  the  “sequent” 

(next  greater)  gamma-set  by  including,  after  the  members  of  A,  the 

distinguished  member  of  S  —  T,  which  determines  the  section  A  in  the 

new  gamma-set.  If  S  were  already  well-ordered  —  which  is  our  intention 

to  achieve  —  we  should  consider  S  —  r  to  be  a  remainder  of  S,  the 
distinguished  member  of  which  is  just  its  first  member. 

We  now  enter  the  proof,  splitting  it  up  into  four  steps. 

I.  Of  two  different  gamma-sets,  one  is  a  section  of  the  other. 

Proof.  By  the  comparability  of  well-ordered  sets  (Theorem  8  of  §  10) 

the  gamma-sets  A  and  A  are  either  similar  or  one,  say  A,  is  similar  to  a 

section  A'  of  the  other  A-  We  write  A  —  A',  including  the  case  A'  =  A- 

Transfinite  induction  will  show  that  not  only  A  —  A'  but  even  A  =  A'- 

The  first  member  of  both  A  and  A'  is  cq  —  f  ( S ),  as  we  saw  above. 

If  A  /  A'  then  let  ci*  be  the  first  member  of  A  which  (by  the  mapping 

of  A  onto  A',  see  Theorem  13  of  §  10)  differs  from  its  image  C2*  in  A'. 

T  The  different  notations  (co)  and  {co}  correspond  to  our  considering,  in  the  first 

case,  the  (well-)ordered  set,  in  the  second  the  plain  set.  The  same  refers  to  the  following 
instances. 
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Then  the  sections  C 1  of  A  determined  by  ci*  and  C2  of  A'  determined 

by  C2*  coincide;  hence  by  condition  b) 

ci*  =f(S  -  Ci)  =f(S  -  C2)  =  c2* 

contrary  to  the  assumption  A  A  A'.  Therefore  A  =  A\  i.e.  either 
A  *  A  or  A  is  a  section  of  A. 

The  identical  beginning  of  any  two  gamma-sets  thus  proves  to  continue 

until  one  of  them,  at  least,  is  exhausted.  Hence  two  gamma-sets  with  the 

common  member  c  also  share  the  sections  determined  by  c;  moreover,  if  Ci 

and  C2  are  common  to  both  then  in  both  sets  either  c\  -<  C2  or  C2  «<  ci. 

II.  The  totality  of  the  members  of  all  gamma-sets  of  S  can  be  ordered 

in  such  a  way  that  the  order-relations  existing  in  the  single  gamma-sets 

are  retained,  and  this  ordered  set  is  even  well-ordered. 

Proof  We  start  with  the  union  of  all  gamma-sets;  this  union  can  be 

shown  to  exist  on  account  of  the  axioms  of  power-set,  of  subsets,  and  of 

sum-set  on  the  one  hand,  of  the  reduction  of  (well-)  order  to  membership 
(§  8,  2)  on  the  other.  An  order  shall  be  defined  in  the  union  as  follows. 

If  si  and  S2  are  different  members  of  the  union  belonging  to  A  and  A 

respectively  then,  if  AAA,  one  is  a  section  of  the  other  according  to  I, 

say  A  a  section  of  A.  Hence  A  contains  both  51  and  S2  and  we  define 

^1  -<  52  in  the  union  if  this  is  their  succession  in  A.  This  definition  is 

arbitrary,  but  that  does  not  matter  because  in  every  other  gamma-set 

containing  si  and  52  we  also  have  si  <  52,  according  to  the  end  of  I. 

Moreover,  the  order  defined  is  transitive  since  the  same  applies  to  every 

gamma-set.  Thus  we  have  uniquely  defined  an  ordered  set,  to  be  denoted 
by  2- 

To  show  that  2  is  well-ordered  let  2o  be  any  non-empty  subset  of  2> 
50  an  arbitrary  member  of  ]>0,  and  r  a  gamma-set  that  contains  50. 

Then  every  member  of  2o  which  precedes  50  is  also  a  member  of  r  and 

precedes  50  in  A  on  account  of  the  order  defined  in  2  and  of  the  end  of  I. 
Hence,  if  50  is  not  the  first  member  of  2o  (in  which  case  nothing  remains 
to  be  proven),  the  section  of  2o  determined  by  50  is  a  non-empty  subset 
of  r  and  therefore  has  a  first  member;  this  shows  that  2  is  well-ordered. 

III.  2  ls  a  gamma-set. 

According  to  II,  2  satisfies  the  condition  a).  As  to  b),  let  a  be  any 
member  of  2  and  A  the  section  of  2  determined  by  a.  According  to  the 

definition  of  2>  a  belongs  to  a  gamma-set  A  and  since  all  members  of  2 
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which  precede  a  belong  to  r  (cf.  the  end  of  II),  A  is  also  the  section  of  r 

determined  by  a.  r  satisfies  the  condition  b),  i.e.  a  =f(S  —  A);  but  this 

expresses  that  T ,  too,  satisfies  the  property  b),  for  a  was  supposed  to  be 

an  arbitrary  member  of  V. 

2,  being  a  gamma-set  and  containing,  by  its  definition  in  II,  the  mem¬ 

bers  of  all  gamma-sets  of  S,  is  the  maximal  (most  comprehensive)  gamma- 

set  of  S  (with  respect  to  the  choice-function  /). 

Evidently  the  proof  of  III  (and  of  the  last  part  of  II)  rests  upon  the 

possibility  of  identifying  ]>,  as  far  as  desirable,  with  a  suitable  gamma-set, 

which  transmits  its  properties  to  ]> . 

IV.  ̂   contains  all  members  of  S. 

This  property  of  which  derives  from  its  being  the  maximal  gamma- 

set,  shall  be  proven  indirectly.  If  there  existed  members  of  S  not  belonging 

to  S  ~  2  were  non-empty;  we  write / (S  —  T)  =  z,  which  involves 

that  z  is  not  a  member  of  Then  the  ordered  sum  -f  (z)  is  not  only 

well-ordered  but  also  a  gamma-set;  the  property  b)  was  proven  in  III 

for  its  sections  determined  by  the  members  of  ]>,  and  is  also  satisfied  for 

the  section  determined  by  z,  for  in  this  case  b)  demands  z  —f(S  —  2) 

which  was  the  very  definition  of  z.  Thus  2  +  (-)  would  be  a  gamma-set 

more  comprehensive  than  ]>,  contrary  to  III. 

