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PREFACE 

How to use this book 

This book is intended to be used by you for independent study, with no other 
reading or lectures etc., much along the lines of standard Open University 
materials. There are plenty of exercises within the text which we would rec¬ 
ommend you to attempt at that stage of your work. Almost all are intended 
to be reasonably straightforward on the basis of what’s come before and many 
are accompanied by solutions - it’s worth reading these solutions as they of¬ 
ten contain further teaching, but do try the exercises first without peeking, 
to help you to engage with the material. Those exercises without solutions 
might well be very suitable for any tutor to whom you have access to use as 
the basis for any continuous assessment of this material, to help you check 
that you are making reasonable progress. But beware! Some of the exercises 
pose questions for which there is not always a clear-cut answer: these are 
intended to provoke debate! In addition there are further exercises located at 
the end of most sections. These vary from further routine practice to rather 
hard problems: it’s well worth reading through these exercises, even if you 
don’t attempt them, as they often give an idea of some important ideas or 
results not in the earlier text. Again your tutor, if you have one, can guide 
you through these. 

If you would like any further reading in textbooks of set theory, there are 
plenty of good books available which use essentially the same Zermelo-Fraenkel 
axiom system, for instance those by Enderton [1], Hamilton [2] and Suppes 
[3], all covering roughly the same material as this book, while the books by 
Devlin [4] and Moschovakis [5] go some way further, looking at some of the 
modern set theory built on the foundations in this book. For a short outline 
of many of the key ideas, Halmos [6] is invaluable. 

The book is also peppered with 
notes in the margins, like this! 
They consist of comments meant to 
be on the fringe of the main text, 
rather than the core of the 
teaching, for instance reminders 
about ideas from earlier in the 
book or particularly subjective 
opinions of the author. 
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me practical help in its production, not to mention a contract: Nicki Dennis, 
Achi Dosanjh and Stephanie Harding at Chapman & Hall, several anonymous 
(but not thereby any less deserving of my thanks!) reviewers, and Alison Ca- 
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1 INTRODUCTION 

1.1 Outline of the book 

The language of sets is part of the vocabulary of any student or user of math¬ 

ematics, acquired very early in one’s schooling. Words like ‘intersection’ and 

‘union’ have become part of everyday mathematics. But the ‘set theory’ in 

this book is about much deeper and more complicated ideas about sets, at the 

heart of any discussion of the foundations of mathematics, especially about 

the place of ‘infinity’ in the subject. Many of these deep ideas have their 

origin in the work of Georg Cantor, a German mathematician at his most ac¬ 

tive in the latter half of the 19th-century. Cantor had many remarkable (and 

controversial) insights to the nature of infinity, producing a theory involving 

two sorts of ‘infinite number’, each equipped with an arithmetic incorporat¬ 

ing and extending the familiar arithmetic of the natural numbers. Among the 

questions which he was able to pose and resolve were such as: 

1. Are there more rational numbers than natural numbers? 

2. Are there more irrational real numbers than rational numbers? 

3. Are there more points in the real plane than on the real line? 

The obvious answer to the first of these questions is probably ‘Yes’, on the 

grounds that the set of natural numbers is a proper subset of the set of rational 

numbers - we make no apologies for leaping into use of the everyday language 

of sets! The obvious answer to the third question might similarly seem to be 

‘Yes’. In both cases, Cantor’s answer was in fact ‘No’, and one aim of this 

book is to explain his reasons why. 

There might not be such an obvious candidate for the answer to the second 

question above - it all depends on how much you already know about the real 

numbers. Another aim of this book is to give an explanation of what the real 

numbers are, another aspect of Cantor’s work, and part of the work of his 

contemporary Richard Dedekind (1831—1916). This explanation leads to the 

need to explain even more basic numbers, namely the natural numbers. 

Cantor’s work on infinity really stemmed from his and others’ work on real 

analysis, and there are several connections between the issues of infinity and 

of the real numbers. First there was the drive in the 19th century to put 

the calculus onto a rigorous footing, giving what is now taught as real anal¬ 

ysis: the last stage of this required a firm algebraic description of the reals, 

while earlier stages needed to explain away or eliminate uses of infinity, e.g. 
oo 

the infinitely large, like the oo in 'y ] xn, and the infinitely small, namely 
71=0 

infinitesimals. Secondly the descriptions of the reals provided by Dedekind 

and Cantor required the overt handling, as legitimate mathematical objects, 

of infinite sets. And thirdly mathematical developments in real analysis led 

to the desire^both to study infinite subsets of the real numbers and to carry 

out infinite processes on such subsets. 

The key issue is whether it is legitimate to treat an infinite set as a math¬ 

ematical object which one can then use in further constructions. We are so 

For a very accessible account of 

Cantor’s life (1845-1918) and work, 

look at the biography by Dauben 

PI- 
In set theory it is customary to use 

‘natural number’ to mean a 

non-negative integer. 

However, if you are unhappy with 

some of the set terminology, don’t 

worry! We shall explain it more 

carefully later on. 

Cantor’s answer is ‘Yes’. 

Infinitesimals, infinitely small 

quantities, played a major part in 

the theory of calculus, until 

banished through the work of 

Weierstrass and others in the 

mid-19th century. 

Twentieth-century logic, inspired 

in part by Cantor’s work, has 

resurrected infinitesimals within 

the context of non-standard 

analysis. 
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7 Introduction 

used, in the final years of the 20th century, not only to writing and talk¬ 

ing about infinite sets like the set N of natural numbers and the set IR of 

real numbers, but also to manipulating such sets using e.g. operations like 

intersection (n) and union (U), that it is easy to forget, or be unaware of, 

how controversial the use of infinite sets was until (and perhaps still after) 

Cantor’s work. Mathematicians had been happy to regard, say, the natural 

numbers as being potentially infinite, meaning that however (finitely) many 

numbers one might list, there would always be an extra one that could be 

added to the list; but they were wary of treating this list as though it could 

be completed to give a single infinite object, what would be described as an 

actually infinite object. This rejection was very deeply rooted, going back to 

the work of Aristotle in the 4th century BC. Of course, over the same period 

there had been much discussion, and use, of both infinitely small quantities 

and what looked suspiciously like infinite processes (the dots ‘...’ in so many 

mathematical expressions), that some sort of resolution of infinity was due. 
This resolution was essentially done by Cantor. 

Cantor’s work, by virtue of its revolutionary nature, raised very many difficult 

and worrying issues. Matters were not helped by the initial imprecision of 

some of the concepts involved. His results, and the unresolved questions 

arising from them, attracted sufficient interest and enthusiasm from enough 

of his contemporaries that much effort was subsequently made to put his 

theory on more solid foundations. The aim of this book is to present this 

classic theory of sets as it is now understood by most mathematicians, using 

the framework of the Zermelo-Fraenkel axiom system (probably the most 

widely used of the systems for set theory). The theory is well worth studying 

for its own sake, as an accessible and exciting part of mathematics. It also 

provides a foundation for further study in modern set theory, beyond the 

scope of this book, but studied at postgraduate, and sometimes at advanced 
undergraduate, level. 

The development of the book is roughly as follows. Chapter 2 gives construc¬ 

tions of the real numbers in terms of rational numbers and shows how these 

ultimately stem from set constructions involving natural numbers. Chapter 

3 then shows how the natural numbers themselves can be constructed from 
very simple sorts of set, like the empty set. Thus all these important number 

systems in everyday mathematics can be constructed and explained purely in 

terms of sets. Chapter 4 introduces axioms for set theory which underpin all 

these constructions. Historically, axioms were introduced after Cantor had 

produced his theory of infinite sets, which we describe in later chapters. Ax¬ 

ioms were felt necessary for two reasons: to help avoid paradoxes arising from 

this theory of infinite sets; and to help establish the relationship between a 

major unresolved problem arising from the theory involving a certain sort of 

ordering of the real numbers and a special axiom called the axiom of choice. In 

Chapter 5 we discuss this latter axiom, which turned out to be a very perva¬ 

sive mathematical principle. In Chapter 6 we look at some of Cantor’s theory 

of infinite cardinal numbers, including remarkable results about the sizes of 

the real line, the real plane and the set of irrational numbers, all stemming 

from the construction of the reals in Chapter 2. In Chapter 7 we look at some 

of the general theory of ordered sets (a further legacy of Cantor’s), and then 

in Chapter 8 we look at his theory of ordinal numbers, a variety of richly 

Both the history and philosophy 

are well described in the books by 

Adrian Moore [8] and Lavine [9]. 

Some of the pre-1900 mathematical 

source material on infinity and the 

calculus can be found in Fauvel 

and Gray [10]. 

The use of ‘classic’ in the title of 

this book is partly a deliberate 

misuse of the word, inasmuch as it 

can be used to mean ‘to do with 

ancient Greece’ - ancient Greeks 

like Aristotle might well have 

abhorred Cantor’s use of infinity! 

Many of the crucial papers in the 

development of set theory and the 

foundations of mathematics can be 

found in van Heijenoort [11], in 

English translation and with very 

valuable commentary by the editor. 

Many of Cantor’s results about 

cardinal and ordinal numbers are 

in papers translated in [12]. These 

papers are not only vital source 

material for the whole subject, but 

are also very readable. 

2 



1.2 Assumed knowledge 

structured sets extending ideas about natural numbers into the realm of in¬ 

finite sets. In Chapter 9, the final chapter of the book, we both complete 

Cantor’s theory of infinite sets, linking cardinal and ordinal numbers via the 

axiom of choice, and look at two major problems concerning the real numbers 

which he had not resolved - in many ways the problem of the nature of the 

real numbers pervades the subject, so it is fitting that we both start and end 
the book with the reals. 

1.2 Assumed knowledge 

The book is written on the basis that you have already had some experience of 

using sets, functions and basic logic, and that you are familiar with a variety 

of mathematical words and notations - ideally you will have already taken a 

first course in real analysis so that some of the context of the material in this 

book is known to you. Among what we hope you will have seen before is the 

following material. 

Set Notation 

A set X is a collection of objects called the elements, or members, of X. We 

sometimes use words like family and collection instead of sets, for variety and 

sometimes, we hope, to aid comprehension. We shall often use letters like 

a,b,... ,y,z, A,B,,.. ,Y, Z to stand for sets or for elements of sets. 

We write z 6 X to express that the object x is an element of the set X and 

y & X to say that y is not an element of X. 

We use curly brackets, { and }, around a list of objects to signify the set of 

all those objects. For instance {3,8,9} is the set with elements 3, 8, 9. 

The order in which the elements are listed inside the curly brackets doesn’t 

change the set, nor does listing some element more than once. Thus {9,3,7} 

and {3,3,7,9} both represent the same set as {3,7,9}. In general, two sets X 

and Y are equal if and only if they contain the same elements or, equivalently, 

if and only if every element of X is an element of Y and vice versa. 

We use standard notation for the most common sets of numbers: N for the 

set of natural numbers, Z for the set of all integers (positive, negative and 

zero), Q for the set of rational numbers, U for the set of real numbers and C 

for the set of complex numbers. 

We use the notation 0 for the empty set, the set which contains no elements. 

We can also describe a set using curly brackets in terms of a property possessed 

by all its elements, as with {n : n is an even integer} or, equivalently, 

{n G Z : n is even} for the set of all even integers {..., —4, —2,0,2,4,6,...}. 

In general we write 

{x : x has property P} 

for the set o£all z such that z has property P (some property which may or 

may not be possessed by a given object z). 

There are many excellent books on 

real analysis, for instance those by 

Spivak [13] and Haggarty [14]. 

Later on in the book all the objects 

we shall consider are sets whose 

elements are also sets! 

When x 6 X, we also say lx is in 

X’ or lx belongs to X\ 

Recall that in this book we take N 

to include all the positive integers 

and the number 0. 

The colon is read as ‘such that’. 

3 



1 Introduction 

We shall occasionally use standard notation for intervals of the real line: 

(a, b) for the open interval {x £ IR : a < x < b}; 

[a, b] for the closed interval {x £ IR : a < x < 6}; 

(a, 6] and [a, b) for the half open and closed intervals {x £ U: a < x < b} 

and {x £ IR: a < x < b} respectively; 

(—oo, b) and (a, oo) for the open intervals {x £ IR : x < b} 

and {rr £ [R : x > a} respectively; 

(—oo, b] and [a, oo) for the closed intervals {x £U:x <b} 

and {a; £ IR : x > a} respectively. 

Given two sets A and Y, we write 

X U Y for the union of X and Y, i.e. the set of elements belonging to X 

or Y (or both); 

X fi Y for the intersection of X and Y, i.e. the set of elements belonging 

to both X and Y; 

X \ Y for the complement of Y in X, i.e. the set of elements of X not in 

y. 

We shall adopt the standard 

mathematical use of the word ‘or’ 

as allowing the ‘or both’ case - 

what’s called the inclusive use of 

Given a family of sets SF, we write (J{A : X £ !X} for the union of all the 

sets in this family, i.e. the set {x : x £ X for some Xe/}. A family & of 

sets might sometimes be indexed by another set, for instance the family of all 

open intervals of IR of the form (^y, oo) for n £ N is effectively indexed by 

the set N: in this sort of case we would write the family as {(^y, oo): n £ f^} 

and the union of the family as |J{(^+T)00): n £ (which happens to equal 

the set (0, oo)). 

X is a subset of the set Y means that AT is a set of which every element is also 

an element of Y (so that, for all x, if x £ X then x £ Y). We write A C Y 

for ‘A is a subset of Y\ A subset X of Y is said to be proper if 1^7. The 

power set of Y, written as £°(Y), is the set of all subsets of Y. 

We write X x Y for the Cartesian product of X and Y, i.e. the set of all 

ordered pairs (x,y) with x £ X and y G Y. We use X2 as shorthand for 
X x X, X3 for (A- x X) x X and so on. 

Function Notation 

A function f from a set A to a set Y associates an element, f(x), of Y with 

each element a; of A. The rule of /, written as x i—^ f{x), describes this 

process of association. The element f(x) of Y is called the image of x under 

f. The domain of / is the set A and the codomain of / is the set Y. We use 

the standard arrow notation for such a function, combining the information 
of its domain, codomain and rule: 

/: A —> Y 

x i—> /(:r) 

If A is a subset of the domain of this function /, the restriction of / to A, 
written as f\A, is the function 

/U: A —*Y 
x /Or) 

4 



1.2 Assumed knowledge 

i.e. /|a has the same rule and codomain as /, but has its domain restricted 
to A. 

The image set or range of /: X —> Y, written as Range(/), is the set of 

images of /, namely {/(a?) : x E X}. For any subset A of the domain X the 

set {f(x) : x E A} is called the image set of A under f. We shall sometimes 

write /(A) for this set, but we shall mostly use the notation Range(/|/i), 

which represents the same set. 

A function is said to be onto if for each y E Y there is an x E X with f(x) — y. 

The function / is said to be one-one if for all x,x' E X, if f(x) = f(x') then 

x = x' (or, equivalently, if x / x1 then f(x) ^ f(x')). 

If / is a one-one function, then its inverse function /-1 is defined as the 

function 

f-1: Range(/) —> X 

y i—> the unique x such that f(x) = y 

For any subset B of the codomain Y, its inverse image set under /, written 

as f~l(B), is the set {x E X : f(x) E B}. 

If f: X —> Y and g: Y —> Z are functions then the composite function (or 

composition of f and g) g o f is the function 

gof-.X—^Z 

z '—> s(/(®)) 

If / is both one-one and onto, then / is a bijection. If /, g are both bijections 

with the codomain of / equal to the domain of g, then the composition go f 

is also a bijection. 

Basic Logic 

Suppose that p and q are propositions, or statements, about mathematics, of 

the sort where it makes sense to ask whether they are true or false under some 

given set of circumstances, or, equivalently, in a particular interpretation of 

the symbols or words that they involve. Then the proposition if p then q is 

true in some interpretation unless p is true and q is false in this interpretation, 

i.e. it is true not only when both p and q are true, but also when p is false. 

And the statement lp if and only if q' is true in an interpretation when if p 

then q’ and ‘if q then p’ are both true in this interpretation, which boils down 

to both of p and q being true in this interpretation or both being false. 

So that / is onto exactly when 

Range(/) = Y. 

The use of /_1 in this context does 

not mean that the inverse function 

f~l exists - a well-known source of 

confusion! 

We define g o f in exactly the same 

way when the domain of g contains 

the range of / as a subset, rather 

than requiring that the domain of 

g coincides exactly with the 

codomain of /. 

For example, p might be the 

proposition ‘/ is a continuous 

function’ and q the proposition ‘all 

continuous functions axe continuous 

functions’. The truth of p depends 

on the interpretation of / - do we 

interpret / as a function and, if so, 

is it continuous? — while q is always 

true in normal usage of the words. 

Further exercises 

Exercise 1.1--- 

Prove the following statements for all sets A, B and C. 

(a) A n (B u C) = (A n B) u (A n C) 

(b) AU(B 0C) = (AuB)n(AuC) 

(c) A\(fiuC) = (A\B)n(A\C) 

(d) A\(5nC') = (A\B)U(A\C) 

5 



7 Introduction 

Exercise 1.2_ 

(a) If Y is a finite set with n elements, show that &>(Y) has 2n elements. 

(b) Decide if it is true that, for every set Y, ^(^(Y)) = &>(Y). 

(c) If A and B are sets, decide if it is true that x B) = A^(A) x 3°(B). 

Exercise 1.3 

Given a function /:X —>• Y, with A1}A2 C X and Bi,B2 C Y, decide which 

of the following statements about image sets and inverse image sets under / 
are always true. 

(a) f(Ai n A2) — /(^4i) n f(A2) 

(b) f(Ai U A2) = f(Ai) U f(A2) 

(c) f(X \ Ai) — K \ f(Ai) 

(d) f~l{Bi n b2) = r1(Bi)n/- -\b2) 

(e) ri(BluB2) -\b2) 

(f) /“1(F\51) = 

For the remainder of this book we 

shall mostly use the notation 

Range(/|>i) for the image set of a 

subset A of X under /, rather than 

the notation f(A) used here. This 

is because when the domain X of 

/, which is a set, consists of 

elements which are also sets, the 

notation /(x) is reserved for the 

image of an element x of X, rather 

than the image set of some subset. 

Exercise 1.4____ 

Let /: X —*• Y and g: Y —> Z be functions. For each of the following state¬ 

ments, decide whether it is true or false, and give a proof or counterexample 
as appropriate. 

(a) If / and g are one-one then g o / is one-one. 

(b) If g o / is one-one then / is one-one. 

(c) If g o f is one-one then g is one-one. 

(d) If / and g are onto then g o f is onto. 

(e) If g o f is onto then / is onto. 

(f) If g o f is onto then g is onto. 

6 



2 THE REAL NUMBERS 

2.1 Introduction 

All modern mathematicians appreciate the vast importance, to mathemat¬ 

ics and to a huge range of mathematically based crafts and sciences, of the 

differential and integral calculus. And anyone who has studied a course in 

real analysis should have some sense of not only a rigorous foundation for the 

calculus, but also why such a foundation is necessary. In the original formu¬ 

lations by Leibniz and Newton of the calculus, and in the extension of this 

work by such as the Bernoulli brothers and Euler, there were deficiencies of 

which contemporary natural philosophers were well aware. These deficiencies 

centred around use of the infinite, namely the infinitely large, for instance the 

‘... ’ in 

— = l + x + x2+x3 + ..., 
1 — X 

and the infinitely small, i.e. the infinitesimals used to work out basic deriva¬ 

tives. The ramifications of the calculus for science and mathematics were so 

extensive and exciting that the need to remedy these and other deficiencies 

only began to become pressing towards the end of the 18th century. Through 

the work of the likes of Cauchy, Bolzano and Weierstrass up to the middle 

of the 19th century, the calculus acquired essentially the rigorous foundation 

which is passed on in the many standard undergraduate textbooks on real 

analysis of today. In particular, the use of the infinite was buried deep by 

the use of e.g. the familiar e-5 definitions for limits, which avoid mention of 

infinitesimals. But there remained major problems at the heart of the subject. 

For instance, as Dedekind pointed out, even by the 1850s no one knew how 

to prove the following: 

If a magnitude x grows continually but not beyond all limits it approaches 

a limiting value. 

To modern eyes, informed by a standard course in real analysis, this poses no 

problem beyond, perhaps, the archaic language: letting A stand for the set of 

all the relevant xs, so that the subset A of IR is bounded above, the limit of 

the xs is just sup A (or lub A, if you prefer this notation). But this viewpoint 

relies precisely on the work done by Dedekind (and independently by Cantor) 

in resolving the problem. 

The root of the problem, for Dedekind, was that no one had tied down what 

the real numbers were in a sufficiently precise way. To be sure, there were 

long-established and very powerful geometric intuitions about real numbers in 

terms of lengths along a line, linked to ideas about continuity, e.g. continuous 

motion; but these were not precise enough to justify statements like the one 

above about limits. In this chapter we shall look in detail at two different 

constructions of the real numbers. That these constructions are different may 

sound problematic, but we shall see that, in an important sense, they give rise 

to the same (familiar) theory of the reals. 

Both constructions define each real number in terms of rational numbers. By 

the middle of the 19th century, rational numbers and their properties were 

The dots, '...’, mean ‘going on 

forever’. 

Dedekind’s seminal and highly 

readable Continuity and Irrational 

Numbers, translated in [15], was 

written in 1872, but covered work 

he had done in 1858. 

The language of 19th-century 

mathematics abounds in references 

to continuous motion, e.g. 

‘magnitude x grows continually’ 

and ‘approaches a limiting value’ in 

our problem above. Come to think 

of it, we still use this sort of 

language! 
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2 The Real Numbers 

a sufficiently natural and uncontroversial part of mathematics that Dedekind 

and Cantor could use them without qualms to define the more difficult and 

controversial real numbers. Rational numbers seem in some sense simpler than 

the reals. But the question ‘what are the rationals?’ is perhaps as deserving 

of an answer as ‘what are the reals?’, so that we shall also look at a way of 

constructing the rationals from something even ‘simpler’, namely the natural 
numbers. 

What this chapter essentially does is to provide an arithmetic or algebraic, 

rather than geometric, description of the real line or, equivalently, what is 

called the continuum. It is using this description to attempt further to un¬ 

derstand the nature of the continuum that underpins the rest of this book. 

2.2 Dedekind's construction 

The central problem with the real numbers was to explain irrational numbers. 

Numbers like y/2 have been known to be irrational for over two thousand 

years, and methods of approximating to \[2 by rational numbers became in¬ 

creasingly sophisticated over that period. So it was quite natural for Dedekind 

and Cantor to think of defining irrational numbers by reference to rational 
numbers. 

Dedekind’s definition relies on a picture of how an irrational number r sits 

among the rational numbers on the real line. As r is irrational, each rational 

lies either to the left or the right of r. So r cuts Q into two subsets L and R, 

where L consists of all the rationals to the left of r, and R consists of rationals 
to its right. 

R - 
L r R 

We have various intuitions about L and R. For instance, they are both non¬ 

empty; they are disjoint; any rational in L is less than any rational in R-, and 
both L and R contain rationals arbitrarily close to r. 

Of course, to define the real numbers, we cannot assume that they already 

exist! What Dedekind did was to define a real number to be a partition of <Q> 

into two non-empty subsets, L and R, with the property that every element 

of L is less than every element of R. This partition is called a Dedekind 

cut and IR is defined to be the set of all such partitions. (The word ‘cut’ is 

meant to conjure up the earlier intuition of an irrational r cutting Q into the 

two subsets L and R.) Dedekind then explained how to define an order and 

the usual arithmetic operations on these partitions, exploiting the order and 
arithmetic operations of <Q>. 

We shall take our definition of a real number to be an adaptation of Dedekind’s 

construction. Rather than take both the L and R above, we shall just use the 
‘left set’ L: after all, R is just Q\L, the complement of L in Q. But this 

does mean that our definition has to capture the idea that every element of 
L is less than every element of Q \ L. 

A dictionary definition of 

‘continuum’ is as a continuous 

body; and ‘continuous’ means 

connected or joined together. 

In any case, rational numbers were 

regarded as unproblematic by the 

19th century. 

L and R partition Q means that 

L U R — Q and L fl R = 0. 
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2.2 Dedekind's construction 

We shall use bold lower-case 

letters, e.g. r,s, for Dedekind left 

sets. 

We use <q to stand for the usual 

order on <Q. Thus when we write 

p <q q, it is implicit that p and q 

are rationals. The reason for the 

<q notation is that we will have to 

define an order < on the reals, and 

want to avoid confusion about 

which order is being discussed. 

Properties (i) and (ii) are the key parts of the definition: they ensure that 

r and its complement Q \ r form a Dedekind cut, as you will soon check! 

Property (iii) deals with a relatively minor technical issue which we have 

avoided so far. When we pictured a real number r cutting Q into two subsets L 

and R, we had in mind the case when r was irrational - after all, it’s irrational 

numbers that we are trying explain. But if r happened to be rational, we 

would have to include r in one of L and R for these to partition Q. Property 

(iii) corresponds to deciding to put such an r into the R rather than the L. 

Of course, our picture of the real numbers is that they include the rational 

numbers. But a rational number is not a Dedekind left set - the latter is a set 

of rationals. So we have to specify which real numbers are going to correspond 

to the rationals. 

The bold letter q is used for the 

real number corresponding to q. 

Definition 

Let q e 0. Then the real number corresponding to q is 

q = {p e Q :p <q q}- 

Definitions 

A Dedekind left set is a subset r of Q with the following properties: 

(i) r is a proper, non-empty subset of <Q>, so that 0 / r ^ <Q>; 

(ii) r is ‘closed to the left’, i.e. if q € r and p <Q q, then per; 

(iii) r has no maximum element, i.e. for any per there is some <7 e r 
with p <q q. 

A real number is a Dedekind left set and IR is the set of all such real 

numbers. 

Exercise 2.1-——- 

(a) Let q eQ. Check that q defined by 

q = {p e Q : p <q q} 

is a Dedekind left set. 

(b) Is {p e Q : p <q 5} a real number? 

Solution 

(a) Certainly q is a subset of Q. It is non-empty as e.g. q -q 1 <q q, so that 

q _Q 1 £ q; and it is a proper subset of Q, as e.g. q +q 1 q, so that 

q +q 1 £ q Thus q obeys property (i) of the definition. 

For property (ii), suppose that p E q and that x <q p: we must show 

that i£q. Of course p G q means that p <q q, so that as x <q p we 

have x <^q q, so that x G q, as required. For property (iii), we need to 

show that for any p G q, there is some x G q with p <q x. If p € q, then 

p <Q q. Take x to be \{p +q q). Asp and q are in Q, x is also in Q; and 

Of course, as q £ Q, q —q 1 is also 

in <Q. As with <q, we are being 

careful to use the notation — q and 

+q to emphasize that we are using 

the ‘known’ operations on Q. We 

shall soon define operations — and 

+ on IR. 
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2 The Real Numbers 

we also have p <q |(p +q q) <Q q. Thus p <q x and x E q as required. 

(b) Although the set obeys properties (i) and (ii), it fails with property (iii), 

as it contains a maximum element, namely |. Thus it isn’t a real number. 

We hope that you didn’t find the process of checking that q is a real number 

too difficult. It is, however, rather a lengthy process, and is a warning of what 

will be required later on to check that various subsets of <Q> are indeed real 

numbers. You can also see how we have to use known properties of <Q> and 

<q, — q and +q in such arguments. 

Exercise 2.2___ 

Let r be a Dedekind left set. 

(a) Show that r is bounded above as a subset of <Q>, i.e. there is some xeQ 

such that q <q x for all q € r. 

(b) Show that r and <Q> \ r (the complement of r in Q) form a Dedekind cut 

of <Q>, i.e. that they are non-empty sets which partition <Q>, such that every 

element of r is less than every element of <Q> \ r. 

Solution 

(a) As r is a proper subset of Q, there is some x E Q \ r. We claim that x 

is a suitable upper bound of r. If this were not the case, there would be 

some q E r such that x <q q. But then, as r is closed to the left (property 
(ii)), we would have i£r, which would give a contradiction. 

Exercise 2.3___ 

Write down a description, in terms of rational numbers and operations of <Q>, 

of the Dedekind left sets corresponding to the following real numbers: 

(a) -3; 

(b) -v/2. (It won’t do here to write {q G Q : q < \/2}, as this assumes one 

already knows about the real number \f2\ So how might you refer to 

rationals less than y/2 without mentioning \/2?) 

Solution 

(a) {q € Q :q <q —3}. 

(b) For rationals q close to y/2, if q < \[2 then q2 < 2. It is thus tempting to 

say that \fl is represented by {q € Q : q2 <q 2}. This is almost correct, 

except that it isn’t closed to the left, as it contains e.g. —1 (because 

(~1)2 = 1 <q 2), but doesn’t contain —2. So for safety we need to include 
all the negative rationals. Thus one representation is 

{q € <0 : q2 <q 2 or q is negative}. 

The representation of \/2 in our solution above is correct, but is it obvious 

that it is a Dedekind left cut? It is worth going through the process of showing 
this.' 

Exercise 2.4___ 

Show that r = {q e Q: q2 <Q 2 or q is negative} is a Dedekind left cut. 

This x is then an upper bound of r. 

We are effectively showing that any 

rational not in r is an upper bound 

for r. 
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2.2 Dedekind's construction 

Solution 

First of all r 7^ 0, as e.g. 1 6 r; and 3 ^ r (as 32 2 and, of course, 3 is not 

negative), so that r / Q. Thus property (i) is satisfied. 

It is easy, but tedious, to check that if q e r and p <Q q, then per. There are 

two cases to consider. If p is negative, then p is automatically in r. Otherwise 

we havep >q 0, so that p <q q and q € r means that q2 <Q 2. As we can show 

that the function x >—> x2 is increasing on the set of non-negative rationals, 

and 0 <q p <q q, we have p2 <q q2, so that p2 <q 2, giving p e r as required. 

In all cases, property (ii) is satisfied. 

Property (iii), which is a technical but nevertheless necessary detail, requires 

more care. We need to show that for any p E r there is some q G r with 

p <q q. If p is negative, then e.g. q = 1 will do perfectly well. But if p >q 0, 

so that p is in r because p2 <q 2, we have to make an effort to specify some 

q e r with p <q q. Our experience of real analysis (which we are trying to 

underpin with our definition of R) suggests that there should be some n e hI 

for which 

n 4- — < p + — is a rational and will then be 
* ^ ' r> n n 

suitable as our q. 
so that 

The + here is strictly addition, +q 

on <0. 

This last inequality, involving elements of <Q>, is equivalent to 

2 , 1 r, 
p d-1-o <Q 2, 

n nz 

which is equivalent to We are attempting, much as with 

standard arguments in a real 

analysis course, to find, for the 

given p, an n 6 N such that 

As p2 <q 2, we have 2 - p2 >q 0. We can show within Q that there is some 

<0 -(2p+ 1) (as n >q 1) 
n 

so that the inequality marked (*) above is satisfied. Thus for this n G N, we 

have that the rational q = p H— satisfies both p <q q and q £ v. 
Tl 
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2 The Real Numbers 

The sort of argument above is very reminiscent of the sort of argument that 

one is often obliged to do at an early stage of a standard course in real analysis. 

The only difference is that the arithmetic and inequalities are about numbers 

in Q rather than IR. Many of the properties of IR discussed below require 

proofs of a similar sort. There is a light at the end of the tunnel! Once we 

have shown that IR, as defined by Dedekind left sets or by any alternative 

definition, satisfies various properties well known from standard real analysis 

texts, subsequent proofs about IR will usually follow from these properties 
without needing to refer to what reals numbers actually are. 

We have to define, in terms of Dedekind left sets, the order <r on the reals, 

and the operations +r and -r of addition and multiplication on the reals. 

But first we have to say what we mean by two real numbers being equal. As 

each real number is given by a set of rational numbers, it is natural to define 

two reals as equal when they contain the same rationals. (This will mean that 

proving the equality of two real numbers r and s could well require proofs that 

r C s and s C r.) And, given our intuition of a real number being represented 

by the set of all rationals less than it, it is then natural to define the order on 

IR, he. when one real is less than another, in terms of when one set of rationals 
is less than another. 

Definitions 

Let r and s be Dedekind left sets. Then r and s are equal, written as 
r —r s, if they are equal as sets, i.e. for all q, 

q £ r if and only if q G s; 

r is less than or equal to s, written as r <r s, if r C s, i.e. for all q, 

if q G r then q G s; 

r is less than s, written as r <r s, if r <r s and r ^r s. 

It is easy to show that, with these definitions, IR is linearly ordered by <r, i.e. 
has the properties in the following theorem. 

Theorem 2.1 

The set IR of Dedekind left sets has the following properties. 

(01) Reflexive: for all r G IR, r <r r. 

(02) Antisymmetric: for all r, s G IR, if r <r s and s <R r, then r =R s. 

(03) Transitive: for all r, s, t G IR, if r <r s and s <r t, then r <r t. 

(04) Linear: for all r, s G IR, r <r s or s <r r. 

Exercise 2.5_ 

Prove Theorem 2.1. 

In any construction of 

mathematical objects, not just in 

set theory, it’s worth making sure 

that one understands what it 

means for two objects to be equal. 

In this book this will usually mean 

that they are equal as sets, which 

will be defined as meaning that 

they contain the same members. 

So r <r s if r C s, i.e. r is a proper 

subset of s. 

We shall discuss linear orders in 

more detail in Chapter 6. 
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2.2 Dedekind's construction 

Solution 

Properties (01), (02) and (03) follow easily from the corresponding proper¬ 

ties of the subset relation, C, which apply to all subsets of a set like <Q, not 

just Dedekind left sets. For instance, for (02), if r <R s and s <R r, so that 

rCs and s C r, then the sets r and s contain the same elements: thus r =r s. 

However, property (04) requires more care, as it is not true in general for 

subsets A, B of Q, that A C B or B C A. We shall need to use the fact that 

r, s are special subsets of Q. If r =r s, we are done, as then r C s, so that 

r<R s. Otherwise there is a rational q which is an element of one of r and 

s but not of the other. Without loss of generality we can say that q € s and 

q £ r. Then as we commented in the solution to Exercise 2.2(a), q is an upper 

bound for the set r of rationals, so that for all p e r, p <q q. As q e s and s 

is closed to the left, we thus have p e s, for all per. Hence rCs, i.e. r <r s. 

We can now prove that R has the crucial completeness property. Firstly we 

need some definitions. 

Definitions 

Let A be a non-empty subset of R, and let x,a be real numbers. Then 

x is an upper bound of A if r <r x, for all r e A. 
The subset A is bounded above if there is some x£l which is an upper 

bound for A. 
And a is the least upper bound of A, written as lub A, if 

(i) a is an upper bound for A; and 

(ii) a <r x, for all upper bounds x of A. 

We hope that these definitions are familiar to you from real analysis. Of 

course we would not expect every subset of the reals to be bounded above: 

e.g. the set of all reals shouldn’t be! But if a non-empty subset A happens to 

be bounded above, then it actually has a least upper bound. 

Theorem 2.2 Completeness property of R 

Suppose that the non-empty subset A of R is bounded above. Then A 

has a least upper bound in R, i.e. lub A exists. 

Proof 

First note that the requirement that r <r ol for each r e A, is equivalent to 

requiring that r C a for each such r, when we regard real numbers as subsets 

of Q. Thus we need U(r : r G A}, or equivalently (J A, to be a subset of a. 

Thus a is an.upper bound for A in terms of C. And in these terms of C, the 

least upper bound of A would be U A, as this is the smallest set containing 

each r £ A as a subset. If a = U A is also a real number, then, translating 

back into terms of <r, ol must be the least upper bound of A. 

Take for instance A = {0,1} and 

5 = {-if}- 

We cannot have p = q for any 

p e r, as this would give q € r. 

Actually, as r s, we have shown 

that r <r s. 

The completeness property is in 

some sense what makes the reals a 

richer system than the rationals. 

lub A is often called the supremum 

of A, written as sup A. 

This property doesn’t hold for Q. 

For example, if 

A = {q € <0 : q2 <q 2} then A 

doesn’t have a rational least upper 

bound, as \/2 isn’t rational. 

|J A is an abbreviation for 

{g : q € r for some r £ A}, which in 

everyday maths is usually written 

as (J{r : r € A}. 
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2 The Real Numbers 

So let’s show that (J A is indeed a real number, in which case it is lub A as 
required. 

First of all, as A is non-empty and each real in A is a non-empty set of 

rationals, |J A is also a non-empty set of rationals. To show that |J A ^ Q, 

we use the fact that A is bounded above. This means that there is a real 

number s such that r <r s for all r e A. As s e IR there is some rational q 

such that s. If q were in (J v4, then we would have q € r, for some r e A; 

but then, as r C s, we would have q e s, contradicting q # s. Thus q # |J A, 
so that (J A ^ Q. 

Secondly we must show that [J A is closed to the left. Suppose that p <Q q, 

where qe\JA. Then q £ r, for some r 6 A, so that as r is closed to the left 

we have per. Thus p e U A. Hence (J A is closed to the left. 

Lastly we need to show that [J A has no maximum element. Suppose that 

p e (J A. Then per, for some r e A. As r is a real number, there is some 

q e r with p <q q\ and as r e A, we have q e [j A. Hence no element of U A 
can be a maximum element. 

Thus (J A is a real number. Hence lub A exists. ■ 

Exercise 2.6___ 

Show that IR is not bounded above, i.e. there is no real number s such that 

r <r s for all r e IR. [Hint: suppose that there was such an s. Then there 

is a rational q with q s. Let p = q + 1. Show that the corresponding real 
number p does not satisfy p <r s.] 

Let us now define the arithmetic operations on IR. Our aim is to define r +r s 

and r -r s as real numbers, so that they are closed to the left and so on. And 

we shall want the definitions to work the right way on our representation of 

the rationals within IR, e.g. 2 +R 3 = 5 and 2 r 3 = 6. We might guess that 
suitable definitions were 

r+|S = {p+Qg:pGr and q € s} 

r -R s = {p -q q : p e r and q e s}. 

The first of these works, but the second, for -r, doesn’t. 

Exercise 2.7___ 

Why won’t 

r -r s = {p -q q : p e r and q e s} 

be suitable as a definition? 

Solution 

It has problems with the large, negative rationals that must be in each of r 

and s. For instance, -11 <E 2 and -12 6 3, so that with this attempt at a 
definition we would get 

-11 Q -12 = 132 

as an element of what we wanted to be 6. Another problem, which we would 

Taking the union, [J A, of a set A, 

turns out to be a construction of 

major importance within set 

theory. 
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encounter if both r and s were negative, would be to ensure that their product 
is closed to the left: for such r, s, multiplying p£r with q 6 s would give only 
positive rationals p-qQ- 

Our definition of multiplication thus has to be a bit fiddly, depending on 
whether r >u0 and s>r 0. We shall give the definition of r r s for r >r 0 
and leave the definition for r <R 0 as an exercise. 

Definitions 

Let r, s 6 R. Then their sum is defined as follows: 

r +m s = {p +q q : p 6 r and q e s}. 

If r >r 0, then the product of r and s is defined as follows: 

{{P -Q Q ■ P € r, p>Q 0 and q e s, q >® 0} 

U{qeQ:q<Q0}, if s >R 0, 
{P Q Q ■ P & r and q € s}, if s <R 0. 

The definition for r >R 0 and s >R 0 matches our intuition that rationals 
close to, but less than, the product of two positive reals r, s arise as products 
pq, where p and q are positive rationals a bit less than r and s. Likewise the 
definition for r >R 0 and s <p 0 exploits the intuition that rationals close to, 
but less than, the product of r > 0 with s < 0 arise as pq, where p is a rational 
a bit larger than r and q is a rational a bit less than s. 

Exercise 2.8 _-—- 

Give the definition of r -R s for r <R 0 and any s. 

Checking that these definitions give real numbers and using them to prove 
various arithmetic identities is something of a chore! 

Exercise 2.9---- 

Show that r+ijs and r -r s are real numbers. 

Exercise 2.10--—-- 

Show that 2 +R 3 = 5 and 2 r 3 = 6. 

Exercise 2.11----- 

Show that (V2)2 = 2, i.e. putting 

r = {q e Q : q2 <q 2 or q is negative}, 

show that r -r r = 2. 

With these definitions, it can be shown that R, given by Dedekind left sets, 
satisfies the properties in the following theorem, which are usually given as 

the axioms for the reals in a modern real analysis text. 

2.2 Dedekind's construction 

p & r means that p is greater than 
all the rationals in r, e.g. p is large 
and positive. 

You will need to prove that the 

sets 2 +r 3 and 5 are equal etc. 
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2 The Real Numbers 

Theorem 2.3 

Consider the following properties, expressed in terms of a set X with 

operations + and •, relations = (of equality) and <, with special elements 

written as 0 and 1, where 0 does not equal 1. They are often described 
as the axioms for a complete ordered field. 

1. For all x, x < x. 

2. For all x, y, if x < y and y < x, then x = y. 

3. For all x, y,z, if x < y and y < z, then x < z. 

4. For all x, y, x < y or y < x. 

5. For all x, y, z, if x < y, then x + z < y + z. 

6. For all x, y, z, if x < y and 0 < z, then x ■ z <y ■ z. 

7. For all x,y,z, x + (y + z) = (x + y) + z. 

8. For all a:, x + 0 = 0 + x = x. 

9. For each x, there is an element y such that x + y = y + x = 0. 

10. For all x, y, x + y = y + x. 

11. For all x, y,z, x ■ (y • z) = (x ■ y) ■ z. 

12. For all x, x • 1 = 1 • x = x. 

13. For all x ^ 0, there is an element y such that x ■ y = y ■ x = 1. 

14. For all x, y, x ■ y = y ■ x. 

15. For all x, y, z, x • (y + z) = (x ■ y) + (x • z). 

16. Any non-empty subset A of X which is bounded above has a least 
upper bound in X. 

The set [R of all Dedekind left sets has all of these properties, when the 

operations + and • are interpreted by +r and R, the relations = and < 

by =r and <r, and the special elements 0 and 1 of A by 0 and 1. 

We have already discussed Properties 1 to 4, in Theorem 2.1 above; and 

Property 16 is the completeness property, also proved earlier. We shall not 

prove that R has the remaining properties, as the proofs are very tedious, 

especially where r is involved! Some parts are recommended as exercises. 

Once we have established that the set IR satisfies the properties in Theorem 2.3, 

we can proceed to prove all the usual results about the reals by the methods 

found in standard real analysis texts. These methods use only the fact that 

the reals obey these properties: they never ‘look inside’ any real number, 

so that the fact that a real number has been defined as a set of rationals 

ceases to be relevant. Nevertheless, we have achieved the aim of explaining 

what a real number is. It is relevant to note at what cost we have defined 

the real numbers. First, we have defined reals in terms of rational numbers. 

Although these are, in terms of the mathematics of, say, the last 300 years, 

relatively unproblematic objects, it might be as reasonable to ask what is 

a rational number as ask what is a real number. Secondly, the definition 

of an individual real number is as an infinite set of rationals. Use of the 

infinite in mathematics has been a matter of controversy for a good 2000 

We are writing these properties in 
terms of a general set X because 
we shall be looking, in the next 
section, at other sets, besides that 
of all Dedekind left sets, that have 
all these properties. 

0 and 1 are the Dedekind left sets 
corresponding to the rational 
numbers 0 and 1. 

For example, we can prove the 
intermediate value theorem and use 
it to deduce that there is a real 
number x such that x2 = 2, i.e. \Jl 
exists. 

Rational numbers were certainly 
more problematic to ancient Greek 
mathematicians, who dealt with 
them as ratios of quantities. 
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2.3 Alternative constructions 

years. Arguably mathematicians of the 19th century were confident with 

what is called a potentially infinite set, one for which, however (finitely) many 

elements you have, there is always another available. But treating an actually 

infinite set, like a Dedekind left set of rationals, as a legitimate mathematical 

object suitable for all sorts of manipulation, seemed somewhat dubious. 

In the next section we shall look at some alternative constructions of the 

reals. In the final section of the chapter we shall look at how to construct the 

rational numbers from something ‘simpler’. And the issue of infinity is one 

which will be a major topic in the rest of the book. 

For instance, for any finite set of 

natural numbers, there is always a 

natural number bigger than any of 

those in the set. 

Further exercises 

Exercise 2.12- 

Show that r +r 0 =r r, for any r € R. 

Exercise 2.13- 

For each r e U there is an s £ R such that r +R s = 0, i.e. s is -r. Describe s 

as a Dedekind left set, giving your answer in the form s = {g £ Q : ...}, in 

terms of the rationals in r. 

2.3 Alternative constructions 
Although Dedekind dreamt up his construction in 1858, he only published it in 

1872, when he received a paper of Cantor’s with an alternative construction. 

This latter is the first such alternative which we shall discuss in this section. 

Cantor’s construction exploits Cauchy sequences of rationals. You may have 

encountered the idea of a Cauchy sequence in real analysis. It is a sequence for 

which you might not have been told, or have yet guessed, a limit, but whose 

members become arbitrarily close to each other. (Actually any convergent 

sequence of real numbers is a Cauchy sequence, but this turns out to be a dull 
observation!) Cauchy sequences often arise from constructions like recurrence 

relations or iterative processes; and there’s a standard theorem of real analysis 

which then ensures that the sequence has a limit. As an example, define a 

sequence (an) by 

a0 = 0, 

Qi = 1, 
an = |(an_i + an_2), for all n > 2. 

It is easy to show that successive terms of this sequence get progressively 

closer to each other: for all n > 2 

| an — an-1| = ||(an_i + an_2) — °n-i| 

li i I 
- ^^71 — 2 2 Ojfi—l| 

— 2l®n—i rin—2|) 

If this seems like the vague sort of 

mumbo-jumbo which real analysis 

was developed to make more 

precise, bear with us! We shall 

soon give a proper definition of a 

Cauchy sequence. 

We shall write sequences using the 

notation (an) rather than the more 

common notation {a„}, because 

the latter notation might easily be 

confused with that for the set 

whose only element is an - this is a 

penalty of having a book on set 

theory! 

17 



2 The Real Numbers 

so that a simple induction shows that 

|°n 0"n —1| — (2) I°1 Qo| 

= (i)B_1- 
Although the terms of this sequence become very close to each other, it may 
not be at all obvious what the limit of the sequence is. 

Cantor’s idea was based on the idea that any irrational could be regarded as 

the limit of a Cauchy sequence of rationals. Let us take y/2 as an example. 

We shall construct a sequence (xn) of rationals approximating to y/2 by using 

a standard numerical analysis technique, the bisection method. We define 
three sequences, (an), (bn) and (xn), as follows: 

ao — 1, bo = 2, 

and for each n > 1, 

Xn — 2 

®n+1 — 

^n+1 — 

if x2n < 2, 

otherwise; 

if x2n < 2, 

otherwise. 

For each n, the closed interval [an, bn] contains \/2 and [an+i, 6n+i] C [an, bn]. 

Also the length of [an, 6n], i.e. bn — an, is (|)n. So for each of the sequences 

(an), (bn) and (xn) of rationals, the terms of the sequence are getting closer 

and closer to each other, and closer to \f2. But suppose now that we didn’t 

know all about the reals, and that all we knew about were the rationals. Then 

all we could say was that each of these sequences appeared to be converging, 

but not to a limit within the set Q with which we were familiar. Cantor’s 

idea was essentially to define a real number to be such a sequence - the 

example above would define y/2. But there’s a complication! We want \/2 

to be defined as a unique object, whereas we have obtained three different 

sequences which intuitively converge to it. So Cantor defined a real not just 

as a single sequence of rationals, but as the set of all sequences of rationals 

whose terms get arbitrarily close to the terms of this sequence. Let’s now give 

the proper definitions, starting with that of a Cauchy sequence. 

Definition 

The sequence (qn) of rationals is a Cauchy sequence if for each e >q 0 
(where e G <Q>) there is an N e N such that 

IQi -q Qj\ <q £, for all i,j N. 

So the terms of a Cauchy sequence get arbitrarily close to each other. As with 

our earlier example involving \/2, there is the likelihood that such a sequence 

will not converge to any limit in <Q>. But some Cauchy sequences will converge 

quite happily in Q, for instance {*=±) is a Cauchy sequence and converges to 
1. 

Next we shall capture the idea of two such sequences getting arbitrarily close 

The limit is |. 

Un bn 

Xn 

Easy induction arguments show 

that each of an, bn, xn is 

rational, that 

Un ^ ^ bri-\~ 1 ^ bn and 

an<2<bn for each n > 0; and, as 

xn is halfway between an and 6„, 

bn~\~ 1 Un-\-1 r^(bn Un) 

= (fr+1. 

Dedekind’s construction gives a 

unique cut of the rationals 

corresponding to each real. In 

Cantor’s construction, a real is 

intuitively represented by the set of 

all Cauchy sequences of rationals 

converging to it. 

As in the last section, we shall 

occasionally emphasize that we are 

exploiting the operations, relations 

and properties of <Q and N. 
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2.3 Alternative constructions 

to each other, so that they are in some sense equivalent. 

Definition 

Let (an) and (bn) be Cauchy sequences of rationals. We shall say that 

they are equivalent and write (an) ~ (bn) if for each e >q 0 there is an 

N such that 

|an - bn| <q e, for all n N. 

What fleshes out the word ‘equivalent’ is that ~ is an equivalence relation. 

Exercise 2.14- 

Show that ~ is an equivalence relation on the set of all Cauchy sequences of 

rationals, i.e. it has the following properties: 

(a) reflexive: for all Cauchy sequences (an), (an) ~ (an); 

(b) symmetric: for all Cauchy sequences (an) and (6n), if (an) ~ (bn) then 

(bn) ~ (an); 

(c) transitive: for all Cauchy sequences (an), (bn) and (cn), if (an) ~ (bn) 

and (bn) ~ (cn) then (an) ~ (cn). 

Solution 

Reflexivity follows from the fact that the constant sequence (0,0,0,..., 0,...) 

converges to 0. And showing symmetry is likewise straightforward, as |on - 

bn | = |bn - an | for all n. The argument for transitivity, however, requires 

some analytic skulduggery, as follows. 

Suppose that (an) ~ (bn) and (bn) ~ (cn). To show that (an) ~ (cn), we need 

to show that for any e >q 0, there is an N 6 N such that for all n >n N, 

|an — Cn| <q e. So take any rational e >q 0. As (an) ~ (bn) there is some 

Ni e N such that for all n >n N\, 

\an bn | <q 2 ■ 

Likewise as (bn) ~ (cn) there is some N2 € N such that for all n N2, 

£ 

|bn Cn | 2 ' 

Put N = max{Ni,N2}. Then for all n >Q N, 

|an ~~ cn | = | (an bn) + (bn ~~ cn) \ 

<q \an - 6„| + |&n - Cn| (by the triangle inequality for Q) 

<0- + ^ (as n >n N = max{Ni, N2}) 
2 2 

= e, 

as required to show the transitivity of ~. 

Any equivalence relation on a set can be used to partition the set into equiva¬ 

lence classes. Cantor defined a real number to be any equivalence class arising 

from ~, as follows. 

This is equivalent to saying that 

the sequence (an — bn) converges to 

0. 

We have an — an = 0 for all n. 

A partition of a set X is a set of 

subsets of X such that no two of 

the subsets have any elements in 

common, and the union of the 

subsets is all of X. 
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2 The Real Numbers 

Definitions 

A Cantor real number is any equivalence class under the relation ~, i.e. 
any set of the form 

{(&«>:<&»>~ <<■«>}, 
where (an) is a Cauchy sequence. We shall write such a class as [(an)J. 

We shall use IRc to stand for the set of all Cantor real numbers. 

Given a rational number q, the corresponding Cantor real number, qc 
is defined by 

QC = 

where (qn) is the constant sequence defined by qn = q for all n (which 
is clearly a Cauchy sequence). 

We must now define the standard relations and arithmetic operations on C. 

Equality is just straightforward equality as sets. Each Cantor real is an equiv¬ 

alence class under ~ and two such are classes are either equal or disjoint. How 

about the order relation <? Our intuition of how this construction of IR^ re¬ 

lates to the reals as we really know them is that a real number is represented 

by the set of all Cauchy sequences of rationals which converge to it. Given 

two reals r and s, and sequences (an) converging to r and (bn) converging to 

s, if r < s then we would expect not just that an < bn for all large enough 

n, but that there’s some e > 0 such that an < bn - e for all large enough n. 

(In standard real analysis one would take e to be something like |(s — r).) 

Turning this around the other way, as we are trying to define < for Cantor 

reals, it is tempting to define [(an)J <c [(&n)J by 

there are an e e <Q> with e >Q 0 and an. N E N 

such that an <q bn — q e for all n N. 

There is, however, a potential problem with this: the definition seems to 

depend on the particular sequences (an) and (bn) taken out of the two equiv¬ 

alence classes. If we were to take different Cauchy sequences (a'n) and (b'n) 

out of the equivalence classes, is it always the case that the a'ns are eventually 

smaller than the b'ns? If not, we could not be said to have defined anything: 

the test whether one class is less than the other has to be independent of 

the representative sequences which we pull out of them. Luckily the test is 

independent of the representative sequences, as the following result shows. 

Theorem 2.4 

Suppose that (an) ~ (a'n) and (bn) ~ (b'n), where all the sequences in¬ 

volved are Cauchy sequences of rationals; and that there are an e € Q 
with e >Q 0 and an N e N such that an <Q bn -Q £ for all n N. 

Then there are an e' >Q 0 and an N' e N such that a'n <0 b'n -Q s' for 
all n >n N'. 

Throughout we take (a„), (6n) etc. 

to be Cauchy sequences of 

rationals. 

For this section we shall use C, for 

Cantor, as a subscript to 

distinguish between operations etc. 

involving Cantor reals from those 

involving the set IR of Dedekind left 

sets. 
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Proof 

The general idea of the proof is that as (an) ~ (a'n) and (bn) ~ (b'n), then for 
£ 

all large enough n the a'ns are within - of the corresponding ans and the b'ns 

are within — of the bns. (As ever with such arguments, there is nothing very 

S 6 £ 
special about taking -. Taking e.g. - or - would have done just as well.) 

4 3 5 

aT 

4 4“ a bn 4 bn + 4 

So that even in the worst case of all the a!ns being bigger than the ans and 

the b'ns being smaller than the bns, the a'ns are still at least e — (- + -) = - 

less than the b'ns. 

As (an) ~ (a(j) there is some N\ such that |an —q a'n\ <q ^ for all n >py 
£ 

jVi: in particular an +q - >q a'n for all n >n JVi. 

Likewise as (bn) ~ (b'n) there is some N2 e N such that |6n -q b'n\ <q ~ for 

all n >n N2: in particular b'n >q bn —q - for all n N2. 

Put N' = max{N, Ni,N2} so that for all n >n N' the above inequalities hold, 

as does the inequality 

3e e 
bn ~Q +Q -, 

which follows from the assumption that bn —q £ >q an for all n >n N. 

Finally put e' = -, so that e' >q 0. Then for all n >n N', we have 
2 

b'n -Q e! -b'n- Q 

3e 
>q bn —q — (as bn >q bn — q -) 

£ 
Q>n “Hq ^ 

as required. 

Thanks to this result, we can now define an order relation < on the equiva¬ 

lence classes as suggested earlier, safe in the knowledge that our definition is 
unambiguous. (You may wonder why we are defining a < relation first, rather 

than a < relation. For these equivalence classes of Cauchy sequences, it just 

seems to turn out to be easier this way!) 
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2 The Real Numbers 

Definitions 

Given two Cantor reals [(an)J and [(&„)], we define [(an)J <c [(fen)] by 

there are an e G Q with e >q 0 and anJVGW 

such that an <q bn —q e for all n >n N. 

And we say that [(an)] <c [<6n)| when [<on)J <c [(fen)] 

or [(a„)] = [(bn)]. 

Exercise 2.15_ 

Show that IRc is linearly ordered by <c, i-e. has the following properties: 

(a) Irreflexive: for all [(on)J G [Rc, it is not the case that [(an)] <c [(an)] 

(which we write as ff(an)J <fc [(<»«)]); 

(b) Transitive: for all [(on)], [(&«)], [(cn)] G Rc, if [(««)! <c [(fen)] and 

[(fen)] <c [(cn)J, then [(a„)] <c I(cn)l; 

(c) Linear: for all [(an)], [(6n)J G [(an)] <c [(6n)J or [(an)] = |(6n)] or 

[(fen)] <c [(an)l- 

Solution 

We leave the details for you: these are very similar to standard arguments 

involving sequences that you find in real analysis, except that all the numbers 

involved are rationals. Of course, in the light of Theorem 2.4 above, it is 

enough to argue using representative Cauchy sequences out of each equivalence 
class. 

The definitions of addition and multiplication on Cantor reals are relatively 

straightforward. The standard results from real analysis about the addition 

and multiplication of convergent sequences (an) and (bn) are that if 

lim an = l and lim bn = m, 
n—► oo n—yoo 

then 

lim an + bn = l + m and lim anbn — Im. 
n—y oo n—yoo 

So that if we think of l and m as the numbers approximated by Cauchy 

sequences (an) and (fen), the sensible definitions of l + m and l • m are in terms 

of the sequences (an + bn) and (anbn). Before we leap to the corresponding 

definition in terms of equivalence classes of Cauchy sequences, we need a 

couple of key results to ensure that the definition makes sense. First, are 

(an + fen) and (an ■ bn) Cauchy sequences? (They are clearly sequences of 

rationals if the ans and bns are.) And second, will the equivalence class 

resulting as the sum (or product) of two equivalence classes be the same 

regardless of which representative sequences (an) and (bn) are chosen from 

the latter? These results are given as the next exercises and their proofs are 
left to you. 

The definition of multiplication for 

Cantor reals is indeed much more 

natural than the corresponding 

definition for Dedekind left sets. 
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2.3 Alternative constructions 

Exercise 2.16__ 

Suppose that (an) and (bn) are Cauchy sequences (of rationals). Show that 
(a^ T Q*nd are also Cauchy sequences. 

Exercise 2.17___ 

Suppose that (an) ~ (bn) and (a'n) ~ (b'n), where all the sequences are Cauchy 
sequences of rationals. Show that: 

(a) (an + bn) ~ (a'n + b'n); 

(b) (anbn) ~ (a'nb'n). 

Definitions 

Let [(an)J and |(6n)] be Cantor reals. Then their sum and product are 

defined as follows: 

!(a«)J +c [(&n)J = I(an +0 bn) 1; 

[(On)] ‘C [(&n)l = [(an 'Q &n)]- 

This completes Cantor’s definition of the real numbers, building them up from 

the rational numbers. Clearly Cantor reals look very different from Dedekind 

left sets. Shouldn’jt this worry us, given that we are trying to capture the 

real numbers, i.e. shouldn’t we expect just a single definition of the reals? 

Fortunately, both sets of ‘real numbers’ have exactly the same properties, in 

the sense of how we discuss real numbers in e.g. real analysis. The proof of 

this is usually split into two stages, as follows. 

Firstly recall that the set [R of all Dedekind left sets satisfies all the axioms for 

a complete ordered field, listed in Theorem 2.3 in the previous section. The 

Cantor reals also satisfy these axioms, which we state as the next theorem. 

Theorem 2.5 

The set IRc of all Cantor reals has all 16 of the properties listed in 
Theorem 2.3 as axioms for a complete ordered field, when the operations 

+ and • are interpreted by +c and -c, the relations = and < by set 

equality and and the special elements 0 and 1 by 0c and lc* 

Proof 

The details are left to you! However, the proofs are, by and large, much more 

straightforward than for Dedekind left sets, because the definitions of addition 

and multiplication are so much simpler. Consider for instance the property 

for all x, y,z, x ■ (y + z) = {x ■ y) + (x • z). 

For 1R one essentially has to verify that for any Dedekind left sets x,y, z, every 

rational which belongs to x ■ (y + z) also belongs to (x ■ y) + (x ■ z), and vice 

versa: there’s the further complication of allowing for the different definitions 

of the product of two left sets, depending on whether they are positive, 

0c and 1 c are the equivalence 

classes of the constant sequences 

(0) and (1). 

Usually described as the 

distributive law. 
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2 The Real Numbers 

negative or 0. But for IRc the result follows very quickly from the correspond¬ 

ing result for Q, as follows. 

We need to show that for all Cauchy sequences of rationals (an), (bn) and 

(^n)j 

C (ff(frn)J +C I(cn)l) = ([(an)J C |[{&n)I) +C (I(°n)l C [(cn)])- 

Using the definitions of +c and -c 

[(a«>J -C ([(6n)J +C t(Cn)]) = [(On)l *C [(&n +0 Cn)J 

— I(®n "Q (fin ~bQ Cn))] 

— I((®n 'Q bn) +Q (dn 'Q Cn))J (by the 

distributive property for <Q) 

— I(®n ‘Q bji)] ~\~C K^n 'Q Cn)J 

= (Kan)J C ff(^n)l) +C ([(On)l ’C [(cn)l), 

as required. ■ 

Inasmuch as real analysis textbooks take these properties of the reals as the 

starting point of the subject, rather than any explanation of what real numbers 

are, Cantor’s definition seems on a par with Dedekind’s: both give a set which 

has these properties. But there is a deeper reason why both definitions are 

actually of equal status: they give sets with exactly the same arithmetic and 

order structure. Indeed the same is true for any two sets equipped with an 

order relation < and operations corresponding to + and • which satisfy the 

16 properties of Theorem 2.3. Two such sets are isomorphic, meaning that it 

is possible to match the elements of one set with those of the other so that 

the effects of adding and multiplying in each set also match, as do the pairs 

of elements in the order relation. The formal definition is as follows. 

Definitions 

Let A be a set with two binary operations +a and -a, a binary relation 

<a and specially labelled elements 0^ and 1A (so 0^,1^ 6 A). Let B 
be a set similarly equipped with binary operations + b and • b , a binary 

relation <b and special elements 0#, 1B £ B. 

Then A and B are isomorphic if there is a function 6: A —> B (called 
an isomorphism) such that 

1. 6 is a bijection (i.e. one-one and onto), 

2. for all a, a' £ A, 9(a +A a') = 6(a) +B 0(a'), 

3. for all a, a' £ A, 9(a -a a') = 9(a) ■ B 9(a'), 

4. for all a, a' £ A, a <a a' if and only if 9(a) <# 9(a'), 

5. 0(O>i) = Ob and ^(1^) = 1b. 

It is a straightforward exercise to show that the relation 1A is isomorphic to B' 
on sets equipped with the operations, relation and special elements as above 

is an equivalence relation. (For instance, to show symmetry you would need 

to show that if 9: A —> B is an isomorphism, then so is 9~l: B —> A.) 

This means that for each a, a £ A, 

both a +,4 a' and a ■a a are 

uniquely defined elements of A. 

The relation <a could be specified 

by the pairs of elements (a, a') for 

which a <a a’ is the case. 

You may well have seen similar 

arguments for e.g. vector spaces or 
groups. 
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2.3 Alternative constructions 

Isomorphic sets are essentially the same: one set is merely the other with the 
names of the elements changed. 

The key reason why Dedekind left sets and Cantor reals are of equal status 

as definitions of the real numbers is given by the following theorem. 

Theorem 2.6 

Any two sets which satisfy the axioms of a complete ordered field (the 

16 properties in Theorem 2.3) are isomorphic. 

Proof 

The proof is left as a (long) exercise for you! The essence of the proof is as 

follows. For any complete ordered field A, take the subset generated from 

1,4 by repeated use of the operations +a> -a and additive and multiplicative 
inverses (which stem from axioms 9 and 13). This subset can be shown to be 

isomorphic to the set of rationals with its usual structure, so it’s appropriate 

to label it as QU. Thus given two complete ordered fields A and B, start 

the definition of an isomorphism 6 from A to B by matching the ‘rationals’ 

in <QU with the corresponding elements of Qg. Then for each a G A define 

a set L(a) = {q E : q <a a}, the Dedekind left set corresponding to a. 

The corresponding subset {6(q) : g G 1(a)} of B can be shown to be bounded 

above in B, so has a least upper bound in B (by property 16, the completeness 

property). Defining 6(a) to be this least upper bound gives the required 

isomorphism. ■ 

Let us outline yet another way of constructing the reals from the rationals, 

one that may well be closest to the algebraic picture of the reals with which 

you began reading this book, namely by decimal expansions. We are quite 

accustomed to writing numbers by their decimal expansions, e.g. 

y/2 = 1.41421356237309504.... 

An expansion of this sort is really an infinite series of the form 

OO 

TtW 
n=0 

where ao is an integer and, for n > 1, each an is an integer in the set 

{0,1,2,..., 9}. The definition of an infinite series says that this is the limit 

of the sequence of its partial sums (sjv), where 

N 

10n 
n=0 

It is a straightforward piece of real analysis to show that such a sequence 

(sn) is a Cauchy sequence of rationals, which connects decimal expansions to 

Cantor reals - each equivalence class in Cantor’s definition contains such a 

sequence (sw). 

It is possible to define the reals in terms of such expansions, although the def¬ 

initions of -I- and • are fairly unpleasant, even by comparison to those we have 

This can be rephrased as ‘any two 

complete ordered fields are 

isomorphic’. 

For example, the multiplicative 

inverse of 1 a +a 1 a corresponds to 

leQ. 

Essentially, thanks to the 

completeness property the rationals 

in a complete ordered field ‘fix’ all 

the other elements of the field. 

We could call these the reals 

defined by decimal expansions. 
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2 The Real Numbers 

already met with our earlier constructions. First of all we define the reals to be 

the set D of all sequences (an), also written as (ao, aq, a?,...), such that do G Z 

and an G {0,1,2,..., 9} for all n > 1, with the extra proviso that the sequence 

does not eventually consist of 9s. This last proviso avoids counting some num¬ 

bers twice, e.g. 1.2 as both (1,2,0,0,0,0,0,0,...) and (1,1,9,9,9,9,9,9,...) 

(corresponding to the decimal expansions 1.2000000... and 1.1999999...). 

The rational numbers can then be represented by those sequences which even¬ 

tually cycle, corresponding to their decimal expansions, e.g. 

and 

1 = (1,0,0,0...) ends with the repeated cycle of 0, 

21 
— = (0,9, 5,4, 5,4, 5,4,...) ends with the repeated cycle of 5,4. 

Corresponding to the decimal 
oo Ean , 

—— above. 

n=0 

§§ = 0.9545454. 

Define a strict order on these sequences by 

(®n) (bn) 

if 

there is some k eN such that ak <zbk but a, = bi for all i k. 

So for instance 

(-11,3,0,0, 0,0,...) <D (2,1, 7, 5,0,0,...) <D (2,1,8, 3,0,0,...). 

One can verify that <D is indeed a strict linear order on D and that the 
completeness property is satisfied. 

Corresponding to 

-11.3 < 2.175 < 2.183. 

Defining addition on D is pretty tricky. One might hope to find a rule for 

adding two infinite sequences directly, but the carrying of digits arbitrarily 

far down the sequence causes problems, not to mention avoiding ending in a Imagine trying to cope with 
sequence of 9s. The way round this is to look at partial sums of the correspond- (3,3,3,3,...) -f D (6,6,6,6,...) 

ing decimal expansions, as follows. Given (an), (bn) E £>, define sequences of 
rational numbers (An), (Bn) by 

n n 

An ^ ^ cti and B n ^ ^ bi. 
i=0 i=0 

For each n add the rationals An and Bn in the usual way, and construct 

the corresponding sequence in D. Then define (an) +D (bn) to be the least 

upper bound of these sequences (known to exist as one has already verified 
the completeness property for D\). 

One defines multiplication on D in a similar way. Verifying that D is a 

complete ordered field is fairly gruelling! Nevertheless this version of the reals 

is of great importance, precisely because it is one that we use in everyday 

maths. Likewise in everyday maths we are aware of other representations of 
the real numbers similar to D, differing only in the number base chosen, e.g. 

2 or 3 rather than 10. In general, working with number base M > 2, we could 

represent the reals by sequences (an) corresponding to the infinite series 

OO 

EO-n 

Mn' 
n—0 

We could call these the reals 

defined by M-ary expansions. 

Again, we’d need a convention 

about sequences ending in 

recurring (M — l)s. 
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2.3 Alternative constructions 

Just as we did in the previous section with Dedekind left sets, let us review 

some of the costs of these alternative definitions. Again they involve the 

manipulation of infinite objects, e.g. sequences and equivalence classes, as 

single objects. They also require particular care that one has actually defined 

something, e.g. when defining the product of two Cantor reals in terms of 

representative Cauchy sequences in them. There’s a message here of taking 

care with definitions. And all the constructions assume that we know all 

about the rationals. How we might define the rationals in terms of something 
simpler is the subject of the next section. 

A Cauchy sequence codes infinitely 

many rationals. And an 

equivalence class |(a„)] contains 

infinitely many Cauchy sequences, 

e.g. the sequences (an + £) for 

each fixed k € N. 

Further exercises 

Exercise 2.18_ 

At the beginning of the section, we defined three sequences of rationals (an), 

(bn) and (xn) by: 

oo = 1? fro = 2, 

and for each n > 1, 

Xn = T frn)> 

a _ f *n, if x\ < 2, 
an+1 \an, otherwise; 

, _ f frn, if xn <C 2, 

n+1 — \xn, otherwise. 

(a) Verify that these are all Cauchy sequences. 

(b) Show that (an) ~ (frn) ~ (xn). 

(c) Show that |(an)] -e [(an)] = 2c- 

Exercise 2.19---—- 

Show that any non-zero Cantor real has a multiplicative inverse in IRc, i-e. 

given any Cauchy sequence of rationals (an) such that [(an)] ^ Oe, there is 

a Cauchy sequence (frn) of rationals such that |(an)] -c [(frn)] = 1 c- 

Exercise 2.20--- 

Explain why one cannot define a strict order < on Cantor reals by 

[(On)J < [(frn)] if 

there is some N E N such that an <q bn for all n N. 

Would the above give a suitable definition of a weak order < on Re? 

Exercise 2.21---—- 

Define a weak order < on Cantor reals as directly as you can using an e—N 

definition (as opposed to what we have done above, defining it in terms of <). 

V 
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2 The Real Numbers 

2.4 The rational numbers 

The question ‘What are the real numbers?’ has been answered by giving a 

variety of constructions exploiting the rational numbers. It seems reasonable 

then to ask the question ‘What are the rationals?’ and in this section we shall 

outline an answer. The approach is essentially the same as for the reals: we 

explain the rationals in terms of something more ‘basic’, namely the set Z of 

integers. This then suggests the question ‘What are the integers?’ and we 

answer this in terms of the set N of natural numbers. 

There is an alternative way of approaching this issue. Just as modern real 

analysis texts tend to dodge the question ‘What are the reals?’ by building 

the subject on the axioms for a complete ordered field (as in Theorem 2.3), 

one could present axioms which in some sense describe the rationals. For 

instance one might take all properties in Theorem 2.3 except the completeness 

property (Property 16), which axiomatize an ordered field. Any set A which 

satisfies all these properties contains a subset, generated by 0^ and 1a and 

closed under addition, multiplication and inverses, which serves as a version 

of <Q>. The reasons for putting this mathematics onto an axiomatic basis are 

historically bound up with the foundational consequences of Dedekind’s and 

Cantor’s constructions of !R from Q>, and these consequences are the meat 

of set theory. So we shall persist in giving a construction of <Q> rather than 
leaning on axioms. 

When we are reasoning about rationals, we are accustomed to writing rationals 

in the form j where a and b are integers, with b positive. Thus, to explain 

the rationals in terms of the integers, we might describe a rational number as 

given by an ordered pair (a, b) of integers, with b positive, corresponding to 

the fraction This would create the problem of representing a rational by 

several distinct pairs of integers in the set Z x Z+. For instance, as 

1 _ 2 _ j_ _ 13 
2 4 14 26 ’ 

the rational number | would be represented by each of the ordered pairs 

(1,2), (2,4), (7,14), (13,26). 

This is the same sort of problem that we encountered when representing a 

real number by a Cauchy sequence of rationals, and we resolve it in the same 

way, via an equivalence relation. We need to find a way of saying why e.g. 

| and ^ are the same, without using the properties of Q - we are, after all, 

trying to define Q! But we can exploit the properties of Z, and the key to 
explaining, in terms of Z and its operations, that 

a _ c 

b d 

is by cross-multiplying the terms in this equation to get 

ad = be. 

This neatly avoids the problem that Z has no division operation and recasts 

everything in terms of the multiplication which Z does have. We shall exploit 

this last equation to specify when ordered pairs of integers are equivalent. 

You may well be able to guess the 

next question we should be asking! 

Its answer will occupy the next 

chapter. 

Such a set might be R itself! 

We write Z+ for the set 

(6 e TL : b >z 0}. 

We shall write <i for the order on 

Z and +i, for its arithmetic 

operations. 
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2.4 The rational numbers 

Definition 

For any a, b, c, d £ Z with b, d 0, we shall write (a, b) ~ (c, d) when 
a d — b -1 c. 

The symbol ~ is being used with a 

different meaning from the 

previous section. 

Exercise 2.22______ 

Show that ~ is an equivalence relation on the set Z x Z+ of all ordered pairs 

(a, b) of integers with b >i 0, i.e. it is reflexive, symmetric and transitive. 

Definitions 

Let |(a, b)J be the equivalence class of the ordered pair (a, b) of integers 
under the equivalence relation ~, i.e. the set 

{(c, d) £ Z x Z+ : (a, b) ~ (c, d)}. 

A rational number is such an equivalence class and Q is the set of all 
these equivalence classes. 

So, for instance, the rational — | is represented by the set 

{(-k,3k): k £ Z+}. 

We must now describe the order relation on Q and its arithmetic operations 

in terms of these equivalence classes and the order and arithmetic operations 

of Z. We shall exploit various known results about the (desired!) set Q, which 

will help us translate terms involving fractions ^, with x, y integers, into ones 

involving ordered pairs (rr, y). For integers a, b, c, d we have 

CL C 
— < — if and only if ad < be, for b, d > 0, 
b d 
a c _ ad + be 

b + d= bd ’ 
a c _ ac 

b d bd 

As rational numbers are represented by equivalence classes, we shall have 

to make sure that any construction involving them yields the same result 

regardless of which representatives we take from the classes. So our definitions 

need to be preceded by the results given in the next exercise. 

These will help us define <q, +q 

and q respectively. For example, 

the ordered pair (ad + be, bd) could 

represent f + f • 

Exercise 2.23----- 

Suppose that (a,b),(a' ,b'),(c,d),(c' ,d') 6Zx Z+ and that (a, b) ~ (a' ,b'), 

(c, d) ~ (c',d'). Use the standard properties of Z to show the following. 

(a) a -z d <z b -z c if and only if a' •/ d' <i b' c'. 

(b) ((a •/ d) +z (b •/ c), b d) ~ ((a' •/ d') +z (b1 ■z c'), b' •/ d'). 

(c) (a •/ c, b -z d) ~ (a' •z c', b' •z d'). 
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2 The Real Numbers 

Solution 

We shall do (c) and leave the others to you. 

As (a, b) ~ (a',b') and (c, d) ~ (c',d'), we have 

a -ib1 = b -i a and c -z d' — d -z c1. 

Thus 

(a •/ c) •z (b1 ■z d!) = (a ■z b') ■z (c •z d!) (by the commutativity and 

associativity of •z) 

= (b •z a') •z (d -z c') (as (a, b) ~ (a', b') and 

(c,d) ~ (c',d')) 

= (6 •z d) •z (d "i c>) (by the commutativity and 

associativity of •/), 

which is what is required to show that (a c, b -z d) ~ {a! •/ c', b1 ■z d'). 

Definitions 

Let [(a, 6)] and |(c, d)| be any two rationals. Then 

|(a,6)] <Q [(c,d)J if a-zd<zb-zc; 

[(a, 6)] +q [(c, d)] = [((a -z d) +z (b ■zc), 6 -z d)J; 

I(a, ^>)1 -q [(c, d)] = [(a -2 c, 6 -2 d)]. 

Given an integer k, the corresponding rational number is Icq defined by 

k<Q = l(k, I)]. 

Exercise 2.24_ 

Show that [(-1,2)]-q-2q <Q -1q+q [(14,6)]. 

Solution 

[(-1, 2)1 -Q —2q = [(-1,2)1 -Q [(-2,1)1 

= [(-l*z-2, 2 -z 1)| 

= [(2,2)1. 

This matches our expectation that 

-*•“2 = 1 

as [(2,2)1 = 1q- 

-1q +Q [(14,6)1 = [(-1,1)] +Q [(14,6)1 

= l((-l -z 6) -f-z (1 -2 14), 1 Z 6)1 

= 1(8.6)]. 

To test whether [(2,2)J <Q [(8,6)1 we need to investigate whether 

2 •/ 6 <z 2 -z 8. 

As2-z6 = 12<z 16 = 2 -z 8, the inequality holds, as required. 

Again, we expect that 

-! + t = U=I) 
and [(8, 6)1 represents 4 

3‘ 

Exercise 2.25_ 

Suppose that [(a, b)] and [(c,d)J are rationals such that l(a,b)J <Q [(c, d)|. This shows that <Q is a dense 

Show, by giving a construction, that there is a rational [(x,?/)J such that order. 

[(a, f))J <q [(rr,y)l <Q [(c,d)]. 
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2.4 The rational numbers 

Solution 

With ordinary rationals § and §, we would expect the rational 

1 (a | c\ _ ad + be 

2 \b + d)~ 2bd 

to be halfway between them. So [((a -z d) +z (6 -z c), 2 -z 6 -z d)] ought to be 

suitable as an [(x, yj\. This is indeed the case and we leave you to verify the 
details. 

The result of the previous exercise also follows from the axioms for an ordered 

field. We state without proof the following theorem, that <Q> is such a field. You 

might like to give the proof yourself. (The proof is much more straightforward 
than the corresponding proofs for [R and IR^.) 

Theorem 2.7 

Q as constructed by equivalence classes of pairs of integers is an ordered 
field, i.e. satisfies Properties 1 to 15 of Theorem 2.3. 

We have defined the rationals in terms of integers. But what are the integers? 

We shall define them in terms of the set of natural numbers = {0,1,2,3,...} 

and the order and arithmetic of N. The problem is, of course, how to represent 

the negative integers without using subtraction, which is not a closed opera¬ 

tion on FT One trick is to represent the integer n by a pair (a, b) of natural 

numbers such that, in Z, a — b = n. So for instance —3 could be represented 

by (1,4) or (7,10), and the integer 2 by (2,0) or (7,5). As ever, we have the 

problem of representing each integer by a single object; and as ever we resolve 

it via a suitable equivalence relation. This time, the key idea is that one can 

express an equation involving —, 

It should come as no surprise that 

we shall write for the order on 

N and +n, for its arithmetic 

operations. 

a — b = c — d, 

in an equivalent way avoiding use of —, by 

a + d = b + c. 

Definition 

For any a, b, c, d € N we shall write (a, b) ~ (c, d) if a d = b 4-^ c. 

We leave you to check that ~ is an equivalence relation in the next exercise. 

Exercise 2.26---- 

Show that ~ as just defined is an equivalence relation on the set N x N of all 

pairs of natural numbers. 

Yet another meaning for ~! The 

precise details of the constructions 

of Q from Z and of Z from N axe 

not going to be of great significance 

in the rest of the book, so it’s not 

worth inventing a special notation 

for each of these equivalence 

relations. 
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2 The Real Numbers 

Definitions 

Let |(a, b)] be the equivalence class of the ordered pair (a, b) of natural 

numbers under the equivalence relation ~, i.e. the set 

{(c,d) G N x N : (a, b) ~ (c, d)}. An integer is such an equivalence class 

and Z is the set of all these equivalence classes. 

To define <z, +z and in terms of N, we are again guided by results that 

we expect to hold for Z, involving natural numbers a, b, c, d: 

a — b < c — d if and only if a + d < b + c; 

(a - b) + (c - d) = (a + c) - (b + d); 

(a — b)(c — d) = (ac + 6d) — (ad + be). 

And to prepare the ground for our definitions, we have to check that they will 

make sense for whatever representatives we take from the equivalence classes. 

