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Preface

This text deals with three basic techniques for constructing models of
Zermelo-Fraenkel set theory: relative constructibility, Cohen’s forcing, and
Scott-Solovay’s method of Boolean valued models. Our main concern will be
the development of a unified theory that encompasses these techniques in one
comprehensive framework. Consequently we will focus on certain funda-
mental and intrinsic relations between these methods of model construction.
Extensive applications will not be treated here.

This text 1s a continuation of our book, *“Introduction to Axiomatic Set
Theory,” Springer-Verlag, 1971 : indeed the two texts were originally planned
as a single volume. The content of this volume is essentially that of a course
taught by the first author at the University of Ilinois in the spring of 1969.
From the first author’s lectures, a first draft was prepared by Klaus Gloede
with the assistance of Donald Pelletier and the second author. This draft was
then revised by the first author assisted by Hisao Tanaka.

The introductory material was prepared by the second author who was also
responsible for the general style of exposition throughout the text. We have
included in the introductory material all the results from Boolean algebra and
topology that we need. When notation from our first volume is introduced, it
is accompanied with a definition, usually in a footnote. Consequently a
reader who is familiar with clementary set theory will find this text quite
self-contained.

We again express our deep appreciation to Klaus Gloede and Hisao
Tanaka for their interest, encouragement, and hours of patient hard work in
making this volume a reality. We also thank our typist, Mrs. Carolyn
Bloemker, for her care and concern in typing the final manuscript.

Urbana, Illinois G. Takeuti
March 23, 1972 W. M. Zaring












Introduction

In this book, we present a useful technique for constructing models of
Zermelo-Fraenkel set theory. Using the notion of Boolean valued relative
constructibility, we will develop a theory of model construction. One feature
of this theory is that it establishes a relationship between Cohen'’s method of
forcing and Scott-Solovay’s method of Boolean valued models.

The key to this theory is found in a rather simple correspondence between
partial order structures and complete Boolean algebras. This correspondence
1s established from two basic facts: first, the regular open sets of any topological
space form a complete Boolean algebra: and second, every Boolean algebra
has a natural order. With each partial order structure P, we associate the
complete Boolean algebra of regular open sets determined by the order
topology on P. With each Boolean algebra B, we associate the partial order
structure whose universe 1s that of B minus the zero element and whose
order 1s the natural order on B.

If B, 1s a complete Boolean algebra, if P 1s the associated partial order
structure for By, and if B, is the associated Boolean algebra for P, then it is
not difficult to show that B, is 1somorphic to B, (See Theorem 1.40). This
establishes a kind of duality between partial order structures and complete
Boolean algebras; a duality that relates partial order structures, which have
broad and flexible applications, to the very beautiful theory of Boolean valued
models. It 1s this duality that provides a connecting link between the theory
of forcing and the theory of Boolean valued models.

Numerous background results are needed for our general theory. Many
of those results are well known and can be found in standard textbooks.
However, to assist the reader who may not know all that we require, we
devote §1 to a development of those properties of Boolean algebras, partial
order structures, and topologies that will be needed later.

Throughout this text, we will use the following variable conventions.

Lower case letters a, b, ¢, ... are used only as set variables. Capital letters
A, B, C,... will be used both as set variables and as class variables; in any

given context, capital letters should be assumed to be set variables unless we
specifically state otherwise.






1. Boolean Algebra

In preparation for later work, we begin with a review of the elementary
properties of Boolean algebras.

Definition 1.1. A structure (B, +, -, 7. 0,1 is a Boolean algebra with
universe B iff 0 and 1 are two (distinct) elements of B:; + and - are binary
operations on B: ~ is a unary operation on B: and Va, b, ¢ € B.

l.a+b=5b4+a ab = ba Commutative Laws.
2.a+ (b +c)=(a+ b)+ ¢ albe) = (ab)c Assoctative Laws.
3. a+ be = (a+ b)a+ ¢) alb + ¢) = ab + ac Distributive Laws.
4. 0+ a =a la = a Identity Laws.
S5.a+ a=1 a(~a) =0 Complementation Laws.

Remark. There are alternative definitions of a Boolean algebra. The
reader might find it instructive to compare the definitions given in the
standard texts.

Examples. 1. If @ # 0 then {Z(a)*, U, N, 7,0, a> 1s a Boolean algebra.
If « = I we have a very special 2-element Boolean algebra that we denote by
2. Every 2-element Boolean algebra 1s isomorphic to 2.

2.1 a#0,b< #a),0eb,ach, and if b is closed under set union,
intersection, and relative complement then <b, U, N, 7,0, a> is a Boolean
algebra. Such an algebra, 1.e., one whose elements are sets and whose
operations are union, intersection, and relative complement, we will call a
natural Boolean algebra.

3. If for a first order logic whose language contains at least one predicate
symbol we define an equivalence relation between sentences by

b~ iff F[h o]
then the collection of equivalence classes is the universe for a Boolean algebra
called the Lindenbaum-Tarski algebra. The operations are logical disjunction,
conjunction, negation; vV, A, —, with the distinguished elements being truth

and falsehood, i.e., 1 is the equivalence class of theorems and 0 is the equiva-
lence class of contradictions.

Exercises. Prove the following for a Boolean algebra (B, +, -, 7,0, 1):

I. (Va)la + b = a]—b = 0.
2. (Va)lab = a] — b = 1.

*Pa) = {x|x<Saj}.



Notation: We will use the symbols B, B’, B, as variables on Boolean
algebras. |B| is the universe of the Boolean algebra B. When in a given con-
text the symbols 0 and 1 appear it will be understood that they are the
distinguished elements of whatever Boolean algebra is under discussion. If
there are two or more Boolean algebras in the same discussion we will write
0y, 1, 0y, 1. to differentiate between the distinguished elements of the
different spaces. If no confusion is likely the subscripts will be dropped. The
same convention will be used in denoting Boolean operations.

Theorem 1.2. If (B, +, -, 7, 0,1) 1s a Boolean algebra then Va,be B

l.a+a=a aa = a Idempotent Laws.
2.a+ ab=a ala + b) = a Absorption Laws.
Proof.

lLat+a=@+al =@+ a)a+ "a)=a+ a("a)=a + 0 = a.
2.a+ab=al+ab=a(l+b)y=a("b+b+b)y=a("b+bh)=al =a.

The proofs of the multiplicative properties are left to the reader.
Theorem 1.3. If {B, 4+, -, 7,0, 1> is a Boolean algebra then

I. 7 0=1,"1=0.
2. MaeB)[1 +a=1A 0a=0].

Proof.

1. 7 0=0+ -0=1.
2. 1l+a=(Ca+a)+a= "a+((a+a)="a+a=1.

The remaining proofs are left to the reader.

Theorem 1.4. If (B, +, -, 7,0, 1> is a Boolean algebra then Va,b e B

l.a+b=1ANab=0—-=b= "a.

e (=12,

3. "(@a+ b)=(Ca)b), (ab) = ~a + ~b.
4. ab=a<>a + b = b.

Proof.

l. b = bl = bla + ~a) = ba + b("a)
=04+ b("a) =a("a) + b("a)
=(a+ b)("a)=1("a) = "a.
. Since "a + a = 1 and (Ta)a = 0, we have from 1, “(~a) = a.
a+b)+ (Cab)y=a+ b+ ~a)b+ ~b)
=a+ b+ a)=1+b=1
(@ + b)("a)("b) = [a(Ta) + b(~a)])("b)
= b("a)("b) = 0.

Hence by 1, ~(a + b) = (Ta)("b).

4. Ifab=athena+b=ab+b=b.1fa+ b= bthenab = a(a + b) = a.
The proof of the other half of 3 we leave as an exercise for the reader.
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2. Generic Sets

In the material ahead we will be interested in standard transitive models
M of ZF and i partial order structures P = (P, <> for which Pe M.
Although some of the results hold under more general conditions we will
assume herecafter that this is the case i.e.. M is a standard transitive model of
ZF, P = (P, <) isa partial order structure and P € M.

Definition 2.1.  If < is a partial ordering of P then

1. (Va, b e P)[Comp (a, b) A @cePe<anc< b].
2. (VS < P)[Comp (S) & (Ya, b € S)[Comp (a, b)]].

Remark. The symbol “Comp (a, b)"" is read ““a and b are compatible.”
Similarly **Comp (S) " is read **S is compatible.” By definition a subset .S of
a partially ordered set P is compatible if and only if its elements are pairwise
compatible.

Later we will be interested in partially ordered sets P whose clements
“code™ certain non-contradictory information. The ordering will be so
defined that @ < b means that a contains all of the information that b does
and perhaps more. Then ¢ < a A ¢ < b means that ¢ contains all of the
information in both @ and b. Consequently the information in a 1s compatible
(consistent) with that in b.

Definition 2.2. Let A be a given class. If P = (P, <) is a partial order
structure and G = P, then G i1s P-generic over A4 iff

I. G is compatible.

2. peGANgGgeP ANp <g—qel.

3.SeAANSS PAS =P=>0GNS#0.

G 1s P-generic over A in the strong sense if in addition
4. Vp,ge G)3reG)lr < p A r < q).

Remark. In Definition 2.2 the topology is that induced on P by the
partial ordering <. Consequently, condition 3 asserts that every element
of A that is a dense subset of P, in the order topology, has a nonempty
intersection with G.

Theorem 2.3. If P = (P, < isa partial order structure, if p 1s a minimal
element of P and if G = {ge P|p < g} then G is P-generic over A (in the
strong sense).
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If GNS =0 then (VpeS)[pé¢ G] and hence [p] ¢ F. But F is an
ultrafilter. Therefore ~([p] %) € F. Consequently

0=]] U1 9eF.
peS
Since F is proper this 1s a contradiction from which we conclude that
G N S # 0. Therefore G 1s P-generic over M.

Remark. In Theorem 2.16 we established a procedure for obtaining a
proper M-complete ultrafilter F from a given G that is P-generic over M. In
Theorem 2.17 we showed how to obtain a G that is P-generic over M from a
proper M-complete ultrafilter F. If from a P-generic G we obtain an ultrafilter
F from which we in turn obtain a P-generic G', how are G and G’ related ? We
will show that in fact G = G’. Similarly if we proceed from Fto G to F’
then F = F'.

Theorem 2.18. If G is P-generic over M then G is a maximal compatible
subset of P.

Proof. If there exists a p ¢ G such that G U {p} is compatible and if
S = [pluig| ~Comp (p, q)}

1t 1s easily established that S is dense in P. Indeed if g € P either g is com-
patible with p or it is not. If g i1s compatible with p then [g] N [p] # 0:1f ¢
is not compatible with p then g € S. In either case [g] N S # 0.

Since S is dense in P, SN G # 0. On the other hand, since G U {p} 1s
compatible G contains no elements incompatible with p. Therefore [p] N
G # 0 i.e. (3g < p)lge G]. Since G is P-generic it follows that p € G. This
is a contradiction.

Theorem 2.19. If P = (P, <> e M, if B is the Boolean algebra of
regular open subsets of P, if G is P-generic cver M, and if

F=1{beBlOM|b=b"CAbNG#O0
G ={pllpl ek}

then G = (.
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S. Partial Order Structures and Topological Spaces

In the work ahead we will be interested in Boolean algebras that are
associated with certain partial order structures (Definition 5.4) and Boolean
algebras of regular open sets of certain topological spaces. Quite often we
find that the Boolean algebra associated with a particular partial order struc-
ture is the same algebra as that of the regular open sets of a certain topological
space even though there appears to be no connection between the partial
order structure and the topological space. In this section we will establish
such a connection. For a given partial order structure we will define a topolog-
ical space of ultrafilters for the partial order structure (Definitions 5.2, 5.3,
and 5.6). We will show that in general this topological space is a T,-space
(Theorem 5.7). If, however, the partial order structure is one associated with
a Boolean algebra, then the topological space i1s in fact Hausdorft (Theorem
5.8).

Definition 5.1. A topological space < X. T 1sa T,-space iff it satisfies the
T,-axiom of separation: Vx, ye X

x#y =GNy é N A AN)IxE NI

Remark. For the results we wish to prove we first define filter and
ultrafilter for partial order structures.

Definition 5.2. Let P = <P, <> be a partial order structure and let F
be a nonempty subset of P. Then Fis a filter for P iff

I. Fisstrongly compatible ie., (Vx,ye F)3ze F)[z < x A z < y].
2. Fis upward hereditary i.e., (Vxe F)(Vye P)[x < y—ve F].

Remark. From Definitions 2.2 and 5.2 and from Theorem 2.4 we see
that if G is P-generic over M, with M a standard transitive model of ZF, then
G is a filter for P. In fact G is an ultrafilter in the following sense.

Definition 5.3. F is an ultrafilter for the partial order structure P iff F
1s a maximal filter i.e., Fis a filter for P and for each filter F’

Fc FF—F=F.

Remark. Note that an ultrafilter for a partial order structure P =
" P, <> need not be a proper filter, i.e., P could be an ultrafilter. indeed if P is
compatible P is an ultrafilter.
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We next establish a connection between filters for Boolean algebras and
filters for partial order structures.

Definition 5.4. Let B = (B, +, -, 7,0,1> be a Boolean algebra with
natural order < (see Definition 1.5). Let P = B — {0} and P = (P, <).
Then P is the partial order structure associated with B.

Theorem 5.5. Let B= (B, +.,-, 7,0,1) be a Boolean algebra and
P = (P, <) be its associated partial order structure. If F 1s a nonempty
subset of |B| then Fis a proper filter for the Boolean algebra B iff Fis a filter
for the partial order structure P.

Proof. Let F be a proper filter for B. Then 0¢ Fie, F< B — {0}. If
X, v € F then xye F and hence there exists a - € F, namely xy, such that
z < xand z < y. Thus Fis a filter for P.

Conversely let F be a filter for P. If x, y € F then there 1s a z € F such that
z < xand z < y. Therefore z < xy and since Fi1s upward hereditary xy € F.
Furthermore since 0 ¢ P it follows that 0 ¢ Fi.e., Fis a proper filter for B.

Definition 5.6. Let P = (P, <) be a partial order structure and let F
be the set of all ultrafilters for P. Then

N(p) = {FeF|peFl,peP
T=2{G<F|(VFeG)3peP)[FeN(p) < G).

Theorem 5.7. <(F.T) is a T,-space.

Proof. First of all we shall show that {F, T is a topological space. From
Definition 5.6 it is clear that 0 and F are each open. Let G, and G, be open
sets and let F e G; N G,. Then there exist p and p’ such that

Fe N(p) < Gl
and

FeN(p') < G..

Then p e F, p" € Fand hence there exists a z € Fsuch that - < pand z < p’.
Therefore. since every ultrafilter 1s upward hereditary

FeN(z) € N(p)n N(p') € G, N G,,

and hence G, N G, is open.

It is clear that if each G, a € A, is open then | J {G, | a € A} is also open.
Thus <{F, T is a topological space.

Next we witl show that (F, T> satisfies the 7,-axiom of separation. Let £,
and F, be different elements of K. From the maximality of F; and of F,,
thercisapeF, — F,and a p'e F, — F,. Then F, ¢ N(p) and F, ¢ N(p')
.e. F, T 1sa 7T)-space.

Remark. There exist examples of partial order structures such that the
corresponding topological space <F’, T"> is not Hausdorft.
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Theorem 5.8. Let P = (P, <) be the partial order structure associated
with the Boolean algebra B. Then (F, T) is a Hausdor(T space.

Proof. Suppose not. Then there would exist distinct F,, F, € F such that
(Vpy e F1)(Vpye F)3Fe F)[p,e F A py e Fl.
Then (Ire F)[r < py A ¥ < polie, pips # 0.

IfG ={peP|@3p,e F3p,e F)[p,ps < p] then G is a filter for P. For,
if p,q € G then

(3Ap1. g1 € F)3pe. g2 € F)[pipa < p A q1g2 < q).

Since F, and F, are filters p,q, € F, and p.g, € F,. Furthermore p,q,p.q, <
pq. Then pg e G 1.e., for each p, g € G there is an r € G, namely pg, such that
r < pandr < g. Clearly G is upward hereditary.

Since G is a filter, since F; < Gand F, < G, and since F, and F, are distinct

ultrafilters we have a contradiction. Therefore <F, T is HausdorfY.

Remark. In order for F to be a filter for a partial order structure P =
(P, <> we require that F be strongly compatible (Definition 5.2). This
raises a very natural question. Why do we not define a more general notion
by requiring that F only be compatible? That is, instead of requiring F to
satisfy 1 of Definition 5.2 why do we not require instead that F satisfy the
weaker requirement

1" (Vx,ve F)(3zeP)[z < x A z€]?