In  view  of  the  property  a),  ̂   a  well-ordered  set  which  contains  all 

members  of  S ;  incidentally,  just  these  members  since  every  gamma-set 

of  V  is  a  subset  of  S.  Hereby  the  proof  of  the  well-ordering  theorem  has 

been  completed. 

7.  The  Comparability  of  Plain  Sets  and  Cardinals.  The  most  important 

immediate  application  of  the  well-ordering  theorem  relates  to  the  problem 

of  comparability  which  has  continued  engaging  us  since  §  5,  so  far  without 

much  success.  Given  two  plain  or  ordered  sets  5  and  T,  we  now  know 

that  there  exist  well-ordered  sets  which  respectively  contain  the  same 

members  as  S  and  T.  (In  point  of  fact,  we  only  use  that  they  are  equivalent 

to  S  and  T.)  Since  by  Theorem  12  these  well-ordered  sets  are  comparable 

regarding  their  cardinals,  the  same  applies  to  S  and  T ;  in  other  words, 

at  least  one  of  the  sets  S'  and  T  is  equivalent  to  a  subset  of  the  other. 
Hereby  the  fourth  case  with  respect  to  the  equivalence  relations  between 

sets  (§  5,  4)  is  finally  eliminated. 

Comparability  Theorem.  Of  any  two  sets,  one  at  least  is  equivalent  to  a 
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subset  of  the  other.  Hence  two  cardinals  are  either  equal  or  one  is  less  than 
the  other. 

Accordingly,  the  distinction  between  “cardinal  numbers”,  “powers”  of 

sets,  and  “alephs”  (pp.  68  and  215)  becomes  unnecessary.  Still  “aleph” 
is  frequently  used  whenever  the  respective  set  shall  be  stressed  to  be  well- 
ordered. 

We  have  derived  well-ordering  from  the  axiom  of  choice,  and  com¬ 

parability  from  well-ordering.  A  direct  proof  of  comparability  based 
upon  the  axiom  of  choice  is  given  later  in  this  subsection.  However,  these 

are  not  one-way  tracks;  the  inverse  direction  can  be  taken  as  well. 

The  axiom  of  choice,  the  well-ordering  theorem,  and  the  comparability 

theorem  are  equipollent  principles',  one  of  them  having  been  admitted, 
the  two  others  can  be  derived  from  it  by  means  of  Axioms  I-VI  (or  part  of 
them). 

For  the  former  two  principles  this  is  evident.  For  if  the  well-ordering 

theorem  is  granted  and  if  S'  is  a  set  of  non-empty  sets,  then  any  well¬ 
ordering  of  the  union  U  S  simultaneously  well-orders  all  members  of  S; 
hence  a  function  assigning  to  each  s  e  S  uniquely  a  member  of  5  is 
produced  by  choosing  the  first  member  of  each  s  in  view  of  the  well¬ 
ordering  of  U  S. 

Furthermore,  a  proof  of  the  well-ordering  theorem  by  means  of 
comparability,  without  using  the  axiom  of  choice,  has  been  given  by 
Hartogs.1) 

The  comparability  theorem  has  various  consequences  for  the  arith¬ 
metic  of  cardinals.  On  the  one  hand,  many  problems  which  are  difficult 
or  unsolvable  by  limitation  to  the  methods  of  §§  5—7  become  simple  or 
even  trivial  in  the  light  of  the  arithmetic  of  alephs  (above,  subsection  5). 
On  the  other  hand,  the  continuum  problem  (§  5,  2;  §  7,  3)  now  becomes 
central  and  urgent;  according  to  comparability,  the  cardinal  X  =  2Xo  of 
the  continuum  must  appear  in  the  series  of  alephs  (see  5)  and  the  question 
arises,  where?  In  the  first  place,  since  2Xo  >  we  shall  ask  whether 

2Xo  =  Xi  or  >  Xi-2)  (Without  the  well-ordering  theorem  it  would  be 

J)  Hartogs  1 5 ;  cf.  Foundations,  pp.  58f.  For  proofs  of  the  well-ordering  theorem  by means  of  maximum  principles,  such  as  the  principle  of  Zorn,  see  Foundations,  pp.  68-70  • 
these  principles  can  be  traced  back  to  Hausdorff  14,  pp.  140ff. 

2)  N  >  Ki  can,  according  to  Sierpihski  46/47a  (where  an  argument  of  Tarski  is used),  be  proved  without  the  axiom  of  choice  or  the  two  other  principles  —  by  means 
of  the  following,  seemingly  evident  assumption:  the  image  of  a  set  S  obtained  by  a unique  mapping  cannot  have  a  greater  cardinal  than  S. 
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conceivable  that  2Xo  were  incomparable  with  the  alephs.)  While  this  is  the 
particular  continuum  problem  of  Cantor,  the  generalized  continuum 

problem,  
according  

to  §  7,  3,  may  be  

formulated * 2 3  

4)  as  follows:  is,  for  a 

given  ordinal  a,  2N«  =  S'a  +  i  or  >  tfa  +  x?  A  solution  of  the  continuum 
problem  would  have  a  fundamental  significance  for  the  foundations  of 

mathematics  in  general.  The  hypotheses  2No  =  tfi  and  2N“  =  S‘a  +  1  respec¬ 

tively  are  called  Cantor’s  2)  and  the  generalized  continuum  hypothesis .3) 
The  continuum  problem  has  not  been  solved  so  far  4).  A  possible  solution 

might  be  contained  in  a  proof  of  the  independence  of  the  hypothesis, 

which  would  show  that  both  2X«  =  +  i  and  2X“  >  + 1  are  compatible 
with  the  axioms  of  set  theory,  thus  producing  two  different  types  of  set 

theory  (and  mathematics).  This  would  be  somewhat  analogous  to  the 

position  of  the  axiom  of  parallels,  whose  affirmation  or  negation  together 

with  other  axioms  of  geometry  produces  Euclidean  or  non-Euclidean 

(hyperbolic)  geometries. 

An  important  progress  towards  the  solution  of  the  problem  was  made 

by  Godel’s  proofs  of  1938-40  which  show  that  the  generalized  continuum 
hypothesis,  as  well  as  the  axiom  of  choice,  is  compatible  with  suitable 

axiom  systems  of  set  theory;  hence  the  hypothesis  cannot  be  refuted.5) 

Whereas  the  chief  purpose  has  not  been  attained,  since  early  in  this 

century  a  great  number  of  interesting  results  were  proven  connecting 

the  continuum  hypothesis  with  other  unsolved  mathematical  problems  6), 

in  particular  statements  equipollent  to  the  hypothesis  in  its  particular 

or  generalized  form.  Most  of  these  results  are  due  to  Polish  mathemat¬ 

icians,  
led  by  Sierpinski  

who  
in  a  monograph  

7 8)  

systematically  

exhibited 

4)  For  other  formulations,  which  are  far  from  being  equipollent,  see  Foundations, 

p.  72. 