The results that we need are left for you as the next exercise. 

Exercise 2.27_ 

Suppose that (a, b), (a', b'), (c, d), (d, d!) G f^J x N and that (a,b) ~ (a',b'), 

(c, d) ~ (d ,d!). Use the standard properties of N to show the following. 

(a) a +n d b +py c if and only if a' +py d' <py b' c'. 

(b) (a +^j c, b +py d) ~ (a' d, b1 +f*y d'). 

(c) ((a-Nc)+N (b-Nd), (a ’N d) +n (i -n c)) 

~ ((a' -N c') (b' d'), (a' -n d1) (b' d)). 

Definitions 

Let |(a, 6)J and [(c, d)] be any two integers. Then 

[(a, b)j <t [(c, d)] iia+Nd<Nb c; 

|(a, b)j +z [(c, d)J = [(a +N c, b +N d)]; 

&)1 ‘Z [(C) d)| = [((o c) +N (b -py d), (b -py c) +(^j (a -py d))]. 

Given a natural number n, the corresponding integer is n/ defined by 

nz = [(n,0)J. 

We shall not investigate the properties satisfied by the integers - not because 

they are of no interest, but because they take us too far from the point of 

this section, which is how one might construct the rationals, and thus the 

reals, starting from simpler objects. As in the earlier sections of this chapter, 

we note that our constructions involve treating infinite objects, equivalence 

classes containing infinitely many pairs, as single objects; and this use of 

infinity will need investigation. We have also reduced everything using quite 

sophisticated set constructions to terms involving natural numbers. But what 

are the natural numbers? This question, like that of ‘What are the reals?’, is 
of sufficient significance to merit a chapter to itself. 

E.g. the ordered pair (a + c,b + d) 

could represent the sum of a — b 

and c — d. 

The idea of representing one set of 

objects in terms of simpler objects 

is of importance in computer 

science, where complicated data 

held on a computer are actually 

represented, ultimately, by 

electrical charges, or their absence. 

For example, 

— 2/ = {(n, n + 2) : n £ N}, which 

has infinitely many elements. 
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3 THE NATURAL NUMBERS 

3.1 Introduction 

In the previous chapter we saw a way of constructing the real numbers from 

the rational numbers. The rationals can be constructed from the integers, 

and these can in turn be constructed from the set of natural numbers, 

= {0,1,2,3,...}. In this chapter we shall continue this process of reduction 

by defining the natural numbers in terms of sets. 

Why sets? One answer to this is that set constructions, in particular ones 

involving infinite sets, were a vital part of the definition of the reals. Thus 

set ideas, as well as the natural numbers, underlie our work so far. If we can 

express natural numbers in terms of sets, then we have a single foundation 

for our theory. Using sets in this way will, however, require us to be, or 

to become, clear about the ways in which we might legitimately use sets. 

When we were constructing reals in terms of rationals, rationals in terms 

of integers, etc., we were reasonably relaxed about using familiar properties 

of the ‘known’ number system when proving statements about the number 

system being constructed from it. (Strictly speaking, we should perhaps have 

defined N and proved all of its standard properties, then used these to define 

Z and prove all its standard properties, and then done the same for Q and 
then IR.) But the use of sets to do much more than take the odd union or 

intersection is less familiar; and the development of the theory of sets which 

stemmed from e.g. Dedekind’s and Cantor’s work, turned out to be trickier 

than anticipated! The impact for this chapter is that we shall have to start 

the process of formalizing set theory, so that it supports both the special sets 

which we shall take as the natural numbers and will also provide a framework 

for establishing their familiar properties. 

Also, as in the previous chapter, there is a different approach to explaining 

the natural numbers, namely by giving axioms for them. Ideally such axioms 

should be satisfied by essentially just one structure, as is the case with the 
axioms for a complete ordered field: any two sets satisfying the properties 

should be isomorphic. Such axioms were devised by Peano and are as follows, 

expressed in terms of a set X. 

Peano's axioms for the natural numbers 

A is a set with a special element Ox £ X and a function S: X >■ X 

such that the following also hold: 

1. the function S is one-one, i.e. for all x,y (E X, if S(x) — S(y) then 

x = y; 

2. for all x E X, Ox f2 S(x)-, 

3. for all subsets AC X, if A contains 0X and contains S(x) whenever 

x G Al then A is all of X. 

If we take X to be the set N = {0,1,2,3,...}, and interpret 0X by 0 and 

the function S by the function n i—* n + 1, then it’s clear that N satisfies all 

One might reasonably argue on 

historical and psychological 

grounds that only the positive 

integers (which are the counting 

numbers) should be termed 

‘natural’, not 0. But logicians 

include 0 in the set, mainly because 

of the importance of 0 in defining 

arithmetic within set theory. 

The Italian mathematician 

Giuseppe Peano (1858-1932) 

introduced these axioms in his 1889 

paper, which you can find in [11]. 

Such an X is often called a Peano 

system. 

The idea of S is that it will be the 

successor function, S(x) = x + 1. 

This is called the induction 

principle. 
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3 The Natural Numbers 

these properties - at least inasmuch as we’ve always known that the principle 

of induction holds for N! Perhaps this principle seems more familiar in the 
guise: 

for all properties P, if Ox has property P, and S(x) has property P 

whenever x has it, then every element of X has property P. 

Exercise 3.1_ 

What is the connection between the sets A and properties P in the two ver¬ 

sions of the induction principle above? 

Solution 

Each property P satisfied by (some or all of) the elements of X corresponds 
to a subset of X, namely 

{x E X : x has the property P}. 

Likewise a subset A of X corresponds to the property lx belongs to A\ 

Peano’s axioms may not, at first sight, seem so powerful. For instance, they 

don’t refer to the standard arithmetic operations of N, let alone give the 

impression that a result like the fundamental theorem of arithmetic must 

hold. But, as you will see, one can construct sum and product operations on 

such a set X so that the full theory of N can then be developed. 

The following theorem is an example of the power of the axioms. 

Theorem 3.1 

Suppose that the set X satisfies Peano’s axioms. Then every x E X, 
other than Ox, is S(y) for some y E X. 

Proof 

We shall exploit the induction principle, which is where the real power of the 
axioms resides. Define a subset A of X by 

A — {x E X : x = Ox or x = S(y) for some y E X}. 

Then Ox € A, by definition. And if x E A, then 5(x) E A-by definition S(x) 

is in A, regardless of whether x is! So by the induction principle, A = X, 
meaning that every x Ox is S(y) for some y. ■ 

Exercise 3.2________ 

Give a similar proof from the axioms that for all x E X, S(x) f x. [Hints: 

define A - {x E X : S(x) f- x}. You will need to use the fact that S is one- 
one.] 

We shall show how to construct arithmetic operations like addition later in 

the chapter, for a specific set X. A key tool will be the definition of a function 

/ by recursion. In the context of a set X satisfying Peano’s axioms, this 

The idea of a property P giving 

rise to a set is very important, but 

will be seen to require care. 

The fundamental theorem of 

arithmetic states that every 

positive integer greater than 1 can 

be expressed uniquely as a product 

of primes. 

We have to exclude Ox because of 

property 2 of the axioms. 

Why must induction be used? 

A typical example of a set defined 

by a property of its members. 
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means giving / (Ox) some value and explaining how to define f(S(x)) assuming 

one knew the value of f(x). For example, define / on {0,1,2,3,...} by 

/(0) = 1, 
f(n + 1) = (n + l)/(n) for n > 0. 

Then to work out f(m) for some specific m, use the second part of the defini¬ 

tion to relate f{m) to the value of f(m — 1), then relate /(m — 1) to f(m — 2), 

and so on, until you eventually hit /(0), which is defined here to equal 1. For 

instance, to compute /(3), we have 

/(3) = /(2 + l) =3/(2) 
= 3/(1 + 1) = 3 • 2/(1) 
= 6/(0 + l) = 6-l/(0) 
= 6-1 = 6. 

In fact this / is just the factorial function, defined by /(n) = n! = n • (ra — 1) • 

(n — 2) •... • 2 • 1. 

A general result about defining a function by recursion on a set X satisfying 

Peano’s axioms is as follows. 

Theorem 3.2 Definition by recursion 

Let X satisfy Peano’s axioms. Let Y be any set, y0 any element of Y 

and h: X xY -—> Y a function on pairs (x,y) £ X x Y. Then there 

exists a unique function /: X —> Y such that 

/(Ox) = Vo, 

f(S(x)) = h(x,f(x)), for all x. 

For the factorial example above, we could take both X and Y to be the set of 

natural numbers, y0 = 1 and h the function defined by h(x, y) = (x + 1) • y. 

We shall delay a proof of this theorem until we have established a sensible 

framework for such a proof. For the moment, let’s use Theorem 3.2 to show 

that any two sets satisfying Peano’s axioms are isomorphic. 

Theorem 3.3 

Let Ibea set with a special element Ox and a function Sx • X > X, 

such that X satisfies Peano’s axioms. And let Y, with an element 0y 

and a function SY: Y —> Y, similarly satisfy these axioms. Then X 

and Y are isomorphic, i.e. there is a function /: X » Y such that 

1. / is a bijection; 

2. /(0x) = 0y; 

3. f(Sx(x)) =SY(f{x)), for all x eX. 

v 

/ is an isomorphism. 

f matches the elements of X with 

those of Y so that the effects of the 

functions Sx and Sy also match. 

The theorem can be read as ‘any 

two Peano systems are isomorphic’. 
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Proof 

As X satisfies Peano’s axioms, we can apply Theorem 3.2, taking yo = Oy 

and the function h: X xY —> Y defined by h(x,y) = Sy(y). This defines a 
function / of the form 

f: X —>Y 

/(Ox) = Oy, 
f(Sx(x)) = Sy(f(x)), for all x 6 X. 

As f ■> by definition, satisfies requirements 2 and 3 for an isomorphism, we 

need only show that / is a bijection. First, we show that / is one-one. 

We need to show that for all x, x' G X, if f{x) = fix') then x = x'. We shall 

exploit the induction principle for X. Define a subset A of X by 

A = {x E X : for all x' G X, if f(x) = fix') then x = x'}, 

or, equivalently, 

A = {x G X : for all x' G X, if x x' then f(x) f(x')}. 

So A consists of those x for which f(x) isn’t the image under / of another 

x' ± x. We shall show that A = X by induction, and this will show that / is 
one-one. 

Do we have Ox 6 A? Take any x' G X such that x' f Ox- We shall show that 

this forces f(x’) 7^ /(Ox). As x' ± Ox, then by Theorem 3.1 x' = Sx{x) for 

some x G X. This means that f{x') = f(Sx{x)) which, by the definition of 

/, equals Sy(f(x)). But Y satisfies Peano’s axioms, so that for any y G Y we 

have SY(y) Oy. In particular SY(f(x)) f Oy. As the definition of / gives 

that Oy = /(Ox), this means that f(x') 7^ /(Ox), as required. Thus Ox G A. 

Now we suppose that x G A and show that Sx(x) G A. Again we suppose 

that x' 7^ Sx(x) and show that f(x') ± f(Sx(x)). There are two cases: when 

x' = Ox and when x' 7^ Ox- In the case that x' = 0X, we have already shown 

that Ox € A, so that if x' = Ox / Sx{x) then f(x') = /(Ox) 7^ f(Sx(x)). In 
the case that x' 7^ Ox, then by Theorem 3.1 we have x' - Sx(x"), for some 
x" G X. The condition that 

x' # Sx(x) 

becomes 

S(x") ± Sx(x), 

which, as Sx is one-one, means that 

x" 7^ x. 

As x G A, this means that 

fix") * fix), 

so that, as Sy is one-one, 

Sy(fix"))f:Syifix)). 

You will find it quite common to 

use induction to prove things about 

a function defined by recursion. 
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But by definition of /, Sy(/(z")) = f(Sx(x")) = f(x'), while 

Sy(f(x)) = f(Sx(x)), so that 

/(*') 7t f(Sx(x)), 

as required. Thus by the induction principle for X, we have A = X, so that 
/ is indeed one-one. 

Now let us show that / is onto. This time we shall use the induction principle 
for Y to show that the subset B of Y defined by 

B is the image set, or range, of the 

function /. 

We have Oy € 5, because Oy = /(0*). Now suppose that y E B and show 

that Sy(y) £ B. As y G B, there is some x € X such that fix) = y. Then by 

definition of / we have 

f(SX(x)) = Sy(f(x)) 

= Sy(y), 

so that Sy(y) £ B, as required. Thus by the induction principle for F, we 
have B = F, so that / is onto, completing the proof that / is a bijection. ■ 

B = {y G F : y = /(x) for some x G A} 

is all of F. 

Now we have established that any sets which satisfy Peano’s axioms are es¬ 

sentially the same, let us return to the issue of defining one such set, which we 

shall designate as the set N of natural numbers, in terms of something more 
basic. The something more basic will be very simple sorts of sets. As with 

definitions of the real numbers in terms of Q, there are likely to be several 

reasonable candidates. The first of these was proposed by the German math¬ 

ematician and philosopher Gottlob Frege (1848-1925), defining the natural 

number 0 and, given the number n, using it to define its successor S(n). The 

representation of 0 was by the set 0, where 

O = {0}, 

which is the set of all sets containing 0 elements - the empty set 0 being the 

only such set. In general, the set n representing the natural number n also 

consists of all sets with n elements. A circular definition is avoided by using 

formal logic, as well simple ideas about sets, to define n + 1 in terms of n\ 

and as 0 has been defined, this gives a recursive definition of n in general. 

Informally, the idea is to exploit a definition of when a set C has exactly one 

element, by 

(there exists x)(x G C and (for all ?/)(if y £ C then y = x)). 

Then given n, define its successor by 

n + 1 = {B : ( there exists A)(A G n and A C B 

and B \ A has one element)}. 

Imagining n to consist of all sets with the same number, n, of elements, the 

set n + 1 should then consist of all sets with one more element. 

Alas! This idea has a major flaw, because treating n as a set can lead to a 

contradiction, as we shall discuss in the next chapter. This is a shame, as 

Frege’s idea fits in well with the principle behind several of the definitions in 

We shall look at a suitable 

framework of formal logic in the 

next chapter. 

37 



3 The Natural Numbers 

the previous chapter, in that n can be regarded as an equivalence class arising 

from a very important equivalence relation. The idea behind this relation 

is that one way of judging that two sets X and Y have the same number 

of elements is that there is a bijection from one to the other. So define a 

relation « by X « Y when there is a bijection /: X —> Y. It’s easy to 

show that « is an equivalence relation and that each n as above is one of 

its equivalence classes. As treating n can lead to a contradiction, clearly this 

plausible definition of ps needs more careful treatment. 

For the rest of this chapter we shall concentrate on a different definition of 

natural numbers in terms of sets and logic. Our definition will in fact represent 

each n by a specific set in the equivalence class n. To put the definition on 

a sound footing, we shall keep an eye on what properties we shall expect of 

sets, but we won’t firm up on these properties until the next chapter. 

3.2 The construction of the natural numbers 

To match Peano’s axioms, we must not only describe the set N but also 

explain which of its elements is the special element 0 and how to define the 

successor function on it. There are many possible definitions. Ours, which is 

now accepted as the standard one, represents natural numbers by sets whose 

construction and relationship with each other depend on very basic properties 

of sets. A major example of what we mean by a ‘basic property’ is the 

membership relation G, i.e. the property of an object x being a ‘member of’ 

or ‘element of’ a set y. Furthermore, we shall take all objects, like the x here, 

to be sets themselves, to fit in with our aim of constructing natural numbers 

purely from sets. But we shall not seek to explain here what we mean by a 

‘set’ or what x G y means: for our purposes in this chapter, these are notions 
informally understood from everyday mathematics. 

Perhaps the simplest set we encounter in normal mathematics is the empty 

set 0. We shall take 0 to represent the natural number 0. We represent the 
successor function as follows. 

Definition 

Given a set x, the successor of x, written as x+, is the set 

x+ = x U {a;}. 

0+ = 0 U {0} = {0}, 

0++ = (0+)+ = {0} u {{0}} = {0) {0}}j 

0+++ = (0++)+ = {0, {0}} u {{0, {0}}} = {0, {0}, {0, {0}}}. 

It is an immediate consequence of the definition that x C x+, for all x. And 
it looks as though x+ is a set with one element more than x. 

Exercise 3.3_ 

Is it true that x+ has one element more than the set xl 

We shall return to this important 

relation in Chapter 6. 

As ever, we write x G y for lx is an 

element of y\ and x $ y for lx is 

not an element of y\ 

The attitude is similar to our 

definition of the reals in terms of 

the rationals, putting to one side 

the issue of what the rationals are. 

One way of explaining 0 is as the 

set y such that 

(for all x)(x y). 

To support this definition we need 

{x} to be a set whenever x is a set, 

and A U B to be a set whenever A 

and B are. 

0+, 0++, 0+++ will represent 

1,2,3 respectively. 

We shall make frequent use of the 

facts that x E x+ and x C x+. 
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Solution 

As x+ = x U {x}, certainly x+ contains x as a subset, but would appear to 

contain also the extra element x (the single element of the {x} in the union). 

But for this element to be an extra, we need that x g x. If x € x then {x} is 
a subset of x, so that x U {x} = x. 

As we are aiming for the set x representing n to have, at least intuitively, n 

elements, we shall want to show that for this sort of set it is not the case that 

x G x. 

This definition turns out to have more technical advantages than may be 

immediately apparent. For instance, as we shall show in this section, it will 

allow us to order N by the G relation, which is about as basic a notion in set 

theory as you can get. But first we use it to define sets which will turn out 

to include N. 

Definition 

The set y is inductive if 0 G y and x+ G y whenever x G y. 

Exercise 3.4___ 

Show that if y and z are both inductive sets, then their intersection y n z is 

also inductive. 

Solution 

We need to show that 0 G y D z and that whenever x G y n z, then x ^ G y n z. 

As y and z are both inductive, 0 belongs to both of them, and hence to their 

intersection. Likewise if x G y n z, then both x G y and x G z, so that as y 

and z are inductive, x+ belongs to both of them, and hence to y C\ z. 

The significance of inductive sets is that we are going to define N as the 

intersection of all inductive sets, so that it will be the smallest inductive set. 

There’s only one snag with this: are there any inductive sets in the first place? 

We shall assume that there is at least one, y say. (This is a major assumption! 

From it flows the existence of infinite sets, from which most of the interest in 

set theory derives. It will figure as one of the axioms of set theory.) Then the 

intersection, N, of all inductive sets, which is a subset of each of them, must 

be a subset of y in particular. And if z is any other inductive set, then N is 

also a subset of 2 and y, and hence of y n z, which is inductive by the result of 

Exercise 3.4. Thus, given our assumption that there is an inductive set y and 

our desire to define N as the intersection of all inductive sets, it is sufficient 

to define N in terms of y and its inductive subsets, as follows. 

i 

In general, if y G z, then {y} C z. 

It isn’t obvious that there is no set 

X which belongs to itself. Indeed, 

the set of all sets, if there were 

such a thing, would have to belong 

to itself. 

For instance, 0+ G 0+++, 

corresponding to 1 < 3. 
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3 The Natural Numbers 

Definitions 

The set of natural numbers N is the intersection of all inductive subsets 
of any inductive set y, i.e. 

^ = C\iz : z is an inductive subset of y} 

= {x : x G z for all inductive z C y}. 

A natural number is a member of Fd. We write x = y for x, y G N when 
x and y are equal as sets. 

Given that we want N to satisfy Peano’s axioms and that we are going to take 
the map S: x i—> x+ as the successor function on Pd, we require N to be an 
inductive set. The next theorem shows this. 

Theorem 3.4 

The set f^J is inductive. 

Proof 

The proof is very similar to the solution to Exercise 3.4. First, 0 belongs 
to any inductive set, hence to all inductive subsets of y, and hence to their 
intersection N. Now suppose that x G N, so that x G z for all inductive subsets 
z of y. As each such z is inductive, x+ also belongs to 2. Thus x+ belongs to 
the intersection of these zs, i.e. x+ G N. Hence N is inductive. ■ 

As N is inductive, we can now define the successor function on Pd. 

Definitions 

The successor function S on f\l is the function 

S: I^J —>• Pd 
x i—> x+. 

We shall write 0 for 0 in its role as the 0 of N, and likewise 1 for 0+, 2 
for 1+, i.e. 0++, etc. In general we shall use bold numbers and letters, 
like n, for elements of N. 

And we can show that N satisfies the inductive principle of Peano’s axioms. 

Theorem 3.5 Proof by induction on bi 

For all subsets AC N, if A. contains 0 and contains n~^ whenever n G A 
then A is all of N. 

If A is a set (of sets), then A is 

the set {x : x E z for all 2 G A}. 

So x = y means that every member 
of x is a member of y, and vice 
versa. 

For 5 to be a function from N to 

itself, we need that i+eN 
whenever x G N. 

As we are trying to build Nona 
basis of just sets and logic, the 
question arises of what is a 
function. We shall later define 
functions in terms of sets. 
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Proof 

Any such A is an inductive set. M is the intersection of all inductive sets 

and is therefore a subset of any one of them. Thus MCA. But ACM. So 
A = M. ■ 

Theorem 3.5 provides the basis for almost every proof about the natural num¬ 

bers. Obviously we will encounter results about M whose proofs exploit pre¬ 

viously proved results about M, but somewhere in the history of these results 

a proof by induction will almost inevitably lurk. 

There are a number of tempting pictures of what M looks like. One is that, be¬ 

cause M is the smallest set containing 0 (= 0) and closed under the successor 

function, 

M = {0,0+, 0++, 0+++, 0++++,...}, 

with every element of M looking like 

o" 

where the superscript consists of finitely many +s. Although this is a helpful 

picture, the use of dots ‘...’ in these expressions, standing for ‘and so on’, fails 

to give a finite description of the set - and because statements about infinite 

sets turn out to require some care, we shall try to avoid, where possible, 

infinite descriptions of mathematical objects (even though we may use them 

as a guide to our intuition). A finite description or definition of something is, 

in principle, something which people can communicate to each other within 

a finite time. 

Another tempting picture is that not only is every element of a natural number 

also a natural number, but also each natural number is the set of all its 

predecessors: 

It is indeed true that if x G n, 

where n G M, then x is a natural 

number. See Exercise 3.13. 

1 = 0+ = 0 U {0} = {0} (as 0 = 0), 

2 = 1+ = 1 U {1} = {0} U {1} = {0,1}, 

3 = 2+ = 2 U {2} = {0,1} U {2} = {0,1, 2}, 

and so on. Furthermore, the set n contains, intuitively, n elements. But 

given that we are trying to define the natural numbers, this latter observation 

involves a circularity. However, the intuition that each natural number is the 

set of all its predecessors is one that we can put on a firm foundation, by 

defining an order < on M in such a way that this becomes true. 

For a given everyday number n, we 

use the bold version of the same 

letter, n, for the set formally 

representing it. Intuitively 
n 

n = 0+++~^. 

Definitions 

For all m, n G M we write m < n when m G n. 

We write in < n when m < n or m = n. 

We shall prove that < is a linear order on M. This is worth doing in its own 

right, but will also help us finish showing that M satisfies Peano s axioms. We 

This defines the <n used in the 

previous chapter. We shan’t use 

this notation from now on as there 

will be no other order relations 

around to confuse us! 
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3 The Natural Numbers 

shall state the results in terms of G rather than <, as their proof will rely 
heavily on the properties of G. 

Theorem 3.6 

The relation G linearly orders f^, i.e. it has the following properties: 

(i) irreflexive: for all n G N, n ^ n; 

(ii) transitive: for all m, n, p G N, if m G n and n G p, then m G p; 

(iii) linear: for all m, n G N, m G n or m = n or n G m. 

Proof 

We shall do the proof in stages, leaving some parts as exercises for you. Note 

that G doesn’t linearly order every set of sets. For instance, as 0 G {0} and 

{0} G {{0>} but 0 {{0}}, G is not in general transitive. So the result de¬ 
pends on the particular properties of The picture that 

f^J = {0,1,2,3,...}, where 1 = {0}, 2 = {0,1}, 3 = {0,1,2} and so on, 

makes the theorem plausible, but does not constitute a general proof for all 

natural numbers. We must instead make heavy use of Theorem 3.5, i.e. proof 

by induction on N. We shall start with the reflexive property, as we shall need 
this as a lemma for our proofs of the other properties. 

A direct proof that if m G n and n G p then m G p gets nowhere. Instead we 

use induction on p for fixed m and n. In terms of Theorem 3.5, we define a 
subset A of N by 

A = {p G N : if m G n G p then m G p}, 

and shall show that A is inductive. 

First, as 0 = 0 and 0 contains no elements, it cannot be true that m G n G 0, 

so that the statement ‘if m G n G 0 then m G 0’ is vacuously true. Thus 
0 G A. 

Now suppose that p G A and show that p+ G A. We need to show that if 

m G n G p+ then m G p+ (i.e. p+ G A), where we can exploit the information 
that if m G n G p then m G p (i.e. p G A). So suppose that 

m G n G p+. 

As n G p+ and p+ = p U {p}, we have two possibilities: n G p; or n G {p}, 

i.e. n = p. In the case that nGpwe then have m G n G p, so that, as p G A, 
we have m G p. But p C p+, so that m G p+, as required. In the case that 

n = p, then m G n is the same as m G p, so that, as in the first case, m G p+. 

In both cases we have obtained m G p^, which is what is required to show 
that p+ G A. 

Thus A is inductive, so that by Theorem 3.5 A = N, which shows that G is 
transitive on N. 

Exercise 3.5____ 

Give an example to show that G is not in general linear on a set of sets. 

Strictly speaking, we have shown 

that G is not transitive on the set 

{o,{0},{{0}}}. 

A statement of the form ‘if P then 

Q’ is false only when P is true and 

Q is false. So when P is false, as 

here, the statement is true. 

The only element of {p} is p, so if 

n G {p} then n = p. 
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3.2 The construction of the natural numbers 

Exercise 3.6____ 

Show that G is irreflexive on N. [Hints: put i = {n6N:n^n} and use 

induction. You should find that the transitive property of G on N is needed 
at some stage of the argument.] 

Solution 

Define the subset A of N by 

A = {n € N : n 0 n}. 

First, as 0 = 0 and 0 contains no elements, then we have, in particular, that 

0 is not an element of 0, i.e. 0^0. Thus 0 G A. 

Now suppose that n G A and show that n+ G A, i.e. n+ 0 n+. We shall 

suppose that n+ G n+ and try to derive a contradiction. If n+ G n+, then 

n+ G n U {n}. 

This gives two possibilities, that n+ G n or n+ = n. 

In the first case, that n+ G n, we have, as n G n U {n} = n+, 

n G n+ G n. 

But G is transitive on f^, so that n G n, contradicting that n G A. 

In the other case, that n+ = n, we have 

n G n U {n} = n+ = n, 

i.e. n G n, again contradicting that n G A. 

In both cases we have a contradiction, so that in fact n+ 0 n+, showing 

that n+ G A. Thus A is inductive and by Theorem 3.5 A — N. Hence G is 

irreflexive on N. 

Before we tackle the linear property of G on N, we need some results about 

the successor function, whose proofs we shall leave as exercises for you, to give 

you practice in using induction with sets. 

Prove Theorem 3.7. [Hints: (i) is very straightforward! Then prove (ii), using 

induction. Itvshould then be possible to prove (iii) without needing to use 

induction. Our solution to (iii) uses the result of (ii) and the fact that G is 

irreflexive on N, i.e. n ^ n, for all n G f^l.] 

So for natural numbers n, the set 

n+ does contain one more element 

than n. 

Theorem 3.7(i) and (iii), along 

with Theorem 3.5, show that N 

satisfies Peano’s axioms. 
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3 The Natural Numbers 

Solution 

(i) Note that if 0 = n+ for some n, then 

n € n U {n} = n+ = 0 = 0, 

i.e. 

n 6 0. 

This of course contradicts that 0 has no members. Thus for all n £ N, 

0 # n+. 

(ii) We shall prove this by induction on n for fixed m, and we shall present 

the induction proof in a more familiar mathematical style. Rather than 

show that some subset A of N is inductive, we shall work with a property 

P(n) of natural numbers n, and show that 

P(0) holds and P(n+) holds whenever P(n) does, 

from which it follows that P(n) holds for every natural number n. Here 
our A is the subset 

i = {n G 1^1: if m £ n then m+ £ n+}, 

and the corresponding property P(n) is 

if m £ n then m+ £ n+, 

where m is a fixed natural number. 

For n = 0, m £ 0 is false (as 0 = 0), so that 

if m £ 0 then m+ £ 0+ 

is vacuously true (i.e. P(0) holds). 

Suppose that P(n) holds, i.e. 

if m £ n then m+ £ n+, 

and that m £ n+. We shall show that m+ £ n++, which then establishes 
that P(n+) holds. As m £ n+ and n+ = n U {n}, we have 

m £ n U {n}, 

so that either m £ n or m = n. 

In the case that m £ n, the inductive hypothesis gives that m+ £ n+. As 

n+ C n++, this gives m+ £ n++. In the case that m = n, then 

m+ = n+ £ n++. So in either case m+ £ n++, as required to show that 
P(n+) holds. The result follows by induction (i.e. Theorem 3.5, but we’ll 
stop mentioning this now!) 

(iii) This can be done directly, without induction. Suppose that m+ = n+. 
This can be rewritten as 

m U {m} = nU {n}, 

so that m, which is an element of m U {m}, is an element of n U {n}. 
There are two possibilities: m £ n and m £ {n}, i.e. m = n. 

For the connection between A and 

P, see Exercise 3.1 in the previous 

section. 

This is the basis of the induction, 

equivalent to showing 0 £ A. 

V 

This is the inductive step, 

equivalent to showing that n+ £ A 
whenever n £ A. 

We’ve shown the equivalent of 

A = N, i.e. P(n) holds for all 

n £ N. 
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In the case that m 6 n, part (ii) of the theorem gives that m+ G n+. 

But m+ = n+, so that this means that m+ G m+, contradicting G being 

irreflexive on N. This leaves only the case that m = n, the desired result. 

As remarked above, parts (i) and (iii) of Theorem 3.7, along with Theorem 

3.5, show that satisfies Peano’s axioms. As this was our main objective in 
this chapter, it’s worth recording as a theorem. 

Theorem 3.8 

N, with special element 0 and the successor function S: n i—» n+, sat¬ 
isfies Peano’s axioms. 

This means that any consequence 

of Peano’s axioms holds for N, like 

Theorem 3.1 of the previous 

section. 

Exercise 3.8_ 

Suppose that n G f^l with n ^ 0. Show that 0 G n. [Hint: use Theorem 3.1 of 

the previous section and induction.] 

You should now have enough machinery to conclude the proof of Theorem 3.6 

by proving that G is linear on (\l. 

Exercise 3.9--- 

(a) Show that for all m, n G N, m G n or m = n or n G m. [Hint: use 

induction on n for fixed m.] 

(b) Show further that for all m, n G N, exactly one of the above holds. 

Solution 

(a) We shall use induction on n for a fixed m to show that m G n or m = n 

or n G m for all nG N. 

For n = 0 we cannot have m G 0 (as 0 = 0). If m happens to be 0 we 

are done, as then m = 0 = n. And if m ^ 0 then, by Exercise 3.8, 0 G m. 

Thus the result holds for n = 0. 

Now suppose that the result holds for n., so that m G n or m = n or 

n G m, and show that the result holds for n+, i.e. m G n+ or m = n+ or 

n+ G m. 

In the case that m G n, then as n C n+ we have m G n+. And in the 

case that m = n, then as n G n+ we have m G n+. 

What about the case that n G m? This means that m is non-empty, 

so that m/0. Then by Theorem 3.1 in the previous section (which 

applies as f^l satisfies Peano’s axioms), m = k for some k G 1^1. This 

gives n G k U {k}, so that either n G k or n = k. If n G k then, by 

Theorem 3.7(h), n+ G k+, i.e. n+ G m; and if n = k then n+ = k+, i.e. 

n+ = m. 

In all cases we have m 6 n+ or m = n+ or n+ G m, as required. 

(b) This one ought to be straightforward and is left to you. 
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3 The Natural Numbers 

The order on N has one extra property which is of great importance, in 

everyday mathematics and within set theory, and that is being well-ordered. 

Definition 

A linearly ordered set X with (weak) order < is well-ordered if every 

non-empty subset of X has a least element, i.e. for all non-empty B C X, 

there is an element bo E B such that b0 < b, for all b E B. 

Theorem 3.9 

N is well-ordered by E. 

Proof 

Let B be a non-empty subset of N, which we have shown to be linearly ordered 

by <, where < is E. We shall show that B has a least element by assuming 

that it doesn’t have one and deriving a contradiction. So assume that B 

doesn’t have a least element. Define a subset A of N by 

A = {n E N : m g B for all m < n}. 

We shall show by induction that A — N, so that B must be empty, contra¬ 
dicting that B is non-empty. 

First, 0 cannot be in B, as otherwise 0 would automatically be the least 
element of B. Thus 0 E A. 

Now suppose that n 6 A and show that n+ E A. As n E A we have m £ B 

for all m < n. For n+ to be in A, all we need to show is that n+ £ H, because 

if m < n+ then either m < n (and we already know that m & B for such m) 

or m = n+. If it were the case that n+ E B, then, asm^F for all m < n+, 

n+ would be the least element of B: this would contradict that B has no least 

element, so we conclude that n+ 0 B. Hence n+ E A, as required. 

Then, by induction, A = N. This means that B is empty, contradicting that 
B is non-empty. Thus B must indeed have a least element. ■ 

Exercise 3.10_____ 

Fill in the missing details of the proof above by showing that for all m, n E N, 
m < n+ if and only if m < n. 

A consequence of this exercise and of Theorem 3.9 is that the least number 
greater than n is its successor n+. This is worth stating as a theorem. 

€ is a strict order < on N. The 

corresponding weak order < is 

defined by m < n if m € n or 

m = n. 

As 0 = 0, there can be no m with 

m E 0 (or equivalently m < 0). 

Thus 0 is the least element of N. 

This needs a bit of justification and 

is left as an exercise. 
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Theorem 3.10 

For all n 6 N, n+ = min{k E N : n < k}. 

Proof 

First of all, note that the set {k E N : n < k} is non-empty, as it contains 

n+. So as N is well-ordered by < this set does indeed have a least element. 

To show that this element is n+, note that by Exercise 3.10, if m < n+ then 

m < n. This means that there can be no m with n < m < n+. Thus n+ is 

the least element of {k E N : n <k}, as required. ■ 

In a later chapter we shall extend many of the features of 1^1 to give a theory 

of infinite numbers; and well-ordered sets will be the basis of this theory. 

In the next section we shall look at how to do arithmetic in N. 

Further exercises 

Exercise 3.11_ 

Show that for all m, n G N, m < n if and only if m is a proper subset of n. 

Exercise 3.12- 

Show that for all m, n G N, the least of m and n in the linear order on N, 

min{m, n}, equals m n n. 

Exercise 3.13 ---- 

Show that for all n G N, if x G n then x G FT 

Exercise 3.14---—- 

Show that for all m, n G N, if m+ G n+ then m G n. 

Exercise 3.15--—- 

Show that for all n G N, n++ n. 

Exercise 3.16----—---- 

Show that for all m, n G if m < n then m+ < n. 

Exercise 3.17--— - 

Let X be a set well-ordered (so also linearly ordered) by < (a weak order). 

Suppose that X has a least element 0 and has the further property that for 

each x G X the set 

{y e X :x <y} 

is non-empty. For each x let x~be the least element of this set. 

Show that X is inductive. 

We write min B for the least 

element of a non-empty subset of 

the well-ordered set N. 

These numbers are called ordinals, 

and the natural numbers turn out 

to be the finite ordinals. 

So that each natural number is a 

set of natural numbers. 

So that 0 < x, for all x E X. 

x < y meaning x < y and x ^ y. 
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3.3 Arithmetic 
In this section we shall define operations of addition, multiplication and ex¬ 

ponentiation on the set of natural numbers, and show that these operations 

have the properties that we expect from everyday mathematics. Although we 

shall frame the definitions in terms of our special set LJ, the definitions could 

have been done for any set X satisfying Peano’s axioms. Our major tool for 

defining the operations will be definition by recursion (Theorem 3.2); and our 

major tool for establishing their properties will be induction. 

We shall use the following special case of definition by recursion obtained by 

taking X = Y = LJ in Theorem 3.2. 

Theorem 3.11 Recursion on LJ 

Let y0 be any element of LI and h: LJ x LJ —> LI a function on pairs 

(x, y) G LJ x LI. Then there exists a unique function /: LI —> LJ such 

that 

m = yo. 
/(n+) = h(n,/(n)), for all n G D. 

First of all, we shall define addition. The trick is to use recursion to define 

m + n for a fixed m and all n. The / in Theorem 3.11 will be defined so that 

/(n) is to be regarded as m + n. To emphasize this, we shall refer to this / as 

/m- We choose y0 to give us the desired value of /m(0), which is m itself: so 
put y0 equal to m. How about the choice of hi It is h that has to get us the 

value of /m(n+) from the values of n and /m(n), or, equivalently, of m + n+ 

from n and m + n. 

Exercise 3.18_ 

Define h(x,y) so that /m(n+) = h(m, /m(n)). 

Solution 

Our intention is that for any natural number k, its successor k+ ought to be 

the same as k + 1. So our definition of + should give that m + n+ is the 

same as m + (n + 1), which in turn ought to equal (m + n) + 1, which is the 

same as (m + n)+. We exploit this desired feature of + to define m + n+ to 

be (m + n)+, i.e. define /m(n+) as (/m(n))+. 

Thus we define h by 

h(x,y) = y+. 

An important aspect of our definition of h above is that it exploits only a 

function we assume that we already know about, namely the successor func¬ 

tion n i—> n+ on LJ. This is a vital part of defining a function by recursion, 

that it is being defined in terms of known functions, although the importance 

of this might not be obvious from the wording of Theorem 3.11. Bear in mind 

that we are seeking to represent natural numbers by sets and that Theorem 

3.11 will need proof within whatever framework we establish for sets. It will 

For instance, we expect addition to 

be commutative, namely 

x + y = y + x, for all x, y. 

As LJ satisfies Peano’s axioms, we 

can indeed apply Theorem 3.2 to it. 

Of course we want m + 0 to equal 

m. 

The definition could also use the 

fixed value m. 

Recall that we use 1 as a 

shorthand for 0+. 

You might also notice that in this 

case the value of h(x, y) doesn’t 

depend on x. 
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transpire that functions are themselves sets and that, along with other sets, 

one has to justify their status as sets, given that there are dangerous non-sets 

which look suspiciously like sets - all will be explained in the next chapter! 

For the moment, note that by defining a function by recursion in terms of 

other functions already known to be well-behaved sets, we are guaranteed 
that the new function is also a well-behaved set. 

To summarize, Theorem 3.11 will guarantee that there is a function 

fm '■ N ^ defined by 

/m( 0) = m, 

/m(n+) = (/m(n))+. 

Writing /m(n) as m + n, this becomes 

m + 0 = m, 

m + n+ = (m 4- n)+. 

We shall normally use this latter form, mainly because it is customary to 

represent addition by +. But be very careful when working through the rest 

of the section to remember that our definition of m + n is for a fixed m and 

variable n. 

Exercise 3.19--- 

Use this definition to compute the following: 

(a) 3 + 2; 

(b) 2 + 3. 

Solution 

(a) In terms of the /m notation above, 3 + 2 is the same as /3(2). To be able 

to evaluate this using the definition of fa, we need to express the 2 as 1+, 

giving 

/s(2) = /3(1+) 

= (/s(l))+. 

This in turn requires us to compute /a(l), which, as 1 = 0+, the definition 

gives as 

/a(l) = fs( 0+) 

= (/3(o))+. 
The definition specifically gives the value of /3( 0) to be 3. We can now 

amalgamate these calculations and do so using the + notation. 

3 + 2 = 3 + 1+ 

= (3 +1)+ 
= (3 + 0+)+ 

= ((3 + 0)+) + 

= ((3)+) + 
= 3++ 

= 5. 

The definition of + by recursion 

appears in the work of both 

Dedekind and Peano. Dedekind 

appreciated the need to establish 

results like Theorem 3.2 to validate 

the construction. 

This gives a definition for the +n 

used in the previous chapter. 

Recall that 2 = 1+ = 0++ and 

3 = 2+ = etc. 
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(b) 2 + 3 = 2 + 2+ 

= (2 + 2)+ 

= (2 + 1+)+ 

= ((2 + 1)+)+ 

= ((2 + 0+)+)+ 

= (((2 + 0)+)+) + 

= (((2)+)+) + 
= 2+++ 

= 5 

Exercise 3.20_ 

Show that for all n E N, n + 1 = n+. 

Solution 

n + 1 = n + 0+ 

= (n + 0)+ 

The definition of multiplication is handled similarly, by using recursion as in 

Theorem 3.11 and defining m • n for fixed m and all natural numbers n. We 

could again write /m instead of the / in Theorem 3.11, to emphasize that 
/(n) will really mean m • n. We first define /m(0) by 

/m(0) = 0. 

How might we define /m(n+) in terms of n and the previous value /m(n) (and 

the fixed value m itself)? What we would expect from normal arithmetic is 

that m • n+ is the same as m • (n + 1) which ought to equal (m • n) + m. 

This could be used to define /m(n+), which is m • n+, in terms of /m(n) and 

m and +. One of the points of recursion is to define a function in terms of 

previously constructed functions, and we have just constructed +. So we can 
legitimately define /m(n+) by 

/m(n+) = /m(n) + m. 

In terms of the more usual notation for multiplication, this becomes 

m • 0 = 0, 

m • n+ = (m • n) + m. 

Exercise 3.21 ___ 

Use a similar method to define exponentiation, i.e. m11. (As + and • have 

already been defined, these functions can be exploited in the definition.) 

Solution 

We can use Theorem 3.11 to define mn for fixed m and all n, by the following: 

m° = 1, 

mn+ = mn • m. 

This defines the m n used in the 

previous chapter. 

We could in fact have defined 

m + n and m • n for fixed n and all 

m. But we could not do this for 

mn. Why not? 
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Let us summarize the definitions of the arithmetic operations on N, as follows. 

Definitions 

Addition, multiplication and exponentiation on N are defined, for fixed 
m and all n, by: 

m + 0 = m, 

m + n+ = (m 4- n)+; 

m • 0 = 0, 

m • n+ = (m • n) + m; 

m° = 1, 

mn+ = m11 • m. 

Exercise 3.22 ---- 

Use the definitions above to compute the following. 

(a) 0-3 

(b) 21 

Solution 

(a) Multiplication is the more complicated operation, as it is defined in terms 

of the more basic operation of addition. When we make a use of the defi¬ 

nition of multiplication that results in an expression involving +, it makes 

sense to then simplify the latter as much as possible using the definition 

of addition, before going back to the more complicated multiplication 

operation. 

0 3 = 0-2+ 

= (0 • 2) + 0 (definition of m • n+) 

= 0-2 (definition of m -I- 0) 

= 0 1+ 

= (0 • 1) + 0 (definition of m • n+) 

= 0-1 (definition of m 4- 0) 

= 0*0+ 

= (0 0) -I- 0 (definition of m • n+) 

= 0-0 (definition of m + 0) 

= 0 (definition of m • 0) 

(b) This time the most complicated operation is exponentiation, and we use 

its definition to reduce the computation to the use of the definitions of 

the more basic operations of multiplication and then of addition. 
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21 = 20+ 

= (2°) • 2 (definition of mn+) 

= 1-2 (definition of m°) 

= 11+ 

= (1 • 1) + 1 (definition of m • n+) 

= (1 -0+) + 1 

= ((1 • 0) + l) + 1 (definition of m • n+) 

= (0 + 1) + 1 (definition of m • 0) 

= (0 + 0+) + 1 

= (0 + 0)+ + 1 (definition of m + n+) 

= 0+ + 1 (definition of m + 0) 

= 0+ + 0+ 

= (0+ + 0)+ (definition of m + n+) 

= 0++ (definition of m + 0) 

= 2 

Exercise 3.23_ 

Use the definitions to prove the following identities. 

(a) 3 = 0 4- (2 + 1) = (0 + 2) + 1 

(b) 2 • 3 = 6 = 3 • 2 

(c) 31+1 = 9 = 31 • 31 

(d) 21'2 = 4 

(e) 222 = 16 

We hope that you found these exercises restful, albeit a bit tedious! Of course 

the results obtained were entirely to be expected, assuming that we have 

indeed correctly defined the arithmetic operations. We expect, for instance, 
that addition is associative, i.e. 

m + (n + p) = (m + n) + p, for all m, n, p 6 N, 

and that 

mn+p = m11 • mp, for all m, n, p e N. 

We can verify these properties for small, specific, values of m, n and p, but 

this process does not prove that they hold in general. For a general proof, 

there is the one major proof technique, namely induction. This should not be 

surprising, as induction is a key part of the definition of the natural numbers! 

We shall list a whole host of standard properties which we desire N to have, 

to match our everyday notions. We shall work through the proofs of some of 

them and leave the rest for you to do as exercises. Most of the proofs require 

induction. We give some of these properties below in the form of a theorem. 
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Theorem 3.12 Properties of arithmetic on N 

The following hold for all m,n,p 6 N (as appropriate). 

1. m + (n + p) = (m + n) + p (associativity of addition); 

2. m + n = n + m (commutativity of addition); 

3. m • (n + p) = (m • n) + (m • p) (distributivity of multiplication over 
addition); 

4. m • (n • p) = (m • n) • p (associativity of multiplication); 

5. m • n = n • m (commutativity of multiplication); 

6. mn+p = mn • mp; 

7. (mn)p = mn p; 

8. (m • n)p = mp • np (distributivity of exponentiation over multipli¬ 
cation). 

Exercise 3.24_ 

Among these properties are the commutativity of multiplication, 

m • n = n • m, for all m, n <E N, 

and the associativity of addition. Will it make any difference which we prove 

first? 

Solution 

As the definition of multiplication is in terms of addition, it might be advisable 

to establish properties of addition first, before tackling those involving multi¬ 

plication. Likewise, we should probably establish properties of multiplication 

before those of exponentiation, given that the definition of exponentiation 

exploits multiplication. 

First let us prove the associativity of addition, m + (n + p) = (m + n) + p 

for all m, n, p. We shall use induction on one of m, n, p, leaving the other 

two fixed. 

Exercise 3.25------ 

Which of m, n and p shall be the induction variable? 

Solution 

For some of these proofs it doesn’t matter which variable one chooses for 

the induction. But it does matter here! Suppose that we chose n as the 

induction variable. Then for the inductive step we would assume that the 

result, m + (n + p) = (m + n) + p, holds for n, and would try to show the 

result for n+, namely m + (n+ + p) = (m 4- n+) + p. We will have a problem 

trying to relate the sides of the desired equation with the terms, m + (n + p) 

and (m + n) -f p, about which we know something. Although the definition 

of addition turns (m + n+) + p into (m + n)+ + p, it doesn t then help us 

turn this into anything to do with e.g. (m + n) + p. 

These properties will hold for any 

set satisfying Peano’s axioms. 

There are some curious constraints 

besides these on the order in which 

one proves the properties in 

Theorem 3.12. For instance, one 

needs the distributivity of • over + 

to prove the commutativity of -. 

Induction on m will hit a similar 

difficulty. 
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The problem is that the definition of addition, for m + n, is in terms of fixed 

m, the term on the left of the +, and variable n, the term on the right of the 

+. So our best bet for any proof by induction of something about + is to use 

the variable on the right of the + for the induction. For the sums of three 

numbers involved in the associative law, this means doing the induction on 

the rightmost variable, p, for fixed m and n. 

So we fix m and n, and use induction on p. For p = 0 the definition of n + 0 

gives that m+(n + 0) = m + n, while also by definition 

(m + n) + 0 = m + n. Thus m + (n + p) = (m + n) + p holds for p = 0. 

For the inductive step, suppose that m + (n + p) = (m + n) + p holds for p. 
Then 

m + (n + p+) = m + (n + p)+ (by definition of addition) 

= (m + (n + p))+ (by definition of addition) 

= ((m + n) + p)+ (by the inductive hypothesis) 

= (m + n) + p+ (by definition of addition), 

so that the hypothesis also holds for p+. The result follows by induction. 

Exercise 3.26__ 

Use induction to prove each of the following for all n € foJ. 

(a) 0 + n = n 

(b) 1 + n = n+ 

(c) 0-n = 0 

(d) 1 • n = n 

(e) ln = l 

(f) n1 = n 

Solution 

We shall show by induction that 1 • n = n for all n G and leave the other 
parts with no solution. 

For n = 0 we have 1 • 0 = 0, by the definition of multiplication. So 1 • n = n 
holds for n = 0. 

For the inductive step, suppose that 1 • n = n holds for n. Then 

1 • n+ = (1 • n) + 1 (by definition of multiplication) 

= n + 1 (by the inductive hypothesis) 

= n+ (by Exercise 3.20), 

so that the hypothesis also holds for n+. The result follows by induction. 

We shall now show that addition is commutative, i.e. m + n = n + m for all 

m, n e N. We shall use induction on n for fixed m - because of the symmetry 

of the formula we are trying to prove, we could have equally reversed the roles 
of m and n. 

Similar situations will arise for 

inductions involving multiplication 

or exponentiation. When in doubt, 

do induction on the rightmost 

variable, with any others fixed. 

Our argument is essentially 

showing that 

(p G N : m + (n + p) 
= (m + n) + p} 

is inductive. 
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For n = 0, we have m + 0 = m, by definition of addition. And how about 

0 + m? By the first part of Exercise 3.26, this also equals m, so that 

m + n = n + m holds for n = 0. There’s a message here. When you do this 

sort of thing on your own, you might come across an expression like 0 + n, 

the simplification of which requires its own induction proof. And this won’t 

always have been done conveniently for you beforehand, as in Exercise 3.26! 

For the inductive step, suppose that m + n = n + m holds for n and try to 

show that m + n+ = n+ + m. There’s no problem in getting started, as we 
can write 

m + n+ = (m + n)+ 

= (n + m)+ (by the inductive hypothesis); 

but the next obvious manipulation that we can do gives 

(n + m)+ = n + m+, 

rather than the n+ + m which we want. Instead of giving up in despair, we 

can actually show that n + m+ does equal n+ + m. 

Exercise 3.27_ 

Use induction on a for fixed b to show that a + b+ = a+ + b, for all a, b G fU 

Solution 

For b = 0, 1 

a + 0+ = (a + 0)+ 

It seems unlikely, though true in 

this case, that when one gets stuck 

during one induction proof, one 

proves the recalcitrant step by 

another induction! 

= a+ + 0, 

so the base step holds. 

Suppose that a -f b+ = a+ + b holds for b and try to prove the corresponding 

result for b+, i.e. a + b++ = a+ + b+. 

a + b++ = (a + b+)+ 

= (a+ + b)+ (by the inductive hypothesis) 

= a+ + b+, 

as required. The result follows by induction. 

As a consequence of the result of this exercise, we can complete the inductive 

step of our original argument. With the supposition that m + n = n + m, we 

can now deduce that 

m + n+ = n + m+ (we had got this far) 

= n+ + m (by the last exercise). 

Thus the result, that addition is commutative, follows by induction. 

We shall lea^e the remaining results of Theorem 3.12 as exercises for you 

without providing our solutions. They all involve very therapeutic inductions, 

except perhaps the commutativity of multiplication, for which one needs a 

lemma in the middle, rather as we needed in our proof of the commutativity 
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of addition. To some extent the later results below need earlier results as 

lemmas. 

Exercise 3.28_ 

Prove that the following hold for all m, n, p G N (as appropriate). 

(a) m • (n + p) = (m • n) + (m • p) 

(b) m • (n-p) = (m- n) p 

(c) m • n = n • m 

(d) mn+p = m11 • mp 

(e) (m* 1 2 3 tt)p = mnp 

(f) (m • n)p = mp • n p 

There are also results connecting the arithmetic on f^l with its order. Recall 

that in Section 3.2 we defined an order on 1^ by m < n if m G n and that we 

derived various results about this order. 

Theorem 3.13 

The following hold for all a, m, n G N. 

1. If m < n then a + m < a + n. 

2. If a > 0 and m < n then a • m < a • n. 

3. If a > 1 and m < n then am < an. 

Proof 

We shall prove the second of these results and leave the rest as an exercise for 

you. 

Suppose that a > 0. We shall prove the result by induction on n for fixed 

a and m. As multiplication is defined in terms of addition, we should not 

be surprised if need some prior result about addition and order, and indeed 

we shall assume that the first result in this theorem has already been proved. 

(There should be no circularity in this argument, as the proof of the result 

for addition is unlikely to exploit multiplication.) 

Note that the result holds vacuously for all such that n < m, on the logical 

principle that a statement of the form ‘if P then Q' is true when P is false. 

So that the smallest n for which there is anything significant to prove, namely 
because m < n is true, is m+. We have 

a • m+ = (a • m) + a (by definition of multiplication) 

> (a • m) + 0 (by the theorem’s result for +, as a > 0) 

= a m (by definition of multiplication), 

so that the result holds for n = m+. 

By Theorem 3.10 in the previous 

section m+ is the least number 

greater than m. 
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For the inductive step, suppose that the result holds for n where m < n. (As 

remarked earlier, we do not have to do anything for n with n < m.) Then 

a • n+ = (a • n) + a (by definition of multiplication) 

> (a • n) + 0 (by the first result of the theorem for + as a > 0) 

= a n (by definition of multiplication) 

> a m (by the inductive hypothesis), 

so that the result holds for n+. The result follows by induction. ■ 

Exercise 3.29___ 

Prove the rest of Theorem 3.13, i.e. for all a,m,nG N: 

(a) if m < n then a + m<a + n; 

(b) if a > 1 and m < n then am < an. 

Exercise 3.30_ 

Show the following for all m, n, a G N: 

(a) if a + m = a + n then m = n; 

(b) for a > 0, if a • m = a • n then m = n; 

(c) for a > 1, if am = a11 then m = n. 

One can go on to develop even more of the standard theory of the natural 

numbers in terms of their representations as sets. Virtually none of this 

development requires looking at the detail of this representation - one builds 

on established results and makes considerable use of induction! The details of 

the representation are, however, very useful to us within set theory as giving 

a way of describing what we mean by a finite set, and this is what we shall 

look at in the next section. 

Further exercises 

Exercise 3.31--—-- 

Let m,nel\l. 

(a) Show that m + n = 0 if and only if m = n = 0. 

(b) Show that m • n = 0 if and only if m = 0 or n = 0. 

Exercise 3.32--- 

Show that for all m, n € N, if there is some k € N such that m + k = n then 

m < n. 

Exercise 3.33---—- 

Show that for all m,n€ M, if m<n there is a unique k € N such that 

*n\ + U = n. [This can be done without using the subtraction operation which 

is covered in the next exercise!] 

Note incidentally the order in 

which we have written the terms in 

these results, a + m rather than 

m + a, etc. As ever, this is because 

it ties in immediately with the way 

in which addition etc. is defined. 
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Exercise 3.34_ 

An operation — can be defined by recursion as follows, for all m,n£ N with 
n > in: 

m — m = 0, 

n+ — m = (n — m)+, for n > m. 

(a) Show that for all m,neN with n > m 

m + (n — m) = n. 

(b) Show that for all m, k G N 

(m + k) — m = k. 

(c) Show that for all m, n, k G N with n > m 

(n — m) + k = (n + k) — m. 

(d) Show that for all m, n, k G N with n > m 

(n — m) • k = (n • k) — (m • k). 

Exercise 3.35_ 

Prove the quotient-remainder theorem, i.e. if a, b G N with b > 0, then there 

are q, r G such that a = (b • q) + r, where r < b. [Hint: use induction on 
a.] 

Show further that q, r are unique. 

3.4 Finite sets 

The main point of interest in this book is the theory of infinite sets. What 

makes a set infinite? Clearly this question complements the question of when 

a set is finite: a set is infinite when it is not the case that it is finite. And 

there are several different ways of answering these questions. In this section 

we shall define ‘finite’, so that ‘infinite’ will be defined as ‘not finite’. And our 

definition will make crucial reference to our representation of natural numbers 
by sets. 

Intuitively, by a finite set we mean one whose elements can be counted off by 

natural numbers up to a particular number, e.g. as 

1st element, 2nd element, 3rd element, ..., 25th (and final) element. 

This counting off can be described in terms of a bijection between the set and 

some suitable set of natural numbers. The way we have defined natural num¬ 

bers means that 0 (= 0) contains 0 elements, 1 (= {0}) contains 1 element, 

2 (= {0,1}) contains 2 elements,..., 53 contains 53 elements, and so on. This 
suggests that suitable sets of natural numbers to which we can refer finite sets 

are the natural numbers themselves, and that the set n is somehow itself an 
n-element set. We thus have the following definitions. 

For n > m, n — m obviously 

represents the usual n — m within 

ZF. One can define n — m. to equal 

0 when n < m; but for this 

exercise we are only interested in 

the case when n > m. 

The number q is the quotient and 

r the remainder. 

We shall meet an alternative 

definition in Exercise 6.38 in 

Section 6.4. 
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Definitions 

A set X is finite if there is a bijection /: n —> X for some neN. If 

there is no such bijection for any n G N, X is infinite. 

If there is a bijection /: N —* X, then X is countably infinite. A 

countable set is one which is either finite or countably infinite. 

Clearly this definition of ‘finite’ depends crucially on the way we have chosen 

to represent natural numbers by sets. As an example of using the definition of 

finite, the set {blue, green, red} of colours is finite because there is a bijection 

between it and the natural number 3 (= {0,1,2}) defined by 

/: 3 —y {blue, green, red} 

0 i—y blue, 

1 i—y green, 

2 i—y red. 

This definition means that results about finiteness are essentially results about 

the elements of N. Take for instance the pigeon-hole principle, which says that 

for any finite set A, any function from A into a proper subset of itself 

must map at least two elements of A to the same image. 

This can be rephrased as 

for any finite set A, any function from A to itself which is not onto cannot 

be one-one. 

And this is logically equivalent to saying 

for any finite set A, any one-one function from A to itself must be onto. 

If we can prove this last principle holds for all natural numbers n G N, i.e. if 

a function /: n —y n is one-one then it is onto, then the principle holds for 

all finite sets A. 

Exercise 3.36------- 

Justify this last remark! 

Solution 

Suppose that A is a finite set and that g: A —y A is one-one. As A is finite 

there is a bijection h: n —y A, for some n G N. Then the function / defined 

by / = h_1 o g o h, 

h-1 o g o h: n ——y A —g-y A —y n, 

is the composition of one—one functions and is thus one—one (from n into n). 

Supposing that we have proved the pigeon-hole principle for n, this means 

that / is onto. But this forces the original function g on A to be onto. 

We shall look at infinite sets in 

more detail in Chapter 6. 

We could give a technical definition 

of ‘X has n elements’ as ‘there is a 

bijection from n to X’. So this set 

of colours has 3 elements. 

Have a think about it! 

An alternative definition of A 

being ‘finite’, due to Dedekind, is 

indeed that any one-one function 

from A to itself must be onto. The 

equivalence of this to our definition 

is non-trivial - see Exercise 6.38 in 

Chapter 6. 

If / is onto then as g = h o f o h~l 

is the composition of onto maps, g 

is also onto. 
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So we shall now prove the pigeon-hole principle for natural numbers. 

Theorem 3.14 Pigeon-hole principle 

For any n G N, if /: n —> n is a one-one function, then / is onto. 

Proof 

It should be no surprise that our method of proof is induction on n. Our 

inductive hypothesis for n will be that the result holds for all one-one functions 
from n into itself. 

The result is vacuously true for n = 0 (= 0), on the grounds that one cannot 

find a one-one function from the empty set into itself which is not onto. If you 

are not happy with basing the induction on this case, you might be happier 

basing it on the case n = l! As 1 = {0}, the only possible one-one function 

/ from 1 into itself is defined by /(0) = 0 and is thus also onto. 

For the inductive step we assume that the result holds for n and shall show 

that it holds for n+. So we shall consider a one-one function /: n+ —> n+. 

Our strategy is to look at the restriction /|n of / to the subset n of its domain, 

adapt this to obtain a one-one function g from n into n, use the inductive 

hypothesis to obtain that g is onto, and then use this information to infer 

that the original function / on n+ must also be onto. Much use will be made 

of the fact that n+ = n U {n}, so that n+ consists of the elements of n along 

with the one extra element, the set n itself. The argument needs some care! 

We shall consider two cases, depending on whether the range of /|n, which 

we write as Range(/|n), is a subset of n or not. The easy case is when 

Range(/|n) C n. We can then regard the restriction /|n as a function from n 
into itself. 

Of course, this / is the only 

function from 1 to 1, let alone the 

only one-one function! 

The function /|n has domain n and 

rule /|n(i) = /(i) for all i G n. 

By Theorem 3.6 we have n ^ n, so 

that the element n of n+ is 

genuinely an extra element. 

For any function h we write 

Range(/i) for the range of h, 

namely the set of images of h. 

As / is one-one, /|n is also one-one (a very easy exercise for you) so that by 

the inductive hypothesis /|n is onto. Turning to the question of whether the 

original function / is onto, i.e. of whether each element of the codomain (n+) 

is the image under / of some element of the domain (also n+), this means 

that every element of the codomain other than n itself is accounted for as the 

image of an element of the subset n of the domain. As / is one-one this forces 

the image /(n) to be an element of n+ not in n, so that /(n) can only equal 

n. Thus every element of n+(= nil {n}) is an image under /, so that / is 
onto as required. 
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The more complicated case is when Range(/|n) is not a subset of n. This 

means that n, the only element of n+ not in n, is the image /(k) of some 

element k of n. And as / is one-one, it follows that /(n) cannot also equal n, 

so that /(n) is some element of n (as any element of n+ = n U {n} not equal 
to n is an element of n). 

/ 

To be able to use the inductive hypothesis we shall adapt the restriction /|n 

to create a one-one function g from n to n, as follows. Define g by 

/(«0> 
/(i), 

if i = k, 

otherwise. 

R. 

We need to check that the images of g do actually lie in n and that g is one- 

one. First of all, #(k) is in n as /(n) E n. And for i ^ k we have g(i) equal 

to /(i) which cannot equal n, as the image n was used up as /(k) and / is 

one-one, so must also be in n. Thus g is into n. 

We shall leave you to check that g is one-one as an exercise. The inductive 

hypothesis then gives that g is onto and we can then argue that the original / 

is onto, as follows. We must show that every element of the codomain n+ of 

/ is the image of something in its domain. We already know that the element 

n of n+ is /(k). How about the elements of n, i.e. the remaining elements 

of n+? As g is onto, every element of n is ^(i) for some i 6 n; and, with the 

exception of the one element which is <?(k), each g(i) is by definition the same 

as /(i). The one exception for which g(i) ^ /(i), namely <?(k), was originally 

/(n), so is an image of /. Thus / is indeed onto. Thus the theorem follows 

by induction. ® 

Exercise 3.37-- 

Suppose thab h: A —y B is a one—one function and that CCA. Show that 

the restriction h\c of h to C is also one-one. 
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Exercise 338_ 

Show that the function g used in the proof above is indeed one-one. 

For our definitions of finite and infinite set to correspond to our firm intu¬ 

itions, we would hope to be able to show that LJ is infinite and that there 

is no bijection between different natural numbers m and n. The pigeon-hole 

principle is a vital aid in showing that these are indeed the case. 

Exercise 339_ 

Let n be a natural number. Show that there is no bijection /: n —y LI. 

Solution 

Our best bet is to assume that there is such a bijection and try to derive 

a contradiction. So assume that there is a bijection /: n —y LI. Then its 

inverse function /_1: LI —y n is also a bijection. Consider the restriction of 

this map to the subset n of LJ, 

/-1 |n: n —y n 

As is one-one, so is /_1|n- But then, by the pigeon-hole principle, /_1|n 

is also onto. Thus wherever /_1 maps elements of the complement LI \ n, e.g. 

n or n+, to images in n, /-1 can no longer be one-one. We have the desired 

contradiction, so that LI is indeed infinite. 

Exercise 3.40_ 

Suppose that m, n € LJ with m ^ n, so without loss of generality men. 

Show that there is no bijection between n and m. [Hint: suppose that there 

is a bijection /: n —y m, and consider /|m.] 

Exercise 3.41_ 

Does the pigeon-hole principle hold for LJ itself, i.e. is it the case that every 
one-one function from LJ to itself is onto? 

Defining finite sets in terms of our representations of natural numbers within 

set theory has other advantages. For instance the theory of finite linearly 

ordered sets is in some sense just the theory of < on the sets n £ D, as we 
shall see in Chapter 7. 

To end this chapter, let us investigate the relationship between the arithmetic 

on LI and sizes of sets, in the following sense. Take, for instance, our definition 

of +. Once we have built it up within a proper set theory, it will, for each 

set m and n in LI, produce a set which we write as m + n. The provable 

behaviour ofm + n has so far conformed to our expectations of addition of 

our everyday natural numbers, e.g. commutativity, 0 is an additive identity 

and so on. We now have a way of measuring the size of a finite set, and 

can observe that, for instance, the set 2 + 3, which can be computed from 

the definition to equal the set 5, has the same number of elements, 5 in the 

real world, as we would expect from joining a 2-element set and a (disjoint) 

3-element set. Indeed, for any manageably small particular values of m and 

Thus according to the definition, LI 

is infinite. 

See e.g. Exercise 7.15. 
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n we would expect to be able to show that the set m + n has ‘m plus n’ 

elements in the same way. This, and similar results for m • n and mn, can 

indeed be shown to be true for all m and n. Of course, as they are results for 

all natural numbers, the likely method of proof will be induction. 

For the addition result, we need a way of achieving a set with ‘m plus n’ 

elements - it won’t do to take m U n, as our construction gives that one of 

m, n must be a subset of the other, so that m U n just won’t be the right size. 

We shall adopt a useful trick to create disjoint sets with m and n elements 
using ordered pairs, namely 

m x {0} = {(i, 0) : i € m} 

and 

Once m and n become large, say 

both equal to 1010, directly 

working out m + n is not very 

practicable! That’s one reason why 

we shall seek a general proof. 

This trick will be used extensively 

in this book. 

So we shall need ordered pairs 

within our set theory. 

n x {1} = {(j, 1) : j G n}. 

Exercise 3,42_ 

(a) Show that there is a bijection between m and m x {0} and similarly one 

between n and n x {!}• 

(b) Explain why m x {0} and n x {1} are disjoint. 

Solution 

(a) Clearly / given by 

/: m —>• m x {0} 

i i—> (i, 0) 

is a bijection. The n case is similar. 

(b) As the second coordinate of any (i, 0) in m x {0}, namely 0, is different 

from the 1 which is the second coordinate of any (j, 1) in n x {1}, we 

cannot have any (i, 0) equal to any (j, 1). 

Theorem 3.15 

For any m, n G N there is a bijection between the set m + n and 

(mx {0}) U (n x {!}). 

We shall have to ensure that 

ordered pairs in set theory have 

this property, that if the 

coordinates of two ordered pairs 

don’t match exactly, then the 

ordered pairs aren’t equal. 

Proof 

We shall prove the result for any fixed mGN and all n G N by induction on 

n. 

For n = 0 we have 

m + 0 = m (by definition of +), 

while 

(m x {0}) U (0 x {1}) = (m x {0}) U (0 x {1}) (as 0 = 0) 

= (mx {O})U0 

= (m x {0}). 
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As we saw in Exercise 3.42, there is an obvious bijection between m and 

m x {0}, so that our result holds for n = 0. 

Now suppose that the result holds for n, so that there is a bijection 

/: m + n —> (m x {0}) U (n x {1}). We shall show that the result holds for 

n+, i.e. there is a bijection between m + n+ and (m x {0}) U (n+ x {1}). For 

m + n+ we have 

m + n+ = (m + n)+ (by definition of +) 

= (m + n) U {m + n}. 

As k ^ k for all k G N, this is a union of disjoint sets - the set m + n+ 

genuinely has one more element than m + n. 

On the other hand we have 

(m x {0}) U (n+ x {1}) = (m x {0}) U ((n U {n}) x {1}) 

= (m x {0}) U (n x {1}) U ({n} x {1}) 

= (m x {0}) U (n x {1}) U {(n, 1)}. 

This is also a union of disjoint sets. The ordered pair (n, 1) cannot be in 

(m x {0}) as its second coordinate is 1 and cannot be in n x {1} as its first 

coordinate is not an element of n: so it is a genuinely extra element. We can 

thus extend our bijection / to a bijection g defined as follows: 

g: m + n+ —» (m x {0}) U (n x {1}) 

= / /(*)> ifiGm + n, 
^ | (n, 1), if i = m + n. 

Thus the result holds for n+ as required. The theorem follows by induction. ■ 

Exercise 3.43__ 

Show that for all m, n £ N with m, n > 1 there are bijections between the 
following: 

(a) the natural number m • n and the Cartesian product m x n; 

(b) the natural number mn and the set of all functions from the set n to the 
set m, i.e. domain n and codomain m. 

Solution 

(a) This one is left for you! 

(b) Let us introduce a temporary piece of notation, Functions(n, m), for the 
set of functions from n to m. We shall use induction on n > 1 for fixed 

m. (Induction on m for fixed n is not recommended!) 

For n = 1 we have m1 = m (using the result of Exercise 3.26). What 

functions are there from 1 to m? As 1 = {0} each such function / is 

determined by which element of m is chosen as /(0). We can thus define 
a straightforward bijection 9: m1 —> Functions(l,m) by 

0(i) = the function / such that /(0) = i. 

Suppose that the result holds for n > 1, so that there is a bijection 

9: mn —> Functions^n, m). We shall exploit this 9 to construct a bijec¬ 

tion from mn to Functions(n+, m). 

It should be clear that g is indeed a 

bijection. 

In everyday maths, there are mn 

functions from an n-element set to 

an m-element set. 

In the next chapter we shall 

introduce the notation XY for the 

set of all functions from Y to X. 

With this notation 

Functions(n, m) gets written as 

mn, which would make this 

question very confusing! You will, 

however, see in Chapter 6 how 

creative this confusion can become. 

64 



3.4 Finite sets 

First note that by definition of exponentiation mn+ = mn • m. By the 
result of the first part of this exercise there is a bijection, xf) say, between 
mn and mn x m. 

Now think about how Functions^n+,m) is related to Functions(n,m). 
We have n+ =nU{n} and the element n of n+ is an extra element not 
already in n (as n 0 n). Thus any function / from n+ to m is determined 
by what it does to the subset n of n+, or equivalently the restriction 
function /|n, and by where it sends the element n of n+, i.e. the element 
in the codomain m which is /(n). 

As the definition of exponentiation 
exploits that of multiplication, it is 
no surprise that proving results 
about the first operation requires 
lemmas about the second. 

By our assumption, for each i G m11 there is a corresponding function 0(i) 
in Functions^n,m). So we can make each pair (i,j) G m11 x m corre¬ 
spond to the function / in Functions(n+,m) such that /|n = 0(i) and 

/(n) = j. By composing the bijection xJj (from mn+ to m11 x m) with 

this correspondence, we can obtain the desired bijection from mn to 
Functions^n+, m). Thus our result also holds for n+, so that it holds for 
all n > 1 by induction. 

Further exercises 

Exercise 3.44--- 

Show that for all m, n G N there is a bijection between m and (m + n) \ n, 

i.e. the complement of n in (m + n). 

Exercise 3.45---——- 

Show that for all m, n G N with n > m, there is a bijection between n - m (as 
defined in Exercise 3.34 in the previous section) and n \ m, the complement 

of n in m. 

Exercise 3.46----- 

(a) Suppose that X is a proper subset of n for n G N. Show that there 
is a bijection between X and some natural number m G n. [Hint: use 

induction on n.j 

(b) Show that any subset of a finite set is finite. 

Exercise 3.47------- 

(a) Let A and B be finite sets. Show that their union A U B is finite. 

(b) Show that the union of finitely many finite sets is finite. 
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4 THE ZERMELO-FRAENKEL AXIOMS 

4.1 Introduction 
So far in this book we have given the impression that sets are needed to help 

explain the important number systems on which so much of mathematics (and 

the science that exploits mathematics) is based. Dedekind’s construction of 

the real numbers, along with the associated axioms for the reals, completes 

the process of putting the calculus (and much more) on a rigorous footing. 

We have to a large extent followed an important strand of the historical de¬ 

velopment of the subject. But we have leapt ahead in at least one important 

respect, by giving a construction of the natural numbers which was done well 

after the deaths of Dedekind and Cantor, the key developers of the subject. 

This construction was produced because in the meantime the theory of sets 

themselves, rather than the numbers which they were being used to explain, 

had thrown up alarming and deep problems. The root of these problems 

is, perhaps, the issue of infinity, with which we shall deal later, but which, 

with the work of Cantor, provides the exciting and revolutionary mathematics 

that set theory primarily seeks to underpin. To some extent, the axioms for 

set theory which we shall present in this chapter are designed to avoid these 
problems. 

Let us look at where one the major problems arose. We have already men¬ 

tioned (in Section 3.1) Frege’s definition of the natural numbers, in which he 

used a logical formula to describe the property that a set contains exactly 

one element and then exploited this to define f^J by an inductive process. It 

is not the purpose of this book to explain all of Frege’s work, but it is to be 

understood that it was seminal in the development of modern logic - it cer¬ 

tainly allows us to tie down some of the problems caused by the imprecision 

in Cantor’s work. Frege identified two complementary ways of describing sets, 

by extension and intension. Defining a set S by extension means explicitly 

giving its elements, while defining it by intension means giving a property 

which all its elements, and only its elements, possess. For instance, 

{2,4,6,8,10,12,14} 

and 

{a; € N : 0 < x < 15 and x is even} 

both define the same set: the first definition is by extension and the second 

by intension. The general form of a definition of a set S by intension is 

{a:: x has property P}, 

where P is a shorthand for some property which objects like x might, or might 

not, possess. When dealing with infinite sets, we frequently appear to define 
sets by extension, e.g. 

5 = {...,-4,-2,0,2,4,...}, 

It is important to realize that there 

are schools of mathematics that 

would reject ‘standard’ real 

analysis and, along with it, 

Dedekind’s work. 

The struggle to resolve these 

problems pervading the discipline 

of mathematical logic (and more) 

has resulted in some of the most 

important work in mathematics 

and philosophy of the 20th-century. 

You might find it helpful to think 

of the ‘extent’ of a set as an 

overview of everything in the set, 

as opposed to its ‘intent’, what is 

intended to be in it. 

Built into this is the idea that 

given any property P and object x, 

either x has property P or it 

doesn’t. This alone generates 

philosophical debate, especially 

when linked to infinite sets and the 

issue of decidability. 
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but when challenged to explain, with some sort of finite description, what is 

meant by the dots ... (‘and so on’!), we fall back on a definition by intension, 
like 

{x £ Z : i is even}. 

A key feature of the set theory and mathematics in this book is that every 

mathematical object that we discuss can indeed be described in a finite way. 

As the most exciting part of set theory deals with infinite sets, and as such 

a set can never be finitely described by extension, definition by intension is 

crucial. Furthermore, given any finite set described by extension, e.g. 

{1,7,43} 

whose elements don’t seem to have any elegant mathematical description, we 

can always give an alternative (albeit cumbersome) finite description of it by 

intension, like 

{x : x = 1 or x — 7 or x = 43}. 

Frege’s hope was to be able to define the natural numbers in terms of pure logic 

and sets, and the sets themselves from pure logic. He created a formal system 

for reasoning in which sound arguments would be represented by symbolic 

formulas standing for mathematical assertions being manipulated by agreed, 

mechanical, rules. Within such a system, one could represent the property, of 

a set C, that it contains exactly one element, by a formal version of 

(there exists x){x £ C and (for all y){if y £ C then y — x)). 

Frege also tried to explain what sets are and what properties they have. Cru¬ 

cial in his analysis was that if P is a property of sets x, then there is a set, 

defined by intension, consisting of precisely those sets x with property P, i.e. 

{x : x is a set with property P} 

is a set. Frege’s definition of the natural number 1 was then as 

{:x : x is a set and x has one element}, 

i.e. the set of all one-element sets. There is no obvious circularity in this defi¬ 

nition, thanks to the logical formula by which Frege defined ‘has one element’, 

so that the definition seemed very attractive. 

Unfortunately the comprehension principle, on which Frege’s definition rests, 

has fatal flaws. First of all, it gives rise to some uncomfortable circularities, 

as follows. Let us use [lj to stand for the set of all one-element sets. Then, 

surely, we can form the one-element set {[1]}, whose only element is [1], and 

which thus belongs to the set of all one-elements sets, namely [1] itself: i.e. 

[1] € {[1]} € [1]. 

Does this fit our intuition of sets, that we have sets x, y such that x E y £ xl 

We can do better than this, again using the comprehension principle, to con¬ 

struct the set ‘V of all sets, 

: x is a set}. 

Then as ’V is a set, we have 

4.1 Introduction 

If you have encountered 

propositional or predicate calculus, 

you will have encountered the 

fruits of Frege’s work. 

This defines lC has one element’. 

This principle, of creating sets from 

other sets, is so important as to 

merit a special name, the 

comprehension principle. 

This looks like the notation for an 

equivalence class. Indeed Frege’s 

definition of 1 can be regarded as 

an equivalence class - what’s the 

equivalence relation? 

We shall call ’V the universe of 

sets. In what follows we shall 

ensure that |1] and 5^ are not 

treated as normal sets. 
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Exercise 4.1_ 

On the basis of what we’ve just done, give an example of a set x for which 

there are sets y, z with x E y 6 z 6 x. 

Solution 

Just take x = y = 2 = ! 

Such circularities are not necessarily wrong. The idea of a set belonging 

to itself is at this stage merely worrying. Surely it is more likely that a 

set won’t belong to itself. Alas, it is precisely this idea which, along with 

the comprehension principle, delivers something fairly devastating, as follows. 

Use the comprehension principle to define the set 3t of all sets which do not 
belong to themselves, i.e. 

3Z — {x : x is a set and x & x}. 

This leads to something worse than a circularity. Either 3? belongs to itself, 

or it doesn’t do so. If 3? does belong to itself, then it must be one of the sets 

x such that x x, so that it does not belong to itself, i.e. 

if 32 E 3? then 3? & 3i. 

And if 31 does not belong to itself, so that it is an x such that x g x, it must 

belong to 31, so that it does belong to itself, i.e. 

if 3? # 3i then M £ 3t. 

This gives a contradiction known as Russell’s paradox, which was communi¬ 

cated in 1902 by the British mathematician and philosopher Bertrand Russell 

(1872-1970) to Frege, just as Frege was about to publish his major work on 

the subject. The consequence of this argument was highly alarming, that set 

theory as an attractive basis for explaining key mathematical systems like [R 

and N was contradictory. The damage was far greater in that set theory was 

also the framework for Cantor’s revolutionary theory of infinity (of which we 

shall see a great deal in this book), not to mention an increasing amount of 

other mathematics of the day. The paradox came on top of a number of other 

apparent paradoxes arising from the theory of infinite sets, so some sort of 
resolution was urgently required. 

With hindsight, it is perhaps not surprising either that ideas about sets should 

be in need of some sorting out or that even then they remain difficult and 

problematic, any more than with the ideas behind calculus or geometry. Nor 

is it surprising that the crisis should arise after there had been great math¬ 

ematical discoveries through these ideas. The point of much of this book is 

to show both these discoveries and how, partly as a consequence of the crisis 

caused by paradoxes, these have been put onto a more rigorous foundation. 
So, how might the paradoxes be avoided? 

First of all, we must face up to our inability to say exactly what a set is. Sets, 

and the key relationship between them, namely that of one set belonging 

to another, remain undefined. But we shall have to be more careful about 

what sets there are, and how new sets can be constructed from known sets. 

The comprehension principle, which allows us to collect sets together on the 

basis of sharing a common property, seems fundamental and thus needs to be 

The famous correspondence 

between Russell and Frege is 

reproduced in [11]. 

