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Preface 

This text deals with three basic techniques for constructing models of 
Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and 
Scott-Solovay's method of Boolean valued models. Our main concern will be 
the development of a unified theory that encompasses these techniques in one 
comprehensive framework. Consequently we will focus on certain funda- 
mental and intrinsic relations between these methods of model construction. 
Extensive applications will not be treated here. 

This text is a continuation of our book, “Introduction to Axiomatic Set 
Theory,” Springer-Verlag, 1971; indeed the two texts were originally planned 
as a single volume. The content of this volume is essentially that of a course 
taught by the first author at the University of Illinois in the spring of 1969. 
From the first author’s lectures, a first draft was prepared by Klaus Gloede 
with the assistance of Donald Pelletier and the second author. This draft was 
then revised by the first author assisted by Hisao Tanaka. 

The introductory material was prepared by the second author who was also 
responsible for the general style of exposition throughout the text. We have 
included in the introductory material all the results from Boolean algebra and 
topology that we need. When notation from our first volume is introduced, it 
is accompanied with a definition, usually in a footnote. Consequently a 
reader who is familiar with elementary set theory will find this text quite 
self-contained. 

We again express our deep appreciation to Klaus Gloede and Flisao 
Tanaka for their interest, encouragement, and hours of patient hard work in 
making this volume a reality. We also thank our typist, Mrs. Carolyn 
Bloemker, for her care and concern in typing the final manuscript. 

Urbana, Illinois 
March 23, 1972 

G. Takeuti 
W. M. Zaring 
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Introduction 

In this book, we present a useful technique for constructing models of 

Zermelo-Fraenkel set theory. Using the notion of Boolean valued relative 
constructibility, we will develop a theory of model construction. One feature 
of this theory is that it establishes a relationship between Cohen’s method of 
forcing and Scott-Solovay’s method of Boolean valued models. 

The key to this theory is found in a rather simple correspondence between 
partial order structures and complete Boolean algebras. This correspondence 
is established from two basic facts; first, the regular open sets of any topological 
space form a complete Boolean algebra; and second, every Boolean algebra 
has a natural order. With each partial order structure P, we associate the 
complete Boolean algebra of regular open sets determined by the order 
topology on P. With each Boolean algebra B, we associate the partial order 
structure whose universe is that of B minus the zero element and whose 
order is the natural order on B. 

If Bi is a complete Boolean algebra, if P is the associated partial order 
structure for B^, and if B2 is the associated Boolean algebra for P, then it is 
not difficult to show that Bj is isomorphic to B2 (See Theorem 1.40). This 
establishes a kind of duality between partial order structures and complete 
Boolean algebras; a duality that relates partial order structures, which have 
broad and flexible applications, to the very beautiful theory of Boolean valued 
models. It is this duality that provides a connecting link between the theory 
of forcing and the theory of Boolean valued models. 

Numerous background results are needed for our general theory. Many 
of those results are well known and can be found in standard textbooks. 
However, to assist the reader who may not know all that we require, we 
devote §1 to a development of those properties of Boolean algebras, partial 
order structures, and topologies that will be needed later. 

Throughout this text, we will use the following variable conventions. 
Lower case letters a, b, c,. .. are used only as set variables. Capital letters 

A, B, C,... will be used both as set variables and as class variables; in any 
given context, capital letters should be assumed to be set variables unless we 
specifically state otherwise. 
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1. Boolean Algebra 

In preparation for later work, we begin with a review of the elementary 

properties of Boolean algebras. 

Definition 1.1. A structure 0, I> is a Boolean algebra with 
universe B ill 0 and 1 are two (distinct) elements of /i; + and • are binary 
operations on " is a unary operation on B\ and 'ia, h, c E B. 

\.a-\-b = h + a ah = ha Commutative Laws. 
2. a {h c) = {a h) + c a{hc) = {ah)c Associative Laws. 
3. a + he ^ {a + h){a + e) a{h + c) = ah + ac Distributive Laws. 

A. a — a \a = a Identity Laws. 
5. a A- ~a = \ a{~a) = 0 Complementation Laws. 

Remark. There are alternative definitions of a Boolean algebra. The 
reader might find it instructive to compare the definitions given in the 

standard texts. 

Examples. 1. If ^7 7^ 0 then f^{aY, n, ", 0, a^ is a Boolean algebra. 
If 7/ = 1 we have a very special 2-element Boolean algebra that we denote by 
2. Every 2-element Boolean algebra is isomorphic to 2. 

2. If a ^0,h ^ ^J^(a), 0 E h, a e h, and if h is closed under set union, 
intersection, and relative complement then \h, u, n, ",0,77) is a Boolean 
algebra. Such an algebra, i.e., one whose elements are sets and whose 
operations are union, intersection, and relative complement, we will call a 
natural Boolean algebra. 

3. If for a first order logic whose language contains at least one predicate 
symbol we define an equivalence relation between sentences by 

<f) i/j iff h ^ 0] 

then the collection of equivalence classes is the universe for a Boolean algebra 
called the Lindenhaum-Tarski algebra. The operations are logical disjunction, 
conjunction, negation; V, A, -1, with the distinguished elements being truth 
and falsehood, i.e., 1 is the equivalence class of theorems and 0 is the equiva- 
lence class of contradictions. 

Exercises. Prove the following for a Boolean algebra <5, +, •, ", 0, 1>: 

1. {'ia)[a A- b = a]b = 0. 
2. {'iailah = a]—> b = \. 

* = {x\x^a]. 
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Notation: We will use the symbols B, B', B^ as variables on Boolean 
algebras. jBj is the universe of the Boolean algebra B. When in a given con- 
text the symbols 0 and 1 appear it will be understood that they are the 
distinguished elements of whatever Boolean algebra is under discussion. If 
there are two or more Boolean algebras in the same discussion we will write 

OR) IR^ 0,,-, to differentiate between the distinguished elements of the 
different spaces. If no confusion is likely the subscripts will be dropped. The 
same convention will be used in denoting Boolean operations. 

Theorem 1.2. If <5, -H, •, 0, 1> is a Boolean algebra then V^7, b e B 

a a = a aa = a Idempotent Laws. 
2. a ab = a a{a b) = a Absorption Laws. 

Proof. 

1. a -\- a = {a a)\ = {a a){a + ~a) = a a{~a) = a ^ = a. 
2. a ab = a\ ab = a{\ + b) = a{~b + b b) = a{~b b) = a\ = a. 

The proofs of the multiplicative properties are left to the reader. 

Theorem 1.3. If <5, -f-, 0, 1> is a Boolean algebra then 

1. -0 = 1, 1 = 0. 
2. (Vfl e B)[\ a = 1 A Oa = 0]. 

Proof. 

1. -0 = 0 -h "0 = 1. 

2. \ a = {~a + a) a = ~a {a -\- a) = ~a a = \. 

The remaining proofs are left to the reader. 

Theorem 1.4. If <i9, +, •, ", 0, 1> is a Boolean algebra then V^7, b e B 

1. a b — \ A ab = (S-^b = ~a. 
2. "("fl) = a. 
3. ~{a b) = {~a){~b), ~{ab) = ~a ~b. 
4. ab = a<^a-{-b = b. 

Proof. 

\. b = b\ = b{a + ~a) = ba b{~a) 
= 0 -}- b{~a) = a{~a) -f- b(~a) 
= (fl + b){~a) = \{~a) = ~a. 

2. Since ~a -\- a = \ and a)a = 0, we have from 1, "("o) = a. 
3. {a + b) + {~a){~b) = a {b ~a){b -f ~b) 

= a {b + ~a) = 1 -H /? = 1 
{a + b){-a){-b) = K"a) + Z7("£7)]("^) 

= b{-a){-b) = 0. 

Hence by 1, -{a + b) = {~a){~b). 
4. i^ab = a then a^-b = ab + b = b.\{a-\-b = b then ab = a{a b) = a. 

The proof of the other half of 3 we leave as an exercise for the reader. 
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Definition 1.5. If +, •, , 0, 1> is a Boolean algebra then Va, b e B 

1. {a — b) = a{~b), 

2. {a b) = ~a b. 

3. {a o b) = (a => b){b => a). 

4. {a < b) ab = a. 

Remark. We will refer to < as the natural order on the Boolean algebra. 

Theorem 1.6. If <5, +, *, 0, 1> is a Boolean algebra with natural 
order < then Vo, b, c e B 

1. a < a. 

2. a<bAb<a-^a = b. 

3. a<bAb<c->a<c. 

Proof. 

1. aa = a. 

2. a = ab = ba = b. 

3. \f a = ab A b = be then a = ab = a(bc) = (ab)c = ac. 

Theorem 1.7. If (B, +, •, 0, 1' is a Boolean algebra with natural 
order < then V^7, b e B 

\. a <b<^~b< ~a. 

2. a<b^a — b = 0. 

3. a < b ^ (a ^ b) = 1. 

Proof. 1. If a < b then a = ab. Therefore ~a = ~{ab) = ~a + ~b. 

Then by Theorem \ .A.A{~b){~a) = i.e., b< (7. Conversely if b< ^zthen 

~{~a) < ~{~b) i.e., a < b. 

2. a < b then a = ab. Therefore a{~b) = {ab){~b) = 0. Conversely if 
a{~b) = 0 then a = a\ = a{b + ~b) = ab a(~b) = ab i.e., a < b. 

3. If a < b then a — ab and ~a = ~a + ~b. Therefore {a ^ b) = 
~a -r b = (~a ~b) b = ~a I = 1. Conversely if (^7 ^ = 1 then 
a = a\ = a{~a b) = ab i.e., a < b. 

Theorem 1.8. If <5, +, •, ",0, 1 is a Boolean algebra with natural 
order < then Vcr, b, c, c/ e B 

\. 0 < b < \. 

2. [a < b] A [c < d]—>- [ac < bd] A [a c < b d]. 

Proof. 1. 0 = OZ? A /> = b\. 

2. a = ab and c = cd then {ac){bd) = {ab){cd) = ac and 

{a + c){b + d) = ab -\- ad cb cd = a ad cb + c = a -{■ c. 

Exercises. Prove the following for a Boolean algebra <5, 0, 1>: 

1. a < ~b ^ ab = is. 

2. a < {a + b) A b < {a + b). 
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3. ab < a A ab < b. 
4. [a < c A b < c] {a ->r b) < c. 
5. [c<aAc<b]^c< ab. 

Definition 1.9. If (B, +, •, ',0, is a Boolean algebra with natural 
order <, '\^ A B and b e B then 

1. b = 2 ^ ^ ^ ^ b] A (V/?' e B)[{'ia e A)[a < b']-> b < b']. 
aeA 

2. z, = n Q <-> (V^7 e A)[b < ^7] A (V/)' 6 fi)[(V77 6 A)[b' < a] ->/?'< /?]. 
aeA 

Definition 1.10. A Boolean algebra <5, +, •, “,0, 1> is complete ilT 

(V/1 c B){3b, b' G B) b = ^ a A b' 
aeA 

n« ■ 
ae4 

Example. If a ^ 0 then the Boolean algebra <i-^{a), u, n, , 0, a} is 
complete. Indeed A A ^ 3^{a) and A ^ 0, then 

i* = uo»An* = no). 
beA beA 

Theorem l.ll. If {B, +, •, ,0, 1> is a Boolean algebra and A B 

then 

1. “2 (I = n Co). 
aeA aeA 

2- 'O" = 2 ("a). 
aeA aeA 

Proof. 1. Since {fib G A)[b < y^aeA we have f^aeA < b and hence 

“2" - rioa). 
aeA ae/1 

Also (V/7 G /l)[naea (~'^) ^ Therefore b < “I Le.! hence 

2" - "HOa) 
ae/1 aeA 

i.e., 

riOa) < “2 
06^4 ae.4 

2. Left to the reader. 

Theorem 1.12. If <5, +, •, 0, 1> is a Boolean algebra, if b, c e B, 
A c B, and 

* = 2" 
a€.4 

then 

cb = ^ ca. 
aeA 
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Proof. If a E A then by Definition 1.9, a < h and hence ca < ch. If 
for each a E A, ca < d then since a — {~c + c)a = ~ca + ca < ~c + d \t 
follows from Detinition 1.9 that h < ~c + d. Hence ch < d and again from 
Definition 1.9 ca = ch. 

Remark. Having now reviewed the basic properties of Boolean algebras 
we turn to the problem of characterizing complete Boolean algebras. As a 
first step in this direction we will show that the collection of regular open 
sets of a topological space is the universe of a Boolean algebra that is almost 
a natural algebra. 

Definition 1.13. The structure T> is a topological space iff T 0, 

1. Tg J^{X) A OG T A XET. 

2. A ^ U 
3. (VA^, N' E T)[N r\ N' E T]. 

T is a topology on X ifT T) is a topological space. a E X and N ET 

then A is a neighborhood of a ifT OE N. If N is a neighborhood of a we 
write N{a). 

Theorem 1.14. is a topology on X. 

Proof. Left to the reader. 

Definition 1.15. T is the discrete topology on T iff T = k^{X). 

Definition 1.16. If T is a topology on X and A ^ X then 

1. /JO = {,ve/l I (3A'(x))[A'(x) £ A]}. 

2. A- = {,ve A' I (VA'(.v))[A'(.x) 0]}. 

Theorem 1.17. If T is a topology on X and A ^ X then A^ E T. 

Proof. X't B = {N E T \ N ^ A) then B T. Furthermore 

A' E A^ ^ 3N{x) ^ A 

^ 3N{x) E B 
^ A E {B). 

Then A° = [J {B)E T. 

Definition 1.18. T' is a base for the topology T on X iff 

1. T' c r. 
2. (VT c X)[A = /t0->(35c r)[A = U(^)]]- 

Theorem 1.19. If T / 0, if T' is a collection of subsets of X with the 
properties 

1. {'daE X){^A Er)[aE A]. 
2. {'ia E T)(V/fi, A2 E T')[a E A^ n A2 

(3/^3 E T')[a E AQ A AQ Ai n A2]]. 

Then T' is a base for a topology on X. 
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Proof. If r = [B c y I (3C c r)[B = IJ (C)]} then 0 = IJ (Ojerand 
from property 1, A' = (7') E T.This establishes property 1 of Definition 1.13. 

To prove 2 of Definition 1.13 vve wish to show that U (‘^) ^ ^ whenever 
S ^ T. From the definition of T it is clear that if S' ^ T then VS 6 S, 3C ^ T' 

« » 

B = U (C). 

If 

CB = [AeT \ A ^ B] 

then 

= U 
and 

IJ B = IJ vj (Cs) 
BeS BeS 

= U(UCa). 
^ BeS 

Since Uses Cs £ T', U (S) s T. 

If Bi, BjS Bthen 3Ci, £ T' 

= U A 52 = U 
Therefore 

Bi n Bj = ( U n ( IJ AA 
A\&C\ AQSC^ 

— (^1 A2) 
A\eCx 
/I26C2 

= U ^3 (By 2). 
.4I6CI 

A2^C2 
.43 £ .410/42 

Then Si n S2 E T; hence T is a topology on X. Clearly T' is a base for T. 

Definition 1.20. If T is a topology on X and A ^ X then 

1. /t is open iff /4 = A°. 
2. A is regular open iff /! = A~°. 
3. A is closed iff /I = A~. 
4. A is clopen iff A is both open and closed. 
5. A is dense in X iff /4" = X. 

Remark. From Theorem 1.17 we see that if T is a topology on X then T 
is the collection of open sets in that topology. A base for a topology is simply 
a collection of open sets from which all other open sets can be generated 
by unions. 

For the set of real numbers R the intervals {a, b) = {x e R \ a < x < h} 
form a base for what is called the natural topology on R. In this topology 
(0, 1), and indeed every interval (a,b), is not only open but regular open. 

[^7, b] = {x E R I a < X < b} = {a, b) . Thus for example [1, 2] is closed. 
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Furthermore (0, l)u(l,2) is open but not regular open. The set of all 
rationals is dense in R. In this topology there are exactly two clopen sets 
0 and R. 

Theorem 1.21. 1, In any topology on X both 0 and X are clopen. 

2. In the discrete topology on X every set is clopen and the collection of 
singleton sets is a base. 

Proof. Left to the reader. 

Remark. The next few theorems deal with properties that are true in 
every topological space <A", T>. In discussing properties that depend upon X 

but are independent of the topology T, it is conventional to suppress reference 
to T and to speak simply of a topological space X. Hereafter we will use this 
convention. 

Theorem 1.22. \f A ^ X and if B ^ X then 

1. ^ A ^ A~. 
2. /too = ^0 ^ ^ 

3. A ^ B->A^ ^ B<^ A A- ^ B-. 
4. (X - A)- = X - A^ A {X - A)^ = X - A-. 

Proof. 

1. X E/to _> 3A^(X) C A 

X E A 
XEA-> {^N{X))[N{X) n /I / 0] 

-> X E A~. 

2. XEA^-^3N(X) C A 

{3N(x))[x E {N{x) n A^) A {N{x) n A^)ET 

A {N{x) n /lO) c A^] 
-> 3N{x) c /to 

X E /too. 

Since by 1, A°^ ^ A° we conclude that A°° = A°. 

X E A~ ~ -> (VA^(x))[A^(x) n /I " # 0] 

(VA^(.x))(3y)[;’ E A^(.V) A y E A~] 

->(ViV(.v))(3>’)(3A^'(>’))[A''(>0^ A ^ 0 A N'(y) g N{x)] 
i'iN{x))[N(x) nA 0] 
X E A~. 

Since by 1, /I ^ A it follows that A = A . 
3. \f A ^ B then 

X E A^ 3N{x) c A 

3N{x) c B 
X E B° 

X E A~ {'iN{x))[N(x) n A ^ 0] 

-> (VA^(x))[/V(x) n B^ 0] 
-> X E B~. 
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4. A' e{X - A)- <-> (VA^(A))[A^(A) n {X - A) ^ 0] 

^^{'iN{x))[N{x) ^ A] 

<-^ X ^ A° 

^XE X - A^. 

X e{X - A)^ -> 3A^(A) ^(X - 'A) 

(3iV(A))[A^(A) n /I = 0] 

^ X ^ A~ 

<^XE X - A-. 

I'hcorem 1.23. A ^ X and 'X B ^ X then 

1. A regular open implies A open. 

2. A is open iff X — A is closed. 

3. A is closed iff — /I is open. 

•X. A B and A dense in X implies B dense in X. 

Proof. 

1. \f A = A-^ then A^ = A'^^^ = A-^ = A. 

2. A = A^ <^(X - A) = iX - 4“) 

<~>{X - A) = {X - A)-. 

3. Left to the reader. 

4. A ^ B->A~ c B~. But A dense in X implies A~ = X. Hence 

B- = X. 

Theorem 1.24. If C is a clopen set in the topological space X and 

B~ — B^ ^ C then B~ — C is clopen. 

Proof. ITAG B~ — C then since B~ — B° ^ C 

X E B^ A X ^ C. 

Since C is closed .V — C is open. Therefore n (.V — C) is open. Then 

A E B^ n (.V — C) implies 3A^(A) C n {X — C) ^ B~ — C. Thus B~ — C 

is open. 

If (VyV(A))[A^(A) n - C) 7^ 0] then 

(VA^(A))[/V(A) n 7^ 0 A yV(A) n {X - C) 7^ 0]. 

Since B~ is closed A e 5"; since C is open X — C is closed, hence A E X — C. 

Therefore x E B~ — C and B~ — C is closed. 

riieorem 1.25. If C is a clopen set in the topological space X then A" — C 

is clopen. 

Theorem 1.26. The clopen sets of a topological space form a natural 

Boolean algebra. 

Proof. Left to the reader. 

rheorem 1.27. If 4 c A^and B c V' then 

1. {A ^ B)- = A- KJ B-, (.‘t n Bf = A^ n B^, 

2. {A n B)- ^ A- n B-, .4^ u 5° c {A U Bf. 

10 



Proof. 1. Since A ^ A yj B and B ^ A yj B v^c have A~ ^ (A yj B)~ 
and B~ c {^4 \j /^)-. Therefore {A~ u B~) Q {A u B)~. 
X e{A \J B)~ A X ^ A~ 

-^(V/V(x))[/V(x) n (A u B) 7^ 0] A (B/V'(x))l/V'(x) n A = 0] 
—> (VA'’(.V))(3A''(.Y))[A^(.V) n A^'(A') n /I = 0 A 

{/V(x) n N'(x)) n (A u B) # 0] 
(VN(x))[N(x) n B 0] 

-> A-e B-. 

Thus (A U c (^4- u B~) and hence {A yj B)~ = A~ yj B~. 

X e (A^ n B^) <- [3A^(A) ^ A] A [3yV'(A) ^ B] 

0 3N{x) ^ A n B 
0 X e {A n B}^. 

2. Left to the reader. 

Theorem 1.28. A ^ X, and if ^ c X, then 

1. A = A° A ^ A~^. 

2. (T-o)-« = A-^. 

3. {A^ n B-) ^ {A n B)-. 
4. (A yj c (^- u B-^). 

Proof. \. \\' A = A^ then since A A~ we have A = A° ^ A~^. 
2. Since A~° ^ A~ and A~~ = A~ we have ^ A~~° = A~^. 

Since is open we have from 1, A~° c Therefore 

(^-0)-0 _ 

3. A £ (A^ n B-) -> [(3yV'(A) ^ A) A (VA^(A))[A^(A) n 5 ^ 0] 
-V (3A/'(A))(V/V(A))[(.V(A) n /V'(A)) n {A n B) 0] 

-> (VyV(A))[/V(A) n A n B ^ 0] 
X e{A n B)-. 

4. X - (A- KJ B-°) = (X - A-) n(X - 5"°) 
= (X - A-) n{X - 5-0-0) (By 2) 
^ [iX - A-) n{X - B-^-)]- (By 3) 
= [X - {A- ^ B-^-)]- 

= X - (A- ^ B-^-y 
= X - (A yj B-^)-f 

Therefore {A u B''^)~^ ^ (A~ U 

Theorem 1.29. If A ^ X and if ^ ^ T then 

1. A and B are regular open implies A r\ B \s regular open. 
2. A and B are open implies [A r\ B = 0 A~^ r\ B~° = 0]. 

Proof. 1. If 4 and 5 are regular open then since A n B ^ A A A n B ^ B 

we have 

(A n B)-^ c ^4-^ = A 

(A n B)-^ c ^-0 = 

// 



Therefore {A r\ B) ^ ^ A r\ B. But also 

{An B) = (A^ n B^) = (A n Bf ^ (A n B)-^. 

Therefore (A n B) = (A n B)~^. 
2. If A = A^ and B = B^ then A ='A^ C A B = B^ ^ Thus 

{An B)<^ {A-^ n B-^). 

Consequently {A~^ n B~^) = 0 implies A n B = f). 
Conversely 

AnB = f)-^A^ X - B 
A- ^ X - B 

c (X - Bf ^ {X - Bf- 

->A-^^ X - B-^ 
^A-° n B-^ = 0. 

Theorem 1.30. The class F of all regular open sets of a nonempty 

topological space X is a complete Boolean algebra with operations A + B = 

{A u B)~^, AB = A n B, ~A = {X — Af, and distinguished elements 

0 = 0 and 1 = A". 

Proof. Clearly addition as defined is a binary operation on regular open 
sets. From Theorem 1.29 multiplication as defined is a binary operation on 
regular open sets. 

If A is regular open then 

{-A)-° = {X - A-)-^ = {X - A-y = -A. 

Thus complementation, as defined, is a unary operation on regular open sets. 
Both 0 and 1 are regular open and since T 7^ 0 we have 0 / 1. If A, B are 
regular open sets then 

A + B = {AKJ B)-^ = {B^ A)-^ = B ^ A 
AB = AnB=BnA = BA. 

Thus addition and multiplication are commutative. For the proof of associa- 
tivity we have from Theorems 1.22 and 1.27 

{A U B)-^ ^ {A ^ BY = A - \J B- 
A-° U B-^ c (A~ u B-f = {A U B)-°. 

Thus if A, B, and C are regular open sets 

(/I + 5) + C = [(/I U BY^ yj C]-o c [{A- u B-) u C-]-o 
= [{A yj B)yj C]-o 
= [{A-^ yj B-^) yj C]-o c [{A u B)-^ yj C]-° 

= (/I + B) -h C. 
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Thus 

(A + B) + C = [{AKJ B)^ C]-o 

= [(Z?U C) u A]-^ 

= i^ B -\- C) -\- A 

= A {B C). 

Consequently addition is associative. Since multiplication is set intersection 
it too is associative. 

For the proof of the distributive law we use both Theorem 1.27 and 
Theorem 1.28. 

A + {BC) = [AKJ{Br\ C)]-° 
= [{A \J B)r\{AKJ C)]-o c (/t u B)-^ r\{A\J C)-^ 
= (A -i- B)(A + C). 

(A + B)(A + C) 
= (Au B)-^ n(A u C)-o 
= [{A u 5-o)-o n(Au c-o)-o]-o c [(A- u B-^) n (A- u C-°)]-o 

= [A- Kj{Bn C)]-o c [A- u(^n C)"]-® 

= [AuiBn C)]-o = A + BC. 
A(B -h C) = A n(Bu C)-° 

= A^ r\{B\J C)-o c [^0 r\{B\J C)-]° g n (5 u C)]-° 
= [(T r\ B)KJ{A r\ C)]-° = AB + AC. 

AB ^ AC = [{A n B)u{A n C)]-^ 
= [A n(Bu C)]-o c A-° n(Bu C)-o = A{B + C). 

0 + /t = (0 u A)-^ = A-^ = A. 

lA = X n A = A. 
A A- = [A U (X - Ay]-^ = [AU(X - A-)]-^ 

= A- U(X - = [A- yj(X - A)y 
= X^ = X. 

A(-A) = A n (X - Ay = A n (X - A-) = 0. 

Thus the collection F of regular open sets forms a Boolean algebra. To 
prove that this algebra is complete we note, from the definition of multiplica- 
tion and the definition of the natural order < for a Boolean algebra, that for 
A, B E F 

A < B ^ A = AB 
^ A ^ B. 

If // is a set of regular open sets then [ij (//)] ° is regular open. Also 

-> A = A~^ ^ Uw 
-0 

Furthermore if B E F and (VA E N)[A ^ B] then (7/) ^ B and 

U(") 
-0 

C 5-0 = B. 
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Thus 

2 /I = U(^) 
AeH 

-0 

Similarly [p) (^)] ° is regular open and 

n<w) 
-0 

c A~^ = A 

If i? G Fand (\fA E H)[B C A] then ^ c p (//) and hence 

-0 

B = ^ nw 
Therefore 

ri^= 
AeH 

-0 

Remark. We have now shown that the regular open sets in any given 
topological space form a complete Boolean algebra. We next wish to show 
that every complete Boolean algebra is isomorphic to the complete Boolean 
algebra of regular open sets of some topological space. This topological 
space is determined by the given Boolean algebra in a way we must now make 
clear. The key is certain properties of partial orderings. 

Definition 1.31. The structure {P, <> is a partial order structure ilT < 
is a subset of P x P and VA', y e P 

1. .V < A'. 

2. A < V A .V < A —> .V = V. 

3. A < y A y < z —> A < r. 

The relation < is a partial ordering of P iff <fP, <> is a partial order 
structure. 

Definition 1.32. If < is a partial ordering of P then 

[.v] = {ye P\y < .v}, ,Y € P. 

Theorem 1.33. If < is a partial ordering of P then T' = {[A] ! x E P] is 
a base for a topology on P. Furthermore \f A P then in this topology 

1. AG A^ [A] C A. 

2. A" G [A'] D A 0. 

3. XEA-^<^ (Vy < A)[[y] n A 9^ 0]. 
4. A E(P - A)<^ ^ (Vy < .Y)[y ^ A]. 
5. A is dense in P iff (VA G /^)[[A] n /t ^ 0]. 
6. A is a <-minimal element of P iff x E P A [A] = {A}. 
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Proof. (VA'GP)[A'G[.v]er]. 

(VA' G /^)(V[ V], [Z] G T')[X G [;>] n [z] x G [X] C [^,] n [z]]. 

Therefore, by Theorem 1.19, T' is a base for a topology on P. Furthermore 
A ^ P then in this topology 

1. X E ^ {3[y])[x e [y] c A] 

<-> [x] c A. 
2. X E A~ <-> (V[y])[x G [)’] -> [y] n A 0] 

< > [x] n /t ^ 0. 
3. X G /t[x] ^ A" 

<-> (Vy < x)[[y] n A 7^ 0]. 
4. XE(P - Af <^[x]^ P - A 

^(Vv < x)[y^ A]. 
5. A is dense in P A~ = P 

<-> (Vx G F’)[x E A~] 
(Vx G P)[[x] r\ A 7^ 0]. 

6. The proof is left to the reader. 

Remark. If <) is a partial order structure then the topology with 
base {[A'] | x G P) we call the topology on P induced by the order relation < 
or the order topology on P. Hereafter when we speak of an open subset of a 
partially ordered set P we will mean open in the topology on P induced by the 
partial ordering. 

Theorem 1.34. If \P^ <> is a partial order structure and A is a collection 
of open subsets of P then 

O'' 
QBA 

is open. 

Proof. 

/; G 6r -> (V^7 G A)[p E a] 
aeA 

(Va G A)[[p] c a] since a is open 

-^ [/?] c PI a. 
asA 

Remark. It then follows, that for a Boolean algebra of regular open sets 
of a partial order structure, infimum coincides with set intersection: 

Theorem 1.35. If [P, <> is a partial order structure and /I is a collection 
of regular open subsets of P then 

n« = Pi"- 
aeA aeA 

Proof. By Theorem 1.34 

Pi'^- (n^) =0''- 
aeA ' aeA ' aeA 
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On the other hand, a e A then 

Plac a 
QBA 

Therefore 

'asA aeA 

Exercises. 
1. A \s a regular open subset of a Boolean algebra iff 

(i) (V.Y e/I)[[.Y] C A] and 
(ii) (Vx^ < .Y)[[ V] n /t = 0]. 

Remark. From Theorem 1.6 we see that if B is a Boolean algebra with 
natural order < then <|B|, <> is a partial order structure hence < induces a 
topology on IB]. In this topology the collection of regular open sets forms a 
Boolean algebra B'. We wish to show that if B is complete and if BQ = 
|B| — {0| then < BQ, <> is a partial order structure from which we obtain a 
complete Boolean algebra BQ that is isomorphic to B. 

Definition 1.36. /is a Boolean homomorphism iff there are Boolean 
algebras B^ and B2 such that/: jB^I IB2I and Vx, v e |Bi|. 

1. /(x+ r) = fix) +/(r). 
2. fixy) = /(x)/( r). 
3. /("x) = “/(x). 

Under these conditions we say that /’is a homomorphism from B^ into 
B2. If 

/: |Bi| onto 
B 

then /is an epimorphism from B^ onto B2. If 

then/is an isomorphism from B^ onto B2. 
/is a homomorphism, or epimorphism, or isomorphism on B^ iff there 

exists a Boolean algebra B2 such that/is a homomorphism, epimorphism, or 
isomorphism from B^ into or onto B2. 

Theorem 1.37. If B^ and B2 are Boolean algebras and /: |Bi| -> IB2 

such that Vx, v e jB^j 

1. fix + ;■) = fix) + fiy). 
2. /(-X) = -fix). 

then / is a Boolean homomorphism. 
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Proof. 

/(-vr) =/(“(".Y + ->’)) = ~J\~x + "v) = "(/("A') ^ f{~y)) 
= -{-fix) + -f{y)) = /(.v)/(r). 

Theorem 1.38. If/‘is a homomorphism from Bj into B2 then 

1. /(O) = 0. 
2. /(I) = I. 
3. (V.v, VG |Bi|)[.v < v->/(.v) </(>’)]. 

Proof. 

!./(()) =/(0(-())) = /(0)(-/(0)) = 0. 
2. /(I) =/(l + -1) =/(l) + -/(I) = 1. 
3. A' < r —> A' = A r 

--.fix) = f{x)f{y) 
-\f{x) </(r). 

Theorem 1.39. If B IS a Boolean al^ehra with natural order ^ and if 
BQ = |B| — jOl then < partially orders BQ and 

(V^7, h E 5o)[[^] = 0 ah = ()]. 

Proof. Left to the reader. 

Theorem 1.40. If B is a complete Boolean algebra, if B^ = |B| — {0}, 

if T is the topology on BQ induced by the natural ordering < and if BQ is the 
Boolean algebra of regular open subsets of BQ, as determined by T, then B 
and BQ are isomorphic. 

Proof. If {V/)E B)[F{h) = [/?]] then clearly ^ is a function. Furthermore 

a G [/?]“ <H^ [^7] n [/?] ^ 0 
<-> 77/? / 0 

a f ~h 
a G BQ — [ /?]. 

Thus [b]-^ = (^0 - [-b]f- 

ae[h]-^^[a] ^ BQ - [“/)] 
^ [77] n ["/?] = 0 

<-> a(~b) = 0 
a < h 

0 a E [h]. 

Thus [/?] = [/7]"° and hence /-'maps B into the collection of regular open sets. 

X G [77] + [b] <-> X G ([77] u [h])~^ 

^ [-v] c ([^/] u [h])- 
' > i'iy < A')[[ r] n {[a] u [/?]) ^ 0] 
^ > (V>’ < A')[ r77 7^ 0 V yb ^ 0] 

- > (Vv < .x)[ v(77 + b) ^ 0] 
("iy < x)[[ v] n [77 + b] / 0] 

<-> [x] c [a h]~ 

X E [a b]~^ = [ay- /)]. 
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Thus [a + h] = [^7] + [h] and hence 

F{a F b) = F{a) + F{h). 
[a][b] = {x E BQ \ X < a A .Y < b} 

= {.V E BQ \X < ab] 

= [ab]. 

Therefore F{ab) — F{a)F{b). Furthermore 

-[^] = {Bo - [b])^ = Bo - [b]-. 

Then 

a e ~[b] ^ a ^ 0 A [a] n [/?] = 0 
^ a ^ i) A ab = 0 
^ a i) A a < ~b 
^ae[-b]. 

Thus ~[b] = [~b] and hence F{~b) = ~F{b). 
We have proved that F is a homomorphism of B into BQ. TO prove that 

F is an epimorphism, i.e., onto, we note that if A is a regular open subset of 
Bo then 

.4 = u [*]• 
be A 

Therefore 

A = A-o = (U I*])'” = 2 [*1- 
^ 5e/l be.-l 

Since B is complete (3^7 E B)[a = y^eA b]. Furthermore VA' E A 

X < a ^ X = ax 
[A] = [77] [A] 

- [A] < [77]. 

Also A < a' ^ > [A] < [77']. Consequently 

[A < 77' -> 77 < 77'] <-> [[AJ < [77'] ^ [77] < [77']]. 

Thus 

a = 2 = 2 [*]■ 
be.4 be.4 

Since F{a) = [77] = A it follows that F is an onto map. 
Finally if [7^7] = [/?] then a < b and b < a. Hence a = b i.e., 

F{a) = F{b) -> a = b. 

We then conclude that F is an isomorphism of B onto BQ. 

Fxercises. Determine the complete Boolean algebra of regular open sets 
in the following partial order structure where 77 7^ 0. 

1. {>^{a), c>. 
2. <r^(77) - {()}, c>. 
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3. <y where x < V y — X. 
4. <(-'^(a) — {0}, < > where .v < )’ <-> v ^ .T. 

Definition 1.41. /is an ideal in the Boolean algebra B iff / c |B| and 

1. Oe/. 
2. a,heI-^a-\-be I. 

3. Q e I A /7G|B| —> (lb G /. 

An ideal / is 

1. a proper ideal iff 1 ^ /, 
2. a principal ideal iff (3/) e |B|)[/ = [/?]], 
3. a trivial ideal iff / = {0|. 

Theorem 1.42. If I is an ideal in the Boolean algebra B then 

1. {^aj?e |B|)[^7 < be I-^a el]. 
2. \ e I = B. 

Proof. Left to the reader. 

Definition 1.43. If/is a Boolean homomorphism of B^ into B2 then 

ker(/) = |Bi| \ fi{a) = 01. 

Theorem 1.44. If/is a Boolean homomorphism on B then ker(/) is a 
proper ideal in B. Furthermore if ker(/) = {()} then/is an isomorphism. 

Proof. Since /(O) = 0, 0Gker(/). Furthermore ker (/) c |B|. If 
a, b e ker (/)then 

f{a + b) = fi(a) + fi(b) = 0 + 0 = 0. 

Therefore a b e ker (/). If <3 G ker (/) and e |B| then 

fiiab) = fiia)fi(b) = Ofi(b) = 0. 

Therefore ab e ker (/). Thus ker (/) is an ideal in B. But 

/(I) = 1 7^ 0. 

Therefore 1 ^ ker(/). Hence ker(/) is a proper ideal. 
If ker(/) = {0} and fi{x) = /(v) then f{x — _v) = 0, consequently 

.V — y = 0 and x < v. Similarly v — x G ker (/) and hence v < x. Therefore 
X = y and/is one-to-one. 

Theorem 1.45. If / is an ideal in the Boolean algebra B then 

{Mafiie \B\)[a ybel-^ael Abel]. 

Proof. 

a = a + ab = a(a + b) e I 

b = b + ab = b(a + b) e I. 
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Definition 1.46. If / is a proper ideal in the Boolean algebra B then 

1. (V^7 6 |B|)[^// = {x e |B| I a{~x) + x("^z) e /}. 

2. |B|// = {all I ae |B1}. 
• « 

Theorem 1.47. If / is a proper ideal in the Boolean algebra B then 

1. ajl = bjl ^ a{~b) + b{~a) e /. 
2. ajl = cl I A bjl = dll^ia + b)ll = (c + d)IL 
3. all = cl I A bll = dll-^abll = cdll. 
4. all = bll-> -all = -bll. 

Proof. 1. If af = bll then since a{-a) + a{-a) = 06/ we have 
a e ail and hence ^7 6/?//. Therefore "6) + /7("77) 6/. Conversely if 77("/?) + 
b{-a)El and xeafi then by Theorem 1.42 a{-b), b{-a), x{~a), a{-x) e I. 

Therefore 

a{-b)x + b{-a){-x) + x{-a){-b) 4- a{-x)b e I 
{x{-b) + b{-x)){a + -a) el 

x{-b) + b{-x) 6 / 

i.e., 6 bf. Similarly .v e bll x e all. 
2. If a{-c) + c{-a), b{-d) + d(-b) e I then by Theorem 1.45 a{-c), 

ci-a), b{-d), d{-b) e /. 
Therefore a(-c){-d) + c{-a){~b) + b{-d){-c) -I- d{-b)(-a) e I 

(a + b){-c){-d) + (c + d){-a){-b) E J 
(a + b)-{c + d) {c + d)-{a + b) E I 

i.e., {a + /?)// = (c + d)II. 
3. As in 2, a{-c), c{-a), b{-d), d{-b) E I implies 

a{-c)b + c{-a)d + b{-d)a + d{-b)cEl 
{ab)-{cd) + {cd)-{ab) E I 

i.e., abfi = cdll. 
4. If 77(“Z7) + /7(“77) 6 / then 

(-a)-{-b) + {-b)-{-a) = ai-b) + b{~a)El 

i.e., 'all = -bll. 

Theorem 1.48. If I is a proper ideal in B then |B|// is the universe of a 
Boolean algebra, B /, with operations 

a I + bfi = (77 + 6)//, alDbll = ablf ~{all) = {~a)II 

and distinguished elements 0 / and III. 
Proof. Left to the reader. 

Theorem 1.49. If / is a proper ideal in B and 

(V77 6|B|)[/(77) = 77//] 

then /'is a Boolean homomorphism of B onto B//and ker(/) = I. 

20 



Proof. Left to the reader. 

Definition 1.50. If B is a complete Boolean algebra then 
1. a homomorphism / on B is complete ilT 

(V/1 c |B|) ./(2 0 = 2/w A./(n*) = \\m 
\ beA ' beA ^ beA ' beA 

2. an ideal / in B is complete ilT 

(V/1 c /) 2 
beA 

Definition 1.51. 1. A Boolean algebra B is M-complete ilT 

(V/1 c |B|) /I G M ^ ^ ^ 1*^1 
beA 

2. A homomorphism /on B is AZ-complete iff 

(V/1 c |B|) A G M '^/(nO = ri/w 
' beA ' be/1 ' beA beA 

3. An ideal / in B is M-complete iff 

(V/1 c /) AE M 2 
beA 

Theorem 1.52. If B = <5, u, n, , 0, 1> is a complete Boolean algebra, 

if A/ is a standard transitive model of ZF, and if 1 G A/ then = {B n M, 
u, n, ", 0, r is an A/-complete Boolean algebra. 

Proof. If ^7, /? G |B| n A/ then 

a \J h E\^\ n M, a r\ b E\^\ r\ M and ~ a = \ — a E\^\ r\ M. 

Since 0, 1 G |B| n M it follows that B^ is a Boolean algebra. Furthermore if 

/ £ (|B| n M) and AE M then since B is complete and M satisfies the 
Axioms of Unions 

[J (A)E |B| n M. 

Therefore B^ is A/-complete. 

Theorem 1.53. If (P, <> is a partial order structure, if (P, <} E Af, 
M a standard transitive model of ZF, and if B is the Boolean algebra of 
regular open subsets of F, then |B| n A/ is the universe of an A/-complete 
Boolean subalgebra, B^, of B. 

Proof. Since <F, <} E M and M is transitive 

(V/7GF)[[/7]GA/]. 

Since M satisfies the Axiom Schema of Replacement 

KF, [p]> \peP}E M. 
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Then V/? e |B! r\ M, b^,h , b ° e M. Consequently if' a, b e |B| n M 

Cl 4" G IBI o A/, cib G |B| o i\'f, Cl ^ |B| O iXI. 

Since 0, P e i\f, B’'^^ is a subalgebra of B. 
If /I ^ |B| n yV/ and A e M then’since B is complete and M is a model 

of ZC 

aBA 

Thus B"'^ is /V/-complete. 

Theorem 1.54. 1. The kernel of every complete Boolean homomorphism 
is a complete ideal. 

2. The kernel of every A/-complete Boolean homomorphism is an ,V/-com- 
plete ideal. 

Proof. 1. If/’is a complete Boolean homomorphism on B and A c 
ker (/) then 

/(2'') = 2 = **• 
' aeA aeA 

Consequently a e ker ( / ). 
2. If /I c ker (/) and A e M then 

(2") = 2 = *'• 
' asA aeA 

Hence '^aeA ^ (/)• 

Theorem 1.55. Every complete Boolean ideal is principal. 

Proof. If I is a complete ideal then, since / ^ /, f,aei ^ ^ 
(V/; e I)[b < a]. Furthermore 

Therefore 

/ = 
. ael 

Cl 

Definition 1.56. / is a ma.ximal ideal in the Boolean algebra B ifl' I is 
a proper ideal in B and for each ideal J in B 

I C J-^I = J y J = |B!. 

Theorem 1.57. 1 is a maximal ideal in the Boolean algebra B ilT 

(^b E \\i\)[b e I -b^I]. 

Proof. If /? G I B| A b ^ 1 A ~b ^ I and 

J = {.Y + V I .Y < b A .V e /} 



then OeJ. If [.\\ < h] A [ vi e/] A [.V2 < h] A [y2^1] then 

[-Vi + .V2 < h] A [ Vi + Va 6 /]. 

Therefore (A'J + .V2) + ( Vi + V2)Ey. FTirlhermore if ce |B| then c < I and 
hence 

A'lC < A'l < h A ViC e I. 

Consequently (A'I + yi)ceJ. 

Thus J is an ideal and I ^ J. Since h eJ A /) ^ / we have I ^ J. F'urther- 
more ~b for otlierwise 

(3A' < h){3yG I)[-h = x + v]. 

Then ~h = {~h){~h) = {x + y){~h) = 0 + r(“/’) E/. This is a contradiction. 
Hence y ^ |B| and I is not maximal. 

If [/7E|B|J A [he I] A [“/7E/] then I = /> + {~h)el. Hence / is not 
a proper ideal. Thus if / is maximal then (VA E |B|)[/) G /< > ~h ^ /]. 

Conversely I ^ J then (3/; Ey)[/) ^ /]. Therefore ~h e I J and hence 

-/) + /7 = ley 

i.e., y = |B| and I is maximal. 

Theorem 1.58. If.-I ^ 0 and Vr/ E .d, C is an ideal in the Boolean algebra 
B then nae.4 C is an ideal in B. 

Proof. Left to the reader. 
Definition 1.59. If B is a Boolean algebra and A c |B| then 

1 is an ideal in B[ 

is the ideal generated by A. 

Theorem 1.60. If/ is the ideal in the Boolean algebra B that is generated 
by .d c I B|, .d 7^ 0 then ^ E / ifl' ^ E | B| and 

(3/A. . . A)[b < bx + • • • + /’„]. 

Proof. If y = {b E |B| I (3/A ■ ■ - bnE A)[b < b^ + • • • + /\]] then J is an 
ideal in B (details are left to the reader) and A ^ J. Thus 1 J. But 

/? G IBI A b ^ b^ T ■ ■ ■ T bf^ G / —>■ b ^ I. 

Therefore J ^ I. 

Theorem 1.61. If / is a proper ideal in the Boolean algebra B, if "^7 ^ / 

and if /^ is the ideal in B generated by / u {a\ then is a proper ideal. 
Proof. If 1 G/Q then from Theorem 1.60 

(36 G /)[! < b y a]. 
Then 

~a = ~a\ < ~ab e /. 

This is a contradiction. Hence f is a proper ideal. 
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Theorem 1.62. Every proper ideal / in a Boolean algebra B can be 
extended to a maximal ideal i.e., there exists a maximal ideal J in B for which 
1 ^J. 

Proof. For any well ordering R pf |B| we define 
» « 

/o = /. 

^a+i = ideal generated by /„ u [a], where a is the first element of |B| for 
which a ^ la A “^7 ^ if such an a exists, 

= la otherwise. 

la lpi ^ ^ ^II* 
/3<ff 

If y = Uaeon then I ^ J ^ |B|. Furthermore if x, y EJ then 

(3a, ^)[X E la A V 6 f]. 

If y = max (a,/S) then x.yEf and hence A* + y ^ f. Also if <3 G |B| then 
ax Ely. Therefore, since OEI^J, J is an ideal in B. Indeed since J = 

Uaeon 4 tind {V77)[l ^ f] it follows that 1 ^ J i.c., 7 is a proper ideal. 
If J were not maximal then there would be a first element QE |B| such 

that a and ~a ^J. If for each A that precedes a, in the order R, we define 

F{x) = fXaiXEla V “A'G 4)* 

then /'“{A I A R a] is a set of ordinals. If 

^ = IJ F“{x \x Ra] 

then 4 is a proper ideal and for each A that precedes a 

A G 4 V "AG 4- 

Since a is the first element in |B| such that A ~a E f \\. follows that 

77 G 4 +1 and hence a EJ. 

Since this is a contradiction we conclude that J is maximal. 

Exercise. 1. Can two dififerent topological spaces lead to the same 
Boolean algebra? 

* iJ.a(P{ct)) denotes the smallest ordinal having the property P. 
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2. Generic Sets 

In the material ahead we will be interested in standard transitive models 
A/ of ZF and in partial order structures P = <(P, <> for which PeM. 
Although some of the results hold under more general conditions we will 
assume hereafter that this is the case i.e., A/ is a standard transitive model of 
ZF, P = <^P, <> is a partial order structure and P G M. 

Definition 2.1. If < is a partial ordering of P then 

1. (fia, b G P)[Comp {a, h) ^ (3c e P)[c < a f\ c < b]. 

2. (VS" c P)[Comp (5) ^ (Vc', b G 5')[Comp {a, /?)]]. 

Remark. The symbol “Comp {a, /?)” is read “cf and b are compatible.” 
Similarly “Comp (S')” is read “5 is compatible.” By definition a subset S of 
a partially ordered set P is compatible if and only if its elements are pairwise 
compatible. 

Later we will be interested in partially ordered sets P whose elements 
“code” certain non-contradictory information. The ordering will be so 
defined that a < b means that a contains all of the information that b does 
and perhaps more. Then c < a A c < b means that c contains all of the 
information in both a and b. Consequently the information in a is compatible 
(consistent) with that in b. 

Definition 2.2. Let /I be a given class. If P = <P, < > is a partial order 
structure and G ^ P, then G is P-generic over A iff 

1. (7 is compatible. 
2. p e G A q E P A p < q q e G. 
3. SE A A S ^ P A S- = P->GnS^0. 
G is P-generic over A in the strong sense if in addition 
4. (ip, q E (7)(3c G G)[r < p A r < q]. 

Remark. In Definition 2.2 the topology is that induced on P by the 
partial ordering <. Consequently, condition 3 asserts that every element 
of A that is a dense subset of P, in the order topology, has a nonempty 
intersection with G. 

Theorem 2.3. If P = <P, <> is a partial order structure, if p is a minimal 
element of P and if G = {q£P\p < q] then G is P-generic over A (in the 
strong sense). 
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Proof. If qi,q2^G then p < q^ and p < <72- Therefore G is compatible. 
If ^7i G G, r/2 G P and q^ < ^2 then since p < q^ we have p < <72, hence ^2 ^ G. 
If GG/t and G is a dense subset of P then qeP implies [^7] 0. 

In particular p G P. Therefore [/;] n G 7^ 0. But by hypothesis p is a minimal 
element of P i.e., [p] = {/?}. Consequently p e S. By definition of G, p G G. 
Hence p e G r\ S i.e., 

G n S 7^ 0. 

Remark. Definition 2.2 is more general than is necessary for most of 
our purposes. For the most part, we will be interested in sets that are P-generic 
over a standard transitive model of ZF. 

Theorem 2.4. If P G A/, M a standard transitive model of ZF, and if G 
is P-generic over M then G is P-generic over M in the strong sense. 

Proof. If a, b E G and 

G = {<? G P I [c < ^7 A r < /)] V [-1 Comp (c, 77) A -i Comp (c, /?)]} 

then 'ic E P 

1. (3A' < c)[-n Comp (A, 77) V -1 Comp (A, h)] or 
2. (VA < c)[Comp (A, 77) A Comp (A, /?)]. 

If 1 is the case then [c] n 5 7^ 0. If 2 is the case then c and a are com- 
patible. Consequently 

(3ci)[ci < c A Cl < 77]. 

Again from 2, Ci and b are compatible, hence 

(3C2)[C2 < Cl A C2 < b]. 

Then C2 < c, C2 < 77 and C2 < b i.e., [c] n G 7^ 0. 
Therefore G is dense in P. Since G is P-generic over M and since S E M 

5n G ^ 0 

i.e., 3c G S' n G. Then a, b, c E G. Since G is compatible it follows that c and a 
are compatible and c and b are compatible. But c G S. Therefore c < a and 
c < b. 

Theorem 2.5. Let P = <> be a partial order structure with PEA 

and let G ^ P. Suppose that for all S 

1. SEA A S ^ P^S^ [p I [/7] n S = 0} G A. 

Then for all S 

2. SEA A S ^ P A S- = PG n S ^ 0 

itT for all S 

3. S G ^ A S c p ^ (3/7 e G)[/7 G S V [p] n S = 0]. 
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Proof. (3 —> 2). If 5 E and S is a dense subset of P then 

(V/7)[[/7] r\ S ^ ()]. 

Therefore by 3, (3/; G G)[p e 5’] i.e., G n 5" 7^ 0. 
(2 3). Conversely suppose that S G A and G ^ P. If 

S’ Syj {p I [p] r^S = 0| 

then, by I, 5' G A. Furtherniore S' is dense in P for otherwise 

(3/7 G/^)[[/;] n G' = 0]. 

But then 

[/7] n G = 0 

and hence p G S' contradicting [/?] n S' = 0. 
It then follows that G r\ S' ^ 0 i.e., 

(3/7 G C)[/7 E S \J [/7] n S = ()]. 

Theorem 2.6. If P = <P, <> is a partial order structure and if A is 

countable then every member of P is contained in some subset of P that is 
P-generic over A in the strong sense. 

Proof. Since A is countable we can enumerate the elements of A that 
are dense subsets of P\ 

^2’< •••• 

\{' a e P then 

(3/7I G SI)[/7I < a], (Since Si is dense in P) 

then 

(3/72 e S2)[/72 < /7i], (Since S2 is dense in P) 

etc. If 

G = {q\ 

VI 

m
 

then 

(Vr/, q' G G){3pi, pj)[pi < q A pj < q']. 

Since p^ < pj or Pj < pi it follows that G is compatible. Furthermore if 
p E G, q e P and p < q then {^Pi)[Pi < p < q]- Therefore q e G and in 
particular a e G. 

If S G /I and S is a dense subset of P then (3/)[S' = S';]. Since Pi G Si it 

follows that C n S' # 0. 
If p,q E G then (3/7; G G)[pi < p A pi < q]. Thus G is P-generic over A 

in the strong sense and a E G. 

Remark, fn Theorem 2.6 it is not necessary for A to be countable. It is 
sufficient for A to contain only countably many elements that are dense 
subsets of P. This will be the case if is countable. 
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Definition 2.7. Fis a filter for the Boolean algebra B iffO 7^ F c |B| and 

1. A' G F A V £ F -> xy G F. 
2. A' G F A G I B| A X < y y e F. 

* 

Examples. 1. {IJ is a filter for B.* 
2. If /I ^ 0 and a ^ A then {.v ^ | ^7 c A*} is a filter for the natural 

algebra on 

Definition 2.8. If F is a filter on the Boolean algebra B then 

1. F is an ultrafilter ifT (VA' G 1B|)[A' G F <-> “A* ^ F]. 
2. F is a principal filter iff {3a e F)[F = (A G |B| | ^7 < A'}]. 

3. F is A/-complete iff (V/1 G A/) A <= 
ae/1 

4. F is a proper filter iff 0 ^ F. 
5. F is a trivial filter iff F = |1}. 

Theorem 2.9. If F is a filter on the Boolean algebra B then 

1. 1 GF. 

2. A' G F A >’ G |B| -> A' + _)’ G F. 

Theorem 2.10. If B is a Boolean algebra and F and I are nonempty 
subsets of |B| with the property that a e F iff ~a G / then 

1. / is an ideal in B <-> F is a filter for B. 
2. / is a maximal ideal ^ > F is an ultrafilter. 
3. / is a principal ideal F is a principal filter. 
4. I is yV/-complete F is A/-complete. 
5. / is a proper ideal <-> F is a proper filter. 
6. I is a trivial ideal <-> F is a trivial filter. 

Theorem 2.11. 1. If F is an ultrafilter for B and 

/(A-) = 1, AGF 

= 0, A G |B| — F 

then/is a homomorphism from B to 2. If Fand B are AZ-complete so is/. 
2. If / is a homomorphism from B to 2 and F — {A G |B| | /(A) = 1} 

then Fis an ultrafilter for B. If/and B are AZ-complete so is F. 

Theorem 2.12. Every proper filter on a Boolean algebra B can be 
extended to an ultrafilter on B i.e., if F is a proper filter on B there exists an 
ultrafilter F' on B such that F ^ 

Theorem 2.13. If F^ and F2 are ultrafilters on a Boolean algebra B then 

1. Fi c > Fi = F2. 
2. Fi ^ F2 [F, - F2 ^ 0] A [F2 - Fi # 0]. 

Proofs. Left to the reader. 
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Remark. From Theorem 2.12 and the definition of a generic set we can 
prove a very important result known as the Rasiowa-Sikorski Theorem. 

Theorem 2.14. (Rasiowa-Sikorski.) If B is a Boolean algebra, if 

1. <7o e |B| — {0}, and 

2. c |B| A e |B| A ^ a, n e oj, 
aeAn 

then there exists a Boolean homomorphism //: |B| |2| such that 

1. hiao) = 1, and 

2. //(/?„) = 2 ^ 
aei4n 

Proof. Since every homomorphism maps 0 onto 0 and /?„ = 0 iff 
(V^7 G An)[a = 0] there is no loss in generality if we assume that 

(V/; G a;)[0 A h, ^ 0]. 