2)  An  (implicit)  extension  of  this  original  hypothesis,  namely  to  2^‘i  =  X2,  is 

contained  in  Cantor’s  note  10)  to  his  paper  1879-84V  of  1883. 

3)  The  conjecture  2Xl  =  2Xo  is  called  Lusirfs  continuum  hypothesis;  see  Lusin  35, 

pp.  129-131. 

4)  Besides  Bernstein  38,  Eyraud  47  (cf.  Neumer  53),  and  others,  also  the  profound 
metamathematical  attempt  in  Hilbert  25  was  unsuccessful  though  it  has  proved  quite 

stimulating.  (Hibert’s  aim,  as  later  Godel’s,  is  to  prove  the  compatibility  rather  than  the 
truth  of  the  continuum  hypothesis.)  Baer  29  (§  5)  points  out  that  the  continuum  hypo¬ 
thesis  cannot  be  deduced  from  the  formal  laws  of  cardinal  arithmetic. 

5)  See  Godel  40,  cf.  47.  Cf.  the  brief  exposition  in  Foundations,  pp.  92-94  and  121. 

8)  Surprisingly  also  problems  of  algebra;  see,  for  instance,  Baer  30. 

7)  Sierpinski  34/56;  in  the  edition  of  1956  more  than  a  dozen  subsequent  papers  of 

Sierpinski’s  on  the  same  subject  are  added.  For  results  of  other  authors  up  to  1954  cf. 
the  survey  in  H.  Bachmann  55,  particularly  §§  35-37.  Of  later  papers  we  mention 

Bruns-Schmidt  55,  Popruzenko  55,  Kapuano  56,  de  Vries  57,  Bagemihl  59;  also 
Tsuchikura  49. 
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the  results  obtained  up  to  1934.  The  problems  in  the  arithmetic  of 

cardinals  which  still  remain  open  after  comparability  is  ensured,  can 

for  the  most  part  be  easily  solved  by  means  of  the  continuum  hypo¬ 

thesis;  the  same  applies  to  some  other  open  problems  of  abstract  set 

theory  x)  and  even  of  the  theory  of  sets  of  points. 

The  proof  of  the  comparability  theorem  given  above,  in  spite  of  its 

being  rigorous,  suffers  from  a  serious  drawback.  While  it  is  a  fundamental 

theorem  of  the  arithmetic  of  cardinals,  easy  to  formulate  and  to  com¬ 

prehend,  it  is  proven  not  within  the  theory  of  cardinals  and  plain  sets 

but  by  means  of  the  concept  of  order  and  ordered  sets,  namely  on  the 

basis  of  the  comparability  of  well-ordered  sets  and  of  the  well-ordering 
theorem. 

True,  there  are  mathematical  theorems,  also  in  basic  branches  such  as 

theory  of  number  or  projective  geometry,  which  cannot  be  proven  within 

the  bounds  of  their  proper  domain.  The  incompletability  theorem  of 

Godel  (cf.  Foundations,  pp.  303ff.)  states  this  to  be  a  somewhat  general 

situation.  However,  the  comparability  theorem  is  not  of  this  kind;  in 

principle  this  may  be  inferred  from  the  fact  that  (well-)ordering  can  be 

reduced  to  the  membership  relation  (§  8,  2).  Therefore  the  detour  via 

theory  of  order  made  above  is  not  agreeable  from  the  logical  or  psycholog¬ 
ical  viewpoint. 

In  fact  we  shall  now  give  a  proof  of  the  comparability  theorem  which 
uses  the  axiom  of  choice  but  not  the  concept  of  order,  let  alone  well¬ 

ordering  and  the  comparability  of  well-ordered  sets.  (Those  readers  who 

have  well  grasped  the  gist  of  reducing  order  to  membership  will  perceive 
that  the  proof  almost  grazes  the  order  concept.)  The  proof  has  two 

side  advantages:  it  contains  the  chief  arguments  of  Zermelo’s  second 
proof  of  the  well-ordering  theorem,  which  has  an  abstract  logical  charac¬ 
ter  and  uses  nothing  from  the  theory  of  well-ordered  sets  and  ordinals; 
instead  the  proof  leans  on  the  fundamental  concepts  of  the  theory  of 

chains  

originating  

from  

Dedekind *  

2). 

In  a  shorter  way  the  comparability  theorem  can  be  derived,  without  the  axiom  of 
choice,  from  a  maximum  principle  such  as  Zorn’s  (see  p.  228)  3);  implicitly  a  maximum 
statement  lies  at  the  bottom  of  the  following  proof  (cf.  the  part  “Ad  2)”).  However,  in 

x)  Cf.,  in  particular,  Tarski  30a. 

2)  Dedekind  1888;  cf.  (also  for  the  connection  with  well-ordering)  Hessenberg  09. 
For  Zermelo’s  second  proof  see  Zermelo  08  and  Hausdorff  14,  pp.  136-138. 
3)  See  Zorn  44;  cf.  the  penetrating  analysis  in  J.  Schmidt  57. 
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the  present  elementary  exposition  of  abstract  set  theory  the  introduction  of  a  maximum 
principle  seems  out  of  place.  Therefore  the  proof,  first  published  1)  long  before  max¬ 
imum  principles  had  been  used,  is  given  in  its  original  shape. 

Direct  Proof  of  Comparability.  To  prove  that  the  plain  (non-empty) 
sets  S  and  T  are  comparable  we  show  that  at  least  one  of  them  is 

equivalent  to  a  subset  of  the  other. 

Any  mapping  q>  of  a  subset  S'  £  S  onto  a  subset  T'  ̂   T  shall  be 

called  a  partial  mapping  between  S  and  T;  we  write  T'  =  y>(S').  Between 
every  two  non-empty  sets  S,  T  there  exist  partial  mappings,  for  instance 
those  which  relate  a  single  member  of  T  to  a  single  member  of  S. 

