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PREFACE 

Combinatorial theory is largely the study of properties that a set or family 

of sets may have by virtue of its cardinality, although this may be widened to 

consider related properties held by sets carrying a simple structure, such as 

ordered or well ordered sets. These properties are relevant to either finite or 

infinite sets, although frequently the questions that pose interesting problems 

tor finite sets are either meaningless or trivial for infinite sets, and vice-versa. 

There has been a recent great upsurge in the study of finite combinatorial 

problems, and a significant, though more manageable, increase in interest in 

the combinatorial properties of infinite sets. 

This book deals solely with combinatorial questions pertinent to infinite 

sets. 

Some results have arisen purely in the context of infinite sets. One of the 

early results in the subject is the following: given an infinite set S of power k 

then there is a family of more than k subsets of S any two of which intersect 

in a set of size less than k. Chapter 1 looks at questions related to this. Prob¬ 

lems of a dif ferent nature for families of sets are studied in Chapter 4, firstly 

a decomposition problem and then delta- and weak delta-systems. As a special 

case is the following: given any family sA of b$2 denumerable sets there is a 

subfamily 93 of s^l of size tt2 such that the intersection of two sets from 93 

is the same for all pairs from 93. Chapter 3 is devoted to the study of set 

mappings, that is, functions /defined on a set S such that given any x in S 

then f(x) is a subset of S for which x ^ fix). Conditions are placed on the- 

family {/(x);x £5} which ensure the existence of a large free set 7’( a subset 

of S such that x f(y) and y ff(x) for all x, y from T). 

Other results stem from problems that have been extensively studied for 

finite sets, and have been found to yield interesting questions when reformu¬ 

lated to apply to infinite sets. For example, in Chapter 5 we study infinite 

graphs, and in particular show that for any infinite cardinal k there is a graph 

with chromatic number k which contains no triangle, or indeed no pentagon; 

however any graph which contains no quadrilateral has chromatic number at 

most K0. Chapters 2, 4 and 7 are devoted to various extensions of Ramsey’s 

classical theorem, which (in its finite form) states: given integers n, k, r if the 

311360 



//-element subsets of a finite set S are divided into r classes then provided that 

.S' is sufficiently large there will be some ^-element subset of S all the //-element 

subsets of which fall in the one class. Chapters 2 and 4 cover ordinary partition 

relations, polarized partition relations and square bracket partition relations 

for cardinal numbers, whilst Chapter 7 is concerned with ordinary partition 

relations for ordinal numbers. 

Familiarity with the standard notions of set theory has been assumed 

throughout. An Appendix summarizes those properties of cardinal and ordinal 

numbers and their arithmetic which are basic to a study of this book. 

The development of infinitary combinatorial theory over the past twenty 

years or so has been greatly stimulated by associates of the Hungarian school, 

under the encouragement of Paul Erdos in particular. A glance at the list of 

references gives some indication of how many of the results in this book show 

his influence. 

To all those people who have created this subject, 1 here acknowledge my 

debt and record my gratitude. 

Brisbane, 1976. Neil H. Williams 
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FOREWORD ON NOTATION 

The following is a brief summary of standard notation in use throughout 

this book. More technical notation is introduced throughout the text as the 

need for it becomes apparent. The Index of notation (pp. 206-208) provides 

a ready reference to the page on which a symbol is first defined. 

Set membership is denoted by G, and C is the inclusion relation with C 

denoting proper inclusion. The set of all subsets of a set is ^x, so 

= {y,y C x }. The union of all the sets in x is written Utx and the inter¬ 
section fix, so 

Ux = {z; 3vEx(zG_y)};nx = {2; VyEx(zE_>/)} . 

Set difference is written x -y, sox -y = {z £x;z^}. The set of unordered 
pairs, one member from A and the other from B is A 0 B, so 

A®B = {{x, y};x EA, y G5 andx Aj}. 

Ordered pairs are written (x, y), and sequences as (xa; a < j3). The length 

of the sequence <xa;a<p) is 0, written fin<xa;a<)3) = 0. If x,y are two se¬ 

quences then x> is the concatenation of x and jq that is, the sequence ob¬ 
tained by placing the entries fromy in order after those fronrx. If A is any 

set, then the domain and the range of A are defined by 

dom(T)= {x; 3y((x, y) E A)}-, ran(A)= {y, 3x(<x, y) Gd)} . 

That /is a function with domain A and range contained in B is indicated briefly 

by writing/: A -+ B. The set of all such functions is AB, so 

AB= {/;/: A -+ B} . 

Iff: A -+B, then the value of/ atx is/(x). The restriction of/ to a set X is 

written / [ X, so 

f[X= {<x,/e/;xei}; 

and f[X] is the range of/ T X, so 

f[X}= {/(x); x £1} . 

The words set and family are used synonymously. However an indexed 

family, written (A,-; i E/), stands for that function A with domain / and 
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A(i) = Ai for each i in /. The cartesian product of an indexed family is written 

X(v4j-; i G/). A decomposition of a set A is a family A of sets such that A - UA; 

this is the same as a partition of A. The partition A is disjoint if the sets in A 

are pairwise disjoint. For elements a, b of A and a partition A of A, the nota¬ 

tion 

a = Z?(mod A) 

means that there is some A^ in A such that a, b C A^. 

The cardinality of a set X is written \X\, and [X]K, [X]<K, ... denote 

(PCI; |F| = k }, (FC X; | F| < «}, ... . The operations of cardinal addition, 

multiplication and exponentiation are written r? + d, r\ •6 and rp, while the 

corresponding ordinal operations are written a + (3, a/3 and oP. The infinite 

cardinal sum and product of an indexed family (r?z-; (£/) of cardinals are 

written i G /) and 11(17,; i GI), whereas the ordinal sum and product of a 

well ordered sequence ; v < |3> of ordinal numbers are written SoOV 

and n0(o!^; v < (3). 

Let X be a set ordered by a relation^. By tp(X, -<) or tp(X) is meant the 

order type of X under"^. For subsets A, B of X, write A B to mean that 

a < b for all a in A and b in B. The notation (x1; x2, ■■■, xn}< refers to the 

set {x1(..., xn } and further indicates that Xj *< x2 ... -<x„. A subset A of 

X is cofinal in X if, for all x in X, there is a in A with x<a. If a is an ordinal, 

[X]a = (FCl; tp(F,-<) = a} . 

The ordinal numbers are defined so that if a is an ordinal, then 

a = (j3; j3 is an ordinal and (3 < a} . 

If A is a set of ordinals then sup A is the supremum of A, so sup A = U A. 

Cardinal numbers are identified with the initial ordinals. The sequence of in¬ 

finite cardinals is Fl0, Ffi, K2> Na,... . The cardinal successor to a cardinal 

k is denoted by k + ; the iteration of this n times by The cofinality of a 

cardinal k is written k , so k’ is the least cardinal such that k can be written as 

a sum of k cardinals all less than k. The cardinal k is regular if k' = k, and 

otherwise k is singular. A cardinal of the form X+ for some X is a successor 

cardinal; other cardinals are limit cardinals. The cardinal k is a strong limit 

cardinal if 2X < k whenever X < k. Regular limit cardinals are weakly inacces¬ 

sible; regular strong limit cardinals are strongly inaccessible. The cardinal beths 

(starting from k) are defined by induction: 

3o(k) = k , 2n+l(K) = 22niK) 

The Generalized Continuum Hypothesis (GCH) is the statement: 2K = k+ 
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for all infinite cardinals k . The GCH has been assumed throughout this book 

whenever it leads to a simplification in the statement or proof of a result. 

Theorems reached with its aid have the letters GCH appended to their result 

number (as in Theorem 1.6 (GCH)). In many cases the full strength of the 

GCH is not required, or the result could have been reformulated in a more 

involved form so as to avoid GCH all together. It is left to the interested reader 
to observe when this is so. 

The Greek letters k, X, l, t?, 9 are used throughout to stand for cardinal 

numbers, and usually k, X are infinite. Other small Greek letters denote or¬ 

dinal numbers, as do k, l (except that co is always the least infinite ordinal). 
The letters m, n always stand for non-negative integers. 





CHAPTER 1 

ALMOST DISJOINT FAMILIES OF SETS 

§1. Almost disjoint families 

One of the early results in combinatorial set theory was the following theo¬ 

rem of Sierpinski [84], He proved that any infinite set of power k can be de¬ 

composed into a family of more than k infinite subsets in such a way that 

\A < L4|, \B\ for any two different subsets A, B from the family. Two 

setsT andR will be called almost disjoint when \A n B\ < \A\, |5|. Almost 

disjoint systems of sets were examined in more detail by Tarski [94], It seems 

appropriate to start this book with an investigation of this and related prob¬ 

lems. 

Definition 1.1.1. The degree of disjunction 8(itf) oi a iamily sd is the least 

cardinal 9 such that |A j n A2\ < 6 for all pairs A 1( A2 in sd. 

We shall be concerned with finding families sd of subsets of a given set of 

infinite power k with degree of disjunction at most 0 for fixed cardinal 9. We 

need consider only the case when 9 < \A\ for allT in in sd (and so certainly 

9 < k) since otherwise the condition 8(sd) < 6 imposes no restriction on sd. 

Clearly one can always find such a family of power k, consisting in fact of 

pairwise disjoint subsets, so the problem is to find when there is a family sd 

with \sd \ > k and 5(sd) < 6. An upper bound for \sd \ is given by the follow¬ 

ing theorem. 

Theorem 1.1.2. If an infinite set of power k can be decomposed into a family 

sd with \sd\ = Xand 8(sd)^ 6, then k° . 

Proof. We may suppose that in fact it is the set k which has been decomposed. 

So suppose k = Usd where \sd \ = X and 8(sd ) < 9. For each A in sd with 

\A\>9, choose A * in [A]9. The condition 8(sd)<6 implies that the mapping 
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Xa C Ka — U p < Ka}. Since 

|U{/Ta nB^n<Ka}\<\a- Ka<K = \Ka\ , 

this is always possible. Put B = U (XCT; o< k'}, so \B\ = 2(XCT; o<k') = X. Note 

that given p with p < k, if r is least for which p< kt then Xa n = 0 when¬ 

ever o> t, and so5n5McU (WCT; a < r}. Hence |Z? n B^\ < S(XCT; a < r) < X. 

It follows that the family 13 U {5} is in (b, and so 03 is not maximal. 

If we assume the Generalized Continuum Hypothesis, then we can show 

that the condition X < k and X' - k ' of Theorem 1.1.4 is also necessary for the 

existence of such a decomposition. This result goes back to Tarski [94], Un¬ 

fortunately there appears no way to avoid the GCH for this proof. We need 
first the following easy lemma. 

Lemma 1.1.5. Let Xbe a cardinal, let (3 be an ordinal with X not cofinal in j3. 

For each set A with A E there is an ordinal a with a< /3 such that 

\aFA\>X. 

Proof. Given A with A E take a subset A1 of A with order type X. Since 

X is not cofinal in j3, there is a with a<P such that djCa. Then A i C a n A 

so that \otFA\> \Ax\ = X. 

Theorem 1.1.6 (GCH). Let k and X be cardinals with X' F k'. Then any decom¬ 

position sA of a set of power k into subsets each of power at least X with 
8(sA) < X, has power at most k. 

Proof. We may suppose that sA is a decomposition of the set k, so suppose 

sA C [k]>x with 5(_<4)< X, and we need only consider the case X< k. So in 

fact X < k, because X A=- k . Since X F k we know X is not cofinal in k. Ap¬ 

plying Lemma 1.1.5, for each A in sA there is an ordinal a with a < k and 

\ol(XA\>X. For each a put sAa = {A E sA; a is least for which |a n A \ > X}. 

Then sA = U { sAa; a < k}. Thus \sA\< S(|^a|; a < k). 

We seek an estimate of \sAa\. Since 8(sA)< X, for distinct A h A2 from 
sAa we have 

|(anH1)n(anH2)l< lAi FA2\<X, 

and so a n A j F a n A2. Thus if 13a = {a HA \A E sA^} then \13a\ = | sAa\. 

Now 8(13 < X and 13a is a decomposition of the set a, so by Theorem 1.1.2 

we have I <73 J < |a|\ However X < k and |a| < k so by GCH, \A30i\<K. Thus 

Ma\< K • Consequently \sA | < 2(| sAa\; a < k) < k • k = k , and the theorem 
is proved. 
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Corollary 1.1.7 (GCH). No set of power k can be decomposed into a family 

sd of more than k sets each of power greater than A such that 5 (sd)<\. 

Proof. Such a decomposition is certainly impossible when A' ± k', by Theorem 

1.1.6. So suppose X' = k \ Since A' < X and (A+)' = A+, in fact k =£ A+. But now 
Theorem 1.1.6, with A replaced by A+, yields the result. 

It is worth remarking that if A is finite (but k still infinite) then Theorem 

1.1.6 and Corollary 1.1.7 remain true, with the same proofs, and in fact GCH 
is not needed. 

§2. Almost disjoint functions 

In this section we shall discuss a refinement of the question considered in 

section 1. Rather than seeking families of almost disjoint subsets of an arbi¬ 

trary set, we shall look at families of functions from a fixed set L to a fixed 

set K, where \L \ = A and \K\ = k. We shall in fact from the start identify L with 

A and A with k, and so shall consider subfamilies of 'V, the set of all functions 
mapping A into k. 

Let 7 be a subset of Thinking of the members of 9 as sets of ordered 

pairs, we can define 5(9), the degree of disjunction, as in Definition 1.1.1. 

So in fact 5(9) is the least cardinal rj such that |{a< A;/(a) = g-(a)}| <77 for all f 

in 9. For each value of the cardinal 6, we shall seek the largest possible car¬ 

dinality of a family 9 where 9C V with 5(9) < 9. Clearly we need only 

consider the case when 9 < A, since otherwise the condition 5(9) is no restric¬ 

tion on 9 • 

There is an equivalent formulation of this problem. We make the following 

definition. 

Definition 1.2.1. A set T is said to be a transversal of the family sd if I AH A\ = \ 
for each A in sd. 

Given a family sd = {Av\ v < A} of A pairwise disjoint sets each of power 

k, by identifying each ,4 ^ with k, any transversal of sd can be identified with 

a function in In this way, a family 9 with 9 C \ and 5(9) < 9 corre¬ 

sponds to a class of transversals of the family sd , any two of which meet in 

less than 9 points. Thus the original problem is equivalent to finding the maxi¬ 

mum size of a class 9 of transversals of sd with 5(9) < 9. 

Clearly one can always find k pairwise disjoint transversals, so we shall 

wish to know for which values of A and 9 is it possible that |9| > k. 
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We shall need to assume the Generalized Continuum Hypothesis almost 

throughout this section. 

We start with several easy remakrs. 

Lemma 1.2.2 (GCH). Suppose either 6 < A and k+ < A or else 9 = A and 

k+ < A'. If 7 C \ and 5(7) ^ 6 then 171 < k. 

Proof. For a contradiction, suppose that under these conditions there is7 

with 7C \ such that 5(7) < 9 and |7| = k+. For distinct/, g in 7, put 

E(f g) = (a< ’k‘,f(0L) = g(a)}, so I\E(f g)| < 9. Put£= U {E(f g); {,f g} 

E [7]2 }, so |£1 < A. If a is in A - E then /(a) =£ g(a) for distinct / g in 7, 
and so |7| < k, contradicting that 171 = k+. 

Lemma 1.2.3 (GCH). Let A' < k. If 7 C w/tfz 5(7) < A then 171 < k+. 

Proof. If A < k clearly 171 < k+, so suppose k < A and consequently A must 

be singular. Take cardinals AT where r < A such that k+ < Ao < Ai < A2 

< ... < A and 2(AT; r < \') = A. For a contradiction, suppose in fact that 

|7| > k++. Since 5(7) < A we have a decomposition [7] 2 = UT<V {{/ g}\ 

\ff)g\ <AT}.At this stage, we shall appeal to the relation k++ (k+)2 which 

follows from Theorem 2.2.4. This symbol means that whenever the class of 

unordered pairs from a set S of power k++ is decomposed into at most k parts 

there is H with H E [5,]K+ such that all the pairs from H fall in the same part 

of the decomposition. In the situation here, this ensures that there is a family 

^ with § G [7]k+ such that for some fixed r with r < A’ always \fEg\< \T 

for all / g in Gj. But now if 9f = {g [ \T+',g G C>}, it follows that 9f is a 

family of k+ functions mapping from A^ into k, with 5(90 ^ AT. This is not 

allowed by Lemma 1.2.2. Consequently |7| <K+. 

Lemma 1.2.4. Let k' = A’. Then there is 7 with 7 C 171 = k+ and 5(7)< A. 

Proof. There are ordinals ya where a < k and 5r where t < such that 

To 7 7i < < k = sup {ya\ o < k'} and 50 < 5 t < ... < A = sup {5T; r < A’}- 

We shall show that no family Q with G [\]<K is maximal in the class of 

all families of almost disjoint functions in xk ; as in the proof of Theorem 1.1.4 

this will give the result. So suppose G [;vk]<k, and write § = {gv\ v< k}. 

Define g with g G \ by choosing g(a) so that if r is least for which a < 5T 

then gfa) G « — {gv(a); v < yT}. Given p with p < k , if 0 is least such that 

M< To then C {<0,g(a))\a < 5CT} and so \g ngM| < j5CT + 11 < A. Thus 

g can be added to £ and still gives an almost disjoint family. 
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The following lemma is a theorem of Erdos, Hajnal and Milner [361. 

Lemma 1.2.5. Let k+ = X Then there is 7 with 7 C \ such that |7| = k+ and 
5(7) < k. 

Proof. The plan for the proof is as follows. By thinking of the ordinals less 

than k + arranged according to order type, it is clear how to define pairwise 

disjoint functions^ for v with v< k+ mapping into k+, with the domain of 

gv all ordinals (3 with v< (3<k+ — simply define gv(ot) = a. 

For each a with a < k+ we have |a| < k, and so we may take a well order¬ 

ing (tend n < a) of (a subset of) k of order type a, and use the above construc¬ 

tion on these well orderings to provide pairwise disjoint tail ends of functions 

fv '■ K+ K where v < k+. One has only to arrange the front ends so that any 

two of the functions meet in a set of size less than k, and this gives a family 

7 as required. 

Formally, then, we construct functions/, : k+ k where v < k+ by induc¬ 

tion as follows. Let v with n< k+ be given, and suppose that the functions/M 

when q < v have already been suitably defined. If a > v, put/„(a) = %av. Then 

when p < v certainly fv(a) 7=/M(a). To define fv(a) for values of a where 

n < n, let {/M;q<n}= (3 < min(n, k)} and choose/„(») in k - {fv^ot); 

a< j3}. Then if ju< v, for some j3 with (3 < k it follows that =fvp and conse¬ 

quently /M(a)7= fv(a) whenever (5<a.<v. Thus |/M <~\fv\ < |j3| < k. Then if 

7 = {fv\ v < k + }, we have |7I = k+ and 5(7) < k as desired. 

We can now turn to the problem stated at the beginning of this section; to 

Find the maximum cardinality of a family 7 where 7 Cxk with 5(7) < 6. 

The case d < X is much easier than when 9 = X, so we dismiss this case first. 

Theorem 1.2.6 (GCH). Suppose 6 < X Let m be the maximum of the cardi¬ 

nalities of families 7 where 7 C \ with 5(7) < 6. Then tn = k unless X = k+, 

in which case m = k+. 

Proof. Suppose 7c \ with 5(7) < 6. 

If k < 9 then k+ < X, and Lemma 1.2.2 shows |7| < k. If k > 9, consider 

7 l' 9+ = {/ ( 9+\f& 7} and note that since 5(7) < 9 the map which sends/ 

to / [ 9+ is one-to-one. Now 7 T 9+ is a decomposition of 9+ X k, a set of 

power k, into sets of size greater than 9 with 5( 7 T 9+) < 0. So by Corollary 

1.1.7, |7 Is 0+l < k and hence |7| < k. If k = 9 and k+ < X, again Lemma 1.2.2 

gives |7| < k. 

Only the case k = 9 and X < k+ remains. Since 9 < X we must have X = k+. 
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Considering 9 as a decomposition of A X k , from Theorem 1.1.2 we have 

|91 <(k+)k = k+. However, Lemma 1.2.5 shows that the value |9| = k+ can 

be achieved, and so in this case m = k+. 

We are left with the situation when 9 = A, and this is rather more involved. 

Indeed, the question cannot be fully answered on the basis of the usual axioms 

for set theory. 

Theorem 1.2.7 (GCH). Let m be the maximum of the cardinalities of almost 

disjoint families 9 where 9C V 

(i) IfX'^K and X' 9 k+, then m = k. 

(ii) If X' = k', then m = k+. 

(iii) If X' = k+, then k+ < m < k++. 

Proof. Let us do (ii) first, so suppose X' = k'. Then A' < k and Lemma 1.2.3 

shows m <k+. Since Lemma 1.2.4 gives m >x + , in fact m = /c+. 

Towards (iii), suppose A' = k+. If A is regular then A = k+. We have the 

trivial bound m < |\| = kk = k++, and Lemma 1.2.5 shows k + < m. So 

suppose A is singular, and choose cardinals XT where t <X' such that k+ < Ao 
< Xx < ... < A and A = 2(Ar; r < A'). We first construct a family g where 

g C \ with \g\ = k+ and 5(g) = k, and so show m > k+. For r such that 

k < r < k + , for each ordinal a with Ar < a < Ar+i let v < r + 1) be a 

well ordering of k of order type r + 1. For v such that k < v< n+ define 

gv : A -» k by 

( 0 if a < Aj, 

&;(«) = 

\ £av il Ot Xv ■ 

Tlien if p 9 v, we have ^M(a) ^ gv(ot) whenever a > max(AM, Xv) and so 

\gn n^l < 'Xmax(u,v) < X- Then g = {gv\K<v<K + } has the properties 

claimed. 

To establish that m < k++, suppose for a contradiction that we have a 

family 9 of almost disjoint functions in 'V with 191 >k+++. The argument 

goes as in the proof of Lemma 1.2.3, taking the decomposition 

m2= U( {{fgh\fng\<xT}, 
T<\ 

only using now the relation k+++ (k+)2+ which is a consequence of Theorem 

2.2.4. This ensures that there is a family g with g £ [9]K+ such that for 
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some fixed r with r < X' we have \fng\ < XT for all/, g- in <■/ But now if 

= {g \ Xj\g E one finds |9(| = k+ and 5(9f ^ XT, contradicting Lemma 

1.2.2. 

This leaves (i), so suppose henceforth that k, k+. If k+ < X' then 

in — k from Lemma 1.2.2. If X < k, by considering any family 7 where 

7 C \c as a decomposition of X X k into sets each of power k , when 5(7) < X 

by Corollory 1.1.7 |7| < k and consequently m = k. Only the situation when 

k < X and X' <k + remains, and here X is singular. Choose regular cardinals 

XCT for o with o < X' such that k++ < X0 < Xj < ... < X and X = S(XCT; a < X'). 

In fact Xr < k, for X' = k would mean X' = X" = k' since always is regular. 

We consider separately the two possible cases, X' < k' or X' > k . The construc¬ 

tions that we use come from the paper [70] of Milner. 

Take first the case X' < k . We have claimed in the statement of the theorem 

that m = k. For a contradiction, suppose we have a family 7 consisting of 

pairwise almost disjoint functions in \ with |7| = k+. When a < X and P<k, 

put 7a0 = {/E 7:f(a) = (3}. Then for each a with a < X, the sequence 

(7o^; (3 < k) gives a disjoint decomposition of 7 into k classes. However the 

number of such decompositions is k1 7 (since each element of 7 may be in 

any class), thus the number of decompositions is kk = k++. Since each XCT is 

regular with k++ < XCT, for each o there must be a set Ma in [XCT] such that 

the decompositions (7a^; j3 < k) are the same for all a in Ma. But then for oq, 

a2 in Ma, for all/in 7 we have/(aq) =/(a2). Thus each/in 7 induces a map 

f* : X' —> k, where 

/*(cr) = /(a) f°r any a in Ma . 

However, the number of maps from X' to k is kx , and this is just k since 

X' < k'. We had assumed that |7| = k + , and so there must be distinct/j, f2 in 

7 with f* =/2*. Thus/jfa) =/2(o;) for all o: in Ma, for any o with o < X\ 

This means 

I fi Ei/2| > |U {Ma \ a < X'}| = X , 

contradicting that fx and/2 are almost disjoint. The contradiction shows that 

in fact |7| < k. 
The final case, where X' > k.', is similar but rather longer. Again the claim 

is that ni = k, and again we seek a contradiction from a family 7 of k+ almost 

disjoint functions in 'V Since here k' <X' <k, also k is singular and we may^ 

choose regular cardinals kt where r < n' such that k0 < k i < ... < k. and k = 

2(/cr; t< k'). Wlien a < X and t<k , put 7(a, t) = {/E 7; kt </(a) < kt+1}. 

Then for each a with a < X, <7(a, r); t < k') is a disjoint decomposition of 7 

into k' classes. The number of such decompositions is (k')k = k++ , so as be- 
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fore for each o with o < X' there must be a set Na in [XCT] X(7 such that for 

some fixed r, for all a. ir\Na we have xT </(a)< kt+1 for anY choice of/in 

7. Thus each/in 7 induces a map /* : X' -*■ k', where f*(o) is that r for which 

kt <f(a) < kt+1 for all the a in Na. The number of possrbilities for the map 

/* is (k')v = (A')+ < k+, and so there must be 7# in [7}K+ such that the maps 

/* are the same for all/in 7#, say equal to/#. Since/# is a map/# : X' -+ K 
and k' < X' with X' regular, there must be L in [A] ^ such that / is constant 

on L, say/#(a) = p for all o in L. So whenever/£ 7#, aGI and a&Na, we 

have f*(o) = /#(a) = p so that kp </(a)< kp+1 . Put N = U {Na; a£l}; then 

hV| = X and we can consider /1 TV as a map from N into kp+1 whenever /£ 7#. 

So {/1 N;f £ 7#} is a pairwise almost disjoint family of functions from a 

set of size X into kp+1. Now A' < kp+1 = kp+1 < X so by the immediately pre- 

ceeding case, \{f \" N]f&7#}\ < «p+1. Since \7#\ = k+, there must b 

in7# for which/j \ N = f2 IN. But then \ fx n f2 \ > [N\ = X, in contradic¬ 

tion to the fact that 7 consists of pairwise almost disjoint functions. This 

completes the proof of Theorem 1.2.7. 

The simplest case under (iii) in Theorem 1.2.7 where the cardinal m is not 

explicitly determined is the conjecture that there is an almost disjoint family 

7 with 7CXlH0 and |9”l = N2. Such a family exists if there is a Kurepa tree, 

and consequently there is such a family in L, the constructive universe. On 

the other hand, Silver [91] has shown (subject to the existence of a large 

cardinal) that it is consistent with the axioms of set theory + GCH that there 

is no such family. 

We shall continue this section by making a few remarks concerned with 

the following situation. Given a sequence (kct; a < A> of cardinals, what is the 

size of the largest almost disjoint family of functions taken from the cartesian 

product X(kct; a < X) of the kct? (Thus families from kk correspond to the 

special case where Ka = k for all a.) This new situation is particularly relevant 

if k is a singular cardinal, X = K and the kq form a sequence of cardinals below 

k converging to k. 

There is the following lemma which will enable us (in certain circumstances) 

to construct large almost disjoint subfamilies of a cartesian product. 

Lemma 1.2.8. Let (Xv\v< rj> be any sequence of cardinals and let (Av; v < 77) 

be any sequence of sets with always \AV\ = 11(XP; p < v). Then there is a sub¬ 

family 7 ofX(Ay, v<q) with b(f7) < q and \7\ = n(A„; v < 77). 

Proof. For each v, identify Av with X(XM;p< v). Put n = n(A„;n< 77), and let 

(fa: ot < 7r) be an enumeration of X(XV \ v < 77). Define functionsin X(AV\ 
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v<rj) for a with a < tr as follows: if v < 17 then 

8a(y)=fa r (v+ 1) - 

Put 7 - a < 7r} so |7| = 7r. Further 7 is almost disjoint, for take distinct 

functions go,, gp from 7. If v is the least ordinal such that fa(v) ± fp(p) then 

gaifj) ^ gffa) whenever p > v. Thus |^a n gp\< \v\ < q. 

Corollary 1.2.9. Suppose k is singular with k = K0 and let {nn;n < co> be 

any increasing sequence of cardinals all less than k with 2(/c„ ; n <co) = k. Then 

there is an almost disjoint subfamily 7 ofX(nn ;n< co) with |7| > k. 

Proof. Note that if n < co then IT(Km,m < nj = Kn. By Lemma 1.2.8 there is 

then 7 with 7 C X(k„;n < co) such that 5(7) < «0 and 171 = n(K„;«<co). 
By Konig’s theorem though, 

11(k„ ; n < co) > 2(k„ \n<u) = k . 

The result in Corollary 1.2.9 is special to singular cardinals k with k = ^0. 

When k is singular with k' > Ikj, for some increasing sequences <Ka; a < k') 

of cardinals below k there is an almost disjoint subfamily 7 of X(k0: o < k') 

with |7| > k; for other sequences possibly |7I < k for all such families 7. 

Examples are given in Theorems 1.2.15 and 1.2.13 below. However, first we 

need to examine some properties of closed unbounded subsets of the cardinal 

X. 

Definition 1.2.10. Let X be an infinite cardinal. The subset C of X is said to be 

closed if whenever B G [C]< x then UB &C. The subset C of X is said to be 

unbounded (or cofinal) in X if for all a with a < X there is y in C with y > a. 

If X is regular, it is easily seen that the intersection of any family of fewer 

than X closed unbounded subsets of X is again closed and unbounded in X. 

Definition 1.2.11. A subset A of X is stationary in X if S intersects every closed 

unbounded subset of X. 

It is clear that any stationary subset of a regular cardinal X has power X. 

We shall make use of the following result of Fodor [42], 

Lemma 1.2.12. Let S be a stationary subset of the uncountable regular car¬ 

dinal X and let f: S be a regressive function (that is, f(a)< a whenever 

ad= 0). Then there is a stationary subset T of S such that f is constant on T. 
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Proof. Suppose the lemma is false, so for all j3 in S the set / 1(P) is not sta¬ 

tionary in A. Hence there is a closed unbounded subset Cp ot A such that 

Cp n/_1(j6) = 0. Put 

D = {a< \:aen{Cp-,p<a}} . 

1 claim that D is a closed unbounded subset of A. This claim will suffice to 

prove the lemma, for then S, being stationary, must meet D. Thus there is a 

in D n S. Then aECp whenever j3 < a, so /(a) j3 whenever (3 < a. This con¬ 

tradicts that /is regressive. 
To see that D is closed, take any B in [£)]<x. Choose any j3 with P < UB\ 

we want to show that UB E Cp for then it would follow that UB En{Cp; 

P < UBj, that is, Uz9 £ D. Since P<UB then P < y for some y in B. For any 

5 ini? - y since P < 8 and 8 ED it follows that 8 ECp. Thus B - y C Cp and 

since Cp is closed, U(B - y) £ Cp. Since UB = U(5 - 7) thus Ui? £ Cp as re¬ 

quired. 
To show that D is unbounded in A, given a with a < A we need to find P 

in D with P> a. For 11 with n < co define inductively ordinals Pn with Pn < A 

as follows: p0 = a; choose j3„+1 such that j3„+1 > Pn and 

Pn+i en{cT;7</U • 

Such a choice of pn+1 is possible since n {C7:7 < pn}, being an intersection of 

fewer that A closed unbounded subsets of A, is certainly unbounded. Put 

13 = U {p„;/i < co}, so surely j3> a. Also P £ D. For take any 7 with 7 < (3, 

and we shall show that P £ CT; from this it will follow that p ED. Since 7 < (3 

there is n such that 7 < P„ and hence y < Pm whenever m > n. The choice of 

Pm then ensures that Pm E Cy whenever m > n. Then U {j3m:rn > /z} £ CT 

since Cy is closed, and (3 = U {pm:ni > n} so in fact P E Cy. This completes 

the proof. 

Given a subset C of the infinite caruinal A, one can form the closure C of 

C - the least closed subset D of A with CCD. When C is infinite, |C| = |C|. 

This may be seen by considering the map / : C - C C where for any 0 in 

C - C, /(a) = least (3 in C with a < (3. Clearly /is one-to-one and hence 

|C- Cl < |C|. In particular, if A is singular there is a closed sequence (\a:o<\') 

of cardinals below A converging to A. (That the sequence is closed means that 

the set {Aa; a < A' } is closed in A.) 

We are now set to return to the investigation of families of functions. 

Theorem 1.2.13. Let k be a singular cardinal with k' > hs0. Suppose 2X < k 



Ch. 1.2 Almost disjoint functions 13 

for all X with X < k. Let (k.0; o<k') be a closed strictly increasing sequence of 

cardinals below k with k = 2(kct; a < k ) and let 7 be an almost disjoint sub¬ 

family ofX(Ka; a < k'). Then |7| < K. 

Proof. Since (kct; a < k ) is closed and strictly increasing, whenever a is a limit 

ordinal then Ka = U (kt; r < a}. Take the family 7 with 7 C X(kct; o < k') 

and 8(7) < k. Fix/in 7. Since always/(a) < Ka, when a is a limit ordinal 

then/(a) < kt for some r with r < a. Thus if L = {a < k’: o is a limit ordinal} 

then there is a regressive function £ : L -+k' such that always/(a) < Kg(a). 

Now L is a stationary subset of k' (for given any closed unbounded subset C 

of x', chose inductively ordinals an in C with a„+1 > a„; if a = U [an, n < co} 

then aGi, n C). Hence by Lemma 1.2.12 there is a stationary subset S(f) of 

L such that g is constant on S(f), say with value r(/). Thus f(o) < Kr(f) for 

all o in S(f). 

For S in [/.]K and t with r < k', put 

7(S, t) = {/G 7\ S(f) = S and r(f) = t} . 

For any/in 7, since S(f) is stationary in k then |5(/)| = k . If for some/, 

f2 in 7 we have S(f\) = S(f2) = S and fx and/2 agree on S then f\ and f2 

agree on a set of size k and so f\ = f2, by the property 8(7) < k. Hence 

17(5, t)<|5kt| = 4''<2Kt'/<,<k . 

Now the number of pairs (5, r) is (k')k • k' < 2K ' K • k < k. Hence 

\7\ = |U {7(S, r);5 E [L]k and r < k'}| < k • k = k . 

This completes the proof. 

If, in the situation of Theorem 1.2.13, we consider almost disjoint subfam¬ 

ilies 7 of X(ko; o < k'), again we can find a bound for |7|. We shall need to 

quote a couple of results which will not be proved until Chapters 2 and 3. 

Theorem 1.2.14. Let k be a singular cardinal with k ' > C0. Suppose 2X < k 

for all X with X < k. Let (k0: o < k') be a closed strictly increasing sequence 

of cardinals below k with k = L(k0 ; a < k) and let 7 be an almost disjoint 

subfamily of X(k.o , o < k.'). Then |7|</c + . 

Proof. Suppose for a contradiction that there is such a family 7 with |7| = k++. 

Define a function H from 7 to $7 as follows: for/in 7, 

H(f) = [g& 7; Va <K(g(o) </(a))} - {/} . 
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Then always \H(f)\ < k. For H(f) C X(/(a) + 1; a < k') where I /(a) + 11 < Ka, 

and 5 (//(/’)) < 5(7) = k’, so that Theorem 1.2.13 applies to the family H(f), 

and shows \H(f)\ < k. Thus, in the terminology of Chapter 3, H is a set map 

of order k+ defined on 7. Since 171 = n++, Theorem 3.1.1 shows that there 

is a subset cS of 7 of power k++ which is free for H. This means that /£ H(g) 

and g ^ H(f) for all f, g in 6. In particular then, there is a sequence < f^; 

p < k++) of elements of 7 such that (£ //(/(,) whenever p < v < k++ . Thus 

there must be aM„ such that/M(aM„) > fv(o^v) whenever p < v < k++. Consider 

[k++ ): partitioned into k' classes according to the value of aM„. By virtue of 

Theorem 2.2.5 of the next chapter, the partition relation (2K')+ -> (k +)k' 

holds; since (2K )+ < k++ and k’+ > also the relation k++ -»• (ISo)k' holds. 

This relation ensures that in the present situation there are ordinals fin (for 

n with n < to) such that q0 < fn < ... < k++ and an ordinal o with o < k' 

such that oldmtIn = o whenever /«,<«< to. This means that /Mo(a) >/Ml (a) > 

/M2(a) > ..., which is impossible. This contradiction proves the theorem. 

Let us impose the stronger condition that the GCH is true for all cardinals 

below k, that is 2^ = \+ whenever A< k. Then we can use Lemma 1.2.8 to 

produce an almost disjoint subfamily of X(k£; a< k') of power 2K. 

Theorem 1.2.15. Let k be a singular cardinal with k > No- Suppose 2^ 

for all \ with \ < k. Let <kct; a < k') be any increasing sequence of cardinals 

below k with k - o < k'). Then there is a subfamily 7 o/Xf/tJ; a < k') 
with 5(7) < k' and |71 = 2K. 

Proof. For a with a< k', note that 

S(Kr;r<a) _ Ka _ + 
n(K;;r<a) = n(2KT;r<a)=2 

Thus Lemma 1.2.8 gives a family 7 of X(/t„; o< k') with 5(7) < k and 

171 = n(K^; o<k). However 

If we combine Theorems 1.2.14 and 1.2.15, then immediately we have the 

following. 

Theorem 1.2.16. Let k be a singular cardinal with k' > !80. Suppose 2X = \+ 
for all \ with \ <k. Then 2K = k + . 
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Theorem 1.2.16 is of particular interest in view of the principal result of 

Easton [12], which implies that no similar theorem is possible for any regular 

cardinal k. Theorem 1.2.16 (in fact a more general result) was first proved 

recently by Silver [92], using powerful methods from mathematical logic. A 

combinatorial proof of Silver’s theorem was then found by Baumgartner and 

Prikry [5], amongst others. Using similar methods, Galvin and Hajnal [451 

gave general bounds for 2* (where k > k' > S0) in terms of the values of 2X ' 

tor X with X < k . The proofs of Theorems 1.2.14 and 1.2.15 come from Galvin 

and Hajnal [45]. Theorem 1.2.13 is from Erdos, Hajnal and Milner [36], 

where a necessary and sufficient condition is given on the sequence (kct; a <k') 

for the existence of an almost disjoint family of more than k functions from 

X(kct; o<k'). 

§3. Transversals of non-disjoint families 

In the previous section, the discussion could be viewed as a consideration 

of the number of almost disjoint transversals of a family of disjoint sets. This 

section will be devoted to transversals of non-disjoint families. One of the 

first results will show that in this situation there is not even one transversal 

for certain families. Consequently, we shall extend the notation of a trans¬ 

versal as follows. 

Definition 1.3.1. Given a family p?, an 77-transversal of srt is a set T such that 

1 < \A Cl 71 < 77 for each A in p?. 

Thus a transversal in the previous sense is a 2-transversal by the meaning of 

this definition. When considering a family p( of sets each of power k, we shall 

be interested in the existence of an p-transversal for values of 17 only with 

77 < k, since a k + -transversal T would allow T n A = A for some or all of the 

members A of sd. (In particular, Usrf. itself would be a K+-transversal of pf.) 

Given an arbitrary family p? of sets all of power X, with a specified degree 

of disjunction 5(p? ) = 6, we shall seek the smallest 77 for which we can be sure 

that an 77-transversal for sft exists. One can then go on to ask, for this smallest 

77, what is the maximum size of an almost disjoint family of 77-transversals of 

pf. The situation is rather similar to that found in the last section, and we 

shall not pursue the matter further. 

The results of this section are to be found in the paper [19] of Erdos and 

Hajnal, expressed in rather different notation. 

We start by giving examples of families with no transversals in the sense of 

Definition 1.3.1. 
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Theorem 1.3.2 (GCH). 

(i) Suppose X < k. Then there is a family sA of k sets each of power k 

with 5(p?) < X. which has no X-transversal. 

(ii) There is a family sA of k + pairwise almost disjoint sets each of power k 

which has no K-transversal. 

Proof. For (i), take X with X < k and suppose for a contradiction that (i) is 

false, that is that every family sA of k sets each of power k with 8(.9? ) < X 

has a X-transversal. Take any family^ = {By, v< k} of pairwise disjoint sets each 

of power k. Construct a sequence where p < k + by transfinite induction, 

so that is a X-transversal of 73 U { Tv. v < p} with T^ C U 73. Consider 

7 = { Ty, p < k + }. Here |UST| = k, |7jJ = k for each p, and 5(7) < X < k. 

Since |7I = k+, this contradicts Corollary 1.1.7, and (i) is proved. 

Likewise, if we assume (ii) to be false, this construction (with X = k) can 

be continued to yield a family 7 = { 7^; p < k++} with |U71 = k < k + , 

|7)J = k for each p, and 5(7) < k. Since (k+)' 7 k', this contradicts Theorem 

1.1.6. 

When k is regular, the value \sA I = k+ of (ii) in this last theorem cannot 

be decreased. Any family of fewer than k+ pairwise almost disjoint sets each 

of power k has a K-transversal. This follows from the next theorem. 

Theorem 1.3.3. Any family sA of pairwise almost disjoint sets each of power 

k with \sA \ = k has a k'-transversal. 

Proof. This is almost trivial. Suppose sA - {Ay, v < k'} satisfies the conditions 

of the theorem. Then whenever p < k one can choose .vM from A^ — U {Av: 

i’<p}. UT= {.yM;q< k'} then for any v it follows that T r\ Av Q {xM;q<n}, 

and consequently T is a k’-transversal for sA. 

The result ot Theorem 1.3.3 is the best possible, in the sense that the exis¬ 

tence of a k -transversal cannot in general be improved to the existence of a 

X-transversal for any X with X< k'. When k is regular, this follows already 

from Theorem 1.3.2, using GCH. However, GCH is not used in the construc¬ 

tion below. 

Theorem 1.3.4. There is a family sA of k' pairwise almost disjoint sets each 

of power k which has no \-transversal for any X with X < k . 

Proof. Write k as a disjoint union, k = U {Ka: o < k'} where always \Ka\ = k. 
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Choose ordinals aa where o < k' such that a0 < 07 < ... < k and k = sup {aCT; 

o< k }. Put sft. = {aa U K2a■ o < k'} U {K2a+i ; a < k'}. Then \sd\ = k , 

8(srt) = k and \A\-k for each A in sd. Suppose T meets every member of 

then |rn k| > k . Consequently, for any A with A< k' there must be o 

with ct < k such that | T n aa\ > X. Then | T n (aa U K2a)\ > X, and so T is 

not a X-transversal of sd . 

Together with the observation that any family sd of fewer than k pair¬ 

wise almost disjoint sets of power k has a 2-transversal, Theorems 1.3.2(h), 

1.3.3, 1.3.4 provide a complete discussion of the situation pertaining to fami¬ 

lies of pairwise almost disjoint sets of power k, in the case that k is regular. 

When k is singular, there are still some gaps to be filled. Specifically, what is 

the situation with a family of 6 pairwise almost disjoint sets each of power k, 

where k < 0 < k? There is the trivial fact that one can always find a ^-trans¬ 

versal, and this is the best possible result, for there is an example of a family 

of 0 pairwise almost disjoint sets each of power k which has no 0-transversal. 

Such an example is given in Theorem 1.3.6 below. The construction is due to 

Erdos and Hajnal [19]. and is quite complicated. We shall need the following 

lemma (see Hajnal [52, Theorem 9]). 

Lemma 1.3.5 (GCH). Let Xbe a regular cardinal and let X be a set with 

\X\ = A+ There is a pairwise almost disjoint family X = {Xy, v<\+} of sub¬ 

sets of X with always \XV\ = X such that for all subsets Y of X with \ Y\ = A+ 

there is Xv in X with Xv C Y. 

Proof. Let < be a well ordering of X. Let X be the family of all subsets of X 

of order type X2 under <. (Here and for the rest of the proof, by X2 is meant 

the ordinal power.) Since X C [X]\ it follows from GCH that \X! = A+, and 

we may write X = {ZM; p < A+}. 

Inductively define subsets Xv of Zv with tp(X„) = X, for v with v < A+, as 

follows. Suppose that v is given with v < A+ and that the where p<v have 

already been defined. If v < X then \ZV — U [Xy p < v}\ = X; choose for Xv 

any subset of Zv - U {Xy p<v] with order type X. Now suppose A< v< A+. 

Let <XVOl :a<X) give a well ordering of (XM; p < v}. Note that since 

tp(Z„) = X2 there are sets ZV0l such that Zv = U {Zva; a < X} where tp(Zva) - X 

and Zvp < Zva whenever P < a (that is, x <y if x E Zvp and y E Zva). Since 

always tp(Xy(3) = X, there is at most one a for which tp(Xvp n Zva) = X. De¬ 

fine ordinals 7(a) with 7(a) < X and elements xV0L with xVOL E ZVy(a) f°r a with 

a < X by induction as follows. Choose 7(a) such that 7(a) > 7(P) and also 

\Xvp n Z^q,)! < X for all P with p < a. This is possible, by the regularity of X. 
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Now choose xVOl from Zn(a) - U {Xvp: j3 < a}. The choice of 7(a) and the 

regularity of A make this possible. Put Xv = {xva; a < A}. Since xvp <x„a 

whenever j3 < a it follows that tp(Wy) = A, and surely Xv C Zv. This completes 

the definition of the sets Xv. 

The Xv are pairwise almost disjoint, for suppose say p< v. Then X^ = Xw 

for some a, so X^ n Xv C {xvp\ (3 < a} and thus |WM n Xv\ < A. Take any sub¬ 

set Y ofX with | FI = A+. Then there is a subset Z of F with tp(Z) = A2, and 

Z~ZV for some v. Since Xv C Zv in fact Xv C F Thus if AC = {Xv; n < A+} 

then 9C has the required properties, and the lemma is proved. 

Theorem 1.3.6 (GCH). For each 9 where k <9 < k there is a family of 9 

pairwise almost disjoint sets each of power k which has no 9-transversal. 

Proof. Let k and 9 be cardinals with k < 9 < k. Thus k is singular, so there is 

a sequence (k0: a< k ) of cardinals below k with k = S(kct; o < k.'). 

If k < 9 , the theorem is easily proved, without GCH. Start with a pair¬ 

wise disjoint family {Aa: o< k'} where always L4CT| = k. For each a with 

a< k , choose a pairwise disjoint family {Aav\ v < 9} of subsets of Aa with 

always \Aov\ = Ka. Put Bv = U {Aov: o < k'}, so \BV\ = 2(kct; o< k') = k. Con¬ 

sider the family 

sA = {Aa\o<n'} U {Bv:v< 9} . 

The Bv are pairwise disjoint and A@ n Bv = Aav so \Aa n Bv\ = na < k. Thus 

sA is a family of 9 pairwise almost disjoint sets each of power k. Let 7” be a 

transversal of sA. Since then always T n Bv =£ $ and U {By, v < 9} C U{Za: 

a< k }, surely | T n \J{Aa: o < k'}\ ^ 9. Since k < 9' there must be some a 

with |T Aa| > 9. Hence sA has no 0-transversal. 

Now consider the case 0 < k . Start this time from a pairwise disjoint fam¬ 

ily sA | = {A0~, o < k +} with always \Aa \ = k . Since k' is regular, we can apply 

Lemma 1.3.5 to sAx to produce a family of families T = {STj,; r> < k'+} where 

always ACV G [ sAx and \Xld CiSKJ < k' whenever p F v, with the property 

that for any subfamily 0/ of sAx with \A/\ = k'+ there is ACV in T with 

*v £ % 
Write ACV = {Alt:t<k }. For each v and r, choose a pairwise disjoint fam¬ 

ily {Airry:y<9} of subsets of with always \A \ =kt. Put B^ = 

t < k }, so |5,vy| = N(kt; t < k ) = k. Consider the family 

- {Ao', o < k’+} U {B^y', v < k' and 7 < 0} . 

We shall show that Ad is pairwise almost disjoint. Take distinct Bx and B2 

from Ad, and consider the various possibilities. If Bx =Aa and B2 = AT for 
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some o and r, then Bx n B2 = 0 . If Bx = Bvy and B2 = Bv6 for some v, 7 and 5 

then again Bx n B2 - 0 • If say Bx = Aa and B2 = Bn then Bx n B2 = 0 unless 

Aae9Cv, in which case Aa= for some t so Aa n Blxy - Amy and hence 

\B! n B21 = \AV7y\ = kt < k. The final possibility is Bx = B^ and B2 = B 

where p =£ v. Since U93 = 0 < k’+} it follows that Bx n B2 = 

U{/4ct n (5^ n 5m5); o < k,+}. However, either Aa n Bvy = 0 or ^ o' E ®/i5 0 

unless EST^ Pi 9fu, so nfl2 = U{Aa 0 5,^ n ; Aa E „ n 9fM}. Now 

always L4CT n 5^,1 < k, and \9CV n 9fM| < k by the choice of X, so again 

IBx Ei B2\ < k. Thus 98 is indeed pairwise almost disjoint. Hence further, 

1931 = k'+ +k' • 9 = 0. 

Finally, we shall show that 93 has no 0-transversal. Since O' < k' < 0 we 

know 9 is singular, so there is a sequence <0$-; f < d') of cardinals below 9 

with 0 = 2(0f; f < 0’). Suppose T is a set such that IT E ACT| < 0 for each 0 

with 0 < k'+ . So for each o there is f(o) with f(a) < d' such that \T E Aa\ < 

0f(CT). Since d' < k,+ and k'+ is regular there is a subset H of k'+ with 

\H\ = k'+ such that f(cr) is constant for o in //, say with value f. By the choice 

of the family X there is f)Cv in X with 9CV C {Aa: o &H}. Thus \T E ACT| < 0f 

for all Aa in 9CV. Hence \T E U 9CV\ < k ■ 0$ <9. Now {Bvy: 7 < 0} consists 

of 9 pairwise disjoint sets, each a subset of Hence there is some 7 such 

that T E Bn = 0. Thus 98 can have no 0-transversal. This completes the proof. 

Let us return to the case of families of k sets each of power k but where 

the degree of disjunction is smaller than k. We shall assume the Generalized 

Continuum Hypothesis for the rest of this discussion. Theorem 1.3.2 shows 

that for such a family sA with 8(sA) = X, the best that can be hoped for in 

general is a X+-transversal. In fact this can usually be achieved. There is first 

a trivial lemma. 

Lemma 1.3.7 (GCH). Let 1 and X be cardinals such that there is no 17 with 

1 = p+ and X = r\. Suppose 98 is a family with |U98 | < 1 and 5(98 )< X and 

|Z?| > X for each B in 98. Then 1981 < t. 

Proof. We may suppose X < t. Since |93| < I [U 93]^|, certainly it |U93|+ < 1 

then 1981 < 1. And if |U98|+ = t, then Theorem 1.1.6 applies to give the result. 

The following theorem is slightly more general than our immediate need 

dictates, but the full strength will be used in the proof of Theorem 1.3.12. We 

shall adopt the temporary notation [k] for {A E sA: \A \ = k}. 

Theorem 1.3.8 (GCH). Suppose k and X are such that there is no 77 with k = 17" 
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and X' = r/ (unless n = A+). Let sd be any family of k sets with 8(sd ) < A and 

\A | < k for each A in sd. Then there is a A+-transversal T of A [k ] with 
IT n A | < A for each A in sd. 

Corollary 1.3.9 (GCH). Under the conditions of the Hteorem, any family sd 

of k sets each of power k with 8(sd)<= A has a A+-transversal. 

Proof (of Theorem 1.3.8). We need only consider A with A < k. The case when 

k = A+ may be shown by a construction similar to that in the proof of Theo¬ 

rem 1.3.3 (and in fact GCH is not used). So suppose henceforth that A+ < k. 

Let sd be well ordered, sd = [Av; v < k}. We still try to choose in Av, but 

do so only when this is possible without having xv in any A from sd which 

already meets ; p < v) in A points. This ensures that the set of all the xv 
meets any A in at most A points. 

So formally, use transtinite induction to define elements xv when v < k 
as follows. Write 

°^v - [A E sd:\A H ; p < v}\ > A} . 

Choose x0 from A0. Wlren v > 0, if Av — UT3„ = 0 put xv = .v0 and otherwise 

choose xv from Av — UdSj,. 

By the property 8(sd) ^ A, any A in c13v is uniquely determined by its 

intersection with {xM;p<n}. Since | p < v}\ < k. Lemma 1.3.7 shows 

that {A n {xfl:p< v}:A E Q3„} has power less than k: hence |Q3„| < k. 

Again using that 8(sd)<X<K, it follows that \AV D (J A3V\< k provided 

Av^^v. Thus if \AV\ = k and \AV n {.rM ;p < n}| < A then Av - 1193,, ^ 0 
and so xv 6d„. 

Put T= {xv:v<k}, then T meets every set in ^[k]. And for any A in sd, 

if for some p it happens that \A n {X(i :p<p}| = A then for all v with v > p 

eithe 1 xv — Xq 01 else xv A. Hence always \T Oi A | A. This completes the 
proof. 

II A is finite, the same proof holds, and in fact GCH is not needed. It is 

not known if Corollary 1.3.9 holds without restriction on k and A. The sim¬ 

plest case that is not settled is when k = , A = 180. Explicitly: 

Question 1.3.10 (GCH). Is there a family sd of sets each of power 

^cu+i with 8(sd) = which has no 18x-transversal? 

One can always find a A++-transversal however. 
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Theorem 1.3.11 (GCH). For all n and X, every family sd of k sets each of 
power k with 5(y?) < X has a X++ -transversal. 

Proof. Modify the proof of Theorem 1.3.8 by putting 

C13V= {AE sd; \A n p < v}\ > X}. 

Using now Corollary 1.1.7 one concludes that IT3J < k; the rest of the proof 

carries over. 

We are left finally with the problem of finding a transversal of a family 

of more than k sets each of power k, where 5(^) = X< k. Theorem 1.3.2 

still shows that a X+-transversal is the best that can be hoped for in general 

(since any family extending a family without a X-transversal has, of course, 

no X-transversal). We can show that a X+-transversal is usually possible pro¬ 

vided \sd\ is sufficiently small, and the problem is unsolved for larger values 

of \sd\. The proof will be by induction on \sd\, and so that the induction will 

work we need a more general statement, on the lines of that in Theorem 1.3.8. 

Theorem 1.3.12 (GCH). Suppose k and Xare such that there is no p with 

k = p+ and X' = p (unless k = X+ ). Let k0 be the least cardinal greater than k 

with k'0 = X'. Then for all c with t < k0, if sd is any family of i sets with 

8(sd) < X and \A | < k for each A in sd, there is a X+-transversal Tof sA[k] 

such that \T n A | < Xfor each A in sd. 

Corollary 1.3.13 (GCH). Under the conditions of the Theorem, any family 

sd of l sets each of power k with 8 (cA) < X has a X+-transversal. 

Proof of Theorem 1.3.12. Use induction on t. By Theorem 1.3.8, the result is 

true when i < k. So suppose l is such that k < t < k0 and that the theorem 

holds for all i* with i* < t. Let srt = {Av; v < (.} be a suitable family. Write 

sd as a disjoint union, sd = U{sdy n< t'} where always \sdv\ < t. 

By the inductive assumption, there is a suitable set T0 lor sd0, and we 

seek to extend T0 to a suitable transversal of sd. However, it may happen 

that certain members of sd — sdo have an intersection of size greater than X 

with X0 = U sdQ \ in particular they may meet Tq in more than X points and 

so T0 could not be extended to sd. So first increase sd0 by adding to it the 

family G0 of all sets A in sd with \A n X0\ > X, and look at the family 

cf0 = {A DX0;Ae sd0 U G0}. It turns out that |G)ol < i, and so there is a 

suitable transversal Tq of fZ)o, with To CXfo- Now treat sd\ similarly, putting 

x1 = u sdx -x0 and looking at = {A FXp.A G sdx U GJ. We find Tx 
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with T\ CXi, and T0 U Tx extends T0 and is suitable for sA 0 U <AX. If we 

were to continue in this manner, possibly there would be a set A in some sAv 

such that \A n XM | > X for more than X values of p with p < v, and so perhaps 

\A n U{7M;p< p}\ > X, meaning that there would be no suitable extension 

of (U{rM;p < r1}) to all of A. To prevent this happening, we should finish 

with such an A at the first stage v where [A n (U{XM; p < n})| > X. So at any 

stage v, we treat also the members of 03 y, where 03 „ includes all members of 

A with \A n U{XM; n<v} \> X, and form X„ from Av U 03 „. The formal 

construction proceeds as follows. 

Define sets Xv where v<l with Xv £ [ U A}<L by induction as follows. 

Suppose for a particular v with v < t! that the XM where p < v have already 

been defined. PutXy* = U{XM;p< v}, so \X*\ < (.. Write 03^ = 

{A& A \ |A nX*\ > X}. Since 5(A) < X, any A in 13„ is uniquely determined 

by A H X*. Since \X*\ < i, Lemma 1.3.7 shows that \{A nX„*;A £ 13v}\<l. 

The definition of kd and the fact that t < k0 ensure that the conditions of 

Lemma 1.3.7 are satisfied. Consequently 103^1 < i. Put Xv = (U Av U 1103^) 

— X*. Since k < t it follows that \XV \ < i. This completes the definition of 

Xv 

Put Qv - [A £ A\ \A nxv\ > X};just as we argued above for 03„, it fol¬ 

lows that \QV\< t. Write Dv = {A n XV\A £ Av U03,, U Qv }, so | Dv\ < t. By 

the inductive assumption, there is a set Tv with TV^XV such that TV is aX+- 

transversal of Dv[k] and always | Tv HP | <X for eachD in ’Dp. Define 

T= U{r„;n<t'};I claim T is a suitable X+ -transversal of A [k]. 

Take any A in A. We must show that \T n A | < X and that T Cl A =£ 0 if 

\A| =k. Clearly we may suppose \A \ > X. Let £ be least such that \A HI*|>X. 

If ^4 £ Av, certainly A C X* UX„ = X*+1, and so £ < i\ The definition of 

X% shows that ^4 C X* U Xg. There are two cases to consider, depending on 

whether or not £ is a successor ordinal. 

Suppose first that £ is a successor, say £ = v + 1. The choice of £ shows 

\A n X*\ < X. Since A is a disjoint union, A = (A Cl X*) U (A Cl Xv) U (A UX|), 

certainly A n T C (A n X*) U (A Cl Tv) U (A H 7f). The choice of Tv and 

ensures that \A n Tv\ , \A n I < X, and it follows that \A Cl T\ < X. Further, 

if AI = k then since X < k , either |A n Xv\ = k or \A Cl Xg | = k ; this ensures 

either A n Tv =£ 0 or A n 7g D 0 , so A Cl T =£ 0. 