We call a mathematical system 

from which we can prove a 

contradiction, namely some 

statement and its negation, an 

inconsistent system. Classical logic 

then shows that for such a system, 

any statement is a theorem. So 

Russell’s paradox is drastic! 
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rescued in some way, given that Russell’s paradox stems from it. Russell’s 

solution was to regard sets as living in a hierarchy of types, essentially levels, 

whereby collecting together some of the sets in one level gives a set at the 

next highest level. In this way, defining the Russell set using sets x at one 

level for which x & x gives a set 3% at the next highest level, not at the same 

level; and the point of the levels is that there is no question of a set at a 

higher level being a member of one at a lower level. In this approach, Frege’s 

definition of the number 1 can be used, taking sets at the lowest level to give 

a set at the next level. And the sets at this next level which have a single 

element can be collected to form a new version of the number 1 at the next 

highest level; and so on. This gives an annoying proliferation of number Is! 

A more popular framework is to regard there as just being the one ‘level’ 

of sets and to restrict the ways in which we construct new sets from old in 

an attempt to avoid known pitfalls, like Russell’s paradox. This is the route 

we shall take, but we shall borrow something from a third framework, which 

is to have two types of ‘set’, namely sets and classes. All sets will also be 

classes, but not vice versa! Collecting together sets sometimes still gives one 

a set, but sometimes gives an object ‘too big’ to be regarded as a set, yet still 

meaningful as a class, like the universe of all sets mentioned earlier. 

Our definition below of class is motivated by the central importance of the 

comprehension principle in defining sets. As you have seen, it would be catas¬ 

trophic for the theory to regard every object described by use of this principle 

as a set. But precisely because such objects have descriptions, it is very useful 

to have a name for them, as in the following definition. 

Definition 

A class is any object of the form 

{x : x is a set with property P}. 

We shall avoid the (important philosophical) issue of what sort of object 

a class is. One important feature of classes is that some, like cannot be 
regarded as sets (assuming that it is desirable that mathematics is consistent!), 

while many others, like {x : x is a natural number}, can safely be called sets. 

Another important feature is that classes provide a framework for discussing 

objects like the universe ^ which arise naturally within the theory. 

As for what sets there are, and how we shall allow new sets to be constructed 

from known ones, this shall be done in terms of axioms, expressed in a formal 

language for logic. The axioms are based on those proposed by the German 

mathematician Ernst Zermelo (1871-1953) in 1905. It is important to re¬ 

alize, however, that Zermelo’s motivation for producing axioms was not so 

much the avoidance of paradoxes, but primarily to give a framework for a 

controversial result about sets, of much interest to mathematicians of the day, 

and still of great significance. This result concerned a problem of Cantor s, 

whether it was possible to define a well-ordering on the set of real numbers, 

and Zermelo^s argument, exploiting a principle called the axiom of choice, 

had previously been rejected by other mathematicians. By enunciating the 

This approach, developed by the 

Hungarian and later American 

mathematician John von Neumann 

(1903-57) is well described in the 

standard textbook by E. 

Mendelson[16]. 

Cantor himself, the architect of the 

theory of infinite sets and many of 

the questions this then posed, 

appears not to have been surprised 

or worried by the paradoxes, 

regarding them as inevitable when 

feeling one’s way with sets, 

especially infinite sets. See e.g. 

Cantor’s 1899 article in [11]. 

69 



A The Zermelo-Fraenkel Axioms 

assumptions about sets underlying his argument, Zermelo hoped to make it 

harder for others to reject it. 

In the author’s view, it is important to bear in mind the spirit in which 

Zermelo provided his axioms, and in which others later modified them. Such 

axioms might in part be motivated by representing in a formal way what 

is intuitively true about sets, from the ways in which we are accustomed to 

think about them and use them. And the axioms attempt to steer us clear 

of contradictions. But these axioms are also intended to underpin important 

results, like the original work of Cantor, as well as Zermelo’s own arguments, 

and sometimes go beyond intuition (but not necessarily against it). 

In the rest of this chapter, we shall give axioms for set theory and the logical 

framework within which they sit. We have a shopping list of requirements 

for the theory, e.g. that it permits the representation of natural numbers as 

sets as in the previous chapter, and likewise the representation of the reals in 

terms of the rationals. And we shall prove that some of these requirements 

are indeed met. Much effort will go into showing that certain classes, like 

{x : x belongs to both the sets a and b}, are sets, without appearing to create 

any contradictions in the theory. But we cannot actually prove that we are 

avoiding paradoxes. This turns out to be impossible, for reasons beyond the 

scope of this book - Godel’s incompleteness theorems - but inspired in part 

by the considerations stemming from the development of set theory. 

Paradoxes: some further remarks 

This book is primarily intended to present the foundations of modern set 

theory, a subject which has in many ways left Russell’s and other paradoxes 

far behind. The Zermelo-Fraenkel axioms in this chapter and the remarks in 

the introduction above further this intention. But the paradoxes are of very 

major interest, not just historically, but also because of their consequences for 

20th century mathematics, philosophy and computer science, so we shall say 
a little bit more about them here as an appendix. 

There is a long history of important and tricky paradoxes involving infinity, 

and perhaps it is thus unsurprising that Cantor’s work should generate so 

many new ones. The first of the latter was found by Burali-Forti in 1897 and 

involved ordinals, one of Cantor’s two sorts of infinite number. The essence 

of the paradox is that, putting (f as the set of all ordinals, one can then show 

that is itself an ordinal, so that & £ this in turn contradicts an essential 
feature of ordinals. 

Cantor’s reaction to the Burali-Forti paradox was that some infinite collections 

were too ‘big’ to be treated as sets, that they were ‘inconsistent’. Cantor 

reacted in the same way to a similar paradox involving his other sort of infinite 

numbers, namely cardinals, should one form the ‘set’ of all cardinals. But 

Russell’s paradox appeared to undermine even more fundamental ideas about 
what constituted a set. 

It is important to realize that even before the discovery of these paradoxes, 

Cantor’s work had met with some very hostile reaction on grounds other than 

that it involved logical contradictions: results like those about the size of !R 

Our intuition of sets might, in any 

case, be hazy, so there is scope for 

axioms to sharpen up intuition in a 

variety of directions. 

For a further analysis of the status 

of the axioms, see Maddy [18]. 

If a class cannot be treated as a set 

without entailing a contradiction, 

we shall call it a proper class. 

A good discussion can be found in 

Adrian Moore [8]. 

Ordinals will be dealt with in 

Chapter 8 and this paradox 

discussed in Exercise 8.7. 

See Cantor’s paper of (1899) in 

[11]- 

This paradox is the subject of 

Exercise 9.6 in Section 9.3. 

70 



4.2 A formal language 

compared to that of fd were very controversial. It is something of a matter of 
wonder that his work survived the crisis! 

Russell’s paradox relies in large part on our ability to make statements which 

refer to themselves. Such statements can then be paradoxical in the sense 

that judging them as either true or false results in a contradiction. Russell 

and then others have produced a multitude of such paradoxical statements 

in everyday language, but even the limited language for set theory which we 

shall look at in the next section is rich enough to be able to express Russell’s 

paradox and ultimately support Godel’s incompleteness theorems, of which 

one major consequence is that we cannot prove that the Zermelo-Fraenkel 

axiom system is free from contradictions. 

For Russell’s original example, the 

one of such serious set-theoretic 

import, the relevant statement can 

be taken as £% € If this 

statement is true, then it’s false; 

and if it’s false, then it’s true! 

And Godel’s theorems themselves 

exploit the capacity of the 

language to make statements 

referring to themselves. 

4.2 A formal language 

Before we give axioms for set theory, we must specify the framework within 

which these axioms sit. That is the aim of this section. 

We shall write the axioms using a very limited language, one that fits a formal 

logical treatment using the predicate calculus. For the purposes of this book, 

it is important to be able to use and interpret the formal language, but not 

to construct formal proofs using it. It is, however, important to realize that 

such formal proofs can in principle be given. 

The simplest statements in this language will be of the form x e y and x — y, 

for sets x,y. More complicated statements will be built up from these by 
combining or prefixing them by a variety of logical connectives, symbols with 

intended meanings as follows: 

symbol meaning 

A and 

V or 
—1 not 

-A implies 

•H- if and only if 

V for all sets 

3 there exists a set 

Our formal language uses these logical connectives, brackets, the symbols £ 

and =, and letters (subscripted should we desire) like 

x,y,z,... ,xo,xi,... ,V5, ,X,Y, Z,... 

as variables to represent individual sets. The statements, or equivalently 

formulas, of the language are all expressions of the forms 

x £ y and x = y, 

where x,y are any variables, and any expression built up recursively from 

The € symbol was introduced by 

Peano. 
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these by finitely many applications of the following formation rules: 

if 0, 0 are formulas, then so are 

(0A0), 

(0 V0), 

(0 -»• 0), 

(0 0), 

Vu0, for any variable v, 

3v(p, for any variable v. 

The important thing for now is to explore the expressive power of this lan¬ 

guage. For instance 

-<3xWy y E x 

says that ‘there is no set x such that all sets y are elements of x\ which can 

be less awkwardly rephrased as ‘there is no set to which all sets belong’. And 

VxVy(x E y V (x = y V y E x)) 

says that ‘for any two sets, one belongs to the other or they are equal’. Notice 

that this is surely a false statement about sets. Writing down a statement 

about sets doesn’t entail that it has to be true! 

We shall often use the formal language to express that a set x (or y or what¬ 

ever) has a particular property. For instance 

Vy -i y E x 

says that x is empty. The variable x occurs in this formula in a way which is 

usually described as free. In general, the variable v occurring in a formula 0 is 

described as a free variable of 0 if no stage of the building up of 0 has involved 

putting Vu or 3v in front of a statement in which v appears. (Actually, in any 

standard treatment of predicate calculus, the term ‘free variable’ is used in a 

slightly less restricted way, so that e.g. the underlined occurrence of y in 

{3y y E z A -> y- z) 

is a free variable of the formula - our definition gives only that the z is free. 

We shall avoid any problem in this book by only writing formulas in which 

variables free in one part of the formula are not used elsewhere in a non-free 

way.) 

Exercise 4.2___ 

What do each of the following formulas say? 

(a) Vx3y -> x Ey 

(b) Va;Vy((:r Ey A y E z) -A x E z) 

(c) Vx3y((j)(x,y) A 'iy'{(j){x,y') —> y' — y)), where 0(x,y) is a formula with 
free variables x and y. 

The finite use of these rules means 

that all statements involve only 

finitely many symbols. 

The construction rules use brackets 

where necessary to ensure that 

there is just the one way of reading 

a statement. 

The symbol V is intended to mean 

the inclusive ‘or’, i.e. 0 V 0 means 

‘0 or 0 or both’. 

Note that all the objects we are 

describing with our formal 

language are sets. Thus if x has no 

sets y as elements, it has no 

elements at all — there can’t be 

some 'element (in x) which is not a 

set. 

We shall eventually lapse into use 

of the standard abbreviation x £ y 

for the formula -i x E y. Likewise 

we shall use x ^ y for -i x = y. For 

this section we shall stick to our 

limited language without using 

abbreviations. 
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Solution 

(a) For every set x, there is a set y of which x is not an element. This might 

be expressed in a less stilted way by saying that for any set there is a set 
to which it doesn’t belong. 

(b) All elements of any element of z are themselves elements of 2, or equiva¬ 

lently, any element of z is a subset of z - think about it! 

(c) This says that for any x there is exactly one y for which <f>(x,y) holds. 

Thus <f>(x,y) can be used to define a function /, where, for each x, f(x) 

equals the y for which <j)(x,y) holds. 

Exercise 4.3- 

Express the each of the following by a formula in the formal language. 

(a) The set x contains at least one element. 

(b) There is a set with at least one element. 

(c) The set x contains exactly one element. 

Solution 

(a) The formula 3y y E x will do. 

(b) We merely need to say that there is some x with the property in the 

previous part of the exercise. So we can take the formula as 3x3y y E x. 

(c) It would be nice to write something like 3y x — {y}\ but this uses symbols, 

{ and }, not in our limited language. We can capture the idea, however, 

by saying that y Ex and that any y' in x is in fact this y, as follows: 

3y(y Ex A Vy'(y' Ex -> y' = y)). 

Let us move closer towards the main way in which we shall use the formal 

language to state the Zermelo-Fraenkel axioms. Most of these axioms will 

state that certain sets exist. In Section 4.1 we discussed the two natural ways 

of describing a set, by intension and extension, and how in practice we need 

only use intension. So some of the axioms will be of the form 

there is a set x of all sets y which have propertyP. 

We shall confine ourselves to those properties P of sets y which can be ex¬ 

pressed by a formula 4>{y) within our formal language with a free variable y. 

We want to capture the idea that x is the set of precisely those y with the 

property <j>(y) by a formula of our language; but as we have already remarked, 

this language doesn’t contain symbols for the set brackets { and }. The trick 

is to exploit the symbol <-> for ‘if and only if’ to say exactly when y is an 

element of x, by 

(y 6 x o <j>(y)). 

Then the existence of a set x consisting of all these ys is represented by the 

formula 

3xMyitfE x «-» (p(y))- 

For instance, suppose that we wish to state within the language that foi given 

sets a, b there is an intersection set x, where x = a n b. The property that 

It is often quite difficult to 

translate statements about sets in 

an unstilted way! 

Examples of sets with this property 

are the natural numbers n defined 

in Chapter 3, following from the 

transitivity of E on N, as in 

Theorem 3.6. 

For example, the set {1,7,43} 

defined by extension could be 

defined by intension as 

{a:: (x = 1 V (x = 7 V x — 43))}. 

As you will see, confining ourselves 

to properties expressible in our 

formal language is not a great 

hardship! But it is a restriction of 

a sort — see Exercise 6.43 in Section 

6.4. 
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characterizes elements y of a fi b is of course that y E a and y E b. So the 

existence of such an x can be given by 

3xVy(y £ x <-»■ (y £ a A y £ b)). 

Exercise 4.4_ 

Express each of the following by a formula within the formal language. 

(a) The union of a and b is a set (where a, b are given sets). 

(b) For any sets, their union is a set. 

Solution 

(a) 3xVy(y £ x •£> (y £ a V y £ b)) 

(b) VaVb3xVy (y £ x e* (y £ a V y £ b)) 

Exercise 4.5_ 

Express each of the following by a formula within the formal language. 

(a) ^ is subset of x. 

(b) For any set, there is a set consisting of all its subsets. 

Solution 

(a) Vw(w £ z —>■ w £ x) 

(b) If we use the shorthand z C x for the formula Vw(w £ z —> w E x), then 

the following formula would do: 

Va;3yiz(z £ y •£>■ z C x). 

The set y in this formula would be the set of all subsets of x. Eliminating 

this piece of shorthand gives the following formula of our language: 

Vx3yVz(zEy £» Vw(w E z —> wEx)). 

Of course, just because we can write down a formula that says a certain set 

exists, doesn’t mean it does exist! For instance, we can construct a formula 

which says that the Russell ‘set’ exists. Try this as the next exercise. 

Exercise 4.6_ 

Express by a formula within the formal language that there is a set consisting 

of all sets which are not elements of themselves. 

Solution 

3 xVy{y Ex •£> -> y E y) 

Now that we have specified our formal language, we can formulate within it 

some axioms for set theory, which we do in the next section. And one of our 

hopes is that these axioms will not allow Russell’s paradox to occur. 

Notice that we are extending our 

use of variable symbols by 

permitting such symbols, in this 

case a and b, to stand as names for 

given sets. In general, if some of 

the free variables in a formula <f> 

are replaced by names, we shall 

describe the formula as referring to 

named sets and only count the 

remaining variables as its free 

variables. 

This set of all subsets is called a 

power set. 

Let us take this as the formal 

definition of the symbol C and of 

‘2 is a subset of x\ 

We shall soon move towards using 

shorthand notations like zCito 

make our formulas easier to 

decipher. 
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4.3 Axioms 1 to 3 

In this section, we shall give the first three axioms of set theory as proposed by 

Zermelo and modified by others, including Fraenkel. The theory is described 

as Zermelo-Fraenkel set theory - ZF for short. And we shall show how to 

construct some of the basic building blocks of the theory on the basis of these 

axioms, for instance how to represent ordered pairs and functions as sets. We 

shall give the remaining axioms, and prove some of their consequences, in 

Sections 4.4 and 4.5. 

Recall that Zermelo’s main aim in producing axioms was to underpin an ar¬ 

gument involving complicated set concepts, like well-ordering [R. His axioms 

were, to some extent, simple, straightforward and non-controversial state¬ 

ments about sets; but they were also designed to serve the needs of his more 

complicated argument, and are thus not immune from a degree of scepticism! 

They do, however, underpin the replication of large amounts of standard 

mathematics within a framework of sets, and in particular (with some refine¬ 

ments introduced by other mathematicians) place Cantor’s revolutionary work 

on infinite sets on a more rigorous basis. They rapidly won acceptance from 

the mathematical community as being the basis for most of the mainstream 

work on sets and the foundations of mathematics. 

A further feature of the Zermelo-Fraenkel axioms, in common with many 

other mathematical axiom systems, is that they are designed with a form of 

economy in mind. Rather than give a large number of axioms, for instance 

asserting the existence of intersections of sets, ZF has relatively few axioms 

and requires ingenuity in deriving such a thing from the axioms. We shall not 

give you all the axioms in one go, but derive one or two initial results from 

the first few axioms before going on to the next batch. 

Writing down axioms for sets in a formal language is also a way of dodging the 

issue of what sets really are, just as the standard presentation of the theory 

of the real numbers using axioms avoids committing oneself to saying what 

the reals really are. The symbols we use for variables, x, y, etc., and the 

symbols <E and = have intended interpretations, respectively as sets, ‘is an 

element of’ and ‘equals’. But we do not have to say what the words ‘set’ , 

‘element’, etc., mean. The theory of sets which follows in this book is, strictly 

speaking, what the axioms and deductions from them tell us about sets. As 

one aim of the axioms is to permit us to perform familiar, everyday (and 

uncontroversial) manipulations with sets, most of the axioms will be easy to 

read and understand in terms of our informal notions about sets. This means 

that we can continue to talk about sets fairly informally. But we shall have 

to be on our guard to ensure that what we claim can indeed be backed up 

within the formal theory, from the axioms. 

There are nine axioms of ZF set theory, which we shall label as ZF1 to ZF9, 

but which we shall often refer to by their names. For each axiom we shall try 

to give an informal description of what it says, as well as write it formally. If 

you don’t always understand the significance of an axiom just from leading, 

don’t worry, we shall discuss each of them in more detail later on! Here now 

are the first three axioms. 

Abraham Fraenkel (1891-1965) 

was a German and then Israeli 

mathematician. Accounts of the 

process of modifying the axioms 

and of alternative systems can be 

found in e.g. Fraenkel, Bar-Hillel 

and Levy [19] or Kneebone [20]. 

As we saw in Chapter 2, real 

numbers can be defined in terms of 

something ‘more basic’, although it 

might be argued that any such 

definition doesn’t match any 

intuition of a real number as a 

number, rather than as e.g. a set of 

other objects. Axioms for the reals 

avoid the need to say what sort of 

object a real number is. For sets it 

is not clear in terms of which ‘more 

basic’ objects one might define 

‘set’. 
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Axioms of ZF 

ZF1: Axiom of extensionality 

VxVy(x — y Vz(z Ex -H- z E y)) 

Two sets are equal if and only if they contain the same elements. 

ZF2: Empty set axiom 

3xMy y £ x 

There is a set with no elements. 

ZF3: Axiom of pairs 

\/xVy3zWw(w E z •H- (w = x V w = y)) 

For any two sets, there is a set whose elements are precisely 

these sets. 

The axiom of extensionality is a statement of the very standard connection 

between set equality and set membership. You will probably have exploited 

this connection in everyday mathematics, and we have used it implicitly many 

times so far in this book. (You may wonder why we have both E and = as 

basic symbols of our formal language, given that we could use this axiom to 

define = in terms of E. The reason is that standard formal proof systems for 

predicate calculus treat = as a basic symbol and include rules which permit 

replacing a set mentioned in a statement by an equal set.) 

The empty set axiom is important in two ways. It says that there is a set with 

no elements - the idea of such a set often strikes students, when encountering 

it for the first time in mathematics, as exciting or dangerous, rather like the 

number 0! But it is also one of the only axioms of ZF which asserts that 

there are any sets. Most of the other axioms have the character of the axiom 

of pairs, which is of the form ‘if ... are sets, then so is ... ’. (Note that the 

empty set axiom doesn’t say that there is exactly one empty set. We shall 

show that this is a consequence of the ZF axioms.) 

The axiom of pairs, which gives an unexceptional way of constructing new 

sets from known sets, is one of those whose importance is really in its role in 
constructing interesting sets, as we shall soon see. 

Although the axiom of extensionality is unexceptional, you might be interested 
in the consequence of it arising in the following exercise. 

Exercise 4.7___ 

If one was trying to speculate on the nature of the universe of sets, it might be 

tempting to think sets are built up from ‘atomic’ sets, where by an atomic set 

we mean one that cannot be reduced in any way to other sets. In particular, 

an atomic set would be one which had no elements. How many atomic sets 
could there be in ZF set theory? 

From now on, we will write y £ x 

for —iyEx. 

Zermelo bundled our ZF2 and ZF3 

into a single axiom of elementary 

sets, along with an axiom saying 

that if a: is a set then there is a set 

with x as its only element. This 

latter axiom is in fact a 

consequence of ZF2 and ZF3. 

Set theories which allow more than 

one atomic set have been fruitfully 

explored. 
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Solution 

Suppose that x and y are both atomic sets, so both have no elements. Then 

by the axiom of extensionality (and the standard way we use ‘if and only if’), 

x and y must be equal. So there is at most one atomic set. By the empty set 

axiom there is at least one set with no elements. Thus there is exactly one 

atomic set. 

The discussion in the solution shows that there is exactly one set in ZF which 

has no elements, so we are entitled to refer to it as the empty set. The axiom 

of pairs is similar to the empty set axiom in that it says that given two sets x 

and y, there is a set z whose elements are these, but it doesn’t say that this 

is a unique set. It can be shown that it is indeed unique. 

Exercise 4.8- 

Show that given sets x and y there is a unique set z whose elements are x and 

y- 

Solution 

By the axiom of pairs there is at least one set z whose elements are x and 

y. If z' is another such set, then any element of z', namely x or y, is also an 

element of 2, and vice versa. By the axiom of extensionality we have z = z', 

so that the set 2 is indeed unique. 

We could describe the set z above as the pair set of x and y. And we shall 

introduce the familiar curly bracket notation for sets by writing {x,y} for 2. 

We shall be careful in this section about justifying extending the use of this 

notation beyond pair sets: for instance, we shall have to prove that for given 

sets x, y and z, there is a unique set with these three sets as its elements. We 

would of course want to write this set as {x,y,z}. 

Exercise 4.9---- 

What can we say about {x,y} if x and y are the same set? 

Solution 

By the axiom of extensionality, {x, x} must equal the set whose only element 

is x. The normal name for such a set is a singleton. 

This last exercise, along with the ZF axioms introduced so far, yields the 

following theorem. 

Theorem 4.1 

For any set x there is a set whose only element is x. 

V 
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Proof 

As x is a set, the axiom of pairs gives that there is a set whose elements are 

x and x (i.e. {x,x}). By the result of Exercise 4.9, this equals the set whose 

only element is x (i.e. {x}), which shows that this is indeed a set. ■ 

The results so far, some of which are about the uniqueness of objects as well 

as their existence, justify the following definitions. 

As our definition of the pair {x, y} 

does not require that x y, it 

could be the case that a pair might 

actually be a singleton! This 

sounds potentially confusing, but 

in practice it won’t be. 

Definitions 

The empty set, written as 0, is the set with no elements. 

Given sets x and y, we write {x, y} for the set whose elements are x and 

y. This set is called a pair and also an unordered pair. 

Given a set x, we write {x} for the set whose only element is x. This 

set is called a singleton. 

You may have been surprised by our slipping in the term ‘unordered pair’ 

above as a way of describing the set {x, y}. We did this because we now wish 

to discuss how to represent ordered pairs within set theory. We have already 

seen how ordered pairs can be used to play a part in defining one sort of 

number in terms of more basic numbers: for example, a rational number was 

defined in terms of ordered pairs of integers. So we need to represent ordered 

pairs as sets for this reason alone. But in fact ordered pairs and sets of ordered 

pairs will be a vital tool for representing vastly more mathematics within ZF, 

for instance functions and orderings. What we require, for each pair of sets x 

and y, is a set representing the ordered pair (x, y) that allows us to distinguish 

between the ‘first’ coordinate of the pair, x, and the ‘second’ coordinate, y. 

Using {x, y} to represent this ordered pair will not do. By the axiom of 

extensionality, the set {x,y} is the same as the set {y,x}. Even though we 

have written the x before the y in {x,y}, someone else, to whom we hand 

the pair set (as a single object, not with this particular written description), 

might not be able to reconstruct the order in which we had written the two 

elements down - that’s why we call {x,y} an unordered pair. So we have to 

find some other way to represent an ordered pair. 

Our requirements are as follows. 

1. For any sets x and y, we want a unique set to stand for (x, y). 

2. We want to be able to distinguish (x,y) from (y,x), or indeed from any 

other (a, b) where a ^ x or 6 ^ y. 

The definition which follows can be shown to meet these requirements just 
using ZF1, ZF2 and ZF3. To distinguish between our informal notion of the 

ordered pair (x, y) (which we shall continue to use where appropriate) and the 

particular set representing it in ZF, we shall write the latter as (x,y). (We 

shall use the notation (x, y) where we think it is important to realize that we 

are using this particular representation of the ordered pair as a set.) 
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Definitions 

Given sets x and y, we write (x, y) for the set 

{{^},{x,i/}}, 

which is called an ordered pair . The x and y are called the first and 

second coordinates, respectively, of the ordered pair. 

Exercise 4.10- 

Show that for sets x,y, there is a unique set (x,y). [Hint: this is a straight¬ 

forward use of ZF1 and ZF3 along the lines on earlier work in this section.] 

Thus (x, y) satisfies requirement 1 above. Requirement 2 requires much more 

work and we shall treat it as a theorem. 

Theorem 4.2 The ordered pair property 

For any sets x,y,u,v, if (x,y) = (u,v), then x = u and y = v. 

Proof 

Our proof will make extensive use of the axiom of extensionality (ZF1) and 

the standard properties of = (like x = y implies {x} = {?/})• Suppose that 

(x,y) = (u,v), i.e. 

{{x},{x,y}} = {{it},{tt,i;}}. 

By extensionality every element of the set on the left-hand side of this equation 

(LHS for short) is an element of the right-hand side (RHS for short), and vice 

versa - we shall make repeated use of this principle. 

First take the element {x} of the LHS. This must equal one of the elements 

{it} and {it,t>} of the RHS. We’ll deal with these two possibilities as separate 

cases. 

Case {x} — {it} 

By ZF1 we have x = it. Now consider the element {x,y} of the LHS. This 

must equal one of {it} and {it, it}, giving us a couple of sub-cases. Just for the 

sake of variety, we shall investigate these in terms of whether x = y or x ± y. 

If x = y then by ZF1 we have {x, y) = {x}, so that by ZF1 

{{x},{x,i/}} = {{z},{z}} 

= {{*}}• 

As the {it, v} on our original RHS must be an element of the LHS, this forces, 

again by ZF1, {it, v} = {x}, which in turn forces it = x and v = x, by ZF1. 

This gives x — y — u — v, so that x — u and y — it as required. 

If x / y then we cannot have {x,t/} = {it}, as ZFl would force x = it and 

y = u, giving x = y, a contradiction! Thus we must have {x,y} = {u,v}. As 

We give this result a grand name 

as it is the critical property of 

ordered pairs! 

It might conceivably equal both of 

them, meaning, of course, that {u} 

and {u, u} are themselves equal. 
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u = x, this gives {x,y} = {x,u}. By ZF1 the element y of {x,y} equals one 

of the elements of {x,u}, i.e. x or v. As y / x, we can only have y — v. Thus 

x — u and y = v. 

Hence if {a;} = {u} we must have x = u and y = v. 

Case {a;} = {u, v} 

This case is left as the next exercise for you. ■ 

Exercise 4.11_ 

Complete the proof of Theorem 4.2 above by dealing with the case when 

{rr} = {u,u}. 

Solution 

By ZF1 u = x and v = x, so that u = v. Thus by ZF1 {u, v} = {u}, so that 

{{«}.{«,»}} = {{«},{«}} 

= {{«}} 

and our original equation becomes 

{{a},{x,y}} = {{u}}. 

The elements {x} and {x, y} of the LHS must both be elements of the RHS; 

but the RHS only has one element, namely {u}. Thus by ZF1 

{x} = {x, y} = {u}. 

From this, a similar argument using ZF1 gives x = y = u. As x = v, this 

gives the required result that x — u and y = v. 

Our requirements for satisfactory representation of an ordered pair, in partic¬ 

ular that we have defined a unique set and that this set can be ‘decoded’ in 

only one way, are typical of many set constructions. 

We can exploit our definition of an ordered pair to define an ordered triple, 

an ordered quadruple and so on. 

A 3-tuple means the same as a 

triple. 

For n- 3 this gives the ordered triple (x,y,z) as (x, (y,z)). For any specific 

value of n, this definition gives a finite construction, coded by the n, of an 

n-tuple. You might wish to investigate the case n — 3 in the next exercise. 

Definition 

Suppose that xi,X2,X3,... ,xn are sets, where n £ N, n > 3. Then the 

ordered n-tuple (xi,x2,x3,..., xn) is defined recursively for n > 3 by 

(xi, x2, x3, . . . , Xjfj (xi, (x2, x3,..., xn)^, 

i.e. the ordered pair with first coordinate Xj and second coordinate 

(x2, x3,..., xn). 
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Exercise 4.12_ 

Let x, y, z be sets. 

(a) Show that, with the definition above, (x,y,z) is a unique set. 

(b) Show that if u,v,w are sets with (x,y,z} = (u,v,w), then x = u, y = v 

and z = w. 

(c) An alternative candidate for the definition of an ordered triple is ({x, y), z). 

Show that this also satisfies the properties in the preceding parts (so could 

have been used as as the definition). Does it represent the ordered triple 

by the same set as (x,y,z)7 

It is perhaps curious that, given three sets x,y,z, we can now define the 

ordered triple (x,y,z) as a set, whereas we cannot yet justify that there is a 

set {x,y,z} with precisely these elements. Less surprising is that although 

we can construct an ordered pair as a set, we cannot yet construct interesting 

sets of ordered pairs, like Cartesian products Ax B. The batch of axioms in 

the next section will rectify this situation and enable us to do much more. 

Further exercises 

Exercise 4.13---- 

Show that {a;, {y}} is not suitable as a definition of the ordered pair (x,y), 

because it does not have the ordered pair property (as in Theorem 4.2). 

Exercise 4.14 _---- 

Which, if any, of the following constructions give a suitable definition of an 

ordered triple (x,y,z)? (The key point is whether the definition has the 

property dealt with in Exercise 4.12(b) above.) 

(a) {{x},{x,y},{x,y,z}} 

(b) ({x,y},{y,z}) 

(c) {(xty),(y,z),(z,x)} 

(d) {(x,y),(x,z),(y,z)} 

(e) {(x,y),{y,z)) 
(f) {{x,(x,y)),((y,z),z)} 

4.4 Axioms 4 to 6 
In the previous section we used axioms ZF1 to ZF3 to define ordered pairs as 

sets. In this section we shall look at the next three axioms of ZF which will, 

amongst other things, allow us to construct interesting sets of ordered pairs 

like Cartesian products Ax B. Using Cartesian products, we shall then show 

how to represent functions by sets within ZF. 

This is the analogue of the ordered 

pair property for ordered triples. 

In parts (a), (c) and (d), you may 

assume that it is possible to form 

sets with three elements! 
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Axioms of ZF 

ZF4: Axiom of separation 

Vx:3yiz[z G y (z G x A <fr(z))), where <p(z) is any statement 

of the formal language (possibly referring to named sets) with 

free variable z. 

For any set x there is a set consisting of all z in x for which 

<j>(z) holds. 

ZF5: Power set axiom 

Vx3yVz(2 G y z C x) 

For any set x there is a set consisting of all subsets of x. 

ZF6: Union axiom 

Vx3yVz(z Gi/ f) 3w(z G w A w G x)) 

For any set x there is a set which is the union of all the elements 

of x. 

Before discussing these axioms, let us introduce some important and familiar 

notation associated with them. Each axiom has the form ‘for all sets x there 

is a set y such that ... ’, and by an argument using the axiom of extensionality 

along the lines of Exercise 4.8 in the previous section, we can show that for 

any given x the y is unique. So we can introduce some notation for this y. 

Definitions 

Let x be a set. 

For each formula (f>(z) (possibly referring to named sets) we write 

{z G x : <t>(z)} for the set y in ZFf. such that 

Vz[z(=.y<->-(z(zX A <f>(z))). 

We write &*(x), called the power set of x, for the set y in ZF5 such that 

Vz(z Gy z C x). 

We write (J x, called the union of x, for the set y in ZF6 such that 

Vz(z G y 3w(z G w A w G ®)). 

Exercise 4.15__ 

Let x be a set. Show that there is a unique set y whose elements are all the 
subsets of x. 

In the previous section, we showed 

how to define z C x in terms of the 

basic formal language. We can 

therefore use this abbreviation 

here. 

This now extends our legitimate 

use of the curly bracket notation 

for sets within ZF in a big way! 

Of course we can also call this the 

set of all subsets of x\ 
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This new notation makes it easier to see that the axiom of separation is a ver¬ 

sion of the comprehension principle; but it is a very restricted version. First of 

all, it limits the properties which we can use to define sets by the comprehen¬ 

sion principle to those expressible by a formula (j)(z) of our formal language 

(where <f>(z) might involve references to named sets): this isn’t enough of a 

limitation to bar Russell’s paradox, as you may recall from Exercise 4.6 in 

Section 4.2. The real restriction is that, rather than allowing us to create the 

set of all zs with the property <f>(z), it only allows us to ‘separate out’ the 

elements 2 of a given set x with this property. The axiom is thus saying that, 

given a set x, there are certain sets definable as subsets of x. 

By way of contrast, the power set axiom says that there is a set 3°(x) of 

all subsets of a set x without telling us anything about any of these subsets. 

This axiom may seem reasonable, given our experience with finite sets x, even 

though such a set with n elements has rather a lot of subsets, namely 2n. 

Whether it represents an intuitive statement about infinite sets is debatable. 

But as it leads to some of the most exciting parts of Cantor’s original work 

on infinite numbers, there is not much point in arguing about its inclusion! 

The union axiom and the notation (J x might take a bit of time to absorb. 

We are all comfortable with the idea of the union a U b of two set a and b. 

Imagine the set x as having as elements the sets a, 6, c, d,...: then (J x is their 

union aUfcUcUdU.... Or perhaps you have seen the symbol (J used in 

everyday mathematics in something like UK*: i € I}, in which case think of 

(J £ as the same as (J{y \y £ x). Why do we have an axiom about unions in 
this form? Why don’t we have an axiom guaranteeing us that a U b is a set 

for any sets a, 6? Indeed, can we show that a U b is a set? 

Exercise 4.16------- 

What are the elements of UK bY- 

Solution 

For any set z,z£ |J{a>b} if and only if * € y for some y <E {a, b}. The only 
ys in {a, b} are a and b. Thus z 6 U"Kb} d and ordy if z £ a or z E b, i.e z 

is an element of what we customarily call a U b. 

As for any sets a and b there is a set {a, b} (by ZF3), so that UK b} Is a se^ 

(by ZF6), we can indeed define a U b within ZF. 

Definition 

The union of two sets a and 6, written as a U b, is the set U"K bY 

Exercise 4.17---- 

Why do you think we need the union axiom in its given form, rather than 

simply have an axiom guaranteeing that a U b is a set? 

Does axiom ZF4 avoid Russell’s 

paradox? See Exercise 4.32 below. 

2 £ U x if and °nly if z € y for 
some y £ x. 

We shall occasionally backslide on 

‘legitimate’ use of the curly bracket 

notation by writing x = {y : y £ x}, 

instead of x = {y E x : y € x} - the 

latter is legitimate by ZF4 . 
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Solution 

If we want to take the union of infinitely many sets, say Ao, Ai, A2,..., An,..., 

we cannot do this using the U operator, as this would require an infinitely long 

formula 

d0U>4iUJ42U...UdnU.... 

Providing that there is a set {An : n £ N}, the |J operator will allow us to 

represent the union by a finitely long formula, namely 

U{An:n eN}. 

The union axiom, like the power set axiom, gives a way of showing that there 

are bigger sets around than those currently in our list. For instance, we can 

now show (with a spot of ingenuity!) that if we have three sets x, y, z then 

there is a set with these as its elements. First of all, we can form the sets 

{x,y} and {z} (essentially using ZF3). We then take the union of these two 

sets {x, y} U {z}. This is of course the desired set with elements x,y,z and 

we are entitled to extend the use of our curly bracket notation within ZF and 
write this as {x,y,z}. 

Exercise 4.18_ 

Let xi,X2,... ,xn be sets, for n £ M with n > 1. 

(a) Show that there is a set with x\, X2,..., xn as its elements. 

(b) Show that X\ U x2 U ... U xn is a set. 

The result of this allows us to extend our curly bracket notation and write 

{21,22, ... ,xn] for the set with 21,22,... ,2n as its elements. 

Exercise 4.19_ 

Show that Ui®} = x- 

Exercise 4.20__ 

Show that if y £ x then y C (J x. 

Exercise 4.21___ 

This is an item on our shopping list 

for sets arising from our 

construction of N using sets. 

but this use of the comprehension principle hasn’t been authorized by our 

axioms. The property that the zs must have is fine: it is indeed given by a 

formula of the language. But we also need the zs to be ‘separated’ out of some 

set x. We can find a suitable set x by taking it to be a U b, which we already 

know to be a set. And now we can correctly use the axiom of separation to 

justify that a n b is a set, justifying the definition below. 

Show that if £ is a set, then so is x+, where x+ = x U {2}. 

We have shown that for sets a and b their union a U b is a set. How about 

their intersection a n 6? It is tempting to say that this is a set because 

a <1 b = {z : (z £ a A z £ b)}; 
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Definition 

The intersection of two sets a and b, written as a n b, is the set 

{z E aUb: (z E a A z E 6)}. 

The method we have just used for showing that a ft b is a set is very pow¬ 

erful. We can frequently define a ‘set’ using the comprehension principle, 

{z : z has property P}, where the property P is expressible by a formula <j>(z) 

in our formal language. Our definition almost looks like the format for the 

axiom of separation, except that we haven’t got a set x from which to ‘sep¬ 

arate out’ the zs. We can often construct a suitable ‘big’ set x using one or 

both of ZF5 and ZF6; and then use ZF4 to obtain the set we really wanted. 

Exercise 4.22_ 

Let x be a non-empty set. Show that the intersection of x, written as fj x , 

and defined informally by 

fj x = {z : z E y for all y E x}, So if x — {a, b,c,...} then 
fja: = an6ncn_ 

is indeed a set in ZF. [Hints: show that (|x Q U *> and then use the axiom 
of separation.] 

Exercise 4.23- 

Let x be a set. Show that {{y} :y E x] is a set. 

Now that we have dealt with union and intersection, let us deal with the other 

familiar operation on sets, namely complement. 

Exercise 4.24--- 

One might sloppily attempt to describe the complement of a set x as the set 

of all objects not in x, namely {z : z & x}. Is this a set? 

Solution 

If a; is a set and {z : z g x) is also a set, then their union would be a set. But 

this union equals 3^, the universe of sets, so that ^ is a set. We could then 

use the axiom of separation to show that 

{zE?r :z#z} 

is a set - the ‘V takes the place of the set x in the standard format for this 

axiom. As z E ‘V says no more than that 2 is a set, we have really shown 

that 

M = {z : z & z} 

is a set. But this means that Russell’s paradox can be derived in ZF. 

Thus if the complement {z : z £ x) is a set, ZF is inconsistent. For reasons 

which we shall discuss later, this does not prove that the complement is not 

a set: it only shows us that it is highly undesirable that this should be the 

case! 
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Note that this last solution also shows that assuming ‘V is a set leads to 

Russell’s paradox. 

In practice in mathematics, we never use the complement of x in the way 

above. We always use the complement of x in another set, y say, often writ¬ 

ten as y \ x. That this is a set is easily shown using separation, as follows 

immediately from the definition below. (The class {z : z g x} is often called 

the absolute complement of x.) 

Definition 

Let x and y be sets. Then the complement of x in y, written as y\x, is 

the set {z G y : z x}. 

We have already defined ordered pairs. We shall now show that Cartesian 

products consisting of sets of them exist. Given sets X and Y, their Cartesian 

product X x Y is the set {(a;, y) : x G X, y G Y}. This is of course the normal 

mathematical definition, but it doesn’t match the axiom of separation. We 

can get closer to the correct format of this axiom by writing the set as 

{z : 3x3y((x G X A y G Y) A z=(x,y))}. 

As (x, y) can be defined within our formal language, the defining property is 

also expressible within it. All we want is some known ‘big’ set in which the 

zs sit. 

Cartesian products play a key role 

in set theory. They provide a way 

of representing by sets important 

objects like functions and order 

relations, which don’t immediately 

strike one as being sets. Thus a 

theory only of sets can deal 

simultaneously with objects like 

numbers and sets of numbers and 

also any mathematical 

relationships between them. 

A typical z is of the form {{a:}, {a;, y}}, where x G X and y G Y. Now x and y 

are both elements of X U Y, which is known to be a set. The key observation 

is to note that the element {x,y} of 2 is a subset of X U Y, so that 

{2:, y} G &>(X U Y). 

Likewise the other element {rr} is also an element of 3P(X U Y), so that, 

repeating the observation about subsets, 

* = {M, {*, y}} c &(X u Y), 

giving 

2 G &{&{X U Y)). 

As X and Y are sets, so is 3°{3°(X U Y)). Thus we can now define X x Y in 

ZF, because we can use ZF4 to separate out those elements of 3°{3°(X U Y)) 

which are ordered pairs, as follows. 

Definition 

For sets X and Y the Cartesian product, written as X x Y, is the set 

{2 G 3°{3°(X U Y)) : 3x3y((x G X A y G Y) A z = {x,y))}. 
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Exercise 4.25_ 

Let X\, X2, • • •, Xn be sets, where neN with n > 2. Show that the Cartesian 

product Xi x X2 x X3 x ... x Xn is a set, where this is defined recursively 

by 

XixX2xl3X...xIn=I1x(X2xI3x...x Xn). 

Now that we can represent Cartesian products by sets within ZF, we can also 

represent important objects like relations (e.g. orders) and functions by sets. 

For instance the order on M can be represented as a set by 

{(m, n) eNxN:me n}, 

which will be a set by the axiom of separation, once we have shown that N 

is a set. For the rest of this section, we shall concentrate on how Cartesian 

products are used to represent functions as sets. The key observation from 

everyday mathematics is that virtually all the information about a function 

/: A —Y B is contained in the set of ordered pairs {(a, /(a)) :a E A). This 

set is often called the graph of the function /. 

Exercise 4.26_ 

Given a subset F of A x B, how might we judge whether it is the graph of 

some function / with domain A and codomain B1 

Solution 

For / to be a function with domain A, we require that for each a E A there is 

a unique element to which a maps under /. In terms of ordered pairs in the 

graph of /, this means that there is a unique b E B, namely b — /(a), such 

that (a, b) is in the graph. So given a subset F of A x B, F is the graph of 

some function with domain A if for each a E A there is a unique b E B such 

that (a, b) E F. 

In terms of our formal language, in which we would of course use our repre¬ 

sentation of ordered pairs by sets (a,b), this condition on F becomes 

Va(a E A —Y 3b(b E B A (a, b) E F A W((a,b') E F -4 b' = b))). 

What we have just done becomes the first of a couple of definitions of functions 

represented by sets within ZF. 

Definition 

Let A, B and F be sets with F C A x B. We say that F is a function 

with domain A and codomain B if 

Va(a E A -+ 3b(b E B A (0,6) E F A V6'((a, b') E F -4 &' = &)))• 

As with other mathematical objects represented by sets within ZF, we shall 

continue to use the familiar mathematical notation, here f. A Y B, except 

where our particular representation of the object as a set is important. 

This definition matches that of 

ordered n-tuple, so that 

X\ x X2 x X3 x ... x Xn is a set 

of ordered n-tuples. There are 

alternative definitions. In what 

follows we shall use Cartesian 

products of more than two sets 

without being too fussy about their 

precise definition in ZF. 

For the benefit of purists, the only 

information which gets lost is that 

the codomain of the function is B. 

Given the graph of /, one can 

recover the image set, or range, of 

/ - all one knows about the 

original codomain is that it 

contains the range as a subset. 

For the sake of ease of reading, we 

shall drop the brackets where 

several statements are joined by 

the connective A: e.g. we shall 

write (4> A ip A 6) rather than 

(4> A (V> A 6)) or ((<f> Axp) A 6) which 

are logically equivalent. We shall 

similarly drop brackets when we 

are joining several formulas 

together with V. 

More colloquially, we say that F is 

a function from A to B. 
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Once we are representing functions by the sets of pairs in their graphs, it will 

become useful to be able to talk about a set F of pairs as a function without 

necessarily specifying in advance what its domain is. The key property which 

we shall require is that for any a there is at most one b such that (a, b) G F. 

This can done by a simple formula. We shall then define the domain of F to 

be the set of those as for which there is some b with (a, b) G F. We would like 

to write this set as {a : 3b (a,b) G F}; but we have the usual problem with 

the axiom of separation that we need to specify a set in which the as lie, from 
which we can then separate out the required set. 

Exercise 4.27__ 

Given a set F of ordered pairs (a, 6), give a set in ZF in which all the as and 
bs lie. 

Solution 

A typical element (a, b) of F is a set {{a}, {a, 6}}. Thus (J F is the set of all 

the {a}s and {a, b}s for (a, b) G F, so that U(U F) is the set of all as and bs 

for which (a, b) G F. As F is a set, |J(U F) is also a set, by the union axiom. 

The result of this last exercise will allow us to define not only the domain of 

a function using separation, but also its range (or image set). 

Definitions 

Let F be a set of ordered pairs. F is said to be a function if 

VaV6V6'(((a, b) G F A (a, b') G F) -» & = &'). 

The domain of a function F, written as Dom(F), is the set defined by 

Dom(F) = {a G (J(U F) ■ 36 (a, b) G F}. 

There are some further important sets associated with functions, as in the 
following definitions. 

Definitions 

Suppose that the set F is a function. 

The range of a function F, written as Range(F), is the set defined by 

Range (F) = {b G U(U(^)) : 3a (a, b) G F}. 

Suppose that X is a subset of Dom(F). Then the restriction of the 
function F to X, written as FJx, is the set 

{(a, b) G F : a G Xf 

In general, if G is a function with GCF, then G is said to be a restriction 
of F and F is said to be an extension of G. 

Note that with this definition of a function as a set of pairs with a special 

property, two functions are equal exactly when they are equal as sets. 

Dom(F) is a set by ZF4 and ZF6. 

Range (F) is a set by ZF4 and 

ZF6. It is also called the image set 

of the function. 

F\x is a set by ZFf. It is a 

function with domain X - see 

Exercise 4.30. 

In many mathematics books, two 

functions are equal only when they 

have the same codomain, as well as 

having the same graph. 
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Exercise 4.28___ 

Let F be the function {(0,1), (1,2), (3,1)}. Write down the elements of each 
of Dom(F), Range(F), and F|2. 

Solution 

Dom(F) = {0,1,3}; 

Range(F) = {1,2}; 

F|a = {(0,l),(l,2)}. 

Exercise 4.29_ 

Is the empty set 0 a function? 

Solution 

We have not insisted that there are any ordered pairs in the set F representing 

a function. And the property 

VaVfrVh'(((a, b) E F A (a, b') E F) ->• b = b') 

is vacuously true when F is empty. Thus 0 is a function. 

Exercise 4.30- 

Let F be a function and X a subset of Dom(F). Show that F\x is indeed a 

function with domain X. 

Exercise 4.31- 

Let & be a set of functions which has the following property: 

for any f,g E £?, / C g or g C /. 

Show that (J is a function and describe its domain in terms of the domains 

of the functions / in W. 

An important set of functions is the set XY of all functions from a set Y to a 

set X. Every such function is a subset of Y x A, so is an element of &>(Y xX). 

This allows us to define XY as a set using the axiom of separation as follows. 

Definition 

Let X,Y be sets. Then the set of all functions from Y to X, written as 

Xy, is defined by 

XY = {Fe &>(Y x X) : F is a function}. 

Is the notation meant to look like exponentiation? Yes, it is! The reason will 

become clearer in Chapter 6 when we look at cardinal arithmetic. For the 

moment, reflect on the fact that the number of functions from a ^/-element set 

Y to an rc-element set X, where x,y E f^l, is xy, which matches the notation 

XY for the^et of all these functions. 

We might occasionally need a formal representation of sequences by sets. A 

sequence {xn) can be regarded as a set of ordered pairs {(n,xn). n E f^J}. this 

Recall that 2 = {0,1}. 

The argument is essentially that 0 

is a function because it is not the 

case that it is not a function! 

W is said to be a chain under 

ordering by C, or a C-chain for 

short. 

For each of the y elements of Y, 

there are x independent choices of 

its image in X under a function. 

This gives x ■ x • ... • a: different 

y 
functions. 
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is as good a way as any of associating an object with each n E TV. Formally, 
we have the following. 

Definitions 

A set S is said to be a sequence of elements of the set C if S is a function 
with domain N and codomain C. We can write (S'(n)) for this sequence. 
We shall periodically follow standard mathematical practice by referring 
to the values of the function S as elements of the sequence. 

There’s one minor problem with this definition and this is that we don’t yet 
know that our system so far guarantees that N, as we constructed it in Chapter 
3, is a set. In fact it can be shown that the system so far does not guarantee 
the existence of any infinite sets, so that a further axiom is required, which 
we shall look at in the next section along with two further axioms of ZF. 

Zermelo’s main objective in producing axioms was to solve an important prob¬ 
lem arising from Cantor’s work. And a major objective of this book is to 
describe Dedekind’s and Cantor’s work within the framework of these ax¬ 
ioms. But a subsidiary objective has to be ensuring that the theory avoids 
contradictions like Russell’s paradox. 

Exercise 4.32_ 

Let x be a set. By the axiom of separation, there is a set y defined by 

y = {z Ex:z £ z}, 

which is similar to the construction involved in Russell’s paradox. Is there 
anything paradoxical about this set yl 

Solution 

To match Russell’s paradox, we would have to have that if y E y then y g y, 
and if y y then y E y. 

First, what happens if y E yl Then indeed y is a 2 E x for which z g z, so 
that y y, giving a contradiction. We can thus conclude that y 0 y. 

But y fL y no longer automatically leads to the contradiction, as with Russell’s 
paradox, that y E y. This is because there is no reason to suppose that y is 
an element of x. Were it the case that y Ex, as well as y g y, so that y is 
a z E x for which z z, we could indeed conclude that y E y, giving us a 
contradiction. All this last argument does is to force us to conclude that in 
fact y is not an element of x, assuming that we are fighting to the last to 
avoid contradictions in ZF\ 

The work of Kurt Godel in the 1930s has the consequence that the consistency 
of ZF cannot be proved within ZF. So we cannot be sure that the axioms of 
ZF avoid some ultimate contradiction. The same applies to a very broad 
class of alternative axiom systems, so ZF is not at any particular fault. The 
important feature of the axioms is that they provide a framework for much of 
mathematics, especially the theories of the natural numbers, of the reals, and 
of infinite sets, and that so far no one has derived a contradiction from them. 

We would normally write a 

sequence as (xn), using subscript 

notation, and being a bit casual in 

using n instead of n. And strictly 

speaking xn shouldn’t be called an 

element of the sequence, as within 

ZF it is in fact an element of the 

range of the function representing 

the sequence. 

Note that we have not definitively 

shown that y g x. It might be the 

case that there is some set x for 

which the y is an element of x, 

from which it would follow that ZF 
is inconsistent. All we have really 

shown is that Russell’s short and 

snappy argument doesn’t 

automatically work for our set y. 

A system is consistent if one 

cannot derive a contradiction 

within it. 
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For convenience we shall assume from now on that ZF is consistent. This will 

enable us to distinguish between proper classes and sets: a class is a proper 

class and not a set when assuming that it is a set leads to a contradiction. 

Thus we shall say that {x : x a;} is not a set and is a proper class; and 

likewise the absolute complement of a set x, namely {z: z & x}, is not a set 
(by Exercise 4.24). 

This is a key assumption. It 

essentially relieves us from making 

statements of the form ‘if X is a 

set then we can derive Russell’s 

paradox within ZF'. We can 

instead say lX is not a set’. 

Further exercises 

Exercise 4.33__ 

Which of the following statements are true for all sets A and B and which 

are false? In each case either prove the statement or give a counterexample 
as appropriate. 

(a) \J(AUB) = LUu(J B 

(b) n(AnR) = n^nn B 

(c) (J(A n B) = LUn|J B 

(d) f|(A U B) = n^nn B 

(e) n (Aflfl) = ruu n B 

(f) U &(A) = A 

(g) ■ u ^(A) 

(h) &{A x B) = &>{A) x &>{B) 

Exercise 4.34- 

Let M be a non-empty set. Explain why 

{Ax {A}: AC M,A^ 0} 

is a set. 

Exercise 4.35_____ 

In Chapter 2 we defined real numbers in terms of rationals, rationals in terms 

of integers, and integers in terms of natural numbers. Assuming that N is a 

set within ZF, from which sets will we be able to separate out the sets Z, <Q> 

and IR? Recall that an integer k in Z was defined as an equivalence class of 

pairs of natural numbers, so that k can be represented as a particular subset 

ofNxN. This means that k G x N), so that Z can be separated out of 

the set x N). 

(a) Treating real numbers as being given by Dedekind cuts of rationals (and 

the rationals as being given by equivalence classes of pairs of integers, 

etc.), show that R is a subset of 

x N) x x N))). 

(b) Find a similar expression in terms of N for the real numbers treated as 

equivalence classes of Cauchy sequences of rationals. 
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Exercise 4.36- 

Use appropriate axioms out of ZF1 to ZF6 to show that neither of the fol¬ 

lowing classes is a set. 

(a) {a;: x is a singleton} 

(b) {x : x is an ordered pair} 

Exercise 4.37- 

In Section 3.4 of Chapter 3 we defined X to be finite when there is a bijection 

/: n —> X for some neN. Show that lX is finite’ is representable by a 

formula within our formal language. 

4.5 Axioms 7 to 9 
We now come to the last three axioms of ZF. These have very different char¬ 

acters. One will ensure both that N is a set and that there are infinite sets 

(the latter being the main point of the book). The other two are considerably 

more technical, but one of them will have huge benefits, including underpin¬ 

ning defining functions and sets recursively within ZF, while the other will 

give an agreeable structure to the universe ‘V of sets. We shall state the 

axioms and explain them in detail later on. 

Axioms of ZF 

ZF7: Axiom of infinity 

3x(0 £ x A Vy(y £ x —* y U {y} £ x)) 

There is an inductive set. 

ZF8: Axiom of replacement 

Vx3yVy'(y' £ y -b- 3x'{x' £ x A <f>(x', y'))), where <f)(s,t) is a 

formula (possibly referring to named sets) such that 

Vs3f(</>(s, f) A Vt\(f)(s,t') -y t' = t)). 

If <f>(s, t) is a class function, then when its domain is 

restricted to x, the resulting images form a set y. 

ZF9: Axiom of foundation 

Vx3y(y £ x A xh\ y — 0) 

Every set is well-founded, i.e. contains an e-minimal element. 

What does the axiom of infinity have to do with infinity? Axiom ZF7 guar¬ 

antees that there is an inductive set, so that we can define N as in Chapter 

3 and show that N is a set within ZF. We can then define both ‘finite’ and 

‘infinite’ within ZF in terms of this set N, as done in Section 3.4. And we can 

then show that the set N itself is infinite, as in Exercise 3.39 of Section 3.4 so 

Remember that this requires 

showing that if either is a set, then 

Russell’s paradox or some other 

contradiction can be derived in ZF. 

Zermelo’s original axiom of infinity 

was in a slightly different form. See 

Exercise 4.52. The other two 

axioms were added later (by 

Fraenkel and others) to enrich the 

formal theory. 
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that there is an infinite set. It can be shown that the remaining axioms of ZF 

do not entail that there is an infinite set: there is an interpretation of these 

axioms in which every set is finite. Given that the excitement of Cantor’s 

work lies in the theory of infinite sets, it is thus crucial that we have an axiom 

like ZF7 guaranteeing the existence of at least one such set. It is perhaps 

remarkable that from an axiom asserting the existence of just one infinite set, 

it follows that there are many more, as we shall see in later chapters. 

Exercise 4.38___ 

In Chapter 3 we defined N as the intersection of all inductive subsets of any 
inductive set y. Explain why N is a set within ZF. 

Solution 

By the axiom of infinity there is an inductive set x. Then <?{x) is also a set, 

so that by the axiom of separation 

{z € 3°(x): z is inductive} 

is a set. Then by Exercise 4.22 in the previous section 

f]{z 6 3°[x) : z is inductive} 

is a set; and by definition, this is N, so that N is a set. 

The axiom of replacement, ZF8, was not one of Zermelo’s original axioms. 

Fraenkel and others noticed that these axioms did not imply the existence of 

a set 

{ftl, ^(N), ...}, 

which has significance in Cantor’s theory of infinite sets. The axiom of replace¬ 

ment makes sure that this is not only a set, but also has a host of desirable 

consequences. Not the least of the latter is that we can define functions on 

N by recursion, as we shall show later in this section; and perhaps even more 

importantly, we can do the same for functions on ordinals, as we shall see in 

Chapter 8. 

Let us look at what the axiom of replacement says. The key ingredient is a 

formula t) with the property that for every set s there is a unique set t 

such that t) holds. So <j>(s, t) is rather like a function. 

Exercise 4.39----- 

Why might 0(s, t) not actually describe a function in ZF? 

Solution 

Corresponding to <f>(s,t) is the class of ordered pairs 

{{s,t) : ) holds, s any set}. 

If this class is a set, it would indeed be a function within ZF. But if it is a 

set, so is the class of first coordinates of the ordered pairs it contains, namely 

the universe . But is not a set, so neither is the class corresponding to 

lz is inductive’ is easy to express in 

our formal language. 

We shall show that this is a set 

within ZF at the end of this 

section. 
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Because the pairs (s,t) for which <f(s,t) holds form a proper class, we can 

describe f)(s, t) as being a class function. Now suppose that we restrict this 

class function to a set x as domain, to obtain 

{(s, t): s € x and </>(s, t) holds}. 

This looks very like a function in ZF. Its domain is a set and for each element 

in the domain there is a unique image to which it maps. Indeed we shall 

say that 0(s,f) behaves like a function with domain x. There is just one 

problem! We don’t know to which set the images belong. What the axiom of 

replacement tells us is that there is a set y consisting of these images. 

Exercise 4.40_ 

Use the axiom of replacement to show that if 0(s, t) behaves like a function 

with domain x then it does indeed define a function in ZF. 

Solution 

By the axiom of replacement there is a set y consisting of all ts such that 

(p(s, t) holds for some sGr Thus all the corresponding ordered pairs (s, t) 

are elements of the set x x y, so that by the axiom of separation 

{(s,t) G x x y : <p(s,t)} is a set. Because </>(s,t) behaves like a function, this 

set is indeed a function within ZF. 

As an application of this axiom, we shall provide an alternative argument to 

that we hoped you used in solving Exercise 4.23, which asked you to show 

that if a; is a set, so is {{y} : y G x}. Let cf)(s, t) be the formula 

t = {s}. 

This behaves like a function when its domain is restricted to any set x (as for 

each s 6 x there is a unique t equal to {s}). So by the axiom of replacement 

there is a set consisting of all the corresponding images, i.e. {{y} : y G x] is 

a set. 

We shall look at a major application of the axiom of replacement later in 

this section, where it plays a crucial role in defining functions within ZF by 

recursion. Meanwhile there are a couple of useful technical dodges in its use 

which we shall mention now. First of all, the statement of the axiom, writing 

4>(s, t) just involving two variables s and t, makes it look as though it can only 

be used to define functions of one variable. But for instance a function of two 

variables si, s2 could be represented by a formula t) where s is the ordered 

pair (si, s2). For simplicity we would usually write the formula as <f(si,s2, t) 

rather than </>({si, s2), t). The other dodge is used when we have a unique 

set t associated by a formula t) with each s in a particular set x which 

interests us - our aim being to show that there is a set {t: s £ x A <fi(s,t)} 

using replacement - but we don’t have any set t to associate with sets not in 

this x. All we do is bolt on an extra clause with ‘and’, associating some fixed 
set with each of these extra sets s, as in 

(s 6 x —y (f(s,t)) A (s $ x -A- t = 0): 

this formula is now a class function, and it behaves like a function with domain 

x, so that the axiom of replacement gives that {t: s G x A (j)(s, t)} is a set. 

It seems so ‘obvious’ that <f>(s, t) 

ought to define a function (as a 

set) that ZF8 is an uncontroversial 

axiom, unlike some of the others! 

Note that y is the image set, or 

range, of this function. 

The intended solution for this 

exercise was one using ZF4 and 

ZF5. 

{(s,t) : <f>(s,t)} would be the graph 

of a function of one variable 

mapping s to the t such that 

4>(s,t). 

The 0 could be replaced by any 

fixed set. 
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Let us now have a look at ZF9, the axiom of foundation. This says that each 

set x contains an element y such that x fl y = 0. This y is said to be an 

G-minimal element of x and in general a set might have more than one such 

element: e.g. {{1}, {1,3}, {{1}, 2, {1,3}}} contains two G-minimal elements, 
{1} and {1,3}, while the other element {{1}, 2, {1,3}} is not G-minimal, as 

it has elements which are also elements of the original set. As you can see, 

this is a somewhat more obscure axiom than some of the others - it may 

not be immediately obvious what its significance is! Try the next exercise for 
yourself, to see one of its desirable consequences. 

Exercise 4.41 ___ 

(a) Let z be any set. By using the axiom of foundation with x = {z} show 

that z z. 

(b) Use the first part to deduce that the universe "V of all sets is not itself a 

set. 

Solution 

(a) As z is a set, so is {z}. By the axiom of foundation there is an element y 

of {z} such that {z} D y = 0. As the only element of {z} is z, this y can 

only be z, so that 

{z} nz = 0. 

This means that the element z of the {z} is not in the other set involved 

in this intersection, i.e. z $ z, as required. 

(b) If y was a set z, then by definition we would have z G z, contradicting 

the result of the first part above. 

The result of this last exercise can be regarded as a special case of the following 

theorem. 

Theorem 4.3 No infinite descending G-chains 

Suppose that (xn) is a sequence. Then this sequence cannot form what 

is called an infinite descending E-chain, i.e. we cannot have 

... G xn+i G xn G .. • G X2 G X\ G xq. 

Recall that a sequence in ZF is a 

function with domain M. 

Proof 

We shall suppose that the sequence does form an infinite descending G-chain 

and derive a contradiction. We use the axiom of foundation, taking x to be 

the set {xn : n G N}. By the axiom there is some y Ex such that xO y = 0. 

As y G x we must have y = xn for some n. But then Xn+i is an element both 

of x and of y (as xn+i G xn), so that 

Strictly speaking, if we regard a 

sequence as a function with domain 

N, then x is really the range of this 

function. 

xn+i ExDy, 

contradicting that x fly = 0. 
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Exercise 4.42_ 

Use Theorem 4.3 to show the following. 

(a) There is no set x such that x G x. (This is an alternative argument to 

that given in Exercise 4.41.) 

(b) There are no sets x, y such that x G y and y G x. 

Solution 

(a) If x G x, then there is an infinite descending G-chain 

...GxGxG...GxGxGx, 

contradicting the result of Theorem 4.3. 

(b) This one is left for you! 

Take any set xo- Imagine investigating its elements, then their elements, and 

so on. This will give rise to lots of descending G-chains 

... G xn G ... G X2 G Xi G Xq. 

As a consequence of Theorem 4.3 all such chains are finitely long. What 

set can the bottom member of such a chain be? It has to be a set with no 

elements, so it can only be the empty set 0. 

Exercise 4.43_ 

For one of these descending G-chains, say 0 G xn_i G ... G x2 G xi G Xo, 

what sort of set xn_i might come just above the bottom member of the 
chain? 

Solution 

It is tempting to say that xn_i has to be {0}, but the situation could be 

much more complicated than this. In general xn_i might have lots of other 

chains going down through it, not just the one we were given, e.g. 

xn-i = {0,2} 

xn = 0 2 

In spite of this complication, a consequence of the axiom of foundation, along 

with the other axioms of ZF, is that all sets are built up from the empty 

set. Indeed, thanks to this axiom one can show that the universe of sets ‘V 

can be constructed by an iterative process starting from the empty set and 

repeatedly forming power sets and unions. This process, forming 

Taking each xn as x in Theorem 

4.3. 

This can be expressed more 

formally using the idea of transitive 

closure. See Exercise 4.53 at the 

end of the section. 

Recall that 0 = 0, 1 = {0} and 

2 -{0,1}. 
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what is called the cumulative hierarchy of sets, begins as follows: 

5^0 = 0, 
^n+ = for n 6 N, 

and collects together all these by forming 

U{^n:neN}. 

This latter class is a set, as a consequence of the axiom of replacement: let’s 

call it X. As AT is a set, we can carry on with the process, repeatedly taking 
power sets, giving 

X, ^>(X), &(#>(X)), &(0>(<?>(X))), ..., 

taking the union of these along with all the earlier ^ns 

IK^o, n, n, •••, X, &>{X), &(&(X)), <?(<?(‘Ptf))), ...} 

then taking power sets again, and so on. It can be shown that every set will 

eventually appear as an element of one of the sets in this hierarchy. It would 

clearly be very useful to have a way of labelling the sets like X and HP(X) that 

follow on from the T^s so that we can count where they lie in the hierarchy. 

We shall be able to do this using ordinals, which we shall discuss in Chapter 

8- 

Strictly speaking, these ?4»s are 

defined by recursion, which we 

shall soon justify as Theorem 4.5. 

When we have defined the ordinal 

u;, we shall write this X as 

We shall look at this again in 

Chapter 9. 

Exercise 4.44_ 

Give a sketch of the descending 6-chains (along the lines of our solution to 

Exercise 4.43) starting with the set N as xq and explain why none of these 

chains is infinite (without reference to Theorem 4.3). 

To end this chapter, we shall now give a proof of a version of the recursion 

principle for N used in Chapter 3. We delayed giving a proof of this until 

we had established N as a genuine set within ZF (requiring, not least, the 

axiom of infinity) and had other important machinery in place, e.g. functions 

represented by sets within ZF. Much use will be made of induction - scarcely 

surprising, as this is the key feature of N - and one crucial step will exploit 

the axiom of replacement. 

Theorem 3.11 of Section 3.3, 

recursion on M, is the special case 

when Y is the set N. 

Theorem 4.4 The recursion principle 

Let yo be any element of a set Y and h: N x Y —> Y a function on 

pairs (x,y) ENxF. Then there exists a unique function f:N —>Y 

such that 

/(0) = yo, 

/(n+) = h(n,/(n)), for all n 6 fol. 

Proof 

It will be helpful, just for the purposes of this proof, to give a name to a 

function which approximates to the desired / in the following sense. We 
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shall call g an n-function, for n G N, if the following hold: 

(i) g is a function; 

(ii) the domain of g is the set n+; 

(iii) #(0) = y0; 

(iv) for all i 6 n, g satisfies the rule g(i+) = h(i,g(i)). 

We shall show that there is a unique n-function, let’s say gn, for each neN 

and that these can be arranged in a C-chain 

9o C gx C g2 C ... C gn C gn+ C .... 

We shall then define / as the union of this chain (this is the step that requires 

the axiom of replacement) and check that it has the required properties. First 

of all we need the following lemma. 

Lemma: Suppose that g is an n-function and g' an n'-function. Put m 
equal to n fl n'. Then 

^|m+ — 9 |m+ • 

Proof of Lemma: We shall use induction to show that g(i) = g'(i) for all 

elements i of m+. Both g(0) and g'(0) are defined to be y0, so the result 

holds for i = 0. Suppose now that the result holds for i G m, so that 

g(i) = g'(i): we shall show that it also holds for i+. We have 

<?(i+) = h(i,g(i)) (as g is an n-function) 

= h(i,g'(i)) (by our assumption that <?(i) = </(i)) 

= g'(i+) (as g' is an n'-function), 

which shows that the result holds for i+, as required. Induction gives that 

the result holds for all i G m+, completing the proof of the lemma. □ 

As a consequence of this lemma, if both g and g' are n-functions (so that 

n = n' in the lemma), then g = g'. Thus if there is any n-function, it is 
unique. 

We shall now show that there is an n-function, which we shall call gn, for each 
n G N. We shall do this by induction on n. 

For n = 0 we require a function g0 with domain 0+. As the only element of 

the domain is 0, all we need do is to set po(0) equal to y0 to guarantee that 

g0 is a 0-function. So define g0 as a set of ordered pairs by 

9o = {(0,y0)}. 

This is indeed a function with domain 0+ satisfying requirements (iii) and 
(iv) (the latter vacuously) for a 0-function. 

For the inductive step we assume that an n-function gn exists for n and show 

that there is an n+-function. All we need to do is bolt an extra ordered 

pair onto gn to cope with the extra element n+ in the domain, n++, of an 

n+-function; and the extra pair simply has to meet requirement (iv) for an 
n+-function. So we define gn+ by 

9n+ r9nU {(n+, h(n,gn(n)))}. 

Remember that functions are 

represented by sets of ordered 

pairs. 

Between them (iii) and (iv) cover 

the values of ^(j) for all j in n+, 

the domain of g. 

Remember that each g„ is a set. 

By Exercise 3.12 in Section 3.2 

n fl n' equals min{n, n'}, and is 

thus a natural number, one of n 

and n'. 

As every element of m+, other 

than 0, is of the form i+ for some 

i € m, our argument does cover all 

the elements of m+. 

0+ = 0U {0} 
= 0 U {0} 
= {0} 

Formally within ZF we show that 

{n E N : 3g(g is an n-function)} is 

inductive. And we can represent 

lgn is an n-function’ by a formula 

along the lines of 

((<7„ is a function) 

A Dom(<7n) = n+ 

A ffn(0) = yo 

A Vi(i G n -+ gn(i+) = h(i, gn(i)))). 
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We shall leave it as a straightforward exercise for you to show that this gn+ 

meets all the requirements to be an n+-function. The existence of an 
n-function for each neN then follows by induction. 

We shall now construct the required function /. Prom our earlier lemma it 
follows that if m € n (so that m n n = m) then 

9m = 9m\m+ (m+ is just the domain of gm) 

— 9n|m+ (by the lemma, as m = m n n) 

Q gn- 

We can thus regard all the <?ns as forming a C-chain 

9o C gx C g2 C ... C gn C gn+ C .... 

We define / to be the union of this chain, i.e. 

/ = U{Sn : n G N}, 

The clause (s 0 —> t — 0) in 

t) ensures that for all sets s, 

not just those in M which really 

interest us, there is a unique set t 
for which holds. 

Prom the result of Exercise 4.31 in the previous section, it follows that / is 

a function with domain equal to the union of the domains of the gn, namely 

N. Whenever m e n we have </m C Q /, so that /(m) = gn(m). Thus we 

have 

and shall show that this satisfies the requirements of the theorem. But we 

must first show that / is a set in ZF. This follows from the union axiom once 

we have shown that {<?n : n £ is a set. And this latter fact follows from 

the axiom of replacement taking the formula <f>(s, t) to be 

(s G N —> (t is an s-function)) A (s^N -> t — 0). 

We have shown that for each natural number n there is a unique n-function, 

so that <f>(s, t) is a class function. Taking x in the axiom of replacement to 

be the set N, the resulting set of images is {gn ; n € so that the latter is 

indeed a set. 

/(0) = pn(0) for any n 

= Vo; 

and for any n£ N we have 

/(n+) = £n+0+) 
= h(n,gn+(n)) (as gn+ is an n+-function) 

= h(n, /(n)). 

Thus / is the function required for the theorem. 

There is one final detail of the theorem to be checked, namely that the function 

/ is actually unique. This is left for you to check, as part (b) of the next 

exercise. 
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Exercise 4.45_ 

Complete the proof above by filling in the following gaps. 

(a) Show that if gn is an n-function, then gn+ defined by 

9n+ =JnU {(n+,h(n,£n(n)))} 

is an n+-function. 

(b) Show that if two functions / and /' have the desired properties of Theorem 

4.4, then / = /'. 

Among the applications of this version of the recursion principle is in under¬ 

pinning the proof of Theorem 3.3 of Section 3.1, which shows that two Peano 

systems are isomorphic. 

To round off this chapter, we would like to introduce one further, even more 

powerful, version of the recursion principle. Rather than state it straightaway, 

let us look at a situation which it will resolve. We mentioned earlier that the 

axiom of replacement was added to Zermelo’s axioms when it was found that 
the class 

{N, ^(N), ...} 

could not be shown to be a set. This class has particular significance within 

Cantor’s theory of infinite sets, hence the interest in it being a set. We would 

like to argue as follows. Use Theorem 4.4 with h defined by h(x, y) = &*(y) 
to define a function / with domain N by 

/(0) = N, 

/(n+) = ^(/(n)), for all n G N. 

Then Range(/), which is precisely the class we want, is a set. 

Exercise 4.46__ 

There is a flaw in our argument defining the / above. What is it? 

Solution 

The statement of Theorem 4.4 requires a set Y for which h: N xY —» Y is a 

function. In this case Y would have to include as a subset precisely the class 

{N, ^(M), ...} which we are trying to show is a 
set! 

One might easily think that this flaw means that what otherwise looks like a 

desirable and natural mathematical definition of / is doomed. But in fact the 

statement of Theorem 4.4 can be modified by replacing the function h by what 

we have described earlier as a class function h: N x 'V —\ "V, corresponding 

to a formula (f>(x, y, z) such that for each pair of sets x, y there is a unique set 

z such that y, z) holds. Here we would take 0(®, y, z) to be the formula 

2 = 3°{y), 

which yields the class function h where h(x, y) = &>(y) for all x e N and all 

sets y. The modified form of the theorem is as follows. 

This set corresponds to the 

cardinal number We shall meet 

such numbers later in the book. 
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Theorem 4.5 Recursion principle for N, class form 

Let <j>(x,y,z) be a formula of set theory such that for each x E N and 

set y there is a unique set z such that (j)(x,y,z) holds. Thus (fr(x,y,z) 

essentially defines a class function 

h: Nx'T — 

where 7Z is the universe of sets. And let y0 be a given set. Then there 

is a unique function / with domain N such that 

/(0) = Vo, 

/(n+) = h(n,/(n)), for all n G N. 

Proof 

The proof is exactly the same as that of Theorem 4.4! The only place where 

one has to be slightly more conscious of what’s going on is the stage left as 

part of Exercise 4.45, in showing that gn+ defined by 

9n+ =5nU{(n+,/i(n,gn(n)))} 

is actually a set (which is part of what is required for it to be a function). 

As the induction hypothesis at this stage of the proof was that gn is a func¬ 

tion, this means that there is a unique set z, namely h(n,gn(n)), such that 

<(>(n,gn(n),z) holds. Then by the ordered pair construction we have that 

(n+, h(n, <7n(n))) is a set, so that the singleton {(n+, h(n,gn(n)))} is a set, 

giving that the union gn U {(n+, h(n, gn(n)))} is a set. ■ 

We frequently disguise the use of this theorem by saying that we are defining a 

sequence of sets (An), rather than saying that we are constructing a function 

f with domain bl. An immediate consequence of the theorem is that the / 

has an image set, which we would write in terms of the Ans as {An : n E !^J}. 

This sort of construction is so common that we shall honour it as the following 

loosely stated theorem, which is a simple consequence of Theorem 4.5. 

Theorem 4.6 

Suppose that g: ^ ^ is a class function and let yo be a given set. 

Then a sequence of sets (An) can be defined by 

Ao = yo, 

An+i =g(An), for all n e N, 

and {An : n E N} is a set. 

We have now seen all the axioms of Zermelo-Fraenkel set theory. These axioms 

provide the most widely used basis for both a formal framework within which 

mathematics can be done and the study of sets themselves. For the rest of the 

book we shall usually be very relaxed about the use of these axioms, rarely 

referring to them in any detailed way. Rest assured that the new ideas we 

shall be describing, primarily Cantor’s work on infinite sets, can be rigorously 

Once / is known to be a function 

in ZF, it then has an image set. 
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described within the theory, and that theorems about them can be shown 

to follow from the axioms. But there will be occasions where we have to be 

very careful to explain that certain sets, or constructions involving them, can 

really be represented within the theory, not least so that we can be reasonably 

confident that we are avoiding contradictions. And in the next chapter we 

shall investigate an area where such caution is needed. The subject of the 

chapter is the only one of Zermelo’s original axioms which was deliberately 

not included in the eventual list of axioms of ZF, because of its subtle and 

controversial nature: the axiom of choice. 

Further exercises 

Exercise 4.47_ 
Show that IJ N = 

Exercise 4.48_ 
Show that the ordered pair (x, y) could be defined in ZF as {x, {x, y}}. [Hint: 
you will need to exploit ZF9.] 

Exercise 4.49___ 
Explain why there are sets for all n G N and a set {2^ : n G N} such that 

^n+ = &>(%), for n G N. 

Exercise 4.50_ 
(a) Show that = 1, 5^ = 2 and % = {1}. Compute ^4 and ^5. 

(b) Show that n C 2^ for all nGN (so that n G !Z/n+). Deduce that 

N C (J{^n:nG N}. 

(c) How many elements does have for each nG N? 

Exercise 4.51_ 
Show that if m, n G N with m < n then fmCfn. [Hint: use induction on n 
for fixed m.] 

Exercise 4.52_____ 
Zermelo’s original infinity axiom was as follows: 

3x(0 G x A Vy(y Gi -4 {y} G x)). 

(Zermelo actually used 

0, {{{0}}}, ••• 

to represent the natural numbers.) 

Show that the existence of such a set x follows from the axioms of ZF. 
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Exercise 4.53____ 
Let Y be a set. A function / with domain N is defined by 

/(0) = Y, 

/(n+) = |J /(n), for all neN. 

The transitive closure of Y, written as T(Y), is defined by 

T(Y) = URange(/), 

so that, informally, 

T(Y) = rulj^uUU^uUUU^---- 

(a) Explain why T(Y) is a set. 

(b) Show that if x £ y £ T(Y) then x £ T(Y) (or equivalently if y £ T(Y) 
then y C T(Y)). 

(c) Show that if X £ Y then T(X) C T(Y). 

(d) Let Z be a set with the properties that Y C Z and that whenever 

x £ z £ Z then x £ Z. Show that T(Y) C Z. 

(e) By the axiom of foundation there is a y £ T(Y) such that y fl T(Y) = 0. 

What set must y be? Prove your answer. 

T(Y) is said to be E-transitive. 

So that T(Y) is the smallest 

£-transitive set containing Y as a 

subset. 

V 
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5 THE AXIOM OF CHOICE 

5.1 Introduction 

In this chapter we shall have our first look at the only one of Zermelo’s original 

axioms not to be included among the ZF axioms, the axiom of choice. This 

principle, initially very controversial, turns out to play a pivotal role in the 

theory of infinite sets and in much ‘ordinary’ mathematics involving infinite 

sets. 

One of the most interesting activities of abstract mathematics is finding new 

mathematical objects. This involves describing the object and convincing 

others that the object does exist, often by giving a construction. The issues 

of the existence of objects, what constitutes a description and what constitutes 

a construction are heavily interlinked, and full of complications. For instance 

{x : x £ x} appears to describe a set, but, as you know, such a set cannot exist 

without creating a contradiction in set theory. And there are arguments which 

justify the existence of an object, for instance by assuming its non-existence 

and obtaining a contradiction, without giving a way of constructing it. 

