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Preface 

This book is designed for use in a one semester problem-oriented 

course in undergraduate set theory. The combination of level and 

format is somewhat unusual and deserves an explanation. 

Normally, problem courses are offered to graduate students or 

selected undergraduates. I have found, however, that the experience 

is equally valuable to ordinary mathematics majors. I use a recent 

modification of R. L. Moore’s famous method developed in recent 

years by D. W. Cohen [1]. Briefly, in this new approach, projects 

are assigned to groups of students each week. With all the necessary 

assistance from the instructor, the groups complete their projects, 

carefully write a short paper for their classmates, and then, in the 

single weekly class meeting, lecture on their results. While the em- 

phasis is on the student, the instructor is available at every stage to 

assure success in the research, to explain and critique mathematical 

prose, and to coach the groups in clear mathematical presentation. 

The subject matter of set theory is peculiarly appropriate to this 

style of course. For much of the book the objects of study are familiar 

and while the theorems are significant and often deep, it is the 

methods and ideas that are most important. The necessity of rea- 

soning about numbers and sets forces students to come to grips with 

the nature of proof, logic, and mathematics. In their research they 

experience the same dilemmas and uncertainties that faced the pio- 

neers. They will, for example, discover in some chapters that deeper 

results in earlier chapters are necessary before work can proceed. 
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. 

Students do not always solve the problems completely on their 

own. They do, however, learn what proofs are and how to organize 

and write them, and while lectures on this material might easily bore, 

students find the experience of doing it themselves exciting and 

rewarding. It is familiar enough to be reassuring and different enough 

to be challenging. 

More set theory is included here than one can reasonably use. I 

cover roughly 35 to 40 projects in a semester. The last three chapters 

are independent of each other and can be used selectively or omitted. 

Sections of other chapters may also be skipped or summarized, 

particularly the last few in Chapter 7. 

I am indebted first of all to David Cohen, for the example of his 
outstanding teaching, and to my students for their intelligence and 

unflagging good humor. I only hope that my confidence in this 

approach is not based entirely on a teacher who might succeed with 

any method, and students who might prevail under any regimen. I 

greatly appreciate the support of Smith College and the encourage- 

ment of its most collegial mathematics department. Thanks are also 

due to Marcia Groszek for the Tennyson quotation, and special 

thanks to Carlos Di Prisco for his very timely suggestions and 
advice. 

References 

[1] D. W. Cohen, “A Modified Moore Method for Teaching Under- 
graduate Mathematics,” Am. Math. Monthly 89, no. 7, 1982. 
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Introduction 

As a branch of mathematics, set theory is less than one hundred years 
old, yet it occupies a unique and critical position. Set-theoretic 
principles and methods pervade mathematics. Set-theoretic results 
have shaken the worlds of analysis, algebra, and topology. Simple 
questions about sets have split the mathematical community into 

hostile camps, and the romance of its infinite sets have charmed and 
challenged philosophers as nothing else in mathematics. 

A Little History 

Mathematics is a living creature, growing as occasions demand and 

circumstances permit. Every now and then it must pause to orga- 

nize and reflect on what it is and where it comes from. This hap- 

pened in the sixth century B.C. when Euclid thought he had derived 

most of the mathematical results known at the time from five pos- 

tulates. By the end of the nineteenth century, it was ready to happen 

again. Methods and structures had long outstripped Euclid and 

the need arose for a clearer understanding of number, proof, and 

existence. 

In searching for underlying principles, mathematicans were led 

naturally to sets. It was discovered in the early twentieth century 

that virtually the entire body of mathematics could be described in 
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terms of sets. More importantly, a host of critieal questions had 

surfaced and many of these were intimately connected with sets. 

Sets seemed basic and uncomplicated. The task of putting mathe- 

matics on a firm foundation appeared to be simply a matter of 

reducing it to sets. Unfortunately the naive approach to set theory 

led to trouble. 

The most stunning example of the difficulty was discovered by 

Bertrand Russell in 1901. It was thought that any describable col- 

lection of objects must be a set. This being so, let R be the collec- 

tion of all sets which are not members of themselves. We will use 

the notation x € y to mean “x is a member of y,” and x ¢ y to mean 

“x is not a member of y,” and so we write: 

R = {x|x€x}. 

Is RE R? If RER then by the definition of R, R is not a member of 

itself, 1¢., RGR. Conversely, if R¢.R, then R is one of those sets 

which is not a member of itself, hence it is one of the sets in R, or 

ReR! We have a contradiction we cannot escape—unless R is not 
a set. 

Over the decades following the discovery of such problems, a col- 

lection of first principles or axioms was formed which appeared (and 

still appears) to avoid paradoxes. The system is called Zermelo— 

Fraenkel set theory or ZF after its originators, Ernst Zermelo and 

Abraham Fraenkel. In addition to occupying a strategic location in 

mathematics, ZF is studied for itself by a growing number of math- 

ematicans. The father of modern set theory was Georg Cantor. 

A Little Philosophy 

The exploration of set theory revealed many divisions in mathe- 

matics. To choose an axiom system is in some sense to legislate 

mathematical truth. Not all mathematicans agreed to the choices. 

Disputes were frequent and sometimes bitter, particularly the ones 

involving the existence of infinite sets and the use of infinite 
methods. 

While some mathematicans (platonists) felt the axioms were 

either true or false, yet others (formalists) felt that truth was a 

relative notion, that absolute truth did not exist. They asserted that 

the axioms were like the rules of a game. The rules in this case were 
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well-chosen because they allowed players to investigate all of 
mathematics. 

As philosophers still debate the appropriateness of set theory in 
general and ZF in particular as a basis for mathematics, yet another 
group has begun questioning the very need for a foundation. Math- 

ematics is not in need of definition, it is claimed, mathematics 

simply exists. Mathematics is what our contemporary civilization 

conceives it to be. Its nature changes as it grows and reflects our 
culture. 

Our Intentions 

We intend to present Zermelo—Fraenkel set theory and show how 

it avoids Russell’s paradox. Following this, we will use sets to 

construct a good deal of mathematics, specifically the natural num- 

bers, the integers, the rational numbers, and the reals. 

We will examine the mathematics of infinity in its many forms. In 

the course of this, we will consider some of the questions that have 
plagued and divided mathematicians in this century. We will con- 

clude with some set theory for its own sake: some new axioms, some 

big sets, an application of infinity to finite sets, a discussion of the 

celebrated Axiom of Choice, and an introduction to nonstandard 

analysis. 

Our Method 

The format of this book also deserves some explanation. The out- 

lines of set theory are presented here in Part One as 44 projects. 

These projects, in effect, ask the reader to function as mathematic- 

ian. Usually theorems and definitions are provided and the proofs 

are not. Occasionally even definitions are omitted! Some projects 

are routine; others are quite challenging. Part Two contains exten- 

sive suggestions and comments. Complete (though terse) solutions 

are provided in Part Three. 

Why are we doing this to you? 

We believe there is no better way to learn mathematics than to 

do it: to search for it, to find it, to organize it, and to write it. We are 

confident of the reader’s ability to do much of the work, possibly 
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with the assistance of an instructor. We are also Gptimistic that the 
reader will enjoy the challenge. 

Our Biases 

We hope our biases don’t show. While mathematicians disagree on 
the role of set theory, most agree that the construction of number 

systems from sets is a significant act, one which tells us a great deal 

about mathematics. There is also general agreement about the im- 

portance of set-theoretic ideas in mathematics. 

Platonists will not be disturbed by extravagant claims of truth 

for ZF or other axiom systems. Formalists will find satisfaction in 

our rigorous adherence to ZF. Modern philosophers may approve 

too, for our procedure mirrors the organic growth of mathematics. 
While some projects assign theorems for the reader to prove, others 

ask for theorems to be discovered, structures to be defined: You will 

find occasionally that to complete one project, say a theorem on 

rational numbers, it is necessary to retrace your steps and prove a 

theorem about integers, natural numbers, or sets, that had not 

seemed important before. All of this is very much the way mathe- 
matics has in fact developed. 
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PROJECTS 
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CHAPTER 1 
Logic and Set Theory 

The most distinct and beautiful statements of any truth must take at 

last the mathematical form. We might so simplify the rules of moral 

philosophy, as well as of arithmetic, that one formula would express 

them both. 

H. D. Thoreau 

The goal in this first section is to become acquainted with logical 

notation and most of the axioms of Zermelo—Fraenkel set theory. 

We will also show how a few very important mathematical objects 

such as functions and relations can be formed from sets. Just as we 

have chosen to build mathematics using set theory, we will build set 

theory using logic. 

The Language of Set Theory, 

Basic symbols: © 

(equals) 

E (is an element of) 

GONG cee. (variables) 

él (it is not true that) 
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(and) f 
(or) 
(implies) 

(if and only if) 

(for all) 

(there exists) 

(parentheses). 

These symbols are used to form statements or formulas as follows: 

(1) Basic statements of the form: a = b or acb (where a and b can 

be replaced by any other variables). 

(2) Compound statements: if g and w are statements, then 

(a) 
(b) 
(c) 
(d) 
(e) 

1¢ is also a statement, 

(p AW) 
(p v W) 
(p > w) and 
(pw) are also statements. 

If (x) is a statement which says something about the variable 
x, then 

(f) 
(g) 

Vx(p(x)) and 

4x(p(x)) are statements (where x can be replaced by any 
variable). 
We will occasionally write Vx@(x) or Ix@(x) (omitting some 
parentheses) when the meaning is clear. 

These statements are interpreted as follows: 

19 is true iff @ is false “iff” is an (English) abbreviation for 
“af and only if”. 

paw is true iff both g and wy are true. 
ovwy is true iff either ¢ or is true (or both are true). 
g->w is true iff either w is true or @ is false. 
gow is true iff either @ and w are both true, or else both are 

false. 
Vxe~(x) is true iff the statement ¢(x) is true about all sets. 
Ix@(x) is true iff the statement ¢(x) is true about at least one 

set. 

Examples: 

To say that b is a member of both d and q we could write: 

(bed a beg). 
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To say that p and h are different sets: 

ip. =f, 

To say that r has no members: 

Vy 1(yer). 

To say that u is a subset of t: 

Vi(jeu> jet). 

To say that z has exactly one member: 

JiVm(me zm = i). 

Proyect #1. For the purposes of this exercise, assume that the 

only sets which exist in the entire universe are the following: 

a= {b,c}, b={ }, c= {e}, d = {c,e}, e = {b}. We mean by this 
notation that the only members of a are b and c, that b has no 

members, etc. 

1. Which of the following statements are true? 

(i) bee (ii) eeb (iii) bed (iv) (aec v ced) 

(v) (bec aea) (vi) (eederdee) (vil) (e€c A aec) 
(viii) Vx 1(xeb) (ix) Vq(qec—>qea) (x) Vntnee >neEa) 

(xi) ak(ked) (xii) Vsat(set) (xiii) Vsit(tes) 

(xiv) ShVi((iee ~ieh) A Th=e) 
(xv) dgdw((gee A wee) A 1g = Ww) 

(2) Explain why these last three are statements according to the rules 

(1) and (2) above. 

Notation. To enrich our language Y, we can add additional sym- 

bolss Aw -S, S.-4.,¢51 5}: 

(aNb) stands for the intersection of the sets a and b, that is, 

the collection of all elements in both a and b. 

(cUd) stands for the union of the sets c and d, that is, the 

collection of all elements in either c or d. 

(e\f) stands for the collection of all elements of e not in f. 

(g Sh) means that g is a subset of h, that is, that all elements of 

g are also in h. 

(i ¢ ij) means that i is a proper subset of j(i <j but Ti = j). 

(kK) “means 1k =I. 



10 Part One 

(mé€n) means 1men. 

{o, p, q} stands for the set whose only members are 0, p, and q. 

We can think of these as abbreviations. For example, we can now 
write aM b & c instead of Vx((xea A xEb) > x€c). 

One more short cut: for statements @, W, x we will write (g A 
W A x) instead of ((p A W) A x) or (g A (W A 3); similarly for v. 

PRoJECT #2. For the purposes of this exercise, assume that the 
only sets which exist in the entire universe are these: a = { }, 
b = {d,a},c = {a,e},d = {a,e,c}, e = {a}, and f = {a,b,c,d,e}. The 
following statements say something about the set x. In each case, 
there is exactly one of the sets a, b, c, d, e, f, which could be x. Find 
that set. 

(i)'xee “(i) x¢f" Gn) de x iv) f & xy) ee 
(vi) Vy(y¢x) (vii) dz(zex A Vw(wex > w = 2)) 
(vill) (xeb A x€d) (ix) TW(xec>xeEb) (x) Vq(x¢q) 

(xi) e = {a,x} (xii) x ={{ }} (xiii) (e¢deox Cd) 
(xiv) Shij(hej a jed A xeh) (xv) Vn (ng x) 
(xvi) dr(Vuu¢r A r¢éx) (xvii) Juovugx aA Vk(kKExok= v)) 
(xvii) SgShdidj(jei a ieh a heg a gex) 
(xix) dydz((yez A zEx) A yx) 
(xx) dgaras((qex Arex Asexnqg#rar¥sanaqgé s) 
ANULEX > (P= GV t = 7 Vt ='s))) 

We will occasionally use a richer language: 

Definition. #* is the language obtained from Y by adding a con- 
stant symbol for each set. 

Some Axioms of Zermelo—Fraenkel Set Theory (ZF ) 

Extension: Two sets are equal iff they have the same members. 
Empty Set: There is a set with no elements. 
Pair Set: If c and d are sets, then {c,d } is a set. 
Union: If d is a set of sets, then the union of these sets is a set. 
Power Set: If d is a set, then the collection of all subsets of d is also 
a set (called the power set of a). 
Regularity: If d is a set, then either d = { } or else d has a member 
b such that dN b = { }. 
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The difficulty with earlier formulations of set theory was in al- 
lowing any definable collection to be a set. In this next axiom, we 
limit ourselves to definable collections which are already contained 
in a set (hence not too big). 

Comprehension: If D is a set, then every definable part of D is also 
a set. If p(x) is a formula of #*, then the collection of all elements 
x of D such that ¢(x) is true is what we are calling a “definable part” 
of D. We write this as 

{xe D|e(x)}. 

The Axiom of Comprehension states that this is a set. 

There are two additional axioms which we will add later. 

PROJECT #3. Write the first six axioms of ZF in the language Y, 

using any abbreviations defined so far. 

Important Note! We have introduced the languages Y and #* for 

use in certain specialized areas, the Axiom of Comprehension being 

the first example. We will continue to use English for all other 

purposes. While we could translate portions of our work into Y, 

there is really no reason to do so. It would be extremely difficult to 

read! Similarly, in writing proofs you are under no obligation to use 

YL. Proofs are meant to be understood and appreciated, so they 

should be written in whatever language is most appropriate. 

PROJECT #4. Prove: 

1.1. Theorem. If A and B are sets, then A‘ B is a set. 

1.2. Theorem. If A and B are sets, then AU B is a set. 

1.3. Theorem. If A is a set, then {A} is a set. 

1.4. Theorem. If A is a set, then A¢ A. 

1.5. Theorem. If A and B are sets and Acé B, then B¢ A. 

1.6. Theorem. There is only one set with no members. 

1.7. Theorem. The sets described in the Union axiom and the Power 

Set axiom are unique. 
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Notation (Add to #). Let @ stand for { }, the Wnique set with no 
members. For any set d, let Ud stand for the set described in the 
Union axiom. For any set d, let P(d) stand for the set described in 
the Power Set axiom. 

ProsecT #5. Our problem now is to define, for sets a and b, a set to 
represent the ordered pair <a, b>. It must be a set (everything must 
be a set) and it must have the property that <a,b> = <c,d) iff both 
a=c and b = d. The following is a list of possibilities. Only one 
works. Find it, prove that it works and is a set, and show why the 
others fail to work: 

(a,b}; {a,{b}}; {{a},{b}}; {{a}, {a.b}}; {a,b, {a,b}. 

Definition. A x B is the collection of all ordered pairs <a,b) where 
aeA and beB. 

Prove: 

1.8. Theorem. If A and B are sets, then A x Bisa set. 

Notation. Add <a,b> and A x B to ¥ as abbreviations. 

Definition. A function f from A to B is a subset of A x B such that 

(a) ifxeA then there is a y such that <x, y>ef,. 
(b) If <x, y> and <x,z> are in f, then y = z. 

Notation. In # we will write f(x) = y to mean <x, ye f, 

Definition. If f is a function from A to B, A is called the domain of 
f. The range of f is {ye B|Axf(x) = y}. f is one-to-one iff whenever 
f(x) = f(y) then x = y. f is onto if the range of f is all of B. If D < A, 
then f}D (f restricted to D) is {<x, y> ef |x D}. 

If f is a one-to-one function from A to B, then f~', the inverse 
Junction, is the set {<y,x)> eB x A|<x, ye f}. 

Prove: 

1.9. Theorem. If f is a function then the range of f is a set. 

1.10. Theorem. If f is a function and D is a set, then f |} D is a set. 
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on'tes 
1.11. Theorem. If f is a one-to- ope function from A ‘me B, then f~} 
a one-to-one function from B eA 

Definition. A relation R on a set A is a subset of A x A. 

Notation. In Y, write aRb for <a, b> eR. 

Definition. A relation R on A is reflexive if xRx for all xe A. R is 

symmetric if xRy implies yRx. R is transitive if whenever xRy and 

yRz then xRz. R is an equivalence relation iff R is reflexive, transi- 

tive, and symmetric. , 

Notation. If R is an equivalence relation on A, ae A, we will write 

[a]z for {be A|aRb} (called the equivalence class of a). 

PROJECT #6. Prove: 

1.12. Theorem. If R is an equivalence relation on A and ae€ A, then 

[a], is a set. 

1.13. Theorem. If R is an equivalence relation on A and a, be A, then 

either [a]z = [blz or [a]pN[b]zp = @. 

1.14. Theorem. If R is an equivalence relation on A, then the collection 

of equivalence classes on A is a set. 
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CHAPTER 2 
The Natural Numbers 

It is in the contemplation of the infinite that man attains his greatest 
good. 

Giordano Bruno 

The object of this chapter is to define a set to represent the numbers 

0, 1, 2, .... To be complete, we must also show how to add and 

multiply these numbers and prove all the usual laws: commutative, 

associative, etc. The most important idea contained in our con- 

struction is that of mathematical induction. 

To begin, we require an axiom which gives us a set large enough 

to construct the natural numbers. In fact, the axioms we have so far 

are too weak to guarantee us an infinite set. 

Definition. For any set x, let S(x) = x U {x}. 

Notation. Add S to &. 

Infinity: There is a set X such that 

(1) Gex 
(2) if ye X then S(y)eEX 

(3) if ye X and y ¥ @, then y = S(z) for some ze X 
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Any set satisfying these conditions must contain at least @, S(@), 

S(S(@)), S(S(S(@))), ..., intuitively an infinite set. We postpone 

until Chapter 7 a complete discussion of “finite” and “infinite.” 

PROJECT #7. Prove: 

2.1. Theorem. If x is a set then S(x) is a set. 

2.2. Theorem. The conditions (1), (2), and (3) can be true about only 
one set. 

Definition. Let N (the natural numbers) be the unique set satisfying 

(1), (2), and (3). 

Definition. 

0=2 
1-= S(0) 

D==r5 (1) 

3 ="S(2) 

4 = §(3). 

Write out the sets 0, 1, 2, 3 and 4 using only the symbols, “{“, ”}”, 
and e ie 

Prove: 

2.3. Theorem. N satisfies Peano’s Axioms: 

(a) OEN. 

(b) For allkeN S(kK)EN. 

(c) S(k) £0 forall keN. 

(d) For allj, kEN S(j) = S(k) iffj = k. 

(ce) If X SN, and 0eX, and if for all keN ke X implies S(k)e X, 
then X = N. 

2.4. Theorem (Principle of Induction). If a statement o(k) in F is 

(1) true about 0, and 

(2) whenever it is true about a number k, ke N, then it is also true 

about S(k), 

then ¢p(k) is true about allkeN. 
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Defining Addition. We can describe addition as a function A from 
N x N to N. Think of 2 + 3 = 5, for example, as A(<2,3)) = 5. At 
the very least, this function A should satisfy two properties: 

(1) A(<n,0)) =n, and 
(2) A(<n, S(k)>) = S(A(<n, k>)) 

Think of S(k) as k + 1. These laws sayn + 0 = nandn+(k + 1)= 
(n+k)+1.° 

Proving the existence of such a function is surprisingly tricky. 

2.5. Theorem. There is a function satisfying (1) and (2). 

The proof is given at the end of this chapter. 

Notation. We will write a+, b=c instead of A(<a,b>)=c (or 
worse, <<a, b>, c>€ A). 