If < is the natural order on B and P = |B| — {Oj then P = <P, <> is a 
partial order structure. If 

Sr, = {p e P \ p < -hr, V (3^7 G /l„)[/7 < 7/]} 

then V/7 G P 

p < 'hr, y p -hr,. 

If p < -hr, then p G and [77] n # 0. If /7 ^ -h,, then ph,, 0 i.e., 

P ^ ^ = 2 ^ 
ci^Aji CIS Afi 

Therefore (3^7 G Ar,)[pa 7^ 0]. But this implies 

(377 G Ar,)[[p] n [a] 7^ 0] 

i.e., 

[77] n 7^ 0. 

Thus Sr, is dense in P. Since | /? G co) is countable it follows from 
Theorem 2.6 that there exists a G P that is P-generic over (S'n | // G co} in 

the strong sense and such that OQ G G. 
Since G is P-generic in the strong sense 

(Vx, y G G)(377 G G)[p < x A p < y]. 

Therefore 

I.e., 

p = px < xy 

xy G G. 
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Thus G is a filter for B and indeed, since 0 ^ G, a proper filter. 
By Theorem 2.12 G can be extended to an ultrafilter F. If 

h{b)=\, beF 
= 0, |B| - F 

then / is a homomorphism from B onto 2 (Theorem 2.11). Since OQeF, 
li{ao) = 1. Since G is P-generic over (S',! | ;? e tu) and for each n, Sn is dense 
in P 

Gn n F ^ 0 

i.e., 

(3/7GF)[/7 < -br, V < r/]]. 

If /? < ~bn then since h is order preserving 

1 = h{p) = /;( /?„) = h{b^) 

i.e., h{bn) = 0. Also 

Therefore 

Thus 

(V^7 G Ar,)[a < /?„]. 

(V(3 G A,,)[h{a) < h{br,) = 0]. 

2 
ae/l„ 

If {3b G An)[p < b] then 

1 = h{p) < b{b) < 2 b{a) < liib^). 
aeAn 

Remark. If in Theorem 2.14 we allow a collection of sums of arbitrary 
cardinality then the conclusion is false. If, however, B satisfies the countable 
chain condition, to be discussed in the next section, then a new axiom by 
Martin gives a generalization of the result for sets of sums of cardinality 
less than the continuum. 

Theorem 2.15. If B is an T/-complete Boolean algebra and 5^(1 Bj) n M 
is countable then for each b ^ 0 \n |Bi there exists an ^/-complete homo- 
morphism /’from B onto 2 such that /'(/)) = 1. 

Proof. If S ^ i^{\^\) r\ M and if />e|B| with b^^ then, from the 
Rasiowa-Sikorski Theorem, there exists a homomorphism / from B into 2 
such that f\b) = 1 and /'preserves 

2- 
aeS 

Theorem 2.16. If P = <(F, <> G M, if G is P-generic over A/ if B is the 
Boolean algebra of regular open subsets of P and 

F = {b e \B\ n M \ b = b-^ A b n G 0} 

then F is a proper AZ-complete ultrafilter for the Boolean algebra B'b 
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Proof. Clearly F c |B| n M. Since P is dense in F, F n G 0. Also F 
is regular open and P E M. Therefore P e F i.e., F ^ 0. 

If .V, y G F then .xy = n y 6 |B| n A/. Furthermore A' n G 0 and 
_)’ n G 7^ 0 i.e., 

[3ci E A' n G] A [3(^2 E j; n Gj. 

Since .v and v are open 

[c\] c A' A [r2] c V. 

From Theorem 2.4 

(3rE G)[r < Ci A c < r2]. 

Then c E (A* n v) n G i.e., (.v y) G ^ 0. Therefore AT E F. 
If A-EF, VE |B| n A/ and A' < r then since A' n G F- 0 it follows that 

n G 7^ 0. Consequently ye F and F is a filter. Furthermore 0 n G = 0, 
hence 0 ^ F and F is a proper filter. 

To prove that F is A/-complete we note that if A F and A e M then 

since B'^ is AFcomplete I Ia6.4 ^ |B| A/. We then need only prove that 

OaeA a ni G ^ 0. For this purpose we appeal to Theorem 2.5. 
Since A/ is a transitive model of ZFand P E A/ it follows that for each S 

if S' E M and S is a subset of F then 

S u [p I [p] n S = 0} E A/. 

Since G is P-generic over A/ we have property 2 of Theorem 2.5. Consequent- 
ly, by Theorem 2.5 

(VS E A/)(3/; E G)[p E S V [/^] n S = 0]. 

In particular A ^ F and A e M then Oae/i a e M; hence 

1. (3/; E G) peYJci w [F] n PI ^7 = 0 
aeA aeA 

If [p] YJaeA a = 0 then since [/?] and flaeA «ire each open 

[/;]-on (n») = 0. 

(See Theorem 1.29.2.) Thus 

[/;]-»ri« = 0 
aeA 

n« s 
aeA 

If A' = A then 

n ^ = [F]"° n" = 
aeA' aeA 

and hence 'a = \. But = (UaeA' ^ (UaeA' ■■r/)"..Con- 
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sequently if S = Uae^' then ^ is dense in P and Se M. Since G is 
P-generic over M 

i^qeG) 9f,U 
aeA’ 

{3c/ E G){3a E A')[q e a]. 

Then ~aeF. On the other hand, p e [p]~° r\ G. Therefore [/7]"°Ef’ i.e., 
A' c Therefore a G F. But since T is a filter a, ~ae F implies a(~a) = 
0 e F, which is a contradiction since F is a proper filter. 

From this contradiction and 1 above we conclude that 

i.e., 

i^P e G) peYJci 
aeA 

aeA 

Thus F is a proper TZ-complete filter. 
Finally, if ^7 E |B| n A/, ^7 + ~a = 1. Therefore (a u “<7)"° = P. Conse- 

quently 77 u ~a E M and 77 u “77 is dense in P. Then 

(77 u 77) n C # 0 

I.e. 

77nG7^0v 77nG7^0. 

Therefore a G F y ~a G F. But since 77(“77) = 0 ^ F we have 

a G F <-> ~a ^ F. 

F is an ultrafilter. 

Theorem 2.17. If P = <(F, <> is a partial order structure, if B is the 
Boolean algebra of regular open subsets of P, if F is a proper AFcomplete 
ultrafilter in B‘'^ and if G = {p G P \ [/?]~° e F} then G is P-generic over A/. 

Proof. Clearly C ^ F. If /?, <7 E G then [/7]"° E F and [q\~^ G F. But 

Since F is proper, 0 ^ F. Therefore 

[/7]-o n [^7]-o ^ 0 

and hence by Theorem 1.29.2 

[p] ^ 

i.e., p and q are compatible. Thus G is compatible. 
If/; E G and p < q then [/;] ^ [7/] hence [/;]"° < [77]"°. But since p GG 

implies [/;]"° E F and since F is a filter [77]"° E F, and q GG. 
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If 5 6 A/ and S is dense in P then 

IJ [/>]-“ 
peS 

and hence 

(uipi-d ° =/’ 
V PeS ' 

i.e., 

2 [/’]■“ = '• 
peS 

If G r\ S = 0 then (ip G S)[p ^ G] and hence [p]~^ ^ F. But F is an 
ultrafilter. Therefore "([/7]“°)6F. Consequently 

0 = n -([/’]-°)ef. 
peS 

Since F is proper this is a contradiction from which we conclude that 
G r\ S ^ 0. Therefore G is P-generic over M. 

Remark. In Theorem 2.16 we established a procedure for obtaining a 
proper A/-complete ultrafilter Cfrom a given G that is P-generic over M. In 
Theorem 2.17 we showed how to obtain a G that is P-generic over M from a 
proper A/-complete ultrafilter F. If from a P-generic G we obtain an ultrafilter 
/•■from which we in turn obtain a P-generic G\ how are G and G' related? We 
will show that in fact G = G'. Similarly if we proceed from F to C to F' 

then F = f'. 

Theorem 2.18. If G is P-generic over M then (7 is a maximal compatible 

subset of P. 

Proof. If there exists a ^ G such that G u {p} is compatible and if 

G = [/;] U {q I ^Comp {p, q)} 

it is easily established that S is dense in P. Indeed q e P either q is com- 
patible with p or it is not. If q is compatible with p then [q] n [p] ^ 0; if(7 
is not compatible with p then q e S. In either case [q] S ^ 0. 

Since -S is dense in P, G n G / 0. On the other hand, since G u {p} is 
compatible G contains no elements incompatible with p. Therefore [/;] n 
G # 0 i.e. (3q < p}[q e G]. Since G is P-generic it follows that peG. This 
is a contradiction. 

Theorem 2.19. If P = <P, <>EA/, if B is the Boolean algebra of 
regular open subsets of P, if G is P-generic over M, and if 

F = {h G \^\ r\ M \ b = b-^ ^ h n G 0} 

G' = (PI 

then G = G'. 
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Proof. 

peG->[p]-^ n G 7^ 0 
-^peG' 

i.e., G ^ G'. Since, by Theorems 2.16.'and 2.17, G' is P-generic over M it 
follows from Theorem 2.18 that G = G'. 

Theorem 2.20. If B is a natural Boolean algebra, if F is a proper M- 

complete ultrafilter for B'^, and if 

G = {/7| [/7]-0EF} 

F' = {he\^\c\ M\b = h-^ K h r\G 0} 

then F = F'. 

Proof. 

bEF'^b = h-^^br\G^Ql 
-> (3/7 G G)[p G b] 

A [/7]-° < b] 
->beF. 

Thus F' c On the other hand, by Theorem 2.17, G is P-generic over A-/, 
and hence, by Theorem 2.16, F' is a proper ultrafilter. Then, by Theorem 
2.13, F = F'. 
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3. Boolean a-AIgebras 

Definition 3.1. 

1. A Boolean algebra B is a a-algebra ifT 

(V/1 c |B|) 
as A 

B| A n 
as A 

2. A Boolean ideal / is a a-ideal ilT 

(V/1 c I) A = CO J^ael 
aeA 

3. A homomorphism /'on a Boolean a-algebra B is a a-homomorphism iff 

(V/l c |B|) A = CO 

\ae/ ^ 06/ \06/ 06/ 

Definition 3.2. A Boolean algebra B' is a subalgebra of the Boolean 
algebra B iff |B'| ^ |B|, the operations in B' are restrictions of the operations 
in B to jB'l, and the distinguished elements of B' are the same as in B. 

Theorem 3.3. If / ^ 0 and B^ is a subalgebra of the Boolean algebra 

B = (B, +, •, 0, 1> for a e I then B' = <006/ |Ba|, +, •, 0, 1; is a 
subalgebra of B. If in addition each B^ is a a-algebra then B' is a a-algebra. 

Proof. Left to the reader. 

Definition 3.4. 1. If / 7^ 0 and B^ is a subalgebra of B = <^, 0,1> 
for a e I then 

2. Let A c |B|. Then O {B' | B' is a subalgebra of B and A c |B'|} is the 
sub-algebra of B generated by A. 

Definition 3.5. If <T, T) is a topological space and A ^ X, then A is a 
Borel set iff A belongs to the a-subalgebra, generated by T, of the natural 
Boolean algebra on .^(X). 
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Theorem 3.6. If (A', T) is a topological space, if 

Ao = ru{X - al aeTj 

= icil(3fE(AJ^) 
KCO KO) 

a I, J CX. E Ajj, 

I3<a 

then A = UaeXi is the set of all Borel sets in X. 

Proof. Clearly each element in AQ is a Borel set. If Aa is a collection of 
Borel sets then so is A^+i. If for ^ < a, A^ \s a. collection of Borel sets then 

I3<a 

is a collection of Borel sets. Therefore T is a collection of Borel sets. To prove 
that A contains all Borel sets it is sufficient to prove that /I is a Boolean 
a-algebra. 

Since AQ ^ A and 0, 1 E AQ we have 0, I E A. Since union and intersection 
are associative, commutative, and distributive we need only prove that A has 
the closure and a-closure properties. 

We first note that a < jS implies Aa c A^. If 

bo, bi,... 

is an co-sequence of elements of A then there exists an co-sequence of ordinals 

ao, «i,. . . 

each less than and such that bQ E Aa^, b^ E Aa^,.... 
Since {ao, a^,. . .} is a set it has a supremum that is also less than 

Therefore 

(3a < X,)(V/ < co)[b, E Aa]. 

Then 

2 bi E Aa+i A bi E 
i < CO t < CO 

Definition 3.7. If T is a topological space and A ^ X then 

1. .>1 is nowhere dense ilT/l"° = 0. 
2. A is meager iff A is the union of countably many nowhere dense sets 

i.e., A = Ut<co vvhere Vi < co, Ai is nowhere dense. 

Theorem 3.8. If AMs a topological space and A ^ X then 

1. is open implies A~ — A is meager. 
2. A is closed implies A — A° is meager. 
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Proof. 

1. {A- - Af = [A- r\{X - A)]-^ c ^-o n {X - A)-^ 

= A~^ r\ {X — A^~) since/I is open 
c A-^ r\{X - A-^) 

= 0. 
2. {A - /^o)-•o = [A r\{X - .4°)]-° 

c A^ n (X — since A is closed 

= A° r^{X - A^-) 

= 0. 

Theorem 3.9. 1. The collection of all meager sets in a topological space 

A" is a proper a-ideal in the natural algebra on -^(T). 
2, The collection of all meager Borel sets in a topological space T is a 

proper a-ideal in the Boolean cr-algebra of Borel sets. 

Proof. Left to the reader. 

Theorem 3.10. If 5 is a Borel set of the topological space X then there 
exists an open set G and meager sets and N2 such that 

B = {G + N,)- N2. 

i.e. every Borel set has the property of Baire. 

Proof. If 5 is open then 5 = (5 + 0) — 0. If ^ is closed 

B [B^ + {B - B^)] - 0. 

Thus in the notation of Theorem 3.6, the result holds for each element of .^o- 
If it holds for each element of A^ and if ^ G /!„+ ^ then there is an co-sequence 
BQ, ^1, . . of elements in A^, such that B = 2i<co or B = "2i<co From 
our induction hypothesis there exist open sets Gi and meager sets and 

A^2‘ such that 

Bi = {G, -h - Nf 

If G = 2i<co Gi then G is open. Furthermore if 

N, = B- GAN2 = G- B 

then 

= B - G £ 2 - 2 ^ 2 ^ 2 
i<co i<(0 i<o) Kco 

N., = G - Be 2 = ,2 
i<o) i< CO 

Thus and N2 are meager and B = (G + N^) — N2. 

If B = ~C and C = (G -h N^) — N2^or G open and and N2 meager, then 
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Since “G is closed ~G — { G)^ is meager and hence 

B = [(-Gf + (-G - (-Gf) 4- N,] - (N, - N^) 

where ("G — (~G)®) + N2 and 7Vi — N2 are meager. 
**> 

* » 

Corollary 3.11. If 5 is a Borel set of the topological space <(3f, T) then 

there exists a regular open set G and meager sets and N2 such that 

B = {G + N^) - N2. 

Proof. By Theorem 3.10 there exists an open set G and meager sets 
Nx and N2 such that 5 = (G + N^) — N2. But 

G = G-^ - (G-^ - G). 

Hence 

B = (G-o + Nx) - [(G-° - G - yVi) + yV^]. 

Definition 3.12. /I is a compact set in the topological space <(3f, T) ift' 
A ^ X and 

(V5 c T) /I S IJ (S) ^ (35' £ 5) Fin* (5') A /( £ |J (5') 

Definition 3.13. A topological space T) is 
1. a Hausdorff space 

iff (V^7, b E X)[a ^ {3N{a)){^N'{h))[N{a) n N'{h) = 0]], 

2. a compact space iff is a compact set, 
3. a locally compact space iff V^7 e X, 3N{o), N{a)~ is a compact set. 

Theorem 3.14. If the topological space <^X, T} is a Hausdorff space then 
(ia, b E X)[a ^ b^ (3A(^7))[/? ^ A(fl)-]]. 

Proof. By definition of a Hausdorff space 

(3yV(a))(3yV'(/?))[yV(^7) n N\b) = 0]. 

Therefore b ^ N{a)~. 

Theorem 3.15. 1. Every compact set in a Hausdorff space is closed. 
2. Every closed set in a compact space is compact. 

Proof. 1. Let /I be a compact set in a Hausdorff space {T, T). If 
b E A~ — A then by Theorem 3.14 

(V^7 E /1)(3A(^7))[/? ^ A(^7)"]. 

Since A c IJ {A(i7) | E/I A b^N{a)~] and since A is compact, there 
exists a finite collection of elements of A 

a a n 

* Fin (5) means “S is finite”. 
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and a neighborhood of each such point 

such that 

A c /\j{a^) u - • - u NiaJ 

and h ^ Nicii) , h ^ N{a2) , • • ^ • Therefore 

{3N,{h))[N,{h) n N{a,) = 0] 

(3A'2(/7))[/V2(/d n Nia^) = 0] 

{3N,{h))[N,{b) n N(aJ = 0]. 

N{h) = N^{h) n - • • n NJh) 

then N{h) n A =0. But this contradicts the fact that b e A~. 
Therefore A~ — A =0 i.e., A is closed, 
2. If A is a closed set in the compact space <(T, T> and if 

then 

[5 c r] A 

{'iae X - /I)[3A^(^7) ^ X - A]. 

Consequently T ^ IJ (S) ^ [J {N{a) \ a e X — A A N{a) ^ X — A). Since 
<A', r> is compact there exists a finite collection of sets in S 

and a finite collection of sets in {N{a) \ [a e X — A] A [A^(^7) ^ X — A]} 

Nioi),. . 

such that 

X ■ -KJ D^KJ N{a^) U • • • U N{am). 

Then 

/I c T>i u • • • u 

Definition 3.16. A set ^ has the finite intersection property iff every 
finite subset of S has a nonempty intersection. 

Theorem 3.17. The topological space fX, T) is compact iff for each 
collection S of closed sets with the finite intersection property 

n (5) 5^ 0. 

Proof. (By contradiction.) Suppose that (X, T) is a compact topological 
space and there exists a collection of closed sets S with the finite intersection 
property but for which pj (‘^) = ^- Then 

A- - 0 = A- - PI (5) = IJ (A- - /<). 
AeS 
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Since X — A is open for each A e S and {X, is compact 3.^0.. . A^ E S 

X = U (X - A,) = X - f) A,. 
i^n i^n 

Therefore Hi^n = 0- This is a contradiction. 
• « 

Conversely suppose that every collection of closed sets S with the finite 
intersection property also has the property P) ^ 0. Suppose also that 
there exists a collection of open sets T' such that 

but V/!i,. . Aj^eT' 

X$[jA,. 
f ^ n 

Then 

f](X- Ad^ X-[JA,^O. 
i^n i^n 

Thus {X — A \ A E T'} is a collection of closed sets with the finite inter- 
section property. Then 

A-- u -^ = n^ 0 
AeT' AeT' 

i.e., 

A' 5t U (T'). 

This is a contradiction. 

Theorem 3.18. If <(T, T) is a topological space, if X' ^ X and 
T' = {X' n N \ N e T} then <^X', T'} is a topological space. Furthermore 

1. <T', T'y is a compact space if X' is a compact set, 
2. <A"', T'y is a HausdorfT space if <( T, T) is HausdorlT. 

Proof. Left to the reader. 

Definition 3.19. If <T, T> is a topological space, if X' ^ X and T' = 
{X' r\ N \ N E T] then T' is the relative topology on X' induced by T and 
<A", T'y is a subspace of <A^ T). 

Theorem 3.20. If <T, T) is a topological space, if X' c x, if T' is the 
relative topology on X' induced by T, if ^ is a base for T and 

- {A"' n I A^e B] 

then B' is a base for T'. 

Proof. Left to the reader. 

'Fheorem 3.21. If <A', T) is a topological space, if X' c x, and if T' is 
the relative topology on X' induced by T then 

1. /I is an open set in T implies A n X' is an open set in T' 
2. A is closed in T implies A n X' is closed in T' 
3. A is clopen in T implies A n X' is clopen in T'. 
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Proof. 1. U A is open in T then 

(V^7 G /t n X'){^N{a) G T)[N{a) c A]. 

Then N{a) r\ X' eT' and a G N{a) r\ X' ^ A X'. Thus /t n T' is open 
in r. 

2. If ^7 G T' and G T')[A'(^7) n (A n X') 9^ 0] then 

(VA^(^7) G T)[N(a) n X' nA 0]. 

Thus 

(VN(a) G r)[A^(77) nA 9^ 0]. 

Since A is closed a e A and hence a E A n X' i.e., A n X' is closed in T'. 

3. If A is both open and closed in T then by 1 and 2 above A n X' is 
both open and closed in T'. 

Theorem 3.22. If <T, T > is a locally compact HausdorlT space then for 
each open set A and each o E A there exists an open set B such that 

OE B A B- ^ A. 

Proof. If A is an open set in X and a E A then since <(T, T> is locally 
compact 3A^(<7), N{a)~ is compact. If 

M = {N{aY n Af 

then M~ is also compact. If 

r = (A/- r\ A\AET} 

then <M", T') is a compact Hausdorff space. In this space M~ — M is 

closed and hence compact. Moreover 

(VVGA/- - M)YN{y)Er)[a^ N{y)-]. 

Since M~ — M is compact there is a finite collection of elements of T' 

N{y,\...,N{yf) 

such that 

M~ — M ^ N(yi) U • • • U N(yf} 

and 

a^Niy^)- A ••• A a^N(yn)~. 

Therefore there exist neighborhoods in T' 

Mnia) 

such that 

A/i(«) n N{yi) = 0 / = 1,. .A?. 

If M{ci) = 0:^71 then 

M{a) n u • • • u A^(;v)] = 0 
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Therefore 

M{a) CM- - [A^(ji) U • . . U 

But since • U A^( Vn) is open M~ — [A^(j’i) u • • • u A^( v„)] is 
closed. Hence 

M{a)- c M" - [A^( Vi) U • • • U yV( Va)]- 

Therefore 

M{ar n [A^( Vi) u • •. u ^O’J] = 0 

and 

M{a)- c M = {N{a)- n Af. 

But since M(a) e T\ 

{^NET)[M{a) = M- n A^]. 

And since M{x) c A/ = A/° 

M{a) = M n NeT. 

Theorem 3.23. (The Baire Category Theorem.) Every open meager set 

in a locally compact Hausdorff space is empty. 

Proof. If B is an open meager set in the locally compact Hausdorff space 
<3f, r> then there exists an co-sequence of nowhere dense sets 

AQ, Ai,. . . 

such that 

B=IJ A,. 
a<co 

If B ^ 0 then by Theorem 3.22 

(3N,GT)[Nr c B] 

and since Ai is nowhere dense 

(3^2 c AI)[A2 n = 0] 

for otherwise c Ai~^. Then 

(3A^3e7')[A^3- ^ A^2]. 

Inductively we define a nested sequence of neighborhoods such that 

^n+l — ^n + 1 — ^n-> 

Consequently 

n A'2n+i = n ^ 0 
n<co n<co 

(Theorem 3.17). Therefore 

3.\ e PI N2„+I e B. 
n<0} 
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But then V/? G CO 

-VG A^2.+ 1 A A^2n+1 n = 0. 

Tliercfore .v ^ Uaeoj This is a contradiction that compels the conclusion 
B = 0. 

'rheorcm 3.24. If B is the Boolean rr-algebra of all Borel sets in the 
locally compact HausdorlT space <A', T} and if / is the rr-ideal of all meager 
Borel sets then B 7 is isomorphic to B', the complete Boolean algebra of all 
regular open sets in X. 

Proof. 11 

F{G) = Gif GG |B'| 

then F{Gi) — F{G2) < ' C/'i — G.^^ I F (J2 ~ T’l G /. Then G^ — Gj 'T meager 
and open. Thus, by the Baire Category Theorem 

G, - G^- = 0. 

Similarly 

62 - Cr = 0. 

Then 6\ ^ G2~ A G2 ^ (JI~■ Since G^ and G2 are each regular open 

= Gf c G2"° = G2 and G2 = OV ^ Cr® = G^. 

Therefore G^ = G’2 and hence Tis one-to-one. 
If G G |B| then by Corollary 3.1 1 there exists a regular open set G' and 

meager sets yVi, N2 such that 

G = (G' + N,) - N2. 

Then G — G' c yVi — N2 i.e., G — G' G f Similarly G' — G G / and hence 

Gjl = G'lf 

Then 

F{G') = G'll = GIL 

That is F is onto. 
That has the morphism properties is clear from its definition. 

Defnition 3.25. A Boolean algebra B satisfies the countable chain 
condition (c.c.c.) iff 

(V5 ^ lB|)[Vr/, h G S')[<7 ^ h ah = 0] -^ § < cu]. 

I heorem 3.26. If X is a topological space with a countable base then the 
Boolean algebra of regular open sets in X satisfies the countable chain 
condition. 

Proof. If Cl, U2- • • • is a countable base and if S is a pairwise disjoint 
subset of |B then since the elements of S are open it follows that 

(V/f G.S)(3/7 < 6o)[C„ c A]. 
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Furthermore 

(V/l, fi S S)[[i/„ S /(] A [t/„ £ B] ^ /I = B], 

Therefore S is countable. 

Theorem 3.27. If B satisfies the c.cx. then for each subset £ of |B| there 

exists a countable subset /) of £ such that D and £ have the same set of upper 
bounds. 

Proof. If / is the ideal generated by £ then E I. Consequently every 
upper bound for / is an upper bound for £. Conversely 

(V/; G G E)[b < /?! + • • • + /?„]. 

Therefore every upper bound for £ is also an upper bound for I. 
From Zorn’s Lemma there exists a maximal set £ of disjoint elements of 

I. By the c.c.c. £ < w. Since £ c /every upper bound for / is an upper bound 
for £. If /)o is an upper bound for £that is not an upper bound for / then 

(3bi G /)[/?! ^ /7o]. 

Therefore bi — boG 1. Furthermore, since (V/? G F)[b < bo] 

i'ib G F)[b n {bi — bo) = 0]. 

Then £u {/?i — bo) is a collection of pairwise disjoint elements of /. But this 
contradicts the definition of £. Thus every upper bound for £is also an upper 
bound for I. 

We have established that £ is countable. If 

f = {fn\n < Oj} 

then since F ^ I and I is generated by £ 

(V/? < • • • bmf e £)[/n ^ bf + • • • + b^f]. 

From this existence property and with the aid of the AC, we define a set 
D thus: 

D = {bf I /? < CO A /■ = 1, 2,. . ., lUn) 

then D ^ E, D < CO and D and £ have the same set of upper bounds. 

Theorem 3.28. Every Boolean a-algebra B satisfying the c.c.c. is com- 
plete. 

Proof. By Theorem 3.27 if £ c |B| then there exists a countable subset 
D of £ such that D and £ have the same set of upper bounds. Since D is 
countable and B is a a-algebra 

beD 

exists. Since D and £ have the same set of upper bounds 

2* 
beE 
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exists. Indeed 

2 = 2 
beE beD 

Remark. In later sections we will need certain properties of product 
topologies which we will now prove. We begin by defining projection func- 
tions for cross products. Hereafter the symbol J ] will be used to denote cross 
products and Boolean products. We will rely on the context to make the 
meaning clear. 

Definition 3.29. 

(Vfle/()(VC £ n ''"ajlMC) = {/(«) 1/s C}]. 
\ aeA 

Theorem 3.30. U' A ^ 0 and Va E A, is a topological space then 

r' = -^ S £ n I (3" e e < »)[[/><,(„(fi) e r,<„] 
V ae/1 

A {Ma E A )[a ^ a{i) PaiR) = Xa]] 

is a base for a topology on Hae.i 

Proof. \f A 9^ 0 then E A. If /6 Ila6.4 f{b) e and hence 
3N(fib)) E r,. Then 

/€ (g 6 n I e *'(/<**) (■ ^ T'- 
V aeA J 

Clearly, if Bi, B2 e T' then B^ r\ B2E T'. Therefore by Theorem 1.18 T' 
is a base for a topology on YlaeA ^a- 

Definition 3.31. The topology T of Theorem 3.30 we call the (weak) 
product topology on YiaeA^a induced by the topologies T^, a E A. This 
topology we will denote by 

aeA 

(.Y].aeA^a^ Oae/iT’a) we Call a product topological space. 

Theorem 3.32. If A ^ 0 and E A, <3^^, 7^) is a topological space then 

(Vo 6 .<)(vc = n e 7-J. 
' aeA ! 

Proof. Left to the reader. 

Theorem 3.33. (Tychonofif’s Theorem.) If /I 7^ 0 and Vr; E A, (X^, Tf) 

is a compact topological space then the product topological space Flae/i ^a^ is 
also compact. 

Proof. Let ^ be a collection of closed subsets of Flae/i ^a^ with the finite 
intersection property and 

T = \B ^ I R h^s the finite intersection property/ 
' ^ aeA ' ) 
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Let {5<,|Z?G/O} be a subset of T, linearly ordered by inclusion. Then 

S — Ube/o and for each finite subset of Ube/o ^b there is a bel^ such 
that that subset is contained in Since has the finite intersection 
property Ube/o ^b has the finite intersection property. Thus 

U T. 
be/o 

Since every linearly ordered subset of T has an upper bound in T, with 
respect to inclusion, T contains a maximal element by Zorn’s Lemma. Thus 
there is a ^ in T such that no proper extension of B has the finite intersection 
property. 

Since B has the finite intersection property {Pa{C) \ C e B\ has the finite 
intersection property for all a e A. Therefore if 

Ca = [Paicy \ C eB} 

then Ca is a collection of closed subsets of Xa and Q has the finite inter- 
section property. Since is compact it follows from Theorem 3.17 
that n (O # i.e., 

e Pi (CJ. 

If= OaeA {^aj ^iid if N{b) is any neighborhood of b in the product 

topology then 

ba^Pa{N{b)) G Ta. 

Since 

Consequently 

{'iCeB)[baepa{C)-] 
yCGB)[pa{N{b))r^pa{C) 0]. 

{\ICeB)[N{b) n C 7^ 0]. 

In particular since S ^ B 

{\/A G .S)[A^(6) n /I 7^ 0]. 

Since S' is a collection of closed sets, b e A for each ^4 in S i.e., 

n (5) 7^ 0. 

Therefore by Theorem 3.17 the product topology is compact. 

Theorem 3.34. \\' A 7^ 0 and Vr/ G A, {Xa, To} is a Hausdorff space then 
the product topology on Oae^ is Hausdorff. 

Proof. If /, g G na6.4 aiid /V g then {3b G A)[f(b) 7^ g{b)]. Since 
{X(j, Tf> is a Hausdorff space 3N{f{b)), N'(g{b)) e y 

N{f{b)) n N'{g{b)) = 0. 

Then M = {/? e Hae^ I b{b) e N{f{b))} is a neighborhood of / and 
M' = {h G nae.4 \ K^) ^ N'{g{b))] is a neighborhood of g. But M n .\/' = 
0. Therefore the product space is HausdortT. 
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4. Distributive Laws 

In this section we wish to discuss several generalized distributive laws for 
Boolean algebras that will be of importance in the work to follow. 

Definition 4.1. If a and ^ are cardinal numbers then a complete Boolean 
algebra B satisfies the (a, ^)-distributive law ((a, l^)-DL) ilT for each 

\hij e |B| I / E / A / £7} with I < a A J < 

n 2 ^11 =20 
iel j£j feJ! iel 

B satisfies the complete distributive law ifT it satisfies the (a,^)-distributive 
law for all a and /3. 

Remark. From Theorem 1.12 every complete Boolean algebra satisfies 
the (2,/S)-DL. We can easily provide an example of a complete Boolean 
algebra that does not satisfy the (a», 2)-DL. 

Example. If B is the complete Boolean algebra of all regular open sets 
of the product space 2" then B does not satisfy the (to, 2)-DL: If 

[fe 2" |/(/) = 0}, />„ ^ {fe 2“ |/(/) = 1} 

then and are each clopen and hence regular open. Then 

PI (^iO + ^il) = 1- 
ieco 

But Vf £ 2" 

n = (n ^ = {/}" = 0. 
ieco ' ieo) 

Therefore 

2 n = *'• 
/£2“ 

Theorem 4.2. 

then 

If B is a complete Boolean algebra and 

{bij I /£ / A JeJ} c |B| 

2 I I ^ n 2 ^<r 
f£ji i£l iel jeJ 
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Proof. 

WeJ‘) bi. /(i) 
< 2 *0 

ieJ 

(V/eyO n /■(i) ^ 

ie/ 
n 2 *0 
le/ ;ey 

2 n *!•/«> -02 
/ey/ <e/ ie/ ;ey 

Theorem 4.3. If B is the complete natural Boolean algebra of all subsets 
of A ^ 0 then B satisfies the complete distributive law. 

Proof. If bij c /t for /■ e / and / G J then 

/7 G PI (V/ G /)(3y G J)[b G bi^] 
ie/ jeJ 

<M3/ey')(V/£/)[/>€ ft,,] 

* e u n *'•/<»• 
fel' iel 

Remark. We next show that to within isomorphism the complete 
natural Boolean algebras are the only completely distributive complete 
Boolean algebras. 

Theorem 4.4. For each completely distributive complete Boolean algebra 
B there exists a nonempty set A for which the natural algebra on ^{A) is 
isomorphic to B. 

Proof. IfV//G|B| 

= ~b 
dbi = b 

and 

~ "f i 1 I J ^ 2'®' A I I ^b.fib) 0 
Vbelltl be|l{| 

then since B is completely distributive 

1 = n ^^bo + ^?bi) = 2 n 
belli] /e2lBl belli] 

n ^b.f(b) ^ 0 
belli] 

Consequently 

(3/G2'®') 

i.e., A 0. Furthermore 

CG |B| = C (^7f,o + «bl) = 2 n "b./(b)) 
belli] /e2l«l belli] 

If c # 0 then 3/G 2'®' 

^ n ^b,/(b) ^ 
belli] 
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But y/'e 2'“' if/(c) = 0 then ^7c,/(c) = ^ 

Y I ^^./(b) ^ 
belHl 

i.e., 

^ 1 1 ^h,f{b) — 
belltl 

If/'(r) = 1 then acj(c) = c and 

ri < c 
beim 

i.e., 

FT ^b./(b) = FT 
bGiKI beim 

Thus, if .S = (ribeiin ^b./(b)e ^ 1/(0 = 1} Hien c = Ibes/?. Therefore, if 
we define F on ^(/l) by 

F(5) = ^h,S ^ A 
beS 

then F maps onto |B|. 
To prove that F is one-to-one we note that if bi, h2G A A # h2 then 

3/.,./2 e 2'“' 

= FT ^ FT ^bJ2(.b) = ^2- 
belUl belBI 

Therefore 3b e |B|,/i(6) ^ and hence 

^b./i(b)^b./2(b) “ 

Consequently = 0. 
If^E/lAS^/lA/7< F{S) then 

bF(S) = ^bc^ 0. 
ceS 

Hence 3c E S, be / 0. But be ^ Q b = c. Therefore b E S. Consequently if 
5" c ^ then 

{Mb E A)[b E 5 b < F(S)]. 

From this fact it follows that if 5 ^ /I and S' ^ A then 

F(S) = F(S')->S = S', 

i.e., F is one-to-one. 
Furthermore 

F(S u S') = 2 *• 
beSuS' 

But 

bES->b < F{S) < FiS) + F{S') 

beS' ->b < F{S') < F{S) + FiS'). 
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Therefore 

F{S u S') < F(S) + F{S'). 

U(ibe Su S')[b < c] then 

F{S) < c AF{S') < c 

hence 

F{S) + F{S') < c 

i.e., 

F{S^ S') = F{S) -f F(S'). 

Finally 'ic e A 

c < F{A — S) <-> c E A — S 
<-> S 

^ F(S) 
< -F{S). 

Therefore 

F{A - S) = -F(S). 

Thus F is an isomorphism A) onto |B|. 
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5. Partial Order Structures and Topological Spaces 

In the work ahead we will be interested in Boolean algebras that are 
associated with certain partial order structures (Definition 5.4) and Boolean 
algebras of regular open sets of certain topological spaces. Quite often we 
find that the Boolean algebra associated with a particular partial order struc- 
ture is the same algebra as that of the regular open sets of a certain topological 
space even though there appears to be no connection between the partial 
order structure and the topological space. In this section we will establish 
such a connection. For a given partial order structure we will define a topolog- 
ical space of ultrafilters for the partial order structure (Definitions 5.2, 5.3, 
and 5.6). We will show that in general this topological space is a T^-space 
(Theorem 5.7). If, however, the partial order structure is one associated with 
a Boolean algebra, then the topological space is in fact Hausdorff (Theorem 
5.8). 

Definition 5.1. A topological space <(T, T) is a T^i-space iff it satisfies the 
7'1-axiom of separation: Vx, y e X 

X i- y (3N{x))[y ^ A^(x)] A {3N{y))[x ^ N{y)]. 

Remark. For the results we wish to prove we first define filter and 
ultrafilter for partial order structures. 

Definition 5.2. Let P = <P, <> be a partial order structure and let F 

be a nonempty subset of P. Then F is ‘d filter for P iff 

1. F is strongly compatible i.e., (V.v, y e F){3z G F)[Z < X A Z < _v]. 
2. F is upward hereditary i.e., (Vx G F)(VV e P)[x < y ^ v e F]. 

Remark. From Definitions 2.2 and 5.2 and from Theorem 2.4 we see 
that if G is P-generic over M, with M a standard transitive model of ZF, then 
G is a filter for P. In fact G is an ultrafilter in the following sense. 

Definition 5.3. F is an ultrafilter for the partial order structure P iff F 
is a maximal filter i.e., Fis a filter for P and for each filter F' 

/•■ c F' ->F ^ F'. 

Remark. Note that an ultrafilter for a partial order structure P = 
<F, <> need not be a proper filter, i.e., F could bean ultrafilter. Indeed if P is 
compatible P is an ultrafilter. 
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We next establish a connection between filters for Boolean algebras and 
filters for partial order structures. 

Definition 5.4. Let B = <5, +, •, “,0, 1> be a Boolean algebra with 
natural order < (see Definition 1.5)...L'et P = B — {0} and P = <P, <>. 
Then P is the partial order structure associated with B. 

Theorem 5.5. Let B = 0, 1> be a Boolean algebra and 
P = <P, <> be its associated partial order structure. If T is a nonempty 
subset of |B| then Tis a proper filter for the Boolean algebra B iff T is a filter 
for the partial order structure P. 

Proof. Let T be a proper filter for B. Then 0 ^ T i.e., F ^ B — {0}. If 
A', y e F then xy e F and hence there exists a z E F, namely xy, such that 
z < X and z < y. Thus T is a filter for P. 

Conversely let T be a filter for P. If x, y e Tthen there is a z e Tsuch that 
z < X and z < y. Therefore z < xy and since F is upward hereditary xy E F. 
Furthermore since 0 ^ P it follows that 0 ^ F i.e., P is a proper filter for B. 

Definition 5.6. Let P = <(P, <> be a partial order structure and let F 
be the set of all ultrafilters for P. Then 

N(p) = {FeF|/;€f),/;e/’ 

T = {G s F I (Vf 6 G)(3p e P)[Fs N(p) £ GJ). 

Theorem 5.7. <F, T> is a Ti-space. 

Proof. First of all we shall show that <F, T> is a topological space. From 
Definition 5.6 it is clear that 0 and F are each open. Let and G2 be open 
sets and let F E G^ r\ C2. Then there exist p and // such that 

FEN{P) C GI 

and 

FEN{P') C G2. 

Then p e P, // E Pand hence there exists a z E Psuch that z < p and z < p'. 

Therefore, since every ultrafilter is upward hereditary 

PE A^(Z) C fs/{p) n N{p') c Cl n 

and hence Gi n G2 is open. 
It is clear that if each (7a, o E A, is open then [J {Ga \ a E A} is also open. 

Thus \F, T> is a topological space. 
Next we will show that <F, T> satisfies the Pi-axiom of separation. Let Pj 

and P2 be different elements of F. From the maximality of Pj and of P2, 
there is a /? E P^ — P2 and a // E P2 — Pi. Then P2 ^ N{p) and Pi ^ N{p') 
i.e. <F, T> is a Pi-space. 

Remark. There exist examples of partial order structures such that the 
corresponding topological space <F', T'> is not Hausdorff. 
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Theorem 5.8. Let P = <(P, <) be the partial order structure associated 
with the Boolean algebra B. Then <F, T> is a HausdortT space. 

Proof. Suppose not. Then there would exist distinct Fa e F such that 

(VFI 6 FI)(V/72 e FaXBFe F)[/7I E F A p^G F]. 

Then (3r e F)[r < A r < P2] i.e., p^p^ / 0. 

If G = {p E P \ (3pi E F){3p2 e F)[piP2 ^ p]} then G is a filter for P. For, 
if p,q E G then 

(3/7I, E FI)(3/72, q2 e F2)[piP2 < p A q^q2 < q]. 

Since Fj and Fa are filters p^qi E F^ and 772^/2 e Fa. Furthermore PiqiP2q2 ^ 
pq. Then pq E G i.e., for each p, q E G there is an r e G, namely pq, such that 
r < p and r < q. Clearly G is upward hereditary. 

Since G is a filter, since F^ G and Fa ^ G, and since F^ and Fa are distinct 
ultrafilters we have a contradiction. Therefore \F, T> is HausdorfT. 

Remark. In order for F to be a filter for a partial order structure P = 
<F, <> we require that F be strongly compatible (Definition 5.2). This 
raises a very natural question. Why do we not define a more general notion 
by requiring that F only be compatible? That is, instead of requiring F to 
satisfy 1 of Definition 5.2 why do we not require instead that F satisfy the 
weaker requirement 

1'. (V.Y, V E F)(3r e F)[z < .Y A r 6 v] ? 

For purposes of discussion let us call filters as originally defined strong 
filters and filters as newly proposed, weak filters. The change from strong 
filter to weak filter also changes the notion of ultrafilter for being maximal 
among weak filters is a stronger restriction than being maximal among strong 
filters. There are two interesting consequences of this fact. If ultrafilters are 
maximal among weak filters then the sets N{p) of Definition 5.6 form only a 
subbase for the topological space <F, T>. Furthermore this space is Haus- 
dorfT. The fact that <F, T> satisfies the Fa-axiom of separation was first 
pointed out by H. Tanaka. 

Nevertheless, for the work that comes later we need strong filters and we 
want ultrafilter to mean a strong filter that is maximal among strong filters. 
Thus, later use brings us back to the definition as given. 

We do not know whether every F^-space is homeomorphic to a topo- 
logical space <F, T> associated with some partial order structure or whether 
every HausdorfT space is homeomorphic to a topological space <F', T'> 
associated with the partial order structure associated with a Boolean algebra. 

Let P = <F, <> be a partial order structure and let F the set of all ultra- 
filters for P. In order to investigate some relations between the topologies on 
P and F we introduce the following notation. 
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Definition 5.9. Let Gi be an open subset of P and G2 be an open subset 
of F. Then 

cf = U {A'(P) I [p] £ G.} 

Gt = U {[/’] I A'(/’) £ G,}. 
« » 

Remark. Clearly Gf and Gt are open subsets of F and P respectively. 

Theorem 5.10. If and G2 are open subsets of /^and F respectively then 

1. Gi c 

2. G2 c Gt*. 

Proof. 

1. a e Gi-^ [a] Gi 
-~>N{a) c Gf 

—> [^7] c (7*A (since Gf is an open subset of F) 
->aEGff 

2. feG2->(BaEfnN(a) ^ G2] 
-^(3aEf}[[a] c Gt] 

(3^7 E P}[N(a) ^ Gt*] (since Gt is an open subset of P) 

->FEG^*. 

Theorem 5.11. 1. If Gi and G2 are open subsets of P then 

Gi c G2 G* c G*. 

2. If Gi and G2 are open subsets of F then 

G'l c C2 -> Gt ^ Gt- 

Proof. Left to the reader. 

Theorem 5.12. IfG is an open subset of F and [77] ^ then N{a) ^ G. 

Proof. 

[a]<^ G^-> a E G^ 

-^{3b)[N{b) c G A aE[b]] 

—> {3b > a)[N{b) ^ G] 
->(3/7)[A/(77) C N{b) c G] 

N{a) c G. 

Theorem 5.13. IfG is a regular open subset of P then G*^ = G. 

Proof. 

a E G*^ —> [77] c G*^ 
A^(77) C G* 

->iVf)laEf-^FEG*] 
-> (VF)[^7 EF-> {3b E F)[[/7] C G]]. 
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For each c < a there is an ultrahlter F' for P such that c e F'. But then, since 

c < a and c e F' we have a e F'. Consequently if e then 3h e F' n G. 

Since F' is an ultrafilter for P and since both c and h are in F' 

{3b' e F)[h' < c A h' < /?]. 

But h G G A h' < h. I'herefore h' e G i.e., 

a e 6’*^ ^ (Vc < a){3h < c)[/) e G] 

(Vr < <:/)[[c] n (7 7^ 0] 

^ (Vc < a)[c G G~] 

c- 

-^UGG-^ 

a G G. 

Then by Theorem 5.10. = G. 

Theorem 5.14. If C is an open subset of F then (7^* = G. 

Proof. 

^{3aG F)[N{a) c G] 

FGG. 

Therefore by Theorem 5.10, == (7. 

Theorem 5.15. Let Gi and G2 be open sets of a topological space 

<T, r>. If for each regular open set H 

(7i n // = 0 G2 n /y = 0 

then G2 ^ Ci“°. 

Proof. \\' H = {X — 67)° then H is regular open. If 61 n // = 0 then 

62 n yy = 0 and hence 

G2 n yy- =0. 

Therefore 

62 ^ X - H- = 67 

Theorem 5.16. 1. If 67 is an open subset o\' P then 

O f = 0 -> 67 = 0. 

2. If 62 is an open subset of F 

6t ^ 0 -> 62 = 0. 

Proof. Left to the reader. 

Iheorem 5.17. 1. If 6 is a regular open subset of F then 6^ is regular 

open. 

2. If 6 is a regular open subset of P then 6* is regular open. 
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Proof. 1. Let Gy = (G^) Then 

C = = Gf. 

If G2 is regular open and G n G2 = 0 then 

(G^ n GD* c G^* n Gi* = G n G2 0. 

Therefore n Gf = 0 and hence Gi n G2 = 0. Furthermore 

(Gf n Gs)^ c Gf^ n Gi = G, n Gi = 0. 

Thus Gf n G2 = 0 and hence, by Theorem 5.15, Gf ^ (7-0 = G. Conse- 
quently 

G^ = Gf^ = Gi 

i.e., G^ is regular open. 

2. Let G2 = (G*)"°. Then 

G c c Gi. 

If H is regular open and G n // = 0 then 

(G* n c n //*^ = G n // = 0. 

Therefore G* n //* = 0 and hence G2 n //* = 0. Furthermore 

(Gt n //)* c Gt* n //* = G2 n //* = 0. 

Consequently G2 n // = 0 and hence Gf ^ G"° = G. Thus, by Theorem 5.14 

G* = Gi* = G2 

i.e., G* is regular open. 

Remark. From the foregoing theorems we obtain the following result. 

Theorem 5.18. If P = <P, <> is a partial order structure, then the 
Boolean algebra B of regular open subsets of P is isomorphic to the Boolean 
algebra of regular open subsets of F. 

Proof. The mapping * is a one-to-one, order preserving mapping from 
the first algebra onto the second. 

Remark. As you will see later, it is useful to consider the Boolean 
algebra of all regular open sets of a product topological space. So we shall 
show a general theorem about that. If a partial order structure P = <P, <> 
has a greatest element, then we denote it by 1: (V/? G P)[p < 1]. In case P has 
an element 1, let PQ = P — {11 = \Po^ ^)- Then clearly the Boolean 
algebra of all regular open subsets of P is isomorphic to that of PQ. Conse- 
quently, with regard to Boolean algebras of regular open subsets of partial 
order structures, we may assume that the partial order structures have a 
greatest element 1. 
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Definition 5.19. Let Pj = <Pi, <>, / 6/, (/ an index set) be a partial 

order structure having a greatest element 1^. Then the product structure 

P = 1 lie/ Pi = (P, <> is the following partial order structure. 

1. P = < /7 G Pi I p{i) = Ij for all but finitely many /’s >. 
^ ie/ 1 

2. {'i}\qeP)[p < (V/G/)[/7(/) < ^/(/)]]. 

3. 1 = the unique p e P such that (V/ G /)[/;(/) = IJ. 

Theorem 5.20. Let P = I li^, Pj be given as above and let and be 

the 7’1-spaces corresponding to P, and P^ respectively in accordance with 

Definition 5.6. Then F is homeomorphic to the product space I Jig/ Fj. 

Proof. For a given / G / and an element Oi G Pj, let cp be the element of P 

whose /th projection is cii and whose /th projection is 1; for / /, i.e., 

Oiii) = Qi, diij) = \j for / # /. 

For each PGF, let Ft = {OiEPi \ r/j G P|. Then Pj is a filter for Pj since 

Oi < hi implies d^ < hi. Furthermore Pj is maximal: If Gi is a filter for Pj 

such that Pj c Ci and if G = {<7 G P | ^7( /) G Gj A (3.v G P)(V/ i)[aij) > .v(/)]!, 

then G is a filter and F ^ G. But P is an ultrafilter. Therefore G — F. For 

each a G Gj and each .v G P we define a h as follows 

h{i) = a, h{ J) = x(J) for / ^ i. 

Then h E G = F. Hence h{i) E F and a E Fi. i.e., Gj ^ Pj. Consequently 

Pj = Gj, that is, Pj is an ultrafilter for Pj. 

Thus for each PGF and each / G /, Pj is an ultrafilter for Pj, i.e., Pj G F,. 

From this fact we then define a mapping g:F -> P]jg; Fj by 

g{F) = yPi>jg/. 

The function g is both one-to-one and onto (surjective). To prove this 

we need only show' that each 1-sequence, (Oie/ uniquely determines an 

Pfor which g(P) = \Pi>ie/- First we note that if 

F = {aEP \ (3/i, • • • /’n e /)(3^/jj e Fjj) • • • (3«j^ G PiJ[^7j, • • • < ^7]} 

where cii^ ■ • • (hfj) = if./ = G for some k and di^ • • • dij^ j) = 1 otherwise, 

then Pis an ultrafilter for P and g{F) — <Pj>je/- Thus g is onto. Second if 

F^ = {d \ a E P,} and if g(P) = (.Ffi^, then P is the smallest filter for which 

Pj c P, for each / G I. Therefore g is one-to-one. 

Now for a given a E Pconsider hJ{a) = {F E F | a E P}. Since a = di^ - • • dp^ 

for some Oi^ G Pj^,. . ., 7/j^ G Pj^, we have 

PG N{a) ^ a E F 

<-> dp^E F A • • • A di^ E F 

FEN(d,fn--^ nN{diJ, 

\.Q., g''N{a) = N{diJ n • • • n N{diJ. Therefore g is a topological mapping. 
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Remark. When we consider regular open sets of a partial order structure 
P, the following notion is very useful. 

Definition 5.21. A partial order structure P = <P, <> (or a partially 
ordered set P) is called fine, if the following condition is satisfied: 

(V/7, q e P)[q ^ p(3/* e P)[r < q A Comp {r, /?)]]. 

Lemma 5.22. If P is fine, then for each p G P 

[P]-^ = [Pl 

Proof. We have only to show [p]~^ ^ [/?]. Let qeP such that q^ [/;], 
\.e.,q f, /?. Then, by Definition 5.21, (3/* G P)[/* < q A -n Comp (/-,/?)]. There- 
fore, [/']n [p] = Oand hence [/?]". This implies [q] f [/^]“. Consequently 
q ^ [/7]-°, i.e., if <7 6 [/7]-° then q G [p]. 

Remark. Many P’s used in later sections are fine. 



6. Boolean-Valued Structures 

The notion of a Boolean-valued structure is obtained from the delinition 
of an ordinary 2-valued structure by replacing the Boolean algebra 2 of two 
truth values “truth” and “falsehood” by any complete Boolean algebra B. 
While some of the basic definitions and theorems can be generalized to the 
B-valued case almost mechanically the intuitive ideas behind these general 
notions are more difficult to perceive. 

Throughout this section B = +, •, 0, l> denotes a complete 
Boolean algebra. 

Definition 6.1. If is a first order language with individual constants 

• • • 5 • • • i CC 

and predicate constants 

• • •» • • • ./ < 

Then a B-valued interpretation of is a pair (A, where A is 3. nonempty 
set and is a mapping defined on the set of constants of the language if 
satisfying the following, 

1. G A, i < a. 

2. </>(/?;): A^i -> B, for / < /3 where Hj is the number of arguments of Rj. 

Remark. In order to define a truth value for closed formulas of if under 

a given B-valued interpretation we first extend i^ to a new language i^^* = 
if(C(/I)) by introducing new individual constants for each a e A. 

Definition 6.2. If 95 is a closed formula of if* then Icpj is an element of 
B defined recursively in the following way 

1. liR/ci,. . ., Cnfl = (f>(R,)((f)(cfi,. . for every finite sequence of 
constants Ci,. . of if* and ^(CQ) = a for the new constants a e A. 

2. = “M. 

3. U = m W- 

4. II0 V -9! = [[i/»]] 4- Irj}. 

5. I(Vx)^(x)l 4 YJ I0(cJl. 
aeA 

6. = 2 
aeA 
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Remark. For the special case B = 2, Definition 6.2 is the usual definition 
of satisfaction in ordinary 2-valued logic. 

We will write . . ., ^7j]] for Rj for <^(/?,) and c for 
4>{c). If </l, (f)} is a B-valued interpretation then 

A = <^A, RQ, Ri,..., CQ. Cl,.. .y 

is a B-valued structure. 
We will occasionally consider several interpretations in the same context. 

We will write Icplx to indicate that element of B determined by <p and the 
interpretation {A, </>> of the B-valued structure A. 

Definition 6.3. At= 99^ [[93I = 1. 

Remark. Ah 9 is read “A satisfies 9” or “9 is true in A.” 
The usual axioms of the predicate calculus are also valid in every B-valued 

structure as we now show. 

Theorem 6.4. If 9 is a closed formula of the language ^ then 9 is 
satisfied in every B-valued structure iff 9 is logically valid. 

Proof. 9 is logically valid iff 9 is satisfied in every 2-valued structure. 
Since 2 is a complete subalgebra of B every 2-valued structure is a B-valued 
structure. Conversely if 9 is not satisfied by some B-valued structure A i.e., 

MA = b ^ \ 

then the computation of I9J .V requires only a finite number of applications of 
Definition 6.2 (5), (6), say 

ri • • • ? b,i ri 
a&Ax aeAn 

2 *!«-■ ..,b'„,= I bL 
aeBi aeBn 

By the Rasiowa-Sikorski Theorem (Theorem 2.14) there is a homomor- 
phism Jr. |B| -> |2| such that li{b) = 0 and h preserves sums and hence 
products. If (A, (f>y is the B-valued interpretation that determines A and 

(/)' = // o ^ then <4, </>') determines a 2-valued structure A'. Since /? is a homo- 

morphism that preserves sup’s and inf’s, and h{b) = 0, it follows that 9 does 
not hold in A'. 