For purposes of discussion let us call filters as originally defined strong
filters and filters as newly proposed. weak filters. The change from strong
filter to weak filter also changes the notion of ultrafilter for being maximal
among weak filters is a stronger restriction than being maximal among strong
filters. There are two interesting consequences of this fact. If ultrafilters are
maximal among weak filters then the sets N(p) of Definition 5.6 form only a
subbase for the topological space (F, T>. Furthermore this space i1s Haus-
dorff. The fact that {F, T> satisfies the 7,-axtom of separation was first
pointed out by H. Tanaka.

Nevertheless, for the work that comes later we need strong filters and we
want ultrafilter to mean a strong filter that 1s maximal among strong filters.
Thus, later use brings us back to the definition as given.

We do not know whether every T,-space 1s homeomorphic to a topo-
logical space (F, T, associated with some partial order structure or whether
every Hausdorff space 1s homeomorphic to a topological space <{F',T")
associated with the partial order structure associated with a Boolean algebra.

Let P = (P, <) be a partial order structure and let F the set of all ultra-
filters for P. In order to investigate some relations between the topologies on
P and F we introduce the following notation.
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Definition 5.19.  Let Py = (P, <), iel, (I an index set) be a partial
order structure having a greatest element 1;. Then the product structure

A A, . N o B
P =11l P = (P, < isthe following partial order structure.

. P2 {p € I‘I Py | p(i) = 1; for all but finitely many i’s }
\ iel

2. Vp.geP)[p <gq - (Vie D[p(i) < q(i)]).

3.1 2 the unique p € P such that (Vie D{p(i) = 1,].

Theorem 5.20. Let P = [ [;.; P; be given as above and let Fand F, be
the 7,-spaces corresponding to P, and P; respectively i accordance with
Definition 5.6. Then F 1s homeomorphic to the product space | |, F..

Proof. For a givenie I and an element a; € P;, let d; be the element of P
whose /th projection i1s @; and whose jth projection is I; for j # i, 1.c.,

a(i) = a, a(j)y =1, for j# i

For each FeF, let F, ={a;e P;|d;e F}. Then F; is a filter for P; since
a; < b, implies @, < b,. Furthermore F, is maximal: If G, is a filter for P,
suchthat F; € Giand it G = {ae Pla(i)eG; A (3xe F)YY)# Dla(j) = x())]}.
then G 1s a filter and F < G. But F s an ultrafilter. Therefore G = F. For
cach a € G; and each x € F we define a b as follows

b(i) = a, b(j) = x(j) for j # i

Then he G = F. Hence I)(/z\) € F and ae F,. ie.. G, € F,. Consequently
F, = G,, that s, F,1s an ultrafilter Jor P,.

Thus for cach Fe F and cach i€ /. F, 1s an ultrafilter for P., 1.e.. F, e F..
From this fact we then define a mapping ¢g:F — [ [;e; F; by

g(F) = Fier

The function g 1s both onc-to-one and onto (surjective). To prove this
we need only show that each I-sequence, < F; ;c; uniquely determines an

N\

F for which g(F) = {F, ic;. First we note that if
F = :(1 € [) l (ail, e I‘n S ]) 3(1,»1 € l“i]) * (3(11" € f‘in)[(ii*' o (71'" S (I]}

where d;, - -+ a; (j) = a; W j = i forsome kand G, --- d; (j) = 1 otherwise.
then Fis an ultrafilter for P and g(F) = <F, »..;,. Thus g 1s onto. Sccond if
F,o={a|laeF} and if g(F) = <F, ;c; then Fis the smallest filter for which

~

F, < F, for each i € I. Thercfore ¢ 1s one-to-one.

Now fora givena € Pconsider N(a) = {FeF
for some a; € P;,,..., a;, € P, , we have

ae F}.Simcea = da; - q;
1 n

FeN(a)<-ae F
«~d, €FN---Na €eF
- Fe N@G, )n--- N N(@,),
e, g“N(a) = N(a,)) - -0 N(a,). Therefore g 1s a topological mapping.
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Remark. For the special case B = 2, Definition 6.2 is the usual definition
of satisfaction in ordinary 2-valued logic.

We will write [{(ay, . . ., a,)] for [¥(c,,. ..., co ), R; for ¢(R;) and ¢ for
$(c). If (A, ¢ 1s a B-valued interpretation then

CRN

A D - == &
A ™ <A9 RO& Rla vy Coy Cpy el

1s a B-valued structure.

We will occasionally consider several interpretations in the same context.
We will write [¢] to indicate that element of B determined by ¢ and the
interpretation (A, ¢, of the B-valued structure A.

Definition 6.3. AF (p<—A> l¢] = 1.

Remark. AF @ isread ‘A satisfies ¢’ or “gis true in A.”
The usual axioms of the predicate calculus are also valid in every B-valued
structure as we now show.

Theorem 6.4. If ¢ is a closed formula of the language ¢ then ¢ is
satisfied in every B-valued structure iff ¢ 1s logically vahd.

Proof. ¢ 1s logically valid itff ¢ 1s satisfied in every 2-valued structure.
Since 2 is a complete subalgebra of B every 2-valued structure 1s a B-valued
structure. Conversely if ¢ 1s not satisfied by some B-valued structure A 1.e.,

lpla = b #1

then the computation of @i, requires only a finite number of applications of
Definition 6.2 (5), (6), say

by=]]bww-sba=1] b

(lEAl CZEAn
I4 14 I3 I3
bl - Z blaa---sbm - z bn(z-
aeB; aeByp

By the Rasiowa-Sikorski Theorem (Theorem 2.14) there is a homomor-
phism /i: |B| — |2| such that i(b) = 0 and /i preserves sums and hence
products. If {4, ¢> 1s the B-valued interpretation that determines A and

A ’ . g g
¢" = hodthen (A4, ¢ determines a 2-valued structure A’. Since /1 is @ homo-
morphism that preserves sup’s and inf’s, and /i(b) = 0. it follows that ¢ does
not hold in A’.

Exercises.

1. Let B,, B, be complete Boolean algebras and /1 a complete homo-
morphism of By into B,. If (A, ¢,> 1sa B,-interpretation. if ¢, = /1 o ¢, and
b, = ¢, on the constants of ¥ then (A.$, is a By-interpretation and for
each closed formula ¢ of the language ¥

[@la, = Mlpls,)

where A, 1s the structure determined by (A, &,
2. Let P be a partial order structure, and B the complete Boolean algebra
of all regular open sets in P. If = is an automorphism of P then = induces an
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automorphism # of B. (7: P — P is an automorphism iff 7 is one-to-one and
onto.) If in addition

(VYp1, po € P)(Fm)[7 1s an automorphism of P A Comp (p,, 7(p,))]
then
(VYby, by e B — {0}) (3m)[= is an automorphism of B A bh,7(by) # 0].

Remark. We turn next to languages with equality. As in the 2-valued
case we have special axioms for equality that are casily generalized for the
B-valued case.

Definition 6.5. If ¢ is a first order language with equality then by a
B-valued iterpretation of % we mean a B-valued interpretation in the sense
of Definition 6.1 that in addition satisfies the following Axioms of Equality

[ey = Cz'rcz = ¢g] < H('1 = ¢g].
For each n-ary predicate constant R of the language

[er =l - [en = il [Rlers . - ., )] < [Rey, . . ., ea)l.

.“‘P’.‘\):_‘

Theorem 6.6. Every logically valid sentence of a first order language ¢
with equality is satisfied by a B-valued structure of <.
In particular

ley = 1] - - - [eqn = exlleler, .. .5 ¢)] < [elcy, - ..\ el

Remark. Note that [¢; = ¢, may be different from 0 and from 1. Also,
we may have [¢; = ¢,] = 1 but ¢; # ¢,. To exclude this last possibility we
introduce the separated B-valued structures.

Definition 6.7. A B-valued structure A = {4, =, Ry,..., Cy,...> IS
separated iff

(Vay, a, € A)[[a;, = a,| = 1 — a, = a,).

Remiark. Every B-valued structurc A is equivalent to a separated B-
valued structure (A, =, Ry, ..., &, ...> obtained from A by considering the
equivalence classes of the relation {{a, b> € A% | [a = b] = 1}. If A is the set
of these equivalence classes there are B-valued relations , = Ry, ..., on A and
members ¢, ... of A (which are uniquely determined) such that for every
formula ¢ of ¥ and any a,,...,a,€ A

3\ — I 4 5 \N .
qu((ll, e B an).rlA - *(P(al* SRR an)‘.';\
where 4; 1s the equivalence class containing a;.

Definition 6.8. A partition of unity is an indexed family <{b; | ie l> of
elements of B such that
> bi=1nA(VijeDli# j—bb; = 0]
iel
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7. Relative Constructibility

Godel’s constructibility was generalized, in a natural way, by Levy and
Shoenfield to a relative constructibility which assures us of the existence of a
standard transitive model L[a] of ZF for each set a. Levy-Shoentield’s relative
constructibility 1s rather narrow but quite easily generalized. In this section
we will study a general theory of relative constructibility and deal with several
basic relative constructibilities as special cases. Later we will extend our
relative constructibility to Boolean valued relative constructibility from which
we will in turn define forcing.

There 1s a modern tendency to avoid the rather cumbeirsome theory of
relative constructibility. We behieve this to be a mistake. Although we do not
pursue the subject, it 1s clear that one can consider wider and wider types
of relative constructibility. Accordingly. we have many types of Boolean
valued relative constructibility. We feel that these sometimes wild Boolean
valued relative constructibilities might be very important for future work.
Indeed, it is not at all clear whether the structures they produce can be con-
structed by the usual method of Scott-Solovay's Boolean valued models
without using relative constructibility.

If @ and b are sets there are two different definitions of the notion b 1s
constructible from a™ namely b € L, or b € L[a] where

L, is the smallest class M satisfying

1. M 1s a standard transitive model of ZF.
2. On < M.
3. VxeM)[xnNae M].

L[a] 1s the smallest class A satisfving

1. M 1s a standard transitive model of ZF.
2. On < M.
3. ac M.

Obviously, L, € Lla].

[n this section we will show, by a modification of Godel's methods used
to define the class L of constructible sets, that the classes L, and L[a] exist. It
should be noted that neither the characterization of L, nor ot L[a] can be
formalized in ZF.

The main difference between L, and L{a] as we will see is that L, satisfies
the AC while L[a] need not. Since we will eventually wish to prove the
64



independence of the AC from the axioms of ZF using results of this and later
sections we must exercise care to avoid the use of the AC in proving the
following results.

It 1s of interest to consider a shightly more general situation allowing « to
be a proper class A. L., can be characterized exactly as 1., was. For L[A] there
1s however a problem in that we cannot have A4 € M. Instcad we define:

LIA] = () L[4 0 R«a).

acOp

We first develop a general theory that allows us to treat L, and L[A]
simultaneously. Let ¥ be a language with predicate constants

Ry, ..., R,
and individual constants

f— N

Some results of this section remain true if we allow ¢ to have an arbitrary
well-ordered set (possible even uncountably many) of constants.

Definition 7.1. It A = (A, Ry™, ..., RN o™, ... ¢, and
B =<{B, Ro¥ci 15 R%GoY . . csCm”y

are two structures for the language ¢, then A is a substructure of B, (A < B)
iff

. A < B.
2. Foreach R, 1 =0,...,nif Ryis p-ary then Va,,...,a,€ A
A 14
RMay, .. ..a,) < R%a, ..., a,).
et =g s =0 5.0 ™

Exercise. If B = (B, R, ..., R,", ¢, ..., ¢," is a structure for < if

A< Band ¢, e A, j < m, then thereis a unique substructure A < B such that
'A| = A (|A| denotes the universe of A). This structure we denote by B ™ A.

B A . .
Definition 7.2. C(A) = {c, | a € A}. L(C(A)) is the language obtained
from .Z by adding ¢, for each ¢ € A as new individual constants. %’ 1s always
understood to be the first order language whose only constant is €.

Remark. Hercafter we assume that R, = €, i.e., ¢ is an extension of
Z,. We will be mostly interested in structures (A, €, ... > where A is transitive.
In this case we do not hist € explicitly. In particular we call a structure (M, €>
for £, transitive T M is transitive and € = €. In this case we write M for
(M, €.

For the following we assume a suitable Godelization of the formulas of
Y(C(A)) in ZF and a formalization of several syntactical and semantical
notions meeting certain requirements on definability and absoluteness with
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respect to transitive models of ZF. In particular there is a formula F of %
involving A4 as a constant such that F(x) formalizes the notion

“x is the Godel number of a formula of L(C(A))”

and such that F is absolute with respeet to any transitive model M of ZF for
which 4 € M. We then define

Fml(A) = {x | F(x)}.

C(x): ““xis the Godel number of a closed wff of L(C(A)).”

F(x): “xis the Godel number of a wff of Z(C(A)) having at most one free
variable.”

Fml°A) £ {x | C(x)}.
FmlYA) = {x | F(x)}.

Definition 7.3. A class A is definable in & iff there is a formula ¢(x) of
£, containing no free variable other than x such that 4 = {x | ¢(x)}. In this
case ¢ is called a defining formula for 4. Moreover, if ¢ contains parameters
Vi. ..., e from a given set ¢ then we say A is definable in & from c.

Definition 7.4. Let M be a standard transitive model of ZF and let
@(xy, ..., x,) be a formula of % containing no free variable other than
X1, ..., X,. Then ¢ 1s absolute with respect to M ift

(‘vxb sy Xp € A/I)[(p(-\‘h RO -\‘n‘) " ng (PM(-\‘ls cevy -\‘m)]s

where @* is the formula obtained from ¢ by replacing 3y and Vy by 3y e M
and Vy € M respectively. Moreover if ¢ contains a set c € M, ¢(c, Xy, ..., X,),
then we say that ¢ 1s absolute with respect to M regarding ¢ as a constant.

A class A definable in %, is absolute with respect to M iff its defining
formula is absolute with respect to M.

Theorem 7.5. If A = (A, R,..... R,, ¢y.....¢,> I a transitive structure
for &, where A is a set, then there 1s a wit ¢ of & such that for every closed
wit @ of L (C(A))

AF @< (A, Tgl).

Furthermore if M is a standard transitive model of ZF and A € M then ¢ 1s
absolute with respect to M (regarding A as a constant).

Remark. Since we did not formalize explicitly all of the necessary syn-
tactical notions we can only give an outline of a proof.

We define a formula ¢o( /. A) in the language £, that formalizes the notion

*“fis the characteristic function of the closed wits of #(C(A4)) that are true

inA”
1.e.. Yio( f. A) 1s the conjunction of the following formulas:

. f2 Fml°(A) — 2.

2. Vip![f/("—¢') = | = f{l¢)) = 0].

3. Vg Wi [[fUer A @) = 1= f("e,) =1 A f(T@) = 1]

A(Ter voga) = 1« fTepY) = 1 v f(Te) = 1]]).
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4. VIV [/ (T(VX)p(x)) = | =~ (Vae )[f(Te(c,)') = 1]].

5. VIEAXN)p()'[/("(Ax)p(x)!) = 1 -+ (Fa € A)[f("p(cy)') = 1]].

6. (Va, € A)(Vaz € A)[f(lcy €cy,')) = | -+ a; € ay].

7. (Ya, € A) - - - (Ya,, € A)[fU'R(Cuys - -1 Ca,)) = 1 <= Ry(ay, ..., ay).

for each predicate symbol R; (except €) where 7, 1s the number of argument
places of R;. (For simplicity we assume that . has no individual constants.)
Here ¢! is to range over Fml/°(A) which is a set, since A is a set. "(Vx)p(x)
in 4 ranges over all (Godel numbers of) closed formulas of Z(C(A)), that
are of the form (Vx)e(x). In 4 we also assume a suitable formalization of
substitution. Since Fml°(A) is a set we can prove the following in ZF.

Theorem 7.6.

AF @ (V)lho( /. A) = /("e") = 1]
< @Nlho(/. &) A f(T9)) = 1]

Remark. Thus if
b (A, Tl S A) — [ (@Y = 1]

then
AF@--fi(A,Te")

Futhermore, let M be a standard transitive model of ZF with A € M. Then
Jo( f, A) is absolute with respect to M since Finl°(A) € M and all quantifiers in
1-7 of the definition of (f, A) can be restricted to M. It then follows
that J(A, x) i1s absolute with respect to M. (See Theorem 13.8, GTM Vol. 1.)

If we allow 4 to be a class then Theorem 7.5 no longer holds
for otherwise we would obtain a truth definition for V" definable in the lan-
guage of ZF. Jio( f. A) can still be defined as above even if 4 is a proper class,
however, in this case f is a class variable. Consequently we would have a
bound second order variable in Theorem 7.6.

