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PREFACE 

This book was conceived in the winter of 1970 when I heard that I was 

getting a Sloan Fellowship and I thought I would take a year off to write a 

book. It took a bit longer than that, but I have many good excuses. 

I am grateful to the Sloan Foundation, the National Science Founda¬ 

tion and the University of California for their financial support—and to 

the Mathematics Department at UCLA for the stimulating and pleasant 

working environment that it provides. 

One often sees in prefaces long lists of persons who have contributed to 

the project in one way or another and I hope I will be forgiven for not 

complying with tradition; in my case any reasonably complete list would 

have to start with Lebesgue and increase the s'ize of the book beyond the 

publisher’s indulgence. I will, however, mention my student Chris Freiling 

who read carefully through the entire final version of the manuscript and 

corrected all my errors. 

My wife Joan is the only person who really knows how much I owe to 

her and she is too kind to tell. But I know too. 

Finally, my deepest feelings of gratitude and appreciation are reserved 

for the very few friends with whom I have spent so many hours during the 

last ten years arguing about descriptive set theory; Bob Solovay and Tony 

Martin in the beginning, Aleko Kechris, Ken Kunen and Leo Harrington 

a little later. Their influence on my work will be obvious to anyone who 

glances through this book and I consider them my teachers—although of 

course, they are all so much younger than me. No doubt I would still 

work in this field if they were all priests or generals—but I would not 

enjoy it half as much. 

Santa Monica, California December 22, 1978 

Added in proof. I am deeply grateful to Dr. Haimanti Sarbadhikari who 

read the first seven chapters in proof and corrected all the errors missed 

by Chris Freiling. I am also indebted to Anna and Nicholas Moschovakis 

for their substantial help in constructing the indexes and to Tony Martin 

for the sustenance he offered me during the last stages of this work. 
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ABOUT THIS BOOK 

My aim in this monograph is to give a brief but coherent exposition of 

the main results and methods of descriptive set theory. I have made no 

attempt to be complete; in a subject so broad this would degenerate into 

a long catalog of specialized results which would cover up the main 

thread. On the contrary, I have tried very hard to be selective, so that the 

central ideas stand out. 

Much of the material is in the exercises. A very few of them are simple, 

to test the reader’s comprehension and a few more give interesting 

extensions of the theory or sidelines. The vast majority of the exercises 

are an integral part of the monograph and would be normally billed 

“theorems.” There are extensive “hints” for them, proofs really, with 

some of the details omitted. 

I have tried hard to attribute all the important results and ideas to 

those who invented them but this was not an easy task and I have 

undoubtedly made many errors. There is no suggestion that unattributed 

results are mine or are published here for the first time. When I do not give 

credit for something, the most likely explanation is that I could not 

determine the correct credit. My own results are immodestly attributed to 

me, including those which are first published here. 

Many of the references are in the historical sections at the end of each 

chapter. The paragraphs of these sections are numbered and the foot¬ 

notes in the body of the text refer to these paragraphs—each time 

meaning the section at the end of the chapter where the reference occurs. 

In a first reading, it is best to skip looking up these references and read 

the historical sections as they come after one is familiar with the material 

in the chapter. 
The order of exposition follows roughly the historical development of 

the subject, simply because this seemed the best way to do it. It goes 

without saying that the classical results are presented from a modern 

point of view and using modern notation. 

XI 



About this book xii 

What appeals to me most about descriptive set theory is that to study it 

you must really understand so many things: you need a little bit of 

topology, analysis and logic, a good deal of recursive function theory and 

a great deal of set theory, including constructibility, forcing, large cardi¬ 

nals and determinacy. What makes the writing of a book on the subject so 

difficult is that you must explain so many things: a little bit of topology, 

analysis and logic, a good deal of recursive function theory, etc. Of 

course, one could aim the book at those who already know all the 

prerequisites, but chances are that these few potential readers already 

know descriptive set theory. My aim has been to make this material 

accessible to a mathematician whose particular field of specialization 

could be anything, but who has an interest in set theory, or at least what 

used to be called “the theory of pointsets.” He certainly knows whatever 

little topology and analysis are required, because he learned that as an 

undergraduate, and he has read Halmos’ Naive Set Theory [1960] or a 

similar text. Beyond that, what he needs to read this book is patience and 

a basic interest in the central problem of descriptive set theory and 

definability theory in general: to find and study the characteristic properties 

of definable objects. 



INTRODUCTION 

The roots of Descriptive Set Theory go back to the work of Borel, Baire 

and Lebesgue around the turn of the centrury, when the young French 

analysts were trying to come to grips with the abstract notion of a function 

introduced by Dirichlet and Riemann. A function was to be an arbitrary 

correspondence between objects, with no regard for any method or 

procedure by which this correspondence could be established. They had 

some doubts whether so general a concept should be accepted; in any 

case, it was obvious that all the specific functions which were studied in 

practice were determined by simple analytic expressions, explicit formulas, 

infinite series and the like. The problem was to delineate the functions 

which could be defined by such accepted methods and search for their 

characteristic properties, presumably nice properties not shared by all 

functions. 
Baire was first to introduce in his Thesis [1899] what we now call Baire 

functions (of several real variables), the smallest set which contains all 

continuous functions and is closed under the taking of (pointwise) limits. 

He gave an inductive definition: the continuous functions are of class 0 

and for each countable ordinal a function is of class £ if it is the limit of 

a sequence of functions of smaller classes and is not itself of lower class. 

Baire, however, concentrated on a detailed study of the functions of class 

1 and 2 and he said little about the general notion beyond the definition. 

The first systematic study of definable functions was Lebesgue s [1905], 

Sur les fonctions representables analytiquement. This beautiful and seminal 

paper truly started the subject of descriptive set theory. 

Lebesgue defined the collection of analytically representable functions 

as the smallest set which contains all constants and projections 

(x x?,..., xn) » Xi and which is closed under sums, products and the 

taking of limits. It is easy to verify that these are precisely the Baire 

functions. Lebesgue then showed that there exist Baire functions of every 

countable class and that there exist definable functions which are not 

1 



2 Introduction 

analytically representable. He also defined the Borel measurable functions 

and showed that they too coincide with the Baire functions. In fact he 

proved a much stronger theorem along these lines which relates the 

hierarchy of Baire functions with a natural hierarchy of the Borel measur¬ 

able sets at each level. 

Today we recognize Lebesgue [1905] as a classic work in the theory of 

definability. It introduced and studied systematically several natural no¬ 

tions of definable functions and sets and it established the first important 

hierarchy theorems and structure results for collections of definable 

objects. In it we can find the origins of many standard tools and 

techniques that we use today, for example universal sets and applications 

of the Cantor diagonal method to questions of definability. 

One of Lebesgue’s results in [1905] identified the implicity analytically 

definable functions with the Baire functions. To take a simple case, 

suppose that /:(R2—» (R is analytically representable and for each x, 

fix, y) = 0 

has exactly one solution in y. This equation then defines y implicitly as a 

function of x; Lebesgue showed that it is an analytically representable 

function of x, by an argument which was “simple, short but false.” The 

wrong step in the proof was hidden in a lemma taken as trivial, that a set 

in the line which is the projection of a Borel measurable set in the plane 

is itself Borel measurable. 

Ten years later the error was spotted by Suslin, then a young student of 

Lusin at the University of Moscow, who rushed to tell his professor in a 

scene charmingly described in Sierpinski [1950], 

Suslin called the projections of Borel sets analytic and showed that 

indeed there are analytic sets which are not Borel measurable. Together 

with Lusin they quickly established most of the basic properties of 

analytic sets and they announced their results in two short notes in the 

Comptes Rendus, Suslin [1917] and Lusin [1917], 

The class of analytic sets is rich and complicated but the sets in it are 

nice. They are measurable in the sense of Lebesgue, they have the 

property of Baire and they satisfy the continuum hypothesis, i.e. every 

uncountable analytic set is equinumerous with the set of all real numbers. 

The best result in Suslin [1917] is a characterization of the Borel 

measurable sets as precisely those analytic sets which have analytic 

complements. Lusin [1917] announced another basic theorem which 

implied that Lebesgue’s contention about implicitly analytically definable 

functions is true, despite the error in the original proof. 
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Suslin died in 1919 and the study of analytic sets was continued mostly 

by Lusin and his students in Moscow and by Sierpinski in Warsaw. 

Because of what Lusin delicately called “difficulties of international 

communication” those years, they were isolated from each other and 

from the wider mathematical community, and there were very few 

publications in western journals in the early twenties. 

The next significant step was the introduction of projective sets by Lusin 

and Sierpinski in 1925: a set is projective if it can be constructed starting 

with Borel measurable sets and iterating the operations of projection and 

complementation. Using later terminology, let us call analytic sets A sets, 

analytic complements CA sets, projections of CA sets PCA sets, comple¬ 

ments of these CPCA sets, etc. Lusin in his [1925a], [1925b], [1925c] and 

Sierpinski [1925] showed that these classes of sets are all distinct and they 

established their elementary properties. But it was clear from the very 

beginning that the theory of projective sets was not easy. There was no 

obvious way to extend to these more complicated sets the regularity 

properties of Borel and analytic sets; for example, it was an open problem 

whether analytic complements satisfy the continuum hypothesis or 

whether PCA sets are Lebesgue measurable. 

Another fundamental and difficult problem was posed in Lusin [1930a], 

Suppose P is a subset of the plane; a subset P* of P uniformizes P if P* is 

the graph of a function and it has the same projection on the line as P. 

The natural question is whether definable sets admit definable unifor- 

mizations and it comes up often, for example when we seek “canonical’ 

solutions for y in terms of x in an equation 

f(x, y) = 0. 
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Lusin and Sierpinski showed that Borel sets can be uniformized by 

analytic complements and Lusin also verified that analytic sets can be 

projectively uniformized. In a fundamental advance in the subject, Kondo 

[1938] completed earlier work of Novikov and proved that analytic 

complements and PCA sets can be uniformized by sets in the same 

classes. Again, there was no clear method for extending the known 

techniques to solve the uniformization problem for the higher projective 
classes. 

As it turned out, the “difficulties of the theory of projective sets” which 

bothered Lusin from his very first publications in the subject could not be 

overcome by ingenuity alone. There was an insurmountable technical 

obstruction to answering the central open questions in the field, since all 

of them were independent of the axioms of classical set theory. It goes 

without saying that the researchers in descriptive set theory were for¬ 

mulating and trying to prove their assertions within axiomatic Zermelo- 

Fraenkel set theory, as all mathematicians still do, consciously or not. 

The first independence results were proved by Godel, in fact they were 

by-products of his famous consistency proof of the continuum hypothesis. 

He announced in his [1938] that in the model L of constructible sets 

there is a PCA set which is not Lebesgue measurable: it follows that one 

cannot establish in Zermelo-Frankel set theory (with the axiom of choice 

and even the continuum hypothesis) that all PCA sets are Lebesgue 

measurable. His results were followed up by some people, notably 

Mostowski and Kuratowski, but that was another period of “difficulties of 

international communication” and nothing was published until the late 

forties. Addison [1959b] gave the first exposition in print of the consis¬ 

tency and independence results that are obtained by analysing Godel’s L. 

The independence of the continuum hypothesis was proved by Cohen 

[1963], whose powerful method of forcing was soon after applied to 

independence questions in descriptive set theory. One of the most sig¬ 

nificant papers in forcing was Solovay [1970], where it is shown (among 

other things) that one can consistently assume the axioms of Zermelo- 

Frankel set theory (with choice and even the continuum hypothesis) 

together with the proposition that all projective sets are Lebesgue 

measurable; from this and Godel’s work it follows that in classical set 

theory we can neither prove nor disprove the Lebesgue measurability of 
PCA sets. 

Similar consistency and independence results were obtained about all 

the central problems left open in the classical period of descriptive set 
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theory, say up to 1940. It says something about the power of the 

mathematicians working in the field those years, that in almost every 

instance they obtained the best theorems that could be proved from the 

axioms they were assuming. 

So the logicians entered the picture in their usual style, as spoilers. 

There was, however, another parallel development which brought them in 

more substantially and in a friendlier role. Before going into that, let us 

make a few remarks about the appropriate context for studying problems 

of definability of functions and sets. 

We have been recounting the development of descriptive set theory on 

the real numbers, but it is obvious that the basic notions are topological in 

nature and can be formulated in the context of more general topological 

spaces. All the important results can be extended easily to complete, 

separable, metric spaces. In fact, it was noticed early on that the theory 

assumes a particularly simple form on Baire space 

A = “o>, 

the set of all infinite sequences of natural numbers, topologized with the 

product topology (taking o> discrete). The key fact about A is that it is 

homeomorphis with its own square Ax A, so that irrelevant problems of 

dimension do not come up. Results in the theory are often proved just for 

A, with the (suitable) generalizations to other spaces and the reals in 

particular left for the reader or simply stated without proof. 

Let us now go back to a discussion of the impact of logic and logicians 

on descriptive set theory. 
The fundamental work of Godel [1931] on incompleteness phenomena 

in formal systems suggested that it would be profitable to delineate and 

study those functions (of several variables) on the set of natural 

numbers which are effectively computable. A great deal of work was done 

on this problem in the thirties by Church, Kleene, Turing, Post and Godel 

among others, from which emerged a coherent and beautiful theory of 

computability or recursion. The class of recursive functions (of several 

variables) on a> was characterized as the smallest set which contains all 

the constants, the successor and the projections (xls x2,..., xn) >* x{ and 

which is closed under composition, a form of simple definition by induc¬ 

tion (primitive recursion) and minimalization, where g is defined from f 

by the equation 

g(xq, x2,..., xn) — least w such that f (x^, x2,■■■, xn, w) 0, 
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assuming that for each xx, x2,..., xn there is a root to the equation 

f(xi, x2,..., xn, w) = 0. Church [1936] proposed the thesis (hypothesis) that 

all number theoretic functions which can be computed effectively by some 

algorithm are in fact recursive, and to this date no serious evidence has 

been presented to dispute this. 

Kleene [1952a], [1952b] extended the theory of recursion to functions 

f :con x Xk —*• co 

with domain some finite cartesian product of copies of the natural 

numbers and Baire space. For example, a function f-.coxA-^co is 

recursive (by the natural extension of Church’s Thesis) if there is an 

algorithm which will compute f(n, a) given n and a sufficiently long initial 

segment of the infinite sequence a. 

A set Ac(o" x J\fk is recursive if its characteristic function is recursive. 

By Church s Thesis again, these are the decidable sets for which we have 

(at least in principle) an algorithm for testing membership. 

Using recursion theory as his main tool, Kleene developed a rich and 

intricate theory of definability on the natural numbers in the sequence of 

papers [1943], [1955a], [1955b], [1955c], 

The class of arithmetical sets is the smallest family which contains all 

recursive sets and is closed under complementation and projection on a>. 

The analytical sets are defined similarly, starting with the arithmetical 

sets and iterating any finite number of times the operations of com¬ 

plementation, projection on co and projection on A. Both of these classes 

are naturally ramified into subclasses, much like the subclasses 

A, CA, PC A,... of projective sets of reals. Notice that the definitions 

make sense for subsets of an arbitrary product space of the form con x Jik. 

Kleene, however, was primarily interested in classifying definable sets of 

natural numbers and he stated his ultimate results just for them. The 

more complicated product spaces were brought in only so projection on 

A could be utilized to define complicated subsets of co. 

Kleene studied a third notion (discovered independently by Davis 

[1950] and Mostowski [1951]) which is substantially more complicated. 

The class of hyperarithmetical sets of natural numbers is the smallest 

family of subsets of co which contains the recursive sets and is closed 

under complementation and “recursive” countable union, suitably 

defined. The precise definition is quite intricate and the proofs of the 

main results are subtle, often depending on delicate estimates of the 

complexity of explicit and inductive definitions. 
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Using later terminology, let us call X\ the simplest analytical sets of 

numbers, those which are projections to to of arithmetical subsets of 

toXjV. The most significant result of Kleene [1955c] (and the whole 

theory for that matter) was a characterization of the hyperarithmetical 

sets as precisely those 5} sets which have X\ complements. 

Now this is clearly reminiscent of Suslin’s characterization of the Borel 

sets. A closer look at specific results reveals a deep resemblance between 

these two fundamental theorems and suggests the following analogy 

between the classical theory and Kleene’s definability theory for subsets 

of co: 

(R or/ 

continuous functions 

Borel sets 

analytic sets 

projective sets 

a) 

recursive functions 

hyperarithmetical sets 

X\ sets 

analytical sets 

In fact the theories of the corresponding classes of objects in this table are 

so similar, that one naturally conjectures that Kleene was consciously 

trying to create an “effective analog on the space a> of classical descrip¬ 

tive set theory. 
As it happened, Kleene did not know the classical theory, since he was 

a logician by trade and at the time that was considered part of topology. 

Mostowski knew it, being Polish, and he first used classical methods in his 

[1946], where he obtained independently many of the results of Kleene 

[1943]. More significantly, Mostowski introduced the hyperarithmetical 

sets following closely the classical approach to Borel sets, as opposed to 

Kleene’s initial rather different definition in [1955b], 

First to establish firmly the analogies in the table above was Addison, 

in his Thesis [1954] and later in his [1959a]. Over the years and with the 

work of many people, what was first conceived as “analogies” developed 

into a general theory which yields in a unified manner both the classical 

results and the theorems of the recursion theorists; more precisely, this 

effective theory yields refinements of the classical results and extensions of 

the theorems of the recursion theorists. 
It is this extended, effective descriptive set theory which concerns us 

here. , . 
Powerful as they are, the methods from logic and recursion theory 

cannot solve the “difficulties of the theory of projective sets,” since they 

too are restricted by the limitations of Zermelo-Fraenkel set theory. The 
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natural next step was taken in the fundamental paper Solovay [1969], 

where for the first time strong set theoretic hypotheses were shown to 

imply significant results about projective sets. 

Solovay proved that if there exist measurable cardinals, then PCA sets 

are Lebesgue measurable, they have the property of Baire and they 

satisfy the continuum hypothesis. Later, he and Martin proved a difficult 

uniformization theorem about CPC A sets in their joint [1969] and 

Martin [19?a] established several deep properties of CPC A sets, all 

under the same hypothesis, that there exist measurable cardinals. 

For our purposes here, it is not important to know exactly what 

measurable cardinals are. Suffice it to say that their existence cannot be 

shown in Zermelo-Fraenkel set theory and that if they exist, they are 

terribly large sets: bigger than the continuum, bigger than the first 

strongly inaccessible cardinal, bigger than the first Mahlo cardinal, etc. It 

is also fair to add that few people are willing to buy their existence after a 

casual look at their definition. Nevertheless, no one has shown that they 

do not exist, and it was known from previous work of Scott, Gaifman 

Rowbottom and Silver that the existence of measurable cardinals implies 

new and interesting propositions about sets, even about real numbers. 

These, however, were metamathematical results, the kind that only 

logicians can love. Solovay’s chief contribution was that he used this new 

and strange hypothesis to solve problems posed by Lusin more than forty 
years earlier. 

Unfortunately, measurable cardinals were not a panacea. Soon after 

Solovay’s original work it was shown by himself, Martin and Silver among 

others that they do not resolve the open questions about projective sets 

beyond the CPCA class, except for some isolated results about PCPCA 
sets. 

The next step was quite unexpected, even by those actively searching 

for strong hypotheses to settle the old open problems. Blackwell [1967] 

published a new, short and elegant proof of an old result of Lusin’s about 

analytic sets, using the determinancy of open games. 

Briefly, an infinite game (of perfect information) is described by an 

arbitrary subset A c. X of Baire space. We imagine two players I and II 

successively choosing natural numbers, with I choosing k0, then II choos¬ 

ing k1, then I choosing k2, etc; after an infinite sequence 

« =(k0, ki,...) 

has been specified in this manner, we say that I wins if a e A, II wins if 
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a£ A. The game (or the set A which describes it) is determined, if one of 

the two players has a winning strategy, a method of playing against 

arbitrary moves of his opponent which will always produce a sequence 

winnning for him. 

It was known that open games are determined and Blackwell’s proof 

hinged on that fact. It was also known that one could prove the existence 

of non-determined games using the axiom of choice, but no definable 

non-determined game had ever been produced. 

Working independently, Addison and Martin realized that Blackwell’s 

proof could be lifted to yield new results about the third class of 

projective sets, if only one assumed the hypothesis that enough projective 

sets are determined. Soon after, Martin and Moschovakis again indepen¬ 

dently used the hypothesis of projective determinacy to settle a whole slew 

of old questions about all levels of the projective hierarchy, see Addison- 

Moschovakis [1968] and Martin [1968]. Three years later the uniformiza- 

tion problem was solved on the same hypothesis in Moschovakis [1971a] 

and the methods introduced there led quickly to an almost complete 

structure theory for the classes of projective sets, see especially Kechris 

[1973], [1974], [1975], Martin [19?a] and Moschovakis [1973], [1974c]. 

This is where matters stand today. 



' 



CHAPTER 1 

THE BASIC CLASSICAL NOTIONS 

Let a) = {0, 1, 2,...} be the set of (nonnegative) integers and let (R be the 

set of real numbers. The main business of Descriptive Set Theory is the 

study of a), (R and their subsets, with particular emphasis on the definable 

sets of integers and reals. Another fair name for it is Definability Theory 

for the Continuum. 
In this first chapter we will introduce some of the basic notions of the 

subject and we will establish the elementary facts about them. 

1A. Perfect Polish spaces 

Instead of working specifically with the reals, we will frame our results 

in the wider context of complete, separable metric spaces (Polish spaces) 

with no isolated points (perfect). One of the reasons for doing this is the 

wider applicability of the theory thus developed. More than that, we often 

need to look at more complicated spaces in order to prove results about 

(R.(1-5) 
Of course (R is a perfect Polish space and so is the real n -space (R" for 

each n >2. There are two other important examples of such spaces which 

will play a key role in the sequel. 
Baire space is the set of all infinite sequences of integers, 

jV = “a> 

with the natural product topology, taking a> discrete. The basic neighbor¬ 

hoods are of the form 

N(k0,..., kn) = {aeN: a(0) = k0,..., a(n) = kn}, 

one for each tuple k0,..., kn. We picture jV as (the set of infinite branches 

of) a tree, where each node splits into countably many one-point exten¬ 

sions, Figure 1A.1. 

11 
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It is easy to verify that the topology on Jf is generated by the metric 

d(a, (3) = 1 

least n[a(n) 7^ |3(n)]+ 1 

if a = (3, 

if a / (3. 

Also, A is complete with this metric and the set of ultimately constant 

sequences is countable and dense in jV, so JV is a perfect Polish space. 

One can show that A is homeomorphic with the set of irrational 

numbers, topologized as a subspace of (R. The proof appeals to some 

basic properties of continued fractions and does not concern us here—it 

can be found in any good book on number theory, for example Hardy 

and Wright [I960], Although we will never use this result, we will find it 

convenient to call the members of A irrationals. 

Notice that Baire space is totally disconnected, i.e. the neighborhood 

base given above consists of clopen sets. 

1A.1. Theorem. For every Polish space 311, there is a continuous surjection 

it :JV-^3H 

of Baire space onto 3TC. 
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Proof. Fix a countable dense subset 

D ={r0, r1, r2,...} 

of 3TC and to each a eA assign the sequence {x“} = {xn} by the induction 

X0 = ra(0)> 

^ _f^o:(n+i) if d(xn, ra(n+j))<l2 , 

\x„ if d(xn,ra(n+l))>2~n. 

Now for each n, 

d(xn,xn+1)<2 n, 

so {x“} is Cauchy and we can set 

7r(a) = limitn^ x“. 

It is obvious that 77 is continuous since 

a(0) = 0(0),..., a(n) = 0(n) -=> x£ = xg,..., x“ = x^ 

from which it follows immediately that , 

d(rr(a), ir(p))<d(n(a), x“) + d(x^, tt(0)) 

^ n-Fl _|_ n + 1 _ n+2 

On the other hand, for each x 6 3TC let 

a(n) = least k such that d(x, rk)<2 n 1 

and check that 7r(a) = limitn ra(n) = x. H 

Another very useful perfect Polish space is the set of all infinite binary 

sequences 

e = “2, 

again with the product topology. This is a compact subspace of A 

naturally represented by the complete binary tree. It is obviously 

homeomorphic with the classical Cantor set obtained from the closed 

interval [0, 1] on the line by successively removing the open middle third, 

as in Figure 1A.2. Again we will abuse terminology a bit by calling Q the 

Cantor set. 
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0 

0 1/3 2/3 1 
i-1 i-1 

I 

Figure 1A.2. The Cantor set. 

With each perfect Polish space 201 we can associate a fixed enumeration 

N(20I, 0), N(20I, 1), N(20l, 2),... 

of a countable set of open nbhds which generates the topology. When 201 

is clearly understood by the context we will use the simpler notation 

n0,n1;n2,.... 

Of course we may assume that the Nf’s are open balls. There are 

situations, however, when this is not convenient. For example, if 201 = 

Xi x X2 is the product of two spaces, it is often preferable to work with 

the nbhds of the form B1 x B2, where Br and B2 are chosen from bases in 
X1 and X2. 

We will leave open the possibility that the N;’s are not open balls. 

However, we will assume that with each N, we have associated a center xt 

and a radius p, such that the following hold: 

(1) XieNh if N^0. 

(2) If xeNh then d(x, xi)<pi. 

(3) If x is any point, then for every n we can find some Nt such that 
xeNt and radius (Nt)<2~n. 

For any set Pc201, let 

P = closure of P, 

so that Ns =N(201, s) is the closure of the s’th nbhd in the fixed base for 
the topology of 201. 

The simple construction in the next result will be useful in many 

situations beyond the corollary following it. 
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Figure 1A.3. 

1A.2. Theorem. Let 911 be a perfect, Polish space. We can assign to each 

finite binary sequence u = (t0,..., fn_i) (f =£ 1) an open nbhd N0.(u) ^ 0 in 

9TC so that 

(i) if u is an initial segment of v, then N„(v) ^ Am, 

(ii) if u and v are incompatible, then 

^tr(u) H Nct(u) = 0, 

(iii) if u = (t0,..., fn_a) has length n, then radius(Na.M)<2~n. (See Figure 

1 A.3.) 

Proof. Two sequences u = (t0fn_i), v = (s0sk_i) are incompatible if 

for some i <n, i <k we have tt f=- st. 

We define Nct(u) by induction on the length n of the binary sequence 

u = (t0,..., fn_i), starting with some of radius <1 = 2 0 that we assign 

to the empty sequence. 
Given u = (t0,..„ tn_j) and assuming that Nct(u) has already been defined, 

we know that there must be infinitely many points in N^, or else the 

center of this nbhd would be isolated. Choose then xf y in Nct(u) and find 

open balls Bx, Bv with centers x and y respectively and such that 

Bx c N„m, By c N<r(u), 

Bx n By = 0, 

as in Figure 1A.4. 
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Figure 1A.4. 

It is now enough to choose i, j such that JVj c Bx, c By and Nh N- 
have radii <2~n~1 and set 

cr(to>-”5 tn_l5 0) — i, cr((0,..., fn_j, 1) = j. 

Verification of (i), (ii), (iii) with this definition of cr is trivial. —I 

1A.3. Corollary. For every perfect Polish space arc, there is a continuous 
injection 

tt :C>^3TC 

of the Cantor set into an. 

Proof. Given an infinite binary sequence a, put 

= the center ofN(3TZ, cr(a(0),..., a(n- 1))) 

and let 

7t(oc) = limitn^x*. 

It is immediate that tt is an injection (one-to-one). That 77 is continuous 
can be proved by verifying 

^ lIX]= u„ {«: N(3R, <r(a(0),..., a(n — 1)))c= Ns}. H 
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Exercises 

1A.4. For each compact Polish space X, let C[X] be the set of all 

continuous functions on X to (R with the usual supnorm distance, 

d(f, g) = supremum{|/(x) — g(x)|: x e X}. 

Prove that C[X] is a perfect Polish space. —I 

1A.5. For each perfect Polish space X, let H[X] be the set of all compact 

non-empty subsets of X. If x e X and A e H[X], put 

d(x, A) = infimum{d(x, y): yeA} 

where on the right d is the distance function on X. The Hausdorff distance 

between two compact sets is defined by 

d(A, B)= maximum{supremum{d(x, B): xe A), 

supremum{d(y, A): y e B}}. 

Prove that this is metric on H[X] and that H[X] is a perfect Polish space. 

Hint. The set of all finite subsets of any dense subset of X is dense in 

H[Xl -I 

IB. The Borel pointclasses of finite order 

In order to study the subsets of a perfect Polish space 9TC, it will be 

necessary to consider other space related to9TC, e.g. the products 3TCX3TI, 

jV’xTR, oj X3TL Let us first establish notation and terminology which make 

these detours easy. 
We fix once and for all a collection $ of metric spaces with the following 

properties: 
(1) The discrete space w, the reals (R, Baire space A'and the Cantor set 

Q are in 3\ 
(2) Every space in 5 other than a> is a perfect Polish space. 

Except for these restrictions we can leave membership in 3F open—e.g. 

one might take o>, (R, X and Q to be the only spaces in 5. The idea is that 

we put in T all the perfect Polish spaces in which we are interested. 

The members of are the basic spaces. A product space (by definition) 

is any cartesian product 

9C = Xx x ••• x Xk, 
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Y 

*(x, y) 

N = { (x', y') : d((x, y) , (x', y')) < 1} 

X 

Figure 1B.1. The unit ball in a product space. 

where each X; is basic. Basic spaces count as product spaces by allowing 

k = 1 here. We naturally topologize XjX---xXk as a product, i.e. with 

basic nbhds of the form 

N = B1x-xBk, 

where each is a nbhd in X;. It is easy to verify that this topology on 9C 
is induced by the metric 

d((xu..., xk), (ylv.., yk)) = maximumld^x^ y^,..., dk(xk, yk)}, 

where each dt is the given metric on X;. (See Figure 1B.1.) 

Two product spaces 9C = X1 x • • • x Xk and ^ = Yx x • • • x Y, are equal if 

k = l and Xx = Ylv.., Xk = Yk. We then define products of product spaces 

by going back to the basic factors, i.e. if 

9C = Xt x • • • x Xk 

and 

y = Yxx-x Yh 

then (by definition) 

9Cx<y = Xxx--xXk X Yx x • • • x Y(. 
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Thus 

9Cx((yxZ) = (9CxTj)xZ = 9CXcyxZ. 

We call the tuples in these product spaces points and the subsets of 

these spaces pointsets. 

If x = (x1,..., xk) and y = (ylv.., y,), then (by definition) 

(x, y) = (x1,...,xk, ylv.., y,). 

As with products of product spaces, this pairing operation is associative, 

(x, (y, z)) = ((x, y), z) = (x, y, z). 

We can think of pointsets as sets or as relations with arguments in the 

basic spaces. Both points of view are useful and we will use interchange¬ 

ably the customary notations for these, i.e. for P^dC, 

xeP« P(x). 

Of course, we will not be studying individual pointsets so much as 

collections of pointsets, call them pointclasses. Thus a pointclass A is a 

collection of sets such that each P in A is a subset of some product space 

9C. For example, we may have 

A = all open pointsets 

= £{P: Pc 9C for some product space 0C and P is open}. 

In definability theory we typically start with a small pointclass A and 

certain operations on pointsets and then we study the sets which can be 

constructed by applying (once or repeatedly) the given operations to the 

members of A. For the Borel sets of finite order we start with the open sets 

and we apply repeatedly the operations of complementation or negation 

(—i) and projection along co or existential number quantification (3"). 

More precisely, if Pc 9C is any pointset, put 

~i P = 9C — P. 

For a pointclass A, let 

—iA = {—iP: PeA} 

be the dual pointclass. 

Similarly, if PeSCXoj for some 9C, let 

3“P = {x e 3C: for some n, P(x, n)} 

= {xg0C: (3n)P(x, n)} 
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Figure IB.2. Projection along u>. 

and for a pointclass A, put 

3“’A = {3a>P: PeA, Pg 9Cx<o for some 9C}; 

see Figure IB.2. 

The Borel pointclasses of finite order 2° (n > 1) are defined by the 

induction 
2? = all open pointsets, 

v° = 12°- 

the dual Borel pointclasses II® are defined by 

n“ = i2°; 

finally, the ambiguous Borel pointclasses A£ are given by 

a° = 2° n n°<13) 

Thus, Ill consists of all closed pointsets. A? is the class of all clopen 

sets, 2° is the class of all projections along co of closed sets, etc. Put 

another way, a set P c 0C is 2° if there is a closed such that for 

all x, 
P(x) ** (Bt)F(x, t). 

Similarly, P is 2l3 if there is a closed F such that 

P(x) <=*(3t) -i(3s)F(x, t, s) 

<=> (3t)(Vs) iF(x, t, s). 
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i.e. P is 2° if there is an open pointset G such that 

P(x) ^ (3b)(Vf2)G(x, fl512). 

Similar normal forms can be computed for the pointclasses n", e.g. P is 

11° if there is some open G such that for all x, 

P(x) ^ (Vf1)(3t2)(Vt3)G(x, tu t2, t3). 

In the classical terminology, 2° sets are called FCT sets, 11° sets are Gs, 2° 

sets are G^, 11° sets are FctS, etc. It is a cumbersome notation and we will 

not use it, except for an occasional reference to FCT’s and G5’s. 

1B.1. Theorem. The following diagram of inclusions holds among the 

Borel pointclasses of finite order: 

v*0 v'O 

A° A0 a0 ^1 ^2 ^3 

^ 4 ^ ^ 
n? n° n° - 

Diagram IB.3. The Borel pointclasses of finite order. 

Proof. The inclusions 

V° c: TT° 
•^11 — 11M+l 

are almost immediate from the definitions. Taking n = 3 to simplify 

notation, if P is 2°, then 

P(x)^(3f1)(Vt2)G(x, tut2) 

with some open G c 9C x a> x o>. We can rewrite this as 

(*) P(x) ^ (Vs)(31x)(Vt2)G(x, tt, t2) 

since the addition of the vacuous quantifier (Vs) does not affect the 

meaning of the equivalence. Now define 

G (x, s, b, t2) <=> G(x, t j, t2) 

and notice that G' is (trivially) open, so equivalence (*) above establishes 

that P is II4. 

To prove the inclusions 

2° c= 2° 
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recall that in a separable metric space every open set is a countable union 

of closed sets. If G <= 9C and 

G = U t -Ft 

with each Ft closed, define Fc 9C x w by 

F{x, t) <=> x e Ft 

and notice that F is closed and 

G(x)^(3t)F(x, t). 

Thus G is 2°, and since G was arbitrary open, 

2?c=2?. 

Hence 22 = 3“ m2?^3“ m2? = 2? and inductively, 2° = 2£+i. 

This establishes 
2°c A°+I 

for every n, so taking negations, 

n°cA°+1 — “n + 1 

and the remaining inclusions in the diagram are trivial. 

Exercises 

IB.2. Prove that if 0C = Xx x ••• x Xk is a product space with at least one 

factor X; = X and every X, either co or X, then 9C is homeomorphic with 

X. 
Hint. Construct homeomorphisms of oi x X and Xx Xwith X and then 

use induction on k. H 

IB.3. Prove that if 9C = X! x • • • x is a product space with at least one 

factor Xj not o>, then 9C is a perfect Polish space. —\ 

IB.4. Prove that a pointset P is 2? if and only if 

p=ur=0Fi5 

with each Ft closed. 

Similarly, P is IT?, if and only if 

p=nr-0G, 
with each Gf open. H 
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This is the classical definition of FCT and Gs sets. These occur quite 

often in analysis, for example consider the following problem. 

IB.5. Let /: CR —> (R be an arbitrary function on the line. Prove that the 

set 

A = {x e (R: / is continuous at x} 

is a Gs. 

Hint. Define the variation of / on an interval (a, b) by 

V(a, b) = supremum{f(x): a<x<b} 

— infimum{f(x): a <x< b}, 

where the value may be °° or —°°. The local variation of f is given by 

v{x) = limitn_»x v(x-, x +—\ 
\ n nl 

and it is clear that / is continuous at x just in case v(x) = 0. Show that for 

each n, the set 

An = jx : u(x)<—J 

is open and A = H „ An. H 

IB.6. Prove that if n> 3 is odd, then P is if and only if there is an 

open set G such that 

P(x)^(3t1)(Vt2)(3t3)(Vt4)- •• (Vtn_!)G(x, L,..., L.j). 

Similarly, if n is even, then P is 2° if and only if there is a closed set F 

such that 

P(x) & (3f1)(Vf2)(3f3) ••• (3tn_j)F(x, tj,..., rn_i). 

Find similar normal forms for the 11° pointsets. H 

IB.7. Prove that if 9C is a product of copies of a> and A and P is 2° with n 

odd, then there exists a clopen set R such that 

P(x) «=* (3t1)(Vf2) ••• (\/tn^)(Btn)R(x, tj,..., O; 

similarly for even n, with the last quantifier V. 

Hint. If A c 9C is open, then A = {JnRn with clopen JR„ in these spaces 

and we can take 

R(x, n)«=>xe Rn. H 
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1C. Computing with relations; closure properties 

The relational notation for pointsets is particularly convenient in put¬ 

ting down compact expressions for complicated definitions. For example, 

suppose that QqSCxN, R^'XxJfxoj and let 

P(x) <=* (Va)[Q(x, a) => (3i)R(x, a, ;')]■ 

Here the logical symbols are taken with their customary meaning, as we 

have been using them all along: V (for all), 3 (there exists), =» (implies), & 

(and), v (or), —i (not). 

We will also use customarily Greek variables a, /3, y,... from the 

beginning of the alphabet over jV and i, j, k, l, m, n, s, t, over a>. This will 

save us having to specify explicitly the range of the quantifiers in each 

definition. 

One can view the logical symbols as denoting operations on pointsets. 

In general, a k-ary pointset operation is a function <t> with domain some set 

of k-tuples of pointsets and pointsets as values. 

With this terminology, conjunction & is the binary pointset operation 

which assigns to every pair F, Q of subsets of the same space 9C the set P 

& Q, 
xe(P& Q)^P(x)& Q(x). 

Of course 
p&0 = poo. 

We will, however keep the symbol 0 for denoting the general set 

theoretic operation of intersection, with AflB defined for arbitrary sets 

A, B. 

Similarly, the disjunction PvO of two pointsets is defined when P and 

Q are subsets of the same 9C and 

PvQ = PUQ = {x: P(x)vQ(x)}. 

Negation is most conveniently regarded as a collection of operations 

—iac, one for each product space 9C, with —iXP defined when Pc SC: 

m9cP = 0C-P = {xG9C: mP(x)}. 

In practice we will always write ~iP for -|XP, as SC is clear from the 

context. 

From these we can construct more pointset operations by composition, 

e.g. the implication P =* Q of P and Q is defined by 

(P^O)=nPvO. 
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Figure 1C.1. Projection along cy. 

More interesting than these propositional pointset operations are the 

projections and dual projections or quantifiers. If Pcgcx'y, put 

3<yP = {x g 9C: (3y)P(x, y)} 

as in Figure 1C.1. 

For each fixed product space % we call the operation 3^ projection 

along y or existential quantification on % Clearly 3 4P is defined when 

Pcacx'y for some 0C, in which case 3^Pe9C. 

We have already used projection along oi, 3". 

Only the projections along basic spaces are fundamental, since all the 

others can be obtained from these by composition; for example, if 

<y = at x Jf, then for each Pc 9C x o> x jC, 

3^P = 3" 3XP, 

i.e. in relational notation, 

(3y g cy)P(x, y) <=> (3n)(3a)P(x, n, a). 

if pcacx^y, put 

Vyp=-13^ nP, 

x g V^P <=> -i (3y g ‘y) -i P(x, y) 

«=> (Vy g ‘yjPCx, y). 

i.e. 
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Figure 1C.2. Universal quantification on 'y. 

Figure 1C.3. Bounded number quantification. 
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Fixing cy, we call the operation VM dual projection along "y or universal 

quantification on y. Again, V'P is defined when P^SCxy for some 9C 

and then V^Pgg9C, see Figure 1C.2. 

In addition to the operations 3V‘", the bounded number quantifiers 

will prove useful, 

(x, u)g3 P <=* (3m < n)P(x, m), 

(x, n)e V P <=* (Vm < n)P(x, m), 

see Figure 1C.3 

Clearly 3^P, VSP are defined when PcSCXw for some 9C, in which 

case both 3~P and V P are subsets of 3CXa>. 

A pointclass A is closed under a k-ary pointset operation <t> if whenever 

Pi,..,, Pk are in A and <J>(P,,..., Pk) is defined, then <F(P,,..., Pk) is also in 

A. For example, A is closed under conjunction if whenever P and Q are 

subsets of the same space 9C and both are in A, then P & Q = P C\ Q is in 

A. 
Similarly, A is closed under negation ~i, if nAgA, i.e. if for every 

PeA, Pg 3C we have 0C —PeA. 

We say that A is closed under continuous substitution if for every 

continuous function f: 9C y and every Pe A, P^y, f~'[P]&A. Here of 

course 

x e r][P] ^ f(x) e P <=> Pifix)). 

It is worth putting down a very useful alternate version of this closure 

property. 

1C.1. Lemma. Suppose A is a pointclass closed under continuous sub¬ 

stitution, let be continuous functions and as¬ 

sume that Oe(y1x---x(ym is a pointset in A. If 

P(x)^Q(/i(x),...,/m(x)), 

then P is also in A. 

Proof. The function g : 0C —» 3/1 x x %>. defined by 

g (x) = (/,(x),...,/m(x)) 

is continuous and 

P(x) <=> Q(g(x)). 
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For example, suppose 

P(x, y) <=> Q(y, x) & R(x, y, y), 

where Q c x 9C, Pc:9Cx<yxcy and both Q and R are in some point- 

class A closed under continuous substitution and &. Then P too is in A, 

since 

P(x, y) <=* Q'(x, y) & R'(x, y), 

where 

Q'(x, y) *=* Q(J1(x, y), f2(x, y)), 

R'(x, y) <=» R(f2(x, y), /X(x, y), /j(x, y)) 

with 

fi(x,y) = y, f2(x, y) = x. 

In effect, closure under continuous substitution allows us to permute or 

identify variables in a relation and stay in the pointclass we are working 

with. 

After these preliminary remarks we can state concisely the elementary 

closure properties of the Borel classes. To prove them, we will need 

functions that code finite sequences of integers by single integers. 
Let 

p(i)~ Pi = the i'th prime, 

with p0 = 2, and for each n, put 

(t0,..., tn_!> = po°+1.pJr-'T1. 

By convention the empty product is 1, so that 

<0>=1, 

and 1 is the code of the empty sequence. With this particular coding of 

tuples we associate the natural decoding functions and relations 

Seq(u) «=> u = 1 or u = (t0,..., tn_f) for some t0,..., tn_l3 

lh(u) = n if u = (t0,...,tn_1) for some t0,..., fn_l5 

= 0 otherwise, 

{u)i=ti if u=(t0,...,tn_1) for some 

t0,..., tn_, and i < n, 

= 0 otherwise. 
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It is often convenient to index a finite sequence starting with 1 rather 

than 0. Notice that if 

u=(tu..., tn), 

then for i < n, (u); = ti+1. 

1C.2. Theorem. Each Borel pointclass 2“(n> 1) is closed under continu¬ 

ous substitution, v, &, 3”, V“ and 3“. 

Each dual pointclass 11^ is closed under continuous substitution, v, &, 

3s, V" and V". 

Each ambiguous Borel pointclass A® is closed under continuous sub¬ 

stitution., i, v, &, 3“ and V~. 

Proof. The results about 11“ and A“ follow immediately from those about 

2“. Also the closure properties of 2? are trivial, except perhaps for 

closure under 3^ and V~ which follow easily from the equations 

3“P = Un {(A n): (3m<n)P(x, m)}, 

V~P = Un {(A n): (Vm< n)P(x, m)}. 

Assume now that 2° has all the right closure properties—we will show 

the same for 2°+i- 

Suppose first that Q is a typical 2°+i subset of % i.e. 

Q(y) <=> (3m) —iP(y, m), 

with P some 2° subset of ^ x o>. Assume also that f: 9C -*• ^ is continuous. 

Now 

with 

Q(/(x)) ^ (3m) -iP(/(x), m) 

<=> (3m) —\P'(x, m) 

P'(x, m)<=>P(f(x), m). 

Since P' is 2° by 1C.1 and the induction hypothesis, f ’[Q] is 2"+1. 

Hence 2”+i is closed under continuous substitution. 

To prove closure of 2“+i under &, compute 

R(x) (3s) -n P(x, s) & (3t) Q(x, 0 

o(3u)[nP(x,(u)0)&-iO(x,(u)1)] 

<=> (3u) —i[P(x, (u)0) v Q(x, (w)i)]- 
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If P and Q are 2", then 

P'(x, u) ^ P(x, (u)0)vQ(x, (u)i) 

is also by closure under continuous substitution and v, so R is 2°+i. 

This method of proof goes by the fancy name of like quantifier 

contraction and yields equally trivial proofs of closure of 2°+] under v 

and 3‘0. For closure under V = we need a slightly more elaborate contrac¬ 

tion of finitely many quantifiers. 

Suppose 
R{x, n) «=> (Vm < n)(3s) ~iP(x, m, s) 

with P in 2“ and compute, 

R(x, n) «=*• (3u)(Vm <n) ~i P(x, m, (u)m) 

<=> (3u) —i(3m < n)P(x, m, (u)m). 

Again 

P\x, n, u) <=> (3m < n)P(x, m, (u)m) 

is 2° by closure of this class under continuous substitution and 3 \ so R is 
v° 
~*n + l * 

Proof of closure of 2”+i under 3“ is trivial. —\ 

This simple argument is a good illustration of the advantage of rela¬ 

tional (or logical) notation, i.e. writing 

R(x, n) <=> (Vm < n)(3s) ~iP(x, m, s) 

rather than 

R=V~3l° —\P. 

In fact the whole proof rested on some quantifier manipulation rules 

whose truth is transparent in logical notation. We list them here for 

reference, but we will apply them in the future without much ado. 

(3s)(3f)P(s, t) «=> (3u)P((u)0, (u)a), 

(Vs)(Vt)P(s, t) (Vu)P((u)o, (u)i), 

(Vm < n)(3s)P(m, s) «=> (3u)(Vm < n)P(m, (u)m), 

(3m < n)(Vs)P(m, s) (Vu)(3m < n)P(m, (u)m). 

These rules are useful because they allow us to simplify the quantifier 

prefix of a complicated logical expression by introducing continuous 

substitutions in the matrix. 
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To see how we can use the closure properties of a pointclass, suppose 

that 
P(x) *=> (3f)(3s){Q(x, s) =* (3u)[R(u, f(x, u), t)vS(u, x, s)]}, 

where Q, R, S are 2°, / is continuous and t, s, u range over w. We will 

argue that P is 2°+i. 

First put 
Q'(x, t, s) <=> Q(x, s), 

R’(x, t, s, u) <=> P(u, /(x, u), t), 

S'(x, f, s, u) <=> S(u, x, s), 

and notice that O', R1, S' are 2“ by closure of this pointclass under 

continuous substitution. Now 

P(x) <s=> (3t)(3s){—i Q'(x, t, s)v(3u)[P'(x, t, s, u)vS'(x, t, s, u)]} 

<=>(3r)(3s){~iQ'(x, t, s)v(3u)T(x, f, s, u)} 

<=> (3f)(3s){—i Q'(x, t, s) v T'(x, t, s)} 

*=* (3f)(3s)T"(x, t, s) 

where T, V, T" are defined by 

T(x, r, s, u) <=* P'(x, t, s, u)vS'(x, t, s, u), 

T'(x, f, s) <=> (3u)T(x, t, s, u), 

T"(x, t, s) ~i Q(x, t, s) v T'(x, t, s). 

P(x) <=* (3s)(3t){Q(x, s) —> (3u)[R(u, f(x, u), t)vS(u, x, s)]} 

<=> (3s)(3t){~iQ(x, s)v(3u)[R(u, f(x, u),t)vS(u, x, s)]} 

Diagram 1C.4. 
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Clearly T and T are 2® by the closure properties of this pointclass. 

Hence T' is X°+1 by 1B.1 and since —iO is also 2°+i, T" is S°+1. Finally P 

is 2„+1 by two applications of closure of this pointclass under 3". 

This kind of computation is so simple that we will not usually bother to 

put it down. One way to make computations of this type with a minimum 

of writing is to use a diagram like 1C.4 above which shows step-by-step 

the properties of the relevant pointclasses that we use. 

Exercises 

1C.3. Let /:(R—» (R be a continuous function on the line. Prove that the 

relations 
P(x, y) <=>f'(x) = y, 

Q(x) <=>/'(x) exists 

are both 11°. 

Hint. Let r0, rlv.. be an enumeration of all rational numbers and put 

R(x, y, s, k, m) rm^0& -{f(x + rm)-f(x)}-y 
r„, 

1 

~s + l ' 

Clearly R is a closed relation. It is easy to verify that 

P(x, y)«=>(Vs)(3fc)(Vm)|0<|rm|< 
fc + 1 

R(x, y, s, k, m) } 
The second assertion is proved similarly, starting with the relation 

S(x, s, k, m, n) <=> rm ± 0 & rn^ 0 

1 & — if(x + rm)-f(x)}--{f(x + rn)~ f(x)} 
'm FM s + 1 

—\ 

1C.4. LetC[0, 1] be the space of continuous real functions on the unit 

interval and define Q c C[0, 1] x (R by 

Qif, x) <=* 0<x < 1 & f'(x) exists. 

Prove that Q is II3. _l 

1C.5. Prove that if Pc sc and 0^4/ are 2°, then the product PxQc 

is 2° 

Hint. Use closure under continuous substitution. —I 
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Figure 1C.5. Uniformization. 

For the next exercise we introduce the basic problem of uniformiz- 

ationn7> 

Suppose Pcgcx'lj is a subset of the product SCx'y. We say that P* 

uniformizes P, if P* c P and P* is the graph of a function with domain the 

projection S^P. Intuitively, P* assigns to each point in 3VP just one 

member of the section or fiber 

Px ={y :P(x, y)} 

as in Figure 1C.5. 

It follows from the axiom of choice that each P can be uniformized by 

some P*; on the other hand, it is often very difficult to find a definable 

uniformizing set, even if the given set is very simple. 

The next exercise solves the uniformization problem in a very simple 

situation, but we will see later that even this easy result is useful. 

1C.6. Prove that for each n > 1, if Pe 0C x o is in 2°, then there is some 

P* also in 2“ which uniformizes P. 

Hint. Suppose 
P(x, m) <=> (3i)Q(x, m, i) 

with Q in 11°-!. Put 

R(x, s) <=> Q(x, (s)o, (s),) & (Vf < s) -i Q(x, (t)0, (t)i), 

P*(x, m) <=» (3i)R(x, (m, i». H 
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Figure 1C.6. Reduction. 

Suppose P and Q are subsets of the same space 0C. We say that the pair 

P*, Q* reduces the pair P, Q if the following hold: 

P*c=P, Q*cQ, 

PUQ = P*UQ*, 

p* n Q* = 0.(16) 

(See Figure 1C.6.) 

Figure 1C.7. Separation. 



ID] Parametrization and hierarchy theorems 35 

1C.7. Prove that for each n > 1, every pair of sets P, Q in 2° is reducible 

by a pair P*, Q* in 2”. 

Hint. Uniformize the set R defined by 

R(x, m) <==> {P(x) & m = 0} v{Q(x) & m = 1}. H 

Suppose that P and Q are disjoint subsets of the same space 9C. We say 

that the set S separates P from Q if 

P<=S, QnS = 0.(16) 

(See Figure 1C.7.) 

1C.8. Prove that for each n > 1, every disjoint pair of sets P, Q in can 

be separated by a set in A°. 
Hint. To separate P from Q, reduce the pair 9C — P, 9C - Q. H 

ID. Parametrization and hierarchy theorems 

In the most general situation, a parametrization of a set § on I (with 

code set I) is any surjection 

it : I -*■ S 

of I onto S. Often we need parametrizations which are “nice”—e.g. we 

may want 7r to be definable or to reflect some given structure on §. 

Here we are interested in the case when S is the restriction of a given 

pointclass T to some product space 0C, 

r(9C = {Pc0C: Per}. 

In fact we seek parametrizations of r\3C on product spaces. 

If Pc'yxfT and y e let Py be the y-section of P, 

Pv ={xe 9C: P(y, x)}, 

as in Figure 1D.1. 
A pointset G ^ X 9C is universal for r(9C, if G is in T and the map 

y * Gy 

is a parametrization of r\9C on % i.e. for P<=9C, 

Pefo for some y e % P = Gy.<15) 
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Figure 1D.1. The section above y. 

A pointclass T is CJ/-parametrized if for every product space 9C there is 

some G c ^ x 9C which is universal for r[0C. 
Let 

N0, Nj, N2,... 

be an enumeration of a basis for the topology of some product space 3C 
and define O^Ax0C by 

0(e, x) «=► (3n)[x e NE(n)]. 

Clearly O is open and each open set Pc 9C is of the form 

P = Oe = [JnNe(n) 

for some eeA, so that O is universal for 2?f9C. Thus 2? is JV- 
parametrized and it is trivial to prove from this that all the Borel 

pointclasses Si! and their duals 11° are A-parametrized. The next theorem 
establishes a little more. 

1D.1. The Parametrization Theorem For 2°. For every perfect product 
space (y, 2? is <y-parametrized,<15) 
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Proof. Let N(% 0), N(% 1),... and N(9C, 0), N(9C, 1),... enumerate bases 

for the topology of and a fixed product space 9C respectively. Recall 

from Theorem 1A.2 that there is a function cr which assigns to each finite 

binary sequence u a nbhd N(% cr(u)) in ^ such that (i), (ii) and (iii) of 

1A.2 hold. Using this cr, define G £ <y x 9C by 

G(y, x) there exists a finite binary sequence 

u = (t0,..., tn) such that tn = 0, y e Nf^, o-(u)) 

and x e N(9C, n). 

It is immediate that G is open and hence every section Gy £ 9C is open. 

The proof will be complete if we show that every open subset of 9C is a 

section of G, since then G will be universal for SifSC and SC was arbitrary. 

If P <= 9C is open, then there is a set of integers A such that 

Put 

x g P <=> (3n)[n e A & x e N(SC, n)]. 

10 if n e A, 

11 if A 

and as in the proof of 1A.3 define the sequence {y„} in 'y by 

y„ = the center of N(% cr(t0,..., tj). 

The properties of cr imply that {yn} is Cauchy, so let 

y = limits0 yn. 

We claim that for this y, 

G(y, x)«xeP. 

If xeP, then for some n we have tn =0 and xeN(9C, n), and by the 

properties of cr, y e Na(t0,..., („)), so by the definition of G we have 

G(y, x). 

Conversely, if G(y, x), then there is some u = (to, t[,...,tn) such that 

y G N(/y, cr(u)) and C = 0 and xgN(9C, n). Since y e iVf/y, cr(r0, tu..., tn)), 

the sequences tn) and (fo,..., t'n) are compatible by the properties of 

cr. But binary sequences of the same length are compatible only when 

they are identical, so t0 = to,..., tn = t'n = 0, hence tn = 0 and x e N(9C, n), so 

xeP. H 

ID.2. Theorem. If a pointclass T is <y-parametrized, then so are the 

pointclasses —\T and 3ZT, where Z is any product space. In particular all 
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the Borel pointclasses 2° and their duals 11° are y-parametrized, where <y 

is any perfect product space. 

Proof. If G c ‘y x 9C is universal for r\X, then —i G = ‘y x 9C — G is obvi¬ 

ously universal for ^r\X. Similarly, if Gc<yx0CxZis universal for 

rKSCXZ), define H^‘yx9C by 

H(y, x) (3z)G(y, x, z) 

and verify immediately that H is universal for 3ZF[0C. H 

The significance of parametrizations is evident in the next result which 

we formulate in a very general setting. 

ID.3. The Hierarchy Lemma. Let T be a pointclass such that for every 

product space 9C and every pointset Pe9Cx 9C in F, the diagonal 

P'={x: P(x, jc)} is also in T. If T is 3f-parametrized, then some P ^ ^ is in T 

but not in ~i T.1'5’ 

Proof. Let Gc^x^ be universal for rf'<y and take 

P = {y: G(y, y)}. 

By hypothesis PeT. If nPeT then for some fixed y*e <y we would have 

G(y*, y) <=* ~iP(y) <=> ~iG(y, y) 

which is absurd for y = y*. H 

ID.4. The Hierarchy Theorem for the Borel Pointclasses of Finite 

Order. If 9C is any perfect product space, then the following diagram of 

proper inclusions holds: 

S?[9C Xgfac 
£• 

A°[9C 

n?[ac njjfac 

Diagram ID.2. The Borel pointclasses of finite order. 

Proof. We have the inclusions from 1B.1, so it is enough to prove that 

they are proper. 
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From ID.2 we know that S„ and 11° are 9C-parametrized, hence by 

ID. 3 there is some P^ac, P eS°, P^II°. Thus A°l9C<= S°l9C and similarly 

A^9Ccn(j9C. On the other hand, if X°JX = A°+1l9C, then S°l3C would be 

closed under -i, so Il°|'2Cc2°f9C contradicting PeS°-n°. H 

IE. The projective sets 

We now introduce a second hierarchy of pointclasses by applying 

repeatedly the operations of negation and projection along Jf. 

For each pointclass A let 

3 ' A = {3 'P: PeA} 

= {3 ' P: P £ A K9C x Ji) for some 9C}. 

The Lusin pointclasses 1) are defined by the induction 

Si = 3'n<1\ 

2i+1 = 3 v -.SJ, 

and as with the Borel pointclasses we define the dual and ambiguous 

Lusin pointclasses by 

nln= -i S’, 

a1 = s’ nn1 (11,12) 

Thus a pointset Pc 2C is Si if there is a closed Fc 9C x Af such that for 

all x 

P(x) <=> (3a)F(x, a), 

P i§ S2 if there is an open Gc=9CxjVx Jf such that 

P(x) (3ai)(Va:2)G(x, au a2), 

etc. Similarly, P is 11} if there is an open G such that 

P(x) <=> (Va)G(x, a), 

P is Ilf if there is a closed F such that 

P(x) <=> (Va!)(3a2)F(x, al5 a2), 

etc. 
The pointsets that occur in these Lusin pointclasses are the projective 

sets, the chief objects of our study. 
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1E.1. Theorem. The following diagram of inclusions holds among the 

Lusin pointclasses: 

2] 
& -S' Cfr 

A} A’ 
-§• o, 

ip rp 

Diagram IE. 1. The Lusin pointclasses. 

Proof. The inclusions Xn^ni+i are proved by vacuous quantification, 

the same way we showed X!J^II° + 1 in 1B.1. 

If F is a closed set, then F is 11° by 1B.1, so for some open G, 

F(x) <=> (Vt)G(x, t) 

<=*■ (Va)G(x, a(0)). 

Now the set G' £ 9C x jV defined by 

G'(x, a) <=> G(x,a(0)) 

is also open since G is and the map 

(x, a)» (x, a(0)) 

is continuous, hence F is II}. Thus every closed set is nj and then, by 

definition, every Si set is XP from which 

S1 c=S‘+i 

follows immediately by induction. 

The remaining inclusions in the diagram are trivial. —I 

To prove the closure properties of the Lusin pointclasses we need maps 

that allow us to code infinite sequences of irrationals by single irrationals. 

Put 
(a); =(t» a((i, t»). 

i.e. 

(a)t = (i, where /3(t) = a((i, t». 

There is a k-ary inverse of this function for each 1, 

<«0,..., ock_1)((i, t)) = a,(t) if i<k, 

(a0ak_i)(n) = 0 if n^{i, t) for all t and i < k. 
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The maps 

(a, i) » (a);, 

, «k-i) * Wo,..., ak_i) 

are obviously continuous and for each k and i < k, 

(<«0, — 5 «k-l))i = «t. 

It will also be useful to have a notation for the shift map, 

a* = (l» a(t + 1)). 

Again, a a* is continuous. 

1E.2. Theorem. Each Lusin pointclass X'n is closed under continuous 

substitution, v, &, 3 , V% V" and 3^ for every product space % 

Each dual Lusin pointclass II,1, is closed under continuous substitution, v, 

&, 3s, V % 3“ and V '4 for every product space f). 

Each ambiguous Lusin pointclass is closed under -i, v, &, 3“, V“, 

3“ and V". 

In particular, every pointset of finite Borel order is A}. 

Proof. The results about n,1, and A,1, follow immediately from those about 

Xi and the last assertion is a trivial consequence of the closure properties 

of A}. 

Closure of X! under continuous substitution follows from the closure of 

III under continuous substitution. 

To prove closure of Xj under v, &, 3~, V“ and 3^ we use quantifier 

contractions. For example, to prove closure under 3*, assume that 

P(x, a) ^ (3|S)F(x, a, (3) 

with F closed. Then 

(3a)P(x, a) <=» (3a)(3|3)F(x, a, (3) 

<=> (3y)F(x, (7)0, (7)1) 

and 3yP is X] by closure of 11? under continuous substitution. 

To take one more example, suppose 

P(x, m) ^ (3|3)F(x, m, (3). 

(Vm < n)P(x, m) <=> (Vm < n)(3(3)F(x, m, (3) 

(37)(Vm < n)F(x, m, (y)m) 

Then 
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and again VSP is 2} by closure of II? under continuous substitution and 

Vs. 
Closure of 2} under 3“ follows immediately from the equivalence 

(3t)(3a)Q(x, t, a) ^ (3y)Q(x, y(0), y*). 

For every product space there is a continuous surjection 

7r : JV -» 

of jV onto 'y by 1A.1. Thus if PcgCxnj, then 

(3y)P(x, y) «=*■ (3a)P(x, ir(a)) 

and closure of 2] under 3^ follows from closure under continuous 

substitution and 3^. 

Finally, to prove closure of 2j under VOJ, suppose 

P(x, t) «=> (3a)F(x, t, a) 

with F in 11®. Then 

(Vf)P(x, t) <=> (Vf)(3a)F(x, t, a) 

<=> (3y)(Vt)F(x, t, (y)t), 

so V“P is 2! by closure of II? under continuous substitution and V“. 

The closure properties of 2i for n > 1 follow by induction, using the 

same quantifier manipulations that we used for the case of 2{. H 

In addition to the obvious quantifier contractions 

(3a)(3|3)P(a, (3) «=> 07)P((y)o, (y)i), 

(Va)(V|8)P(a, 0) «=* (V7)P((7)0, (y)i), 

we also used in this proof the equivalence 

(Vf)(3a)P(f, a) ^ (3y)(Vt)P(t, (y)t). 

This expresses the countable axiom of choice for pointsets. The dual 

equivalence 

(3t)(Va)P(t, a) ^ (Vy)(3t)P(t, (y)t) 

looks a bit mysterious at first sight. We prove it by taking the negation of 

each side in the countable axiom of choice. 

Theorems 1D.1-1D.4 and 1E.1 yield immediately the following result. 
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IE.3. The Parametrization and Hierarchy Properties of the Lusin 

Pointclasses. For each n > 1 and for each perfect product space % the 

pointclasses Xh, 11^ are ‘y-parametrized. Hence they satisfy the following 

diagram of proper inclusions, where SC is any perfect product space:<12) 

Sjlac £2 IS! 
'A A 

A^ls: 
4 

njlac n’ls: 

Diagram IE.2. The Lusin pointclasses. 

In the classical terminology the %\ pointsets are called analytic or 

A-sets. They include most of the sets one encounters in hard analysis. 

The 11} sets are co-analytic or CA-sets, the X\ sets are PCA-sets, the IE 

sets are CPC A -sets, etc. 

Exercises 

IE.4. If /:9C-»U let 

Graph(f) = {(x, y): f(x) = y}. 

Prove that if f is continuous, then Graph(f) is closed. H 

IE.5. Prove that if f:9C^y is continuous and P is a X,1, subset of 9C, 

then f[P] = {f(x): P(x)} is %ln. H 

IE.6. Prove that for every pointset Pg 9C, 

P is P=f[N] for some continuous /, 

P is Xi+1 «=» P = f[Q] for some lE set Q c jV and some continuous f. 

Hint. For the first assertion, suppose P is the projection of some closed 

subset C of 9CXJV. Consider C as a metric space with the metric it 

inherits from 9C x jV"; it is easily separable and complete, so by 1A.1, there 

is a continuous surjection /: jV -»■ C. Now P is the image of A under f 

followed by the continuous projection function. H 

We cannot replace jV by an arbitrary perfect product space in this 

result, because of the next exercise. However, see 1G.12 for a related 

characterization of Xj. 
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IE.7. Prove that if /: (R —> 9C is continuous and F is a closed set of reals, 

then f[F] is S°- 

Hint. (R is a countable union of compact sets. —\ 

Practically every specific pointset which comes up in the usual construc¬ 

tions of analysis and topology is easily shown to be projective—in fact, 

almost always, it is X\ or n{. We only mention a couple of simple 

examples here, since we will meet several interesting projective pointsets 

later on. 

1E.8. On the space C[0, 1] of continuous real functions on the unit 

interval, put 

Q(f) <=>/ is differentiable on [0, 1], 

R(f) *=>/ is continuously differentiable on [0, 1], 

where at the endpoints we naturally take the one-sided derivatives. Prove 

that Q is 11) and R is —I 

IF. Countable operations and the transfinite Borel pointclasses 

A countable pointset operation is any function with domain some set 

of infinite sequences of pointsets and pointsets as values. We will often 

use the notation 
$,P, = d>(P0, P1,P2,...). 

The most obvious countable operations are countable conjunction, /\“, 

and countable disjunction, V“- Here AT Pi and V“Pi are defined when 

all the Pf are subsets of the same space 0C and 

x e Ar Pi Ai Pi(x) <=>for all i e co, P;(x), 

x € V?P, Vi Pi(x) ■*=>f°r some i e co, Pt(x). 

In set theoretic notation 

ArA = n,Pn vrp, = u,A 

whenever all the P, are subsets of the same space. 

A pointclass A is a closed under a countable operation <t>, if whenever 

P0, Pi,... are all in A and A^P, is defined, then P, is also in A. 

1F.1. Theorem. Let F be an Ji-parametrized pointclass which is closed 

under continuous substitution. If F is closed under 3“\ then it is closed 

under V“ an^ if F is closed under V“, then it is also closed under A“- 
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Proof. Suppose P, c 9C, P, e F, let GcjVx 9C be universal and choose 

irrationals e; such that 

Pj = Ge. = {x e 9C: G(gj, x)}. 

Now pick e so that for every i, 

(e)i = Si 

and set 

xeP ^(3i)G((s)hx). 

Clearly P e F by closure under continuous substitution and 3“ and P = 

U iPi. 
The argument about V“ is similar. H 

IF.2. Corollary. Each 2° is closed under V“» each 11° is closed under 

A“ and all Xn, n‘, are closed under both V“ A“-(12) —| 

If is a k-ary or countable set operation and A is a pointclass, put 

4>A = {<F(P0, Pi,...): P0, Pi,... € A and A'lPo, Pi,...) is defined}. 

We have already used this notation in connection with 3“ and 3A 

It is trivial to verify that if A is closed under continuous substitution, 

then 

3“A£V“A, 

i.e. every projection along a> of a set in A can be written as a countable 

union of sets in A. This together with 1F.2 give us a new inductive 

characterization of the finite Borel pointclasses, 

Xi = all open sets, 

S« + i=V~-nX°. 

Now the class of all pointsets of finite Borel order is closed under 3“ but 

it is not closed under V“; f°r example, choose Gn c jV to be in X°-I1° 

and verify that 

G = Un {(n, a): a e Gn} 

is not in any 2°. This suggests an extension of the finite Borel hierarchy 

into the transfinite as follows. 
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Take 

X? = all open pointsets 

and for each ordinal number £>1, let 

Unscrambling this, P is in X‘€’ if there are pointsets P0, Pi,-, with each P* 

in some p < £, such that 

P= Ui (9C-Pi). 

We call X° the Borel pointclass of order The dual and ambiguous Borel 

pointclasses are defined in the obvious way, 

a° = x° n n°.(8-9) 

For finite £ this definition yields the pointclasses X° as we know them, so 

there is no conflict in notation. 

It is very easy to extend the basic properties of the finite Borel 

pointclasses to all Borel pointclasses and we will leave this for the 

exercises. We only state here the basic characterization of the class B of 

Borel sets, 

B = Ug 2|.(8> 

1F.3. Theorem. For each product space 9C, the class B|"9C of Borel subsets 

of 9C is the smallest collection of subsets of 9C which contains the open sets 

and is closed under complementation and countable union; similarly, Bf3C 

is the smallest collection of subsets of 9C which contains the open (or the 

closed) sets and is closed under countable union and countable intersection. 

Proof. If P is Borel, then P is in X° for some £, so —iP = 9C — PeX°+i, in 

particular, —i P is Borel. Also, if P( is Borel for every i, P, c 9C, then 

P, for some £ so ~iPj eX°.+i and taking 

£ = supremum{^i +2: i — 0, 1, 2,...}, 

we have P eX", since 

P=UiPi = Ui(9C-(9C-Pi)). 

Thus the class of Borel subsets of 9C is closed under —i and V1"- 
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Conversely, if S is any collection of subsets of 9C which is closed under 

1 and V“, then S clearly contains all open subsets of 9C and an easy 

induction on £ shows that 

Pc9C,PeSg=^PeS. 

For the second assertion, notice first that Bf9C is easily closed under 

countable intersection, since 

fliPi = 9C-(Ui (9C-P,))- 

Conversely, if S contains all the open subsets of 9C and is closed under 

both countable unions and countable intersection, then each Pc 9C which 

is either 2° or n° is in S by a trivial induction on because closed sets 

are countable intersections of open sets and in general 

P e => P = U i Pi with each P e n^., 7]; < 

P e =* P = fl, P, with each Pt e 2°, tj, < £ 

It is immediate from the definition of the Borel sets and the closure 

properties of A] that BcA|. Actually, 

B = A] 

This is one of the central results of the theory—we will prove it in 

Chapter 2. 

Exercises 

IF.4. Prove that each Borel pointclass 2° is closed under continuous 

substitution, v, &, 3", V“, 3“ and V“- State and prove the natural 

closure properties of the pointclasses 11° and A°. 

Hint. Use induction on £ One way to arrange the computations is to 

show the following lemmas, for A’s which contain all clopen sets: 

(1) If A is closed under continuous substitution, v and &, then 

V“ —i A is also closed under these operations and V*"- 

(2) If A is closed under continuous substitution, v, & and V“> then A 

is closed under 3s, V“ and 31". 

(3) If AocAjC- is an increasing sequence of pointclasses, each 

closed under continuous substitution, v and &, then (Ji has the same 

properties. “I 
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IF.5. Prove that 

B = u 2 0 

i.e. every Borel set occurs in some Borel class of countable order. 

1F.6. Prove that for each countable C, 2° is Js -parametrized. Infer that 

so in particular no Borel class 2^ of countable order exhausts the Borel 

sets. 
Hint. The result is known for finite C, so we proceed by induction. 

Choose Co, Civ so that supremum{£i + 1: t = 0, 1,...} = C and let c 

X x 9C be universal for 2°^9C. Put 

G(a, x) ^ Vi “lGj^aX, x) 

and show that G is universal for 2^9C by verifying that each P in 2^9C 

satisfies 

P(x) ^>Vi ~iPi(x) 

with each P; in 2|. ~1 

In the exercises of the next section we will extend this result to show 

that each 2° is ^-parametrized for each perfect product space % 

IF.7. Suppose R0, Ru... are all subsets of the same space 9C and we take 

R(x, s) <=> Rs{x). 

Prove that if each Rs is in 2°, then so is R. 

Hint. For each i, put 

P,{x, s) ^ Ri(x) &s = i 

and notice that P, is in 2° by the closure properties of this pointclass. 

Now 

R(x, s) «=> Vi Pi(x, s). -I 

Recall the definitions of parametrization, reduction and separation given 

in the exercises of 1C. 

1F.8. Prove that for each C> 1, if P £ 9C x oi is in 2°, then there is a P* 

also in 2^ which uniformizes P. 
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Hint. We follow the same argument as in 1C.6, but now we deal with 

the infinitary operation V“ instead of projection on <o, 3OJ. If 

P(x, m)<=> Vi Oi(x, m), 

where each Q\ is in some n" with £ < |, put 

Rs(x) <=> Q(S)1(x, (s)0) & At<s_,Q(t)1(^ (Oo) 

and check that each Rs is in 11°., so that by the preceding exercise, 

R(x, s) Rs(x) 

is in X°. Take 

P*(x, m) <=> (3i)R(x, (m, i)). —I 

1F.9. Prove that for each £> 1, every pair of sets P, Q in X° is reducible 

by a pair P*, Q* in £°.(16) —| 

IF. 10. Prove that for each £>1, every disjoint pair of sets in 11° can be 

separated by a set in A°.(16) H 

IG. Borel functions and isomorphisms 

Let A be a fixed pointclass and let 

/: 

a function. We say that F is A-measurable, if for each basic nbhd Ns c 

the inverse image /_1[NS] is in A. This notion is due to Lebesgue.ao) 

Here we are mostly interested in Borel measurable or simply Borel 

functions. A Borel isomorphism between two spaces is a bisection 

f: 

such that both f and its inverse are Borel measurable. 

The main result of this section is that every perfect product space is 

both Borel isomorphic with X and the continuous one-to-one image of 

some closed subset of JV. We will also show that the Lusin pointclasses 

are closed under Borel substitution. Thus in studying projective sets we 

can often simplify proofs by assuming that the space under consideration 

is M. 
We will leave for the exercises some very interesting results about 

2Ameasurable functions. 

Let us first dispose of the easy result. 
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1G.1. Theorem. ///: 9C —>• T( is a Borel function and P is in any of the 

pointclasses B, A*, Xi, 11*, then f~'[P] is in the same pointclass. 

In particular, the collection of Borel functions is closed under com¬ 

position. 

Proof. A simple induction of £ shows that if f is Borel and P is X% then 

/_1[P] is Borel. Thus B is closed under Borel substitution. Also, if 

/: 9C —» g : 'y -» Z are both Borel and h : 0C —> Z is the composition, 

h(x) = g(f(x)), 

then for each open set P^Z, 

h-i[P]=ri[g-i[p]], 

so h_1[P] is Borel and h is Borel measurable. 

For the rest, notice that 

f(x) = y <=>As [y eNs =*/(x)eNs], 

so that the graph of f 

Graph(f) = {(x, y): /(x) = y) 

is Borel. Now for any Pet), 

P(f(x)) <=* (3y)[P(y) & f(x) = y] 

«-*(Vy)[P(y)v/(x)^y]. 

These equivalences, the fact that BcAj and the closure properties of the 

pointclasses A*, X„, II,1, imply immediately that if P is in one of them, then 

so if f~'[P]. 

We now go to the transfer theorems which often allow us to study just 

subsets of A instead of arbitrary pointsets. The first of these is a more 

refined statement of Theorem 1A.1.(18) 

1G.2. Theorem. For every product space 9C there is a continuous surjection 

77 : A >-*► 9C 

and a closed set A c A such that it is one-to-one on A and 7t[A] = £C. 

Moreover, there is a Borel injection 

f:VC>*A 
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which is precisely the inverse of tt restricted to A, i.e. for all aeA, 

f(77(a)) = a and for all xeX, f(x)eA and n(f(x)) = x. 

Proof. To begin with, let 

p :>T^0C 

be the surjection defined in the proof of 1A.1 and for xe9C, put 

g(x) = a. 

where 

a(n) = least k such that d(x, rk)<2 " 2. 

It is very simple to check that for all x e 9C, p(g(x)) = x, so g is an 

injection. Moreover, if we put 

B = g[9C], 

then g is precisely the inverse of p restricted to B, since 

a e B =* a = g(x) for some x, 

=> g(p(«)) = g(p(g(x))) = g(x) = a. 

If g(x) = a, then 

a(n) = k <=> d(x, rk) < 2~n~2 & (Vs < k)[d(x, rs)> 2“n_2]. 

Thus if 

Bnk={a: a(n)=k}, 

each g-1[Bnlc] is a Borel subset of 9C. Hence for each basic nbhd 

N = {a: a(0) = k0,..., a(n-l) = kn_i} in Jf, the set 

g_1[N] = g_1[B0 ko] n — n g—1[Bn_ljk^_i] 

is Borel and g is a Borel function. 

Now, easily 

aeB** (Vn)[d(p(a), raM) < 2“n-2 & (Vk <a(n))[d(p(a), rk)> 2-"~2]], 

so B is a 11® subset of Jf. We must refine the construction a bit to get 7r 

and A with the same properties, with A a closed set. 

Put B in normal form 

aeB ^ (Vn)(3s)R(a, n, s), 
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where R is a clopen pointset by IB.7 and define A cjV'xX by 

(a, (3)e A *=>(Vn)[R(a, n, (3(n)) & (V/c < /3(n)) ~i R(a, n, k)]. 

Clearly A is closed. Moreover, the projection <x: jVx jV" —>■ X, <j(a, (3) = a 

takes A onto B and is one-to-one on A, since 

(a, (3)e A =» (3(n) = least k such that R(a, n, k). 

Hence the composition tt = p ° cr takes A onto 9C and is continuous, one- 

to-one. 

It is trivial to check that the inverse of tt 

f(x) = (g(x), n » least k such that R(g(x), n, k)) 

is Borel. The proof is completed by carrying A to A via some trivial 

homeomorphism of X with X x jV, e.g. the map 

(n0, nx, n2,„.) ** ((n„, n2, n4,...), (nx, n3, n5,...)). —I 

The function f of this proof is an example of an interesting class of 

functions. Let us temporarily call a function 

f:3C 

a good Borel injection if 

(1) f is a Borel injection, 

(2) there is a Borel surjection 

g:^ ^9C 

such that g ° / is the identity on 9C, i.e. 

g (f(x)) = x (x e 9C). 

We refer to any such g as a Borel inverse of f. 

It will turn out that every Borel injection is a good Borel injection. This 

is a special case of a fairly difficult theorem which we will prove in 2E and 

again in Chapter 4. Here we only need show that enough good Borel 

injections exist. 

Notice that if /: 9C >-* is a good Borel injection, then 

y e/[9C]*=>/(g(y)) = y 

with g any Borel inverse of f, so /[9C] is a Borel set. Moreover, if P is any 

Borel subset of 9C, then 

y g f[P] <=> y g /[9C] & g(y) e P, 
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so that /[P] is Borel. Thus the image of a Borel set by a good Borel 

injection is Borel. 

It is also immediate that the class of good Borel injections is closed 

under composition. 

1G.3. Lemma. For every perfect product space 9C, there are good Borel 

injections 
f: 9C 

h:N ^9C. 

Proof. We have already constructed / in 1G.2. 

To construct h, define first hx:Ji C by 

h1(a) = (3, 

where 

B( ) = [° ifa((n)o) = (n)i, 
ll if a((n)0) 7^ (nji. 

It is trivial to verify that hx is a Borel function, and 

0 E hj[A] (Vn)[0(n) = 0«(n)o, (n)a)) 

& (Vn)(V/c)[[0(n) = 0 & |8(fe) = 0 & (n)0 = (fe)0] =» (n)1 = (k),] 

& (Vn)(3k)[0«n, k» = 0]], 

so that hilyV] is Borel. Define now g^C by 

g1((3) = the constant function 0 if 

g1(/3) = a if pehifJf], 

where 

a(n) = the unique m such that (3((n, m)) = 0 

and verify easily that gj is a Borel inverse of hu so that hi is a good Borel 

injection. 

Now let 
7T : G ^ 9C 

be the continuous injection constructed in 1A.3 with 3TC=9C. Since C is 

compact and tt is a continuous injection, we know that 7r[C] is compact; 

in any case, we can compute 7r[C] using the function cr of 1A.2, 

x e tt[G] ^A„Vu[w= (to,-, k-i) for some f0,..„ tn_x 

& x e Nct(U)]. 
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For an inverse to it, take 

p(x) = 
the constant 0 function 

the unique aeS such that ir(a) — x 

if x^ ir[C], 

if x G 7r[C]. 

If 

B = {<*: a(0) = k0,..., a(n)= knj 

is a typical nbhd in C, then 

p(x)e B *=> p(x)(0) = k0 & ••• & p(x)(n) = kn, 

so to prove that p is Borel it is enough to show that for each n, the 

relation 

Pn(x) <=> p(x)(n) = 0 

is Borel. This is true, since 

PB(x)«*x^ir[e]vVu[« = (to.<n-i) for some t0,..„ tn_t 

& tn_l = 0 & X G Nct(u)], 

Now h = 7r ° hj is a good Borel injection of into 9C. H 

1G.4. Theorem. Every perfect product space is Borel isomorphic with 

X(18) 

Proof. Recall the classical Schroeder-Bernstein Theorem, that from 

given injections h'.Jf*-* 9C and /: 9C J{ we can construct a bijection 

g 0C. We will verify that if h, f are good Borel injections, then the 

resulting bijection is a Borel isomorphism. 

Define the sequences of sets jV0, jV,,..., 9C0, SCj,... inductively as follows 

(see Diagram 1G.1 on top of page 55). 

An easy induction shows that 

K 2/[9Cn] = JVn+1, 

9Cn2h[^„ ]2 9C„+1, 

^ = /[9C0] 2^2 /[9C i]3Jf23 /[9CJ 2 —, 

9C = 9C02h[^0]2 9C12h[^1]2 9C22h[‘y2]2-. 

so that 
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h 

Diagram 1G.1. 

Put also 

X*=C]n^n, 9C*=nn9Cn 

and notice that 

9C* = fin 9C„ 2 n„ hWn„ 9Cn+i = 9C*, 

and since h is an injection, 

=h( n n ^n] = fl„ h[Jin] = 9C*. 

Thus h gives a bijection ofX* with 9C*. On the other hand, 

^ = (^o - /M) U (/[9C,,] - ^) U (^ - /[9C, ]) U (f[0C, ] - ^2) U • ■ • U ^* 

9C = (9C0— h[^0]) U (hC^J-aCi) U (9C, - h[^]) U (h[^,]- 9C2) U ••• U 9C*, 

where the sets in these unions are disjoint. Moreover, h is a bijection of 

JV„-/[9C„] with h|>Vn]-9Cn+1, since h is an injection and /[9C„]£jVn, so 

that 

h[^-/[0Cj] = h[^,l]-h/[9Cn]=h[^,l]-9Cn+1, 

and similarly, f is a bijection of 9C„ -fi[9C„] with /[9Cj-JVn+1. So we have 
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a bijection of ^ with 9C, 

g(a) 
h(a) 

/'» 

ifae/* ora6JVn-/[9C„] for some n, 

if oc£ A* and a e /[9C„] — JVn+1 for some n. 

It remains to verify that g is Borel. 

Recall that good Borel injections map Borel sets onto Borel sets. This 

implies that all the sets Jfn, 9C„ are Borel, hence X*, 9C* and all the 

differences Wn-/[9C„], f[Xn]-Xn+1 are Borel. From this it follows im¬ 

mediately that g is Borel. ^ 

Exercises 

Let us start with a very simple representation of Borel sets which comes 

out of 1G.2. 

1G.5. Prove that every Borel set is the continuous, injective image of a 

closed set of irrationals; i.e. if Pc 9C is Borel, then there exists a 

continuous 77 : X 9C and a closed B £ X such that 77 is one-to-one on B 

and 77[B] = P. 

Hint. Suppose first P is closed. Let 77 : X >* SC and A be as in 1G.2 and 

take B = ir~1[P]nA. 

For each finite sequence k0,..., kn_l5 let 

N(k0,..., kn_1) = {or. a(0) = fc0,..., a(n - 1) = k„_i}. 

Each N(k0,..., /c„_i) is trivially homeomorphic with X. 

Suppose P= U„P„ and each Pn satisfies the result. We may assume 

then that there are closed sets B„c:jV(n) and continuous maps 

77fl: N(n) —» 9C such that 7r„[B„] = P,l and 77n is injective on B„. Take 

B = {a: «*eBa(0)}, 

with a* = (t a(t + 1)) and 77(a) = 77a(0)(a*). 

Suppose P= P|n Pn with B„, 77,, again as above. Let (a\ be defined as 

in IE and put 

a£Bo (Vn)[(a)„ e Bn] 

& (Vn)(Vm)[77„((a)n) = 77m((a)m)] 

& (Vn)(Vs)(Vt)[f^ (n, s) => a(t) = 0]. 
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Clearly B is closed. Let 

77(a) = 7T0((«)0) 

and verify that 77 is one-to-one on B and 77(6] = f) „ Pn. —| 

We will prove in 2E.7 and 2E.8 that this is actually a characterization 

of Borel sets, i.e. every continuous injective image of a closed set is Borel. 

In 4A.7 we will also give a very different proof of this result. 

By our basic definition, a function /: 9C —> Of is ^’-measurable if /_1[P] 

is in 2° for each open Ps% Clearly, the 2li’-measurable functions are 

precisely the continuous functions. 

1G.6. Suppose that /: 9C —> , g : ^ Z and h : 9C -» Z is the composi¬ 

tion of / and g, 

h(x) = (g°f)(x) = g(f(x)). 

Prove that if one of the two given functions is continuous and the other is 

2^-measurable, then h is ^-measurable. 

Hint. For the case when g is continuous, use the closure of 2® under 

continuous substitution. H 

1G.7. Prove that if /: 9C —> is 2^-measurable and P is a 2'^ subset of % 

then /-1[P] is 2^+T). 

Hint. Use induction on rj; notice that £ +17 denotes the ordinal sum of 

| and rj so that 

supremum{{; + : i = 0, 1,...} = £ + supremumirii: i = 0, 1,...}. —\ 

1G.8. Prove that if /:9C-^cy is 2^-measurable and g:^-^ Z is 2°- 

measurable, then the composition g°/:9C—»Z, 

(g°/)W=g(/W) 

is 2^’+T1-measurable. -H 

With each function 

/:9C-» A 

we associate the function 

f * : 3C x a) oj 

defined by 

f*(x, n) = f(x)(n). 
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1G.9. Prove that for each 9C and each countable /: 9C —> is Im¬ 

measurable if and only if the associated function /* : 9C x u> —* a> is X*|- 

measurable. “' 

1G.10. Prove that for each perfect product space 9C there is a Im¬ 

measurable surjection 

/:0C 

of 9C onto Baire space. 

Hint. Let cr be the function on binary sequences associated with 9C in 

1A.2 and put 

P(x, n, w) <=> V u[w = (^oj f<n,w>) & f<n,w> 0 & x £ iV(0C, cr(u))] 

vAu Ak [(u = (to,—» t<n,k>)& t<n./c> = 0)=^X^N(9C. O-(u)]. 

Clearly P is X2 and for each x, n there is some w such that P(x, n, w). 

Consider P as a subset of (9C x o») x <0 and choose a X” set P* which 

uniformizes P by 1C.6. Now P* is the graph of a X°-measurable function 

/* : 9C x a) —> co, so the associated /: 3C —> JV, 

f(x) = n » f*(x, n) 

is also X°-measurable. To show that f is onto JV, given a let 

Pis) 
0 if s = (n, a(n)) for some n, 

1 otherwise 

and take x = 7r(0), where 77 is the canonical injection of C into 9C defined 

in 1 A.3. It is easy to check that f(x) = a. H 

1G.11. Prove that for each countable £ and each perfect product space 

X^ is aj-parametrized. Infer that for each countable £ and each perfect 

9C, 

A^9C<=X^9C§:A£+il'9C-(15) 

Hint. Use 1F.6, 1G.7 and 1G.10. H 

1G.11 also yields an alternative characterization of X[ sets which is 

worth pointing out. 

1G.12. Suppose 9C is perfect and Pc ty. Prove that P is Xl if and only if 

there is a X'Ameasurable /: 9C —»such that P = /[9C]. Similarly, P is X{ if 

and only if P is the projection of some 11“ subset Q of X9C. 
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In particular, every X} set of reals is the projection of a Gs set in the 
plane. 

Hint. For the first assertion use 1G.10 and IE.6. For the second 

assertion, let C^yxjV' be closed with projection P, let be 

X^-measurable and take Q = {(y, x): C(y, f(x))}. —| 

1G.13. Prove that the function f which we defined in the proof of 1G.2 is 

actually XH-measurable for a small, finite n. —| 

1G.14. Prove that for each perfect product space 9C there is a bijection 

3C 

such that both f and its inverse are X” +1-measurable. H 

1G.15. Prove that a function /: 9C —> is Borel measurable if and only if 

it is X^-measurable for some countable ordinal £. —1 

1G.16. Prove that for each perfect product space 9C, for each product 

space ^ and for each countable ordinal £, there exists a function /: 9C —> 

'y which is X^-measurable but is not X^-measurable for any t] < £.(10) 

Hint. Choose a subset P of 9C which is but not X“ for any tj < £, let 

y0 and y, be distinct points in "y and take 

if x g P, 

ifx^P. H 

A function f: 9C —» 31 is of Baire class 0 if it is continuous; it is of Baire 

class 1 if it is not continuous but it is X^-measurable. Proceeding 

inductively, for each countable ordinal £, a function /: 9C —> °y is of Baire 

class £ if it is not of Baire class rj <£ and there exists a sequence /0, /,,... 

such that each fn is of Baire class <£ and 

f = limit,,^ fn (pointwise), 

i.e. for each x G 9C, 

f(x) = limitn^fn(x). 

1G.17. Prove that if /: 9C —> °y is of Baire class £, then / is X£+1- 

measurable.(10) 

Hint. Use induction on £, taking cases on whether £ is a successor or a 

limit ordinal. The key equivalence is the following, where /= limitn^xfn 
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and the typical open ball P is written as a countable union of closed balls 

with the same center, 

F=U,Fi; 

/(X) G P « ( V „)( V i)(Am>n)[/mU) G Fi]. H 

We first establish the converse of this elegant characterization in the 

simple cases when ‘y is w or JV. 

1G.18. Prove that if f: 9C —» o> is X^+i-measurable, then / is of Baire class 

Hint. Use induction on Given some X^ + i -measurable function f with 

£+l>3, we clearly have 

f(x) Am G P n,m,w] 

where each Pnmw is X°. for some t]; < £. Put 

gs(x) = the least t such that (Vm < s)(x e P(I)o m>(<)i], 

/»(*) = (&(*))i 

and verify easily that f = limif^ fs. Now each fs is easily X°+i- 
measurable for some r/ < £, so by induction hypothesis, each fs is of Baire 

class <£; hence f is of Baire class <£• H 

1G.19. Prove that if /: 0C —» jV is Xg+i-measurable, then f is of Baire class 

Hint. Use 1G.9 above and the corresponding result for functions of 

Baire class —I 

1G.20. Prove that if /: 9C —» ‘y is X°+i-measurable, then / is of Baire class 
<|UO) 

Hint. Put 

P(x, n, i) od(f(x), ri)<2~n~1, 

where r0, ru... is the fixed dense set in 'y and notice that P is a Xg+i 

subset of (9C x co) x co. By 1F.8, choose P* to uniformize P, P* also in X”+i 

and notice that P* is the graph of a function g* : 9C x co —» co. Put 

g(x) = n >»g*(x, n), 

so that both g and g* are X“+1-measurable, and check that 

f(x) = 7r(g(x)), 
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where it is the canonical continuous surjection of jV onto 'y defined in 

1A.1. Finally, verify that the collection of functions of Baire class is 

closed under composition with continuous functions and apply 1G.19. 

H 

If 9C = X or <y =(R, we can extend this characterization of 2°+1- 

measurability to 2°. We only state here the result for the case 9C = X, 

since it can be established easily by the methods we have been using. 

IG. 21. Prove that a function /:jV'^<y is X^-measurable if and only if 

there is a sequence /0, f1,... of continuous functions on X to fy, such that 

f=limitn^00fn.ao) 

Hint. Use the method of 1G.18, together with the fact that every 

closed subset of Jf x a> is a countable intersection of clopen sets. 

IH. Historical and other remarks 

1 The early papers in descriptive set theory were all concerned with sets 

and functions in real n-space. It was quickly recognized, however, that 

most results generalized easily at least to Polish spaces, and soon two 

tendencies developed: one was to stick with the reals or the irrationals 
and prove the strongest possible results, the other to aim for the widest 

context in which the basic facts can be established. 
2 Lusin works in the irrationals in his classic [1930b] and Sierpinski 

[1950] gives a brief exposition of the theory for the reals. Among the 

general books in set theory and topology which cover descriptive set 

theory, the three best references are Hausdorff [1957], Sierpinski [1956] 

and Kuratowski [1966]. Kuratowski’s book is by far the most comprehen¬ 

sive of the three and serves as the standard reference for the classical 

theory. 
3 In this book we are mostly interested in the theory of definable sets of 

real numbers. To study this, however, we must consider the irrationals and 

finite products of copies of (R, A and oj; as it happens, it is no harder and 

a bit neater to develop the theory for finite products of perfect Polish 

spaces and copies of oj. 
4 There is no real restriction in taking the basic spaces perfect, since 

every Polish space X is a closed subset of the perfect Polish space Xx X 

and results about X can be easily read off the results about XxJ. On the 

other hand, there are some definite technical advantages to our conven¬ 

tion, particularly in the effective theory which we will study starting with 

Chapter 3. 
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5 We should point out that a large part of the theory can be developed 

in a very general context, in fact many of the basic results have been 

extended recently to nonseparable and even nonmetrizable spaces. These 

extensions are important and significant for the applications of descriptive 

set theory to set-theoretic topology, functional analysis and potential 

theory. The interested reader should consult Christensen [1974], 

Hoffman-Jprgensen [1970] and the further references given there. 

6 In citing classical references, we will not always specify the context in 

which the results were first proved or give credit for the subsequent 

generalizations, unless these involved genuinely new ideas. 

7 As we mentioned in the introduction, the earliest notions of descrip¬ 

tive set theory were the Baire classes of functions on (Rn to (R, defined in 

Baire [1899] and studied extensively in Lebesgue [1905]. 

8 Lebesgue [1905] also introduced the class of Borel measurable sets 

and defined the first hierarchy on B. According to Lebesgue, a set F c (R" 

is open of class £ if there is a function /: CR'T —^ CR of Baire class £ and an 

interval (a, b) in the line, such that 

P = f~l(a, b) = {x: a <f(x)<b}; 

a set is closed of class £ if its complement is open of class £ and a set is of 

row £ is it can be written as a countable intersection of sets which are 

closed of class <£ and is not itself closed of class <£. Lebesgue then 

proved (in our notation) that 

P is open of class < £ <=> P is Sg+i, 

for limit P is of row < £ <=> P is n(€\ 

9 Our own approach of taking the classes 2^ and n^j as the basic 

definitions traces back to Hausdorff [1919], We mention the Lebesgue 

definitions here because they were often used in the early papers, through 

the 1920’s. Another notion often taken as basic is that of set of Baire-de 

la Vallee-Poussin class <£, A9+1 set in our terminology. 

10 Lebesgue [1905] defined the general notion of A-measurability and 

established that the Baire functions coincide with the Borel measurable 

functions, as well as the step-by-step characterization of 1G.17, 1G.20 

and 1G.21 with 9C = (R", 1] = ®. The more general result about arbitrary 

Polish spaces is due to Banach [1931]. It appears that the hints to these 

exercises outline a new proof of Banach’s result—whether new or not, it 

is a simple proof which illustrates the value of having the trivial space <o 

available as a factor in our product spaces. 
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11 Analytic (Si) sets were introduced in Suslin [1917], Suslin’s defini¬ 

tion was in terms of the operation si which we will study in the next 

chapter, but he characterized the analytic sets in (R as precisely the 

projections of Borel (or Gs) sets in the plane. He also proved the key 

result that there are analytic sets which are not Borel measurable, as well 

as all the simple closure properties of analytic sets, including closure 

under projection. In a companion note, Lusin [1917] (essentially) charac¬ 

terized S{ sets of reals as the images of (R by S'Cmeasurable functions 

(1G.12) and proved that every Borel set is the continuous, injective image 

of a closed set of irrationals (1G.5). 

12 Projective sets were introduced by Lusin [1925a, b, c] and (apparently 

independently) by Sierpinski [1925], The main result in both these papers 

is the hierarchy property for the Lusin pointclasses on the reals. Somewhat 

later, Sierpinski [1928] showed the closure of these classes under counta¬ 

ble unions and intersections. 

13 The finite Borel pointclasses were not studied separately from the 

transfinite ones in the classical theory, so it was not noticed that they can 

be defined using projection on w in a manner analogous to the definition 

of the projective classes. Our approach here derives from the work of the 

recursion theorists, Kleene [1943] and Mostowski [1946], 

14 Another major difference between the approach to the subject in the 

early papers and the present theory is our heavy use of the operations of 

logic both in stating and in establishing the closure properties of the 

various pointclasses. A good many of the quantifier rules and logical 

transformations which we used in 1C and IE were first applied in the 

fundamental papers Kuratowski-Tarski [1931] and Kuratowski [1931], 

where the connection between descriptive set theory and logic was first 

noticed. The use of codings of finite sequences and continuous substitu¬ 

tions to prove closure properties is essentially due to Kleene. 

15 Universal sets were introduced by Lusin [1925d], who credits them 

to Lebesgue [1905], The reference is not entirely accurate, as Lebesgue 

had what we called in ID parametrizations (on collections of functions) 

rather than universal sets, although he certainly initiated the use of the 

diagonal method to prove hierarchy results. Many papers were written on 

universal sets, proving their existence for various pointclasses in diverse 

spaces or constructing specific universal sets which somehow appeared to 

be “natural.” On the other hand, the simple construction in 1D.1 and its 

Corollaries ID.2, 1E.3 and 1G.11 seem to have been missed—the 

strongest result mentioned in Kuratowski [1966] is that the Borel and 
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Lusin pointclasses are Jf-parametrized. Sierpinski [1950] has a general 

hierarchy lemma, very similar to our ID.3. 

16 It is not entirely clear who introduced first the notion of separation 

for sets, probably Lusin. The separability of disjoint n° sets by a Ag set 

was apparently first proved by Sierpinski [1924] and independently by 

Lavrentieff [1925]. Kuratowski [1936] defined the reduction property and 

showed that X" sets can be reduced by 2° sets. 

17 The more fundamental uniformization property was introduced in 

Lusin [1930a], Lusin established there some difficult uniformization 

theorems and introduced the difficult problem of uniformization for IlJ 

sets. Of course, the question of uniformizing subsets of 9CX<y was not 

considered in the classical theory, since they never studied the trivial 

space (x). It comes up naturally in the effective theory and we will come 

back to it in the sequel. Notice how useful the trivial 1F.8 is in proving 

IF.9, 1G.10 and 1G.20. 

18 There is a large number of transfer theorems like our 1G.2 and 1G.4, 

some of them stronger than the simple ones we have established. 

Kuratowski [1966] is an excellent source for results of this kind and for 

references to the original sources. 

19 Finally, a word about the “logical” notation of the X’s ILs and A’s 

which we have adopted for the Borel and the projective pointclasses. This 

was introduced by Addison [1959a] and Shoenfield [1961] and was 

quickly accepted by the logicians, though not by all the topologists and set 

theorists who were working in descriptive set theory. No other com¬ 

prehensive system of notation has gained wide acceptance and it seems 

that all the reasons given by Addison [1959a] for adopting this one are 

still valid today. 



CHAPTER 2 

x-SUSLIN AND A-BOREL 

One of the chief motivations for studying projective sets is that we can 

settle for them many questions which seem intractable for arbitrary sets. 

The hierarchy of the Lusin pointclasses is important because it is often 

the case that a simple observation about open sets turn into a deep 

theorem about 2} sets, an elegant generalization about sets and a very 

difficult problem about X3 or 21 sets. 

For example, consider the central question of set theory, the continuum 

problem: must each uncountable pointset be equinumerous with (R? 

Godel and Cohen have shown that both answers are consistent with the 

currently accepted axioms of set theory, but it is still open whether the 

question may be settled on the basis of generally acceptable properties of 

sets. In any case, we can try to settle it for specific pointclasses, preferably 

large pointclasses that contain most sets encountered in traditional 

mathematics. 

One of the first important results of descriptive set theory was that 

every uncountable 2] set is equinumerous with (R. More recently, this has 

been extended by Solovay and Mansfield to 21 and 21 sets respectively, 

granting some strong set theoretic axioms that are unprovable in 

Zermelo-Fraenkel set theory. The situation is a bit murkier for the higher 

Lusin pointclasses, but there are (very strong) plausible hypotheses which 

imply that every uncountable projective set is equinumerous with (R. 

The same situation occurs with several other regularity properties of 

sets. For example, every 2} set is absolutely measurable and has the 

property of Baire. There are again suitable generalizations of these results 

to the higher Lusin pointclasses, if we assume strong set theoretic 

hyotheses. 

The central classical result of the theory is Suslin’s Theorem: every A| 

set is Borel. More than a regularity property, this is a construction 

principle, since it yields a reduction of the complicated projection opera¬ 

tion (in this simple instance) to an iteration of the more elementary 

65 
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operations of countable union and complementation. A somewhat weaker 

construction principle is Sierpinski’s theorem that every S2 set is the 

union of K, Borel sets. 
In this chapter we will establish some of the basic classical structure 

results about Si and £2 pointsets. 

Actually we will work with the wider classes of x-Suslin sets, where x 

is any infinite cardinal number—this will ease extension of this theorem to 

the higher Lusin pointclasses. The Sj sets are precisely the K0-Suslin sets 

and every set is K,-Suslin. 

2A. The Cantor-Bendixson theorem 

For any set A, let 

card(A) = the cardinal number of A. 

By 1G.4, every perfect Polish space SHI is equinumerous with A, hence 

card(3TC) = card (A) — 2K°. 

If P is a perfect subset of 3TC (i.e. P is closed and has no isolated points) 

and Pf1 0, then P is a perfect Polish subspace of 371, so again card(P) = 

2K°. This settles the continuum problem for perfect sets. 

2A.1. The Cantor-Bendixson Theorem. If A is a closed pointset, then 

A =PUS 

where P is perfect, S is countable and PnS = 0. Moreover, there is only 

one such decomposition of A into two disjoint sets, one perfect the other 

countable. 

Proof. A point x is a condensation point of A if every nbhd of x 

intersects A in an uncountable set. Put 

P = {x: x is a condensation point of A}, 

S = A - P. 

Since condensation points are clearly limit points and A is closed, we 

have PgA, and by definition P H S = J0, A = P U S. 

We will show that S is countable, P is perfect and if A = P' U S' with P' 

perfect, S' countable and P'(lS' — 0, then P' = P, S' — S. 
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To each yeS we can assign some basic nbhd Ny such that Ny nA is 

countable. Since there are only countably many basic nbhds altogether, 

there is a countable sequence N°, N1,... such that 

s^Ui^(N'nA) 

with each AT1 Pi A countable, so S is countable. 

To prove that P is closed, let x be a limit point of P, N any nbhd of x. 

Then some x' eN (IP, hence N contains some nbhd N' of x' which in turn 

contains uncountably many points of A; hence xeP. To prove P perfect, 

if xeP, then every nbhd of x contains uncountably many points of A of 

which only countably many can be in S—hence at least two are in P. 

Finally, assume that A = P' U S' with P', S' as above. If x e P' and N is 

any nbhd of x, choose some nbhd N, of x with JV,cN and check that 

N1 n P' is a perfect subset of IV, IT P' c= N IT P', so NOP' is uncountable 

and hence xeP; this proves P'cP. On the other hand, if y e S', then 

there is some nbhd N of y such that N TP' = J0f, since P' is closed; hence 

N T A = N T S', i.e. N T A is countable and y e S. —\ 

In this canonical decomposition 

A = PUS 

of a closed pointset, we call P the (perfect) kernel and S the scattered part 

of A. 

It is worth putting down explicitly the corollary about the size of closed 

sets. 

2A.2. Corollary. Every uncountable closed pointset contains a perfect 

subset and hence has cardinality 2K°. A 

We can think of the Cantor-Bendixson Theorem as a construction 

principle, since it gives us a method of building up the closed sets from 

the apparently simpler perfect sets and countable sets. 

Exercises 

2A.3. A point x is an isolated point of the pointset A if x e A and x is 

not a limit point of A. Prove that a pointset has at most countably many 

isolated points. A 

2A.4. Define the derivative A' of a pointset A by 

A' = {x E A : x is a limit point of A}. 
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For fixed closed A, define by transfinite recursion the sets 

A0 = A, 

A€+1 = (A€)' 

Ak = flf<x if A is a limit ordinal. 

Prove that f"lg is perfect (perhaps empty), that = f°r a 

countable ordinal A and that A —Ax is countable. (This is an alternative 

proof of the Cantor-Bendixson Theorem.) A 

2B. x-Suslin sets 

Let x be an infinite cardinal number. A pointset Pc 9C is x-Suslin if 

there is a closed set such that 

P = pC = the projection of C along “x, 

i.e. 

xePo (3/e"x)(x, f)eC. 

Here we naturally topologize 03x with the product topology, taking x 

discrete, the typical nbhds being determined by finite sequences from x, 

N(£o,..., L) = {fe”x : f(0) = L,-, f(n) = LI 

This makes 03x into a metric space which is perfect but of course not 

separable if x>K(). The set of ultimately constant fe^x is dense and has 

cardinality x. 

It is immediate from the definitions that the Si pointsets are precisely 

the K0-Suslin or simply Suslin sets. Many of their properties can be proved 

just as easily for x-Suslin sets with x>K0 and there are applications of 

these more general results. 

In this section we will establish the elementary properties of x-Suslin 

sets, starting with the equivalence of the definition above with two very 

useful and seemingly unrelated conditions.11“’,) 

Let us take up first the representation of x-Suslin sets in terms of a 

pointset operation. A x-Suslin system is a mapping 

u Pu 

which assigns to each finite sequence u = (|0,---, L i) from x a subset Pu 

of some fixed product space 0C. The operation si* is defined on such 
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systems by 

Pu=Uf D nPftn, 

where f varies over “x (cf. Figure 2B.1). Thus 

x e s£lPu «=» Vf An [x e Pftnl 

It turns out that the x-Suslin pointsets are precisely the sets of the form 

si*Pu, where each Pu is closed. This is easy enough to prove directly, but 

we might as well take up the third condition we will need and prove the 

equivalence of all three round-robin style. 

A norm on a pointset P is any function 

<p : P —» Ordinals 

which assigns an ordinal number <p(x) to every x e P. If for every x e P we 

have <p(x)<A, we call <p a A -norm. 

A semiscale on P is a sequence 

<P ={<Pn}ne<o 
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of norms on P such that the following limit condition holds: if x0, x1, x2,... 

are in P and limits xt=x and if for each n the sequence of ordinals 

<Pn(Xo), (pn(x l). <PnU 2),- 

is ultimately constant, then xeP. 

We call <p ={<?„}„e<u a A-semiscale if every norm <p„ is a A-norm. 

A x-Suslin system u ►» P„ is regular if the following conditions hold: 

(i) Each Pu is the closure Ns of some basic nbhd, perhaps Ns=0. 

(ii) If the sequence u is an initial segment of the sequence v, then 

p 3 P 
A u -X V — 

(iii) If u = (io,..., L-i) is a sequence of length n and Pu = Ns, then 

radius (Ns)^ 2_n + 1. 

2B.1. Theorem. For every infinite cardinal x and every pointset P <= 0C, the 

following conditions are equivalent. 

(i) P is x-Suslin, i.e. 

P — pC = {x : (3/ewx)C(x, /)} 

with a closed C 

(ii) P admits a x-semiscale. 

(iii) P = sd*Pu, where the x-Suslin system u >* Pu is regular. 

(iv) P = MZPU with a x-Suslin system u Pu where each Pu is 

closed.(l~5) 

Proof, (i) =» (ii). For each xeP, choose some fx e^x such that (x,/x)e C 

and put 

<Pn(x) = fx(n). 

To prove that the sequence <p = {<p„}„eco of x-norms on P is a semiscale, 

assume that x0, x1?... are in P, that limih^ xt = x and that for each n and 

all large i, 

<Pn(xi)~fxi(n) = £;n- 

Let 

Clearly 

f(n) = L- 

limits (xi,/Xi) = (x,/) 
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and since for each i, (xi,/Xj)eC and C is closed, we have (x,/)eC, i.e. 
x e P. 

(ii) =*• (iii). Let <p = {<ptl}nea) be a *-semiscale on P. Choose a bijection 

77 : X >-» U) x X 

of x with all pairs of integers and ordinals below x, 

77(^) = (771(|), 772(|)). 

For convenience in notation let 

N(s) = Ns 

be the s’th basic nbhd of the space SC in which P lies. 

Define now 

F<&.■ MTrido)) = 2 • • • 3 N(t71(|„_1)) 

& for i=0,..., n — 1, radius(N(77^))) <2_i 

& for some y yeP and 

<Po(y) = 772(^o), <Pl(y) = 772(ll),-, <Pn-l(y) = 772(4-l), 

so that P(& 6i_l) is either 0 or and the system u » Pu is 

clearly regular. We will show that 

P = ^PU. 

Suppose first that xeP. Choose nbhds N(s0) 2 N(s,) 2 ••• of x such that 

radius(N(Si))<2~l and for each i let £, be the ordinal below x such that 

771(|i) = Si, 7r2(£) = <Pi(x). 

We obviously have x e €(i_,) for every n, so x e sd*Pu. 

Conversely, assume that there is a sequence |0, |lv.. of ordinals such 

that xeP(6h ^ it for every n. By the definition then, 

x e N(tt^ i)) for each n, the radius of N(7r1(|„_1)) shrinks to 0 as n —» °° 

and for every n we have some yn e N(771(^n_1)) such that <p0(yn) = 

£0,-, <Pn-i(yJ = 4-i- In particular, limit,,^ yn = x and for n > i, <p,-(y„) = 

4 so by the basic property of a semiscale we have x e P. 

(iii) => (iv) is trivial. 
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(iv)=*(i). Assume P = si*Pu with each Pu closed and put 

C(X, f) <=> An [X 6 ffl-nl- 

Clearly C is closed and 

x g pC <=> (3/)C(x, /) 

«(3/)(Vn)[xePffn] 

oxeP. 

Suslin’s original definition of analytic sets was via the operation si, 

si = siH° 

and the essential content of the equivalences (i) «=>• (iii) <=> (iv) was already 

announced in the basic papers Suslin [1917], Lusin [1917], 

Let S(x) = S* be the pointclass of all x-Suslin sets, so in particular 

S(K0) = Xl. 

2B.2. Theorem. For each cardinal %>K0, the pointclass S* is closed 

under Borel substitution, 3^ for every product space % countable conjunc¬ 

tion, disjunction of length x, V* and the operation si*. 

Moreover, if A<x, then SxcSx; in particular every 2] pointset is 

x-Suslin. 

Proof. Closure of Sx under continuous substitution is immediate, so we 

can use it in the arguments below. 

To prove closure under 3^, suppose Cc0CxjV'xa,x is closed and 

P(x, a) <=> (3f)C{x, a, f), 

so that 

(3a)P(x, a) «=* (3a)(3/)C(x, a, /). 

Let 

^(0 — (tTi(^), tt2(£)) 

be a bijection of x with wXx as in the proof of 2B. 1 and notice that the 

mapping 

P(g) = (gi» §2) 

where 

gj(n) = TTiCgfa)), 

g2(n) = 7r2(g(n)), 
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is a homemorphism of 01 x with “to xOJx=M'xOJx. Thus if we define 

C*(x, g) <=> C(x, gu g2), 

the set C* is closed in 10x and 

(3«)P(x,a)^(3g)C*(x, g), 

so 3 VP is %-Suslin. 

We can now prove closure of Sx under 3^ using closure under 3" and 

the fact that every is a continuous image of Jf. 

if p€ = pQ for each £ < x, put 

C(x,/)^Cf(0)(x,D, 

where by definition 

/*(«) =/(n + 1). 

Clearly C is closed and 

V€<„P,(x)^ (3/')Q(x, /) 

-(V/)Q(0)(x,n 

~(3/)C(x,/), 

hence V|Pg is x-Suslin. 

Similarly, if Pm = pCm for each m ew, put 

C(x, /)«=> Am Cm(x,/m), 

where 

fm(n) = f((m, n» 

and notice that C is closed and 

Am Pn(x) <=> Am (3/)Cm(x, /) 

«=> (3/) Am Cm(x, /m) 

<=» (3/)C(x, /), 

so that Am Pm is x-Suslin. 
To prove closure of S* under the operation si™, suppose u » Pu is a 

x-Suslin system where for each u. 

Pu(x)^(3g)Cu(x, g), 
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with Cu closed. Then 

X € sd*Pu <=> ( V f )(/\n)Pftn(x) 

<=» (Vf)(An)(3g)Cff„(x, g) 

^(Vf)(3g)(AJCnn(x, gn) 

where (as above) gn(m) ~ g((n, m)). Now the set 

C(x, /, g) <=> An Cf[.n(x, gfl) 

is obviously closed in 9C x “x x “x, and 

x 6 .s^Pu «=» (3/)(3g)C(x, /, g). 

We can easily find a closed C* in 9Cx°X such that M~UPU = pC* using the 

obvious fact that “x x “x is homeomorphic with “x. 

If A <x, then every A-semiscale on a pointset P is also a x-semiscale. 

Hence every A-Suslin set is x-Suslin. 

Closure under Borel substitution follows immediately, since if /: 9C —> ^ 

is Borel and P = ^„PU with each Pu closed, then 

f1[P] = <T1[Pu] 

with each f 1[PU] Borel, hence x-Suslin. Thus f l[P] is x-Suslin by 

—1 closure under sd*. 

Since every perfect product space is Borel isomorphic with JV, the 

closure of Sx under Borel substitution reduces the study of this pointclass 

to the study of x-Suslin sets of irrationals. This is often a useful reduction, 

especially because of a simple characterization of such sets in terms of 

trees which we will establish in the next section. 

Exercises 

2B.3. Suppose u **Pu is a x-Suslin system such that 

(i) if u is an initial segment of v, then Pu =2 Pv, 

(ii) if u, v are distinct sequences of the same length n, then 

pl( n pv = 0. 

Prove that 

<Pu = ruj 
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Hint. If x G Hn LUo,..by (ii), for each n there is 

exactly one sequence u of length n such that x e Pu and by (i) there is 

some fe^x so that this u=f\n. _l 

2B.4. Suppose x is a cardinal of cofinality >o>, i.e. if |0, £l5... are all <x, 

then supremum{tjn: n = 0, 1, 2,...}<x. Prove that a pointset Pc0C is x- 

Suslin if and only if 

P=U4<„P„ 

where each P€ is A-Suslin for some cardinal \<x (Martin [19?a]). 

Hint. Suppose 

P(x) <=> (3/6 OJx)C(x, f) 

with C closed and for each %<x, put 

P€(x)**0/e“£)C(x, /)• 

Clearly P={J^<XP^ using cf(x)>o>. On the other hand, letting A = 

card(i) and tt:\ >-» £ any bisection, the set 

C€(x, f) <=*• C(x, n » 7r(f(n))) 

is obviously closed in 9Cx“A and Pe = pQ, so that P( is A-Suslin. —| 

Despite this result, it is often useful to consider x-Suslin sets with x of 

cofinality >a>. 

2B.5. Prove that if n>2, then the pointclasses Si, II,'t, A,1, are all closed 

under the operation sd = st<0 (Kantorovitch-Livenson [1932]).(6) 

Hint. It is easy to check that if each Pu is Si, then s$uPu is Si (n 2:2). 

Assume that each Pu is ni, 

Pu(x)^.(Va)Qu (*,<*) (Ou inSi-i, n>2) 

and let 

P(x) «=^uPu(x) ^ (V3)(At)(Va)0(3h(x, a) 

so that 

iP(x) ^ (Ap)( Vt)(Va) -i03h(x, a). 

Now, only countably many a’s are needed to verify the right hand side, 

hence 

—iP(x) <=> (3a)(A3)( Vr)Ow) —iQpi-t(x» ^a)m)- 
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From this the result follows easily, by verifying that the relation 

Q'(x, a. (3, t, m) <=> ~iQpU(x, (a)m) 

is n^j. 

2C. Trees and the perfect set theorem 

The main result of this section is that the continuum hypothesis holds 

for Sj sets—in fact every uncountable S| set has a non-empty perfect 

subset. 

For our purposes, a tree on a (non-empty) set X is a set T of finite 

sequences of members of X such that if u e T and v is an initial segment 

of u, then v e T. 

We often call the members of T nodes or finite paths. By definition, the 

empty sequence 0 is a node of every non-empty tree—we call it the root. 

The terminology is motivated by the standard picture of a tree, see Figure 

2C.1. 

A function is an infinite branch (or path) of a tree T, if for every 

n, 

f\n = (/(0),..., f(n — 1)) e T. 

We let 

[ T] = {/ G -X: f is an infinite branch of T} 

Figure 2C.1. A tree. 
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be the body of T, the subset of “X naturally associated with T. 

We are particularly interested in trees of pairs, where we take 

X = (o X x 

with some infinite cardinal x. There is an obvious bijection of “(to x x) with 

“wX“x=Jfx“x which sends ge“(w x x) to (a, /), where 

(*) g (n) = (a(n),f(n)). 

Let us agree that when T is a tree onwXx for some x, then we will take 

the body of T to be the obvious subset of Xx“x, 

[T] = {(a, /): for all n, (MO), /(0)),..., (a(n - 1), f(n - 1))) e T}. 

One could raise a pedantic objection to this ambiguous use of the symbol 

[T], but it will cause no problems. It will always be clear from the context 

when we consider T to be a tree of pairs. 

We will simplify notation further by denoting an arbitrary sequence 

((bh (hi-D 

in (o x x by 

(h)? 4X***? L —1? £n — l)’ 

There is no point in putting down all these parentheses. Thus if T is a tree 

on co x x, 

[T] = {(a, /): for all n, MO), /(0),..., a(n- 1), f(n - 1)) 6 T}. 

2C.1. Theorem. For each non-empty set X, put the product topology on 

“X, taking X discrete; then a set C c^X is closed if and only if there is a 

tree T on X such that C is the body of T, 

C = [T], 

Similarly, for each cardinal x >K0, a set C c X x “x is closed if and only 

if there is a tree T of pairs on a> x x such that 

C = [T] = {(a, f): for all n, MO), /(0),..., a(n- 1), f(n - 1)) e Tj; 

hence a set of irrationals 

PcX 

is x-Suslin if and only if there is a tree T on ooXx such that 

P = P[T] = {a: (3/)(Vn)[M0), /(0),..., a(n - 1), f(n - 1)) e T]}. 
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Proof. It is enough to prove the first assertion, from which the second 

follows immediately, by the definition of %-Suslin sets and the obvious 

fact that the map g » (a, /) defined by (*) above is a homeomorphism of 

“(cuXx) with 

Suppose T is a tree on X and /^[T]; then for some n, (f(0),..., 

f(n - 1)) 4- T, so that the basic nbhd {g : g(0) = /(0),..., g(n — 1) = f(n - 1)} 

of “X is disjoint from [T] and hence the complement of [T] is open. 

Conversely, if Cc“X is closed, put 

T = {(/(0),..., /(n — 1)) :/e C}; 

clearly Cc[T] and C is dense in [T], so C = [T], —1 

Two finite sequences u and v from X are compatible if they have a 

common extension—i.e. if there is some w such that both u and v are 

initial segments of w. This simply means that either u = v or one of u and 

v is an initial segment of the other. 

For each tree T on X and each finite sequence u from X, let (cf. Figure 

2C.2). 

Tu = {v e T: v is compatible with u}. 

Evidently Tu is always a tree, the result of pruning all the side branches of 

Figure 2C.2. The truncation of a tree. 
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T below u. In particular. 

T0=T. 

Notice that if u = (.x0xn_x) is a sequence of length n, then 

[Tu] = [T]n{fe-X:f\n = u} 

“ UxgX [T’u'-(x)], 

where of course for each x e X, 

u~(x) = xn_1)^(x) = (x0,..., xn_u x). 

In connection with projections of trees of pairs, notice that if u = 

(t0, tn—i, in-1) is a finite sequence from a>Xx, then 

so that 

[7"u] — Ut<<o,£<x[T'u~(a)]’ 

p[Tu]~ Ukw,{<* ptT’u-a.f)]- 

We could prove the next result by an adaptation of the topological 

argument we used to establish the Cantor-Bendixson Theorem 2A.1. It 

will be more informative, however, to extend the argument of 2A.4. The 

use of trees is not essential in this instance, but they do make the proof 

neater. 

2C.2. The Perfect Set Theorem. Let x be an infinite cardinal and 

assume that P is a x-Suslin pointset with more than x elements. Then P has 

a non-empty perfect subset (Suslin, Mansfield).<7) 

Proof. Suppose we know the result for every subset of jV- and P is a 

x-Suslin subset of some perfect product space 9C. Let 

TT\X 9C 

be the continuous surjection of A'onto 9C guaranteed by 1G.2 and such 

that for some A” set A <= Jf, tt is one-to-one on A and tt[A] = 9C. Take 

P' = 7r_1[P] IT A. Now P' is a x-Suslin subset of jV with more than 

x-elements, so it has a perfect subset Q. This Q must contain a non¬ 

empty perfect compact set Q0—to see this apply 1A.3 with 2fTC = Q, 

considered as a subspace of Jf. Hence tt[Q0] is a perfect subset of P, since 

the continuous one-to-one image of a perfect compact set is easily 

perfect. 
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To establish the result for subsets of Jf, let Pc / be x-Suslin and 

choose a tree T on ojXx such that 

F = P[T] = {a: (3/ e “x)(a, f) 6 [T]}. 

Define by transfinite recursion the sets T6 <= T, 

T°=T, 

Tf+1={u6T: p[T„] has more than one (irrational) element}, 

Tx = n^<\ T$, if A is a limit ordinal. 

It is immediate that each is a tree and 

t)<(^r2T. 

There are at most x nodes in T, so there must be some ordinal A of 

cardinality x (A<x+) such that 

J\ 4-1 _ <J>A 

Choose the least such A and put 

S = T\ 

The heart of the proof is the following simple lemma about S. 

Lemma. S4j0f. 

Proof. Assume S=0, towards a contradiction. 

For each a <= P = p[T] choose /e“x so that (a,/)e[T] and notice that 

there must exist some £<A such that 

(a,/)e[Tc]-[Tc+1]; 

this is because (a, /)£[TX] and for limit £, 

(a,/)e[T’1], all p < £ => (a, /) e [Tc]. 

It follows that for some n, 

u = (a(0), /(0), a(l), /(l),..., a(n - 1), /(n - 1)) £ T€+\ 

i.e. by definition 

p[T„] has at most one element. 

Thus we have shown that 

P£U{p[ni/<A,uET-T+1} 
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which is absurd since the set on the right is the union of at most x 

singletons and P has cardinality greater than x. This proves the lemma. 

If u = (t0, £0,..., tn_i, £n-i) and u = (s0, Co,..., sm_i, call u and v 

incompatible in the first coordinate just in case tt ^ st for some i <n, i< m. 

It is immediate that every u in S has extensions u', u" which are 

incompatible in the first coordinate—otherwise p[Su] would have at most 

one irrational in it and u& Tx+1 = TK = S. 

We now imitate the proof of 1A.2. For each ueS, let l(u), r(u) be 

extensions of u in S which are incompatible in the first coordinate and for 

each f e“2 define the sequence uf0, of nodes in S by the induction 

ufo = 0. 

u f n +1 — 
Kufn) 

r<yn) 

if /(it) = 0, 

if f(n) = 1. 

Let J be the set of all initial segments of all sequences ufn, few2. Clearly J 

is a tree, IgS and every two incompatible sequences in J are incompati¬ 

ble in the first coordinate. The set [J] is perfect (and compact) in Nxwx 

and since the projection mapping p is continuous and one-to-one on [J], 

p[7] is perfect—this is the desired perfect subset of P = p[T], H 

2C.3. Corollary. Every uncountable Si set has a perfect subset 

(Suslin).a) —\ 

We will see in Chapter 5 that this result cannot be extended to X) sets 

(or even A[ sets) in the context of Zermelo-Fraenkel set theory. On the 

other hand, there are better results that follow from strong set theoretic 

assumptions, as we mentioned in the introduction to this chapter. 