If  T’  —  <p(S')  and  T"  =  i //(S")  are  different  partial  mappings  between  S 

and  T,  then  y/  is  said  to  be  an  extension  of  (p  if  S’  <=■  S"  and  if  cp  and  y/ 

yield  the  same  images  in  T  for  their  common  domain  S';  hence  also 

T'  <=  T".  That  y/  is  an  extension  of  (p  shall  be  expressed  by 

ys  =>  cp,  or  by  (p  <=  y/. 

If,  in  particular,  y/  =>  cp  and  S"  —  S '  is  a  unit-set,  then  we  call  y/  a  simple 
extension  of  <p.  Any  partial  mapping  for  which  an  extension  exists  is 
called  extensible. 

A  set  M  of  partial  mappings  between  S  and  T  is  called  monotone  if, 

of  any  two  different  members  of  M,  one  is  an  extension  of  the  other. 

Hence,  if  M  is  monotone  and  y>  1  e  M,  y>2  e  M,  then  one  and  only  one  of 

the  following  statements  holds  true: 

(pi  =>  (p2, ,  (p2.  =>  (pi,  (pi  =  (pi. 

Since  the  relation  <=  is  transitive  we  have  a  natural  order  from  less  to 

more  comprehensive  partial  mappings  in  a  monotone  set 2).  (Cf.  the  use 

of  monotone  sets  of  subsets  of  A  for  introducing  an  order  in  A,  as  ex¬ 

plained  in  Foundations,  pp.  128flf.) 

A  member  (mapping)  (p  of  a  set  <P  of  partial  mappings  is  said  to  be 

comparable  in  0  if,  for  every  other  y/  e  0,  either  (p  y/  or  y/  =>  cp. 

Hence  0  is  monotone  if  and  only  if  every  member  of  0  is  comparable  in 
0. 

Finally,  if  0  is  a  monotone  set  of  partial  mappings  between  S  and  T, 

x)  In  Fraenkel  28,  pp.  206-208. 

2 )  The  monotone  sets  of  partial  mappings  are  particular  cases  of  a  more  general 
type  of  sets,  namely  of  the  sets  P  of  partial  mappings  which  satisfy  the  following 
condition :  any  member  of  S  which  is  disposed  of  in  several  partial  mappings  has  the 

same  image  in  T  on  account  of  each  mapping  of  XF. 
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the  resultant  of  <t>  shall  be  the  partial  mapping  that  relates,  to  each  s  e  S 

disposed  of  in  at  least  one  member  of  <P,  the  respective  image  in  T, 

i.e.  the  t  e  T  which  is  related  to  s  e  S  in  all  members  of  0  referring  to  5. 

After  these  preparations  we  start  the  proof.  If  T'  =  (p(S ')  is  a  partial 

mapping  for  which  S'  c=  s  and  T '  <=  T,  then  cp  clearly  has  simple  ex¬ 

tensions;  they  are  obtained  by  relating  an  arbitrary  member  of  T  —  T’ 

to  an  arbitrary  member  of  S  —  S'.  Hence  it  will  be  sufficient  to  prove  that 
among  the  partial  mappings  between  S  and  T  there  is  at  least  one  which  does 

not  admit  of  a  simple  extension.  For  if  T’  =  (p(S')  is  such  a  mapping,  we 

have  either  S'  =  5  or  T'  =  T,  i.e.  (p  maps  at  least  one  of  the  given  sets 
onto  a  subset  of  the  other. 

To  prove  this  statement  we  start,  analogically  as  in  the  proof  of  the 

well-ordering  theorem  in  6,  with  an  arbitrary  choice  of  “ distinguished ” 
partial  mappings  by  choosing,  for  any  extensible  partial  mapping  <p 

between  S  and  T,  a  uniquely  determined  “distinguished”  simple  extension 
<p+  of  <p.  This  choice  remains  fixed  throughout  the  proof.  We  call  cp+ 
the  sequent  of  (p. 

A  set  0  of  partial  mappings  is  called  a  chain  if  0  satisfies  the  following 
three  conditions: 

1)  0  contains  a  fixed  partial  mapping  <p0.  (The  simplest  way  is  taking 
<po  as  the  empty  mapping  ofO  c  5  onto  O  c  T.) 

2)  If  cp  e  0  is  extensible  then  cp+  e  0. 

3)  If  0O  is  a  monotone  subset  of  0  then  the  resultant  of  0O  is  a 
member  of  0. 

Similarly  as  in  the  expression  of  the  axiom  of  infinity  by  two  conditions 
a)  and  b)  (see  the  end  of  §  2),  our  definition  of  chain  does  not  exclude  that 

0  contains  also  other  mappings,  in  addition  to  those  required  by  l)-3). 

Such  “superfluous”  mappings  will  presently  be  eliminated. 
From  the  definition  of  chain  it  follows  that  the  intersection  of  different 

chains  is  also  a  chain.  Hence,  cpo  and  (p+  having  been  fixed,  a  uniquely 
determined  least  chain  exists,  namely  the  intersection  C  of  all  chains 
(referring  to  the  sets  S  and  T).  We  are  going  to  prove  that  C  is  a  monotone 

set-,  for  this  purpose  it  suffices  to  show  that  the  set  of  all  members  of  C 
which  are  comparable  in  C  is  a  chain.  Regarding  the  conditions  l)-3), we  obtain: 

Ad  1)  Every  (p  e  C  is  =  (p0  or  =>  <p0  (in  short  2  (po).  This  is  self-evident 

if  the  empty  mapping  is  taken  for  cpo  (see  1)  above),  for  every  non-empty 
partial  mapping  is  an  extension  of  the  empty  one.  It  is  also  true  if  any 
other  mapping  is  chosen  for  (po.  For  if  there  existed  members  of  C  which  are 
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not  extensions  of  then  they  could  be  dropped  from  C  without  altering 
the  fact  that  C  is  a  chain,  and  this  would  yield  a  chain  which  is  a  proper 
subset  of  C,  conti  ary  to  the  definition  of  C.  Hence  (po  is  comparable  in  C. 

Ad  2)  If  (p  e  C  is  an  extensible  mapping  and  comparable  in  C  then 

atso  <p+  is  comparable  in  C.  (That  cp+ e  C  follows  from  the  chain-proper¬ ty  2).) 