Set theory is very careful about asserting the existence of set objects: some 

of the axioms assert the existence of sets, and others assert the existence 

of certain sets on the basis of constructions involving known sets; and the 

development of the subject includes showing that other, more sophisticated, 

constructions of sets are legitimate. The axiom of choice, which can be ex¬ 

pressed in several provably equivalent ways, likewise asserts the existence of 

a set - usually in the form of a function. One of the reasons why the axiom 

is of interest is that for some people it sounds plausible that the existence 

of this function should already be deducible from the other standard axioms; 

whereas for others the axiom seems unacceptable because it doesn’t give a 

construction of the function. Before we state the axiom, think about the 

following question: 

Suppose that /: A —y B is an onto function. Is there a one-one function 

g: B —y A such that f(g(b)) = b for all b G B1 g is called a transversal. 

Do you feel that the answer to this question is yes, or no, or it depends? What 

would constitute an argument that there is such a function gl Although there 

might be more roundabout methods, a direct construction of g would surely 

be one’s first choice. 

Exercise 5.1 _ 
Let /: IV—y B be an onto function. Show that there is a one-one function 

g: B —y N such that f(g{b)) = b for all b € B by giving a construction of g. 

Solution 

We shall construct g by specifying g(b) for each b G B. The requirement that 

f(g(b)) = b means that g(b) has to be an element of the set /_1 ({6}). As / /_1({6}) means {a e N : /(a) = b}. 
is onto, we are guaranteed that this latter set is non-empty, for each b. How 
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5.1 Introduction 

might we specify a member of this set? - after all, we don’t know too much 

about /. Luckily we know lots about N, in particular that each non-empty 

subset of N has a least element: so we shall specify g(b) by defining it to be 

min f-\{b}). 

An advantage of the above construction of g over simply asserting that some 

g exists, is that whoever uses it with a given / will always end up with the 

same g as any other user. For one of us to assert that g exists without this 

sort of precise construction does not allow us to share g in quite the same 

way. 

Exercise 5.2- 

Let /: R —> N be an onto function. Does there exist a, g: N —> R such that 

f(g(b)) = b for all b £ N? (Think about this, but not for too long!) 

Solution 

We cannot simply reuse the construction of Solution 5.1, as a non-empty 

subset of R does not necessarily contain a least element (e.g. (—oo, — 3)). And 

we are not allowed to describe g by giving a table listing its values, as such 

a table would be infinitely long, and we want objects like g to have finite 

descriptions. But surely we know enough about R, e.g. its arithmetic and 

order properties, to be able to describe, finitely, a way of obtaining g[b) for 

each b £ N? Alas it can be shown that there is no such way of doing so which 

only uses the framework of the set theory axioms we have introduced so far. 

So we have run into a problem in describing g because R turns out to lack 

some vital piece of structure. But this is for a somewhat general onto function 

/ with domain R. Although the domain and codomain of / are specified, the 

rule of / is essentially arbitrary. To a large extent we are bound to run into 

problems precisely because the rule of the original function / is so arbitrary. 

If we have more information about /, e.g. its rule, we might sometimes be 

able to describe g. 

Exercise 5.3-----—-- 

Suppose that /: R —y R is onto, continuous and non-decreasing. Show that 

there is a g: R —> R such that f(g(b))-b for each b £ R. [You need some 

knowledge of real analysis for this exercise.] 

Solution 

Take any 6eR. It is easy to show that /-1({b}) is a (non-empty) interval 
using the fact that / is non-decreasing and the intermediate value theorem. I C R is an interval if whenever 

If this interval consists of just one point, ab say, then the only candidate for x,y £ I with x < y, then [x, y) C I. 

g{b) is otb. If the interval has more than one point and is bounded below, then 

it has a greatest lower bound, ab say. As / is continuous at ab and takes the 

constant value b just to the right of ab, we have that /(<*&) = b, so that ab is 

in fact the le^st element of /_1({&})- Then we can set g[b) equal to ab. 
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5 The Axiom of Choice 

We can summarize our construction so far by saying that if /-1({6}) is 

bounded below, then g(b) = min /-1 ({&}). Lastly, what if /—1 ({6}) is not 

bounded below? From the given information about / we can show that this 

cannot happen. As / is onto, for any 6 there is an x for which f(x) = 6—1: 

as / is non-decreasing, this x must be a lower bound for /-1({6}). Thus 
/-1({6}) is always bounded below. 

Thus our definition of g is 

g(b) = min/_1({6}). 

Exercise 5.4_ 

Suppose that /: IR —> B is onto, where B is finite. Show that there is a 
g'■ B —> IR such that f(g(b)) = 6 for each b e B. 

Solution 

There seems to be much less solid information to grab hold of than in the 

previous exercise! But as the image set B is finite, you can work your way 

(in a finite length of time) through the elements of B choosing an element 

°f /-1({fr}) to be g(b) for each 6, and then describe your function g to other 

mathematicians by means of a perhaps long but, importantly, finite list of 
cases. 

If this does not satisfy you, you can dress up the argument by using induction 

on the number of elements of B. A suitable inductive hypothesis would be 

that for any onto function /: C —> D, where D has n elements and C C IR, 

there is a suitable g: D —> C. Completion of the proof is left to you. 

This last exercise reminds us of an important feature of what constitutes a 

construction of something which we claim to exist: we should be able to 

describe the construction in a finite way, as well as in a way which enables 

others to replicate our construction. A long finite list of values of g{b) may 

be an unsatisfying or boring way of describing g (compared to e.g. a single 
general rule for g(b)), but it does describe it. 

Let us summarize what we have gleaned so far about our original problem 

concerning functions of the form /: A —* B and the existence of a corre¬ 

sponding function g. If B is finite there is no problem in describing g. But 

if B is infinite we need further information, about A or / or both, to ensure 

we can describe g. And if we cannot describe g, other than by stating the 

property desired of such a g (i.e. that f(g(b)) = b for each 6), on what basis 

can we assert that g exists? It is to resolve this problem that we introduce a 

special axiom, the axiom of choice, which we do in the following section. And 

it should come as no surprise that this axiom is intimately connected with 

issues about infinite sets, as we shall see in later chapters of the book. 
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5.2 The axiom of choice 

5.2 The axiom of choice 

There are number of different ways of formulating the axiom of choice - Zer- 

melo, who first introduced it, used several himself. In this section we shall 

give one formulation and prove its equivalence to various others. 

Axiom of choice 

Suppose that SF is a family of non-empty sets. Then there is a function 

h: & —> (J 7F such that for each A G h(A) G A. 

h is said to be a choice function for 

A choice function h ‘chooses’ an element, namely h(A), for each member of 

the family SF. The axiom doesn’t say how the choice is made, only that such 

a function exists. 

Bertrand Russell [21] gave an entertaining illustration of the use of the axiom 

of choice, as follows. Think of how one might describe how to choose a shoe 

from each of an infinite set of pairs of shoes. By ‘description’ we mean much 

more than ‘Pick any old shoe at random’: we mean some sort of description 

which can be passed to other people and used by them so that, for any partic¬ 

ular pair of shoes, each person would take the same shoe - of course, we are 

really talking about a choice function on the set of pairs of shoes: the people 

are really applying this function, not making their own individual choice. 

Without making even more of a meal of the situation, we can easily specify 

such a choice function by means of a finite description, for instance 

Always choose the left shoe from each pair. 

Now try to do the same thing for an infinite set of pairs of socks. There is 

no comparable finite description of a choice function on these pairs of socks. 

The unsubtle approach of specifying a choice function, e.g. by attaching some 

sort of sticky label to one sock of each pair, involves an infinitely long descrip¬ 

tion, and the real issue here, for the abstract world of set theory, is that the 

description should be finite. The axiom of choice simply says that there is a 

choice function, which it conjures up from thin air! 

Back to proper set theory! How does the axiom of choice relate to the question 

discussed in the previous section: 

Suppose that f : C —y D is an onto function. Is there a one—one function 

g: D —y C such that f(g(d)) = d for all d G D? 

Well, given the function /, we need to choose an element out of f~1{{d}) for 

each d G D to be able to define g(d). So define the & in the statement of the 

axiom to be the family of sets {f~1({d}) • d ^ ^}• Then U SF is just C (as / 

is onto), and A G & means A is an And the function h guaranteed 
by the axiom, such that h(A) G A for all AgJ, allows us to construct the 

required function g, by setting 

g(d) = h\r\{d})) for all d € D. 

As pointed out in the previous section, we don’t always need to use the axiom 

of choice to choose an element of / f°r instance T D or if / 

We use ‘family’ to mean ‘set’. 

Note that A C (J F', as A G 

‘Family’ here just means ‘set’. 

A pair of shoes means what what it 

does in everyday life. In 1996 this 

still means two matching shoes, 

one intended for the left foot and 

one for the right foot, of the same 

person! 

Again, in 1996 a pair of socks 

means two socks which cannot be 

distinguished from each other, in 

theory at least! 

Had there been only finitely many 

pairs of socks, such an unsubtle list 

would have been adequate. The 

analogous position for true sets is 

the description of a choice function 

on a finite family of sets by means 

of the full, but nevertheless finite, 

table of its values. 

{/ 1({d}) : d G D} is a set by the 

axiom of replacement. 
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5 The Axiom of Choice 

or C has useful structure, as in the case C = N, where we exploited the fact 

that any non-empty subset of N contains a least element. Although use of the 

axiom seems to have gained widespread acceptance in mathematics (largely 

for reasons with which we shall deal in the next section), it is often regarded 

as preferable to avoid its use where possible. 

Let us now look at some of the equivalent formulations of the axiom and prove 

that they are indeed equivalent to it. 

Theorem 5.1 

The following statements are equivalent to the axiom of choice: 

Disjoint family form 

Suppose that 2F is a disjoint family of non-empty sets, i.e. for any dis¬ 

tinct A, B G A fl B = 0. Then there is a function h: SF —> (J y 
such that for each h(A) G A. 

Power set form 

Suppose that M is a non-empty set. Then there is a function 

h: M) \ {0} —> M such that for all non-empty subsets A of M, 

h(A) G A. 

In both cases above it still seems natural to call h a choice function (for & 

and «9°{M) respectively). The disjoint family form is very subtly different 

from the axiom of choice - you might like to think why. We shall prove the 
theorem by showing that 

axiom of choice => disjoint family form => power set form =>• axiom of 
choice. 

Bear in mind that each statement is really preceded by a universal quantifier, 

‘for all families 3r' or ‘for all non-empty sets M’; and that our proof should 

only use set constructions which are allowed by the other axioms of ZF. 

Proof 

Axiom of choice => disjoint family form 

This implication is trivial. (It’s the reverse implication which requires inge¬ 
nuity!) 

Disjoint family form power set form 

Let M be a non-empty set. Then 3°(M) \ {0} is a family of non-empty sets. 

Alas, we cannot directly apply the disjoint family form of the axiom to this 

family, as in general pairs of subsets of M won’t be disjoint. So we use a trick 

to turn the problem into one involving disjoint sets, by defining a new family 
of sets 

/ = {Ax {A} / 0}. 

Then for 0 ^ A, B C M, we have (x,y) G (A x {A}) n (B x {£}) implies 

x e An B and y G {A} n {B}, which forces y = A — B. So if A and B 
are different non-empty subsets of M, the corresponding members of & are 

disjoint. So we can now apply the disjoint family form to to get a choice 

function g: & —y (J & such that for each A x {A} G we have 

The useful structure of N here is 

that it is well-ordered. Well-order 

is interestingly related to the axiom 

of choice. 

There is a more direct proof that 

axiom of choice =>• power set form 

which doesn’t run into this 

problem. This is left for you as 

part of Exercise 5.9. 

We quite often need this trick to 

turn possibly overlapping sets into 

disjoint sets. Technically & is a set 

because it’s a subset of 

x 
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g(A x {A}) fix {A}. This means that g(A x {A}) is of the form (a, A) for 
some a £ A. 

We can now define the required function h: F(M) \ {0} —> M by 

h(A) — n1(g(A x {A})) for each non-empty ACM, 

where tti is the function 

7Ti: M x F(M) —> M 

(x,y) 1—)■ x. 

Power set form =>• axiom of choice 

Given a family F of non-empty sets, the trick is to define M = \JF. Note 

that if Ae/, then ACM. Now let g be the choice function 

g: F(M) \ {0} —> M as in the power set form of the axiom of choice. This g 

chooses an element out of each non-empty subset of M, including each subset 

which also happens to be an A in F. So to define our choice function h for 

F, we need only take h to be g\$r, i.e. the restriction of g to F, 

h: F —> [jF (= M) 
A 1—> <?(A). ■ 

Each of these three forms of the axiom has its uses, and as they are equivalent 

we shall from now on adopt the following convention: 

Convention 

By the axiom of choice, abbreviated as AC, we mean either the axiom 

as first stated or either of the two equivalent forms in Theorem 5.1. 

Let us now look at some more equivalents to AC. 

Exercise 5.5----- 

We have already shown that AC implies the statement 

Suppose that /: C —> D is an onto function. Then there is a one-one 

function g: D —» C such that f(g(d)) = d for all d G D. 

Prove that AC is in fact equivalent to this statement. 

Solution 

We need to show that the statement implies AC. It turns out to be most 

convenient to take AC in the disjoint family form, so suppose that F is a 

disjoint family of non-empty sets. We’ll need to involve some sort of onto 

function /, and the trick is to take 

f:[jF —>F 
x 1—y the Ac F to which x belongs. 

This / is well-defined as a function, as not only does each x in (J F belong to 

at least one ^member of F, by definition of |J F, but also the condition that 

F is a disjoint family ensures that x belongs to at most one such member. 
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And / is clearly onto. Then the transversal function g: SF —i IJ F such 

that f(g(A)) = A for all A E F is precisely a choice function on F. (The 

only elements of\jF which / maps to A are those already in A: so g(A) has 
to be an element of A.) 

For the next equivalent to AC we need to refine the idea of a Cartesian 

product, like A\ x A2, to cover the Cartesian product of infinitely many 

sets, say an indexed family of sets {A; : i € I}. We cannot simply write 

A; x A# x A;» x ... as this would give an infinitely long expression. What we 

do is treat each member of this infinite product as a sequence (aj)i€/, where 

a, E Aj for each i E I, and define the infinite product as the set of all such 
sequences. This leads to the following definitions. 

Definitions 

Given E Aj for each i E /, the sequence (a.i)i£j is the function 

/: I —> U(^i -i E 1} where f{i) = a* for each i E I. The Cartesian 
product of the indexed family of sets {Ai : i E 1} is the set of all such 

sequences, i.e. of all functions /: I —» (JMi -i E 1} such that f(i) E A{ 
for each i E I. We shall write this product as Ai- 

So, for instance, if I = Z and, for each i E Z, At is the open interval (i, i + 1) of 

IR, then one element of rw ^ is (i + j)t6/, i.e. the function /: Z —> IR \ Z 

defined by f(i) = i + 

For a finite indexed family of sets, e.g. {Ai, A2}, this definition of product does 

not produce the same set as A\ x A2. But there is a reasonable correspondence 
between them. If it isn’t clear from the context which product of finitely many 

sets to take, then stick to the usual one in terms of ordered n-tuples. (For an 

infinite indexed family of sets there’s only the one possibility.) 

Exercise 5.6___ 

(a) Explain why Ax x A2 and Ilie{i,2} Ai are different sets in ZF. 

(b) Show that there is a bijection between Ax x A2 and rize{i 2} Ai- 

Solution 

(a) A typical member of Ax x A2 in ZF is an ordered pair (ai,a2), i.e. 

{{ai}, {ai, a2}}, where ai E Ai,a2 E A2. And {{ai}, {ai, a2}} is a subset 
of £P{Ai U A2). 

A typical member of rLe{i,2} Ai is a function /: {1,2} —► Ax U A2 where 

f(i) £ Ai for each i E {1,2}. Technically within set theory / is a subset of 

{1,2} x (Ai U A2). So the sets Ai x A2 and nig{i,2} Ai contain different 

sorts of element, and cannot be equal. 

(b) Define 6: rU{i,2} A, —» Ax x A2 by 

e(f) = (f(l)J(2)). 

It is straightforward to show that 0 is one-one and onto. 
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Formally, such an indexed family of 

sets should really be represented by 

a function F with domain / where 

F(i) = Ai for each i E I, rather 

than the set of its images 

{Ai : i E I}. Note that the AiS 

need not be distinct. 

(J{Ai:*€{l,2}}=AiUA2 

As a set, a function is represented 

by its graph. 



Exercise 5.7_ 

Show that AC is equivalent to the following statement: 

The Cartesian product of an indexed family of non-empty sets is itself 
non-empty. 

Of course AC is not needed in the case that the indexed family is finite, for 

reasons similar to those in the solution to Exercise 5.4. The familiarity of the 

result for the finite case might make the statement in Exercise 5.7 seem more 

plausible than some of the other forms of AC. 

Exercise 5.8- 

Suppose that Ai = A for each i e /, where 4/0. Is AC needed to show that 

ru/ Ai ^ 0? 

Our discussion so far of AC has been entirely in terms of its significance for 

the basic abstract objects of set theory, particularly sets and functions. In 

the next section we shall look at some of the ways in which AC is used in 

everyday mathematics. 

Further exercises 

Exercise 5.9---- 

Try to find direct proofs (as opposed to those in our proof of Theorem 5.1) of 

the following: 

(a) AC => power set form; 

(b) power set form => disjoint family form; 

(c) disjoint family form =>• AC. 

Exercise 5.10 ---- 

Consider the following statement: 

Suppose that f: A —y B is a one—one function. Then there is an onto 

function g: B —> A such that $(/(«)) — & for each a € A. 

Does the proof of this statement require AC? Is the statement equivalent to 

AC? 

Exercise 5.11----- 

R is said to be a relation between sets A and B if R C A x B. The domain 

of R is the set {a <E A : (a, b) G R for some b <= B}. Recall that a function F 
is a set of ordered pairs such that for each a there is at most one b foi which 

(a, b) € F. Show that AC is equivalent to the statement: 

Suppose!that R is a relation between non-empty sets A and B. Then 

there is a function F with the same domain as R such that F C R. 
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Exercise 5.12_____ 

For each of the following families construct, where possible, a choice func¬ 

tion h for i.e. h: & —> |J & such that for each Ae/, h(A) E A. 

(a) & = &>(Z) \ {0} 

(b) & = &>{Q) \ {0} 

(c) y is ^(R[a;]), the set of all polynomials with variable x and real coeffi¬ 

cients. 

(d) = {Af : f E C|Vj}, where C[z] is the set of all polynomials in z with 

complex coefficients and Af = {z E C : f{z) = 0}. 

Exercise 5.13_ 

Let {A{: i E /} be a (possibly infinite) family of disjoint non-empty sets. What 

conditions need to be imposed on the Ai for there to exist a one-one function 

/: U{Ai :i e 1} —» Ilie/ A i? Prove that / exists under these conditions, 
using AC if you like. 

5.3 The axiom of choice and mathematics 

The axiom of choice arose not so much from any introspection on the nature 

of sets, but as a principle justifying other seemingly valuable pieces of math¬ 

ematics. The particular piece of mathematics which prompted Zermelo to 

formulate AC was the well-ordering principle: 

The well-ordering principle 

Every set can be well-ordered. 

Cantor introduced this principle to develop some of his results on the theory of 

infinite subsets of IR. The principle was very controversial. Some mathemati¬ 

cians, for instance the very influential Hilbert, thought that the special case 

that IR can be well-ordered was well worth investigating. But by and large 

mathematicians doubted WO as a general principle. Zermelo then formulated 

AC specifically to prove WO. This proof was received with some suspicion as 

it related the use of arbitrary choices in some parts of mathematics, hitherto 

somewhat unnoticed and relatively uncontroversial, with a principle which 

was much more controversial. (In fact this suspicion of his proof was what led 

Zermelo to formulate axioms for set theory, to defend his work.) In an atmo¬ 

sphere of heightened awareness of use of contentious principles of reasoning, it 

was discovered that some previously accepted arguments within mathematics 

made use of some form of AC and that there were other useful principles of 

reasoning, such as WO, which didn’t look as though they involved choice func¬ 

tions, but were in fact equivalent to AC. (All this is detailed in the excellent 

book Zermelo’s Axiom of Choice by Greg Moore[22].) To try to settle the 

issue of whether to accept or reject AC, mathematicians hoped to show that 

AC was actually either provable or disprovable from the other axioms of ZF. 

We shall abbreviate the 

well-ordering principle as WO. We 

shall discuss the relationship 

between AC and WO later in the 

book, when we have more 

information about the theory of 

orders. 

As Zermelo wished to prove WO, 

he included AC as one of his 

original axioms. The controversy 

over AC led those who 

subsequently developed his axioms 

not to include it as a basic axiom 

in ZF. 

112 



5.3 The axiom of choice and mathematics 

In 1940 Godel showed that AC was consistent with the rest of ZF, so it was not 

disprovable within ZF. And in 1963 Cohen proved that AC was independent 

of ZF, so could not be proved from ZF. This means that acceptance of AC 

has become more overtly a matter of taste, where one is influenced by the sort 

of mathematics entailed by, or underpinned by, AC. In the following we look 

at some of this mathematics. 

Godel showed that if ZF was 

consistent so was ZF along with 

AC. The consistency of ZF, 

however, cannot be proved within 

ZF, by Godel’s earlier 

incompleteness theorems. 

Exercise 5.14- 

A function /: IR —>• IR is said to be sequentially continuous at a if for every 

sequence (xn) with lim xn — a, we have lim f(xn) = /(a). 
n—>oo n—>oo 

Prove that / is continuous at a, i.e. for every e > 0 there is a <5 > 0 such that 

if \x - a| < 8 then \f(x) — f(a) \ < e 

if and only if / is sequentially continuous at a. 

Where in your argument have you used some form or consequence of the axiom 

of choice? 

Solution 

Suppose that f is continuous at a and that lim xn = a. We shall show that 
n-> oo 

for any e > 0 there is an N such that if n > N then |/(:rn) - f{a)\ < e. 

Given e > 0 there is a 5 > 0 such that if \x — a\ < 8 then | f(x) - f(a) \ < e, 

as / is continuous at a. For this 5 > 0 there is an N such that if n > N 

then \xn - a| < 8, so that \f(xn) - f(a)\ < e as required. So / is sequentially 

continuous at a. 

Conversely, suppose that / is not continuous at a. We shall show that / is not 

sequentially continuous at a, i.e. there is some sequence (xn) with Jim^ xn = a 

for which it is not the case that lim f{xn) = f(a). 
71-+00 

f not continuous at a means that there is some e > 0 such that for any 8 > 0, 

however small, there is an x with \x — a\ < 8 for which \f(x) — f(a)\ > e. So 

for each positive integer n, taking 8 = ~ gives an xn for which \xn — a\ < - and 

|f(Xn) - /(a)| > e. But this means that for this sequence (xn), Jim^^n = a 

and lim f(xn) ^ /(°)- Thus / is not sequentially continuous at a. 
n—yoo 

AC is needed in the second half of the proof, when for each n we choose an 

zn out of the set An = {x : \x - a\ < ± and | f(x) - /(o)| > e}. So we need a 

choice function on the family {An :nG^,n>0}. 

There is no choice of xn as 

something straightforward like 

min An. It is easy to show that 

min An doesn’t exist. 

The above is a standard result in textbooks on real analysis which was proved 

more than 30 years before Zermelo’s work and was apparently accepted with¬ 

out any qualms! 

A standard and fundamental result in the theory of Lebesgue integration is: 

Theorem 5.2 

A countable union of null sets is null. 
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(A subset X of [R is said to be null if for any given e > 0 there is a sequence (In) 

of intervals covering X with total length less than e; i.e. X C |J{/n :neN} 

and ^2 l(In) < e.) 

Proof 

Suppose that X — UfA"™ :m £ N}, where each Xm is null. Then given e > 0, 

there is, for each m, a sequence (Im,n) of intervals covering Xm with total 

length less than +1 ■ We define a sequence (Yk) of intervals by working our 

way through a rectangular array of the /m)Tl as in the following diagram: 

7o,o Iq, i Iq, 2 h,z 

So Y0 = lop, Yi = Jit0, Y2 — Jo,i, Y3 = J2,o and in general Im>n appears in the 

list as Ti(m+n)(m+n+1)+n. It is easy to check that X C (J{*fc : k £ N} and 

that a bound for the total length of the Yk s is given by 

E 'wo = E'(v) + E'«.”)+-+E't7"*.-*)+• • • 
fceM neN 

£ £ £ 
< - H-1- ... H- 

2 4 2m+: 
= £ 

+ ... 

Thus given e > 0 there is a suitable sequence of intervals covering X of length 
less than e. Hence X is null. ■ 

Exercise 5.15_ 

Where in the proof above have we used some form of AC? 

Solution 

There was a sneaky use of AC when we argued that 

... given e > 0, there is, for each 

Xm with total length less than 

m, a sequence 
£ 

2^n+l ’ 

(Im,n) of intervals covering 

There will in general be many such sequences for each m, and we need to use 

some form of AC to choose one for each m in the infinite set N. 

Another consequence of AC for Lebesgue’s work, in the related field of measure 

theory, is that there are non-measurable subsets of the spaces lRn, as we shall 

explain. The idea of measure of a subset of fleshes out intuitions of the 

length of an interval of R or a curve in [R2, of the area of a shape in U2 and of 

If In is any one of the intervals 

(dn, ^n), (n<n, ^n], \p*n , Tn ), [^n, ^n], 
the length l(In) of In is bn — a„. 

This argument is based on that 

used by Cantor to show that <Q> is 

countable, which you will meet in 

Section 6.4. 

You might like to verify that 

J(m, n) = |(m + n){m + n + 1) + n 

defines a bijection J: WxN —>■ N. 
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5.3 The axiom of choice and mathematics 

• • 3 
the volume of a solid in IR . In the Lebesgue theory, a measure is a function 
/i from some set Y of subsets of IRn to IR U {00} with the following properties: 

(i) n(X) > 0, for any subset X in Y\ 

(ii) if X and Y are congruent subsets of IRn, then p(A) = p(T); 

(iii) n is countably additive, i.e. if A0, Xlt X2,..., Xn,... are countably many 
disjoint subsets of IRn, then 

m ( U Xn) = T n(xn) 
VngN / n=Q 

Usually one also imposes some sort of yardstick for a specific measure: for 
instance, for measuring lengths of subsets of the real line IR, one would usually 
define the measure of the unit closed interval, p([0,1]), as 1, and the measure 
of an interval [a, 6] to be b — a. Null sets, as in Theorem 5.2 above, are just 
the sets of measure 0. And it makes sense to regard the measure of IR itself 
as 00. 

X is said to be measurable with 

measure /i(A). 

The need for countable additivity 
is seen in, for instance, probability 
theory, where one often wants the 
probability of some event occurring 
eventually, e.g. after some 
unspecified finite number of moves 
or throws. Modern probability 
theory makes considerable use of 
Lebesgue measure theory. 

The question arises of whether there is a measure on all subsets of IRn. Using 
AC, the answer is no. We shall show that there is some subset of the unit 
circle in IR2, i.e. {(cos a, sin a) : 0 < a < 2n} which is not measurable. Our 
argument will be by assuming that the special subset is measurable, i.e. has 
measurable length, and obtaining a contradiction with the measure of the 
circumference of the whole circle being 27t. 

Theorem 5.3 

There is a subset of the unit circle C with non-measurable length. 

Proof 

Let Pa be the point (cos a, sin a) on C, so that C — {Pa : 0 < a < 27t}. Define 

a relation ~ on C by 

Pa ~ P/3 if and only if (3 — a = qir for some q E Q. 

It is easy to show that ~ is an equivalence relation on the points of C. 

Let re be the rotation of the plane with centre the origin through an angle 0 
anti-clockwise. Then, given Pa, a typical point in C equivalent to it, which 
must be of the form Pa+^^qn f°r some rational q in [0,2), can also be written 
as rqn(Pa) for this q. Thus the set {rqn{Pa) : q G [0,2)} is the equivalence 

class of Pa. 

Now use AC to choose a Pa from each of the equivalence classes and let X0 
be the set of all these Pas, so that X0 contains exactly one point from each 
class. Suppose that this set Ao is measurable. For each rational q E [0,2) let 
Xqn be the result of rotating the set Ao by rqn, so that Xqn is congruent to 
Aq and consequently fi(Xqn) = p(Ao). The construction ensures that Xqns 
for different values of q in [0,2) are disjoint, while we have also shown that 

Note that Pa is the same point as 

Pa+2kn for any k £ Z. 

Define +2n on [0, 27r) along the 
lines of addition modulo n, by 

Oi +2ir (3 = 

j a + (3, if a + (3 < 2ir 
{ a + (3 — 27t, if 27T < a + (3 
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5 The Axiom of Choice 

the union of ail the Xqns must be C. Thus 

KC) = U (U{^9ir: q € [0,2), q rational}) 

= ^ h(Xqn) (Q is countable and p is countably additive) 

ffG[0,2) 
q rational 

= ^ fJ'(Xo) (as each Xqn is congruent to Xo) 

<?e[o,2) 
q rational 

_ f o, if p{X0) = 0, 

\ oo, if /z(X0) > 0. 

7^ 27r (which is the length of C) 

The contradiction arises at the stage where we suppose that Xo is measurable, 

i.e. p(X0) exists. p(X0) does not exist, i.e. the subset X0 has no measurable 
length. ■ 

Note that lurking in the above proof is also a proof that the subset 

{a : P(oc) G Xo} of [0,2n) is not measurable, and it wouldn’t take much to 

turn the proof into one showing that there is a subset of the unit disc, 

{(r cos a, r sin a) :0<r<l,a6 [0,2)}, which is not a measurable subset of 

!R2. 

The existence of non-measurable subsets of IRn, while of obvious importance 

to measure theorists, is nothing like as dramatic as the following theorem. 

Theorem 5.4 Banach-Tarski theorem 
o 

Let 5 be a unit ball in IR , i.e. all points within a sphere of radius 

1. Then S can be partitioned into finitely many subsets which can be 

moved, using translations and rotations, to produce two unit balls. 

This theorem is often described as a paradox! The proof uses AC and is non¬ 

constructive. And most of the pieces of the ball are non-measurable sets, so 
very hard to visualize. 

Should we regard the Banach-Tarski theorem as such an undesirable paradox 

that we should reject the axiom of choice? Or is the axiom of choice such a 

natural or useful principle that we should live with it and its consequences, 

even though some of the latter are a trifle surprising? In the next section we 

shall look at an equivalent principle to AC which helps us to see more of its 

mathematical consequences - of a desirable and non-paradoxical variety! And 

there are further equivalents (not just consequences!) of AC with importance 

in other parts of mathematics which you might encounter within undergradu¬ 

ate mathematics, for instance the following: Tychonoff’s theorem in topology, 

which says that the (infinite) product of compact spaces is compact; and the 

completeness theorem for arbitrary infinite languages in first order predicate 

calculus, which says that a set of formulas is consistent if and only if it has 

a model. And later in the book we shall see more of how AC is intimately 

connected to the theory of infinite sets, and that it has other tempting math¬ 

ematical equivalents. In the author’s, and many other mathematicians’, view, 

We shall show that Q is countable 

in Chapter 6. 

Another way out of the 

contradiction is to reject AC! But 

the point of this chapter is to 

investigate the consequences of AC. 
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5.4 Zorn's lemma 

AC and its equivalents have so many reasonable consequences that it seems 

desirable to accept it as a firm part of mathematics. From this point of view, 

results like the Banach-Tarski theorem and the existence of non-measurable 

sets serve to inform one’s intuition, and lack of intuition, about complicated, 

infinite sets. But as this position is open to debate, we shall take a cautious 

position in the rest of this book, by seeking to avoid use of AC wherever 

possible, and highlighting any use of it. 

Further exercise 

Exercise 5.16_ 

A weak consequence of AC, i.e. something which is a consequence of AC but 

which is not equivalent to AC, is the principle of dependent choices, as follows. 

Suppose that R is a relation between sets A and B, i.e. R C A x B, such 

that the range of R, {b £ B : (a, b) £ R for some a £ A}, is a subset of 

the domain of R, {o £ A : (a, b) £ R for some b £ B}. Then there is a 

function /: N —> A such that for all n £ M, 

f(n)Rf(n+). 

(a) Show that AC implies the principle of dependent choices. [Hints: define 

/ by recursion. How will AC get used?] 

(b) Suppose that we were to drop the axiom of foundation, ZF9, from our 

axioms of set theory and that x was a set that was not well-founded, i.e. 

for this x there is no y £ x such that x n y = 0. Use the principle of 
dependent choices to show that there is an infinite descending £-chain 

... £ xn+i £ xn £ ... £ X2 € X\ £ Xq 

where each xn is an element of x. 

(c) In Exercise 5.14 above, we used AC to show that sequential continuity 

implies continuity. Use the principle of dependent choices instead of AC 

to prove this result. 

5.4 Zorn's lemma 
Why have we singled out the axiom of choice from among the many assertions 

about, and axioms for, sets? One reason is that AC is intimately connected 

with what makes Cantor’s original theory of infinite sets work, as we will dis¬ 

cuss later. Another reason is that AC is equivalent to several other principles 

which do not look as though they have very much to do with choosing ele¬ 

ments out of sets, but have interesting mathematical consequences. In this 

section we shall look at one such, called Zorn s lemma. 

Zorn’s lemma - ZL for short - concerns partially ordered sets. We shall look 

at ordered sets in some detail in Chapter 7, but only need a part of the 

terminology now. 

Many of the results of 19th-century 

real analysis which made 

unconscious use of AC can be 

proved from the weaker principle of 

dependent choices. Some 

mathematicians who reject the full 

version of AC are willing to take 

the latter principle as an axiom. 

Max Zorn introduced the principle 

known as Zorn’s lemma in 1925. 
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5 The Axiom of Choice 

Definitions 

Let P be a set and R a subset of P x P. (We shall often write xRy 

for (x, y) £ R.) R is a weak partial order on P, or P is weakly partially 

ordered by R, if it has the following properties: 

reflexive for all a; in P, xRx; 

anti-symmetric for all x and y in P, if xRy and yRx then x — y; 

transitive for all x, y and 2 in P, if xRy and yRz then xRz. 

Associated with each weak partial order R on a set P there is a strict 

partial order S, where S is also a subset of P x P and, for all x,y £ P, 

(x, y) £ 5 (or xSy) exactly when xRy and x f^y. 

The most relevant example of a weak partial order for the applications in this 

section is to take P to be some set of subsets of a set Y, i.e. P C ^(Y), and 

R to be C. For instance, P might be ^(N), or the set of all infinite subsets 

of N, or the set of all proper ideals of a ring S, or the set of all functions with 

domain some subset of A and codomain P, all of which are partially ordered 

by C. 

Exercise 5.17_ 

Explain how the set of all functions with domain some subset of a set A and 

codomain the set B can be regarded as partially ordered by C. 

Solution 

Technically, a function / of this sort is represented in ZF by a set of pairs in 

Ax B, i.e. a subset of Ax B, where for each a £ A there is at most one b £ B 

for which (a, b) £ /. Thus it makes sense to compare two such functions, / 

and g, in terms of one being a subset of the other. We have 

fQg 

if and only if 

whenever (a, b) £ /, then (a, b) £ g 

if and only if 

/(a) = g(a), for all a £ Dom(/). 

Exercise 5.18______ 

Let Y be a set and suppose that P C &>(Y). Show that P is partially ordered 
by C. 

The usual < and < on ^ are 

examples of a weak, and the 

corresponding strict, partial order. 

They have the additional property 

of being linear. 

This sort of example usually gives 

a partial order which is not linear. 

We shall often just write ‘partial 

order’, instead of ‘weak (or strict) 

partial order’. The context will 

usually make it clear whether a 

given order is weak or strict. Here, 

asUCI includes the case when 

W = X, the partial order must be 

weak. 

Recall the definition of the domain 

of /, Dom(/), as the subset 

{a £ A : (a, b) £ / for some b £ B} 

of A. Then for all a £ Dom(/), 

there is exactly one b £ B with 

(a, 6) £ /. 

We hope that you find this exercise 

very routine indeed! 

The statement of Zorn’s lemma will refer to an ‘upper bound’ of a subset and 

a ‘maximal’ element within a partially ordered set. The definitions of these 

concepts rely on a convention of treating a weak partial order R as ‘less than 

or equal to’, rather than ‘greater than or equal to’. Thus xRy is treated as 

though x was less than or equal to y, which makes the following definitions 
match our intuitions about the use of the words defined. 
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5.4 Zorn's lemma 

Definitions 

Let P be a set weakly ordered by R. If X is a non-empty subset of P, 

then an element y of P is an upper bound of X if xRy for all x e X. An 

element x of P is a maximal element of P if there is no y £ P such that 
y i=- x and xRy. 

Note that x being a maximal element just means there is no greater element 

y. It does not necessarily mean that x is the maximum element of P, in the 

sense of being greater than every other element of the set, as some of the 
examples below will illustrate. 

Exercise 5.19___ 

Let P be the set ^(N) \ {N}, i.e. all subsets of other than N itself, partially 
ordered by C. 

(a) Show that N \ {0} is a maximal element of P. 

(b) Are there any other maximal elements of PI If so, what are they? And 

does P have a maximum element? If so, what is it? 

(c) Find upper bounds, if they exist, for each of the following subsets of P. 

(i) X = {{2n, 2n + 6} : n 6 N} 

(ii) X = {{n, n + 2} : n E N} 

Solution 

(a) We need to show that there is no element of P which contains N \ {0} as 

a proper subset. The only candidate in for such an element is N, 

but this is not an element of P. Thus N \ {0} is maximal. 

(b) Similarly, N \ {n} is a maximal element of P for each n E N. The only 

subset of N which would be a candidate for a maximum element of P is 

f^J itself, but N isn’t an element of P. 

(c) (i) For a set P of subsets of Y partially ordered by C and a subset X of 

P, the natural candidate for an upper bound of A is (J X. This union of 

subsets of Y will also be a subset of Y, and if it is in the particular set P 

then it will be an upper bound for X in P, as 

A G X implies that dC[JI. 

In addition, it will also be the least upper bound: if B E P is any upper 

bound for X, then (J X C B. 

For the subset X in this exercise, 

\JX = {J{{2n,2n + 6} :n E N} 

= {2k : k E N}, 

which is an element of P. This is the least upper bound of X and any 

element of P containing it as a subset is also an upper bound of X. 

(ii) In this case (J x equals N, so that any upper bound for X in the 
ordered set P must contain N as a subset. But no element of P has N as 

a subset, so that X has no upper bound in P. 

Of course N is the maximum 

element of when partially 

ordered by C. But the point of this 

exercise is that a partially ordered 

set need not contain a maximum 

element. 
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5 The Axiom of Choice 

Exercise 5.20_ 

Let P be the set of all finite subsets of N. Does P have any maximal elements? 

If so, what are they? 

Solution 

P has no maximal elements. For any element A of P there is a larger finite 

subset of N, hence also an element of P, containing A as a proper subset: 

thus A is not maximal. 

Exercise 5.21_ 

Let P be the set of all one-one functions with domain a subset of A and 

codomain B, partially ordered by C (as in Exercise 5.17 above). Suppose 

that / is a maximal element of P. What special properties, if any, does this 

function / possess? 

Solution 

Treat / as a subset of A x B. As / is a maximal element of P, it must 

be impossible to add an extra pair (a, b) to / so that f O {(a, b)} is also an 

element of P, i.e. / is also a one-one function. Clearly we could not add a 

new pair (a, b) for an a which is in Dom(/), as this would stop / U {(a, b)} 

from being a function - it wouldn’t be single-valued. This leaves us with two 

cases. Either Dom(/) has already used up all the as in A, i.e. Dom(/) equals 

A. Or there is still some a £ A not in Dom(/), but Range(/) has used up 

all of B, so that adding an extra pair (a, b) to those in / creates a function 
/ U {(a, b)} which is not one-one, hence not in P. 

In the case that Dom(/) = A, we have a one-one function from A to B. In 

the case that Range(/) = B, the inverse function /-1 is a one-one function 

from B to A. 

To state Zorn’s lemma, we need one further definition, as follows. 

Definition 

Let P be a set weakly partially ordered by R, and let ^ be a non¬ 

empty subset of P. Then W is said to be a chain if it has the following 
additional property: 

linear for all x, y £ g?, xRy or yRx. 

In terms of the strict partial order S associated with R, this becomes 

for all x, y £ xSy or x — y or ySx. 

Examples of chains are 

{{0,1,2,..., n} : n £ N} in partially ordered by C, 

and 

{open intervals (^, a): a £ R, a > 1} in 3s(U) partially ordered by C . 

We are not claiming here that P 

necessarily has any maximal 

elements. The issue of whether a 

maximal element exists turns out 

to be of considerable importance, 

as you will see later. 

Sometimes we shall use the 

description R-chain to emphasize 

that the chain is associated with 

the order A, rather than some 

other order also being discussed. 

We shall look at linear orders in 

more detail in Chapter 7. 
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5.4 Zorn's lemma 

We can now state Zorn’s lemma. 

Zorn's lemma 

Let P be a non-empty set partially ordered by R with the property that 

every chain g7 in P has an upper bound in P. Then P contains at least 
one maximal element. 

Before we look at the relationship between Zorn’s lemma and AC, let’s see 

how Zorn’s lemma is used in some different parts of mathematics. An obvious 

application is to show that a set has a maximal subset with some sort of 

interesting structure, for instance the following: 

I don’t know why it’s called a 

lemma. According to Moore [22], 

Zorn himself regarded it as an 

axiom. Its status here in this book 

is as a principle equivalent to AC. 

a group contains a maximal Abelian subgroup, 

and 

a commutative ring with a multiplicative identity contains a maximal 

proper ideal. 

It is worth noting here, even if you don’t happen to know all these mathemat¬ 

ical terms, that these results can all be proved without use of Zorn’s lemma 

for finite groups and rings. It is when the latter are infinite that Zorn’s lemma 

might be needed; and, as with AC, it is when they don’t have ‘enough other 

structure’ that Zorn’s lemma will be needed. 

Theorem 5.5 

Let G be a group. Then, assuming Zorn’s lemma, G has a maximal 

Abelian subgroup. 

Proof 

If G is Abelian then G itself is the required maximal subgroup. So we shall 

now deal with the case where G is not Abelian, so that any Abelian subgroup 

of G must be a proper subgroup. 

To set up the use of Zorn’s lemma, define P to be the set of all Abelian 

subgroups of G, and partially order P by C. Then a maximal element of 

P given by the lemma is just what we are looking for, namely a maximal 

Abelian subgroup of G. So we have to check that the conditions of the lemma 

are satisfied. 

It is straightforward to show that P is non-empty — the trivial subgroup 

containing just the identity, eo, of G is Abelian. The real work is in showing 

that if g7 is a chain in P, then g7 has an upper bound in P. In this context, g7 

being a chain means that the elements of g” are Abelian subgroups of G and 

that given any two of them, A and P, either A C B or B C A. As suggested in 

the solution to Exercise 5.19(c)(ii), the sensible candidate for an upper bound 

of a C-chain, as here, is its union. Given that the partial order relation is 

C, we are guaranteed that |J g7 is an upper bound of the chain g7. We have 

to check whether this upper bound is in P, i.e. whether (J g7 is an Abelian 

subgroup of G. 
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5 The Axiom of Choice 

Let’s check whether (J g7 is closed under the group operation, i.e. if a, b £ |J g7, 

then ab £ |J g\ So take any a,b £ (J g7. This means that there are A, 5 in 

the chain g7 for which o £ A and b £ B. As g7 is a chain, then either A C B 

or B C A. Without loss of generality, we can suppose that A C B. Then 

both a and b are in B, so that as B is a subgroup of G (and hence closed 

under the group operation) the product ab is also in B. As B £ gf, this means 

that ab £ {J g7, so that {JIF is closed, as required. Furthermore, as B is also 

Abelian and a,b £ B, we have that ab — ba, so that elements of |J g7 commute. 

It is much more straightforward to show that (J g7 satisfies the other properties 

for being a subgroup of G (e.g. containing the identity eo of G and being closed 

under inverses). 

Thus (Jg7 is an Abelian subgroup of P, so that the chain g7 has an upper 

bound in P. We can now conclude from Zorn’s lemma that P has at least one 

maximal element, i.e. G has a maximal Abelian subgroup. ■ 

Exercise 5.22- 

Verify that (J gr7 in the proof above does contain eo and is closed under in¬ 

verses. 

There are other mathematical applications where the maximality criterion is 

not quite so explicit, for instance: 

every vector space has a basis, 

and 

if X is partially ordered by R, then there is a linear order R* on X 

extending P, i.e. for all x,y £ X, if xRy then xR*y. 

We shall show that every vector space has a basis. This is, of course, a 

standard result for finite-dimensional vector spaces, but there are plenty of 

infinite-dimensional spaces for which a special proof might be required. Take, 

for instance, the set IRr of all functions from [R to itself, with addition and 

scalar multiplication defined by f + g and af being the functions 

/ + g: x i—y f(x) + g(x), for all rr £ 1R, 

and 

af: x i—> a ■ f(x), for all x £ IR, 

for all functions /, g £ IR and scalars a £ IR. It is easy to check that this makes 

IR a vector space over IR, and it is fairly easy to convince oneself that it does 

not have a finite basis. And it turns out that there is no obvious basis - we 

really need to explain what is meant by a basis for infinite-dimensional vector 

spaces! A basis of a vector space V over a field F is a linearly independent 

subset B of V such that every vector of V is a finite linear combination of 

vectors in P; and B is linearly independent means that no finite subset of 

B is linearly dependent. Another piece of standard terminology from linear 

algebra is that of the span of a set B of vectors, written as (B), which is the 

set of all finite linear combinations of vectors in B. Thus B is a basis of V if 

it is linearly independent and its span is V. 

This is where we make crucial use 

of the fact that g7 is a chain. 

Checking these properties doesn’t 

require use of the fact that g7 is a 

chain, rather than any old set of 

Abelian subgroups of G. 

Observe again the distinction 

between a result for finite 

dimension, where AC is not 

needed, and infinite dimension, 

where it might be needed. 

One way to show that IRr doesn’t 

have a finite basis is to use 

cardinalities, which we deal with 

later. Any finitely generated 

subspace of IRr has smaller 

cardinality than IRr. 

Note that we don’t allow infinite 

linear combinations of vectors. 
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Theorem 5.6 

Let V be a vector space. Then, assuming Zorn’s lemma, V has a basis. 

Proof 

Zorn’s lemma is relevant here because a basis of V is also a maximal linearly 

independent subset of V. If B is a maximal linearly independent subset and 

there is a vector v G V which is not in the span of B, then B U {u} is a larger 

linearly independent set than B, contradicting the maximality of B. So we 

define a set P of all linearly independent subsets of V, partially order P by 

C, and try to show that P satisfies the conditions of Zorn’s lemma, so that P 
has a maximal element. 

The elements of W are sets of 

vectors, so that (J 9* is a set of 

vectors. 

Vx,V2,...,Vn 

Then there are elements 

B\ i B2, • • •, Bn € & 

such that 

Vi € Bi 

for each i = 1,2,..., n. As g7 is a chain, either Bi C Bj or Bj C Bi for each 

i,j in {1, 2,... ,n}, and as n is a natural number, and therefore finite, one of 

the BiS must contain all the other Bjs as subsets. Then this Bi contains all 

of vi, v2,..., vn\ and as Bi eP, so that Bi is linearly independent, the subset 

{v\,v2,..., vn} is also linearly independent, as required. 

Thus |J is an upper bound for W in P, so that by Zorn’s lemma P contains 

a maximal element, meaning that V has a basis. ■ 

We shall leave some of the mathematical consequences of Theorem 5.6 as 

exercises at the end of this section. 

Let us now turn to some of the more specifically set-theoretic applications of 

Zorn’s lemma. First of all we shall follow up the results of Exercises 5.17 and 

5.21 above with an important result about functions between sets A and B. 

If V consists of only the zero vector, the result is trivial. Otherwise V contains 

at least one non-zero vector v, so that P is non-empty, as it contains the 

linearly independent subset {u}. Now we must show that any chain & has an 

upper bound in P. As with the previous example, the natural candidate for 

an upper bound is (J £?. Is it a linearly independent set of vectors? We must 

show that every finite subset of it is linearly independent. Take finitely many 

vectors 

Theorem 5.7 

Let A and B be sets. Then, assuming Zorn’s lemma, there is a one-one 

function /: A —> B or a one-one function g: B > A. 
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5 The Axiom of Choice 

Proof 

Define a set P of subsets of A x B by 

P = {f C A x B : f is & one-one function with Dom(/) C A}, 

and partially order P by C. From the solution to Exercise 5.21, if P has 

a maximal element /, then either / is a one-one function from A to B or 

g — f~x is a one-one function from B to A, as required. We shall show that 

P satisfies the conditions of Zorn’s lemma, so that a maximal element exists. 

P is non-empty, as the trivial empty function is in P. Now we must show that 

any chain has an upper bound in P. We shall investigate whether (J is 

in P, as if it is, then it will be such an upper bound. 

First, as every element of g7 is a subset of Ax B, then so is U^- 

Next, we need to check that (J g7 is a function, i.e. if (a, b) and (a, b') are both 

in IJgP, then b = b'. If (a, b), (a,b') e U^) then there are elements f,g £& 

such that 

(a, b) G / and (a, b') G g. 

As ^ is a chain, either / C g or g C /. Without loss of generality, we can 

suppose that / C g. Then both (a, b) and (a, b') are in g, so that as g is a 

function we have b = b', as required. 

We shall leave checking that (J is one-one as an exercise for you. 

Thus, assuming Zorn’s lemma, P has a maximal element, so that the required 

result follows. ■ 

Exercise 5.23_ 

Complete the proof of Theorem 5.7 by showing that (J ^ is one-one. 

Solution 

Suppose that (a, b) and (o', b) are both in (J g7. We must show that a = a'. As 

(a, 5), (o', b) € (J To there are elements /,j G? with (a, b) G / and (o', b) G g. 

As g7 is a chain, either / C g or g C /. Without loss of generality, we can 

suppose that / C g, so that both (a, b) and (o', b) are in g. But g is one-one, 

so that a = o', as required. 

The importance of this result will be seen in the context of cardinalities later 

in the book. In the terminology of cardinality, we have proved that Zorn’s 

lemma implies the dichotomy principle. Likewise, later we shall show that 

Zorn’s lemma, the dichotomy principle and the axiom of choice are in fact 

equivalent to each other. As the final result of this section and chapter, we 

would like you to prove another part of this equivalence, namely that Zorn’s 
lemma implies the axiom of choice. 

As with other results of this 

section, there is no need for use of 

Zorn’s lemma if A and B axe finite, 

or if the sets have ‘enough’ 

structure to enable a definition of / 

or g. 

We shall discuss the dichotomy 

principle in Chapter 6. 
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5.4 Zorn's lemma 

Exercise 5.24__ 

Prove that Zorn s lemma implies the axiom of choice. [Hints: consider the 
equivalent to AC given by Exercise 5.11: 

Suppose that P is a relation between non-empty sets A and B. Then 

there is a function F with the same domain as R such that F C R. 

Put P = {f C A x B : f is & function and / C R} and partially order P by 

In this chapter, we have tried to show how the axiom of choice and an equiva¬ 

lent, though seemingly different, principle, Zorn’s lemma, have various impor¬ 

tant mathematical consequences for dealing with important sorts of infinite 

set. In a later chapter we shall see how AC is intimately involved with Can¬ 

tor’s theory of infinite numbers, both cardinals and ordinals, which is both 

the main historical starting point of set theory and the goal of this, and other 
similar, books. 

Further exercises 

Exercise 5.25_ 

Let X be a set weakly partially ordered by R. Prove, assuming Zorn’s lemma, 

that R can be extended to a linear order R* on X, i.e. such that R* is 

a linear order on X and for all x, y £ X, if xRy then xR*y. [Hints: put 

P = {S C. X x X : S is a weak partial order on X and P C S'} and partially 

order P by C. Use Zorn’s lemma to show that P has a maximal element R* 

and show that R*, which is automatically a partial order with R C P*, has 

the linear property - this involves a bit more effort than in previous examples!] 

Exercise 5.26___ 

Let R be a commutative ring with a multiplicative identity 1. Show, using 

Zorn’s lemma, that R has a maximal proper ideal. 
(Hints: you should be able to invent a suitable partially ordered set P to 

which to apply Zorn’s lemma! When checking that any chain has an upper 

bound in P, you might need the result for commutative rings with identity 

that, for all ideals / of P, I is a proper ideal if and only if 1 0 I.) 

Exercise 5.27--- 

Show that Zorn’s lemma, as a general principle for all partially ordered sets 

P, is equivalent to each of the following general principles. 

(a) Every set P partially ordered by R has a chain which is maximal with 

respect to C, i.e. has an P-chain ST such that there is no P-chain 9r 

containing ? as a proper subset. 

(b) For every set X partially ordered by C, there is a maximal C-chain. 

Equivalently R C R*. 

As ever, Zorn’s lemma would not 

be required if X was finite. 

This exercise requires a cool head 

to cope with potentially confusing 

notation and the use of C 

simultaneously on sets and on sets 

of these sets! 

The following exercises investigate some of the mathematical consequences of 

Theorem 5.6, that, assuming Zorn’s lemma, every vector space has a basis. 

They require no further use of Zorn’s lemma or AC. 
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5 The Axiom of Choice 

Exercise 5.28- 

Let V, W be vector spaces over the same field, with U a subspace of V. Sup¬ 

pose that /: U —> W is a linear transformation. Then / can be extended to a 

linear transformation g on V, i.e. there is a linear transformation g: V —> W 

such that g(u) = /(«) for all u G U. 

Exercise 5.29- 

IR can be regarded as a vector space over the field <Q>, by defining the sum 

of two ‘vectors’ (i.e. real numbers) as their usual sum in [R, and defining the 

result of scaling the vector r G IR by the scalar q 6 <0 to be the usual product 

qr in IR. 

(a) Show that /: IR —> IR is a linear transformation over Q if and only if 

f(x + y) = f(x) + f(y), for all x, y G IR. 

(b) Hence prove that there is a function /: IR —> (R such that 

f(x + y) = f(x) + /(?/), for all x,y € IR, 

which is not of the form 

f(x) — kx, for all x G IR, 

where A: € IR is fixed. 

So that, assuming Zorn’s lemma, IR 

has a basis. 

So that / is linear if and only if just 

this one aspect of linearity holds. 
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6 CARDINALS (WITHOUT THE 
AXIOM OF CHOICE) 

6.1 Introduction 

The main reason for Cantor’s introduction of set theory was to provide a 

framework for tying down notions of infinity. Cantor had been investigating 

the problem of uniqueness of the representation of a function / by a Fourier 
series, obtaining results of the form 

OO OO 

(an sin nx + bn cos nx) = {a'n sin nx + b'n cos nx) for all a; 6 S' 
n=0 n=0 

=> an = a'n and bn - b'n for all n 

for various sorts of subset S of 1R (really of [0, 27t]). After proving that the 

result holds for sets S which exclude finitely many points from [0,27r], he 

managed to extend it to S which exclude certain infinite sets of points. To 

help explain the structure of such sets (those of the excluded points) Cantor 

developed a theory of infinite ‘magnitudes’, extending (less controversial!) 

ideas about finite magnitudes, i.e. natural numbers. Cantor tried to extend 

two aspects of the natural numbers: first, the way in they can be used, by 

counting, to give the size of a (finite) set; and second, the way in which their 

natural ordering by < can be used to describe processes, e.g. ‘first do this, 

next do that, next do ... ’, labelling the steps by successive natural numbers. 

These two aspects gave rise to two different sorts of numbers: cardinal numbers 

to describe sizes of sets; and ordinal numbers to describe ways of ordering 

sets. Furthermore, Cantor endowed both sorts of number with an arithmetic, 

operations of addition, multiplication and exponentiation agreeing with the 

usual arithmetic for natural numbers. 

In this chapter we shall look at some of the theory of cardinal numbers. In 

subsequent chapters we shall look at the theory of ordinal numbers and at the 

links between the two sorts of number - in the modern theory the cardinals 

are special sorts of ordinals. 

As the interesting cardinals are something to do with infinite sets, let us recall 

the definitions of finite and infinite. 

Definitions 

A set X is said to be finite if there is a bijection /: n —> X for some 
natural number n. X is said to be infinite if there is no such bijection, 

for any n. 

Clearly each n <E N is finite. Surely N is infinite - this was shown in Exercise 

3.39 of Sectioh 3.4, exploiting the pigeon-hole principle. So we have at least 

one infinite set, namely N, and as n C N for each natural number n, this 

infinite set is intuitively ‘bigger’ than each finite set n. 

For a full discussion of Cantor’s 

ideas about sets and their sizes, see 

Hallett [23]. 

We shall often use cardinal for 

cardinal number and ordinal for 

ordinal number. 

n as we have defined it in ZF has 

intuitively n elements. 
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6 Cardinals (without the Axiom of Choice) 

Cantor created a theory of infinite cardinal numbers, so that you might reason¬ 

ably ask to be told what an infinite ‘number’ looks like. But in this chapter we 

have to dodge that question! One way of interpreting what Cantor thought, 

made more precise in the work of Frege and Russell, results in the definition 

of the natural number 1 as 

{rr : x is a set and x has one element}. 

As we have seen, in Section 4.1, treating this as a set leads to problems; and 

the way in which (we hope!) we are avoiding these problems, by working 

within ZF, means that it is not a set within ZF, but a class. Of course we 

can get round this problem, as far as the number 1 and all natural numbers 

are concerned, by defining these numbers within ZF as in Chapter 3. A nice 

feature of our definition of n 6 N (as opposed to otherwise perfectly reasonable 

alternatives achievable within ZF) is that, intuitively, n has n elements, so 

that e.g. 1 is in the class above. But in general we might expect to have to 

‘choose’ a set out of such a class, so the axiom of choice will figure in the 

discussion. 

Cantor’s theory turned out with hindsight to have made heavy use of the 

axiom of choice, hardly surprising if dealings with infinite sets are involved. 

So it is customary to distinguish between those parts which use AC and those 

which don’t. The theory with AC is richer, but even without it one can derive 

many of Cantor’s most remarkable (and, for some, controversial) results. For 

instance: there are the same number of rational numbers as natural numbers; 

and there are many more irrational real numbers than rationals. But surely, 

one might exclaim, as N is a proper subset of <Q> there must be more rationals 

than natural numbers. And it is known that between any two distinct irra¬ 

tionals there is a rational, while between any two distinct rationals there’s an 

irrational: so why should there be many more irrationals than rationals? The 

first thing is to tie down what we mean by one set having ‘the same number 

of elements as’, or ‘more elements than’ another, and that is what we do in 

the next section. 

A key factor behind many of these 

results is the tying down of what 

the rational and, especially, the 

real numbers are by means of the 

definitions in Chapter 2. 

6.2 Comparing sizes 

Is <Q> really a bigger set than N? The obvious answer is ‘Yes’, because N C Q 

and N ^ <Q>. In general when A C B and A ^ B it is natural to say that B is 

bigger than A. But what would we say if neither of A and B was a subset of 

the other? 

Let A = {0,1, 7} and B = (0, 2, 4, 8}. Is B bigger than A. If so, why? Think 

about this for a moment before reading on. 

In normal life we would surely say that B is bigger than A, despite A not 

being a subset of B. So as mathematicians we have to make clearer how we 

use the words ‘bigger than’. In some contexts it is clear that we intend ‘bigger 

than’ to mean ‘contains as a proper subset’. But in the context of sizes of 

sets this is not what we mean. So what else might we mean? In the case of 

these particular sets A and B, most of us would probably say that B has 4 

elements, A has 3 elements, and 4 is greater than 3. 
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6.2 Comparing sizes 

What’s more, it’s natural to talk about the 3 and the 4 as the ‘sizes’ of A and 

B, respectively. So within ZF we can, for these sets A and B, define their 

sizes to be the sets 3 and 4 - the ‘size’ of a set can be described as a set itself. 

And comparing these numbers makes sense of ‘£ is bigger than A\ 

This all works fine for finite sets, as for any finite set X there is a bijection 

/: n —> X for some natural number n, by virtue of X being finite. The n is 

unique, so we can define the size of X to be this n. Let us write Card(X) for 

this n. Then in general for finite sets X and Y, we can give a precise meaning 

to lY is bigger than X’ by defining it as ‘Card(F) > Card(X)’. 

Furthermore, this method works well for explaining when two sets have ‘the 

same size’. For instance if A = {0,1,7} and C = {2,4, 5}, then both Card(A) 

and Card(C) equal 3, so A and C have the same size. In general for finite sets 

X and Y, we could define ‘X has the same size as Y' by ‘Card(X) = Card(F)’. 

But what if X is infinite, i.e. there is no natural number n for which there is 

a bijection /: n —)■ XI What object can we take to be the size of X? What 

Cantor did was to identify a suitable class of objects, the Kas, to act as the 

sizes of infinite sets. These, along with the natural numbers, will make up the 

class of cardinal numbers, which will provide us with a complete collection 

of ‘sizes’ of sets. But as many of his results turn out to be equivalent to the 

axiom of choice, before we deal with them it’s instructive to see how much 

we can do without using AC or an equivalent. It turns out that we cannot 

do much in the way of identifying a special class of sizes, but we can make 

progress with comparing sizes of sets, without actually committing ourselves 

to what we mean by the size of any individual set. 

Exercise 6.1- 

Let’s go back, to the sets A = {0,1, 7} and C = {2,4, 5}. Is there a way of 

comparing the sizes of these sets that doesn’t involve saying what their sizes 

are? 

Solution 

The trick is to exploit the idea we have used within set theory to explain 

when a set X is finite, namely that there is a bijection between X and some 

natural number n. The bijection pairs off the elements of X with the elements 

of n, and the existence of the bijection is what underpins the assertion not 

only that X is finite, but that it has n elements. The bijection represents our 

intuition that X and n have the same size. 

For the sets A and C there is likewise a bijection, e.g. 

/: A —> B 
0 i—>2 

1 i—> 4 
7 i—> 5 

and it seems natural to interpret this as showing that A and C have the same 

size, without having to say what this size is. 

ft, pronounced ‘aleph’, is the first 

letter of the Hebrew alphabet. 

There are of course several 

bijections from A to C. 

It is this ability to pair off the elements of two sets which we shall take as the 

definition of sets having the same size. 
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6 Cardinals (without the Axiom of Choice) 

Definition 

Let A and B be sets. We say that A is equinumerous with B if there is 

a bijection /: A —> B\ and we write Ak, B. So {0,1,7} « {2,4, 5}. 

‘Equinumerous’ is just a posher way of saying ‘has the same size as’, and is 

standard terminology. Likewise, we can capture the idea of A having size less 

than or equal to that of B by the following: 

Definition 

We say that A is less than or equinumerous with B if there is a one-one 

function /: A —> B\ 

and we write A A B. 

Lastly, we can capture the idea that the size of A is strictly smaller than that 
of B by: 

Definition 

A is dominated by B if A A B and it is not the case that A ph B-, 
we then write A A B. 

Let’s use these definitions to compare the sizes of a few sets. 

Exercise 6.2_____ 

For each of the following pairs X, Y of sets, decide which, if any, of the 
following holds: 

X&Y, X A F, Y AX, X A Y, Y A X. 

(a) X — {0, 2,4}, Y = { 1,3, 5,7} 

(b) X = {0,1,2}, F = N 

(c) * = N, Y = Z 

Solution 

(a) We have X AY because we can define a one-one function / from * to 
Y by 

/: * —> Y 
0 i—> 1 

2 i—y 3 

4 > 5 

Clearly we ought to have X A Y, but as this is our first use of the defini¬ 

tion of we ought to prove it. * ^ F requires showing both that X AY, 

which we’ve already done, and that it is not the case that X « Y (which 

we 11 write as * fs F). So we have to show that X Y, i.e. there is no We may also write A B for ‘not 
bijection g: X —► F. A A B’ etc. 
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6.2 Comparing sizes 

Assume, hoping to obtain a contradiction, that there is such a bijection 

g. Then its inverse g 1: Y —>• X, which exists as g is a bijection, is also 

a bijection. Also there is a bijection h between the natural number 3 
(= {0,1,2}) and X defined by 

h: 3—>X 

and similarly there is a bijection k: 4 —y Y. Then the composite function 

h~1 o g~1 ok: 4 Y —y X —y 3 

is a bijection from 4 to 3. But this contradicts the pigeon-hole principle 

proved for the natural numbers within ZF (Theorem 3.14 of Chapter 3. 

Thus there is no bijection g: X —y Y. So X 96 Y, from which we have 
X -< Y. 

Similar arguments by contradiction could be used to show that neither 
Y * X nor Y ■< X holds. 

(b) Clearly X ■< Y using the inclusion map 

i: X —y Y 

Obviously we’d, hope to get X 96 Y, so as before let’s assume that X « Y 

and try to obtain a contradiction. 

By our assumption there is a bijection g: X —y Y. Then g_1 exists and 

<7-1: N —y 3 is a bijection - note that X — {0,1,2} is just the natural 

number 3. Now consider the restriction of g~l to the subset 3 of N, 

g-113: 3—*3. 

As g-1 is one-one, so is <7-1|3. But, from our work on natural numbers, 

any one-one function from 3 to itself must also be onto, so that <7_1|3 is 

onto. Then g{3), g{4) etc. cannot have been defined as members of 3 

without contradicting that g is one-one. 

The contradiction gives us that X 96 Y, from which it follows that X -< Y. 

Again similar arguments can be used to show that Y X and 7/1. 

But surely «, -< are sufficiently like =, <, < for us to be able to 

assert these without lengthy arguments by contradiction. We had better 

investigate this soon! 

(c) Again the inclusion map 

i: N —> Z 
n 1—y n 

shows that N ■< Z. At first sight we might expect that, as N is a proper 

subset of Z, N ^ Z, but, remarkably, this is not so. The function 

f:k—y Z 
j k, if n = 2k, 

n ' ^ 1 —k, if n = 2fc + 1, 

For maps like this which don’t 

really depend on the precise 

representation of natural numbers 

within ZF, we shall often not 

bother to use bold type for natural 

numbers. We shall usually write 

bold n, rather than n, when a 

construction depends on inner 

properties of natural numbers as 

sets. 
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6 Cardinals (without the Axiom of Choice) 

is easily seen to be a bijection, so that in fact (So we also have 

Z X N, N / Z and Z / N.) 

The results of these last exercises leave us with a variety of problems. First of 

all, we ought to investigate the extent to which the definitions of X and X 

capture the properties we expect of =, < and < for sizes of sets. We shall do 

this in the next section. Second, we have seen how for infinite sets we do not 

obtain all of the results which our experience of finite sets might lead us to 

expect: in particular, for infinite sets A and B with A a proper subset of B, it 

is not always the case that A X B. Does this mean that all infinite sets have 

the same size? Whatever the answer, it is clear that we need to investigate 

infinite sets with an open mind, which we shall start in the section after the 

next. 

Further exercises 

Exercise 6.3_ 

Show that for any sets A and B, if A C B then A A B. 

Exercise 6.4_ 

Let m and n be natural numbers (in ZF). Show that 

(a) if m < n then m X n; 

(b) if m < n then m X n. 

Exercise 6.5_ 

Let n G N. Show that n 96 N. 

Exercise 6.6_ 

Suppose that N X A. Show that A is infinite. 

Exercise 6.7__ 

Let A and B be finite sets. Show that A X B or B X B. [Hint: bear in mind 

the way we have earlier defined a ‘finite’ set.] 

Exercise 6.8____ 

Decide which, if any, of the following statements hold: 

2Z X Z, 2Z w Z, 2Z -< Z. 

Exercise 6.9___ 

A possible alternative definition of ‘less than or equinumerous’, which we’ll 
write as X*, is given by 

A A* B if there is an onto function /: B —> A. 

Is it the case that A A* B exactly when A A H? 
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6.3 Basic properties of « and A 

6.3 Basic properties of « and ^ 

In the previous section you were asked to investigate, for the sets X = {0, 2,4} 

and Y = {1,3,5,7}, which of the relationships X « Y, X A Y, Y A X, 
X -< Y and Y -< X hold. Our solution showed that X AY and X 96 F, from 

which it followed by definition that X A Y; and we said that arguments by 
contradiction could be used to show that Y X and b / I. But surely 

these last two results ought to follow immediately, without any complicated 

argument, if «, A and -< really capture our intuitions about =, < and < for 

sizes of sets. In this section we shall investigate the (substantial) extent to 
which this does happen. 

Let us look first of all at the sort of properties we would want m to possess 

to justify that it captures the idea of ‘has the same size as’. The usual bare 

minimum we expect of a mathematical definition of ‘the same as’ is that it is 

an equivalence relation. 

Exercise 6.10_ 

Show that « is an equivalence relation between sets, i.e. that it is 

(a) reflexive: for all sets A, A ps A; 

(b) symmetric: for all sets A and B, if A « B then B « A; 

(c) transitive: for all sets A, B and C, if A « B and B « C then A ps C. 

That w is an equivalence relation is a good start. Ideally we would like more, 

e.g. that performing similar ‘size’ constructions on equinumerous sets yields 

equinumerous sets, as in the following exercises. 

Exercise 6.11--- 

Suppose that A ps B and C « D. Show that A x C « B x D. 

Solution 

As A « B and C & D there are bijections /: A —» B and g: C —» D. Then 

define a function h by 

h: Ax C —* B x D 
(a, c) 1—¥ (f(a),g(c)) 

It is easy to show that h is a bijection, so that A x C ~ B x D. 

Exercise 6.12--—---- 

Suppose that A ~ B and that C is any set. Give an example to show that it 

is not always the case that dUC ~ B U C. Suggest a condition on C which 

would guarantee that AU C « B U C. 

Solution 

We can run into trouble if C overlaps with either A or B. For instance, if 

A = {0,1} and B = C = {1, 2}, then A U C = {0,1,2} and B U C = {1,2}, 

which are noti-equinumerous. 

But if C is disjoint from both A and B, the problem disappears. If / is a 
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6 Cardinals (without the Axiom of Choice) 

bijection from A to B, it is easy to check that the function g defined by 

g: AuC —> BuC 

r J /W’ if x e A> 
\x, if x EC, 

is a bijection. (Where do you need to know that C is disjoint from both A 
and B?) 

In the next exercise we ask you to show that various pairs of sets are equinu- 

merous. You will have to do this by exhibiting appropriate bijections, which 

will test your understanding (and memory!) of the definition within ZF of 

various sets, e.g. Ax B and AB. You will see later in the section that there 

is an alternative strategy, which would be less elegant for these particular ex¬ 

amples. It might make doing the exercise more interesting to know that you 

are really proving some of the basic results about the arithmetic of cardinals 

- more on this soon! 

Exercise 6.13_ 

Prove the following statements by exhibiting an appropriate bijection in each 

case. 

(a) Ax B m B x A 

(b) A x (B x C) « (A x B) x C 

(c) A2 fa A x A, where 2 — {0,1}. 

(d) A x (B U C) & (A x B) U (A x C). 

(e) ABuC « Ab x Ac, where B CC = 0. 

(f) CAxB » (CB)A 

Solution 

(a) Define / by 

/: Ax B —» B x A 
(a,b) i—> (b, a) 

Although this / is clearly a bijection, it is worth bearing in mind in all 

these exercises how to justify that one’s construction works. 

First of all, is / actually well-defined as a function? Here this involves 

noting that given a member x of A x B, the ordered pair construction 

guarantees both that there are unique a 6 A, b 6 B with x = (a, b) and 

that the proposed image of x under / is thus a uniquely defined member 
of B x A. 

Next, is / one-one? Here we could argue as follows: if we have 

/(oi,6i) = f {o>2>^2)j then (61,ai) = (&2,«2); the ordered pair construc¬ 
tion then guarantees that 61 = b2 and Oi = a2, so that (ai, iq) = (a2, b2), 
as required. 

Lastly, we must show that / is onto. Here this is particularly straightfor¬ 
ward as (6, a) is the image under / of (a, b). 

(b) Not given. 

Verifying that one has specified a 

bijection is not always as easy as 

this example! 
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(c) A typical member of A2 is a function g: {0,1} —y A. Define a function 

9 by 

9: A2 —y A x A 

9 > (g(0),g(l)) 

You can check that 6 is a bijection. 

(d) Not given. 

(e) Define 6 by 

9: ABuC —y AB x Ac 

9 1—> (g\B,g\c) 

You can check that 9 is a bijection. (You need the fact that B D C = 0 
to show that 9 is onto: if your bijection is defined the other way round 

from ours, i.e. from AB x Ac, you’d need this fact to show your mapping 

is well-defined.) 

(f) Not given. (This is probably the hardest part of this exercise.) 

We probably ought only define arithmetic operations on cardinals (in partic¬ 

ular addition, multiplication and exponentiation) when we have said what a 

cardinal number is - this needs the axiom of choice and for the moment we’re 

trying to see how far we can get without using this. But the basic idea can 

be phrased informally in terms of ‘sizes’ of sets as follows: 

size of A plus size of B size of (A x {0}) U (B x {1}) 

size of A times size of B size of A x B 
size of A to the power size of B size of AB 

You might like to mull over whether these operations seem reasonable - a 

good place to start would be with finite sets, e.g. if A has m elements and B 
has n elements, does the set AB have the right number of elements? (Note 

that if we had A and B disjoint, a good measure of the size of A plus the size 

of B would be the size of A U B. But in case not, we use the trick of creating 

disjoint sets equinumerous with A and B.) 

With these arithmetic operations we can view the results of the previous ex¬ 

ercise as telling us something about the properties of the operations. For 

instance, A x B « B x A essentially says that the multiplication is commu¬ 

tative. You can see that Cantor’s arithmetic of cardinals is beginning to look 

as though it not only incorporates the usual arithmetic for natural numbers 

(regarding n as a set with n elements), but also extends many of its everyday 

properties into the realm of more general sets. And our definition of « looks 

like the right way of expressing ‘equalities in this arithmetic. 

Let’s now look at A and how well it captures what we might expect of < for 

sizes of sets. The most basic requirement of a < relation is usually that it 

satisfies the axioms for a partial order. Does this happen for A? We would 

need A to have the following properties: 

reflexive foriall sets A, A A A; 
anti-symmetric for all sets A and B, if A A B and B -< A then A = B; 

transitive for all sets A, B and C, if A A B and B A C then A ^ C. 

Strictly speaking A could never be 

a relation within ZF as such a 

relation would have to be a set. 
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Exercise 6.14_ 

In fact A has two of the above properties. Find the property it doesn’t have 

and explain what goes wrong. And prove A does have the other two properties. 

Solution 

You may have found it easier to spot the two properties which do hold, namely 

reflexivity and transitivity. Proofs of these are very straightforward: the 

identity function on A is automatically one-one, so A A A; and if there are 

one-one functions from A to B and from B to C, then their composition is a 

one-one function from A to C, giving the transitivity of A. 

So by a process of elimination the property which doesn’t hold must be anti¬ 

symmetry. To justify this we need a counterexample - sets A and B with 

A A B and B A A for which A ^ B. And we have already seen examples of 

unequal sets A and B for which A fs B, so that both A A B and BAA (why 

does this follow?), for instance {0,1, 2} and {2,4, 5}, or N and Z. Any such 

pair of equinumerous but unequal sets provides a counterexample. 

How inconvenient of A not to fit into the familiar mould of a partial order! 

But with hindsight we should not have expected anti-symmetry. If A does live 

up to our intuition of ‘has size less than or equal to’ then A A B and BAA 
should entail that A and B have the same size, not that they are equal. That 
they do entail this is the content of the following: 

Theorem 6.1 Schroder-Bemstein theorem 

If A A B and BAA then A fa B. 

The proof of this highly desirable result is sufficiently hard to have challenged 

several great mathematicians, so it gets a name! We shall leave the proof 

to the end of this section. The theorem gives us an alternative strategy for 

showing that A « B: if we can’t find a bijection from one set to the other, we 

can always try to find a pair of one-one functions, from A to B and from B 
to A, and use this theorem. 

It’s worth noting here that Cantor’s theory of cardinal numbers defines a set 

Card (AT) for each set X in such a way that A w B if and only if 

Card(A) — Card(H), even when A ^ B. And when A is restricted to these 

cardinals it becomes anti-symmetric in the proper sense, i.e. if Card(A) A 
Card(i?) and Card(B) A Card(A) then Card(A) = Card(B). 

Thanks to the Schroder-Bernstein theorem, we can regard A as essentially 

‘less than or equal to’ where the corresponding ‘equal to’ is w, rather than 

' =. In the next exercise you are asked to check that A and » indeed have the 
sort of relationship you’d expect between < and =. 

The theorem is sometimes called 

the Cantor-Schroder-Bernstein 

theorem. Ernst Schroder 

(1841-1902) and Felix Bernstein 

(1878-1956) were German 

mathematicians. Cantor’s own 

proof in 1896 used an equivalent of 

AC. Schroder’s proof at around the 

same time contained an error 

which was ultimately corrected. 

Bernstein’s proof, published in 

1898, was the first correct proof 

avoiding use of AC. 

This is easy to show, but you need 

that Card(Card(X)) = Card(A) 

for each set X. We shall revisit 

these ideas in Chapter 9. 

Exercise 6.15____ 

Using bijections and one-one functions where appropriate, show that: 

(a) if A A B and B « C then A AC] 

(b) if A « B and B AC then A A C. 
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In the next exercise, you are asked to derive results about A which will even¬ 

tually translate into inequalities involving the arithmetic operations. 

Exercise 6.16___ 

Suppose that A A B. Prove the following inequalities by defining appropriate 
one-one functions. 

(a) dUC^BuC, where C is disjoint from both A and B. 

(b) AxC AB xC. 

(c) Ac A Bc. 

(d) CA A CB. 

Solution 

(a) As A A B there is a one-one function /: A —> B. Define h by 

h: AuC —> BUC 

_._. J/(®)> if x€A, 
\ x, if x £ C. 

h is well-defined because C fl A = 0. The facts that / is one-one and 

that C n B — 0 can then be used to show that h is indeed one-one. 

(b) Not given. 

(c) Not given. 

(d) Not given. , 

These results will translate into statements about cardinal arithmetic, e.g. 

part (i) above becomes ‘/c < A implies n + n < X + //’. 

Lastly, let’s look at some of the properties of By definition A -< B when 

A A B and A 56 B, which is pretty similar to the definition of a strict partial 

ordering < from a given weak ordering <. So you might expect to be able to 

show that -< is a strict partial ordering on sets. This is your next exercise! 

Exercise 6.17- 

Show that -< is 

(a) irreflexive: for all sets A, A -/{ A\ 

(b) transitive: for all sets A, B and C, if A -< B and B -< C then A -< C. 

Solution 

(a) By the reflexivity of ~ we have A ~ A. So by the definition of -< we have 

A/ A. 

(b) Suppose that A -< B and B -< C. Then by definition A < B and B < C, 

so by the transitivity of A we have A<C. 

To conclude that A <C we have to show that A 56 C, so we assume that 

A « C and try to derive a contradiction. But if A « C, then as 

we have that BAA (using the result of Exercise 6.15). As we also have 

A A B, thfe Schroder-Bernstein theorem gives us that A » B. But this 

contradicts the original assumption that A A B. Hence A 56 C, so that 

A A C as required. 
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Things are looking so straightforward that it’s time to bring ourselves down 

to earth with a bump by noting some of the properties X does not have! For 

instance, you might like to think about the following exercise - no solutions are 

given as suitable examples will become clearer after reading the next section. 

Exercise 6.18_—-- 

Find counterexamples for each of the following statements. 

(a) If A A B and C is disjoint from both A and B, then A U C A B U C. 

(b) If A A B and C/0, then A x C A B x C. 

(c) If A A B and C ^ 0, then Ac A Bc. 

The point is that cardinal arithmetic will not always preserve strict inequali¬ 

ties, even though it will usually preserve weak ones. 