Exercises 

2C.4. Prove that we can decompose the reals into two disjoint sets 

(R = A U B, 

such that both A and B are uncountable and every non-empty perfect set 

intersects both A and B. In particular, A is an uncountable set which has 

no perfect subset other than J0f. 
Hint. You need the axiom of choice for this. First argue that there are 

exactly 2X° non-empty perfect sets. Wellorder (R = {x€: f < 2X°} and the 

collection of non-empty perfect sets 3P ={P^: £<2K"} and define by trans- 

finite recursion set Ag, Bs such that A^ Cl Be = 0, Cl 0, B$ Cl P^ / 0, 

t] < £ => A^ c A€, B^gBj: and card(A^)< 2X°, card{B(i)< 2K°. H 
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2C.5. Prove that if Pc 9C and Q c ^ are Borel sets such that 

card(P) — card(Q), card(X — P) = card{‘y — Q), 

then there exists a Borel isomorphism /: 9C ^ such that /[P] = Q. 

Hint. Use 2C.3 and the method of 1G.3. 

2D. Wellfounded trees 

A tree T on X is wellfounded if [T] = 0, i.e. if T has no infinite 

branches. The name comes from considering the relation of proper exten¬ 

sion of finite sequences from X, 

u> v «=> u is a proper initial segment of v. 

Clearly T is wellfounded if and only if the restriction of > to T has no 

infinite descending chains. 

Here we discuss briefly proof and definition by backwards induction on 

a wellfounded tree, which we will need in the next section. We will also 

introduce rank functions on wellfounded trees and use them to prove that 

pointsets are Ki-Suslin. 

Let T be a wellfounded tree on X and suppose P is a relation on the 

finite sequences from X such that: 

(*) rf P(u'~'(x)) holds for every u'~'(x)e T, then P(u) holds. 

It follows that P(u) must hold for every sequence u in X; otherwise there 

is some u0 such that —iP(w0), hence there is some x0 with u^(x0)e T and 

—iP(u<j"(x0)), hence there is some xt with uff(x0, xJsT and 

—iP(u^'(x0, Xj)), etc., so we get an infinite branch uff(x0, xt, x2,...) in T 

contradicting [T] = 0. This method of proof is called backwards or bar 

induction on T. 

In the same way we can justify definition by backwards or bar recursion 

on a wellfounded tree T: in order to define F(u) for every finite sequence 

u from X, it is enough to show how to compute F(u) if we know Fiu^ix)) 

for every u~(x) e T. 

Formally, a function F(u) is defined by bar recursion if we are given an 

equation of the form 

F(w) = G(u, {(x, F(u~(x))): u~(x) e T}) 
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with G a given function. We then put 

R(u, z) <=> there is some function / such that u e Domain= z 

&(Vu', x)[[u' e Domain (/)& u'~(x) e T] =* u'~(x) e Domain(f)] 

& (Vu' 6 Domain(/))[/(u') = G(u', {(x, /(u'~(x))): w'lx)eT})] 

and show by bar induction on T that for every u there is exactly one z 
such that R(u, z), so we can set 

F(u) = the unique z such that R(u, z). 

This clearly satisfies the given equation. Another simple bar induction 

shows that no other F can satisfy the determining equation. 

A rank function for a tree T on X is any mapping p defined on all the 

finite sequences from X, with ordinal values, such that 

if u"'(x)e T, then p(u)> p(u~(x)). 

The next result is trivial but useful enough to deserve billing as a 
theorem. 

2D.1. Theorem. A tree T on X is wellfounded if and only if it admits a 

rank function. Moreover, if card(X) = x and T is wellfounded, then T 

admits a rank function p such that for every u, p(u)<x+. 

Proof. If T admits a rank function p, then T is obviously wellfounded 

since any infinite branch 

f = (Xo, *i, x2,...) 

in T would define the infinite decreasing sequence of ordinals 

p(x0)>p(x0, Xj) > p(x0, xu x2) >... . 

Conversely, if T is wellfounded, we can define p on T by bar recursion, 

p(u) = 0 if u is terminal in T or u£ T, 

p(u) = supremum{p(u'~'(x))+ 1: C(x)eT} if u is not terminal. 

Actually the second equation suffices if we adopt the useful convention 

supremum{0) = 0. 

It is immediate that p is a rank function on T. 
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Fix now this canonical p associated with a wellfounded tree T^ 0. A 

trivial induction on £ shows that 

if p(u) = i, then for every £<£ there is some v which extends 

u such that p(v) = C 

Thus the range of p is an initial segment of ordinals, i.e. p is onto 

A = p(0) + 1. For each |< A, choose some ueeT such that p(u€) = £ Now 

the map 

establishes a one-to-one correspondence of A with a subset of T, which 

has cardinality x, so that A<%+. 

We will sometimes distinguish the rank function p associated with a 

wellfounded tree T in this proof and call it the rank function of T, 

T 
P = P . 

The length of T is defined by 

\T\ — supremum{pT(u): u e T}. 

If T^0, then clearly \T\ = pT(0). 

The notion of a wellfounded tree gives an alternative way of putting 

down the characterization of x-Suslin sets of irrationals of 2C.1. If T is a 

tree on oj x %, and aeA, put 

T(a) = {(£o,..., 4-i): («(0), £o, «(1), “ 1)> 4-i) e T}. 

Evidently T(a) is a tree on x. It is important to notice that with this 

notation, whether (£0,..., £n_j) is in T(a) or not depends only on the first n 

values of a, i.e. 

a\n = fJl'n => 4-i)s T(a) |„-i)e T(/3)]. 

2D.2. Theorem. Let x be an infinite cardinal and P <= A a set of irration¬ 

als. Then P is x-Suslin if and only if there is a tree T on co x x such that 

P(a) <=> T(a) is not wellfounded. —1 

We now put these two results to good use. 

2D.3. Theorem (Shoenfield).<5) Every pointset is Xx-Suslin. 

Proof. By 2B.2, it is enough to show that every IlJ set of irrationals is 

N^Suslin. 
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Assume then that T is a tree on w x M and 

P(a) <=> T(a) is wellfounded 

<=* T(a) admits a rank function into N,. 

By 2D.2 and 2D.1 every n! set Pc jV can be represented in this way. 

The idea of the proof is to define a tree S on ojXKt such that every 

infinite branch of S(a) codes a rank function of T(a). 

Let u0, uu u2,... be an enumeration of all finite sequences from a> such 
that 

length (u„) < n. 

This is easy to arrange. For each n then, un = (s0,..., s^) with some 

k < n. 

Call M = (s0,...,sfc_1) T-compatible with (t0,..., tm_x), if k<m and 

(to, s0,..., tk_1, sk_1)e T. 

Put 

(to, €o,--; tn-1, |n_x) e S «=* for every i, j < n, if uh u, are 

T-compatible with t„_x) and 

u, is an initial segment of uh then 

Easily S is a tree on a>xN[. The claim is that 

P(a) «=> S(a) is not wellfounded. 

Notice that for any fixed a and u = (s0,..., sk_1), 

u is T-compatible with (a(0),..., «(n — 1)) 

<=^ k < n &(a(0), s0,..., a(k — 1), sk_x)e T 

T(a). 

Using the condition length (un)<n, we then have 

(lo,..., 4-i)eS(a) <=» (ot(0), |o,..., a(n - 1), £n_x)eS 

<=> for every i, j < n, if uh ui are 

in T(a) and ut is an initial segment 

of Uj, then £ > 

This observation implies immediately that if (£0, £x,...) is an infinite 

branch of S(a), then the mapping 

“i * 6 
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is a rank function on T(a), so that T(a) is wellfounded. Conversely, if 

T(a) is wellfounded, let p be a rank function on T(a), put £ = p(ut) and 

check immediately that (£„, £a,...) is an infinite branch of S(a), so that 

S(a) is not wellfounded. ~I 

We will prove later much better representation theorems for nj and X'2 
along these lines. However this result implies already that a X2 set with 

more than elements has a perfect subset. 

2E. The Suslin theorem 

Fix a space 9C and an ordinal A > <o. A collection Q of subsets of 9C is a 

A-algebra if 0 e G and G is closed under complementation and unions of 

length less than A, i.e. 

£ < A and for all rj < £, Av e Q 

=* U -n<£ A-r, £ ©• 
The collection B^EC of A-Borel subsets of 9C is the least A-algebra on SC 

which contains all open sets and Bx is the pointclass of A-Borel pointsets 

in all product spaces. 

Clearly, BM+1 is the pointclass of Borel measurable sets as we defined 

them in IF. Also, B(t>+1 = BXi, and in general, if A is not a cardinal, then 

Bx = Bx+. It will be convenient to have BA defined for all A>a>. 

Let Bx be the collection of all A-Borel pointsets Pclj, such that for 

every Borel function /: 0C —> % /_1[P] is A-Borel. Clearly BA contains all 
open sets and is closed under —i and unions of length less than A, hence 

Ba = Bx and BA is closed under Borel substitution. We will leave for the 

exercises the remaining easy closure properties of Bx. Here we want to 

concentrate on the Strong Separation Theorem and its corollary, the 

Suslin Theorem which is the chief construction principle of classical 
descriptive set theory. 

Recall from 1C that a set C separates A from B if AcC, BHC = J01 
(see Figure 2E. 1). 

2E. 1. The Strong Separation Theorem. Let x be an infinite cardinal, 

assume that A and B are disjoint x-Suslin subsets of some perfect product 

space 9C. There exists a (x + 1 )-Borel set C which separates A from B 
(Lusin)}8) 
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Figure 2E. 1. Separation. 

Proof. We may assume that A, B are subsets of A, since 9C is Borel 

isomorphic with X and both Sx and Bx+] are closed under Borel substitu¬ 

tion. 

The key to the proof is the following simple combinatorial fact about 

separating sets. Suppose 

A = UieiA„ B = U jej Bj 

are unions of sets, where the index sets J, J are quite arbitrary, suppose 

that for each i e I, j eJ there is a set CM which separates A, from Br Then 

the set 

C — U iel PlyeJ Ct j 

separates A from B. To prove this, notice that for each i, j, A, c Cy, hence 

Aj c Hjej CUj, hence A = (Jiei A ^ Uiei fl/ej Cu = C. On the other 

hand, for each i, j, Bt<^X~ Cu, hence B = U/GJ B, c (X-Cy) and 

since this holds for arbitrary i, 

^ — Plier U jej (X— Oj) = n i el (X ~ fljeJ Cy) 

= X— Uien Plj'eJ Cu = X — C. 

Suppose now that A and B are disjoint x-Suslin sets of irrationals, so 

there are trees T and S on wXx and 

A = p[T], B = P[S]. 

We give two proofs of the result—first a simple argument by contradic¬ 

tion and then a constructive proof which actually exhibits a (% + l)-Borel 

set C that separates A from B. 
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Proof by contradiction. Assume that A cannot be separated from B by 

a (x + l)-Borel set. Since 

■A=p[T] = Uteo),£<x ptT'd.g)]^ 

B p[S] LJseo>,Ti<x pi ^(s,ri I l‘ 

by the remarks above there must be some t0, g0, s0, rj0 such that p[T(to &)] 

and p[S(SoT)o)] cannot be separated. This implies that t0 = s0, or else we can 

take 

C = {a: a(0) = t0}, 

which surely separates these two sets. Hence (t„, £o) e T, (t0,r]0)eS and 

p[T(t o >So)], p[S(lo^J cannot be separated by a (% + l)-Borel set. 

Proceeding inductively, we find t0, tu t2,..., £0, Vo, Vi, V2,— 

such that for each n, u = (t0, t„_l5 £n-i) e T, v = (t0, Vo,--, tn-1, fin-i) e 

S and p[Tu], p[Sj cannot be separated by a (x + l)-Borel set. However 

this is absurd, since then a = (t0,115...) is in both A and B and these sets 

were assumed disjoint. 

Constructive proof. Define the tree J on <oXxXx by 

(00, ^0, "ho)?*"? (tn — 1, — 1? fin —l)) ^ ^ 

00, 4?Cb‘"> in —1) £n — l) ^ T&0 q, T)q,..., tn_ j, T]„_j) S S. 

We will omit the parentheses in writing the nodes of J as we have been 

doing for trees of pairs, 

( to, ^0, Vo, ^1? filv? ki — 1? ^n—1> fin—l) (00, ^O, fioX"*? (bi— 1' ^n — 1? fin —l))* 

Any infinite branch (f0, £0, tj0, tl5 in J would determine infinite 

branches (f0> £o> *i> £iv) in T and (t0, r)0, fii,...) in S with the same 

irrational part a — (t0, txso that aeAHB contrary to hypothesis. 

Hence J is a wellfounded tree. 

To simplify notation, assign to each sequence 

^ (to, £o, fiO)*• *5 ^n —1? £n — l, fin —l) 

from coXxXx the two sequences that it determines in a> x x 

T(U) = (t0, g0,..., tn_u fitI —i), 

<r(ll) = (tQ, fi0,..., fn_j, fin —l). 

By the usual convention, 

t(0) = <t(0) = 0. 
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Now 

J = {u:t(u)gT and cr(u)eS}. 

If v is a sequence from wXx put 

A> = p[Tj, Bv = p[Sj. 

We will define by bar recursion on the wellfounded tree J a function 

u Cu 

such that for each sequence u in a> x x x x, 

(a) Cu is x + l-Borel, 

(b) Cu separates AT(u) from B<t(u). 

This will complete the proof since At(0) = A0 = A and Bct(0) = B0 = B, so 

C = C0 will be the required set. 

We have for each u 

^t(u) U ^t(u) (t,£;)’ 

Bcr(u) L^cr(u)] l_J sI^cr(u) 

hence by the remarks at the beginning of this proof, it is enough to define 

sets Dt€sT) such that 

(c) D,€st| is (x + l)-Borel, 

(d) D(€st) separates AT(ura£) from B0.(u)-(SjTl), since then the set 

r = i i 

will surely be (x + l)-Borel and separate At(u) from Bct(u) 

If f = s and u^(t, pfe J, we can take 

Cu (rj[_u)' 

since by the induction hypothesis of the bar recursion we can assume that 

C„~(t,£jT1) has been defined, it is (x + l)-Borel and it separates AT(H)~(t>£) 

from B<t(u)-(st)). Hence it is enough to define Dt$sv when or f = s 

but u~(t, p) J. 

If f / s, take 

={«: a(n) = f}, 

where n is the length of the sequence u, so that 

a e ^t(u)~(i,€) =*• a(n) = f; 

clearly AT(u)~(tj€) s{a: a(n) = f}, while 

Bff(unM)n{«: a(n) = t} = 0. 
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If t = s but u~(t, £ ri)£J, there are two cases. 

Case 1. t(uHU)^T. In this case ArM~(U) = 0 and we can take 

DU, s.r, = 0- 
Case 2. a(ur(s, v) 4 S. In this case, B<r(ur(M) = 0 and we can take 

The constructive argument in this proof is somehow more satisfying, 

since it actually shows us how to build a separating set C from the trees T 

and S that determine the given sets. More than that, there is additional 

information about C that is implicit in the proof and which we will extract 

and utilize later on. 

2E.2. The Suslin Theorem. Let x be an infinite cardinal. If a pointset 

A c 9C and its complement 0C —A are both x-Suslin, then A is (x + 1)- 

Borel. 

In particular, a set is Borel if and only if it is A}/8’ 

Proof is immediate from 2E. 1, taking B = 9C — A. H 

The theorem of Suslin is the standard construction principle, the result 

we always try to imitate or extend to more general situations. It reduces 

the fairly complex operation of projection along A to an iteration of 

complementation and countable union; this, of course, only in the special 

circumstance when we know that both the given set A and its comple¬ 

ment can be defined by projecting closed sets. It will become clear as we 

go on that projection along A applied to more complicated sets is a very 

complex operation. In the general situation, it produces sets much more 

difficult to understand than those we apply it to. 

Exercises 

2E.3. Prove that for each ordinal A > <u, the pointclass is closed under 

continuous substitution, —i, &, v, 3co, and \/i, A€ f°r every £<A. 

H 

2E.4. Prove that if /: 0C —> ^ and Graph(f) = {(x, y): f(x)= y} is X\, then f 

is Borel. 

Hint. f(x) eNs« (By )[f{x) = y & y € Nj 

<=> (Vy)[/(x) = y =* y e NJ. H 
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2E.5. Suppose /: 9C —> (R is a Borel function and for each x e 9C there is 

exactly one solution y of the equation 

fix, y) = 0, 

so that this equation determines y as a function of x, 

y = g(x). 

Prove that g is a Borel function. 

In particular, if /:9C 'y is a Borel bijection of 9C with Tj, then /-1 is 

also Borel, so f is a Borel isomorphism/91 

Hint. g(x) = y <=> f(x, y) = 0. H 

In general, it is not true that every (x + l)-Borel set is x-Suslin. This 

extra fact allows much stronger results to be proved in the case x = K0. 

2E.6. Let A0, A,,... be a sequence of pairwise disjoint Xl subsets of some 

perfect product space 9C. Prove that there exists a sequence C0, Cl5... of 

pairwise disjoint Borel subsets of 9C such that A0cC0, AX^CU.... 

Hint. Choose C0 to separate A0 from U^iA,. then choose Cx to 

separate Ax from C0U U„>2 A„, then choose C2 to separate A2 from 

CoUCiU Un>3Am etc. H 

We can use this extension of 2E.1 to establish a very important 

theorem apparently due to Lusin and Suslin. 

2E.7. Suppose /: 9C —> ^ is continuous, A c 9C is Borel and f is one-to- 

one on A; then the image /[A] is Borel.'"’ 

Hint. By 1G.5, it is enough to consider the case % with A a 

closed subset of A. As before, let 

N(k0,..., kn_i) = {a: a(0) = k0,..., a(n- 1) = kn^x} 

and put 

A(k0,..., U = /[AnJV(fc0v.„ K-i)l 

Each A(k0,..., kn_1) is X} and these sets are pairwise disjoint for fixed n 

since f is injective on A; hence by 2E.6 there exist Borel sets 

B(k0,..., /cn_0, pairwise disjoint for each fixed n, so that 

A(k(),..., kn_i) £ B(ko,..., kn_i). 
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Let us get a better separating sequence by putting 

B*(k) = B(k)nA(k), 

B*(k0, k1) = B(k0, fc1)nA(k0, ka)nB*(fe0), 

and in general 

B*(k0,..., kn) = B(k0,..., fcjfl A(k0,..., kn)nB*(k0,..., kn_x). 

Easily, 

A(k0,..., kn_i) c B (k0,..., fcn_i) ^ A(k0,..., kn_j) 

and it is not hard to check that 

/[A] = sduB*(u); 

this is because if x e fin B*(a(0),..., a(n - 1)), then aeA and x=f(a). 

Moreover, the system u ►> B*(u) satisfies the conditions of 2B.3, hence 

sduB*(u) is Borel. 

Together with 1G.5, we now have Lusin’s favorite characterization of 

Borel sets: 

2E.8. Prove that a set Pc 0C is Borel if and only if P is the continuous, 

injective image of a closed set in jV.(9) 

The result in 2E.7 extends easily to Borel functions. 

2E.9. Prove that if /: 9C —> A/ is a Borel function, A c sc is a Borel set and 

f is injective on A, then /[A] is Borel.(9) 

Hint. The set B = {(x, y): xe A & y =/(x)} is Borel and /[A] is a con¬ 

tinuous, injective image of B, via the projection (x, y) »x. H 

In Chapter 4 we will prove by an entirely different method some 

important generalizations of 2E.7-2E.9. 

2E.10. Prove that every Borel injection is a good Borel injection (in the 

sense of 1G).<9) —I 

2E.11. Suppose /: 9Cx 9j (R is a Borel function such that for each x, 
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there is at most one y such that /(x, y) = 0. Prove that the set 

D ={x: (3y)[/(x, y) = 0]} 

is a Borel set and there exists a Borel function g : 9C —> ‘y such that for 

x e D, 

fix, g(x)) = 0.(9) 

Hint. The set A = {(x, y): f(x) = y} is Borel and the map (x, y) »x is an 

injection of A onto D, so D is Borel by 2E.7. Now define g so it has 

Borel graph and use 2E.4. —I 

2F. Inductive analysis of projections of trees 

The chief result of this section is that 2} sets can be expressed as both 

the union and the intersection of Nj Borel sets. This will be an easy 

corollary of a general structure result about projections of trees. 

In 2D we associated a canonical rank function p = p1 with every 

wellfounded tree T on some X. It is convenient to have a rank function 

for T even when T is not wellfounded—we will simply put p(u) = °° if u is 

not in the wellfounded part of T. 

To be precise, if T is a tree on X, the wellfounded part of T is defined 

by 

WF(T) = {u: u£T or ueT but there is no 

infinite sequence x0, xl5... such that 

for every n, u~(x0,..., x^jje T}. 

Putting into WF(T) the sequences outside T is of course only a matter of 

convenience. Now WF(T) is not a tree, but it is clear that we can define 

functions by bar recursion on WF(T) exactly as we do on all the 

sequences from X when T is wellfounded. In that case, of course, 

WF(T) = {u: u is a sequence from X}. Put then 

p(u) = supremum{p(u~(x) + 1): (x) e T} if u e WF(T), 

p(u) = °° if ut^WF(T), 

where °° is assumed greater than all ordinals in the ^uations below. If 

there is need to identify the tree with which we are working we write 

p(u) = p r(u) = p(T, u). 
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It follows exactly as in 2D.1 that if card(X) — x and T is a tree on X, 

then 

ue\VF(T)=* p(T, u)<x+. 

2F.1. Theorem (Sierpinski).(10) Let x be an infinite cardinal, let T be a tree 

on co x x and put 

A = p[T], B =Jf — A. 

For each sequence u = (£0,..., £n_i) from x and each A <x put 

= p(T(a), u)<A}. 

Then 

B°u= fl€<x{«: («(0), «(n - 1), &-i, «(«), £)* T}, 

Bi=n€<MUc<xB^€) i/ *>0, 

and 

B = Ux<^ B^- 

Proof. We compute: 

a e B'j <=> p(T(a), u) = 0 

(V| < %)[u~(£) £ T(a)] 

<=» (V|<x)[(a(0), £0,—, «(« - 1), 4-n «(n), 40^ T]. 

For A > 0, 

a E Bf, <=> supremum{p(T(a), u (^)) + 1: w~(£)e T(a)}<A. 

^=> (V£ < *)0f < A){u~(|) € T(a) -* p(T(a), u~(£)) < £} 

«.(V|<x)(3f<A)[p(T(a), u~(|))<£] 

<=> (V£ < x)(3£ < A)[a e B„-(€)]. 

The last assertion follows from 2D.2 since 

a s B <=> T(a) is wellfounded 

«=> p(T(a), 0) is defined 

<=> p(T(a), 0)<tc + . H 

2F.2. Theorem. If x is an infinite cardinal and A is a x-Suslin pointset, 
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then 

A = IWQ, 

a — rw 
where the sets Cx, Dx are (x + 1 )-Borel. In particular, euery X] set is both a 

union and an intersection of Borel sets.<10) 

Proof. It is enough to prove the result for If A = p[T] with T a 

tree on w x x and B = JV —A, then by 2F.1 

B = IWB£, 

hence 

A = (A—B^). 

This shows that A is the intersection of *+ sets which are (x + l)-Borel, 

since it is evident from 2F. 1 that every B^ is (% + l)-Borel. 

With the same notation and for A < x+, put 

EK={a: p(T(a), 0)<A}U{a: (3u)[p(T(a), u) = A]}, 

where u varies over all sequences from x. Again by 2F.1, each Ex is 

(« + l)-Borel, since 

E\ = BpU Uu[Bi-U€<xB€J. 

We claim that 

B = n^EK- 

proof of this claim will be sufficient, since then 

A = Ua<*+ (A-Ex). 

Assume first that a e B so that T(a) is wellfounded. The mapping 

u » p(T(a), u) 

take the sequences from x onto the initial segment of x+ bounded by 

p(T(a), 0). Thus for each A < x+, either p(T(a), 0) < A or A <p(T(a), 0), 

in which case A = p(T(a), u) for some u. In either case, a e EK. 

In the other direction, assume towards a contradiction that a e 

but a£B. Now T(oc) is not wellfounded so p(T(a), 0)<A is 

false for every A, hence for every A there must be some uK with 

p(T(a), uK) = A. This establishes a mapping uA » A from the sequences of 

x onto x+ which is absurd. A 
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The result implies that £2 sets can also be written as unions of N, Borel 

sets. 

2F.3. Theorem (Sierpinski).<10) For each £2 pointset P there are Borel sets 

B$, £<N,, such that 

P = U 

Proof. There is a Ill set Q such that 

P(x) «=> (3a)Q(x, a), 

and by 2F.2 there are Borel sets C€ such that 

Q(x, a) <=» (3^<K1)C€(x, a). 

Thus 

P(x)^(3a)(3|<K1)Q(x,a) 

<=> (3£ <N1)(3a)Q(x, a). 

Now put 

= {x: (3a)Q(x, a)} 

and notice that for each £, D€ is £}. Hence by 2F.2 again 

= U T, 

with each Borel and 

P ~ Ug<Ki U-n<K, -Ee-n- 

This expresses P as a union of Borel sets. (Notice the use of the axiom 

of choice in this argument.) H 

This is as far as results of this type can go, even if we go to set theories 

stronger than Zermelo-Fraenkel. One of the exciting modern results is 

the theorem of Martin that with strong hypotheses, II2 (and hence £3) sets 

are the unions of N2 Borel sets! 

Theorems 2F.2 and 2F.3 are trivial if one assumes the continuum 

hypothesis, that 2H° = since then every subset of X is the union of Nj 

singletons (which are Borel sets) and the intersection of N, complements 

of singletons (which are Borel sets). If, on the other hand we think of 2K° 

as very large compared to then 2F.3 can be considered a construction 

principle for £). Because surely Borel sets are very simple compared to 

£2 sets and we need just a few (Nj) of them to build up any given £2 set. 
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Exercises 

Let us first use Theorem 2F.2 to get a simple characterization of 

N„-Suslin sets for n = 1, 2,.... 

2F.4. Prove that a pointset Pc 9C is N(1-Suslin (n>l) if and only if 

P=\Ji<^P6 

where each P€ is Borel (Martin [19?a]). 

Hint. One way comes directly from the closure properties of x-Suslin 

sets. For the converse suppose first P is bsVSuslin; then by 2B.4, 

P = P& 

where each P€ is N0-Suslin, i.e. £}; each P6 in turn is the union of K, 

Borel sets by 2F.2, so P is the union of K, • Sh = N, Borel sets. The result 

follows by induction on n. 

(Notice the use of the axiom of choice in this proof.) —1 

The next two exercises outline a new and interesting proof of the 

Strong Separation Theorem/11' 

Suppose BcjV' is the complement of some x-Suslin set A = P[T], 

where T is a tree on a> x x. For each set CcB and each u — 

(fco, kn_i, put 

Index{C, T, u) = supremum{p(T(a), aeC 

&a(0) = fc0,..., a(n - 1) = fc^}, 

and let 

Index(C, T) = Index(C, T, 0). 

2F.5. In the notation just introduced, prove that if C is a x-Suslin subset 

of B, then 

Index(C, T)< x + . 

Hint. Assume towards a contradiction that 

Index(C, T, 0) = x + 

and 

C = p[S], 
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where S is a tree on a> x x. Now 

Index(C, T, 0) = supremuma{p(T(a), 0): a e C} 

and for each aeC, 

p(T(a), 0) = supremum4{p(T(a), (C)) + 1: (I)e T(a)} 

= supremum${p(T(a), (C)) + 1: (a(0), |)e T}, 

from which we easily get 

Index{C, T, 0) = supremum$ n{supremuma{p(T(a), (£)) + 1: a e C & a(0) 
= n}}. 

Now using the fact that x' is regular, we infer that for some n0, Co 

supremum{p(T(ct), (Co)) + 1: a e C & a(0) = n0} = x + 

which implies 

Index(C, T, (nQ, Co)) = * + - 

Also 

c= U m,r| p[S(m>T))], 

so for some fixed (m0, %>), 

Index (p[S(moiTlo)], T, (n0, Co)) = *+- 

Argue that we must have m0= n0, so that 

Index(p[S(nii'Vo)], T, (n0, Co)) = k+, 

and then repeat the construction to obtain n0, nu..., Co, Ci,—, Vo, Vi,—, so 

that for each k, 

Index(p[S(not „k „ m ,J, T, (n0, Co,-, %-i, &-i)) = *+- 

Now let 

a = (n0, n1?...) 

and notice that a e p[S] Pi p[T] = A Pi C, contrary to the hypothesis C £ B. 

—\ 

2F.6. Prove that if B c 9C is the complement of a j<-Suslin set A, then 
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where each Bx is (x + l)-Borel and if C^B in x-Suslin, then C^BX for 

some A. Use this to get a new proof of the Strong Separation Theorem/n) 

—\ 

2G. The Kunen-Martin theorem 

One can easily prove by classical methods that every %\ wellfounded 

relation has countable length; in particular, there cannot be a X} wellor¬ 

dering of the continuum. We will prove here a much more general recent 

result due independently to Kunen and Martin. 

One of the consequences of the Kunen-Martin Theorem is that X/ 

wellfounded relations have length less than K2; in particular, if there is a X2 
wellordering of (R, then the continuum hypothesis holds. This was proved 

by Martin (before the general result) in one of the first spectacular 

demonstrations of what modern set theoretic techniques can do for the 

classical theory. 

We will give Kunen’s proof of the Kunen-Martin Theorem since it is 

very simple and in the spirit of the methods we have been using in this 

chapter. 

With each binary relation R(x, y) on a set S we associate its strict part 

^R) 

x <Ry <=> R(x, y) & ~iR(y, x). 

Of course it may be that <R = R if R is already strict, i.e. if 

R(x, y) =* —uR(y, x). 

We call R wellfounded if every nonempty subset of S has a <R -minimal 

element, i.e. 

^cAcS=» for some x e A and all y e A, —i y <Rx. 

It is easy to verify that this is equivalent to the condition that there are no 

<R-infinite descending chains, i.e. there is no sequence 

^O^R^Ur^Ur-" • 

It is common to study wellfounded relations with various additional 

properties, like transitivity or reflexiveness—see the exercises for a state¬ 

ment of these conditions. Many results, however, go through without such 

restrictions and it is convenient to prove them in this generality. Since 
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only the strict part of a relation comes into the definition of wellfounded- 

ness, we often restrict attention to strict, wellfounded relations which we 

denote by symbole like <, <, etc. 

We may justify proof by induction and definition by recursion on a 

wellfounded relation exactly as we did for wellfounded trees in 2D. In 

particular, each wellfounded relation R on S admits a rank function 

p • S —^ A — \R\, 

where p is determined by the recursion 

p(x) = supremum{p(y)+l: y<Rx} 

and |P| = |<R| is the length of R, 

|jR| = supremum{p(x) +1: xeS}. 

Notice that 

p(x) = 0 <=* for every y, —iy<Rx. 

It will be convenient for the proof of the Kunen-Martin Theorem to 

introduce the notion of a good semiscale. 

A sequence <p ={<p„}nea, of x-norms on a pointset P is a good x- 

semiscale if whenever x0, xl5... are in P and for each fixed n the sequence 

of ordinals 

<pn(x0), Cpn(Xi), <p„(x2),... 

is ultimately constant, then there is some xeP such that limit x< = x. 

2G.1. Lemma. If x is an infinite cardinal and a pointset P admits a 

x-semiscale, then P admits a good x-semiscale. 

Proof. Let 

77 : X X CO X 

be a bijection of xXw with x and for each x, choose q(x, i) such that 

x e Nq(x>0, radius(Nq(x>i)) < 2“\ 

Here of course 

N0, Nu... 

is a basis for the open sets in the product space 9C which contains P. 
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Given a *:-semiscale <p = {<p„}neco on P, put 

i/'n(x) = ir((pn(x), q(x, n)). 

If x0, x1;... are in P and for each n, ^n(x;) is ultimately constant, then 

clearly for each n the sequences 

q(x0, n), q(xt, n), q(x2, n),... 

<Pn(xo), <pn(Xi), <pn(x2),... 

are ultimately constant. In particular, for each n the sequence x0, xlv.. is 

ultimately trapped in the nbhd Nq(Xm>n) of radius <2“", so there is a point 

x to which x0, xl5 x2,... converges. Now the fact that <p is a :*-semiscale on 

P implies that xeP, so iA = {‘/'nLeo, is a good *-semiscale on P. —i 

If u = (x0,..., x„_1) and u = (y0,..., ym_x) are sequences in some set X, 

put 
u>v *=* u is a proper initial segment of v 

<=> n<m and x0 = y0,..., xn_! = yn_i. 

2G.2. The Kunen-Martin Theorem. Let x be an infinite cardinal, suppose 

—< is a strict wellfounded relation on a subset of some perfect product space 

9C, suppose further that (as a subject of 9CX9C), —< is x-Suslin. Then the 

length of —< is less than x+.(12> 

Proof. Consider the tree T on 0C defined by 

T = {(x0, xn_1): x0>—Xj>—■••>— xri_1}. 

Clearly T is wellfounded. If p is the rank function of—<, it is easy to 

check by induction on x that 

(x0,..., xn_1; x)sT« p(T, (x0,..., Xn_l9 x)) = p(x), 

where p(T, u) is the rank of u in T. Hence 

|—<| = supremum{p(x) + 1: x efieldi—<)} 

= supremum{p(T, x)+ 1: (x) e T} 

= p(T,0), 

i.e. 

| —< | = | T| = the length of T 

and it is enough to prove that |T|<?c+. 
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The method of proof is to define a wellfounded tree S on x and a 

mapping 
or : T 

which preserves the relation of proper extension on finite sequences, 

u>v => cr(u)> cr(v). 

In these circumstances it is immediate by bar induction on T that 

p(T, u)<p(S, o-(u)); 

hence |T| = p(T, 0)<p(S, cr(0)<p(S, 0) = |S| and |S|<x+ by 2D.1 since S 

is a tree on x. 

To define S and a let ^ = {i//n}nGQ) be a good x-semiscale on 

{(x, y): x>—y}. Here this means that if x0>—y0, x1>—ya,... and if for each 

n the sequence of ordinals 

Ipnixo, y0), ^n(x 1, yi),-.- 

is ultimately constant, then limitx, = x, limiti_^oc, y; = y for some x, y 

and x>—y. 

We now define a directly—S will be the set of all initial segments of 

sequences cr(u) with u in T. Put 

cr(0) = 0, 

cr((xo)) = (0), 

o-((x0, Xi)) = (0, i//0(x0, X,)), 

o-((x0, Xj, x2)) = (0, (/>0(x0, xj, ip0(xu x2), x2), ijri(x0, xj) 

and in general for n > 2, 

<x((x0,..., xj) = <r((x0,..., xn_1))'"(iAo(xn_1, xn), ^1(xn_1, Xn),..., Xn), 

^n-l(*n-2> *n-l)> •An-1 (^-35 Xn_2)->---i ^n-liXg, Xt)). 

The idea is to include in cr((x0,..., xn)) all ordinals i/r,-(x;, xi+1) for i<n, 

j<n. The sequence in which we do this is clear from Diagram 2G.1. 

(x0, X,) 

'I'o 

1 

2 

5 

4 

3 

6 

i|/2 

9 

8 

4i3 

(xv x2) 

(x2, x2) 

Diagram 2G.1. 

7 
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It is immediate that v preserves the relation of proper extension on 

finite sequences, so it will be enough to verify that the tree 

S = {u: for some u in T, v > <r(u)} 

is wellfounded. 

Towards a contradiction assume that in some sequence 

o-((xo, X?)) > <r((xo, x\, x|)) > <x((xo, xf, x\, x|)) > ••• 

each term is a proper initial segment of the next, where of course we have 

Xo>—x°, Xq>—x\>—x\, Xq>—X[>—-x5>—xf, etc. Then in the diagram 

i//0(Xo, x?), 

i//0(*o, A), 'I'oiA, A), 'I'liA, A), A), 

<Ao(xo, xi), Mxi, xD, x|), »Ai(xg, X?), *^o(xi, xf),„. 

each column consists of identical ordinals. Hence for each fixed j and 

each fixed n the sequence 

(MX®, Xf+l), *1*n(A’ A+1)» X,2+l),- 

is ultimately constant, so by the limit property of each x) 

exists, call it x, and we have 

Xq> Xj > X2> 

which is absurd. “I 

This is the key tool for computing the length of wellfounded projective 

relations and it will be used again and again in the sequel. Here we only 

draw the conclusions mentioned in the beginning of this section. 

2G.3. Corollary. Every strict Si wellfounded relation has countable 

length.{12) H 

2G.4. Corollary. Every strict S2 wellfounded relation has length less 

than K2. In particular, if 2X°>K1, then there is no S2 wellordering of the 

continuum (Martin [19?a]).(1‘’ 

Proof. Use 2D.3 and the Kunen-Martin Theorem. H 
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Exercises 

2G.5. Prove that a binary relation R(x, y) on a set S is wellfounded if 

and only if there are no infinite <R-descending chains. 

Hint. If A^0 and A has no <R-minimal element, then we can 

successively choose x0eA-i, xx<Rx0, x2<rX1,..., and get an infinite 

<R-descending chain. ~’ 

Consider the following conditions on a binary relation ^ on a set S. 

(a) < is transitive, i.e. 

x < y & y < z =► x < z. 

(b) < is reflexive, i.e. for all x 6 S, x < x. 

(c) < is antisymmetric, i.e. 

x<y&y<x=>x = y. 

(d) < is connected, i.e. for every x, y in S, x < y or y < x. 

(e) < is wellfounded. 

There are various names attached to relations that satisfy some of these 

conditions and we put them down here for the record. 

(1) < is a partial ordering if it is transitive, reflexive and 

antisymmetric. 

(2) < is an ordering if it is a connected partial ordering. 

(3) < is a wellordering if it is a wellfounded ordering. 

(4) < is a prewellordering if it is transitive, reflexive, connected and 

wellfounded—i.e. if < has all the properties of a wellordering except for 

antisymmetry. 

The strict part of a relation need not be so corollaries 2G.3, 

2G.4 do not apply to arbitrary wellfounded relations. The best we can do 

here is state the trivial consequence of these results for A] and A2 

relations. 

2G.6. Prove that every Borel wellfounded relation has countable length 

and every A, wellfounded relation has length less than K2. A 

There is a simple but useful characterization of the rank function 

implicit in its definition. 

2G.7. Let R be a wellfounded relation on S with rank function p, let 
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f'S—> Ordinals be any order preserving function, i.e. 

*<Ry =*/(x)</(y). 

Prove that for every x in S, p(x)</(x). -I 

A norm <p on a set S is regular if cp : S -*• A is onto some ordinal A, i.e. 

<p(*) = £ & fi <£ =>for some y, cp(y) = tj. 

With each norm cp on S we associate the binary relation <‘p, 

x<vy «=* cp(x)<cp(y). 

2G.8. Prove that a binary relation < on a set S is a prewellordering if 

and only if there is a norm cp on S such that < = Moreover, if < is 

a prewellordering, then there is a unique regular cp on S such that 
< = <<p_ 

Hint. Given <, take cp = p to be the rank function of <. -\ 

2H. Category and measure 

We have proved that not every X} set is Borel. There are times, 

however, when it is useful to know that a pointset P is approximately 

equal to some Borel set P*, in the sense that the symmetric difference 

P A P* = (P - P*) U (P* - P) 

is small. We establish here a general, set theoretic result about approxi¬ 

mations of x-Suslin sets by (« + l)-Borel sets modulo a given -ideal. 

This will imply, in particular, that X} sets are Lebesgue measurable and 

have the property of Baire. 

Fix a perfect product space 2C. A collection J of subsets of 9C is a 

x-ideal (x an infinite cardinal) if J is closed under subsets and unions of x 

elements, i.e. 

A^B&BeJ^AeJ, 

for each £ < x, A$ e J => (J e J. 

If x =K0, instead of K0-ideals we talk of a-ideals. 

Suppose Q is a fixed A-algebra of subsets of 9C. We say that Pc 9C is in 

Q modulo J if there is some P*eC such that P A P* e J. In particular, P is 

(x + l)-Borel modulo J if P A P* e J for some (x + l)-Borel P*. 
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Recall that a pointset A is meager if A - U n A* with each A„ nowhere 

dense, i.e. such that the closure An contains no open set. The collection M 

of all meager subsets of 9C is obviously a cr-ideal. 

Suppose p is a <r-finite Borel measure on 9C, i.e. a countably additive 

function on the Borel subsets of 9C with values real numbers >0 or °o and 

such that we can write 

ac = u: a 
with ,x(An)<°° for each n. Let be the collection of sets of measure 0 

(in the completed measure), i.e. 

A e <=> there exists a Borel set B 

such that AgB and p(B) = 0. 

Again it is clear that is a <x-ideal. 
These are the two standard examples which we want covered by the 

approximation theorem. They satisfy an additional hypothesis which will 

be crucial to the proof. 
Suppose again J is a x-ideal on 9C and C is a (x + l)-algebra of subsets 

of 9C. We say that J is regular from above relative to Q if for every Pg 9C 

there is some PeC such that (see Figure 2H.1) 

(1) PcP. 

(2) if A £ P - P and A e e, then AeJ. 

We will outline proofs in the exercises that the cr-ideals of meager and 

null sets are regular from above relative to the Borel sets. 

2H.1. The Approximation Theorem. Let x be an infinite cardinal, sup¬ 

pose J is a x-ideal on some perfect product space 9C, assume that J is 

Figure 2H.1. Regularity from above. 
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regular from above relative to some (x + \)-algebra of sets Q. Then the 

collection of sets which are in C modulo J is closed under complementation, 

unions of length x and the operation sd*. 

In particular, every x-Suslin subset of 9C is (x + l)-Borel modulo J, 

taking G = BX+1(9C.<13) 

Proof. If P^APfeJ for all £<x, then 

(U €<* p€) A (U «<* Pf) <= U €<* (P€ A P*) e J. 

Similarly, if PAP*eJ, then (9C — P) A (SC — P*) = P A P* e J. Thus the 

collection of subsets of 9C which are in G modulo J is closed under 

complementation and unions of length x. 

Assume now that 

P = ^uPu 

where each Pu is in Q. For each sequence u = (£0,..., in x, put 

Ou = sdvPu~v = Uf fin P(€o,..., 

so that 

Q0 = P, 

and for each u, 

O cp v-^u — A u* 

Notice also that by the definition, 

Qu U«<* Ou (^)* 
Since J is regular from above, we can find in G sets Q* such that (see 

Figure 2H.2) 

(i) Ou <= Ou, 

(ii) if A c Q* - Qu is in Q, then AeJ. 

We may also assume that 

(iii) Qu^Pu, 

since in any case the sets Q*flPu are in Q and satisfy the crucial 

properties (i), (ii). 

We now claim that 

q*-P£Uu(Q*-U<,QJ~(«). 
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Figure 2H.2. The approximation theorem. 

To prove this by contradiction, assume that 

x e Q*-P 

but for every sequence u in 

x£ Q* or for some ^<x,xe 0*-(€>. 

Taking u = 0, this means that there is some £0 so that 

X € Q*o). 
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Taking u — (£0) now, there must be some so that 

* e 

and proceeding inductively we define some fe^x such that 

X 6 Dn Q*n- 

Since Q*n c PfN, we thus have 

x e fin Pf\m 

so that x e ^uPl( = P contradicting x^ P. 

For each u, clearly Q*- LU<x O!'© is in C and 

O!" U€<* Q?-(€)^ 0?- U,<« Ou~(£) =0?-Qu, 

so that O*—U^cx 0?~(£)S J. Since there are only x finite sequences of 

elements of x, U„ (Q*- UO^j)e J and hence PAQ$ = Q*-PeJ. 

This argument proves that if P = si*uPu with each Pu in C, then P is in G 

modulo J. 

For the more general assertion, assume that 

P = <PU 

with each Pu in C modulo J and choose sets P* in C such that 

Pu APjeJ. 

To prove that P is in G modulo J, it is enough to show that 

(iv) silPu A silP* c= U u (Pu A P*) 

since the set on the right is the union of x sets in J. 

Assume then that 

xeiX“<P* 

i.e. 

@/)(Vn)Pfhn(x) & (V/)(3n)—iP*„(x), 

and choose f so that (Vn)Pnn(x). Then there is some n such that 

-iP*n(x), so with U=fln we have x<=Pu-P*. A symmetric argument 

shows that if xei^P*-^Pu, then for some u,xeP*~Pu. Thus (iv) is 

established and the proof is complete. H 

Exercises 

2H.2. Prove that in a complete metric space no open ball is meager (The 

Baire Category Theorem). 
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Hint. Assume Bc[J„ An, where each A„_is closed and nowhere dense. 

Choose an open ball B, so that BjCg-A, and radius{Bl)< 1, choose 

an open ball B2 so that B2gB,-A2 and radius(B2)<3, etc. Show that if 

x G On Bn, then x£ LL A„, which is absurd. A 

A pointset P has the property of Baire if there is some open set P* such 

that PAP* is meager. 

2H.3. Prove that every Borel pointset has the property of Baire. 

Hint. Open sets clearly have the property of Baire. If P is closed, let 

P* = Interior(P) = {xeP: for some nbhd N of x, N c= P}. Show that P-P* 

is nowhere dense, so PAP* is meager. Notice that (P' A Q) = (P A O'), 

where ' denotes the complement, and use this to show that if P has the 

property of Baire, so does P\ Show finally that if each Pn has the 

property of Baire, so does U „ Pn. A 

2H.4. Prove that for every pointset Ps=9C, there is an FCT set P2P such 

that if A £ P —P is any Borel set, then A is meager. 

Hint. Let 

D(P) = {x: for every nbhd N of x, ND P is not meager}. 

Show that D(P) is closed and that P-D(P) is meager, so P-D(P)c W 

for some meager FCT set W. Take P = D(P)UW. If AgP-P = 

(D(P)UW)-P and A is Borel but not meager, choose an open N such 

that N — A = V is meager, so NcAUVc(D(P)UW)-PUVc 

(D(P)-P)uy, where Y is meager. Now N Cl P 2 Y, so N Pi P is meager, 

hence NDD(P) = 0, hence N^Y which contradicts the Baire Category 

Theorem. A 

2H.5. Prove that the collection of pointsets with the property of Baire is 

closed under the operation si\ in particular 2] sets have the property of 

Baire.<13) A 

2H.6. Prove that there are sets of real numbers which do not have the 

property of Baire. 

Hint. This needs the axiom of choice. One way to do it is by a 

construction similar to that of 2C.4. 

First argue that there are exactly 2K" pairs (G, F), where G is open and 

F is a meager F<r. Wellorder (R = {x€: £ < 2K°} and these pairs, 
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{(Gg, F€): |<2x«}. You want to construct a set A such that the inclusion 

AAG6 = (A~G6)U(G6-A)^F$ 

fails for every |. Define by recursion disjoint sets A€, P€, such that 

card(A()<2X°, card(B$)<2*° and (ArG5)U(G£nB4)cF5 fails. At the 

I’th step, either (R-(G£UF£) is uncountable, hence of cardinality 2X° and 

we can throw in A€ some element of this set; or (R = G( U F'e where F'e is 

meager, FCT and F£2F£, hence G$ — F'$ is uncountable and has cardinality 

2S> and we can throw in B$ an element of this set. H 

2H.7. Let n be a cr-finite Borel measure on some product space 9C. 

Prove that the cr-ideal Z^ of sets of measure 0 is regular from above 

relative to the Borel sets. 

Hint. Suppose first that P is contained in some Q with p(Q)<oo and 

put 

x = infimum{ix(Q): Q Borel, PcQ}. 

Choose a decreasing sequence Qi2Q22" of Borel sets, Ott2P, such 

that limit p(QJ = x and take P = fin Qn- If P is large, let 9C = U„ An 

with each A„ Borel, p(AJ<«> and An Cl Am =0 for n ^ m, and use the 

result on each PDAn. —| 

A set P c= 9C is measurable relative to a cr-finite Borel measure p on 9C 

if there are Borel sets P and Q such that PAPc Q and p(Q) = 0. We let 

p(P) = p(P) for any P with this property—p(P) is obviously independent 

of the choice of P. 

2H.8. Prove that the collection of sets measurable relative to a cr-finite 

Borel measure p on 9C contains all and n} sets and is closed under 

complementation, countable unions and the operation sd.ci3) H 

Recall that if A is a set of reals, then the Lebesgue outer measure of A 

is defined by 

P*(A) = infimum{ZT=o (P — aP: A c jj” (ah bp}, 

where of course (ah bp is the open interval from a, to £>,. We call A 

Lebesgue measurable if for every closed interval [a, b] 

p*(A Cl[a, b]) + p*([a, b] — A) = b — a. 
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It is proved in every textbook in real variables that the collection of 

Lebesgue measurable sets contains all open sets and is closed under both 

complementation and countable union; hence every Borel set is Lebesgue 

measurable. Moreover, p,* is a measure on the measurable sets, in 

particular p* restricted to the Borel sets is a Borel measure. The 

definition of measurability we gave above for arbitrary cr-finite Borel 

measures is consistent with this definition of Lebesgue measurability. 

2H.9. Prove that there is a set of reals A contained in the unit interval 

[0, 1] such that p,*(A) = p.*([0, 1]-A)= 1. In particular, A is not Lebes¬ 

gue measurable. 

Hint. This is one more construction by transfinite recursion and choice. 

First argue that there are 2K° open coverings \J7 (ah bt) with 

Zr=o(bi-ai)<l, wellorder them {G€: £<2K"}. Now build A6, so that 

A^HB€ = 0, card(Ai)<2'*°, card(B$)<2H° and each [0, 1]-G€ intersects 

both A? and B(. The key observation is that each [0, 1]-G€ has cardinality 

2k°. H 

We will see later that these results about category and measure are best 

possible in the context of Zermelo-Fraenkel set theory. One cannot 

prove in this theory that Aj sets of reals have the property of Baire or are 

Lebesgue measurable. There are, however, natural strong axioms of set 

theory which imply that all sets have these regularity properties and 

still stronger axioms which allow us to establish that all projective sets are 

Lebesgue measurable and have the property of Baire. 

By the basic definition of A-measurability in Section 1G, we call 

/: 9C —> ‘A/ Baire-measurable if for each basic nbhd Ns c /~X[1VS] has the 

property of Baire. Similarly, if p, is a cr-finite Borel measure on 9C, then 

/: 3C —is p.-measurable if each /_1[NJ is measurable relative to /x. We 

say that f: 9C —» ‘y is absolutely measurable if f is p,-measurable relative to 

every cr-finite Borel measure p. on SC. 

These functions come up often in the applications of descriptive set 

theory to analysis. Flere we will confine ourselves to a simple but useful 

remark about them. 

2H. 10. Prove that if /: 0C —> is Baire-measurable, then there exists a Gs 

set P c 9C which is comeager (i.e. 9C — P is meager) and such that the 

restriction f\P of / to P is continuous. 

Similarly, if /: SC —> is p-measurable relative to a cr-finite Borel 

measure p,, then there exists an FCT set Pc 9C and a Borel function 
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/* : 9C > ‘T-/, such that 9C — P has measure 0 and 

xeP=*f(x) = f*(x). 

Hint. For each basic nbhd Ns c let Gs be open in 3C such that 

r'[Ns] A Gs is meager, choose a meager F<r-set Qs so that /-1[NJ A Gs c 

Qs and take Q = Us Qs, P = X-Q. The argument for measure is similar. 

H 

21. Historical remarks 

' As we have already noted, the operation sd = was introduced in 

the basic paper Suslin [1917], although some similar ideas can be found in 

Alexandroff [1916] and Hausdorff [1916]. Suslin [1917] and Lusin [1917] 

also contain, at least implicitly, the characterization of X\ sets of reals as 

projections of closed sets in (R x jV. 

2 The more general operation s£x for any cardinal x was introduced by 

Maximoff [1940], who also defined what we have called here A-Borel 

sets. Maximoff worked in large, non-separable spaces and defined “x- 

Suslin" to be the sets obtained via the operation si"1 applied to Suslin 

systems u ** Pu, where each Pu is (x + l)-Borel; this is a much larger class 

of sets than our x-Suslin sets. Stone [1962] studies the present notion of 

x-Suslin, but he relates these to the usual Borel (K^Borel) sets, again in 

non-separable spaces. 

3 Our own approach here has been to use these general notions of 

x-Suslin and A-Borel sets as tools for obtaining specific information about 

projective pointsets. There is some anticipation of this in Sierpinski 

[1927], where he shows that his “hyperborelian” sets of reals must have 

cardinality <K, or 2K°; these turn out to be precisely the K,-Suslin sets, 

although Sierpinski defined them differently. The modern approach is due 

to Mansfield [1970] who used trees and particularly Martin [19?a] who 

saw most clearly its potentialities. 

4 Semiscales are quite modern and come from the scales introduced in 

Moschovakis [1971] to study uniformization problems. We will look at 

these closely in Chapter 4. 

5 In Chapters 6, 7 and 8 it will become obvious why we developed here 

the theory of x-Suslin sets rather than concentrate on the classical Si sets. 

The proofs for the special case are no simpler than the ones we gave. A 

hint for the kind of applications that are forthcoming shows in 2D.3, the 
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fact that S2 pointsets are KrSuslin. This important result is implicit in 

Shoenfield [1961]. 

6 The closure of the projective classes n,1,. A,1, under the operation 

M (2B.4) was established by Kantorovitch and Livenson [1932] and later, 

(by the simple proof we gave) by Addison and Kleene [1957], 

7 The Perfect Set Theorem 2C.2 is due to Mansfield [1970] in its full 

generality, but of course there were several similar earlier results. The 

specific application to X! sets is due to Suslin—it was announced in Lusin 

[1917], The proof we gave is due to Solovay. 

8 Suslin [1917] announced the Suslin Theorem (2E.2, for %=K0 of 

course) but gave no hint of its proof. The first published proof is in 

Lusin-Sierpinski [1918]—this is the argument outlined in 2F.4 and 2F.5. 

Another proof was given in Lusin-Sierpinski [1923]. Lusin [1927] estab¬ 

lished the more general Separation Theorem 2E.1, but the proofs in the 

preceding two papers could certainly have been used for this too. Lusin 

[1930b] gives both the argument by contradiction and a constructive 

proof, as we did. 

9 Among the immediate corollaries of the Suslin theorem, perhaps the 

most significant are 2E.5, 2E.8, 2E.9, 2E. 10 and 2E. 11. The characteri¬ 

zations of Borel sets as the continuous, injective images of closed subsets 

of TV is already stated (in somewhat different form) in Lusin [1917]; Lusin 

says that it can be proved “using a method of Suslin,” so it is quite likely 

a joint result. The same is probably true of 2E.5, 2E.9, 2E.10 and 2E.11 

which were considered particularly important, since they showed that the 

claims of Lebesgue [1903] about implicitly defined functions were correct, 

even though Lebesgue’s proof was wrong. These results were all treated 

in detail in Lusin [1927]. 

1(1 Lusin-Sierpinski [1918] established that n] sets are unions of Ni 

Borel sets and Lusin-Sierpinski [1923] proved the same representation 

for X] sets. This representation for X2 sets (2F.3) is due to Sierpinski 

[1925] who also established the elegant equations of 2F. 1 in his [1926]. 

11 The exercises of 2F are directly from Lusin-Sierpinski [1918], There 

are many applications of the so-called Lusin-Sierpinski index which we 

will study in Chapter 4, in a general setting. 

12 Logicians interested in descriptive set theory often refer to “the 

classical result” that Xj wellfounded relations have countable length. This 

was apparently never put down on paper, but it is certainly easy to show 

by classical methods. Martin showed in 1968 that X2 wellfounded rela¬ 

tions have length below K2 (2G.4) by a sophisticated argument, using 
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forcing. The more general (and simpler) Kunen-Martin Theorem 2G.2 

was proved independently in 1971 by its two authors and was not 

published until Martin [19?a], 

13 According to Kuratowski [1966], the Approximation Theorem 2H.1 

is due to Szpilrajn-Marcewski who published it in Polish in 1929. The 

specific corollaries were established earlier as follows: XJ sets have the 

property of Baire (Lusin-Sierpinski [1923]); the collection of sets with the 

property of Baire is closed under the operation sd (Nikodym [1925]); X] 

sets are Lebesgue measurable (Lusin [1917]); the collection of Lebesgue 

measurable sets is closed under the operation sd (Lusin—Sierpinski 
[1918]). 

14 The fact that the collection of p-measurable sets is closed under the 

operation sd (2H.8) has been extended by Choquet [1955] from measures 

to capacities, roughly "subadditive measures.” A very simple and elegant 

exposition of this important theorem can be found in Carleson [1967], 



CHAPTER 3 

BASIC NOTIONS OF THE EFFECTIVE THEORY 

Our choice of basic notions in Chapter 1 was based on the implicit 

assumption that open sets are somehow “simple.” They are just given at 

the very start, and then we build more complicated sets from them. Let us 

try here to analyze this view. 

Suppose G is an open set of reals, say 

G = U„ (an, K), 

where each (an, bn) is an open interval with rational endpoints. Given a 

real number x, we may attempt to find out if x e G by searching for some 

n such that an<x< bn. One natural way to be “given” x is via a sequence 

of rationals converging to it with a known modulus of convergence, say 

x = o qh 

where for each i, 

\x-qi\^2-\ 

We now search for some n and i such that 

(*) an + 2 i<qi<bn-2 

if and when we find them, we will know that x e G. 

We have described a semieffective membership test for G which will 

verify that xeG if this is true. If x£ G, this procedure will not 

terminate—we will simply not be able to find n and i such that (*) holds. 

It seems improbable that we can discover a genuine effective member¬ 

ship test which will decide by a finite computation whether an arbitrary 

given x is or is not a member of G. In fact, even if G = (0, 1) and it just so 

happens that x = l, we will never be able to assert with certainty that 

xj^G by looking at the approximations qt. 

This argument suggests that open sets are “simple” because they are 

“semieffective.” 

116 
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One factor we did not consider is the complexity of the function 

n »(an, bn). 

Suppose, for example, that (p0, q0)> (Pi, is an effective enumeration 

of all open intervals with rational endpoints and put 

(pn,qn) if f(n,xu...,xk)^ 0 for all integers xl5..., xk, 

(0, 1) otherwise. 

Suppose further that f(n,x1,...,xk) — 0 is a hopelessly complicated 

Diophantine equation which cannot (apparently) be solved by any of the 

standard methods. To verify that an < x < bn, we must first find out if 

f(n,x1,...,xk) = 0 has solutions, or else we do not even know whether 

(an, bn) = (pn, qn) or (ari, bn) = (0, 1). Here the “semieffective” membership 

test for G = 1J„ (an, bn) breaks down at the very beginning—we do not 

know for what intervals (a, b) we should attempt to verify that a<x<b. 

Of course this is a perverse example. The open sets that occur naturally 

in mathematical practice are almost always of the form ljlt (an, bn) where 

the function n ►*(a„, bn) can be computed by some explicit or inductive 

procedure. 

An open set G is semirecursive if G= U„ (<*„, bn), where the function 

n >* (an, bn) is computable. To make this precise, we will appeal to 

Church's Thesis, one of the central discoveries of modern mathematical 

logic. This identifies the intuitive notion of a computable function on the 

integers with the precise, mathematical concept of a recursive function. 

The semirecursive pointsets are just the effectively described open sets, 

those open sets for which the procedure described above can in fact be 

carried out. They include almost all open sets one is likely to encounter in 

analysis or topology. Starting with them, we will define effective Borel 

and Lusin pointclasses and develop an interesting and non-trivial 

refinement of the theory in Chapter 1. 

Using semirecursive pointsets one can also introduce in a natural way, 

recursive functions 

on product spaces. Intuitively, f is recursive if we have an algorithm 

which given (sufficiently close approximations to) x produces (arbitrarily 

accurate approximations to) f(x). Every recursive function is continuous, 

but not vice versa. Again, every special continuous function that one is 

likely to meet in ordinary mathematical practice is in fact recursive. 
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It is obvious from these remarks that we will study recursion theory as 

an effective version, a refinement of pointset topology. 

One of the most fascinating aspects of this approach is that it leads 

naturally to an effective descriptive set theory on the space co. Contrary to 

our promise in the introduction to Chapter 1, we have said nothing about 

definable sets of integers. Every subset of a> is open, so the Bore! and 

Lusin pointclasses trivialize on this space. On the other hand, there are 

only countably many semirecursive pointsets and recursive functions. It 

turns out that the effective Borel and Lusin pointclasses yield interesting 

and non-trivial hierarchies of subsets of cj. 

As a matter of fact, the theory for o> was developed by Kleene in the 

period 1940-1955 (roughly) entirely independently of classical descriptive 

set theory. Similarities and “analogies” between the two theories were 

then noticed, particularly by Addison who initiated the development of 

the unified treatment we are presenting here. 

It should be emphasized that the effective theory is not only interesting 

in its own right—it is also a powerful tool for studying the classical Borel 

and Lusin pointclasses. Some of the most important recent results about 

projective sets depend essentially on the use of recursion theoretic 

concepts and techniques. 

The development in this chapter is brief but totally self-contained, i.e. 

it presupposes no knowledge of logic or recursion theory. Consequently, 

the reader who is well versed in these subjects should skip much of it, 

particularly Sections 3A and 3F which establish some of the standard 

results about recursion on co. On the other hand, the reader with no 

experience in recursion theory should go carefully over 3A and do all the 

exercises. These give a stock of recursive functions which we then use 

constantly and without apologies or special reference. 

3A. Recursive functions on the integers*n 

Consider the following “constructive” schemes for defining a function f 

with integer arguments from given functions. 

Composition. Given g^x), g2(x),..., gm(x) and h(nu..., nm), define f by 

f(x) = fifgjU), g2(x),..., gm(x)). 

Here and in the equations below x varies over a>k, 

x = (x1}..., xk) g wk 

and all functions take integers as values. 
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Primitive recursion. Given g(x) and h(u, n, x), define f(n, x) by the 
recursion 

/(0, x)= g(x), 

f(n +1, x) = h(f(n, x), n, x). 

It is clear that f is determined by these two equations if g and h are 

given. One example of primitive recursion is the usual definition of the 

addition function, 

17(0, m) = m, 

1 f(n + 1, m) = f(n, m) +1. 

One proves easily by induction on n that for all m, 

/(n, m) — n + m. 

The definition can be brought to the standard form of primitive recursion 

that we listed above if we take 

g(m) = m 

h (u, n, m) — u + 1. 

Another example is the usual definition of multiplication from addition, 

f /(0, m) = 0 

{f(n + 1, m) — f(n, m) + m. 

Again it is obvious that 

/(n, m) = n • m 

and we can put this recursion into the form above by choosing 

g(m) = 0 

h(u, n, m) — u + m. 

There is a simpler kind of primitive recursion appropriate for defining 

functions of one variable, 

(7(0) = w0 

1 f(n + 1) = fi(/(n), n). 

For example the predecessor function 

pd(n) 
n — 1 if n > 0, 

0 if n = 0 
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can be defined this way, 

f pd(0) = 0 

l pd(n + 1) = n. 

We will include this simple scheme when we talk of definition by 

primitive recursion. 

Minimalization. Suppose g(n, x) is such that 

for every x there is some n such that g(n, x) = 0. 

Put 

f(x) = tin[g(n, x) = 0] 

= the least number n such that g(n, x) — 0. 

We called these schemes constructive because they give us a direct way 

of computing the values of the new function / in terms of the values of 

the given functions. For example, if f is defined from g and h by primitive 

recursion, to compute /(2, x) we successively compute 

/(0, x) = g(x) = w0, 

/(l, x) = h(w0, 0, x) = wb 

/(2, x) = fi(wl5 1, x) = w2. 

Similarly, if f is defined from g by minimalization, to compute /(x) we 

successively compute 

g(0, x), g(l, x), g(2, x),... 

until we find some w such that g(w, x) = 0; we set 

/(x) = w 

for the first such w. 

The intention is to call a number theoretic function recursive (or 

computable) if we can define it by successive applications of these three 

simple schemes. Of course we must have some simple functions to start 

with, and for these we choose the following completely trivial functions. 

S(n) — n + 1 successor 

Cw(xi,..., xk) = w constant w, as a function of k arguments 

Pf(xl,..., xk) = xj projection in the i’th component, 1 < i < k. 
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Of these, the projection Pj would be better named the identity function 
P{(n) = n. 

Now, a function is recursive if it can be defined by successive applica¬ 

tions of composition, primitive recursion and minimalization starting with 

the functions S, , Pf. More precisely, the class of recursive functions is 

the smallest collection of number theoretic functions which contains the 

successor S, all constants and projections P£ and which is closed under 

composition, primitive recursion and minimalization. 

For example, to prove that addition 

f(n, m) = n + m 

is recursive, it is enough to show that g and h are recursive, where 

g(m) = m 

h(u, n, m) = u + 1, 

by the argument above. But g = P] and 

h{u, n, m) = S(Pj(u, n, m)), 

so h is recursive as the composition of recursive functions. 

Similarly, to show that multiplication 

fin, m) = n ■ m 

is recursive, it is enough to show that g, h are recursive, where 

g(m) = 0, 

hiu, n, m) = u + m. 

Again, g = Co and 

him m m) — Pjiu, n, m) + Pf(u, n, m), 

so h is recursive as the composition of +, Pj and Pj. 

Church's Thesis is the metamathematical claim that every number 

theoretic function which is intuitively computable is in fact recursive. By 

“intuitively computable” we mean that there is an effective, uniform 

method for computing fix) once we are given x. 

To justify Church’s Thesis, one must make a deep and detailed study of 

the class of recursive functions as well as a careful analysis of the notion 

of “effective method” or “algorithm.” Books on recursion theory take 

great pains to do this carefully. We will not do it here, as it would take us 

far afield from our central interest in the study of pointsets. 
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From the strictly technical point of view. Church’s Thesis is irrelevant— 

one always works with the precise concept of recursiveness rather than 

the vague notion of intuitive computability. After all, no one takes great 

pains in the classsical theory to justify starting with the open sets—it is 

taken for granted that these are the simplest sets we can think of. 

Church’s Thesis becomes important when we attempt to draw founda¬ 

tional or philosophical inferences from technical results—and in those 

instances one should explicitly bring it in as a consideration. 

We will need to know that a great many functions are recursive. This is 

the point of the lengthy list of exercises in this section. One should look at 

these problems much as one looks at the basic limit theorems in 

Calculus—the limit of a sum is the sum of the limits, etc. They are mostly 

used to prove that various functions are continuous. After a while, one 

gets a certain intuitive understanding of continuity and seldom bothers to 

give a detailed e - 8 argument. Here too, after these exercises, we will 

often assert that “obviously / is recursive’’ without a proof. The implica¬ 

tion is that the recursiveness of f can be established routinely by the 

methods of this section. 

A k-ary relation a>. Pc a>k is recursive if its characteristic function ;yP is 

recursive, where 

1 if P(x), 

0 if —iP(x). 

Intuitively, P is recursive if we have an effective way of deciding for each 

x whether P(x) or —iP(x) holds—we simply compute xP(x). Recursive 

relations are also a good tool to use in proving that various functions are 

recursive. 

Exercises 

3A.1. Prove that if g(x) is recursive, where x varies over a>k and f(x, y) is 

defined by 

fix, y) = g(x). 

with y varying over a>1, then f is recursive. (Addition of inert variables.) 

Prove that if tt is a permutation of {1,..., k} and g(x!,..., xk) is recursive, 

then so is / defined by 

(Permutation of variables.) 
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Hint. Use composition and the projection functions. H 

3A.2. Prove that the following functions are recursive. 

*1- f(k,n) = kn (=1 if k = n = 0). 

Hint. By 3A.1 it is enough to show that 

g(n, k) = kn 

is recursive and for this we have the primitive recursion 

g(0, k) = l, 

g(n + l,k) = g(n, k) ■ k = h(g(n, k), n, k), 

where 

h(u, n, k) = u ■ k 

is recursive by 3A.1, since multiplication is recursive. 

We will not bother to indicate the necessary applications of 3A.1 in 

the hints below. 

*2. k— n = \^ n ^ — (arithmetic subtraction) 
10 if k<n. 

Hint. 

f k^o = k 
1 k-(n + l) = pd(k-n). 

*3. max(xlv„, xk) = the largest of x1,..., xk. 

Hint. Use induction on k to prove that each of these functions is 

recursive. 

max(x1, x2) = (xj — x2) + x2, 

max(xx,..., xk, xk+1) = max(max(x1,..., xk), xk+1). 

*4. min(x1,..., xk) = the smallest of xx,..., xk. 

Hint. As in *4, starting with 

minix-L, x2) = xx + x2 — max(xx, x2). 

sg(n) 
fO if n — 0 

ll if n>0. 
*5. 



124 Basic notions of the effective theory [3A.3 

Hint. sg(n) = 1 -(1 - n). 

*6. sg(n) 
1 if n = 0, 

0 if n> 0. 

Hint. sg(n) — 1 — n. 

*7. \n-k\ = absolute value of the difference of n, k 

= (n—k) + (k — n). 

*8. \n/k] = the unique q such that for some r <k, 

n = qk + r if n^k> 0, 

= 0 if n<k or k = 0. 

Hint. \n/k] — sg(k) • nq[(n • qk) — (k - 1) = 0] • sg(k - n). 

*9. rm(n, k) = the unique r<k such that for some q, 

n = qk + r if n, k > 0 

. =0 if n = 0 or k — 0. 

Hint. rm(n, k) = sg(k) ■ sg{k — n) • [n — [n/k] • fc] + sg(fc — n) ■ n. H 

3A.3. Prove that the relations 

n = m, n<m, n<m 

are recursive and that the class of recursive relations is closed under the 

operations —i, &, v, —3s, Vs and substitution of recursive functions. 

Hint. The first assertion is trivial, e.g. the characteristic function of = is 

X=(n, m) = sg|n — m|. 

Closure under the propositional operations is also easy, e.g. if P(x), Q(x) 

are given and 

R(x) <=> P(x)&0(x), S(x) P(x)v O(x), 

then 

Cr(^) = Xp(^) *Xq(x) 

XsW = sg(xP(x) + XoM). 

If P = 3^0, so that 

P(x, n) 4=» (3m < n)Q(x, m), 
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define Xp(x, n) by the recursion 

Xr(x, 0) = xo(x, 0) 

Xp(x, n + 1) = sg(*P(x, n) + *q(x, n + 1)). 

Finally, if 

P(x) «=> Q(/i(x),...,/m(x)) 

with the fi recursive, then 

Xp(x) = Xoifi(x),..., /m(x)). H 

3A.4. Prove that if P,(x),.... Pm(x) are recursive relations and 

/i(x),..., /m(x), fm+i(x) are recursive functions, then / defined below fiy 

cases is recursive. 

'fi(x) 

f2(x) 

f(x)=- 

if P,(x), 

if iP i(x)&P2(x), 

fm (x) if -iP1(x)&-iP2(x)&---&-iPm_a(x)&Pm(x), 

/m+1(x) otherwise. 

Hint. Taking m = 1 with P = Pu 

f(x) = fi(x)sgXp(x) + f2(x)sgXp(x). 

3 A.5. Prove that /: 9C —»a> is recursive if and only if the graph of /, 

Graph(f) = {(x, n):/(x) = n} is recursive. H 

This trivial observation is a very useful tool for proving the recursive¬ 

ness of functions using 3A.3 above. 

3A.6. Prove that the following functions and relations are recursive. 

*10. Divides(m, n) «=* n divides m. 

Hint. Divides(m, n) <=> rm(m, n) = 0. 

*11. Prime(m) <=> m is a prime number. 

Hint. Prime(m) <=> m > 1 & (Vn < m)[—]Divides(m, n)vn = 0vn = lv 

n = m]. The relation 

P(m, n) —i Divides(m, n)vn = 0vn = lvn = m 
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is obviously recursive, hence so is Q(m, k) defined by 

Q(m, k) <=> (Vn < k)P(m, n). 

Now 
Prime(m) <=> m > 1 & Q(m, m). 

This is the standard way of treating restricted quantifiers which are 

applied simultaneously with various substitutions. 

*12. p(i) — Pi = the Vth prime. 

Hint. 

J Po = 2 

lp,+1 = pn[Prime(n)&n > p* + 1]. 

*13. (t0,..„ tn-1) = Po°+1.Pn- 1+1. 

Recall that this is defined even when n = 0, 

< >=1. 

Hint. There are infinitely many functions here, one for each n. Show by 

induction on n that each is recursive, 

(t0,..., tn)=(t0,..., • py1. 

*14. Seq(u) ■*=> for some tn_1? u = (t0,..., tn_x). 

Hint. 

Seq(u) <s=> u >0 

&(Vm< u)(Vs < m){[Prime(m) & Prime(s) 

&Divides(u, m)] =* Divides(u, s)}. 

*15. lh(u)=n if u = ((0,..., tn_!) for some n > 1, 

= 0 otherwise. 

Hint. 

lh(u) = n <=> [(u = 1 v-iSeq(u))& n = 0] 

v[Seq(u)& u > 1 &(Vm < n)Divides(u, p,n) 

&—\Divides(u, p„)]. 

*16. (u)i = ti if u=(t0,...,tn_1) for some t0,...,tn^ 

and 0 < i < n — 1, 

= 0 otherwise. 
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Hint. 

(u)i = f <=> [Seq(u)&i < lh(u)&Divides(u, p' + 1) 

&—iDivides(u, p‘+2)] 

v[(—\Seq(u)v i > lh(u))&t = 0], 

*17. u\t = ((u)0,...,(u)t_1). 

Hint. 

u{t = z <=> Seq(z)&lh(z) = t 

&(Vi < 0[(z)i = (u);]. 

* 18- U*V= <(u) o,..„ (u)lh(u)JL1, (v)o,..., (v)lh(v) j_i). 

Hint. Show that the graph is recursive. H 

The functions in *13-* 18 allow us to deal effectively with finite 

sequences of integers. 

3A.7. Suppose g(u, x) is recursive and /(n, x) satisfies the equation 

f(n, x) = g«/(0, x),..., f(n - 1, x)>, x), 

where for n = 0, ( ) = 1 by convention, so 

/(0, x) = g(l, x). 

Prove that f is recursive. (Definition by complete recursion.) 

Hint. Define h(n. x) by the primitive recursion 

h(0, x) = <g(l, x)> 

h(n + 1, x) = h(n, x)*(g(h(n, x), x) 

and verify that 

f(n, x) = (h(n, x))n. H 

3A.8. Suppose gl5 hu g2, h2 are all recursive and f^f2 are defined by the 

simultaneous recursion 

fx(0, x) = gi(x), /2(0, x) = g2(x), 

/j(n + 1, x) = h^hin, x), f2(n, x), n, x), 

f2(n + l,x)= h2(/1(n + 1, x), f2(n, x), n, x). 
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Prove that both f, and f2 are recursive. 

Hint. Show that the function 

f(n, x) = </i(n, x), f2(n, x)) 

is recursive. 

3A.9. Enumerate the rational numbers by the function 

Prove that addition is recursive in this coding of the rationals, i.e. there is 

a recursive f(i,j) such that 

Do the same for subtraction, multiplication and division, where for 

simplicity 

3B. Recursive presentations 

Suppose 9TC is a separable metric space with distance function d. A 

recursive presentation of SHI is any sequence 

of points in 9TC satisfying the following two conditions. 

(1) The set {r0, r,,...} is dense in M. 

(2) The relations 

P(i, j, m, k) <=> d(rh r,) <—— , 
k +1 

are recursive. 

Not every separable metric space admits a recursive presentation—but 

every interesting space certainly does. Consider first the basic examples 

to, (R, Af, C. 

In the case of to we have the trivial distance function 



3B] Recursive presentations 129 

Take p = i so that 

d(i, /) — 

d(i,j)< 

m 

k +1 

m 

kTl 

■ [i = j v k + 1 < m], 

• [i =/ v k + 1 < m]. 

For the real numbers, choose any effective enumeration of the ration¬ 

al, where repetitions are allowed, e.g. 

n (Oi 

(O2+1 

Proof that this is a recursive presentation is routine by the methods of 

3A. 

For Baire space, recall that 

f° 
d(a, (3) = <_1_ 

(|iin[a(n) ^ |3(n)]+ 1 

if a = (3, 

if a * (3. 

Here we need an effective enumertion of all ultimately zero sequences of 

integers, e.g. 

ri(n) = (i)n. 

Again, the fact that this is a recursive presentation is easy. 

Similarly, for the Cantor set Q we take all ultimately 0 binary sequ¬ 

ences, 

ri(n) = sg((i)„). 

(For the definition of sg see *5 of 3A.2.) 

Recall that in Section IB we fixed once and for all a collection of 

basic spaces including <0, (R, A and Q. We now assume further that we are 

given a fixed recursive presentation 

rf,...} 

for each basic space 9TC. For oj, (R, A and S we take the presentations 

given above. 

Suppose 9C = X,x---xXk and we are given metrics du...,dk and recur¬ 

sive presentations {ro, r},...}, {rl, r\,.of the spaces Xlv..,Xk. It is 
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well-known that the function 

d((xu..., xk), (xi,...xQ) = maximum{di(x1, x'a),..., dk(xk, x'J} 

is a metric on DC which generates the natural product topology. For each 

i 6 o), put 

b (FOi’""’ r(Ok) ’ 

we leave it for 3B.3 that {r0, r,,...} is a recursive presentation of DC with 

this metric. 

We now have a fixed recursive presentation for each product space. If X 

is a basic space, x0eX and p is any rational number >0, let B(x0, p) be 

the open ball with center x0 and radius p, 

B(x0, p) = {xeX: d(x, x0)<p}. 

Taking {r0, ru ...} to be the fixed recursive presentation of X, put for each 

S G (t) 

B, = B(X,S) = b(,„v^). 

Clearly B0, B,,... is an effective enumeration of a basis for the topology of 

X. Notice that the empty set occurs in this enumeration. In fact, Bs = 0 

whenever (s)! = 0, in particular 

B(l = 0. 

For product spaces it is easier to work directly with the natural nbhd 

basis for the product topology. For each DC = Xt x ••• x Xk and each s e to, 

put 

Ns = N(DC, s) = B(X„ (5)0 x B(X2, (s)2) x ••• x B(Xfc, (s)k) 

= {(x!,..., Xk): XieB(s)l & ••• & xkeB(s)i}. 

Now N(), N,,... is an effective enumeration of a nbhd basis for the 

topology of DC. Notice again, 

No = 0. 

In several constructions in the first two chapters we used some enumer¬ 

ation of a nbhd basis for the topology of a product space. We now fix once 

and for all the canonical basis of nbhds 

N(DC, 0), N(9C, 1),... 

associated with the fixed recursive presentation of DC. 
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Sometimes we needed a center and a radius for the basic nbhds, as we 

described and used these in Section 1A. We naturally put 

where 

and 

where 

center(Ns) = rl = (r}i)^...,rfi)k), 

(0i = ((s)i)o,-,(0fc = ((s)k)o, 

radius{Ns) = maximum{p1,..., pk}, 

(00i)i ((s)k)i 

((s),)2+l’"'’Pt ((5)02+1' 

There is one slightly annoying technical detail we should clear up here. 

We have identified each basic space X with the “product space” 0C = X 

whose only factor is X. Now we have described two bases for the 

topology of X, the sequence 

B(X, 0), B(X, 1),... 

of open balls, thinking of X as basic, and the sequence 

N(9C, 0), N(9C, 1),... 

of “products of one factor,” 

N(X,s) = B(X,(s)1). 

Of course the bases are identical, but the enumeration is different as the 

last displayed equation plainly shows. Notice also that 

B(X, s) = N(X, (0, s». 

We need two simple lemmas to deal effectively with these codings. 

3B.1. Lemma. For each two product spaces 9C, % there are recusive func¬ 

tions f, g, h such that 

N(SC, s) x N(U t) = N(9C x % f(s, t)), 

N(9C x fy, s) = N(9C, g(s))xN(U, h(s)). 

Proof. If 9C = X1x---xXk and = YjX-'-x Yh then 

N(9C x «y, s) = B(X1, (s)j) X - x B(Xk, (s)k) 

x B(YU (s)k+1) x ••• x B(Yb (s)k+i); 
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from this follows immediately that we can take 

f(s, t) = <0, (s)lv.., (s)k, (Oi,-, (0i)» 

g(s) = <0, (s)lv.., (s)k), 

h(s) = <0, (s)k+1,..., (s)k+,). —i 

The second one is a bit messier. 

3B.2. Lemma. For each product space 9C, there is a recursive function f 

such that 

N(9C, s) n N(9C, t) = Un N(9C, f(s, t, n)). 

Similarly, there is a recursive function g, such that 

n,Sm N(sc, (u),)= UnM9C, g(u, rn, n)). 

Proof. We show the second assertion first. 

Let X be a basic space with the recursive presentation {r0, rl3...} and let 

B(x0, p0),..., B(xm, p,n) be m + 1 open balls in X. Then 

xeB(x0, p0) Pi ••• Pi B(xm, pm) (3i)(3fc)i d(r;, x)< 
(fc)i 

(k)2+l 

& d(x0, rt)< po- 

St 

St d (xm, ri)<pm - 

(k)r 

(k)2 +1 

(k)i 
(k)2+ i}; 

the implication from right to left is trivial, while if the left-handside holds, 

then 

A = z: (3k) j/ \ ^ (^)i p j/ \   (k)i 
d(z, x) <77^——r & d(x0, z)<p0- —-r & 

(k)2 + 1 (k)2+ 1 

& d(x,n, z) < pn 
(k)t 

(k)2+ 1J 

is open and nonempty (since xeA), so A must contain some r(. Using 

this equivalence and the definition of a recursive presentation, it is easy to 



3B.3] Recursive presentations 133 

see that there is a recursive relation P(s, m, n) such that 

x g B(X, s0) n • • • Pi B(x, sm) «=* (3n)[x g B(X, n) & P((s0,..., sm), m, n)], 

i.e. 

(*) B(X, s4) = U„ {B(X, n): P«s0,..., sm>, m, n)}. 

Suppose now that 

9C = X, x ••• x Xk 

and let P1,...,Pk be recursive relations so that (*) holds with Xlv.., Xk 

respectively. Using the definition of the coding, we compute: 

HlaSm N(9C, (u);) = [B(Xj, ((u)i)i)x — xB(Xk, ((u),)k)] 

= [ni^B(X1,((u)i)1]x-x[nismB(Xk,((u)i)k)]. 
Now for each j = 1,..., k. 

B(Xy, ((uXX) = Un {B(Xj, n): P,«((u)0)j;..., ((«)m),.), m, n)} 

= U>i {B(Xj, n): P*(u, m, n)} 

with an obvious recursive P*, hence 

H,sm N(9C, (u)i) = [Un {B(Xi, n): P*(u, m, n)}] 

x ••• x[U„ {B(Xk, n): Pk(u, m, n)}] 

= U,1{B(X1,(n)1)x--xB(Xk,(n)k): 

Pf(u, m)(n)1) & ••• & P*(u, m, (n)k)} 

= Un {N(0C, n): P*(u, m, n)}, 

with some recursive P*. The result follows by setting 

i n if P*(u, m, n), 
g(u, m, n) = |j 

10 otherwise. 

The first assertion follows immediately, taking 

f(s, t, n) = g«s, t), 1, n). H 

Exercises 

3B.3. Prove that if {rf,, r',....} is a recursive presentation of X, for / = 

1,..., k, then the sequence 

h = (rlth, rfi)k) 

is a recursive presentation of 9C = X, x •" x Xk. 
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Hint. You must show that the relation 

m 
P(i, j, m, l) <=* d(rh 

YYl 

<=> maximum{d1(rli)l, dk(rfi)k, r(j)k)}<y^j 

is recursive, and similarly with <. See 3A.9. 

3B.4. Let 9C = XiX---xXk be a product space and let Ns = N(9C, s) be 

the basic nbhd with code sew. Prove that the relations 

m 
P(s, m, l) <=> radius (Ns)< — 

m 
Q(s, m, l) < ~> radius(Ns) ^ ^ 

are both recursive. 

Prove also that 

center(Ns) = rf(s) 

where {r0, r^...} is the recursive presentation of 0C and f is some recursive 

function. H 

3B.5. Prove that there are recursive functions g : co —> a> and h:(o2^co 

such that 

a e N(X, s) «=> ((s)x)i 5^ 0 & (Vi < g(s))[a(i) = h(s, /)]. 

Hint. The idea is that by the definitions, 

B(Jf,t) = 0 if (0i = 0 
and for {t)1 ^ 0, 

B(JV, t) = {a: a(0) = k0, a(l) = ku..., a(l- 1) = k^} 

with l, k0,..., kl_1 effectively computable from t—where in the case l = 0, 

we have B(X, t)~3f. Write 

/ = Kf), 

ki = k(t, i) 

with suitable recursive functions and take 

g(s) = Z((s)i), 

h(s, i) = k((s)1, i). 
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3B.6. Find a recursive presentation for your favorite perfect Polish space 

e.g. C[0, 1] or H[0, 1], as we defined these in the exercises of 1A. —\ 

3C. Semirecursive pointsets<2,3) 

A pointset G c 9C is semirecursive if 

G = Un M9C, e(n)) 

with some recursive irrational e, i.e. with an irrational e such that the 
function 

n >+ e(n) 

is recursive. Intuitively, G is semirecursive if it can be written as a 

recursive union of basic nbhds. 

The definition suggests that the pointclass of semirecursive sets depends 

on the particular coding of basic nbhds by integers which we fixed. We 

will see in the exercises that this is not so. It is obvious, however, that the 

notion of semirecursion depends on the particular recursive presentations 

of the basic spaces which we adopted. 

It is natural to consider the family of all semircursive subsets of 9C as a 

recursive topology on 9C. It is not closed under arbitrary unions, but it has 

strong closure properties, as we now proceed to show. 

If 9C = Xj x • • • x Xk, let 

tt* : 9C Xi 

be the projection function, 

TTi(xxk) = xi. 

A function 

f:vc-+y= y,x-x y, 

is trivial if there are projection functions 

such that 

f(x) = (f1(x),...,f,(x)). 

For example, the map 

(Xu X2, X3, X4) ►» (x2, Xu Xj) 

of XAX2XX3XX4 into X2x Xxx X1 is trivial. 
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3C.1. Theorem. The pointclass of semirecursive sets contains the empty 

set, every product space 9C, every recursive relation on cok, every basic nbhd 

N(9C, s) and the basic nbhd relation 

{(x, s): x e N(0C, s)} 

for each 0C; moreover, it is closed under substitution of trivial functions, &, 

v, 3~, and 3“. 

Proof. Notice first that if 

P=U{N(0C,/(n)):P*(n)} 

where / is a recursive function and P' a recursive relation, then P is 

semirecursive, since 

P=U„N(9C,e(n)) 
with 

f/(n) if P*(n), 
e(n) —) 

10 otherwise. 

This will help a little in the computations below. 

Clearly 

0=U„N(0C,O), 

9C= U„N(9C, n), 

so both 0 and 0C are semirecursive. 

By the definition of the coding of nbhds in co, 

B(w,(i, 1, 1» = jm: d(m, = {i}, 

hence each singleton is a basic nbhd in tok: 

nk)} = N(a>k, <0, <na, 1, 1),..., (nk, 1, 1))). 

If R^a>k is recursive, then 

R = U {N(<ok, <0, <(n)l5 1, 1),..., <(n)k,-l, 1»): Rdn),,..., (n)k)}, 

so R is semirecursive. 

Again, 

N(dC,s)=\JnN(X,s), 

so N(9C, s) is semirecursive since the constant function n » s is recursive. 



3C.1] Semirecursive pointsets 137 

To check that {(x, s): xeN(9C, s)} is semirecursive, notice that 

N(9C, s) x {s} = N(9C, s) x N(co, <0, <s, 1, 1))) 

= N(9C x a>, /(s, <0, (s, 1, 1)))) 

using the recursive function f of 3B.1, so that 

{(x, s): x e N(9C, s)} = Us N(9C x /(s, (0, <s, 1, 1)))). 

Going to the closure properties, suppose first that 

P = Un N(9C, a(n)), O = Um N(9C, (3(m)) 

with both a and |3 recursive. Then 

[ U „ N(0C, a (n))] U [ (J m N(9C, 0(m))] - U, N(9C, 7(0), 

where 7 enumerates the union of the sets enumerated by a and 0, 

7(2 k) = a(fc), 

y(2k + 1) = 0(k). 

Similarly, 

F n Q = [Un N(9C, a(n))]n[U„, N(9C, 0(m))] 

= Un,m [N(3C,a(n))nN(9C,0(m))] 

= U n.m.s N(9C,/(a(n), 0(m), s)) 

where f is the recursive function of 3B.2; thus 

F n Q = U« N(9C, /(a((0o), 0((Oi), (O2)), 

and PPlQ is semirecursive. This establishes closure under v and &. 

To prove closure under 3“, suppose 

P(x) «=» (3m)Q(x, m) 

and 

O = UnM9Cx&), e(n)); 

then 

P(x)«(3m)(3n)[(x, m)eN(9CXoj, e(n))] 

«=>(3m)(3n)[x e N(9C, g(e(n))) & m e N(to, h(e(n)))] 

where g, h are recursive by 3B.1. The relation 

R(m, n) «=> m g N((o, h(e(n))) 
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is easily proved recursive, so we have 

P(x) «=> (3t)[x G N(9C, g(e((0o))) & R((f)i, (0o)l 

and P is semirecursive. 

Suppose now that 

is trivial, that is 

f-.Xxx-xXk->y 

/Ui,-, xk) = (xix,..., xh) 

where the numbers ilv.., i, are between 1 and k. If 

Q=UnN(%e(n)) 

and 

P(x) ~ Q(/(x)), 

then: 

P(xu..., xk) *=>(3n)[(xii?..., X;,)ee(n))] 

~ (3n)[X G (e(n))1) & - & Xit G B(XU, (e(n)),)]. 

For fixed j, easily 

x, g B(Xj, m) <=> (3t)[x, G B(Xj, (00 & ••• & x, g B(Xy, m) 

& ••• & xk g B(Xk, (Ok)] 

<=> (3t)[(x1,..., xk) G N(9C, /j (m, 0)] 

with a recursive function /j; using the argument which established that 

{(x, s): x G N(9C, s)} is semirecursive, it is easy to verify that each relation 

Ryfxj,..., xk, m, 0 <=* xk) g N(9C, /y(m, 0) 

is semirecursive, so by closure under 3“ we have 

P(xxk) ^ (3n)[B*(x1,..., xk, n) & ••• & R*(xu..., xk, n)] 

with suitable semirecursive R*,..., R*, and P is semirecursive by closure 

under & and 3“. 

At this point it becomes easy to combine the results we already have to 

prove closure under 3^, Vs. 

If 
P(x, n) 

with Q semirecursive, then 

(3i < n)Q(x, i) 

P(x, n) <=> (3i)[i < n & 0(x, i)] 

<=*• (3i)[R(x, n, i) & S(x, n, 0] 
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where 

R(x, n, i) <=> i < n, 

S(x, n, i) <=> Q(x, i), 

are both semirecursive by closure under the trivial substitutions 

(x, n, i) »(i, n), (x, n, i) >* (x, i) and the semirecursiveness of < and Q. 

Now use closure under & and 3". 

Similarly, if 

P(x, n) <=> (Vi < n)0(x, i) 

with 

O - UmN(9Cxo), e(m)), 

then 

P(x, n) <=> (Vi < n)(3m)[(x, i)e N(9C x a>, e(m))] 

<=> (3s)(Vi <n)[(x, i)eN(9CXa), e((s);))] 

<=> (3s)(Vi < n)[x G N(9C, /^s, /)) & i e N(a>, /2(s, i))] 

with fi,f2 recursive by 3B.1; thus 

P(x, n) <=> (3s)(3u){(Vi < n)[/j(s, i) = (u)j] 

& (Vi < n)[x G N(9C, (u);)] 

& (Vi < n)[i G N(oi, /2(s, i)]}. 

Now using 3B.2 and rearranging, 

P(x, n) ~ (3u)(3s)[(3f)[x e N(9C, g(u, n, t))] & R(n, s, u)] 

with a recursive function g and a recursive R, i.e. 

P(x, n) ** (3u)(3s){(3f)(3m)[m = g(u, n, t) & x e N(9C, m)] 

& R(n, s, u)} 

so P is semirecursive by the closure properties we have established 

already. 

The proof of 3C.1 was messy, because we were forced to deal directly 

with the coding of nbhds. In the sequel, we will be able to give fairly 

simple proofs of semirecursiveness by applying 3C.1 and the remaining 

results of this section. 

It is worth emphasizing the usefulness of closure under trivial substitu¬ 

tions, which allows us to identify, permute or introduce new arguments in 
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relations. For example, suppose 

P(x, y, x) <=* (3n){Q(x, n) & R(n, y, z)} 

with Q, R semirecursive; then 

F(x, y, z)^(3n){Q*(x, y, z, n) & R*{x, y, z, n)} 

with 

Q*(x, y, z, n)<=> Q(x, n), 

R*(x, y, z, n) <=> R(n, y, z) 

and since both Q* and R* are semirecursive by closure under trivial 

substitutions, so is P by closure under & and 3OJ. In Section 1C we were 

appealing to closure of the finite Borel classes under continuous substitu¬ 

tion to do this kind of computation. 

We will see in 3D.2 that the pointclass of semirecursive sets is closed 

under substitution of recursive functions on product spaces, which include 

the trivial functions. 

Let us call a product space 0C of type 0 if 9C = a>k for some k. These are 

the discrete product spaces. A pointset P is of type 0 if P c cok for some k. 

3C.2. Theorem. A pointset Pc <ok of type 0 is semirecursive if and only 

if there is a recursive relation R^cok + i such that 

P(x) <=> (3n)R(x, n). 

Moreover, P is recursive if and only if both P and —\P = iok — P are 

semirecursive. 

Proof. Assume first that P^cok is semirecursive, 

P = U„N(ai\e(n)), 

with e recursive. Then 

P(xx,..., xk) «=> (3n)(3m)[e(n) = m & (xx,..., xk)eN(o)k, m)] 

so P is of the required form, since the relation 

S(xlv.., xk, m) <=> (x1?..., xk) e N(a>k, m) 

is easily proved recursive by direct computation. 

Conversely, if 

P(xlv.., xk) <=*. (3n)R(x1,..., xk, n). 
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then 

P = Un {N(o>\ (0, <(n)1? 1, 1),..., <(n)k, 1, 1))): P((n)1;..., (n)k, (n)0)}, 

so P is semirecursive. 

If both P and nP are semirecursive, then 

PUi,..., xk) ^ (3n)R(xx,..., xk, n), 

~iP(x1,..., xk) «=> (3m)S(x1,..., xk, m), 

with both P and S recursive. It follows that for each xl5..., xk there is 

some n such that 

P(xl5..., xk, n)vS(xlv.., xk, n), 

so that the function 

/(xi,..., xk) = [P(xxk, n)vS(x1,..., xk, n)] 

is recursive. Now easily 

P(Xi,..., xk) *=* P(xlv.., xk, f (xlv.., xk)), 

so P is recursive by 3A.3. H 

A pointset P c 0C is recursive if both P and —iP = 9C — P are 

semirecursive—by 3C.2 this definition agrees with the one we already 

have for pointsets of type 0. 

When we define recursive functions on arbitrary product spaces in 3D, 

we will verify that P is recursive precisely when its characteristic function 

Xp is recursive. These pointsets are clopen, so they are trivial in connected 

spaces like the reals. They are very important in studying products of co and 

X. 

A space 9C = X, x • • • x Xk is of type 1 if each X, is either co or X and at 

least one Xi is X. Again, P is of type 1 if P is a subset of some space 3C of 

type 1. 

3C.3. Theorem. The pointclass of recursive sets contains the empty set, 

every product space 9C, every recursive relation on co, the pointset 

{(a, n, w): a(n) = w} 

and for each space 9C of type 0 or 1 every basic nbhd N(9C, s) as well as the 

basic nbhd relation {(x, s): x e N(9C, s)}; moreover, it is closed under sub¬ 

stitution of trivial functions, i, &, v, 3" and V . 



142 Basic notions of the effective theory [3C.4 

Proof. The closure properties are immediate from 3C.1 and so are the 

facts that 0, each SC and each recursive relation on (o are recursive. 

Recall from 3B.5 that there are recursive functions g and h such that 

a e N(Ji, s) <=* ((s)|)x ^ 0 & (Vt < g(s))[a(i) = h(s, i)]. 

Thus 

a(n) = w «=> (3s)[a e N(N, s) & n <g(s) & h(s, n) = w], 

so {(a, n, w): a(n) = w} is semirecursive by 3C.1. It is also recursive, since 

a(n) ^ w .*=> (3m)[m^ w & a(n) = m]. 

Using again 3B.5, 

a<£N(J{, s) <=> ((s)1)1 = 0v(3i<g(s))(3w)[a(i) = w & h(s, i)], 

so {(a, s):a£N(N, s)} is semirecursive and hence recursive by 3C.1. The 

corresponding set for co is trivially recursive, and then by 3B.1 and 

closure under &, {(x, s): x e N(9C, s)} is recursive for every space SC of type 

0 or 1. H 

The characterization of 3C.2 extends to pointsets of type 1. 

3C.4. Theorem. A pointset P^3C of type 0 or 1 is semirecursive if and 

only if there is a recursive such that 

P(x) <=> (3n)R(x, n). 

Proof. One way is immediate by 3C.1. For the converse, assume that 

Pc0C is semirecursive with SC of type 0 or 1, so that 

P(x) <=» (3n)[x e N(9C, e(n))] 

<=► (3n)(3m)[e(n) = m & x e N(SC, m)] 

^ (30[e((0o) = (t)i & x e N(9C, (Ox)] 

with a recursive e. Thus it is enough to show that the relation 

S(x, t) <=> X E N(9C, (f)i) 

is recursive when SC is of type 0 or 1; it is by 3C.3, since 

S(x, t) <=> (3m)[(t)1 = m & x e N(9C, m)], 

~iS(x, t) «=> (3m)[(f)1 = m & x£ N{SC, m)]. H 
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This simple characterization cannot be extended to arbitrary spaces, 

since it implies that a semirecursive set is a countable union of clopen 
sets, 

{x: (3n)R(x, n)}= U„ {x: R{x, n)}. 

We list for the record some similar, simple normal forms in arbitrary 

product spaces which are sometimes useful. 

3C.5. Theorem. A pointset Pc 9C is semirecursive if and only if there is a 

semirecursive P*c<y such that 

P{x) <=► (3s){x e N(9C, s) & P*(s)}. 

More generally, Pc 9C x is semirecursive if and only if there is some 

semirecursive P*^co2 such that 

P(x, y) <=* (3s)(3f){x e N(9C, s) & y g N(% t) & P*(s, r)}. 

More specifically, P^ojX 9C is semirecursive if and only if there is a 

semirecursive P*^co2 such that 

P{n, x) <=> (3s){x 6 N(9C, s) & P*(n, s)}. 

Proof is implicit in many of the constructions we have been making, 

particularly in the proof of 3C.1. To take just the last assertion, it is 

obvious by 3C.1 that any P satisfying such an equivalence is semirecursive. 

Conversely, if 

P(n, x) *=> (3m)[(n, x) e N(a> x 9C, e (m))] 

with a recursive e, then by 3B.1 

P(n, x) <=> (3m){n e N(a), g(e(m))) & xe N(9C, h(e(m)))} 

with recursive g, h, so 

P(n, x) <=> (3s){x e N(X, s) & (3m)[s = h(e(m)) & n e N(a>, g(e(m)))]} 

which is the required representation, since the second conjunct within the 

braces is obviously semirecursive. —I 

Exercises 

3C.6. Prove that for each 0C, the relation O^9CX0C, 

Q(x, y) <=> xy 

is semirecursive. 
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Hint. 

x^y^ (3s)(3t){x eNs&yeNt 

& radius (Ns) + radius (N,) 

<d(center(Ns), center(Nt))}. H 

3C.7. Prove that if 9C is of type 0 and /: 9C -> w is a function, then / is 

recursive if and only if the graph of /, Graph(f) = {(x,n):f(x) — m} is 

semirecursive. 

Hint. If f is recursive, use 3C.1 and 3A.5. If Graph(f) is semirecursive, 

then by 3C.2 

f(x) = m <=> (3n)R(x, m, n) 

with R recursive and 

f(x) = (ju,nR(x, (n)0, (n)^. 

This exercise is often a useful tool for proving that specific functions are 

recursive. 

3C.8. Prove that a set A c w is semirecursive if and only if A = 0 or there 

exists a recursive function f:(o—>a> which enumerates A, i.e. 

A={/(0),/(l),/(2),...}. 

Because of this result, semirecursive subsets of w are usually called 

recursively enumerable. 

3C.9. Let 9C be a product space with fixed recursive presentation 

{r0, r!,...}. Prove that the relations 

are both semirecursive. 

Hint. 

YYl in 

d(x, r,) >-«=> (3.A xeN„ &-\- radius{Ns) < d(r{, center(Ns)) 
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3C.10. Let 9C be a product space. Prove that the relations 

171 
P(x, y, m, k) <=> d(x, y)<——, 

k +1 

YYl 
Q(x, y, m, k) <^>d(x, y)> — 

k +1 

are both semirecursive. H 

3C.11. Prove that the relation x<y on the reals is semirecursive. H 

3C.12. Prove that the collection of semirecursive sets is the smallest 

pointclass which contains all recursive pointsets of type 0 and the relation 

Px cXxor for each basic space X, 

YYl 

Px(x, i, m, k) <=> d(rh x)<—— 
k + l 

and which is closed under trivial substitutions, &, v, 3^, and 3“. 

Hint. It is enough to show that for each 9C, {(x, s): x e N(9C, s)} must 

belong to every pointclass with these properties: 

x g N(3C, s) «=» Xj e B(Xj, (s)x) & ••• & xk eB(Xk, (s)k) 

*=> Px'(xu ((s)1)05 ((5)0!, ((s)!)2) 

& ••• 

& PXk(xk, ((s)k)o, ((s)k)l5 ((s)k)2). H 

This problem shows that the definition of semirecursive sets does not 

depend in any essential way on the coding of nbhds we chose. 

3C.13. Prove that a pointset Ps9C is open if and only if there is a 

semirecursive Q c X x 9C and an irrational e such that 

P(x) <=> Q(e, x). H 

3C.14. Prove that the pointclass of semirecursive sets is closed under 3^ 

for every product space % 

Hint. Suppose Pg9CxY with Y basic and P is semirecursive, 

P(x, y) «=> (3n)[(x, y) e N(9C x Y, e(n))] 
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with a recursive e. Using 3B.1, there are then recursive functions /i,/2 

such that 

P(x, y) *=» (3n)[x e N(9C, f^n)) & y eN(Y, f2(n))l 

so that 

(3y)P(x, y) (3n)[x e N(9C, /i(n)) & (3y)[y e N( Y, /2(n))]]. 

But 
(3y)[y g N(Y, f2(n))] «=> (3y)[y g B(Y, (f2(n)),] 

^ radius (B(Y,(f2(n))1)> 0, 

so this relation is recursive. 

Show closure under 3^ for arbitrary Rf by iterating closure under 3V for 

basic Y. 

3D. Recursive and /’-recursive functions'2 3) 

With each function 

we associate the nbhd diagram Gf c= 9C x w of /, 

Gf(x,s)o/(x)£N(%s). 

Clearly Gf determines f uniquely. 

We say that f is recursive if Gf is semirecursive; more generally, for 

each oointclass T, we say that f is T-recursive if its nbhd diagram is in T. 

If f is recursive, then we can effectively compute arbitrarily good 

approximations to /(x): given n, simply search for some s such that 

radius(Ns)<2~n and /(x)gNs. 

It is clear that this notion of recursiveness is an effective refinement of 

continuity. We should point out at the outset, however, that not all 

“simple” continuous functions are recursive and that some of the most 

elementary properties of continuous functions do not carry over to 

recursive functions. 

Not all constant functions are recursive—only those whose constant 

value can be effectively approximated to any desired degree of accuracy. 

It makes no sense to ask if “/ is recursive at x.” Similarly, it makes no 

sense to ask whether a function /: (R2 —» (R of two variables is “separately 

recursive.” 
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The more general notion of F-recursiveness is an effective refinement 

of Lebesgue’s r-measurability which we introduced in 1G. We will see in 

the exercises that for suitable jT, a function is F-recursive precisely when it 

is F-measurable. 

To study profitably F-recursive functions we must restrict ourselves to 

pointclasses which satisfy the closure properties of the semirecursive sets. 

Call F a X-pointclass if it contains all semirecursive pointsets and it is 

closed under trivial substitutions, &, v, 3”, Vs and 3“ By 3C.1 then, the 

collection of semirecursive sets is the smallest 2-pointclass and we 

introduce the notation 

2? = all semirecursive sets. 

Notice the lightface font which distinguishes X® from the pointclass 2” of 

open sets. 

All 2^ are 2-pointclasses, as are all 2*, II*, A*. The multiplicative Borel 

classes II” are not 2-pointclasses. 

The first simple but very useful lemma is due to Dellacherie. 

3D.1. Lemma. (Dellacherie). Let F be a X-pointclass. A function 

is r-recursive if and only if for every semirecursive Pc a>xff, the set 

P1 c (o x 9C defined by 

Pf(n, x) <=> P(n, f(x)) 

is in T. 

Proof. Suppose first that /: 3C —> Wf is F-recursive and P c o> x 31 is 2”. By 

3C.5 then, there is a semirecursive P*^a>2 such that 

Pin, y) ~ (3s){y e N(% s) & P*(n, s)}, 

so that 

Pf(n, x) «=> (3s){f(x) e N(U s) & P*(n, s)} 

<=> (3s){Gf(x, s) & P*(n, s)}; 

thus Pf is in F by the closure properties of a 2-pointclass. 

The converse is trivial, taking 

P(n, y)*=*yeJV(U n). H 
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Call a sequence P0, P[, P2of subsets of some 0C r-enumerable if the 

relation 

P(n, x) <=* Pn(x) 

is in T. Then 3D.1 says that f-.VC-*^ is T-recursive exactly when the 

inverse image 

riPuiriPii- 

of every .£1-enumerable sequence 

Pqi Pil ¬ 

ot subsets of ‘y is a P-enumerable sequence of subsets of 9C. 

3D.2. Theorem. Let T be a X-pointclass. 

(i) A function is r-recursive if and only if Graph(f) = 

{(x, n): f(x) = n} is in P. 

(ii) If 9C is of type 0 and f:SC^>(o, then f is recursive in the present 

sense (i.e. X°i~recursive) exactly when it is recursive in the sense of 3A. 

(iii) Suppose Qc Yx x ••• x Y, and 

P(x) ** Qifxix),..., fiix)), 

where each f is trivial or P-recursive into ox If Q is in P, then so is P. 

Proof, (i). Assume first that f is r-recursive and take 

R(m, n) <=> m = n; 

then R is in £” and 

fix) = m <=> Rf(m, x), 

so Graphif) is in P. 

Conversely, for any PcoiXw in £°, 

P'(n, x) <=> P(n, fix)) 

«=> (3m){/(x) = m & P(n, m)}, 

so P( is in P by the closure properties of a £-pointclass. 

(ii) is immediate from (i) and 3C.7. 

(iii) To simplify notation, suppose 

P(Xi, x2, x3) «=> 0(x2, g(xl5 x2, x3)), 
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where Q is in T and g: 9C, x 9C2 x 9C3 -► o> is T-recursive. Then 

P(x1, x2, x3) <=> (3m){g(x,, x2, x3) = m & Q(x2, m)} 

and P is in T by (i) and closure of J" under trivial substitutions, & and 3‘,J. 

H 

This simple result is very useful and we will use it constantly without 

explicit reference. For example, if 

P(x, n, m) «=> (3t){Q(x, <n, m)) & /(x, (n)0) = (Oil 

with 0 in r and / a T-recursive function into o>, then P is also in T, since 

P(x, n, m) <=> (3t){Q'(x, n, m, t) & R'(x, n, m, i)}, 

with O', R’ obtained from Q and 

R (x, n, t) f(x, n) = t 

by suitable substitutions of trivial functions and recursive (hence F- 

recursive) functions into ox 

Recall from 1G that with each 

/: 9C A 

we have associated the function 

f*:9CXoi-»ai 

defined by 

f*(x, n) = f(x)(n). 

3D.3. Theorem. Let r be a X-pointclass. 

(i) A function /: 9C ^ A is r-recursive if and only if the associated 

f*:3CXco—>0L> is r-recursive. 

(ii) A function f: 9C —» TJ = T, x ••• x Yj is r-recursive if arid only if 

/(x) = (/i(x),...,/t(x)) 

with suitable r-recursive functions f1,...,fi. 

Proof. Assume first that f: 9C —> X is F-recursive and take 

R(u, a) <=> a((u)0) = (u)x, 

so that 

Rf(u, x) 4=>/(x)((u)o) = (u)i. 
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Clearly R is X” and 

f*(x, n) = m <=> R'((n, m), x), 

so /* is T-recursive by 3D.2. 
To prove the converse we appeal to 3B.5 according to which there are 

recursive functions g and h such that 

a e N(JT, s) ((s)i)i ^ 0 & (Vi < g(s))[a(i) = his, i)]. 

Hence for /: 9C —> 

G1 (x, s) <=* f (x) g NiN, s) 

«=* ((s)^ # 0 & (Vi < g(s))[/(x)(i) = h(s, i)] 

^ ((slOi ^ 0 & (Vi < g(s))[/*(x, i) = H(s, i)] 

so that if /* is T-recursive, then G1 is in T by 3D.2 again and the closure 

properties of T. 

(ii) is trivial. 

This result gives the easiest method for proving that a function into a 

space of type 0 or 1 is T-recursive. 

3D.4. Theorem. Let T be a 2-pointclass. 

(i) Every trivial function f: 0C -» is recursive. 

(ii) J/ /: 9C —> is F-recursive and g : ‘y -> Z is recursive, then the 

composition h : 0C ^ Z, 

h(x) = g(/(x)) 

is r-recursive. 
In particular, the class of recursive functions is closed under composition. 

Proof, (i) is completely trivial. To prove (ii), notice that 

g (f(x)) g N(Z, s) ** fix) g {y: g(y) g N{ Z, s)} 

^G8(/(x),s). 

Now G8 is X? since g is recursive and hence so is 

P{s, y) «=* G8(y, s), 

so that Gh is in T by 3D.1. ~t 

It is not always true that the T-recursive functions are closed under 

composition. For example, all Xg are X-pointclasses and the X^-recursive 
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functions coincide with the X^-measurable functions, see 3D.21; these are 

not closed under composition for £>1. 

It is also not true in general that a .£-pointclass is closed under 

substitution of recursive functions. This is a useful special fact about £j. 

3D.5. Theorem. The pointclass X" of semirecursive sets is closed under 

recursive substitution. 

Proof. Suppose P c is so 

P(y) ^ (3s)[y e N(% s) & P*(s)] 

with a semirecursive P* by 3C.5, let f:3C—^y be recursive. Then 

Q(x) ^ P(f(x)) ^ (3s)[f(x) e N(% s) & P*(s)], 

and this is obviously semirecursive. H 

With each pointclass T we associate the ambiguous part of T, 

a =rn-ir. 

3D.6. Theorem. Let T be a X-pointclass. A set P c 9C is in A if and only if 

its characteristic function \p is T-recursive. 

In particular, P is recursive if and only if \p is recursive. 

Proof. On the one hand 

Xp(x) = m <=> [P(x) & m = l]v[~iP(x) & m = 0], 

so if P is in A, then Xp is T-recursive by 3D.2. 

On the other hand, 

P(x) <=> XpOO = 1, 

—tP(x) «=> x'p(x) = 0, 

so if Xp is T-recursive both P and —iP are in T easily by 3D.3. H 

With each pointclass Tand each point ze Z we associate the relativiz- 

ation T(z) of T to z: P c 0C is in T(z) if there exists some Oe Z x 9C in T 

such that 

P(x) «=> Q(z, x). 

In particular, the sets in X°(z) are called semirecursive in z and the 

functions which are z)-recursive are called recursive in z. 
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A point x e 9C is r-recursive if the set of codes of nbhds of x is in F, i.e. 

if 
<U(x) = {s: x e N(9C, s)} 

is in F. We often call these simply the points in F, in fact we will on 

occasion consider them as members of F, 

x e F«=> x is r-recursive. 

The points in 2° are called recursive, the points in 2°(z) are called 

recursive in z. 

3D.7. Theorem. Let F be a 2-pointclass. 

(i) For each point z, F(z) is a 2-pointclass. 

(ii) A point x is r-recursive if and only if for each ‘y, the constant 

function y » x is r-recursive. 

(iii) If x is recursive in y and y is r-recursive, then x is r-recursive. 

(iv) If f: SC—^ is r-recursive, then for each x e 9C, f(x) is F(x)- 

recursive. 
In particular, if /: 9C —> 'y is recursive and x is recursive, then f(x) is also 

recursive. 

Proof, (i) is very easy and (ii) is trivial, since if /: —> 9C is the constant 

function y x, then 

Gf(y, s) x e N(9C, s) s £cU(x). 

(iii) If x is recursive in y, then 31 (x) is in 2?(y), i.e. there is a 2° set 

Pc'ljxw such that 

s e'UU) «=* P(y, s); 

since y is T-recursive, the constant map n » y is T-recursive, so that for 

each semirecursive Q, the relation 

Qy(s, n) ^=> Q(s, y) 

is in T. The result follows by taking Q = {(s, y): P(y, s)} so that 

s e^lx) <=> Qy{s, s). 

(iv) is immediate since 

s gH (/(x)) <=> G1 (x, s) 

and the last assertion comes from (iv) and (iii). —1 
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We leave for the exercises some of the other interesting properties of 

these simple notions. 

Exercises 

3D.8. Prove that the following functions are recursive. (We are continu¬ 

ing the numbering from 3A.6.) 

*19. /(a, n) = a(n). 

*20. /(a, n) = a(n) = <a(0),..., a(n - 1)) 

Hint. a(n) = u <=> Seq(u) & lh(u)= n & (Vi < lh(u))[a(i) = (u);]. 

*21. /(a,i) = (a)i, 

where for each f, (a)i(O = 0£«i, t»- 

*22. f(a) = a* = (t a(f + l)) 

*23. f (a0,..., ak_1) = (a0,..., ak_1), 

where 

<a0>—, t)) = oii(t) for i = 0,..., k-1, 

(a0,..., ak_1)(n) = 0 if n^(i,t) for all t, i < k. 

*24. f(i) = rh 

where /:o> —» 0C and {r0, rlv..} is the fixed recursive presentation of 9C. 

*25. f(x,y) = x + y (x, ye(R). 

*26. f(x,y) = x-y (x, y s (R). H 

3D.9. Prove that a function /:SC-*(R into the reals is recursive if and 

only if the relation 

P(x, u, v) (-D(u>o 
(u)1 

(u)2+ 1 
</W<(-l)w» 

(u)l 

(v)2+ 1 

is semirecursive. H 

3D. 10. Prove that for each 9C, the distance function f: 9C x 9C —» (R, 

fix, y) = d(x, y) 

is recursive. 
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3D. 11. Assume that T is a 2-pointclass, g : a) x 9C -> a> is T-recursive and 

for each x, there is some n such that g(n, x) = 0. Prove that the function / 

defined by minimalization 

f(x)= fin[g(n, x) = 0] 

is T-recursive. 

Recall from 1C the definition of a uniformizing subset P* ^ P, for 

Pc9Cx% 

3D. 12. Prove that if 9C is of type 0 or 1 and is of type 0, then every 

semirecursive subset P c SC x can be uniformized by some semirecursive 

P* cr P 

Infer that with the same hypotheses on 9C, % P, if in addition 

(Vx)(3y)P(x, y) holds, then there is a recursive function /:9C-><y 

such that (Vx)P(x, /(x)). (The Selection Principle.) 

Hint. Use 3C.4. H 

A homeomorphism tt : 9C is recursive if both tt and its inverse 7r 1 

are recursive functions. 

3D. 13. Prove that if 9C and 'y are of the same type 0 or 1, then they are 

recursively homeomorphic. 

Hint. For 9C of type 0 the result is trivial. For type 1, take SC = A and 

use induction on the number of factors in *y after producing trivial 

homeomorphisms of co x jV and jV x „V with A. H 

3D. 14. Prove that for every product space 9C there is a recursive surjec¬ 

tion 

7r : A -»9C 

of Baire space onto 9C. 

Hint. Use the map of l.A.l. _) 

3D. 15. Prove that for each perfect product space 9C there is a recursive 

function a which assigns to each code u of a binary sequence 

((u)0,..., (u)n_1) a basic nbhd N<T(u) of 9C such that conditions (i), (ii), (iii) 

of Theorem 1A.2 hold. Infer that there is a recursive injection 

v.e^ac. 
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Hint. Put 

P(n, i, j) «=> center(Ni)e Nn & center(Nj)e Nn 

& radius(Ni) + d(center(N,), center(Nn)) <\ radius(Nn) 

& radius(Nj) + d(center(Nj), center(Nn)) <\ radius(Nn) 

& radiusiNi) + radiusiNj) < d(center{N,), center(N,-)), 

where Ns = N('X, s). Now (Vn)(3i)(3/)P(n, i,/) and P is semirecursive (in 

fact recursive), so by 3D.12. there is a recursive /(n) = (g(n), h(n)) so that 

(Vn)P(n, g(n), h(n)). Fix some z0 so that radius (N(9C, z0))<l and put 

Q(u, m) <=> Seq(u) & (Vi < lh(u))[(u)( < 1] 

& (3z)[(z)0 = z0 & (Vi < (h(u)){[(u)j = 0 =* (z)i+1 = g((z)t)] 

& [(u)i = 1 =* (z)i+1 = h((z)i)]} & (z),h(u) = m]. 

Clearly Q is semirecursive and with A={u:Seq(u)& 

(Vi < (h(u))[(u); < 1]} we have (Vu e A)(3m)Q(u, m), so by 3D.12 again 

there is a recursive cr such that (Vu e A)Q(u, a(u)). H 

3D. 16. Prove that every integer is a recursive point, an irrational e is 

recursive if and only if the function n e(n) is recursive and (Xi,..., xk) is 

recursive if and only if xlv.., xk are all recursive. H 

3D.17 Prove that a point x e 9C is recursive if and only if there is a 

recursive irrational e such that 

limit, ^ re(0 = x 
and for each i, 

d(re(i), re(i+1))<2“‘. 

(Here {r0, rl5...} is the recursive persentation of 0C.) 

Hint. The “if” part is easy. To prove the “only if” part, put 

P(i,j)^d(x, rJ)<2"i-1, 

show that P is semirecursive and use the Selection Principle, 3D. 12. H 

3D. 18. Prove that a real number x is recursive if and only if 

{m: (_!)«„. Mi 

is recursive. 

H 

-<x} 1 f I l . \ -L / . . . 

(m)2+ 1 

Hint. Take cases on whether x is rational or not. 
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3D. 19. Prove that the set of recursive real numbers is a field. 

Hint. Use the characterization of 3D. 18. H 

Put 

and 

x <xy <=> x is recursive in y 

<=> x is ^(1’(y)-recursive 

x =Ty <=> x <Ty & y <Tx. 

The subscript T stands for Turing and the relations <x, =x are often 

called Turing redubility and Turing equivalence. 

3D.20. Prove that =x is an equivalence relation on the set of all points 

and <x induces a partial ordering on the set of equivalence classes of =x. 

H 

The equivalence classes of irrationals in =x are often called Turing 

degrees. 

3D.21. Prove that if a function /: 9C —> ‘[y is recursive in some z, then / is 

continuous; conversely, every continuous function is recursive in some 

e e Jf. 

3D.22. Prove that if T is a .S-pointclass closed under countable conjunc¬ 

tion V“\ then the /"-recursive functions are precisely the /"-measurable 

functions. 

Hint. Every /"-recursive function is trivially /"-measurable. For the 

converse, assume that /:9C->fy is /"-measurable and Pcajx'y, notice 

that 

Pf=U„({n}xr'[P„]) 

where Pn ={y:P(n, y)} and show that Pf e f. H 

3E. The Kleene pointclasses 

We now introduce the Kleene pointclasses by effectivizing the defini¬ 

tions in IB and IE. These are also called the lightface classes—notice the 
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lightface font in the symbols we use to denote them. By analogy, the 

Borel and Lusin pointclasses are often called boldface. 

Put 

Xf = all semirecursive pointsets, 

V° , = —|V° ^ n + 1 —1 m 

n°n=^x°n, 
A°n^X°nnn0J4) 

Similarly, 

21 = 3*17?, 
V1 — q-v —| y1 

n\=^xi 
Aln=xlnoni™ 

For reasons that will become clear later, we call the pointsets in U«-2° 

arithmetical and the pointsets in Un-^ analytical. They are the effective 

versions of the finite Borel and the projective sets respectively. 

Notice the possible source of conflict between the term “analytical” 

and the classical name “analytic” for Si sets. One way to avoid confusion 

is to observe scrupulously the difference in suffix between these two 

words; people have been careless with this pedantic distinction, especially 

in some early papers in recursion theory. It is prudent to say “X}” rather 

than “analytic” in contexts where analytical sets are also discussed. 

We can also define the relativized Kleene pointclasses 2„(z), I7°(z), 

Xl(z), n'Jz) by the general process we described in 3D. Again, 

A°n(z) = X°n(z)nn°n(z), 

Ajl(z) = x1n(z)nn\(z). 

One should be careful with this notation, since it is not the case that 

A°(z) is the relativization of A° to z, see 3F.9. 

The sets in (J (1 S°(z) are called arithmetical in z and the sets in 

(J nX„(z) are called analytical in z. We willl not always bother to state 

explicitly results about these relativized notions since they are similar to 

those about the absolute pointclasses and they are obtained (usually) by 

the same arguments. 
The basic properties of the Kleene pointclasses can be established very 

easily, simply by copying the proofs in Chapter 1 and substituting 
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“semirecursive” for “open” and “recursive function” for “continuous 

function.” We will do this somewhat more generally, so we will not have 

to repeat it when we introduce new pointclasses later on. 

The normal forms for the finite Borel and Lusin pointclasses carry over 

to the Kleene pointclasses immediately. For example, P is -2° if there is a 

77V set F so that 

P(x) «=* (3f)F(x, 0, 

P is if there is a 2° (semirecursive) set G so that 

P(x) <=> (37) (Vt2)G(x, tj, t2), 

etc. Similarly, P is 2\ if there is a FT',’ set F such that 

P(x) (3 oc)F(x,a), 

P is ^2 if there is a semirecursive G such that 

P(x) «=> (3ai)(Va2)G(x, al5 a2), 

etc. 

These forms become a bit simpler for spaces of type 0 or 1 because of 

the characterization in 3C.4. Thus, if P is a pointset of type 0 or 1, then P 

is 77)’ if there is a recursive R such that 

P(x) <=> (Vf)P(x, f), 

P is 22 if there is a recursive R such that 

P(x)~(3f,)(Vf2)jR(x, 7, t2), 

P is X] if there is a recursive R such that 

P(x) <=> (3a)(Vt)P(x, a, t), 

etc. 

The key to the closure properties of the Kleene pointclasses are the 

closure properties of 2° given in 3C.1 and 3D.5. 

To simplify statements of results, let us call a pointclass Fadequate if it 

contains all recursive pointsets and is closed under recursive substitution, 

&, v, 3^ and V \ Clearly 2° is adequate and closed under 3“; is 

adequate and closed under —1. 

Recall the notation we introduced in IF, where for a pointclass A and a 

pointset operation 

<FA = {<E>(P(), Pi,...): P0, Pt,..., 6 A and ^(Po, Pi,...) is defined}. 
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3E.1. Theorem. If A is an adequate pointclass, then so are —iA, 3U,A, 

V"A, 3XA, VyA. 