In the language of Gd&del-Bernays (GB) set theory AF ¢ can be defined
by Theorem 7.6 however we cannot prove in G B that it has the desired prop-
erties unless we assume some further axioms, e.g., mathematical induction
or the comprehension axiom for formuias involving bound class variables.

Later we will encounter a similar situation when considering the de-
finability of forcing for unlimited formulas. On the other hand we can prove
the following theorem in ZF.

Theorem 7.7. If A is a class then for each formula ¢ of & with free
variables a,. . . ., a, there is a formula ¢ of %, for which

(vals ce AR € A)[AI:" (P(ala ;o0 9 (l;{) . ¢(A> ap, ..., ak?)]'
Proof. Foreacha,,...,a.€ A
AFog(ay, ..., a) < ¢la,,...,a,)

where ¢@(ay, . .., a.) is ¢™a,q, . . ., a.) with each occurrence of R; replaced by
R; and each occurrence of ¢; replaced by ¢;.
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Remark. We say M is a standard transitive model of ZF in the language
LK)} if the following conditions are satisfied:

I. M is transitive.

2. There is a class K < M such that (Vxe M)[x N Ke M].

3. M sausfies the axioms of Z/ described in the language -Z,({K( )}) by
interpreting K( ) by K.

Let M be such a model and let ¢(x,, ..., x,) be a formula of Z,({K( )})
containing no free variables other than x,, ..., x,. Then ¢ is absolute with
respect to M iff

(Vxy. .., x, e M))p(xy, ..o x) <> oM(xg, ..., X))

Note that in making ¢* from ¢ the symbol K, if it occurs in ¢, is left invariant.

Theorem 7.27. If M 1s a standard transitive model of ZF in the
language LH({K( )}) and if On = M, then L < M.

Proof. We prove by induction that A,e M. Clearly A, = 0e M. If
A, M then K, = A, Ke M, hence A, = {A,. K,> e M. By Theorem
7.10. Df(A,) is absolute with respect to M. Therefore 4,,, < M. But 4 a set
implies that Df(A) is a set. Therefore Df(A,) e M, 1.e.,

Ayl €M.

If «e Ki; and VB < «, A; € M then since the sequence (A, | B < «) is
definable in M *,

A, =) AseM.

Bea

Then Ly < M, since M is transitive.

Theorem 7.28. If K, = KN Ly

I. Ly = Ly, N Ko S Lg, (Therefore K, € Ly, if K, is a set).
2. LKOF V = LKO'
3. Ly, F AC.

Proof. 1. A,NKy=A,NKNL;=A,NK, since A, < Lg. There-
forc Ly = Ly, and Ky S Ly = Lg,.

2. If A, = {A,, Ko is A, = {(A,, K, relativized to L then we prove by
induction on « that A, = A,. Obviously Ay = Ay If A, = A, then A, e Ly,
and Ly, 1s a transitive model of ZF. Therefore

A:l+1 . Df(Aa) = Aa+1

since K, = K, we have K,,, = K,,,. The case « € Kj; is obvious.
3. We first prove in ZF that if a is well ordered then a’ = Df({a, k>) is
well ordered.

* A class A(S M) is definable in M iff there is a formula ¢(x) of Z({K( )}) containing
no free variables other than x such that 4 = {xeM|¢p™(x)}.
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If b € @' then there is a formula ¢ of Z({K( )}) and a finite set of constants
{¢1,..., ¢t € afor which

b = {xea I <a, l\’>}:(p(*\’9 Cis oo vy cn)}

Thus b is determined by {fe'*, {cp, ..., ¢c,}>. The set of formulas of
L({K( )})1s countable and the finite subsets of constants from « can be well
ordered since a 1s well ordered. This gives a well ordering of @',

Since Ly, is a model of ZF it then follows from the foregoing argument
that 4, is well ordered in L, if A,1s well ordered in L, . Thus by induction
on « there are relations <, in Ly, such that <, well orders A, (<, is
definable uniformly for all « in Ly ).

If Od(a) £ plae A,), ae L, and if

a<b<aely, Nbely A [Od(a) < Od(b) v
[Od(a) = Od(b) N a <4 P]]

then < 1s a well ordering of Ly that is definable in Ly . In particular cach
a € Ly, is well ordered by {{x, y) | x < ¥y A x,yeale Ly,

Corollary 7.29. If there exists a standard transitive model of ZF then
there exists a standard transitive model of ZF + AC + V = L,.

Exercise. Show that L, 1s Godel's class of constructible sets.

Remark. In Introduction to Axiomatic Set Theory we proved that
V = L, implies the GCH. We now wish to prove a corresponding result
namely V = L, — GCH. For this proof we require the following.

Definition 7.30. 1. If A is a structure and ¢(a,. a,, . . ., a,) 1s a formula
in the language of A, then a function f: A" — 4 1s a Skolem function for
(AX)e(x. a,, . .., a,) with respect to A iff

(v'\‘lﬂ RS ] xn = A)[A }: (3-\‘)(P(»\‘~ '\.13 oD xn) g f\ F (P(./'(xla o W) '\‘n)’ '\‘la o diic ~\‘n-)]°

2. B is an elementary substructure of A (written B < A) iff B 1s a sub-
structure of A and for every formula ¢ of the language of A 1.e., Z(C(A)), and
Va,,...,a,€e B

BEg(a,,...,a,)~>AFpa,...,a,).

Remark. We next show how to obtain an elementary substructure of A
that contains a given subset of 4, provided that we have a family of Skolem
functions for all formulas of the language of A.

Theorem 7.31. If A is a structure and F a set of Skolem functions such
that for every tormula (3x)e(x. a;. ..., a,) of the language of A there exists
in F a Skolem function for that formula with respect to A, it B € A4 and it B
is closed under the functions of F then B = A [~ B is an elementary sub-
structure of A.

* Tol is the Godel number of ¢.
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Proof. By induction on the number of logical symbols in ¢. If ¢ is atomic
or of the form — or i A 5 the conclusion is obvious. If ¢(ay, ..., a,) is
Ex)(x, ay, ..., a,) and if by, ..., b, € B then

BE@x)(x, by, ..., b)) —3be B)BEY(b, by, ..., b,)]
— (3b e B)[AF (b, by, ..., b,)]
— AF@x)(x, by, ..., b,)

— 3fe FY[AES(f(by, ..., b)), by,. .., b)]
— (Ax e B)[AEy(x, b,,.. ., b))]
— BFE Qx)(x, by, ..., b,).

Lemma. If 4 1s a set, and if
(Vx,veAd)x #y—>@3z€eA) w[zex<-z€ey]]
then there exists a transitive set @ and a function f such that
-1
fiA o> a
and (Vx, y e A)[x e y <~ f(x) € f(¥)]. Moreover if b is a transitive subset of A4

then f b =11 b.*
Proof. We define f recursively by

J() =1/(x) | xednyl
The conclusion is then immediate from the definition of f, that is,

(Vx, v e A)x ey < f(x) ef(»).

Also, by e-induction, it follows that if b is a transitive subset of A4 then
f b =17 b.(Fordetails see Takeuti and Zaring: Introduction to Axiomatic
Set Theory, Springer-Verlag, 1971, p. 19.)

Remark. In the foregoing Lemma both fand « are unique.

Theorem 7.32. If A 1s a transitive set, if k € A and if (A4, €, k> is a model
of ZF + V = L, then (3«)[4 = A,] where A, 1s as in Definition 7.24.

Proof. Since L, = Useon A, and A, 1s absolute with respect to A
for each «e A N On, A =  Jyeanon Ae. Furthermore, because A is transitive,

AN On = | Jyea « = . Therefore since A i1s a model of ZF, p € K;; and hence
A=|JA, =4,
e

Theorem 7.33. If k, is the transitive closure of & then
V=L,— Vo)[k, < R, — 2% = R, ,].

Proof. 1If V = L, then ke L,. Let F be a countable family of Skolem
functions, with respect to Ly, for all formulas of the language Z,({k( )}).
If a € Re, ky, < X, and

b2 {atuR, Uk, k)

L x,xolxe V) bR (x, y>eflxeb).

*1
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then b is transitive and b = N,. Let 4 be the closure of b under all of the

= b = X, and, by Theorem 7.31
(A €, kSEZF + V = L,.

1d
functions in F. Then A

From the Lemma there exists a transitive set a, and a function ffrom A one-
to-one onto a, such that f preserves the e-relation. Since b is a transitive
subset of A, fis the identity function on b, in particular f(k) = k. Therefore
{ag, €,k)EZF + V = L,. By Theorem 7.32

(3B)a, = Ap).

But G, = 4 = X,. Hence B < X, ie., B < X_,,. Since a = fla)e[* A = a,,
this proves that (Va = X,)(38 < X,, 1)[a € A;]. Therefore

‘//}(xa) = A‘\‘aﬂ'
But /7.\\,” = N,.,. Hence 2Z(X,) = N, ,.

Remark. Note that V = L, can be expressed as a simple sentence
V = Ueeon A In the language L ({k( )}). To prove the preceding theorem
assuming the axioms of ZF and V = L, we note that in fact we used only
finitely many axioms ¢, . . ., @,. Let f, be the family of Skolem functions for
the finitely many subformulas of ¢q, ..., ¢,. Then F, can be defined i the
language of ZF. The proof can then be carried out with F replaced by F.

As a corollary we have V' = L —- GCH and hence the following theorem.

Theorem 7.34. If there exists a standard transitive model of ZF then
there exists a standard transitive model of ZF + AC + GCH.

Remark. For our second application of our general theory we define
L[A].

Definition 7.35. If Kisa transitive class, if F< K, if & = LPGK( ), F()})
and if B, = {(B,, K,, F.> are structures for .¢" defined recursively by

N = R
K,= Rl@)N K A F, = R(«) N F.
3. Buyr = Df(BY Y Koy,

ro
e e

4. B, = | ) By. « € Ky

Bex

then

LIK;F1= | B.

xeOn

Remark. Since KA 1s transitive, B, is transitive for each «. Then
B | « € On> satisfies the conditions 1-3 of page 68. Consequently we can
prove the following

Theorem 7.36. L[K: F] 1s a standard transitive model of ZF and
On < L[K: F].
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8. Relative Constructibility and Ramified Languages

Using a ramified language we shall give another definition of L[K: F]
a definition that has many applications since it only uses the concepts of
ordinal number and transfinite induction. On the other hand, to carry out the
actual induction steps may become rather complicated in particular cases
where definitions by simultaneous recursion are involved.

The symbols of the ramified language R(K, F) arc the following.

Variables: xq, x;, ..., X,,... HEw (unranked).
oY N Y L NS .. mEew, e On (ranked).

Predicate constants: €, K( ),F( ).

Individual constants: & for each k € K, where K is a given class.
Logical symbols: —, A, V.

Abstraction operator: X%

Parentheses: (, ).

Definition 8.1. Limited formulas and abstraction terms are defined
simultaneously by the following recursion.

. If each of 11, 1, 1s either an individual constant, a ranked variable, or an
abstraction term then

F(1y), K(ty), 11 €1y

are limited formulas.

2. If ¢ and ¢ are limited formulas then —¢, and ¢ A ¢ arc limited
formulas.

3. If o(x% i1s a limited formula that does not contain x® as a bound
variable then (Vx%)p(x%) 1s a limited formula.

4. If o(x*) 1s a imited formula satisfying the following,

a. @(x“) contains no free variables other than x¢,

b. 1f £ 1s an individual constant occurring in ¢(x%) then rank (k) < «,
c. if an abstraction term X%(x?) occurs in p(x%) then 8 < «,

if a quantifier Vy# occurs in ¢(x%) then 8 < «,

then X%p(x“) 1s an abstraction term.

a

5. Aformula is a mited formula iff its being so is deducible from 1-4. An
expression is an abstraction term, iff its being so is deducible from 1--4.
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Remark. The requirements for ¢ in 4 are chosen to assure that sets are
built up in a predicative way (disregarding the constants k € K) 1.e., if a set
b 1s determined by @(x%), (1) ¢ should not contain any free variables other
than x% (2) any individual constant occurring in ¢ should be of rank less than
«, (3) any set occurring in ¢ as a constant should already be defined at a
previous level, and finally (4) ¢ should contain no quantification over levels
to which it itself belongs. One might also think of x“ as ranging over
B, (Definttion 7.35) therefore x%p(x“) should be an element of B,., =
Df(B,) U K, ., which provides another motivation for the conditions in 4.

Definition 8.2. A constant term is either an individual constant or an
abstraction term. We define the rank p of a constant term:

p(k) £ rank (k)  keK.
p(Xp(x)) = a.
T, = {t]tis a constant term and p(1) < «}.

= [ 7
aeOn

Definition 8.3. Unhmited formulas of R(K. F) (or simply formulas of
R(K. F)) are defined as follows.

I. Ifeach of 7, and 1, 1s a constant term or a variable, then K(r,), F(t,), and
1, € 1, are unlimited formulas.

2. If ¢ and ¢ are unlimited formulas, then —¢ and ¢ A ¥ are unlimited
formulas.

3. If @(x) is an unlimited formula in which x 1s a variable, ranked or un-
ranked, that does not occur as a bound variable in ¢, then (V.x)@(x) 1s an
unlimited formula.

4. A formula is unhmited iff its being so is deducible from 1-3.

Remark. For mduction on limited formulas we need the following
notions:

Definition 8.4. Let ¢ be a limited sentence and 14, 1, be constant terms.

1. The grade g of a constant term ¢ or of a quantified ranked variable
Vx“is defined by

g(r) = 2p(1) + 2
g(Vx%) = 2« + 1.

2. Ord! (@) 1s the maximum of g(z7) and g(Vx%) for all r and Vx“ that occur
in @.

3. Ord? (@) = 0 if @ has no subformulas of the form 1, € 1, where g(1) =
Ord! (¢) and no subformula K(7) nor subformula F(r) where 7 1s a constant
term and g(r) = Ord! ().

Ord® (¢) = | otherwise.
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We next prove 11) for « = B by induction on Ord?® (¢). Since all other cases
are trivial or obtained from 1) we need only prove

a. D((VxP)p(x?)) -~ By F Dy((YXP)p(xP)) and
b. D((Vx")p(x")) <~ B F Dy((Vx")p(x7")), y < B

assuming i1) holds for all (1) with 1 € T,.

D((YXP)p(xP)) -~ (V1 € T3) D(g(1))
-~ (Vee T)[BsF Dy(p(D(1)))]  (by the induction hypothesis)
-~ (Ya e By)[B,FE Dy(p(a))]
<= (Va € By)[Bs F Dy(g(a)))
<= By E Dy((VxP)p(x?))

b 1s proved similarly. We now show that B;,, = Bj,,

D(X5p(xP)) = {D(1) | 1€ Ty A D(g(1)))
={D(1)| 1teT; A BgF Dy(p(D(1)));
= {a€e B, | B, F Dy(p(a));.

Thus if 1 = Xe(x7) for some y < S, then
D(f) € B/,;+ ) I)(’) € 1)./‘(‘81;).
Furthermore

k = D(k)e By,, <rank (k) < B A ke K
ke KA RPB+ 1)
< I\’E I?B-{-l‘

Thus Bgyy = By,

Remark. The ramified language and the operator D are very useful in
the sense that the definition of D is carried out by using K, F and transfinite
recursion i.c., without using any knowledge about V other than the theory of
ordinal numbers. Therefore if On < V' < V and V' is a standard transitive
model of ZF and F <€ K < V' (where K is transitive) then

L[IK; F]"" = L[K; F].

[f M is a standard transitive model of ZF, which is a set, and «, is the first
ordinal not in M i.e., «og = (On)™ = On N M («, is called the order type of
M), if M is another standard transitive model of ZF such that ey € M = M
and F = M where Fis a class in M i.e., (Vxe M)[x N Fe M] then in M,
M is a proper class containing all the ordinals of M. Thercfore we can con-
struct L[M; F]in M and we define this to be M[F]. Without knowing M,
the construction of M[F] can be done using a ramified language where all
the ordinals « in x“ T, etc. range over «, instead of the whole of On. This
construction is independent of the choice of M i.c.. if M,, M, are two stan-
dard transitive models of ZF with order type «,, if M <= M,, M < M,. FS M
and F is a class in M, and M, then L[M: '] in M, and L[M, FF] in M, are
the same. Note that we may have M, ¢ M, and M, & M,.
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9. Boolean-Valued Relative Constructibility

In this section we will generalize the theory of relative constructibility to
Boolean-valued structures for Boolean algebras B that are sets. Here <, will
denote the language of the first-order predicate calculus with predicate
constants = and €. In addition ¢ 1s a first order language that i1s an extension
of Z,. In most applications .2 will have only finitely many constants but it
may have infinitely many. M and M’ will be two B-valued structures for the
language . Recall that M and M’ must each satisfy the Axioms of Equality
of Definition 6.5. Also, whenever we consider o]y, we assume that the under-
lying Boolean algebra is M-complete where M = |M] i.e., M is the universe
of M.