And we don’t just have problems with X. We can, and later will, have big 

problems with m and X. Many plausible statements involving these - plausible 

because of our intuition with finite sets or familiar infinite sets - can turn out 

to be unprovable without some extra principles of set theory, or even wrong! 

We dodged a major example of such a statement earlier on, when we were 

looking at the properties we might expect X to have: a nice property possessed 

by many partial orders in mathematics is that of linearity, which for X would 

be expressed as 

A X B or B X A, for all sets A, B. 

This innocent statement (called the dichotomy principle) is in fact equivalent 

to the axiom of choice. And AC is essentially what is needed to develop 

Cantor’s full theory of cardinal numbers. So we will meet dichotomy again 
later! 

To end the section, let us now give a proof of the Schroder-Bernstein theorem. 

Theorem 5.7 in Section 5.4 shows 

that the dichotomy principle 

follows from Zorn’s lemma. We 

shall show that both these 

principles are equivalent to AC in 

Chapter 9. 

Theorem 6.1 Schroder-Bernstein theorem 

If A X B and BAA then Am B. 

Proof 

As A X B and BAA there are one-one functions /: A —> B and 

g: B —y A. Of course, if one of / and g was onto, then we would have the 

desired bijection to show that Am B. But in general neither will be onto, so 

that we have to adapt them in some way to construct a suitable bijection. 

First we define subsets An of A for all n G by recursion, by setting 

A0 = A \ Range(g), 

and defining A\ to be the image set of A0 under the composite function g o /, 

A2 to be the image set of A\ under g o f and so on: 

■An+l = g(f(An)), for all neN. 
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It’s easy to check that 

— -dn-|_l. 

When a function g is one-one but 

not onto, it is quite common to use 

the notation c/_1 for the ‘inverse’ 

function defined on Range(g). 

Regarding functions as sets of pairs 

in ZF, g~l is the set 

{(a,b) : (6, a) G 3}. 

We shall show that h is a bijection, so we must show that it is both one- 

one and onto. For the one-one property we shall take a, a' £ A such that 

h(a) = h(a') and show that a = a'. If both a and a1 are in U{An : n G hJ}, 

we have h(a) = f(a) and h(a') = f(a'): as / is one-one, this forces a = a'. 
Likewise, if neither a nor a' is in (J{^4n ■n £ I^J}, then as g is one-one we also 

have a = a'. The only problem is when one of a, a', say a, is in (J{An : n £ N} 

and the other, a', is not. Suppose that a G An. Then 

h(a) = f (a) 6 Bn, 

while 

h(a') = g~l{a'). 

Could 3_1(a/) equal /(a)? If so, then 

0! -g (y_1(a')) 

= 9(f(a)) (as we are assuming g~l(a') - f (a)) 

£ ri-n-f-17 

contradicting that a' is not in |J{An : n G f^J}. Thus in this case we also have 

a = a', completing the proof that h is one-one. 

Now for the onto property, showing that for each b G B there is some a £ A 
with h(a) = b. There is no problem if b G \J{Bn : n G N} as then b = /(a) for 

an a in some An. But what if b & : n G N}7 The trick is to look at g(b) 
and investigate whether g(b) G An for some n. In fact g(b) £ An for any n 
(which we shall leave as an exercise for you) so that the definition of h gives 

h{g(b)) = p_1(p(b)) (as g(b) & [}{An ■ n G N}) 

= b, 

giving that b is indeed in Range(fi). 

Thus h is onto, so that h is a bijection and giving A » B, as required. ■ 

Note that if a 0 A0 then a G Ranged), so that a = g(b) for some b G B. As g 
is one-one, this b G B is unique, so that in this case we can write b as g~l{a). 

This means that we can now define a function h from A to B by 

h: A —» B 
, / \ J /(a), if a G An for some n £ f^J, 

a (<7-1(a), otherwise. 

This defines a value h(a) for all a £ A as if a is in none of the Ans, then in 

particular a 0 Aq, so that (as already discussed) g~l(a) exists. 

We then define subsets Bn of B for all n £ N by 

Bn — f{An). 

Exercise 6.19---- 

Complete the detail of the proof above, namely that ii b \J{Bn : n £ N} 

then g(b) $ An for all n £ N. 
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Solution 

If g(b) € Aq this would contradict that A0 = A \ Range(g). So g(b) ^ Aq. Also 
as b £ Bn and g is one-one we cannot have g(b) G g(Bn), i.e. g(b) $ An+1. 
Thus g(b) $ An for all neN, 

Exercise 6.20_ 

In the proof above of the Schroder-Bernstein theorem take A = B = N and 
let / and g be the one-one functions defined by /(n) = 2n and g{n) = 2n + 1. 
Describe the rule of the corresponding function h constructed in the proof. 

In the next two sections we shall see some impressive applications of the 
Schroder-Bernstein theorem. 

Further exercises 

Exercise 6.21_ 

Show that if A fa B then Ac fa Bc. 

Exercise 6.22_ 

Show that if A « B then &>(A) fa B). 

Exercise 6.23_ 

Can one define a sensible operation of subtraction on ‘sizes’ of sets? 

Exercise 6.24_ 

Is there a set A such that A ■< B for all sets B? Likewise is there a set C such 
that B <C for all sets jB? 

Exercise 6.25_ 

Prove that the principle of dichotomy holds for finite sets, i.e. if A and B are 
finite sets, then A ■< B or B ■< A. 

Exercise 6.26___ 

Suppose that X, Y are sets each with at least two elements. Show that 

XU Y xY. 

Exercise 6.27___ 

Show that if ACBCCCD and A fa D, then B fa C. 

6.4 Infinite sets without AC - countable sets 
Let us now look more closely at infinite sets and how they are related to each 
other using fa etc. We know that LJ is infinite, so presumably any ‘bigger’ set 
is also infinite - verify this in the following exercise. 

N was shown to be infinite in 

Section 3.4. 
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Exercise 6.28___ 

Suppose that ^ X. Show that X is infinite. [Hint: assume that X is finite 
and derive a contradiction.] 

Thus the set Z of all integers is indeed infinite, as N C Z, so that N A Z. But 

we have already seen the first of Cantor’s surprises, namely that N « Z, even 

though N is a proper subset of Z. So we have to educate our intuitions about 

« for infinite sets. Let’s look first at N and its subsets. 

Exercise 6.29_ 

Give a bijection to show that N « 2N, where 2^ = {2n: n £ N}, i.e. the set 
of even integers. 

Solution 

Define / by 

f:N—+ 2N 
n i—y 2 n 

It is easy to show that / is a bijection. 

It is easy to show similarly that « kN (= {kn : k £ f^}). So N has the same 

size as quite a few of its proper subsets. The question arises of what are the 

possible sizes of subsets of N. Clearly some of the subsets A are finite, i.e. 

there is some natural number n such that n « A. But is there some subset A 
of f^J which is neither finite, so by definition is infinite, nor equinumerous with 

N? If such an A exists, then A -< N, so we have a smaller degree of infinity 

than To put you out of your misery, no such A exists, as the next theorem 

shows. 

Theorem 6.2 

Suppose that A C N. Then either A is finite or A « N. 

Proof 

For a posh proof we need to set up a bijection between A and either N or a 

natural number n. What structure does A have which we can exploit to define 

such a bijection? Our best bet is surely the ordering of the numbers in A by 

the usual <, which arranges the members of A into a list in ascending order 

- first member, second member, etc. And the most natural way of setting up 

a bijection is to define one, / say, from N to A by: 

0 i—y first member of A 
1 i—y second member of A 
2 i—y third member of A 
and so or^. 

We can smarten up our intuition of the elements of A listed in ascending order 

by using the language of well-order. So first member of A becomes min(A), 

‘second member’ becomes min(A \ {/(0)}) and so on. So it looks as though 

We continue the convention of 

using bold type for natural 

numbers, n rather than n, 0 rather 

than 0 etc., only when we think it 

might be important to remember 

that natural numbers are 

particular sets within ZF. 

We use bold n here, not n, because 

in the definition of ‘finite’, it does 

matter how natural numbers are 

represented as sets. 

We’ve shown that for n € N, 

n 96 N, so that A cannot be 

simultaneously finite and 

equinumerous with N. 

The author is suspicious of most 

arguments that try to define a 

bijection from A to N: they usually 

turn out to presuppose an 

enumeration of A as oo, 01,..., 

which really means that our / has 

already been constructed! 
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we could define / by 

/: N —> A 
n i—> min (A \ Range(/|n)) 

This is a rather flash definition, yielding for instance that 

/(0) = min (A \ Range(/|0)) 

= min(A \ 0) as 0 = 0 and Range(/|0) — 0 

= min(A), 

/(1) = min (A \ Range(/|i)) 

= min [A \ Range(/|{0})) 

= min(A\ {/(0)}) 

and intuitively 

/(n) = min (A \ {/(0), /(l),n - 1)}). 

Will this definition do? Could anything go wrong? Stop and have a think! 

There is always a potential problem when finding the minimum element of a 

subset of a well-ordered set: what if the subset is empty? So can 

A \ Range(/|n) ever be empty? Yes, of course! If A is finite, surely there’s 

some n for which, intuitively, {/(0),/(l),..., f(n - 1)} lists all of the ele¬ 

ments of A. So our definition of / must somehow cope with the case that A is 

finite. Although one could structure the argument by defining / in two ways, 

once for the case that A is finite and once for when it isn’t, there is some¬ 

thing attractive about the following construction, which covers both cases. 

The trick is to introduce a new set c not in A to be the image of n, should 

A \ Range(/|n) be empty. Then our definition of / becomes 

/: N —)■ A U {c} 

n f min (A \ Range(/|n)), if A \ Range(/|n) ^ 0, 

\ c, otherwise. 

Unlike our earlier, tentative, definition, this / is well-defined, whatever subset 

A is of f\l. We now have two cases: when c is in Range(/) and when it isn’t 
(intuitively when A is finite and when it is infinite). 

Case: c E Range(/) 

Intuitively, if /(n) = c, then /(m) = c for all m > n; and the first n such that 

/(n) hits c is the size of A. To define this n formally, note that {m: /(m) = c} 

is non-empty (as c E Range(/)) and is a subset of f^J, so has a least element: 

let n be this least element. We claim that /|n is a bijection from n to A, so 
that A is finite. 

/|n is onto A, as follows. By the minimality of n, we have that /(i) / c for all 

i < n, so that each such /(i) is in A. Thus Range(/|n) C A. And by definition 

of n, /(n) = c, so that A \ Range(/|n) = 0. But then A C Range(/|n), so 
that /|n is onto A. 

The details of showing that / is one-one are left to you as part of the next 

exercise. Note for the moment that our solution to the exercise will actually 

show more than that / is one-one. It will show that / is strictly increasing, 
i.e. if i < j for members i, j of n, then /(i) < /(j). 

Remember that, for a general 

n G N, {/(0), /(1),..., /(n - 1)} is 

not a proper expression within ZF: 
however, Range(/|„) is. 

For example, c = (0, 0) will do, as 

(0,0) £IM. 

/ strictly increasing implies that / 

is one-one. 
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Case: c £ Range(/) 

In this case we have /(n) € A for all n, so that Range(/) C A. The same 

argument as that showing /|n to be one-one will show that / is both one-one 

and strictly increasing. It remains to show that / is onto. It will help to have 
the following lemma: 

Lemma: /(n) > n for all n £ LJ. 

Proof of Lemma: We shall use the fact that / is strictly increasing, and 
proceed by induction. 

For n = 0 we have that /(0) is some member of A C N, so that /(0) > 0. 

Suppose that /(k) > k for some k £ N. Then as / is strictly increasing, 
/(k + 1) > /(k), so that 

/(k + 1) >/(k) + 1 

> k + 1 using the inductive hypothesis. 

The result of the lemma follows by induction. □ 

We will now show that / is onto, arguing by contradiction. Suppose that 

/ is not onto. Then there is some a £ A with a g Range(/). Let’s in¬ 

vestigate the value of /(a). By the lemma above, /(a) > a. Also /(a) = 

min (A \ Range(/|a)), so that /(a) < b for any b £ A \ Range(/|a). However, 
Range(/|a) C Range(/) and a 0 Range(/), so that a ^ Range(/|a). Of course 

a £ A, by definition of a, so that a £ A \ Range(/|a), giving that /(a) < a. 

Putting the two inequalities together, we get /(a) = a. But then a £ Range(/), 

contradicting our assumption that a £ Range(/). 

Thus / is onto, and hence / is a bijection, so that A « N. ■ 

Exercise 6.30--- 

Prove the claim in the proof above that /|n is strictly order-preserving. (It 

may help to remember that for natural numbers i, j within ZF, i < j if and 

only if i £ j if and only if i is a proper subset of j.) 

Solution 

Take i, j in n such that i ^ j. Without loss of generality i < j, so that as sets 

in ZF, i C j. Then Range(/|j) C Range(/|j), so that 

A \ Range(/|j) C A \ Range(/|i). 

Now /(j) £ A \ Range(/|j) so /(j) £ A \ Range(/|i). But by definition 

/(i) = min (A \ Range(/|0), so that /(i) < /(j). Also, as sets in ZF, i £ j, 

so that /(i) £ Range(/|j), while from the definition /(j) g Range(/|j). Thus 

/(j) cannot equal /(i). Hence /(i) < /(j)- 

Definitions 

A set A is said to be countable if it is finite or equinumerous with N. 

We say thattA is countably infinite if A is equinumerous with fol. 

See Exercise 3.11. 

If n £ then n 56 N (Exercise 

3.6). So A cannot be both finite 

and equinumerous with N. 
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By our theorem above, any subset of N is countable; and we have shown that 

N « Z, so that Z is countable. How about some other famous sets, like Q, 

which are clearly infinite? Before we investigate these, let’s review the ways 

in which we might show that a set A is countably infinite. First of all we 

can construct a bijection from N to A (or vice versa). We could also exploit 

the Schroder-Bernstein theorem, by constructing two one-one functions, one 

from N to A and one in the reverse direction - it’s sometimes easier to do this 

than to find a bijection. And with both methods we can of course replace N 

by another known countably infinite set. In the next exercise we’d like you to 

justify a further method. 

Exercise 6.31_ 

Suppose that the function /: N —> A is onto and that N A A. Prove that A 
is countable. (Can you avoid using any form of AC? The set A will of course 

be countably infinite, but as this is such a mouthful, it seems customary to 

be somewhat sloppy with one’s terminology!) 

A restatement of Exercise 6.31 is that if one can list the members of a set X 
as xo, xi,..., xn,..., where each member of X appears at least once as an xn 
for some neN, but possibly appears several times, then X is countable. 

Let’s now use each of these methods to prove one of the first of Cantor’s 

surprising results, that Q^", the set of non-negative rationals, is countable. (It 

hardly seems necessary to say that the result, at least the first time one meets 

it, is usually surprising - there seem to be vastly more rationals than natural 

numbers!) As N C Q,}, we have f^J A Q^. Let’s define an onto function from 

N onto Q^, so that by the result of the previous exercise, Qq is countable. 

List all the positive rationals in an array as follows 

1 

1 

2 

T 

3 

I 
4 

T 

1 

2 

2 

2 

3 

2 

4 

2 

1 

3 

2 

3 

3 

3 

4 

3 

1 

4 

2 

4 

3 

4 

4 

4 

so that the rational ^ appears as the entry in the nth row and mth column. 
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Now count through the array, starting at the top left corner and proceeding 
up successive ‘anti-diagonals’ as follows: 

12 3 4 

In this counting process 1 is counted as item 1, | as item 2, \ as item 3, and 

you can check that the entry ^ appears as the (|(m + n — l)(m + n — 2) + m)th 
Explain this formula! 

The fundamental theorem of 

arithmetic says that every positive 

integer greater than 1 has a unique 
decomposition into a product of 

primes of the form p^p^2 ■ ■ -Prr 
where pi,p2, ■ • . ,pr are primes with 

pi < P2 <•■■< Pr, and 

ki, &2,..., kr axe positive integers. 

See Exercise 6.42. 

Then prove the following theorem: 

item. 

This counting process defines a function / from the set of positive integers 

to the set of positive rationals, and by setting /(0) = 0 we obtain a function 

from bJ to Op . Clearly every non-negative rational is f(n) for some n, and 

in fact any positive rational is the image of infinitely many n: for instance \ 

appears in the array as §, | etc. So / is onto, and the result of Exercise 6.31 

allows us to conclude that bl ~ Qj. 

An alternative method is to define, in a direct way, a one-one function from 
©+ to bl and, given that bJ ■< Qq , use the Schroder-Bernstein theorem to 

deduce the result. An attractive trick is to exploit the fundamental theorem 

of arithmetic as follows. Define a function / by 

/: ©+ —» N 

_ f 0, if q = 0, 
Q | 2m3n, if q = ~ and gcd(m,n) = 1. 

The condition that gcd(m, n) = 1 is of course needed to give a well-defined 

image for q. And it is easy to check that / is one-one as required. 

How about the most direct way of showing that f\l and ©d" are equinumerous, 

namely defining a bijection from one to the other? Well, it can be done, 

grubbily! 

Now that we have shown ©q to be countable, it’s relatively easy to show that 

Q is countable. First show that the set Q_ of negative rationals is countable. 
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Theorem 6.3 

Let A and B be countable sets. Then A U B is countable. 

Applying this theorem to 0~ and then gives that Q is countable. 

Exercise 6.32_ 

Show that <Q>_ is countable. (You have a choice of methods!) 

Exercise 6.33_ 

Prove Theorem 6.3. [Hint: as A U B equals the union of the disjoint sets A 
and B \ A, it is enough to prove the result for A and B disjoint. Only do the 

case where both A and B are infinite.] 

Exercise 6.34_ 

Prove that the union of finitely many countable sets is countable. 

Solution 

This is just a straightforward induction on the finite number of countable sets. 

The next exercise asks you to prove the following theorem in a couple of ways: 

Theorem 6.4 

Let A and B be countable sets. Then Ax B is countable. 

Exercise 6.35__ 

(a) (i) Give a one-one function to show that N A N x N. 

(ii) Give a one-one function which shows that [Hint: exploit 

the trick with prime factorization used for <Q)q .] 

(iii) Prove Theorem 6.4. [How do you prove the result in the case that 
one or both of A and B are finite?] 

(b) Exploit the construction earlier involving an array (of rationals, in that 
case) to define a bijection between N and NxN. 

Solution 

(a) (i) Define / by 

f:N—>NxN 
n i—>• (n, 0) 

This / is clearly one-one. 

(ii) Define g by 

g: N x N —x N 

(m,n) 2m3n 

Again it is easy to show that g is one-one. 
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(iii) From the first two parts, we can use the Schroder-Bernstein theorem 

to conclude that ft f^l x F^. Thus if A and B are both countably infinite, 

i.e. A ft B ft N, we can use the result of Exercise 6.11 to deduce that 
A x B ft F^l x F^J. Thus A x B ft 1^1, so is countable. 

The case where one of the sets, A say, is countably infinite and the other, 

B, is finite, can be tackled in a variety of ways. For instance, as B is finite 

there is some n e N for which B & n. Suppose that n > 1. Then 

B ft n 

■< Fy as n C N, 
/ 

so that 

A x B A x N 

& N x N 

ft Py, 
while also 

N ft A 
« A x 1 (remember that 1 = {0}) 
^ A x n asl^n 

w Ax B. 

So N ■< A x B and A x B < N, from which we can conclude that 

A x B ft! N, so that Ax B is countable. 

Finally, if both A and B are finite, say A«m and B ft! n, for m, n G N, 

the result follows from the fact that m x n ft m • n, where m • n is the 

product of m and n within ZF. 

(b) This time let us use the familiar picture to define a bijection h from F^J x 1^ 

to N, as follows: 

h: N x N —> N 
(m,n) i—> \{m + n + l)(m + n) + n + 1 

(0, 

(1, 

(2, 

(3, 

It is easy to check that h is indeed a bijection. 

0) (0,1) (0,2) (0,3) 

(rn,n) 

The bijection in the last solution above is often helpful in constructing bi- 

jections showing that other sets are countable. Likewise, the fundamental 

theorem of arithmetic can be very helpful. 

So far in this section, all our infinite sets have been countable. Is this the 

case for all infinite sets? The answer is a resounding ‘No’, as is given by the 

What happens if n = 0? 

Note that the diagonal containing 

(m, n) has m + n + 1 entries. The 

preceding diagonals have 

1 + 2 + ... + (m + n) entries. And 

(m, n) is the (n + l)th entry along 

its diagonal. 
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following theorem of Cantor - in some sense it is this theorem which makes 

the subject really take off! 

Theorem 6.5 Cantor's theorem 

For any set X, X -< 3°(X). 

Think about the consequences of this for a moment! For instance, starting 

with f^l, we have a sequence of infinite sets 

N -< ^>(M) -< -< ... 

of strictly increasing ‘size’. So there are lots of different ‘sizes’ of infinite sets. 

Furthermore, there is no set X of ‘maximal size’, as X is dominated by the 

set ^(X). 

Proof of Cantor’s theorem 

We need to show both X < <P(X) and X 96 3°(X). 

It is easy to show that the function 

f:X—¥&(X) 
x 1—¥ {re} 

is one-one, so that X A 3°(X). 

Assume that X « ^(X). Then there is a bijection g: X —¥ 3°(X). Define 

a subset Y of X by 

Y — {x € X : x £ g(x)}. 

As g is onto, there must be some y G X for which Y = g(y). Is y E Y? If 

so, then by definition of Y we have y $ g(y)‘, but g(y) = Y, so we have a 

contradiction. So we must have y <£Y\ but as Y = g(y) this means that 

y G Y, so again we have a contradiction. So g is not onto, so not a bijection, 

contradicting our assumption as required. ■ 

Definition 

An infinite set which is not countable is said to be uncountable or 
uncountably infinite. 

In the next section we shall investigate some uncountable sets and start to 

look at an arithmetic of cardinals. But to end this section, let’s look at two 

final conundrums involving countable sets. First of all, in Exercise 6.34 we 

showed that the union of finitely many countable sets is countable. Here is a 

powerful extension of this result and its ‘proof’. 

Theorem 6.6 

Let X be a countable set, each element of which is itself countable. Then 

U X is countable; i.e. a countable union of countable sets is countable. 

Recall that -< is irreflexive and 

transitive, so the sequence cannot 

loop back on itself. 

We are aiming to derive a 

contradiction. 
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Proof 

Consider the most interesting case where X and all its members are countably Why are the other cases less 

infinite. As X is countably infinite, there is a bijection /: N —> X. Each interesting? 

member of X is thus f{i) for some i 6 N. f{i) is countably infinite, so there 
is a bijection gn N —* f(i). Then the function h defined by 

h:NxN—+ [jX 

ifj) *—> 9i(j) 

is a bijection, so that NxN UX- By Theorem 6.4, (JX is countable. ■ 

What, if anything, is fishy about this proof? It is that the proof needs a mild 

form of the axiom of choice, and in this section we hoped to avoid use of AC. 

Exercise 6.36___ 

(a) Where did we use some form of AC in the proof? 

(b) Might we need to use AC to prove that a countable union of 2-element 

sets is countable? 

Solution 

(a) The problem occurs when we say that for each i E f^J there is a bijection 

Qi: f\l —>• f(i). In general there will be several bijections between bJ and 

the countable set f(i), so that we need to choose one of these for each 

i E N. If the sets,/(i), ieN, have sufficient structure, then there may be 

some way of specifying each gt. But if not, then a form of AC is needed. 

(This is the same sort of problem as encountered when proving that the 

union of countably many null sets is null, in Section 5.3.) 

(b) Alas AC might still be needed! For each 2-element set there are two 

possible bijections between the natural number 2 and the set. Unless 

each 2-element set has some nice structure, we will again have to make 

countably many choices to get all these bijections. 

Our final conundrum concerns the relationship between an infinite set X and 

!U We already know that if ■< X then X is infinite. Surely the converse is By Theorem 6.28. 

true: if X is infinite then N < X. Alas (or not as the mood takes you) this 

result needs a mild form of AC! Knowing that X is infinite just doesn’t give 

us quite enough structure to define a one-one function from N to T. 

Exercise 6.37--- 

Let X be an infinite set. Assuming AC, prove that f^J ^ X. [Hints: by AC 

there is a choice function /: &>(X) \ {0} —¥ X. Exploit this / to define 
by recursion a one—one function from N to X, along the lines of the proof 

of Theorem 6.2 - you will need the fact that X is infinite, i.e. not finite, 

somewhere!] 

V 
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Further exercises 

Exercise 6.38- 

We shall call a set Dedekind infinite if there is a bijection between it and a 

proper subset of it. 

(a) Let X be an infinite set. Show, assuming AC, that X is Dedekind infinite. 

[Hint: use the result of Exercise 6.37.] 

(b) Show, without using AC, that the converse of the above result holds, i.e. 

if X is Dedekind infinite then X is infinite. 

For each of the exercises below, it is possible to avoid use of AC. 

Exercise 6.39_ 

For the purpose of this exercise, regard a finite sequence of natural numbers 

as an ordered n-tuple of natural numbers for some n G N. Thus the set 

U{[^Jn : n G N} can be regarded as the set of all finite sequences of natural 

numbers. Show that this set is countable. 

Exercise 6.40- 

(a) Show that the set of all 2-element subsets of N is countable. 

(b) Show that, for a fixed nGN, the set of all n-element subsets of N is 

countable. 

(c) Show that the set of all finite subsets of f^J is countable. 

(d) Is the set of all infinite subsets of N countable? Explain your answer. 

Exercise 6.41_ 

A complex number is said to be algebraic if it is a root of a polynomial equation 

xn + an-\xn~l + ... + a\x + ao = 0, where each coefficient a; is rational. 

(a) Show that, for a fixed neN, the set of all roots of all polynomials of 

degree n with rational coefficients is countable. 

(b) Show that the set of all algebraic numbers is countable. 

Exercise 6.42_ 

Define a bijection from N to Qj, the set of non-negative rationals. [Hint: ex¬ 

ploit the list of rational numbers which we used to construct an onto function 

from N to <Q^.] 

Exercise 6.43_ 

We can take the variable symbols for sets in our formal language for set theory, 

as in Chapter 4, as those in the countable set {xo, xi, x2,..., xn,...}. Thus 

formulas are built up from these variables, brackets and the symbols G, =, -i, 
A, V, —A ■f_A V and 3. 

Show that there are countably many formulas ) of one free variable y in 

the formal language. (This shows that the axiom of separation can be used to 

describe at most countably many subsets of an infinite set x, whereas Cantor’s 

theorem says that such an x has uncountably many subsets. Our inability to 

describe all of the subsets of x in a finite way is of course an important 
limitation of both set theory and of us!) 

This was Dedekind’s definition of 

an infinite set. It cleverly avoids 

reference to ‘finite’. It is of interest 

that showing the equivalence of 

Dedekind’s definition and the one 

that we use in this book requires 

use of AC. (In fact only a weak 

version of AC is required.) 

As opposed to such a sequence 

being a function from n into N. 

In the first three parts you might 

like to try to specify bijections, as 

well as exploit the 

Schroder-Bernstein theorem. 

A formula of the language has to be 

finitely long, so can involve the use 

of at most finitely many variables. 
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Exercise 6.44_ 

Hilbert’s Hotel has a countable infinity of bedrooms, numbered by the natural 

numbers. The hotel can be filled up in a straightforward way, putting the first 

guest to arrive in Room 0, the next guest in Room 1, the next in Room 2, 

and so on. And when the hotel is full, there’s a way of squeezing in an extra 

guest. All the existing guests move from their current room to the one with 

the next highest number. This frees up Room 0, into which the new guest 
can move. 

(a) The new night manager has been told about this way of adding a guest 

when the hotel is full. On his first night on duty the hotel is full and 

20 new guests arrive, each hoping for a room. He applies the technique 

for adding a guest 20 times in succession and everyone is satisfied. The 

next night a somewhat larger number of new guests, namely a countable 

infinity of them, turn up successively during the evening (at time intervals 

diminishing by a factor of a half each time), and the night manager ac¬ 

commodates them on the same basis. At breakfast the next morning, the 

kitchen staff notice that demand is a bit slow. What has happened? What 

should the night manager have done the night before to accommodate the 

new guests (and the old)? 

(b) Business for the hotel recovers and it is full again. The hotel has warning 

of the arrival, during the evening, of countably infinitely many coach 

parties, each coach carrying countably infinitely many people requiring 

separate rooms. 

(i) Suggest a scheme for the arrival time of the nth person in the mth 

coach, assuming that the first person in the first coach checks in at 6.00 

p.m. and that all the new guests have checked in by 8.00 p.m. 

(ii) How might the night manager (who has apparently retained his job) 

accommodate all the guests, new and old? 

6.5 Uncountable sets and cardinal arithmetic, 
without AC 

In this section we shall investigate the cardinalities of some interesting sets: 

many will turn out to be uncountable. Among the tools we shall use are the 

results of Section 6.3, which are really results of cardinal arithmetic. Many of 

the results are about U and we shall exploit the various ways of defining the 

real numbers in Chapter 2. For this section we shall again try to avoid use of 

AC. 

First of all, let us relate the sizes of two important, but very different looking, 

sorts of set. 

Theorem 6.7 

For any set X, «^(X) « 2X. 

Such a hotel was used as a lecture 

example by Hilbert. The hotel does 

have a Room 13, unlike some 

hotels, and a Room 0, unlike most 

hotels. 

It’s mildly irritating for the original 

guests to have to move rooms so 

often, but the inconvenience is 

matched by the price. 

2X — {0,1}X, the set of functions 

from X to {0,1}. 
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Proof 

Define a function / by 

/: &>(X) —A 2X 

A •—> Xa 

where Xa 1S the characteristic function of A, i.e. 

if x € A, 
if x A. 

It is easy to show that / is a bijection. 

So Cantor’s theorem (Theorem 6.5) can be equivalently stated as 

for any set X, X -< 2X. 

Exercise 6.45_ 

Prove directly that X 56 2x by assuming that there is a bijection between X 
and 2X and deriving a contradiction. 

Let us now investigate IR, the set of real numbers. As N C R, we certainly 

know (from Exercise 6.28) that IR is infinite. But is 1R countably infinite? 

Cantor showed not, by the following theorem. 

Theorem 6.8 

IR is uncountable. 

Proof 

Suppose that IR is countable. Then we can list the reals in the interval [0,1) 

as 

^1 ? ^2 5 ^3 ? • • • j > * • * 

with each real in [0,1) appearing as an for exactly one n € N, n > 1. We shall 

represent each such real r by its decimal expansion, 

r = 0.nr2r3 

avoiding the use of recurring 9s (so that e.g. we represent 0.2 by 0.2000..., 

rather than 0.1999 ...). We can then picture the reals in [0,1) written out in 
an array: 

Oi — 0.01,101,201,3 • • • 

a2 = 0.a2)ia2i2a2j3 ... 

a3 = 0.03^03^03,3 ... 

On — 0.On,lOn,2On,3 • • • 

As X ^ A°(X) w 2X. 

Don’t involve 3°{X) in your 

argument! 

How do we know that there are 

infinitely many reals in [0,1)? See 

Exercise 6.46 below. 

As outlined in Chapter 2 all 

complete ordered fields are 

isomorphic. An isomorphism is, 

among other things, a bijection, so 

that any two such fields are 

equinumerous. Thus arguments 

about the cardinality of IR don’t 

depend on which representation of 

IR is used. Our argument here is 

prettier using the decimal 

expansions of everyday maths, 

rather than Dedekind cuts or 

Cauchy sequences! 

152 



6.5 Uncountable sets and cardinal arithmetic, without AC 

Now define a real number r = 0.rir2r3 ... rn ... by 

_ f 4, if dn,n ^ 
n “ 1 7, if an,n < 6. 

Then r belongs to [0,1). However, r has been constructed to disagree with 

each an at the nth decimal place, so it cannot equal an for any n. Thus r does 

not appear in the list, contradicting that the list contains all reals in [0,1). 

Thus [0,1) 96 N. As N -< [0,1), we must then have N -< [0,1), so that, as 
[0,1) C [R, we have that IR is uncountable. ■ 

Exercise 6.46_ 

Explain the following steps of the proof of Theorem 6.8. 

(a) How do you know that there are infinitely many reals in the interval [0,1)? 

(b) Assuming that there are countably infinitely many reals in the interval 
[0,1), why can you list them as 

> d<$, . . . , dn, . . . 

with each number appearing as dn for exactly one n £ N, n > 1? 

Solution 

(a) [0,1) contains the rationals ^ for each n£ N with n > 1. This can be 

used to show that l\l X [0,1), so that [0,1) is infinite by Exercise 6.3. 

(b) Assuming that [0,1) is countably infinite, there is a bijection 

/: N —> [0,1). Then each real in [0,1) is f(n) for exactly one n eN. 
Putting dn+x = /(n), the ans have the claimed property. (So why bother 

with the dns7 Why not just use the f(n)s? I suppose that the variety of 

notation makes things easier to read.) 

This attractive argument tells us that IR is uncountable, but doesn’t relate 

the size of IR to that of any other set we know. The next theorem, however, 

does just this! 

Theorem 6.9 

U « J3(Q) « 2n 

Proof 

We shall use the Schroder-Bemstein theorem, treating the reals as given by 

Dedekind cuts. This makes it easy to show that IR ^ ^(Q), as the function 

/ defined by 

/: IR —y $>(Q) 
r 1—>■ r 

is clearly one-one. 

As Q » N, we have ^(Q) « ^(N), so by Theorem 6.7 ^(N) w 2N. So to 

complete the proof we need to show that 2^ X IR. 

This is called a diagonal argument. 

It is essentially the same sort of 

argument as used in the proof of 

Cantor’s theorem, X -< and 

is of great use elsewhere, e.g. in the 

theory of computable functions. 

Recall that as a Dedekind cut, the 

real r is a subset of G. 

By Exercise 6.22. 
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Given / G 2N, define a set /* of rationals by 

f* = {q£Q:q< /(0) + + • • • + for some n 6 

You can check that f* is a Dedekind cut. Then define a function 9 by 

9: 2n —» IR 

/—►/* 

You can also check that 9 is one-one, so that 2f'J X IR. 

Exercise 6.47--- 

(a) Show that /* in the above proof is a Dedekind cut. 

(b) Show that 9 in the above proof is one-one. 

Now that we have connected the sizes of two very important sets within math¬ 

ematics, N and [R, let us investigate how the sizes of other such sets compare. 

We already know, for instance, about Z, Q and N x N: they are all equinu- 

merous with while ^(N) is equinumerous with [R. How about, say, IR \ <Q>, 

the set of irrational numbers: or C, the set of complex numbers: or IR , the 

set of all real-valued functions of a real variable? For the next exercise, think 

about some of the possible bounds on the sizes of these sets. 

Exercise 6.48- 

(a) Could IR \ Q be countable? If not, why not? 

(b) Why is C not countable? 

(c) Is it possible that IRR « IR? If not, why not? 

Solution 

(a) IR \ <Q> cannot be countable. If it were countable, then, as IR equals 

(IR \ <Q) U Q, IR would be the union of two countable sets, hence countable. 

This contradicts that IR is uncountable. 

(b) IR is uncountable and IR C C. Thus C is uncountable. 

(c) By Cantor’s theorem IR X 2R. But 2 X IR, so that 2^ X IRr. Thus IR —< IR^. 

So Rr rfe IR. 

Let us try to tie down the sizes of these sets some more. First consider IR \ <Q>. 

We have shown that IR \ <Q> 56 N, and as IR \ Q C IR we have IR \ Q ^ IR. Can 

we locate the size of IR \ Q somewhere between those of M and IR? It may 

seem obvious that N ■< R \ <Q>, but even this needs justification, e.g. in the 

form of a one-one function from N to IR \ Q. 

Exercise 6.49_ 

Find a one-one function / from f^J to IR \ <Q>. 

So we can at least conclude that IR \ Q is infinite (by Exercise 6.28). As 

IR \ Q is not countable the question then arises of whether it might have a size 

strictly between those of N and IR. The question of whether (R contains 

The idea is that /* corresponds to 

the decimal expansion 

/(0)./(l)/(2)/(3).... 

We can now state one of the 

earliest, and most famous, of 

Cantor’s problems: is there is a 

subset A of IR with N -< X -< IR? 

Cantor’s earliest version of the 

continuum hypothesis is that no 

such X exists. We shall return to 

this problem in Chapter 9. 

If A X B then A° X Bc. 
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any infinite subset which is equinumerous with neither N nor 1R was, perhaps, 

the most famous one arising from Cantor’s work. His continuum hypothesis 
is that there is no such subset and its resolution was proposed by Hilbert as 

one of the most important tasks for mathematicians in the 20th century. You 

might guess from this discussion that U\Q does not disprove the continuum 

hypothesis! So as U \ Q is not countable, it must be the case that it is 
equinumerous with IR, which you will now show. 

As a consequence of the previous exercise, we know that IR contains two 

disjoint countably infinite subsets (Q and The result that IR \ Q « IR 
will follow from the next theorem. 

Theorem 6.10 

Let X be a set with countably infinite subsets A and B such that 

AD B = 0. Then X \ A « X. 

Exercise 6.50_ 

Prove this theorem. [Hints: X \ A ■< X is clear. To show X A X \ A, try 

using the identity function on X \ (A U B): where will you map A U Bl] 

So the set of irrationals is not just uncountable: it is equinumerous with IR. 

As there is the challenge of trying to find a subset of IR which disproves the 

continuum hypothesis, we shall give you some exercises investigating the sizes 

of various infinite subsets of IR. The chances are, however, that they will be 

equinumerous with Pd or IR! One immediate class of examples is that of all 

open intervals (x,y), where x < y. 

Exercise 6.51--- 

(a) Find a bijection between the interval (—1,1) and IR. [Hint: there are 

differentiable functions which will work.] 

(b) Suppose that x < y. Show that (x, y) « IR. 

Next let us look at the set C. IR C C, so C is uncountable. Is IR « C or is it 

the case that IR -< C? It will help to make the connection between IR and C 

more precise: C = {a + bi :a,b £ IR}. So there is an obvious bijection between 

IR x IR and C. 

So the problem is equivalent to comparing IR and IR x IR, i.e. the real line 

and the Euclidean plane. Surely there can be no bijection between them! 

But there is! We shall show this by two methods, both of which have their 

attractions. 

Theorem 6.1£ 

IR « IR x IR 

The continuum is a name for the 

real line. 

The German David Hilbert 

(1862-1943) was one of the most 

influential mathematicians at the 

beginning of the 20th century. 

By the construction of /, 

/(N) CR\Q. 

So X is infinite. 

/: IR x IR —► C 
(a, b) i—>• a + bi 

This result was one of those 

regarded as particularly dramatic 

by Cantor’s peers. As size, the 

‘obvious’ candidate, fails to 

distinguish the line-from the plane, 

mathematicians had to look for 

some other difference. This was 

found in part in the development of 

topology, in which the two sets are 

not homeomorphic. 
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Proof 

The first method is by constructions of appropriate one-one functions and use 

of the Schroder-Bernstein theorem. 

Define a function /: (0,1) x (0,1) —* (0,1) as follows. Given any two reals 

a and 6 in (0,1), we can express both by their decimal expansions: 

a = 0.0102*23 ... ai... 

b = 0.616263 • • • 6» • •. 

where the o^s and bis are digits in {0,1,..., 9}, and both expansions avoid the 

use of recurring 9s, using recurring Os instead where necessary. Then define 

/(a, b) to be the real number with decimal expansion 

0.01610262^3^3 • • • aibi • • •, 

interleaving the digits of the expansions of a and 6. It is easy to check that / is 

one-one, so that (0,1) x (0,1) ■< (0,1). By Exercise 6.51 we have (0,1) « IR, 

so we can deduce that IR x IR -< IR. 

It is very straightforward to show that IR ■< IR x IR, for instance by using the 

function g: IR —> IR x IR defined by g(r) = (r, 0), which is clearly one-one. As 

IR x IR ^ IR, it follows from the Schroder-Bernstein theorem that IR « IR x IR. 

The second method is to make cunning use of some of the basic facts about 

« from earlier sections, as follows: 

2n x 2^ 
2^ x 
2Nu(Nx{0}) 

2n 

as IR « 2^ 

as N « N x {0} 
as ABuC » AB x Ac when B D C = 0 
by Theorem 6.3 

The first method used above, giving explicit one-one functions, gives one the 

satisfaction of having got inside the structure of the sets involved. The second 

method has the attraction of looking like an algebra, where one exploits a 

number of fundamental results about N and IR, like IR « 2N and the union of 

two countable sets is countable, along with some essentially dull facts about 

bijections. If this method does not seem to be getting anywhere, then see if 
you can adapt it to use the Schroder-Bernstein theorem, as in the following 

exercise. 

Exercise 6.52__ 

Show that IR « by two methods, both giving the result by using the 

Schroder-Bernstein theorem: 

(a) construct one-one functions /: IR —> and g: —> IR; 

(b) use ‘algebra’ and suitable facts about A to show that IR ^ and A IR. 

Solution 

(a) Represent real numbers by their decimal expansions, avoiding recurring 

9s, with a minus sign at the front if they happen to be negative: 

a = (-)AnAn- 1... A.o.aia2 ... an — 

This argument is a modification of 

Cantor’s first attempt to construct 

a bijection 

/: (0,1) x (0,1) —>(0,1). See 

Exercise 6.60. 

For instance, if a = | = 0.3333 ... 

and 6 = i = 0.2500 ..., 

then f(a,b) = 0.32353030.... 

Another crucial result is 

N x N « N. 

Use whichever representation of IR 

you find most convenient. 
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Then define /: IR —t by /(a) = a*, where for a > 0, 

AN-i, if i < N, 
27, if i = N + 1 (so that 27 represents the 

decimal point), 

a;-(Ar+i), if i > N + 1, 

so that a* is the function 

0 1 ... N N +1 N + 2 ... iV + l + n 

An An-i • • • Aq 27 ai (In 

For a < 0 adapt the definition of a* by setting a* (0) = 93 to represent the The only significance of the 

minus sign, and then shifting everything in the definition above along by mysterious 93 and 27 is, of course, 
1 that they are different from 

’• 0,1.9, 

It should be clear that / is one-one. 

Now define g: —» IR as follows. Given f E Nn define a corresponding 

real number /+ with decimal expansion consisting of Is separated by f(i) 
Os, so that e.g. the identity function 

i: N —» N 
n i—> n 

maps to 

one 0 as 

*(i) = i 

J 
010100100010000100... 

t t 
no 0s as four 0s as 
i(0) = 0 t( 4) = 4 

Formally /+ is the real number O.oia2o3 ... an ... where 

a _ f 1, if n = k + /(*) for some k > 1, 

n \ 0, otherwise. 

Then define g by 

g:NN—+R 

f '—> f+ 

You should check that g is one-one. 

(b) First note that IR « 2^. Then as 

2 X fcl, 

we can use the result of Exercise 6.16(c) to deduce that 

2^ ^ 

Thus IR ■< 

You might like to check that this 

works! 

\l A<B then Ac X Bc. 
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6 Cardinals (without the Axiom of Choice) 

The above is rather unsurprising. It’s the other way round which is rather 

spectacular! We have 

f^J ■< 2n (by Cantor’s theorem) 

so that by using again the result of Exercise 6.16(c), 

* (2^)n 

« (by Exercise 6.13(f)) Cj4xB « (CB)A. 

&2n (as N x N » N), 

so that 

-< 2n. 

You can now use one or other of these methods to resolve the last issue raised 

by Exercise 6.48. We had shown that IRr 56 IR by noting that 2R ■< IRr. Is 
2U If you now suspect that the answer is ‘No’, then you are right! 

Exercise 6.53_ 

Show that 2U w NR « UR. 

By now we have made quite an inroad to cardinal arithmetic. We have lots 

of results comparing the sizes of sets under the relations ss and It is very 

tempting to regard such results about, respectively, the disjoint union of two 

sets, their Cartesian product, and the set of functions from one to the other 

as being about addition, multiplication and exponentiation of their sizes. But 

of course we have rather dodged saying what the size of a set actually is. 

Without using AC the best we can really do within ZF is to say that the set 

representing the size of a set X is X itself. But with AC we shall be able to 

define Card(X) to be a special sort of set which will enable us to define an 

arithmetic on the cardinals of all sets, with a linear order - indeed a well-order 

- obeying familiar number-like rules such as 

if k < A then < AM. 

And within this arithmetic, we shall become accustomed to some of its dif¬ 

ferences from the arithmetic of N, once we involve infinite sets. For instance 

any ‘multiplication’ of two infinite sets we have done so far has not produced 

a set of bigger size than both the ones we started with: e.g. I^J x N « N and 
IR x IR « IR. 

Exercise 6.54_ 

(a) Show that 2^ x 22R « 22R. 

(b) Show that x IR « IR. 

Results like these suggest that in the arithmetic of infinite cardinals we should 
have 

k • A = max{x, A}, 

where max means the greatest relative to the order X; but without AC we 

cannot show that there is a ‘greatest’ of two arbitrary sets. (We have only 
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been successful so far because we have been dealing with sets possessing a rich 
enough structure, like I\l and R.) 

In the next chapter we shall investigate the other cornerstone of Cantor’s 

theory, the theory of ordinals. With these and AC, we can then really describe 
Cantor’s cardinal arithmetic. 

Further exercises 

Several of the following exercises ask you to locate the sizes of sets of more or 

less mathematical significance. Some require a piece of mathematical knowl¬ 

edge from outside the confines of set theory. For many you will need to use 
the Schroder-Bernstein theorem to prove your result. 

Exercise 6.55_ 

Suppose that X is a set for which X x X k X. 

(a) Must X be infinite? 

(b) Suppose that X is infinite. Show that: 

(i) 2X « Xx; 

(ii) (X x {0}) U (X x {1}) « X. 

Exercise 6.56- 

What are the sizes of the following sets? (That is, are they equinumerous 

with N, 2n, 22*1 or some other well-known set?) 

(a) The set of all infinite subsets of Q. 

(b) The set of all finite subsets of R. 

(c) The set of all countably infinite subsets of C. 

Exercise 6.57----- 

What are the sizes of the following sets? (That is, are they equinumerous 

with N, 2n, 22* or some other well-known set?) 

(a) The set of all continuous functions /: R —> R. 

(b) The set of all open subsets of R with the usual topology. 
OO 

(c) The set of all convergent series of real numbers ^ an. 
n=0 

Exercise 6.58---- 

A function /: N —» N (or f: U —> R) is said to be increasing when for all 

x,y eN (or respectively x,y € R), 

if x < y then f(x) < f(y)- 

Similarly / is said to be decreasing when for all x,y, 

if x < y. then f(x) > f(y). 

What are the sizes of the following sets? (That is, are they equinumerous 

with N, 2n, 22^ or some other well-known set?) 

(a) The set of all increasing functions /: N —> N. 

Such a function is sometimes called 

weakly increasing because of the 

requirement that f(x) < f(y) 

rather than f(x) < f(y). 
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(b) The set of all decreasing functions /: N —> N. 

(c) The set of all increasing functions /: IR —> IR. 

(d) The set of all decreasing functions /: IR —> IR. 

Exercise 6.59_ 

(a) Show that any two points in the subset IR \ <Q> of the plane can be joined 

by a circular arc which lies entirely in this subset. 

(b) How many such arcs are there? (That is, is the set of all such arcs joining 

the two points equinumerous with a well-known set like N or IR?) 

Exercise 6.60_ 

In our proof of Theorem 6.11 we exploited a function 

/: (0,1) x (0,1) —> (0,1) defined as follows. Given any two reals a and b in 

(0,1), express both by their decimal expansions: 

Q, — 0.O,i<12Q,3 • . . CLi . . . 

b = 0.bib2b3 ...b{... 

where the a^s and biS are digits in {0,1,..., 9}, and both expansions avoid the 

use of recurring 9s, using recurring 0s instead where necessary. Then define 

/(a, b) to be the real number with decimal expansion obtained by interleaving 

the digits of the expansions of a and b: 

O.aib\a2b2a3b3 ... aibi- 

Explain why / is not a bijection. [Hint: there is a problem with recurring 9s.] 

Exercise 6.61_ 

(a) Show that IRm « IRn for all m, n in N. 

(b) Cantor’s result that R and IR2 are the same ‘size’ closed one promising 

avenue for explaining why IR and IR2 are ‘different’. However, no bijection 

between the sets is continuous. Thus the sets are not homeomorphic, so 

that within point-set topology one can establish that they are ‘different’. 

(Cantor’s work was a foundation stone for point-set topology.) If you have 

done some topology (and in particular have met the concepts of continuity 

and connectedness) you should be able to do the following exercise. 

Show that there is no continuous bijection /: IR2 —» IR, where IR and IR2 
have their usual topologies. 

Exercise 6.62____ 

The Cantor set C is defined as the set of all real numbers of the form 
OO 

5>n 3-" 
71=1 

where each an takes one or other of the values 0 or 2. 

(a) Show that C is uncountable. 

(b) C is a null set within the context of the theory of Lebesgue measure, or, 

equivalently, a set of measure 0. (See Section 5.3 for a brief description of 

the Lebesgue measure on IR.) Let be the set of all Lebesgue measurable 
subsets of (R. What is the size of JH 

This is a throwaway remark of 

Cantor’s! 

Cantor’s first attempt to show that 

IR x IR « IR was essentially by 

constructing this function / and 

claiming that it was a bijection. 

Dedekind, to whom he sent the 

argument, spotted the error. 

A homeomorphism is a continuous 

bijection with a continuous inverse. 
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Exercise 6.63___ 

Cantor’s first published proof (in 1874) that R is uncountable used a different 

method from his later (1891) diagonal construction. This exercise attempts 

to take you through this earlier argument. Suppose first that R is countable, 

so that all the reals can be listed in a sequence x0,xi,X2,x3,..., without 

repetitions. Sequences (an) and (bn) of real numbers are defined as follows. 

Find the first two numbers in the list of all the reals which he in the open 

interval (0,1). If there aren’t two such numbers, it is easy to construct a 

real number not in the list, giving a contradiction. Otherwise call these two 

numbers ao and bo, taking ao < bo. Now look for the first two numbers in the 

list in the open interval (a0,b0), calling them ai and bi, taking ax <bi. (Again 

if there aren’t two such numbers, it is easy to obtain a contradiction.) Carry 

on in this way, so that an and bn, with an <bn, are the first two numbers in 

the list in the open interval (an_i,6n_i), where 

0 < a0 < ai < a2 < .. • < an_i < 6n_i < ... < &2 < h < bo < 1, 

assuming that one doesn’t run out of numbers in the list at some finite stage of 

the process (in which case we can construct a real number not in the original 

list). 

(a) Show that if, at the stage of looking for the first two numbers in the list in 

the open interval (an_i,6n_i), one fails to find two numbers, then there 

is a real number in this interval not in the list, hence contradicting that 

the list contained all the real numbers. 

(b) Suppose now that an, bn have been successfully constructed for all n G 

in the above manner. The sequence (an) is strictly increasing and bounded 

above by any of the bns, so has a limit ol. Likewise, the sequence (bn) is 

strictly decreasing and bounded below (by any of the ans), so has a limit 

/3. It is straightforward real analysis to show that a < (3. 

(i) Show that xn 0 (an,bn) for each n 6 N. 

(ii) Show that for any n G N, thus contradicting the assumption 

that the xns listed all real numbers. 

Exercise 6.64--------- 

A complex number is said to be transcendental if it is not algebraic (as defined 

in Exercise 6.41). Show that the set of transcendental numbers is equinumer- 

ous with R. (With any luck, you have essentially replicated Cantor’s argu¬ 

ment.) 

Liouville had shown in 1844 that transcendental numbers exist (see the next 

exercise), using a bit of calculus. The number e was shown to be transcenden¬ 

tal by Hermite in 1873, using quite a lot more calculus. The transcendence 

of 7r had to wait for Lindemann in 1882. So you can imagine the stir caused 

by Cantor’s argument (in 1874), which could be interpreted as saying that 

almost all real numbers are transcendental, without constructing a single one 

of them! 
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Exercise 6.65 

The purpose of this exercise is to illustrate Liouville’s demonstration that the 
OO j 

number L defined by L = ^ ——j- is transcendental. 
n=0 

Suppose that a is an irrational algebraic number with / (x) a polynomial with 

integer coefficients of minimal degree d such that f(a) = 0. (f(x) can be 

obtained from the minimum polynomial m{x) of a over Q by multiplying 

m{x) by the least common multiple of the denominators of its coefficients.) 

V 
(a) Let - be any rational number, where p,q € Z. 

(i) Show that 

(ii) Suppose that 

/I? 
1 

> -j- qd 

P 
-a 
q 

< 1. Use Taylor’s theorem to show that 

/(- < P — a it)- l'"w 
where /W is the ith derivative of /. 

^ ^ 1 i 
(iii) Show that f'(a) / 0 and deduce that k = 

2=1 

> 0. [Hint: 

recall that / is a polynomial of minimal degree such that f(a) = 0. 

(iv) Deduce that if P „ -a 
q 

< 1, then 

p „ 
q 

< 
1 

kqd 

has no solutions in p, q. 

oo 1 

(b) Let L be defined by L = ^ ^0^' 
n=0 

(i) Explain why L is not rational. 

N 1 
l-Y -L 

ion! 
(ii) Show that 

n=0 

< (10N-)N+1 

(iii) Use the preceding results to deduce that L is transcendental. 

This exercise has nothing to do 

with set theory. It uses instead 

various standard results of real 

analysis. 
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7 ORDERED SETS 

7.1 Introduction 

We have made considerable progress in investigating one sort of number, 

namely cardinals. In this chapter we shall lay the ground for the second 

of Cantor’s numbers, the ordinals, by looking in greater detail at ordered sets 

- an ordinal will be a special sort of ordered set. Much of the theory of ordered 

sets, like so much of what this book covers, was developed by Cantor himself. 

The usual orders on N, Z, <Q> and R are a familiar and important part of 

everyday mathematics. As N C Z C Q C IR, the orders are closely related: 

for instance, — 2 < 1 is true whether one regards —2 and 1 as members of Z 

or of Q or of R. But to what extent are the orders on these sets the same? 

Exercise 7.1- 

Find properties which distinguish between the orders on N, Z, <Q> and R, i.e. 

find some property expressible in terms of the order (rather than, say, the 

arithmetic or size) on each set which does not hold for some of the others. 

Solution 

There are plenty of ways of distinguishing between these orders, and one 

purpose of this chapter is to investigate properties of order such as those 

below. For instance: 

has a minimum element under its order: the other sets do not have 

one; 

for each element of Z there is a next biggest element in the order: this is 

also true for N, but not for Q or R; 

between any two distinct elements of Q there is another element of <Q; 

this is also true for R, but not for N or Z; 

every subset of R which is bounded above has a least upper bound in R: 

this is not true for any of N, Z or Q. 

All of the above properties are expressible in terms of the orders on the sets. 

One of the key properties of the order on N, not mentioned in the solution 

above, is that of well-order, and that will form the basis of the construction 

of the ordinals. So in this chapter we shall devote considerable attention to 

properties of well-ordered sets. We shall also investigate an arithmetic of 

ordered sets, i.e. ways in which we might add or multiply two ordered sets to 

get another ordered set. But first we shall remind ourselves of some of the 

basic axioms and language of the theory of order, which we do in the next 

section. 

But note that we have not yet said 

what the cardinal numbers are! 

Well-order is intimately related to 

the principle of mathematical 

induction, which is a distinctive 

feature of N. 
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7.2 Linearly ordered sets 

First let us remind ourselves of the definitions of the most basic sorts of order. 

An n-ary relation on X is some 

subset of X x ... x X. So R here 

n times 

is technically a 2-ary, or binary, 

relation. 

Standard examples of such orders are: 

(a) the usual < on any of LJ, Z, 0 and IR - these are all linear; 

(b) the usual > on any of N, Z, Q and [R - these are all linear; 

(c) C on - this is partial but not linear. 

Given an ordered set X, any subset of X is also ordered in a natural way 
Formally, we have the following. 

Technically, < on l^sJ is the subset 

{(m, n) : m < n} of N x N. 

Definitions 

Let X be a set and R a subset of X x X. R is said to be a relation on 

X. We shall often write xRy for (x, y) G R. 

R is a weak partial order on Z, or 1 is weakly partially ordered by R, if 

it has the following properties: 

reflexive for all x in X, xRx] 

anti-symmetric for all x and y in X, if xRy and yRx then x = y, 

transitive for all x, y and z in X, if xRy and yRz then xRz. 

If a weak partial order R has the following additional property: 

linear for all x and y in X, xRy or yRx, 

it is a weak linear order on X, and X is weakly linearly ordered by R. 

Definition 

Let R be a partial order on X, and let A be a subset of X. Then the 

restriction of R to A, written as R\axA, is the set of pairs 

{(a, b) :a,b G A and aRb}. 

Exercise 7.2____ 

Let R be a partial (respectively linear) order on X, and let A be a subset of 

X. Show that R\axa is a partial (respectively linear) order on A. 

So given an ordered set X and A C X, we shall treat A as an ordered set, 

where it is understood that the order on A is the restriction to A of the order 

on X. The point of this is that it gives us a quick way of describing a rich 

class of examples of ordered sets, namely the subsets of one of the standard 
ordered sets, like M or Q. 

The usual linear order on N can be represented both by the subset of N x N 

corresponding to < and by the subset corresponding to >, which are clearly For example, (2,1) g >, but 
different as subsets. (2,1) £ <. 
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Exercise 7.3___ 

Let R be a weak partial order on A. Show that R~l, defined by 

(x,y) £ R~1 if and only if (y,x) £ R, 

is also a partial order on X. 

So where we deal with a set with a familiar order, like the result of Exercise 
7.3 tells us that we always have a choice of two ways of regarding the order: 
we shall opt for the one we usually regard as ‘<’. And if we have a less familiar 
(weak) order, we shall still discuss it as though it were < rather than >. For 
instance, if R is a weak linear order on X and z £ X has the property that 
xRz for all a: € X, we describe z as the maximum element in the ordered set. 

Associated with every weak order R on X is a corresponding strict order S, 
where xSy means xRy but x ^ y. Axioms for strict order are as follows. 

Definitions 

Let A be a set and S a subset of A x A. 5 is a strict partial order on A, 
or A is strictly partially ordered by 5, if it has the following properties: 

irreflexive for all x in A, it is not the case that xSx\ 

transitive for all x, y and z in A, if xSy and ySz then xSz. 

If a strict partial order S has the following additional property: 

linear for all x and y in A, xSy or x = y or ySx, 

it is a strict linear order on A, and A is strictly linearly ordered by S. 

Exercise 7.4----- 

(a) Suppose that R is a weak partial order on A, and that the relation S is 

defined by 

xSy if and only if xRy and x y. 

Show that 5 is a strict partial order on A, and that if R is, in addition, 

linear, then so is S. 

(b) Suppose that S is a strict partial order on A, and that the relation R is 

defined by 

xRy if and only if xSy or x = y. 

Show that R is a weak partial order on A, and that if S is, in addition, 

linear, then so is R. 

So each weak order on A is associated with a strict order on A, and vice 
versa. This means that when we talk about a partially or linearly ordered 
set A we shall exploit either the weak or strict form of the order, depending 
on which is the more convenient for the discussion. And following our earlier 
convention, we shall treat a strict order 5 on A as though it is ‘less than’, 

rather than ‘greater than’. 

Our convention from now on is to 

read xRy as ‘x is less than or equal 

to y\ 

For example, the usual < on N is 

associated with the usual <. 

This is the ‘strict’ version of the 

linear property. 
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For the rest of this chapter we shall deal only with linearly ordered sets. We 

shall often write the order relation on X as <x or <x, depending on whether 

the order is strict or weak. We shall also use the phrase ‘ordered set X' to 

mean the set X with a particular order on it. 

We shall need a way of saying when two ordered sets are essentially ‘the same’ 

as ordered sets. As an order <x on a set X is completely determined by the 

pairs in <x, we shall say that the orders <x on X and <y on Y are the same 

if there is a bijection between X and Y which matches the pairs in <x with 

the pairs in <y. Formally, this is as follows. 

Definition 

Let <x and <y be strict partial orders on X and Y, respectively. Then 

X and Y are order-isomorphic, written X = Y, if there is a bijection 

/: X —> Y such that 

for all xi,X2 6 X, x\ <x %2 if and only if f(xi) <y fixf)- 

The map / is said to be an order-isomorphism. 

The definition in terms of the 

corresponding weak orders <x and 

<y looks essentially the same. See 

Exercise 7.16. 

Exercise 7.5_ 

Show that N is order-isomorphic to 2(^J (i.e. the set of all even natural num¬ 
bers), where each set has the usual order. 

Solution 

Define / by 

f:N—* 2N 

n i—> 2n. 

It is easy to show that / is a bijection and that, for all m,n E N, 

m < n if and only if f(m) < f(n), 

so that / is an order-isomorphism. 

You could equivalently show that, 

for this bijection /, m < n if and 

only if f(m) < f(n), for all 

m, n 6 N. 

To be sure that we have captured at least some of the essence of being ‘the 

same’ as ordered sets with this definition, it is customary to check that being 

order-isomorphic is an equivalence relation. This is a routine exercise. 

Exercise 7.6___ 

Prove that = is an equivalence relation on partially ordered sets, i.e. 

(a) = is reflexive: for all X, X = X; 

(b) = is symmetric: for all X and Y, if X = Y then Y = X; 

(c) = is transitive: for all X, Y and Z, if X = Y and Y = Z, then X = Z. 

Assume that X, Y and Z are 

strictly partially ordered by <x, 
<y and <z, respectively. 

We shall also need the idea of X being order-isomorphic to a subset of Y. It 
will be more convenient to have a word for the map that shows this. 
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Definition 

The function /: X —i Y is said to be an order-embedding (of X into Y) 
if / is one-one and, for all x\,x2 G X, 

<x x2 if and only if f(xi) <y f{x2). 

Exercise 7.7_ 

Give two different order-embeddings of N into 7L. 

Solution 

There are a large number of possible answers, for instance /: N —i Z defined 

by any of the following: 

/(n) = n, 

f(n) = n - 10, 

/(«) 
0, 
n + 2, 

if n — 0, 

if n > 0. 

As the name suggests, we can picture the elements of a linearly ordered set 

X as strung out on a line. 

x 

X x' 

If <x is the order on X, and the elements x, x' of X are related by x <x x\ we 
picture x to the left oix': so ‘smaller’ elements lie towards the left and ‘larger’ 

ones to the right. Of course, we must not read too much into the picture. The 

picture is very suggestive of the usual real line, but for instance there might 

not be any elements of X between x and x' in the picture above; and indeed 

there might be no order-embedding from X into 1R with its usual order. But 

a picture can help us understand an ordered set. For example, pictures could 

help us decide whether sets might, or might not, be order-isomorphic. 

Exercise 7.8-—---- 

Which, if any, pairs of the following three subsets of Q, with the usual order, 

are order-isomorphic? 

N, A = {1 - :n G N}, B = A U{1}. 

Solution 

0 12 3 n 
-h- 

)- 

1 0 1 
2 

2 
3 

3 
4 

4 
5 

n 
n-J-1 

1 

0 1 
2 

2 
3 

3 
4 

4 
5 

n 
n+l 

1 

f is also said to be 

order-preserving. 

Can you think of a condition on a 

linearly ordered X which would 

guarantee that it could not be 

order-embedded into IR? 
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The pictures of the sets make it clear that any candidate for an order- 

isomorphism from f^J to A would have to send the least element of N to 

the least element of A (i.e. 0 to 0), the next least element of to next least 

of A (i.e. 1 to |), and so on. The map / given by this process, i.e. 

f:N—>A 

is in fact an order-isomorphism. (You can check that / is indeed a bijection 

matching the orders.) The picture helps by suggesting this process, but might 

initially mislead one into saying that N is unbounded as a subset of [R, while A 

is bounded, so that the sets cannot be order-isomorphic - this latter reasoning, 

referring to the set IR, is irrelevant: we must really confine our attention to 
the order properties of the sets themselves. 

The picture also suggests that any candidate for an order-isomorphism from A 

to B must send 0 to 0, \ to |, ..., ^ to -But this will exhaust the 

elements of A, leaving no element which can be mapped to 1, which behaves 

as a top element of B. (This process in fact defines an order-embedding of A 

into B.) So it looks as though B is not order-isomorphic to A, and hence not 
to N either (as A = f^J). 

The argument above suggesting that A is not order-isomorphic to B is, we 
hope, reasonably convincing. But it would be nice to have a sharper argument 

establishing that there is no order-isomorphism from A to B - perhaps the 

picture is misleading in some way. What we need are some properties which 

an ordered set might possess, that are preserved under order-isomorphism, 

so that if one set has a particular property and the other doesn’t, then they 

cannot be order-isomorphic. Does having a top element, like 1 in B above, 
constitute such a property? Indeed it does. 

Definitions 

Let X be weakly ordered by <x and suppose that b £ X. We say that 

b is the maximum element of X if x <x b for all x £ X. 

Similarly, we say that aelis the minimum element of X if a <x x for 
all x £ X. 

Thus the set B above has a minimum element, 0, and maximum element, 1, 

whereas the set A has minimum element, also 0, but no maximum element. 
We then have the following theorem. 

Theorem 7.1 

Let /: X —i Y be an order-isomorphism from X ordered by <x to Y 

ordered by <y. Then if X has a maximum element then so does Y; and 
if X has a minimum element then so does Y. 

We call such a property an 

order-theoretic invariant. 

Recall that we are now adopting 

the convention that all our ordered 

sets are linearly ordered. So you 

can show that if X has a maximum 

element, it is unique. 
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Proof 

Suppose that X has a maximum element, b. Then for all x € X we have 

x <x b. As / is an order-isomorphism, we must then have f(x) <Y /(&), for 

all x G X. But / is a bijection, so that every element y of Y is of the form 

f(x) for some x € X. Thus y <y f(b) for all y &Y, showing that Y has a 
maximum element, namely f(b). 

The argument when X has a minimum element is similar. ■ 

Use of this theorem confirms that our previous sets A and B are indeed not 

order-isomorphic, as B has a maximum element while A does not have one. 

Exercise 7.9_ 

Show that M and Z are not order-isomorphic. 

Let us now consider the following subsets of <Q> with the usual order: 

A — {1 — :neN} (as earlier), 

D = {! - ; n G U ~ TAX : n G 

Exercise 7.10_ 

Are A and D order-isomorphic? Justify your answer. 
1 

Solution 

--.——•—•—i- 

1 2 3 4 n 1 
2 3 4 5 n+1 
--.— . .-.-.—  . (— 
1 2 3 4 n 1 i 1 i 2 2 
2 3 4 5 n+1 2 3 

Arguing as in the solution to Exercise 7.8, we can see that any possible order- 

isomorphism from A to D would simply map the elements of A to themselves 

so that there would be no element of A left to map to 1, let alone any larger 

number in D. 

This solution is somewhat inelegant, and there is a nicer way of showing that 

A and D are not isomorphic. The key is that the element 1 of D has a further 

property which is an order-theoretic invariant. For every element x of D with 

x < 1, there is some element y of D with x < y and y < 1. The element 1 is 

said to be a limit point. In general, we have the following. 

That is, c is not the minimum 

element of X 

Definition 

Let <x be a strict order on X. The element c of X is a limit point of 

the ordered set if 

there is ^ome element x of X with x <x c> and 

for every element x 6 X with x <x c there is some y A with 

x <x V and y <x c. 
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Theorem 7.2 

Let /: X —> Y be an order-isomorphism from X ordered by <x to Y 

ordered by <y. Suppose that c is a limit point of X. Then /(c) is a 

limit point of Y. 

This gives another way of showing that our sets A and D are not isomorphic: 

D has a limit point, 1, but A has no limit point to correspond to 1 under an 

order-isomorphism. 

Exercise 7.11_ 

Prove Theorem 7.2. 

Suppose that c is a point in the ordered set X which is not a minimum element 

of X. Can we say anything interesting about c if it isn’t a limit point? Well, it 

is not the case that for every element x G X with x <x c there is some y £ X 

with x <x y and y <x c. This means that there is some x with x <x c such 

that there is no y strictly in between x and c. This leads to the following 

definition. 

We shall often write x+ for the 

successor of x. 

Thus c is the successor of x if c is the first element of X greater than x. 

Exercise 7.12 __ 

Let <x strictly order X and suppose that the element c of X is neither a 
minimum element of X nor a successor. Show that c is a limit point. 

Exercise 7.13___ 

Identify the successors and limit points, if any, of the following ordered sets. 

(a) <Q with the usual < 

(b) Z with the usual < 

(c) ~ : n e u (2 ~ y+T : n e N} U {3} with the usual < 

Solution 

(a) Every rational q is a limit point. For any such q, if x 6 Q with x < q, then Of course, Q has no minimum 

put y = This y is rational (as x and q both are). Also x < y < q (y element, 

is in fact half way between x and q). Hence q is a limit point. 

As all points in Q are limit points and a successor cannot be a limit point, 
Q has no successors. 

Definitions 

Let <x be a strict order on X and let x, c be elements of X. Then c is 

the successor of x if 

x <x c and 

for all y, if x <x y then c = y or c <x y- 

We also say that x is the predecessor of c. 
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7.2 Linearly ordered sets 

(b) Every element of Z is a successor: n is the successor of n - 1. So Z has 
no limit points. 

(c) 0 is the minimum element of the order, so is neither a successor nor a 

limit point — to be a candidate for either of these, there would have to be 
some element smaller than 0. 

Every element of the form 1 - ^ with n > 0 is a successor (of 1 - £). 

The element 1 (which equals 2 — qT_-) js a limit point and every element 

2 - with n > 0 is a successor. 

Lastly, 3 is a limit point of the order. (Note that a limit point in the 

order-theoretic sense does not have to be a limit point of the set in the 
topological sense.) 

Exercise 7.14_ 

Let c be a limit point of the ordered set X, strictly ordered by <x- Suppose 

that for each x with x <x c, x has a successor x+. Show that the set 

{x £ X : x <x c} is infinite. (Thus X is infinite.) 

Solution 

Note first that if x <x c, so that x has a successor x+, then by definition of 

successor either x+ = c or x+ <x c. But c is a limit point. Thus x+ <x c. 

c is a limit point, so there is a smaller element zo, i.e. x0 <x c. Define a 

function / recursively by 

/: f^J —» {x e. X :x <x c} 

/(0) = x0 
/(n + 1) = (/(n))+ for n > 0. 

We can show by induction that the function is well-defined. For the base 

step, /(0) = xq and we are given that x0 <x c. For the inductive step, from 

/(n) <x c we know that that /(n) has a successor (/(n))+ and as c is a limit 

point, we must have (/(n))+ <x c. 

Likewise, we can show that / is an order-embedding: for instance, fix m and 

show by induction on n > 1 that /(m) <x /(m + n). Thus / is one-one, so 

that {x e X : x <x c} is infinite. 

In general, a linearly ordered set need not have either a maximum or a mini¬ 

mum element. But examples of such sets (other than 0) have to be infinite. 

In the next exercise we ask you to show that any finite linearly ordered set re¬ 

ally looks like a natural number in ZF, ordered by G. So words like maximum 

and minimum can be used without risk for such sets. 

Exercise 7.15-—---- 

(a) Let /: n —> X be a bijection from the natural number n, in its guise as 

a set in Z\to the set X linearly ordered by <*. Show that there is an 

order-isomorphism g: n —» X. 

(b) Why does a finite linearly ordered set X (non-empty!) have minimum 

and maximum elements? 

This set is called the initial 

segment of X determined by c. 

Recall from Chapter 3 that <on N 

and on any natural number n is 

defined as £. 
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Solution 

(a) As ever, the basic technique is induction, i.e. showing that the set of n 

with this property is inductive. 

For n = 0, if /: 0 —> X is a bijection, then X has to be the empty set, 

so that the result is vacuously true. 

Suppose that the result holds for n > 0, i.e. for all linearly ordered sets X, 

if there is a bijection from this n to X, then n and X are order-isomorphic. 

Now take an ordered set A for which there is a bijection /: n+ —> A. 

To exploit the inductive hypothesis for n, restrict / to the subset n of 

n+. As / is a bijection, the range of /|n is clearly A \ {/(n)}. Also /|n 

is one-one, so that 

If you are uneasy with n = 0, try 

the case n = 1. Then X = {/(0)}, 
so that / is already an 

order-isomorphism. 

Recall that n+ = n U {n}. 

/In : n —» A \ {/(n)} 

is a bijection. A \ {/(n)} is a subset of A, hence linearly ordered by <x- 

Then by the inductive hypothesis there is an order-isomorphism 

9■ n —> A\ {/(n)}. 

We shall exploit this g to construct an order-isomorphism 

,h: n+ —> A- 

The trick is to reinsert /(n) into A and shift the images under g accord¬ 

ingly. 

Define a subset S of n by 

S = {ieN:g(i)>f(n)}. 

If 5 = 0 then /(n) is in fact the maximum element of A and we can 

define h by 

It is 

If S 

Mi) = 
/(n), if i = n, 

g{i), if i £ n. 

easy to check that h is indeed an order-isomorphism. 

7^ 0, then as n is well-ordered, S has a least element k. 

n 

a*' r. 
1- , K * 

o # 

1 . 

n._ 

/(n) 

172 



7.2 Linearly ordered sets 

In this case we define h to agree with g for all i (if any) below k, fit /(n) 

in as h(k) and make h(k + 1) equal to g(k), etc. Formally, define 

[ 9(i ~ 1), if i > k, 

M*) = w(n)» if i = k, 
[ g(i), if i < k. 

Again it is straightforward to show that h is an order-isomorphism. 

The result follows by induction. 

(b) By virtue of X being finite, there is a bijection /: n —y X for some 

n € N. Thus there is an order-isomorphism g: n —> X. As X is non¬ 

empty, we must have n ^ 0, so that n has a minimum element, 0, and 

a maximum element, n — 1. Then X has minimum element g(0) and 
maximum element g( n — 1). 

Thus a finite linearly ordered set is really just a dressed-up version of some 

natural number n, ordered by 6. We shall primarily be looking at well- 

ordered sets like n, where the identification and use of successors and limit 

points will be of great value. But it would be a shame to end this section 

without investigating countably infinite linearly ordered sets. We shall need 

to look at an interesting property of the standard order on Q. In the solution 

to Exercise 7.13(a) we found that each element of Q is a limit point of the 

order. But this isn’t the most interesting way of looking at the order on G. 

The property which is of much more significance is that between any two 

distinct rationals there is another rational. The corresponding definition is as 

follows. 

Definition 

The strict order <x on X is dense if for all x, y E X, 

if x <x y, then there is some z G X with x <x z and z <x V- 

It is easy to show that density is an order-theoretic invariant. The density of 

the usual < on Q is a key part of the following theorem, due to Cantor. 

Theorem 7.3 

Let <x be a strict linear order on a countable set X. Then there exists 

an order-embedding of X into Q (with its usual order). 

Proof 
We shall deal with the case when X is countably infinite. (The result for finite 

X will then drop out in an obvious way.) One key to the proof will be that 

is a dense order on Q. The other is that the countability of X allows us to 

list its element^ as 

Xo 5 X\ j X2 5 • • * ? Xji ^ • * • 

without repetitions, so that each element of X appears as xn for exactly 

Technically, if X is countably 

infinite, there is a bijection 

g: N —y X. Then xn is just g(n). 
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7 Ordered Sets 

one N. This will permit us to define an order-embedding /: X —> Q 

recursively on X, as follows. 

To start the recursive definition, set f(x0) to be any rational that you like. 

For the sake of definiteness in the construction, fix some listing of <Q: 

Qo i Ql > Q2 i • • • > Qn i • • • 

Then define f(xo) to be qo. 

For the recursive step, suppose that we have defined / on {zo, x\, x2,..., xn_i} 

to be order-preserving. How can we now define f{xn) so that / is order¬ 

preserving on {xo,X!,X2,... ,xn-i,xn}? First note that xo,xi,x2,... , rrn_i 

split the rest of X into n + 1 disjoint intervals, /0, Ji, I2, ■ ■ ■, In ~ a picture 

may help. 

/o A I2 /3 I4 

x2 x3 X0 Xi 

Some of the Ii might in fact be empty, but this won’t matter. These In 

are disjoint and their union is X \ {x0,xi,x2,... ,xn_i}, so that xn lies in a 

unique interval Ik. 

To be somewhat more rigorous, put Xn = {xo,Xi,x2,... ,a:n_i}. Then the 

map 

h: n —>■ X n 

i 1—> a;* 

is a bijection from n to the linearly ordered subset Xn of X. Thus by Exercise 

7.15 there is an order-isomorphism 

k: n —> Xn. 

Define the subsets where i = 0,1,..., n, of X \ Xn by 

Iq - {x e X : x <x ^(0)}, 

Ii = {x E X : k(i — 1) <x x and x <x ^(*)} for 1 < i < n — 1, 

In = {x G X : k(n - 1) <x ^}-) 

As f\xn is order-preserving, the rationals f(x0),f(x1),f(x2),...,f(xn-i) 
split the rest of Q into n + 1 corresponding disjoint intervals J0, Ji, J2,..., Jn. 

Then define f{xn) to be the first qj in the listing of Q that is in the interval 

Jfc, where Ik is the interval containing xn - as < is dense on Q, and as Q has 

no maximum or minimum element, there are rationals in Jfe, so that f(xn) is 
really defined! 

Hence we can define / by recursion to give an order-embedding of X into Q. ■ 

The upshot of this result and that of Exercise 7.15 is that the rather humdrum¬ 

looking set G contains an example, up to order-isomorphism, of any possible 

countable linear order, just by finding the right subset. As you will see in the 

next section, finding such a subset is not always too easy, and we shall look 
at other ways of describing linear orders. 

This is no problem, as Q is 

countable. 

The picture illustrates that the list 

x0, xi, x2,... is usually not in 

ascending <x order. 

Q> is said to be universal for linear 

orders. 
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Exercise 7.16___ 

Let <x and <y be strict partial orders on X and Y respectively, with corre¬ 
sponding weak orders <x and <y, and let /: X —* Y be a function. Show 
that / is an order-isomorphism if and only if 

/ is a bijection and for all xltx2 G X, xx <x x2 if and only if 

/(*i) <k f(x2). 

Exercise 7.17___ 

j 

Give examples of subsets of Q which, when ordered by the usual <, have the 
following properties. 

(a) A dense order with maximum and minimum elements. 

(b) An order with one limit point in which every other element is a successor. 

(c) An order with infinitely many limit points, each of which has a successor. 

Exercise 7.18- 

Let X, Y and Z be linearly ordered sets. Decide whether each of the following 

statements is true or false, and give a proof or counterexample as appropriate. 

(a) If X is order-embeddable in Y and Y is order-embeddable in Z, then X 

is order-embeddable in Z. 

(b) If X is order-isomorphic to Y and Y is order-embeddable in Z, then X is 

order-embeddable in Z. 

(c) If X is order-embeddable in Y and Y is order-embeddable in X, then X 

and Y are order-isomorphic. 

Exercise 7.19----- 

Let X be a linearly ordered set and let A be a non-empty subset of X. An 

element x of X is said to be the least upper bound of A if both of the following 

are satisfied: 

(1) x is an upper bound of A, i.e. y < x for all y G A; 

(2) x is the least such upper bound of A, i.e. if 2 is an upper bound of A, 

then x < z. 

The notation lub A is sometimes used for the least upper bound of A. 

(a) Show that if the non-empty subset A of X has a least upper bound, then 

lub A is a unique element of X. 

(b) Let A be a non-empty subset of X. Show that x = lub A if and only if 

both the following are satisfied: 

(1) a; is an upper bound of A; 

(2’) for all z,ifz<x then z is not an upper bound of A, i.e. there is some 

y e A with z < y. 

(c) Show that being a least upper bound is an order-theoretic invariant, as 

follows. Let /: X —* Y be an isomorphism between linearly ordered sets 

X and Y. Let A be a non-empty subset of X and x an element of X. 

Show that 

x = lub A if and only if f(x) = lub /(A). 

7.2 Linearly ordered sets 

This then gives a definition of 

order-isomorphism in terms of 

weak orders. 