Now suppose £ to be a limit ordinal. We have \A d X*| < X whenever 

v < £. Since A n X^ - U {A Cl X*; v < £} and A Cl X^ C A Cl X* whenever 

p < v, it follows that here \A Cl X*\ = X. Again A is a disjoint union, A = 

(A n Xf) U (A n x£), so that A (1 T C (A n xf) n (A n rt). Since 

L4 n 7\| < X, we have f4 n 71 < X. Moreover if L41 = k then |A n X^| = k and 

so A This completes the proof. 
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If X is finite, one can carry out the same construction to show the follow¬ 

ing by induction on \sd\ (and the GCH is not needed). 

Theorem 1.3.14. If X is finite, every’ family sd of sets each of power n with 

8(sd) < X has an K0-transversal T (that is, T n A is finite for each A in sd). 

The case when X is finite has been analysed in more detail by Erdos and 

Hajnal in [19 pp. 109—113]. They show that any family sd with \sd\ = Ha+n 

and 8(sd) < X has a [(X l)(n + 1) + 2]-transversal, and they construct an 

example to show that this is the best possible result. 

It is not known it the result of Corollary 1.3.13 holds without restriction 

on the cardinals involved. It is easy to see that for k = Sa, the number k0 is 

^a+y- So the easiest cases left unanswered are the following. (See Problem 39 

of [24].) 

Question 1.3.15 (GCH). Is there a family sd of sets each of power Sj 

with 8(sd) = S0 which has no Sd-transversal? Is there a family sd of + i 

sets each of power with 8(sd) = Sd which has no S2-transversal? 

Finally, we observe that Corollary 1.3.13 is always true, without restriction 

on i, k, X if the demand for a X+-transversal be eased to require only a X++- 

transversal. 

Theorem 1.3.16 (GCH). For all l, k , X any family sd of t sets each of power k 

with 8(sd) < X has a X++-transversal. 

Proof. Modify the proof of Theorem 1.3.12 by putting 

sd-A nx*\ > X}, 

e„ = {A e Sd-\A nxj>x}. 

Using Corollary 1.1.7, one sees |T3J, \QV\ < \sd\ and the rest of the proof 

carries over. 



CHAPTER 2 

ORDINARY PARTITION RELATIONS 

§ 1. The relations defined 

The partition relations k -»• (r?fc; k < y)n and k -> (i?)” defined below, which 

are the principal objects of study in this chapter, have now been discussed ex¬ 

tensively in the literature. A special case of the symbols first appeared in 

Erdos and Rado [28], although several results that can be expressed in terms 

of these symbols had appeared before (see for example Sierpinski [85], 

Dushnik and Miller [11], Erdos [13], also Kurepa [64]). Detailed discussion 

is, amongst others, to be found in Erdos and Rado [29] and the encyclopedic 

Erdos, Hajnal and Rado [38], in both of which references to early results can 

be found. 

The subject is concerned with generalizations of the following theorem due 

to Ramsey [80]: If the unordered pairs from an infinite set S are partitioned 

into finitely many classes, then there is an infinite subset H of S such that all 

the pairs from H fall in the one class of the partition. 

In the following definition, k is a cardinal, n a positive integer, 7 an ordinal, 

and pa- (where k < 7) are cardinals. 

Definition 2.1.1. The ordinary partition symbol k -> (17*7 k < 7)" means: given 

any set S with \S\ = k, for all partitions A = { A*-; k < 7} of [5]” into 7 parts, 

there exist k with k < 7 and a subset H of S with \H\ = rik such that [//]''C Ak. 

The special case in which rik = 77 for all k with k < 7 will be written 

k -*■ (v)y- Symbols such as k (r)k: k < 7, dp, l < 5),! have the obvious mean¬ 

ing. 

The negation of the relation k (r]k; k < 7)" is written k -f- (r]k\ k < 7)”. 

Thus, in terms of this partition symbol, Ramsey's theorem quoted above 

can be expressed by: (15o)/n for any finite m. 
Given a partition [5]” = U{ A^-; k < 7} of the 72-element subsets of a set S, 
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a subset H of S with [H|" C Ak for some k is said to be homogeneous for that 

partition. 

Before a more detailed discussion of the various partition relations, a few 

simple remarks are in order. 

The partition symbol could equally well be defined in terms of disjoint 

partitions only; this is easily seen to be equivalent to the definition given. 

The use of the ordinal 7 to index the classes of the partition A is not es¬ 

sential; any set with the same power as 7 will serve equally well and the truth 

or the falsity of the relation will remain unchanged. In particular, the cardinals 

pk in the relation k ->■ (rjk\ k < 7)” may be permuted without effecting the 

relation. 

If k. has a partition property and X is any cardinal at least as big as k, then 

X has that same property. 

If k enjoys a partition property with 7 classes and 5 is any ordinal smaller 

than 7, then the corresponding property with 5 classes also holds for k, since 

a partition with a small number of classes can be extended to a partition with 

a larger number of classes by adding superfluous empty parts. 

If k has a partition property in which the homogeneous sets have cardinali¬ 

ty pk, then for any cardinals dk with dk < rjk the corresponding property 

with rik replaced by 6k also holds for k. 

The truth or falsity of the relation k -> (rjk\ k < y)n can be trivially deter¬ 

mined unless the following conditions are in force: 

n> 1, 2 < 7 < k, n<r]k<K (for k < 7) . 

In fact we may suppose n <C rik, for if 17/c = n whenever 5 ^ k <C 7 then the re¬ 

lation k (pfe; k < y)n is equivalent to the relation k -> (pk: k<8)”. Given a 

set S with \S\=k, any partition [S]” = U{ Afc; k < 7} trivially has a homo¬ 

geneous set of size n if any Ak where 5 < k < 7 is non-empty; if these are all 

empty the question reduces to whether or not k -> (rjk, k < 8)n. 

There is the following substitution property. 

Theorem 2.1.2. Suppose k -> (r)k\k < 7)" and t?0 ^ < 5)”. Then 

K^(6,-l<8,rik;l<k<yyi. 

Proof. Given a partition 

[S]n = U{A,;/<5}U U{Tfc; 1 <k<y] 

of a set S of power k, put To = U{A/; /< 5}. By the relation k (rjk, k< 7) , 

there is k with k < 7 and a subset H of S with \H\ - r\k and \H]n C T^. If 

k > 0, nothing more need be done. If k - 0, then [H]n C U{ Af,l < 5} and 
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because of the relation 7?0 ^ (0/i / < 5)" there must be l wkh / < 5 and a sub¬ 

set /of//with 1/1 = 0/ and [/]" C A/. In any event, there is a suitable subset 

of S homogeneous for the original partition of [5]". 

The restriction to finite exponent n is justified by the following theorem 

from [27], which shows that the weakest possible non trivial partition rela¬ 

tion with infinite exponent, k (^o> N0)‘ °> is ^se f°r K- 

Theorem 2.1.3. Given any infinite set S, there is a partition [S]^° = A0 U Aj 

of the denumerable subsets of S into two classes which has no infinite homo¬ 

geneous set. 

Proof. Let -< be a relation which well orders [<S]N°. Define a partition [/>]' 0 = 

A0 U Aj as follows: forX in [5]K°, 

xe a0 a re [xf° (Y<x), 

leAj ^>vr e [xf0 (x<y). 

Take any set H in [A]1 °; we shall show H is not homogeneous for this parti¬ 

tion. Let X be the least infinite subset of H: clearly Xe A! and so [//]' 0 (£ A0- 

On the other hand, write H= {hi; i < co} and for each finite k, put Hk = 

{h0, h2, ..., h2k } O {h2i+i; / < co}. Let HkQ be the least of the Hk. Then 

HkQ QHkQ+l md HkQ< Hk-0+l, so Hk()+l G A0. Thus [//]N° Q A1; and so 

H is not homogeneous. 

As a final remark in this section, note that the symbol k -> (r)k; k < 7)” 

can also be defined when k and the pk are ordinals, or in fact arbitrary order 

types. Rather than speaking of the cardinalities of the sets involved, their or¬ 

der type is specified, for a suitable ordering. Some of the results for ordinal 

numbers will be discussed in Chapter 7. However, in this chapter we shall con¬ 

fine ourselves to the problems involving cardinal numbers. 

§2. The Ramification Lemma 

The method to be described in this section gives one of the most frequent¬ 

ly applied techniques in establishing partition relations. The method was used 

in several early papers before it was expressed in the general form given below 

in the paper of Erdos, Hajnal and Rado [38], The method has since found ap¬ 

plication outside the partition calculus, see for example the book of Juhasz 

[59] for several applications in general topology. 
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The technique hinges on the construction of a so-called ramification sys¬ 

tem. In order to describe what is meant by this, we look first at trees of se¬ 
quences of ordinals. 

Definition 2.2.1. A partially ordered set (T, O is said to be a tree if for each 

x in T the set {y G r;y<x} of predecessors of x is well ordered (by <). The 

order type of {y £ T\y < x} is called the order of x. The ath level of T is 

the set of all elements of T whose order is a. A maximal linearly ordered sub¬ 

set of T is called a branch; the members of T are called nodes in T. 

We shall adopt the following notation. For each ordinal o we shall denote 

by SEQa the class of all sequences of length o of ordinals, that is all sequences 
v = (va\ a < o) where each is an ordinal. We shall write fin(v) for the length 

of such a sequence v. Bold face Greek letters ja.v will be used for sequences 

of ordinals. The restriction of v to r, written v [~ r is defined as follows: if 

r > 2n(v) then v Tr = v, whereas if r < £n(v) then v Tr = ji where £n((i) = r 

and |* (a) = v (a) for all a with a < r. 
Given ordinals £ and p we construct a tree as follows: the nodes are all se¬ 

quences v of length at most p with always v(a) < £, and the ordering is “is an 

initial segment of’, that is n < 3 a(fi = v Ta). It is easy to see that this 

gives a tree—referred to as the full tree on £ of height p. 

The trees that will concern us will not necessarily be full trees, but rather 

certain subtrees. In particular, they need not have the same number of 

branches passing through every node, nor even through every node at a given 

level. 
The trees we shall use will be of the following form. Let an ordinal p be 

given, and for each sequence fi with 8n(p) < p let there be given an ordinal 

n(yl). Form the set TV = {v; £n(v) < p and Wot < En(v)(v(a) < n(v T a))}, and 

order TV as before. Then (TV, O is a tree, and it is on trees of this form that 

we shall build a ramification system. (The ordinals n(y) indicate the amount 

of branching that occurs at the noden - one new branch for each ordinal 

less than "00.) 
For example, suppose «(0) = 2 (here 0 stands for the empty sequence), 

7i(<0»= 1, «(<1>) = 3, h(<0, 0)) = 2, «(<1, 0»= l,n(<l, 1>) = 2,«(<1, 2>)= 1. 
The lowest nodes of the resulting tree TV appear as in Fig. 1 below. 

Such a tree TV of ordinal sequences is converted into a ramification system 

9rby associating with each node v of TV two sets S’(v) and F(v) by induction 

on the length of v as follows: 
(i) Ifv £TV n SEQq (so v = 0) then S(v) is some given set S. 
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(ii) If v E TV n SEQa and 5(v) is known, choose for F(v) some subset of 

5(v) and split 5(v) — F(v) into (not necessarily disjoint) sets Sa where a<«(v). 

For ji in TV n SEQa+l with n T o = v (that is, for sequences in TV which extend 

vby one place) put 5(ji) = Thus 5(v) is the disjoint union of two sets, 

5(v) = F(v)U U{50i);(ieTVn5F<2a+1 and p Ter = v}. 

(iii) Ifv eivn SEQa where a is a limit ordinal, put 5(v) = fl{5(v Ta); 

a< a} 

(Thus as one rises through the levels of the tree TV, at any node v the set 

5(v) arrives from below, the subset F(v) is separated from 5(v) and kept at 

the node v, and the set 5(v) — F(v) is divided and pushed up to the nodes im¬ 
mediately above v.) 

The specification of a ramification system 9) is thus seen to require: 

(i) the ordinal p — the height of the ramification system; 

(ii) the ordinals n(y) for sequences v with 2n(v) < p, to construct the 

tree TV. If all the TV(v) are equal, say to £, then the ramification system is said 
to have order 

(iii) the setsF(v) forv in TV; 

(iv) the sets S(v) forv in TV with length ofv not a limit ordinal. 

The ramification system is said to be on S = 5(0). 

A ramification system Dr and its supporting tree TV can be constructed by 
induction as follows: 

(a) The height p and the set S = 5(0) are given. 

(b) For any ordinal o with o < p, one supposes n(yi) given for all sequences 
H with £n(fi) < a so TV n SEQa is known, and for each v in TV D SEQa one 
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supposes S( v) already given, and defines n(v), F(v) and 5"(|i.) for all sequences 

jiwithji &SEQa+1, pf a = v and p (a) < n(v). (The value of«(v)forvin 
SEQa - N is immaterial.) 

To save repetition, in all references to a ramification system the nota¬ 

tion /Tv), />(v), n(y),N, p is to be understood to be as in the description just 
given. 

The effect of a ramification system 5K of height p on a set S is to divide S 

into the sets F(\) for those v in N with £n(v) < p together with the S(v) for 

those v in N of length p and moreover the F(v) along any given branch are 

pairwise disjoint. This is the content of the following lemma. 

Lemma 2.2.2. Let SR be a ramification system on S of height p. Then 

(i) S = U{F(v); v G TV and fin(v)<p} U U{.5(v); vGjV and 2n(v) = p}. 

(ii) If v G N and a, r < £n(v) with o F r, then F( v a) n F( v fir) = 0. 

Proof. For (i), take x in S and suppose x ^ F(v) for all v in N with £n(v) < p. 

Use induction to define ordinals va where a < p such that (ra;ci<r)GiV 

and x G S(va; a < r) for all r with r < p. Suppose o is given with o < p and 

the ua where a. < o have already been suitably defined. Then it follows that 

<na; a < a) G TV and x G5(ya; a < a) . (1) 

If a is a successor ordinal this is trivial. If a is a limit ordinal, for any |3 with 

|3 < o since (na; a < j3) GN we know vp < n(va; a < /3), and so (vp;l3 < o) G/V. 

Also 

a < a) = FI (5(na; a < 0); (3 < a} = (T {5(na; a < j3); 0 < a} 

and so x G a < a). Thus (1) holds. 

Since by assumption x ^ F(va; a < a), from the definition of a ramifica¬ 

tion system there must be p in N n SEQa+1 with p Fa = a < o) for which 

x GS'(p). Choose such a sequence p, and define va by va =p(a). This com¬ 

pletes the inductive definition. 

It follows as above that (va\ a < p> G7V and that x G S(va; a < p); and 

hence (i) holds. 

To prove (ii), suppose r < o < Cn(v) for some v in TV. Then v f~r GTV and 

F(v f r) n U {^(p); pGAH SEQt+i and prr = vrr} = 0, 

so in particular F(v p r) n S( v \~t + 1) = 0. However, 

F(v f o) C />( v T a) C S(v f r + 1) , 

so F( v T r) n F(v fo) = 0. This completes the proof. 
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In the applications that we shall make of ramification systems, we shall be 

interested in having a branch through to the top of the tree such that some 

elements of S get pushed right up the branch, that is, they are never put in 
any of the F<» at the nodes along the way. In a system of height p, such a 

situation is reached by having a sequence v in TV n SEQP with S(v) non-empty, 

the initial segments v T ot for a with p give the nodes along the branch. 

The following theorem gives conditions under which there is such a branch. 

Theorem 2.2.3 (The Ramification Lemma). Let 9i be a ramification system 

of height p on a set S with \S\ > k, for some infinite cardinal k. Suppose 

either 
(i) p < k'\ |F(v)| < k ifxEN', there are cardinals Xa for o with o< p such 

that XctIct| < k' and \n(x f r)I < Xff whenever xEN n SEQa and t < o, or 

(ii) k = X+; p < X'; |F(v)| < X and |«(v)| < X whenever v£iVfi SEQa for 

any o with o < p; 9 < X 2e < X, or 
(iii) k is strongly inaccessible; p < k ; |F(v)| < k and |«(v)| < k whenever 

xEND SEQa for any o with o < p. => 
Then there is v in N n SEQP for which ,S(v) is non-empty. 

Proof. Suppose the conditions in (i) hold. For any o with a < p, we have 

[TV n SEQa\ < (sup {n(v Tr); r < a and v EN n SEQa}^a^ 

so \N fi SEQa| < XctIctI < k . Thus since p < k' and k is regular, 

|{vGX; £n(v)< p}| < k' . 

Consequently |U{F(v); v EN and 2n(v) <p}| < k, and so from Lemma 2.2.2 

it follows that 

IU{^(v); v G jV n SEQp}\ = k . 

So there must be v in N Cl SEQp with S{x) 0. 

Now suppose the conditions in (ii) hold. This reduces to (i), with XCT = X 

for all a with a < p. Note by the last condition on X, that if o < p we have 

|a| < , so that XIctI = X < k = k . 

Finally, suppose (iii) in force. Use induction on a to show that |A^n5F2CTl< 

whenever o < p. If a = 0 then \N n SEQa\ - 1. If a = r + 1, since 

xENnSEQa o vFT£NnSEQT andv(r) < n(x fr) , 

we have 

\N n SEQa\ < 2(|n(p)l; pe n SEQT) , 
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so |N n SEQa| < k by the inductive assumption and the regularity of k. And 
it a is a limit ordinal, since 

vGTV nSEQa o Vr < a(v Tt GiV n SEQT) 

we have 

W n SEQa | < n(|n(M)|; 3 r < o(p G W H SEQr)) , 

so that |7V n SEQa\ < k by the inductive hypothesis and the inaccessibility 

of k. This establishes that \N n SEQa \ < k whenever o < p. 

Thus | {v G7V; Cn(v) < p}| < k, and so |U{F(v); v GW and fin(v) < p}|< K. 

As in part (i), it now follows that there must be v in TV n SEQp for which 
5(v) F 0. 

We shall make immediate use of the Ramification Lemma to establish a 

couple of partition relations, and illustrate the method used. 

Theorem 2.2.4 (GCH). If y < k' then k+ -+ (k)\. 

Proof. Take any set S with 151 = k + , and suppose a partition [5]2 = U{ 

k < 7} is given. We have to find a homogeneous set H with \H\ = k. Define a 

ramification system 9i on S of height k and order 7 as follows. Take o with 

o < k and suppose 5(v) given for all v in N H SEQa. Take p from NC\SEQa+1 
such that p To = v. If 5(v) = 0, put F(v) = 0 and 5(p) = 0. If S(v) 0, choose 
.v(v) in 5(v), put F{\) = (x(v)} and 

5(p)= {jG5(v) -F(v); . 

This defines91. 

Then \S\ = k + \ p = k < k+ = (k+)'; |F(v)| < 1 < k+ and |«(v)| = I7I for all 

vGvV; and if o < k then |-y|lcr| < k+ by GCH. Thus Theorem 2.2.3 applies, 

and there is v in TV n SEQK with 5(v) F 0. Choose such a v . Since 5(v) F 0 

we must have S( vTcr) F 0 for each o with o < k, and so F( v To) ¥= 0; thus 

F( v po) = {x( v T o)}. For brevity, write xa = x( v T o) for o with o < k, and 

note x (j F xT whenever aArby Lemma 2.2.2(h). 
Wlien a < r < k , we have 

{*T} = F(v rV) c S( V pr) c 5(v Pct + 1) , 

and so {xa, xT} G Av(ff) by the definition of S( v fa + 1). Since always 

v(cr) < 7 < k , there must be K in [k]k and v with v < 7 such that v(a) = v 

for all a in K. Put H = {xa: a G A"}, so \H\ = k and [H]2 C Av. Thus H is a 

homogeneous set of power k as required. 
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If the Generalized Continuum Hypothesis is not assumed, the same method 

will yield the following. 

Theorem 2.2.5. For all infinite cardinals k, (2k)+ -> (k+)2 . 

Proof. Given a partition [5]2 = U{ ; k < k} ol a set 5 with |5| - (2 ) , 

define a ramification system JR on 5 of height k and order k in a manner 

similar to that in the proof of Theorem 2.2.4. This time 151 = (2K)+:p = 

k+ < (2*)+; |«(v)l = k for all v in TV; and if o<p = k + then Kia|< (2K)K 

= 2K < (2K)+, so again the Ramification Lemma applies to$K, and the result 

follows as before. 

We turn now to another application of the Ramification Lemma, which 

has some useful corollaries. 

Theorem 2.2.6 .Suppose \x -+(rik\k<yj2 and A2 (<?/;/< 5)1. Let k be a 

regular cardinal with A, < K and A2 < k and suppose (A • |5|)1 < k whenever 

A < Ai and t < A2. Then k -+ (vk; k < y, dp, l < S)2. 

Proof. Take any set 5 with |5| = k and suppose that [5]2 is partitioned, 

[5]2 = U{4;KT}uU{r/;/<§} . 

It may be assumed for all subsets H of S with \H\ ^ Aj that [H]2 C U{A/c; 
k < 7}, since otherwise the result follows from the property Ai -»• (rjfci & < 7)2- 

It suffices to find / and H with / < 5, H C 5. \H\ = 61 and [H]2 CT;. 

Define a ramification system 9r on 5 of height A2 as follows. Take o with 

o< A2 andv in N n SEQa and suppose 5(v) already defined. If 5(v) = 0, 

put F(v) = 0 and «(v) = 0. Otherwise, choose as F(y) a subset of 5(v) maxi¬ 

mal with the property [F(v)]2 C U{ A^; k < 7}, so |F(v)| < Ai. Then if 

y £5'(v) - F(v), by the maximality of F(v) there isx in F(v) such that 

{x, y} £ T/ for some / with / < 5. Thus there is a decomposition 

5(v) — F( v) = U{5(p); M £5FQct+i , >ira= vandp(a)<n(v)} , 

where for p in SEQa+l with p To = v, for some x(p) in F(v) and /(p) with 

/(p) < S, 

5(p) = {y £5(v) - F( v); {x(p), v} G T/(M)} . 

This defines F(v), n(y) and 5(p) for all p in TV n 5FQCT+1 with p fu = v, and 

so completes the definition of tK . 
In this description, |«(v)| < |F(v)l • 151. This means that the conditions of 
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Theorem 2.2.3 are satisfied by sJi, and so there is v in NT) SEQx2 for which 

S(y) 0. So F( v T a) ^ 0 for each o with a < X2. Put -Yct = x(v(' o+ 1), so x @ -f- x 
when o^t (since xa E F( v o) and xT E F( v f r)). 

When a < r < X2, we have 

xr E F( v Tr) C S( v fir) C S( v p a + 1), 

and so (xCT, xr} E T/( vp a+1), by the definition of S{ v f~ a + 1). However, 

X2 = U{A/;/<5} where A / = (a < X2; /(vTu + 1) = /}. By the relation 
X2 -*■ (dp /< 5)1, there are l0 with /0 < 5 and a subset H0 of X2 with \H0\-6i0 

and /(v T a + 1) = /0 for all a in H0. This means that if o<t< k and a E//0 
then (x0, xT} E T/0. Thus if H= {,xa; a E //0}, then [H]2 C T/o. Since 

\H\ = , this proves the theorem. 

Corollary 2.2.7 (GCH). If 8 < k' then k+ -»• (k+, (k'\)2 . 

Proof. We shall use Theorem 2.2.6 with k = k + , with Xi = k+ (noting that triv¬ 

ially k + -> (k + )i) and with X2 = k (noting that k (k')$). By GCH, if X < k + 

and l < k ' then (X • |51)1 < a1 = k < k+, so the conditions of Theorem 2.2.6 

are satisfied, and k+ -*■ (k+, (,k')&)2 follows. 

Corollary 2.2.8. Suppose k is strongly inaccessible, y < k and 7?^ < k for k <y. 

Then k~>(k, (pk; k < y))2. 

Proof. Since k is regular there is a cardinal 0 with d < k , y < 9 and 7?*- < 0 for 

all k. From the inaccessibility of k, we have 6+ <k. Since 6+ is regular, 

0+ -*■ (0)^ so in particular 0 + -> (pk; k < 7)1. Apply Theorem 2.2.6 with Xj = k 

(noting that trivially k -> (/t)2) and X2 = d+. Because k is strongly inaccessible, 

certainly (X • lyl)1 < k whenever X < Xj and t < X2, so we conclude that 

x -*(k, (Vk\k<y))2 . 

We conclude this section with a proof of Ramsey’s theorem [80]. 

Theorem 2.2.9. For all finite m, Fi0 -»■ (K0)m- 

Proof. Take any set 5 with |S| = ^o> an(f suppose a partition [S]2 = U{A^; 
k < m} is given. Define a ramification system Or on S of height to as follows. 

Take o with a < to and suppose S(v) has already been defined for each v in 

NDSEQa- If S(v) = 0, put F(\) = 0 and «(v) = 0. Otherwise, put n(v) = m, 

choose x(v) in S(v) and putF(v) = (x(v)}. For p in N n SEOa+i with 
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Ufa = v, define ^(v) = {x G S(v) — F(v); (x, x(v)} G A^CT)}. This defines 

the ramification system 9\. 
Choose numbers Vj for i with i < co by induction so that always S(( Vj\ 

j < /)) is infinite, as follows. Supposing Vj already defined for all / with / < i 

so that S(( vf, j < /}) is infinite (this is trivial if i = 0), since S(( vp j < />) is split 

into only finitely many classes S((v0, ..., vt_i, v>) one of these must be infi¬ 

nite. Choose Vj so that S({v0, ..., Vj_x, Vj)) is one of these. Then for the se¬ 

quence v = (vf, i < co), the element x(v fa) is defined for all o with a < to. 

Write xCT = x(v f c). Note that whenever a < r < co then xr G S( v T r) 

C S(v per + 1), and so {xT, xCT} G AV(cr) by the definition of S(v ["cr + 1). 

There must be v with v < m and an infinite subset K of cu such thatv(a) = v 

for all a in K. Put H = {xa; a G K}\ then \H\ = 1S0 and [.H]2 C Av. So H is an 

infinite homogeneous subset of S, as required. 

The original theorem of Ramsey asserts more than Theorem 2.2.9, namely 

that the relation K0 (^o)m holds for all finite m and n. This may be proved 

by induction on n, combining the proof just given for n = 2 with the method 

of the Stepping-up Lemma from the next section. 

§3. The stepping-up lemma 

This section is devoted to a theorem which enables the results obtained in 

the last section for n = 2 to be “stepped-up” to results in the case n > 3. 

Theorem 2.3.1. (The Stepping-up Lemma). Let k and X be infinite cardinals 

such that \ <k. Let n > 1 and suppose X (r^; k < yf1 where 1-y(1 CT| < k 

whenever o < X. Then k -> (r)k + 1; k < 7)'! + 1. 

Proof. Take .any set S with \S\ = k and suppose given a disjoint partition 

A = (Afc; k < 7} of [S]".+1. Define a ramification system 9r on S of height X 

as follows. Take o with o < X, and suppose S(v) has already been defined for 

each v in TV n SEQa. It S(\) = 0, put F(v) = 0 and n(v) = 0. Otherwise, choose 

x(v) in S(y) and put F(v) = {x(v)}. Write G(v) = U{F(vrr); r < a}, so 

|G(v)| < |a + 1|. Define a partition I'(v) of S(v) - F(v) by asserting 

y = ^(mod T(v)) »aU {7} = a U {z} (mod A) for all a in [G(v)]'! . 

Put «(v) = IT(v)|, so n(v) < l7llf7+1|n, and let A(p) for p in TV n SEQa+l with 
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mT a - v range over the classes of r(v). This completes the definition of$K . 

It a < X, put \0 - l7lla|”; then n{\ pr) < Aa whenever r < a. Since A is 

infinite, the assumption 1-yl|CT| < k whenever a< A ensures that Aff|a| < k for 

o< A. Thus the conditions of the Ramification Lemma are fulfilled by IT . 

Hence there isv in TV H SEQX for which S(y) 0. Choose such a sequence v; 

then always S{\ per) 0 so F(\[ a) = {x(v pa)}. Choose xx from 5(v), and 

when a < A put xa - x(v pa). Then xa F xT when r < a < A. 

If r < a < A then xa G F(v Ta) C S(v Pa)C(vPr + 1), and X\ G S(v) 

C S(v pr + 1) so both xa, x-g G5(v pr + 1). Thus both xa and xx are in the 

same class of T(v Pr), and from the definition of T(v Pr), if T\ < T2 < ... < rn 

< r, 

{xTl, xTn, xa} = {xri,..., xTn, xx} (mod A) . 

Put X = {xT; r < A}; then there is a partition [X]n = U{Afc; k < A} where 

A'*= {aG[X]n\aU (xjGAj. 

By the relation A -»■ (rjk: k < y)n, there are k with k < y and a subset H of X 

with \H\ = rjk such that [H]n C A'k. But then [HU {xx)]”+1 C Ak, and 

|H U (xx}| = r\k + 1, so the theorem is proved. 
The results obtained in the last section may now be exte-nded as follows. 

Theorem 2.3.2 (GCH). Suppose n > 1 and y<K. Then 

Proof. Of course, when k is regular then (i) follows from (ii). Use induction 

on n. The cases n = 1 are Theorem 2.2.4 and Corollary 2.2.7. To go from n to 

77+1, use Theorem 2.3.1, noting that k((/1 + 1)+) is regular and that when 

o<K(n+) by GCH, 

\y\M <\y\+ ■ \o\+ <K(n+) <K«n+1)+) 

Without assuming the Generalized Continuum Hypothesis, Theorem 2.2.5 

steps up as follows. 

Theorem 2.3.3. If n > 1 then (D„(k))+ -> (k+)k + 1- 

Proof. Again by induction on n. The case n = 1 is Theorem 2.2.5. To go from 

n to n + 1, use the Stepping-up Lemma, noting that (2„+1(k))+ is regular and 

that when a < (2n(/<))+, 

< <?"M « 2“ ' = 2^(k) = 3„+1«t) < O„t,0<))+ . 
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4. Results for singular cardinals 

We turn now to partition relations which hold for singular cardinals k. A 

special technique, that of canonical partitions, is available which reduces the 

question to a consideration of partition properties of the regular cardinal k . 

We shall assume that Generalized Continuum Hypothesis throughout. With¬ 

out this assumption, the methods developed in this section work if we assume 

that, as well as being singular, the cardinal k in question is a strong limit car¬ 

dinal, that is, 2k<k whenever A < k . 

Definition 2.4.1. Let A be a disjoint partition of [S]n and letG be a pairwise 

disjoint family of subsets of S. The partition A is said to be canonical in G 

if for all a, b in [U G]", if \aC\Q = \bC\ Cl for all C in G , then a = b (mod A ). 

The following lemma gives a method of constructing canonical partitions. 

See Erdos, Hajnal and Rado [38, §9]. 

Lemma 2.4.2 (GCH). Let k be singular and let <kct; o < k) be an increasing 

sequence of cardinals below k with k = 2(kct; o< k'). Let S be any set with 

151 = k and take any pairwise disjoint partition A of [5]” into fewer than k 

classes. Then there is a pairwise disjoint family G = {Ca: o < k'} of subsets 

of S with always |CCT| = k0 such that A is canonical in G . 

Proof. We shall give the proof for n = 3; an entirely similar proof can be given 

for general n. So let the disjoint partition A - {A^-; k < 7} of [5]3 be given, 

where 7 < k'. To produce the required family (CCT; a< k'} we first find a 

family {Aa; o < k'} of subsets of S such that for each i with 1 < / < 3, 

if a, b E [A0\ and c £. [U{Ht; r < a}]3-' , 

then a U c = b U c (mod A ) . (1) 

This family is refined to a family {Ba \ o< k'} such that for some chosen 

sets cTj with |cTyj = /, for all i, j with 1 < i, j < 2 and i +j < 3, and for all r 
with r < k' 

if a, be [Ba\ and d £ [U [Br. r < o}]3_,w , 

then a U cTJ- U d = b U cTJ- U d (mod A) . (2) 

Finally {Ba: o < k'} is refined to {CCT; o < k'} such that for some chosen sets 

d^ with \d^ \ = 1, for all r, tp where r, 1// < k 

it a.be [Co]1, 

then a U cTl U d^ = b U cTl U d^ (mod A) . (3) 
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Then A is shown to be canonical in {Ca\ o< k’}. 

We start by taking an arbitrary well ordering -< of S and a pairwise disjoint 

decomposition S = a < k } with always |£CT| = kct. Use transfinite induc¬ 

tion to define ordinals £(a) with £(a)< k' and setsACT in [5’?(a)|Ka for o with 

o < k as follows. Put A(o) = U {Ar; r < a}. For each a in [S' - /1(a)]3, say 

a = (xj, x2, x3} where xx -<x2 -<x3, define a function fa : U{ [/1(a)]';z'<3}->7 

by, for c in [/1(a)]', 

fa(c) = ko (xlt..., x3_J u C e Ak . 

Now \A(o)\ = S(kt; t < a) < Ka so the number 77 of possible functions is yK°, 

so 77 < k by GCH. Choose £(a) such that £(a) > £(r) for all r with r < a, and 

also K£(a) > p+++, Kq++ . It follows from Theorem 2.3.2 that A+++ -»• (A+)3, so 

certainly -*■ (/ca)3. Hence there isAa in [Sj(CT)]k<T such that/a is the same 

for all a in [Aa]3. This defines Aa so that (1) holds. 

Choose, for/ = 1,2, some set cr;- from [.A(t)\1 for each r with r < k'. In¬ 

ductively define ordinals 77(a) with 77(a) < k and sets Ba in [H7r(a)]Kff where 

a< k' as follows. With B(o) = U{5r; r < a}, for each a in [A - 5(a)]2, say 

a = {xj, x2} where xx -< x2, define a function mapping from {(cTj, d)\ 

d. C B(o), t< k , / = 1,2 and \cTj U d\ < 2} into 7 by, if |cTy U 5| = i, 

Saterj, d) = k*> {xx, xj U cTj U d G A* . 

Again, the number of possible such functions is less than k, so 77(a) can be 

chosen so large that n(o) > 7r(r) whenever r < a and so that there is Ba in 

[A7r(CT)] CT such that all a in [Ba]2 have the same ga. This gives Ba such that 

(2) holds. 

Now choose dT in [B(t)}x for each r, and inductively define ordinals p(a) 

and sets Ca in [5P(CT)] CT as follows. Put C(a)= U{CT;r< a}. For eachx in 

S - C(o) define a function hx where hx : {(crl, d^)\ r, \p < k7 by 

fcxfo-i. d^) = k<> {x} U cTl U^GAj. 

As before, p(a) can be chosen so large that p(a) > p(r) whenever r < a and so 

that there is Ca in [Bp(CT)]*a such that hx is the same for allx in Ca. This de¬ 

fines Ca such that (3) holds. 

It remains to show that A is canonical in Q = (C0; a < k'}. Take a, b in 

[U 2]3 with |a n CCT| = \b Cl CCT| for all a. We must show a = Z?(mod A). There 

are at most three ordinals a, r with f < a < r such that 0 meets Q, CCT, Cr. 

Write a = ax U a2 Ud3 where ax = 0 Cl Q, 02 = 0 Cl CCT, 03 = 0 Cl CT (allowing 

0X = 0 or <27 = a2 = 0 when a C CCT U CT or a C CT). Similarly write b = ^ U b2 

U b3. 

If 0 = a3 then a, b G [Cr]3 so by (1), a = b (mod A ). Otherwise, write 
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c3 = C1r(p(r))j where |ff3| = /. Since a3ECTE Bp{j) Q both a3, c3 EA^tr)) 
with \a3\ = |c3[. And «|Ua2 CA(tt(p(t))) since both 7r and p are increasing 

functions so by (1) 

U a2 U a3 = C) Ufl2U c3 (mod A) . 

Similarly, 

b\ U b2 U b3 = b\ U b2 U c3 (mod A) . 

If = 0, it follows from (2) that a2 U c3 = b2 U c3 (mod A), and so a = b 

(mod A). The only remaining possibility is that \a3\ = \a2\ = \a3\ = 1. In this 

case, put c2 = dp(p). Here a2ECa C Bp^ , c2EBp(ct) and a3 C B(p(oJ), so 

by (2) 

flj U a2 U c3 = ax U c2 U c3 (mod A) . 

Similarly, 

bx U b2 U c3 = bi U c2 U c3 (mod A) . 

Finally, because of (3), 

a1 Ue2Uc3 = bl'Jc2[Jc3 (mod A), 

so again a = b (mod A). Thus is all cases, a = b (mod A), and the lemma is 

proved. 

The following remarks concerning the proof of Lemma 2.4.2 will be rele¬ 

vant to later applications. The pairwise disjoint decomposition S = U{Sa; 

o< k'} with \Sa\ = Ka of S could have been specified in advance. In the course 

of the proof an increasing function/ : k k was constructed (where/(a) = 

^Ttp(o)) such that Ca E [,S/(ff)]*a. In particular, if with respect to the well or¬ 

dering -< of S, we had specified the Sa so that Sa < ST whenever a < r then 

it follows that Ca -< CT whenever o < r. 

Theorem 2.4.3 (GCH). Let k be singular. Then 

K -+ (k, tik; k < y)2 if and only if k' -+ (k\ r)k; k < y)2 . 

Proof. For the easier direction, suppose k -+ (k, rjk:k < 7)2, and take any par¬ 

tition 

[k']2 = A U U{ Ak:k < 7} . 

Take pairwise disjoint sets Sa for o with a < k' such that |SCT| < k and if 

S = U{5CT; a < k'} then |£j = k. For k with k<. 7 define 
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T/c - {{*, y}', 3 {a, r} S [k'|2(x ESa, y ESr and {x,y} E Ak)} , 

and put r= [A]2 - U{ r^-; ^ < 7}. Then 

[s]2 = ruu{r,;K7}. 

Since \S\=k, by the assumption k -> (k, pk\ k < y)2, either there is H in [S]K 

with \H]2 C T, or else there are k with k< y and H in [S]Vk with [//]2C I\. 

In either event, put /= {o < k \ H n Sa =£ 0}. In the first case, \I\ = k and 

[/]2 C A. In the second, for each a we must have \H n 5a| < 1 and so |/| = rjk, 
and [I]2 C Ak. Thus k' -> (k , r}k; k < y)2. 

For the other direction, we shall use Lemma 2.4.2. Suppose k (k', r?fc; 

k < 7)2, and for a set S with \S\ = k let any partition 

[S]2 = AU U{ A^; ^ < 7} 

be given. Suppose for each k with k < 7 that there is no subset H of S with 

\H\ = r]k and [//]2 C Ak. We must show that then there is//in [S']* with 

[//]2 C A. Take a family £ = {CCT; o< k'} such that the given partition is 

canonical in 6 . We may suppose that always |Ca\ > k'. 

Since rjk < k' < \Ca\, for each a we have [Ca]2 (£ Ak for each k. Thus 

from the definition of canonicity, always [Ca]2 C A. Choose Cwith 

C C Uf Ca', o< k'} such that |C n Ca\ = 1 for each o, so |C| = k'. The partition 

of [A]2 restricts to give a partition of [Cl2, and when k < 7 by assumption 

there is no subset H of C with \H\ = r]k for which [H]2 C Ak. By the relation 

k -*■ (k', T]k\k< y)2, there must then be H0 in [C]K with [//0]2 C A. Put 

H = U{CCT; Ca n//0 ^ 0}, so \H\ = k. Then if x EH D Ca and u EH (1 CT, 

since Wo? C A, by canonicity {x, 11} E A. Thus it follows that [//]2 C A, 

and the proof is complete. 

Corollary 2.4.4 (GCH). Suppose k is singular with k' = X+ for some X Then 

k -> (k, (X^g)2 for any 8 with 8 < X'. 

Proof. From Corollary 2.2.7 we have X+ -*■ (X+, (X’))2, and the result follows 

from Theorem 2.4.3. 

Corollary 2.4.5 (GCFI). Suppose k is singular with k = X+ for some X If n > 0 

and 8 < then 

^n+^(K,(X')sT+2 . 

Proof. By induction on n, starting from Corollary 2.4.4 and using Theorem 

2.3.1. 
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§5. The case n = 2 

This section starts with some special partitions of the pairs from an infinite 

set which serve to demonstrate the failure of certain partition relations with 

n = 2. Using these and the positive results from earlier sections, an almost com¬ 

plete discussion is then given of the truth of the relation k -> (r?k; k < y) . 

Theorem 2.5.1. Suppose y>2 and Kk<pk for k with k<y. If k < U(Kk; 

k < y) then k -f (r?fe; k < y)2 ■ 

Proof. Take sets Sk with \Sk\ = Kk for k < y. Let 5 be a subset of the cartesian 

product X {Sk; k < 7} with \S\ = k. Define a partition A = { Afc; k < y} of 

[S]2 as follows: for/, g in S, 

{fg}£ Ak <*f(k)^g(k) . 

If H is a subset of S homogeneous for A, say with [H]2 C Ak, then \H\ 

< lAfcl <Hk <Vk- 

Corollary 2.5.2. If k is any cardinal, then 2K -f (3)1- 

Corollary 2.5.3 (GCH). Let k be singular and suppose there are cardinals r\k 

where k< y with 2<pk<K and k < II(rjk \k< y). Then k+ (r?fc; k < y)2. 

Proof. By virtue of Corollary 2.5.2, we need only consider the case when 

y < k. Since k is singular, there is an increasing sequence (kct; o < k'> of car¬ 

dinals Ka all less than k with k = 2(kct; a < k'). We can choose inductively 

distinct ordinals k(o) where o<k with k(o) < y such that pk(p) >Ka, for 

otherwise there would be r with r < k' such that pk < kt whenever A' ^ (A(a); 

0 < t}. But since 7 < k and r < k', by GCH this would lead to the contradic¬ 

tion 

K<n(T?fc;A;<7)<Krl71 ■ n(r? k(a)\o < t)< < k . 

However, GCH implies that n(Ka; a< «') = k+, so by Theorem 2.5.1 we 

have k+ j> (Ka: o< k'), and consequently k+ /(rj^K 7)- 

Corollary 2.5.4. If K is singular then k+ -f (k)2\ 

The basic method of proof of the next theorem is due to Sierpinski, who 

used it in what appears to have been the first proof of the relation T 0 i* 
(^1, ^i)2- The more general setting appears in Erdos and Rado [28]. 
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Theorem 2.5.5. Let k and A be infinite cardinals. Suppose 2(0lai; a< A) < k. 

Then 6X -f (k, A+)2. 

Proof. Let-<be the lexicographic ordering on the functions in x6\ that is if 

f g are distinct members of x6 and if a is the least ordinal where /(a) 

then 

f<g^f(or)<g(a) . 

Notice the following facts about well ordered and conversely well ordered 

subsets (under-<) of x6: 

If X C x6 and X is well ordered by-<, then \X\ < k; (1) 

If X C xd and X is well ordered by>-, then \X\ < A . (2) 

To prove (1), suppose X- {/M; p < £} where ffl< fv whenever p<v<%, 

and suppose without loss of generality that £ is a limit ordinal. For each p 

with p < % define /M* in xd as follows: if a is least such that /M(a) /M+1 (a), 

then (if /3 < A) 

( fn+i(fi) 

fp(P) = 
{ 0 if (3 > a . 

Thus fn< 1, and in fact if p < v < % then/M* <fv </*■ Hence 

the map which sends/ to/* is one-to-one from X into Y, where Y = {/Ex0\ 

for some a < A, /(|3) = 0 whenever (3 > a}. Thus |X| < |T|, and |T| = 2(0la|; 

a < A) so by assumption I Y\ < k . This proves (1). 

To establish (2), suppose for a contradiction that there is a subset X o(x9 

where X = {/M; p < A+} with/M>~ /„ whenever p < < A+. We shall show 

that the functions in X with large p have increasingly greater initial sections 

in common. More precisely, for each a with a < A there is p(a) with p(ot)< A+ 

such that 

if p > p(<*) and y < a, then /m(t) =/M(a)(T) • (3) 

We shall define p(a) by transfinite induction. So let a be given (with a < A) 

and suppose that p(fi) has already been suitably defined for all /3 with P < a. 
Since Z(lp(P)\;P < a) < A • |a| = A, there is v with v < A+ such that p(\3) < v 

whenever (3 < a. Thus if p > v and y < a, then/M(7) =fv(y), and if px < p2, 

thenj (a)>.fll2(a). 

There must be p(a) such that v < p(a) and/M(o:) =/M(Q,)(a) whenever 

p > p(a). For if not, inductively one could find ordinals v(n) with v = y(0) < 
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p(\)<p{2)< ... where/Ko)(a) >/y(1)(a) >/K2)(a) >..., giving an infinite 

descending chain of ordinals (all less than 0), which is impossible. This de¬ 

fines ju(a) so that (3) holds, and completes the definition. Now 

2(|ju(a)| ;a<X)<X2 = X, 

and so there is v with v < Xf for which p(<x) ^ v lor all a with a < X. But then 

fv(a) =fv+l(a) for all a; that is fv = fv+l, which is ridiculous. Thus (2) is 

proved. 

We are now ready to prove the theorem. Take any well ordering < of x9, 

and use it to define the following partition { A0. Aj} of [x0]2 : 

{f,g}eA0 f <g and f^g, 

{fg}EAx <>f<g and f>g. 

If X is a subset of x6 with [A"]2 C A0, then X is well ordered by -< and so 

\X\ < k by (1). And if X is a subset of x6 with [X]2 C A^ then X is con¬ 

versely well ordered by so |Af| < X by (2). 

Corollary 2.5.6. For all k, if\ is the least cardinal for which k < 2X, then 

2xf (k+,X+)2. 

Proof. Apply Theorem 2.5.5 with 6-2 and k replaced by k + . By choice of X 

we have X < k and 2la’1 < k whenever a < X. Thus 2(2la'; a < X) < k ■ k = 

k <k + , and the result follows. 

Corollary 2.5.7 (GCH). If k is any cardinal, then k+ f (k + , (k')+)2 . 

Proof. From the GCH, S(K|a'; a < k') = k • k' = k <2k+ so Theorem 2.5.5 ap¬ 

plies to show kk f (k + , k')+)2. 

Theorem 2.5.8. If k is uncountable and not strongly inaccessible then k -/>-(/<) 

Proof. If k is singular, then there is an increasing sequence (kct; a< k) of car¬ 

dinals with always Ka < k which is cofinal in k. Define a partition A = { Aq.Aj} 

of [k |2 as follows: if a < @ < k then 

{cv, j3} e A0 ° 3 o < k' Ka < P) , 

{a, P) E Ai otherwise. 

117/ is homogeneous for A, then \H\ < k. For if [//]2 C A0 then II can have 

at most one element in {a < k ; Ka < a < kct+1} for each a so that \H\ <k'<k, 
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and it [H]2 C Aj then H must be completely contained in some {a< k\ 
Ka <a<Ka+1] so \H\ < Ka+1 < k. 

If k is regular but not strongly inaccessible then there is X with X < k < 2\ 

If we take the least such X then 2(2lal; a < X) < k, so by Theorem 2.5.5 we 

have 2X fr (k, X+)2. In particular then, k -f> (k, k)2. 

We conclude this list of negative relations with the following theorem. 

Theorem 2.5.9 (GCH). If k is singular then k+ f (k+, (3)Kf2. 

Proof. By the GCH, | [k+]^| = k+ so we may put [k+]k: = {Aa; a < /c+}. For 

each a, putsrt a = {Ap\ P<a and Ap C a}, so \srla| < k and [k+]'< = U{ sHa\ 

a < k + }. Choose an increasing sequence of cardinals (k0; a < k') all less than 

k such that k = 2(kct; a < k'). Choose subfamilies sAaa ofsA. a with | sf.aCTI^KCT 

such that sda = U{^QCT;a< k.'}, for each a. 

Let a be fixed with a < k'. Use induction on a where ot< k+ to define sub¬ 

sets/CT(a) of a with | /a(a)| < Ka+1 as follows. Put fa(a) = 0 if a < k. Suppose 

k < a < k+ and fa{[3) has been defined for all j3 with (3 < a. Since j3 ^ )3 cer¬ 

tainly P 0fa(P). Thus, in the notation of Chapter 3, § 1, we can consider 

fa : a a as a set mapping on a, and fa has order at most kct+1 . We appeal 

to Theorem 3.1.2. Since \sfl.0La\ < na < a, there is a subset Faa of a which is 

free for/CT and for which \Faa FA\ = k for each A in srtaa. To say that Faa 

is, free for fa means that Faa Pi U fa[Faa\ = 0. Choose fa(a) from 

so that A n fa(a) =£ 0 for eachH in sdaa. Then fa(a) C a. and |/ff(a)| < K.a < 

kct+1. This completes the definition of fa(a). 

We are now ready to define a partition 

[k+]2 = AU U{ACT:a<x'} 

which will prove the theorem. For a with o k', if a, ft (= k+ with (3 < a then 

define 

{a,^}GAa^j3G/a(a), 

and put A = [k+]2 — U{ACT; o< k'}. Take any set H from [k+]*+. Take A 

with A G [H]K so A =Ap for some p. Since \H\ = k + , we can choose a with 

aFH such that P< a and A C a. Then A G sd aa for some a with o<k'. The 

definition offa(ot) ensures that there is 7 with 7 FA Ffa(a). Then 7 EH and 

{a, 7} G Act; hence [.H]2 <£ A. And if for any o there were a, P, 7 in k+, say 

with 7 < P < a, such that [ {a, P, 7}]2 CA„ then (3, 7 £fa(a) C Faa and 

7 G fa(P) so that 7 G Faa n U fa [Faa] contrary to the fact that Faa is free 

for/CT. This shows that the above partition has the correct properties to prove 

the theorem. 
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We are now ready to discuss the symbol k (r?fc; k < 7)2 (where 2 < 7 < k 

and 2 < pk<K). We shall assume the Generalized Continuum Hypothesis 

throughout. We shall restrict the discussion to the case where at most one of 

the ri/c has value k. For it follows from Theorem 2.5.8 that if even k -+ (k)2 

then k is inaccessible (or k = N0), and so> excluding k = N0, it is consistent 

with the usual axioms for set theory that there are no such cardinals. Cardinals 

with the property k -> (k)2 are known to be weakly compact, and consequent¬ 

ly are larger even than the first inaccessible cardinal (the last a result due to 

Hanf [57]). 

Case A. rj0 = k and r\k < k for k with 1 <k< 7. 

If k is inaccessible then k -> (k , pk; 1 < k < y)2 provided 7 < k , by Corollary 

2.2.8. This is the best possible result, because of the trivial relation k -/Hk,(3)k)2. 

If k is a successor cardinal, say k = X+, then k (k, (X )7)2 for any 7 with 

7< X', by Corollary 2.2.7. This is the best possible, in view of X+-f (X+, (X,)+)2 

from Corollary 2.5.7 and X+ ~f (X+, (3)^)2- The last relation holds by Corol¬ 

lary 2.5.2 if X is regular, and Theorem 2.5.9 otherwise. 

If k is singular, suppose first that k is a successor cardinal, say k' = X+. Then 

by Corollary 2.4.4 we have k -> (k, (X')7)2 provided 7 < X', and this is the best 

possible positive result. This follows since k -f- (k, (\')+)2 by virtue of Theo¬ 

rem 2.4.1 applied to Corollary 2.5.7, and k > (k, (3)^)2 by applying Theorem 

2.4.3 to the relation X+ (X, (3)^)2 established above. On the other hand, 

should k' be a non-successor cardinal then k is inaccessible or countable. By 

Theorem 2.4.3, the relation k (k, rjk\ 1 < k < j)2 is equivalent to k' -> (k'.t?^: 

1 < k < y)2. This second relation is false if any of the t]k exceed k', involves 

the relation k' -> (k')^ if any r\k is k , and has been discussed above otherwise. 

Case B. rjk < k whenever k < 7. 

This case is completely settled by the following theorem. 

Theorem 2.5.10 (GCH). Suppose rjk < k whenever k < 7. Then k -> (rjk:k<y)2 

if and only if II(t7A-; k< 7) < k . 

Proof. Suppose ITfr?^; k < 7) < k . Then certainly 7 < k and pk < k for all k. 

If k is inaccessible, by Corollary 2.2.8 we have k -*■ (k, rik: k < 7) so in¬ 

deed k (T]k\ k < 7)2. 

If k is singular, in fact the pk must be bounded away from k. For suppose 

some set {%; k G K} is cofinal in k, where we may suppose |A.'| = k . From 

Konig’s Lemma follows the contradiction 

k < 2(r?fc; k G K) < n(r?fc; A: G A") < n(r?fc; k<y)<n . 

Thus there is 6 with 0 < k such that rjk < 6 whenever k < 7, and we may sup- 
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pose in addition that y < 0. From Theorem 2.2.4 it follows that 0++ -> (0+)g, 
and hence k -* (r?fc; k < y)2 since 0++ < k. 

Thus we may suppose k is a successor cardinal, say k = A+. Since Il(r?fc; 

k <y)< A, it follows that y < A and always r)k < A. If A is regular, by Theo¬ 

rem 2.2.4 we have that A+ -> (A)2 provided y < A, and so it follows that 

K (Vk ’ ^ ^ T)2- If ^ is singular, since X\{r)k\ k <C y) < A certainly 

I {k\T\k = A}| < A'. Moreover, there can be no set {r)k,kEK} of those r]k 

with rik < A which is cofinal in A, since otherwise (assuming |A'| = k') we have 

the contradiction 

A < Z(vk; k<EK)< II(r^; k E A) < Ilfp^.; k < y) < A . 

Thus there is 0 with 6 < A such that r]k < 0 whenever r\k < A, and we may 

suppose also A ^ 0 and y ^ 0. So to show k (r)k\ k < y) it would be enouglr 

to establish that A+ -> ((0)7, (A)5)2, where y < A, 5 < A'. However, from Theo¬ 

rem 2.2.4 it follows that 

A+ (A, (A)s)2 and 0++ -»(0+)2, so A-+(0)2 , 

whence A ~+((0)7, (A)§)2 by Theorem 2.1.2. This completes the proof of 

the sufficiency of the condition U(r]k :k<y)<K. 

Suppose now FI(r]k; k < y) > k (where r\k < k), and we show that k -/> (77; 

k < y)2 • 

If k is inaccessible, we must have |y| ^ k and the result follows from the 

trivial relation k (3)2. 

If k is singular, suppose first that some set {nk;kE K] is cofinal in k, 
where we may take \K\ = k'. Then 

k ~ 2(7?^; k&K)< n(i7^; kEK)< U(r}k, k E y) . 

By Corollary 2.5.3 then k+ > (r]k, k < y)2, so all the more k ■+ (r)k\k < y)2. 

If no such set of the r]k is cofinal in k, there is k0 with k0 <k such that al¬ 

ways r\k < kq. Then Y\(r}k\k < y) < k017', so |y| > k and k f (vk; k< y)2. 

Finally, suppose k is a successor cardinal, say k. = A+. If A is regular, 

14(7ik‘, k < y) < AItI so |y| > A. The result follows from the relation A+~X (3)2, 

given by Corollary 2.5.2. So we may further suppose that A is singular. If 

I (A < y; 77^ = A}| > A\ since by Corollary 2.5.4 we have A+ (A)2', it follows 

that k -k (r\k\k < y)2. Thus we may assume | {k < y; r]k = A}| = 0, where 

0 < X'. As before, if there is some set {77^; k E K} with r]k<X for k E K 

which is cofinal in A then A < nfT?^; k < y), so k (r]k\ k < y)2 by Corollary 

2.5.3. And if there is no such set of the r\k cofinal in A, there must be Ao with 

A0 < A and r]k < A0 whenever r\k A. Since 0(17*-; k< y) < A0 • Aq7' and 

X6 = A it follows that |y| > A. However, A+ (3)2 from Corollary 2.5.2, so 

here also k (77^; k < y)2. This completes the proof of Theorem 2.5.10. 
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§6. Results when n > 3 

The situation with regard to partitions of pairs now being settled, we can 

turn our attention to partitions of the n-element subsets for n with n ^ 3. 

Here a few unsolved problems remain. The Stepping-up Lemma (Theorem 

2.3.1) seems to be essentially the only method of proving positive relations 

in this case. 

If GCH is assumed, the Stepping-up Lemma ensures that if k -* (pk,k< y)n 

then also 2K -» (pk + 1; k < t)”+1 . One seeks to prove the converse to this, 

namely that if k -j* (r)k‘, k < 7)" then 2K -f (r}k + 1; k < 7)/1 + 1. This has not 

been done in general; various restrictions have to be imposed on the r/k. We 

shall not aim to give a full discussion even of the known results. Apart from 

the first few theorems, for simplicity we shall limit the discussion to the case 

n = 3. Many of the results for n = 3 can be extended without undue difficulty 

to higher values of n; on the other hand further new methods are needed as 

well. The reader is referred to Erdos, Hajnal and Rado [38, § § 13, 14] for 

details. 

We shall start by considering relations of the form k ~>(k, 17 k; k < 7)" 

where n> 3. In Theorem 2.6.2 belovy we shall show that even the apparently 

weakest non-trivial relation of this form, namely k -*■ (k, 4)3, implies that 

k -> (k)1 and so by Theorem 2.5.8 k must be strongly inaccessible. Thus for 

uncountable accessible cardinals k, no non-trivial relation of the above form 

is true, as opposed to the positive results which are possible when n - 2. (See 

Case A of the discussion in the proceeding section.) 

Lemma 2.6.1. If k is singular then k -f (k, 4)3. 

Proof. Take any set S of power k, and write S' as a disjoint union, S = U{Sa; 

o< k;} where always |SCT| < «. Define a partition (A0, Aj) of [S]3 as follows; 

for a in [S]3, 

o,t<k')(o<t and | a n Sa\ = 2 and | a n ST\ = 1) , 

aG A0 otherwise. 

UHG[Sf it is easy to see that [//]3 <£ A^ And if H is a subset of S with 

[//]3 C Aq, whenever H n ST ¥= 0 then |H n SCT| < 1 for all a with a < r. It 

follows that \H\ < k or \H\ < k' + |ST| for some r; in any event \H\ < k. 

Theorem 2.6.2. Suppose for some n with n>3 that k ~*(k, n + 1)”. Then 

k -*002- 
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Proof. If k -* (k, n + 1),! then clearly k -> (k, 4)3 and so it is enough to show 

that if k -» (k 4) then k -> (k)1- So suppose k -> (k, 4)3. Take any disjoint 

partition [k]2 = A0 U Ax and suppose that there is no set/in [«]“ such that 

[I]2 CAj.We must show that there is/in [k]k with [/]2 C A0. 

Define a disjoint partition [k]3 = T0 U Ft as follows: for a, p, y from k 

with a<P<y, 

{a, P, 7}er0<> {a, p} E A0 or {j3, y} G Aj , 

{a, P, 7} G Tj {a, p] G Aa and {/3, 7} G A0 . 