With these conventions we proceed with the task of defining Boolean-
valued relative constructibility.

Definition 9.1. M is a B-valued substructure of M” iff

1. M < M',
2. For each n-ary predicate symbol R of ¢, including = and €,

(vah CEEEEES an € M)[HR((II, e ey an)l\l — ER(alv e ey an)ﬂ.\l’]
3. ™ = ¢ for each individual constant ¢ of &,

Remark. Most of the conditions 1-3 of page 68 can be easily general-
ized to the B-valued case. It is, however, more difficult to find an adequate
condition corresponding to the requirement that M, be transitive.

Definition 9.2. If M 1s a B-valued structure for . and M’ < M, then
an element b € M 1s defined over M’ iff

(Vvxe M)|[xebl = > [x = x][x" ebl|.

X‘eM’

Remark. Thus, in order to calculate the value of [x € b], if b is defined
over M’, we need only know the values [x’ € b] for x" e M".

We now wish to formulate conditions analogous to 1-3 of page 68. Let
(M, | « € On, be a sequence of B-valued structures for the language ¢’ such
that M, is a nonempty set except for M,

1. M, is a B-valued substructure of My, for « < f3,
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some M. Let M be a transitive model of ZF, and let B be an M-complete
Boolean algebra with B € M. Furthermore assume that K € M and f;: K — B,
fo € M. By relativizing our previous definition of T to M we obtain (V[ f,])*.
Let /i: |B| — |2] be an M-complete homomorphism. (If M is countable there
are such homomorphisms by the Rasiowa-Sikorski Theorem.) Then we can
pass to a 2-valued standard model.

Definition 9.36. Fo = {k e K| h(fy(k)) = 1.
For ¢, t;, t, constant terms,

1. D(ty e1y) & D(t,) € D(1,).

2. D(V(1)) & D(t)e M.

3. D(F(t) & D(t) € F,.

The remainder of the definition is the same as in Definition 8.14.
Let M[F,) = M[h] = {D(t) | teT},  where T = {T,” | «ce M}
When we wish to identify the particular denotation operator associated
with a particular M[F,] we will write D,y , Instead of D.

D'(V(1)) <> 3k e M)D'(t = k).

D'(F(1)) <> (3k € F,)D'(1 = k).

Dk ek, >k, eky, ki k,eK.

D(tek) & 3k e K)D'(t = k).

D'(t € Bp(xP) £~ 31" e TH[D'(t = 1') A D'(p(t'))], B e M.

9. D'(1; = 1) = (Ve T)D'(t €1, <> 1 € 1,), B = max (p(t,). p(1s)).
10. D'(—g) <> = D'(¢), D'(p A $) =~ D'(g) A D'().

1. D'(VxP)p(xP)) > (Vi € T,) D' ((1)). B € M.

® N v o

Remark. 1t 1s easy to see that D is equivalent to D" and the following
theorem holds:

Theorem 9.37. M [F,]FE @ <~ (lp]) = 1.

Remark. Since T i1s a B-valued model of ZF, we have [¢] = 1 for each
axiom ¢. Consequently we have the following result.

Theorem 9.38. M [F,]1s a standard transitive model of ZF. If M satisfies
the AC so does M [F,].

Proof. To show that M [F,] satisfies the AC if M does we note that if M
satisfies the AC then since K€ M, K is well ordered and. since F, < K, F,is
also well ordered in M [F,]. Hence M [F,] satisfies the AC.

Remark. Comparing the results of Theorem 9.38 with those discussed at
the end of §8 note that we did not require the existence of a model M of ZF
with the same order type as M such that F, is a class in A7 but instead F, must
satisfy certain requirements to ensure that M [F,] be a model of ZF. Defining
M [F,] by considering B-valued relative constructibility has many advantages
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Furthermore it M satisfies the AC so does M [G].

Remark. ¢ = bis definable in %, from P and e (uniformly in Tl if
¢ ranges over limited formulas only).

Definition 10.2. 1t pe P and ¢ 1s a formula, limited or unlimited, then

p o ! p € le].

Theorem 10.3. p # ¢ 1s definable in .Z5 from Tl b and P (uniformly in
F'e! 1f @ ranges over limited formulas only).

Remark. As can be seen from Theorem 10.1 there is a close relationship
between satisfaction in M [G] and the notion of forcing. In particular the
forcing relation satisfies certain recursive conditions similar to the notion of
satisfaction in M [G]:

Theorem 10.4. Let k, k,, ko e Vand ¢, t,, 1, be constant terms.

Loptt e~ (Vg < p) = (gl o)
2.pler Aparpltor Ap it g
3. p H(V)e(x) - - (Ve T)[p I o(0)].
4. p B (Vxp(x) - - (Vg < p)3q" < q)(Vi € TYlg"  o(1)].
5. p V() -~ (Vg < p)3q" < q)3Kk)[g' 1 = k) particular p  V (k).
6. pl F(t)--(Vg < p)3q" < q)3be B)lbe Fy A gt 1t = Kk].
T.ptki€ky -k, €k,
8. phtek (Vg <p)3q < @@k el)qg k1t =K.
9. plreXfe(xf) -~ (Vg < p)3q < q)3t' eTy)lg kit =1t Aq ¥ e
10. ptity =1y --p B (VXH)[XP et -~ xFer,] where B = max (p(ry), p(1,)).

Proof. The proofs of most of these statements are obvious from the
definition:

Lpk —e<pe gl
< (Vg < p)lg ¢ [#]]
(Vg < p) = [q 1 el
2. pttor A pa<=pefpr A @
< p€elpdl A pelp.l
<plte Aple,.

3 p b (90 = pe () Io0])

teT

—pe m [o(1)] by Theorem 1.35

teT

< (VreT)pt e()].
4-10. The proofs are left to the reader.

Remark. Note that in order to define forcing and prove Theorem 10.4
we need not assume that M is countable. However, in order to prove the
existence of an M-complete homomorphism of B into 2, or equivalently the
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JreG,r <qg'' Ar <qg®r={ry,ry. Then ny, n, e ry. Thus, by induction
dg = {q1, 42> € G, p; S ¢, 1.e., ¢ < <py, 0. Let py = {m,,...,m} and let
S = Ulo, [}, 0 7Y [€0, py]. Then S is dense and hence SN G # 0.
Let ¢" be in SN G Since py, © w — a(G), gy N py, = 0 where ¢ = ¢y, q5 .
Thereforeg” < <0, p, .Sinceq. ¢’ e G.Ire G.r <g A r=<q.Sor < p,.p,
since ¢ < {p;,0 and ¢ < <0.p, . Hence p = <p,.p, ¢ G. Therefore

G(a(G)) cG.
Lemma 3. If G,, G, are each P-generic over M then
a(G,) = a(G,) <~ G, = G,.
Proof.  Lemmas 1 and 2.

Remark. Thus adis a one-to-one correspondence between P-generic sets
over M and certain subsets of w. Also M[G(a)] = M[a] and M[G] =
M[a(G)] fora € wand G < P.

Theorem 11.2. Ifae M and a < w then G(a) is not P-generic over M.

Proof. It ae M and a S w then Gaye M. If S = P — G(a)then Se M.
For each p = {p;, p,> € P there exists an n € w such that n ¢ p, and n ¢ p,.
Let

p=<{p,Vinl,py> i néa
= {p,p Vi if nea.

Thenp’ < pand p’ € S. Therefore Sis dense. But S N G(a) = 0, consequently
G(a) is not P-generic over M.

Theorem 11.3. If G is P-generic over M then M [G]1s a standard transitive
model of ZF + AC + GCH + V # L.

Proof. IWa = a(G)then M[G] = M [a] and hence, by Theorem 1.2 and
Lemma 2, a¢ M. Therefore M [a] is not a model of V' = L.
Sincea € w < L, L, = L[a] and hence

i. V= Llal — GCH.
But L[a] relativized to M [a] is just M [a]. Therefore the relativization of |
to M[a] gives the GCH in M [a].

Corollary 11.4. If there exists a standard transitive model of ZF then there
exists a standard transitive model of ZF + AC + GCH + V # L.

Exercises. If P is as defined above

1. Prove that ~[{{n}, 0,]7° = [0, {n} ]~°.
2. Calculate

a. ~[{p1,p2r]™°.
b. [{p1, p2,]17%[{g1: 920 °.
c. [{p1,p2r]™°% + [€q1,g20]7°.
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Remark. Let P be the partial order structure of Definition 11.1 and
used for the proof of the independence of V' = L. For k € o with k < w
we define an automorphism 7. of P as follows:

ml(Prs P2) = {q1. g2 where ¢q, = (p;, — k) VU (py, O k)
o = (P — k)Y (p, N k).

Obviously =, € M. We then obtain the following strengthening of Theorem
11.3.

Theorem 11.7. If G is P-generic over M then in M [G] there is no well-
ordering of #(w) definable in Z5(C(M)).

Proof. 1f ¢ 1s a formula of L (C(M)) defining a well-ordering of .Z(w)
in M [G], then

dp e G, p @ well-orders . A(w)™.

Since a(G) e M[G], A(G) = Dy ty) for some term ¢, of the ramified lan-
guage. Then since a(G) € w, Ip € G,

ph oAk |k S w Ak < w has a g-first element”

A . . -_x
where a, A a, = (a, Y ay) — (a, N ay,)is the symmetric difference of a; and a,.
Furthermore 1t is easy to check that

a(m(G)) = a(GYA k for k< w and k < w.

Then (3g € G)(3kho)ko € w A ko < w A gttty A kyis the e-first element
of {to A k ] k<wAk< w}).
Hence in M [G]. a(G) A kg 1s the @-first element of
{A(G)AKk |k S w Ak < w)

It ¢ = {q,,q, then there exists a Ak, # 0 such that A, € w, k, < w,
/\’1 M ko = O, /\'1 m(]l — O, and /\’1 mQQ — O. ]f

A

H=m.G

then H is P-generic over M and a(H) = a(G) A k,. Sinceg € G and 7,(q) = g,
q € H. Therefore, by Theorem 11.6, m M [H]. a(H) A ky 1s the ¢-first element
of {a(H)Ak |k € w Ak < w}. Since m,, € M, M[G] = M[H] and

{TT;;GIII\'E(U/\/§<w}:{77';;Hl/\'§w/\/§<-w}
{a(mG) | k € w /\/:;< w} ={a(m H) |k € w A /:_< w}
[AG)Ak kS w Ak <o ={aH)Nk|k S w Ak < w)

Thus a(G) A kg is also the ¢-first element of
{GH)AKk | kS o Ak <o) in M[H]
Therefore a(G) A ko = a(H) A ky, but
a(H) = a(G)A k, and k; Nk, = 0.

This 1s a contradiction.
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Remark. We now return to the general case.

Theorem 11.8. If <M, P 1s asetting for forcing. if M is a model of the
AC that satisfies the countable chain condition on P i.e.,

(VS < P)(Vpy. po € S)py # pa—-Comp (pr. pa)] — S < N]

and 1f G 1s P-generic over M then the cardinals in M and M [G] respectively
are the same t.e., every cardinal in M 1s a cardinal in M[G] and vice versa.

Proof. Since M = M[G] and On™ = On™9_ every cardinal in M[G] 1s
a cardinal in M because ““a is not a cardinal™ - - (3/)g( f. a), for some ¢ that
Is absolute with respect to transitive models.

Conversely 1f there 1s a cardinal in M thatis not a cardinal in M[G] then
there 1s a cardinal A in M [G]. and hence in A, but

y = (%)
is not a cardinal in M [G]. Let A be the smallest such cardinal. Then
A= MO < = (XM
Hence

(3fe MIGDLS/: A === 4.

Furthermore /1s denoted by a term ¢ of the ramified language and

FpeP)peCG A plhi: X 222 4]
Abbreviating g f <«, B €1t by ¢(q. «. B). ¢ is M-definable and furthermore

(VB. B < v)(Vg < p)Vq' < p)
B#B Aghlae.fret NG k< a,p €t—-—=Comp(q.q)]
for otherwise there exists a ¢" < ¢q. such that ¢" < ¢',¢" # <a, B €t,q" ¥

onto

e, B'yet,and g’ i A —— y. This 1s a contradiction. Then 1f

Se=1B8<y[@q <pe(q. e, B, « <A

we have S, e M and S, < X,. Since f'is a function onto y
y< U S
a<i

and (S, « < A € M. Therefore y* < A X o™ =AM < 9y =$¥, This is a
contradiction,

Remark. Let P be a partial order structure and let B be the associated
Boolean algebra of regular open subsets of P. Then P satisfies the c.c.c. iff B
satisfies the c.c.c.: (). Suppose S < Band (Yo, Vb,)[b, b€ S A b, # by -~
by-b, = 0]. By the AC we choose apfromeach he S. Let S’ consist of such p's.
Then any two elements of' §” are incompatible. Therefore, $* < w, and hence
S < w. Conversely, let §" < P and suppose any two elements of S’ are
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incompatible. Let S = {[p] °|pe S’}. Then S < B and any two elements
of S are disjomt. This follows from the following fact (See Theorem 1.29.2.):

(Vp.qgeP)[p] N lg] =0 [p]"" N [g]~° = 0].
Corollary 11.9. If (M, P> i1s a setting for forcing, if G is P-generic over
M, f M satisfies
(VS < P)(Vpyr. ps € S)[py # p2— —Comp (py, p2)] — S < A]

and if A s a regular cardinal in M, then the sets of cardinals > A in M and
M [G] respectively are the same.

Proof. We first show that X is a cardinal in M [G]. Otherwise
(3 e MIGD(BA, < VS Ay 22 AL

Then, as in the previous proof, we obtain

A< U S,

a<lp

which contradicts the assumption that A s regular in M. Using the argument
of Theorem 11.8 it follows that if > Ais a cardinal in M[G] then (%)™ is
a cardinal in M [G].

Remark. Next we will prove the independence of the CH from the
axioms of ZF + AC. The idea of the proof is the following. Choosing some
suitable P € M which satisfies the countable chain condition in M we adjoin
a-many subsets of w. If « is a cardinal >X,.1n M, thenthe CH is violated in
the resulting model M [G] since cardinals are preserved by passing from M
to M [G]. The formal proof proceeds as follows: We define P by

P={p|BDHdS « x w A d<wAh pd—2]
A
Pr S P2<>P2 S P1, P, P2 €P
Let {M, P> be a setting for forcing such that M satisfies the AC.
Theorem 11.10. P satisfies the c.c.c. in M.

Proof. We show by induction on n that

(1) S PASeM A (Vpy, ps€ S)py # pa— = Comp (py, p2)]

A (Vp e S)Z(p)* = n) — SM < X,.
From this the theorem follows by defining

S"={peS|%(p) = n.

Then S = |, S™ is countable in M by (1).
To prove (i) we assume S # 0. Then 3p, € S, and
(VpeS)[p: #p 35 < «)(Fmew)[ld,myeZ(p) N Z(p,)
A p(8, m) # pi(8, m)]

* Z(p) & {x | B, y>epl)
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Pick some i > m such that F;, does not appear in p’, and some = € G, which
permutes 7/ and m, and let p” = @(p’). Then =(t) = ¢t and, by Theorem 2.2,
p" (k) = X,9F(x,”). There exists a ¢ such that g < p’ and g < p”.
Then
q I+ [(A) - :\ﬂ‘n” m('\'nw)
and

gt 1) = HOF(60)

This is a contradiction.

Remark. We conclude this section with some results which are useful
for certain applications. Returning to the general case, let {M.P be a
setting for forcing where M is a standard transitive model of ZF + AC. and
let B be the Boolean algebra of regular open sets of P in M.

Theorem 12.5. If G is P-generic over M and

(VS < P)S < w A Comp(S)—3peP)Vge S)[p < ql]

(1.e., every countable compatible subset of P has a lower bound) holds in M,
then every w-sequence of ordinals in M [G] is already in M.

Proof. Let D,;;(t) be an w-sequence of ordinals in M[G]. By Theorem
10.9, it suffices to show that {p e P | p I V(1)} is dense, i.c.,

(Vpe P)3q < p)lg + V(1)]

or by Theorem 10.4.5 relativized to M. Recall that the interpretation of V(r)
Is 1€ M.

. (VpeP)3q < p)3se Mgt 1t = s].
To prove I, let pe Pand p It 1 1s an w-sequence of ordinals.” Using the
AC in M, define in M a descending sequence {p; | i€ w> and a sequence
s = {8; | i € w such that

Po =P« pis1r < prand pigy H1(0) = 55
Now let ¢ be a lower bound of all p;, i€ w. Theng < pandg # t = 5.