The terminology supremum is often 

used instead of least upper bound. 

A is said to be a bounded subset of 

X if it has an upper bound in X. 

That is, the same as (1) above. 
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Exercise 7.20__ 

(a) Let a, 6, c, d be rationals with a < b and c < d. Show that there is an 

order-isomorphism /: <0 —> Q such that /(a) = c and f(b) = d. 

(b) Let a,i, Cj, for i = 1,2,..., n, be rationals with a\ < a2 < a3 < ... < an 

and ci < c2 < c3 <...< cn. Show that there is an order-isomorphism 

/: Q —>• Q such that /(a*) = c* for all* = 1,2,...,n. 

Exercise 7.21 -- 

Is there an order-isomorphism /: Q —> <Q such that /(1 — ^j-) = 1 — 

for all n G N and /(1) = 2? 

Exercise 7.22- 

(a) Show that there are infinitely many order-isomorphisms /: Q —> Q. 

(b) With which of the following is the set of all such order-isomorphisms / 

equinumerous: N, 2N, 22™? 

Exercise 7.23_ 

Suppose that X and Y are both countably infinite sets, both linearly or¬ 

dered by dense orders (respectively <x and <y), and both with neither max¬ 

imum nor minimum elements. Show that X and Y are order-isomorphic. 

[Hint: adapt the proof of Theorem 7.3. It may help you to know that the 

classic proof, by Cantor, uses what is called a ‘back and forth’ argument’!] 

Exercise 7.24_ 

Prove each of the following. 

(a) If the non-empty set X is linearly ordered and has neither a maximum 

nor minimum element, then X is infinite. 

(b) If the linearly ordered set X contains a limit point c, then X is infinite. 

(c) If a linear order on X is dense and X has at least two elements, then X 
is infinite. 

Exercise 7.25_ 

Let X be a countably infinite set linearly ordered by <x- 

(a) As X is countably infinite, there is a bijection /: N —y X. Define a 
relation Rf on by 

mRfn if and only if /(m) <x /(n), for all m,n€ N. 

Show that Rf is a linear order on [^1 and that N with this order is order- 
isomorphic to X. 

(b) The relation Rf in part (a) is a subset of N x N. Consider the set of 

all subsets of f^J x M which represent orders on Py order-isomorphic to X 

linearly ordered by <*• With which of the following is this set equinu¬ 

merous: 1^, 2n, 22N? 
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7.3 Order arithmetic 

7.3 Order arithmetic 
Our goal in the next chapter is the theory of ordinal numbers, along with their 

arithmetic. Ordinals are special sorts of ordered set, so we shall investigate 

an arithmetic of ordered sets, to which ordinal arithmetic corresponds. 

First, let us look at a way of ‘adding’ together two ordered sets X and Y. One 

natural idea is to take all the elements of X in ascending <x order and then 

add on, as greater elements, all the elements of Y in ascending <y order. 

X y 
- S /- ^ —-N 

* Tic ** y 
... x < x' < ... < y <y'... 

So we could tentatively define the ‘sum’ of X and Y to be X U Y with this 

order. There’s just one technical hitch, which is what to do if X and Y happen 

to have elements in common. The solution is to create copies of X and Y 

which are disjoint and then define the sum as follows. 

Definition 

Let X and Y be linearly ordered sets. Then define the order sum of X 

and Y, written as 

x + y, 

to be the linearly ordered set 

(X X {0}) U (y X {1}) Clearly X x {0} and Y x {1} are 

disjoint. 
with order < defined by 

(rr, 0) < (or',0) if x, x' £ X and x <x x', 

(.x, 0) < (y, 1) if x E X and y € Y, 

(:y, 1) < (</, 1) if y,y' £Y and y <Y y'■ 

Exercise 7.26----- 

(a) Check that X + Y with < as defined above is a linearly ordered set. 

(b) Show that there are order-embeddings of both X and Y into X + Y. 

Let us investigate what happens when familiar ordered sets are added in this 

way. Do we always obtain ‘new’ ordered sets? By ‘new’ we mean sets not 

order-isomorphic to the sets we added together. For finite sets we intuitively 

do obtain new orders — indeed it is the mental picture for finite sets which 

motivates the definition. As typical finite linearly ordered sets we can take 

natural numbers within ZF, by Exercise 7.15. In fact, we would surely expect 

that, for m, nN, the sum m + n in the order sense of m and n should 

be order-isomorphic to the natural number m + n. As a temporary piece of 

notation, let us write the usual -t- operation on natural numbers in ZF as ©, 

so that this expectation becomes the following theorem. 
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Theorem 7.4 

Let m, n be natural numbers within ZF, with their usual orders (i.e. < 

is G). Then their order-theoretic sum m + n is order-isomorphic to their 

arithmetic sum m © n. 

Proof 

As is often the case with statements about general natural numbers within 

ZF, we shall proceed by induction, on n for fixed m. 

Remember that 0 in ZF is the 

empty set 0. 

For the inductive step, suppose that for some n > 0 we have m -I- n = m © n: 

let /: m + n —> m © n be a corresponding order-isomorphism. Then on the 

one hand 

For n = 0, we have on the one hand that m + 0 is the ordered set 

(m x {0}) U (0 x {1}), i.e. m x {0}. On the other hand m © 0 equals m, by 

the definition of ©. These sets are clearly order-isomorphic, so that 

m + 0 = m © 0. 

m + n+ = (m x {0}) U (n+ x {1}) (appropriately ordered) 

= (m x {0}) U (n x {!}) U ({n} x {!}) (as n+ = nU {n}), 

while on the other 

m © n+ = (m © n)+ 

= (m © n) U {m © n}. 

Then it is clear that the function g defined in terms of the order-isomorphism 

/ by 

g: m + n+ —> m © n+ 

(i, 0) •—►/((*, 0)) for i € m 

0,1)'—►/((j,l)) forjen 
(n, 1) i—» m © n 

is an order-isomorphism from m + n+ to m © n+. The result follows by 
induction. ■ 

As © on f^J is commutative and associative, Theorem 7.4 allows us to conclude 

that order + on finite linearly ordered sets is also commutative and associative, 
with respect to order-isomorphism, i.e. 

m + n = n + m and 1 + (m + n) = (1 + m) + n, 

where the + here is the order-theoretic sum. For instance 

m + n = m © n by Theorem 7.4 

= n © m 

= n + m by Theorem 7.4 again. 

What happens when we add infinite sets? As ever, we would expect some 

surprises! For the exercises below, and the rest of the book, it will help to 

have a new piece of notation to describe a familiar and important ordered set. 
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Definition 

Define ui to be the set f\J of natural numbers with its usual order < (given 
by £ in ZF). 

Why do we want this notation? Partly it is because we might want to define 

other orders on Pd, so that it is convenient to reserve a symbol for the set with 

its usual order. Indeed one natural way of describing a countable ordered set 

is by reordering M to give an order-isomorphic set, as you will see later in this 

section. And partly it is because it is a standard notation! 

Exercise 727_ 

Which, if any, of the ordered sets u; + 2, 2 + u> and u are order-isomorphic? 

Solution 

A sketch might help. 

u> 

u) H- 2 • • • 
0 12 

0 10 12 

u »—•—*- 

0 12 

In our sketch above of u> + 2 we should, strictly speaking, have labelled the 

members of the copy of u as (0,0), (1,0), (2,0), etc., and the members of the 

copy of 2 as (0,1) and (1,1). But the sloppy notation conveys a good sense 

of what is going on, and we shall continue to use it! 

The sketch should convey that u + 2 has a limit point, namely the 0 in the 

copy of 2. (Technically the point (0,1) of u + 2 is a limit point.) Thus to+ 2 
cannot be order-isomorphic to u. 

It doesn’t look from the sketch as though 2 + u has a limit point. In fact it 

not only doesn’t have one, but is also order-isomorphic to u>, and the sketch 

makes it plainer how to define an order-isomorphism. Define / by 

f: ui —y 2 + to 
f(i,0), if i = 0 or 1, 

1 ^ \ (i — 2,1), if i > 2. 

This / is an order-isomorphism. 

So adding two ordered sets sometimes gives a new order. But we are warned 

that addition of order is not commutative with respect to order-isomorphism, 

as u + 2 ¥ 2 4>cu. Order addition does, however, have some familiar alge¬ 

braic properties, for instance associativity, as we ask you to show in the next 

exercise. 

This is often more informative than 

giving an order-isomorphic subset 

of O. 

Recall that in ZF the natural 

number 2 is the set {0,1} with < 

defined to be £. 

Similarly, in the sketch of 2 + u) the 

members of the copy of 2 should be 

(0, 0) and (1,0), and those of u) 

should be (0,1), (1,1), (2,1),.... 
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Exercise 7.28--—- 

Show that addition of order is associative with respect to order-isomorphism, 

i.e. if X, Y and Z are linearly ordered sets, then X + (Y + Z) = (X + Y) + Z. 

We have seen how a sketch of X + Y can help us understand the order. But 

for countable sets there are (at least) two other helpful ways of representing 

the order. One way is as a subset of Q, using the result of Theorem 7.3. And 

the other way is to take a well-known countable set, namely N, and reorder it, 

exploiting its rich structure, so that it is order-isomorphic to the given order. 

For the latter it will help to know something about the order structure of 

subsets of with the normal <. 

Exercise 7.29 ____ 

Let A be a subset of N ordered by the usual <. Show that A is order- 

isomorphic to either some n 6 W or to w. 

Solution 

If A is finite the result follows from Exercise 7.15. If A is infinite, one would 

expect to be able to set up an order-isomorphism /: N —> A by something 

like 

/(0) = min(A), 

/(n) = min (A \ Range(/|n)), for n > 0. 

And indeed this works fine! In fact the details of the argument for any subset 

A, finite or infinite, are precisely as in the proof of Theorem 6.2 in Section 

6.4. 

You’ll apply this in the next batch of exercises, but first have a think about 

conditions on X and Y which guarantee that X + Y is countable. 

Exercise 7.30_ 

Suppose that X and Y are countable linearly ordered sets. Show that X + Y 

is also a countable set. 

Solution 

X « X x {0} and Y « Y x {1}. Also X and Y are both countable, and 

the union of two countable sets is countable, so that X + Y, which equals 

(X x {0}) U(Y x {1}), is countable. 

Exercise 7.31_ 

For each of the following ordered sets X, 

(a) X — uj -f- 2, (b) X = u + u), 

(i) give an order-embedding of X into <Q> with the usual order; 

(ii) define a new order <' on the set N so that with this order N is order- 
isomorphic to X. 
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Solution 

(a) There are many correct answers, for instance as follows, 

(i) Define / by 

fu 2 —<Q> 
(n, 0) i—^ 1 • 

(0,1) P—> 1 

(1,1) —>2. 

Then / is a suitable order-embedding with image set as below. 

w 2 
/ ---v-- 

0 1 2 3 4 _rL_ l 

2 3 4 5 n+l 
y 
(ii) Define <’ so that 

2 <' 3 <' 4 <' ... <' n <' ... <' 0 <' 1. 

(b) (i) Define / by 

/: u 4- u) - 

(n,0) h 

(n,l) h- 

Q 
1 - 

2 - 

n+l 

1 
n+l ' 

Then / is a suitable order-embedding with image set as below. 

2 

In this solution, as elsewhere, we 

use bold type for natural numbers, 

e.g. n and 0, rather than the 

ordinary n and 0, when it might be 

important to remember that we are 

dealing with our particular 

representation of natural numbers 

within ZF. 

Clearly, or by Exercise 7.29, 

{2,3,4,...} “u>! 

0 

ui 

1 2 3 4 n 1 
2 3 4 5 n+l 

(ii) Define <' so that 

0 <’ 2 <’ 4 2n 1 <' 3 <' 5 2n + l <’ ... 

Let us now define a multiplication of ordered sets. If we were to look at the 

natural numbers n and m as ordered sets in ZF, we might aim to define their 

product as ordered sets so that it was at least isomorphic, if not actually 

equal, to the natural number m • n. As m • n « m x n, this would suggest 

defining the order product to be some sort of order on the Cartesian product 

m x n. And this is what we shall do in general, for any linearly ordered sets 

X and Y. One clever sort of order on X x Y copies the way one orders words 

in an English dictionary. 

Exercise 7.32----- 

Describe an algorithm for deciding the order in which words are found in an 

English dictionary. The algorithm would have to sort a list like 

feast beast bear bird 

into the correct order. 
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7 Ordered Sets 

Solution 

We are taught the alphabet of 26 letters in a particular order: 

a, b, c, d, e, ..., y, z. 

To decide which of a pair of words, like ‘feast’ and ‘beast’, comes first in 

a dictionary, we look at the first letters of the words, i.e. their leftmost 

characters, and if they are not the same, as with this example, the word 

starting with the earlier letter in the alphabet comes earlier in the dictionary: 

so here ‘beast’ comes before ‘feast’. But if the words start with the same 

letter, as with ‘bear’ and ‘bird’, we look at the second letters of each word, 

again working from left to right, and if the second letters are not the same 

we put the word whose second letter is earlier in the alphabet earlier in the 

dictionary: so ‘bear’ comes before ‘bird’. And if the second letters, as well as 

the first, are the same, we look at the third letters; and if they are the same, 

we look at the fourth letters, and so on. So ‘bear’ comes before ‘beast’. 

If we confined ourselves to words with exactly 2 letters, we would have a 

special case of the following definition. 

Definition 

Let X and Y be linearly ordered sets. Then the lexicographic order on 

X x Y is defined by 

(x,y) < (x',y') if (i) x <x 
or (ii) x = x1 and y <y y'. 

Before you get too excited by this entirely reasonable definition, let us define 

the product of two ordered sets by a different, but clearly very similar order, 

called the anti-lexicographic order. This differs from the dictionary order by 

reading words from right to left rather than from left to right. 

Definition 

Let X and Y be linearly ordered sets. Then the product of these orders 

is the set X x Y with the anti-lexicographic order defined by 

(x,y) < (x',y') if (i) y <Y y\ 

or (ii) y — y' and x <x x'. 

There is a feeble reason for preferring the anti-lexicographic to the lexico¬ 

graphic order, which will become apparent only later, but they are clearly 

strongly related, as you will show in one of the subsequent exercises. The 

following exercises are designed to give some feel for the product order. 

Exercise 7.33_ 

Show that the anti-lexicographic order on X x Y is indeed a linear order. 

One meaning of ‘lexicon’ is 

‘dictionary’. 

Like in a Hebrew dictionary. 
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Exercise 7.34_____ 

(a) Show that X x Y with the anti-lexicographic order is order-isomorphic to 
Y x X with the lexicographic order. 

(b) Is it true in general that X xY with the anti-lexicographic order is order- 

isomorphic to X x Y with the lexicographic order? Prove it, if true; give 
a counterexample, if false. 

Prom now on, when we talk about the ordered set X x Y we shall assume 

that it has the anti-lexicographic order. It will also sometimes help to have a 
mental picture of X xY. 

X x Y 

Y 

••• <y <y •y> <y 

X X 

V <Y ■■■ 

~x~ 

It is as though a copy of X is attached to each y € F, with the order increasing 

from left to right (as usual) through these copies of X. 

Exercise 7.35_ 

(a) Show that 2x3 = 6, where we are treating natural numbers as sets in 

ZF. 

(b) Show that m x n = m • n for all m, n G N. 

Exercise 7.36- 

Which, if any, of the ordered sets 

uj x 2 u) -|- u) 2 x io 

are order-isomorphic? 

Solution 

A sketch of each set may help us. 

u + u> 

2 x u 

It is clear that wx2andw + w must be order-isomorphic. In fact, a look 

at how they are defined shows that they are actually the same sets with the 

same order! 

In general X X 2 = X + X, but 

e.g. Xx3^X + X + X. 

However, X x3 = X+ X-\-X. 
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7 Ordered Sets 

However, 2xw looks different - for instance, it looks as though every element, 

except the minimum, has a predecessor, so that there are no limit points. And 

indeed it is the case that 2 x u> is order-isomorphic to uSo multiplication of 

orders is, like addition, not commutative with respect to order-isomorphism. 

Exercise 7.37_ 

Is X x (Y x Z) order-isomorphic to (X x Y) x Z, for ordered sets X, Y 

and Z? 

Exercise 7.38_ 

For each of the following ordered sets X, 

(i) give an order-embedding of X into <Q> with the usual order; 

(ii) define a new order <' on the set N so that with this order (\l is order- 

isomorphic to X. 

(a) I=wx3 

(b) X = (wx3) + 4 

(c) X = u x u> 

(d) X — (cj x -4- u) 

Solution 

(a) A picture of u> x 3 might help. 

3 
,-*-V 
• • • 

0 12 

(i) We can mimic the order-isomorphism from u; to {1 — : n £ f^J} 
which we have used often above. Map the copy of u attached to 0 to 

{1 — : n £ N}, the copy of u attached to 1 to {2 — : n £ N), and 
so on. Formally define a function / by 

/: u x 3 —x Q 

(n, m) i—Vm- ^ 

It is easy to check that / is an order-embedding. 

(ii) We just need to split N into three infinite subsets, each ordered by the 

usual <, and order these subsets sensibly. For instance, take the subsets 

{3n : n £ N}, {3n + 1: n £ N}, {3n + 2 : n £ f^J}, 

in this order, and define <' by 

. 0 <' 3 <' 6 <' ... <' 1 <• 4 <' 7 <' ... <' 2 <' 5 <' 8 <' .... 

(b) 

3 

• • 

0 1 
iuj x 3) + 4 • • •- • • •— 

4 

Construct a suitable 

order-isomorphism between 2xu 

and w! 

This copy of uj is the subset 

{(0, 0), (1, 0), (2,0),..., (n, 0),...} 

of w x 3. 

Each subset is order-isomorphic to 

uj, by Exercise 7.29. 
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(i) We can easily adjust our solution to part (a)(i) above by selecting four 

rationals greater than or equal to 3 to which to map the copy of 4 in 

(w x 3) + 4, for instance 3, 4, 5 and 6. The description of the correspond¬ 

ing order-embedding, g say, is a bit messy, mainly because the description 
of (lo x 3) T 4 is so messy! 

g: (u x 3) + 4 —Q 
((n,m),0) i—>m - ^ 

(i, 1) i—x 3 + i. 

(ii) Likewise, we can pluck out four natural numbers, say 0, 1, 2 and 3, 

from the subsets in our answer to part (a) (ii), and place them at the top 
of our new order <': 

(c) 

6 <' 9 <' 12 <' 15 <' ... <' 4 <' 7 <' 10 <' 13 <'... 

... <' 5 <' 8 <' 11 <' 14 <' ... <' 0 <' 1 <' 2 <' 3. 

u> 
*■ ^ S • • • • 
0 12 3 

U X CO •-•-•- m- 
U UO U) U 

(i) Again we can exploit the idea of the order-isomorphism between u 

and {1 — :n e N}. Put 

Am = {m — ^ :neN}, 

for each meN. Clearly Am = uj. Note that if m < m' then any number 

in Am is less than any number in Am' ■ (Check this!) Thus making the 

copy of lo corresponding to m in u x u map to Am in the obvious way 

will give an order-embedding h. Formally this order-embedding (there 

are many correct alternatives) is defined by 

h: u> x u> —> <Q> 

(n, m) t—> m- 

(ii) This time we need to split f^J into infinitely many infinite subsets, 

{Bn :n G f^}. Order each Bn by the usual <, so that Bn = lo, and arrange 

the Bn order-isomorphically to u. 

There are many ways of defining these Bn. For instance, one can exploit 

the fact that there are infinitely many prime numbers. Let pn, for n > 1, 

be the nth prime, ordering the primes in the usual way. Then for each 

n > 1 put 

Bn = -fan :i > °}- 

The Bn are clearly infinite and disjoint, but their union is not the whole 

of N — it doesn’t include 0 or 1 or any of the infinitely many composite 

numbers. So just put all these numbers into a set B0, ordering them by 

the usual < to obtain Bq = to. 

This copy of w is the subset 

{(0, m), (1, m),..., (n, m),...} of 

U) X w. 

So pi —2,p2 = 3, p3 — 5, etc. 
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7 Ordered Sets 

Alternatively, one can exploit any bijection h: N x N —>■ f\l by putting 

Bn = {h(n, i) :i G N}, for each n. 

However we have defined the Bn, we can then re-order N by <' to obtain 

a set order-isomorphic touxw by, for example, 

i <' j if i,j G Bn for some n and i < j, 

or i G Bm and j G Bn and m < n. 

(u X U>) + u 
UJ 

(i) Unfortunately, we cannot easily adapt our solution to part (c)(i) by 

putting some subset of Q order-isomorphic to u to the right of those used 

in that solution - the image set of h is unbounded above! But of course 

Theorem 7.3 guarantees that there must be some order-embedding. We 

must somehow squash up a copy of u x u into a bounded portion of <Q>. 

It would be handy if there were some sort of order-preserving function 

squashing Q, or part of it. For the moment, suppose that there is an order¬ 

preserving function 9: [0, oo) —> [0,1) which maps rationals to rationals. 

Then applying 6 to the subset N of [0,oo), which of course is u>, gives 

a subset of [0,1) order-isomorphic to u. For each meN construct an 

order-isomorphic copy of this lying in the interval [m,m + 1), say Cm, 

where 

Cm - {m + 9{n) : n G fd}. 

So that if m < m' then any number in Cm is less than any number in 

Cm' ■ Then the set C is order-isomorphic to u x u>, where 

C = \J{Cm : m G N}. 

The trick is to now use 0 again to shrink C into a subset of [0,1) order- 

isomorphic to u> x u and add a suitable subset of [1, oo) order-isomorphic 

to u> to give a subset of Q order-isomorphic to (u x u) 4- ui. Formally this 

amounts to defining an order-embedding k by something like 

k: (u x u>) + u —» Q 

((n, m),0) i—> 9(m + 6{n)) 

(i, 1) i—¥ 1 +*. 

Obviously rather a lot of the above depends on finding the function 0. We 
ask you to do this in the next exercise. 

(ii) Take the infinite subsets Bn as in part (c) (ii), but this time arrange 

them so that everything in B0 is greater than the members of the other 
Bn: i.e. define <' by 

i <' j if i,j G Bn for some n, 

or i G Bm and j G Bn and 0 < m < n, 

or i G Bm for some m > 0 and j G B0. 

For instance, the bijection h used 

in our proof of Theorem 6.4 in 

Section 6.4. 

The function x i—>■ ^ arctan(a;) 

would do if only it mapped 

rationals to rationals - which it 

doesn’t! 

So far this is like the solution to 

part (c)(i) above. 

We are really arranging the 

subscript ns in the order oj + 1 and 

exploiting the fact that 

(u X Oj) + U) = (V X (u -(- 1). 
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Exercise 7.39___ 

Find an order-preserving function 6: [0, oo) —> [0,1) which maps rationals 
to rationals. 

Solution 

One such function, essentially already exploited in much of the above, is 

6: [0, oo) —> [0,1) 

A- 

You can check that 6 is in fact an order-isomorphism from [0,oo) to [0,1). 
Clearly if a; is a rational, then so is hence also 6{x). 

To round off this excursion into the arithmetic of order, we should ask if 

there is any further nice connection between order sums and products. Our 

experience of ordinary arithmetic makes us look at the distributivity of + over 
x. 

Exercise 7.40___ 

Let X, Y and Z be ordered sets. 

(a) Show that X x (Y + Z) = (X x Y) + (X x Z). 

(b) Is it always the case that (X + Y) x Z = (X x Z) + (Y x Z)1 

It is now time to leave the arithmetic of sets with any old linear order, and 

to concentrate on more specialized ordered sets, namely well-ordered sets, in 

particular ordinals. Happily, many of the examples investigated above are 

well-ordered sets. Indeed, all natural numbers n and u> itself are actually 

ordinals. We shall define an arithmetic on ordinals, using a sum and product 

which are different from the order-theoretic operations of this chapter; but 

the results of applying the ordinal operations will give sets order-isomorphic 

to those obtained by using the order-theoretic operations. 

Further exercise 

Exercise 7.41--- 

Let X be a linearly ordered set. Let Xn stand for the ordered set 

X x X x ... x X, for n (E f^J, n > 0. 

n 

For each of the following ordered sets X, 

(i) give an order-embedding of X into Q with the usual order; 

(ii) define a new order <' on the set N so that with this order N is order- 

isomorphic to X. 

(a) u3 ^ 

(b) Z3 

(c) u3 + (ui2 x 2) + u 

Sum and product on ordinals will 

extend the definitions for the 

members of N in ZF. 

As order product is associative 

relative to order-isomorphism, we 

don’t have to worry about brackets. 
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7A Well-ordered sets 
We shall now look at a special sort of linear order, called well-order. Ordinals, 

which are what we aiming at in the next chapter, are well-ordered sets, so that 

the results of this section will help us later on, as well as being of mathematical 

interest in their own right. 

Cantor devised the ordinals as a way of extending beyond the finite the idea 

of numbering the stages of a process - ‘first do this, next do that, next do 

that, ... ’. If we represent these stages by the elements of an ordered set X, 

then we require that for a given stage x there is a ‘next’ stage x+ (unless x 

happens to be the ‘final’ stage, i.e. x is the maximum element of X). So if x 

is not the maximum element of X, in which case {x1 G X : x < x'} ^ 0, we 

want this latter set to contain a least element x+. As a bit of overkill, for 

a well-ordered set we shall require that every non-empty subset of X has a 

least element. 

Definition 

A set X is said to be well-ordered by < if X is linearly ordered by < 

and in addition has the well-ordering property: 

if A is any non-empty subset of X, then A contains a least element, 

i.e. there is some element x G A such that x < a for all a G A. 

The classic example of a well-ordered set is i.e. the set N with the usual < 

(G in ZF). See whether you can spot other examples in the next exercise. 

Exercise 7.42_ 

Decide which of the following ordered sets are well-ordered. 

(a) 5 in ZF, i.e. {0,1,2,3,4} ordered by G. 

(b) Z with the usual order. 

(c) The closed interval [0,1] of U. with the usual order. 

(d) The subset {m + ^q-j- : m, n G N} U {0} of <0 with the usual order. 

(e) The subset {m — ^q-j- : m,n G N} of Q with the usual order. 

(f) u2 with the product order. 

Solution 

(a) 5 is well-ordered. 5 is a subset of the well-ordered set u>, so as well as 

being linearly ordered by G, any non-empty subset of 5 is a subset of 

u>, so has a least element. In general any subset of a well-ordered set is 

well-ordered. 

(b) Z is not well-ordered, as e.g. the subset Z itself has no least element. 

The key feature here of Z is that the negative integers form an infinite 

descending C-chain. An ordered set with such a descending chain cannot 
be well-ordered. 

(c) [0,1] is not well-ordered. For instance, the subset given by the open inter¬ 

val (0,1) contains no least element. Similarly any subset of IR containing 

x < x means that stage x comes 

earlier than stage x . 

x+ is the successor of x. 

< is said to be a well-order. 

Recall that w2 is w x w. 

Similarly every natural number in 

ZF is well-ordered. 

We define ‘infinite descending 

<-chain’ in Exercise 7.45 below. 
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a non-trivial interval (a, b) is not well-ordered by the usual <, in particular 
[R itself. 

(d) This set is not well-ordered. For instance, it includes the numbers 1 + ^-, 

n € N, which form a descending <-chain. As with R, one would expect 
Q to contain lots of subsets which are not well-ordered. 

(e) The set {m — : m,n G f^} is well-ordered. As we already know that 
it is linearly ordered, all we need to show is that it has the well-ordering 

property. So take any non-empty subset A and show that A contains a 

least element. To guess what this least element should be, it helps to 

realize that the m in each m — is more important than the n, in the 
sense that 

m <m' - if and only if m < m' 

or m = m' and n < n'. 

Thus the least element of A has to have the least m available among the 

elements of A and the smallest n for this m. More precisely, put 

B — {m E N :m — £ A for some n € f^l}. 

As A 0, B is a non-empty subset of N and so has a least element m0. 

As m0 e B there is at least one n such that m0 - y^y £ A, so that the 
set 

C = {n e N : Too — ^ e A} 

is a non-empty subset of N and thus has a least element n0. As no G C, we 

have that mo — nQ1+1 is an element of A. You can check that mo — — 

is indeed the least element of A. 

(f) up is well-ordered. You could show this directly by an argument similar 

to the one we used in the preceding solution, showing how to find the least 

element of any non-empty subset A of a;2. In fact this sort of argument 

can be used to show that the product of any two well-ordered sets is well 

ordered. Or you could show that being well-ordered is an order-theoretic 

invariant, and exploit the function 

:m,neN} —> u? 

m - ^+T * (n>m) 

which is an order-isomorphism. As {m - —- : m, n G f^} is well-ordered, 

so is up. 

Now prove for yourself some of the general results arising from the examples 

above. 

Exercise 7.43-- 

Show that any finite linearly ordered set is well-ordered. [Hint: look at the 

exercises in Section 7.2.] 

' i 

Exercise 7.44---- 

Suppose that X is well-ordered by < and that Y is subset of X. Show that 

Y is also well-ordered by <. 

That is, being well-ordered is 

preserved under 

order-isomorphism. 

Technically the order on Y is 

< |vxy- 

189 



7 Ordered Sets 

Exercise 7.45____ 

Suppose that the set X, ordered by <, contains an infinite descending <-chain, 
i.e. contains elements xn, n £ N, such that 

... < xn < ... < X2 < Xi < x0. 

Show that X is not well-ordered by <. 

Exercise 7.46---- 

Suppose that X and Y are ordered sets and that /: X —> Y is an order- 
isomorphism. Show that if X is well-ordered then so is Y. 

Exercise 7.47--- 

Suppose that X and Y are well-ordered sets. Show that the ordered sets So e.g. u + 2 and J1 + w are 

X + Y and X x Y are both well-ordered. well-ordered. 

Why are well-ordered sets worth studying? First of all, they provided Cantor 
with a way of extending counting beyond the natural numbers. Second, in 
the light of historically later concerns over the use of the axiom of choice, 
a well-order on a set X provides a rich enough structure to define a choice 
function on X, with no need for AC. 

Exercise 7.48- 

Suppose that X is well-ordered by <. Show how to define a choice function 
on X of the form 

/: ^PO\{0}— 
such that 

f(A) € A for all non-empty subsets A of X. 

Solution 

Just define f(A) to be the least element of A\ 

As we have seen, R is not well-ordered by the usual <. What can we say 
about subsets of R? If we could find a subset A equinumerous with R which 
was well-ordered by the usual <, we could exploit the bijection between A 
and R to define a well-ordering of R, settling one of Cantor’s main problems. 
Clearly no subset of R containing a non-trivial open interval (a, b) is well- 
ordered - a shame, as such a subset would be equinumerous with R! In fact 
any well-ordered subset of R must be a long way short of equinumerous with 
R, as the next exercise shows. 

Exercise 7.49___ 

Let A be a subset of R which is well-ordered by the usual < on R. Show that 
there is an order-embedding /: A —> <Q>, where <Q> has the usual order and 
hence deduce that A is countable. [Hints: exploit the fact that between any 
two distinct reals there is a rational, and for each a € A define /(a) to be a 
suitable rational greater than a.] 
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Solution 

For each a £ A, as long as a doesn’t happen to be the maximum element of 

A, a will have a successor a"*" in A, i.e. the least element of A bigger than a. 
Between a and there is at least one rational, so define /(a) to be such a 

rational. As the open interval (a, a+) of (R contains no elements of A, there is 

no danger that the rational /(a) could be associated with another element b 
of A, so that / will be one-one (and in fact order-preserving as well). 

More formally, list the rationals in some way as qo, q\, 52,..., qn, ■ ■ ■■ Provided 

that the set {b E A: a < b} is non-empty, define a+ to be the least element of 
this set. Now define /: A —> Q by: 

f(a\ _ f the first qi in the list in (a,a+), if {b E A : a < 6} # 0, 

\ the first qi in the list in (a, 00), otherwise, i.e. a is max A. 

To check that / is an order-embedding, suppose that a,a! E A with a < a'. 
Then 

{b E A : a < b} ^ 0, 

so that a+ exists, and by definition a+ < a’. Then as /(a) E (a,a+) and 

f(a') > a1, we have 

a < /(a) < a+ < a' < /(a'), 

giving /(a) < /(a') as required. 

In particular / is one-one, so that A ■< <Q>, from which we can deduce that A 

is countable. 

In the rest of this section we shall derive a result about the comparison of 

well-ordered sets with each other, i.e. whether, given two well-ordered sets 

X and Y, one is order-embeddable in the other. For linearly ordered, but 

not necessarily well-ordered, sets X and Y, this isn’t always true: take for 

instance Z and {1 - ^ : n E M} U {1}, both with the usual <. 

Exercise 7.50----- 

(a) Explain why there can be no order-embedding 

/:Z^{l-^:n6N}U{l}. 

(b) Explain why there can be no order-embedding 

/: {l-^:n£^}u{l}—t Z. 

Solution 

(a) The set {1 - :nG^J}u{l}is well-ordered so doesn’t contain an 

infinite descending C-chain. Thus there is no way of order-embedding the 

negative integers into the set. 

(b) Whichever integers we chose for /(0) and /(1), there would only be finitely 

many possible images between them for the infinitely many 1 — , 

n > 0. So we could not define / to be both one-one and order-preserving. 

It isn’t even the case that for linearly ordered X and Y with X order 
embeddable in Y and Y order-embeddable in A, we are then guaranteed 

that X and Y are order-isomorphic. 

A need not have a maximum 

element. 

In fact there are infinitely many 

rationals in (a, a+). 

We are making the choice of the 

rational /(a) more definite and 

coping with the possibility that a 
might be max(A). 

You might have worked this out for 

yourself when doing Exercise 7.18 

in Section 7.2. 
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Well-ordered sets are, however, comparable with each other via order-embedding: 

given any two well-ordered sets, A and Y, then either they are order-isomorphic 

or one can be order-embedded into the other. 

The basic idea is to pair off the least elements of X and Y, then their next As X and Y are well-ordered, 

least elements, and so on. If the process has worked for all the elements of X ‘least’ and ‘next least’ make sense, 

less than some limit point x of X, it turns out that the least available element 

of Y to be paired up with x also has to be a limit point. And if in this process 

we run out of elements of both X and Y at the same stage, we have an order- 

isomorphism; while if we run out of elements of one of the sets before we’ve 

used up all the elements of the other, then we have an order-embedding of 

one set into the other. 

Consider, for instance, the subsets 

X = {1 — £ : n e N} U {2 — ± : n G N} U {2} 

and 

of <Q> with the usual order. 

Check that X and Y are 

well-ordered! 

X 
1 1 

2 

Y 
1 1 2 3 5 i 

2 3 4 6 l 

1? 2 

Both sets are well-ordered. The process would give the function 

/: Y —* X 

1 1—» 1 (= 2 - ^) 

which is clearly an order-embedding. 

Exercise 7.51_ 

For the X and Y above, find an order-embedding g: Y —> X mapping 

f (= 1 - $ e v) to if (= 2 - £ e X). 

Solution 

There are several correct answers, for instance 

9- Y —* X 
1 — pppy 1 > 1 — 2™ n = 0,1,2,3,4 

1 ~ ^+T 1—^2-2^rr n = 5,6,... 
1 1—> 2. 

Y runs out of elements before X 
does. 

Although there are plenty of order-embeddings from Y to X like g above, 

the one (/) given by our earlier process is special in that it maps Y onto the 

corresponding initial portion of A. In some sense X is just Y with some extra 

elements added at the (right-hand) end. The initial portion of X, involving 

all the elements of A up to a particular element, is worth a general definition: 
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Definition 

Let X be a well-ordered set with a G X. Then the initial segment of X 
determined by a, written as Segx(a), is the set 

Segx(a) = {x e X : x < a}. 

Our order-embedding / above maps Y onto the initial segment Segx(2|) of 
X. And, for instance, with X = ui and a = 3, 

SeSu>(3) = {n G w : n < 3} 

= {0,1,2} 

= 3. 

We can now state the main theorem about comparing well-ordered sets. 

Theorem 7.5 

Let X and Y be well-ordered sets. Then exactly one of the following 

holds: 

1. X is order-isomorphic to an initial segment of Y; 

2. X is order-isomorphic to Y; 

3. Y is order-isomorphic to an initial segment of X. 

Exercise 7.52- 

Let X be N and Y be {m — :m= 1,2 and n £ M}, both with their usual 

orders. One of X and Y is order-isomorphic to an initial segment Seg(a) of 

the other. Decide which set is which and identify the element a. 

Solution 

X is order-isomorphic to Segy (1). 

Exercise 7.53----- 

According to Theorem 7.5, given an infinite well-ordered set X and u, either 

they are order-isomorphic or one is order-isomorphic to an initial segment of 

the other. Suppose that they are not order-isomorphic. Decide which one is 

order-isomorphic to an initial segment of the other and give the corresponding 

order-isomorphism. 

Solution 

As u> is such a basic infinite set, it seems likeliest that it is u that is order- 

isomorphic to an initial segment of X, rather than the other way round; and 

this is indeed the case. Let c be a set not in X and define a function g by 
& 

g: u —> X U {c} 
f min(X \ Range(^ln)), if min(X \ Range(^|„)) # 0, 

n 1 ^ I r otherwise. 



7 Ordered Sets 

You should by now recognize this sort of construction! Firstly we can show 

that c is not in Range(g), arguing by contradiction. If c is in Range(<?), put 

n = min{m G N : g(m) = c}. You can check that g\n is an order-isomorphism 

from nto X, contradicting that X is infinite. 

We can conclude that Range (</) is a subset of X. As u and X are not order- 

isomorphic, Range(g) must be a proper subset of X. That means that 

X \ Range(g) is a non-empty subset of X, so it has a least element, y say. 

We’ll leave you to show that g gives an order-isomorphism from u> to the initial 

segment Segx(y). 

It’s worth comparing this result to that of Exercise 6.37 of Section 6.4. Know¬ 

ing that an infinite set X is well-ordered enables one to show that N ■< X 
without assuming AC. We shall explore the strong relationship between well¬ 

ordering and AC in Chapter 9. 

Theorem 7.5 is a very strong result. It says that any two well-orders are 

essentially the same or one of them is just the other with some extra elements 

tacked on at the end. It also suggests that one can organize well-ordered sets 

in terms of their ‘length’ as orders - we shall do this properly in the next 

section by looking at ordinals, which are just special well-ordered sets. 

In the rest of this section we shall prove Theorem 7.5. The proof, not surpris¬ 

ingly, will make essential use of the well-ordering property, which lends itself 

to very powerful proof techniques. We shall leave some of the details for you 

to verify - they don’t require special tricks! First of all, we shall need some 

results about initial segments. 

Exercise 7.54- 

Let X be a well-ordered set and let x,x' G X. Show the following. 

(a) Segx(:r) C Segx(£/) if and only if x < x'. 

(b) x is the least element of X \ Segx(a;). 

(c) If x < x' then SegSegx(a;,)(a:) = Segx(x). 

Exercise 7.55_ 

Let /: X —> Y be an order-isomorphism between well-ordered sets X and 

Y. Show that for any x G X, Segx(x) = SegY(f(x)). 

Solution 

It is easy to show that the restriction of / to Segx(:r), i.e. /|segx(x)5 is onto 

the subset SegY(f(x)) °f Y. The restriction inherits being one-one and order¬ 
preserving from /. 

The terminology of initial segments makes it more straightforward to state 

a pleasing property of well-ordered sets, namely that one can prove things 

about them by induction. 

You can check that g is an 

order-embedding. 

Of course ‘same’ means 

order-isomorphic. 

The well-ordering property for N is 

equivalent to the principle of 

mathematical induction, which is 

pretty powerful! 

This result really only needs that 

X and Y are linearly ordered. 

However, our definition of initial 

segment applies only to 

well-ordered sets. 
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7.4 Well-ordered sets 

Theorem 7.6 Principle of transfinite induction 

Let A be a subset of the well-ordered set A such that 

(i) the least element of X is in A; 

(ii) for all other x <E X, if Segx(x) C A then x G A. 

Then A = X. 

If you think of A as the subset of X consisting of all elements with a particular 

property P, then the inductive step can be read as saying that 

if every element less than x has property P, then so does x itself. 

And A = X just says that every element of X has property P. 

Let us now prove Theorem 7.6. 

Proof 

Let A be a subset satisfying (i) and (ii). Suppose that A does not equal X. 
Then the subset X \ A of X is non-empty, so as X is well-ordered it has 

a least element, x say. By (i) x cannot be the least element of X, so that 

Segx(a;) is non-empty. By the minimality of this x, for any y < x we must 

have y & X \ A, i.e. y G A. This means that Segx(x) C A, so that by (ii) 

x G A, contradicting that x is in X \ A. 
Thus A = X. ■ 

The method used in this proof could be described as that of the ‘minimal 

counterexample’ - assume that the sought-for result does not hold for all the 

elements of A, so that as X is well-ordered there is a least element of X for 

which it doesn’t hold: then exploit this least element in some way or other to 

try to obtain a counterexample. 

We shall prove the next result needed in our proof of Theorem 7.5 by induc¬ 

tion. But the proof can also be done by the method of the minimal coun¬ 

terexample, which we shall give you as an exercise. 

Theorem 7.7 

If f: X —» X is an order-embedding of a well-ordered set X into itself, 

then x < f(x) for all x £ X. 

Proof 

Define the subset A of A by 

A = {x e X : x < f(x)}. 

We shall sho\y by induction (Theorem 7.6) that A = X. 

Assume that A is non-empty, so that A has a least element xq. Then as f{xo) 

has to be some element of A, we have xq < f(xo) by the minimality of xo- 

Thus the least element of A is in A. 

‘Transfinite’ because the induction 

might go beyond the finite, e.g. if 

A = u> + u>. 

The base step. 

The inductive step. 

We shall try to obtain a 

contradiction. 

For X = 0, the result is trivial. 
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7 Ordered Sets 

Now for the inductive step. Suppose that x is an element of X for which 

Segx(x) C A. We must show that x € A, i.e. x < f(x). 

For each y < x we have both 

y<f(y) (a,s y e Segx(x) C A) 

and 

f(y) < f{x) (as / is an order-embedding), 

so that 

y < /(*)• 

Thus Segx (x) C Segx(/(x)), so that by the result of Exercise 7.54(a) 

x < f(x), as required for the inductive step. 

Hence by Theorem 7.6 A = X. ■ 

Exercise 7.56- 

Prove the last result using the method of the minimal counterexample, i.e. 

assume that there are elements of X for which it is not the case that x < /(x), 

so that there is a least such element x0, and try to derive a contradiction. 

This technical result is used in the proof of the next, somewhat more surpris¬ 

ing, theorem. 

Theorem 7.8 

Let /: X —> X be an order-isomorphism of the well-ordered set X with 

itself. Then / is the identity function. 

Proof 

Take any x E X. Then as / is an order-embedding, the previous result gives 

x < f(x). 

But /-1 is also an order-embedding, so the same result (applied to the element 

f{x) of X) also gives 

/(*) < /_1 (/(*)), 

i.e. 

f(x) < x. 

Hence f(x)=x for all x, so that / is the identity function. ■ 

This result is quite impressive as it does not apply to linearly ordered sets 
which are not well-ordered. 

Exercise 7.57__ 

Give an example of a linearly ordered set X and an order-isomorphism of X 
with itself which is not the identity function. 
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The last result can be used to prove something slightly more general: the 
content of the next exercise. 

Exercise 7.58_ 
Suppose that /: X —> Y and g: X —> Y are both order-isomorphisms 
between the well-ordered sets X and Y. Then / = g. 

Solution 

The composite function g~* 1 2 3 o f will be an order-isomorphism of X with itself, 

so by the result of the last exercise must be the identity. Hence / = g. 

The last result we need before we prove the big theorem comes out of the next 
set of exercises. 

Exercise 7.59 ______ 
Let X be a well-ordered set. Show that X cannot be order-isomorphic to 

Segx(x) for any x £ X. 

Exercise 7.60_ 
Let Y be a well-ordered set with t/,y' £ Y. Show that if SegY(y) — Segy(y'), 

then y = y'. 

We are now in a position to prove Theorem 7.5. 

Theorem 7.5 

Let X and Y be well-ordered sets. Then exactly one of the following 

holds: 

1. X is order-isomorphic to an initial segment of Y; 

2. X is order-isomorphic to Y; 

3. Y is order-isomorphic to an initial segment of X. 

We shall essentially formalize our informal process of matching the least ele¬ 

ments of the sets, then the next least elements, and so on. Define a subset E 

of X x Y by 

E = {(x,y): Segx(x) = Segy (?/)}. 

It is easy to show that E is an order-isomorphism from a subset of X to a 

subset of Y. What is only a bit harder is showing that either 

Dom(E) = X and Range(E) = Y, 

in which case X and Y are order-isomorphic, or 

Dom(.E) = X and Range(E) is an initial segment of Y, 

or 

Range(E) = Y and Dom(L') is an initial segment of X, 

in which case E~l is an order-isomorphism of Y with an initial segment of X. 

So that if X = Y, there’s exactly 

one order-isomorphism from X to 

Y. This is not true in general if X 
and Y are merely linearly ordered 

rather than well-ordered. 

197 



7 Ordered Sets 

First of all, let us show that for each x E Dom(E) there is a unique y E F 

such that (x, y) E E. Given such an x there is at least one y with (x, y) E E, 
as we are assuming that x E Dom(.E'). If there was another y' E Y such that 

(x,y') E E, then we would have both 

Segx(x) “ SegY(y) 

and 

Segx(a;) “ SegY(y'), 

so that 

SegY(y) - SegY (</)• 

It follows from the result of Exercise 7.60 that y = y', giving the uniqueness 

of the y such that (x, y) E E. Thus E is a function. 

A similar argument exploiting the result of Exercise 7.60 shows that for any 

y E Range(E), if (x,y), (x',y) E E then x = x'. Thus E is one-one. 

To show that E is an order-embedding, suppose that x,x' E Dom(E') with 

x <x x'. As x <x x' we have that x E Segx(rr'). As x' E Dom(E), there is a 

y' EF such that 

Segx(:r') = Segy(y'), 

so that under this isomorphism x must map to some y E Segy (?/'). Then by 

the result of Exercise 7.55 

segSegx(x')(x) -SeSsegY(v’)(y), 

which by the result of Exercise 7.54 simplifies to 

Segx(:r) = Seg y(y). 

This means that (x, y) E E, i.e. y = E(x) (now that we know E is a function). 

What we have shown above in a somewhat roundabout way is that if x <x x1 
then 

E(x) = y 

<Y y' as y E SegY(y') 

= E( x'). 

Thus E is an order-embedding and gives an order-isomorphism of the subset 

Dom(E) of X with the subset Range(E') of Y. 

Next we shall show that at least one of the subsets Dom(£') and Range(E) is 

all of, respectively, X and Y. Suppose that this is not the case. Then both 

X \ Dom(E) and Y \ Range(E’) are non-empty, so have least elements x' and 

y', respectively. It is a straightforward exercise to show that 

1. Dom(E) = Segx(x'), 

2. Range(.E) = Segy(y'), 

and 

3. Segx(a;') = Segy(y'). 

y is E(x). 

We have also effectively shown that 

if x' E Dom(E) then 

Segx(x') C Dom(£). 

We’ll use the method of the 

minimal counterexample. 
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Exercise 7.61_ 
Prove 1, 2 and 3 above. 

From 3 above (x\y') £ E, contradicting the definitions of x' and y'. Thus 

either Dom(-E) = X or Range(E’) = Y or both. 

If both Dom(i?) = X and Range(E) = Y, then without further ado E is an 

order-isomorphism from X to Y. 

Exercise 7.62_ 
Suppose that Dom(E) = X and Range(E) is a proper subset of Y. Show that 

Range(-E) is an initial segment of Y. [Hint: for which y' EY will Range(E) 

equal Segy(t/')?] 

So if Dom(E) = X and Range(E) is a proper subset of Y, then X is order- 

isomorphic to an initial segment of Y . 

Similarly if Range(.E) = Y and Dom(E) is a proper subset of X, then Y is 

order-isomorphic to an initial segment of X. 

We have almost completed the proof of Theorem 7.5. We have shown that at 
least one of the following holds: 

1. X is order-isomorphic to an initial segment of Y; 

2. X is order-isomorphic to Y; 

3. Y is order-isomorphic to an initial segment of X. 

We must now tidy up the detail of Theorem 7.5 that exactly one of the above 

holds. 

Exercise 7.63----- 
Complete the proof of Theorem 7.5 by showing that at most one of 1, 2 and 

3 above can hold. 

Solution 

Make use of Exercise 7.59. 

Now that we have finally proved Theorem 7.5 let s look at what might follow 

from its result. 

Clearly order-isomorphism acts as an equivalence relation on well-ordered sets. 

Unfortunately the equivalence classes are indeed classes - they are too big to 

be sets! But if we can find a ‘nice’ member of each class, then these ‘nice’ 

members will give examples of all possible well-orders. By Theorem 7.5 we 

can then order these by the relation ‘is order-isomorphic to an initial segment 

of’: it would not be surprising if this turned out to be a well-ordering! In the 

next chapter we shall find such ‘nice’ well-ordered sets. 

As E is an order-isomorphism from 

Dom(.E) to Range(£l). 

Consider the order-isomorphism 

E-1 from Range(E) to Dom(£). 

The equivalence is of course not a 

relation within ZF. 

Indeed this is the effect of Exercise 

7.66 below. 
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Further exercises 

Exercise 7.64_ 

Explain why in general the collection of well-ordered sets order-isomorphic to 

a given well-ordered set is a proper class, not a set. Is there an example of a 

well-ordered set for which this collection is indeed a set? 

Exercise 7.65__ 

Let X be a well-ordered set. Show that X is order-isomorphic to the set 

{Segx(x): x G X} of all initial segments of X, where these are ordered by C. 

Exercise 7.66_ 

Let W be a set of well-ordered sets. 

(a) Show that W contains a member A with the property that for each 

B £W either A = B or A is order-isomorphic to an initial segment of B. 

(b) Does W contain a member C with the property that for each B (E W 
either B = C or B is order-isomorphic to an initial segment of Cl 

Exercise 7.67_ 

Let X be a linearly ordered set. In Exercise 7.45 you were effectively asked to 

show that if X is well-ordered then there is no infinite descending <-chain of 

elements of X, i.e. there is no sequence {xn}ng^ of elements of X such that 

Does the converse to this result hold, i.e. if X contains no infinite descending 

chain then X is well-ordered? 

* 

Exercise 7.68_ 

For each of the following linearly ordered sets, decide whether the order is 

also a well-order. For each set which is well-ordered, how does it compare, in 

the sense of Theorem 7.5, with the sets un, for n G N? 

(a) The subset {^L- — : m, n € f^} of <□, with the usual order. 

(b) The subset {2m — ^ : m, n £ f^} of Q, with the usual order. 

(c) The set of positive integers ordered by <' defined by 

m <' n if either m has fewer divisors than n 
or m and n have the same number of divisors and m < n, 

where < is the usual order on N+. 

(d) The set S of all sequences of natural numbers which are zero almost 

everywhere, i.e. regarding such a sequence as a function from to N, 

S = {f e Nn : for some n G N, f(i) = 0 for all i> n}, 

ordered by < , where Check that this is a linear order! 

f <' g if there is some m e N such that /(m) < g(m) 

and f(i) = g{i) for all i > m. 
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7.4 Well-ordered sets 

(e) The set 5 as in part (d) ordered by <*, where 

f <* g if there is some meN such that /(m) < g(m) 

and f(i) = g(i) for all i < m. 

(f) The set T of all sequences of Os and Is which are zero almost everywhere, 
i.e. 

T = {/ E 2n : for some n E N, f(i) = 0 for all i > n}, 

ordered by the same <' as earlier, i.e. 

/ <' g if there is some m E N such that f(m) < g(m) 

and f(i) = g{i) for all i > m. 

(g) The set T as in part (f) ordered by <* as earlier, i.e. 

f <* g if there is some m eN such that /(m) < g{m) 

and f{i) — g(i) for all i < m. 

Exercise 7.69_ 
Let X be well-ordered by <. Define a relation R on the set of pairs X x X 
as follows: 

(■x,y)R(x',y') if (i) max{i,|/} < maxla;',?/}, 

or (ii) max{x,y} = max{x',y'} and y < y', 
or (iii) max{x,y} = max{x',y'} and y — y’ and x < x'. 

(a) Show that R is a well-order on X x X. 

(b) (i) Suppose that X is set u. Show that wxw ordered by R is order- 

isomorphic to u. 

(ii) Suppose that X is u+ 1. Find m,n € N such that the well-ordered 

set (u + 1) x (cj + 1) ordered by R is order-isomorphic to {u x m) + n 

with its usual order. 

(c) Put xQ = minX and suppose that x E X. Show that 

Segx(x) x Segx(:r) = Seg^XjY ((x, Xo)), 

where both sets are ordered by R. 

{0,1} -2 is ordered by the usual 

<• 

R will usually not be the same as 

the more usual anti-lexicographic 

order on X x X. 

201 



8 ORDINAL NUMBERS 

8.1 Introduction 
Cantor’s work on Fourier series (see Section 6.1) led him to a construction on 

subsets A of 1R described as finding the derived set of A. The derived set of 

A, written as A', is the set of all limit points of A, where in this context x is 

a limit point of A if every neighbourhood of x contains infinitely many points 

of A. Cantor considered the sequence of sets obtained by starting with A, 

finding its derived set A', then the derived set A" of A', and so on: 

A, A\ A", A'",.... 

Recall that Cantor was interested in the uniqueness of representation of a 

function / on [0,2n] by a Fourier series and, in some sense, how far one could 

push the subset S of [0,2ix\ on which two Fourier series for / had to agree to 

ensure that the series were in fact identical. Putting A as the complement 

of S in [0,27r], he proved uniqueness not only in the case when A is empty, 

but also when one of the derived sets A', A", A'",... is empty. The case 

when d/0 and A' = 0 corresponds to A being finite. And when A! ^ 0 

and A" = 0, this means that A is infinite, but somehow with a very sparse 

structure - note that if A included a non-trivial closed interval [a,b], then 

each of A!, A", A... would also include it, so that none of the latter could 

be empty. 

Cantor wished to continue his construction in the case when none of A!, A", A'", 

etc., was empty. He ultimately hit on the idea of constructing a set A(°°) as 

the intersection of A', A", A'",.... He then made repeated use of the derived 

set construction on this set to give a(°°+1), A^°°+2\ ..., and in the case when 

none of these was empty, he again took their intersection, to give J4(00+00); 

and so on. 

Ultimately Cantor studied the superscripts 

oo, oo + 1, oo + 2,..., oo + oo,... 

in their own right, the ordinal numbers, as an extension of the natural num¬ 

bers. He introduced the u notation, rather than oo, to describe the first 

‘infinite’ one. He focused on their order properties - in some sense what is 

important about them is that each one has a successor and that there is some 

process of taking limits. This he finally encapsulated in terms of well-order. 

He then defined an ordinal as an order-type, meaning what was in common as 

an order to a whole class of order-isomorphic well-ordered sets. Thus u was 

the order-type of all ordered sets order-isomorphic to N with its usual order. 

And this order-type was ‘greater than’ any finite order-type, e.g. 1, which is 

the order-type of any one-element linearly ordered set. 

This, however, gives rise to a considerable problem when trying to represent 

such mathematical objects in terms of sets - remember that the main purpose 

of ZF or any other form of set theory is precisely to validate Cantor’s use of 

infinity! Can a set represent an order-type? The natural set to take is the 

collection of all ordered sets of a given order-type. But, as we hope you showed 

in Exercise 7.64 at the end of the previous chapter, this usually gives you a 

The definitions of A' and limit axe 

not of direct importance here. But 

they, and Cantor’s work on subsets 

of IR, were seminal for a variety of 

mathematical developments. It is 

not important for you to 

understand all of this introduction! 

This was where Cantor explicitly 

described the intersection of 

infinitely many sets, another 

example of consciously 

incorporating the infinite into 

mathematics. 

We have seen another example in 

this book of where we wish to 

continue an iterative process 

beyond the natural numbers, 

namely the iterative hierarchy of 

sets n discussed in Section 4.5. 
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8.2 Ordinal numbers 

proper class, not a set. For instance, the order-type 1 would be represented 
by the class of all singletons, which is not a set. 

In this chapter, we shall look at a construction developed by von Neumann 

(arising out of work by the Russian and Swiss mathematician Dimitry Mir- 

imanov) which gives a particular set out of each order-type of well-ordered 

sets in a systematic way, without any need for axioms beyond those in ZF. 
We shall then reconstruct Cantor’s arithmetic on his ordinals using the von 

Neumann ordinals, which from here on we shall just refer to as the ordinals. 

Cantor’s arithmetic on ordinals gives an insight into what infinite ordinals 

look like. At the end of the chapter, we shall start to see how Cantor’s two 

sorts of infinite number, ordinals and cardinals, relate to each other. 

Exercise 8.1___ 
Which set might we take as the representative of all n-element well-ordered 
sets? 

Solution 

Within the context of this book, the obvious choice is the natural number n 

within ZF. Our intuition is that n has n elements. 

8.2 Ordinal numbers 

In the previous chapter we saw that well-ordered sets can be compared with 

each other in a particularly strong way. By Theorem 7.5 in the Section 7.4, 

given any two well-ordered sets, either they are order-isomorphic or (exactly) 

one is not merely order-embeddable in the other, but is order-isomorphic to 

an initial segment of the other. It would be nice to be able to pick from each 

class of order-isomorphic well-ordered sets a single such set to represent them 

all. All these representatives could then be linearly ordered by the relation ‘is 

order-isomorphic to an initial segment of’. It would be even nicer if the ‘order- 

isomorphism to an initial segment’ took some very simple form - simplest of 

all would surely be the identity function, which would entail that given any 

two such representative sets, one would be a subset of the other. 

So how might we chose the representatives? Let’s look at some of the well- 

ordered sets about which we know something. The classic interesting well- 

ordered set is surely the set of natural numbers N with its usual order - 

what we’ve also called the set u. Another interesting example is any natural 

number n within ZF - what makes this particularly interesting for us now is 

that by Exercises 7.15 and 7.43 of Chapter 7 every finite well-ordered set is 

order-isomorphic to some n£ N. Thus, given that we know lots about natural 

numbers within ZF, we might as well choose these to be the representatives 

of all finite well-ordered sets. And as these are all elements of the well-ordered 

set w, we might as well take u as the representative of its order-isomorphism 

class of well-ordered sets. How do to and its members shape up as repre¬ 

sentatives? Certainly there’s no duplication: distinct natural numbers aren’t 

order-isomorphic, and no natural number is order-isomorphic to w - there are 

no bijections connecting them. And there are no well-ordered sets that fit in 

between’ u) and its members: every finite well-ordered set is represented by a 

Recall from Chapter 3 that if the 

collection of all singletons was a 

set, then the universe of sets 

would also be a set, ultimately 

leading to Russell’s paradox. 

Actually, some of the axioms in ZF 
are there precisely so that von 

Neumann’s construction works! 

‘Pick’ suggests that we might have 

to use AC. Will we? 

This relation would even be a 

well-order, by Exercise 7.66 in 

Section 7.4. 

You’ve been set up! Historically 

this representation of N within ZF 
stemmed from von Neumann’s 

representation of the ordinals, 

which is what we’re working up to. 
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8 Ordinal Numbers 

member of w; and by Exercise 7.53 any well-ordered set that isn’t finite, i.e. 

is infinite, is, or contains an initial segment, order-isomorphic to u>, so cannot 

fit ‘below’ uj. 

Exercise 8.2--- 
What does an ‘order-isomorphism to an initial segment of’ look like when 

comparing distinct elements of {a;} U u>? 

Solution 

It will simply be the identity function. Each n E uj is an initial segment of u, 

namely Sega,(n). And similarly if m ^ n, so that without loss of generality 

m < n, we have m = Segn(m). 

Of course we’ve not exhausted all order-isomorphism classes of well-ordered 

sets by taking u> and its members as representatives. For instance, none of 

these is order-isomorphic to uj + uj. So what aspects of uj and its members shall 

we exploit to extend our class of representative well-ordered sets? First of all, 

note that for all of them the < relation is actually E, i.e. set membership. As E 

is one of the fundamental starting points of ZF, there is something satisfying 

in using it as the order relation. And second, note that for each of these sets, 

any member of the set is also a subset of it - the E relation gives them a very 

strong structure as well-ordered sets. These aspects become the key features 

of our definition of the special, representative, well-ordered sets, namely the 

ordinals. 

Definition 

A set a is said to be an ordinal if 

(i) a is well-ordered by E, and 

(ii) if /3 E a then f3 C a. 

All nEw and u> itself are ordinals - our definition was made to ensure this. 

Are there any other ordinals? 

Exercise 8.3_ 
(a) Let n E uj. Show that uj £ n and that uj qLuj. [Hint: use the definition 

of ordinal and properties of well-ordered sets, rather than the axiom of 
foundation or any of its consequences.] 

(b) Show that o;U {a;} (= uj+) is an ordinal. 

(c) Is cj+ equal to uj or some n E u>? 

Solution 

(a) If uj E n then, as n is an ordinal, all the elements of uj are elements of n. 

In particular we have n E n, which is not true. Hence uj ^ n. 

If uj E uj, we have that {cj} is a subset of uj. But the only element of 

this subset fails to obey the requirement of being its least element, as the 

subset contains an element less than it - u> E uj is the same as uj < uj. This 

contradicts that uj is well-ordered. Hence uj # u>. 

It’s common to use Greek letters to 

stand for ordinals. 

Equivalently, if 7 E (3 and (3 E a 

then 7 E a. So a is E-transitive. 

There better had be some more! 

As before, we shall use the 

notation to stand for a U {a}. 
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8.2 Ordinal numbers 

As an alternative to the above, we could have exploited the consequence 

of the axiom of foundation, ZF9, that there are no infinite descending 

E-chains of sets. If u> E n then, asnGw, we would have the E-chain 

...6nGw6n6...6u£n6w, 

giving a contradiction. Similarly if u E u, the chain 

...Eu?Ecc>E...Eu;Ect> 

gives a contradiction. Our preferred argument essentially uses only well¬ 

ordering, which is intrinsic to the whole point of ordinals. The whole 

theory of ordinals can be developed entirely without the axiom of foun¬ 

dation, so it is customary to avoid its use, as we shall do in this chapter. 

(b) First we must show that cuU {cj} is well-ordered by E. We need to check 

that E is a linear order on this set and then check the well-ordering prop¬ 
erty. 

How about irreflexivity? We know from our work on natural numbers in 

ZF that n ^ n for all n E uj. And from the previous part we have u> # uj. 

Thus E is irreflexive on u U {a;}. 

Note that all the exercises in this 

chapter expect you to avoid use of 

ZF9 in your answers. As ZF9 is 

one of the more technical, and less 

intuitive, of the axioms, it is nice 

to know it is not needed for this 

part of the theory. 

For transitivity, the only cases we need to consider are As we cannot have uj € n or u> € u). 

1 E m and m E n for n in w 

and 
1 

1 E m and m E u). 

In the first case 1 E n as E is transitive on n; and in the second case lew 

as all elements of a natural number are natural numbers. 

We already know that E is linear on the elements of u. And we can 

compare any element of u with the other member of cw U {u>}, namely io 
itself - we have n E w! Hence the order is linear. 

To show the well-ordering property suppose that A is a non-empty subset 

of u) U {tu}. If A is simply the subset {a>}, then as w ^ w we have that uj 
is the least (and only!) element of A. Otherwise A contains at least one 

element of u: as u is well-ordered by E, the least such element in A, n 

say, is also the least element of A - we have n E m for all other ms in A, 

and if A also includes u then automatically nEw. 

We must also show that if /3 E uU {u>} then /3CwU{w}. This is straight¬ 

forward: as P is either a natural number or u we have 

P C u) C ui U {a;}. 

(c) If u+ equalled u> then we would have 

u E u) U {w} — <x), 

so that wEw, which is not true. Likewise if u+ equalled n for some n E w, 

we would have 
i , 

nEwC or = n, 

so that n E n, which is not true. 
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8 Ordinal Numbers 

Another way of approaching this is by comparing the order structure of 

u+ with the ordered sets considered in previous sections. It is easy to 

show that u>+ is order-isomorphic to the order sum u 4-1, which is known 

not to be order-isomorphic to u> or any finite set. So that u+ cannot 

actually equal any of these latter sets. 

So u>+ is an ordinal we hadn’t listed before. We shall show that there are 

further ordinals, enough to represent all well-ordered sets. But first let’s 

establish some of the basic properties of ordinals. 

Exercise 8.4- 
Let a be an ordinal and let (3 G a. 

(a) Show that (3 is an ordinal. 

(b) Show that (3 = Sega(/3). 

Solution 

(a) First of all, we must check that f3 is well-ordered by £. As (3 £ a and a is 

an ordinal, we have that (3 C a. Any subset of a well-ordered set is clearly 

well-ordered by the same order, so that (3 is well-ordered by 6. 

We must also show that if 7 £ (3 then 7 C /?, i.e. that for all <5, 

if 5 £ 7 then 6 £ (3. 

So suppose that 7 £ /? and take any 5 £ 7. If we knew that S, 7 and (3 
were all members of a, then as £ is a linear order on a, the transitivity of 

the order would allow us to conclude that 5 £ (3, which is what we want. 

We are given that (3 is in a. And as a is an ordinal this means (3 C a. 
Now 7 £ (3 and (3 C a, so that 7 £ a. Similarly, this gives that 7 C a, so 

that as 5 G 7 we also have 6 £ a. Thus <5, 7 and (3 are all in a, and our 

argument is complete. 

(b) Left for you! 

We can use the results of this exercise to rephrase the principle of transfinite 

induction (Theorem 7.6) when the well-ordered X to which it is applied is an 

ordinal, a say. We leave it for you to check that it is merely a rephrasing! 

Theorem 8.1 Principle of transfinite induction for ordinals 

Let A be a subset of the ordinal a such that 

(i) 0 G A; 

(ii) for all (3 G a, if (3 C A then (3 6 A. 

Then A = a. 

Theorem 8.2 

Suppose that a and /? are order-isomorphic ordinals. Then a = (3. 

We shall look at how order sums 

and products relate to ordinals in 

the next section. 

So that any member of an ordinal 

is also an ordinal; and an initial 

segment is an ordinal. 
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8.2 Ordinal numbers 

Proof 

We shall argue by contradiction. Suppose that f: a —> /3 is an order- 

isomorphism and that / is not the identity map. Then {7 e a : /(7) 7^ 7} 

is a non-empty subset of a, so has a least element 70. We shall consider the 

restriction, /|segQ(7o)> of / to the initial segment of a determined by 70. 

Prom the solution to Exercise 7.55 in Section 7.4 we know that /|seg<1(7o) is an 
order-isomorphism between Sega(70) and Seg/3(/(70)). We can use the result 

of Exercise 8.4(b) to rephrase this by saying 

/|7o: 7o —t /(70) is an order-isomorphism. 

By the minimality of 70 we have 

/|7o(<*) = /(<*) = s for a11 s e 7o> 

so that the sets 70 and /(70) have precisely the same members. But this 

means that 70 = /(70), contradicting the definition of 70. 

Hence / is the identity map, so that a = (3. ■ 

This theorem tells us that if, as we hope, each class of order-isomorphic well- 

ordered sets contains an ordinal, then this ordinal is unique. We have yet to 

show that there is such an ordinal! The theorem will also help us prove that 

the class of ordinals, not just any single ordinal a, is well-ordered by G, which 

we do now. 

Theorem 8.3 

The class of ordinals is well-ordered by G, in the following sense: 

(i) for all ordinals a, a 0 a; 

(ii) for all a, /? and 7, if a G /3 and (3 G 7 then a G 7; 

(iii) for all ordinals a and /3, a G /3 or a = /? or G a; 

(iv) any non-empty set X of ordinals contains a least element. 

Proof 

The proofs of (i) and (ii) are left as an exercise for you: they can both be done 

using the basic definition of ordinals. (Although (i) is an easy consequence of 

the axiom of foundation, avoid its use here!) 

For (iii), suppose that cn and (3 are ordinals and that a (3. Then by Theorem 
8.2 a and (3 are not isomorphic. So by the big result on comparing well-ordered 

sets, Theorem 7.5, one of a and /3 is order-isomorphic to an initial segment 

of the other. Without loss of generality f3 is order-isomorphic to an initial 

segment of a, so that 

(3 = Sega(7), for some 7 G a. 

By Exercise 8.4(b) Sega(7) is just 7 itself, so that 

(3 = 7 for some 7 G a. 

But then, by Theorem 8.2, (3 equals 7 for this element 7 of a, i.e. (3 G a. 

By the axiom of extensionality. 

Why not the set of ordinals? 
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8 Ordinal Numbers 

(iv) follows from Exercises 7.66 and 8.4(b). We can also prove this directly 

as follows. If X is a non-empty set of ordinals, then it contains at least one 

ordinal, a say. Consider the set Y = {(3 £ X : /3 £ a}. If Y is empty then a 
is the least element of X. And if Y ^ 0 then, as Y is a non-empty subset of 

the well-ordered set a, Y has a least element 7, which must also be the least 

element of X. ■ 

Exercise 8.5_ 
Prove (i) and (ii) of Theorem 8.3 above. (For (i) in particular, avoid use of 

the axiom of foundation or any of its consequences, especially that x & x for 

any set x, not just an ordinal.) 

Exercise 8.6_ 
Suppose that a and (3 are ordinals. Show that 

a < (3 if and only if a C /3. 

Solution 

Suppose first that a < (3 and show that a C (3. If a = (3 there is nothing more 

needed, so suppose that a < /3, i.e. a £ (3. Then as [3 is an ordinal, we have 

a C (3 by the definition of ordinal. 

Conversely, suppose that it is not the case that a < (3, so that a £ f3 and 

a 7^ (3, and show that it is not the case that a C (3. Then as £ linearly orders 

the ordinals, we have (3 £ o, so that, as in the first part of this solution, (3 C a. 
As a (3 we must in fact have that (3 is a proper subset of a, so that a cannot 

be a subset of (3. 

We have been careful to avoid saying that there is a set of all ordinals - there 

isn’t such a set and we are now in a position to prove this. 

Exercise 8.7_ 
Suppose that there is a set (f whose members are precisely the ordinals. 

(a) Show that <f is an ordinal. 

(b) Hence derive a contradiction. 

Solution 

(a) Theorem 8.3 shows that & is well-ordered by £. And if a £ <?, then as 

every member of a is an ordinal (by Exercise 8.4(a)) we have a C tf. 
Thus tf is an ordinal. 

(b) As we are supposing that (f is the set of all ordinals, we must have & £ 

But this contradicts Theorem 8.3(i). 

This contradiction is called Burali-Forti’s paradox, published in 1897 by the 

Italian Cesare Burali-Forti (see [11]). It was the first key paradox to arise 

from Cantor’s work and sparked the proper evaluation of the foundations of 

set theory. Its significance in the context of ZF is that the ordinals form a 

proper class. To help us towards our goal of showing that each isomorphism 

class of well-ordered sets does contain an ordinal, the following theorem gives 

a couple of very useful ways of constructing an ordinal from other, known, 

ordinals. 

The same proof shows that any 

non-empty class of ordinals 

contains a least element. 

Using Theorem 8.3. 

It is often convenient to use the 

notation if for the class of all 

ordinals. (Some books use Cantor’s 

notation, fi, the last letter of the 

Greek alphabet.) 
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8.2 Ordinal numbers 

Theorem 8.4 

(i) Let a be an ordinal. Then a+ is 

(a) an ordinal; 

(b) the successor of a. 

(ii) Let X be a set of ordinals. Then |J X is 

(a) an ordinal; 

(b) the least upper bound of X. 

(Thus we can write (JX as lubX.) 

Proof 

(i) is left as an exercise for you. 

To prove (ii)(a), suppose that X is a set of ordinals. To show that is an 

ordinal, we have, as ever, to show that it is well-ordered by £ and that each 
of its members is a subset. 

Each member of (J X is in some ordinal a in the set X, so is itself an ordinal. 

Thus (J X is a set of ordinals and is then, by Theorem 8.3, well-ordered by £. 

Now suppose that 0 £ (JX. We shall show that 0 C (JX. As 0 £ (JX, we 

have 0 £ a for some a £ X. As a £ A then a C (J X and as a is an ordinal 

we then have 0 C a. Thus 0 C |J X as required. 

Now that we have proved that (J X is an ordinal, it is meaningful to attempt 

(ii) (b). We have to show that 

(1) (J X is an upper bound of X, i.e. a < (J X for all a £ X, and 

(2) IJ X is the least such upper bound, i.e. if 7 is an upper bound for X 

then (J X < 7. 

For (1), suppose that a £ X. Then a C (JX, so by Exercise 8.6 a < (JX as 

required. 

For (2), suppose that the ordinal 7 is an upper bound for X. We shall show 

that (J X C 7, so that by Exercise 8.6 we have (J X < 7 as required. Take 

any 0 £ (J X. Then 0 £ a for some a £ X. As 7 is an upper bound for X, we 

have a < 7, which by Exercise 8.6 means that a C 7. Thus 0 £ a and a C 7, 

so that 0 £ 7. ■ 

Exercise 8.8- 
Prove Theorem 8.4(i), i.e. if a is an ordinal then a+ is 

(a) an ordinal; 

(b) the successor of a. 

It will help heie to introduce some streamlined terminology to describe dif¬ 

ferent sorts of ordinals. We know from Exercise 7.12 that as the ordinals are 

linearly ordered, then every ordinal is either a minimum element of the order, 

or a successor, or a limit point of the order. The ordinals certainly have a 

a+ is a U {ct}. 

Least in the ordinals. 

Least upper bounds were covered 

in Exercise 7.19 of Section 7.2. 

Equivalently we could show that: 

(2)' if <5 < (J X then S is not an 

upper bound of X. 

In the theory of ordinals, it is quite 

common in arguments about order 

words, like ‘upper bound’, to 

switch between < and £. 

That is, the least ordinal greater 

than a. 
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8 Ordinal Numbers 

minimum element, namely 0. We shall sometimes use the phrase successor 0 is the set 0. 
ordinal for an ordinal which is a successor and limit ordinal for an ordinal 

which is a limit. As we now know that every ordinal a has a successor a+, 

it will be a very straightforward for you to prove a simple but convenient 

reformulation of the definition of limit ordinal, given in the next exercise. 

Exercise 8.9___ 
Let A be a non-zero ordinal. Show that A is a limit ordinal if and only if 

for all ordinals cc, if a < A then a+ < A. 

Exercise 8.10- 
Identify the ordinal IJ X for each of the following sets X: 

(a) X = 0; 

(b) X = {2,4,6}; 

(c) X = {2 • n : n G id}. For ordinals a < f3 means the same 

as a G f3. 

Exercise 8.11_ 
Let A be an ordinal. 

(a) Suppose that A is a limit prdinal. Show that (J A = A. 

(b) Suppose that [J A = Ay Show that A is a limit ordinal. 

Solution 

(a) We have a choice of arguments: one using the terminology of G and (J A 

as the union of a set; one using the terminology of < and least upper 

bounds; and, when feeling cavalier, one mixing both lots of terminology! 

We shall give arguments of the first two sorts. 

First let’s use the language of G and unions. We need to show that 

u A C A and A C (JA. 

Suppose that /3 G (J A. Then (d G a for some a G A. As A is an ordinal we 

then have (5 G A. Thus [J A C A. 

Suppose that a G A. Then as A is a limit ordinal we have a+ G A. But 

a G a+, so that a G |J A. Thus A C (J A. a G {a} C a+. 

Now let’s try the argument using the terminology of order. By Theorem 

8.4 it is enough to show that the least upper bound of the set A of ordinals 
is A itself. 

First we show that the set of ordinals A has A as an upper bound. If a is 

a member of A, then a < A (as < is the same as G). Thus the set A has 
upper bound A. 

Now we must show that A is the least upper bound. We will take the 

route of showing that no smaller ordinal 7 is an upper bound. Take any 

7 < A. As A is a limit ordinal then 7+ < A, so that 7+ is in the set A of 

ordinals. Thus as 7 < 7+ it cannot be that 7 is an upper bound of the 

set A of ordinals. Hence A is the least upper bound of the set A, so must 
equal (JA (by Theorem 8.4). 

(b) Left for you! 
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Exercise 8.12___ 

What is U(«+) in terms of ck, where a is an ordinal? 

Exercise 8.13___ 

Let X be a non-empty set of ordinals and let a = (J X. Show that if a g X, 
then a is a limit ordinal. 

Solution 

Suppose that a & X. Let /3 £ a. We must show that there is an ordinal 7 

with /? £ 7 £ a. As £ is the same as < for ordinals, we have (3 < a, so that as 

a = lubX, we know that /3 is not an upper bound for X. Thus there is some 

7 £ X for which (3 < 7. As a is lub X, we have 7 < a. But a £ X, whereas 

7 £ X, so that 7 ^ a. Thus (3 < 7 < a, as required to show that a is a limit 

ordinal. 

Now that we have some ways of constructing ordinals, we might be in a better 

position to show that each isomorphism class of well-ordered sets contains 

an ordinal. At the beginning of this section we showed that the ordinals 

included 0, 1, 2, 3, ..., u and cu+, but asked whether we had an ordinal 

order-isomorphic to the order sum u + u). From your work in Chapter 7, you 

might agree that u> + u is a pretty simple and straightforward well-ordered 

set! Recall its shape: 

u + u 
0 12 

u 
✓S. 

UJ 

012 

It should seem reasonable to say that u> + u is a ‘smallest’ well-ordered set 

which contains initial segments order-isomorphic to each of the order sums u, 
uj + 1, u + 2, ...,o; + n, ... for all n £ a;. Now apply the result of Theorem 

8.4(i)(a) finitely many times to the ordinal u> to show that there is an ascending 

sequence of ordinals 

> 

for each n £ w. It is pretty plausible (and true!) that we can use Theorem 

8.4(i)(b) to show that 

u; + n = w+++"'+ 

for each n. Then surely uj -t- will be order-isomorphic to the least upper 
n 

bound of all these u;+++ "+s, which by Theorem 8.4(ii) would be the ordinal 

U{o;,a)+,a;++,u;+++,...}. 

This will all turn out to be correct, but note that there is a significant snag 

with what we have said so far: the application of Theorem 8.4(h) requires not 

only that u>, uj+,u>++ ,... are ordinals, which is unproblematic, but that there 

is a set 

(u;, , ui++, a;+++ 

8.2 Ordinal numbers 

(3 < 7 < a translates into 

(3 & 7 £ a. 

Finite applications of such a result 

are legitimate in ZF. As ever, it’s 

only infinite processes which cause 

a problem! 

We write w++ for (w+)+ etc. 
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8 Ordinal Numbers 

containing all of them. To show that this is a set we can exploit the recursion 

principle for I^J (in its class form, Theorem 4.5 of Section 4.5 of Chapter 4), 

defining a function / with domain N by 

By the recursion principle, / is a function within ZF, so that Range(/), i.e. 

{u>, ,uiJr+ ,uj+++ , ...}, is indeed a set. 

The recursion principle for P4, which we have just exploited, is a consequence 

of the axiom of replacement, ZF8. This axiom has a crucial role in the 

further development of the theory of ordinals, as we shall see not only in a 

moment, when we prove that every well-ordered set is order-isomorphic to 

some ordinal, but in the next section when we extend the recursion principle 

to define functions within ZF with domains much larger than Recall that 

the axiom essentially says that if a well-formed formula 4>(x, y) of set theory 

behaves like a function / with domain known to be a set, X, but no codomain 

is specified as a set, then the collection of images, Range(/), is a set. For a 

function / like the one we used above to show that {u, u>+, w++, w+++,...} is 

a set, we had a set (f^J or equivalently u>) as domain and sets as well-defined 

images of elements of the domain. But we could not specify in advance any set 

as codomain; and a function within ZF has to have a set as codomain. As we 

are trying to construct the ordinals within ZF and could not have otherwise 

shown that there are enough of them to provide a set as codomain for even 

this very modest /, the axiom of replacement will prove to be very helpful. 