Exercises. 
1. Let Bi, B2 be complete Boolean algebras and h a complete homo- 

morphism of Bi into B2. If iA, ^i> is a B^-interpretation, if (f)^ = h o (f)i and 

^2 = on the constants of then <4, <1^2) is a B2-interpretation and for 
each closed formula 9 of the language ^ 

MA2 = 

where A^ is the structure determined by </!, 
2. Let P be a partial order structure, and B the complete Boolean algebra 

of all regular open sets in P. If -n is an automorphism of P then n induces an 
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automorphism -fr of B. (v: P P is an automorphism ifT TT is one-to-one and 
onto.) If in addition 

P2 ^ /^)(37r)[7r is an automorphism of P A Comp (pi, MP2))] 

then 

(Vhi, h2^ B — (O') (37r)[77 is an automorphism of B A h-^7T{b2) ^ 0]. 

Remark. We turn next to languages with equality. As in the 2-valued 
case we have special axioms for equality that are easily generalized for the 
B-valued case. 

Definition 6.5. If is a first order language with equality then by a 
B-valued interpretation we mean a B-valued interpretation in the sense 
of Definition 6.1 that in addition satisfies the following Axioms of Equality 

1. Ic = cj = 1. 
2. = C2I = IIC2 = 

3. [ci = C2lllr2 = ^’3! < ll^’i = C2I 

4. For each /i-ary predicate constant R of the language 

ki =    r„)]] < |/?(cl, . . c'n)}. 

Theorem 6.6. Every logically valid sentence of a first order language 2?" 
with equality is satisfied by a B-valued structure of 

In particular 

fCi = c[} - ■■ ICn = c'J |<p(Ci, . . . , cJI < lcp(c[, . . . , Cn)l 

Remark. Note that |ci = C2I] •''"'ay be different from 0 and from 1. Also, 
we may have = C2I = 1 but ^ C2. To exclude this last possibility we 
introduce the separated B-valued structures. 

Definition 6.7. A B-valued structure A = <T, =, RQ, .... CQ, .. .y is 
separated iff 

(V^7i, a2 e A)[la^ = a2l = \ -^ = ^72]. 

Remark. Every B-valued structure A is equivalent to a separated B- 
valued structure (A, =, RQ, . . • • •) obtained from A by considering the 
equivalence classes of the relation {(^a, 6> G | [[77 = 611 = 1). If A is the set 
of these equivalence classes there are B-valued relations , = • • • •> ^ 
members CQ, ... of A (which are uniquely determined) such that for every 
formula cp of .SP and any ai, . . ., a^e A 

yia^,. . ., 77J]]A = rJJi.v 

where is the equivalence class containing a^. 

Definition 6.8. A partition of unity is an indexed family <(6j | / e /> of 
elements of B such that 

= 1 A (v/,yG/)[/ = 0]. 
iel 
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A B-valued structure A = (A, =, RQ, . . ., CQ, ■ • is complete iff when- 

ever (hi I / G /> is a partition of unity and (Oi \ i E 1} is any family of elements 

of A then 

(3^7 G A)('ii G I)j:hi < = 77J]. 

Remark. The set a, of Definition 6.8, is unique in the following sense. 

Theorem 6.9. If <6^ | / G /> is a partition of unity, if 

(V/G < [[77 = 77j] 

and 

(V/ G I)[b^ < la' = 77i]]] 

then la = a'\ ^ \. 

Proof, bi < la = a^ la' = 77jl < 177 = a'\, i G 1 

1 = ^ bi < la = 77'I < 1. 

Hence la = a'j = 1. 

Remark. This unique a is sometimes denoted by ^ieibiai. We next 

provide an example of a B-valued structure that is separated and complete. 

Example. Define A = </?, => by 

Ibi = = ^1^2 T ( f^i){ f^) 

i.e., Ibi = /72I] is the Boolean complement of the symmetric dilTerence of bi 

and b2. 

It is easily proved that A is a B-valued structure that satisfies 1-3 of 

Definition 6.5. Since 

H/?! = /)25 = 1 -> /7I/72 + ( bi){ 62) = 1 

->b,b2 = ~(~b,){-b2) = b^ + b2 

bxb2 = /?! A /72^1 = b2 

b2 < bi /\ bi < b2 

->/?!= b2. 

A is separated. 

If \bi I /■ G /> is a partition of unity and <77; | / G /> is a family of sets of B 

then since B is complete 

te/ 

Then 
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But the bi's are pairwise disjoint. Then 

{~ai)bi 2 = 0 
iel 

"2 = ^• 
' jel ' 

Then 

bila = Oil = Oibi + ( ai)bi = b 

Therefore (V/ e I)[bi < la = i.e., A is complete. 



7. Relative Constructibility 

GodeFs constructibility was generalized, in a natural way, by Levy and 
Shoenfield to a relative constructibility which assures us of the existence of a 
standard transitive model L[a] of ZFfor each set a. Levy-Shoenheld’s relative 
constructibility is rather narrow but quite easily generalized. In this section 
we will study a general theory of relative constructibility and deal with several 
basic relative constructibilities as special cases. Later we will extend our 
relative constructibility to Boolean valued relative constructibility from which 
we will in turn define forcing. 

There is a modern tendency to avoid the rather cumbersome theory of 
relative constructibility. We believe this to be a mistake. Although we do not 
pursue the subject, it is clear that one can consider wider and wider types 
of relative constructibility. Accordingly, we have many types of Boolean 
valued relative constructibility. We feel that these sometimes wild Boolean 
valued relative constructibilities might be very important for future work. 
Indeed, it is not at all clear whether the structures they produce can be con- 
structed by the usual method of Scott-Solovay’s Boolean valued models 
without using relative constructibility. 

If and h are sets there are two different definitions of the notion “A is 
constructible from a" namely h e La or b e L[a] where 

La is the smallest class A/ satisfying 

1. A/ is a standard transitive model of ZF. 
2. On c M. 
3. (VA* 6 M)[x n a e M]. 

L[a] is the smallest class M satisfying 

1. A/ is a standard transitive model of ZF. 
2. On c M. 

3. o 6 M. 

Obviously, La ^ L[a]. 
In this section we will show, by a modifkation of Godel’s methods used 

to define the class L of constructible sets, that the classes La and L[a] exist. It 

should be noted that neither the characterization of La nor of L[a] can be 
formalized in ZF. 

The main difference between La and L[a] as we will see is that La satisfies 
the AC while L[a] need not. Since we will eventually wish to prove the 
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independence of the /iC from the axioms of ZF using results of this and later 
sections we must exercise care to avoid the use of the /tC in proving the 
following results. 

It is of interest to consider a slightly more general situation allowing a to 
be a proper class A. can be characterized exactly as was. For I\A] there 
is however a problem in that we cannot have A e M. Instead we define: 

l\A] = [J L[A n R'a]. 

We first develop a general theory that allows us to treat and L[A] 

simultaneously. Let be a language with predicate constants 

FQ? • • • , Rn 

and individual constants 

^ 0’ • • - I ^m' 

Some results of this section remain true if we allow to have an arbitrary 
well-ordered set (possible even uncountably many) of constants. 

Definition 7.1. If A = • 

B = <F, Ro'\.... Rn'\ Co“,. . ., 

, Crn^y and 

are two structures for the language then A is a substructure of B, (A c B) 
iff 

\. A ^ B. 
2. For each Fj, / = 0,. . ., n if Ri is /;-ary then A 

Rfiiou . . ., ^?p) ^ • • •, cip)- 

3. efi = efi i = 0,. . ., ni. 

Exercise. If B = <F, Ro^\ . . ., CQ", . . c„i“> is a structure for 2F if 
A ^ B and Cj e A, J < ni, then there is a unique substructure A c B such that 
|A| = A (|A| denotes the universe of A). This structure we denote by B r A. 

Definition 7.2. C(A) = [Ca \ o e A}. ^(C(A)) is the language obtained 
from ^ by adding Ca for each a e A ixs new individual constants. 2Fo is always 
understood to be the first order language whose only constant is e. 

Remark. Hereafter we assume that RQ = e, i.e., is an extension of 
We will be mostly interested in structures e,. . . > where A is transitive. 

In this case we do not list e explicitly. In particular we call a structure <M, 6> 
for 22^0 transitive iff M is transitive and e = E. In this case we write M for 
<A/, e>. 

For the following we assume a suitable Godelization of the formulas of 
y'iCiA)) in ZF and a formalization of several syntactical and semantical 
notions meeting certain requirements on definability and absoluteness with 
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respect to transitive models of ZF. In particular there is a formula F of FFQ 

involving as a constant such that F{x) formalizes the notion 

“x is the Godel number of a formula of ,^(C(/1))” 

and such that F is absolute with respect’fo any transitive model M of ZFfor 
which A E M. We then define 

Fml{A) = {x I F(x)}. 
C(jc): “x is the Godel number of a closed w'fjf of FF(C{A))." 
F(x): “x is the Godel number of a w'ffof ^{C{A)) having at most one free 

variable.” 

Fml°(k) = {x I C(x)}. 

FniF{A) = {x I f(x)}. 

Definition 7.3. A class A is definable in FFQ iff there is a formula cp{x) of 

o^o containing no free variable other than .Y such that A = {.v | 99(.Y)}. In this 
case 9? is called a defining formula for A. Moreover, if 9 contains parameters 

• • • ■> A- from a given set c then we say A is definable in ^0 from c. 

Definition lA. Let M be a standard transitive model of ZF and let 
(p{xi,. . ., Xn) be a formula of FFQ containing no free variable other than 
A'l,. . A'n. Then 9? is absolute with respect to M iff 

(V.Vi, . . ., .Y„ G A/)M.YI, . . ., .Y„) 9)^(A'I, . . ., .Y„)], 

where is the formula obtained from 93 by replacing 3y and 'iy by 3y e M 
and Vv E M respectively. Moreover if 93 contains a set c G M, cp(c, Xi,. . ., A'^), 

then we say that 93 is absolute with respect to M regarding c as a constant. 
A class A definable in is absolute with respect to M ift' its defining 

formula is absolute with respect to M. 

Theorem 7.5. If A = </l, ^0. • • - ^ ^'0^ • • •. r'm) is a transitive structure 
for FF, where /! is a set, then there is a wff i/» of FFQ such that for every closed 
wfl> of i^(C(/l)) 

A N 93 '/'(A, *^93^). 

Furthermore if A/ is a standard transitive model of ZF and A G M then i/r is 
absolute with respect to M (regarding A as a constant). 

Remark. Since we did not formalize explicitly all of the necessary syn- 
tactical notions we can only give an outline of a proof. 

We define a formula ipoifi A) in the language that formalizes the notion 
“/’is the characteristic function of the closed wffs of that are true 
in A” 

i.e., i/^oifi A) is the conjunction of the following formulas: 

1. /: A?//o(A)->2. 
2. V*^93^[y('^—193^) = 1 '^/('^93^) = 0]. 
3. V'^93i''Vr932’'[[/V<Pl A 932'') = 1 = 1 Ay'('’932'') = 1] 

A [JV^Pi V 932^) = 1 ^/(''9^i"') = 1 V /(''932^) = 1]]. 
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4. Vf(V.x)99(x)''[/(r(VA')<p(A')T) = 1 <-> {^a e A)[j\^cp{caY) = IJ]. 
5. \f'{3x)(p{xy[f{'ilx)cp{xV) = 1 {3a G A)[ fV(p{Cay) = I]]. 

6. (Vr/i G AX'ia^ £ A)[JVCa^ £ Ca^) = 1 <~> ^7i G 02]. 

7. (V^7i G /I) • • • G )[/■('• • ■ . 

for each predicate symbol (except G) where iij is the number of argument 

places of Rj. (For simplicity we assume that ^ has no individual constants.) 
Here *^95^ is to range over Fni/^{A) which is a set, since is a set. f(V.x)99(A)i 
in 4 ranges over all (Godel numbers of) closed formulas of y^(C{A)), that 

are of the form (V.V)99(.Y). In 4 we also assume a suitable formalization of 
substitution. Since Fnil^iA) is a set we can prove the following in ZF. 

Theorem 7.6. 

AN<p<-(V/)[^o(/, A)->/(V) = 1] 
^ (3/)[0o(y, A) A/(V) = 1] 

Remark. Thus if 

^ (A, v)-(v/)[-Ao(/; ->/( V) = 1] 

then 

A f= (p <-> i/^ (A, 

Futhermore, let A/ be a standard transitive model of ZF'with Ae M. Then 

ipoif, A) is absolute with respect to M since Fml^(A) G M and all quantifiers in 
1-7 of the definition of 0o(/r A) can be restricted to M. It then follows 
that ^(A, .Y) is absolute with respect to M. (See Theorem 13.8, GTM Vol. 1.) 

If we allow zl to be a class then Theorem 7.5 no longer holds 
for otherwise we would obtain a truth definition for V definable in the lan- 

guage of ZF. </'o(/, A) can still be defined as above even if /I is a proper class, 
however, in this case / is a class variable. Consequently we would have a 

bound second order variable in Theorem 7.6. 
In the language of Godel-Bernays {GB) set theory AN 9? can be defined 

by Theorem 7.6 however we cannot prove in GB that it has the desired prop- 
erties unless we assume some further axioms, e.g., mathematical induction 
or the comprehension axiom for formulas involving bound class variables. 

Later we will encounter a similar situation when considering the de- 
finability of forcing for unlimited formulas. On the other hand we can prove 
the following theorem in ZF. 

Theorem 7.7. If A is a class then for each formula 93 of ^ with free 

variables a^,. .a^ there is a formula </» ofFFQ for which 

(V^Ti,. . .,a^G A)[A N 99(^1,. . a^) ^ ifj{A, au . . Oi,)]. 

Proof. For each a^,..aj^e A 

A N cp{au . . .,a„)^ ^{a^,. . .,a^) 

where ^(a^,. . ., af) \s (p^ia^,. . af) with each occurrence of Ri replaced by 
Ri and each occurrence of Cj replaced by c^. 
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Remark. As mentioned above, in the general case where A may be a 
proper class we do not have a single formula 0 of such that Theorem 7.7 
holds simultaneously for all formulas of {(/J having a further argument 

This result can however be obtained if we restrict ourselves to formulas 
(p with less than n quantifiers, where n is'a fixed natural number. 

Definition 7.8. If /t is a set then 

Z)/(A) = {a \ e Finl\k)[a = {x e A \ AN (p(x)}]}. 

Remark. Df{X) is the set of sets definable from A (using elements from 
A as parameters). Here we need Theorem 7.6 to show that {.v G /t | AN 9(.v)} 
is a set in ZF. 

Taking cp{x) as x = x we obtain the following. 

Theorem 7.9. A e Df{A) provided /t is a set. 

Theorem 7.10. If /t is a set then Df\A) is a set definable in FFQ from A. If, 
in addition. A/ is a standard transitive model of ZTand A e M then Dj\\) is 
absolute with respect to M. 

Remark. For our general theory let | « e Oniy be a sequence of 
transitive structures of such that A/^ = |Ma| is a set and the following 
three conditions are satisfied: 

1. a < /S Ma is a substructure of M^. 

2. A/„ =\J as A'„ 
P<a 

3. £!/(IVI„) c 

M = IJ /W., M = </W, 
aeOn 

Remark. Since each A/«, a e On, is transitive, so is M. Moreover Ri^ is 
defined by 

Ri^'ia^,. . ., ar,^) <-> Ri^^^iai,. .., ar,^), a^,..., a^^ e A/„. 

In view of I this definition is unambiguous. Furthermore ^ M for each 
oc G On. 

We now wish to prove that M is a standard transitive model of ZF. 

Theorem 7.11. 

1. Ma ^ AIa+ 1- 

2. A/„GA/. 

Proof. Theorems 7.9 and 3 above. 

Remark. Since A/ is transitive, M satisfies the axioms of extensionality 
and regularity. It is easy to check that the axioms of Pairing and Union 
hold in iM. Since a G Ma+u On ^ A/ and cj G A/. Therefore M satisfies the 
Axiom of Infinity. 
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The main idea used for the proof of the remaining axioms is contained in 
the proof of the following proposition. 

Theorem 7.12. a ^ A/ ->(3a)[r/ ^ A/^]. 

Proof. From the Axiom Schema of Replacement it follows that 

then a c 

(3a) a IJ jj-nix 6 Ml) 
xea 

Remark. In order to prove the Axiom of Separation in IVI we first prove 
a kind of reflection principle in M. This proof requires several preliminary 
results. 

Definition 7.13. A function F: On 

1. (Va)[fir < FCcc)]. 
2. (Va,i3)[a < < F{^)]. 

3. (VaG/fn) Fia) = IJ f(/3) 
0<a 

On is semi-normal iff 

Definition 7.14. A function F: On On is a normal function iff 

1. (Va,^)[a < ^->F(a) < F(^)]. 

2. (Va G Kn) F(a) = y f()3) 
0<a 

Remark. Every normal function is a strictly monotonic ordinal function. 
Since we have a < F{a) for every strictly monotonic ordinal function it 
follows that every normal function is also semi-normal. 

Theorem 7.15. If Fj,. . ., F^ are semi-normal functions then 

(Va)(3i3 > a)[^ = Fi(^) = .. • = F,(^)]. 

Proof. We define an co-sequence <a^ | ni e co> by recursion: 

ai = a -t- 1, CC2 = Fi(ai), . . ., a^+i = F^^af) 

«fc+i = fiM, i = A'(mod n), i = 1,. . 

If ^ Ujn then a < /S and the sequence <a^ | ni G CO> is nondecreasing. 

If /S G Afi then m G oj, /S = = • • •, and hence 

^ = FiW) = • • • = fnW). 
If ^ E Kii then 

fm = U 
keo) 

= U + i I - ^'(mod /7)}l = [J + 

= 0- 
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Theorem 7.16. If (p{aQ,. . is a formula of ^ then 

(Va)(3^ > a)(V^i,. . ., e A/J[M 1= (3x)9?(x, a^) ^ 
(3^7 E M^)[MI= 

Proof. By Theorem 7.7. 

M\=(p(a, 77i, ...,an) 

is expressible by a formula of Using the fact that is a set we can then 
define 

^ = sup > a A (3a e Mcp(a, a^,. . On)]). 
Cl 2 • • • • * 

This /3 has the desired properties. 

Theorem 7.17. For each formula (p(ao,. . of if there exists a semi- 
normal function Fsuch that 

(Va)(V^)[^ = F(a) ^ (V77i, ar,e A/,,)[M 1= (3x)(p(x, a^,an)^> 

(3a E M^)[MI= 93(77,77i,. 

Proof. From Theorem 7.16 

«n)]]]. 

(3^ > a)(V77i, . . . , 77„ E A/„)[M t= (3.Y)99(X, 77I, . . . , 77J 
(377 E A/^)[M N 93(77, 77i, . . . , 77n)]] 

therefore if 

F(a) = fxp(l3 > a A (V77i,. . ., 77„ E A/„)[M N (3.Y)93(X, 77I, . . ., 77J 
(377 E A/^)[MN 93(77, 77i, . . ., 77„)]]) 

then a < F(a). Furthermore F is nondecreasing and continuous hence semi- 
normal. 

Corollary 7.18. For each formula (p(ao,. . ., 77„) of if there exists a semi- 
normal function F such that 

(V/^)[^ = F(f) (V77i,. . .,ar,e M^)[MN (3.V)93(.Y, 77I, . . ., 77J] ^ 
(377 E M^)[M 1= 93(77,77i,. . ., 77J]]. 

Theorem 7.19. For each formula 93(771,. . ., 77,1) of ^ there are finitely 
many semi-normal functions F^,. . F^ such that 

(\/m^ = = ■■■ = fM ^ (V^7i, . . . , 77, E A/,)[M f 9^(771, . . ., 77 J - 
1=93(771, . . ., 77n)]]. 

Proof. (By induction on the number of logical symbols in 93.) If 93 is 
atomic the theorem follows from the fact that (Va)[Ma ^ M]. If 9? is of the 
form -i«/» or ip A T] the conclusion is obvious. If 93(771,. . ., 77„) is of the form 
(3.Y)0(A', 77I, . . ., 77„), then from the induction hypothesis there are semi-normal 
functions Fj,. . F^ such that 

^ = F,(^) = • • • = FM -> (V77o, . . ., 77„ E A/,)[M N 0(77o, • • • , 77 J - 
M^N 0(77o, . . 77„)]. 
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By Corollary 7.18 there exists a semi-normal function FQ such that 

^ = ^o(/3) ^ (Vr/i, . . f (3A')<A(A-, aj 
(3r/ e i/j(a, a^,. . 

Therefore if ^ = FQ{^) = • • • = F^(^), and e Mp then 

1=  (In) ■ ' (3^7 e A7/?)[M f <A(r/, r/i,. . ., ^/„)] 
^ (3r7 e /f//j)[IVl/, h ijjia, cii,. . ., (7„)] 

(3A)0(A, ^7I, . . ., ^7„) 

IVI;,N 99(^7i, . . ., r7„). 

Corollary 7.20. F or each formula (p{ai,. . ., r7„) of 3/'" 

(Va)(3^)[/5 > a A (V^7i a^e /f/^)[iVl f (p{a^,. . ., a^) < > h cpia^,. . ., ^7j]. 

Remark. From Corollary 7.20 we can easily prove that M satisfies the 
remaining axioms of ZF. 

Theorem 7.21. M satisfies the Axiom of Separation. 

Proof. If 9(A', I’l,. . ., Vn) is a formula of if a, Ui,. . ., e A/, and if 

A = a\J {a, .. ., afi 

then /t is a subset of M. Thus (3o:)[/t c A/^]. By Corollary 7.20 

(3j8 > a)(V/7 G A//?)[MV b e a A (p{b, a^,. . ., a^) 

Mp\^ bea A (p(b, a^,. . ., ^7j]. 

Then 

(A I M 1= A' G 77 A (fix, 77i, . . . , 77„)} 
= {A' G Mp I f A G 77 A 9P(A, 77I, . . . , 77j}. 

Consequently 

{A I M h A G 77 A (p{x, 77i, . . . , 77„)} G Df{Mp) C ^ C M. 

Theorem 7.22. M satisfies the Power Set Axiom. 

Proof. If 77 G A/ then ^(77) n A/ is a subset of A/. Hence 

(3a)[.:;^(77) n Af g M]. 

Since, by Theorem 7.21, M satisfies the Axiom of Separation and A/„ G A/ it 
follows that -^^(77) n A7 is an element of A/. 

Theorem 7.23. M satisfies the Axiom Schema of Replacement. 

Proof. If 92(7/0,. . ., 77„) is a formula of such that 

(V772,. . ., 77„ G A/)(VA G A/)(3 ! V G A/)[Mh 9(A, y, 772,. . ., 77J] 

if 77 G A/, and 

C = [y e M \ (3A G 77)[M t= cp{x, v, 772, . . ., 77„)]} 
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then C is a subset of M. Thus 

(3a)[Cc M^eM]. 

Then by Theorem 7.21 

C = C M. 

Remark. We have established that M is a standard transitive model of 
ZFthat contains all of the ordinals. The method by which M was constructed 
is of particular interest. M was defined from a sequence | aGOn} of 
transitive structures satisfying the conditions 1-3 of page 68. We next consider 
two applications of this same general method. 

Definition 7.24. If A" is a class, if )}) is the language obtained 
from by adding a unary predicate symbol A{ ) and if <A„ | a 6 0/7> is a 
sequence of structure defined by transfinite induction on a by 

/lo = 0 

Ka = A, nK 

Aa^,= Df(AJ 

Aa = A^, a 6 All, 
B<a 

then 

A„. 
aeOn 

Remark. It can then be easily shown that A^ satisfies the conditions 1-3 
of page 68. From this, as before, we can prove the following theorem. 

Theorem 7.25. is a transitive model of ZF and On c Ay,-. 

Remark. Definability in FFQ{{K{ )}) for classes is defined in the same way 
as in Definition 7.3. 

Theorem 7.26. 

1. Ay,- is definable in FFQ{{K{ )}). 
2. u' G Ay,- -> ^7 n A 6 Lfi. 
3. ./A(A)*-> An Ay,-eAy,-. 

Proof. 1. Obvious from Theorem 7.10 and the definition of L^. 
2. If 77 e Ay,- then (3a)(77 e A^). Therefore a ^ A^ and a r\ K ^ c Aa. 

Then 77 n A = {x e .4^ | </!«, A'a) N x G A A"(x)} where a E Aa i.e., 

77 n A G Df{Aa) ~ Aa+i ^ Ayf. 

3. If A is a set and AQ = A n Ay,- then AQ is a subset of Aa for some a. Then 

A'o = {xeAal <Aa. ^ A)/(AJ = 

and hence AQ G Ay,-. 

* .^(K) means “A is a set.” 
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Remark. We say M is a standard transitive model of ZF in the language 
FFQ{{K{ )}) if the following conditions are satisfied: 

1. A/is transitive. 
2. There is a class K ^ M such that (VJC G M)[X n ATG M]. 

3. M satislies the axioms of ZF described in the language )}) by 
interpreting A'( ) by K. 

Let M be such a model and let (pCvi,. . .v„) be a formula of FFo{{K{ )}) 
containing no free variables other than .Vi,. . .Y„. Then 99 is absolute with 
respect to M iff 

(VA'I, . . G M)[(p{x^ A'J <->  .YJ]. 

Note that in making 99^^ from 99 the symbol A', if it occurs in 99, is left invariant. 

Theorem 7.27. If M is a standard transitive model of ZF in the 

language ^Q{{K{ ))) and if On ^ M, then Lf,- c M. 

Proof. We prove by induction that M. Clearly AQ = 0GM. If 

Aa 6 M then = Aa K e M, hence A„ = (A„, Ka) e M. By Theorem 
7.10, DfiAa) is absolute with respect to M. Therefore A^+i ^ M. But A a set 

implies that Df(A) is a set. Therefore Df{Af} e M, i.e., 

Aa+i E M. 

If a G A'n and Vj3 < a, A^G M then since the sequence </tyj | ^ < a> is 
definable in A/*, 

Aa = A^G M. 
Hea 

Then ^ A/, since M is transitive. 

Theorem 7.28. If KQ = K 

1. LK = LKQ ^ KQ ^ (Therefore KQ G if KQ is a set). 
2. N V = 

3. AC. 

Proof. 1. Aa KQ = Aa K Lji = Aa (~^ K, since Aa ^ Lj^. There- 
fore Li^ = and KQ ^ Lj^ = LKO- 

2. If Aa = <^A'a, K'a} is = {Aa, Ka) relativized to then we prove by 
induction on a that A^ = A^. Obviously Ao = AQ. If A^ = A^ then A^ E 

and is a transitive model of ZF. Therefore 

A'a^l = Df(Aa) = Aa^, 

since K'a = Ka we have AT' + i = A^+i. The case a G KH is obvious. 
3. We first prove in ZF that if a is well ordered then a' = Df{{a, k}) is 

well ordered. 

* A class A(^M) is definable in Af iff there is a formula <p(x) of ^({K( )}) containing 
no free variables other than x such that A = {YGM|99'^^(.V)}. 
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\{b e a' then there is a formula 95 of <^{{K{ )}) and a finite set of constants 
(ci,. . Cn) c ^7 for which 

b = [x e a \ {a, k.y'f (p{x, Cj,. . c„)} 

Thus b is determined by < {fi% • • ■» The set of formulas of 
■^{{K{ )}) is countable and the finite subsets of constants from a can be well 
ordered since a is well ordered. This gives a well ordering of a . 

Since is a model of ZF it then follows from the foregoing argument 
that Aa+i is well ordered in if is well ordered in Thus by induction 
on a there are relations <« in such that <„ well orders /!„(<« is 
definable uniformly for all a in 

If Od{a) = fXaia e A^), a ^ and if 

a < b a E Abe A [Od{a) < Od(b) V 
[Od(a) = Od{b) A o <od(a)b]] 

then < is a well ordering of that is definable in In particular each 
a E is well ordered by {<.Y, y} | .v < v A x, y E a} E 

Corollary 7.29. If there exists a standard transitive model of ZF then 
there exists a standard transitive model of ZF -y AC + V = LQ. 

Exercise. Show that LQ is Godel’s class of constructible sets. 

Remark. In Introduction to Axiomatic Set Theory we proved that 
V = LQ implies the GCH. We now wish to prove a corresponding result 
namely V = LaGCH. For this proof we require the following. 

Definition 7.30. 1. If A is a structure and 9?(^7o, Oi,. . ., On) is a formula 
in the language of A, then a function /: A^ ^ A is a Skolem function for 
(3.Y)9?(A', Oi,. . ., Qa) with respect to A iff 

(VA'I, . . ., A'„ G /I)[A t= (3.Y)9)(A% A' Xn) A N (p(f{Xu . . ., Xa), X 1> Xn)]- 

2. B is an elementary substructure of A (written B -< A) iff B is a sub- 
structure of A and for every formula cp of the language of A i.e., LF{C{A)), and 
V^7i, . . B 

B 1= . . ., a J ^ A1= 9?(ai, . . . , Qa). 

Remark. We next show how to obtain an elementary substructure of .4 
that contains a given subset of A, provided that we have a family of Skolem 
functions for all formulas of the language of A. 

Theorem 7.31. If A is a structure and F a set of Skolem functions such 
that for every formula (3A')9:?(A', a^,. . ., a^) of the language of A there exists 
in Fa Skolem function for that formula with respect to A, if B A and if B 
is closed under the functions of F then B = A r F is an elementary sub- 
structure of A. 

* is the Godel number of 9?. 
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Proof. By induction on the number of logical symbols in 93. If <p is atomic 
or of the form or J/» A 17 the conclusion is obvious. If 93(^71,. . a^) is 
{3x)tp{x, Oi, . . af) and if bi,. . B then 

B N (3x)0(x, /)i,. . ., hr,) -> (3/7 G B)[B h ijj{h, • • •, hj] 
^{3hE B)[A^ilj(h, h„...,h,)] 
— A ^ (3XV;(A', 

^ (3/6 F)[\ f <A(/(/7„ . . ., bj, b,, bj] 
{3x 6 fi)[AN b^. . .,bf}] 
BN (3x)ip(x, bf}. 

Lemma. If is a set, and if 

(V.r, y e A)[x 9^ y (3z E A) [z E x z ej]] 

then there exists a transitive set a and a function/such that 

f:A 
1 -1 

onto 

and (Vx, y G A)[X Gy f{x) e/(y)]. Moreover if b is a transitive subset of A 
then /r Z) = / r /?.* 

Proof. We define/ recursively by 

/(>’) = {fix) I X G /t n y}. 

The conclusion is then immediate from the definition of/ that is, 

(Vx, y G A)[x E y ^>f(x) Ef(y)]. 

Also, by G-induction, it follows that if is a transitive subset of A then 
f r b = 1 r b. (For details see Takeuti and Zaring: Introduction to Axiomatic 
Set Theory, Springer-Verlag, 1971, p. 19.) 

Remark. In the foregoing Lemma both/and a are unique. 

Theorem 7.32. If /t is a transitive set, k E A and if (^A, G, A:> is a model 
of ZF + F = Lfc then {3a)[A = Aa] where A^^ is as in Definition 7.24. 

Proof. Since = Uaeon ^nd Aa is absolute with respect to A 
for each UE An On, A = Uae/inon^a- Furthermore, because A is transitive. 

An On = UaeA cc = Therefore since Aha. model of ZF, /3 G Kn and hence 

A = [J Aa = Ai,. 
ael3 

Theorem 7.33. If PQ is the transitive closure of k then 

V = ida)[ko <K-- = Ha^,l 

Proof. If F = Lfc then k E L,^. Let F be a countable family of Skolem 
functions, with respect to L^, for all formulas of the language .JZ'odA/ )}). 
If 77 c Ka, RQ < '^a 

/? = {77} u u /CQ u (A'} 

» / = {<x. xy\xeV),frh = {<x, yyeflxeb). 

75 



then b is transitive and b = ^a- Let A be the closure of b under all of the 

functions in F. Then A = b = by Theorem 7.31 

(A, E, A'>NZF + y = 

From the Lemma there exists a transitive set QQ and a function/from A one- 
to-one onto OQ such that / preserves the e-relation. Since b is a. transitive 
subset of A, f'ls the identity function on b, in particular/(A:) = k. Therefore 
{OQ, G, k) f ZF + F = Lfc. By Theorem 7.32 

(3^)[ao = A,,]. 

But Go = A = Hence ^ ^ < ^a+i- Since a = f(a) ef A = QQ, 

this proves that {^a ^ Therefore 

■nK) e 

But Hence ^(K„) = 

Remark. Note that V = can be expressed as a simple sentence 

L = Uaeon the language -^{{ki )}). To prove the preceding theorem 
assuming the axioms of ZF and V = vve note that in fact we used only 
finitely many axioms cpo,. . 9?^. Let FQ be the family of Skolem functions for 
the finitely many subformulas of (pQ,. . cp^. Then FQ can be defined in the 
language of ZF. The proof can then be carried out with F replaced by FQ. 

As a corollary we have V = L GCH and hence the following theorem. 

Theorem 7.34. If there exists a standard transitive model of ZF then 

there exists a standard transitive model of ZF + AC + GCH. 

Remark. For our second application of our general theory we define 
L[A]. 

Definition 7.35. If A"is a transitive class, if F^ K,\f ^ = ^{{K{ ), F( )}) 
and if = <^Ba, Ka, F^} are structures for ^ defined recursively by 

1. Bo = 0. 

2. = R{a) n K /\ F,= R{a) n F. 

3. i ^ D/(BJ CJ 

4. B, 4 IJ a e 
ffea 

then 

L[K-, B] = IJ 
aeOn 

Remark. Since K is transitive, Ba is transitive for each a. Then 
<B„ I a e Ofi) satisfies the conditions 1-3 of page 68. Consequently we can 

prove the following 

Theorem 7.36. L[K\ F] is a standard transitive model of ZF and 
On c L\K\ F]. 
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Definition 7.37. 1. L[F] = L[Ko; F] where KQ is the transitive closure 
of F. 

2. If M is a standard transitive model of ZF, On c M, and F ^ M then 

M[F] = L[M-, F], 

Theorem 7.38. 1. L[A'; F] and L[F] are definable in ^o({^( ), ^( )}) 
and ( )}) respectively. 

2. a E L[a]. 

3. L[K] = (J L[K u /?(«)]. 
ttsOn 

Proof. 1. Similar to Theorem 7.10 for a language with constants K {) 
and F{ ). 

2. If a = rank(^7) then a ^ R{a). Therefore F^ = a and hence 

ae Z)/(B„) = 

3. For each y it is easily shown by transfmite induction on a that 
B^iy) c L[K], where L[K n /?(y)] = Uaeon Bfy). Conversely, if ^7 e L[K] 

{la)[a e Ba\. But for each a there is a y(>a) such that B^ ^ L[K n /?(y)]. 
Therefore 

77 6 IJ n /?(«)]. 
aeOn 

Theorem 7.39. If M is a standard transitive model of ZF in the lan- 

guage ‘^o{{a{ )}) such that 

1. On ^ M, 
2. ae M, 

then L[a] ^ M. 

Proof. If QQ is the transitive closure of a then since ae M and A/ is a 
model of ZF, a^e M and a^ is the transitive closure of a in M. Since M is 
transitive a ^ M and 77o ^ M. Also since the rank function is absolute with 
respect to standard transitive models of ZF, [F(a) n 77]^ = R{a) r\ M n a = 
R{a) n 77. 

Then 

(Voc 6 On)[Ka, F„ 6 A/]. 

Clearly BQ e M.\f B^e M then e M and hence B^^x e M. Thus by 
transfinite induction 

(Vex 6 On)[B^ e M]. 

Therefore F[77] ^ M. 

Theorem 7.40. If a has a well ordering in F[77] then F[77] satisfies the AC. 

Proof. The proof is similar to that of Theorem 7.28 and is left to the 
reader. 
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Theorem 7.41. 

\. a L ^ La = L[a\. 
2. L[a] N V = L[a]. 

Proof. 1. If « c L then a ^ La ^frice L ^ La. Therefore a e La. Since 
L[a] is the least standard transitive model of ZF that contains a and all the 
ordinals as elements we have L[a] ^ La. 

But, since a e L[a]. 

(Vx e L[a])[x n a G L[a]]. 

Therefore La ^ L[a]. 

2. The proof is left to the reader. 

Exercises. 1. If A/ is a standard transitive model of ZF, On<^ M, and 
M then M[a] is the smallest standard transitive model N of ZF in the 

language o^o({^( ), Q}) such that (i) M ^ N and (ii) a G N. 
2. If M is a standard transitive model of ZF,On ^ M, M and 

if = LFQ{{M( ), K{ )}) we define C = (Q, A/^, A'„> and by recursion: 

0 ^0 = 0* 

ii) Ma = M n R{a), Ka = Ca(^ K. 

iii) Ca+I = Df{Ca) u U Ka. 

iv) Ca = [J C^,aG Kn. 
/3<a 

V) A/^ = u c„. 
aeOn 

Then = M[K]. 
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8. Relative Constructibility and Ramified Languages 

Using a ramified language we shall give another definition of L[K\ F] 
a definition that has many applications since it only uses the concepts of 
ordinal number and transfinite induction. On the other hand, to carry out the 
actual induction steps may become rather complicated in particular cases 
where definitions by simultaneous recursion are involved. 

The symbols of the ramified language R{K, F) are the following. 

Variables: .VQ, A'I, . . .V„,. . . new (unranked). 
.Yo“, . . ., ... n E CO, a E On (ranked). 

Predicate constants: e, K{ ),F( ). 
Individual constants: k for each k E K, where is a given class. 
Logical symbols: -i, A,V. 
Abstraction operator: .Y„“. 

Parentheses: (, ). 

Definition 8.1. Limited formulas and abstraction terms are defined 
simultaneously by the following recursion. 

1. If each of t2 is either an individual constant, a ranked variable, or an 
abstraction term then 

are limited formulas. 
2. If 9? and i/» are limited formulas then —193, and 9? A </» are limited 

formulas. 
3. If (p(x^) is a limited formula that does not contain as a bound 

variable then {'ix“)(p(x^) is a limited formula. 
4. If (p(x“) is a limited formula satisfying the following, 

a. cp(x“) contains no free variables other than .Y“, 

b. if k is an individual constant occurring in 93(.Y“) then rank (k) < a, 

c. if an abstraction term x^ipix^) occurs in 9>(x“) then (^ < a, 

d. if a quantifier V_y^ occurs in cp(x^) then < a, 
then x“(p(x“) is an abstraction term. 

5. A formula is a limited formula iff its being so is deducible from 1-4. An 
expression is an abstraction term, iff its being so is deducible from 1--4. 
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Remark. The requirements for 9? in 4 are chosen to assure that sets are 
built up in a predicative way (disregarding the constants k e K) i.e., if a set 
b is determined by 9?(A:“), (I) 9? should not contain any free variables other 
than (2) any individual constant occurring in 9? should be of rank less than 
a, (3) any set occurring in 93 as a cons(ant should already be defined at a 
previous level, and finally (4) 99 should contain no quantification over levels 
to which it itself belongs. One might also think of as ranging over 

(Definition 7.35) therefore x“(p{x“) should be an element of = 
D/'(B„) u Ka+i which provides another motivation for the conditions in 4. 

Definition 8.2. A constant term is either an individual constant or an 
abstraction term. We define the rank p of a constant term: 

p(A') = rank {k) k G K. 

P(-YXX“)) = a. 

Ta ^ {t \ t IS a. constant term and p(t) < a.}. 

T= U 
aeOn 

Definition 8.3. Unlimited formulas of R{K, F) (or simply formulas of 
R{K, F)) are defined as follows. 

1. If each of t-^ and t^ is a constant term or a variable, then A^(/i), F{ti), and 
ti G t2 are unlimited formulas. 

2. If 9? and 0 are unlimited formulas, then —19? and (p A ip are unlimited 
formulas. 

3. If (p(x) is an unlimited formula in which A' is a variable, ranked or un- 
ranked, that does not occur as a bound variable in 93, then (VA')93(A) is an 
unlimited formula. 

4. A formula is unlimited iff its being so is deducible from 1-3. 

Remark. For induction on limited formulas we need the following 
notions: 

Definition 8.4. Let 93 be a limited sentence and ti, t2 be constant terms. 

1. The grade g of a constant term / or of a quantified ranked variable 
VA“ is defined by 

g{t) = 2p(0 + 2 

g(VA“) = 2a + 1. 

2. Ord^ (93) is the maximum of g(t) and g(VA") for all t and VA“ that occur 

in 93. 

3. Ord^ (93) = 0 if 93 has no subformulas of the form ti G t2 where g{t) = 

Ord^ (93) and no subformula K{t) nor subformula F{t) where t is a constant 
term and g(/) = Ord^ (93). 

Ord^ (93) = 1 otherwise. 
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4. Ord^ (<p) is the length of 9? i.e., the number of logical symbols in cp 

where atomic formulas G A'(/), F{t) are assigned length 1. 
5. Ord {(p) = to^-Ord^ (9?) 4- a;-Ord^ (9?) + Ord^ (99). 

Remark. Note that Ord^ (99) and Ord^ (99) are natural numbers. Proof by 
induction on Ord (99) is illustrated by the following in which P{ ) stands for 
A'( ) or F{ ). 

Theorem 8.5. If / is a term in 99 such that Ord^ (99) = g{t) then t does not 
occur in any other abstraction term of 99. 

Proof. If is an abstraction term such that / occurs in and 
ti occurs in 99, then / occurs in </'(A"). Hence by Definition 8.4 

= 2a + 2 < Ord^ (99). 

If / = A' for some k e K then rank (A) = p{k) < a. 

If / = y^ipiy^) with ^ < a then g(/) < 2a + 1 < Ord^ (99). 

So if / occurs in an abstraction term of 99 then OrdH9>) > .?(0- 

Remark. Thus any term of maximal grade occurring in 99 cannot occur 
within another term of 99. We shall use this result frequently in proofs to 
follow. 

Theorem 8.6. / e —> Ord (99(/)) < Ord ((VX“)99(A“)). 

Proof. If / E Ta then p{t) < a. Hence 

g(/) < 2a 4- 1 = g(Vx“). 

Therefore 

Ordi (9(/)) < Ord' ((VA:“VU“)). 

We then need only consider the case 

ao = Ord^ (<p(/)) = Ord^ ((VA“)99(X“)). 

Clearly, 

Ord^ (9?(0) < Ord^ ((VA“)99(A“)). 

If Ord^ (95(0) = 0 then Ord^ Mf)) ^ Ord^ ((VA“)99(X“)) and hence 
Ord (99) < Ord ((Vx^)(p(x^)). 

If Ord^ (<p(0) = 1 then for some /i, /2 

6 t2 or P(ti) occurs in (p{t) and g(/i) = ao. 

Since g{t) < g(VA:“) t does not have maximal grade. Therefore is not t and 
does not occur in t. Therefore E /g or G or P{ti) occurs in (VA:“)99(A"). 

Since Ord^ ((VA“)99(A“)) = Ord^ (9?(0) we have 

Ord^ ((VA:“)99(A:“)) = I 

hence 

Ord(99(/)) < Ord ((VX“)99(A:“)). 
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Definition 8.7. 

^ t2^ (VA'^)[X^ E /i ^ E /a], ^ = max (p(/i), ^(/a))- 

Remark, ~ /a is defined by a limited formula whereas = /a is an 
unlimited formula. 

Theorem 8.8. E Ord (/ ~ /i) < Ord (/ E .Y“9?(A“)). 

Proof. If E Ta we obtain, as in the proof of Theorem 8.6 

Ord^ (/ ~ /i) < Ord^ (/ E .Y"^(P(A“)). 

Again we need only consider the case 

tto = Ord^ (/ ~ /i) = Ord^ (/ E A'“9?(.Y“)). 

Then ao = max (g{0, g{x^^{x^)) = max g(^)) = gf), since 

pih) < Therefore Ord^ (/E.YV(-V“)) = g{t) and hence 

Ord^ (/ E x^cp(x“}) = 1. 

On the other hand since KQ = Ord^ {t t^) = g(t) and g(t)^ g(VA^) = 2/3+1 
where /3 = max (p(t)y p(/i)), 

Ord^ (t ~ /i) = 0. 

Therefore 

Ord (/ ~ /i) < Ord (/ E A'“9(A“)). 

Theorem 8.9. / E -> Ord (99(0) < Ord (/ E .Y“99(A“)). 

Proof. If t E Ta then p{t) < a. Therefore since .Y“9>(-V“) is an abstraction 
term and hence 93 must satisfy 4 of Definition 8.1, 

Ord^ {cp{t)) < g(AXA“)). 

Hence 

Ord^ ((p(t)) < Ord^ (/EA“93(A“)) 

and 

Ord (99(/)) < Ord (/ E .Y‘^99(A“)). 

Theorem 8.10. 

rank (A'l) < rank (A'2) -> Ord (t ~ Ai) < Ord (t E A2). 

Proof. If rank (Ai) < rank (A2) then 

Ord^ (/ ^ A'l) = max (^g(/), ^g(Ai)) < max (g(/), i,dA2)) = OrdM^eA'2)- 

WQ = Ord^ (/ ~ A'l) = Ord^ (/ E A2) 
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then tto = g{t) since rank (A'l) < rank (A'2). Therefore 

Ord^ (/ E A'2) = 1. 

But 

Ord^ (/ - A'l) = 0. 

Hence 

Ord (f ~ k^) < Ord (/ 6 A^). 

Theorem 8.11. rank (A) < p{f) -> Ord (/ ~ A) < Ord {P{l)). 

Proof. Ord^ {P{0) = g(0 = Ord^ (/ ~ A), since rank (A) < p{t). 

Ord^ {P{t)) = 1 

But 

Ord^ (/ ~ k) = 0. 

Hence 

Ord (/ ~ A) < Ord {P{t)). 

Definition 8.12. If / is a term then 

Ord' (f) = gU), Ord'' (/) 4 0, Ord'' (!) = 0, Ord (/) 4 git). 

Theorem 8.13. 

1. Ord(/) < Ovd (Pit)) 
2. max (Ord (/i), Ord (/a)) < Ord (/i E ^2). 

Remark. The preceding theorems provide a basis for the definition of a 
denotation operator D defined on terms and closed limited formulas. The 
definition is by recursion on Ord (/) and Ord (9). 

Definition 8.14 

1. D(k) = k,keK. 

2. DixMx"}) = {D(t) \teT„ A D{<p(l))}. 

3. D(—i<p) —\D((p). 

4. D{(p A iji) -^> D(rp) A D{^). 

5. Z)((Vx“)9>(x“)) A (Vr £ T^)D(v(l)). 

6. Dd^ 6 /j) A Ddd e 0(/2), <U 

D(Kd))^ Dd)eK,leT 

D(F{r))A D(t)eF.i€T. 

Remark. More exactly D should be defined on '’9^ and D restricted to 
closed limited formulas should be regarded as a function onto 2. It should 
be noted that this recursive definition is permissible since and the class of 
closed limited formulas 9 such that Ord (9) < a are sets. 

83 



Theorem 8.15. D is definable in ^o(^( )■> ))• 

Dejinition 8.16. D can be extended to an operator D defined for all 
closed unlimited formulas of R{K, F) by adding 

DidxMx)) A (V/ G T)D(cp(t)). 

Remark. Since T is a proper class, D is no longer definable in the lan- 
guage FFQ{K{ ), F{ )), simultaneously for all unlimited formulas. As in the case 
of truth definitions D{(p) is definable in ^o{K{ ), F{ )) for any particular 
formula cp or indeed for any set of formulas 9? with less than n quantifiers, n a 
fixed natural number. 

Finally we relate the method of this section with the concepts introduced 
in §7 by proving the following theorem. 

Theorem 8.17. L[/f; F] = {/)(/) | r G T} where F c Fand Fis transitive. 

Remark. For the proof we need the following. 

Definition 8.18. A limited formula 93 is of rank < a iff every quantifier in 
93 is of the form V.v'’, for some ^ < a, and every constant term occurring in 93 

is an element of F^. We now define an operator for closed limited for- 
mulas of rank < a: 

1 • ^aih ^ ^2) ^ ^(^1) ^ D(t2). 

2. /)„(F(/))^ D{t)eK. 

3. D^{F{t))AD{t)EF. 

4. /3,((Vx«)<p(.v“)) ^ (V.v G T,)DA<p{x)). 

5. Z)„(93 A if) 0^(93) A DJ^if). 

6. /)„(-193) -1 Z)a(<p). 

7. F^aV.vX.vn) - (Vx G F;)D,{93(.Y)), y<a,B', = {D{t)\te T,}. 

Remark. Then F„ c and a < ^ B'^ e B'^ since D(x“(x^ ~ .Y“)) = B'a. 

Set B; ^ <F;, F„, F,>. 

We then prove by induction on a that 

i) Ba = B'a and 
ii) ^(93) <-> Da{(p) for 93 of rank < a. 

We need only consider the case a ^ Fn- If i) holds for a < and t e then 

D{K{t))^- D{t)E K 
^ D(r)GFn F; 

<-> D{f) G K/} (by i) for a = ^) 
-> B,NF(D(0) 

Similarly, we can prove 
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We next prove ii) for a = ^ by induction on Ord^ (95). Since all other cases 
are trivial or obtained from i) we need only prove 

a. D{{'ix^)(p(x‘^)) Dp{{'ix'^)(p{x'^)) and 
b. D((VA'09)(.V0) - > B,h D,((V.V>'MA^)), y < ^ 

assuming ii) holds for all (p{t) with t e Tp,. 

D((VA^)9)(.Y^)) <-> (V/ G Tp)D{cp{t)) 
(V/ G 7'/5)[B/JI= D;J(99( D(/)))] (by the induction hypothesis) 

<-(Vr/G^;)[B,h Dp{cp{a))] 
<>(V^7G Bp)[\^p^ Op{cp{a))] 
^^B,h Dp{{yx^)cp{x^)) 

b is proved similarly. We now show that = ^i + i 

D(.YM-V^)) = {D{t)\tGTp ^ D{rp{t))] 
= {D{t) \tETp A Bp^ Dp{cp{D{t)))} 
= {a E Bp \ B^ h D^(99(^7))}. 

Thus if t = x^(p{x^) for some y < then 

D{t)EBp^, 0 D(t)EDf{Bp). 

Furthermore 

k = D(k) ^ Bp +1 <-> rank {k) < ^ A k E K 
'->kEK A RW + •) 
<-> k E Kp^i. 

Thus Bp^^ = B'p^-^. 

Remark. The ramified language and the operator D are very useful in 
the sense that the definition of D is carried out by using K, Fand transfmite 
recursion i.e., without using any knowledge about V other than the theory of 
ordinal numbers. Therefore if On ^ V ^ V and V is a standard transitive 
model of ZFand F ^ K ^ V' (where K is transitive) then 

L[K; Fr = L[K; F]. 

If M is a standard transitive model of ZF, which is a set, and UQ is the first 

ordinal not in M i.e., ao = {On)^ = On r\ M (WQ is called the order type of 
M), if M is another standard transitive model of ZFsuch that KQ — ^ ^ 

and F ^ M where F is a class in M i.e., (VA* G A?)[A' n FG M] then in M, 
M is a proper class containing all the ordinals of M. Therefore we can con- 
struct L[M; F] in M and we define this to be M[F]. Without knowing M, 
the construction of M[F] can be done using a ramified language where all 
the ordinals a in A“, Ta etc. range over WQ instead of the whole of On. This 
construction is independent of the choice of M i.e., if ^re two stan- 
dard transitive models of ZF with order type aQ,\[ M M y, M ^ A/2, F^ M 
and F is a class in Mi and A/2> then Z.[/V/; F] in Mi and L[M, F] in M2 ^^re 
the same. Note that we may have Mi ^ M2 ^nd M2 ^ 
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Even if there is no such M we can construct M[F] by using ramified 
language. However in this case M[F] need not be a model of ZF, since we 
have the following counter example. 

Let M be a countable standard transitive model of ZF, ¥ ^ M 3. well 
ordering of oj whose order type is standard transitive model M with 
the properties described above exists iff M[F] is a standard transitive model of 
ZF, but M[F] cannot be a model of ZF (since the order-type of M[F] is 0/r'O- 
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9. Boolean-Valued Relative Constructibility 

In this section we will generalize the theory of relative constructibility to 
Boolean-valued structures for Boolean algebras B that are sets. Here will 
denote the language of the first-order predicate calculus with predicate 
constants = and e. In addition is a first order language that is an extension 
of most applications ^ will have only finitely many constants but it 
may have infinitely many. M and M' will be two B-valued structures for the 
language Recall that M and M' must each satisfy the Axioms of Equality 
of Definition 6.5. Also, whenever we consider [(p]]^, we assume that the under- 
lying Boolean algebra is M-complete where M = |IVI| i.e., M is the universe 
of M. 

With these conventions we proceed with the task of defining Boolean- 
valued relative constructibility. 

Definition 9.1. M is a B-valued substructure of M' iff 

1. M c M\ 
2. For each //-ary predicate symbol R of if, including = and G, 

(Vfli, . . M)[lR{a^, . . ., . . ., ^7n)]]M'] 

3. c'* = c'*' for each individual constant c of if. 

Remark. Most of the conditions 1-3 of page 68 can be easily general- 

ized to the B-valued case. It is, however, more difficult to find an adequate 
condition corresponding to the requirement that be transitive. 

Definition 9.2. If M is a B-valued structure for if and M' M, then 
an element b G M is defined over M' iff 

(Vx e M) |x G = 2 
x’eM' 

x'j lx' G bj 

Remark. Thus, in order to calculate the value of lx G b}, if b is defined 
over M', we need only know the values lx' e bj for x' G M'. 

We now wish to formulate conditions analogous to 1-3 of page 68. Let 
<Ma I a G On} be a sequence of B-valued structures for the language i^ such 

that Ma is a nonempty set except for MQ, 

1. M„ is a B-valued substructure of M^, for a < ^ 
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and 

2. A/^,a 6 Ku. 
B<a V 

Then A/ = U«eOn 
Again we can define M such that |M| = M, M is a B-valued structure and 

Ma is a B-valued substructure of IVI for all a. M is uniquely determined by 
these conditions. [[99]] stands for [1991M- Furthermore we require the following 
conditions. 

3. Ma satisfies the Axiom of Extensionality. 
4. For each h e A/a+i. b is defined over M^- 

5. For each formula 99 of ^0 

(V^7i,. . ., e M^){3b E Ma+i){V^7 E  = {a & /?11]. 

Condition 4 replaces the requirement that /V/„ be transitive for all a in 
the 2-valued case. Note that 5 is just the condition 3 of page 68 i.e., 

/)/'(Ma) c for B = 2. 

Since MQ, is a B-valued substructure of M 

(Vrti,. . .,ane    . ^n)ll] 

if 99 contains no quantifiers. 
The following three theorems are proved just as in the case B = 2. 

Theorem 9.3. If A is a B-valued structure for ^ and c ^ E A for every 
individual constant c of then there exists a unique B-valued substructure 
C of A such that |C| = A. 

Theorem 9.4. If A is a B-valued structure for ^ and | Aj is a set, then there 
exists a formula <l> ofsuch that for all closed formulas 99 of S^{C{A)) 

MA = b 4)(A, B, '■(pC b). 

Theorem 9.5. If A is a B-valued structure for ^ where A = | Aj may be a 
proper class then for each formula 99 of there exists a formula i/» of such 
that 

(V^7i, . . . , E /^)[|[99(^7i, . . . , ^Zjlv = /)<-> 0(A, B, , ^7^, /?)]. 

Theorem 9.6. (V77 E A/„)[(I(3.V E a)(p(x)^ = I-v e a} 

Proof. If a E Ma then a E and hence a is defined over A/^^. 

|(3.Y E 77)99(.V)1 = 2 ^ 
xeM 

xeM x'eMa 

(Since a is defined over A/^) 
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<2 2 II-'' ~ ^ (Axiom of Equality) 
xeM x'eMoi 

< 2 11^'e ^7]] [l9(->^')]] 
x'eMa 

< 2 ^ ^]] 

xeM 

= [I(3A' 6 77)9?(A')]]. 