PROJECT #8. Prove: 

2.6. Theorem. +, is associative. 

2.7. Theorem. S(n) = n +, 1 for allneN. 

2.8. Theorem. 0 +, 1 =n for allneN. 

Prosect #9. Prove: 

2.9. Theorem. +, is commutative. 

2.10. Theorem. 2 +, 2 = 4. 

Defining Multiplication. A multiplication function M from N x N 

to N should satisfy: 

(1) M(<n,0>) = 0, and 
(2) M(<n, S(k)>) = M(<n,k>) +n 0. 

2.11. Theorem. There is a function satisfying (1) and (2). 

Notation. We will write a -y b = c for M(<a,b>) =. 
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ProyecT #10. Prove: 

2.12. Theorem. n-y (m+y p) =(n-ym) +n (n'y p) for all n, m, 
peN. 

2.13. Theorem. n -y 1 =n for allneN. 

2.14. Theorem. -\ is associative. 

Project #11. Prove. 

2.15. Theorem. -\ is commutative. 

2.16. Theorem. (n +, m)‘y p =(n-y p) +n (my p) for all n, m, 
peN. 

2.17. Theorem. 2 -, 2 = 4. 

Definition. A relation R on A is irreflexive iff 7xRx for all xe A. 
R satisfies trichotomy iff whenever x, ye A, then one and only one 
of the following is true: xRy, yRx, or x = y. R is called a partial 
ordering if it is irreflexive and transitive. A partial ordering is called 
a linear ordering if it satisfies trichotomy. 

Definition. For all x, ye N, we will say x <y y iff x +4 S(k) = y for 
some keN. 

PROJECT #12. Prove: 

2.18. Theorem. If x <y y then xey, for all x, yeN. 

2.19. Theorem. <, defines a linear ordering on N. 

PROOF OF THEOREM 2.5 

Definition. If me N and A is a function satisfying: 

(1) A(<n,0>) =n, and 
(2) A(<n, S(k)>) = S(A(Xn,k>)) for all kem and neN, we will say 

that A is good for adding numbers up to m. 
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We will prove first that for every m, there is a function good for 

adding numbers up to m. We do this by induction. First, for m = 0. 

A function from N x N to N is a subset of (N x N) x N. If we 

take just the collection of sets <<n,0>,n> for all neN (this is a 

definable subset of (N x N) x N), then this will satisfy (1) easily. 

Since there are no k€0, we don’t have to worry about (2), hence this 

function is good for adding numbers up to 0. 

Now suppose we have a function A good for adding numbers up 

to m. Let A* be the function consisting of: 

(i) all ordered pairs in A, plus 

(ii) the ordered pairs < <n, S(m)>, S(A(<n,m)))>, nEN. 

This guarantees that A* is good for adding numbers up to S(m), 

since if ke S(m), then either k em, and (i) shows that A* works as A 

does, or k = m, and (ii) insures that A* satisfies (2). 

Finally, let A% consist of all sets ¢ <n, k>,d> such that A(<n, k>) = 

d for some A which is_good for adding numbers up to k. 

Clearly A* satisfies both (1) and (2). The domain of A® is all of 

N x N. The only problem is: is A* actually a function? What if A, 

and A, are both good for adding numbers up to k (or more) and 

A,(<n,k>) 4 A,(<n, k>) for some n? If this happens, we would have 

two different values for A* (<n, k)). 
Let X be the set of such k. We will see that X = @, showing that 

A® is indeed a function. First, 0¢ N\X since 

A,(<n,0>) =n = A,(<n,0)). 

Further, if ke N\.X, then S(k)—e N\X, since 

A,(<n, S(k)>) = S(A, (<n, k>)) = S(A2(<n, k>)) = A2(<n, S(k)>). 

By Theorem 2.3(e), N\X = N,so X = &. O 

A very similar argument proves Theorem 2.11. 
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CHAPTER 3 
The Integers 

God made the integers. Ail else is the work of man. 

Leopold Kronecker 

In this chapter we will construct a set to represent the positive and 

negative integers. As before, we will define addition and multipli- 

cation. In addition to the properties proved for N, we will now 

have additive inverses. The key idea in our construction is the use 

of equivalence classes. 

We begin by defining a relation ~ on N x N: 

Definition. <a,b> ~ <c,d> iffat+yd=b4+wyc. 

Project #13. Prove: 

3.1. Theorem. ~ defines an equivalence relation onN x N. 

Definition. Z (the integers) = the collection of all equivalence 

classes of ~. 

Prove: 

3.2. Theorem. Z is a set. 
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Invent: +7, addition for Z. 

PROJECT #14. Prove: 

3.3. Theorem. +7 is commutative and associative. 

Define 07 € Z and prove: 

3.4. Theorem. 07 +7 a = a for all ae Z. 

For all ae Z define “(a)z, and prove: 

3.5. Theorem. a +7 “(a)z = 07 for all ae Z. 

Define <,y on Z and prove: 

3.6. Theorem. <, is a linear ordering on Z. 

Project #15. Define -z on Z, and prove: 

3.7. Theorem. :\ is commutative, associative, and distributive over 

Sry 

Define 17¢€ Z, and prove: 

3.8. Theorem. 17 is the identity for -7. 



CHAPTER 4 

The Rationals 

Numbers are intellectual witnesses that belong only to mankind, and 

by whose means we can achieve an understanding of words. 

Honore de Balzac 

Our next goal is to construct the rational numbers. The method is 

very much like that of the previous chapter. 

| + Project #16. Define Q (the rational numbers). 

ProsEcT #17. Define +g and prove: 

4.1. Theorem. + 9 is commutative and associative. 

Define 0g. Define for all x € Q “(x)g and prove: 

4.2. Theorem. 0g is the identity for +9, and for each xEQ, “(x)g is 

its additive inverse. 

Prosect #18. Define -g and prove: 

4.3. Theorem. ‘g is commutative, associative, and distributive over 

+q. 
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Define 1g. Define for all xe Q, x 4 0g (1/x)g and prove: 

4.4. Theorem. 1g is the identity for -g, and for each xEQ, x # 0g, 
(1/x)g is its multiplicative inverse. 

PROJECT #19. 

Definition. [<a,b>]. is positive iff 07 <za-zb, and negative iff 
az b <z Oz. 

Prove that “positive” and “negative” are well-defined. 

Definition. For r, se Q,r <q s iff s +g “(r)q is positive. 

4.5. Theorem. <g is a linear ordering. 



CHAPTER 5 

The Real Numbers 

Young man, in mathematics you don’t understand things, you just 
get used to them. 

John von Neumann 

We complete our construction of the standard number systems with 

Dedekind’s approach to the real numbers. For various reasons, 

there is a lot more work involved in this task, so we will limit 

ourselves to the definition of R, +p, and 0g, and some examina- 

tion of the difficulties of proceeding further. 

Definition. A schnitt is a subset r < Q such that: 

(1) gerand p <g q imply per; 

(2) r has no greatest element; 

(33) r# D; 
(4) r4Q. 

Definition. R is the collection of all schnitts. 

ProsecT #20. Prove: 

‘ 5.1. Theorem. R is a set. 
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Define <p, and prove: 

‘ 5.2. Theorem. < is a linear ordering. 

Definition. ue R is an upper bound for X CR iff b <gu for all 

be X. An upper bound u is the least upper bound for X iff whenever 

cis an upper bound for X,u <p c. 

Prove: 

5.3. Theorem (Continuity of the Reals). If X © R, X # ©, has an 

upper bound, then it has a least upper bound. 

Definition. For r, se R, r +g s = {ze€ Q| z is the sum of a member 

of r and a member of s}. 

PROJECT #21. Prove: 

5.4. Theorem. For r, sé R, r +, 8 is a schnitt. 

PROJECT #22. Prove: 

5.5. Theorem. +. is commutative and associative. 

Define Og and prove: 

5.6. Theorem. Og is the identity for +p. 

ProJecT #23 (No Proofs). 

Define “(r)g for all re R. 

Define ‘pz. 

Define (1/r)p for all re R, r ¥ Og. 



CHAPTER 6 
The Ordinals 

A mathematician is a blind man in a dark room looking for a black 

hat which isn’t there. 

Charles Darwin 

We wish to extend N, our set of counting numbers, to a larger class 

of numbers we can use to count infinite sets. These will be our first 

type of infinite number, and they will be used to measure the 
“lengths” of large sets. 

Definition. A linear ordering on X is a well-ordering if every non- 

empty subset of X has a least element. A set with a well-ordering is 

said to be well-ordered. 

Definition. An ordinal X is a set with the properties: 

(1) € is a well-ordering on X, and 

(2) ifaeband be X thenaeX. 

It is customary to use Greek letters, «, B, y,... to represent ordinals. 

PROJECT # 24. Prove: 

6.1. Theorem. @ is an ordinal. 
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6.2. Theorem. N is an ordinal. 

6.3. Theorem. If « is an ordinal, then S(a) is an ordinal. 

6.4. Theorem. If « is an ordinal and be€«, then b is an ordinal. 

Definition. It is customary in set theory to write ow for N. 

PROJECT #25. Prove: | 

6.5. Theorem. For «, B, ordinals, « ¢ BoueB. 

6.6. Theorem. ¢€ is a linear ordering on the ordinals. 

6.7. Theorem. ¢€ is a well-ordering on the ordinals. 

6.8. Theorem. If A is a set of ordinals, then UA is an ordinal and is 

the least upper bound of A. 

6.9. Theorem. There is no largest ordinal. 

6.10. Theorem. The collection of all ordinals is not a set. 

Definition. If an ordinal « = S(B) for some B, then « is a successor 

ordinal. If « # 0 is not a successor ordinal, it is a limit ordinal. 

PROJECT #26. Prove: 

6.11. Theorem. q is the least limit ordinal. 

6.12. Theorem (Transfinite Induction). Given a formula o of Z* with 

the property that for all ordinals B: if for every «€ B (a) is true, then 

~() is also true, then p(B) is true for every B. 

We need now (for Theorem 6.13) the last axiom of Zermelo— 
Frankel set theory. 

Replacement: Every definable mapping whose domain is a set is a 
function. 

Specifically, if g(x,y) is a formula in Y*, then “defines” a 
mapping if for all x there is a unique y such that ¢(x, y) is true. The 
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Axiom of Replacement states that if D is a set, then the restriction of 
this mapping to D is a function, that is, {<x, y>|xeD and (x, y))} 
is a set. 

One benefit of this axiom is that we don’t have to distinguish 
between mappings defined by formulas (which don’t have to be sets) 

and functions (which must be sets). If a formula (x, y) defines a 

mapping (that is, for all x there is a unique y such that (x, y) is true) 

then we can represent it as a function f with the understanding that 

this makes sense only if we restrict the domain of f to a set. The 

successor mapping, S(x) = x U {x} is a good example. It is not really 
a function, for its domain includes all sets. Since it is definable, 

however, it is a function whenever its domain is restricted to a set 

(for example, N). 

This axiom completes ZF. All our theorems have been proved 

using only ZF. Later we will introduce a few axioms that have been . 

considered important, and occasionally, worth adding to ZF. Not 

meeting with universal acceptance, they have not been added, but 

they continue to draw interest from set theorists, algebraists, ana- 

lysts, topologists, philosophers, and mathematicians in general. 

Definition. A collection of statements is consistent iff no contradic- 

tion can be deduced from the statements. 

Is ZF consistent? We don’t know and probably never will! A 

famous theorem proved by Kurt Godel in 1931 (the second Incom- 

pleteness Theorem) states that any consistent collection of state- 

ments which has certain common characteristics cannot prove its 

own consistency. Of course, if ZF is not consistent, then it can 

prove anything (for the same reason that a false statement implies 

anything—see Chapter 1); in particular, it could then prove that it 

is consistent! 

We will assume for the rest of this outline that ZF is consistent. 

This is a reasonable assumption for most of us. For most platonists, 

ZF consists of statements that are intuitively true about sets. It is cor- 

rect. For formalists, ZF is either consistent or it is not. Ifit is not, then 

everything follows from it. We need only provide proofs if ZF is 

consistent. Finally, for the practical researcher, no one has found an 

inconsistency in decades of investigation, so it seems fairly safe! 
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Definition. A well-ordered set <B, <, has order-type a, « an ordinal, 

iff there is a one-to-one function f from « onto B which is order- 

preserving that is, Bey implies f(P) <, f(y) for all B, yeu. 

6.13. Theorem. Every well-ordered set has a unique order-type. 

The proof is given at the end of this chapter. 

Now we can construct the arithmetic of the ordinals: 

Definition. For ordinals «, 8, « +, 6 is the order-type of the ordering: 

a B 

(---- )(------------------ ) 
[In detail, let <, be the ordering on «U(1 x f) defined by: 

a <, b iff either: 

(1) a,beaandaeb 

(2) aea, be(1 x B), or 

(3) a,be(1 x B), a = <0, 0), b = <0, d>, and ced.] 

Definition. For ordinals «, B, «-, B is the order-type of the ordering: 

[ \ \ Jacceo=r7 | 
B 

[In detail: let <, be the ordering on « x f defined by: 

<a, b> <, <c, d> iff either: 

(1) bed, or 

(2) b=dandaec.] 

PROJECT #27 (No Proofs). Determine whether or not +, has the 

properties of commutativity, associativity. Does it have an identity? 

Is the right cancellation law true? (If « +, B = y +, B, must a = y?) 

If +, is not commutative, we also ask if the left cancellation law for 
+, is true. 

Determine whether or not -, has the properties of commutativity 

or associativity. Does it have an identity? Do the cancellation laws 
hold? Is -, distributive over +,? 

Notation. It is standard practice to write a < B for «ef, since € is 
our well-ordering on the ordinals. 
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THE PROOF OF THEOREM 6.13. We need first an important theorem: 

6.14. Theorem on Recursive Definitions. If f is any function, then 
there is a function g such that for all ordinals a: 

g(a)=a iff a= f({g(B)IB < a}). 

This is a theorem about building functions level-by-level. The 

functions +, and ‘\y were examples of this. Another example follows 

in the proof of 6.13. Others will come in Chapters 8 and 9. 

ProoF. We can define g by a formula ~(x, y) in Z*: 

“x is an ordinal and there is a function h satisfying: 

h(y) = f(A(B)IB < y}), for all y < x (*) 

and h(x) = y.” 

This defines a mapping, for suppose for some ordinal « and sets 

y, z, both g(a, y) and (a, z) are true, and y.# z. Then there are two 

functions h, and h, satisfying («) with h,(«) = y and h,(«) = z. Let « 

be the least such ordinal. Then 

x = hy (a) = f({h,(B)B < a}) 
= f({ha(B)|B < a}) 
= h(a) == iy 

—a contradiction. By Replacement, @ defines a function g, and g 

satisfies the requirements of the theorem. 

Now to prove 6.13. Suppose B is well-ordered by <,. We apply 

the theorem on recursive definitions to f where f(x) is defined to be 

the <,-least element not in x (if there is one—it doesn’t matter what 
f(x) is otherwise). Let g be the mapping from 6.14 satisfying: 

g(a)=a iff a= f({g(B)IB < «}). 

This implies that g is both one-to-one and order-preserving. Since 

it is one-to-one, the inverse function, g~' defined by: 

ge igo il “g(o) =a 

is also a well-defined mapping. Since the domain of g~' is contained 

in B, it is a set by Comprehension. It follows from Replacement that 

g ' is a function, and hence g as well. The domain of g, a set of 
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ordinals, must be an ordinal, for if g(a) is defined and B < «, then 

g(B) is defined also. Let 6 be the domain of g and let S < B be the 

range. It only remains to show that S = B. But if B\S is nonempty, 

then f(S)¢ B and so 

g(5) = f({g(B)IB < 5}) = fiS) 

and so 6 is in the domain of g, i.e., 6 € 6. This is, of course, impossible. 

O 



CHAPTER 7 

The Cardinals 

My bounty is as boundless as the sea, 
My love as deep; the more I give to thee 

The more I have, for both are infinite. 

William Shakespeare 

We develop in this chapter a second set of infinite numbers to 

measure the size (as opposed to the length) of infinite sets. 

Definition. For sets A and B, we say: 

(1) || A|| = || B|| iff there is a function from A to B which is one-to-one 

and onto, 

(2) ||A|| < || B|| iff there is a function from A to B which is one-to- 

one, and 

(3) ||Al] < |B] iff || Al] < || Bl] but not || Bl| < || Al. 

PROJECT # 28. Prove: 

7.1. Theorem. || @|| < || S(@)|| < ||o||. 

7.2. Theorem. ||@|| < ||Z|| < ||a||. 

7.3. Theorem. ||@|| < ||Q|| < ||@||. 
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ProJECT #29. Prove: 

7.4. Theorem. (The Shroeder—Bernstein Theorem). [f || A|| < ||B|| < 

|| All then || Al] = || Bll. 

7.5. Theorem. ||q@|| = || Z|| = || Q|. 

PRoJEcT #30. Prove: 

7.6. Theorem (Georg Cantor, 1874). || A || < || P(A)|| for all sets A. 

7.7. Theorem (Georg Cantor, 1874). ||@|| < ||R]. 

Definition. An ordinal « is called a cardinal if || B|| < ||«|| for all 

B <a. It is customary to use the Hebrew letter % to represent 

cardinals. 

7.8. Theorem. If A is a set of cardinals, then UA is a cardinal. 

7.9. Theorem. S(q) is not a cardinal. 

7.10. Theorem. The following statements are equivalent: 

(1) The Axiom of Choice (AC): For any set A, there is a function f 

(called a choice function) on A such that f(x)ex for all xe A, 

MFG: 

(2) Zorn’s Lemma: If P 4 & is a set partially ordered by <, such 

that every chain (that is, a set C S P such that <, is a linear order 

on C) is bounded (that is, there is some x € P such that for all ye C, 

y <, x), then P has a maximal element (that is, an element x € P 

such that for no y in P is x <, y). 

Zermelo’s Theorem, or The Well-ordering Theorem: Every set 
can be well-ordered. 

(3 — 

We will prove this theorem in Chapter 9. 

The Axiom of Choice is considered by some mathematicians to 

be an essential part of set theory and mathematics. Others regard it 
variously as optional, irrelevant, or actually false. When added to 

ZF, the resulting system is called ZFC. 

Early in the history of set theory, there were attempts to prove (or 

disprove) AC from ZF. These attempts failed in a very spectacular 
way. 
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7.11. Theorem (Kurt Godel, 1936). It is impossible to disprove AC. 

7.12. Theorem (Paul Cohen, 1963). It is impossible to prove AC. 

These two theorems are startling, to say the least. Mathematicians 
had been prepared for something of the sort by Gédel’s first Incom- 
pleteness Theorem (1931) in which he showed that for any consistent 
set of statements which had certain common characteristics there 
were statements that could neither be proved nor disproved. This, 
however, was the first really concrete example. 

The theorems above are very deep, but in the next chapter we will 
get an idea of how they are proved. 

Prosect #31. 

Definition. A set X is finite ifffor some neN, ||n|| = || X||.X is infinite 

iff it is not finite. 

A set X is Dedekind infinite iff there is a one-to-one function from 

X onto a proper subset of X. X is Dedekind finite iff it is not 
Dedekind infinite. 

Prove: 

7.13. Theorem. Each neN is Dedekind finite. 

7.14. Theorem. If X is finite then it is Dedekind finite. 

Using ZFC prove: 

7.15. Theorem. If X is infinite then there is a function mapping w 

one-to-one into X. 

7.16. Theorem. If X is infinite then it is Dedekind infinite. 

Definition. A set X is countable iff || X || < ||@||. 

Prosect #32. Using ZFC prove: 

7.17. Theorem. The countable union of countable sets is countable. 

7.18. Theorem. If A is countable, then A x A is countable. 
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7.19. Theorem. There is no largest cardinal. 

Prosect #33. Using only ZF prove: 

7.20. Theorem. If f is a function which maps a set X one-to-one onto 

an ordinal B, then there is a well-ordering of X of order-type f. 

7.21. Theorem (Hartog’s Theorem). There is no largest cardinal. 

Definition. For any set A, || A|| is the unique cardinal number % such 

that || A|| = || || (if there is one). For S a cardinal, || %|| = &. We will 

denote the next largest cardinal after 8 by N°. 

Definition. 

Xo = OW 

N= (Xo)* 

Ne, TfOL all mew 

X, = U{&,|neo} 

Rott Sa (N.)* 

and in general, 

X%, = the 4" infinite cardinal. 

Finally, ¢ = ||P(@)|| = ||R|| (c is a German “c” for “continuum”. 

The Continuum Hypothesis. (CH). ¢ = &, 

The Generalized Continuum Hypothesis. (GCH). || P(&)|| = &*, for 

all cardinals &, Xp < &. 

It was Cantor who formulated CH and GCH. He thought it likely 

CH was true and tried to prove it. It is a very natural idea. By 

Theorem 7.7, || R|| is larger than @ = &,, how much larger? 