Remark. Let P, and P, be two partial order structures in M where M
1s a countable standard transitive model of ZF + AC. Let P = P, x P, and
assume that P; and P, both have a greatest element 1. There i1s a simple
relationship between generic sets with respect to P on the one hand and the
factors P, and P, on the other hand:

Theorem 12.6. If G, is P,-generic over M and G, is Py-generic over
M[G,], then G, x G, is P-generic over M.

Proof. Assume the hypothesis of the theorem and let S be an element
of M that s dense in P. Define

Sy 2 {pa€ Py | (G, X {p}) N S # O
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Theorem 13.18. Let B be a complete subalgebra of the complete Boolean
algebra B" and ¢(u,, . . .. u,) be a formula in which every quantifier is bounded
(1.e., of the form 3y € y or Vx e y). Then for uwy, ..., u, € V™,

By __

(1) [plurs ..o 6)]™ = [y, oo 10,)[ ™

Proof. (By induction on the number of logical symbols in ¢.) If ¢ is
atomic, (1) is true by Theorem 13.15. The only nontrivial case is

Py, wy) = (3x e (X, u, uy, ..., u,).

Then for w, uy, ..., u, € V®»,

(i) o, uy, .. 1) ™ = Z(h) u(x)-Tp(x,w, uy, oo,) W

xeZ(u)
by Theorem 13.13
= > U T )

xeZ(u)
by the induction hypothesis

(B

- [(P(”, uls EEEPE l{n);J
by Theorem 13.13,

SINCE > \co N (11) 18 the same in B and B’ (note that Z(«) < V™ by assump-
tion).

Corollary 13.19. If &(w,, .. .. u,) 1s a bounded formula (i1.e., a formula
containing only bounded quantifiers), then for w,,...,u, €V,

qs(lll, e e e l{n) = E(.ﬁ(l;l* N l?n)ﬂ(B) — 1

Proof. Apply Theorem 13.18 to the Boolean algebra 2 which 1s a com-
plete subalgebra of each Boolean algebra B and use Theorem 13.17.

Remark. As an application of Corollary 13.19 we give a direct proof of
the following theorem.

Theorem 13.20. V™ satisfies the Axiom of Infinity.
Proof. We have v € V® < V® and
(3X)[x e w] A (VX € w)(3y € w)[x € y]
1s a bounded formula which 1s provable in ZF. Hence by Corollary 13.19
[(Ax)[xeb] A (Vxew)Trew)|yey]] =1
which is one form of the Axtom of Infinity.

Remark. Another formula with bounded quantifiers 1s Ord («) which
expresses “« 1s an ordinal,” hence by another application of Corollary 13.19
we obtain the following.

Theorem 13.21. Ord (¢)) = 1 for cach « € On.

Remark. On the other hand, we have the following result.
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Remark. There is an casier way to show [¢*] = 1 for every axiom ¢ of
ZF than the one stated above. Let ¢ be (Vx)p(x). Then

[$¥] = [OVOIM () = (0] = [ [ (M @)! = D))

UGV(”)

= [ (2w =k moo)

ugvflz) keV

_ | ((u = k] = [0

P U § AL
ueV(”) keV

= 1 [T =% =wdn

uev(B) kev

= | [ o

keV

Now if ¢ 1s an axiom of ZF, then since V is a model of ZF, i(k) is true
for each k € V. Hence, (Vk € V)[[Ji(k)] = 1], because V® k ZF.
A similar argument shows that if ¢ is (3x)(x). then

[P = > ol
Kev
Since V is a model of ZF, (3k, € V)[(ko)]. hence Ti(k,)] = 1.

Since also [F< M =1 (by Theorem 14.8) we may consider M[F] in
V® In fact, it will turn out that V' = M[F]in V®_ The proof of this state-
ment is a corollary of the following theorem which shows that the method of
forcing on the one hand and the method which uses the models V® are
essentially equivalent (cf. Corollary 14.23). For the remaining part of this
section we assuime the Axiom of Choice (in V).

Theorem 14.22. Suppose that N is a countable standard transitive
model of ZF + AC such that Be N. Let P be the partial order structure
associated with B (thus (N, P, is a setting for forcing). Then for any set G,
which is P-generic over N we can define a mapping h: (V®)Y — N[G,]
which is onto and satisfies

(1) ho(Tep(uy, ... uy)))y =1 - N[Gy] Eph(uy), ..., ")) for wy, ..., u, €
(V®)Y and ¢ any formula of Z,({M}). Herc M(a) is interpreted in N[G,]
as ae N and /i, is the N-complete homomorphism from |B] into |2] asso-
ciated with G,. Consequently

(i1) ho(IM(1))) = 1 <> h(u) € N for ue (V®)V,

Proof. Given G, which is P-generic over N and /i, |B| — |2| where A,
1s associated with G, in the familiar way, define /: (V'™®)¥ — V' by induction
as follows:

hu) = {h(x) | xe Zu) N ho(Ixeu]) =1} for wue(V®)V,
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If @ 1s a formula of LL({M()})andu,, ..., u, € (V™) then the sequence
S = Je(x, 1y, ... 1)} | x € (V)N is definable in (N, €, B, and the range
of S, #(S), is contained in B which is a set in N. Therefore, by the ACin N,
there is a function f'€ N such that #7(f) = #°(S) and hence 6 in N is equal
to a sum over a set in N which is preserved by /, since /i, is N-complete.
(Note that we have used the same argument in the proof of 4.) Now let
Ny = {h(x) | xe (V™)) Then for uy, ..., u, € (V™) and ¢ a formula of
LM (),

7. ho(le(uy, ..., 10,)]) = 1 <= Ny Eo(h(uy), .. ., h(i,)).

This is proved by induction on the number of logical symbols in ¢ using 1
and 2, and, for the induction step, the fact that /i, preserves the sums 6.
Furthermore, if ¢ contains the symbol M ( ), we understand by 7 that M (a)

1s Interpreted as ae N in N, in accordance with 4.
8. Yue (V™YW h(u) e N[G] = N[G,].

Let e (V™). Then

h(u) = {h(x) | x€e Z() A ho([x € u]) = 1}
() = {h(x) | x € Z(u) A [x €u] € G}.

Now [x € ] for x, u e (V®)¥ is definable in N[G] from B, hence h(i) € N[G],
since N[G] is a standard transitive model of ZF. Applying 7 to ¢ where ¢ is
an axiom of ZF, we see that N, is a standard transitive model of ZF and
contains N as a subset (because of 3). Furthermore, G = h(Fy) e N, and
N, € NJ[G] by 8. Since N[G] is the least standard transitive model of ZF
containing G as an element and N as a subset we must have N, = N[G].
Therefore /1 is onto and 7 is just (i).

Corollary 14.23. Suppose that (N, €, B> is elementarily equivalent to
{V,e, B> where N is transitive, countable and Be N. Let P be the partial
order structure related to B. Then for every sentence ¢ of L,({M( )}), [¢] = 1
(i.e., @ holds in V™) iff N[G] E ¢ for all sets G which are P-generic over M.
(M (a) is interpreted in N[G] as ae N.)

Proof. If o]l = 1in V® [g] = 1 in (V®)Y¥ and the conclusion follows
from (i) of Theorem 14.22. Conversely, if [¢] # 1 in V™, then b = [¢] # 1
in (V®)¥ hence taking some /io: |B| — |2| which is N-complete and sends
b to 0, we have, by Theorem 14.22, N[G] F —¢ for some G which is P-generic
over N.

Remark. We give two applications of this method.
Theorem 14.24. [V = M[F]] = 1.

Proof. Let N = (N, €, be a countable transitive model of ZF + AC
such that Be N and

(N, €, B) 1selementarily equivalent to {V, €, B).
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Therefore
u(x) = [x € ul.

To prove the converse, assume (Vxe Z(uw))[u(x) = [xe€u]]. Then, for
X, y € Z(u)

[x =yl-u(x) =[x = y]-[xeu] < [yeu] = u(y).
Theorem 16.11.

(Yo e V®YVd <€ V®)[2((v) < d —
(3u) [u 1s extensional A d = Z(u) A [u = v] = 1]].

In particular, each v e V™ can be represented by an extensional set.

Proof. Forve V®andd < V™ such that Z(v) < d define u: d — B by
(Vx e d)[u(x) = [x e v]].
Then, for xe d

u(x) < [xeu = Z [yerv]-[x = y] < [xev] = ux),

ved

1.e., u is extensional. That [u = v] = 1 has already been proved in Theorem
16.1.

Remark. We could restrict ourselves to extensional sets u for which
u(x) 1s simply equal to [x € ] for x € Z(u). However, since one still has to
evaluate [x € u] for x ¢ (u), this is in general no saving, though for special
cases it may be very convenient to have a particular representation of B-
valued sets.

Given any ve V® we cannot expect to have [v = ¢v] = 1 for some
definite . We shall prove, however, that [u = b-t] = 1 for some definite u
and some b € B.

Definition 16.12. 1. ue V™ is uniform ff u is extensional and Z(u)
complete.

2. S < V®iscomplete iff the structure (S, €, =) is complete in the sense
of Definition 6.5.

Remark. As a consequence of Theorem 16.11 we have the following.

Theorem 16.13. (Vv e V®)Eu e V®)[u is uniform A [u = v] = 1].

Proof. It veV® veV®, for some « Then, by Theorem 16.6.2,
[v = v;] = 1and v, € UM, for some v,. Since Z(v,) = U®,, 1s complete, by
Theorem 16.11,

[v, = u) =1
for some u € V® such that Z(v) = U®, and wu is extensional. Hence
[u=1v] =1

and i 1s uniform.
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Theorem 16.19. If w e V™ is uniform, then (Ix € 7)) [u(x) = sup (v)].

Proof. 1f we do not require x € &(u), the theorem follows from the
maximum principle. In fact, we can use the same argument :

Let {x:| & < «> be an enumeration of & (u), 1.c.,

D) = {x: | € <
and put by = w(xy)- [ [,<: (Tu(x,)) for & < «. Then the b.'s are disjoint and
Z b = Z u(x) = sup (u).
i<« xNelr(uw)
Therefore, adding b, = “sup (u), <b. | € < « 1s a partition of unity. Since

Z(u) 1s complete, (V€ < «)[bs < [x = x. ] for some x € Z(u). Hence

u(x) = [xeu)] = z u(xe) [x = x¢]

(<a

b

E<a

vV

= sup () = u(x) by definition of b, and sup ().

Therefore
u(x) = sup (u).

Theorem 16.20. Let we V™ be uniform. Define vre V® by Z(r) =
(v veZw) A u(y) = sup (u)} and (Vy € Z())[r(y) = 1]. Then v is definite,
uniform, and [w = b-¢] = 1, where b = sup ().

Proof. Clearly v is definite. If x and y are in &(¢), then [x = ylr(x) <
t(y). So r is extensional. Therefore to show that ¢ is uniform, it suffices to
prove that & () is complete. For this purpose, let {b. | ¢ < «} be a partition
of I and let {y. | ¢ < «} © Z(v). Then we have to show that there exists an
a € Z(r) such that

1. (V€ < o)[b: < [a = y.]].
Since Z(v) © Z(u), {y: | € < o} < Z(u). By the uniformity of u there exists
an a € Z(u) such that | holds. Therefore it is enough to show that a € Z(¢v).
Since

b: < [a = yéﬂ —> b{'l(()’g) < [G = }’5“'”(}'5) =< l(((l‘)

S u

it follows that
b = Z be-b < u(a).

E<u
But, since b = sup (), we have u(a) = b and hence a € Z(v).
Next we shall show that [u = b-v] = 1. First, il v € Z(v) then by Theorem
16.10, [x eu] = u(x) = 1: hence

w=>bvl= [] wx)=Ixebv]]- [] [(b-0)x) = [xeul]
xeZ(u) XEY (v)
2. = r [u(x) = b Z [x = /T]
xe¥(u) te 7 (v)
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Now let us assume that « < w. Since 8 < «,

b< [] 2 1/ =l

n<fi+1 &<l

= > ] /a6 =

e+ pap 41
by the (5 + 1, p)-DL, (see Definition 4.1) which holds for every B since 3 is
finite.
Therefore
0<b [] [fte)?) =4l forsome :f+ 1 —f.

n<pf+1
There must exist n, m < B + | such that n #m A ¢(n) = @(m). Then
bIf((@(n))7) = Al-[/Ue(m))”) = mi]

bl = m] since b < [/((@(n)7) = [gp(n1))7)]
0 SINCe 11 # ni.

0

A A

This is a contradiction.

Remark. 1t is easy to see that the same proof can be used to show: If B
satisfies the («, «)-DL, where « 1s a cardinal, then for each cardinal y < «,
[Card (y)] = 1, 1.e., cardinals < « remain cardinals in V"™, (It can also be
shown that we only need the («, 2)-DL since («, 2)-DL < («, «)-DL.)

In general, Theorem 17.2 does not hold for all cardinals. However, cor-
responding to Theorem 11.8 we have a converse of Theorem 17.1. For a more
general result we introduce the following definition.

Definition 17.3. Let v be a cardinal. A Boolean algebra B satisfies the
y-chain condition iff

(VS < B)(Vx, reS)[x # y—=x-3y=0]—5 < 5]
In particular, B satisfies the w-chain condition iff B satisfies the c.c.c.

Theorem 17.4. Let y be an infinite cardinal and suppose that B satisfies
the y-chain condition. If « > vy 1s a cardinal, then [Card (&)] = 1.

Proof. Asin the proof of Theorem 17.2, suppose that [Card (&)] # 1 for
some cardinal « > v, then defining b as before, we have for some 8 < «, and
/'e V(B),

D) b<[] D 1§ =4 where b > 0.

n<ua E<f

Thercfore, using the AC in V,
(Vn < «)(3¢, < Bb-11(E,) = ] # 0].
For ¢ < B define

Aé={77<a|§n=§}'
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Also 7: VW . V® s onto. (Consider 7~ 1 V® o M the extension of
71 This 771 1s the inverse of the extended #.) The conclusion then follows
by induction on the number of logical symbols in ¢.

Theorem 19.4.  Let P be the partial order structure used in the proof of
the independence of V' = L (Definition 11.1) and let B be the complete
Boolean algebra of regular open sets of P. Then 0 and 1 are the only elements
ol B which are mvariant under all automorphisms of B*,

Proof. Let be B and 0 < b < 1. Then there exist p and ¢ such that
[p] < band [¢q] = ~b. By Theorem 11.6, 3= € Aut (P) such that =(p) and ¢
are compatible. Using = to also denote the automorphism on B induced by
7= we have n(b)-(7h) = =([p])-[¢] > 0. Therefore =(h) #b.

Theorem 19.5. (cp. Theorem 11.7) Assuming the GCH, there is a
Boolean algebra B such that the GC// is B-valid in V™ but the statement
“There 1s a definable well-ordering ot .Z(w)™" is not B-valid. (Here by ““de-
finable™ we mean **definable using constants & as parameters ™. Note that &
corresponds to the constant A € C(M ) in Theorem 11.7.) “There is a definable
well ordering of .Z(w)™" 1s In fact a statement in the language of set theory.

Proof. Let B be as in Theorem 19.4. Then B < 2% and B satisfies the
c.c.c., hence the GCH 1s B-valid in V™, Suppose there is a definable wetll-
ordering of A2(w) in V'™ 1e., there is a formula ¢ (possibly involving con-
stants k) such that ¢ well orders 2(w), i.c.,

[{/x.y € P(w) x A(w) | @(x,y)}is a linear ordering] = 1
and
[(Vx © Pw))[x #0— 3! zex)(Vyex)p:, )] = 1.
Define
S = {xe B | [x e Pw)] = 0} x {1).
We shall prove that

) 1AM [xe S =1 A [S S Pw)]

T'=1, but
1 b =73 xeSHVyeSe(x,y) = 0.

This gives a contradiction,
Define we V™ by (u) = ¥(w) and

(Vn € w)[u(n) = [{{n}, 00]°].
Claim: ‘u e (A(w))”] = 0.
we Aw)] = > [u =3

ST W

and for s € w,

=51 = | | (uGi) < ).

new
* Some authors then say that B satisfies the 0,1-law.
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Therefore [v € (P(w))7] = 1.
Since v € Z(S) this implies that

1=[teSl= > [x=t]< > [xe(@w)]=0.

XEZ(S) XEZ(S)
This 1s a contradiction which proves 11).