Now that we have identified the likely need for use of the axiom of replacement, 

we can prove a result which virtually achieves our aim of showing that there 
are ‘enough’ ordinals. 

Theorem 8.5 

Let X be a well-ordered set. Then for each x E X there is an ordinal a 
such that Segx(x) is order-isomorphic to a. 

Proof 

Let X be a well-ordered set. Let A be the set 

{x E X : there is some ordinal a such that Segx(:r) = ct}. 

We shall show by transfinite induction that A = X. 

If X is empty then so is A, so that A = X. So now suppose that X is non¬ 
empty. We need to show that 

(i) the least element of X is in A; 

(ii) for all x E X, if Segx(x) C A then x E A. 

The least element a^o of X is in A because Seg^-^o) is just the empty set 0, 
and 0 is the ordinal 0. 

For the inductive step, suppose that x E X is such that Segx(:r) C A, where 

x is not the least element of X. This means that for each x' with x' <x x, 

A function is a subset of X x Y, 

where X and Y axe sets. 

It is the author’s impression that 

most mathematicians axe very 

relaxed about the crucial role of 

this axiom within set theory: 

arguably it is more natural and 

much less contentious than 

seemingly more basic axioms, like 

the power set axiom. 

That is, using Theorem 7.6. 

We axe trying to show that x E A., 

i.e. that there is some a such that 

Segx(x) = a. 
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8.2 Ordinal numbers 

there is some ordinal (3 for which Segx(x') “ (3. By Theorem 8.2 the (3 for 

each such x' is unique. Thus the well-formed formula 0 defined by 

if x' < x then <f>(x',0) if and only if Segx(:r') = /?, 

and (3 = 0 otherwise, 

behaves like a function on the universe ^. This is just the sort of situation 

for which we included the axiom of replacement as one of the ZF axioms. By 

the axiom of replacement 0 does define a function (i.e. a set) when its domain 
is restricted to the set 

W e X : x' <x x}, i.e. Segx(:r); 

and the images of this function form a set, so that 

{(3: (3 is an ordinal with (3 = x1 for some x' <x x) 

is a set, Y say. It should seem reasonable that the function g defined by (f> is 

an order-isomorphism between Segx(x) and Y. So if we could prove that Y 
is in fact an ordinal, we would have shown that x G A, as required. 

Y is a set of ordinals, so is well-ordered by 6, by Theorem 8.3. The extra 

thing needed to show that Y is an ordinal is that if /? £ Y then (3 C Y. So 

suppose that (3 € Y and that 7 £ (3. As [3 € Y there is some x' <x x with 

Segx(x)' = (3. Let /: Segx(x') —> (3 be the corresponding isomorphism. As 

7 G f3, there must be some x" € Segx(x') such that f(x") = 7. Then by 

Exercise 7.55, we have 

SegSegx (*')(*") = Seg/3(7). 

By Exercise 7.54(c), 

Segseg* («')(*") = Segx(x"), 

while by Exercise 8.4(b), 

Seg/3(7) = 7- 

Thus 

Segx(x")=7, 

so as x" <x x', and hence x" <x x, the ordinal 7 must be g(x") and in the 

set Y. 

This shows that if f3 € Y then (3 C Y, completing the argument that Y is an 

ordinal. This in turn completes the proof of the inductive step, i.e. 

if Segx(x) C A then x € A. 

Thus by Theorem 7.6 4 = 1. ® 

Exercise 8.14----- 
Check that the function g in the proof above, i.e. 

g: Segx (x) —> Y 
x' 1—y the unique ordinal (3 such that Segx(x') = (3 

is an order-isomorphism. 

Take it on trust that <f> can be built 

up within our formal language for 

sets. 

We shall show that 7 € Y. 
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8 Ordinal Numbers 

We are now in a position to prove the promised theorem that there are enough 

ordinals to represent all well-ordered sets. 

Theorem 8.6 

Let Y be a well-ordered set. Then there is a unique ordinal a which is 

isomorphic to Y. 

Proof 

The trick is to construct a well-ordered set X which contains Y, or an isomor¬ 

phic copy of F, as an initial segment Segx(:r) for some x 6 X. Then Theorem 

8.5 tells us that there is an ordinal a isomorphic to Segx(x) and hence to Y. 
The uniqueness of a follows from Theorem 8.2. 

There are several ways of constructing a suitable X. We shall define X to be 

the order-theoretic sum Y + 1, i.e. the set (F x {0})U(1 x {1}). By Exercise 

7.47 Y -f 1 is well-ordered. Our result follows because 

F = F x {0} 

= Segx((0,l)) 

We have finally justified that there are enough ordinals to represent, up to 

isomorphism, all possible well-ordered sets. The next question is: how big 

can ordinals get? We already know that there is no set of all ordinals, which 

usually suggests that there are too many of them to form a set! All our 

examples so far of well-ordered sets, and hence, up to isomorphism, of ordinals, 

just happen to be countable sets. And there are indeed too many countable 

well-ordered sets for there to be a set of all of them. 

Exercise 8.15_ 
Explain why there is no set 

{X : X is a countable well-ordered set}. 

Solution 

If this was a set, then it would have as a subset 

{{a;} : x is a set}, 

which would thus be a set in its own right. But we know that this is not a 

set, so that there is no set of all countable ordinals. 

Our solution to this exercise suggests that we did not get a set because we 

had included too many copies of each order-isomorphism class of countable 

well-ordered sets. If we look at only the countable ordinals, taking just one 

member of each order-isomorphism class, might we get a set? That is, is 

u>\ = {cc: a is a countable ordinal} 

a set? If so, then as there is no set of all ordinals, there must be some ordinals 

(0,1) is in 1 x {1} and is greater 

than any (y, 0). 

In the next section we shall exploit 

the structure of ordinals to simplify 

and extend the arithmetic of 

ordinals, to recapture Cantor’s 

original vision. 

See Exercise 4.36 of Section 4.4. 
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8.2 Ordinal numbers 

which are not countable, i.e. are uncountable. We shall now show not only 
that u>i is a set, but is also an uncountable ordinal. 

Theorem 8.7 

Let (jU\ be defined by We shall later use the notation u>o 

for u>; and there’ll also be an u>a for 

each ordinal a. Ui = {cr: a is a countable ordinal}. 

Then is the smallest uncountable ordinal. 

Proof 

We must show that 

(i) u>i is a set; 

(ii) that it is an ordinal; 

(iii) that it is uncountable; 

(iv) that it is the least uncountable ordinal. 

Within the context of this section it won’t be surprising that the axiom of 
replacement will help show that ui is a set; and that some of the other parts 
of the proof will be similar to earlier arguments involving ordinals. 

(i) Let a be a countable ordinal. By virtue of being countable, there must be a 
bijection between a and a subset of LI (finite in the case that a is finite). The 
ordering on a induces an ordering on this subset of LI. And this last ordering 
is given as a set by some subset of LI x LI. In fact there will in general be 
many subsets of LI x LI arising in this way from a, as there can be several 
different bijections from a to subsets of LI. See Exercise 8.17 below. 

Turning the above process on its head, by starting with a subset of LI x LI 
representing a well-order, there must be a countable ordinal a to which this 
well-order (on LJ or a subset) is order-isomorphic. Of course by Theorem 8.2 
this ordinal a is unique. So that we can (plausibly!) define a formula <p(R, y) 

within set theory such that 

for all subsets R of D x LJ representing a well-order on a subset of LI and 

all y, 

(p(R, y) if and only if y is the ordinal order-isomorphic to the 
subset of LJ well-ordered by R. 

and for any other R, take y — 0 (or some other fixed set). 

Now put 

W = {R C LI x LI: R is a well-order on a subset of LJ}. 

W is a subset of <^(LJ x LJ), so is a set. By the axiom of replacement, the 
formula (j> above defines a function with domain W. It should be clear from 
the way we arrived at (ft that the range of this function is iO\. Thus uj\ is a 

set. 

(ii) wi is a set of ordinals, so is well-ordered by €. Thus to show that wi is 
an ordinal, it remains to show that if a <E then aCwi. So suppose that 

See Theorem 8.3. 
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a € u\ and that (3 € a. Then a: is a countable ordinal, while f3 is an ordinal 

which is also a subset of a. Thus f3 is also countable and must be in . Hence 

a Cui. Thus oji is an ordinal. 

(iii) If U\ was countable then, as it is now known to be an ordinal, we would 

have u\ Gwi, which is impossible. Thus is uncountable. 

(iv) We shall leave it to you to show that (Juq = ui\. Then by Theorem 8.4 

u>i is the least upper bound of the set of all countable ordinals, so that any 

smaller ordinal than ui must be countable. Thus as Ui is uncountable, it 

must therefore be the smallest uncountable ordinal. ■ 

Exercise 8.16- 

Prove that (J . 

Exercise 8.17- 

Give two different bijections from the ordinal u+ to M and give a bijection 

from u+ to a proper subset of N. 

We shall show in a later section that there are ordinals even larger, in the 

sense of cardinality, than u>\. You might reasonably ask why we did not 

give examples earlier than now of uncountable well-ordered sets. Surely, for 

instance, we could have given an example of a well-ordering on the set IR of all 

reals. As we saw earlier, the usual < on IR is not a well-order; but IR has such 

rich structure - think of all that real analysis! - that one might think that 

some sort of well-order on it could be defined. This was what Cantor thought 

very early on in the development of his theory of infinite sets, but he came 

to realize that such a definition was difficult, so formulated the well-ordering 

problem: can IR be well-ordered? As we shall see in the final chapter of the 

book, this major problem has a non-trivial resolution! You might also ask 

how the size of uq, which is the smallest uncountable ordinal, compares with 

that of other uncountable sets, in particular IR or equivalently, in terms of 

cardinality, ^(f^J) or 2N. This, the other of Cantor’s major problems, will 

likewise be discussed in the final chapter. 

Further exercises 

Exercise 8.18_ 

Which of the following assertions is true? Explain your answers. 

(a) If a is an ordinal, then (J a is an ordinal. 

(b) If X is a set of ordinals, then X is an ordinal. 

(c) If X is a set of ordinals and \J X = X, then X is a limit ordinal. 

(d) If X is a set such that (J X = X, then X is an ordinal. 

Exercise 8.19___ 

(a) Let a and (3 be ordinals. Show that if a+ = /?+, then a = (3. 

(b) Is the above result true for sets which are not necessarily ordinals? That 

is, if x and y are sets with x+ = y+, then x = y? 

See the solution to Exercise 7.42(c) 

in Section 7.4. 

See also Exercise 8.22 below. 

So that the successor (class) 

function is one-one on ordinals. 

In general, z+ = z U {z}. 
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Exercise 8.20 ____ 

(a) Let a be an ordinal. Show that there is a limit ordinal fi with a < pi. 
[Hint: consider the set {a, a+, a++,...}.] 

(b) Show that there is no set of all limit ordinals, i.e. {A : A is a limit ordinal} 
is not a set. 

Exercise 8.21___ 

The theory of ordinals could have been developed without using results about 

general well-ordered sets like Theorem 7.5. Try proving the following results 

straight from the basic definition of an ordinal. Recall that the set a is an 
ordinal if 

(i) a is well-ordered by G, and 

(ii) if P € a then (3 C a. 

(a) Show that for any ordinal a, it is not the case that a G a. 

(b) Show that for any ordinals a and (3, 

a G (3 if and only if a C (3. 

[Hints: one way round follows from the definition. For the other, suppose 
that a C /?, put 7 = min(/? \ a) and show that 7 = a.] 

(c) Show that for any ordinals a and /3, exactly one of the following holds: 

a G (3 or a = (3 or (3 G a. 

[Hints: suppose that a ^ (3, so that without loss of generality a \ (3 7^ 0. 

Put 7 = min (a \ (3) and show that 7 = (3. The result of the previous part 
should be of use.] 

Exercise 8.22_ 

(a) Without using AC show that 

wi ^ P'i&iN)). 

[Hints: if a is an infinite countable ordinal, then as in Exercise 7.25 of 

Section 7.2 there is at least one bijection between LJ and a. Using such 

a bijection, one can construct an order on LI so that with this order LI 

is order-isomorphic to a. This order on LI is completely represented by 

a set of ordered pairs of natural numbers, i.e. by a subset of LI x LJ. In 

general there will be several such bijections, each giving a corresponding 

subset of D x LJ. Use these ideas to construct a one-one function from u\ 

to ^(^(LJ)).] 

(b) Use AC to show that -< [Hint: if you managed to follow the 

line of attack suggested by the hint for the previous part, you might be 

able to identify a stage at which use of AC can give the result for this 

part.] 

i 

Our approach in this section has 

been to make heavy use of results 

of Chapter 7. 

a C p means that a is a proper 

subset of (3. 

See also Exercise 9.16 in Section 

9.3. 
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8 Ordinal Numbers 

8.3 Beginning ordinal arithmetic 
In the previous section, when discussing whether there is an ordinal order- 

isomorphic to u + u, we mentioned that it would be easy to use Theorem 

8.4(i)(b) to show that 

n 

u + n “ (J+++--+ 

for each n. This suggests the more general question of identifying the ordinals 

to which sums and products of well-ordered sets are isomorphic. For this we 

cannot simply take order sums and products of ordinals, as these do not in 

general give ordinals. Take, for instance, the sum of u and the ordinal 1: their 

sum u + 1 is the set 

{u x {0}) U (1 x {1}); 

and this is not an ordinal, e.g. it isn’t well-ordered by G. However, u + 1 is 

order-isomorphic to the ordinal uj+, which suggests that by repeatedly taking 

successors of ordinals, we might define an operation, © say, on ordinals, rather 

than general well-ordered sets, corresponding to order addition. How might 

such a definition go? 

For a start, note that it is not enough to use repeated successors to obtain 

ordinal sums. While this works for adding a; and n, giving the ordinal 

n 

, H-h 
UJ , 

it doesn’t do for u + u, which in the previous section was given as order- 

isomorphic to the ordinal 

U{w,w+ cu++,u;+++,...}, 

which involved taking the union of a set of ordinals. 

There are other problems: how do we express the taking of n ‘+’s in 

n 

w+++^+ 

within ZF; and for u + uj we need to know about all the ordinals corresponding 

to the smaller sums w + n, for new. 

The way to solve these problems is to adapt the method for defining + on the 

set of natural numbers, namely recursion; i.e. define the sum of two ordinals 

in terms of the sum (or sums) of smaller ordinals. As for + on N, we shall 

define a © (3 for a fixed ordinal a and all ordinals (3. As with natural numbers, 

we distinguish between adding 0 and adding other ordinals (3, setting 

a © 0 = a. 

To ensure that our definition gives the sensible result for finite ordinals, we 

then set 

a © 7+ = (a © 7)+. 

So far we have defined a © (3 when /3 is 0 or a successor 7+. What about when 

The sum and product of two 

well-ordered sets are both 

well-ordered, by Exercise 7.47 in 

Section 7.4, so must both be 

order-isomorphic to an ordinal. 

For this section, we shall use the 

symbol © for our new operation 

which gives an ordinal as the ‘sum’ 

of two ordinals, to distinguish it 

from the + which has so far in this 

chapter meant order sum. And we 

shall call the new operation ordinal 

sum. 

We defined + on N by 

m + 0 = m, 

m + n+ = (m + n)+, 

for fixed m and all n G N. 
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8.3 Beginning ordinal arithmetic 

@ is a limit ordinal? Following the example of u + u above, we define, for a 
limit ordinal A, 

a ® A = U{a 07:76 A}. 

Putting these together, we appear to have defined a function, for a fixed 
ordinal c* and all ordinals /3, as follows: 

u> + UJ = (J{ai,ai+,w++,...} 
= (J{w © n : n E u>} 

a © 0 = a, 

a © 7+ = (a © 7)+, 

a © A = |J{a: © 7: 7 £ for a limit ordinal A. 

This tells us, by means of a finite description, how to add a to any ordinal, 

as it covers all possible cases: 0, a successor ordinal (3^, a limit ordinal A. 

In each case (except when adding 0) the sum depends on the sum of a with 
smaller ordinals. Some questions arise: 

1. Surely, as there is no set of all ordinals, we cannot have defined a function 
within ZF, i.e. a set? 

2. Is a © (3, as defined above, always an ordinal? 

3. Does a © (3, as defined above, meet our requirement of being order- 

isomorphic to the order sum of a and (3? 

4. Is definition by such a recursive process legitimate within ZF? 

It’s common to reserve the letter A 
for a limit ordinal. 

We can dodge the first question by fixing on some (large!) ordinal S and using 

the definition for all (3 6 S - this will turn out to give a function within ZF. Or 

we can face it more directly by saying that it defines a class function, on the 

class (f of all ordinals, just as the operation of adding two arbitrary ordered 

sets is a class function - in these cases, the result of applying the function to 

sets gives a set. 

We shall adopt the dodge above to show that the ordinal sum a © (3 is always 

an ordinal. Given any (3, take any ordinal 5 greater than /?, and show that S — would do! 

a © (3 is an ordinal for all /3 €. 6. 

Exercise 8.23- 

Let a and <5(> 0) be ordinals. Use the principle of transfinite induction for 

ordinals (Theorem 8.1) to show that a © (3 is an ordinal for all f3 G 5. 

Solution 

We want to show that the subset A = {(3 e 5: a @/3 is an ordinal} of 5 is all 

of S. 

As 5 > 0, the least element of S is 0. By definition a © 0 equals a, so that 

0 G A. 

We must now show that for (3 G S, if (3 C A then (3 G A. The definition of 

a © /? deals with three cases for (3, so our argument should deal with each case The three cases axe: /3 is 0, a 

in turn successor or a limit. 

The case when, f3 = 0 has in fact already been done, as 0 = 0 C A and we 

have just shown that 0 G A. The remaining cases are when (3 is a successor 

and when f3 is a limit. 
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8 Ordinal Numbers 

Suppose first that /3 C A where 0 is a successor, 7+ say. As 7 G 7+ this means 

that 7 G A, so that a © 7 is an ordinal, by definition of A. Then 

a © /3 = a © 7+ 

= (a: © 7)+ 

which is the successor of an ordinal and is hence an ordinal, by Theorem 

8.4(i). Thus /3 G A. 

Now suppose that 0 is a limit ordinal A and that AC A. This means that 

a © 7 G A for all 7 G A. Then 

o © A = (J{ct © 7: 7 € A}. 

As A is a set and 7 1—> a © 7 behaves like a function on A, the axiom of 

replacement ensures that it is a function and that its images {a©7:7G A} 

form a set. Thus a © A is the union of a set of ordinals, which is an ordinal 

by Theorem 8.4(h). So that 0 G A, as required. 

In all cases, we have shown that if 0 C A then 0 G A, so that by transfinite 

induction A = 8. 

Exercise 8.24--- 

Why did we argue by induction on 0 rather than a in the exercise above? 

Solution 

One obvious answer is that the definition of a © 0 is given for a fixed a and 

all 0. However, the definition does give us a recipe for dealing with all a, so 

that we might expect to be able prove the result by induction on a for fixed 

0. A proof along these lines is going to run into complications quite quickly, 

as for instance it is not obvious from the definition how to relate a+ © 0 to 

a © 0. Indeed as we are hoping to show that ordinal addition corresponds to 

the standard addition of ordered sets, in which one sometimes finds a and 0 
for which a+ + 0 equals a + 0, the method seems particularly messy. 

Next let us show, at least in outline, that the ordinal sum of a and 0 is 

order-isomorphic to their order sum. 

Theorem 8.8 

Let a and 0 be ordinals. Then the order sum a + 0 is order-isomorphic 

to the ordinal sum a © 0. 

Proof 

As before, we shall prove this for a fixed a by transfinite induction on all 0 in 

some suitably large ordinal 5. Strictly speaking, we should define a subset A 
of all ordinals 0 G S for which the result holds, i.e. 

A = {0 G 5 : ct -\- 0 — o © /?}, 

and use induction to show that A = 5. But instead we shall structure the 

argument, and similar ones to come, a bit more informally, as follows. 

This is probably the trickiest part 

to justify properly, even though it 

hopefully seems very natural! 

Their order sum is well-ordered, by 

Exercise 7.47 in Section 7.4, so is 

order-isomorphic to an ordinal. 
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8.3 Beginning ordinal arithmetic 

For (3 = 0, i.e. [3=0, both a + /? and a © /? equal a. So the result holds That is, 0 g A. 
trivially for (3 = 0. 

Next suppose that the result holds for all ordinals up to, and including, 7, This is essentially the argument to 
and show that it holds for 7+, i.e. a + 7+ S a © 7+. On the one hand show that if /3 C A then fi 6 A, in 

, . , ,. , . the case that 8 is a successor, 7+. 
a + 7+ = (a x {0}) U (7+ x {1}) 

= (a x {0}) U ((7U {7}) x {1}) 

= ((ax{0})U(7x{l}))u({7}x{l}) 

= (a: + 7) U ({7} x {1}), 

which is the ordered set a + 7 with the extra element (7,1) at the top. On {7} x {1} = {(7,1)} 

the other hand 

a ® 7+ = (a ® 7)+ 

= (a © 7) U {a © 7}, 

which consists of the ordinal a ® 7, i.e. all the members of this ordinal, with the 

extra element a ® 7 at the top. By hypothesis, there is an order-isomorphism 

from a + 7 to a ffi 7. It should be reasonably clear that this order-isomorphism 

can be extended, by mapping (7,1) to the element a ® 7 of (a © 7)+, to give 

an order-isomorphism from 0 + 7+ to a © 7+. Thus a + 7+ = a © 7+ as 

required. 

Now suppose that a + 7 = a © 7 for all 7 G A, where A is a limit ordinal. As 

A is a limit ordinal, 

A = IU 

= U{7:7e -'l, 

so that 

a + A = (ax {0}) U (A x {1}) 

= (a x {0}) U (1J{7: 7 e A} x {1}) 

= (a x {0}) U |J{7 x {1} : 7 G A} 

= U((a x {0}) U (7 x {1}): 7 G A} 

= U{a + 7:7e A}. 

For each 7 G A, let /7 be the order-isomorphism from a + 7 to a © 7: regard 

/7 as a set of ordered pairs. Now put 

/ = LKA : 7 G A}. 

If 7, i G A with 7 < t', then 7 is an initial segment of i, so that by Exercise 
7.55 we have /7 C /y. This means that /, as a set of pairs, is a function. The 

domain of / is 

U(Dom(/7) : 7 G A} = [){a + 7: 7 € A}, 

which from the argument above is a + A. And its image set is 

So that 7+ G A. 

This is essentially the argument to 

show that if /3 C A then /? G A, in 

the case that /? is a limit, A. 

f7 is unique by Exercise 7.58 of 

Section 7.4. 

/ is a set by the axiom of 

replacement. 

(J{a: © 7 : 7 G A}, 

which is by definition o; © A. It is straightforward to show that / is an order- 

isomorphism, so that a + A = o©Aas required. 

Thus by transfinite induction a + (3 — ol © /3 for all [3 G S. ■ 
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Much of what we have done above hinges on the legitimacy of our use of 

recursion to define a e (3. This legitimacy is guaranteed by the following, 

very important, theorem. 

Theorem 8.9 The recursion principle for ordinals 

Let y, z) be a formula of set theory such that for each ordinal (3 and 

set y there is a unique set z such that <fi((3, y, z) holds. Thus (f> essentially 

defines a class function 

h: 0 x7 —>2^, 

where & is the class of all ordinals and 'V is the universe of sets. Let 

5 be an ordinal. Then there is a unique function / with domain 5 such 

that for every f3 € 5, 

m = h(pj\P). 

The function / is usually described as being defined by transfinite recursion. 

As f\/3 consists of the pairs (a,/(a)) for all a < (3, the definition of /(/?) as 

h((3, f\p) means that f((3) depends potentially on all the values of /(a) for 

a < (3. We shall give the proof of this theorem at the end of this section. 
Right now it is more important to see how this formulation of the recursion 

principle relates to the way in which we defined a ® (3. 

First, note that we defined a © for fixed a and variable (3, so that the 

function / which we are defining has rule 

f(/3) = a e/3. 

Rather than defining straightaway the appropriate formula </>, it’s easier to 

give first the corresponding function h. We defined a © (3 in different ways, 

depending on whether (3 is 0, a successor ordinal 7+, or a limit ordinal A: so 

we would expect that the function h might likewise have different rules for 

these different cases. 

For (3= 0, we need to define h(0,f\o) to give us the required value of /(0), 

that is to say a © 0, which is just a. Of course /|o, the restriction of / to the 

empty set 0, is just 0. So we must define 

h( 0,0) = a. 

Actually, we need to define h(0,y) for any set y, even though we will only 

want its value when y = 0. We can define, for all sets y, 

h(0,y) = a. 

For (3 a successor ordinal, say (3 = 7+, we want h((3, f\p) to give /(/?), which is 

(/(7))+. How can we obtain /(7) using some formula of set theory involving 

the arguments of h((3, f\p), namely (3 and f\(3? First, we can identify 7 by the 

process which identifies that (3 is a successor, using a formula like 

37 ((7 is an ordinal) A (3 = 7+). 

Subsequent induction proofs will 

be structured in the more informal 

style of the above proof. 

/ will be a genuine function within 

ZF, i.e. a set. 

Of course 0 equals 0! 

m = /(7+) 
= a © 7+ 

= (a © 7)+ 

= (/(7))+- 
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Then we can obtain f(y) from the function f\@, because as 7 € 7+ = (3, we 
have that 7 is in the domain of this function and 

Ml) = /(7)- 

Of course, once we have recovered the value of /(7) in this way, we simply 
take its successor to obtain f(/3). 

Lastly, we must deal with the case when (3 is a limit ordinal, say A. For a 
limit ordinal A we want 

/(A) = a © A 

= |J{a ©7:76 A} 

= U{/(7): 7 £ A} 

= |JRange(/|A). 

Thus we need h(A, /|a) to equal |J Range(/|;,), which we can achieve by defin¬ 
ing, for (3 a limit ordinal, 

u(q \ _ / U Range(2/|/s)> if y is a function with (3 C Dom(y), 
'p'y)~\0, otherwise. 

We now have to define the formula 4>{x, y, z) to capture the definition of h((3, y) 

as above, coping with the three different sorts of ordinal (3. For instance, 

<p(x,y,z) could be the disjunction of three formulas 0O, <t>successor and 0limit, 
where (f>0(x,y,z) is 

When y 

y\\- 

is f\\, we have 

(/U)U 
/ |a. 

The case where /3 = 0. 

i = 0 A 2 = a, 

^successor\xi 2/> z) r^'^ie case where /3 is a successor. 

37((7 is an ordinal) A x = 7+ A (y is a function) 

A 7 G Dom(t/) A z = (?/(7))+), 

and 4>limit (2;, y, z) is The case where f3 is a limit. 

(x is an ordinal) A (a; is a limit) A (y is a function) 

AxC Dom(y) A z = |J Range(t/|x). 

Of course, strictly speaking, many of the informally expressed subformulas 

within the above formulas, like (y is a function), still need to be expressed 

formally within set theory — in fact, we saw how to do this in Chapter 4. 

Exercise 8.25----- 

Express the following formally within the language of set theory. 

(a) R is a subset of the Cartesian product x x x. 

(b) R is a strict linear order on x. 

(c) x is well-ordered by €. 

(d) x is an ordinal. 

(e) a; is a limit ordinal. 

To summarize the above, we have given an outline of how to show that ol © (3 

is well-defined as a set. It is pretty usual for books at this level to present 

the definition of a function f on an ordinal using transfinite recursion fairly 

We needed a separate argument to 

show that a © (3 is actually an 

ordinal. 
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informally, without giving any detail of the formula <p involved, or the corre¬ 

sponding class function h (in the notation of Theorem 8.9). But for further 

studies in set theory, it is often important to look at the structure, e.g. the 

logical complexity, of the 0 - as well as to be sure that such a </> really exists! 

In our arguments above about a © /? for fixed a and variable /3, we took an 

appropriate ordinal 6 and proved results about all (3 G S. As this 5 could be 

chosen to be any ordinal, we have effectively dealt with a ® (3 for all ordinals (3. 

This means that we can regard (3 i—> «®/3asa class function with ‘domain’ 

the class of all ordinals. Whenever we restrict the domain of this class 

function to an ordinal 5, we return to the firm ground of sets. If we were to 

develop further the terminology of classes, we could then restate the principles 

of both transfinite recursion and induction for ordinals in somewhat more 

succinct terms, as follows. 

Strictly speaking, as functions 

within ZF are sets, domains ought 

also to be sets. But it’s clear what 

is meant here! 

Theorem 8.9 The recursion principle, class form 

Let y,z) be a formula of set theory such that for each ordinal /3 and 

set y there is a unique set z such that </>(/?, y, z) holds. Thus <f> essentially 

defines a class function 

where is the class of all ordinals and 'V is the universe of sets. Then 

there is a unique class function / with ‘domain’ such that for every 

ordinal (3, 

m = h(/3,f\p). 

Theorem 8.1 Transfinite induction for ordinals, class form 

Let A be a ‘subset’ of the class <f of all ordinals such that 

(i) 0 G A; 

(ii) for all ordinals /?, if f3 C A then (3 G A. 

Then A — (F. 

As A turns out to be the class <F, it 

won’t be a set, so that a word like 

‘subclass’ would have to be 

invented to describe it, rather than 

‘subset’. 

Another example of an important function defined by transfinite recursion is 

multiplication of ordinals. The definition will exploit the sum, namely ©, that 

we have previously defined - typically, we define functions on ordinals in some 

sort of hierarchy: for instance, we use successor to define sum, and then use 

sum to define product, just as we did for N. We shall, for the moment, use 

the notation a <g> (3 for the ordinal product of ordinals a and /?, and define it, 
for a fixed a and variable /3, as follows. 

Remember that we want ordinal 

multiplication both to give an 

ordinal as its output and to 

correspond to our previous product 

of ordered sets. 

a <g> 0 = 0, 

a <g> 7+ = (a <8> 7) © a, 

a <g> A = U{« ® 7: 7 £ A} for a limit ordinal A. 

As for addition, the definition at least corresponds to that for the natural 

numbers within ZF, which are precisely the finite ordinals. For the rest of 

We defined • on N by 

mO = 0, 

m • n+ = (m • n) + m, 

for fixed m and all n G N. 
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this book, we shall rely on it being ‘obvious’ to you and us that a definition 

like the above does really match the recursion principle, so that a <8> /3 is a 

well-defined set, and that it is also an ordinal. The ‘obviousness’ is meant to Note that we shall often define 

follow from the transparency of what appears on the right-hand side of the functions of ordinals by transfinite 

= signs in the definition. In the following exercises we ask you to check, just recursion whose images are not 

the once, that you can justify the ‘obvious’! ordinals. 

Exercise 8.26_ 

Show that there is a function a <8> (3 defined as above, for a fixed ordinal a and 

all ordinals (3 G 5, where <5 is some fixed ordinal, by identifying the /, h and 
</> in the statement of Theorem 8.9. 

Exercise 8.27_ 

Show that a ® (3 is an ordinal, for all ordinals a and (3. 

We shall now ask you to justify that ordinal multiplication of ordinals a and (3 

does give an ordinal order-isomorphic to their order product, i.e. the Cartesian 

product a x (3 with the anti-lexicographic order. (Although the latter is well- 

ordered, by Exercise 7.47, it is not in general an ordinal.) 

Theorem 8.10 

Let a and (3 be ordinals. Show that the order product a x (3 is order- 

isomorphic to the ordinal product a ® (3. 

Exercise 8.28--- 

Prove Theorem 8.10. [Hints: use transfinite induction, as in the corresponding 

result for addition, Theorem 8.8. You will need this result for addition for 

part of the inductive step, as the definition of <g> exploits the function ©.] 

In the next section we shall investigate the properties of ordinal addition and 

multiplication, to build up a full arithmetic of ordinals. 

As another application of the recursion principle, let’s look again at the cu¬ 

mulative hierarchy of sets. We first mentioned this in Section 4.5 of Chapter 

4, but lacked the necessary machinery, namely ordinals, with which to give 

its full definition. 

We can now explain why we 

defined order product using the 

anti-lexicographic order, rather 

than the lexicographic order. The 

latter would have given us the 

aesthetically less pleasing result 

a x f3 = [3 <S> a! 

Definition 

The cumulative hierarchy of sets, for all ordinals ct, is defined as 

follows: 

Vo = 0, 
= ^(^7), 
= (J{^ : 7 G A} (for a limit ordinal A). 

So x € 2^+ if and only if x C 2^. 
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8 Ordinal Numbers 

The recursion principle ensures that there is a class function with rule 

a i—> for all ordinals a, with each 3^, being a set. We shall now justify 

our remarks in Chapter 4 that as a consequence of the axiom of foundation 

(along with other axioms of ZF) every set appears in some member of this 

cumulative hierarchy. Introducing the temporary notation 3^ for the class 

of all sets which are in at least one of the 3^*s, i.e. 

we shall show that 3^x, equals 3^, the universe of sets. 

Note first that for any set x in 3^, so that 16 fa for some ordinal a, there 

must be a least ordinal for which this is true. What can we say about the 

least ordinal (3 for which x G 'Vpl First of all, we cannot have f3 = 0 as 3*b is 

the empty set. 

Exercise 8.29--- 

Suppose that (3 is the least ordinal such that Show that (3 cannot be 

a limit ordinal. 

Solution 

If (3 was a limit ordinal, then by definition 3^ would equal (J{3^,: 7 G /3}. 

Thus if x G 2^3, x would be in 3^ for some 7 G /3, so that (3 couldn’t be the 

least ordinal for which x 

Thus the least ordinal (3 for which a; G 3^ must be a successor, a+, for some a. 

This allows us to associate a unique ordinal with the set x as in the following 

definition. 

Definition 

For any set x in 3^, the rank of x, written as p(x), is the least ordinal 

a for which x G 3^*+. 

This p can be regarded as a class function: 

p:^— 

x 1—v p(x). 

And of course we have x G 3^,(x)+, whenever p(x) is defined. 

Exercise 8.30_ 

Show that for any set x G 3^*,, p(x) is the least ordinal such that x 

The idea of rank will be used in the proof that 3^ = 3^*,; and with this theo¬ 
rem, so that every set has a rank, the idea is correspondingly more powerful. 

Theorem 8.11 

V = UK :ae&} (= 3^). 

The union will give 3^, as a proper 

class. 

p is the Greek letter ‘rho’ 

corresponding to ‘r’. 

So that every set has a rank. 
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Proof 

We shall show that every set is an element of 3^ for some ordinal a. As each 

is a set (so that all elements of ^ are sets), the result that the universe 

7^ equals the class 5^oo follows immediately. We need the following useful 
lemma. 

Lemma: Suppose that every element of a set X is in 3^, i.e. X C rVOQ. 
Then X is also in 3^. 

Proof of Lemma: As X is a set and p(x) is defined for all x € X, the 

axiom of replacement gives that {p(x) : x E X} is a set (of ordinals). 

Thus (J{/o(a:) : x E X} is an ordinal, say /?; and there is a limit ordinal A 

greater than this f3. Note that as A is a limit and (3 < A, we also have 

P* < A - a detail we’ll use below. For any x E X we then have 

x E p(x)+ (by definition of p{x)) 

C (J{^y: 7 E A} (as p(x) < /?, so that p(x)+ < fiP < A) 

= (by definition), 

so that 

XCTx. 

But then the definition of 3^+ as 3s(T\) gives 

so that X € , proving the lemma. □ 

Now we prove the theorem. Let Y be any set. Note that if every element of 

Y is in 5^o, then the lemma gives that Y is in 3^, as desired. 

Now suppose that not every element of Y is in 3^. We shall show that this 

leads to a contradiction. First we form the transitive closure T(Y) of Y, i.e. 

the set 

t(y) = yuU^uuU^uUUU^u..., 

with the property that if x E y E T(Y) then x € T(Y). 

Let Y' be the complement, T(Y) \ 3^, of 3^ in T(Y) - taking the comple¬ 

ment of a class in a set doesn’t sound legal, but all is well, as we can express 

Y' as a set using the axiom of separation by 

Y' = {y £ T(Y): -da((a is an ordinal) A y E 2^)}, 

where ‘a is an ordinal’ and ly G 3^a’ are both representable by formulas within 

our formal language. 

As Y C T(Y) and there are elements of Y not in 3^, we have Y' f 0. By 

the axiom of foundation Y' contains an E-minimal element yo, meaning that 

y0 E Y' (so that also y0 E T(Y)) and y0 n Y' = 0. It is consideration of this 

set yo which is going to generate the contradiction, as follows. 

As y0 € Y' C T(Y) and T(Y) is E-transitive, we have that if x E yo then 

x E T(Y), so"that y0 C T(Y). As y0 n Y' = 0 we thus have 

y0 C T(Y) \ Y' 

= T(Y)n 3^oo, 

Such a limit A exists by Exercise 

8.20. 

T(Y) is 6-transitive. Transitive 

closure and some of its properties 

were the subject of Exercise 4.53 of 

Section 4.5. 

This is the critical use of the axiom 

of foundation, ZF9. In fact it can 

be shown, using the system for set 

theory consisting of all the axioms 

of ZF except foundation, that ZF9 

is equivalent to 7Y = <V0o- 
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8 Ordinal Numbers 

so that every element of yo is in 2^,. Using the lemma above again, this gives 

Vo € contradicting that yo € F'. 

This contradiction means that every element of our original set Y was in 

which we have already shown entails that Y itself is in proving the 

theorem. ■ 

As a consequence of this theorem, every set x has a rank p(x). We leave some 

of the properties of rank and working out the ranks of some famous sets, like 

IR, as further exercises at the end of the section. 

We shall end this section with a proof of the recursion principle. The proof 

has similarities with the proof of the recursion principle for N which we gave 

in Section 4.5 as Theorem 4.4. It makes vital use of transfinite induction and 

has a key step where the axiom of replacement is needed to guarantee that 

we are dealing with sets in ZF. 

Theorem 8.9 The recursion principle for ordinals 

Let (f>(x, y, z) be a formula of set theory such that for each ordinal f3 and 

set y there is a unique set 2 such that y, z) holds. Thus 4> essentially 

defines a class function 

h: (9 x ^ —> 3^, 

where & is the class of all ordinals and 'V is the universe of sets. Let 

5 be an ordinal. Then there is a unique function / with domain 5 such 

that for every (3 6 6, 

m=h((3,f\p). 

Proof 

Our proof will investigate approximations to the desired function / which we 

shall call, just for the purposes of this proof, 7-functions. We shall say that g 

is a 7-function, where 7 is an ordinal, if the following hold: 

(i) g is a function; 

(ii) the domain of g is 7; 

(iii) for all ordinals f3 E 7, g satisfies the rule g(/3) = h(P,g|/j). 

So g is just like the required function / except that its domain is 7 rather 

than J. (The required / would be a 5-function.) We shall make heavy use of 

the following lemma. 

Lemma: Suppose that g is a 7-function and g' is a 7/-function. Then 

$1707' == 9 17(77' • 

Proof of Lemma: We shall prove the lemma by transfinite induction on 

/3 in 7 fl 'f. We shall show that g(0) = g'(0) and that if g(/3) = g'((3) for 

all (3 E a, where a € 70q7, then g(a) = g(a'): we can then deduce that 

g{(3) = g'(P) for all /? (E 7fl t', using transfinite induction. 

Most of the interesting sets in 

everyday maths have quite small 

rank, less than u> + u. 

That is, g is a genuine function 

represented by a set! 

We shall use h(f3, g\p) as a 

shorthand for the unique z such 

that <f>((3, g\p, z) holds. 

7 fl f is just the ordinal min{7,7'}. 

In the notation of Theorem 8.1, we 

are taking A to be the set 

{pe 7ny :g{0) = g(0)}. 
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As g is a 7-function, we have 

g(0) = h(0,g\o) 

= h(0, 0) (as 0 = 0 and g|0 = 0 for any function g). 

Similarly, we have g'{0) = h(0,0), so that </(0) = y'(0) as required. 

For the inductive step, we assume that g((3) = g'((3) for all /3 £ a, where 

a £ 7fl Y, and shall show that g(a) — g'(a). Our assumption that 

g(/3) = g'(/3) for all £ a can be restated as g\a = g'\a. This means that 

g(a) = h(a,g\a) (as g is a 7-function and 067) 

= h(a,g'\a) (by our assumption) 

= g'(a) (as g' is a 7'-function and a £ V)> 

as required. Our lemma now follows using transfinite induction. □ 

An immediate consequence of this lemma is that if the desired function / 

exists on S, it must be unique. (Any two such functions would both be <5- 

functions, so would agree on 5 fl 5, i.e. on <5, meaning that they are the same 

function.) Similarly, if for some ordinal 7 there is a 7-function g, then g is 

unique for this 7, and in this way the lemma also plays a part in showing that 

the function / exists. 

We shall use transfinite induction to show that a 7-function, which we shall 

write as <?7, exists for all 7 £ <5+. As we have just said, our lemma guarantees 

that each gy will be unique. And gs will be our required function /. 

For 7 = 0, we take the function g0 to be 0, which is vacuously a 0-function. 

Next we assume that gy exists and show that gy+ exists. Define a set of pairs 

F by 

F = gy u {(7, M7,0y))}- 

It is straightforward to show that F is a 7+-function and we leave this to you 

as Exercise 8.31 below. We can thus set gy+ to be this F. 

Lastly, suppose that g7 exists for all 7 £ A, where A is a limit ordinal. We 

shall use these gys to construct a A-function. Observe that, by our lemma 

above, if 7 £ 'i £ A, then gy — gy> |7, so that gy C gy>. Thus the gys for 7 £ A 

can be arranged in a C-chain 

.••Cg7CjT+ C g1++ C .... 

Taking the union of this chain should give good prospects of giving a function 

with domain A with the extra property needed to be a A-function. 

First of all, we must check that we are dealing with sets within ZF. As 7 1 > gy 

behaves like a function on A, the axiom of replacement guarantees that it is a 

function, so that its images form a set {gy : 7 £ A}. We can thus define a set 

F within ZF by 

F = \}{gy-i£ A}. 

Is F a function? Any element of F is an element of some gy, so is an ordered 

pair. Suppose that ((3,x) and (0,x') are both in F. Then there must be 

7,y £ A such that ((3,x) £ gy and (fox') £ gy- Without loss of generality 

To have 0 £ 7 fl 7', we are 

assuming that 7(17' / 0. In the 

case that 707' = 0, the lemma is 

vacuously true as both <?|7n7' and 

ff|7ny equal 0. 

For this particular argument, we do 

not need to separate the inductive 

step into the cases when a is a 

successor ordinal or a limit ordinal. 

For this induction the set A in 

Theorem 8.1 is 

{7 £ <5+ : a 7-function exists}. 

If S itself is 0, then we take / to be 

0. So we shall assume that 6 > 0. 

Recall that a function is 

represented by a set of pairs. 

For this argument, we have split 

the inductive step into the separate 

cases of a successor ordinal and 

limit ordinal. 
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7 < V, so that gy C g'y. This means that both ordered pairs belong to , 

which is a function, forcing x = x'. Thus F is a function. 

What is the domain of the function F? As F is a union of functions, its 

domain is just the union of their domains, i.e. 

Dom(F) - |J{Dom(<77): 7 e A} 

= |J{7: 7 £ A} (as each g1 is a 7-function) 

= A (as A is a limit ordinal). 

Thus F has domain A. For F to be a A-function, all that remains is to show 

that F(/3) = h((3, F\p) for all /3 £ A. For any /3 £ A, we also have (3^ £ A, as A 

is a limit ordinal. By the definition of F, the value of F((3) is the same as that 

of gp+((3)\ and the restriction F\p is the same as gp+\p. Thus our required 

property for F(J3) is the same as gp+ (0) = h(/3, gp+1^), which holds because 

gp+ is a ^-function. This completes the proof that F is a A-function. 

It follows by transfinite induction that there is a 7-function for all 7 £ 5+. In 

particular there is a ^-function which we can take as the required /. ■ 

Exercise 8.31_ 

Show that if g7 is a 7-function, then F, where F = gy U {(7, ^(7, g7))}, is a 

7+-function. 

Solution 

We must show that F is a function, that its domain is 7+, and that 

F(0) = M/2, F\p), for all /? G 7+. 

As g7 consists of ordered pairs, then so does F. As the domain of g1 is 7, 

adding on a pair with first coordinate 7 itself does not break down the unique 

image property of functions (as 7 ^ 7 = Dom(<77)). Thus F is a function. This 

argument also shows that the domain of F is Dom(g7) U {7} = 7U {7} = 7+, 
as required. 

For j3 £ 7 we automatically have F((3) = h((3, F\p) because F(f3) and F\p are, 

by definition, respectively gy((3) and g~\p, and g~f has the required property 

for this (3 (as it is a 7-function). As 7+ = 7U {7}, it only remains to check 

that F(7) = h(7, F|7). By the definition of F, F(7) = h(7,p7). And as Fj7 is 

just the same as g7, we indeed have that F(7) = /i(7, F|7). 

Thus F is a 7+-function. 

Further exercises 

These exercises concern the cumulative hierarchy 2^ for all ordinals a and 
the rank function p. 

Exercise 8.32___ 

Use transfinite induction to show the following. 

(a) Show that each 5^ is e-transitive, i.e. if x £ y £ 5^ then (or, 
equivalently, if y £ 2^, then j/ C 5^). 

(b) Show that if a, (3 are ordinals with a < (3 then 7^ C ‘pp. 

Recall that 7 < 7' means that 

7 6 7* or 7 = 7/. 

That {Dom((77) : 7 £ A} is a set 

also follows from the axiom of 

replacement. 

230 



8.4 Ordinal arithmetic 

Exercise 8.33_ 

Using results from Exercise 8.32 as appropriate, show the following. 

(a) ^ - {x: p(x) < a} 

(b) For any set y, if x E y then p(x) < p{y). 

(c) For any set y, p(y) = (J{p(z) + 1: x € y}. 

Exercise 8.34_ 

(a) Use transfinite induction to show that p{a) - a for all ordinals a. [Hint: 

the results of Exercise 8.33 might help.] 

(b) Deduce that the set of ordinals in ^ equals a, i.e. 2^ D @ = a. 

Exercise 8.35_ 

(a) Show that 2^ is finite for all n G N. 

(b) Show that 2^ « u without using AC. [Hint: it is possible to define an 

explicit well-order on each 2^ by induction.] 

(c) Show that 2^+i « 2^. 

Exercise 8.36- 

(a) Let x be any set. Show that p(^s(x)) = p({rr}) = p(x) + 1. 

(b) Let x,y be sets and let a = max{p(x), p(y)}. Show that p{x U y) = a, 

p({x, y}) = a + 1 and that for the ordered pair (x, y), p((x,y)) = 0 + 2. 

(c) Take the sets of numbers Z, <Q> and R as constructed in Chapter 2, with R 
constructed using Dedekind cuts. [The result of Exercise 4.35 of Section 

4.4 will be useful for this part of the exercise.] 

(i) Use the fact that p(N) = p{u>) =uto show that p(hJ x 1^1) = u. [Hint: 

use the result above about p({x,y)) and the result of part (c) in Exercise 

8.33.] 

(ii) Use the result of part (i) to deduce that p(Z) = u + 1. 

(iii) Show that p(ZxZ)=w + 3. [Hints: every integer in Z has rank 

u, as it is an infinite subset of N x N. Now use the result above about 

p((x,y)) and the result of part (c) in Exercise 8.33.] 

(iv) Find p(<Q>) and show that p(U) = u + 5. 

8.4 Ordinal arithmetic 
In the previous section we defined the operations of ordinal addition and mul¬ 

tiplication, and gave some thought as to the set-theoretic machinery needed 

to show that these were well-defined within ZF. We shall now investigate 

some of the properties of these operations, along with an extra operation of 

exponentiation (i.e. taking the power of one ordinal by another). 

First let us define these operations. Although you have already seen the 

definitions of'-addition and multiplication, © and 0 in the previous section, 

we shall give them again using the more customary notation of + and •, which 

we shall use from now for the rest of the book. We have also used + for order 

sum- we hope that the context will make clear which + is being considered. 

With AC, this is an immediate 

consequence of Theorem 6.6 of 

Section 6.4. To avoid AC, we need 

to be able to specify bijections 

between each % and the natural 

number with which it is 

equinumerous. Specifying a 

well-ordering of % effectively 

specifies such a bijection. 

Virtually all the results of this 

section come from Cantor’s 1897 

paper in [12]; but the proofs are 

adjusted to match the definition of 

ordinal within ZF. 

The order sum of two ordinals is 

order-isomorphic to their ordinal 

sum, by Theorem 8.8. But the 

order sum is not usually an ordinal. 
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We define ordinal addition, for a fixed ordinal a and all ordinals /3, as follows: 

a + 0 = a, 

a + 7+ = (a + 7)+, 

a + A = U{a + 7: 7 G A} for a limit ordinal A. 

We define ordinal multiplication, for a fixed ordinal a and all ordinals 0, as 

follows. 

a ■ 0 = 0, 
a • 7+ = (a • 7) + a, 

a ■ A = |J{a: • 7: 7 £ A} for a limit ordinal A. 

The extra operation, ordinal exponentiation, is defined to coincide with the 

equivalent definition for natural numbers, i.e. the finite ordinals, and similarly 

exploits multiplication - this time of ordinals. For a fixed ordinal a and all 

ordinals (3: 

a0 = 1 (= 0+), 

a7+ = (a7) • a, 

= uw : 7 G A} for a limit ordinal A. 

These can all be shown to be well-defined functions, for fixed a and all (3 E S, 

where <5 is some fixed ordinal, by use of Theorem 8.9. And one can show 

that for all ordinals a and /3, each of a + (3, a ■ /3 and a13 is an ordinal. (Note 

also that in this chapter, when we write we mean the ordinal obtained by 

ordinal exponentiation, not the set of all functions from the set (3 to the set 

a. These two notions do not coincide. Should we wish to look at the latter 

set of functions from one ordinal to another, we shall make this clear in the 
text.) 

In theory, we should now be able to compute arithmetic expressions like a& 

for some interesting ordinals a and (3, along the lines of computing, say, 32 

for the natural numbers 3 (= 0+++) and 2 (= 0++) in ZF, with the aim of 

ending up with a ‘simpler’ answer, like 9. For instance, if our definition of 

ordinal exponentiation does capture some of our expectations for the same 

operation on natural numbers, we should be able to show that a2 — a- a, for 
all ordinals a. 

Exercise 8.37___ 

Show that a2 — a • a, for all ordinals a. (Don’t be surprised if you hit a snag!) 

Solution 
I 

It seems simple! 

2 i+ a = a 

— (a1) • a 

= ((a0) ■ ol) ■ a 

= ((1 - a) - a) 

= ... ? 

Oh dear! We cannot simply say, without some extra proof, that 1 • a = ct, 

We defined mn on N by 

m° = 1, 

mn = (mn) • m, 

for fixed m and all n 6 N. 

You might have noticed that we 

often define /(A) for limit ordinals 

A to be the union of all the /(7)s 

for the previous 7s. 

32 = 31+ 

= (31) • 3 
= ((3°)-3)-3 

2 = 1+ = 0++. 
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even though it is presumably true. The problem is that to use the definition of 

the ordinal product 1 • a, we need to know more about the a, namely whether 
it is 0, or a successor, or a limit. 

Luckily, we have a method of proof tailor-made for coping with such a general 

a, namely the principle of transfinite induction for ordinals (Theorem 7.6). 

This is going to be our major proof technique, because it goes hand in hand 

with the definition of the arithmetic functions using transfinite recursion. 

Exercise 8.38__ 

Use the principle of transfinite induction for ordinals (Theorem 7.6) to show 
that 1 • a = a, for all ordinals a. 

Solution 

We shall present our solution in the more informal style of the proof of The¬ 

orem 8.8. This means proving the result for a = 0 (the base step), and for a 
equal to a successor or limit ordinal on the basis that the result holds for all 

smaller ordinals (the inductive step). As ever, we shall prove the result for all 
a in a suitably large ordinal S. 

For ct = 0, 

l-a = 1 0 
= 0 

= 

as required. 

Next suppose that the result holds up to, and including, 7 and show that it 

holds for 7+: 

1.7+ = (l - 7) + l 

= 7+1 (as the result holds for 7) 

= 7+0+ 

= (7+ 0)+ (using the definition of +) 

= 7+) 

again as required. 

Lastly, suppose that the result holds for all 7 £ A, where A is an initial ordinal. 

We must show that it holds for A. 

l.A = (J{l’7:7€A} (using the definition of multiplication) 

= U(7 : 7 e A} (by the inductive hypothesis) 

= IU 
= A (as A is a limit ordinal), 

as required. 

As can often happen, there is an alternative method to that used above, 

exploiting Theorem 8.10, that an ordinal product is order-isomorphic to the 

We know from Theorem 8.10 that 

the ordinal product a ■ (3 is 

order-isomorphic to the order 

product a x (3, and from Section 

7.3 that order product is not 

commutative with respect to 

order-isomorphism. So we might 

have some ordinals a, /3 for which 

a ■ /3 7^ /3 ■ a. Indeed u ■ 2 ^ 2 • cj. 

We shall increasingly omit mention 

of the ‘suitably large 5’. We shall 

behave as though we have justified 

the class form of the principle of 

transfinite induction for ordinals 

mentioned in the previous section. 

Although we are assuming that the 

result holds for all ordinals j3 < 7, 

it is typical for the 7+ case that we 

only use the result for 7. 

By Exercise 8.11. 
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corresponding order product. Here we have 

1 a = 1 x a 

= {0} x a, 

which is pretty obviously order-isomorphic to a. As the ordinals 1 • a and 

a are order-isomorphic, they must be equal, by Theorem 8.2. This is a per¬ 

fectly good proof, but many problems are not easily amenable to this sort 

of technique. For the rest of this chapter, we shall use, and ask you to use, 

techniques exploiting the detailed structure of ordinals, rather than of order. 

The ideas of order-theoretic sums and products will still be important, as they 

will help us form mental pictures of some of what is going on. 

Not all results of ordinal arithmetic require proofs which consist entirely of 

transfinite induction. For instance, try the following exercise. 

Exercise 8.39--- 

Show that a • 1 = a, for all ordinals a. (Use the methods of ordinal arithmetic, 

rather than those of order arithmetic, even though these work well here.) 

Solution 

For any ordinal a, 

a -1 = a • 0+ 

= (a • 0) + a 

= 0 + a (from the definition of multiplication). 

Obviously we need to show now that 0 + a — a. As the expression 0 + a 

has a general ordinal on the right, we will probably need to use transfinite 

induction: here goes! 

For a = 0, 

0 + a = 0 + 0 

= 0 (by definition of +) 

= a 

If the result holds up to, and including, 7, then 

0 + 7+ = (0 + 7)+ 

= 7+ (by the result for 7), 

as required. 

If the result holds for all 7 6 A, where A is a limit ordinal, 

0 + A = U{0 + 7 : 7 € A} 

= U{7 : 7 G A} (by the induction hypothesis) 

= iu 
= A (as A is a limit ordinal), 

as required. 
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8.4 Ordinal arithmetic 

The result 0 + a — a, for all ordinals a, follows by transfinite induction. Ap¬ 
plying it to our original problem gives us 

a • 1 = 0 + a 

= a, 
for all a. 

How can one judge whether to derive a result directly from the definition or by 

transfinite induction, or, as in the last exercise, by a mixture of methods? As 

a rule of thumb, if the result involves arithmetic expressions in which there’s 
a general ordinal on the right, as in 

1 • a, a + (3, (c/)7, 

you will probably need to use induction on the right-most variable, respec¬ 
tively 

a, 0, 7> 
keeping the other ordinals fixed. But, as in Exercise 8.39, you might not know 

that you will need induction until you are some way into the argument. Try 

the following exercises, in which you could need any of these methods. 

Exercise 8.40___ 

Show that each of the following holds for all ordinals a. 

(a) a • 2 = a + a 

(b) 0 • a = 0 

(c) a1 = a 

(d) a2 = a - a 

(e) 1“ = 1 

Let us try something more ambitious. Within order arithmetic, order addition 

is associative with respect to order-isomorphism, so that ordinal addition has 

to be associative. Thus we expect to have the following theorem. 

Theorem 8.12 

For all ordinals a, 0 and 7, 

(a + 0) + 7 = a + (0 + 7). 

Exercise 8.41----- 

Try to prove Theorem 8.12 by ordinal methods, by using transfinite induction 

on 7, for fixed a and 0. 

Solution 

For 7=0, we Lave 

(a + 0) + 7 = (a + 0) + 0 

= a + 0 (by definition of+), 

In a ■ 1, the general ordinal a is on 

the left-hand side of the expression. 

Use ordinal arithmetic, to get the 

practice! 

You may hit another rock! 
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and 

a + ((3 + 7) = a + (ft + 0) 

= a + f3, 

which is the same. Thus the result holds for 7=0. 

Suppose the result holds up to, and including, 7. Then 

(a + /?) + 7+ = ((a + P) + 7) + 

= (a + ((3 + 7))+ (from the result for 7) 

= a. + ((3 + 7)+ (by definition of +) 

= a + ((3 + 7+) (by definition of +), 

so that the result holds for 7+. 

We hit the rock with the limit ordinal case! Suppose that the result holds for 

all ordinals 7 G A, where A is a limit ordinal. Then 

(a + /?) + A = (J{(a + /?) + 7: 7 G A} (by definition of +) 

= (J{ci! + (/? + 7) : 7 € A} (by the inductive hypothesis), 

which looks promising! But how do we show that this last expression equals 

a + U{/? + 7:7e A}, 

which equals a + (f3 + A)? 

We need some extra machinery, which will come from deriving some very 

useful inequalities involving the three standard ordinal arithmetic functions. 

These basically show that for fixed a, all of a + /?, a ■ (3 and strictly increase 

with increasing j3. For inequalities, it seems more natural to use the notation 

<, rather than 6, for the order relation on ordinals. But when reading or 

writing arguments, remember that < and 6 mean the same thing for ordinals. 

Theorem 8.13 

Let a, (3,7 be ordinals. Then 

(i) if (3 < 7, then a + f3 < a + 7; 

(ii) if a > 0 and (3 < 7, then a - (3 < a • 7; 

(iii) if a > 1 and (3 < 7, then < a7. 

Proof 

We shall prove (ii) and leave the other parts for you as an exercise. Our 

method is transfinite induction on 7 for fixed a and (3. 

Suppose that a > 0. We wish to show that 

if f3 < 7 then a • f3 < a • 7 

by induction on 7 for fixed a, (3. 

We shall complete this argument in 

Exercise 8.47. 

The need for the conditions on a in 

(ii) and (iii) should be obvious. 

Induction on 7 is a sensible choice 

as it is on the right of one of the 

ordinal products involved. 
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8.4 Ordinal arithmetic 

It is pointless to put much effort into the case when 7 = 0, as we cannot then 

have (3 <. 7. This means that the result is vacuously true for 7=0. Similarly 

the result is vacuously true for any 7 with 7 < /?. The first interesting case is 
when 7 is the least ordinal greater than /3, namely f3+. 

Thus the base case is when 7 = ft*’. For this 7 we have 

a • 7 = a • 

= (a • (3) + a (by definition of multiplication) 

> (a • 8) + 0 (by the result of (i), as a > 0) 

= a ■ (3 (by definition of +), 

so that the result holds for 7 = p3~. 

Suppose that the result holds up to, and including, 7, where (3 < 7. We shall 
show that it also holds for 7+. We have 

Q; • = (q: • 7) + Q 

> (a • 7) + 0 (by the result of (i), as a > 0) 

= a • 7 

> a ■ (3 (as the result holds for 7), 

as required. 

Lastly, suppose that the result holds for all 7 6 A, where A is a limit ordinal, 

with (3 < A. We shall show that the result also holds for A. By definition, 

a ■ A = U{a -7:76 A}. 

As A is a limit ordinal and (3 < A, i.e. (3 G A, we have 

l?€\, 

so that 

a • (3^ C |J{q; • 7 : 7 G A}. 

We have already shown that a ■ (3 < a ■ i.e. 

a ■ (3 G a - (3+, 

so that 

a ■ (3 e U{a • 7: 7 £ 

which translates into 

a ■ (3 < a ■ A, 

as required. Result (ii) follows by the principle of transfinite induction. ■ 

Of course, the above argument relies on part (i) of the theorem, for addition, 

as we’d expect, given that the definition of multiplication depends on addition. 

Exercise 8.42---- 

Prove parts (i) and (iii) of Theorem 8.13, namely, for ordinals q,/3, 7? 

(i) if (3 < 7, then a + f3 < a + 7; 

(iii) if a > 1 and /3 < 7, then a0 < a7. 

When 7 < (3, the statement (3 < 7 

is false, so that ‘if /3 < 7 then ... ’ 

is (vacuously) true. 

We are only interested in ordinals 7 

greater than (3. 

< and G are the same! 
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Solution 

We give a solution only for (i). We shall use transfinite induction on 7, for 

fixed a and (3. 

The result is vacuously true for all 7 with 7 < /3. The first interesting case is 

when y = /3+. Then 

<* + /?+ = (a + /?)+ 
> a + (3 (as 5 G <5+, i.e. 6 < S+, for all 6), 

so that the result holds for (3+. 

Suppose that the result holds up to, and including, 7, where (3 < 7. Then 

a + 7+ = (a 4- 7)+ 

> a: + 7 

> a + (3 (using the result for 7), 

so that the result holds for 7+. 

Finally, suppose that the result holds for all 7 G A, where A is a limit ordinal 

with f3 < A. Then 

a + (3 € a + /3+ (just shown above) 

C (J{a: + 7: 7 e A} (as A is a limit and (3 G A, so that (3P £ A) 

= a + A (by definition of +), 

which translates into the result for A: 

ol -\- (3 < oc -\- A. 

The result thus holds for all 7, by transfinite induction. 

Theorem 8.13, with earlier results, gives us some idea of the order structure 

of the ordinals. For instance 

cj'Ctu+l ... <Cct>-|-n<Ccj + cu,:=:u^*2 <C u • 2 —|— 1 ... 

... U) • 2 id — U> • 3 < ... <C UJ • id = dd^ <!...<! dP" + id ... 

... < Up + Up = Up ■ 2 < ... < J2 ■ id = u3 < . . . < Ld“. 

We are now in a position where we can use ordinal, rather than order, argu¬ 

ments to show that ordinal addition and multiplication are not commutative. 

For instance, we can show that 

1 U) = id, 

whereas, by Theorem 8.13, 

U) +1 > id + 0 

= id. 

Exercise 8.43_ 

Show that 1 + u = ud. 
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By definition of +, 

l+w = U{l + n:new}. 

As the finite ordinals are simply the natural numbers within ZF, we know 
that 1 + n = n + 1, for all n € so that 

1 + u> = (J{n + 1: n € u). 

There are several straightforward ways of showing that (J{n + l:nGu;}=u;. 
One way is by the standard method of showing sets A and B are equal, namely 

proving that they have the same members. Another way is by exploiting the 

order-theoretic properties of ordinals, which we do below as an illustration of 
this attractive method. 

By Theorem 8.4, (J{n + 1 : n 6 a;} is the ordinal which is the least upper 

bound of the set {n + 1 : n E u}. So we shall show that u is this least upper 

bound. First we must show that lu is an upper bound, which follows easily as 

n -F 1 < u for each n6w. And we must also show that no smaller ordinal is 

an upper bound. This is also easy, as for a smaller ordinal m, we have 

m<m + l€{n + l:nG u>}, 

so that m is not an upper bound for the set. Thus u is the least upper bound 

of the set, as required. 

Exercise 8.44_ 

(a) Show that 2 • u = u. 

(b) Show that ordinal multiplication is not commutative. 

Exercise 8.45___ 

Give examples of non-zero ordinals at, (3, 7 for which a < (3, but of1 (F. 

Justify your answer with computations of a7 and (F for your a, /?, 7. 

Exercise 8.46------ 

Let a, /3,7 be ordinals. Show that if a < /3 then each of the following holds: 

(a) a + 7 < (3 + 7; 

(b) a • 7 < (3 ■ 7; 

(c) a7 < /J7. 

Let us now fill in the hole in Exercise 8.12, where we asked you to prove that 

ordinal addition is associative. We had shown that 

(a + (3) + A = (J{a + (P + 7) : 7 G A}, 

but had not shown that this equalled 

a + U{/0 + 7;7 £ 

which equals a + (/? + A). This requires a result which is worth proving for 

more general ordinal operations than just addition, and which needs a couple 

of technical definitions. 
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Definitions 

Let S, S' be ordinals and /: S —► S' a function. Let A 6 <5 be a limit 
ordinal. Then / is said to be continuous at A if 

fW = U{/(7) : 7 £ A}. 

If / is continuous at all limit ordinals A in its domain, then / is said to 
be a continuous function. 

/ might as well be given as a class 

function /: & —> <?. 

Thus each of addition, multiplication and exponentiation is continuous, in the 
sense that the functions 

(31—> a + (3, /31—> a ■ (3, (31—» a/3, 

for a fixed a, are all continuous because of the way they are defined for limit 
ordinals. 

Definition 

Let S, S' be ordinals and /: S —► S' a function. Then / is said to be a 
normal function if it is strictly increasing and continuous. 

Again, / might as well be given as 
a class function /: & —> 

By Theorem 8.13 each of addition, multiplication and exponentiation is nor¬ 
mal, in the sense that the functions 

(3 i—» a + (3, (3 i—» a ■ (3 (for a > 0), f3 \—» a13 (for a > 1), 

for a fixed a, are all normal. 

We need the conditions on a for the 
functions to be strictly increasing. 

Theorem 8.14 

Let <5, S' be ordinals and /: S —>• S' a normal function. Then for any 
non-empty set X of ordinals, 

/<UX) = U{/(T):7€X}. 

Proof 

By Theorem 8.4 (J X is an ordinal (3 and is lubX, the least upper bound of 
X. The proof considers separately two possibilities for /?: that it is in X, and 
that it isn’t. 

Consider the case when (3 e X. Then for any 7 G X, 

7 < (3 (as f3 is lubX), 

so that, as / is increasing (because it is normal), 

/(7) < m. 
As f3 G X, this means that f(/3) is the least upper bound of {/(7): 7 6 A}, 
so that by Theorem 8.4 

m = U(/(7) : 7 € X}. 
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Thus 

/(U*) = /03) 

= U{/(7):7€X}, 

as required. 

Now consider the case when Then by the result of Exercise 8.13, /3 is 

in fact a limit ordinal. As / is continuous (as it is normal), we then have 

HP) = U{/(7) : 7 € 0}. 

For our theorem we are interested in [j{/(7): 7 6 X}. As (3 = lub X, we have 

{/(7) A} C {/(7) /?}, 

so that 

U{/(7): 7 € *} = lub{/(7) : 7 G A} 

< lub{/(7): 7 € 0} 

= /(/?), 

Thus /(/?) is an upper bound of {7(7): 7 G A}. Is /(/?) = lub{/(7): 7 G A}? 
Given any a with 

a < f{P) = lub{/(7) : 7 e /3}, 

a can’t be an upper bound for {/(7): 7 G /?}, so that there is some 7 G (3 with 

a < /(7)- As /? = lub A, 7 is not an upper bound of A, so that there is some 

7'gA with 7 < T7. As / is increasing, 7(7) < /(t7), so that 

« < /(7) < /(V). 

so that a is not an upper bound for {/(7): 7 G A}. Thus /(/?) is the least 

upper bound of this set, so that 

mx) = m 
= lub{/(7) : 7 G A} 

= U{/(7):7€A}, 

as required. ■ 

We are now in a position to complete the proof that ordinal addition is asso¬ 

ciative, and to prove a variety of other identities of ordinal arithmetic. 

Exercise 8.47- 

Suppose that o:, /? are ordinals and that A is a limit ordinal. Show that 

(J{a: + (P + 7) : 7 G A} = a + (/?+ A). 

Solution 

We shall exploit Theorem 8.14. Take / to be the function defined by 

/(»?) = Q + V, 

for all ordinals 77 (in some arbitrarily chosen ordinal 8). As we have already 

observed, / is a normal function. And let A be the set 

A = {/? + 7: 7 £ A}. 

We want to show that a is not an 

upper bound of {/(7) : 7 G A}. 

Although the 7 might not have 
been in A, the 7' is. 

This completes the argument of 

Exercise 8.41, to show that ordinal 

addition is associative. 
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8 Ordinal Numbers 

Then by Theorem 8.14, 

(J{/(!)):«>eX}=/(U*)- 

The left-hand side of this equation is 

\J{a + ri:ri 6l} = LKa + (P + 7): (P + 7) € X} 

= (J{a + {/3 + 7) : 7 € A}, As (/3 + 7) G X if and only if 7 G A. 

and the right-hand side is 

a + U{/? + 7:7€ A}, 

which, by definition of (3 + A for a limit ordinal A, equals 

ol + (/? -t- A). 

Thus the equation becomes 

(J{o; + (P + 7) : 7 £ A} = a + (/? + A), 

as required. 

Armed with the normality of the three standard arithmetic operations and 

methods like proof by transfinite induction, we can prove several more, rather 

familiar-looking, identities for ordinal arithmetic. 

The distributive law 

Associativity of multiplication. 

So e.g. u ■ un = u1+n = ojn+i. 

Theorem 8.15 

For all ordinals a, (3 and 7, 

(i) a-(0 + 7) = (a-/?) + (a-7); 

(ii) (a-0)- 7= <*•(/?-7); 

(iii) = a13 • a7; 

(iv) (a^3)7 = aP'1. 

Proof 

We shall prove (i), the distributive law, and leave the rest as exercises. We 

shall use transfinite induction on 7, for fixed a and (3. 

For 7 = 0 we have 

a • ((3 + 0) = <7 • (3, 

and 

(a ■ (3) -1- (a • 0) = (a • (3) + 0 

= Oi- P, 

so that 

a ■ ((3 + 0) = (a ■ f3) + (a ■ 0), 

i.e. the result holds for 7 = 0. 
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Now suppose that the result holds up to, and including 7, and show that it 
also holds for 7+: 

<*•(/? + 7+) = a - (0 + 7)+ (by definition of +) 

= (<*•(/? + 7)) + a (by definition of multiplication) 

= ((<*•/?) + (a • 7)) + a (using the result for 7) 

= (a- (3) + ((a • 7) + a) (by the associativity of +) 

= (a • 0) + (a • 7+) (by definition of +), 

so that the result also holds for 7+ 

Lastly, suppose that the result holds for all 7 G A, where A is a limit ordinal, 
and show that it also holds for A: 

01' (0 + A) = a • U{/? + 7: 7 € A} (by definition of + at a limit) 

= U{«- (/^ + 7) : 7 £ A} (by the normality of multiplication) 

= U((a • 0) + (a ' 7) : 7 € A} (using the result for all 7 G A) 

= (a • 0) + U{a • 7: 7 G A} (by the normality of +) 

= (a • 0) 4- (a • A) (by definition of multiplication), 

showing that the result holds for A. 

The result follows by transfinite induction. ■ 

Exercise 8.48_ 

Prove the rest of Theorem 8.15, i.e. for all ordinals a, (3 and 7: 

(a) (a •/?) - 7 = a • (0 ■ 7); 

(b) a^+7 = • a7; 

(c) (a^)7 = a^'7. 

Exercise 8.49 -- 

Find counterexamples to each of the following statements. 

(a) (a + 0) • 7 = (a • 7) + (/? • 7), for all ordinals a, (3,7. 

(b) (a + 0)2 = a2 + (a • 0) + {(3 ■ a) + /32, for all ordinals a, 0. 

Just as in Exercises 8.43 and 8.44, we can prove that m + u = u and m • u = to 
for any m G u. Taken with the distributive law, this produces some curiosities 

of ordinal arithmetic, for instance that if j,m G u) then 

(<J -m) + (J+1 =J+1. 

This follows because 

(t^ • m) + u^+1 = (iJ ■ m) + (u^ • u) 

= • (m + u) (by the distributive law) 

= ur* • u> 

= cJ+1. 

What has happened here is that addition of a smaller ordinal, <J ■ m, to the Asm<wwe have 

left of the larger ordinal, o4+1, has simply produced this larger ordinal. In lJ ■ m < u? • u> 
the next exercise we ask you to investigate this phenomenon further. = 
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Exercise 8.50- 

(a) Suppose that i, m G u with i > 1. Show that m + u/ = u1. [Hint: use the 

result of Exercise 8.46 to show that ul < m + u>1 < a/-1 + a;1.] 

(b) Suppose that i, j, m € u with i > j. Show that (u>* ■ m) + u1 = up. 

(c) Show that 1 + u3 + (uj2 • 2) + u + uP + 3 = uP 4- (uP • 3) + 3. 

Solution 

(a) Taking the hint, we have 

u1 = 0 + u1 

< m + uP (by Exercise 8.46, as 0 < m) 

< w1_1 + uP (by Exercise 8.46, as m < a;1-1) 

= a;1-1 • (1 + uj) (by the distributive law) 

= a;1-1 • u 

= up. 

This forces m + u/ = oj\ as required. 

(b) We have already shown the result in the case that i=j + l. Ifi>j + 1, 

so that i — j > 1 and the result of part (a) can be used, we have 

(u^ • m) + u>' = aP • (m + 

= • a;1--’ 

= u'. 

(c) 1 + uP + (up • 2) + u + up + 3 = (1 + uj^) + (up ■ 2) + (u + up) + 3 

= a;3 + (uP ■ 2) + up + 3 

= a;3 + ((a;2 • 2) + uP) + 3 

= u3 + (uP • 3) + 3. 

This exercise shows that in certain circumstances, adding an ordinal a smaller 

than /3 to the left of (3 (to form a 4- (3) simply gives (3. (Beware! This doesn’t 

always hold.) And part (c) suggests that complicated ordinal sums can be 

simplified into sums consisting of terms which decrease as one moves from left 

to right. This is indeed the case, as we shall see later (in e.g. Exercise 8.56). 

Exercise 8.51_ 

Give an example of infinite ordinals cc, (3 with a < (3 for which a + (3 ^ (3. 

The arithmetic of ordinals has great elegance, but one might well ask what 

other value it has. It’s worth comparing ordinal arithmetic with that of N 

in everyday mathematics. The latter has manifold practical applications, 

but also provides important insights into the structure of fU Cantor wanted 

to exploit the ordinals as a way of counting beyond the finite, e.g. when 

iterating a process more than finitely many times, and needed insights into 

the structure of infinite ordinals. For instance, the classification of non-zero 

ordinals as either successors or limits gives some insight into this structure. 

One benefit of ordinal arithmetic is that it gives further insights. Another 

As addition is associative, we can 

write the sum without brackets. 

An example involving finite 

ordinals a, /3 would be bit too easy 
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8.4 Ordinal arithmetic 

example of such an insight is given by the next theorem. It deals with the 
following question. 

If a is an ordinal, how near is it to a limit ordinal? 

Of course, if o: is finite, the nearest limit ordinal is u. What happens if a is 
infinite, i.e. if a > u? 

Theorem 8.16 

Suppose that a > ui. Then there is a limit ordinal A and ann£w such 
that 

a = A + n. 

Furthermore the A and n are unique. 

Proof 

We shall deal with the uniqueness first. Suppose that 

a = A + n = A7 + n7, 

where A, A' are limit ordinals and n, n' £ u. Without loss of generality we can 

suppose that A < A7, and we shall show first that the two limit ordinals must 

be equal. 

Suppose that A < A' and try to derive a contradiction. As A' is a limit or¬ 

dinal and A < A7, we have A+ < A7, so that similarly A++ < A7, and so on. 

Continuing this process, we would expect that 

n 

A + n = A+++"~+ < A' < A' + n7, 

contradicting that A + n = A' + n'. Of course the ‘...’ in the expression above 

for A + n tells us that we need a general proof that 

A + n < A', 

for all n £ u>. This proof is a very straightforward induction on all n £ u, 
exploiting the facts that A' is a limit ordinal and that A < A' (which gives the 

base step, that A + 0 < A7). 

The upshot of the above is that A = A7, so that 

a = A + n = A + n7, 

where, without loss of generality, n < n'. Suppose, to obtain a contradiction, 

that n < n7. Then by Theorem 8.13, 

A + n < A + n , 

giving us a contradiction. 

This completes the proof of the uniqueness of the A and n. We must now 

prove that these ordinals exist. We shall discuss several different methods, 

to emphasize the variety of proof techniques that one can exploit, transfinite 

induction is one such technique, but there are others which can be useful, 

especially when one gets stuck on an induction! 

As a general strategy, one usually 

tackles the big ordinals first. 

This is left as a straightforward 

exercise. 
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Method 1: Transfinite induction 

We shall prove that A and n exist by transfinite induction on a, where a > u. 

For a = u we have 

a = u + 0, 

which is in the required form. 

Next suppose that the result holds up to, and including, 7 and show that it 

holds for 7+. As the result holds for 7, there is a limit A and ann£w such 

that 7 = A + n. Then 

7+ = (A + n)+ 

= A + n+, 

which is in the required form (as n+ £w). 

Lastly, suppose that the result holds for all 7 E a, where a: is a limit ordinal, 

and show that it holds for a. We are in luck, as the result is immediate! a is 

a limit, so that 

a = ol + 0, 

which is in the required form, and our result follows by transfinite induction. 

One reason for showing you alternative proofs of this result is that we were 

very lucky with the limit ordinal case above! We didn’t actually have to make 

use of the inductive hypothesis, namely that for each 7 < a there were a limit 

A and n such that a = A + n. If we had had to do so, we might well have 

found it a problem that both A and n depend on the 7: there’s no guarantee 

that the As, or the ns, are nicely related to each other for all the 7s less than 

a. 

Method 2: Minimal counterexample 

The method is to suppose that the result does not hold for all ordinals and 

to let a be the least for which it fails. Then try to show that this leads 

to a contradiction. We shall not go through the details of such a proof, as 

they are essentially the, same as those for a proof by transfinite induction, 

namely dealing with three different cases for a: the least possible value of a, 

normally 0, but for this theorem u; the successor case, when a = 7+; and a 

a limit ordinal. 

Method 3: Direct construction 

This method involves describing how to construct the required A and n. Here 

our first step is to define a set X of ordinals by 

X = {p < a : p is a limit ordinal}. 

Note that X is a set, because it is a subset of a+. Also X is non-empty, as 

a > u, so that u € X. 

Let A = lub X. We claim that A is a limit ordinal. There are two cases to 

consider, depending on whether or not A e X. If A € X, then A is a limit, 

by definition of X. If A 0 X, then A is a limit by the result of Exercise 8.13. 

Whichever is the case, A is a limit. 

The base case. 

This should not be surprising, 

given that our proof of the 

principle of transfinite induction 

made essential use of the method 

of the minimal counterexample. 
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As a is an upper bound of X, we must have that A < a. This means that A 
is the greatest limit ordinal with A < a. 

Now define a subset F of u by 

Y = {new:A + n< a}. 

Y is non-empty, as A + 0 = A < a, so that 0 6 b, Put 0 = lubF, so that 
P < u>, as u is an upper bound for Y. 

As a is an upper bound for {A + n : n G F}, we have 

a > lub{A + n : n € F} 

= U(A + n:neF} 

= A + \J{n :n6F} (as + is normal) 

= A + /3 (as /? = lub F = (J F). 

If we had ft — u, this would mean that the limit ordinal A + u, which is 

greater than A, would satisfy A + cu < a, contradicting the maximality of A. 
Thus P < u, so that P 6F. 

We have A + P < a. Could it be that A + P < a? If so, then 

A + /3+ = (A + /?)+ 

< a, 

so that pA € F, contradicting that P is lubF. Thus A + P must equal o, and 

as A is a limit and P E u>, we have proved the theorem. 

This method can be very useful in the circumstances mentioned above, where 

transfinite induction doesn’t seem to work well. 

Method 4-' Arithmetic of order 

Using the arithmetic of order, rather than ordinal arithmetic, plus the results 

that order sums/products of ordinals are order-isomorphic to their ordinal 

sums/products, sometimes works well - not here though! ■ 

Exercise 8.52----- 

Fill in a minor detail arising from one of the proofs of the previous theorem. 