Suppose H — {ft, P, y, 8 } is a subset of k with [//]3 C Fj. If we assume 

a<p<y<8, since both {a,P, 7}Grr and {p,y,8}EFl we find both 

7} ^ Ao {p, 7} G Aj, which is impossible. So there is no such set H. 

From the relation k -*■ (k, 4)3 it follows that there must be then a set H 
from [k ]K with [//]3 C T0. For ft from H, put 

Hl(a)= {p G//; a < P and (ft, ^{GAj}. 

Take p, 7 from Hx(ct). If (j3, 7} G A0 then (a, p, 7} G F1 contradicting that 

[#]3 C T0, and so {0, 7} € A*. Thus [//r (ft)]2 C Aj and hence |//1(ft)| <K. 
Inductively choose elements otv for v with v < k so that 

av EH- ({af,p<v} U UlZ/jCcfy); p < v}) . 

Since \H\ = k and k is regular (by Lemma 2.6.1) such a choice is always possi¬ 

ble. And if I- {ft„; v < k} then IE [«]* and [/]2 C Aq, as required. 

Theorem 2.6.2 is a result due to Hajnal [54, Theorem 2], 

We shall conclude this part of the discussion by stating the following theo¬ 

rem. 

Theorem 2.6.3. If 3 and 7 < k then k -> (k)” if and only if k -*■ (k)2. 

This theorem was first stated in Rowbottom [81]. For a detailed proof 

see, for example, Kleinberg [61]. From Theorems 2.6.2 and 2.6.3 it follows 

that all non-trivial relations of the form k -+ (k, k < y)n where n> 3 are 

equivalent to the relation k -> (k)2. 

We now turn to relations of the form k -* (77^; k < y)n where pk < k for 

all k. There is a simple result first. 

Theorem 2.6.4. Suppose k (rjk; k < 7)" where all the pk are finite. Then 

K+f>(pk+ l:k<y)n+1. 
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Proof. Assume k -f> (r\k\ k < y)n. Let S be any set of power k , and take a 

well ordering <1 ol S of order type k+. For each x in S, put L(x) - {y E S, 

y < x}, so always \L(x)\ ^ k. Thus for each x there is a partition A (x) = 

{ A/f(x); k < 7} of [L(x)]n which for each k has no set H with H E [L(x)]r?A: 

such that [H]n C Afc(x). Define a partition A = {Ak\k< 7} of [5],, + 1 as 

follows: ifX\,..., xn+i ES withxj < ... <x„ + i, then 

{xj,..., xn + \} E Afc ^ {x 1,..., xn} E Ak(xn+\) . 

For any k, take a finite subset H of A and suppose [H]n + 1 C Ak. Let x be the 

largest element in H. Then [H - {x}]n C Afc(x), so by the choice of A (x) it 

follows that |H - {x}| < rjk. Thus \H\ < r?fc + 1, and the theorem is proved. 

Starting from Corollary 2.5.2, namely that 2K f (3)1, repeated applications 

of Theorem 2.6.4 yield that k(m+) > (n + 2)” + 1 (when n > 1). This shows that 

(assuming the GCH) the result -> (k)”+1 whenever 7 < k from Theorem 

2.3.2 is the best possible in 7 (at least for k regular). With a different method 

(see Corollary 2.6.8 for the case n = 2) the related negative relation 

2,j(k) -/> (n + 2)”+1 can be established. This is the same as the relation above 

if the GCH is assumed, and is otherwise stronger. It should be compared with 

the relation (2„(k))+ -> («+)” + 1 of Theorem 2.3.3. 

For the rest of this section, we shall be considering partitions of K2. As 

before, let < denote the lexicographic ordering of K2. For distinct elements 

f g in K2, let 8(f, g) be the least a where f(a) g(a). Then iff<g<h, cer¬ 

tainly 5 (/, g) 8(g, h). Choose and fix a well ordering < of K2. The notation 

{/, g, h}< will be used to indicate that in the set {/, g, h} the relation 

/<€g holds. 
We introduce the following notation: 

A'oo = {{/, g, h}< C K2 ;/<g and g< h} , 

A'01 = {{/,£. h}< C K2\f<g and h~Kg} , 

A10 = {{/, g, h}< C K2\g<f and^ ~Kh} , 

An = {{fg> h}< C K2\g<f and h<g] , 

A = A00 G A j ( , 

Po ={{f,g,h}<QK\8(f,g)<8(g,h)}, 

Pi = {{/I g, h}< C A'; 8(f g) > 8(g, h)} . 

There are a number of simple observations to be made. 

Firstly, if [X]3 C A then either [X]3 C A'00 or [X]3 C An, so that X is 
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either well ordered or conversely well ordered by the lexicographic ordering 

“<• For we may suppose \X\ > 4, and take distinct sets a, b from [A]3. Let 

a'Jb= {/o, fv ■■■> fP}<> sop > 3. Since [A]3EAA always {fq, fq+h fq+2} EK, 

for <7 = 0, 1, 2. Thus either fq<fq+l<fq+2 or fq >fq+l > fq+2, and 
it follows that eitherf0<fi< -<fp or f0> fx > ...> fp. Thus both a, b 
are in A'00 or both a, b are in Kxx, and the result holds. 

Suppose X is an infinite subset of K2. say \X\ = A, with either [A]3nA0i = 0 
or [X]3 n Kl0 = 0. Then there is X' in [A]x with [A']3 C A'. For we may 

suppose X= {/o.;a< A} where fa <fp whenever a < Assume in fact 

[X]3 n A'01 = 0. Suppose there are a, |3 with a< j3< A for which fa< fp. 

Take any y, 8 with j3 < y < 5 < A. Then fp~< fy since otherwise {fa, fp, /7}E 

E [X]3 n K0l, and sofy<f5 since otherwise {fp, fy, fs } E [X]3 n A'01 • 

Thus on the set X' = {fy; j3 < y < A} the orders < and -< agree, so [A']3 

C A"00 C K. We are left with the case that always fa > fp whenever a <P< A. 

But then the orders < and > agree on X, so [A]3 C A", j C A. The argument 
is similar if [x]3 n A10 = 0. 

The last remark is not quite as easy to prove, so we state it as a lemma. 

Lemma 2.6.5. Suppose \X\ > A where A is regular, and [A]3 C K. Then there 

isX' in [X]x with [X']3 C P0. 

Proof. Again we may suppose X = {/a; a < A} where fa <fp whenever 

a < j3 < A. Use transfinite induction to define ordinals a(a) where a < k with 

always a(a) < A as follows: 

0) a(0) = 0. 
(ii) Let £(a:) be the least value of S(/CT(a), fp) for j3 with (3 > o(a), then 

a(a + 1) is to be the least (3 with (3 > a(o) for which 5(/ff(a), fp) = £(a). 

(iii) If a is a limit ordinal. o(a) = U{a(7); y < a}; the regularity of A en¬ 

sures that o(a) < A. 

We shall prove the following: 

if y> o(a + 1), then 8(fa(a)>fy) = £(a), (1) 

if a < (3, then %(a) < %((3) ■ (2) 

From (1) and (2) it follows that 

if a < (3 < y < \, then 8(fa(a), fa(p)) < 8(fo(p), fa(y)) , (3) 

for if a < (3 < y then o((3) > a(a + 1) and 0(7) ^ o((3 + l), so from (1) it fol¬ 

lows that 8(fa(a), fm) = £(<*) and 8(fam, /a(T>) = £(0). Thus (3) follows from 
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(2). Hence if 

x' = {/a(a);a<x}, 

thenX' G [X]x and [X']3 CP0, and this would establish the lemma. 

To prove (1), take 7 with 7 > a(a + 1) (the case 7 = a(a + 1) being trivial). 

Certainly 7 > a(a) so the definition of £(a) ensures that £(a) < 5(/CT(a), /7). If 

in fact |(a) < 5(/a(a), /7), then /a(a)(t) =/7(?) certainly when £ < £(a). Since 

/a(a)(D = /a(a+i)(?) when £ < |(a) and/^^aP/^+D^)). we have 
/a(a+i)(S) = /7(£) when £ < |(a) and/ff(a+1)(£(a)) /=/7(|(a)). Thus 

5(/a(a+i> /7) = 1(a)- So in fact 

fo(pt+l)) h(.fo(ct+l)>/7) ■ 

This is impossible when/CT(a)-</CT(a+1)-</7 or when/afa)>-/CT(a+1)>- /7 (using 

the first remark above) and so cannot happen since [X]3 C X0o or [X]3 CArn. 

We conclude that £(a) < 5(fa(oi), /7), and (1) is proved. 
To establish (2), it is enough to observe that |;(a)< £(a +1) and that it a 

is a limit ordinal then £(7) < £(a) whenever 7 < a. For the first, from (1) we 

have 8(fa(a), fy) = 5(/CT(a), /ff(a+i)) = £(a) whenever 7 > a(a + 1). Hence 

/7(5) = /<j(a)0D =/a(a+i)(b when £ < £(a), and/7(if(a)) A/a (a)(£(°0)> 

/a(a+i)(l(a))^/a(a)(Ka)) so/7(|(a)) =/a(a+i)(£(a)) (because/(1(a)) takes 
only the values 0 or 1). Thus the definition of £(a + 1) ensures that £(a) 

< £(a + 1). And if 7 < a where a is a limit ordinal, whenever (3 > a(a) both 

P, a(a) > a(7 + 2) so from (1) we have 5(/ct(7+1), f$) = £(7 + 1) = S(fa(y+iyfo(a))- 

Thus /?© =/0(7+1)(?) = /a(a)© whenever £ < £(7 + 0- Hence £(a) > 1(7 + 0 
> £(7), so that (2) holds. This completes the proof. 

We are now ready to state and prove three theorems which give part-con- 

verses to the Stepping-up Lemma of §3. 

Theorem 2.6.6. Suppose p0, i?t are infinite with r?0 regular. If k f (rjk:k < 7/ 

then 2K -f (r)k + 1; k < 7)3. 

Proof. From the assumption k -f (j]k, k < 7)2, there is a partition A = { A^; 

k < 7} of [k ]2 such that for each k with k < 7, there is no H in [k ]Vk with 

[H]2 C A*-. We shall use this partition to construct a partition of [K2]3. For 

each k, put 

At= {{/, g, h}< GP0; {8(fg),8(g,h)}eAk} . 
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Define a partition {I\; k < 7} of [*2]3 as follows: 

Tfc = A£ if 2 < A < 7 , 

Tr =K0lUA$, 

r0 = [K2]3- \j{rk- \<k<7}. 

Suppose there was X in [K2]T?1 with [X]3 C Fx. Then [X]3 fiA'10^ 0, 

so there would be X' in [Xp1 with [X']3 C K. Since K n A'0i =0 and P0 CK 

we would have [X']3 C A*. Likewise, suppose there wasX in [K2]no with 

[X]3 C T0. Then [X]3 n X01 = 0, so there would be X' in [X]110 with 

[X']3 CK. By Lemma 2.6.5 there would be furtherX" in \X'\'10 with 

[X"]3 CP0. But then we would have [X”]3 C Aq, since [X"]3 C T0 n P0 

CAS- 
So to prove the theorem, it is enough to show: 

for every k with k< 7, if [X]3 C Ak then \X\ < r]k + 1 . (1) 

Suppose on the contrary that for some k there is X with X £ [K21\]k and 

[X]3 C A*. We may suppose X = {fa\ a. < r\k + 1} where fa whenever 

a< 13. Since [X]3 C P0 CK, we know X is either well ordered or conversely 

well ordered by -<, and 5(/a, fp) <8(fp, fy) whenever a < j3 < 7. From this 

it is easy to see that if a < j3 < 7 then 8(fa, fp) = 8(fa, fy). Consequently, if 

a < 0 then {8(fa, fa+l), 8(fp, fp+1)} = {8(fa, fp), 8(fp, fp+1)}, and so 

{5(/a. fa+l), fp+1)} e Ak, since [fa, fp, fp+l} £ A*. Put H = 
{5(/a, fa+1); a < rik}, so [H]2 C Ak. However H £ [k]’1/c, and this contradicts 

the choice of the partition A. This proves (1), and completes the proof of 

Theorem 2.6.6. 

Theorem 2.6.7. Suppose ri0 is infinite and regular. If k f (rjk: k < 7)2 then 

2*>(4,t?* + 1;£<7)3. 

Proof. Take a partition A = {A^;A:<7) of [/<]2 as in the proof of Theorem 

2.6.6, and define Ak as above. Consider the partition {T}U {Tk\k< 7} of 

[K2]3 where: 

r =k01 , 

= Ak if 1 < k < 7 , 

r0 = [K2]3-(ruU{r,; 1 <k<y}). 

If [X]3 C T then |X| < 4, since {f0, flt f2}< £ X0i and {fh f2, /3}< £ A'0i 

would require both/2-</i and/j -< /2. If there is X in [K2]T!o with fX]3£T0 
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then [X]3 n A"oi = 0, so as in the preceeding proof there would be X in 

[X]110 with [X”}3 C Aq- Just as above, for no k can there be X in [K2]r>k 

with [X]3 C A|. Thus the partition {F} U {I\; k < 7} serves to prove the 

theorem. 

Theorem 2.6.8. Suppose k (rjk, k < 7)2. Then 2K -f (4, 4,77^ + 1; & < 7, 

Vk + 1; k< 7)3. 

Proof. We again start from a partition A = {A^; k < 7} of [k]2 as in the proof 

of Theorem 2.6.5, and define A% as before. Put also 

Ar = {(/; g, h}< GPx; {5(/, g), 8(g, h)} G A J . 

This time, consider the partition {To, Tjj-U {rffc; k < 7 and i = 0,1 } of 

[K2]3, where 

To - A'01, Ti = Kiq , 

r0k = Afc for k with k < 7 , 

Flk = A** for /: with k < 7 . 

This is indeed a partition of [K2]3, since [k2]3 = K0l U Kl0 U K and 

K=P0UPV 

If [X]3 C r0 or [X]3 C r1; we know |X| < 4. As before, for no k is there 

X with X G [k2]7?A: and [X]3 C Ak. An entirely similar argument shows that 

for no k is there X in [K2]Vk with [X]3 C A**. So for no k is there X in 

[K2]’lA: with [X]3 C T0a- or [X]3 C ru- This proves the theorem. 

Corollary 2.6.9. 22(k) -f (4)3. 

Proof. By Corollary 2.5.2, 4j(k) -f (3)2 so by Theorem 2.6.8 we have 
23iOO ^ (4,4,(4)k, (4),)3, that is,n2(K) (4)3. 

As the final theorem in the discussion of the case n = 3, we mention with¬ 

out proof the following theorem from [38]. 

Theorem 2.6.10 (GCH). Let k be singular and let X be the immediate prede¬ 

cessor of k' if this exists; otherwise let X = k'. Then k+ (k , (4)*)3. 

By using the Stepping-up Lemma from §3 to obtain positive results and 

the negative relations established in this section, a discussion of the case n = 3 

can be given, similar to that for n = 2 of the last section. The only problems 
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to which a solution is not available are of a technical nature. Apart from ques¬ 

tions involving inaccessible cardinals, the simplest unsolved problem is the 
following. (This is Problem 1 in the list [24].) 

Problem 2.6.11 (GCH). Is «cow+1+i > («WtJ+1, (4)*0)3 true? 

§7. Square bracket relations 

The square bracket relation is in some sense the opposite to the partition 

relation of the earlier sections. This relation was first introduced and discussed 
by Erdos, Hajnal and Rado [38, § 18], 

Definition 2.7.1. The relation k [rj^-i k < 7]” holds if given any set S of 

power k, for all disjoint partitions A = { Ak, k < 7} of [S]" into 7 parts, there 

exist k with k < 7 and a subset H of S with \H\ = pk such that [H]n n Ak = 0. 

The special case in which rik - rj for all k is written k -»■ [17]!!, and in general 

the notation conventions of § 1 will be adopted for the square bracket symbol 
as well. 

Clearly, the relations k -> (t70, r\f)n and k -> [po> ViT are equivalent. And 

if k -+ (??o> V\T then k [pk; k < 7]" (for 7 > 2). 
The simple remarks made in § 1 about the relation k {j]k\ k < 7)" have 

analogues for the relation k -> [r]k\k < 7]". We remark only that given car¬ 

dinals r)k where k < 7, if the relation k [r]k\k<8]n is true for some 8 with 

5 < 7, then also the relation k -+ [rik; k < 7]” holds. The relation k -> [17^-; 

k < 7]” is trivially true when 7 > k , so we always suppose 7 < k . 

We shall concentrate on the case n = 2, and assume the GCH throughout 

our discussion. From Theorem 2.5.10 we know that k -*■ [k0, k 1]2 if k0,Ki<k. 

Thus all relations k -+ [r?^-; k < 7]2 are true if more than one of the r]k are 

less than k . 
Consider first the case when k is a successor cardinal, say k = X+. From 

Corollary 2.2.7 we have k ->■ (k, A')2, and so k -+ [A', k]2. We know from Cor¬ 

ollary 2.5.7 that k f (k, (A')+)2, and hence k > [(A')+, k]2. This leaves un¬ 

settled only relations of the form k -*■ [(A’)+, (x)t]2 where 2 < 7 < k. In tact 

even the weakest of these, namely k -> [(A’)+, (k)k]2, is false - see Theorem 

2.7.4 below. This we shall prove now. 

We start with a trivial lemma. 

Lemma 2.7.2. Let sA. = {Aa; a < k} be a family of at most k sets (possibly 
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listed with repetitions) each of power k. Then there are pairwise disjoint sets 

Ba with Ba E [A a | '\ 

Proof. Take any one-to-one and onto map p : k X k k. Choose elements 

for a, 13 with a,P < k by induction on p(a,P) so that xapEAa — {x7S;p(y, 5) 

<p(a, P)}. Put Ba = {xap;P< k}. 

Lemma 2.7.3 (GCH). Let S be any set with |S| = k+. Then there is a disjoint 

partition [S’]2 = U{Tfc; k < k + } with the property that whenever A E f.S’]K, 

B E [S]K+ and k < k+ then there are a, b with a£A, b EB for which 

{a,b}e rk. 

Proof. Note that such a partition provides an example to show that 

k+>[k+]2+. 
Identify S with k+. Let (Aa;a< k+) be a well ordering of [k+]k. For each 

t with r < k+, put , 

srtT = {Aa',a<T and,4a C r} , 

so \sdT\ < k. Suppose for each r with r < k+ that we could find a function 

fT: t ->• t such that 

if A E sdT, k<T then /r(o) = k for some o in A . (1) 

We could then construct a suitable partition {r^;^ < k+} as follows: given 

o, t in k+ with o < r, 

{a, r}EI\ ofT(o) = k. 

This partition has the required property, for take A from [k+]k, B from 

[k+]k+ and k with k < k+. Let To be the least ordinal for which k < tq and 

A E Since |i?| = k+, there is r in B with To < r. By (1), there is o in A 

such that fT(o) = k, that is, {a,r} E rk, as required. 

Tlius to prove the lemma, it suffices to find functions fT: r r with the 

property (1). Clearly we may suppose sdT ^ 0, for otherwise any function 

fT: t^-t satisfies (1). Thus r > k, so |r| = k and we may write sdT - {Ara; 

a< k}. Applying Lemma 2.7.2, there are pairwise disjoint sets BTOl where 

o: < k with BTOl E [ATa]K. Take one-to-one and onto maps qTa : Bja ->• r, and 

define fT by the following: if for some (necessarily unique) a we have a 

then/T(a) = qTOl(o), otherwise the value of/r(a) is arbitrary. To see that (1) 

holds, suppose A E sd.T and k < r. Thus A = ATa for some a. There is o in BT0L 

with qTa(o) = k, that is,/r(a) = a. Since BTa C Aroc, this proves (1) and com¬ 

pletes the proof of the lemma. 
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Theorem 2.7.4 (GCH). For all k, k4 f [(k')+, (k4)k+|2 . 

Proof. If k is regular, the result follows from Lemma 2.7.3. Se we need con¬ 

sider only the case that k is singular. We shall use the partition from Lemma 

2.7.3 to refine the partition used in Corollary 2.5.7 to show that k + -/ 

(*+, (k')+)2- 
For Corollary 2.5.7 we defined the disjoint partition [k'k]2 = A0UA, 

with 

{/; g} e A0 of<gandf<g, 

{f,g}EA0 <> f <g and f>g, 

where -< is the lexicographic ordering and < an arbitrary well ordering of the 

functions in K /e. We now choose ^ to have order type k+. From §5 we know 

that if H is a subset of K'k with \H\ = (k')+ then [H]2 n A0 =£ 0. 

Let {T^; k < k4} be a partition of [K k]2 as provided for by Lemma 2.7.3. 

Put Au- = Ax n rk. Then {Alk:k<n + }isa disjoint partition of Als which 
we shall show has the property 

ii IIE \K k]k and k < k+ then [//]2n Au. 0. (1) 

Thus the partition [i'k]2 =A0 U U{ Alk: k < k + } is a partition which serves 
to prove the theorem. 

Take any subset H of K k with \H\ = k+. For/in//, put LH(f) = {gEH: 

g^f} and /?//(/) = {g EH,f^Cg}. We first observe 

there isfinH with = \RH(f)\ = x+ ■ (2) 

For suppose (2) is false, so for every fin H either |L//(/)l < k or \Rnif)\ ^ «. 

There must be a subset I of H with |/| = k+ such that either \LH(f)\ < k for 

all /in / or else IR/q(f)l < k for all /in /. Suppose in fact the first alternative 

holds — the argument is similar in the other case. We can choose inductively 

elements fa from I, for a with a < k+, so that faEI - \J{LH(fp)\(3 < a} . 

Then fp -</a whenever (3 < a so that {fa\ a < k4} is well ordered by-<, con¬ 

tradicting that any subset of K k well ordered by -< (or by >“) has power less 

than k4 (as follows from (1) and (2) in the proof of Theorem 2.5.5). This 

establishes (2). 
We are now ready to prove (1). Given H in [K k ]k , choose / in H with 

\LhO)\ = \Rh(J)\ = k + - Take any A in [Rv(f)]K. Since \A\ = k, \LH(f)\ = k+ 

and <€has order type k + , A is not cofinal in L/q(f) under the ordering <, and 

so there is B in [LH(f)]K+ such that A <B. Let k with k < k+ be given. By 

Theorem 2.7.3, there are a in A and b in B such that {a, b} Erk. And for 
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such a pair {a, b} also ba so that {a, b} (2 Aj. Thus {a, b} €= Ai Ci Ta 

= Alk. This proves (1), and completes the proof of the theorem. 

We shall now consider the square bracket relation for singular cardinals k. 

Let us suppose further that k' is a successor cardinal, say k = A+. From §5 we 

know k -» (A', k)2 and k f ((A')+, k)2 so the two relations k -> [A', k]2 and 
K f [(A')+, k] are in force. This means we must discuss relations of the form 

k -> [(A')+, (k)7]2 where 2 < y < k. We shall find from Theorems 2.7.5 and 

2.7.6 below that k f [(A')+, (k)7]2 when y < k and k [k]2 when y > k, 

which settles all problems in this case. 

Theorem 2.7.5 (GCH). If k is singular and n> 2 then k -»• [k]7 for all y with 

y> k . 

Proof. Take any set S with |S1 = fc, and let a disjoint partition A = {Ak\k< y} 

of [A]” be given, where y > k . By Lemma 2.4.2, there is a family G = {Ca: 

o<k'} of pairwise disjoint subsets of S with I U<2| = k such that A is canon¬ 

ical in G . Thus for each sequence (na; o < k') where 0 < na < n and I(/zCT; 

o < k') = n there is an ordinal k(na\ o < k ) in y such that it a £ [U G]n and 

I a n Ca | = na for each a, then a G A k(na;a<Kr)- Tllus [UG]'!C U {A k(na\o<K'f 

0 <na<n and o<k') = n}. The number of such sequences (na\ o< k ) 

is at most (k'),! = k . Because y > k', there must be some class from A having 

empty intersection with [UG]'!. Since |U G\ = k, this proves the theorem. 

Theorem 2.7.6 (GCH). Let k be singular with k' = A+. Then k f- [(A')+,(k)k’ ]". 

Proof. Take any set S with |S| = k and write S' as a disjoint union, S = U{5a; 

a < A+}, where always |5CT| < k . 

By Theorem 2.1 A, we know A+ [(A )+, (A+)^+]“, and so there is a disjoint 

partition 

[A+]2 = T U {rk\k< A+} 

such that if/G [A+](V)+ then [7]2 n T ^ 0, and if/G [A+]x+ then [I]2nrk^(fl 

for each k with k < A+. We use this partition of [A+]2 to define a partition of 

[S']2. When k < A+, put 

Ak~ {{x, y} C S; for some {a, r} in [A+]2, 

x G Sa, y G ST and { a, r} G T^-} , 

A = [S]2 - U{ Afc; fc < A+} . 



Ch. 2.7 Square bracket relations 57 

Then { A} U {Ak\k < A+} gives a disjoint partition of [S]2 into \+ = k clas¬ 

ses. This partition provides an example to prove the theorem. 

Suppose H is a subset of S with [H]2 C U { Afc; k < A+}. Then |H Pi Sa\ < 1 

for each a, and [{o;//PSCT ^ 0 }]2 P T = 0. Thus \H\ = | {a:H n Sa=k 0}| 

< . Thus if H C S with \H\ = (A )+ then [H\2 Pi A A 0. And if H C S with 

[H]2 P Aa- = 0 (for any k), then [{a;//P5a^ 0}]2 P = 0, so | (a; 
H P\ Sa 0}| < A+ = k , and so \H\ < k. 

There remains the case of singular k with k' not a successor cardinal. We 

shall prove a result for k = but shall not attempt a discussion otherwise, 

that is when k is inaccessible. When k = there is the following theorem, 

much stronger than Theorem 2.7.5. 

Theorem 2.7.7 (GCH). Suppose k is singular with k = tt0- Then k -> [k]" 

whenever n > 2 and y > 2"_1. 

Proof. Let S be any set with |S| = k, and take a disjoint partition A = { A^; 

k<y} of [5]", where y = 2n~x + 1. From Lemma 2.4.2, there is a pairwise 

disjoint family G = (Ca; o< co} with UG£ [£]* and \Ca\ < \CT\ when o < r, 

such that A is canonical in G . Thus 

if a, [UG]” with | a P Ca\ = \b P Ca| for all o; then a = b (mod A) . 

(1) 

The number of sequences (nx,np) where p ^ 1 and 1 and 

nx + ... + np = n is 2""1; list these as ..., «p(/)(/)> for/ with/< 2n l. 

Define a partition 

r= { r(kf,i < 2n~*); kj < y for each /} 

of [co]” as follows: if x G [co]n, say x = (uj, ..., an}<, then 

x G r(kj]j< 2”_1) ^ for each /, whenever a G [UG ]", with 

I a P Ca.\ = ni(j) for i<p(j) then a G Akj. 

By (1), this is a valid definition. 
From Ramsey’s Theorem, F:0 -> (Fb)s f°r 5 finite; thus there is a set I in 

[oof0 such that for some sequence (kf,j < 2n~x), 

[If C T(kj-J< 2n~l). 

Put H= U{CCT; o G/}, then \H\ = k and [H]n C U{Afc/;/< 2""1}. Since ^ 

y > 2rt_1 there is some class of A which has empty intersection with [H)n. 

This proves the theorem. 
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In fact the theorem above is best possible in 7, by the following general 

remark. 

Theorem 2.7.8. If k is singular and n > 2, then k f [xX^n-i ■ 

Proof. Let S be any set with |£| = k, and write S as a disjoint union, S = IKS^; 

a < k*} where always |SCT| < k. For each sequence (nx,np) where p > 1, 

! < Hi, ..., np < n and nx + ... + np = n, put 

A(nx,..., np) = {aG [51]”; there are ax, ..., ap with ox < ... < op< k 

and \a n Sa.\ = «,• (1 < i < £>)} . 

This gives a partition of [S]n into 2n~l disjoint classes. And for any H in [S]K 

since |/7 n 5a| > n for at least n values of a, it follows that [H]n meets every 

class of this partition. 

We shall now make a couple of further isolated remarks about the case 

n > 3. From Theorem 2.6.2 we know k f (n + 1, k)'\ and so k -f [rz + 1, k]", 

for k uncountable and not strongly inaccessible. In most cases there is a best- 

possible strengthening of this negative relation. 

Theorem 2.7.9 (GCH). Let n > 3 and suppose k' is a successor cardinal. Then 

Kf[n + 1,(#0K,]"- 

Proof. Suppose first that k is regular, say k = A+. The construction of an ex¬ 

ample is somewhat similar to that in Lemma 2.7.3, only rather simpler. Let 

(Aa; 01 < A+) be a well ordering of [A+]\ and for each r with r < A+, put 

sdT - [Aa\a<r and Aa C r} . 

For each £ with £ < A+, we seek to pick sets a(£, a, k) from [Aa]n~l for 

Aa in srt % and k with k<%, such that a(f, o, k) n a{%, r, /) = 0 if (a, k) <r, /). 

Since I stf $ X £| < A, by working along a well ordering of sd % X £ of order type 

A we can clearly do this. Now define subsets Ak of [A+]” for k with k < A+ as 
follows: if {aq , ..., an}-C A+ with a! < ... < a„,Ahen 

{ai, •••> °7i} e Ak {ax, ..., an_j} = a(an, a, k) for some a . 

Put A = [A ]" — U{Afc;/r < A+}. Then {A} U {A k\k < A+} is a disjoint par¬ 
tition of [A+]”. 

Suppose H E [A+]n + 1, say// = {a0,..., a„}<, with [H]" C U{A*;fc<A+}. 

Then in particular there are 0, r, k, I such that {a0, .... a„_2, an} = a{an, a, k) 
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and {<*!, an} = a(an, r, /), and (a, k)i^ (r, />. But a(an, a, k) n a(an, r, /)= 0 

and {q0, a„_2, a„} n {oq,..., an} 0, so this is impossible. Hence if 

HE [A+f+1 then [H]n n A 0. 

Now take H in [X+]A . Choose A in [//]\ so for some o with a < A+ we 

have A - Aa. Take any k with k < A+. Since \H\ = A+, there is £ in H with 

£ > a, k and A Esrt Then a(£, a, k) E [/if*-1 so that a(£, a, X') U {£} G A^. 

Since a(£, o, k)U {£} C H, this means [H]n Pi Ak A 0. Thus the theorem is 

proved in this case. 

Now suppose that k is singular, with k - X+. Take any set S with 151 = k, 

and write S as a disjoint union S = U{5a; a < X+} where always |5CT| < k. We 

shall use the partition of [X+]'1 constructed above to define a partition 

{T}U {l\; k < X+} of [5]". For k with k<\+ and {xj,..., xn} from [5]”, 
define 

(xj,..., xn] G rA. there is { o\,on} in Ak, such that 

Xj ESav xn ESan , 

and put 

r= [s]n-v{rk-k<\+}. 

Just as in the proof of Theorem 2.7.6, this partition has the required property. 

To obtain positive relations when n> 3, there is a Stepping-up Lemma 

similar to that which holds for the ordinary partition relation. 

Theorem 2.7.10. Let k and X be infinite cardinals such that X < k'. Let n > 1 

and suppose X -» [r\k\ k < 7]” where l7lla| < k' whenever o< \ Then 

K^[pk + l;fc<7]"+1. 

The proof is entirely similar to that of Lemma 2.3.1. 
As in the case of the ordinary partition relation, one can hope for a con¬ 

verse to Theorem 2.7.10, namely that under suitable conditions, if k > [rjk; 

k < 7]" then 2K > [pk + 1; k < 7]"+1. Very little along these lines is known. 

See Problem 17 in [24] and the discussion in [25], Even the conjecture 

f* [ISill is unsolved. Shore [83] has shown that if Godel’s Axiom of Con- 

structibility (V = L) is true then K(n+) > [x+]"f \where n > 2), which corre¬ 

sponds to the negative relation k+ -f [k + ]^+ >n Theorem 2.7.4. 
The results in this section have depended heavily on the GCH, and without 

GCH very little seems known about square bracket relations. For example, 

Galvin and Shelah [47], [48] have shown 2*° > [2*°]k0 and > [^i]!- 
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Shelah has established [^n]«+2 if « > 1. The relation 2^° ^ [^ill is 

open. 

For the ordinary partition symbol, all relations with infinite exponent n 

are false. Little seems known about square bracket relations with infinite n. 

Erdos and Hajnal have shown the following. 

Theorem 2.7.11. Suppose k and A are infinite. Then k f [Aj^x- 

Proof. This is trivial if /c < A, so suppose k > A. Take any set S with |S| = k; 

we have to find a disjoint partition A = { A^; j3 < 2^} of [5]^ such that 

[7/]^ DAp#f) for every j3 and every H in [A]''1. 

Suppose first that A = k. Then we can well order [S1]^ with order type 2X, 

say [S]x = {Aa; a < 2^}. Take any one-to-one and onto map p: 2X X 2X 2X. 

Choose sets Aap from [v40,]x for a, P with a, P < 2X by induction on p(a, p) 

so that Aap AyS whenever p(y, 5) < p(a, P). Put = {AaP; a < 2^}, so 

2^} is pairwise disjoint, and take any disjoint partition A = {Ajj; 

P < 2^} ot [5]^ with C Ap for each p. Then if H E [S]\ for some a we 

have H = Aa and so Aap E [//]^ n A^. Thus A is as required. 

Now suppose k > A. By virtue of Zorn’s Lemma, there is a maximal almost 

disjoint family97? with9/f C [5]\ For each A/ in97? we have just shown that 

there is a disjoint partition A (M) = {A ,p(M)\P < 2^} of [M]x such that 

[H]x n Ap(M) ^ 0 whenever HE [M]x,p<2x. PutT^= U{Ap(M);M£97? }. 

By the choice of A (M) and since \M C\N\ < A for distinct M, N in 9/?, certainly 

F(3 n r7 = 0 when P^y. Take any disjoint partition A = {A^; /3 < 2X} of 

[5]^ with rjs C Ap for each p. II HE [S]\ by the maximality of 97? there is 

M in°fH with \H n M\ = A. Then [H n n Ap(M) 9= 0 for every P, and so 
[H]x n Ap 9 0. This completes the proof. 

Theorem 2.7.11 leaves unsettled most of the cases of the following (Prob¬ 
lem 14 in [24]). 

Problem 2.7.12. If k, A > p > K0, is it ture that k > [A]JM ? 

If the Axiom of Constructibility is true then Problem 2.7.1 ^ is answered 

positively in Shore [83], He shows that if V-L then k f [A+] ° for all k 

and A. 

§8. Partitions of all the finite subsets 

The partition symbol k -> (p)y^ represents an extension of the symbol 



Ch. 2.8 Partitions of all the finite subsets 61 

Definition 2.8.1. The partition relation k -*■ (17)^w means the following: given 

any setS with |S| = k, for all partitions A = { A^; & < 7} of [S’]< ^0 into 7 

parts there is a subset H of S of power 17 which is homogeneous for A, in the 

sense that for each n with n < 00 there is k(n) with k(n) < 7 such that 
[H]n C Ak(n). 

From the earlier results of this chapter, it is easy to see that given 17, 7 and 

finite n, there is k so large that k has the property k -* (ii)yn (with the obvious 

meaning of this symbol) and moreover questions concerning this relation 

easily reduce to questions about the ordinary partition symbol. The relation 

K (17)7 w is thus seen to be a natural extension of the ordinary partition 
symbol. Clearly we must suppose 77 to be infinite, for otherwise k -> (t?)5w is 

equivalent to k -> (r?)^77, which reduces to an ordinary partition relation. 

The results to be presented in this section will show that the least cardinal 

k with any of these properties is strongly inaccessible, and so these partition 

relations are “large cardinal’’ properties. We shall pursue the matter no further. 

For more information, see for example Drake [10]. 

Our first result is due to Rowbottom [81]. 

Lemma 2.8.1. Let 77 be infinite and suppose k -> (77)2 ^ Then k -»■ (77)^ for 
all 7 with 7 < 2lS°. 

Proof. Let any disjoint partition A of [k]<H° into 2S° classes be given, and 

use the functions in w2 to index the classes in A , so A = (Ay;/ £ ^2}. Take 

any one-to-one and onto map p\ to X oj co with the property that always 

l, m <p(l, m). Define a partition T= {r0, Tj} of [k]^ S° as follows: if 

oq < a2 < ... < ot,j < k and n - p(l, m) then for i with / = 0,1 

{au ...,an}e o 3 feOJ2(f(l) = i and {aq, ..., am} £ A/) . (1) 

Take H from [k]17 such that H is homogeneous for T. Then H is also homo¬ 

geneous for A. For take any sets {oq, ..., aw}<, j8w }< from [H]m. 

Suppose (oq, ..., am} £ Af and {(3], j3w) £ A^. Take any / with / < co and 

put n = p(l, m). Choose ym+1, ..., yn from H with am, /3m < ym+l < ... < yn\ 

since H is infinite this is certainly possible. Then since {oq,..., am} £ Ay, we 

have {al5..., am, ym+1, yn} G from (1). Then {(3l5..., Pm, ym+1, ...,y«} 
£ Typ) since H is homogeneous for T, and so g(l) =/(/). Since this is true for 

every /, we have f = g and so H is indeed homogeneous for A. 

The following two theorems for 77 = follow from methods credited by 

Erdos and Hajnal [ 18, Thm 9b] to G. Fodor. We shall follow the proofs in 

Morley [74]. 
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Theorem 2.8.2. Let r? be infinite. If k is the least cardinal such that k -+ (17)2 

then k is regular. 

<«< 

Proof. Let k be least such that k -+ (77)2 and suppose in fact k is singular. 

Take a pairwise disjoint decomposition k = U{Ka; o < k'} where always 

\Ka\ < k. By the choice of k, there are partitions. Ta = {ra0, ral} of [Ka\ 

and a partition T = {r0, rj of [k']<N(), none of which have a homogeneous 

set of size k. Define a partition A = { Aqoj Aoi> Ai<> An } of [k] 0 as fol¬ 

lows: if a E [k]<N° and i = 0,1 

a E A0i- ^ 3 a < k (a C Ka n rai) , 

a E An [|a| = 1 or \/o<k' (a ACT)] 

and 

{o<K-a n A:a^ 0} e r;. 

Let H be a subset of k homogeneous for A . Either there is o such that 

HQ Ka, or else |//n Ka\ < 1 for every o. In the first case, His homogeneous 

for rCT; in the second, {a< k \ \HC\Ka\ = 1} is homogeneous for V. In either 

event, \H\ < 17. Thus A has no homogeneous set of size 17. In view of Lemma 

2.8.1, this contradicts that k -> (77)2 Hence k must be regular. 

Theorem 2.8.3. Let 77 be infinite. If k -f (77)2 ^ then 2K -f (77)2 w ■ 

Proof. Suppose k "A *(77)2 w and take a partition T = {r0, Tj} of [k] 0 which 

has no homogeneous set of size 77. We shall construct a partition A = {Afr; 

k < co} of [*2]<N° which has no homogeneous set of size 77; by Lemma 2.8.1 

this will suffice to prove the theorem. 
Extend T to a partition T* = { T*; k < gj} of the finite sequences from k 

so that (oq,..., a„> and ((31,..., Pn) are in the same class of T* if and only if 

{oq, ..., an} and {j3j,..., j3„} are in the same class of T and moreover, 

at < af o fa < fy (/,/= 1, ...,«) . 

Let-< be the lexicographic ordering of K2, and choose a partition A = {A^; 

k < co} of K2 such that if/0, ..., fn E K2 with /0-< /j -< then 

{/o, /„} G Afc ~ <5(/0, fi), ..., 5(/„_!, /„)) G r£, 

where, as in §6, 5(/, g) is the least a where /(a) fzg(a). 

Let//be a subset of K2 homogeneous for A . Suppose/, g, h£=H with 

f<g<h. Then 8(fg)iz8(g, h) so either 5(/, g) < 8(g, h) or 5(/, g)> 8(g, h). 
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and moreover this order is the same for all triples from H. Suppose in fact 

5(/> g) < 8(g, h); the argument is similar in the other case. Thus whenever 

/, g, hEH with/Xg--< h we have §(/, g) = 8(f h). Put 

/= {8(fg)\fgeH}, 

then |/| = \H\. Further, / is easily seen to be homogeneous for T, so |/| < 77. 

Thus |H\ < 77, and so A has no homogeneous set of size 77. 

Corollary 2.8.4. If k is the least cardinal such that k -> (77)2 ^ where 77 is in¬ 
finite, then k is strongly inaccessible. 

We shall conclude this section by showing that increasing the value of 77 

in the relation k (77)^w represents a genuine strengthening of the relation. 

In this respect, to relate these properties to the ordinary partition symbol 

studied before, we should remark that Silver [90] has shown that if k is the 

least cardinal with even the property k -> (K0)^, then there is a cardinal X 

with X < k such that X ->■ (X)l • Silver’s proof of this result depends on methods 

from mathematical logic. A combinatorial proof has since been given by Henle 

and Kleinberg [58], 

Theorem 2.8.5. Let 77^ r/2 be infinite cardinals with r?i < V2■ IfK1 an<d k2 are 

the least cardinals with the properties k -* (171)2 w and k (172)2 w respective¬ 
ly, then k 1 < k2- 

Proof. Clearly k 1 < k2, so suppose in fact k j = k2 = k say. Then for each car¬ 

dinal a with a < k, we have |a| < k so there is a partition A (a) = {AoCaXA^a)} 

of [o]<^° which has no homogeneous subset of power 77^ Define a partition 

A = {A0, Ax) of [xf S° as follows: if ax,..., an G k with ax < ... < a„, when 

i = 0,l 

(aj,..., a„} e A/ o (ax,..., a„_x} G A/(a„) . 

Let H be a subset of k homogeneous for A. Then for each a in H, it follows 

that H n a is homogeneous for A (a), so \H n a| < 771. Hence \H\ < 771 < 772, 

so A has no homogeneous set of size r?2, contrary to the relation k (172)2' 



CHAPTER 3 

SET MAPPINGS 

§ 1. Set mappings of small order 

Let S be an arbitrary set. By a set-mapping on S is meant a function / 

mapping S into the powerset of S such that x ^ /(x) for each x in S. The 

set map / is said to be of order X if X is the least cardinal such that |/(x)| < X 

for each x in S. A subset S' of S' is said to be free for /if S' n U/^'j = 0. 

Equivalently then, S' is free for/if for all pairs x, y from S' both x f(y) 

and y(£f(x). 

We shall investigate in this chapter some conditions on the set map/under 

which there will be a large free subset. Apparently P. Turan (in about 1930) 

was the first to ask questions of this nature — they arose in connnection with 

a problem on interpolation. Specifically, he asked if when S is of the power 

of the continuum and each /(x) is finite, must there be an infinite set? 

Ruziewicz [82] generalized the problem to the following: if S' is infinite with 

|S1 = k and /is a set map on S of order X where X < k, will there be a free set 

of power k? Solutions to special cases of this problem are in Lazar [66], 

Sierpinski [86], Piccard [76], [77] and Fodor [40]. In [14] Erdos proved, 

under the assumption of the Generalized Continuum Hypothesis, that there 

always is such a free set. Finally Hajnal [53] proved this result without appeal 

to GCH. 

It is easily seen that if the set map /has order X with X > k then there need 

be no free set even of size 2. For let/be the set map on k where /(a) = (j3Ek; 

j3 < a}. Clearly /has order k , and there is no free pair for/ 

We shall now give Hajnal’s proof. 

Theorem 3.1.1. Let S be a set with |S| = k and let fbe a set map on S of order 

X where X < k. Then there is a free set of size k for f. 

Proof. Suppose first that k is regular. (The proof in this case is due to D. Lazar.) 

We use transfinite induction and choose subsets Sa of S for a with a < X so 
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that Sa is a maximal free subset of S — U{5/; j3 < a}. Since being a free subset 

is a property ol finite character, such a maximal set exists. If for any a it hap¬ 

pens that \Sa\ = k then there is nothing more to do. So suppose that |5a| < k 

whenever ol < X. We shall obtain a contradiction. 

Since always |/(x)| < X where \< k, it follows that for any a we have 

|U/[.Sa]| < k and consequently, from the regularity of k, if S* = UU U/[,Sa]; 

a < X} then |>S *| < k. Thus S — S* ^ 0. Choose x from S — S*. Then x tfz Sa 

U U/[Sa] for each a. Since Sa is a maximal free set, there must be xa in Sa 

such thatxa E/(x), for otherwise Sa U {x} contradicts the maximality of Sa. 

Now xa ^ xp when a A P since by construction Sa n Sp = 0, and {xa; a < X} 

C/(x) so |/(x)| > X. This contradicts that /has order X; and this case is proved. 

Now suppose that k is singular. Choose a regular cardinal 9 such that 

k', X < 6 < k. Take a strictly increasing sequence </cCT; o < k') of regular car¬ 

dinals all less than k with k. = Xing', o < k'), where 9 < k0. Write S as a disjoint 

union, S = UlS/; o < k'} where |5ff| = Ka. Then/induces set maps/CT : Sa -> jJkS/ 

where /a(x) =/(x) n Sa, and fa has order at most X. Since |NCT| = Ka where Ka 

is regular with X < kct, there is a set S'a in [5/]*° free for/CT, and S'a is then 

also free for/ Put 

S* = S'o ~ U{U/[5't];t< a} , 

then by the regularity of Ka we have |S*| = kct. Also 

f[S*]nU{s*-,T>o} = (D . 

We shall seek sets T* with T* E ]K(y such that 

f[T*) n U{7’*;t<o} = 0 , (1) 

for then if T' = U [T*\o< k'} clearly T' is free for /, and \T'\ = k. 

We start by finding sets Ta in [N*]K|:; such that if Za = U { Tt ; r < a} then 

for a particular pairwise disjoint decomposition {Zaa \ a < 0} of Za, there is 

an ordinal a(o) with a(a) < 9 such that 

ZanVf[T0] CU{Zaa;cL<a(o)} . (2) 

Use induction on a with a < k' to define sets Ta with \Ta\ = Ka together 

with pairwise disjoint decompositions Ta = U{Taa \ a < 9} of Ta where al¬ 

ways \Taa\ -Ka. Suppose that a is given with o < k , and that this has already 

been done for all r where r < a. Put Za = U{7V; r < a} and Zoa - U{ TJtx\ 

t < o}, so that Zq is a disjoint union, Za = U {Z OOL 5 ^ <0}. 

For any x in S%, 

f(x) nzCT = U{/(x) nzaa,a<9}. 
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Since |/(x)| < A< 9 and 9 is regular there is an ordinal a(x, crjNvith a(x, o)<9 

such that/(x) n Zaa = 0 whenever a > a(x, a). For each j3 with (3 < 6 put 

S*p = {xES*;ot(x, o)< 0} , 

so S*p C S*y if j3 < 7 and S* = U{S'*^; 0 < 0}. Since |S*I = kct and0<4 = KCT, 

there is a(a) with a(cr) < 9 for which |5'*a(CT)| = Ka. Put Ta = N*a(<j)- Since 

9 <Ka there is a pairwise disjoint decomposition Ta = U{Taa \ o < 9} where 

always \Taa\ = Ka. This completes the definition of Ta and Taa. Notice that 

for x in Ta we have a(x, o) < a (a) so that/(x) n Za0, = 0 whenever a > a(a), 

and thus (2) holds. 

Put a* = sup (a(a); a < k'}. Since 9 is regular with k' < 9, it follows that 

a* <9. Put 

T*=\J{Taa,ot*<a<9] , 

so \T*\ = Ka. Then if e T* and x €E T* where t< owe have_y E Tra CZaa 

for some a with a > a* > a(o). From (2) it follows that f(x) n Za0l = 0 for 

such an a; hence y ^f(x). This establishes (1) and completes the proof. 

There are a couple of interesting extensions of Theorem 3.1.1. The First 

one is taken from Erdos and Fodor [16]. 

Theorem 3.1.2. Let S be a set with INI = k and suppose a family {Ry\y < p} 

of K-size subsets of S is given, where rj is anv cardinal with p < k. Let fbe a 

set mapping on S of order \ where \<k. Then there is a subset S' of S free 

for f and moreover |S’ n /?T| = k for each y. 

Proof. By Lemma 2.1.2, we may suppose that the sets Ry are pairwise dis¬ 

joint. First suppose k is regular. Let p : k ->■ 77 be any onto map with the prop¬ 

erty that for each y with 7 < p we have | {a < k ;p(a) = y}\ = k. Let S be the 

set of all sequences 5 = < sv; v < g>) where ip < k, sv E Rp(v) for each v, T1 sv 

if p ¥= v, and ran (s) = {sv; v < ip} is free for /. 

Inductively, define sequences sa = < sav; v < gsa) in S for a with a < k as 

follows. Choose sa as a sequence in S all the entries for which are in 

N - U{ ran( s^); (3 < a}, and which has maximal length amongst all such se¬ 

quences from S. If any sa has length k, then ran( sa) is a free set which has 

the required property, so for a contradiction suppose <pa< k for all a. 

Consider the values p(ipa) where a<K. Since p maps into p and \,p<n, 

there must be A in \k]x and 7 with y<p such that p(ipa) = 7 for all a in A. 
Put 

S* = U{ran( sa) U U/[ran( sa)]; a EA} . 
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§2. Set mappings of large order 

Let S be a set of power k and let f: S be a set map on S of order k. 

We shall investigate conditions on/under which there will be a large subset 

of S which is free for/. An example was given in the last section of a set map 

on k of order k with no free set of size 2, so clearly some restriction on/is 

required. The conditions we shall impose are of the following type. Let rj, 9 

be cardinals; we demand that whenever X is an 17-size subset of S then the 

intersection of all the/(x) forx in X has power less than 6. Questions of this 

type were first raised by Erdos and Fodor [16] and discussed in detail in 

Erdos, Hajnal and Rado [38]. 

The following notation is convenient to summarize the results. (This corre¬ 

sponds to the symbol k -+ [[«, 17, 9, X]] of [38].) 

Definition 3.2.1. The relation (k, 17, 9) X means the following. Whenever/ 

is a set map of order k on a set S with |S| = k such that 

ie [Sf *>\nf[X]\<e , 

then there is a subsets' of S free for/with |S'| = X. 

We start by noting a couple of lemmas that extend some of the results 

from Chapter 1, § 1 on almost disjoint families to families with the present 

intersection property. 

Lemma 3.2.2. If a set S with |S| = k can be decomposed into a family sd with 

| sd| = X such that 1071 < 9 whenever [sdY1 then X ^ r? • k6. 

Proof. Suppose S = Usd, where sd is a family with the properties in the state¬ 

ment of the lemma. For each A in sd with L41 9, choose A in [^4] . Then 

for any B in [S]°, we have I {A E sd\A* = B1} ^ 17. Thus {A €= sd ; L4| ^ 0} 

has power at most 17 • I [S]9|, and so \sd\ < 17 • | [S]e| + I [S]<0| = V • Ke. 

One proves the following lemma and its corollary from Lemma 3.2.2 in 

much the same way that, in Chapter 1, Theorem 1.1.6 and Corollary 1.1.7 

were proved from Theorem 1.1.2. 

Lemma 3.2.3 (GCH). Suppose k and 9 are infinite cardinals with k' A O'. Then 

there is no decomposition sd of a set of power k into k+ subsets each of power 

at least 9 such that \ fl7| < 9 for every family 9 from [sd |K+. 
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Clearly {xa; a < k} is the required free set. 

Thus Theorem 3.1.3 will follow from the following theorem. (The proof 

requires the GCH only when k is singular.) 

Theorem 3.1.4 (GCH). Let f be a set map of order X on a set S where |S| = k 

with X < k. Then there is A in [S]K with \UA \ < k. 

Proof. Suppose first that k is regular, and let the set map /: S -> be given. 

We shall show that for any T from [S']* there is 4 in [T]K with 11141 < K. For 

a contradiction, suppose for some particular T from [S]* that this is false; 

thus whenever A QT and i 1141 < x then \A \ < k. 

Use induction to define sets Aa in [T]<K for a with a < X as follows. Put 

A& = U{U/[>4|3]; p < a} so \A%\ < k by the regularity of k. Use Zorn’s Lemma 

to choose for Aa a subset of T — U {^4^; P < a} maximal with the property 

IfAa C A*. Then Aa 0 and |4a| < k by our assumption. 

Put A = U{4a; a. < X} so \A \ < k. Thus T - A =£ 0, so choose x from 

T - A. For each a there must bey^ in Sa such that /(x) n/(_ya) <£ 4*, for 

otherwise Sa U (x) contradicts the maximally of Sa. Choose xa with 

xa e (f(x) n / (Ta)) — A&. Then Xp whenever a =£ P, for if say j3 < a 
then xa ef(ya) -f(yp) yetxp e/(v^). Thus since {xa;a< X} C f(x) 
we have |/(x)| > X, contradicting that/has order X. This completes this part 
of the proof. 

If in fact X < k, by assuming GCH the result above can be improved as 

follows. Given any subset T of S with \T\ = 6+ where 6 is a cardinal with 

X< O' < d < k, then there is a subset B of T with |5| = 6+ and |n/?| < X. To 

see this, note that by the construction above there is a subset A of T with 

HI = 9+ and \UA\<6+. Look at A' = {x GH;/(jc) n WA =£ 0}. The sets 

fix) for x in A - A' are pairwise disjoint, so if \A'\<0+ then B- A - A' has 

the required property. So we may suppose \A'\ = 6+. For each x in A', the set 

fix) Ci nA is a subset of 114 of power less than X. The number of such sub¬ 

sets is at most 6X, and dx = 9 by GCH, since X< O'. Thus there must be a sub¬ 

set B of A' with |j5| = 6+ such that for all x in B the set /(x) n n.4 is the same. 

But then Ilf? =/(x) n fI4"tor any x in B, so |IIf?| < X, and the claim is es¬ 
tablished. 

We are now ready to prove the theorem for singular k. Take a strictly in¬ 

creasing sequence <kct; o < k') where each Ka is the successor of a regular car¬ 

dinal, with k , X+ < Ka < k and k = S(kct ; a < k ). Write 5 as a disjoint union, 

S = U{5ct; o< k'} where always |Sa| = Ka. By the remark above, for each o 

there are subsets Ba of Sa with \Ba \ = kct such that |nf?CT[< X. Put B* = 

U{ U/ [Bj}\t < a}, so |^*| < X • S(kx; r < a) < Ka, noting that Ka (being a 
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successor caidinal) is regular. Since the sets f(x) — IIBa torx in Ba are pair¬ 

wise disjoint, the number of x in Ba for which fix) - ITBa meets B* is at 

most [5*|. Hence if 

Aa= {xEB0-(f(x)-nB0)nB* = (D} 

then \Aa\ = Ka. Put A = U{Aa: a < //}> so \A\ = k. Moreover, JIA C U{n.fi(7; 
a < k }. For take x, y in A, so suppose x EAa, v G AT. If o = r certainly 

f(x)nf(y)cnBa, so suppose without loss of generality that r < a. Then 

7 EAt C Bt so f(y) C B*. By the definition of Aa then/(x) nf(y) C UBa. 

Thus indeed UA C U{II5CT; a < a'}, and hence |IL4| < X ■ k' < k. This con¬ 

structs A with the desired property, and completes the proof. 

We conclude this section with a theorem of Fodor [40] concerning the de¬ 

composition of a set into a union of free sets. 

Theorem 3.1.5. Let S be a set of power k and let f be a set mapping on S of 

order A where < A < k. Then there is a family 9( with |9£| < A of subsets 

of S each free for f such that S = U s#. 

Proof. Given X in [,S]\ define Xn where n < oj by induction on n as follows: 

X0 = X, Xn+l = U f[Xn]. Put = \J{Xn; n < co}. Then \XU\ = \ and Xw 

is closed under/, in the sense that whenever x GIU then/(x) C So clear¬ 

ly S may be written as a union (probably not disjoint) of k sets each of power 

A and each closed under/, say S = LKSV, a < «}. 

Using such a decomposition of S, we shall show the following: For any 

non-empty subset T of S, there is a family 9C (T) = { Tv; v < A} of A subsets 

of T, each free for /, such that 

yET- \J9f(T)=> 3 xEU9C(T)(x Ef(y)) . (1) 

Start by putting, for a with a < k, 

Ra = TD(Sa-U{S(i;p<a}). 

Discard any empty Ra. Then always 1 < [RJ < A, and so we may write 

Ra = {sav',v< A}. Define subsets Tv of Tby induction on v (where v< A) so 

that Tv C a < k} as follows. Suppose for a particular value of v that 

the sets 7/ for p with p<v have already been defined. We determine whether 

or not sav is in Tv using induction on a, by specifying that sav G Tv it and 

only if the following two conditions are met: 

(i) VxGU {Tll-,p<v}(x$f(soa,)), 

(ii) Vp< oc(spv ETV=* Spv $ f(sav)) ■ 
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This defines Tv. Put 9t (T) = { Tv\ v < X}; we show (1) holds. Take y with 

y(ET- U9f(r). Since T= U{7?a; a < k} there is a such thaty G Ra, and so 

y = sav for some v. Sincey ^ U9t(T), in particular^ ^ Tv. From the defini¬ 

tion of Tv, either there isx in U{7/; ju< u} such that x G/(y) or else there 

is spv in Tv such that Spv G f(y); in any event there is x in U 9((T) such that 

X e f(y). Thus (1) holds. Further, each Tv is free for / For take sav, Spv from 

Tv and suppose say j8 < or. Since f(spv) C Sp and Sav ^ Sql U{57; 7 < a}, 

certainly sav f(spv). And condition (ii) in the definition of Tv ensures that 

Spv <£f(sav). Hence Tv is indeed free for/ 

We are now ready to construct the family 9( of free subsets of S. Induc¬ 

tively define families 9iv of subsets of S as follows. Put Uv-S— U {U ; 
H < v}, then 9tv = 9t(Uv) if Uv # 0: 9iv = 0 if Uv = 0. Now define 

9t = U { 9CV; v < X}. Then certainly 9t is a family of free subsets of S, with 

\9C\ < X. 

Suppose for some v that Uv 0, and choosey from Uv. Then^ G 6/ for 

each ju with p < v soy G - U - U 9f Thus by the property 

(1) for 9t (t/M), we can choose xM from U 9i^ such that xM G/( v). Now 

Uix n U = 0 whenever £ < ju; since U 9^ C LQ it follows that U9^ n 

U 9£M = 0 whenever £ ^ p. Hence X| xp whenever £ =£ p. Since always 

|/(_y)| < X and {xM; p < n} C/(_y) it follows that \v\ < X and so v < X. Thus 

if t/y 0 we must have n < X. We are now set to show that S' = U 9i. For take 

any y in S. There must be v with v < X for whichy G U 9(v, for otherwise 

v GS - U{U9/p v < X} = U\, and we have just remarked that U\ = 0. Since 

9(v C 9i, this showsy G U 9t, and consequently S = U 9C. This completes 

the proof. 