Remark. Next we give a new proof of the independence of the Con-
tinuum Hypothesis, however this time we use a measure algebra B. Let / be
an index set of cardinality > 2% let X' = 2°*7 be a generalized Cantor space,
A the o-algebra of all Borel sets of X, N the o-ideal in 4 consisting of all the
null sets for the usual product measure, and finally let B = .Z/N. Basic open
sets of X are of the form

U(po) ={p | pe2® A p(j) = poji) A+ A p(Un) = po(n)}

where po:{ji, ... jut—2and j,..... j, €  x [. Without proof we shall use
the fact that there is a (unique) measure /m for subsets of X such that

m(U(py)) = (&))" and m(X) = 1.
With this notation we are prepared to prove the following.
Theorem 19.6. B satisfies the c.c.c. and therefore B is complete.

Proof. Let S = B be a set of mutually disjoint elements. We have to
show that S < w. Therefore we can assume that 0 ¢ S. Let S, = {b|he S A
m(b) > 1/n} for n € w. Since the elements of § are mutually disjoint and

m(X)=1,8, < nforall new. Since S = ,c., Sy, this proves that S < w.
Since Z and N are o-complete, so is B = Z#/N, and therefore B is complete
by Theorem 3.27.

Remarfk. For this particular Boolean algebra B we can prove that the
negation of the Continuum Hypothesis is B-valid in V™,

Theorem 19.7. For B defined as above, [— CH] = 11in V™,
Proof. Define B-valued sets u; € V® fori e I as follows:
2(u)) = 2(o)
(Vn € w)[u() = {pe X | pn, i) = 1}/N].
Obviously,
1. (Vie [y, € «] = 1].
Proof. Leti,jel, i # j. Then
= w] = [ | @u() <= u,(0))

neow

= {pe X |(Vnew)pn, i) = ph, HI}IN,
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Theorem 22.4. If S is dense in X and A is regular open (in X) then
A N Sis regular open in S.

Proof. We need only show that (4 N S)™ S < A7 °" S for by the
proof of Theorem 22.2 we know that.the reverse inclusion holds. Let

pe(ANS) 50
then

AN(pPHIN(p)N"SS (AN S)" NS by Theoirem 22.1
Npp=Np nS < (NpNS)"<c(ANS)" < A~.

Thus
peEA°NS.
Remark. Asaconsequence of Theorems 22.2-22.4 we have the following.

Theorem 22.5. Let S be dense in X and let B and B, be the complete
Boolean algebras of all regular open sets in X and S respectively. Then B,
and B are isomorphic. An isomorphism i: B, — B is given by

[)0 — i(bo) M S fOl' ho € Bo.

Proof. For by € By, define i(by) = by~° Then i: B, — B and b, =
i(by) NS, by Theorem 22.2. Let b € B. Since b N S is regular open in S (by
Theorem 22.4), i(bNS) = b. Therefore i 1s onto, is one-to-one, by
Theorem 22.2, and by Theorem 22.3 it preserves <.

Definition 22.6. Let B, be a Boolean algebra (which need not be com-
plete). A completion of By 1s a pair (B, /> such that:

B is a complete Boolean algebra,
I: By — B 1s a monomorphism (i.e., one-to-one),
if Yocq b, = bin By, then >, h(b,) = h(b) in B,
(B, — {0}) 1s dense in B — {0}.

:f‘ab)l\.)'—'

Remark. Our next result shows that every Boolean aleebra has a com-
pletion which 1s unique in a certain sense.

Theorem 22.7. Let B be a Boolean algebra (not necessarily complete) and
let P = P, < be the partial order structure determined by B. ie.,
P =B —1{0}and < 1s < in B. Let B be the Boolean algebra of all regular

open sets in P and let j: B — B be defined by
J0) =0 A (VpeP)ljp) = [pl]

(Since P is fine we have by Lemma 5.22 that [p] = [p]~°%)
Then (B, is a completion of B. Moreover, if (B,, f is any completion
of B, then there exists an isomorphism
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such that the diagram

W
\

wte——wt

commutes, 1.¢., A o_/' ="

Proof. j*Pis dense in B because {[p] | p € P} is a base for open scts in
P. Repeating the proof of Theorem 1.30 we see that < B.j is a completion of
B. If (B,./> is any completion of B, S = /** (B — {0!) is dense in B, — {0},
Thus by Theorem 22.5 the Boolean algebra of regular open sets of S 1s iso-
morphic to the complete Boolean algebra of all regular open sets in B, — {0}
which is isomorphic to B, by Theorem 1.40, and hence also to B. This gives
an isomorphism k: B — B, as required by the theorem.

Remark. By ““the™ completion of a Boolcan algebra B we will mean the
Boolean algebra B defined in Theorem 22.7. We will regard B as a subalgebra
of B by identifying B and ;' B.

Theorem 22.8. Let X, Y be topological spaces and let /2 X — Y be an
open continuous map onto Y. Then for B < Y we have,

(/7B =(/")"B)".
2. (fTHH(BY) = (/7)) B)).

Proof. Let xe(f~1)"(B7). Then f(x)e B~ and hence

(YNCODIN(f(x)) N B # 0]
(YVN(X)[“N(x) N B # 0] since /'1s open
(VNN (x) N (f7H"B # 0).

Thus

xe((/7H"B)".

On the other hand, ((/~Y)"B)~ < (/= H)*“(B " )since (/1) (B ) isclosed. This
proves 1.
2. Follows from 1| since f'is onto.

Remark. From Theorem 22.8 the next result follows easily.

Theorem 22.9. Let X, Y be topological spaces and let f: X — Y be an
open continuous map onto Y. Then f induces a complete monomorphism
i: By — By such that

(Vb e By)[i(b) = (f~7)"b],

where By and By are the complete Boolean algebras of all regular open sets
of X and Y respectively.
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The topology on X 1s defined by the following open base.
T =1{G, |« <« A (G, is open in X))
where
G = (/€ X | /(«) € G-
We define p,: X — X“ by pf) = fl«).
Remark. Then the following result 1s obvious.

Theorem 22.15. (X, T ) is a topological space, p, 1s an o.c.o. map and

Pag °Pp = Pa-
Definition 22.16. Let « be a cardinal or On.
<{Ba | a < K}>{iaﬁ | « = ﬁ < K}

is called a direct system of complete Boolean algebras iff B, (¢« < «) is a
complete Boolean algebra and i ;: B, — B; 1s a complete isomorphism such
that

l. i, 1s an identity map.
2. 1./3), o ia/; = i(r)"

Remark. We assume that B, 1s a complete subalgebra of B;if « < f < «.
Under this assumption ( J, ., B, becomes a Boolean algebra B’ if we define
by, + by, by-by, ~bby b, + by, by-by, b 1n B, where « is the least ordinal «
such that, b,, b, € B, or be B, respectively. These definitions-are unam-
biguous since B, < B, for « < 5. B 2 lim,., B, is defined to be the com-
pletion of B'.

Theorem 22.17. B, i1s a complete subalgebra of B.

Proof. Let S < B, and by =[S in B, te. by = [[P{s|se S} Let
b € B and suppose that (Vx € S)[x = b]. We would like to show that b, > b.

Since be B we have b e B; for some B. Then either b e B,, and hence

b < by, or B> a. Butif § > « then B, i1s a complete subalgebra of B, and
hence by = [[P« S =" S > b.

Theorem 22.18. Let « be a cardinal or On. Let
AX | @ <k} {pap | @ < B < &)

be an o.c.o. inverse system and X be m,_,. X' Let B, be the Boolean algebra
of regular open sets in X% let i,;: B, — B, be the complete isomorphism
induced by p,; (Theorem 22.9) and let B = lim,_., B,. Then B is isomorphic
to the Boolean algebra of regular open sets By of X.

Proof, By Theorem 22.7, 1t 1s sufficient to show that By 1s a completion
of U, -« B.. For this purpose we have to show (1) each B, 1s a complete sub-
algebra of By and (1) U, .. B, — {0} 1s dense in By — {0}. Since the pro-
jection p,: X — X “1s an o.c.o. map, by Theorem 22.9, p, induces a complete
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[f. in addition, Y satisfies the following condition
(Vyi, ye € Y[y # vy > (Fa < ©)[qul 1) # gl 32)]]
then g is a homeomorphic map from Y to X,.
Proof. Define g by

() e) = qul ).
Obviously g(v)e X and ¢, = p, o ¢g. Define

Xo ={q(y)| ye Y}

I. X, i1s dense in X,
Let xe X and let G be an open set with x e G. Then there exist « < « and G,
such that G, 1s open in X* and

xeG, < (.

Take ye (g, "G, and define x, = g(y). Then x,€ X, and x,€ G, 1e.,
GnNn X, # 0.

2. q: Y— X,1s o.c.o.

Obvious.
3. If Y satisfies the additional condition, then ¢ 1s one-to-one.
An o.c.o. map 1s homeomorphic if it is one-to-one.

Remark. We cannot improve Theorem 22.20 by adding X, = X as is
easily seen from the following counterexample.

Let «k = w and X" = 2" with the discrete topoiogy. If p,.(f) = [T n,
then X = lim,_, X™is homeomorphic to 2¢ with the product topology. Now
define Y ={fe X|(3n < o)¥Vm)[n < m < w—f(m) =0]}andg, = p, ™ Y.
The desired g is uniquely determined by (g(y))(«) = p.(y) for ve Y. Then
Xo = q"Y # X.

Definition 22.21. Let X and Y be topological spaces. A map i: X — Y
is a topological embedding if i: X — i*“X 1s a homeomorphism.

Definition 22.22. A topological space X is called aromic if for every
x € X there exists a smallest open set G, such that x € Gy 1.e., (VG)[x € G and
G open — G, € (). This open set G, is denoted by [x].

Remark. 1fP = (P, < ,1s a partial order structure, then the topological
space of P is atomic and satisfies the T,-axiom of separation. On the other
hand, if X i1s a 7,-space and atomic, then we define x < y by [x] < [y]. This
then becomes a partial order structure. Therefore we may think of the two
notions partial order structure and atomic 7,-space as the same.

Theorem 22.23. Let P, = (P, <,> and P, = {(P,, <,> be partial
order structures and

. 1—1
i: Py —— P,.
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Theorem 22.27. Let«x beacardinalor On. LetP, < P, < --.
(¢« < x) be a normal limiting system.
4. If xeP,, veP; a < B < k, then

IN
1

IN

Comp (x, pus(1)) <~ Comp (x, V)

Proof. 1t is easily seen that the latter implies the former. Now assume
x and p.,(») are compatible.

(Fze Pz < x A z€[pus(M)]e, = peslyle,] by 4.
Therefore

Bue P)u <y Az = p,(10)]
Pe() < X — u < X, (Use 4*))

So, x and y are compatible.

Remark. A weakly normal limiting system is obtained from a normal
limiting system by replacing 4 by 4'. Actually, what we mainly use is a
weakly normal limiting system. However, in many cases, the two definitions
are equivalent as is seen in the following.

Theorem 22.28. LetxbeacardinalorOn.LetPoc P, c.--- <P, <
(¢ < k) be a weakly normal limiting system. If ), ., P, satisfies

5. (Vp,ge Uwer POlg £ p— (3re Upw P)r < g A —Comp (r, p)]]
then the system is a normal limiting system.

Proof. We have to show that 4* follows from 4’ and 5. For that, let
xeP, veP, and « < B < «. Suppose p(r) < x and y £ x. Then by 5
there exists a ¥ > B and a z€ P, such that - < y and - and x are incom-
patible. By 4’ x and p,,(z) are incompatible. On the other hand, by Theorem
22.24, pos(2) < pos(y). Therefore p.;(1) £ X, a contradiction. Hence

Pas(V) € x =y < x.
Conversely if ¥ < x then, again by Theorem 22.24 p,(v) < pos(x) = x. This

proves 4%,

Theorem 22.29. Let « > w be a regular cardinal or On and

APy | @ < ki {pas |« < B < &}

be a normal limiting system. If P, = | ), ., P; forevery « < » with ¢/(«) = w,
and if P, < « for every « < «, then |, -, P, satisfies the x-chain condition.

Proof. For a member x € |, ., P, define |x| to be the least ordinal «
such that x € P,. Then we have

xel JPo— of(Ix]) # .

et A be a maximal pairwise incompatible subset of |, .. P.. It suffices to
show that 4 < «.
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We define the sequence of ordinals ¢ < -+ < § < -+ < k(i < w) by
induction on i. Define &, = 0. Suppose that ¢ < « has been defined. Take an
arbitrary element x of P, — A. By the maximality of A, there is an element
¢, of A such that e, and x are compatible. Define

41 = max (& + 1, sup‘-{la'\.l | x e P, — A}).

Since P: < « and « is regular, &,, < «.

Now let y = sup (&, | i < w}. Then y < « and ¢f(n) = w. We claim that
A < P,, which implies A < x. Suppose not. Let ae 4 and a¢ P, Let
a € Py where 7 < B. There exists an # such that p,;(a) € P, . Then

(Fbe AN P:  )[Comp (b, p,sla))]
(Take b = e, ,....) Now we have two propertics.

I. a and b are incompatible.
2. p,s(a@) and b are compatible.

This is a contradiction since by 4%, p, (@) < a.

Theorem 22.30. Under the same conditions as in the preceding theorem,
let B, be the complete Boolean algebra of regular open sets in P, let B =
Uw-x Be and let B to be the completion of B. Morcover, let B, and B, be
the complete Boolean algebras of regular open sets in U P, and inbim, .. P,
respectively. Then

1) B satisfies the x-chain condition,
i) B = B,
i) The three complete Boolean algebras B, B,. and B, are isomorphic.

Proof. 1). Follows from 1), 1), and Theorem 22.29.

iti). Since, by Theorem 22.18 B =~ B.. it suffices to show that B, ~ B..
Clearly there exists a projection ¢z: U, .. P, — P, such that

. gz 1s an o0.c.o. map.
2. Papqs = qo (@ < B < K).
(Let ¢y = po(x e Py)forxe U, ., P,and take ¢, as follows:

Ga(X) = P (X)) 1T B < ay,
= x otherwise.)

Define f(B) = gx(x) for x e ... P.. Then by (2) above, p.; < f(B) = [(«)
and hence f,elim,.,P,. Morcover, if x+# v then [, # f,. Therefore
e <« Pgis densely embedded in lim,, .. P,. So by Theorem 22.5. B, > B..

i). It suffices to show that B < B. Suppose he B, b # 0. Let S
the B0 < b < b Take A to be a maximal incompatible subset of S. Then
we have

3. b = sup A. (For, suppose b > sup A, and consider b — sup A. Then
we have a contradiction.)

4. A < x. (This follows from B = B, and Theorem 22.29.)

—

Therefore we have (3« < «)[4 < B,]. Since B, is complete, be¢ B, = B.
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23. Boolean Algebras That Are Not Sets

When for a given axiom (Va)A(«), one wishes to build a model of
ZF 4+ (Ya)A(«), he is often lead to the existence of complete Boolean algebras
B, for which

1. V¥ satisfies ZF + (Vo < B)A(«), and
2. The cardinality of |Bg| increases as f increases.

In this situation, the natural i1dea i1s to find a certain limit B of B; and to
prove that V¥ is a model of ZF + (V) A(«).

In almost all cases, however, the limit algebra B is not a set, it is a proper
class. In general if a complete Boolean algebra is not a set, then V¥ may not
satisty the Axiom Schema of Replacement or the Axiom of Powers. Therefore
we need a general theory about conditions we should impose upon B in order
that V¥ satisty the Axiom Schema of Replacement and the Axiom of Powers.

Another interesting problem is this: We do not have many useful ways to
define limits of Boolean algebras. Therefore we tend to think in terms of
limits of topological spaces or limits of partial order structures. At least one
‘an make a partial order structure P, which 1s dual to B,. Then we can
take P, a limit of P, and define a limit of B, as the dual Boolean algebra of P.
In our opimion, one of the most interesting problems in set theory is to
investigate what effects the special Kinds of limits of partial order structures
or topological spaces have on the limit Boolean algebra B and the Boolean
valued universe VE. In this section we will see that a limit topological space
which i1s simultaneously a direct limit and an inverse limit of a certain se-
quence of topological spaces plays an important role. We believe strongly in
the importance of the investigation of many other Kinds of limits of Boolean
algebras.

Until now we have considered only Boolean algebras which are sets. This
requirement enabled us to prove the Axiom of Powers and the Maximum
Principle in V™, We shall now drop this restriction and allow B to be a class.
However. in many applications B i1s not even a class of sets but a class of
classes. Consider e.g., a partial order structure P = (P, < where P is
a proper class. Then the complete Boolean algebra of regular open classes in
P contains classes some of which are proper classes. In order to cope with
this situation we shall consider two cases. In the following we shall use B
for a Boolean algebra which is a class of sets and B for a Boolean algebra
which is a class of classes. In the second case we obviously need a set theory
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which is stronger than ZF. Note also that for B as above the completion of
B is of type B.