Moreover, 3"A is c/osed under 3", V“A is dosed under V“, 3 " A is closed 

under 3^ for all product spaces y and VjV A is closed under for all 

product spaces % 

Proof. The arguments in 1C.2 and IE.2 suffice here too if we notice that 

the continuous substitutions we used there are in fact recursive. We omit 

the details. —I 

3E.2. Corollary. All Kleene pointclasses are adequate. Moreover, is 

closed under 3“, 77° is closed under is closed under Vto and 3^ /or 

all T| and 77,' is closed under 3“ and /or euery % 

Proof. Use 3E.1 and induction on n. To prove closure of X'n under V“ 

and the dual closure of 77* under 3to look up the proof of IE.2. H 

3E.3. Theorem. The following diagram of inclusions holds for the Kleene 

pointclasses. 

2° 
^ 1 

A° 

n° 

^ I°2 

A° 
O, 

n°2 

s1 s1 

n] n\ 

Diagram 3E.1. The Kleene pointclasses. 

Moreover, every arithmetical pointset is A}. 

Proof. The second assertion follows immediately by the closure proper¬ 

ties of A\. 
To prove the inclusion diagrams we imitate the proofs of 1B.1 and 

1E.1. The only new ingredient we need is a proof of 

since the proof of £?c2° given in 1B.1 does not immediately yield the 

lightface version. 
All recursive pointsets of type 0 are clearly in £° (by vacuous quantifi¬ 

cation). Also, X2 is closed under trivial substitutions, &, v,3 , \U and 3“ 

by 3E.2; hence to show that by applying 3C.12 it is enough to 
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verify that for each basic space X the relation 

Pv(x, i, m, k) «=> d(rh x)< 
m 

k +1 

is in X(2. Clearly, 

Px(x, i, m, k) <=> (3m')(3/c') 
m 

< 
m 

& 
m 

A' +1 /c + 1 " \k'+l 

and then Px is in XI by 3C.9 and the closure properties. 

<d(rt x))}. 

H 

Let us state for the record the rather obvious relationship between the 

lightface and the boldface pointclasses. 

3E.4. Theorem. Let T be 2°, III, X'n or 111, let T be the corresponding 

boldface pointclass, 2°, 11”, X\ or II,1,. For each product space SC, there is a 

pointset Gc^yxSC in T which is universal for T(SC, the class of subsets of 

9C in T. 

In particular, P^X is in F if and only if P is in Tie) for some e eJi i.e. 

if and only if 

P(x) P*(e, x) 

for some fixed e e X and some P* in T. 

Also for the ambiguous pointclasses, P is A" (or A,1,) if and only if P is 

A“(e) (or Aln(e)) for some e. 

Proof. For Xx, take 

G(e, x) <=> (3n)[x e N(9C, e(n))]. 

This is obviously Xf and universal for XVt'SC. The result follows by a trivial 

induction. 

The second statement is immediate from the first. 

For the ambiguous pointclasses, if P^ SC is in A” (say), choose eu e2 

and P,£jVxSC, P2^Xx SC in and III respectively so that 

P(x) <=> Pi(ex, x), 

P(x) ^ P2(e2, x), 

choose e such that (e)x = el, (e)2 = e2 and notice that P is A°(e), since 

P(x) <=> Pi((e)i, x), 

P(x)^P2((e)2, x). H 
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We leave for the exercises similar strong versions of the parametriza- 

tion and hierarchy theorems 1D.1-1D.4. 

Clearly all X°n are .£-pointclasses, as are all X\, J7* and A\, so we can 

study recursion theory for them. The case of ^“-recursion is somewhat 

interesting and some of the exercises will deal with it. 

Here we are interested in A {-recursion, the effective refinement of Borel 

measurability. 

3E.5. Theorem, (i) The following four conditions on a function /: 9C —> 

are equivalent: 

(1) f is A [-recursive. 

(2) f is X {-recursive. 

(3) Graph(f) = {(x, y): f(x) — y} is X\. 

(4) Graph (f) is A [. 

(ii) All the analytical pointclasses X\, TIxn, A\ are closed under sub¬ 

stitution of A\-recursive functions. 

Proof, (i) (1) => (2) is immediate and (2) =* (3) follows from the equival¬ 

ence 

fix) = y ** (Vs){y e N(% s) _► fix) e N(U s)}. 

To prove (3) =* (4), notice that 

fix) ^ y «=> (3 z){f(x) = z & z ^ y} 

and for (4) => (1) use 

fix) e Nl'y, s) (3y){f(x) = y & y e N(% s)} 

(Vy){fix) * y v y e N(*y, s)}. 

(ii) is immediate from the equivalences 

Pifix)) <=#. (3y){fix) = y & P(y)} 

«.(Vy){/(x)?^yvP(y)}. H 

We often say “A[ function” instead of “A [-recursive function.” For the 

moment, we think of these as the effective Borel functions simply because 

Borel measurability is the same as A [-measurability by Suslin’s Theorem. 

In Chapter 7 we will look at some deeper reasons for the analogy. 

We now state effective versions of the “Transfer Theorems” 1G.2 and 

1G.3. These are very important as they allow us to reducce the study of 
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the analytical Kleene pointclasses to the study of analytical sets of 

irrationals. 

3E.6. Theorem. For every product space 9C there is a recursive surjection 

tt : A 9C 

and a Flf set A^A such that it is one-to-one on A and 7t[A] = 9C. 

Moreover, there is a A1 injection 

f:X^A 

which is precisely the inverse of ir restricted to A, i.e. for all a £ A, 

f(irjoi)) = a and for all x, f(x) e A and 7r(f(x)) — x. 

Proof is exactly that of 1G.2. 

3E.7. Theorem. For every perfect product space 9C there is a A\ bijection 

g:A>*X 

whose inverse g_1 is also A\. 

Proof. As in 1G, we call an injection 

f:X^y 

a good A\ injection if there is a A \ surjection 

/*:*y -»X 

such that 

f*f(x) = X. 

Using the proof of 1G.4 and 3D. 15 we can easily show the existence of 

good A ] injections 

h:A>* 9C, 

f: 9C A. 

Define now the sets Jfn, 9C„ exactly as in the proof of 1G.4. It is enough 

to prove that the four relations 

aeAn, x e 9C„, ae/[9C„], xeh[An] 

are A J. From this it is immediate that the bijection g defined in the proof 

of 1G.4 has A\ graph and is therefore A\ by 3E.5. 
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Let us concentrate on the relation a e Jfn. To begin with, it is almost 
trivial that 

(1) a e Afn ** (3|3){(Vi < n)[((3),+1 = /h((j3)*)] & a = 0)J. 

We prove direction (=») of (1) by choosing (30, (3,,..., (3n so that j3t = 

fh(Po), fi2 = fhifix),..., (3n = fh((3n_1) = a and then picking (3 so that for 

i<n, (f3)i = (3i. For the direction (•*=), choose any (3 which satisfies the 

matrix on the right of (1) and verify by induction on i<n that (j8)i+1e 

Ai+l5 so that <x = ((3)n eAn. 

Equivalence (1) establishes that the relation a e Jin is 2{. To show that 

this relation is also n\, we need the slightly less perspicuous equivalence 

(2) a e Nn <=> (V/3){(Vf < n)[OX = h*/*((|3)i+1) & ((3)n = a] 

=* (Vi < n)[((3)i+1 = fh(((3)i)]}, 

where f* and h* are A\ “inverses” of the good A\ injections / and h. 

Proof of direction (=>) of (2) is by induction on n. For n = 0, a e jV0 = JV 

and the right hand side is vacuously true. Assume aeJVn+1, so that for 

some 7e/„ we have 

a =fh( y) 

and therefore 

h*f*(a) = 7. 

Any (3 which satisfies 

(Vi < n + 1 )[(/3){ = h*f*(((3)i+1) & 0)n+1 = a] 

obviously satisfies 

(Vi < n)[(/3)i = h*f*mi+i) & 0)n = 7], 

so by the induction hypothesis applied to y e Jfn, 

(Vi < n)[((3)i+1 = fh(((3)f)]. 

Since also 

(P)n+i = <*=fh(y) = fhmn), 
we have 

(Vi < n + l)[(0)i+1 = fh(((3)i)] 

and we have shown the right hand side of (2) for n + 1. 
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Proof of direction (<==) of (2). Given a so that the right hand side of (2) 

holds, choose (3 so that (/3 )n = a, (|3)„-i = h*f*((/3)n), (0)„-2 = 

h*f*mn-(P)o=h*f*((P)i). We then have that (Vi<n) 

[(j3). + i =fh((P)j)] from which it follows immediately that for each i<n, 

((3)i+1eJfi+1, so that a = (fi)neJ{n. 
A symmetric argument establishes that the relation xe3C„ is A1. 

Finally, 

a e /[9C,J ^ a e /[9C] & /*(«) e 9C„ 

^ff*(a) = a&f*(a)eXn 

so that «e/[9C„] is A} and similarly for the relation xe h[An]. H 

The analytical pointclasses are not closed under the infinitary opera¬ 

tions of countable union and intersection. Because of this, it is not 

obvious what is the correct effective version of the Suslin Theorem. 

Actually, there is a beautiful result of Kleene which characterizes A \ as 

the smallest pointclass containing all semirecursive sets and closed under 

“effective” countable union and complementation. This is quite difficult 

and we will leave it for Chapter 7. 

Exercises 

3E.8. Prove that if 9C is of type 1, then for each n, there is some pointset 

Pc9C in X° —11°. Similarly, the differences X^aC — n'.faC, n°\X — X^SG 

II'J'X-XW'X are all nonempty. 

Hint. Use the fact that Ax3C is recursively homeomorphic with 9C and 

that some G^Axac in X” parametrizes X°faC. —\ 

3E.9. Prove that if ‘y is a prerfect product space, then for each 2C there is 

a Xf set G^^xac which is universal for Xif3C. 

Similarly with X°, X* in place of X?. 

Infer that for each perfect product space 9C the differences X^aC — 

n'^ac, X^9C-n^9C, n^9C-X^9C, n^ac-x^ac are nonempty. 

Hint. Follow the proofs of 1D.1-1D.4 and 3D.15. —i 

3E.10. Prove that for each n > 1, every X',! set P <= SC x a> can be unifor- 

mized by some X" subset P* c p. 

Hint. See 1C.6. —I 
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3E.11. Prove that for each perfect product space 9C, there is a X°~ 
recursive surjection 

f: SC^X. 

Hint. See 1G.8 and 1G.10. —1 

We will see in 4D.10 that IE.6 does not have an effective version—it is 

not true that the subsets of a space 9C are precisely the recursive 

images of X. Similarly, only part of 1G.12 holds for 

3E.12. Suppose 9C is perfect and Pc % Prove that P is X{ if and only if 

P is the projection of some 77? subset of x 9C. 

In particular, every X j set of reals is the projection of a 77? subset of 

the plane. 

Hint. See the hint to 1G.12. -\ 

Call a function /: 9C —> ^ of effective Baire class 0 if it is recursive, of 

effective Baire class 1 if it is .^-recursive but not recursive and, induc¬ 

tively, of effective Baire class n + 1 > 2 if it is not of effective Baire class 

<n and there exists a function 

g : co x 9C —» Tj, 

of effective Baire class n such that 

f{x) = limitm^oo g(m, x). 

3E.13. Prove that a function f: 9C —>■'y is of effective Baire class <n if 

and only if f is -recursive. 

Hint. Study the proofs of 1G.16-1G.19. H 

3E.14. Prove that a function f-.X^*)} is £?-recursive if and only if there 

is a recursive g : a> x X —> such that 

f(a) = limitm.^ g(m, a). H 

This last result holds also for functions /: 9C —> CR. 

It is worth putting down a few exercises on the relativized Kleene 

pointclasses, 2°{z), n°n{z), etc. Their theory is very similar to that of the 

absolute Kleene pointclasses X°, 17?, etc. 
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3E.15. Prove that if z is recursive in w, then for every Kleene pointclass 

r,r(z)gr(w). 
Hint. If z is recursive in w, then the constant function x » z is 

X i(w)-recursive. 

The next result is completely trivial but very useful and we often tend 

to use it without citing. 

3E. 16. Prove that if the singleton {x0} is Xl(z), then x0 is in A\(z) (i.e. x0 

is /^(zf-recursive). 

Hint. Let {x()} = Pc9C. Then 

x0e N(9C, s) «=> (3x)[P(x) & x e N(9C, s)] 

<=> (Vx)[P(x) => x e 1V(9C, s)]. H 

3E.17. Prove that if x is A\{z, y)-recursive and y is Ai(z)-recursive, then 

x is /^(zl-recursive. 

Hint. We have X\ relations P and Q and Fl\ relations P', Q', so that 

X€NS« P(z, y, s) «=> P'(z, y, s), 

y e Nt <=> Q(z, t) ^ Q'(z, t)\ 

now 

xeNs <=» (3y'){(Vf)[y' e N, => Q(z, t)]&P(z, y', s)} 

(Vy'){(Vt)[y' e N, =». 0(z, 0] P'(z, y', s)}. H 

3F. Universal sets for the Kleene pointclassesa) 

It is almost obvious from the definitions that there are only countably 

many recursive functions. Here we will prove the much stronger result 

that Xi is co-parameter ized. 

The reader with some knowledge of basic recursion theory will want to 

skip this section, after he peruses the final results 3F.6 and 3F.7. 

Let us go back to the definition of the class of number theoretic 

recursive functions in 3A and analyse it. 

A recursive derivation is a sequence 

/o; f fn 
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of (number theoretic) functions such that each fi is the successor function 

S, one of the constants or the projections Pf or else can be defined by 

composition, primitive recursion or minimalization from functions pre¬ 

ceding it in the sequence /0,...,/n. We can think of a recursive derivation 

as a proof that fn is recursive. 

3F.1. Theorem. A function f: <ok —> a> is recursive if and only if there is a 

recursive derivation f0,...,fn with fn — f. 

Proof. If f0,...,fn is a recursive derivation, then each fi is recursive by 

induction on i. On the other hand, the collection of all functions which 

occur in recursive derivations obviously contains S, all C*, Pf and is 

closed under composition, primitive recursion and minimalization, so it 

contains every recursive function. H 

To verify that a given sequence of functions f0,...,fn is a recursive 

derivation, we must give a justification for including each fi in the 

list—because fi is S or fi is defined from functions listed before it by 

composition, etc. We now give a formal coding of such justifications by 

finite sequences of numbers. 

Let a sequence f0,..., fn of functions and a sequence f0,..., fn of numbers 

be given. We say that f0,...,fn is a justification for /0,if one of the 

following conditions holds for each j < n. 

Case 1. fi = S and fi = (1, 1). 

Case 2. fi = Ct and fi = (2, k, w). 

Case 3. fi = P’f (1< i < k) and fi = (3, k, i). 

Case 4. fi(xu..., xk)= h(gfix),..., gm(x)) where the functions fi, glv.., gm 

precede fi in the list f0,...,fn and 

fi=(4, fi, (fi, gi,-.., gm». 

By this of course we mean that fi = fio, gi= fh,~., gm= fim with 

io,h,-,L<j and 

/,=<4, k,(fi0Jh,.Jj), 

and similarly for the next two cases. 

Case 5(i). 

fi(0, x) = g(x), fi(n + 1, x) = h(fi(n, x), n, x), 

where g and fi precede fi in the list and 

fi — (5, fi + 1, (g, fi)). 
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Case 5(ii). 

/j(0) = wo, /J(n + l) = h(^-(n),n), 

where h precedes /, in the list and 

fi =<5, l,<w0, h)). 

Case 6. £(x) = ju,m[g(m, x) = 0], where g precedes /, in the list and 

fi = <6, fc, g). 

It is now immediate that every recursive derivation has a justification 

and that if has a justification, then f0,...,fn is a recursive deriva¬ 

tion. All we have done is code with finite sequences of numbers all 

canonical proofs that particular sequences of functions are recursive 

derivations. 

More than that, our coding is one-to-one in a very strong sense. 

3F.2. Theorem. Suppose fn is a justification for go,-> gm is a 

justification for g0,.„, gm and for some /<n, i<m we have /, = g,. Then 

fi = gr 

Proof is by induction on the number /y. There are six cases to the proof 

corresponding to the definition of a justification, but looking at just two 

of them will be sufficient to give the idea. 

Case 2. /, =(2, k, w) for some k, w. Then /, = and since also g; = 

(2, k, w), we have & = Ct = 

Case 6. /y = <6, k, z) for some numbers k > 1, z. Now by the definition 

of a justification, it follows that /j is a k-ary function and that for some /, 

with l < j, ^ is (k + l)-ary, z = /, and 

/y(x) = x) = 0], 

By the same argument, there is some gs with s < i such that z = gs and 

gi(x) = M-r[gs(f, x) = 0], 

Now z = (fi)2<fr so by induction hypothesis /, = gs and hence /, = g;. —I 

Put 

C = {z: there exists some sequence of integers 

z0,..., zn = z which is a justification for 

a recursive derivation}. 
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It follows from 3F.2, that if zeC, then in every justification in which z 

occurs it “codes” the same function, call it fz. We call C the set of codes 

of recursive functions. Since the map z «• fz takes C onto the recursive 

functions, we have proved the first main result of this section. 

3F.3. Theorem. There are only countably many recursive number theoretic 

functions. —\ 

Our coding is such that if z e C, then fz is k-ary with k = (z)1. For fixed 

x1,..., xk, m, let us think of the number 

(z, <xlv„, xk), m) 

as a code of the assertion that 

fz(x1,...,xk) = m. 

Of course this assertion may be true or false. We now construct a 

semirecursive set A such that for every z e C, A contains all codes of 

true assertions (z, xk), m) and no codes of false assertions about fz. 

Notice that A will contain many members of the form (z, (x1,..., xk), m) 

where z£ C—these will give us no information about recursive functions. 

The set A is the smallest set of integers satisfying (1)—(6), where the 

symbols /, g, h are used just as variables over a>. 

(1) If/ = <1, 1), then 

for every n, (f,n,n + l)eA. 

(2) If f = (2, k, w) for some k > 1 and some w, then 

for every xl5.„, xk, (/, <xl5..., xk), w)e A. 

(3) If f — <3, k, i) for some k > 1 and 1 < i < k, then 

for every xlv.., xk, (f, (xu..., xk), xf)e A. 

(4) If / = <4, k, (h, gi,..., g,„» for some h, gm and if for some 

xl5..., xfc, wwm, w we have 

(gj, (Xj,..., xk), Wj)g A,..., (gm, (xi,..., Xfc), vvm) € A, 

(h, <w!,wm), w)g A, 

then 

Xfc), w)g A. 



170 Basic notions of the effective theory [3F.4 

(5) If f = (5,k + 1, (g, h)) for some g, h and for some xl5..., xk, w0 we 

have <g, <x1,..., xk), w0)eA, then 

</, <0, xi,..., xk), w0)eA. 

(5') If / = (5, k + 1, (g, h)) for some g, h and for some xl5..., xk, wn, w, n, 

(f, (n, x), wn)e A and (h, (w(l, n, x), w)e A, then 

(f, (n + 1, xu...,xk), w)e A. 

(There are two similar clauses which come from Case 5(ii) in the 

definition of justifications and which we will omit here.) 

(6) If f = (6, k, g) for some g and if for some w0 ^ 0, Wj ^ 0,..., wm_15^ 0 

and some Xj,..., xfc we have 

<g, <0, xa,..., xk), wc)eA,.., <g, <m - 1, xl5..., xk), wm_j)e A, 

(g,(m,x1,..,xk),0)eA, 

then 

</, <xlv.., xk), m)e A. 

(In this clause we allow m = 0 in which case the sequence 

w0, wlr.., wm_! is empty.) 

3F.4. Theorem. The set A is semirecursive. Moreover, for each code z of a 

recursive function fz, 

fz(x1,-. Xk) = w <=>(z, (xu..., Xfc), w)e A. 

Proof. We show first the second assertion, which ho/ds only for z eC, i.e. 

there is no suggestion that whenever (z, (xj,..., xk), w)e A, then we must 

have z 6 C. 

Proof of the implication 

/2(x1,...,xfc) = w => (z, <x1,..., xk), w)e A 

is by induction on the code zeC and it is easy. For example, if 

z = (6, k, e), then we know that e codes a (k + l)-ary function fe and 

fz(x1,...,xk) = fim[fe(m, xl5...,xk) = 0], 

Thus if fz(x1,..., xk) = m, there are numbers w0,.„, wm_x all 5^ 0 such that 

fe(0, x,,..., xk) = w0.fe(m - 1, Xi,..., xk) = wm_! and fe(m, xu..„ xk) = 0. 

Now e = (z)2< z, so we can apply the induction hypothesis on these 

assertions, whence by clause (6) in the defining conditions for A, 

<z, <xlv.., xk), m)e A. 
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We will omit the other cases of this induction, but it is worth pointing 

out that in case (5), when z = <5, k +1, {e, u» for some k,e,u, the 

implication 

fz(n, x xk) w => (z, (n, x^,.xk), w)£ A 

is proved by induction on n. 

To prove the converse implication, notice that if v £ A, then v must be 

of the form in one of the conclusions of the clauses (1)—(6) and it must 

satisfy the corresponding hypothesis, e.g. v = </, <0, xlv.., xk), w0) for some 

x1,...,xk. Wo and / = <5, k + l,(g, h» and (g, <x1,...,xk), w0)eA; because if 

v is not of the proper form or does not satisfy the corresponding 

hypothesis, then A -{u} satisfies all (1)—(6) and hence A-{u}2A by the 

definition of A, i.e. v£A. Now the implication 

<z, <xlv.., xk>, w)g A -*/z(xlv„, xk)= w 

can be proved for every code z by induction on z easily, just as the 

converse implication was proved. 

We now outline a proof of the first assertion of the theorem, that A is 

semirecursive. The idea is to analyze the inductive definition of A in the 

same way that we analyzed the inductive definition of the class of 

recursive functions. Thus an A-derivation is a finite sequence of numbers 

MCb Un 

which proves that un £ A, i.e. each ut is in A either by virtue of clauses 

(1), (2), (3) or by virtue of one of the remaining clauses and the fact that 

certain u^s with j<i are of a certain form. Once this is written down 

explicitly, it is trivial to check that the relation 

P{u) <=> Seq(u) & On < u)[lh(u) = n & (u)0,..., (u)n_1 is an A-derivation] 

is recursive. But 

ueA«=» (3u){3n)[P(u) & lh(u) = n & v = (u)n_,], 

so that A is semirecursive. H 

3F.5. Theorem (Kleene [1943]). For each k> 1, there is a semirecursive 

GcdjX a)k which parameterizes the semirecursive subsets of wk. 

Proof. Put 

G(z, x1,..., xk) «=* O0[<z, <xlv.., xk, t), 1) e A], 
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Clearly G is semirecursive. 

If Pg^(ok is semirecursive, then for some recursive R, 

P(xlv.., xk) <=* (3t)R(xu..., xk, t) 

«=> OOfx'p(xixk, t) 1] 

<=»3f)[/z(X!,..., Xk, 0=1]. 

with z any code of Xr• By 3F.4 then, 

P(xlv.., Xk) **(30[<z, *k> 0. l)e A] 

^>G(z,x1,...,xfc). A 

This theorem is usually called the Enumeration Theorem for semi¬ 

recursive (or recursively enumerable) relations on to. It is one of the basic 

results of recursion theory. From it we can prove easily the key result of 

this section. 

3F.6. The Parametrization Theorem for the Kleene Pointclasses. For each 

product space 37 the Kleene pointclasses 2°, 17°, TL\ are 3J- 

parametrized. 

Proof. Take first the simple case 31 = a>. Given 9C, choose G c o> x <y to 

be semirecursive and parametrize the semirecursive subsets of o» and put 

H(z, x) <=> (3s)[x g N(9C, s) & G(z, s)]. 

By 3C.5, H is universal for 

If 31 = to" for some n, take 

H'(zzn, x) <=* H(z!, x) 

with this H. 

If 31 is not of type 0, then 31 is perfect. Choose a recursive <x which 

satisfies Lemma 1A.2 by 3D. 15 for the space 31- Given a space 9C, let G 

be as above and put 

H(y, x) <=> (3w)(3z)[Seq(u) & lh(u) = z + 1 

& (Vi < z)[(u)i = 0] & (u)z = 1 & y G N(31, o-(u)) 

& (3s)[x g N(9C, s) & G(z, s)]]. 

Clearly H is semirecursive. 

Fix y g31 and suppose that for some x, H(y, x) holds. It follows easily 
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from the properties of cr that there is a unique sequence code u of the 

form (0,0,..., 0, 1) and length z + 1 such that for all x, 

H(y, x) «=> (3s)[x e N(2C, s) & G(z, s)]. 
Thus 

Hy = {x: H(y, x)} 

is a semirecursive subset of 9C. 

Conversely, if 

P(x) «=> (3s)[x s N(9C, s) & G(z, s)] 

is any semirecursive subset of 9C, take u with lh(u) = z +1, u = 

(0, 0,..., 0, 1), choose any y e N(<y, <x(w)) and verify easily that 

H(y, x) <=> (3s)[x e N(0C, s) & G(z, s)] 

<=* P(x), 

so that P = Hy. 

We have now shown that X° is 'y-parametrized for every T| and the 

theorem follows by ID.2. —| 

3F.7. The Hierarchy Theorem for the Kleene Pointclasses. For every pro¬ 

duct space 9C the following diagrams of proper inclusions hold: 

l°lsc ••• S\\?c lllx 
4 ^ 4 4 & 4 

A°|-9C zi^ac 

<4 ^ 4 
n°\sc ••• n]{x lV2i 9C 

Diagram 3F. 1. The Kleene pointclasses. 

Proof is like that of ID.4. -H 

Exercises 

3F.8. Prove that there is a A\ set of integers which is not arithmetical. 

Hint. Define G„cwxa) in a canonical way to be universal for 

and take 

H = {(n, e, t): Gn(e, ()}. H 

3F.9. Prove that for each n, there is a set A c X in such that for every 
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product space Z and for every A° set Ogzx/ and for every z e Z, 

A^Qz={a \ Q(z, a)}. 

Infer that the following plausible sounding conjecture is false: P is 

A(,((z) if and only if there is some A° set Q such that P(x) <=> Q(z, x). 

Similarly with A*, A\ in place of A°, A° throughout. 

Hint. Let Q°, Q1,... be an enumeration of all the A°n subsets of AfxAf 

and take 

A ={a: ~iO“<0)(q:*, a)}, 

where a* = t i-»a(t+ 1). It is immediate that A^Qe for every A" subset 

Q of JixAf and every e. Using a recursive surjection show 

that A^QZ for every A° set Q c Z x AT and every z e Z. H 

In the case of A”, this construction gives a clopen A £ AT which is not 

Q2 for any recursive QcZxJ, any z. Its characteristic function Xa is 

continuous and cannot be obtained from any recursive function by fixing 

one of the arguments. 

3G. Partial functions and the substitution property 

The notion of T-recursion is an effective refinement of the classical 

notion of T-measurability and its basic properties can be established 

easily when T is a ^-pointclass, as we saw in 3D. To obtain a smoother 

theory of P-recursion which refines the classical theory of continuous 

functions we must impose an additional condition on P which will insure 

(in particular) that P is closed under substitution of P-recursive functions. 

As it turns out, the correct formulation of this substitution property 

involves partial functions in a natural way. 

A partial function on 0C to ‘y is simply a (total) function 

f:D^y 

with domain some subset D of 0C. We will use the notation 

ftSC—^y 

for these objects, even when the domain D of f is a proper subset of 

9C—even in the extreme case when D = 0\ We also write 

f{x)i <=* / is defined at x, 
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so that 

D = Domain(f) = {x e 9C: /(x)j}. 

The domain of the composition of two partial functions is defined in the 

natural way: 

f(g(x)i =* g(x))i & [if g(x) = y, then /(y)|]. 

In particular, if 

/(x) = (/i(x),...,/,(x)) 

with partial, then 

/(x)| h(x)i & • • • & /t(x)i. 

We should emphasize that when we call /: 9C *y a partial function, f 

could be total; but when we call / a function, then in fact / must be total, 

i.e. Domain(/) = 9C. 

If /: 9C —*■ ‘y is a partial function, D^Domain(f) and Pc 9CXa> is in 

some pointclass T, we say that P computes f on D if 

xgD=> (Vs)[/(x) g Ns «=> P(x, s)]. 

In the notation we introduced in 3D, we can rewrite this as 

x gD ^>cU(/(x)) = {s: P(x, s)} = Px. 

A partial function /: 9C —> ‘TI is r-recursive on D if some P in T 

computes f on D. Most often we will be looking at partial functions which 

are r-recursive on their domain; if f is T-recursive on D = Domain(f) and 

in addition Domain(f) is in T, we say that f is r-recursive. If r=X°u we 

say recursive for .^'/-recursive. 

The class of recursive partial functions has been studied extensively on 

a>, but in the wider context of product spaces it is difficult to control the 

domains of partial functions and the weaker notion of recursion on a set D 

is more useful. 
It is clear that if /: 9C -> *y is total, then f is r-recursive (on 9C) in the 

present sense exactly when it is P-recursive in the sense of 3D. 

The condition we want to impose on a pointclass T is (roughly) that it 

be closed under substitution of partial functions which are T-recursive on 

some set D, at least when we restrict these substitutions to the points in 

D. Precisely: a pointclass Thas the substitution property if for each O £ 'y 

in r and for each partial function /:9C-^<y which is T-recursive on its 
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domain, there is some Q* c 9C in T such that for all x e 0C, 

/(x)j^[Q*(x)^Q(/(x))]. 

^-pointclasses with the substitution property carry a very reasonable 

recursion theory, particularly if they are ai-parametrized (as is Xf). We will 

come back to this in Chapter 7, but we will first put down here the few 

facts that we need in the interim. 

3G.1. Theorem. If T is a X-pointclass with the substitution property, then 

the collection of partial functions which are T-recursive on their domain is 

closed under composition', moreover, T is closed under the substitution of 

r-recursive (total) functions, so in particular, T is adequate. 

Proof. The second assertion is immediate. 
To prove the first assertion, suppose giSC-^-'y, /: —> Z are both 

.T-recursive on their domain computed by P c 0C xo>, Qc^Xw respec¬ 

tively and let h(x) = f(g(x)). Now if h(x)i, then g(x)|, say g(x) = y and 

/(y)l. Since Q computes /, we have 

(Vs)[/(y)eNso Q(y, s)] 

i.e. 

(Vs)[/(g(x)) e Ns <=> Q(g(x), s)]. 

Since g is .T-recursive on its domain, so is (easily) the map 

(x, s) !->(g(x), s); 

thus by the substitution property, there is some Q* in T so that 

g(x)j -► [Q(g(x), s) ^ Q*(x, s)l 

It follows immediately that 

h(x)i =* (Vs)[fi(x)e Ns ** Q*(x, s)] 

so that h is T-recursive on its domain. —j 

Let us now verify that the substitution property is easy to establish. 

3G.2. Theorem, (i) X) has the substitution property. 

(ii) If r is a X-pointclass with the substitution property, then so is each 
relativization T(w). 
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(iii) If P is a X-pointclass closed under V“J and either 3^ or V'y, then P 

has the substitution property, in particular, J7* all do. 

Proof, (i) Suppose Q c nj is semirecursive, so that by 3C.5 

Q(y)^Qs)[yeNs&Q'(s)l 

with a semirecursive Q\ If /: 9C —> fy is partial and computed on its 

domain by some semirecursive P c 9C x w, put 

Q*(x) <=> (3s)[P(x, s) & Q'(s)]; 

now if /(x)|, then 

f(x) G Ns <=*. P(x, s), 

so that 

Q*(x)~(3s)[/(x)<=Ns&Q'(s)] 

^ 0(/(x)). 

(ii) Suppose Q c is in r(w), so that 

O(y) «=> Q'(w, y) 

for some O' in Pand suppose that /: 9C —> is computed on its domain 

by some Pg9Cxw in P(w); again, 

P(x, s) «=> P'(w, x, s) 

for some P' in P. Now P' computes on its domain the partial function 

/': "Wx 9C —» 'y defined by 

x)|«=»for some y,cU(y) = {s: P'(w', x, s)}, 

f(w', x)|- (Vs)[/'(w\ x)eNs« P'(w', x, s)]. 

Notice that for the specific fixed w we have 

/(x)j=*/'(w, x)|, 

/(x) = f(w,x). 

The partial function 

g(w',x) = (w',/'(w',x)) 

is P-recursive on its domain, so by the substitution property for P, there is 

some Q"c*Wxf)C in P so that 

g(w', x)j - [Q"(w', x) ^ Q'(w', f(w', x))]; 
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setting w' = w then, we have 

fix)| =► [Q"(w, x) *=» Q'(w, /'(w, x))] 

=>[Q"(w,x)~Q(f(x))] 

and we can take 

Q*(x) <=> Q"(w, x) 

to satisfy the substitution property forT(w). 

(iii) Suppose the partial function /: SC —> ^ is computed on its domain 

by F c 9C x o» in r, O c ‘y is in r and T is closed under V" and 3^. Take 

Q*(x) ** (3y)[Q(y) & (Vs)[y e Ns =* F(x, s)]]. 

This is easily in T and if /(x)j, then for any y, 

(Vs)[y g Ns -> F(x, s)] => (Vs)[y eNs=>/(x)e Ns] 

->y =/(*), 
so that 

0*(x) ~ Q(/(x)). 

Similarly, if T is closed under V^, take 

Q*(x) (Vy)[Q(y)v(3s)[F(x, s) & y£ NJ], H 

To appreciate the need for using partial functions in formulating the 

substitution property one should spend a few minutes trying to prove that 

if a ^-pointclass T is closed under (total) T-recursive substitutions, then 

each relativization T(w) is closed under r(w)-recursive substitutions. 

Exercises 

3G.3. Show that not every X-pointclass is adequate. 

Hint. Choose a measure /nx on each basic space X, with = 

Lebesgue measure and ju^ = the trivial (counting) measure, let be the 

(completed) product measure on each product space and take 

r= all measurable pointsets. 

It is easy to check that T is a X-pointclass. If A c (R is not Lebesgue 

measurable with characteristic function *A, then 

B ={(x, Xa(x)): xe(R} 
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is measurable (with measure 0) in the plane, since it is a subset of two 

lines. But 

x£Ao(x,l)eB, 

so if F were closed under recursive substitution then A would be in F, 

since :c ►» (x, 1) is recursive. —I 

3G.4. Assume that F is a .S-pointclass with the substitution property and 

prove the following. 

(i) A partial function /: 9C —» co is F-recursive on its domain if and only 

if there is some Q c 0C x co in F so that 

f(x)[=>[f(x) = w <=> Q(x, w)]. 

(ii) A partial function f: 0C —> A is F-recursive on its domain if and only 

if the function /*: 9CX ca ax is F-recursive on its domain, where 

f*(x, 

f(x)l=*[f*(x, i) = /(x)(i)]. 

(iii) A partial function /: 2C -> <y1 x x GJ, is T-recursive on its domain 

if and only if 

f(x) = (f1(x),...,fi(x)) 

with r~recursive on their (common) domain. H 

The most useful property of T-recursion is embodied in the following 

completely trivial result, which we put down for the record. 

3G.5. If r is a 2-pointclass with the substitution property and y 

is F-recursive on its domain, then for each x, 

f(x) | =¥ f(x) is F(x)-recursive; 

if in addition 77° c F, then 

f(x)[ => f(x) is Z\(x)-recursive. 

Hint. By the definitions, 

/(x)l=> cU(/(x)) = {s:P(x, s)} 

where P e F computes f on its domain. 

For the second assertion, the relation 

Q(y, s) <=> y^Ns 
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is /7‘i, hence in F. Since the partial function (x, s) » (/(x), s) is obviously 

F-recursive on Domain(f), by the substitution property there is some Q 

in r so that 

f(x)l=>[f(x)£Ns^Q*(x,s)] 

^.cU(/(x)) = {s: -iQ*(x, s)}, 

so that /(x) is also -ir(x)-recursive, hence ^(x)-recursive. H 

3H. Codings, uniformity and good parametrizations 

A coding for a set A is any surjection 

it \D -» A 

of a set D = Domain(ir) onto A. If a e A and 77(c) = a, we call c a code 

for a in the coding it. 

In our case we will always have D c 0C for some product space 0C 

(usually A), so we can think of a coding in 9C as a partial function 

77 : 0C -* A, 

with D = Domain(tt). 

Let us look at some examples. 

(1) The set o) codes the collection of basic nbhds of a product space 9C 

by the map 

ir(s) = Ns. 

(2) The set of integers C defined in 3F codes the collection of recursive 

functions on to by the map 

tt(z) = /z (zgC). 

(3) Suppose r is A-parametrized and Gc Ax9C is universal for the 

T-subsets of 9C. The map 

a » Ga ={x: G(a, x)} 

codes the T-subsets of 3C in A. 

(4) With r and G as above, let 

C = {o:: G(a)ois the complement of G(a,)J. 
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Now each a e C determines a set G(a)o in A, so that the partial map 

77(a) =G(a)o (a e C) 

is a coding of zi|'9C. 

(5) Fix a space 0C and fix an open set G cjV'xSC which is universal for 

the open subsets of 9C. For each countable ordinal £ define the set B€ of 

codes for 2° by the recursion: 

where 

Define maps 

by the recursion 

B0 = {a:a{ 0) = 0} 

B^={a : a(0) = 1 & (Vn)[(a*)n e U„<* BJ}, 

a*(t) = a(t+ 1). 

77B* 2^9C 

770(a) = Ga*, 

77€(a)= Un (9C-77T)(n)((a^r)I1)) 

where 

rj(n) = least 77 so that (a*)n e B^. 

It is obvious that each 7r€ is a coding for the 2° subsets of 9C. One can also 

check by an easy induction on £ that 

0 < 77 < £ -» [B,, c B€ & 77^ = tt^^B,,] 

so that the limit function 

ir = U « ^ 

is a coding for the Borel subsets of 9C with domain 

b = U£b,. 

If we take r = X{ in example (4), we get a natural coding of the A| 

subsets of 9C. In (5) we defined a coding for the Borel subsets of 9C, and 

by the Suslin theorem every A| subset of 9C is Borel. We will show in 

Chapter 7 that the Suslin theorem holds uniformly in the codings in the 

following sense: there is a partial function 

f:Jf-+Jf 

which is (2i-)recursive on the set C (in particular C <= Domain(/)) and 

such that if a is a A{-code of A ^ 9C, then f(a) is a Borel code of A. This 
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Suslin-Kleene Theorem is one of the central results of the effective 

theory. 
To define this important notion of uniformity in general, suppose that 

77 : 9C -*• A, 

are codings for the sets A, B (tt, p are partial functions), suppose R £ 

A x B is a relation on AxB and suppose that T is a fixed 1-pointclass 

with the substitution property. We say that the assertion 

(*) (Va e A)(3b e J3)jR(a, b) 

holds T-uniformly (in the codings tt, p) if there exists a partial function 

which is T-recursive on Domain(v) and such that 

(* *) tt(x)J,=> R(tt(x), p(/(x))); 

i.e. whenever x codes some a e A, then f(x) gives us a code of some b e B 

so that R(a, b). 
In the important case T = 2°, we talk of recursive uniformity or simply 

uniformity. 
To take a trivial example, let A = m_iTbe coded in A as in (4) and 

consider the assertion 

i.e. 
A is closed under complementation, 

(VPe A)(3Q e A)[Q is the complement of P]; 

this holds uniformly because the function 

a h- ((a)i, (a)0) 

is recursive (and hence recursive on the set C of codes). 

For a slightly more interesting example, take the assertion: “if 

g, h1,..., hm are recursive functions on to with the proper number of 

arguments, then the composition 

f(x)= gfMx),..., hm(x)) 

is also recursive.” Using the coding (2) above for recursive functions on to 

we can easily show that this statement holds uniformly: i.e. there is a 

recursive function n(g, hu..., hm) so that whenever g, hu..., hm code (in C) 

recursive functions with the appropriate numbers of variables, then 

u(g, hi,..., hm) codes their composition. 

We will often call any partial function f which satisfies (**) above a 

uniformity (which establishes that (*) holds T-uniformly). 
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Starting with the next chapter, we will meet several situations in which 

codings and uniformities come up naturally and non-trivially. Here we 

will confine ourselves to one simple but very useful preparatory result. 

With each pointclass T we associate the boldface pointclass T, where for 

Pc 9C, 

PeT <=> there is some P* c jyx9C, P*eT 

and some e eJf so that 

P = P? = {x:P*(e,x)}. 

As usually 

A=rnnr. 

3H.1. The Good Parametrization Lemma. Suppose F is a>-parametrized 

and closed under recursive substitutions. Then we can associate with each 

space 9C a set Gx c jVx9C in T which is universal for r(9C and so that the 

following properties hold: 

(i) For P c 0C, 

P e r<=> P = Gf with a recursive e eJi. 

(ii) For each space 9C of type 0 or 1 and each ‘y, there is a recursive 

function 

Sx,y = S : A x 9C A 

so that 

GxxV(e, x, y) ^ Gv(S(e, x), y). 

Proof. If Gc o>xjVx9C parametrizes TK-Ax 9C), take 

G*(e,x)^G(e(0), e*, x) 

with e*(f) = e(f + 1) and check easily that G* parametrizes TfSC so that (i) 

holds. Thus we may assume that we are given parametrizations of T in T 

which satisfy (i)—we must obtain a new system of parametrizations which 

also satisfies (ii). 

Call a space 9^ (for this proof) simple if 'y has no initial factor of type 0 

or 1, i.e. if it is impossible to write 

with <yi of type 0 or 1. We will first construct suitable parametrizations 

for all spaces of the form 9C x 'y with 9C of type 0 or 1 together with a 

fixed simple space <y. 



184 Basic notions of the effective theory [3H.1 

For each space 9C of type 0 or 1 then fix a recursive homeomorphism 

ttx : N x 9C >*■ X 

and let 

be in T and universal for the F-subsets of jV'xjV’x^ so that (i) holds. 

Define Ggi'xXx'y by 

G(e, x, y) <=> V((e)0, (e)^ 7r3C((e)2, x), y). 

Clearly G is in F. 

To prove that G is universal for r(9C x T(, suppose that Q cr 9C x 9) is in 

r and set 

Q'(a, (3, y) <=> 0(p3C('7rac1(/3)), y) 

where 

Pac: x 9C —* 9C 

is the projection map on 9C. Now Q'eT, so that for some e gjV, 

Q'(a, 13, y) <=* V(e, a, (3, y) 

and for any a, taking (3 = TTx(a, x) we have 

Q(x, y) <=> Q'(a, x), y) 

«=> V(e, a, iTccCa, x), y) 

<=> G((e, a, a), x, y). 

Choosing a recursive a, say t »0 and e* — (e, a, a), we have 

0(x, y) «=> G(e*, x, y). 

It is also immediate that the universal set G satisfies (i). 

Fix spaces 9C, W of type 0 or 1; we must construct a recursive function 

S\XX 9C-^JV 

so that 

(1) G(e, x, w, y) G(S(e, x), w, y) 

(where of course the G on the left stands for a different relation than that 

on the right—a pedantic notation here would introduce a lot of 

superscripts). 

Put 

(2) P(a, (3, y) <=> G((a)0, Psc^sc^aOi)), P-wtWO)), y) 
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where G is the universal subset ofAx9Cx'Wxcywe just defined and the 

recursive homeomorphisms and projections ttx, irw, p^, pw are as above. 

Now P is in T, so for a fixed recursive e*, 

(3) P(a, (3, y) *=* V(e*. a, 0, y). 

For arbitrary e, x, w, let 

a = (e, TTx(e, x)), (3 = 7rw(e, w); 

substituting in (2) and (3) we get 

G(e, x, w, y) <=> P«e, nx(s, x)), 7tw(e, w), y) 

<=* V(e*, (e, 7rac(g, x)), rrw(e, w), y) 

and then by the definition of the universal sets, 

G(e, x, w, y) <=* G«e*, <e, x)>, e), w, y). 

so that (1) holds with 

S(e, x) = (e*, (e, itx(e, x)), e). 

The construction is similar for spaces of type 0 or 1 (simply skip the 31 

above) and the universal sets we constructed work for the simple spaces 

(skip the *W in the proof). —I 

A system of sets G^c/x 0C in r which are T-universal and satisfy (i) 

and (ii) of the theorem will be called a good parametrization (in T for T). 

We will often simply say “/ef G c jV'x 9C be a good universal set” meaning 

that G belongs to a good parametrization when T is clear from the 

context. We will also tend to be a bit sloppy with notation and avoid all 

superscripts, so that the basic property of good parametrizations reads 

G(e, x, y) <=> G(S(e, x), y). 

Fix a good parametrization for each a> -parametrized, adequate point- 

class r and consider the natural coding for T determined by this paramet¬ 

rization as in (3) above, by the map 

a » Ga = {x e 9C: G(a, x)}. 

The restriction of these maps to recursive a’s gives a coding for T. 

Similarly, A is coded by 

« *• G<Oo’ 

on the set of codes {a: G(a)o is the complement of G(c0i}. 
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When we mention F-codes or A-codes of sets, we will refer to these 

fixed, canonical codings—we will do this quite frequently for 2,',-codes or 

A,'-codes, for example. 

Lemma 3H.1 says that the operation of passing to a section at a point of 

type 0 or 1 is uniform, for an a>-parametrized, adequate P: i.e. if e codes 

P c SC x ^ in r with 9C of type 0 or 1, then S(e, x) codes Px = {y: P(x, y)} 

in r. But the lemma actually implies much more. 

3H.2. The Uniform Closure Theorem. Suppose P is an a>-parametrized, 

adequate pointclass; if P is closed under any of the operations &, v, 3 ", 

V~, 3M, V^, then T is uniformly closed under the same operation (in the 

codings induced by a good parametrization). 

Proof. Suppose for example that P is closed under &. We must show 

that there is a recursive function u(a, /3) such that if 

P(x) <=> G(a, x) 

O(x) <=» G((3, x), 
then 

P(x) & Q(x) <=> G(u(a:, (3), x). 

To check this, put 

R(a, (3, x) <=> G(a, x) & G((3, x). 

By closure under recursive substitution and &, R is in P, so for a fixed 
recursive 

R(a, (3, x) <=> G(e*, a, |3, x) 

G(S(e*, a, (3), x) 

by the good parametrization lemma. Thus we can take 

u(a,!3) = S(e*,a,(3). 

The argument for the other cases is similar. —| 

There is another somewhat tricky corollary of the good parametrization 

lemma which can be viewed as fixed-point theorem for parametrized 

pointclasses. We put it down here because we need it for an important 

application in the next chapter, but its full significance will not be 
appreciated until Chapter 7. 
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3H.3. Klehne’s Recursion Theorem for Relations. Suppose T is co- 

parametrized and closed under recursive substitutions and suppose R c 

7VX9C is in T; then we can find a recursive e*eN so that the section 

Re* = {x: R(e*, x)} 

has F-code e*, i.e. 

R(e*, x) <=> G(e*, x) 

where G is the fixed good universal set for r|'9C. 

Proof. Let 

P(a, x) <=> R(S(a, a), x) 

where S is recursive by 3H.1 and such that for all s, a, x, 

G(e, a, x) <=> G(S(e, a), x). 

Since P is in T, there is a fixed recursive e0 so that 

P(a, x) G(e0, a, x) 

«=> G(S(e0, a), x) 

and hence for all a, x, 

G(S(e0, a), x) <=* R(S(a, ct), x). 

Now set a — e0 in this equivalence and take e* = S(e0, e0). 

Exercises 

We formulated 3H.1 for parametrizations in X, since this version is 

most directly applicable. However, there is a similar result for parametri¬ 

zations in co which is occcassionally useful. 

3H.4. Suppose F is co-parametrized and closed under recursive substitu¬ 

tions. Then we can associate with each space 9C a set GKcwx3C in T 

which is universal for P['9C and so that the following property holds: for 

each space 0C of type 0 and each 3/ there is a recursive function 

Sxxy = S : co x 9C -> co 

so that 

GSCx‘y(e, x, y) «=> G^iSie, x), y). 
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Moreover, for any 9C, if R <= a> x 0C is in T, then we can find some e* ea> 

so that 

R(e*,x) - Gx(e*,x). H 

31. Historical remarks 

1 The class of recursive functions on the integers was introduced and 

studied in the mid-thirties in various ways and by several mathematicians, 

particularly Church, Kleene, Turing, Post and (later) Markov. We will not 

attempt to trace its history here since this is done in some detail in the 

classical monograph on the subject Kleene [1952a], Our development in 

3A follows very closely the approach of Kleene. 

2 The generalization of recursion theory to spaces of type 0 or 1 is (at 

least) implicit in Kleene [1952a] and more explicit in Kleene [1952b], 

Alternative approaches to this theory were given later by Kleene [1959a] 

and Kreisel [1959], 

3 There were also several attempts to develop the theory of recursive 

functions on the reals, of which the most direct and successful was Lacombe 

[1955], The later paper Lacombe [1959] is more in the spirit of what we 

are doing here, in fact it develops recursion theory in a more general 

context. The specific definitions we gave in this chapter are new and 

perhaps simpler than previous developments, but we have no significant 

new results here. 

4 The arithmetical pointclasses on a> were introduced in Kleene [1943] 

and later (independently) in Mostowski [1946], They were studied exten¬ 

sively in Kleene [1952a], 

5 Taking again w as his basic space, Kleene [1955b] introduced and 

studied the analytical pontclasses. The main aim of that paper was the 

study of the hyperarithmetical relations on o» which had been introduced 

independently (earlier) by Davis [1950] and Mostowski [1951], These 

coincide with the A\ relations, but the proof of this is quite difficult—it 

was first given in Kleene [1955c], We will postpone studying the 

hyperarithmetical relations until Chapter 7. 

6 In his original development of the theory Kleene introduced specific 

parametrizations for the arithmetical and analytical pointclasses which he 

proved to be “good” in the sense of 3H.1. The fact that good parametri¬ 

zations can be constructed given arbitrary w-parametrizations was disco¬ 

vered by several people independently perhaps first by Friedman [1971], 
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7 As we mentioned in the introduction to this book, the similarities and 

“analogies” between the effective theory on o> developed (mostly) by 

Kleene and classical descriptive set theory on (R were noticed first by 

Mostowski and Addison. The present, unified effective descriptive set 

theory which we are studying here is the end result of a long process of 

generalization and abstraction which started with Addison [1954] and 

[1959a] and involved the work of many people. 



CHAPTER 4 

STRUCTURE THEORY FOR POINTCLASSES 

We are now ready to plunge into a systematic study of the structure of 

11\ and X\. 
In many ways, this chapter is a continuation of Chapter 2; here too we 

will establish various interesting properties of X\ and sets, in fact we 

will answer several natural questions left open there. What is new and 

different is that we will use systematically the methods of the effective 

theory which we developed in the preceding chapter. 

It turns out that this infusion of ideas from recursion theory creates a 

more radical change in the flavor of the subject than one might think. It is 

not just a case of obtaining “finer” results about the lightface pointclasses 

with a little more computation, as we did in Chapter 3. Even when we 

prove theorems which are significant only for the boldface pointclasses, 

we will use recursion theory to great advantage. 

The most important results of the chapter are uniform!zation theorems, 

particularly the Novikov-Kondo-Addison Theorem 4E.4 and the A- 

Uniformization Criterion 4D.4. The latter implies that in many special 

circumstances we can uniformize a Borel set by a Borel set. 

As in Chapter 2, we will formulate many of the results of this chapter 

in a general setting, to ease extension to the higher projective pointclas¬ 

ses. This will lead us naturally to the axiomatic definition of a Spector 

pointclass, one of the key notions of the subject. Specifically for uniformi- 

zation results, the notion of a scale will also prove very important. 

Perhaps this is the most important chapter of this book, because it is 

the most characteristic of our subject. One could say that Chapter 1 was 

mostly topology. Chapter 2 was set theory and Chapter 3 was recursion 

theory; but this chapter would be out of place in anything but a book on 

descriptive set theory. 

4A. The basic representation theorem for n\ sets 

Most of the results of Chapter 2 depended directly on the fact that 

sets are K0-Suslin. Here we will first formulate an effective version of this 

190 
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fact and then refine it to a representation theorem for n\ sets which is the 

key to the structure properties of this pointclass. 

Recall from 3D.8 (*20) that 

a(n) = (a(0),..., a(n — 1)). 

This is a recursive function of a and n. 

4A.1. Theorem, (i) A pointset P c 9C x X1 (l > 1) is if and only if there 

is a Xf set Q c 9C x o)1 such that 

P(x, a,) (3f)Q(x, dj(t),..., d,(t)) 

and 

[Q(x, df(t)) & f <s] =► 0(x, ax(s),..., a,(s)). 

Moreover, if 9C is of type 0 or 1, then Q may be chosen to be recursive. 

(H) A pointset Fc 9C is II\, if and only if there is a 2° set Q c 9C x a; such 

that 

P(x)^(Va)(30Q(x,d(0) 

and 

[Q(x, a(0) & f<s] => Q(x, a(s)). 

Moreover, if 9C is of type 0 or 1, then Q may be chosen to be recursive. 

Proof, (ii) follows immediately from (i). 

To prove (i), take l = 1 for simplicity of notation and suppose by 3C.5 

that 

P(x, a) <=> (3u)(3u){x £ N(9C, u) & a e N(Jf, v) & P*(u, u)} 

with P* semirecursive, so there is a recursive R such that 

P(x, a) «=> (3u)(3u)(3n){x € N(9C, u) & a e N(Jf, v)&R(u,v, n)}. 

By 3B.5, there are recursive functions g, h such that 

a £ N(N, v) <=> ((u)i)! 5^ 0 & (Vi < g(u))[a(i) = h(v, i)], 

so that whenever f>g(u), we easily have 

a £ N(Jf, v) ^ ^ 0 & (Vi < g(u))[(a(t))i = h(v, i)]. 
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Now put 

0(x, w) <=>Scq(w) 

& (3u < lh(w))(3v < lh{w))(3n < ih(w)){x g N(9C, u) 

& g(v)<lh(w) &(Vi<g(v))[(w)i = h(u, 0] 

& R(u, v, n)} 

and verify easily that 

P(x, a) <s=> (3t)0(x, d(f)). 

If 9C is of type 0 or 1, then Q is recursive since {(x, n): x g N(9C, u)} is 

recursive by 3C.3. H 

With each irrational a we associate the binary relation on o> 

= {(n, m): a«n, m» = 1} 

and we put 

a 6 LO «=* <a is a linear ordering 

<=> (Vn)(Vm)[n<a m => (n<a n & m<a m)] 

& (Vn)(Vm)[(n<a m & m<a n) => n = m] 

& (Vn)(Vm)(V/c)[(n<a m & m<a k) => n<a k] 

& (Vn)(Vm)[(n<„ n & m<a m) =*> (n<a m v m<a n)], 

a G WO <=4. <a is a wellordering 

<=> a G LO & has no infinite descending chains 

<=> a g LO & (Vj3)[(Vn)[|3(n + l)<a /3(n)] — (3n)[0(n +1) = (3(n)]]. 

If a G LO, let 

| a | = order type of <a. 

In particular, the mapping 

a ►» |a| 

takes WO onto the set of countable ordinals and provides a coding for 

this set in the sense of 3H. 

4A.2. Theorem. The set WO of ordinal codes is n\. Moreover, there are 
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relations <n, in 17] and X\ respectively, such that 

(3 e WO => {a<n|3 ^a<j(3o[as WO & |a| < |/31]}.(5) 

Proof. That WO is n\ is obvious from the formulas above. To prove the 

second assertion, take first 

a<x(3 a £ LO & (3y)[y maps <a into <3 in a one-to-one 

order-preserving manner] 

<=>a £ LO & (By)(Vn)(Vm)[n <am => 7(n)<07(m)] 

It is immediate that is X] and for (3 e WO, 

a <v (3 [a e WO & |a| < |/31]. 

For the relation <n, take 

a<n (3 «=> a £ WO & there is no order-preserving map of 

<3 onto an initial segment of 

■«=> oc £ WO & (V7)—i(3/c)(Vn)(Vm)[n <3m <=*• [7(n)<a7(m)<a/c]], 

where of course we abbreviate 

s<at s<at & s^ t. 

4A.3. The Basic Representation Theorem for J7[ (Lusin-Sierpinski, 

Kleene'l_11)). A pointset Pc 9C is I7j if and only if there is a A\ function 

/: 9C —> jV' such that for all x, f{x) £ LO and 

(*) P(x)**f(x)£WO. 

In fact, if P is n\, then we can choose /: 9C —> AF so that (*) holds and 

the relation 

R(x, n, m) <=> f(x)(n) = m 

is arithmetical; if in addition 9C is of type 0 or 1, then (*) holds with a 

recursive f. 

Similarly, P is 17] if and only if (*) holds with a Borel f, or with a 

continuous f if 9C is of type 0 or 1. 

Proof. This is an effective and improved version of 2D.2, the representa¬ 

tion of complements of ^-Suslin sets of irrationals in the form 

P(a) <=> T(a) is wellfounded. 
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where T is a tree onwXx. We might as well give here a direct proof for 

subsets of an arbitrary space 9C. 

The last assertion clearly follows from the claims preceding it. 

Assume then by 4A.1 that 

P(x) <=> (Va)(3t)R(x, <5(0) 

with R semirecursive, or R recursive if 9C is of type 0 or 1, where 

R(x, a(t)) & t<s => R(x, a(s)). 

For each x, put 

T(x) = {(Uq,..., ut_x): -iR(x, (u0,..., ut_a))} 

so that T(x) is a tree on co and clearly 

P(x) <=> T(x) is wellfounded. 

What we must do is replace T(x) by a linear ordering on co which will be 

wellfounded precisely when T(x) is. 

Put 

(v0,..., Us_x)>x (u0,..., Ut_x) *=> (%..., Us_i), (u0Mt_i) G T(x) 

& {u0> U0v[u0 = U0 & Uj > Mx] v[u0 = U0 & Vi = Ul & V2> u2] 

v[u0 = U0 & Uj = Uj & ••• & US_J = us_1 & s <t]j 

where > on the right is the usual “greater than” in co. 

It is immediate that if (u0,..., us_x), (u0ut_x) are both in T(x) and 

(u0,..., us_i) is an initial segment of (u0,..., ut_x), then 

(v0,..., us_x)>x (u0,..., ut_j); thus if T(x) has an infinite branch, then 

>x has an infinite descending chain. 

Assume now that >x has an infinite descending chain, say 

u°>xu1>xu2>x..., 

where 

v‘ =(v‘o, 

and consider the following array: 

,,o_/ o n \ V ~(v0, vu..., uSo_!) 

U1 =(Vo, !)',_!) 

v' =(v‘0, V\,. 
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The definition of >x implies immediately that 

uo —uo —uo —•••, 

i. e. the first column is a nonincreasing sequence of integers. Hence after a 

while they all are the same, say 

v'0 = k0 for i > i0. 

Now the second column is nonincreasing below level i0, so that for some 

ii, fei 

v\ = kt for i > ix. 

Proceeding in the same way we find an infinite sequence 

k0, k1,... 

such that for each s, (k0,..., fcs_i)e T(x), so T{x) is not wellfounded. Thus 

we have shown, 

P(x)<=> T(x) is wellfounded 

<=> >x has no infinite descending chains. 

Finally put 

u<x v <=> (3t < u)(3s ^u)[Seq(u) & lh(u) = t & Seq(v) & lh{v) = s 

& [u■ = v v ((u)o,-, (u)s-i)>x ((u)o,..., (u)t_i)]] 

and notice that <x is always a linear ordering and 

P(x) <=^ <x is a wellordering. 

Moreover, the relation 

P(x, u, u) u<xv 

is easily arithmetical for arbitrary 9C and recursive if 9C is of type 0 or 1. 

The proof is completed by taking 

f(x)(n) = 
1 if (n)0=£x (n)j, 

0 otherwise. —\ 

The linear ordering ^x which we used in this proof is variously known 

in the literature as the Lusin-Sierpinski or the Kleene-Brouwer 

ordering/9'10) 

Let us prove here just one very useful corollary of this basic result. Put 

cofK = supremum{\a\: a e WO and a is recursive}. 
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One may think of as an “effective analog” of the least uncountable 

ordinal tofK is the least ordinal which cannot be realized by a 

recursive wellordering with field in a>.(6) 

4A.4. The Boundeness Theorem for IJ\ (Lusin-Sierpinski, 

Spectorn~n>). Suppose Pc9C and P satisfies the equivalence 

P(x) <=* f(x) e WO 

with some A J function f. Then P is A | if and only if 

supremum{\f(x)\: P(x)}<o>fK. 

Similarly, suppose 

P(x) <=>/(x)e WO 

with some Borel function f. Then P is Borel if and only if 

supremum{\f(x)\: P(x)}<Kj. 

Proof. Assume first that for all x, if P(x), then |/(x)|<|a|, where a e WO 

and a is recursive. By 4A.2 then, 

P(x) <=>/(x)<2a, 

so P is xi and since it is evidently i7|, it is A\. 

Conversely, suppose supremum{|/(x)|: P(x)}>o>fK. Let be any 

n\ relation on co, so by the basic representation theorem 4A.3 there is a 

recursive g : a> —» A and 

O(n) <=» g(n) e WO. 

Notice that for every n, g(n) is a recursive irrational by (iv) of 3D.7. 

Hence 

Q(n)<=> g(n)e WO & |g(n)|<wfK 

^(3x){P(x)&g(n)<2/(x)} 

which implies that if P is X\, then so is Q. But Q was arbitrary TI\ on co 

and need not be X\, so P is not X\. 

Proof of the boldface result is a bit simpler. H 

Exercises 

Put 

81 = supremum{|a|: a e WO and a is A{}, 
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where a is A \ if {(n, m): a(n) = mj is A J. 

4A.5. Prove that S} = cofK. (Spector [1955].(7)) 

Hint. It is enough to establish that 

8l <supremum{|a|: a e WO, a recursive}, 

so assume towards a contradiction that there is some (3 e WO, (3 is A J and 

for every recursive a, if a e WO, then |a|<||3|. Choose Pc a> which is 17} 

but not A \ and by 4A.3 choose a recursive f such that 

P{n)^f{n)eWO. 

Now each /(n) is a recursive irrational, so the assumption above implies 

P(n)«./(n)G WO &\f(n)\<\(3\ 

which via 4A.2 shows P to be A\, contrary to hypothesis. H 

This result is rather surprising, as one might expect to get longer 

wellorderings in the complicated pointclass A\ than one gets in A°. 

4A.6. Prove that if A is a 2} subset of WO, then there is a countable £ 

such that 
a £ A => |a| < £. 

Hint. If not, then every n] relation P would satisfy 

P(x) <=> (3a)[a € A & /(x)<2a] 

with a Borel f and would be A}. H 

The next exercise is an effective version of 1G.5. 

4A.7. Prove that for each A \ pointset Pc SC there is a recursive function 

7t:jV^9C and a iT” set such that 7r is one-to-one on A and 

7r[A] = P. 

Similarly, if P is A}, then there is a continuous rr: TJ -» A and a closed 

AcjV such that 77 is one-to-one on A and 7t[A] = P (this is a restate¬ 

ment of 1G.5). 

Hint. By 3E.6, we may assume 9C = A. By 4A.3 then, there is a 

recursive f: A —»A such that 

P(a)^f(a)eWO 

and by 4A.4, there is a recursive (3 e WO so that 

P(a)«./(a)<20. 
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Put 

0(t, a) <=> 7 maps <Q onto an initial segment of <3 in an 

order preserving fashion and 7 = 0 outside the field of 

<=> (Vn){[«({n, n)) ^ 1 => 7(n) = 0] & [cx((n, n)) = 1 

/3«7(n), 7(n)))= 1} & (Vn)(Vm){[a«n, n» = 1 & a((m, m» = 1] 

=*> [a«n, m» = 1 <=> P((y(n), 7(m)» = 1]} 

& (Vn)(Vm){[a((n, n)) = 1 & j3((m, y(n))) = 1] 

=» (3s)[a«s, n» = 1 & y(s) = m]}. 

Clearly Q is IT" and hence so is Q*, 

Q*(y, a) *=» 0(7, /(«))• 

Moreover, easily 

P(a)+*&y)Q*(y,a) 

<=> there exists exactly one 7 such that Q*(y, a). 

Bring Q* to normal form 

Q*(y, a) <=> (Vn)(3m)jR(y, a, n, m) 

and let 

S(8, 7, a) (Vn)[.R(y, a, n, 8(n)) & (Vm < 8(n))~\R(y, a, n, m)]. 

Now S is a subset of jfxjyxjy and the recursive map (8, 7, a)»a 

takes S onto P and is one-to-one on S. The result follows because 

A'xjV'xjV' is recursively homeomorphic with N. 

The assertion about A} sets follows by the same proof, starting with a 

continuous f such that 

P(a) <=>f(a)e WO. H 

This result is important, particularly because we will prove later that 

every injective, recursive image of a A} set is Aj—see 4D.7. 

We can also obtain from this result an interesting partial converse to 

3E.16. 

4A.8. Prove that a point x0 is A} if and only if there is a /T" singleton 

{a0}cA such that x0 is recursive in ct0. 
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Hint. If x0 is recursive in some a0 with {a0} in 11°, then x0 is easily A{. 

If x0 is A\, then the pointset 

P(s, i)o[x0eNs & i = l]v[x0£Ns & i = 0] 

is also A\, so by 4A.3 choose a 11° set A<=a and a recursive 

rr : If * oj x oj, which is injective on A and such that 7t[A] = P. Put 

((3, y) e J3 <=> (Vs)[(/3)s e A & n(((3)s) = (s, y(s))] 

& (Vu)[if u is not of the form (s, i), 

then (3(u) = 0] 

and check easily that BcjVxJ is a 17? singleton and x0 is recursive in 

the unique ((30, y0)eB. Now use the recursive homeomorphism of Ax A 
with A. —| 

It is not true that every A\ point is a 11° (or even an arithmetical) 

singleton—this has been shown by Feferman [1965], 

4A.9. Prove that for each countable ordinal the set 

I^= {a: a e WO & |a| <£} 

is A\, uniformly in the coding for ordinals determined by WO and the 

canonical coding for A}. 

Hint. We must show that there is a partial function u : A—» A which is 

recursive on WO and such that 

(3 e WO =* n((3) is a A[-code of {a: a e WO & |a|<||3|}. 

Choose recursive irrationals e0 so that 

a<n/3 «=* G1(e1, (3, a) 

a 0 <=> G2(e2> (3, & ) 

where Gu G2 are good universal sets in 171 and X\ respectively by 3H.1 

and let 

u((3) = (S(e1,(3),S(e2H3)>. H 

Of course this exercise is nothing but a restatement of 4A.2 using 

codings. 
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4B. The prewellordering property0213) 

The basic representation theorem implies easily the so-called prewellor¬ 

dering property for IJ\, which in turn implies directly many of the nice 

structural properties of this pointclass. This property can be established 

for and many other pointclasses more complicated than n\, so it is 

worth studying its consequences in a general setting. 

Recall from 2B that a norm on a set F is any function 

cp : P —> Ordinals 

taking P into the ordinals. There is a simple correspondence between 

norms and prewellorderings on P established in 2G.8, where with each cp 

we associate the prewellordering on P, 

x<vy <=» cp(x)<cp(y). 

Conversely, if < is a prewellordering on F, then < = ^ for some norm 

cp; moreover cp is uniquely determined if we insist that it be regular, i.e. 

that cp maps F onto some ordinal A. 

Let us call two norms cp and if on F equivalent if i.e. 

cp(x)<cp(y) cKx)<iMy). 

Clearly every norm is equivalent to a unique regular norm. 

There are many trivial norms on a set, e.g. the constant 0 function, but 

the concept becomes nontrivial if we impose definability conditions on a 

norm in the following way. 

Let r be a pointclass, cp : F —> A a norm on some pointset F. We call cp a 

r-norm if there exist relations >£, in T and -iT respectively such that 

for every y, 

(*) P(y)^(Vx){[P(x)&cp(x)<cp(y)]^x<£y ^x<fy}. 

It is important for the applications that the definition of a T-norm be 

precisely that given by (*). Notice that if T is adequate and PeT, then 

(*) is stronger than simply requiring that the associated prewellordering 

be in F but weaker than insisting that be in TH —iT. 

In addition to the prewellordering <‘p, there are two other relations 

that are naturally associated with a norm cp. Put 

x —* y <=> P(x) & [-iP(y) v cp(x) < cp(y)], 

x <*y <=> P(x) & [—iP(y)vcp(x)<cp(y)]. 
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The meaning of these relations becomes clear if we extend the norm <p on 
Pc 9C to all of 9C by 

<p(x) = oo if-|P(x), 

where oo is assumed larger than all the ordinals. Then obviously, with this 

extended <p, 

x =£*y «=» P(x) & <p(x) < <p(y) 

x<*y <=>P(x)& <p(x)< <p(y). 

4B.1. Theorem. Let JT be an adequate pointclass and let <p a norm on 

some P in T; then <p is a F-norm if and only if both <*, <* are in T. 

Proof. If <*, <* are in T, we can take 

x —r y x <* y, 

x —Fy «=>-i(y<*x), 

and verify easily that they prove cp to be a T-norm. On the other hand, 

given such relations <£, <f, notice that 

x<*y «=> P(x) & [x <Fyv~iy<fx], 

x <*y ^ P(x) & —ly <Fx, 

so that both <* and <* are in T. H 

A pointclass T is norined or has the prewellordering property if every 

pointset P in F admits a T-norm. 

4B.2. Theorem. Both 77J and n] are normedf1213) 

Proof. Given P in F[{, choose a A\ function f by 4A.3 such that 

P(x)^/(x)e WO 

and for x e P, put 

<p(x) = |/(x)|. 

Using the notation of 4A.2, we can take 

x —fiy +*f(x)^nf( y), 

x ==Iy **f(x)<xf(y) 

and verify easily that <p is a 77}-norm. 

The same proof works for n}, taking a Borel f. H 
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4B.3. Theorem (Novikov, Moschovakis(12,13)). If P is adequate, Pef, 

PczSCxA and P admits a T-norm, then 3*P admits an 3^Vv r-norm. 

Hence, if P is adequate closed under Vv and normed, then 3VP is 

normed. In particular, 2\, £] are normed. 

Proof. It is enough to establish the first assertion. Assume that 

Q(x) <=> (3a)P(x, a) 

with P in r, let cp be a P-norm on P and define ip on Q by 

if/(x) = infimum{(p(x, a): P(x, a)}. 

Proof that t// is an 3^Vv P-norm is immediate from the equivalences 

x<*y «=*(3a)(V|3)[(x, a)<*(y, (3)], 

x<*y <=>(3a)(V/3)[(x, a)<*(y, (3)]. H 

This result is typical of the kind of abstract setting in which the notion 

of a P-norm proves useful. There will be several opportunities for 

applying 4B.3 in its full generality. 

We will study many consequences of the prewellordering property in 

the next two sections. Here we concentrate on just a few facts which are 

simple, useful and indicative of the power of this hyothesis about a 

pointclass. 

Recall the definition of a uniformizing set P*cPcXx'(j. 

4B.4. The Easy Uniformization Theorem (Kreisel [1962]). Suppose P is 

an adequate pointclass, 31 is a space of type 0, P c 9C x 4/ is in P and P 

admits a r-norm. Then P can be uniformized by some P* in Vl,’P. 

In particular, if P is adequate, normed and closed under V“, then every 

Pc9Cxnj in T with 3) of type 0 can be uniformized by some P* in P. 

Proof. It is obviously enough to prove the result with 31 = co. Assume 
then that P c 9C x 00 is in P, let cp be a P-norm on P and put 

P*(x, n) <=> P(x, n) & (Vm)[(x, n) <*(x, m)] 

& (Vm)[(x, n)<*(x, m) vn <m], 
or in other words 

P*(x, n) <=> P(x, n) & <p(x, n) = infimum{<p(x, m): P(x, m)} 

& n = infimum{m: P(x, m) & <p(x, m) = <p(x, n)}. 
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Clearly P* is in and 

P*(x, n) & P*(x, n') =* P(x, n) & P(x, nr) 

& <p(x, n) = cp(x, n') 

& n < n' & n' < n 

=> n = n', 

so P* is the graph of a function. If (3n)P(x, n), let 

£ = infimum{<p(x, n): P(x, n)}, 

n = infimum{m : P(x, m) & <p(x, m) = £}, 

and verify easily that P*(x, n). Thus P* uniformizes P. H 

The problem of uniformizing subsets of 9C x T| for arbitrary product 

spaces ^ is much harder and cannot be settled using only the prewellor¬ 

dering property. We will deal with it in 4E. 

Theorem 4B.4 is most often used in the form of the following easy 

corollary. 

4B.5. The /^-selection Principle (Kreisel [1962]). Let T be adequate, 

normed and closed under 3"\ V", let P ^ SC x 0] be in P with of type 0, 

assume that A <= 9C is in A = I" n —\T and 

(Vx g A)(3y)P(x, y). 

Then there exists a A-recursive function /:9C—>3) such that 

(Vx G A)P(x, f(x)). 

Proof. Put 

Q(x, y)<=*x^Av[xGA & P(x, y)] 

and choose Q*£ Q by 4B.4 which is in T and uniformizes Q. Clearly Q* 

is the graph of a function f:dC^^ and (Vx g A)P(x, f(x)). Since TJ is of 

type 0, f is T-recursive by 3D.2; now f is A-recursive since 

f{x)±y <^(3y')[/(x) = y'&y^y']- H 

Exercises 

4B.6. Let T be an adequate pointclass. Prove that a norm cp on some P in 

f is a T-norm if and only if the unique regular norm if which is equivalent 
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to cp is a F-norm. Prove also that if cp is a F-norm, then there are relations 

<p, <£ in F and —iF respectively such that for every y, 

P(y) =* (Vx){[P(x) & <p(x) < cp(y)]«=> x <? y x <fy}. H 

4B.7. Prove that if F is adequate and normed, then the associated 

boldface class T is also normed. A 

4B.8. Prove that for n>2, the pointclasses X°n, 2° are normed. Prove 

also that every X" (or 2?) pointset of type 0 or 1 admits a X° (or £°) 

norm. Show that the latter result fails for sets of reals. 

Hint. Given P in X°n so that 

P(x) <s=> (3m)Q(x, m) 

with O in put 

cp(x) = least m such that Q(x, m). 

4B.9. Suppose F is a .£-pointclass closed under A\ substitution. Prove 

that if every pointset of type 1 in F admits a F-norm, then T is normed. 

Hint. Use 3E.6. H 

Recall the definition of reduction from 1C. A pointclass T has the 

reduction property if every pair P, Q of sets in F can be reduced by a pair 

P*, Q* in r. 

4B.10. Prove that if F is adequate and normed, then F has the reduction 

property; in particular, FTj, IlJ, £2 and S2 have the reduction property. 

(Kuratowski, Addison.(13)) 

Hint. Given P, Q in F, put 

R(x, n) «=» [P(x) & n = 0]v[Q(x) & n = 1], 

let cp be a F-norm on R and take 

P*(x)^(x, 0) <*(x, 1), 

Q*(x)^(x, 1) <*(x, 0). H 

A pointclass F has the separation property if when P, Q are in F, 

P Cl Q = 0, then there is some R in A = FPl —1F which separates P from Q. 

We have already proved in 2E.1 that 2} has the separation property. 

4B.11. Prove that if F is adequate and has the reduction property, then 
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Figure 4B. 1. Separation of P c Q from SC — Q. 

the dual class —iT has the separation property; in particular, X\, £}, Hl2, 

n[ have the separation property. (Lusin, Novikov, Addison.<13)) 

Hint. Given P, Q in —iT, both subsets of 9C, let P, = 9C - P, Q, = 9C — O, 

choose Pf, Of to reduce Pl5 O, and prove that PfUQf = 9C. Take 

R = Of. H 

Many times we use the separation property in the following form; if P 

is in r, O is in —iT and PcQ, then there exists some Re A so that (see 

Figure 4B.1) 

PckcQ. 

To see this separate P from 9C — Q. 

4B.12. Prove that if T is adequate, o>-parametrized and has the reduction 

property, then T does not have the separation property. 

Similarly, if P is adequate, A-parametrized and has the reduction 

property, then T does not have the separation property. 

In particular, 2°, 77J, nj, X\ do not have the separation 

property. (Novikov, Kleene, Addison.(13)) 

Hint. Let GgwXw be universal for P(a> and put 

P{n) <=> ((n)o, n)e G, O(n) *=> ((n)x, n)e G. 

Choose P*, O* in f which reduces P, O and assume towards a 
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Diagram 4B.2. Normed Kleene pointclasses. 

contradiction that some R in A separates P* from Q*, i.e. 

P*cR, RHO* = 0. 

Choose integers e, m such that 

R(n) <=> (e, n)e G, —iR(n) <=* (m, n)e G 

and let t — (m,e). Now show that both assumptions tcR t£R lead to 

contradictions. 

The second assertion is proved similarly. H 

4B.13. Prove that if F is adequate and o>-parametrized, then at most one 

of the pointclasses F, ~iF is normed. H 

It follows from the results of this section that the Kleene pointclasses 

which are normed are exactly those circled in Diagram 4B.2. 

The circle around is dotted, since only pointsets of type 0 or 1 

acimit ^j-norms. 

The diagram for the boldface classes is identical. 

We have not included here £3, TJ\ and the higher analytical pointclas¬ 

ses, as it is not clear at this point which of .£3 or Yl\ is normed, if any. 

Many of the results in this section have uniform versions which are easy 

to establish using the methods of 3H. We put down one theorem of this 

type as an example. 

4B.14. If F is (a-parametrized, adequate and has the reduction property, 

then F has the uniform reduction property: i.e. for each 9C, there are 

recursive functions (3), u2(«, (3) such that whenever a, (3 code 

subsets P, Q of 9C respectively in T, then u^a, (3), u2(a, (3) code sets P*, 

Q* respectively which reduce the pair P, Q. 

Hint. All codings are relative to a good parametrization of course, so 

the hypothesis (for example) means that 

P(x) «=> G(a, x), Q(x) <=> G(l3, x) 

with G a good universal set. 
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Define 

Ui(a, (3, x) <=> G(a, x), 

712(a:, (3, x) <=> G((3, x) 

so that both Ux and U2 are in F and let Uf, U* reduce the pair Uu U2 in 

F. There are then recursive irrationals el5 e2 so that 

U*(a, (3, x) <=> G(el5 a, (3, x) <=* G(S(el9 a, /3), x) 

Uf(a, (3, x) «=> G(e2, a, (3, x) <=* G(S(e2, a, (3), x), 

where we have used the Good Parametrization Theorem 3H.1. It is easy 

to check that the recursive functions 

ux(a, (3) = S(el5 a, (3) 

u2(a, (3) = S(e2, a, (3) 

have the required properties. H 

4C. Spector pointclasses<14~16) 

The consequences of the prewellordering property which we proved in 

4B depended on several side conditions on a pointclass F, e.g. closure 

under various operations or parametrization. Here we will isolate the 

most commonly used hypotheses into the basic notion of a Spector 

pointclass. The simplest Spector pointclasses are I7j and —in fact F7[ is 

the least Spector pointclass. There are, however, many other examples 

which make it worth axiomatizing the theory. 

A Spector pointclass is a collection of pointsets F which satisfies the 

following conditions: 

(1) F is a .£-pointclass with the substitution property and closed under 

V", 

(2) F is (o-parametrized. 

(3) F is normed. 

Recall that (1) implies ^cF and F is closed under &, v, 3s and 3", and 

by 3G.1, F is also adequate. 

All the Kleene pointclasses 17* satisfy (1) and (2), so to prove that 

one of these is a Spector pointclass we need only verify the prewellorder¬ 

ing property. It is also trivial to check that each relativization F(z) of a 

Spector pointclass F is a Spector pointclass, see 4C.4. Thus II{, X\, n\(z). 
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X\(z) are Spector pointclasses—they are the only ones we know at this 

time. 

In Chapters 5 and 6 we will prove using strong set theoretic hypotheses 

that some of the higher Kleene pointclasses are also normed and in 

Chapters 6 and 7 we will introduce many more examples of Spector 

pointclasses. Here we concentrate on consequences of (1)—(3) above 

which give us new results about J7j and X\. 

First, let us prove a strong closure property of Spector pointclasses 

which implies that every one of them contains every n\ relation. 

Suppose Q(x, w) is given and we define P(x, w) by 

(*) P(x, w) <=> (Va)Q0Q(x, w *d(f)), 

where w * v codes the concatenation of the sequences coded by w and v, 

if Seq(w), Seq(v), see *18 of 3A.6. For each countable ordinal define 

the set P€ <= 9C x a> by the recursion 

(* *) P€(x, w) <=» Q(x, w) v(Vs)(3t/ < £)Pv(x, w * (s)). 

It is easy to verify by induction on that 

Pi(x, w) =» P(x, w); 

conversely, if (V£)~\P$(x, w) then —iQ(x, w) and for some s = s0, all 

—\P6(x, w *{sQ)), so again —iQ(x, w *<s0)) and for some s = su all £, 

—iP((x,w*(s0,sl)), etc., so finally with a = (s0, Sx,...) we have 

(Vf)—iQ(x, wbe. —iP(x, w). Thus 

P=U,P,. 

Now define a norm 

by 

cp : P —> ordinals 

<p(x, w) = least ^ such that P€(x, w); 

it is immediate from (* *) that P satisfies the equivalence 

P(x, w) ^ 0(x, w)v(Vs)[(x, w*(s))<*(x, w)]. 

It is perhaps a bit surprizing that this equivalence completely determines 

P. 

4C.1. Lemma. Suppose Q(x, w), P(x, w) are given and P admits a norm <p 
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such that 

P(x, w) O Q(x, w)v(Vs)[(x, w+(s»<*(x, w)]; 

then 

P(x, w) <=» (Va)(3f)Q(x, w*a(t)). 

Proof. First we prove by induction on cp(x, w) that 

P(x. w) =* (Va)(3f)Q(x, w*a(t)). 

Assuming this for all (x, u)eP with <p(x, u)<<p(x, w) and supposing that 

P(x, w) holds, we have by the hypothesis 

Q(x, w)v(Vs)[(x, w*<s))<*(x, w)]. 

If Q(x, w) holds, then easily (Va)Q(x, w *«(())) since w *a(0) = w. Other¬ 

wise, we have 

(Vs)[(x, vv * (s)) <* (x, w)], 

so that for each s, P(x, w*(s}) and <p(x, w*(s))<<p(x, w). By the induc¬ 

tion hypothesis then, 

(Vs)(Va)(3f)Q(x, w*(s)*d(t)) 

from which (Va)(3f)0(x, w*a(t)) follows immediately. 

Conversely, assuming —iP(x, w), we have —iQ(x, w) and for some s = s0, 

—i(x, w*(s0))<*(x, w); this means —iP(x, w*(s0)), since P(x, w*(s0)) and 

—iP(x, w) implies (x, w *(s0)) <*(x, w). Again, —iQ(x, w *(sn» and for 

some s = sl5 -i(x, w * (s0, (x, w * (s0» etc., so we get some a = 

(s0, sx,...) such that (Vf) —iQ(x, w*a(t)). H 

There is a bit of trickery in this proof which will not become completely 

clear until we look carefully at inductive definability in Chapter 7. For 

now, we can simply view this lemma as a tool for establishing the next 

very useful result. 

4C.2. Theorem (Moschovakis<15)). Let r be a Spector pointclass, suppose 

O <= 0C x at is in r and P is defined by 

P(x) <=> (Va)(3f)Q(x, d(0); 

then P is in P. 

In particular, 77[ is the smallest Spector pointclass and is the smallest 

Spector pointclass closed under 3‘C 
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Proof. The second assertion follows immediately from the first by (ii) of 

4A.1. 

To prove the first assertion using the lemma, it is enough to find some 

jR*c9CXw in T which admits some norm <p so that 

R*(x, w) <=*• Q(x, w)v(Vs)[(x, w*<s))<*(x, w)], 

since we then have 

P(x) <=*• jR*(x, 1). 

Here is where we will use Kleene’s recursion theorem for relations, 3H.3. 

Let Gcyx9CXa> be a good universal set in T for T, let 

ordinals be a T-norm on G and define 

R(a, x, w) «=> Q(x, w)v(Vs)[(a, x, w*(s))<*(a, x, w)]. 

Now R is in T so by 3H.3 there is a fixed recursive e* so that 

R(e*, x, w) «=> G(e*, x, w). 

Put 

R*(x, w) <=* R(e*, x, w) 

and on R* put the norm 

<p(x, w) = ix, w). 

Computing, 

R*(x, w) <=> R(e*, x, w) 

*=* Q(x, w) v(Vs)[(e*, x, w *(s))<*(e*, x, w)] 

«=» 0(x, w)v(Vs)[(x, w*<s))<*(x, w)] 

so that R* has the required property. H 

This theorem is interesting partly because it gives an intrinsic structural 

characterization of 77 ]. Of course 77] can be easily characterized by its 

closure properties, e.g. it is the smallest £-pointclass closed under V" and 

V v. But nothing very deep can be proved in general about .£-pointclasses 

closed under V“ and V We will see that Spector pointclasses have a rich 

structure theory, much of it giving new results even when we specialize it 

to 77}. 

There is another practical corollary of 4C.2 which we list together with 

some simple properties of total functions recursive in a Spector pointclass. 
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4C.3. Theorem. Let r be a Spector pointclass, suppose f:3C^y is total 

and r-recursive; then f is A-recursive, Graph(/) = {(x, y): f(x) = y} is in A 

and for every x, 

f(x)eA(x)=r(x)n-ir(x), 

i.e. f(x) is a A(x)-recursive point. 

Moreover, every A,1 function is r-recursive, so in particular, T is closed 

under substitution of A\ functions. 

Proof. The first assertion is easy and uses only the fact that T is a 

X-pointclass closed under V". Thus, {(y, s): y£Ns} is in T since it is PT" 

and r contains all /T" sets, hence {(x, s): f{x)£Ns} is in jT by closure under 

substitution of T-recursive functions; thus f is A -recursive. From this 

follows trivially that f(x)eA(x). As for the graph, 

f(x) = y «=> (Vs)[y eNs=> f(x) e Ns] 

<=> (Vs)[/(x)eNs =>y6 Ns~\. 

Now if /: 9C —> is Athen {(x, s): f(x) e Ns} is A {, hence in T by 4C.2, 

hence f is T-recursive. —1 

Exercises 

4C.4. Prove that if F is a Spector pointclass, then so is each relativization 

rtz). h 

With each pointclass T we have associated the boldface pointclass T, 

where for Pc 9C, 

PeT <=^ for some P*cjyx 9C in T 

and some eeA, P = Pf, 

i.e. 

r= U.He). 

As usual. 

A = rn —iT. 

4C.5. Prove that if T is a Spector pointclass, then T contains IlJ and is 

closed under Borel substitutions, 3", V“, V", A“, it is A-parametrized 

and it is normed. 
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Moreover, every T-measurable function is A-measurable (in fact A- 

recursive by 3D.22) and has a graph in A. The pointclass T is closed under 

substitution of Immeasurable functions. 

4C.6. Prove that if T is a Spector pointclass, then -T is closed under the 

operation sd. 
If : P A is a regular norm, we call A the length of <p, 

|cp| = A. 

The length |cp| of an arbitrary norm is (by definition) the length of the 

unique regular norm equivalent to <p. 

If cp : P -» |<p| is a regular norm, then for each ^ < |tpU ^ resolvent 

of P is defined by 

P*={x: <p(x) — £}. 

Clearly 

P = Ug<|cp| 

4C.7. Let r be a Spector pointclass and let <p:P-*|<p| be a regular 

r-norm on a pointset P in T, where P is of type 0. Prove that for every 

£<|<p|, the resolvent P€ is in A. 
Similarly, if <p : P |<p| is a regular T-norm on some P in T, then for 

every ^<M, the resolvent P$ is in A = T fi —iT. In particular, 

P=U€<i<p|J^ 

with each P€ in A. 
Hint. Choose some yeP such that <p(y) = ^ and notice that 

xePfox<J y 

<=> ~i(y <*x). -> 

This result is more useful if we get an estimate on the length |cp| of a 

F-norm. Given a pointclass T (which need not be a Spector class), put 

S = supremum{\<\: < is a prewellordering of <o, < in A}, 

S = supremum{\ < |: < is a prewellordering of Jf, < in A}. 

Clearly 5 is a countable ordinal, but 8 may well be uncountable—the only 

obvious bound is 

8 < (2X°)+ = least cardinal > 2N°. 
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4C.8. Let r be an adequate pointclass closed under 3“, V“. Prove that 

8 = supremum{|<|: < is a wellordering on to, < in A}, 

S is a limit ordinal and for every T-norm ipona pointset P of type 0 in T, 

|cp|<S. -| 

4C.9. Prove that if T is an adequate pointclass, then for every T-norm (p 

on a pointset P in T, |<p|<8. 

If r is a Spector pointclass, then 8 is an ordinal of cofinality >(o and 

every pointset in T is the union of 8 sets in A. 

Hint. An ordinal A has cofinality >o> if for every increasing sequence 

£o<4;i < "• < A, limitn$n<\. This follows here from closure of A under 

V“- H 

This is obviously a “soft” version of part of 2F.2, with a very different 

proof. To get “hard” corollaries of this exercise we must establish a 

construction principle for the specific A and also get an estimate of the 

size of 8. Both of these often turn out to be very hard. 

The traditional notation for 8 and 8 when T is (or Tlf) is 8\ and 8‘. 

Similarly, for the relativized class X*(z) (or iT^z)), its ordinal is 8'n(z). (It 

is trivial to establish that the boldface class corresponding to Sh(z) isXi, 

so the boldface ordinal of ,£*(z) is again 8,\.) 

From the Kunen-Martin Theorem 2G.2 we know that 

8l=is\, Sf<N2. 

This is about all that can be proved about these ordinals in classical set 

theory, except for 4A.5, that 

8 \ = cofK = least nonrecursive ordinal. 

The next exercise gives an interesting generalization of the Bounded¬ 

ness Theorem 4A.4 to arbitrary II|-norms. 

4C.10. Suppose Pc0C is II] and <p : P—> Ordinals is a regular, n|-norm 

on P. Prove that P is Borel if and only if |<p|<K,. (The Boundedness 

Theorem for II{-norms.) 

Hint. Let A = |<p| and assume first that A <K. Now 

P= U€<A 

and each Pe is Borel by 4C.7, so P is a countable union of Borel sets and 

hence Borel. 
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Conversely, if P is Borel, then the prewellordering 

x<y «=> P(x) & P(y) & <p(x)<cp(y) 

of length A is easily Borel and hence A <Kj. “I 

This result is often useful in conjunction with the covering lemma 

which admits a general version. 

4C.11. Let r be a Spector pointclass, let <p be a regular T-norm on some 

Pc 9C in T-A, let Q be in —iT and assume that either 3C is of type 0 or T 

is closed under Vv. Prove that 

Q c p =>for some £< |<p|, QcP£ = {xeP: cp(x)<|}. 

Similarly, let T be a Spector pointclass closed under V \ let <p be a 

regular T-norm on some Pc 9C in T —A and let Q be in nT. Prove again 

that 

Q c p =» for some £< |<p|, Q c p€. 

In particular, if T is a Spector pointclass closed under V ', G c is 

universal in T and <p: G —>■ Ordinals is a T-norm on G, then a pointset 

P c 9C is in A if and only if there are irrationals e, e0 and some x0 e 0C such 

that G(e0, x0) and 

P = {x e 9C: G(e, x) & <p(e, x)<<p(e0, x0)} 

(The Covering Lemma; see Figure 4C.1). 

Hint. By contradiction, see the proof of 4A.4. —\ 

The next result is a simple but interesting extension of the A-Selection 

principle. 

4C.12. Let T be a Spector pointclass, suppose Pcocx'yx'y isinT with 

9C, ^ of type 0, assume that 

(Vx)(Vy)(3y')P(x, y, y')- 

Prove that for each fixed y0, there is a function f: 9C x w —> ‘y which is 

A-recursive and such that 

f(x, 0) = y0, 

(Vn)P(x, f{x, n), fix, n + 1)). 

(The Principle of f-dependent choices.) 
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Hint. By hypothesis and the zl-Selection principle 4B.5, there is a 

A -recursive g : 9C x such that (Vx)(Vy )P(x, y, g(x, y)). Define f by 

the recursion 

fix, 0) = y0, 

fix, n + l)=g(x, f(x, n)). 

Another simple but interesting application of the A -selection principle 

comes up in the next result. This is essentially a representation theorem 

for A sets which happen to be open—we will need it in the exercises of 

4F. 

4C.13. Let r be a Spector pointclass closed under V\ let G c= 9C be a 

pointset in A which is open. Prove that there is some irrational e in A 

such that 

P=Un N(X,e(n)) 

and for each n, 

N(9C, e(n))c p. 

(N(9C, s) is the closure of N(9C, s).) 
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In particular, under these hypotheses, P is semirecursive in some 

e g A(25) 

Hint. Put 

Q(x, s) <=* P(x) & x g Ns & (Vy )[y eNs=. P(y)]. 

Clearly Q is in T and (Vx e P)Os)Q(x, s), so by 4B.5, there is a A- 

recursive /:2C—>a> such that (Vx)O(x,/(x)). The set 

A = {s: (3x g P)[f(x) = s]} 

is in —iT and it is disjoint from 

B ={s: (3y^ P)[y g Ns]}, 

since for each xgP, Nf(j)cP. By the separation property for -iT, there is 

some C in A 

AcC, Bnc = 0. 

Now it is immediate that 

P= U {Ns: s g C}, 

and for each s e C, Ns c p. Take 

fs if sgC, 

e(s) lo if s£C. H 

The last exercise is an interesting generalization of the fact that Sj 

relations have countable rank whose proof uses Kleene’s recursion 

theorem for relations, 3H.3 as did the proof of 4C.2. 

4C.14. Let r be a Spector pointclass closed under V^, suppose < is a 

(strict) wellfounded relation on the perfect product space 9C which is in 

—ir, let G £ jVx 9C be a good universal set in T and let <p : G Ordinals 

be a T-norm on G. Then there exists a recursive function 

f: 9C—*AX9C 

which is order-preserving from < into <p, i.e. 

x < y -*■ f(x), /(y) g G & <p(/(x)) < <p(/(y)). 

It follows that if cp is any regular T-norm on the good universal set G, 
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then 

| <p | = 8. 

(Moschovakis [1970].) 

Hint. Put 

0(a, x) «=> (Vy)[y <x =* (a, y) <*(a, x)] 

so that O is in r and by 3H.3 there is a recursive e*ejV satisfying 

Q(e*,x)^G(e*, x). 

Put 

/(x) = (e*,x) 

and check by a trivial induction that if x is in the field of <, then 

/(x)e G & (Vy)[y<x - «p(/(y))<<p(/(x))]. 

Applying this to each relativized pointclass r(w), we show that |<p| 

exceeds the rank of every strict, wellfounded relation in —ir on 9C, whence 

|(p| = 5 follows immediately by the fact that every two perfect product 

spaces are A [-isomorphic and 4C.9. —| 

4D. The parametrization theorem for A H 9C 

Most of the results in 4C follow quite directly from the definitions and 

depend on only few of the axioms for a Spector pointclass. Here we will 

consider somewhat deeper propositions whose proofs make essential use 

of the full set of axioms, including a>-parametrization. 

Recall that a partial function 

/:9C^3) 

is r-recursive if Domain(f) is in T and / is T-recursive on its domain; if T 

is closed under &, this amounts to saying that the relation 

Gf(x, s) «=> f(x)i & /(x) e Ns 

is in r. These partial functions are very useful when T is a Spector 

pointclass. We summarize some of their properties in the next result. 

4D.1. Theorem. Let T be a Spector pointclass, Zef /: 9C —s- Wf be a T- 

recursive partial function. 
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(i) The relations 

P(x)<=>/(x)|, 

0(x, s) <=» f(x)l & fix) £ Ns, 

R(x, y)**f(x) = y, 

<=> f(x)l & f(x) = y, 

S(x, y)«=»/(x)J,&/(x) Z y, 

are all in T. 

(ii) If Os'y is in T and 

R(x) <=> /(x) 1 & 0(/(x)) 

(hen R is in T. 

iiii) For each x e 9C, i//(x)i, (hen /(x)e zi(x), i.e. f(x) is A(x)-recursive. 

Proof. The set {(y, s):ys£Ns} is J7” and hence in T and the partial 

function (x, s) » if(x), s) is easily T-recursive, so by the substitution prop¬ 

erty there is some Q*(x,) in F such that 

fix) l [Q*(x, s) <=> fix) £ NJ; 

thus 

fix) i & fix) £ Ns <=> /(x) i & Q*(x, s) 

and this is in T. 

The other claims are easier: 

fix) = y «=» (Vs){y e Ns =^[/(x)|&/(x)eNs]}, 

/(x)|& /(x) * y 4=> (3s){[/(x)|& /(x)e Ns] & y £NS}. 

(ii) Given O £ 3) in T, choose Q* c 9C in T by the substitution property 

so that 

f(x)i^[Q*(x)^Qif(x))] 

and notice that 

Rix)^>fix)i&Q*(x). 

(iii) Use 3G.5. —\ 

We have been using and will continue to use the handy abbreviation 

y e A <=> y is -recursive 

^TGy) is in z\, 
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and similarly for A(x). It is also convenient for any pointclass A to put 

An9C = {xe9C:x is A-recursive}. 

For example D (R = A1,' Pi (R = the set of recursive real numbers. 

Using partial functions we can formulate simply an easy to prove but 

very powerful parametrization theorem for the points in a Spector point- 

class. 

4D.2. The Parametrization Theorem for the Points in A, A(x). Let L 

be a Spector pointclass. For each product space T|, there is a T-recursive 

partial function 

d: a; —a 

such that for every y e % 

y e A <=> for some i, d(i)l & d(i) = y. 

Similarly, for each 9C, ‘y there is a r-recursive partial function 

d:aiX9C—>0/ 

such that for all x, y, 

y e A(x) <=> for some i, d(i, x)| & d(i, x) = y.<171 

Proof. Take first the case T| = Af. We prove the second assertion, the first 

being simpler. 

Choose a set GecoX0Cxa>Xw which is universal for rKSCXoiXoi) 

and let G*^G be in T and uniformize G by the Easy Uniformization 

Theorem 4B.4. Here we are thinking of G as a subset of (a> x 9C x to) x a>, 
i.e. we uniformize only on the last variable. Now put 

d(i, x)}«=» (Vn)(3m)G*(i, x, n, m) 

and if d(i, x)f, let 

d(i, x) = a 

where for all n, m 

a(n)= m «=> G*(i, x, n, m). 

We omit the trivial computation which establishes that d is in T. From this 

it follows that each d(i, x) is in A(x) by 4D.1. Conversely, if aeA(x), 



220 Structure theory for pointclasses [4D.5 

choose i so that 

a(n) = m <=> G(i, x, n, m) 

so that 

a(n) = m <=> G*(i, x, n, m) 

and hence d(i, x)j& d(i, x) = a. 

If ^ is of type 0, the result is trivial. Otherwise, there is a Abijection 

tt : jr 

with A\ inverse tt~' by 3E.7, so let d as above parametrize the A(x) 

points in Jf and define d* : x 9C —» 3/ by 

d*(i, x) = 7r(d(i, x)); 

clearly 

d*(i, x)i & d*(i, x) e Ns <=> d(i, x) j & 7r(d(i, x)) e Ns 

so d* is T-recursive. In particular, each d*(i, x) is in A(i, x) = zi(x). 

Conversely, if y is in zi(x), then a = 7r-1(y) is in zi(x) since is A \ and 

hence T-recursive, hence a =d(i, x) for some i and y = n(a) = d*(i, x). 

—\ 

There are many interesting corollaries of this theorem and we will leave 

most of them for the exercises. Two deserve special billing. 

4D.3. The Theorem on Restricted Quantification (Kleene 

[1959b]<18)). Let T be a Spector pointclass, assume that O^SCxy is in T 

and put 

P(x) <=> (3y e T)Q(x, y). 

Then P is in T. 

Similarly, if Qg^SCxZx'y is in T and 

P(x, z) «=* (3y eA(z))Q(x, z, y), 

then P is in T. 

Proof. Taking the second case, 

P(x, z) <=> (3i){d(i, z)i & Q(x, z, d(i, z))}, 

so P is in T by (ii) of 4D. 1. —\ 
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The next result gives a very powerful method for uniformizing Borel 

sets by Borel sets in the special circumstances when this is possible. 

4D.4. The T-Uniformization Criterion. Let T be a Spector pointclass 

closed under Vv, let PcgcxTJ be in A and assume that each section 

Px ={y: P(x, y)} is either 0 or contains some points in Z\(x)nTj, i.e. 

(*) (3y)P(x, y) «=^> (3y e T(x))P(x, y). 

Then the projection 3VP is in A and P can be uniformized by some P* in 

4. 

Conversely, if P c= 9C x is in A and can be uniformized by some P* in 

A, then each non-empty section Px has some point in T(x).(24) 

Proof. Assume (*) and let Q = 3^P, i.e. 

Q(x)«=> (3y)P(x, y) 

^(3y gT(x))P(x, y). 

Clearly Q is in A by closure of —iT under 3 v and 4D.3. 

Now put 
R(x, i) «=> P(x, d(i, x)) 

where d parametrizes T(x)flfy by 4D.2. By the A selection principle 

4B.5, since (Vx e Q)(3i)R(x, i), there must be some g : 0C —>• to in A such 

that (Vx g Q)jR(x, g(x)). Put 

P*(x, y) O(x) & d(g(x), x) = y. 

It is immediate that P* uniformizes P and that it is in A follows by 4D.1, 

since 

P*(x, y) <s=* Q(x) & (3i)[d(i, x)|& d(i, x) = y & g(x) = /'], 

~iP*(x, y) <=>-iQ(x)v(3i)[d(i, x)|& d(i, x)^ y & g(x) = i]. 

For the converse, suppose P* c= P is in A and uniformizes P and assume 

that (3y)P(x, y). Then there is a unique y* such that P*(x, y*) and 

y*GNs^(3y)[P*(x,y)&yGNs] 

«=> (Vy)[P*(x, y) => y g Ns], 

so y* G T(x). H 

We leave the application of this result for the exercises of this and the 

next two sections. 
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Exercises 

4D.5. Let r be a Spector pointclass. Prove that a partial function 

/: 9Co> is T-recursive exactly when its graph, {(x, i) :f(x)l & f(x) = /} is 

in r. Similarly, a partial function /: 0C —> Af is /"-recursive exactly when the 

associated /*: 9C x <y —» to is T-recursive, where 

f*(x, n) = w f(x)l & /(x)(n) = w. 

Prove also that the collection of F-recursive partial functions is closed 

under composition. 

Hint. For the last assertion, compute: 

/(g(x))j & /(g(x))eNs <=> (3y e 4(x))[g(x)J, & g(x) = y 

&f(y)l&f(y)eNs]. 

Use 4D.1 and 4D.3. H 

4D.6. Let Pc0C x be a pointset in some Spector pointclass I . Prove 

that there exists a T-recursive partial function 

such that 

(i) f(x)[ ^(3y eZ\(x))P(x, y), 

(ii) (3y eA(x))P(x, y) ==► P(x, /(x)). 

(The Strong A-Selection Principle.) 

Hint. Put 

Q(x, i) «=> P(x, d(i, x)) 

where d parametrizes by 4D.2 and let Q*cQ uniformize Q in 

r by 4B.4. Now Q‘ is the graph of a T-recursive partial function 

g: 9C —*■ (o by 4D.5 and the partial function we need is given by 

f(x) = d(g(x), x). —I 

4D.7. Let r be a Spector pointclass closed under V Y, let P^9C be in A 

and assume that f:3C^<y is A-recursive and one-to-one on P. Prove that 

f[P] is in A and that there is a A -recursive function g: hj —» 9C which 

agrees with the inverse function f"1 on f[P], 

Hint. If P(x) & f(x) = y, then x is the unique point in P whose image is 
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y; hence 

s e Tl(x) «=* x e Ns 

<=» (3x')[/(x') = y & P(x') & x' e NJ 

<=> (Vx')Lf(x') ^ y v -iP(x') vx'e NJ 

and Tt (x) is in A(y), i.e. xeA(y). Hence 

ye/[P]^(3x)[P(x)&y=/(x)] 

<=» (3x e A(y))[P(x) & y = /(x)] 

and f[P] is in A by closure of -1 r under 3V and 4D.3. 

To get the inverse function, notice that (Vy e/[P])(3x e4(y))[f(x) = y] 

and apply the strong A -selection principle, 4D.6. H 

Taking r=n\, this is a lightface version of 2E.7 with a very different 

proof. The classical result follows easily from this, by “relativization.” 

4D.8. Let r be a Spector pointclass closed under Vj let Pc9C be in A 

and assume that f:9C—>y is A-measurable and one-to-one on P. Prove 

that f[P] is in A and there is a A-measurable function g: Tf —» 9C which 

agrees with the inverse on f[P]. 

Hint. If P is in A, then P is in P(e0) and in —1lT(£1) for some e0, £j in Af, 

so easily P is in A(e) for some e, say with (e)0 = e0, (s)1 = £j. Similarly, if 

f is A-measurable, then f is A(e')-recursive for any e' such that 

{(x, s): f(x)eNs} is in A(e'). Thus we can find some e* such that P is in 

A(e*) and f is A(e*)-recursive and apply 4D.7 to T* = r(e*); it follows 

that /[P] is in 4(e*)cA and similarly for the inverse. —\ 

This technique of obtaining boldface results from lightface, finer 

theorems is very easy. We will not always bother to put down the 

boldface consequences, unless they give well-known classical theorems 

and we want them to stand out. 

It is worth putting down for the record the characterization of A \ which 

follows from 4D.7 and 4A.7. 

4D.9. Prove that a set Q c 9C is A j if and only if Q is the recursive, 

injective image of some 77i set P £ A. H 

Before using 4D.4 to establish some interesting uniformization results, 

we point out that not every Borel set can be uniformized by a Borel set. 

First a lemma which is interesting in its own right. 
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4D.10. Prove that there is a 77? set AcjV, such that A ^ 0 but A has no 

A 5-recursive member; similarly, for each x, there is a 77?(x) set As; A, 

A 5^0, such that A has no A {-recursive member. (Kleene [ 1955c].<19,20)) 

Infer that not every 17" set A c A is a recursive image of A. 

Hint. Towards a contradiction, assume that every non-empty 77? set 

has a member in A\ and let P(n) be a X] relation on a> which is not 77]. 

There is a 77" set Q(n, a) such that 

P(n) <=> (3a)Q(n, a) 

and by our assumption, we then have 

P(n) <=> (3a e zl })Q(n, a) 

which implies that P is in 77] by 4D.3. 

If A = /[A] with a recursive /, then A would have recursive members, 

namely any f(a) with recursive a. A 

4D.11. Prove that there is a 77',’ set Pc Ax A which cannot be unifor- 

mized by any X\ set.<19 20) 

Hint. Assume the contrary and let G(n, e, a) be a universal 77" subset 

of wXAxA. Since wXA is recursively homeomorphic with A, the 

assumption implies that G can be uniformized by some £{ set G*cG, 

say G* is £](e*) for a fixed e*. Now every 77?(e*) set AcJ is of the 

form 

A = {a: G(n, e*, a)} 

with a fixed n; if A^0, then (3a)G(n, e*, a), so A contains the unique 

a* such that G*(n, e*, a*). But this a* is in zlj(e*), since 

a*(t) = w <=^ (3a)[G*(n, e*, a) & (t) = w] 

«=» (Va)[G*(n, e*, a) => a(t) = w], 

contradicting 4D. 10. H 

Nevertheless, there are many special circumstances in which Borel sets 

can be uniformized by Borel sets. The next exercise gives a simple 

topological condition which is often easy to verify and implies the more 

subtle definability condition of 4D.4. 

4D. 12. Let r be a Spector pointclass closed under V v, let P c 0C x be in 

A and assume that for each x, the section Px has at least one isolated 
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point—e.g. it may be that each Px is finite, or countable and closed. Prove 

that P can be uniformized by some P* in A. Infer the same result for P in 
A, with P* in A. 

Hint. If y is isolated in Px, then for some s, Px HNS = {y}, so that the 

singleton {y} is in A(x) and y is easily A(x)-recursive. For the second 

assertion recall that each P in A is in some A(e*) and use the result on 

the Spector pointclass r(e *)• H 

In 4F we will improve this result substantially by showing that it is 

enough to assume each Px to be a countable union of compact sets. 

The next exercise is simple but amusing. 

4D.13. Prove that if Pc(R" X(Rm is a convex Borel set, then the projec¬ 

tion 
Q ={xe(R": (3y G(Rm)P(x, y)} 

is Borel and P can be uniformized by a Borel set. 

Hint. For m — 1, each section Px is either a singleton or contains a 

whole line segment. Use induction on m. -H 

We now establish some interesting definability results about A IT9C. 

4D.14. Prove that if T is a Spector pointclass, then for each 9C the set 

AH DC is in r. Similarly, the relation {(x, y): x e A(y)} is in T. (Upper 

classification of A.)(18) 

Hint, x e A <=> (3i){d(i) | & d(t) = x}. —I 

4D.15. Let r be a Spector pointclass and let d: —» DC be a P-recursive 

partial function which parametrizes AHDC = {xeDC:x is A-recursive}. 

Prove that there is a /"-recursive partial function 

c: DC —■> (o 

such that 

c(x)j «=» X G A 

and for x e A, d(c(x)) = x. 

Hint. Use the Easy Uniformization Theorem 4B.4 or 4D.6. H 

4D.16. Prove that if T is a Spector pointclass closed under either V v or 

3 V, then for every perfect product space DC the set A n DC is not in —i T. 

(Lower classification of A.)(18) 
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In particular, zljClOC is not SJ and A^HSC. is n°t n|. 

Hint. If 77:jV>^9C is a A j isomorphism, then clearly 

xe4« it '(x)e A, 

so it is enough to prove the result for J{. For simplicity in notation put 

2 = A njf. 

Case 1. T is closed under Vv. Let 

jeJ o(3«)[ae D&c(a) = /] 

^ (3t)[d(t)l & c(d(i)) = /], 

so J is in r. Also 

j<£J <=> (Va)[«^ 2>v[c(a)| & c(a) ^;']], 

so that if 3) were in A, then J would be in A. Then the irrational 

fd(/)(/) + lif j eJ, 

to if j£J, 

would be in A and different from all d(/). 

Case 2. T is closed under 3'C Let 

iel d(i)l 

and let cp be a T-norm on I. Put 

P(a)«^(Vi)[a(i) = 0-* i6 I] 

& (Vi)(V/)[(a(/) = 0 & i <fj) =» a(i) = 0], 

Clearly P is in T and 

P(a) <=* {i: a(i) = 0} = Iv(3/)[/ e I & {i: a(i) = 0} = {i: <p(i)<cp(/)}]. 

Since I<£A, or else we get a contradiction as before, we have 

i£ I <=> (3a)[a^ 3) & P(a) & a(i) ^ 0] 

which proves I <= A and yields a contradiction. H 

The definition of a Spector pointclass was a bit complicated, because it 

involved the subtle substitution property. We give here an elegant charac¬ 

terization of Spector pointclasses in terms of a closure property much 

simpler than substitution. 
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4D.17. Let r be a .S-pointclass closed under V“, o>-parametrized and 

normed. Prove that T is a Spector pointclass if and only if it satisfies the 

following property of closure under restricted quantification: if Qc 
0C x Z x 'y is in r and 

P(x, z) «=> (3y e 4(z))Q(x, z, y), 

then P is also in P. (Kechris.) 

Hint. Spector pointclasses are closed under restricted quantification by 

4D.3. 

Conversely, to establish the substitution property for some P satisfying 

the hypotheses above, suppose Q c <y is in P and /: 3C —^ ‘Lf is computed 

on its domain by some Pc^xw in P. Put 

Q*(x) <=* (3y g 4(x))[Q(y) & (Vs)[y g iVs =» P(x, s)]]; 

clearly Q* is in P and 

f(x)i & f(x) eA(x) => [Q*(x) ^ Q(/(x))]. 

Thus to complete the proof it will be sufficient to check that under the 

conditions on P, 
f(x)l f(x)e A(x). 

Suppose /(x) = y and put 

S(n, s) <=> P(x, s) & radius(Ns) < 2~n. 

Clearly S is in P(x), which is adequate, closed under 3“, Vl° and normed. 

Also (Vn)(3s)S(n, s), so by the zA-selection principle 4B.5 there is a 

zl(x)-recursive function g: o> —» w such that (Vn)S(n, g(n)). It is now 

immediate that 

y G Ns^> (3n)[y G N(% g(n)) & N(% g(n)) c Nj 

so that y G zi(x). H 

Unfortunately this elegant characterization is not useful in practice 

since it is usually much easier to establish that a given P satisfies the 

substitution property rather than prove directly closure under restricted 

quantification. 

4E. The uniformization theorem for // J, %\ <ig_22) 

We now proceed to establish one of the central results in the subject, 

that 17} sets can be uniformized by 77} sets. The key tool for the proof is 

the notion of a scale. 
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A scale on a pointset P is a sequence <p = {cfvJ„e<0 of norms on P such 

that the following limit condition holds: if x0, x1, x2,... are in P and 

limitiXj = x and if for each n, the sequence of ordinals 

<Pn(xo), <Pn(*i)> cpn(x2),... 

is ultimately constant, say 

<Pn(Xi) = K 

for all large i, then P(x) and for every n, 

<pn(x) — K- 

Thus a scale is just a semiscale (in the sense of 2B) which satisfies an 

additional lower semicontinuity property. 

As with norms, there are many trivial scales on a pointset, at least if we 

use the axiom of choice: choose a one-to-one norm cp :P k and set for 

each n, cpn(x) = cp(x). Again as with norms, we get a nontrivial concept by 

imposing definability conditions. 

Let r be a pointclass and cp = {<p,t}new a scale on some set P. We call <p a 

r-scale if there are relations Sr(n, x, y), Spin, x, y) in T and —if respec¬ 

tively such that for every y, 

(*) P(y) => (Vn)(Vx){[P(x) & <pn(x)<<pn(y)] «=> Sr(n, x, y) 

** Sr(n, x, y)}. 

In other words, <p is a T-scale if all the norms cpn are T-norms, uniformly 

in n. 

It is trivial to verify as in 4B.1 that if T is adequate and cp is a scale on 

some P in T, then ip is a T-scale exactly when the relations 

jR(n, x, y)<=>x<* y, 

S(n, x, y)<=>x<* y, 

are in T. 

A pointclass T is scaled or has the scale property if every pointset in T 

admits a T-scale. It is often sufficient for our purposes to prove that 

pointsets of type 1 in T admit T-scales, whether or not the stronger scale 

property holds in T (see 4E.6). 

4E.1. Theorem. Every II\ pointset of type 1 admits a n\-scale; similarly, 

every n,' pointset of type 1 admits a nj-sca/e. 
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Proof. Let us first develop a bit of notation. If a codes a linear ordering 

<a, i.e. a 6 LO as we defined this in 4A, then for every integer n put 

—= {(s, t): s<at &t<an} 

= {(s, t): a((s, t)) = 1 & a((t, n» = 1 

& a((n, t))=£ 1}. 

Clearly <a^n is also a linear ordering—it is the initial segment of <a with 

top n, if n is in the field of <a and it is the empty relation otherwise. If 

<a is a wellordering with rank function p, then for each n, <a(n is a 

wellordering and 

p(n) = \<Jn\. 

In particular, for n, m in the field of <a, 

Given a pointset P c 0C of type 1 in J7], choose a recursive /: SC —> AC by 

4A.3 such that for every x, /(x)eLO and 

P(x) <=>/(x)e WO. 

Let 

(£ v) *<£ v) 

be an order-preserving map of xK, (ordered lexicographically) into the 

ordinals, i.e. 

(£, — v') <=>[£< £']v[£ = (■ & Tj — tj;]. 

Finally, for x e P put 

CPnW = <l^f(x)U^f(x)t'n|). 

We claim that ^>={<pn}neto is a 77]-scale on P. 

To prove this, assume that limitixi =x with x0, x1,... in P and that for 

each n and all large i, 

<Pn(Xj) = <A, A„>. 

This implies immediately that for each n and all large i, 

l-/wM = An- 

The key to the proof is the fact that f is continuous, being recursive. 

Let us first use this to prove that the mapping 

n » A, 
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is order-preserving from <f(x) into the ordinals. This holds because 

n <fM m => f(x)((n, m» = 1 & f(x)((m, n» f 1 

=> for all large i, /(x;)((n, m)) = 1 & /(Xj)((m, n)) ^ 1 

(by the continuity of /) 

=> for all large i, n </(Xj) m 

=*•for all large i, |<f(Xj)(n|<| <f(Xi)(m| 

' A n ^ Am, 

where the last implication is justified since for all large i, |<f(X|)(n| = An. 

Since n An is order-preserving, </(x) is a wellordering, i.e. /(x)e WO 

and we know P(x). The same fact implies that for every n, 

I —f(x) 

since | </(x) \ n| is the rank of n in >f(x) and every order-preserving map 

dominates the rank function by 2G.7. Similarly, 

I —f(x)l — K 

because 

I %(x)l = supremumi | ^f(x)(n|: new} 

<supremum{A„: n£w}<A, 

the last inequality following from the fact that for each n and all large t, 

= I — f(x,)M — I —f(x,)l = A. 

Thus 

<Pn(*) = <l%(x)U^/(x)l“n|)^<A, An) 

and <p is a scale on P. 

To show that <p is a /J }-scale, find (easily) a recursive g such that for 

a e LO, 

g(a,n) (Y T n, 

and put 

Sn(n, x, y) o/(x)<n/(y) & [n(f(y)<s/(x))v g(f(x), n)<ng(f(y), n)], 

Sx(n, x, y) o/(x)<x/(y) & [n(/(y)<n/(x))vg(/(x), n)<xg(f(y), n)], 

where <n, <v are from 4A.2. —| 
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As with semiscales in the proof of the Kunen-Martin Theorem, here 

too we often need scales with very special properties. A scale <p = {<p„}„ea) 

on Pc 9C is very good if the following two conditions hold: 

(1) If x0, x1;... are in P and for each n and all large i, <pn(Xj) = A„, then 

there exists some x e P such that limits x{=x (and hence for each n, 

<Pn (x)< A„). 

(2) If X, y are in P and <pn(x) < <p„ (y), then for each i < n, cp* (x) < cpf (y). 

Condition (1) implies that <p is a good semiscale in the sense of 2G. 

4E.2. Lemma. Let T be an adequate pointclass. If a pointset P of type 1 

admits a T-scale, then P admits a very good T-scale. 

Proof. Assume at first that Pc/ is a set of irrationals and let <// = 

{‘/'nlneo, be a P-scale on P. Choose A >a> and large enough so that all the 

norms i//„ are into A. For each n, wellorder the sequences of length 2n of 

the form (f0, k0, kl5..., £n, kn) (£ < A, k, e to) lexicographically, 

(£o> kg,..., ^n, kn ) ^ (Po? ^0****> hn? ^n) 

<=* £o < ho 

V [& = T)o & k0 < /o] 

V [& = T)o & k0 = (0 & ^ hi] 

v ••• 

v[£0 = ho&-"&£n = hn &kn<ln] 

and let 

k0,..., £n, kn) (£0, k0,..., £n, kn) 

be an order-preserving map of this ordering into the ordinals. Finally put 

cpn(a) = (1ko(a), a(0), ^(a), a( 1),..., ik„(a), a(n)). 

We will show that <p ={cpn}neECO is a very good T-scale on P. 

Suppose first that a0, alv.. are in P and for each n and all large i, 

<pn(«i) is constant, 

cpn(a,) = (if0(ai), aCj(0),..., ik„ (<*;), af(n)) 

= <£S, k{Cn,K). 

Since by the definition 
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it follows that 

is independent of n and 

limits* at = a = (k0, 

Similarly, 

47 = ^(oO O' - w, all large i), 

so that 

I" = 

is independent of n and for all large i, 

Since i/j is a scale, we thus have a e P and for each /, from this 

follows immediately that for each n, 

—(Co; ^0* k 1,..., kn) . 

It is also immediate from the definition that for x, y in P, 

cpn(x)<<pn(y)=>for each i<n, <pi(x)<<pi(y), 

so that ip is a very good scale. 

To prove that <p is a T-scale, let 

a~4,.(3 <s=>a<*(3 & 13 <* a 

and put 

R(n, a, (3) ^a<$o/3 

v [a ~4,0P & a(0)</3(0)] 

v ... 

v[a ~*0P & «(0) = P(0) & ■•■ & a —^P & a(n)</3(n)] 

<=> (3i n){(V/ < i)[a -^P & a(/) = p(j)] 

&[a <*P v[a~^.|3 & a(i)< |8(/)] 

v[i = n & a ~4,.p & a(i)< |3(/)]]}. 

Clearly R is in T and 

a <*n|3 <=> R(n, a, 0), 

so <p is a T-scale, since the argument for <* is similar. 
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Finally, if Q c 9C is of type 1 with 0C ^ jV, let 

7T :JV>^9C 

be a recursive isomorphism, let 

P = 7T-1[0] 

and verify easily the following two propositions: if ip is a T-scale of Q, 

then the sequence 

i/f*(a) = i//n(7ra) 

is a r-scale on P and if <p is a very good T-scale on P, then the sequence 

<p*(x) = cpn(7r-1x) 

is a very good T-scale on Q. —\ 

There are many interesting results about scales and we will look at 

some of them in the exercises and again in Chapter 6. Here we concen¬ 

trate on the relation between scales and uniformization. 

4E.3. The Uniformization Lemma. If T is adequate, 9C is of type 0 or 1 

and admits a T-scale, then P can be uniformized by some P* in 

vxr. 

Proof. By 4E.2, let <p ={<pn}nea, be a very good T-scale on P, let 

R(n, x, a) <=> (Vj3)[(x, a)<* (x, /3)] 

and put 

P*(x, a) <=> (Vn)R(n, x, a). 

It is sufficient to show that P* uniformizes P, since R is obviously in VT 

and hence P* is in V’T. 

To begin with, clearly 

P*(x, a) => P(x, a), 

since 

P*(x, a) => (x, a)<*,(x, o') 

=> P(x, a). 

Assume now that for some fixed x, (3a)P(x, a); we must show that in 

this case there is exactly one a such that P*(x, a). 
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a 

-- % - 

Figure 4E.1. Uniformizing via a very good scale. 

Keeping x fixed, put 

= infimum{cpn(x, a): P(x, a)} 

and let (see Figure 4E.1) 

A0 = {«: P(x, a)} 

An+1 = {a: P(x, a) & cpn(x, a) = An} 

= {a: (V|3)[(x, a)<iPn(x, j3)]} 

= {a: R(n, x, a)}. 

Clearly each An is non-empty and 

P*(x, «)<=*• An [«e A„], 

so it is enough to prove that flu Ai is a singleton. 

Notice that 

A02A, 

and by the second condition on a very good scale, 

(V0)[(x, a) —<pn+J (x, 0)] => (V/3)[(x, <x) —Vn(x, 0)], 
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so that in fact 

A02A, 3A23... . 

Choose now some a, e Ah one for each i. We then have <pn(x, at) = A„ for 

each i>n, so by the first condition on a very good scale, there is some a 

such that 

P(x, a), and for each n, 

a = limiti^ at. 

<PnU. ac)<K\ 

by the definition of A„ then. 

<Pn(x, a) = An, 

so aef|«A„ and this intersection is non-empty. Moreover, if also 

0 G Hn An, then the sequence 

“o. 0, «!, 0, a2, 0,... = y0, y2, y3„.. 

has the property that for each n and all large i, cpn(x, y;) is constant, so 

that limiti7i must converge, presumably both to 0 and to a = 

limiti^, ah so that 0 = «. Hence f|„ An is the singleton {a}, which is what 

we needed to show. —| 

A pointclass T has the uniformization property if every Pc0Cx y in r 
can be uniformized by some P* in T. 