There are various ways in which the problems investigated in this section 

can be extended. The original question of Ruziewicz can be phrased in terms 

of the order type of the sets involved, rather than their cardinality. Questions 

of this nature have been investigated by Erdos, Hajnal and Milner in [37], for 

countable order types. On the other hand, one can consider set mappings de¬ 

fined on a topological space, and replace the cardinality requirements by con¬ 

ditions of a topological nature. As an example, we mention the following re¬ 

sult of Bagemihl [2]: If/: R -*■ jj?R is a set mapping on the set R of real num¬ 

bers such that always/(x) is nowhere dense, then there is an everywhere dense 

free set for/. 
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Since/has order X and always |ran( sa)| < k, it follows from the regularity 

of k that 15*1 < k. Thusi?T — 5* /= 0. Choose x from Ry — S*. Then since 

x<f S*, there must be for each a in A an element sav in ran( sa) such that 

scw e/(*), for otherwise the sequence sa U {(7, x)} obtained by extending 
sa one place further with the value x would contradict the maximal length 

of sa. Now by construction sav =£ if a (3 so since {s^aed} C/(x) 

it follows that |/(x)| > X, contradicting that/has order X. This completes the 
proof in this case. 

The proof when k is singular is very similar to that of Theorem 3.1.1, so 

we don’t give full details. Choose 6 regular so that k', X, 17 < 9 < k. In the 

notation of the last proof, ensure that the sets Sa are chosen so that 

|5ct fl 7?7| = Ka for 7 < 77 and a < k , and take a free set S'a such that 

' \S'a n Ry| = Ka for all 7. Rather than constructing the one set T*, construct 

sets Tfy for all 7 with 7 < p, so that 

/[r*7]nU{rr*6;r<aand5<p} = 0 . 

The set U{ T*y; o<k' and 7 < 77} is the required free set. 

It is easy to see that the result in Theorem 3.1.2 is the best possible, in the 

sense that the family {Ry; 7 < 77} cannot be replaced by a family {Ry, 7 < k} 

of k pairwise disjoint sets from [5]*. For write k as a disjoint union k = U{Ry; 

7 < k} where always |i?7| = k and ensure that 7 ^ Ry\ consider the set map 

fk jfx where /(a) = {7} just when a £Ry. If S' meets all the Ry then 

/[5’j = k and so S is not free for/. 

The second extension of Theorem 3.1.1 is from Fodor [41], 

Theorem 3.1.3 (GCH). Let fbea set map of order Xon a set S where |5| = k 

with X < k. Then there is a free subset S' of S with |5,| = k such that 

|U{/(x) Ci/(j>); x, y eS' and x ^y}\ < k . 

With the set map f on S assumed given, for a subset A of S let us put 

UA = U{/(x) n f(y)-,x, y EA and x=£y} . 

If we could find/4 in [5]K with \\\A\ <K, then we could obtain a free set S' 

in [A]K (so necessarily UlN'l < k) as follows. Note that forx in A — HA, for 

at most one y in A can x G f(y) hold - write ^(x) for this y, when it exists. 

Inductively choose xa from A - IL4 for a with a < k so that 

xa E/4 — (0/4 U {x^;(3<a} U {^(x^); |3< a} U U-C/Cx^); /3 <a}). 

Since IU {/(x^); (3 < a}| < X • |a| < k , the choice of xa is always possible. 
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Corollary 3.2.4 (GCH). Suppose 0+ < k. Then there is no decomposition sd 

of a set of power k into k+ subsets each of power at least 0+ with IH91 < 0 

whenever CJ is a family from \sd |K '. (If 6 is finite, GCH is not needed.) 

We are now in a position to prove the following positive result. 

Theorem 3.2.5 (GCH). Suppose k is regular and 6+ < k. Then (k, k, d)-+ k. 

Proof. Suppose the theorem is false, and let/be a set map on a set S where 

I SI = k such that 

xe [sf =>\C\f[X]\<d, (l) • 

and yet there is no free set for / of power k. We start much as in the proof of 

Theorem 3.1.1. Choose by transfinite induction sets Sa for a with a < 6+ 

such that Sa is a maximal free subset of S - P < a}, so always ISJ < k. 

Since k is regular with 6+ < k and always |/(x)| < /c it follows that if 

S*=(J{Sa U Uf[Sa]-,a<6+} then \S*\<k. Hence \S-S*\ = k. Let 

x €= S - S*. By the maximally of Sa, there must be xa in Sa such that 

xa Gf(x), and A'a ^ Xp whenever a (3. Put T = U ; a < 6+}, then it fol¬ 

lows that |T n f(x)\ > d +. Suppose \T\ = 

Assume X+ < k . Then since 

\{Tnf(xfxeS-S*}\<\¥T\ = \+<k , 

by the regularity of k there must be X in [5 - S*]K such that T fl f(x) is the 

same for all x in X. But then If) f[X]\ > 6+, contradicting (1). 
The only other possibility is that X+ = k. Consider the family srt = {TC)f{x); 

x CS - 5*}. Then \A \ > 6+ for each A in sd , and I D7I < d whenever 

CJG [sd ]^+ by (1). Since \S - S*\ - k = \+, this contradicts Corollary 3.2.4. 

Thus in either case a contradiction is reached. This suffices to prove the 

theorem. 

The symbol (k, t?, 0) X is fairly readily discussed in the case that k is sin¬ 

gular. The relation is fully covered by the following theorem. 

Theorem 3.2.6 (GCH). Let k be singidar and suppose that 77, 0 < k. Then 
(i) (k, 

(ii) (k, k, 0)->k', 

(iii) (k, k, 1) f (k')+. 

Proof. Take an increasing sequence <kct; o < k') of cardinals such that k = 2(kct; 

o< k') and always 77, 0 < Ka < k. 
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To establish (iii), take any set 5 with |5| - k and write 5 as a disjoint union, 

S = U{50; o < k'} where ]50| = Ka. Define/: 5 -* jp5 by 

f(x) = Sa — {*} where x E 50 . 

Then/is a set map on 5 of order k. If XE [5]K then X must meet more than 

one of the sets 5/ and so fl/[X] = 0. And if 5' is a subset of A free for /, for 

each o we must have \S' H 50| < 1, so \S'\ < k . Thus/is an example which 

proves (iii). 

To show (ii), let/be any set map of order k on a set 5 with |5| = k, such 

that |DF[X]| < 6 whenever X E [5]K. We may suppose S = k, and write 

S = U{50; a< k'} where |50| = Ka and Sa < ST whenever a < r. Define a dis¬ 

joint partition A = { Al5 A2, A3} of [k]2 as follows: if a, (3 < k with a < 0 
then 

{a,/3}EA! opefta), 

(a, j3} E A2 o a E/03) and 0 $ f{a), 

{a,j3}EA3~ Aj U A2 . 

By the Canonization Lemma, Lemma 2.4.2, there is a family <2 = {C0;a</c'} 

with \Ca\ = Ka such that A is canonical in G . Moreover (see the remarks after 

the proof of this lemma) we may suppose that Ca < CT whenever o< r. So 

for all pairs a, b from U G we have 

Vo(\a n Ca\ = \b n CaI) =» a =b (mod A) . (1) 

For each a with o<k' choose aa from Ca and put 

Xa = {t<k'-,o<t and 3 0 E CT({aa, 0} E At)} . 

By (1) and the definition of Al5 whenever r EXCT then CT G f(aa). Conse¬ 

quently always \Xa\ < k', for otherwise \f{cta)\ = k. Similarly, put 

Y0 = (r < k\ o< r and 3 0 E CT( {a0, (3} E A2)} . 

By (1) and the definition of A2, if r E Ya then Ca C (T/[CT], and so 

! n / [ U { CT; t E Ya}]\ > | Ca\ = Ka> 8. Hence \Ya\ < k , for otherwise the 

intersection property of/is violated. 

Inductively choose ordinals cr(£) where % < k so that 

<m£«'-({0(f);(<|}uu{X0(?) u ya(n;f <£}) ; 

by the regularity of k this is always possible. Put S1’ = {«<,(£); £< k'} so 

15'| = k . And if f< £ then a(£) £ Xa^ U Ya^ so that {a0(f), a0(g)} E A3. 
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Hence aa(t) £ /(aa(f)) anti £ /'(«a(f)) so that 5' is free for / This proves 

GO- 
Finally, to settle (i), let /be a set map on S as in the proof of (ii), except 

now with the intersection property 

ie [Sf^in/triKfl • (2) 

Define the ordinals a(£) for | with £ < k and the set S as above, so that by 

(1) whenever a G CCT(f), j3 G Cct(?) where f =£ £ then a ^ /(j3) and 0 ^ /(a). 

Moreover, in this case each Ca is free for /. Once this is established, it follows 

that if S" = U{Ca(£); £ < k'} then S" is free for/ Since |S"| = k, (i) would 

hold. To show that Ca is free, note that since r\,d <Ka there are subsets Aa, 

Ba of Ca with \Aa| = \Ba\ = 17 + 0 and Aa < Ba. By (1), Ca is homogeneous 

for However, if [CCT]2 C Ai then5CT C fl/[^4CT] and if [CaY C A2 then 

Aa C D f[Ba]. Either of these contradicts (2), and so it must be that 

[Co]2 C A3. Hence Ca is free for /, and the proof is complete. 

Let us return to problems involving regular cardinals. Here a few unsolved 

problems remain. Theorem 3.2.5 gives the best possible result for inaccessible 

k, so only the case when k is a successor cardinal need be considered. If K = X+ 

where X is regular, the following strong negative result of Hajnal [52] shows 

that the restriction 6+ < k in Theorem 3.2.5 cannot be relaxed. 

Theorem 3.2.7 (GCH). Let X be regular and let S be any set with |A| = X+. 

Then there is an almost disjoint family A3 * with |T3 *| = X+ of the X-size sub¬ 

sets of S such that \S — U ci01 < Xfor any subfamily A3 of A3* with power X+. 

Corollary 3.2.8 (GCH). Let X be regular. Then (X+, 2, X) -f X+. 

A 

Proof of Corollary 3.2.8. Let S be any set with |S| = X+, and let GG* be a family 

on S with the properties given by Theorem 3.2.7. Take well orderings Oca;oi<X+> 

and (Ba\a< X+> of S and of A3*. Define sets f(xa) where ct< X+ by induction 

on a as follows. Let 7 be least such that/(x^) By for all 3 with (3 < a; then 

By if Xa $ By 

0 otherwise . 

It is clear that if S* = (x G5; fix) 0} then |5*| = X+. 

Define/* : S* -> by f*(x) = S* n f(x). Then f* is a set map on S* 

of order at most X+, and for distinct x, y from S* we have |/*(x) n/*(jf)| 

< |/(x) n/( v)| < X since the family A3 * is almost disjoint. Further,/* has 
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no free set of power A+. For take S' with S' C S* and |S'| = A+. Then 

f[S ] C 93 * and \f[S ]| = A so tliat |5 — U/[S ]| ^ A by the properties of 

lT3 51. Since \S | = A this means S n U/fS | 0. Since S' C S’-1', we have 

S n U/ [5'] = s' n U/*[S'], and consequently S' is not free for/*. Thus 

/* is a set map which illustrates (A+, 2, A) -/ A+. 

Proof of Theorem 3.2.7. Take the set S with \S\ = A+. By GCH, I [S]*] = A+, 

so there is a well ordering (Aa\ a < A+) of [S’] \ Put sAa = {Ap: p < a}. Use 

transfinite induction to define sets Ba in [S1]^ for a with a < A+ as follows. 

Put <T3q/ = {Bp; |3 < a}, and let y be the least ordinal with y > a for which 

there is A in with \A - U93 | = A for all 93 from [93a]<:v. Since |U93J<A 

whereas |S| = A+ there certainly is such an ordinal y. Put 

st* = {A £ sAy\ V 93£ [93a]<x(|A - U93 I = A)} , 

so 1 < I < A. Write tA * = {Aav; v < A} and 13a = {Bav;v < A}, listed 

with repetitions if necessary. Choose elements^ for v with v < A so that 

xav £ A av — (U{Batl;p<v} U { < v}); 

since Aav £ ,$tf* such a choice is always possible. Put Ba = {xav; v < A}. This 

completes the definition of 5a. 

Then always Ba £ [S]x. And \Ba n Bp\ < A if a A (3. For if say (3 <a then 

Bp £ 93 a so Bp = Bav for some v with v < A. Then 

BpnBuQ , 

so |Z?a Pi 5^1 < A. Thus if 

13*= {Ba; a < A+} , 

then 13* C [,S]\ |93*| = A+ and 03* is an almost disjoint family. In fact 13* 

has the property asserted in the statement of the theorem. This we show now. 

Put A* = {A £ [S]x; V 93£ [93*]<X(H - U931 = A)} . 

Then we have 

ApEst* andp<a<\+=*ApHBa^0 . (1) 

For if A p £ sA* certainly Ap £ sA * so that ^4^ =Aav for some v. Then 

£ Ap Ci Ba. Also we have 

S' CS and \S'\ = A+ => 3 A £ sd* (A C 5') . 

For let S' from [S]x+ be given, and put 

93'= {B £ 93*; \B n S'\ = A} . 

(2) 
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Consider two cases. 

Case 1. 193'| < X. Since |S' - U93'| = X+, we may choose A from [5'— U93']\ 

Then \A n B\ < X for every B in 93*. By the regularity of X, then |yl-U93| = X 

for every 93 from [93*]<\ and so AC A *. 

Case 2. |93'| > X. Choose 90” from [93']\ and put .4 = S' Ci U93”. Take 

any 93 from [90*]<x. Then there is B" in 93 " - 90. Since the sets in 93 * are 

almost disjoint, \{B" C\S')CB\<\for each B in 90. Again by the regularity 

of X, it follows that \(B" 0 5') Cl U93| < X. Since \B" D S'| = X, this means 

that \(B" n S') - U93 | = X, and so \A - U93 | = X. Thus A E srt*, and (2) is 

established. 

We can now see that 90* has the property claimed. For take any family 

90 from [93*]x+; we show IS - U931 < X. For if not, |S — U931 = X+ and so 

by (2) there is A in ,4* with-A. C S — U93. Now A =Ap for some |3. Since 

|931 = X+, there is a with ft < a. < X+ such that Ba E93. Then by (1), A n Ba 

0 which is impossible with A C S — U 93. Thus IS — U931 < X, and the 

proof is complete. 

In view of the result (X+, 2, X) f X+ for X regular from Corollary 3.2.8, 

the strongest positive result for regular X would be (X+, X+, X) X. In fact 

this result holds, as is shown by the following theorem. 

.Theorem 3.2.9 (GCH). //X is infinite then (X+, X+, X) X'. 

Proof. Take S with |S| = X+ and suppose /: S -*■ ^S is a set map of order X 

with | n/[A]| < X whenever X E [S] x+. Choose elements xQ from S for a 

with a < X+ by induction so that 

xa ES - ({xp; |3< a} U U{/(x|3); j3 < a}) . 

Then ^ /(x^) whenever P<a. Put T= {xa; a < X+}, so 171 = X+. Define 

a partition { A0, A1} of [T]2 by, if j3 < a then 

{xa> Xjj} EA0° xp E/(xa) , 

{xa, X^jEAj . 

By Corollary 2.2.7, X+ (X+, X')^. so either there is H in [r]^+ with 

[H]2 C A0 or there is H in [T]x with [H]2 Q Al. Suppose there is H in 

[T]^ with \H}2 C A0. Let H = {xa(7); y < <p} where < y2 =* a(71)<a(72), 

(so <p > X+). But then {xq(t); 7 < X} C fl{/(xa(7)); 7 > X}, contradicting the 

choice of/. Thus there must be H in [T]x' with [H]2 C Ax. But then H is free 

for/, and the theorem is proved. 



Ch. 3.2 Set mappings of large order 77 

The results for A regular can be summarized as follows: (A+, A+, 6) A+ if 

0 < A (Theorem 3.2.5), and (A+, A+, A) A (Theorem 3.2.9), yet (A+, 2, A) f A+ 

(Corollary 3.2.8). 

There remains the possibility that (SI = A+ where A is singular. The positive 

result ot Theorem 3.2.9 cannot be greatly strengthened even in this case, as 

is shown by the following theorem. (If A is regular, the theorem is trivial, but 

then Corollary 3.2.8 gives a strong result.) 

Theorem 3.2.10 (GCH). If k is infinite then (k+, k+, k) f- (k,)++. 

Proof. We may suppose that k is singular, and choose an increasing sequence 

(kct; a < k') of cardinals with always kg<k and k = S(«ff; a < k'). Write 

[k + ]k = {Aa: a < k + }, put = {Ap; j3< a and Ap C a} and choose sub¬ 

families sd.aa of sda with \sHaa\ ^xa and srta = U { -C?a0;o < /<'}• As in the 

proof of Theorem 2.5.9, define subsets fa{a) of a with |/CT(o:)| < kct+1 such 

that A Ci fa(a) 0 for each A in srt aa and y $ /a(j3) for all /3, y with 

(3, 7 G fda). Define a function g-: k+ ->^)3k + by 

g(a) = a- U{fa(a);o<K'} . 

Then g is a set mapping on k + of order at most k+ . I claim that g has the prop¬ 

erties required to prove the theorem. 

Take X in [k+]k+ ; we show |fV[X]| < k . For suppose on the contrary that 

I [A']| > k, and choose A from [ffgpf]]*, so A - Ap for some (3. Since 

\X\ = k+ we can choose a from X with j3 < a and A C a. Then A G srtaa for 

some a with o <. k', and consequently there is y with y EA C fa(a). Thus 

y $ g(a), and so 7 ^ fV[X]. Yet 7 EA and A C f\g[X\. This contradiction 

shows that in fact |(Tg[A]| < k. 

Now supposed is a subset of k+ free for g. We need to show that |S| < (jc')++. 

Since S is free, if we take a, j3 from S, say where (3 < a, then j3 ^ g(a) so 

j3 G U{/CT(a); 13 < k'}. Thus we may define a partition [S']2 = U{ACT; o< k’} 

where, if a < k , 

A0 = {{|3,a}< G [S]2;i3G/CT(a)} . 

As in the proof of Theorem 2.5.9, this partition has no homogeneous set of 

size 3. However, from Theorem 2.2.4 the relation (k,)++ (3)2- holds, so if 

|S| > (k')++ there would have to be a homogeneous triple. Hence IS I < (k')++, 

and the theorem is proved. 

Let us review the situation with regard to the relation (A+, rj, 9) -> t when A 

is singular. By Theorem 3.2.5, it d < A then the best possible result (A+, A+,0) 
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-* A+ holds, so we need only consider the relation (\+, p, X) i. When 17 - X , 

front Theorems 3.2.9 and 3.2.10 the relation is true tor t = A and talse tor 

t = (A')++. The truth of the relation (A+, A+. X) -* (k'T is an open problem. A 

couple of results for the case p < A are announced in Erdos. Hajnal and Rado 

[38], but a complete discussion is lacking. Among the simplest unsolved prob¬ 

lems are the following. Is (13^4. j . 77. true when 2 < 77 < Nls and 

is(^tj+i. >su;- Xu)-»• i true when Ni <i<Nw? 

§3. Set mappings of higher type 

So far in this chapter we have considered maps/ : S -*■ '^5. The concept ot 

a set mapping can be extended by considering functions/: [S]77 tor any 

cardinal 77. Such a mapping will be said to have type p. The maps of type 1 

can be identified with the set maps of the earlier sections. ’ 

Definition 3.3.1. A set mapping on S of type p is a function/[S]77 -»■ ^5 

such that X n f\X) = 0 for each X in [5]75. A subset S' of S is said to be free 

for/if S' nU/[[5T] = 0- 

Set mappings of type greater than 1 were first discussed by Erdos and 

Hajnal in [18]. 

The first result shows that if we are seeking a free set, only set maps of 

finite type need be considered, for if p is infinite then there is a set map of 

type p of order 2 which has no free set of size p. (Trivially, any set of size less 

than p is free.) 

Theorem 3.3.2. Let 11 be infinite and Jet S be a set with :S; > p. Then there is 

a set map fan S of type p and order 2 which has no free set of power p. 

Proof. Consider first the case where |S = p. Write [S]r‘ = {Aa:a< d77}. Choose 

by induction sets Ba front [Aa]77 for a with a < 2n so that Ba ^ Aa and 

fia ^ 5p for any p with /3 < a. Since i [Aa]’71 = 27', such a choice of Ba is al¬ 

ways possible. Choose xa from .4 - Ba. Now define a function/ : [S]77-5’- 'pS 

as follows: 
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Then always X C\f(X) - 0, so/is a set map of type 77, and order 2, on 5. Let 

S' be any subset of S of power 77, so S' =Aa for some a. Then Ba E [,S'f and 

xa £5' nf(Ba). Thusxa E5' n U/[[5']T?] and so S' is not free for f Thus 

/has no free set of size 77, and the theorem holds in this case. 

Now suppose |51 > 77. By Zorn's Lemma, there is a maximal almost disjoint 

family 9ft with 9ft C [5]71. For each M in 9ft, we have just shown that there 

is a set map fM : \M]r> -*■ %M ot type 77 and order 2 on M, which has no free 

set of size 77. By the maximally of 9ft, for each X in [5]17 there is M in9ft 

such that |X n M\ = 77. Choose such an M, and call it M(X). Note that if 

LE [inM(X)]n then necessarily M(Y) = M(X), by the almost disjoint prop¬ 

erty of the family 9ft. Define a function/: [5]71 -> jj?5 by 

f(X)=fM(X)(XnM(X)). 

Since fM(X)(X nM(X)) CM(X) - (inM(X)), certainly X n f(X) = 0. Thus 

/is a set mapping on 5 of type 77 and order 2. Suppose there is 5' in [5]17 with 

5 tree for/; thus 5 n U/[[5p] = 0. In particular, if S" = S' n M(S') then 

S" n U/m(s') [[5"]r;] = 0> since for any Y in [5”]71, 

f(Y) = fM(r)(Yn M(Y))=fM{S’)(Y D M(S')) =fM(s)(Y) • 

Thus S" would be a set of power 77 free for/^'j, which is impossible. Thus 

/has no free set of size 77, and the proof is complete. 

In view of Theorem 3.3.2 then, we need only consider the case of set maps 

of finite type. Just as a set map of type 1 and order k on a set of size k need 

not have a free pair, also a set map of type n and order k on a set of size 
K(«-i)+ neeci not have a free set 0f n + 1. 

Theorem 3.3.3. Let n be a positive integer and let S be a set with |5[ = n(n~1Y. 

Then there is a set mapping on S of type n and order k which has no free set 

of power n + 1. 

Proof. By induction on n. When n = 1, we noted in § 1 that this is so — iden¬ 

tify 5 with k , and for ct in k put /(a) = a = {|3; |3 < a}. 

Now suppose the theorem holds for a particular value of n, and take 5 with 

|5| = k(”+). We seek a set map F : [5]”+1 [5]<f< with no free set of size n + 2. 

Identify 5 with {a: < a < kso by the inductive assumption, for 

each ct in 5 there is a set map fa : [a]” [a]<,< with no free set of size n + 1. 

Define F : [S]n+1 -*%S by, if a E [5]n+1 then 

F(a) = fa(a - {ct}) where ct = max(tf) . 
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Then F is a set map on 5 of type n + 1 and order at most k. And clearly a free 

set X for F, with \X\ = n + 2, would give a free set X - {a} of size n + 1 for 

fa, where a = max X, so that F can have no free set of size n + 2. This com¬ 

pletes the proof. 

The value of |5| in Theorem 3.3.3 is the maximum possible if there is to 

be no non-trivial free set (at least if the GCH is assumed), as is shown by the 

next theorem. 

Theorem 3.3.4 (GCH). Let n be a positive integer and let S be a set with 

|51 = k("+) Then every set mapping on S of type n and order k has a free set 

of power k+. 

Proof. If n = 1 this follows from Theorem 3.1.1, so we shall suppose hence¬ 

forth that n > 2. Let/: [5]” -> [5]<K be a set map on 5, where |5| = K(n+). 

For each a in [5]"_1, define an (ordinary) set mapping fa of order k on S-a 

by putting, for x in S-a, 

fa(x)=f(a u {x}) . 

By Theorem 3.1.5, always S-a can be written as a union of at most k sets 

each free for/a, say S-a = U{//a(fl); a < k}. 

Take a well ordering, < say, of 5. Define a partition A of [5]" as follows: 

if a, b E [5]” with a = (x0, xn-\}< and b = {^0* — > Tn-i)<> then 

a = b (mod A) (Vi < n)(3 a < k) [x,- E//a(a - {x,-}) and 

yt E HJa - {y ,■}))] . 

Then clearly A has at most k classes. Since |5| = K^n+). by the partition relation 

K(n+) from Theorem 2.3.2, there is a set H in [S]K which is homo¬ 

geneous for A. But then H is free for / For take a from [H]n and x in FI — a: 

it suffices to show that x ^ f(a). Define an element y in a as follows. If x < u 

for some u in a, then v is the least such u \ otherwise v is the largest element 

of a. Thusy is the z-th element of a if and only if x is the /-element of 

a U (x) — O'). Since H is homogeneous for A, we have a = a U {x} — {_y} 

(mod A). The definition of A shows that for some a, both7 EHa(a— {>>}) 

and x E Ha(a - {v}). Since Ha(a - {>»}) is free for fa_ {y}, then x (£ fa_ (y}(v) 

thus x ^ f(a). So H is indeed free for/, and the theorem is proved. 

One can ask if, in the situation of Theorem 3.3.4, the size k+ of the free 

set is the largest possible. For n = 1 trivially this is so, for n = 2 we shall show 

in Corollary 3.3.6 below that again k+ is the best possible, but for n > 3 the 
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problem is open. An upper bound for the size of a free set is given by Corol¬ 

lary 3.3.6. (Compare with Problem 34B in Erdos and Hajnal [24].) First we 

prove the following result, which should anyway be compared with Theorem 

3.3.3. 

Theorem 3.3.5 (GCH). Let n - 2, 3, ... and let S be a set with 151 = 

There is a set mapping on S of type n and order 2 which has no free set of 

power fc("_1)+. 

Proof. By induction on n. If n = 2, take S with |5| = k+, and identify S with 

k+. From Lemma 2.7.3, there is a disjoint partition [S’]2 = U{r7; y < k + } 

such that whenever A G [5]*, B G [S]K and y G S then there are a in A and 

j3 in B for which (a, j3} G rT. Define /: [5]2 [A]55 1 by: 

Mot, /?}) = 
{7} if {a,j3} GT7 and yF a, (3 , 

0 otherwise. 

Then /is a set mapping on S of type 2 and order 2. Moreover,/ can have no 

free set of size k+. For take any subset S' of S with 15) = k + . Choose 7 from 

S' and A from [5’]K, B from [5’]K with 7 ^ A U B. By the choice of the par¬ 

tition, there are a, j3 with a EA, (3 G B and {a, j3} G T7. Thus/( {a,j3}) = {7} 

so 7 G/({a,j3}), and hence S' is not free. This completes the case n = 2. 

For the inductive step, proceed much as in the proof of Theorem 3.3.3. 

Suppose the theorem holds for a particular value of n, and take S with 

|5| = k(-n+\ Identify S with (a; <ot< K<n+^} and for each a in S let 

fa '■ [a]n [a]< 2 be a set map on a of type n and order 2 with no free set of 

power k(m-1)+. Define F : [S]n + l ^S by, if a G [5]” + 1 then 

F(a)=fot(a - {a}) where a = maxfa), 

so F is a set map on S of type n + 1 and order 2. Suppose S is a subset of S 

with |5(| = K^n+^ which is free for F. Take a in S' such that a has 1^+ pre¬ 

decessors in S'. Then clearly S' n a is a set of power K(n~1)+ which is free for 

fa, contrary to the choice of fa. Thus F has no free set of size k(,! + ). This com¬ 

pletes the proof. 

Replacing k by k+ in Theorem 3.3.5 gives the following. 

Corollary 3.3.6 (GCH). Let n = 2, 3, ... and let Shea set with |5| = k(,1+). 

There is a set mapping on S of type n and order 2 which has no free set of 
(n+) power kk 
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The result in Theorem 3.3.5 shows that a set map on a set S of type n 

(,n > 2) and order X where X < |S| need not necessarily have a free set of size 

|S|, in contrast to the result in Theorem 3.1.1 for set maps of type 1. How¬ 

ever, if IS| is singular, then the exact analogue of Theorem 3.1.1 holds. 

Theorem 3.3.7 (GCH). Let S be a set with |S| = k where k is singular, and let 

fbe a set map on S of type n and order X where X < k. Then there is a subset 

S' of S with |S'| = k which is free for f 

Proof. By Theorem 3.1.1, we need only be concerned with n where n > 2. 

Identify S with k. Choose a disjoint partition A = {A,-; i< n + 1} of [S]'!+1 

such that fora in [S]"+1, say a = (a0,..., «„}<, 

aGA;^ a,- (=f(a - {a,-}), for i with i < n 

aEAn+i=>Vi< n (a,- £ f(a - {a,-})). 

From Lemma 4.2.2 (the Canonization Lemma) there is a pairwise disjoint 

family <2 = (CCT; o < k'} with |U Q\ = k such that A is canonical in (2 and, by 

the remarks after the proof of that lemma, we may suppose that always 

|CCT| > X and Ca < CT whenever a < r. Thus, whenever a, b E [uer\ 
Va (|a n Ca| = \b n Ca\) =>a = b (mod A) . (1) 

I claim | U S]"+1 C A„+1, and consequently UG is a set of power k free 

for/, as needed. For take any set a from [U<2 ]"+1, and suppose on the con¬ 

trary that a E A,- for some i with i < n. Let the /-th element of a be in C-. 

Choose b from [U G]n such that b n Ca = a n Ca if a ^ r, and if b = (j30, ..., 

Pn-i}< f°r B = CT H {j3; &_! <P< Pi) we have |S| = X. Since |CT| > X 

such a choice of b is possible. Then for any (3 from B it follows that 13 is the 

z-th element of b U {/3}. Moreover, for such (3 we have |a D Ca\ = |(Z? U {j3}) 

H Ca| for all a, so since a E A, it follows from (1) that b U {/3} E A,-, that is, 

P £f(b)- Hence B Cf(b). Since/has order X, this is impossible. This shows 

that [UG]"+1 C An+1, and completes the proof. 



CHAPTER 4 

POLARIZED PARTITION RELATIONS 

§ 1. Partitions of k X k 

The polarized partition relations that are to be studied in this chapter were 

first defined in Erdos and Rado [29] and the more tractable cases carefully 

investigated in Erdos, Hajnal and Rado [38], Most of the results in this chap¬ 

ter first appeared in [38]. The polarized relations are an extension of the rela¬ 

tion k -> (%; k < y)n from Chapter 2, an extension obtained by considering 

partitions of sequences of finite subsets, rather than partitions of just finite 

subsets. 

Definition 4.1.1. The polarized partition symbol 

K 1 Vik 

K-m 
C- — 

—> 

Vmk 
-J 

n 

k< 7 

m 

means: given any sets Sh Sm with |5,-| = k;- (where i = 1,..., m), for all par¬ 

titions A = (Ak',k<y} of [*S,1]”1X ...X [Aw]”w into 7 parts, there are k 

with k < 7 and subsets Hj of S,• with \H,\ = (where i = 1, ..., m) such that 

[/Af'x ...x 

We shall adopt without specific mention conventions in the use of the po¬ 

larized partition symbol similar to those used with the ordinary partition sym¬ 

bol. In particular, the sequence Hh ..., Hm in the above definition will be 

called a homogeneous sequence for the partition. The same simple remarks 

that were made at the time of the introduction of the ordinary partition sym¬ 

bol apply, mutatis mutandis, to the polarized symbol. 
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In the first two sections we shall be concerned with the special case where 

m = 2, nx = n2 = 1, and usually 7 = 2 as well. Thus we shall be investigating 

properties of the symbol 

7711 

1*2/ U20 r?n 

that is, seeking homogeneous pairs for partitions of [Sh]1 X [52]x. We shall 

always identify [5]1 with 5, and so we are dealing with partitions of the 

cartesian product 5j X 52. 

A few of the results that will be proved are stronger than can be expressed 

by the polarized partition symbol. To formulate these compactly, it is con¬ 

venient to introduce the relation with alternatives. 

Definition 4.1.2. The polarized partition symbol with alternatives 

/K 1 \ /77io V X10 'hll V Xn\ 1,1 

\«2/ \t?20 V X20 V21 v X21/ 

means: given sets5j, S2 with |*Sj| = Ki and 15"21 = «2> f°r partitions 5j X S2 

A0U Ai, there are k with k- 0,1 and subsets Hi of 5X and H2 of S2 with 

Hx X H2 C Afc such that either |//j| = Pik and \H2\ = p2k, or else I//11 = X^ 

and \H2\ = \2k. 

The definition above can be extended to other cases of the polarized parti¬ 

tion symbol. This relation will not be investigated for its own sake. However, 

the methods that we shall use to establish results concerning the symbol with¬ 

out alternatives at times, without extra work, will lead to a stronger result 

that can be expressed using the symbol with alternatives. 

In this first section, we shall concentrate on the relation with m = 2, 

nx = n2 ~ 1 and further Ki = k2 = k. We shall start by deducing several results 

using the theory of set mappings from the previous chapter. 

Theorem 4.1.3. Let k be infinite with p < k. Then 

k 1 

K p 

1,1 

Proof. Let S be any set with |51 = k, so we may identify S with k. Let a parti¬ 

tion 

5X5 = A0UA, 



Ch. 4.1 Partitions of k X k 85 

be given, and suppose | {j3 G S; (a, )3> G Ax}| < p for each a in 5. We need to 

find Hi, H2 in [5]K with Hx X H2 C Ao- Define a set mapping/on S as fol¬ 

lows: for a in S, put 

/(a) = {p E S; (a, P) E Aj and a =£ (3} , 

so/has order at most p. By Theorem 3.1.1 there is a set S' in [S]K free for/ 

Choose disjoint sets Hh H2 from [S'}K] then Hl X H2 C A0. 

The value of p in this last theorem cannot be increased to p = k, as the fol¬ 

lowing strong negative relation shows. 

Theorem 4.1.4. For all k , 

Proof. Consider the partition k X k = A0 U Ax where 

(a, P) E A0 ^ a < p; (a, p) E Ax <^a> P . 

Likewise, an attempt to improve Theorem 4.1.3 by increasing the “1” may 

not meet with success, although this is not as easy to show. 

Theorem 4.1.5 (GCH). Suppose k is regular. Then 

( 

+ 

+ r; \vT 
\K K V K / 

Proof. By virtue of Theorem 3.2.7 there is an almost disjoint family^ = {Aa; 

a < /< + } with always Aa E [/c+]K such that whenever 13 is a family in [Fl}K+ 

then |k+ — UT3| < k. Take such a family sft , and define a disjoint partition 

k+X / - A0 U Aj by 

(a,P)E Aj ^pEAa . 

This partition has the correct properties to prove the theorem. For each a, by 

definition {j3; <a, 0> E Ax} = Aa, and always \AaI < k+. Also \Aa Cl Ay\ < k if 

0^7, so that Aj is as required. With respect to A0, take Hi from [k + |k and 

H2 from jjSK+ with Hi X H2 C A0; we need to show that \H2\ < k+ . However, 

if 03 = {Aa; a EHX} then 

{j3; (a, p) E Ax for some a in H{} = UdS . 
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Thus C k+ - 1103 , and so \H2\ < K. This proves the theorem. 

At this stage, we note another negative relation which follows easily from 

an example constructed in Chapter 2. 

Theorem 4.1.6 (GCH). For all infinite k. 

Proof. By Lemma 2.7.3, there is a partition [k+]2 - U{r\;/r<K } such that 

whenever A E [k+]k, B E [k+]k , k E k+ then {a, 6}E for some {a, b} 

where a Ed, b E B. Using this partition of [k+]2, define a disjoint partition 

k+Xk+ = AqUA1 by: 

(a, j3> E A0 o {a,/3}GT0 . 

Clearly this partition has the required property. 

In the proof of the next theorem, we shall need a polarized canonization 

lemma, similar to Lemma 2.4.2. This can be proved quite easily from Lemma 

2.4.2. We shall state and prove only the special case we need. 

Lemma 4.1.7 (GCH). Let k be singular and let (Ka; o < k') be an increasing 

sequence of cardinals below k with k = £(kct; o<k'). Let a disjoint partition 

k X k = U{ Afc; k <y} be given, where y < k. Then there are pairwise disjoint 

families {Aa; o < k'} and {Ba\ o < k’} and a function h : k' X k' ->• y such 

that \Aa\ = \Ba\ = Ka and 

O, T ^ K =>Aa X Bt E A;^(ji7) . 

Proof. For k, l with k, l < y put 

A(k, l) = {{a, (3}< E [k]2; <a, (3) E Ak and <j3, a) E A/} . 

This gives a disjoint partition A of [/c]2, 

[k]2 = U{'A(A:, /); k, l<y} . 

By Lemma 2.4.2, there is a family G = {CCT; a < k'} where Ca < CT whenever 

a< r, such that A is canonical inG , and we may assume \Ca\ > Ka. Thus there 
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are functions h0, hx : k ~+y such that 

a < r < k and a G Ca, j3 6 CT => {a, /3} £ A(/r0(a, r), /? j (a, r)) . (1) 

For a with a< k\choose v4a from [C2ff]ka and Ba from [C2a+i fa, so cer¬ 

tainly the families {Aa; a < k'} and {Ba\ o < k'} are both pairwise disjoint. 

Take a, r with o,t<k', and consider a from Aa and 0 from Br. If o < r then 

2a < 2r + 1 so that a < 0 and by (1), 

{a,j3}£A(/z0(2a, 2r + 1), hx{2o, 2r+ 1)) 

so that (a, j3> E A/,0(2ct!27+ l) 1 whereas if r < a then 2r + 1 < 2a so that 0 < a 

and by (1), 

{a, /3} G A(7z0(2t + 1,2a), /z1(2r+ 1,2a)), 

so that <a,0>e Afcl(2T+1>2ff). 

Hence define h : k' X k' -»• 7 by 

f/70(2a, 2r + 1) if a<r, 
ft(a, r) = 

(/? j (2t + 1, 2a) if r < a . 

Then always Aa X BT C Ah(p,r)’ and the lemma is proved. 

Theorem 4.1.8 (GCH). Let t]q, 171 be cardinals with 170.171 < «. Then 

(k\ I* * V r?o \1,1 

\K/ \k 171 V K / . (1) 

Proof. Let S be any set with |S| = k, so we may identify S with k. Let any dis¬ 

joint partition S X S = Aq U Aj be given. 

Consider first the case that k is regular. Define set mappings/0, /) on S as 

follows: 

fo(ot) = {j3< or, (0, a)e Aj}, /i(a) = {0 < a; (a, 0> £ AJ} . 

Then both /0,/) have order at most k. If there is X in [S]K with in/o[X]| > t]q, 

since n/offlx X C Aj there is nothing more to show. Similarly if there is 

X in [S]K with \C\f1[X]\>r)i, since X X D /) [X] C Aj there is nothing more 

to do. So suppose that ID/0 [XT]| < i?0 and |fl/i [X]\<r)i whenever X£ [S]K. 

By Theorem 3.2.5, there is a set A in [S]K which is free for/0. Let f\ : A ^%A 

be the restriction 0f/) to A, that is/i(a) = /) (a) n A. Again by Theorem 3.2.5 

there is a set B in [A]K which is free for/)'. Take two disjoint sets Hh H2 

from [B]K. Take a from H{ and 0 from H2. If a < 0, since A is free for/0 we 
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know a. $ f0(j3) and so <a, p) $ Ax. If j3 < a, since B is free for// we know 

(5 ^ /i(a) and so (a, j3> ^ Ax. So in any event (a, /?) E A0 and hence HX X H2 

C A0. This proves the relation (1) when k is regular. 

Now suppose that k is singular. Choose an increasing sequence of cardinals 

(kct; o < k') with always r?0, r?i < Ka < k and k = 2(kct; a < k ). By Lemma 

4.1.7 there are pairwise disjoint families {Aa\ o<k'} and {Ba; a< k } with 

A fjr B q E [S]K<7, together with a function Lk'Xk'^ {0,1} such that 

AaX BT C A/,(CT>r). Define a disjoint partition k X k = Aq kJ A*, where 

(o, t)& A* h(o,r) = i, 0‘= 0,1). 

Since k' is regular, the theorem applies to k . In particular 

k v 1\ 1,1 

1 VK7 

So one of the following three events happens. (1) There are Ih I2 from |V]K 

such that /X I2 C Aq- If we put Hx = (J{Aa\ o E/J, H2 = U {Bt: t E/2} , 

then \HX\ = \H2\ = k and Hx X H2 C A0- (2) There are r in k' and /j in [fc']k 

such that /[ X {r} C A*. Put Hx = U{/4CT; a E Ix} so |//j | = k, and HxX BT 

C Ax. (3) There are a in k and I2 in [V]K such that {a} X I2 C A}. Put 

H2 = U{5t; tE/2} so \H2\ = k , and X H2 C Aj. Since \BT\ - kt>Vi and 

\Aa| = kct > t?0, this proves that the relation (1) holds. The proof is complete. 

Theorem 4.1.9 (GCH). Let t?0, Vi be cardinals with Vo~V\ < k. Then 

Proof. Let any disjoint partition k X k = A0 U Ax be given. Suppose first 

that k is regular. Define a set mapping/on k as follows: 

/(<*)= {j3 < a; (a, P) E A0} , 

so/has order at most k. If there is X in [k]k with |IT/[X]| since 

XX fl/[X] C A0 there is nothing more to show. Otherwise, for all X in [k]k 

we have |(T/[X]I < '70, so by Theorem 3.2.5 there must be S in [k]k which is 

free for/ Choose subsetsHx, H2 of S with \HX\ = k, \H2\ = Vi and H2 <HX. 

Then if uE//] and |3 EH2 we know (3 /(a) and so (a, |3> A0; hence 

HxX H2 Q Ax and the result follows. 

The argument when k is singular is the same as that in Theorem 4.1.8. 
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We come now to one of the most difficult theorems involving the symbol 

We shall need two lemmas first. 

Lemma 4.1.10. For each finite n, 

(1) 

Proof. Use induction on n, starting from the trivial relation with n = 0. So 

make the inductive hypothesis that (1) is true for a particular value of n. Take 

sets S, T with |S| = k, 17] = k+ and let a disjoint partition S X T - A0 U Ai be 

given. Suppose there are no sets//j in [S]K and H2 in [T]K with Hx XH2 C A0. 

By the inductive hypothesis, there must then be sets Hi in [S,]K and H2 in 

[T]n such that HlXH2 CAj. 

For eachjn in T, put Q\(y) = (x, y> G A!). If there isy in T - H2 

for which \HX n Qx(y)\ = k, then (Hx n Qx(y)) X (H2 U {_y}) C Ax and the 

result follows. So suppose \HX n Qx(y)\ < k for all jk in T — H2. We shall show 

that a contradiction results. 

For each cardinal X with X < k , put 

union, Hx = U {Hla; a < X+ } where always \HXa\ = k . Ify G 7\ then 

\Ht n Qx{y)\ = X < X+ and hence there is a(>’) with a(y) < X+ for which 

Qi(y) Ft HXa(y-) = 0. Since k+ is regular, there is Y in fF^]K+ such that a(v) 

is constant foiyy in Y, say with value a. Thus Q\(y) Fi Hla = 0 for all jr in Y. 

Hence Hla X Y C A0. But \Hla\ = k and \ Y\ = k+, so this contradicts the as¬ 

sumed property of the partition. This completes the inductive step, and the 

lemma is proved. 

Lemma 4.1.11 (GCH). Let k be singular and suppose a partition k X k + = A0 U Ai 

is given for which there are no sets H x in [k ]k and H2 in [k+]k with HxX H2 

C Aj. Let \be a regidar cardinal with k' < X < «:. Take any set A in [k]K and 

subset B of k+. Then there is a family A of at most k sets from [A |A and a 

map f A ->93.5 such that \B — U f\A ]| ^ k and XX f(X) C Aq for all X 

in A. 
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Proof. Let A and B be given, with A & [k]k and B C k+. Write Qo(P) = {u< k; 

(a, (3) E A0}. Put Bl = {/3E.6; \A n Q0((3)I < X} and B2 = B - B:. From lemma 

4.1.10, the relation 

holds. Since certainly A X Bi CA0 U Aj, if \Bi\ = k+ by this relation either 

there would be (3 in Bx such that IA n Q((3)\ = k (contrary to the definition of 

Bi) or else there would be Hi in [A]K and H2 in [i?i]K+ with Hi X H2 C Ax 

(contrary to the choice of the partition). So we deduce that \Bi \ < k. 

Let <k0; o < k) be a sequence of cardinals with kct < k and k = 2(Ka;o<K ), 
and write A as a disjoint union A = U{Aa; o< k'} where always \Aa\ = Ka. 

Put sA = U{ [vlcr]x; a < //}, so | sd\ < 2(k£; o < k') < k. For X in sd , define 

f(X) = (|8 E B2\ X C A n Qo(fi)}, so/maps srt into ^ .5 and X X f(X) C A0 

for each X. Further, for each j3 in B2 there is X in sA for which (3 E/(X), 

since otherwise \Aa n Q0(J3)\ < X for all o with o < k' and so by the regularity 

of X and the definition of B2, we would have the contradiction 

x < \A n Q0((3)I = S(lAa n <2oC3)|; a < k'} < X . 

Hence B2 = Uf[sA]. ThusB - U/[itf ] = , and the result follows. 

We are now set for the major theorem. 

Theorem 4.1.12 (GCH). For all k, 

r:wK 
Proof. Let S' be any set with |S| = k+, and let a partition S X S = A0 U be 

given. Assume for all Hh H2 with Hi E [S]K, H2 E [S]K+ that H{X H2 (£ 

and H2X Hi (£ Abso we seek i/1( H2 in [S]K such that HxXH2 C A0. 

Identify S with «+. For a, (3 with a, j3 < k+ define 

P0(a) = (j3< k+; (a, (3) E A0}; Q0(P) = {a < k+; (a, 0>E A0} . 

Then if H E [k+]k and B C k+, since 

AX(B- U{P0(tt);tiGd})C Aj 

it follows that \B - U{/,0(a);a E^4}| <k. Similarly, if B E [k+]k and A C k + 

then \A - U{Qo(i3);i3E5}|<K. 
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Suppose first that k is regular. We shall define a ramification system jK on 

k+ of height k so that reading along any branch of the ramification tree gives 

a chain of elements a0, j30, al5 j31} ... such that always (aa, (3T) E A0. The idea 

of the construction is roughly as follows (with the notation conventions of 

Chapter 2, §2). Suppose we have already constructed the ramification system 

up to level a, so for a sequence v in N Cl SEQa we know S(v). Choose A from 

[5(v)]K. By the remark above (with B replaced by S(v)), at most k elements 

j3 of S(v) fail to have a companion a in A such that (a, (3> E A0- Discard these 

elements by putting them in F(\), split up the remaining elements of S(v) ac¬ 

cording to their companion a in A and push them up to the next level. Do 

this alternately on the first component and the second component of the 

pairs <a, j3). 

Formally, then, take a with o<k and a sequence v from SEQa. Suppose 

S(v) has already been defined. If IS'(v)! < k, put F(v) = £(v) and n(\) = 0. If 

|5(v)| = k+, put n(v) = k . Choose R(v) from [S^v)]* and for ji in n SEQa+i 

with n f o = v let 7(n) range over the elements of i?(v). If a is even, put 

F(v) = R(y) U (5(v) - U{F0(T);T^WI) 

and for v in N Cl SEQa+1 with n To = v put 

5(M) = (5(v)nPo(70»)))-^(v). 

If a is odd, put 

F(v) = F(v) U (S(v) - U{(2o(7); 7 EF(v)}) 

and for v in TV Cl SEQa+1 with p T o = v put 

5(M) = (5(v)n<20(T(^))-F(v). 

Thus in either case it follows that 

S(v) — F(v) = U{^((i); MEWCiSEQg+l and MTa = v} . 

This completes the definition of the ramification system . 

By definition |F(v)| = k, so from the remark above it follows that |F(v)|^/<. 

Hence the Ramification Lemma, Theorem 2.2.3(ii) applies to . This yields a 

sequence v in N n SEQK such that S(v) F 0. Choose and fix such a sequence v. 

Put aCT = 7(v P2a + 1) and = 7(v T2a + 2), for all o with a < k. Write 

Hi = {ota, o < k} and H2 = {/3a; a < k}. Since aCT = 7(v T2a + 1) E F(v T 2a) 

and the F(v T 2a) are pairwise disjoint (by Lemma 2.2.2(h)) it follows that 

\HX \ = k. Similarly \H2\ = k. Moreover,//! X H2 Q A0- For take a, r with 
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o, t < k ; we want to show (aa, (3T) G A0 • Suppose a < r. Then-- 

j3r = 7(vr2r + 2)G/?(vr2r+ l)CS(vr2r + l)C5(vT2a+ 1), 

5(vT2a+ l)C/)0(7(vr2a+ l)) = P0(«a), 

and so (oia, fiT) G A0- Similarly if r < o we find aa G Q0(PT) and again <aCT,j3r) 

G A0- This proves the theorem if k is regular. 

Now suppose that k is singular. Choose an increasing sequence of regular 

cardinals <kct; a < k') such that k' < Ka< k and k = 2(kct; o <k'). We shall 

define a ramification system 9r on k+ of height k (so the Ramification Lemma 

will apply) in such a way that reading along any branch in the tree gives a se¬ 

quence of sets A0, B0, A h B1, ... such that \AaI, \Ba\ > Ka and always AaX Br 

C A0. The construction is similar to that used in the case above, except that 

Lemma 4.1.11 is applied to provide the appropriate splitting up of the set 

S(v). 

To define 91 formally, suppose 5( v) is given for somev in N n SEQa where 

a < k . If |N(v)| < k, put F(v) = S(v) and n(v) = 0. If |N(v)| = k+ put n(\) = k. 

Choose R(y) from [5'(v)]K. If o is even, apply Lemma 4.1.11 with X = Ka, 

A = /?(v) and B = N(v) to obtain a subfamily sd (v) = {y4a(v); a < k } of 

[R(v)]k° and a map/v such that y4a(v) X /vC-4or(v)) C A0 and |S(v)- Ufv[sd (v)]l 

<k. Put 

F(v) = i?(v)U(5(v)-U/v[^(v)]), 

and forp in TV n SEQa+l with n fa = v define 

W=/v04M(a)(v))-F(v). 

If a is odd, use the obvious modification to Lemma 4.1.11 to obtain a family 

s#(v) and a map fx as above, only that this time/v04Q!(v)) X ,4a(v) C A0. 

Define F{\) and N(n) as above. This completes the definition of the Ramifica¬ 

tion system jR . 

Then, as in the regular case, there is a sequence v in N n SEQK> such that 

5(v) 9^ 0. Put Aa — A V(2ct) (vT2a) and Ba = ^4V(2a+i)(v T2a + 1), then 

Hi = U{Aa\ a< k'} and //2 = U{/?CT; o < k'}. It follows that \Hi\ = \H2\ = k. 

And further, Hx X H2 C A0. For take a, r with a, r fC k. We show Aa X BT 
C A0- Suppose a < r. Then 

Bt ~ A v(2t+i)( v r 2t + l)CF(vr2r+ l)CN(vr2r+ 1), 

S(V T2r + 1) C S(v r 2ff + 1) C/v r 2aUv(2a)( v T 2a)) = /v r2a(Aa), 

and so Aa X BT C A0. If a > r, similarly Aa C/v r 2r+1 (BT) so again AaXBT 
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C A0. This completes the proof for singular k, and concludes the proof of 

Theorem 4.1.12. 

We shall prove one more negative relation, and then we shall survey the 

results obtained so far. 

Theorem 4.1.13 (GCH). If k > K0 then 

and if k = K0 then 

K V K+ X1,1 

«0 V 1 / 

K+ \ IK K. V K+ \ 1,1 

K + / \K+ V 1/ 

Proof. We shall construct a partition k+ X k+ - Ao U Ax which demonstrates 

the negative relation. As before, to ensure that there are not/Zj in [k+]k and 

H2 in [k |k with Hx X H2 C A0, for each Hx in [k +1K there must be y such 

that for all p with p > y there is some chosen element x(p.) in Hx such that 

u), /u)G Aj. In order not to make Ax too large, we want that any partic¬ 

ular element in k+ be not chosen asxfp) for too many p. Since \HX\ = k, when 

choosing xQi) we can safely avoid only fewer than k of the earlier x(v). The 

formal construction is as follows. 

Let [k + ]k = {Aa; a< k + }. For each P with 0 < (3 < k+, since 1 < |j3| < k 

we may write p = {P(v)\v<k} and {Aa\a < p} = {Bqv\v<k}. Use trans- 

finite induction on j3 to choose elements x(i3, v) (where P< k+ and v<k) such 

that 

x(]3, v) G Bpv - (x(j3(p), a); p < v and o < v} . 

Since | {<p, a); p < v and o < n}| < k this is certainly possible. Define a parti¬ 

tion k+ X k+ = A0 U Aj as follows: 

(a, P)£ AX o 3 v < k (a = x(P, u)) , 

(a,p)EA0 o<a,P>$ Ax . 

Then if Hj G [k + ]k, H2 G [k + )k , certainly Hx = Aa for some a and there 

is P in H2 with a < j3. Thus Hx = Bpv for some v with v < k. Then x(P,v) 

GBpv = Hx and (x(P, v), p) G Ax so that HxX H2 A0. Also for any P, we 

have | (a; <ce, /3) G A j }| = | (x(j3, v); v < k.} I < k and so i \HX G [k+]k+, P G k + 

we have//j X {p} £ Ax. 
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Note that the choice of x(P, v) ensures 

p < v < k and a = j3(p) and x(a, a) = x(/3, v)^v<o . 0) 

Take any infinite set B from [k+]<k and suppose there is p with p < k such 

that 

p > sup {p < k ; 3 a, P E B (a = 0(p))} ■ 

Put Qi(B) = {a: Vp EB«a, P) E A i)}; I claim \Q1(B)\<k. For take x from 

Qi(B). Then for each p in B there must be v(p) such that x = x(P, v(P)). Sup¬ 

pose v(fi) > p for all P in B. Then if we take j31; P2 in B with Pi < P2, we have 

Pi = 02 (m) for some p, and p < p < v(P2) so that by (1), v(P2) < v(Pi)- Since B 
is infinite this leads to an infinite descending chain of ordinals, which is im¬ 

possible. Consequently v{\3) < p for some P in B. Hence Qi(B) C (x(0, n); 

v < p and P G B} so that \QX (5) 1 < k as claimed. 

Suppose k ' > N0. Take any B in [k+]' °. Certainly there is p with p < k 

and p > sup {p; 3 ot, P E B(a = j3(p))}, so that IQ i(5)| < k . But if A X B C Ai 

then A C Q\(B)', so there are not A in [k+]k, B in [k°]S° with A X B C Aj. 

Suppose k = N0, and let (k„ \n< co> be a strictly increasing sequence of 

cardinals with k = 2(k„ ; n < co). Take any set 5 in [k+]' 2, and form the par¬ 

tition [B]2 = U{IY, n < co} where, in the notation above, for a, P in B with 

a<P, 

{a, 0} E rn <*■ 3 p < k„ (a = P(p)) . 

By the relation N2 (N0)^0 there is an infinite subset B* of B such that 

[B*]2 C T„ for some n. Thus 

Kn+1 > Kn > sup {p; 3 a, P E B* (a = (3(p))} , 

so that I2i(i?*)l < k and hence \Qi(B)\ <k. Thus there are not A in [K+]k, 

B in [k+]K2 such that A ABC Aj. 

Thus the partition {A0, Aj} provides an example which proves the theo¬ 

rem. 

We shall now summarize the results concerning the symbol 

where 0 < r)0, ..., 773 < k, assuming GCH throughout. It follows from Theorem 

4.1.12 that the relation is true if 770,..., r?3 < k. If any three of T70, ..., 773 are 

equal to k, the relation is false (from Theorem 4.1.4). 
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By Theorem 4.1.9 the relation 

is true if r?2, r?3 < k. It k is a successor cardinal, say k = X+, a stronger relation 
would be 

however it follows from Theorem 4.1.6 that this relation is false. If we now 
turn to the relation 

by Theorem 4.1.8 this holds if , V3 < k . If k is a successor cardinal, k = X+, 

we can ask for stronger relations of the form 

(>f T 
W \k 773/ . (1) 

This relation holds if 773 = 1 (Theorem (4.1.3) and if X is regular it is false 

with 773 > 2 (Theorem 4.1.5). When X is singular, it follows from Theorem 

4.1.13 that (1) is false with 773 > or V3 ^ depending on whether X has 

cofinality K0 or greater. The situation when 1 < 773 < or 1 < r?3 < 

(respectively) is an open problem. 

Finally, we consider the relation 

where 771; 772,773 < k . The relation is true if either T72 < k or 773 <C k (Theorem 

4.1.9), or if 77!, 773 < k (Theorem 4.1.8). This leaves the possibility k = X+ and 

relations of the form 

to consider. If rh is finite, the relation is true (Lemma 4.1.10). If X' > K0 the 
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relation is false for 77x infinite (Theorem 4.1.13). When X' = K0> the relation is 

true for ??! = N0 (from Theorem 4.2.4 of the next section) and is false for 

> N2 (Theorem 4.1.13). For X = K0 and rjj - «i it is false (from Theorem 

4.1.6 with k = «0)-The caseX>X' = K0> V\ = is an unsolved problem. 

52. Partitions of kXk 
+ 

We shall now seek results concerning the relation 

(Vo 7?i\1,1 

\V2 V3I 

As in the last section, we shall soon run against unsolved problems. We start 

with the following easy lemma. (Compare with Lemma 4.1.10.) 

Lemma 4.2.1. For each finite n, 

(1) 

Proof. By induction on n. The case n- 0 is trivial, so make the inductive as¬ 

sumption that the relation (1) is true for a particular value of n. Take a dis¬ 

joint partition 

kXk+ = A0L|A1 

and suppose that there are no sets Hx in [k]k and H2 in [k+]k such that 

Hi X H2 C Aq- By the inductive hypothesis, there must then be sets Hi in 

[fc]" and H2 in [k+]k+ for which Hi X H2 C Ax. 