7.22. Theorem (Kurt Godel, 1936). It is impossible to disprove either 
CH or GCH. 

7.23. Theorem (Paul Cohen, 1963). It is impossible to prove either 

CH or GCH. 



CHAPTER 8 

The Universe 

—listen:there’s a hell 
of a good universe next door;let’s go 

E. E. Cummings 

We now explore some pure set theory, examining the structure of 

the universe of sets. A crucial concept will be that of a set which in 

itself is a universe of sets, that is, all the axioms of ZF are true about 

the members of this set. 

Definition. 

(a) VO)= © 
(b) V(«a + 1) = P(V(q)) for all ordinals a 
(c) V(A) = U{V(@)|a < A} for all limit ordinals 2. 

8.1. Theorem. V(«) is defined and unique for all ordinals «. 

The proof follows exactly the proof of 6.14, the Theorem on 

Inductive Definitions, but define the formula ¢ by: 
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“x is an ordinal and there is a function h satisfying: 

h(0) = 0, 

h(a +, 1) = P(h(a)) forall «<x, 

h(A) = Uf{h(f)|B < A} for all limit ordinals 1 <x, 

and 

A(x. 

Note that as a consequence, not only is V a function, but we can 

express “ze V(a)” in Y%. 

It is customary to write V, for V(q). 

Prosect # 34. Write out: 

Vo, V,, V>, and V, 

using only the symbols “{“, ”}”, and “, ”. 
Prove: 

8.2. Theorem. For all a, xeyeV, > xe V,. 

8.3. Theorem. 6 < «— V; S V,, for all ordinals « and 6. 

Prosect #35. Prove: 

8.4. Theorem. Every set is in some V,. 

Definition. A cardinal x is regular if whenever X C k, ||X|| < x, then 

UX <x. If x is not regular we say it is singular. 

ProsectT #36. Prove: 

8.5. Theorem. « is regular. 

8.6. Theorem. &, is singular. 

8.7. Theorem. If we assume AC, then &, is regular. 

Definition. A cardinal x > @ is strongly inaccessible if it is regular 

and if whenever ||X|| <x, ||P(X)|| < x. Note that ||P(X)|| makes 
sense only if we can well-order P(X). 
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PROJECT # 37. Prove: 

8.8. Theorem. @, %,, %¢ and &,, are not strongly inaccessible. 

8.9. Theorem (AC). If « is strongly inaccessible and « <« then 

[Vall <x. 

ProsecT #38. Prove using ZFC: 

8.10. Theorem. If « is Sr Cuny inaccessible, then all the axioms of ZF 
are true in V,.. 

Definition. If T is a set of axioms (called a theory) and every axiom 

of T is true in a set X, then X is a model of T. 

Theorem 8.10 states that if « is strongly inaccessible then V, is a 

model for ZF. 

Definition. If T is a set of statements, Con(T) is the assertion that T 

is consistent. 

EXAMPLES: 

(1) We have been assuming (starting in Chapter 6) that Con(ZF) is 

true. 

(2) Gédel’s second Incompleteness Theorem (Chapter 6) stated that 

if Con(T), then Con(T) can’t be proved from T (for suitable T)). 

(3) An earlier theorem of Gédel connects the ideas of models and 

consistency. The Completeness Theorem (1930) states that if 

Con(T) is true then T has a model (the converse is trivially true). 

We introduce another axiom: 

SI. There exists a strongly inaccessible cardinal. 

(4) In the light of (3), Theorem 8.10 says that ZFC + SI implies 

Con(ZF). In fact, with more work we could prove ZF + SI 

implies Con(ZF). 

(5) Theorems 7.11 and 7.12 can be rewritten as: 

Con(ZF) > Con(ZF + AC) 

Con(ZF) > Con(ZF + AC). 
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ProoF. Assuming that ZF is consistent, then ZF cannot disprove 

AC or AC, and so both ZFU {AC} and ZFU {AC} are 
consistent axiom systems.) 

These are called relative consistency proofs. We can’t prove 

Con(ZFC), but we can prove that it follows from Con(ZF). Early 

set theorists worried that adding AC to ZF might create an incon- 

sistency. Gddel’s theorem says not to worry, that if the combination 

of ZF and AC is inconsistent, then ZF is inconsistent all by itself. 

This means that AC is a relatively “safe” axiom. So is AC, via 
Cohen’s theorem. 
How does one prove relative consistency? Gédel’s theorem, that 

Con(ZF) implies Con(ZF + CH) proceeds as follows: if ZF is con- 
sistent, then there is a model M for it. Gédel then found that any 
such model has a (possibly smaller) model, L, inside it which satisfies 
both ZF and CH. Since it has a model, ZF + CH must be consistent. 
Cohen proved his theorem by taking Gédel’s model L and delicately 
expanding it to form a model N in which ZF and CH are both 
true, hence Con(ZF + 71CH). 

What about the axiom SI? How safe is it? 

8.11. Theorem. Con(ZF) does not imply Con(ZF + SI). In other 
words, we can’t prove that we can’t disprove SI! 

Proor. Consider T = ZF + Con(ZF) and suppose that Con(ZF) > 
Con(ZF + SI). 

Then T > ZF + Con(ZF + SI) 

— ZF + Con(ZF + Con(ZF)) (by (4) above) 

— Con(ZF + Con(ZF)) 

— Con(T) 

—but T can’t imply its own consistency by the second Incomplete- 
ness Theorem. ial 
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Choice and Infinitesimals 

I will not go so far as to say that to construct a history of thought 

without profound study of the mathematical ideas of successive 

epochs is like omitting Hamlet from the play which is named after 

him. That would be claiming too much. But it is certainly analogous 

to cutting out the part of Ophelia. The simile is singularly exact. For 

Ophelia is quite essential to the play, she is charming—and a little 

mad. 

A. N. Whitehead 

We prove here Theorem 7.10 which offers three equivalent forms of 

the Axiom of Choice. We then use AC to construct a system of 

numbers called the Hyperreal numbers (HR). This system extends R 

as R extended @ and Q extended Z. HR contains both infinite 

numbers and infinitesimals. 

ProJEcCT # 39. Prove: 

9.1. Theorem. The Axiom of Choice implies Zermelo’s Theorem. 

9.2. Theorem. Zermelo’s Theorem implies Zorn’s Lemma. 

Prosect #40. Prove: 
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9.3. Theorem. Zorn’s Lemma implies the Axiom of Choice. 

This completes the proof of Theorem 7.10. 

Definition. % < P(q) is a (non-principal) ultrafilter on o iff 

(a) if A, BeW then AN BeY, 

(b) if ||Al| < m then w\AeY, and 

(c) for all A Sa, either A or w\A is in &. 

Prove using ZFC: 

9.4. Theorem. There is an ultrafilter on o. 

For the rest of this chapter, let Y be an ultrafilter on w. Assume, 
furthermore, all the usual facts about the real numbers which we did 
not prove in Chapter 5. 

Definition. Let y = {f|f is a function from @ to RR}, and define a 
relation, ©, on x by: 

fg iff {nealf(n) =gn}eu 

PROJECT #41. Prove: 

9.5. Theorem. & is an equivalence relation. 

Definition. HR (the hyperreal numbers) is the collection of all equiva- 
lence classes of &. 

Definition. [ f]~ <jg [g]z iff {nea| f(n) <p g(n)}e%. 

Prove: 

9.6. Theorem. <; is a well-defined linear ordering. 

Definition. For each re R, let f,€ y be the function: 

f,(n) =r for all n (a constant function). 

Definition. x € HR is infinite iff either 

(1) x <ie Lf] for all re R, or 
(2) x >un Lf Jz for allreR. 
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Prove: 

9.7. Theorem. HR contains infinite numbers. 

Definition. x € HR is an infinitesimal iff 

(1) x #Lfolz, and 
(2) x <ip Lf-]z for all re R, r > Op, and 

(3) x >ar Lf] for all re R, r <p Og. 

Prove: 

9.8. Theorem. HR contains infinitesimals. 

The Hyperreals were developed in 1960 by Abraham Robinson as 

an alternative approach to the calculus. The early practitioners of 

the calculus (17th—19th centuries) spoke glibly of infinitely large and 

infinitely small quantities. While the ideas were extremely fruitful, 

there was considerable uneasiness that these notions seemed to have 
no foundation (mathematical or otherwise). Great minds would use 

infinitesimals one way and derive true theorems. Others would 

reason similarly and arrive at contradictions. Leibniz, one of the 

original discoverers of the calculus, always insisted that infinite 

quantities could be treated just like finite ones. There were limita- 

tions, however, and it was never clear what they were. Eventually 

these ideas were replaced by the theory of limits. 
Robinson rescued the method of infinitesimals and in doing so 

discovered what the “limitations” were. 

Definition. Let Zz be the mathematical language constructed like 

LY, but with three changes: 

(1) the symbol “e” is not included, 

(2) symbols for +, and ‘pg are included, and 

(3) a constant symbol for each real number is included, as well as a 

function symbol for each real function. 

Robinson proved: 

9.9. Theorem. If ¢ is a statement written in Lp, then ¢@ is true about 

R iff and only if ¢ is true about ER. 



44 Part One 

The limitation, in other words, is that we must restrict ourselves to 

the language Lp. 

Project #42. (No Proofs). Define + :2 and ‘yg. 

Let H, K € HR be positive and infinite. Let I, J ¢ HR be positive and 

infinitesimal. Determine whether the following statements are true 
or false: 

(1) H + 2 K must be infinite. 

(2) I-ye J must be infinitesimal. 

(3) I +ip J must be infinitesimal. 

(4) He Cfo, ]z must be infinite. 

(5) Ite Lfioo]z must be infinitesimal. 

(6) There is a largest finite hyperreal. 

(7) There is a largest infinite hyperreal. 

(8) There is a smallest infinite, positive hyperreal. 

(9) sin*(H) +2 cos?(H) = [fi lz. 
(10) Every bounded subset of HR has a least upper bound. 

The hyperreals [ f,]~ constitute an exact copy of R inside HR. In 
this sense, HR is an extension of R. HR contains other numbers as 
well, infinite numbers and infinitesimals. The following theorem 
offers a clearer picture of the order structure of HR. 

9.10. Theorem. Every finite hyperreal is infinitely close to a unique 
real, that is, for all finite x € HR, there is a unique re R such that the 
difference between x and [ f,]z is either infinitesimal or [ fo] as 
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Goodstein’s Theorem 

For nothing worthy proving can be proven, 

Nor yet disproven 

Alfred Lord Tennyson 

This chapter is devoted to a remarkable theorem proved by R. L. 

Goodstein in 1944. It is remarkable in many ways. First, it is such 

a surprising statement that it is hard to believe it is true. Second, 

while the theorem is entirely about finite integers, Goodstein’s proof 

uses infinite ordinals. Third, 37 years after Goodstein’s proof ap- 

peared, L. Kirby and J. Paris proved that the use of infinite sets is 

actually necessary. That is, this is a theorem of arithmetic that can’t 

be proved arithmetically, but only by using the extra powers of set 

theory! 

To describe the theorem, we must discuss what it means to write 

a number in “superbase 2.” Take a number, for example, 23. Writing 

this in base 2: 

which stands for the sum: 

OF DF 2h 2? 

This expression has a “4” in it. In superbase 2 we want to eliminate 
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all numbers greater than 2, so we write 4 also as a sum of powers of 

2: 4 = 27, so we have: 

D3 ee th or 2) eer 

For a larger number we might have to go further, for example, 

5142? 4+ 2 

= 27042 

me eA) ioe 

The same principle applies to superbase 3, superbase 4, etc. 

Here is the theorem: 

Take any natural number, write it in superbase 2. 

Replace all the ‘2’s with ‘3’s. Subtract 1. Rewrite in superbase 3. 

Replace all the ‘3’s with ‘4’s. Subtract 1. Rewrite in superbase 4. 

Goodstein says that eventually you will reach the number 0! 

If we follow the steps for a small number, 8: 

(start) ete 8 
30+) — 81 (changing ‘2’s to ‘3’s) 

(after 1 step) 2-3°+2-374+2-34+2=80 (—1, rewrite) 
2:444+2-444+2-442= 554 (3’ to ‘4’s) 

(after 2 steps) 2:44+2-474+2-4+4+1 = 553 (—1, rewrite) 
2:5°+2-574+2-54+1=6311 

(after 3 steps) 2-5°+2-57+2-5= 6310 
2:6°+2:-6%7+2:6 = 93396 

(after 4 steps) 2-6°+2-6%7+6+4 5 = 93395 
and so on. 

The next few numbers are: 1647195, 33554571, 774841151, 

20000000211, and 570623341475. How can we possibly get to 0? 

Definition. For each n < w, 2 < n, we define a function S, from @ to 

w as follows: 

S,(0) = 0 

Sk -n') = k(n + I) ifk <n, 

and 
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where ko.<:.3 Ky <7. 

Definition. For each n < w, 2 < n, we define a function g, from a to 
@ as follows: 

g2(m) = S,(m) — 1 

and 

In+i1(m) = S,41(9,(m)) —1, for2 <n. 

10.1. Theorem (Goodstein, Kirby, Paris). Vming,(m) = 0. 

This is actually an extension of Goodstein’s original result, due to 
Kirby and Paris. 

PRosEcT #43. 

(1) Calculate g,(11), g3(11), ..., gg (11). 

(2) Find the smallest n such that g,(3) = 0. 

(3) Estimate the smallest n such that g,(4) = 0. 

Definition. For ordinals «, 8, 4, where / is a limit ordinal, 

at =o 

peek 2B BG 

a= Uo? lo <A}. 

Definition. For each n < w, 2 < n, we define a function f, from @ to 

the ordinals as follows: 

f,(0) = 0 

fk -n') =of-k, ifk <n, 

and 

fa Dba: n') = ¥ halk», 
minete ky; ..., hg <i. 
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Prosect #44. Prove: 

10.2. Lemma. For all n,m < o, f,(m) = f,,+1(S,(m)). 

10.3. Lemma. For all n,m < o, f,(m + 1) > f,(m). 

10.4. Lemma. For all n,m < o, if g,(m) > 0 then 

Sn+2(Gn41(™)) < fn41(Gn(m)). 

Prove Goodstein’s Theorem. 

Why are infinite sets needed to prove Goodstein’s Theorem? Set 

theorists describe arithmetic as consisting of the four Peano’s 

Axioms of Chapter 2. Actually, the induction axiom is only stated 

to hold for definable sets. This system is called PA. Goodstein’s proof 

uses ZF. In the years following Goodstein’s proof, set theorists and 

number theorists searched for a proof that used only PA. Finally in 

1981, Kirby and Paris showed that Goodstein’s Theorem actually 

implied the consistency of PA, and thus by Gédel’s second Incom- 

pleteness Theorem (Chapter 6), PA can never prove Goodstein’s 
Theorem. 

This brief explanation passes over quite a bit of intricate mathe- 

matics. Goodstein’s Theorem is a deep fact of numbers, logic, and 

sets that links together much of the material in this outline. A key 

ingredient is the use of nonstandard models of arithmetic—formed 

from N in the same way that HR was formed from R in the last 
chapter. 
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SUGGESTIONS 
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CHAPTER 1 
Logic and Set Theory 

Prosect #1. 1. These are the answers to a few: 

(i) T (iii) F (v) T. This is true since bec is false. It may seem 

peculiar that @ — w, which we sometimes read as “g implies w” and 

sometimes as “if g then yy,” is automatically true if ¢ is false. In fact 

this occurs in ordinary English as well. There is a law where I live, 

for example, that forbids parking at night during the winter months. 

This can be expressed more precisely as “If it is between the hours 

of 12 AM and 7 AM ona morning in December, January, February, 

or March, then you may not park your car on the street.” This is a 

municipal implication, and I find I can obey it without any effort in 

June. Since the first part of the implication is false, it doesn’t matter 

where I park (as far as this law is concerned). 

(viii) T (xiii) F (for example, b). 

2. For (xiii), tes is a statement by (1), 4t(tes) is a statement by 

(2g), and so Vsit(t €s) is a statement by (2f). 

Prosect #2. You are really being asked to learn a new language 

and translate it. In approaching each problem, try to put into 

English what each part means. For example, let’s look at (vii). 

4z(ze€x) tells us that x has at least one member, z. (we x > w = 2Z) 

tells us that if w belongs to x, then w is equal to z. Since “Vw” appears 

before this, it is true for all w, and so this really says that z is the only 
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member of x. Putting these together, statement (vii) says that x has 

exactly one element. Thus x must be the set e. 

Be careful that you recognize in these problems the difference 

between © ande.e <b but e¢b.deb but 1d Cb. 

Project #3. Now we translate from English to Y, a more difficult 

task. An example: the pair set axiom. We want to say something 

about any two sets, so on the outside we should have: VcVd. This 

axiom says that there exists a set, so next we have de. What is the 

relationship between c, d and e? In fact it is just e = {c,d}, and we 
are done: 

VeVdie(e = {c,d}). 

For practice, if we didn’t have the abbreviation {c,d}, how could 

we express this? To say c and d are members of e, write cee A dee. 

To say that these are the only members of e, is to say: whenever f is 

in e, then f must be either c or d: 

Wifeaotl =cvij=d)) 

Putting these together: 

VeVdde(cee ndeenY(feeo(f=cv f=a))). 

Keep in mind the rules of statement formation (1) and (2) stated 

earlier. Be sure you can verify (as we did in Project #1) that your 
answers are legitimate statements. 

Project #4. 1.1. Use Pair Set first, then Union. 

1.2. Show that Af B is a definable subset of A, then use Compre- 
hension. Don’t forget to write down in Y (together with constants 
for sets) the explicit statement @. 

1.3. Use Pair Set. 

1.4. This is our first use of Regularity. This axiom seems very 
strange at first, but it recognizes a fundamental property of sets: that 
each set, no matter how complicated, is composed of sets which 
are somehow less complicated. Think of b (in the statement of 
Regularity) as being the simplest element of d. Then all of b’s mem- 
bers are simpler than b (hence not in d). To prove 1.4, apply Regu- 
larity to the set {A}. 
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One consequence of this theorem is that Russell’s paradox no 
longer haunts us. Actually, the paradox disappears even without 
using Regularity. Instead, we simply have a proof that R = {x|x¢x} 
is not a set (because if it were, then we would have Re Riff R¢é R—an 
impossibility). 

1.5. Tricky again—apply Regularity to {A, B}. 

1.6, 1.7. Use Extension. 

Prosect #5. {a,b} fails, for example. If c 4 d, then we want <c,d> 

and <d,c> to be different sets, but {c,d} and {d,c} are the same set. 
{ {a}, {b}} and {a, b, {a, b}} fail for similar reasons. 

{a, {b}} fails for a different reason. Suppose c 4 d. Then we want 
<{c},d> and < {d}, c> to be different sets, but if we used the definition: 
<a, b> = {a, {b}}, then they would be the same. 

To show that { {a}, {a, b}} succeeds, you must show that whenever 
me <0, D}} —"\ 1c). 10,4), then a = c and b =a. 

1.8. Show that A x Bis a definable subset of P(P(A U B)). 

1.9. Show that the range of f is a definable subset of U(U/). 

1.10. Show that f | D is a definable subset of /f,. 

Prosect #6. 1.12. Use Comprehension. 

1.13. Suppose that [a]p,N [blr ¥ GW. Show first that aRb. Remem- 

ber that to prove two sets x and y equal, you should show: (i) that 

every member of x is also a member of y, and (ii) that every member 

of y is also a member of x. 

1.14. Use Comprehension. 
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CHAPTER 2 
The Natural Numbers 

PROJECT #7. 2.2. Suppose a and b both satisfy the Axiom of Infinity. 
Apply Regularity to the set (a\b) U(b\a). 

2.3. (d) Use Theorem 1.5 | 

(e) Apply regularity to N\A. 

2.4. Let A = {ke Nl o(k)}. 

PROJECT #8. 2.6. By induction on c: let g(c) be the statement: 

VaVb(a +y (b +x Cc) = (4 +n b) +y €). 

2.8. By induction on n: let g(n) be the statement: 0 +y n =n. 

Prosect #9. 2.9. Commutativity turns out to be much trickier 

than associativity. Try this: first provea +y 1 = 1+, aforallaeN 

(by induction), then prove a+,\yb=b+ ,a from this (also by 

induction). 

Prosect #10. 2.12. Use induction on p. 

2.13. You don’t need induction. 

2.14. Use induction and 2.11. 
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ProsecT #11. 2.15. Once again, the commutative law is the most 

difficult. First show 0-, a =0 for all aeN. Next, start to prove 

ay b = b-y a using induction on a. In the middle of the proof, you 

will be assuming a-\ b = b-, a for all be N and will be trying to 

prove S(a) -y b = bx S(a) for all be N. In order to do this, you will 

have to use induction again, this time on b. This kind of proof is 

sometimes called a double induction proof. 

ProjJecT #12. 2.18. Use induction on y. Remember that if z 4 0, 

then z = S(k) for some k. Remember also that S(y) = yU {y}. 