4E.4. The Novikov-Kondo-Addison Uniformization Theorem. (Kondo 

[1938].(19_22)) The pointclasses I7j, nj, X\, X2 all have the uniformization 

property. 

Proof. Suppose first that P £ 9C x 'y is in /Tj. If ^ is of type 0, the result 

follows from 4B.4. If not, let 

77 : A >-» 'y 

be a 4| isomorphism of Ji with % let 

<j : 9C* >-»■ 9C 

be a A * isomorphism of 0C with some space 9C* of type 0 or 1 and define 
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Q £ 9C* x A by 

Q(x, a) <=> P(cr(x), ir(a)). 

Now O is 77} and by 4E.3 we can find a 77} set q*c0C*xA which 

uniformizes Q. It is immediate that the 77} set 

P*(x,y)^OV1(x),7T-1(y)) 

uniformizes P. 

The argument for n} is identical. 
If P c 9C x is in X\, then 

P(x, y) «=> (3a)Q(x, y,a) 

with Q in 77}. Applying the result about 77} to Q c: 9C x (<y x A), we get a 

771 set Q* c 9C x (‘y x A) which uniformizes Q. Then 

P*(x, y) <=» (3a)Q*(x, y, a) 

is easily seen to uniformize P. H 

We will see in Chapter 5 that this is just about the strongest uniformi- 

zation theorem which can be proved in Zermelo-Fraenkel set theory; it is 

consistent with the axioms of Zermelo-Fraenkel (including choice) that 

there exists a YI\ set which cannot be uniformized by any “definable” 

set—in particular, it cannot be uniformized by any projective set. 

Among the many important consequences of the uniformization 

theorem, perhaps the most significant is the basis result for .£2 which we 
now explain. 

A set of points (in various spaces) (B is called a basis for a pointclass T, 
if every non-empty set in T has a member in (B, i.e. for Pc 9C in T, 

(3x)P(x) <=> (3.x e (B)P(x). 

We also say that a pointclass A is a basis for T if the set of A-recursive 
points is a basis for 7\ i.e. for P in T, 

(3.x)P(x) <=» (3x e A)P(x). 

In 4D10 we proved that A \ is not a basis for 77?, and hence it is not a 
basis for X\ or 77J. 

4E.5. The Basis Theorem For X\. The pointclass A\ is a basis for XI and 

more generally, for each x, A\{x) is a basis for ^i(x). Thus, if Pc 9C x <y is 
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in X\, then 

(3y)P(x,y)^(3ys^(x))P(x,y). 

Proof. The second assertion immediately implies the first. To prove it, 

given Pcgcx'y, choose P^cSCx^j in X\ which uniformizes P. If 

(3y)P(x, y), then there exists exactly one y which satisfies P*(x, y), call it 

y*; clearly 
y*eNs~(3y)[P*(x,y)&yeNs] 

<=> (Vy)[P*(x, y) =* y gNs], 

so y* is ^(xj-recursive. —I 

Again this result is best possible in Zermelo-Fraenkel set theory, i.e. 

we cannot prove in this theory that every non-empty Til set must contain 

a “definable” element. 

Exercises 

4E.6. Suppose T is an adequate pointclass closed under substitution of A \ 

functions. Prove that if every pointset of type 1 in T admits a T-scale, 

then every pointset in T admits a very good T-scale. 

In particular, 77] and n[ are scaled. 

Hint. Suppose Pg 9C is given, P in F. Using 3E.6, let 

rr : Af 9C 

be a recursive surjection of A onto 9C such that for some 77V set A £ A, 

7t[A] = 9C and vf(x) = x for every xe9C, with a A\ function such that 

/[0C] = A. Put 
Q(a) <=» a e A & P(7r(a)), 

so Q is in r and by hypothesis and 4E.2, Q admits a very good T-scale 

$ = {*ltn}neco- On P set 
(Pn(x) = lpn(f(x)) 

and show that <p is a very good T-scale. The key point is the continuity of 

77; this implies that if x0, xlv.. are in P and =/(xi), then limil^x\ = 

limiti^oo- 77(0:;) = 77(0;) with 77(a) e P. A 

The analog of 4B.3 also holds for scales, i.e. if T is scaled, adequate and 

closed under V^, then 3PT is also scaled. There is a bit of computation to 

this and we will postpone it until Chapter 6 when we will need it. 
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The next result is implicit in the proof of 4E.4, but we put it down for 

the record. 

4E.7. Prove that if T is adequate and closed under substitution of A J 

functions and V v and if every pointset of type 1 in T admits a T-scale, 

then both T and 3AT have the uniformization property. 

Every non-empty X\ set has a A\ member by 4E.5 but need not have a 

A\ member by 4D.10. The correct basis for is a small part of A\, by 

the next result. 

With each relation P^'X = cok on a space of type 0 we associate its 

contracted characteristic function aP, 

1 if P((n)u..., (n)k), 

0 if —iP((n)l5..., (n)k). 

We call a set, function or point recursive in P if it is recursive in aP. Notice 

that we only define these notions here for P of type 0—the correct concept 

of recursion relative to an arbitrary pointset is quite complicated and we 

will not go into it now. 

4E.8. Prove that there is a fixed X\ set P of type 0 such that {x: x is 

recursive in P} is a basis for X\. (Kleene's Basis Theorem, Kleene 

[L955b].(23)) 

Hint. Suppose 

Q(ot) **(3p)(Vt)R(d(t), p(t)) 

is a typical X\ set of irrationals with R recursive. As usually, we can think 

of Q as the projection 

Any infinite branch of this tree will determine an element of Q, so our 

aim is to find a definable infinite branch. The basic idea of the proof is 

that the leftmost infinite branch (see Figure 4E.2) of T is recursive in 

some X[ set P of type 0. 

Recall the function u*v from *18 of 3A.6 and suppose that we can 

find integers a0, b0, a1? bu... such that for every n. 
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4 

Figure 4E.2. The leftmost infinite branch. 

choosing a, (3 to witness this, and taking t = 0, we have in particular 

(Vn)R«a0,..., «„_!>, (b0,..., &„_!», 

i.e. with a(n) = an, (3(n) = bn now, we have 

(Vn)R(a(n), (3(n)), 

so a e Q. 

It is clear that (*) simply asserts that an infinite branch of T starts with 

the finite sequence (a0, b0,..., an_l5 bn_,). We now choose for each n the 

leftmost finite sequence which is the beginning of some infinite branch. 

To be precise, put 

P(u, v) «=» (3a)(3(3)(Vt)R(u*a(t), v *(3(t)); 

clearly P is X\. It is easy to verify that 

P(u, v) => (Bn)(3m)P(u*(n), v*(m)). 

Thus we can define a = (a0, aj,...), 0 = (b0, as above, recursive in P, 
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by the simple recursion 

a(t) = (nsP(a(t)*((s)0), /3(0*<(s)i)))o, 

P(t) = (ixsP(a(t)*((s)0), 

This shows how to assign to each X\ set Q <= jy a X\ set P of type 0 

such that {x: x is recursive in P} is a basis for the single pointset Q. To get 

a single P so that {x: x is recursive in P} is a basis for X\ subsets of N, 

apply this procedure to some which is universal for 

Moreover, to see that this yields a basis for X\, use the fact that for every 

9C there is a recursive surjection it : N -» 9C and that if a is recursive in P 

and it is recursive, then 7r(a) is recursive in P. —I 

It should be quite obvious by now that every basis result implies some 

uniformization result, at least implicity, as a corollary of its proof. The 

uniformization theorem that comes out of the preceding exercise is a bit 

messy, but it is worth putting down because it implies that we can always 

find measurable uniformizations for X{ sets. 

4E.9. Prove that every X] set Q c= 9C x can be uniformized by some 

Q*c Q which can be constructed from X! and n{ sets using the opera¬ 

tions &, v, 3“, V“. 

Infer that if Q c: 9C x ^ is X} and D = 3^Q is the projection of Q on 0C, 

then we can find a function which is Baire-measurable, abso¬ 

lutely measurable and such that (Vx e D)Q(x, f(x)). (The von Neumann 

Selection Theorem, von Neumann [1949].<23)) 

Hint. It is enough to prove the result for 9C with 9C of type 1, since 

the smallest pointclass containing X} and nl and closed under &, v, 3“, 
V“ is easily invariant under Borel isomorphisms. 

Suppose then that 

Q(x, «) ~ (3|3)(Vf)P(x, a(t), /3(f)) 

with R clopen and put 

P(x, u, u)«.(3a)(3j3)(Vf)i?(x, u*a(t), v*j3(t)), 

P*(x, t, u, v) «=> Seq(u) & Seq(v) & lh(u) = lh(v) = t 

& P(x, U, V) 

& (Vu')(Vu'){[Seq(u') & Seq(v') & Ih(u') = lh(v') = t 

& <u', v')<(u, u)] =» “IP(x, u, u)}. 
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It is clear from the proof of 4E.8 that the relation 

Q*(x, a) <=* (Vt)(3u)P*(x, t, a(t), v) 

uniformizes Q. 

For the second assertion, assume first Qc 9Cxand define P, P*, Q* 

as above, choose a fixed a0eSf and put 

fa0 if (Va) -iQ(x, a) 

\a if (3a)Q(x, a) and Q*(x, a). 

For any closed F c jy we have 

/(x)eFo[a0eF&(Va) ~iQ(x, a)]v(3a)[a e F & Q*(x, a)] 

and since n} sets have the property of Baire and are p-measurable for 

each cr-finite Borel measure p, it is enough to prove that the set 

B ={x: (3«)[asF & Q*(x, a)]} has the same properties. Computing, 

xeB« (3a)(Vf){(3u)P*(x, t, d(t), v) 

& (3/3)[/3(f) = «(f) & /3 e F]} 

<=» (3a)(Vt)[x e Sd(t)], 

where 

Sfi(t) = {x: (3v)P*(x, t, d(t), v) & (3|3)(0(t) = a(t) & 0 e F]}. 

Now each Su is absolutely measurable and has the property of Baire by 

2H.8 and 2H.5 and 
B = sduSu, 

so by the same results, B is absolutely measurable and has the property of 

Baire. 

In the general case, if Pc 9C x T( with y perfect, let 7r:X -» <y be a 

Borel isomorphism, let Qc9Cx^V be defined by 

Q(x, a)«=*P(x, tr(a)) 

and choose /: 9C ^ A as above. Take 

g(x) = 7T_1(/(x)) 

and verify easily that g has the required properties, since for any Borel 

g-1[A] = {x: /(x)e 7r[A]}. A 

This is the strongest result we can prove in Zermelo-Fraenkel set 

theory in this direction. We will see in Chapter 5 that it is consistent with 



242 Structure theory for pointclasses [4E.10 

this theory that there exists a function /: (R —> (R whose graph is IlJ and 

which is not Lebesgue-measurable; the graph of /, then, is a n[ set in the 

plane which cannot be uniformized by the graph of a Lebesgue measura¬ 

ble function. 

By 4E.5, every non-empty iT{ set has a A \ member. The next exercise 

gives another basic result for 77} which is stronger, at least superficially. 

For any pointclass T, a point x is a r-singleton if the set {x} is in T. 

4E.10. Prove that the collection of 77}-singletons is a basis for 77]. 

Hint. Given Pc0C in 77}, let 

Q(n, x) «=> P(x) 

and let Q* c Q uniformize Q in 77]. The unique x such that Q*(0, x) is a 

77}-singleton in P. H 

On the other hand, if we impose the weakest natural closure property 

on a basis for 77}, then this basis must include all of A\. 

4E.11. Suppose <B is a set of points which is a basis for 77} and which is 

closed under Turing reducibility —t> i.e. 

ysffi and x is recursive in y => x e (B. 

Prove that (B contains every A\ point. 

Hint. If a is a A\ irrational, then the set P = {(3: (3 = ct} is easily 

P(l3) ~ (3y){(Vs)[y e Ns — a e Ns] & 7 - j3}. 

Let 

P(/3)<=*Qy)Q(/3, y) 

with O in 77} and let 0*cQ be in 77} and uniformize Q. Now Q* is 

non-empty, so it must contain a point of (B, which must be (ct, y) for some 

y. Since a is recursive in (a, y), a e (B. It follows easily that (B contains the 

A2 points in all spaces. —1 

4E.12. Prove that for each perfect 9C, the collection of 77}-singletons in 9C 

is a 77} pointset—and hence a proper subset of by 4D.16. 

Hint. Choose a universal 77} pointset Gc^xSC, let G* uniformize G 

and notice that 

x is a 77[-singleton <=> (3e)G*(e, x). 
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4F. Additional results about n\ 

Most of the results in this chapter have been about a general Spector 

pointclass T, perhaps with an additional hypothesis that T is closed under 

Vv or that it has the scale property. Here we will look at some very 

specific properties of 77} which do not follow easily from neat, axiomatic 

assumptions. These results too will be extended to some of the higher 

Kleene pointclasses in Chapter 6, using strong set-theoretic hypotheses, 

but we will need new proofs from them. 

First, an effective version of the Perfect Set Theorem 2C.2. 

4F.1. The Effective Perfect Set Theorem (Harrison [1967]; this proof 

due to Mansfield [1970]). If P is a 2\ pointset which has at least one 

member not in Z\], then P has a non-empty perfect subset. 

Similarly, if P is £}(z) with some member not in T](z), then P has a 

non-empty perfect subset. 

In particular, if P9C is 2\{z) and countable, then Pczi}(z)n9C. 

Proof. The argument for 2\(z) is identical with that for 2\, so we only 

prove the absolute version. 

We may assume that P has no A 1 members, since {x e P: x£ A',} is also 

2\ by 4D.14. Suppose 9C = N, to begin with, choose a recursive R such 

that 

P(a) <=> (30)(Vf)-R(d(f), 0(0), 

and let 

T = {(a0, b0,..., an_j, bn_i): (Vi <n)R((a0,..., af), (b0,..., b,)) 

& 0a')0|3)(Vf)R«ao,..., all_1)*d'(0, &„-!>*0(0)}; 

clearly T is a tree on wXw and in the notation of 2C, 

P = p[T]. 

Look up the proof of the Perfect Set Theorem 2C.2. We claim that in the 

notation used there, 

T = S; 

because if not, then there is some u = (a0, b0,..., an_x, hfl_i)e T with p[Tu] 
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a singleton {a} and 

a(n) = m ^ 0a')G0){(Vt)K«ao,..., an.1)*d'(t), 

<b0,..., K-1>*/3(0) 

& a'(n) = m}, 

so easily a is Tj. 

Now p[S] = p[T]^0, so P = p[T] has a perfect non-empty subset as in 

the proof of 2C.2. 

The result follows for arbitrary 9C as in 2C.2, using 3E.6. H 

This theorem implies in particular that Borel sets with countable 

sections can be uniformized by Borel sets, see 4F.6. 

The next result is a converse to 4D.3 for the case F = II j.First a lemma. 

4F.2. Lemma. There is a 11° relation S(a, (3, y), such that whenever (3 e WO 

and a e LO, 

a e WO & |a| < ||3| <=> (3y)S(a, (3, y) 

«=> (3y 6 /i J (a, (3))S(a, (3, y). 

Proof. The notation is that of 4A. As in the proof of 4A.7, put 

0(a, (3, y) «=> y maps<aonto an initial segment of 

<3 in an order-preserving fashion 

and y = 0 outside the field of 

where we allow “initial segment” to include all of <a. As in that exercise, 

Q is easily 17°, say 

Q(a, (3, y) (Vn)(3m)R(a, (3, y, n, m) 

with R recursive. Put further, 

Q*(a, (3, y, 6) «=> (Vn)JR(a, (3, y, n, S(n)) 

and notice that 

Q(a, (3, y) <=> (3S)Q*(a, (3, y, 8) 

8eA[(a, (3, y))Q*(a, (3, y, 5), 

since if (3S)Q*(a, (3, y, 8), we can choose 

S(n) = least mR(a, (3, y, n, m), 

where this 8 is clearly in ^|(a, (3, y). 
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Moreover, it is immediate that if (3 g WO and a g LO, then 

a G WO & |a| < |(31 => there is a unique y such that Q(a, (3, y) 

=> 07 e ^|3))0(a, (3, 7), 

since the unique 7 such that Q(a, (3, 7) is surely in (a, (3). Thus we 

have, for /3 e WO and a e LO, 

a G WO & |a| < ||3| <=> (3y)(3S)Q*(a, 3, 7, 3) 

^ByeAfta, 3))(38 g 4 ](a, <3, y))Q*(a, (3, y, 8) 

with Q* in IT?, so by 3E.17 

a G WO & |a|<|3| «=» (3y)(3S)Q*(a, 3, 7, 8) 

=> (3y e4[(a, /3))(38 G Zi](a, |3))Q*(a, |3, 7, 8). 

Finally, take 

S(a, (3, 7) Q*(a, 3, (7)0, (7)1) 

and verify easily that the lemma holds with this S. H 

4F.3. The Spector-Gandy Theorem (Spector [1960], also Gandy 

[I960]). For every 17] set Ps 9C there is a 17? set P£9CxjV such that 

P(x) ■*=> (3a G A}(x))P(x, a). 

Proof. Suppose first that P is A\. By 4A.7 there is a 17? set A c Ji and a 

recursive 7r:4V-^9C which is injective on A and ir[A] = P. Hence, 

P(x) <=> (3a)[a G A & 7r(a) = x] 

<=» (3a g A |(x))[a G A & 77(a) = x], 

where the second equivalence holds because if 77(a) = x and a g A, then a 

is the unique irrational satisfying these conditions and it is easily A](x). 

Thus for a ,d] set P we have the stronger representation: 

P(x) <=> (3a)R(x, a) 

«(3a unique a)JR(x, a) 

<=> (3a g A ](x))P(x, a), 

where R is some 17? set. 

Towards proving the result for H j pointsets of type 0 or 1, recall first 

4D.14 according to which {(a, x): aGZl|(x)} is 17], Hence, for 9C of type 0 
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or 1, there is a recursive function g : AT x 9C —> AT such that for each a, x, 

g(a, x)e LO and 

a G A {(x) g(a, x) e WO. 

For each x, let 

to} = supremum{|j3|: (3 is recursive in x, (3 e WO}; 

by the relativized version of 4A.4, easily, for each x 

(1) supremum{|g(a, x)|: a G A }(x)} = to}, 

or else {a: «e4|(x)} would be -dj(x), contradicting 4D.16. 

Suppose now Pc 9C is TI\, with 9C of type 0 or 1, so there is a recursive 

/: 9C —> jV such that for each x, f(x) e LO and 

P(x)«/(x)eWO. 

From (1), we get immediately 

P(x) o(3aE4 !(x))[/(x) G WO & |/(x)| < |g(a, x)|], 

since for each x, /(x) is recursive in x. We claim 

(2) P(x) (3a g 4}(x))@y G A{(x))S(j(x), g(a, x), y), 

where S is the set of the lemma. 

To prove direction (=») of (2), assume P(x); then /(x)g WO and /(x) is 

recursive in x, so by (1) there is some a g4}(x) such that |/(x)|<|g(a, x)|. 

By the lemma then, there is some y G A l(/(x), g(a, x)) such that 

S(f(x), g(a, x), y); but clearly, y gAJ(x) by 3E.17 since /(x) is recursive 

in x and g(a, x) is recursive in (a, x) and hence A}(x). 

To prove direction (<—) of (2), suppose there is an oe4{(x) and some 

y such that S(f(x), g(a, x), y). Now g(a, x) e WO and f(x) e LO, so by the 

lemma we have /(x)g WO, i.e. P(x). 

This completes the proof of (2). From (2) we get the theorem for any 

pointset of type 0 or 1 by a trivial contraction of quantifiers. 

Finally, suppose Ps9C where 9C is not of type 0 or 1, so there is a A\ 

isomorphism 

tr:A>*9C. 

If P is n\, then the inverse image 

Q(a) «=> P(7r(a)) 
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is ill, so by the theorem for spaces of type 1, 

Q(a)^(3(3eA\(a))R(a, (5) 

with R in 77°. Hence 

P(x) ** Q(ir-\x)) ^ (3(3 eA\(TT-\x)))R{TT-\x), (3) 

^(3(3eA\(x))R(TT-\x),(3), 

where A ](x) = A }(ir_1(^)) holds because both 7r and tt '1 are A j. Continu¬ 

ing the computation, we have 

P(x) *=* (3 (3eA ](x))(3y ezi ](x))[y = tt~\x) & R(y, (3)] 

from which the result follows easily using the same kind of arguments and 

the fact that {(y, x): y = 7r_1(x)} is A\. H 

The Spector-Gandy theorem does not have many applications but it is 

undoubtedly one of the jewels of the effective theory. It gives a very 

elegant characterization of 77] in terms of a (restricted) existential quan¬ 

tifier which is particularly significant in the case of relations onwiPcoiis 

77} if and only if there is a 77',' set Rc^wXJi such that 

P(n) <=> (3a e A \)R(n, a). 

This corollary says in effect that the collection of AJ irrationals somehow 

“determines” the collection of 77 j relations on a>. 

The third main result of this section is also peculiar to the effective 

theory, like the Spector-Gandy theorem. It differs from it in that it says 

something most significant about perfect product spaces. 

A set Pc 9C is thin if P has no perfect subsets other than 0. Countable 

sets are thin and by the Perfect Set Theorem, every Si thin set is in fact 

countable. As we will see in the next chapter, it is consistent with the 

axioms of Zermelo-Fraenkel Set theory that there exist uncountable, thin 

77 [ sets. 

4F.4. The Largest Thin 77] Set Theorem (Guaspari [19??], Kechris 

[1975], Sacks [1976].). For each perfect product space 9C, there is a thin, 

77] set Cj = C^SC) c 9C which contains every thin, 77] subset of 9C. 

Proof. Fix 9C and let G c co x 9C be universal for the 77] subsets of 9C, let 

<p : G —> Ordinals 
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be a 77 [-norm on G. Put 

(1) R(n, x) <=> G(n, x) & [{y: G(n, y) & <p(n, y)<<p(n, x)} is countable]. 

We claim: 

(2) R(n, x) <=> G(n, x) & (Vy){[G(n, y) & <p(n, y) ^cp(n, x)] =*> y e /l[(x)}. 

To prove direction (=*) of (2), notice that if R(n, x), then the set 

A ={y: G(n, y) & <p(n, y)<<p(n, x)} 

= {y: (n, y)=s*(n, x)} 

= {y: —i((n, x)<*(n, y))} 

is Z\}(x), so if A is countable, we must have A c A ](x) D 9C by 4F.1. 

Conversely, assuming the right hand side of (2) we immediately infer that 

A is countable, since z\}(x)fl0C is countable. 

Now (2) implies that R is 77 {, since it yields 

R(n, x) «=* G(n, x) & (Vy)[(n, x) <*(n, y) v y e A[(x)]. 

We define C^C^SC) by 

Cx(x) <=> (Bn)R(n, x). 

Clearly Cx is 77[, so it remains to show that Cx is thin and that it contains 

every thin, J7] subset of 9C. 

Assume first that P^ac is thin and 77}, so that for some fixed n0, 

P(x) <*=> G(n0, x). 

For each x in P, {y: G(n0, y) & <p(n0, y)<cp(n0, x)} is zi](x)as above; in 

particular it is Borel, so it must be countable, since it is a subset of P and 

cannot have a perfect subset. Hence 

P(x) => G(n0, x) => R(n0, x) C^x) 

and PcC,. 

Suppose now, towards a contradiction, that F^0, F is perfect, FcQ, 

put 

Q(x, n) <=> F(x) & F(n, x). 

The relation Q is IIJ and (Vx e F)(3n)G(x, n), so by the zi-selection 

principle 4B.5, there is a Borel function g:9C^co such that 

(VxGF)F(g(x),x). 
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The map 

X »(g(x), x) 

is also Borel and maps F into G. Now G is not in 2} by 3E.9 (otherwise 

every /!} subset of 9C would be in 2}), hence by the Covering Lemma, 

4C.11 there exists an ordinal A < |<p|, such that 

x eF =* <p(g(x), x)< A. 

The ordinal A is countable, since |<p|<5i = K1. Letting 

An€ = {x: R(n, x) & cp(n, x) = £}, 

this means that 

P — Un,|<A.Ai,f 

However, each An>? is countable, since 

An>€ c {y; G(n, y) & <p(n, y)<<p(n, x)} 

with x any point such that R(n, x) and cp(n, x) = £, so F is countable, 

contradicting the assumption that it is perfect. H 

This theorem has led to an interesting theory of the structure of 

countable and thin /7} sets which we will not pursue here beyond 4F.7 

and 4F.8. See Kechris [1975], [1973], 

Exercises 

4F.5. Prove that if Pc A is a countable X\ set of irrationals, then there 

exists a A \ irrational e such that 

P <= {(e)0, (e)l5 (e)2,...}. 

Hint. By 4F.1, Pc4jnA and by 4D.14 the set A\C\J{ is II\. It 

follows from the Separation Theorem, 4B.11 that there exists a d] set Q, 

pcQc^lnA. 

Let c:A—>o) be the /7]-recursive partial function of Exercise 4D.15 and 

notice that 

A = {/: (3<x)[o: g Q & c(a) = i]} 

= {i: (3a e4])[a e Q & c(a) = /]} 

is easily A } and the parametrizing partial function d: w —» JV is defined on 
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A. Put 

e«i,/» = d(/)(j) if is A, 

e(k) = 0 if k^(i,j) for all i e A. H 

4F.6. Prove that if Pcgcx^j is a Borel set such that each section 

Px—{ y: P(x, y)} is countable, then the projection 3 4P is Borel and P can 

be uniformized by a Borel set P*. (Lusin [1930a], Novikov [1931].(19~21>) 

Hint. Suppose P is A ](e). Each section Px is easily in A\(e, x), so 

0 => (3y eA\(e, x))[y e Px] 

by the Effective Perfect Set Theorem 4F.1. Now apply the A- 

Uniformization Criterion 4D.4, taking r = n\(e). H 

4F.7. Prove that a set P is thin if and only if every Borel subset of P is 

countable. Infer that the notion of being thin is preserved by Borel 

isomorphisms. 

Hint. Use the Cantor-Bendixson Theorem. H 

The result implies that if it : 9C >-» ^ is a A j isomorphism, then 

C1(fy) = 7r[C1(9C)]. 

Hence all the sets C, (9C) for perfect 0C are determined by the set 

Q = CX(A), 

the largest thin set of irrationals. 

4F.8. Let C c 9C be a thin 17} set and on C define 

x < y <=> x is A }(y). 

Prove that < is a prewellordering, so C ramifies into a wellordered 

sequence of sets of points which are A [-equivalent. Prove that the length 

of < is no more than N,. (Kechris [1975].) 

Hint. Let cp : C —» Ordinals be a 111-norm on C. Suppose x, y are in C 

and <p(x)<<p(y). Since the set 

A ={z: z e C & <p(z)<cp(y)} 

is easily zij(y) and has no perfect subsets, A cz\[(y)n9C by 4F.1; hence x 

is A}(y). This proves comnarability and transitivity is already known from 
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3E.17. To prove that < is wellfounded, assume that x, y are in C and y is 

not Zi|(x) and prove as above that <p(x)<<p(y). —I 

In the remaining exercises we outline the proofs of several uniformiza- 

tion theorems for Borel sets. 

Let us first recall a simple fact about trees which will be needed below. 

4F.9. Let T be a tree on a set X which is finitely splitting, i.e. every 

sequence u = (x0,...,xn t) in T has at most finitely many one-point 

extensions in T, (x0,..., xn_l5 y^,..., (x0,..., xn_1; yk). Prove that T is infinite 

if and only if it has an infinite branch. (Konig’s Lemma.) 

Hint. If (x0, Xj,...) is an infinite branch, then for each n, {x0,..., xn_f) e 

T, so T is infinite. If T is infinite, then for some x0 the subtree T(Xo) must 

be infinite, since T = T(yi)U-UT(St) for some yl5..., yk. Again, for some 

xx the subtree T(Xo>Xi) must be infinite, so inductively we get an infinite 

branch (x0, xlv..). H 

Fix a product space 0C and for simplicity of notation let 

N(s) = N(9C, s) 

be the s’th basic nbhd of 9C. A finitely splitting tree of nbhds of SC is a tree 

T on a) which is finitely splitting and such that if (s0,..., T, then for 

each i = 0,..., n — 1 radius(Ns.)<2~1. For simplicity we will call these nbhd 

fans (see Figure 4F. 1). 

With each nbhd fan T we associate the subset of SC 

K = K(T) = {x : (3a)(Vn)[(a(0),..„ a(n - 1)) e T&x e N(a(n - 1))]}. 

It is not hard to verify that each K(T) is a compact subset of 9C and each 

compact set K is K(T) with a suitable nbhd fan T. In the next result we 

get an effective version of this. 

Let us say that a nbhd fan T is in a pointclass A if the set of codes of 

the sequences in T is in A, i.e. if 

Tc = {(s05n_i): (s0,..., s„_i) e T} 

is in A. 

4F.10. Let T be a Spector pointclass closed under V v and 9C a fixed 

perfect product space. Prove that a set Kc. SC is compact and in A if and 

only if there exists a nbhd fan T in A such that K = K(T).i24> 
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Figure 4F.1. Neighborhood fan. 

Figure 4F.2. 
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Hint. If T is in A, then 

x e K(T)<=>(Vn)(3u)[u e Tc&lh(u) = n&(Vi<n)[xeiV((u)i)]]; 

the implication (=*) is immediate and the converse implication follows 

easily using Kdnig’s Lemma. Thus K(T) is in A and its compactness can 

be proved by a simple topological argument. 

Conversely, suppose K is compact and in A. Recall from 4C.13 that 

there is an irrational s g A such that 

9C-X = N(e(0))UN(e(l))U- 

and for each n, 

N(e(n))cgc-K. 

To construct a nbhd fan T such that K = K{T), intuitively we first find 

tk as in Figure 4F.2, such that 

K c N(t0) U ••• U N(tk), {N(t0) U - UN(tk)}nN(e(O)) = 0 

and each IV(f£) has radius <1. Then for each i, we find s0,..., sn such that 

K Cl N(fj) c N(s0) U ••• U N(sn), 

{N(s0) U ••• U N(sn)} n{N(e(0)) U N(e(l))} = 0 

and each N(Sj) has radius etc. The key to proving that this can be 

done in T is the T-Selection Principle 4B.5. 

Put 

P(n, s, u) <=» Seq(u)& (Vi < lh(u))[radius(N((u)i)) < 2^n] 

& (Vx)[x g K H N(s) => (3i < /h(w))[x e N((m)j)]] 

& (Vx)[x G N(e(n)) =» (Vi < lh{u))[x£ N((u)i)]]. 

Since K H N(s) is compact and disjoint from N(e(n)), easily 

(Vn)(Vs)(3u)P(n, s, u). 

Moreover, P is easily in T, so by 4B.5 there is a A -recursive function 

f(n,s) such that (Vn)(Vs)P(n, s,/(n, s)). Choose once and for all t0,...,tk 

such that each N(ti) had radius < 1, 

KcN((0)U ••• U N(tk), {N(f0)U ••• U N(tk)} Cl N(e (0)) = 0 
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and put 

T {(sq,..., sn—i)* is one of to,..., t^ 

& (Vi <n- 1)(3j<lh(f(i + 1, S;)))[si+1 = (f(i + 1, s£)),]}. 

Clearly Tc is in A and it is simple to check that K(T) = K. —\ 

This representation of compact sets in A allows us to prove that each of 

them (if ^ 0) must have a member in A. 

4F.11. Let r be a Spector pointclass closed under V v. Prove that if K is a 

compact, non-empty set in A, then K has a member in Z\.(“4’ 

Hint. Choose T in A such that K = K(T), let 

R(u) <=> (Vn)(3u)[Seq(u) & lh(v) = n & u*v e Tc], 

R(w, v) <=> ~iR(u) 

v[R(u) & R(v) & v is a one-point-extension of u] 

and by 4C.12 let f: a>-+ a> be in A and such that 

/(0) = 1 = code of the empty sequence, 

(Vn)R(f(n), f(n +1)). 

It is now easy to check that fin N(/(n)) contains a single point in K which 

is clearly in A. —\ 

4F.12. Let T be a Spector pointclass closed under Vx, suppose P c 0C x ‘y 

is in A and for each x, the section Px is 0 or contains a compact set in 

zl(x). Prove that the projection 3^P of P is in A and P can be 

uniformized by some P* in A. Verify that the hypothesis holds if each 

section Px is compact.,24) 

Hint. Use 4F. 11 and the zi-Uniformization Criterion 4D.4. H 

This result implies immediately that Borel sets with compact sections 

can be uniformized by Borel sets. We proceed to show that for this it is 

enough to assume that the sections are a-compact. 

First a purely topological lemma. 

4F.13. Suppose AcjV is closed, 9C is continuous and 

0^F[A]cU„K„ 
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with each Kn closed. Prove that for some n and for some basic nbhd Ns in 

A, 
0 7^ F[A fl NJ c Kn. 

(Kunugui’s Lemma.) 

Hint. Towards a contradiction, suppose no F[AC\NS] is contained in 

some Kn. In particular, there is some x = F{a) <£ K0, so there is a nbhd M 

of x such that MnFo = 0. We can then find a basic nbhd N° of a such 

that F[A Pi N°] c M, in particular 

F[A n JV°] n K0 = 0 

as in Figure 4F.3. Assume now that F[A PIN0] is not a subset of K,, so 

there is some x = F(a) with a e A PlN°, x^ Fj and repeat the argument. 

Thus we get a sequence of basic nbhds 

N° 2 N1 ^ 

in A such that each F[A ON'] is non-empty and F[A PlN'JnFj =0. If 

we also make sure that N‘ 2 NI + 1 and radius(Nl) —»■ 0 as i oo, we find a 

point aeAHN1 for each i, so that F(ct)£Kh all i, which contradicts 

F(a)e\JnKn. —\ 

The next lemma isolates part of the construction that we need for the 

main result here. 

Figure 4F.3. 
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4F. 14. Let r be a Spector pointclass closed under VA, let 9C be a fixed 

product space, suppose 

AcKgB, 

where A is in ~ir, K is compact and B is in T. Prove that there is a nbhd 

fan T in A such that 

AcK(T)cB.(24) 

Hint. Notice first that the closure A of A is also in ~iT since 

x 6 A <=> (Vs)[x eNs^ (3y)[y e A & y e Nj] 

and of course AgX, so A is compact. 

By the Separation Theorem for —lP (4B.11) choose a zi-set C such that 

AgCcB. 

Following the method of proof of 4C.15, put 

P(x, s) <=> C & x e Ns & Ns (1A = 0 (Figure 4F.4); 

P is clearly in T and (Vx^ C)(3s)P(x, s) since A is a closed subset of C. 

By the A-Selection Principle then, there is a A -recursive function f such 

that (Vx^ C)P(x,/(x)). The set 

{s: (3x^ C)[s = /(x)]} 

is in —iT and it is a subset of the T-set 

{s: NSC\A= 0}; 

Figure 4F.4. 
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the separation theorem gives us a A set I between these two such that the 

open set 

G = U {Ns: s e 1} 

clearly satisfies - „ 
J A Pi G = 0 

*0 C => x e G 

so in particular, 

x^fi=>xsG, 

see Figure 4F.5. 

We now imitate the construction of 4F.10 above to get a nbhd fan T 

such that the associated set K(T) satisfies 

A c K(T) 

K{T) fl G = 0. 

This will complete the proof, since we evidently have 

A c K(T) c B. 

Figure 4F.5. 
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Briefly, we first write 

G = N(e(0))UN(e(l))U — 

with some e in A and N(e(m))c G, all m and then we find tk such 

that 
A c= N(t0) U ••• U N(tk), 

{N(t0) U U N(tk)}n N(e(0)) = 0, 

and each N(t{) has radius < 1. Then for each i, we find s0,..., sn such that 

AnN(ti)^N(s0)U---UN(sn), 

{N(s0) U • ■■ ■■ U N(sn)} n {N(e(0)) U N(e(1))} = 0 

and each N(s, ) has radius <§, etc. The proof that this procedure deter¬ 

mines a 4, compact set K(T) is via the A -Selection Principle as in 4F.10 

and we omit it. —I 

A set is cr-compact if it is a countable union of compact sets. (In (Rn 

every 2° set is cr-compact.) 

4F.15. Suppose L c 0C is a nonempty, A J set which is cr-compact. Prove 

that L has a nonempty A} and compact subset; infer that L has a A\ 

member. 

Similarly with A}(x) substituted for A\ throughout.(24) 

Hint. The argument for A}(x) is identical with thaf for A\. 

Suppose L = (J„ Kn where each Kn is compact. By 4A.7, there is a 77° 

set Ac^ and a recursive F: A —> 9C, injective on A, such that F[A] = L. 

By 4F.13 then, for some s and some n, the set 

B = F[A<1NS] 

is contained in some Kn. Now B is A\, by 4D.7, B is compact and 

0/BcBcL; 

by the preceding exercise then, there is a compact set K in A j such that 

0^Bc7CcL 

and then L has a A} member by 4F. 11 above. —\ 

We put down for the record the uniformization theorem that follows 

from this exercise. 

4F. 16. Prove that if P c 9C x is A }(z) and every section Px = {y; P(x, y)} 
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is cr-compact, then the projection 3y P is A }(z) and P can be uniformized 

by some P* in A }(z). 

Similarly, if P £ 9C x ‘y is Borel and every section Px is cr-compact, then 

3VP is Borel and P can be uniformized by some Borel P*. (Arsenin 

[1940], Kunugui [1940]; see also Larman [1972].) 

Hint. Use 4F. 15 and the T-Uniformization Criterion 4D.4. If P is 

Borel, use the fact that P must be zf[(e) in some e, 3E.4. H 

The uniformization theorems of Lusin-Novikov (4F.6) and Arsenin- 

Kunugui can be turned into interesting structure theorems about Borel 

sets with “small” sections which we now proceed to show. 

4F.17. Suppose Pcz 90x9] is in zl[(z) and every section Px ={y: P(x, y)} 

is countable. Prove that there exists a set P* <= M x 9C x 4] in A j(z) such that 

P(x, y) <=> (3n)P*(n, x, y) 

and such that for each new, the set 

P* = {(x, y): P*(n, x,y)}cP 

uniformizes P. 

In particular, if P c 9C x <y is Borel and each section Px is countable, 

then 

P=UnP* 

where each P* is Borel and uniformizes P. (Lusin [1930a], Novikov 

[1931].) 

Hint. Let P*cP uniformize P in A{(z) by 4F.6, and put 

Q(x, y, n) <=> d(n, z, x)l & d(n, z, x) = y 

where d is the partial function which parametrizes A\(z, xff'l'y by 4D.2. 

Now (V(x,y)eP)(3n)Q(x, y,n), so by the T-selection Theorem 4B.5 

there is a <d|(z)-recursive f: 9C x 9) —>• co so that 

(Vx)(Vy)[P(x, y) y = d(f(x, y), z, x)]. 

Put then 

P**(n, x,y)<=>[f(x,y) = n & P(x, y)]v[/(x, y) f n & P*(x, y)] 

and check that this P** satisfies the conclusion. H 

4F.18. Prove that if P ^ 9C is A\(z) and cr-compact, then P(x) <^(3K)[K 

is A\(z) and compact, K^P and xeX]; moreover P is 2%(a) for some 
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aeAj(z), in fact P satisfies an equivalence 

(*) P(x) <=>(Vn)P*(n, x) 

where P* is in TJ^ia) for some a e A\(z) and such that each section 

P* = {x: P*(n, x)} is compact. (Louveau.)'"41 

Similarly, if Pc9Cx<y is in A\(z) and each section Px is (/-compact, 

then there is some P* £ a> x 9C x in A}(z) such that 

P(x, y) <=>(Vn)P*(n, x, y) 

and such that each section P*x is compact. 

In particular, if Pc0Cx<y is Borel and each section Px is (/-compact, 

then there exist Borel sets P* such that 

P=UnP* 

and each P* is Borel with compact sections. (Saint Raymond.)(24) 

Hint. To simplify notation suppose P is A J so that by 4A.7, 

P = F[A] 

for some 17? set Ac / and a recursive F'.J'f ^ 9C, with F injective on A. 

Put 

aeAV (3 s){a e Ns & (V0)[(3 e Ns n A 

=* (3 K)[K is compact in A\, K^P and F(0) e K]]}. 

It is easy to verify that A* is a 11\ set, using the representation of 

compact A\ sets via nbhd fans and it is obvious that A* is open. We will 

prove that AcA*. 

Assume towards a contradiction that 

B = A-A* 

is nonempty and notice that B is X\ and closed. Since 

F[B] £ F[A] = UA 

with each Kn compact, 4F.13 above implies that for some s, n 

0^F[BnNs]cXn, 

so that for some s, F[B DNJ is a nonempty compact subset of P. Since 

F[B flJVj is in 2\, 4F. 14 then guarantees that there is a A j, compact set 

K such that 

F[B (1NJc((cP. 
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Fix a £ B H Ns and suppose (3 e Ns Pi A. If (3 e A*, then F((3) is a member 

of some A\, compact set by definition; if (3<£ A*, then (3eA-A* = 8, so 

F((3)eK, so again F(/3) is a member of some Aj, compact set. This 

establishes that a e A*, contradicting a e B. Thus we have shown 

Ac A*. 

It then follows immediately that 

x £ P ==* for some A\, compact set K c P, x e K. 

Call a e Jf a code of the nbhd fan T if 

and put 

(s0,..., sn_i)e T <=> a((sQ,..., sn_r)) = 1 

Q(x, i) <=> x e P & d(i)l & d(i) codes a nbhd fan T in A1 

such that K(T) c p and x e K(T), 

where d parametrizes A\ HA by 4D.2. Easily Q is /7} and 

(Vx e P)(3i)Q(x, i), so we can find a A\ function f:P^>a> 

such that (Vx e P)Q(x, f(x)). Put 

Ri(i) «=» (3x eP)[/(x) = i]. 

Put also 
R2(i) <=»d(i)| and d(i) codes a A], compact subset of P 

and notice that Rx is R2 is /7{ and i?, c R2, so we can find some A\ 

set R such that 
R,cRcR2. 

It is now obvious that 

i eR =* d(i)J, and d(i) codes some A\, compact set Kt 

and 
p={j{Kr.i£R} 

so letting 

P*(n, x) *=* R(n) & x 6 Kn 

we have (*) in the theorem with P* in A] and such that each section P* is 

compact. 
The same argument relativized to a fixed but arbitrary x gives the 

second assertion and then the third assertion follows trivially. 
To get the full strength of the first assertion in the theorem choose 

(3 £ A\ so that 

{(0)n: n = 0, !,...} = {d(n): R(n)}, 
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choose y e A } so that for each n and m 

(Y)n(m) = largest u so that Seq(u) & lh(u) = m 

&(jS)B(u)=l 
and let 

P*(n, x) <=> x is in K(Tn) where Tn is the nbhd 

fan coded by ((3)n 

<=> (Vm )(3n <(y)„(m))[(j8)„(u) = 1 & lh(u) = m & (Vi < m) 

[xeN((u)i)]]. 

Again we have (*) with this P* and this pointset is clearly n"(a) with 

a =<|3, y)eA\. H 

The basic idea in these uniformization results about Borel sets is that 

we can find a Borel uniformization when the sections of the given set are 

“topologically small,” i.e. or-compact. We now proceed to show that we 

can also find Borel uniformizations when the sections are “topologically 

large,” i.e. not meager. 

The key to this type of result is a basic computation of the category of 

2!,1 and 2] sets. 

4F.19. For each set Pc9Cx% put 

Q(x) <=> Px = {y: P(x, y)} is not meager. 

Prove that if P is 2°, then Q is also 2°, if P is 2}, then Q is 21 and if P is 

II{, then Q is also iTJ. (Kechris [1973].) 

Hint. If P is 2? and hence open, then by the Baire category Theorem 

2H.2 
Px is not meager <=> Px ^ 0 <=> (3i)P(x, r;) 

where {r0, rlv..} is the recursive presentation of % so Q is 2?. Now if R is 
n° 
11 n-1) 

{y: (3m)R(x, y, m)} is not meager 

<=> (3m)[{y: R(x, y, m)} is not meager] 

<=> (3m)(3s)[Ns — {y: R(x, y, m)} is meager] 

and by induction hypothesis the relation in the brackets is so we 

are done. 

Suppose now 

P(x, y) (3a)F(x, y, a) 
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with F in /7j and fix x for the discussion. By the von Neumann Selection 

Theorem 4E.9 we can find a Baire-measurable /: ‘Vf —> JST which unifor- 

mizes Fx and then by 2H.10 we can find a comeager Gs set A c such 

that the restriction f\A of f to A is continuous as in Figure 4F.6. Choose 

e e jV so that 

(*) e «s, f» = 1 <=> f[Ns flAjcN, & Ns IT A ^ 0 

and check first that 

(1) 8 «s, t))=l=* FXC\ (Ns x N,) 7^ 0, 

since if y e Ns (T A, then (y, f(y)) e Fx Cl (Ns x Nt). Finally put 

(2) B, = {y G : (3s)(3f)[e«s, t» = 1 & y eNj 

& (Vs)(Vt)(Vk)|[e«s, t» = 1 & y e Ns] 

— (3s')0o[e«s\ t'» = 1 & y G Ns- 

& Ns. c Ns & Nt< c N, 

& radius(Ns')< 
k + 1 

and check easily that 

(3) A n px c Be. 

Figure 4F.6. 



264 Structure theory for pointclasses [4F.20 

If Px is not meager, then (3) implies that Be is not meager. Thus we 

have shown that 

Px is not meager => (3e){e satisfies (1) and the set Be 

defined by (2) is not meager}. 

On the other hand, the definition of Be makes sense for arbitrary e e A, 

in fact the relation 

B(e, y) <=> y s Be 

is easily 17", hence X4. Moreover, if for some fixed x and e the 

implication (1) holds, then 

y e Bf => there are sequences s0, t0, t,,... 

such that NSo 2 NSl 2 • • •, Ntn 2 Nh 2 • • •, and 

for each n, (NSn x NtJ n Fx ^ 0, 

radius(NSn) < l/(n + 1), radius(Ntn)< 1 l(n + 1) and y e NSn 

=> there is a sequence of points (yn, a„) in Fx 

such that limitn^x yn = y and limitn_>x a,, = a exists 

=> (3ct)(y, a) G Fx (since Fx is closed) 

=> y ^Px- 

Thus 

Px is not meager <=> (3e){e satisfies (1) and the set Be 

defined by (2) is not meager} 

and this relation is immediately X\. 

The claim for TJ\ sets follows from the remark which we have already 

used, that for any set P with the property of Baire, 

P is not meager <=> (3s)[lVs - P is meager], H 

4F.20. Prove that if P2 9C is X](z) and not meager, then P has a member 

in A\(z). (Thomason [1967], Hinman [1969]; see Kechris [1973].) 

Infer that if P 2 9C x is in A j(z) and each section Px is not meager in 

(y, then P can be uniformized by a set in A\(z); similarly, every Borel set 

P 2 9C x ^ with non-meager sections can be uniformized by a Borel 

subset. 

Hint. Assume P is /7](z) and not meager and suppose <p : x is a 
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regular /7](z)-norm on P. Now 

P= cp(x) = ^}, 

so if x<N,, then by the countable additivity of the collection of meager 

sets we get 

(*) for some A <k, {x e P: <p(x) = A} is not meager. 

If k=N15 then P is not Borel by 4C.10. Choose a Gs, nonmeager set 

AcP by 2H.4 (applied to SC — P) and then use the Covering Lemma 

4C.11 to infer that for some A c (Js<€{x e P: <p(x) = £} so that 

again (*) holds. We have thus shown that for any regular, /7{(z)-norm on 

P, (*) holds. 

Fix now a very good /7}(z)-scale <p={<p„} on P, with all the norms 

regular and put for each n 

An = least A such that {x 6 P: <pn(x) = A} is not meager, 

Pn={xeP: <p„(x) = An}. 

Putting this another way, 

xeP„o{yeP: <p„(y) = <Pn(*)} is not meager 

& (Vw)[cpn(w)< <pn(x) => {y eP: <p„(y) = <p„(w)} is meager] 

«{yeP: <P„(y)^<P„(x)} is not meager 

&{yeP: cpn(y)<<pn(x)} is meager, 

where in the second equivalence we have used again the countable 

additivity of the ideal of meager sets and the fact that <pn(x)<^!. 

It is immediate that each Pn is nonempty. Notice also that by the key 

property of a very good scale given in 4E, easily 

9n + l(y)^ <P„ + l(x) => <Pn(y)^<PnM 

and 
cpn(y)<cpn(x) -► <pn+1(y)<<pn+1(x), 

so that immediately 

P0 2 Pt 2 P2 

If x0, xl5... is any sequence of points with x„ ePn, then by the definition 

of a good scale again, there exists some x such that 

limitn_>x xn = x and P(x). 

Moreover, if y0, yi,... is another such sequence converging to some y eP, 
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the sequence 

*o, y0, *1, yi,.~ 

would have to converge to a unique point, so that x = y. Hence: there is a 

unique point x* which is the limit of some sequence x0, xu x2,... with 

xnePn and this x*gP. Since obviously 

x = x* ^ (Vs){x 6 N, => (Vfc)(3n > fc)(3y)[P(n, y) & y e Nj} 

it will be enough to prove that the relation 

P*(n, y)^ysPn 

is in X\(z), since this would show that x* is Xj(z)-recursive and hence 

(easily) in Zi{(z). Finally this follows easily from the preceding exercise 

and the equivalence 

X G P, •{y: ~i(x<* y)} is not meager 

& {y: y <* x} is meager 

<=> {y: —i (x <*n y)} is not meager 

& (Vs)[(Ns—{y: y <* x}) is not meager 

which is easy to verify. 

This completes the proof of the first assertion and the rest follows from 

the Zi-Uniformization Criterion 4D.4. —I 

There is a similar result for measure which we will not prove here—if 

Pcacx'y is Borel and all sections Px have ju,-measure >0 for some 

or-finite Borel measure p on then P can be uniformized by a Borel set. 

(The basic lemma for this is due to Tanaka [1968] and Sacks [1969].) 

Kechris [1973] has an excellent discussion of these and related results as 

well as additional references. 

We will end this section with a negative uniformization result—an 

obstruction to improving the von Neumann Selection Theorem. First a 
computation. 

Recall from 4F that 

(Oi = supremum{\a\: a e WO & a ^Tx} 

and for any two irrationals a, (3 let (a, (3) be the irrational coding their 
pair as in IE, 

(a, (3)((0, n» = a(n), 

<a,0>«l,n» = /3(n), 

(a, (3)(t) = 0 if t is not of the form (0, n) or (1, n). 
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4F.21. Prove that the relation 

P(a, 0) ^ ai<1“’0> = ai? 

is 2] and that for each a, there is a perfect nonempty set C such that 

n r- . ,(a,(3> — oi 0 G L =» W| — O)!. 

Hint. By a direct relativization of 4A.5, for each x, 

to? = 8}(x) = supremum{|a|: a e WO & A ](x)}. 

Compute: 

oj<1“’e>>coT <^[3y eA\{a, 0)]{ye WO 

& (VS)[(S e LO & 8 <Ta) =* (cannot 

be mapped in an order preserving way onto <5)]}. 

This implies immediately that {(a, 0): a><1°<’0>> co“} is Ft] and hence P is 

x\. 
Since 0 e A }(a) => P(a, 0), if the converse implication held we would 

have that 2 [(a) HA is 2j(a) for each a, contradicting 4D.16; thus for 

each a, the 2[(a) set {0: P(a, 0)} has members not in 2 {(a) and hence it 

contains a perfect set by the Effective Perfect Set Theorem 4F.1. —\ 

Lusin [1930a] claimed that every 2] set can be uniformized by a set 

which is the difference of two 2] sets. This is not true. 

4F.22. Prove that there exists a 2} set which cannot be uniformized by 

the difference of two 2] sets. (J. Steel, D. A. Martin.) 

Hint. Take 

P(a, 0) <=> o)<1“,0> = o)“ &p£A\(a) 

which is 2} by the preceding exercise and 4D.14 and suppose that P is 

uniformized by 

P*(a, 0) <=> Q(a, 0) & ~iR(«, 0) 

where (equivalently with the hypothesis that P: is the difference of two 

2} sets) we assume that Q and R are 77] (a*) for some fixed a*. Let 0* be 

the unique 0 such that 

Q{a*. 0*) & 0*) 

holds. 
By 4A.3, there is a recursive function f such that 

Q(a, 0) <=>/(a, 0)e WO; 
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since Q(a*, (3*) holds, /(a*, j3*)e WO so that for some £, 

since P(a*, 0*) holds and hence = a»“*. The relation 

SO) «-/(<**, (3)eWO&|/(a*, 0)|<£ & -.K(a*, 0) 

is easily in .£](<**) and obviously SO*) holds; but (3* ^ 4 ](«*), so by the 

Effective Perfect Set Theorem 4F.1, S contains a perfect set of irrationals. 

This contradicts the inclusion 

S<=O:P*(a*,0)} = {/3*}. H 

4G. Historical remarks 

1 The results of this chapter are the hardest to credit, partly because we 

have presented them in a modern form which is the end product of the 

work of many researchers. In addition to this, there has been considerable 

duplication, and rediscovery of ideas, as the recursion theorists often did 

their work in ignorance of the classical theory. Since the writing of a 

detailed and documented history of the subject would be a formidable 

(though fascinating) task, I have confined myself below to a few remarks 

which indicate the origin of the main ideas (when this is clear from the 

literature) and point to the most significant papers. 

2 Let us begin with a brief summary (in somewhat modernized ter¬ 

minology) of the results of Lusin-Sierpinski [1923], surely one of the 

most important early contributions to the theory of analytic sets. Lusin 

sieves (cribles) were introduced here and they were used to obtain a 

representation theorem for n| sets quite similar to our 4A.3. 

3 A sieve is a map r » Fr which assigns to each rational number r a 

subset Fr of a space 9C. The set sifted by the sieve is defined by 

x e Sieve,. Fr «=>{r:xe Fr} is not well ordered, 

where we use the customary ordering on the rationals. The basic result of 

Lusin-Sierpinski [1923] is that the sets of the form Sieve, Fr with each Fr 

closed are precisely the analytic (2[) sets; thus every coanalytic (n[) set P 

satisfies an equivalence 

P(x) <=> {r: x e Fr} is well ordered 

with a sieve of closed sets—a representation very similar to that of 4A.3. 

4 Lusin and Sierpinski [1923] used this characterization of n[ sets to 

give a new proof of the Suslin Theorem (A[ = Borel) and also to prove 
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that Si sets are both the union and the intersection of Borel sets, our 

2F.2. (Half of this result was first shown in Lusin-Sierpinski [1918] which 

anticipated somewhat this later joint paper.) They also established the 

Boundedness Theorem 4A.4 for n{ sets with the natural ordinal assign¬ 

ment that comes from their representation. 

5 Fix an enumeration r0, ru r2,... of the rationals and define the set 

WO* c Q of binary infinite sequences by 

a e WO* = {r„: a(n) = 1} is wellfounded; 

this is (essentially) the set of codes for ordinals introduced in Lusin- 

Sierpinski [1923] and used extensively in the classical development of the 

theory. Lusin and Sierpinski showed that WO* was Il{ but not £] and 

Kuratowski [1966] §38 Lemmas 2, 5 gives the essential content of 4A.2. 

6 The effective version of the Basic Representation Theorem 4A.3 (for 

9C = o>) was proved in Kleene [1955a], one of the most significant con¬ 

tributions to the effective theory. Kleene’s result asserted that each 17} 

subset of to satisfies 
P(x) «=> f(x)e O, 

where f is recursive and O is a set of (integer) notations for the so-called 

constructive ordinals. (Incidentally, these had been introduced by Church 

and Kleene and their supremum is (ofK, sometimes read “Church-Kleene 

<«!.”) Kleene’s main motivation was the study of these ordinals rather 

than 17] and A\\ but he used his representation theorem in his [1955b] 

and [1955c] to study 17] and A\ and in the second of these papers he 

established the effective version of the Suslin Theorem (for 9C = oo). We 

will prove this result in Chapter 7, where we will also cover in some detail 

the very fundamental method of definition by effective transfinite recursion 

introduced in Kleene [1955a], 

7 A representation theorem for 17} (with 9C = a>) which is much more 

similar to 4A.3 was established in Spector [1955], another basic source of 

ideas for the effective theory. Spector used integer codes of recursive 

wellorderings of a> (for ordinals below oifK), but other than that his basic 

notions were quite close to ours. He also proved 4A.2 (essentially) and 

4A.4 (for 2C = a>) as well as 4A.5. 

8 Kleene and Spector worked in almost complete ignorance of the 

classical theory and there js no apparent lead from the classical work to 

theirs—except (possibly) for one slender thread. 

9 The ordering on finite sequences of integers which we introduced in 

the proof of 4A.3 was first defined in Lusin-Sierpinski [1923], where it 
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was used in almost exactly the same way in which we used it. Kleene 

[1955a] used the same ordering (essentially for the same purpose) and 

credits Brouwer [1924] for the definition and some of its basic 

properties—this is Brouwer’s famous intuitionistic proof that every (con¬ 

structive, totally defined) real function must be uniformly continuous on 

closed intervals. Now, Brouwer has no list of references in his paper, but 

he might have seen Lusin-Sierpinski [1923]; the publication dates make 

this barely possible. In any case, Brouwer’s background in topology 

makes it quite likely that he knew the early papers in descriptive set 

theory (including Lusin-Sierpinski [1918]) and he might have been led to 

the ordering along the same path followed by Lusin and Sierpinski. 

10 Recursion theorists are apt to refer to the Kleene-Brouwer ordering, 

while someone versed in the classical theory would naturally call this the 

Lusin-Sierpinski ordering. 

11 As we remarked in the introduction, the relationship between classi¬ 

cal descriptive set theory and Kleene’s theory of the arithmetical and the 

analytical pointclasses on a> was first perceived as a list of analogies 

between the two theories, to begin with by Mostowski and later (and 

more accurately) by Addison in his Thesis [1954] and later in his [1959a], 

(Addison and Spector were graduate students of Kleene during the same 

general period 1951-1954; it is interesting that Addison’s deepening 

interest in and knowledge of the classical theory at that time was not 

effectively transmitted to Kleene and Spector.) The general, unified 

theory which we are studying in this book evolved slowly in the years 

since 1955 from these analogies. 

12 The prewellordering property was first isolated explicitly by Mos- 

chovakis in 1964, in an effort to find common proofs for theorems about 

n\ and (on a>); see Rogers [1967], (The original version was some¬ 

what more complicated and this present definition is due to Kechris.) On 

the other hand, arguments which involve ordinal assignments to points 

(like the index in Lusin-Sierpinski [1918]) pervade the classical literature 

both in descriptive set theory and in recursion theory, so many of the 

results in 4B-4D are best viewed as elegant and strengthened versions of 

their classical, concrete special cases. The credits given in the text refer to 

these special cases. 

13 In particular, Novikov [1935] assigned ordinals to the points of a X] 

set precisely as we did in 4B.3, starting with an ordinal assignment from a 

sieve on the given nj matrix. Novikov [1935] used 4B.3 to settle the 

problems of separation and non-separation for n[, 2, and n]—the 
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separation theorem for 2\ is already in Lusin [1927], Kuratowski [1936] 

inferred the separation property forll] from the reduction property for 2\ 

which he introduced and established. Finally, Addison [1959a] put down 

the lightface results in 4B.10, 4B.11 and 4B.12, following both the 

classical work and Kleene [1950], where the failure of separation for 2° 

was proved. 

14 The further step of using the prewellordering property as the key 

tool in studying the structure theory of collections of relations was taken 

in generalized recursion theory, particularly in recursion in higher types 

and inductive definability; Moschovakis [1967], [1969], [1970], [1974a], 

[1974b] and the present work are successive stages in the development of 

what is sometimes called prewellordering theory. 

'''The present notion of a Spector pointclass is the natural generaliza¬ 

tion to the context of Polish spaces of the Spector classes of Moschovakis 

[1974a], Theorems 6B.3 and 9A.2 in that monograph correspond to the 

substitution property and 4C.2 here. 

16 The study of collections of relations with arguments in several spaces 

(and specifically .£-pointclasses and Spector pointclasses) as opposed to 

studying collections of subsets of a fixed space (often cr-fields) is one of 

the chief methodological differences between our approach to descriptive 

set theory here and the classical work. We are forced to look at relations 

since the effective pointclasses are not closed under countable unions but 

they are closed under projection along a>, to take an example. At the 

same time, the use of relations makes the logical computations of com¬ 

plexity (which were also used in the classical theory) much simpler, so 

that there is an advantage, even if one is only interested in the projective 

pointclasses. 

17 The parametrization theorem for A, 4D.2 is an abstract version of 

the various “hierarchies” for the hyperarithmetical sets, for example the 

sets Ha in Kleene [1955b] or the sets Wy in Spector [1955]. Similar 

abstract parametrizations were constructed directly from the prewell¬ 

ordering property in Moschovakis [1967], [1969] and [1974a] whose 

Theorem 5D.4 is the basic model for 4D.2 here. 

18 Kleene [1959b] has the basic version of 4D.3, for /J], with a proof 

based on the hierarchy of the Ha-sets. The upper classification of A 

(4D.14) is a trivial consequence of this. As for the lower classification of 

A (4D.16), it has been rediscovered by several people at various times, 

with the proof for A\ usually depending on the Uniformization Theorem 

4E.4. The simple argument for A\ that we gave is due to Kechris. 
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19 Lusin [1930a] introduced the fundamental problem of uniformization 

and announced four results. I. Every X' set can be uniformized by the 

difference of two X| sets. (This is actually false, see 4F.22.) II. There is a 

X] set which cannot be uniformized by a H\ set. III. Every Borel set can be 

uniformized by a II ] set (joint result with Sierpinski). IV. is 

Borel and every section Px is countable, then P is the union of countably 

many Borel sets P*, each of which uniformizes P. (There was a similar 

result for analytic P.) 

20 Theorem II is equivalent to 4D.11, which we obtained as an im¬ 

mediate corollary of Kleene’s 4D.10. Novikov [1931] also gave a proof of 

this result, as well as a proof of a weak version of IV, that for Borel P 

with countable sections the projection 3^P is Borel and there exists a 

Borel uniformization, our 4F.6. The complete IV is 4F. 17 here. 

21 Sierpinski [1930] established III and asked whether every n[ set can 

be uniformized by some projective set. It was a bold question, because 

Lusin had published an example which purported to show that one could 

not “effectively” (in what he called “realistic mathematics”) uniformize 

n] sets. This uniformization problem was soon recognized as the out¬ 

standing problem of descriptive set theory, until Kondo [1938] solved it 

using the basic idea introduced by Novikov and published in Lusin- 

Novikov [1935]. (Kondo gives additional credit to another Novikov paper 

where apparently n] sets with finite sections were uniformized.) The 

lightface version was worked out by Addison in the late fifties. 

22 Kondo’s solution of the uniformization problem was in many ways 

harder than the problem—his proof appeared to be so complicated that 

few people ever read it. But the difficulty is only a matter of style, as 

there is basically only one natural proof of this result. The present 

treatment in 4E.1-4E.4 via scales was worked out in 1971 by Mos- 

chovakis who was attempting to generalize the result using strong axioms. 

We will look at this generalization in Chapter 6. 

23 For the applications of descriptive set theory to analysis, the most 

important uniformization result is von Neumann’s Selection Theorem 

4E.9. This was proved before the war, despite the late publication of von 

Neumann [1949], Here we obtained it as a direct corollary of the Kleene 

Basis Theorem for X\, 4E.8. 

~4 There are many results in the literature on Borel uniformizations of 

Borel (or even X} and nj) sets with special properties, many of them set 

in wider contexts than the category of Polish spaces. We have concen¬ 

trated on just the basic theorems here which illustrate the applicability of 
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the effective theory to this kind of problem—and particularly the useful¬ 

ness of the z\-uniformization criterion 4D.4. These “effective proofs of 

boldface results” have been part of the folklore of the subject for a long 

time and there is nothing basically new in our treatment here; the final 

versions of 4F.9-4F.18 owe much to the seminar notes of some lectures 

given by Louveau after he had seen a preliminary version of this chapter. 

25 Louveau has obtained recently a very beautiful extension of 4F.18 

which in particular implies the following: if P c 9C is A \ and 2" for some 

n, then P is 2°(a) for some ae4j. 



CHAPTER 5 

THE CONSTRUCTIBLE UNIVERSE 

We have already referred to several consistency and independence 

results, e.g. that the continuum hypothesis cannot be settled in Zermelo- 

Fraenkel set theory and that one cannot prove in this theory that A\ sets 

of reals are Lebesgue measurable or that uncountable IT} pointsets have 

perfect subsets. To prove rigorously theorems of this type, one needs the 

powerful metamathematical methods of modern logic; we will study these 

quite carefully in Chapter 8. Our main purpose here is to consider briefly 

a property of pointsets which holds in Godel’s universe of constructible sets 

and use it to establish the independence of many important propositions 

of descriptive set theory. 

Godel’s aim was to prove the consistency of the axiom of choice and the 

generalized continuum hypothesis with the classical axioms of Zermelo- 

Fraenkel set theory (without choice). To do this, he defined a collection L 

of sets with very special properties, the constructible sets and showed (first) 

that if we reinterpret “set” to mean “constructible set,” then all the 

axioms of Zermelo-Fraenkel set theory become true. In other words, all 

these assertions about sets hold in the constructible universe L; it follows 

that every logical consequence of these axioms also holds in L. Now 

Godel went on to establish that the axiom of choice and the generalized 

continuum hypothesis also hold in L, because of the special nature of 

constructible sets; it follows that the negations of these statements do not 

hold in L, so they cannot be logical consequences of the axioms of 

Zermelo-Fraenkel set theory. In other words, the axiom of choice and 

the generalized continuum hypothesis are consistent with Zermelo- 

Fraenkel set theory, they cannot be disproved in that theory. 

Godel’s work implies that a very strong form of the continuum 

hypothesis holds in L—the set A of irrationals admits a wellordering of 

rank N, which is “A^-good” in a technical sense. We will make this 

proposition precise in 5A and we will abbreviate it by “lc L,” since it is 

in fact equivalent to the assertion that all points in Baire space (as sets of 

274 



Descriptive set theory in L 275 5 A] 

ordered pairs of integers) are constructive. Thus the hypothesis is 

also consistent with the axioms of Zermelo-Fraenkel set theory and 

neither it nor any of its logical consequences can be disproved from these 

axioms. 

We will show that the hypothesis yields a complete structure 

theory for the Lusin and Kleene pointclasses, e.g. it implies that all 

2) are Spector pointclasses with the uniformization property. It 

also implies that there are A, sets of reals which are not Lebesgue 

measurable, that there are uncountable II [ sets which have no perfect 

subset, etc. The consistency of IgL implies then that all these proposi¬ 

tions are also consistent with the axioms of Zermelo-Fraenkel set theory 

(with the axiom of choice), e.g. we cannot prove in this theory that some 

Xl set cannot be uniformized by a set of that every A, set of reals is 

Lebesgue measurable. 

It turns out that the proofs of these results from the hypothesis jV'cL 

are quite easy. The more difficult metamathematical proof of the consis¬ 

tency of IgL will be given in full in Chapter 8. 

At the end of this chapter we will also give a brief discussion (without 

proofs) of various other consistency and independence results which 

illustrate the limitations of classical, axiomatic set theory. These are 

proved by Cohen’s method of forcing which we will not cover in this 

book. 

Although the statements of theorems and the proofs in this chapter will 

be completely rigorous, the discussion will be necessarily somewhat vague 

since we will not say exactly what we mean by “statements about sets” or 

“logical consequences.” These are among the basic notions of logic and 

they will be defined with complete precision in Chapter 8. The reader 

who feels uneasy about using these terms intuitively may turn to that 

chapter now and peruse at least the first few sections. Almost all of 

Chapter 8 can be read at this point with no knowledge of the intervening 

Chapters 5, 6 and 7. However, only a rudimentary, intuitive understand¬ 

ing of these metamathematical notions is needed to read the material 

here and it is perhaps best to continue in our development of descriptive 

set theory before we turn to look seriously at logical matters. 

5A. Descriptive set theory in L"’. 

Suppose < is a wellordering of some product space 9C and T is a 

pointclass. We say that < is T-good if for every Pc ZX9C in T the 
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relations 

Q(z,x)^(3y<x)P(z, y), 

R(z, x)*=>(Vy <x)P(z, y), 

are also in T, i.e. if T is closed under <-bounded quantification. For 

example, the natural ordering on a> is T-good for every adequate point- 

class r. 

Notice that if T is adequate and the identity relation = on 9C is in A, 

then every T-good wellordering of 9C is in A, since 

z — x «=> (3y <x)[z = y], 

-|Z^X<s=^Z7^X&X<Z. 

We now introduce the abbreviation 

TVc L <=> jV admits a X\-good wellordering of 

order type (rank) K,; 

put another way, asserts that there is a bijection 

p :tV>^ Nj 

of Baire space with the set of countable ordinals such that the relation 

a —l/3 <=> p(«) — pO) 

is a X^-good wellordering of A. In particular, <L is a dj pointset which 

wellorders A.(2,3) 

As we mentioned in the introduction, M admits a ^9-good wellordering 

of rank exactly when every point of Baire space is in the collection L 

of constructible sets. This motivates our choice of notation. 

The hypothesis jfcL is almost certainly false on the basis of our 

intuitive understanding of the universe of sets. Not only does it imply the 

continuum hypothesis 2X° = N1 which is itself dubious, it further asserts 

the existence of a definable, A\ wellordering of A, for which we have no 

evidence at all. It is well known that all proofs of Zermelo’s theorem that 

A can be wellordered depend heavily on the axiom of choice and fail to 

produce an explicit, definable wellordering. 

The proof that the set of constructible irrationals admits a ^2-g°°d 

wellordering of rank Nj utilizes the very special properties of constructi¬ 

ble sets. 

Notice that by Corollary 2G.3 to the Kunen-Martin Theorem, A does 

not admit a A} wellordering. Thus the existence of a 4^ wellordering is 
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the strongest hypothesis of this type which can be consistent with the 

axioms of Zermelo-Fraenkel set theory. 

Exercises 

We start with a few simple facts about good analytical wellorderings. 

If < is a wellordering of A of rank Kl5 put 

IS(a, (3) <=>{(«);: / e to} = {y: y </3}; 

we read this “a codes the initial segment of < with top (3.” 

5A.1. Let < be a wellordering of A of rank Kj. Prove that < is .S’-good 

(n >2) if and only if the associated relation fS(a, /3) is A\. 

Hint. Assume first that < is .SEgood. Compute: 

IS(a, j3)<=> (Vi)[(a), </3] 

& (Vy)[y < /8 -*■ (3i)[y = (a);]] 

<=> (Vi)[(«)i —/3] 

& (Vy <j3)(3i)[(a), = y], 

which implies that IS (a, (3) is since < is X]',-good and in A\. 

Conversely, if IS(a, (3) is A\ and P(<5, y) is in then 

(3y</3)P(S, y)^3a){IS(a, 0) & (3i)P(S, (a),)}, 

(Vy < /3)P(S, y) «=* (3a){IS(a, (3) & (Vi)P(S, (a),)}. H 

5A.2. Prove that if A admits a X^-good wellordering of rank Xl5 then 

every perfect product space 0C admits a wellordering of rank N, which is 

Xj-good, good and zl^-good for every k > n. 

Hint. Suppose < is J£*-good of rank K, on A. The equivalences 

(3y < (3)P(8, y) ^ (3a){IS(a, j3) & (3i)P(S, (a);)} 

^(Va){IS(a,(3)^(3i)P(8, (a),)} 

and their duals show easily that < is Xj-good, Tllk-good and 4£-good for 

each k > n. If 9C is any perfect product space, let 

h : 9C >* A 

be a A\ isomorphism of 9C with A, put 

x <' y <=> h(x) — h(y) 
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on 9C and verify easily that <' is -S^-good, /7[-good and <4 [-good on 9C for 

each k > n. “' 

After these preliminary results, we proceed to list the most significant 

facts about descriptive set theory in L. 

5A.3. Prove that if Ac L, then for each n > 2, 2\ is a Spector pointclass. 

Hint. By the remarks following the definition of Spector pointclasses in 

4C, it is enough to show that each 2!,(n> 2) has the prewellordering 

property. Suppose Pc0C is 2„, so that for some 11^ set QcacxA. 

P(x) «=> (3a)Q(x, a); 

let <L be a X^-good wellordering on A induced by a rank function 

p: A>* K, 

and put 

tp(x) = inf{p(a): Q(x, cc)} (xeP). 

Now 

x<*y (3a){0(x, a) & (V|3 <La)[j3 = a v -iO(y, /3)]}, 

x <* y <=> (3a){0(x, a) & (V/3 <La)~iO(y, (3)}, 

so that by 5A.2, both <* and <* are 2\ and <p is a 2}-norm. H 

Thus in L the analytical pointclasses which are normed are exactly 

those circled in Diagram 5A.1. 

Diagram 5A.1. The normed Kleene pointclasses in L. 

The diagram for the boldface pointclasses is identical by 4B.7. 

5A.4. Prove that if AgL and 2, then 2* has the uniformization 

property and zl is a basis for 2\. (Addison [ 1959b].(3)) 

Hint. Suppose first that Qc0Cx<y is /7x, let < be a X^-good 

wellordering of rank on cy (by 5A.2) and put 

Q*(x, y) <=> Q(x, y) & (Vz <y)~iQ(x, z); 
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clearly Q* is and it uniformizes Q. Now show that every 21 relation 

can be uniformized by a 2\ relation as in the proof of 4E.4. 

The second assertion follows by the argument we used to prove 4E.5. 

H 

5A.5. Prove that if jVcL, then every 2l(n>2) has the scale property. 

Hint. Given P in 2„, suppose 

P(x) <=> (3a)Q(x, a) 

with O in let <x be a .S^-good wellordering of A and let <2 be a 

X^-good wellordering of 9C. Define the anti-lexicographic wellordering < 

on SCxA (the product of 9C and A) by 

(x, a)<<y, |3)«=> a <j0 v[a = 0 & x<2y] 

and let 

7i: 9C x A —» Ordinals 

be an order-preserving mapping of < into the ordinals. Now put 

<p(x) = 7r((x, -least a such that Q(x, a),)); 

easily 

x<*y <=> (3a){Q(x, a) & (V0 a)-iO(y, (3)} 

v(3a){Q(x, a) & Q(y, a) 

& (V0 <1a)[-iQ(x, 0) & -iQ(y, 0)] & x<2y} 

and similarly for <*, so <p is a .S'-norm. Since cp is actually an injection, 

the sequence cp, cp, cp,... is a .S'-scale on P. H 

We now consider the regularity properties of projective sets in L. The 

key construction is embodied in the following simple fact. 

5A.6. Assume AsE and let 9C, ^ be any two perfect product spaces. 

Prove that there exists a function whose graph 

Graph(f) = {(x, y): /(x) = y} 

is J7j and thin. 
Hint. Let <L be a X2-good wellordering of A of rank and put 

P(a, 0)^a<L0 & 0e WO&(Vy<L0)-i{ye WO&|y| = |0|}, 
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where WO is the set of ordinal codes of 4A. Clearly P is X21 so let 

P(a,jS)**Qy)Q(a, j8, 7) 

with O in n\; considering O as a subset of Ax(AxA), let Q* unifor- 

mize O in 77j, so that for each a, 

(3|3)(3y)Q(a, /3, 7) ^ (30)(3y)Q*(a, ft y)> 

0*(a, p, y) & Q*(a, P\ y')^P = P'&y = 7'■ 

Use 4A.6 to show that Q* has no nonempty perfect subsets—the key 

observation is that any uncountable subset of Q* involves uncountably 

many a’s and hence uncountably many distinct ordinals |/3| which form an 

unbounded subset of 

Since Q* is obviously the graph of a function 

/: A—> Ax A, 

this proves the result for 9C = A, (y = AxA, from which the general fact 

follows by taking A\ isomorphisms and using 4F.7. H 

In 8G.12 we will establish the converse of this result—the existence of 

a function /:A—»A with thin, 77} graph in fact implies that A cl. 

Recall from 2H that a function f:9C-*y is Baire-measurable if for 

each open G^y, the inverse image /_1[G] has the property of Baire. 

Similarly /: 9C —> is p,-measurable (where p is a u-finite Borel measure 

on 9C) if /-1[G] is p-measurable, for each open Gs'y. 

A measure p on 9C is regular if p(9C) > 0 and p({x}) = 0 for all x e 9C. 

5A.7. Suppose /: 0C —> and Graph(f) is thin; prove that / is not 

Baire-measurable or p-measurable for any regular cr-finite Borel meas¬ 

ure on 9C. 

Thus, if A c L, then there are functions /: (R —*• (R with 77} graphs which 

are neither Baire-measurable nor Lebesgue-measurable. 

Hint. By 2H.10, if / is Baire-measurable then there is a comeager Gs 

set P such that f\P is continuous. Now P is uncountable, so the injective 

image 

P* = {(x,/(x)):xeP} 

is also uncountable and a X\ subset of Graph(f); but then P* must have a 

perfect subset by 2C.3, contradicting the hypothesis. 

The argument for measure is similar. H 
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5A.8. Prove that if A <= L, then each perfect product space 9C has 

uncountable, thin, 11\ subsets, it has A\ subsets without the property of 

Baire and for each regular, cr-finite measure p, it has A\ subsets which 

are not p,-measurable. (Godel, Addison [1959b],(1_3)) 

Hint. Take /: 9C —> CR as in 5 A.6. 

For the first assertion use a A\ isomorphism of 9C with 9CX(R. For the 

second and third assertions argue that the set {x: p<f(x)<q} is Al2 for 

each pair of rationals p, q and that not all these sets can have the property 

of Baire—or be p-measurable. —I 

There is another, simpler way of obtaining sets in L which are not 

measurable and do not have the property of Baire, which depends on the 

classical theorems of Fubini and Kuratowski-Ulam. 

The Fubini Theorem asserts (in part) that if p is a Borel measure on 9C 

and if Acgcx9C is measurable in the product measure p x p, then 

(i) the section 

Ay ={x: A(x, y)} 

is p-measurable, for almost all ye9C, 

(ii) if p(Ay) = 0 for almost all y e9C, then A has measure 0 in the 

product measure and the section 

Ax = {y: A(x, y)} 

has measure 0, for almost all xe9C. 

We will not prove this here. 

The corresponding result for category is not as well-known and it is 

worth putting it down for the record. 

5A.9. Prove that if A c= 9C x has the property of Baire, then the section 

Ay = {x: A(x, y)} has the property of Baire for a comeager set of y’s and 

A is meager<=> Ay is meager for a comeager set of y’s 

«=> Ax = {y: A(x, y)} is meager for a comeager set of x’s. 

(The Kuratowski-Ulam Theorem, see Oxtoby [1971].) 

Hint. Suppose first that AcSCx't) is closed and nowhere dense, let 

G = 9C x - A, so G is dense and open. For each basic nbhd Ns c 9C, put 

Gs={y:(3xeNs)G(x, y)} 

and check that each Gs is dense, open in y; hence by the Baire Category 
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Theorem 2H.2, easily, 

H=nsGsc=<y 

is comeager. Now if y e H, then easily Gy = {x:G(x, y)} is dense and 

hence Ay = 9C — Gy is nowhere dense. 

Thus whenever A is closed and nowhere dense, the section Ay is 

nowhere dense for a comeager set of y’s. This implies immediately the 

same result for meager A, which yields direction (=>) of the second 

assertion. 

To prove the first assertion choose an open G and a meager set P such 

that AAG = P and notice that for each y, Ay A Gy = Py; since each Gy 

is open, this proves that Ay has the property of Baire whenever Py is 

meager, which is true for a comeager set of y’s. 

Finally, to prove direction («=) of the second assertion, suppose A AG 

is meager with G open and A is not meager, so that G^ 0; now Ay A Gy 

is meager for a comeager set of y’s and if the same were true for Ay, it 

would follow that Gy is meager for a comeager set of y’s. But G contains 

a basic nbhd of the form N(9C, s) x N(ty, t) since it is nonempty and Gy is 

not meager for y eN(T|, t), which implies that N(cy, t) is contained in a 

meager set, contradicting the Baire Category Theorem. —I 

5A.10. Suppose p: 9C —» Ordinals maps a perfect product space 9C into 

the ordinals so that for each £, the set p~'(£) = {x: p(x) = £} is meager; 

prove that the prewellordering < induced by p does not have the 

property of Baire (as a subset of 9CX9C). 

Similarly, if each p-1(£) has p,-measure 0 for some regular Borel 

measure T, then < is not measurable in the product measure p, x /x. 

In particular, both conclusions hold if each p-1(£) is countable or a 

singleton (i.e. if < is a wellordering). 

Hint. Let A = {(x, y): p(x)<p(y)} and suppose first that {y: Ay is 

meager} is not comeager; choose then a least y0 such that Ay° has the 

property of Baire but is not meager, put B = {(x, y): p(x)<p(y)<p(y0)} 

and verify easily that B has the property of Baire. Now By is meager for 

a comeager set of y’s by the choice of y0, hence B is meager. On the 

other hand, for each x<y0, Bx = {y: p(x)<p(y)<p(y0)} so that Ay°g 

Bx U Bx U{y: p(y) = p(y0)} and hence Bx cannot be meager or else Ay° 

would be meager. 

The argument is a bit simpler if {y: Ay is meager} is comeager and the 

whole proof goes through word-for-word for the case of measure. —\ 
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We will end this set of exercises with an interesting alternative version 

of 5A.6 which brings in the largest, thin J7j set of 4F.4. 

5A.11. Let Ct be the largest, thin, n\ subset of A. Prove that if AcL, 

then every irrational a is recursive in some j3eC1. 

Hint. Let / :A—»■ A have thin, II} graph and notice that (trivially) each 

a is recursive in the pair («,/(«)). Now let 7r : A x A A be a recursive 

homeomorphism and observe that v[Graph(f)] is a thin, n\ subset of A 

and a. is recursive in 7r((a, /(a))). —| 

5B, Independence results obtained by the method of forcing<4) 

If we can prove a certain statement 9 about sets from the hypothesis 

Acl, then we know that 9 is consistent with the axioms of Zermelo- 

Fraenkel set theory (with choice)—it cannot be disproved from these 

axioms. This is a particularly nice consistency proof for 9, as it establishes 

that 6 actually holds in a very natural model of set theory, namely L. 

The ingenious method of forcing was invented by Cohen in order to 

prove the independence of the axiom of choice from the remaining 

Zermelo-Fraenkel axioms as well as the independence of the continuum 

hypothesis in Zermelo-Fraenkel set theory with choice. This involves 

constructing models of set theory which are more complicated (and less 

natural) than L. We will not attempt to explain forcing here, but we will 

simply list a few of the results which are proved using it and which are 

relevant to descriptive set theory. 

By ZFC we understand the classical Zermelo-Fraenkel set theory, with 

the axiom of choice. (The specific axioms are listed in Chapter 8.) In 

stating consistency results it is natural to assume that ZFC itself is 

consistent—this is surely true since all its axioms hold in its intended 

model, the universe of sets. We will not bother to make this hypothesis 

explicit. 

5B.1. Theorem. We cannot prove in ZFC that A admits a projective 

wellordering; in particular, we cannot prove in ZFC that AgL (Cohen, 

Levy). 

An extension of this result asserts that the uniformization problem for 

the higher Lusin pointclasses is hopeless in ZFC. 
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5B.2. Theorem. We cannot prove in ZFC that every FI\ set in jVXjV can 

be uniformized by some projective set (Levy [1965]). H 

Even weaker structure properties cannot be proved. 

5B.3. Theorem. We cannot prove in ZFC that either %\ or IT] has the 

separation property, hence, we cannot prove in ZFC that either II] or 2] 

has the prewellordering property (Harrington [198?]). H 

Martin’s Theorem 2G.4 is also best possible in ZFC—it cannot be 

extended to the higher Lusin pointclasses. Sample result of this type: 

5B.4. Theorem. We may assume consistently with ZFC that 2K° = N17 

and that there are Fl\ wellfounded relations on A of rank X17 (Harrington 

[1977]). H 

Similarly, Sierpinski’s Theorem 2F.3 cannot be extended: 

5B.5. Theorem. We may assume consistently with ZFC that 2k° = K17 

and that there is a Fl\ set A which cannot be written as the union of fewer 

than K17 Borel sets (Solovay). H 

The best result about regularity properties of projective sets needs the 

additional hypothesis that the existence of inaccessible cardinals is 

consistent—see Section 6G for a definition of these. In the present 

context this is surely a reasonable assumption. 

5B.6. Theorem. If the theory ZFC + (there exist inaccessible cardinals) is 

consistent, then the following statements (taken together) are consistent with 

ZFC. 

(i) Every uncountable projective set has a perfect subset. 

(ii) Every projective set has the property of Baire. 

(iii) Every projective set is p-measurable, for every a-fhiite Borel meas¬ 

ure p. 

(iv) There is no projective wellordering of the continuum. 

Moreover, one may consistently assume (i)-(iv) together with either the 

continuum hypothesis or its negation. (Solovay [1970].) —I 

We will say something about the proofs of these results in Chapter 8, 

after we have studied the metamathematical method. Suffice it to say here 
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that they are deep and intricate arguments which involve a detailed 

analysis of both set theory and the “axiomatic method.” 

5C. Historical remarks 

1 The results in 5A are all due basically to Godel, except for some of 

the refinements and generalizations. 

Godel [1938] proved that the collection L of constructible sets is a 

model of Zermelo-Fraenkel set theory which further satisfies the axiom 

of choice and the generalized continuum hypothesis. He also announced 

there without proof that in L there are non-Lebesgue measurable A] sets 

and uncountable TT[ sets with no perfect subsets. In the later second 

printing of the monograph Godel [1940] (which apparently appeared in 

1951) he also added a note announcing that in L, the set A admits a X] 

wellordering. 

3 Addison [1959b] formulated the notion of a X^-good wellordering of 

rank N, and gave the first published proof that LHA admits such a 

wellordering. He also derived most of the corollaries of this proposition 

that we have listed here, including the uniformization and basis results 

5A.4 as well as 5A.8. According to his introduction in [1959b], Addison 

was building on earlier papers of Kuratowski and Novikov and on some 

very early unpublished work of Mostowski. 

4 For the results using forcing which we will not cover here in any 

detail, we refer the reader to Jech [1971], 



CHAPTER 6 

THE PLAYFUL UNIVERSE 

The results of Chapter 5 make clear the basic inadequacy of the 

Zermelo-Fraenkel axioms for descriptive set theory. It is simply impossi¬ 

ble to extend the classical results about Il\ and to the higher Lusin 

and Kleene pointclasses on the basis of ZFC. 
One way to go, at this point, would be to adopt the hypothesis A <= L as 

an additional axiom of set theory. As we saw, this gives (almost trivially) a 

complete structure theory for projective sets. The defect of this approach 

is that most set theorists do not see much evidence of the truth of the 

hypothesis /cL—in fact many tend to believe that it is false. 

Another possibility is to give up developing a theory for the higher 

Lusin pointclasses and concentrate on consistency and independence 

results. Many logicians do this, but it is not our approach here. 

Instead, we will study hypotheses which go beyond ZFC, which yield a 

rich theory of projective sets and which appear to be (at least) plausible. 

We should caution the reader that this “plausibility” will not be obvious 

on first reading; evidence for it will flow (we claim) precisely from the 

results which we will prove in this chapter. 
Solovay [1969] was first to use strong set theoretic hypotheses (unprov- 

able in ZFC and inconsistent with Ac L) to solve problems in descriptive 

set theory. Specifically, he assumed that there exist measurable cardinals 

(MC); granting this, he proved that every pointset has the property of 

Baire, is measurable relative to every cr-finite Borel measure and is either 

countable or has a perfect subset. 

We will define measurable cardinals and prove Solovay’s results in 

Section 6G. Before this, however, we will study another strong hypothesis 

which yields a rich structure theory for projective sets. Beside its power, 

this hypothesis is preferable to MC because it is simpler to state and 

easier to use. 

This is where games come in: the hypothesis of projective determin- 

acy (PD) asserts that in certain two-person, infinite games of perfect 

286 
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information one of the two players must have a winning strategy. We will 

give a precise definition of these notions in Section 6A. 

There is no doubt that this introduction of powerful and unfamiliar 

hypotheses poses serious foundational questions. Our discussion of these 

problems here will be somewhat vague and tentative; we will come back 

to them (better equipped) in Chapter 8. In the meantime, the reader who 

wants to go beyond the classical theory of the first four chapters should 

put aside his doubts about our approach, open himself to new ideas and 

plunge into the mathematics of the subject. If he can do this, he will be 

amply rewarded. 

6A. Infinite games of perfect information(1,2) 

Let X be a fixed nonempty set. With each set Ac“X of infinite 

sequences from X, we associate a two-person game G = GX(A) as 

follows. Players I and II alternatively choose members of X ad infinitum, 

as in Diagram 6A.1, so that a sequence 

f=(a0, ai, a2,...)e“X 

is specified; I wins if f <= A, otherwise II wins. 

It is understood here that before I chooses an (for n even) he is allowed 

to see a0, au..., an_ 1; and similarly with II. This is why we call these 

games of perfect information. 

We have described a run of the game G which resulted in a particular 

play f. The set A is the payoff for GX(A), although we often identify A 

with GX(A) and talk of the game A. 

A strategy for player I is any function cr with domain all finite sequences 

from X of even length (including the empty sequence) and values in X. 

We say that I follows (or plays) a in a run of the game G, if the resulting 

play 

/ = (a0> al> 

II 

Diagram 6A.1. Playing the game. 
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satisfies 

a0 = o-(0), 

a2 = cr(a0, a\)i 

an = cr(a0, alv.., a„_,) (n even). 

Dually, a strategy for player II is any function r on the finite sequences 

from X of odd length, with values in X. 

When I plays cr against II’s r, the resulting play 

ct*t = (a0, au a2,...) 

is completely specified, 

ao = cr(0) ax = T(a0), 

an = o-(a0,..., a„_!) (n even), 

an = r(a0,..., a„_t) (n odd). 

We naturally call cr a winning strategy for I if for every r, cr*re A—i.e. 

if I always wins when he plays cr, no matter what II plays; dually, t is 

winning for II if for every cr, <j*t£A. 

Finally, the game G— GX(A) (or the set A) is determined if either I or 

II has a winning strategy—or wins the game, as we will say. 

Not all games are determined, but simple ones are. The first result of 

this type is fundamental for the subject. 

First a definition: if Ac“X and u = (a0,...an_1) is a sequence of even 

length, the subgame of A at u is 

A{u) = {fe“X: (a0, al7..., an_t, /(0), /(l),...)e A}. 

6A.1. Lemma. Let Ag“X and suppose u = (a0, alv.., an_x) is a finite 

sequence from X of even length. If II does not win the game A(u), then 

there is some a such that for all b, II does not win A(u^(a, b)). 

Proof. Towards a contradiction, suppose II does not win A(u), but that 

for each a, there is some b and a strategy t which is winning for II in 

A(u~(a, b)). Using the axiom of choice, let 

a » (ba, Ta) 
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be a function which assigns to each a some ba and ra with these 

properties. Now II can win A(u) by answering I’s first more a0 by ba° and 

then following t%, as if he were playing in A(u~(a°, ba°)). 

More formally, define r by 

r(a0) = ba°, 

r(a0,..., a„_j) = ra°(a2,..., an_x) (odd n) 

and suppose /= (a0, al5...) is played in A(u) with II following r. Then 

(a2, a3,...)<£ A(u^(a0, a^), since II has been following ra° after the first two 

moves hence (a0, a2,...)£ A(u), i.e. II has won this run of A(u). H 

We will customarily describe in an informal way how I or II can play to 

win a certain game, as in the first paragraph of this proof, without 

bothering to define formally a winning strategy. 

6A.2. The Gale-Stewart Theorem (Gale-Stewart [1953]). For each 

every closed subset of "X is determined. 

Proof. Of course we use the product topology on “X (with X discrete) as 

in Chapter 2. 

Suppose then that Ac"X and II does not have a winning strategy in 

A. We describe how I can play to win. 

By the lemma, there is some a0 such that for every b, II cannot win 

A(a0, b); let I start the game by playing some a0 with this property and 

suppose II answers by some ax. Now II cannot win A(a0, a,). 

By the lemma again, there is some a2 such that for every b, II cannot 

win A(a0, alf a2, b); let I play one such a2 and continue in the same 

fashion. 

At the end of this run of the game, we have a play 

f = (a0i 

and for every even n, II cannot win the subgame A(a0,..., an^1). This 

implies that there is some /„e“X with 

/n(0) = a0,..., fn(n — 1) = an_!, 

fn S A, 

otherwise II could play at random in A(a0,..., a„_j) and win. Clearly 

limitfn=f and hence / 6 A, since A is closed, so that I has won. H 
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Proofs of determinacy can become very complicated, but their basic 

idea is always the same: to reduce in some way the problem of winning a 

given game to winning various associated closed games. We give here one 

more proof of this type. 

First extend to all spaces “X (X* 0) the basic definitions for the Borel 

subsets of "w = X: 

X? = all open subsets of “X, 

n"={“X-A:AeS"}, 

and for £> 1, 

A g <=* A = U i^co A for suitable A0, Alv.., 

where each At is in 11° for some tj < £ 

The Borel subsets of “X are the sets which occur in some Xg or 11^—they 

obviously form the smallest collection of subsets of “X which contains the 

open sets and is closed under complementation and countable union. 

Most of the trivial results about the Borel subsets of X extend to the 

Borel subsets of “X, but one must be careful; if X is uncountable, then 

"X is not separable and theorems which depend on the separability of X 

may fail. (For example, it is not always the case that open sets are 

countable unions of closed sets.) 

6A.3. Theorem (Wolfe [1955]). For each every X” subset of "X is 

determined. 

Proof. Suppose 

A=\JteaFl 

with each Ft closed and by 2C.1 choose trees T' on X such that 

F, = [T] = {/e “X: (Vk)(/(0),..., f(k - 1)) g T}. 

The idea of the proof is to define a set of sure winning positions for I in 

A, i.e. a set W of sequences from X such that I wins A(u) in a 

particularly obvious way, if ueW. We will subsequently show that if 

0j£ W, then in fact II wins A, thus establishing the determinacy of A. 

Put first 

u g W° <=> (3i)[I wins F(u)]; 

if u g W°, then I wins A(u) almost trivially, by playing to get into a 

specific closed set Ft. 
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Suppose now that W11 has been defined for each tj < £ and for i e a> put 

feH^ ^ IV even fc)[(/(0),..., f(k - l))e U<« W" U T‘]; 

clearly H(l is a closed set. Let 

u G W€ <=> (3i)[I wins the game H€,l(u)] 

and 

w = u*w?- 
We now prove by induction on £ that 

(*) u G VW => I wins A(u). 

Granting (*) for all tj <£ and assuming that mg W€, choose i so that I 

wins H(’l(u) and let I play in A(u) following his winning strategy in 

H€'l(u). As the game progresses, if c0,..., cfc_j have been played after k 

steps, we know that 

u~(c0,..., ck_j)g U„<€ W11 U T‘. 

Case 1. For some k, we actually have 

u (c0,..., c^_i)g Ut)<^ W71. 

By the induction hypothesis then I can switch to a strategy which will 

produce from then on some /eA(u"(c0r., cfc_i)), so that the whole play 

(c„,..., cfc_!, /(0), /(l),...) is in A(u) and I has won. 

Case 2. For every k, u~(c0,..., ck_x) £ U v<€ W1- Now the play / = 

(c0, clv..) satisfies 

(Vk)[u~(c0, Cj,..., cJgT'] 

so that u~(/(0), /(l),...) g [T*] = F‘ and /gF(u)cA(m), so that again I 

has won A(u). 

In particular, (*) implies that 

0 e W =*• I wins A. 

To show the second implication we need, notice first that for each i, 

v < £ H11' <= H«•* 

and hence trivially 

Since the sequence W€ (£ an ordinal) cannot increase forever, there is 
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some ordinal % such that 

wx+1 = wx=w. 

Suppose now that Wx+1; we describe how II can play to win A. 

By the definition of Wx+X and the determinacy of each closed game 

Hx+1‘, II can actually win every Hx‘. Let him start by playing to win 

FF°; after a while then, a finite sequence (c0,..., ck_1) has been played 

and 
(c0,..., ck_f)£ W* & (c0,..., ck_j)^ T ; 

no matter how the game continues, we know at this stage that the final 

play will not be in F°. 

Let k0 be the first k at which this happens and using Wx = Wx+1, let II 

switch to a strategy so he can win Hx+1A(c0,..., cko_x); again, some k>k0 

is reached so that 

(c0v, cko,..., ck_1)£Wx & (c0,..., Ck-JgT1. 

At this point we have insured that the final play will not be in F1. 

Clearly II can continue to play in this manner and guarantee that the 

final play will not be in any of the sets F°, F1, F2,..., thereby winning A. 

H 

If A is a collection of sets, put 

Detx(A) <=»for every set Ac“X in A, the game 

Gx (A) is determined. 

We will be particularly interested in the hypotheses Detw(A) and Det2(A), 

with A one of the pointclasses we have been studying. 

Thus far we have shown Detx(X2), for every X. The determinacy of the 

dual class follows from the following trivial result. 

6A.4. Theorem. Suppose A is a collection of subsets of some “X which is 

closed under continuous substitution; then 

Detx(A) <=> Detx{—\A). 

If X - co or X = 2, then closure under recursive substitution is a sufficient 

hypothesis. 

Proof. Given A c "X in A, let 

B = {(x, /(0), /(!),...): /e A} 
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and verify easily that 

I wins B => II wins “X- A, 

II wins B =#• I wins "X - A, 

so that if B is determined, A must be determined too. —| 

6A.5. Corollary. For each X, Detx( 11°). —\ 

Martin has shown that all Borel games are determined—we will prove 

this for games in X°(neo>) in Section 6F. For the moment we consider 

the significance for descriptive set theory of some specific types of games. 

The main content of the exercises below is that for adequate A closed 

under Borel substitution, Detw{A) implies that all sets in A have the 

property of Baire, they are absolutely measurable and if uncountable, 

they have perfect subsets. 

Exercises 

Let us first put down for the record that not every set is determined. 

6A.6. Prove that there is a set Ac"2 which is not determined. (Gale- 

Stewart [1953].) 

Hint. Notice that there are 2X° possible strategies for player I (and also 

player II) on 2 = {0, 1} and choose wellorderings {aj, {crj, {t^} of rank 2K° 

for the set Q of binary sequences and the sets of strategies for I and II 

respectively. Now define by induction sets A€, B^ such that for £<2X°, 

Ae n = 0 

card(A^)< 2X°, card(Bi_)< 2K° 

0T)[(7{*T6B£] 

(3o-)[o-*tcg Ac] 

and take A = (J (At H 

This proof of course depends on a blatant application of the axiom of 

choice. No one has been able to prove without using the axiom of choice 

that there exist non determined games on o> or 2; neither has anyone 

defined a specific set Ac“2or Ac"w and then proved (in ZFC) that A 

is not determined. 
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It is often easier to study games on 2 instead of games on a>, but there 

is little difference in the results. 

6A.7. Prove that if A is a pointclass closed under recursive substitution, 

then 

DetJA) => Det2(A). 

Hint. Given Ac “2 in A, define g:JV—» G by 

let 

a e B <=> g(a) e A 

and show that the player who wins B (playing on a>) also wins A (playing 

on 2). “I 

The converse implication is a bit awkward to state but it makes the 

point. 

6A.8. Prove that there is an operation 

A » H(A) 

which takes subsets of “w into subsets of “2 such that the following hold, 

(i) If A is closed under H, then 

Det2(A) => DeC(A). 

(ii) X°n, 77°, A" and the corresponding boldface pointclasses are closed 

under H, if n > 3. 

(iii) If A is adequate, A c J7° and A is closed under A} substitution, 

then A is closed under H; in particular this holds if A is X*, 77^, A*, etc. 

Hint. The idea is to simulate games on a> by games on 2. 

Think of a sequence a as the play in some game on a>, where 

a(0), a(2), a(4),... are contributed by I and a(l), a(3), a(5),... are contri¬ 

buted by II; we will code this by a play h(a) of an associated game on 2 

which looks like this: 
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(Here I stands for arbitrary digits played by I and similarly for II.) Call 

sequences of this form good and give a precise 17“ definition of goodness. 

Notice also that if 0 fails to be good, this is because one of the players 

first gives infinitely many l’s when it is his turn to code an integer by 

playing finitely many l’s and then a 0. For each Ac "at and ae“2, put 

then 
a e 74(A) <=> a is not good on account of II 

or a is good and h^1(a)eA. 

It is easy to verify that whichever player wins H(A) also wins A, so we 

have proved (i). 

(iii) is immediate, since h is recursive and hence the inverse function 

h ~1 (= t ►* 0 on bad arguments) is A}. 

To prove (ii), check first that there is a recursive relation Q(u, a, t) such 

that whenever a is good, 

Q(u, a, t) ^ (30){h(0) = a & 0(f) = u}. 

Suppose now that A is in 77°, so that 

a e A <=> (Vn)(3m)(Vf)jR(d(f), n, m), 

with R recursive, by 4A.1. Hence, 

a e H(A) <=>a is not good on account of II or 

a is good & (Vn)(3m)(Vf)(Vn){0(u, a, t) => R(u, n, m)}. 

The argument is similar for the other pointclasses involved. —I 

We now consider some special games which have topological or 

measure-theoretic significance. 

Given Ac"X, the game G*(A) is played as follows (see Diagram 

6A.2): I chooses a finite (non-empty) sequence from X, then II chooses a 

single member from X, then I chooses a finite (non-empty) sequence from 

X, etc. ad infinitum. I wins if the play 

/ (a0, »•••) 

is in A, otherwise II wins.(5) 

Diagram 6A.2. Playing the *-game. 
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In this game I is favored, since he is allowed to play more than one 

point from X if he wishes; in particular, if I wins GX(A), he obviously 

wins G*(A) too. 

Strategies and winning strategies for these games are defined in the 

obvious way. We put 

Det%(A) <=>for each Ac“X in A, either I or 

II wins the game G*(A). 

Let us first notice the obvious. 

6A.9. Prove that if A is a pointclass closed under recursive substitution, 

then 

Detw(A) => Det*(A) =► Det*(A). 

Hint. For the first implication, associate with each A c= "a> the set 

B = {a: for every even n, Seq(a(n)) 

and a(0)^(a(l))^a(2!P(a(3))'~'- • -eA} 

and check that the player who wins B also wins A. 

The second implication is proved by the method of 6A.7. H 

The topological significance of the *-game is evidenced in the next two 

results. 

6A. 10. Prove that I has a winning strategy for G*(A) if and only if 

Ac“2 has a perfect subset. (Davis [1964].) 

Hint. If cr is a winning strategy for I, then the set 

B = {ae“2:a is the play in some run of G*(A), 

where I plays by cr} 

is easily a perfect subset of A. Conversely, if C is a perfect subset of A, 

choose a tree T on 2 such that C = [T] = {a: (Vn)(a(0),..., a(n- l))e T} 

and have I start playing in Gf(A) by moving some (a0an_1)e T such 

that both (a0,..., a„_l5 0) and (a0,..., an_i, 1) are in T; such a sequence 

exists, otherwise C would be a singleton. No matter what II moves, have I 

play an+1,..., ak_1 such that both (a0,..., an_u an, an+1,..., ak_u 0) and 

(a0,..., an_i, an, an+1,..., ak_l5 1) are in T—argue that such a move is 

possible and proceed in the same manner. —I 
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6A.11. Prove that II has a winning strategy in G*(A) if and only if A is 

countable. (Davis [1964].) 

Hint. If A is countable, then II has an obvious winning strategy—he 

simply plays in his n’th turn to make the play different from an, where 

A ={a0, o=i, 

Suppose now that II wins via r and let a be a fixed binary sequence. 
Call a sequence 

s0, ^o, si, ki,..., Si_! k[_! 

good (for t and a) if each s, is a non-empty, finite binary sequence each 

k, is 0 or 1, the sequence 

w=s,r(ko)~sr(k1r'-”~sI_1(fc[_1) 

is an initial segment of a and s0, k0,..., s,_1kl_l is the beginning of a run of 

Gf(A) played according to r, i.e. for /</, 

kj = t(so, k0,..., Sj). 

If every good sequence has a good proper extension, then a is the play in 

a run of G?(A) where II has followed t and hence a£A; thus if a e A, 

there must exist some s0, k0,..., s,_!, k^t which is good for t and a and 

maximal (/ = 0 is allowed). If 

S(T(kor-^si-ir^-i) = o=(0), a(l),..., a(n - 1), 

then easily for i > n we must have 

a(i) = 1 - r(s0, k0,..., s;_1? (a(n),..., a(n - i))) 

so that a is completely determined by the maximal initial good part 

s0, k0,..., Sj-x, /q_i and the value a(n). Since there are only countably 

many possible good sequences, A must be countable. H 

From these two simple facts we obtain the first connection between 

determinacy hypothesis and structural properties of pointsets. 

6A.12. Prove that if A is an adequate pointclass closed under A\ sub¬ 

stitution, then 

Det*(A) <=> every uncountable pointset in A has 

a nonempty perfect subset 
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and hence 

Det^iA) ==» every uncountable pointset in A has 

a nonempty perfect subset.(67) 

Infer Det*(X\). Infer also that Det*(U\) and Detw(2j) cannot be proved 

in ZFC. 

Hint. If A c= 9C is uncountable in A, let 7r:9C be a A J isomorph¬ 

ism, infer that rr[A] has a perfect subset rr[C] and argue that the 

uncountable Borel set Cc A has a perfect subset. 

The other assertions follow immediately using 6A.9, 5A.8 and 6A.4. 

H 

The next game we will study can be used to prove that determinacy 

implies the Baire property. It is easier here to work directly on arbitrary 

pointsets rather than prove the result for subsets of "2 and then transfer 

it. 

Given As 9C, the **-g ame (or Banach-Mazur game) G** = G**(A) 

is played as follows: I chooses an integer s0, II chooses sl5 I chooses s2, 

and so on. If N(0), N(l),... is the standard enumeration of a nbhd basis 

for 3C, then each player must move some st such that (see Figure 6A.3) 

*(*_!) 2 N(Si), 

radius{N(Si))<\ radius{N(sj.j)) 

—otherwise the first player who does not follow this restriction loses. If 

they both follow the restriction, at the end they have defined a point x, 

the unique point in all the N(Sj); now I wins if x e A, otherwise II wins.(1) 

Figure 6A.3. The Banach-Mazur game. 
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6A.13. Prove that if A is adequate and closed under A} substitution, then 

DetM(A) => for each A e A, G**(A) is determined. 

Hint. The payoff set A** c “w for G**(A) is easily in A. —\ 

6A. 14. Prove that for a fixed Acgc, 

(i) II wins G**(A)<=^A is meager, 

(ii) I wins G**(A) <=> for some s, N(s) — A is meager. (Banach, Oxtoby 

[1957].(1)) 

Hint, (i) If A is meager, then Ac \JnFn with each Fn closed and 

having no interior. If I plays s0, have II play s1 such that the restrictions 

are satisfied and N(s1)flFo = 0, and in general let II play so that 

^(s2n+i) Cl Fn = 0; then the point x determined at the end will not be in 

A. 

Suppose now that II wins G*(A) via some strategy cr and let xe9C. 

Call a sequence s0,..., sn of even length good if it is the initial part of some 

play in G**(A), where the restrictions have been followed, II plays by a 

and xeN(sn)—the empty sequence is good by definition. If every good 

sequence has a good extension, then (easily) x is the point determined by 

some play where II plays <x, hence x£A; thus 

x e A =*• some s0,..., sn is maximal good (for x). 

Now if s0,..., sn is any even sequence, put 

B(s0,..., sn) = D {N(sJ - N(tj(s0,..., s„, s)): N(s) c N{sn) 

& radius(N(s))<\ radius(N(sn))}] 

each B(s0,..., s„) is easily closed and nowhere dense and we have shown 

x g A => for some s0,..., sn, x e B(s0,..., s„) 

which establishes that A is meager. 

(ii) Suppose I wins G**(A) via a strategy a whose first move is s = s0; 

it is now easy to check that II wins the game G**(N(s0)~ A) by following 

cr, so that N(s0)-A is meager by (i). Conversely, if N(s)-A is meager 

for some s, then I can easily win G**(A) by playing s to begin with and 

then staying out of N(s) - A as in the first part of the argument above. H 

6A.15. Suppose A is adequate II?c A and for each A in A, either A is 

meager or there is a nbhd N{s) such that N(s)-A is meager. Prove that 

every pointset in A has the property of Baire. 
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Hint. Given A in A, let 

A* = U {N(s): N(s)-A is meager}; 

A* is open so it is enough to show that AAA* is meager. 

To begin with, A*-Ac U {N(s)-A: N(s)-A is meager}, so A*-A 

is meager. 

If A-A* is not meager, since A-A*eA by the hypotheses, there 

must be some s such that N(s) — (A — A*) is meager. Clearly then the 

smaller set N(s) —A is also meager so that N(s)^A* by the definition of 

A* and easily N(s)-(A - A*)^ N(s); thus N(s) is meager, contradicting 

the Baire Category Theorem. H 

6A.16. Prove that if A is adequate and closed under Borel substitution, 

then the following two conditions are equivalent: 

(i) For each AeA, G**(A) is determined. 

(ii) Every pointset in A has the property of Baire. 

Hence for such A, 

DeC(A) => every pointset in A has the property of Baire.(6-7’ 

Hint. One direction is immediate from 6A. 14 and 6A.15. For the other 

direction, check easily that if A has the property of Baire, then in fact 

either A is meager or some N(s) — A is meager. —\ 

Let us now go to cr-finite Borel measures or simply measures for this 

discussion. The definitions are given in 2H. 

First recall a few simple facts. 

If /x is a measure on the Borel subsets of 9C, then for each Borel Pc 0C, 

ju(P) = infimum{/i(G): G is open. Pc G}. 

This is immediate for open P and follows for closed P because closed sets 

are countable intersections of open sets. Inductively, if P = (J „ Pn and for 

each n, Pn^Gn with p.(G„ - Pn)< t/2n, then PcG=U„ G„ and 

/x(G -P) = p,(U„ Gn - Un Pn) — PTG,, — Pn) < e. The argument is even 

simpler when P = f},, P„ with P„ of smaller Borel order. 

It follows that /Lt(P) = 0 precisely when we can find for each e>0 an 

open set GgP with p,(G)<e. 

We now describe the covering game G*(A,e) associated with the 

measure p, on the space “2 and each set Ac“2. This is a game on co, 

invented by Harrington. 
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Diagram 6A.4. 

Player I plays integers s0, su s2,..., with each s^Oor s( = 1. Thus he 

determines at the end a binary sequence ae“2. 

Player II plays integers t0, flv.. where each tn codes in some canonical 

way a finite union of basic open sets Gn, such that 

,u(Gn)<e/22". 

For example, we may insist that Seq(tn) and 

G„ = N((Oo)U-UN((tn)ihJ. 

Here e>0 is fixed and if II does not play the right kind of tn he loses. 

The moves are made in the obvious order, as in Diagram 6A.4. 

If II follows the rules, at the end he defines an open set 

G= Un Gn. 

Now 

I wins <=> a € A - G. 

6A.17. Suppose p is a cr-finite Borel measure on “2, Ac“2 has no 

Borel subsets of p-measure >0 and for each e>0 the game G^(A, e) is 

determined. Prove that ju(A) = 0. 

Hint. Suppose first I wins G^(A, e) via a and let 

B = {cr * j: r is a strategy for II}. 

Now B is a 2} subset of A, so it is p.-measurable by 2H.8 and then easily 

/x(B) = 0, since BcA. We can easily find G0, Gu G2,... all finite unions 

of basic nbhds with ju(GJ< e/22" and B^\JnGn, which determines a 

strategy for II that beats a contrary to hypothesis. Thus I cannot win 

G'MA, e). 

It follows that II wins, say by r. Put 

G = U {G(s0,..., sn_i): (s0,..., sn_j) is a finite binary 

sequence and G(s0,..., s„_i) is the finite 

union of basic nbhds coded by II’s move tn 

(playing by r) when I plays s0,..., s,1_1}. 
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It is immediate that A <= G and G is open. But 

ju(G)<X{/x(G(s0,.", s„_!)): (s0,.., sn_j) a binary sequence} 

= Xn X {jU,(G(s0,..., sn_j)): (s0,..., sn_i) a binary sequence 

of length n} 

— Xn (Xk<2" e/2“") 

= Zn2n ■ e/22n = e. H 

6A. 18. Suppose A is an adequate pointclass closed under Borel substitu¬ 

tion and let /a be a cr-finite Borel measure on some 9C. Prove that 

Detw{A) => every set A £ 3C in A is ^-measurable. 

(Mycielski-Swierczkowski [ 1964].(6,7)) 

Hint. Suppose first 9C = “2, let A sac. By 2H.7 there is a Borel set A 

such that A c A and A —A contains no Borel set of /x-measure >0. Let 

B = A - A; clearly B is in the dual class —iA. The game G'AB, e) is easily 

in —iA, hence it is determined by 6A.4; by 6A.17, /a(B) = 0, so A is 

ju,-measurable. 

Every perfect space 9C is Borel isomorphic with "2 and we can establish 

the result for 9C by carrying to “2 any given measure on SC. H 

6B. The first periodicity theorem 

We saw in 6A that if A is a reasonable pointclass, then the hypothesis 

DetM{A) implies that all the sets in A are “nice”: they have the property 

of Baire, they are absolutely measurable and they are uncountable 

precisely when they have perfect subsets. Put 

PD «=> every projective set A ^ A is determined; 

this hypothesis of projective determinacy implies then that all projective 

sets are nice in this sense. 

In this section we will show that if PD holds, then the prewellordering 

property oscillates between the X and the J7 sides of the analytical 

hierarchy i.e. the circled pointclasses in the Diagram 6B.1 are all normed. 

These are Spector pointclasses then and the structure theory of Chapter 4 

applies to them. 
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Diagram 6B.1. The normed Kleene pointclasses under PD. 

Since we will be playing games on a> almost exclusively from now on, it 

is convenient to skip the subscript and abbreviate 

Det(A) DetJA) 

<=>every set Acl in A is determined. 

In describing games on w, it is often convenient to think of I and II as 

playing distinct sequences a, (3, as we did in some of the exercises of the 

preceding section, see Diagram 6B.2. The play then is the sequence 

a0, b0, a,}, 

but we often say that I plays a and II plays (3 in this run. We also 

describe games in this way, e.g. we may say that if I plays a and II plays 

(3, then 

I wins <=> P(a, (3), 

where PcjV’x.yV'; this is obviously the game Gco(A), where 

A={(a(0),j8(0),a(l),/3(l),...):P(a,/3)}. 

Clearly A and P can be obtained by recursive substitutions from each 

other. 

We identify a strategy cr for I in a game with the irrational a defined by 

_ f<7((u)0,..., (u)„_j) if Seq(u) & lh(u)= n is even, 

a U 1 0 otherwise 

and similarly for strategies for II. If <r instructs I to play a when II plays 

f3, we write 

a = cr*[/3]; 

Diagram 6B.2. 
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similarly, if t instructs II to play /3 when I plays a we write 

0 = [a]* t. 

Clearly both functions 

(or, 0) h> a * [0], (a, r)»[a]*T 

are recursive on Ax A to A. 

The key result is the following theorem, dual to 4B.3. (For the 

definitions see 4B and the exercises of 4C.) 

6B.1. The First Periodicity Theorem (Martin, Moschovakis<9)). Assume 

that r is adequate and Det (A) holds; if Pt^'XxA' is in r and admits a 

f-norm, then the set VvP admits a f-norm. 

Proof. Assume the hypotheses and let <p be a T-norm on P and 

Q(x) «=> (Va)P(x, a). 

We will define a prewellordering < on O and then take if to be the 

associated norm, such that = <. 

Given x, y e 9C, consider the game G(x, y) 

on to, where I plays a, II plays (3 and 

I wins <=> (y, (3)<*(x, a); 

equivalently, 

Put 

II wins <=> —i(y, P)<*(x, a) 

«^-|P(y, |8)v(x, a)<*(y, j8). 

(*) x < y II has a winning strategy in G(x, y). 

We will prove that the restriction of < to Q is a prewellordering with the 

desired properties. 

The motivation for the proof comes from the natural attempt to define 

a norm i// on Q by 

i//(x) = supremum{(p(x, a): a ejV}. 

This is a norm of course, but more often than not it is a trivial norm—e.g. 

if <p is an Kx-norm, then we are likely to have i//(x) = S‘1 for almost all 



6B.1] The first periodicity theorem 305 

Diagram 6B.3. 

xeQ. Definition (*) can be interpreted as saying that x<y holds when 

supremum{<p(x, a): a e N} is effectively s supremum{(p(y, (3): (3 e JV"}, for 

yeQ, in the sense that we have a strategy r which correlates with each 

a (given bit by bit) some (3 such that <p(x, a) < <p(y, (3). Because of this 

picture, we call G(x, y) the sup game for the norm <p. 

We now establish the properties of < in a sequence of lemmas. 

Lemma 1. For every x e Q, x<x. 

Proof. Have II play in G(x, x) simply by copying the moves of I, as in 

Diagram 6B.3. Since xeQ we have P(x, a), hence (x, a)<*(x, a), and II 

wins. 

Lemma 2. If x, y, z are all in Q, then 

(x < y & y < z) => x < z. 

Proof. We are assuming that II has winning strategies in both G(x, y) 

and G(y, z) and we must describe how II can play to win in G(x, z). 

Consider Diagram 6B.4. 

Suppose I plays a0 in G(x, z). Then I copies a0 in G(x, y) and II 

answers b0 in that game by his winning strategy. Then I copies this b0 in 

I a0 a, a 

G(x, z) ; ; 

T | 
II c0 c, 7 

Diagram 6B.4. 
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G(y, z) and II answers c0 in that game by his winning strategy. Now II 

responds with this c0 to a0 in G(x, z). 

Now I plays a, in G(x, z) and II responds by Cj which is determined in 

the same way, as indicated in the diagram, and similarly for the moves 

after that. In effect II plays in G(y, z) by simulating runs of G(x, y) and 

G(y, z) on the side and watching the moves of the second players in these 

games, which follow winning strategies. 

It is a simple matter to give a formal definition of this strategy for II in 

G(x, z) in terms of the given strategies for II in G(x, y) and G(y, z) and 

we will not bother. 

At the end of the run, sequences a, (3, y have been played as in the 

diagram and we know P(x, a), P(y, (3), P(z, y) (since x, y, z are all in Q) 

and also <p(x, a) < <p(y, j3), <p(y, /3)< cp(z, y), since II wins G(x, y) and 

G(y, z). Hence <p(x, a)<<p(z, y) and II has also won G(x, z). 

This describes a winning strategy for II in G(x, z), hence x < z. 

Lemma 3. For all x, y, G(x, y) is determined. 

Proof. If y£ Q, then II can win by playing any (3 such that —iP(y, (3). If 

ye Q, then P(y, (3) holds for each (3, so that 

I wins <=> (y, 0) <*(x, a) 

«=> -i(x, a)<*(y, j8)) 

and the payoff set is in A, hence the game is determined by hypothesis. 

Put 

x<y<=>x<y&—i(y < x). 

Lemma 4. If x, y are in Q, then 

x < y <=> I wins G(y, x); 

thus for x, y e Q, 

x < y v y < x. 

Proof. If x<y, then -i(y<x), so II does not win G(y, x) by definition, 

hence I wins G(y, x) by Lemma 3. 

Conversely, suppose I wins G(y, x); then certainly II does not win 

G(y, x), so to establish x < y it is enough to show that II wins G(x, y). 

Fix a winning strategy for I in G(y, x) and consider Diagram 6B.5. 

We describe a strategy for II in G(x, y) as follows. Suppose I plays a0 

in G(x, y); II disregards the value of a0 and answers by b0, the first 
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Diagram 6B.5. 

winning move of I in G(y, x). He then copies a0 in G(y, x) and observes 

that I answers this move of II by bx in that game. Suppose now I plays ax 

in G(x, y); again II disregards the value of ax and responds bx, but then 

copies ax in G(y, x) and observes the response b2, etc. 

At the end of the game sequences a, (3 have been played and I has won 

G(y, x), i.e. (x,a)<*(y, (3); hence surely (x, a)<*(y, (3), so II has won 

G(x, y). 

Lemma 5. The relation < is wellfounded. 

Proof. We must show that there are no infinite descending chains, so 

assume towards a contradiction that 

X0> Xx > x2>..., 

i.e. by Lemma 4, I wins G(xj? xj+1) for every i. Fix winning strategies for I 

in all these games and consider the following Diagram 6B.6. Here player 

I follows the fixed winning strategies in all the games and the moves of II 

are filled in by copying along the dotted arrows. At the end of the run 

sequences a0, a1, a2,... have been played and since I wins all these games 

we have 

<p(x0, a°)><p(x1,a1)><p(x2, a2)>--- 

which is absurd. 

At this point we have established that < is a prewellordering on Q, so 

let iOrdinals be the regular norm associated with it, i.e. 

x<y <=* i//(x)< i//(y) (x, yeO). 

Lemma 6. The norm if is a T-norm on Q. 
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Diagram 6B.6. 

Proof. From the definition, 

x <* y «=> Q(x) & II wins G(x, y) 

Q(x) & 1 does not win G(x, y) 

^=> 0(x) & (Vcr)(3|3)[(x, cr*[j8])<*(y, j3)]. 

Similarly, using Lemma 4, 

x <* y <=> O(x) & I wins G(y, x) 
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Q(x) & II does not win G(y, x) 

<=* O(x) & (Vr)(3a)[(x, a)<*(y, [a]*T)]. H 

6B.2. Corollary. If r is adequate, normed and cr and if Det(A) 
holds, then VAT is normed. 

In particular, PD implies that II{, X\, n\, X\,..., 77’ (n odd), XI (k even) 

are all Spector pointclasses. 

Proof is immediate from 6B.1 and 4B. 3. —I 

We often refer to this corollary instead of 6B.1 as the (first) periodicity 

theorem for the obvious reason. Recall from 4B.13 that and YI\ 

cannot both be normed, so that the oscillating picture of the analytical 

pointclasses we get from PD is in fact totally different from the picture 

when we assume jVcL. 

At this point, one should go back to sections 4B-4D and recall the 

structure theory for Spector pointclasses developed there: these results 

have now been established for all 77,', (n odd) and X\ (k even), under the 

hypothesis of projective determinacy. 

We should also point out here that the first periodicity theorem gives a 

new and interesting proof of the prewellordering theorem for 77}, 4B.2, 

as follows. 

By 4B.8, every pointset of type 1 in X°r admits a D’i’-norm. Now 3C.14 

implies immediately that 

V.Y^o = v.^vo = 770; 

hence by 6B.1 every 77} pointset of type 1 admits a 77}-norm, using the 

determinacy of A',’ (clopen) sets. This yields immediately that 77} is 

normed, by 4B.9. 

This is one of the characteristic features of the game-theoretic proofs 

that we will construct in this chapter: when we apply them to pointclasses 

whose determinacy is known (like A1,’, X° or X°), we obtain new proofs of 

classical results about 77} and X\. 
It is convenient to introduce the notations 

y1 = y°- //1 = rj°■ a 1 = a0 
*>0 11 15 a 1 

together with their boldface companions, so that e.g. Ay is the class of all 

clopen sets. In many of the results below we will use the hypothesis 

Det(A'in); now this makes sense even when n = 0, in which case it is 

simply true, by the Gale-Stewart Theorem. 
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6C. The second periodicity theorem; uniformization 

The next obvious question is whether the hypothesis of projective 

determinacy settles the uniformization problem: must each projective set 

be uniformizable by some projective set? We show here that it does, but 

in a precise way which differs from the situation in L and which reveals 

further the periodicity phenomenon we uncovered in 6B. 