If we consider B as above we do not require that B be complete but
satisfv the following weaker condition:

(VA < B)[.#(A) — (Ix € B)[x = sup A]].

On the other hand we always require that a Boolean algebra of type B be
complete, i.e., sup A exists in B for every class A = B. Under these assump-
tions we define V® and V® in two different ways. V™ is defined as follows:

Definition 23.1. Let C, = B N R(«) for « € On. Then
1. V™ = 0.

2. V® = {ue C2™ | (3¢ < o)[2) = V™).
3w S|y

axeOn

Remark. This is a definition in the framework of ZF. Moreover,
VD =ALu | 2w) < V® A u: Z(u) — B)

as in the case of a set B. Note that V™ is a set for each « and V™ is a class
of sets.
V@ s defined as follows:

Definition 23.2.
1. V,® 2 0.
2. V. & (i eB | 3¢ < o)[P(w) = VB A D(u)e On].
AU PR A
.

Remark. Note that in gencral V,® is not a set for « > 1. We tacitly
assume that we have a sufficiently strong set theory to define V®. In the
following, w, v, w,... range over V® or VW [y = ], luer], and § for
y e V are defined in V® and V/® in the same way as in the case of a set B.
The following results are obtained in the same way as in the case of Boolean
algebras which are sets.

Theorem 23.3. (cf. Theorem 14.2). Let k€ Vand ue V™®,. Then

l. « < rank (k) — [k e u] = 0.
2. « < rank (k) =Tk = ul = 0.

Theorem 23.4. (Vue V®)[Ord (1)] = Dpeon [ = &]].

Remark. This is proved in the same way as Theorem 13.21. However,
since B need not be a set, we have to give a proof that for we V™

Du={¢]|lu=E >0

is a set. But this follows directly from the preceding theorem.
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Theorem 23.23. [AC] = 11in V®,

Proof. In most cases B satisfies the additional requirement that V® is
a model of ZF. In this case we can prove the AC in V® by a forcing argument
just as in Theorem 14.25 with suitable modifications as in the proof of
Theorem 23.24. betow. However, since we shall give an example of a Boolean
algebra B such that V® does not satisfy the Axiom of Powers, we indicate a
direct proof of Theorem 23.23 in the general case. We take the Axiom of
Choice in the following form:

Vi) @Fo)(Vxew)[@Bvex)3!' X ew)|rex]— 3 yvex)yer]l]

Let ¢(x,¥) be vex A @I ew)|yex]. ue V®. Since Jievm Z(x) 1s a
set, let {y. | € < «} be an enumeration of this set (using the AC in V). Then
define v € V® by

I(v) = U Z(x) = {y:

xeZ(u)

¢ < al,

(Vye.y(u))[u(y) = > > (Iy=ye A . 3| [ b p)D |-

xe¥u) f<a n<g
Note that v(y) € B, since we have only sup’s and inf’s over sets. Now one
can show that
Yy, v e Z(Ne(»)-[vex -v(y)- Iy ex][xeu <[y =1l
which proves the uniqueness part and
@A)y, y)) < [Ayex)yer]

which proves the existence part of the conclusion.

Remark. Sometimes we need a stronger form of the Axiom of Choice:

ACH (Vx)[x # 0 — H(x) € x]

where H is definable in ZF using possibly some new constants which are
added to the language of ZF (e.g., H itself may be a new function constant).
Thus ACH means that there 1s a definable well-ordering of the universe. If
we assume ACH, V™ is understood to be the extended structure

VD — (py® = E 37 B, +, [7, >

where

ue H] = > [u = k]
Well
Theorem 23.24. Suppose that V® is a model of ZF and assume ACH.
Then ACH is B-vahd in V¥,

Proof. (The proof shows how to apply forcing arguments in the case
where B i1s a class.) Let M be a countable transitive structure such that
(M, B, H*> 1s an elementary substructure of {V, B, H >, with respect to
the language £* of V% Let /ip: BY —- 2 be a homomorphism which preserves
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all the sums which are definable in M. (The set of these sums is countable.
Note that B is only a class in M, so /i, need not be M-complete, but /i,
preserves all the sums 6 in the proof of Theorem 14.22.) Finally, let F =
{be BM | hy(b) = 1} be the ultrafilter corresponding to /i,. As in Theorem
14.22 there i1s a mapping

fi: (V@) onte | ay [F]
such that

MIF) Eo((u,), . .., Q) <~ ho(le(u,, ..., u,)]) = 1

for wy, ..., u, e (V™M @ a formula of % We have to show that M[F] F
ACH. Using the language <’* we can define in M (a Gddelization of) the
ramified language obtained from <* and M (i.c., with ordinals ranging over
the ordinals in M), and we can express the syntactical notion of “U is a
constant term” in M as well as [« € v] and [u = r]. Let D be the denotation
operator related to M[F]. D(u) can be expressed as follows

D() = {D() | p(v) < p(u) A [veuleF].

Using HM, we have an M-definable well-ordering of M and hence an
M-definable well-ordering < of the constant terms. For x;, x, € M[F], let
C(x,) be the first y (w.r.t. <) such that x, = D(y); then

X, % e 4 C(x,) < C(xy).

Then <* is a well-ordering of M [F] which is definable in M [F] using the
language £’*. Therefore ACH holds in M [F].

Remark. Next we construct two counterexamples to show that V®
need not satisfy the Axiom of Replacement, and even if it does, 1t need not
satisfy the Axiom of Powers.

Theorem 23.25. There is a Boolean algebra B such that V® does not
satisfy the Axiom of Replacement.

Proof. Define a partial order structure P = (P, <) as follows:
PE2{plp<wA(pep@icw@Bae0np =, ]
A (Vi€ w)(V)(IB), cp ep A iy By ep —a = B,

i.e., elements of P are functions from a into On for some a € w, with a < w.
= f
pr < pa>py 2 pe for py,pr€P.

If we replace On in P by some «g, then the resulting P, is a set. If B, is the
Boolean algebra of regular open sets in P, , then «, becomes countable in
V®«0)  Similarly, we shall now obtain a function from « onto On contra-
dicting the Axiom of Replacement. Let B be the complete Boolean algebra
of all regular open classes in P and let B be the Boolean algebra of all regular
open classes which arc of the form

Z{A“x | x € a} '
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Now, in order to show that the Axiom of Replacement does not hold in
V® et i, «) be (3p € P)[i, «p € p A pe G]. Then, by 1-3,

[(Vie w) 3! a)p(i, «) A (Va)(Ti € w)p(i, a)] = 1
i.e., ¢ determines a function from w onto On in V™, but
[3o)Vi < w)Fx € v)p(i, x)] = 0,

therefore the Axiom of Replacement does not hold in V®,

Theorem 23.26. There is a Boolean algebra B which satisfies the UCL
(even more, B satisfies the c.c.c.), but V® does not satisfy the Axiom of
Powers.

Proof. To prove Theorem 11.11 we used the partial order structure
P, = {(P,, <) where

Po={p|lAd)dS a x w Ad<w A p:d—s2]
P1 < po—py 2 py for py, pyeP,,
to add a-many subsets of w to M, so that %@ > « In M[G] (assuming that
« 1s a cardinal in M). In terms of Boolean-valued models this means

[P(w) = &) = 1

in V® for each cardinal «. (Note that P, satisfies the c.c.c., so cardinals are
absolute.)

Now we take B as the Boolean algebra of all regular open classes of 2°™.
Then B satisfies the c.c.c. as can be seen from Theorem 11.10 which can be
proved for B with suitable modifications. Hence B satisfies the UCL and
may be considered as a class of sets. Since On x w ~ On, we obtain, in the
same way as we proved this result for V®«,

in VB for every cardinal «.
Therefore

(Vo) [P(w) = &]] = 1,

and hence [(Ae)(Vu)[uev <~ u < w]] = 0, 1.e., the Axiom of Powers fails 11
V@ (Note that V® satisfies the AC by Theorem 23.23.)

Definition 23.27. <(b',{b; | i€ I}, is called an [-sieve iff " > 0. An cle-
ment b > 0 is sifted by this sieve 1iff

b<b nNielbhb =0v>b<h)l

Let By be a complete subalgebra and # be #(B,, B). An element b > 0
is #-sifted by this sieve iff

b < b A NieD[#b b)b < b |
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Let 7 be a set. B satisfies the I-sieve law (I-SL) iff there exists a complete
subalgebra B, of B for which

1. By 1s a set,
2. for every sieve <b',{b; | 1€ 1} there exists a #-sifted element b.

B satisties the sieve law (SL) ift B satisfies the [-SL for erery set 1.

Definition 23.28.  Let B, be a complete subalgebra of B and # be #(B,, B).
Then M(B,) = {be B| #b) = 1).

L xercises.

I. heA(By) -=b > 0.

2. b eBy. heXB,) - #b -b) = b
3.0 < b eB,,heAB,) ~b'-b> 0.
4. b + (THD)) € A(By).

5.b = Hb)-(b + (T#D)).

~

Definition 23.29.  Let [ be a set. B satisties the -2\ sieve law (I-ASL) it
there exists a complete subalgebra B, of B for which

l."B,.i15' 8 seL,
2. for every sieve <b'.{bh; | i€ l}> defined in AM(B,) there exists a sifted
element 1 M(B,).

Exercise. If B satistied the I-ASL. then B satisties the I-SL.

Theorem 23.30.  Suppose that B satisfies the UCL and B satisfies the SL.
where B is the completion of B. Then V™ and V'® satisfy the Axiom of
Powers and hence both are Boolean-valued models of ZF + AC.

Proof. Again let M be a countable transitive structure such that
(M., BY> s an elementary substructure of <1, B> with respect to the language
LEof V™ et fiy: B - 2 be a homomorphism which preserves all M-defin-
able sums and let /7= {he B | ho(h) = 1} be the corresponding ultrafilter.
M [F] s defined by ramified type theory. so it need not be a model of ZF:
however, as in Theorem 9.38. M [F] saushies all the axioms of ZF except
possibly the Axiom of Powers since these axioms are B-valid in V®. So we
have to prove that M [F] satsties the Axiom of Powers.

Let # be a constant term, 1.e., D(u) e M[F] where D is the denotation
operator related to M[F]. and let /7 be the set of all constant terms with
rank <p(u). Since 7 1s a constant term " 1s definable in M using the language
L7 (cf. the proof of Theorem 23.22). /¢ M. Since the SL holds in < M, B™
tor this particular 7 there 1s an M-complete subalgebra B, of B™ satisfyving the
condition 2 i the definition of the I-SL i <M., B . and B, ¢ M. For the
remaining part of the proof. let p.r 7, 7', ... range over B — {0}. We will
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reserve p, q,q, g, ctc., to denote elements of P. For S <€ B, x I and Se M
we define K(S) as follows:

K(S) = D(w) if there exists an 7 and a w such that w is a constant term
and

() re F AT < [wcu.
(if) (Ve DIAF-Tve w7 < e wl).
() S=p,v|0<pApeBy, Avel N0 < p-F < vew],

K(S) = 0 otherwise.

We claim that

(iv) K: 2B, x 1) 22X 2 MEY D(y)).
This proves the theorem. For By, x [e M, so .”M(B, x IYe M < M[F],
since M satisfies the Axiom of Powers. Moreover, K is definable in M [F] and
M [F] satsties the Axiom of Replacement, so .2 M5 D(u)) € M [F] by (1v).
We prove (iv) in the following way.

I. Kis a function.

Let S € By x I and Se M. We have to show that K(S) 1s uniquely
determined by the above requirements, 1.c.. assuming that conditions (1)—(i)
are satisfied by wy, 7, and by w,, 7, for the same S, we have to show that
D(wy) = D(w;). By symmetry, it suflices to show that

D(v) € D(wy) — D(v) € D(w)).

Therefore let D(v) € D(w,). We can assume v € [. Then [v e w,] € F. (See the
proof of Theorem 23.24.) Let ' = 7y-[v € wy]. Then r' € F by (1), and

M) -Fo < [eews] by (.
Thus, by (1),
('), vy €S,

But also
#(r')-Fy < [vew]

since by our assumption both wq, 7o and wy, 7, satisfy (i) for the same S.
Therefore, since r' € F A r" < #r'), #(r')-ri e F, and hence [vew,| € F.
Therefore D(v) € D(wy). (See the proof of Theorem 23.24.)

2. The range of K is .ZME(D(u)).

Let D(w) < D(u) for some constant term w. Then [w < u]e F. For
v e [l define b, = [v € w]. Then by condition 2 of the I-SL,

(Vr)lr < w s u —@0)F < r A (YoeDI#F-by)-7 < bl

Obviously, such 7’s are dense beneath [w < ull € F. Therefore

@FF)F < [w<ul A FeF A Noe DIHF-by)F< bl
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Remark. Let Py, = (I', <., 1,» and P, = (Q, <., 1) form an N_-
Easton pair. Define P = (P, <, 1, as P, x P,. We use an abbreviated
notation such that p € I also denotes < p, 1, - and ¢ € A also denotes {1, g, .
With this abbreviation, every member of P can be denoted by p-¢ where
pelandgedand 1l =1,=1,. ..°

Let B be the Boolean algebra of all regular open sets in P.

P=1{beB|b+#0).

Let py-¢g; and py-g, be two members of P. p;-q, and p,-¢g, are compatible
ff p, and p, are compatible and ¢, and ¢, are compatible. Then P is fine,
hence

[p-q]™° = [p-q]

and we may assume that P is a dense subset of P, where | = 1. For the mem-
ber p-q of P, we shall intentionally confuse p-ge P and [p-g]€ P, i.e.. we
sometimes use p-¢ in the place of [p-¢] and vice versa. Therefore we some-
times express ““py-¢, and py-g, are compatible™ by py-¢,-pa-gs > 0. The
former is considered in P and the latter is considered in P.

In what follows, we assume that an R -Easton pair P,, P, is given as above.

Theorem 23.41. If p, poe " and g, g, € A then

Lo poqo < p-=-po < p.
2. Po-qo < 4 <=qo < 4.
3. Do Go S pqg-po <P Agy <q.
4. Po-Go =Ppq<-Po=p A qo = 4.

Theorem 23.42. Supposebe B,{h; jedJ} < B, b = >,., b,, where J may
be a proper class, and b € P. Then

@pel)3gedMp-g<b AN[pqg=<bv Fje)lp-q < bl
Proof. Case 1:b"-b > 0. Then b’-b, > 0 for some j € J. Hence
(FpeM@3qged)p-qg < b'-bj]

since P i1s dense in P.
Case 2:b"-b = 0. Then b* < ~b. For the same reason

FpelNE3ged)p-qg < b < b].

Lemma 23.43. (Easton’s main lemma.) Suppose X is regular, g € A and
b = >;c; b;, where J may be a proper class. Then

(F37edEAN = DG =g A N <K,
ANpeNFjed)p-g<b;vpg<-blaNeP)Ipe\)rp > 0]l

Proof. We construct, in N, stages, p, el and ¢, €2 for p < X -N_
(the ordinal product) satistying

(Vpey, po < xa'xa,)[ﬂl < Mg —r{q,, =1 (/ull-









Then ' < p < R, —~¢q, < ¢,. Therefore by 2 of Definttion 23.40 we can
pick a g € A such that (Vp < X)[§ < ¢,]. Deline A = U, -y, \, and take
F=¢. Then 7 and A satisfy 2 and 3.

Next we consider an arbitrary r ¢ 2 but stull assume that X, is regular.
Let r = p-¢g and for this ¢ let ¢ and A\ be constructed as above. Define
F = p-g. Then Fand A satisly 2 and 3.

Finally, we consider the case where X, is singular. Then N, =
SUP, <o Ny o1 for some sequence <, | < ', where o = ¢f(N,) < N,
Since N, ., 1s regular we can apply the preceding proof for cach N, .,
(inductively on ). Thus for each p < « we can pick r,c P and \, < I’
i the following way. We can assume that for previously defined r.’s
(v < p) r, <ry holds if v < v, There 1s an re P such that r < r, for all

A,
v < . Thenr, <r, A, <X,y and for each r” < r,and cach & < X .,

(3/)6 ‘\zz)[/)°", >0 A [/)°"u < —/)6 Vv (3./6'15)[/)°"11 < /h‘,”]'

We pick 7€ P such that 7 < r, for all & < «" and set A = (J, ., \,. Then

rand A satisfy the desired conditions.

Theorem 23.45. Let / < X, and N, be regular. Then B (the Boolean
algebra of regular open sets in P) satisfies the 1-SL.