2.19. Use 2.18 to help prove irreflexivity. Use induction to prove 

trichotomy. 



CHAPTER 3 
The Integers 

PROJECT #13. 3.1. As-you try to prove transitivity you will realize 

that you are missing an important fact about N, a cancellation law: 

If a+yb=a+tye thenr: bi=tc) 

Call this fact Lemma 2.20 and prove it. Notice that this rule is like 
subtraction. It is just what is needed to define Z. 

Defining +z: and why are we expanding from N to Z? Basically 

so that we can subtract. Think of each ordered pair <a, b> as being 

the answer to the question: what is a — b? For example, <3, 2) in Z 

is really 1, and <2,5> is really —3. With this insight, the problem of 

deciding what [<a,b>]. +z [<c,d>]. is, is the problem of finding 

a[<e, f>]~ such that (a — b) + (c — d) = (e — f). 

What should e and f be? Remember, they must be in N, like a, b, 

c, and d. In fact, there are many possibilities, but the easiest is: 

e=at+yc,f=b+nd. 

We are not done yet, however! We must show that +7 is well- 

defined. We have decided that 

[<4,b>]- +z [Xo], = [Xa +n ob +n > ]Q. 

What this really means is that given k and t in Z, we compute 

k +7 t by choosing a pair (a,b) €k and a pair <c,d) €t (remember, 

integers are actually sets of pairs of natural numbers) and forming 

[<a +y ¢c,b +y d>] .. But what if we had chosen different pairs 

<a’',d'> ek and <c',d')> et? We now get [<a’ +y c,h’ +y d’>]_. If 
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our addition makes sense, our two answers should be the same, that 

is, if <a,b> ~ <a’,b’) and <c,d> ~ <c’,d’>, then we should have 

{a+yc¢,b +y d> ~ <a’ +n, c',b’ +x d'>. Prove this. This is what is 

meant when we say +7 is “well-defined.” 

Leopold Kronecker (quoted at the start of the chapter) would not 

have approved of our construction of Z. Most especially he would 

have objected to the use of infinite sets (each [ (a, b> |. € Z 1s infinite). 

Toward the end of his career, Kronecker doubted strongly the 

existence of infinite sets. With a little imagination, the reader can 

probably see how we could construct a set equivalent to Z in which 

each member is a finite set. 

Project #14. To define 07: choose a particular [<a,b>]. which 

will make it easy to prove Theorem 3.4. 

To define —(a)z: if we think of <c,d> as meaning c — d, then the 

negative of this is d — c, that is, —([<c,d>]/)z = [<d,e>]_. Once 

again, you must show that this definition is well-defined, that is, if 

Kod i ~wiccd®ythend,c wad se: 

To define <z: the natural definition is [<a,b>]. <z[<c,d>]_ iff 

a+yd<y b+, c. To prove this is well-defined, you will need an- 

other lemma about N: for all a,b, ceN, a <y bDiffat+yce<yb+ye. 
Call this Lemma 2.21 and prove it. 

3.6. Note that from Lemma 2.21 we know that if a<, b and 
C <y d then a +y ¢ <y b +y d (why?). 

Projecn-# 15. .)To:~ definé++[ (a,b>]in-3 Iced | 45.4 think «of 
(a — b)(c —d) = ac + bd — bc — ad. This suggests the answer: 
[<(a nC) +n (‘ny d), (by C) +x (ay d)>]-. Proving this is well- 
defined is arduous. Use the fact that x = y implies x -y z = Yn Z 
and use it frequently. 

In one sense, N and Z are completely different sets. In another, Z 
contains something that looks just like N, namely the collection: 

{L<n,0>]. €Z|neN}. 
Without being precise, this set behaves just like N. In this sense, we 
say that N is embedded in Z. 
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The Rationals 

Project #16. When we expanded from N to Z, we acquired sub- 
traction (think of a—b as a+z “(b)z). We did this (sort of) by 

forming Z as the collection of all subtraction problems: each <a, b> 

representing a — b. That is how we arrived at the relation ~. <a, b> 

and <c, d> should represent the same number iffa — b = c — d. Since 

we can’t subtract in N, we rewrite thisasat+yd=b+4yc. 

Now to expand Z to Q, we wish to acquire division. We can think 
of © as ordered pairs <a, b>, a, be Z, which will represent division 

problems, a/b. Of course b can’t be 0. Again, <a, b> and <c,d> should 

represent the same number iff a/b = c/d. Since we can’t divide in Z, 
we have to rewrite this. 

Definition. We define a relation ~ on Z x (Z\{0z}) by: 

<a,b> = <c,d> iff a-zd=b-z.«. 

Show this is an equivalence relation. It won’t be easy! You will 

need a lemma: for p, g, reZ, q #07 and p:7q =r-zq, then p=r. 

This is a cancellation law for-z. There are many ways to prove this. 

Try your own, or follow this outline: 

(1) First prove a concellation law for -,, 

(2) Assume that p = [<4j>]~,q =[<k,s>]-,r =[<tu>]~, q 4 02, 
and that p -7 gq = r-z q and write out what this means. With luck, 

you will arrive at: 
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(i + U) yk) +y (i +n 2) *n'S) 

= ((i +y U) y S) tu (J +n t) wy K)- 

Use <j, trichotomy on k and s to finish the proof. Note thatk 4 s 
(why?). 

Once again we are using infinite sets to build Q, and once again 

it could be done (with some difficulty perhaps) with finite sets. 

PRroJEcT #17. How do you add fractions? What is (a/b) + (c/d)? It’s 

(ad + bc)/bd. You must prove that b -7 d won’t be 07, and don’t forget 
to show +g is well-defined. 

Definition. 0g = [<0z, 17)]~, where 17 = [¢1,0)].. 

Definition. “([<p,q>]~)a = [<(p)z, >] ~- 

To show this is well-defined, you may need another lemma, but 
it is possible to prove it directly. 

PROJECT #18. 

How do you multiply fractions? 

What fraction equals 1? 

What fraction times a/b equals 1? 
There is a lot of work in this project, but it is not very tricky. 

As before, Z and Q are completely different, yet Z can be em- 
bedded in Q. Can the reader find a copy of Z in Q? 

ProJECT # 19. This one is difficult, primarily because there are many 
facts about <z we never bothered to prove. The best general advice 
is to try proving 4.5 and make a list of all the facts you need to do 
the job. You can try this without reading further, or you can use the 
following more detailed suggestion: 

Definition. x € Z is pos iff 07 <z x, and neg iff x <z 05. 
Prove: 

3.10. The sum of two pos numbers is pos. 
3.11. The sum of two neg numbers is neg. 
3.12. x is pos iff ~(x)z is neg. 
3.13. The product of two pos numbers is pos. 
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3.14. The product of a pos and a neg is neg. 
3.15. The product of two neg numbers is pos. 
4.6. The sum of two positive numbers is positive. 
4.7. The sum of two negative numbers is negative. 

In proving some of these, you may have to go back (once again) to 
N and the definition of <y. 

Further hints: it will be necessary to break up into cases. For 
example, if [<a,b>].~ is positive, then consider separately Case 1: 
O7 <74, 07 <zZ b, and Case 2: a <z 07, b <7, Oz. 
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CHAPTER 5 
The Real Numbers 

Prosect #20. In thesé studies, we have seen mathematics pulling 

itself up by its bootstraps. N was formed from @. Lacking subtrac- 

tion, we created Z out of the subtraction problems themselves. 

Lacking division, we created Q out of the division problems. What 

do we lack now? Quite a few numbers really. We can’t take square 

roots, for example, but many other important numbers are missing. 

There are “holes” in the rational number line. If we cut the line in 
two, we get two sets. 

2S Se ee eee | re ees ia: 

It might be that the set on the left has a greatest element: 

cas iF {xe Q|x<3} 45s peal ta {x€ Q|x>3} 

or it might be that the set on the right has a least element: 

{xe Q|x<5} {xe Q|5<x} 

but it might happen that neither of these is true. 

{xe Q|x3<2} {x € Q|x3>2} 

This is a hole (in the case above, the hole is where 2/9 should go). 

Every time we cut the line, there should be a number, either on the 

left or the right. What we do is to create R as the set of cuts (schnitt 
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is German for “cut”). Each cut is represented by the set on the left. 

We include property (2) of schnitt so that the sets {x ¢ Q|x < 3} and 
{x €Q|x < 3} don’t represent two different numbers. 

There is something very satisfying in this approach. We are always 
creating new numbers systems out of “unsolved problems.” —5 is 
the unsolved problem: what number when added to 7 yields 2? 2/3 
is the unsolved problem: what number when multiplied times 3 
yields 2? Finally, oe is the unsolved problem: goes in the hole 
between {x € Q|x° < 2} and {xe Q|x? > 23? 
Now to define <g: when is one schnitt r less than another, s? 

ae = =e a ) a aA a SIG ame ae 

ee es = = aa roa ee a as ) eee me ees 

Clearly, when r ¢ s. Since we don’t want r = s, we should insist: 
GAS 

5.3. Let r = UX. Show that r is a schnitt. Show it is the least 
upper bound of xX. 

This was not the only way to construct the real numbers. Another, 
more familiar method, is to use infinite decimal expansions. Yet 
another is to use equivalence classes of Cauchy sequences. Notice 
that all of these approaches require infinite sets. Kronecker (see the 
suggestions for Project # 13) recognized this and mistrusted the real 
numbers as a consequence. His declaration that z does not exist is 
frequently quoted. 

PROJECT #21. 5.4. Most of the four characteristics of a schnitt are 
easy to verify if you have a few lemmas about <g. You will probably 
need: 

(a) x, ye Qimplies “(x +o Ya = “(a +a “(oand “(“(e)a = x. 
(b) Forw, x, ye Q, w <g xand y <g zimply w +e Y <q X + @ Z.and 

to prove this, use: 
(c) Lemma 4.6 (see Project #19). 

You may need others, depending on the route you take! Keep in 
mind this picture of a schnitt: 

aa —) a see a ites 
(no largest element) (may have a smallest element) 
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My teacher would always tell me: “Follow your nose.” All very 
well if you have a good nose! Still, the advice has some meaning. 
For example, to show that if a <gband ber+ags thenaer+rs, 
we follow our noses. What do we know? We know ber +S, SO 
b= xX +@ yfor some x er, yes. What do we want to show? We want 
a=x'+q/yJ’ forsome x’er, y’€s. So our job is to find two numbers 
x’ and y’ which add up to a. They should be smaller than x and y, 
and if x’ < x and y’ < y, then we will automatically have x’ er, y'es. 
When in doubt, try the simplest approach first—if it doesn’t work, 

find out why. Here, the simplest approach is to let x’ = x and just 
make y’ be smaller than y. Let y’ be smaller than y by the same 
amount that ais smaller than b, i.e., let y’ = y +g a +g ~(b)g. In fact, 
this works. 

PROJECT #22. 5.5. For r, s, tER, it is helpful to look at {xe Q|x = 

a+qb+qc,aer, bes, cet}. 

Definition. 0g = {x €Q|x <g 0g}. 

Why is this a schnitt? To show q€ 0k is not the greatest element, 

consider p = q ‘gq (1/(1lqg +e 1a))a- Note that g <g 0g iff ~(q)q is posi- 
tive. To show that “(p)g is positive, consider g +g “(P)a ta (Do 
and use 4.7 (Project #19). 

5.6. Follow your nose! It is not hard to showr +. Og € r. For the 

other direction, if 7 +, Og <r, then there is a y: 

Use the fact that r has an element z greater than y, and that 

ytq (Z)o€ Or. 

ProJECT #23. Suppose we are given r 

and we wish to find the negative of r. Our first thought is to flip this 

x 

Se Boel See Bee ae —————-——)--- : = 

r Q\r 

over, that is, take {xe Q| (x)geQ\r}: 



66 Part Two 

= —= 55-55 = == 8 === === ---- I 
which would mean that “(r)g would have a greatest element. 

‘3s rei 2B a] (se ct SRE lt ee St AE ee 

What should we do? 

To define r -g s, first consider the case where Og <gr, s. Use this 

to complete the definition. 

Once again, © can be embedded in R. Can the reader find a copy 
of Q in R? 
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The Ordinals 

PROJECT #24. We meet here yet another of the many faces of 
induction. Under ordinary circumstances the following principles 
(on any linearly ordered set) are the same: 

(1) < is a well-ordering 

(2) every nonempty set has a least element (least with respect to <) 

(3) there are no infinite descending chains a, > a, >a3;>°°°. 

(4) (Induction) If a property P is true for the first element, and if 

whenever P holds for all x below a given z it must also hold for 

z, then P holds for all elements. 

6.2. Before we start proving sets ordinals, notice that to prove (1), 

we don’t have to show irreflexivity (why?). Furthermore, we don’t 

have to show that every subset has a least element, because this 
follows from Regularity. Prove: 

6.2a. Lemma. If A is a set, then A has an €-least element. 

—which gives us: 

6.2b. Corollary. X is an ordinal iff 

(1’) € satisfies transitivity 

(2’) € satisfies trichotomy 

(3’) ifaebeX thenaex. 
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Now for N, show that <j, and € are the same to verify (1’) and 

(2') (you have already done half of this). 

By the way, it is very easy to confuse (1’) and (3’). To make matters 

worse, the property (3’) is usually expressed by saying that X (a set, 

not a relation) is transitive. They are not the same. For fun, find a 

set satisfying (1) but not (3’), then find a set satisfying (3’) but not (1’). 

6.3, 6.4. You can grind these out, but often there are also ways of 

shortening the proofs. Try for clean, direct arguments. 

PROJECT #25. 6.5. One way is easy. For the other, show « = the 

least element of B\«. 

6.6. What does this mean? The collection of all ordinals may not 

be a set (in fact it isn’t). If you look at the definition of a linear 

ordering on a set (pp. 17—18), you will see that the definition makes 

sense in this context as well, but it is a good idea to write it out. 

You will need to use Theorem 6.5. In trichotomy, if « 4 B, then 

either «\$ or P\« will not be empty. If, for example, «\B 4 @, show 

that f is its least element. 

6.8, 6.9. Having gone this far, you will not be stumped here. It is 

worth the effort, however, to find the nicest possible proofs. Mathe- 

matics is something of an art, and every mathematician (and student 

of mathematics) is something of an artist. 

6.10. In the early days of set theory, the “set of all ordinals” gave 

rise to a paradox nearly as famous as Russell’s. The Burali—Forti 
paradox was that the set of all ordinals, Q, was well-ordered, hence 

it had an order-type (Theorem 6.13), «. Then «€Q, and since a + 1 

is also an ordinal, « + 1EQ, but « is the “length” of Q, and if 

a+ 1eQ, then « + 1 < a—impossible. 

Our conclusion, of course, is that Q is not a set. You do not have 

to appeal to 6.13 to prove this, 6.8 and 6.9 will suffice. 

PROJECT #26. 6.12. The words “transfinite induction” are enough 

to send shudders through many a professional mathematician. On 
the other hand, the principle is really quite simple to a set theorist. 
As noted in the suggestion for Project #24, this is nothing more 
than the fact that € well-orders the ordinals. 
We will be using this principle later, and it will be just like 
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induction on N with one exception. On N it was enough to show: 

(1) (0), and 
(2) for all n, if p(n) then p(n +, 1). 

This suffices because every neEN is either 0 or n+, 1 for some n. 
This is not true in transfinite induction because of limit ordinals. We 
will then have to prove: 

(3) if p(«) is true for all we A, A is a limit ordinal, then ¢(A) is true. 

In practice, (1) and (3) are usually easy, and (2) will provide the 
only difficulties. 

PROJECT #27. First, a word about the proof of Theorem 6.13: what 

is really going on here is that we construct order-isomorphisms. For 

each well-ordered set X, we show that we can construct a function f 

from a unique ordinal to X, such that f is one-to-one, onto, and 

preserves the ordering, i.e., ce f iff f(x) < f(B). This ordinal then, 

has exactly the same length as X. The two sets can be lined up and 

matched to each other, without reordering them, and with all ele- 

ments corresponding. This idea is crucial in the definitions of +, 

anus’, 

To understand +,, imagine adding w +, 1. We take a sequence 

of ‘(]’s of length o: 

eB CL [] eee 

and one of length 1: 

LJ 

and place the second after the first: 

(EWES } (ta) 

The result is: 

AEE D> Mpa WC Katara 

which is the next ordinal after w, or S(w). Now suppose we add 

2+, w. We take a sequence of “[]’s of length 2: 

a 

and one of length w: 

eel ides: 
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and place the second after the first: 

fea he |e ad | ABE | Eien) 
The result is: 

FF fe RN ee 

a string of boxes of length w! If this seems odd to you, imagine that 

we have a gigantic measuring device to measuring the order-types 

of well-orderings. It consists of an infinite sequence of slots: 

POE Ee bet ore st a 
0 1 2 o S(@) 

To measure a sequence of ‘(]’s, we place the boxes in sequence into 

the slots until all the boxes are used up. We then read the number 
under the first empty slot. To measure the length of w +, 1: 

(5) Es es) Gala) 

the first w “L]’s fill up the first @ slots, and the last [ goes in slot . 

The first empty slot is S(@). To measure the length of 2 +, a: 

(ys Ely Es braless) 

the first two ‘[]’s go in slots 0 and 1. The first 1] of w goes in slot 2, 

the next in slot 3, and so on. A little thought should convince you 

that no box will ever be put in slot w, but every finite slot will be 
filled, so that @ is the first empty slot. 

‘, is computed in a like manner. Suppose we have w-, 3. Then we 

place 3 strings of w ‘L]’s and place them together. 

E alta ao | GI Sg edna (A eg Ease at 

The result is: 

ag I ge Tb kad Se Es A 
also known as: wm +, @ +, @. 

You may realize by now that +, is not commutative. -, is not 
commutative either, and something odd happens in distributivity 
too. 
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The Cardinals 

PROJECT #28. 7.1. Remember that to show ||A|| < ||Bl|, you only 

need to find a one-to-one function from A into (not necessarily onto) 

B. If a further hint is needed, it is helpful to recall George Gamov’s 

story of the hotel with an infinite number of rooms numbered 

1, 2,3,.... The hotel was full and a traveller arrived needing a place 

to stay. The manager said there was plenty of room and asked 

everyone to move to the room with the next higher number, (i.e., the 

guest in room #76 moves to room #77, etc.). This left room #1 

vacant for the traveller. 

7.2. For the purposes of this theorem, let us think of Z as the set: 

{..., —2, —1,0,1,2,...}. One way is easy. For the other, return to 

Gamov’s hotel. Now an infinite number of new guests arrive. “No 

problem!” says the manager, and he now asks each guest to move 

to the room whose number is twice that of the room currently 

occupied (i.e., the guest in room #76 moves to room #152, etc.). 

This leaves all the odd-numbered rooms vacant, enough to handle 

an infinite number of new arrivals! 

7.3. For the purposes of this theorem, let us think of Q as 

fractions a/b with a, be Z (which in fact it is). One way is easy. The 

other can be approached in several ways. The problem is solved if 

we can line up all the rationals in a line: 

14,195, 13,.-- 
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which includes every rational number. Start by listing all fractions 

that can be formed using the numbers {—1,0,1}, then include the 

numbers that can be formed if { —2, 2} are also used, ... 

PROJECT # 29. 7.4. It looks as though this theorem should be easy, 

but it’s not. Suppose we have f mapping A into B and g mapping B 

into A, both one-to-one. The problem is that neither may be onto. 

f 
ee 

eB 

ae: 
For any X € A, Y C B, we will write: 

f(X) for {f(x)|xe X}, 

and 

g(Y) for {g(y)lye Y}. 
The method we will use is to split A up into two sets Z and A\Z, 

and split B up into f(Z) and B\ f(Z). 

LD 3 

f maps Z one-to-one onto f(Z). If we choose Z properly, g will map 
B\ f(Z) one-to-one onto A\Z, and then we can construct a single 
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function h by defining: 

Rexel ys ts xEeZ and yyy (x) = y, 

and 

hx) =2- 1 xe AZ. and .g(z) =x: 

A lc ba Raa 

ie ae ore 

The difficult part is finding an appropriate set Z. We start by defining 

a function H from P(A) to P(B) by: 

H(X) = A\g(B\ f0)). 

A ! B 

A B 

& 

g(B\f(X)) 

B A 

A\g(B\f(X)) 

Let Z = {ae A| for some X ¢ A,aeX and X ¢ H(X)}. Prove: 

(1) X ¢ Yimplies H(X) ¢ H(Y). 
(2) Z< H(Z). 
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(3) g maps B\ f(Z) into A\Z. ? 

[ Hint: suppose ae B\ f(Z) and g(a) = be Z. Then be X € H(X) 

for some X € A. be H(Z) (why?). Show this is impossible. ] 
(4) g maps B\ f(Z) onto A\Z. 