For each a in k, put Pj(a) = (j3 < k + ; (a, (3) G Aj}. Then since \k - Hx\ = k 

and 

(K-Hi)X(H2-\J{Pi{a):a&K-Hi})CA0 , 

by the choice of the partition \H2 — U{Pi(a)\ a G k - Hi}\ < k+ . Thus 

\H2 n U {/*! (a); o G « — Hi }| = k+ and so there must be Oq in k — Hi such 

that |H2 np^ao)! = k + . But 

(Hi U {a0})X (H2 HPi(a0))C Aj , 

and so since |Hi U {a0}| = n + 1, the induction step is complete and the lem¬ 

ma proved. 
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Theorem 4.2.2 (GCH). For any infinite k, if 77 < k, then 

Proof. The case k = N0 is immediate from Lemma 4.2.1, so suppose k > N0- 

Define X as follows: if k is regular, take X = 77, otherwise let X be the larger of 

(k')+, T7+. In either case, 77 < X < k and X' F k'. 

Take any partition k X k+ = Aq U Ax. To prove the theorem, we must 

either find sets//! in [k]k and H2 in [k+]k+ with//j X H2 C A0, or else find 

sets//! in [k]11 and H2 in [k+]k+ such that//i X H2 CAj. 

Put T= {j3<k + ; \Qi(fi)\ > X}, where Qi((3)= {a < k ; (a, (5) G Aj}. Sup¬ 

pose |r| = k+, and consider the family {<2i(j3);|3 G T}. By Theorem 3.2.3, 

there must be T' in |T]K+ such that 10{^x(/3); (3 G n'}| > X > 77. Since 

n{^i(|3);|3 G T'} X T' C A[, there is nothing more to be shown. So consider 

the case when \T\ < k+. Then |k+ — 71 = k+. Now X+ < k, so there is a pairwise 

disjoint decomposition k = U{5M; q < X+} where always |SM| = k. Since 

\Qm\ < X for (3 in k+ - T, for all such (3 there is fu((3) for which S^n Qi(P) = ty. 
There must be Tx in [T]K such that /j(j3) is constant for P in Tx, say with 

value fj.. Thus n Qx(j3) = 0 for all j3 in Tx so that X 7\ C A0- Since 

|5m| = k and 17" 11 = k+, this proves the theorem. 

Theorem 4.2.3 (GCH). If k is singular and 17 < k, then 

Proof. We may suppose that k < 77 < k and that 77 is regular. Choose an in¬ 

creasing sequence <kct; o < k') of regular cardinals such that 77 < kct < k and 

k = 2(Ka; o<k). Take any disjoint partition 

k X k+ = A0 U Ax , 

and suppose there are no sets Hx in [k ]K and H2 in [K+]r) such that Hx X H2 

C Ax. We must find Hx in [k]k and H2 in [k + 1k with HxX H2 C Ao- We shall 

start by defining a ramification system JK on k+ of height k in such a way 

that associated with each branch in the ramification tree there are setsHCT in 

[k]Kct and Ba in [k+]k<7 such thatHa X BT C A0 whenever o< 7. The con¬ 

struction is similar to that used in the proof of Theorem 4.1.12. 

To define JR, suppose £(v) is given for some v in N Cl SEQa where a< k . 

If |5(v)| <k, put F(v) = 5(v) and n(\) = 0. If |A(v)| = k + put «(v) = k. Choose 
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B(v) from [5(v)]Ka. Apply Lemma 4.1.11 with X = Ka, A = K and B = S'(v) — B( v) 

to obtain a family sA (v) = (Aa(v); a < k} of sets from [k]Kct and a map/v 

such that |S(v) — Uf\[s3 (v)]| < k and Aa(v) X /v(Aa(v)) C A0. Put 

F(v) = £(v) U (S(v) - U/V[^(v)]), 

and for p in N n SEQa+i with p To = v define 

5d»)=/vC4p(a)(v))-F(v). 

The Ramification Lemma (Theorem 2.2.3(h)) applies to 9), so we may 

choose a sequence v from N n SEQK' for which 5(v) 0. Put Aa = Ax(a)(\\' a) 

and Ba = B(\ pa). Then \Aa\ = \Ba\ = Ka. Take o, r with o<t<k' . Then 

Bt - B( vTr) C S(vrr) C5(vTa + 1) C/v pctWv(ct)(v Pa)) =fyra(Aa) 

and hence 

o<T<n'=*Aa X Bt C A0 • (1) 

Put A = U {Aa\o<K} and B = U {Ba\o<n'} so \A\ = \B\ = k. The original 

partition restricts to give a partition of AX B. Hence by Lemma 4.1.7 there 

are sets Ca in [A]Ka and Da in [5],"CT and a function h : k X k ->■ {0, 1} such 

that 

0,T<K ^ C0 X DT C A h(p,r) • 

For i with i = 0, 1 put A* = {(a, r) £ k' X K\h(p, r) = /}, so that k X k' = 

Aq U A*. By Theorem 4.1.8, the relation 

\K / \K 1 V K / 

holds. By applying it to the present partition of k' X there are three cases 

to consider. 

Case 1. There are H in [k']k and r with t < k' such that h(a, r) = 1 for all 

a in H. Put C = U{Ca\ o G//}; then |C| = k and CX Dr CAj. Since 

|Z)X| = kt > tj, this contradicts the original choice pf the partition of k X k\ 

Case 2. There are H in (V]* and o with o< k' such that h(o, r) = 1 for 

all r in H. Put D = U [DT \ r E H}; then |£)| = k and Ca X DC Aj. Choose a 

in Ca. Then there is p with p < k such that a EAp. It follows from (1) that 

we must have D C U{5r; r < p}. However, this yields the contradiction 

K = lD|<2(|fiT|;r<p)=S(KT;T<p)<K . 

Case 3. This case must prevail. There are K\, K2 in [/<:r]K such that 



Ch. 4.2 99 Partitions of k X k+ 

//(a, r) = 0 whenever o E Kx,t E K2. Put //j = U{C(J;aGA'1} and H2 = U {DT\ 

tEK2}. Then Hx E [/<]*, H2 E [k+]k and HxX H2 CA0. This completes the 

proof of the theorem. 

In the case of cardinals k with k' = N0, there is a special method available 

which enables us to prove the following two theorems. 

Theorem 4.2.4 (GCH). If k = N0 then 

Proof. Take a partition /cXk+ = A0GA1 and suppose there are no sets Hx in 

[k]k and H2 in [k+]k+ such that HxX H2 C A0. We must find sets Hx in [k]k 

and H2 in [k+]^° such that HxX H2 CAj. 

Write k = 2(k„; n < co) where Km < nn < k when m <n < to. We shall 

define sets ,4,, from [k]k” and elementsyn from k+ such that always 

Am X {yn} C Ai- By Theorem 4.2.2 and Lemma 4.1.10, the following two 

relations hold: 

Use these relations to choose inductively An, Bn, Cn,yn so that A 0 E [k] °, 

Bq E [k+]k with A0 X B0 C Ai and C0 E [k]k, with C0 X {^0}CAi- 

For n with n > 0, we want A n in [Cn_x]Kn, Bn in [Bn_x]K+ with AnXBnCAx 

and Cn in [Cn_x]K, yn in Bn - {ym; m < n) with Cn X {yn}CAx. 

Note that if m < n then 

AmX {y n} E A m X Bn C A m X Bm C A j , 

and if m > n then 

Am A {yn} C Cm—i A {yn} C Cn X {v„} C Aj . 

Put//! = \J{A„;n<oi) and H2 = {y„;n< to} so \HX\ = k, \H2\ = N0 and 

HxXH2 C Ai- Thus the theorem is proved. 

Theorem 4.2.5 (GCH). If k - No then 

1,1 
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Proof. The proof is very similar to that of the preceeding theorem, making 

use of Theorem 4.2.3 rather than Lemma 4.1.10. Take a partition kXk+ = 

A0 U Aj and suppose this time that there are no sets H\ in [k]* and H2 in 

[/<+]K with//! XH2C Aq\ we must find such sets with //i X H2 C Aj. 

Again write k = 2(k„; n < co) where nm< Kn< k if m < n < co. We shall 

define sets„ from [k]k" and Dn from [k+]k'j such that alwaysAmXDnCAi. 

If we then put Hx - U {An',n< cu} and H2 = U {Dn\n < co} it follows that 

\HX \ = \H2\ = k and Hx X H2 C Aj, so this would suffice to prove the theorem. 

We have the following relations at our disposal (from Theorems 4.2.2 and 

4.2.3): 

Use these relations to choose inductively sets^„, Bn, Cn, Dn as follows. Take 

A0 from [k]k°, B0 from [k+]k+ such that A0 X B0 C Ax and C0 from [k]^, 

D0 from [50]K° such that C0X D0 C Aj. For n with n > 0, choose An from 

[C„_i]Kw and Bn from [5„_1]K+ with A„ X Bn C Ax and Cn from [C„_1]K, 

Dn from \Bn]Kn with Cn X Dn C Aj. It follows that if m < n then 

Am X Dn C Am X Bn C Am X Bm CAj , 

and if m > n then 

Am X Dn C Cm _x X Z)„ C C„ X £)„ C At . 

Thus X £)„ C A] for all m, n and the theorem is proved. 

This completes the list of special results available. We shall now summarize 

(assuming GCH) the results concerning the relation 

\k ! \r?2 t?3/ 

By Theorem 4.2.2, the relation is true if either rj0 < k or 77x < k, so we need 

consider only the case Po = Ti = k. It follows from Theorem 4.1.6 that the 

strongest possible relation 

is always false. 
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For the relation 

there are two cases to consider. If k > K0 then the relation is true if r?3 is 

finite (Lemma 4.1.10) and is otherwise false (from Theorem 4.1.13). If 

k' = K0, this relation holds when 773 < (Theorem 4.2.4) and fails when 

t?3 ^ ^2 (from Theorem 4.1.13). The situation when 773 = ^3 is an unsolved 

problem. 

There are many unsolved problems concerning the relation 

(1) 

where i72> V3 ^ «■ From Theorem 4.2.5, the best possible such relation with 

V2 = V3 = k is true if k - 5S0- If k is singular with k' > 1S0 then (1) is true 

with 772 = «, 773 < x (Theorem 4.2.3), and it is not known if this can be 

strengthened to have tj3 = k. If k is regular and uncountable, the only positive 

results known are those which follow trivially from partitions of k X X where 

A< k. Some of the simplest unsolved problems are (see [38, Problem 12]): 

Ni\M /N1WN1 *i\M 

\«2/ \«0 » \«2/ \«t «!/ , 

/N2U/N2 X2V’1 /«2\?7«2 

\«3/ \«! Nj/ , \«3/ \«2 *V 

Concerning the first two of these relations, Prikry [78] has shown that the re¬ 

lation 

/«iu/«t M1,1 

is consistent with the axioms of set theory that we have been using, so there 

is no hope of being able to prove the positive relations. 

One can now consider the general relation 

(“Ufo T?1\1’1 
U / \1?2 V3 / 

where X > k+. It turns out that the results we have already obtained are suf- 



102 Polarized partition relations Ch. 4.2 

ficient for a full discussion to be given; the only unsolved problems that arise 

are equivalent to unsolved problems we have already mentioned. We shall give 

the discussion for the special case 

( 
K 

A 

which will have applications in Chapter 6, but otherwise the reader is referred 

to Erdos, Hajnal and Rado [38, pp 188-193] for details. There are two lem¬ 

mas first. 

Lemma 4.2.6. Let k and A be infinite with 2K < A'. Then 

( (0 

Proof. Take any disjoint partition k X A = Aq U Aj. For each subset A of k, 

let B(A)= {/3 < A; {ct< k\ <a, |3) G A0} = A}, so A = \J{B(A)\A E^k.}. Since 

2K < A\ there is A0 in^ k with |5(^0)| = A. Now A0 X 5(yl0) Q A0 and 

(k - Aq) X B{Aq) C Aj; since either \A0\ = k or |/c - A0\ - k the relation (1) 

holds. 

Lemma 4.2.7. Let k and A be infinite with 2K < A Then the two relations 

.1,1 

and 

K K 

A A 

K K 

(1) 

a; \ a a 

are equivalent. 

i,i 

(2) 

Proof. If A is regular, this is trivial, so suppose A is singular. Let (Aa: o < \’) be 

an increasing sequence of regular cardinals with always 2K < ACT < A for which 

A = 2(Aa; o< A'). 

Suppose that the relation (1) holds. Take any partition k X A’ = To CJ Tj. 

Take any pairwise disjoint decomposition A = U {Ba; a < A’} where always 

\Ba\ = Aa. Consider the partition k X A = A0 EJ Aj where for (a, |3> from K X A 

and i = 0,1 

(a, p)EAi*>pE Ba and <a, a) E T, . 
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By assumption there are H0 in [k]k and Hl in [\]x such that H0XH{ C A,- 

where either i = 0 or i = 1. Put H[ = {a < X';Ba n Hx F 0}; then |//j| = X' 
and H0 X H[ C IY Thus the relation (2) holds. 

Now suppose that (2) is in force. Let any partition k X X = A0 U Aj be 

given. For each (3, put Qo(P) = {a < k ; (a, (3) E A0}.For any a with a < X’, 

K2o()3);i3<Xa}|<2K <Xa . 

Since Xa is regular, there is C0 in [Xct]Xct such that Q0(j3) is constant for j3 in 

CCT, say 2o(i3) = 2(a). Define a disjoint partition k X = T0 U rx by, if 

(a, o)£k X X* then 

<a, a) £ T0 ^ a G Q(o) . 

By the relation (2), there are H0 in [k]k, Hl in [X'j^ and i in {0,1} such that 

H0X Hx Q T,-. Put H2 = U {Ca: o &HX}. Then H2 £ [X]x and it is easy to see 

that H0XH2 C A/. Thus (1) holds. 

rheorem 4.2.8 (GCFI). For an infinite cardinal k, put Z(k) = {k, k+,k\(k,)+}. 

Then the relation 

(KWK k1m 
\X7 U X/ (1) 

holds if and only if Z(k) n Z(X) - 0. 

Proof. We may assume throughout the proof that k < X. For brevity, write 

R(k, X) to indicate that the relation (1) holds for the cardinals k and X. 

Suppose first that Z(k) n Z(X) = 0, so in fact k+ < X. If k+ < X', by Lemma 

4.2.6 R(k, X) holds. If X' < k+ we must have (X')+ < k. Since either (X')+< k 

or (k')+ < X' and both k and X' are regular, by Lemma 4.2.6 again R(k', X') 

holds. Since (X')+ < k, by Lemma 4.2.7 R(k, X') holds, and since k+ < X again 

by Lemma 4.2.7 R(k, X) is true. Thus in all cases, it Z(k) n Z(X) = 0 then 

R(k, X) holds. 
Now suppose Z(k) n Z(X) ^ 0. From Theorems 4.1.4 and 4.1.6, R(n, X) 

is false if k = X or /<+ = X, so we suppose henceforth that k+ < X. This means 

that X must be singular and either £Z(k) or (X,)+ £Z(k). If X = k (or equiv¬ 

alently (X')+ = k+) since R(k,k) is false, by Lemma 4.2.7 also R(k, X) is false. 

If X' = k + , since R(k, k+) is false, also R(k, X) is false. If (X')+ = k, 

R((\')+, X') is false again Lemma 4.2.7 shows that R(k, X) is false. 
. _i ^_n'r+ - r„’\+ = = ^ ing possibilities are that (X )+ - k , (X )+ - (k ) , X k or X 

since 

The remain- 
+ 

k , f A ) = [K ) , a ^ k or a - (k ) . In each 

case by either Theorem 4.1.4 or Theorem 4.1.6 the relation R(k , X') is false. 
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If in fact (X')+ < k, it follows that R(k, X') is false and then that R(k, X) is 

false, by two applications of Lemma 4.2.7. On the other hand, if /c < (X )+ 

this means either k < k , K < (k')+ or k < (k')++; in any event k is regular and 

from R(k', X') being false it follows by Lemma 4.2.7 that/?(K,X) is false. 

Thus in all possible cases, we conclude that R(k, X) is false. The theorem is 

proved. 

We shall end this section with a few brief comments on the relation 

Vik\ 

r)2kl 

i,i 

k< 7 

where y > 2. Few results have appeared in the literature, particularly for in¬ 

finite y. One can obtain, in trivial way, results from the ordinary partition 

relation, but this surely does not lead to best possible results. 

Theorem 4.2.9. Suppose that k (17*; k < y)2 and that rhk + ri2k < Vk for 

each k. Then 

ryrf 
V/ \V2k/k<y . 

Proof. Given a partition A = { ; k < 7} of k X k. , define a partition 

r= {rk-,k < 7} of [k]2 as follows: if a, (3 E k with o: < j3, then 

{a,p}erko(a,p)EAk. 

By the relation k (rjk, k < y)2, there are k with k < 7 and H in [k]^' with 

[//]2 C Ak. Take/Zj from [//]7,1Ar and H2 from [H]r>2k such that Hi <H2- 

Then HlXH2Q Ak. 

The positive results in § 1 are nearly all proved by methods that are special 

to the case 7 = 2, and don’t generalize. The methods of §2, on the other hand, 

can be extended to finite 7 (see [95]). In particular if k' = K0 then (assuming 

GCH) for any finite n 

This is the best possible, for if k' = K0 then trivially 
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Hajnal has proved (see [25]) assuming GCH that 

n2/ \k,/3 

Tliis is the strongest relation of this type which is provable, for a generaliza¬ 

tion of the method of Prikry [78] shows that the relations 

N2\ /NA1,1 /«2\ /«2V«! Ni KA1*1 

N2/ z4 , W ^ Ui V K2 «1 

are consistent with GCH. 

§3. Larger polarized relations 

In this section, we shall consider a few further results concerning the polar¬ 

ized partition symbol. We first note two forms of the Stepping-up Lemma 

(Theorem 2.3.1) appropriate for the polarized relation. 

Theorem 4.3.1. Let m, nh ..., nm > l. Let \ be a cardinal such that 

— ” 

X 

_X 

where the rjik are infinite cardinals with r}\k > r]2k, • ••, Vmk (for each &)■ Sup¬ 

pose k is an infinite cardinal with X < k' and |y||al < k' whenever a < X. Then 

Vik 

Vmk 

K Vik" 

K. Vmk_ 

nl + l,n2,..., nn 

k<y 

Proof. Suppose all the conditions stated in the theorem are satisfied, and take 

any disjoint partition A = (A^; k < y} of [k]”1 X [k] 2X...X [k] "’.De¬ 

fine a ramification system $h on k of height X as follows. Take o with a X, 

and suppose S(\) has already been defined for each viniVn SEQa. If S(\) - 0, 

put F(v) = 0 and n(v) = 0. Otherwise, choose x(v) in 5(v) and put F(y) = Rv)}. 
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Place G(v) = U{F( v [>); r < a}. Define a partition T(v) of 5(v) - F(\) by 

requiring: 

v = z(mod r(v)) [G(v)] 1 e [G(v)] 

(<<zi U {y}, a2, am) = <ax U {z}, a2, dm) (mod A)) . 

Put «(v) = |r(v)| and let S(p) for p in TV n SEQa+l with p f a = v range over 

the classes of T(v). This defines 9r. 

If a < X, put \a = I7I0 where 6 = lal"1 Then |«(v Tr)| < XCT whenever 

vGNnSEQo and r < a. Moreover, if o< X then XCT|cr| < K . Hence the Rami¬ 

fication Lemma (Theorem 2.2.3) applies toft, and we may choose a sequence 

v in TV n SEQX for which S(v) =£ 0. Then always S(v fa) =£ 0 so F(v P a) = 

{x(v Ta)}. Choose xx from S(v) and for o with o < X put xa = x( vf a). Then 

xT ¥= xa when r < a < X. 

If t < a < X then xCT G F( v fa) C 5(v T a) C S( v Ft + 1), and xx G 5(v) 

C S(v pr + 1) so both xa, xx eS(v fr + 1). Thus both xa and xx are in the 

same class of I^vO), and so if a,- G [ [xp\p < r}]”' (where i= 1, m) then 

<ai U {.yct}, a2,am)=(ai U {xx}, a2, .... am) (mod A) . (1) 

Put X = (xT; r < X}, so 1X| = X, and consider the partition 

[X]'n X ...X [X]"m = U { A'k\ A < 7} 

where 

<alt.... am)&A'k U {.yx}, a2> am)^Ak . 

By the partition relation for X, there are A' with A < 7 and a sequence 

Hh .... Hm where //, G [X]T)'fc such that [H^1 X ... X C A*. Since 

rj'ijt >V2k, •••> Vmh there is //in [T/i]7?1A: such that ifxaG// and xTE.H2 
U ... U Hm then r< o. Hence by (1), [H]11 1 X [H2\ ‘X ... X [Hm] niC Ak. 

This completes the proof. 

Theorem 4.3.2. Let m, nx.nm > 1. Let \be a cardinal such that 

X "vik 

-> 

A Vmk 

”!••••> nm 

k< 7 

where the rjik are infinite cardinals with > rju.,..., t]mk (for each A). Sup- 
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pose k is an infinite cardinal with \< k' and l7llCTi < k' whenever a < X. Then 

— - 
K X 

K 

- 
^lfc 

K Vmk 

nm 

k< 7 

Proof. The proof is similar to that of Theorem 4.3.1. Define a ramification 

system similar to that in the last proof, except that this time the partition 

T(v) of S(v) — F(v) should satisfy 

y = z(mod F(v)) Vfli £ [G(v)]”1 ... \jam G [G(v)]”w 

{{y, ah am)= (z, ah am> (mod A)) . 

An application of the Ramification Lemma yields distinct elements Xq 

where a < X such that if at E [ [xp\p < a}] ' (where i- \, ..., m) then 

(xa, ah am)^ (xx, a\,am)(mod A). 

Put X = {xT; r < X} and define the partition 

[X]niX ...X [X}nm = U{A'k-,k<y} 

where 

<ah .... am)E Ak (x^ ah ..., am)EAk . 

There are k with k < 7 and a sequence Hh ..., Hm where //, G such 

that 1/Zjf1 X ...X C A;. Put 

H = (xa G H\ Vr G X(xr G //, U ... U Hm => r < a)} . 

Then |//| = X and//X f//j 1 X ... X C Afc. Thus Theorem 4.3.2 is 

proved. 

As particular applications of the last two theorems, we mention the fol¬ 

lowing (assuming GCH). Applying Theorem 4.3.2 to the relation k -*■ (n)y 

(where 7 < k') from Theorem 2.2.4 leads to the relation 

+. 1,2 

‘ 
K 1 

Then using Theorem 4.3.1 gives 

+ ,2,2 

7 



108 Polarized partition relations Ch. 4.3 

It is not clear how close these results are to best possible. There is the fol¬ 

lowing rather trivial negative relation. 

Theorem 4.3.3. Suppose k is a strong limit cardinal (that is 2X < k whenever 

\<k). Then 

Proof. We shall prove the second relation; the first is similar. For distinct ele¬ 

ments /, g in K2, as before let 8(f g) be the least a where f(a)¥=g(a). Define 

a disjoint partition [K2]2 X [K2]2 = A0UA1 by 

<{/o, £o>> {fi, gi» e A0 o 8(U g0) < S(/i, £i) • 

Take distinct fh gy from *2, so 5(/1; gy) < k. Then if f0, g0 are such that 

S(/0, go)<8(.fb gi) then/o andg0 differ no later than at 5(/lt gy). Hence if 

H is a subset of K2 with the property [H]2 X {{/i,^}}CAo then |//l<2ia+l1 

where a = 5(/1( g^, so \H\ < k. Similarly, if {{/0, go)} X [F/]2 C Ai then 

\H\ < k, and the proof is complete. 

From Theorem 4.1.12 it follows that 

so applying Theorem 4.3.2 shows 

++ + 
K K 

++ 
K —> K 

++ [K J K 

In fact it is not known whether the better relation 

K 

+ 
K 

9 

K 

+ 
K j K 

holds (see [24, Problem 28]). However, this particular relation, if true, cannot 

be improved to apply to partitions into 3 classes, as the following theorem of 

Sierpinksi [88] shows. 
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Theorem 4.3.4 (GCH). For all infinite k. 

K 1 
- 

1 

K + 1 K 1 

1<: 1 1 “J 

Proof. (This is the second case of an inductive construction of which the first 

case is Theorem 4.1.4. See Kuratowski [63].) For each ordinal a where a< k+ 

we have |a + 11 < k and so we may write {p; j3 < a} = {a(n); v < k}. Form a 

partition k+ X k+ X k+ = A0 U AJ U A2 as follows. Given a, p, 7 if a > j3, 7 

and j3 = a(p), 7 = a(v) 

(a, P, 7>e Aj if ji < v, (a, j3, y) E A2 if p<p ; 

if a < P, j3 > y and a = P(p), y = j3(n) 

(a, (3, y) G A0 if M < v, (a, )3, 7) G A2 if n < p ; 

if a, j3 < 7 and a = 7(ju), j3 = 7(2/) 

<a, P, 7>GA0 if p < n, (a, p, y)E A1 if n < p . 

This partition has the right properties. For suppose there are a subset //t of 

k+ and members p, 7 of k+ with //,X {/S} X {7} C A0. Then a<P, 7 for all a 

in Hi - Suppose P^ y, and 7 = P(v). Then for any a in //j, we must have 

a = j6(n) for some ju with p < v, so that |//j | < |n| < k . Likewise, if P < 7 and 

P = y{y) then for any a in Hl, we have a ~ y(p) where p < v, so again \Hf<K. 

Similarly, if {a} X H2 X {7} C Aj or {a} X {/3} X //3 C A2, then |//2[,|//3|<k 

Thus the theorem is proved. 

As a final remark, we comment that Hajnal [55] has shown that k is an un¬ 

countable two-valued measurable cardinal, then (in the obvious notation) 

for each 7 where 7 < k. A similar argument shows 

for all Finite n and 7. (This result was first proved by Galvin.) 



CHAPTER 5 

THEORY OF INFINITE GRAPHS 

§ 1. The chromatic number 

A graph G is a pair (G, E) where E C [G]2. The elements of G are the ver¬ 

tices of G, the elements of E the edges of G. Two vertices x, y are adjacent, 

or joined by an edge, if {x, y} G£ A subset S of G no two elements of which 

are joined by an edge is called an independent set. A subgraph of the graph G 

is a graph (El, D) where H CG and D C E. The subgraph of G spanned by a 

subset H of G is the graph (H, E n [H]2). A circuit in the graph G is a finite 

set of vertices Xj,xn such that {x1; x2},..., {x„_1> x„}, {x^xjGE. 

A graph of the form <G, [G]2) in which every two vertices are joined is 

called a complete graph, and will be denoted by Kn where r\ = |G|. A graph of 

the form (G U H, E) where G and H are disjoint and E = {{x, v};x e G and 

y e H} is called a complete bipartite graph, and will be denoted by Kv^e where 

77 = \G\, 6 = \H\. 

With every graph G = (G, E) there is associated a partition of [G]2 into the 

two classes E and [G]2 — E, so the study of graphs amounts to the investiga¬ 

tion of partitions of pairs into two classes. However, the language of graph 

theory often provides a more natural way of expressing the results. In partic¬ 

ular, the partition symbol k -> (pq, Pi)2 asserts that for any graph G on k ver¬ 

tices, if G contains no independent set of power p0, then G must contain a 

Kr]l subgraph. In this section, we shall replace the condition “G contains no 

independent set of power p0" by weaker conditions of the form “G has large 

colouring number” or “G has large chromatic number”, and ask what effect 

this has on the subgraphs of G. 

Before giving the definitions of colouring number and chromatic number, 

it is convenient to introduce the following notation. Given a graph G = (G, E), 

for a vertex x of G and subset A of G, let G(x, A) be the set of vertices in A 

adjacent in G tox, that is 

G(x, A)= {yGd; {x, y} ££’} . 
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Definition 5.1.1. An recolouring of a graph G = (G, E) is a well ordering -< of 

G such that |G(x, {y G G\y x})| < r\ for each vertex x of G. The colouring 

number Col(G) of G is the least cardinal 77 such that G has an 17-colouring. 

Definition 5.1.2. The chromatic number Chr(G) of the graph G is the least 

cardinal number 17 such that G can be decomposed into 77 independent sets. 

Thus the chromatic number gives the smallest number of colours needed to 

paint the vertices ot G so that no two vertices of the same colour are joined 

by an edge. The importance of the chromatic number in connection with the 

four colour theorem for finite graphs is well known. However, we shall be 

concerned only with infinite graphs. 

We show in Lemma 5.1.3 that the colouring number and the chromatic 

number are related by the inequality Chr(G) < Col(G). That there can be no 

reverse inequality is shown by the example of the complete bipartite graph 

K^n which has chromatic number 2, yet colouring number 17 + 1. 

Lemma 5.1.3. For every graph G, Chr(G) < Col(G). 

Proof. Supposed is an 17-colouring of G = (G, E>. Define subsets Sv of G for 

v with v < 17 by induction on the ordering -< as follows: 

x GSv <=> v is least such that Vv-< x({x,y} EE =>y tfz Sv) ■ 

Since -< is an 17-colouring this is a good definition. Then G = UlS”,,; v < 77} and 

each Sv is independent, so Chr(G) < 17. 

As a final introductory remark, let us note that if the graph G = <G, E) has 

colouring number 77, then in fact G has an p-colouring of the smallest possible 

order type, namely |G|. 

Theorem 5.1.4. Let G be a graph on k vertices, and suppose Col(G) = 77. Then 

G has an recolouring-< such that tp(G,~<) = k . 

The theorem is trivial if 17 > k, and when 17 < k it is a consequence of the 

following lemma. 

Lemma 5.1.5. Let G be a graph on k vertices and suppose G has an recolouring 

where 17 < k. Then G has an recolouring<. such that tp(G, <) = k. 

Proof. Let -< be an 17-colouring of G, and suppose tp(G, -X ) = % (so |£| = k). 
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Let Oc7; 7 < £> be the sequence of elements of G, in their -(-ordering. We 

shall in fact construct a colouring -< of G. with tp(G,^) = k, such that tor 

each y in G 

G(v, {xGG;x<y}) = G(y, {.xGG:.x < y}), (1) 

so certainly < will be an 77-colouring. 

For eachy in G, define the set PR(y) as follows: inductively put 

PRoO;) = {v}:PR„+i(d’)= U{G(x, (w;w -< x}):x G PR„(y)} , 

and then 

PR(y) = U{PR„(y): n < co} . 

Take any map /: k % from tc onto £. Define sets Ga for a with a < k by 

Ga = ?R(xm) - U {?R(xm); p < a} . 

Then G is a disjoint union, G = U{Ga; a < «}. Define a well ordering on G 

as follows: for x, y in G, if .x G Ga andy G Gp then 

*-< .r’ 0 a. < P or (a = )3 and x -<y). 

If .x -f y, y G Gp and x is adjacent to y in G then both x, v are in PRf.xy^)) 

so either .r G Gp or x G Ga where a< j3; either way x < .7'. Suppose .v -< y aird that 

x,y are adjacent in G. If both .x, y are in the same Gq,, surely x ~< y. So suppose 

x G Ga, y G Gp with a =£ j3; thus a< p. Hence .x G PR„(X|(a)) for some n. If 

7’ -k x then we would havey G PRw+i (.xr(Cl,)) so y G PR(.xr-(a)), which is in¬ 

compatible with y G Gp where P > a: thus.x -< v. This establishes (1). 

To prove the lemma, we need only show tp(G,~< ) = k. With this aim, note 

that always |PR(yj| < 77 + R0, for a trivial induction shows that jPR„( rfil < 

77 + R0 for each n. Since Gp C PR(.xy^)), also |Gp| < 77 + S0- Take any y in G. 

say y G Gp. Then {.x G G: x < .7-} C U { Ga: a < j3}, so 

\{x£G:x<y}\<(ri + K0)-\p\<K . 

Hence tp(G,<) < k. 

In about 1949 Tutte [9] and Zykov [96] showed that for every integer n 

there is a (finite) graph which has chromatic number at least 11 yet contains no 

triangle (that is, a circuit of length 3). Erdos [15] improved this by showing 

that for every pair of integers n. k there is a (finite) graph which has chromatic 

number at least n and contains no circuits of length shorter than k. One can 

ask if this result will hold for infinite chromatic number n as well. The theo¬ 

rem of Erdos [ 15] shows easily that this is so for n = J50. Otherwise, the first 
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result in this direction was by Erdos and Rado [30], where they proved that 

tor every k and every finite k, there is a graph with chromatic number and 

no odd circuits of length shorter than k. In [21], Erdos and Hajnal constructed 

such an example with just k vertices. This construction is repeated in Theorem 

5.1.9 below. However, also in [21], Erdos and Hajnal show that the general 

answer to the problem above is in the negative, for they show that a graph 

which contains no quadrilateral has chromatic number at most R0. This result 
follows from Corollary 5.1.11. 

We start with a couple of lemmas, which will enable us to give the Erdos- 

Hajnal example of the graph without odd circuits. The construction is an ex¬ 

tension of one used by Specker [93]. We shall use the partition symbol a -> (0)} 

for ordinal numbers a and j3, which by definition means that whenever a set 

well ordered with order type a is partitioned into y classes, at least one of the 
classes has order type at least j3. 

Lemma 5.1.6. Let a, /3 be ordinals such that a -* (a)| and (3 (j3)^,. Then 
a/3-+(a/3)*. 

Proof. Let S be a set well ordered with order type aj3, so we may suppose that 

S = PX a, with the lexicographic ordering. Suppose S is partitioned, S = U{Afc; 

k < 7}. For x in j3, put A^x) = {y < a; (x, y) £ Afc}. Then for each x, we have 

a = U{Ak(x);k<y) and by the relation there is k(x) such that 

tp(Afc(*)(x)) = a. Put Tfc= {x< 13; k(x) = k}, so j3 = U {Ffe; k < 7}. By the relation 

P~^(P)y there is k0 such that tp(r*-0) = /3. Put R = {<x,v>£ S\xE r*-0 and v£ Ak()(xj}, 
then R C Ak() and tp(7?) = 0$, so tp(Afc()) = a(3. 

Corollary 5.1.7. If k is a regidar cardinal, 7 < k and m < oj then Km (km)\, 

where Km is the ordinal power. 

Proof. By induction onm, using Lemma 5.1.6 and noting k 

Lemma 5.1.8. Let k be regular, let m be finite. Take any subset X ofmK of 

order type Km (in the lexicographic ordering of the sequences in mK). For 

each l with l<m and each sequence ..., «/_i) from 1k there is a set 

T(a0, ...,a[_l)in [k]k such that 

\/l < m(ai E T(a0, ..., a/_i)) => <a0,(0 

Proof. By induction on m. Trivially for m = 1, put 7T0) = X. So suppose m> 2. 

For each a, put 

X(a) = {<aj,..., <0, alf ..., am_l)EX} , 
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so tp(X(a)) < Km~l. Write 

T- (a< k: tp(X(a)) = x"'-1} . 

We show that \T\=k. For otherwise, |71 < k and so T is not cofinal in k, by 

the regularity of k. Hence T C (3 for some |3 where (3 <C k. Thus for each ct with 

a > j3 there is an ordinal 5(a) with 5(a) < k such that tp(X(a)) < Km~28(a). 

Now for 7 with y < a, we know I — o(5(a); (3 ^ a < 7)1 k so that So(5(a); 

a< 7) < k (where here Z0 stands for ordinal sum). Hence if 0 = Z0(8(a): 

(3 < a < v) then a < k. Since 

tp(Z) < X0<Km~l; a < 0) + 20(Kw_25(ar); 13 < a < k) , 

we would have tp(AT) < Km~1 (3 + Km~2 o^Km 1 ((3 + 1) < xm. This contra¬ 

diction establishes that indeed |71 =k. 
We are now ready to define the sets T{(Xq. ..., a/^). Put T(0) = T. For 

each a in 7\0), apply the inductive hypothesis to the set X(a), and so obtain 

sets T(a.a1...., (for / with 1 </</?/) of power k such that 

if ccj G T(a, al5.... a/_1)(l <l<tn) then (a. al5..., am_1)G^T(a) . 

If a ^ 7X0), put T(a. a2.a/_i) = k. Then (1) holds, and the lemma is proved. 

We are now ready to give the example of a graph of large chromatic num¬ 

ber but without small odd circuits. 

Theorem 5.1.9. For each infinite cardinal k and each finite j, there is a graph 

on k vertices with chromatic number k, which does not contain circuits of 

length 2i + 1 for any i with 1 < i </. 

Proof. Suppose first that k is regular. Put G = 1x. the set of (2j2 + l)-place 

sequences with entries in k . Let -< be the lexicographic ordering on G. For 

each sequence a in G. let ak denote the A-th component of a. Let E be the 

subset of [G]2 such that, for a. b in G with a<b. 

(a. b}<EE *>al <b0< a/+i < b 1 < ... < ay2 < by2 • 

and let G be the graph <G. E). We shall show G has the required properties. 

Clearly |G| = k. 

We note first that any subset of G of order type k (in the ordering^) 

is not independent in G. For suppose ICG and tp(X) = k2/ +1. Apply Lem¬ 

ma 5.1.8 with this choice of X, to obtain sets 7\a0.a2_ 1) in [k]k so that 

V/< 2j2 + l(a2 £ 7\a0.a;_j)) =» (a0,.... a2.2)CI. 
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Since k is infinite, we may choose ordinals a0, ah ..., a2.2 and b0, bh ..., b2j2 
from k so that 

a0 G 7X0) > 
ax E T(a0) and al> a0 , 

aj G T(a0,..., dj_j) and a,- > aj_l, 

b0 E 7X0) and b0 > aj , 

dj+1 ^ T(a0, «/) and a/+1 > 60 , 

e 7X6 0) and *i >aj+1 > 

a2j2 e 7Xflo, ^2/2_!) and «2/2 > *2/2_/_i ’ 

by2-j G ^0, *2/2-/-!) alld *2/2—/ > «2/2 > 

V-/+! G n&0’ ^2/2-/) and *2/2—/+l > *2/2-/ > 

*2/2 e 7X*o, .... *2/2_j) and *2/2 > *2/2_1 • 

Put a = <a0, •••. #2/2^ * = <*o> •••> *2/2^- Then a, 6 EX, a< b and {a, 6} E/T, 
so that X is not independent. 

We can now show that G has chromatic number k. For suppose, on the 

contrary, that Chr(G) = A where A < k . Thus G = U { G^; v < A} where each 

Gv is independent. By Corollary 5.1.7, at least one of the Gv must have order 

type k2j2+1 , and this is impossible with Gv independent. Hence Chr(G) = k. 

It remains to check that G has no odd circuits of lengths between 3 and 

2/ + 1. This is a tedious, but trivial, verification. For example, suppose in fact 

a, b, c gave a triangle in G. Clearly we may suppose a < b~< c. Since {a, b} E/j 

we know a2/ < bj, from {b, c}GE we have bj < c0, so that a2/- < c0. Yet with 

{a, c} E E we have c0 < a,+1 < a2/, which is impossible. The verification for 

odd circuits of length 5 or more is similar. This completes the proof when k is 

regular. 
If k is singular, take an increasing sequence (k0\o<k') of regular cardinals 

below k with k = E(Ka; o< k'). For each o, there is a graph G0 = {Ga, Ea) 

with \Ga\ = Ka and Chr(GCT) = Ka which has no circuits of lengths 2i + 1 for 

i with 1 < /</. We may suppose the Ga are pairwise disjoint. Then clearly 
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the graph G = <U{GCT; a < k'}, V{Ea] o< «'}) has no circuits of odd length 

at most 2/ + 1, and \G\ = k with Chr(G) = k. 

The following theorem will show, as opposed to Theorem 5.1.9, that any 

graph with uncountable chromatic number contains even circuits of any 

length. In fact more holds, for the graph must contain large complete bipartite 

subgraphs. The next several theorems first appeared in Erdos and Hajnal [21]. 

Theorem 5.1.10 (GCH). Let A be infinite and suppose 6+ < A. Let G be any 

graph which has no Kx+ Q complete bipartite subgraph. Then Col(G) < A. (If 

9 is finite, GCH is not needed.) 

Corollary 5.1.11. If G is any graph with Col(G) > 150 then G contains com¬ 

plete bipartite subgraphs K^li for each finite i. 

Proof (of Theorem 5.1.10) Take the graph G = (G, E) which has no Kx+ e 

subgraph. Put |Gi = k, and use induction on k. If k < X then the theorem is 

trivial. So suppose that k > A and that the statement of the theorem holds 

for any graph on fewer than k vertices. We use an idea similar to that used in 

the proof of Theorem 1.3.12 to construct a decomposition G = U{Hy;y< k} 

of G such that the inductive hypothesis can be used to show that Col(//7)< A, 

where Hy is the subgraph of G spanned by Hy, and moreover the orderings 

that give the colourings of theHy can be pieced together to give a A-colouring 

of G. 
Let <u;(Qf);o;< K>be the sequence of all limit ordinals less than k, in their 

natural order. Write G as a disjoint union, G = IKG^^a < k}, where always 

IGoj(a)l ^ X. First define inductively subsets Xa of G where a < k as follows. 

Suppose Xp already defined for all j3 with (3<a, and put 

Gu>(y) LJ (3 < a} if a = co('y) + 1 for some 7 , 

U {Xj3; (3 < a} otherwise. 

Then define Xa by 

xa = X* u {* e G; |G(x, X*)\ >9 + }. 

We show by induction on a that [Xq,! < X + |al. So suppose that whenever 

P<a then Lfyl < X + |0|. Then 

|^|<X+2(|X0|;j3<a) 

< A+ 2(X+ |0|;0<a) 

^ X + (X + |a:|) • lal = X + |a| . 
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Consider the family sda where sda = {G(x, X*)]xGXa and G(x, X*)\ > 0+}, 

so is a family of subsets of X* all of power at least 6+. Since G has no 
Kx+ Q subgraph, certainly 

if X C with \<A \ > (X + |a|)+, then |HX | < 0 . 

By Corollary 3.2.4, it follows that Isda| < X + |a|. Considering again that G 
has no K^+ e subgraph, for any A in X a surely 

\{xGXa:G(x, X*) = A}\<\+ . 

Consequently 

I {xGG: |G(x, X%)\ > 0+}| < X • \sta\ < X ■ (X + |al) = X + |a| , 

and so 

\Xa\ < IX*| + (X + |a|) = X + |a| , 

as claimed. 

Clearly X* C Xa C X*+1, and since 00(7) is a limit ordinal, it follows from 
this that 

U{X2;a<co(7)}= U{Xa; a < co(7)} = ** (t) - (1) 

We are now ready to define the sets //7 where 7 < k. Put 

tt _ y* y* 
II y ^ to (y+ 1) ^cj(7) • 

It follows that 

X*(7)=U{//^<7}. (2) 

For if j3 < 7 then 

Up C X^(j3+1) = U{X*; a < (jj((3 + 1)}C U{X^;a<w(7)} = X*(7) , 

so certainly U{Hp\ j3 < 7} C X^(7)- We show by induction on 7 that also 

XZ(y) £ j3 < 7}. Note that if a < 00(7) there is j3 with (3 < 7 such that 

co(/3) < a < co(j3 + 1), so that 

4*cX^1)apui^)c^uU{//5;K0} 

(making use of the inductive hypothesis). Hence 

X* (7) = U{X*:a< co(7)} C U{Hp\ |3 < 7} , 

and the claim is established. 

Since G = U{Gw(7); 7 < k) and Gw(7) QX^(y)+i, it follows that G = U\Hy 

7< k}. Furthermore, the //7 are pairwise disjoint. 
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Take any y in G, and suppose in facty GHy. Put 

H(y) = G(y, \J{H&,8 <y}). 

The construction of the sets Hy ensures that \H(y)\ < X. To see this, note 

that by (1) and (2), 

H(y) = G(y, U{X*;a<oj(y)})= U{G(y, X*);a<co(y)} . (3) 

Since y GHy, by definition of Hy we knowy X%j(y) so from (1 ),y X^+i 

for any a with a < co(7). Hence y (fc Xa, so that |G(y, X*)| < 9. Also 

G(y, X*) C G(y, Xf) if a < 0, since then X£ C X$. Thus (3) expresses H(y) 

as an increasing union of sets all of power at most 9. Hence \H{y)\ < 6 . By 

assumption, 9+ < X, and so indeed always \H(y)\ < X. 
We can now give a X-colouring of G, and so show Col(G) < X. Let Hy be 

the subgraph of G spanned by Hy. Since \Hy\ < IXj,(7+1)| < X + |co(7+ 1)1 < k, 

and necessarily each Hy has no Kx+ Q subgraph, the original inductive assump¬ 

tion provides a X-colouring<y of Hy. Define a well ordering -<on G as follows: 

for x, y E G, if x G Hp and y G Hy, 

y o (3 < 7or(j3 = 7 and x<7 y) . 

This gives a X-colouring of G, since for anyy in G, sayy EHy, 

{x G G(y, G);x<y} C H(y) U {x GHy(y, Hy)\x<y y} , 

and both sets in the union have power less than X. 

One can weaken the condition imposed on the graph G in Theorem 5.1.10 

to allow the possibility 6+ = X, and ask if still Col(G) < X. The next theorem 

gives a positive answer if |G| is sufficiently small. When |G| is larger than the 

bound given, the answer is not known (see Problem 50 in [24]). 

Theorem 5.1.12 (GCH). Let d be infinite and let 60 be the least cardinal 

greater than 9 such that 6'0 = 9'. Suppose X = 9+ and let G be any graph on at 

most 60 vertices which has no Kx+ Q subgraph. Then Col(G) < X. 

Proof. Proceed as in the proof of Theorem 5.1.10, except define Xa as 

= X* U (x G G; |G(x, X*)\ > 9} . 

Lemma 3.2.3 shows that still l-stfj < X + |a|; the restriction |G| < 0O ensures 

(X + |<x|)' A 9' so that the conditions of the lemma are met. With this modifi¬ 

cation, it follows that |//(y)| < 0, so still |//(y)| < X. 
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Attempting to weaken the condition still further, to the case 0 = A, meets 

with lailure however. There is a relatively simple example of a graph G with 

Col(G) = A+ which contains no Kx+ x subgraph (in fact, no KXy subgraph). 

A rather more complicated example is possible with Chr(G) = A+. 

Theorem 5.1.13. There is a graph G on A+ vertices which has no subgraph 
but yet Col(G) = A+. 

Proof. By Theorem 1.1.4, there is a pairwise almost disjoint family srt. of A+ 

subsets of the set A each of power A. Put G = A U A and E = {{x,v}G[G]2; 

and x £y}; consider the graph G = (G, E). Thus G is a graph with 

IG| = A+, and the almost disjointedness of sA ensures that G has no KXy sub¬ 

graph. We show Col(G) = A+. Suppose for a contradiction that Col(G) < A. By 

Lemma 5.1.5, G has a A-colouring -< with tp(G,-<) = A+. Since A is not cofinal 

in A+, there isx in G with A C {y G G:y <x}, so in fact Now 

G(x, {y G G,y -< x}) = x, so |G(x, {y G G\y -<x})| = A, which is contrary to 

<being a A-colouring of G. Thus indeed Col(G) = A+, and this example proves 
the theorem. 

The graph just constructed clearly has chromatic number 2. To produce 

a similar example with chromatic number A+ is more difficult. 

Theorem 5.1.14 (GCH). There is a graph G on A+ vertices which has no 
subgraph and for which Chr(G) = A+. 

Proof. We shall construct the graph on the vertex set G = A+ X A+. To define 

the edges, we shall use an almost disjoint family sd of A+ subsets of G each of 

power A. First we define the family sd. Let 

0C= {X C G; |dom X\ = A and Va £ dom X(\ {/3; (a, (1) 6I}| = A)} . 

Then 9C C [G]x and |9f| = A+. Write 9f = {XM; p < A+ }. We want to define the 

members Av (where v< A+) of sd so that 

0 if p < v . (1) 

Inductively suppose that for some v with v < A+ the AM for p with p < v have 

already been defined so that G [G]x, the are pairwise almost disjoint 

and 

I (|3; (a, j3> G A^}\ < 1 for each a . (2) 

Write {All\p<v}= {Avp; p < A} and {Xp\p<v} = {Xvp]p < A}. Since 
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always |dom Xvp\ = X, inductively we can choose ap (where p < X) so that 

olp G dom Xvp - {ct^; 7r < p} . 

Now choose Pp such that 

(ttp, Pp) ^ -Typ U 7T p} , 

since I {(3; <ap, |3> G 3GP}| = X it follows from (2) that such a choice of pp is 

possible. Finally put 

Av — {(oip, Pp), p X} . 

Then^j, G [G]\ \Ap <^AJ < X whenever n<v,\ {j3; <a, p)£Av}\ < 1 for 

each a, and (1) holds. This completes the definition. 
We can now specify the edges of G. Let /: G -*■ X+ be a one-to-one map. 

For <a, j3>, <7, 5) from G. put 

{(a, P), (7, 5>} EE<>a< 7 and j3 > 5 and <7, 5>G^Q.((3) . (3) 

Let us check that the graph G = (G, E) has no Kx>x subgraph. Suppose, on the 

contrary, that there are disjoint sets H0, Hi in [G]'*" with (x, 7} G E when¬ 

ever x G Hq, y EHX. We may suppose that the smallest first component of 

any pair from H0 U Hx is from a pair in H0. Inductively define subsets H0ll, 

HXn (where n < co) as follows: H0n is that subset of H0 - U{H0m\m < n} 

maximal with the property that the first component of each pair in H0n is 

less than the first component of each pair in Hx - \J{HXm; m < n}, and HXn 

is that subset of Hx — U< n} maximal with the property that the 

first component of each pair in Hln is less than that of each pair in 

Hq — U {H0m :tn < n}. Only finitely many of the H0n and HXn can be non¬ 

empty. For otherwise, all are non-empty so we can choose (a2/1,02,,) from 

H0n and <a2„+1, Pin+i) from HXn. By (3), the sequence (Pn:n < to) gives an 

infinite descending chain of ordinals, which is impossible. Thus there are k, l 

such that \H0k\ = X and \HU\ = X. Suppose say k < I. Again by (3), for each 

(a, P) in Hok we have Hx/ QAf(a,py This contradicts the almost disjoint prop¬ 

erty of the A f(a>p). 

Finally, we show that G has chromatic number X+. For a contradiction, 

suppose in fact Chr(G) < X, so there is a decomposition G = U{GCT; o < X} 

where each Ga is independent in G. In particular, since X+ is regular, there is 

ct (with o < X) for which, if 

Da= {a; | (j3; <a, j3> G GCT}| = X+} 

then |Da| = X+. By the choice of Da, there are X in9C and a in Da such that 

ICG0 and a < 7 for all 7 in dom X. Suppose in fact X = Xp. Since | {/3; 
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<a, j3)GGa}| = A+, there is /3, with (a, j3> G Ga and /(a, (3)> q, which is greater 

than the second component of every pair in X. By (1), there is <7, 5) in G 

with (7, 5) G X^ n Af(a>py Then by (3), (a, j3> and <7, 6) are joined by an edge 

in G. Since both (a, j3) and (7, 5> are in Ga, this contradicts the independence 

of Ga. Thus Chr(G) = A+, and the theorem is proved. 

The example just given to prove Theorem 5.1.14 clearly contains no com¬ 

plete K^Q subgraph. In fact Hajnal [56] has constructed a more involved 

example which contains no triangle. 

§2. A colouring problem 

In this section we shall discuss questions of the following form. Given a 

graph G on k vertices without too many edges (specifically, without complete 

Kjy subgraphs for large values of A) when is it possible to paint the vertices of 

G with few colours so that there are no Kq subgraphs of G all the vertices of 

which are the one colour'? Problems of this type have been discussed by Erdos 

and Hajnal [22], We introduce the following notation. 

Definition 5.2.1. The symbol [x, A] [1?, 0] means the following. Whenever 

a graph G = <G, E) is given for which \G\ = x and G contains no K\ subgraph, 

then there is a pairwise disjoint decomposition G = U {G^; p < 77} of the ver¬ 

tex set such that none of the subgraphs of G spanned by G^ (where 71 < 17) 

contain a Ke subgraph. 

We shall refer to the decomposition G = LKG^; q < 77} of the vertices of G 

as a colouring of G by 17 colours (not to be confused with an 17-colouring -< 

of G as in the previous section). 

A few trivial remarks are in order. If the relation [x, A] [17, 0] holds then 

if k or A are decreased, or if 77 or 0 are increased, the relation will remain in 

force. We shall always assume A, 0 > 1 and 17 < k. The relation [x, A] ->• [k, 0] 

is always true. The relation [k. A] -*■ [ 1,0] is true if and only if 0 > A. The 

case when A > x is without interest, since no restriction is then placed on the 

graph G. If A >k, obvious colourings of the complete graph on k vertices 

show that then [x, A] -j> [17, 0] it 17, 0 < k and also [x, A] -f [r?, x] if 17 < x ; 

yet clearly [x, A] -» [x\ x] does hold. In view of these remarks, we may restrict 

the discussion of the symbol [x, A] -+ [p, 0 ] by supposing that always 1 < 0 < 

A < x and 1 <77 < x. 

The case 0 = 2 is of particular interest, for a subgraph of G withput a K2 
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subgraph is an independent set in G. Thus the relation [k, A] -> [??, 2] is true 

if and only if every graph on k vertices without a A\ subgraph has chromatic 

number at most r?. The example provided by Theorem 5.1.9 of a graph on a 

vertices with chromatic number k and yet containing no triangle shows that 

[k, 3] -f>- [p, 2] for all p with p < k. In the first theorem below, we shall prove 

the following generalization of Theorem 5.1.9: for all finite n with n > 2, the 

relation [k, n + 1 ] -f [p, n] holds whenever p < k. The example which estab¬ 

lishes this negative relation is similar to that given in the proof of Theorem 

5.1.9. For infinite values of 6, in Theorem 5.2.4 we shall show by a different 

method that [k0, 0 + ] [p, 0] whenever p < k. 

Theorem 5.2.2. Let k be infinite and let n be finite with n > 2. Then for every> 

p with rj<K, the relation [k, n + 1] f [p, n] holds. 

Proof. Let p be given with p < K. There is a regular cardinal k0 with t}<k0<k. 

In view of the earlier remarks, it suffices to prove the negative relation with k 

replaced by k0. So in fact we may suppose that k is regular. 

Put G = {fl E n+1K\a0 < ax < ... < an}, where for a sequence a from ”+1k, 

we are again denoting by ak the k-th component of a. Let E be the subset of 

[<G\2 such that, for distinct a. b in G, 

{a. b} EE ^ ak < £0 < ak+i < by for some k with 1 < k < n . 

Let G be the graph <G, E)', we show G has no Kn+l subgraph and that in any 

colouring of G by p colours there is a monochromatic Kn subgraph. 

To see that G has no Kn+ { subgraph, take distinct sequences a°.al, .... a" 

from G, where we may suppose ^ ao ^ ••• ^ ao- Suppose aQ is joined in G 
to all of a1,..., a". For each i with 1 < i < n there is then / with 1 < / < n for 

which a® < a'0 < af+1 < a\. Since there are n values of i and only n — 1 values 

of /, there must be distinct i, j with the same / value. So a® < a'0, aJ0 < fl/°+1 

< a\, a,i. Thus in particular fl'0 < a\ and so there is no k (with 1 < k < n) for 

which alic < fl'0, and also aJ0 < a\ so there is no k for which a‘k < aJ0. Hence 

{a1, a1} ft. E, and so G contains no A'„+1. 

For any finite m, let -< be the lexicographic ordering of the sequences in 

rnK. It is easy to show by induction on m that for every a with a < k, the set 

{a G mK .a<a0<ai < ... < am_x} has order type Km (ordinal exponentia¬ 

tion) under-<. In particular then, tp(G) = x',+1. Now suppose G is coloured 

by p colours, so there is a decomposition G = U {; p < p}. Since k is reg¬ 

ular, by Corollary 5.1.7 there is some p for which tp(G^) = k”+1 . We show 

that for such a p, the graph G^ contains a Kn subgraph. This will suffice to 

prove the theorem. 
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We shall use Lemma 5.1.8 to choose ordinals a\ where 0 </< n and 

0 < k < n such that if a1 = <a'0,..., aln) then each a' is in G/ and all the a1 are 

adjacent in G. For pairs (i, k>, (i, k') where 0 < i, i' < n and 0 < k, k' < n 
define an order -< by 

(/, k) -< {i, k') ■*> i + k < i' + k' or (/ + k = i + k' and i < i') . 

We shall choose the ordinals a\ according to the -5 ordering of the pairs 

(i, k). Apply Lemma 5.1.8 with X = GM to obtain sets T(a0,..., 07) in [k]k 

such that 

V/< n + 1 (a, G T(ptQ,a,_x)) => <a0, ..., an) G . (1) 

Since each T(a0,«/) has power k, we can choose a\ so that 

a\ > r?7/ whenever (/, /> -< (i, k) 

and 

a\ G 7X0) if k = 0,a‘k& T(a'0,4-i) if k > 0 . 

Then if a' = (a‘0, ...,aln), by (1) always a1 G GM. Consider a1, a’ where i < /. 

Note that 

<i, / - /) -< </, 0) -< </, / — / + 1> -< </, j - i + 1) , 

so a\_i <a’0< a'j-i+i < a!x; also 1 </ - i < n, so that {a', tf7} G E. Hence the 

vertices a0, ...,an~l give a Kn subgraph in GM, and the proof is complete. 

We shall turn now to infinite values of d in our discussion of the symbol 

[k, X] [r?, 0], The principal result is again a negative result, namely [k6*, 6+] 

-jr [r?, 0] (where rj < k). An example of a graph exhibiting this property is 

based on the vertex set 9k of all functions from 6 into k. As before, let -< be 

the lexicographic ordering of V We need first the following lemma. 

Lemma 5.2.3. Suppose 9k is decomposed into fewer than k classes, say 

eK = V{X^p < 77} where 17 < k. Then one of the classes XM has a subset of 

power 6 which is well ordered by > (the converse of the lexicographic order¬ 

ing). 

Proof. Consider a subset X of °k which has no 0-size subset well ordered byX 

Then for each / in X there is a with a < 6 such that 

if g G X and g ( a=f[ a, then g(a) </(a) . 

For if this failed for some /in X, for all a there would be ga in X such that 

(1) 
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Sot T a =/ T a and /(a) <^a(a;). Then whenever a < (3 < 0 it would follow that 

See Y0L=f[u=gp[ a and gp(ot) = f(a) < ga(a)\ hence ga> gp- Thus {ga\ 
a< 0} would be a 0-size subset of X well ordered by>~, contrary to the 

choice of X. 