Theorem 9.7. {\/a e A/„)[I(VA' E 77)(P(A')]] = 1 LeA/^ (I-^^ e cij => tt9?(A)l)]. 

Remark. Theorem 9.7 follows from duality. The preceding results 

enable us to cope with bounded quantifiers. As an application we have the 
following. 

Theorem 9.8. M satisfies the Axiom of Extensionality i.e., 

(V<7, h E A/)[|(VA)[A E a <-> X e h]-^ a = h} = 1]. 

Proof. U a, b E M then (3a)[77 E A/^ ^ h E Mf[. Then from Theorem 9.7 

|(VA)[A E 77 <-> A E ^]E = [2 e 77 ^ A E /7l 

xeM a 

= n tt->^e77<^AE 
xeM a 

< Ici = (by 3 above) 
= |« = 

Theorem 9.9. M satisfies the Axiom of Unions i.e., 

(V77 E A/)[[(36)(VA)[A Eh (3_y E 77) [A E y]^ = 1. 

Proof. If 77 E Ma then 3/? E Ma+x such that 

(VA' E Af„)[|(3;> E 77)[A' E = [A' E bj]. 

Since b is defined over A/^, 

[[A E /?! = 2 e e y]hia 
x'eMa 

= ^ lx = x'j ^ ly E aj [A' E y} 
X'eMa yeMa 

= ^lyea} 2 lx = x'Ux'^ y} 
yeMa X’eMa 

= 2 ^ (Since y is defined over M^) 
yeMa 

= |(3_v E 77)[A E y]} (by Theorem 9.6). 

Remark. The Axiom of Pairing is established similarly. 

Theorem 9.10. M satisfies the Axiom of Regularity i.e., 

(V77 E M)[PA E 77 -> (3A E 77)(V>^ E A)[>’ ^ 77]|] = 1]. 

Proof. If 77 E A/ we wish to show that 

|3A E 77]1 < I(3A E 77)[77 O A = 0]]]. 
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If not then (3A'O e A/)[[.YO ^ ci} ^ |(3A E a)[a n x = 0]]]]. If 

a = My((3A'o e My)[|xo E a\ ^ [[(3A E a)[a n A = 0]i]), 

then 3AO E such that 

IAO e al ^ [[(3A E a)[a n A = 0][|. 

Since MQ = 0, (3ao)[« = cco + •]• Then 

|AO n ^7 7^0[| = tt(3;^ E Ao)[r E T?]! 

= 2 ^ •'^ol I V e 77[] 
ysM 

2 2 y = y''^ IT' ^ '"^oll Lv e a} 
yeM y'eMao 

- 2 2 = yl ly' ^ ^ol Lv' e 77i 
yeM y'eMaQ 

- 2 2 1^3’ = yl b’' e Xol [[(3A E 77)[77 n A = 0]1 
yeM y'eMaQ 

< 2 IV e Aol [[(3A E d)[a n A = 0]1. 
yeM 

Then 

[[AO n 77 # OJ < |(3A E 77)[77 Pi A = 0][]. 

Hence 

1 = bo P 77 = 0[] + [(3A E 77)[77 P A = 0][[ 

bo e < bo e Lvo P 77 = 0[| + 1(3A E 77)[77 P A = 0]1 

< [[(3A E 77)[77 P A = 0][] + |(3A E 77)[77 P A = 0][j 

= [[(3A E 77)[77 P A = 0]1. 

This contradicts the choice of A'Q. 

Theorem 9.11. iM satisfies the Axiom of Infinity. 

Proof. Left to the reader. 

Remark. We now turn to the proof of the Axiom of Separation. 

Theorem 9.12. The function F: On -> B defined by 

m = 2 
aeMg 

is nondecreasing, with respect to the Boolean relation < of B, and it is con- 
tinuous. 

Proof. Obvious. 

Theorem 9.13. If F: On ^ is nondecreasing, then 

(3^)(Va > ^)[F{a) = Fm 

i.e., F is eventually constant. 
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ProoJ. If g{h) = ix^{h < F{I3)), h e B then g: B On. Since ^ is a set, 

(3^)[/3 = SLip^g“^]. Then (Va > /3)[T(a) = T(/3)]. 

Theorem 9.14. (3^)[|(3;;)<p(>’)l = laeMp 

Proof. Theorems 9.12 and 9.13. 

Corollary 9.15. 

(Va)(3^)(V^i, . . , r/n G A/a) [[(3y^)99(r/i,. . ., t/„, v)l = 2 • 
aeM0 

■ , Cln, a)\ 

Theorem 9.16. For each formula 99 of ^ there exists a semi-normal 

function F such that 

(V«)(V/3) ^ = F{a) . . . , G Mfi 

= 2 
aeM0 

Proof. I f 

F{a) = ^y|y > a A (V^7i, . . ., E A/„) |(3>’)9^(^?I, • • •, «n,T)]] 

= 2 I, 
^ y- Jl /f ' 

the result then follows from Corollary 9.15. 

aeMy 

Corollary 9.17. For each formula 99 of ^ there exists a semi-normal 

function F such that 

m ^ = F(^) (V^7i, On ^ Mfi [(3y)99(^7i,. . ., «n,T)]] 

= 2 ^)1 
aeM0 

Theorem 9.18. For each formula 99 of there exist finitely many semi- 

normal functions Fi,. . F^ such that 

(V^)[^ = Ff^) = ■■■ = FJ/3) -> (V^7i, ...,ar,e • • •, «n)l 

= [99(^71, . . ^7n)lMj]- 

Proof. Left to the reader. 

Theorem 9.19. M satisfies the Axiom of Separation i.e., 

(V77i,. . ., 77 e A/)[|(3/))(Vx)[.v e b x e a A (p{x, 77JI = 1]. 

Proof. If 77,77i,. . ., 77,1 6 A/ then there is an a such that 

[77, 77i, . . . , 77„ G A/„] A (V.X' G MO[lx' G 77 A cp{x', 77i, . . . , 77^)3 

= Hx' G 77 A cp{x', 77i, . . . , 77 JIMJ. 

Therefore 3/? 6 A/^ + i such that 

(Vy E MO[lx' eh'\ = lx' ea ^ cp{x\ , ^?n)3.Mj. 
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Then 

x'eMa 

= ^ lx = xl Ix'^E a} lcp(x', ^7i, . . ., ^/n)]]M„- 
X'eMa ' - 

= ^ lx = lx' 6 a\ |9?(x', a^. . cr J1 
X'eMa 

< lx = x'l [[x e aj |9(.Y, Oi,. . ., fir J1 
X'eMa 

< 2 ll-^ ^ ^n)Il 
X'eMa 

= |x 6 fir]][[9(^, a^,. . ., ^7n)]l 

= ^ lx = x'} lx' e a} I<p(x, firi,. . ., ajl 
X'eMa 

< ^ lx = x'i [x' 6 aj lcp(x', ai,..., firJIj. 
X'eMa 

Then [[x e Z?! = lx E a} [[(p(x, 

Remark. The problem in the proof of the Axiom of Powers is to find a 
kind of bound for all b such that b a. 

Theorem 9.20. \{ a E !Vfa+1 and [I(V.v)[.v E b <-> x E a A (p{x, fir^,. . ., i7„)]|| 
= 1 then b is defined over A/^, i.e., every definable B-valued subset of 
QE A/a + i is defined over yV/„. 

Proof. Under the hypothesis of the proposition 

[[c e /?! = He 6 aU<p{c, «i,. . ■, «n)I 

= ^ Ic = c'l Ic' E fir]] l<p(c, ^1,. . ., fir 
c'eMa 

= ^ Ic = c'l Ic' E al l(p{c', fiTi, . . ., aJl 
C'eMa 

= 2 I^- = f'JIc'efcl 
C'eMa 

i.e., b is defined over 

Theorem 9.21. If bx, b2^ M are defined over A/^ then 

(VA-' 6 Ma)[lx' E /ill = e /I2I] 1^1 = b2l = 1. 

Proof. 

lx € 6 J = 2 I-’^ = •'^1 
X'eMa 

= 2 = '^1^ ^2! 
X'eMa 

= HA e b2l. 

Thus Hbi = bzl = I by the Axiom of Extensionality. 
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Theorem 9.22. 

(Va)(3/3)(V^7 e M)[a is defined over M„ -> (3h G = /?]] = 1]]. 

Proof. is a set. For ,9 e we define 

f{s) = G Mf\[a is defined over ^ s = {<A', lx G C/|1> | x G Ma]]) 

= 0 if there is no such 

Then 

mw = sup f(s)]. 
seR^a 

If ^ is defined over M„ and 

.9 = {<JC, lx G i7]]> I .Y e 

then 5 G and hence 

(3/7 e Mf^s))[s = {<.v, |.v G /7]]> I X e Mf(] 

where h is defined over A/^. Then |^7 = Z?]] = 1 and h G 

Theorem 9.23. (Va)(3Z7 G M)(Vfl G A/J[|^7 e hj = 1]. 

Proof (3/7 e A/„+i)(V^7 e A/^)[I^7 e /7| = la = = !]• 

Remark. In case B = 2 Theorem 9.23 means that A/^ is contained in 

some h G M. 

Theorem 9.24. M satisfies the Axiom of Powers i.e., 

(V^G A/)[[(3x)[x = ^{a)]\ = 1]. 

Proof. a G M then (3o:)[^7 G Mf[. By Theorem 9.22 

(3^)(V/7)[/7 is defined over {3h' G A//J)[|/7 = b'j = 1]]. 

By Theorem 9.23 

(3C)(V/7' G A/,)P' G cl = 1]. 

It is then sufficient to prove -^(a) ^ c, i.e., 

(VX G A/)[[[X C flr| < lx E C|]. 

By the proof of the Axiom of Sep aration 

(3/7 G A/)[[[(Vy)[j G b 0 y G X n y G a]l = lb = x n crl = 1]. 

Then b is defined over A/^. Hence 

(3/7'G A/,)P = b'\ = 1]. 
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Therefore 

[I^ c aj = |x c ^7| 1^ = X n a]\ 

‘ < lx.= b} 

= I-x = .^I 
= = bl W G Cj 

< lx eel 

Theorem 9.25. M satisfies the Axiom Schema of Replacement. 

Proof. We take the Axiom of Replacement in the following form: 

(3/?)(VA' G a){^y e /?)[(3;’')9?(A, V') q>{x, y)]. 

We wish to prove 

(Vi7 G )[I(3Z))(VA G ^)(3 V G b)(p'{x, .v)l = 1], 

where we abbreviate (3V')99(A, y') —> (p{x, y) by cp\x, ;’)• First we note that 

(VAGA/)[PVVCV, v)l = 1] 

If ^7 G M then (3a)[T? G yV/„] and since 2yG.\/ Wix, jAll = F 

(3^)(VA- G T/J 2 ^ 
yeMp 

by Corollary 9.15. Then, for this /S 

(3/7)(VV G MMy ebl = 1], 

by Theorem 9.23. Hence 

2 Lv e/>! I<p'(w A)I > 2 Lv e v)l 
yeM yeMp 

= 2 [[9''(W.V)1. 
yeMff 

Therefore 

and hence 

(V.v € M„) 2 I.v e 6 A <PXX, >•)! = 1 
yeM 

(VA G yV/„)[|(3v G b)cp'{x, v)l = 1]. 

Since a is defined over A/^ we have for A G M 

[A G 7?! = 2 ^ 
x'eMa 

< 2 11'^ = ^(^y ^ ^W{x\ ;^)i 
.V'6.V/„ 

^ 2 ^^^y ^ v)i 
•v'eA/a 

= 11(3;’ G b)<p\x, v)l. 
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Therefore 

Ixeaj < e/?>;)]] 

hence 

|(V.Y G ^7)(3V 6J)1 = 1- 

Remark. We have now proved the following. 

Theorem 9.26. If the sequence <(Ma | a 6 (9//> of B-valued structures forJ^, 
satisfies the conditions 1-5 of page 87-88 and M = Uaeon flicn M is a 
B-valued model of ZF. 

Remark. As an application of the method developed in this section we 
shall define V[F] by using a ramihed language. In §7 Z.[A'] was introduced as 
the class of all sets that are constructible from K. The class K can be identified 
with its characteristic function F:K—>2. However we now consider a 
Boolean-valued set i.e., a function F: K—> |B| and regard the class of sets 
constructible from K in the B-valued sense. If we think of V as the class of 
2-valued sets V[F] becomes an extension of Vcontaining new sets. 

Assume 6 K,/o'^ ^ iind J/'" is the language i^o(C( )}) 
therefore we have individual constants k for each k G V. 

Definition 9.27. A sequence (Ta I « ^ On}, where 

Ta = <T„, =, i, F„, F„>, 

of B-valued structures for the language FF is defined as follows: 
Ta is the set of constant terms t with rank p{t) < a (Definition 8.2). 

for a limited formula 9? of rank < a is defined by recursion on Ord (9) as 
follows. 

1. = 2 I' = '^T„. 
k€R(a) 

2. F(01T. = 2 I' = *^k/oW teT,. 
keR(a)nK 

3. 1^1 e kzh^ = 1 if /:i G A'2 p(ki), pik^) < « 

= 0 if A'l ^ A2. 

4. Hr G A]]x„ = 2 t eTa, t not an individual constant. 
k'ek 

5. = 2 I' = < a. 
t'eTB 

6. Iti = tzh, = PI 1/ e ri <-> r G h, ^2 e /3 = max (p{ti), ^(^2)). 
teTp 

7. A 9>2IT„ = 1I<PIITJ<A2IT„- 

8. I(VX'>)'P(X'>)1T. = n WOk /? < «• 
teTp 
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We extend the definition of to unlimited formulas by adding 

9. I{VX)9(X)1T. = ri WOIT.. 
teTa 

\ 

Remark. There is a slight difference, in our approach compared with §8 
since = is now a predicate constant ofl^o whereas previously we defined 
However, the definition of ~ corresponds to 6 above. Theorems of §8 show 
that in 1-8 Ord (9) is always reduced to lower values so that the definition is 
recursive. 

We must now prove that the sequence <T„ | a E On} has the desired 
properties. 

Theorem 9.28. V/j, rg e T^. 

^ • 1^1 = ^I1T„ = 1- 

2- ff^l = f2}Ta — ^^2 — ^llxa- 

Proof. Obvious from Definition 9.27. 

Theorem 9.29. V/ci, ^ ^(«)- 

^'1 = A2 -> |Ai = k2]]x„ = 1 
ki 7^ A'2 —^ JAi = A'2]]T„ = 9. 

Proof. If A'l # A'2 and /S = max {p{ki), p{k2)) then by symmetry we can 
assume (3A')[A' e A'l A A' ^ A'2]. 

Then p{k) < and 

I A' 1 = A' 2]]T„ = I I y ^ ki t E k 2]]X3 
teTff 

— ^ A'l k E A'2]]X„ “ 

Then k, for k E V, can be treated as a 2-valued set and Definition 9.27.4 holds 
for t = A'l, too. 

Lemma. V/, A E T^. 

1. p{t) < p{k)-^lk G / IT, = 0. 

2. p{t) < p{k)^lk = /IT, = 0. 

Proof. We prove 1 and 2 simultaneously by induction. 

If p{t) < p{k) and / = x^(p{x^), then since p{t') < p{t) < p{k) 

lA'e/IT, = Ik = /'IM/'I = 0. 
t’eTg 

If p(/) < p(k) then since 3A'i G A', p(t) < p{ki) < pik) 

y = A'IT, < PI lAi G / I = 0. 
kiGk 

I heorem 9.30. V/i, t.2, ts G T^. 

i- ([/l = /2lTa|/2 = /six, ^ [[/l = /six,- 

Proof. Let = pfi), i = 1,2,3, and let ^1 = max («!, a2), ^2 = 
max (a2^ «3). ^3 = (ttg, tti). Writing | I for | Ix^ we proceed by 
induction on pit^) = a^. 
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Case 1. jSg < A ^3 < ^2’ Obvious from Definition 9.27.6. 

Case 2. < ^3 \/ ^2 < From Theorem 9.28, 1 is equivalent to: 

tt^3 = ^211^2 = d ^ 1^3 — d- 

Consequently, if 1 is proved for then I also holds for < a^. 

Therefore we may assume < 0:3 and hence 1^2 yt (^3. Thus we need only 
consider < jS^. Then /S^ = max (ai, ^2) < 1^2 = ^3 — «3- 

First of all we assume that /j is defined over for / = 1,2, 3. (That this 
is really the case will be shown a little later.) 

Let b = pi = t2Ut2 = /3]]- Then for t e 

bp = b 2 = ^11^' e / J 

(since /i is defined over Taj 

= 1^2 = y 2 I'l = 'all' = ''M'" e 'll 
t'eTa^ 

= [^2 = ^3]] 2 n f‘S'^/'i'^‘^^^2l[I^ = dlI^ ^d 
t'eTa seT0^ 

2 2 ii'2 = '3II''syi' = ''1- 
t'eTai 

(since we can take s = t') 

< 2 l''eyi' = '1 
t'eTai 

(by the same technique as above) 

< 2 I' = ''ii''ey 
('eTflrg 

= [r G /3]] (since is defined over T^^). 

Therefore b < [[r e /i ^ / G /3I for / e On the other hand for / G 

bit e y = [fi = y 2 II'2 = yI' = ''M'' 6 y 
t'eTa^ 

< I'l = y 2 i''syi' = '1 
('eTotg 

(by the same technique as above) 

= 2 I' = ''I 2 i'> = = '"H'"e'2i 
f'eTag t"eTa2 

< 2 I' = '1 2 I'' = '"II'"6y 
t'eTa^ ("eTffg 

(by the same technique as above) 

< 2 I'= '"II'" e'll 
t"eTa2 _ 

(by our induction hypothesis, since p{t") < pp^)) 

= 2 I' = '"1 2 I'" = ''ll''e'll 
C'eTaa t'eTai 

< 2 I' = ''II''e'll 
t'BTai 

(by the induction hypothesis, since p{t') < pp^)) 

= /il. 



Therefore h < p G t-^ ^ > t e for all / e 
We next wish to show that if < ^3 then is defined over We first 

prove that if p{k) < pit^) then k is defined over 
\ “ 

ltek}= Jit = k'm'^kl ' ' - 
k'ek 

^ 2 (since k c Tp^,,y) 

= 2 I' = ''121'' = ^'1 
t’eTp(ic) k'ek 

<2 2 ^ ^ induction hypothesis) 
t'eTp(}c) k'ek 

= 2 I' = ^'i = 
k’ek 

i.e., llek} = I' = 'W ekj. 

Next we show that if t = x^(p(x^) for some jS < then t is defined over 

To- 

tt^o e /]] = 2 H'o 
t'eTs 

s 2 I'o 
t’eTp 

< 2 I'o 
t'eTp 

= 2 I'o 
t'eTp 

s 2 I'o 
t’eTp 

< 2 I'o 
t”eTp 

= !I/o e rl. 

rmn} 

I'l 2 I'o = 
t"eTp 

^1 2 (by the induction hypothesis) 
V’eTp 

tW = 

tl 2 
V’eTp 

r'l|9j(/")|, (by the induction hypothesis) 

Since < ^2 < «3 or ag < «! < it follows that ti is defined over 

Remark. We have also proved that if t e then t is defined over T'oU) 
The same argument can be used to prove the following result. 

Theorem 9.31. If t GT^ then t is defined over T^. 

Remark. We now return to the remaining Axioms of Equality. 

I heoreni 9.32. V/i, (2, fs e Ta 

I- [[A = ^2lTaI^2 ^ ^ [[^l^^sIlTa- 
2. Ih = ^ Allxa — 11^3 ^ ^2!]xa- 

1^1 = ^2lxa(I l''^(^l)Ilx„ ^ [I^(^2)Ixa- 

11^1 = ^2llxcll'^(^l)lx„ ^ lI-^(^2)i]Ta- 
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Proof. 

I- I'l = yi'aS'ol < 2 I'l = '2III' = '2M'6/3l 
teTa 

< ^ It = /iM/ e /3I 
tsTa 

= 11^1 ^ /3I (t’y Theorem 9.31). 

2. [fi = yi/36/J = [/i = y 2 I' = '3M'e'il 
teTp(ti) 

= ^ It = /3I Y\ [[‘^ ^ ^ ^2! [[/ e t^i 

where = max (p(/i), pC/g)) 

s: 2 I' = '3I I' ^ '2I 

< ^ It = (since p(/i) < a) 
teTa 

= 1^3 e /al- 

3 and 4 follow from Theorem 9.30. 

Remark. We have now proved that T„ is a B-valued structure. (See 
Definition 6.5) 

Theorem 9.33. T^ satisfies the Axiom of Extensionality. 

Proof. Obvious from Definition 9.27.6. 

Theorem 9.34. If t E then t is defined over T^. 

Proof. See remark following Theorem 9.30. 

Theorem 9.35. If <p is a formula of ^ then 

(V/i, 6 E E TM^it, t 01T„ — It E t ]]x^]. 

Proof. If /' = /i,. . where <p“ is the formula obtained 
from <p by replacing Vx by Vx“, then t' ET^^X and for t E 

= 2 i' = 
t"eTa 

= ti,. • •» Olxa+i 

= hV, tx,. • ••> tn)lTa 

= h(t, tx,. ■ 

Remark. Thus we see that | a E On) satisfies the conditions 1-5 on 
p. 87-88. Therefore if T = <7’, =, E, V, F) is defined from <T„ | a E OIF as 
M from | a E On} then T is a B-valued model of ZF. We can also define 
a denotation operator D as in §8 and put V[fo\ = {D{t) \ t E T}. However we 
are more interested in standard 2-valued models. In order to obtain a suitable 
homomorphism of V[fo\ onto a 2-valued model we relativize our results to 
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some M. Let A/ be a transitive model of ZF, and let B be an A/-complete 
Boolean algebra with B G M. Furthermore assume that K E M and/QI K B, 

fo E M. By relativizing our previous definition of T to A/ we obtain (F[/o])^L 
Let /?: |B| —> |2| be an Af-complete homomorphism. (If M is countable there 
are such homomorphisms by the Ra^owa-Sikorski Theorem.) Then we can 
pass to a 2-valued standard model. 

Definition 9.36. FQ = [k E K \ /?(/o(A:)) = 1}. 
For r, /i, t2 constant terms, 

1. Dit^e y 4. D(ti) e 

2. D(V(l))-^ D(t)eM. 

3. D{F{l) A D(t) 6 Fo. 

The remainder of the definition is the same as in Definition 8.14. 

Let M[Fo] = M\h] = {D(t) \lsT), where T = [T„’^ | a e A/}. 
When we wish to identify the particular denotation operator associated 

with a particular M[FQ\ we will write DMIFQI instead of D. 

4. D'(V(t))A(^keM)D'{t = k). 

5. £)'(f(t)) ^ m € Fo)D'(t = k). 

6. D'iki s A’a) ki e k^, A-j, A'a e K. 

7. D'(l e A-) ^ (3A' e K)D'(l = A'). 

8. eTe)[D'0 = /') A D’{<p{t’))l ^ e M. 

9. D'Ui = I2) ^ (Vr 6 Tg)D'(l IS l^), ^ = max K'a))- 

10. -^D'(cp), D'(<p A Z)'((p) A il'W- 

11. £>'((VX‘>)9,(X'’)) -S- (Vr 6 Tg)D'(<p(l)), € W. 

Remark. It is easy to see that D is equivalent to D' and the following 
theorem holds: 

Theorem 9.37. M[FQ\ 1= 99 //([[(p]]) = 1. 

Remark. Since T is a B-valued model of ZF, we have fip]! = 1 for each 
axiom op. Consequently we have the following result. 

Theorem 9.38. M[FQ\ is a standard transitive model of ZF. If A/ satisfies 
the AC so does M[FQ\. 

Proof. To show that M[FQ\ satisfies the TC if A/ does we note that if A/ 
satisfies the AC then since K E M, K is well ordered and, since FQ C K, FQ is 
also well ordered in A/[Fo]. Hence M[FQ] satisfies the AC. 

Remark. Comparing the results of Theorem 9.38 with those discussed at 
the end of §8 note that we did not require the existence of a model \i of ZF 
with the same order type as M such that FQ is a class in M but instead FQ must 
satisfy certain requirements to ensure that A/[Fo] be a model of ZF. Defining 
M[FQ] by considering B-valued relative constructibility has many advantages 
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as will become clear from the applications in the next sections. We can 
however give an application of this method now: 

Suppose that M is a countable standard transitive model of ZF, B G A/ 
and B is M-complete, also KeM and {V[fo\Y^ is defined as before. Now 
assume that there is some sentence 99 such that Irpl 7^ 0. Then there is a 
homomorphism //: |B| ^ |2| that is A/-complete, sends [[99]] to 1, and from 
which we get a standard 2-valued model M [TQ] in which 99 is true in the 
ordinary sense of 2-valued logic. 
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10. Forcing 

As an application of the general theory developed in the previous sections 
we give a definition of “forcing” and derive its elementary properties. 
Throughout this section, M denotes a standard transitive model of ZF, 
P G A/ is a partial order structure, and B is the corresponding A/-complete 
Boolean algebra of regular open sets of P in the relative sense of A/. Further- 
more we have 

h an A/-complete homomorphism of B into 2, 
F an A/-complete ultrafilter for B, and 
G a set that is P-generic over A/, 

such that /?, F, and G are related to each other as described in §2. Thus one 
of them may be given and the remaining sets are obtained from it as in §2. 

We now specialize the construction of A/ [FQ] to one of the following cases: 

1. K = B and /oi B B \s the identity on B or 
2. K = P and foi P B is defined by 

fo(p) = [p]~°, P^P- 

In case 1 

Fo = {he B\ hifoib)) = 1} 
= {be B\ h(b) = 1} 
= F. 

In case 2 

Fo = {peP\h{[p]-^) = 1} 

= {peP\ [p]-^eF} 

= G. 

Since //, F, G are obtainable from each other in a simple way, we have in 
both cases M[Fo] = M[/i] = M[G] = M[F] and Theorem 10.1 follows. 

Theorem 10.1. If G is P-generic over A/then A/[G] is a standard transitive 
model of ZT that has the same order type as M. For any formula cp of FPQ 

M [G] f= 9? ^ biM) = 1 
^ [[(pH e F 

^ M G 7^ 0. 
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Furthermore if M satisfies the AC so does M[G]. 

Remark. [[9]] = h is definable in from P and (uniformly in '"9^ if 
9 ranges over limited formulas only). 

Definition 10.2. \\' p e P and 9 is a formula, limited or unlimited, then 

/; If 9 /7 6 I9]]. 

Theorem 10.3. p H- 9 is definable in from '"9^, h and P (uniformly in 
^9^ if 9 ranges over limited formulas only). 

Remark. As can be seen from Theorem 10.1 there is a close relationship 
between satisfaction in M[G] and the notion of forcing. In particular the 
forcing relation satisfies certain recursive conditions similar to the notion of 
satisfaction in M[G]: 

Theorem 10.4. Let k, k^, k2 e V and /, ti, ^2 tie constant terms. 

1. /7 If ^9 (V<7 < p) -I (^ if 9). 
2. /? if 9i A 92 H- 9i A /? if 92- 
3. p if (V.v)9(.v) (V/ G T)[p if 9(/)]. 
4. p if (V.Y“)9(.V“) O (Vi/ < p){^q' < q)Clt G Ta)[q' if 9(0]. 
5. /? H- V{t) (Vi/ < p){^q' < q){^k )[q' if / = A] in particular p if V{k). 
6. p H- F{t) <-> (iq < p){^q' < q){^b G B)[b e FQ /\ q ^ t = A j. 
7. /; if A'l G A'2 A'l G A'2. 
8. p ¥ t E k {'iq < p){^q' < q)0k' G k)[q' if t = A'']. 
9. /; H- r G .Y^9(.V^) (Vi/ < p){^q' < q){^t' G if / = r' A if 9(0)]. 

10. p 'F 11 == t2^ p ^ (V-Y^)[A'^ G G ^2] where = max (p(/i), p(0)). 

Proof. The proofs of most of these statements are obvious from the 
definition: 

1. /7if —I9<->/7G l(pl 

^ Ofq < p)[q ^ I9I] 
(iq < p) —i [q W- 9]. 

2. /? H- 9i A (P2 ^ P ^ A 92I 

^ p ^ [[^il A G [[92I 
^ /7 If 9i A /> if 92. 

3. pW- (\fx)(p(x) ^ p e ( PI [9(/)I) 
^ leT ' 

p E P [<p(01 by Theorem 1.35 
teT 

(V/ G T)[p if 9(0]. 

4-10. The proofs are left to the reader. 

Remark. Note that in order to define forcing and prove Theorem 10.4 
we need not assume that M is countable. However, in order to prove the 
existence of an A/-complete homomorphism of B into 2, or equivalently the 
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existence of a set G that is P-generic over M, we need some further conditions 
on M. We collect all these requirements in the following definition. 

Definition 10.5. <A/, P; is a setting for forcing iff 

1. A/ is a standard transitive modePof ZF, 
2. P is a partially ordered structure and P e M, 
3. M is countable. 

Remark. Under these assumptions we know that for each peP there 
is a G that is P-generic over M and p e G. In fact 1 and 3 could be weakened. 
In particular, it would be sufficient to require instead of 3 

3'. ^(P) n A/ is countable. 

The following theorem is a kind of completeness theorem for forcing. 

Theorem 10.6. If <A/, P> is a setting for forcing then 

p W- (p <-> (VC')[G' is P-generic over A/ A p e G' ^ M[G'] 1= 9?]. 

Proof. Using the one-to-one correspondence between P-generic sets over 
M and A/-complete homomorphisms from B into 2 we need only show: 

/7 H- 9? (V//')[/?': |B| |2| is an A/-complete homomorphism 

A /;'(b]-°) = = 1]. 

But the right-hand side is equivalent to 

[/>]-“< M 

which in turn is equivalent to each of the following: 

P ^ ll^]] 
/? H" 93. 

Remark. We could also define forcing either (1) by using the recursive 
conditions of Theorem 10.4 or (2) by the equivalence of Theorem 10.6. On 
the other hand, the definition of forcing by (1) allows us to define a B-valued 
interpretation I j by 

[[9?! = {/7 G P I /? H- 9?}. 

Theorem 10.7. q<pApW-(p-^q\{-cp. 

Proof. Obvious from the definition. 

Corollary 10.8. —i[p H- 9? A H- —19?]. 

Remark. On the other hand, we need not have /? H- 9? v p ^ —19?. 

Theorem 10.9. If C is P-generic over M and S = {/? 6 P | p H- 95} is dense 
then A/ [G] N 9?. 

Proof. S = l(pl is regular open in P since [93]] 6 B. Then, since S is dense, 
5 = = 1. Therefore [93]] = 1. 
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Definition 10.10. For each S ^ s is dense beneath p ilT [/?] ^ S~. 

Theorem 10.11. If O' is P-generic over A/, if p e G and if S e M is dense 

beneath p then G' n 5’ # 0. 

Proof. Under the given hypothesis if 

S' = 5" U {q G P I —iComp (/?, q)] 

then S' e M and S' is dense, hence G r\ S' ^ 0. But any two elements of G 

are compatible, hence G r\ S 0. 

Theorem 10.12. If G is P-generic over M and p e G then 

p H- {3x)(p{x) {3q < p){3f e T){q e G A r/ lb (p{t)). 

Proof. 

p lb (3.Y)93(.V) <-> P G ^ hit )} = 
teT 

= (Uw 
' teT 

01 
- 0 

-[/’IslUWOl) ■ 
^ teT ■ 

So p H-(3.V)93(.V) implies that U<erl9^(^)]] dense beneath /?, and the same 

holds for S' = [/’] n [[99(/)3, Also S'E M since BEM. Therefore by 

Theorem 10.11 

p lb i3x)cpix) i3q E G) q < P A g ^[J [9(01 
teT 

(3i/)(3r G T)[q <pAqEGAqW- (pf)]. 
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11. The Independence of V = L and the CH 

Cohen’s technique of forcing was created for the specific purpose of 
proving the independence of several axioms of set theory from those of 
general set theory. In this section we will use Cohen’s niethod to prove the 
independence V = L and the CH from the axioms of ZF. 

Let M be a countable standard transitive model of ZF + V = L. 

Definition 11.1. 

P = {iPuP2^ \ Pi ^ OJ ^ P2 OJ ^ Pi < OJ ^ f)2 < OJ A r\ p2 ^ C). 

</^l,/^2> < ip'iHh') ^ p'l ^ Pi A P2 c P2. 

p = <p, <>. 
VG c a{G) = {/7 E a; I (3/7i, P2)[n ^ Pi A </7i, /;2> e G]}. 

c CO, G{a) = {{pi, P2') \ Pi ^ a A P2 ^ oj - a A (pi, e P}. 

Exercise. Prove that the partial order structure P is fine in the sense of 
Definition 5.21. 

Remark. P e M, a{G) ^ to and G(i7) c 

Lemma 1. ^ to A <72 ^ to A ^72 Giafi ^ G(772). 

Proof. Without loss of generality we may assume 

(3/7 E to)[/7 E Qi A n 02]. 

Then <{/7}, 0> E G{ai) but <{/7}, 0> ^ €{02). 

Lemma 2. If G is P-generic over M then G(77(G)) = G. 

Proof. If G is P-generic over M and p = (.Pi. pf) ^ G then p^ c a{G) 
and //2 ^ to — r7(G). 

For if n E p2 and n E 77(G) then 37/ = <7/1, qf) E G, HE q^. Since p,q E G, 
3r = <(/'i, r2> E G, r < p A r < q. Since r < p A n E p2 we have n E 7*2. But 
also 77 E Ti since r < q A n Eq^. But r E P and hence r^ n 7*2 = 0. This is a 
contradiction. Hence G ^ G(77(G)). 

II = (Pi.P'i) ^ G(77(G)) then p^ c c7(G) A P2 ^ OJ — 77(G). If 

/7l = {/7i ,77;,.} 

then since Pi ^ 77(G), 37/' E G, q' = <7/1', ^2'^^ i = C 2, such that 

77i Eql A theqf. 
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3r e G,r < q'^ A r < r = <ri, r2>. Then /?i, //g E r^. Thus, by induction 

3^/ = <^/i, </2> e P\ ^ ^/i, i-e., q < ipu 0>. Let p2 = {/Ui,. . ., and let 
S = Ui = i ^)] [ b,/)2>]. Then S is dense and hence S (A G ^ 0. 
Let q' be in 5 n G. Since p2 ^ oj — a{G),q[ n /?2 = 0 where q' = <r/l,r/2>. 
Therefore (/' < <0, /?2>. Since r/, q' e G, 3r E G, r < q A r < q'. So r < </?i, /;2> 
since q < (pi,0) and q' < <0,/?2>. Hence p = <^Pu P2'> ^ G. Therefore 
G(^7(G)) C G. 

Lemma 3. If Gi, G2 are each P-generic over M then 

r7(Gi) = a{G2) Gi = G2. 

Proof. Lemmas 1 and 2. 

Remark. Thus a is a one-to-one correspondence between P-generic sets 
over A/ and certain subsets of w. Also A/[G(r/)] = M[a] and A/[G] = 

M[a{G)] for a w and G ^ P. 

Theorem 11.2. If ^7 e M and a ^ w then G{a) is not P-generic over M. 

Proof. If a E M and a ^ ui then G{a) E M. \^' S ^ P — G{a) then S E M. 
For each p = </;i, /;2> E P there exists an /? E a» such that // ^ p^ and n ^ p2. 

Let 

// = <Pi u {/Z},/72> if n^a 

= </?o 7^2W> 

Then p' < p and // E S. Therefore S is dense. But S n (7(77) = 0, consequently 
G(77) is not P-generic over M. 

Theorem 11.3. If G is P-generic over A/then A7 [G] is a standard transitive 

model of ZF + AC + GCH + K / L. 

Proof. If ^7 = a{G) then M[G] = M[a] and hence, by Theorem 11.2 and 
Lemma 2, a ^ M. Therefore M[a] is not a model of K = L. 

Since a OJ ^ L, La — L[a] and hence 

1. F = L[a]-^GCH. 
But L[a] relativized to M[a] is just M[a]. Therefore the relativization of 1 
to M[a] gives the GCH in M[a]. 

Corollary 11.4. If there exists a standard transitive model of ZFthen there 

exists a standard transitive model of ZF AC F GCH + V ^ L. 

Exercises. If P is as defined above 

1. Prove that "[<{/?}, 0>]“° = [<0, {/?}>]"°. 
2. Calculate 

a. "[<7?I,/?2>]“°. 

b. [</?l,P2>]”°-[<^l,^2>]"°. 
C. [</?l,/?2>]”° + [<^0^2>]"°- 
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Remark. Let 'yV/, P> be any setting for forcing and TT e M be an auto- 

morphism of P (TT- G Aut (P)). Then TT induces an automorphism if E M of B, 

the Boolean algebra of regular open sets of P in M. Let G be P-generic over 

M. Let F and h be the A/-complete ultrafilter for B and the AZ-complete 

homomorphism of B into 2 respectively*-, obtained from G. The following 

theorem shows how G, T, and h transform under TT. 

Theorem 11.5. 7r“G is P-generic over A/, fr'^F is the A/-complete ultrafilter 

for B and /? o ^ - Ms the A/-complete homomorphism of B into 2 corresponding 

to 7T“G. Furthermore M[G] = M[F] - M[h] = A/[7r“G] = A/[^“F] = 

M [// o 

Proof. 5 c /> is dense iff 7T“5' is dense. Therefore 

5 n 77“G 7^ 0 77-1(5) n G # 0. 

Thus 7r“G is P-generic over M. The ultrafilter corresponding to 77'‘G is 

{be B\br\ TT^^G 0} = {be B \ TT-\b) HGT^O} 

= {be B \ Tf-\b)EF} 

= n^F. 

Finally 

b E if^'^F ^ Tf~^(b) E F 
h o if~^{b) = 1. 

Therefore is the A/-complete honiomorphism of B into 2 corre- 

sponding to 

Theorem 11.6. If 

1. (V/7, q E P)(37T G Aut (P))[T7 E M A Comp {TT(P), q)], and 

2. Gi and GM are P-generic over A/, 

then A/[Gi] and A/[G2] are elementarily equivalent in the language 

Proof. If 9? is a closed formula of FPQ{C{M)) and if 

T/[GI]1=9? and M[G2\'^ -^(p 

then 3/7I, 

/?! G G A /7i H- 9? A /72 e G2 A /72 F —197. 

By I (377 G Aut (P))[7r G A/ A (3/; < TT{pf\)[p < p^]]. Let G be P-generic 

over M and such that p E G. (Such a G exists.) Then since p < P2, P2^ G 

and hence, by Theorem 10.6, A/[G] 1= —19?. But also p^ ^ 77-M/?) G (77-i)“G 

hence 77-1(77)^95. Therefore A/[(77-i)“G] N 9?. But A/[G] = A/[(77-i)“G]. 

This is a contradiction. 

Exercise. Check that the partial order structure P of Definition ll.l 

satisfies condition I of Theorem 11.6. 
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Remark. Let P be the partial order structure of Definition I 1.1 and 

used for the proof of the independence of V = L. b'or k ^ oj with k < oj 

we define an automorphism of P as follows: 

P2» = ^/2> where = {p^ - A ) U {p^ n k) 

q?. = iP2 - k) u ipi n A). 

Obviously 7T,^e M. We then obtain the following strengthening of Theorem 

11.3. 

Theorem 11.7. If G is P-generic over M then in M[G] there is no well- 

ordering ofdefinable in .^Q{C{M)). 

Proof. If 99 is a formula of SfQ{C{M)) defining a well-ordering of 

in M[G], then 

3/7 E (7, /7 H- “99 well-orders .'^(co)”. 

Since a{G) e M[G],a{G) = /^A/IGJC^O) some term /Q ramified lan- 

guage. Then since a{G) ^ cu, 3/7 E G, 

p If “{/o A A' I A' c CO A A" < to} has a 99-first element'’ 

where \ 02 = (a^ u 02) — {oi n 02) is the symmetric difTerence of Oi and 02- 

Furthermore it is easy to check that 

= 3{G) A k for k ^ w and k < to. 

Then (3<7 E G)(3A'O)[A'O ^toAA'o<toA^H- ‘Go A AQ is the 99-first element 
of{roAA'|A'^to A k < to} ’]. 

Hence in A/[G], a{G) A AQ is the 99-first element of 

{a(G) A A' I A' ^ to A ^' < to}. 

\f q — <^1,^/2) then there exists a k^ ^ f) such that A'l ^ to, k^ < to, 

A'l n A'o = 0, A'l n ^/i =0, and A'l n <72 = 0- It 

H = 77I;G 

then H is P-generic over M and a{H) = a{G) A AQ. Since q G G and (q) = q^ 

q E H. Therefore, by Theorem 11.6, in M [H], a{H) 1 A'o is the 99-first element 

of {a(H) A A' I A' c CO A ^ < to}. Since e A/, M[G] = M[H] and 

I A' ^ to A ^ < to} = (TT’fc 7/ I A' ^ to A ^' < to} 

{a{TT]^G) I A: c CO A ^' < to} = {<j(7r^‘//) | A' c co A ^ < to} 

{a(G) A A' I A' c CO A /c < to} = {a(H) A A' | A' c co A ^ < to}. 

Thus a(G) A A'o is also the 99-first element of 

{J(//) A A' I A' c CO A ^ < to} in M[H]. 

Therefore a(G) A A'o = a{H) A A'o, but 

a(H) = a{G) A A j and A j n A'o = 0. 

This is a contradiction. 
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Remark. We now return to the general case. 

Theorem U.S. P> is a setting for forcing, if M is a model of the 
AC that satisfies the countable chain condition on P i.e., 

(V5 c P)[(V/7i, p2 e S)[pi / P2 ->‘-,Comp {p^, P2)] < ^Q] 

and if G is P-generic over M then the cardinals in M and M[G] respectively 
are the same i.e., every cardinal in M is a cardinal in M[G] and vice versa. 

Proof. Since M ^ M{G] and every cardinal in A/[G] is 
a cardinal in M because ""a is not a cardinal" < ^ (3/)99(/, a), for some 9? that 
is absolute with respect to transitive models. 

Conversely if there is a cardinal in A/ that is not a cardinal in A/[C] then 
there is a cardinal A in A/[C], and hence in A/, but 

7 = 

is not a cardinal in M[G]. Let A be the smallest such cardinal. Then 

A = ^ y + 

Hence 

(3/E M[G])[f-. A y]. 

Furthermore/is denoted by a term t of the ramified language and 

(3/; G P)[p G C A /; ff /: A ^31% y]. 

Abbreviating <7 If <«, /3> G r by cp{q, a, /3), 99 is AZ-definable and furthermore 

(V^, < y)(V^7 < p){'iq' < p) 
[jS 7^ A <7 H- <a, G r A q' w- <oc, E t -iComp {q, q')] 

for otherwise there exists a q" < q, such that q" < q\ q" ff <«, /S> G f, q" H- 

<«, G (, and q" If /: A y. This is a contradiction. Then if 

Sa = W < y \ ^ p)9(^, «, ^)}, « < A, 

we have e A/ and Since /is a function onto y 

r s U 
a<A 

and <5a | a < A> G A/. Therefore y-'^ < A x = A'’^^ < 7 = This is a 
contradiction. 

Remark. Let P be a partial order structure and let B be the associated 
Boolean algebra of regular open subsets of P. Then P satisfies the c.c.c. iff B 
satisfies the c.c.c.:(=>). Suppose 5 and (V/7i){V/72)[^^i-^2 ^ S' A ^ 

^l •/12 = 0]. By the AC we choose a p from each he S. Let S' consist of such p's. 

Then any two elements of S' are incompatible. Therefore, S' < co, and hence 
S < CO. Conversely, let S' ^ P and suppose any two elements of S' are 
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incompatible. Let S = {[p] ° | /? e 5"). Then S ^ B and any two elements 
of S are disjoint. This follows from the following fact (See Theorem 1.29.2.): 

(V/?, q e /")[[/7] n [^] = 0 [/?]-o n [^]-o = o]. 

Corollary 11.9. If <M, P> is a setting for forcing, if G is P-generic over 
M, if M satisfies 

i'is c P)[(V/7i, P2 E S)[p^ ^ P2 -iComp ipi, P2)] < A] 

and if A is a regular cardinal in M, then the sets of cardinals >A in M and 
A/[G'] respectively are the same. 

Proof. We first show that A is a cardinal in M[G]. Otherwise 

(3/G M[G])(3AO < A)[/: Ao -^2^ A]. 

Then, as in the previous proof, we obtain 

A < U 
a<Ao 

which contradicts the assumption that A is regular in M. Using the argument 
of Theorem 11.8 it follows that if > A is a cardinal in M[G] then is 
a cardinal in M[G]. 

Remark. Next we will prove the independence of the CH from the 
axioms of ZF + AC. The idea of the proof is the following. Choosing some 
suitable P G A/ which satisfies the countable chain condition in M we adjoin 
a-many subsets of co. If a is a cardinal > CH is violated in 
the resulting model M[G] since cardinals are preserved by passing from M 
to M[G]. The formal proof proceeds as follows: We define P by 

p = [p \ {^d)[d X CO A 3 < oj A p: d 2]} 

Pl<P2^P2^Pu Pl,P2^P 

Let P> be a setting for forcing such that M satisfies the AC. 

Theorem 11.10. P satisfies the c.c.c. in M. 

Proof. We show by induction on n that 

{\)S^PASeM A (V/7i, P2 E S)[pi / /72 -> -iComp (/7i, P2)] 

A (V/7 e S)[^(p)*' = /?] -> < Xo- 
From this the theorem follows by defining 

= {p e S \ ^(p) = n]. 

Then S = Unew is countable in M by (i). 
To prove (i) we assume 5” 7^ 0. Then 3pi e S, and 

(dp E S)[pi ^ p -> (3S < a){'^m E co)[<8, niy E k^{p) n ^(p^) 
A p{S, m) ^ /7I(8, /?0] 

* ^(p) - {x I (3y)[<jr, e/7]} 
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/ = 1,..., 

If ^(/7i) is {<8i, Wi>,. . <8„, m„>} 

5io = {/? e ^ I (Si, m() G ^(/7) A p{Si, nii) = 0}, 

Sa = {pES \ (Si, m()EQ{p) A p{Si, fUi) =1}, / = 1, . . 

Then S = 5'io u u • • • u 

Sio = {p - {((Si, nii}, 0>} I p G Sjo), i = . .,n 

S'ii = [p - {((Si, nii}, !>} I p G SiJ, / = 1,. . 

Then 5,^ = §(0 and = Sli. But, by the induction hypothesis for /? — 1. 

< Xo A < Xo. 

Therefore < ^<o- 

Remark. If G is P-generic over M, then for each 8 < cc we define 

af,{G) = {// G oj I (3/; G G)[/7(8, /?) = 1]}. 

Claim: (V8, 8' < o:)[8 8' —> af,(G) # 

Let/be the function defined on a by 

/(8) = ^7,(G), 8 < a. 

It can be proved that / G M[G]. Let / be a term in the ramified language that 
denotes/. Suppose as{G) = a^-{G) i.e./(8) = /(8'). Then 

Af[G] N [r(8) = /(8')] 

and hence 

1. (3^GG)[^ff/(8) = /(8')]. 

We choose n such that 

(V8" < a)[<8", ,z> ^ 9(q)]. 

Since S ^ S' 

2. (3^7' < q)[q'{S, /;) = 1 A q'(S', n) = 0]. 

Now choose a G' that is P-generic over M and such that q' G G'. Then 

n G a(,{G') A a^G'). 

Hence 

^7,(G') 7^ aAG'). 

But q' EG' and by 1 and 2 q' f{S) = f{6'). Thus M[G'] H- /(8) = /(8'). 
Therefore a^{G') = «<^-(G'). This is a contradiction. 

We have thus established that 

(V8 < a)MG) g co] and (V8, 8' < a)[8 # 8' -> i7,(G/ ^ a,iG)l 

Therefore 

> a. 
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Starting with some a > we have « > Tliis proves the following: 

Theorem 11.11. If 6' is P-generic over A/ (where P and A/ are as specified 

above) then A/[(7] is a standard transitive model of Z/-' + AC + - iC//. 
Furthermore, for any given cardinal « e A/ we can find a (7 and a P such that 

Pioj) > a in M[G]. 
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12. The Independence of the AC 

•A 

In order to prove the independence of the Axiom of Choice from the 
axioms of ZC we cannot use the models which were employed in the previous 
section, since if A/ is a model of ZF -h AC and G is P-generic over A/, then 
M[G] also satisfies the AC. Yet the model N which we shall construct and 
which violates the /IC is of the form M[G]. The corresponding language will 
have countably many symbols and we shall add to A/ countably many 
generic sets together with a set containing all these generic sets. In order to 
deal with this new situation we introduce the following: 

Definition 12.1. Let = -(Pj, <>,/e/, be a family of partial order 
structures with / a set. Then 

iel 

(the strong product of the Pj’s) is defined to be the partial order structure 

\P, < > where 

iel 
and 

Pi < P2^ (V/ e I)[pi{i) < P2(0] for p2 e P. 

If each Pi has a greatest element 1,, i e /, then 

w 

p = np. 
iel 

(the weak product of the Pj’s) is defined to be the partial order structure 

(^PQ, < > where 

/’o = {p I /> e n A <= /)[F < a. A (V/ e / - F)[p(i) = 1,]]| 

i.e., PQ is the set of /? e P where /;(/) = Ij for all but finitely many / e /, and 
< is < of P restricted to PQ. 

Remark. The topology of YJiei Pi is the strong topology of Hie/ Pi 
the topology of Hfe/ Pi is the relative topology of both the weak topology of 

I lie/ Pi liie strong product topology of Hie/ Pi- PQ is dense in Hie/ Pi 

with the weak topology, but not necessarily dense in Yliei Pi with the 
strong product topology. 
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Problem. Is the complete Boolean algebra of regular open sets of 

I Vis! riTe/ determined by the complete>Boolean algebras of regular 
open sets of P, ( / G /)? 

Now consider I He//V An element 's sometimes denoted by 

{• • - Pi, Pi, - ■ •} where 

/’.'i = P(i\) A • • • A p,^ = /?(/„) A (V/ G /)[/ ^ i\ A . . . A i ^ ~>p(i) = Ij]. 

In this case we also write 

[. . . .] for [/?]. 

Let P be the partial order structure of Definition I I.l that was used for the 

proof of the independence of L = L. Let P|, / G a», be isomorphic copies 

of P and let j] be an isomorphism of P onto P/. Note that P has a greatest 

element \0, 0>. 

Consider the language L( )} u {C( ) | / G a»} u {5'( )}) and the corre- 

sponding ramified language R(l L( )} U {F,( ) | / G U {.Sf )}). Let B be the 

complete Boolean algebra of all regular open sets in Oiew P - - B 

be defined by /,(/?) = [. . ./?j. . .]"° where Pi = jiip). 

We define T„ = =, G, PO«, . • •, . . ., by 

[IL(OilT„ = 2 ~ 
keR(a) 

keR(a)r\P 

^ y = -V“Pi(-V''^)]]T„ i^' a > cu 
i <ci) 

= 0 otherwise 

and the remaining conditions are those of Definition 9.27.3-9 except that K 

is replaced by P. 

Let G be the group of all permutations of co such that 7r(//) ^ n for only 

finitely many n G OJ, and let G„, n G CO, be the subgroup of G consisting of all 

77 G G such that (V/;/ < //)[77(/?/) = /;/]. 

We extend 77 G G to terms and formulas of our ramified language as 

follows: 

1. 7T(k) = k. 

2. 77(/i G /a) 77(/I) G TT{t2)- 

3. 77(^1 = t2)'^'^{f\) = 77(/2). 

4. 77(—199)^> —177(9?), 77(9 A 1/7) ^ ^ 77(9?) A 77(1/7). 

5. 77((V.Y“)<P(A'«)) - - (VA“)77((P(A“)). 

77((V.Y)99(.Y)) - > (V.Y)77(9?(A)). 

6. 77(L(/)) L(77(/)). 

77(.S(0) .S(77(/)). 

1. TT{Fi{t)) 0 FndlAt)), lew. 
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So it is only by condition 7 that TT is in general not the identity on the terms 
and formulas. 

Finally, let p^,.. .,p^ be elements of P. Then for 

W 

ieo) 

where PiJ" = ji^ip^), k = 1,2,we define TT{P) to be 

{ • • • Pniii)-) • • • » Pndn) • • • }• 

That is, 7T(P) is an element of Pi whose 7r(/7.)th coordinate is the counter- 
part ofp’^ in k — and whose /?zth coordinate is 1 if m / 7T(I\) 

for all k = 1,2,Then one can prove by transfinite induction on 
Ord (9?): 

Theorem 12.2. Let p G Oieo) Pi- Then p ^ cp ^ 7T(p) \>r -n-icp). 

Theorem 12.3. For every formula 99, 

(V/e7-)(v/>ef]/>,)(3m)(V-T)[,r 
' tew ^ 

G G, TT(t) = t A 7T{(P) = (p A 7T(P) = p]. 

Proof. Take m to be the maximum of all / 6 a» for which occurs in 99 
or t or Pi is not b. Then m has the required properties. 

Now let M be a countable standard transitive model of ZF and 
/;: |B| |2| be an 3/-complete homomorphism. Then N = M[h] is defined 
at the end of §9: N = {D{t) \ t G T] where D is defined as in Definition 9.36 
except that now 

Fi^{pGP\ (/;)!) = 1} 

and 

DiFiit))<> D(t)GFi. iGw, 

D{S{f))^{3i < oj)D{t = Xn^Ffxf^)). 

As in §9 N is a standard transitive model of ZF. Defining 5" = 
we obtain: 

S = {Fi \ i G to} and S G N. 

Furthermore, since [[Fif/?)]] = f(p) = [. . .Pi. . .]"° for p G P, F^ is P-generic 
over M. 

Let Qi be a{Fi) i.e., 

= {// G CO I (3/7I, p2)[n G /7i A <;7i, pf) e Fj]}, / G OJ. 

Clearly, F^G N and Oi G N for / G to and S G N. With this notation we have the 
following: 

Theorem 12.4. In A^, 5" is an infinite subset of F(co), and yet 5 contains 
no countable subset. In particular, F(co) is not well-ordered in N and hence 
the .4C does not hold in N. 
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Proof. Recall that by Lemmas 2 and 3, pages 106-107, 

Oi = Oj Fi = Fj for /, / < (u, 

and 

= Fi for /Got. 

First we prove that S is infinite by showing that 

1. /, j < oj A i ^ i -> Fi / Fj. 

Suppose Fj = F, for some /, / G OJ with / ^ /. Then since Fj = F(.v„"Fj6v„")), 

p H- .v,,"Fj(x,,“) = 

for some p such that /K[p]"°) = L 

We can assume that /? = {.. ./?,•,. . Let p^ = {pt^. Pi^} and pj = 

<^Pj^, pfy, and choose n E OJ such that /; ^ p^^ u /7j^ u /7,7 u pf. Let q be 

{. . .^j, . . .,^7y. . .} 

where 

Ri = {Pi^ ^ W, 

qj = <PJ\ Pi^ ^ W> 

(and q^ = U- = <0, 0> for k i- i, /'). 

Since //([/?] "'^) = 1, we have Pi G Fj and /?, G Fy. 

Case 1. n E CA. Then q^ E G(a{Fj)) — Fi since qi < Pi E Fj. But F, = Fy in 
N, implies [[Fi(/T)| = [IFy(/T)]] for all p^ E P. Hence qj E FJ, and by definition 
of qj, n ^ Oj. Thus ai 7^ Oj contrary to our assumption that Fj = Fy. 

Case 2. // ^ a^. Then qi ^ Fi, so qj ^ Fj as above. Consequently since 
Fy = Gicij), q,^ f Oj or qf f OJ — Oj. But pj^ ^ aj and pj^ ^ w — Oj, so 

n EOj. Again this is a contradiction. 