We will in fact show that if PD holds, then the scale property oscillates 

between the X and /7 sides of the Kleene hierarchy together with the 

prewellordering property. Consider first the analog for scales of 4B.3 

which we did not establish in 4E—we had no use for it then. 

6C.1. Lemma (Moschovakis [1971a]). Suppose T is adequate, 9C is a space 

of type 1, Pcacxjy is in T and P admits a P-scale-, then 3XP admits a 
gvy.v p_scaie 

Proof. By 4E.2, let <p = {(p„} be a very good T-scale on P and put 

P*(x, a) *=> (Vn)(V/3)[(x, a)<* (x, 0)]; 

we showed in 4E.3 that P* uniformizes P. Let 

Q(x)<=» (3a)P(x, a) 

<=* (3a)P*(x, a) 

and define »/' = {(/'„} on Q by 

ipn(x) = cp„(x, a) for the unique a such that P*(x, a). 

We now verify that i// is a scale on Q. 

If x0, xl5... are all in Q and (x;) = A„ for each n and all large i, choose 

a0, alv.. such that P*(xt, a,), so that by definition 

<Pn(*i> «i) = 'J'n(Xi). 

Thus (pn(xi, at)= An for each n and all large i and since <p is a very good 

scale, we have xf —»■ x, —» a and 

<pn(x, a)<A„, all n. 

In particular of course, Q(x). Now choose a* such that P*(x, a*) and 

notice that for each n. 

<Mx) = (pn(x, a*) — <pn(x, a)<An, 



6C.3] The second periodicity theorem; uniformization 311 

where the jnequality <pn(x, a*) < cpn(x, a) follows from the definition of 
P*. Thus if is a scale. 

That i// is a 3vVv T-scale follows from the easy equivalence 

x<* y <=*(3a)(\/p)[P*(x, a) & (x, «)<* (y, (3)] 

and the similar one for <* . —I 

6C.2. Theorem (Moschovakis [1971a]). If 2°^ T and T is adequate, closed 
under V s and scaled, then 3 ' T is also scaled. In particular, £2, ^2 scaled. 

Proof is immediate from 6C.1. —I 

There is no immediate use at this point for the fact that 2\ is scaled, 

but we will apply it later. For now, 6C.2 will serve only as an induction 
loading device, in conjunction with the next result. 

6C.3. The Second Periodicity Theorem (Moschovakis [1971a]). 

Suppose r is adequate and Det(A) holds. If P^Xxjf is in T of type 1 

and admits a T-scale, then the set V * P admits a V A3 * T-scale. 

Proof. Let ip = {<pn} be a fixed very good T-scale on P and put 

Q(x) <=> (Va)P(x, a). 

It will be convenient to have an effective enumeration of all finite 
sequences of integers, so put 

u(0) = the empty sequence, 

u(i) = the sequence coded by the i’th number v such 

that Seq(v). 

It is immediate from this definition that if u(i) is an initial segment of 

u(j), then i < j. 

If u is a finite sequence and aejV, let 

u < a <=> u is an initial segment of a 

and put 

x e Qn «=> (Va > u(n))P(x, a). 

Clearly Q0= Q and Qc Qn for every n. We will define a norm ipn on 

each Qn by considering a game Gn(x, y), very much as in the proof of the 

First Periodicity Theorem 6B.1. 
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Suppose I and II play sequences a', (3' in the usual fashion. We let 

a = u(n)^a' = u(n)'"(a0, ax,...) 

(3 = u(n)~|3' = u(n)'"(b0> 

and we put 

I wins Gn(x, y) <=> (y, |3) <*„(x, a) 

or equivalently, 

II wins Gn(x, y) «=>-iP(y, j3)v(x, a)^*„(y, (3). 

Diagram 6C.1. The sup game on u(n). 

We can think of Gn(x, y) as a subgame of the sup game for the norm 

<pn, as we defined this in 6B.1, where both players have been saddled with 

the same first few moves—those in the sequence u(n). It will be useful to 

think of a and (3 as the plays in Gn(x, y) (instead of a' and (3')• 

Put now 

x <„y <=> II has a winning strategy in Gn(x, y). 

Using the arguments in 6B.1, one easily checks that each is a 

prewellordering on Qn and that the associated norm tpn on Q„ is a 

V^S^T-norm. Moreover, the relations 

R(n, x, y) «=» x e Qn & x <* y, 

S(n, x, y) <=> x e Q„ & x <*n y 

are also in 

It will be very easy to turn the sequence t// = {i//„} into a VA3vT-scale on 

Q, after we prove the following key fact. 

Lemma. Suppose x0, xlv.. are all in Q, limiti^OBxi = x and for each n 

and all large i, i//„(Xj) = An; then xeO and for each n, i//n(x)<A„. 

Proof. By passing to a subsequence if necessary, we may assume that 

i>n -*«/rn(x«) = A„. 

To show first that xeQ, we must verify that for each fixed a, P(x, a) 
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holds. Choose n, so that 

u(n,) = (a(0),..., a(i — 1)) 

and consider the subsequence 

Xn0t %tii> ^n2V" 

Now n; < ni+1 and hence 

'I'nMn) = '!'nXXni+1) = K„ 

so that 

X < r 
+1 — Mj *'vn 

and II has a winning strategy in all the games Gn.(x„i+I, xn.). Fix winning 

strategies for II in all these games and consider Diagram 6C.2 which is 

constructed by the following rules. 

To begin with, I plays a(i) in Gn.(xn.+1, xn.). After II responds to this (by 

his winning strategy) with a move that we have labeled at(i), I plays by 

copying a,-(i) into the preceding game Gni i(xn., xni J, as we have indicated 

by the dotted lines. Now II plays again to win and I responds by copying, 

etc. ad infinitum. 

Gn3<Xn4. ><nj 

a(0), a(1), a(2) 

a(0),a(1),a(2) 

\ 
<*( 3) <*4(4) 

\ 
a4(5) ... a4 

aJ3) a3(4) 

GdX"3' Xn,> 

a(0), a(1) 

a(0),a(1) 

*(2) 

\ 
a3( 3) 

\ 
a3(4) ... a3 

aJ2) a2(3) 

Gn,(xn2, xni) 

a(0) 

a(1) 

a(1) 

V 
a2( 2) 

\ 
a2(3) 

\ \ 
a,(1) a,(2) 

Gn0(Xn,. *n„> 

a(0) a,(1) 
\ 
a,(2) 

\ \ 
«o(0) «o(D 

Diagram 6C.2. 
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At the end, plays a0, a1? a2,... have been determined and it is obvious 

that 

limiti_**, = a, 

since in fact 

ai(j) = a(j) for j < i. 

Moreover II wins all these runs, so we have for every i, 

^Prij (Aij + i? ®i + l) “ Vrij (Av ®i)* 

Since the scale <p is very good, this implies that for each fixed k and all i 

which are large enough (so that k^n,), 

*P(c (Ai,. i? ®i + l) — *Pk ®i)» 

so that in fact there are ordinals /ak and 

iPk (%ni’ ®i) Pk 

for all large i; hence P(x, a), since (p is a scale on P. Thus P(x, a) holds 

for every a and xe Q. 

We now prove that for each n, 

If k<m, then ih(xk) = A(xm), hence xm<kxk and II has a winning 

strategy in each of the games Gk(xm, xk) (k<m). Fix winning strategies 

for II in each of these games and fix the number n. We will describe how 

II can play to win Gn(x, xn), thus showing x<nxn, i.e. i//„(x) < = A„. 

Player II will win by utilizing many of the strategies in the games 

Gk(xm, xk). In fact, he will construct on the side a diagram of games much 

like the one above and his moves in G„(x, x„) will be copied from the 

appropriate places in that diagram. The only additional complication in 

this argument is that II does not know ahead of time which of the games 

Gk(xm, xk) he wants to play on the side; these will depend on the moves 

that I makes in Gn(x, xn). 

Consider then Diagram 6C.3 which is constructed as follows. 

Let n0= n and suppose that the sequence u(n) has length /—these are 

useful notation conventions. 

Suppose that I starts by playing a, in G„(x, xn). Choose n, so that 

u(n1) = u(n0)^(«i), so that n0<rii and start the game Grio(xni, x^) with I 

playing a, in it. Have II respond by his winning strategy by some a0(l) (a0 
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will be his eventual play in this game) and have II play the same a0(l) in 

Gn(x,xn). 

Suppose now that I plays a,+1 in Gn(x, xn). Let u(n2) = u(n0) (ah a, + 1) 

so that nt < n2 and start the game Gni(xn2, xni) with I playing al+1; II 

responds to win by a,(/+l), we copy this move in G^ix^, x^), II 

responds by a0(l + 1) and finally II plays this a0(/+l) -in Gn(x, xn). 

Continuing in this fashion as in the diagram, we determine successively 

games Gn.(xn.+1, xni) and plays ah so that if a is the play of I in Gn(x, xn), 

then 
cti = a, 

since in fact 

j<l + i-+ai = a(j) = ai(j). 

Moreover, II wins all these games, so that 

^Prij (-Cj + i> ®i + l) ~ Vni(^rtj5 ®i)‘ 

We now argue very much as in the first part of this proof: since <p is a 

very good scale, we have 

(*) <Pk(*ni+1, <xi+1)^<Pk(xni, oti) 

for all i large enough so that k < n,, hence all the norms (pk(xn., at) are 

eventually constant, and hence we have P(x, a) and for each k, 

(**) <pk(x, a)< limits <pk(xnj, a,). 

Taking k = n = n0 in (*) for i = 0, 1, 2,..., we have 

^Pnoi-^not ®o) — ® l) — *Pno(-^n2’ ^*2) — " — <Pno(Xn., CKj), 

so that by (**) 

<Pn0(Xno, ao) — <Pno(x, «) 

and II wins the game Gn(x, xn). 

This completes the proof of the lemma. 

Going back to the proof of the theorem, suppose all the norms i(jn are 

into the ordinal x, let 

(£**)* <£ n> 

be an order-preserving map of x x x (ordered lexicographically) into the 

ordinals ahd put 

ip',(x) = (iko(x), tft„(x)). 
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It is easy to check (as in the proof of 4E.1) that i//= {(//„} is a 

T-scale on Q. _I 

6C.4. Corollary. If 77?c T and T is adequate, scaled and and 

if Det(A) holds, then V"T is also scaled. 

In particular, PD implies that Il\, 2\, n\, II\ (.n odd), l'k (fc even) 

are all scaled. —I 

6C.5. The Uniformization Theorem. If PD holds, then every projective 

set can be uniformized by a projective set and every analytical set can be 

uniformized by an analytical set. 

More specifically, Det(A\n) implies that n\n+1, X2n+2, H\n+l, V2n+2 all 

have the uniformization property. (Moschovakis 1971a].) 

Proof is immediate from 6C.3 and 4E.7. H 

6C.6. The Basis Theorem. If PD holds, then every nonempty analytical 

pointset contains an analytical point. 

More specifically, Det{Al2n) implies that A2n+2 is a basis for X\n+2 and 

A\n+2(x) is a basis for X\n+2(x). (Moschovakis [1971a].) 

Proof is immediate as in 4E.5. —I 

These two results are the most obvious and significant consequences of 

the second periodicity theorem, but there are others. We will consider 

some of them in the exercises here and in the next two sections. 

Recall the notational convention 

V1 = T° 

which we introduced at the end of 6B. Many of the results in the exercises 

depend on the hypothesis Det(A2n) which is true when n = 0. 

Exercises 

Let us take up first a few facts about bases which complement 6C.6. 

6C.7. Prove that if Det(A2n) holds, then A2n+1 is not a basis for II2n—i.e. 

there is a nonempty YI\n set which has no zl2n+i-recursive 

member. 

Hint. See 4D.10. 
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6C.8. Prove that if Det(A£„) holds, then there exists a n2n set P^AfxN 

which cannot be uniformized by any X\n+i set- 

Hint. See 4D.11. “A 

Kleene’s basis theorem for X\ (4E.8) does not extend to all X2n+1, but 

Martin and Solovay have found a better basis for this pointclass than 

A2n+2. In our presentation of their results here we will use the important 

notion of the (Al)-hull of a pointset introduced in Kechris [1975], 

Hullk(A) = {a e jV: (Vx)[x eA=>a e ^ £(x)]. 

Recall the definition of aP (for P a pointset of type 0) from 4E. 

6C.9. Assume Def(A}n)(n > 1) and prove the following three properties 

of hulls. 

(i) If A is X\n+l, then Hull2n+1(A) is n\n+1. 
(ii) If A^0 and A is X\n+i, then there exists a TI\n set B^0, B^Af 

such that B D Hull2n+1(A) = 0. 

(ii) If P is a X2n+1 pointset of type 0 and aP is its contracted 

characteristic function, then there is a nonempty X2n+1 set A such that 

aP e Hull2n+1(A). 

Infer that for any X\n+1 set P of type 0, {x: x e ^2„+i(aP)} is not a basis 

for n2n. (Martin-Solovay.) 

Hint, (i) is a trivial computation using 4D.14. 

To prove (ii) check first that it is enough to find a X\n+x set B <= such 

that B^ 0 but B Pi Hull2n+1(A) = 0 and then (assuming for simplicity that 

A c x) take 

B={(a,j3>:aeA&0^„+1(a)}. 

Clearly B^0 if A^0 and if (a, (3)e B D Hull2n+1(A), then aeA and 

hence (a, (3)e A2n+1(a) which implies (3 e A2n+1(a) contradicting (a, /3)e 

B. 

For (iii), assume for simplicity that P^co, let cp: Q —*• Ordinals be a 

Il2n+1-norm on Q = a>-P and put 

aeA« {(n, m): a((n, m)) = 1 is a prewellordering} 

& (Vm)[Q(m) =» (Vn)[(Q(n) & <p(n)< <p(m)) <=> a((n, m)) = 1]]. 

If a e A, then obviously {(n, m): a((n, m)) = 1} is a prewellordering which 
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extends the prewellordering induced by cp; thus 

{(n, m): Q(n) & Q(m) & cp(n) < <p(m)} is recursive in a 

=» aQ is recursive in a => aP is recursive in a 

so that aP e Hull2n+1(A). 

The last assertion follows immediately from (ii) and (iii). —\ 

6C.10. Assume Det{A\n) and suppose a0 is a n\n+1 singleton but 

ao^^2n+i; prove that {x: xei^+iK)} is a basis for X\n+1. (Martin- 
Solovay.) 

Hint. It is of course enough to prove that if A is n\n and ty^A^AT, 

then there is some aeAn^n+iK). Given such an A, let 

B ={a: aeA & a0<£ A\n+1(a)} 

and check first that B^ 0; because if B - 0, then this means precisely that 

a0eHull{A) and then 

a<T(s) = t <=> (V/3)[/3 e A => (3a e Aln+1(p))[a = a0 & a(s) = f]] 

which implies directly that a0 has n\n+1 graph and hence is in A\n+ x 

(recall that {a:a = a0} is /T^+i by hypothesis). Check also that B is 

X\n+1 since 

aeB<=>aeA& [V/3 e A\n + 1{a)[(3^ a0]. 

Fix a very good Tl\n+,-scale <p on A and check that it is in fact a 

A 2„+1-scale since A is Tl\n. The idea is to pick some aB in A by choosing the 

leftmost branch on the tree determined by <p on B; it will not in general 

be true that aB e B, but of course we only need some aB e A. 

As in the proof of 4F.20 then, put 

As = least A such that (3/3)[0 e B & <ps(0) = A], 

Bs={(3 eB : cps((3) = As} 

and check by a simple very-good-scale argument that each Bs^ 0 and that 

there is a unique aB e A such that if a0e B0, a! e Blv.., then limitsas = 

aB. It remains to show that aB e A2n+1(a0). 

Computing, 

aB(s) = i ^ (3j3){(Vi)[(j3); e B,] & (Vi)(3; > 0[(/3)y(s) = t]} 
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so that it is enough to check that the relation 

P(s, (3) <=* (3 e Bs 

is in 2\n+1(a0). 

Put 

Q(s, [3)^(Vy)[yeB=*(3 <* y] 

so that 

(3 e B s <^> (3 e B & Q(s,(3) 

and Q is obviously IJln+1; so is {(0, a):a = a0} by hypothesis, so let 

Gcwx(wx/) be universal in U\n+1, let i|/be a U\n+l-noxm on G and 

choose k0, Z0, so that 

a = a0 <=> G(k0, 0, a) 

G(s, (3) <=> G(l0, s, (3). 

Suppose that there is some (3 e B so that Q(s, (3) and i//(/c0,0, a0) < 

t//(Z0, s, (3) for some s; then 

a0(m) = w <=» (Va)[(Z0, s, 0)<*(/co, 0, a)va(m) = w] 

and hence a0e which contradicts (3 <= B. Hence for each s and 

each (3 e B, 

Q(s, /3) <=> G(l0, s, /3) & s, (3)<ilj(k0, 0, a0) 

*=> ~1 (k0, 0, a0) <*do, Si /3) 

so that finally 

/3 e B s <=> /3 e B & i(Zc0, 0, a0) <* (Z0, s, (3). H 

This result takes a more interesting form if we add to it a simple 

observation. 

6C.11. Assume DeGAlJ and prove that the collection of Tl\n+1- 

singletons in A is prewellordered by the relation 

U<2n +10 «=» OL eAjn + lO). 

Thus if a0 is< 2n+1-minimal among the non-A2(l + 1 singletons in n\n+1, 
then {x: xe/Ijn+iM is a basis for Xin+1. (Martin-Solovay.) 
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Hint. Let G(e, a) be /T^+i-universal, suppose (30, y0 are n2n+l- 

singletons and choose m, n so that 

P ~ Po *=> G(m, (3), 

Y = To <=> G(n, y). 

Let 9 be a nl2tl+rnorm on G and suppose that <p(m, /30)<<p(n, y0); then 

Po(s)= t «=> (3/3)[—i(n, y0)<*(m, j8) & j3(s)= f], 

so that p0eAln+1(y0). H 

In 7C.7 we will show that the £} set P of type 0 in Kleene’s Basis 

Theorem 4E.8 can be chosen so that aP is a 17}-singleton; in this sense, 

the Martin-Solovay theorem above gives a natural generalization to all 

odd n of the result of Kleene. 

Recall the definition of the ordinals 8* in the exercises of 4C. The next 

few results are easy, but they are interesting as they reveal the nature of 

the second periodicity theorem as a structure theorem for projective 

pointsets. 

6C.12. Assume Det(Aj,J; prove that every pointset in %ln+2 is S^+i- 

Suslin and every pointset in X\n+\ is A-Suslin for some A<8]„ + 1. (Mos- 

chovakis, Kechris.) 

Hint. For the first assertion, it is enough to show that H\n+1 sets are 

8j,„ + 1-Suslin (by 2B.2) and this follows immediately from 6C.4, 4C.9 and 

2B.1. 

For the second assertion, again it is enough to show that II^ sets are 

A-Suslin for some A < &2n+l- « A is in II2„, then it admits a Hj^ + i-scale 

cp = {cp,} by 6C.4. Putting together all the prewellorderings <<P| into one, 

we easily see that for some A = order type of a Aln+1 prewellordering 

<8^n+1 and each i, |<Pi|<A; hence A is A-Suslin. H 

6C.13. Assume Det(A2n); prove that every A2n+1 set is S^ + rBorel and 

every J,\n+2 set is the union of S^+i sets each of which is S^+i-Borel. 

(Moschovakis [1971a].) 

Hint. The first assertion is immediate from 6C.12 and the Suslin 

Theorem 2E.2. The second follows easily as in 2F.2 and 2F.3. H 

This last exercise generalizes part of the Suslin Theorem 2E.2 and the 

Sierpinski Theorem 2F.3 to all the odd levels of the hierarchy. How good 
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this generalization is depends on how large the ordinals 8* are; this turns 

out to be a very difficult problem and we will come back to it in the next 

two chapters. 

6D. The game quantifier 9 

With each pointset PcjCXjV we associate the set 9P, 

x e DP <=> (9a)P(x, a) 

<=> I wins the game {a: P(x, a)}; 

9 is a set operation, a quantifier like 3^ and VP We read 9a as “game 

a” or “gee a.” 
Our main result here is that under reasonable closure and determinacy 

hypotheses, the prewellordering property transfers from a pointclass T to 

9T = {9P: Pcacx^, Per}. 

We will also show that if P is adequate and Def(T) holds, then 

v*rc=r=*9r=3*r, 

3T cf'=> or = vvr 

so that 

92? = I7l, 9/7} = X\, 9 x\ = n\, onl = 2l,.... 

Thus the transfer theorem gives an “explanation” of the periodicity 

phenomenon. It will also have several concrete applications in the next 

section. 

It is often very useful to think of 9a as an infinite string of alternating 

quantifiers. 

(*) (9a)P(x, a) <=>{(3a0)(Va1)(3a2)(Va3)...}P(x, (a0, au a2,...)); 

intuitively, I wins {a: P(x, a)} if there is a beginning move a0 for I such 

that whatever move a, II makes, there is a next move a2 for I, such that 

... etc ... eventually, P(x, (a0, a,, a2,...)) is true. Formally, (*) is definition 

of the expression on the right in terms of 9, for which we have a perfectly 

precise definition via strategies: 

(9a)P(x, a) <=> (3cr)(Vr)P(x, <t*t). 
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More generally, suppose 

0 = (Qoi Qi, Q2v) 

is an infinite string where for each i, 

Q, =3 or Q, = V 

and let AcjV'. We associate with Q and A a game G with two players, 

call them 3 and V; a run of G consists of their choosing an infinite 

sequence a0, au a2,... with 3 choosing at if Q;=3 and V choosing a, if 

Q, = V. When the play a = (a0, au a2,...) is determined, we put 

3 wins <=> a e A. 

The notions of strategy, winning strategy, etc. are defined for these 

more general games in the obvious way. Of course the game GW(A) 

which we defined in 6A corresponds to the infinite alternating string 

Now each such infinite string defines in a natural way a set operation, 

{(Q0a0)(Q1a1)(Q2a2)---}P(x, (a0, au a2,...)) 

<=» 3 has a winning strategy in the game G. 

Let us call the string Q-(Q0, Qu Q2,...) recursive if the function 

is recursive. 

6D.1. Lemma. Let T be a pointclass closed under recursive substitution, let 

Q — Qo, O15 On- - be a recursive infinite string of quantifiers and let Ps= 

9C x X be in T. Then the relation 

R(x) <=> {(Qo^o)(Qirij)(Q2&2)'tii,...)) 

is in DT. 

Moreover, if Det(F) holds, then for each x, the game G determined by Q 

and {a: P(x, a)} is determined. 

Proof. Define g : co —» a> by 

2i if Oj = 3 

2i + 1 if Oj = V 
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so that g is recursive and (easily) 

{(Q0a0)(Qial)--'}P(x, (ao> ^iv)) 

<=> {(3fiIo)i^^l)(^^2)^^3)" (^g(O)) C 1)5---)) 

<=> (9a)P(x, i **a(g(i))). -H 

This simple lemma implies directly all the closure properties of the 

pointclass 9T. 

6D.2. Theorem. If T is an adequate pointclass, then the following hold. 

(i) 9T is adequate and closed under 3" and V". 

(ii) 3^rcor;v^rcor. 

(ni) orcTv^r. 

(iv) If DetfT) holds, then OT sV'BT. 

(v) v^Tcr=*or=3^r. 

(vi) If Det(T) holds and 3*T c T, then 0T = V VT. 

(vii) //T is (y-parametrized, then so is OT. 

Proof. For (i) we use the lemma and the obvious equivalences 

(3t)(9a:)P(x, t, a) ^{(3f)(3a0)(Va1)(3a2)---}P(x, t, (a0, alv..)), 

(Vt)(9a)P(x, t,a) <=> {(Vt)(3a0)(Va1)(3a2)---}P(x, t, (a0, «i,...)). 

For (ii): 

(3j3)P(x, fi) «=* {(3b0)(3bl)(3b2y-}P(x, (h0, bx, b2,...)), 

(V/3)P(x, |3) ^{(Vh0)(Vhi)(Vh2)---}P(x, (h0, N, &i,•••))• 

For (iii) and (iv) we use the coding of strategies by irrationals, 

(Da)P(x, a) •*=> (3o-)(Vt)P(x, ct* t) 

<=> (Vt)(3ct)P(x, cr * t), 

where the second equivalence depends on the determinacy of 

{a: P(x, a)}. 

Finally, (v) and (vi) follow immediately from (ii) and (iii) and (vii) is 

trivial. —\ 

We now come to the main result of this section. This is stated in a 

strong and detailed form because it will have applications later beyond 

the transfer of the prewellordering property from T to 9T which concerns 

us here. 
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6D.3. The Norm-Transfer Theorem For D (Moschovakis). Suppose T is 

an adequate pointclass, Def(T) holds, PcgcxjV is in T and 

O(x) ^{(Va„)(3a1)(Va2)---}P(x, (a0, alv..)). 

If cp is a r-norm on P, then there exists a Dr-norm ip on Q such that 

^{(Va0)(3b0)(Vb1)Ofl1)(Va2)O62)(Vfe3)(3a3)-} 

(x, (a0, alv..))<*(y, (b0, ...)), 

x <*y «=> {(3b0)(Va0)(3a1)(Vb1)(3i>2)(Va2)(3a3)(V63)---} 

(x, (a0, alv..))<*(y, (60, 6lv..)). 

In particular, if JT is adequate and normed and if Det(T) holds, then Dr 

is also normed. 

Proof. Assume the hypotheses and for each x, y define the game H(x, y) 

which is played as in Diagram 6D.1. There are two players, as usual, whom 

we have named F (first) and S (second). We have also indicated in the 

diagram which player makes each move. At the end of the game, plays a 

and /3 have been determined and 

S wins the run «=» (x, a) <*(y, (3) 

i.e. 

F wins the run <=> —i P(x, a ) v(y, (3)<*(x, a). 

Put 

x <* y <=> S wins H(x, y) 

<=> {(Va0)(3fio)(Vhi)(3a1)"-}[(x, (a0, alv..)) =£*(y, (b0, bu...))]. 

By Lemma 6D.1 each H(x, y) is determined and the relation <* is in DT. 

In H(x, y) we are (in effect) playing simultaneously two games, the one 

corresponding to the assertion 

(1) Q(x)^{(Va0)(3a1)(Va2)-}P(x, (a0, alv..)) 

x 

H(x,y) 

y 

Diagram 6D.1. The game H(x, y). 
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on the top board and on the bottom board the game associated with the 

assertion 

(2) Q(y) ~ {(VboXS^XV^-iny, (b0, bi,...))• 

Player S makes the moves of 3 on the top board and the moves of V on 

the bottom board; to win he must win on the top board, producing some 

a such that P(x, a) and either win also on the bottom board so that 

—i -P(y, /3) or at least insure <p(x, a)< <p(y, (3). 

The sequence of moves by which we have interweaved these two games 

in defining H(x, y) is important for the argument. 

We now verify in a sequence of lemmas that there is a norm if on Q 

such that 

<C ^ 

and such that <* satisfies the equivalence in the statement of the 

theorem. 

Lemma 1. The relation is transitive. 

Proof. Assume x<*y and y <*z and consider Diagram 6D.2 which 

describes a strategy of S in H(x, z), given winning strategies for S in 

v 

H(y,z) 

z 

X 

H(x, y) 

Y 

x 

4 
i 
i 
i 
i 

■t 

Fa 2 

H(x,z) 

z 
1 ! 

Sc0 Fc, 

0 

7 

a 

0 

a 

7 

Diagram 6D.2. 
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H(x2, x3) 

Fa2(0) 

\ 

/ Sa2(1) 

/ 
Sa3(0) -► Fa3(1) / 

H(xv x2 

Fa-,(0) \ 

\ 
Sa2(0) 

Sa2(1) 

/ 

Fa2(1) / 

H(x0, x,) 

Fao(0) \ 

\ 
Sa^O) 

Sa0(1) 

4 

Fa^l) 

Q(x0) x0 
t 

Vao(0) 3a0(1) ... a0 

Diagram 6D.3. 

H(x, y) and H(y, z). As usual, broken arrows indicate copies of moves 

and solid arrows show responses by the fixed winning strategies. 

It is clear that this strategy in winning for S in H{x, z) since at the end 

of the run we have plays a, /3, y and 

(x, a)<*(y, /3); (y, 0)<*(z, y). 

Lemma 2. There is no infinite sequence of points x0, x1; x2,... such that 

O(x0) and for every i, F wins H(xh xj+1). 

Proof. Assume towards a contradiction that there were such a sequence 

and fix winning strategies for F in all the games H(xj5 xi+1). Fix also a 

winning strategy for 3 in the game that verifies the assertion 

Q(x0) <=> {(Va0)(3a1)(Va2)---}P(x0, (a0, alv..)) 

and consider Diagram 6D.3; as usually, the moves of S (and V in the 

game for Q(x0)) are obtained by copying along the broken arrows and the 

moves for F and 3 are by the fixed winning strategies. 
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At the end of the games plays a0, a,, a2,... have been determined and 3 

wins the game on the bottom line, so that we have P(x, a0); however, 

F wins each H(x„ xi+1) so that we have -i[(x0, a0) — *(*i> ai)]- 

-i[(xj, a,)<*(x2, a2)],... and successively P(xj, a,), P(x2, a2),... and 

<p(x0, a0)>‘p(xi, «i) > <p(x2, a2) > ••• 

which is absurd. 

Lemma 3. The restriction of <* to Q is a prewellordering. 

Proof. We already know that <* is transitive. If x, y e Q and we do not 

have x <* y, we have that F wins H(x, y); if F also won H(y, x), then the 

infinite sequence x, y, x, y,... would violate Lemma 7, so that S wins 

H{y, x) and y<*x. The assertion x<*x (xeQ) is proved similarly and 

then the lemma follows immediately. 

Let ip be the regular norm on Q associated with <*, i.e. 

x<*y <=> i//(x)<t//(y) (x, y 6 0). 

Lemma 4. For every x, y, 

x —* y <=> x <* y. 

Proof. Assume first x <* y, so that in particular x e Q. If also y 6 0, 

then x<*y since on Q the relations <* and <* coincide by definition. If 

y^Q, have S play in H(x, y) to insure P(x, a) on the top board and 

—iP(y, /3) on the bottom board. 

Conversely, assume x <* y. If x e Q, then immediately x<Jy, taking 

cases on y e Q or y <£ Q. But x<*y easily implies that xeQ, since S’s 

winning strategy in H{x, y) restricted to the top board gives a winning 

strategy for 3 in the game verifying Q(x). 

To prove that <* satisfies the formula in the statement of the theorem 

let PT(x, y) be the game corresponding to this formula which is played as 

in Diagram 6D.4. The payoff is given by 

F wins <=> (x, a)<*(y, |8) 
and we must show: 

Lemma 5. For each x, y, 

x <* y <=> F wins PT(x, y). 

x 

H'(x, y) 

V 

Diagram 6D.4. The game H'(x, y). 
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Proof. Assume first x <* y and x e Q but y<£ Q. In this case F can easily 

win PT'(x, y) by playing on the top board to insure P(x, a) while playing 

on the bottom board to insure ~iP(y, 0). 

^ x y and both x, y e Q, then by Lemma 4 we must have that 

i(y —* *) so that F wins the game H(y, x). Assume also (towards a 

contradiction) that S wins H'(x, y), fix winning strategies for these two 

games and fix also a strategy for 3 in the game verifying that ye Q. Now 

play these three games against each other as in Diagram 6D.5, where we 

indicate copied moves by broken arrows and moves by the winning 

strategies by solid arrows in the usual way. 

After all the games have been played we have determined plays 0O, «!, 

/3„ a2, 02,... and the following relations hold: 

P(y, 0O), since 3 wins the game on the top row, 

~i(y, 0O) «i), hence (x, «!) <*(y, 00), 

since F wins H(y, x), 

i(x, «i)<*(y, 0i), hence (y, 0i) —*(x, aj, 

since S wins H'(x, y) 

etc. But then we obviously have 

<p(y, /S0)> sp(x, or) — <p(y, 0i)><p(x, a2)>--- 

which is absurd. 

Finally suppose F wins FT(x, y) but ~i(x<*y). Since F’s winning 

strategy in PT(jc, y) restricted to the top board implies immediately that 

xeQ, we must then have that y<*x so that S wins Ff(y, x). Fix then 

winning strategies for F in H'(x, y) and S in H(y, x) and play them 

against each other as in Diagram 6D.6. We obtain plays a, 0 such that 

(x, a)<*(y, 0) & (y, 0)^*U, a) 

which is absurd. 

To prove the second assertion of the theorem notice that 

(9a)P(x, a) <=> {(3a0)(Vn1)(3a2)---}P(x, (a0, al5...)) 

^ {(Vfi0)(3a0)(Va1)(3a2)---}P(x, (a0, alt a2,...)) 

{(Va0)(3#i)( Vn2) •}P*(x, (a0, &i, o2,...)) 
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H(y,x) 

(F wins) x 

H3o(0> 

Set,®) -- #=an<1) 

♦ i 

- 3po(1) - 30 

I f 
Sa^O) Fa,(1) 

H'(x,y) 

(S wins) F0,(O) 

♦ 

SP,( 1) (3n 

? 
SftO) ... 0! 

H[y, x) 

(Fwins) x 

Ft3,(0) 

Sa2(0) -- Fa2(1) 

* 

H'(x, y) 

(S wins) F02( 0) 

; y 
Sa2(0) Fa2(1) 

S02(1) ... 02 

P 
S02(1) ... 02 

H(y,x) 

(F wins) 

F02(O) 

Sa3(0) 

* 

Fa,(1) 

Diagram 6D.5. 

with 

P*{x, a) <=> F(x, a*), 

so by the first part, if PgT, then DP admits a Dr-norm. H 
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Diagram 6D.6. 

This result combines with 6D.2 to give us a collection of new and 

interesting Spector pointclasses. 

6D.4. Theorem (i) T and T is adequate, closed under 3", normed 

and a)-parametrized and if DetfT) holds, then 0T is a Spector pointclass. 

(ii) 0-2° = 17} and D-S” ore Spector pointclasses and so is each 0.£°(n> 

3) granting Det{X°n). (Kechris-Moschovakis.) 

Proof. Because of 6D.1 and 6D.2 we need only check the substitution 

property for 0T, as this was explained in 4C. 

Suppose then that 

Q(y) *=> (Oa)Q*(y, a) 

and 

P(x, s) <=> (D(3)P*(x, s, (3), 

where P computes some partial function /: 9C —> ‘y on its domain. We 

must find some R £ £C in 0T such that 

/(x)l => [R(x) ^ 0(f(x))]. 

Fix a recursive surjection 

77 -» 

and consider the following game G(x) in which the two players I and II 

define sequences a, (3, y, 8 as indicated in Diagram 6D.7. At the end of 
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0) la(0) —» lla (1) la(2) —* lla(3) ... a 

\ 
l-y(0) —> |7(1) 

\ ... 7 

\ 
... 8 118(0) -> 118(1) 

\ 
1/3 (0) —> 11/3(1) 

Diagram 6D.7. 

the run, 

I wins <=> Q*(7t-(y), a) 

& {(V/)[5(/) = 0 =>/ is odd] 

v(3/)[S(/)>0 & j is even & (Vi < j)[i even => S(i) = 0] 

& [77(y) i N(8(j)- 1)v P*(x, 8(j)-l,f*(S(j + 0)]]}- 

Intuitively, I is attempting to define some y = 7r(y) by giving y and then 

win the game {a: Q*(y, a)} so as to guarantee (Da)Q*(y, a); he must give 

the correct y however, so that 

(Vs)[y eNso (D/3)P*(x, s, 0)] 

and y = /(x). To insure this, II is allowed to give 8(0), 8(1),... which may 

all be 0, but at any even j he may play 

8 (/) = s + 1, 

at which point either y = 7r(y) ^ Ns or I must win the game {/3: P*{x, s, (3)} 

insuring (D/3)P*(x, s, /3). 

We claim that if f(x) = y so that (*) holds, then 

Q(y) => I wins G(x); 

simply have I play y so that 7r(y) = y, play on board 0 so that ultimately 

Q*(y, a) and if and when II plays some 8(j)-s + 1 (with j even and 

i<j=> 8(i) = 0) and with y e Ns, have I play on board 0 to define some 

/3' = t >* (3(j +1) so that P*(x, s, /3')- 

Conversely, if /(x) = y and (*) holds, 

I wins G(x) =» Q(y). 

To check this consider Diagram 6D.8 where I plays in G(x) by his 

winning strategy. We claim that 7r(y)=y and Q*(y, a), so that this 

defines a winning strategy for I in {a: Q*(y, a)} insuring Q(y). 
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CD la(0) lla(1) la (2) lla(3) 

x / 
(2) I-y(O) —> l-y(1) / ... 7 

<3> no no / t ►» 0 

X / 

@ 1/3(0) no ... /3 

1 
la (0) lla(1) la(2) I la (3) 

Diagram 6D.8. 

To verify this, notice that if 7r(y)^y, then for some s,y<£Ns but 

7r(y)eiVs. Choose j large enough and even so that 

7O') = y(i) =* 77(7') eK 

and have II play against I (who is using his fixed winning strategy) by 

giving 

5(0 = 0 for i<j, 8(j) = s +1 

and then play on board @ to insure —iP*(x, s, (3which he can do since 

y^ Ns. No matter what y' is played by I, we have v(y')e Ns, so I loses the 

run, contradicting the assumption that he is following a winning strategy. 

Once we know that 7r(y) = y and Q*(rr(y), a) (since I wins G(x)) we 

have Q*(y, a) as required. 

It follows from these claims that if /(x) j and f(x) = y, then 

Q(y) *=> I wins G(x) 

and we can take 

R(x) <=#• I wins G(x); 

this is in 9T since G(x) is a game defined by an infinite recursive string of 

quantifiers and payoff in T, by 6D.1. 

The second assertion of the theorem follows immediately, except for 

the part 9.2° <= TJ\; for this we express 9P with P in 2° using strategies 

(9a)P(x, a) «=» (Vt)(3<x)P(x, ct*t) 

and then we use closure of 2° under 3^, 3C.14. 

We will prove Det(2°n) in 6F, so no determinacy hypotheses are needed 

to insure that each 9£°(n>2) is a Spector pointclass; in any case, we 

know this now for 9^“ by 6A.3. 
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These pointclasses are quite interesting and we will come back to them 

in the exercises of the next section. See also 7C. 10 for an important 

characterization of 02° due to Solovay. 

Exercises 

We stated 6D.3 directly for relations of the form 

{(Va0)(3a1)(Va2)(3a3)---}P(x, (a0, aj,...)) 

rather than 

(Da)P(x, a) <=> {(3a0)(Va1)(3a2)(Va3)"-}P(x, (a0, au...)). 

This was because we will need the explicit formulas of 6D.3 in the next 

section, but of course there are similar formulas for DP. 

6D.5. Suppose T is an adequate pointclass, Det(F) holds, P^dCxN is in 

r and 

Q(x) «=» (Da)P(x, a). 

If cp is a T-norm on P, show that there exists a DT-norm ip on Q such that 

x<*y^{(3a0)(Va1)(Vh0)(3h1)(3a2)(Va3)(Vh2)(3h3)-"} 

(x, (a0, alv..))^*(y, (b0, bx, 

x <* y <=^ {(Vh0)(3h1)(3a0)(Va1)(Vh2)(3h3)(3a2)(Va3)- • ■} 

(xj, (a0, alv..))<*(y, (b0, b...)). —\ 

In the next section we will show that the scale property also transfers 

from r to DT. Here we confine ourselves to a restatement of the second 

periodicity theorem in terms of 0. 

6D.6. Assume that T is adequate and PcgcxA is in T of type 1 and 

admits a P-scale. Prove that 3*P admits a DT-scale; prove also that if 

Det(A) holds, then V vP admits a DT-scale. 

Hint. Look up the proofs of 6C.1, 6C.3 and 6D.2. —I 

6E. The third periodicity theorem; definable winning strategies 

Suppose Acjy is a 22 set and player I has a winning strategy in the game 

A. Now the set W of strategies winning for I is H3, 

cr 6 W <=> (V/3)(cr*[/3]e A), 
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hence it has a A\ member (if Det(A,) holds) by the Basis Theorem 6C.6. 

We will show here that in fact, if Det(X\) holds, then I has a A\ winning 

strategy. In its proper, general context, this is the last basic result we need 

in order to extend most of the structure theory of 17} and to all the 

higher levels—and to many other Spector pointclasses besides. 

For the first time here we will use the existence of scales as a hypothesis 

to obtain results other than uniformization. Actually semiscales will 

suffice. 

A r-semiscale on a pointset P is a sequence <p = {cp„} of norms on P 

which is a semiscale in the sense of 2B and such that the relations 

R{n, x, y) ^ x <* y, 

S(n, x, y) <=>x<* y, 

are in T. As with scales (which have the additional lower semicontinuity 

property), we call <p very good if the following two conditions hold: 

(1) If x0, xl5... are in P and if for each n and all large i, <p„(Xj) = An, 

then there exists some xeP such that limit,^x xt = x. 

(2) If x, y are in P and <pn(x) < <p„(y), then for each i < n, cp>(x) < <p;(y). 

It is very easy to check (as in 4E.2) that if a pointset P of type 1 in an 

adequate pointclass T admits a T-semiscale, then F admits a very good 

T-semiscale. 

6E.1. The Third Periodicity Theorem (Moschovakis [1973]). Suppose T 

is adequate, Def(T) holds and A^Af is in F and admits a r-semiscale; if 

player I wins the game A, then I has a Dr-recursive winning strategy. 

Proof. Fix a very good r-semiscale ip on A and for each even integer k 

put 
u g Wk <s=> Seq(u) & lh(u) = k + 1 

& {(Vak+1)(3ak+2)(Vak+3)(3ak+4)-• •} 

((w)oj (u)j,..., (n)k, a^+i, djc+2>---) ^ 2^ 

so that Wk consists of all the winning positions for I in the game A—when 

it is next II’s turn to play. Clearly each Wk is in DT 

If u = (a0,..., ak), v = bk), let Hk(u, v) be the game played as in 

Diagram 6E.1. At the end of each run plays 

a = u^a* = (a0, al5..., ak, ak+1, ak+2,---), 

(3 = v~(3* = (bQ, bk, bk+1, bk+2,...). 
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u = <a0,...,ak> Fak+i 

v = (b ..bk) Sbk+i *Fbk+2 

Diagram 6E.1. 

have been constructed and 

S wins the run <=> a <* /3 
i.e. 

F wins the run <=> a<£ Av (3 <* a. 

If we rewrite the definition of Wk in the form 

ueWk <=*{(Vak+1)(3ak+2)---} 

[Seq(u) & lh(u) = k + 1 & ((u)0,..., (u)k, ak + 1-)eA], 

it becomes completely obvious that this is a special case of the construc¬ 
tion in 6D.3 with 

Thus we know that there is a DT-norm ifjk on Wk such that for each u, v, 

v <=> S wins the game Hk(u, v). 

It is worth for the motivation here to recall the meaning of the game 
Hk(u, v). 

In Hk(u, v), we are in effect playing simultaneously two runs of the 

game A. On the top board we are given the starting position a0,..., ak and 

S makes the moves of I while F makes the moves of II; on the bottom 

board we start from b0,..., bk and the roles are reversed, with F making 

the moves for I and S making the moves for II. Now S wins Hk(u, v) if he 

wins A (as I) on the top board and either he also wins A (as II) on the 

bottom board or at least he does not lose there with an ordinal (pk(/8) less 

than the ordinal (pk(a) assigned to his winning play on the top board. 
It is obvious that the relations 

R(k, u, v) <=> Seq(u) & Seq(v) & lh(u) = lh(v) = k + 1 & u <* v, 

S(k, u, v) <=> Seq(u) & Seq(v) & lh(u) = lh(v) = k + 1 & u <* v, 

are both in DT. To simplify notation we will write 
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Call an odd sequence code u — (a0ak_1, ak) minimal if for every b, 

(a0,..., ak_i, ak)^f(a0,..., ak_1} b). 

The next lemma is the crucial argument in the proof of this theorem. 

Lemma. Suppose a = (a0, at, a2,...) is such that for every even k, the 

initial segment <a0ak) is minimal; then a e A. 

Proof. The argument is quite similar to the key lemma in the proof of 

the Second Periodicity Theorem 6C.3, but a bit more elaborate. We will 

construct a master diagram of games Hk(u, v), one for each even k, which 

will determine plays a0, a2, a4,... in A such that limit,^ a2i = a and all 

norms cpk(a2i) are eventually fixed. This will imply that a e A, since <p is a 

semiscale. 

For each even k, we will have u = (a0,..., ak) in the game Hk(u, v) 

which we will play; but we will take v = (a0,..., ak_1? b) with a certain b 

which will depend on the various moves which are made as the construc¬ 

tion of the diagram progresses. 

To begin with, fix a winning strategy for S in every game of the form 

Hk((a0,..., ak), (a0,..., ak_u b)). Fix also some winning strategy for I in A. 

Suppose I's winning strategy in A starts with a move ao(0). Take 

u0 = (a0), v0 = (a0(0)) and start the game H0 = H0(u0,v0) as in Diagram 

6E.2, with F playing a1. 

It is obvious how this Stage 0 of the construction is built up. The play 

a2(2) determined by S’s winning strategy in H0 is important, as it initiates 

Stage 2 of the construction. Put 

u2 = (a0, au a2), v2 = (a0, au a2(2)) 

H2 = H2(u2, v2) 

A lao(0) lla0(1) -- lao<2) 

Diagram 6E.2. Stage 0. 
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<3q' &U 
Fc?3 Sa4(4) 

h2 \ / 
a0, a-j/ 0^2(2) Sa2( 3) Fa2( 4) 

♦ 
1 

t 
Sa2( 2) Fa2( 3) Sa2(4) 

Hn 

Fa, z.' ~' -^ 

\ / 
ao(0) 

* 

Sa0(1) Fa0(2) Sa0(3) Fa0( 4) 

* 

l«o(0) 
if 

lla0(1) - —- l«0(2) 
i 

ll«0(3) —- Io0(4) 

Diagram 6E.3. Stage 2. 

and start H2 with F playing a3. The other moves in this second stage are 

filled in by copying and using the fixed winning strategies in the obvious 

way; see Diagram 6E.3. 

Now the key move is the last one by S in H2, a4(4). Put 

U4 — (a0, &2j $3, $4), U4 ^1; ^2> ^3 

H4 = H4( u4, t>4) 

and start H4 with F playing a5. This will be Stage 4 of the construction. 

It is clear how we can continue this construction successively with 

stages numbered by the even integers 0, 2, 4, 6,... . At stage 2n we 

determine the values a0(i), a2(0v, «2n+2(0 for a*l i=s2n + 2 and using 

a2ft+2(2n + 2) we can start the next stage. At the end plays a0, a2, a4,... 

are determined and we have established that I wins A, so that ct0e A and 

S wins every H2n, so that all a2n are in A and 

4>2n + 2(Q!2n + 2) — <P2n + 2(a2n ) • 

Using the fact that ip is a very good semiscale, it is easy to check (as in the 

proof of 6C.3) that all the norms (p,(a2n) are ultimately constant, as 

n —> 00. It follows that a = limits„ a2n e A, completing the proof of the 

lemma. 

The import of the lemma is that I can win A by playing each time so 

that the successive initial pieces of the run 

(n0), a 1, a2), (a0, a,, a2, a3, a4),... 
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are minimal. We will complete the proof of the theorem by verifying that 

he can do this following a 9T-recursive strategy. 

Let u, v vary over sequence codes (integers) and put 

Min(u) <=> Seq(u) & lh(u) is odd & u e Wlh(u)i1 

& (Vu){[Seq(u) & lh(v) = /h(u) 

& (Vi < lh(u) — l)[(u)i = (u);]] 

«* S wins H,h(u)il(M, u)}. 

Using 6D.1, the relation Min(u) is easily in DU 

Call a sequence code (a0,..., ak_l5 ak) best (k even) if it is minimal and 

if in addition there is no b<ak so that (a0,..., ak_x, b) is minimal. Thus 

Best((a0,..., ak_1, ak» 

<=* Mm((a0,..., ak~i, ak)) 

& (Vb <icj)C)[(cio,..., ak_i, uk) <--fc (^Of ■ 5 —15 ^)]- 

Since the relation <* is in 9T, so is the relation Best(u). 

Finally we get a OT-recursive winning strategy for I by putting 

o, Cq,..., flk — h ck—i') dk 

o (3ao),,-(3afc)[(Vj < k)Best((a.o, c0,..., a')) 

& Best{(a,Q, c0,..., a'k_i> ck_x, ak))]. -1 

There are many applications of this theorem which we will pursue in 

the exercises. For some of them we will need to go into the proof of 6E.1 

and use specifically the notions of a minimal or a best strategy. It is 

important to notice that these are defined for a given game A hf (which 

I can win) and a given semiscale <p on A independently of any definability 

hypotheses; cr is minimal (or best) if each odd initial segment (a0,..., ak) 

of a play following cr is minimal (or best). 

Let us just put down here the main corollary of 6E.1 for the Kleene 

pointclasses. 

6E.2. Corollary (Moschovakis [1973]). If Det(Xln) holds and if I wins 

a X\n(x) game A, then I has a winning strategy in A\n+X{x). 

Similarly, if Det(A\n) holds and I wins a n\n+1(x) game A, then I has a 

winning strategy in A\n+2(x). 
In particular, granting PD, for each A J, game A either I or II has a 

winning Aj, + i winning strategy, and similarly with An(x), An+1(x). 
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Proof. The first assertion comes directly from 6E.1, taking r — X\n(x) s0 

that Dr = DXl2nM = n12n+1(x) by 6D.2 and using the fact that if cr is 

^2n+i(x)_recurs've then surely cr is in A2n+i(x). 

The second assertion is a trivial consequence of the Basis Theorem 

6C.6. If I wins a Yl\n+X(x) set A, then the set 

P = {cr: (Vt)A(ct*t)} 

is non-empty and in n\n+i{x), so it has a member in A\n+2{x). —\ 

Taking n = 0 in this Corollary, we get in particular that if I wins a 

Xo(i.e. a X°) game, then I has a A \ winning strategy. It is not too hard to 

see this directly, without the elaborate analysis of games of 6E.1. 

Exercises 

First we put down two simple results which are needed for complete¬ 

ness. 

6E.3. Prove that if T is adequate and a pointset P of type 1 in T admits a 

T-semiscale, then P admits a very good T-semiscale. 

Hint. See the proof of 4E.2. —\ 

6E.4. Suppose T is adequate, Det(T) holds and Ac/ is in T and admits 

a T-semiscale, let 

Q = (Qo, Qi, Qn-) 

be a recursive infinite string of quantifiers and let G be the game 

determined by A and Q; prove that if 3 wins, then 3 has a DT-recursive 

winning strategy. 

Hint. See the proof of 6D.1 and apply the Third Periodicity Theorem 

6E.1. H 

As a first application of the third periodicity theorem, let us show that 

Flarrison’s result 4F.1 generalizes to all odd levels. 

6E.5. Assume Det(X2n) and suppose P^ac is in X\n+1 and has at least 

one member not in A\n+l\ prove that P has a perfect subset. 

Similarly, if P is X2n+i(z) with some member not in A\n+l(z), then P 

has a perfect subset. 
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lun ■■ a = un (a0) u{ (a,) ••• 

(3 = (b0, bv b2,...). 

Diagram 6E.4. 

In particular, if is 2,\n+x(z) and countable, then Pg 

Aln+l(z)nx. 

(The Effective Perfect Set Theorem for the odd levels, Martin.) 

Hint. If we know the result for subsets of Q = “2 and Pc0C, let 

tt : G 9C be a A\ isomorphism, take Q = 7r_1[P] and apply the result to 

Q to get a perfect subset K—now use the fact that tt[K] is an uncounta¬ 

ble Borel subset of P and hence has a perfect subset. 

If Pg Q and 

P(a)~0|8)Q(a,j3) 

with Q in n],n, consider the game G played as in Diagram 6E.4. Here 

each u, is a finite (non-empty binary) sequence 

Uj Cq? • • C fc., 

a, is 0 or 1 and bj e co, so that in effect I and II define an infinite binary 

sequence 

OL (Cq,---, Cfc0, ^0? ^Ov) Cfcj* Ui,...) 

and an irrational 

(3 = (b0, hi,...). 

At the end of the game, 

I wins <=> Q(a, (3). 

Argue that this game is determined since it is essentially in Yl\n, then 

argue that if I wins, then P has a perfect subset. 

To complete the proof, we must show that if II wins, then P<^A2n+1- 

Suppose then that t is winning for II and a e P, fix (3 so that Q(a, (3) and 

call an initial part of the game 

(*) u0, ciq, b0, ui, cii, hi,..., tin, bn 

good, if _ _ _ 
(wo) Wn (o.n)l~ct 

and the part is played by t, i.e. 

a0 = T(u0), ai = t(u0, a0, h0, Uj),..., a„ = t(u0,..., u„). 
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If every good part had a good extension, then —iQ(a, (3) hence some 

good part has no good extension, say the one in (*) above. It follows then 

that if u^ao)"'*" un (an) = (a(0), a(l),..., a(t)), then for all k >2 

a{t+k) = 1 — r(u„, aQ, b0,..., un, an, bn, (a(t+ 1),..., a(t+k- 1))), 

so that a is recursive in r. 

By the third periodicity theorem (and specifically 6E.4) we may assume 

that r is in A\n+1, so that P^A\n+1. ~1 

This result is both interesting in its own right and very useful. Here is 

one immediate consequence. 

6E.6. Assume Det(Xin); prove that if FgSCx'y is A]n+1 and all sections 

Px = {y: P(x, y)} are countable, then P can be uniformized by some 

P* c p in AL+1. 

Hint. See 4F.6. H 

A set Pcacx'y in A^+x with compact sections is uniformizable in 

^L+i by 4F.12 (granting Det(A\n)), but the corresponding generalization 

of the Arsenin-Kunugui Theorem 4F. 16 is still open. (Kechris and Martin 

have recently proved this for A3, but they use methods that are quite deep 

and do not generalize immediately to arbitrary A^+i.) On the other 

hand, 4F.19 and the resulting uniformization theorems for A| sets with 

large sections (4F.20) generalize to all odd levels of the hierarchy, 

essentially by the same arguments we gave in 4F.19, 4F.20. See Kechris 

[1973], 

We now aim towards a generalization of the Spector-Gandy Theorem 

4F.3 to all odd levels. The proof is new even for 77J and it is in some ways 

simpler than our original proof in 4F.3. 

6E.7. Assume Det(A\n); prove that for every n\n+1 set Pg^SC there is 

some n\n set R^VCxy such that 

P(x) <=> (3a <=Al2n + l(x))R(x, a). 

(The Spector-Gandy Theorem for the odd levels, Moschovakis [1973].) 

Hint. Notice first that taking T = Aln(x) in 6E.1, Det(A\n) implies that 

every A^x) game admits a A]n + 1(x) winning strategy for one of the 

players. Check also as in 4F.3 that it is enough to prove the result for 

P^X. 



6E.8] Third periodicity theorem; definable winning strategies 343 

Let 

G(e, a) (V0)R(e, a, 13) 

be universal in nln+1 and choose e0 such that 

P(a) «=» G(e0, a). 

Put on G the canonical TT^+i-norm if/ which we defined in the proof of 

the First Periodicity Theorem 6B.1. Using 4D.14, choose also some fixed 

k so that 

P 6 ^2n+i(«) <=* G(k, (P, a)). 

We claim that 

P(a) +* (3/3 g A'n+1(a))[(e0, a) <*(k, </3, a))]; 

if this failed for some fixed aeP, we would have 

/3 e^L+i(«) «=> (k, (P, <*»<*(e0, a) 

which implies that A\n+i(a)C\N is in A2„+i(«) contradicting 4D.16. 

By the construction in the proof of the First Periodicity Theorem 6B.1, 

there is a fixed Fl\n relation S(a, p, y) such that whenever G(k,(p, a)), 

(e0, a)<J(k, (p, a)) II wins the game {y: S(a, /3, y)} 

(3r)(Vcr)S(a, P, ct*t) 

4^(3rezl2„+i(a, /3))(Vo-)S(a, p, 

where for the last equivalence we have used the fact that for (k, (p, a))e 

G, the set {y: S(a, p, y)} is actually A\n(a, p) and of course we have also 

used the third periodicity theorem 6E.1. 

We now have 

P(a) <=* (3P £ Aln+1(a))(3T e Aln+1(a, j8))(Vcr)S(a, P,(t*t) 

which implies the result easily by contraction of quanitfiers. H 

There is a simple but interesting converse to 6E.2. 

6E.8. Assume Det(A\n); prove that for each ueA\n+l, there is a A\n set 

Ac^ such that II wins the game (with payoff) A and a is recursive in 

every winning strategy for II in A. 

Thus A\n+X EUV is the smallest set which is closed under “recursive in” 

and contains a winning strategy (for one of the players) for each A2n 

game. 
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Diagram 6E.5. 

Hint. Let HgwX(wXw) be universal in TI\n+l, let ip be the canonical 

/7l„+1-norm that is assigned to H by the First Periodicity Theorem 6B.1 

and choose some k0 such that 

a(s) = t <=» H(k(), s, t). 

By the Covering Lemma 4C.11, there are fixed integers l0, d, l2 such that 

H(/0, /i, 12) and 

a(s)=t<=* 1(f(k0, s, t) < ip(l0, lu l2). 

It is now obvious from the proof of 6B.1 that (with the fixed k0, l0, 7X, l2) 

there are A\n sets P(s, t, a) and Q(s, t, a) such that 

(k0, s, t)<*(l0, h, l2)*=> II wins {a: P(s, t, a)} 

{l0, h, l2)<t(ko, s, t)^ll wins {a: 0(s, t, a)}. 

Define the game A played as in Diagram 6E.5 where 

II wins «=> i = 0 & P(s, t, (a0, al5...)) 

vi> 0 & Q(s, t, (a0, ax,...)) 

and check that A has the required properties. H 

Taking n = 0 here, we have a new game-theoretic characterization of 

ziJnA as the smallest set which is closed under “recursive in” and 

contains a winning strategy for every game. 

We now turn to the generalization of the largest thin 11\ set theorem 

4F.4. 

6E.9. Assume Det{A2n+1); prove that for each perfect space 9C, there is a 

thin n2n + i set C2n+i(9C)c9C which contains every thin, nln+x subset of 

9C. 

In particular, if PD holds, then for each n, there is a largest, countable 

n2„+1 subset of 9C. (The Largest Countable LI2n+1 Set Theorem, Kechris 

[1975].) 
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Hint. Follow the proof of 4F.4 until the point where we have produced 

a perfect set F such that 

(VxeFp(g(x), x) & <p(g(x), x)<A], 

where A <8in+i. The last part of the argument in 4F.4 depends on the 

fact that 8} = K1 and we must replace it by something more sophisticated 

when n > 0. 

Since F is uncountable and g:F-*co, there must exist a fixed k such 

that g(x)=k for uncountably many x's; since the set {x:xe 

F & R{k, x) & <p(k, x) < A} is A2k+1 and uncountable, it must have a 

perfect subset, by the hypothesis Det(Al2k+1) and 6A.12. Calling this new 

perfect set F again, we have 

(Vx e F)[R(k, x) & <p(k, x) < A]. 

On F we have an obvious A^+i prewellordering, 

x =sy «=> cp(k, x) < <p(k, y) 

such that every initial segment {y: y<x} is countable, since 

y ==x => <p(k, y)<<p(/t, x) 

y e A|„+i(x) 

by the definition of R(k, x). 

We can consider F as a perfect Polish space with the topology induced 

on it by SC, so by 1A.3 there is a continuous injection 

7r: C ^ F; 

this carries the prewellordering < on F to a A|n+i prewellordering on 6 

whose initial segments are again countable and which does not have the 

property of Baire (as a subset of 6 x 6) by 5A. 10. Our assumption 

Det(A.2n+1) and 6A.16 do not allow such sets, so we have reached a 

contradiction and completed the proof of the first assertion. 

The second assertion follows by 6A. 12, since under PD every thin 

projective set is countable. ~* 

The hypothesis Det(Xln) is sufficient for this result, see 6G.10 and 

6G.11. 
Granting PD, we can also find largest countable sets at the even levels, 

but on the X side. 
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6E.10. Assume Det(Xl2n+1); prove that for each perfect product space 9C, 

there is a largest countable X2n+2 subset of 9C. (Kechris-Moschovakis 

[1972].) 
Hint. Let C = C2n+1(9C x X) be the largest countable /72n+1 subset of 

0CxjV and put 

xeDo (3 a)C(x, a). 

Clearly D is X\n+2 and countable, since the map (x, a) » x is a surjection 

of C onto D. 

If Fc0C is countable and X2n+2, choose some I72n+1 set QcgCxA 

such that 

P(x) «=» (3a)Q(x, a), 

let Q*c Q uniformize Q in 172„+1 by 6C.5 and notice that Q* must be 

countable, so that Q*cC; hence P^D. —\ 

Assuming PD, put 

Cn = Cn(X) = the largest countable H\ 

subset of X (if n is odd), 

Ck = Ck(X) = the largest countable X{ 

subset of X (if k even >0). 

Since the property of being countable and n\ or X'k is obviously pre¬ 

served under A \ isomorphisms, these sets C1; C2,... determine the largest 

countable n\ (n odd) and Xl (k even >0) sets in all the perfect product 

spaces. 

6E.11. Assume PD; prove that there is no largest countable X2n+i subset 

of X and there is no largest countable TI2n+2 subset of X. (Kechris 

[1975].) 

Hint. If Acx is countable and X\n+1, then Ac4[n+1 by 6E.5 above; 

on the other hand, if A were the largest countable X\n+1 set, then 

X2n+\HjVgA, since for each aeA\n+l the singleton {a} is obviously 

X2n+i• Thus the largest countable X\n+l set would have to be 

A2n+1 Cl X—and this set is not in ^2n + i by 4D.16. 

The even case is easier: if A c x is countable and /72n+2, then X — A is 

X2n+2 ar|d nonempty, hence X-A has a member in A2n+2 by the Basis 

Theorem 6C.6, hence we cannot have A2n+2C\Xc= A—which the largest 

countable Tl\n+2 set would have to satisfy as above. H 
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According to these last two exercises, the property of possessing a 

largest countable set of irrationals oscillates between the n and the X 

side of the Kleene hierarchy together with the prewellordering property. 

The sets Q, C2,... have a very interesting structure which we will not 

pursue here—see Kechris [1975], 

A result which is somewhat related to the Spector-Gandy Theorem but 

which is really much deeper is the characterization of zi} sets as precisely 

the injective, recursive images of H? sets; similarly, the Borel sets are 

precisely the injective, continuous images of closed sets, see 1G.5, 2E.7, 

2E.8, 4A.7 and 4D.9. Before going into the extension of this to all odd 

levels (with PD), let us look at a related and basic theorem about the 

quantifier D. 

6E.12. Assume that T is adequate and o>-parametrized, that every point- 

set in r admits a P-semiscale and that Def(T) holds. Prove that every 

pointset Q <= 9C in DT satisfies a triple equivalence of the form 

Q(x) <=» (3cr)(Va)P(x, o\ a) 

<s=> (3!cr)(Va)P(x, cr, a) 

<=> (3cr)[cr is DT(x)-recursive & (Va)P(x, cr, a)], 

with P in r. (Moschovakis.) 

Hint. Choose a good parametrization of T as in 3H—we will denote by 

Gc^vxTj (ambiguously) all good universal sets, no matter which is 

involved. Define “best strategy” for a game A as in the proof of 6E.1 so 

that if I can win A, then there is exactly one creN which is I’s best 

strategy. Put 

R (e, cr, x) <=> I wins {a: G(e, x, a)} 

& cr is I’s best strategy for {a: G(e, x, a)}; 

this relation is in DP by 6E.1, so there is a fixed recursive e* e A so that 

R(e, <j, x) <=> (D/3)G(e*, e, cr, x, /3) 

<=* (D/3)G(S(e*, e, cr), x, /3), 

where S is the recursive function associated with the good parametriza- 

tions. Now for any e0, compute 

(Da)G(e0, x, a) «=> I wins {a:G(e0, x, a)} 

<=* (3cr0)[(V/3)G(e0, x, cr0*[/3]) & R(e0, cr0, x)] 
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(3cr0)[(V|3)G(e0, x, o-0*[/3]) 

& I wins {a: G(S(e*, e0, cr0), xa)}i 

by repeating the computation on the last conjunct of this equivalent we 

get 

(9a)G(e0, x, a) <=* {(3cr0)(3cr1)(3cr2)---} 

[(V/3)G(e0, x, cr0*[f3]) 

& (V/3)G(S(e*, e0, cr0), x, crx*[^]) 

& (V/3)G(S(e*, S(e*, e0, cr0), oy), cr2*[(3]) 

&•••] 

<=>{(3o-0)(3ot)(3o-2)--*} 

(3y){[(y)o = e0 & (Vi)[(y)i+1 = S(e*, (y)„ cr*)]] 

-*• (V/)(Vj3)G((y)i, x, cr,*[0])}, 

where in fact if the left-hand-side holds, then by 6E.1 there are unique 

a-0, cr1,... which satisfy the right-hand-side and they are all Dr(e0, x)- 

recursive. Now choose an arithmetical function tt : a> x A -» A such that 

the map cr ►*(7r(0, cr), 7r(l, cr),...) is a bijection of A with “A, replace in 

this formula each o-; by n(i, cr) and the infinite string (3cr0)(3ay)--- by (3cr) 

and prove by a standard prewellordering argument that if there exist cr0, 

cr1;... which are Dr(e0, x)-recursive and satisfy the 9T matrix above, then 

(the unique) cr which codes all the crt = n(i, cr) is also Dr(e0, x)-recursive. 

This yields equivalences of the form 

(9a)G(e0, x, a) «=> (3o-)(Vj8)P(e0, x, cr, (3) 

«=> (3!cr)(Vj3)P(e0, x, cr, (3) 

<=> (3cr)[cr is 9r(e0, x)-recursive & (V/3)P(e0, x, cr, /3)] 

which are what we need to complete the proof. —I 

The representation of sets in A\n+x as recursive, injective images of U\n 

sets can be shown by a minor variation of this proof. First a simple lemma 

of some independent interest. 

6E.13. Assume Def(A2J. Show that 

A 2n + 1 = QA2n, 

i.e. Qc9C is in A2n+1 if and only if there is some PcgcxjV in A2„ such 
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Q(x) <=> (Dai)P(x, a). 

Hint. It is clear that — ^in+i- To prove the converse inclusion, 

choose Acw in Pl\n+1-A\n+l and such that O^A and for any Q in 

^2n + l PUt 

P(k, x) <=> k e A v[k = 0 & O(x)]. 

Now R is n\n+1 so let cp be any /7^+i-norm on P; an easy argument by 

contradiction shows that there is some fixed k* e A so that 

(Vx)P(k*, x), 

Q(x) «=» (0, x)<*(k*, x), 

(otherwise A is X\n+1)- 

Suppose now that 

R(k, x) «=> (Va)P(k, x, a) 

for some P in l\n and <p comes from a Xln-norm ip on P by the 

construction in the First Periodicity Theorem 6B.1. In this case, 

Q(x) <=> (0, x) <*(k*, x) 

^{(Vao)(3fio)(Va1)(3fi1)---}[(0, x, (a0, alv..))<*(k*, x, (b0, bu...))]. 

The result follows easily from 6D.1 and the fact that (Vx)(V/3)P(k*, x, (5) 

which implies that 

{(a, /3, x): (0, x, a)<*(k*, x, /3)}isinA\n. 

6E.14. Assume DeffXL)- Prove that a set Qc0C is in A\n+l if and only if 

O is the recursive, injective image of some n\n set P^Af. 

Similarly, Q is in A\n+1{x) if and only if it is the recursive, injective 

image of some n\n(x) set P<=Af and Q is in A\n+l if and only if it is the 

continuous, injective image of some P^Af in W\n. (Moschovakis [1973].) 

Hint. We work with A\n+l, the relativized case following similarly and 

then implying immediately the boldface result. 

By 3E.6 we may assume that X = Af so that 9CxA is recursively 

homeomorphic with AT and it is enough to produce a Il\n set P*c9CxA 

so that 

O(x) <=* (3<t)P*(x, ct) 

«=> (3!cr)P*(x, cr). 
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Let r = X2„. We will modify the argument of 6E.12 to work with 

A = A 2n instead of T so that ultimately we will have 

Q(x) <=> (3<r)(Va)P(x, cr, a) 

<=> (3!cr)(Va)P(x, cr, a) 

with P in A and then we can take 

P*(x, cr) <=* (Va)P(x, cr, a) 

so that P* is in V'M = U\n as required. Since A is not parametrized, we 

must work with codes of sets rather than universal sets. 

Choose then a good parametrization for T=X\n and for any A^Tj, 

call e a A-code of A if 

y e A <=> G((e)0, y) 

<=* -iG((e)l5 y), 

where GsjVxT) is a good universal set. 

If Q is in Aln+i, then by 6E.13 there is a A\n set P so that O = 9P and 

if P has recursive code e*, we have 

Q(x) <=* (Oa)G((e*)0, x,a) «=> (Da)G(S((e*)0, x), a) 

<=> (Da) -i G((e*)l5 x, a) <=> (Da) -i G(S((e*)l5 x), a) 

where S is the recursive function associated with the good parametriza¬ 

tion and we have used the fact that 9C = A' is of type 1. Taking 

M(x) = <S((e*)0, x),S((e*)1,x)), 

we have a recursive u such that for each x, u(x) codes a A^„ set Ax^Af 

and 

(1) Q(x) <=> I wins the game Ax with A^-code u (x). 

Next we need a uniformity result. 

Lemma. There is a recursive function v.A'XAf-^Af such that whenever e 

is a A2n-code of some set A(e), then for each cr, v(e, cr) is a Al2n-code of 

some set B(e, cr) such that 

I wins B(e, cr) <=*■ I wins A(e) 

& cr is the best winning strategy 

for I in A(e). 
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This can be checked easily by going through the proof of the Third 

Periodicity Theorem 6E.1 and using the fact that we can pass uniformly 

from a A2fl-code of A to a A2„-code of some scale on A (using a fixed 

£2„-scale on a good universal %\n set). 

Finally as in 6E.12, 

Q(x)^{(3o-0)(3o-1)(3cr2)--} 

[<70 wins A° with A2„-code n(x) 

& aj wins A* with A2n-code v(u(x), cr0) 

& <j2 wins A2 with A2n-code v(v(n(x), cr0), cr,) 

&•••] 

<=»■ {(3ct0)(3(t 1)(3ct2)---} 

(Vy){[(y)o = w(x) & (Vi)[(y)i+1 = v((y),-, cr,)]] 

=*> (Vj)[o-j wins the game with A2n-code (y);]}- 

The result follows as in 6E.12, noticing that for y that satisfy the 

hypotheses above, 

cr, wins the game with A2n-code (y),<=>(V/3) -i G(((y)i)1, cr,. *[/3]). 

We now come to the relationship between the operation D and scales. 

6E.15. Suppose T is adequate, Det(T) holds and Pc0CxA is in T and 

admits a T-scale; show that DP admits a 9T-scale. (Moschovakis.) 

Hint. The argument is an elaboration of the proofs of the second and 

third periodicity theorems. 

Suppose 

Q(x) <t=s> (Da)P(x, a) 

with P in T and put for each even m, 

Q*(x, u) ** (3a0) ■ • • (3am)[n =(a„,..., am) 

& {(Vam+1)(3am+2)(V +3) •}P( (a0, Ctj,..., 6kn + lv)]- 

Given a sequence of norms <p0, cp1,... on P, we can define a norm 'P* on Q* for 

each even m using <pm, by the construction in 6D.3. To recall this and set up 

notation for the proof, consider the game Hm(x, u, y, v) for each even m, x, 

u = (a0,..., am), y and v = (b0,..., bm) which is played as in Diagram 6E.6. At 
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x,u = (a0.am) 

Hm(x, u, v, v) 

V,v = (b0.bm) 

" oc (cJq, a■ 

•• 3 = (b0, bv...) 

Diagram 6E.6. 

the end of the game, 

S wins the run «=> (x, a)<*m(y, 0) 

and by 6D.3, the norms ip* satisfy 

(x, u)<**(y, u)<=*(x, u)<*(y, v) «=> S wins Hm(x, u, y, v). 

Moreover from the formulas of 6D.3, if cp = {<£„} is a T-semiscale on P, 

then each i//* is a DP-norm on Q* and in fact the relations 

R(x, u, y, v) <=> Q*(x, u) & (x, u)<* (y, v) (m = lh(u)- 1) 

S(x, u, y, u) Q*(x, u) & (x, u) <* (y, u) 

are in Dr. 

We now assume that P is of type 1 and that <p is a very good r-scale on 

P. We will use the ip* to construct a Dr-scale on Q and then the result 

will follow by 4E.6. 

Let u(i) be the i’th sequence code (essentially) as in the proof of 6C.3, 

with u(0)= l = the code of the empty sequence and so that if u(i) is an 

initial segment of u(j), we must have i <j. For each n and each x e Q, let 

w(x, n) be the code of the initial segment of length 2lh(u(n)) + 1 in the 

game establishing Q(x), where I follows his best winning strategy and II 

plays following u{n). To clear this up, suppose 

u(n) = (b0,..., bk_1)-, 

let a0, ak be the first k + 1 moves of I in the game {a:P(x, a)} 

where I plays his best (winning) strategy as we defined it in 6E.1 and set 

w(x, n) = (aQ, b0,..., ak_j, „ ak). 

It goes without saying that in defining the best strategy for I we use the 

scale ip. By the construction in 6E.1 then, the best strategy is minimal so 

in particular for every a'k, if w(x, n) is as above, 

(x, (flfb ^0V5 ^(c-1; ®k))— 2k(-^5 ^k-l> ^k-lj ^k))- 
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Finally, if 

u(n) = (b0,..., bk_r), 

choose n0,..., nk_1 = n such that 

u(ni) = (b0,...,bi) (i < k) 

and for xeQ put 

'l'n(x) = <tf(x, w(x, 0)), w(x, 0), i//f(x, w(x, n0)), w(x, n0), 

4f*k(x, w(x, nk_1)), w(x, nk_!)> 

where (as always) we use an order-preserving map (•••) from the alphabetic 

ordering of tuples of ordinals into the ordinals. We now proceed to show that 

t/i = (t//n) is a DT-scale on Q. 

The definability part is quite easy and we will omit it. 

It remains to check that i/i is a scale on Q, so suppose xQ, x1,... are all in 

Q, limiti^Xi = x and all i//„(Xj) are ultimately fixed for large i; we must 

show that xeQ and for each n, 

tf/n(x)< limits il/n(Xi). 

The hypothesis means in particular that limits„ w(xu n) = wn for each n, 

i.e. the best strategy for establishing Q(xJ converges as i —> 00. We will 

call this the limiting best strategy a*. In particular 

cr*(0) = a0 = w(xh 0) for all large i. 

In addition, all ip*k(xi, wn) are eventually constant. We will assume without 

loss of generality that both a0= w(xf, 0) and i//*(x;, (a0)) are fixed for all 

i > 0. 

We will show that 

(x,(a0))^?(xo,<a0)); 

this will establish in particular that xeQ and that 

<ff*(x, (a0» — ih*(x0, (a0)) 

and hence (easily) i//0(x) < i//0(Xi) for all i. A slight modification of the 

argument shows that for given £>k_l5 if a0,..., ak are the first k + 1 
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<ao> Fb0 

!\ 
Sad 2) 

(a0), x0, <a0» 

xo< (a0> I Sa0{ 1) Fa0( 2) 

1 1 
1 1 

i 
1 

x, (a0) 
--1-1- 

Fb0 1 
1 

-i- 

1 Si Fb, 

H0(x, (a0), x0(a0» 1 

i 

1 
1 

x0. <a0) Sa0(1) Fa0( 2) 

Diagram 6E.7. Stage 1. 

moves of the limiting best strategy for the xt, then for all large i, 

(x, (a0, bo,..., ak_i, fik_l5 ak)) — *k(xn (ao> b0,..., dk_i, bk_1, ak)) 

from which the result follows easily. 

Suppose then that in the game H0(x, (a0), x0, (a0)) F starts with a move 

b0. Suppose 

a*(a0, b0) — dj 

and choose ^>0 large enough so that if u(j) = (b0), then i//j(x;) is 

constant for all i>kx. Since also 

(xkl,(a0)) ^o(*o,<a0))» 

fix a winning strategy for S in H0(xkl, (a0), x0, (a0)) and construct Diagram 

6E.7 in the usual way. 

In this first stage of the construction we see how S can play in his first 

two moves of the “master game” H0(x, (a0), x0, (a0)), by copying a0(l) 

and then playing at. The key moves that allow us to start the next stage 

are the numbers 01^2) (by the winning strategy of S in 

H0(xkl, (a0), x0, (a0))) and bu which is F’s next move in the master game. 

To begin with, by the choice of k, we know that 

(xkl, (a0, b(h «!» (xkl, (a0, b0, a^))) 

so fix a strategy for S in the game witnessing this. Also let 

<r*(a0, b0, au b1) = a2 



6E.15] Third periodicity theorem; definable winning strategies 355 

and choose k2 so large that if u(j) — (b0, b3), then i//;(x£) is constant for all 

i S: k2. By the choice of /tj, we have 

(xk2’ (ao, b0, &i)) (xkl, (a0, h0, ax)) 

so we can fix a winning strategy for S in the game witnessing this and 

construct the second stage by starting with Fb1 at the top; see Diagram 

6E.8. 

In this second stage we obtained the moves a0(3) and a2 for S in the 

master game. The new key moves that start the third stage are a2(4) and 

b3 and from then on we proceed in the obvious fashion. 

It is clear that at the end we will have plays a0, ax, j8l5 a2, jS2,... and 

that the following will hold: 

(1) P(xkl, or), P(xkl, pj, P(xk2, a2), P(xk2, (32),..., 

(2) for a suitable increasing sequence of integers 

0 = 7o <7i 

(xki, aj <*Q(x0, a0), 

<Ph(xk!> Pl)^<Ph(xkc “l)> 

<Ph(xk2, aj^<ph(xkl, Pi), 

<P;2(*fc2, Pi) - <Ph(xk2, «2), 

(3) limits (xk|, a,) = (x, (a0, b0, au blt...)). 

Now the fact that <p is a very good scale on P implies that 

(x, (a0, b0, alf bu...)eP and 

(Po(t, (00, b0, a 1, hi,.--)) — <Po(xo, <Xo)> 

(unless -iP(x0, a0)) so that S wins the master game. ~\ 

The results in this section make it clear that almost everything we have 

proved about the analytical pointclasses Xk (k even) 77), (n odd) can be 

extended to an arbitrary 

r=9r„ 

where TTj c= ri,Tl is adequate, a> -parametrized and scaled. Only occasionally 

we need the additional hypothesis that P is closed under V s or 3',v'. 

We end this section with a simple result which implies that all the 

pointclasses 92°, 992°, etc. are scaled. 
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6E.16. Show that for each n>l, each X°n pointset of type 1 admits a 

.2°-scale (Kechris [1973]). 

Infer that 3.2°, 902°, etc. all have the scale property, granting the 

appropriate determinacy hypotheses. 

Hint. Call <p = {cp„} a weak-TT^-scale on P if it is a scale on P and if the 

relations 

R{n, x, y) ** P(x) & P(y) & <pn(x) < <pn(y), 

S(n, x, y) <=> P(x) & P(y) & <pn(x)<<pn(y), 

are both in 11°. Prove by induction on k > 1 that each 17° set of type 1 

admits a weak-7T°-scale and each X°k set of type 1 admits a 2£-scale. The 

basis case k — 1 is trivial. If 

Q(x) <=> (Vm)P(x, m) 

and <p is a 2°-scale on P, put 

^n(x) = <cp0(x, 0), 

<Pi(*, 0), <p0(x, 1), <Pi(x, 1), 

(p2(x, 0), <p2(x, 1), cp0(x, 2), <pj(x, 2), <p2(x, 2), 

<Pn(x, 0),..., <pn(x, n - 1), <p0(x, n), <pj(x, n),..., <p„(x, n)) 

and check that if/ is a weak-/7°+1-scale on Q. If 

O(x) <=> (3m)P(x, m) 

and <p is a weak-77°-scale on P, put 

ipo(x) = least m, P(x, m), 

i//n+1(x) = (ift0(x), (pn(x, Mx))) 

and check that t// is a2£+1-scale on Q. (Here the tuples of ordinals are 

ordered lexicographically.) H 

6F. The determinacy of Borel sets'2 3) 

By 6A.12 we know that Det(X\) cannot be established in ZFC, but the 

next best result can be proved in this theory: all Borel sets are deter¬ 

mined. This important result of Martin [1975] answered a long-standing 

question and lent considerable respectability to the practice of adopting 

determinacy hypotheses. 
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Here we will prove only Det(Xn) (n<a>) for which the argument is 

relatively simple and elegant. The complete result is established in Martin 

[1975] (in somewhat abbreviated form) and in the forthcoming Martin 

[19?c]. 

Let us first introduce a couple of simple notions which will be useful in 

the proof. 

It is often convenient to describe a game G on X by giving a payoff set 

Ac“X and a set of rules, i.e. a tree T on X. The game then must proceed 

along some branch of T, otherwise the first player who gets outside T 

loses. Formally, if 

/=(x0, xu x2,...) 

is the play, then 

I wins G «=> (3n){(x0,..., x2n) e T & (x0,..., x2n, x2n+1) i T} 

v(x0, xlv..)e A. 

We will often describe rules for a game informally, by putting down 

restrictions on the choice of xn (by the appropriate player) which depend 

on the preceding moves x0,..., x„_1. One obtains a tree T from such 

restrictions in the obvious way, 

(x0,..., xjslw for each i < n, x* is allowed by 

the restrictions. 

If A is in or 11^ with £ — 2, then the game G defined by A with any 

set of rules T is obviously in the same class of Borel sets. 

Suppose (x0,..., x„) is an initial piece of a play. A l-imposed subgame on 

(x0,..., x„) is a set X of finite sequences from X such that 

(i) every sequence in X extends (x0,..., x„), 

(ii) if m is even and (x0,..., xm) e X, then for every y, (x0,..., xm, y)el 

Intuitively, a I-imposed subgame is a set of conditions which restricts 

the possible moves of I but does not restrict at all II's moves. II-imposed 

subgames are defined similarly. 

6F.1. Theorem (Martin [1975]). For each X=f 0 and each n > 1, every 2° 

game on X is determined. 

Proof is by induction on n, but we will put it down only for n = 3, to 

simplify notation—it will be clear that the argument is perfectly general. 
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II 
X 

X 

/ 

Diagram 6F. 1. 

The general idea is to assign to each 2° game A on X some 22 game A* 

(on some other set X*) and then prove that whichever player wins A* 

also wins A. 

Suppose then that 

be a fixed enumeration of the countably many sets FUj. For each n, choose 

a tree Tn on X such that Fn = [T„] (by 2C.1) and notice that 

(x0, *!,.••) i Fn ** for some j, (x0,..., x,) £ Tn. 

The players in A* make moves in X and they also make various 

auxiliary moves, as in Diagram 6F.1. The following conditions are among 

the rules for A*: 

(1) x0, x1? x2,... are chosen from X. 

(2) X0 is a I-imposed subgame on (x0, xj, X2 is a I-imposed subgame 

on (x0, xl5 x2, x3), etc. 

(3) Each t2n is 0 or 1 and each u2n is a finite sequence from X of odd 

length which is compatible with (x0, xu..., x2n+i). 

There is one more restriction on the rules of the players which is the 

most significant. To motivate it as well as (1)—(3), consider the following 

“interpretation” of the game A*. 

The moves x0, x1;... are clearly meant to be moves in A—in effect the 

players are playing the game A, but they are also making side moves 

which reveal part of their intended strategy for winning in A. 

When I plays X0, he is offering his opponent to restrict his further 

moves in A according to X0. Now II can respond to this in one of two 

ways. 

(i) If II plays t0 = 0, he is signifying that he accepts the offered 

restriction of I and in return he promises to see to it that at the end of the 

(x0, xlt x2,...)e F°. 

run 
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Diagram 6F.2. 

From now on, I must play in X0 and II must see to it that for every n, 

Uo, X2n+\) ^ To, 

or else he will lose the game. (In this case the move u0 of II is irrelevant 

and might as well be omitted.) 

(ii) If II plays t0=l, he is signifying that he rejects the offered 

restriction of I. Instead he plays a sequence 

= (*0> *lv» X2m ) £ ^0 ~ T0 

which is compatible with (x0, xj, lies in 10 and avoids T0. From now on 

both players are restricted to play consistently with u0, so that at the ead 

of the run, 

(x0, xu...)4F°. 

The later auxiliary moves S2n, U2n, u2n) are interpreted in a similar 

way. To be precise, we define for each n a tree Sn on X which depends 

on the initial piece of the game in Diagram 6F.2. 

(i) S_! = all finite sequences from X. 

(ii) If t2n = 0, then Sn = Sn_j (T l2n. 

(iii) If hn = 1, then 

Sn ={u g u is compatible with u2n}. 

Now the last part of the rules for A* reads: 

(4) For each n, x2n, x2n+i must be such that the sequences (x0,..., x2n), 

(x0,..., x2n, x2n+1) are in and if t2n = 1, then u2n must be in X2n - Tn. 

Finally we define the payoff for A* on runs which are played according 

to the rules: 

(x0, xl5 S0, (t0, u0),...)e A*«^for some n, t2n = 0 & (x0, xl5 x2,...)<£Fn 

or Oi)(V;)(Vn)[Fw = F*-*f2B = l]. 

It is clear that the game A* is in X°- To see the key connection between 

A and A*, let us say that II has kept all his commitments in a run (x0, xl5 
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Diagram 6F.3. 

X0, (t0, u0),...) of A* if for every n, 

(x0, x1} x2,...) e Fn <=♦ t2n = 0. 

For a run of this type then, we have 

(x0, xu X0, (t0, M0),...) e A* ^ (3i)(V/)[FM = F" - (x0, xlv..) i Fn] 

«=> (x0, Xiv)e A. 

We now show that whichever player wins A* also wins A. 

Case 1. I wins A*. Fix a winning strategy a* for I in A* and have I 

play in A by “guessing” or “simulating” IFs auxiliary moves in A* 

according to Diagram 6F.3. As usual, we have indicated copying moves 

by broken arrows and responses according to the fixed strategy cr* by 

solid arrows; we use wavy arrows —* to indicate the moves of II in A* 

which must be simulated. 
To begin with, I simulates t0 = 0, thus commiting II in A* to insure that 

the play (x0, xlv..) will be in F°. Suppose we have reached stage n in this 

fashion, with the initial simulations t2i (i < n) always being 0 and consider 

Diagram 6F.4. Suppose also that for a fixed i<n it is now realized that 

(Xo, Xj,..., X2i, X2i + lv> X2n) ^ Tj, 

so that II will not be able to keep his commitment in A* and insure that 

the ultimate play will be in Fl. At this point, I goes back to stage i and 

changes the simulated move (0, u2i) to (1, (x0, xlv.., x2n)); this of course 

changes some of the moves following that in A*, as we always follow the 

instructions of a* in that game-consider Diagram 6F.5. Notice, however, 

that the moves x2i+2, x2i+3,..., x2„, cannot be different, since the restriction 

i4;=(x0, x2n) forces I to play along u'2i until stage n. 
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Diagram 6F.4. 

It is clear that I can play in A in this manner by simulating moves in 

A* and occasionally changing his earlier simulations, so that no move in 

A* is changed more than a finite number of times; this is because a 

simulated move (0, u2i) can change at most once to <1, u'2i) and moves X2j 

can change only when some (0, u2i) is changed with i < j. Thus at the end 

we obtain a run of A* in which both players have followed the rules and 

in which II has kept all his commitments. For such runs, we know that by 

the definitions, 

(x0, XU X0, (t0, u0>,...) G A* «=* (x0, X1; X2,...) € A. 

But in this specific run I has played according to the winning strategy a*, 

so that the left-hand-side above is true and (x0, xu x2,...) e A, i.e. I has 

won A. 

Case 2. II wins A*. Again fix a winning strategy t* for II in A* and 

have II play in A by simulating I’s auxiliary moves in A* according to 

Diagram 6F.6. 

Diagram 6F.5. 
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Diagram 6F.6. 

To begin the simulation, take 

Z0 = {u: u extends (x0, xx> and for every X, (1, u) ^ r*(x0, xu 2)}. 

Since X0 contains all sequences of even length, it is a I-imposed subgame 

on (x0, Xi) and hence a legitimate move for I in A*. Notice that if 

(t0, u0) = r*(x0, xl5 X0), then we must have t0 = 0; because if t0=l, then 

by the rules of A* we should have u0eX0 which is clearly impossible by 

the definition of £0. Thus u0 introduces no restrictions on the further 

moves of I. 

Suppose we have reached stage n in this fashion, with the initial 

simulation X2] defined by 

*2,= 
{u: for every X, <1, u) f t*(x0, xl5 X0,..., x2j_2, x2J_l5 X2j-2, x2j, *2j+i, 2)} 

consider Diagram 6F.7. Suppose also that for a fixed i < n it now happens 

that 
(x0, Xi,..., x2n)iX2i 

Diagram 6F.7. 
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so that I is not keeping with the restriction we imposed on him by having 

him play X2i. This means that there is some X2i such that 

T (X0, Xj,..., X2i, -X21 + I? X2i) 0? (*0, ^2n))> 

by the definition of X2i, so we can go back and change the simulated 

move X2i to X2i\ this of course will change some of the further moves in 

A* as we proceed to follow the instructions of t* in this game and 

resimulate, but of course none of the moves (x0, xlv.., x2n) will change as 

II has now restricted himself to play along this sequence. 

As in the first case, it is now clear that II can continue to play in A in 

this fashion and simulate moves in A* so that he constructs a run of A* 

played according to r* and in which I has played according to the rules; 

again the key fact is that no move in A* is changed more than a finite 

number of times. At the end II wins in A*, and this implies immediately 

as before that he also wins in A. H 

6G. Measurable cardinalsn0) 

Before proving the determinacy of Borel sets, Martin [1970] showed 

that Det(X\) follows from a “large cardinal hypothesis,” the existence of 

measurable cardinals. Our main purpose in this section is to define 

measurable cardinals and prove this result. 

Recall that a filter on a set X is a collection 57 of subsets of X such that 

(i) 0^57, Xe57, 

(ii) if AeJ and A £ B, then BeJ, 

(iii) if A, Be 57, then A Pi Be 57. 

For any cardinal number x, a filter 57 is x-complete if whenever A <x and 

{A?}^<a is a family of A subsets of X, then 

(V£<A)A^e57=* H«<a Afe57. 

Finally, $7 is an ultrafilter (maximal filter) if for each AcX, either A e 57 

or X- A 6 57. 

Each point x0eX determines a principal ultrafilter 

t(x0) = {AcX:x0eA} 

which is obviously K-complete for every k. To get non-principal ultra¬ 

filters one generally needs the axiom of choice; with it one can prove in 

fact that every filter 57 on X is contained in some ultrafilter (which must 
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be non-principal if T contains all complements of singletons, e.g. if 

J = {AgX:X-A is finite}. 

A cardinal number x is measurable if x > <o and some set X of 

cardinality x carries a x-complete non-principal ultrafilter. By the usual 

conventions of set theory, x itself is a specific set of cardinality x (the set 

of ordinals preceding it) and it follows easily that x is measurable exactly 

when it carries a x-complete non-principal ultrafilter. 

Let us abbreviate the hypothesis that we will be using: 

MC <=> there exists at least one measurable cardinal. 

It is easy to check that MC is equivalent to the assumption that some 

set carries an frC-complete, non-principal ultrafilter (6G.8). 

We cannot hope to prove MC in Zermelo-Fraenkel set theory because, 

as we will see, it fails in the constructible universe L. On the other hand, 

although one could theoretically refute MC, this does not appear likely on 

the basis of the presently available evidence. We will discuss the plausibil¬ 

ity of MC and similar hypotheses in Chapter 8. 

With each ultrafilter 8L on x we associate the (two-valued) measure 

/a = /a^ on the power of x, 

If 81 is x-complete, then easily /a is x-additive, i.e. whenever A<x and 

{A€}€<x is a A-sequence of pairwise disjoint subsets of x, then 

g(Uf<A F (-^)' 

(To check this take cases on whether some A€e8l or not.) Conversely, if 

/a is a x-additive two-valued measure on the power of x such that 

ja(x)=l and for each £, ;u({£}) = 0, then 81^ = {A: p.(A) = 1} is a x- 

complete non-principal ultrafilter on x and x is measurable. We will 

speak interchangeably of /a and 81 when they are related in this way e.g. 

we will often refer to members of 81 as sets of measure 1. 

For each ultrafilter 81 on x and for any two functions f,g:x->x, put 

6G.1. Lemma. If 81 is an complete ultrafilter on x, then the associated 

relation < is a prewellordering on the set Xx of functions on x to x. 
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Proof. Clearly /</ for each / and since 

{f: /(f) =£ Mf)} 2 {f: /(f) ^ g(f)} D {f: g(f) =£ Mf)}, 

if /<g and g^h then /sfi. Also, if _i(/^g), then {f: /(f) — g(f)}^‘U- so 

that {f: g(f)</(f)}ecU and hence g</ which implies immediately g=s/. 

Thus s is a preordering. Finally, if 

then each set 

A„={f:/n(f)>/„+i(f)} 

is of measure 1 and hence nnA„ has measure 1 and in particular 

nbAn^0; for any A6fl„4 then, 

/o(A)>A(A)>/2(A)>-, 

which is absurd. H 

It follows that with each ^-complete ultrafilter on x we can associate a 

rank function 

p : Xx —» Ordinals 

such that 

P(/) ^ p(g) <=» (f 6 x: /(f) g(f)} e m. 

An ultrafilter ‘U (or the corresponding measure p) on x is normal if 'll 

is nonprincipal, x-complete and such that for each function f:x—>x, 

{f e x: /(f) < f} € CU =*• there is a fixed A0 < x 

such that {f e x: /(f) = A0} 6 CIL. 

6G.2. Lemma. Every measurable cardinal carries a normal ultrafilter. 

Proof. Let <U be a x-complete, non-principal ultrafilter on x with 

associated function p and for each A < x let Q be the constant function 

with value A, 

Cx(f) = A. 

Clearly 

A < A' =» p(CJ<p(Cy) 



6G.3] Measurable cardinals 367 

so that 

p(CJ> A. 

If id is the identity function, 

id(£) = £, 

then for each A 

{£: CA(£)<id(£)}= x-\ = n€<x(«-{^})ecU-, 

so p(CA)<p(id) and hence 

p(id)> x. 

It follows that for some /0 we must have 

p(/o) = x. 

Fix such an f0 then and define 01* by 

A E 01* <=> /o X[A] g OL 

Proof that 01* is x-complete and non-principal is routine. To check that 

at* is normal, suppose {£: /(£)<£}ecU*, so that {£: /(/0(^))</o(^)}^OL. If 

g is the composition 

g(f)=mt)), 
we have p(g)<p(/0) = x which implies easily by %-completeness that for 

some A < x, {£: /(/0(£)) = A}e 'll. By the definition of 01* then, {£:/(£) = 

A}e01* which is what we needed to show. 

Suppose {A^}e<x is a :><-sequence of subsets of x. The diagonal intersec¬ 

tion of {A$}e<x is defined by 

A E A <=> (V^ < A)[A 6 A^]. 

6G.3. Lemma. Suppose 01 is a normal ultrafilter on x and each A((f<x) 

is in 01; then the diagonal intersection A = {A: (V^<A)[As AJ} is also in 

01. 

Proof. Assume not, so that (x — A)e01 and for each A ex —A choose 

/(A) < A so that A4Am (and set f(\)=,0 for AeA). Now /(A) <A on a 

set of measure 1, so by normality, /(A) = A* for a fixed A* and all A in a 
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set B of measure 1. But then B HAa* has measure 1, so it contains some 

A>A*, A ex-A; this A then satisfies both A sAx. and A^Af(x) = AA* 

which is absurd. 

After these preliminary results we are ready to state and prove the key 

partition property of measurable cardinals which will be our main tool. 

For each n > 1 let 

and put 

A map 

= all subsets of x with exactly n members 

x<ul = all finite subsets of x 

= U, x M 

F:x[n]^ A 

is often called a partition of xM into A parts. A subset I ^ x is homogene¬ 

ous for F if for all A, B e x[n] 

Ac/,BcJ„F(A) = F(B), 

i.e. if all the n-element subsets of I are put into the same bin by the 

partition F. 

6G.4. Theorem (Rowbottom [1971]). Let Tl be a normal ultrafilter on x 

and suppose F:xln]^> A is a partition of the n-element subsets of x into 

A < x parts. Then there exists a homogeneous set 1 for F which is in Tl. 

Proof is by induction on n with the basis n = 1 being an immediate 

consequence of the fact that Tl is x-complete. 

Suppose then that F: x[n+1] —» A. For each fixed £ < x, define a partition 

F^ : x[n] -> A 

by the formulas 

F((A) = F({£}U A) if HA, 

F({A) = 0 if £ e A, 

and by the induction hypothesis choose I^ in Tl to be homogeneous for F^ 
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and put 

G(£) = F6{A) for any n-element A c It 

Since G : x, —> A, by x-completeness easily there is a set J c x in CU and an 

ordinal A0<A so that 

^ g J => G(£) = A0. 

Put then 

i* = jni, 

and let / be the diagonal intersection of the /*’s, 

Ag/<=>AgJ&(V£< A)[A g IJ. 

It remains to verify that / is homogeneous for F. 

Given an (n + l)-element Ac/, let £ be its least member, let B = 

A-{£} and notice that Bc/€; this because if A e B, then Ag / and also 

£<A, so that Ael?, Thus 

F(B) = FS(A) by definition of F€ 

= G(£) since £ g J and A^I( 

= A0 

so that F is constant on the (n + l)-element subsets of /. —\ 

A map 

F:x<w-» A 

is a partition of the finite subsets of x into A parts. We call I^x 

homogeneous for F if for A, Be 

Ac/, Be/ and card(A) = card(B)<t<0 

=* F(A) = F(B). 

6G.5. Corollary. Let hi fie a normal ultrafilter on x and for each i let 

Fj: %<a> ^ A fie a partition of the finite subsets of x into \ <x parts. Then 

there exists a set I in 11 which is simultaneously homogeneous for all the F;. 

Proof. Define F; „ : :*[n] —> A by 

Fw(A) = F,(A) (Ae»w), 

let I „ be homogeneous for Fl n in ‘U and take 1= flL<- ~ 
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We will not study partition calculus here, but it will be useful to have 

around a bit of notation from this part of combinatorial set theory. For 

given cardinals x'^x, put 

x —> (%') <=> for each sequence {F;}iea) of partitions 

Fj: x<w a) there exists a set I g x 

of cardinality % which is homogeneous 

for all the Ft. 

We say that x is Ramsey if x —»(x), so that by 6G.5 every measurable 

cardinal is Ramsey. (This is equivalent to the more usual definition of 

Ramsey cardinals, see Drake [1974].) All the applications of measurable 

cardinals to descriptive set theory follow from the (weaker) consequence 

of 6G.5, that 

x measurable =» x—»• (RJ; 

this is due to Erdos, Hajnal [1958]. 

To simplify the proof of Martin’s theorem we first reformulate the 

basic representation theorem for 11] sets, 4A.3. 

6G.6. Lemma. If A cj is a II] set of irrationals, then there exists a 

function D with the following properties: 

(i) The domain of D consists of all codes u of finite sequences of even 

length, i.e. {u: Seq(u) & lh(u) is even}. 

(ii) If Seq(u) & lh{u) = 2n, then D(u) is an ordering with field some set 

of n integers. 

(iii) If t < s, then D(a(2t)) is a subordering of D(a(2s)). 

(iv) The following equivalence holds: 

a e A <=> U t D(a(2t)) is a wellordering. 

Proof. By 4A.3 choose a continuous so that for each a, 

f(a)eLO and 

aeA «=>/(a)e WO 

and let R be such that 

n%a)k <=* f(oc)((n, k))= 1 

<=* (3s)R(a(s), n, k). 
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If u = (u0,..., u2t-l) is a sequence code with even length 21, put 

C{u) = {(2n,2k): (3s <2t)R((u0,..., us_j), n, k)&n,k<t} 

so that in particular, for each a, t 

C(d(2f)) = {(2n, 2k): (3s < 2t)R(a(s), n, k) & n, k < t}. 

Clearly each C(a{2t)) is a partial ordering whose domain consists of even 

numbers <21, 

s<f =► C(d(2s))c C(d(2t)) 

for each a, (JtC(a(2t)) is a total ordering and 

aeA<=>Ui C(d(2t)) is a wellordering. 

We can now define D(u) with the required properties so that 

D(d(2f)) = Dj U D2, 

where Dl is a totally ordered subrelation of C(d(2t)) and D2 is a finite 

tail end of odd integers. In detail, take 

D(d(O)) = D(l) = 0 

and let D{a(2t + 2)) be the extension of D(a(2t)) obtained as follows. If 

the smallest even number in the field of C(d(2t + 2)) which is not in the 

field of D(d(2f)) is comparable in C(d(2f + 2)) to every even number in 

the field of D(a(2t)), then extend D(a(2t)) by adding this number to its 

field and putting in the appropriate place. If this fails to hold (or if 

C(d(2f + 2)) has the same even numbers in its field as D(d(2t)), then 

extend D(d(2f)) by adding some unused odd number at the top. 

It is now easy to check (i), (ii) and (iii) and (iv) follows from the fact 

that for each a, (JtD(a(2f)) differs from (JrC(a(20) only by (possibly) 

having some odd integers at its top, with their natural ordering. (To prove 

this check by induction on 2n e a> that if 2n is in the field of (J, C(a(2f)), 

then 2n is in the field of (J t D(d(2f)).) ~I 

6G.7. Theorem. (Martin [1970]). If there exists a cardinal number x such 

that x—»(Ki), then Det(X\) holds. 

Proof. Given AcJin £}, choose D as in the lemma so in particular 

aiA<^ [J tD(a(2t)) is a wellordering. 
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II 

Diagram 6G.1. 

We define a new game A* where player II makes additional auxiliary 

moves in x as in Diagram 6G.1. At the end of the run an irrational 

a (>• • •) 

has been played as well as an infinite sequence of ordinals £0, £i>— below 

x. For each t, let 

Field(D(a{2t))) = {xlv.., xt} 

so that 

Field(\J, D(a(2t))) = {xx, x2,...}; 

now II wins the run if the map 

is order-preserving from UrD(d(2f)) into the natural ordering on x. 

It is obvious that the game A* is open, so it is determined. Also if II 

wins A*, then obviously II wins A since he can play in A with the same 

strategy he has in A* (disregarding his ordinal moves) and at the end he 

has an order-preserving map from \J, D(a(2t)) into x, so (J,D(d(2f)) is 

a wellordering and a£A. 

Assume then that I wins A* by some strategy <x*—we must show that I 

can also win A. 

Given t distinct ordinals (i,..., and a sequence code u =(a0,..., a2t-1), 

let in(l) be some ordering of {£lv.., £,} and consider the sequence 

of moves in Diagram 6G.2 as an initial piece of a play in A*. Clearly, 

there is exactly one ordering of £<} so that II has not already lost 

after these first t moves; let us denote it by 

II 

Diagram 6G.2. 
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Now for each sequence code u = (a0,..., a2t-1) of length 21 consider the 

partition 

Fu : x[t] -> o) 

given by 

^u({^lv? ^(}) O' (do* (^1, ^n(u, 1))’'^2t — 2i (^21—1> ^n(u,())) 

and let J^x be of cardinality and homogeneous for all these parti¬ 

tions. Finally, put 

cr(a0, alv.., a2t-i) ~ Fu({£iv-> £1}) 

where u = (a0, au..., a2t_ 1) and |lv.., are arbitrary distinct members of 

J. We will show that cr is a winning strategy for I in the game A. 

In effect we define cr from cr* by simulating the ordinal moves of II in 

A* in some homogeneous set J whose members give no information to I 

in that game. 

Suppose then that I follows a in some run of A and the play 

a = (no, ci!,...) 

results, but a^A. Then [J, D(a(2t)) is a wellordering of countable rank, 

so if {*!, x2,...} is its field, there is some order-preserving map 

xt 

with all the £teJ, since J has cardinality Nj. It is now obvious that in the 

run of A* pictured in Diagram 6G.3 player I is following his winning 

strategy cr* and yet he loses, which is a contradiction. H 

One can extend this method to prove the determinacy of simple 

combinations of sets (e.g. differences) granting that some a:—>(Ni). In 

fact, Martin has established the determinacy of a reasonably large sub¬ 

class of A! from the hypothesis that there exist long (infinite) sequences of 

measurable cardinals. On the other hand it is known that the existence of 

any number of measurable cardinals does not imply Det(A2) and no one 

has succeeded in proving Def(A2) from any (reasonable) large cardinal 

I 

II 

Diagram 6G.3. 
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hypothesis. Martin [19?c] gives a comprehensive treatment of the known 

results in this important problem of relating determinacy and large 

cardinal hypotheses. 

Exercises 

6G.8. Prove that if some cardinal carries an ^-complete non-principal 

ultrafilter, then there exists a measurable cardinal. 

Hint. Let x be the least cardinal which carries an Xrcomplete non¬ 

principal ultrafilter TL and suppose towards a contradiction that for some 

A <x, there are sets Av of measure 0 (not in 01) such that Ut,<a g*U. 

Pick the least A for which such a sequence exists and take Bv = 

so that the Bv are pairwise disjoint of measure 0 and 

Ur,<\ Bve tU" Now for x- A’ Put 

X G Of11 «=» U tjex g 01 

so that 

X^0l*«=^Ur)eX ^ 

and verify that 01* is Kj-complete on A contradicting the choice of x. 

—\ 

We have been referring to “large cardinal hypotheses” but there is no 

hint in what we have proved that measurable cardinals are large. In fact it 

is consistent with the axioms of Zermelo-Fraenkel set theory (without the 

axiom of choice) that Xj is measurable—granting that the hypothesis MC 

is consistent at all, Jech [1968]. On the other hand, the axiom of choice 

implies that measurable cardinals are very large indeed. We will give here 

only a glimpse of the results that can be proved in this direction. 

Recall that x is regular if there is no function /: A —»■ x (with some 

A < x) which is unbounded in x. Also, x is strongly inaccessible if x is 

regular and for each A<x, card(power{\)) = 2K<x. 

6G.9. Prove that a measurable cardinal is regular and in fact (granting 

the axiom of choice) strongly inaccessible. 

Hint. If f:\—>x is unbounded, then 

* = U„<*{*: €<f(v)} 

and each of the sets in this union has measure 0 by x-completeness. 
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Suppose now there is a A <x so that x<2A, where we have used the 

axiom of choice in comparing k with power (A). There is then an injection 

i.e. such that 

=*&£<me(Xe-Xn)v£e(Xn-X()]. 

Choose then some function /(£, tj) such that 

^V^Mv)e(Xe-Xn)vmV)e(Xn-Xe). 

Dehne now a partition of %[2] into A parts by 

HU, rj}) 
| fU rj) if ^ < T7 

£) if V 

and using 6G.5, let Igx be a homogeneous set for this partition, 

card {I) —x. Now check that we cannot have C < G < £3 all £1; £2, 

without an obvious contradiction. H 

The proof obviously shows that if every partition of x[2] into A < x 

parts has a homogeneous set of cardinality at least 3, then 2K <x. Much 

stronger results can be proved about a measurable cardinal x—it cannot 

be the first strongly inaccessible, it must have x strongly inaccessibles 

below it, it cannot be the least A with A strongly inaccessibles below it, 

etc. 

In 6A we saw that the hypothesis Det(A) implies a good deal of 

regularity for the pointsets in A. By modifying a bit those proofs, we can 

establish the same results for the sets in 3XA, so in particular Det(£\) 

(which is equivalent to Det(H{) by 6A.4) implies that every X2 pointset P 

is absolutely measurable, it has the property of Baire and it is either 

countable or it has a perfect subset. These regulation results for X2 then 

follow from the hypothesis that some jc-^GNj). 

We now give brief outlines of these arguments. 

6G.10. Suppose A is an adequate pointclass closed under Borel substitu¬ 

tion and assume Det(A); prove that every uncountable set P in 3^A has a 

perfect subset. (Martin.) 

Infer that if there exists a cardinal x such that x—>(Nj), then every 

uncountable X2 set has a perfect subset. (Solovay [1969].) 
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Hint. It is enough to prove the result for Pg/as in 6A.12, so assume 

P(a) «=> (3/3)Q(a, (3) 

with Q in A and recall the game G which we associated with Q in the 

hint to 6E.5. Following the same hint, G is determined and if I wins G 

then easily P has a perfect subset; if II wins G then any winning strategy 

t for II can be used to enumerate P. 

The second assertion follows immediately by Martin’s theorem 6G.7. 
H 

6G.11. Suppose A is an adequate pointclass closed under Borel substitu¬ 

tion and assume Def(A); prove that every pointset in 3 A has the 

property of Baire. (Kechris [1973].) 

Infer that if there exists a cardinal x such that x —»• (Kj), then every Xl 

pointset has the property of Baire. (Solovay.) 

Hint. We will prove that under the hypotheses, each A in 3XA is either 

meager or there is an s such that N(s)-A is meager, from which the 

result follows by 6A.15. 

Suppose 

x e A <=> (3a)Q(x, a) 

with G in A and consider the following game which is a modification of 

the game G** used in 6A.14. The players move as in Diagram 6G.4. The 

restrictions on the players are the same as in G**; if both players follow 

the rules to the end, then 

I wins the run <=> Q(x, a) 

where x is the unique point in all the basic nbhds N(Sj)c9C and 

ex (rig? a2,...). 
Clearly G is determined and it is easy to see as in 6A. 14 that if A is 

meager then II wins G. Conversely, if II wins G via a and Q(x, a) holds, 

call a sequence s0,...,sn of even length good (for x, a, a) if s0, sl5 a(0), 

a(l),..., a(n — 3), a(n-2), sn_u sn is the initial part of some play in_G in 

which the restrictions have been obeyed, II has followed a and xeN(s„). 

Diagram 6G.4 
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If Q(x, a), then clearly there must be a good sequence with no good 

extension; hence, 

xg A => for some s0, a i, a0, au..., sn, an_1, an, 

xe H {N{sn)-N(cr(s0, sl5 a0, al5..., sn, an_u an, s)): 

N(s) c N(sn) & radius(N(s))<\ radius (N(sn))} 

and the set on the right is clearly meager. Thus, 

(1) II wins G «=> A is meager. 

We also claim that 

I wins G => for some s, N(s) — A is meager. 

To check this, let s = s0 be the first move of I by a winning strategy a and 

for any x call a sequence s0, s1; a0, sn (n even) good (for x and <x) if 

it is played by the rules with I following a and xe N(sn). Easily, if 

xe(N(s0)-A) then there must be a maximal good sequence (which may 

be the one-term sequence s0) or else we would get a play establishing that 

Q(x, a) holds for some a; thus 

x g (N(s0) - A) =* for some sl5 a0, asn 

x g fj {N(s„) - Nia^iso, slv.., sn, s)): 

N(s) c N(sn) & radius(N{s))^j radius(N(sn))} 

where o*(s0, slv.., sn, s) = sn+2 is the “nbhd code response” of I to II’s 

play s. This implies immediately that N(s0) —A is meager. ~I 

6G.12. Suppose A is an adequate pointclass closed under Borel substitu¬ 

tion and assume Det(A); prove that every pointset A c ac in 3"A is 

absolutely measurable. (Kechris.) 

Infer that if there exists a x such that x (Ki), then every pointset 

is absolutely measurable. (Solovay.) 

Hint. Suppose first Ac“2 and for some Pg"2x“2, 

(*) a G A «=» (3/3 g “2)P(a, |8). 

For each fixed Borel measure /x on "2 and each e>0 consider the 

modified covering game Gi(A, e) defined as follows. Players I and II 

make moves as in Diagram 6G.5. The restrictions are exactly like those in 

G'i(A, e) defined in 6A. 17, except that the additional moves b0, bu... of I 

must also be 0 or 1 and we insist that the sets Gn produced by II satisfy 
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Diagram 6G.5. 

/ji(Gn)<e/22n+1. At the end of a run, binary sequences 

a = (sq, Si,...) 

— (b0, bi,...), 

have been played by I and II has defined a sequence {Gn}neui of finite 

unions of basic nbhds in “2 with special properties. Set 

and put 

G={JnG, 

I wins the run «=> a<£ G & P(a, j3). 

It is now easy to mimic the proof of 6A. 17 and show that if Gf(A, e) is 

determined for each e>0 and A has no Borel subsets of p-measure >0, 

then iu,(A) = 0. 

Assume now the hypotheses on A and check first that if Ac"2 is in 

3XA, then A can be defined from some P as in (*) above, using the A\ 

isomorphism of “ 2 with A. It follows that for each A c “ 2, if A e 3"* A, then 

the game Gf (A, e) is determined and hence if A e3v A and A has no Borel 

subsets of fi-measure >0, then ju(A) = 0. 

Given Ac“2 in B^A, let C = “2-A and choose a Borel set C^C by 

2H.7 so that C-C=CflA contains no Borel set of p-measure >0. 

Since Ce3xA, we then have that /u,(Cfl A) = 0- so that C and hence 

A=“2-C is p-measurable. 

The result holds for arbitrary product spaces 9C because it is clearly 

preserved under Borel isomorphisms. —\ 

Solovay’s original proofs of these regularity results for depended 

heavily on metamathematical ideas. We will come back to them in 

Chapter 8, as the metamathematical approach illuminates these theorems 

from an interesting and very different point of view. 

6H. Historical remarks 

1 As with so many other basic notions of our subject, infinite games 

were introduced into descriptive set theory by the Polish mathematicians 
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of the midwar period. Mazur invented the **-game (for the reals) and 

conjectured its connection with category, 6A.14; Banach verified the 

conjecture but did not publish his proof. (Later, Oxtoby [1957] proved a 

generalization of 6A. 14 to arbitrary topological spaces.) 

2 Gale-Stewart [1953] introduced into the literature the general notion 

of an infinite game of perfect information and began a systematic study of 

these games. They proved that closed (and open) games are determined 

and that not all games are determined and they asked some basic questions, 

e.g. if all Borel games are determined. 

3 Wolfe [1955] proved Det(X2) and some time later, Davis [1964] 

established Det(Xs) in one of the fundamental early papers in the subject. 

For many years this was the strongest result in the direction of establish¬ 

ing determinacy, until Martin [1970] proved Det(2\) granting MC (the 

hypothesis that there exists at least one measurable cardinal). Using the 

new methods introduced by Martin and ideas of Baumgartner, Paris 

[1972] established DetfX^) in ZFC. Finally Martin [1975] completed this 

cycle of results by proving the determinacy of all Borel sets in ZFC. 

4 Martin’s forthcoming monograph will give a detailed exposition of 

these positive results as well as the known (quite intricate) connections 

between determinacy and large cardinal hypotheses. 

2 In addition to proving Det(X°), Davis [1964] introduced the *-game 

(which he attributed to L. Dubins) and established the connection of this 

game with perfect sets, 6A.10 and 6A.11. From our present point of 

view, these results and the theorem of Banach relate determinacy hypoth¬ 

eses with regularity properties of sets. 

6 This point of view was propounded in an extreme form at about the 

same time by Mycielski-Steinhaus [1962] who considered the blatantly false 

proposition 

AD <=> Det( Power (A)) 

<=> every subset of A is determined. 

Mycielski and Steinhaus suggested that we replace the (true) axiom of 

choice by the (false) hypothesis AD in our development of ordinary 

mathematics; our results must then be interpreted in some universe of 

sets presumably smaller than the usual collection of all sets (where AD 

fails and AC holds). The alleged advantage of replacing AC by AD is the 

resulting regularity of pointsets—all sets are absolutely measurable, they 

have the property of Baire, etc. 
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7 Proofs of these “regularity results” from the “axiom of determinacy” 

AD were given in the sequence of papers Mycielski [1964], Mycielski- 

Swierczkowski [1964] and Mycielski [1965]. In our exposition in 6A we 

have taken the point of view that these results relate Det(A) with the 

regularity of the pointsets in A, whenever A is an arbitrary pointclass with 

certain reasonable closure properties. Now 6G.10-6G.12 appear as 

refinements which establish the regularity of sets in 3^A from Det(A). 

8 Despite the dubious reasons given by Mycielski-Steinhaus [1962] for 

studying consequences of the false hypothesis AD, it has turned out that 

this was in fact a non-trivial and significant program. We will turn briefly 

to it in 7D. Let us just notice here that one of the first results that focused 

the attention on “mainstream” set theorists to determinacy was Solovay’s 

proof in 1967 that AD implies that R, is a measurable cardinal, see 

7D.18. 

9 In the most important single contribution to the theory presented in 

this Chapter, Blackwell [1967] gave a new proof of the separation 

theorem for X} sets which used the Gale-Stewart theorem. Addison and 

Martin instantly saw the possibilities of this approach and independently 

established that Def(A[,) => Reduction(/7]); then Martin again and Mos- 

chovakis (who heard Addison lecture on his results) proved indepen¬ 

dently the First Periodicity Theorem 6B.1. These theorems appeared in 

Addison-Moschovakis [1968] and Martin [1968] and started the sequ¬ 

ence of results which has led to the present substantial structure theory 

for the projective sets and pointclasses on the basis of the hypothesis of 

projective determinacy. 

10 The few results on measurable and Ramsey cardinals which we 

covered in 6G are well-known and we will not attempt to trace their 

history here; see Drake [1974], 

11 As we pointed out in the introduction to this chapter, Solovay’s 

regularity results about sets were the first applications of the 

hypothesis MC (or any strong axioms for that matter) to problems in 

descriptive set theory. These were established at about 1965 and they 

were very well known among set theorists long before their (partial) 

publication in Solovay [1969]; they were instrumental in creating the 

climate where the use of strong hypotheses in descriptive set theory 

became tenable. Solovay’s proofs were metamathematical (he used forc¬ 

ing) and had a very different flavor from the game-theoretic arguments 

we gave in 6G.10, 6G.11 and 6G.12. We will come back to them in 

Chapter 8. 
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THE RECURSION THEOREM 

Kleene’s recursion theorem is a very simple fact with remarkably broad 

and important consequences. Combined with techniques also pioneered 

by Kleene, it allows us in effect to define recursive partial functions by 

transfinite recursion and to obtain uniform versions of many results, in the 

sense of 3H. 

After proving the recursion theorem in a wide context in 7 A, we will 

use it in 7B to establish the Suslin-Kleene theorem, the central result of 

the effective theory. In 7C we will consider briefly the general theory of 

inductive definability (of relations) and in 7D we will look at some of the 

consequences of the so-called axiom of (full) determinacy. 

It is perhaps an indication of the significance of the recursion theorem 

that this section on full determinacy come in this chapter; as it happens, 

one of the key lemmas in this most set theoretic part of our subject 

depends on the recursion theorem for its proof. 

7A. Recursion in a ^*-pointclass 

Let us call for convenience F a X*-pointclass if it is a X-pointclass which 

is to-parametrized and has the substitution property, as in 3G—these are 

the pointclasses which carry a very smooth theory of T-recursion. 

For each space 9C, let 

Gfx" = Gcjyxacx to 

be the fixed (good) universal set for the T-subsets of 9CXw and for each 

define the partial function 

U*’v= u-.A'xsc-^y 

381 
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as follows: 

U(e, x)l «=> there exists a unique y e *y such that 

(Vs)[y eNs« G(e, x, s)], 

l/(e, x) = the unique y such that 

(Vs)[y eNs« G(e, x, s)]; 

in other words, U is the largest partial function on 9C to <y which is 

computed on its domain by G. Finally, for each e&N define the partial 

function 

by 
{e}(x) = U(e, x). 

(Sometimes <pE or fB is used for {e} but Kleene’s original notation is well 

established and really easier to use in the long run.) 

We will always omit the cumbersome superscripts and subscripts 

ac,*y,r, unless they are necessary for clarity. 

7A.1. Theorem. Let r be a fixed Z*-pointclass. 

(i) For each 9C, % the partial function 

ufv = U:jvx ac-^'y 

is r-recursive on its domain. 

(ii) A partial function f :SC —> y is T-recursive on its domain, if and only 

if there is some eeA’ such that/s={e} i.e. 

f(x)i — f(x) = {e}(x). 

(iii) A partial function f :9C y is r-recursive on its domain if and only 

if there is some recursive e&N such that /e{e}, i.e. 

/(x)| =» f(x) = {e}(x). 

(iv) For each space 9C of type 0 or 1 and each “W, *y there is a recursive 

function 

S?’'"'v = S:jVx9C->jV 

such that for all eej{, xe9C, 

{e}(x, w) = {S(e, x)}(w). 

(Kleene.) 
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Proof, (i) is immediate and (ii) and (iii) follow trivially from the proper¬ 

ties of a good parametrization, 3H.1. To prove (iv), let 

S:Jfx 9C^JV 

be chosen by 3H.1 so that for all e, x, w, s, 

G(e, x, w, s) <=> G(S(e, x), w, s). -\ 

The recursion theorem follows from this result by a simple (if some¬ 

what subtle) diagonalization argument. 

7A.2. Kleene’s Recursion Theorem.1" Let I be a X*-pointclass and 

suppose 

is T-recursive on its domain; then there exists a fixed such that for 

all xeX, 

(*) /(e*, x)| =>[/(£*, x) = {e*}(x)]. 

In fact there is a fixed recursive function R{a) depending only on the 

spaces 9C, so that if a is a code of f in the sense that 

/(e, x)| =* /(e, x) = {a}(e, x), 

then we can take 

e* = R{a) 

in (*). 

In particular, if f is T-recursive on its domain, then we can find a 

recursive e* which satisfies (*). 

Proof. Given 9C and 'll, define 

g-.jfxtfxx^y 
by 

where 

g(/3, a, x) = {a}(S(/3, /3, a), x), 

is recursive and satisfies (iv) of 7A.1. Clearly g is T-recursive on its 

domain, so by 7A.1 there is a fixed recursive e0 so that 

g(|3, a, x)| => g(/3, a, x) = {e0}(/3, a, x) 

= {S(e0- j8, £*)}(*) 
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by the key property of the function S. Taking (3 — e0 in this implication, 

we obtain 

{<x}(S(e0, e0, a), x) = {S(e0, e0, a)j(x) 

and we can satisfy (*) by setting 

e* = R(a) = S(e0, e0, a). H 

The recursion theorem has been described as a fixed point theorem for 

maps on the collection of T-recursive partial functions which are uniform 

in the coding for these objects introduced by 7A.1. This point of view is a 

little artificial when we consider partial functions whose domain is not in 

T, but in any case, the applications of the theorem are hard to couch in 

topological terms. They tend rather to exhibit a connection between this 

result and definition by recursion as the next theorem plainly shows. 

7A.3. Theorem. If T is a X*-pointclass, then the collection of r-recursive 

(total) functions is closed under primitive recursion. 

Proof. We are given total T-recursive maps 

g:9C— 

and we define 

by the recursion 

f:wXX-+y 

/(0, x)= g(x) 

f(m + 1, x) = h(f(m, x), m, x). 