To  prove  this  we  show  that  the  subset  Cc  Cof  those  y/  e  C  which  for 
the  given^p  satisfy  either  cp  =>  yy  or  y/  2  cp+,  is  a  chain ;  from  this  we 
conclude  C  =  C  since  C  is  the  least  chain.  That  C  satisfies  the  conditons  1) 
and  3)  is  evident.  As  to  2),  we  distinguish  between  the  cases  <p  y/  and 
V  -  <P-  In  the  first  case  (in  which  y/  certainly  is  extensible)  we  have 
V  —  V+,  for  otherwise,  by  the  comparability  of  (p  in  C,  we  should  have 
yy+  ̂   <p  which  is  incompatible  with  cp  ̂   y/.  Secondly,  y/  2  cp  implies 
y/+  =>  <p,  provided  y/  is  extensible. 
Ad  3)  Let  C0  be  a  monotone  subset  of  C  each  of  whose  members  is 

comparable  in  C.  Then  the  resultant  x  of  Co,  which  is  a  member  of  C 
according  to  the  chain-property  3),  is  comparable  in  C. 

To  prove  this  we  distinguish  between  those  <p  e  C  which  are  extensions 
of  each  member  of  C0,  and  the  others,  i.e.  those  q>  e  C  which  either 

belong  to  C0  or  have  extensions  belonging  to  C0.  The  <p’s  of  the  first  kind, 
save  possibly  for  x  itself,  are  extensions  of  x,  whereas  for  the  (p’s  of  the 
second  kind  we  have  x  —  <P- 

According  to  these  three  results,  the  members  of  C  which  are  com¬ 

parable  in  C  form  a  chain  which,  since  C  is  the  least  chain,  must  equal  C. 
Hence  each  member  of  C  is  comparable  in  C,  i.e.  the  intersection  C  is  a 

monotone_set  as  we  proposed  to  prove.  By  the  chain-property  3)  the 
resultant  (p  of  C  is  a  member  of  C.  But  this  mapping  <p  is  not  extensible, 

for  otherwise  its  sequent  <p+  would  also  belong  to  C,  contrary  to  the 
definition  of  cp  as  the  resultant  of  C. 

<P,  not  being  extensible,  relates  to  each  member  of  S  or  of  T  an  image  in 
the  other  set;  hence  at  least  one  of  these  sets  is  equivalent  to  a  subset  of 
the  other,  which  completes  the  proof  of  the  comparability  theorem. 

Let  us  finally  remark  that  this  proof,  like  the  proof  of  the  well-ordering 
theorem  given  in  6,  only  requires  our  axioms  (I-VI,  in  addition  to  the 
axiom  of  choice).  In  particular,  the  intersection  C  of  all  chains  exists  on 
account  of  I-VI. 

Exercises  (most  of  them  rather  difficult) 

1)  Prove  that  the  type  of  any  ordered  set  can  be  changed  by  adding  a 
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single  member.  (Hint:  consider  the  maximal  well-ordered  initial  of  the 
set.1)) 

2)  Prove  that  an  order-type  r  is  finite  if  and  only  if  t  satisfies  the 

following  condition:  however  the  position  of  a  single  member  in  a  set  of 

the  type  r  is  changed,  there  always  re-emerges  the  type  r. 

3)  A  set  2  °f  ordinals  shall  be  called  closed  if,  for  every  subset 

2o  £  2  which  has  no  maximum,  the  least  ordinal  which  is  greater  than 

every  ordinal  of  2o  belongs  to  2-  Prove  that  the  set  of  all  left-hand 

divisors  of  any  given  ordinal  is  closed.2)  (For  the  set  of  all  right-hand 

divisors  the  property  is  trivial  because  this  set  is  finite.) 

4)  For  any  infinite  set  2  of  ordinals  (or  any  infinite  well-ordered  set) 

there  exists  a  set  T  whose  members  are  triads  of  2  3)  such  that  every  pair 
of  members  of  2  is  a  subset  of  a  single  triad.  Prove  this  theorem  by 

contemplating  nine  different  cases.4) 

5)  Complete  the  proof  of  the  formal  law  (2)  on  p.  206. 

6)  Prove  the  equalities  (3)  on  p.  207  by  means  of  Theorem  8. 

7)  Prove,  on  account  of  Definition  III  in  3,  the  following  theorem 

which  is  analogous  to  a  well-known  theorem  on  real  functions:  the  power 

Pio)  =  oa  is  the  only  continuous  (p.  205/6)  function  of  the  ordinal  a  with 
p{\)  =  o  that  satisfies  the  functional  equation 

p(ai)  •  p(a2)  =  p(ai  +  a2). 

On  the  other  hand,  oa  is  not  a  continuous  function  of  its  basis  o\  for 
instance,  if  k  is  finite  and  >  1,  lim  nk  =  co  A  cok  for  lim  n  =  &>. 

8

)

 

 

Let  o  >  1  and  ai  <  a2 ;  prove  the  inequalities 

«iCT  <  a2CT,  crai  <  oa\ 

-  9)  Generalize  the  equality  J(Xo)  =  2X°  (see  Theorem  5  in  §  8,  6)  to  any 

aleph,  i.e.  prove  T(Na)  =  2X«.  (By  assuming  the  generalized  continuum 
hypothesis  one  hence  obtains  T(XjT=  K  +  i>  that  is  to  say,  the  set  of 
all  types  of  the  cardinal  is  equivalent  to  its  subset  which  contains  all 
ordinals  of  the  cardinal  ̂ a.) 

4)  See  Chajoth  30. 

2)  See  Sierpinski  29. 

3)  That  is  to  say,  subsets  of  27  with  three  members  each. 
4)  See  Sierpinski  46.  This  theorem  is  a  generalization  to  infinity  of  a  finite  com¬ binatorial  problem  treated  by  J.  Steiner  in  1853. 
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10)  From  the  first  equality  of  Theorem  15  we  at  once  obtain  the 

cancellation  law  for  alephs 

m  <  m  implies  <  S%,  in  particular  m  =  m  XT  implies  =  XT, 

where  m  is  a  finite  cardinal  /  0.  On  account  of  the  well-ordering  theorem 

one  may  here  replace  and  respectively  by  any  cardinals  s  and  t. 
But  it  is  remarkable  that  the  cancellation  law  for  cardinals 

ms  <mt  implies  s  <t 

can,  with  considerable  ingenuity,  be  proved  without  the  axiom  of  choice, 

as  shown  by  Tarski.1) 

11)  Prove  Xa2  =  Xa  by  means  of  transfinite  induction,  instead  of 
using  natural  sums  as  in  5. 