This proves 1. So it remains to show that 

2. contains no countable subset” 

holds in N. 

Assume, in N, that S' contains a countable subset. Then, by Theorem 
10.12, there exists a term t E T such that for some p 

/i([p]~^) = 1 A /; H- / : w ■> 

Throughout this proof we say “Fj appears in f" iff Pi (the iih component of p) 

is not Ij = <0, 0>. Choose n E OJ such that / < n whenever F, appears in / and 

(VTT G G,I)[77(/) = t ]. 

By Theorem 10.12, there exists a /?' < p, ii k E OJ and some m > n such that 

// H- t{k) = xf^FmiXrf). 
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Pick some / > m such that Fj does not appear in p', and some TT G which 
permutes / and /??, and let p" = Tr{p'). Then Tr{t) = t and, by Theorem 12.2, 
/;" If t(k) = Xn^'FiiXn^). There exists a cj such that q < p' and q < p". 

Then 

q if m = 

and 

q lb t{k) = 

This is a contradiction. 
Remark. We conclude this section with some results which are useful 

for certain applications. Returning to the general case, let <;V/, P> be a 
setting for forcing where M is a standard transitive model of ZF AC, and 
let B be the Boolean algebra of regular open sets of P in M. 

Theorem 12.5. If G is P-generic over M and 

{'iS c P)[S < <x» A Comp (S) -> (3/7 e P)(^q e S)[p < q]] 

(i.e., every countable compatible subset of P has a lower bound) holds in A/, 
then every oj-sequence of ordinals in M[G] is already in M. 

Proof. Let Z)A/[G](0 be an a»-sequence of ordinals in M[G]. By Theorem 
10.9, it suffices to show that {/; G F | /7 H- L(r)} is dense, i.e., 

(V/7GF)(3^ < p)[q if V{t)] 

or by Theorem 10.4.5 relativized to M. Recall that the interpretation of V{t) 

is t G M. 

1. (V/7 G F)(3<7 < /7)(35 G M)[q f- / = y]. 
To prove 1, let peP and p H- is an co-sequence of ordinals.” Using the 
AC in A/, define in M a descending sequence (^p^ \ / G co> and a sequence 
5 = <5i I / G co) such that 

Po = P, Pi + i < Pi and /7j + i H- t(i) = Si. 

Now let <7 be a lower bound of all Pi, i G CO. Then q < p and ^ H- / = s. 

Remark. Let Pi and P2 be two partial order structures in M where M 

is a countable standard transitive model of ZF + AC. Let P = Pi x P2 and 
assume that Pi and P2 both have a greatest element 1. There is a simple 
relationship between generic sets with respect to P on the one hand and the 
factors Pi and P2 on the other hand: 

Theorem 12.6. If Gi is Pi-generic over M and G2 is P2-generic over 

then G'l X ^2 is P-generic over A/. 

Proof. Assume the hypothesis of the theorem and let S be an element 
of A/ that is dense in P. Define 

“^2 = {P2 e P2 I (tji X {/72}) r\ S ^ 0}. 
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Claim: S2 is dense in P2. 

Let q2 be any element of P2 and define 

5. = {ih 6 Pi I (ipi) X te)) n S 0}. 

Then since S is dense in P 

(V<7i e Pi){^Pi, P2)KPU P2> ^ S ^ P^ < ^ P2 < <72]- 

Therefore Si is dense in and hence Gi r\ Si ^ 0. This implies, by definition 
of that 

(Gi X [<72]) n 5* 7^ 0. 

Thus S2 is dense in P2. Since 5'2 e M[Gi\ and G2 is P2-generic over A/fCJ, 
C2 n 5'2 7^ 0 which means, by definition of S2, that 

(Cl X C2) n C 7^ 0. 

Therefore Ci x C2 is P-generic over M. 

Theorem 12.7. If C is P-generic over A/, then there exists a Ci which is 
Pi-generic over A/ and a C2 which is P2-generic over M[Gi\ such that 

C = Cl X C2. 

Proof. Let C be P-generic over M and define 

G, = {TiSPi I l>sG}, 

G2 = {p2eT’2 i <l,/)2>eG}. 

Then C = Ci x C2 (C ^ Ci x C2 is obvious. To prove Ci x C2 ^ C use 
the proof method of Theorem 2.4). 

1. Cl is Pi-generic over M. 

Let C e A/ be dense in Pi. Then S x P2^ M and it is dense in P, hence 
G r\ (S X P2) # 0 and therefore Ci n C 7^ 0. 

2. C2 is P2-generic over A7[Ci]. 
Let S e A/[Cl] be dense in P2. Then S = ^MrcpCO some term t, and for 
some Pi e Ci, pi H-' “/ is dense in P2” (where H-' refers to Pi). 

Define 

E = {iqu ^2> e P I ^1 < Pi A qi lb' ^2 e t}, 

P = (Pi, !>• 

Claim: E is dense beneath p, i.e., 

(Vr < p){^q < r)[qeE]. 

Take any r < p, r = <ri, ^2). There exists an Hi such that ri E HI and Hi is 
Pi-generic over M. Consider M[Hi\\ “PAHHI/O dense in P2” holds in 
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There exists a ^2 < ''2 such that q2 e and hence there exists 

qi < /'i such that q^ tf' r/2 e t. Then q = <(71, ^2) '' and q e E. 
Since E e M and p e G, VJQ have, by Theorem 10.11, 

G'n E9^ 0. 
* » 

Let q = ^72) e C n £. Then 

M[G,]^q2eS. 

Therefore G2 S ^ 0 and 2 is proved. 
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13. Boolean-Valued Set Theory 

The use of ramified language in Cohen-type independence proofs often 
requires proofs by induction which may become rather cumbersome in 
special cases. A different though essentially equivalent approach which 
avoids ramified language is provided by the theory of Boolean-valued models 
as developed by Scott and Solovay. 

The analogue of the recursive definition of R{a) we define in the following 
way: 

Definition 13.1. Let B = {B, +, •, ",0, 1> be a complete Boolean 
algebra. Then is defined by recursion with respect to a as follows: 

Ko'«> = 0. 

= {u I [«: 2(u) B] A (3f < a)[S(i<) £ Fj*"’]}, a > 0. 

y (B) 
a 

aeOn 

Remark. Elements of are called B-valued sets, these are functions 
u from their domain, ^(w), into B where itself consists of B-valued sets. 

Theorem 13.2. = Ui< a 

Remark. In order to obtain a B-valued structure =, e>, 
we define = and e in the following way. 

Definition 13.3. For u, VE 

\.luEv}= 2 (KL)-[IW = 
ye^(v) 

2. lu'^ v1 = P] [zv(x) lx E t’l] • P] => ly E Z/]]. 
xeS'(ti) yeS'(v) 

Refnark. Thus e and = are defined simultaneously by recursion. Here- 
after we will write = and E for = and E respectively. 

There are several ways to check that 1 and 2 really constitute a definition 
by recursion: 

1. The definition of [[zz E z’]] and |zz = v} is recursive with respect to the 
well-founded relation 

{«z/, v}, <zz', v'}} I rank (zz) # rank (r) < rank (zz') ^ rank (z’')} . 

y(B) 4 
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where a # /3 is the natural sum of a and (For a definition and elementary 
properties of the natural sum of ordinals the reader may consult one of the 
following monographs: H. Bachmann: Transfinite Zahlers, Ergebnisse elev. 
Math. Vol. 1 (1955), pp. 102f, or A. A. Fraenkel: Abstract Set Theory (1953), 
p. 297.) 

2. Alternatively, we would use Godel’s pairing function JQ which is a one- 
to-one correspondence between On x On and On with the following property. 

JoCa, /S) < Jo((x', /3') <-> max (a, jS) < max («', ^') 
V [[max (a, j3) = max («', ^')] A [^ < ^3' v [^ = iS' A a < a']]]]. 

If we assign to [[Z/G r| the ordinal yo(rank (r), rank (z/)) and to [[z/ = z']] the 
ordinal max (yo(rank (zz), rank (z')), yo(rank (z-), rank (z/))), it is easy to see 
that [[z/G z’]] and [[zz = z’l in 1 and 2 respectively are reduced to fzz = z'l 
and In' G Z’l in such a way that the associated ordinals are reduced to lower 
ordinals. 

3. We would also eliminate G in 2 by substituting the definition 1: 

= n 
xeQuiu) 

u{x) 2 Kv)-I.v = Vl] 
yei/(v) 

• n K.v) 2 =-^li] 
yeZ?(u) xei/iu) 

which is a definition by recursion with respect to the well-founded relation 
{<<zz, z’ \ <zz', z’'>> I max (rank (zz), rank (z’)) < max (rank (zz'), rank (z''))}. Then 

1 becomes an explicit definition in terms of =. 
Next we prove that the Axioms of Equality hold in (see Definition 

6.5). 

Theorem 13.4. For zz, v G 

1. [[zz = Z’l = Iv = zzl. 
2. In = zzl = 1- 
3. X E ^(n) -> nix) < [[A' G zzl. 

Proof. 1. The definition of [zz = z'l is symmetric in zz and v. 
2 and 3 are proved by induction on rank (zz). Let .v G ^(ZZ). Then 

[AGZZ1= 2 = TI, 

yef/(u) 

hence 

ZZ(.V)-[A' = .vl < [.V G zzl if .Y G £F(zz) 
zz(.v) < [.V G zzl t>y induction hypothesis [.v = .vl = 1. 

Therefore 

(V.v G £?(zz))[[zz(.v) ^ [.V G zzl] = 1] 

and 

[zz = zzl = P] [zz(.v) => [.V G zzl] = 1. 
xe£r(u) 
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Theorem 13.5. Let u, u\ i\ r\ w E V^'^\ Then for each a 

1. [rank (z/) < a] A [rank (//') < a] A [rank {v) < a] 
->lu = z/]]-[z/ G rj < [[//' G vl 

2. [rank (//) < «] A [rank {r) < a] A [rank (/’') < a] 

-> [[//G z’l-p’ = r'D < [[z/G rl. 

3. [rank (z/) < «] A [rank (z') < «] A [rank (vr) < a] 

[[z/ = vl-lv = U’D < [[z/ = ui 

Proof. (By induction on a). 

1. If rank (z/) < a, rank (z/') < a, and rank (z') < a, then 

Iz/ = Z/'l • [[z/G Z’l = 2 K.v)-Lv = = //I 

yei/iv) 

< 2 c( r)-[[;’ = z/'l by the induction hypothesis for 3 
yeO'iv) 

= [Z/' G vl 

2. If rank (z/) < a, rank (z’) < a, and rank {v') < a, then for v G ^(z’) 

|z/ = rl-r(r)-p' = I'l < 1^^ = y} iiy){iiy) => 

^ = 3’11I>’ e Z’l 
< |z/ G v'l by 1. 

Therefore taking the sup over all v G ^^(v) 

Jz/GZ'Mr = r'j] < dz/Gr'I. 

3. If rank (z/) < a, rank (v) < a, and rank (u ) < a, then for x e C^{u) 

|z/ = I'llv = U’]]-Z/(.Y) < Iz/ = I'llv = li’D• |.v G z/]] by Theorem 13.4(3) 
< |.v G z’l • Iv = H’l by 2 
< lx E u’D by 2. 

Hence 

|z/ = Z’l • |Z’ = U’D < Y1 => lx ^ vv]]] 
xei?(w) 

and by symmetry, 

lu = rM[r = M’]] < YJ ll-^' ^ ^^1]- 
xeQ(w) 

Hence by Definition 13.3.2. 

lu = z^Mz; = w} < = w’l 

Corollary 13.6. For z/, z/', i\ v', ir G 

\. lu = u'\ ■ lu E < lu' E Z?]]. 
2. [z/G z?I-tn = v'j < luEv'l 

3. lu = z’]]-[Iz’ = u’l < lu =- vv|. 

Corollary 13.7. For Ui,. . ., z/^, z/i,. . ., z^ G 

hh = ihh • -K = iQhUh, • • •, ifn)} < hUh, • • •, i4)I. 
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Remark. Therefore = ,G> is a B-valued structure for the 

language ^Q. Even more, is a B-valued model of ZF i.e. satisfies 
each axiom of ZF. Here a formula cp of the language SFQ is satisfied by V^®^ 
iff [9?! = 1 interpreting e (of ^Q) by 6. We shall not give a direct proof of this 
statement but use the results of §9. 

Definition 13.8. V^®^ = <Ea'®\ =,e> is defined by 

= I'la = lit = rl 
|i/ G I'L = e i’l 

for w, V G (We write [ L for [ Jy^du.) 

Remark. Thus V„‘®) jg ^ B-valued structure for FFQ. Next we shall prove 
that this sequence of structures satisfies the conditions specified in §9. (See 
Remark following Definition 9.2) Obviously satisfies 1 and 2. We will 
now show that V„oo also satisfies 3, 4, and 5. 

Theorem 13.9. ®^ satisfies the Axiom of Extensionality. 

Proof. Let i/, v G E„<®) jhen 

[[(Vx)[x G u <-> X G r]L = PI I-V G 1/ .V G rL • Y\ ^ l'x E Z/1„ 

xeFadU AreVadt) 

< PI (Z/(.Y) lx G if} PI (r(x) => lx G zz]]) 

xeO'iv) xeZ?(i') 

by Theorem 13.4(3) 

= lu = rl = Ilf = rL. 

Theorem 13.10. If HE then u is defined over i.e., 

(Vr G IV E Z/1 2 I' = ^Vl [.V G Z/1 • 
xeV„(K) 

Proof. Let u and r be in E^®\. 

[r G z/1 = 2 
X6i2(u) 

< 2 I.XGZ/1-|A' = z'l by Theorem 13.4(3) 
xeO’iu) 

< I.YGz/l'I-v = Z’l since ^(u) ^ E„'®^ 
xeVadU 

< [[r G Z/1 by Theorem 13.6. 

Therefore 

[rGZ/l= 2 [r = .vl-ttx G z/1. 
xeVa(K) 

Theorem 13.11. For every formula cp of FPQ, 

(V/7i, . . . , //„ G fV®>)(3/z G E^»>i)(V// G E,‘®>)[M/7, /7I, . . ., /7,)L = ^ bj]. 
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Proof. Let . . ., and define h: -> B by 

h{a) = Ma, ^7i,. . ., ^7JL for a e 

Then be Val\ and 

laeb} = 2 «i, • • •, ^?n)L• 

a'eVa(K) 

< l(p(a, Oi,. . ., Qrfla t>y the Axioms of Equality. 

On the other hand, for a e 

laebi > l(p{a, a^,. . ., 

by Theorem 13.4(3). 

Remark. Since the conditions of §9 are satisfied by | ^ Otf), we 
have, by Theorem 9.26, the following result: 

Theorem 13.12. is a B-valued model of ZF. 

Remark. The following theorem is very useful. 

Theorem 13.13. For u e 

1. l{3x e = 2 
xeQ{u) 

2. tt(Vx e w)93(x)| = Y1 
xe^(u) 

Proof. For u E 

ll(3x G u)(p(x)l = 2 ^ 
X'6V(B) 

^22 
A:'eV(B) xeSiu) 

< 2 ^W’[I<PWI by the Axioms of Equality 
xeQ(u) 

< 2 11^' £ wj] • |9?(x')]] by Theorem 13.4(3). 
jc'gyCB) 

This proves 1, and 2 follows by duality. 

Definition 13.14. Let B' be a complete Boolean algebra. Then B is a 
complete subalgebra of B' iff B is a subalgebra of B', B is complete, but in 
addition, for each A c |B| 

= n"'^ 

and 

= 2“'^- 

that is, a class A ^ |B| has the same sup and inf relative to B that it has 
relative to B'. 
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Remark. Next we shall show how V can be embedded in As 
preparation we prove the following. 

Theorem 13.15. Let B be a complete subalgebra of the complete Boolean 
algebra B'. Then 

1. c 
2. 1(, V 6 |/<«> -> [[2/ E zf = P/ e A f// = if = f// = if 

Proof. (By induction) 

1. Obvious, since any function into B is also a function into B'. 
2. Follows from the fact that ]f[ and T, over values in B, are the same in 

B and B' respectively. 

Remark. Since any (standard) set u may be identified with the function 

fu having domain u and assuming the constant value 1 on i/, we expect that 
V can be identified with some part of The corresponding mapping is 
defined in the following way. 

Definition 13.16. For VE F, f = {(.v, 1> | -v E r} is defined by recursion 
with respect to the well-founded E-relation. 

Remark. Obviously, y E 

Theorem 13.17. For x, y e V, 

1 . .V E V I-Y E v]] = 1 A -Y ^ l.\ E yj = 0, 
2. A' = V ^ lx = vI = 1 A A 7^ V |.Y = vj = 0, 
3. (Vi/E F^2))(3|,.e DP = r]] = 1]. 

Proof. 1 and 2 are proved simultaneously by induction from Definition 
13.3. Proving this is in fact a very good exercise that we leave to the reader. 
In order to prove 3, let u E and assume as induction hypothesis 

(i) (VAE^0/))(3!rE F)[|A = zl - 1]. 

(Note that u E F^^^ c F^^\) 
Let V be {z E F I (3A E i?(i/))[[[A = z]] = 1] A [.Y E //| = 1]} (which is a set 

by (i), since ^?(i/) is a set). Obviously, |i/ = y} = 1 (using (i)). The uniqueness 
of V follows from 2 and the Axioms of Equality for 

Therefore, identifying F with the indicated part of F^^^ we obtain an 
embedding of F in F^“\ 

Exercise. Define r E F‘®> as follows. Let beB and ^(r) = {0, 1}, 

r(0) = b, r(l) = ~b. Then 

1. Irsil = 1. 
2. |0 E rj = /) A [[1 E r} = ~b. 

3. |r E 3]] = b. 
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Theorem 13.18. Let B be a complete subalgcbra of the complete Boolean 
algebra B' and (p{Ui, . . be a formula in which every quantifier is bounded 
(i.e., of the form 3.v e y or V.v E r). Then for //j,. . ., e 

(i)    = [l99(//i   Un)V^- 

Proof. (By induction on the number of logical symbols in 9?.) If (p is 
atomic, (i) is true by Theorem 13.15. The only nontrivial case is 

iq   i/J = (3.V E //)0(,Y, u, i/i, . . ., uj. 

Then for z/, z/j,. . ., z/„ E 

(ii) Mz/, zzi   z/JF‘^ = z/(x)-I0(.Y, z/, z/i,. . ., z/JP*> 
AreZ/’Cu) 

by Theorem 13.13 

= 2^”^ ZZ(.Y)-I0(-V, //, ^/i, . . lfn)V^ 
xe£?(u) 

by the induction hypothesis 

= Mz/, Z/i, . . ., 
by Theorem 13.13, 

since in (ii) is the same in B and B' (note that ^{u) ^ by assump- 
tion). 

Corollary 13.19. If . . ., z/„) is a bounded formula (i.e., a formula 
containing only bounded quantifiers), then for z/i,. . ., ZZ^E K, 

. . ., z/J <-> Uiif, . . ., z/JP> = 1. 

Proof. Apply Theorem 13.18 to the Boolean algebra 2 which is a com- 
plete subalgebra of each Boolean algebra B and use Theorem 13.17. 

Remark. As an application of Corollary 13.19 we give a direct proof of 
the following theorem. 

Theorem 13.20. satisfies the Axiom of Infinity. 

Proof. We have cu E and 

(3x)[x E tu] A (V.Y E a;)(3;’ E a))[A' E y] 

is a bounded formula which is provable in ZF. Hence by Corollary 13.19 

1I(3A)[.Y E d3] A (VA E co)(3y E (L)[X E J’]]] = 1 

w'hich is one form of the Axiom of Infinity. 

Remark. Another formula with bounded quantifiers is Ord (a) which 
expresses “a is an ordinal,” hence by another application of Corollary 13.19 
we obtain the following. 

Theorem 13.21. [Ord («)!] = 1 for each « E On. 

Remark. On the other hand, we have the following result. 
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Theorem 13.22. For u G [[Ord (i/)]] = 2«60n 11^^ = «]]• 

Proof, [[i/ = aj = |z/ = a]]-[[Ord (a)]] < |Ord (//)]] by Corollary 13.7. 

Therefore 2aeon = «! < dOrd (i/)]]. In order to prove |Ord (i/)]] < 

2aeon = a]], iiote, from Theorem 13.17, that 

a ^ 13 -^l.X = a]]-[[A- = ^]] < P = = 0. 

Therefore, for each A G F<®’, 

D.. = U I d-v = > 0} 

is a set (using the fact that the mapping d-^' = 'S a one-to-one function 

on and d-v = aj ranges over the set B). Thus D = U.v6!/(u) D^. is a set, and 

taking an ordinal a greater than sup D we obtain 

(V/3 > aXV.v e e(i/))[I.v = = 0], 

Therefore 

(i)IaeHl= 2 »(-V)-Ix = al = 0. 
.vel?(u) 

Since is a model of ZF, dOrd («)]] = 1 and 

dOrd {u)—>UEa V Z/ = a V a G i/]] = 1 

i.e., 

dOrd (//)! < d^/ e «! + d^/ = «! + d« e z/]] = dzz e + dz/ = «]] by (i) 

^ ^ lii = + d^^ = «]] since a(0 = 1 
i<a 

= ^ = fl < ^ = 0- 
ieOn 

Corollary 13.23. 

1. d(3z/)[Ord (z/) A «^(zz)]I = 2 
aeOn 

2. d(Vz/)[Ord (z/)^<^(z/)]]l = J~[ U(a)l 
aeOn 

Proof. 

I(3»)[Ord (») A #/)]! = 2 |Ord(»)l-I.A(»)l 
ueVdU 

< 2 2 ^ by Theorem 13.22 
ueVdO aeOn 

s 2 
aeOn 

< 2 dOfd (z/)]]-d^(z/)]] by Theorem 13.21. 
U6V<IU 

Therefore quantification over ordinals can be replaced by quantification 

(in the Boolean sense) over the standard ordinals. In \ iew of Theorem 13.21, 

this result corresponds to the fact that M and A/[6] have the same ordinals. 
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In order to help the reader in getting more familiar with the Boolean- 
valued model V*"’ we conclude this section with some examples. 

1. |0 = 01 = 1. 

N/ 

Proof. Note that 0 in 0 is the empty set in V whereas 0 on the left-hand 

side of 0 = 0 is the empty set in i.e., 0 = i:/ is to be replaced by its 
dehning formula {VA')[A' ^ a]. Now for A' 6 

IXEOJ = 2 11-^' = = 0 since ^(0) = 0 (empty set in V). 
veCfib) 

Therefore 

i(v,v)[x6]i = n i^^oi = I. 

2. P + 1 = (a + 1)1 = 1. 

Proof. The meaning of 2 is 

lI(Vy)[7 Ea V y = a<^ye {a + 1)1 = 1. 

To prove this we first note, from Definition 13.3, that 

[[y E a V y = 1 = ( 2 ^ + P = yl 

= 2 IS = yl 
6e{a+1) 

= [y E (a -f- 1)1. 

Then by Corollary 13.23 

({(Vy)[y Ea V y = a^yE(a-f 1 )1 = | | pEa V y — a^yE(o'-f 1 )1 
deOn 

= 1 

3. [[0 E a) A (Vx E a>)[A' + 1 E cojl = 1. 

Proof. 

[I(Vx E tu)[x -f 1 E a>]l = ]P| p + 1 E oil 
neco 

= ni("+ir6‘Sl by 2 
neco 

= 1. 

3 also follows directly from Corollary 13.19. 
4. For a E n e OJ -^{0 e a A (Vx E a)[x + 1 e a] n E a} = 1. 

Proof. (By induction on n.) The case /? = 0 follows from 1. 

[I(Vx E ^7)[x + 1 e ^]1 • p e 1 < p + 1 E a\ 
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hence, by the induction hypothesis and 2, 

dO E ^7 A {'ix E a)[x + 1 G 7/]|] < dO? + 

5. [0 G 77 A (V.VG77)[.V + 1 G 77] ^ ai C ^7] = 1 for 77 G 

Proof. 

[[0 G 77 A (V,v G 77)[,v + 1 G 77]]] < PJ In G 77I by 4 
new 

= ttdi c al 

6. [[a» = oj]] = I. 

Proof, w = a ^ 95(77) where 99(77) is 

0 G 77 A (V.v G 77)[A' 4- 1 G 77] A (Vv)[0 G V A (V.Y G v)[.V + 1 G v] ^ 77 ^ vj. 

Thus, from 3 and 5, loj = d)} = 1. Therefore, w in is d. 
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14. Another Interpretation of 

The aim of this section is to prove that “A/ is a standard transitive model 
ofZFcontaining all the ordinals” and “K = A/[/'']” hold in for suitable 
M and /’(Theorems 14.21 and 14.24). 

We introduce a new unary predicate constant A/( ) and extend our 
former structure = ,£> to a B-valued structure (denoted by 
the same symbol) ^a) t>y defining 

IA/(»)L = 2 I" = f"'' “ ^ 
fcefl(a) 

In order to show that the new extended structure is in fact a B-valued 
structure, we have to show that the Axioms of Equality remain valid. 

Theorem 14.1. u, re ->lu = rl • [[A/(//)la < 

Proof. For u, v e Va^\ 

p/ = vj • [A/(i/)L = 2 
k€R(a) 

< ^ Iv = k} = IM(r)L. 
keR(a) 

Theorem 14.2. Let u e Va+\ and k e V. Then 

1. a < rank (k) Ik e i/| = 0. 
2. a < rank (A') -> |A = u} = 0. 

Proof. (By induction on a.) 

1. Let a < rank (A). Since ^{u) ^ 

Ik 6 wl = 2 = 0 
xe^(u) 

by the induction hypothesis for 2. 
2. Let a < rank (A). Then (3Ai e A)[a < rank (Ai)] and hence by 1 

[A = i/1 < ]2[ [Ai e 1/1 = 0. 
kiBk 

Remark. From Theorem 14.2 the following result is easily proved. 

Theorem 14.3. If ue and a < /3, then [IA/(i/)la = IA/(z/)l^. 
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Remark. Therefore the new structures =, ^/a) satisfy 

the conditions of §9 (p. 87-88) and hence by Theorem 9.26 we obtain the 
following. 

Theorem 14.4. V = =,i, A/>>is a B-valued model of ZF. 
* % 

Remark. Note that M{u) is a Boolean expression of “z/ is a member of 

K” where V = {x \ x e V] is a Boolean representation of which is 
isomorphic to V. Therefore we can talk about V in by using the predi- 
cate M. 

Definition 14.5. An element of a Boolean algebra B (which need not 
be complete) is called an atom iff ^ 0 and 

(V6' 6 |B|)[^' < b^b' = ^ y b' = b] 

i.e., iff is a minimal element of B — (OJ. A Boolean algebra B is called 
nonatomic iff B has no atoms. 

Remark. A complete nonatomic Boolean algebra B does not have any 
complete ultrafilter F, since otherwise flbeF ^ would be an atom of B. 

For the following, B always denotes a complete Boolean algebra. 

Theorem 14.6. If B is nonatomic and S ^ B = |B|, then 

n (■*) = 0- 
beS beB-S 

Proof. Suppose Yltes b-YlbeB-s (~h) ^ 0. Then 

{yb e B) [b E S A -beS] 

and 

(yb e B) [b e B - S A -beB-S] 

hence 

5 5 = ("i, I ^G5}. 

Let bo = ribes b. If bo E S, S is a. complete ultrafilter contrary to the assump- 
tion that B is nonatomic. On the other hand, if bo ^ S, then bo E B — S, hence 

n*- n eb) < 6o(-6o) = 0. 
beS beB-S 

This is a contradiction. 
Remark. For the remaining part of this section, let 

B = {b \ b E B] and F: B B 

be defined by 

Fib) = b for b E B. 

Obviously, FE 
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Theorem 14.7. If is an atom in B and S = {h e B \ ho < h], then 

If = 51 = ho. 

Proof. From the definition of 5" and the fact that is an atom it is 

easily shown that 

he S < - -he B - S. 

, ___ ^   
Since, by Theorem 13.16, [j.v = Z?]] = 0 unless .v = h it follows from Theorem 

13.2 that Fih). Then 

If=5i = n I* e ■^11-n Oh) 
be I! beS 

= II = n 
beli-S beS 

— hQ, 

Theorem 14.8. ^]] = i. 

Proof IF ^ Bj = im ^ tt/^ e ^1) = 1. 

Remark. If B has an atom, [IA/(F)]] > 0 by Theorem 14.7. On the other 

hand, if B is nonatomic lA/fF)]] = 0: 

Theorem 14.9. If B is nonatomic, then [[A/(T)| = 0. 

Proof ttA/(T)l = I,,vIT= Ai 

= AJ ^ 0 -* 0 < ttF = AMF c Bj by Theorem 14.8 

^0 < lA C B1 = Y] I.vefl = I 
xe^iJe) 

k ^ B by Corollary 13.18. 

Therefore p/(F)]] = |F = .5]]. But for S ^ B, 

IF = SJ = n iOh) =■ Ifts 5l)-n Oh) 
beli beS 

= ]^I ~ ^ by Theorem 14.6. 
beB-.S beS 

Hence IM(F)]] = 0. 

Remark. Since M{u) is the Boolean expression of “I/GF” we might 

expect that A/ is a model of ZFin the Boolean sense, i.e., [[<//^J = 1 for every 

axiom (f) of Z/'where <fP' denotes f/> with all quantifiers restricted to A/. We 

also write a e M for M{a). 

Theorem 14.10. M is transitive in F^'*\ i.e., 

(V//G F'«>)[KV.VG//)[A/(I/)-> A/(.Y)]1] = 1]. 
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Proof. Let ue Because of Theorem 13.13.2 it suffices to show that 

Yl (iKx) => lM{u) A/(x)l) = 1 
XBQ(U) 

i e 

(i) (VxG^(w))[i/(x)-[[M(i/)l < [[M(x)|]. 

Therefore, if x e Q{u), 

I?/ = Ai < (i/(x) ^ lx e ^1). 

(ii) u(x)-lu = ^ < [x e A']] and 

(iii) Ixek} = 2 ^ ^ lx = = [[MCY)|. 
kiek teieF 

Combining (ii) and (iii), 

keV keV 

This proves (i). 

Theorem 14.11. (V.Y e L^”^)(3A G L)[|A/(X)1 < IxeA]]]. 

Proof. Let .Y e Then xe Va + i for some a. Choose A = R(a + 1). 
Then 

lM(x)j = ^ lx = kol = 2 by Theorem 14.2.2 
koeV koeR(.a + l) 

= 2 lx = A'ol ih e A'H < [[x e ^J. 
koek 

Remark. In fact, in Theorem 14.11 we have = instead of ^ i.e., 

[[.Ye^l = 2 I-^ = < [[A/(A')]]. 

aek 

Theorem 14.12. M is almost universal in i.e., 

(Vz/E L^”^)[|z/ c A/ (3>’G M)[u c v]]] = 1]. 

Proof. Let z/G By Theorem 14.11, for each x e Q{u) there exists a 

kx such that 

[IA/(x)]] < fxGA'J. 

(From the proof of Theorem 14.11 we see that we can take 

kx = R{oi.{x)) where a{x) = /X^(Y G Kj+\). 

Since i?(zz) is a set we can then define {A';^ | .Y G ^{U)} without using the Axiom 
of Choice.) 

Let A = Uxe£?(u) A\.. Then 

[zz c A'l = 21 ^ lx ^ A'D 
xeQiu) 

> n (»(•'■) - iA/(.v)i). 
xe^^u) 
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Therefore, 

E /wi < n ("W iM{x)\) < 2 iw c niMm 
X6^(u) yeVOl) 

< ^ IM(y)j lu C ;;]] = l(3y e M)[u ^ y]l 
yeVW 

Remark. We know that satisfies the Axiom of Pairing. Boolean- 
valued pairsets and ordered pairs are defined in the following way. 

Definition 14.13. For u, ve 

{ll, (’}<"> = {», v) X {1} 

{»)<"> ^ {u, ,/} X {1} = {»} X {1} 

<», r><“> = {{»}<“>, {;/, t'}*"*}'"'. 

These definitions are justified by the following theorem. 

Theorem 14.14. For u, v e 

1. i{u,vY^^ = Kr}I = 1. 
2. = {w}| = 1. 
3. = <1/, v}} = 1. 

Proof. 1. It is sufficient to prove 

|(Vx)[x = u y X = V ^ X e {u, = 1. 

But this follows from the fact that for all x e F^®^ 

lx e {u, y}^®^l = [[x = 1/1 -p [[x = 1^1 

= [[x = 1/ V X = i;]. 

The arguments for 2 and 3 are similar. 

Theorem 14.15. {A'l, ^2}'^ hence 

Pi, h) = {k„ k,n = 1. 

Proof. Obvious from the definitions and Theorem 14.14.1. 

Theorem 14.16. 

1. |(3x)(3>’)[{x,;^y®^ = A'l A = 2 h)l 
{^2*^3} = 

2. PX)(3>;)[{X,;;}<®^6 A'l A <?9(x, j’)]]] = 2 19(^2, ^3)!• 
{k2,k3}eki 

Proof. 1. In ZF have 

(3x)(3>^)[{x,;’} = Ai A ^{x,y)] ^ (3x e ky(3y E ky[{x, y} = Ai A (p{x, y)]. 
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Hence by Theorem 13.13.1 

[I(3x)(3>’)[{-v,>’} = A'l A 9^(A', j)]]] = 2 P2, h} = kM9i^2, A's)! 
{k2>k{i)eki 

= 2 by Theorem 14.15. 
{^2*^3) — ki 

2. Similarly, in ZF 

{3x){3y)[{x,y}ek^ A (p(x, y)]^>{3zEk^){3x){3y)[{x, y] = z A zek^ A (fix, y)] 

therefore 

I(3A)(3>’)[{A,>^)e A'l A >’)]]] = 2 ll(3'^)(3>’)[{-v, v} = k A <?(x,>0]]] 
keki 

= 2 2 ^'3)]] by 1 
keki {k2.k3} = k 

— 2 ^"3)1 • 
{k2<k2)Bki 

Remark. By the same method we can prove the following: 

Theorem 14.17. 

1. p.v)(3;’)[<A',;’> = A'l A r)]l = 2 ll7'(^'2^ 
<A:2.fc3> = ki 

2. |(3.v)(3v)[<A,;’>eAi A ^(-T.v)]]] = 2 M^'2, 
<k2.k3'>eki 

Theorem 14.18. 10n ^ A/]] = 1. 

Proof. Let u e Then 

|Ord (u)} = 2 by Theorem 13.22 
aeOn 

< 21" = 
keV 

Remark. Before proving that (in the Boolean sense) M is closed under 
Godel’s eight fundamental operations(See Definition 14.2 Intro- 
duction to Axiomatic Set Theory) we prove the following absoluteness 
property for the J^’s: 

Theorem 14.19. [['i^(A'i, A2) = '^(A'l, A^)'^! = 1 for / = 1,. . ., 8. 

Proof. By Theorem 14.15 (for / = 1) and the following lemmas. 

Lemma 1. ([Ai n £ = (A^ n E)'^! = 1 where E — >’) I 

Proof. Let ue Then 

lue(ki n £)]] = ll(3.v)(3r)[<.v, v> e Ai A <.v, v> = u A .YG v]l 

= 2 A A2 e A3]] by Theorem 14.17.2 
<.k2.k2'>eki 

= 2 I" = ^'oi = ^ 
ko^kinE 
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Lemma 2. P i - A'2) = (A'l - A'an = 1. 

Proof. 

A-i - A-2 = «A-, 1> I A- 6 All - {<A-, 1> I A- E A-2} 

= O I ^ ^'1 ~ ^'2} = (^'1 “ f<2Y- 

Lemma 3. Pi r A'2) = (A'l r A'2)^l = 1. 

Proof. For u e 

I?/6 (A'l r A'2)B = l{3x)(3y)[f\,y') E A u = fx, y} A x E A'2]I1 

~ 2 ^ <^'3^ ^'4) A A'3 E A:2l by Theorem 14.17.2 
</C3,/»4>efci 

2 ~ ^'4)1 
<fC3,/f4 >efci 

k3ek2 

— 2 ~ Theorem 14.15 
ke(.h'i [ k^) 

= I//E(A'irA'2)l. 

Lemma 4. [[A'l n A^ = (A'l n A^)'^]] = L 

Proof. 

A'l n A'2 = {<(A', 1) I A' E A'l} n 1)> | A' E /:2} 

= {(k, 1> I A' E A'l n A'2} 
= (A'l n A'2) . 

Remark. Therefore we need not consider the intersection with A'l in 

'^(^'1, A'2) for /■ = 5,. . ., 8. 

Lemma 5. [[^(A'l) = .^(A'i)'^I] = 1. 

Proof. Let u e 

luEQikfil = Px)(3v)[Cv, V>EA'I A // = x]I 

= 2 = ^'3! by Theorem 14.17.2 
</C3,/C4>efci 

= 2 I" = ^'3! = 1“ s mk,n. 
/C36£?(fci) 

Lemma 6. Pi)'^ = (^i“^)^]] = L 

Proof. For WE 

[[WE(^I)-II = PX)(3;;)[<X,>’>EA'I A x>]]] 

= 2 = <A-3. 
<k2.k3'>eki 

= ffwE(/Ci-TI. 

Lemma 7. 

K<x, z> I <x, z, y} E A'l} = {(x, y, z> | <x, z, >-> E A'I}1 = 1. 
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Proof. (By the same method as before.) Let u e Then 

lu G {<A% y, z> I <.v, r, y> e A'l}]] 

= P-V, u’)[<A-, u'> G A'l A (3y, r)[u’ = <r, y> A u = {x, y, r>]]l 

= 2 PV)(3-)[A'4*-\-, v> A u = <A'3,y, r>]]] 
ik^.k^yeki 

= 2 2 [» = <A-3, A J-6>1 
(.k^.k^yeki <A:e,/c5> = A:4 

= 2 2 E» = <A-3, A'5, /Ce>l 
</I:3,/I4>6A:X (.kQ,k^y = k4 

2 I" = -*^1 
ke{<.k3,k^,kQy\<.k3,kQ,k^yeki} 

= Hi/ e y, -> I Cv, z, y> e AJl. 

Remark. Finally, by the same method, we can prove the following. 

Lemma 8. A'2) = A'2ri = 1- 

Remark. This completes the proof of Theorem 14.19. From Theorem 
14.19 we can easily prove the following result. 

Theorem 14.20. For / = 1,. . ., 8, 

(Vz/, V G A /V/(r) -- A/G^(i/, v))} = !]• 

Proof. Let u, v G Then 

fz/ = AJ-Izz = A2I < v) = -^(Ay, A'2)l by Corollary 13.7 
< L') = ^{ki, A2)^I by Theorem 14.19 
< ffA/(F,(z/, r))l. 

Therefore, 

ttT/(z/)MA/(r)l < |M(J^(zz, v))l 

Remark. As a consequence of Theorems 14.10, 14.12, 14.18, and 14.20 
we have the following. 

Theorem 14.21. In M is a standard transitive model of ZF contain- 
ing all the ordinals, i.e., 

|(Vz/, z’)[A/(z/) A V G u A/(r)]| = 1 

I(Vz0[Ord (z/) ^ A/(z/)]l = 1. 

|</>^^]] = 1 for each axiom ^ of ZF where is obtained from <f) by rela- 
tivizing all the quantifiers occurring in ^ to A/. 
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Remark. There is an easier way to show = I for every axiom </> of 
ZF than the one stated above. Let f/> be (VA')J/'(.V), Then 

in = I(V.V)[/M(.V) ^ W.V)]! = n =■ W»)I) 

= n (21"=^'1 ^ W")i) 
ueVOn 'fceV ' 

= n n (i» = ^ W'')i) 
ueV(») keV 

= n n d" = => woi) 
ueV(*0 AreV 

= n 
AeV 

Now if cf) is an axiom of ZF, then since V is a model of ZF, i/fik) is true 
for each k e V. Hence, (VA' G L)[[[(/»(A)1 = 1], because t= ZT. 

A similar argument shows that if ^ is {3.\)ifj{x), then 

i'A“i = 2 
keV 

Since F is a model of ZF, (3Ao 6 V)[^(ko)], hence liACAo)! = 1. 
Since also [[T c A/J = i (by Theorem 14.8) we may consider M[F] in 

In fact, it will turn out that V = A/[f'] in The proof of this state- 

ment is a corollary of the following theorem which shows that the method of 
forcing on the one hand and the method which uses the models are 
essentially equivalent (cf. Corollary 14.23). For the remaining part of this 
section we assume the Axiom of Choice (in V). 

Theorem 14.22. Suppose that A/ is a countable standard transitive 

model of ZF F AC such that B G A^. Let P be the partial order structure 
associated with B (thus \N, P) is a setting for forcing). Then for any set Co 
which is P-generic over N we can define a mapping A: (F^”’)'"^ ^ A^[Co] 
which is onto and satisfies 

(i) hoiyUh, . . ., i/JI) = 1 /V[Co] N 99(/?(z/i),. . ., //(//n)) for u^,. . .,Un^ 
(F(W))x- 2,-,b ^ formula of FFQ{{M]). Here M{a) is interpreted in A^[(JO] 

a.s a e N and IIQ is the A^-complete homomorphism from |B| into |2| asso- 
ciated with GQ. Consequently 

(ii) /io(lM(u)j) = 1 /i{u) G A for z/ G (F^**^)^. 

Proof. Given GQ which is P-generic over N and /ZQ: |B| ^ |2| where /ZQ 

is associated with GQ in the familiar way, define /z: (|/^**^)^ F by induction 
as follows: 

h(u) = {h{x) I A: G ^(ZY) A /zo([[^ e zzl) = 1} for u G (F^”^)^. 
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Then we have for u, v e 

1. hoilu = vj) = \ ^h(u) = h(v). 
2. hoilu e DJ) = 1 ^ h(u) G h{v). 

1 and 2 follow from the A^-completeness of ho, since 

hiu) = hiv) (Vx e ^(w))[//o([[x G uf) = 1 ^ hix) G /;(r)] 
A (Vx G ^iv))[hoilx G r|) = 1 h{x) G hiu)] 

and 

hiu) G hiv) ^ i3y e ^(D))[//(W) = hiy) A hoHy G wl) = 1]. 

Furthermore, 

3. (ik G N)[hik) = k]. 

This follows by induction on rank (A) using the fact that 

/?(A) = [hix) I A: G ^ik) A ^ ^i) = 1} 

= {h(x) I (^kiek)[x = *1]} 
= {h(h) I k, e k}. 

Since 

lMiu)i = ^ lu = kj 
keN 

= 2 I" = ^'1 
keR(a)OiN 

for some a G Off by Theorem 14.2.2 and the fact that is a model of ZF. 

Hence, by the A^-completeness of ho, 

hilMiim = 1 (3A e N)[hilu = k}) = 1] 
^ (3A G N)[hiu) = /?(A)] by 1 
^ hiu) G N by 3. 

Consequently 

4. /;o(IM(w)l) = 1 hiu) G N, u GiV^^y. 
Let be Fr B, i.e., |B| -> 5 defined by 

^Nih) = b for A e B. 

Then 

hiF^) = {hik) I A G Z? A hoifk G FI) = 1} 
= {/?(A) I A G F A /7O(F(A)) = 1} 
= {b \ b G B A hoib) = 1). 

Thus 

5. G = //(F^) is the A^-complete ultrafilter associated with ho and GQ. 

Next we prove that ho preserves all the sums 

6. 2xetv^“))N Ifpixi, 7/i,. . ., iOI where 93 is a formula of ^oix^^i )}) ^nd 
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If 9 is a formula of )l) and . .., e (then the sequence 

^ //i, • . •, iOI I ^ is definable in {N, e, B> and the range 
of S, i/ {S), is contained in B which is a set in N. Therefore, by the AC in N, 

there is a function /'e N such that "//"'(/) = i/ (S) and hence 6 in N is equal 
to a sum over a set in N which is preserved by IIQ since //Q is A^-complete. 

(Note that we have used the same argument in the proof of 4.) Now let 

= {/^x) I G Then for z/„ G and 99 a formula of 
)}), 

7. hoiMuu ■ ■ 'OD = 1 ^ Wi N /i(i/„)). 

This is proved by induction on the number of logical symbols in 99 using 1 
and 2, and, for the induction step, the fact that IIQ preserves the sums 6. 

Furthermore, if 99 contains the symbol M( ), we understand by 7 that M{a) 
is interpreted as z? G in in accordance with 4. 

8. Vz/G(F'«>)V?0/)e/V[G] = 7V[C?o]. 

Let u G Then 

h{u) = {h(x) I X G ^{u) A //od-v G z/1) = 1} 
/l{u) = {h{x) I X G ^(u) A [x G z/| G G}. 

Now |x G z/| for X, u G (F^®^)'”^ is definable in A^[G] from B, hence /i(u) G A^[(7], 

since A'^[C] is a standard transitive model of ZF. Applying 7 to 99 where 99 is 
an axiom of ZF, we see that is a standard transitive model of ZF and 

contains N as a subset (because of 3). Furthermore, G = h(Fi^)eNi and 
TVI ^ A[G] by 8. Since N[(J] is the least standard transitive model of ZF 
containing (7 as an element and N as a subset we must have A^i = A^[G]. 
Therefore h is onto and 7 is just (i). 

Corollary 14.23. Suppose that <A, G, B> is elementarily equivalent to 
<(F, G, B> where N is transitive, countable and Be N. Let P be the partial 
order structure related to B. Then for every sentence 99 of FFQ{{M( )}), I99] = 1 
(i.e., 99 holds in F^®^) iff A[G] N 99 for all sets G which are P-generic over N. 
{M{a) is interpreted in A[G] as ^7 G N.) 

Proof. If I99I = 1 in V^®\ [[99I = 1 in (V^®^)^ and the conclusion follows 
from (i) of Theorem 14.22. Conversely, if M ^ 1 in V‘®\ then h = [[99] 7^ 1 
in (V‘®0''^, hence taking some //Q: |B| —> |2| which is A^-complete and sends 

b to 0, we have, by Theorem 14.22, A[G] N —,99 for some G which is P-generic 
over N. 

Remark. We give two applications of this method. 

Theorem 14.24. |F = A/[F]| = 1. 

Proof. Let N = (^N, G> be a countable transitive model of ZF AC 

such that B G A and 

<(A, G, B> is elementarily equivalent to <F, G, B>. 
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(The existence of such an N can be proved in Godel-Bernays set theory + 
Mathematical Induction.) 

V = M[F] can be written as a formula 

(VA')99(yV/(A'), F) whereis a formula of FFQ. 
• » 

UIV = M[F]\ ^ 1 in 

/, = [(/= A/[FV]E / 1 in (V'*T 

hence as in the proof of Corollary 14.23 

1. yV[C] N -n(V.v)(p( A/(.Y), G) 

where G = h(Fi^) and h{h) = 0 for some //: |B| —> |2| that is A^-complete. 
But since M{x) means xeN in A^[G], (i) means that C/ A^[G] in A'[G]. 
This is a contradiction. 

Theorem 14.25. (Using the Axiom of Choice in V.) [[/IC]] = 1, i.e., the 
AC holds in 

Proof. Choose N and B as in Corollary 14.23 (again we need the system 
GB + Mathematical Induction). Then N satisfies the AC, and so does A[C] 
for every G which is P-generic over N. Hence |/1C]| = 1 by Theorem 14.24. 

Remark. Later we shall give another application of Theorem 14.22. 

Problem. Find a proof of Theorem 14.24 that can be carried out in ZF. 

Exercise. Give a direct proof of Theorem 14.25. 
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15. An Elementary Embedding of K|EJ in 

We have seen that in V = M[F]. Since M{u) expresses ueV in the 
Boolean sense, we might expect some relationship between the Boolean- 
valued structures V[F] and Again let B be a complete Boolean algebra 
and F: B B be defined by F{h) = b for h e B as in §14. Furthermore, let 
FQ be the identity on B. 

Definition 15.1. We define a mapping /: V[FQ\ and a denotation 
operator Dj on the terms and formulas of the ramified language corresponding 
to F[Fo] by recursion in the following way (cf. Definition 9.36): 

\.j(k) 4 k,keV. 

2. DXF(O) = IA/(./(/))l. 

3. D,{F{t)) = 2 L/(0 = bl-b where a = p{t) + 1. 
beR(a)nB 

4. Dft.et^) = 

5. F/F = t2) = [[7(F) = ./(^2)1- 

6. Dj{-n(p) = ~ Dj((p), Dj{(p^ A 992) = Dfcpfi- Dfcp^). 

7. Z)X(V.v/)cp(x/)) n 
teTe 

8. ./X-VnV(x/)) = V where v e is given by 

^(v) = {j(t) \teT,} 

and 

lijit)) = Dj(cp(t)) for teT^. 

Remark. We use the notation F{b) for the value of the function F at 6 
and at the same time F( ) (e.g., in 3) is a formal symbol of the ramified 
language. Also [ 1 refers to F[Fo] and to Despite these ambiguities it is 
hoped that the proper meaning of Fand | 1 is always clear from the context. 

Theorem 15.2. If w, n G F‘®\ if (^{u) c 5' and Q{v) c 5" where 5" c F<®\ 

then lu = vj = e w <-> iv e vj. 
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Proof, fi/ = r] < Ou’e-s [["’ ^ ‘ ^ ^'I follows from the Axioms of 

Equality. On the other hand, 

][^ ttu-e z/- - ir e r]] < \\ [{u'e z/^ u-e/■]] • JJ |u-e z'-> u'e z/J 
u’eC/(u) ,u>ei/(i’) 

< Y\ (//(ve) -> [[u’E z’]])- Y\ («'(n') ^ e i/1) 
u'eO'(u) weO’iu) 

by Corollary 13.4.3 

= In = I'l 

Theorem 15.3. t E e 

Proof. (By induction on «.) If t = k and k E T^, then k e R{a), i.e., 

k E /?(^ 4- 1) for some jS < a. Therefore 

/(A) = k = {<A'i, 1) I A'l E A] 

and 

•^(A') = {A'l I A'l E A). 

From the induction hypothesis, £?(A) ^ Hence 

A E 

If / = .v^99(.v^) for some 9? and / E then ^ < «. For z' = /(/) we have, by 

the induction hypothesis, 

£?(c) = {./•(/) I/er,}c {/,<«>. 

Therefore 

r E 

Theorem 15.4. If z^, Z2 are constant terms and 9? is a limited formula, 

then l(pj = Dfcp). In particular, 

1- ic = ^2! = iiy(c) = y(^2)i- 
2. Iti E Z2I = IJifi) Ej{t2)l 

Proof. (By induction on Ord (9?).) 

1. Fet /8 = max (p(Zi), p(/2))- Then 

Ih = ^2! = O ^ C ^ ^ ^2! by Definition 9.27.6 
teT 0 

= [/(z) ^./(Zi) /(z) e /(Z2)l by the induction hypothesis 
teT0 

= Iy(C) = 7(^2)! by Theorem 15.2 

since 

^ {j{t) I z E for / = 1,2. 
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2. We distinguish the following three cases: 

2.1 ti = ki A ^2 = A'2 some A'l, A'2 e K Then 

I/iey = IA'ieA'2l = [AIGA'S]] 

= lly(A'i) =7(A'2)1* 

2.2 ^2 = .v^9>(.Y^). Let r = /(.vV('^'^)) == Jih)- Then 

l/i G y = = ^I'lI^CO]] Ly Definition 9.27.5 
teTg 

= 2 = ./(OI-A)X9?(/)) by the induction hypothesis 
IBTB 

= 2 = -vI]-r(.Y) 

= lly(^)ei’l = l7(^)e./(/2)l 

2.3 /2 = A2 for some A2. Then 

|/i G A2I = 2 ^ Definition 9.27.4 
kek2 

= 2 117(^1) = induction hypothesis 
keko 

= IJifi) e ^2} 

Among the remaining cases we need only consider the following. 

3. If (p is (V.Y^)0(x^), then 

M = O II’/'(01 Ly Definition 9.27.8 
teTs 

= Y\ Ly the induction hypothesis 
teTp 

= D,((VA:^)^(X^)) 

= Dj((p). 

4. |L(/)| = 2 = Ai where a = p{t) + 1 
keR{a) 

= 2 ~ induction hypothesis 
keR(a) 

= IMUm = D,(V(l)) 

5- Idol = 2 I' = b} Fo(b) where a = p(l) + I 
beR(a)r\B 

= 2 DXO = Al-A by the induction hypothesis 
beR(a)nB 

= O>(d0). 

Corollary 15.5. {3a)lJ(x„‘‘F{x„‘‘)) = Fj = 1. 
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Proof. Choose a = rank {B) and use 5. 

Remark. From now on we again assume that V satisties the Axiom of 
Choice. 

Theorem 15.6. Under the assumpHons of Theorem 14.22, h(J{f)) = 

DN[G^J]if) e^ich constant term t in the relative sense of N. (Cp. the relativiza- 
tion of V[FQ\ to N discussed on page 100. Here FQ is also relativized to N 

i.e., restricted to so that FQ e N. FQ in Definition 9.36 is to be replaced by 

[h G I //o(Fo(/i)) = 1} = {h G B^ I //o(6) = 11 = C.) 

Proof. (By induction on p(/).) 

h{ j{l^))eh{ i{t)) <~> = I by Theorem 14.22 
<>//oCdC G/]]) = 1 by Theorem 15.4 
-> Z)(/I)G D{t) by Theorem 9.37 

(where we have /?o instead of /?). Therefore 

(V.Y G A^[Go])[.v G <-> .V G /)(/)] 

by the induction hypothesis i.e., //(/(O) = 7)(0, where 

F = DN[G] — ^^iV[Go]- 

Remark. Considering / relativized to N we have mappings 

A'lC] 

and a denotation operator (see Definition 9.36) 

((/[Fo])" /V[G]. 

Theorem 15.6 shows that /7JV[G] = k o/. 

Definition 15.7. Let B be a complete Boolean algebra and Mi and M2 
be two B-valued structures. A mapping /: —> A/2 (where is the universe 
of Mj) is elementary (in the Boolean sense) iff for every formula of the 
language of Mi and every 1/1,. . ., Af, 

Mz/i,. . ., Un)hx^ = Mi(ih), • • •, i{Un))hu- 

Theorem 15.8. The mapping /: L’iF'o](of Definition 15.1) is 
elementary. 

Proof. Let N be a countable standard transitive model oi ZF such that 
B*’^’G A/ and (.-V, G, B*'^) is an elementary substructure of <(F, G, B>. (The 

existence of such an N can be proved in GB -t- mathematical induction.) 
Suppose that for some formula 9? and some //i,. . ., G (F[F'O])'^- 

= M.ib itn)} ^ d<p(7(i/i) ,./(iC)l = ^2 in N. 

Let IIQI B'^ 2 be an A^-complete homomorphism such that 

ko{.ki) ^^0(^2)" 
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Let Go be the P-generic filter over N associated with //Q where P is the 
partial order structure associated with Define h as in Theorem 14,22. 
Then 

<-> N [Go] \=cp{D{u,D{u,)). 

On the other hand, by Theorem 14.22, 

/?o(/?2) = 1 <^/V[Go] N 99(//(/(l/i) ,J{Un))) 

o yV[Go] t= (p{D{Ui),. . ., D(Un)) by Theorem 15.6. 

Consequently /io{hi) = /io{h2). This is a contradiction. 

Problem. If B = 2, /: V[FQ] -> is onto in the following sense, 
(Vr e L'“b(3A'G L[To])[|r = ./(-v)I] = IJ, is / also onto in this sense for every 
complete Boolean algebra B? 
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16. The Maximum Principle 

From now on until further notice we will assume the AC for K 

Theorem 16.1. Suppose {//j | / e/} ^ and (V/ e /)[^(Ui) ^ d] for 

some cl c Then there is a family {//' | / e /} such that 

1. (V/ G I)[lUi = z/'I - 1], 

2. (WiEl)[mu\) = d]. 