To see that / is also T-recursive, let 

f g(x) if m = 0, 
<p(e,m,x) m_1>x) if m > 0, 

where 

{e}(k, x) = U(e, k, x) 

is T-recursive on its domain as a function of e, k, x by 7A.1. It is easy to 

check (using the substitution property) that <p is T-recursive on its 

domain, so by the recursion theorem there is a fixed recursive e* so that 

<p(e*, m, x)l => [<p(e*, m, x) = {e*}(m, x)]. 
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For this e*, then we have 

{e*}(0, x)= g(x), 

{e*}(m + 1, x) = /i({e*}(m, x), m, x) 

which implies by a trivial induction on m that {e*}(m, x) is always defined 

and for each m, x, 

{e*}(m, x) = f(m, x). 

Now / is /"-recursive by 7A.1, since e* is recursive. —I 

We will see in the exercises that the collection of partial functions 

which are F-recursive on their domain is also closed under primitive 

recursion (when f is a ^*-pointclass), but this simpler result already 

shows the power of the recursion theorem. Even for the simple case 

r — -Sjof ordinary recursion, this is the simplest known proof of 7A.3 (for 

functions into spaces 3) which are not of type 0). 

Exercises 

Let us first consider a simple case of definition by effective transfinite 

recursion. 

Suppose < is a (strict) wellfounded relation with Field(< )c 0C and 

f:Field(<) —> 

is defined by recursion on < , i.e. f satisfies the equation 

(*) f(x)=G({(u,f(u)):u<x},x) 

which determines it uniquely on Field(<) (by induction). Now the map G 

is defined on 

Domain(G) = {(h, x): x<=Field(<) and h : 9C —» 3) 

is a partial function with 

Domain(h) = {u: u<x}}; 

we will say that G is r-effective (r a given 2*-pointclass) if there is a 

partial function 
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which is r-recursive on its domain and such that for each e e jV and each 

x e Field(<), 

(Vu)[u< x => {e}(n)j] 

=> g(e, x)l & g(e, x) = G({(u, |e}(u)): x}, x). 

If / is defined by (*) with a T-effective G, we say that / is defined by 

r-effective recursion on < . 

7 A.4. Show that if T is a X* pointclass and /: 9C —>is defined by 

T-effective recursion on some wellfounded relation < with Field(<)^ 9C, 

then f is T-recursive on Field(< ). (Kleene."’) 

Hint. Let g “compute” G as above and choose a recursive e*eA by 

the recursion theorem so that 

g(e*, x)l -*■ {e*}(x) = g(e*, x); 

now show by induction on x e Field(< ) that f(x) = {e ' }(x). ~I 

Notice that there are no effectivity hypotheses on the relation < in this 

result and in fact we can obtain e* in the proof directly from g, with no 

knowledge of the relation <; this is important in more subtle applications 

of this method where we define e* before we even know that < is 

wellfounded and then show that it has whatever properties we need if the 

relevant relation < happens to be wellfounded. 

7A.5. Prove that if r is a 2*-pointclass, then the collection of partial 

functions which are T-recursive on their domain is closed under both 

minimalization and primitive recursion. 

Hint. One must be a bit careful with the definitions. For minimaliza¬ 

tion, 

Hti[g(x, i) = 0] = w g(x, w) = 0 & (Vi < w)(3/)[g(x, i) = j+ 1] 

and the argument uses only the fact that T is a 2-pointclass. For primitive 

recursion we must understand the basic equations literally for partial 

functions g, h, 
/(0, x)= g(x), 

f(m + 1, x) = h(f(m, x), m, x), 

so that for example if f(m, x)|, we must have /(0, x),..., f(m - 1, x) all 

defined. The proof is the same as that of 7A.3. H 
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It is occasionally useful (particularly in the effective theory) to give a 

coding in for the partial functions which are r-recursive on their 

domain. Fix a .£*-pointclass r then and choose Gx <= on x 9C for each 9C to 

be universal for r\X by 3H.3, so that the parametrization system {G^} 

is good. Using the same notation as in the case of parametrizations in A 

(no conflict can arise), define the partial function 

Ufy=U:a)XX^cy 

by 

U(e, x) | «=> there exists a unique y e 3f such 

that (Vs)[y eNs^> G(e, x, s)], 

U(e, x) = the unique y such that (Vs)[y eNs« G(e, x, s)] 

and for each e e to, define the partial function 

by 

{e}(x)= U(e, x). 

7A.6. Let r be a X*-pointclass and define U^y, {e}f’y as above. 

(i) Show that each Ufy is /"-recursive on its domain. 

(ii) Show that a partial function f:9C—*y is /"-recursive on its domain 

if and only if there is some e e o> so that 

f(x)i -►/(*) = {e}(x). 

(iii) Show that for each space 9C of type 0 and each W, 3) there is a 

recursive function 

Sf-= S:(oXX^a> 

such that for each eeco, x e 9C, 

{e} = {S(e, x)}, 

i.e. for all eeoo, xe9C, weW 

{e}(x, w) = {S(e, x)}(w). 

(iv) Show that if f:ojXX^y is /"-recursive on its domain, then there 

exists some e*ea> so that for all xe9C, 

f(e*,x)l=*[f(e*,x) = {e*}(x)]; 
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in fact we can take e* — r(a) where r is a fixed recursive function 

(depending only on 9C,<y) and a is any member of co such that 

f(e, x)| =► f(e, x) = {a}(e, x). 

Hint. Follow the proofs of 7A.1 and 7A.2. ~I 

In the simple case r=2fl and on spaces of type 0, this result gives 

Kleene’s original calculus of recursive partial functions. 

7B. The Suslin-Kleene theorem 

The key ingredient in the proof of this central result of the effective 

theory is the method of definition by effective transfinite recursion which 

we described first in 7A.4. In fact the “constructive proof” of the Strong 

Separation Theorem 2E.1 which we gave in Chapter 2 defines the 

separating sets by an effective recursion and all we have to do here is to 

recast that argument in the language of codings. 

Let us first introduce a new coding of Borel sets which is somewhat 

easier to work with than the coding of 3H. In this definition and in the 

rest of this section recursive always means Z°-recursive i.e. 

{e}(x) = {e}2?(x). 

We define by recursion on the countable ordinal £ the set BQ of Borel 

Codes for as follows: 

BC0 — {a: a(0) = 0}, 

BCe ={a: a(0)= 1 & (V n)[{a*}(n) | & {a* }(n) e U„<« BCJ} 

if £>0, where 

a*(t) = a(f + 1) 

and {a*}: a; —>• p is the partial function of 7A which is (£?-) recursive on 

its domain. For each fixed space 9C and each £ we define the coding 

Trcf :BCc-»2^9C 

by the recursion 

irc%(a) = N(VC, a(l)), 

ircf(a)= Un (9C-7rc^(n)({a*}(n))) 
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where 

r](n) = least 77 so that {a*}(n) g BCv. 

Finally, put 

BC = U f BC( = the set of Borel codes, 

77C9C=U^cf. 

We will call Trc^a) the set with Borel code a. 

In addition to starting with the basic nbhds rather than arbitrary open 

sets, this coding differs from that of 3H in the way we chose to code 

infinite sequencies of irrationals: instead of the simple mapping 

a » (a)0, (a)u (a)2,..., 

we took 

a *{a*}(0), {«*}(D, {«*K2),... 

which depends on the messy basic definitions of 2"-recursion and is not 

defined for all a. There are technical advantages to this new coding which 

will become clear soon—and it is equivalent to the coding of 3H as we 

will show in 7B.8. 

Let us first prove a couple of simple lemmas about this coding. 

7B.1. Lemma, (i) r] <£=* BQ, £ BQ &-ny, = 7r€ f BCT|, so that ir is a 

coding of the Borel subsets of 9C with BC the set of codes. 

(ii) The class of Borel subsets of 9C is uniformly closed under com¬ 

plementation, countable union and countable intersection in the following 

precise sense. 

(a) There is a recursive function ni(o;) such that if a is a Borel code of 

some Ac0C, then u,(a) is a Borel code of 9C~A. 

(b) There is a recursive function n2(e) such that if for each i, {e}(i)l 

and {e}(i) is a Borel code of some set At c 9C, then u2(e) is a Borel code of 

U i A- 
(c) There is a recursive function n3(e) such that if for each i, 

and {e}(0 is a Borel code of some £ SC, then u3(e) is a Borel code of 

Pi i A- 
(iii) If Pcgcxhl is in 2°n or 17° and 9C is of type <1, then there is a 

recursive function m4:9C^ N such that for each x, m4(x) is a Borel code of 

Px = {y:P(x, y)}. 
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Proof, (i) is immediate by induction on 

For (ii) (a) choose a recursive ex so that 

{^(a, t) = a (for all t e a>, a € Jf) 

and define 

Mi(a) = (l) S(ei, a); 

now if Ml(a) = j3, then 0(0) =1 and (3* = S(e1, a) so that if a codes A, 

then for all i 

{P*KD = {S(e1,am = a 

and hence 0 codes Ui (9C-A) = 9C-A. 

Similarly, for (ii) (b), choose a recursive e2 so that for all e, t 

{e2}(e, t) — Mi({e}(0) 

and let 

M2(e) = (l) S(e2,e); 

now if e satisfies the hypothesis, so each |e}(i) is a Borel code of Ah then 

{S(e2, e)}(i) = UjdeXi)) is a Borel code of 9C-A, for each i and hence 

u2(e) is a Borel code of (J i (9C — (9C — Af)) = U, A- 

The construction for part (c) is similar. 

To prove (iii) by induction on n, suppose first that P(x, y) is 2° with 9C 

of type 0 or 1. By 3C.5. now (considering {(y, x): P(x, y)}) easily, there is 

a recursive P*c= acxoj- so that 

P(x, y) OOiy e N(U t) & (3u)P*(x, t, u)} 

and contracting quantifiers, 

P(x, y) ^ (3s){y e N(% (s)0) & P*(x, (s)0, (s),)}. 

Put now 

/(x,s) = (i*0) if -iP*(x, (s)0, (s)j), 

and if P*(x, (s)0, (s)^ holds, let 

fix, s) = (3XS 
where 

lM0) = 0, (3x,s(i + l) = (s)0. 

Clearly f is recursive; if f ejf is a recursive code for / so that 

f(x, s) = {f}(x, s) 

= {S(f,x)}(s), 
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then easily for each s, {S{f, x)}(s) is a Borel code of some nbhd JVX,S c 

and 

Px=UsNx’s; 

thus we can take 

u4(x) = u2(S(f, x)). 

The induction step is even easier using ui and u3. —I 

The second lemma is also quite simple but its proof illustrates the use 

of definition by effective transfinite recursion. 

Let us call a map 

effectively Borel (or Borel in the coding) if there is a recursive function 

v : o> —» jV such that for each s,v(s) is a Borel code of rr-1[IV['y, s)]. 

7B.2. Lemma, (i) For each product space 9C, there is an effectively Borel 

and d\-recursive injection 

7r* : 9C Ji. 

(ii) If it : 9C -> *y is effectively Borel, then there is a recursive function 

u : —* W such that whenever a is a Borel code of some Ac*!), then u(a) 

is a Borel code of ir~\A\. 

Proof, (i) Go back to the proof of 1G.2 and take for 7r* the g defined 

there. Recalling that definition, 

77*(x) = a, 

where 

a(n) = least k such that d(x, rk)<2~n~2 

so that 77* is easily an injection and if 

then 

Bnk ={a: a(n) — kj, 

TTi1[Bn,k] = {x: d(x, rk)<2—2}n{x: (V/<k)d(x, r/)>2^-2}: 

P(n, k, x) <=*. 7r*(x) g Bn k 

thus the set 
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is easily n°2 and by 7B.1 there is a recursive V! so that vi(n, k) is a Borel 

code of 7From this it is easy to get a recursive v witnessing that 

7r* is effectively Borel using again 7B.1. 

(ii) If v witnesses that 7r is effectively Borel, we clearly want to put 

u(a) = v(a(l)), if a(0) = 0, 

but we need a transfinite recursion to define u(a) for Borel codes a with 

a(0)= 1. We will define u by the recursion theorem, i.e. we will put 

u(a) = {e*}(a) 

where {e*} is defined for ordinary (X?-) recursion and e* is a recursive 

irrational so that for a suitable h, 

h(e, a)| => {e*}(a) = h(e*, a); 

in fact h will be total recursive, so that u will also be total. 

Having decided on this plan of the proof, we are left with a simple 

coding problem in defining h. 

Define g by 

g(e, a, 0 = {e}({a*}(0) 

and let g be a recursive irrational so that 

{e}({a*}(t))| =* {e}({a*}(0) = {g}(e, a, t) 

= {S(g, e, a)}(t). 

Now put 

v(a(l)) if a(0) = 0, 

l(l)~S(g, e, a) if a(0)^0. 
h{e ,a) = {( 

and choose a recursive e* so that 

h(e*, a) = {e*}(a). 

We claim that the function 

M(a) = {e*}(a) 

has the required properties. 

To check this, we establish by induction on £ that if a e BC'6 and a 

codes the set A - 7rcv(a), then w(a) codes the set 7r~1[A]<=ty. 

The result is immediate for £ = 0 by the choice of v. 
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Asssuming £>0, if a € BQ, then a(0)= 1 and a codes the set 

a = u„ cy-Aj 

where for each n, {a*}(n) codes An and {a*}(n)e IJI1<SBCT|. By induc¬ 

tion hypothesis then, for each n the irrational 

{S(g, e*, a)}(n) = {e*}({a*}(n)) 

= u({a*}(n)) 

codes 7r_1[An], so that 

w(a) = (l) S(g, e*, a) 

codes 

Un(9C-'7r-1[An])=7T-1 Un^-AJ 

= 77 '[A]. —I 

We wrote this proof up in full detail to illustrate the method—quite 

often in the future we will simply summarize the key ideas involved and 

leave out the details. 

Let us now turn to the key result of this section. 

It is convenient here to define a tree T on w x w as a set of sequence 

codes (in a>) «f0, (fn-i, £n_i» of finite sequences of pairs of integers 

closed under initial segments. Let us say that an irrational re A codes the 

tree T if 

((kb £o)vj (ki-1 > in-1)) e T <=> T(((t0, £o)v) (ki-lJ in-1))) = 1- 

Similary for a tree J on wXwXw; a codes J, if 

((kb ^Cb (ki —1» in —It fin —1)) ^ ^ 

Ot ( ( ( kb ioi fio)v? (ki —1» in —1> fin — l))) !■ 

It is clear that any code t (or a) determines completely the tree T (or J). 

As in Chapter 2, for each tree T on to x w the projection p[T] is a 

subset of A, 

p[T] = {a: (3/e "w)(Vn)[<(a(0), /(0)),..., (a(n - 1), f(n - 1))) e T], 

7.B.3. The Effective Strong Separation Theorem. There is a recursive 

function u :jVX j{-> JV such that whenever r and a code respectively trees T 

and S with 

p[T]H p[S]-0, 
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then m(t, cr) is a Borel code of some set C which separates p[T] from p[S], 

i.e. 

p[t]cc, cnP[s] = #.(2) 

Proof. Following closely the constructive proof of 2E.1, let us associate 

with each two trees of pairs T and S on <o x o> the tree of triples J, 

((to, ^0, ’Ho))"") (fn — 1? £n —1, Vn-l)) ^ 

<=* (Oo> £o)v> (fn-1) £n-l)) ^ T 

& ((t0, Vo),-, (tn-1, TJn_l))e S. 

To simplify notation, let /(u), h(u) be recursive functions such that if 

M = ((^0) €o, Vo),■■■, (tn-l, f>n- 1, Vn-l)), 

then 

/(W) = ((fo> £o)>*", (tn-l, fm-li), 

h(u) = «f0, Vo),"*, (tn-l, Vn-l))* 

(Notice that throughout this argument the variables Vj vary over a>, as 

the x of 2E.1 is o> here.) 

Now if t and cr code trees T and S, a code of J is easily /(t, cr) where j 

is a fixed recursive function such that 

/(r, cr)(u) = 1 •*=> t(f(u)) = 1 & cr(h(u)) = 1. 

As in 2E.1, let 

A^pIX], = p[S„], 

where u varies over sequence codes. Clearly 

A = p[T]=p[T1], B = p[S]=p[S1], 

recalling that 1 = ( ) codes the empty sequence. 

We aim to define a recursive function 

M*:jVXjVXca-»jV 

such that whenever r and cr code trees T and S with p[T]fTp[S] = J0C and 

u = «f<n £o> (C-i, £„-i> Vn-i)), then m*(t, cr, u) is a Borel code of a 

set 

Cu = C(t, cr, u) 

which separates p[T/(u)] from p[Sh(u)]. The proof will be completed by 
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taking 

m(t, o-) = m*(t, cr, 1). 

The definition of h* will be by the recursion theorem, i.e. we will take 

m*(t, cr, u) = {e*}(t, cr, u), 

where {e*} is defined for ordinary (2°-) recursion and e* is a recursive 

irrational chosen so that 

g(e*, r, cr, u)i => {e*}(r, cr, u) = g(e*, t, cr, u); 

in fact g will be a total recursive function, so that w* will also be total. 

In the proof of 2E.1, the sets Cu were defined by bar recursion on the 

tree J determined by T and S which is well-founded when p[T]D p[S] = 

0. Here, obviously we must choose g so that (when t and cr code trees T 

and S with p[T]H p[S] = J0O it proves that this bar recursion is effective in 

the sense of 7A. Of course, the definition must make sense for arbitrary 

t, cr, u so that we get a total recursive function. 

With this plan of attack, it is only a simple matter of manipulating the 

coding to define g. Let us first prove a lemma that reduces the construc¬ 

tion of a code for C(t, cr, u) to constructing codes for the sets Dt(sv in 

the proof of 2E.1. 

Lemma. There is a recursive function v(e) such that if {e}(t, £, s, tj) is 

defined for each t, £, s, 17 and codes a Borel set Dt(sr}, then v(e) is a 

Borel code of the set 

Ur,€ PI s,r) Dt,z,s,v 

Proof of the lemma. Recall the recursive functions u2 and m3 of 7B.1 

which construct codes for countable unions and intersections of Borel sets 

and define the recursive functions vl5v2, v3, 

vi(e, t, s) = w3(S(e, t, f, s)), 

v2(e, t, £) = m3(S(v!, e, f, £), 

v3(e, t) = u2(S(v2, e, 0), 

v(e) = m2(S(v3, e)), 

where vl5 v2, v3 are recursive irrationals successively chosen so that 

vj(e, t, f, s) = {vi}(e, t, £ s), 

v2(e, t, £) = {v2}(e, t, £), 

v3(e, t) = {v3}(e, t). 
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Asssuming now that e satisfies the hypotheses, 

{S(e, t, £ s)}(tj) = {e}(t, & s, r]) 

codes D,^SiV for each tj, hence 

vj(e, t, £ s) = M3(S(e, t, £ s)) 

codes Ht, D,.e,s,t, ; but 

Vi(e, t, £ s) = {S(v1, t, £)}(*), 

so that 

v2(e, t, £) = v3(S(vx, t, £)) 

codes Hs nvD„i,s,r) = fls,n^,s,v Continuing the same argument we 

easily check that v(e) codes the required set. H (lemma) 

Going back to the proof of the theorem, let us define the partial 

function d(e, r, cr, u, t, £, s, tj) (by cases) so that the following hold. (After 

e is fixed by the recursion theorem, d(e, r, cr, u, t, £, s, tj) will give a Borel 

code of the set Dt^sv in the proof of 2E.1.) 

(1) If t ~ s and j(j, cr)(u *(t, £, tj)) = 1, then 

d(e, t, cr, u, t, £, s, tj) = {e}(T, cr, u *(t, tj, tj)). 

(2) If s, then 

d(e, r, cr, u, t, tj, s, tj) = d2(u, f) 

where d2(u, 0 is a recursive function giving a Borel code of 

{a :a(di(u)) = f}—this is easy to get. 

(3) If t = s & t(u *(t, £, tj)) 0 1, then 

d(e, r, cr, u, t, £, s, tj) = d0 

where d0 is a fixed (recursive) Borel code of 0. 

(4) If t = s & cr(u *(t, tj)) 0 1, then 

d(e, r, cr, u, f, £, s, tj) = dx 

where dx is a fixed (recursive) Borel code of Jf. 

It is clear that d is recursive on its domain, so let dedf be recursive so 

that 

d(e, r, cr, a, t, tj, s, tj)| 

=■*■ d(e, t, cr, u, t, £, s, tj) = {d}(e, r, cr, u, t, £, S, tj) 

= {S(d, e, r, cr, w)}(r, £, s, tj) 
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and finally put 

g(e, r, cr, u) = v(S(d, e, r, cr, u)). 

Obviously g is a total recursive function. 

Now following our original plan for the proof, choose a recursive e* by 

the recursion theorem so that 

g(e*, t, cr, u) = {e*}(r, cr, u) 

and let 

m*(t, cr, u) = {£*}(t, cr, u). 

To prove that u* has the required properties, suppose r and a code 

trees T and S so that p[T] Pi p[S] = 0 and let J be the tree of triples (with 

code ;'(t, cr)) that we associated with T and S and which is now well- 

founded. We check by bar recursion on J, that if ueJ, then m*(t, cr, u) 

codes a Borel set Cu that separates p[T)(u)] from p[Sh(u)] by looking over 

the steps in the constructive proof of 2E.1 and verifying that (for the fixed 

T, S), d(e*, t, cr, u, t, £, s, 17) codes the set DtU v and m*(t, cr, u) codes the 

set Cu. H 

Recall the coding of X{ sets which we introduced in 3H: for each SC, fix 

a X\ set X9C which is universal for X) and call a a X}-code for 

Ac0C if 

A = Ga = {x: G3C(a, x)}. 

A A)-code for a set C is any a such that (ct)0 is a 2}-code for C and (a)j 

is a Sj-code for 9C~C. 

We customarily assume that the system {G^} is a good parametrization 

(in X\ for 2)) in the sense of 3H, but this is not necessary for the 

Suslin-Kleene theorem. 

7B.4. The Suslin-Kleene Theorem (Kleene'2). For each product space 9C, 

there is a recursive function v: A1 such that if a, /3 are SJ-codes of 

sets A, B c 9C respectively and A D B = 0, then v(a, (3) is a Borel code of 

some set C which separates A from B, i.e. 

Ace, cns = j0k 

In particular, for each 9C there is a recursive function such 

that if a is a A {-code of A c0C, then v*(a) is a Borel code of A. 
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Proof. Take first 9C = JV, let GcjV'XjV' be X{ and universal for X\ and 

choose by 4A.l(i) a recursive Q such that 

G(a, p) ^ (3y)(Vf)Q(a, /3(f), y(0), 

Q(a, p(t), f(t)) &s<t =*. Q(a, pis), f(s)). 

For each a, the set of sequence codes 

T(a) = {(Pit), fit)): teco& -iQ(a, pit), y(f))} 

is clearly a tree and in fact 
gq = p[Va)f, 

moreover (easily) there is a recursive function such that for each 

a,m(a) is a code of T(a). Letting w :jVxjV^ jV be the recursive function 

of 7B.3, we can then take for the space M, 

v(a, p) = u(ni(a), ui(P)). 

If 9C is any product space, let 

77 : 9C >-» jV 

be an effectively Borel injection by 7B.2 and notice that the image tt[9C] 

is easily A\. Fix a good universal set Gc/xy in X\ and let G^c^yxac 

be any X\ set universal for X}, relative to which we have defined the 

codings. Put 
Pia,p)^peTr[X]&Gx(a,TT~1ip)); 

now P is X\, so that for a fixed recursive e0, 

P(a, p) <=> G(e0, a, p) 

<=> G(S(e0, a), P) 

with a recursive S. Thus, 

Gxia, x) <=> Pia, n(x)) 

<=* G(S(e0, a), nix)). 

From the result about N, it follows that if G* D G^ = 0, then v(S(e0, a), 

S(e0, P)) is a Borel code of a set that separates 7t[G^] from 7r[Gp]. If we 

now take w » N to be the recursive function of 7B.2 for n, we see that 

n(v(S(e0, a), S(e0, (3))) is a Borel code of some Cc 9C which separates 

G* from Gf. 

The second assertion follows immediately. H 

There is a simple converse to the Suslin-Kleene Theorem. 
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7B.5. Theorem. Assume that we code the A} pointsets using good 

parametrizations for X} in X\; then for each space 9C, there is a recursive 

function u'.A'^A' such that if a is a Borel code of some A <= 0C, then w(a) 

is a A} code of A. 

Proof. Suppose Gc^xac parametrizes XJ in X\ so that a A(-code for 

A c 9C is any a such that 

xeA« G((a)0, x) 

«=> -iG((a)j, x). 

We will define the function u by the recursion theorem, so that 

u(a) = g(e*, a) 

where g will be a (total) recursive function and e* will be recursive and 

chosen so that 

(*) g(e*, a) = {e*}(a). 

After that we will prove by induction on £ that if a g BC\ and codes the 

set Ac0C, then n(a) is a A}-code for A. 

In defining g(s, a) it is convenient to talk of the “basis,” the “induction 

step” and the “induction hypothesis” that {e}(/3) “must satisfy” when 

j3 g U^<fBCv as if we were giving an ordinary definition by transfinite 

recursion and we already knew that g(e, a) = {e}(a) and a g BC$ for some 

£. Of course, the definition must make sense for arbitrary e, a and g must 

be recursive; but after g is defined and e is fixed to be some e* satisfying 

(*) above, then these informal comments in the definition of g lead easily 

to a proof that u(a) = {e*}(a) has the required properties. 

Basis. If a(0) = 0, set 

(1) g(e, a) = g0(a(l)) 

where g0 is recursive and such that for each s, g0(s) is a A}-code of the 

basic nbhd N(9C, s). This is easy to construct. 

Induction Step. £*(0)^0 (including the case a(0)=l in which we are 

interested). We may assume here that {a*}(i) is defined for each i and is a 

Borel code of some A{ so that a is the code of 

A= Ui (9C- A,). 

By induction hypothesis then, {e}({a*}(0) is a A}-code of each Ai; so that 
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we have the following equivalences satisfied by A: 

x 6 A <=* (3i)-iG(({e}({a'*r}(t)))05 *)> 

x£A~(3i)G(({e}({a*}(i)))i,x). 

Now A is obviously A\(e, a) and it simply remains to find effectively a 

A [-code for it. 

Put 

P0(e, a, x) ~(Vi)[{e}({a*}(0U& G(({e}({a*}(0))o, *)], 

P1(e, a, x) ^ (3i)[{e}({a*}(i))i & G(({e}({a*}(0))i, *)], 

and check (easily) that both P0 and Pt are in X\, so that for fixed 

recursive e0, e1? 

P0(e, a, x) <=► G(e0, e, a, x) <=* G(S(e0, £, a), x), 

Px(e, a, x) <=> G(e1, e, a, x) *=> G(S(eu e, a), x). 

If the induction hypothesis now holds, we clearly have 

x 6 A <=> -|P0(e, a, x) -iG(S(e0, e, a), x), 

xeA« Pj(e, a, x) G(S(e1? e, a), x), 

so that we can set in this case 

(2) g(e, a) = (S(el, e, a), S(e0, e, a)). 

The definition of g is now complete by the equations (1) and (2) which 

do not depend on the discussion (this is important) and determine g as a 

total recursive function. We fix e = e* so that (*) above holds and we 

take n(a) = {e*}(a); for this e*, the discussion in the definition of g 

translates easily into a rigorous proof by induction on £ that if a e BC 

and codes A, then n(a) is a Aj-code of A. —\ 

Since all recursive functions are continuous, the Suslin-Kleene 

Theorem and its converse imply weak, “classical” versions where the 

uniformities v, u are only claimed to be continuous. These results are of 

obvious interest to the classical theory, but their proof seems to need the 

recursion theorem. 

In addition to these results, there are many more powerful applications 

of Kleene’s method of definition by effective transfinite recursion. Com¬ 

plete proofs by this method seem a bit technical and hard to read in the 

beginning. However, once one understands the key idea, one can skip 
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most of the technicalities and focus on the key points of these 

arguments—which is that certain assertions hold uniformly in the codings 

in the sense of 3H. 

Exercises 

A pointset A c 0C is hyper arithmetical if it is Borel and has a recursive 

Borel code a; similarly, A is hyperarithmetical in z if it has a Borel code 

which is recursive in z. 

7B.6. Prove that a set is hyperarithmetical if and only if it is A\. 

Hint. If a is a recursive Borel code for A then the recursive irrational 

u(a) is a Aj-code for A by 7B.5 so easily A is A}. The converge follows 

similarly by the Suslin-Kleene theorem. —\ 

The hyperarithmetical sets have a direct characterization which is 

natural in the effective theory as an analog of the Borel sets. To establish 

this we will use the machinery of (2°-) recursive partial functions coded in 

cd that we established in 7A.6, i.e. {e}(x) below is {e}^'^ with r=2?. 
Recall from 3H that a coding of a set S is any mapping 

tt : D —*> S 

onto S. We say that the coding is in cd if the set of codes D is a subset of cd. 

Suppose S is a collection of subsets of a space 9C. We say that S is an 

effective a-field if there is a coding 7r:D-»S for S in cd such that the 

following properties hold. 

(1) Each nbhd in SC is uniformly in S: i.e. for some recursive m: o>-» 

cd, m(s) is a code of N(9C, s) (i.e. 7r(m(s)) = Ns). 

(2) S is uniformly closed under complementation; i.e. there is a recur¬ 

sive u2:w—>oi such that if ir(a) = A e S, then 7r(M2(a)) = 9C- A. 

(3) S is uniformly closed under recursive unions in the following sense: 

there is a recursive function u3: cd —> cd such that if {e}(0 is defined for 

each i e cd and gives a code in S of some Af c 9C, then u3(e) gives a code 

in S of U i A- 
The last condition is one natural way of insuring that from each 

recursive description of a sequence of sets in S we can effectively find a 

code of the union of the sequence. 

7B.7. Prove that for each space 9C, the collection A][9C of A] subsets of 

9C is the smallest effective cr-field on 9C (Kleene [1955c]).<2) 
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Hint. Choose a good parametrization of X] in co by 3H.3, code a set 

A c 9C in A\ by any aeco such that 

xeA« G((a) 0, x) 

<=> —iG((a)}, x) 

and check that this coding witnesses that ^]f'9C is an effective cr-field. 

This is a simple coding problem. 

To prove that every effective cr-field on 9C contains zAlfSC, suppose 7r 

is a coding of S as above with recursive uniformities m, u2, u3. Using the 

recursion theorem for recursive functions coded in a> (7A.6) prove the 

following result: there is a recursive function v'.(o—>co such that 

whenever {a}(i) is defined for every i (with values in o>) and the resulting 

irrational {a} is a Borel code of some set A c gc, then via) is a code in S 

of A. (The construction is a bit messy but direct.) Now use 7B.6. —I 

We have introduced two different codings for Borel sets and the 

question arises if the results we have obtained (which refer explicitly 

to the codings) depend on the particular coding we used. The answer is: 

not essentially. 

Suppose 7t.D^ —» S, p : Dp —» S are two codings of the same set S in the 

sense of 3H, where and Dpc<\j. We will say that 7r and p are 

(recursively) equivalent if there are partial functions /:9C— 

which are (X°-) recursive on Dn and Dp respectively so that Diagram 

7B.1 commutes; 

Diagram 7B.1. 

thus f{x) gives a code in p of the object coded by x in 77 and g(y) gives a 

code in it of the object coded by y in p. 

It is clear that theorems which assert the existence of T-recursive 

uniformities (T a X*-pointclass) for a given coding it are automatically 

true for any equivalent coding p. The technical advantage of the coding 

for Borel sets that we used in this section is that we can get total recursive 

uniformities for it, whereas for the coding of 3H the uniformities are often 

partial; but the codings are equivalent. 
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7B.8. Prove that the coding of Borel sets introduced in 3H is recursively 

equivalent to the coding introduced in this section. 

Hint. For both directions the recursion theorem is used. Let us con¬ 

sider briefly the direction in which partial functions are introduced. 

We want to define u by 

w(a) = g(e*, a), 

where g will be partial, recursive on its domain and e* will be recursive, 

chosen so that 

g(e*, a)l => [g(e*, a) = {e*}(«)]; 

moreover, if a. e BC'e is a Borel code of A, then u(a) will be a Borel code 

in the sense of 3H (say 3FI-Borel code for short) of the same set A. 

(1) If a(0) = 0, define g(e, a) trivially to give a 3H-Borel code of Na(ly 

(2) If a(0) = 1, then we may assume that {«*}(!) is defined for each i 

and codes some A„ so by the induction hypothesis, {e}({a*}(/)) gives a 

3H-Borel code of A;; define then g(e, a) so that whenever for each 

i, {e}({a*}(i))|, then g(e, a) = (3 for some fi such that 

13(0) =1, 

(P*)i={e}({a*m) (ieco). 

It is quite easy to do this and have g recursive on its domain. 

If we now get n from g as above, we have no problem showing (by 

induction on £) that for a e BC€, u(a) is defined and gives the right thing. 

But it is not possible to get a total recursive function g with the properties 

we need. —I 

We will end these exercises with a simple but interesting application of 

the Suslin-Kleene Theorem—there are may others of this type. 

7B.9. Show that a function /: 9C —> is effectively Borel if and only if it is 

^(-recursive. —\ 

1C. Inductive definability 

We will survey here briefly the theory of inductive definability of 

relations which is intimately connected with some of our main concerns. 

One of our aims is to get a new and interesting characterization of /7{; we 
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will also prove a theorem of Solovay about the pointclass 0^2 °f 6D 

which relates games with inductive definability and we will introduce the 

pointclass of inductive sets, a natural extension of the class of projective 

sets. 

Suppose 

ct>: PowerPC) -> Power(9C) 

is a pointset operation which takes subsets of DC into subsets of 9C and 

suppose further that is monotone, i.e. 

A £ B -► <1>(A) £ T(B). 

For each ordinal £ we define the gth iterate 3>4 of by the transfinite 

recursion 

0>c = a>(U^<€ 

and we call 

the fixed point of or the set built up by dr 

7C.1. Lemma. Let be a monotone operation on Power(X). 

(i) If £<& then <l>f£Ol 

(ii) For some ordinal x of cardinality < card(DC), 

<r = d>x = u€<* &■ 

(iii) The set <b°° built up by is the least fixed point of O, i.e. 

<&(<&”) = <*>”, 

fl {A£9C: <F(A)£ A}. 

Proof, (i) is immediate by monotonicity, 

= &') = &- 

To prove (ii) notice that if we had 

for each ordinal £<card{DC)+, then we could choose some x€ e 

Ur,<e 3>1) for each such £ and then the set {x4: £<card(DC)+} would 

be a subset of DC of cardinality card(DC)+ which is absurd. Thus for some 
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x<card(9C)+ we have 

«»“=Ue<K ^ 

and then easily for each £ > x we have <3>f = d>* so that <J>°° = $>x. 

This argument also proves that d?” is a fixed point of <b, since (choosing 

x as in (ii)) we have 

d>(d>”) = <d(<dx) = o>( U = <t>x = 

On the other hand, if <E>(A)^A, then an easy induction shows that for 

each (,^cA (using monotonicity), so that $“cA. —\ 

The least ordinal x which satisfies (ii) in this lemma is called the closure 

ordinal of <£>—it gives us the length of the recursion determined by the 

operation T>. 

In order to study the more useful definitions by recursion with parame¬ 

ters, it is convenient to switch from set operations to set relations, i.e. 

relations with arguments both points and pointsets. We will denote a 

typical set relation by 

<p(*iv5 Ti? Alv.., Ajj.), 

where x1,...,xn vary over specified spaces 9Clv.., 9Cn and Au..., Ak vary 

over the subsets of specified spaces <y1,..., k respectively. (Of course, we 

may have n — 0 or k = 0, so in particular, all pointsets are set relations.) 

We call cp monotone if 

cp(xu..., xn, Alv.., Ak) &Aj c Bi & & Ak c Bk 

=*• <P(*1,.", Sir- Bk). 

A set relation is operative on the space “W if it is monotone and of the 

form 

<p(w, x, A) 

where w varies over W and A varies over the subsets of W. Such a relation 

determines naturally for each xs9C a monotone set operation on the 

subsets of W, 

<£x(A) = {w: <p(w, x, A)} 

which we can iterate and set 

<Ps(w, x)<=> 
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it is clear that each relation cp€ is defined directly by the recursion 

cpe(w, x) «=> cp(w, x, |w': (3t] <£)<pT’(w', x)}). 

To simplify this further, put 

(1) cp<?(w, x) <=*• (3r) <£)<pv(w, x) 

so that the determining equivalence for cp6 becomes 

(2) cp€(w, x) <=» cp(w, x, {w': c*)})• 

We also put 
<p"(w, x) «=> (3£)cp€(w, x) 

and we call <p“ the fixed point of <p or the relation built up by <p. 

The closure ordinal of cp is the least x such that for all we’W, xe9C 

<p“(w, x) «=> cp*(w, x) «=» cp 'x(w, x); 

this is easily the supremum of the closure ordinals of the set operations 

d)x(xe9C) associated with cp. 

To illustrate the notions, let us reconsider from this point of view the 

analysis of IJ\ relations that we gave in 4C in order to prove that n\ is 

contained in every Spector pointclass. 

Suppose that Qc0CXr> is given and we put 

(3) P(x, w) «=>(Va)(3f)Q(x, w*a(t)). 

Define the set relation cp(w, x, A) (with w ranging over a> and A ranging 

over subsets of co) by 

(4) cp(w, x, A) «=*• 0(x, w) v(Vs)A(w*(s»; 

now cp is clearly operative on co and by (1) and (2) above, 

cP€(w, x) «=*■ cp(w, x, {w': cp<4(w', x)}) 

«=> Q(x, w)v(Vs)cp<4(w*(s), x). 

In the notation that we used in the beginning of 4C then, clearly 

cp({w, x) «=* P?(x, w) 

and hence by the argument given there, 

P(x, w) <=> (3£)P€(x, w) 

«=>(3£)cp€(w, x) 

«=► cp”(w, x), 
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i.e. except for the order of the variables, P is the fixed point of <p. Using 

the canonical representation of 77} sets (4A.1) and setting w = 1 in (3), we 

thus have that every 77} pointset R^dC satisfies 

where <p" is the fixed point of a set relation defined by (4) above with Q 

some set; in fact if 9C is of type 0 or 1, we can take Q to be recursive. 

In order to define a relation R on 9C here, we perform for each x an 

induction on co and we ask at the end whether the specific constant 1 

belongs to the fixed point of this induction; this key example motivates 

the following basic definition. 

Suppose r is a collection of monotone set relations and 7? c 9C; we say 

that R is F-inductive on VP if there is a set relation <p(w, x, A) in P which 

is operative on “W and some point w0sW, such that 

(5) R{x) «=► <p"(w0, x). 

If we can choose a recursive w0 in (5), we call R absolutely r-inductive on 

VP. 

Let us now look at some specific examples of collections of set relations 

and (in particular) try to find a simple P so that 77} consists precisely of all 

pointsets which are P-inductive on ox We will extend to (some) set 

relations the Kleene hierarchy of arithmetical and analytical pointclasses. 

A collection P of set relations is a monotone X-collection if the 

following conditions hold. 

(i) All set relations in F are monotone. 

(ii) For each space W, P contains the relation of evaluation on VP. 

Ejw,A)^A(w) (Ac«w); (6) 

this is obviously monotone. 

(ii) r contains all the X? pointsets (viewed as set relations with no set 

arguments) and it is closed under &, v,3s,V~,3“ and trivial substitu¬ 

tions; by trivial substitution here we mean any map of the form 

where for each i, 1 < Rjt < n and 1 < Z; < k, so that we can add, permute or 

identify variables of any sort and stay in P. 

A monotone 11-collection is defined in the same way, except that we 

replace the conditions IJgP and closure under 3“ by Tf^pand closure 

under V". 
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pos 2° posl 2 

4- 4- 

pos4 ° posA 2 

(y/ 
posf[° posn° 

Diagram 7C.1. The positive arithmetical collections of set relations. 

The collection pos 2° of positive X° set relations is the smallest 

monotone ^-collection and pos /7',1 is the smallest monotone 77 collection. 

Proceeding inductively, put 

pos 77? = V“ pos Xi 

pos X° = 3“ pos II2, 

etc. and for the dual collections, 

pos X°2 = 3“ pos 77?, 

pos 77? = V“ posX°2, 

etc. 

It is trivial to check that the canonical diagram of inclusions hold for 

these collections, see Diagram 7C.1, where of course 

pos A°n = pos X°n Pi pos n°n. 

Most of the other formal properties of the arithmetical pointsets also 

extend trivially to these positive arithmetical set relations with one obvious 

exception: the negation of the basic relation Ew in (6) is not positive 

arithmetical, so that this collection of set relations is not closed under -i. 

The extension of these definitions to the positive analytical set relations 

is immediate, 

posX\ ==HUn posn°n), 

pos 77! = V^( U n pos X°), 

and inductively, 

posXi+i =3-"(pos TIln), 

pos n'l + 1 = V Y( pos X n) ■ 

Again the diagram of inclusions is easy to establish. 

We now have all notions we need to state the characterization of 77? in 

terms of inductive definability on a». 
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1C.2. Theorem, (i) All the positive analytical set relations are monotone. 

(ii) Every n{ pointset R is positive Ainductive on oi; in fact, if R is of 

type 0 or 1, then R is positive Tl^-inductive on co (Kleene(3)). 

(iii) If R is positive Ill-inductive on co, then R is 77], (Spector [1961]). 

(iv) If R is positive Xl-inductive on oi and n>2, then R is XI (Spector 

[1961]). 

Proof, (i) holds for pos X° and pos77° because the collection of 

monotone set relations is easily both a X-collection and a 77-collection 

and it contains E. For the higher collections use induction. 

(ii) was proved above, since the set relation defined by (*) is trivially in 

pos A 

<p(w, x. A) <=» Q(x, w) v(Vs)(Vu)[u^ w*(s)v A(u)]. 

With each set relation <p(x, A) where A varies over subsets of o» we 

associate the pointset O^cgcx^y, 

QJx, a) <p(x, {t: a(t) = 1}); 

it is trivial to check that if <p is pos Xf or pos III, then Qv is X\ or 77], 

respectively. 

To prove (iii) we use the characterization of 9>" in 7C. 1 (iii), as the least 

fixed point of d>: if <p(w, x, A) is operative on o>, tracing the definitions, 

<p°°(w, x)»W£(I)] 

<=> (VA){<PX(A) cA=»wgA} 

<=> (VA){(Vw')[ip(w', x,A)=>w'eA]=>weA} 

<=> (VA){(3w')[cp(w', x, A) & w'M]awgA} 

<=> (Va){(3w')[0^(w', x, a) & a(w') ^ l]va(w) = 1}, 

so that if cp is pos III, then Qv is 77], and hence <p°° is 77],. 

To prove (iv) we analyze the definition of by transfinite recursion. 

Check first, using monotonicity that 

<p”(w, x) «=» w s 

<=*. there exists a sequence of sets {A^}€<x indexed 

by some countable ordinal x such that 

(V^<x)[A€cd>x(U7,<cAT,)]& we U{<* 
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Using the canonical codes for ordinals and associating with each ol the set 

{w: a(w) = 1}, we then have 

<p°°(w, x) <=>• (3j3)(3a){/3 e WO 

& (Vn)[n<pn =*{w': (a)n(w')= 1} 
ccf)x(u{w': (3m <p n)[(a)m(w') = 1]})] 

& (3n)[n <pn & (a)„(w) = 1]}. 

Now using monotonicity again, 

w"g<E»x(1J{w': (3m <pn)[(a)m(w') = 1]}) 

<=> (3y)[(Vw')[y(w') = 1 =♦ (3m <3n)[(a)m(w') = 1]] 

& 0<p(w", x, y)]; 

thus if <p is posXl this last relation is X\ and then easily cp°° is also 

provided of course that n ^ 2 so that the 77} relation “/3e WO is Xn. 
H 

This simple result does not handle the case of positive .^-induction on 

co—we will deal with this very interesting example in 7C.10. 

Let us now turn to induction on jV which is more directly relevant to 

descriptive set theory. 

A pointset R £ 0C is inductive if it is positive analytical inductive on A, 

i.e. if there is a set relation <p(a, x, A) which is in some posX„ and 

operative on A- and some fixed a0e*V so that 

(7) R(x) <=> (p°°(a0, x). 

We call R hyperprojective if both R and —iR are inductive and we denote 

the pointclasses of inductive and hyperprojective pointsets respectively 

by USD and HYP. 
If (7) holds with a recursive irrational a0, then R is absolutely inductive 

and if both R and —iR are absolutely inductive, then R is absolutely 

hyperprojective. We will denote these two “lightface” pointclasses by IND 

and HYP respectively/4’ 

The definition of inductive sets together with the characterization of Tl\ 

sets in 7C.2 suggest that ZND is somehow a “generalization” or “second- 

order analog” of the pointclass IJ\. In fact (with suitable hypotheses) 

almost the entire theory of 77 j can be extended to IND. We will look at 

some of these results in the exercises, but it is worth putting down here 

the statements of three basic facts. 
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7C.3. Theorem (Moschovakis). The class IND of all absolutely inductive 

sets is a Spector pointclass, in fact it is the smallest Spector pointclass which 

is closed under both and 3"^; its associated boldface class is IND, i.e. a 

set jRc0C is inductive if and only if there is some absolutely inductive 
9C and some e eN so that 

R = R* = {x:R*(e,x)}. 

Proof. See 7C.12-7C.15. H 

7C.4. Theorem (Moschovakis [1971b]). A pointset R^SC is absolutely 

inductive if and only if there is an analytical (or even X\) pointset P such 
that 

R(x)^{(3a0)(yal)Ba2)(\/a3)--}(3n)P(x,(a0,...,an_1)). 

Proof. See 7C.18. —\ 

The interpretation of the infinite string of quantifiers here is via games, 

as in 6D, except that now the games are played in This representation 

of IND is obviously analogous to the representation of 77} as DXj in 6D 

in terms of open games on a>. 

7C.5. Theorem (Moschovakis [1978]). If every hyperprojective set is deter¬ 

mined, then every absolutely inductive set admits an IND-scale. 

In particular, every absolutely inductive R^SCxy can be uniformized 

by some absolutely inductive R* <= R and every nonempty absolutely induc¬ 

tive pointset has an absolutely hyperprojective member. 

Proof. See 7C.19. H 

The collection of inductive sets is the largest known pointclass on which 

we can put definable scales, from any hypotheses; whether coinductive sets 

admit definable scales appears to be one of the critical open problems of 

the subject. 

Exercises 

Let us start with a simple result which relates these new positive 

analytical set relations with the Kleene pointclasses. 
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Recall from 4E that with each pointset P^(ok of type 0 we have 

associated its contracted characteristic function 

1 if P({n)1,...,(n)k), 

0 if —iP((n)l,...,(n)k); 

conversely, for each ae^V and fixed k, let 

P“(h,..., tk)**a((ti,..., tk))= 1, 

so that 
pap - p 

Finally, if <p(xlv.., xn, Alv.., Am) is a set relation where each A, varies 

over the subsets of some space 0C, of type 0, put 

Qp(^lv> Xn, alv> am) (p(Xi,..., Xn, P P )■ 

7C.6. (i) Prove that if <p(xlv.., xn, Aj,..., Am) is in pos Xk or pos n°k, then 

the associated pointset is in X°k or FI°k respectively. 

(ii) Prove that if each Af ranges over the subsets of some space % of 

type 0, then <p(xlv.., x„, Alv.., Am) is in pos Xl or pos 111 if ar*d only if cp 

is monotone and the associated is in the corresponding pointclass 

or nl 
Hint, (i) and half of (ii) can be verified by a simple induction on the 

definition of the positive analytical classes of set relations. For the other 

direction of (ii) notice (for example) that if cp(x, A) is monotone and A 

varies over subsets of a>, then 

<p(x, A) ~ (3/3){(Vf)[/3(f) = 1 -> A(f)] & Qv(x, (3)} 

(V/3){(Vf)[A(t) ^ /3(f) = 1] -* Oip(x, j8)}, 

from which it follows immediately that if Qv is in 21 or III, then <p is in 

posXl or poslll. A 

The next result clarifies the connection between the Kleene Basis 

Theorem for X\ (4E.8) and the Martin-Solovay Basis Theorem for Xln+1 

(6C.10, 6C.11). 

7C.7. (i) Prove that every X\ pointset of type 0 is recursive in some X\ 

set P^cok such that aP is a /7}-singleton. 

(ii) Prove that if P is X\ of type 0 and a is any 77}-singleton which is 

not A\, then aPe/lj(a). 
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Thus in the notation of 6C.11, the Kleene Basis Theorem asserts that 

there is a X\ set P of type 0 such that {x: xeT}(ctP)} is a basis for X\ and 

such that aP is < ^minimal among the non-T} singletons in 77}. 

Hint. Let G^ac be any 17} set of type 0, choose <p(w, x, A) in posTT}1 

by 7C.2 so that for suitable integers w*, 

G(x)^cp”(w*,x) 

and let 

H(w, x) <=> cp°°(w, x). 

Now, easily 

a = aH (Vx)(Vw)[«((w, x)) 1] 

& (Vx)(Vw)[Qip(w, x, wWa«w', x») =>a«w, x» = l] 

& (Vx)(Vy){(Vw)[Q(p(w, x, y) ^ y«w» = 1] 

=*■ (Vw)[y«w» = 1 ^ a((w, x» = 1], 

so that aH is a 77}-singleton. This establishes (i) by considering the 

complements of G and 77. 

To prove (ii), let G c o> x (be universal 77} and choose n0, so 

that 

—\P(s) <=> G(n0, s, (3) (any |3), 

(3 = a G(n1} s, (3) (any s). 

Let <p be a 77}-norm on G and argue that (Vs)[—iP(s) =» 

cp(n0, s, a)<<p(n1, s, a)]—otherwise easily a is a X}-singleton and hence 

X\; this then yields immediately that P is T}(a). 

Before going into the discussion of specific pointclasses introduced by 

inductive definitions, it is worth putting down a soft and very general— 

but useful—remark about inductive definability. 

Suppose r is a pointclass and cp(x, A) is a set relation where A ranges 

over the subsets of some “W; we say that <p is T on P if for every 

Q c Z x W in T, the relation 

P(x, z) «=> <p(x, {w: Q(z, w)}) 

is also in T. The definition extends in the obvious way to more general set 

relations <p(xj,..., x„, A1?..., Am). 
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7C.8. Suppose T is adequate, to-parametrized and normed and suppose 

that <p(w, x. A) is r on r and operative on ”W; prove that the fixed point 

x) is in r. (Moschovakis [1974b].) 

Hint. Choose good parametrizations of T by 3H.4, let i// be a T-norm 

on a universal set GcwxWxZ and put 

0(m, w, x) <=> <p(w, x,|vv': (m, w', x)<J(m, w, x)}); 

O is easily in T, so by 3H.4 there is a fixed m* e to so that 

Q(m*, w, x) <=> G(m*, w, x) 

<=> <p(w, x, {w': (m*, w', x)<*(m*, w, x)}). 

Now check by induction on t//(m*, w, x) that 

G(m*, w, x) =+ <p”(w, x) 

and by induction on £ that 

cp€(w, x) =* G(m*, w, x), 

so that 

<p°°(w, x) <=^ G(m*, w, x). 

(Both arguments appeal to the monotonicity of <p.) H 

In order to identify the relations which are positive 2]-inductive on to, 

we compute first a simple normal form for posX\. 

7C.9. Suppose <p(x, A) is a set relation, where A ranges over subsets of 

to. Prove that <p is pos.£l if and only if there exist X\ pointsets Q(x) and 

R(x, a) so that 

(*) <p(x. A) ^ Q(x) v (3a){(Vt)A(a(t)) & R(x, a)}. 

Hint. Use induction on the definition of pos^l- The only parts of the 

argument where some care is required, are in checking that the class of 

relations defined by (*) is closed under & and V“. —\ 

7C.10. Prove that a pointset R is positive ^[-inductive on to if and only 

if R is in the pointclass D-S" defined in 6D. (Solovay.) 

Hint. To check that every pointset in is positive .£}-inductive on 

to, go back and look carefully at the proof of DetiXj) in 6A.3. 

For the converse, it is enough by 7C.8 and 7C.9 to check that if Q(x, n) 
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is in 9^2 and R(z, a) is X\, then the relation 

(1) P(x, z) «=► (3a){(Vt)Q(x, a(t)) & R(z, a)} 

where Q, is 2° and Ri is recursive. For each x, z consider the game 

G(x, z) where I starts by playing 

until at some step l he is told by II to stop; I loses at this step if for some 

k < /, —iRi(z, a(k), (3(k)) and wins if he is never told to stop. If II does 

ask I to stop at some /, then II chooses some t and then the game 

continues as in Diagram 7C.2. At the end of the run I wins if 

(Vk)JR1(z, a(k), (3(k)) and Q^x, a(l), (uu vu u2, v2,...)). This is clearly 

a game (for each x, z) and it is easy to check that if (1), (2) and (3) 

hold, then 

P(x, z) «=*• 1 wins G(x, z) 

so that P is in H 

Together with the Third Periodicity Theorem 6E.1, the last exercise 

implies that if player I can win a game, then I in fact has a winning 

strategy which is positive £}-inductive on a>. Thomas John has recently 

computed the complexity of winning strategies for games (in terms of 

recursion in higher types) but the corresponding problem for (n >4) is 

still open. 

Let us now turn to an outline of the proofs of 7C.3-7C.5; it will be 

convenient to frame some of the lemmas in a context wider than positive 

«(/ +1), 

(3(/ + 1), 

a(l + 2) 

II u 

v 

Diagram 7C.2. 



416 The recursion theorem [7C.11 

analytical induction, although the proofs will make it clear that we have 

not aimed at the most general results. 

A collection F of set relations is (temporarily) called “suitable for our 

purposes” if F is both a ^-collection and a /7-collection (as we defined 

these preceding 7C.2) and if in addition F is closed under recursive 

substitution in the following sense: if P(z, Au..., Ak) is in I and 

/(x), gt(x, yj),..., gk(x, yk) are recursive functions, then Q(x, Bk) is 

also in F, where 

Q(x, Bj,..., Bk) «=> P(f(x), {y,: B^giU yi))},..., {yk: Bk(gk(x, yk))}). 

It is not hard to verify that the collections posS1^ pos 77^, are all suitable 

for our purposes. 

For any F, put 

1ND(F; A1) = all relations F-inductive on Jf, 

IND(r- JV) = all relations absolutely F-inductive on X. 

7C.11. Suppose that F is suitable for our purposes and 

cpI(yi,Ai,...,An),cp2(y2,A1,...,An),...,cpn(yn,Al,...,An) are in F, where 

each yf ranges over the space % of type 1 and each At ranges over the 

subsets of %. Define the sets by the simultaneous induction: 

yleJ\*=¥(Pi(yi,Jii,J2i,-- •9 n /? 

<P2();2j J\ ^1^2 •9 u n /9 

yneJi*=> <pn(yn, Ji ^ J2 6i-- •9 0 n / 9 

where of course 

JTe=U^J?- 

Prove that each 

is absolutely F-inductive on 

Similarly with parameters: given <p1(y1, x, An),..., <pn(y„, x, Au..., 

An) in F with the obvious restrictions, if we set 

JKy» x) ** <Pi(yi, X, {yi: x)},..., {y'n: J^€(y'n, x)}), 

then each Jf is absolutely F-inductive on In this case we allow that for 
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some i we may have % = 0, i.e. <Pi(x, An) is given and 

Jfw ^ <Pi(x, {y(: JTHy[, Jn%y;, *)}). 

In particular, if <p(y, x, A) is in T and operative on the space (y, then 

the fixed point <p°°(y, x) is absolutely T-inductive on A. 

Hint. Take n = 2 without parameters, so that <Pi(yi, Al5 A2), 

<p2(y2, Au A2) are given, let 

tti y2 

be recursive isomorphisms and put 

yi, A) <=> [a(0) = 1 & {^(jS): A( 1 /3)}, 

{7r2(y):A(2 y)})] 

v[a(0) = 2 & (p2(TT2(a*), (7^(0): A(1 0)}, 

{7r2(y): A(2 y)})] 

v[a(0) = 3&(l, rr71(yi))eA] 

where a*(f) = a(t+ 1) and i 5 = (i, 5(0), 5(1),...). Clearly ip is in T and by 

a simple induction on £, 

^(r/3,y1)^/f(7r1(i8)), 

<A€(2 y, yi)<=► 4(^2(y)) 

so that if we substitute the recursive constant 

a3(t) = 3, 

we have 

<pHa3, yd <=► (1, irr^yjje ip<( 

Ji €(yi); 

thus 

Ji(yi) «=> ^(<x3, yd 

and is absolutely T-inductive on A. The argument for J2 is similar. 

H 

7C.12. Prove that if T is suitable for our purposes, then TVD(T; A) 

contains all the pointsets in T and is closed under &,. v,3“, V“ and 

recursive substitutions; if T is also closed under either 3^ or V^, then so is 

IND(r; jV). 
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Hint. To show closure under 3^ as an example, suppose 

R(x, f3) ** cp°°(a0, x,p) 

with a0 recursive and <p(a, x, P, A) in T and operative on A- and consider 

the system 
<Pi(a, (3, x, Aj, A 2) <=* <p(a, x, (3, {a': A^a, (3)}), 

(p2(x, A1? A2) <=> (Bp)Al(a0, p); 

check easily that 

(3p)R(x,p)~>J2(x). 

(In this case we are applying 7C.11 with ^2 — which is valid by the 

proof of that result outlined in the hint.) 

Closure of IND{r,J{) under recursive substitutions follows from the 

simple observation that if <p{a, z, y, A) is operative on AT, if f: 9C —* Z is 

any function and if 

i//(a, x, y, A) *=> <p(a, /(x), y, A), 

then 
ipHoi, x, y) <=> <p€(a, f(x), y). 

7C.13. Prove that every absolutely inductive relation is in 

IND(pos II2', jV) and also in IND(pos X\\X). 

Hint. Suppose for example that 

<p(a, x, A) <=> (3/3)i//(a, x, p, A) 

where iJ/ is in pos IJ2 and <p is operative on X and consider the system: 

(p 1(0, p, x, Aj, A2) <=> i/do, x, p, A2) 

<p2(a, x, Aj, A2) <=> (3/3)A1(a, p). 

Check easily (using monotonicity) that 

<p"(a, x) <=*• J2{a, x); 

now if a0 is recursive, then the relation {x: </C(a0, *)} which is a typical 

member of INDipos X\;Jf) is in IND{pos nl2, Jf). by closure of this latter 

pointclass under recursive substitution. —I 

7C.14. Prove that every set relation p(a, x. A) in pos 2} with A^N 

satisfies an equivalence of the form 

(*) <p(a, x, A) <=» Q(a, x)v(3y){(Vn)A((y),1) & R(a, x, 7)} 
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with Q and R in X\\ infer that the pointclass of absolutely inductive 

pointsets is a>-parametrized. 

Hint. Check that the collection of relations which admits this represen¬ 

tation has all the right closure properties. Derive a similar representation 

for posnl by quantifying both sides of (*) and infer that IND{pos n\\X) 

is oi-parametrized using the parametrization theorem for X\ (and the 

closure properties of IND{pos Il\\ Jf)). —| 

7C.15. Prove that the pointclass IND has the prewellordering property 

(Moschovakis [1974a]). 

Hint. If <p(a, x, A) is positive analytical with Acy, we have an 

obvious norm on the fixed point <p°°(a, x) given by 

cr(a, x) = least £ such that <p€(a, x); 

we will prove that this norm is inductive, so that for any recursive a0, the 

induced norm 
cr0(x) = cr(a0, x) 

on {x: cp^(a0, x)} will also be inductive. 

Let 

(3, x, A) *=> <p(a, x, {a': —i<p(/3, x, {/S': -iA(a', j3')})}) 

and verify that i(j is positive analytical; thus (5, x) is inductive by 

7C.11 (with n = 1) and it is not hard to check that 

(a, x)<*(j8, x) «=> i/f”(a, (3, x). 

The construction of a if/' which defines inductively <* is similar. —I 

7C.16. Prove 7C.3. 

Hint. From 7C.12-7C.15, we know that IND is a Spector pointclass 

with all the right closure properties and the fact that IND is its associated 

boldface class follows from closure of IND under the substitution of 

constants which is elementary. 

Suppose now that T is any Spector pointclass which is closed under 

both 3^ and V^; then easily, each positive analytical cp(a, x, A) is T on F, 

so that by 7C.8, T and hence IND cfi —I 

7C.17. Prove that for every set relation cp(x, A) in posXl with A ranging 

over subsets of A, there is some X\ relation <p(x, ct, (3) so that for all 

A<=jy, 

<p(x. A) ^ (3a)(V/3)(3y)(V5)[Q(x, a, j3, y, S)vA(S)]. 
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Hint. Start with 

cp(x, A) ^ (3a)(V (3)ip(x, a, 0, A) 

where ip is in pos .£) so that by 7C.14 there are Xi relations Oi and Ri 

with which 

<//(*, a, 0, A) ^ Qi(x, a, 0) v(3y){(Vn)A((y)J & R^x, a, (3, y)}. 

Check that for A<=jV\ easily 

(Vn)A((y)J & R,(x, a, (3, y) 

<=> (VS){[(Vn)[S^ (y),J & R^x, a, (3, y)]v A(S)}; 

thus with 

Q2(x, a, (3, y, 8) «=> (Vn)[S^ (y)J & Ri(x, a, (3, y) 

we have for 

if/(x, a, (3, A) (3y)(V5)[Q2(x, a, (3, y, 8) v A(S)] 

from which the required representation follows immediately. A 

7C.18. Prove 7C.4. 

Hint. By 7C.13, if JR(x) is absolutely inductive, then 

R(x) «=> (px(a0, x) 

with <p(a, x, A) in pos X3 and a0 recursive and by 7C.17 there is a X\ 

pointset Q(a, x, (3, y, 8, e) so that for A 

<p(a, x, A) ^ (30)(Vy)(3S)(Ve)[Q(a, x, (3, y, 8, e) v A(e)]. 

We claim that 

«p”(a, x) ^{(301)(Vy1)(3S1)(Ve1)(302)(Vy2)GS2)(Ve2)-} 

[0(a, x, (3U ylt §,, eJvQieu x, 02, y2, S2, e2) 

v 0(e2, x, 03, y3, S3, e3) v •••]; 

to check this, show by induction on £ that <p^(a, x) implies the right-hand- 

side and show that if -i<p“(a, x), then II can easily win the game 

determining the truth of the right-hand side. Now half of 7C.4 follows 

immediately. 

To prove the other half consider the inductive analysis of the open 

game on the right-hand side. 
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7C.19. Prove 7C.5. 

Hint. It is enough to show (granting the hypotheses) that every fixed 

point cpx of a positive analytical <p(a, x, A) admits an absolutely inductive 

scale. We will skip the parameter x in outlining the argument. 

There is an analytical scale <£° = {on </' = {a: <p(a, 0)} by 6C.2 

and the Second Peiiodicity Theorem 6C.3 and from any hyperprojective 

scale x ={^n}neto on <p<A = Ug<A<P* we can easily construct a scale i//A 

on <pK = {a: <p(a, (p<A)} by the same two theorems. On the other hand, 

given scales ^ on </T for each £<A, define on <p<A, 

Xo(a) = least £ such that a e <ps, 

^+i(«) = ^(«), where £ = x£(a); 

it is easy to check that *A is a scale on <p<k. Finally define xx on 

<p" = U*<*<Pg in the same way, to get a scale on <p”. 

It remains to check that each <pA and each xk are hyperprojective in a 

uniform way so that x* is absolutely inductive—and in particular so 

that the hypotheses of determinacy needed to go from xk to i//A actually 
hold. 

Let GcjVxjV- be universal absolutely inductive, call y = (a,(3) a code 

of the hyperprojective set A c jV if A = {§: G(a, 6)} = {8: 8)} and 

argue by using 3H.2 that the pointclass HYP is uniformly closed under all 

the obvious operations in this coding. Code also hyperprojective scales on 

sets in the obvious way. 

Finally, use the Recursion Theorem 7A.2 to define a recursive function 

f(a) = f(e*,a) = {e*}(a) 

with the following property: for each a e <p°°, if A = least £ such that 

a e cp^, then /(a) is a code of the scale <//A on <pK as described above; there 

is a bit of checking to be done, but the result follows easily from this. 

H 

7D. The completely playful universe 

In the historical remarks at the end of Chapter 6 we mentioned the 

so-called axiom of determinacy, 

AD <=> every subset of is determined. 

This is false by 6A.6, but the proof of that result depended on a blatant 

application of the axiom of choice and none has yet succeeded in violating 
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AD without some appeal to choice. Thus it remains possible that AD is 

consistent with the axioms of Zermelo-Fraenkel set theory (without 

choice) and one might attempt to study its consequences. We will derive a 

very fevAof them in this section; the interested reader should go to the 

collection of papers Kechris-Moschovakis [1978a] and to Kleinberg [1977] 

for a deeper study of this fascinating theory. 

What is the value of proving theorems on the basis of a false assump¬ 

tion? 
Mycielski and Steinhaus [1962] suggested that we simply replace the 

axiom of choice by AD in our thinking about sets, because of its many 

useful and beautiful consequences about sets of reals-they all become 

then Lebesgue measurable, they acquire the property of Baire, etc. 

However, mathematicians with a realistic approach to set theory have 

resisted this temptation to accept “desirable falsehoods” for the sake of 

utility or simplicity. Moreover, many consequences of AD (proved since 

1962) give a picture of the universe of sets which is by no means “simple” 

and tends to contradict our basic intuitions about sets at least as much as 

the alleged “undesirable” consequences of the axiom of choice. 

One might also study the consequences of AD in an attempt to prove it 

false without using the axiom of choice. Some have worked on this 

worthy program but without success so far. 

Most mathematicians who work on AD are motivated by the hope that 

there is a natural model of Zermelo-Fraenkel set theory in which AD 

holds; by this we mean that there is a collection M of sets such that if we 

reinterpret “set” by “member of M,” then all the classical axioms of set 

theory (except choice) become true and so does the proposition AD. One 

such candidate is the collection of sets 

L(JV) = the smallest model of Zermelo-Fraenkel 

set theory which contains 

which has the additional advantage that it contains all the real numbers. 

(We will give a precise definition of L(A') in Chapter 8.) Consequences of 

AD then become true assertions about the sets in L(Jf)—which in turn 

yield theorems about some of the sets in our intended interpretation of set 

theory. 

There is also an obvious practical reason for learning to think in the 

context of full determinacy: if you prove a result from AD, you can 

almost always rework the argument to get a weaker theorem—or a 
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reformulation—from more restricted hypotheses of definable determinacy 

such as we have been assuming. 

Although AD is inconsistent with the full axiom of choice, it implies a 

very weak countable principle of choice for pointsets. 

7D.1. Lemma. Assume AD and suppose Pcwx9C where SC is any 

product space; then 

(Vn)(3x)P(n, x) =♦ (3f:oj-> SC)(Vn)P(n, f(n)). 

Proof. Let 7r:jV-»0C be a canonical surjection of onto SC and con¬ 

sider the game where I plays n (his future moves being irrelevant) and II 

plays a; II wins if P(n, 77(a)). Now I cannot win, since any strategy would 

fix some n and then II can beat it by playing some a so that P(n, 77(a)). 

By AD then, II has some winning strategy t and we can take 

f(n)= 7r([n]*r). H 

The countable principle of choice is not strong enough and we will 

often assume (together with AD the following very reasonable proposi¬ 

tion. 

Axiom of Depended Choices (DC). For every set of pairs PcAxA from a 

nonempty set A, 

(Vx g A)(3y g A)P(x, y) -* (3/: to A)(Vn)P(/(n), f(n + 1)). 

In effect, DC says that we can make a countable number of choices, 

each choice depending on the preceding choice. It is a very useful 

principle, for example it is the only kind of choice we need to prove that a 

relation with no infinite descending chains must be wellfounded (i.e. every 

nonempty subset of its field must have a minimal member). 

The full axiom of choice implies DC easily and in Chapter 8 we will 

show that DC holds in L(Jf), so that for our purposes, DC is an 

innocuous assumption. On the other hand, Solovay [1978a] has shown 

(from strong hypotheses) that AD does not formally imply DC. 

It is very important to point out now that in this book we have not used 

any choice principles other than DC without explicitly taking note of the 

fact. Actually there are only a few results in whose proofs we used the full 

axiom of choice and we have listed them all in an appendix to this 

chapter, Section 7F. 
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Thus when we assume AD + DC, we can appeal to the whole theory 

developed so far except for these few results. In the cases where we only 

assume AD and we use previously proved theorems, the reader should be 

able to check easily that the proofs of these theorems appeal at most to 

the countable principle of choice for pointsets which is a consequence of 

AD. 

Let us put down for the record the regularity results already established 

in Chapter 6. 

7D.2. Theorem. Assume AD; then every uncountable pointset has a 

nonempty perfect subset, every pointset has the property of Baire and for 

every cr-finite Borel measure p on a space 9C, every subset of 9C is 

p-measurable (Davis [1964], Mycielski [1964], Mycielski-Swierczkowski 

[1964], Mycielski [1965]). 

Proof. Take A = power(Sf) in 6A.12, 6A.16 and 6A.18. —1 

To look at a regularity result of a different kind, consider the following 

relation between pointsets A <= 9C and Be'y: 

A<WB<=> A is a continuous preimage of B 

<=> there is a continuous function /: 9C —*• ‘y 

such that for all x, 

x e A <=> f(x) e B. 

If A<WB, we say that A is Wadge reducible or continuously reducible to 

B. It is obvious that <w is a transitive relation on the collection of all 

pointsets. 

7D.3. Wadge’s Lemma (Wadge [19??]). Assume AD and suppose A and B 

are pointsets of type 1; then either A<>VB or B<w —iA =Jf— A. 

Proof. If A, B are sets of irrationals, let G(A, B) be the game where I 

plays a, II plays /3 and II wins if the following equivalence holds: 

a e A *=> (3 e B. 

If II wins G(A, B) with a strategy t, then 

a e A <=>[a]*te B 
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and since the map a h»[o:]*t is continuous, we have A<WB. If I wins 

G(A, B) with a strategy cr, then 

cr*[(3]&A <=> |3eB 

and since again the map (3 »cr*[|8] is continuous, we have B <w —\A. 

The result follows immediately for pointsets of type 1. —I 

Wadge’s lemma says essentially that any two subsets of Baire space are 

comparable in terms of the operations of continuous substitution and 

complementation. It has many interesting consequences and we will come 

back to it in the exercises. 

We now turn to one of the most fascinating problems in the theory of 

full determinacy. How large is the continuum in a fully playful universe, a 

model of AD + DC? From one point of view it is very small indeed. 

7D.4. Theorem. If AD holds, then every pointset which can be wellordered 

is countable-, in particular, A" cannot be wellordered and if 

7t : A >-» A 

is any injection from an ordinal A into A, then A is countable. 

Proof. If A is uncountable, then A has a perfect subset which (as a 

space with the induced topology) is Borel isomorphic with A, so that any 

wellordering of A induces a well ordering of A. If p : A Ordinals is the 

rank function of this wellordering, then p_1(£) is a singleton for each £ so 

that 5 A. 10 applies and {(a, f3): a < (3} does not have the property of 

Baire, contradicting 7D.1. —I 

Thus A is very small relative to the ordinals if we use injections to 

compare sizes. When choice is not available, however, it is more natural 

to use surjections for this purpose and think of an ordinal A as not larger 

than A if we can map A onto A. 

Put 

& = supremum{A: there exists a surjection 7t:A -*A}; 

AD implies that 0 is very large. 

The key result is a coding lemma which asserts that bounded subsets of 

0 and functions on ordinals below 0 are “definable.” 

Suppose < is a (strict) wellfounded relation on some S <= 9C and let 

p : S * A 
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be its rank function as in 2G defined by the recursion 

p(x) = supremum{p(y) +1: y < x}. 

We can obviously think of each x e S as a code for the ordinal £ = p(x). 

Let 

/: A" —» Poweri^) 

be a function which assigns subsets of to n-tuples from A. A choice set 

for f (relative to a given wellfounded relation < that codes A) is any 

pointset 

C £ 9C '1 x 'y 

such that 

(i) (xlv..,x„, y)eC=»x1,...,x„eS & y efipixj,..., p(x„)), 

(ii) (3x1)---(3xJ(3y)[p(x1) = & 

& ••• & p(xn) = £n & 

& (xlv.., xn, y)e C]. 

7D.5. The Coding Lemma (I) (Moschovakis [1970]).(6> Assume AD, let < 

be a strict wellfounded relation on some S 5= 9C with rank function 

p i S A 

and let T be any pointclass such that <eT, Sl^T and T is <o- 

parametrized and closed under &, v,3“, V“ and 3"^. Then every function 

f:\nPowers) 

has a choice set in the associated boldface pointclass I\ 

Proof. For each unary function 

and each £< A, put 

f: A —> Power(y) 

fe(v) = 
f(y) if V<& 
0 if £ < t). 

We will prove the result for unary functions first by assuming that some f( 

does not have a choice set in T and deducing a contradiction. 

Suppose Q is a choice set for /€(£< A) in I\ If /(£) = 0, then C{ is 

obviously a choice set for f(+1 also, while if y0e/(£) and p(x0) = £, then 

Q+i — Cg U {(x0, y0)} 
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is a choice set for /«+i and it is also in T. Thus the ordinal 

x = least £ such that does not have 

a choice set in T 

is a limit ordinal <A. 

Fix a good parametrization for Tby 3H.1 and suppose Gc^,x(9Cx<y) 

is universal. As usually, 

Ga ={(x, y): G(a, x, y)}. 

We consider the following two-person game: if I plays a and II plays (3, 

then 

II wins <=> [Ga is not a choice set for any &£<*] 

v[Ga is a choice set for f6 and there is 

some r] >£ such that Gp is a choice set for fv]. 

The game is determined by AD. 

Case 1. I has a winning strategy a. Now for each (3 there is some 

<x such that Gis a choice set for fPut 

£ = supremum{£;((3): (3 e A'} 

and check easily that the set 

Q = Up Qrr*[j3] 
is a choice set for /c, so that by the choice of x, but since x is limit, 

there is then some r/ > £, rj < x and II can beat cr by playing any (3 so that 

Gp is a choice set for f . 

Case 2. II has a winning strategy r. Let 

{e}(x) = Ux v(e, x) 

be the partial function on SC to A which is universal for all the partial 

functions on 9C to A. (X?-) recursive on their domain and for each e e Jf, 

w e 9C, put 

(x, y) e A£jW <=>• (3z){z < w & {e}(z) is defined 

& G({e}(z), x, y)}; 

each A£ W is obviously in T and by 3H.2 there is a recursive function 

77(e, w) such that 

A6iW ={(x, y): G(tt(e, w), x, y)}. 
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Now the map 

(e, w) » [ir(e, w)]*t 

is continuous and total, so by the Recursion Theorem 7A.2 we can find a 

fixed e*eW such that for all we 9C, 

{e*}(w) = [7r(£*, w)]*t; 

to simplify notation, put 

g(w) = {£*}(w). 

Sublemma. For each w e S = Field(<), there is some p = p(w)> p(w), 

such that Gg(w) is a choice set for /^(w)* 
Proof of the sublemma is by induction on p(w). If the sublemma holds 

for all x < w, then Ae*iW is clearly a choice set for /€ with 

£ = supremum{ri(x): x < w}2= p(w) 

and since g(w) — [^(e*, w)]*t is II’s response to I s play tt(e , w), it 

must be that Gg(w) is a choice set for some fv with p>g>p(w). 

It follows from this sublemma that 

supremum{p(w): weS}=x 

and that 

G*. U weS Gg(w) 

is a choice set for fx in T, contrary to the choice of x. 

This completes the proof of the coding lemma for unary functions. To 

prove it for functions of any number of variables by induction, suppose 

/: A" + 1 —> Poweri'y) 

is given and for p < A, put 

and let 

g(r)) = {a: Ga is a choice set for f11}. 

Let CgCgcxA" be a choice set for g in T and check that 

C(xl7..., xn, x, y) <=> (3a)[Cg(x, a) & G(a, xlv.., x„, y)] 

is a choice set for /. H 

If < is a prewellordering with field Sc 9C and 

p: S ^ A 
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is the associated rank function, then for any Ac A, put 

Code(A; <) = {x e S: p(x) e A}; 

similary, for prewellordering <lv.., <n with ranks p1: S, —»Alv.., 

pn :Sn—»\n and A c Ax x • • • x A„, 

Code(A- <n) = {(x!,..., xj: (p^Xj),..., pn(xn))e A)}. 

7D.6. The Coding Lemma (II) (Moschovakis [1970]).(6) Assume AD, let 

be prewellorderings on c SCx,..., Sn c xn with rank functions 

Pi:p2:S2-^A2,..., pn:Sn-»An 

and iet T he any pointclass such that <eA, and T is w- 

parametrized and closed under &, v,3", V" and 3X. Then for every set 

AcAjX-xA„, the pointset Code (A\<n) is in A. 

Proof. On 9C = 9Ci x ••• x 9Cn define 

(xlv.., Xn)<(x'1,..., x[f) *=> Xj <! Xj 

V Xx x] & X2 <2^2 

V ... 

VXi-jXi & ••• & xn_1~n_1x'„_1 & xn<nx'n 

so that < is strict, wellfounded in A with rank 

p(xiv, *„) = (p1(x1),..., p„(xj), 

where (£lv.., £n) » £n) takes A1x---xA„ with the lexicographic or¬ 

dering onto A, in an order preserving way. Let Ccgcxoi be a choice set 

in T for the function 

and check that 

f1 if (llr 

to if (£l,~ ,L)£A 

< ■? —f J «=► Oxi) '■■■pX'JtXi x] & • 

& xn ~nx'n& C(x[,..., K, D] 

< ") 7 i) <=» Ox'i) v(3x'n)[x1~1x'1 & ■ •• 

& x„ ~nx'n& C(x'1,..., X'n, 0)] 

In applying the coding lemma, we often take JT = pos 2}(Qlv.., On), 
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where 

pos 3l(Qi,..., Qn) = the smallest pointclass which 

contains Qlv.., Qn and all X\ 

pointsets and which is closed under 

&, v,3“, V" and 3^. 

7D.7. Lemma. For each Qlv.., Qn, the pointclass pos S{ (Qlv.., Q„)' is 

closed under &, v,3“, V" and 3^, it contains 0lv.., On and all Si 

pointsets and it is io-parametrized. 

Proof. Assume without loss of generality that we have only one set 

0^0 and consider the collection of all pointsets which satisfy some 

equivalence of the form 

(*) P(x) <=* (3a){(Vn)Q(ir((a)n)) & R(x, a)}, 

where R is Si and tt\J{ -» Z is a canonical recursive surjection. This 

contains Q and each P in X\ (taking R(x, a) <=>• P(x)) and it is easily 

closed under &, v, 3", V“, 3^, e.g., 

(Vf)(3a){(Vn)0(7r((a)n)) & R(x, t, a)} 

(3/3){(Vm)Q(n(((3)m)) 

& (Vf)(3a)[(Vn)(3m)[(a)n = (/3)m] & R(x, t, a)]. 

Thus every P in posS}(0) satisfies (*) with some R in X\ and we can use 

universal sets in X\ to get the universal sets we need. 

Let us now put down one result which implies that © is large. 

7D.8. Thoerem. Assume AD and let T be an 10-parametrized pointclass 

such that and F is closed under &, v,3“, V" and 3^. Let 

8 = supremum{|<|: < is a prewellordering of N in A}. 

7 = supremum{\ < |: < is a strict wellfounded relation in 

T with field in A1}. 

(i) 8 is a cardinal. 

(ii) 7 is a regular cardinal. 

(iii) If F is also closed under V^, then 8 is a regular limit cardinal (i.e. 

weakly inaccessible). 
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In particular, taking T — all inductive sets, the ordinal x = supremum of 

all hyperprojective prewellordings of jV is weakly inaccessible.0,8) 

Proof, (i) Assume towards a contradiction that for some A <8 we have a 
bijection 

g : A >* 8 

and let < be a prewellordering of some 9C in A with rank function 

p:9C -* A. 

The relation 

P(£ T}Wg(£)<g(ll) (£, 7]<A) 

is wellfounded with length 8 and by the Coding Lemma 7D.6 it has its 

code set in A; but then 8 is the length of a A prewellordering which is 

absurd. 

(ii) Assume again towards a contradiction that some map 

g:A ^7 

is cofinal with 7, where A <7 and A is the length of some strict well- 

founded relation < in T. Let GcAx(AxA) be universal in Tand put 

/(£) = {a : Ga is wellfounded with field in A' and 

length g(£)}; 

by the coding lemma, choose a choice set CeT for / and let 

(x, a, /3) <'(x', a', (31) <=* x = x' & a = a' & C(x, a) & G(a, (3, (3'). 

It is obvious that <' is wellfounded in T with length 7, and this is easily 

absurd since for each wellfounded relation in T, we can find a longer one. 

(iii) If < is a prewellordering in A, take r0 = pos 5l(=s,<) and notice 

by the closure properties that F0cA. By (i), the ordinal 80 of T0 is a 

cardinal and of course it is bigger than the length of < and less than 8; 

thus 8 is a limit cardinal. 

To show that 8 is regular, suppose 

g:A —>8 

is cofinal in 8, where A is the length of a prewellordering < in A and let 

GcjVx(AxA) be universal in T. Put 

/(£) = {(«, |3): Ga =jVxjV-Gp and Ga is a 

prewellordering of X of length g(£)} 
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and let C be some choice set for / in pos^l(<)cA. For each (a, p) such 

that Ga = x A - Gp and Ga is a prewellordering of A, let 

Pot,/a(7) = P(“> ft 7) 

be the rank function mapping J{ onto some £*,0 ar*d finally put 

(x, a, p, y) < * (x\ a', /3\ y') «=> x < x' 

v(3y)(3y')[x ~ y ~ x'~ y' 

& C(y, a, /3) 

& C(y\ a', p') 

& p(a, p, y)<p(a', p', y')]. 

It is clear that < * is a prewellordering of length 8, so we will have the 

desired contradiction if we can show that < * eA. 

The only clause in the definition of < * which causes difficulty is the last 

one: we must find a A relation P(a, p, y, a', p\ y) such that if Ga = 

Axjf-Gp and Ga- = Jfxj{-G^ are both prewellorderings in A, then 

p(a, P, y) =£ p(a', (S', y') P(a, p, y, a', p', y'). 

Now 

p(a, (8, y)<p(a', (3', y') there is a set A c x L'.p' 

which is an order preserving map 

of the initial segment of Ga up 

to y onto the initial segment of 

Ga~ up to y'; 

by the coding lemma, for every such set A the pointset Code{A-, Ga, Gp) 

will be in A, i.e. it will be Gs and tfxj{-Ge for some S, e. The proof is 

completed by verifying easily that the conditions on Gs, Ge which guaran¬ 

tee that Gs = XxX- Ge is the code set of some similarity of initial 

segments translate to A conditions on 8, e. —\ 

Kechris has recently verified that the least non-hyperprojective ordinal 

is Mahlo in the context of AD, but even before that Solovay had proved 

that there are Mahlo cardinals below 0. Moschovakis [1970] has some 

results of this type—as a matter of fact, AD implies that 0 is quite 

immense. 
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The last theorem also has some obvious consequences about the 

ordinals 8,1, that we introduced in 4C. We will come back to it after we 

establish a very important result of Martin. 

7D.9. The Suslin Theorem for the Odd Levels (Martin and Mos- 

chovakis). Assume AD and let F be a Spector pointclass closed under V^, 

put 

8 = supremum{|<|: < is a prewellordering of A in A}. 

If {A^}|<a is a sequence of subsets of some 9C with A <8 and each A% in A, 

then U§<xAfeA (Martin [19?a].) 

In particular, if AD + DC holds, then for each odd n 

K = b,, 

= the least pointclass which contains all 

open sets and is closed under complementation 

and unions of length <8*. 

Proof. The second assertion follows immediately from the first and 

6C.12. 

To prove the first assertion by contradiction, let A be the least ordinal 

such that for some sequence of sets {A|}s<a, each A€ £ gc is in A but 

U€<A A^ A. Clearly A is limit and there is a prewellordering < of A in A 

with rank function 

p: A" -»• A. 

Let Gc.yx9C be universal in T and put 

/(£) = {|3: A, = 0C-Gp}; 

if Cg jVx jV is a choice set for / in ~\F by the coding lemma, then clearly 

x e Ap(a) <=> (3a'){3(3)[oi ~ a' & C(ar, (3) & nG((3, x)] 

so that the relation 

(1) P(x, «)«=>X£ Ap(a) 

is in —iT. 

By the choice of A, for each £<A the unions 

UU<fA^, Ufs^Ag 
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are in A, so put 

gi(£) = {/3: U€«A4 = GP}, 

g2(i) = {0: U«*CA€ = GP}, 

take choice sets C] and C2 for these two functions in —T and use them to 

show that the following two relations are in -p: 

(2) QG, Oi) <—> X$L Uf;<p(a) Aj, 

(3) PG, a) *=* X 6 LJfsp(a) A|. 

From the fact that P is in -|I\ it follows immediately that the union 

A= is in —ir. On this union we define the obvious norm: 

<p(x) = fA&xe Ac]; 

now 

x<*y (3a)[P(x, a) & Q(y, a)], 

x <* y <=> (3a)[P(x, a) & R(y, a)], 

so that <p is a -ir-norm. 

What we have proved so far is that the union A — U^<a A^ is a set in 

-ir which admits a -\T-norm. If A were also in T, there would be nothing 

to prove; if not, then Wadge’s Lemma 7D.3 implies immediately that 

every set B in "nr is a continuous preimage of A (since A cannot be a 

continuous preimage of ~iB) and then easily, every set in ~ir admits a 

-T-norm. But this contradicts 4B.13—r and -ir cannot both be normed. 

—1 

The Suslin theorem for the odd levels is one of the most appealing 

structural consequences of AD—it is clear that we cannot hope for any 

neat characterization like this for A] in the real world. It is complemented 

nicely by the following simple fact. 

7D.10. Theorem (Moschovakis [1970]). Assume AD and let P be a 

pointclass such that ijcf and P is closed under &, v, 3", V“ and 3^, let 

y = supremum{\ <|: <is a strict wellfounded relation in T}. 

If A <7 and each A^<=9C is in T(£<A), then 

IU<a a, or. 

In particular, if AD + DC holds, then for each even n, 

A eSi <=* A is the union of 8^_ j sets in 
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and for n = 2, 

A e £2 <=> A is the union of Kj Borel sets. 

Proof. For the first assertion, let p:Field(<) -» A be the rank function 

of <, let Gc^x0C be universal in F, put 

f(t) = {cr.Ga=Ae}, 

let Cc^yxgc be a choice set for f in T and check that 

x e U g<A Ae <=► (3y)(3a)[C(y, a) & G(a, x)]. 

To prove direction («=) of the second assertion, suppose 

(3 a)B(x, a) 

with B in 11^ and let B* uniformize B by the Uniformization Theorem 

6C.5. Now by 4C.9, we have 

(x, a) £ B* <=> (3£ <8,11_1)(x, a) e Ce 

with suitable sets so that 

x € A <=> (3^<8,1t_1)(3a)Q(x, a) 

and moreover, since each CfcB*, we have 

Q(x, a) & Q(x, (3) =* a = (3. 

Thus taking 

D$={x: (3a)Q(x, a)}, 

we know that D^ is the image of Q under the recursive injection 

(x, a) »x, so that by 4D.8, DieA1n_1 and of course 

A = U €<8j_i 

The last two results make clear that under the hypotheses AD + DC, 

the projective sets are completely determined by the ordinals 81,82,83,... 

and the operations of wellordered union and complementation. The exact 

place of these ordinals in the sequence of the alephs is not known— 

finding it is one of the most intriguing and apparently difficult open 

problems in this part of descriptive set theory. 

Let us collect in one theorem the facts about 8^,82,... which we can 

prove at this point. Following the notation established in 7D.8, we put 

tr* — supremum{\ < |: <is a strict wellfounded relation in 2^}. 
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7D.11. Theorem.<8) Assume AD + DC. 

(i) For each n, 8,1, = ct*. 
(ii) Each 8'n is a regular cardinal. 

(iii) N,=8l<82<8]< • 

(iv) If n is even, then 

8 i = («U)+; 
in particular, 

82 = N2. 

(v) If n is odd, then there is a cardinal xn of cofinality w such that 

8',_i < <8,1t and 

K = M+- 

Proof. All (i)-(v) follow from the following facts. 

(a) Each 8,1, is a cardinal. 

Proof. By 7D.8. 

(b) For even n, 8,', _x <8,!,. 
Proof. n^_! is a Spector pointclass by 6B.2 and hence by 4C.14, 8j is 

the length of some n*_a prewellordering. 

(c) For even n, (r'n-8= (8^,_1)+. 

Proof. Each 2'n relation is S^j-Suslin by 6C.11, so that by the Kunen- 

Martin Theorem 2G.2, tr^<(8,1, i)+; now use (b) and (a). 

(d) For all n, 8* = a,1,. 

Proof. For odd n, use the fact that I1‘ is a Spector pointclass closed 

under and 4C.14 which then implies 

(e) Each 8’ is a regular cardinal. 

Proof. By 7D.8, each a,1, is a regular cardinal and then (d) applies. 

(f) For each odd n, there is a cardinal xn of cofinality <x> such that 

8 i= (xnY ■ 
Proof. By 6C.11, each 2* set is A-Suslin for some A <8*, so take 

xn = least A such that some universal 2,' set is A-Suslin. 

Now xn is a cardinal by definition, the Kunen-Martin theorem implies 

a-'n<(xn)+ and hence since cr* is a cardinal, we have crl = (xn)+. 

Suppose now that xn has cofinality >a>. By 2B.4 then, each 2* set A 

can be written in the form 

•A U f <x„ 
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where each A? is A-Suslin for some A <xn. Applying 2F.2 and using the 

fact that xn is a cardinal so that A+<x„, each A( is the union of xn sets 

which are xn-Bore\, so that by Martin’s Theorem 7D.9, each A€ is in A‘n 

and then by 7D.9 again, A is in A*. This contradicts the hypothesis that A 

was an arbitrary set in 

(g) For each odd n, 8^_i < xn <8*. 

Proof. Assuming towards a contradiction that 8,1l_1=8,11, we get 

(xn)+ = 8i = 8U = (8U)+ 

so that xn = 8i_2 which is absurd, because S,\_2 is regular while cf{xn) = co. 

Thus 8,1,_1<8r1I. But then B)l_1<xn and using again the regularity of 8x, 

Sn-l<«n- “I 

Martin has showi (from AD + DC) that 

= ^io+l 

and that consequently 

^4 = ^co + 2i 

we will give his argument in Section 8H. On the other hand, the 

computation of 85 has resisted many valiant attempts. Notice that the 

smallest possible value for 85 is but there is evidence that it may be 

larger than that; see Kechris [1978], Solovay [1978b]. 

Exercises 

Recall the game G(A, B) that we associated with any two sets A,Bc 

A in the proof of Wadge’s Lemma 7D.3: I plays a, II plays |3 and II wins 

We say that A is Lipschitz reducible to B,A<,B if II wins G(A, B). 

Clearly, 

A B => A —WB 

and by the proof of 7D.3, if AD holds then for each A, B, A<(B or 

b<,a-a. 
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Put 

A~tB ** A<,B & B <, A, 

A<,B ^A<,B & A /;B; 

and similarly with ^w, in place of we define the 

Wadge degree and the Lipschitz degree of a set A <= A1 by 

[A]w = {BsjV': A ~wB}, 

[A], = {Bcif: A ~;B}. 

By the proof of 7D.3 again, for each A 

[A],s[A]w. 

The reducibilities <w, <, induce partial orderings on the sets of respec¬ 

tive degrees in the obvious way; we will denote these partial orderings by 

the same symbols “<w, 

7D.12. Assume AD and prove that for all A, B^W, 

A <, —i B =* —i A B 

A <tB =+ A <i —\B 

and similarly for the Wadge reducibility. 

Hint. The first implication is immediate. To prove the second, assume 

A </ B and notice that by Wadge’s lemma, if A iB does not hold, we 

have B<;A which contradicts A<,B; thus A<(—iB holds, and we 

cannot have —iB<,A also, since this would give —iB<(B by transitivity, 

thus B —iB by the first assertion, thus A <, —iB by transitivity again. 

—1 

7D.13. Assume AD and let a, b be arbitrary Lipschitz degrees. Prove 

that exactly one of the following holds: 

(i) a = b, 

(ii) a-—\b (i.e. a = [A]; and b - [—iA];), 

(iii) a<|fi and a<;~\b, 

(iv) b <,a and ~i£><,a. 

Prove the same result for Wadge degrees. —I 

Thus every self-dual degree (b = -]b) is comparable with all degrees 

and if b is not self-dual, then for every b, a^—\b, one of the following 
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two patterns must hold in these partial orderings: 

b b 

a 

/ 
a 

The most significant fact about Wadge and Lipschitz degrees is the 

following theorem of Martin which essentially asserts that AD puts a 

certain “hierarchy” on the power of Jf. 

7D.14. Assume AD and prove that the relation <, on Power(A) is 

wellfounded; infer that <w is also wellfounded (Martin). 

Hint. Assume towards a contradiction that 

A0>iA1 >i A2"‘ 

so that by 7D.13 we also have 

A0>i-iA1, A1>,-iA2,... 

etc. Rename the games 

and by the countable axiom of choice for pointsets, let <To be a winning 

strategy for I in Gq and let cr" be a winning strategy for I in G". 

For each binary sequence a :cd—»{0, 1} consider the diagram of games 

7D. 1. Here we read each pair of successive lines as a run of G"(n) in which I 

plays by his winning strategy <x£(n+1) (which is his winning strategy as 

player I in the next game G"^1}). 

Diagram 7D.1. 
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Plays x°(a), x'fa),... are produced and we clearly have 

a(n) = 0 =*• x"(a)e An <=> x" + 1(a) i An+l, 

a(n) = l=»x"(a)eA„o xn+l{a)& An+x. 

Notice that by the construction, 

(Vm > n)[a(m) = /3(m)] x"(a) - xn((3) 

and put 

Tn={a: for some (and hence for each) binary 

sequence s = s0,..., sn_1( x"(s a) e An}. 

From the definition of Tn we get 

(1) 

(2) 

a € Tn+i <=> (1) a e Tn, 

Tn+i <=> (0) o G Tn, 

which imply immediately that Tn cannot be either meager or comeager, 

or else the whole space “2 would be the union of two meager sets. 

In particular, T0 is not meager, so by full determinacy and 6A.14 (or 

using the property of Baire for T0), there is a binary sequence s = 

s0,..., sk_! so that {s~/3 :s~(3s£ T0} is meager. But it is clear from (1) and 

(2) above iterated k times, that either 

a e Tk «=>• s T0 

so that Tk is meager, or 

as£Tk *=> s a£T0 

so that Tk is comeager and in either case we have reached a contradic¬ 

tion. H 

Wadge and Libschitz degrees have been studied extensively although 

relatively little has been published on them; see Wadge [19??], Steel 

[1977], Van Wesep [1977], [197?], [1978], 

There is another simple but very useful lemma of Martin, about Turing 

degrees. Recall from 3D that for each a gA\ the Turing degree of a is 

defined by 

[a]T = {0: a<T|3 & /3 <T«}, 

where <T stands for “recursive in.” The transitive relation <T induces a 

partial ordering on the set S)T of all Turing degrees. 
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7D.15. Assume AD and Suppose Ac£>T is any set of Turing degrees. 

Prove that there is some degree d0 such that 

either {d: d0<d}^A or {d: d0<d}cj)T-A. 

(Martin [1968].) 

Hint. Consider the game G where I and II produce a and 

I wins <=► [a]x e A. 

If I wins with a strategy cr, take d0 = [cr]x and for any degree d > d0, have 

II play some (3 with [j3]x = d; now the resulting play cr*[/3] easily has 

degree d, so that d £ A. The argument is similar in the case II wins the 
game. _| 

This is the typical result where we assume full determinacy but where 

the proof makes it clear just how much determinacy is needed for each 

specific application. For example: 

7D.16. Prove that if Acjy is a Borel set such that 

a £ A & a =T (3 (3 £ A, 

then there is a degree d0 such that 

either {a: d0<[a]T}^ A or {a: d0<[a]x}c jf-A. 

(Martin [1975].) 

Hint. Appeal to the determinacy of Borel sets. —\ 

This result has interesting consequences in the theory of Turing degrees 

which we will not pursue here. 

At the same time, 7D.15 also has some interesting and surprising 

consequences in the presence of full determinacy. 

7D.17. Assume AD and let Tl be the set of all subsets of the set of 

Turing degrees which contain cones, 

A £ Tl <=> there is some degree d0 such that 

{d: J0<d}cA. 

Prove that Tl is an NT-complete, non-principal ultrafilter on Dx so that 
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the function 

'i(A) = {o 
if A e *U, 

if A £*11, 

is an ^-additive measure on ©T. (Martin [1968].) 

Hint. Use the countable axiom of choice for pointsets to show that for 

every sequence of degrees d0, d1, d2,... there is some d* above all of 

them—this comes up in checking Xj-completeness. H 

What is perhaps even more surprising is that we can carry the Martin 

measure on ©T to a measure on X,. 

7D.18. Assume AD and show that X! is a measurable cardinal (Solovay). 

Hint. Recall from 4F that for each aeA, 

o>“ = supremum{\(3\: (3 <Ta & j3e WO} 

and for each degree d put 

o>i = o>“, where a is any irrational in d. 

Let Tl be the Martin ultrafilter on Dr and for AgX,, put 

A e “U* <=> {d: wf e AJe'U. H 

As we mentioned in the historical remarks at the end of Chapter 6, this 

early result of Solovay was instrumental in focusing the attention of set 

theorists to determinacy. It came before Blackwell [1967] and the subse¬ 

quent development of the structure theory from PD. 

The proof of 7D.18 sketched above is obviously due to Martin. 

Solovay’s orginal proof was a bit more complicated but also more 

amenable to generalization: Solovay extended it to show from AD that 

X2 is also measurable and then Kunen proved further that all the 8,1, are in 

fact measurable cardinals. (It was already know that in the absence of the 

axiom of choice measurable cardinals need not be large, see Jech [1968].) 

For these and other results relating determinacy with measurability see 

Kechris [1978] (and the references given there) as well as the forthcoming 

monograph Martin [19?c]. 

The next exercise is implicit in the proof of 7D.8 but it is worth point to 

it. 

7D.19. Assume AD and prove that if A<@, then there is a surjection 

rr. J( Power (A) (Moschovakis [1970]); infer that A<0=* A+<0 

(Friedman). —I 
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Finally, the last exercise gives an interesting corollary of the coding 
lemma. 

7D.20. Let F be a Spector pointclass closed under let 

<p : P A 

be a regular F-norm on some set FeT-A and for each set Ac A, put 

Code(A; <p) = {x : <p(x) e A}. 

Assume AD and prove that for each set A, Code(A; cp) is in T. (Solovay 

for T = n\, Moschovakis [1970] in general.) 

Hint. Assume Pc/ for simplicity and consider the game where I plays 

a, II plays /3 and 

II wins <=*■ ag P 

v{« e P&(Vy)[y <*ct _► [<p(y) e A ^ G(j3, y)]]}, 

where is universal in F. 

If I wins with some strategy cr, then by the Covering Lemma 4C.11 

there is some £<A such that 

(Vj8)[cr*[/3]e P & (p(o-*[[3])<£] 

and then the coding lemma implies easily that II can beat this cr; thus II 

wins with some r and 

a e Code(A; <p) <=» G([a]* r, a). H 

These games where we insure that player II wins by forcing I to play 

ordinal codes are called Solovay games; they were used by Solovay in one 

of his original proofs (from AD) of the measurability of K,. 

7E. Historical remarks 

1 The recursion theorem was first proved in Kleene [1938] in connec¬ 

tion with the theory of constructive ordinals. Kleene used it erroneously in 

his [1944] to claim (in effect) that every relation on o> which is positive 

n“-inductive on o> is /T”. This false claim in one of the basic first papers 

of the effective theory is amusingly reminiscent of the similar false claim 

in Lebesgue [1905], but there is little to connect the actual mathematical 
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mistakes in the two papers. In any case, Kleene was his own Suslin: he 

corrected the mistake himself in his fundamental paper [1955a] where he 

characterized (essentially) the 77] pointsets in terms of positive 77?- 

induction on (7C.2) and where he laid the foundations of the technique 

of effective transfinite recursion. 
2 Kleene proved his version of what we have called here the Suslin- 

Kleene theorem in his [1955c], after a good deal of preliminary work in 

his [1955b]. He established that a relation on co is A\ exactly when it is 

hyperarithmetical but with a definition of “hyperarithmetical” which was 

bound up with the notion of constructive ordinal. The essential content of 

his theorem is given in 7B.7. On the other hand, his proof (though 

technically quite complicated) was certainly sufficient to yield the full 

Suslin-Kleene Theorem 7B.4, at least for pointsets of type 0 and 1. 

3 As is obvious from the remarks above Kleene established the basic 

properties of positive induction on a> (especially in his [1955a]) although 

he did not introduce the notions explicitly; this was done by Spector 

[1961] who also proved (iii) and (iv) of 7C.2. 

4 Moschovakis [1974a] gives a detailed development of positive 

elementary induction on abstract structures, which includes (and has as 

one of its most interesting examples) what we have called here positive 

analytical induction on 77. Before that, Moschovakis [1969], [1971b] 

introduced and established the basic properties of inductive and hyper- 

projective pointsets (of type 1), using a different, recursion-theoretic 

approach. 
5 We have tried to give the credits for results from AD in the main text 

of 7D, but a few clarifications must be made. 

6 The Coding Lemma 7D.5, 7D.6 in its present form was proved by 

Moschovakis [1970], but it owes much to earlier (unpublished) results of 

Friedman and Solovay. 

7 Theorem 7D.8 gives a collection of results by several persons which 

are hard to untangle. It is a bit easier to give specific credits for the facts 

about the ordinals 8], in 7D.11 since these were the preoccupation of 

early research in the area. 

8 Moschovakis [1970] introduced the ordinals 8] and proved (from AD 

of course) that they are all cardinals and that if n is odd, then or], = 8*, 8], 

is regular and 8‘_1<8]l. Martin and Kunen showed (independently) in 

1971 that for even n, a,1, = 8,1,, 8], is regular and 8* = (8]l_1)+. Finally 

Kechris [1974] proved that for odd n, 8‘ = x4 for a cardinal xn of 

cofinality w and that for even n, f>1n_1<f>jv 
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7F. Appendix; a list of results which depend on the axiom of choice 

A. Results which depend essentially on the full axiom of choice 

2C.4. There is an uncountable set of reals which has no non-empty 
perfect subset. 

2H.6. There is a set of reals without the property of Baire. 
2H.9. There is a set of reals which is not Lebesgue measurable. 

6A.1. If II does not win the game A(u), then there is some a such that 

for all b, II does not win A(u (a, b)). 

6A.6. There is a set Ac“2 which is not determined. 

6G.9. Every measurable cardinal is strongly inaccessible. 

It is not hard to see that the innocuous sounding 6A.1 is in fact 

equivalent to the axiom of choice. Given R^AxB such that 

(Vx g A)(3y g B)R(x, y), consider the two-move game A where I plays x, 

II plays y and II wins if jR(x, y); now if there is no choice function 

f:A—>B such that (Vxg A)R(x, f(x)), then II does not win the game, 

while for each x there is obviously some y such that II wins A(x, y)— 

which is finished before it starts. 

B. Results which can be reformulated so that they do not depend on the 

axiom of choice 

2F.4. If P <= 0C is -Suslin (n > 1), then 

P=U(<KnP, 

where each Pe is Borel. 

Reformulation (for n = 2, as an example). If P is X2-Suslin, then there 

is a sequence of sets {P4: £<X2} such that 

p=u{<».pt 

and such that for each £<X2, there is a sequence of sets {Q^ : rj < Xa} such 

that each Qv is Borel and 

~ U t)<x1 Q„. 

To prove 2F.4 for n = 2 from this we must choose for each £<N2 a 

sequence {O,,: rj<X1} with the requisite property. 

6A.2. Every closed subset of “X is determined. 

6A.3. Every X2 subset of WX is determined. 

6F. 1. Every X°n subset of mX is determined. 
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The problem in the proofs of these basic theorems is that we need to 

make choices from X in order to define the required strategies—naively 

understood, 6A.2 in fact is equivalent to the full axiom of choice. 

First reformulation. Assume that the space X in which the games are 

played is countable, e.g. co. Now the proof of 6A.1 uses only the 

countable axiom of choice and 6A.2, 6A.3 follows from 6A.1 without any 

use of choice. 

Second reformulation. A multiple-valued strategy or quasistrategy for 

player I in the space X is any set X of finite sequences from X such that: 

(i) For some x0, {x0)eX. 

(ii) If (x0,...,x2n)eX, then for every yeX, 

(x0,..., x2„, y)eX. 

(iii) If (x0,...,x2n+1)eX, then for some y, 

(x0,..., x2n+1, y)eX. 

We say that I follows X in a run (x0, xl5 x2,...) of a game G on X if for 

each n, 
(Xq,..., Xn ) £ X 

and we call X winning for I in G if whenever I follows X in (x0, xu x2,...), 

we have 
(x0, xl5 x2,...)e G. 

Quasistrategies for II are defined in the obvious way and we say that G 

is weakly determined if either I or II has a winning quasistrategy. 

It is clear that if the set X admits a wellordering, then every winning 

quasistrategy for I or II determines a winning strategy for I or II, so that a 

game G on a wellorderable space X is determined exactly when it is 

weakly determined. 

Reformulation of 6A.2, 6A.3 and 6F.1: replace “determined” by 

“weakly determined” in the statements of these results. 

Proof of the reformulation of 6A.2. Given a closed Fc“X with open 

complement G, define the sets W€ of sequences of even length by 

induction on £ (as in the proof of 6A.3), 

u e W° <=> if / e “X is an extension of u, then / e G, 

u e Ws <=>■ (Va)(3h)(3r] <£)[u~(a, b)e W*1]. 

If 0£W° = U4 We, then 

X = {(x0,..., xn_i): for each i < n, (x„,..., x,) £ W“} 
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is easily a winning quasistrategy for I. If 0 e W°°, let 

|m| = least f such that ueW1 (ue W”) 

and check easily that 

X = {(x0,..., xn_!): for each odd i < n, (x0,...,Xi)e W°° 

and if i + 2 n, |xg,..., Xj17> |xq,..., X;, Xj+j, x^+21} 

is a winning quasistrategy for II. 

The proofs we gave in the text for 6A.3 and 6F. 1 are easily modified to 

show without appealing to the full axiom of choice that X°n games on an 

arbitrary 0 are weakly determined—and as a corollary, that on the 

wellorderable space a>, games are determined. (These proofs use DC.) 

7C.4. A pointset jR ^ 9C is absolutely inductive if and only if there is a 

X\ set P such that 

^(x) <=> {(3a0)(Va1)(3a2)(Va3)---}(3n)P(x, (a0,..., an_0). 

Here too we must understand the infinite alternating string on the right 

in terms of winning quasistrategies in order to prove 7C.4 without 

appealing to the full axiom of choice. 

7C.1. If is a monotone operator on Power{3C), then for some ordinal 

x of cardinality <card(9C), 

(*) <I>“ = cf>x. 

If 0C is wellorderable so that card{9C) is an ordinal, then there is no 

problem with this. In the case where 0C is not wellorderable, then we may 

only assert that (*) holds for some ordinal x such that there is a 

surjection 

7T : 9C -» x. 

C. Results whose proofs must be modified 

In addition to the determinacy of games on a>, there are two other 

significant theorems which can be proved without appeal to the full axiom 

of choice but where we chose to use choice in the proofs we gave. 

2F.3. Every XI set is the union of X, Borel sets. 

6C.12. If Det(A2J holds, then every Xl2n+2 set is the union of Sjn+i sets 

each of which is S^+i-Borel. 

A proof of these two results which does not use the axiom of choice is 

part of the proof of 7D.10. 



CHAPTER 8 

METAMATHEMATICS 

In this last chapter we will study briefly the metamathematical method, the 

key tool for establishing consistency and independence results. Here too 

we presuppose no knowledge of formal logic—we will develop in some 

detail all the preliminary material that we need. We are, however, 

assuming a good understanding of (informal, axiomatic) set theory, as we 

have been using it in the first seven chapters of this book. 

The chief aim of mathematics is to study certain concrete mathematical 

structures, e.g. the semiring w of integers, the field (R of real numbers or, in 

set theory, the universe V of sets. What we do in actual fact is to consider 

various propositions about these structures and attempt to determine their 

truth or falsity. We often use the axiomatic method for precision and 

elegance: certain fairly obvious propositions are designated axioms and 

whatever assertions we make after this are supposed to follow from the 

axioms by logic alone. 

The essence of the metamathematical method consists in identifying 

and making precise the language £ in which we make assertions about a 

particular structure §1. Typically we take £ to be the first order language 

associated with s)l—this is simple but sufficiently expressive so we can 

formulate in it most of the propositions about s)f we care to consider. We 

will look at these languages in 8A. 

Suppose d is a particular proposition of £ which may be true or false in 

21—perhaps we have not been able to determine this yet. Suppose we can 

find an alternative interpretation of all the propositions of £, such that all 

the axioms are true in this interpretation but 9 fails; this clearly estab¬ 

lishes that 9 cannot follow from the axioms by logic alone, assuming at 

least that truth in our alternative interpretation is preserved under logical 

deduction. In these circumstances we say that 9 is independent of the 

axioms or that the negation of 9 is consistent with the axioms. 

One powerful method for constructing alternative interpretations of the 

language of set theory is to specify a collection V' of sets with very special 

448 
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properties and reinterpret “set” to mean “set in V'.” Some of these inner 

models of set theory are interesting mathematical objects in their own 

right, particularly Godel’s universe L of constructible sets whose proper¬ 

ties we considered briefly in Chapter 5. Cohen’s method of forcing 

introduces more complicated reinterpretations of the language. 

A fascinating thing about the metamathematical method is that it can 

be used to establish positive results about the universe V, our intended 

interpretation of the language of set theory. We will look at some of 

these applications of metamathematics, as we are naturally more in¬ 

terested here in facts about sets rather than theorems about systems of 

axioms. 

It may be useful to review at this point our intuitive conception of the 

standard model for set theory, the universe V of sets. This does not 

contain all “arbitrary collections of objects”—it is wellknown that this 

naive approach leads to contradictions. Instead, we admit as “sets” only 

those collections which occur in the complete (transfnite) cumulative 

sequence of types—the hierarchy obtained by starting with the empty set 

and iterating “indefinitely” the “power operation.” 

To be more precise, suppose we are given an operation P on sets which 

assigns to each set x a collection P(x) of subsets of x 

(1) y e P(x) =*. y c x. 

Suppose we are also given a collection S of stages, wellordered by a 

relation <, i.e. for if, r\. If in S, 

(2) £ < if, {if =£ v & v =£ £) => £ ^ & (£ 22 v & v - 0 => C = v 

C-T] Or T) < if, 

(3) if A c § is any collection of stages, A ^ 0, then there 

is some £ e A such that for every r) e A, £ < tj. 

Call the least stage 0 and for £eS, let £ + 1 be the next stage—the least 

stage which is greater than £. If A is a stage ^ 0 and ^ £+1 for every £, 

we call it a limit stage. 

For fixed P, S, < satisfying (1)—(3) we define the hierarchy 

V€ = Ve(P,§, <) (£eS) 
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by induction on £ € S: 

Vo = 0, 

V€+1=V€UP(V£), 

VK = U^<a if A is a limit stage. 

The collection of sets 

v = v(P,s,<) = Uees V, 

is the universe generated with P as the power operation, on the stages S. It is 

very easy to check that 

£ — V ^V$<=Vv 

and that each V( is a transitive set, i.e. 

(x e V£ & y 6 x) => y e Ve. 

For example, suppose we take 

P(x) = Power{x) = {y: y £ x} 

and 

S = {0, 1, 2,..., co, co + 1, co + 2,...}, 

where the stages 0, 1, 2,..., co, co + 1, co + 2,... are all assumed distinct and 

ordered as we have enumerated them. In this case we obtain the universe 

of Zermelo, 

Vz = V0UV1UV2U-UV„UV<o+1U.... 

It is well-known that all the familiar structures of classical mathematics 

have isomorphic copies within Vz—we can locate in Vz the integers, the 

reals, all functions on the reals to the reals, etc. 

For a very different universe of sets, we might choose a small power 

operation, e.g. 

P(x) = {y: y c= x and y is definable}. 

This appears vague, but there are many mathematicians who will argue 

that the notion of a definable subset of x is at least as clear as that of an 

arbitrary subset of x. In any case, assuming that this operation P is 

meaningful, we can iterate it on any collection of stages S and define a 

universe of sets. We may want to take S quite long this time, say 

S = {0, 1, 2,..., co, co + 1,..., co2, co2+ 1,..., con, con + 1,..., ...}. 
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It is clear that the universe V(P, S, <) does not depend on the 

particular objects that we have chosen to call stages but only on the 

length (the order type) of the ordering <; i.e. if we have a one-to-one 

correspondence of S with S' which takes the ordering < onto then 

V(P, S, <) = V(P, S', <='). 

Most mathematicians accept that there is a largest meaningful opera¬ 

tion P satisfying (1) above, the true power operation which takes x to the 

collection of all subsets of x. This is one of the cardinal assumptions of 

realistic (meaningful, not formal) set theory. Similarly, it is not unreason¬ 

able to assume that there is a longest collection of stages S along which 

we can meaningfully iterate the power operation. We take then our 

standard universe of sets to be V(P, S, <), where P is the true power 

operation and S, < is the longest meaningful collection of stages. 

This definition of the universe V is admittedly vague. It is clear that we 

cannot expect to give a precise, mathematical definition of the basic 

notions of set theory, unless we use notions of some richer theory which 

in turn would require interpretation. We claim only that the intuitive 

description of V given above is sufficiently clear so we can formulate 

meaningful propositions about sets and argue rationally about their truth 

or falsity. 

One last remark about the axiom of choice. Although we take it as 

evident (throughout this book) that the axiom of choice is true (in the 

standard universe of sets), it is obten useful for technical, metamathemati- 

cal reasons to keep track of its (rare) uses. In this chapter we will include 

among the hypotheses of our theorems whichever special case of the axiom 

of choice we need for the proof. 

8A. Structures and languages 

Here we will explain briefly the basic notions of logic and model 

theory. The reader who is knowledgeable in these matters will want to 

skip through this section very quickly. 

Let us consider first some important examples of mathematical “struc¬ 

tures.” 

Example 1. A1 = (a>, +, •, 0, 1), the structure of (first order) arithmetic. 

We think of A1 as an algebraic system with domain a>, two binary 
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relations, + (addition) and • (multiplication) and two specified constants, 0 

and 1. 

Example 2. A2 = (a>, X, +, ■, ap, 0, 1), the structure of second order arith¬ 

metic. 

Now we have two domains, o> and X = c°o), the same two binary 

operations + and • defined on a> and again 0 and 1. We also have the 

binary operation of application 

ap : X x (o —» a>, 

where of course 

ap(a, n) = a(n). 

Example 3. R = ((R, +, •, 0, 1, <, Z), the structure of the real numbers or 

analysis. 

Just one domain this time, the reals (R, together with the operations +, 

•, the constants 0, 1 and the ordering < which turns (R into a complete 

ordered field. We also have the distinguished subset Z of rational integers, 

Z = {••• —2, —1, 0, 1,2,...} 

which we take as an additional relation on (R, 

Z(x) <=> x is a rational integer. 

Example 4. V = (V, e), the structure of set theory. 

Again just one domain, the universe V of sets in the cummulative 

sequence of types, together with the membership relation e on V, 

x e y <=> x is a member of y. 

In this structure the domain is a collection of objects which is not a set. 

In general, a structure is determined by certain domains (collections of 

objects) and certain functions, relations and distinguished elements of 

these domains. Allowing for the possibility of infinitely many objects in 

each of these categories, a structure ?I is given by 

'l = ({ZVj}iej, {l^klkelO {C|}|6l)> 

where the following hold. 

(1) The index set I is nonempty and each is a nonempty collection 

of objects. 
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(2) Each fj is a function 

fi: x • • • x Aim —» An 

with domain some cartesian product A^X-xA^ and range some An. 
(3) Each Rk is a relation 

Rk^ A^x-xA^. 

on some cartesian product A^x-xAj 

(4) Each c, is an element of some A;. 

We allow the possibility that some of the index sets J, K, L and empty, 

so the simplest possible structure is of the form 

« = (A), 

with A some nonempty collection. Most of the time we have finitely 

many domains, functions, relations and constants and we exhibit the 

structures without indexings, as in the examples. 

One can think of many natural structures that come up in mathematics, 

particularly in algebra—groups, rings, fields, etc. 

With each structure 

51 = ({Aj}iGl, {Rk}keK, {C[}leL) 

we now associate a formal language £?l, the first order or elementary 

language of SI. Like a natural language, £SI will have an alphabet (a set of 

symbols) and a grammar, a system of rules which determine which 

combinations of symbols in the alphabet are meaningful. There will be 

two kinds of meaningful expressions, terms (or nouns) which will name 

elements in the domains of Sf and formulas which will express proposi¬ 

tions about Sf. 

One difference between £a and natural languages is that the grammar 

of £?I will be very simple and completely precise; there will be no 

exceptions to its rules and no ambiguities with variant spellings, double 

meanings, etc. 

It will be good to keep in mind while going through the formal details 

below, that every object of £?I has a natural translation into English—the 

symbols, the terms and the formulas. What we are doing is to isolate and 

make precise a small part of the natural language in which we can make 

reasonably complicated assertions about the structure $1. 

The alphabet of £vt consists of the following (distinct) symbols. 
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Variables: We have an infinite sequence of variables 

Vo, v{, ▼i,... 

for each domain A;. 

We will use the variables vj to name unspecified objects of A{. For 

example, in the case of arithmetic A1 we have variables v0, v1? v2,... over 

to and in the case of second order arithmetic A" we have variables v0, vl5 

v2,... over w and a0, a,, a2,... over X. 

Function symbols: a function symbol f, for each jeJ. 

Relation symbols: a relation symbol Rfc for each keK. 

Constant symbols: a constant symbol c, for each l e L. 

Logical symbols: the usual symbols of logic —i, &, 3, to be read “not”, 

“and”, “there exists”. 

Identity: the symbol 

for equality. 

Punctuation marks: the parentheses 

(,) 
and the comma 

Before we go on to define the grammar of £'\ we can get an idea of its 

expressive power by glancing at its alphabet. We can refer to the 

functions, relations and constants of SI, we can assert that two objects in 

some domain At are equal, we can say “and” and “not” or “it is not the 

case.” More significantly, using the variables we can say “there exists an 

object in A{ such that •••” but we cannot say “there exists a subset of A{ 

such that ...”, because we have no variables over subsets of the basic 

domains. This is why £SI is called a first order language. 

Here are the precise rules of the grammar of £?l. 

Terms. For each domain A, there are terms of type Af which will name 

objects of Aj. We define all these simultaneously by the following 

induction. 

(1) For each Aj? every variable vj over A; is a term of type A;. 

(2) If the distinguished constant c, belongs to Ai? then the constant 

symbol c, is a term of type A;. 

(3) If f: Aj( x ••• x Aim —» An is one of the functions in with corres¬ 

ponding function symbol f, and if tlv..,tm are terms of types Ait,...,Aim 

respectively, then the finite sequence 
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is a term of type An. By f,(ti,..., tm) we mean the finite sequence obtained 

by stringing along f,, then (, then the sequence tu then the comma , , then 
the sequence t2, etc. 

These clauses determine by induction on the length of a given finite 

sequence of symbols t whether or not t is a term of type At. It is easy to 

prove by induction on the length of a given term t that t is a variable or a 

constant symbol or else t is ^-(ti,..., tm) with uniquely determined f(, 

tm. Thus we can define a function T on terms by specifying outright the 

values F(t) for prime t (those given by clauses (1) and (2) above) and then 

giving instructions for computing F at tm) in terms of the value of 

F at tl5..., tm. This process of definition by induction on the length of terms 
is very useful. 

In the case of V=(V,e) where we have no functions and no distin¬ 

guished constants, the only terms are the variables. 

Formulas. These too are finite sequences of symbols defined induc¬ 
tively by the following clauses. 

(1) If Rk c= Afi x ••• xA^ is a relation of 21 with corresponding relation 

symbol Rk and if tl5..., tm are terms of type Aii;..., Aim respectively, then 
the finite sequence 

tm) 

is a formula. 

(2) If t and s are terms of the same type, then 

t = s 

is a formula. 

(3) If cp is a formula, then —i(<p) is also a formula. 

(4) If <p and if are formulas, then (cp) & (if) is also a formula. 

(5) If (p is a formula, then for each variable vj, (3vj)(<p) is also a 

formula. 

Again, one can show by induction on the length of a given formula x, 

that x is °f exactly one of the forms 

Rk(t1,...,tm),t = s, —i(<p), (cp)&(if), (3vj)(<p) 

with uniquely determined Rk, tl5..., tm, t, s, cp, if, vj, see 8A.2. This 

justifies definition by induction on the length of formulas, where we define 

F(x) by specifying the values outright for * prime (given by clauses (1) or 

(2) above) and then defining F at —i (<p), (<p)&(if), (3uj)(<p) in terms of 

the values of F at cp and if. 

The natural interpretation of the terms and formulas of £SI in 21 is 
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completely obvious from the way in which we read the formal symbols. 

Notice that some formulas express propositions which are outright true or 

false, e.g. (3v(',)(vo =Vq) asserts the existence of some object in which is 

equal to itself and is obviously true, since we are assuming Af 0. Other 

formulas impose conditions on unspecified members in the domains of 21 

named by the variables, e.g. Rk(vo) is true just in case the relation Rk holds 

at the object of A, we are (for the moment) calling Vq. Similarly, some 

terms name specific objects, e.g. fy(c(, cr) names fj(cb cv), while the value 

of others (like f,(vo, c,)) depends on our interpretation of the variables. 

An assignment of values to the variables is a function 

x={xj: iel,j = 0,1,2,...} 

which assigns to each domain A, and each variable v‘ over A; a member 

x‘ of Aj. With each assignment x and each term t we associate the value 

tSI[x] = t[x] of t at x by the obvious induction 

(1) v‘[x] = xj, 

(2) c![x] = ci, 

(3) fj(tl,...,tm)[x] = /y(t1[xl 

Clearly t[x]eA;, if t is a term of type A{. 

If x = {xj: i el, jew} is an assignment and x is a formula of £?t, let us 

say 

x satisfies x in 21 

and write 

21,x k* 

if x is true when we interpret each vj by xj. This relation of satisfaction 

between structures, assignments and formulas has the following obvious 

properties: 

(1) 21, x l=Rk(tl5..., tm) <=» RJClx],..., tm[x]), 

(2) 21, xl=t = s <^t[x] = s[x], 

(3) 21, x 1= i (<p) <=» it is not the case that 21, x l=<p, 

(4) 21, x 1= (<p) & (i/0 21, x b <p and 21, x 1= if, 

(5) 21, x t=(3v))(<p) <=> there exists some assignment 

y = {y^: k e I, n e w} such that 

21, y k (p and if k ^ i or n ^ /, then y ^ = x^. 
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These equivalences codify the natural translation of the formal language 

£'1 into English—only (5) needs a bit of reflection to verify this. Alterna¬ 

tively, we may construe (1)—(5) as a precise definition of satisfaction by 

induction on the length of formulas which does not appeal directly to the 

meaning of the formulas of £at. 