12)  Generalize  the  inequality  2Xo  /  replacing  co  by  other  limit- 

numbers.2 3) 

13)  The  equality  holding  for  isolated  o •  Xa-A 

which  essentially  reduces  a  power  of  to  a  power  of  _  x,  is  called 

Hausdorff's  recursion  formula?)  For  o  <  r  it  easily  follows  from  (5)  in 
Theorem  15.  Show  its  truth  for  a  >  z  by  means  of  the  following  theorem 

the  proof  of  which  is  not  difficult:  if  T  is  a  well-ordered  set  of  ordinals  tv 

such  that  T  <  Xa  -  i  and  t„  <  Xa  -  i  for  every  v,  then  there  is  an  ordinal 

C  <  coa  such  that  tv  <  C  for  every  v.  (Hint:  use  the  formula  which  holds 

for  every  isolated  a:  <  2  £A  where  iK  ranges  over  W(coa);  this 
K 

formula  may  be  proven  by  considering  the  left-hand  power  as  the  car¬ 

dinal  of  an  insertion-set.) 

14)  Generalize  Theorem  13  by  proving  that  a  well-ordered  set  of  a 

type  <  (oa  +  i,  the  members  of  which  are  increasing  ordinals  <  coa+  i, 

has  a  sequent  which  is  also  <  coa  +  x. 

15)  Ascertain,  in  view  of  the  proof  of  the  well-ordering  theorem  given 

in  6,  the  ordinal  of  the  set  N  of  all  integers  >  1  according  to  the  following 

choice-functions  (for  non-empty  subsets  N'  £  N): 

a)  /  ( N ')  is  the  integer  which  has  the  least  prime  divisor  or,  if  several 

Tarski  49a;  cf.  49,  Part  I. 

2)  Cf.,  in  particular,  Bagemihl  48. 

3)  At  first  published  in  Hausdorff  04.  For  generalizations  and  completions  cf. 
Tarski  25a. 
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have  this  divisor,  which  has  it  in  the  lowest  power;  if  this  applies  to 

several  integers,  then  /  ( N ')  shall  be  the  least  of  them. 

b)  f (N')  is  the  integer  which,  according  to  its  decomposition  into  prime 
divisors,  contains  the  least  number  of  (different  or  equal)  divisors;  if 

there  are  several  of  this  kind,  f  ( N ')  shall  be  the  one  with  the  least  prime 
divisor,  and  among  several  of  this  kind,  the  least  of  them. 

By  well-ordering  N  according  to  such  choice-functions  it  becomes 

evident  that  a  tiny  part  only  of  the  choices  provided  for  by  the  function  / 

is  actually  utilized. 

Of  course,  the  axiom  of  choice  is  not  required  in  these  cases,  for  the 
rules  are  constructive. 

16)  Prove,  by  means  of  a  suitable  choice-function,  the  theorem:  If 

A  =  (Si,  S2,  Sz,  . . .)  is  an  increasing  sequence  of  sets,  i.e.  5*  <=  Sk  +  % 

for  every  k,  and  if  T  is  a  set  such  that  every  t  e  T  is  contained  in  at  least 

one  Sk  and  that  every  infinite  subset  of  T  has  an  infinite  intersection  with 

at  least  one  Sk,  then  there  exists  an  m  such  that  T  £  Sm. 

This  theorem  has  important  applications  in  the  theory  of  sets  of  points, 

in  particular  regarding  the  covering  theorems  of  Borel  and  others.1) 

§  12.  The  Origin  and  the  Significance  of  Set  Theory 

We  have  surveyed  the  edifice  of  abstract  set  theory,  the  basis  and  out¬ 

lines  of  which  were  created  by  Cantor  in  a  bold  intuition.  In  regard  of  the 

foundation  of  the  theory  we  took  a  middle  course  between  Cantor’s 

naive  attitude  based  on  a  definition  which  is  untenable  because  leading  to 
contradiction,  and  a  modern  axiomatic  basis  (cf.  Foundations).  The  main 
axioms  of  one  among  the  current  axiom  systems  were  introduced,  but  at 

chosen  junctures  only  were  fundamental  concepts  and  theorems  explicitly 
derived  by  means  of  the  axioms. 

Certain  features  of  the  theories  of  plain  sets  with  their  cardinals  on  the 

one  hand  and  of  (well-)  ordered  sets  with  their  types  and  ordinals  on  the 
other,  have  chiefly  originated  from  a  philosophic  ground;  this  especially 
applies  to  the  legitimacy  of  transfinite  magnitudes  or  numbers.  The 

philosophical  attitude  played  a  considerable  part  in  the  later  phase  of 

Cantor’s  work  from  1885  on.  Several  decades  earlier  one  of  the  greatest logicians,  the  Bohemian  clergyman  Bernard  Bolzano  who  was  far  ahead  of 

his  contemporaries  in  the  foundations  of  logic  and  mathematics,  had 

])  See  Veress  32. 
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taken  this  direction  but  remained  short  of  final  success;  only  long  after 

his  death  were  his  (limited)  achievements  duly  appreciated.1) 

Cantor,  however,  had  originally  and  foremost  been  driven  by  purely 

mathematical  motives  to  develop  what  became  set  theory.  In  various  parts 

of  analysis,  especially  in  the  theory  of  trigonometric  series  and  of  the 

integration  of  discontinuous  functions,  certain  problems  arose  about 

1870  which  necessitated  the  discrimination  of  specific  infinite  aggregates 

of  real  numbers  or  points  out  of  the  continuum;  for  instance,  the  aggreg¬ 

ate  of  the  discontinuity  points  of  a  function.  At  that  time,  several  mathem¬ 

aticians  such  as  P.  du  Bois-Reymond,  H.  Hankel,  A.  Harnack,  H.  J.  S. 

Smith,  V.  Volterra  worked  in  this  direction  2)  but,  for  want  of  an  adequate 
methodical  tool  for  defining  general  enough  aggregates,  reached  limited 

results  only. 

At  the  suggestion  of  E.  Heine,  Cantor  had  in  1869  3)  started  researches 
on  trigonometric  series  and  their  singular  points  and  succeeded  in  proving 

the  uniqueness  of  the  expansion  into  a  trigonometric  series.  By  this  work 

he  was  led  to  the  concept  of  limit-point  and  to  his  theory  of  irrational 

numbers  (cf.  §  9,  1).  In  his  attempts  at  generalizations  he  slowly  and  at 

first  reluctantly  convinced  himself  that  a  tool  of  a  fundamentally  new 

type  was  required  for  such  problems,  namely  a  general  notion  and 

classification  of  infinite  sets;  once  convinced,  he  engaged  in  the  task  with 

ever  growing  verve.  Gradually  the  analytical  applications  became  second¬ 

ary  and  set  theory  was  developed  for  its  own  sake. 