[ Hint: suppose be A\Z. Since b¢ Z, Z U {b} is not contained in 
A(ZU {b}). Since Z © H(Z) S H(ZU {b}), we must have b¢ 
H(Z U {b}). Show then that b = g(a) for some ae B\ f(Z).] 

(5) The function h defined above maps A one-to-one onto B. 

7.5. No difficulties here. Note that another consequence of 7.4 is 

that ||~|| = ||S(@)||. As we mentioned earlier, we are now measuring 

the size of sets, not their length. These two sets have different lengths: 

wo: 01-253. 4: 

S (@) BOM 2iBdrdne sah 

They are not order-isomorphic. They are, however, the same size 

because if we rearrange S(a): 

oO. 0 L238 40s 

S(@): @x0' 12 °3°---2 

We get a function f from @ to S(@) which is one-to-one and onto (0 
goes to w, 1 goes to 0, 2 goes to 1, ...) but it is not an order- 
isomorphism as defined earlier (suggestions for Project #27), since 
f(1)e f(0) but 1¢0. 

PRoJECT #30. 7.6. The discovery that not all infinite sets are the 
same size was made by Cantor approximately 100 years ago. Both 
7.6 and 7.7 are due to him. Suppose ||P(A)|| < ||A]|. The || P(A)|| = 
|| A|| by the Shroeder—Bernstein theorem. Let f map A one-to-one 
onto P(A). Let C = {xe A|x¢ f(x)}. C = f(x) for some x € A (why?). 
Is x € f(x)? 

7.7. We give you three different suggestions. 

Proor #1 (Cantor’s “Diagonal” Proof). Quite simply one of the 
loveliest, subtlest, and most astonishing in all of mathematics. This 
author first saw it as a young student and decided that if this is what 
mathematicians could do, he wanted to be a mathematician. 

Let us assume the decimal representation of R. Since ||@|| < ||R| 
is clearly true, then if ||Rj| < ||@|| we would have ||a|| = ||R|| by the 
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Shroeder—Bernstein Theorem. This would mean that there would 

be a one-to-one correspondence between real numbers and positive 
integers. Suppose we had such a correspondence: 

Or, 
lor, 
2}, 

in which all real numbers are listed. We will show this is impossible. 

Take the following to illustrate the process: 

0 23.718044382... 

1<— —.032196149.. 

2< 326.461988823... 

3<> ~—-7.102470065... 

4< — 13.320795213... 

5 206.423630912... 

and suppose this list contains all the real numbers. Now consider 

the digits: 
0 23.718044382... 

1 —.032196149... 

2< 326.461988823... 

3<, 7.102470065... 

4<+ —13.320795213... 

5<> 206423630912... 

Form a new number by adding 1 to each of the over-size digits above 

(unless the digit is “9,” in which case we subtract 1). This gives us 

Vie 842581. 51. 

Show that this number does not appear in the list, contradicting our 

assumption. - 
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PROOF #2. Since ||@|| < ||P(@)||, show ||P(@)|| < ||R||, then show 
that if ||A|| < ||B|| < ||C|| then ||A|| < ||C||. For the first part, let f 
map P(q) to R by: 

f(K)= ¥ 10", forany KeP(a). 
neK 

PROOF #3. We proceed as in Proof #1, but we use schnitts instead 

of decimal expansions. Suppose we have a one-to-one correspon- 
dence: 

0179 

ler, 

27r, 

Where each 7; is a schnitt. We will find a schnitt r that was left out. 
We do this by forming two sequences of schnitts: 

So = SiS Bees ei tet = ty 

—where all the s,’s are less than all the t;'s, and then make r the least 
upper bound of the s,’s. Note that r will always be between s; and t,. 

LO 

Step Zero. Pick a schnitt sy such that rp < so. Since so <r, this will 
mean ro # r. At the same time, pick a schnitt ty such that sy < to. 

—----- aa ba i 
ro So to 

Step One. Look at r,. If r, < so 

man fp ea fF =~ + —-------~-~ 
ry So to 

Of ty <r, 

-------~- aa ee 
So to ry 

then we know r will be different from r,, so we let 5; = So, ty = to 
and move on to the next step. 

Otherwise, if sy <r, < to, 
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then either choose s, so that r; < s, < to, and let t, = to, 

en ee Ee re ee ee ees 
So ry to 

Sy ty 

or choose t, so that so <t, <r, and let s, = sg. 

aaa eee See a Re eS Hs ees 
so ry to 
Sy ty 

In either case, r, will not be between s, and f,. 

Step two is just like step one, except that we deal with r, this time. 

At each step n, we make sure that the r we eventually form does not 
equal r,. 

So. 1 = So SP Set, = fo. 

Note: this proof appears to use the Axiom of Choice, since we are 

choosing an infinite number of schnitts. The proof can be changed 

so that we choose members of @ (for example, instead of choosing 

Sq directly, choose g, € Q and let 

So = {xEQ|x <Q Qo}- 

We can choose members of Q since © can be well-ordered (Theorem 
7.5), and being well-ordered allows us to make choices (Theorem 

7.10). 

7.8. Let « = UA. If Bea and ||B|| = ||«||, show ||y|| < ||| for some 

y with Beye A. 

7.9. See the suggestion for 7.5. 

Prosect #31. 7.13. Prove this by induction on n. For the induction 

step, suppose that f maps n +, 1 one-to-one onto a proper subset 

of n +y 1. Define h on n by: 

h(k) = f(k) if f(k) #1, 

and 

h(k) = f(n) if f(k)=n. 

Show that h maps n one-to-one onto a proper subset of n. 
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7.14. Suppose that f maps n one-to-onesonto X and apply 

Theorem1.11. 

7.15. Well-order X and apply 6.13. 

7.16. Combine the function from 7.15 with the successor function. 

PROJECT # 32. 7.17. X being countable is the same as being “listable,” 

that is, that we can list all the elements and the list has length <w 

(either X is finite, in which case we can list its elements in a finite 

list, or X is infinite and there is a one-to-one map f from @ to X, 

and then f(0), f(1), f(2),... is a list of its elements, and the length of 

the list is w). Let us list the elements of X going across: 

Xo x4 Xo X3 

and then list the members of each x; below it: 

Xo xX X2 X3 

40,0 41,0 42,0 43,0 

Qo,1 a1 az 4 43,1 

40,2 a1 2 a2\2 a3 2 

40,3 a1 3 a2 3 43.3 

Some of these lists may be finite. Now we list all these elements as: 

0< a9 0 

lady, 

Poor SO i 

3<> do, > 

4<a, 

5a, 

If any element a appears in two different members of X, it would get 
listed twice. If this happens, we simply remove all repetitions so that 
the mapping is one-to-one. 

Where is the Axiom of Choice used in this proof? 
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7.18. Use Theorem 7.17. 

7.19. Use Theorem 7.6, the Well-ordering Theorem, and Theorem 
6.13. Given &, let be the least ordinal such that ||P(&)|| = y. Prove 
that y is a cardinal and that & < y. 

Yet another paradox in the early, informal formulation of set 
theory was Cantor’s paradox: let K be the set of all cardinals. Then 
UK is a cardinal by Theorem 7.8, and it must be the largest. On 
the other hand, there is no largest cardinal by Theorem 7.19. How 
do we resolve this? 

Prosect # 33. 7.20. Define the ordering <, on X by: 

a<,b iff f(aef(b). 

7.21. Given a cardinal &, let A = {| there is a well-ordering of N 

of order-type 2}. Use Replacement to prove that A is a set. Prove 

y = UA is a cardinal greater than % as follows: suppose for some 
a <y that ||«|| = ||y||. Then: 

(1) ~efeA for some f£; (why?) 

(2) llyll = IIB; (why?) 
(3) there is a one-to-one function from & onto y; (why?) 

(4) ye A; (why?) 
(5) y +, 1€ A; (why?) 

(6) contradiction! (why?) 
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CHAPTER 8 

The Universe 

Proyect # 34. 8.2. Our first proof by transfinite induction. Suppose 

we are given an ordinal « and for all 6 < « the theorem is true, Le., 

xe ye V; implies x € V,. Suppose x€ ye V,. You will need to separate 

the problem into cases: 

Case 1. a=0 

Case 2. « = B +, 1 for some f, and 

Case 3. ais a limit ordinal. 

8.3. By transfinite induction on a. Suppose the theorem is true for 

all B < «. Prove that V; ¢ V, for all 6 < «. 

Prosect #35. 8.4. A very simple statement, but the proof requires 

some real work and an introduction to a few standard set-theoretic 

tricks. The key ingredient, although it is not obvious, is Regularity. 

This is, in fact, equivalent to Regularity. 

(1) In outline, we assume the theorem is false. We then find an x 

which is not in any V, but each of whose elements are (though 

each element might be in a different V,). We then find a single 

such that every element of x is in V,. It will then follow that 

x € Vp4,. (Why?) 

(2) To find x, first let z be a set not in any Vy. If z does not suf- 

fice, that is, if z has elements which are not in any V,, then we 

form what is called the transitive closure of z: T(z) = 
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zU(Uz)U(UUz)U(UUUz)U... why is this a set? This is a 
common application of Replacement. We define a function f 
with domain so that f(0) =z, f(1) = Uz, f(2) = Ubz, ..., 
then the range R of f is a set, and UR is T(z). Replacement 
requires that the function be definable. We must find a formula 
y so that (a, b) is true iff f(a) = b. The statement is: 

“if (f is a function and f(0) = z 

and for allneqw f(n + 1) = Uf(n) and f(a) = b).” 

Write this statement in our symbolic language using only ap- 
proved abbreviations. 

(3) We now have T(z). This has the property that if cede T(z) then 
ce T(z). (Why?) 

(4) Let Y = {se T(z)|s is in no V,}. We verify that Y is a set by 
Comprehension. (How can we express “s is in no V,” in £1) 

(5) Since there are elements of z which are not in any V,, Y 4 @. By 
regularity there is a set xe Y such that x Y = @. x is the set 
we seek, that is, each gx is in some V,. (Why?) 

(6) Finally, we need a f such that each gex is in V;. Define a 
function g on x by: g(q) = “the least ordinal « such that qe V,,” 
a definable function. By Replacement, the range R of g is a set. 
Show that 6 = UR is our desired ordinal. 

Note: there is actually little mathematical justification for the 
Axiom of Regularity. Nearly all of conventional mathematics can 
be accomplished without it. The universe, in its absence, might be 
different perhaps, but still viable. On the other hand, Regularity 
imposes a satisfactory order on the hierarchy of sets that would be 
missed. For this and other reasons, it has become part of standard 
set theory. 

A Second Note: important to this proof and many others is the 
recognition that certain phrases can be expressed in Y so that the 
sets or functions they describe are definable. We already have some 
expertise here, casually allowing “f is a function,” “a is an ordinal,” 
etc. As one works in set theory, one learns to recognize what can be 
expressed and what can’t. Indeed, there are areas (such as descriptive 
set theory) where one must learn to notice quickly such additional 
subtleties as the arrangement of quantifiers that must be used! 

PROJECT # 36. 8.5. In one sense this is obvious—how could a finite 
set (||>|| < @) reach all the way up to w? Still, the way is not clear. 
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Given X, ||X|| =n < a. Since X is well-ordered by «¢, there is a 

one-to-one function f from an ordinal « onto X. Prove: 

(1) X is Dedekind finite 

(2) a<@ 

(3) a = S(k) for some k 

(4) f(k) = UX 
(5) UX <@. 

8.7. Use Theorem 7.12. 

ProjsecT #37. 8.9. Suppose this is false. Let « be the least ordinal 

such that || V,|| is not less than x. There are two cases, « a successor 

ordinal and « a limit ordinal. To handle the limit ordinal case, let f 

map x one-to-one onto V,. For each 8 < a, let X, = {dE K| f(d)€ Vp}. 

Prove: 

(1) ||Xg|| < « for all B <a 

(2) UX, < x for all B< o 

(3) U{UX,|B <ak<k 
(4) this is a contradiction. 

Prosect #38. 8.10. Many of the axioms are fairly easy to handle 

once we see what we are to prove. For example, Pair Set. We must 

show that if x, ye V, then {x, y} e V,. We are working in ZF, so {x, y} 

is a set. We must show it is in V,. Use the fact that V. = U{V,|« < x}. 
Theorem 8.2 is frequently helpful. 

For Infinity, prove by transfinite induction that we V,,,, for all 

ordinals «. 

For Replacement you only have to prove: if f is a function with 

domain xe V, and f is definable in V,., then the range of f is a set in 

V.. By Replacement, the range R of f is a set. What we must show 

is that Re V,. “Definable in V,.” implies that for all aex, f(a)e V,. 

Use the trick of (6) in the proof of Theorem 8.4. 

We can actually show more, that V, is a model for ZFC. 
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CHAPTER 9 

Choice and Infinitesimals 

Project # 39. 9.1. The idea behind the proof is fairly simple, though 
the proof is not. Suppose we are given set X to well-order. Choose 

an element of X. Call that a,, the first element of X. Next, choose 

another element of X. Call that a,, the second element of X. Keep 

' going until all elements of X have been ordered. 

There are two difficulties: one, we are making many choices—how 

can this be done? Two, even if we can make the choices, the process 

we are describing may take an infinite amount of time (w steps might 

not be enough, w +, @, @:, w, even N, steps may not be enough). 

How do we know it can be done? 
Let Y = P(X)\{@} (all nonempty subsets of X). Let h be a choice 

function for Y, that is, for all A € Y, h(A)e A. This solves one difficulty, 

we can use h to make the choices: a, = h(X), a, = h(X\{a;}), 

GNX Gy, >} )y sais 
For the other difficulty, we use the Theorem on Inductive Defini- 

tions: let f be the function defined by: 

f(A) =h(X\A) if X\A FS. 

Apply Theorem 6.14 to f to get a new function g. Prove: 

(1) g is one-to-one, 

(2) the range of g is a set, 

(3) the domain of g™ is a set, 
(4) g-} and g are functions, 
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(5) the domain of g is an ordinal, 6, 

(6) the range of g on 6 is X, and 

(7) X is well-ordered. 

[Further hint: review the proof of Theorem 6.13.] 

9.2. We are given X and a partial ordering <, on X. Again, the 

idea behind the proof is primitive, we simply pick elements one by 

one from X. Pick ap. If it is not a maximal element, then pick a, 

larger than ao. If this is not maximal, then pick a larger one, and so 

on. After we have picked w-many elements, dy <, a, <, a) <,°** We 

have a chain. By assumption, it is bounded, that is, there is an a,, 
above all these, 

Ao <x ay <x a2 Si 

eee << ee 

If a., is not maximal, then pick a larger one, and so on. Once again, 

how can we make choices, and how do we know the process will end? 
Using Zermelo’s Theorem, well-order X—call this well-ordering 

<, (it will almost certainly be different from <,). We will use «, to 

make our choices (to pick ag, pick the «,-least element of X, to pick 

a,, pick the «,-least element of X which is >, a,). Now define: 

f(A) = the «,-least element of X which is >,, 

all elements of A (if there is one). 

Again, apply Theorem 6.14 to f to get g. Prove (1)—(5) from the 
suggestions for 9.1, and prove: 

(6’) the range of g is a chain in X. 

Let a be the domain of g. Prove: 

(7’) wis a successor ordinal B +, 1. 

(8’) g(B) is a maximal element. 

PROJECT #40. 9.3. Given X, we are required to find a choice func- 
tion, i.e., a function f such that if ye X, y  @, then f(y)ey. It is no 
problem to pick a member of y if we are just given one y. Similarly 
we can easily make any finite number of choices. The difficulty is 
handling an infinite number. 
We solve this by using Zorn’s Lemma. Consider the set P = NGG? 

is a function with domain D < X, and forall yeD, y 4 @, f(yey}. 
Each element of P is a “partial” choice function. It makes some 
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choices, but usually not all, that is, for most f, D ¢ X. Define an 

ordering <, on P by: 

Ce et ee 
Prove: 

(1) <, is a partial ordering. 

(2) every chain is bounded, and 

(3) a maximal element in P is a complete choice function. [Hint: 

Suppose f is maximal, ye X, y 4 @. Show that if y is not in the 

domain of f, then there is a ge P with f <, g.] 

9.4. By way of explanation, think of Y as a collection of “big” sets. 

The properties of the ultrafilters then are: 

(a) if two sets are big, then they are so big that their intersection is 

big, 
(b) no finite set is big, and 

(c) every set A is either-big itself, or its complement is big. 

Constructing an ultrafilter means making endless decisions. 

Given a set A, should we call it big, or should we call w\A big? 

For some sets this is easy, for example, {1,3,8} cannot be big, so 

the set {0,2,4,5,6,9,10,...} must be big. For other sets such as 

pa Se5, 16.93 UA, 13,...} there is no clear answer. In fact, it doesn’t 

really matter what sets we choose, so long as the resulting collection 

satisfies (a), (b) and (c). Is {1, 3, 5,7,...} big? It is in some ultrafilters, 

and in other ultrafilters it’s not. 

The proof of this theorem is another application of Zorn’s Lemma. 

Let Q = {u © P()|u satisfies (a) and (b) of the definition of ultra- 

filters}. Define an ordering: 

u<,v iff ugv. 

Prove: 

(1) <, is a partial ordering. 

(2) Q is not empty. 

(3) every chain is bounded, and 

(4) A maximal element is an ultrafilter. [Hint: if u is maximal and 

not an ultrafilter, then there is an A © w such that neither A nor 

w\A is in u. Show that at least one of the two is infinite and has 

nonempty intersection with all elements of u. Call this set S. 

Show that u <,v =uU{BNS|Beu}eQ.] 
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Project #41. 9.5. It will help to prove: 

9.5a. Lemma. If A4€W and A < B then BEU 

9.7. Consider [H]~, where H(n) = n, for all new. 

When “infinitesimals” as very small numbers fell from favor 100 

years ago, textbooks, loath to give them up, began to describe them 

as variables that go to zero. Ironically, that is just what they are 

here. Fundamentally, they are sequences whose limit (as defined in 
calculus) is 0. 

ProsecT #42. The obvious choice for +i, is [f]z tin lg]z = 
[h]z where h(n) = f(n) +p g(n) for all new. For exercise, you might 
show that +), is well-defined. 

For (1)—(5), it will help to think of H as [h]z, K as [k]~, Las [i]z, 

J as [j]z, where h, k, i, j are in x. (1) and (2) you will find are not 

difficult. Consider (3). I +: J clearly satisfies (1) and (3) of the 

definition of infinitesimal; what about (2)? Suppose r € R is a positive 

real. Is it true that {ne @|i(n) +z j(n) <gr} isin %? Since I and J are 
infinitesimal, we know that {neali(n) <gr} and {nea|j(n) <gr} 
are in %, but this doesn’t seem to help much. [Hint: consider 
{ne€oli(n) <p r/2}.] 

For (6), suppose there were a largest finite hyperreal, [g]~. Since 

[g]z is finite, there is some re R such that [g]z <ie [f,]z. Is this 
possible? 

For (9) and (10), keep Theorem 9.9 in mind. 

Here is a sample of how one uses HR in calculus: 

Definition. A function f from R to R is continuous at r iff for all 
infinitesimals I, f(r + J) is infinitely close to f(r). 

The proper domain of f is R, of course, but every function defined 
on R can also be defined on HR (by Theorem 9.9, or by direct 
computation). 

An example: is y = x? continuous at 2? If J is infinitesimal, then 
f2@4+D=(2 +1) =44 214 FP. 

2I and J? are infinitesimals (as in (2) above), 
2I + I? is infinitesimal (as in (3) above), so f(2) = 4 is infinitely close 
to f(2 + J). 
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A Final Note: the use of infinitesimals can make the calculus signi- 

ficantly easier. In general, however, they are best used intuitively. 

We use real numbers, for example, every day without thinking of 
schnitts. We add integers frequently without worrying about equi- 

valence classes. Similarly, it is easy to deal with infinitesimals and 

infinite numbers if we simply rely (as our ancestors did) on a good 
mental picture of them. 
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CHAPTER 10 

Goodstein’s Theorem 

Prosect #43. These functions appear tricky, but the idea is simple. 

S, is the function that takes a number written in superbase n and 

changes all the ‘n’s to ‘n + 1’s. g, takes a number and performs n 

steps in the Goodstein sequence. 

(3) As a warm-up, consider these exercises: 

(a) Suppose after 91 steps we are at 13 - 93° (base 93) (never mind 

how we got here). How many more steps will it take to reach 

0? 
(b) Suppose after 35 steps we are at 1 - 37 (base 37). How many 

more steps will it take to reach 0? 

(c) Suppose after 43 steps we are at 2 - 45 (base 45). How many 

more steps will it take to reach 0? 

(d) Suppose after 1 step we reach 2 - 37 + 2-3 + 2(base 3). How 

many steps will it take to reduce the right-most term to 0? 

How many more steps will it take to reduce the middle term 

to 0? 