The truth or falsity of (3vi)Rk (v°)) does not depend on our interpreta¬ 

tion of the variable v°—it is true or false accordingly as there exists or not 

some x? in A0 such that Rk(x?) holds. On the other hand, whether x 

satisfies Rk(v°) depends on what x° is. To make this important distinction 

precise, we associate with each term t and each formula * the set FV(t) or 

FV(x) of free variables of t or \ by the following inductions: 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 

(5) 

FV(vj) = {v;}, 

FV(Ci) — 0, 

FV(f,(ti,..., O) = FVXti) U ••• U FV(tm), 

FV(Rk{tu..„ tm)) = FV(tx) U ••• U FV(t J, 

FV (t = s) = FV (t) U FV (s), 

FV(—\(<p)) = FV(cp), 

FV({cp) & m = FV(cp) U FV(ip), 

FV((3vj)(cp)) = FV(<p)-{vj}. 

Clearly FV(t), FV(x) is a finite set of variables for each t and each x- 

It is clear that the free variables of a term t (the members of FV(t)) are 

exactly all the variables which actually occur in t. On the other hand, a 

variable vj is free in some formula x only if vj occurs some place in x n°t 

within the scope of a quantifier 3vj, because of the last clause in the 

definition of FV(x). 

It is also clear that to compute the value t[x] we need only know xj for 

i, j such that vj is free in t. Similarly, whether 31, xk;y holds or not 

depends only on the values xj for vj free in x• This is made precise in the 

following proposition which can be proved by a simple induction on the 

length of terms and formulas (see 8A.2): if x = {xj: i el, /e to}, y = 

{y j: i el, j e <o} are assignments in 21 and xj = yj whenever vj is free in a 

formula x, then 

21, x k* <=»§l, y k*. 

Formulas with no free variables are called sentences. These are obvi¬ 

ously satisfied by some assignment if and only if they are satisfied by all 
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assignments, so if cp is a sentence, we put 

21 b cp ^ for some x, 21, x. b cp 

<=> for all x, 21, x b<p. 

We say that cp is true in 21, if 2t 1= <p, otherwise cp is false in 21. 

We did not include in the vocabulary of £a a special symbol V to 

express “for all.” However, in the intended interpretation of the symbols, 

if cp is a formula then clearly 

(Vvj)(cp) <=* -i((3v‘)(-i(<p))). 

We will consider the expression (Vv‘)(cp) (which is not a formula, strictly 

speaking) as an abbreviation of the formula —i ((3v')(—i (cp))). Here are 

three more very useful abbreviations: 

(cp)v(t//) «=> -i ((—i(<p)) & (-i (if))) (read: cp or if), 

(cp) —»(t/c) <=> (~i(<p))v (if) (read: cp implies if), 

(cp) ^ (if) <=» ((cp) -* (if)) & ((if) (cp)) (read: cp if and only if if). 

In addition to using these simple abbreviations we will also be very sloppy 

in spelling correctly the formulas of £?l. We will freely omit parentheses 

when it is obvious where they should be inserted, we will use brackets [,] 

or {,} instead of parentheses when they improve readability and we will 

use variables k, n, m, x, y, z, a, P, y,... etc. instead of the doubly 

subscripted formula v‘ to bring the formal language closer to our informal 

mathematical notation. If certain functions or relations have customary 

notations in some familiar structures, we will use these rather than formal 

functions and relation symbols. For example, in the case of second order 

arithmetic we will write 

«(n) 

instead of 

«P(Vo, Vo), 

in the case of analysis we will write 

x + y <z 

instead of something like 

^( + (v0, Vx), v2), 

and in the case of set theory we will certainly write 

xey 
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instead of 

e(v0, Vi). 

In fact, only rarely will we put down a correct formula of a formal 

language <£'. The usual practice will be to write fairly simple expressions 

in “symbolized English” which can be translated into correct formulas of 

£J (in principle at least) by any competent student. To give one more 

example of this, the expression 

(3x)(Vy)[y <£ x] 

clearly asserts the existence of the empty set in the language of set theory. 

It is a misspelling of the horrendous 

(3v?)(m((3v°)(m(m(e(v«,v?)))))). 

In the exercises of this section we will outline, the proofs of a few 

useful results from model theory, the study of structures and their lan¬ 

guages. Particularly significant (for us) are the Skolem-Ldwenheim 

Theorem, 8A.4, and the computation of the satisfaction relation for 

countable structures, 8A.6. 

Exercises 

8A.1. Prove that every formula x in the language of a structure 

21 = ({A;}ieI, {fj}jeJ, {Rk}keK, {C(}ieL) is of exactly one of the forms 

Ric(ti,-,tm), t = s, ~i(<p), (<p) &(</>), (3vj)(<p) 

with uniquely determined Rk, t1;..., tm, t, s, <p, i//, vj. 

Hint. Use induction on the length of x■ Show first that the number of 

left parentheses ( in a formula x is equal to the number of right 

parentheses ) in x and that if cr is an initial segment of x (thought of as a 

sequence of symbols), then the number of left parentheses in cr is greater 

than or equal to the number of right parentheses in cr. H 

8A.2. Prove that if x = {x): iel, / = 0, 1,...}, y={y), iel, j = 0, 1,...} are 

assignments in a structure 21 and jcj = y) for each i, j such that v‘ is free in 

a formula x, then 

8l,x t=x y l=x- 

Hint. Show first by induction on the length of terms that if x] = y) for 

each i, j such that vj is free in t, then t[x] = t[y], then use induction on the 

length of x■ 
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After these preliminary trivial facts, we turn to some simple but 

important model-theoretic results. To simplify matters, let us restrict 

ourselves to structures with one domain, finitely many relations and no 

functions or distinguished elements, 

SI = (A,Ru...,Rk). 

The characteristic or similarity type of such a structure is the sequence 

code which describes the number and arity of the relations RRK, 

u = ch(SI) = nK), 

where for i — 1,..., K, Rt^Ani. For example, the characteristic of the 

structure V = (V,e) of set theory is given by 

ch (V) = (2) = 22+1 = 8. 

It is clear that the language £a of a structure SI = (A, Rl5..., RK) is 

completely determined by the characteristic u = ch(SI), since all we need 

to define £'n is to choose an n<-ary relation symbol R; for i = 1,..., k. Fix 

once and for all a language £u for each characteristic u; now the formulas 

of £u can be interpreted in every structure of characteristic u. 

Consider first the very simple notion of isomorphic structures. Suppose 

SI = (A, Ru..., Rk), S3 = (B, Pi,..., PK) have the same characteristic u = 

nK). An isomorphism of SI with S3 is any bijection 

77 : A >* B 

such that for all xlv.., x^eA (i = 1,..., K), 

Rilxj,..., xj «=> PIttIxj),..., ttIx^)). 

8A.3. Suppose tt :A>»B is an isomorphism of SI = (A, JRj,..., RK) with 

23 = (B, Pu..., PK), both of the same characteristic u. Prove that for every 

formula <p of the common language £u and every assignment x = {x;: j = 

0, 1,...} into A, 

SI, x0, x1? x2,...l=<p tt(x0), ttIx^, 7t(x2)"-t=<p. 

Infer that SI and satisfy the same sentences of £u. 

Hint. Use induction on the length of formulas. —\ 

Structures of the same characteristic u which satisfy the same sentences 

of £u are called elementarily equivalent; thus 8A.3 asserts (partly) that 

isomorphic structures are elementarily equivalent. 
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Suppose again that 91 = (A, Ru..., RK) and 93 = (B, Pu..., PK) are struc¬ 

tures of the same characteristic. We say that 91 is a substructure of 93 and 
write 

91^93 

if A c B and every Rt is the restriction of the corresponding P; to A, i.e. 

x^ e A =* [Bj(xi,..., x^) <=> Pj(xlv.., x^)]. 

We say that 91 is an elementary substructure of 93 and write 

91 < 93 

if for every formula <p of the common language £u and every assignment 
x = {x, : j = 0,1,...} into A, 

91, xt=cp «=* 93, x b<p. 

It is immediate that if 91 < 93, then 91 and 93 are elementarily equivalent. 

8A.4. Suppose 93 = (B, P1,..., PK) is a structure of characteristic u = 

(n!,..., nK) and assume that B is an infinite set which admits a well¬ 

ordering, let A c= B be any subset of B. Prove that there exists an 

elementary substructure of 93 

9l* = (A*,B1,...,BK) <93 

where A c A* and 

card (A*) — card(A) + i<0; 

in particular, if A is infinite, then card (A*) = card (A). Infer that every 

infinite wellorderable structure has a countable elementary substructure. 

(The Skolem-Lowenheim Theorem.) 
Hint. Suppose © = (C, RK)£ 93 is a substructure of 93 and cp is a 

formula of £u. We say that cp is absolute for © if for every assignment 

x ={x, : j = 0, 1,...} into C, 

©, x f= cp «=» 93, x 1= cp. 

Thus © is an elementary substructure of 93 if every formula of £u is 

absolute for (S. 
The key notion of the proof is that of a Skolem set (of functions) for a 

formula. If S is a set of functions on B to B (of any number of variables) 

and £ = (C, Blv.., RK) is a substructure of 93, we say that @ is closed 
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under S if for every n-ary f: Bn —> B in S, 

*iv, e C => f(xu..., xn) e C. 

A set of functions S is a Skolem set for a formula cp if cp is absolute for 

every substructure of 93 which is closed under S. 

Show by induction on the length of formulas that every formula x has a 

finite Skolem set S(*)- This is the heart of the proof. The most interesting 

case is when x is (3vy)(<p), where (say) the free variables of <p are among 

v0, yvm and (for simplicity) assume j= m. Here we can take 

S(*) = S(4>)U{/} 

where f :Bm —>B has the property that for all x0,..., x^eB, 

there exists some xm such that 93, x0,..., xm_l5 xm l=<p 

-►33, x0,..., xm_i, f(x0,..., xm_1)b<p 

where we have put down only the part of an assignment which is relevant 

to the satisfaction of <p. (We need a wellordering of B or the axiom of 

choice, to define /.) 

Since there are only countably many formulas, the union 

s = U<p S((p) 

is a countable set and it is obviously a Skolem set for every formula of £u. 

Use a simple set-theoretic argument to construct some A*c B such that 

Ac A*, A* is closed under S and card(A*) = card(A) + K0. The re¬ 

quired structure is 91* = (A*, Rly..., RK), where each R, is the restriction 

of P, to A*. —\ 

The Skolem-Lowenheim theorem tells us in particular that there are 

many interesting countable structures. 

In the remaining exercises of this section we will compute the complex¬ 

ity of the satisfaction relation on countable structures, coded by 

irrationals. 

For each characteristic u =(nu..., nK) and each irrational a, define the 

structure 

91 (u,a) = (A,R1,...,RK) 

by 

A={n6w: (a)0(n)= 1}, 

Ki(xi,..., x^) *=> xl5..., x,eA& (a)i«x1,..., x^)) = 1. 
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Of course, in order to get a structure we must have A^0, i.e. 

(3n)[(a)0(n) = l]. 

We assign a code [x]u e o) to each formula of £u by the following 

induction on the length of formulas: 

[Rt(Vji,..., vJn )]u =<0, i, (1 <i<K) 

K = VJU = <0, 0, j\, j2), 

[—i(<p)]M =<1, [<p]u), 

[(<p) & (*0]“ = <2, [<pTMu), 

[<^)fo)]“= <3 J, [<?]“>• 

If m is the code of a formula x, i.e. [*]u = m, we put 

X = Cm- 

The next exercise is routine by the methods of Chapter 3. 

8A.5. Prove that the following relations on a> are semirecursive: 

Char(u) *=> u is the characteristic of some structure 

% = (A,R1,...,Rk), 

Str(u, a) <=> Char(u) & [ct codes a structure of characteristic u] 

<=> Char(u) & (3n)[(a)0(n) = 1], 

Fmla(u, m) <=> Char(u) & [m = [x]u for some formula x of <£“], 

Free(u, m, j) «=> Fmla(u, m) & [v- is free in xm], 

Assgn(u, a, m, x) <=> Str(u, ct) & Fmla(u, m) 

& (Vj)[Free(u, m, /') =» (a)0((x)J) = 1], H 

The last relation holds if the mapping j »(x), is an assignment to the 

domain of the structure 2l(n, a), at least as far as the free variables of 

are concerned. 

Put 

Sat(u, a, m, x) <=> Assgn(u, a, m, x) & 2l(n, a), x l=^m, 

where x = {(x)y: j = 0, 1,...}. This is the coding of the satisfaction relation. 

We will have many occasions to use the basic computational estimate in 

the next exercise. 
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8A.6. Prove that the relation Sat is A\. 

Hint. Put 

P(u, a, (3) <=> (Vm)(Vx)[Sat(u, a, m, x) <=> (3((m, x)) = 1] 

and notice that 

Sat(u, a, m, x) <=> Assgn(u, a, ra, x) & (3/3)[P(u, a, (3) & (3((m, x)) = 1] 

*=> Assgn(u, a, m, x) & (V|3)[P(u, a, (3) => |8{{m, x)) = 1], 

so that it suffices to prove that P is arithmetical. This is easy to verify 

using 8A.5, the inductive definition of the codings above and the satisfac¬ 

tion relation: in order to have P(u, a, (3), (3((m, x)) must give the correct 

value when m codes a prime formula and for more complicated formulas 

the correct value of (3((m, x)) can be computed in terms of (3((s, y)) for 

codes s of shorter formulas. —I 

It is clear that the results in 8A.4-8A.6 can be extended easily to 

structures of the form 

n = (AAf, A,..., fj, Ri,..., Rk, C1;..., Cl) 

with finitely many domains, functions, relations and constants. The com¬ 

putations are a bit messier. 

8B. Elementary definability 

Let us introduce a very useful notational convention: if the free 

variables of a formula are among xlv..,xn, we will use a symbol like 

<p(xI,-, xn) 

to name that formula. For example, we might denote the formula 

(R(v‘))&((3v?)(v? = v‘)) 

by the symbols 

cp(vo) or vi) 

or any *(xlv.., xn) where xlv.., x„ are variables and one of them is \l0, the 

only free variable of the formula above. 

This is similar to the algebraic practice of referring to a polynomial 
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/(x, y, z) in three indeterminates over some ring, where f(x, y, z) might by 

x-y orx'Z + x orx + y + z. 

As in algebra, the advantage of this convention is that it allows a very 

compact notation for the operation of evaluation. If cp(xl5..., xj is a 

formula (whose free variables are among xlv..,xn) and xls..., xn are 

members of the domains of 21, with x; in Af whenever xt is of type Ah put 

xn) <=Ahere is some assignment x which 

assigns X; to xb i = 1,..., n and 

21, xt=cp(x1,...,xn) 

<=^for every assignment x which assigns x; 

to X;, 21, xt=<p(xlv..,xn). 

For example, if R{ is one of the basic n-ary relations of a structure 21 

denoted by the formal symbol R(, then for xl5..., xn in the appropriate 
domains of 21, 

i,..., xn) «^2IbRi(x1,..., xn). 

Here we are applying the convention above to the formula R.lxi,..., xn), 

where x1;..., xn are any n distinct variables of the proper types. 

Similarly, if <p(x!,..., xj, i/fixi,—, xn) are formulas of some language and 

we abbreviate their conjunction by x(x1;...,xn) in some context, 

xj *=> <p(xl5.xn) & l^r(Xi,..., xn), 

then for x1,...,xn in the appropriate domains of a structure 21, 

11- ^(xj,..., xn) <=> 21 b cp(xl5..., xj & i(/(xi,..., xn) 

<=>2lb<p(xlv.., xn) and 2Ibt/i(x1,..., xn). 

According to this convention, from now on we reserve the symbols <p, 

X, </> etc. for sentences, i.e. formulas without free variables. 

We now come to the basic notion of first order or elementary definabil¬ 

ity in a language. 

Let 

21 ({AjieI, {fj}j£j, {Kk}kEK, {c,}ieL) 

be a structure with associated language JS21. A relation 

Rc Aj x-xA; 
— ll *n 

is first order definable or elementary in 21 (or £Sf) if there is a formula 
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cp(xlv.., xn) of £st where each x, is a variable of type Af. and 

(1) R(xx,..., xn) <=>2H=<p(xlf..., xn); 

a subset 
BcAi 

of one of the domains of 21 is elementary, if there is a formula cp(x) of £ , 

with just one free variable such that 

(2) xeB <=>21!= <p(x); 

a function 

F: Ahx xAin Aj 

is elementary if for some <p(xl5..., xn, y), 

(3) F(xlv.., xn) = y «SH=9(xlv.., xn, y); 

finally a member a of some A; is elementary if for some <p(x), 

(4) x = a <=> 21 1= <p(x). 

We will say that a formula which satisfies (1), (2), (3) or (4) defines R, 

B, F or a respectively in the structure 21. 

Let us collect in a simple result the basic properties of these notions. 

8B.1. Theorem, (i) The collection of elementary relations in a structure 2f 

contains all the relations Rk of 2f and = and is closed under —i, &, v, 3A‘ 

and VA' for each i e I as well as substitution of elementary functions. 

(ii) A set B ^ At is elementary in a structure 2f, if and only if its 

representing relation 

RB(x)<=>xeB 

is elementary in 21. 

(iii) The collection of elementary functions in a structure 2f contains all 

the functions f of 21, the projection functions 

(xu..., xj»x, 

and the constants 

(Xi.Xn)*»cb 

where c( is a distinguished element of 2f; this collection is closed under 

addition and permutation of variables, definition by cases (determined by 

elementary conditions) and composition. 
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(iv) An element a e A, is elementary in a structure SI if and only if every 

constant function 

(Xi,..., xn) a 

is elementary in SI. 

Proof is trivial. —I 

It is clear that a relation, function or element is elementary in SI if we 

can put down a definition for it in the small part of English which is 

formalized in £a. 

There are four main results which exhibit the connection between 

elementary definability and the analytical pointclasses. We will state them 

here and outline their proofs in the exercises. 

Recall that a pointset of type 0 is any R^o)k and a pointset of type 1 is 

any R<^X1x---xXk with each Xt = to or X and some Xj = X. 

8B.2. Theorem. A pointset of type 0 is arithmetical if and only if R is 

elementary in the structure of arithmetic A1 - (to, +, •, 0, 1). H 

8B.3. Theorem. A pointset R of type 0 or 1 is analytical if and only if R 

is elementary in the structure of second order number theory A2 = 

(to, X, +, •, ap, 0, 1). 

8B.4. Theorem. An n-ary relation on the real numbers Rcfl" is analyti¬ 

cal if and only if R is elementary in the structure of analysis R = 

0,1 ,<Z). —\ 

Sometimes we can obtain finer results if we restrict attention to 

definability by formulas with special properties. 

8B.5. Theorem. A pointset R of type 0 or 1 is arithmetical if and only if 

R is definable in the structure of second order arithmetic A2 = 

(to, X, +, •, ap, 0, 1) by some formula <p(xlv.., x„) which has no quantifiers 

over X. —I 

If we use variables v0, Vi, v2,... over to and ot0, otl5 a2,... over X in the 

language of A2, this means that no part of <p(xlv.., xn) in 8A.4 looks like 

(3a,). 
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In addition to the proofs of these results, we will also formulate in the 

exercises several more characterizations of various pointclasses in terms 

of elementary definability. 

Exercises 

8B.6. Prove that every relation on a> which is elementary in the structure 

A1 of arithmetic is arithmetical. 

Hint. Show by induction on the length of a formula <p(x1?..., xj that the 

corresponding relation 

R(xlv.., xj «=> A1 t=<p(xlv.., x„) 

is arithmetical. It will help to notice first that if the free variables of a 

term t are among xx,..., xm and f: com —> w is defined by 

f (X\,.Xm) t^Xj,..., Xm], 

then / is recursive. “1 

The same method also establishes with no problem the easy directions 

of 8B.2-8B.4. 

8B.7. Prove that if a pointset R is elementary in the structure A" of 

second order arithmetic, then R is analytical. —I 

8B.8. Prove that if a relation RQ(Rn on the reals is elementary in the 

structure R of analysis, then R is analytical. 

Hint. By 3D.8 and 3D.4, all terms of the language of R define 

recursive functions. By 3C.6, x = y is 77° and by 3C.11, x < y is IT®. Show 

that Z is also TT',’ and then use induction on the length of formulas. —\ 

8B.9. Prove that if a pointset R of type 0 or 1 is definable in A2 by a 

formula with no quantifiers over JV, then R is arithmetical. —\ 

Proof of the converse implications in 8B.6-8B.9 is a bit more interest¬ 

ing. We break it down in several steps. 

8B.10. Prove that the function 

(3(s, t, i) = rm(s, 1 + (i + l)f) 
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is elementary in A1 and that for every finite sequence w0,..., wn x of 

integers, there exists some s and some t such that 

f3(s, t, 0) = wo, (3(s, t, 1)= wlv.., (3(s, t, n — l) = wn_t. 

(GodeVs lemma on the 0 function.) 

Hint. That 0 is elementary on A1 is easy. To prove that it has the 

required property, notice that if d0, d1,..., dn_1 is an n-tuple of relatively 

prime numbers, then the function 

s »(rm(s, d0), rm(s, d^,..., rm(s, dn_J) 

is one-to-one from {s:s<d0-d1.dn_1} into {(w0,..., wn_1): w0< 

d0 & w1<d1 & ••• & wn_1<dn_1}; this is an easy divisibility argument. 

Since these two sets have the same finite cardinality, it follows that for 

relatively prime d0, du..., dn_a and every w0<d0, wl<d1,..., wn_1<dn_1, 

there exists some s<d0- d1.dn_x with 

w0=rm(s,d0), wt = rm(s, df),..., wn_1 = rm(s, d^) 

(the Chinese remainder theorem). Now given w0, wl5..., wn_l5 let 

m = max(w0, wlv.., wn_l3 n) 

and take 

t = ml. 

Another easy divisibility argument shows that the numbers 

d0 = 1 + t, dj = l + 2f,..., dn_! = 1 + nt 

are relatively prime, hence by the Chinese remainder theorem there is 

some s such that 

(3(s,t,i) = rm(s,l + (i + l)t) = wi (i<n). H 

8B.10 allows us to code tuples of arbitrary length by pairs using opera¬ 

tions which are elementary in A1. 

8B.11. Prove Theorem 8B.2, that a relation on w is arithmetical if and 

only if it is elementary in A1. 
Hint. By 8B.6 and 8B.1, it is enough to prove that every recursive 

relation on a> is elementary on A1. For this again it is enough to show that 

every recursive f:(ok^a> is elementary on A1, and for this we need only 

show that the collection of functions which are elementary in A1 contains 
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the functions S, Ct P- of 3A and is dosed under minimalization, 

composition and primitive recursion. The only non-trivial case is that of 

primitive recursion, 

| f(0,x) = g(x), 

\f(n + 1, x) = h(f(n, x), n, x) 

which we analyze as follows. 

/(n, x) = m «=> there exists a sequence w0, wlv.., wn 

such that g(x) = w0 and for every i < n, 

h(\Vj, i, x) = wj+1 and wn = m 

<=>■ (3s)(3f){|3(s, t, 0) = g(x) 

& (Vi < n)[|3(s, t, i + 1) = h(fi(s, t, i), i, x)] 

& (3(s, t, n) = m}. —I 

8B.12. Prove Theorem 8B.3, that a pointset of type 0 or 1 is analytical if 

and only if it is elementary in A2. 

Hint. Use the preceding exercise, the closure of the pointsets which are 

elementary in A1 under 3^, Vv and the representation of pointsets 

given in 4A.1. ~I 

8B.13. Prove Theorem 8B.4, that a pointset Rc (Rn is analytical if and 

only if it is elementary in R. 

Hint. We can think of to as imbedded in the integers of (R, 

to ={0, 1, 2,...}cZ = {••• -2, -1, 0, 1, 2,...}; 

as a subset of (R, to is clearly elementary in R. Every formula x(xl5..., x„) 

in the language of A1 has a natural translation O* in the 

language of R, where xj* is x(Xi,..., xj if x(xi,...,xn) is prime, 

-i(cp(x1,...,xj)* is -i(<p(x1,...,xn)*), (<p(x!,..., xj) & (i//(x!,...,xn))* is 

(<p(x,,..., x„)*) & (i/Kx!,..., xn)*) and in the significant case, the translation 

of (3y)(cp(x,,...,xn,y)) is (3y)[Z(y) & 0<y & <p(x!,...,xn,y)*]. It is clear 

that for values of the variables in to, the translation of x(xl5..., xn) has the 

same truth value as x(xi,..., xn). 
Use 8B.11 to prove that every recursive relation on to is elementary in 

R and then use 3C.5 to show easily that every arithmetical R c <R" is 

elementary in R. 

To prove that analytical pointsets are elementary in R we must reduce 
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quantification over A to quantification over (R. Let /: 9C be the 

injection defined in the proof of 1G.2 with 9C = (R and show that the 
relation 

S(x, n, k) <=> f(x)(n) = k 

is elementary in R. Now use the representation of analytical pointsets 

given in 4A.1; for example, if 

P(x)^(3a)(Vt)Q(x,a(t)), 

then 

P(x) «=> (3y)(Vf)(3u)[Seq(u) & lh(u) = t & (Vi < t)S(y, i, (w)£) 

& Q(x, u)]. H 

8B.14. Prove Theorem 8B.5, that a pointset of type 0 or 1 is arithmetical 

if and only if it is definable in A2 by a formula which has no quantifiers 

over Ji. —I 

A formula xn) in the language of A2 is 2\ if it is of the form 

(3a)<p(x1;..., xn, a) 

where cpfxi,..., xn, a) has no quantifiers over A. Proceeding inductively, 

^(x1,...,xn) is 21+1 if it is of the form (3a) —ii <p(xl5..., xn, a) with 

<p(x!,..., x„, a) some 2\ formula and x(xi,..., xj is if -ix(xlv.., xn) is 21 

The next result is an immediate corollary of 8B.14. 

8B.15. Prove that a pointset of type 0 or 1 is 2\ (n > 1) if and only if it is 

definable by a 2\ formula in the language of A2; similarly for lVn. ~\ 

There is an obvious way to enrich the languages of the structures we 

have been considering by adding names for all the objects in their 

domains. That is equivalent to expanding the structures A2, R, V by 

adding all their members as distinguished elements, 

A2 = (w, Jf, +, •, 0, 1, ap, {«}aJ, 

R = ((R, +, •, <, Z, {x}xem), 

V= (V, e, {x}xeV). 

Notice that the distinguished elements of V do not form a set, but this will 

cause no problem. Notice also that we do not need to add names for the 
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members of to in A or A1 since they are all named by the terms 0, 1, 

1 + 1, 1 + 1 + 1,.... 
In general, for each structure 

21 = ({Ajjej, (fjljej, {Rk IlceiO {C|}leL)> 

let 

s2l = ({Af}ieI, {/,},eJ, {Rk}keK, {x:x e IJier A,}). 

8B.16. Let 21,'ll be structures as above, let RcA(iX-xAim be a 

relation. Prove that R is elementary in S1I if and only if there exists some 

Pc A,, x ••• x A,m x A,, x ••• x Aln and elements an of Ah,...,AL re¬ 

spectively, such that 

R(xi,..., xm) <=> P(xj,..., xm, Qi,..., on) 

and P is elementary in 21. 

Hint. Show that every formula of £-' can be obtained by substituting 

constants for some of the free variables in a formula of £a. —I 

8B.17. Prove that a pointset of type 1 is projective if and only if it is 

elementary in A2 and that a relation R c (Rn on the reals is projective if 

and only if it is elementary in R. H 

There is an obvious combination of the methods in the last three 

exercises which gives characterizations of the X't and II,1, pointsets in X 

and (R in terms of the Xln and II,1, formulas of A2 and R, naturally defined. 

We should also point out that these characterizations of the pointclas- 

ses we have been studying in terms of definability by formulas can be 

extended easily to any product space by choosing an appropriate structure 

to represent the space and taking formulas in its language. We will not 

bother to do this here. 

8C. Definability in the universe of sets 

We now turn to the study of elementary definability in the structures 

V = (V,e), V = (V,e,{x}xeV) 

associated with the universe of sets. For simplicity in notation, we will 
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denote the languages of these structures by “£ev and “£e ” respectively— 

in the terminology of 8A, £e is the language of characteristic (2) = 8. 

To avoid confusion with the ordinary functions of mathematics which 

are often taken to be members of V (sets of ordered pairs), we will call 

functions 

F:Vn^V 

on sets to sets, operations—e.g. the power operation assigns to each x its 
powerset {u: u c x}. 

In the first result here we compile a list of relations and operations on 

sets which are definable in £e. The proof of 8C.1 is trivial, but it will be 

useful to have this catalogue of definitions and equivalences for future 

reference. We will use the common abbreviations, 

(3x e z)R(x, ylv.., y,) *=> (3x)[x ez & R(x, yx,..., y,)], 

(Vx e z)R(x, ya,..., y,) «=> (Vx)[x ez^ K(x, ylv.., y,)]. 

8C.1. Theorem. The following relations and operations on V and objects 

in V are definable in £e. 

# 1. x E y <=> x is a member of y. 

# 2. xcy<^(VfGx)[fey], 

# 3. x = y <=> x is equal to y. 

# 4. {x, y}= the unordered pair of x and y; 

{x, y} = w <=> x e w & y e w & (Vt e w)[t = xv( = y]. 

# 5. U x = {t: (3s6x)[tes]}; 

(J x = w (Vs e x)(Vt g s)[t gw]&(V(g w)(3s e x)[r g s]. 

# 6. <x, y> = {{x}, {x, y}}, 

(Xj,..., Xn + ^) ((Xi,..., Xn), Xn + j). 

{We are using boldface angles to avoid confusion with the codes (kkn) 

for tuples of integers. Notice that for each x, y, 

(x, y ) £ r => x, y g 1J U r.) 

# 7. uXi) = {(x,y):xGu&yGo}, 

Uj x ••• x un + 1 = (Uj x ••• x un) x un+1. 

# 8. OrdPair(w) w is an ordered pair 

<=* (3x g U w)(3y g U w)[w = <x, y)]. 



474 Metamathematics [8C.1 

# 9. Relation (r) <=> x is a set of ordered pairs 

<=» (Vwer) OrdPair(w). 

#10. Domain(r) = {xe U U r:(3yeU U r)[<x, y)e r]}, 

Domain(r) = w <=> (Vx g U U r)(Vy e U U r)IXx> y)er=»x£w] 

& (Vxg w)(3y eU Ur)[<*> y)er]. 

# 11. Image (r) — {y g U U r: (3xg U U r)[<x, y>er]; 

Image(r) = w <=> (Vx g U U r)(VyeU U r)[<x, y>G r =► y e w] 

& (Vy G w)(3x G U U r)[<x, y>G r], 

# 12. xUy^ the union of x and y 

= U {*, y}- 

# 13. Field(r) = Domain(r)U Image(r). 

# 14. Functionff) <^>f is a function (as a set of ordered pairs) 

<=> Relation(f) 

& (Vx g Domain(f))(V ye Image (f ))(V y' e Image (f)) 

[[<*, y)ef&(x, y')e/]=>y = y']. 

If f is a function, we put 
f(x) = y <=><x, y)ef. 

#15. rfu ={(x, y>G r: xg u}; 

r(u = w<=>wcr & Relation(w) 

& (Vx g Domain(r))(Vy G Image(r)) 

[<x, y)Gw»xe«]. 

#16. 0 = ihe empty set; 

0 = w <=> (Vi)[f^ w]. 

# 17. Transitive(x) <=> x is a transitive set 

<=> (Vs g x)(Vi g s)[f g x]. 

#18. Ordinal(£) *=> £ is an ordinal 

«=> Transitive(£) & (Vx g £)(V y g £)[x eyvyexvx = y]]. 

# 19. x' = x U{x}. 

# 20. to = the least infinite ordinal; 

a> = w <=> Ordinal(w) & (Vx G w)(3y G w)[y = x'] 

& (Vx G w)[x# 0 =* (3y G w)[x = y']]. 
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Proof is immediate by 8B.1. —I 

For reasons which will become clear later, we have omitted the power 

operation from this list, 

Power(x) = {u: u £x}; 

this too is definable in £6, 

Power{u) = w <=>(Vf)[re w«fcu]. 

Similarly, the binary operation 

(x, y) » vx 

is definable, 

yx = w «=* (Vf)[f e w [Function(t) & Domain(t) = y & Image (t) £ x]]. 

In particular, Baire space is a definable set, 

We could go on and give formal definitions in £r of the rationals, the reals 

and all the familiar mathematical objects we have been studying. As 

usual, we take these to be sets—objects in V-constructed successively, 

starting with the set a> of integers and using operations which are easily 

definable in £e. There is no point in doing this in detail, as it should be 

obvious by now that all reasonable sets and relations and operations on 

sets are definable in ££. 

By the same token, all ordinary mathematical assertions about sets are 

expressible by sentences of £e and in particular, the axioms of Zermelo- 

Fraenkel set theory can be so expressed. We list them here for reference, 

indicating briefly with some “symbolized English” how each can be 

expressed in £s. 

There are seven basic axioms in ZF, but we need infinitely many 

sentences of £e to express the fifth and most significant of these, the 

axiom of replacement. We take up first the simpler axioms 1-4, 6 and 7. 

Axiom 1 (Extensionality). Two sets are equal if they have the same 

members, 

(Vx)(Vy)[(Vt)[t e x «=> t e y] => x = y]. 

In a simpler form, skipping the trivial initial quantifiers, 

(V f)[f ex«=»tey]=>x = y. 
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We will also omit the initial quantifiers in our abbreviations of the 

remaining axioms. 

Axiom 2 (Pairing). If x, y are sets, so is the unordered pair {x, y}, 

(3z)(Vf)[t sz«=>[t = xvt= y]]. 

Axiom 3 (Union). For each set x, the union 

U x = {t: for some sex, te s} 

is also a set, 

(3z)(Vr)[te z <=>(3s)[tes & sex]]. 

Axiom 4 (Power). For each set x, the power set {f: (c x} is also a set, 

(3z)(Vt)[t e z«tgx J. 

Axiom 6 (Infinity). There exists a set z such that 0e z and for every x, if 

xez, then x U{x}e z; 

(3z){0 e z & (Vx)[x e z => x U {x} e z]}. 

Axiom 7 (Foundation or Regularity). The membership relation is well- 

founded, i.e. every nonempty set has an e-minimal member; 

x^0=»(3y)[yex & (Vt e y)[f^ x]]. 

Consider now the classical axiom of replacement. 

Axiom 5 (Replacement). For each set x and for each operation 

F:V V 

which is definable in £e, the image 

F[x] = {F(t):tex} 
is also a set. 

We cannot express this directly in £e, because it is not possible in this 

simple language to quantify over all operations definable in £\ Instead, 

we must assert separately for each formula of £€, that if it defines a set 

operation (in terms of given parameters), then the image of any set by 

that operation is also a set. Using the abbreviation 

(3!t)<p(x1,..., xn, t) «=> (3y)(Vt)[cp(xt,..., x„, t) <=► t = y]. 
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we then take as Axiom 7 the collection of all sentences of the form 

(Vyi) ••• (Vyn)(Vx){(Vs)(3!t)i//(y1,..., yn, s, t) 

—> (3z)(Vt)[t e z<->(3s)[se x 

& t/'(y1,...,yn,s,t)]]}, 

one for each formula i//(yl5..., yn, s, t) of £€. 

Since it takes infinitely many sentences of £e to express Axiom 7, we 

often talk of the axiom scheme of replacement. 

From now on, by ZF we will mean this infinite list of sentences of £e 

which express the axioms of Zermelo-Fraenkel set theory. It is very 

important that ZF is an infinite set of sentences. The finite subsets of ZF 

determine axiomatic set theories which approximate Zermelo-Fraenkel 

set theory—the more axioms we have, the better the approximation. 

The theory of Zermelo-Fraenkel with choice ZFC is obtained by adding 

to ZF the axiom of choice (AC) in any of its well-known equivalent 

forms. All of them are easily expressible by sentences of £e. 

According to usual mathematical practice, when we prove a theorem 

about sets, we customarily assume without explicit mention that the struc¬ 

ture V = (V,e) satisfies all the axioms of ZFC, but we are careful to list 

among the hypotheses of our theorems any additional assumptions about 

sets—like the continuum hypothesis or determinacy hypotheses. We have 

followed this practice scrupulously in this book. In fact, as we pointed out 

in 7D, we have identified all blatant uses of the axiom of choice which 

cannot be justified on the basis of the weaker axiom of dependent choices 

and in this chapter we are including whatever choice we need among the 

hypotheses of the theorems. 

Since we have been emphasizing the fact that all “ordinary mathemati¬ 

cal assertions” about sets can be expressed by sentences of £e, it is 

perhaps worth pointing out that in metamathematics we often consider 

assertions about sets which are not immediately or naturally expressible 

in £e—or which may not be expressible in £ at all. For example, 

Theorem 8C.1 is not easy to translate into£ebecause it refers to relations 

and operations on V while £e can only speak directly about members of 

V. Sometimes we will seek indirect ways of expressing the meaning of a 

certain proposition by a sentence of £e because this will be important in 

an argument but of course most of the time we do not care whether or 

not our theorems are stated in the small part of English formalized in £ . 

We now return to our study of elementary definability in the structure 

V. 
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It is useful to call a collection of sets 

Me V 

a class if membership in M is definable in £ , i.e. if there is some formula 

<p(s, xlv.., x„) of £€ and sets xlv.., x„ e V such that 

s g M «=> Vh<p(s, xl5..., xn). 

If we can find a formula <p(s) in £e (without parameters) so that 

s e M <=> Vh <p(s), 

we then call M a definable class. For example, the class of ordinals 

ON = {£: Ordinal(i)} 

is definable. 

If Mn are classes, then an operation 

F: Mj x • • • x Mn -* V 

is any n-ary operation on sets such that 

xl^M1v-vxn^Mn =>F(xl,..., xn) = 0. 

Such an operation is then determined by its values F(xls..., xn) when 
x1eM1,..., xn e Mn. 

8C.2. Theorem. Let G: Vn+1V be an (n + l)-ary operation which is 

definable in £€. There exists a unique operation 

F: ON x V" —> V 

which is also definable in ££ and which satisfies the following equation for 

each ordinal i and xx,..., xn e V: 

F(£, xl5..., xn) = G({(tj, F(t), Xj,..., x^)): q < £}, x1?.„, xn). 

(.Definition by recursion on the ordinals.) 

Proof. Put 

P(h, xl5..., xn) «=> Function(h) & (Vy e Domain (h))[Ordinal(y)] 

& (V| e Domain(h))(Vq e £)[t) g Domain(h)] 

& (Vie Domain(h))[h(i) = G({(tj, h(q)): q e £}, xl5..., xn) 

and notice that by 8C.1 and 8B.1, P is definable in £e. An easy induction 

on the ordinals shows that 

P(h, xl5..., x„) & P(h', xx,..., xn) & i G Domain(h) D Domain(h') 

=*h(i)=hW, 
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so put 

F(£ x ) _ fy (3h)[P(h, xu..., xj & £ G Domain(h) & h(£) = y], 

[0 if (Vh)[P(h, Xj,..., xn) => £<£ Domain(h)]. 

To complete the proof, it is enough to show that for each x,,..., x„, 

(*) (V£)(3h)[P(h, x1?..., xn) & £ g Domain(h)]. 

Assuming that (*) fails for some let A be the least ordinal £ such that 

(Vh)[P(h, xl5..., xn) => £<£ Domain(h)] and define 

H(|) = . 
[<£ F(£x1?..., xn)> if £ < A, 

10 if A < £; 

now H is definable in £', so by the replacement axiom, the image 

h = H[A] = {<£ F(£, Xi,..., xn)>: £ < A} 

is a set and hence 
h' = h U{<A, G(h, xlv.., xn)>} 

is also a set. But easily 

P(h', xx,..., xn) & A g Domain(h'), 

contradicting the choice of A. —\ 

We allow n = 0 in this theorem, in which case 

G: V-* V 

defines uniquely the operation F: ON —» V which satisfies 

F(|) = G(Fte). 

Using this basic result we can define the transfinite sequence {Vs: 

£ g ON} of partial universes by the recursion 

Vo = 0, 

Vi+1 = Power(V^), 

VK ~ U«<\ Vg, if A is a limit ordinal 

(see 8C.8). It is easy to verify (by induction on £) that each V€ is a 

transitive set, 

V€<= V€+1c-, 

v=U,v„ 
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and 

£e V€+1-V€. 

This hierarchy of partial universes gives a precise version of the intuitive 

construction for the universe of sets which we discussed in the introduc¬ 

tion to this chapter, where for stages we take the ordinals. It also suggests 

drawing the universe V in the form of an inverted conve, growing 

upwards, with the ordinals plotted along the main axis, see Figure 8C.1. 

Recall that we are taking cardinals to be initial ordinals, 

Cardinal(x) •<=> Ordinal(x) 

& (V£e x)(\/ f){[Function(f) & Domain(f) = £] 

=> (3rj e Image(f)]}. 

The relation Cardinal(x) is clearly definable in £e. 

The familiar indexing of cardinals by ordinals is also defined by 

recursion, 

K0 = a>, 

X€+1 = = least cardinal x > X€, 

Xx = supremum{K^: £ < A}, if A is a limit ordinal. 

Intuitively, one would think that when £ is a “typical” very large 

ordinal, then the partial universe should “look very much like” the 

completed universe of sets V. We next prove a very important precise 

version of this idea. 

First a lemma about closed, unbounded classes of ordinals. 

A class K or ordinals in unbounded if 

(V£)Ot|>£)[tjgK]; 

Figure 8C.1. 
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K is closed if for every limit ordinal £, 

(Vtj <£)(3£)[t) <£<£&£eK] =>£ e K, 

i.e. if K is closed in the natural order topology on ON. 

8C.3. Lemma, (i) If Kx and K2 are closed, unbounded classes of ordinals, 

then K1 Pi K2 is also closed and unbounded. 

(ii) If 

F: ON —> ON 

is an operation on ordinals which is definable in £e, then the class 

K* = {£: (Vtj < £)[F(r]) < £]} 

is closed and unbounded. 

Proof, (i) Kx H K2 is obviously closed. To see that it is unbounded, given 

£, choose successively 4, 4> £2,... so that 

£<4 and £0eKu 

4 <4 and 4eK2, 

4 <4 and 4e*4, 

etc. 

and check that if = limitn $ne KlD K2 because both Kx, K2 are closed. 

(ii) Again, K* is obviously closed. Given £, dehne 4 by the recursion 

on o) 

4 = 4 

4+i = 4 + 1 + supremum{f(C): i < 4h 

where the supremum exists by replacement and verify that t] = 4<4< 

••• and limitn^ 4 e K*. A 

For each class M (which may be a set), let (M,e) be the structure 

obtained by restricting the membership relation to M, i.e. 

(M, e) = (M, EM) 

where 

Em(x, y)oxeM&yeM&xey. 

This notational convention will simplify many formulas and cannot cause 

any confusion. 
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We will prove the reflection theorem in a general context because it has 

many applications, but in a first reading one way as well take Q = V6. 

8C.4. The Reflection Theorem. Let £ » Q be an operation on ordinals to 

sets which is definable in £e and satisfies the following two conditions: 

(i) (<^QcC, 

(ii) If A is a limit ordinal, then 

Let 
c=UQ. 

Then for each formula cp(x1,..., xn) of £€, there is a closed, unbounded class 

of ordinals K such that for £ e K and xu..., xn e Q, 

(C, e) b cp(x1,..., xn) <=> (C€, g) b <p(x1,..., xn). 

In particular, if <p is any sentence of £e, then 

(C, e) b cp => for some if, (Q, e) b <p. 

Proof. We use induction on <p(xlv.., xn), the result being trivial for prime 

formulas and following easily from the induction hypothesis for negations 

and conjunctions. 

Suppose (3y)<p(y, xl5..., x„) is given and assume that K satisfies the 

result for <p(y, xlv.., xn). Let 

{least £ such that (3y e Q)[(C, e)b<p(y, xu..., xn)] 

if one such £ exists, 

0 otherwise 

and take 

F(£) = supremum{G(xu..., xn): xlv.., x„ e CJ 

by replacement. By the lemma then, the class of ordinals 

K n{|:(Vr|<|)[F(T,)<£]}n{£: £ is limit} 

is closed and unbounded and it is easy to verify that it satisfies the 

theorem for the formula (3y)<p(y, xlv.., xn). _| 

Exercises 

We take up first a small improvement of 8C.1 which will prove useful 
in the next section. 
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Let X0 be the smallest collection of formulas in the language £e such 

that all prime formulas 

V; e v,. 

are in X{) and such that if <p and ip are in X0, then the formulas 

-i(<p), (<p) &((//), (3Vi)[Vi ey, & <p] 

are also in X0. 

8C.5. Prove that the relations #1, #2, #8, #9, #14, #17 and #18 of 

8C.1 are definable by X0 formulas. H 

Consider next a trivial consequence of 8C.2 which is however worth 

putting down. 

8C.6. Let Gx: V" —> V and G2: Vn+2^> V be definable in £e. Show that 

there exists a unique operation F: to x Vn —*■ V which is definable in ££ 

and satisfies 

F(0, x1?..., xn) = xn), 

F(k + 1, x1?..., xn) - G2(F(k, xl5..., xn), fc, xu..., xn). 

It follows that every recursive function on a> (extended to be =0 for 

arguments not in co) is definable in £e and that every recursive relation 

on co is definable in ££ (as a set of tuples). 

Hint. The first assertion follows easily from 8C.2 and the second is 

proved by induction on the definition of recursive function. —I 

There is also a generalization of 8C.2 which is useful. (Recall from 

Chapter 2 that x <Ry <=> R(x, y) & _iR(y, x).) 

8C.7. Let G : V —> V be an operation definable in ££, let S be a class and 

suppose RcSxS is a relation which is definable in £e and which is 

wellfounded, i.e. 

xcS&x^0=> (3y e x)(Vz e x) ^z<Ry. 

Assume further that each initial segment of R is a set, i.e. (Vx e S)(3z) 

(Vy)Ly ez« y <Rx]. Prove that there is a unique operation 
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which is definable in £e and satisfies for each xe S the equation 

F(x)=G({(y, F(y)): y <Rx}). 

Show moreover that if G, S and R are definable in £s, then so is F. 

Hint. Imitate the proof of 8C.2. —I 

8C.8. Prove that the operation 

£» Ve 

is definable in £e. 

Hint. Apply 8C.2 with 

'0 if (V£ g ON)[£0 Domain(h)], 

Power(h(0) where £ 

G(h) = < = infimum{r] e Domain(h): r/ + 1 0 Domain(h)}, 

if [3tj g Domain(h)][ri + 10 Domain{h)], 

.U {h(£): £eDomain(h)}, otherwise. H 

A class M is transitive if 

xeM&yex=>yeM 

In seeking models of Zermelo-Fraenkel set theory we will concentrate on 

structure of the form (M,e) with transitive M, partly because of the 

following basic fact. 

8C.9. Show that if M is a transitive class, then the structure (M, e) 

satisfies the axiom of extensionality. 

Conversely, suppose M is a class, EcMxM is a binary strict well- 

founded relation on M which is definable in £" and such that for each 

xeM, {y:E(y, x)} is a set. Assume that (M, E) satisfies the axiom of 

extensionality; prove that there is a unique transitive class M and a 

unique bijection 

77: M 

which is an isomorphism of (M, E) with (M, e). Moreover, if there is a 

transitive set y c ]Vf such that x G y and E agrees with g on y, then 

7r(x) = X. 

Show also that if M. E are definable in £ , then so are M, it. (The 

Mostowski Collapsing Lemma.) 
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Hint. The first assertion is quite easy and will follow from the more 

general 8D.3, but the inexperienced reader will do well to check it out. 

For the second assertion define 77 : M —» V by the recursion 

77(x) = {77(y): E(y, x)} 

and take M = 7r[M] = {7r(x): x e M). 

If y is transitive and ycM, show by e-induction that 

f e y => 77(f) = t. H 

(By e-induction in this hint we mean the method of proof where you 

show 

(Vx)[(Vf e x)R(t) =>• R(x)] 

and you infer 

(Vx)jR(x); 

this is easy to justify using the axiom of foundation.) 

The Mostowski collapsing lemma is a very useful fact to which we will 

appeal often. In the typical case we will be applying it to a structure of the 

form (M, e), where M will not be necessarily transitive. In this case of 

course we will only need to check that (M, e) satisfies extensionality, since 

the relation in (M, s) 

EM(x, y)«=>x£M&y£M&xsy 

is automatically wellfounded; if it does, then we have an canonical 

isomorphism 

77: M >-»M 

of M with the transitive class M, the so-called Mostowski collapsing map 

of M. (Of course, if M is a set, then so is M.) 

If 21 is a structure and T is a set of sentences (a theory) in the language 

of 21, we write 

2It=T 

and we call 21 a model of T just in case 

for all (p e T, 211= <p. 

8C.10. Prove that (granting the axiom of choice), for every finite set T° 

of true sentences of £e, there is a countable, transitive set A such that 

(A, e)I=T0. (The countable reflection theorem.) 
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Hint. Choose V£ such that (V£, e)t=T° by the Reflection Theorem 8C.4, 

find a countable BgV? such that (B, e) is an elementary submodel of 

(V£, e) by the Skolem-Lowenheim Theorem 8A.4 and take A = B =the 

transitive collapse of B. (Notice that 8C.9 applies because (V£, g) and 

hence (B, g) satisfies extensionality; notice also that you are using the 

axiom of choice in this proof because the Skolem-Lowenheim theorem 

needs V£ to be wellorderable.) —I 

What we would really like to have is a countable transitive set A such 

that (A, g)I-ZF, but we cannot prove that such a set exists assuming just 

the axioms of ZFC for V. The next result gives us these countable, 

transitive models of ZFC, granting a strongly inaccessible cardinal. 

8C.11. Show that if the axiom of choice holds and x is strongly inaccessi¬ 

ble, then (Vx, <i)VZFC; infer that if there exists a strongly inaccessible 

cardinal, then there exists a countable, transitive model of ZFC. 

Hint. All the axioms of ZFC except perhaps replacement hold in every 

(Vx, g) with limit x—and replacement is easy to check using the strong 

inaccessibility. The second assertion is proved as in 8C.10. H 

This result appears a bit paradoxical at first sight, since a transitive 

model (A, g) of ZFC satisfies the formal sentence of ££ 

“there exists an uncountable set”, 

so for some xeA, 

(A, e)b“x is uncountable”. 

If A is countable, surely x is countable, so in the real world (the universe 

V) there exists a bijection f :o> >^>x; the explanation of the “paradox” is 

that no such bijection can be a member of A. 

8D. Godel’s model of constructible sets 

We will define here the class L of constructible sets and we will prove 

that the structure (L, g) satisfies all the axioms of ZF. 

The key idea is to imitate the definition of the partial universes V£ but 

to replace the power operation (about which we know very little) by the 
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much more tractable operation on sets 

Def(A) = {x c A: x is elementary in the structure (A, e, {s: s e A})}. 

We must first show that Def is definable in £e. 

Recall that in 8A we assigned integer codes to the formulas of a 

language £u of a given characteristic. In the next result we use these 

codes to refer (indirectly) to formulas and definability notions in general 

within the language £e. We continue the numbering of Theorem 8C.1. 

8D.1. Theorem. The following relations and operations on V and objects 

in V are definable in ££. (When we use variables m, n, k, it is understood 

that the relations in question are false and the operations in question are 

set = 0, unless m, n, k e a>.) 

#21. TC(x) = the transitive closure of x 

= the smallest transitive set y such that xey. 

#22. nA ={h:h is a function with domain 

n = {0, 1,..., n — 1} and values in A}. 

#23. Formulajm, n) <=* m is the code of some formula 

(p{\0,...,\n_1) of the language £e whose free 

variables are among v0,..., vn_j. 

#24. Sat(m, n, x, A, ej Formula(m, n) 

& xe"A 

& e c A x A 

& [if <p(v0,..., vn_1) is the formula 

with code m, then 

(A, e)b<p(x(0),..., x(n - 1))]. 

#25. Defx(m, n, x, A, e) = {s e A: Sat(m, n + 1, x U{(n, s)}, A, e)}. 

#26. Def(A) = {Def1(m, n, x. A, {(u, v)\ uev&ueA&veA} 

: meo)&nG(o&xe nA}. 

Proof. #21. TC(x)= U {TC(n, x): new}, where TC(n, x) is defined by 

the recursion 
TC(0, x) = {x}, 

TC(n +1, x) = U TC(n, x). 
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#22. Use recursion again, 

°a=0, 

("+1)A = {y U {<n, t)}: y e "A & t e A}. 

#23 is immediate since Formula(m, n) is recursive. 

#25 and #26 will follow immediately, once we prove that the satisfac¬ 

tion relation is definable. 

To prove the latter, define 

1 

F0m, n, x, A,e)~' 

0 

if m is the code of some formula 

<p(v0,..., v„_1) with free variables among 

the v0,..., vn_j and x 6 "A and 

ecAxA and (A, e)b<p(x(0),..., x(n — 1)), 

otherwise 

and put 

F(m, A, e) = {<i, n, x, F0i, n, x. A, e)): new &i<mew 

& xenA &e c A x A}; 

it is enough to show that F is definable in £% since 

Sat(m, n, x, A, e) *=> (m, n, x, l)s F(m + 1, A, e). 

To show that F is definable by applying 8C.6, we need definable 

operations Gu G2 such that 

F(0,A,e) = G1(A,e), 

F(m + 1, A, e) = G2(F(m, A, e), m, A, e). 

The first of these is trivial, since 

F(0, A, e) = 0. 

On the other hand, 

F(m + 1, A, e) = F(m, A, e) U G3(m, A, e) 

where G3(m, A, e) = 0, unless m is the code of some formula 

<p(v0,..., and if m is the code of some such formula, then we can 

easily compute G3(m, A, e) from F(m, A, e) because of the inductive 

nature of the definition of satisfaction—and the fact that in our coding 

formulas are assigned bigger codes than their subformulas. For example. 
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if 

m = <3, j, k) 

so that m is the code of some formula 

(3v,)(cp) 

where k is the code of <p, then 

G3(m, A, e) = {(m, n, x, 1): new & x g "A AecAxA 

& (3i)(3y g !A)[/< / & n < i & (Vi < n)[t ^ / => x(i) = y(i) 

& (k, l, y, 1)gF(m, A, e)]} 

U {(m, n, x, 0): n e o> & x g "A & e^AxA 

& (V/)(Vy g !A)[[/ < / & n < 1 & (Vi <n)[i^/ => x(i) = y (i)] 

=*(k, l, y, 0>eF(m, A, e)]}. 

Similar expressions for G3(m, A, e) can be found for the other cases 

where m codes a formula and then we can easily put these together to 

define G2(w, m. A, e). We will omit the details. H 

It is obvious from the definition of the operation Def that 

x g Def (A) «xcA and there is a formula <p(v0,..., vn_r, vn) 

in the language £e and members x0,..., xn_x of 

A, such that for all s g A, 

SGX «=> (A, g) £ <p(x0,..., xn_l5 s). 

We now define the constructible hierarchy {L(: £e ON} by the recursion 

L0 = 0, 

L€+1 = De/(L€), 

Lk = U «<x L/:, if A is a limit ordinal 

and we let 

L={J,L, 
be the class of constructible sets. More generally, for any set A, put 

L0(A) = TC(A), 

Le+1{A) = Def(L$(A)), 

LX(A)= Ue<xMA), if A is a limit ordinal 
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and 

l(A)=u€l,(A). 

8D.2. Theorem, (i) The operation £ ►» is definable in £e and the class L 

is a definable class. 

(ii) 

(iii) Each L€ is a transitive set and L is a transitive class. 

Similarly: 

(iv) The operation (£, A)^L^(A) is definable in £' and if A is a 

definable set, then L(A) is a definable class. 

(v) r,<^L,(A)cLf(A). 

(vi) Each L€(A) is a transitive set and L(A) is a transitive class. 

Proof, (i) follows from 8C.2 since it is easy to find a definable G : V —> V 

such that 

= G({<p, E^): t] <£}), 

see 8C.8. 

To prove (ii) and (iii) we show simultaneously by induction that for 

each 

is transitive and p < 

This is trivial for £ = 0 or limit ordinals £. 

If £ = £ +1, suppose first that p < £ and x g Ln; by induction hypothesis 

then xeLt and x c Lc, so that x e Lc+1, since we can obviously define x as 

a subset of Lc using x as a parameter, 

sex *=>(LC,e)bsex. 

In particular, LC^LC+1 and hence for any xeLc+1 and yex, we have 

y eLc and hence y e Lc+1, so Lc+1 is also transitive. 

Now L is easily transitive as the union of transitive sets and (iv)-(vi) are 

proved similarly. —I 

The transitivity of L was well worth pointing out because of the 

following general fact about transitive classes. (X0 formulas are defined in 

the Exercises of 8C.) 

8D.3. Lemma. Let M be a transitive class. 

(i) If <p(xlv..,x„) is a formula in X0 with the indicated free variables 
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and x1,..., xn e M, then 

(V, e)(=<?(*!,..., xJ<=»(M,e)l-q>(xu..., xn). 

(ii) The structure (M, e) satisfies the axioms of extensionality and foun¬ 

dation in the list ZF. 

(iii) If M is closed under pairing and union, then (M, e) satisfies the 

axioms of pairing and union. 

(iv) If some infinite ordinal A eM, then (M, e) satisfies the axiom of 

infinity. 

Proof, (i) Reverting to the notation of 8A which is more appropriate 

here, we must show that if cp is a formula in X0 and x={x,} is any 

assignment into M, then 

(V, e), xhcp <=> (M, e), x hep. 

This is immediate for prime formulas, 

(V, e), x h v; e y <=> x; £ y 

<=> (M, e), x t= V; e v, 

and if it holds for cp and if, it obviously holds for —1(<p) and for (cp) & (<//). 

By induction on the length of formulas then, in the nontrivial case, 

(V, e), x £v,- &cp] ^>for some z e x,-, (V, e), x2 hep 

where 

if k ^ i, 

if k = i; 

but since M is transitive and x, e M, we have x,- c M and hence for every 

zeXj the assignment xz is into M, so that by the induction hypothesis, 

for some z £ x,-, (V, £), x2 h cp for some z £ x,, (M, e), x‘ 1= cp 

«=> (M e), x t= (3vt e Vj & cp], 

(ii) It is easy to check that both of these axioms are expressed in £' by 

formulas of the form 

(Vx1)---(Vxn)cp(x1,...,xn) 
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where <p(xls..., xn) is in X(). Hence 

(V, 6)h(Vx1)-"(Vxn)cp(x1,...,xn) 

=>for all x,,..., xn, (V, e)t=<p(x1,..., xn) 

=* for all x1,...,x„eM,(M,e)l=<p(x1,...,xJ using (i)) 

=*> (M, e)t=(Vx1)---(Vxn)<p(x1,..., xn) 

and since these axioms hold in (V, e), they must also hold in (M, e). 

(iii) Again, it is easy to find a formula <p(x, y, z) in X0 such that 

z={x, y} <=> (V, e) 1= <p(x, y, z). 

To show that (M, e) satisfies the pairing axiom then, we must verify that 

for each x eM, y eM, there is some z e M such that (M, e) 1= cp(x, y, z); of 

course, we take z = {x, y} and we use (i). 

The argument for the union axiom is similar. 

(iv) If A e M and A is infinite, then either a> = A or a> e A and in either 

case, by the transitivity of M, weM. Checking #20 and then #19 and 

#18 of 8C.1, we can construct a X0 formula cp(x) such that 

x = o) <=> (V, e) 1= <p(x); 

in part <p(x) asserts tha x is the z required to exist by the axiom of infinity. 

Clearly (V, e)l=(p(a>) and then by (i), (M, e)l=cp(w) so that (M, e) satisfies 

the axiom of infinity. —\ 

The lemma implies immediately that (L,e) satisfies all the axioms of 

ZF except perhaps for the power and replacement axioms. The key to 

deriving these for (L, e) is the Reflection Theorem 8C.4. 

It is worth putting down a general result. 

8D.4. Thoerem. Let £ «• Q be an operation on ordinals to sets which is 

definable in <£" and satisfies the following four conditions. 

(i) Each Q is a transitive set. 

(ii) £<i=*q<=q. 

(iii) If A is a limit ordinal, then Cx = U^<x Q- 

(iv) For each £, if xcQ is elementary in the structure 

= (Q, e, {s: s g CJ), 

then there is some £ such that x e C£. Let 

C=LUQ; 
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then the structure 

® = (C,e) 

is a model of ZF which furthermore contains all the ordinals. 

In particular, (L, e) and each (L(A), e) are models of ZF which contains 

all the ordinals. 

Proof. To begin with, we know from 8D.3 that © satisfies extensionality, 

foundation, pairing and union, since condition (iv) in the hypothesis 

implies easily that C is closed under pairing and union. 

We argue that C must contain all ordinals; if not, let A be the least 

ordinal not in C and choose £ large enough so that A c Q. Let <p(x) be a 

formula in X0 such that 

(Drdinal(x) (V, e)b<p(x); 

this is easy to construct from the expression given in #18 of 8C.1. Since 

no ordinal^A can be in Q (by transitivity), we have 

{xeQ: ©£l=<p(x)}= A; 

hence by condition (iv), A e C, which is a contradiction. 

It follows in particular that weC, so that © satisfies the axiom of 

infinity by 8D.3. 

Verification of the power axiom. It is enough to show that for each 

x e C, there is some z e C such that z has as members precisely all the 

members of C which are subsets of x—from this we can infer that © 

satisfies the power axiom by arguments familiar from the proof of 8D.3 

and above. 

Consider the operation 

if u e C & u c x, 

otherwise; 

least £ such that u e C(, 

0 

this is obviously definable in £6, so by the replacement axiom, the image 

F[Power(x)] is a set. (We are using the fact that x has a power set in V.) 

Now F[Power(x)'] is a set of ordinals, so there must be some ordinal A 

above all of them and we have: if ueC and u^x, then w e Cx. Thus 

z ={ueCK: u c x} 

has as members precisely the subsets of x which are in C and since z is 

clearly definable in ©x, it is a member of C by (iv). 
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Verification of the axiom scheme of replacement. Suppose xsC and 

F:C-^ C is an operation which is definable (with parameters) on (£, i.e. 

for some formula v„, s, t) and fixed yl5..., y„ e C, 

F(s) = t ^ (£ b y„, s, f) (s, teC); 

as above, it is enough to show that the image 

F[x] = {F(s): sex} 

is also a member of C. 

Using the reflection theorem, choose A so that x, y1;..., y„ e CA and for 

s, t e Q, 

£b yn, s, t) <=> (Cx, e) b ^(ylv.., yn, s, t) 

and make sure as in the argument above that F[x]c CA; clearly 

F[x] = {f e Cx b(3s)[sex & i/f(ylv.., yn,s, t)} 

and hence F[x] is elementary in and must be in C by (iv). 

This concludes the proof of the main part of the theorem and the fact 

that L and L(A) satisfy the hypotheses follows easily from their defini¬ 

tions. 

Exercises 

Let us take up first a few simple exercises which will help clarify the 

definability notions we have been using. 

8D.5. Show that if R(xu..., x„) is definable by a £0 formula, then the 

relation 

R*(ku..., kn) ^k.soj &■■■ &kneco & R(kkn) 

is recursive. —\ 

A little thinking is needed for the next one. 

8D.6. Prove that the relation of satisfaction in #24 of 8C.4 is not 

definable by a X0 formula. -| 

A formula of £e is in Xx if it is of the form 

(3yi)—Oyntefo...., yn, xm), 



8D.10] OODEL'S MODEL OF CONSTRUCTIBLE SETS 495 

where <p(y1,..., y„, xl5..., xm) is 50. The next result is not entirely trivial 

and we will not appeal to it later, but it is useful to understand, 

8D.7. Prove that every relation, operation and object in #l-#26 of 8C.1 

and 8D.1 is definable by a 2t formula. (A weak form of the axiom of 

choice is needed.) 

Hint. The key fact is to check that if a relation R(y, xu..., xj is 

definable by a formula, then so is the relation 

Q(z, xj «=> (Vy e z)R(y, xlv.., xn). H 

8D.8. Prove that if <p(xl9..., xn) is a 2t formula, M is a transitive class, 

x1?..., xneM and (M, e)b<p(xl5..., xn), then (V, e)b<p(x1,..,, xn). H 

8D.9. Suppose F:V^V is an operation definable by a 2X formula 

<p(x, y) and suppose that we can prove in ZF that (Vx)(3!y)cp(x, y); prove 

that for every transitive model (M, e) of ZF, 

x e M => F(x) e M. 

Hint. Use the fact that (M, e)t=(Vx)(3!y)<p(x, y), which follows from the 

hypotheses that (M, e)t=ZF and that (Vx)(3!y)<p(x, y) is a theorem of ZF. 
H 

The rank of a set x is the least ordinal £ such that x e Vc+1. It is easy to 

check that this can be defined also by the recursion on e 

rank(x) = supremum{rank(y)+ 1: yex} 

(where supremum(0) = 0) and that for each ordinal £, 

rank(£) = £. 

8D.10. Show that for each £, c V€ so that 

xeL?=» rank(x) =££ 

Show also that for each £ 

£ € L6+i- 

Hint. L€ is easy by induction. The second assertion follows from 

£ = {x e L€: Ordinal(x)}, 

8D.3 and the fact that Ordinal(x) can be defined by a 20 formula. H 
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8D.11. Show that for each ordinal 

card(L^) = card(g). 

Hint. Use induction on £ and a bit of cardinal arithmetic; you need to 

check (without using the axiom of choice) that if x is a cardinal, then 

U [nx : n 6 <o} and xXx do not have bigger cardinality than %. A 

The nature of the constructible hierarchy {L€: ON} makes it possi¬ 

ble to define explicitly a wellordering of L. We will outline a proof of this 

result in some detail in the next exercise, as it is the key to our showing in 

the next section that the axiom of choice holds in (L, e). 

8D.12. Prove that there is a binary relation x <Ly which is definable in £e 

and wellorders L and such that 

x <L y & y e =» x s Lj. 

In particular, if V = L (i.e. if every set is in L), then the axiom of choice 

holds. 

Hint. The idea is to construct an operation 

F: ON —» V 

which is definable in ££ and such that for each £, F(£) is a wellordering of 

i.e. F(6cL{ x and the relation 

u <=* (u, v)e F(|) 

wellorders Le 

We will build up F step-by-step. 

1. There is an operation F,:wxVxV^ V which is definable in £e 

and such that if w wellorders A, then F^n, w, A) wellorders "A. 

Hint. Order the n-tuples from A lexicographically, using w. 

2. There is an operation F2: V2 —» V which is definable in £e and such 

that if w wellorders A, then F2(w, A) wellorders U {nA: new}. 

Hint. For x, x' in (J {"A: new} put 

(x, x')eF(w, A) <=* Domain(x)<Domain(x') 

v(3 n)[Domain(x) = Domain(x') = n 

& <x, x')eFj(n, w. A)]. 

3. There is an operation F3: V2-* V which is definable in £e and such 

that if w wellorders A, then F3(w, A) wellorders Def(A). 
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Hint. Let 

Gj(m, n, x, A) = Def0m, n, A,{(u, v): ueA&veA&uev}) 

and for y eDef(A) define successively: 

G2(y, w, A) = least m such that (3n)(3x 6 nA)[y = G1(m, n, x. A)], 

G3(y, w, A) = least n such that (3x g "A)[y = G,(G2(y, w, A), n, x. A)], 

G4(y, w, A) = least x in the ordering F2(w, A) such that 

y = Gl(G2(y, w, A), G3(y, w, A), x. A). 

Now each y eDef(A) is completely determined by the triple 

(G2(y, w, A), G3(y, w, A), G4(y, w, A)) 

and we can order these triples lexicographically, using the wellordering 

F2(w, A) in the last component. 

4. There is an operation F: ON —» V which is definable in L and such 

that for each £, F(£) is a wellordering of L$. 

Hint. We define F by recursion on the ordinals (8C.2), in the form 

where we take cases on 0, successors and limits as in 8C.8. 

Clearly F(0) = 0 and at the successor step, 

F(Gl) = F3(F(a4 

If A is limit, define first G :L —> ON by 

G(x) = least | such that x e 

and put 

F(A) = {<x, y )gLxxLx: G(x)<G(y) 

v [G(x) = G(y) & <x, y>g F(G(x))]}. 

The result follows from this by setting again 

x<Ly <=> G(x)<G(y)v[G(x)= G(y) &<x, y>eF(G(x))]. 

Notice that initial segments are sets, since 

x <Ly => x g LG(y). 

All the usual forms of the axiom of choice follow trivially from the first 

assertion of the result. 
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8E. Absoluteness 

In the last result of the preceding section (8D.12) we just about proved 

that the structure (L, e) satisfies the axiom of choice. In fact we showed 

that there is a certain definable relation x<Ly such that 

if every set is in L, then {(x, y): x^Ly} wellorders the 

collection of all sets; 

since in the structure (L, e) every set is obviously in L, the structure (L, e) 

satisfies the hypothesis of (1) and therefore it must satisfy the conclusion, 

which is a very strong “global” form of the axiom of choice. 

To see that matters are not quite as simple as that, let us try to express 

(1) in the language £e. Choose first a formula cpL(x, £) of £e by 8D.2 so 

that 

(2) x e «=» (V, e) k <pL(x, £) 

and let 

(3) V = L «=> (Vx)(3£)cpL(x, C), 

so that this formal sentence “V = L” clearly expresses in £e the proposi¬ 

tion that every set is constructible. Choose then another formula i//L(x, y) of 

£e by 8D.12 such that 

x <Ly <=> (V, e)t= i/iL(x, y) 

and take 

iff* <=> “{(x, y): </iL(x, y)} is a wellordering of V”, 

where it is easy to turn the symbolized English in quotes into a formal 

sentence of £e. Now (1) is expressed by the formal sentence of £e 

(4) V = L -> if/* 

and what we would like to prove is that 

(5) (L,e)k i/,*. 

It is important here that 8D.12 was proved on the basis of the axioms 

in ZF without appeal to the axiom of choice. Since (L, e) is a model of 

ZF by 8D.4, it must also satisfy all the consequences of ZF and certainly 

(6) (L, e) t= V = L —» if*. 
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Now the hitch is that in order to infer (5) from (6), we must prove 

(7) (L, e)t= V = L; 

this is what we took as “obvious” in the first paragraph above, after 

expressing it sloppily in English by “every set in the structure (L, e) is in 

L.” But is (7) obvious? 

By the definition of satisfaction and the construction of the sentence 

V — L above, (7) is equivalent to 

for each xel, there exists such that 

1 j (L,e)l=cpL(x,£) 

while what we know is 

for each x e L, there exists £ e L such that 
(9) 

(V,e)b<pL(x, I). 

Thus, to complete the proof of (7) and verify that (L, e) satisfies the 

axiom of choice, we must prove that we can choose the formula <pL(x, ij) 

so that in addition to (2), it also satisfies 

(10) (V,e)t=<pL(x, £) <=* (L, e)b<pL(x, £), 

when x € L. In other words, we must show that the basic relation of 

constructibility can be defined in £€ so that the model (L, e) recognizes that 

each of its members is constructible. 

The theory of absoluteness which we will develop to do this is the key 

to many other results, including the fact that V = L implies the 

generalized continuum hypothesis. We will study here the basic facts about 

absoluteness and then we will derive the consequences about L in 8F. 

Since we will be considering only structures of the form (M, e) let us 

simplify notation and write 

Mb<p(x„..., xn) <=* (M, e)b<p(x1,..., xn); 

similarly, for sets of sentences of £e, 

MfT<=> (M, e)bT 

<=> for each <peT, (M, e) t= <p. 

We will call M a standard model of a set of sentences T in £e (a set 

theory) if M is a transitive class (perhaps a set) and MET; if in addition 

M contains all the ordinals, we will call M an inner model of T— so that 

by 8D.4, L and each L(A) are inner models of ZF. 
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Let D be a collection of transitive classes and let R be an n-ary 

relation on V. We say that R is definable in £€ absolutely for 2D or simply 

absolute for (classes in) 3D if there exists a formula <p(xu..., xj of £€ such 

that for every M in 2D and xxn in iVf, 

R(xx,..., xn) «=* Mt=<p(xlv.., xn). 

This notion is the key metamathematical tool for the study of models of 

set theory. . . 
Notice that if cP(Xl,...,xJ defines R absolutely for 3D, then in particular 

for M, N in 3D, if Me N and xx,..., xn e M, then 

Mkcp(X],..., xn) <=>iVbipfxj,..., xn). 

In all the cases we will consider, the universe V will be in 3D; then for 

each M in 3D and xx,..., xn eM, we have 

R(xl5...,xn)^ Vl=<p(x1,...,xn) 

«=> Mbcp(xi,..., xn). 

Following the same idea, an operation F: Cx x ••• x Cn —> V (where 

C!,..., Cn are given classes) is definable in £fc absolutely for 2D or just 

absolute for 3D, if three things hold. 
(1) The classes Cx, C2,..., Cn are absolute for 3D—i.e. each membership 

relation x e Q is absolute for 3D. 

(2) If Me 3D and x1e Cx DM,..., xn e Cn HM, then 

F(x1,...!xn)£M. 

(3) There is a formula <p(xlv..,xn,y) of £e such that for each Me5) 

and x1eC1nM,...,xneC„nM, 

F(xx,..., xn) = y <=» Mb<p(xl5..., xn, y). 

An object c is absolute for 3D if for each M in 3D, 

c e M 

and the relation 

Rc.(x) *=> x = c 

is absolute for 3D. 
It is common to also call absolute for 3D the relevant formula 

<p(xlv..,xn) of £e which defines a given relation, operation or constant as 

above. 
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If 3D consists of just two classes, V and some M, we will say absolute for 

M instead of absolute for 3D. 

We now come to the important metamathematical concept of ZF- 

absoluteness. 

Let us collectively call notions the relations and operations on V as 

well as the members of V. A notion N is ZF-absolute if there exists a 

finite set T°cZF of axioms in ZF such that N is absolute for the 

collection 3D of all standard models of T°, 

Me3D^Mt=T°. 

Intuitively, a notion N is ZF-absolute if there is a formula of £e which 

defines N in all sufficiently good approximations to standard models of 

ZF. 

We will need to know that a good many notions are ZF-absolute. 

Before embarking on this let us establish the closure properties of the 

collection of ZF-absolute notions in the next simple but basic theorem. 

8E.1. Theorem, (i) The collection of ZF-absolute relations contains G and 

is closed under the propositional operations —i, &,v, =»,<=>. 

(ii) The collection of ZF-absolute operations is closed under addition 

and permutation of variables and under composition; each n-ary projection 

operation 
F(x1,...,xn) = xi 

is ZF-absolute. 

(iii) An object ceV is ZF-absolute if and only if each n-ary constant 

operation 
F(x1,..., xn) = c 

is ZF-absolute. 

(iv) f/Rc Vm and Fr: Qx-xC^ V,..., Fm: C\ x ••• x Cn -> V are 

all ZF-absolute and 

P(x!,..., xn)-^x1eC1 & & x„ g Cn & FfFp!,..., xn),...,Fm(x1,..., xj), 

then P is also ZF-absolute. 

(v) pcV"+l is ZF-absolute and 

P(X!,..., xn, z) <=> (3y g z)R(x1,..., xn, y), 

Q(x!,..., x„, z) «=» (Vy g z)R(xu..., xn, y), 

then P and Q are also ZF-absolute. 
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(vi) Suppose PcT+l is ZF-absolute, QeV"+l and there exists a 

finite T°c ZF such that for each transitive Mb T° and xlv.., xn £ M, 

(By £ M)P(x1,..., xn, y) <=> (Vy £ M)Q(x1,..., xn, y); 

(hen (he relation R <= V'1 defined by 

R(xxj (3y)P(x1,..., xn, y) 

is ZF-absolute. 

(vii) If G : Vn+] —» V is ZF-absolute, then so is F: Vn+l —> V defined by 

F(xlv.., xn, w) - {G(xx,..., xn, (): (£ w}; 

similarly with more variables, if G: Vn+tn —* V is ZF-absolute, so is 

F(xx,..., xn, wx,..., wm) = {G(xx,..., xn, (x,.„, (m): (x£ wx & ••• & (m € wm}. 

(viii) If R £ V't+1 is ZF-absolute, then so is the operation 

F(x1,..., xn, w) = {(£ w: F(xx,..., xn, ()}. 

Proof. Parts (i)-(iv) are very easy, using the basic properties of the 

language £e. 

For example if 

JR(x1;..., xn) <=> P(xx,..., xn) & Q(xx,..., xn) 

with P and Q given ZF-absolute relations, choose finite T° c ZF, T1 c; ZF 

and formulas <p(xx,..., xn), i/>(xx,..., xn) of £e such that for MbT°, 

x1,...,xneM, 

p(xxj ^Mt=<p(x1,..., x„) 

and for MbT1, xx,..., xneM, 

Q(xx,..., xn) <=> Mb ^(xj,..., xn). 

It is clear that if MfFUT1 and xx,...,xneM, then 

R(x\,..., xn) <=>Mb(p(xx,.„, xn) & i/f(xlv.., xn), 

so the formula <p(xx,..., xn) & x„) defines F absolutely on all 

standard models of T°UTl. 

Suppose again that 

F(x) = G(H,(x),H2(x)) 

where G, Hx, H2 are ZF-absolute and we have chosen on binary and two 
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unary operations to simplify notation. Choose finite subsets TG, T1, T2 of 

ZF and formulas i//(u, v, z), <px(x, u), <p2(x, v) of £6 such that for MkTG 

and u,v,ze M, we have G(u, v)e M and 

G(u, v) = z <=»u, z) 

and similarly with Hx, T1 and <p,(x, u), H2, T2 and <p2(x, v). (It is easy to 

arrange that the free variables in these formulas are as indicated.) Now it 

is clear that if 

then 
Mk T° U T1 U T2, 

x eM=* F(x)eM 

and for x, z e M, 

F(x) = z^Mf\'(x, z) 

where 

*(x, z) «=*■ (3u)(3v)[cp1(x, u) & <p2(x, v) & t/Ku, v, z)]. 

Proof of (iv) is very similar to this. 

(v) The argument is very similar to the proof of (i) in 8D.3 and we will 

omit it—the transitivity of M is essential here. 

(vi) Choose a formula <p(xlv.., x„, y) and a finite TpcZF such that for 

all MkTp and xx,...,xneM, 

P(xa,..„ xn, y) <=> Mt=cp(x1,..., xn, y) 

and take 
X(xivi xre) <=> (3y)(p (xj,..., x„, y)- 

If M k Tp U T° and xl5..., xneM, then 

F(xlv.., x„) (3y)P(x1,..., xn, y) 

=> (Vy)O(x!,..., x„, y) (since VI=T0) 

=*• (Vy g M)Q(xxn, y) (obviously) 

=* (3y e M)P(x1?..., xn, y) (since MfT11) 

=>for some y e M, Mk<p(xlv.., xn, y) (since Mt= Tp) 

=> Mk(3y)<p(xlv.., xn, y); 

Conversely, 

Mh(3y)cp(xlv..,xn,y)=^(3y eM)P(x1,...,xn, y) 

=* (3y)P(xlv.., xn, y) 

=^> R(xu..., xn). 
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so x(xi,..., x„, y) defines R on all models of Tp U T° and hence R is 

ZF-absolute. 

(viii) Suppose that if Mf T°, then 

xlv.., xn, t e M => G(xu..., xn, t)eM 

and 

G(xx,..., x„, f) = s <=> Mt=<p(xx,..., xn, s, 0- 

Let t// be the instance of the replacement axiom scheme which concerns 

cp(xi,..., xn,t, s), 

iff «=» (Vx1)---(Vxn)(Vw){(Vt)(3!s)cp(x1,..., xn, t. s) 

(3z)(Vs)[sg z<-»(3t)[te w & <p(xx,..., xn, t, s)]]} 

and take 

T1 = X°U {<//}. 

If MTT1 and xx,..., xn, weM, this means easily that there is some zeM 

so that for all s g M, 

s e z <=>for some f g w, Mf<p(xlv.., xn, t, s) 

«=» (31 e w)[G(x1,..., xn, t) = s]. 

Since MI=T0 and hence M is closed under G, this implies that in fact 

z ={G(xx,..., xn, t): tew} 

= F(x1,...,xn, w), 

hence M is closed under F Moreover, taking 

*(*!,•••, x,„ w, z) (Vs)[s ez« (3t)[t g w & <p(xx,..., x„, t, s)]], 

it is clear that 

F(x1}.„, xn, w) = z <=>Mk*(xx,..., xn, w, z), 

so F is ZF-absolute. 

The argument with m > 1 is similar, 

(viii) Let 

G(xx,..., xn, 
if R(xl,..., Xn, t), 

if ~\R(x1,...,xn,t), 

so that G is ZF-absolute and by (vii), the operation 

Jt(xx,..., xn, z, w) = {G(xx,..., x„, z, t): t e w} (T w 
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is also (easily) ZF-absolute. Clearly 

s e F1(x1,..., xn, z, w) <=* s e w & R(xu..., xn, s) 

v[s = z& zew& (3t)~ijR(xlv.., xn, t)]; 

since ZF implies that we cannot have w e w, we then have 

s e Fi(xlv.., xn, w, w) <=» s e w & R(x1?..., xn, s) 

and we can take 

F(xj,..., xn, w) = F1(x1,..., xn, w, w). H 

We will now apply this basic theorem to show that many natural 

notions are ZF-absolute. 

8E.2. Theorem. The notions #l-#20 of Theorem 8C.1 are all ZF- 

absolute. 

Proof. It is enough to establish the ZF-absoluteness of #l-#5, since the 

notions following #5 are easily proved absolute using 8E.1. Now e, c 

and = are definable by X0 formulas, so they are ZF-absolute by 8D.3; 

we will outline the proof for pairing, that for union being similar. 

Let if be the formal sentence of £6 which expresses the axiom of 

pairing and suppose M is a transitive class which satisfies <//. This means 

that for each x, y in M there is some w in M such that 

(*) MI=(Vt)[te w <=> (t = x vt= y)]. 

We claim that in fact w ={x, y}; this is because (*) simply means that (in 

V) 

(VteM)[te w o(t = xvt = y)] 

and since M is transitive we have w c M, so easily 

(Vf)[t ew<=>(t = xvr = y)], 

i.e. w ={x, y). 

This means that every transitive M which satisfies if is closed under the 

pairing operation. Since the relation {x, y}= w is obviously definable by a 

Xn formula which is absolute for all transitive classes, the operation 

(x, y) h>{x, y} is ZF-absolute. 

Before proceeding to show the ZF-absoluteness of several other no¬ 

tions, it will be instructive to notice that many natural and useful notions 
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are not ZF-absolute. Roughly speaking, no notion related to cardinality is 

ZF-absolute. The key for these proofs is the Countable Reflection 

Theorem 8C.10. 

8E.3. Theorem. None of the following notions is ZF-absolute: A, (R, 

Cardinal (x), x » Power(x), x » Card(x), (Card(x) — least ordinal 

equinumerous with x). 

Proof. If Ji were ZF-absolute, then Jf would be a member of every 

standard model A of some finite T'cZF; but X is uncountable and T° 

has countable standard models by 8C.10. 

To take another example, suppose the relation Cardinal(x) were 

ZF-absolute, so that there exists a formula <p(x) of £e and a finite 

F°£ZF such that for every transitive MkT° and for x e M, 

Cardinal(x) oMfipfx). 

Now it is true in V that 

(3x)(3x)[x = o> & Cardinal{x) & to e x] 

and of course we can express this proposition by a formal sentence i/t, 

using cp(x) to express Cardinal(x) and expressing x = a> by some x(x) 

which is absolute for all standard models of some T1 c ZF. By the 

ZF-absoluteness of to, we can also make sure that a> belongs to all 

standard models of T1. 

By the Countable Reflection Theorem 8C.10, choose a countable, 

transitive M such that Mt=T°U T1 U{(//}. Clearly weM and for some 
xeM, 

Ml=<p(x) & to ex 

so by the alleged absoluteness property of <p(x), 

Cardinal(x) & to e x. 

However this is absurd since x is a countable‘set (it belongs to a transitive 
countable set) and x ^ to. 

(The proof we gave used the axiom of choice, but the result does not 
depend on this axiom by 8F.14.) 

The next result is fundamental. 
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8E.4. Mostowski’s Theorem. The relation 

WF(r) <^>r is a wellfounded relation 

is ZF-absolute. 

Proof. Put 

P(r, x) <=> r is a relation 

& {either x is not a subset of Field (r) 

or x = 0 or x has an r-minimal member} 

<=> Relation(r) 

& {(3f g x)[t£ Field(r) 

v x =0 

v(3u e x)(Vv e x)[(u, u)<=r =*(u, v)e r]}, 

using the notation of 8C.1. Clearly P is ZF-absolute and 

WF(r)«(Vx)P(r,x). 

Similarly, let 

Q(r, /) <=» r is a relation 

&{f is a function which maps Field (r) into the 

ordinals in an order-preserving fashion} 

«=> Relation(r) & Function(f) 

& Domain(f) = Field(r) 

& (V| g Image(/))Ordinal (£) 

& (Vx g Field(r))(Vy g Fie/d(r)){[(x, y)er &(y, x)£r 

-/(*)</( y)}. 

Again Q is ZF-absolute and obviously 

WF(r) <=^ (3/)0(r, /). 

Hence 

(*) (Vr){(Vx)P(x, r) ^ (3/)Q(r, /)}. 

Now we come to a subtle point in the argument. How did we recognize 

that (*) is true? The answer is that we proved (*) from the axioms of ZFC, 

the only assumptions we make about sets without explicit notice. If the 
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reader takes the time to actually write down a proof of (*), he will realize 

that in that proof he does not use the axiom of choice and he appeals to only 

finitely many axioms of ZF. 

Let T°, T1 be finite subsets of ZF such that P and Q are absolute for 

standard models of T° and T1 respectively and let T* be the finite subset 

of ZF we needed to establish (*). A moment’s reflection shows that if M 

is a standard model of T°U T1 U T*, then M satisfies the formal sentence 

of £,= which expresses (*); in other words, for reM, 

(**) (Vx e M)P{x, r) <=> Of e M)Q(r, f). 

Now part (vi) of 8E.1 implies immediately that WF(r) is ZF-absolute. 
—\ 

The argument in this proof is typically metamathematical and will 

undoubtedly cause some uneasiness to those without a good background 

in logic. 

One simple fact we used was that if MkT and <p is a logical conse¬ 

quence of T, then Ml=<p. This is a basic property of mathematical proofs 

which has nothing to do with set theory—any logical consequence of 

group theory will hold in all groups, any property of Banach spaces whose 

proof does not appeal to the completeness of the norm will in fact hold 

for all normed linear spaces, etc. 

The observation that in proving (*) we only used a finite number of 

axioms from ZF (and that therefore (*) holds in all models of these 

finitely many axioms) is a bit more subtle and it would be a good idea for 

the novice in metamathematics to actually put down a proof of (*) and 

list all the axioms of ZF that are needed. (Assuming WF(r) define 

f: Field(r) —» ON by the recursion 

/(*)= U {/(y) U{/(y)}: y <rx}, 

see 8C.2.) 

In fact, any theorem of Zermelo-Fraenkel set theory which is expressible 

by a sentence of £e can be proved using only finitely many axioms of ZF; 

this is because a “proof” in Zermelo-Fraenkel set theory is nothing but a 

finite sequence of propositions, all of them expressible in £e and each 

being either an axiom of ZF or a “purely logical consequence” of 

propositions preceding it. It follows that the formal sentence of £€ 

expressing some theorem of ZF holds in all standard models M of some 
sufficiently large, finite T° c ZF. 

We will often appeal to these metamathematical observations to save 
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ourselves from having to put down long, complicated proofs. In principle, 

the reader could always supply the finite T°c ZF needed, by working out 

in full detail a proof of the relevant theorem. 

The same kind of metamathematical argument is needed in the proof of 

the next result. 

8E.5. Theorem. Suppose G : Vn + > —> V is a ZF-absolute operation and 

F: ON xV" -> V 

is the unique operation satisfying 

F(i, xj = G({<tj, F(t), xl5..., xn)>: t] < £}, xlv.., xj; 

then F is also ZF-absolute. (ZF-absoluteness of definition by recursion on 

the ordinals.) 

Proof. Assume G is absolute for all transitive models of T° <= ZF. Go 

back to the proof of 8C.2 to recall that F is defined by an expression of 

the form 

F(£, xl5..., xn) = w^> (3/i){P(|, x1?..., xh, h) & Function(h) 

& 16 Domain(h) & h(g) — w}, 

where P is easily absolute for all models of T°. Moreover, we can prove 

(V£ x1?..., xn)(3h)P(£ xl5..., xn, h) 

using only finitely many additional instances of the axiom scheme of 

replacement, say T1 c ZF. Thus for every standard model M of T° U T1 

and £, Xj,..., xn in M we have (3h e M)P(£ x1?..., x„, h), which implies 

immediately that M is closed under F. 

We can also prove easily in ZF (using only some finite T2 <= ZF) that 

(V£ x1?..., xn, w){(3h)[P(|, xlv.., xn, h) & Function(h) 

& £e Domain(h) & h($) = w] 

<=> (Vh)[[P(£, xl5..., xn, h) & Function(h) 

& £e Domain(h)] =>• h(£) = w]}; 

thus by part (vi) of 8E.1 the relation 

R(£ X!,..., xn, w) «=> F(£ Xj,..., x„) = w 

is ZF-absolute and then easily F is ZF-absolute. 
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A special case of definition by recursion on ON is simple recursion 

on a). 

8E.6. Theorem. Suppose F(k, xlv.., xn) satisfies the recursion 

where Gx and G2 are ZF-absolute. Then F is also ZF-absolute. 

Proof. Define 

if m = 0, 

xn),k-1, xj if keoj,k^0, 

otherwise 

GjUj,..., xn) 

G(f, k, xn) =< G2(f(k -1, xx 

.0 

and verify easily that G is ZF-absolute and F is definable from G as in 

8E.5. 

8E.7. Corollary. The relations and operations #21-#26 of 8D.1 are 

ZF-absolute. 

Proof. Go back and reread the proof of 8D.1, keeping in mind the 

results of this section. The key part is the ZF-absoluteness of the 

satisfaction relation which comes directly from 8E.6. 

Exercises 

A very natural question to ask at this point is: which analytical pointsets 

are ZF-absolute? We have to be careful here, because the simplest 

pointset of type 1, A itself is not ZF-absolute as an object by 8E.3— 

simply because it is uncountable. On the other hand, membership in A is 

easily ZF-absolute and it will turn out that all X\ pointsets have this 

property. 

To make the notions precise, call a set A absolute for (a collection of 

classes) D as a relation or ZF-absolute as a relation if the corresponding 

membership relation in A, 

Ra(x) <=> x G A 

is absolute in the relevant sense. 
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Similarly, a function 

f:A^B 

is absolute for 2D as an operation or ZF-absolute as an operation, if the 

operation 

F(x)=(/W if xeA, 

l 0 if x£A 

is absolute in the relevant sense. For example, the identity function on A 

which sends a to « is ZF-absolute as an operation, but not as a set of 

ordered pairs (which is uncountable). 

8E.8. Show that all arithmetical pointsets of type 0 or 1 are ZF-absolute 

as relations. 

Hint. For type 0 the result follows easily from 8C.1 and the closure 

properties of ZF-absolute notions, 8E.1. 

For type 1, first compute 

a & A <=> Function(a) & Domain(a) = a> & Image(a) ^ <u; 

so the relation 

P(a) <=> a e A 

is ZF-absolute. Again, 

a(n) = m <=>aeA&nea> & m e o> & (n, m)ea, 

so the relation 

0(o:, n, m) <=> a(n) = m 

is ZF-absolute. The rest follows by 8E.1. H 

8E.9. Show that every X\ pointset of type 0 or 1 is ZF-absolute as a 

relation; similarly, every A\ function 

with 9C,*y of type 0 or 1 is ZF-absolute as an operation. 

Hint. Given Q £ Xr x ••• xXn with each X; either a> or A and such that 

Q(xx,..., xn) (3o')(Vt)P(x1,..., xn, a(t)) 
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with P recursive as in 4A.1, put 

F(xi,..., xn) = {(u, i))ewXw: Seq(u) & Seq(v) 

& v codes an initial segment of the 

sequence coded by u 

& P(xxn, u)}. 

Clearly F is ZF-absolute as an operation by 8E.1 and 8E.8 and 

Q(xx,..., xn)^nWF(F(x1,..., xj), 

so Q is ZF-absolute, by Mostowski’s Theorem 8E.4. 

To prove the second assertion, suppose 

/: 9C —» X 

is A i and put 

Q(x, a, t, s)**f(x)(t) = s; 

now Q is A\ and hence ZF-absolute as a relation and clearly 

/(x) = {(t, x): t, s G a) & Q(x, a, f, s)}, 

so that / is ZF-absolute as an operation by 8E.1. 

The result for f: 9C —> Y1 x • • • x Yk with each Yt — w or Y follows easily. 
H 

In trying to extend this result to arbitrary product spaces we meet a 

problem: for some basic space X, the recursive function 

i 

which enumerates the fixed recursive presentation of X may already fail 

to be ZF-absolute. Suppose, for example, that we have carelessly adopted 

the definition of real numbers as equivalence classes of Cauchy sequences 

of rationals. Now each real x is an uncountable object and cannot be 

ZF-absolute by the argument of 8E.3. 

In the case of R we can easily correct this situation by adopting some 

other definition of real numbers, e.g. in terms of Dedekind cuts, but for 

the general case we need the following lemma. 

8E.10. Show that each basic space (X, d) (which admits a recursive 

presentation) is isomorphic with a space (X*,d*) where X*cy and 
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(X*, d*) admits a recursive presentation {r*, rf,...} for which the relations 

P(x) <=» x £ X*, 

YYl 
0(x, y, m, k) <=* d*(x, y)<~—- 

fc +1 

and the operation 

are all ZF-absolute. 

Hint. Given X with metric d and recursive presentation {r0, 

choose by 4A.7 a n° set A <=X and a recursive rr :X—> X, such that 7r is 

injective on A and tt[A] = X Take X* = A and on X* define 

d*(a, /3) = d (77(a), 7r(|3)). 

Put also 

rf = f(rl), 

where f: X —» X is a d} inverse of 77. 

It is immediate from 8E.8 that the relations P and Q above are 

ZF-absolute, since they are arithmetical relations on spaces of type 1. It 

is also clear that {r*, rf,...} is a recursive presentation of X*. Moreover, 

the map 
* ^ 

1 ** ri 

is easily A\ on u> to X, so it is ZF-absolute by 8E.9. H 

From now on we assume that we have replaced all basic spaces by 

isomorphic copies, if necessary, so that the conditions of 8E.10 hold. This 

implies immediately that the same conditions hold for every product 

space. We might as well put this down as part of the stronger result that 

we need. 

8E.11. Show that all X\ pointsets are ZF-absolute as relations and all A\ 

functions between product spaces are ZF-absolute as operations. 

Hint. Check first that for each 9C = X1x---xXk the membership rela¬ 

tion 

P9C(x) «=> x e 9C 

<=> (3xj)-"(3xk)[x1 €Xj & ••• & xk s Xk 

& x = <x1,..., xk>] 
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is ZF-absolute. (For transitive M, if (x^,..., xk)eM, then xt,..., xke M.) 

Similarly, the function i r, and the basic nbhd relation {(x,s):xe 

N(9C, s)} are easily ZF-absolute, from the same results about the basic 

spaces. Now every 2° pointset is of the form 

P(x) ^ (3s){x e N(9C, s) & P*(s)} 

with P^o), P* semirecursive, so P is ZF-absolute. Finally, if P is 2\, 
then 

P(x)^(3a)(Vt)R(x,d(t)) 

with a semirecursive R and the argument that this is ZF-absolute as a 

relation is exactly as in 8E.9 by appealing to Mostowski’s Theorem 8E.4. 

For A\ functions again the argument is the same as in 8F.3, using the 

fact that for each basic space (X*, d*) we have X* c= by our convention. 

H 

8F. The basic facts about L 

Let us start by collecting in one theorem the basic absoluteness facts 

about the constructible hierarchy that follow from the results of 8E. 

8F.1. Theorem, (i) The operation 

and the relation 

P(x, Q^xeLt 

are both ZF-absolute. 

(ii) There is a canonical wellordering of L, x<Ly which is ZF-absolute 

and such that 

yeL5&x<Ly=»xeL?. 

(iii) The operation 

(U)^(A) 

and the relation 

are both ZF-absolute. 

P'(x, A) <=> x e L€(A) 
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(iv) The relations 

Q(x) <=> x 6 L, 

Q'(x, A) «=> x e L(A) 

are both absolute for inner models of ZF. 

Proof, (i) and (iii) follows immediately from the definitions, 8E.7, 8E.5 

and of course, the basic closure properties of ZF-absoluteness listed in 

8E.1. Part (ii) also follows easily by examining the proof of 8D.12. 

To prove (iv), let cpL(x, £) be a formula of £e by (i) such that for some 

finite T° £ ZF, whenever M is transitive and M t= T°, 

Ordinal^) & x e L€ «=> MI=<pL(x, £) 

and let i//(x) be the formula 

i//(x) <=> (3£)<pL(x, £). 

If M is an inner model of ZF so that MbZF and M contains all the 

ordinals, then for x € M, obviously 

xeLo for some £, x e Ls 

<=> for some £ e M, M <pL (x, £) 

^MI=0€)<pL(x, © 

The argument for xeL(A) is similar. H 

We are now in a position to prove what we claimed in the beginning of 

8E. 

Fix once and for all a formula cpL(x, £) such that for all transitive 

models M of some finite T° c ZF and x, | in M, 

xeLj <=> Mt=<pL(x, £) 

and let “V = L” abbreviate the formal sentence of ££ which says that 

every set is constructible: 

V = L <=* (Vx)(3^)cpL(x, €)• 

We also construct a similar formula 

V = L( A) 

with a free variable A which says that “every set is constructible from A”. 
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8F.2. Theorem, (i) Lb V = L. 

(ii) For each set A, 

L(A)bV = L(A). 

Proof. Compute: 

L b V = L ^ L b(Vx)(3£)<pL(x, i) 

<=> for each x £ L, there exists £ £ L, L b cpL(x, £) 

<=> for each x £ L, there exists £ £ L, x £ Le 

and the last assertion is true by the definition of L and the fact that it 

contains all the ordinals. ~I 

This is a very basic result about L. One of its applications is that it 

allows us to prove theorems about L without constant appeal to 

metamathematical results and methods: we simply assume V = L in 

addition to the axioms of ZF and any consequence of these assumptions 

must hold in L. 

We have already argued about the axiom of choice in the beginning of 

8E, but we should put the result down for the record. 

8F.3. Theorem (Godel [1938], [1940]). There is a formula i/il(x, y) of £e 

such that 

Ll=“{(x, y): i/>L(x, y)} is a wellordering of V”. 

In particular, L satisfies the axiom of choice. 

Proof. If i/>* is the formal sentence of £e expressing the symbolized 

English in quotes, then by 8D.12 and the fact that LbZF, 

while by 8F.2 we have L 1= V = L. —\ 

For the generalized continuum hypothesis we need a basic fact about L, 

a version of what is sometimes called the condensation lemma. 

8F.4. Theorem. There is a finite set of sentences TL of £e such that the 

following hold. 

(i) L t= TL. 

(ii) If A is a transitive set and A b TL, then A = Lx for some limit 

ordinal A. 
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(iii) For every infinite ordinal £ and every set xeL such that x^L€, there 

is some ordinal A such that 

£<A<r, 

Lx b TL and x G Lx. 

Proof. Take 

TL = T°U{V = L} 

where both operations 

£»€ + !, 

are absolute for the standard models of T° and the relation x g L€ is 

defined on all standard models of T° by the specific formula <pL(x, |) 

which we used to construct the sentence V = L. 

Clearly L 1= TL. 

If A is transitive and A b TL, let 

A = least ordinal not in A 

and notice that A is a limit ordinal, since A is closed under the successor 

operation. Now 

^ A => L^ G A, 

by the absoluteness of £ * L€, so 

Lx = U — -A* 

On the other hand, A b V = L, so that 

for each xeA, there exists £ g A, A b cpL(x, £) 

i.e. (by the absoluteness of <pL(x, £)), A c Lx. 

To prove (iii) suppose xcL£ and x e Lc. Using the Reflection Theorem 

8C.4 on the hierarchy {L^: £ £ ON} and the fact that Lb TL, choose p > £, 

p, > £ such that b TL—so now xgL, and L^ b TL. 

By the Skolem-Lowenheim Theorem 8A.4 applied to the (wellordera- 

ble) structure (L^, g), we can find an elementary substructure 

(M,g)<(L^,g) 

such that L€cM, xgM and card(M) = card(L$) = card(ij) by 8D.11. 
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Since (M, e) is elementarily equivalent with (L^, e), it satisfies in particu¬ 

lar the extensionality axiom, so by the Mostowski Collapsing Lemma 

8C.9, there is a transitive set M and an isomorphism 

77:M—»M 

of (M, e) with (M, e). Moreover, since the transitive set 

y = U{x}c M, 

we have 

7r(x) = x 

and hence x e M. 

Now (L^, e)l=TL and therefore the elementarily equivalent structure 

(M, e) t=TL, so that the isomorphic structure (M, e)kTL; by (ii) then, 

M=LX 

for some A and of course, A<£+, since card(M) = card(tj). —\ 

From this key theorem we get immediately the generalized continuum 

hypothesis for L. 

8F.5. Theorem (Godel [1938], [1940]). If V — L, then for each cardinal A, 

2X = A+. 

Proof. By 8F.4, Power(A)c lk+ and hence card(Power(\))<card{Lx+) = 

A+. H 

We should point out that the models L(A) need not satisfy either the 

axiom of choice or the continuum hypothesis. For example, if in V truly 

2K°>X1, then there is some surjection 

77 : A X2 

and obviously 

L({<a, 77(a)): a e A})t=2K°>K2. 

As another application of the basic Theorem 8F.1, we obtain intrinsic 

characterizations of the models L, L(A). 

8F.6. Theorem. L is the smallest inner model of ZF and for each set A, 

L(A) is the smallest inner model of ZF which contains A. 
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Proof. Suppose M is an inner model of ZF and A0 e M. Since the 

operation 

(£A)»L€(A) 

is ZF-absolute, M is closed under this operation; since A0eM and every 

ordinal £eM, we have (V£)[Ls(A0)e M] so that L(A0)cM. —\ 

One of the consequences of this result is that for every perfect product 

space 0C, 

L(X) = L(X), 

simply because there is a A\ isomorphism between 9C and X which is 

ZF-absolute as an operation by 8E. 11. In particular, 

L(X) = L((R) 

= the smallest inner model which 

contains all real numbers. 

At this point we can deliver on our promise in Chapter 5 and show that 

if jVcL, then X admits a .£ 2-good wellordering. 

Recall that <L is the canonical wellordering of L which by 8F.1 

satisfies 

yeLj&x <L y => x e Le 

8F.7. Theorem (Godel [1940], Addison [1959b]). (i) The pointset XFiL 

of constructible irrationals is X\. 
(ii) The restriction of <L to X is a 2^-good wellordering of XDL; i.e. if 

PcjV'x 9C is in X\, then so are the relations 

Q(a, x) <=» (3^ <La)PO, x), 

R{a,x)^aeL& (Vj3 <La)P(|3, x). 

(iii) If X^L, then X admits a X^-good wellordering of rank Kx. 

Proof, (i) is any easy consequence of (ii), but it is more instructive to 

show (i) first. 

First of all, we claim that if TL is the finite set of sentences of the basic 

Lemma 8F.4, then 

aeL <=>there exists a countable, transitive set A 
(1) 

such that (A, e) b TL and a e A. 
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The implication (<=),in (1) is immediate, because by 8F.4, if (A, €)t=TL, 

then A = Lk for some ordinal A. For the other direction, notice that (as a 

set of pairs of integers), each a is a subset of L(<0, so by (iii) of 8F.4 

a e L => for some countable A 

a eLK and Lx t= TL. 

The key idea of the proof is that the structures of the form (A, e) with 

countable transitive A can be characterized up to isomorphism by the 

Mostowski Collapsing Lemma 8C.9. In fact, if (M, E) is any structure 

with countable M and EcMxM, then by 8C.9, immediately 

(M, E) is isomorphic with some (A, e) where A is transitive 

(2) <=* E is wellfounded and (M, £)t= “axiom of 

extensionality”; 

thus 

there exists a countable, wellfounded structure 

(M, E) such that (M, E)k “axiom of extensionality”, 

(3) (M,E)kTL and 

a e M = the unique transitive set such that 

(M, E) is isomorphic with (M, e). 

To see how to express the last condition in a model-theoretic way, 

recall that the relation “a e jV” is ZF-absolute by 8E.8 and choose some 

<Po(«) such that for all transitive models M of some T0cZF, 

aeAo Ml=(p0(a), 

Next define for each integer n a formula i//n(x) which asserts that x= n, by 

the recursion 

^o(x) *=> x = 0, 

tA„ + 1(x) <=*• (3y)|>ri (y) & x = yU{y}] 

and for each n, m, let 

i/Vm(a) <=* (3x)(3y)[i/q(x) & i//m(y) & <x, y)ea]. 
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It is now obvious that 

aeL«there exists a countable, wellfounded structure 

(M, E) such that (M, E)b “axiom of extensionality”, 

(M, E) l=TL and for some a eM, (M, E)t=<p0(a) and 

for all n, m, a(n) = m <=*> (M, E)t= i/ilt m(a). 

The point of this model-theoretic computation is that we can code 

countable structures by irrationals, as we did in 8A and then the satisfac¬ 

tion relation is A\ by 8A.6. Recall that in the notation established for 

8A.5 and 8A.6, we associated with each characteristic u and each 

irrational 0 a structure 21(u, (3), so that in the case u = 8 which corres¬ 

ponds to the language of set theory ££, 

21(8, 0) = ({t: (0)o(t) = IK i(t, s): (0)o(O = (0)o(s) = 1 

& (0)a«t, s» = 1}); 
moreover 

Sat(8, 0, m, x) «=> S3I(8, 0) is a structure (i.e. it has a nonempty domain) 

& m is the code of a formula xm of £e 

& x is an assignment in 21(8, 0) to the free 

variables of Xm (i-e. whenever v; is 

free in xm, then (0)o((*)i) = 1) 

& 21(8, 0), (x)0, (x)1?...t=Xm 

and this relation Sat is A\. 

Let 
f(m, n) ~ the code of the formula i(fm,n(a), 

so that f is obviously a recursive function. Let also k0 be the code of the 

conjunction of the sentences in TL and the axiom of extensionality and 

let k, be the code of the formula cp0(ot) which defines we are 

assuming that both in i|/m n (ct) and in <p0(ot), the free variable ot is actually 

the first variable v0. It is now clear that 

a e L <=> (30){Saf(8, 0, k0,1) 

& {(t, s): (0)o(t) = (0)o(s) = 1 & (P)i((t> s» = 1> 

is wellfounded 

&(3a)[Sat(8, (3,k„(a)) 

& (Vn)(Vm)[a(n) = m*=*Sat(8, 0, /(n, m),<a))]]}, 
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which implies directly that LDjV is X\ (using the fact that wellfounded- 

ness is /Tj). 

To prove (ii), let t//L(v0, Vj) be a formula which defines the canonical 

wellordering of L absolutely on all models of some finite T[ c ZF (by (ii) 

of 8F.1) and let SL c ZF be finite and large enough to include T\, TL, the 

axiom of extensionality and the set T0 of part (i), chosen so that <p0(a) 

defines ae / on all transitive models of T0. Using the key fact 

a s Lj & 13 <L a => /3 e 

and Mostowski collapsing as above, we can verify directly that for a eL 

and arbitrary PcjVx 9C, 

(Vj3 <La)P(|8, x) <=> there exists a countable, wellfounded 

structure (M,E)\ZSL and some 

aeM such that (M, E)k<p0(a) and 

(Vn)(Vm)[a(n) = m <=> (M, E)ki//nm(a)] 

& (Vb){(M, E)t=cp0(b) & ipL(b, a) 

=> (3j3)[(Vn)(Vm)[/3(n) = m (M, E)t=i/in m(6)] 

& F03, x)]}. 

If P is then it is easy to see that this whole expression on the right 

leads to a X\ relation by coding the structures (M, E) by irrationals as 

above^—the key being that the universal quantifier V/3 has been turned to 

the number quantifier Vb. H 

We put down the argument for (i) in considerable detail, because it 

illustrates a very useful technique for making analytical computations of 

relations defined by set-theoretic constructions. 

For the next result we will do the opposite, i.e. we will give a 

set-theoretic construction for X\ pointsets which will establish that they 

are all absolute as relations for L. It is useful to derive this fundamental 

result of Shoenfield from a strong representation theorem for X\ subsets 

of Jf, which is nothing more but the metamathematical content of the 

proof of 2D.3—that sets are X^Suslin. 

8F.8. Shoenheld’s Lemma. Suppose is a X\ set of irrationals. Then 

there exists a ZF-absolute operation 
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which assigns to each ordinal £ > <o a tree on co x £ such that the 

following holds, where A is any uncountable ordinal: 

«eA« (3£ > (o)[T€(a) is nof wellfounded] 

<=> (3£> a>)[£ <X1 & T€(a) is nof wellfounded] 

<=> Tx(a0 is not wellfounded. 

Proof. One can derive this quite easily by re-examining the proof of 

2D.3 and applying the absoluteness theory at the key points, but it is also 

simple enough to put a complete proof down. 

Choose a recursive R so that 

£* e A <=> (30)(Vy)(3f)R(d(f), 0(f), T(0) 

by 4A.1 so that for each a, 0, the set of sequences 

S“’0 ={(c0,..., c,_i): (Vt<s)~iJ?(d(f), 0(f), <c0,..., ct_!»} 

is a tree and easily 

asA« (30){S“,P is wellfounded} 

(1) *=>(30)(3/: S“,3-^X1){if (c0,..., cs_1)e S“’3 and 

t < s, then 

/(c0,..., ct_1)>/(c0,..., cs_j)}. 

In the computation below we will represent S“ 3 by the set of sequence 

codes <c0,..., cs_j) of members (c0,..., cs^0 g S“,e. 

For each define first a tree on oix(oix^) as follows: 

((ao, ho? (®n—1? hn—I? ^n—i)} ^ ^ 

<*=* Co?'**? £n-l ^ £ 

& {if i = <c0,..., cs_x) and / = <c0,—> ct_!> 

where / < i < n and for each m < s, 

~iR((ao,..., am_j), (h 0v*5 ^m — i), <c0,..., Cm_1», 

then § > £}. 

Notice that the operation 

is clearly ZF-absolute and 

€ — v => — sv. 
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In the notation established in Chapter 2, for each 

SHct) = mo,£o),...,(bn-u$n-i)y- 

((a(0), b0, (a(n — 1), bn_u |n_1))eS^} 

is a tree on o> x £ and it is almost immediate that 

(2) aeA=> (3|<K1)[S€(a) is not wellfounded], 

(3) S€(a) is not wellfounded =>aeA. 

(To prove (2) choose (3 = (bn, hlv..) such that S“'3 is wellfounded, choose 

f: Sa ti -» Ki as in (1) above and for i = (c0,..., cs_t) with (c0,..., c^) e S“’3, 

take ^ =/(c0,..., cs_j)—for i not of this form take £=0. To prove (3), 

choose an infinite branch (b0, £0)> (bx, in S6(a), take (3 ~(b0, blv..) 

and define /: S“’3 —»• £ by 

f (Coj-'-j Cs —l) ' ■" i (eg,..., Cs_i) 

so that it immediately satisfies the condition in (1).) 

Now (2) and (3) imply directly the assertions in the theorem taking 

T€ = S€, except that S6 is a tree on to x (o» x £) rather than a tree on <o x 

To complete the proof, put 

T6 = all initial segments of sequences of the form 

((n05 b0), (al5 £oX (<^25 bi), (a3, ^i),—, (u2ni bn), (u2n+1, ^n)) 

such that ((a0, b0, £0), («i, bu (an, bn, £,)) e Ss 

so that T€ is a tree on <o x £ (because a> c £) and easily, for any a, 

T€(a) is not wellfounded <=*• S$(a) is not wellfounded. H 

8F.9. Shoenfield’s Theorem (I) (Shoenfield [1961]). Each pointset is 

absolute as a relation for all standard models M of some finite T*<^ZF 

such that c M 

In particular, if A ^ a>" is .£2(a0) aud «oe L, then AeL; similarily, if 

(3 e A](a0) and a0e L, then (3 e L. 

Proof. Take first A £ jV and let <p(£, T) be a formula of £e by the lemma 

such that for all standard models M of some finite Tt £ ZF, 

T= ^Mkcp(|, T). 
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Notice also that the operation 

(«, 7>T(a) 

is easily ZF-absolute, so choose i//(a, S, T) so that for all standard models 

M of some finite T2 c= ZF, 

a,TeM=> T(a) e M, 

S = T(a)^MtiJ/(a, S, T). 

Finally use Mostowski’s Theorem 8E.4 to construct a formula x(S) of £e 

such that for all standard models M of some finite T3 c ZF and S e M, 

S is wellfounded Ml=x(S). 

Now if M is any standard model of 

t*=7\ut2ut3 

such that then by the lemma, for aeM 

«eA«=> there exists some £e M such that T€(a) is not 

wellfounded 

«=> there exists some £ e M such that 

MI=(3S)(3D[«p(fc T) & iKa, S, T) & -i*(S)] 

~ Mb(3g)(3S)(3T)[<p(g, T) & iKa, S, T) & -i*(S)]. 

The result for arbitrary X\ pointsets Pg9C follows easily by considering 

A = /[P], where /: 9C —> AT is a A { injection with A} inverse and applying 

8E.11. 

To prove the second assertion, take A c oj for simplicity of notation 

and suppose 
fieA «=> P(n, a0) 

where P is X\ and a0eL and let i//(n, a) define P absolutely as in the first 

part, so that in particular 

P(n, a) <=> L l=i//(n, a). 

The sentence 

(Va)(3x)[xe a) & (Vn)[nex^ i/Kn, a)]] 

is a theorem of ZF and hence it holds in L. Taking a = a0, this implies 

that there is some xeL such that x <= o> and for all n, 

Lfneio i/i(n, a0), 
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so that 
n ex <=> L 1= il/(n, a0) 

P(n, a0) 

h e A ^ 

thus x — A and AeL. 

If (3eAl(a0), with a0eL, apply this to 

A(n, m) <=> (3(n) = m 

to infer that AeL and hence (3 e L. H 

To appreciate the significance of Shoenfield’s Theorem, recall from the 

exercises of 8B that a formula 6(aam) of the language of second 

order arithmetic A2 is X\ if 

0(«i,..., «m) ^ (3P1)(Vp2)(3p3)--(-pil)<p(ai,..., am» Pi> P„)» 

where (f>(ah..., am, Px,..., P„) has no quantifiers over X. It is clear that we 

can interpret these formulas over standard models of ZF simply by 

putting (for alv.., am e M), 

M 1=0(01!,..., am)<=>(&>, JVTUVf, +, •, ap, 0, l)h0(a!,..., am), 

i.e. by interpreting the quantifiers 3p;, Vp, as ranging over the irrationals 

in M and using the standard interpretations for the operations +, •, ap 

(which are ZF-absolute by 8E.8) and the quantifiers Bn, Vn (since co is 

also ZF-absolute and hence a member of M). 

8F.10. Shoenfield’s Theorem (II) (Shoenfield [1961]). (i) If 0(a,,...,am) 

is a or LI\ formula of second order arithmetic, then for every standard 

model M of ZF such that c M and alv.., <*m e JVf, 

Vt=0(a!,..., am) t=0(alv.., am); 

in particular, if am e L, then 

V 1=0(0!!,..., am)«=>LI=0(a1,..., am). 

(ii) If we can prove a or III sentence 0 by assuming in addition to the 

axioms of ZF the hypothesis V = L (and its consequences AC and GCH, 

then 0 is in fact true (i.e. Vt=0). 

Proof. Take a XI sentence for simplicity of notation 

0 <=> (3a)(Vp)<p(ot, P), 
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and let 

P(a, 0) «=> A~ k<p(a, 0) 

be the arithmetical pointset defined by the matrix of 0 so that 

V^0^(3a)(V0)P(a, 0), 

M 0 <=* (3a e M)(V/3 € M)P(a, (3). 

Using the Basis Theorem for X\, 4E.5, 

VT0 => (3a)(V0)P(a, (3), 

=*(3aG^)(V0)P(a,0) (by 4E.5) 

=* (3a G M)(V/3)P(a, 0) (by 8F.9) 

=> (3a G M)(V0 G M)P(a, 0) (obviously) 

=*MT0. 

Conversely, assuming that Ml=0, choose some a0G M such that 

(V0GM)P(ao,0) 

and assume towards a contradiction that 

(30)-iP(ao, 0); 

by the Basis Theorem 4E.5 again, we then have 

(30 G/i2(«o))-|P(a0, 0) 

so that by 8F.9, 

(30 G M)-iP(a0, 0) 

contradicting our assumption and establishing (V0)P(ao, 0), i.e. VT0. 

The second assertion follows immediately, because if we can prove 0 

using the additional hypothesis V = L, then we know that L k 0 by 8F.2 

and hence VE0 by the first assertion. ~I 

This theorem is quite startling because so many of the propositions that 

we consider in ordinary mathematics are expressible by X\ sentences— 

including all propositions of elementary or analytic number theory and 

most of the propositions of hard analysis. The techniques in the proof of 

8F.1 allow us to prove that many set theoretic propositions are also 

equivalent to X\ sentences. Theorem 8F.8 assures us then that the truth 

or falsity of these “basic” propositions does not depend on the answers to 
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difficult and delicate questions about the nature of sets like the continuum 

hypothesis; we might as well assume V — L in attempting to prove or 

disprove them. 

Of course, in descriptive set theory we worry about propositions much 

more complicated than which may well have different truth values in L 

and in V. 

Exercises 

We should put down for the record one of the best known results that 

comes out of the theory of constructibility. 

8F.11. Prove that the proposition V = L, the axiom of choice AC and the 

generalized continuum hypothesis GCH are consistent with ZF—i.e. we 

cannot prove the negation of any of these propositions in ZF. (Godel 

[1938], [1940].) 

Hint. All these propositions hold in L, so none of them can be refuted 

from the axioms of ZF which also hold in L. —\ 

A few remarks are in order on this proof. 

We developed the theory of constructibility here with no appeal to the 

axiom of choice, so there is no use of choice in this argument. On the 

other hand, we have presented this proof in the same general framework in 

which we have proved all the other results in this book—i.e. we have 

assumed that we have the structure (V, e) which satisfies all the axioms of 

ZF (even though it may fail to satisfy AC) and that we can reason about 

this structure in the ordinary way. Granting these assumptions and these 

methods of proof, the hint outlines a valid argument for the consistency 

of ZF with V = L, AC and GCH. 

It is customary in mathematical logic to give consistency proofs on the 

basis of minimal hypotheses and in fact the consistency of ZF with V = L, 

AC and GCH can be established assuming only that ZF is formally 

consistent and using only very basic, combinatorial arguments. To give 

that argument, we would have to give a precise definition of formal logical 

consequence (or formal proof) which would take us far afield from 

descriptive set theory. Suffice it to say that anyone who knows the 

rudiments of the theory of formal proofs will have no difficulty turning 

the hint above into a constructive, combinatorial demonstration of the 

consistency of ZF with V — L, AC and GCH, granting only the formal 

consistency of ZF. 
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We should also point out that at least as far as AC is concerned, the 

observation that we did not use the axiom of choice in 8F.11 is essential, 

if we are to have a nontrivial theorem. Because if we assume that(V, e) 

also satisfies AC, then it is obvious that —iAC cannot be a consequence of 

ZF—or else (V, e) would satisfy both AC and ~1AC. 

Next we put down two results about the axiom of choice in the models 

L(A). 

8F.12. Prove that if A is a set of constructible sets (AgL), then L(A) 

satisfies the axiom of choice. (Notice that the hypothesis holds if A is any 

set of ordinals.) 

Hint. Rework the proof of 8D.12 to show that there is a ZF-absolute 

relation P(A, W, x, y) such that wehenever W <= Ax A is a wellordering 

of TC(A), then {(x, y): P(A, W, x, y)} is a wellordering of L(A). Now 

argue that if A c L, we can find in L(A) a wellordering W of TC(A) and 

complete the proof as in 8F.3. 

8F. 13. Prove that the model L(JC) satisfies the axiom of dependent 

choices, DC. (You will need to use the fact that VFDC.) 

Hint. Show first that for every ordinal £, there is some ordinal A^ and a 

surjection 

tt£ : x A -» Lj(A’), 

such that 77€eL(Y). (Use induction on £ In the successor case, it is 

enough to construct from any surjection tt : A x A A, another surjec¬ 

tion p:A'x/^ (J {"A: nea>}. In the limit case, you may assume given 

surjections 7^: A'xY-* Le(«AT), for each £<A; put first 

7r(£ t], a) = a) 

and define p:A*x/^ LX(A) by p(£, a) = 7r(p,(£), p2(£), a), where 

£ ^ (pi(C), p2(£)) is a surjection of A* onto A'xA'.) 

Suppose now that PeLx(Ji), AeLx(Y), A^0, P^AxA and 

(Vx e A)(3y 6 A)P(x, y); we must show that there is a function /: a> A 

in L(jV), such that (Vn)P(f(n),/(n + 1)). 

By DC in V, there is some infinite sequence x0, xl5 x2,... in V such that 

(Vn)P(xn, xn+1), with each x, e A. If tt:Ax^ Lx(Y) is a surjection 

which lies in L(Y), we can further choose ordinals a„ (in V) such that 

xn = 7r(£n, aj. Now forget about the ordinals £n, but check that the 

function n an lies in L(jV), because it can be coded by a single irrational. 
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On (o x A define the binary relation 

(k, £)<(m, 7]) <=> k = m + 1 & P(ir(r}, am), irr(|, ak)); 

this relation lies in L(N) and it is not wellfounded in V, because we have 

(0,£0)>(1,£i)>(2,£2)>-- 

By Mostowski’s Theorem 8E.4 then, this relation is not wellfounded in 

L(jV), so that we have a function n ►» in L(X) such that 

(Vn)P(7r(£n, ctn), tr(£n+1, a„+1)) and we can finally take /(n) = rr(4, aj. 
H 

8F.14. Prove (without using the axiom of choice) that for every finite set 

T0 of axioms of ZF, there is a countable transitive set M such that Mk T0. 

Hint. Imitate the proof of the Countable Reflection Theorem 8C.10 

using the hierarch {Lg: £ e ON} instead of {: £ e ON}. —I 

8F.15. Prove that there is a smallest standard model of ZF (Shepherdson 

[1951], Cohen [1963]). 

Hint. If no set MkZF, then every standard model of ZF is an inner 

model and L is the least standard model by 8F.6. 

Assume now that some transitive set MkZF Since we proved that 

L k ZF using only the fact that V k ZF, it follows that for every transitive 

set M and for every sentence <p e ZF, 

MkZF => Mk“the collection of constructible sets satisfies 9”, 

where for each <p, the expression in quotes can be easily transformed 

into a sentence of £e. Now argue using 8F.1 that for MkZF and xeM, 

Mk“x is constructible” oxsMPlL 

and if A is the least ordinal not in M and MkZF, 

MfU = Lv 

Thus the least model of ZF is Lx, where A is the least ordinal such that 

FAkZF H 

8F.16. Prove that if N-L^0, then the pointset AflL is not Tl\ 

(Shoenfield [1961]). 

Hint. If it were, then N—L would be and thus have a A\ member 

by 4E.5, contradicting Shoenfield’s Theorem 8F.9. —\ 

8F.17. Prove that if N — L^0, then 17} sentences of the language of 
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second order arithmetic are not absolute for L—i.e. for some such 

sentence d, but Vl=-i0 (Shoenfield [1961]). —| 

8F.18. Prove that not all X\ pointsets are ZF-absolute as relations. 