The  set-theoretical  solution  of  analytical  problems  was  not  only 

central  in  the  early  development  of  the  new  discipline  but  also  in  its 

applications  since  the  end  of  the  19th  centrury.  The  ties  between  the  theory 

After  isolated  remarks  in  Bolzano  1810  and  1837  (e.g.  I,  §  87)  pointing  to  actual 

infinity,  a  comprehensive  attempt  was  made  in  Bolzano  1851  where  the  term  Menge 

(set)  appears  for  the  first  time.  Some  of  the  shortcomings  of  this  posthumously  pub¬ 

lished  book,  which  was  known  to  Cantor  (see  Cantor  79-84V,  p.  561),  may  be  at¬ 

tributed  to  its  editor  who  on  his  own  account  inserted  several  would-be  corrections 

(cf.  Jasek  22). 

Bolzano’s  main  achievement  in  philosophy  is  his  comprehensive  work  1837;  cf., 

for  instance,  Scholz  31  (pp.  44ff.)  and  37,  Bar-Hillel  52,  and  the  literature  cited  there. 

Bolzano’s  achievements  in  the  theory  of  real  numbers  and  functions  were  duly 

appreciated  only  in  the  present  century,  especially  with  the  publication  of  his  manu¬ 
scripts  (from  1930  on);  he  was  the  first  to  define  a  continuous  and  nowhere  derivable 
real  function. 

2)  Hankel  1870,  Smith  1875,  du  Bois-Reymond  1882,  should  be  mentioned  partic¬ 

ularly.  Cf.  Jourdain  05-14  and  Hardy  24. 

3)  See  Cantor-Stackel  1897;  cf.  Cantor  1870,  p.  130  footnote.  The  proof  of  the 
uniqueness  theorem  is  contained  in  Cantor  1870a. 
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of  sets,  particularly  of  sets  of  points,  and  the  theory  of  (real,  and  also 

complex)  functions  have  become  so  close  that  nowadays  most  textbooks 

of  function  theory  begin  with  a  chapter  dealing  with  sets.  Since  1919 

there  exists  a  first-rate  international  journal,  the  Fundamenta  Mathe- 
maticae  appearing  in  Warsaw,  which  is  dedicated  to  set  theory  and  its 
applications  to  analysis,  logic,  etc.  Perhaps  the  most  splendid  among  the 
applications  is  the  modern  development  of  various  notions  of  measure 

and  integral,  starting  with  Lebesgue  *)  (half  a  century  after  Riemann). 
These  achievements  for  their  part  led  to  an  impetuous  development  of 
the  theory  of  probability  and  other  branches  of  applied  mathematics, 

including  

even  
astronomy  

and  

physics *  

2). 

The  analytical  problems  which  led  to  set  theory  are  closely  connected 
with  geometry.  In  §  9  we  touched  upon  some  of  the  problems  of  sets  of 
points  treated  early  by  Cantor,  mostly  by  the  methods  of  ordered  sets; 
such  examples  illuminate  the  enormously  increased  subtlety  and  efficiency 
of  these  methods  in  comparison  with  the  classical  ones.  The  most  spec¬ 
tacular  among  the  early  achievements  was  the  full  description  of  the  linear 
continuum  in  terms  of  order  alone.  Somewhat  later  set-theoretical 
topology  began  its  triumphal  progress;  one  of  its  results,  the  modern 
theory  of  dimension,  was  mentioned  in  §  6,  8.  Yet  beyond  order  theory 
and  topology,  set-theoretical  geometry  is  of  a  suprising  diversity,  and 
certainly  no  methodical  progress  has  so  much  enlarged  the  object  of 
geometrical  research  since  the  invention  of  analytic  geometry  and  cal¬ 
culus  3).  Incidentally,  at  the  birth  of  set  theory  a  stimulating  part  was 
played  by  questions  of  synthetic  geometry,  where  a  line  is  conceived  as  the 

set  of  the  “incident”  points  or  a  point  as  the  set  of  the  “incident”  lines  or 
planes,  etc;  on  this  ground  Cantor’s  term  Machtigkeit  (power,  cardinal; see  p.  68)  has  originated. 

Another  domain  participating  in  the  creation  of  set  theory  and  then 

x)  Lebesgue  02.  Cf.  the  historical  survey  Lebesgue  27. 
2)  For  early  applications  outside  (pure)  mathematics  we  mention  Bernstein  12, van  Vleck  15,  Caratheodory  19,  Bouligand  31,  Vitali  31.  The  more  recent  applications 

to  probability  theory  are  legion;  a  good  survey  of  the  initial  stage  of  these  applications 
is  contained  in  Kolmogoroff  33.  Also  the  ergodic  theorem,  first  attacked  with  set- 
theoretical  methods  in  1913,  and  its  solution  by  G.  D.  Birkhoff  and  J.  von  Neumann may  be  mentioned. 

In  a  different  sense,  applications  of  set  theory  to  physics  had  been  predicted  by 
Cantor  in  1882,  see  Cantor  79-84III,  pp.  120f.  Cf.  Rosenthal-Borel  23,  p.  905  footnote 160;  Schoenflies  28,  p.  22  (also  p.  20). 

For  applications  to  chemistry  cf.  Habermann  36. 

3)  Cf.  the  programmatic  expositions  in  Hahn  29  and  Menger  33. 
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fostered  by  it  is  the  theory  of  integers,  i.e.  of  finite  numbers  and  sets  x); 

cf.  §  10,  6.  The  pioneer  in  this  respect  was  Dedekind,  a  personal  friend  of 

Cantor’s;  in  Cantor’s  later  work  the  influence  of  Dedekind’s  “logical” 
attitude  can  easily  be  traced.  Dedekind  particularly  excelled  in  utilizing 

the  concept  of  one-to-one  
correspondence *  

2)  which  since  has  attained  an 

ever  increasing  significance  and  applicability.  Remarkable  are  also  the 

applications  of  set  theory  to  algebra,  especially  to  abstract  algebra,  where 

transfinite  induction  or  equipollent  procedures  have  become  an  indis¬ 

pensable  instrument.3) 
Finally  set  theory,  as  the  most  general  field  of  mathematics  and  on 

account  of  its  close  connection  with  logic,  has  to  fulfil  the  task  of  method¬ 

ically  investigating  and  basing  the  primary  concepts  of  mathematics  in 

general,  such  as  number,  function,  mapping,  order,  etc.  (§§  2,  4,  7,  8,  10) 

and  of  hence  deducing  the  fundamental  branches  of  mathematics.  As  the 

most  comprehensive  contemporary  exposition  of  mathematics  puts  it,  on 

sait  aujourd'hui  qu'il  est  possible. .  .  de faire  deriver presque  toute  la  mathe- 

matique  actuelle  d'une  source  unique,  la  Theorie  des  Ensembles  (=  theory 

of  sets)4).  It  had  been  Cantor’s  explicit  design  to  create  by  set  theory  “a 

genuine  fusion  between  arithmetic  and  geometry” ;  set  theory  is  fit  for  this 
purpose  because  its  methods  almost  equally  apply  to  continuous  and  to 

discrete  subjects,  hence  seem  apt  to  span  the  gap  between  both  domains. 