Proof. We extend the domain of to d by defining u\ E by i?(zO = 

d and (Vx E r/)[//'(.v) = lx E Z/J] for z G /. Then for all z G /, 

Ilf. = //']] = p] (I/.(.Y) |X G Z/'D- 1 
xeZ?(Ui) 

xe£^(Ui) 

= P] {z/i(.v) ^ lx E Z/J) 

xeZ?(U() 

= 1. by Theorem 13.4.3 

Theorem 16.2. (The Maximum Principle) 

(3Z'G F^«b[tt(3z/)(?)(zz)B = Mv)}] 

i.e., for each formula cp there is a z- G such that Mz')]] maximizes the set of 

Boolean values (Mz/)]] | zz G i.e., 

hU')} = 2 
ueV(Il) 

Proof Let h = [[(3z/)<^(z/)ll = ]iu6v‘'‘) Since B is a set, it follows 

from the AC in F, that there is a sequence <z/* | ^ < a> such that 

{zz. I ^ < a} c and h = Define 

1~I !I-n(?>(zz„)]] for ^ < a. 
v<i 

Then 

i) r; < a A ^ ^ r] h,-= i) and b = 

Since <zz. | ^ < a^is a set, there is a d ^ F*”' such that (V^ < a)[^(zz.) ^ d]. 
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So by Theorem 16.1 we can assume that (V^ < a)[C/{u.) = d]. Define r e D*'** 
by 

^{r) = (/ A (V.v E (/) /tv) = 2 • 
<:<« 

Then by i), 

ii) ^ e a A .X e (/ —> ■ v{x) = • u^{x). 

Therefore, for ^ < a, 

Iv = l/J = l~\ ((tv) [.V E //J)- YJ (u^{x) => [[,V E vf) 
.xed xed 

^ n ^ n ^ /'!) 
xed xed 

^ FI => h^u^ix))- FI ■■ /^^//^Cv)) 
xe d xed 

= b^. 

Hence < |(’ = //J • [[(^C//^)]] < l(p{i')^ for all ^ < a. Therefore 

But also Icpiv)} < 2.vev<«> M'V)I = b, therefore 

b = I<p(^’)l]• 

Remark. The last part of this proof also establishes the following 
corollaries. 

Corollary 16.3. Suppose {u^ | ^ < a} ^ {/?^ | ^ < a} c B, 
^/c (V^ < a)[2{u^) = d] and (V^, -q < cc)[^ ^ b^-b,^ = 0]. Then 

(3i/E f/<“0[^(//) = ^/ A (V^ < a)[/7^ < [(/ = u^}]]. 

Corollary 16.4. is complete. 

Example. For b G B define u = b-a (~b)'^. If a ^ /3, then 

lu = a} = b A lu = = ~b A |Ord (u)} = 1. 

In this case (assuming b ^ (i, \), u is an example of a non-standard ordinal. 

Remark. We have seen that {(/E | [[//E rj = 1} for ve is an 
equivalence class which is a proper class. Our aim is to find representatives of 
(• of a simple form. In §6 we defined the notion of a complete B-valued 
structure. We now call A c j/'”’ complete iff the B-valued structure 
<T, =, e> (i.e., restricted to /I) is complete. Thus A c is complete 
iff for every partition of unity, | ^ < a}, and every family \ i < a} ^ A, 

there is an element UGA, denoted by has the following 
properties: 

(vi < a)[b^ < ttw = /v^m. 
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Later we shall see that for every v E there is a HE such that 
= ?;| = 1 and ^{u) is complete. 

Definition 16.5. 

= 0 

4 y ur\ « e 
0<a 

4/<B) A (J 
aeOn 

Remark. Thus each u E is a function from into B for some 
a, whereas UE has a domain which is in general only a subset of some 

Nevertheless, and are essentially the same: 

Theorem 16.6. 

1. ^ in particular, 

(Vz/E 6/,^»>)(3r E = 1]. 

2. (Vi^E = rl = 1]. 
3. i/a’+i is complete. 

Proof. 1 and 2 are proved by induction on a. 1 is obvious. 

2. Let TE Then Q{v) c 

By the induction hypothesis, there exists a function/: Q{v) —> such that 

(V.v E £?(r))[I.Y =/(-x)]] = 1]. 

Now define u E Ua + i by 

n{y) = Lv £ i’l I'or (cp. the proof of Theorem 16.1). 

If A' E i2‘(r), then 

r(A) < lx E rl 

= !I/(-^) = ■ I^' e rl 
< |/(A) E vj 
= u{f{x)) 
< i[/(A') E z/]] since /(A) E Q(U) = 

= l/(-V) = A1 I fix) E i/I 

< [I-V E Z/]]. 

Consequently 

fz/ = rl = YJ ^ O ^ ly e I'D 
.vei?(t’) yet/aOn 

= n ^ 

= 1, since for .v E i?(r), r(.v) < |A' E Z/J. 
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3. Corollary 16.3 with d = 

Definition 16.7. 1. Let d^ A function is called 
extensional ilT (V.v, .v' E <'/)[I.V = .Y'| < lg{x) = ,i^(x')]]]. 

2. Let u E Then u is definite ilT 

(V.v E I]^(//))[f/(A') = I]. 

Example, k is definite. 

Exereise. Let u e and h e B. Define h-u by 

^{h-u) = £?(//) A (V.v E £5^(//))[(6-i/)(.v) = 6-I/(A')]. 

Then, 

and 

p' E h ■ i/J = h ■ p’ E 1/1 

Ib-u = b-v^ = b In = rl for ve 

Remark. The importance of extensional functions rests in the fact that 
functions (in the sense of L*”') from definite sets into definite sets correspond- 
ing to (real) extensional functions on their domains: 

Theorem 16.8. Let //, r E be definite and cp\S!{ii) ^ ^{v) be an 
extensional function. Then 

(3/E i/-^rl = 1 A (Vx E ^(i/))[[/-(.v) = cp(x)l = 1]]. 

Proof. Define 

/ = {<x, y(x)><‘» I X e ®(«)} X {I}. 

Obviously,/E We will show that [[/: urj = 1. 

1. pVx E u)i3y E r)[<x, v> E/]1 =02 >’> 
xe^{u) ye^iv) 

since //, v are definite 

> n I<-v,rW>e/I 
xeQiu) 

since 9?: ^(u) ^{v). 

= 1 by definition of/. 

Furthermore, we have to show that 
2. pVxEw)(V>^XVz)[<x,>’/e/A {x,z}ef^y = z]} = 1, 

i.e., 

i) (V.v E ^(1/))(V>’, z E T> e/ A <x, z> E/1 < Lv = zl]. ^ 
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Therefore let x 6 ^(u) and y, z e Then 

Kx, y} e/1 = 2 !<^> J'> = 
X'G£?(U) 

= 2 x'l'ly = ‘PM! 
x'e£?(u) 

< 2 IfW = yMl-b = 9>(x')l 
x’e^(u) 

since 9 is extensional 

< ly = <PW]]. 

This shows that 

Kx,y} E/1-[[<X, Z> 6/11 < ly = ^WMz = ^CY)]) 

< ly = z} 

which proves i) and hence 2. From 1 and 2 we conclude that 

If: u-^vj = 1. 

It remains to show that 

3. (^X E 9(u))[lf(x) = <p(x)I = 1]. 

Let X 6 ^(u). Since /6 and g(x) E we interpret/(.v) = ^?(.Y) to mean 

(3;’)[Cv, y} e/ A V = g{x)]. Therefore 

I/W = = [[(3v)[<x, v> Ef A y = 9(.Y)]|1 
= ICx, (p{x)y 6/11 since ;/: u rj = I 
= 1. 

Remark. Later we shall see that Theorem 16.8 has a converse if we add 
an additional requirement on u and v. See Theorem 16.28. 

Definition 16.9. u E F^®^ is extensional iff 

(ix, y E ^{u))[lx = V’I-WCY) < u{y)]. 

Remark. Therefore u is extensional iff the extended structure 

<F<«>, =,6,i7> 

where 

W(.Y) = w(x) if .Y 6 Q{u) 
= 1 otherwise 

is still a B-valued structure (cf. the requirements of Definition 6.5). Another 
interpretation can be obtained from the following result. 

Theorem 16.10. If z/e F'®\ 

u is extensional (V.Y 6 Q{u))[u{x) = |A' 6 zz]]]. 

Proof. If u is extensional and A* E then 

Z/(A) < 11A Euj = 2 ^'(>’)-|[^ = >’I1 < u{x), 
ye^(u) 
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Therefore 

i/(x) = |x e wl. 

To prove the converse, assume (Vx 6 ^(i/))[w(x) = [[x G i/|]. Then, for 
Xy y e ^(u) 

|x = >^l-i/(x) = l[x = • lx G uj < lye u} = u(y). 

Theorem 16.11. 

(iv G c c 

{3u) [u is extensional A r/ = ^{u) A |?/ = vj = 1]]. 

In particular, each ve can be represented by an extensional set. 

Proof. For v e and d ^ such that ^{v) ^ <:/define u: d -> B by 

(Vx G d)[u{x) = |x G i;]]. 

Then, for x G 

i/(x) < |x G I/J = 2 HT e i’l • = J’l < lx e r] = i/(x), 
yed 

i.e., u is extensional. That |i/ = rj = 1 has already been proved in Theorem 
16.1. 

Remark. We could restrict ourselves to extensional sets u for which 
i/(x) is simply equal to |x G Z/]] for x G Q{ii). However, since one still has to 
evaluate |x G uj for x ^ ^{u), this is in general no saving, though for special 
cases it may be very convenient to have a particular representation of B- 
valued sets. 

Given any v e we cannot expect to have |i/ = r| = 1 for some 
definite u. We shall prove, however, that |i/ = b-v} = 1 for some definite u 

and some b e B. 

Definition 16.12. 1. ue is uniform iff u is extensional and 2{u) 

complete. 
2. S ^ F^”^ is complete iff the structure <5', G, is complete in the sense 

of Definition 6.8. 

Remark. As a consequence of Theorem 16.11 we have the following. 

Theorem 16.13. (five F^®^)(3w G is uniform A |// = r]] = 1]. 

Proof. If G F^**\ ^ Fisome a. Then, by Theorem 16.6.2, 
|i; = Ti]] = 1 and e Ua + 2 for some Vi. Since ^(vi) = Ua + 2^ is complete, by 
Theorem 16.11, 

li’i = uj = I 

for some u e FO*> such that k/{u) = Ual\ and u is extensional. Hence 

lu = vj = I 

and u is uniform. 
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Theorem 16.14. Let u be uniform. If {.Vj | / e/} ^ ^(w) and 

[bi I / e /} c B 

is a partition of unity, then' 

(See Remark following Theorem 6.9.) 

Proof. Let v = 'fiei Since S^{u) is complete, y exists, and r e ^{u). 
Since (Xj | / e /} ^ 

u{y) = I v e i/l = 2 = T1 ^ 2 = TH - 2 

xe^(u) 

(Note that since | / e /} c ^(z/), [jCj = yj > hi.) 
On the other hand since 2ie/ bi = 1, 

bi-u{y) < Ixi = < IXieuj = u{Xi) 
biU(y) < bi-u{Xi) 

u{y) < 2 
ie/ 

Definition 16.15. (Vzz e L‘“^)[sup (//) = 2xei?(u) 

Theorem 16.16. (Vw G L^'‘^)[sup (Z/) = [[(3.x)[.v G z/]]]]. 

Proof. 

|(3.v)[.v G zz]l = p.v G z/)[.v = x]l = 2 '4'^)-11'^ = 
xet/iu) 

= 2 " s'jp (^0- 
xeO'(u) 

Corollary 16.17. (Vz/^, z/2 e L‘*'^)[([z/i = U2} = 1 —> sup (zzi) = sup (z/2)]- 

Theorem 16.18. Let u G be uniform and b G B. Then 

{.Y G ^(u) I b < Z/(.Y)} 

is complete. 

Proof. Let [bi | / G I] be a partition of unity, and {.Yj | / G /} c 9'{u) 
satisfying (V/G/)[/7 < //(.Yj)]. Since Q{u) is complete, y = J,iei biXi for some 

y e i?(zz). 

u{y) = ^ biU{Xi) by Theorem 16.14 
iel 

> 2bi-h = A 
is! 

i.e., 

_v G {.Y I .Y G i?(zy) A b < Z/(.Y)}. 
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Theorem 16.19. If i/G 1^'“’ is uniform, then (B.v G £?(//))[Z/(A') = sup (//)]. 

Proof. If we do not require x e ^{u), the theorem follows from the 
maximum principle. In fact, we can use the same argument: 

Let I ^ < a> be an enumeration of i.c., 

^{u) = I ^ < «} 

and put ("//(.Y,,)) for ^ < a. Then the h{s are disjoint and 

i<0‘ xe!y(u) 

Therefore, adding = "sup(zv), \h^ | ^ < «> is a partition of unity. Since 
^{u) is complete, (V^ < a)[/7^ < |,Y = .vj] for some .YG£^(Z/). Hence 

//(.Y) = Ixeuj = 2 nix^)-lx = A'J 

*<a 

> 2 Z?^ = sup (zz) > ZZ(A') by definition of Z?^ and sup (z/). 
^<a 

Therefore 

Z/(A') = sup (zz). 

Theorem 16.20. Let ue be uniform. Define ve by ^{v) = 
{y I y G Q{u) A z/(>') = sup (z/)} and (iy e ^{v))[i'(y) = 1]. Then v is definite, 
uniform, and In ^ b-cj = 1, where b = sup (zz). 

Proof. Clearly v is definite. If A' and y are in 2t{i ), then lx = ;’|Z'(A') < 
rCj^). So V is extensional. Therefore to show that v is uniform, it suffices to 
prove that ^(r) is complete. For this purpose, let [b^ I ^ < a) be a partition 
of 1 and let (j’. | ^ < «} c: Then we have to show that there exists an 
a G ^{v) such that 

1. (V^ < a)[b^ < Hz? = y^}]. 

Since ^(v) <= ^(zz), {y> | ^ < a} <= i?(zz). By the uniformity of zz there exists 
an (7 G ^(zz) such that 1 holds. Therefore it is enough to show that o G S^(V). 

Since 

b, < ttz7 = y^j-> b^-u(y^) < la = < u{a) 

it follows that 

b = ^ b^-b < u{a). 
^ <a 

But, since b = sup (zz), we have u{a) = b and hence a G Q:{V). 

Next we shall show that ([zz = Z? • z’]] = 1. First, if A G^(n) then by Theorem 

16.10, [[.YGiz]j = ZZ(.Y) = 1; hence 

lu = b-v\= PI [zz(x) ^ IXGZ?-^!]- PI [(Zi• !’)(->:) 
xe^(u) xeO'iv) 

2. = n 2 = 
xcO'(u) teO!(v) 
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since the second factor is 1. Let .Y, .VQ e with w(.Vo) = h. Then since 

{z/(.v), is a partition of unity and u is uniform, there exists a 
z G ^(u) such that r = Z/(.Y).V+ {~U{X))XO. (See Remark following Theorem 
6.9). By Theorem 16.14 

• Ik 

u{z) = u{x)u(x) + {-u{x)) • u{Xo) 

= u{x) + (~u{x))-h > h. 

Therefore u{z) = b, since h - sup (z/); and hence r e Then 

u{x) ^ b- 2 ^ 1 ^ b• lx = z} 
Ze£/(D) 

> b-u{x) ^ b-u{x) since Z/(.Y) < [[r = x}.] 

3. = 1. 

Since x is an arbitrary element of ^(u), we have [[z/ = /?• z']] = 1 by 2 and 3. 

Corollary 16.21. (Vzz e c- ^)(3z'e L‘“^)[z' is definite and uniform 
A lu = b-vj = 1]. 

Exercise. 

1. Let u E be extensional and b e B. Then 

lu = b-uj = [sup (u) => b]. 

As a consequence, 

[b > sup (z/)] ^ [|z/ = b-u} = 1] 
[b < sup (z/)]-> [[z/ = b-uj < \]. 

|z/ = 0]] = "sup (u) 

|Z?-1GO:]] = [[/7-1 = 1]] + 1I6-1 =6]! ifa> 1 

= b + (-6) 
= 1. 

2. Define u e by 

^(z/) = (1,1] A z/(l) = b A u(2) = -b. 

Then sup (z/) = [{(3.Y)[X e z/]]] = 1. Furthermore, defining a = ^-1 + {~b)-2 
(See Remark following Theorem 6.9) and v = {z?}** we have, |z/ = I’l = 1. 

3. Define u, a^, 02, v e by 

9{u) = (1, 5, 3} A z/(l) = b A u{2) = u(3) = -b, 

Qi = b-\ + (~b)-2 

02 = b-\ + (“6)-3 
V = {z7i, a2Y^\ 

Then lu = rj = 1. 

Remark. The results which we have obtained so far can be used to 
determine the power set (in V‘”^) of various sets in 



Theorem 16.22. Let re be extensional, ue and h = Iv w]]. 
If v' = b‘i\ then 

1. r'is extensional, 

2. ttr' c ^,1 = 1, 
3. |r c uj = iv' = rl. 

Proof. 

1. Is obvious. 

2. |r' c //I = Y\ (v'(x) => |x G uJ) 
xe^(v) 

= Y\ ^ 
xeCTiv) 

> |x G uf) since r is extensional 

= |r c A X G r 
xe^^(v) 

► X G Wl 

= 1. 

3. Iv = rl = |r = rl-[[r' ^ z/1 < Iv ^ u] = b by 2 
It? = r'l = [[r = /7-rl > /? by Exercise 1 above. 

Hence [[r = r'l = Z? = |r ^ //|. 

Theorem 16.23. Let u, v 6 be extensional and [r ^ i/J = i. Define 
r' by the conditions 

1. ^(r') = ^(u). 

2. (Vx e 2^{u))[v'{x) = ttx e rj]. 

Then |r = r'l = 1. 

Proof, r' is extensional and |r' ^ rl = 1 by the definition of r'. It 
remains to show that (V.x G ^(r))[[[:r G rl < Hx G r'|]. Let x e ^(u). Since 
[r c wl = 1, 

lx G rl < [[x G wj 
|x G r| = lx G rl • |x G wl 

= 2 ^ ^’1 • • ll-^ = -^'1 
x'e^(.u) 

< 2 I-^' e rl • w(x')|x = x'l 
x'e^(u) 

= 2 ' 1-^ = ^1 
x'e£r(u) 

< l^er'l. 

Remark. From Theorems 16.22, 16.23, and 16.11 we obtain the 
following: 

Theorem 16.24. 

(Vw, V G e F'«>)[^(r') = ^{u) A |r' ^^1 = 1 
A |r c i/l = |r = r'l]. 
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Remark. This theorem is important for the treatment of power sets in 

Namely, if u e K''*’ and we regard elements v E f''”’ which are subsets 

of u in the sense of i.e., |r ^ //J = 1, then £/(r) may be greater than 

C/{u), and, in fact, there is no set d ^ which includes C/{v) for all these v. 

However, by Theorem 16.24, we can*find some v' such that |r' ^ 

[[r = /'I = 1 and C/{i') = ^(u). As a corollary, we have the following: 

Theorem 16.25. If//, re and if 

A = {/’' e I ^(v) = Q{u) A [[/'' c //]] = 1} 

then 

Ir c »1 = 2 Ii- = i-'l, 
v'eA 

Proof. If /? = 2i>'e.4 1^’ = ^’1 from Theorem 16.24 

Iv c < h. 

On the other hand, 

/? < 2 1^’' - ^ 
v’eA 

Remark. A\S an application, we determine R{a) in 

Theorem 16.26. For HE 

1. i» £«(«)! = 2 I" = '’I = I" ^ a}ii, 

therefore IR(&) — x {1}]] = 1. 

2. /?(o)l = 1. 

3. I» c R{a)} = 2 [» = 
te.Aa 

where A^ = {/ E | £?(/) = 

Proof. (By induction on a.) 

1. I//E /?(«)! = < a)[//c /?(![]] 

= 2 I" £ «(f)i 
i<a 

= 2 2 [[// = rl by the induction hypothesis for 3 
i < a fe.4* 

= 2 2 f" = 'I (for, if£“(/) S K™, 
s<a teV'.+ iOn 

(3r'£ K-t'Omr') = K,"‘> A 1/ = /'I = I]) 

= 2 1" = ''1 

= 2 I" = {'})(r) 

= |»£ X {I}1. 
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2. Assume ^(u) ^ Then, since by 1 [[A'G /?(a)l = I for A'E 

c = ['I („(.v) =. I.V G /?(<5)])) = I. 
xefy(u) 

3. [[// c R{a)} = ^ [[// = /H by 1 and Theorem 16.25 
teAa 

= ^ Ilf = f} by 2 
teAa 

Theorem 16.27. U' u is definite, l-^(u) = x {1}]] = 1. 

Proof. Note that c t/<»> and is a set. Let x e and 
= {r 6 L<»' I C/j{v) = Q{u)]. Then 

I.VG SS-*”' X {I}1 = 2 l-v = i'l 
De/lu 

= 2 [[jc = v} since u is definite 
V€AU 

Il)Cli|= I 

= lx c I/]] by Theorem 16.25. 

Remark. Next we prove the converse of Theorem 16.8. 

Theorem 16.28. Let z/, VE be definite and uniform. If/E and 

If: z/-> z'l = 1, then there exists a (real) function 92: Q{u)^ ^{v) such that 
92 is extensional and 

(V.v E i?(z/))[ff/(A) = cp{x)l = 1]. 

Proof. Since ([(VA* E Z/)(3>’ E v)[f(x) — v]]] = 1, and u and v are definite 

(V.x E ^{u)) I iy'(-v) 
- yeQ(v) 

= 1 

For .Y E Q{u) define v' E by 

£^(r') = ^{v) A (Vv E ^(r))[i’'( v) = [/(.Y) = y}]. 

Since v is uniform, so is v'. Therefore, by Theorem 16.19, for each x E ^(v) 

we can find some yo E ^(V) such that 

Uix) = Vol = 2 = •>'1=1. 
yeiA(v) 

Using the AC, there is a function 92: Q{u) k^(r) such that 

(VA E r^(z/))[[[/{.Y) = 92(A)]] = Ij. 

It remains to show that 92 is extensional. 
Let Ai, A2 E ^(u). Then since lf:u ^ rj = 1 

[AI = A2I < I/(AI) = /(A2)1 

= I/CVl) =/(-V2)M/CVI) = 9(AI )]]•!/(A2) = <P(A2)]] 
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17. Cardinals in 

The theorems of this section can be obtained from the corresponding 
results in the theory of forcing by translating them in the manner outlined in 
Corollary 14.23. However, since this translation requires the existence of 
elementary subsystems of V and thus cannot be carried out in ZF, we shall 
try to give direct proofs in Corresponding to the fact that every cardinal 
in M[G], where <A/, P> is a setting for forcing and G is P-generic over A/, is 
a cardinal in M we have the following. 

Theorem 17.1. If a is not a cardinal, then H-i Card («)]] = 1. 

Proof, Card (a) <> (3/)(3iS < «)[/: /S -> a A i^ifY = «]. 

Therefore -i Card (a) <-> (3/')(/>(/’a) where </>(/,«) is a bounded formula. 
Thus, by Corollary 13.18, if a is not a cardinal, 

U{J\ «)1 = 1 
for some/e C, hence 

!I-i Card (a)l = 1. 

Remark. As might be expected, for finite cardinals and for tu we can 
prove the converse of Theorem 17.1. 

Theorem 17.2. For every a < to, [[Card (a)]] = 1. 

Proof. We have to show that 

H (3/)(3i3 < «)[/: iS -> « A irif) = a]l= I 
i.e., 

(yfe y<“>XV/3 < «)[[/: ^ ^ 5 A yr(/) = &] = 0], 

Suppose that on the contrary, 

k = if: ^ a A 7/'(/) = a]| > 0 for some /e ^ < a. 

Then h < KV, < a)(3^ < ^)[,/(f) = 

' ' * < n 2 I/(f) = ^1- 
n<a s‘<^ 

[Note: Let be the formula that expresses/(^) = 77. Then [/(O = 171 

means |[0(|, i))j.] 

* >^ (/) = {vl(3.v)[<Ar,v>e/]}. 
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Now let us assume that a < cu. Since ^ < a, 

h < II 2 
7)< /? + 1 ^ < /? 

= 2 n 
0ep(i^ + 1) tj< p + 1 

by the (/3 + 1, /S)-DL, (see Definition 4.1) which holds for every B since /3 is 
finite. 

Therefore 

0 < /? Ui^piiy) = l} i'or some 9: /S + 1 ->/?. 
n<P + l 

There must exist /?, ni < {3 + \ such that n A (p{u) = cp{m). Then 

0 < /4/((cp(//))'^) = = nA 
< bin = mj since b < lf{{cp{n)D = f{{cp{m)rA 
= 0 since n ^ m. 

This is a contradiction. 

Remark. It is easy to see that the same proof can be used to show; If B 
satisfies the (a, a)-DL, where a is a cardinal, then for each cardinal y < a, 
[Card (y)l = 1, i.e., cardinals < a remain cardinals in (It can also be 
shown that we only need the (a, 2)-DL since (a, 2)-DL <-> {a, a)-DL.) 

In general. Theorem 17.2 does not hold for all cardinals. However, cor- 
responding to Theorem 11.8 we have a converse of Theorem 17.1, For a more 

general result we introduce the following definition. 

Definition 17.3. Let y be a cardinal. A Boolean algebra B satisfies the 
y-chain condition iff 

(V5 c ^)[(Vx, y G S)[x ^ y -> x-y = 0] -> 5 < y]. 

In particular, B satisfies the w-chain condition iff B satisfies the c.c.c. 

Theorem 17.4. Let y be an infinite cardinal and suppose that B satisfies 

the y-chain condition. If a > y is a cardinal, then [[Card (a)l = 1. 

Proof. As in the proof of Theorem 17.2, suppose that [[Card («)[] ^ 1 for 
some cardinal a > y, then defining b as before, we have for some /S < a, and 
/G 

i) /? < 2 where b > 0. 
n<a i< P 

Therefore, using the AC in V, 

(Vr; < < m-mip) = 0]. 

For ^ ^ define 

= {r] < a \ = i}. 
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Then for some < /S, 

ii) > y, 

since otherwise < (^)[A.^ < y]. But a = U^.<^ this would imply 

a < ^-y < a since /3, y < a. This is a contradiction. 

Consider 

Then for e .4^., and hence 

h-U(L) = = f^-lAU = 0 

since /) < ^/: -> «1 A U^: = y = 1. 

Therefore elements of S are 7^ 0. Moreover, if rj^, 7^2 ^ ^ Vi ^ V2- 

= ’hl-[I/(t*) = ’;2l ^ H^h = 12} = 

Therefore elements of S are mutually disjoint and S > y, by ii). But the 

existence of such an S contradicts the assumption that B satisfies the y-chain 

condition. 

Corollary 17.5. If B satislies the c.c.c. and a is a cardinal, then 

ttCard(a)l = 1. 

Remark. This means that cardinals are absolute if B satisfies the c.c.c. 

We can express this fact also in the following way: 

Corollary 17.6. If B satisfies the c.c.c. then (V«)[|(tt>„)^ = a»^]] = 1]. 

[Note: For the meaning of this formula see the note stated in the proof of 

Theorem 17.2.] 

Proof. (By induction on «.) 

We have already proved the case « = 0 at the end of ^13. Therefore 

assume a > 0 and (V^ < «)[|[(a7r)'^ = a»i]] = Ij. Since 

u = coa ' ‘ Card {u) A (V^ < a)[to. < //] 

A (Vr)[Card (r) A (V^ < a)[cox < r] u < rj] 

is provable in ZF, we have 

lu = toj = [[Card (i/)M[(V^ < a)[w. < //]]] 

•lI(Vu)[Card (r) A (V^ < a)[co. < v]-^u < rjjj. 

We wish to prove that [[(co^)'^ = = 1. By Corollary 17.5, [[Card ((co„)'")| = 1. 

II(V^ < «)[a;. < (to„)"]|l = J } [[oji < (cuj"]] 
i<a 

= 11 induction hypothesis 
S < a 

= 1. 
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Finally, let 

= I(Vr)[Card (r) A (V^ < a)[cu^ < v] -> < v]]j 

= n [(ICard «)!■ n [cu; < ,1) =■ < ^1] 
rjeOn ^<a 

Let 7; G On. If 7] is not a cardinal, |Card (17)! = 0. Therefore, we need only 
consider the case Card (77). Then [[Card (17)1 = 1 and 

n [jo;^ < 17! = Y\ < vl t)y Ihe induction hypothesis. 
' < a ' < a 

Hence 

O 7^ 0 ^ (V^ < a)[a.. < 77] 
i<a 

-> < 77 

^ II(coJ'" < 17]] = 1. 

This proves 

[(V,, e 0„)[(ICard (,})!■ H Nj < ^ ^ vfl = 11- 
C<a 

Therefore bo = 1. Thus jKoj^F = <^al = L 

Remark. Finally we mention a theorem which says that constructible 
sets are absolute in the same sense as ordinals, i.e., quantification of con- 
structible sets (in the sense of can be replaced by quantifications (in the 
Boolean sense) over the standard constructible sets. Let Const (.v) be the 
formal predicate expressing that .v is constructible in the sense of Godel: 

Definition \1.1. Const (.v) A (3r)[Ord (r) A .v = F(r)] 
where F is Godel's constructibility function. (See Definition 15.13, Introduc- 
tion to Axiomatic Set Theory.) 

Theorem 17.8. (Vi/G L'“^)[|Const (i/)J — T^-eL 

Proof. For i/ G 
[[Const {u)j = |(3r)[Ord (/■) A // = F{v)]} 

= lu = F(a)| by Corollary 13.23 
aeOn 

In the proof of Theorem 15.28 in Introduction to Axiomatic Set Theory we 
established that jc = F{a) is equivalent to a formula {3f)<f){f,x,a) where 
(f){f X, a) is a bounded formula. Then 

X = F{a) (3/)</>(/, X, a) 

-> A', = 1 by Corollary 13.19 
-> «)1 = 1 
-> tti = F(a)I = 1. 
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Therefore, [IT(a)^ = F(a)1 = 1 and hence 

[Const (n)l = 2 I" = ■ Kf («))'' = f (“M 
aeOn 

= .2 I" = (/"wn 
aeOn 

= 2 ffw = A-J. 
xeL 

Remark. In the same way as we derived Corollary 13.23 from Theorem 
13.22 we obtain the following corollary of Theorem 17.8. 

Corollary 17.9. Pi/)[Const (z/) A ^(z/)]]] = I.vez. M-v)!* 
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18. Model Theoretic Consequences of the Distributive Laws 

There are several algebraic properties which are satisfied only by certain 
complete Boolean algebras B but which have important consequences for the 
corresponding models e.g., by Theorem 17.1 and Corollary 17.5, 

cardinals are preserved if B satisfies the c.c.c. In this section we will consider 
certain distributive laws. 

Theorem 18.1. C .^(CO)] = 1 

Proof. 

(V5 c co)p c cul = 1] 
(V5C co)p6^(di)l =1] 

moPT ^ = I. 

Theorem 18.2. B satisfies the (cu, 2)-DL ilT = 1- 

Proof. Assume that B satisfies the (a», 2)-DL. We need only show that 

^ J^(aj)'^]] = 1. Therefore let t E such that |/ c coj = 1. Define 
= [/7 G /J, /7„o = IfH n G a;. Then (V/? G CO)[/7^I = -b^^o], 

1 = n (bno + ^ni) = 2 n ^n.s(n) by the (oj, 2)-DL 
n< CO S62“ neco 

= 2 n 
S62!^(<5) neco 

i 

= 2 = ‘^l since ^ di]] = 1 
S62^(^) 

= [[r G since as is easily shown 

1. 2 I'= = I'e 
se2^(<^) 

Hence 
It e.neon = 1. 

Therefore, by Theorem 16.25, if T = {/ G | [[/ c ji]] = 1} then 

i» € .n<^)i = 2= ' 1 
teA 

= 2l» = 
teA 

< 21" s -no^n = I" e no>ri 
teA 
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This proves that [[-^(oj) c .^(ajyjj = 1. Consequently = -^(co)]! = 1. 
To prove the converse, assume that = 1, and let 

{bj^i I /? e a» A / E 2} c B. 

By Theorem 18,4 (below) we can assunie that 

{'in E cxj)[bno = ~bni]. 

Define u E by 

^(u) = ^(cb) A (in E 6L»)[Z/(/7) = by^i]. 

Then 

i.e. 

and by assumption 

[// c cl3]] = 1, 

E .^(co)J = 1 

I7/E,^(a.)l = 1. 

I = I» e = 2 I" = ■'I 

sg2^(“) 

2 I I bn,sin)' 
se2^ new 

Since also 1 = Onew (^no + /^ni). tfi'S completes the proof. 

by 1 above 

Remark. 

1. In the same way as we proved Theorem 18.2 we can prove the following: 

B satisfies the (a, 2)-DL iff |^(a) = = 1. 

2. Interpreted in the theory of forcing. Theorem 18.2 says: Let {T/, P> 
be a setting for forcing, let G be P-generic over M and let B be the 
.V/-complete Boolean algebra in M associated with P. Then B satisfies the 
(co, 2)-DL in M iff-1^(0;)'' = J>{ojy^^^\ 

Exercise. Give a direct proof of 2. 

Definition 18.3. Let a be a cardinal. B satisfies the restricted {a, 2)-DL 
iff for all families | / E / A / < 2} c g such that 1 = a and 

(V/E/)[/7jo = '^il] 

we have 

1 i (^iO + ^il) = 2 1 1 bi.fii)' 
iel fe2i iel 

Remark. Although this is a special case of the (a, 2)-DL, the two are 
equivalent: 
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Theorem 18.4. B satisfies the (a, 2)-DL iff B satisfies the restricted 

(a, 2)-DL. 

Proof. We can assume that « is an infinite cardinal. Suppose 

[an I / e / A 7 < 2) c ^ 

where I = a. Define T = {I x {0}) u (/ x {1}). Then T = a. For f e 2'^ 

define /c/i e 2‘ by 

./o(0 =/(A 0) 

./i(0 =/(/, 1) for ie I. 

Because of Theorem 4.2 it suffkes to show that 

n + Oil) ^ ^ n Oif(i)’ 
iel fe2' iel 

Let J = {j \j = </, fi) where i e I A n < 2}. For / = </, n} EJ define 

and let 

^jO ^jl ^i,n» 

^ = n + ^o). 
iel 

Then (V/ Ej}[bjo = bji], and since b < {QIQ + ^ji), 

l) ^■^<i,o>n — ^i.n* 

ii) ^•^<i.i>n < for / El,n < 2. 

Since Ujej (^yo + ^yi) = 1, 

1 = 2 /?;/(;■) by the restricted (a, 2)-DL, 
/e2^ jeT 

fo,fie2' iel iel 

There, using i) and ii) 

2 n OiJoii) n Oi.l-fiO) 
/o,/i62^ iel iel 

— 2 1 1 
fe2' ie! 

Remark. Other forms of the (a, /S)-DL can be obtained from the 
following theorem. 

Theorem 18.5. Let /, J be sets. Then the following conditions are 

equivalent: 

1. For all families {bn \ i E I A j E J} 

n 2 *» = 2 n *./<» 
iel jeJ feJ' ieJ 

(i.e. B satisfies the (/, y)-DL). 
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2. For all families {b^j | / e / A 7 eJ] £ 

(v/£yo n*,/<» = 0 ^ n 2 = 0 
ie; ie/ jeJ 

(i.e., in order to prove the (/, J)-DL NVC need only show that the left-hand side 
is 0 if the right-hand side is 0). 

3. For all families {b^j | / e / A / £7} ^ B and any b e B, 

16/ 

A (V/£/) ^ht, = b 
L jeJ 

b ^ 0. 

Proof. We need only show that 3 implies 1. Therefore let 

{//jy I i E I A / £ *^} — B. 

Let 

* = n 2 “ 2 n 
ie/ jeJ fe2' ieJ 

Oij = b • bij for /■ £ /, 7 £ y. 

Because of Theorem 4.2, we have to prove that /? = 0. 

2 “n = * 2 = 2 *»( n 2 “ 2 n 
je] jeJ jeJ V i'e/ ;'6/ /e/^ i'e/ 

= b 

and for f EJ^\ 

n*i«» = 
ie/ iel 

Applying 3 to the family {aij | / £ / A j ^J], we obtain = 0. 
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19. Independence Results Using the Models 

Theorem 19.1. Let B be a complete Boolean algebra which does not 
satisfy the (w, 2)-DL. Then IV ^ LI = 1 in 

Proof. (By the method of forcing.) Let M be a countable transitive 
model of ZT such that <A/, e, B^^'' is elementary equivalent to < L, e, B>, let 
G be P-generic over M (where P is the partial order structure in A/ associated 
with B'^). Then, by Theorem 18.2 

However, if M[G] satisfies V = L, then M[G] = A/. This is a contradiction. 
Therefore A/[G] 1= L / L and hence [[L / LJ = 1 in 

Exercise. Give a direct proof of Theorem 19.1 in 

Remark. We shall now present new proofs of the independence of 
certain axioms from the axioms of ZF -\- AC hy using the models'rather 
than the technique of forcing. 

Theorem 19.2. If B is a complete Boolean algebra satisfying the c.c.c. 
and the cardinality of 5 is < 2^°, then assuming the GCFl in V we have that 
the GCH is B-valid in 

Proof. Since (oja)'^ is definite, 

X {1}1 = 1 by Theorem 16.27. 

By assumption, has cardinality < (2’"^o)><« = by the GCH in V. 
Therefore there exists a (real) function 

Furthermore 9 is extensional: 
^ V' 

^ ^{(^a +1) ) (3^1, §2 ^ + l)[^fi ~ ^1 F U2 = ^2] 

[Il/l = Ufi 7^ 0 ^ l/i = i/2] 

[li/i = W2I ^ 0 -> l9(i/i) = 9(Z/2)1 = 1] 

-> 1^1 = ^^2! < = <p(i^2)l- 

By Theorem 16.8 there is an/e such that 
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and 

(V^ < <«„ + i)[I/(/) = 9(f')l = 1]. 

' i) I(Vfe(a,„,,r)[/(f)ei^((c.„r)]l 

= fi i/(/) 6 
4 < + 1 

= n 
^ < £*>£t + 1 

= n wf) e X {i}i = 1. 
<;; < oja +1 

ii) I(Vx6^^((a.„^))(3^e(co..l^)]/(>)) = x]i 

= n I(3’?eK-.in[/(’?) =-v]! 
xefiS‘((Wa)'') 

= n P^eKtinf/W = 9(f)ll 
^ < 0)a + 1 

since 9? is onto 
= 1. 

Therefore = •^((c^a)'^)I = 1 by i) and ii). Tliis proves that 

= (^Ol = 1 

= (a;„ + i)l = 1 by Corollary 17.5. 

(Va)[[2"& = tDa + il = 1 by Corollary 17.6 

[[(Va)[2"« = aj^ +JJ = 1 by Corollary 13.23, i.e., 
IGCH\ = 1. 

Theorem 19.3. Let n be an automorphism of B (TTG Aut (B)). Then TT 

can be extended to an isomorphism 

TT: 

such that for every formula 9? and u^, . . ., e 

• • •, Hn)} = • • •, 77-(?0)]]. 

Proof. Note that any automorphism TT: |B| -> |B| is complete since 
(V/?i, ^72 e/?)[/?! < b2 TT{bi) < 77(62)]. We define 77: —> by induction 
as follows: Let ue L^®\ Then 77(j/) e is defined by 

QTT{U) = {77(r) I V e Q{u)) 

and 

(Vr G i?(i/))[77(z/)(77(r)) = 77-(w(r))]. 

It is easy to prove by transfinite induction that 

77(|z/ = rl) = ll77(z/) = 77(r)| 

77(|// G r]]) = [[77(i/) G 77(1')]] 
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Also TT\ —V is onto. (Consider 7r~C C*'*’ the extension of 
7r"\ This 77"^ is the inverse of the extended 77.) The conclusion then follows 

by induction on the number of logical symbols in cp. 

Theorem 19.4. Let P be the partial order structure used in the proof of 

the independence of V = L. (Definition 11.1) and let B be the complete 
Boolean algebra of regular open sets of P. Then 0 and 1 are the only elements 
of B which are invariant under all automorphisms of B*. 

Proof. Let B and ()</?< 1. Then there exist p and q such that 

[/?] c h and [q] c -/?. By Theorem 1 1.6, ^77 e Aut (P) such that 77(77) and q 
are compatible. Using 77 to also denote the automorphism on B induced by 
77 we have 7T{b)-{~h) > > 0. Therefore 77(6) 7^/7. 

Theorem 19.5. (cp. Theorem 11.7) Assuming the GClf there is a 
Boolean algebra B such that the CC// is B-valid in but the statement 

“There is a definable well-ordering of .^(co)“ is not B-valid. (Here by “de- 
W V- 

finable" we mean “definable using constants k as parameters". Note that k 

corresponds to the constant ke C{M) in Theorem 11.7.) “There is a definable 
well ordering of -^feu)" is in fact a statement in the language of set theory. 

Proof. Let B be as in Theorem 19.4. Then B < and B satisfies the 
C.C.C., hence the GCH is B-valid in L“'’. Suppose there is a definable well- 
ordering of .:^(cu) in L'”’, i.e., there is a formula 99 (possibly involving con- 
stants k) such that 9? well orders ^(co), i.e., 

|{<.v, v> e .;^(co) X I 99(.v, v)} is a linear ordering]] 1 

and 

I(V.V ^ ^(co))[.V 7^ 0 ^ (3! Z E A')(Vv E x)q^{z, j)]! = U 

Define 

5 = {.V E I IA' E = 0} X {1}. 

We shall prove that 

i) [[(3.V)[A'E S]1 = \ A IS ^ = 1, but 
ii) /? = 1(3! A' E 5')(V;’ E S)(p{.x, r)l = 0. 

This gives a contradiction. 
Define UE by ^{u) — ^(co) and 

(V//E co)[i/(//) = [<{//}, 0, ]-°]. 

Claim: lu E = 0. 

[»s = 21" = -^1 
s E CO 

and for 5 ^ CD, 

lu = = Y\ w) ^ 
new 

* Some authors then say that B satisfies the 0,1-Iaw. 
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Suppose lu = .s'l 7^0 and let </?i, /?2> e I Lew ('/(//) s{n))- Then 

K/h, /^2>] ^ (n W) ^ 
' ne(^ 

and hence . 

(V^if72) <^/i,r/2>e/" A <quq2> < <Pu Ih} 

[<^/O<72>] ^ n ^ ^ ■ 
n€w 

Choose some n E OJ such that // ^ /A U 772 and define q = <^/i, ^/2'> by 

Since 

qi = Pi 

<72 = P2 ^ 

</i = Pi ^ >b?] 

</2 = P2 

if.v(/7) = 1 

iri(//) = 0 

(u{n) o s(n)) = //(/?) iri(//) = 1 

= -u(n) if.v(//) = 0 

and u{n) = [<0, {//}>] (by the exercise following Corollary 11.4) we have 

<<7i. <72> ^ (Pi^ /^2> and [<r/i, <72)] n Hnew (<<(/') ‘^('')) = 0, a contradiction. 
Therefore lu = .vj = 0 for all s ^ w, and hence 

|// e = 0 

as we claimed. Therefore ^{S) ^ 0 and hence [[(3A')[.V E S’]! = 1. This proves 

>)• 
If 77-6 Aut (B), and fr is the isomorphism from into induced by 

77 according to Theorem 19.3, then fr{k) = k and hence S' is invariant under 

7T. Therefore h is invariant under all TTGALUIB). Suppose b ^ 0. Then 

/? = 1 by Theorem 19.4. Define I'E by 

C/{v) = k?{d>) 

(V/7 e C<7)[7-(/7) = l{3x E S)(Vr E SfM.v, ,v) A // e x]j]. 

Since b = I, by the maximum principle there is a UQ E such that 

|z/0 e SI = 1 A [[(Vv e S)9?(7/o, v)]] = 1. 

[[7/0 = <’1 = [~[ [[/7 E Uo <> UE 7'J 
new 

= Y\ 1(3-^' ^ ‘S')(Vv G S)[99(A', V) A 77 G .V] --HE 7']] siiicc b = 1 
new 

= 1 by the definition of r. 

Therefore [[/’ G S]] = I. But for every n E co i {n) is invariant, hence v{n) = 0 or 

1, i.e., 

7' G 
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Therefore [[r G (.^(co))^| = 1. 
Since v e ^(S) this implies that 

1 = If e S] = 2 I-^ = '’1 2 2 ^ = <>• 
A:G:/(S) xe^(S) 

This is a contradiction which proves ii). 

Remark. Next we give a new proof of the independence of the Con- 
tinuum Hypothesis, however this time we use a measure algebra B. Let / be 
an index set of cardinality > let be a generalized Cantor space, 

the CT-algebra of all Borel sets of X, N the a-ideal in consisting of all the 
null sets for the usual product measure, and finally let B = Basic open 
sets of X are of the form 

^{Po) = {p\pe2^^^ A /70'i) = /7o(./i) A • • • A /;(./■„) = Poijn)} 

where PQ: {/i,. . ., /J 2 and /i,. . ., ^ G oj x I. Without proof we shall use 
the fact that there is a (unique) measure m for subsets of X such that 

m{U{po)) = (i)'" and m{X) = 1. 

With this notation we are prepared to prove the following. 

Theorem 19.6. B satisfies the c.c.c. and therefore B is complete. 

Proof. Let 5 ^ ^ be a set of mutually disjoint elements. We have to 
show that S < ai. Therefore we can assume that 0^5". Let = {b \ h G S A 

m{b) ^ 1/^^} for 11 G oj. Since the elements of iS are mutually disjoint and 

m(X) =\,S„ ^ 11 for all 11 G OJ. Since S — this proves that S ^ co. 

Since ^ and N are a-complete, so is B = z^/N, and therefore B is complete 
by Theorem 3.27. 

Remark. For this particular Boolean algebra B we can prove that the 
negation of the Continuum Hypothesis is B-valid in 

Theorem 19.7. For B defined as above, [[-i C//| = 1 in 

Proof. Define B-valued sets ip G for / G / as follows: 

^(Wi) = ^(co) 

(V/? G oj)[Ui{n) = {pe X\ p(ii, i) = 1}/N]. 

Obviously, 

1. (V/G/)[fi/, c cJil = 1]. 

Proof. Let /,y e I, i ^ j. Then 

lUi = = Y\ o ufn)) 
new 

= {pe X\ (ill G oj)[p{ii, /) = /7(/2,./)]}/N, 
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since the Boolean operations in B are the corresponding set theoretical 
operations. Let 

Sij = {pe X \ (V/7 G oj)[p{fu /) = p{fhj)]\. 

We have to show that G N, i.e., 5'i; -has measure 0. For arbitrary k e cxj let 

/?!,. . ., //;,. G CO be different natural numbers and 

Pi, • • ■,P2'^ t)G enumeration of all functions in 2^”^  

Define, for 1 < I < 2^, 

Hi = {pe X\ p{fh, i) = piOh) A • • • A p(n^, /) = p^{n^) 

A p{ni,J) = Piifh) A • • • A piUk,]) = 

Then Sij ^ u • • • u U2'^ and fn(ui) = 1/2^'% hence ni{Sij) < 2’"'-1/2^^^ = 
1/2'^. Since k was arbitrary, in{Sij) = 0. Thus 

2. (V/,7G/)[/ ^ = 7/J = 0]. 

Similarly, s ^ oj -> [z/j = 5| = 0. 

Therefore 

3. (V/G/)[[ZAG(^(co)n = 0]. 

Since B satisfies the c.c.c., co^, in is coi. Therefore 

H CHj = (coiDi 

If |—1 C/y| < 1, then by the maximum principle, 

b = I/: ^(co) <-^ (coi)l > 0 for some/G 

By 1, 

(V/G/)[P^ < d>,)[/(U,) = f]l > b] 

(Vi G /) 
{ <CJi 

Now we proceed as in the proof of Theorem 17.4: 

Since 7 > 2''^o, there exists an 17 ^ co, such that J = {/ E / j u, = rj} is 
uncountable. Moreover, if /, / EJ and / 7^ 7, 

= ^3 ■!/(»/) = < ^> ■[/(».) =/(»/)3 
< I»i = liji = 0 by 2. 

Therefore 

{*■)/(»,) = I /ey} 

is an uncountable subset of B, the elements of which are pairwise disjoint. 
However, the existence of such a set contradicts the c.c.c. in B, Therefore, we 
must have [-n CZ/J = 1. 

Kxercise. Prove Theorem 19.7 by using the Boolean algebra of Theorem 
11.10. 
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20. Weak Distributive Laws 

Again B denotes a complete Boolean algebra. 

Definition 20.1. B satisfies the (oj, oj)-\\'eak distributive law ((oj, 6D)-WDL) 

iflf for every family [b^m | e w} ^ B 

n 2 '’»>»= 2 n 2 *«»• 
m<o) n<co feco^ neco m^f{n) 

Similarly, if is not cofinal with ai, B satisfies the (oj, a)„)-w'eak distributive 
law iff for every family [b^^ \ n e <jo A ^ c B 

'• n 2 = 2 n 2 
n<U) fecoa^ neco ^:Sf(n) 

Remark. If c/(co„) > w, the right-hand side of 1 is equal to 

n<coa n<(o 

Theorem 20.2. If B satisfies the c.c.c. and cficoa) > then B satisfies 
the (co, ctj^)-WDL. 

Proof. Let {b^^ | /? < oj A ^ < cu^,} c B. Then by the c.c.c., for each 
n e oj there exists a countable set ^ B such that 

2 = sup Cn. 
^<(Oa 

Define r]o = sup {^ < | (3/7 e co)[bn^ e C„]}. Since cf(cof) > CXJ,7]Q < and 

hence 

(V/7 e a») 2 
!^<COa 

2 ’ 

O 2 “ 2 0 2 
n<(o ^<coa n<(Oa neco i^<.n 

Theorem 20.3. If cf{oja) > co, then B satisfies (co, coJ-WDL iff 

kA^c^y > a>| = 1. 

Proof. Assume that B satisfies the (OJ, OJJ-WDL. Let /e and 
b = lAd>-^{oj„Y\ i.e., 

b = |(Vx 6 co){'^y e (a^J")(Vz)[<x, z> e/^> z = >’]1 

= ri 2 I(Vz)[<«,z>e/^z = ^]l. 
neco {<Wa 
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Define = [/(/?) = 0, which should be understood as 

[[(Vz)[</7, zyef = 1^]]. 

Then 

* = n 2 
n<a) 

= 2 n2*»{ by the(^,a>.)-WDL 
V<0)a n<0) 

= 1(3,, < w„r(yn < a,)[/(o) < 

Since 

Icfiico^r) > ctil = I(V/)[if/: d3->(a;,rthen(3ry < (a;,)-)(V/7 < di)[/(//) < r^]]l 

this proves [c/((coJ'^)> a>1 = \. 
To prove the converse, let {bn^ \ n < oj A $ < cu^} c B and assume 

[[c/((coJ'") > ai| = 1. Define 

/e by ^(/) = {</;, \ n e oj A ^ < w„}, 

(V/7 G a>)(v^ < c.j[/«/7, iy^^) = 

Then again 

i) If: CO (a,„)l = n 2 
n<(0 i<C0a 

and 

ii) I/: c5 ^ (o-.n• 1(3,, < (u,,n(V/< < <^)[ f(n) <,,]!= 2 FI 2 *"!• 
Ti<o)a n<o} 

But, since [Ic/((a>J^) > tu]] = 1. 

If: ai->(ajJ'"]] < l{3r) < (a)J'")(V/7 < d))[Jin) < rj]}. 

Therefore, by i) and ii). 

n ^ - 2 r 12 
n<co i<coa Tt<coa n<CO 

Remark. Next we interpret the (co, co)-WDL: 

Theorem 20.4. B satisfies the (co, a;)-WDL iff 

[I(Vg)[if g: dj^d> then (3/G (a;")")(V/7 G aj)[g(/i) < /(z?)]]! = 1, 

i.e., if we define a partial ordering -< for the number theoretic functions by 
f <g<>(^n < aj)[/'(z7) < g{n)] for /’g G cu", then in the standard 
number theoretic functions (elements of are cofinal in the set of all 
number theoretic functions. 

Proof. Assume that B satisfies the (co, cu)-WDL. Let G L*'*’ and define 

b = lg:c^-^a>\ 

bum = Igib) = /z'/j] 

for n, m < co as in the previous proof. 
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Then 

* = 11 2 
n<(L> m<a> 

= 2 11 ^ by the (a;, co)-WDL 
/ea>“^ n<cj m^f(n) 

= 2 11 «.?('') ^ /('"'M 
/ew“^ n<o) 

h = [[(3/ G (t^"0")(V// < C13)[^I^(/7) < /(/?)]!. 

The converse is proved similarly. 

Definifion 20.5. A Boolean a-algebra B is a measure algebra iO' there 

exists a strictly positive o--measiire /;/ on B, i.e., a function from |B| into 

[0, 1], the closed interval of real numbers between 0 and 1, such that 

(V/) E B)[h ^ 0 - u]{h) > 0] A /;/(!) = 1 

and 

(V/7 E 5^0 (V/, / < oj)[i ^ j ^ h^-bj = ()]->/;/j 2 = 2 
'i < <i) i < 0) 

Remark. Note that a measure algebra always satisfies the c.c.c. and hence 

it is complete. 

Theorem 20.6. Every measure algebra B satisfies the (cu, co)-WDL. 

Proof. Let [b^^u I ^ Then for every real £ > 0 

(V// < co){3/ E a») m (2 “ 2 
' A- < cd k^l ^ 

Therefore 

(Vf > 0)(3/'E OJ‘0(V// < oj) 2 < W2 
k^f(n) 

Since 

r I “ n - 2 
i < u) i < 0) i < 0) 

(Ve > 0)(3/ E CO'O (ri 2 
n < c) k < (0 

n 2 ) < 2^ 
n<(j k^f(n) 

Therefore 

n 2/>-= 2 n 2 
n<o) k<c:) feo)^' n<co k^f(n) 

Theorem 20.7. The Boolean algebra of all regular open sets in does 

not satisfy the (oj, c/j)-WDL. 
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Proof. Define |/?(/?) = Then b^m is 

clopen and therefore it is regular open. Obviously, 

n 2 *”-« = •’ 
n<co m<cj 

• « 

but 

2 0 2 '’».« = »• 
/eaj“ n<(j mi/(n) 

for otherwise there exists some/e cu" such that 

0 7^ n 2 ^ n '^P ^ I 
n<(X> m^f(n) n<co 

= n ^ I 
n<u) 

Then there exist /?i,. . ., /?i, /j,. . ., 4 such that 

i) {/? e w" I p(/?i) = /i A • • • A /;(/7j) = /j] 

s (n { 
^ n<cj 

p E w" I pin) < fin)} 

Choose some HQ ^ {//i,. . ., /Zj] and f > /(/ZQ). Then by i), 

{p e I /7(/Zo) = /o A • • • A /7(/Zj) = /j} n PI {/) 6 co" I /7(/z) < /(/z)} # 0, 
n<co 

Since this intersection is empty we have a contradiction. 
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21. A Proof of Marczevvski’s I heorcm 

Definition 21.1. A set \s qnasi-disfaint ilT 

(V.v, r e ^/)[.v 7^ r ^ .v n v = P| a] 

Reniark. From Definition 21.1 a set a is quasi-disjoint ilT .v ^ 

implies that .Y is in at most one r G a. 