Prosect #44. The idea behind this complex-looking proof is not 

complex. If at step n we replace all ‘n’s with ‘w’s, we get an ordinal. 

If we do this at each step, we get a sequence of ordinals that is 

descending, that is, the ordinal we get from step 125 is greater than 

the ordinal we get from step 126, and so on. Since there cannot be 



92 Part Two 

an infinite descending sequence of ordinals (because the ordinals are 

well-ordered), then sequence must end sometime at 0. 

The functions f, are the functions which substitute ‘q’s for ‘n’s. 

10.2. For all of these, remember that given a base n, every number 

m > 0 can be written in the form: 

d 
m=) k,n’, 

i=0 

where m > d and for each i, 0 < k; <n. This is the unique base n 

representation. So, if you want to prove something about all integers 

m by induction, you can proceed by 

(1) proving the fact for m = 0, and 
(2) proving that if the fact is true for all i < d, then it is true for 

1Of AY Kye cas Ky 

10.3. Use induction. First check that the lemma is true for 0. Next, 
assume it is true for all numbers less than m and write m as: 

kan? + kg_ynt 1 +++ + kin + ko, 

where 0 < k; < n for each i < d. Consider 

Case 1. ky < n — 1, and then 

Case 2. k,<n—1 butk,; =n—1 foralli<s. 

In case 2, 

m= kn? +++ + kn’ + (n— 1)n*1 + --- 4+ (n— 1), 

and 

m+1=kyn? +--+ +(k, + In’. 

Then 

Snu(m) = fxlkan® + ++> + kgyyn'**) 

+ f,(kan* + (n— 1)n** 4 --- +(n —1)), 

while 

In(m + 1) = filkan® + ++ + keyyn*!) + f,((k, + In’). 
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It will be enough then, to show that f,(k,n§ + (n — 1)n° 1 4+---+ 

(n — 1)) is less that f,((k, + 1)n‘). 

10.4. You’re almost there—just put together the previous lemmas. 

10.5. Consider the sequence: f3(g,(m)), f4(g3(m)), f5(g4(m)), .... 
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PART THREE 

SOLUTIONS 





CHAPTER 1 
Logic and Set Theory 

Prosecr #1. 1.1) IT (ii) F ‘(iii) F (iv) T -(v) T Wi) F 
(vii) F (viii) T (ix) F (cis not a subset of e) (x) T (eis a subset 
of a) (xi) T (d is nonempty) (xii) F (for example, a) (xiii) F 
(xiv) T (e is a proper subset of a set) (xv) F (e does not have two 
distinct elements). 

2. (xiv) iee, ieh, h = e are statements by (1). 

(i€e > icEh) a statement by (2d). 

Th = eis a statement by (2a). 
(ice >ieh) A 7h=e) isa statement by (2b). 

Vi((iee >ieh) A 1h=e) isa statement by (2f). 
and finally, 

dhVi((iee > ich) A Th =e) isa statement by (2g). 

(xv) gee, wee, g = ware statements by (1). 

(ge Vv wéEe) is a statement by (2c). 

1g = wis a Statement by (2a). 

((geEe v wee) A 1g = Ww) is a statement by (2b). 

dw((gee v wee) A 1g = w) is a statement by (2g), 

and finally, 

dgiw((gee v wee) A 1g = w)is a statement by (2g). 

ProsJEcT #2. (i) a (ii) f (iii) ‘u (iv) f (v) a (vi) a (vii) e(e 

is the set with exactly one element) (vii) d (ix) e (x) f (xi) Wa 

(xii) e (xiii) * (xiv) a (xv) a (only a has no proper subsets) 
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(xvi) a(the only set which does not have an empty set as a member) 

(xvii) e (has exactly one proper subset) (xviii) f (xix) a (xx) d 

(d has exactly three distinct elements: a, c, and e). 

PROJECT #3. 

Extension: VxVy(x = yooVz(zExazey)) 

Empty Setraz(z = { }) 
Pairset:. VWxVydzz =x, y} 
Union: VxdyVz(ze yo dw(zew A wex)) 

Power Set: VxdyVz(zeyoz S x) 

Regularity: Vxie=) | voazizex Ax (iz= 4): 

eye 
Project #4. 4. By the Pair Set axiom, {A, B} is a set. By the Union 
axiom, U{A, B} = AU Bis a set. 

i) 
42.AN B = {xe A|p(x)} where —(x) is the statement: x € B. Hence 

A!) B is a set by Comprehension. 

1.3. By the Pair Set axiom, {A, A} = {A} is a set. 

1.4. By Regularity, there is an xe {A} such that xN {A} = @. x 
must be A,so AM {A} = @. In particular, A ¢ A. 

1.5. By Regularity there is an x € {A, B} such that x {A, B} = @. 
Since A e€ B, x cannot be B, hence x = A and AN {A, B} = @. This 

implies B¢ A. 

1.6. If two sets are both empty, then they have the same members, 

hence by Extension, they are equal. 

1.7. Similar to 1.6 

Project #5. Picking up where the suggestions leave off, suppose 

{{a}, {a,b} } = {ic}. {c,d} }. Then either {a} = {c} or {a} = {cat It 
{a} = {c}, then a = c and we must have {a,b} = {c,d} which leads 
to b = d. Suppose, however, that {a} = {c,d}. Then a = c = d. Fur- 
ther, {a,b} must be {c,d} = {c,c} = {c}, soa =b =c. In all cases 
we find a = cand b = d. 

1.8. For aeA, beB, {a}, {a,b}eP(AUB), so <a,b>= 

{ {a}, {a,b}} < P(AUB), or <a,b>eP(P(AUB)). Then A x B= 
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{x€ P(P(A U B))|@(x)} where ¢(x) is: Ja3b(x = <a,b> Nae AA 
be B) (we can introduce <a, b> to ¥ as another abbreviation). Then 
A x Bisa set by Comprehension. 

1.9. If <a,b> = {{a}, {a,b}}ef, then {a,b}eUf (since {a,b}e 
<a,b>ef) and beU(US) (since be {a,b}eUf). Then the range 
of f = {xeU(US)|o(x)} where g(x) is Jydz(z = <y,x> a zef), 
hence it is a set by Comprehension. 

1.10. ff D = {xef|dyiz(<y,z> =x A yeD)}, a set by Com- 
prehension. 

1.11. f~' is a set by Comprehension. It is a function since if <a, b>, 
<a,c> ef then <b, a>, <c,a) ef, and sob =c since f is one-to-one. 
Similarly, f~* is one-to-one because f is a function. 

PROJECT #6. 1.12. [a]z = {xe A|<x,a> eR} 

1.13. If La]pN [ble # ©, let x be in the intersection. Then aRx 
and bRx, so xRb by symmetry and then aRb by transitivity. It 

follows that any ye[a], is also in [b], as follows: ye[a]z implies 

aRy so yRa, then using aRb, yRb, so bRy and then ye[b]z. The 

other direction is proved in the same way, so [a] = [b]z. 

1.14. Each [a]z is in P(A), so the collection of equivalence classes 

is a subset of P(A). In fact, it is: {x € P(A)|daVy(yexaRy)}. 
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CHAPTER 2 
The Natural Numbers 

PRosJEcT #7. 2.1. True by 1.3 and Union. 

2.2. If x # y then A = (x\y)U(y\x) 4 ©. By Regularity, let ac A 
be such that a A = &. Suppose aex\y. Then a # @, since @ Ey, 
So a = S(z) for some ze x. Since zea, z¢ A. Since z¢.A and zex, zey. 
Since ze y, a = S(z)ey, contradicting aex\y. A similar contradic- 
tion follows if ae y\x. 

Cte el) eat I ad 

PTA PAL eat FAL SEES 
PALM 32d PACT BL EU 

2.3(a), (b). By definition of N. (c) xe S(x), so S(x)  @ =0. (d) 

Clearly x = y > S(x) = S(y). On the other hand, if S(x) = S(y), then 

xU{x} = yU{y}. If x # y, then xey and yex, violating Theorem 
1.5. (e) If A # N, then by Regularity, there isan xe N\A,xN N\A = 

©. Since x # 0, x = S(k) for some kEN. As kex, KE N\A, so ke A. 

By hypothesis then, x = S(k)€A, a contradiction. 

2.4. Let A = {xeEN|@(x)}. 06 A and whenever ke A, S(k)€.A, so 
A = N by Theorem 2.3 (e), therefore g(x) is true about all xe N. 

PROJECT #8. 2.6. Let p(c) be the statement: VaVb(a +y (b +n ¢) = 

(a +x b) +x c). To show ¢p(c) is true for all c (associativity), we use 
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induction (Theorem 2.4). First, (0) is true, since a +y (b +, 0) = 

a +y b = (a +x Db) +x 0. Next, suppose —(k). Then 

a +y (b +x S(K)) = a +y S(b +x k) 

= S(a +n (b +1 k)) 

= S((a +n b) +n k) (since (k)) 

= (a +n 5) +n S(K), 

hence ~(S(k)). 

We conclude that (k) is true for all k. 

2.7.n+y 1 =n+y S(O) = S(n +x 0) = S(n). 

2.8. Let @(n) be the statement: 0+, n =n. @(0) is true since 

0+, 0=0. If g(n) holds, then 0 +, S(n) = S(O +x n) = S(n), so 

o(S(n)) holds. By induction, y(n) is true for all neN. 

Prosect #9. 2.9. We begin by proving a +y 1 = 1 +, a by induc- 

tion on a. First, 0 +,y 1 = 1+, 0 by Theorem 2.8. Next suppose 

a+y 1 = 1+, a. Then 

S(a) +x 1 = S(S(a)) (by Theorem 2.7) 

= S(a +y 1) 

= S(1 +, a) 

= 1 +n S(a). 

By induction then, a +,y 1= 1+, aforallaeN. 

Now we prove a+yb=b+,a by induction on b. First, 

a+y0=0+, a, by Theorem 2.8. Now ifa+y b= b +, a, then 

a +y S(b) = a +y (b +x 1) 

=(at+yb)4+n 1 

=(b +y a) +n 1 

= b +n (a +h 1) 

= b +y (1 +p a) 

=(b+ny 1) +na 

= S(b) +x a. 

We conclude that a+, b=b +, a for all a, beN. 
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2102 Fi? = 2 484) 52 49 1) SSC) = SB) 4. 

ProsecT # 10. 2.12. We proven -y (m +y p) = (ny m) +y (n-y p) for 
all n, m, peN by induction on p. First, ny (m+y 0) =n-ym= 
(nym) +y 0 = (nym) +n (nx 0). Next suppose n-y (m+n p) = 
(nx Mm) +x (n-y p), for all n, meEN. Then 

Nx (m +n S(p)) = ny S(m +n Pp) 

| = (n'y (m+n p)) +n n 

= ((n-ym) +n (Hy Dp) tun 

= (nym) +h ((1'y P) +n 0) 

= (ny mM) +n (Ny S(p)), 

and the theorem follows by induction. 

Los 
2.08. We prove (ay b) ‘xc = ay (b ‘x Cc) by induction on c: 

A ‘ny (b-xy 0) = an 0 = 0 = (ay D) “ny, 0. 

If (a -y b) yc) = ay (by ©), then 

(4 ‘x b) x S(C) = (ay 5) ‘nC +N (G'y BD) 

= 4'y (by C) +n (ay BD) 

= a'y ((b nC) +n 5) 

= a'y (by S(C)). 

Project #11. 2.15. First, 0 -y a = 0 by induction: 0 -, 0 = 0, and if 

0 -y a =a, then 0-y Sa) =O-yaty0=0. 

Now we prove a ‘y b = bx a by induction on a. 

Oe On: 

Suppose a-y b = b-y a for all be N. We want to show S(a) -y b = 

b -, S(a). We do this by induction on b: S(a) -y 0 = 0 = 0-y S(a), and 

if S(a) -y b = b -y S(a), then 

S(a) -y S(b) = (S(@) ‘n 5) + S(Q) 

= (by S(a)) +n (a +n 1) 

= (by a) t+ybt+nyatn 1 

= (a-y bb) +yatnyb ty 1 

= (ay S(b)) +n S(O) 
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= (S(b) wa) +n S(O) 
= S(b) -y S(a). 

This proves S(a) -y b = b-y S(a) for all be N. This proves a-y b = 

b-,y a for all a, beN. 

2.16. (n+ Mn P= Pn (1 +y Mm) = (Py N) +n (PD 'nN mM) = 
(n “x P) +y (My Pp). 

2 DMRS OED RS ANY a eee 

PROJECT #12. 2.18. Let p(y) be the statement: Vx(x <y y> xEy). 

We use induction on y. 

First, notice that x <, 0 can never happen, since x <j, 0 implies 

x +, S(k) = 0, for some kEN, so S(x +, k) = O—impossible. This 

gives us that @(0) is true. 

Now suppose ¢(y). If x <y S(y), then x +, S(k) = S(y) for some 

keEN, so S(x +, k) = S(y), and hence x +y k = y. 

Case 1. k = 0. Then x = y, and yeyU{y} = S(y). 
Case 2. k #0. Then k = S(t) for some t, so x <y y and xey (since 

p(y)), and again, xe yU{y} = S(y). 

This gives us p(S(y)), so p(y) is true for all ye N, by induction. 

PEE 

(1) <j, is irreflexive, since if a <q a, then aea, which is impossible. 

(2) <y is transitive, since if a <y b and b <yc, then a +, S(k) =b 

and b +y, S(t) = c, for some k, te N, so (a +y S(k)) +y S(t) =, 

SO a +y (S(k) + S() = c, 80 a +x S(S(k) +x th =c, 80a <q ec. 

(3) <j, satisfies trichotomy: Let @(b) be the statement: 

Vala=bva<ybv b <j, a). —(0) is true, since if a 4 0, then 

0 + a=a,Sso by definition, 0 <q a. Now suppose ¢(b) is true. 

Case 1. a= b. Thena +y 1 = S(b), so a <x, S(b). 
Case 2. a <y b. Then since b +, 1 = S(b), b <y S(b), so a <q 

S(b). 

Case 3. b <y a. Then b +x, S(k) = a. 

Case 3a. k = 0. Then S(b) = a. 

Case 3b. k #0. Then k=S(t) for some teN, so 

S(b) +y S(t) = S(b +x S(t) = b +n S(S(t)) = a, 
and so S(b) <, a. 

All these cases imply g(S(b)). By induction, (b) is true for all be N. 



CHAPTER 3 
The Integers 

ProsectT #13. 3.1. <a,b> ~ <a, b> sincea +yb =b+y a. If <a,b> ~ 

<c,d> thena+yd=b+yc,soc+yb=d+n a,80<c,d> ~ <a,b>. 

To prove transitivity, we need a lemma we will call: 

2.20. Lemma. For a, b, cE N: if a+yb=a+tyc, thenb=c. 

ProoF. By induction on a: 0 +yb=0-+, ¢ implies b = c. Now 

suppose that whenever a+yb=a-+yc, then b=c. Then if we 

are given S(a) +y b = S(a)+y cc, then S(a+y b) = S(a+jy c), so 

at yb=a+ny c,so b =c. This proves the lemma. O 

Now transitivity: if <a,b> ~ <c,d> and <c,d> ~ <e, f>, then 

at+yd=b+ycandcty f=d+ye. 

Adding: 

Atyd+nyctyf=b+yctnd tye. 

Cancelling: 

atnf=b+ne, andso <a,b> ~ <e,f>. 

3.2. Z is a set by Theorem 1.14. 

Defining +7: We define [<a,b>]~ +z[<c,d>]. =[<a4+ne, 

b +, d>].. We must show (see the suggestions) that this definition 
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doesn’t depend on the choice of a, b, c, d. Thatvis, suppose <a, b> ~ 

<a’,b’» and <c,d> ~ <c',d’>. We must show: <a +y c,b +y d> ~ 

<a’ +n, c’,b’ +, d'>. Our hypothesis gives us a +y b’ = b +, a’ and 

C+y ad’ =d +n c’. Adding: 

A+y b’ +yctyd’ =b+ya'tydt+nc’, 

which shows: 

{at+yc,b +y d> ~ (a’ +n c',b’ +x d’>. 

PROJECT # 14. 

Definition. Let 07 = [<0,0>]_. 

3.4. [<a, b>]. +707 = [Ka +n 0,b +y OD]. = [<a, b>]. 

Definition. For [<c,d>]. eZ, “([<c,d>]~)z = [<d,o] -. 

We must check that if <c,d> ~ <c’,d’>, then <d,c> ~ <d',c’>. 
This is easily done. 

3.5. [<e,d>]. +z [<d,e>]~ = [Xe +x dd +x c>]. This equals 
07, since c +y d+yO=dt+ycty 0. 

Definition. [<(a,b>]. <z [<c,d>]. iffatyd<yb+yc. 

To show this is well-defined, we will need: 

2.21. Lemma. For all a, b, ceN, a <y biffatyc<yb tye. 

PROOF. 

a<yb iff a+yS(k)=b forsome keN 

iff a+tycty S(k)=b+yc forsome keN 

iff atyo<ybt+yc. O 

Now suppose <a,b> ~ <a’',b’) and <c,d> ~ <c',d'>. Then 
a+yb'’=b+ya'andc+yd' =d+y c’'. So, 

Atnyd<ybtyc iff 

Atyd+ya’+y db’ +y cc’ +y d’ 

<ypb+yc+y a’ ty bb’ +y ec’ +yd' iff 
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(a + py b’) +n (d +n c’) ty a’ + py d’ 

<yl(b+ya)ty(ctyd') +n b’ +n cc’ iff 

a +yd' <q b’ +n c’. 

3.6. Irreflexive: if [<a,b>]. <z[<a,b>]_,thena+yb<yb+y a, 
impossible. 

Transitivity: if [<a,b>]. <z[<c,d>]. and [<c,d)>]. <z 

[<e,f>]-~, then 

dt+yd<yb+ycandc+y f<ydtye, 

sO 

AG+ydt+yct+tyf<nbt+nct+nuctnf<nbt+nctndt+ne, 

$0 

Gt+nf<nb+we, andhence [<a,b>]. <z[<ef >]. 

Trichotomy: given e = [(a,b)]_, f = [c,d], either: 

adt+yd=b+yc(soe=f), 

or . 

d+nd<ybt+yc(soe <y f), 

or 

b+ny6<ya+pn d(so f <ze). 

Prosect #15. 

Definition. [(a,b)]~ +z [<c,d)]~ =[<(a'w 6) +n (bn d), 
(by C) +m (ay d)>J-- 

To show this is well-defined, suppose (a,b) ~ ¢a’,b’>) and 

<c,d) ~ <c',d’). Then we have 

(1) a+b’ =a’ +x band 
(2) c+y,d' =Cc' +x, d. These give us: 

(3) (ay, C) + (BD yo) = (a ‘ny ©) +1 (by ©) and 

(4) (b’ sy, C) +5 (BD! 5 d’) = (b' wc’) +1 (b’ ‘yy A), plus 

(5) (a “Ry d) +n (b’ “Ky d) = (a’ “Ky d) + sy (b "Ky d) and 

(6) (a' x C) +u (a! yd’) =(a' ‘x c’) +~ (a’ *y d). Switching (4) and 

(5) and then adding all these up, we get: 
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(ay c) +n (Owe) +n (O'we’) +n (B' nd) 

+n (4 yd) +n (bw d) +n (@' NC) +N (Gy a’) 

= (a' yc) +n (by) +n (B' yc) +n (Bn ’) 

+y(4 ‘ny d) +1 (B' yd) +n (@’ wc’) +n (@' ‘ Q). 

With cancellations, we have 

(4-n c) +n (Dy d) +n (Bn c’) +n (@' wd’) 

= (a’ yc’) +y (0' yd’) +y (by) +n (an A), 

sO 

((a nc) +n (by 4), (bx C) +~ (An d)> 

~ (aly cc’) +1 (Bw 4’), (B' wc’) +n (2 nd’). 

3.7. These are routine. 

Definition. 17 = [<1,0>]_. 

3.8. This is routine. 



CHAPTER 4 

The Rationals 

PROJECT # 16. 

Definition. We define a relation ~ on Z x (Z\{07}): 

<a,b) x <c,d> iff a-yd=b-yc. 

This is an equivalence relation: clearly it is reflexive and sym- 

metric. For transitivity, suppose <a, b> = <c,d> and <c,d> & <e, f>, 

so a-z7d=b-7c and c:z7f=d-ze. Multiplying, a-zd-7 f= 

b-zc-7f and b-yc-zf=b-zd'7e, so a'zd'z f =b-zd-z7e. We 

would like to “cancel” the d, to complete the proof. For this we 
need first: 

2.22. Lemma. (Cancellation for -\). For k, m, neN, if S(k)-ym= 

S(k) +n then m = n. 