The  achievements  of  set  theory  as  a  tool  both  for  special  mathematical 

disciplines  and  for  the  foundation  of  mathematics  in  its  entirety  are  all  the 

more  remarkable  since  it  is  a  quite  young  branch  of  a  science  which  is  two 

and  half  thousand  years  old ;  its  roots  started  less  than  a  century  ago.  True, 

there  were  and  still  are  antagonists  among  mathematicians  and  philo¬ 

sophers  ;  the  bold  character  of  set  theory  and  its  sometimes  daring  methods 

curbed  its  early  development  for  two  decades,  and  still  to-day  they  seem 

suspect  or  even  untenable  to  some  constructivistic-minded  scholars.  Yet 

the  foremost  mathematician  of  the  last  generation,  David  Hilbert,  retorted 

J)  Finite  (and  sometimes  denumerable)  sets  are  mostly  involved  in  the  applications 
of  set  theory  to  the  theory  of  games,  including  chess,  and  of  graphs.  Early  researches 
in  this  field  are  Zermelo  13,  Kalmar  29,  Euwe  29,  D.  Konig  36. 

2)  See,  in  particular,  Dedekind  1888;  also  the  posthumous  work,  including  corre¬ 

spondence  with  Cantor,  published  in  the  third  volume  of  Dedekind  30-32  and  in 
Cantor-Dedekind  37. 

3)  The  applications  to  algebra  were  first  introduced  in  the  comprehensive  paper 

Steinitz  10  which  largely  is  the  pioneer  work  of  abstract  algebra.  Cf.  the  exposition 
in  van  der  Waerden  50. 

4)  Bourbaki  51-56  (booklet  of  1954,  p.  4). 
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upon  those  attacks  by  calling  set  theory  “one  of  the  most  vigorous  and 
fruitful  branches  of  mathematics”,  “a  paradise  created  by  Cantor  from 
which  nobody  shall  ever  expel  us”,  “the  most  admirable  blossom  of  the 
mathematical  mind  and  altogether  one  of  the  outstanding  achievements 

of  man’s  purely  intellectual  activity”1). 
A.  N.  Whitehead  in  his  essay  on  Mathematics  as  an  element  in  the 

history  of  thought 2)  calls  mathematics  the  most  original  production  of  the 
human  mind.  His  way  of  establishing  this  claim  ought  to  award  the 
corresponding  distinction,  among  the  various  branches  of  mathematics, 
to  set  theory  as  to  the  branch  which  least  of  all  is  connected  with  external 

experience  and  most  genuinely  originates  from  free  intellectual  creation. 

Thus  the  conquest  of  actual  infinity  may  be  considered  an  expansion  of 
our  scientific  horizon  no  less  revolutionary  than  the  Copernican  system 
or  than  the  theory  of  relativity,  or  even  of  quantum  theory  and  nuclear 

physics. 

J)  Hilbert  18,  p.  411;  25,  pp.  170  and  167. 
2)  Whitehead  26,  chapter  II. 
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Les  Entretiens  de  Zurich  =  Les  Entretiens  de  Zurich  sur  les  Fondements  et  la  Methode 

des  Sciences  Math.  1938 

M

.

 

S

.

 

 =  Math.  Society 

Monatsh.  

=  
Monatshefte 

N
.
 
S
.
 
 

=  New  Series,  Neue  Folge,  Nieuwe  Reeks,  etc. 

Nachr.  (Gottingen)  =  Nachrichten  (der  Gesellschaft  der  Wissenschaften  zu  Gottingen, 
Math.-Ph.  Klasse) 

Nat.  =  National,  etc. ;  Natural,  etc. 
Naturvid.  =  Naturvidenskab 

p.  =  pures  etc. 
Polon.  =  Polonaise 

Proc.  =  Proceedings 

Proc.  Amsterdam,  =  Kon.  Nederlandse  Akademie  van  Wetenschappen  te  Amsterdam, 
Proc.  of  the  Section  of  Sciences 

Publ.  =  Publications 
R.  =  Royal(e) 

R.M.M.  =  Revue  de  Metaphysique  et  de  Morale 
Rendic.  =  Rendiconti 

Rendic.  Lincei  =  Rendic  della  R.  Accad.  Nazionale  dei  Lincei  (Roma),  Cl.  di  Sc. Fis.  etc. 

Rev.  =  Revue,  Review,  etc. 
Riv.  =  Rivista 

s.a.  =  sine  anno 

Sc.  =  Science(s),  etc. 

Scand.  =  Scandinavica 

Scr.  =  Scripta 

Sem.  =  Seminar,  etc. 

Semesterberichte  Munster  =  Semesterberichte  zur  Pflege  des  Zusammenhangs  von 
Universitat  und  Schule  (Math.  Seminar,  Munster  i.  W.) 

Sitz.  (Berlin)  =  Sitzungsberichte  (der  Preussischen  Akademie  der  Wissenschaften 
Phys.-Math.  Klasse) 

Sitz.  Heidelberg  =  Sitz.  der  Heidelberger  Akad.  der  Wiss.,  Math.-Naturwiss.  Kl. 
Sitz.  Wien  =  Akad.  der  Wiss.  in  Wien,  Math.-Naturw.  Kl.,  Sitz. 
Tr.  =  Transactions 

u.  =  und 

v.  =  van,  voor 

Verh.  =  Verhandl ungen,  Verhandelingen 
Wiss.  =  Wissenschaft(en) 
Z.  =  Zeitschrift 

Z.  Logik  Gr.  =  Z.  f.  math.  Logik  u.  Grundl.  der  Math. 

(2)  =  second  series  (and  similarly  for  other  numerals) 
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