Suppose that A' is a limit ordinal and that P is any ordinal with P < A. Show 

that P + n < A', for all n6w. Does this mean that P + u < A'? 

Exercise 8.53--- 

Theorem 8.16 deals with the nearest limit A to an infinite ordinal a which 

satisfies A < a. Which limit A, if there is one at all, is the smallest satisfying 

a < A? 

You should be able to derive the following further results about ordinals and 

their arithmetic. They are given as exercises rather than theorems, but many 

of them have & status important enough to be classed as theorems! Some 

of them lead towards what are called normal forms, namely standard ways 

of writing ordinals as sums of certain simple ordinals. (So, for instance, to 

test if two ordinals are equal, one might try to compute their equivalents in a 

particular normal form and then see whether these are the same.) 

If fi is a limit with n < a, then 

H G A, so that /i < lub X = A. 

As 0 < u>, we have 

A = A + 0<A + u). 

We would really like to show that 

A + (3 = a for this (3. 
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Exercise 8.54_ 

Suppose that a and (3 are ordinals with a > (3. In this exercise we would like 

you to use two different methods to show that there is an ordinal 5 such that 

a = (3 + 6. In fact the S is unique, as we shall also ask you to show. 

(a) Let X be the set {7 G : (3 4- 7 < a}. 

(i) Show that X is an ordinal. 

(ii) Show that I/O. 

(iii) Show that X is not a limit ordinal. 

(iv) As X is neither 0 nor a limit ordinal, it must be a successor, <T*" say. 

Show that a = (3 + 8. [Hints: why is (3 + 5 < a? And why can we not 

have /3+ 5+ < a?] 

(b) Consider the complement a \ (3 of (3 in a. This is a well-ordered set so is 

order-isomorphic to an ordinal 5. Why does a = (3 4- 51 [Hint: use the 

arithmetic of order.] 

(c) Show that the 6 above is unique, i.e. if a = (3 + 5 = (3 +5', then 5 = 6'. 

(d) Is there a unique ordinal 5 such that a = 6 4 (33 

Exercise 8.55_ 

Let a be an ordinal with a < u2. 

(a) Show that if u • n < a < u> ■ (n + 1) for some new, then there is a unique 

m G oj such that a = (u • n) 4 m. 

(b) Show that there is indeed some new such that u>-n<ai<a;-(n + l). 

Exercise 8.56_ 

Let a be an ordinal with a < 

(a) Show that there is some n G u for which a < can+1. 

(b) Let n be as above. Show that there is some m G u> such that 

un • m < a < u>n • (m 4- 1). 

(c) Let n and m be as above. Show that there is some (3 < cwn such that 
a = (un ■ m) 4- (3. 

(d) With n as above, show that there are m0,mi,...,mn G u for which 

oc = (un ■ mn) + (a;"-1 • mn_i) + ... + (u • mi) + m0. 

(e) Suppose that a, (3 are ordinals less than . Show that both a + f3 and 

a ■ (3 are less than [Hints: there are m, n G u with a < um and 

f3 < un. Use the results of Theorem 8.13 and Exercises 8.46 and 8.50 to 
get suitable upper bounds.] 

Exercise 8.57___ 

Let a, f3 be ordinals with (3 > 0. Show that there are unique ordinals 7,5 such 
that a = ((3 ■ 7) + 5, where 0 < 5 < (3, as follows. 

(a) Show that a < (3 • a < f3 ■ a+. 

(b) Let X be the set {7 G a+ : (3 ■ 7 < a}. Show that A is a successor ordinal, 

7+ say. [Hint: show first that X is an ordinal, and then show it is neither 
0 nor a limit.] 

So 5 is a — /3. 

So that if a < w2, then a is of the 

form w • n + m, for some n,m€u. 

This is a normal form for ordinals 

less than 

Taken with results of the sort of 

Exercise 8.50, we can easily 

computes sums and products of 

ordinals less than o>" and give 

answers in the normal form. 

This is the quotient-remainder 

theorem for ordinals. 
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(c) With 7 as in the last part, explain why 

0 ■ 7 < a < (5- 7+- 

(d) Let Y be the set {S e 0: (0 • j) + S < a}. Show that Y is a successor 
ordinal, say. 

(e) With 8 as in the last part, show that 

{0‘i) +$ < < (0'i) + 8+, 

and deduce that a = (0 ■ 7) + 5. 

Let us now look more deeply at the results of a couple of earlier exercises, in Exercises 8.43 and 8.44. 

which you were asked to show that 

1 + u = u and 2 ■ u = u. 

We can describe the first of these results by saying that the function /, where 

f(a) = 1 + a for all a, 

has a fixed point at u>, i.e. f(u) = u. Similarly the function g defined by 

g(ot) = 2 ■ a for all a, 

In general, a function / has a fixed 

point at a if f(a) = a. 

has a fixed point at u>, as 2 • tv = u. Do these functions have other fixed points? 

For / the answer is ‘Yes’, as the result of Exercise 8.50 with m = 1 gives 

/(a;1) = 1 +u/ = 

for all i £ w. How big can fixed points of / be? The answer is that / has 

arbitrarily large fixed points. In general, any normal function - this particular 

/ is normal - has arbitrarily large fixed points, as we shall now show. 

First, we shall ask you to prove a helpful lemma as an exercise. 

Exercise 8.58_ 

Let / be a normal function. Show that a < f(a), for all ordinals a. 

Solution 

We shall argue by transfinite induction on a. 

For a — 0, we have that /(0) is some ordinal, so that /(0) > 0. 

Next, suppose that the result holds for all ordinals up to, and including, 7. 

We shall show that it holds for y+. We have 

f(l+) > /(7) (as 7+ > 7 and / is strictly increasing) 

>7 (by the result for 7). 

As 7+ is the least ordinal greater than 7, and /(7+) is some ordinal greater 

than 7, this means that /(7+) > 7+- Hence the result also holds for 7+- 

Lastly, suppose that the result holds for all 7 < A, where A is a limit ordinal, 

and show that it also holds for A. We have 

— (J{/(7) : 7 e A} (as / is continuous at all limit ordinals) 

> /(7), for all 7 G A, 

> 7, for all 7 G A (as the result holds for all 7 G A). 
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Thus /(A) is an upper bound of the set {7:7 G A}, i.e. the set A, and is thus 

greater than equal to the least upper bound of this set, which is also A as A 

is a limit ordinal. Hence /(A) > A, i.e. the result holds for A. 

Thus the result holds for all ordinals by transfinite induction. 

We can now show that any normal function has arbitrarily large fixed points. 

Theorem 8.17 

Let / be a normal function and let a be any ordinal. Then there is an 

ordinal (3 with a < (3 for which f((3) = (3. 

Proof 

If f(a) already equals a, then we are done. So suppose that f(a) a, which, 

by the result of Exercise 8.58 above, means that a < f(ct). The general idea 

is to construct the set 

X = {Q,/(a),/2(a),...,r(Q),...}, 

and put (3 = (J X. Then 

m = n\jx) 
= /(U {/>):»£«)) 
= U{/CT(a)) : n G N} (as / is normal) 

= U{/"+1(a):ne^} 
= /3. 

Is it the case that a < (33 As a < f(a) and f(a) C \J{fn(a) : n 6 f^}, we in 

fact have a < (3, so that 8 is as required. 

The only detail that needs tidying up is the construction of the set X. All 

this needs is the definition by recursion on u of an ordinal-valued function g 

by 

g{0) - a 

g(n+) = f(g(n)), for all n G u. 

Then X = Range(^). ■ 

It is quite interesting to see what fixed points the construction in this proof 

identifies, for specific normal functions. For instance, with / defined by 

f(a) = 1 + a, and starting with a = 1, the fixed point (3 would be given by 

1 -I- 1,1 + (1 + 1), • • .} 

= UJ. 

But starting with a = u + l, the construction would give 

(3 = U{cj + 1,1 + (u + 1), 1 + (1 + (u + 1)),...} 

= (J{^ T 1, tu -f 1,u> + 1,...} 

= U{^ + 1} 
= u>, (by the result we hope you obtained in Exercise 8.12) 

/2(a) meaning /(/(a)) etc. 

As ever, g will be a function in ZF 

because of the axiom of 

replacement. 

l + (u>-(-l) = (1 + u>) + 1 

= u) + 1 (as 1 + w = w), 

and so on. 
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which is less than a. Given that the theorem guarantees us a fixed point P 

with P > a, it must be that a was already a fixed point - it wasn’t appropriate 
for us to use the construction! 

Exercise 8.59___ 

Show that 1 + a = a for all ordinals a with cu < a. 

Exercise 8.60_______ 

For each of the following (normal) functions / and ordinals a, find the corre¬ 

sponding fixed point p with a< p given by the proof of Theorem 8.17. 

(a) f(a) = cu + a with a = 0 and cu. 

(b) /(a) — 2 - a with a = 1 and cu. 

(c) /(a) = cu ■ a with a — 0 and 1. 

(d) /(a) = 2a with a = 0 and cu. 

Solution 

(a) For a = 0, the fixed point P is 

[J{cU, CU + CU, CU -\- CU CU, . . .} — LO ■ U 

= u2. 

For a = uj, we get the same fixed point, cu2. 

(b) For a = 1, we get P — cu. And for a = u, the P is also a, as a is already 
a fixed point. 

(c) For a = 0, the P is also 0. For a = 1, the P is 

(J{u;,u> • cu,u) ■ (u • cu),...} = |J{u;,c<;2,a;3,...} 

= uA. 

(d) For a = 0, the P is 

|J{l,2,4,...,2n,...} = u 

And for a = cu, the P is also cu. 

Exercise 8.61___ 

The proof of Theorem 8.17 constructs, for a given a and a normal function / 

such that a < f (a), a fixed point P of f with a < p. Could there be a fixed 

point 7 of / with a < 7 < P? 

The interest of the fixed points increases with the complexity of the function 

/. For instance, take / defined by f(a) = cua. Let us find the fixed point p 

of / given by the construction in the proof of Theorem 8.17 for a = cu. We 

obtain 

which must be pretty huge! It’s not easy to picture this as an ordered set - 

none of our previous illustrations of well-ordered sets have involved anything 

more complicated than uA, and you’d have to have dug around in one of the 

further exercises at the end of Section 7.4 to find an example of an order as 

So that all infinite ordinals are 

fixed points of f(a) = 1 + a. 

Note that 2“ - u>. 
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complex as even that! This monster ordinal [3 is called eo and is often written 
as 

£0 = • 

Just how big is e0? The obvious measure of ‘big’ is in terms of cardinalities, 

and for numbers like e0 we run into problems unless we assume some form of 

the axiom of choice. Let us assume a weak form of AC and get an insight into 

the size of e0, in the next, fairly long, exercise. We shall leave most of the 

work for you, as much of it is useful practice of what we have already seen. 

Exercise 8.62_ 

In this exercise, you may assume that the union of countably many countable 

sets is countable. Also recall that is the least uncountable ordinal, so that 

ct < uq if and only if a is a countable ordinal. 

(a) Let X be the set 

X = {an : n E N}, 

where each an is a countable ordinal. Show that (J X is also a countable 

ordinal. [Hints: we know that [J X is an ordinal: why it is countable? 

Some form of AC is needed because for each of infinitely many a we may 

have to choose a ‘counting’ of a - there may not necessarily be a uniform 

rule for selecting such a bijection between a and N.] 

(b) Let a, (3 be ordinals with a, (3 < ui. Show that a + [3, a - (3 and a13 are all 

less than uq. [Hints: fix a and use a well-known method of proof! And 

in which order should you prove the results? The result of the first part 

will be useful.] 

(c) Show that 

U + (jJi = LO ■ U)\ = — U)i'. 

(d) Show that eo < . 

(e) We shall say that the ordinal 7 is an e-number if a/7 = 7. By using the 

construction in the proof of Theorem 8.17, show that there is a countable 

e-number greater than eo- [Hint: start with a = eo + 1.] 

(f) Show that there are uncountably many e-numbers less than . [Hints: ar¬ 

gue by contradiction. Assume that there are countably many e-numbers, 

show that there is a countable ordinal larger than all of them, and show 

that there is a countable e-number greater than this, to obtain a contra¬ 
diction.] 

Let us end this section with another of Cantor’s normal forms for ordinals, 

this time one which holds for all ordinals. The result is an exercise for you. 

Exercise 8.63_ 

Let a be an ordinal. 

(a) Explain why a < ua. 

(b) Show that there is some ordinal (3 with 

u/3 < a < u>P+. 

£0, pronounced ‘epsilon zero’, is the 

least of what Cantor called the 

epsilon-numbers. 

We shall be looking at how 

cardinals and ordinals are related, 

once AC is assumed, in the next 

chapter. 

This is a weak consequence of AC. 
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(c) With P as in the previous exercise, show that there are anm£u and 
7 < tJ3 such that 

a = (a/3 • m) + 7. 

(d) Show that for some n£ N there are ordinals /31, /32, • • •, /5n and finite 
ordinals m0, mi, m2,..., mn G u such that 

a = (A • mn) + (A-* • mn-i) + ... + (A • mi) + m0. 

Further exercises 

Exercise 8.64___ 

Suppose that a,/3 are non-zero ordinals with a,/3 £ u“. Show that 

a + P = P + a 

if and only if there aren,a,6 6w and 7 < a;n for which 

a = (un ■ a) + 7 and P — (u)n ■ b) + 7. 

[Hint: use the normal form for ordinals in w" given by the result of Exercise 

8.56.] 

Exercise 8.65_ 

Let a be an ordinal. We say that a is closed under addition if, for all P, 7 6 a, 

we have P + 7 € a. Similarly a is closed under multiplication (respectively 

exponentiation) if P ■ 7 € a (respectively pP € a) for all /?, 7 G a. In each of 

the following cases, find the smallest ordinal a > u with the given property: 

(a) a is closed under addition; 

(b) a is closed under multiplication; 

(c) a is closed under exponentiation. 

Exercise 8.66---- 

Cantor’s original work, and many modern texts, present some of the results 

of this section in terms of limits of sequences of ordinals, rather than unions 

(which are also least upper bounds) of sets of ordinals. For the sake of com¬ 

pleteness, we give some of the definitions and corresponding results below. 

A sequence of ordinals is a function /: a > <5, where <*,(! are ordinals. We 

write Py for /(7) and use the notation 

(^7)7 <a 

to represent the sequence. 

Let A be a limit ordinal and let (/?7)7<a be a sequence of ordinals. We say 

that the ordinal a is the limit of the sequence, and write 

a = liim/L, 
7<A 

if for each 5 < a, there is some 75 < A such that for all 7 with 7i < 7 < A, 

6 < P^ < a. 

If P, say, is 0, we know that 

a + 0 = 0 + a (= a). 

Of course u is closed under 

addition, multiplication and 

exponentiation. 
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(a) Show that if ((3f)y<\ has a limit, then this limit is unique. 

(b) Suppose that (/37)7<a is an increasing sequence of ordinals, where A is a 

limit ordinal. Then lim (3 exists and equals |J{/? :7 6 A}. 
7< A ' 

(c) Suppose that / is a normal function and let A be a limit ordinal. Show 

that 

/(A) = lim /(7). 

8.5 The tts 
Let us now look at the connection between the two aspects of Cantor’s theory 

of infinite numbers, by asking about the size (cardinality) of the ordinals. We 

have already seen that there is an uncountable ordinal, namely u>\, where 

cui = {a : a is a countable ordinal}. 

Is there an ordinal a larger than uq, in the sense that u>\ -< a? The answer 

(which is ‘Yes’) is one of the consequences of the following theorem. 

Theorem 8.18 (Hartogs' theorem) 

Let I be a set. Then there is an ordinal a such that a -£■ X, ie. it is 

not the case that a ~< X. 

Proof 

We shall actually construct the least such ordinal a. As every smaller ordinal 

(3 would have the property that /3 A X, we will try to define a by 

a — {(3: (3 is an ordinal and (3 ■< X}. 

Suppose that this does define an ordinal a. Is it the case that a -f. X? If not, 

i.e. if we had a A X, then by definition of a we would have a E a, which is 

of course impossible (by Theorem 8.3). Thus a X as required, while the 

definition of a guarantees that it is the least ordinal with this property. 

Let us show that a is indeed a set. First, note that for any ordinal (3 with 

j3 A X, there is at least one subset Y of X and a well-ordering R on Y such 

that (3 is order-isomorphic to Y ordered by R. This is because (3 A X, so 

that there is some one-one function /: (3 —> X; and all we need do is take 
Y = Im(/) and define R on Y by 

yRy if and only if /-1(y) E f~1(yl), 

which turns / into an order-isomorphism between (3 and Y. 

Now define the set W of all well-orderings R on subsets of X, i.e. 

W = {i?CXxX:i?isa well-ordering on Y for some 7 Cl}, 

so that for all ordinals (3 with f3 < X, there is some R in W representing a 

well-order on a subset of X order-isomorphic to (3. Likewise, for every R in 

See Theorem 8.7. 

Surely X -< a\ See Exercise 8.67 

below to see why this might not be 

the case. 

\ 

That is, ‘smaller’ in the E-order of 

the ordinals. 

We have yet to show first that this 

defines a set and next that it is also 

an ordinal. 
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W there is some ordinal (3 order-isomorphic to a Y C X well-ordered by R, 
so that 0 » Y Cl, giving p<X. Note that W is a set, as W is a subset of 
&>(X x X). Now define a formula 0 within set theory such that 

^(■R) P) if and only if P is the ordinal order-isomorphic to the subset of X 
well-ordered by R. 

The p for a given R is unique by Theorem 8.2, so that 0 essentially defines a 

function on W. Then using the axiom of replacement, the image set of this 
function is a set; and clearly this image set is 

{P: P is an ordinal and P ^ X}. 

Thus a is a set. 

Is a an ordinal? Certainly a is a set of ordinals, so is well-ordered by G. So 

all we need to show is that for all /?, if P G a then P C a. Take any p G a and 

7 G P. Then P is an ordinal (with P -< X), so that 7 is also an ordinal with 

7 C p. But then as P A X we have 7 C P A X, so that 7 ■< X. Thus 7 G 0 as 

required. 

Thus a is an ordinal, completing the proof of Hartogs’ theorem. ■ 

This proof of Hartogs’ theorem is very similar to that of Theorem 8.7, showing 

that u\ = {a : a is a countable ordinal} is the least uncountable ordinal: the 

proof of the latter is effectively that of Hartogs’ theorem with X — I^J. For 

u>i we were able to conclude not only that uq 2< but also that Py -< u>\. 

Can’t we likewise conclude that in general the a in Hartogs’ theorem satisfies 

X -< Oil 

Exercise 8.67 ---- 

Explain why we can’t conclude that X -< a. 

Solution 

Intuitively as the size (cardinality) of a is neither smaller than nor equal to 

that of X, one itches to say that its size is actually bigger! But to say that 

X -< a, we need to have a one-one function from I to a. In the special 

case where X = IN, we have N=uCwi, so that there is a natural one-one 

function (the identity map) from N to Wi. But when X has no known helpful 

structure, how do we construct a one-one function? 

Exercise 8.68--—---- 

Suggest a class of sets for which we can conclude that X oc for any X in 

the class. 

Solution 

How about the class of all ordinals! Suppose that X is an ordinal, p say, and 

that a is an ordinal as given by Hartogs theorem, so that at p. As a and P 

are ordinals, we must still have o C P or P C a. It cannot be that a C /3, as 

then a-<p. Then it must be that P C a, so that p A o. As a 2< P, we cannot 

have a ~ /3, so that P -< ct as required. 

Our solution to Exercise 8.68 proves the following result about the sizes of 

ordinals. 

And try to show 7 G cd 

If we add AC to our list of axioms, 

our problem is solved! 
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Theorem 8.19 

There is no ordinal of largest cardinality, i.e. for any ordinal /?, there is 

an ordinal a with /? ~< a. 

We shall exploit this theorem, along with the principle of transfinite recursion, 

to construct special ordinals which will fill the role of cardinal numbers. These 

ordinals will have the property that any ordinal which is smaller in the ordinal 

sense is also smaller in ‘size’: formally they are defined as follows. 

Definition 

An infinite ordinal a is said to be an initial ordinal if for all (3 < a, we 

also have f3 -< a. 

Prom what we have already done, we know that u> and u>i are initial ordinals. 

And there are plenty of other initial ordinals. For any infinite ordinal /3, 

Theorem 8.19 gives an ordinal a such that /3 -< ct, so that 

{7 < a : (3 -< 7} 

is a non-empty set of ordinals, and thus has a least element 70. The minimality 

of 70 ensures that if 8 < 70, then 

5 A (3 

■< To, 

so that 70 is an initial ordinal. (3 < 70. We have thus proved part (i) of the 

following result. 

Theorem 8.20 

For any infinite ordinal j3, 

(i) there is a least initial ordinal % such that (3 -< 70; 

(ii) there is a unique initial ordinal (30 such that (3 « (3Q. 

Clearly (3 < j0, as if j0 < (3 then 

7o ^ A so that 70 < f3: this 

contradicts that (3 j0. 

Note that (30 < f3 < 70. 

Exercise 8.69_ 

Prove part (ii) of Theorem 8.20. [Hints: let A = {7 < /?: 7 « (3}. Then d^0, 

as (3 E A. Let /30 be the least element of A. Show that (30 has the required 
properties.] 

Exercise 8.70___ 

Let (3 and 7 be initial ordinals. Show that (3 < 7 if and only if (3 -< 7. 

The initial ordinals clearly have special significance for describing the sizes of 

infinite ordinals. We shall attempt to tie down their structure a bit more by 
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defining the following (class) function K on all ordinals by transfinite recursion: 

N(0) = u 

K(7+) = the least initial ordinal a such that ^(7) x a 

N(A) = U{^(7) : 7 ^ A}, for a limit ordinal A. 

Prom the definition, H(a) is an initial ordinal for a equal to 0 or a successor. 

Is K(A) an initial ordinal for each limit ordinal A? The answer is yes, and you 
might like to prove this for yourself in the next exercise. 

Exercise 8.71_ 

Let A be a limit ordinal. Show that N(A) is an initial ordinal. [Hints: clearly 

K(A) is infinite, as 0 < A, so that u> = K(0) < M(A). So it remains to show that 
if 0< K(A) then (3 x K(A).] 

Solution 

Suppose that /? < N(A), i.e. f3 G M(A). As K(A) = [J{^(7) : 7 € A}, there must 
be some 7 G A for which (3 G ^(7). We then have 

P C ^(7) (as P G K(7)) 

X M(7+) (by definition of K(7+)) 

C H(A) (as 7 G A and A is a limit, so that 7+ G A), 

so that f3 X N(A), as required. 

Thus every K(a) is an initial ordinal. We hope that it seems likely to you 

that every initial ordinal is an K(a) for some a. Let us introduce some new 

notation. 

Notation 

For each ordinal a, we shall write H(a) as Na. 

So rewriting the definition of the K(a)s in terms of this new notation, we have 

K0 = u 

K7+ = the least initial ordinal a such that N7 X a 

= U{N7 : 7 G A} for a limit ordinal A. 

Let us now show that every initial ordinal is an N7 for some 7. 

Exercise 8.72--- 

(a) Let a be an ordinal. Explain why a < Na. 

(b) Now let a be an initial ordinal. Define a set X of ordinals by 

X = {(3 G c*+ : Xp < «}• 

Show that X is a successor ordinal, say 7+, and explain why a equals K7. 

N, written in English as ‘aleph’ and 

pronounced alef, is the first letter 

of the Hebrew alphabet. 

This exists by Theorem 8.20. 

N(A) is the lub of all the N(7)s for 

7 < A. So that one way of 

interpreting this result is that N(A) 

is the least initial ordinal greater 

than all the previous N(7)s. 

See Exercise 8.72 below. 

Authors often use the notation ua 

when discussing the ordinal 

properties of the set. And is 

used when one is interested in 

cardinality properties. 
Ko is called ‘aleph-zero’ or 

‘aleph-null’. 
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Solution 

(a) It is easy to show that the N function above is in fact normal. Thus by the 

result of Exercise 8.58 in the previous section, we have a < K(cn) = Na. 

(b) First we must show that A is an ordinal. X is a set of ordinals, so all we 

need to show is that if /3 6 X, then (3 C X. So suppose that (3 £ X and 

take any 7 € (3. Then 

N7 < H/3 (as 7 < (3) 

< a (as (3 E X), 

so that 7GI. Thus (3 C X as required, so that X is an ordinal. 

Next we show that X is a successor ordinal by showing that it is neither 0 

nor a limit. As a is an initial ordinal, a has to be infinite, so that u < a, 

or, equivalently, K0 < a. This means that 0 £ X, so that X is non-empty, 

i.e. I/O. Could X be a limit ordinal? If so, then as N7 < a for all 

7 € X, we would have a as an upper bound for the set {K7 176 A}, so 

that 

a > U(N7 : 7 G X} (= lub{K7 : 7 e A}) 

= Nx (as A is a limit); 

but this would mean that A £ A, which is impossible. Thus A cannot 

be a limit, which only leaves the possibility that A is a successor ordinal, 

say 7+. 

As 7 £ 7+ = A, we must have N7 < a. But as A ^ A, we have N7+ a, 

so that a < K7+. Thus 

K7 < a < M7+. 

All three of M7, a and N7+ are initial ordinals, and by definition N7+ is 

the legist initial ordinal greater than K7. We must thus have 

K7 = a, 

as required. 

Thus the K7s completely describe the different possible sizes (or cardinals) of 

the infinite ordinals, as by Theorem 8.20 every infinite ordinal is equinumerous 

with some initial ordinal, hence to some N7. In Chapter 6 we avoided saying 

what we meant by the size or cardinal of an infinite set. For ordinals, we are 

now in a position to say what we mean! 

Definition 

Let a be an ordinal. The cardinal of a, written as Card(o:), is defined 

as follows: 

For a finite, Card(o:) is simply a. 

For a infinite, Card(a) is the least K7 equinumerous with a. 
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Furthermore, if an infinite set X can be well-ordered, we can find an H7 with 

which it is equinumerous, so that this N7 serves as a measure of the size of X. We could thus extend the 

This is the content of the next exercise. definition of cardinal by setting 

Card(X) = K7. 

Exercise 8.73 

Let X be an infinite set which can be well-ordered. Explain why there is an 
H7 such that X « K7. 

Solution 

As X can be well-ordered, by R say, there is some ordinal a order-isomorphic By Theorem 8.6. 

to X; and the order-isomorphism is a bijection between X and a. Thus 

X « a. As X is infinite, so too is a, so that there is some H7 with a « H7. 
Hence X « N7. 

So if every set can be well-ordered (the well-ordering principle), the H7s, along 

with the natural numbers, would completely describe the cardinals of all sets. 

In Cantor’s original theory, the H7s were indeed his cardinal numbers, but with 

hindsight this depended on heavy use of equivalents of the axiom of choice, 

including the well-ordering principle. In the next chapter we shall investigate 

what happens when one assumes AC. 

For the moment, let’s investigate the structure of the H7s a bit more. Those 

that we have met before, namely Ho and Hi (i.e. u and u>i), are both limit 

ordinals. The next exercise shows that this is the case for all the K7s. 

Exercise 8.74- 

(a) Let (3 be an infinite ordinal, so that u < (3. Construct a bijection to show 

that « (3. 

(b) Hence show that an M7 is a limit ordinal. 

Solution 

(a) We can exploit the fact that u is a subset of (3 and hence of f3^ (= (3\J {/?}). 

Define a function / by 

It is easy to show that / is a bijection. 

(b) If K7 is a successor ordinal, say (3+, then K7 is equinumerous with the 

ordinal /?, which is smaller in the sense that /? < H7. Thus K7 cannot be 

initial. Hence any initial ordinal can be neither a successor nor 0 (as an 

initial ordinal must be infinite), and must thus be a limit. 

What happens, in terms of cardinality, when one adds K7s to each other? It 

helps to investigate the ordinal sum n -I- /i for a limit ordinal p.. 

First of all, this sum is order-isomorphic to the order sum p + p, so that this 

order-isomorphism is a bijection between p + pand (p x {0})u(p x {!}). 
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Next note that every element of n is either of the form n for some n e u; or 

of the form A + n for some limit ordinal A and n£ u. Then we can define a 

function /: g, x {0} —> n by 

/(n, 0) = 2n, for n £ u, 

/(A + n, 0) = A + 2n, for each limit A e /x and n £ u, 

and similarly a function g: g, x {1} —> g by 

g(n, 1) = 2n + 1, for n £ u>, 

g(X + n, 1) = A + 2n + 1, for each limit A £ g and n £ u>. 

You can check that as /x is a limit ordinal, / and g are well-defined and one- 

one, and that by gluing / and g together we obtain a bijection from 

(g x {0}) U (g x {1}) to g. Thus /x + g m g. 

This means that for each 7, 

N7 + N7 « N7. 

The next exercise looks at the cardinality of the sum of two different K7s. 

Exercise 8.75 ——-- 

Show that 

"T 1^/9 ^ max{Ka, ( ^max{d,/3})' 

[Hint: use Theorem 8.13 and Exercise 8.46 to obtain suitable upper and lower 

bounds for the sum in terms of the biggest of Na and K,g.] 

There is a corresponding result for the multiplication of two N7s. Recall that 

the ordinal product a • (3 of two ordinals is order-isomorphic to their Cartesian 

product a x 0 with the anti-lexicographic order: this means that in terms of 

cardinality, a ■ (3 « a x (3. The key result which follows makes much more use 

of the fact that an K7 is an initial ordinal, not just a limit ordinal, than in 

our argument for addition. 

Theorem 8.21 

Let k be an initial ordinal. Then 

k • k « K. 

In terms of the N7 notation, this becomes, for any ordinal 7, 

H7 • K7 « N7. 

Proof 

We shall show by transfinite induction that for every infinite ordinal a, 

a x a « a, 

which, by Theorem 8.10, implies that a • a rZj Qi. 

The result holds for a = u>, the smallest infinite ordinal, by Theorem 6.4 of 

Section 6.4. 

By Theorem 8.16 every infinite 

ordinal is of the form A -I- n, for 

some limit A and n £ u>. 

In the next chapter we shall use 

the symbol + to stand for a sum 

operation on cardinals, so could 

write this as N7 -(- N7 = N7. Care 

will be needed to distinguish 

between cardinal -I- and ordinal + 

for the latter N7 + N7 > N7. 

By Theorem 8.10 of Section 8.3. 

All we want out of the 

order-isomorphism here is that it is 

a bijection! 

It’s easier to write k than N7! 

So we are looking at all infinite 

ordinals, not just those which are 

initial. The proof is not all that 

easy ... 
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Suppose that the result holds for an infinite ordinal 0. We shall show that it 
holds for 00. By Exercise 8.74, 00 ss 0. Thus 

00 x p* & 0x 0 (as 00 « 0) 

&P-P 
« 0 (by induction hypothesis) 

as required to show that the result holds for 00. 

Now suppose that the result holds for all infinite 7 less than a limit ordinal 

A, where A > u. We shall show that it holds for A. There are two cases. The 

easy case is when A is not an initial ordinal, as then A « 7 for some 7 < A, so 
that 

A x A « 7 x 7 

« 7 (by induction hypothesis) 

« A. 

The hard case is when A is an initial ordinal, in which case we have 7 -x A for 

all 7 < A. We shall show that A x A « A by constructing a special ordering 

R on A x A which makes the set order-isomorphic to A, so that there is a 

bijection between the sets, as is required to show that they are equinumerous. 

We define R by 

(■a,0)R(a',01) if (i) max{a,^} < max{a',^}, 

or (ii) max{a,/?} = max{a',/?'} and 0 < 0*, 

or (iii) max{a,/?} = maxla',/^} and 0 = ft and a < a'. 

It can be shown (using the result of Exercise 7.69) that I? is a well-order on 

A x A. It is easy to show that 

A x A = (J{7 x 7: 7 € A}. 

Also from Exercise 7.69, for any 7,7'e A with 7 < V, we can show that 7x7 

is an initial segment of both -/XT' and A x A under the order R. Thus 
{7x7:76 A} forms a C-chain with union order-isomorphic to A x A, with 

all the sets ordered by R. 

For each 7 6 A let 0(7) be the ordinal number order-isomorphic to 7 x 7 or¬ 

dered by R. Then {#(7) : 7 6 A} forms a C-chain, this time of ordinals, with 

each element order-isomorphic to the corresponding element of the earlier 

chain {7 x 7: 7 6 A}, so that 

A x A = |J{7 x 7: 7 6 A} (ordered by R) 

S U{0(7): 7 € A}. 

But for each 7 € A we have 0(7) = 7 x 7, so that 0(7) » 7 x 7, which by the 
induction hypothesis means that 0(7) ^ 7- As in this case A is an initial 

ordinal and 7 € A, so that 7 X A, this means that 9(7) X A, for each 7 G A. 

Thus A is an upper bound for the set of ordinals {0(7) • 7 C A}, so that 

A x A = U{0(7) : 7 G A} 

< A (as A is an upper bound). 

Thus A x A X A. As trivially A X A x A, this gives us A x A « A, as required. ■ 

This R is the same order as dealt 

with in Exercise 7.69 in Section 7.4. 

This is left as an easy exercise for 

you. 

It is the initial segment 

SegAxA((7,0)).' 

9(7) is unique by Theorem 8.6 of 

Section 8.2. 
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Exercise 8.76- 

Fill in the following detail of the proof above. Use the fact that A is a limit 

ordinal to show that 

A x A = U{7 x 7: 7 € A}. 

Theorem 8.21 along with the result of Exercise 6.26 of Section 6.3 provides a 

simple alternative proof that K7 + H7 « N7. We leave the details for you as an 

exercise. Likewise we shall leave the proof of the analogous result to Exercise 

8.75 above for the multiplication of different N7s as a straightforward exercise 

for you. 

Exercise 8.77--- 

Use Theorem 8.21 and the result of Exercise 6.26 to show that M7 + K7 « N7. 

Exercise 8.78___ 

Show that 

^ max{Ka, ( ^max{a,/5})' 

So if the tt7s are going to be our infinite cardinal numbers, their addition 

and multiplication as cardinals is a bit dull! In the next chapter, we shall see 

how the axiom of choice resolves many of the issues surrounding cardinals, 

and connects them firmly with ordinals, in particular the K7s, as in Cantor’s 

original theory. 

Further exercises 

Exercise 8.79- 

Let be any initial ordinal and neN. Show that 

+ n « • n « Na. 

Exercise 8.80- 

Show that if k is an initial ordinal and X, Y are sets such that k -< X x Y, 

then k X X or k X Y. [Hints: suppose that /: k —> X x Y is one-one. Put 

A = {x € X : (x,y) 6 Range(/) for some y G F} 

and 

B = {y e Y : (x, y) E Range(/) for some i6l}, 

so that k » Range(/) C Ax B. Show that both A and B can be well-ordered, 

so that there are initial ordinals and N/j such that A « Ka and B « Hp. 

Now exploit the fact that k is initial and the result of Exercise 8.78.] 

But exponentiation of the K7s is 

very interesting! 
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9 SET THEORY WITH THE AXIOM OF 
CHOICE 

9.1 Introduction 

We are now in a position to construct the remainder of Cantor’s remarkable 

theory of infinite numbers. That we have taken so much space to get here, 

compared to Cantor’s original work, is mainly a reflection of the very complex 

issues that this raised and the consequent attempts to place his work on a 

more rigorous footing. One of these issues is the role of the axiom of choice: 

as you will see in this chapter, AC is inextricably caught up with Cantor’s 
work linking cardinals and ordinals. 

First of all, let us remind ourselves of some of Cantor’s results which can be 
obtained without using AC. 

There are as many natural numbers as rationals. 

There are more real numbers than rationals. 

There are uncountably many transcendental real numbers. 

There are as many points on the real line as in the plane. 

Along with these very impressive results, we have proved important technical 

results, like the Schroder-Bernstein theorem, telling us much about how to 

compare the ‘sizes’ of sets, without having used AC. But we have avoided 

the issue of saying what the size, Card(A), of an infinite set X actually is! 

Cantor’s definition of Card(X) was effectively equivalent to saying that it is 

the class {Y : X & F}, which is a proper class. If this class were to contain 

some well-ordered sets, then within the theory that we have developed so 

far, the class would contain a unique initial ordinal - we could then take 

Card(X) to be the corresponding Ka. But if X is equinumerous with some 

ordinal, then the bijection between them can be used to define a well-order 

on X. That’s where AC comes into the theory of cardinals, as the principle 

from which Zermelo proved that every set can be well-ordered. 

In the next section of this chapter we shall look at the relationship between 

AC and the well-ordering principle, (which we abbreviate as WO) namely 

that every set can be well-ordered. And in the third section we shall look at 

the impact of AC on cardinal arithmetic. 

We started the book by looking at Cantor’s and Dedekind’s answers to the 

question: 

What are the real numbers? 

Much of this last chapter hinges on two questions which Cantor raised as a 

consequence of his work on infinite sets: 

1. Is there a well-ordering of R? 

2. Is there an infinite subset of U equinumerous with neither N nor IR? 

In the final section of the chapter (and book) we shall discuss these questions 

and look at some of the ways in which set theory can be further developed. 

That is, N « Q. 

That is, Q -< IR. 

That is, IR « IR2. 

Cantor didn’t actually attempt to 

represent Card(X) by a set. 

Instead he represented it by the 

property ‘... is equinumerous with 

X’; but the corresponding class is a 

proper class. 

That is, is there an X C IR with 

N^X 
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9.2 The well-ordering principle 

Zermelo’s answer to Cantor’s question of whether IR can be well-ordered was 

effectively to prove that every set (so in particular IR) could be well-ordered, on 

the basis of his axiom of choice. In this section we shall look at a proof of not 

only this result, but also of the equivalence of the following three apparently 

unrelated mathematical principles. 

The axiom of choice (AC) 
Suppose that M is a non-empty set. Then there is a function 

h: 3d(M) \ {0} —> M such that for all non-empty subsets A of M, 

h(A) e A. 

The well-ordering principle (WO) 

Every set can be well-ordered. 

Zorn's lemma (ZL) 
Let P be a non-empty set partially ordered by R with the property that 

every chain g7 in P has an upper bound in P. Then P contains at least 

one maximal element. 

We shall break down the proof that these principles are equivalent into sep¬ 

arate stages. We shall give separate proofs that WO =>■ AC, AC => WO, 

ZL => AC, AC => ZL. 

First, let’s look at the proof that WO implies AC. This is so straightforward 

that you might like to try it as the next exercise. 

Exercise 9.1- 

Assume WO, i.e. for every set X there is a well-order Ron X; and suppose that 

M is a non-empty set. Show that there is a function h: 3°(M) \ {0} —¥ M 

such that for all non-empty subsets A of M, h(A) € A. [Hint: by WO there 

is a well-order R on M. Exploit this to define each h(A).] 

Solution 

Let R be a well-order on M. Then each non-empty subset A of M contains a 

least element min A under this order. Thus we can define a choice function h 

by 

h: 3°(M) \ {0} —> M 

A 1—¥ min A. 

We have thus proved the following theorem. 

Theorem 9.1 

The well-ordering principle implies the axiom of choice. 

The proof of the converse is more complicated, so we shall actually show it to 

you! 

We have taken the power set form 

of AC for convenience. 

There are many attractive 

alternative routes, e.g. proving 

WO =» AC =► ZL =► WO. 
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Theorem 9.2 

The axiom of choice implies the well-ordering principle. 

Proof 

Let X be any non-empty set. To define a well-order on X, we shall first 
construct a function / from an appropriately chosen ordinal onto X. It will 
then be very straightforward to define a well-order R on X, exploiting the 
well-order on the ordinal. 

But how do we choose the ordinal? The answer comes from Hartogs’ theorem 
(Theorem 8.18 in Section 8.5). This gives us an ordinal a such that a f~X. 
Although we cannot assume that this means that X -< a, we have the feeling 
that in some sense a is bigger than X\ This will show up in our construction 
below, in the following way. We shall try to define a one-one function / from 
a to X by transfinite recursion: as a 2< X, we must run out of elements of X 
as possible images under / before we have used up all of the domain a. This 
means that we shall need some set c not in X for the remaining elements of 
a to map to - a by now familiar trick! 

Where will AC fit in? Our method will be to define /(/?), for each /3 E a, 
to be one of the elements of X not already used up as /(y) for some 7 E (3, 
i.e. an element of X not in Ranged/?). To choose one of these elements we 
shall need a choice function on non-empty subsets of X. So, assuming AC, as 
is permitted for this theorem, take a choice function h: 3°(X) \ {0} —> X 
such that for all non-empty subsets A of X, h(A) E A. 

We can now fit all the ingredients of our construction together. Define a 
function / on a by transfinite recursion as follows: 

/: a —>Xu{c} 
0 ► h(X), 

(h{X\ Range(/|/j)), if X \ Range(/|/J) # 0, 
P 1c, otherwise. 

We shall leave you to exploit / to complete the proof as Exercise 9.2 below. ■ 

Exercise 9.2--- 

Work through the details of the end of the proof of Theorem 9.2 as follows. 

(a) Show that if neither /(7) nor /(/?) equals c, so that both are in X, with 

7 < P, then /(7) 7^ /(/?)• 
(b) If c £ Range(/), then we can infer from part (a) that / is one-one, con¬ 

tradicting that a 2^ X. Thus we must have c E Range(/). Let 6 be the 

least element of a such that / (£) = c. 

Show that f\s is a bijection between 6 and X. 

(c) Exploit f\s to define a well-order on X. 

If X = 0 the result is trivially true. 

Recall that a 2? X means that 
there is no one-one function from 
a into X. 

For this definition, we don’t need 
to distinguish between (3 being a 
successor ordinal or a limit ordinal. 

This construction is very 
reminiscent of others in this book, 
for instance that used in Theorem 
6.2 of Section 6.4 showing that if 
A C N, then A is finite or A a: N. 

Let us now turn to the equivalence of AC and ZL. We asked you to show that 
ZL implies AC as Exercise 5.24 in Section 5.4. So all we need to show here is 
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that AC implies ZL. 

Theorem 9.3 

The axiom of choice implies Zorn’s lemma. 

Proof 

Let P be a non-empty set partially ordered by R - we shall take R to be a 

strict order - with the property that every chain W in P has an upper bound 

in P. We have to show that P contains at least one maximal element. 

Our method will be to take a suitably big ordinal a and define an order¬ 

embedding / by transfinite recursion from a into P. We shall attempt to 

define /(/?), for each (3 £ a, so that f(i)Rf((3) for all 7 £ (3. As an ordinal is 

linearly ordered by e, the images of / will thus form an R-chain. What we 

mean by a ‘suitably big ordinal ct’ is one as given by Hartogs’ theorem, so that 

a j< P. This will ensure that something has to go wrong with our construction, 
because we cannot end up with / providing an order-embedding, hence a one- 

one function, from a into P. What will turn out to have gone wrong is that 

for some (3 the element /(/?) of P is a maximal element of P. 

Let us assemble the ingredients required for our attempt at an order-embedding. 

First, we use Hartogs’ theorem to give us an ordinal a with a^P. Next, let 
us have a compact notation for the subset of P consisting of all elements, if 

any, greater under the order R than a given x: we shall call this subset Sx, 

so that 

Sx = {y £ P: xRy}. 

Note that x is a maximal element of P if and only if Sx is empty. Next, as we 

are assuming AC, let h be a choice function on non-empty subsets of P, i.e. 

h: 9°{P) \ {0} —> P such that for all non-empty subsets A of P, h(A) £ A. 
Lastly, as so often in these arguments, we shall need a set c not in P as a 

possible image for when we have run out of suitable images in P; and for 

the sake of convenience in the definition below, we set Sc = 0. Now define a 

function / as follows: 

/: a —* P U {c} 

/(0) = h(P) 
0, 

otherwise. 

Just to make sure that you see the significance of the conditions determining 

the definition above, note that 

Sf(/3) A 0 if and only if there is some y with f((3)Ry, 

One of the interests of this is that 

ZL implies the dichotomy principle 

for cardinals, namely that for any 

sets A, B, we have A A B or 

B < A. This is Theorem 5.7 in 

Section 5.4. 

In terms of a strict order R, an 

upper bound for ^ is a y £ P such 

that for all 16?, xRy or x = y. 

It might be more appropriate to 

say “what has gone right” here, as 

we actually want to find such a 

maximal element of P! 

and 

P|{5/(7) : 7 G A} 0 if and only if there is some y with 

fi^Ry for all 7 £ A. 
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Furthermore, if /(-y) equals c for some 7 Go, then f(0) = c for all 0 > 7. Also 

note that until c is obtained as an image, / will be strictly order-preserving 

and thus one-one (which we shall ask you to confirm in Exercise 9.3). As 

a-£P there can be no one-one function from a to P, so that we must have 
/(7) = c for some 760;. 

Put 8 = min{7 G a : /( 7) = c}. As P is non-empty, 8 cannot be 0, so that 5 

is either a successor, /?+, for some 0, or a limit A. If <5 is of the form /?+, what 

can we say about /(/?)? As f(0) doesn’t equal c, it must be some element of 

P. And as /(/?+) = c, it must be that the set i.e. the set of all elements 

of P greater than f(0) in the order P, is empty. This would mean that f{0) 
is a maximal element of P, which is what we are looking for. 

What would happen if 8 was a limit ordinal? This would mean that /(y) 

was defined for all 7 G 8 and that fl{5/(7) : 7 G 5} = 0, so that there was no 

y with /(7)Py for all 7 G A. But f\$ is order-preserving and, of course, the 

ordinal 8 is linearly ordered by G, so that the subset defined by 

^ = {fin) ■ 7 e 8} 

of P is an P-chain. By the special condition on P (the only place in this proof 

where we use it) this chain has an upper bound, y say, in P. Can this y be 

one of the elements of the chain If y did equal /(y) for some 7 G 8, then 

as 8 is a limit ordinal, we also have 7+ G 8, so that /(7+) is also an element of 

ST. But the construction of /(7+) guarantees that /(7)P/(7+), so that /(7) 

is not an upper bound of W. It follows from this contradiction that y does 

not equal /(7) for any 7 G 5, so that f|{S/(7) : 7 G 5} ^ 0, giving us a further 

contradiction. Thus 8 cannot be a limit ordinal. 

We are left with the conclusion that 8 is indeed of the form (3+ for some 0, 

and that F{0) is a maximal element of P, as required. ■ 

Exercise 9.3----- 

Confirm the following detail of the proof of Theorem 9.3. Show that if neither 

/(7) nor /(/?) equals c, so that both are in P, with 7 < 0, then f(i)R(0). 
[Hint: use transfinite induction on 0 for fixed 7.] 

9.3 Cardinal arithmetic and the axiom of choice 

Given the results of the previous section, on the equivalence of AC to WO 

and ZL, we are now able to see the impact of AC on the theory of cardinals. 

What we shall really be doing is resurrecting much of Cantor s work, as in 

[12], within the more rigorous setting of ZF. Assuming the axiom of choice 

we can define the cardinal number Card(X) of an infinite set, can show that 

such numbers are linearly ordered by A, and can perform arithmetic with 

them. We shall also see the extent to which Cantor’s edifice of cardinals 

actually requires the axiom of choice, by showing that many of his results 

about cardinals, which follow from AC, are actually equivalent to AC. 

Recall that we are trying to show 

that P contains a maximal element 

with respect to its order by R. 

Remember that R is a strict order. 

By and large, we could not do 

these things in Chapter 6, where 

we were avoiding use of AC. 
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Let’s look first at how to define the cardinal number of an infinite set X. Can¬ 

tor effectively associated the cardinal of X with the property ‘is equinumerous 

with X\ which in terms of ZF would give rise to the class 

{Y :Y taX}. 

But this is a proper class, not a set, and we want the cardinal of X within ZF 
to be a set. What AC allows us to do is to select a special set out of this class 

to be the cardinal of X, namely an ordinal, as follows. Assuming AC, which 

is equivalent to WO, A can be well-ordered. There are then several ordinals 

to which possible well-orders on X are order-isomorphic, and we will specify 

one of them as the cardinal of X. The obvious candidate is the least such 

ordinal. This is essentially the content of Exercise 8.73 of Section 8.5, which 

says that there is an initial ordinal N7 with X ~ N7. We can restate this as a 

theorem. 

Theorem 9.4 Every set has a cardinal 

AC implies that for every infinite set X there is an tt7 such that X « K7. 

This allows us to define the cardinal of X as follows. 

Definitions 

Let X be an infinite set. Assuming AC, the cardinal number (or, more 

simply, cardinal) of X, written as Card(X), is the initial ordinal N7 for 

which X « K7. 

The class g7 of cardinal numbers consists of the finite and initial ordinals, 

i.e. 

g7 = {a : a is a finite or initial ordinal}, 

or equivalently 

g7 = u> U {K7 : 7 is an ordinal}. 

For two sets X and Y, we say that the sets have the same size if 

Card(X) = Card(y) 

An immediate consequence of these definitions is that 

X « Card(A), 

for all sets X. 

In the next (we hope very straightforward) exercise we ask you to show that 

there is only one cardinal number of each ‘size’. 

Exercise 9.4- 

Show that for any sets X, Y, Card(X) = Card(F) if and only if X « Y. 

Exercise 9.5- 

Show that for any cardinal k, Card(/c) = k. 

Without AC, the best we can do is 

define Card(A) to be X itself and 

say that Card(X) = Card(T) when 

X ss Y. The resulting theory is as 

in Chapter 6. 

For a set X which is finite, so that 

X ss n for some n € N, we have 

already defined Card(X) to be n 

(in Chapter 6). 

We are implicitly assuming AC in 

these exercises, so that Card(X) is 

always defined. 
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Exercise 9.6_ 

Show that & is not a set. 

9.3 Cardinal arithmetic and the axiom of choice 

Ordinals have a very rich structure, which cardinals (assuming AC) then in¬ 

herit. By Exercise 9.4 the relation of equality (=) on cardinals is much less 

cumbersome than that of equinumerosity («) on sets, which is merely an 

equivalence relation. Let’s look now at the order structure of cardinals. The 

class <f of all ordinals is well-ordered by the usual < (i.e. the e relation), and 

the subclass W must then also be well-ordered by this <. For cardinals rc and 

A, i.e. finite and initial ordinals, the relationship k < A has the desired special 

significance that k < A if and only if /c -< A. So we shall take the usual < as 

our order on the cardinals. 

Definition 

Let k, A be cardinals. Then we shall say that k < A exactly when k £ A, 

i.e. when k, < A in the order of the ordinals. 

Of course one of the properties of < on ordinals is the linearity property which, 

in terms of the associated weak order <, can be written as 

for all k, A, k < A or A < k. 

This means that AC resolves a deficiency of X left over from Chapter 6, as 

follows. 

Theorem 9.5 The dichotomy principle 

AC implies the dichotomy principle, namely that for any sets A,B, 

A B or B ■< A. 

Proof 
One proof uses the fact that, assuming AC, every set X is equinumerous to 

its cardinal, namely the ordinal Card(X). By the linearity of the usual order 

on the ordinals, either Card(A) < Card(-B) or Card(Z?) < Card(A). Without 

loss of generality, let’s suppose that Card(A) < Card(B), which implies that 

Card(A) C Card(B). This gives 

A « Card(A) 

-< Card(£) (as A C B) 

« B, 

so that A ■< B. * 

Exercise 9.7______ 

Let X be a non-empty set and assume AC. Show that there is an element 

xo G X such that so d *, ^ all . € X. Does the result still hold if X is a 

proper class? ___ 

Assuming that ^ is a set leads to a 

contradiction, produced by Cantor 

in 1899 (see [11]) and often called 

Cantor’s paradox. 

See e.g. Exercise 8.70 of Section 

8.5. 

Linearity also means that for any 

sets X, Y, their cardinals have a 

maximum, written as 

max{Card(X), Card(y)}. 

Another proof exploits the fact 

that AC implies Zorn’s Lemma. 

The result then follows from 

Theorem 5.7 in Section 5.4. 

Of course if Card(i?) < Caxd(A), 

we end up with B ■< A. 
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9 Set Theory with the Axiom of Choice 

Using AC we can also define arithmetic operations on cardinals. With these 

operations, many of the results of Chapter 6 translate into very familiar and 

attractive properties of this arithmetic. 

Definitions 

Assume AC and let X, F be any sets. Then the operations of cardinal 
addition, multiplication and exponentiation are defined on the cardinal 

numbers as follows: 

Card(X) +r Card(F) = Card((X x {0}) U(f x {1})); 

Card(X) -sr Card(F) = Card(X x Y); 

Card(X)Card(y) = Card (XY). 

So, for instance, 

Card(N) Card(N) = Card(N), 

because (f^l x {0}) U (f^J x {1}) w N. And 

Card((\l) •<# Card(IR) = Card(IR), 

because N x IR » [R. Also 

Card(2)CardW = Card(2^). 

The notation for cardinal exponentiation is potentially confusing. If k and A 

are cardinals (and thus sets, namely natural numbers or ordinals N7), does kx 
mean the set of functions from A to k or the cardinal of this set, which is how 

the cardinal exponential kx is defined? We hope that it will be clear from the 

context which of these is meant. If kx appears in an equation or inequality 

involving other cardinals and the symbols =, < or <, we shall usually mean 
the cardinal exponential. 

The results of Section 8.5 about adding and multiplying the ordinals N7 mean 

that the addition and multiplication of cardinals is dull, perhaps surprisingly 
so. 

Theorem 9.6 The absorption law 

Assume AC and let X, Y be sets, at least one of which is infinite. Then 

Card(A) Card(F) = Card(X) -r Card(F) 

= max{Card(X), Card(F)}. 

Proof 

For any two ordinals 7,6, their ordinal sum 7 + 5 is equinumerous with 

(7 x {0}) U (6 x {1}). In particular, this result holds when 7 and 6 are car¬ 

dinals. As at least one of X and Y is infinite, at least one of Card(X) and 

Card(F) is an tta, for some a; and the other is either an N/j or an n G N. The 

By Theorem 6.3 of Section 6.4. 

By Exercise 6.54 of Section 6.5. 

The bigger of Card(A) and 

Card(F) ‘absorbs’ the smaller. 

The sets are equinumerous because 

they are order-isomorphic. 
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9.3 Cardinal arithmetic and the axiom of choice 

results of Exercises 8.75 and 8.79 of Section 8.5 then translate into the result 
for cardinal addition: 

Card(X) +g? Card(Y) = max{Card(Y), Card(Y)}; 

and the results of Exercises 8.78 and 8.79 of the same section translate into 
the equivalent result for cardinal multiplication. ■ 

The result of this theorem can be written directly in terms of cardinals. As¬ 

suming AC, for any cardinals «, A, at least one of which is infinite, 

k A = k. A 

= max{/c, A}. 

Exercise 9.8_ 

Show that 2r x 2r « 2R. You may assume AC. 

Solution 

Using AC we have 

2rx2r« Card (2R) x Card (2U) 

« Card (2r) Card (2R) 

= max {Card (2R) , Card (2R)} (by Theorem 9.6) 

= Card (2r) 

« 2r. 

This result can in fact be derived quite easily without using AC, by the meth¬ 

ods of Section 6.5, which some might consider gives it a higher status! The 

use of AC does, however, make the derivation even easier. 

Exercise 9.9---—-—- 

Why does the result of Theorem 9.6 require at least one of X and Y to be 

infinite? 

The result of Exercise 9.8 can be written in terms of cardinal arithmetic as 

Card (2m) -r Card (2U) = Card (2R). There are many other results of cardinal 

arithmetic which, like this one, follow from earlier results obtained without 

using AC, especially results from Chapter 6. Take, for instance, the result 

that for all sets A, B, A x B « B x A. In terms of cardinals, this becomes 

for all cardinals «, A, k ■<& A = A -gr k, 

as follows. We have 

k A 

rjAxk (as A X B « B x A for all A, B) 

w A 

and as two cardinals are equal if and only if they are equinumerous the result 
follows We can similarly state and prove other attractive equalities involving 

cardinals, fully justifying Cantor’s description of cardinals as possessing an 

arithmetic. 

An alternative proof exploiting AC 

uses that Card(2R) is an N7, along 

with Theorem 8.21 of Section 8.5 

which says that • tt7 ~ H7. 

This latter theorem says that in 

general 

k ■ k — K, 

for all infinite cardinals k. 

You might like to try this yourself 

as a revision of the use of the 

Schroder-Bernstein theorem. 

This is the result of Exercise 6.13 

of Section 6.3. 

By Exercise 9.4 above. 
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9 Set Theory with the Axiom of Choice 

Theorem 9.7 

Assume AC and let k, A, // be any cardinals. Then each of the following 
holds. 

(i) k, +g> A = A +& k. 

(ii) k (A +*> n) = (k A) +sr n. 

(iii) k ■<# A = A -jr k. 

(iv) k (A '<# n) = (k •% A) '<& [i. 

(v) k '<# (A n) = (/c -<g A) +gf (/c /i). 

(vi) = kx -r 

(viij/c*’8^ = (/cA)M. 

Here etc. are cardinals, not sets 

of functions. 

Exercise 9.10_ 

Prove Theorem 9.7. [Hint: use Exercise 6.13 of Section 6.3.] 

Likewise, there are very attractive results about cardinal inequalities, for in¬ 

stance those arising from Exercise 6.16 of Section 6.3, as follows. 

Theorem 9.8 

Assume AC and let k, A,/x be any cardinals with k < X. Then 

(i) k +g> fi < A -kg’ fJ- 

(ii) k '<& fi < A -<g n 

(iii) < AM 

(iv) nK < fj,x 

Exercise 9.11_ 

Prove Theorem 9.8. 

Exercise 9.12 

Prove the following results of cardinal arithmetic assuming AC, where k and 
A are infinite cardinals. 

(a) 2k+#k = 2k 

(b) 2K '<& 2X = 2maxfK>A} 

(c) If k < A then kx = 2X. [Hint: show that 2X < kx and kx < 2X.] 

As the context of this exercise is 

cardinal arithmetic, the 2K in this 

exercise is the cardinal resulting 

from cardinal exponentiation, 

rather than the set of functions 

from k to 2. Similarly with the 2X 
and kx. 

We have already remarked that the addition and multiplication of infinite 

cardinals are essentially rather dull, thanks to Theorem 9.6. It is cardinal 

exponentiation which is exciting, in that it often produces bigger cardinals 

272 



9.3 Cardinal arithmetic and the axiom of choice 

than those that it is operating on! This of course is a consequence of Cantor’s 
theorem, which in terms of cardinal arithmetic is written as 

k < 2K, 

for all cardinals k. Using AC we have that for any infinite cardinal k, 2k is also 

a cardinal, so that for instance 2K° is an K7 for some 7. The natural question 

is ‘What is 7?’. Of course 7 > 0, as 2K° > M0; and it turns out that there 

are some other restrictions, such as 7 ^ u. But otherwise the issue cannot 

be resolved within ZF alonel We shall return to this problem, the continuum 

problem, in the next section. 

To end this section, let us look at how some of the results above about cardi¬ 

nals which stem from AC actually entail AC themselves. That such principles 

are then equivalent to AC illustrates the extent to which Cantor’s original 

theory of cardinals is intimately bound up with Zermelo’s axiom of choice. 

First, let us look at the result of Theorem 9.4: 

AC implies that for every infinite set X there is an N7 such 

that X « N7. 

Let’s investigate the converse of this result. If X is an infinite set for which 

X « N7, for some tt7, then the bijection between X and the (initial) ordinal 

N7 can be used to define a well-order on X. Thus if this holds for all infinite 

sets X, then every infinite set can be well-ordered, so that the well-ordering 

principle holds. (What happens for finite sets? Look at Exercise 9.13 below.) 

As WO is equivalent to AC, we have proved the converse to Theorem 9.4: 

Theorem 9.9 

If for every infinite set X there is an K7 such that X ~ K7, then AC 

holds. 

Exercise 9.13----- 
Explain why every finite set X can be well-ordered, without needing to use 

AC or any equivalent. 

Next, let us look at the dichotomy principle, which Theorem 9.5 shows to be 

a consequence of AC. We shall show that this principle actually implies AC. 

Theorem 9.10 

Suppose that the dichotomy principle holds, i.e. for any sets A, B 

A ■< B or B ■< A. 

Then AC holds. 

Theorem 6.5 of Section 6.4. 

The problem is one of the major 

problems posed by Cantor. The 

cardinal Card (2N°) is the size of 

1R, the continuum. 

If f: X —> N7 is the bijection, 

define <x by x <x x' if 

f{x) < fix') (with the usual 

ordinal < on H7). It is very easy to 

show that <x is a well-order on X. 

With Theorem 9.4, this means that 

this principle is equivalent to AC. 

Thus the dichotomy principle is 

equivalent to AC. 
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9 Set Theory with the Axiom of Choice 

Proof 

As with the previous theorem, we shall actually show that dichotomy implies 

WO. We take any set X and show that X can be well-ordered. This time, our 

argument will use some high-powered machinery, namely Hartogs’ theorem. 

Assume the dichotomy principle and let X be a set. Then by Hartogs’ theorem 

there is an ordinal a such that a^I. By the dichotomy principle we have 

that either a A X or X -< a, so as a X we must have X ■< a. This means 

that there is a one-one function / from X into a. This / can be exploited to 

define a well-order <x on X (which you can show as the next exercise). 

Thus every set can be well-ordered, and as WO is equivalent to AC, this means 

that AC holds. ■ 

Exercise 9.14_ 

Complete the proof of Theorem 9.10 by showing how to exploit the one-one 

function /: X —>■ a (with codomain the ordinal a) to define a well-order <x 

on X. 

Let’s look now at the absorption law in Theorem 9.6. If we remove the termi¬ 

nology of cardinals and cardinal arithmetic, this theorem can be rewritten as 

follows: assuming AC, then for any sets X, Y, at least one of which is infinite, 

(X x {0}) U (Y x {1}) » X x Y 

one of X and Y. 

Theorem 9.11 

Suppose that for all sets X, Y, at least one of which is infinite, 

(X x {0}) U (Y x {1}) PS one of X and Y. 

Then AC holds. 

Proof 

We shall show that the dichotomy principle holds. Then by Theorem 9.10, 

AC holds. 

Take any sets X,Y. If both sets are finite then there are natural numbers 

m, n with X ps m and Y « n. As m C n or n C m, it is easy to show that 

either X -<Y or Y -< X. Otherwise at least one of X, Y is infinite, so that by 

supposition 

(X x {0}) U (Y x {1}) « one of X and Y. 

In the case that (X x {0}) U (Y x {1}) « X, we have 

Y « Y x {1} 

c(Xx{o»u(y x {i}) 

» x, 
so that Y <X. Similarly if (X x {0}) U (Y x {1}) ps Y, we have X A Y. 

Thus the dichotomy principle holds, from which it follows that AC holds. ■ 

Theorem 8.18 of Chapter 8. 

Actually X -< a, but this fact isn’t 

required for the argument. 

We do this because the terminology 

of cardinals, like Card(X), requires 

use of AC to make sense: and we 

are going to show that the 

absorption law implies AC. 

Again, this means that this 

principle is equivalent to AC 
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9.3 Cardinal arithmetic and the axiom of choice 

Exercise 9.15_ 

Prove the corresponding result to the above theorem for ‘multiplication’, as 

follows. Suppose that for any sets X,Y, at least one of which is infinite, 

XxfRi one of X and Y. 

Show that AC holds. 

We can go on in this way, showing that various principles of cardinal arithmetic 

are actually equivalent to AC. For instance, the principle that for any infinite 
set X, 

X xX &X, 

which follows using AC from Theorem 8.21 of Section 8.5, itself implies AC. 

We have in this section essentially finished the recreation of Cantor’s theory 

of cardinals and their arithmetic. And we have hit one of Cantor’s major 

problems arising from this theory: assuming AC (which Cantor didn’t realize 

was needed), which cardinal H7 is the size of the continuum IR (or equivalently 

of 2*°)? We shall look further at this question in the next, and final, section 

of this book. 

Further exercises 

Exercise 9.16--- 
Assuming AC, show that Hi X 2U°. [Your argument could now be very much 

shorter than that suggested in the hint to Exercise 8.22 of Section 8.2: this 

exercise deals with u>i and ^(N), but these are essentially the same as or 

equivalent to Hi and 2^.] 

Exercise 9.17----- 
Let X be a set of cardinals. Show that U X is a cardinal. [Hints: X is also a 

set of ordinals, so that [J X is an ordinal. Investigate two cases: first, when 

X contains a greatest cardinal; and second, when it doesn’t.] 

Exercise 9.18------ 
Let X be any set and let Sym(X) be the set of all bijections from X to itself. 

(a) A transposition in Sym(X) is a permutation swapping two elements of 

X and leaving all the remaining elements of X fixed. Let X be infinite. 

Assuming AC, find Card({/ : / is a transposition in Sym(X)}). [Hint: 

the answer is one of Card(X) and 2Card^.] 

(b) Show that if X « Y then Sym(X) « Sym(Y). 

(c) The result of part (b) means that, assuming AC, we can define a factorial 

operation on cardinals by 

/d =4 Card(Sym(At)), 

for all cardinals At. Show, assuming AC, that At! — 2 . 

The details can be found in Rubin 

and Rubin [24], a compendium of 

remarkably many equivalents to 

AC. 

We could equivalently regard 

Sym(X) as the set of all 

permutations of X. 

In everyday maths, the number of 

permutations of a finite set with n 
elements is n\. 
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9 Set Theory with the Axiom of Choice 

Exercise 9.19_ 

Let {A{ :i E 1} and {Bt: i E 1} both be indexed families of non-empty sets, 

with A{ -< Bi for each i E I. 

(a) Assuming AC, show that 

U{Aj: i E /} 1 FI Bi, 
iei 

by constructing a suitable one-one function. 

(b) Show that U{^ :*€/}-< Flig/ Bi as follows. Suppose that 
0: U{^:*€/}—Bi is any one-one function. Define a function 
9i with domain At for each i 6 I by 

Oi: Ai —y Bi 
a i—y 9(a)(i). 

(i) Explain why 6i is not onto. You may assume AC. 

(ii) Assuming AC, show that 6 is not onto. [Hint: consider an element of 

ILe/ [Bi \ Range(0*)) and show that it cannot equal 9(a) for any 

a € UMi = * G /}•] 

(c) Let X be a set. Put I = X. Put Ai = {i} and Bi — 2 for each i E I. Use 

the result above to deduce Cantor’s theorem, X ~< 2X. 

9.4 The continuum hypothesis 

In this final section of the book we shall look at what is probably the major 

problem posed by Cantor but not resolved during his lifetime, the continuum 
problem. 

As part of his analytic work on subsets of the real line, Cantor came to 

suspect that any infinite subset of the continuum is equinumerous with either 

the natural numbers or itself: 

if A C IR with A infinite, then A « N or A « R. 

All of the infinite subsets of IR that he encountered fell into one of these two 

cases. One version of his continuum hypothesis is that the above is true. 

If IR can be well-ordered (for instance, if we assume AC) then one can ask 
which of the K7s equals Card(lR), or equivalently equals the cardinal 2H°. For 

there to be only the two sorts of infinite subset of IR, Cantor’s continuum 

hypothesis, usually abbreviated as CH, then becomes as follows. 

The continuum hypothesis 

(CH) 2*°=Ni. 

Once Cantor had hypothesized that the cardinal exponential 2H° equals the 

next biggest cardinal after K0, it was natural to suggest that the same pattern 

This result is called Konig’s 

theorem. 

The definition of Bx gives 

that 6(a) is a function with domain 

/ such that 6(a) (i) G Bi for each 

i G I. 

Thus there is no bijection from 

U{Ai-.iei} to nie/5i. 

For Cantor and his contemporaries, 

a ‘continuum’ was essentially any 

non-trivial segment of the real line 

and the continuum was the 

segment consisting of the real line 

itself. Of course Cantor’s work on 

cardinals showed that any two such 

segments have the same size. 
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9.4 The continuum hypothesis 

might hold for all cardinals, i.e. equals the next biggest cardinal after 

Ka. This is called the generalized continuum hypothesis, usually abbreviated 
as GCH: 

The generalized continuum hypothesis 

(GCH) 2Nq = Nq+, for all ordinals a. 

Proving CH was the first of Hilbert’s list of 23 problems which he presented 

in 1900 as the major unsolved problems facing mathematicians for the 20th 

century. The issue of whether R can be well-ordered was not far behind in 

its interest for mathematicians - indeed the subsequent introduction of the 

axiom of choice and the discovery of all its ramifications made AC a more 

significant issue than CH. The resolution of these issues was perhaps even 

more momentous than Hilbert had anticipated! 

Theorem 9.12 (Godel, 1940) 

If ZF is consistent, then so is ZF with AC and GCH. 

This means that, assuming ZF is consistent (which, by Godel’s incompleteness 

theorems of 1930-31, essentially cannot be proved), neither AC nor GCH can 

be disproved from ZF. And then in 1963 the American mathematician Paul 

Cohen showed, again assuming that ZF is consistent, that AC and CH (and 

thus GCH) cannot be proved from ZF - indeed CH cannot be proved from 

ZF even if one adds AC as an extra axiom. 

Theorem 9.13 (Cohen, 1963) 

If ZF is consistent, then so are ZF with the negation of AC, and also 

ZF along with AC and the negation of CH. 

Cohen’s work exploited a method he called forcing, which we shall not attempt 

to describe in this book. This method has been very fruitful in showing the 

independence of various set-theoretic principles from axiom systems like ZF. 

We shall, however, give a brief idea of how Godel proved the consistency of 
AC and CH with the ZF axioms. The key is to mimic the construction of the 

cumulative hierarchy of sets, the ^*s of Section 8.3, to produce what is called 

the constructible hierarchy of sets, with the stages of the hierarchy written as 

5Ca for each ordinal a. 

One way of regarding the cumulative hierarchy is that it shows how, given the 

ordinals, one can construct all possible sets by building up from the empty set, 

using power sets and unions. Godel’s constructible hierarchy does the same 

sort of thing, producing a more limited class of sets, with a much tighter idea 

of having constructed sets at any level from the sets at lower levels. Godel’s 

construction of the -S^s does the same as that of the 3^s at the 0 and limit 

ordinal stages. It’s at the successor ordinal stage, where arguably the meaty 

business is done, that the constructions differ. 

Hilbert’s problems, presented at 

the Paris International Congress of 

Mathematicians in 1900, both set 

and reflected much of the agenda 

for mathematical research in the 

20th century. Doubtless there’ll be 

some competition in the near 

future to attempt the same task for 

the next millennium! 

For Cohen’s account of his work, 

see Cohen [25]. 

This means that AC is independent 

of ZF, meaning that AC cannot be 

proved from ZF. Likewise CH is 

independent of ZF + AC. 

A further account of forcing can be 

found in e.g. Kunen [26]. 

% = 0, 
sv - ^(^); 

= U(^ : 7 € A} (limit A). 

Taking power sets gives one really 

big sets; whereas taking unions 

seems a much more mundane way 

of getting infinite sets! 
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The construction of 2^+ includes all the subsets of 2^,. This is something 

of a bludgeon, as it doesn’t of itself give much information about what these 

subsets look like. Godel’s J?7+ is more like a rapier, in that it includes only 

those subsets of J?7 that are definable using formulas of the formal language 

in quite a strong sense, as follows. Let <j>(z) be a formula with free variable 

z and possibly referring to named sets in J?7. This formula could be used, 

as in the axiom of separation, to define the subset of i?7 consisting of those 

zs in J?7 such that (j>{z) holds. But Godel’s construction uses it in a subtler 

way, by insisting that in assessing the truth of <fi(z), the quantified variables 

are taken as ranging over the elements of J?7 rather than over the universe 

2^ of all sets - we shall describe this by saying that <p(z) holds in Jz?7. Let’s 

look at an example to try to explain this subtle distinction. 

Our definition will result in .Si being the set {0}, which is the same as 2^i. 

Let us investigate the subset of defined by the formula <p(z) given by 

3x(z £ x). 

In the normal unrestricted sense, this subset would consist of those zs in -Si 

for which there is some set x such that z £ x is true. As -Si = {0}, the only 

z to be considered is z = 0, and there are plenty of candidates for a suitable 

set x such that 0 £ x, e.g. {0} or the set N in ZF. Thus 4>(z) defines the 

subset {0} of .Si. What happens in the subtle restricted sense that we have 

introduced? For z = 0, is there a set x in -Si itself for which 0 £ x? The 

answer is ‘No’, as the only element x in -Si is 0, and z = 0 & 0 = x. So the 

set of zs in -§1 for which this 4>{z) ‘holds in -Si’ is just 0. 

Normally we regard a statement 

about sets like Vx9(x) as true if 

9{x) holds for all sets x: likewise 

3x9(x) is true if 9(x) is true for 

some set x. In the restricted 

context of forming J?7+ from J?7, 

we regard Vx9(x) (respectively 

3x9(x)) as true when 9(x) is true 

for all sets (respectively for some 

set) x in -S^. 

The definition of the J?as is as follows. 

Definitions 

The constructible hierarchy of sets, -S^, for each ordinal a is defined by: 

-So = 0, 
J?7+ = {y C Jz?7 : y = {z £ SF7 : (f>(z) holds in J?7} for some 

formula <p(z) with z free which can refer to named 

sets in J?7} 

— (J{.S^y : 7 £ A} (for a limit ordinal A). 

A set is constructible if it is an element of J?Q for some a. The class of 

all constructible sets is called the constructible universe and is written 

as SC. 

Like the ^s, the -S^s have many nice properties, for instance: 

(i) if a < (3 then -S^ C _S)g; 

(ii) each is E-transitive; 

(iii) a C and a £ -S^+. 

These are similar to some of the 

results in Exercises 8.32-8.36 at 

the end of Section 8.3. 

It is easy to show that -5*n is finite for each nGw and that is countably 

infinite, similar to the results for ^ and But whereas 2^,+ has cardinality 

2n° and includes all the subsets of N (as u C 2^), 2?^+ is only countably 
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infinite. This is because there are only countably many formulas <j>(z) of the 

right sort available at the FFU+ stage, so that at most countably many subsets 

of are produced at this stage - is the set of just these subsets. 

Exercise 9.20_ 

Explain why there are only countably many formulas (j>(z) at the stage of 

forming -S^+. 

Solution 

Such a formula is built up using finitely many symbols out of the formal 

language, where some of the free variables are replaced by named sets out of 

the countable set The formal language uses symbols which are brackets 

‘(’ and *)’ and the logical connectives (A, V, V and 3), along with 

variables: no more than finitely many variables can appear in any one formula, 

so that a countable set of such variables, like {xo, aq, X2,...}, is all that’s really 

needed by the language. Using a specific enumeration of the countably many 

symbols of the language along with the countably many sets in we can 

specify an enumeration of all the finite strings made up of these symbols and 

sets. As the formulas <f>(z) of the sort we want appear in this list (along with 

some non-formulas!), there are just countably many such formulas. 

Our hand-waving solution above gives an idea of a key step in showing that 

each is well-ordered. We would of course use transfinite induction on a. 

For the successor stage we would assume that S?a is well-ordered and try 

to show that is also well-ordered. If X is well-ordered, we can then 

adjoin the symbols of the formal language in an organized way to S?a so that 

the symbols and sets from which we construct the <j>(z)s for the next stage 

are well-ordered. As each 4>(z) uses only finitely many of these symbols, it is 

relatively straightforward to well-order the set of the (f>(z)s. Each <f>(z) defines 

an element of -2^,+ , and the well-order of the (ft(z)s can thus be used to well- 

order &a+. Well-ordering S?\ for a limit ordinal A, assuming that each -2*7 

for 7 < A can be well-ordered, is also straightforward, as these Jz^s form a 

C-chain and is the union of this chain - the well-order relation on SC\ 

(regarded as a set of pairs) can be taken as the union of the relations (suitably 

chosen to be compatible) of all the J?7s for 7 < A. 

Once we have shown that each Ffa is well-ordered, it follows that each con¬ 

structive set (which is a subset of some £fa) is also well-ordered. The rel¬ 

evance of this to the proof of Theorem 9.12 is as follows. Assuming that 

there is a universe 'V of sets in which all the axioms of ZF are true, it can 
be shown that these axioms are also true in the subclass S’ of ’V consisting 

of all constructible sets; and as every element of S? can be well-ordered, the 

axiom of choice is also true in SF. Putting this in terms of consistency, if 

is consistent, then so is ZF with AC added to it as an extra axiom. 

Furthermore, as it transpires that all constructible subsets of N appear in an 

_2^ for some a <u\, the number of such subsets is at most 

Card ({JlJZ’a • a < ^i}) > 

which, as for a < ui is countable (for reasons similar to those in Exer¬ 

cise 9.20 above), equals H0 •*> Hi, which in turn equals Hi. Thus within the 

So one has to ask whether there 

are more than countably many 

constructible subsets of N. There 

are but it takes lots of stages for 

them to appear. In fact they have 

all appeared by the time one gets 

to but the proof is non-trivial. 

Using the enumeration of the 

symbols and the sets, the argument 

is essentially the same as in 

Exercise 6.39 in Section 6.4 

showing that the set of all finite 

sequences of natural numbers is 

countable. 

The connection between the truth 

of formal axioms like those of ZF 

and consistency stems from yet 

another of Godel’s achievements, 

the completeness theorem for 

first-order predicate calculus, which 

says that a set of formulas in a 

formal language such as the one we 

have used for ZF is consistent if 

and only if it has a model, a 

‘something’ in which all the 

formulas are true. A major catch, 

also due to Godel through his 

incompleteness theorems, is that 

for a powerful theory like ZF, in 

which a formal theory of N and its 

arithmetic can be created, there 

are effectively insuperable barriers 

to proving by finite means that the 

theory is consistent. Hence the 

need for the condition ‘if ZF is 

consistent’ in the statements of 

Theorems 9.12 and 9.13. 
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constructible universe S the cardinality of ^(N), i.e. 2K°, equals Mi, so that 

the continuum hypothesis holds in S. Similarly, it can be shown that the 

generalized continuum hypothesis holds in S. Hence, in terms of consistency, 

if ZF is consistent, then so is ZF with GCH added to it as an extra axiom. 

Because the construction of S has a sufficient claim to be ‘natural’ in the eyes 

of some mathematicians, S has a higher status than just that of a technical 

device used in the proof of Theorem 9.12. For instance, every set required by 

everyday pure mathematics is in S. It is tempting to add the proposition 

that S is the whole universe of sets to the list of axioms for set theory: this 

proposition, called the axiom of constructibility, is written as 

^ = S, 

and the content of Theorem 9.12 becomes rephrased as follows. 

Theorem 9.12 

If ZF is consistent, then "V = S entails both AC and GCH. 

Part of the temptation to assume that — S is that it resolves several 

other set-theoretic and mathematical problems that cannot be resolved from 

ZF alone, besides AC and GCH. But it cannot resolve every problem of set 

theory, not least because of the limitations of Godel’s incompleteness the¬ 

orems. And part of the richness of modern set theory, a fruitful vein of 

mathematical research, stems from investigating alternatives to = S, and 
indeed alternatives to some of the axioms of ZF itself. 

One of the aims of this book was to give accounts, from a modern perspec¬ 

tive, of Dedekind’s and Cantor’s theory of the nature of real numbers, crucial 

to underpinning the calculus, and of Cantor’s theory of infinite sets. The 

questions which so quickly arose as part of these theories, of whether the real 

numbers can be well-ordered and of determining the possible sizes of infinite 

subsets of R, turned out to be really good questions, with unexpectedly am¬ 

bivalent answers. Every mathematician should know at least that much of 

what’s called set theory! And we hope that you might be interested in finding 
out, and indeed developing, some more! 

As the Sas are definable within 

ZF, the proposition can be 

expressed within our formal 

language by 

Vx3a(a is an ordinal A x € Sa), 

and can thus be used as an axiom. 

For an accessible introductory 

account of this see Devlin [4]. The 

detailed work is impressive and 

very difficult! A short, readable 

survey of the whole development of 

set theory to this point can be 

found in Kanamori [26]. 

For further reading, you might like 

to try e.g. Devlin [4], Moschovakis 

[5] or Kunen [27]. 
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