Take a pairwise disjoint family {X^ p<r]} of subsets ot'°K where each 

Xf has no 0-size subset well ordered by>. Put A = U{XM; p < 17}; we show 
a 

AT1 k. This will prove the lemma. For each /in A, let otf be the least a with 

the property (1) taken with X = X^ for that X^ such that f&X^. Hence for 

fg in X^, 

if otf = otg and / V otf = g P otg then /(otf) = g(ag) . (2) 

For each a, putHa = {/£zl;ay = a} so then A = ii{Aa;a< 0}. 

Now define a function h in °k by using transfinite recursion to define the 

values h(a) tor a with a < 0 as follows. Suppose for some a that all the values 

h(fi) where (3 < a are known (so h Ta is known). By (2), for each p with p < 77 

there is an ordinal such that for all ^ in Aa n X^, 

gfa = h[a^g(a) = £a/i . 

Choose h(a) so that 

h(pt) G k - {^:p< t?} . 

This completes the definition of h. Then h Aa n XM whenever a<6 and p< 

Since A = U{Aa n a < 0 and p < 17}, this means h ^ A. Thus A 9k, 
and the lemma is proved. 

Theorem 5.2.4. Let 0 be infinite, suppose r? < k. Then [k9 , 0+] -f [77, 0]. 

Proof. Take any well ordering^ of 9k, and put 

E = {{/, g} G [M2 \f <g mdf>g] . 

Let G be the graph (°k, E). Thus G is a graph induced by the partition of 

[°k]2 used in proving Theorem 2.5.5. As noted in equation (2) of that proof, 

there is no subset X of °k with \X\ = 0+ which is well ordered by>. Thus cer¬ 

tainly G can contain no KQ+ subgraph. We shall show that in any colouring of 

G with 77 colours there is a monochromatic Ke subgraph. Thus G will provide 
the example we need. 

So take any colouring of C, by 77 colours, G = U{G/;/i < 77}. By Lemma 

5.2.3, there is some G/ which has a subset X well ordered by>, where \X\ = 6. 

Let X be the subgraph of G spanned by X. We shall apply to X the partition 
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relation 

0-*(Ko,0)2- (i) 

This relation holds by Ramsey’s theorem if 8 = N0, by Theorem 2.2.6 if 0 is 

regular and by Theorem 2.4.3 if 0 is singular. Note that Theorem 2.4.3 de¬ 

pends on GCH. In tact the relation (1) can be established without appeal to 

GCH - see Erdos and Rado [29, Theorem 44], Applied to X, the relation (1) 

implies that either there is// in [Xf° which is independent in X, or else X 

contains a Ke subgraph. The first possibility cannot occur, however. For if 

(fn\n < co> is an enumeration of H in increasing border, we would have an 

infinite descending>-chain, >f0, contrary to >- being a well 

ordering on X. Thus X contains a Kg subgraph, and this gives a Kg subgraph 
of G in Gm. 

It we assume GCH, then the preceeding two theorems show that all the 
non-trivial cases of the relation [k, A] -> [p, 0] are false. 

Theorem 5.2.5 (GCH). Suppose that 1 < 6 < A < k and 1 < p < k. Then 
[k> A] > [p, 0]. 

Proof. It suffices to show that [k, 0+] -f [p, 6]. This follows from Theorem 

5.2.2 if 6 is finite, and from Theorem 5.2.4 if 6 is infinite and k regular (for 

then k° = k by GCH). If k is singular, there is a regular cardinal k0 with 

d+, p < k0 < k. Then [k0, 0+] -f [p, 6] and hence [k, 0+j -f [p, 8]. 

§3. Chromatic number of subgraphs 

A well-known theorem of de Bruijn and Erdos [6] is the following: for any 

finite k, a graph has chromatic number at most k if and only if every finite 

subgraph of it has chromatic number at most k. In this section we consider 

generalizations of this theorem. We ask questions of the form: if every sub¬ 

graph of G on A vertices has chromatic number at most p, then does G have 

chromatic number at most 0? The results are mostly by way of counter-exam¬ 
ples, and many problems remain unsolved. 

We start by proving the theorem of de Bruijn and Erdos mentioned above. 

In fact the theorem is a standard consequence of the Compactness Theorem 

of mathematical logic, but we shall give a combinatorial proof. 

Theorem 5.3.1. Let G be any graph, let k be finite. Then Chr(G) < k if and 

only if Chr(//) < k for every finite subgraph H of G. 
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Proof. The “only if” is trivial, so suppose every finite subgraph of G = (G, E) 

has chromatic number at most k. We must find a colouring of G with k col¬ 

ours in which there are no monochromatic edges. Take a well ordering of G, 

say G = {xa;o:< k}. We shall define a function/: G -*■ {0, 1, ..., k - 1} by 

determining the values f(xa) using induction on a. The function/will be 

such that colouring vertex with colour i if and only f(xa) = i will give a 

suitable colouring of G with k colours. 
We shall define f(xa) so that for each a the following holds: 

(l.a) For all H in fG]<N° there is h : H-*■ {0, 1, ..., k — 1} such that 

(i.a) if 7 < a and xy E H then h(xy) = f(xy) , 

(ii) if {x, y}GE n [H]2 then h(x) =£ h(y) . 

Suppose for some a with a < k that f(xf) has already been defined so that 

(1 /) holds, for all j3 with |3 < a. (The inductive assumption for a = 0 is inter¬ 

preted to mean that for all H in [C]< S 0 there is h : H-*■ (0, 1, ..., k — 1} 

such that (ii) holds. This is the hypothesis of the theorem.) Suppose that 

none of the possibilities f(xa) = 0, 1, ..., k - 2 are compatible with (l.a). 

Thus for each / where / < k - 2 there is a finite subset // of G such that 

xa E Hi and for every function h : H -+ (0, 1, ..., k — 1} with h(xa) = / and 

h(xy) ~ f(Xy) whenever xy E H with j < a, there are vertices x, y in H, ad¬ 

jacent in G, for which h(x) = h(y). 1 claim that then defining f(xa) by 

f(xa) = k — 1 will make (l.a) hold. For take any finite subset H of G. Put 

H* = H U H0 U ... U Hk_2, so H* is also a finite subset of G. There is (3 with 

j3 < a such that if xy E H with 7 < a then 7 < (3. By (1 ./S') applied to H*, there 

is //* ://*-> {0, 1, ..., k - 1} such that (i.|3) and (ii) hold for H* and h*. In 

fact, it must be that h*(xa) = k — 1. For if not, say h*(x0l) = / where l^k— 2, 

since Hi C H* it follows that h* [ Ht gives a colouring of Ht such that (ii) 

holds, any xy with 7 < a is coloured f(xy), and X/ is coloured /, contrary to 

the choice of Ht. So indeed h*(xa) = k — 1. Thus h* T H gives a suitable col¬ 

ouring of H under which xa is coloured k — 1, and k - 1 =/(xa). Since H was 

arbitrary, in fact (1 .a) holds. 

This completes the definition off, and clearly/gives a colouring of G with 

k colours such that no two adjacent vertices are coloured the same. 

Corollary 5.3.2. Every graph with chromatic number S;0 h°s a countable sub¬ 

graph with chromatic number S0. 

Proof. Take a graph G with Chr(G) = 130. For every finite k then Chr(G) > k 

so by Theorem 5.3.1 there is a finite subgraph Hk of G with C\u(Hk) > k. 
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Let H be the union of the Hk, so Chr(H) ^ 150- Thus H is a countable subgraph 
of G witli Chr(//) = 150. 

One can ask it Corollary 5.3.2 remains true when 150 is replaced by 15]. 
The answer is in the negative. Assuming GCH, as a corollary to the next theo¬ 

rem we shall show that there is a graph on 15 2 vertices with chromatic number 

15], every subgraph of which on 15] vertices has chromatic number at most 
1S0. We first prove the following lemma. 

Lemma 5.3.3. Let n be finite with n > 2. Take any set S with 151 = 2 h_1(k) 

for some infinite cardinal k. Then there is a function f : nS -> k such that for 

*0, -> xn GS> 

\/i<n(xi^xi+l)^f(xQ, ...,xn_l)^f(xh...,xn) . (1) 

Proof. Identify S with nn_] (k). Let us say that a function/has property 

P(n, k) if/has the property in the lemma. We shall prove by induction on n 

that for all k there is a function/with property P(n, k). 

Consider first the case n - 2. Let k be given, and identify 2] (k) with K2. 

As before, let < be the lexicographic ordering of K2 and for distinct functions 

x, y in K2 let 5(x, y) be the least a for which x(a) fzy(a). Take any one-to-one 

map p : k X 2 -> k, and define/as follows: 

( 0 ifx=y , 

f(x, y) = | p(8(x,y), 0) if or-O', 

( p(5(^c, v), 1) ifx>y. 

Since 5(x,y) ^ 5(y, z) whenever xz, it follows that/has property 

P(2,k). 

Now suppose n > 2, and make the inductive assumption that for all m 

with 2 < m < n and for every infinite A there is a function with the property 

P(m, A). Let k be given. There is thus a function g with property .P(2,2,I_2(/<)) 

and a function h with property P(n - 1, k). Now dom(g) = 2(2j (2„_2(k))) = 
2(3„_](k)). Thus we may define/ : n(2n_1(K)) -+ k as follows: if a0, ..., 

®-n— 1 1 O0> 

f(ot0, ...)an-i) = h(g(x0,x1), g(xn—2’ xn— i)) • 

Then/satisfies (1). For given a0,an from 2n_](K) with a0 aj, ..., 

a„_ i =£ an, since g has property P(2,2 „_2(k)) if =g(a0. 0=1), •••> Pn-i = 
g(an-i,otn) then j30 ^ j3], j3„_2 ^ Pn-i- Since h has property P(n - 1, k), 

further h(p0,..., j3„_2) f h(fiu..., j3„_i), that is,/(a0,a„_i) .... a„). 
Consequently /has property P(n, k), and the induction step is complete. 
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Theorem 5.3.4. Let n be finite with n > 2. For every k there is a graph G on 

(3n_iOO)+ vertices with Chr(G) > k that that every subgraph of G spanned 

by at most vertices has chromatic number at most k. 

Proof. Write A = (3„_i(k))+, and let G = [A]". Define a subset £ of [G]2 as 

follows: for a, b in G, say a = {a0, i }< and b = {/3q» •••> i }< define 

{a, b}EE <>Vi<n - 1 (a,- = j3,-+1) . 

Then the graph G = (G, E) has the required properties. 
To see that Chr(G) >K, take any decomposition G = U{Gk\k < k} of G 

into k classes. Since G = [A]”, the partition relation (2„_1(k))+ (k+)” from 

Theorem 2.3.3 applies. There must be H in [A]K+ which is homogeneous for 

the partition. For Oo> an from H with Oq < ••• < ocn it a = (cto* —■> an-1 ) 
and b = {oq, ..., an} then {a, b} EE. Since a, b E [Hf both a, b are in the 

same class Gk, which is thus not independent in G. Hence Chr(G) > K. 

Now take any subset H of G with \H\ and consider the subgraph 

H of G spanned by H. Since A is regular there is a with a < A such that H C fal”, 
and we may suppose |a| =3,;_i(k). A function/as in Lemma 5.3.3 for the 

set a induces a colouring of [a]”, and so also of H, such that no two vertices 

joined by an edge get the same colour. Hence Chriff) < k. 

The graph used in the proof above first appeared in Erdos and Hajnal [20] 

as an example of a graph with large chromatic number but without circuits 

of small odd lengths. In [23], the same authors noted that it gave an example 

with the properties in Theorem 5.3.4. 

Corollary 5.3.5 (GCH). Let n be finite, n> 1. For every’ ordinal a there is a 

graph G on i<a+n vertices with Chr(G) = Na+1 such that every subgraph of G 

spanned by at most Sia+M-i vertices has chromatic number at most Sa. 

Proof. The case n = 1 is trivial. For n with n~>2, use the graph constructed 

in the proof of Theorem 5.3.4, with k = To see that Chr(G) = 15a+1,note 

that by GCH, Na+„ =n^_1(^a+i) and use Lemm^ 5.3.3. 

In particular, Corollary 5.3.5 in the special case a = 0 and n = 2 gives a 

graph G on N2 vertices with Chr(G) = Nj so that every subgraph H of G on 

Kj vertices has Chr(H) < N0. It is not known if there is such a graph G with 

Chr(G) = t50. It is also not known if Corollary 5.3.5 can be extended to in¬ 

finite values of n. It is clear that if G is a graph on vertices such that every 

subgraph on fewer than vertices has chromatic number at most N0, then 
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Chr(G) < K0. The simplest unsolved problem is the following (GCH): is there 

a graph G on Kw+1 vertices with Chr(G) > Nj, yet Chr(//) < N0 for every 

subgraph H of G on at most vertices? 

To conclude this section, we note that one can ask questions similar to 

those above but replacing “chromatic number” by “colouring number” through¬ 

out. The direct analogue of Theorem 5.3.1 does not hold if k > 2. Erdos and 

Hajnal [21] have shown that if G is a graph such that every finite subgraph of 

G has colouring number at most k, then G has colouring number at most 

2k — 2. They provide an example to show that this is the best possible result. 

Neither the proof of their theorem nor the construction of the example is 

particularly simple. In the case of infinite colouring number however. Theo¬ 

rems 5.1.10 and 5.1.12 lead to the following positive results. 

Theorem 5.3.6 (GCH). Let G be a graph such that every> subgraph of G on at 

most k + vertices has colouring number at most k. Then Col(G) < k++. 

Proof. Let G be a graph with Col(//) < k for every subgraph H of G on k + ver¬ 

tices. Note that Col(/f + ) = k + , and so G can contain no K + , subgraph. 

Thus by Theorem 5.1.10, Col(G) < k++. 

If Theorem 5.1.12 is used in place of Theorem 5.1.10, the following some¬ 

times better result is obtained. 

Theorem 5.3.7 (GCH). Let kq be the least cardinal such that k0 > k and 

k'o = k. Let G be any graph on at most k0 vertices such that every subgraph of 

G on at most k + vertices has colouring number at most k. Then Col(G) < k+. 

Many unsolved problems remain. The simplest is the following: is it true 

that Col(G) < N0 for every graph G on vertices such that Col(H) < N0 for 

every subgraph// of G on at most ^ vertices? 



CHAPTER 6 

DECOMPOSITION AND INTERSECTION PROPERTIES 
OF FAMILIES OF SETS 

§ 1. Decomposition properties 

The problems to be considered in this section are of the following kind. 

Let sd = {Ay k < X} be a family of subsets of a set S where S has power k, 

such that the sets in sd cover S closely, in the sense that for some cardinal p 

every p-size subset of S meets almost all the sets in sd . Can S, except for a 

subset of size less than k, be written as the union of a small number of sets BM 

each with the property that for any pair*, y in BM there is some A in sd with 

x, y in T? With the following notation the problem can be expressed more 

precisely. 

Definition 6.1.1. The family sd = {Ay v < X} is said to have cover number ri 

if for every B in [UW ]v, 

\{v<\-,BnAv = (fi}\<\. 

Definition 6.1.2. Given the family sd , a set B is said to be connected in sd if 

for all x, y in B there is A in sd such that x, y EA. 

Definition 6.1.3. The symbol (k, X, p) => d means the following. Let 5 be any 

set with |S| = k and let sd = {Ay v < X} be any decomposition of S which 

has cover number p. Then there is a decomposition S = S* U U{Z?M; p < 0} 

where IS1*! < k and each BM is connected in sd . 

Results on the prope *ty (k , X, p) =► 6 (in different notation) appear in 

Erdos, Hajnal and Milner [35, §§11, 13, 14], 

When considering the symbol (k, X, p) => 0, to avoid trivial cases we shall 

always suppose that 0 < p < k and that 6 < X, k (the latter since each mem¬ 

ber of sd is connected and also each {x} forx in S). Simple considerations 
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show that if for particular values of k, X, 77 and 6 the relation (k, X, 77) => d 

holds, then also (k, X, 17 ^ => Q\ whenever 171 < 17 and 01 > 6. 
We shall start by investigating countable decompositions sA of a countable 

set S. The results are simply stated: if sA has finite cover number then S it¬ 

self is almost connected, if sA has infinite cover number then S is almost the 

union of two connected sets. 

Theorem 6.1.4. Let n be finite, n > 0. Then (N0, N0, n) => 1. 

Proof. Let S be a set with |S| = N0; take any family sA - {Ay v< 00} with 

UsA = S which has cover number n. Suppose S — S* is not connected for 

every S* in [5]< N°, and seek a contradiction. Note for any subset X of S if 

there is Min [co]s° with | {v £M;r £ Av}\ < N0 for every x in X then X is 

connected, since given x, y in X, each miss only finitely many Av with v in M 

and so both are in infinitely many Av. 
Define by induction elements xk of S and infinite subsets Mk+l of to such 

that 

Xj $ Av if/ < k and vEMk+i , (1) 

as follows. Put M0- to. Suppose for some k that and M/+1 have already 

been suitably defined whenever / < k. If {v GMfc;x ^ Av} is finite for every 

x in S - {x/; / < k} then by the remark above, S - {xy, I < k] is connected, 
contrary to assumption. So we can choose xk from S - {xy l < k} and Mk+i 

from [M^]K° such that xk $ Av for every v in Mk+l. Then (1) holds. 

Put B = {x0,..., xn_ 1}, so \B\ = n. Then B nAv = 0 whenever v &Mn, and 

\Mn\ N0. This contradicts thati^ has cover number n, and so the theorem 

is proved. 

In proving the result when the cover number is infinite, we shall make use 

of the following lemma. 

Lemma 6.1.5. Let the family sA = {Ay, v<to) give a countable decomposi¬ 

tion of a set S. If for no finite subset S* of S is S - S* the union of two con¬ 

nected sets, thensA does not have cover number N0. 

Proof. Let sA be a family satisfying the conditions of the lemma. We must 

show that there is an infinite subset T of S such that |{n<co;/ll,n7’-0}|-N 

For any subset X of S, let G(X) be the graph with vertex set S - X and two 

vertices x, y joined by an edge just when {x, y} A for every A in sA. Thus 

the independent subsets of G(X) are exactly the subsets of S — X connected 
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msd . This means that the assumptions on sd ensure that for any finite sub¬ 

set S* of S, the graph COS’*) has chromatic number more than 2. Hence by 

the theorem of de Bruijn and Erdos (Theorem 5.3.1), there is a finite subgraph 

of G(S*) with chromatic number more than 2. 

Inductively choose finite subsets Sk of S (where k < co) such that the sub¬ 

graph Gk of G(U{Sj]j < k}) spanned by Sk satisfies Chr(G^) > 2. For each k, 

then Sk has only finitely many subsets and so we can choose inductively sets 

Mk from MiS° such that Av n Sk is constant, say Av H Sk = Sk, for each v 

in Mk, and Mk C fl {Mj'J < A:}. Since Mk is non-empty, certainly each S* is 

independent for the graph Gk. Since Chr(Gfc) > 2 it follows that Sk — S* is 

not independent. Thus we can choose xk, yk in Sk - S* which are adjacent in 

Gk, and so {xk,yk} <£ Av for all v. 

For all k, choose v(k) from Mk - <k}. Form the partition [co]2 = 

A0 U Aj where for /, A: in co with / < k, 

if, k}E A0<>xk$ AV(J) , 

{/, A}GA] <>yk $ Av(j) . 

By Ramsey’s theorem (Theorem 2.2.9) there is //in [co]N° such that either 

[H]2 C A0 or else [//]" C Ax. Suppose [H]2 C A0; the other case is similar. 

For/, k in H, if/ < k then xk £ Av{j) by definition of A0. If/> k then 

v(j)(EMjCMk soAv(jl n Sk = since xkESk- St again xk $ Av(j). Thus 

if {xk\k^H] then T is infinite and Av n T= 0 whenever v G (n(/); 
/ G/f}, and I {v(j)\j G//}| = R0. This suffices to prove the lemma. 

Corollary 6.1.6. For all infinite k, the relation (k, S0, S0) => 2 holds. 

The result in Corollary 6.1.6 cannot be improved to (R0, R0, K0) => 1, as 
the following simple example shows. 

Theorem 6.1.7. For all infinite k, (k , k , k) 1. 

Proof. Put S = {0,1} X k and consider the family A = {Av]p<k} where for 
each v, 

Av= {<0,py,/d<v}u {<1 

so I S'| = k and Usd = S. The family sd has cover number k. For take M from 

[k]k and put A(M) = U{Ay vEM}. For any p with p < k, there is v in M 

such that p<v and <0, p) FAy hence {0}X k CA(M). Take any B in [Sf, 

and put M - {n<«,/?n/4t,-0},soi?n A(M) -0.11 \M\ = k , we would then 
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have to have B C { 1} X k. But then for any v from M there would be p with 

v such that (1, p) EB, and thus (1, p) E B Cl Av contradicting v EM. Thus 

for any B in [S]K it follows that | {v < k\B DAv = 0}|<x, and so sd has 
cover number k. 

For any 5* in [A]<K there are p, v with v < p and <0, p), < 1, v) E S - A*. 

Since then {(0, p), <1, v)} <f^A for every A in sd , it follows that S — S* is not 

connected. Thus the family^ gives an example that shows (k, k, k) 1. 

The relation (k, X, p) => is equivalent to a special case of the polarized parti¬ 
tion symbol from Chapter 4, as is shown in-the next theorem. 

Theorem 6.1.8. Let k, \and 17 be infinite cardinals. The relation (k, X, 77) =► 1 

holds if and only if 

(1) 

Proof. Suppose first that (k, X, 77) -> 1. Take any disjoint partition k X X = 

A0 UApwe seek H0 in [k]77 and Hx in [X]x such that//0X Hl C A0 or 

Ho X Hy C A j. As in the last proof, put A = { 0, 1} X k and consider the fam¬ 
ily sd = {Ay, n < X} where this time, for each v, 

Av = {(/, a); (a, v) ^ A,-} . 

Take S* from [A]<K. There is a such that <0, a), < 1, a) ES - S* and so S - 5* 

is not connected in sd. Thus S = \Jsd is not almost connected, and so by the 

relation (k, X, 77) => 1, the family sd can not have cover number 77. Thus there 

is B in [A]11 with I {n < X; A n = 0} | = X. There are H0 in [k]77 and i from 

{0, 1} such that (i, a)EB for all a in H0. Put Hx - [v < X;A D Av = 0}, so 

H1 E [X]\ Then if a E//0 and aEHl, it follows that (i, a> ^ Av so (a, v) E A,-. 

Hence H0X H1 C A,-, and the relation (1) holds. 

Now suppose that (1) holds. Take a family sd = {Ay v < X} where |U^| = k, 

which has cover number 77. Suppose that UA? — A* is not connected for any 

A* in [\Jsd ]<K. Then we can define by induction sets Aa and elementsxa, va 

where a < k. as follows: Ba is a maximal connected subset of U sd - ( {xy, 

j3< a} U {yy (3 < a}); we choose xa from Ba and_ya from Usd — (Ba U {yy 

P < a}). Thus for nod in ^ is it true that xa, ya EA. Form the disjoint par¬ 

tition k X X = A0 U A! where 

(a, v) E A0 ^iaEd„ . 

By the relation (1), there are H0 in [k]77 and Hi in [XJx such that H0 X Hi C A0 
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or Hq X //] CAj.Both (xa; a G//0} and {ya\ a Gtf0} have power tj, so 

since sd has cover number 17 it follows that | {v < A; Va £//0(xa $ Av); < X 

and | {v < X; Va G H0(ya $AV)}\<\. Since \HX\ = X, there must be al5 a2 

in H0 and vx, v2 in Hx such thatxai &AVl andyU2 EA„2 (so certainly 

Xa2^ AV2). Thus <«!, ri>G A0 and <a2, r>2> G Ai contrary to the property of 

H0, Hx. This shows that there must be 5* in [Usd ]<K such that - S* is 

connected, and so (k, X, rj) => 1. 

Corollary 6.1.9 (GCH). For infinite cardinals k , X the relation (k , X, k) => 1 
holds if and only if {k, k , k + , (k’)+) n {X, X , X+, (X )+} = 0. 

Proof. By Theorem 6.1.8 and Theorem 4.2.8. 

We shall now seek to extend the earlier results on countable families to 

higher cardinalities. We consider first the case when the family has power equal 

to a successor cardinal. In Theorem 6.1.10 we shall show that (k, X ,X ) =* X 

(for arbitrary k), a result not as strong as the relation (k, N0) ^ - estab¬ 
lished in Corollary 6.1.6. However, at least when k = X+ this result is the 

strongest possible, for in Theorem 6.1.12 we prove (X+, X+, X+) 6 for any 6 

with 0 < X. 

Theorem 6.1.10. Let X be infinite. Then (k, X+, X+) => X. 

Proof. We may suppose k ^ X+. Let 5 be a set with 151 = k and take any family 

sd - {Ay, v< X+} with Usd = 5 which has cover number X+. We shall show 

that 5 = U {ju < X} where each is connected in sd ; then the relation 

(k, X+, X+) => X follows. 
For x in 5, put A(x) = {v < X+;x FAV}. Then 5 is the disjoint union 

5 = 50 U Sx where 50 = (x G 5; L4(x)| < X} and Sx = (x G 5: \A(x)\ = X+}. 

For each x in Sx, put D(x) = (y G Sx; $ A £sd (x, y G.4)}. Suppose 

|Z>(x)| = X+. Then | {v < X+: D(x) n Av - 0}| < X, because sd has cover num¬ 

ber X+. Since (4(x)| = X+ there must be v in H(x) with D(x) FAv^ty\ thus 

there isy with x, y FAV yety GZ)(x), which is a contradiction. Hence 

|Z)(x)| < X for all x in Sx. For x in Sx inductively define Dn(x) for n with 

n < co by 

D°(x) = {x}\D'l+1(x)= H{D(y)]y E Dn(x)}\ D^ix) = \J{Dn(x):n<u}. 

Tlren |Z)UJ(x)| < X, and D(z) C DOJ(x) whenever z G D<jJ(x). 

Inductively define subsets Ta of Sx as follows: if 5! CHT^; 0 < a} choose 

x from Sx U{ Ty (3 < a} and put Ta = £>w(x) - U{Tp:(3< a}. Ify G Ta and 
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z ^ Tp where (3 < a then v (fc Tp soy D{z)\ thus there is A in A with y, z EA. 

And always |Ta| < X so we can write Ta = {xaju;/r < X}. For p with p < X let 

CM be the set of all the xaid. Then = U { CM; p < X} and each CM is connected. 

So to prove the claim above, it is sufficient to show that S0 is the union of at 
most X connected sets. 

By way of contraduction, suppose that this is false. Then for a with a < X*, 

define inductively elements xa of S0 and ordinals p(a) with v(a) < X+ as fol¬ 

lows. Suppose xp and n(j3) already defined whenever (3 < a. Put 

Ua = S0 - ({x^, P< a} UU{Am\ &<«}). 

Now |a| < X and the sets {x^} and Av^ are all connected, so since S0 is not 

the union of X connected subsets, certainly Ua =£ 0. Choose xa from Ua. Since 

always Xp G S0 we know \A(xp)\ < X. Hence we can choose n(a) from 

X* - ({n(|3);|3<a} U U-UCx^); j3 < a}) . 

This completes the definition of xa and v(a). It follows that 

a,/3< X+ ^xa £ Av(j3) , 

for if (3 < a this is ensured by the choice of xa and if j3 > a by the choice of 

vQ3). Put B = {xa; a < X+} and /= {n(a);o: < X+}. Then |5| = \I\ = X+ and 

B n Av = 0 whenever v G /. This contradicts that A has cover number X+. 

Hence S0, and so also S, can be written as a union of X connected sets. This 
proves the theorem. 

Before showing that this last result is the best possible in the case k = X+, 

we state a lemma. This lemma provides a strengthening of Lemma 2.7.3. 

Lemma 6.1.11 (GCH). L et S be any set with |S| = k \ Tlten there is a disjoint 

partition [S]2 = U{ Ak\ k < k + } with the property that whenever A G [S]K 

and B G [S']** then there is a in A such that for every’ k with k < k+ there is 

b in B with {a, b} & A*. 

Proof. Modify the proof of Lemma 2.7.3. Again identify S with k + . Put 

A- {(A, g);A G [k+]* and# : A -> k + } . 

By GCH, |"4(k+)| = k+ for each A in [k+]* and so \A\ = k+. Take a well order¬ 

ing ((An, ga); a < k+) of A . For each r with r < k+, put 

AT = {(Aa, ga)\ a < t and Aa C r and g[Aa] C r} , 

so | At| < k. Suppose now that for each r with r < k+ we could find a tunc- 
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tion fT ‘ r t such that 

if (.4. g) G sdT then /r(o) = g(o) for some a in A. (1) 

Consider the partition { A^-t k < n } ot [k ]2 where lor o. t in k with o < r, 

{a. r}GAfc *>fT(o) = k. 

This partition has the new property, for take A trom [k ]K and B trom [k ]k ■ 
Suppose on the contrary that tor all o in .4 there is k such that \0t, fS} E A^- 

for no ji in B. so there is a function g : .4 k such that always {o, /3} A^a) 

for all 0 in B. Let r0 be the least ordinal such that (A, g) E sHTq. Since 
B — k~ there is r in B with r To- Then also {A, g) £ sdT so by (1) there is 

o in.4 for which fr(a) = g/a), that is, {a, r} G A?(a). But since and 
r£fi, by choice ofg we know {a. r) £ Ay(ff). This contradiction proves the 

result. 
In order to prove the lemma then, it suffices to find functions/,- : r ^ r 

with the property (IT We mav suppose sdT d1 0. tor otherwise any function 

fr satisfies (1). Thus r> k, so |r| = k. and we may write sdT- {(ATa, gTa); 

a < k }. Since always L4rJ = k we can choose inductively oTa for a with a< k 

such that aTO E.4Ta - {oT)3;0<a}. Define fT : t ^ t as follows: if a = aTO 

then tT(o) = gm.(a); otherwise //(o') is arbitrary. Then clearly (1) holds, since 

if (.4. g>E sdT then (.4. g)= (.4TQ. gTa) for some a, and then oTa is an element 

of.4 on which both// and tr agree, as required by (1). This completes the 

proof of the lemma. 

Theorem 6.1.12 (GCHT Let X be an infinite cardinal with 0 < X. Then 

ix+. x+. x+) ± e. 

Proof. Using Lemma 6.1.11, take a disjoint partition [X+]2 = U{ k < X+} 

such that 

.4 G LX"]x and B G [X+]x+ => 3 a Ed \/k < X+ 3 0 G B((a.(3) G A*) . 

Put 5 = X" X X so IS I = XT and for 0 with ft <\+ put 

.4p' = «a k)ES: {a.0}EA*} . 

We consider the decomposition of 5 given by the family sd = {.4p\j3< X+}. 

First observe that sd has cover number X+. For take any X in [S]x . and 

for a contradiction suppose that if 

/ = {0<X+;.Y 0.4(5 = 01 

then /| = X+. Put X’ = {a < X+; 3 k < X ((a, k) E X)}: since \X\ = X+ also 



Ch. 6.1 Decompositions properties 137 

X | - X+. By the choice of the partition, there is a in X' such that for all k 

with k < X+ there is 0 in I with {a, 0} G Ak. Since a EX' there is k0 < X 

with (a, k0) E X and then there is p0 in / with {a, |30} G AkQ, that is, 

(a;, k0)EAp0. Hence (a, k0)EX EApQ, contradicting that fi0 El. Thus in¬ 

deed, whenever X E [5]x+ then I {0 < X+; X n Ap = 0}| < X+, so sd has cover 
number X+ as claimed. 

However, S' is not almost the union of 9 connected sets. Note that since 

the partition is disjoint, whenever {a, (3} G Ak then it follows that {a, (3} 

£ A/ if / =£ k. Thus it (a, k)EAp then (a, l)(fc Ap whenever / ^ k, so no con¬ 

nected sets includes pairs (a, k), <a, /) with l ^ k. Now take any S* from 

[S]<*+. There must be a such that (a, k)ES - S* for all k with k < Sup¬ 

pose S - S* = U < 9}. There must be some ju such that for distinct k, I 

both (a, A:)GSm and (a, /> G so this is not connected. Hence S is not 

almost the union of 6 connected sets. Thus the family sA. provides an example 
to show that (\+, A+, A+) 9. 

In almost the same way, we can prove the following result where the cover¬ 
ing number is reduced to X. 

Theorem 6.1.13 (GCH). Let X be an infinite cardinal with 9 + < X. Then 

(X+, X+, X) 6. 

Proof. Almost as for Theorem 6.1.12, only using the set S = X+ X 0+. 

If the cardinals X and 77 in the relation (k , X, 17) => 9 are far apart, then posi¬ 

tive results can be proved. If X’ > rj+ then by Theorem 4.2.8 

and hence whenever k > 77, 

If we now apply Theorem 6.1.8, the following result is immediate. 

Theorem 6.1.14 (GCH). Let k. X, v be cardinals such that k>t] and X' >r?+. 

Then (k, X, p) =* 1. 

If 77 is replaced by r}+ in the above theorem, then GCH is not needed in 

the proof. In fact we have the following. 
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Theorem 6.1.15. Let x. X. r? be cardinals such that k > i? and X > rj+. Then 

(iK, X. if) =* 1. 

Proof. Suppose X > 77+. let S be a set with 5 = k and take a family sd - \-4,.. 

v < X} with LW = 5 which has cover number if. For ,v in S. put -4(.y) = 

{v < X; -v £,4„}. Then 5 is the disjoint union. S = 50 U 5r where S0 = \.v £ 5: 

U4(a)| < X} and Sj = {x £ 5: L4(x)| = X}. If |50l = k . we could take S' from 

[S0p+, and noting that then !U{.4(.vj:.Y tS i < X. we would have {vK. X: 

S' H .4,. = Ox| = X. contradicting that sd has cover number j?+. Hence 

|50l < k . Thus to prove the theorem, it suffices to show that Sj. but tor tewer 

than k elements, is connected. Let B be a maximal connected subset of 5X. 

Then 1 claim that \Si - B\ < i?. For if not. take B from [S t - Bf . Since si 
has cover number if. then j {n < X;5 6 Av = 0} I < X. Take any .v in B. By 

the maximally of B, for any v if .v £.4,. then .4, C B. so if.v G.4,. then 

B' n Av = 0. Thus | j> < X: x £ .4„}| < X. that is. L4f.Y) < X. contrary to x 

being in S\. Thus indeed \Sy — B ^ tj. Since p < x. this shows that Sj is al¬ 

most connected, as required. 

In the case that X is a singular cardinal with X’ = S0. dtere are techniques 

special to cofinality N0 which enable us to obtain results which correspond 

to unsolved problems for singular cardinals ot higher cofinality . The first ot 

these that we shall establish is that (k. X. X) =* X. for arbitrary x. This should 

be compared with Corollary 6.1.6 and Theorem 6.1.10. 

Theorem 6.1.16. Let X be a singular cardinal with X = !\> Then (x. X. XI => \. 

for all x . 

Proof. We may suppose k > X. Let \X„. n < ^ be an increasing sequence of 

regular cardinals with always N0 < X* < X and X = -(X,,. n < oj). Let 5 be any 

set with |S| =x. and take a family sd = {.4.r< X- where =5 andsd 

lias cover number X. 

Take any set S' from [S]r'-\ We start by observing that if there is / in [X]x 

for which 

fie [S']Xn ^\{vEI:AvnB = Q}\<\. (0 

then S' can be written as the union of X„ connected sets. For suppose f 11 is 

true. Forx inS . put/l(x) = - r G /;.y G .4,. - and write 5’ as the disjoint union 

S' = iSq C S'i where 50 = {xGS . 4(x) < X- andS[ = {xGS . ,4t.\0 - X-. 

For.Y in S[, put D(x) = \y G5j; 3 r £/(x. v £.4:.V\ It follows that ifxG.4,. 

then .4,. n D(.\) = 0. so .4 CyT C {r Gl:Al Ct D(x) = O'. Hence D(x) < X„. 
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for it |D(x)| > X„ by (1) then | {v E.I\AV n D(x) = 0}| < X contradicting that 

L4(a-)| = X. For -X in S[, inductively define Dn(x) for n with n < co by 

D°(x)= {x}]Dn+1(x)= \J{D(y);y EDn(x)}; 

DUJ(x) = U{D„(x);/i<cj} . 

Then |£)w(x)| < Xn. Inductively define subsets Tq, of Si as follows: if 

^ U{ Tp‘, P < a}, choose x in S[ - U{ Tp; j3< a} and put = D^ix) 

U{7>; )3 < a}. Then always 17’Q.| < X„. It now follows, just as in the proof of 

Theorem 6.1.10, that Si can be written as a union of Xn connected sets. To 

complete the proof of the observation above, we must show that the same 

is true of Sq. If |SqI < X„ this is trivial, so suppose |SqI > Xn. For any x in S'0 

there is an integer m(x) such that |H(.x)| < Xmrx)- Since X'n = Xn> N0, there 

is a subset Sq of Sq with |SqI = Xn such that m(x) is constant for x in Sq, say 

m(x) = m. Thus |U{/4(x);x eSo'}| < Xn ■ Xm < X, so | {p G/;Sq n Av=h 0}| 

< X. Since |Sq| = Xn this contradicts (1), and so it is impossible that |Sol>X„. 

Thus the observation is established. 

We shall show that S can be decomposed into X connected sets; from this 

the theorem follows. For a contradiction, suppose this to be false. Use induc¬ 

tion on the integer n to define sets In in [X|\ S* in [S]^n and /'* in [X]^” as 

follows: Put Iq = X and choose Iq from [/q 1 "V°- Write 

Sn - S — U {Ayv for some m with m < n} . 

Now |U{/^ ;ra < «}| < 2(Xm;ra <n)<X, so since S is not the union of X 

connected sets, neither is Sn. In particular |S„| > X so (1), applied in particular 

to Sn and In, must be false. Thus there are S* in [S,,]^1 and In+l in [In]X such 

that Av n S„ = 0 whenever v G In+l. Choose /*+1 from [/w+1]X,i+1. This de¬ 

fines S%, In+i and In+i, and completes the definition. 

Put S* = U{S*;n < .0} and/* = U{/*; n < co} so 15*1 = X and |/*| = X. 

However, 

S* C\AV = 0 if pel* , (2) 

for suppose pGI*. If m < n by definition of Sn then S* C\AV = 0. If m > n, 

then since I* C Im C In+1, by choice of S* and In+l we know Av n S* = 0. 

In both cases then, S* n Av = 0 and so indeed S* HAU = 0. Since |S*| = X, 

(2) contradicts that sA has cover number X. This contradiction shows that S 

can be decomposed into X connected sets, as required. 

For small values of k, the result in Theorem 6.1.16 can be improved sub¬ 

stantially. From Theorem 4.2.5, when X = ^0 then 
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so by Theorem 6.1.8, the relation (A+, A, A) =* 1 holds. When k - A, we shall 

show that (k , A, A) =► 2. In view of Theorem 6.1.7, this is the strongest positive 

result possible. 

Theorem 6.1.17 (GCH). If then (A+, A, A) =* 1 and (A, A, A) => 2. 

Proof. Only the second relation remains to be proved, and in view ot Corol¬ 

lary 6.1.6 we need only consider the case where A> H0. Let (An:n < co> be 

an increasing sequence of regular cardinals with always < A„ < A and 

A = 2(A„; n < to). Let S be any set with |S| = A, and consider any decompo¬ 

sition sfl = {Ay, v < A} of S which has cover number A. For a contradiction, 

suppose that whenever S* E [S]^x then S - S* is not the union of two con¬ 

nected sets. The argument that follows is similar to that in the proof of Lem¬ 

ma 6.1.5. 

For a subset X of S, let G(X) be the graph on S - X with vertices x, y 

joined by an edge in G{X) just when {x, y] £A for every A in srt . Then when 

S* E [5']<^ the graph G(S*) has chromatic number more than 2, so by Theo¬ 

rem 5.3.1 some finite subgraph of G(S*) has chromatic number more than 2. 

Thus we can choose inductively finite subsets Sa of S for a with a < A so that 

the subgraph Ga of G( 0 < a}) spanned by Sa has chromatic number 

more than 2. 

For each integer n, we can choose l'n from [A] n such that |Sa| is constant 

for a in l'n, say ISa\ = k(n). For such a, let^5a = {Xai; i < 2k^}. Consider 

the partition l'n X A = U{ A,-; i < 2A’<'”)} where 

(a, v> E A, Sa k)Av = Xai . 

Since Sq < A„ = A^ < < A, from Theorem 4.2.8 it follows that the relation 

holds, where 7 = 2k^n\ Thus there are in , A/," in [A]x and i(n) < 7 

such that 

a E i” and v E M',[ => Sa n Av = Xai(„) . 

Further, we can arrange inductively that M„ C IT {M','n ; m < n}. Choose induc¬ 

tively In from [I„ - U{Im:m <n}]Xn and Mn from [M", U{Mm,m < n]]Xn 

and let / and M be the disjoint unions I = U{/,7; n < to}, M = U{AT„; n < co}. 
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Fix a in I. There is a unique n such that a G /„. The set Xai(n), being con¬ 

tained in some Av, is independent in the graph Ga. Since Chr(Ga) > 2 it fol¬ 

lows that Sa - Xai(nj is not independent, so we can choose xa, ya from 

Sa ~ Xaj(n) which are adjacent in thus {xa, _ya} (f A for all A in X. Take 

a disjoint partition /X M= A0UAj such that 

(a, v)eA0=>xa$Av\<ot,v)eAl ^ya$Av . 

From the proof of the polarized canonization lemma. Lemma 4.1.7, there are 

sets In in [/] ”, M'n in \M\ ” and a function h : to X to -*■ {0,1} such that if 

m, n < co, then 

Im x Mn C Ah(m,n) > 

and moreover there are increasing functions/ g : to -*• co with always/(w) < 

S(m) such that I* QIf(n) and MC Mg^ny By Ramsey’s theorem (Theorem 

2.2.9) there are H in [to]0’’ and i in {0,1} such that whenever m, n G//with 

m > n then h(m, n) = i. Suppose without loss of generality that i = 0. For 

m, n in H with m > n then /* X M* C A0; thus if a G /* and vEM* then 

xa Av. On the other hand, if m < n then I* C If(m) C If(m) and M* C 

Mg(n) c Mg(rn) £ Mf(m) so for a in /,* and v in M* it follows that Sa n Av = 

> since xa G Sa — X )) thusxa Av. Put T— {xa; uG U{/,{; 

n < co}} and N = U{Af*; n < co}. Then |71 = X, |W| = X and = 0 when¬ 

ever v G N. Thus |{t'<A;7’ny|I, = 0}| = X, which contradicts that X has 

cover number X. This contradiction proves the theorem. 

For more results and unsolved problems connected with the relation 

(k, X,rj)=>6 the reader is referred to Erdos, Hajnal and Milner [35]. 

§2. Delta-systems 

Let XL = (Ay, i El) be an indexed family of sets. The family X is said to 

contain the family 03 = (By j EJ) if there is a one-to-one map /from J into 1 

such that always Bj ~ A ,yy For the purposes of this chapter, if X contains 

03 and also03 contains X then we may consider the indexed families XL and 

03 as being the same. In particular, we may always suppose that an indexed 

family X is indexed by the ordinals less than some cardinal, so XL = (Oy; 

v < X). A family XL = (Ay, i E /) is said to be a (X, a)-family if |/| = X and 

L4/| = k for each /. Expressions such as (X, </c{-family have the obvious mean¬ 

ings. We shall be concerned with indexed families for which the intersection 

of any two sets from the family is always the same. An indexed family 
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sA = (Ap, i £ /) is said to be a A(\)-family if |/| - X and A{ <~)Aj - Ak n A[ 

whenever {/,/}, [k, /}£ [I]2. 

Definition 6.2.1. Let 0, k, A be cardinal numbers. The symbol (A, k) A(0) 

means the following: every (A, «)-family contains a A(0)-family. 

We shall ask for which values of 0, k, A the relation (A, k) A(0) is true. 

The first result of this kind in the literature seems to be due to Mazur [67], 

where the relation (Kl5 <n) -> A^j) is proved. The general problem was first 

discussed by Erdos and Rado [31]. Michael [68] independently discovered 

some of their results. Erdos and Rado returned to the problem in [33], and 

there completely answered the question of finding for given k and 0 (not both 

finite) the least A such that (A, <k) A(0). 

In Theorem 6.2.5 below we shall solve the easier problem of deciding the 

truth of the relation (A, k) -* A(0), under the assumption of the GCH. (This 

relation is easily seen to be equivalent to (A, <k+) -*■ A(0).) For a discussion 

not depending on the GCH, the reader is referred to Erdos and Rado [33] 

where the GCH is not assumed. 

A couple of simple remarks are in order. Every (A, K)-family where A > 2 

contains a A(2)-family, so in considering the relation (A, k) ^ A(0) only values 

of 0 with 3 < 0 < A need be considered, and (A, k) ->• A (A) is the strongest 

positive result while (A, k) f A(3) is the strongest negative result. Clearly if 

the relation (A, k) A(0) is true, then if Aj > A and 0 x < 0 also the relation 

(Xi, k) -»• A(0O holds; and moreover if < k also the relation (A, Ki) -*• A(0) 

holds. To verify the last claim, suppose given a (A, k 1)-family sA. . Choose pair¬ 

wise disjoint sets CA, one for each A msA , such that \A U CA \ = k and con¬ 

sider the (A, K)-family Q = {A ^ CA: A & sA}. Since for A, B from sA we have 

(A U CA) n (B U Cb) = A n B, any A(0)-family contained in G gives a A(0)- 

family contained in sA . 

The discussion is based on the following two lemmas. The proof for the 

first follows Davies [8]. 

Lemma 6.2.2. Suppose that A is an infinite regular cardinal, that k. > 1 and 

that riK < A whenever rj < A. Then (A, k) A(A). 

Proof. Take any indexed family sA = (Av\ v<\) where always \AV\ = k. If A 

of the Av are the same trivially sA contains a A(A)-family, so we may assume 

this does not happen and in fact since A is regular we may assume all the Av 

are different. 

Put S = U{,4„; v < A}, so |£| < k ■ A = A. In fact |S| = A, for if |5| = r\ < A 
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then S has only r]K different subsets of power k, and r?K < A. Take any well 

ordering-< of S with order type A. For each v, let (x(v, a); a < ev) enumerate 

Av in increasing-<-order, so |ej = n. For a with a. < k+, put Sa = (x(n, a); 

v< X}. Since S = LHS/; a < k + } and 151 = X with X regular and k + < 2k< X, 

there must be some Sa with \Sa\ = X. In fact, let j3 be the least ordinal with 

|5^| = X. Put T= U{5a; a < j3} so in < X, by the regularity of X. Then also 

I [T]'',<| < X. For each x in Sp, choose one v such that x = x(v, P). Consider 

the sets Xv = (x(n, a); a < 0} for each of these v. Then \XV\ = |j3| < k, so 

Xv e fn]^K. Since |5^| = X and X is regular, there must be X of the v having 

the same Xv. Thus there is L in [A]* such that for v, n in L we have X,, = XM=X 

say, andxO, j3)¥=x(ju,p). 

Inductively choose from L, for % with % < X, such that for all x in 

U{AV^; f we have x<x(y^, P). Since \ \J{AV^, f < |}| < X (again by the 

regularity) such v% can be found. Then always Av^ C)AV^ = X so (.Av ; | < X) 

is a A(X)-family contained in^f , and the lemma is proved. 

Lemma 6.2.3. Let 6V for v with v< k be cardinals such that 0V + l < 6. Put 

X = 2(II(0W; v < a); a < k). Then (X, <k) f A(0). 

Proof. For each a, let na be the cartesian product of the 6V with v<a, and 

put sd = Ufno,; a < k}. Consider the functions in sd. as sets of ordered pairs. 

Certainly \sA \ = X and |/| < k for each /in sfl.. Consider sA as an indexed 

family of distinct sets, indexed by X; then sA is a (X, <k/family and we shall 

show that A contains no A(0/family. 

Let 03 = (/•; / Gl) be an indexed family contained in A such that the 

pairs of elements from93 have constant intersection; that is, there is a subset 

F otAJ A such that/ Ag = F for all pairs / g from93 . Then |F’| < k, so if a is 

the least ordinal not in the domain of F then o< k. Also let r be the least 

ordinal such that p < t for all P in dom(F), so r < k. 

If o < t then a G dom(/) for all /from93 . The choice of cr ensures that 

/(a) Ag(o) for distinct/, g from93 , so if a < r then |/| < 9a < 0. On the 

other hand, suppose r < o. Then dom(F) = r so F ^A . Moreover, for any 

/ g in93 with f gA F we have t G dom(/) (9 dom(g-) and /(r) ^ g(r). Hence 

|/| < 0T + 1 < 6. So in either event |/| < 6. This proves the lemma. 

Lemma 6.2.4. Suppose k is infinite and X < k+. Then (X, k) ~f A(3). 

Proof. The relation (k+, k) f A(3) is an immediate corollary of Lemma 6.2.3. 

It can also be seen directly by considering the family (a; k < a < k+). Then 

certainly if X < k+, also (X, k) f A(3). 
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B\ Lemma 6.2.4. in considering the relation (X. x) -> A(0) we may hence¬ 

forth suppose that x K. X. The next theorem covers all non-tii\ial cases in 

which X + x > So- (Unsolved problems remain if both X and K are finite. See 

Hrdbs and Rado [31].) 

Theorem 6.2.5 (GCH). Suppose that X is infinite and x > 1. Then 

(i) if\ is inaecessible and x < X. then (X. x ) — A(X): 

(ii) ifX is singular and x, 6 < X. then (X x) -»• A(0 V 

(iii) if X is singular and k < X. then (X. x) ^ A(A): 

(iv) if\ < X'. theti (X+. x) AfX ): 

(v) if\ is singular and x. 6 < X. then (X . x) A(0): 

(vi) // X is sittgidar and X < x < X. r/nvz (X , x) i* A(X). 

Proof. Part (i) is immediate from Lemma 0.2.2. For (ii). take x and 6 with 

x. e < X. By Lemma 6.2.2. ((0K)+. x)-*- A((0K)+). Since (by GCH) (0K)+<X; 

and 0 < (0K)+. certainly (X. x) -»■ A(0). From fii). (vi follows trivially. Lemma 

0.2.2 implies (iv). noting that X is regular and that by GCH. X - X < X 

when x < X . 
For (vi), take x with X ^ x < X. Take a sequence CA„; r < x ) of cardinals 

such that always X,. < X and <Xr: v < X'x is a sequence cofmal in X. For a with 

a < x*. always FIiX;.: v<a)<X* < X' b> GCH, and II(V> v < X') = X* by 

Konig’s Tlteorem. Hence 

X+ < Z(II(A,,: i’<a): a< x+)< X* x’ = X+ . 

so b\ Lemma 0.2.3 it follows that (XT,<x ) ^ A(A): hence (X . x) A(X). 

Only (iii) remains, so suppose X is singular. Write X as a disjoint union, 

X = U a < x - where always Sai < X. Take pairwise disjoint sets Aa for o 

with o < X such that always A ff| = x. If a < X and a* G Sa. put Aax - A a. 

Consider the indexed family si = (.40V: .v G StT and a < X ). Clearly srt is a 

(X. xVfamily which contains no AfXYfamily . and so fiii) holds. This completes 

the proof. 

Lemma 0.2.4 shows that a (x~. xVfamily may fail to contain any non-trivial 

A-tamih . However, if some restriction is placed on the fx . xVtamily then 

positive results are possible. We shall investigate fx . xVtamilies sd. such that 

every two sets front si have an intersection of power less that 0. for some 0 

with 0 < x. Since the sets from such an indexed family sA. = (.4,: i G /) are 

pairwise distinct, we may identify pi with the non-indexed family \Ap. i G/} 

and refer to the degree of disjunction 5f p() as defined in Chapter 4. The fol¬ 

lowing theorem is from Lrdos. Milner and Rado [34], 
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Theorem 6.2.6 (GCH). Let srt be a (k+, nffamily with 8(sd.) = 0 where 0 < k. 

(i) If 9 <k' then sd contains a A(k + \family. 

(ii) If k < 0 < k and r}<K then s4 contains a family. 

Proof. Let the family sK = {Av: v < k + } be given, with 8(sd ) = 6 and \AV\ = k 

for each v. Use transfinite induction to choose subsets Ia of k+ for a with 

a < k4 + so that 4 is a subset of k+ U{l@; (3 < a} maximal with the property 

that {Av — U{AM; iu.EIp for some (3 with (3 < a}; v E 7a,} is a pairwise disjoint 

family. For brevity, put 

1(a) = U[Ip;(3< a} , /1(a) = G7(a)} ; 

thus /a is a subset of k+ - 1(a) maximal such that {Av - .T(a); v E 4) is pair- 

wise disjoint. Thus in particular 

{n,v} <E [Ia}2 =>A^nAv CA(a) , (1) 

since by choice of 4 it follows that (/1M - A(a)) n (Av - /1(a)) = 0. Further, 

v E k+- 1(a) ^ \AV E A(a)\> \a\ . (2) 

For take any (3 with (3<a. Since v (fc Ip by the maximality of 4 there is ju(fi) 

in 4 such that (Av - A(fi)) n (A^ - A((3)) =£ 0. Hence we can choose Xp 

from (Av fi /lM(j3))) — A((3). And if 7 < (3 then xy i^Xp since xy EA^y) C A((3). 

Thus 13 < a} C Aa EA(a), so indeed IAa n A(a)\ > |a|. 

Now we can prove (i). So suppose 0 < k , and we wish to show that sd 

contains a A(/c+)-family. Assume first that 141 ^ k for all a with a< 9. Then 

\I(Q)\ < 9 • k = k, so \A(9)\ < k ■ k = k and |k+ - 7(0)1 = k+. By (2), \AVEA(9)\ 

> 0 for each v in k+ — 1(0), so we can choose Bv from \AV E A(9)]°. How¬ 

ever, [A(9)]e < Ke = k and so there must be distinct n, v in k+ - 1(9) for which 

7?M = Bv. But then \A^ E Av\> |PM| = 0, contradicting that 8(srt) = 9. 

Thus there must be a with a < 0 for which |7a| = k+, and in fact let a be 

the least such ordinal. Then L4(a)| < |a| • k • k = k. Put 

P= {vEIa-\AvnA(a)\>Oy,Q= {v EIa. \AV E A(a)\ < 9} . 

Consider what would happen if PI = k + . Then for each v in P, choose Bv from 

\AV EA(a)}6. Since |[/l(a)]e| < k° = K, there must be distinct n, v in P for 

which 74 = Bv. But then |/1M EAV\ > U4I = 9, contrary to 8(s>t) = 9. Thus in 

fact |P| < k+, and so |<2I = k + . Since | [/1(a)]' °\ < Kd = k there must be A in 

[A(a)]<0 and Q' in [<2]*+ such that Av EA(a) = A whenever v E Q'. Thus 

(Av E A(a)] v E Q') is a A(/c+)-family and hence by (1), {Av\ v E Q'} is a 

A(x+)-family, and is contained in srt . Thus (i) is proved. 

Now consider (ii). Thus k is singular, k < 0 < k and 17 < k. By increasing 
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8 if necessary, we may assume that 6 ¥= k . Suppose |/(k)| ^ k. Then \A(k)\ 

k ■ k = k and |k+ - I(k)I = k+. By (2), \AV DA(k)\>k whenever v Gk+ - I(k). 

Thus there is a decomposition lT3 = {A„ n A(k); v G k+ - /(/<)} of a set of 

power k into k+ sets each of power at least k, with S(ci6)< 8. By Theorem 

1.1.6 this is impossible. Hence |/(k)| = k+. Since I(k) = U{/a;o; < k}, there 

must be a with a < k such that |/a| = k+, and we may suppose that a is the 

least such ordinal. Then f4(o:)| • k ■ k- k. Again by Theorem 1.1.6 there 

cannot be I in [Ia]K+ such that \AV n A(a)| = K for each v in /. Thus there 

must be 1 in [/a]*+ such that \AV nd(a)| < k for each v in /. There is a cardi¬ 

nal Ki with K! < k and a set /' in [7]K+ such that \AvnA(a)\ = k i for all v in 

/'. By Theorem 6.2.5(v), (k+, k i) -► A(i?). Thus there is /" in [/'j77 such that 

(Av HA (a); v £/”) is a A(p)-family, and so by (1) also {Av\ v £ i"} is a 

A(rj)-family. This proves (ii). 

The result in (ii) in the theorem above is the best possible in the sense that 

if k is singular then there is a (k+, «)-familyizf with 8(srf) = k' which contains 

no A(K)-family. For take a sequence <kct; o < k') of cardinals below k with 

k = 2(kct; o<k'), and let P be the cartesian product of the sets Ka. For each/ 

in P, put Bf= {/T o:o< k'}- Take pairwise disjoint sets C/with |C/| = k, dis¬ 

joint from all the Bf, and put Af = Bf U Cf. Then7?. = {Af,f £ P} is a (k+, k)- 

family with 8(srf) = k . Suppose {Af,f& Q} where Q CP is a A(|Q|)-family. 

For distinct / g from Q then Af n Ag = Bf n Bg, and there is o with a < k' 

such that / T o$BfnBg (for otherwise Bf= Bg and so f = g). Clearly the 

least such a is a successor ordinal, a = r + 1, and f(r)^g(T)- Further, a is the 

same for all pairs/, g from Q. Hence \Q\ < kt < k. 

The restriction that 0 < k in Theorem 6.2.6 is justified by the following 

example of a (2*, K)-family srt with §W) = k which contains no A(3)-family. 

For each fin K2 put Af = {/Ta; a < k}. Then the family sd= {Af,f&K2} 

is a (2K, k/family with 8(srf) = k. Suppose {A where I C K2 is a 

A(|/|)-family. For distinct / g from I there is a with a < k such that / pa ^ 

Af n Ag. The least such a is a successor ordinal, a. = 13 + 1, and moreover is 

constant for all pairs / g from /. Thus f((3)^g((l) for distinct /, g from I, so 

that \I\ < 3. Hence s>{ contains no A(3/family. 

Lemma 6.2.4 gives also the result (/,/<)/• A(3) if X < k , and one may ask 

if a restriction to the degree of disjunction of the (X, k/family will lead to a 

positive relation, as happened in Theorem 6.2.6 when X = k+. However, no 

such positive relation is forthcoming; the following gives an example of a 

(k, x/family A with 8{sd) = 2 which contains no non-trivial A-family. For a 

with a < k, put Aa = {(a, j3); j3 < k} U {{pi, a): p< a}. Then if 7 < a < k, 

clearly A7 r)Aa = {<7,a)}. Hence (Aa: a < k) has the required properties. 
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§3. Weak delta-systems 

An indexed family = (Ap, i £/) is said to be a weak A(X)-family if 

|/| - X and |Aj Aj\ = IHd;| whenever {/,/}, {k, l} €= [/]2. Clearly every 

A(X)-tamily is also a weak A(X)-family, but not conversely. We shall consider 

those cases when the relation (X, k) -»■ A(0) from the last section is false, and 

ask about the truth of the weaker requirement that every (X, /O-family con¬ 

tain only a weak A(0)-family. 