Theorem 21.2. (Erdos-Rado) Let «, y be cardinals with y > XQ- Then 

(V.v)[.v G .Y < «] A (V.v c is quasi-disjoint -> .Y < y] /I < y". 

Proof. For each 8 < we construct a set Af, c A such that 

a. (V8 < a + < y“] and 

h. A = [J A(,. 
d<a* 

This proves the theorem since .4 < 2"-y“ = y". We define A^ by recursion: 
For convenience we start with A_x =0. Suppose A^, for 8 < /S (where 
/3 < a^) has already been defined. Let 

A = U(U^d- 
(5</? ' ' 

For each K ^ En let 

/T = {.Y G /f I .Y n = K] 

and let A * be a maximal quasi-disjoint subset of A. Moreover, we require 
that if 

(3A, AG A)[Anr= A] 

then A* contains all such S and T. In this case, H since A* is 
quasi-disjoint. Finally, 

•4/. = U {^'* I X S Ee\- 

Claim: {A^ \ 8 < satisfies conditions a and h. 
Clearly, Af, ^ A. We prove a by induction on ^ \ Suppose ^ 

and (V8 < ^)[Af, < y^]. Then Ep < a-y" = y" since (V.Y G ^^)[.Y < a]. For 
K c Ep, A* < y by assumption. Since A* 7^ 0A 7^ 0 A A" < a, 

= IJ {A» I A' £ A A < a}. 
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Since has at most (y")“ = y“ subsets of cardinality < a, /!/? < y“-y = y“ 
To prove b, suppose that 

A — A^ ^ 0. 
(5<a + 

Let S e A — [Jd<a^ A^, and for 8 < a^, let = Sn E^. Since 5 e K^,K* 7^ 0. 

Claim: (V8 < a^)(3TG KS^)[S n {T - E,) 7^ 0]. 
Suppose (VTG K*)[S n {T — E^) = 0] for some 8 < Then 

(VTG Kt)[S nr^ SnE, = K,= Tr^E,] 

since T G Therefore 

(V7'GA:*)[5n7’= K,\ 

Since Kf 7^ 0, by our requirement on A"* 

n 
Therefore A* u {S'} is quasi-disjoint. Since A"* is maximal, S G A"* A^. But 
this contradicts our assumption that S 6— U<^<a'*' A^. Therefore we can 
choose .Y^, such that 

(V8 < a^)[r, G A* A X, E S n (T, - £,)]. 

8 < < a * ^ .Y, e r, E y /)„ £ £■„ A .Vj ^ £■«. 

So {.v^ I 8 < a"^} c s and {.Y<) | 8 < has cardinality a"". This is a contra- 

diction, since S G A and hence S < a. 

Remark. Engelking and Karlowicz used this result to prove the following 
theorems: 

Theorem 21.3. Let a, y be cardinals with y > XQ. Suppose that A = 
{At I t G T} and | t G T} satisfy the following conditions: 

1. (V/ G T)[At < a t\ Bt < y]. 
2. _(V/, t' G T)[t / t' At r\ Bf ^ ^ A n = 0]. 

Then T < y“. 

Proof. Note that ^ = T by 2. We will show that A satisfies the condi- 
tions of Theorem 21.2. Let {/I, | / e To} be quasi-disjoint, 0 ^ TQ ^ T. 

Choose fo G TQ and define 

Ct = At n Bt^ for i GTQ - {/o}. 

Then we claim that 

i) (VreTo - {to})[Ct 7^ 0], and 
ii) (V/, I'GTO- {M)[/ t'->CtnCr = 0]. 

Claim i) follows from 2. Claim ii) we prove in the following way. 
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Suppose A* e C, n C,- for some t, t' E TQ — {/Q} with t ^ f'. Then 

X G At At' = At" 
reTo 

since {A,-> \ f" ^ T'o) >s quasi-disjoint 

e '^lo ^ n ^h = <>■ 
reTo 

This is a contradiction. 
Therefore, for each t GTQ — {/o] we can pick A', G Ct ^ Bto ^'-'^'1'' 

f, f' G TQ — {/oi cind / # f' ^ Xt 9^ Xt. Hence 

^0 ^to ^ y- 

Corollary 21.4. Let y be a cardinal with y > Ko- If 

1. {'it G T)[At < CO ^ Bt < y]. 
2. (V/, t' G T)[t t' Atr\ Bt> ^ 0 ^ Atr\ Bt = 0], 

then T < y. 

Proof. Let A^”^ = {At | / e 7' A At ^ u] for n G co. By Theorem 21.3 

(for a = //), = y" = y- 

Since A ^ {At \ t GT] = [Jn<co A = T < y. 

Theorem 21.5. (Marezewski) Let / be a set and {X^ \ i G I\ be a family 

of topological spaces such that each has a base hi of cardinality < y. Let 
X = ]~[jg/ Xi be the product space. If \ f G T] is a family of pairwise 

disjoint open sets of X, then T < y. 

Proof. We can assume that A''; n X^ = 0 for / 7^ /' and X^Gb^ for 
/, i' G I. Let 

Pj:Y\Xt->Xj, JGJ, 
iel 

be the canonical projection, 

o/» = 

be the /th-component of 
Since is open, {/ e I \ 7^ TJ is finite and is open in Xt for each 

/ G I. We can assume that 

i'ii G l){'it G T)[Of^ / 0] 

and 

{iiGl){itGT)[OrGb,l 

since each Of'’ contains a basic open set. In order to apply the previous 
corollary, define 

At = [Of’ \iGl A Of’ ^ Xt} 

8,= (J {h \ h e h, A b n 0,<‘> = 0}, le T. 
iel 

0(('>7X( 
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Then (V/G7')[.^f < co ^ B, < y] since {/G/| / X] is finite and 

(V/ G I)[6, < y]. 

1. ('iteT)[Atn B, = 0]. 

Suppose not. Then for some t e T, and'/G /, 

E At nB„ 

i.e., OA'* G hj and OA'^ n = 0 for some / G /. Since Xi r\ X, = 0 for / 7^ /, 
we must have / = /, but then 

n (9/» = 0. 

This is a contradiction. 

2. t, t' E T A t ^ t' At n Bf 7^ 0. 

Let A r' G T, / 7^ Since n = 0, 

(3/G/)[(9/‘^ n (9«') = 0]. 

Then G /f, n and hence we have 2. Therefore Corollary 21.4 applies, 

and we have T < y. 

Corollary 21.6. If [X, \ i E I] is a family of topological spaces {/ a set) 
and each Tj has a base of cardinality < y, where y is an infinite cardinal, then 
the Boolean algebra B of all regular open sets of the product space fdie/ -^1 

satisfies the y-chain condition. In particular, if each Tj is 2nd countable 
(i.e., A^j has a countable base) then B satisfies the c.c.c. 
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22. The Completion of a Boolean Algebra 

For the following let A" be a topological space, and let S ^ x be a subspace 
of X with the relative topology. The topological operations ", ° and 
refer to X and 5 respectively. 

Theorem 22.1. 

1. A ^ S-^ A-^ = A- n S. 
2. A ^ S^A^^ = S - {S - A)-. 

Proof. 1. Let ^ S'; then obviously 

c /j- n S. 

Conversely, let /; E /I “ n S. Then 

peS ^ {'iN{p))[Nip) n ^ / 0] 

{^N{p))[N{p) n S n /t 0] since A S 

(VA^^(/7))[iV^(/7) n /t # 0] 

i.e., 
pe A-^. 

2. Follows from 1. 

Theorem 22.2. \f A ^ S, if S is dense in X, and if A is regular open in 

S then A = A~^ n S. 

Proof. Let /t c S be regular open in S. By Theorem 22.1.1, A~^ ^ 

A~ n S. Then, since /I n S is open in S, 

A-° n S ^ (A~^f^ = A. 

On the other hand, ifp ^ A, then since A is open in S, there exists a N{p) such 
that Nip) n S ^ A. Since S is dense in X, N(p) ^ (X(p) n S)~ ^ A~. Thus 
/? E /l-o n S. 

Theorem 22.3. Let S be dense in X and let /I, B be regular open (in X). 

Then A n S ^ B n A g B. 

Proof. A = A n S~ ^ (A n S)~ ^ (B n S)~ ^ B- 

A ^ B~^ since A is open 
A ^ B since B~^ = B. 
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Theorem 22.4. If S is dense in X and A is regular open (in X) then 
/I n 5 is regular open in S. 

Proof. We need only show that {A r\ ^ A~^nS for by the 
proof of Theorem 22.2 we know that.the reverse inclusion holds. Let 

• % 

p E (A n 

then 

(3X(p))[N(p) n S ^ (A n S)~ n S] by Theoiem 22.1 
/V(p) = N(p) ns- ^ (JV(p) n S)- ^ (A n S)' ^ A'. 

Thus 

p E A-° n S. 

Remark. As a consequence of Theorems 22.2-22.4 we have the following. 

Theorem 22.5. Let S be dense in X and let B and BQ be the complete 
Boolean algebras of all regular open sets in X and S respectively. Then BQ 

and B are isomorphic. An isomorphism /: BQ B is given by 

t>Q = /(^o) ^ S for ^ >^0- 

Proof. For hoE BQ, define /(/?o) = Then /: BQ-> B and bo = 

i{bo) n S, by Theorem 22.2. Let h E B. Since b n S \% regular open in S (by 
Theorem 22.4), i{b n S) = b. Therefore / is onto, is one-to-one, by 
Theorem 22.2, and by Theorem 22.3 it preserves <. 

Definition 22.6. Let BQ be a Boolean algebra (which need not be com- 
plete). A completion of BQ is a pair \B, /;> such that: 

1. B is a complete Boolean algebra, 
2. /?: BQ-^ ^ is a monomorphism (i.e., one-to-one), 

3. if ba = bin BQ, then = M^) in B, 
4. //“(^o — {0}) is dense in 5 — {0}. 

Remark. Our next result shows that every Boolean algebra has a com- 
pletion which is unique in a certain sense. 

Theorem 22.7. Let B be a Boolean algebra (not necessarily complete) and 
let P = <7*, <> be the partial order structure determined by B, i.e., 
P = B — {()} and < is < in B. Let B be the Boolean algebra of all regular 
open sets in P and let /: B ^ B be defined by 

7(0) = 0 A (V/; E P)[j{p) = [p]]. 

(Since P is fine we have by Lemma 5.22 that [/;] = [p]"°.) 
Then <B, /> is a completion of B. Moreover, if <Bi,/> is any completion 

of B, then there exists an isomorphism 

A-; B Bi 
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such that the diagram 

commutes, i.e., k o j — f. 

Proof. is dense in B because {[/?] | p E P] is a base for open sets in 
P. Repeating the proof of Theorem 1.30 we see that <B, /> is a completion of 
B. If Bi,/> is any completion of B, 5' = ,/“ {B — {Oj) is dense in — jOj. 
Thus by Theorem 22.5 the Boolean algebra of regular open sets of S is iso- 
morphic to the complete Boolean algebra of all regular open sets in Bi — jOI 
which is isomorphic to B^ by Theorem 1.40, and hence also to B. This gives 
an isomorphism A : B B^ as required by the theorem. 

Remark. By “the" completion of a Boolean algebra B we will mean the 
Boolean algebra B defined in Theorem 22.7. We will regard B as a subalgebra 
of B by identifying B and /“fi. 

Theorem 22.8. Let X, Y be topological spaces and let /: X Y ht an 
open continuous map onto Y. Then for B ^ Y WQ have, 

1. (f-TiB-) = nf-^rB))-. 
2. if- T(^°) = ((/'TW. 

Proof. LetxG(/ )• Then/(x) G ^ and hence 

(V2/(/(x)))[A^(/(x)) n ^ # 0] 
(VA^(x))[/‘W(x) n ^ 0] since /is open 

(V^(x))[yV(x)n(/-T^7^ 0]. 

Thus 

xEiif-^TBY. 

On the other hand, ^ {f-Y\B~) since (/“ ”) is closed. This 
proves 1. 

2. Follows from 1 since/is onto. 

Remark. From Theorem 22.8 the next result follows easily. 

Theorem 22.9. Let T, Y be topological spaces and let /: T F be an 
open continuous map onto Y. Then / induces a complete monomorphism 
/: By -> Bx such that 

{'ihEBy)[i{b) = {f-Thl 

where B;^ and By are the complete Boolean algebras of all regular open sets 
of X and Y respectively. 
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Remark. Let BQ, be complete Boolean algebras and let /: BQ Bj be 
a complete monomorphism. Define 

Po = and Pi = <> 

by PQ = BQ — {0}, = Bi — {0|. We would like to define an open continu- 
ous mapping 

/: Pi Po 

such that the associated complete monomorphism from BQ into Bi is i. For 
this purpose, define ^ih^) = inf | i(bo)} in BQ. 

(We use bo, as variables ranging over BQ and ^i respectively.) Under 
these assumptions we can prove the following. 

Theorem 22.10. 

1. ^ 
2. b, = 0->#(/7i) = 0. 
3. mbo)) = bo. 
4. < iibo) <-> #{b^) < bo. 

5. bQ-#{b,) = mbo)-b,). 
6. /(/7o)-^i = ^^bQ-§{b^) = 0. 

Proof. 1-4 follow from the definition of §. (Note that BQ and Bi are 
completed and so is /.) 

5. i{bo)-b^ < /(^o-#(^i)) by 1- 
by 4. 

Suppose #(/(^o)-^i) < bo-jf{b^), then 

bi = (/(^o)-^i) + (^i-("/(^o))) 

< i{§{i{bo)-bf) + #(/7i-("/(^o)))) by 1. 

Since b^ < /(#(^i)), 

i{{~bo)-#{bfi) = ^ ii~bo)-by by 3, 

(■ ^o) • #(^i) > #( ■ i{.bo) -bf) by 4, 

hence 

/>! < /(#(/(^o)-^l) + ((■^o)-#(^l))) 

bi < /((^o-#(^i)) + (’(/^o)-#!^!))) by assumption 
bi < 

Thus we have 

*1 < i(b'o) < /(#(*i)) 

where b'o = #(/(/’o)'^i) + #(^i-("^(^o))) which contradicts the definition 
of#. 

6. Follows from 5. 
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Theorem 22.11 

I- = [i(ho)]. 
2. § is an open continuous Fiiap from onto PQ. 

3. The complete monomorphism from BQ into B, associated with # is /. 

Proof. 

1- ->#(^) < bo 
< -b^ < i{bo) 

- - /)i e [/(/?o)]- 

2. ^ is continuous because of 1. We will show that is open for 
every 

Let bo^rib,] . If b'o < ho, then since # is order preserving h'o < §{bi) 

and hence 

b'o = b'o-#{b^) = f{i{b'o)-bf} by 5 of Theorem 22.10 

^r[b,i 

hence [Z7o] ^ 
# is onto by Theorem 22.10.3. 
3. Obvious from 1. 

Remark. Next we prove that is uniquely determined by the properties 
2 and 3 of Theorem 22.11. 

Theorem 22.12. If 

/: 

is open and continuous and induces /, then 

E F0[/(/^i) = Mb,)l 

Proof. There are two complete monomorphisms: 

./• Bpo 

induced by / via Theorem 22.9, and 

/. BQ ^ ^3^. 

These monomorphisms are related to each other by 

IKbo)] = J([bo]) 

via the isomorphisms BQ B,.^, Bi B,.^ which are given by b [/?]. Since 
/induces j in the sense of Theorem 22.9, we have, using Theorem 22.11.1 

(/-^)“[^o] = ./([/>o]) 

= [/(^o)] = 

J87 



Therefore, for all bo E BQ and bi e 

#{b,) < bob, < i{bo) 
<^/(/7l) < bo 

which gives #{b^) = f{b^). 

Theorem 22.13. Let BQ, B2 be complete Boolean algebras, let 

/l ^ BQ —> B^ 

/2 ^ Bj ^ B2 

be complete monomorphisms and let be the open continuous mapping 
associated with /y {j = 1,2), i.e.. 

If i = /a o /’i and # = #i ° #2, then induces /. 

Proof. B2 -> Bo is open, continuous and onto BQ. 

hence 

= (/2 ° h){bo) = i{bo). 

Remark. We are mostly interested in the case where Bo is a complete 
subalgebra of B^ and / is the identity on Bo. Suppose that there is a big 
complete Boolean algebra B such that all the complete Boolean algebras 
under consideration are complete subalgebras of B. Thus, if Bo, B^ are com- 

plete subalgebras of B and Bo ^ Bj, we denote the map Bi Bo associated 
with /: Bo —> Bi, where / is the identity map on Bo, by #(Bo, BJ. Then by the 
definition of # 

Z)6^I->#(BO, B,){b) = #(Bo, B)(Z7). 

Therefore we can simply write #(Bo) for #{Bo, BJ. 

Definition 22.14. Let K be a cardinal or On. 

<{T“ \ a < K}, {pa0 I a < ^ < K}> 

is called an open, continuous and onto (o.c.o.) inverse system of topological 
spaces iff 

1. 3^“ is a topological space. 
2. Pa0'. -> is an o.c.o. map. 
3. Paa is an identity map. 

PaP'P&y Pay 

For an o.c.o inverse system, we define a topological space X = lima-^- in 
the following way. 

Let 

X = {/€ n I (VCC < ;S < K)[pMm =/(“)])• 
aeK 
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The topology on X is defined by the following open base. 

T = I a < K A (Ga is open in X^)} 

where 

= {fE x\f{a) EG,}. 

We define Pa' XX^ by Paif) = /(«)• 

Remark. Then the following result is obvious. 

Theorem 22.15. T> is a topological space, /?„ is an o.c.o. map and 

Pad ° Pd ~ Pa- 

Definition 22.16. Let K be a cardinal or On. 

<{B^ !«</<}, {i^p \ a < ^ < K}} 

is called a direct system of complete Boolean algebras iff {a < K) is a 
complete Boolean algebra and /'a^: B^ ^ B^ is a complete isomorphism such 
that 

1. iaa is an identity map. 
2. ipy o i^p = 

Remark. We assume that B^ is a complete subalgebra of B^ i fa<d<'<. 
Under this assumption Ua<K: ^a becomes a Boolean algebra B' if we define 
bi + b2, bi-b2, ~b by bi + ^2? ~b in B^, where a is the least ordinal a 

such that, bi,b2^^a or ^ e B^ respectively. These definitions-are unam- 
biguous since B^ c B^ for a < jS. B = lima_^. B„ is defined to be the com- 
pletion of B'. 

Theorem 22.17. B„ is a complete subalgebra of B. 

Proof. Let S ^ and /?o = FI 'o i.e. b^ = n”“ | ^ e 5}. Let 
b E B and suppose that (Vx 6 S)[x > b]. We would like to show that bo > b. 

Since b E B have b E Bp for some /S. Then either b E B^, and hence 
b < bo, or ^ > a. But if /S > a then B^ is a complete subalgebra of B^ and 
hence bo = FI”" = FI”'’ S > b. 

Theorem 22.18. Let /< be a cardinal or On. Let 

<{T“ \ a < K), {p^p I a < /3 < K}> 

be an o.c.o. inverse system and X be lim^^^ X“. Let B^^ be the Boolean algebra 
of regular open sets in X“, let iap'. B„-> B^ be the complete isomorphism 
induced by p^p (Theorem 22.9) and let B = lima-^^^ B^.. Then B is isomorphic 
to the Boolean algebra of regular open sets Bx of X. 

Proof, By Theorem 21.1, it is sufficient to show that Bx is a completion 

Ua<;c ^a- this purpose we have to show (i) each B^ is a complete sub- 
algebra of Bx and (ii) Ua<K: is dense in Bx — {0{. Since the pro- 
jection Pa'. X X^ is an o.c.o. map, by Theorem 22.9, /?„ induces a complete 
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inonomorphism ^ Bx, where /„(/?) = {pa for b e B^. This proves 

(i). To prove (ii), it suffices to show that 

(3cc)(3(ja)[(Ga is a nonempty regular open set in T“) A ^ G]. 

(Since I'aiGa) = Ga, Gcc is a nonzero element of B^ which is below G and which 
belongs to Ua<K ^a-) Since G is nonempty and open in X, there exists an a 
and a nonempty open set in such that Oa ^ G. Define in 
X^. Ga is nonempty and regular open in It is easily seen that 

G^ c c-° = G. 

Theorem 22.19. Let /< be a cardinal or On. Let Xi (/ < K) be topological 
spaces and define X“ = rii<a for a < K and X = rii<»c A-product 
topologies. We define Pai3{<^ < ^ < K) to be a projection from onto X^. 
Then {{X^ \ a < K], \ a < ^ < K}} is an o.c.o. inverse system. 

Moreover, if C/'(K) > A, then X is homeomorphic to lima_^. X“. 

Proof. (We prove only the second part leaving the proof of the first 
part to the reader.) Let d>: X-> X' = lim„_;,. be defined as follows: 
d)(/)(a) = /r a. Then is one-to-one, onto and continuous. To show that 
d) is an open map, let G = riv<v Gy be an open set of X, where = X^ 

except for < A number of i^’s. Since c/(/c) > A, sup | O^, ^ X^,} < K. Let 
it be and let 

G, = n '"“Ov 
v<a 

Then G^ is a basic open set in X' and Gg ^ d>(G). So d) is open. Therefore 
X ~ X'. 

Theorem 22.20. Let K- be a cardinal or On. Let 

<{T“ I a < /<}, {pc,0 I oc < ^ < K}> 

be an o.c.o. inverse system and X = lim^..^- X^. Let T be a topological space 
and <7^: Y X“ (a < K) satisfy the following conditions 

1. is an o.c.o. map. 

Pa/} ° ^a- 

(commutative). 

Then there exists a dense subset XQ of X and an o.c.o. map q: Y XQ such 
that qa = Pa ° q- 

Y X^ 

' Pa (projection) 
I 

To 

(commutative). 
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If, in addition, Y satisfies the following condition 

then q is a homeomorphic map from Y to XQ. 

Proof. Define q by 

(<7(>’)){«) = qaiy)- 

Obviously q{y)^ X and q^ = Pa ° ^/- Define 

^0 = {q{y) I ve Y). 

1. A'o is dense in X. 
Let xe X and let G be an open set with x E G. Then there exist a < K and G^ 

such that Ga is open in X^ and 

X E Ga ^ G. 

Take y ^ {qa~^y'Ga and define XQ = <7(>’)- Then AQ E Xo and XQ E G, i.e., 
G n JLQ 0, 

2. q: Y^ XQ is o.c.o. 

Obvious. 
3. If Y satisfies the additional condition, then q is one-to-one. 
An o.c.o. map is homeomorphic if it is one-to-one. 

Remark. We cannot improve Theorem 22.20 by adding XQ = X as is 
easily seen from the following counterexample. 

Let K = w and X^ = 2^ with the discrete topology. If Pnmif) = n, 
then X = lim„_^^ X^ is homeomorphic to 2'*^ with the product topology. Now 
define Y = {f E X \ (3A7 < co)(V/n)[/7 < m < OJ ^ f{m) = 0]} and qa = Pa ^ 
The desired q is uniquely determined by (^(T))(a) = /?«(>’) for y e Y. Then 

Zo = f^Y^ X. 

Definition 22.21. Let X and Y be topological spaces. A map /: X—> Y 
is a topological embedding if /: -> P'X is a homeomorphism. 

Definition 22.22. A topological space X is called atomic if for every 
X E X there exists a smallest open set Go such that x E GQ i.e., (VG)[.v E G and 
G open Go ^ G]. This open set Go is denoted by [x]. 

Remark. If P = (P, <> is a partial order structure, then the topological 
space of P is atomic and satisfies the To-axiom of separation. On the other 
hand, if X is a 7o-space and atomic, then we define x < >’ by [x] ^ [y]. This 
then becomes a partial order structure. Therefore we may think of the two 
notions partial order structure and atomic To-space as the same. 

Theorem 22.23. Let Pi = <Pi, <i> and P2 = <7*2, :^2) be partial 
order structures and 

i:P, 1 -1 
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Then “/ is a topological embedding” is equivalent to 

‘‘(V/7, ^ 6/’i)[/7 <^q<-i{p) <2i{(l)V' 

Proof. Since Pi and P2 are atomic^To-spaces, this is clear. 
* » 

Theorem 22.24. Let Pj = <Pi, < i> and PQ = <Po» partial 

order structures and p \ Pj —^ PQ be o.c.o. Then 

1. for every ,Y, y ^ PI 

X s , 1’ ^ p(x) < 0 /'(,1'). 

2. p“[.v],., = [/»W],.„. 

Proof. 

1. Suppose -v < 1 y. Then -Y6[v]i.j ^ (/^“M“[/KT)]I*O (^i'lce p is con- 

tinuous and [r]i.j is the smallest neighborhood of r). Therefore 

p{x) E [/^(y)],.^. 

2. ^ [/H-V)]I.Q since p is an open map. Therefore /?“[.Y],.J = 

[M-v)]po. 

Definition 22.25. Let /< be a cardinal or On. A system {{P^ | « < K], 

{Pccn I « < /3 < /<}> is called a normal limiting system of partial order struc- 
tures iff 

1. P(j is a partial order structure for every a < K and <{P„ | a < K), 

[Pcc^ I cc < ^ < K}} is an o.c.o. inverse system. 
2. Po c Pi c . . . c c . . . (a < K). 

3. If .Y G Pa and a < jS, then 

Pani-^') = -V. 

4. = Ml*/, if-VGP„ and a < ^ < K. 

Remark. 4 is equivalent to the following: 

4*. For x E Pa, y e P^, a < ^ < K, 

Pafiy) < x^y < X. 

Example. Let BQ ^ B] c . . . c c . . . (« < ,c) be a direct system of 

complete Boolean algebras. Let P„ be the associated partial order structure 

for B„ and let Pa^ be f^ae (see Theorem 22.11). It is easily seen that this is a 

normal limiting system. 

Theorem 22.26. Let K be a cardinal or On. Let PQ ^ Pi ^ ^ Pa ^ • 

(a < K) be a normal limiting system. If .Y, J’EP^ are compatible in P^ for 

a < ^ < K, then .Y and y are compatible in Pa. 

Proof. Suppose (3r E P^)[r < .Y A r < y]. Then Pasi^:) < -V and 

Pasiz) < y. 
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Theorem 22.27. Let K be a cardinal or On. Let PQ ^ Pi ^ ^ Pa ^ • 
(a < /<) be a normal limiting system. 

4'. If A' G Pa, V e Pp, a < ^ < K, then 

Comp (A, Pap(y)) <> Comp (A, r) 

Proof. It is easily seen that the latter implies the former. Now assume 
A and Papiy) ^re compatible. 

(3z G Pa)[z < A A Z G [/7a^( v)]i*„ = /’aU v]pj by 4. 

Therefore 

(3w G Pp)[u < y ^ z = Papin)]. 

Papist) < X -> u < X. (Use 4*.) 

So, A and y are compatible. 

Remark. A weakly normal limiting system is obtained from a normal 
limiting system by replacing 4 by 4'. Actually, what we mainly use is a 
weakly normal limiting system. However, in many cases, the two definitions 

are equivalent as is seen in the following. 

Theorem 22.28. Let /< be a cardinal or On. Let PQ ^ Pi ^ ^ Pa ^ • 
(a < /<) be a weakly normal limiting system. If iJa<Ac Pa satisfies 

5. (V/7, q G lja<^ fa)Ul ^ P ^ (3^ ^ IJa < H: Pa)[f < q ^ -iCoilip (/', /7)]] 
then the system is a normal limiting system. 

Proof. We have to show that 4* follows from 4' and 5. For that, let 
A G Pa, V e Pp, and a < ^ < K. Suppose Papiy) < x and v x. Then by 5 
there exists a y > 13 and 'd z E Py such that z < r and z and A are incom- 
patible. By 4'A and Pay{z) drc incompatible. On the other hand, by Theorem 
22.24, Pap(z) < Papiy)- Therefore Papiy) ^ A', a contradiction. Hence 

Papiy) < A-^j < A. 

Conversely if >’ < A then, again by Theorem 22.24 Papiy) < Papix) = A. This 
proves 4*. 

Theorem 22.29. Let /<• > to be a regular cardinal or On and 

<{Pa I a < K}, {pap I « < /3 < K}> 

be a normal limiting system. If Pa = Ui<a Pi every a < K with cfia) = co, 
and if ^a < for every a < K, then ija<ic Pa satisfies the K'-chain condition. 

Proof. For a member AG lJa<K- Pa^ define |A| to be the least ordinal a 
such that A G Pa. Then we have 

A G Pa ^ OJ. 
a<K 

Let /I be a maximal pairwise incompatible subset of Ua<M: Pa- It suflices to 
show that A < K. 
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We define the sequence of ordinals < • • • < li < • • • < /c (/ < cu) by 

induction on /. Define |o = C). Suppose that it < K has been defined. Take an 

arbitrary element x of P^. — A. By the maximality of A, there is an element 

c’x of A such that and x are compatible. Define 
• « 

+ i = max(^i + l,sup{l6r;,| | x e - /t}). 

Since < K and K is regular, fi + i < K. 

Now let 7] = sup [Ij I / < co]. Then rj < K and cj\r}) = oj. We claim that 

A c which implies A < K. Suppose not. Let aeA and a ^ Pr,. Let 

a G Pp where y] < ^. There exists an n such that p„p{a) E Then 

{3be A n P.^ ^ J[Comp {h, Pr,p{a))] 

(Take b = Now we have two properties. 

1. a and b are incompatible. 

2. /^r,/?(^) and b are compatible. 

This is a contradiction since by 4*, Ppp{a) < a. 

Theorem 22.30. Under the same conditions as in the preceding theorem, 

let be the complete Boolean algebra of regular open sets in P„, let B = 

Ua<ic and let B to be the completion of B. Moreover, let B^ and Bg be 
the complete Boolean algebras of regular open sets in IJ P„ and in lim„_^ P^, 

respectively. Then 

i) B satisfies the /<-chain condition, 

ii) B = B, 

iii) The three complete Boolean algebras B, Bj, and B2 are isomorphic. 

Proof, i). Follows from ii), iii), and Theorem 22.29, 

iii). Since, by Theorem 22.18 B ^ B2, it suffices to show that B^ ^ B2. 

Clearly there exists a projection qp \ Ua<v Pa P/? such that 

1. <7^ is an o.c.o. map. 

2. Pa^-q^ = qa{oc < ^ < K). 

(Let of^. = /Li„(x E Pa) for x E Ua<K Pa and take as follows: 

qeix) = PpaA^‘) ^ ^ 

= X otherwise.) 

Define/v(/^) = qp{.\) for XE Ua<K- Pa- Then by (2) above, Pap °f{^) =/(«) 

and hence /v E lim„_^. P„. Moreover, if .\ ^ y then f^i^fj. Therefore 

Ua<K- Pa is densely embedded in lim„^^. P„. So by Theorem 22.5, B^ ^ B2. 
ii). It suffices to show that B c B. Suppose ^ E B, 7^ 0. Let 5 = 

{/? E ^ I 0 < 6 < h). Take A to be a maximal incompatible subset of 5. Then 

we have 

3. b = sup A. (For, suppose b > sup A, and consider b - sup A. Then 

we have a contradiction.) 

4. ^ < K. (This follows from B ^ Bj and Theorem 22.29.) 

Therefore we have (3a < K)[A C Ba]. Since B^ is complete, b e Ba ^ B. 
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Corollary 22.31. Let K > CO be a regular cardinal and BQ ^ BJ C . . . c 
B„ c . . . (a < K) be a direct system of complete Boolean algebras such that 

B„ is a completion of U/{<« every limit ordinal a < K. Define B = 

Ua<»c the completion of B. If (Vo: < K)[Ba < then 

1. B satisfies the K-chain condition and 

2. B = B. 

Proof. Define C„ (a < K) and C as follows, 

i) Co = {b eBo\b> 01. 

'') 0 + 1 = [b ^ Pa + l I ^nib) e C„}. 
iii) Ca = U/?<a O every limit ordinal a. 

iv) C = C,. 

Define = <C„, <> and apply the theorem. 
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23. Boolean Algebras That Are Not Sets 

When for a given axiom (Va)A(a), one wishes to build a model of 
ZF + (Va)A(a), he is often lead to the existence of complete Boolean algebras 

for which 

1. satisfies ZF + (Va < ^)A(a), and 
2. The cardinality of |B^| increases as ^ increases. 

In this situation, the natural idea is to find a certain limit B of B^ and to 
prove that V'“ is a model of ZF + (Va)A(a). 

In almost all cases, however, the limit algebra B is not a set, it is a proper 
class. In general if a complete Boolean algebra is not a set, then may not 
satisfy the Axiom Schema of Replacement or the Axiom of Powers. Therefore 
we need a general theory about conditions we should impose upon B in order 
that V** satisfy the Axiom Schema of Replacement and the Axiom of Powers. 

Another interesting problem is this: We do not have many useful ways to 
define limits of Boolean algebras. Therefore we tend to think in terms of 
limits of topological spaces or limits of partial order structures. At least one 
can make a partial order structure which is dual to B^. Then we can 
take P, a limit of P^, and define a limit of B^ as the dual Boolean algebra of P. 
In our opinion, one of the most interesting problems in set theory is to 
investigate what effects the special kinds of limits of partial order structures 
or topological spaces have on the limit Boolean algebra B and the Boolean 
valued universe In this section we will see that a limit topological space 
which is simultaneously a direct limit and an inverse limit of a certain se- 
quence of topological spaces plays an important role. We believe strongly in 
the importance of the investigation of many other kinds of limits of Boolean 
algebras. 

Until now' we have considered only Boolean algebras which are sets. This 
requirement enabled us to prove the Axiom of Powers and the Maximum 
Principle in We shall now drop this restriction and allow B to be a class. 
However, in many applications B is not even a class of sets but a class of 
classes. Consider e.g., a partial order structure P = (P, <> where P is 
a proper class. Then the complete Boolean algebra of regular open classes in 
P contains classes some of which are proper classes. In order to cope with 
this situation we shall consider two cases. In the following we shall use B 
for a Boolean algebra which is a class of sets and B for a Boolean algebra 
w hich is a class of classes. In the second case we obviously need a set theory 
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which is stronger than ZF. Note also that for B as above the completion of 
B is of type B. 

If we consider B as above we do not require that B be complete but 

satisfy the following weaker condition’. 

(VA c B)[,//(A) -> (3x G B)[x = sup A]]. 

On the other hand we always require that a Boolean algebra of type B he 

complete^ i.e., sup A exists in ^ for every class A ^ B. Under these assump- 
tions we define and in two different ways. is defined as follows: 

Definition 23.1. Let €„ = B r\ R{a) for « G On. Then 

1. Ko*'*’ = 0. 

2. = {ii € C*<“> I (3f < c 

V (K) 
^ or 

aeOn 

Remark. This is a definition in the framework of ZF. Moreover, 

= [u I ^{u) c A u: 9{u) B] 

as in the case of a set B. Note that is a set for each a and is a class 
of sets. 

is defined as follows: 

Definition 23.2. 

1. Fo'ft’ = 0. 

2. K„<f» 4 {»6 B=<“> I (3f < a)[SUi) <= A W(u)eOn]]. 

3. (/“■>' 4 (J VJit\ 
a€On 

Remark. Note that in general is not a set for a > 1. We tacitly 
assume that we have a sufticiently strong set theory to define In the 
following, u, V, w\ . . . range over or [[z/ = z’l], |z/G z'|, and y for 

V G V are defined in and in the same way as in the case of a set B. 
The following results are obtained in the same way as in the case of Boolean 
algebras which are sets. 

Theorem 23.3. (cf. Theorem 14.2). Let k E V and u e Then 

1. a < rank (k) {k E uj = 0. 
2. a < rank (k) —> [[^ = = 0. 

Theorem 23.4. (Vz/G L‘"^)[|Ord (zz)]] = 2aeor, [1^/ = «!]• 

Remark. This is proved in the same way as Theorem 13.21. However, 

since B need not be a set, we have to give a proof that for u E K*”’ 

Ou = {^\ > 0} 

is a set. But this follows directly from the preceding theorem. 

3. F<®> 4 (J 
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We can define 

1. = 21" = 
keV 

in and as before. In the casp^of the existence of the supremum 
is assured by our assumption that B is complete. On the other hand, in the 
case of we have from Theorem 23.3 that for u e F^®^ 

(3a) ^lu = kj = 
keV 

2 i[« = 
ketHay 

and therefore the sum in 1 is actually only a sum over the index set R{a) 
W' ^ 

Similar remarks apply to the definitions ot B, +, , F below in the case of 
V'">: 

2. lueBl= ^lu = bl 
beB 

3. I + (w, V, M-)]] = 2 ^ = b2}'lw = {bi + 
bx,b2^B 

4. ["(w, V, vv)l = 2 = b2Vh’ = (b 
bi,b2eB 

5. I«6fl = 2 I" = 
beB 

Finally, we let 

V(H) A ■,F\ 

V(B) A =,e,M,B,F, -,0. 

If we consider only V^®^ B always denotes the completion of B. I9?]] is defined 
as before in both cases. For V^®\ it is always the case that |9?1 e B, but we may 
have |<pj ^ B if (p contains a quantifier; hence if [[9]] is defined by a sum or 
product over a class. The definitions of B and I92]] are beyond ZF set theory. 
Nevertheless, we can manage to build a theory in ZF by using the notion of 
forcing, i.e., we use the relation b < [9]] (where be B) instead of I9I. This 
definition can be given in ZF by recursion: 

1. b < {(px A (p2i<->b < [[91]] A b < II921I. 
2. b < H9I <-> (V/)' G B)[b' < I9I -^b' < -b] 

(since b < l[-i9l l9l < ~b). 
3. b < |(V.x)9(.v)I ->(V//G F^®>)[/7 < |9(w)I]. 

For an atomic 9 the meaning of b < [[9]] is obvious from 1 to 5 above. Thus, 
given a formula cp, b < [9] is a formula of ZF. 

Theorem 23.5. V^®^ and \’^®^ satisfy the Axioms of Extensionality, 
Pairing, and Infinity. 

Proof. The proof is the same as in the case of a set B. 

Remark. Similarly, our former proof (using K^^®^ or in place of Mf) 

establishes the following results. 
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Theorem 23.6. and satisfy the Axiom of Regularity. 

Theorem 23.7. (cf. Theorem 13.13.) 

l{3x E u)cp{x)} = 2 
xeO:(u) 

I(V.v 6 «)9.(.r)l = n ("W I'PWD- 

xe(/(u) 

Theorem 23.8. and satisfy the Axiom of Union. 

Proof. We have to show that for a given u E or u E 

I(3r)(Vx)[.x G V <-> (3>’ G u)[x E V]]E = 1. 

Define v by 

^(v) = U 
ye^iu) 

and 

(Vx G ^{v))[v{x) = [(3;^ G u)[x E v]Il]. 

Obviously, v E or r G (use Theorem 23.7) according as i/ G or 
HE Since [[(Vx G r)(3>’G I/)[A'G j;]| = 1 by Theorem 23.7, it remains to 
show that 

l(iy E iv)(Vx G j;)[x G v]j = 1, 

[[(V;; G w)(Vx G y)[x E r]]] =00 (^(3') U’W ^ vj). 
yeS(u) xeQ(.y) 

Let V e ^(w) and x G ^(y). Then 

«(v) - J^Cx) < IxEyf ly E i4 < P>’o G w)[x G J^Q]]] = 

< lx E uj. 

Theorem 23.9. satisfies the Axiom of Subsets (Zermelo’s Axiom 
Schema of Separation). 

Proof. Let a G We wish to prove that 

Pt?)(V>^)[>^G r <-^;^Ga A 9?(>^)]1 = 1. 

Define v E by ^(v) = ^(a) and 

(ix E ^{v))[v(x) = fl(x)-ll(p(x)l]. 

Then 

Hw G i;l = 2 ^’(^) ■ 1“ = -^1 
xeQ(v) 

= 2 «(^) • [I<PWI ' [I^ = 
xe^(a) 

= 2 
xe^(a) 

= luE a A 9?(w)I. 
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Remark, Note that the foregoing proof requires a Boolean algebra of 
type B and cannot be carried out for an algebra of type B. The difficulty is 
in defining r: If ae then for each .v e ^{v) we have a{x) 6 B, but we do 
not know that [[9?(A')I e B. While must satisfy the Axiom of Subsets it 
need not satisfy the Axiom of Replacement, and even if this axiom is satisfied, 
the Axiom of Powers need not hold in Therefore we have to look for 
suitable restrictions on B. An important though rather weak condition is 
given by the following. 

Definition 23.10. B satisfies the uniform convergence law (UCL) iff the 
following condition is satisfied: 

Let / be a set and for each / e /, let {bat \ a e On} ^ fi. If 

1. (Va)(V^)[a bsi] 

and 

2. n 
aeOn 

then 

n 2 *«< = «• 
aeOn iel 

Remark. This means roughly that if a nonincreasing sequence baiio- e On) 
of elements of B converges to 0 for each / E /, then these sequences converge 
uniformly to 0. 

Exercise. If we omit condition 1 from the UCL, is the corresponding law 
(for fixed I) equivalent to the {On, /)-DL (cf. Theorem 18.5)? 

Theorem 23.11. Suppose I « ^ On A / < 2] c B, 

1. (Va)(V^)[a < ^->beo < bao A b^^ < b^i] 

and 

2. ri = O 
aeOn aeOn 

then 

+ bai) = 0. 
aeOr 

Proof. (By contradiction.) Suppose b = Ha (^ao + ^ai) > Since 

Off ^ao = 0, bao b for some a. Let p = b — bao. Then ()</;</) and 
p-bao = 0. Similarly, since HaP some /3 > a. With 
P = P — bffi we have 0 < r/ < p and q-b^^ = 0. This gives 0 < q < b and 
qfib^Q + b^fi = 0, a contradiction. 

Theorem 23.12. Let B be the completion of B. For b e B define 

ba = sup [b' \b' E B R{a) A b' < b}. 
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Then 

1. ha < b. 
2. a < ^ ba < bp and = YJ [bp \ ^ > a}. 

3. 2 *« = 
aeOn 

Proof. 1 and 2 are obvious. 

3. Suppose 2a ba < b. Since B is the completion of B, 

(3/7 G B) 0 < /7 < /? - ^ ha 
aeOn 

(by the density property). 

Therefore (3a)[/7 G 5 n /?(«)] and hence /; < ba. This is a contradiction. 

Remark. Theorem 23.12 says that every element of B can be obtained 
as the limit of elements of B (see Theorem 23.14 below) when we define 
limits in the following way. 

Definition 23.13. If ^ G B and [ha | a G On) ^ B then 

lim ba \ iff 2 n 
aeOn a^p 

lim ba = b iff lim {ba o b) = 1. 
aeOn aeOn 

Similarly, for u, Ua e or 

lim Ua = u iff lim = M] = 1. 
aeOn aeOn 

We will occasionally write Ua —> u for limaeon ^a = 

Remark. Definition 23.13 is reminiscent of the definition of the limit of 
a sequence of point sets in analysis. Using this definition, we can restate 
Theorem 23.12 as follows: 

Theorem 23.14. If B is the completion of B and if G B, then there is a 
sequence | a G On] ^ B such that ba b. 

Theorem 23.15. Suppose lim^eon ba = b and lim„eon b'a = b'. Then 

1. lim i~ba) = ~b. 
aeOn 

2. lim (ba b'a) = b b'. 
aeOn 

3. lim (ba'b'a) = h-b'. 
aeOn 

Proof. 1. Obvious since (ba o h) = {~ba o ~b). 

2. (ba + b'a) o{b^ h') 

= ~{ba + b'a)-{~{b + b')) + (ba + b'a){b + b') 

> {{-ba){-b) + ba-b){{-b'a)f-b') + (b'a-b')) 
= (ba o b)‘{b'a o b). 
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Since 

2 ri(*oo*) = I Y\{b',ob-) = 1, 
aeOna^P aeOn a^d 

the dual form of Theorem 23.11 gives*' 

2 (n (*»-=-*)-n Wo*')) = I 
aeOn \ 0 a^0 ' 

y (nWo/.)(/);,06')) = I 
aeOn \c(^0 ' 

and hence 

2 ri(w + *;)o (* + />')) = I. 
aeOn 

3. A consequence of 1 and 2. 

Lemma. If B is the completion of B, then 

Proof. For a given HE we can prove by induction on the least « 
such that u E that u E -> u E F^»\ 

Theorem 23.16. Let B be the completion of B. If B satisfies the UCL, 
then (Vi) E F^'''0(3{I/„ | « E On} ^ F^’‘’)[limrteon every v E F^“' 
can be obtained as the limit of elements of F^“\ 

Proof. (By induction on the least a such that v E Ff/«\) As our induction 
hypothesis, assume 

(V.X G ^(v)){3{Yax I “ G On} C F^’‘0[;’aA- A']. 

By Theorem 23.14, 

(V.Y G C^(r))i3{bax I a e On] c B)[bax r(.Y)]. 

Now define //„: I ^ ^(^0} ^ by 

l^aiVax) = bax lOf X E ^(v). 

Then (Vo:)[i/„ G F^“^]. Moreover, 

= rl = [ ] (Uaiyax) => lyax ^ i’l)' 1 I U'ix) => |A' G 

VaxeO'C.Ua) xeO'(v) 

> O {bax KA)-IA = JVv]])- I 1 (i'(A) > /^ax-llA = V„.r]l) 
xe£r(v) A-eG^(v) 

since (V.Y G i^(u’))[M(-Y)-fA = ii’J < |u’i G ir]]] 

> 11 (^a.v o lix)) • f.Y = >'„A1 1 • L 

using the dual form of the UCL for the first factor. 

Corollary 23.17. If B is the completion of B and B satisfies the UCL, then 

{ypEB)[p > 0->(VrG F<'‘')(3I/G F‘«>)[/7-[[// = rl > 0]). 
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Proof. For given v and /? > 0 let 

= 1 I n ^ 
/j 2: a xe!^(v) 

Since 2a there exists an a such that b'^-p > 0. Then has the desired 
property. 

Theorem 23.18. Suppose that B is the completion of B and B satisfies the 

UCL. Then is a B-valued elementary substructure of i.e., for each 
formula 93 of the language of and every Wi,. . e 

Proof. (By induction on the number of logical symbols in 99.) We con- 
sider only the case of a quantifier. 

Let 93(^1,. . Un) = (VA')</>(JC, z/i,. . Un) where Wi,. . z/„ e Let 
b = 1193(1/1,. . let V be any member of Claim: 

b < Uiv, Z/Jfr 

Suppose not: Then 

/7-|j/r(r’, Wi,. . = 0 for some p, 0 < p < b. 

By Collorary 23.17, there exists a z/e such that pfu = rl > 0. Then 

0 = P-U(V, Z/i, . . ., Z/,)f^'» > pfu = Vj-Uiu, Z/i, . . Z/n)f^''^ 
= P’lu = z^l-|0(z/, z/i,. .., z/n)p^“^, by the induction hypothesis 
> P‘lu = vj-b = p'lu = v1 > 0, a contradiction. 

Therefore we have 

* < n W'’> “1’ • ■ ■ ’ .... wjf ''”. 
veV(B) 

Since 

* = n W''- “!• ■ • ""M''"" = n W'’> • •, w-.)!"'” 
i>6V(l*) ueVOl) 

> Mu,,. . . , Z/Jf 

we obtain 

b = i93(z/i,..., z/„)r‘>. 

Definition 23.19. A partial order structure P = <P, <> (where P may 

be a proper class) satisfies the set-chain condition (s.c.c.) iff every class of 
mutually incompatible elements of P is a set. B satisfies the s.c.c. iff P = 

<B - {0}, < > satisfies the s.c.c. 

Remark. Thus the s.c.c. for Boolean algebras is a generalization of the 
X„-chain condition. 

Theorem 23.20. Suppose P = <P, < > satisfies the s.c.c. Let B be the 

Boolean algebra of regular open classes in P. Then B satisfies the s.c.c. 
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Remark. Under the assumption of Theorem 23.20, every regular open 
class in P can be represented by 2 | ^ where ^7 is a set and each /t“.v 
is a basic open class. These are of the form [p] for some p e P and hence they 
are determined by sets p e P. Therefore, if B is the Boolean algebra of regular 
open classes in P, each element of B ca-ii'be represented by a set. Thus we may 
assume that B is a class of sets and hence is of type B as discussed in the 
beginning of this section. 

Theorem 23.21. If B satisfies the s.c.c. then B satisfies the UCL. 

Proof. Suppose that there is a family of sequences <^bai | a e 0/?> for 
each / G /, where / is a set, such that 

[bai I a G 0/7 A / G /} C B, 

(V/G/)(V«)(Vi3)[« < ^^b,, > //„.], 

and 

(V/ G I) n *«' = 0 • 
. aeOn 

Then, for each / G/, < b^i \ a E On} is nondecreasing and converges to 1. 
By the s.c.c., these sequences must eventually become constant, i.e.. 

(V/G/)(3A)[-^,i = 1], 
(V/ G /)(Va > = 0]. 

Let ^ = SLipie; (note that / is a set). Then 

hence 

(Va > 9 

n 2 
aeOn iel 

In particular, B satisfies the UCL if B satisfies the K^-chain condition for 
some a. 

Remark. If B is the completion of B and B satisfies the UCL, then 
and satisfy the same axioms of ZF by Theorem 23.18. In Theorem 

23.9 we proved the Axiom of Subsets for Next we prove the Axiom of 
Replacement for assuming the UCL for B. 

Theorem 23.22. Let B be the completion of B. If B satisfies the UCL, 
then satisfies the Axiom of Replacement. 

Proof. As in the proof of Theorem 9.25 we have to show that 

(i) I(V.V)(3>09'(-V, r)l = 1 

implies 

(ii) (VflG K^»>)[Pr)(V.vG77)(3vG7VCv, v)S = 1]. 
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Therefore assume (i) and let a e Suppose that (ii) does not hold for a. 
Then for some h e B, 

{) < h ^ /7-|(3r)(V.Y E ^7)(3 V e r)(p'(.v, _v)l = 0. 

Then 

(Vx G ^{a)) 

by (i) and Theorem 23.15, hence 

2 T)1] = 0 
VGV„<I») 

2 ( 2 v)I]) = 0 by the UCL. 
xe^/(a) yeVdOn 

Therefore for some a G On, 

2 (■ 2 ^ 
xe3(a) yeVaUn 

or by passing to complements, 

(iii) n 2 -6. 
xeS'(a) yeVrtCJO 

Let V G be v: {1}, i.e., v is the constant function 1 on Then 
by assumption 

0 = /? • [I(Vx G ^7)(3y G v)(p'(x, y)l 

= /)• ri («U) ^ 2 
xe^ia) ^ yeYaOt) 

- n 2 .V)I] > by (iii). 
xe'j^ia) yeVaOn 

This is a contradiction. 

Exercise. Prove the converse of Theorem 23.22 in the following form: 
If satisfies the Axiom of Replacement, then B satisfies the UCL. Hint: 

(K. Gloede) Let / be a set and let [hat | i E 1, u G On] c B be such that 

1. (V/G/)(Va)(V^)[a < ^ 

2. (V/G/) 2^ 
aeOn 

To show that 2a Flie/ bai = 1, we define u by 

dx G wH = 2 r 1 
aeOn iel 

show that |I(Vx)(3y)[x G/—> j G 0/7 A <.Y, >’> G 7/]J = 1, then invoke the 

Axiom of Replacement in together with the Axiom of Subsets and 
Unions in to conclude that [I(3a)(V/ G I){3p < «)[</, p} G 7/]J = 1. 

Remark. We recall that from §16 we have assumed that V satisfies the 

Axiom of Choice. Thus, 
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Theorem 23.23. |TC]] = 1 in 

Proof, In most cases B satisfies the additional requirement that is 
a model of ZF. In this case we can prove the TC in by a forcing argument 
just as in Theorem 14.25 with suitable modifications as in the proof of 
Theorem 23.24. below. However, since we shall give an example of a Boolean 
algebra B such that V^®' does not satisfy the Axiom of Powers, we indicate a 
direct proof of Theorem 23.23 in the general case. We take the Axiom of 
Choice in the following form: 

(Vz/)(3iO(Vx: E w)[(3_y G X)(3 ! x' G i0[>’ ^ x'] (3! v G x)[y G V]]. 

Let y) be yGx A (3! .Y'G i/)[ v G x'], ue F^®\ Since [Jxe9(u) ^(x) is a 
set, let {I ^ < a] be an enumeration of this set (using the TC in V). Then 
define v e K^®^ by 

= {y^l ^ < «}» 
xeO'(u) 

(Vv e ^(v)) 2 2(I>’ 
xe^(.u) { < a 

A <^(x, jg]]) • 

Note that r( v) e B, since we have only sup’s and inf's over sets. Now one 
can show that 

(V;;, v' G F^{v))[iiy) -ly e xj- ify') • ly' G xj • lx G uj < !;■ = >>']]] 

which proves the uniqueness part and 

|(3v)<^(-'V, y)l < 11(3 v e G r]]] 

which proves the existence part of the conclusion. 

Remark. Sometimes we need a stronger form of the Axiom of Choice: 

ACH (VJC)[A' 0 -> //(A) G A] 

where H is definable in ZF using possibly, some new constants which are 
added to the language of ZF {e.g., H itself may be a new function constant). 
Thus ACH means that there is a definable well-ordering of the universe. If 
we assume ACH, V^®^ is understood to be the extended structure 

= <r»>, =,G, M, B, + ,-,H, F} 

where 

IZ/G //]] = ^ lu = A']]. 
keH 

Theorem 23.24. Suppose that V^®^ is a model of ZF and assume ACH. 

Then ACH is B-valid in V^®\ 

Proof. (The proof shows how to apply forcing arguments in the case 
where B is a class.) Let M be a countable transitive structure such that 
(M, B'*, //'*> is an elementary substructure of <L, B, Hy^ with respect to 
the language^* of V^®\ Let IIQ'. B'* 2 be a homomorphism which preserves 
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all the sums which are definable in M. (The set of these sums is countable. 
Note that is only a class in M, so //Q need not be M-complete, but //Q 

preserves all the sums 6 in the proof of Theorem 14.22.) Finally, let F = 
{he I hoib) = 1} be the ultrafilter corresponding to //Q. AS in Theorem 

14.22 there is a mapping 

/;: -22!^ M[F] 

such that 

M[F] N 9(//(wi),. . .,h{Un)) //od^Ob, • • •, Wn)l) = 1 

for li^,. . ., G (p a formula of if*. We have to show that M[F] N 

ACH. Using the language i^^* we can define in M (a Godelization of) the 

ramified language obtained from i^* and M (i.e., with ordinals ranging over 
the ordinals in A/), and we can express the syntactical notion of “U is a 
constant term” in M as well as G vj and |// = r|. Let D be the denotation 
operator related to M[F]. D{u) can be expressed as follows 

D{u) = {Div) I p{v) < p{u) A Iv G G F]. 

Using we have an M-definable well-ordering of M and hence an 

M-definable well-ordering < of the constant terms. For Xi, .V2 e T/[F], let 
C(Xi) be the first y (w.r.t. <) such that A'I = D{y)\ then 

<* C(AI) < C(A2). 

Then <* is a well-ordering of M[F] which is definable in M[F] using the 
language o2^*. Therefore ACH holds in M[F]. 

Remark. Next we construct two counterexamples to show that 
need not satisfy the Axiom of Replacement, and even if it does, it need not 
satisfy the Axiom of Powders. 

Theorem 23.25. There is a Boolean algebra B such that does not 

satisfy the Axiom of Replacement. 

Proof. Define a partial order structure P = <P, <> as follows: 

p = {p \ P < ^ b (V/?' G p){^i G Oj)(3o: G On)[p' = </, a>] 

A (V/ G aj)(Va)(V^)[</, a> G/; A </, G/7 a = ^]}, 

i.e., elements of P are functions from a into On for some a ^ oj, with H < oj. 