Proof. We claim that B, (the Boolean algebra of regular open scts in Py)
satisfies the condition for B, in the I-SL. Let {b, | iel} < B and r > 0. By
Theorem 23.44, there exists 7 < rand A < 1" such that

. (Vr' < ) VieD@Bpe Dpr >0A[pF<b vpr < bl
Let # be #(B,, B). We have to prove that

(Vie D[#(F-b)-F < by).
Suppose #(r-b;)-F £ b; for some i e l. Then
Br’ < P))[r < #F-b)-F A" < ThY,
and hence by 1I:
2. GpeN)pr' >0A[pF<b Vvpri< bl

Since r' < b A0 < p-r < p-F, we cannot have p-F < b,. Therefore
p-r < by, by 2. Then p-7 -b; = 0. Therefore

p#(F-b) =0

by Theorem 22.10.6, since p € B,. Thus 0 < p-r’ < p-#(-b))i = 0. Thisis a
contradiction.

Theorem 23.46. B is (X, X )-splitable.

Proof. Letr < b,4{b;|icl A j< X} S B, I < X, and










(i) ¢ = ) ¢

«aeOn

(i) e € Reg—_J ¢" < K,

fsa
(1v) (V9)(Ve) (V) = [0, y, s m) € A (DL y, o, €q]

2.p<gq 5 qg <p ftor p,geP
3. P = (P, <

Remark. Intuitively the conditions defining P may be understood as
follows. If (M, P™ s an elementary subsystem of (V. P, then for each
a € Reg™, PM adds X, ,-many subsets of X, ro M (cf. the P used in the proof
of Theorem 11.10). The additional requirements. in particular 1.111. are neces-
sary to assure that sets added at the «th level do not aftect the cardinalities at
higher levels. Obviously, P i1s a proper class, and no P which is a set will
suthice for our problem. Consequently the success of our efforts depends upon
results of the preceding section and certain theorems that we must now prove.

From Definition 24.1 1t 15 clear that cach ¢ € P uniquely determines its
decomposition sequence < ¢“ | «c On>. So for cach ge P we will use ¢“ to
denote the ath clement of this decomposition sequence.

Our first result 1s simply a hst of elementary properties of two families
of subclasses of P:

I,

Ae

{geP| (V8 > «)[¢® = 0]},
{ge P| (VB < o)[¢® = O]}.

TR

Theorem 24.2.

I', 1s a set, but A, is a proper class.

pely, Aged,—pnNng=0ApUgeP.

. po€EP—=3'pel’NEged)po = p Vgl

«€Reg A pel,—p < X,

4G | B < Rgp €8¢ A (VB)VO)B < 8 < Ry —q, < ]

—q = U gs €4,.

B<Np

N -

th

Proof. 1-4 are obvious from the definitions.
5. We need only prove that ¢ = -, gs€P. Let ¢" = Up-x, 95"-
Then La-1.11 of Definition 24,1 are satisfied. To check L.iv of Definition 24,1,

let v € Reg. We want to show that U, ., g7 < X,. Since (Vy < «)[g” = O].
we can assume y > «. Then

U =U Uaew = U Uam
v sy Y'Sy P<Ng b<Ng 7v'Sv
Since U, =, ¢,” has cardinality <X, for each 8 < X,. since X, < X, and
since X, is regular, U, .« U, <, g7 has cardinality <X_. Finally since
/. N N - > ——
(VBUVI)[B < & < N, —¢; < q.],
condition L.v of Definition 24.1 1s satisfied for g.
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Definition 24.3. P, = W=
B, is the Boolean algebra of all regular open sets in P,. For « < 8 define
./-: Fb’ — Pa by

J(p) = U p* for pell.

Ysa

Remark. 1t 1s easy to see that j is an open continuous map onto I',.
Therefore j induces a complete monomorphism i: B, — B, (Theorem 22.9),
and we may regard B, as a complete subalgebra of B, for « < B. Note that
each B, 1s a set.

Theorem 24.4. The map j: 1"y — ', has the following elementary
properties:

L.g < p—=j(q) < j(p).
2. ./.“[l)]l‘[; = [.j(l))]l’(z'

Proof. 1. Obvious.

2. j*[ple, € L/(Pe, is obvious from 1. Now take g e [j(p)]e,. Then
g pels Itiseasy tosee that (¢ U p) € [plp, and j(g U p) = g¢.

Theorem 24.5. Let pe I'yand p > «. Then #([ple,) = L/i(p)]e,
Proof. By the definition of #. (See Remark following Theorem 22.9.)

Upley) = infibe B, | [P, < i(B))
= inf{beB, | [ple, < (717D}
= inf{beB,|j“[ple, < b}
—inf {b e B, | [/(ple, < b)

= [j(l))]l’a-
Remark. Each P, 1s fine (Definition 5.21) and hence by Lemma 5.22,
(9)p, ~° = [q]p, forge P,. So [j(p)lp, € B, Let

B=1|)B. ic., B=1{] B

aeOn aeln

For the operations in B, see Remark following Definition 22.16. Moreover,
if A < Band A is a set, then 4 < B, for some «. Since sup A exists in B,
sup A exists in B. Therefore B is of the type considered in §23. Let B be the
completion of B.

Obviously, {P, |« < On},{ju; | « < B < On}) is a normal limiting
system of partial order structures. Then, by Theorem 22.30,

1. B satisfies the s.c.c.

2. B =B.

3. Bisisomorphic to the Boolean algebra of all regular open subsets of P,
since P ~ lim,. o, P..

By 1 above and Theorem 23.21, B satisfies the UCL. But by 2 B = B.
Therefore B satisfies the UCL and hence, by Theorem 23.22, V™ satisfies the
Axiom of Replacement.
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[t is clear that P, and P, 2 <A, <> form an NX_-Easton pair and
P ~ P, x P,. Therefore by Theorem 23.45 B satisfies the SL. Consequently,
by Theorem 23.30 V® satisfies ZF + AC. Furthermore, by Theorem 23.46
B is (X,. X,)-splitable. Hence by Corollary 23.34 cardinals are absolute, i.e.,

(Ve)[[Card (R,)"] = 1].

Using only the properties | and 2 of G stated at the beginning of this
section one can prove

R8> = ()T =1 for «e€ Reg.

[n order to determine 2%« even in the case « Reg, we require that in this case
Neo be the least cardinal which is not cofinal with X, and which 1s greater
than or equal to X, for each 8 < « Then it will turn out that in V®,
2% = N, L.e., 2% is the least cardinal allowed by Konig's Theorem.
Thus we obtain in general

(Va) 28" = Rgo) ] = 1 in VO,

We shall prove this statement by a forcing argument. Thus, let M be a
transitive countable structure such that (M, BM is an elementary subsystem
of (V,B . Let hy: B —-2 be a homomorphism preserving all the sums
which are M-definable in the language of V®, and let

fre (V)M 00O A ()

be defined from /i, as before. (See the proof of Theorem 23.24.) For the
remaining part of this section we are working in {M, B™ | i.c.. ordinals «

are ordinals in M, «e On™, P, I',.\,, Reg.... stand for PM I'M A M,
Reg", ... and also X, always means XM (which 1s equal to X Y% since
cardinals are absolute). Similarly, p, ¢, ¢,... now range over P™ (or BM —
{03).

Lemma 24.6. Assume /i,('lv < (X)) = 1 tor some uwe (V™)™ Then
there exists a pe Pand a A\ < ', such that /i,(p) = 1. and in (M, BM :

l. p < [u < (X))

2. A < X, and
3. for cach ¢" < p and cach y < X,

@' eN)p g >0A[pp <yeul vpp < Veull

Proof. Applying Theorem 23.44 i <M, BY to anv g < u < (X)),
with r =¢, I = N, b, =vecu] for y < X, and b,, = b, for jeJ. we
establish the existence of a pe P and a \ < I', satistving -3 and such that
p < q. Theretore the set of p's for which there exists a A < ', satisfving 1-3
is dense beneath [n < (X,)V], so we can find a p < v < (X)7] which
satisfies the additional requirement /1,(p) = 1 (Theorem 10.11).

Theorem 24.7. 2% = N;, in M [/,].
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Section 11

19. Prove that the partial order structure P of Definition 11.1 is isomor-
phic to the partial order structure of Exercise 8. What relationship is there
between the set @ in Theorem 11.3 and the function ) G of Exercise 87

20. Why is Corollary 11.4 not a proof that if Zf 1s consistent then so 1s
ZF + AC + GCH + V # L?

21. Refer to Theorem 11.6. Show that M [G,] and M [G,] are not neces-
sartly elementarily equivalent in the language Zo(C(M) U {G( )}).

22. Show that the partial order structure of Theorem 11.10 1s isomorphic
to the structure <Q, < where

0 =1g|Add S axwnd<dnqgd—2]

and ¢, < g, ff ¢, 2 ¢, (cf. Definition 11.1 and Exercises 8 and 19).

Section 12

23. Show that the partial order structure of Theorem 11.1 1s 1somorphic
to the strong product of copies of the partial order structure of Exercise 8
or 19.

24. In courses 1in naive set theory a finite set 1s sometimes defined as a set
that is equinumerous with none of 1its proper subsets. Show that this 1s a
satisfactory definition only if the Axiom of Choice 1s assumed.

Section 13

4

25. In view of the fact that ¥™® < V. discuss the statement =V
extension of V.7 (cf. Exercise 16.)

26. Suppose (K, < 1s a partial order structure and B is the Boolean
algebra of regular open sets of B. Let fi: K — B be defined by fy(k) = [k]°.
Then V{[fy] and V™ are B-valued structures. Define a Boolean clementary
embedding 7:V[fs] — V™ (i.e.. such that for any formula ¢ and terms

.oy 1€ VD,
lp(ty . 1] = [e({(ty), .. .. T(1))].
Is / one to one? Onto? V[ /o] 1s a class of names for sets. In what sense can

this also be said of I ®>?
27. Suppose B is a compicte Boolean algebra. For which we V™ is

M s an

{teV®|reu] =1}
a set? For which wue V® s

foe V®|eeu] # 0
a set?
Section 17

28. 1f M and N arc modcls of ZF and M < N, show that any cardial n
N is a cardinal in M (cf. Thecorem 17.1).
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absolute class, 66

absolute formula, 66
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abstraction operator, 79

abstraction terms, 79

(X, Xy)-splitable, 212

NX.-bounded, 215

X.-Easton pair, 215

(e, B)-distributive law, 47

associated partial order structure, 52

associative laws, 3

atom, 132

atomic topological space, 191

Axiom of Choice, 100, 114-120, 142,
206

Axiom of Constructibility, 74, 76,
106-113

Axiom(s) of Equality, 61, 98, 122,
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Axiom of Extensionality, 89, 99, 124
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Axiom of Pairing, 68, 89, 135

Axiom of Powers, 71, 92, 93, 206,
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Axiom of Regularity, 89

Axiom (Schema) of Replacement,
71, 94, 196, 207

Axiom (Schema) of Separation, 69,
71, 90

Axiom of Unions, 68, 89

B-valued interpretation, 59, 61

B-valued structure, complete, 62

B-valued structure, separated, 61

B-valued substructure, 87

base, 7

Baire Category Thecorem, 42

Boolean algebra, 3-24

Boolean algebra, complete, 6

Boolean algebra, completion of,
183-195, 184, 185

Boolean algebra, M-complete, 21

Boolean algebra, natural, 3

Boolean algebra, natural order for,
5

Boolean algebra, nonatomic, 132

Boolean algebra, universe of, 3

Boolean o-algebra, 35-46

Boolean subalgebra, 25

Boolean-valued relative constructi-
bility, 87 -101

Boolcan-valued sct theory, 121-130

Boolean-valued structures, 59 63

Borel scts, 35

cardinals in V®_  160-164

chain condition, countable, 30, 43

class, absolute, 66

class, complete, 153

class, definable, 66, 73

clopen set, 8

closed set, 8

coatomic, 214

coatomic partial order structure, 215

commutative laws, 3

compact set, 38

compact space, 38

compact space, locally, 38

compatible sets, 25

complementation laws, 3

complete B-valued structure, 62

complete Boolean algebra, 6

complete distributive law, 47

complete subalgebra, 125

completion of Boolean
183-195, 184, 185

constructible set, 163

constant(s), individual, 79

constant(s), predicate, 79

constant term, 80

constant term, grade of, 80

constructibility, Boolean-valued, 87

constructibility, relative, 64-86

Continuum Hypothesis, 111
173

countable chain condition, 30, 43 ’
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definable class, 66, 68, 73
defined over M’, 87
denotation operator, 83, 143
dense beneath, 105

dense set, 8

dense set, no-where, 36
descrete topology, 7

direct system, 189

distribute laws, 47-50, 165-168
distributive laws, («, 8)-, 47
distributive law, complete, 47

Easton’s main lemma, 216
Easton’s model, 221-226
elementary embedding, 143147
elementary mapping, 146
elementary substructure, 74
embedding, elementary, 143 -147
embedding, topological, 191
epimorphism, 16

extensional function, 151
extensional set, 152

filter, 28, 51

filter, M-complete, 28

filter, maximal, 51

filter, principal, 28

filter, proper, 28

filter, trivial, 28

fine partial order structure, 58

finite intersection property, 39, 45-

46
finite set, 38
forcing, 102-105, 103
forcing, setting for, 104
formula, absolute, 66
formula, lIimited, 79
formula, unlimited, 80
function, extensional, 151
function, normal, 69
function(s), projection, 45
function, semi-normal, 69
function, Skolem, 74

v-chain condition, 161
Generalized Continuum Hypothesis,
74, 76, 107, 169, 171
generic sets, 25-34
5

4

to

Godel, 64

Godel-Bernays sect theory, 67
grade, of constant term, 80
grade, of variable, 80

A

Hausdorff space, 38, 46, 52, 53
homomorphism, 16
homomorphism, complete, 21
homomorphism, kernel of, 19
homomorphism, A-complete, 21

I-A sieve law, 210

[-sieve, 209

ideal, Boolean, 19

ideal, generated by, 23

ideal, M-complete, 21

ideal, maximal, 22

ideal, principal, 19

ideal, proper, 19

ideal, trivial, 19

idempotent laws, 4

identity laws, 3

independence of the AC, 114-120

independence of the CH, 106, 111
113

independence of V' = L, 106113

independence results, 106- 113, 169
174

individual constants, 79

induced topology, 15

interpretation, B-valued, 59, 61

isomorphism, 16

kernel of homomorphism, 19

language, ramitied, 79

Levy, 64

limited formulas, 79
Lindenbaum Tarski algebra, 3

M-complete Boolean algebra, 21

M-complete filter, 28

mapping, elementary, 146

Marezewski’'s Theorem,
181

maximal filter, S1

maximmum principle, 148
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meager set, 36
measure algebra, 177

natural Boolean algebra, 3

natural order for Boolean algebra,
h!

neighborhood, 7

nonatomic Boolean algebra, 132

normal function, 69

normal limiting system, 192

(w, w)-weak distributive law, 175

(w., wy)-weak distributive law, 214

open, continuous and onto inverse
system, 188

open set, 8

operator, abstraction, 79

operator, denotation, 83

P-generic set, 25

partial order structure(s), 14, 51 58

partial order structure(s), associated,
52

partial order structure(s), coatomic,
215

partial order structure(s), filter for,
51

partial order structure(s), fine, 58

partial order structure(s), normal
limiting system of, 192

partial order structure(s), product,
57

partial order structure(s), strongly
coatomic, 215

partial order structure,
for, 51

partial order structure, weakly
normal limiting system of, 193

partial ordering, 14

partition of unity, 61

predicate constants, 79

principal filter, 28

product partial
57

product topology (weak), 45

product topological space, 45

projection functions, 45

proper filter, 28

ultrafilter

order structure,

quantified ranked variable, grade of,
80
quasi-disjoint set, 179

ramified language, 79 86
Rasiowa-Sikorski, 29
Rasiowa-Sikorski Theorem, 60, 100
ramified language, 79

ranked variables, 79

regular open set, 8

relative constructibility, 64 86

relative constructibility, Boolcan-
valued, 87

relative topology, 42
restricted («, 2)-distributive law, 166

satisfaction, 60

Scott, 64

semi-normal function, 69
separated B-valued structure, 61
set, Borel, 35

set chain condition, 203
set, clopen, 8

set, closed, 8

set, compact, 38

set, compatible, 25

set, constructible, 163

set, definable, 68

set, dense, 8

set, extensional, 153

set, finite, 38

set, meager, 36

set, no-where dense, 36
set, open, 8

set, P-generic, 25

set, partial ordering of, 14
set, quasi-disjoint, 179
set, regular open, 8

set, uniform, 153

set theory, Godel-Bernays, 67
a-algebra, 35
g-homomorphism, 35
a-1deal, 35

#-sifted, 209

Shoenfield, 64

Skolem function, 74
Solovay, 64

space, compact, 38

space, Hausdorff, 38, 46, 52, 53
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