Definition 6.3.1. Let 6, k, X be cardinal numbers. The symbol (X, k) -»■ wkA(0) 

means the following: every (X, k)-family contains a weak A(0)-family. 

The relation (X, k) -+ wk A(0) was introduced by Erdos, Milner and Rado 

[39], and for infinite X and k they gave a complete discussion (assuming GCH). 

The same simple remarks that were made in the last section shortly after 

the definition of the relation (k, X) A(6) apply also to the relation (k, X) 

wk A(0). 

Lemma 6.2.4 shows that (X,k) 0 A(3) whenever X < k+, so a discussion 

of the relation (X, k) wk A(0) is pertinent. Many special cases need to be 

considered, and there is no simple result analogous to (X, k) -/> A(3). We first 

establish several lemmas. 

For the rest of this section, write 4>(k) for the number of cardinals less 

than or equal to k, so 

i//(k) = I {T7; 77 is a cardinal and 0 < 77 < k}| . 

Thus if k = then i//(k) = |a| + K0. 

Lemma 6.3.2. Suppose X (d)2 (Ky Then (X, k) ->• wk A(6). 

Proof. Let srt - (Av\ v < X) be any (X, K)-family. For each cardinal 17 with 

r? < k, put 

= {{p, v} e [X]2; I An nM„i = 17}, 

so [X] is the union of the Fv. By the partition relation X (0)p(K), there is 

H in [X]0 such that [H]2 C for some 77. Then (Av\ uGH) is a weak A (01- 

family contained in sft. 

Lemma 6.3.3. For all infinite cardinals k, the relation (2^(K), k) f wk A(3) 

holds. 



148 Decomposition and intersection properties Ch. 6.3 

Proof. Let (Xp:0< \P(k)) enumerate in order all cardinals (finite and infinite) 

strictly less than k. Start with a pairwise disjoint family {A(g);g E P2 for 

some 0 with 0 < \Js(k)} where ifg E p2 then |X(g)| = Xp. For/in ^(k)2 put 

Af= U{X(/T 0);0 <$(*)} , 

so always L4r| = Z(X}: 0 <\J/(k)) = k. Consider the (2*(k), k/family^ = (Af; 

f^'PM2). For distinct/, g from as before write 5(/, g) for the least 

ordinal a such that f(a) =£ g(a), and note that Af n Ag = U {X(f P0); 

0<S(fg)1so 

\AfnAg\ = X(\}-,p<8(f,g)). 

Thus \Afr\Ag\ = Aif 5(/. g) is infinite, and \Af H/l J = /§(/ g)(5(/g)+l) 

if s(f g) is finite. Take distinct functions/, g, h from We may suppose 

5(/ g) =£ 5(g, h), and hence \Af nAg\±\Agn Ah|. Thus the family sA con¬ 

tains no weak A(3)-family, and the lemma is proved. 

Lemma 6.3.4. Let \ — k \ then (A+, wk A(A). If A - Sq then 

(A+. ~A A(A). 

Proof. Take a sequence < A0 : o < k) of cardinals such that always 1 < ACT < A 

and A = A(Aff; o< k). Choose a pairwise disjoint family {X(g);g E X(Xa;o<0) 

for some 0 with 0 < k}, where if g E X(Aa: o<0) then IA(g)| = Np+i- Write 

P= X(Act; o<k) and for/inPput 

Af= U{X(/rP):p<K} , 

so always \A/\ = 2(^p+1: 0 < k) = ttK. And from Konig’s Lemma, |.P| > A, so 

the family sA = (.4 r-;/E P) is a (> A+. NK)-family. For distinct f g from P we 

have Af Ci Ag = U{X(/rj3); )3< 5(/, g)} so that 

I Af Ci Ag\ = A (^(3+i :0<8(f, g)) = (f'g) . 

Let (T3 = {Af,/E /) be a weak A-family contained in sA , where we may sup¬ 

pose I C P. Then 5(/ g) must be constant for all pairs {/, g} from [/]2, say 

with value o (so o < k ). Then |/| < ACT < A. Hence sA contains no weak A(A)- 

family. 

If A’ = N0, modify the above construction by starting with |.Y(g)| = 0 + 1 

wheng E X(Act: a < 0), and noting that 0 is finite. 
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Lemma 6.3.5. Let k be regular, and let f be a function, f: [k+]2 ^ {0, 1}. 

There is a (k , k )-family (Av; v < k+) such that whenever p<p < k + then 

\A^nAv | <K iff (ill, n}) = 0; L4m HAv\ = k iff ({a, v}) = 1 . 

Proof. Start with a pairwise disjoint family {5^; a < k+ and P<C k} where 

each Sfyfl has power k . Since k is regular, by Theorem 1.3.3 any family Tg of k 

pairwise almost disjoint sets each of power k has a k-transversal, that is, there 

is a set T with 1 <1 \B n T\ < k for each B in^ . Thus we can inductively 

choose sets B^ of power k for p with p < k + such that B^ is a k-transversal of 

a < p and P< k} U {Ba\o<pj. 

P.ut Sa = \J{Saf, P < k}, for a with a < k+. Then the Sa are pairwise dis¬ 

joint. An easy induction shows that always B^ C U{Sa;a< p}. Put AafX - 

Sa n B^, so BM = U {Aa^; a < if}. Also \Aail\ = k whenever a < p, for then 

\Sap H Bf\ > 1 for each ft (with P < k) and Sap H Bu C Sa H BM = Aajl. 

For v with p < k+, put 

Av = Sv U U{A^v\p< v and f({p, p})= 1} . 

Then Sv QAV C LHSq,; a < p} so \AV \ = k. Thus if sd - (Ay, p < k+) then sd 

is a (k+, «)-family. Further, sd has the required property. For take p, v with 

P<p<k+. If f({v,p})= 1 then^C 5^ nAvCA„ DAU so |Au C)AV\ = k. 
If/({q, p}) = 0 then 

An TiA„ C U {Aay,o<p} H U [Aav;o <p} = B^D Bv 

so 1 An TAV\ < k, since \B^ n Bv\ < k by choice of Bv. This proves the lemma. 

Theorem 6.3.6 (GCH). Suppose k is an infinite successor cardinal. Then 

(k+, k) f wk A(k+) and (k + , k) -> wk A(k). 

Proof. To see that (k + , k) -> wk A(k), note that if k = v+ then the number 7 

of cardinals <k is the same as the number of cardinals <77, so 7 < 77 < k. By 

Theorem 2.2.4 the partition relation k+ -+ Ck)2 holds, so (k + , k) wk A(k) 

follows from Lemma 6.3.2. 

To establish that (k+, k) f wk A(k+), note that k+ f (k + )\ by Theorem 

2.5.7. Thus there is a function/: [k + ]2 -+ (0, 1} such that if HC k + and/is 

constant on [H]2, then \H\ < k+. Take the (k + , K)-familyy? constructed in 

Lemma 6.3.5 for this particular function/. Then sd contains no wk A(k+)- 

family. 
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Theorem 6.3.7 (GCH). Suppose k is not a successor cardinal. Then 

(i) (k+, k) -A wk A(k), 

(ii) if# o<k< and 6 <k then (k+, k) -> wk A(0), 

(iii) if k = K0 or tfK = then (K+> K) ^ wk ^(3). 

Proof. For (i), given any function /in K2, put Af = {/ F a; a < k} and consider 

the family sd = {Af'. f £ K2). Then sd is a (x , x/family of pairwise different 

sets. For distinct/, g in K2 we have Af nAg= {f a; a < 8(f, g)} so 

Af H Ag\ = \8{f,g)\. Let (Af'fef) where ICK2 be a weak A-family con¬ 

tained in sd . say AfT\Ag\ = t? for distinct / g in/. Then 77 = |5(/ g)l <x. 

Thus for all {/, £■} from [I]2 we have |5(/, £)l = V so 5(/, g) < V+• Thus 

|/1 < | {/ fa;/e *2 and a < t?+}| = 2T)+ = r?++ < x . 

Hence .stf contains no weak A(x/family. 

To show (ii), suppose K0 < «■ < and take 9 with 9 < x. The restriction 

on x ensures that i//(x)< x. Because x is a limit cardinal with 9 <k then 

x -*(0)}(K) (from Theorem 2.5.10). Hence (x,x)-»- wk A(0) by Lemma 6.3.2, 

so surely (x +, x) ->• wk A(0). 

Finally for (iii), suppose x = K0 or x = Thus x = i//(k), so Lemma 6.3.3 

ensures that (x+, x) > wk A(3). This completes the proof. 

Together, Theorems 6.3.6 and 6.3.7 provide a complete discussion of the 

relation (x+, x) -* wk A(0). We shall now consider the relation (X, x) wk A(0) 

in the case FI0 < X < x. The discussion breaks into several cases. (The GCH is 

assumed throughout.) 

If X < iP(k)+, it follows from Lemma 6.3.3 that (X, x) / wk A(3), so we 

may suppose that i//(k)+ < X < x . Suppose First that X is not a successor car¬ 

dinal. By Theorem 6.3.7(i), (X+, X) / wk A(X), and hence (X, x) / wk A(X). 

If 9 < X then X -»• (0)^(K) (from Theorem 2.5.10) and hence (X,x) ->■ wk A(0) 

by Lemma 6.3.2. Now take the case that X is a successor cardinal, say X = p+. 

If 77 is not a successor cardinal, by Theorem 6.3.7(i), (77+, 77) / wk A(p) and 

hence (X, x) wk A(77). However, if 9 < 17 then p+ -> (0)^(K) since 1Jj{k) < 77 

and so (X, x) -> wk A(9) by Lemma 6.3.2. The final case to consider is that 

X = 77+ where 77 is a successor cardinal. Here (77/ 77) / wk A(t7+) from Theorem 

6.3.6, so (X, x) / wk A(X). And if 9 < X, since 1\j{k) < 77 = 7/ it follows from 

Theorem 2.2.4 that t?+ -> (0)^(K) so (X, x) wk A(0) by Lemma 6.3.2. All 

cases have now been covered. 

The remaining situations where the strong relation (X, x) -> A(0) fails are 

given by Theorem 6.2.5(iii), (vi). Theorem 6.2.5(iii) states that (X,x) / A(X) 

if X is singular (and x < X). In fact the example given to establish this result is 

an example of a (X, x/family which contains no weak A(X)-family, so the 
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stronger negative relation (X, k) ft wk A(X) holds. There remains the result in 

Theorem 6.2.5(vi): if X is singular with X' < k < X then (X\ k) ft A(X). In 

this situation one can ask if either of the relations (X+, k) -» wk A(X+) or 

(X , k) -> wk A(X) hold. The outcome is summarized in the following theo¬ 

rem. 

Theorem 6.3.8 (GCH). Let X be singular with X' < k < X. IfX' is countable 

or < k then (X+, k) ft wk A(X);otherwise (X+, k) -*■ wk A(X+). 

Proof. By Lemma 6.3.4, (X+, tty) ft wk A(X) so if tty < k then certainly 

(X+, k) ft wk A(X). If X' = tt0 then even (X+, tt0) ft wk A(X) so (X+, K) ft wk A(X) 

for all k. So suppose X < k < Sly with X' ^ So. We shall show that in this situ¬ 

ation, (X+, k) ->■ wk A(X+). 

Take a (X+, k)-family sA - (Av; v < X+) and for a contradiction we shall sup¬ 

pose that sA contains no weak A(X+)-family. There is a least cardinal r\ such 

that^ contains a (X+, K>family 15 with 8(15) = p (so 0 < p < k+), and we 

may in fact suppose that sA =15 . 

Suppose for the moment that p is a successor cardinal, say p = 6+. Take any 

A in sA , and put 

J(A)= {p<X+-,\AvnA\ = 9} . 

Since l[.4]e| = k° < kk < X, if \J(A)\ = X+ then there would be B in [A]e and 

J in [/C4)]^+ such that .4 j, C\A = B for all v in J. Then for distinct p, v from J 

since B CAU HAV it follows that 9 = \B\ < L4M <^AJ < 8(sA) = 0 + ; hence 

\Afj_ n Av\ = 9. Thus (Ay, rG/) would be a weak A(X+)-family contained in sA , 

contrary to the choice of sA . Hence \J(A)\ < X for each A from sA . This means 

that we can choose inductively ordinals p(a) for a with a < X+ so that 

p(a)EX+ - U{J(Am)-,p<a} . 

Then Av(a) n < $ whenever (5 < a, so that GO = (A^y a < X+) is a 

(X+, /v)-family contained in sA with SOTS) < 9. This contradicts the minimum 

property of p. Consequently p cannot be a successor cardinal. So further 

0 < p < K. 

It follows that r]1 X'. If p = tt0 this is trivial since X' ¥= tt0. Otherwise 

since p < k < tty, then p = tta for some a where 0 < a < X\ Since p is not a 

successor, p = X^tt^; (3<a) and hence p' < |a| < a < X'. Thus indeed p' =£ X’. 

Use transfinite induction to choose non-empty subsets Ia of X+ with always 

141 < X, for a with a < k+, as follows. Suppose for some a that Ip has al- 
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ready been defined for all (3 with (3 < a. Put 

1(a) = U{/p; P < a};/4(a) = U{v4m;/j e/(o;)} . 

Then |/(a)| < X • k+ = A and f4(a)| < k • A = X. Define /*(a) by 

7*(a) = {n < A+; \AV C> /4(a)| > 17} . 

Put sA *(a) = {Av Ci/4(a); r£/*(a)}; then sA*(a) is a family of the at least 17 

size subsets of/4(a) with 8(A *(a)) ^ 17. Since |/4(a)| ^ X and A ^ rj it follows 

from Theorem 1.1.6 that |7*(a)| ^ X. Thus X - I' (a) ^ 0- Choose tor 7a a 

subset of X+ - 7* (a) maximal with the property that {Av - /4(a); v G7a} is 

pairwise disjoint. We must verify that \Ia\ < X. Suppose, on the contrary, that 

|/a,| = A+. For each v in la since v ^ I*(a) it follows that \AV Cl /4(a)| < 17. 

Since the number 7 of cardinals less than 17 satisfies 7 < 77 < k < X, there must 

be a cardinal 6 with 0 < 7? and a set 7 in [Ia]x+ such that always \AvC\A(a)\ =0 

for n in 7. Now {/4y - /4(a); r£/a} is pairwise disjoint so/4^ C\AVC /4(a) 

for distinct p, v from Ia and hence |/4M n Av\ < 0. ThusDS * = (Av; v G Ia) 

gives a (X+, k)-family contained in sA with 5(‘T3*) < 9 +. Since 77 is a limit car¬ 

dinal, 6+ < 17, and this contradicts the minimum property of 77. Thus in fact 

141 <A. 
In particular, / + ^ 0. Choose p from IK+. Then p $ 4 whenever a < k . 

By the maximal property of 4 there is p(a) in 4 such that (AM n .4M(a)) - 

A(a) =£ 0. Choose xa from (/4M n AM(a)) — .4(a). If a < (3 < k+ then 

xa G/4M(a) C /4(/3) while x^ ^ zl(j3) and hence xa ± Xp. Thus |/4M| > I {xa; 

a < k + }| = k + ; yet f4M| = k. This is the required contradiction. Thus sA must 

contain a weak A(A+)-family, and the relation (A+, k) -*■ wk A(A+) is estab¬ 

lished. 



CHAPTER 7 

ORDINARY PARTITION RELATIONS 
FOR ORDINAL NUMBERS 

§ 1. Introductory remarks 

As noted in Chapter 2, the definition of the ordinary partition relation for 

cardinal numbers can be extended to order types. In this chapter we shall con¬ 

sider the partition symbol for well ordered types, that is, for ordinal numbers. 

The definition is as follows. 

Definition 7.1.1. Let a, 7, ak (where k < 7) be ordinal numbers and let n be a 

positive integer. The ordinary partition symbol a -+ (ak, k < 7)” means the 

following. Let S' be a set ordered with order type a. For all partitions 

\ = {Ak',k<y} of [S]" into 7 parts, there exist k with k < 7 and a subset H 

of S having order type ak such that [H]n C Ak. 

The various conventions concerning the use ot the partition symbol adopted 

for cardinal numbers in Chapter 2 will be followed without further comment 

for ordinal numbers. 
The problems concerning the symbol for ordinal numbers are considerably 

more ramified than those for cardinal numbers. We shall confine most of the 

discussion to the case n — 2, and frequently 7 = 2 as well. Even so theie aie 

many unsolved problems, and we shall not attempt to cover even all the cases 

where progress has been made. We shall limit our treatment to a lew special 

Cases where a reasonably complete discussion is possible. Thus §2 is devoted 

to partitions ot [coa]^ into two classes, mainly toi finite ol. In §0, we piove 

Chang’s theorem for o/A And in §4 we shall consider relations of the form 

coj -+ (ttl,..., ak)2, and prove that co! (a)2 for countable a and finite k. 

In this chapter we shall need to distinguish clearly between the order type 

of a well ordered set and its cardinality. The problem is particularly acute 

with the initial ordinals. When order type is to be emphasized, we shall write 
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co, co!, CO2,coa,... for the sequence of infinite initial ordinals, although 

the sequence N0, «l9 N2> •••> of infinite cardinals denotes the same se¬ 

quence (as a sequence of sets). It will be left to the context to distinguish be¬ 

tween the symbols oP for ordinal exponentiation and kx for cardinal expo¬ 

nentiation. In particular, symbols such as co^, co« , ... stand for the ordinal 

operation, whereas Na‘ °, ... indicate cardinal exponentiation. The sym¬ 

bols 20, n0 are used to indicate the ordinal sum and the ordinal product of 

a well ordered sequence of ordinals. 

It is easy to see that a partition relation between cardinal numbers is equiv¬ 

alent to the same relation between the corresponding initial ordinals. 

Unlike the situation with cardinal numbers, for ordinal numbers results 

with n = 1 are not trivial. In [73], Milner and Rado consider this situation. 

They give an algorithm to determine in finitely many steps for any sequence 

(ak: k < 7) of ordinals the least a such that a -»• (ak\ k < 7)1. We mention a 

couple of results from [73], but otherwise refer the reader to the original. 

There is the following lemma. 

Lemma 7.1.2. (i) Suppose a -* (otk; k < 7)1 and ]3 ((3k; k < 7)1. Then 

a(]^(ak PkikKy)1. 

(ii) Let 7 be finite. Suppose -> (07,fc; k < 7)1 for p with p < p. Put 

a(p) = n0(aM; p < p) and ak(p) = n0(aMfc; p < p). Then a(p) -*• (q:fc(p); k< 7)1. 

Proof. A special case of (i) was stated as Lemma 5.1.6, and the proof of the 

general case hardly differs from the proof of Lemma 5.1.6. Let S be a set well 

ordered with order type aft, so we may suppose S = (3 X a under the lexico¬ 

graphic ordering. Take any partition S = U{ A^; k < 7}. For x with x < (3 put 

A*-(x) - {y < a; (x, y) £ A^}. For each x, we have a = U{ Ak(x): k < 7}, and 

so there is k(x) such that tp(Afc(.x)(x)) > ak(xy Put rfc = (x < (3: k(x) = k}, so 

(3 = U{Tfc; k < 7}. Then there is k0 such that tp(rfco) = (3k(). Put R = 

{(x, y)ES:x G rkQ andy £ A^(x)}. Then R C Ak() and tp(R)> akQPk(), so 

tp(Afe0) > ak0Pk0 - This proves (i). 

To prove (ii), for each v with v < p, put a(v) = IIq^; P < v) and 

ak(v) = Yl0(a^k:p < v). Use transfinite induction on p. The case p = 1 is 

trivial. Suppose p is a successor ordinal, say p = o + 1. Then a(a) -> (07(0); 

k < 7)1 by the inductive hypothesis, and aa (aak\k < 7)1. So by (i), 

a(p) ->• (ak(p); k < 7)1. Now suppose that p is a limit ordinal. Let S' be a set 

well ordered by a relation < with order type a(p), and suppose S is partitioned, 

S = U{ Ak\ k < 7}. For each p with p < p there is a subset of S with 

tp(7"M) = a(p). By the inductive hypothesis there are always k(p) and a subset 

H^l of with tp(//„) > am(p) and C Ak(p). Put Tk = {p < p; k(p) = k}. 
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SO p = U{rfc ; k < 7}. Since 7 is finite and p is a limit ordinal there is some k0 

such that r*.Q is cofinal in p. Then for each p in I\0 we have 

tplA/co) = tp(Afc(M)) > tp(Hfi > afc(M)(p) - akQ(p) . 

Hence tp(AfcQ) > supfop^fp); p £ Tfc()) = otkQ(p). This completes the proof. 

Theorem 7.1.3. If m is finite then coa -* (co01)^. 

Proof. From Lemma 7.1.2(ii), noting that co -► (co)^. 

The second, somewhat surprising, result from [73] concerns partitions into 

infinitely many classes. It has been referred to as the Milner-Rado paradox. 

Theorem 7.1.4. For all (3,ifot< cop+l then a (cop; k < co)1. 

Proof. (Note that trivially cop+l -»■ (cop+1 )£,, so certainly top+x -»■ (cop, k < cu)1.) 

It suffices to show that if a < cop+x then cop k < co)1. This we prove 

by induction on a. The case a - 1 is trivial. Suppose a is a successor ordinal, 

o = 7+ 1, and coj (coj): k < co)1. Take any set S ordered by a relation < 

with order type top, so S = U (SM: p < cop} where tp(SM) = to} and < Sv 

whenever p < v < cop. By the inductive hypothesis, for each p there is a de¬ 

composition = Ur Auk\ k <' Co} where tp(Auk) < cop. Put A0 = Ax = 0 

and for k with k > 0, 

A&-+2 = U { Ap < cop} . 

Then S = U{ A^; k < to] and tp(A0) = tp(Ax) = 0, 

tp(A/c+2) ^ S0(cop', p < cop) = cop 1 < COp+2 . 

This gives a partition of S which demonstrates cop fi (cop;k < co)1. Now sup¬ 

pose a is a limit ordinal and that coj (cop, k < co)1 whenever 7 < a. There 

is a sequence (a(p); p < cop) of ordinals below a with a(0) < a(l) < a(2)... 

such that a = sup (a(p); p < top). Let 5 be a set ordered with order type 

20(co^(m);p < cop), so tpfS) > cop, and write S' = U;SM; p < cop; where 

tp(NM) = cop^ and SM whenever p.<v< cop. By the inductive hypothe¬ 

sis, for each p there is a decomposition SM = U{ AM/f; k < <0} where 

tp(AMfr) < coj3- As before, put A0 = Ax = 0 and for k with k > 0, 

Afc+2 = U{AM/f;p< cop} ; 

then this decomposition of S shows cop (cop: k < co)1. This completes the 

induction, and proves Theorem 7.1.4. 
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We shall conclude this section by noting a couple of negative relations. 

Theorem 7.1.5. For all (3, if a< cop+y then a -/*■ (cop + 1, co)2. 

Proof. If |a| < ftp this is clear, so suppose |a| = Np. Let <C be a well ordering 

of a of order type cop. Define a partition [a]2 = Aq U Aj by: if a, r < a with 

a < r, 

{ff,r}GAo°o^r; {a, r} E Ay o > t . 

Take a subset H of a. If [H]2 C A0 then both < and < agree on H, so 

tp(H, <) = tp(H, <); hence tp(//, <) < cop. If [H]2 C Ay then H enumerated 

in increasing border gives a descending <-chain of ordinals; hence H is fi¬ 

nite. Thus this partition of [a]2 suffices to prove the theorem. 

Results of Kruse [62] extend Theorem 7.1.5 as follows for values of n 

with n > 3. 

Theorem 7.1.6. Suppose n > 3. For all (3, if a < cop+1 then a -f> (cop + 1, n + 1)”. 

Proof. By Theorem 7.1.5, a -f (cop + 1, co)” . Thus there is a disjoint parti¬ 

tion A = {Aq, Ai} of [a]”-1 such that there is no subset ,4 of a of order type 

cop + 1 with [A}n~l C A0, nor an infinite subset B with \B\n~l C Aj. Define 

a disjoint partition T= { T0, Ti} of [a]” as follows: if oy < o2 < ... < on < a 

then 

{ (7 j, ..., } E Tq ^ ( 01, ..., On_y~} F Ay Or {02,*.., 0fj}EA() ? 

{oy, ..., on} E Ty {Oi, ..., on_y} E A0 and {o2, ..., crn} E A! . 

Take H from [o]"+1, say H = {aj,..., o„+1}, listed in increasing order. If 

both {a1;..., on} E Ty and {a2,..., o„+1} E Ty we would have the contra¬ 

diction {a2, ..., a,,} E A0 Ei A1# so [H]2 <£ Ti- 

Suppose there is a subset H of a with tp(//) = cop + 1 such that [H]2 C T0. 

Put 

B = {a E//; for all {a1; ..., on _i} from [//]”'1, if 

01,..., an_. i < a then {ax,..., on^y) EAj , 

so [B]n 1 C Ay. Put A = H - B: then B <A. And in fact [A ]"“1 C A0. For 

take Ty,..., Tn_y from A where Ty<T2< ... < Tn_y. There are ..., on_y in 

B with 0i < ... < 0„_i < Ty and {01, ..., on_ y} <$ Ay. Let 0j,..., om list 

{01,..., 0«_i) U {n,..., r„_i) in order (so m = 2n - 2 or 2n - 3 depending 
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on whether on_1 < ri or = n). Always {af+r,..., oi+n} E r0, and 

{al5 on_x} ^ Aj. Hence an easy induction on i shows that always 

{°i+2> •••> oi+n) E A0. In particular {n, Tn_i} G A0, so indeed [df_1CA0 

as claimed. Now tp(5) + tpU) = tp(//) = cop + 1, so either tp(5) > to or 

tp(H) > top+ 1. This contradicts the choice of the partition A. Hence if 

H C a with tp(//) = co^ + 1 then [H]2 <£ T0. Thus the partition T of [a]” suf¬ 

fices to prove the theorem. 

§2. Countable ordinals 

In this section we shall discuss partition relations of the form a ->(a0,GT)” 

where a: is a denumerable ordinal. From Ramsey's theorem, a -> (to, to)n. By 

Theorems 7.1.5 and 7.1.6 (with (3 = 0), a f (to + 1, to)2 and a -f (co+1, n+l)n 

if n > 3. Hence the only relations of interest are those of the form a^-(a0,m)2 
where m is Finite. 

Some of the first such relations to be established are in Erdos and Rado 

[29], where it is shown that com -»• (co + /, m)2 and com -/► (to + 1, m + l)2. 

Moreover, for each k and m it is shown that there is a least integer l0(m, k) 

such that tol0(m, k) (tok, m)2, and that a > (tok, m)2 if a < tol0(m, k). In 

[32], this result is generalized to arbitrary j3 by showing that there is a least 

integer lp(m, k) such that toplp(m, k) -+ (topk, m)2, and that a (topk, m)2 

if a < coplp(m, k). Erdos and Rado conjecture in [32] that in fact lp(m, k) = 

l0(m, k) for all (3. This was later proved correct by Baumgartner [3], The 

reader is referred to the papers mentioned for the proofs of these results. 

We shall concentrate on partition relations for to01, the ordinal powers of 

co, with countable a. The first results will be concerned with con for Finite n. 

For each positive integer n, put 

M»= G nto\a0 <ax < ...<an_ J , 

and let < be the lexicographic ordering of W(n), so 

(a0, ...,an_x)< (b0.bn_l)oa0<b0 

or (a0 = b0 and ax < bx) or ... . 

Under this ordering, W(n) has order type co”. For a sequence a from W(n), 

the Fth component of a will be denoted either by ax or a(i), and similarly 

with b, c, ... . 

Definition 7.2.1. A subset S of W(n) is said to be free in the i-th component 
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if for all <a0, ..., an_x) in S there is an infinite subset A of oj such that for all 

a in A there are a\+1, an~i in co such that («o> •••» ai-v a> ai+1> •••* an- 

Lemma 7.2.2. Let S be a subset of \V(n) and take m with m<n. Then 

tpfS') > if and only if there is a subset T of S which is free in m different 

components. 

Proof. Suppose there is T with T C S such that T is free in m components. 

We shall show tpfT) > um (and so also tp(S) > com) by induction on m. This 

is trivial for m = 1. So take T, free in m + 1 components. Let i be least such 

that T is free in the z-th component, and let A be the infinite set of z-th com¬ 

ponents given by the definition. For each a in W(i + 1) which is an initial seg¬ 

ment of a sequence in T, the set 

T(a)= {bET:b f0'+ l) = fl} 

is free in m components and so by inductive assumption tp(r(a)) > com. Since 

tp(T) > 20(tp(r(a));fl(z)Gv4) thus tp(D > umoo = com+l. 
Now suppose tp(5) > um, and use induction to show that there is a subset 

of S free in m components. We may suppose tp(5) = com. If m = 1, let z be 

maximal such that there is some sequence a of length z for w'hich the set 

T(a)= {b eS.b ri = a} 

is infinite (where z = 0 and a = 0 is allowed). For such an zz, put^4 = {bp, 

b G T(a)}-, then the choice of z ensures that A is infinite. Thus T(a) is a subset 

of S free in the z-th component. 

Now suppose the statement is true for m, and take a subset 5 of It'(zz) with 

tp(5) = tom+1. Let z be the largest integer such that there is a sequence a in 

W(i) for which the set 

T{a)= [bGS.b fz = a} 

has order type cow+1. (Again z = 0 is allowed). So by the choice of i, for such 

an a, if 

Tx(a)= {beT{a):bi = x} 

then tp(rx(a)) < ojfn for each x in co. Put 

X= {xGcu;tp(rY(a)) = cow} , 

then X is infinite (since co'” + 1 = tp(r(zz)) = S0(tp(7’x(a));x G co)). By the in¬ 

ductive hypothesis, each Tx(a) for x in X is free in m components. Hence 

there is an infinite subset A of X such that all the Tx(a) for x in A are free in 
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the same m components. But then if T = U{rv(a);.Y E.A}, it follows that T 

is free in the z'-th component and m later components; thus T is a subset of S 
free in m + 1 components. This completes the proof. 

The first paper in which partition relations for co" are proved is Specker 

[93], where it is shown that co2 -»• (co2, m)2 for every finite m, and co" f 

(co", 3)2 it n > 3. The following simple proof of the first of these relations is 

from Haddad and Sabbagh [50], 

Theorem 7.2.3. For all finite m, the relation co2 -*■ (to2, m)2 holds. 

Proof. Since tp(H/(2)) = co2, it suffices to consider partitions of [IP(2)]2. So 

let any partition [1V(2)]2 = A0 U Aj be given. Define a partition of [co]4 into 

16 classes, 

[co]4 = U{ A(z0,.... z3); i0,..., i3 = 0, 1} , 

by: for a, b, c, d in co with a < b < c < d, 

{a, b, c, d; £ A(i0,..., z3) <> {(a, b>, (c, d)} £ A,0 and 

{{a, c), (b, d)} £ A/j and 

{(a, d), {b. c)} £ A,2 and 

{{a, b), (a, c>} £ A,3 . 

By Ramsey’s theorem there is H in [co]^0 such that H is homogeneous for 

this partition of [co]4, say [i/]4 C A(z0,.... if). Let (/z^; k < co) enumerate H 

in increasing order. If ij = 1 for any /, the following gives a subset / of W{2) of 

pow’er m with [I]2 C Ay 

{(h2k> h2k+i>;k<m} if i0 = 1 , 

{(hk, hm+k)\ k < m} if ix = 1 , 

{(h)t, h2m_k); k < m} if i2 = 1 , 

{(ho, h1+ky, k < m} if i3 = 1 . 

On the other hand, if ij = 0 for all /, write H as a disjoint union, H = U {Hk: 

k < co} where each Hk is infinite, and put 

/= {(h, h')\ h FH0 and In £Hk+1 and h < h'} . 

Then / C M2), tp(f) = co2 and [I]2 C A0. Thus the theorem is proved. 

Lemma 7.2.4. The relation co3 -> (co3, 3)2 is false. 
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Proof. Consider the following disjoint partition flV(3)|3 = Tq U Ti where 

{0, b] G Tj ^a0<al<b0<a2<bi<b2 ■ 

Suppose [ {a, b, c}]2 C r1; where a < b< c. Since {a, b] G Vi certainly 

a2<bl, from {b, c} E T! follows bx < c0 and so a2 < c0; yet {a,c}E Tx 

requires c0 < a2, so this is impossible. On the other hand, take any subset H 

of M3) with tp(//) = co3. By Lemma 7.2.2, H has a subset free in all compo¬ 

nents. Thus for any a in //, there are b,c,d in H such that bo > a.\ and Cq = ao> 

Cj = a1( c2 > b0 and d0 = b0, d^> c2. Then <c, d) E [H]2 n Fj so [H\2Q r0- 
Thus there is no// of order type co3 with [H]2 C r0- Thus this partition pro¬ 

vides an example which proves the lemma. 

Theorem 7.2.5. If3 < m < co then com -/>■ (co'”, 3)2. 

Proof. The case m = 3 is Lemma 7.2.4. For m with m > 3, it is enough to 

prove the following: 

(1) there is a one-to-one map /: <o,,! co3 such that if X is a subset ot cow 

with tp(X) = co'” then tp(/[X]) = co3. 

(In this situation, one says that f pins to'” to co3.) For suppose (1) established. 

Take a partition A = { A0, Aj} of [co3]2 such that there is no//in [co3]3 

with [H]2 C Al5 nor H with tp(//) = co3 and [H]2 C A0. Define a partition 

A* = { Aq, A*} of co"7 by, for x, y in cow, 

{x, j} G Af o {/(x),/(y)} G A, . 

Then// in [co'7']3 with [H]2 C A* would give/[//] in [co3|3 with [/'[//]]2C Aj, 

whereas if HQ co'77 and tp (H) = co'77 with [ H}2 C Aq then/[//] C co3, 

tp(/[//]) = co3 and [f[H])2 C A0. Thus A* shows co'77 f (co'77, 3)2. 

We prove (1) by observing that for any integers k, l: 

(2) if coA can be pinned to co1, then coA+1 can be pinned to coI+1. 

Since any one-to-one map /: co"7-2 co pins co777 -2 to co, two applications of 

(2) establish (l).To prove (2),suppose indeed that cok can be pinned to co?. Write 

coA+1 as a disjoint union, coA+1= U{A,;z<co} where tp(A,-) = cofc and 5,-<5y- when¬ 

ever/</, and similarly co/+1 = U{r,-;/< co) where tp(7’/) = co1 and Tt < Tj if / < /. 

Then for each i there is/,- : S( -> Tt which pins St to Th that is, for each subset 

X of Sj with tp(JT) = cok we have tp(//[Z]) = cJ. Put/= U{/,-; i < co); then 

/: coA+1 -> co/+1 and / pins coA+1 to co/+1. For take a subset X of coA+1 with 

tp(X) = coA + 1. Then {/< co; tp(5,- HI) = coA } is infinite, and since f[S,- n X] = 

fi[Sj HJ] = Tj F>/[W] in tact {/< co; tp (Tj n f[X]) = co1} is infinite. Hence 

tp(/[W]) = co/+1, as required. This completes the proof. 
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Galvin and Larson [46] investigate just which countable ordinals can be 

pinned to co3 (the use of “pin” in this context is due to them), and as a con¬ 

sequence they show: if a is a countable ordinal and a -+ (a, 3)2 then a = 0, 1, to 

or a = cow(3 for some p. 

It was noted by Erdos and Hajnal [24, see Problem 6] that for each n and k 

(k > 3) there is a least integer f(k, n) such that ton -f itok, f(k, n))2. (So from 

Lemma 7.2.4,/(3, 3) = 3.) The exact value off(k, n) is not known in general. 

However, Nosal [75] has shown/(3, n) = 2'7”2 + 1. This result appears as 

Theorem 7.2.9 below. The proof depends on the existence of cartain canoni¬ 

cal partitions of Win). 

Definition 7.2.6. Two pairs {a, b}, {a , b'} from [Win)]2 are said to be similar 

if for all i, j with i, j < n, 

ai < bj ° a] < b'j and at > bj ° a] > b) . 

A partition A of [1T(n)]2 is said to be canonical if for all {a, b}, {a , b'} from 
[W{n)]2 whenever {a, b} is similar to {a , b'} then [a, b} — {a', b'} (mod A). 

The existence of canonical partitions was first proved by Hajnal, and inde¬ 

pendently later by Galvin. 

Theorem 7.2.7. Given any disjoint partition A of [Win)]2 into finitely many 

classes there is an infinite subset H of to such that the induced partition on 

[Hn n Win)]2 is canonical. 

Proof. Let 7 be the set of all strictly increasing functions/:«->• 2 n. For/in 

7 andx from [co]2", say x = (x0, a'i, ..., x2n-1)< put (Xf^y Xf(n_^). 

Suppose A = {A0, ..., Am_ j}. For each a in [co]2" define a function 

Fx : [7]2 -+m by 

Fxiif g}) = i ° {.V/, A^} G A/ . 

Since there are only finitely many functions mapping from [7]2 to m, by 

Ramsey’s theorem there is an infinite subset H of to such that all the sets a 

from [H]2n have the same Fx, say Fx = F. Take any similar pairs [a, b}, 

[a\ b'} from [//" n Win)]2. There are a, y in \H]2n and f g in 7 such that 

a = Xf, b-xg,a' =>yand b' =yg. Since Fx = Fy thus {a,b}= (a^, a^} 

eAF({/j?}) and [a',b'}= {yf,yg} e AF({/^}), so {a, b}= {a', b'} (mod A) 

as required. 

Fet n be fixed, with n > 3. We define the following subsets of Win)-, for i, 
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j, k with 0 < i </ < k < n, put 

E’ijk = {(fl< b] e = b0 and ... and at_\ = 6;_! and 

a,- < ... <ak_i <bi< ... < bj_i <ak< ...<an_x < bj < ... < 6„_ J . 

Consider the disjoint partition T" = {Tq, T”} of W(n), where 

r? = U{£7/Jfc;0</</<fc<n}. 

This partition has several useful properties, which we collect in the following 

lemma. 

Lemma 7.2.8. For this partition L" of W{n), 

(i) there is no subset H of Win) of order type co3 such that [//]2 C Tq, 

(ii) there is no subset H of Win) with \H\ = 2n~2 + 1 such that \H}2 C r”, 

(iii) there is a subset H of W(n) with \H\ = 2n~2 such that [H]2 C Tj. 

Proof. F or (i), take any subset H of W{n) with tp(//) = co3. By Lemma 7.2.2 

we may suppose that H is free in three components, say i, j, k where 0 < i < 

/ < k. Thus given a in //, there is b in FI such that b [~7 = a T i and b(i) >a(k-1). 

There is c in H such that c Fk = a f A: .and c{k) > b(j — 1). There is d in H 

such that d \~j = b f7 and d{/)> c(n - 1). Then {c, d} and so 

[H]2 n T” F 0. This proves (i). 

To prove (ii), use induction on n. When n = 3, the partition T3 is the 

Specker partition used to prove Lemma 7.2.4, so (ii) is true when n = 3. Sup¬ 

pose (ii) is true for a particular value of n. Take a set >4 from [ Win + 1)]'7+1 

such that [^4]2 C r”+1; we wish to show that q < 2”-1. Let ,4 = {a0, ...,aq} 

listed in lexicographic order. Note that for a, b with a < b and (a, b} G Ti+1, 

always a(i) < b(i). Further the definition of any ensures that b(l)Fa(n), 

for if/ = 1 then a(n) < b(f) = b{ 1) and if/ > 1 then 6(1) < b(j - l)<a(k) 
< afn). Hence there is l, with / < q, such that 

flo(l)<«i(l)< ...<fl/(l)<a0(n)<ai+l(l)< ...<aq(l) . (1) 

We show first that /< 2”~2. Observe fora, b with a< b and (a,6}G Ti + 1 

that if a(0) < 6(0) < 6(1) <a(n) then also (a, 6'} G r"+1 where 6' = <a(0), 

6(1), 6(2),..., 6(a)). For if a(0) = 6(0) this is trivial, and if a(0) < 6(0) then 

(a, 6} G ES$ for some j, k, where / > 1. But then (a, 6'} G Effi, so indeed 

{a, 6'} GP'+1. Thus if 

A' = (<ao(0), a,„(l), ...,am(n))\m </} 

then [A']2 C F'/"1. Consequently, if 

A" = ...,am(n));m <l} 
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then [A"]2 C r”. So by the inductive hypothesis, / + 1 < 2n 2. 

Return now to (1). Thus if / = q, nothing more is necessary. So suppose 

/ < q. Observe first that 

«/+i(0) = a,+2(0) - ... = aq(0) . (2) 

For suppose (2) is false. Then there is m with / + 1 < m < q such that 

a/+i(0)<tfw(0), and so {ai+1, am } for some j, k. Since thena;+1(l)< 

a,+ i(k - l)<ow(0), in fact tf/+1(l) < am(0) and so a0(n) < a/+1(l) < am(0). 

Flowever, ao(n)<am(0) is impossible with r'i + 1. Hence (2) must 

hold. Thus if 

A* = «aw(l),am(n)); l + 1 <m<q} , 

as above [M*]2 C Ti-So again by the inductive hypothesis \A*\ < 2n~2, that 

is, q — l < 2n 2. Since l < 2”~2, thus q < 2'7~1. This completes the inductive 

step, and proves (ii). 

Finally, we establish (iii). Again use induction; the case n = 3 is trivial. So 

suppose for some n that (iii) holds. The partition of {a G Win + l);a(0) = 0} 

induced byT”+1 is isomorphic to the partition Tn of W{n), so by hypothesis 

there is a subset H of W(n + 1) with \H\ = 2n~2 and a(0) = 0 for all a in H such 

that [.H]2 C r”+1. Let H= (a0, ...,ap}, listed in lexicographic order (so 

p = 2n-2 - 1). Then 

0 = «o(0) = ... =ap(0)<ao(l)<r71(l)< ... <ap(\)<a0(n) 

< ai(n) < ... <ap(n) . 

Define bt and Cj in W(n + 1) for / with 0 < / by 

ai(m) if cii(m) < a0(n) 

djim) + 1 if d[(m) >d0(n) , 

d0(n) if m = 0 

dp(n) + d[(m) + 1 if m > 0 . 

Put B = [be 0 and C= {C/; 0 < / <p}. It is easy to see that {dhdm} 

is similar to both {bi,bm} and {ch cm}. The definition olT"+1 ensures that 

r”+1 is a canonical partition of [W{n + l)]2, so since \H}2 C r"+1 also 

[B]2 C r”+1 and [C]2 C Ti + I. Moreover, for any 1, m with /, m <p there is k 

such that 

b/(0) < ... < b[(k - 1) < a0(n) = cm(0) < b,(k) < ... < b,(n) 

<ap(n) + 1 <cw(l)< ...<cmin), (1) 
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and hence {bh cm} EEq\1, so [bh cm } E rj'+1. Hence [B U C]2 C T" \ and 

since \B U Cl = 2n~2 + 2”~2 = 2”_1, the induction step is complete. This 

proves (iii), and completes the proof of the lemma. 

Theorem 7.2.9. If n < 3 then con (co3, 2n 2 + l)2 and con (co3, 2” 2)2. 

Proof. From (i) and (ii) of Lemma 7.2.8, the negative relation is established 

by the partition Tn of W(n). 
For the positive relation, take any disjoint partition A = {A0, of 

[W(n)]2 such that there is no subset H of W(n) of order type co3 with [H]2C A0 

and no 2M_2-element subset H of W(n) with [H]2 CAj, and seek a contradic¬ 

tion. By Theorem 7.2.7 there is an infinite subset of co on which the induced 

partition is canonical, and we may suppose that A itself is canonical. For i, j, k 

with 0 < i </ < k < n and integers a0, ah a2 put 

fijk(a0, ah a2) = <0, 1, ..., i-\, i + a0,1 + a0, j + ax,..., 

k - 1 + alt k + a2.n — 1 + af), 

so fijk(ao, ai, a2) < fijk(b0, bh b2) ° {a0, ah a2) < <b0, bh b2). Define a dis¬ 

joint partition A’" = {Ao, A*} of [IV(3)]2 by 

(ah a2, a3) G Aq fijk(ab a* «3) G A0 . 

Clearly A* is canonical since A is. A subset of W(3) homogeneous for A* gives 

a subset of W(n) homogeneous for A in the obvious way. Hence A* is a canon¬ 

ical partition of [1T(3)]2 having no H of order type co3 with [H]2 C Aq and no 

H of size 2n~2 with [H]2 C A*. A check of the possible canonical partitions 

of [1T(3)]2 (see Milner [72]) shows that apart from the Specker partition T3 

all have either H of order type co3 with [//]2 in class 0 or else H of arbitrary 

large Finite size with [H]2 in class 1. Hence A* must be the Specker partition 

T3. Thus if (a0, ah a2)< <b0, bh b2) then 

{/ijk(do> ai’ tif), fijk(bo. b i, bifi} & aq <1 a\ <2. b$ <2. a2 b \ b2 . 

An easy check shows {fijk(0, 1, n + 1 ),fijk(n, 2n, 2n + and hence 

E'ljk Ci Aj: A 0. Since A is canonical, it follows that E"jk C Aj. Since i, j, k 

were arbitrary, thus T” C Av Hence by Lemma 7.2.8(iii) there is a 2',-2-ele- 

ment subset H of W(n) with \H\2 C Aj, contrary to the choice of A. This is 

the required contradiction, and the proof is complete. 

In particular, if we put n = 4 in Theorem 7.2.9, then we find co4^ (co3,4)2 

and co4 -f (co3, 5)2. These particular results were also obtained by Galvin, by 
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Hajnal (see [24]) and by Haddad and Sabbagh [51]. Earlier results for co4 

were obtained by Milner [71], where it was shown that to4 -> (co3, 3)2, 

co4 -f (u3 + 1,3)2 and af (io3, 3)2 if a < co 4 

We conclude this section by proving the following theorem of Erdos and 

Milner [26]: co1+MW -> (co1+M, 2W)2 where m < co and fi < coj. This result 

dates back to 1959; a proof also occurs in Milner [69]. The theorem does not 

give best possible results - for example with /jl = 2, it gives co2w + 1-+(co3,2"r)2 

whereas by Theorem 7.2.9 in fact com+2 -> (co3, 2m)2 - but it seems to be the 

best general result of this type known. 

Theorem 7.2.10. Let a, 0 be countable, let k be finite. //coa-> (co1+^ k)2 then 
coa+p (co1+p, 2k)2. 

Corollary 7.2.11. If m < co and n < col then co1+M"! -> (co1+*\ 2W)2. 

Proof. By induction on m using Theorem 7.2.10, noting that trivially co1+M -> 

(co1+M, 2)2. 

Proof of Theorem 7.2.10. Suppose coa^(co1+/3, k)2. Take any set S'ordered 

by a relation < with order type coa+l3, and let a partition [S]2 = A0 U At be 

given. Assume there is no H in [S]wl+^ with [H]2 C A0 and no H in [S]2/c 

with [H]2 C Aj, and seek a contradiction. 

For any x in S, put 

Af(x)= (y ES\ {x, _y} G A,-} . 

We shall use the following observation. Suppose given a family {Ay, v < 5} 

where each Av is a subset of S of order type to01. Forx in S, put 

M(x) = {a < 5; tp(A0(x) nAu) = co“} . 

Then 

A G [S]wa =* tp{x EA\ tp(M(x)) = 5} = co“ . (1) 

Consider first the case when 5 is an ordinal power of co, say 8 = co7. Sup¬ 

pose (1) is false for a particular set A from [S]0^. Put A' = (x Gd; 

tp(M(x)) < co7}, so tp(A') = co01. By the relation co“ -*■ (co1+^, k)2 and the 

choice of the partition, there is H in [A']k such that [H]2 C Aj. Since 

co7 -»• (co7)l (by Theorem 7.1.3) and tp(Af(x)) < co7 if i EH, there is v with 

v < co7 such that v ^ U{M(x):x EH}. Thus for all x in H, tp(A0(x) DAv)<coa. 

Hence tp(Av n (T{ Aj(x);x EH}) = coa. Again by the relation coa^(co1+l3,k)2 

there is / in [fl{ Aj(x);x EH} - H]k such that [I]2 C Aj. Then \H U 7| = 2k 
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and [HU I]2 C Aj, contrary to the choice of the partition. Thus (1) holds 

when 5 = co7. For arbitrary 5, write S as a finite sum of powers of gj and suc¬ 

cessively use the above result finitely often to prove (1). 

From (1) we shall prove the following. Suppose given a family {Av, n<co } 

where each Av is a subset of S of order type coa and moreover A^ <1 Av when¬ 

ever p v J3. Suppose also finitely many values Pq, ..., vn less than gj are 

given. Then 

for any A in [S, |aj“ there isx in A and an order preserving function 

g : gj'3 -*■ gj'3 such that g(Po) = v$, ...,g{vn) = vn and tp(A0(oc) n Ag(v) = coa 

whenever v < gj'3. (^) 

For we may suppose p$ < P\ <C ... vn. Let A in [5’]u> be given. Define sub¬ 

sets B0, Bn+l of S as follows: B0 = A, 

Bm+l = {x G Bm \ tp(A0(x) FM„m) = coa}, (m = 0, 1, . 

Successive applications of (1) with 5 = 1 show that always tp(i?w+i) - co .In 

particular, if x G5n+1 then tp(A0(x) n = coa for each m. Define subsets 

C0, .... C„+1 of S as follows. Put 

M0(x) = {p;p<p0 and tp(A0(x) n Av) = gj“} , 

C0 = {xEBn+l; tp(Af0(x)) = p0} , 

and for m with m = 0, 1, ..., n put 

Mm+i(x)= {v\vm<v<vm + l and tp(A0(x) n Av) = coa} , 

Cw + i = {x G Cm, vm + 1 + tp(Mw+1 (x)) — vm+i} , 

(with the convention Pn+i - gj'3). Successive applications of (1) show that al¬ 

ways tp(Cw) = gj“ In particular, tp(C„+1) = gj“ so Cn+l =£ 0. Choose x from 

Cn+l. Then tp(M0(x)) = p0 and pm + 1 + tp(Mm + 1(x)) = pm+l for each m. 

Hence if 

M(x) = {p < g/; tp(A0(x) n A„) = coa} , 

thenM(x) is the ordered union 

M(x) = M0(x) U (n0}UM1(x)U {j/JU ... U {pn} U Mn+l(x) , 

and so tp(M(x)) = gA Let g: gj*3 -» M(x) be the enumeration of M(x) in order. 

Then g(p0) = v0, g(vn) = Pn, and (2) is proved. 

Since |g/| = there is a sequence (yn\n < gj> of ordinals below gj'3 in 

which every v with v < gj'3 is repeated infinitely often. We shall define by in¬ 

duction on the integer n elements xn of S and subsets A(n, p) of S for v with 
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v < g/. Write 

S = U{y4(0, v)\ v < a/} 

where always tp(y4(0, v)) = coa and ^(0, p) <H(0, v) whenever n<v<(J. 

Suppose tor some integer n that we have already defined the xm whenever 

m<n and the sets A (n, v) such that always tp(H(n, n)) = cand A(n, q) < 
A(n, v)\f ii<v< co13. Put 

A*(n, v) = {x &A(n, v)\x > xm for all m with m < n] , 

then tp(H *(n, u)) = coa. Use (2) on the family {A(n, v)\v < o/} with 

VQ ~ 7o> vn = 7n and A - A *(n, yn) to find xn in A *(n, yn) and an order 

preserving map gn : a/ -> (J with gn(ym) = ym if m < n such that tp(Ao0c„) D 

Mn, g„(v))) = coa whenever v < oA Put A(n + 1, v) = A0(xn)nA(n, gn(y)). 

Then tp(A(7z + 1, n)) = coa and since gn is order preserving also A(n + 1, p) < 

A(n + 1, n) whenever p < n< oA This completes the construction. 

Put // = {x„; n < co}. The construction ensures that if n > m then 

Ain, v) C A0(xw) for all v\in particular since xn &A(n, yn) thus xn<E A0(xm). 

Hence [H\2 C Aq. We shall show that tp(//) = co1+@, contrary to the choice of 

the original partition. This will provide the contradiction required to prove 

the theorem. Take integers m, n\ say m < n. Since 

A(n, v)C A(n - l,gn_!(u)) C A(n - 2,gn_2gn_1(v)) C ... 

CA(m, gm ... gn-2gn-l{v)) , 

in particular 

A{n,yn)QA(m,gm ... gn-2gn-i(yn)) , (3) 

A(n, ym)QA(rn,gm ... gn-ign-iilm)) • (4) 

Further 

gm ■■■ gn — 2 gn— 1 (7m) ~ 7m • 

Since each gt is order preserving, it follows that 

7m < 7/i °7m<gm - gn-lgn-liln) ■ 

Hence from (3), 

7m <7n =*A(m, 7m)<A{n, yn)^xm <xn . 

And from (4), A(n, ym) CA(m, ym), so 

m < n and yn = ym => A(n, yn)CA(m, ym)^xn &A(m, ym) . 

(5) 
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Now given m, the set {n < cu; m < n and yn = ym } is infinite. Further the 

definition of xn ensures that if p < n and yn = yp then xn > xp. Thus 

tp(// TA(m, ym)) = co- Since (7w;m < co} = c/, it now follows from (5) 

that tp(H) = cog/ = co1+(3, as claimed. This completes the proof. 

§3. Chang’s Theorem for co^ 

One of the long-standing problems in the partition calculus for countable 

ordinals has been to decide whether or not the relation cow ->■ (cow, 3) holds 

(see Specker [93]). A positive answer was finally given by Chang [7] in a 

lengthy tour de force. His result was subsequently extended by Milner who 

showed that co^ -► (co1/ m)2 for all finite m. In [65], Larson gave a new short 

proof of this. We shall follow Larson’s method. 

We shall make use of the following lemma, a consequence of Ramsey’s 

theorem. 

Lemma 7.3.1. Let S £ [co]H°. Suppose for each a from [co]<N° there are 

given an integer m(a) and a partition A (a) = (A0(a), Sx(a) f of [A]"!(a). 

Then there is an infinite subset H of S such that for each a from [H] ' °, the 

set {h G//; h > max(a)} is homogeneous for A (a). 

Proof. Inductively define sets Hk from [A]^0 and elements hp of Hk, for finite 

k, as follows. Put H0 = S, and let h0 be the least element of H0. If Hk and 

ho,..., hk have already been defined, list all subsets a of {h0,hk} with 

max(fl) = hk, say a0, ai,..., at. Put Hk0 = Hk and use Ramsey's theorem to 

choose successively infinite subsets Hki+i from Hki so that Hki+i is homo¬ 

geneous for A (a,-). Put Hk+l = {h&Hki+l; h > hk}\ then Hk+l is homogeneous 

for each A («/). Let hk+i be the least element of Hk+1. 

Put H- {hk, k < cu}. Take a from [//]<N°, and suppose max(a) = hk. Then 

{h TlH\ h >hk} is a subset of Hk+l, and hence is homogeneous for A (a), as 

required. 

Theorem 7.3.2. Let m be finite. Then gjoj (cow, m)2. 

As in the previous section, for positive integer n put 

W(n)= .... a„_l)enco:a0 <ax < ...<a„_1} , 

and order W(n) lexicographically. Put W = U{ IP(n); 0 < n < co) and order 

the elements of W first by length of sequence, and then lexicographically in 
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each W(n). Under this ordering, IF has order type cow. So to prove Theorem 

7.3.2, it suffices to take any partition [IV)2 = A0 U Aj and show that, given 

m, either there is a subset H of W with tp(H) = such that [H]2 C A0 or 

else there is a subset H of W with \H\ = m such that | H]2 CA,. 

Let m be fixed. Take any partition A = {A0, Ai) of [IF]2 for which there 

is no set//in [W]m with [H]2 CAj.We must find H in [W]1-0^ with 

[H]2 C A0. By Corollary 7.2.11, certainly the relation comn ^ (ojn, 2m)2 

holds. By the relation applied to the partition of W(mn) induced by A , there 

must be a subset W'{n) of W{mn) with tp{W'in)) - to" such that [W'(n)]2 C 

A0. Put W' = U{ W\n)', 0 <7z < to}, so tp(H/>) = cow and for {a, b} from 

[W'Y with ln(a) = ln(6) we know {a, b] E A0- It will suffice to find a subset 

H of W' with tp(//) = tow such that for [a, b} from [H]2 with ln(a) ^ ln(/>) 

still {a, b} E Ao- By redefining the partition A, we may suppose that W' = W. 

For the rest of this section we shall use the convention that if a is a finite 

increasing sequence of integers then a is the set of entries of a and conversely, 

if a is a finite set of integers then a is the sequence of the elements of a ar¬ 

ranged in increasing order. The concatenation of sequences a and b iso ^ b. 

Definition 7.3.3. For a, b from IF with In (a) < ln(Z»)and for integer k, say 

{a, b} has form 2k [or form 2k + 1] if there are non-empty finite sets of in¬ 

tegers a0, av and b0, bh ..., bk_i [bk] such that 

(i) c.0<b0<al<bl< ... <ak^x <bk_l<ak[<bk] ; 

(ii) a =a0"al '"al ../ ak ; 

b = b0 bj ^...^bk_i for form 2k\b = bQ^bx ^...rbk for form 2k + 1; 

(iii) if c = <kol» lflo uflil> l«o u ••• u«/d> and 

d = (k0l, \b0 U bx\,..., \b0 U ... U bk_x\U bk]I) then 

c < a0< d < b0 . 

The pair {c, d} will be called the shape of {a, b}. 

We shall need several lemmas. 

Lemma 7.3.4. Let S E [aj>]N°. There is H in [Sj^0, H= {hh h2, h3, ...} listed 

in increasing order, such that for all positive integers 1 there is i(l) = 0,1 so 

that if {a, b} is any pair of sequences of form 1 and shape {c, d} with 

a, b, c, d C {h E //; h > hi} then {a, b} E A,•(/). 
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Proof. For each possible shape {<’. d) with c. d C 5 and each i/0 in [5]< N° 

with c < a0 < c/, choose a partition A ft*. </(1. d) of suitable si/e subsets of 5 

into two classes so that: whenever v = a0 U b0 U <7, U b\ U ... where if 

a=fl0/'flrl =b0 b i "... then {o, b] has shape {c. </} and {o^lGA,. 

then x E A,(c, a0, d). 

By Lemma 7.3.1. there is //0 in [5]' 0 such that for c, </0. d from there 

is i(c, d) so that if a U b C {// e //0;/; > maxf/)' and {oq a■ b ' has shape 

{<*, d} then 

(«o b} E Al(c,(J0,rf) . 