Pi < P2 ^ Pi ^ P2 for /A, P2 e P. 

If we replace On in P by some UQ, then the resulting is a set. If B^g is the 
Boolean algebra of regular open sets in P^^^, then ao becomes countable in 

Similarly, we shall now obtain a function from oj onto On contra- 
dicting the Axiom of Replacement. Let B be the complete Boolean algebra 
of all regular open classes in P and let B be the Boolean algebra of all regular 

open classes which are of the form 

2 {A'"x I A G 
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where a is a. set and for each .Y in a, is a basic open class. Then B is the 
completion of B and, referring to the remark preceding Theorem 23.21, B 
can be regarded as a class of sets. We define P, <, Gby 

e 2 I"-- Pi 
peP 

II < (?/, v)^ = ^ lu = /;J • |z/ = 772! 
Pi,P2eP 
Pi ^P2 

I»€G1 2 I" = Pi 
peP 

Now consider 

V<>» A <(/(!» <, G>. 

First we prove that 

1. KV/ e oj)(3a)(3p e P)[</, «> e /; A p G G]]] = 1. 

By Theorem 23.4, 

KV; € U,)(3C<)(3/7 e /)[</, a} e p A p e G]1 = 112 2 IP ^ Gl 
i < CO aeOn peP 

<i,a>ep 

But for each / e co 

2 2 ip^^i ^ 2 [{<'»}]-“ = 1- 
ueOn peP aeOn 

<i,c(>ep 

This proves 1. 
We next prove that 

2. KV/ e co)(Va)(V^)[(3/7 G h[<i, a} e p A p e G] 

A {3g E P)[{i\ e g A geG’j^cc = ^]1 = 1. 

Let / e CO and = l[(3p e ^ P A p e G)l. We have to show that 
ba’bg <la = Therefore we can assume a / /3. Then 

*«= 2 [p]'“ = [«'»}]'“. 
peP 

ii.ayep 

hence 

ba-b, = [«/»}]-°-[{</,iS>}]-0 = 0. 

Finally, we will prove that 

3. [[(Vo:)(3/ < a))(3/7 G P)[</, ay E p A p E G]\ = \. 

11(3/ < 6U)(3/7 6 ^)[</, ayep A pE G]1 

= 2 2 Ip]"'’= 2 [«'.“>}]■“ = I 
i<(0 peP i<co 

<i.a>ep 

for each a. 
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Now, in order to show that the Axiom of Replacement does not hold in 

let <p{i, a) be (3/; G P)Ki, ^ A p e G]. Then, by 1-3, 

[[(V/ G aj)(3! cc)(p{i\ a) A (Vo:)(3/ G oj)q^{i, a)]] = 1 

i.e., 9 determines a function from oj onto On in but 

|(3r)(V/ < co)(3x G v)(p(i, x)| = 0, 

therefore the Axiom of Replacement does not hold in 

Theorem 23.26. There is a Boolean algebra B which satisfies the UCL 
(even more, B satisfies the c.c.c.), but does not satisfy the Axiom of 
Powers. 

Proof. To prove Theorem 11.11 we used the partial order structure 
Pa = <Pa, < > where 

Pa = {p \ ^ a X CO A d < CO A p: 2]} 
Pi < P2 ^ Pi ^ P2 for /A, P2 e 

to add oc-many subsets of to to M, so that ^(co) > a in M[G] (assuming that 
a is a cardinal in M). In terms of Boolean-valued models this means 

l^lco) > aj = 1 

in for each cardinal a. (Note that Pa satisfies the c.c.c., so cardinals are 
absolute.) 

Now we take B as the Boolean algebra of all regular open classes of 2°'^. 
Then B satisfies the c.c.c. as can be seen from Theorem 11.10 which can be 
proved for B with suitable modifications. Hence B satisfies the UCL and 
may be considered as a class of sets. Since O/i x co ^ On, we obtain, in the 
same way as we proved this result for 

l^(co) > a] = 1 

in for every cardinal a. 
Therefore 

KVa)[^(co) > a]l = 1, 

and hence [[(3r)(ViY)[i/G V < a;]]] = 0, i.e., the Axiom of Powers fails in 
(Note that satisfies the TC by Theorem 23.23.) 

Definition 23.27. ^b',{bi \ / G/}> is called an /-sieve iff b' > 0. An ele- 
ment /? > 0 is sifted by this sieve iff 

b < b' A (V/G/)[/?•= 0 V /? < b^]. 

Let BQ be a complete subalgebra and f be B). An element b > 0 
is jf-sifted by this sieve iff 

b < b' A {'iielMib-bd-b < b^l 
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Let / be a set. B satisfies the I-sieve law (I-SL) iff there exists a complete 
subalgebra BQ of B for which 

1. Bo is a set, 
2. for every sieve </?', {hi \ i E /}> there exists a ^-sifted element h. 

B satisfies the sieve law (SL) ifl' B satisfies the 1-SL for every set /, 

Definition 23.28. Let BQ be a complete subalgebra of B and # be #(Bo, B). 

Then -^(Uo) = {b€ B\ §(b) = 1}. 

Exercises. 

1. /)GA(BO)-->/7 > 0. 

2. //GBO,/?eA(Bo)^#(//-/^) = h'. 
3. 0 < G Bo,/7eA(Bo)->//•/? > 0. 
4. /7 + (-#(/;)) GA(BO). 

5. h = m-{h + {-m))- 

Definition 23.29. Let / be a set. B satisfies the 1-A sieve law (I-ASL) iff 
there exists a complete subalgebra Bo of B for which 

1. Bo is a set, 
2. for every sieve </f, [Aj | / e/}> defined in A(Bo) there exists a sifted 

element in A(Bo). 

Exercise. If B satisfied the 1-ASL, then B satisfies the I-SL. 

Theorem 23.30. Suppose that B satisfies the UCL and B satisfies the SL, 
where B is the completion of B. Then and satisfy the Axiom of 
Powers and hence both are Boolean-valued models of ZF -I- 4C. 

Proof. Again let M be a countable transitive structure such that 
<M, B'>> is an elementary substructure of <L', B> with respect to the language 

of let IIQ’. B'' 2 be a homoniorphism which preserves all M-defin- 
able sums and let F = [b G | //o(/A = 11 be the corresponding ultrafilter. 
A/[/''] is defined by ramified type theory, so it need not be a model of ZF\ 
however, as in Theorem 9.38, 3/[/' ] satisfies all the axioms of ZT except 
possibly the Axiom of Powers since these axioms are B-valid in So we 
have to prove that M[F] satisfies the Axiom of Powers. 

Let u be a constant term, i.e., /)(//) G 3/[/•'] where D is the denotation 
operator related to 3/[T], and let / be the set of all constant terms with 
rank <p{u). Since is a constant term” is definable in M using the language 
y* (cf the proof of Theorem 23.22), I G M. Since the SL holds in <M, B"), 
for this particular / there is an M-complete subalgebra BQ of B'' satisfying the 
condition 2 in the definition of the I-SL in <M, B'V. ^nd BQ e A/. For the 
remaining part of the proof, let p, A r\ . . . range over B'' — |()J. VVe will 
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reserve /;, q,cj,q', etc., to denote elements of P. For S ^ BQ x I and SE M 

we define K{S) as follows: 
K{S) = D{w) if there exists an r and a vr such that u’ is a constant term 

and 

(i) r E F A r < |vv c //]], 

(ii) (Vr 6/)[#(f-[Ir G u’I)-r < Hr 6 vr|]. 
(iii) S = {</;, I 0 < /7 A p E BQ A VE I A 0 </;•/'< [[i; G H-]]}, 

= 0 otherwise. 

We claim that 

(iv) K\t^^\Bo X /) AF^^^^\D{u)). 

This proves the theorem. For BQ X / G A/, so ■'/'^'{BQ X /) G A/ C A/[F], 
since A/ satisfies the Axiom of Powers. Moreover, K is definable in M[F] and 
M[F] satisfies the Axiom of Replacement, so E M[F] by (iv). 

We prove (iv) in the following way. 

1. /v is a function. 

Let S ^ BQ X I and SE M. We have to show that K{S) is uniquely 
determined by the above requirements, i.e., assuming that conditions (i)-(iii) 
are satisfied by U’Q, PQ and by \\\, for the same S, we have to show that 

D(u’o) = T)(wi ). By symmetry, it suffices to show that 

D(r) G D(M’O) ^ D{v) E D{\\\). 

Therefore let D{v) E D{\\'Q). We can assume v E /. Then Iv E U’QJ G F. (See the 
proof of Theorem 23.24.) Let r' — /”o-[Ii’ G WQ]]. Then r' G F by (i), and 

#(r')To < IVGWQ^ by (ii). 

Thus, by (iii). 

But also 

<#(F), r>G5. 

#(r')Ti < [rG u’J 

since by our assumption both w’o, PQ and vv’i, P\ satisfy (iii) for the same S. 
Therefore, since r' E F A r' < #(r'), ^{r')-Pi E F, and hence Iv E vv’i]] G F. 

Therefore D{v) E D{wi). (See the proof of Theorem 23.24.) 

2. The range of K is /:^^^^’^(D(w)). 

Let Di \v) c 0{u) for some constant term w. Then [u’ c ;/]] e F. For 
v E I define by = fr’ G VV]]. Then by condition 2 of the 1-SL, 

(Vr)[r < c ul-^{3P)[P < r A (Vr G/)[#(r-/7j-r < /;„]]]. 

Obviously, such P's are dense beneath [[u’ ^ //]] e Therefore 

(3P)[P <[[wcw]]AfGFA (Vr G I)[^{P-hy)-P ^ by]]. 
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Define 

S = {<(/7, V} \ i) < p A p G BQ A V G I A (S < p-f < IP G VI’]]}. 

Then K{S) = D{\\') and S G x /). 
•A 

Definition 23.31. B is i^^)-splitable if the following condition is 

satisfied. Suppose 0 < q < Ip q, h G B, {h,j \ iG I A JG C B, 1 < K„, and 

(V/G /)[2;<s^ fPj = h]. Then 

(3^7 G /?)(3A c /?)[() < q < q A A < A (V^/' G B) 

[0 < q' < q-^^ (V/ G /)(3/7 G .\)(3y < X^)[/;-^/' > 0 A p-q < ^ Ipi 
)<y 

Theorem 23.32. If B satisfies the c.c.c. and c/fX^) > XQ, then B is 

(X„, X^d"Splitable. 

Proof. If B satisfies the c.c.c. and c/(X/,) > X^, then 

/? = some y < X/,. 
i < JS/f ;■ < V 

Therefore we can simply take q = q and A = {/?}. 

Theorem 23.33. Suppose c/fX^) > X„, B is (X„, X^,)-splitable and V*’'* 

satisfies the axioms of ZT + AC. Then [[c/((X^)'^) > (X„)'^| = I. 

Proof. Let M be a countable transitive structure such that <M, B^'> 

is an elementary subsystem of <((A B . We will prove that in 

Icfii^.r) > (XJl = »• Let/G(L'»>)^' and 

We have to show that 

h < |(3r < (X/TKV^ < (X„>'r)[./U) < r]l. 

Therefore we can assume h > 0. Let //QIB'' *2 be a homomorphism 

preserving all sums which are definable in M and such that /io{h) = 1. For 

the remaining part we work in <M, B''>. In order to avoid cumbersome 

notations, we will write X„, X^,, B,. . . instead of X„'', X^,'', B'* Also a 

means Let / = X„ and for ^ < X^, r; < X^j 

= vl 
Then 

(V^ < 2 h,„ = /..|(3, < (X,r)[/(?) = ,]ii 
v< Up 

= h. 

Since B is (X„, X^)-splitable, for each r < h there exist r G B and A c B such 

that 0 < f < /' and 

A < X„ A (V^ < XJ(V/-' G B) 

()</*'< r< X^)(3/7 G A) p-r' A p r < ^ 
ti' < t) 
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Since such r's arc dense beneath h and hoiM = U we can find an r < h such 

that hoir) = 1 and r has the above properties. In particular, 

(V/-'e/i)[0 < )■' < \)\p-r' > 0]]. 

Choose B' {r' \ r' e B A 0 < /*' < /"} such that 

(VC, /•" e /r)[(3/) e A)[/)-C > 0 A p-r" > 0) r' = /•"] 

a nd 

(VC 6 /^)[0 < C < r->(3/-"E B'){3pc A)f/)-/'' > 0 A p-r" > ()]], 

i.c., we identify those /•'•/ " e B for which 0 < r' < P, 0 < r" < and 

pr' > 0 A pr" > 0 for the same pe A. Since A < Since 

(Vf < XC(VC e /?')(37/ < X,)(3/7e A) p-r' > i) f\ p-P < ^ 

and (7(X^) > wc can ohtaiti a single ij > snch (hat 

(V^ < X„)(V/''€/?')(3/>e.\) P-r' > 0 A p-p < 2 fhn- 
j)' <n 

Because of the choice of B', it can again be replaced by \r' \ 0 < r' < /*}, 

(i) (V^ < XC(VC6 /?) 

0 < r' < r - > (3/7 6 A) p-r' > 0 A pr < 2 
_ v'<n J- 

Define F and 

as in the proof of Theorem 23.24. Suppose h{ f){^) = if for ^ < X„ and 

7]' < X^. Then //o(ff./(l) = il) = C and since hoiP) = 1, 

Uii) = vlr > 0. 

Therefore, by (i), 

(3/7 6 -\)[p-lf{i) = 7/lr > 0 A p-P < y\i) < Vy]]]. 

0 < p-\iM) = vi-p-mi) < v\\ < hr < 

hence ry' < ry. Therefore ry is a bound for //( / ). This proves the theorem. 

Corollary 23.34. If V'"’ satisfies the axioms of ZF + AC and B is 

(X„, X/j)-splitabIe for all X„, X^, such that <:7(X/,) > X„ (e.g., if B satisfies the 

C.C.C.), then cardinals arc absolute, i.e., (Vf<)[lICard ((X^J'^)]] = 1]. 

Proof. One can easily prove that if for all a and 

> K->km,r > (Ku = 1 

then (V«)[ICard (X^n = I]. 
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Definition 23.35. B satisfies the (aj„, tu^)-WDL ifT for every family 

I ^ < Wa A 77 < c 

n z = z n z 
“ < Wff n<o)0 f.e^o0^a C<o)a ri<f(0 

Remark. This is a natural generalization of the (co, a»„)-WDL (see 

Definition 20.1). 

Theorem 23.36. If B satisfies the (oj„, co^)-WDL, then B is (to^, co^)- 

splitable. 

Proof. Let 0 < r < /? A (V^ < o}a)[h = ^rxw/, Then, by the 

(co„, a7^)-WDL, 

* = r 1 z '’-■» = z II z 
^<Wa fe{O0^« \<(Oa V<f(i) 

Therefore, for some /’e 

^ 1 I y > 0. 
4<coa n<f(i.) 

Let A = I ^ < cDa}- Then A < Thus it remains to show that 

for r' e B 

0 < /*' < ► (V^ < tOa){3r] < cop)(3p e A) 

Therefore let ()</•'</" and ^ Then 

ip-r' > 0) A pr < Z 

n<ni) 

and we can simply take 

P = y, b.^ E A 

/)-r' = /*'> 0 A />•/"</? = y^ b.jj. 
r)</(s‘) 

Corollary 23.37. Suppose and 3'*'*' satisfies the axioms of 

ZF + .1C. Then the following conditions are equivalent. 

(i) B satisfies the cu^)-WDL. 

(ii) B is (co„, co^)-spIitable. 

(iii) Ir/((N,r) > (X,ri == 1 in 

Proof. We can prove (i) ^ ^ (iii) in the same way we proved Theorem 20.3. 

By Theorem 23.36, (i)->(ii); and by Theorem 23.32, (ii) ->(iii). 

Definition 23.38. Let P = <P, <, l> be a partial order structure with a 

largest member I. An element p E P is said to be eoatoniie if 

\ ^ p A (V.Y)[A' > p .V = 1 V .V = p]. 

214 



For any p e I\ dctine 

CA{p) = [q I q is coatomic A q > p]. 

P is said to be coatomic if 

(V/7, r/e P)[C/^b/) c CA{p)<>p < q]. 

A coatomic partial order structure P is said to be strongly coatomic if 

(V/) e P){^S c CA{p)){^q G P)[S = CA{q)]. 

Remark. If P is coatomic, then 

{^peP)[p ^ 1 ^CA{p) # 0] 

and 

(V/7, q G P)[p = q <> CA{p) = CA{q)). 

Definition 23.39. Let P = <(/L <, 1) be strongly coatomic. P is said to 
be 'i^a-iiounded ilT 

1. CA{p) < 
2. Define IC{p) — {q | q is coatomic A p and q are incompatible}. Then 

IC{p) < 

3. If/7 and q are incompatible, then there exists qQeIC{p) such that 

q ^ Qo- 
4. Let A be a set of coatomic elements with A < Then 

^^C~A{p) ^ A} < 

Remark. Condition 3 implies that the set of all r/’s that are incompatible 
with p is 

U (</)• 
qelCip) 

Definition 23.40. Let PQ = <F, <o, lo) Pi = *i) be two 
partial order structures. We say that PQ and Pi form an pair it! 

1. PQ is a set and an K^-bounded strongly coatomic partial order structure, 
2. For every /3 < and for every 

Qo ^ 1 — 1' ‘— 1 dv — 1''' (y < 

there exists a <7 G A such that 

(Vy < (^)[q <1 ^/,]. 

(Next condition is dispensable. We add this in order to simplify the argu- 
ment.) 

3.1. (V/7i,/72 e r)[/;i ^oP ->(3/7Gr)[/? <0/A A -nComp (/71/72)]]. 

3.2. {Vr/i,r/ G A)[r/i ^^q ^ {3q e l)[q < ^ q^ A ,Comp (^/,^/2)]]. 

That is, r and A are fine in the sense of Definition 5.21. 
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Remark. Let PQ = -(r, <o, lo> Pi = <A, <i, li) form an X„- 
Easton pair. Define P = <P, <, 1/' as PQ X PJ. We use an abbreviated 
notation such that p e F also denotes <p, Ij) and qe \ also denotes <lo, q^. 

With this abbreviation, every member of P can be denoted by p-q where 
G r and q e \ and 1 = IQ = 11- • F' 

Let B be the Boolean algebra of all regular open sets in P. 

P = {b e B \ b (i). 

Let Pi-qi and P2-q2 be two members of P. Pi-qi and P2-q2 are compatible 
iff Pi and p2 are compatible and qi and ^2 are compatible. Then P is line, 
hence 

= [p-q] 

and we may assume that P is a dense subset of P, where 1=1. For the mem- 
ber p-q of P, we shall intentionally confuse p-qeP and [p-q]GP, i.e., we 
sometimes use p-q in the place of [p-q] and vice versa. Therefore we some- 
times express and P2-q2 are compatible” by Pi-qi-P2-q2 > 0- The 
former is considered in P and the latter is considered in P. 

In what follows, we assume that an i^a-Easton pair PQ, PI is given as above. 

Theorem 23.41. If/?, /?o e F and q, r/o e A then 

1. pQ-qo < p opo < p. 

2. Po-qo < q <^qo < q- 
3. Po-qo < p-q <-> Po < p A qo < q- 

4. Po-qo = p-q <-> Po = P A qo = q. 

Theorem 23.42. Suppose b e B, {bj \ j e J} ^ B, b = where J may 
be a proper class, and b' e P. Then 

(3/;6 F)(3r/6A)[/;-^ < b' A [p-q < -b v (3jEj)[p-q < bj]]]. 

Proof. Case \’.b'-b > 0. Then b'-bj > 0 for some JEJ. Hence 

(3/? G F)(3(7GA)[/;-^ < b'-b,] 

since P is dense in P. 
Case 2: Z?'-/? = 0. Then b' < ~b. For the same reason 

(3/?GF)(3^GA)[/;.^ < b' <-b]. 

Lemma 23.43. (Easton’s main lemma.) Suppose is regular, q E \ and 
b = bj, where J may be a proper class. Then 

(3r7GA)(3.V c r)[^7 < q A X < 

A (V/? G A)(37 G y)[/?-r7 < bj V p-q < ~b] A (fir E P){lp E \)[r-p > 0]]. 

Proof. We construct, in stages, Pn^P and r/«eA for p. < 
(the ordinal product) satisfying 

(flP\, P2 P-2 ^ qu-i — 1^/ui]' 
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Stage 0. Wc pick p^e V and cjo G A such that 

Po-qo < q A {3/Ej)\p(y-qo < q-h, V p^-qo < q-{~h)l 

(See the proof of the preceding theorcni.) F^'or all r < set p^ = p^ and 

^/v qo' 
Stage fi (where 0 < p < X„). Define S,, = LI;-s„-,; ^Cip,.). Then by 2 

of Definition 23.39,/C(/?v) < for r < K^^'/tand hence Therefore 
by 4 of Definition 23.39 

{p I CA{p) c 

So wc can eniiinerate the set {p | CA{p) ^ S,,} as follows: 

{p I CA{p) c ,s;;} = I X„-/x < .' < ^a-ip + 1)1. 

For ^„-p < V < "tr I) vve pick /\, G \\ (/[,, (p. E 1 such that 

1. q'v <1 qx for every A such that ^a-p < A < r. 
2. Py-qv < Pv^-q'v A f/^.•r/v < "A V {3/ E J)[py (/y < A,]] where the exist- 

ence of<7v in 1 follows from the property of (2 of Definition 23.40) and the 
existence ofpy, r/,, in 2 follows from Theorem 23.42. It is easily seen that 

< A < <1 

Finally, we pick q such that (V/t < </«] ^oid let 

A {Pu I /'*' ^a'^or). 

Obviously, 

q < q A A c r A A < A (V/; G A)(3/G y)[/7-r7 < Ip V p-q < ~b]. 

Thus it remains to show that 

(Vr G P){3p E A)[/••/; > ()]. 

Let r = p' -q'. It suffices to show that 

(3/7 G A)[Comp (/7, /?')], 

since r-p — p'-q'-p- li- Define /: CA{p') On by the following condition: 
If /7* G CA{p') then 

/■(/;*) = ii^(^ < A /7* G S(i) if there is such an 3,^ 

f(p*) = 0 otherwise. 

Since CA(p') < and is regular. 

(3p < K)irCA(p') c ,2], 

Define /C(A) = UPEA IC{p). It is easily seen that /r(A) c A and 

/C(A) n CA{p') c .s,. 
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Therefore there exists a v such that 

+ 0, 

and 

CAip,^) = IC'CA) n CAip') 

by the definition of the notion of being strongly coatomic. Therefore 

CAip,) ^ /C(A)nCA(p'). 

Suppose p, and // are incompatible. Then 

CA(p') n ICip,) 7^ 0. 

Consequently, 

ICipA n CAip,) ^ 0. 

This is a contradiction. 

Remark. Next we generalize the lemma for the case of X^-many 
sequences {/?,; \ jeJ). However, the conclusion is somewhat weaker than in 
the main lemma. 

Theorem 23.44. Let be given. Suppose 

r e F, I < X^, 1/)^ I /■ e / } c B, [hij \ i e I A J e J,} ^ B 

and 

(V/e/) = 2. ' 
/e/i 

Then for some r e P and some A 1' 
1. /" < /• 

2. r < X„ and 
3. for each r' < r and each /1 / 

i3p G A)i3jGJi) [p-r' > 0 A [/;•/' < b,j V p-r < 

Proof. Without loss of generality, we may take 1 = X„. First of all, we 
assume that X„ is regular and r e A. Takings/ = /'weean then apply Easton’s 
main lemma X^-many times to define A„ for yi, < X^ in the following 
way: 

At stage p < X^, we pick c/', and A^ ^ F such that 

(i) i'iv < p){q'^ < q,), 

(ii) qu < (pcif 

(iii) A„ < X„, 
(iv) pGA^->p-q^ < -/)„ V (3/eyj[/;-r/„ < /7„J, 
(v) i^r' G P)i^p G A f[r'-p > ()]. 
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Tlien IJL' < fx < c/^^ < Therefore by 2 of Definition 23.40 we ean 
pick a rye A such that (V^t < ^a)U/ ^ Define A = U/i<x„ A„ and take 
r = q. Then P and A satisfy 2 and 3. 

Next we consider an arbitrary reP but still assume that is regular. 

Let r = p-q and for this q let q and A be constructed as above, [feline 
P = p-q. Then P and A satisfy 2 and 3. 

Finally, we consider the case where is singular. Then = 

<«'11 some sequence | /t < «'> where a = 
Since + 1 's regular we can apply the preceding proof for each + i 

(inductively on /i). Thus for each p < a' we can pick G P and ^ F 
in the following way. We can assume that for previously defined /'v’s 
(i^ < p) }\ < i\,> holds if v' < V. There is an r e P such that r < i\ for all 

r < [i. Then < r, A^^ < + and for each r' < and each ^ . i 

(9/? G A^)[/;-/'' > 0 A [p-i\, < -h^ V {3jeJ^)[p-r,, < 

We pick PeP such that P < for all fi < a' and set A = U«<a' A^. Then 
P and A satisfy the desired conditions. 

Theorem 23.45. Let / < and be regular. Then B (the Boolean 

algebra of regular open sets in P) satisfies the I-SL. 

Proof. We claim that BQ (the Boolean algebra of regular open sets in PQ) 

satisfies the condition for BQ in the I-SL. Let {bi | / G /} ^ B and r > 0. By 
Theorem 23.44, there exists P < r and A c F such that 

1. (Vr' < /“)(V/G/)(3/7 G A)[/7-/'' > 0 A [p-P < hi V p-P < 
Let # be #(Bo, B). We have to prove that 

(V/ G l)[tf{P-h,)-P < bi\. 

Suppose jl^{P-bi)-P bi for some / G I. Then 

{3r' < /')[/*' < #(P-bi)-P A r' < -bi], 

and hence by 1: 

2. (3/7 G A)[/;•/•' > 0 A [p-P < hi V p-P < “/7i]]. 

Since r' < -bi A i) < p-r' < p-P, we cannot have p-P < hi. Therefore 

p-P < hi, by 2. Then p-P - bi = 0. Therefore 

P'#{r-bi) = 0 

by Theorem 22.10.6, since p G BQ. Thus 0 < p-r' < p-§{P-b^P = 0. This is a 
contradiction. 

Theorem 23.46. B is (K„, X^)-splitable. 

Proof. Let /• < b, {/7,y | / G / A ./ < ^ B, I < and 

(V/ G /) 2 *1' • 
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Then by Theorem 23.44, there exists an r eP and a A c r such that P < 
A < and 

(Vr' < /■)(V/G/)(3/7 G A)(3/ < [p-r' > 0 A [p-P < bi, V p-P < ~b]. 

Since 0 </?•/"< ^, we cannot have p-p"< ~b. 
Therefore there exists an PEP and a A c r such that P < b, A < 

and 

(Vr' < /")(V/G/)(3/7 G A)(3/ < ^0)[p-r' > 0 A p-P < bij]. 

Hence B is (K„, X^)-splitable. 
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24. Easton’s Model 

In this section we will consider the question of alternatives to the GCH. 
If (j: On -> On we wish to know for what choices of C 

OCHa (Va)[2>^« = 

will be consistent with the axioms of ZF AC. 
There are two results, provable in ZF + AC, that restrict the choice 

of G: 

a < ^ < 2^0 

and (Va)[c/'(2’'^«) > (Konig’s Theorem) 

From these results we see that it is necessary that G have the following 
properties. 

1. (Va)(Vi3)[a < ^^Gia) < G(/S)] 
2. (Va)[f/(K„„) > KJ 

Solovay conjectured that 1 and 2 are also sufficient. Solovay’s conjecture 
is at this time still an open question. Strong supporting evidence for the 
conjecture was established in 1964 by Easton who, using forcing techniques, 
proved that for any G satisfying I and 2 there is a model of ZF F AC \n 
which the GCHG holds for regular cardinals. 

In this section we will prove the existence of Easton's models by showing 
that for each G satisfying 1 and 2 there is a Boolean algebra B such that 

is a B-valued model of ZF F AC and in 

[(Va)[a e Reg 2=^. = = I 

Throughout this section we assume that F satisfies the GCH and the Strong 
Axiom of Choice. 

As our first step in the construction of the Easton model that satisfies the 
GCHG we define a special partial order structure. 

Definition 24.1 

1. ^ G F iff there exists a sequence | « G (9/?> such that 

(i) c {</, y, a, 17> I / < 2 A y < A -ry < KG^^)} for a G Reg 
= 0 otherwise, 
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(ii) ^ = U 
aeOn 

(iii) aGReg^[Jq^ < 
/S £ or 

(iv) (Vy)(Va)(V7;) -1 [<0, y, a, r)} e'q A <1, y, a, rj} e q] 

2. p < q ^ q ^ p for p, q E P 

3. P = <P, <> 

Remark. Intuitively the conditions defining P may be understood as 
follows. If <IVI, P^*> is an elementary subsystem of (V, P), then for each 
a E Reg^*, P'' adds subsets qft^a M (cf the P used in the proof 
of Theorem 11.10). The additional requirements, in particular l.iii, are neces- 
sary to assure that sets added at the «th level do not affect the cardinalities at 
higher levels. Obviously, P is a proper class, and no P which is a set will 
suffice for our problem. Consequently the success of our efl'orts depends upon 
results of the preceding section and certain theorems that we must now' prove. 

From Definition 24.1 it is clear that each qeP uniquely determines its 
decomposition sequence | ae Oiiy. So for each q e P we will use q“ to 
denote the ath element of this decomposition sequence. 

Our first result is simply a list of elementary properties of two families 
of subclasses of P: 

r„ {qeP\{\/^ > a)[q>^ = 0]}, 

A, ^ E P I (V^ < a)[q^ = 0]}. 

Theorem 24.2. 

1. is a set, but A„ is a proper class. 
2. /? E r„ A ^ E A„ —> /7 n ^7 = 0 A p Kj q e P. 
3. PQG P \ p e rj(3 \ q e \)[PQ = p KJ q]. 
4. a E Reg A /7 E ^ 

I ^ ^ A (V/3)(V8)[/3 < 8 < < q^\ 

= U 
Proof. 1-4 are obvious from the definitions. 

5. We need only prove that q = Let q^ = 
Then l.i-l.iii of Definition 24.1 are satisfied. To check l.iv of Definition 24.1, 

let yE Reg. We w'ant to show' that Uy'sy^/’’ < Since (Vy < a)[q'^ = 0], 
we can assume y > a. Then 

U = U U “/o'' = U U ‘It’’- 
y'^y y'^y 0<iia 0<iia y’^y 

Since [Jy’^yqf' has cardinality <Xy for each /S < since and 
since Xy is regular, U/3<.'Sa Uy'<yd0^' has cardinality < Xy. Finally since 

W)(V8)[/5 < 5 < X,->^/, c q^l 

condition l.v of Definition 24.1 is satisfied for ^/. 
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Definition 24.3. P„ = <r„, <>. 
Ba is the Boolean algebra of all regular open sets in P„. For a < /3 define 

./: i'/? -> by 

= U P" P ^ *'/?• 
y i a 

Remark. It is easy to see that / is an open continuous map onto r„. 
Therefore / induces a complete monomorphism /: -> B^ (Theorem 22.9), 
and we may regard B„ as a complete subalgebra of B^ for a < /3. Note that 
each B^ is a set. 

Theorem 24.4. The map /: \\ > \ a bas the following elementary 

properties: 

c] < p < Jip). 

2. .r[p]v0 = [J{p)]va‘ 

Proof. 1. Obvious. 

2-^ is obvious from 1. Now take q^[j{p)]v^. Then 
q Kj {) E r^. It is easy to see that {q U p) e [p]i>^ and J{q U p) = q. 

Theorem 24.5. Let p e and /3 > «. Then if{[p]pf) = [./(/^)]i*„- 

Proof. By the definition of ff. (See Remark following Theorem 22.9.) 

#(b]e,) = inf G BJ [p],,^ < i{h)} 
= inf{/7GB« I [p],.^ < {j-^)"b] 

= inf{/7GB<, \J"[p]p, < b] 

= inf G B„ I [./(/?)]i*„ < b} 

= [./(P)]p„. 

Remark. Each P^ is fine (Definition 5.21) and hence by Lemma 5.22, 

[9]iv‘“ = for r/ e /’«■ So [./(/')],.„ e Let 

B = y B„, i.e., B=\J 
aeOn aeOn 

For the operations in B, see Remark following Definition 22.16. Moreover, 
A ^ B and A is a set, then A ^ for some a. Since sup A exists in B^, 

sup A exists in B. Therefore B is of the type considered in §23. Let B be the 
completion of B. 

Obviously, <{Pa | a < On), {ja^ \ cc < jS < On}} is a normal limiting 
system of partial order structures. Then, by Theorem 22.30, 

1. B satisfies the s.c.c. 
2. B = B. 

3. B is isomorphic to the Boolean algebra of all regular open subsets of P, 
since P ^ linia-on Pa- 

By 1 above and Theorem 23.21, B satisfies the UCL. But by 2 B = B. 

Therefore B satisfies the UCL and hence, by Theorem 23.22, satisfies the 
Axiom of Replacement. 
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It is clear that and = <A„, <> form an K„-Easton pair and 
P ~ P(^ X P^. Therefore by Theorem 23,45 B satisfies the SL. Consequently, 

by Theorem 23.30 satisfies ZF AC. Furthermore, by Theorem 23.46 
B is (K„, X^)-splitabIe. Hence by Corollary 23.34 cardinals are absolute, i.e., 

(Va)[ICard'(X.ri = 1], 

Using only the properties 1 and 2 of C7 stated at the beginning of this 
section one can prove 

= 1 for «EReg. 

In order to determine 2''^^ even in the case a ^ Reg, we require that in this case 

^G(a) ths l^^st cardinal which is not cofinal with ai^tl which is greater 
than or equal to '^cm) each /S < a. Then it will turn out that in 

i.e., 2^^ is the least cardinal allowed by Ronig’s Theorem. 
Thus we obtain in general 

= (^<G(a))l = 1 in v^»>. 

We shall prove this statement by a forcing argument. Thus, let M be a 
transitive countable structure such that <M, B'*> is an elementary subsystem 
of <F, B>. Let /7O:B'*^2 be a homomorphism preserving all the sums 
which are M-definable in the language of and let 

/,; ( M[ho\ 

be defined from HQ as before. (See the proof of Theorem 23.24.) For the 
remaining part of this section we are working in <M, B^'>, i.e., ordinals a 

are ordinals in M, a E On^', P, 1\, A^, Reg,. . . stand for F^^’, A^^*, 
Reg^*,. . . and also always means (which is equal to since 
cardinals are absolute). Similarly, p, q, q,. . . now range over P^' (or P'’ — 

{0}). 

Lemma 24.6. Assume hoHu ^ (^a)'^I) = 1 some z/6 (Then 
there exists ?L p E P and a A c such that //o(p) = T and in <M, B''>: 

p<lu^ (KJl 

2. A < and 
3. for each q' < p and each y < 

{3p' E A)[p'-q' > 0 A [p'p' < lyeul v /;•// < "[[yez^l]]. 

Proof. Applying Theorem 23.44 in <M, B'*) to any q < In ^ (^a)'^L 
with r = q, / = by = |y E 7/| for y < and byj = by for JeJ, we 
establish the existence of a p E P and a A c satisfying 1-3 and such that 

p < q. Therefore the set of p's for which there exists a A c F^ satisfying 1-3 
is dense beneath [i/ ^ (X^)'^|, so we can find i\ p < [[z/ c (X^)'^| which 
satisfies the additional requirement hoip) = 1 (Theorem 10.11). 

Theorem 24.7. in A/[/7o]. 
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Proof. 

1. in A/[//o]: 
Consider first the case a e Reg. Let 

= (y e I (3/7 G P)[(\,y, a, r^yep A hoip) = 1 ]}• 

Then, as in the proof of Theorem 11.10, 

(Vry < ^^G(c))[^n — ^a] 

and 

(VT7, 7]' < XG(a))h ^ ^ ^v']' 

Since (Vry < ^G<.a))[<^n^ ^Uh]]^ this proves 1. 

Now suppose a ^ Reg. Then ^^ch ^ < a, /3 G Reg, 

hence 2^« > ^^(a) by our additional requirement on G that ^^cca) is the 
smallest cardinal greater than or equal to nW jS < a that are not 

cofinal with 

2. 2^a < XG(„) in M[/io]. 

Define 2 iii M as follows: 

2 = {<A, S') 1 A C A A G A/ A 5' c A X A S' G M}. 

We first show that 2 = ^cca) in Clearly 2 ^ ^cca)- Furthermore in M 

ta — ^a’^a’^G(a) ^G(a)* 

Since the GCH holds in M, 

(A I A C A A < — ^G(a)- 

Therefore < ^a + i’^cw = ^G(a) and hence ^ = ^G(a) in M. 

Thus, to prove 2 it suffices to find a function in M[ho] which maps 2 onto 
^(K^) in M[/7O]. For <A, S> G 2 lot 

/w«A, S» = y if there are M’, q such that 

(i) hoiq) =1 Aq<lw^ (X,)! 

(ii) for each q' < q and each y< 

(3/7 G A)[/?-^' > 0 A [p-q < [yGM’l v p-q < "[[yGvv]]]] 

(iii) S = {</7, y> I /7 G A A y < K„ A p-q <lyG vv]]} 

(iv) y = /7(H’). 

/f«A, S» = 0 otherwise. 

The proof that 

K\ 2 
is similar to the corresponding proof in Theorem 23.30. To prove that K is 
a function suppose that conditions (i)-(iv) are satisfied by H’O, and 
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for the same S. We must then show that h{n’o) = h{yyi). Note that 

^ ^a- Suppose 

yG//(u’o) A y ^ h{\\\) for some y e ^^a. 

Then since this is true in A/[//o], we.baLve from the definition of// (see the 

proof of Theorem 23.24) 

fioUlo'i/i-ly ^ ^ = 1 

and by (ii): 

(3/7GyV)[/;-^7o-r7i-|yGvrol-[[y^vi'i]] > 0 A [p-qo < lyevt’o! V p-qo < lly ^ vi’o]]]]. 

We must have p-cjo < ly 6 u’o]], therefore by (iii) 

</;, y> G 5. 

But by hypothesis, n’o,qo and u’i,r7i satisfy (i)-(iv) for the same S. Hence 

P-iJi ^ ly e vv’i]]. 

This is a contradiction. 

To prove that K is onto suppose //(//) ^ Then hoHu c (K^)'^|) = 1, 

so by Lemma 24.6 there are p, A e M such that //o(/T = 1 tind, in <IV1, 

P < Jw ^ T c A < and for each q' < p and each y < 

(3//'G A )[//•</' > 0 A [/;•// < lyeuj v p-p' < "[[ye//]]]]. 

If ^ = {<//, y> I // G A A y < A p-p < ly e //J}, then <A, 5> G 2 and 

A'«A, S}) = hill) 

i.e., K is onto. Consequently, in A/[//o] 
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Problem List 

by Paul E. Cohen 

Section 1 

1. Prove, for a Poolean algebra <Z?, +, •, ", 0, 1>, lhal 

i) (Vr/)(V/))[r/ + h a h — a = 0], and 

ii) {Ma){'ih)[ah = a—> a — h = ()]. 

2. If <5, 0, I) is a Boolean algebra, prove that •, +, ", 1, 0> 

is a Boolean algebra. 
3. Let \ B, +, ■, ",(),!> be a Boolean algebra and let < be the natural 

order on B. Show that +, •, ", 0, 1 can be defined in <5, <>. 
4. Give a partial order structure in which there is a p such that [/?] is not 

regular open. 

5. Which sets are regular open in a linear order structure? 

Section 2 

6. Show that in Definition 2.2, condition 3 may be replaced by 

3'. SeA/\S^P^S~ ~ P ^ S '\s open —^Gr^S^O. 

7. If <,/*, <> is a partial order structure, if M is a model of Zr, if Q is a 
dense subset of P, if Q e 4/, and if G is <)-generic over A/, then Q r\ G 

is {Q, <>-generic over A/. 
8. Let P = P, <> be a partial order structure with 

P — {p\ (3r/ c a))[c/if finite A p\d^ 2]i and p < q iff p ^ q. 

i) Sn = [p ^ P \ pin) is defined}, // < a> 

ii) A ^ (S'n I n e a»}, and 

iii) G is P-generic over /t, 

then G is a function from oj into 2. 
9. If B is a complete Boolean algebra, if A is a class and if F is an A- 

complete ultrafilter on B, then F — [01 is <|^| — {0}, <>-generic over A. 

10. Find a condition on a partial order structure such that its Boolean 
algebra of regular open sets will satisfy the c.c.c. Can you find an equivalent 
condition ? 
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Section 4 

11. Show that the Boolean algebra of regular open sets for the partial 
order structure of Exercise 8 does not satisfy the (a>, 2)-DL, 

Section 5 

12. Show that if P is a partial order structure, if A is a set and if G is 
P-generic over A, then C is a filter for P. Thus G is sometimes referred to as 
a P-generic filter. 

Section 7 

13. We say that mathematical induction holds in a model M of Godel- 
Bernays set theory (GB) if for every formula cp of the language o\' GB, 

[99(0) A (in)[(p{n) (p(n + 0]](V/7)[9)(/7)] 

is true in M. Show that if M is a standard model of GB, then M satisfies 
mathematical induction. 

14. Let the strong Lowenheim-Skolen Theorem be the statement that 
every structure for a language ^ (which is a sequence of classes) has an 

elementary substructure of power Show that if + there is a standard 
model of ZF which is a set" is consistent, then the strong Lowenheim- 
Skolem Theorem is not a Theorem o\' GB + mathematical induction. (Hint: 
Look at the minimal model.) We remark that the strong Lowenheim- 
Skolem Theorem may be proven in Morse-Kelly set theory, which has 
stronger comprehension axioms than does GB. 

15. Give a construction for A/[A ] that does not presuppose that A c /V/. 

Section 8 

16. What is the relationship between the sets in L[A; F] of rank not more 
than a and {/)«(/) | t e r„}? 

Section 9 

17. In view of the fact that V[F] c L, discuss the statement " V[F] is an 
extension of V." 

Section 10 

18. Show that if 99 is any limited or unlimited formula, then {p \ 99} is 
a regular open set. Assuming forcing to be defined by the statements of 
Theorem 10.4, find a statement about /7 H- 99 and p H- -1-199 that is equivalent 
to the statement that {/; | p H- 99} is regular open. 
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Section 11 

19. Prove that the partial order structure P of Definition 11.1 is isomor- 
phic to the partial order structure of Exercise 8. What relationship is there 
between the set a in Theorem 1 1.3 and the function G of Exercise 8? 

20. Why is Corollary 1 1.4 not a proof that if ZF is consistent then so is 
ZF + AC F GCH F V ^ LI 

21. Refer to Theorem 1 1.6. Show that M[Gi] and A/fCa] not neces- 
sarily elementarily equivalent in the language U [(7( )}). 

22. Show that the partial order structure of Theorem 11.10 is isomorphic 
to the structure \ Q, <> where 

Q = {// I (3r/)[<'/ c a X to A ci < XQ A q: cl 2]! 

and c/i < r/2 iff c/i ^ r/2 (cf. Definition 11.1 and Exercises 8 and 19). 

Section 12 

23. Show that the partial order structure of Theorem 11.1 is isomorphic 
to the strong product of copies of the partial order structure of Exercise 8 
or 19. 

24. In courses in naive set theory a finite set is sometimes defined as a set 
that is equinumeroLis with none of its proper subsets. Show that this is a 
satisfactory definition only if the Axiom of Choice is assumed. 

Section 13 

25. In view of the fact that ^ E, discuss the statement “ is an 
extension of E." (cf. Exercise 16.) 

26. Suppose <A", <> is a partial order structure and B is the Boolean 
algebra of regular open sets of B. Let/QIK B be defined by /o(A') = [A']“°. 
Then E[/o] and E‘“^ are B-valued structures. Define a Boolean elementary 
embedding /: E[/o]-> E‘**^ (i.e., such that for any formula 9 and terms 

E[/o]), 

MC' • • 01 = [^(/(c) /(c))!]- 

Is / one to one? Onto? V[fo\ is a class of names for sets. In wdiat sense can 
this also be said of E'“^? 

27. Suppose B is a complete Boolean algebra. Eor which u e E‘®^ is 

{vE E<«> I Iren] = IJ- 

a set? Eor which ue E'**’ is 

{v E E'**^ I Iv E w]] ^ 0!- 

a set? 

Section 17 

28. If M and N are models of ZCand M ^ N, show that any cardinal in 
is a cardinal in M (cf. Theorem 17.1). 
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29. If P is a partial order structure, then vve say that P satisfies the y-chain 

condition (where y is a cardinal) if S < y for every S ^ |p| such that 

(V/;, q 6 S) [ 1 Comp (/?, (/)]. Show that if M is a countable standard transi- 
tive model of ZFC, if P £ M, if G is P-generic over M, and if a > y is a car- 
dinal in A'/, then a is a cardinal in M[G]. Give two proofs of this, one using 
Theorem 17.4 (see Exercise 10), and the other based on Theorems 10.4 and 
10.6. 

Section 18 

30. Suppose Pisa partial order structure such that whenever </7j | / < oj) 
is a sequence with Po > Pi > ■ ■ ■, then {3p G |P|)(V/ G OJ )[/^ < Pil Let B be the 
Boolean algebra of regular open sets of P. Then B satisfies the (a>, 2)-DL. 

31. Use the result of Exercise 30 to show that if M is a countable standard 
transitive model of ZTC if P E M has the property of Exercise 30, and if G is 
P-generic over A/, then 3^(OJ) is the same in A/ and A/[C]. 

32. Give a direct proof of Exercise 31 based on Theorems 10.4 and 10.6. 
Can the proof be generalized to give a stronger theorem? 

Section 20 

33. Give a proof for the remark after Definition 20.1. 
34. Give a condition on a partial order structure such that its Boolean 

algebra of regular open sets satisfies the (OJ, 6D„)-WDL. Can you find an 
equivalent condition? 

Section 22 

35. If B is a complete Boolean algebra and BQ is a dense subalgebra of B 
then is the completion of BQ necessarily isomorphic to B? 
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Subject Index 

absolute class, 66 
absolute formula, 66 
absorption laws, 4 
abstraction operator, 79 
abstraction terms, 79 
(X«, N/,)-splitable, 212 
Na-bounded, 215 
tta-Easton pair, 215 
(a, /3)-distributive law, 47 
associated partial order structure, 52 
associative laws, 3 
atom, 132 
atomic topological space, 191 
Axiom of Choice, 100, 114-120, 142, 

206 
Axiom of Constructibility, 74, 76, 

106-113 
Axiom(s) of Equality, 61, 98, 122, 

131 
Axiom of Extensionality, 89, 99, 124 
Axiom of Infinity, 68, 90, 127 
Axiom of Pairing, 68, 89, 135 
Axiom of Powers, 71, 92, 93, 206, 

207 
Axiom of Regularity, 89 
Axiom (Schema) of Replacement, 

71, 94, 196, 207 
Axiom (Schema) of Separation, 69, 

71, 90 
Axiom of Unions, 68, 89 

B-valued interpretation, 59, 61 
B-valued structure, complete, 62 
B-valued structure, separated, 61 
B-valued substructure, 87 
base, 7 
Baire Category Theorem, 42 
Boolean algebra, 3-24 
Boolean algebra, complete, 6 
Boolean algebra, completion of, 

183-195, 184, 185 
Boolean algebra, M-complete, 21 
Boolean algebra, natural, 3 

Boolean algebra, natural order for, 
5 

Boolean algebra, nonatomic, 132 
Boolean algebra, universe of, 3 
Boolean a-algebra, 35 46 
Boolean subalgebra, 25 
Boolean-valued relative constructi- 

bility, 87-101 
Boolean-valued set theory, 121-130 
Boolean-valued structures, 59-63 
Borel sets, 35 

cardinals in 160-164 
chain condition, countable, 30, 43 
class, absolute, 66 
class, complete, 153 
class, definable, 66, 73 
clopen set, 8 
closed set, 8 
coatomic, 214 
coatomic partial order structure, 215 
commutative laws, 3 
compact set, 38 
compact space, 38 
compact space, locally, 38 
compatible sets, 25 
complementation laws, 3 
complete B-valued structure, 62 
complete Boolean algebra, 6 
complete distributive law, 47 
complete subalgebra, 125 
completion of Boolean algebra, 

183-195, 184, 185 
constructible set, 163 
constant(s), individual, 79 
constant(s), predicate, 79 
constant term, 80 
constant term, grade of, 80 
constructibility. Boolean-valued, 87 
constructibility, relative, 64 -86 
Continuum Hypothesis, 111-113, 

173 
countable chain condition, 30, 43 
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definable class, 66, 68, 73 
defined over M', 87 
denotation operator, 83, 143 
dense beneath, 105 
dense set, 8 
dense set, no-where, 36 
descrete topology, 7 
direct system, 189 
distribute laws, 47-50, 165-168 
distributive laws, (a, /3)-, 47 
distributive law, complete, 47 

Easton’s main lemma, 216 
Easton’s model, 221-226 
elementary embedding, 143-147 
elementary mapping, 146 
elementary substructure, 74 
embedding, elementary, 143-147 
embedding, topological, 191 
epimorphism, 16 
extensional function, 151 
extensional set, 152 

filter, 28, 51 
filter, A/-complete, 28 
filter, maximal, 51 
filter, principal, 28 
filter, proper, 28 
filter, trivial, 28 
fine partial order structure, 58 
finite intersection property, 39, 45- 

46 
finite set, 38 
forcing, 102-105, 103 
forcing, setting for, 104 
formula, absolute, 66 
formula, limited, 79 
formula, unlimited, 80 
function, extensional, 151 
function, normal, 69 
function(s), projection, 45 
function, semi-normal, 69 
function, Skolem, 74 

Y-chain condition, 161 
Generalized Continuum Hypothesis, 

74, 76, 107, 169, 171 
generic sets, 25-34 

234 

Godel, 64 
Godel-Bernays set theory, 67 
grade, of constant term, 80 
grade, of variable, 80 

t « 

Hausdorff space, 38, 46, 52, 53 
homomorphism, 16 
homomorphism, complete, 21 
homomorphism, kernel of, 19 
homomorphism, yV/-complete, 21 

I-A sieve law, 210 
/-sieve, 209 
ideal. Boolean, 19 
ideal, generated by, 23 
ideal, A/-complete, 21 
ideal, maximal, 22 
ideal, principal, 19 
ideal, proper, 19 
ideal, trivial, 19 
idempotent laws, 4 
identity laws, 3 
independence of the AC, 114-120 
independence of the CH, 106, 111- 

113 
independence of V = L, 106-113 
independence results, 106-113, 169 

174 
individual constants, 79 
induced topology, 15 
interpretation, B-valued, 59, 61 
isomorphism, 16 

kernel of homomorphism, 19 

language, ramified, 79 
Levy, 64 
limited formulas, 79 
Lindenbaum Tarski algebra, 3 

M -complete Boolean algebra, 21 
A/-complete filter, 28 
mapping, elementary, 146 
Marezewski's Theorem, 179-182, 

181 
maximal filter, 51 
maximum principle, 148 



meager set, 36 
measure algebra, 177 

natural Boolean algebra, 3 
natural order for Boolean algebra, 

5 
neighborhood, 7 
nonatomic Boolean algebra, 132 
normal function, 69 
normal limiting system, 192 

(CO, co)-weak distributive law, 175 
((u„, (0;,)-vvcak distributive law, 214 
open, continuous and onto inverse 

system, 188 
open set, 8 
operator, abstraction, 79 
operator, denotation, 83 

P-generic set, 25 
partial order structure(s), 14, 51 58 
partial order structure(s), associated, 

52 
partial order structure(s), coatomic, 

215 
partial order structure{s), filter for, 

51 
partial order structure(s), hne, 58 
partial order structure(s), normal 

limiting system of, 192 

partial order structure(s), product, 
57 

partial order structure(s), strongly 
coatomic, 215 

partial order structure, ultrafilter 
for, 51 

partial order structure, weakly 
normal limiting system of, 193 

partial ordering, 14 
partition of unity, 61 
predicate constants, 79 
principal filter, 28 
product partial order structure, 

57 
product topology (weak), 45 
product topological space, 45 
projection functions, 45 
proper filter, 28 

(ILiantificd ranked variable, grade of, 
80 

quasi-disjoint set, 179 

ramified language, 79-86 
Rasiowa-Sikorski, 29 
Rasiowa-Sikorski Theorem, 60, 100 
ramified language, 79 
ranked variables, 79 
regular open set, 8 
relative constructibility, 64 86 
relative constructibility. Boolean- 

valued, 87 
relative topology, 42 
restricted («, 2)-distributi\c law, 166 

satisfaction, 60 
Scott, 64 
semi-normal function, 69 
separated B-valued structure, 61 
set, Borel, 35 
set chain condition, 203 
set, clopen, 8 
set, closed, 8 
set, compact, 38 
set, compatible, 25 
set, constructible, 163 
set, definable, 68 
set, dense, 8 
set, extensional, 153 
set, finite, 38 
set, meager, 36 
set, no-where dense, 36 
set, open, 8 
set, P-generic, 25 
set, partial ordering of, 14 
set, quasi-disjoint, 179 
set, regular open, 8 
set, uniform, 153 
set theory, Godel-Bernays, 67 
a-algebra, 35 
CT-homomorphism, 35 
CT-ideal, 35 
#-sifted, 209 
Shoenfield, 64 
Skolem function, 74 
Solovay, 64 
space, compact, 38 
space, Hausdorff, 38, 46, 52, 53 
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space, locally compact, 38 
space, topological, 7, 51-58 
space, topological product, 45 
strongly coatomic partial order 

structure, 21 5 
structure(s). Boolean-valued, 59-63 
structure(s), partial order, 14, 51-58 
subalgebra, complete, 125 
subalgebra generated by, 35 
substructure, 65 
substructure, B-valued, 87 

I'l-space, 51 
term, abstraction, 79 
term, constant, 80 
term, grade of, 80 
topological embedding, 191 
topological space(s), 7, 51-58 
topological space, atomic, 191 
topological spacc(s), open con- 

tinuous and onto inverse system 
of, 188 

topological space, product, 45 
topology, 7 
topology, base for, 7 
topology, descrete, 7 

topology, induced, 15 
topology, product, 45 
topology, relative, 40 
trivial filter, 25 
TychonofT's Theorem, 45 

• ^ 

ultrafilter for partial order structure, 
51 

uniform convergence law, 200 
uniform set, 153 
unity, partition of, 61 
universe of Boolean algebra, 3 
unlimited formulas, 80 
unranked variables, 79 

V ariables, ranked, 79 
variables, unranked, 79 

weak distributive lawfs), 175-178, 
175 

weakly normal limiting system, 193 

Zorn's Lemma, 44, 46 
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■Aa) 3 .//(A) 72 

l»il 4 1 74 
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Graduate Texts in Mathematics 

Soft and hard cover editions are available for each volume 

For information 

A student approaching mathematical research is often discouraged by the 
sheer volume of the literature and the long history of the subject, even when the 
actual problems are readily understandable. The new series, Graduate Texts in 
Mathematics, is intended to bridge the gap between passive study and creative 
understanding; it offers introductions on a suitably advanced level to areas of 
current research. These introductions arc neither complete surveys, nor brief 
accounts of the latest results only. They are textbooks carefully designed as 
teaching aids; the purpose of the authors is, in every case, to highlight the 
characteristic features of the theory. 

Graduate Texts in Mathematics can serve as the basis for advanced courses. 
They can be either the main or subsidiary sources for seminars, and they can be 
used for private study. Their guiding principle is to convince the student that 
mathematics is a living science. 
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