ProoF. if not, then either m <q n or n <,y m. Suppose n <,q m, SO 

n +x S(t) = m for some te N. Then 

S(k) yn = S(k) yn ty S(k) yy S(Q, so 

0 = S(k) x S(t), so 

0 = S(k) ‘yt +p S(k), so 

0 = S(S(k) yt +k) which is impossible. 0 

And then we need: 
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3.9. Lemma (Cancellation for -7). For p,q, réZ, q # 0z, if p:'zq = 

r+7qthenp =r. 

PROOF.-Let p= [<i> s-¢ = 1k sor = kG) ier 

q # 07, we must have k # s (or else [<k,s>]. = [<0,0>]_). Now, 

P‘z4 =r ‘zq means that 

CGn k) +n i'w 5), (En S) +n (iw K)D 

~ (tw k) +n (Un 5), (ty 5) +n (Un k)> SO 

(in k) +n (Jn 8) +n (tw 5) +y (Un &) 

= (in S) +n (iw &) +n (tn &) +n (Un 58), OF 

LG +n ™) nk] tu LU +n On 5] 

= [LG +n 4) nw 8] +y LU +n 0) k. 

Since k # s, either k <q sors <j k. Say for example that k <q s(the 

other case is nearly identical). Then s = k +, S(v) for some v. Substi- 

tuting and cancelling, we arrive at (j +, t) ‘yj S(v) = (i +n ¥) ‘x S(v). 

By 2.22, ] tnt = tt, 80 p= Lh = <tw) l = ee As 

proves 3.9 which completes the proof of transitivity. oO 

Definition. Q = {x ¢ Z x Z|x = [<a,b)], for some b # 07}. 

This is a set by Theorem 1.13. 

PROJECT #17. 

Definition. [ <a, b>]~ +o[<c,d>]z = [<(a-zd) +7(b:z0),b-7d)] x. 

We must show: 

(a) if b,d # 07, then b-7 d # 07, and 

(b) + is well-defined. 

(a) If b-y>d=07, then b-zd=07-7d, so either d=0,, or by 
Lemma 3.9, b = 07. 

(b) Suppose <a, b> = <a',b’> and <c,d> = <c',d’>. We must show 
that 

((a +z 4) +2 (b'20),b-zd) & ((a' -7. a’) +7 (b' -7c’),b' 7d’), 

that is, 
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(a-zd-7b'-7d') +7(b-7c'zb'-7d’) 

= (a'-7d'-7b 7d) +z(b' :z7c' -7b 7d). 

Our hypothesis gives us a-zb’=a'-7b and c-7d' =c' 7d, 
SO Gb 705d =a 7b'3d>d' and b-7b'-z7c'z7d' = 

b-7 b' -7c’' -7 d. Adding these two completes the proof. 

4.1. This is straight-forward. 

Definition. 0g = [<0z7, 17>] ~. 

Definition. “([<p,q>]~)a = [< (P)z, > ]z- 

This is well-defined, for if <p,q> ~ <p’,q'>, then p-7 q’ = p'-74q, 
sO 

“(p')z°z29 +z (P)z'2 7 +2(P 277) 

=(p'-7 9) +z (P')z‘z49 +2 (p)z‘24', So 

“(P')z'29 +z (P)z +2 P) 2d =(C(P’)z +z P')'29 +2 (p)z‘7q', 80 

“(P')z ‘29 +297 = 07 +7 “(p)z‘zq', S80 

“(P')z'°z9= (P)z‘zq', so 

€(P')z,4'> © €(d)z, 9>- 

4.2. This is straight-forward. 

PROJECT #18. 

Definition. [<a,b>]~ ‘a [<c,d)]z = [<a'26,b-2 >] x. 
It is routine to show this is well-defined. 

4.3. This is tedious, but not difficult. 

Definition. 1g = [<1z, 12>] ~; (/L<4,5> ]z)o = [<b, a>] x. 

We must show: (a) if [<a,b>]~ 4 0g then a # 07, and (b) this is 

well-defined. 

(a) Ifa = 07, then <a,b> = <0z, 1z>, so [<a, b> ]z = 0a. 
(b) Routine. (if <a,b> ~ <a’,b’> then a-7 b’ = a':7b, so ¢b,a)> & 

<b’,a’») 
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4.4. This is routine. 

In answer to the question posed in the suggestions: The set 

{L<s, 1z>]z € Q|seZ} is a subset of @ that behaves exactly like Z. 

ProJecT #19. Before going further, we will need a series of lemmas 
about integers: 

Definition. x € Z is pos iff 07 <z x. x is neg iff x <z 0z. 

3.10. Lemma. The sum of two pos numbers is pos. 

3.11. Lemma. The sum of two neg numbers is neg. 

3.12. Lemma. x is pos iff ~(x)z is neg. 

3.13. Lemma. The product of two pos numbers is pos. 

3.14. Lemma. The product of two neg numbers is pos. 

3.15. Lemma. The product of a pos and a neg is neg. 

4.6. Lemma. The sum of two positive numbers is positive. 

4.7. Lemma. The sum of two negative numbers is negative. 

Proors. Let x = [<a;b>]., y = [<¢,d>]_, 02 = [0,0]; O 

3.10. 07 <z x, O07 <z y mean a <, b and c <q d. By Lemma 2.21 

(see the answers to project #14)a +y cc <y b +y d,so0z7 <zx +7). 

3.11. This is similar. 

oe eae ee 
S12. 07 <z x iff @ <n & iff ~(x)z = [ <b, a <7z Oz. 

313.46-b<~. G@andid <.c, men Gey R ti (h) ands madara 
for some k, te N. Then 

(ay C) +n (Dy d) 

= (by d) +n (bw S(O) +n (S(K) “5 d) + (S(K) w SO) 

+n (b -y d) 
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= LO +n S(K)) wd] +n [bw @ +n SO)] +0 (SK) wp SOI 

= (4x d) +n (by c) +n S(K) ‘ny S(t) 

= (ay d) +n (bn Cc) +n S(S(K) yt + A), 

sO 

(ay d) +y (by 0) <u (Qn 0c) +—y (bn 4), 

SO 

07 <z[<(4-n 0) +n (bn 2), (Ay d) +y (DNC). = Xz. 

3.14 and 3.15. These are handled similarly. 

4.6. Suppose [ <a, b> ]~ and [<c,d>], are positive. To see that the 

sum, [<(a -z7 d) +7 (b-z c),b -7 d)> ]~ is positive, we simply check four 

cases: 

(a) 07 <za,b,c,d : 

(b) a,b <z07 <zc,d 

(c) c,d <z0z7 <za,b 

(d) a,b, c,d <z0z. 

These are all easily done with the previous lemmas. 

4.7. This follows in the same manner. 

Now to show positive (on Q) is well-defined: Suppose <a, b> = 

<a',b’», that is, a-z b’ = b-z a’. Then if 07 <7 a-7 b we can show by 

cases that 07 <z a’ -7b’ too: 

Case 1. 07 <z a, b. Then since b’ ¥ 07, either 

(a) a-7b’ <z07 so b’ <7 07 and a’ -7b <z07 80 a’ <z 07, 

so 07 <za’'-7b’, or 

(b) 07 <za-z7b’soQz <7 b’ and 07 <z a’ +7 bso 07 <z a’,so 

07 <za'-zb’. 

Case 2. a, b <z 0z—this is handled similarly. 

Thus 07 <7a4'7 b iff O07 <7Z a’ ‘Zz b’. 

In the same way, negative is well-defined. 

4,5. 

(1) Irreflexivity: ifk <g k,thenk +g (k)g = 0g is positive, but 0g = 

[<0z, 1z>]~ is not positive. 
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(2) Transitivity: ifi <q j andj <q k, thenj +g (jg andk +9 “(J)o 
are positive. By 4.6, the sum is positive, so i <gk. 

(3) Trichotomy: for i, j}¢ Q we have three cases: 

Case 1. j +q (ig is positive. Then i <g j. 

Case 2. j +q (ig = 0g. Thenj +g “og +gi=i,soj =i. 
Case 3. j +q ‘(i)g is not 0g or positive, hence it is negative. Then 

i+ @ (j)q must be positive, because if it were 0g or 

negative, then by 4.7,[j +g (i)] +e [ite (j)] would 

be negative, but it is Og. Thus j <g i. 



CHAPTER 5 
The Real Numbers 

PROJECT #20. 5.1. R is a definable subset of P(Q), hence a set by 

Comprehension. 

Definition. For r, seR,r <gsiffr¢s. 

5.2. Irreflexivity: r <g r is clearly false. 

Transitivity: r<ps, S<gpt meanr¢s and s¢t,sorg¢t and 
i xed: 

Trichotomy: suppose r # s. Then there is an x in one but not in 

the other. Say x er\s. Then for all yes, y <q x (if not, then xes by 

(1) of the definition of schnitt) and since y <g x, yer, hence s Cr. 

Ass #rwe haves &1r,sos <glr. 

5.3. Let s be an upper bound for X and let r = UX. r is a schnitt 

since 

(1) ger, p <q q imply qete X for some schnitt t, so pet and per. 

(2) ger implies gqete X and since t has no greatest element and 

t Sr, q cannot be the greatest element.of r. 

(3) Since X #4 @ there isateX. Sincet # OWandtcr,rF¥ ©. 

(4) Since s 4 Q there is a pe Q\s. p is not in r since per implies 

peteX andt <pssot¢s, but p€s. 

ris an upper bound for X since te X implies t © rsot <qr. Finally, 

suppose u is any other upper bound for X. Then for every te X, 

t Gu,so thatr = UX Cu,sor <pu. 
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PROJECT #21. 5.4. To prove r +g 5 is a schnitt, we must check the 
four properties: 

1. If a<qb, ber +z 5, then b = x +g y where xer, yes. Let z= 

ytqa+ta@ (b)g. We have a = x +g z and xer; to complete the 
proof we need only show zes. The following is helpful: 

4.8. Lemma. If x, ye Q then: 

(a) “(x +e Ya= (ata (Ya, and 
(b) “(ajo = x. 

PROOF. 

(X +a Va = (+a Va tal tay ta (Xa +a (Va) 

=((x +e Yatax tay) te ate We 

= “(x)a +e (a. 

“Cala +e Ca +0 x) 

“Cala +a “(X)a) +a x 

=X. LC] 

“Cale 

Now, z <q y, since y +@ “(ZJa=y+a (Ya ta (Ao ta b (by 4.8) 
=b-+@ (aq, which is positive (since a <g b). Since yes, ZES. 
2. Suppose ger +es,a=x+Qy, xer, yes. Since r, s have no 

greatest elements, there are x’er, y'€s, x <g x’, y <q y’. Then 
a<qX'+oy' and x’ +9 y’er +m. This last statement requires 
another: 

4.9. Lemma. If w, x, y, zeQ and w <g x, y <gZ, thnwt+e@y <q 
X +Q Z. 

PROOF. X +g (W)g and z +q “(yg are positive therefore the sum is 
positive by 4.6 (Project #19). oO 

PROJECT #22. 5.5. Commutativity is clear. Associativity is clear 
when we notice: r+g(st+pt)=(r+p, S) tat’ = {x|x =a+ob 
+@¢,aer,bes,cet}, by the associativity of +g. 

Definition. Let Og = {x|xeQ a x <g 0g}. 
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Og easily satisfies properties (1), (3), and (4). For (2), suppose g € Op. 
Consider p = q‘g (1/(la +a laa. 4 <a 0g iff Og +e (qo is posi- 
tive. (p)g is also positive, since q+@ (P)a ta (Pio = 0, 80 “(p)g 
can’t be negative or 0 (by 4.7). Thus p <g 0g and pe Og. Finally, 
q <qP since p+q@ (qg)a is positive (it can’t be negative or zero 

since p+q (@atePta @Ma=P+P+ Mata (a= Ma 
is positive). 

5.6. If xer +i Og then x = a+z7b,aer, bE0p, sox =a+gb <g 

a,soxer. Thusr +z Og <p r. Could r be greater thanr +2 Og? Only 
if there is a yer\(r +p Og). 

Pre eee gS eee ee 
r+pO0pr y r 

Since r has no greatest element, there is a zeEr, y <g z. But then 

y=Z+talyta (Za), ZEr, (Y +a (Z)a)€0q, 80 yer +e Op, con- 
tradicting our assumption. 

PROJECT #23. 

Note: answers different from the following are also possible! 

Definition. For reR, “(yp = {x€Q| (x)geQ\r and for some ye 

Q\r y <q (x)a}- 

Definition. For 7, se R, Og <qgr, s: we define: r-p s = {xe Q|x = 

a‘gb for some aer, bes, 0g <q a, 0g <q b} U {xe Q|x < 0g}. 
We also define: Og-pgr=Or, r'rOR=Or, re (Sp= (reser; 

“ras = (resp, and (“ire (S)r =1 ‘eS. 

Definition. 1g = {x|x <q 1g}. 

Definition. For reR, Og<pgr, (1/rp = {xe Qldy(yér A x <q 

(1/y)q)}- For r <p Op, (1/r)e = “(1/ (eae 

Note: if we were continuing, it would be necessary to prove that all 

of these are schnitts. In the case of -, we would also have to prove 

that t <p Op iff Op <p “(t)p to show that the definition given is 

complete. 

The set: { {pe Q|p <q q} € R|qe€ Q} is a subset of R which behaves 
just likeQ. - 
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CHAPTER 6 
The Ordinals 

Project #24. 6.1. True vacuously. 

6.2. To prove Lemma 6.2a: given A, there is a be A such that 

b{\A = @. This b is €-least in A, that is, if c is any other element of 

A, then c¢b. 

Next, the fact that a, be N, a <y biffaeb is an easy consequence 

of Theorem 2.18 and the trichotomy property for <y. This shows 

parts (1’) and (2’) of 6.2b. Finally, if aebeN, then a <y b,soaeN. 

Incidentally, {{@}} satisfies (1') vacuously, but fails to satisfy 
(3’). On the other hand, {@, {@}, {{@}}} satisfies (3’) but not (1’). 

6.3. For transitivity, suppose a, b, ce S(a) = «U {a} and aebec. 
Then either (1) all three are in «, so a€c since « is an ordinal satisfying 

property (1’); or (ii) a, bea, c = a and so aeb by property (3’). 

For trichotomy, suppose a, be S(a) = «U {a}. Ifa, be x we use the 
trichotomy of € on a. If aea, b = « then obviously aeb. Finally, if 

both a, b equal a, then a = b. 

For property (3’), suppose ae be S(a) = aU {a}. Then either (i) bex, 
so aea and then ae S(«); or (ii) b = a, so aea and again, ae S(a). 

6.4. First, b < « since aeb > ae by property (3’) for x. Since € 

is a well-ordering on «a, it is a well-ordering on every subset, in 

particular, b. Second, suppose cedebea. Thencedeaandcexu, by 
property (3’) for «. Then since c, d, bea, we have ceb by the 

transitivity of € on a. 



120 Part Three 

PROJECT #25. 6.5. If ae B, then yexeB > yeBsoa S B. Since « $ B, 
aS B. 

If a & B, let y be the least element of B\«. We claim « = y and so 

ae f. Suppose dey. Then d¢ B\x yet de ye B so d€f. This means 

0€a so we have y < a. To show « € y and finish the proof, suppose 

dea. Then 6€f so by trichotomy either 

(1) yed (then y €a—not true!) 

(2) y = 6 (then again y € ~—impossible!), or 

(3) dey. 

This last must be the case, so a € y and we are done. 

6.6. We need only show transitivity: suppose «, 8 are ordinals. If 

a # B, then one of the two sets «\f, B\a is nonempty. Suppose 

B\a # OS. Let y be the least element of B\«. As in the proof of 

Theorem 6.5, y € a. Since y ¢ ~ we can’t have + & «(by Theorem 6.5) 

and so y = a. Thus wef. 

6.7. Suppose A # @ is a set of ordinals. Let we A. If aN A = @, 
then a is the least element of A. Otherwise, since «MA <a, aN A 
has a least element, f, and this is the least element in A (for ye A 
either wey so Bey, or a = y so Bey, or yeaso yeaN Aso B =yor 

Bey). 

6.8. (1) and (2’) follow from 6.7. For (3’): ifae Be UA, then Bey for 
some yE€ A, so vaey, so aeU A. 

If we A, then « < UA (so « = UA or ~EUA), so UA is an upper 
bound for A. If y is any other ordinal such that ~¢ A > « € y, then 
UA © y (so UA = y or UA€)), hence UA is the least upper bound. 

6.9. ~E S(a). 

6.10. If the collection of all ordinals were a set then UA would 
be the largest ordinal, which is false by Theorem 6.9. 

PROJECT # 26. 6.11. w is not 0, and w ¥ S(n) for any nea, so it isa 
limit ordinal. By definition, if «€@ then either « = 0 or « = S(n) for 
some new. Hence a is not a limit ordinal, and so w is the least such. 

6.12. Given ¢, suppose there is some y such that ~(y) is not true. 
There must be a least such ordinal, since 
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X = {a€y| (a) is false} 

is either empty (so » is least) or not (so X has a least member by 6.7). 
Let f be the least. This, however, contradicts our assumption, since 
for all we B, ~(a) is true. 

PROJECT #27. +, is not commutative, 1 +, @ = a: 

iS Uy J eo Df a 
1 o @ 

but @ +5 1 = S(a): 
\ 

mee ee) = 
2) 1 S(@) 

+, is associative. 0 is the identity. Left cancellation holds, ice., 
a+,fB=a-+,y implies 6 = y, but right cancellation does not, for 
example, 1+,@=@=2+,a, but 1 42. 

‘, is not commutative, 2-, @ = @: 

Z D2 2 

(ooxgoxoo) |=oo0- 

but @-,2=@+4+,@: 

jo og ee cere | Selif: vases 
@ Sey 1 

‘, is associative. 1 is the identity. Left cancellation holds, but right 

cancellation fails, since 1-, @ = 2-, w but 1 # 2. 

One distributive law: «-, (B +, y) = «°,8 +, «:, y does hold, but 
the other does not, (w +, 1)-,2=w+,@ 4, 1: 

@ 53 sional 

atoll Oak 

oe Ooo. oj}=ao07oo.o 
(2) ape (2) 

but (@-, 2) +, (1°, 2) =@ +, @ 4+, 2: 

eke ra) a cr | 
(2) (2) 

=a aie Gi? 
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CHAPTER 7 

The Cardinals 

PROJECT #28. 7.1. For ||@|| < || S(@)||, the identity map, f, defined 

by f(x) = x, maps w one-to-one into S(). For || S(@)|| < ||@||, define 

f by f() = Oand f(n) =n 4+ y 1 for allnea. 

7.2. For ||@|| < ||Z||, let f be the identity map. For ||Z|| < ||a||, 

define f by f(n) = 2n, if 0 <n, and f(—n) = 2n —1if —n <0. 

7.3. For ||@|| < ||Q||, let f map n to the fraction n/1. For ||Q|| < 

||@ ||, we make a list. First we list all fractions which can be written 

using { —1,0, 1}: 

} 1/1 0/1 —1/1 

next, all those which can be written with the addition of { —2, 2}: 

WR coat Neel h% Lyre 20/4 

then all written with the addition of {—3, 3}: 

iy al I es ag dW etme pc ge aon Vd 

and so on. This giant list will contain all the rationals and the length 

will be exactly w. This gives us a function: 

0-1/1 

1-0/1 
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2-1/1 . 

3 1/2 

42/1 

Project #29. 7.4. Following the program of the suggestions, we 

prove: 

(i) xeY>fX)S iY) BI) SB fee 
g(B\ f(X)) > A\g(B\ f(X)) S A\g(B\F(Y)). 

(2) aeZ ~aeX C H(X) for some X. That same X must be entirely 

contained in Z,soae X C H(X) © H(Z), so Z € H(Z). 

(3) By definition, be X © H(X) < H(Z) for some X € A. Then 

be A\g(B\ f(Z)). Then a¢ B\ f(Z)—a contradiction. 

(4) Since b¢ H(ZU{b}), bE H(Z), so b¢A\g(B\f(Z)), so be 

g(B\ f(Z)), and so b = g(a) for some ae B\ f(Z). 

(5) This is clear from (3) and (4) and the fact that f and g are 

one-to-one. 

7.5. True by Theorems 7.4, 7.2 and 7.3. 

PROJECT # 30. 7.6. Following the suggestions: C < A,so Ce P(A), so 

C = f(x) for some x€ A since f is onto. We further see that x € f(x) 

iff x eC iff x ¢ f(x). This is a contradiction, so our assumption that 

|| P(A) || < || Al]. is false. 

7.7. PROOF #1 given in the suggestions is nearly complete. We 

only add that the number r constructed is not in the list. It can’t be 

the first number since it differs from the first number in the first digit 

to the right of the decimal place. It can’t be the second, since it differs 

from the second in the second decimal place, and so on. 

Thus the mapping is not onto, a contradiction. 