For each finite subset c of// 0. choose two partitions A (o'), A*(c) into two 

classes of the c(0) + Id. t*(0) + |o| l si/e subsets of If0 so that: 

if .v = a0 U d where U/0I = c(0), |t/| = Id. c < a0 < d and 

i(c, a0, d) = /, then .v E A,(c) ; 

if .Y = a0 U d where |<70l = ^(0). |t/| = Id 1, c < a0 < d and 

i(c, ao. d) = /. then .v E A*(c) . 

Apply Lemma 7.3.1 twice to find H\ in 1 //01N0 such that for c from 

[/Zip' 0 there are i(c). /*(d) such that for appropriate sized subsets Jo d of 

{h E Hi: h i > max(c)}, 

if |c/| = |c| then i(c, a0, d) = i\c) : 

if |r/| = Id 1 then i(c, a0- d) = i*(c) . 

Finally, define partitions A (2k). .\(2k + 1) of [//, p '1 by 

c E Aj(2k) i*(c) = i: c E A,(2A + 1) ° i{c) = i. 

Use Ramsey's theorem repeatedly to find infinite subsets Hl¥ x of Ht minus 

its least element such that ///+1 is homogeneous tot \{I) (where ; > IV l et p 

be the least element of///+1, and put // = {/i/; 0 </< col. Then for all posi¬ 

tive / there is /(/) such that if c E [{ItE H: h > then /*(<■') = /'(/') ot 

i(c) = /(/), depending on whether / equals 2k or 2k + 1. It follows that // has 

the property required. For take a pair [a, b - of form / and shape o. d where 

a. b. c, d C {/r E //; h > h,x. Since // C //, C //0. then {a. b E Al(y Jo ^ 

(where a0 is the sequen :e of the first e(0) elements of a), and 

i(c. a0. d) = i*(c) or i(c) (depending on whether / is even or odd') 

= /(/). 

This completes the proof. 
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Lemma 7.3.5. (liven any infinite subset If of co, for all positive integers l, m 

there is M in | W\m such that whenever a,l> EM then a, h C //, {a, l> \ has 

form l and if \c,d) is the shape of {a, h} then c, d C //. 

Proof. Suppose / = 2k or / = 2k + 1. Choose increasing finite sequences c,, a,-; 

from // for i, j with 1 "7 / < m, 0 </ < k + I in the order that follows, so that 

always the last element of one sequence is less than the least element of the 

next: 

cl> a 10> c2> a20> cm’amCoa\\>a2\> •••> am 1 > 

fl12> a22> flm2i •••» alk> •••> amk> amk+] > ••■> tf2/c+l > 1/c+1 > 

such that ln(cy) = k + 1, ln(a,0) = ty(0) and ln(fl,y) = c,(/) C/(/ — 1) (for i, j 

with 1 < i< m, 1 </< k), ln(fl//c+1) = C/(A:) cfk 1). 

If / = 2k + 1, put a i = ai0 ' aix ' ..." a(/c whereas if / = 2k, put a,- = 

<*io'al l' ■■■' <*ik i '«/*+! and put 

Af = (a, ; 1 < /< m} . 

If/ = 2A:+ 1 then (a,-, fly} has form / and shape {c,-,cy}, whereas if / = 2A: then 

•a,-, ay} has form / and shape {cy, </y} where dj = (c/( 0), ..., Cj(k 2), cfk + 1)). 

Hence A/ has the property required in the lemma. 

Lemma 7.3.6. Given any infinite subset II of oj, say // = \h], h2, h3, ...} listed 

in increasing order, there is a subset X of W with ip(X) = such that when¬ 

ever a, h G X with In (a) < In (b) then a, b C II and (a, A} has form l for some 

positive integer l; moreover if {c,d} is the shape of \a,b} then hi < c*(0) and 

c, d C //. 

Proof. Choose increasing finite sequences chaha(i, j, k) from // for i, j, k 

with 1 < i<oj and 1 <j < i < k < co as follows. Suppose for given k that 

Cj, a,, a(i, j, l) have already been chosen whenever 1 </</</< /c. We choose 

ck, ak, a(i, j, k) where 1 ^ j ^ i^ k in the order that follows so that always 

the last element of one sequence is less than the least element of the next. 

Ensure also that the least element of c* is greater that h2k+1 and greater than 

every element in the sequences already defined. The order is: 

ck,ak,a(l, \ ,k),a(2, \,k),a(2, 2, k),a(3, 1 ,k), ...,a(k, k, k) 

(that is, the a(i, j, k) are chosen according to the lexicographic ordering of 

(i, j), where 1 < j < i < k). The sequences have lengths as follows: In(ck) = 

k + 1,In(ak) = ck(0),In(a(i,j, k)) = c^f) cfj lj. 
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Put 

Xi = {aj'a(i, 1, k^'aU, 2, k2)'..." a(i, i, kj); 

1 < i < ki < k2 < ••• < kj < co} , 

X= U{X,-; 1 <i<co} , 

so X C W. For fixed i, all the sequences in Xj have the same length, namely 

q(0) + (c,( 1) - a,-(0)) + ... + (a,-(z) - Cj(i - 1)) = c;(i). 

Further, the choice of a(i, /, k) ensures that if k^<k2< ... < kj then 

a(z, 1, /q) < a(i, 2, k2) < ... < a(i, i, kj), 

and hence the order type of Xj, in the lexicographic ordering on W, is co1. 

Moreover, if i </ then q < q so in particular a,-(z) < q(/); thus all sequences 

in Xj precede those in Xj. Flence X has order type Co0"’. 

Take a, b from X with ln(a) ^ln(6). Since all sequences in any Xj have the 

same length, we may suppose that a E Xj and b £ Xj where i </. No sequence 

from Xj has any value in common with a sequence from Xj. Thus it follows 

that {o, b} has form / for some positive integer /. And if {c, d} is the shape 

of {a, b} then c is a subsequence of q and d is a subsequence of q; thus 

c, d QH. Finally, q(0) > h2j+\; this ensures that c(0) > hj. Thus X has the 

properties required, and the lemma is proved. 

We are now set to prove Theorem 7.3.2, namely that cow ->■ (ojw, m)2 for 

all finite m. 

Proof of Theorem 7.3.2. Take a partition [W]2 = A0UA] for which there is 

no set H in [W)m such that [H]2 C Ar. As noted before, we may suppose that 

whenever a.b £ W with ln(a) = In(6) then {a, b} £ A0- Take an infinite subset 

H of co with the property given by Lemma 7.3.4. Thus if H- {hh h2, h3,...}, 

listed in increasing order, then for every positive / there is /(/) = 0, 1 so that 

for all pairs {a, b} of form /, if {a, b} has shape {a, d} and a, b, c, d C {h £//; 

h >hj} then {a, b} £ A/qy Given /, apply Lemma 7.3.5 to {h &H:h> ht} 

to find M in [IP]"' such that all {a, b} from [.M\2 have form l, and if the shape 

is {a, d] then a, b, c, d C {h &H\h> hj). Thus /(/) = 0, and this is true for 

all /. Now use Lemma 7.3.6 to find a subset X of W with tp(X) = cow such 

that all {a. b} from X with ln(a) ^ In(6) have form / for some /, and moreover 

if {a, d} is the shape of {a. b} then a, b, c, d C {h EH;h> hj}. Thus 

{a, b} £ A,-(/), that is {a, b) £ A0, for all such {a, b}. Flence [X]2 C A0, and 

the proof is complete. 
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§4. Partitions of [toj]2 

A complete discussion is possible for the relation coj ->■ (ak\k < y)2. Some 

results are immediate from Chapter 2. From Corollary 2.5.2 we know coj -/• 

(3)^0, so only partitions of [coj]2 into finitely many classes are relevant. From 

Theorem 2.5.8 comes the further negative relation coi /■ (ccq)2. 

Theorem 7.4.1. For s finite, coj -> (col5 (to + I)*)2. 

Proof. Applying Theorem 2.2.6 to the two relations -» (Kj)f and F;0^(iS0)i 

gives the relation -» (F^, (F0)s)2. Only slight changes to the proof of Theo¬ 

rem 2.2.6 yields the marginally stronger result -* (co1? (co + l)s)2. Referring 

to that proof, with the notation in use there, the changes are as follows. Start 

by taking a well ordering -< of the set S of order type k. When one comes to 

define the set/Tv) forv in TV n SEQa, put 

G(v) - {x G S(v);x < y for some y in U{F(v f r); r < a}} , 

and take for F(v) the union of G(v) and the original F(v). Since k is regular, 

|G(v)| < k and so still |F(v)| < k. 

The elements xa are defined as before, using a sequence v in TV Cl SEQk2 

for which S(v) =£ 0. Choose x in S(v). Then for each o it follws that 

x $ F( v[~ct + 1), so in particular x G(v f o + 1). Since x GS(v f o + 1) and 

xa eF(vTa) it follows that* -f xa\ hence xa< x. From x &S(x Ter + 1) we 

know {xa, x} G r,( vp CT+i)- It follows that Hq = H0 U {x} is a subset of k of 

order type at least r?/0 + 1 with [Hq]2 C T/ . 

Tlieorem 7.4.1 is the strongest positive result of its type. The relation 

coj /• (coi, co + 2)2 was proved by Hajnal [52] assuming the continuum hypo¬ 

thesis. Whether the relation can be proved without this assumption is an open 

problem. See Erdos and Hajnal [24], Problem 8, and their discussion of this 

problem in [25]. 

Theorem 7.4.2 (CH). coj /- (coj, co + 2)2. 

Proof. Take any set S ordered with order type coj by a relation^ . By Corol¬ 

lary 3.2.8 there is a set mapping/: of order Fj with |/(x) Cl/(j’)| < F0 

for any pairx, y from S, such that /has no free set of power Fj. Since always 

|/(x)| < FS0’ we can choose inductively elements xa of A for a with a < 

so that 

a< P < cot =>xa<X0 and f(xa)< {tc^} . 
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Put T = {xa;a< wj so tp(T) = Wi. Define a partition [r]2 = A0 UAj by, 

if a < (3 then 

{xa, x^} f(xp) , 

{Xa,Xp}&Ai ^Xa&fiXp). 

Any subset H0 of T with [Hq\2 C Aq is free for/, so tp(//o) < coi. Suppose 

there isHx in [7’]tJ+2 with \HX\2 C Ai- If x andy are the co-th and (co + l)-st 

elements of H\ then Hx — (x, y} C/(x) n/(y) so I f(x) L)f(y)I = con‘ 

trary to the choice off. So there is no such set Hx, and the theorem is proved. 

We have left to consider relations of the form -+ (ak, k < s)2 where s is 

finite and the ak are all countable. Trivially Ramsey’s theorem gives 

coi -> (cu)2. Erdos and Rado [29] showed that cox (to + n)2 for any finite n. 

In [60], Hajnal strengthened this to cox ->■ (co2, ton)2 for any finite n. The 

next result was due to Galvin (1970, unpublished) that coi (co3)2- Later 

still Prikry [79] obtained cc>i -> (to2 + 1, a)2 for every countable a. Finally 

Baumgartner and Hajnal [4] settled the problem by proving the best possible 

result, namely tox -» (a)2 for every countable a and finite s. In fact they 

proved somewhat more. They showed that if ip is an order type such that 

-» (to)i, then <p -> (a)2 (for all countable a and finite s). Their proof uses 

deep methods from mathematical logic. They show first that the relation 

(a)2 holds in a particular model of set theory, and then use absoluteness 

criteria to conclude that the relation is true in the real world. Galvin [44] has 

since given a combinatorial proof of the Baumgartner-Hajnal theorem. We 

shall devote the remainder of this section to Galvin’s proof for the relation 

wi (a)?. 

Theorem 7.4.3. Let a be a countable ordinal and let s be finite. Then coj -*(a)2. 

For the rest of this section, we adopt the convention that the letters 

a, (5, 7, ... (with maybe subscripts, superscripts or the like) range over only 

the ordinals less than tox. 

Let the partition A of [coj]2 be given, 

[coi]2 - Ao U ... U As_i . 

For any a, we shall show that there is H in [to^1* such that H is homo¬ 

geneous for A; from this Theorem 7.4.3 follows. 

We introduce the following property, somewhat weaker than being a homo¬ 

geneous set for A. 
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Definition 7.4.4. A subset X of is almost homogeneous (for A) if when¬ 

ever/! £ [A]0^ (for any a) then for all (3 with (3 < a there are B in [A]^, A' 

in [A]wa and i with i< s such that B <A and B ® A' C A,-, where B® A' = 

{{x, y}\x £5, y EA' and x ^y}. 

Definition 7.4.5. The symbol )3 -+AH(a(0), ..., a(s - 1)) indicates that when¬ 

ever X is an almost homogeneous subset of gjj with tp(A) = a/, then there 

are i with i< s and A in such that [A]2 C A,-. 

The next lemma reduces the problem of proving Theorem 7.4.3 to the 

problem of constructing almost homogeneous subsets of arbitrarily large 

(countable) order type. 

Lemma 7.4.6. For all a there is j3 such that (3 -+AH(ct, ..., a). 

Proof. We shall show the following: given ordinals a(0), ..., a(s — 1) such that 

for all i with i < s and all y with y < ot(i) there is 13(i, y) such that (3(i, y) ^ 

AH(ot{0), ..., a(i — 1), 7, a(i + 1), ..., a(s — 1)), then there is (3 such that 

(3 -+ AH(ot(0), ..., a(s — 1)). It follows by induction on a0,..., as_i that for all 

a0,a:s_i there is [3 such that j3 ->AH(a0,..., as_i); in particular the lemma 

is true. 

If any a(i) is zero, the claim above is trivially true (with (3 arbitrary), so 

suppose that always a(i) > 1. Choose sequences (a:(i, n); n < to) such that 

a(i, 0) < a(i, 1) < ... < a(i) and coa(0 = 20(ua(i’n) ,n < co). Put 

(3(n) = max {/3(z, a(i, n)); i < s) 

and j3 = 20(j3(/7); n < co). We shall show that 

j3 -> AH(ot(0), ..., a(s — 1)) . (1) 

So take X from [co!such that X is almost homogeneous. Then there are 

X0 in [x]w/3(0), A0 in [X]^ and z(0) with z'(0) < s such that X0 < A0 and 

X0& Aq C A/(0y Inductively we can continue and find Xn in [An_l]^(n\ 

An in [/4„_i and i(n) such that Xn <An and Xn® An C A,•(„). Then each 

Xn is almost homogeneous, being a subset of the almost homogeneous set X, 

and further 

if n < m, then Xn < Xm and Xn ® Xm C A,•(„) . (2) 

There is N in [co]N° such that i(n) is constant for n in N, say with value /. For 

each n, the choice of (3(n) ensures that j3(n) -+AH(pt(0), ..., a(j - 1), a(j, n), 

a( j + 1), ..., a(s - 1)). Thus for each n, either there are i with / Fj and Cn in 
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jQ(0 C A,-, or there is Bn in [.Xn] wa(bn) such that such that [Cn\ 

C A/. If for any n the first of these alternatives is true this gives i and C 
cj<*(0 

[*„]w 
[Bn]2 
in [X]wQ:^ with [C]2 C A,-. On the other hand, if for all n the second alter¬ 

native holds, consider B where B = \J{Bn;n E7V}. By (2), 

tp(5) = s0(wa(/,”); n E AO = wa(/) . 

From (2),5„® Bm C Ay if {«, m} E [TV]2, and also [5„]2 C A/ by the choice 

of Bn. Thus [5]2 C Ay, so also in this case there is B in [X]0-’0^' with 

[B]2 C Ay. Thus the relation (1) holds. This completes the proof. 

We shall later make use of the following lemma to construct large almost 

homogeneous sets from smaller ones. 

Lemma 7.4.7. For each n with n<co let Xn be an almost homogeneous sub¬ 

set of coj. Suppose Xm < Xn whenever m < n, and suppose there are integers 

i(m) (with i(m) < s) such that 

m<n=>Xm® Xn C A i(m). 

Then U{X„; n < co} is almost homogeneous. 

Proof. Take any subset A of U{Xn: n < co} with tp(/4) = coa. Take any j3 with 

|8 < a. If A CI0U ... U Xm for some m, then by Theorem 7.1.3 there must 

be k with k<=m such that tp(A n Xk) = coa. Since Xk is almost homogeneous 

this gives B in [A n Xk]w(3 and A' in [A n XA:]a,a such that B <A' and 

A' C A,- for some i. On the other hand, if A is cofinal in U{X„; n < co} 

then tp(/4 n Xm) > a/ for some m. Then if B G [A n Xw]w^ and A' = 

A - (X0 U ... U Xm) (so tp04f) = co“) it follows that B® A' C A,-(w). Thus 

U{X„; n < co} is indeed almost homogeneous. 

The construction of almost homogeneous sets will depend on refining pairs 

(A, X) of subsets of co! (with X uncountable) such that A ® X is “almost con¬ 

tained” in A,- for some i. We shall write G(i) for the set of pairs (A, X) where 

A is in [co1]u,a for some a, X is in [coj]^1, A < X and A ® X is “almost con¬ 

tained" in A,-. “Almost contained” is to have the sense that no matter what 

subset^' of A of the same order type as A or what uncountable subset X' of 

X are chosen, for every (3 smaller than a there is a subset A" in [A']^, not 

cofinal in A', and an uncountable subset X" of X' such that A"® X" is “al¬ 

most contained” in A,-. This leads to the following inductive definition of 

G( /). 

The relation (A, X) G G(i) where / < s, A E [cc1]‘J-’a and XG [coj^1 is 
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defined by induction on a. If a = 0 (so \A | = 1) then 

(A, X) G G(i) if and only if ^4 < X and A ® X C A,- . 

It a > 0, supposing the relation (A , X') G G(i) has already been defined when¬ 

ever tp(/l') = g/ where (3<a, then 

(A, X) G G(i) if and only if A < X and whenever A' G [A]wQ 

and X' G [X]Kl, for every j3 with (3<a there are A” in [A']^ 

not cofinal in A' and X" in [X']S 1 such that (A", X") G G(i) . 

It is clear from the definition that if (A, X) G G(i) and X' G [X]Nl, A' C A 
with tp(^4') = tp(A), then (A', X'> G G(i). 

Lemma 7.4.8. Given A in [gj1]c°q and X in [co j |S 1 then there are A' in 

[A |^’a and X' in [X]x 1 such that (A', X') G G(i),for some i with i < s. 

Proof. Since \A I < and |X| = N j, we may suppose A < X. If a = 0, for i 

with i < s put Xj = {x EX\A ® {x} C A,-}. For some i we have |X,-| = Stj; 

then (A, Xj) G G(i). 

Now suppose a > 0, and suppose inductively that the lemma is true when¬ 

ever tp04) = g/ with (3 < a. Suppose the lemma is false for particular A0 in 

[coi]0-101 and X0 in [g;^ 1; thus 

ViXsVd'Gtdo^Vl'Gtlo]^^',!^ G(0). (1) 

Inductively define chains A0 D A 1 D ... D As from [A0\^a and X0 DIj D ... 

from [X0]Sl, so by (1) (Aj, Xj) ^ G(j) whenever j < s, as follows. Since 

(Aj, Xj) G(j), by the definition of G(j) there are Aj+] in [.Aj|w“, X/+1 in 

[X;]N 1 and j3(/) < a such that 

VA" G VX" G [X/+1]H 1 (A" not cofinal in 

Aj+1 =>(A",X")$ G(/)). (2) 

Let j3 = max {/3(/); j < s}. Choose B from not cofinal in As. By the 

inductive hypothesis applied toi? and Xs, there are B' in \B}^ andX’ in 

[XS]K 1 such that (/?’, X') G G(f) for some /. If (3(f) = j3, since X' C Xs C X/+1 

and B' C B C As C A/+ j with B' not cofinal in Aj+l, this contradicts (2). If 

[3(f) < j3 by definition of G(j) there are B" in not cofinal in B' and 

X" in [XT1 such that <B”, X") G G(j). Now X" C X/+1, B" C Aj+1 and B" 

is not cofinal in Aj+1 so again (2) is violated. In either event a contradiction 

has been reached, and thus the lemma cannot be false for A0 and X0. This 

completes the proof. 
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Lemma 7.4.9. Let (.4. AA G G(i). Then there are x in Xand a subset .4 of .4 

with tp(-4 ) = tp(.4) such that .4 ’ s a 1 C A,-. 

Proof. Let .4 and X be given with <.4. AT G G(/). and suppose tp(.41 = u> .It 

a = 0. the result in trivial, so suppose a > 0. Make the incuctive assumption 

that the lemma is true for all pairs \,40. A0N where tpb40) < tp(.4 L For a in 

.4 and p with p < a define 

A\a. 3) = x G X: 3 B G [.4 ]^p' (a < B. B is not cofinal in .4. 

and B 3 {.y; C A,4; . 

Put X* = X- U \ A‘(j. p):a G.4 andp<Q;. 

We shall show that .A* = 0. Suppose on tire contrary that A'* = 0. Then 

|X(a, (3)| = btj for some a and p. Let .4 = {a G .4: a < a ;. then it follows 

from Theorem ".1.3 that tp(.4 ) = cua. Since (.4. A>GG(/I. there must be X 

in [AT:. o ■ s' and .4" in [.4 ’not cofinal in .4' such that.4"s X* G G(i). 

Thus bv the inductive hypothesis applied to.4 and A . there are _v in A 

and B in [.4 ’]u'p such that B s -V' C A,-. However then a<B and B is not 

cofinal in .4. so .v G A (a. pT This contradicts .v c= A C A (j. p' Hence A — 0 

Now choose x G .V*. Take ordinals a(#*) where n < w such tltat always 

at/H ^ a and .c" = r0uc“l':\ ■: < Then ,v G A\j. Otfn)) foi all a in .4 and 

all n. Titus we can choose inductively sets Bn in [.4 ' but not cofinal in 

.4. for it with n < co. so that sup Bn _ i < Bn and B„ S .v - C A,. Put 

.4 = U\Br n < ooA tlten .4 G [_4]w“ and .4 s .y; C A;. This proves the 

lemma. 

The next lemma will sene as the starting point for an inductive construc¬ 

tion of an almost homogeneous set. 

Lemni3 ".4.10. For n with n < co let \A,r AA G G(i„). Then there are x in X 

and subsets .4,, ofAn with tp(.4= tpf.4,,1 such that ,4r! S - .v - C A,n for 

each n. 

Proof. Suppose given .V ^nd the .4.; such that \.4 AA G G{i,X Put A’,, = .y G A 

3 Ar G.4,:ltpU^ = tpf.4and .4n ® {x} G A.,.V-. If A" = U-_ .V... >: < .o' 

tlten there is some Ad, with Xm = St. Thus \.4>r. Add G (.fi.dA. so by Lemma 

".4.4 there is ,v in Ad. and .4 contained in .4,, with tp(.4 1 = tpf.4„) such that 

.4r; s \.y; C A,- : this contradicts x G A„. Thus .V = U •_ Ad.. \ .c d and so 

the lemma holds. 

For the remainder of this section, for each non-zero a fix upon a sequence 

of ordinals (o(ji); n < oj> such tltat alwa\ s 04/A G 04': * IK a and >.oa = 
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“o(w n w). We shall eventually construct almost homogeneous sets of 

order type a/ tor arbitrarily large (3 by induction on )3. We shall do this by 

finding tor each n almost homogeneous sets Dn with tp(Z)„) = co^'T such 

that there are subsets Bn in [Dn]^P(n) which fit together to give an almost 

homogeneous set of type co*3. In order to do this, we shall need a way of 

choosing, co times, elements in each Dn in such a way that the set of those 

elements which are chosen at every step constitutes a subset of D„ of type 
B(n) K n yy 

CO 

We now look at a method of making such choices. In general, let a set/4 

in [o)i]wa be given. Let also a finite family sA of subsets of cox each of order 

type an ordinal power of co be given. For each integer k, define operations 

Sk on such sets ^4 and such finite families sA as follows: if a = 0, then5fc(/l) 

= {{/4}}, if a > 0, then 

5^)={RC};BG [A]“aW,Ce [A]^ and B < C} ; 

if sA~ {A0, ... Am} then 

Sk(*)= {{80, C0,Bm, Cmh {Bh C,-} G Sk(Aj) for i = 0, ..., m} 

with the understanding that if tp(/4,-) = co° then Bt = C, = AThus 

^({/4}) = Sk(A). If sA is a finite pairwise disjoint family then so is any 

member of Sk( sA). 

Given.4 from suppose we take a sequence of families (sA „;/?<co> 

such that sA0 = {A} and there is some integer k so that always 

sAn+1 e Sk+n(sAn) when n> 0 . 

Thus sA j provides two disjoint subsets of A, one small, one large; sA 2 pro¬ 

vides similarly two subsets of each of these; and so on. If we put An = UsAn, 

then/4,, is to be the set of elements of A chosen at step n. Thus'fl{,4„;n<co} 

is the set of elements chosen at every step. 

Lemma 7.4.11. In the above situation, Pi {An;n < co} G [/4]wQ. 

Proof. By induction on a, where tp(/4) - ooa. If a - 0 then for every k and n 

we have Sk+n (A)= {-U}} so C\{A„; n < co} = A G [A j1^0. So now suppose 

that a > 0 and make the inductive assumption that for any (3 with j3 < a, given 

a sequence (A3 n; n < co) where A3 0 = {5} and for all n, T3„+1 €= S1+n(A3n) 

for some finite /, where tp(i?) = a/, then tp( D{ UT3 „; n < co}) = coK 

Now take the sequence (sAn\n < co) described above, with 5^ = {A} where 

tp04) = coa. Inductively choose members Bn and Cn of sA „+1 with tp(C„)=coa 

as follows. Since sAx 6^(4) there are Bq in [A ancj c0 jn [,4]^“ such 
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that B0 < C0 and {Bq. C0} C giv Supposing C„ E srln+l. since sdn+2 E 

Sk+n+i(.srt.n+l) there are subsets Bn+1 of Cn with tp(5„+1) = oja(Ar+',+1) and 

tp(C„+1) = coa such that 5„+1 < C„+1 and {Bn+1. Cn+l] C srf„+2. Titus al¬ 

ways <5„+1. 
Consider now the set Bq. There is one subset ot Bq in sd^. namely Bq it¬ 

self. In gi-> there are two subsets ot Bq and together they give a member, say 

'13 o- of 5^-+1(c180). In these get divided to give a member of S'fc+2(c^ o)> 

and so on. In general, if we put'13 0„ = {ATE sdn+l: X C Bo] then 

'13oo = {Bo }:it n>0 then'13o,i+i ^*£(fr+i)+/iC®on) • 

Since tp(fi0^ = co0^. by the inductive hypothesis, if 

Bq = D - U'13 o,i: n < co} 

then Bq E [#o]a,Q^- ^e can rePeat this with B\. B2.For any in. put 

43„i,i — {A E gl „+,„+i. A Cj Bm . Tlren 

43mn i.Bnl'.Bnln+i E S(]c+m+i')+rl(^& m,|) • 

So by the inductive hypothesis, if 

Bm — FI ■ U 13 . n A co ~ 

then#),, E Now for any n we have 

Bm C U 13,,i,i C U sd m+,,+ 1 -1 m +ii+l - 

and if / < in then 

Bm C Bm C C,„ _ j CQ.jCU^rd,. 

Hence always 5,„ C fl {4/t / < or}. Thus it 5 = U {5,„: m < co} then 

gCfl .4 /; / < to' and tp(fil = m < col = coa. This proves Lem¬ 

ma 7.4.11. 

Lemma ".4.12. Take any finite pairwise disjoint family sd and any uncount¬ 

able set X such that for all A in sd there is iA with iA < s such that <4, X) E 

C(iA L Then for any intiger k there are a family A6 in Sk(sd 1 and a set X' in 

[\’]N 1 such that for all B in A3 . 

B C 4 E sd => {B, X ) E G{iA) . 

Proof. Write sd = • 40..4,„ Suppose tp(4/) = cuA/ and (Aj, AD E G(if). 

Take subsets4' and A* of 4. with 4. <4* such that tp(4y) = coA/^ and 

tp(4 *1 = cuA' (but if a. = 0. put 4/ = A* = 4,1. Choose sets Ay from [A'|S 1 
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for/ with / <m + 1 so that X0 = X and Xy+1 is in [X,]*1 such that there is 

a subset A] of A) with tpU") = co“'(/c) for which {Aj, X/+1> G G(z;). This 

choice is possible since {Aj, X) G G(zy). Put X' = fl {JV/;j < m + 1} so 

X' G [X]' 1 and (A'j, X') G G(/y) for each j. Also (A*, X') G G(ij) since 

ty(A?)= tpG4y). Now {A'-, A*} G Sk(Aj) so if we put 15 = {A'q, Aq, 

dm, A^j] thenc/3 G5^) and03 with X' has the required property. 

In the next lemma we shall finally construct the almost homogeneous set 

of order type for arbitrary )3. The more complicated statement in the 

lemma is needed for the inductive construction. 

Lemma 7.4.13. Let (5 be given. Take any set X in |cj, |' 1 and any finite pair¬ 

wise disjoint family srt = {A0, A k} with {Aj, X) G G(z'y) (where j = 0, ..., k). 

Then there are B in [X\0J^ and subsets A) of Aj with tp {A'j) - tp(/4y) such 

that B is almost homogeneous and A) ® B C Aj. {where j = 0, ..., k). 

Proof. The plan of the proof is this. We shall construct the almost homogen¬ 

eous set B by finding almost homogeneous sets Bn with tp(Z?„) = u/db and 

Bm < Bn whenever m < n such that there is i(m) with i(m) < s for which 

Bm ® Bn C A,(w) whenever m < n \ by Lemma 7.4.7 this will suffice. At stage 

n in the conduction we shall introduce a set Dn of order type from 

which the elements of Bn will be drawn. When finding Dn, we shall choose 

elements of all the earlier Dm and of the Aj, say in sets and Af, such that 

Dm ® Dn C Aj(m) and Aj® Dn C A,-.. Those elements that are chosen at 
every stage will form the Bm and Aj. 

The proof is by induction on (5. The case (5 = 0 is given by Lemma 7.4.10. 

So suppose that (3 > 0, and make the inductive assumption that the statement 

of the lemma is true for any y with y < (5. 

Put sdo = sft and X0 = X. By Lemma 7.4.12 we have a family 6 0 in 

So(^o) and a set X{, in [X0]K 1 such that for all C inG 0 if CC Aj then 
(C, Xq) G G(ij). Since (3(0) <(3 by the inductive hypothesis applied to G0 and 

X'0 there are an almost homogeneous set D0 in and subsets C' of C 

for C in Q 0 with tp(C') = tp(C) such that C'® D'0 C A,-, for that z'y for which 

<C, Xq) G G, .. Note that also {C': CG G0} G50(^o)- By Lemma 7.4.8 there 

are D0 in [Doj°jP(0) and Xx in [X0]N 1 such that (D0, XfE G(i(0)) for some 

z(0) with z(0) < s. Then D0 is also almost homogeneous. Put sdx = {C'\ 

C&'T5 0} U {D0}. Since D0 C X0 and necessarily Aj < X0 for each j, it fol¬ 

lows that srtj is a finite pairwise disjoint family. And further, for each A in 

sdx there is i(A) such that (A, Xf) G G{i{A)). Thus we can repeat the process. 

This leads to the following inductive construction ot finite pairwise disjoint 
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families sfl. n, uncountable sets Xn, and almost homogeneous sets Dn in 

Suppose that sAn and Xn have already been constructed, such 

that for all >1 \n<A „ there is /(A) with z(A) < s for which (A, Xn) G G(i(A)). 

By Lemma 7.4.12 there are a family Qn in Sn(An) and a set Xn in [Xn\ 1 

such that for each C in Qn, if C C A with A EsA. „ then (C, Xn) G G(z(A)). 

Noting that j3(«) < P, by the inductive hypothesis applied to G„ and X„ , we 

can find an almost homogeneous set D'n in [Xll\LO"An'> and subsets C of each 

C in e n with tp(C') = tp(C) and C’® D'n C AiU) for that A in n where 

C' C CCA. We mention that {C': C E Gn} E S„(s^n). Using Lemma 7.4.8 

gives D„ in and Xn+1 in [X„]Nl such that (Dn,Xn+l)EG(i(n)) for 

some i(n). Then Dn. being a subset of D'n, is almost homogeneous. Also 

C' <Dn for every C', since C' C C, Dn EXn andC<X„ (for each C in Gn). 

Put 'A-n+i = {C':CE Gn} U {£)„}, so sAn+l is a finite pairwise disjoint fam¬ 

ily. And for each A in p{„+1, there is i(A) such that (A, Xn+1) E G(i(A)). 

Now take any one of the original sets Aj (so / = 0,..., k). In each of the 

families sAn consider those members which are subsets of Ay. As in Lemma 

7.4.11. this gives’a sequence of subfamilies (sdjn: n < go) where 

Ay0 = {Ay};Ay„+1 GS„(^y„) . 

Hence by Lemma 7.4.11. if Ay = f){ n < co} then Ay C Ay and 

ip (Ay) = tp(Ay). 
Take any Dm (where m < co), and in each stf n consider the subsets of Dm. 

There are none insd0, .... sA.m\ in sA.m+l there is Dm alone: in <Am+2 there 

are two giving a member of Sm+2(P,n); in A,„+3 these are further divided, 

and so on. Thus there is a sequence (<rDm„; n < co> with Q) mn C srt m+n+1 

such that 

— }> ^ mn+l ^ S(m+l)+n(^’mn) ■ 

Tlius bv Lemma 7.4.11, if Bm = H { DD mn: n < co) then Bm C Dm and 

tp(5m) = tp(Z)w) = co^). 
Then each Bm is an almost homogeneous subset of X. And if m < n then 

Bm < Bn since Bm C Dm, Bn C Dn C Xn and Dm < Xn. Further, if m < n 

theni??„ ® Bn C A^m) since Dm ® Xm+x C Aby choice of Dm and Xm+1, 

and Bm CDm, Xn C Xm+1. Put B = U{Bm;m < co}. By Lemma 7.4.7, B is 

almost homogeneous. And tp(B) = 20(c< co) = co*3. 

Finally| we show 4y® B C A,-, if j = 0, ..., A'. Given Ay, for any integer zz 

let ^Ay„ = (A G <A. n: A C Ay} so U -Ay„ gives the set of members of Ay chosen 

at tire zz-th step. An easy induction on n shows that (A, X'n) E G(ij) for every 

A in .stfy,,. Then the choice of D'„ andi^ „+1 ensures that A'® Dn C A,y for 

every A in stifn+1, so (U^/>1+1)® C A/.. Since Ay C U sA. jn+\ and 
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B„ C Dn, thus Aj® Bn C Aj.; hence A'j® B C A/.. This completes the proof 
of the lemma. 

Lemma 7.4.13 contains the last step necessary for the proof of Theorem 
7.4.3. 

Proof of Theorem 7.4.3. Let the countable ordinal a be given, and take the 

partition [cox ]2 = A0 U ... U As. By Lemma 7.4.6 there is (i such that 

(3-+AH(a, a). From Lemma 7.4.13 there is B in such that B is 

almost homogeneous for this partition. So by Definition 7.4.5 of the symbol 

P AH(a, a), there is .4 in [Z?!0-111 such that ^4 is homogeneous for the par¬ 

tition. Hence there is surely a subset of coj of order type a homogeneous for 
the partition. Thus indeed col -+ (a)j. 



APPENDIX 

CARDINAL AND ORDINAL NUMBERS 

§ 1. Set Theory 

In this appendix we shall list a set of axioms for set theory and develop 

briefly the properties of ordinal and cardinal numbers that have been used in 

this book. For a more detailed treatment and the proofs that are not given 

here, see for example Bachmann [1] or Sierpinski [89], 

Any one of the standard systems of set theory provides an adequate foun¬ 

dation for the material in this book (for example, the systems of Zermelo- 

Fraenkel (Fraenkel [43]), Bernays-Godel (Godel [49]) or Morse-Kelly (Kelly 

[60])). We shall list the axioms for the Zermelo-Fraenkel system (with the 

Axiom of Choice), ZFC. The system is formalized in first order predicate 

calculus with identity = and one other binary predicate symbol G for set mem¬ 
bership. The axioms are as follows. 

Axiom I (Extensionality). 

\/a\/b [a = b Vx (x Ea G Z?)] . 

Informally, a = b if and only a and b have the same members. 

Axiom II (Pair set). 

\/a \/b 3 c Vx (x G c ^ x = a or x = b) . 

Intuitively, for any two sets a, b the pair set {a, b} exists. 

Axiom III (Union set). 

Vff 3 c \/x(x G c 3_y(x G y and y G a)) . 

Iffl is a set, so is Ua, the union of the members of a. 
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Axiom IV (Power set). 

Va 3 c Vx(x E co Wy(y Ex=*y E c)) . 

For any set a, the power set ^<7 of a exists. 

Axiom V (Replacement). For each formula <p(x, y) (may be with further free 
variables) in which z, a, b do not occur: 

Vx Vy Vz(ip(x, 7) and ip(x, z) =>v = z) => 

Vo 3 b Vv (7 E 3 x (x E a and <p(x, 7))) . 

Informally, if <p(x, 7) is a function-like formula then for any set a there exists 
the set {7; 3 x(x E a and ip(x, 7))}. 

Axiom VI (Infinity). 

3 b( 3 x(x Eb) and Vy(v Ei => 3 x(x E& and7 Ex))) . 

Ensures the existence of an infinite set. 

Axiom VII (Foundation (or Regularity)). 

Vtf( 3 x(x E a) => 3 x(x E a and W(v Ea =^7 ^ x))) . 

Intuitively, every non-empty set a has a foundation member, that is, a mem¬ 

ber disjoint from a. 

Although Axiom Vll is one of the standard axioms of ZFC, the results in 

the text do not require its use. 

Axiom VIII (Choice). 

\/a 3 /(/is a function and dom(/) = a) and 

Vx(x Efl and 37(7 Ex) =>/(x) Ex) . 

Every set has a choice function. 

§2. Ordinal numbers 

A variety of definitions of the ordinal numbers can be given, all producing 

the same family of sets. (Bachmann [1, p24] proves the equivalence of five 

such definitions.) A convenient definition is the following. A set x is said to 
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he transitive if members of members of x are members of x,'that is, if 

y Gx =>y Cx . 

A set x is said to be well-founded if every non-empty subset ofx has a foun¬ 

dation member. Then we pose the following. 

Definition A.2.1. A setx in an ordinal if x is a transitive, well-founded set all 

the members of which are transitive. 

(If the Axiom of Foundation is assumed, it is unnecessary to require specif¬ 

ically that an ordinal be well-founded, since the axiom asserts that every set 

is well-founded.) 
It is easily seen that every member of an ordinal is again an ordinal. Define 

the ordering < between ordinals by, for ordinals a, (3 

)3 < a ^ j3 G a . 

Then each ordinal a is the set of all smaller ordinals, 

a = {(3; (3 is an ordinal and j3 < a} . 

Each ordinal a is well ordered by < (that is, by < restricted to the members 

of a). Any descending sequence of ordinals must be finite, for if ... < oq < 

ctq < a0 is an infinite descending sequence, by transitivity 1 < n < go} 

is a subset of o0, but yet it has no foundation member, contrary to the well- 

foundedness of q.q. If A is any non-empty set of ordinals then both D A and 

\JA are ordinals; fl A is the least member of A and U A is the supremum of A 

(the least ordinal a with |3 < a for every (3 in A). 

If a is a non-zero ordinal such that a = Ua then a is said to be a limit or¬ 

dinal. If a (with a =£ 0) is not a limit ordinal then there is an ordinal p such 

that a = P U {j3}. In this case a is said to be the successor of P, and one writes 

a = P + 1. 

Tire finite ordinals are defined to be those ordinals which are well ordered 

by >, and one puts 0 = 0, 1 = 0+ 1,2 = 1 + 1,3 = 2+ 1, etc. Let co be the set 

of all finite Ordinals; then co is an ordinal and in fact co is the smallest limit 

ordinal. 

There are the following methods for giving a proof by transfinite induction 

over the ordinals. Let ip(a) be a formula (maybe with other free variables). 

Theorem A.2.2 (Transfinite induction, first form). Suppose that for all ordi¬ 

nals P, ifVy< |3(ip(y)) then <p(p). Then ip(a) holds for all ordinals a. 
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Theorem A.2.3 (Transfinite induction, second form). Suppose that 
0M0) , 

(ii) y(a) =>ip(a + 1) , 

(iii) if a. is a limit ordinal then V(3 < a(ip(p)) => <p(a) . 
Then ip(a) holds for all ordinals a. 

Both theorems are proved by considering the least counter-example to 

<p(a), should there be one. 

Corresponding to the two forms of proof by induction, there are the fol¬ 

lowing methods of giving a definition by transfinite recursion over the ordinals. 

(There are more general forms of definition by transfinite recursion; however 

the two given below suffice to justify the uses of transfinite recursion made in 

the text.) Let tp(x, y) be a function-like formula (maybe with further free 

variables). 

Theorem A.2.4 (Transfinite recursion, first form). Given the ordinal a, there 

is a unique function f with domain a such that for all p with P<a, 

f(P) = y for that y such that ip({/(7); 7 < P}, y) . 

Theorem A.2.5 (Transfinite recursion, second form). Given the ordinal a and 

a set u, there is a unique function f with domain a such that for all p with 

P + 1 < a; and all limit ordinals 7 with 7 < a, 

(i) /(0) = u , 

(ii) f(P + 1 )=y for thaty such that q>(f(P), y) , 

(iii) /(T)= U {/((?);/3 < 7}. 

The operations of ordinal addition, multiplication and exponentiation are 

defined by recursion as follows: 

a + 0 = a,a + (P + 1) = (a + 0) + 1 , 

a + 7= U{cv + /3;/3<7} if7is a limit ordinal; 

cvO = 0 , a(P + 1) = (aP) + a , 

ay = U{a|3; P < 7} if 7 is a limit ordinal; 

a0 = 1 , ap+1 = (a13) a , 

a7 = U{a/3;(3< 7} if 7 is a limit ordinal. 

Sets with the order types a + P, a\3, ap can be realized as follows. Take sets 

a, b ordered by <a, <b with order types a, P respectively. For addition, sup- 
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pose a n b = 0 and order a U b as follows: 

x <i y ** (.v, y G a and x <fl v) or (a-, v G b and x </ v) 

or (a Go and.)’ Eb). 

Then tpfi? U b, <t) = a + j3. For multiplication, order a X /? by the reverse 

lexicographic ordering, that is 

(u, x) <2 <u, v> ° (x <b v) or (x = .v and m <fl u) . 

Then tp(a X b, <2) = ctj3. For exponentiation, let Z(a. b) be the set of all 

functions/: b ~*a such that fix) is non-zero for only finitely many values of 

x. Order Z{a, b) by last differences, that is, for/, g from Z(a, b) if.v is the 

greatest element in b such that f\y)^g{y) then 

/ <3 g ^f(r) <a g(.v) ■ 

Then tp(Z(fl, b), <3) = oP. 
The basic properties of the ordinal operations will not be developed here. 

We mention however the following result. 

Theorem A.2.6. Every ordinal £ has a representation in the form 

I; = coPl//i + o/'n2 + ... + 0/"' nm 

where pt > P2 > ... > Pm and m, n j, n2.nm are finite. 

Proof. Let £ be given. There is a least ordinal a such that $ < coa; then a is a 

successor ordinal, say a = P + 1. Thus 

a/' < £ < cop'+1 = cop'co = U {cop'n: n < co} , 

and so there is n with n < co for which cup'/i < | < cop(n + 1). Thus 

co^n < £ < cop\// + 1) = wPn + cop' = U{o/n + 7; 7 < a/} , 

and so there is 7 with 7 < cop for which 

£ = cd^n + 7 . 

Now repeat the process on 7: there are p2. n2 with n2 < co and y2 with 

72 < oj2 for which 

h . 7 = co n2 + 72 . 

and since 7 < cop and coP2 < 7 necessarily P> p2. Repeat with 72, and con¬ 

tinue in this way. For some finite m we must have ym = 0, for otherwise 
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... < 03 < < P would be infinite descending sequence of ordinals. Hence 

In fact the representation of the ordinal £ given by Theorem A.2.6. is 

unique; this is called the Cantor normal form for the ordinal £. 

The operations of addition and multiplication can be extended without 

difficulty to infinitary operations acting on a well ordered sequence of or¬ 

dinals. The infinite sum Z0(£a; a < P) and infinite product rio(£a; a < j3) of 

the sequence <£a; a < p) are defined by recursion on the length P of the se¬ 

quence as follows: 

20(£a; a < 0) - 0 , s0(k; a<P+l) = (S0(£a; a <P)) + ^, 

20(£a; a < 7) = U{20(£a; a < P): P < 7} if 7 is a limit ordinal; 

n0(t(*; a< 0) = l , n0(£a;a<j3+ l) = (n0(£a;a<|3)) , 

n0(£a; a < 7) = U{n0(£a; a < j3); p < 7} if 7 is a limit ordinal. 

It follows that if (a; 7 < 0) is the sequence of length P with constant value a 

then 20(ct; 7 < (3) = aP and II0(a; 7 < j3) = oP. 

§3. Cardinal arithmetic 

Two sets a and b are said to be similar, written a ~ b, if there is a one-to- 

one and onto function /: a -*■ b. Define a <; b if a is similar to some subset of 

b, and a < b if a < b and a fob. 
There are a number of classical results concerning the relation of similarity, 

provable without using the Axiom of Choice. 

Theorem A.3.1 (i) (Schroder-Bernstein). If a < b and b< a then a ~ b. 

(ii) (Cantor) If a is any set then a < 
(iii) (Hartogs) For every set a there is an ordinal a such that a F a. 

However, the Axiom of Choice is needed if a reasonable concept of size 

is to be based on the relation^. With Choice, it follows that ^ is a total order¬ 

ing, and that there are ordinals of every possible size. 

Theorem A.3.2. The Axiom of Choice is equivalent to each of the following: 

(i) the relation =< is total, that is, Wa Vb {a < b or b < a). 

(ii) every set is similar to some ordinal, that is, Va 3 u {a ~ a). 
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An ordinal a is said to be an initial ordinal if a if not similar to any smaller 

ordinal, that is (3 < a => a ^ j3. The sequence co0, coj, gj2, •••> Wa, ••• of the in¬ 

finite initial ordinals is defined by recursion: co0 = oj, and if a > 0 then 

coa = least initial ordinal greater than cop for all j3 with j3 < a . 

For this to be a valid definition, one must check that given the cop for all @ 

with j3 < a, there is a larger initial ordinal. Put a = Ufco^; j3 < a}; by Hartog’s 

Theorem there is an ordinal y such that y a. Whenever |3 < a then cop C a 

so cop < a; thus y*& cop and hence cop< y. Then y is an ordinal greater than 

all the cop and similar to none of them. The least such ordinal y will be an 

initial ordinal. 

The similarity relation has the properties of an equivalence relation (al¬ 

though the equivalence classes are “proper classes”; they do not exist as sets 

in the system ZFC). One seeks a representative from each equivalence class, 

to serve as a “number” representing that size of set — the representatives so 

found will be called cardinal numbers. Since the Axiom of Choice is assumed, 

by Theorem A.3.2(h) there are ordinals in each similarity class and hence 

exactly one initial ordinal, so this initial ordinal is a good choice. Thus we 

make the definition: k is a cardinal number if and only if k is an initial or¬ 

dinal. When the infinite initial ordinal coa is used as the representative of the 

similarity class and ignoring its structure as an ordinal, it is usual to denote it 

by rather than coa, so we define: = coa. Then the sequence of cardinal 

numbers is 

0, 1, 2, ..., Hq, Nj, Fl2, •••> ••• • 

Each set is similar to exactly one cardinal number; thus we define the 

cardinality, |x|, of a setx by: 

|x| = that cardinal number k such that x ~ k . 

The operations ot cardinal addition, multiplication and exponentiation 

are defined as follows. Given cardinal numbers k, X take any sets a, b with 

\a\= k, \b\ = X and a n b = 0 for (i), and define: 

(i) k + X = \a U b\ , 

(ii) k ■ X = \a X b\ , 

(hi) = 

where ba = {/;/: b -+a}, the set of all functions mapping from b into a. 

These definitions do not depend on the choice of the sets a and b. 
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Theorem A.3.3. If k is an infinite cardinal then k2 - k. 

Proof. Suppose k = tfa, and use transfinite induction on a. The case a = 0 is 

easy, so we assume a > 0. Make the inductive assumption that when¬ 

ever (3 < a. We shall show that then X Na ~ tta; from this the result fol¬ 

lows. Since clearly Na < Na X Na, we have only to show that fkaX Na< Na. 

Note that for ordinals a, r with a, r < Na also a + t < Na (the ordinal sum 

of o and r). For since o < Na either |o| < N0 or |a| = X7 for some y with 

y < a, and likewise for r. Hence there is (3 with j3 < a such that |a|, |r| < ftp. 

But 

|a + r| = |a| + |r|<^ + ^=2-^<^, 

and by the inductive hypothesis = ftp. Hence \o + r| < < Ka, and so 

a + r < tka. 

Define an ordering « on Na X Na as follows: 

(a, r)« <a\ /> ^ (a + 7 < a + t) or (a + t - o' + t’ and a < a ) . 

It is easy to see that « is a well ordering. Let tp(Na X Na,«) = y. Clearly 

Na < 7. In fact 7 = Na. For suppose, on the contrary, that Na < 7. There is 

than an order isomorphism/: 7 Na X Na, and let /(Na) = (o, r). Consider 

5 = {<p, n> E X Na;<p, n>« <0, r>} . 

Put a + r = so £ < If <p, y> « (a, r) then p + v < a + r = £, so p, n < £. 

Thus S' C (£ + 1) X (| + 1), so \S\ < |£ + 1|2. Since § < Na, also I? + 1| < Na 

so by the inductive hypothesis |£ + 1|2 < Na. Thus INI < Na. Yet/restricted 

to Ka is one-to-one and onto S, so \S\ = Na. This contradiction shows that 

7 = Ka. Hence Ka X Ka ^ Na, as required. 

Corollary A.3.4. If k, A are infinite cardinals then 

k + A = k ■ A = max(K, A) . 

If k< A f/zen kx - 2X. 

Proof. Suppose k < A. Then A<k+A<A + A = 2. A < A2 = A, so k + A = A. 

Also A < k • A < A2 = A so k ■ A = A. And 2* < < A* < (2X)X = 2*2 = 2\ 

sokx - 2\ 

The definitions of sum and product of two cardinals generalize to the sum 

and product of an arbitrary family of cardinals as follows. Given a family 
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(k/; i £ /) of cardinals, define Z(k,-; i £ I) to be the cardinality of U [Api £/} 

where the A, are pairwise disjoint sets with L4;j = «/, and define Ilf/c,-; i £/) to 

be the cardinality of the cartesian product X (A ; i £/) of sets/!/ where 

\Aj\ = Kj. There is the classical theorem of Konig connecting these two no¬ 

tions. 

Theorem A.3.5 (Konig). Let (/<:,■; i £ I) and (A,-; i £ I) be two families of car¬ 

dinals with always 1 < k, < A,-. Then 

2(k,-;/£/) < II(A,; z £ /) - 

Proof. For each z in /, choose two sets yf,-, Bt such that Al,- C Bh f4,-| = k,-, 

= A,- where the yf,- are pairwise disjoint. Choose bt from Bt - yl,-. Put 

A = U{y4,-; z £ /} and Z? = X(Z?,-; i £/). Define a function F A ^ B by, for a 
in A with «£/!/, 

a if / = /, 

Then F is one-to-one and so \A | < \B\. 

Suppose in fact \A\ - \B\, so there is a one-to-one and onto map G : A -> B. 

Then B = U{G[X1,]; /£/}. For each i in I, put Q = {#•(/); g £ G [.4, ] }; then 

and define/in B by /'(/) = for all z. Thenf <£ G[/4], contradicting that G 

maps onto B. Hence Hi F \B\, so \A \ < |£|. Thus 2(k,-;/£/) < II(A,; /£/) as 

claimed. 

We shall now review the concept of cofinality, particularly as applied to 

cardinal numbers. For any ordinal number a, the subset C of a is said to be 

cofinal in a if for all j3 with j3 < a there is 7 in C with 7 > (3. 

Definition A.3.6. The cofinality of the ordinal a (denoted by a or cf(a)) is 

the least ordinal |3 such that there is a mapping of j3 onto a cofinal subset of a. 

The ordinal a is regular if o' = cr, otherwise a is singular. 

It is clear from the definition that a is always a cardinal, and a' < a. If a 

is a successor ordinal then a' = 1, if a is a limit ordinal then a' > to. 

Lemma A.3.7. If a is any ordinal then a' is the least ordinal (3 such that there 
is a strictly increasing map / : j3 -> a with / [j3] cofinal in a. 

Proof. This is trivial if a = 0, 1 so we may suppose a > to. By the definition 
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of o;, there is a map g : a a with ^[0^"] cofinal in a. To prove the lemma, it 

will sulfice to find a strictly increasing map/ : at ot with f [a ] cofinal in ot. 

Define the values/(7) for 7 with 7 < a by induction as follows: /(7) is the 

least ordinal £ with £ < a such that £ >g-(8) and £ >/(S) for all 5 with 5 < 7. 

Since 7 < a , neither {#(8); 5 < 7} nor {/(8); 8 < 7} is cofinal in a so there 

is such a £. Then/is strictly increasing, and f[ot\ is cofinal in ot since ,§■[</] is. 

Theorem A.3.8. For all ot, the cofinality a is regular. 

Proof. We need to show that a = a . It suffices to show that there is a mapping 

ot a onto a cofinal subset of a, for then ot ^ a". Since anyway a" ^ a , this 
would give the result. 

By Lemma A.3.7 there are increasing maps/: a" a' and^ : a -> a with 

f[a ] cofinal in a andgfc/] cofinal in a.. Then the compositiongf is increasing, 

gf'- ot' a. Also gf[ot'} is cofinal in ot. For given j8 with p<a, there is 7 in a 

with g/y) > P and 5 in a” with /(S)>7. But then gf(8) >g(y) > P, so gf [a"] 
is indeed cofinal in a. 

Theorem A.3.9. Let k be an infinite cardinal. Then k' is the least cardinal X 

such that k can be expressed as a sum of X cardinals all less than k. If k is 

singular then k can be expressed as the sum of a strictly increasing sequence 
of k' cardinals all less than k. 

Proof. Given k, by Lemma A.3.7 there is a strictly increasing function 

f:n'->K with/[V] cofinal in k. For £ with £ < k', putdj =/(£+ 1) —/(£). 

Then k = U{A%; £ < k'} and the are pairwise disjoint, so k = S(|d^|; 

£ < k'). And \A%\ < |/(£ + 1 )| </(£ + 1) < k, so certainly k is the sum of k 

cardinals all less than k. 
Now let X be the least cardinal such that k = 2(7cg; £ < X) for some cardinals 

«£ with always /<£ < k, so N0 < X < /<’. If a < X then |S0(k^ ; £ < a)| = 2(k^; 

£ < a) < k, since |a| < X. Hence if A = { S0(k j ; £ < or); a < X} then A C k. 

Because X is a limit ordinal, 20(k^; £ < X) = U{20(k^; £ < a)\ a < X} < k, 
and since |20(/G £ < X)l = 2(k^; £ < X) = k in fact £0(Kg; £ < X) = k. It follows 

that A is cofinal in k. Hence k < \A \ - X, and thus X- k . 

Finally, suppose k is singular, and write k = 2(kct; a < k') where always 

Ka< k. Then {Ka; o < /} is cofinal in k, for if not there would be P with 

P < k such that Ka < P for all a, which would give the contradiction 

k = 2(kct; a < k') < |(3| • k <k . 

Thus inductively we may choose cardinals XT for r with r < k such that 
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XrG {k0-t<o<k'} and \T> U{X„ + V,v<t}, since always U{X„ + 1; 

p < 7} < n when r <C k . Then (XT; t ^ k ) is a strictly increasing sequence ot 

cardinals below k, and k - 2(Xr; t<k ). 

It follows from Theorem A.3.9 that if k is any infinite successor cardinal 

then k is regular. For suppose k = X+. By Theorem A.3.9, write k - 'L(k0,o<k , 

where always kct < k, so Ka < X. If k < k then k < X and there would be the 

contradiction 

K = 2(Ka;a<K')<X-X = X2 = X<K ; 

hence k = K so that k is regular. Thus for the infinite cardinal k to be singular, 

it must be that k = for some limit ordinal a. It is easy to see that then 

k' = a . A regular cardinal with a a limit ordinal is said to be weakly in¬ 

accessible; the existence of a weakly inaccessible cardinal cannot be proved 

from the axioms of ZFC set theory. 
We shall conclude this section with a few remarks about cardinal expo¬ 

nentiation. Cantor’s theorem showed that always 2 k . This result can be 

strengthened as follows. 

Theorem A.3.10. If k is infinite then (2K)' > k. 

Proof. Write 2K = 2(Xa; a< (2*)') where always 1 < Xa < 2*. If (2K)' < k, 

from Konig’s Lemma (Theorem A.3.5) we would obtain the contradiction 

2k = S(XCT; o < (2K)') < II(2K; a < (2Kf) < (2^)^ = 2K ' K = 2K ; 

and hence (2K)' > k. 

The Continuum Hypothesis is the statement 2N° = frV, the Generalized 

Continuum Hypothesis (GCH) is the statement Va(2Xa = ^a+1). Both state¬ 

ments are consistent with and independent from the axioms of ZFC. As¬ 

suming the GCH, or at least particular instances of it, enables one to evaluate 

kx for infinite k and X, as in Theorem A.3.11 below. In ZFC alone apart from 

Theorem A.3.10 very little can be proved about the value of 

Theorem A.3.11. Let k, X be infinite cardinals. Suppose 2e = d+ for all in¬ 

finite cardinals 6 with 9 < max(«, X). Then 
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Proof. Suppose X <k . If/is a function/: X^k, then/[X] is not cofinal in 

k and so/[X] C a for some a with a<K. Hence \c = U{^a; a < k}. And if 

a < k then 

|\*l = |a|x < (2bl)x = 2lal' x = (|a| ■ X)+ < k. 

Hence kx = |\| < 2(|xa|; a < k) < k ■ k- k and so kx - k. 

Now suppose k' < X < k, so k is singular. By Theorem A.3.9 there is a 

strictly increasing sequence <kct; a < k) of cardinals below k with k = 5(kct; 

a< k'). By Konig’s Lemma, 

k = 2(kct; o< k')< n(/<a+1; o<k')<ki< < kx . 

Also kx < (2K)^ = 2K ^ = 2K = k+, so k < kx < k+ and hence kx - k+. 

Finally, if K < X by Corollary A.3.4, kx - 2X and so kx = X+. 
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