PROOF #2 also uses decimal expansions. The mapping takes a set 

such as K = {1,3,4,7,9, 10,...} to the decimal number: 

On 2 3-4 6.) 8.9 

fH] OO ooo 1 ee 
L334 ines) 

It should be clear that if K, # K, then f(K,) ¥ f(K,), since their 
decimal expansions will be different. 
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Note that if || A|| < ||Bl| < ||C| with f mapping A to B, g mapping 
B to C one-to-one, then || A|| < ||C|| since the composite map go f 
is one-to-one. On the other hand, || A || < ||C||, for if h mapped C to 
A, one-to-one, then hog would map B to A, one-to-one, contradict- 
ing || A|| < || BI). 

PROOF #3 is complete. 

7.8. Let « = UA. If Bea and || f|| = ||«||, then there is a map f 
from « to B, one-to-one and onto. Beye A for some yeA, so f fy is 
a one-to-one function from y into B, contradicting the fact that » is 
a cardinal. \ 

7.9. In the suggestions to 7.5, it is shown that ||@|| = || S (@)||, hence 
S(o) is not a cardinal. 

Project #31. 7.13. By induction on n. 0 is Dedekind finite since it 
has no proper subsets. Assume that n is Dedekind finite and suppose 
f maps n +y 1 toa proper subset ofn +, 1. Let h be as in the sugges- 
tions. h is clearly one-to-one, and the range is clearly a subset of n. 
Furthermore, the range is a proper subset, for there is some k <n 
not in the range of f. If k <n then k is not in the range of h, and if 
k = n then f(k) < nis not in the range of h. 

7.14, Let f map n one-to-one onto X, ne N. Suppose g maps X 

onto a proper subset of X. Then the function h defined by: 

h(k) = f*(9(F()) 

maps n one-to-one onto a proper subset of n (if y is not in the range 

of g, then f~*(y) is not in the range of h). This contradicts 7.13. 

7.15. Use 7.10 to well-order X. By 6.13, there is an ordinal « and 

a function f mapping « one-to-one onto X. « can’t be less than a, 

since X is infinite. Then w < a, and f | @ is our required function. 

7.16. Let f be the function from the proof of 7.15. Define g from 

X to X by: 

g(x) = f(S(f*(x))). 

Then g maps X one-to-one into itself. {(0) is not in the range of f, 

so X is Dedekind infinite. 
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ProsecT #32. 7.17. Here is a different proof from the one outlined in 

the Suggestions. Suppose X is a countable set and for each ae X, 

X,,is acountable set. Let Y be the union of the sets X,, Y = {ylye X, 

for some ae X}. We must show Y is countable. Let f map X 

one-to-one into w, and for each ae X, let f, map X, into w. We need 

to define a one-to-one map h from Y into o. 

First Attempt. Let h(y) = (p,)/«® where ye X, and f(a) = n, and p, 
is the n‘" prime number. The first attempt fails because y might be 

in two different sets X, and X,. Then h(y) would not be well-defined. 

Second Attempt. Let h(y) = (p,)/«® where n is the smallest natural 
number such that for some ae X, ye X,, and f(a) = n. The second 
attempt succeeds. 

The Axiom of Choice was used here to choose the maps f,. For 

each a there are infinitely many maps of X, into w, but we need a 

specific one for the proof. In the proof outlined in the suggestions, 

AC 1s used to choose the listings. 

7.18. For each ae A, let A, = A x {a}. ||A|] = || A, ||, so each A, is 
countable. Then A x A = UB where B = {A,|ae A} is countable 
by Theorem 7.17. 

7.19. Suppose WN is a cardinal. By the Well-ordering Theorem, P() 

is well-orderable. By Theorem 6.13, it is order-isomorphic to an 

ordinal y, so || P()|| = ||y||. Let y be the least such ordinal. By 

Theorem 7.6, ||®|| < || P(S)||, so Ney. y is a cardinal since if «ey 

and ||a|| = ||y||, then || P(@S)|| = |||, contradicting our choice of y. 

The resolution of Cantor’s paradox is that K is not a set. 

PROJECT # 33. 7.20. Define the ordering <,. on X by: a <, biff f(ae 

f(b). It is easy to show this is a linear ordering of X. It is well-ordered 

since if A < X, A # ©, then f(A) < f has a least element «. w = f(a) 

for some ae A, and a is the least element of A. Furthermore, f~ 

satisfies the conditions in the definition of order-type, so that the 
order-type of X is a. 

7.21. Let & be a cardinal. Let A = {|there is a well-ordering of 

X of order-type B}. A is a set by Replacement because it is the range 

of a definable function on a set. The set is the set of well-orderings 

of & (a definable subset of P(% x &)) and the definable function 

maps each well-ordering to its order-type. Let y = UA. » is greater 
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than N since there is a well-ordering of X of order-type 8 +, 1 (define 
a < f iff either 6B = 0 or «Ef, a 4 0). Following the suggestions, 

is a cardinal because if « < y, || «|| = ||y||, then 

(1) ae feA for some Bf by definition of y. 

(2) Iv =lloll < BI <Ilyl| so lly = |B] by the Shroeder- 
Bernstein theorem, and hence 

(3) there is a one-to-one function from N onto y. 

(4) By 7.20 » is the order-type of a well-ordering of &, so ye A. 

(5) If there is a well-ordering of S of length y, there is one of length 

y +, 1 as follows: let T = &\{0}. || T|| = so there is a well- 

ordering of T of length y. Well-order & by using the ordering on 

T and putting 0 at the top. 

(6) By the above, y +, le A,so y +, 1 < UA = y—a contradiction. 
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CHAPTER 8 

The Universe 

PROJECT # 34. 

Vo VE I ey YY 

Vir Wotead Uti ghhet ion te st 

For free we give you: 

Vee A SAL SAL SPALL See A BAC HT, 

Ub EC BEC EO OB, 

Ut CC AC BEB 
UL SE EC CD COB 

UU EE EC CB 
Ct TE OO OO AB 

Ascites: 

8.2. For the three cases outlined in the suggestions: 

Case 1. Vacuously true, since no ye Vy = 0. 

Case 2. « = B +, 1 for some f. Then y & V,, so x € Vz. By induction, 

zex implies ze V;, hence x ¢ V, and so xe V, = P(V,). 

Case 3. «is a limit ordinal. Then ye V; for some fea. By induction, 

x € Vz, and so xe V,,. 
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8.3. Continuing the suggestions: 

Case 1. « = 0—again, vacuously true. 

Case 2. «= B +, 1 for some f. Either 6 = f or d€ 8, but in either 

situation, V; © V; using the induction hypothesis. Then if 

xeEV;, xe Vz and then x ¢ V, by Theorem 8.2, hence xe 

V, = P(V,). 
Case 3. «is a limit ordinal. By definition, V; < V, for all d€«. 

Prosect #35. 8.4. We fill in the gaps left by the suggestions para- 

graph by paragraph: 

(1) x © V, and Vz,, = P(Vs) so xe Ve44. 

(2) af(WcVdVe((<c,ddef A <c,edE f) od =e) 

A <0,2Ef 

A VcVd(<c,d>€ f > <S(c), Ud> € f) 

A <a, b> ef). 

(3) If de T(z) then de f(n) for some n, so ce Uf(n) = f(S(n)), so 

cé T(z). 

(4) We can express “se V,” (see the proof of Theorem 8.1), so we can 

express “Vas ¢ V,”. 

(5) qexe T(z) implies ge T(z) by (3). Also, q¢ Y, hence q is in some 

Ve 

(6) If gex, then ge V,,,) and g(q)E R, so g(q) < B. By Theorem 8.3, 

Vig) = Vp, 80 GE Vy. 9(4) 

Prosect # 36. 8.5. Following the suggestions: 

(1) True by Theorem 7.14. 

(2) «<q since otherwise X would be Dedekind infinite (see the 

proof of Theorem 7.16). 

(3) « €Osince X # 0, hence « = S(k) for some kew. 

(4) Since f is order-preserving, b < k implies f(b) < f(k), so that f(k) 

is the largest element of X. By Theorem 6.8, UX is the least 

upper bound of X, so UX = f{(k). 

(5) UX = f(kK)EeX Soa. 

8.6. Let X = {N,|ne@}. By definition, UX =, and clearly 
|| X || = w. Note that we can show X is a set by Replacement. 
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8.7. Suppose X © &,, || X || < w. Then UX is a countable union 
of countable sets, hence || UX || < @ #®,. 

PROJECT #37. 8.8. w is not strongly inaccessible by definition. Xo 
is not regular. For %,, X =X) =a < &,, but if || P(X 9)|| < &; 
then || P(Xo)|| < No, contradicting Theorem 7.6. Similarly for Ng, 
| P(S5)|| is not less than Ng. 

8.9. Let a be the least ordinal such that | V, || is not less than x. a 
is clearly not 0. 

Case 1. « = B +, 1 forsome B < x. Then || V,|| = || P(V;)|| and since 
I| Va || < «, || V, || < « by the inaccessibility of x. 

Case 2. « is a limit ordinal. Suppose x < || V,||. Let f map x one-to- 
one into V,. For each B < a, let X, = {d€x|f(d)e Vz}. Then 

(1) |Xpll < Vell <x, 
(2) UX, < x since x is regular, 

(3) K = U{UX,|B < a} < x since x is regular, 
(4) but K = k, a contradiction. 

PROJECT #38. 8.10. Extension:—obvious. 

Empty Set: WeV, C JV... 

Pair Set: if x, ye V,, then xe V,, ye V; for some «, B < x. Then if 

y is the larger of the two ordinals, y < x, {x,y} S V,, so {x,y}e 

Vee 
Union: if xe V,, then xe V, for some « < x. If aebex then ae V, 

by Theorem 8.2, so Ux © V,, so Uxe V,4, S Vy. 

Power Set: if xe V,, then xe V, for some a < x. By Theorem 8.2, 

x SV, 80 P(x) SP(V,) = V,4, 80 P(x)e V,4. S 

Regularity: —routine, using Theorem 8.2. 

Comprehension: if xe V, then xeV, for some «a <k. If y is a 

definable subset of x, then it is a set, and y C V,,so yeV,,, S V,. 
Infinity: This follows from: 

Lemma. For all ordinals a, ae V,, 1. 

Proof by Transfinite Induction: 0eE V,. 

If BEVe,,,B +1=BU{B} SVe4, sop +1eEVe,>. 
If 2 is a limit ordinal and a < A implies we V,,,, then A € V,, so 

AE Vy 44. ie) 
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Replacement: suppose f is a function from x,to V,, xe V,.. Then 

xe V, for some a < x. x S V, so ||x|| < ||V,|| < x, by Theorem 8.9. 

Define g on x by: g(a) = the least 6 < x such that f(a)e V,;. Let R be 

the range of g. Since ||x|| < x, || R|| < «x, so UR < x. As in (6) in the 

proof of 8.4, paragraph (6), the range of f is contained in Vjz, hence 

is a member of Vug., © Vy. 



CHAPTER 9 
Choice and Infinitesimals 

ProsEcT #39. 9.1. Following the suggestions: 

(1) If 5<a then g(a) = f({g(B)IB < a}) = A(X\{G(B)IB < ae 
X\{g(B)IB < a}, 80 g(a) # g(6). 

(2) The range of g is a definable subcollection of X, hence a set. 

(3) The domain of g™ is the range of g. 
(4) g ‘is a function by Replacement; it then follows that g is too. 

(5) The domain of g is a collection of ordinals, D. D is an ordinal 

itself, since if Be D and a < f, then we D by the construction of g. 

(6) Let R be the range of f on 6. If R  X, then g(d) = f({g(B)|B < 

a}) = h(X\R) is defined, so 6 is in the domain of g, so de D = 6, 

a contradiction. 

(7) g-* maps X one-to-one onto an ordinal, so X is well-ordered 

by Theorem 7.20. 

9.2. (1)-(5) follow as in 9.1. 

(6’) g is actually order-preserving: if « < f, then g(a) < g(f), so the 

range of g, R is well-ordered. 

(7’) If w is a limit ordinal, then R has no largest element, so it has a 

bound not in R. Then g(a) = f({g(B)|B < «}) = f(R) is defined, 
so a is in the domain, «€ a, a contradiction. 

(8’) If g(B) were not maximal, then g(a) = g(f +, 1) is defined, again 

a contradiction. 
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ProsecT #40. 9.3. . 

(1) This is routine. 

(2) If C is a chain in P, then UCe P is an upper bound for C. UC 

is a function, since if <y,a>, <y,b> E UC, then <y,a>e feC and 

<y,b>egeC for some f, g. Since C is linearly ordered by <,, 

either f <, 9, f = g,0rg <, f. Inany case, ¢y,a> and <y, b> both 

belong to the same function, so a must equal b. 

(3) If f is maximal and ye X, y 4 @, then y must be in the domain 

of f, since otherwise we could choose ae y and extend f to g: 

g = fUKY, ay}, 

then f <, g and so f is not maximal, a contradiction. 

9.4. 

(1) This is routine. 

(2) The set {A|w\A is finite} is in Q. 
(3) If C is a chain in Q, then UC €Q is an upper bound for C. UC 

clearly satisfies (b). Suppose A, BE UC. Then AecueC, BeveC 

for some u, v. Since C is linearly ordered by <,, either u <7 
u =v, or v <,u. Then either A, Beu or A, Bev. In both cases 
AN BeuUC. 

Suppose u is a maximal element of Q, A € w, and neither A nor 
@\A is in u. We claim that one of the two sets must intersect 
(must have nonempty intersection with) all members of wu. 
[PRoor: if not, then for some Beu, ANB = @ and for some 
Deu, (w\A)ND = &. Then BND = @, so u¢Q, a contradic- 
tion. ] 

Call this set S. S cannot be finite, since then w\Seu and S must 
intersect all elements of u. Now let v = {BM S|Beu}. v clearly 
satisfies (b). It is not difficult to check that v also satisfies (a), so 
veQ. Then u <, v, so u is not maximal, a contradiction. 

a, 
TS 
— 

ma PRoJecT #41. 9.5. & is clearly reflexive and symmetric. Suppose 
fX®gandg &h,so X = {nea|f(n) = g(n)} and Y = {new|g(n) = 
h(n)} are in @. Then XN YEW and XNYc {neéo|f(n) = h(n)}. It 
only remains to prove: 

9.5a. Lemma. If Ac W and A © B, then Be. 

Proor. If BEW then w\BeY, so AN (w\B)E%, so OG €%, contra- 
dicting (b) in the definition of ultrafi'ter. fel 
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9.6. <im is well-defined: suppose f % f’ and g X g’ and[f]z <i 
[g]z. Then A= {nealf(n)= f'n}, B= {neolg(n) =g'(n)}, 
and C= {néo|f(n)<pgg(n)} are in &%. Hence ANBNCSE 
{nea|f'(n) <p g’(n)} €&. It is easy to show <jg is linear. 

9.7. Let H(n) =n for all n. Then for any reR, if k is an in- 

teger greater than r, then w\k ¢ {neo|f,(n) <ip H(n)}e%, so 

[fle <m LHe. 

9.8. Let I(n)=1/(n+1) for all new. {nea|I(n) = fo(n)} = 
OEU, so Wy #Lfolz. UW] ¢g is certainly positive. Suppose reR 

is given, r>pO0g. Then for some k, 1/(k+1)<r, so w\k¢& 

{ne@|I(n) < f,(n)}e%, so [I]z is infinitestimal. 

Project #42. [f]z +ie Lg]z = [h]z where h(n) = f(n) +e g(n) for 

all new. This is well-defined, for if f } f’ and g & g’, then 

{neo|f(n) = f'(n)} N {nealg(n) = g'(n)} 

S {neo|f(n) +e g(n) = f'(n) +a g'(n)}. 

Similarly, [f]~z ie lg]z = [k]z where k(n) = f(n)-p g(n) for allnew 

is well-defined. 

(1)—(5) are all true. A few proofs (we will use the notation introduced 

in the suggestions). 

(2) Given any positive reR, {nea|I(n) <gr}N {nea|J(n) <p 

Ip} S {ne€a|I(n)-p J(n) <gr}, so I yg J is infinitesimal. 

(3) Given any positive reR, {ne@|I(n) <gr/2}/N (nea|J(n) <p 

r/2} S {nea|I(n) +g J(n) <gr}, so I +h J is infinitesimal. 

(6)—(8) are all false. 

(8) Suppose [g]z were the smallest infinite, positive hyperreal. 

Then if k(n) = g(n) — 1 for all neo, then [k] zy <ig [g]z, but k 

is also infinite (given reR, {ne@|k(n) >gr} = {nealg(n) >R 

r+pR 1p} EN). 

(9) True by Theorem 9.9. “Vx(sin?(x) + cos?(x) = 1)” can be ex- 

pressed in Lp. 
(10) False. This cannot be expressed in Zp, so Theorem 9.9 doesn’t 

apply (we can’t describe “subset”, for example). As an example, 

consider the set of all finite numbers. It has no least upper 

bound (since the answers to (6) and (8) are both False). Note 

that this set also cannot be expressed in Lp. 
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CHAPTER 10 

Goodstein’s Theorem 

ProsecT #43. 

(1) g2(11) = 84, g3(11) = 1027, then 15627, 279937, 5764801, 

134217727, 2749609302. - 

(2) g>(3) = 3, then 3, 2, 1, and g,(3) = 0. 
(3) First, the answers to some warm-ups: (a) 13 (b) 38 (c) 46 + 92 = 

138. 

Now after 1 step: 2°37 +2-342, 

after 1 + 3 steps: 2:67+1-6+5, 

after 1 + 3 + 6 steps: 2-12? + 11, 

after 1 + 3 + 6 + 12 steps: 24? + 23-244 23, 

after1+3+6+12+424steps: 487+ 22-48 + 47. 

Each time we double the increment number of steps, we reduce 

the middle coefficient by 1. To get rid of the squared term, we 

will have to do this 23 more times, so we will have proceeded 

n=1+3464+12+-:'+3-2?° steps, 

and we will have: 

9,(4)=(n+ 1)(n+2)+(1+1) — (in basen + 2). 

To reduce the coefficient of (n + 2) to zero, we must continue the 
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doubling process n + 1 more times, so we will have proceeded 

m=1+3+6+12+:°::-+3-27° steps, 

and we will have: g,,(4) = m + 1, so the answer is m + (m + 1) 
Steps, OF Jom+1(4) = 0. We can compute: 

n=1+3(1+2+4+°::+ 27°) 

= 1 + 3(27’ — 1) 

as ow eee 

Then 

m= 1+ 3(1-+ 2+ 44 +4 225732") 

ad) $3 (eet 2 9) 

so 

2m P= 2 4302S 3" I 

= 3 - 2407053211 _ 3. a very large number. 

Prosect # 44. 10.2. 

(1) fr+1(S,(0)) = fr+1(0) = 0 = f,(0), and 

(2) lfm = Suey 
i=0 

with each 0 < k; <n, and if the lemma is true for all numbers 
less than m, then 

Sn+i(S,(m)) = Sn (s, (x k;- n')) 

d 

= Jnt+1 (3 Si(k; i ")) 
i=0 

iy 20 (3 ki-(n + ip) 
i=0 

Snvilk; (n+ Lee 
~ 

@sn+iSn@) . k; 

Ms IMs ~ 
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a Sli) 2° k 

- 2, Iiulki “n') 

=, Ap k; : n') 
i=0 

= f,(m). 

10.3.(Case-l as outlined in the suggestions is easy, if 

f,(m) = of -k,4 of + ky’ Ho k, + ko, 

then 

f,(m + 1)=@4-kg tot! kg tot ork, thy +1. 

For case 2, 

Leon? +(n— 1° + et 1) 

=w':-k,+o@*%'-(n—1)+°:'+(n—1) 

Sw het Oe @ — 1) Ho! “(n — 1) 

< 08k + OF (n= 1 +--+ (1—D) 
<o'-k,+o**-(n—1):s 

<0" k, + w* 

= @ -{k, + 1) 

= fi((k, + 1)-n*). 

10.4. 

Fn+2(Gnti(™)) = fn+2(Sn+1(Gn(m)) — 1) 

< fn+2(Sn+1(Gn(™))) 

= fn+1(Gn(™)). 

10.1. If for some m the sequence: g,(m), g3(m), ... went on forever, 

then we would have an infinite descending sequence of ordinals: 

f3(g2(m)) > falg3(m)) > fs(ga(m)) > °° which is impossible. 
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This book is an innovative problem-oriented introduction to under- 
graduate set theory. It is intended to be used in a course in which the 
students work in groups on projects and present their solutions to the 
class. Students completing such a course come away with a deeper 
understanding of the material, as well as a clearer view of what it 
means to do mathematics. The topics covered include standard under- 
graduate set theory, as well as some material on nonstandard analy- 
sis, large cardinals, and Goodstein’s Theorem. 

An Outline of Set Theory is organized into three parts: the first con- 
tains definitions and statements of problems, the second contains 
suggestions for their solution, and the third contains complete solutions. 
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