Hint. If every X\ pointset were ZF-absolute, then (easily) there would 

be a finite T0 c ZF such that every standard model of T0 would contain 

all X\ sets of integers. Using the technique in the proof of 8F.7 argue that 

if 
P(P) <=>21(8, (3) is a wellfounded model of T0, 

then every X\ set of integers must be recursive in any /3 such that P(|3) 

and hence every A \ irrational must be recursive in every (3 such that 

P(/3); but P is %\ and by 8F.14 and the Basis Theorem 4E.5 there must 

exist some (3 &A\ such that P((3), which is absurd. H 

We now turn to the study of so-called relative constructibility. 

Consider structures of the form 

(M, 6, P), 

where PgM The language ££ 1 of these structures is obtained by adding 

a unary relation symbol P to Sf and interpreting P(x) by x e P. 

8F. 19. Prove that there is a ZF-absolute operation Def(A,P) such that 

for any two sets A, P, 

x 6 Def(A, P)«=>xgA & there is a formula 

<p(v0,..., vn_!, vj in the language 

£e'’ and members x0,..., xn_x of A, such that 

sexo(A,e,P n A) t= <p(x0,..., xn_x, s). 

Hint. Look up the proof of 8D.1 and alter the definition of the 

satisfaction relation #24 to take account of the additional unary relation 

PDA. H 

For each set A, the hierarchy of sets constructible relative to A is defined 

by the transfinite recursion 

Lo[A] = 0, 

L,+1[A] = De/(Lf[A],A) 

LX[A]= if A is a limit ordinal 
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and of course we put 

l[a]=LU-4[A]. 

We collect in one theorem all the basic facts about the models F[A], 

8F.20. (i) Prove that the operation 

(£A)»L,[A] 

and the relation 

P(x, i. A) <=>xe!j[A] 

are ZF-absolute. 

(ii) Prove that the relation 

Q(x, A) <=> x e L[A] 

is absolute for inner models of ZF. 

(iii) Prove that each L$[A] is a transitive set and 

(<^Lf[A]cLjA]. 

(iv) Prove that each L[A] is an inner model of ZF. 

(v) Prove that if AC\L[A] —B DL[A], then L[A] = L[B]; thus 

L[A] = L[A Pi L[A]]. 

(vi) Prove that AflL[A]eL[A] and 

L[A] = L(AflL[A]); 

in particular, 

AcL^L[A] = L(A). 

Hint, (i)-(iv) are established exactly like the corresponding results for 

the L|’s. 

To show (v), check by induction on $ that if A D L[A] = B F\ L[A], 

then L€[A] = L^[B]; then take B = A IT F[A], 

For (vi) argue first that A nL[A]c^[A] for some £, and then easily 

A fl L[A]e L€+1[A]. The ZF-absoluteness of (£, A) L6[A] implies im¬ 

mediately that L[A]cL(A), so applying this to AflL[A] we get 

L[AflL[A]]cL(AnL[A]); 

hence L[A] = L[A D L[A]]s L(A fi L[A]). On the other hand, given 
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ADL[A]eL[A], the ZF-absoluteness of (£, A)*L€(A) implies that 

L(A nL[A])c L[A], Finally, if AcLc L[A], then A nL[A] = A. H 

Caution: Since relative constructibility is often studied in the case where 

A is a set of ordinals, when L[A] = L(A), there is some confusion in the 

literature between the notations L[A] and L(A) and the clear distinction 

we have established here is not always observed. 

Notice that by 8F.20, if a e jV, then 

L[a] = L(a); 
on the other hand, 

L\X\ = L, 

since for each transitive set A the membership relation in the set ATI A is 

certainly definable in (A, e). 

In general, L[A] is a much better model than L(A). 

8F.21. Show that for each set A, L[A] satisfies the axiom of choice. 

Hint. Look up the proofs of 8D.12 and 8F.3, checking first that 

L[A]l=“every set is in L[A fTL[A]]”. H 

In the universe constructible from an irrational, we also have the 

full effect of the key Theorem 8F.4. 

8F.22. Show that there is a fixed formula <pL(ct) with one free variable a 

such that for every a e Jf the following hold. 

(i) L[a]l=<pL(a). 

(ii) If A is a transitive set, aeA and Ak<pL(a), then A = LK[a] for 

some limit ordinal A. 

(iii) For every infinite ordinal £ and every set xeL[«] such that 

xcL£[a], there is some ordinal A such that 

£<A<r, 

Cx[a]k<pL(a) and xeLx[a]. 

Infer that L[a] satisfies GCH. 

Hint. Copy over the proof of 8F.4. —\ 

8F.23. Prove that the pointset {(a, (3): a e L[|3]} is 

8F.24. Prove that for each /3, if JVsL[j3], then A admits a .SjOi-good 

wellordering of rank Kx. A 
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8G. Regularity results and inner models 

We already know from 6G.10—6G.12 that if there exists a measurable 

cardinal, then Xl2 pointsets are absolutely measurable, they all have the 

property of Baire and every uncountable X\ set has a perfect subset. In 

this section we will derive interesting metamathematical refinements of 

these regularity properties and extensions of them to the higher Lusin 

pointclasses. 
In proving these results, we will introduce and study briefly some very 

interesting inner models of ZF which are much like L but which also 

satisfy various forms of definable determinacy. 

We start with a beautiful and very useful result of Mansfield which we 

will establish by rethinking the proof of the Perfect Set Theorem 2C.2 in 

the light of the theory of absoluteness. 

8G.1. Mansfield’s Lemma (Mansfield [1970]). Suppose M is a standard 

model of ZF, T is a tree on to x x, TeM and 

A — P[T] = {a gjV: T(a) is not wellfounded}-, 

then either A^M or A has a perfect subset. 

Proof (Solovay). Following the proof of 2C.2, assign to each tree S on 

to x x and each ordinal £ the tree by the recursion 

S° — S, 

S€+1 ={ueS?: p[S„] has more than one (irrational) 

member}, 

Sx = n€<* if A is a limit ordinal. 

Each is a tree on to x x and 

V<€->S''2S€ 

so that easily, for some A, 

SX+1 = SX; 

we take 
S* = Sx 

for the least such A. 

The relation 

Rt(S, x) <=> S is a tree on to x x & p[S] 5^ J0f 
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is ZF-absolute by the general properties of absoluteness and Mostowski’s 

Theorem 8E.4, since 

p[S]^0 <=^{(u, v): u, v are finite sequences on 

(o x x and u, v s S and v is a proper 

initial segment of u} is not wellfounded. 

But also 

p[S] has more than one element 

*=> (3u)(3n)(3^)(3m)(3ri)[u'^(n, £) e S & p) s S 

& n 9^ m 

& p[Su~(n>f)] 0 

& p[Su~(m>Tl)]^0, 

so that the relation 

R2(S, x) <=>S is a tree on ai x x and p [S] has more 

than one element 

is also ZF-absolute. Thus by the ZF-absoluteness of definition by trans- 

finite recursion 8E.5, the operation 

(£S)*S* 

is ZF-absolute. 

The assertion 

(VS)(3A)[SX+1 = Sx] 

is a theorem of ZF which is easily expressible in so it must hold on all 

standard models of sufficiently may axioms in ZF. From this we infer 

easily that the operation 

S S* - SK for the least A such that Sx+1 = S'*1 

is also ZF-absolute. 

Assume now the hypotheses of the lemma for a specific MFZF and a 

tree T on <oXx, TeM. From the discussion above we know that 

£ s M -> Te s M 

and that for some AsM, 

Tx+1 = TK = T* e M. 
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If T* ^ 0, then p[T] has a perfect subset as in the proof of 2C.2. It 

remains to show that if T*-0, then p[T]eM. 

Assume T* = 0 and suppose that a e p[T], so that for some 

(a, f)e[T], i.e. for all n 

(«(0), /(0), a(l), /(l),..., a(n - 1), f(n - 1)) e T; 

as in the proof of 2C.2 again, there must be a £ such that (a,/)e 

[T€] — [T€+1] and consequently for some n, 

u = (a(0),a(n — 1), /(n - 1)) eTf-T€+1. 

For this £, we have by the definition that 

p[T^] has exactly one element, 

namely a. 

Suppose now <p(S, x) and if/(S, P) are formulas of £' which define 

absolutely for standard models of ZF the relations RX(S, x) and 0 g p[S]. 

We have 

Vh<p(Tft, x), 
hence also 

M^cp(Tf„x). 

But the sentence 

(VS)(Vx)[<p(S, x) -» (3P)i/i(S, P)] 

is obviously a theorem of ZF (at least if <p(S,x) and i//(S, P) are chosen in 

the natural way), so that it must hold in M. In particular, 

Mi=<p(Tt, x) —> (3P)i/i(T„, P) 

and thus there is some 0 g M so that 

MI=^(T«,p) 

which implies 0 G T„, i.e. 0 = a: and a G M. H 

In order to put down an elegant version of this result, let us call a 

pointset Pc 3C %-Suslin over (a transitive class) M, if xgMand there is a 

tree T on w x x in M and a zi ] function 

/: 9C —> JV' 

with z\! inverse such that 

P(i)of(x)ep[T]. 
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8G.2. Mansfield’s Perfect Set Theorem. If P is x-Suslin over a stan¬ 

dard model M of ZF, then either Pg^M or P has a non-empty perfect 

subset. 

Proof. If x0eP- M, then by the ZF-absoluteness of /_1, a0 = /(x0)e 

p[T]-M and hence p[T] has a non-empty perfect subset F. Now /-1[F] 

is an uncountable Borel subset of P, so P has a non-empty perfect subset. 
—I 

8G.3. Theorem (Shoenfield [1961]). Every 2l((30) pointset in K^-Suslin 

over L[|30]. 

Proof. It is enough by the definition to prove the result for Acl, so 

suppose 

P(oc, 0O), 

where P is Put 

7 e B ~ P(((y(0))o, (y(D)o,-), ((y(0))i, (y(l))i,...)) 

so that B is in and there is some TeL, T a tree on a> xNt such that 

B = p[T], Compute: 

a e A <=> P(ck, j30) 

~«a(0), /3o(0)>, <a( 1), p0(l)>,...) eB 

<=*• for some f: a> —> 1C and all n, 

(«a(0), 0o(O)>, /(0)), «<*( 1), Pod)), /(I)),-, 

«a(n — 1), /30(m — 1), /(m — 1))) e X 

<=>for some /: to -* Kx and all n, 

(MO), /(0)),..., (a(n - 1), /(n - 1))) e S 

where 

((fl0? £o)v> (an-1, £n-l)) ^ ^ 

<=* (((aO, Po(0))> Co)v> |3o(n — 1)), £n-l)) ^ T 

and clearly SeL[|30]. H 

8G.4. Corollary (Solovay [1969]). 1/ Pc 9C is -S2O0) P has a 

member x0<£L[p0], then P has a non-empty perfect subset. 
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In particular, if card(JinL[(30]) = K0, then every uncountable X^Po) set 

has a non-empty perfect subset and 

1HL[|30]=C2(|30) 

= the largest countable X2(Po) set- 

We can consider this theorem a “lightface” improvement of 6G.10, 

since as we will show in 8H.15, 8H.7, 

0x)[x -> (X,)] =► (V/3)[card(J{ H L[0]) = K0], 

But the present result is much more appealing than 6G.10, because it 

seems to give an explanation of why some X^iP) sets are countable and 

others are not: at least granting that card(J^T)L[p]) = 't<0, then for any 

Xl(p) set F, 
P is countable L[0]. 

We now turn to similar “lightface” versions of the other known 

regularity properties of X\ sets, on the basis of the hypothesis 

(V0)card(jVnL[0]) = Ko]. The key result is a metamathematical theorem 

on approximating sets modulo a cr-ideal, a theorem quite similar to 2H.1. 

First some preliminary definitions and absoluteness computations. 

Recall the coding of Borel sets by irrationals which we introduced in 

7B and suppose M is a transitive class, possibly an inner model of ZF. A 

Borel set Pg 2C is rational over M if there is some a e M which is a code 

for P. 

For each ordinal A > <u, we define the sets Ct by the recursion on £ 

C° = {(1, s): s e o>}, 

c{+1 = ci 
U {(2, a): a e Cf} 

U {(3, /): f: ri —» is a function with domain 

some t]<A and image in Cf}, 

Cf = Ug<M. if /a is a limit ordinal. 

We let 

cx = u€ 
and we call the members of the class CK codes for the A-Borel sets. Notice 

that 

A<A ACxcCv. 
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For each space 9C and each a e Cx we define a pointset 

Ba = B(a, A, 9C)c9C 

by the recursion 

B((l, s). A, 9C) = Ns(9C) = the s’th basic nbhd of 9C, 

B{(2, a). A, 9C) = 9C-B(a, A, SC), 

B«3, />, A, 9C) = U€<„B(/(£),A, 9C), 

where in the last clause p < A and /: tj —> Cx. It is clear how to express 

this definition in the language of set theory by using recursion on | to 

define B : Cx ^ V on each Cx first. It is also immediate that 

A < A' & a e Q =► B(a, A, 9C) = B(a, A', 9C), 

so that the notation “Ba” is unambiguous once we fix 9C and we know 

a e Cx for some A. 

It is easy to prove (using the axiom of choice) that a set P c 9C is Ba for 

some a 6 Cx if and only if P is A-Borel in the sense of Section 2E. We say 

that P is \-Borel over (an inner model of ZF) M if 

P = Ba = B (a, A, 9C) 

for some a e Cx D M. 

8G.5. Lemma, (i) The relations 

G(A, a) u e GXj 

P(A, a, x) a e CK & x e B(a, A, 9C) 

are ZF-absolute. 

(ii) There is a ZF-absolute operation 

F:C„+1^X 

such that for each a e Ca+1, F(a) is a Borel code of B(a, a> SC); similarly, 

there is a ZF-absolute operation 

V 

such that if a is a Borel code of some Pc0C, then G(a)eCM+1 and 

B(G(a), a), 9C) = P. 

(iii) Let M be a standard model of ZF and let 

A* = Xf 

= supremum{£; e M: there is some bijection f: w fe M}. 
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AsetP^ 9C is X*-Borel over M if and only if P is Borel rational over M. 

(iv) If M is an inner model of ZF and Fc 3C is x-Suslin over M, then P 

is (x+ + l )-Borel over M, where 

x+ = least cardinal greater than x. 

(v) Every X\(0) pointset is (X} + \)-Borel over L[/3]. 

Proof, (i) and (ii) are proved by standard absoluteness arguments which 

we will omit. 

(iii) The assertion 

(Va)[aeCXi =*for some £<Xi, a e Q+1] 

is easily expressible in £e and it is a theorem of ZF. Thus if M is a 

standard model of ZF and A* = X^, then (using (i)) 

a e CX*HM =>for some £< A*, a g Q+1 DM. 

At the same time, it is easy to define a ZF-absolute operation 

(f,€,a)»a* = H(f,&a), 

such that whenever f: a> -» £ is a bijection of £ with a> and a G C€+1, then 

a* = H(f, £ a) G C+1 and Ba = Ba*. 

Now if a G Q* D M with A* = Xf, choose £ < A* such that a e Q+1 IT M, 

choose f g M, f: to £ and take a* = F(f, a) e M. Using (ii), this shows 

that if Pc 9C is A*-Borel over M, then P is Borel rational over M and the 

converse is immediate by (ii). 

(iv) Suppose first that TgM, T a tree on ojX%. By the Sierpinski 

formulas in 2F.1, 

^-P[T] = IWB£ 
where the sets B* are defined by a simple recursion on A with u, x, T as 

parameters, so that in fact 

a G <=> F(a, A, u, x, T) 

with some ZF-absolute F. It is easy to define a ZF-absolute operation 

G(A, u, x, /a, T) so that for each ju, > x and each A < /jl, G(A, u, x, ju,, T) is 

a code in of B* and then 

H(nx, x, T) = <3, {<A, (2, G(A, 0, x, fi, T)»: A <,a}> 

is ZF-absolute and gives a code of p[T] in Cx++1 when we substitute 

ju, = x+. Since MkZF and x, x+, TgM, we have H(x+, x, T)eM and 

p[T] is (x4 + l)-Borel over M. 
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In order to prove the result for x-Suslin sets Pc 9C, fix come AJ 

function 

/:9C^ A 

with A\ inverse so that the relation 

Q(x, s) o/(r)eNs 

is Now (ii) above and the Suslin-Kleene theorem imply easily that 

there is a ZF-absolute G(s, p) such that for each s eco and p > a>, G(s, p) 

is a code of f~l[Ns] in and from this we can get a further ZF-absolute 

operation G'(a, p) such that for each a e Q, G'(a, p) is a code in of 

/■’[Bfa, p,JV)]. If P = r,[p[T]] with TeM and P[T] = B(a, x+, A), then 

x+) is a code of P and hence P is (xf + l)-Borel over M. —I 

Recall from 2H that a collection J of subsets of a space 9C is a cr-ideal if 

it closed under subsets and countable unions. 

A cr-ideal J is definable over an inner model M of ZF if there exists 

some formula <p(a, c) of £6 and some c 6 M, such that for all asjVT1M, 

a is the Borel code of some AeJ Ml=<p(a, c). 

8G.6. Lemma, (i) For each space 9C and each inner model M of ZFthe 

ideal of meager subsets of 9C is definable over M. 

(ii) If p is a <j-fnite Borel measure on 9C, then there is some a^eAf such 

that whenever a^eMFZF, then the cr-ideal Z^ of subsets of 9C of pi- 

measure 0 is definable over M. If p is the Lebesgue measure on the reals, 

then Z^ is definable over every inner model M of ZF. 

(iii) If J is definable over M, then there is a formula c) of £e and 

some c g M such that if A* = Xf1 and a e Cx* H M, then 

BaeJ <=> c). 

Proof. By 4F.19, the relation 

P(a) <=> a codes a meager Borel subset of 9C 

is easily II\ and hence ZF-absolute. This establishes (i) and (ii) follows by 

a similar computation. 

To prove (iii), let <p(a, c) and ceMbe such that 

a codes a Borel set in J «=» Mt= <p(a, c) 
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and take <//(a, c) to be the formula expressing the condition 

(3^)(3f){3a){f: o) >*■ £ is a bijection 

& a E 

& a is the code of a Borel set in J 

& F(f, l a) = a}, 

where F is the ZF-absolute operation defined as in the proof of 8G.5 

such that with /, £ and a as above and a = F(f, Q a), 

Ba = Ba 

and where we define “a is the code of a Borel set in J” using the formula 

<p(a, c) supplied by the definition. H 

The Approximation Theorem 2H.1 had the additional hypothesis that J 

is regular from above. Here we will work with cr-ideals J which satisfy the 

countable chain condition, i.e. such that every uncountable collection of 

pairwise disjoint Borel sets must contain sets in J. We must be a bit 

careful in formulating this condition in arbitrary inner models of ZF. 

A (r-ideal J satisfies the CCC in an inner model M of ZF, if there is a 

formula 4>(sk,c) of ££ and some ceM such that: 

(i) for A* = Xf and fl6Q.flM, 

Ba e J Ml h if { a, c), 

(ii) Mk“for every function /: p, —» CXi, 

if & v<F => Bm n Bflv) = 0, 

then {£: Bf(e)£J} is countable”; 

in turning the expression in quotes into a formal assertion in ££ here, we 

use the given i//(a, c) to express Ba eJ and we use a formula <p(x, a. A, 9C) 

supplied by (i) of 8G.5 to express “xeBu,” so that e.g. 

is expressed by 

Bf(o G BfM - 0 

-i(3x)[<p(x, /(£), X,, 9C) & <p(x, f(r\), Xls 9C)]. 

Also, by “X,” we mean the supremum of countable ordinals within M, so 
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that a more detailed version of (ii) would read 

MT“if A =the least uncountable ordinal, then 

for every /: /x —> CK, 

if £, T] < ja ••• etc.” 

Notice that if J satisfies the CCC in M, then J is definable over M. 

8G.7. Lemma. For each SC and each inner model M of ZF, the collection 

of meager subsets of 9C satisfies the CCC in M. 

(ii) If \x is a cr-finite Borel measure on 9C, then there is some such 

that whenever eMtZF, then the cr-ideal Z^ satisfies the CCC in M; if 

/a is the Lebesgue measure on the reals, then Z^ satisfies the CCC in every 

inner model M of ZF. 

Proof is immediate because it is a theorem of ZF that these ideals satisfy 

the CCC, so this assertion must hold in every model of ZF. (More 

precisely: write up a proof of the CCC for these ideals, check what 

properties of the relation 

P(a) <=> a codes a Borel set in J 

you use in the proof, verify that each M must satisfy the formal sentences 

expressing these properties because of the absoluteness in the definition 

of P(a).) H 

Suppose now that M is an inner model of ZF and J is a <r-ideal on SC 

which satisfies the CCC in M. The set of points of 9C which are 

J-algebraic over M is defined by 

A/g(M, J) = Algx(M, J) = {x e 9C: for some a e MPl Q,+1, BaeJ 

and xeBa}. 

The points in Alg(M, J) can be approximated in M, in the sense that they 

belong to a “small” Borel set (i.e. a Borel set in J) with code in M 

Notice that if card{A Pi M) = X0, then AZg(M, J) is a countable union of 

sets in J, so it is in J. Of course, if AgM, then Alg(M, J) is the union of 

all the Borel sets in J and is most likely all of 9C. 

Let 
Trans(M, J) = Transx{M, J) = 9C — A/g(M, J) 

be the set of points of 9C which are J-transcendental over M. 
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8G.8. The Approximation Theorem Over Models of ZF. Let M be an 

inner model of ZF, let J be a a-ideal of subsets of 9C which satisfies the 

CCC in M and suppose P £ 9C is A -Borel over M, for any A > (o. Then there 

exists a Borel set P* which is rational over M such that 

P/\P* = (P-P*)U(P*-P)^ Alg(M, J).(2) 

Proof. Fix J and M which satisfy the hypotheses and let 

A* = Xf 

as in 8G.5. The idea is to define an operation 

a a * 

such that if a e CK D M, then a* eQ.HM and 

Ba A Ba* c A/g(M, J). 

To define the operation a ►» a*' we will work in M, i.e. we will perform a 

set theoretic construction within the model M. All that this means is that 

in the definition below, by “set” we mean “set in M and all notions of 

set theory are interpreted within M. 

The definition of a* is by recursion on the least £ such that a e Cf, but 

of course it comes down to treating three cases. 

(i) If a = <1, s) for some sew, put a* = a. 

(ii) If a={2,b) for some b, put a* = {2, b*). 

(iii) Suppose now a=<3,/>, where f is a function, where 

ti < A and we may assume that for each £ < tj, (/(£))* has already been 

defined. 

Let us define first a function 

g^^T] 

by the following subsidiary recursion. (Caution. Since we are working 

within M, actually 
g:A* = Xr->T).) 

Put 
g(0) = 0, 

the least £> g(£) such that 

Bf( g(v))* J, 
g(£+l)=< 

if one such £ exists, 

0 otherwise. 

g(/a) = 0 if /a is a limit. 
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Caution: To make precise this definition, we first construct some ZF- 

absolute operation H(a, h) such that whenever a £ Cx and h Cx*, we 

have 
BH(a,h) = Ba — Uv==£ BhM 

and then we ask in the first case whether 

( * ) B H(f «)*,«v,f(g(v))*): v<(}) £ J 

by using the formula c) and the object c £ M supplied by the 

hypothesis that J satisfies the CCC in M. As a result, the set in (*) will be 

in J exactly when M thinks that it is in J. 

Notice now that since J satisfies the CCC in M, there must be some 

ordinal £0<A*, such that 

£ — £o “* g(£) = 0, 

otherwise we would get X, disjoint Borel sets with none of them in J (as 

M sees things). Pick the least such £0 and put 

a* = <3, {<£, (f(g(£)))*): £< £0}>. 

This completes the definition of the operation a»a* in M and we 

obviously have for a e M, 

a £ Cx => a * £ Cx *. 

We now move outside M and show by induction on | that 

a £ Cl n M Ba A Ba* c A/g(M, J). 

Again the proof comes down to three cases and the first two are 

completely trivial. 

(iii) Suppose a=(3,f) with f: rj —> Cx with t]<A and a* = {3,f*) is 

defined as above. 

If x £ Trans (M, J) and x £ Ba*, then for some £ < £0, x £ Bf*(a = Bf(sU))* 

and Bf(g(£))*ABf(g(£))£ A/g(M, J) by the induction hypothesis, so that 

x € ®f(g(«) — Ba- 

Conversely, if x £ Ba, then let £ be the least ordinal such that x £ Bf^ 

and assume towards a contradiction that x £ Trans(M, J) and x^ Ba*. Now 

we obviously cannot have £= g(£) for some £<£o, since in that case we 

would have by the induction hypothesis x £ Bf(g(j))» = *(£) - Ba*; hence 

by the definition of /*, if 

£i = supremum{£: g(£)<£}. 
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we must have g(G + 1) ^ & ie. 

(**) — 

By the construction then, there is some d e CK* D M such that 

Bd = Bm)* = Uv<£, ^f(g(v))* 

and 
Bd e J, 

since the interpretation of (**) was that Mt=^(d, c). But obviously x e Bd, 

so that x is a member of some J-set with code in M contradicting our 

assumption that x e Trans{M, J). 

The corollaries make the effort worthwhile. 

8G.9. Theorem, (i) Let J be the a-ideal of all meager subsets of SC and 

suppose SC is Xl(l30); then there exists a Borel set P which is rational 

over L[/30] and such that 

PAP<=AZg(L[j30], J). 

In particular, if card(XDLU30]) = No, then P has the property of Baire. 

(ii) Suppose p is a ar-finite Borel measure on SC which satisfies the CCC 

in L[j30] (e.g. if p is the Lebesgue measure on (R) and suppose P^SC is 

XziPo); then there is a Borel set P which is rational over L[0O] such that 

PAPQAlg(L[(30lZJ. 

In particular, if card(XT) L[0O]) = K0, then P is p-measurable. 

(iii) (Solovay) If (V0)[card(^nL[|3]) = K0], then every X\ set has the 

property of Baire and is absolutely measurable}2' 

Proof is immediate from 8G.8 and the preceding lemmas. —\ 

The applications of these results to the higher Lusin pointclasses 

depend on the connection between semiscales and trees which we estab¬ 

lished in 2B.1 and which we now reformulate in a suitable notation. 

Suppose r is a Spector pointclass closed under Vv with ordinal 

8 = supremum{\ < |: ^ is a prewellordering of X in A}, 

let GqioXX be universal in T and let {<p} = {<p„}neco be a T-scale on G. 

By 4C.14 we know that the length |cp„| of each (regular) norm <p„ is 8, i.e. 

fpn : G 8. 
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Put 

Tr = Tr G - 

= {((e, <p0(e, a)), (a(0), <p^e, a)),..., (a(n - 2), <pn_1(e, a))): G(e, a)}. 

It is important to notice that although we will use the notation “Tr” for 

this tree associated with the pointclass T, actually Tr depends on the 

particular choice of G and <p. 

In case 

r= n1 
1 ii2n+l 

and under the hypothesis Det(A\n), we use the simpler notation 

^2n + l = Tn±n+i. 

When we think of trees as sets (members of V) as in the next theorem, 

we should (strictly speaking) use the notation 

<£ v) 

for the set-theoretic pair, rather than the intuitive 

(£, v) 

which we have been using all along. It is not worth here to complicate 

notation by insisting on this pedantic difference. 

8G.10. Theorem. Let T be a Spector pointclass which is closed under V ' 

and has the scale property and let Tr be the tree on o» x8 associated with T 

and some fixed universal set Gcwxi' and r-scale {<p} on G; suppose 

9C is in 3*T(0O), i.e. 

P(x) ^Qa)R(x, /30, a) 

where Re T and suppose M is an inner model of ZF such that Tr, 0oe M, 

e.g. 

M = L[Tr, 0o]( = L«Tr, 0O». 

(i) P is b-Suslin over M. 

(ii) Either P^M or P has a non-empty perfect subset. 

(iii) If J is a cr-ideal which satisfies the CCC in M, then there is a Borel 

set P which is rational over M and such that 

PAPc A/g(M, 7); 

if in addition card (jVnM) = X0, then P is J-measurable. 
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In particular with JT and Tr as above, if 

(V(l)[card(N H L[Tr, 0]) = KO], 

then every pointset in 3^ T has the property of Baire, it is absolutely 

measurable and if uncountable, it has a non-empty perfect subset. 

Proof. It is enough to prove (i) from which the rest follow by what we 

have already established in this section. 

Suppose first A c A and 

aeA«=> (By)R(a, 0O, y) 

with R in f, so that for a fixed e*ea>, easily 

a e A <=> (3y)G(e*, a ° 0n ° 7) 

where 

a ° 0 0 7 = MO), 0o(O), 7(0), a(l), 0O(1), 7(1),..., a(n — 1), 

0o(»-i)5 y(n ~ l)v)- 

As in the proof of Shoenfield’s Lemma 8F.9, let 

S = all initial segments of sequences of the form 

((a0> £o)> (al, co), (a2, £l), 

(a3, cf), (a4, £2), 

such that 
(^2n + l, Gi), (^2n+2, In + l)) 

(M, £0), M, £1)1 (0o(O), £2), (cq, £3), 

(an-3) £,1-2), (0o(n 3)’ £n-l)> (Cn-3, £,i))e Tr 

so that immediately, 

0o, T, eM =*SeM. 

If aeA, then choose 7 so that G(e*, a ° 0O ° 7) and take cn = y(n), 

£n = <p„(e*, « 0 0o° 7); clearly the infinite sequence 

(*) ((a(0), £o), (a(l), 0o(O), (a(2), ^),...)e[S] 

and aep[S]. Conversely, if for some c0, £0, G, |l5... we have 

((a(0), £0), Ml), c0), (a(2), &), M3), cx),...) e [S], 
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then by the definition we know that for each n, there are irrationals yn 

such that G(e*, an ° 0O ° yn), 

<Pk(e*, an ° 0O ° yn) = & (k < n) 

and 

an = a, 

limitn^ yn = y - (c0, c1? c2,...). 

Since ip is a scale on G, it follows that G(e*, a ° (30 ° y) holds so that 

a eA. 

The result for arbitrary P c 0C in 3 "T follows by the definition of 

8-Suslin over M. H 

The important special cases here are 

r=n\n+1 

and 

F = IND = all absolutely inductive pointsets 

with the appropriate determinacy hypotheses. We will look at some of the 

basic facts about the corresponding models L[Tr] in the exercises. 

Exercises 

Let us first use Mansfield’s perfect set theorem to prove a simple 

converse to the proposition 

jVc L => X admits a X^-good wellordering of rank K,. 

8G.11. Prove that if A admits a X\-good wellordering of rank X,, then 

AqL. 

Hint. The results in Chapter 5 were all proved under the hypothesis 

“4V admits a X2-good wellordering of rank NI,” which was indicated there 

by the symbolic notation “jVc L”. By 5A.11 then, if A admits a X2-good 

wellordering, then every a is recursive in some /3 s Cl7 where C, is the 

largest Il\ set with no non-empty perfect subset; but by Solovay’s Theorem 

8G.4, Cj c L, so that every irrational a is recursive in some 0 e L and 

hence a e L. H 

Mansfield [1975] has established the much nicer result that if A admits 
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a wellordering (or any rank and not necessarily .£]-good), then A <= L; 

see also Kechris [198?] for a simple proof of this and some related 

results. 

8G.12. Prove that if there is a function whose graph is a thin, 

n{ subset of (ft x(R, then jVcL 

Hint. Graph(f)QL by 8G.2, so that for each a, the pair (a,f(a))eL 

and a e L. 

Let us call e eJi a code of a closed set F^Ji, if 

F = {a: (Vn)[s(a(n))= 1]}. 

It is worth putting down an alternative version of 8G.1 and 8G.2 in terms 

of these codes. 

8G.13. Prove that if M is a standard model of ZF, T a tree on coX%, 

TeM and p[T] has a member not in M, then p[T] has a non-empty 

perfect subset with code in M. 

Infer that every set A c X which has a nonconstructible member has 

a non-empty perfect subset with code in L. 

Hint. We showed in the proof of 8G.1 that if p[T] has a member not in 

M, then the tree T* is not empty and T* e M Now interpret the proof of 

2C.2 after that within M, to get a perfect subset of p[T]; the code of this 

perfect subset is in M and it also codes a perfect subset of p[T] in the 

world. 

The second assertion follows easily. H 

It is worth pointing out here that the condition 

(Vj3 )[card(jV n L[|3]) = N0] 

follows from our familiar hypothesis Def(A]). Something stronger and 

more interesting is actually true. 

8G.14. Assume Det(A]) and show that for each /3, 

aeL[p]^aeAl(py, 
in particular, 

Det(A]) =* (Vj3)[card(A n L[/3]) = K0]. 

Hint. Let Q be the largest thin /I] subset of 4F.4 and consider the 
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*-game for Cx as we defined this in the exercises of 6A, in which I plays 

finite (non-empty) sequences 

50 = ak.0-l’ 

51 1; 

II plays integers 

fl-k,’--- 

and I wins if the play 

OC do,..., dj^—i, dj^, d^^.^,... . 

is in Cx. The game is determined since Cl is TI\ and by 6A.10, I cannot 

win it, so II does; but then C\ is countable and by 6E.1, II has a A\ 

winning strategy r. Now the proof of 6A.11 makes it clear that every 

irrational in C1 is recursive in r and hence lies in A\. Finally, from 5A.11 

it follows that each a e L is recursive in some (3 e Cl5 so that each a eL is 

*1 
The argument for the relativized case is similar. —\ 

In 8H.15, 8H.16 we will show that this strong result also follows from 

the large cardinal hypothesis (3x)[x—> (Nj)]. 

We now turn to a brief study of the inner models associated with 

various nice pointclasses. First a few basic absoluteness facts about the 

models L[T2n+1]; in the statements of these results, we always assume 

tacitly that T2n+1 is the tree on oix82„+1 associated with some universal 

n in+1 set G^ioxX and some /72„+1-scale cp on G-granting at least 

Det( A2n). 

8G.15. Assume Det(A2n) and suppose M is an inner model of ZF such 

that T2n+1eM. Show that for each X\n+2 formula 0(ax,..., am) of second 

order arithmetic and ameM, 

Vl=0(a1,..., am) ^ MTflfa!,..., am). 

Hint. Assume the hypotheses on T2n+1 and M and prove by induction 

on i <2n + 2 that every X) formula is absolute for M; use the Basis 

Theorem 6C.6 and 8G.10 as in the proof of Shoenfield’s Theorem (II), 

8F.10. H 

8G.16. Assume Det(A2n) and suppose M is an inner model of ZF such 
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that T2n+1£M. Show that 

Mk“Det(A2n).” 

Show under the further hypothesis Det(A2n+1) that 

Mh“Det( AL+i)-” 

Hint. Take the second assertion which is a bit harder and for simplicity 

of notation take n = 1. 

Clearly M satisfies the formal sentence of £ expressing Det(Al) if and 

only if for every two formulas 6fi(oi, P) and 62(ol, P), M satisfies 

(Va){(VP)[01(a, P) ~ 102(a, P)] 

-» [(3o-)(VT)0!(a, or * t) v (3t)(V<r) 02(a, 

so assume a e M and 

(1) MKVp^c^P)^ -,02(a,p)]; 

we must show that 

(2) Mk(3cr)(VT)01(a, o-*T)v(3T)(Va)02(a, a*T). 

From (1) and 8G.15 we know that 

V!=(VP)[(0a(a, P)^ -id2(a, P)] 

so that the set 

A ={/3: Vh^p)} 

is /l^a) and hence determined. Assume without loss of generality that I 

wins the game defined by A, so that 

Vt=(3CT(VT)01(a, ct*t); 

by 8G.15 again 

Mi=(3<r)(Vt)0! (a, 

so that (2) holds. H 

This a typical application of the absoluteness result in 8G.15: the 

models L[T2n+1] reflect enough of the properties of V to satisfy just a bit 

more determinacy than we need to construct them. 

The most important problem about these models is their invariance, i.e. 

the question whether L[T2n+1] depends on the particular choice of G and 

<p used in constructing T2n+1. This is still open, but it is known that the set 
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jnL[T2n+1] of irrationals in L[T2n+]] is independent of the particular 

choice of T2n+1, in fact 

A D L[T2n+1]= C2n+2 

= the largest countable .S2n+2 subset of Ji. 

We will outline a proof of this result of Kechris and Harrington (Kechris 

and Martin for n = 1) in a sequence of lemmas which are quite important 

in themselves. It will pay to formulate these lemmas in a reasonably 

general context, since they have applications to the study of many 

pointclasses other than I72n+1. 

Let us say for the remainder of this chapter that a pointclass T 

resembles 17J if the following two conditions hold. 

(i) r is a Spector pointclass with the scale property and closed under 

V^. 

(ii) For each a eJf, if Pg 9Cx is in A (a) and 

Q(x) *=>PX={y: P(x, y)} is not meager, 

then Q is also in A(a). 

It is clear that n\ resembles n\ by 4F.19 and that if T resembles n\ so 

does each relativization F(z). The next result gives us a large stock of 

pointclasses which resemble n\. 

8G.17. Suppose T is a Spector pointclass with the scale property and 

closed under Vs and assume that there is some adequate pointclass r,cf 

such that 
r=v-AT1, 

T, is closed under 3* and Assume also that Det(T) holds and 

show that r resembles n{. 

In particular, if Det(Yl2n+i) holds then n2n+i resembles ni and if 

Det(IND) holds, then IND resembles TI\. (Kechris [1973].) 

Hint. Show first by a prewellordering argument that if P e A and 

P(x)<=*(Va)R(x, a) 

for some ReT, then actually Re A. (Let 

R(x, a) <-» G(ej, x, a) 

where G is universal in T, let <p be a T-norm on G and assuming towards 

a contradiction that R is not in A, check that 

G(e, y, (3) <=> (3x)[P(x) & (3a)[m(e1, x, a)<*(e, y, 0)]], 
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so that in that case Ge~iT.) Similarly for PeA(a). 

Suppose now P c 9C x<y is in zl and choose R c 9C x<y x A in —iTj such 

that 
P(x, y) «*>(3a)R(x, y, a), 

where rx is the pointclass given by the hypothesis. By the remark 

above we also know that Re A. 

Claim: 

Px is not meager 

<=> (3A xA)[A is X] & (Vy)(Va)[A(y, a) =* R(x, y, a)] 

& p[A] = {y: (3a)A(y, a)} is not meager]. 

For the non-trivial direction (=*) of the claim, notice that if Px is not 

meager, then it has a non-meager Borel subset B. The relation 

R'x(y, a) «=> y e B & jR(x, y, a) 

is in A, so it can be uniformized by some R*Q R'x in T since T is scaled 

and then the function /: B x A with graph R* is Baire-measurable 

by 6A.16. Using 2H.10, find some non-meager Borel set C<=,B such that 

/fC is continuous and take A = R* fl Cx<y x this is the required X] 

subset of R'x, since easily C= p[A], 

Now the claim is proved and together with the key hypothesis 3 vTt c 

T„ it implies easily that the relation Q is in -iT. Since also 

Q(x) ^ Px is not meager 

(3s)[Ns — Px is meager], 

we easily get that Q is also in T. 

The argument is similar for P in A (a). 

For the specific examples, take for /l2n+1 and T1 = IND for 

IND. —| 

The next result is the key lemma that we need. 

8G.18. Suppose T resembles iT], A e 9C is in A and not meager and 

<p : A —> Ordinals 

is a A-norm on A and assume Det(D. Prove that there is some A* and a 

non-empty perfect set F with code in A such that 

xeF=*ip(x) = A*. 
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In particular, if A c 0C is in A and not meager, then A has a non-empty 

perfect subset with code in A. 

(The Kechris Perfect Set Lemma, Kechris [1973].) 

Hint. The second assertion follows immediately from the first, taking 

<p(x) = 0. 

For the first assertion, argue first using 5A. 10 and the fact that all sets 

in A have the property of Baire that if 

ip : B —» Ordinals 

is any A-norm on a set B e A which is not meager, then for some A the set 

{xeB: ip{x) = A} 

must be non-meager. 

It will be enough to prove the result for AcjV, easily, so suppose <p is a 

A-norm on A, put 

A* = least A such that {a e A: <p(a) = A} is not meager, 

A* = (a e A: <p(a) = A*} 

and notice that A* is in A because T resembles IT}. 

Consider the *-game for A* as we defined it in the exercises of 6A, in 

which I plays finite (non-empty) sequences from <a 

50 ^(co—1’ 

51 ^k0+l’'”’ ^k,—1> 

II plays single integers a^, aki,... and I wins if the play 

a = a0,..., ako-i, ak0> ®k0+iv"i 1> akli--- 

is in A*. It is obviously enough to show that I has a winning strategy in A, 

since from any such strategy we can easily get a perfect subset of A* with 

code in A. 

Fix a A-scale 4> = {ipm} on A¥ and put 

A0 = least A such that {a e A*: ip0(a) = A} 

is not meager, 

s0 = least s such that 

N(s)-{aeA*: ip0(a) = \0} is meager, 

Ao = {« G A*: a gN(s0) & «fo(a) = A0} 
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and have I start the game by playing the sequence s0 with code s0. (Recall 

here that if , x 

then 
N(s) = {a e A: a(0) = a0,..., a(n- 1) = an_1}; 

we are also using the fact that for each non-meager B with the property 

of Baire, there must be some s such that N(s) — B is meager.) In general, 

having defined Af, s,, Ah for i < m, I answers the move 

(X 

of II by setting 

Am = least A such that {a e Am_1: a(km_1) = a & ilfm(a) = A} 

is not meager, 

sm = least s such that 

N(s) — {a e Am_1: a(km_1) = a & tf/m(a) = Am} is meager, 

Am={aeAm_1: a(km_1) = a &«sN(sm)&i(«) = Am} 

and playing the sequence sm with code sm. It is clear (by induction) that 

each A; is not meager and that the unique point a e f)m Am which is the 

play must be in A*, using the fact that t// is a scale. Finally, it is not hard 

to check that this strategy for I is in A, using the hypothesis that r 

resembles IT}. A 

In the computation below we will actually use a corollary of this which 

is worth separate billing. 

8G.19. Suppose F resembles T7J and 

tp : JV* —> Ordinals 

is a A-norm on A and assume Det(T). Prove that there is some A* with 

the following property: for every aeA there exists some yeJi such that 

(p(y) = A* and ae4(y). 

Hint. By the Kechris Perfect Set Lemma we can find a perfect set 

fcA with code e in A and a A* such that 

y eF =* cp(y) = A*. 

Using the method of 1A.2, 1A.3, we can easily get an injection 

f:Q^F 
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of the Cantor set into F which is recursive in e, so that for each a'e(E 

there is some y = f(ct')eF such cP e zl](e, y) —because 

a'(n) = m <=> (3a)[/(a) = 7 & a(n) = m]. 

The result follows because every aeX is recursive in some a'e G and 

A J(e, y)c A(y) when e £ A. H 

Suppose Pc0Cx<y, Sc 0C and 

<p : S A 

is any regular norm. We say that P is uniform in x (relative to the norm <p) 

if for all x, x'eS and all yea/, 

(p(x) = cp(x') =+ [P(x, y) P(x', y)]. 

If P is uniform in x, it clearly defines a relation on A x aj which we will 

denote by the same symbol, 

P(t y) «=> (3x e S)[<p(x) = £ & P(x, y)] 

*=* (Vx e S)[<p(x) = £ => P(x, y)]. 

8G.20. Suppose T resembles II{, 

<p : S -» A <8 

is a regular P-norm on some S^9C, SeT and P^SCxy is in 3and 

uniform in x. Assume Det{V) and prove that the relations 

Qi(x, y) <=> x £ S & (3£ < <p(x))P(£ y), 

02(x, y)^xeS&(V^< <p(x))P(£ y), 

are both in 3* T. (The Harrington-Kechris theorem. Harrington-Kechris 

[198?]). 

Hint. That Ql is in 3^T is trivial (and uses very little of the hypoth¬ 

eses). 

Rename 02 = Q, assume the hypotheses and suppose 

(*) P(x, y) «=> (3a)R(x, y, a) 

with R in T. 

Let 77 : A -» 9C be a recursive surjection and put 

R'(x, y,a) <^xeS & ir((a)Q)eS & <p(x) = <p(ir((a)0)) 

& R(TT((a)0), y, (a)i); 
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now R' is clearly uniform in x and in T and 

P(x, y) <=> (3a)R'(x, y, a), 

so that we may assume (*) holds with R uniform in x. 

For each x, y, consider the game G(x, y) where I plays /3, II plays y and 

II wins <=> TO, y, x, y), 

where 

TO, y, x, y) ^[ttO)^ Sv(p(x)<(p(7rO))] 

vOO)e S & <p(7rO))<<p(x) 

& (3a G 4(y))jR(7rO), y, <*)], 

with 7r: Jf -» 9C as above. Clearly T is in T (by the theorem on restricted 

quantification 4D.3) so the game is determined. 

We claim that for xeS, 

(V£< <p(x))P(£ y) <=» II wins G(x, y); 

from this the result will follow immediately, since 

II wins G(x, y) <=* (3t)(V/3)T(/3, [/3]*t, x, y) 

and the expression on the right defines a relation in 3*T. 

If II wins G(x, y), then for any £<cp(x) have I play some (3 with 

<p(-7t(|3)) = |; if II responds with y, then (3a G A(y))R(7r(/3), y, a) holds, 

so that we have P(£, y) as required. 

Assume towards a contradiction that I wins G(x, y) with a strategy cr 

but (V£ <<p(x))P(£ y). Imagine II playing irrationals of the form (a, 8) for 

arbitrary 8 to which I responds by o-*[(cr, S)]gS and consider the norm 

on jV 

<ft(8) = <p(a*[(o-, 8)]). 

This is obviously a zi(o-)-norm and the pointclass T(o-) resembles 77}, so 

by 8G.19 there must be some £ with the following property: for each a, 

there is some 8 with y(8) = £ and aeA(a,8). Now choose any x such 

that <p(x) = | and since P(x, y) <=> (3a)P(x, y, a) holds, choose a such that 

JR(x, y, a), choose 8 such that 17(cr) = £ and a g A (a, 8) and have II play 

(cr, 8). If (3 = <x*[(o\ 8)] is I’s response then, we know that 7t(/3)gS and 

<p(7t(/3)) = £ and since a G A ((cr, 8)) and I wins, we have —\R(it((3), y, a); 

this contradicts R(x, y, a), since R is uniform in x. —\ 

Let us immediately check out one important application of this very 
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basic theorem. (We will include full determinacy among the hypotheses 

here, but in the applications we will be working with the model L((R), so 

only definable determinacy hypotheses will be needed.) 

8G.21. Suppose T resembles /7{, Sc0C, TcO| are in T and 

<p : S —* A <8, i//: T p. < 8 

are regular T-norms. Assume AD and show that the relations 

P(x, y) <=> x e S & y e T & (p(x) = ip(y) 

Q(x, y)«=>xeS&yeT& <p(x)<i//(y), 

are both in 3AT (Harrington-Kechris [198?].) 

Hint. Let GcjV'xflCx'y be universal in T, let ;y: G8 be a T-norm 

on G and with each 

z = (e, a, x, y)ejV'xjV'xdCxy 

such that G(a, x, y) associate the set Az c SCxRf by 

Az(x', y') <=> G(e, x', y') & y(e, x', y')^x(«, y). 

Each Az is obviously in A, uniformly in z. 

The relation 

^ Ki(z) *=>R{(£, a, x, y) 

*=> G(a, x, y) 

is clearly in T and so is the relation 

(2) jR2(z) <=> Ri(z) & A2 is uniform in x' 

(relative to the norm cp) and in y' 

(relative to the norm t(/) 

& (Vx')(Vy')[Az(x', y') (x'e S & y'e T)] 

& (Vx')(Vx")(Vy')(Vy"){[A2(x', y') 

& <p(x') = <p(x") & iKy') = <A(y")] - Az(x", y")]}. 

With each z such that R2(z) holds, we associate the set of pairs or 

ordinals 

B2 c A x p. 
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by 

B2( r), £)^(3x)(3y)[xGS&cp(x) = 'n &y&T & ip( y) = £ 

& A2(x, y)] 

<=>■ (Vx)(Vy){[x g S & cp(x) = r) & y g T & ip(y)= £] 

=> Az(x, y)}. 

Conversely, suppose Be AX/x is bounded below 5, i.e. 

where AX^A, A3<8 and p1<8; using AD now, the Coding 

Lemma (II) 7D.6 (applied to ~ii D implies directly that the set 

B' = {(x, y): x e S & y e T & B(cp(x), ip(y))} 

is in A and hence by the Covering Lemma 4C.11, easily, 

B' = Az 

with some z such that R2(z) holds and hence 

B=BZ. 

Proceeding with the computation, notice that the relation 

R3(x, y,z)<=fxeS&yeT& R2(z) & Bz c <p(x) x i//(y) 

«xeS&yeT& R2(z) 

& (Vx')(Vy')[Az(x', y')=*[<p(x')<<pU)& *A(y)]] 

is clearly in T and uniform in x (relative to <p) and in y (relative to ip). 

Now 

R4(x', y', z) ^ R2(z) &x'GS&y'GT & A2 (x', y') 

is in r and uniform in x' (relative to <p) and in y' (relative to i//), so by the 

Harrington-Kechris theorem, 

R5(x, y, z)<=>xgS & y g T 

& (V£ < <p(x))(3tj < <My))R4(£ r), z) 

is in 3^T; clearly 

R5(x, y,z)<^>xeS&yeT& R2(z) 

& Bz c <p(x) X i//(y) 

& (V| < cp(x))(3r] < ip(y))Bz(^, t]). 
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Proceeding in the same way, by successive applications of the 

Harrington-Kechris theorem we show that the following relation is in 
3^T: 

R6(x, y, z)<=>xeS&yeT& R2(z) 

& Bz c <p(x) X i/i(y) 

& Bz is the graph of an order-preserving one-to-one 

function from <p(x) onto if/(y). 

Using the remark above then, that by AD every subset of <p(x)x ij/(y) is 

Bz for some z such that R3(x, y, z), we finally get that 

P(x, y)«=>xeS&yeT& there exists a one-to-one order¬ 

preserving function from <p(x) onto if/(y) 

** (3z){R3(x, y, z) & R6(x, y, z)} 

is in 3*T. 

The argument for <p(x)<if/(y) is similar. H 

The usefulness of this result will be apparent very soon, but the 

method of proof also has wide applicability, which is why we explained it 

in such considerable detail. 

Fix now a pointclass T which resembles 17}, let 

<p : S -» 8 

be a regular T-norm on some S £ 9C in T which is onto the ordinal 8 

associated with T and let G c oi x 9C be a good universal set in 3^T in the 

sense of 3H.4. For this <p, G, define 

py 
Pv,G(n, f) «=* (3x)[x g S & <p(x) = | & G(n, x)]; 

intuitively, P^G(n, £) asks if the ordinal |<8 has the 3'vT-property n, in 

the coding of ordinals and properties determined by <p and G. 

8G.22. Suppose T resembles 17} and let Pv G, P^H be defined as above 

for two different choices <p, G and i//, 77 of T-norms and good universal 

sets in 3*7". Assume AD and prove that there is a recursive function 

such that 

P<p,G(n> £) *=* ^Vh(/(w)> £)• 



562 Metamathematics [8G.23 

In particular, if AD holds, then 

(Moschovakis.) 

Hint. Suppose i/> : T -» 8 with TcOj and compute: 

P<p.o(n, I) <=* (3x)[x eS&<p(x) = (& G(n, x)] 

^ (3y)[y g T & «Ky) = ^ & R(n, y)], 

where 

R(n, y) <=> (3x)[x eS & <p(x) = i/i(y) & G(n, x)]. 

Now R is in 3"T by 8G.21 and hence (using the fact that H is a good 

universal set, as in 3H.2. easily) there is a recursive /:&>—>• cu such that 

R(n, y) <=> H(f(n), y), 

so that 

P<p,G(n, I) ^ (3y)[y e T& «Ky) = | & H(/(n), y)) 

<=> P*.H(f(n), !)• H 

If r resembles IT} and AD holds, we let 

Hr = L[P^G] 

where <p, G are chosen as above. Notice that (by 4C.14) we can always 

find such <p and G and by 8G.22, which particular <p, G we choose is 

irrelevant. Notice also that if TS L((R) as in the case with n\n+1 and IND, 

we need only assume that every set of irrationals in L((R) is determined, 

as the whole construction of Hr takes place within the model L((R) by 

very simple absoluteness considerations. 

For r=nln+1 we use the simpler notation 

f^2n + l = Hn\n+1. 

One extension of 8G.22 is worth putting down. 

8G.23. Suppose T resembles 17[ and 

-» 8,..., il/n:S„-+ 8 

are regular T’-norms on sets Su..., Sn in T, put 

0(^1,-, In) <=> llv, In <S 

,..., Xn)], 

&(3xaeS!) ••• (3xn g Sn)[i/i1(x1) = |i & ••• 

& ^„(xn) = |n & K(Xi 
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where R is an arbitrary pointset in 3 "T. Assume AD and prove that 

QeHr. (Moschovakis). 

Hint. The Godel wellordering of pairs of ordinals is defined by 

(£> Tf)<(£', V) max(£ 7])<max(g, tj') 

v[max(£, t)) = max(£\ tj') & £ <£'] 

v[max(^, t]) = max(tj') & £ = & -p < tj']. 

The initial segments of this wellordering of ON x ON are sets and hence 

by 8C.7, easily, there is a ZF-absolute operation 

tt2:ONxON>» ON 

such that 

(£, V) *=*> V)- 

Choose a regular T-norm cp : S -» 8 and on S x S define the norm 

if/(x, y) = 7r2(<p(x), <p(y)). 

It is easy to check that 1// is a regular T-norm, so if G <= <0 x 9C x 9C is 

universal in 3^T and 

P(n, £) «=» (3x)(3y)[S(x) & S(y) & tff(x, y) = £ & G(n, x, y)]. 

we know that 

Hr = L[P] 

by 8G.22. But obviously 

Q(£i, £2) (3x)(3y){S(x) & S(y) & iKx, y) = ir2(£i, £2) 

& Oxj e S1)(3x2e S2)[<p(x) = iffi(xx) 

& <p(y) = i//2(x2) 

& jR(x1s x2)]} 

^ Pin*, 7r2(£l9 £>)) 

with a fixed n* and OeLTP]- 
The result for n > 2 follows by the same argument using an appropriate 

7T„ : ON” -* ON. H 

Let us now turn to the relation between Hr and the models L[Tr] 

which we introduced in 8G.10. 
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8G.24. Suppose T resembles n\ and let 

Tr = Tr G>5p 

be the tree associated with an universal set G £ co x A in T and a T-scale 

<p on G as in 8G.10. Assume AD and prove that 

TreHr 

so that L[Tr]cHr. (Moschovakis.) 

Hint. This time take the Godel wellordering of all tuples of ordinals 

defined by 

r|m) <=* max(G,-, L)<max(rh,..., rjm) 

v[max(G,-, £n) = max(Th,..., rjm) & n < m] 

v[max(Gv--, 4) = max(r|1,..., rjm) & n = m 

& the tuple £n) precedes 

rjn) lexicographically] 

and argue as before that for some ZF-absolute 

7r : V ON, 

(&»•■•> Tim) ^ TT«G,-, ^ Tr«TJ1,..., T)m». 

Choose a regular T-norm <p : S -» 8 where S^jV for simplicity and on 

S* = {(m, a): (Vi < m)[(a)j e S]} 

define the norm 

a) = 7T«<p((a)0),..., <p((a)m-i)))- 

Again it is a simple computation to check that if/ is a T-norm and it is 

regular, because 8 is a cardinal and 7r easily establishes a one-to-one 

correspondence of all tuples below 8 with 8. 

Suppose now <p0, <plv„ is a sequence of regular T-norms on some set A 

which are uniformly in T in the sense that both relations 

Qi(n, x, y)«=>x<*ny, 

02(n, x, y) x <* y, 

are in T and suppose 

Q(u, a)«w6w&a= (£0,..., £m-i) for some ordinals £0,..., 

& (3x){x G A & (p0(x) = £0 & ••• & <pm_i(x) = £m_! 

& R(u, x)} 
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where R is in As in the previous argument, 

(*) Q(u, a) <=> (3m)(3a){iKm, «) = rr(a) 

& (3x){<p0(x) = <p((«)0) & ••• & <pm_1(x) = <p((a)m_1) 

& R{u, x)}} 

o(3m){a is an m-tuple of ordinals & P(f(m,u),Tr(a))} 

with a recursive /, where 

P(n, £) (3m)(3a){i/i(m, a) = £ & G(n, m, a)} 

and hence Q e L[P] — Hr. 

Finally, if Tr is the tree that comes from a T-scale on some GcwXjf 

in r, put 

Q(u, a) *=>u eo) &a= Cm-i> for some . Im-i 

& (((m)o, Io),.-, ((M)m_i, L-i))eT 

and check immediately that Q satisfies (*) with a suitable recursive R, so 

that QeHr. But of course T can be defined directly from Q, so also 

T e Hr. H 

For the case T = /7], it is quite easy to check that 

LIT^H^L, 

see Kechris-Moschovakis [1972], In general, for an arbitrary T which 

resembles n\ (and assuming AD), it is not known whether 

L[Tr] = Hr, 

although there are some positive results of Martin for the special case 

r = n\. The question is important, because a positive answer implies the 

invariance of L[Tr] from the arbitrary choices of G and <p in its 

definition—and this would be a very strong invariance property of scales. 

Finally we are ready to show that for. T as above, 

(*) A n L[Tr] =jfnHr 

= the largest countable 3 vT-subset of X. 

First the easy half. 

8G.25. Suppose T resembles TI\ and assume AD. Show that there is a 
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largest countable set Cr^Ji in 3VT and for any choice of Tr 

CrcL[Tr]<=Hr. 

Hint. Show first that for each 3C, there is a largest countable subset of 

9C in r as in 6E.9 and then proceed as in 6E.10 to get a largest countable 

subset Cr<=^- in 3NT. By 8G.10 then, Cr^L[Tr]. H 

To show (*) above it is enough to prove that the pointset JiDHr is in 

3*r. The computation is very similar to that in the proof of 8G.21, only a 

bit more elaborate. 

Fix a pointclass F which resembles i7[ and choose a regular T-norm 

<p : S -» 8 

where Scgc. Fix also a good universal Gc<oX0C in 3^T, so that 

Hr = L[P], 

where 

P(n, |) (3x)[x e S & <p(x) = £ & G(n, x)]. 

We will obviously code ordinals below 8 using cp. 

We also need to code bounded n-ary subsets of 8, where 8c"8 is 

bounded if there is some A <8 such that 

£,)=■*£lv, ^ < A. 

To do this, choose for each n a universal set 

G"cjyx 9Cn 

in T, let 

*n:G"-^ 8 

be a T-norm, let 

S" ={(x0, e, a, xl5..., xn): x0G S & G’l(a, xlv.., xn)} 

and for each 

z =(x0, e, a, xlv.., xn) 

Az ={(x[,..., x„): G(e, xi,..., x,',) & *n(e, x(,..., xO<*n(a, *i,-, xn) 

& <p(xl)<<p(x0) & ••• & (p(x^)<(p(x0)}. 

put 
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Clearly each Az is in A and the relation 

Un{z)^Az is uniform in x[,...,x'n relative to co 

*=*zeSn 

& fVxlXVx") - (Vx^XVx") 

{[A2(xX..., x'n) & <p(xi) = cp(xi') & ••• & <p(x') = <p(x")] 

^ Az(x",...,x")} 

is in r. With each z £ L7n we associate the set 

Bz = {(&,..., 4J: (3x0 - OxOMxO = 4i & - & <pU0 = 

&Az(x0...,x,0]} 

which is obviously bounded, since if z = (x0, e, a, xu..., xn), then 

Bz(€ 1,..., 40 => 4d—, 4, <<p(x0). 

8G.26. Fix r, cp, etc. as above, assume AD and prove that every bounded 

n-ary subset of 5 is B2 for some z £ U". 

Hint. Use the Covering lemma 4C.11 and the Coding Lemma (II) 

7D.6. _| 

A restricted second order relation on 8 is a relation of the form 

where each 4 ranges over 5 and each B, ranges over the bounded subsets 

of S\ for some integer k,-. With each such R we associate the pointset 

R (Xj,..., X^, Z^,..., Zm) ^ ' Xj,..., Xn £ S 

& Z j £ Uk 1 & • • • & Zm £ Uk"' 

& R((p(xj),..., <p(xn), Bz») 

relative to a coding of ordinals and bounded subsets as above. We say 

that R is in 3\"T in the codes if is in 3^r. 

8G.27. Suppose T resembles 174 fix <p, G, Gn, *n as above and assume 

AD. Prove that the collection of restricted second order relations on 8 

which are 3^T in the codes includes the basic relations 

t]<4 11 = 4 (&,...,&)eB, Be A" 

and their negations and it is closed under &, v, additions, permutations 
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and identifications of variables and the quantifiers 

(3£<A), (V£< A), 

(3B)[B is bounded & •••]. 

Hint. The computations are all trivial, using of course, the Harrington- 

Kechris Theorem 8G.20. 

This is the general version of the Harrington-Kechris theorem which 

we need. In the results below we assume tacitly that the codings are 

relative to a fixed choice of <p : S -» 8, Gs^xSC, Gn, etc. as above. 

8G.28. Suppose T resembles JT}, assume AD and prove that the relation 

jR(A, B)oAe L(B) 

on bounded n-ary subsets of 8 is in 3*T in the codes. 

Hint. This is a set-theoretic computation, very much like that of AnL 

in 8F.7. Using unary A, B for simplicity, check first by a Skolem- 

Lowenheim argument that 

A g L(B) <=* (3A <8)(3/x <8)[A c A & BcA & A < p, & A e LJB)]. 

By 8F.1, next, choose a formula cpL(x, |x, y) and a finite T0cZF such that 

for all standard models M of T0, if A, B, p, e M then 

AeLjB)^M\=<pL(A, p,, B). 

Suppose the axiom of extensionality is also in T0. By Mostowski collaps¬ 

ing then, we easily have 

AcA&BcA & AeL^{B) 

<=> (3n <8)(3E civx v){A < p, < v & (Vrj, £ < jul)[t| < £ ^ E(V, £)] 

& (3Ca)OIb)[(V^ < jx)[E(£ |A) ~ I g A] 

& (V£ < p,)[jE(£, £b) <=> £ £ B] & (v, E)k<pL(^A, F’ £b)]} 

which then implies that the relation AeL(B) is in 3'T in the codes by 

8G.27. H 

8G.29. Suppose T resembles /7} and assume AD. 
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(i) Show that the relation 

R{A)^AeHr 

on bounded subsets of 8 is in 3*T in the codes. 

(ii) Prove that AT) Hr is a pointset in 3~*T. 

(iii) Infer that 

AnHr = AOL[Tr] 

= the largest countable 3vr-subset of A. 

(For AC)L[Tr] and r = Til, Kechris-Martin [1978]; for AC\L[Tr] in 

general Harrington-Kechris [198?]; for Af)Hr, Moschovakis.) 

Hint. Fix a regular T-norm 

cp : S -» 8 

and a universal set G £ to x 9C and put 

P(n, |) <=> (3x)[x e S & cp(x) = | & G(n, x)] 

so that Hr = L[P], 

Use first a Skolem-Lowenheim argument and the regularity of 8 to 

argue that for bounded A c Sm, 

(1) A g L[P] <=> (3A <8)[AeL(Pn to x A)]. 

Suppose now 

G(n, x) «=> ('3p)G1(n, x, (3) 

where Gx is in r and fix a T-norm 

i//1: Gj -» 8. 

Put 

T(n, x) <=> x e S & (3|3)G1(n, x, (3) 

and on T define the norm 

if/(n, x) = infimumfij/^n, x', (3): x' e S & cp(x') = <p(x) 

& Gj(n, x, |8)}. 

It is clear that i// is an 3^T-norm on T and it is uniform on new, xeS 

relative to <p, so we can define 

if/(n, £) = <Mn> x), for any xeS such that <p(x) = £ 
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Finally put 

F^(n, £)**£<\<n&'l'(n, £)<F 

and let 
Q(A, p, n, £) *=> PKlx(n, |). 

The key to the proof is that both Q and ~\ Q are in 3"T in the codes. 

Proof that Q is in 3"T in the codes is quite easy. We must show that 

Q#(u, v, a, x) S 

& (p(x) < (p(u) < (p(v) 

& (3n)[<p(a) = n & if(n, x)< <p(t>)] 

is in 3"T and only the last clause here needs any computation, 

ip(n, x)<(p(v) <=^(3x')(3|8)[(p(x') — <p(x) & G1(n, x', p) 

& ifain, x', (3)< <p(t>)]. 

(We will omit the computation of “<p(aj = n” which involves saying that 

exactly n points precede a in <p.) 

Proof that ~i Q is in 3/\ Compute: 

(nQ)#(u, v, a, x)<=?H,i),fl,xeS 

& { i[<p(x) < <p(u) < <p(u) & (3n)[«p(a) = n]] 

v (3n)[<p(a) = n & & ~1(1p(n, x)< <p(u))]}. 

For the non-trivial last clause, notice that for v eS, 

—i(t/r(n, x) < <pt,u)) 

^ (3m)(3z)(3y){Ga(m, z, 7) & i/q(m, z, 7) = <p(v) 

& (Vx')(V/3)[<p(x) = <p(x') 

-►(m, z, y)=£* («, |3)]} 

which establishes by 8G.21 that tms ciause and hence (—1Q)^ is in 3^F. 

Claim: if A is bounded, then 

(2) A e L[F] (3A <8)(3p <8)[A e L(FX^)]. 

To show this in me direction (=>), choose A by (1) so that Ae 

L(FricoXA) and let 

P — suprernum{ij/(n, £): T(n, £) & £<A}; 

since 5 is regular, we have p<8 and then clearly 

Fn(wXA) = F^. 
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For the other direction notice that since Q is in 3 VT in the codes, then 

8G.23 implies that QeHr and hence each PXfAeHr and L(Pkfl)cHr. 

Finally, since both Q and -|Q are in 3T in the codes, so is the 

relation on a bounded set BcwxS 

B = ^ (Vn, B)Q(A, p, n, 0 

& (Vn, £< A)[Q(A, p, n, 0 => B(n, £)] 

and hence so is the relation 

AeHro (3B)(3A)(3p)[B = Px■** & A e L(B)]. 

This completes the proof of (i). To prove (ii) now, simply compute 

a e Hr <=> (3A)[A e L[P] & (Vn)(Vm)[a(n) = m <=> A(n, m)]] 

and check that the definition of “in 3 VT in the codes” easily implies now 

that this is in 3VT. 

Finally, jVTlHr is wellorderable by 8F.12, hence countable by 7D.4, 

hence contained in L[Tr] by 8G.10. —\ 

The same method yields easily the next basic result about these models. 

8G.30. Suppose F resembles n\ and assume AD. 

(i) Show that the set 
Cr = A n Hr 

admits an 3~AT-good wellordering. 

(ii) Show that 
Hrb“ 2*° = N1”. 

(iii) In the special case T = nln+1 and granting DC, show that C2n+2 

admits a Xln+2-good wellordering and 

H2n+at=“A admits a 2'21n+2-good wellordering of rank K/’. 

(Kechris [1975]). 

Hint. For (i), use 8F.12 to get a canonical wellordering <X,M' for each 

L(PK0 in the notation of 8G.29 and on Cr define the wellordering 

a <r 0 «=> [a G L$(PKix) for some triple (A, p, 0 

such that for every smaller triple (A', p', £') 

(in the lexicographic ordering) (3<£ Lr(PxV')] 

v[for the least triple (A, p, 0 such that 0(PK0 

contains both a and (3, L€(PX fi) thinks that 

a<x-0]. 
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Here we only look at triples <A, p, £> such that L€(PX t") satisfies enough 

axioms of ZF to decide correctly the formula defining <x The computa¬ 

tion that this <r is in 3*F and 3T-good is similar to that in the proof of 

8G.29. They key of course, is that 

a <r 0 &|3e^(PM)^a6Ls(P^); 

compare the proof of 8F.7. 

To prove (ii), put 

P(|3, y) <=> 0 e Cr & (Vn)[(y)n <r 0] & (VS <r 0)(3n)[S = (y)J 

where <r is the 3 T-good wellordering of Cr. Clearly P is in 3 SF and 

since (in V) CT is countable, we have 

(V0eCr)(3y)P(0, y). 

Let P*<=p uniformize P in 3 T and notice that P^stVxjV is countable 

so that P* c Hr; thus for each 0eCr there is some y e Cr which enumer¬ 

ates {5: S<r0}, so that within Hr every initial segment of the wellordering 

<r has countable length. This means precisely that 

Hr 1= “the length of <r is NY’, 

so that in Hr we have the continuum hypothesis. 

(iii) is immediate by a small absoluteness argument. —I 

Kechris [1975] established this result about C2n+2 on the basis of the 

weaker hypothesis Det(A]n) and by a different method, long before the 

proof of the Harrington-Kechris theorem. In this connection, the models 

J^2n+2 = L(C2n+2) £ F[T2n + 1] 

have been studied quite adequately, see Kechris-Moschovakis [1978b], 

Kechris [1975] and Becker [1978]. 

One of the reasons for looking at these various “partially playful 

universes” is the desire to obtain consistency and independence results 

about determinacy hypotheses. Here is one example. 

8G.31. Assume Dei (Power (A) Cl L((R)) and show that for each n, 

Det(Xin+1) is not a theorem of ZFC + Def(A2n+1); in particular, for no n 

does Det( A*) imply PD. (Moschovakis, see Kechris-Moschovakis 

[1978b].) 

Hint. By 8G.16, H2n+^ZFC+Det(A2n+i)- On the other hand, in 

W2n+1 we have a ^]n+2-good wellordering of X of rank K, and this 
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Diagram 8G.1. The normed Kleene pointclass in Hs. 

implies easily as in 5A.6 that there is an uncountable, thin /72n+1 set in 

this model, which violates Det(X]n+1) by 6A. 12. —I 

In this connection it is worth pointing out that Martin has shown 

(granting DC) 

Det(AlJ => Det(X\n), 

see his forthcoming Martin [19?c], 

Consider also the prewellordering property in the model Hr. It is clear 

from the proof of 5A.3, that the existence of a X\n+2-good wellordering 

of rank implies that for each m >2n + 2, Xxm is normed, so that using 

H2n+ikDct(A2n), we infer that in Hs (for example) the circled pointclas- 

ses in Diagram 8G.1 are all normed. 

The corresponding diagram for HIND has infinitely many “teeth” since 

Wind ^ PD; 

but in Hind we have, of course, a canonical wellordering of the universe 

and (it is easy to see) that the restriction of this wellordering to A is in 

fact definable (inductive) and of rank This model, incidentally satisfies 

a good deal of absoluteness beyond the absoluteness of analytical state¬ 

ments, see Moschovakis [1978]. 

Using forcing and granting AD, one can show that for any pointclass T 

which resembles /7], if A is any ordinal which is countable (in V), then 

Hr 1= 2A = A+. 

A much easier consequence of constructibility theory is that 

A >8 =* Hr b2A = A+. 

It is not known whether these models satisfy the generalized continuum 

hypothesis. 

It is also not hard to see that if 

A = Xx = the least ordinal uncountable (in V), 



574 Metamathematics [8G.32 

then for any such T, 

Hrb“A is strongly inaccessible”. 

Actually, 

Hrb“ A is measurable” 

and the same is true for A = X2 (Moschovakis). 

The study of these fascinating inner models is one of the most intrigu¬ 

ing research areas in the theory of determinacy and it is still in its infancy. 

We add here just one more result which is quite easy to show by the 

methods we have established. 

8G.32. Suppose r resembles FI\, assume AD and let A cz 8n be bounded. 

Prove that Ae Hr if and only if there is a regular T-norm cp: S -» 8, a 

pointset R^Xn+1 and an ordinal A <8, such that 

[x e S, xn e S & <p(x) = A, <p(xa) = fi,..., cp(xn) = 

=> [A(|l5..., «=» R(x, Xj,..., xn)]. H 

8H. On the theory of indiscernibles<4) 

In this section we will develop just enough of the celebrated theory 

of indiscernibles in L to allow us to prove the following important 

theorem of Martin and Solovay (improved in part by Mansfield). 

If there exists a measurable cardinal then every n\ set admits a A\-scale 

into an ordinal 

if in addition the axiom of choice holds, then 

so that every X] set is K2-Suslin. 

Together with results we have already proved and assuming the axiom 

of choice and that every set in L((R) is determined, this implies easily 

$3 = (Ka>+i)L(<m ^ K3, 

i.e. 5' is the ordinal which appears within L((R) to be the oj + l’st 

cardinal—but in V, actually 83<X3. 

Another consequence (granting a measurable cardinal and the axiom of 
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choice) is that every S3 set is the union of X2 Borel sets and (assuming 

further Det(A2)) every SI set is the union of X3 Borel sets. 

Extension of these elegant results to the higher Lusin pointclasses is 

one of the most challenging and fascinating open problems of descriptive 

set theory. 

The basic notions of the theory of indiscernibles are model-theoretic 

and it is useful to explain them in a general setting. 

Consider first the theory 

ZFL = ZF + “ V = L” 

which extends Zermelo-Fraenkel set theory by the (formal sentence of £e 

expressing) the axiom of constructibility and let 

x<y 

be a formula of £e which defines the canonical wellordering of L, 

x<y<=^>x<y& ~i(x = y). 

It is clear that if = (A, E) is any model of ZFL, not necessarily a 

standard model, then 

(1) s)f t= “{(x, y): x<y} is an ordering” 

and for any formula i/t(zlv.., zn, y), 

(2) 211= (Vza) • • • (VzJ{(3y)<Kz!,..., zn, y) 

(3y)[t|/(z1zn, y) 

& (Vx)[x<y -» -1 tKzi,..., z„, x)]]}; 

this is simply because these formal sentences are all theorems of ZFL and 

hence they are true in every model of ZFL. 

Let us call a theory (a set of sentences) T in a language £ = £u good 

(relative to a formula x<y) if T has a model and if every model ?f of T 

satisfies (1) and (2) above. We will assume for simplicity that there are no 

function symbols or constants in £. 

Another good theory which we will use is 

ZFL[a] = ZF + “a is the graph of a function on a> to to” 

+ V = L[a]- 

this is in the language £e[d] obtained by adding to £e a binary relation 

symbol a meant to represent the graph of some irrational a and its 

axioms express precisely the assertion that every set is constructible from 
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a. It is clear that ZFL[a] is good relative to the formula defining the 

canonical wellordering of L[a]. The models of ZFL[a\ are of the form 

SI = (A, E, a) 

where EgAxA and d c A x A interpret e and a respectively. 

If SI = (A, -) is any model of a good theory T, let 

x <?l y «=> SI 1= x < y 

be the canonical ordering on A and call St wellfounded if ^ ‘ is a 

wellordering. It is clear from 8F.4 and 8F.22 (using Mostowski collapsing) 

that every wellfounded model of ZFL is isomorphic to some 

(Tx,e) 

and every wellfounded model of ZFL[a] is isomorphic to some 

(Lx[a], G, a), 

where ael and A is limit. 

Let us now fix a good theory T. With each formula <p(v0, vlv.., vn) 

whose free variables are among the first n +1 variables in our standard 

list v0, vlv.. and in which v„ actually occurs free, we associate the formal 

term 
t(v15..., vj = pv0<p(v0, vlv.., vn) 

which intuitively defines the least \0 such that <p(v0, vl5..., vn). Of course, 

these terms are not in the language £ of T, but we can easily interpret 

them by partial functions on each model 21 = (A, -) of T: 

[jLtv0<p(v0, *i,-, xJFl «=»2H=(3v0)<p(v0, Xj,..., xn), 

[pv0cp(v0, Xu,..., xn)]‘l = the unique yeA such that 

sIt=<p(y, xj,..., xn) & (Vz <y) —i<p(z, xlv.., xn). 

We will say that the partial function 

T'l(Xi,..., Xn) = [jXV0<p(v0, Xi,..., Xn)f 

is definable by a term in 21. 

Moreover, we can easily interpret substitutions of these terms into 

formulas of £ as abbreviations of formulas, 

<//(pv0<p(v0, V,,..., V„), X,..., xm) 

(3y){<p(y, V!,..., v„) & (Vz <y) ~i <p(z, vlv.., v„) 

& xl5..., xm)}, 
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where the variable y is chosen different from all the variables occurring in 

xlv.., xm) to avoid conflicts in interpretation. As another example, 

/av0(p(v0, v,,..., vj = p,v0iKv0, Vi.-. vm) 

is an abbreviation of 

(3v0){<p(v0, Vi,..., vn)&(Vz<v0) -up(z, vlv.., vn) 

& l|/(v0, Vi,..., vm) & (Vz<v0)-nA(z, Vi,..., vm)} 

where z is any variable not occurring in <p(v0, vlv.., vn), ^(v0, vlv.., vm). 

If 21 = (A, -) is a model of T and BcA, put 

B* = {t9i(x1,..., xn): x1<®x2<ai-"<®tx„, X!,..., xneB 

and T(ylv.., vn)= ju,v0<p(v0, vlv.., v„) is a term 

such that t^X!,..., xM)|} 

and let S3* = (B*,-) be the substructure of obtained by restricting all 

the relations of 91 to B*. 

We say that B generates 91 if 

21 =S3*. 

8H.1. Lemma. If 21 = (A, -) is a model of a good theory T and 0 ^ B £ A, 

then S3* is an elementary substructure of 21. 

Proof. As in the proof of the Skolem-Lowenheim Theorem 8A.4, we 

show by induction on the length of a formula cp(xlv.., xj, that if 

xxn e B*, then 

33*t=<p(xlv.., xj «^2I t=<p(x1,..., xn). 

The only non-trivial case is when we consider formulas that start with a 

quantifier, say the formula 

(3w)*(s, t,w), 

where we have taken only two free variables to simplify notation. We 

must show that if s, teB* and 

2lb(3w)x(s, f, w), 

then there is some w e B* such that 21 t=*(s, t, w), so that by the induction 

hypothesis. 

S3*l=(3w)x(s, t, w). 



578 Metamathematics [8H.1 

We have 

s = t'1(xi,..., x„) = |>Vo<p(vo, xlv.., xj]91, 

t = ym) = [fiVo^Vo, ylv.., ym)]91 

where xx <9t ••• <9lxn, yx <91 ••• <a ym are increasing sequences in B. Let 

zi <?t z2<?t <91 zk be an increasing enumeration of the finite set 

{xi.x„, ylv.., ym}, so that 

x; = Za,, y, = zbj 

for suitable integers a, (l</<n), fi, and put 

pK,..., vk) = fxv0x(/xv0cp(v0, vai,..., yaJ, fiv0i//(v0, vb],..., bbm), v0), 

where of course, the formula defining p(vl5..., vk) must be “unab¬ 

breviated” as above, using variables that will not conflict with v0, vl5..., vk. 

Clearly now 

w = p9l(z1,..., zk) 

= [^v0^([fxv0cp(v0, xlv.., xjf, [ju,v0^(v0, yi,-, ym)f, v0)]91 

= [m-v0x(s, t, v0)]91 

is in B* and 21 h^(s, t, w). —I 

In the future we will often omit the details of such arguments where 

one has to fuss with renumbering variables, as they are quite routine. 

Suppose again that 21 is a model of T and IcA is a subset of the 

domain A. We say that I is homogeneous in 21 (a set of indiscemibles in 21) 

if for each formula <p(xlv.., xn) and every two n-tuples of increasing 

members of I, 

* 1 5 • • * 5 */Vn5 yi>-» ynei, 

Xi< X2< •••< x„ yi<9ly2<'a' <9Iyn, 

we have 

2ll=<p(x1,..., xn) <=>211= cp(ylv.., yn). 

This is the key notion of the theory of indiscemibles and it is obviously 

related to the notion of a homogeneous set of ordinals (relative to a 

partition) with which we worked in section 6G. 

We will be dealing with pairs 

(21,1), 
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where 91 — (A, -) is a model of T and IcA is homogeneous in 91. For 

each such pair, let 

||I|F' = the order type of the ordering {(x, y): x, y el, x<91 y} 

and define the character of (91,1) by 

d> = Char(91, 7) = {<p(vl5..., vn): vj is a formula 

whose free variables are among vlv.., v„ 

and for some x1<9lx2<8t"- <axn, xlv.., x„ e I, 

9tt=<p(x1,..., xj}. 

We are allowing here n = 0, so that the collection of formulas <t> contains 

all the sentences true in 91. 

Mostly, we will work with pairs (91,1) where / is wellordered by <a, so 

that ||lf is some ordinal A. One should be careful however, because it 

may happen that \\I\\K is an ordinal but 91 is not a wellfounded structure, 

i.e. the entire set A is not wellordered by <8t. 

We are now ready to state and outline a proof of the basic result in the 

so-called Ehrenfeucht-Mostowski theory. 

8H.2. Theorem. Suppose is a collection of formulas in the language of 

a good theory T and assume that there exists a pair (91,1) such that 91 is a 

model of T, I is an infinite homogeneous set in 91 and 

$ = Char (91,1). 

Then for each infinite, limit ordinal A, we can define a pair (9lx, Ix) (which 

depends only on TO so that the following hold: 

(i) 9fx is a model of T, IA is homogeneous in 9CX, IK generates 9IX and 

lUxir-A. 

(ii) Char(9IX,ZX) = <F. 

(iii) If (93, J) is any pair where 53 = (B, -) is a model of T, J^B is 

homogeneous in 93 and generates 93 and Chared, J) = and if 

f:J>+L 

is any order-preserving injection, then there is a unique extension 

f*:B-*AK 

which is an elementary imbedding of 93 into 9lx, i.e. for each formula 
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<p(xlv..,xn) and xu..., xn<= B, 

(v) With the same hypotheses as in (iii), if f :J >^IK is in fact an 

order-preserving bijection of J with IK, then f * is an isomorphism of S3 with 

(v) The following three conditions are equivalent: 

(a) Each is a wellfounded model of T (i.e. is a wellordering). 

(b) For each countable A, s2(x is wellfounded. 

(c) For some uncountable A, is wellfounded. 

Proof. The idea is to think of the ordinals below A as the indiscernibles 

in the model which we will construct, so every member of this model will 

be of the form 

X = T'Mli,-, £J = [pv0cp(v0, £1,..., 

for some formula <p(v0, vlv.., v„) and some £1 <£2< *" < < A. We can 

then think of the tuple 

(£i,—, £» jav0<p(v0, vlv.., v„)) 

as a name of [pv0(p(v0, |„)]8lx (still to be constructed) and define 

first the collection of names 

BK L, PV0<p(vo, Vn)): 

and the formula (3v0)<p(v0,vb...,vn)e(l)}. 

There is an obvious equivalence relation ~ on BK (names are equival¬ 

ent when they name the same object) which is easiest to define in the 

special case when the ordinals of the names are far apart. For example, if 

€l<€2<Vl<V2<V3, 

put 

(£1,I2, FV0<p(v0, vl5 v2)) ~ (rji, r]2, V3> |av()i(/(y0, vl5 v2, v3)) 

<=> pv0<p(v0, Vi, v2) = fiVoifr(y0, v3, v4, y5) G $ 

<=*• whenever ?l = (A, -) 1= T, I c A is homogeneous 

in 91, Char (91,1) = <E> and x1<9lx2<ay1<SIy2<?Iy3 

are all in I, then 

21 k fxv0<p(v0, x,, x2) = p.v0t//(v0, yl5 y2, y3). 
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In the general case, let A1<A2<---<Ak be an increasing enumeration of 

the set {4,..., 4, rh,..., T]m} so that 

~ Vj ~ 

and put 

— > £n, ^Vo<p(v0, Vi,..., vJ)~(Th,..„ T]m, p,V0lJ/(v0, Vi,..., vm)) 

<=> p,v0<p(v0, ySi,..., vSn) = p,v0t//(v0, vti,..., vt ) e <t> 

<=> whenever S?I = (A, -)I- T, I^A is homogeneous in SI, 

Char($l, I) = and z! <'1 z2<?l • • • <at zk are all in I, then 

SIt=pv0<p(v0, zS),..., ZsJ = fAV0^(v0, zti,..., ztJ. 

It is now easy to prove that ~ is an equivalence relation on BK, using 

the hypothesis that there exists some pair (Si, I) with Slt=T, / inhnite and 

homogeneous in SI and Char(SI, I) = <b. 

The domain of SIX will be then 

Ax = Bx/~ 

= all equivalence classes of members of BK under 

Similarly, 

h = {[(& v0(v0 = Vi))]: $ < A}, 

where [-] is the equivalence class of -, so that IK is naturally ordered with 

order type A and we can identify it with A for the proof. 

For each unary relation symbol R in the language, define on Aa 

RA([(4,..., 4, p.v0(p(v0, vn))])«^R(jav0cp(v1,...,vn))G(I) 

«=» whenever SI = (A, I) 1= T, / c A is homogeneous in SI, 

Char (SI, I) = <t> and xl <?l x2<?t ••• <s'lx„ are all in /, 

then SIt=R0(ju.v0<p(v0, xl5..., xn)). 

The same idea will work for relation symbols of more arguments, except 

that we will have to indulge in some renumbering of variables in the 

definition, as we did (in effect) with = above. These relations are easily 

well-defined on Aa, although we define them to begin with via represen¬ 

tatives of equivalence classes—that argument too uses the fact that 

= Char(SI, I) for some suitable pair. 

At this point we have a structure SIX = (Aa, -) and a set IK c Aa and it is 

obvious that the truth of formal sentences in 2lA can be computed by 
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determining whether various formulas are in 4>. The precise fact that we 

need is as follows. 

Lemma. Suppose <p(xlv.., x„) is a formula and 

Xl = (£lv> £m,? |LlVo<Pi(v0, Vj,..., 

Xn = (£lv> ^V0(P,i(v0, Vx,..., Vmn)) 

is a sequence of names in Bk with corresponding equivalence classes 

xn. Let Ai<A2<---<Ak be an increasing enumeration of the finite 

set {£': 1 < i < n, 1 < / < mj so that with a suitable choice of integers 

a(i, j), 

$ = \a(u) 

Then 

Slkbcp(xi,...,xn) 

<=> (p(fXV0(p1(v0, Va(X4),..., Va(x>mi)),..., fi'',<)tPn(VCb Va(n,l)5-”3 Va(n,m„))) *= 

This is easy to check by induction on cp and from it (i) and (ii) of the 

theorem follow routinely. 

To prove (iii), given f:J>+IK which is order preserving and given 

xeB, find first an increasing sequence Xx x2<®-<® xm of members 

of J and a formula <p(v0, Vi,..., v„) such that 

x = [/Ltv0<p(v0, Xx,..., xj]® 

and set 

/*(x) = equivalence class of f(x„), fxv0<p(v0, vj). 

It is easy to check that the definition of /*(x) is independent of the choice 

of Xx,..., xn, cp(v0, Vx,..., vn) using the homogeneity of J and the fact that f* 

is an elementary imbedding follows directly from the lemma. Also (iv) 

follows immediately, because if f is onto IK, then /* is clearly onto AK. 

Finally, to prove (v), suppose first that x is uncountable and ?IX is 

wellfounded and let A be any countable ordinal, let Jx be any subset 

of /x of order-tuple A and consider the structure ‘23 = (J*, -) which is an 

elementary substructure of 21* by 8H.1. Now J is homogeneous in 23 and 

generates 23, and 

Char(23, J) = Char®lx, IJ = 

thus if we let f: J >-» IK be the unique order-preserving bijection of J with 

Ix, the extended map /* : J* >* Ax is an isomorphism, in particular it takes the 
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ordering <* in an order-preserving way onto But <SJ3 is a wellorder¬ 

ing since it is the restriction of <* to J*, and so <99 is also a wellordering. 

This shows that in (v), (c) => (b). To show that (b) _►(a) and complete 

the proof, suppose that for some x, 21*. is not wellfounded and let 

^ sir 
Xx> "X2> »••• 

be an infinite descending chain—we can find one even without using the 

axiom of choice, because the domain is obviously a wellorderable set. 

Now each ^ = Ov0<p;(vo, y],..., y^)]91- for a suitable cp;(v0, v,,..., v„.) and 

members y{,..., yj,. of I*., so there is a countable subset J^IX such that for 

each i, this simply means that the elementary substructure 

S3 = (J*, -) is not wellfounded. Finally, if A is the countable order-type of 

the set /, then as above S3 is isomorphic with 2IX and 2IX is not well- 

founded. —| 

It is very important in this model-theoretic construction that the pairs 

(21x,/x) were constructed directly from the set of formulas <F, assuming 

only that <f> = Char(%,I) for some pair (21,1), but not using any particular 

21, I in the construction. Thu ve have an operation 

T(A, <t>) = (2IX, IK) 

which assigns to each ordinal A and each character a pair (9fx, IK) with 

the appropriate properties. 

We now turn to apply this basic result from model theory to ZFL and 

ZFL\a] following Silver [1971]. 

It will be convenient to abuse notation slightly by using the symbol 

“Lx[a]” to refer both to the set Lx[a] and to the structure (Lx[a], e, a), 

for any given aeX. One should keep in mind that in the language of 

these structures we have a relation symbol which defines a, although this 

will be suppressed in our notation. 

We should also point out that in any model of ZFL[a], the ordinals are 

cofinal in the canonical ordering. This is because by (the relativized 

version of) 8F.1 and 8D.10 

y e L€[a] & x<y=^xe L£[a], 

£<£Le[a], 

so that 

yeL£[a]=4y<^; 

now this is a theorem of ZF, so its formal version holds in every model of 
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ZFL[a] which also satisfies “(Vy)(3£)[y € L€[a]]” and which hence also 

satisfies “(Vy)(3£)[y < £]”. 

8H.3. Theorem (Silver [1971]). Suppose aeJf, x is a measurable cardinal 

and “U is a normal ultrafilter on x. 

(i) Lx[a]tZFL[d]. 

(ii) There exists some set I^x such that I e 'll and I is homogeneous in 

LM 
(iii) If I^x, IeTL and I is homogeneous in Lx[a], then the following 

hold. 

(a) For each formula <p(v0, v,,...,vn) and for each increasing sequence 

£1 < £2 <' ‘ ‘ < £n < A of ordinals in I, 

Lx[a]h(3v0)<p(v0, £1,—, £„)-> V-Vo<p(fo, £i>—, 

(b) For each formula <p(v„, vl5..., vn, vn+1,..., vn+m), if <L, 

Vi<rh<"' <r1mi Vi<V2<"'<rl'n are increasing sequences in I and if 

L <Vi, C<Vu then 

Lx[a]l=pv0<p(v0, Ii,..., gn, vm)<Vi 

-> jU,V0<p(y0, Til,-, T]m)= M-V0<p(v0, £l,-, £., “Hlv, VJ. 

Proof. To check (i), go back to the proof of 6G.9 and check that the 

following was actually shown, without appeal to the axiom of choice: if x 

is measurable, A < % and is a wellordered sequence of distinct 

subsets of A, then p.<x. This implies easily that 

L[a]l=“x is a strongly inaccessible cardinal” 

and hence by 8C.11, since Lx[a] satisfies the axiom of choice, 

L[a]k“Lx[a] is a model of ZFC”. 

Now simple absoluteness considerations imply that in fact 

L„[a]tZFC 

and again, easily, using 8F.1, Lx[a]k“ V = L(a)”, so that Lx[a]kZFL[d]. 

(ii) For each formula <p(x,,..., xn) with n free variables define 

F„:x["]->{ 0, 1} 

by setting first 

1 ifLx[a]k<P(|1,...,4) 

0 if Lx[a]k-i<p(£i,..., &,) 
F^...,U = 
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and for each n-element subset X of x, putting 

Fv(X) = F1U1,...,a 

where is an increasing enumeration of X. Since there are 

only countably many formulas, we can use 6G.4 to get a set / e 41 which is 

homogeneous for each partition F^ and hence homogeneous for Lx[a]. 

(iii) (a) If Lx[a]t=(3y0)cp(v0, £lv.., £n) with £1 <••<£„ in I, then for 

some x we have Lx[a]b<p(x, £t,..., £„) and since I is cofinal in x and hence 

in the canonical ordering of Lx[a], we have some p e I, £i<---<£n<fx 

and x< ix. Thus 

Lx[a]l=^Vo<p(vo, li,..., £J<p 

and by homogeneity, for any A >A el, 

Lx[a]t=p,v0cp(v0, £n)<A. 

(iii) (b) Assume 

Lx[a]t=p,v0<p(v0, 4, r)|r)m)<rj1 

and let 

x = [/xv0<p(v0, L, Vi,~, Vm)]LJa]- 

Since x<r)1, we have xel^Ja] by the basic properties of the canonical 

wellordering on Lx[cx] and hence xeL^[a] for some £<17!. (The set of 

limit ordinals below x is easily of normal measure 1, so that th is limit.) 

Thus 

(*) Fx|>]b“(3£)|>v0<p(v0, fi,.., £„, rn,..., T]m)eL€|>] & £<Th]” 

and hence the same formula must be satisfied by Lx[a] if we replace 

rjj,..., r)m by any other increasing tuple from I with £n<£t. 

We now define F(£) for (ef, £>£„ as follows: let G = £, lot Cz,—>Cm 

be the first m — 1 members of I above £ and put 

F(£) = least £ such that Lx[a]l=“/xvo<p(vo, £i,.~, £m)e^[a]”- 

We have F(£)<£ for all £el, £>£„, so by normality there is a fixed £* 

such that F(£) = £* for all £ in some set /ell. 

Again define G(£) for £e/, £>£„ by choosing £lv.., £m as above and 

putting 

G(£) = [p,v0<p(v0, 4, £i,—, 
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Now G(£)e Lc*[a] for all £eJ, £>4 and since card(L£*[a]) = card(£*) < 

% we have a fixed element x*eL?*[a] such that for all £ in some He'U, 

G(£) = x*. 

If £ and £" are far apart in H so that 

£i<£2<-"<£m<£?<n<-"<C, 

the equation G(£)= G(£") simply means that 

(**) ^x[«]l=fAV0<p(4;iv--, 4, £],..., £m) = (iv0<p(€u — i in, , O 

so by homogeneity, (**) actually holds for all 

4<-<4<4<-<&»<£?<-<£m 

in I. Finally given 4 <•••<£„< hi <••■< rjm and 4 < "• <4 < hi < < 

tj£ in /, choose ordinals £"<•••<££ in I above rjm and t]£ and apply (**) 

with £",.--, ££ and taking £ = r], first and £ = rp afterwards to obtain the 

desired result 

Lx[a]t=p,V0<p(Vo, 4. 4, hi,---. hm) = M-vo, 4,-, 4, ’ll,-, h'm)- “I 

Fix now a measurable cardinal x, an irrational a and a set I <= qj. of 

normal measure 1 which is homogeneous in Lx[a] and let 

<J> = Char(Lx[a], I) 

= {<p(v1,..., vn): <p(v1,...,yn) is in the language of 

ZFL[d] and for 4< —<4 in l Tx[a]b<p(4,-, 4)}- 

It is clear from the last two theorems that <t> satisfies the following 

conditions, where for each n, m, cpnm is the sentence of ZFL[a] which 

expresses formally the assertion 

(n, m)e a. 

(Rl) There exists a pair (31,1), where 3H=ZFL[d], I is an infinite 

homogeneous set in 31 and 

0> = Char(31,1). 

(R2) The formula Ordinal(\x) is in <F, and for each n, m, 

a(n)=m m e<F. 

(R3) For each formula <p(v0, vx,..., vn) in the language of ZFL[a], the 
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formula 

(3v0)<p(v0, Vi,..., vj -> JLtV0cp(Vo, Vi,..., V„)< Vn + 1 

is in <J>. 

(R4) For each formula cp(v0, v1}..., vn, v„+1,..., vn+m), the formula 

M-v0cp(v0, vlv.., v„, v„+1,..., v„+m) <vn+1 

-»■ F-Vo^fvo, vlv.., v„, vn+1,..., vn+m) 

F'Vq^p(vq, v„, vn+m+i,..., Vn+m^_m) 

is in <F. 

(R5) For each countable limit ordinal A, if T(A, <F) = (Slx, IK) is the 

canonical pair associated with <F by 8H.2, then 2lx is wellfounded. 

The remarkable thing about these conditions is that they do not refer at 

all to x or I—whether they hold or not depends only on the set of 

formulas and the irrational a—and yet as we will see in the next 

theorem they determine Char(Lx[a], I) completely, no matter which 

measurable cardinal x and which set I of normal measure 1 in x we 

choose. 

If is any collection of formulas satisfying (l)-(5), we will call it a 

remarkable character for a. For the record: 

8H.4. Corollary (Silver [1971]). If there exists a measurable cardinal, 
then for each a e TV there exists a remarkable character for a. —I 

We next come to the main theorem in the theory of indiscernibles for L 

and L[a]. 

8H.5. Theorem (Silver [1971]). If a eM and <t> is a remarkable character 

for a, then there exists exactly one class of ordinals I with the following two 

properties. 

(i) I is closed and unbounded. 

(ii) For each uncountable cardinal A, JHA is a homogeneous set in 

Lx[a] which generates Lx[a] and satisfies 

4> = Char(L^[a], I DA). 

Moreover, I contains all uncountable cardinals and for any uncountable 

cardinal x >KW 
<F = {<p(vi,..., vj: LjoOhcpOC,..., XJ}. 

In particular, there is at most one remarkable character for a. 
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Proof. Fix and let 

r(A, <F) = (2IX, ID 

be the canonical pair associated with <t> and each ordinal A by 8H.2. By 

(R5) and 8H.2 each 2tx is isomorphic with some LxV] and we must have 

a' = a because of (R2). Also, if IK is the image of the homogeneous set If 

under the isomorphism of 91 x with Lx*[a], then Jx is homogeneous in 

Lx*[a], it generates Lx*[a] and by (R2) again, it is a set of ordinals of 

order type A, so in particular A <A*. 

We will eventually set 

/=Ux4 

after some lemmas. To simplify notation, let us put 

t£(£i,..., £J = [pv0<p(v0, 

for each formula <p(v0, v„) such that (3v0)<p(v0, vl5..., vn)e<I> and for 

each £1<---<L in Jx. 

Lemma 1. Jx is cofinal and closed in Lx*[ct]. 

Proof. Each xeLx*[a] is |„) for some £i<"‘<£rt in Ix, and by 

(R3), if in<v and rjelx, we have £„)<tj; thus Jx is cofinal in 

Lx*[a]- 

To prove that Ix is closed, suppose towards a contradiction that p < A*, 

Ix n p is cofinal in p but p^Ix, so that 

for some and ordinals in Ix with 

By (R4) then, taking ?]{<••• <v,m<p in /x with 4,<tiJ, we have 

P ’ T"<p (^1 v-5 4'<m ^llv) 'Hm ) T<p fi 1’ •• • > m) 

and hence by (R3) 

P = t£(£!,..., £n, Pi,..., T]m) < P 

which is absurd. 

Lemma 2. If A<% are limit ordinals, then A*el, 

Ix=IKnA* 

and Lx*[a] is an elementary submodel of L„*[o:]. 
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Proof. Let 

be the unique order-preserving map of Ix onto an initial segment J of Ix, 

say 

J = I* Hg 

where p g i* since Ix is closed. Let J* be the elementary substructure of 

Lx*[a] generated by J, so that J is homogeneous in J* and Char(J*, J) = 

<J>. Finally by 8H.2, let 

/*:Lx*[a]>» J* 

be the canonical isomorphism induced by f. We will prove that 

(*) J* = LM.[a]; 

from this it follows immediately that f* takes the ordinals below A* in an 

order-preserving fashion onto the ordinals below p, so that f* is the 

identity map on A*, p = A* and 

ik = j = ixn^ = ixn a*. 

Moreover, since the identity 

/*:Lx*[a]~Lx*[a] 

is an elementary embedding by 8H.2, it follows that Lx*[a] is an elemen¬ 

tary submodel of Lx*[a], 

To prove (*), choose if/(x, £) in the language of ZFL[a\ so that for each 

Lc[a]t ZFL[a] and x, £eLc[a] 

xeL,[a]^ Lc[a]tip(x, g) 

and if xgJ*, choose £1 <---<£n(=J and (p(v0, vlv.., vn) so that 

x=t;(£1,...,U- 

Now for some 17 e Ix, 

Lx*[a]ki//(pv0cp(v0, D, v) 

and hence by homogeneity and the fact that |n < p e Ix, 

Lx*[a] t= i/f(pvo<P(vo> liv, D, A 

and x g 
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On the other hand if xeL^[a] and 

x |n, r]m) 

with |x <•••<!„ in J and r|1< —<rjm in Ix above J, then 

L**[a]t=p,v0<p(v0, |x,..., |n, Vm)<P<V 1 

so that by (R4), if tjJ < ••• <r]'me J with £,<111 we have 

JLtV0<p(Vo5 llvj In, "Hi,•••, 11m) — M-(V0, ll,-", In, 'll)’") ’Hm)j 

i.e. 

x = T*(£i,..., In, ri'm)e J*. 

Lemma 3. If A is an uncountable cardinal, then 

A* = A. 

Proof. Let *: be any limit ordinal above A and assume towards a 

contradiction that 

card(Ix flA)<£<A 

with | infinite. Now every ordinal |<A is of the form 

I Mil,-, In, TIi,..., 'dm') 

with some <p(v0, vn+1,..., vm+1) and |1<--<|n in IXD A, Th< 

■ ■ ■ <T)m in Ix above A and by (R4), the value of r*(|l5..., |n, Vi,-, Vm) 

depends only on the tuple 

(<p(y0, ^l,***, ^n? ^n+m), InX 

since |<r]i. But there are only R0 • |n = | such tuples for each n and 

hence only | such tuples altogether, which is absurd since there are A > | 

ordinals below A. 

We now have card(Ix(l A) = A and hence the order type of I* HA is 

exactly A. Since IXD A is an initial segment of Ix D A* which also has order 

type A, we must have Ix n A = Ix n A* = Ix and since Ix is cofinal in A*, we 

have A = A*. 

Now (i) and (ii) follow immediately with 

i = UJ, 

If J is another class of ordinals which also satisfies (i) and (ii), then for 

each uncountable A let 

f:Jn\>*in\ 
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be the unique order-preserving bijection and let 

f*'LK[a] >*LA[a] 

be the canonical extension of / to an isomorphism. Clearly /* is the 

identity on A and hence f is the identity and 

JHA = IHA. 

Since A was arbitrary uncountable, J = I. 

Finally, if A is an uncountable cardinal, then 

A = A* e I 

by Lemmas 2 and 3 and the characterization of <I> follows immediately. 

H 

If is the unique remarkable character for a (assuming it exists), put 

{1 if n is the code of some formula (p(v!,..., vfc )e<F, 

0 otherwise, 

where of course, we are using the recursive coding of formulas of Section 

8A. It is convenient (and traditional) to treat the unrelativized case of L 

as a special case of this, noticing that 

and putting 

L = L[t 0] 

0# = (t»0)#, 

assuming of course, that there exists a remarkable character for the 

constant function t 0. It is also traditional to abbreviate the ponderous- 

sounding hypothesis 

“there exists a remarkable character for a” 

by the simpler if somewhat sloppier 

exists”. 

By 8H.4 then, if there exists a measurable cardinal, then (Va)[a# exists]. 

8H.6. Theorem (Solovay [1967]). The relation 

P(a, (1) <=* a# exists and 0 = a# 
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Thus, if a# exists, then 

y e L[a] => 7 is recursive in a# => 7 e ^](a) 

and a# is an irrational in z\3(a!) which is not in L[a]. 

Proof. Compute, 

P(a, 0) <=> (Vn)[|3(n)< 1 & [|3(n) = 1 => (n is the code of some 

formula tp(v1,..., vkn) in the 

language of ZFL[d])]] 

<& if <I>3 = {cp(vj,..., vk): if n is the code of 

<p(v1,...,vk), then 0(n)=l}, then 

^>3 satisfies (R1)-(R5) in the definition of 

“remarkable character”. 

It is now obvious that 

Px(a, (3) <=* <£3 satisfies (Rl) 

is X\. (Actually Px is arithmetical, but the proof of this requires GodeFs 

Completeness Theorem from logic which we have not proved.) 

Similarly, 

P2(<x, (3) <=> $3 satisfies (R2), (R3) and (R4) 

is obviously arithmetical. Thus to complete the proof, it will be enough to 

find a II\ relation P3(a, 0) such that 

Pi(a> 0) & P2(<*, (3) 

=»[P3(a, (3) <=><i>3 satisfies (R5)] 

and for this we use Theorem 8H.2. 

From that result we know that if P,(a, (3) hold, then for each countable 

ordinal A there exists a pair (91 x, IK) with certain properties, that any two 

such pairs are isomorphic and that (R5) holds exactly when in every such 

pair, 9fk is a wellfounded model. Using the irrational codes for structures 
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with domain in co that we introduced in the exercises of 8A, put 

P4(a, (3, 7, 5)' <=> P^a, (3) & P2(a, 0) 

& Str((2, 2), 7) 

& [the set Is={n: 8(n) = 1} is homogeneous in 

2l((2, 2), 7) and generates 2l«2, 2), 7)] 

&CharC2I«2,2),7),/8) = 4>3 

and compute easily that P4 is using the fact that the satisfaction 

relation is A{, 8A.6. But then the relation 

P5(ol, (3, 7, §, e) «=» P4(a, |3, 7, 5) 

& e e WO 

& [the order-type of I5 under the canonical 

ordering of 2I«2, 2), 7) is |e|] 

is easily A\ and hence 

P3(a, (3) Pi (a, (3) & P2(a, (3) 

&(Ve)(V7)(VS)[P5(a, 0,7,S,e) 

=> [the canonical ordering of 

Sl«2, 2), 7) is a wellordering] 

is in n\ and the proof is complete. 

If cn# exists, then obviously 

a#(n) = i <=> (3(3)[P(a, (3) &(3(n) = i] 

<=> (V0)[P(a, (3) =* 0(n) = i] 

so that a^eAl(a). 

Also, if y eL[a], then 

7 = [/av0<p(v0, £l9..., £n)]L*[a<] 

with any x>Xl5 x a cardinal and & <•••<&» in the canonical homogene¬ 

ous set IDx for Lja], so that if is the remarkable character for a, 

7(s) = t <=> the sentence 

(3v0)[<p(v0, vlv.., vj & (Vx <v0) “i<p(x, vlv.., vn) 

& “<s, f)e v0”] 

is in 
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where of course, 

“<s, t)e\0” 

is some formula with code recursively obtained from s, t and which 

expresses that (s, t)e\0. Thus y is clearly recursive in H 

8H.7. Corollary. If a# exists, then card(A D L[a]) = K0; in particular, if 

there exists a measurable cardinal, then card(A C\ L[a]) = N0. (Silver 

[1971]; Rowbottom [1971] for the inference from the existence of a 

measurable cardinal.) H 

Assuming that (Va)[«# exists], let Ia be the canonical, closed and 

unbounded class of Silver indiscernibles for L[a] supplied by 8H.5 and let 

be the class of uniform indiscernibles. 

8H.8. Lemma. Assume (V«)[a# exists]. 

(i) There is a fixed formula <p(ot, £) of £' such that for every inner model 

M of ZF such that a#eM, 

£eIa^Mtcp(a, $). 

(ii) If a 6 L[|8], then I3 £ Ia. 

(iii) The class I* of uniform indiscernibles is closed and unbounded, it 

contains all uncountable cardinals and for any aedf and any uel*, the 

order-type of Ja Hu is u. 

Proof, (i) Using 8H.6, we easily get a definition of in terms of a and 

which is absolute for all inner models of ZF which contain a#; again, 

using the construction in 8H.5 we can get a definition of Ia from 

which is absolute for all inner models of ZF. 

(ii) If a g L[f3], then a = [p\0(p(\0, £n)]L[p] for some <p(v0, vx,..., vj 

and some in Ip and then using (R4), easily, 

a = [p,v0<p(v0, |v,..., 4)]L[P1 

for some <p(v0, vj and any increasing sequence £!<•••<£„ in I3. 

Using this and an induction on formulas, we easily assign to each 

il>(\u...,xk) in the language of ZFL[a] another formula 

4>*(xu...,xk,yl,...,yn) so that for xlv.., xkeL[a] and any Ci<'‘4 in 
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L[a]t=i//(xlv.., xk) <=> L[j3]t=«/f*(x1,..., xk, £a,..., £,), 

Thus for any ordinals r]k, 

(*) [fxv0^(v0, tji,..., T/k)]L [al = [^v0tl/*(y0, T)k, 4)]L[P1. 

where £i<",<£n are any cardinals above r]k. 

Suppose now towards a contradiction that A is the least ordinal in Ip - Ia 

so that 

* = l>v0x(v0, Tii,..., Vi, Vi,-, V'J]LM 

with T7!<*••< rj, < A in Ia (and hence in I3) and t]( < ••• < r)'n in Ia above 

A. Using (R4) \ve may replace the tj- by cardinals above A, so they too are 

in and therr using (*) with cardinals <•••<£„ above r]'m we have 

(**) A = t^V0X*(Vo, I'll,-, Vl, Vl,-, Tim, £lv, €jJL[e]<Tli. 

Since A e Z0, by (R4) we then have 

A‘= [/av0x*(v0, T)!,..., Tj,, A,..., T]'m, 4)]LI31<A 

which is absurd. 

(iii) Let {c|}€e0N be an increasing inumeration of Ia and let A Cue/*. 

By (i), the operation 

is definable from a in L[a#], so that there is some formula t//(v0, a, vj 

and 

cK = [jav0^(v0, a, a)]l[“"] = supremum{c|: £<A} 

and then, since u e Ia#, easily ak < u. Thus there are A distinct members 

of Ia below u for each A < u and hence the order-type of Ia D u is u. 

The other parts of (iii) are trivial. H 

We now come to the Martin-Solovay theorem for Yl\ which we 

declared our aim in the beginning of this section. We let 

Ul, u2, u3,..., uM 

be the first co +1 uniform indiscernibles so that (easily) 

Ui = S i 

and for each n, 
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8H.9. Theorem. If (V«)[a# exists], then every /T^a) pointset admits a 

A\(a)-scale into uM. (Martin-Solovay [1969] as improved by Mansfield 

[1971] and Martin [19?a].) 

Proof. We will prove the result for a /7] set PsjV, since the relativized 

case is proved similarly and then the result follows for subsets of an 

arbitrary product space by 4E.6. 

By 8F.8, there is a ZF-absolute operation 

A ►» T(A) 

such that for each infinite ordinal A, T(A) is a tree on a> x A and for 

P(a) <=> T(A, a) is wellfounded, 

where T(A, a) is the tree on A determined by a, 

T(A, a) = {(t)0,..., T)k_i): Vk-i< A 

& (a(0), a(k — 1), rik_l) e T(A)}. 

For each (r\0,..., r\k_f) below A, we define the rank of T(A, a) at 

(770,..., rjk.j) as in 2D, 

p(T(A, a), (rjo,—, Tjk-i)) 

—supremum{p(T(\, a), (7]0,..., T)k_1, 17))+ 1: 4 <A}. 

Let <p0(v0, yk(0)), <Pi(v0, vlv.., vk(1)),... be an enumeration of all 

formulas in the language of set theory such that 

L l=“p.Vo<pn(vo, Xl5..., Xk(n)) is a sequence of ordinals”. 

It is clear that we can enumerate these formulas recursively in 0# and that 

if I0 is the class of Silver indiscernibles for t 0 and A is any limit point of 

I0, then the following two things hold. 

(1) If £1 <---<&(n)<A are all in J0, then 

T"n (€l»***» £k(n>) [4^0^ (^Cb ^k(n))] 

is a finite sequence of ordinals below A. 

(2) If (t)0,..., T)m_1) is any sequence of ordinals below A, then 

(4o>*”» 4m —l) £k(n)) 

for some n and some £k(n) below A in I0. 

We now define a sequence of norms on P by 

1Ma) = p(T( Mk(n)+1> gOj Tn(Ul5”-J Uk(n))) 
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and we claim that <// = {*/'„} is the required A 3-scale on P. The motivation 

for this definition will become clear from the argument to follow. 

To check first that 4> is a scale on P, suppose a0, alv.. are all in P, 

limiticti= a and for each n and all large enough i, 

</'„(«;) = An; 

we must show that aeP and for each n, i//n(a)<An. 

Let (3 be any irrational such that each at is recursive in (3 and by the 

lemma 

— 4 

and fix an increasing enumeration {c(£): £e ON} of I&. By,the lemma, 

£<uw =*> c(£) < uw. 

Since the relation 

pCr(A, oj), xkM)) = p(T(A, a,-), t£(x1v.., xkM)) 

is easily definable in L[(3] and since it is true for all large enough i and j 

when 

X1 = Xk(n) = Mk(n)5 ^ = Mk(n)+1> 

it is also true for all large enough i and j when 

7Ci = c(^),..., X|c(n) = <:(&), A = ua) 

for any increasing sequence £i<‘"< £k(n) of ordinals below uw. 

For each sequence v = (t]0,..., r}m-i) in T(uw, a), choose n and 

ik(n) in I0 such that 

n TnX£!?•••? ^k(n)) 

and let 

f(v) = limits p(T(uw, a,), r^(c(|i),..., c(|k(n)))). 

The definition of /(u) is independent of the choice of n and £i< •••<&(„> 

in I0, since 

(*) T n (^lvi £k(n)) £k(m)) 

is a formal assertion in L about the indiscernibles £ 15• • • 5 £k(n)> ^1?***? £k(m) 

and the ordinals c(&(n)), c(&(m)) are also indiscernibles 

and with the same ordering, so (*) implies 

r£(€(&),..., c(4(n))) = r^(c(^),..., c(Ck(m))). 
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Also 

(t/o,..., r]m-i)&T(uw, a) <=>(a(0), a(m-l), rU-JeTCuJ 

so that the assertion 

(**) 4(n))eHwM, a) 

depends only on the first m values of a, it is true for a, when i is large 

enough and it is a formal assertion in L about the indiscernibles |k(„>, 

uw, so that (**) implies 

c(4(n)))eT(uw, a,) 

for all large i. Thus—and this is the key point—if v = t^(£1,..., 4(n>) and 

u' = €k(m)) tire both sequences in Tiu^, a) and v is an initial 

segment of v', then for all large i, tJ;(c(^),...,c(4(„))), 

c(ik(m))) are both sequences in T(uw, a;) and the first of these is an initial 

segment of the second; it follows that for all large i 

p(T(uw, QCi), (c(£i),..., c(£k(n)))) > p(T(uM, oij), Tm(c(^i),..., c(£k(m))))- 

At this point we have produced a map 

(1) f: T(um, a) —> Ordinals 

such that 

(2) if v is an initial segment of v', then f(v)>f(v'). 

It is immediate then that Tfu^, a) is wellfounded and hence at e P. 

Moreover (easily, using just (1) and (2)) 

p(T{uM, a), u)</(v) 

for each v e T(uw, a), so writing out what this means: for arbitrary n, 

fi<"•<&(«) in I0 and all large i, 

p(T{uM, a), £kM))^p(T(uw, oii), tfr(c(^i),..., c(£k(n)))). 

By the lemma now, 

c(un) = un. 

so for all n and all large i 

p(T(u„, a), Tn(ult..., uk(n)))< p(T(uw, a,), t^(uu..., ukM)) 
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and replacing uw by uk(n)+1, we have finally for all large i, 

*/',.(«) = p(T(uk(n)+1, a), uk(n))) 

< p(T(ufc(n)+1, OCi), Tn(uu..., UkM)) = An 

as required. 

To verify that t// is a A 3-scale on P, we argue as in the proof of (ii) of 

8H.8 (and using the fact that A » T(A) is ZF-absolute) that 

p(T(A, a), &(n)))<p(T(A, 0), &(f0)) 

<=> L[(ot, /3)]£k(n), A) 

where <p(vl5..., vk(n), yfc(n)+1) is some fixed formula in the language of 

ZFL[a], Thus 

a <*(3 ^ P(a) & —iP(/3) 

v [P(a) & P(/3) & if m is the code of 

<p(v1,...,vfc(n),yfc(n)+i), then 

(a, /3}#(m)= 1] 

and the relation on the right is obviously in A3. 

Let us collect the corollaries. 

8H.10. Corollary. If (Va)[a# exists], then every II\ set can be unifor- 

mized by a TI\ set and every nonempty X] set has a A\ member. 

(Martin-Solovay [1969] as improved by Mansfield [1971].) 

Proof is immediate by 8H.9 and 4E.3, easily. —I 

8H.11. Corollary. Assume AD + DC; then 

Uu, = X*,, 

S3 = + S4 = ^a>+2> 

every X] set is K^-Suslin and then every XI-set is K^+^Suslin. (Martin 

[19?a]; for the parts about 8] and XI also Kunen.) 

Proof. Clearly u^ssX^ since Xl5 X2,..., X^ are all uniform indiscernibles 

and every X] set is u^-Suslin. For the converse, assume towards a 

contradiction that uw< Kw, let n be the least integer such that every X] set 
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is X„-Suslin and notice that by 8H.9, Xn is certainly the order-type of a A’ 

prewellordering, since Nn is ^ the length of the scale on uM we con¬ 

structed. Now the choiceless version of 2F.4 explained in 7F and 7D.9 

implies that every set is A, which is absurd. 

From = Ku, the Kunen-Martin Theorem 2G.2 and 7D.8 imply 

immediately that 83 = XM+1, 84 = Kw+2 and that every set is X^+x-Suslin 

follows from 6C.2 and 6C.4. —I 

Solovay and Kunen have shown that actually 

un=Xn n = 1, 2, 3,... 

granting AD, but we will not prove this here; see Kechris [1978] or 

Kleinberg [1977]. We need another of Solovay’s lemmas however, to 

derive the corollaries of 8H.9 which depend on the axiom of choice. 

8H.12. Lemma (Solovay). If (Vct)[a# exists], then for each n, 

cofinality (un+1) = cofinality (u2) ^X2. 

In particular, if the axiom of choice holds, then u3, u4,... are all singular 

and uM <X3. 

Proof. It is easy to show by induction on i, that for each i<uw there is 

some a and some <p(v0, vlv.., vj in the language of ZFL[a] such that for 

any cardinal x > uw, 

£ = [jav0cp(v0, ux,..., un)]G[a|; 

assuming the result for all £'<£ and assuming un, then 

£ = [pv0l|/(v0, €1,..., in, Vl, — , T?m)]L*[°] 

with i1<---<in<i<Vi<"'<Vm and the £, tj, in Ia, each £ is definable 

in some Lx[a{] in terms of the uniform indiscernibles, we can substitute 

larger uniform indiscernibles for the 17, and £ is easily definable from 

uniform indiscernibles in any Lx[|3] where a, alv.., an are all recursive in 

(3. 
Now put for each ordinal A 

next(A, a) = the least member of Ia greater than A 

and notice that for each n, a by (iii) of 8H.8 

un < next(un, a)<un+1. 
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Claim: 

ufl+1 = supremum{next(un, a): a 6 J\f}. 

To prove this suppose 

A = supremum{next(un, a): a eA}<u„+1 

so that A is not a uniform indiscernible and for some a, 

A =[p,v0cp(v0, un, un+1,..., uk)]L[a]<un+1 

by what we proved above. But we can then substitute next(un, a) for un+1 

in this formula and we get A < next(un, a) which is absurd. 

Finally, notice that 

next(u1, a) = nextful5 (5) => next(un, a) = next(un, /3) 

since the assertion on the left can be expressed formally as 

L[(a, |3)#]l=(p(u1) 

with a formula cpfvj) in the language of ZFL[a\ and so we should also 

have 

L[(a,(3)^cp(un). 

Thus the set of ordinals 

A = < u2: for some a, £ = next(ul, a)} 

is cofinal in u2 and the map that sends 

to 

£ = next(u,, a) 

/(£)= next(un, a) 

is well-defined and established that cofinality(un+1) = cofinality(u2). 

If the axiom of choice holds, then X3 is a regular cardinal so we must 

have un <X3 for each n and finally since uM has cofinality at. 
H 

8FI.13. Corollary (Martin [19?a]). If (Va)[a# exists] and the axiom of 

choice holds, then 

8^<X3 

and every XI set is the union of X2 Borel sets. If in addition Det{A2) holds. 
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then 

84<X4 

and every 2] set is the union of X3 Borel sets. 

Proof. Since uM<X3, card(uw) = card(u2) 2 and hence by 8H.9, every 

set is KVSuslin; now the Kunen-Martin Theorem 2G.2 and 2F.4 imply 

the results about 83 and X3. If Det(A3) holds we also know that every 24 

set is 8]-Suslin, hence X3-Suslin, and again 2G.2 and 2F.4 apply. H 

A good deal of effort has gone into attempts to generalize these 

beautiful results about n{, X\ and X\ to the higher levels of the 

projective hierarchy, but without success so far, although there has been 

some progress; see Kechris [1978] and Solovay [1978b] in particular 

where earlier work of Kunen is also described. The obvious obstruction is 

that the proofs in this section depend on very special properties of L 

which we do not know how to extend to the higher analogs of L 

described in 8G—and there are even doubts whether these models are 

the correct vehicles for generalizing the present arguments. 

Exercises 

8H.14. Prove that if a# exists and Ia is the class of Silver indiscernibles 

for a, then for any uncountable cardinal % and G < ••• < G < x in Ia and 

for any formulas <p(vl5..., vn) in the language of ZFL[d], 

F[a]^<p(^i,-, G) 4=>L[a]l=<p(G,..., G)- 

In particular, for each uncountable x, Lx[a] is an elementary substruc¬ 

ture of L[a]. 

Hint. Use 8H.4 and the Reflection Theorem 8C.4. H 

8H.15. Prove that if there exists a Ramsey cardinal, then (Va)[a# exists]. 

(Silver [1971].) 

Hint. By x —» (KJ, easily there exists a set IQ % of order type Kj which 

is homogeneous in Lja], For each such I let 

/(/) = the <o’th ordinal in an increasing 

enumeration of 7, 
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and let 

A* = infimum{f(I): I is homogeneous in Lx[a] with 

order-type X^. 

Finally check that if I is homogeneous with order type Xj and such that 

/(/) = A*, then Char{Lx[a], I) is remarkable. (For example in checking 

(R4), suppose that for some increasing sequence 

of ordinals in I and some term v„, vn+1,..., vn+m) we 

have 

t£(!i,—, |n, hi,-, hm)< hi, 

T£(!i, —, In, hi,-, hm)<T^(|l,..., |n, h!,-, hm), 

let {c(: | <X1} be an increasing enumeration of I and choose for each 

£<X\ an m-tuple rj( = h!,—, hi from I such that 

!<£=*hm<h 1, l<"=>hf = Cj 

for some /< n and fjM = cM, ca)+m_1. Now let 

J = {cn, ij€): |<X1} 

and show that / is also homogeneous in Lx[a] of order-type X, and a/th 

member less than A*.) —\ 

8H.16. Show that 

(Va)[a# exists] =» Def(S]) 

(Martin [1970].) 

Hint. Go back to the proof of 6G.7 and suppose Ac/ is X\, the 

relativized case having a similar proof. Define the auxilliary game A* on 

any uncountable cardinal x, say x = Xt and check that the set of finite 

sequences which defines the open set A * lies in L, since it has an absolute 

definition (in terms of x). Thus either I or II wins the game A* in L and 

we must show that the same player wins A in V. 

In the non-trivial case when I wins, suppose a* e L is a winning 

strategy for I within L, let Ix = ID x be the Silver indiscernibles for L 

below x and let 

0"(Uq, flj,..., Cl2t — l) rr (<2o, (&1, ln(l>), ^2, (^3, In(2)),*■ •, 

^2t—2, (a2t-l, ln(l))) 

where |na),..., |n(t) are distinct indiscernibles in Ix and ordered so that II 
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has not lost in the position 

I a0 •" ®2t-2 

II £n(l) ^2t-l» £n(t)- 

It is clear that the definition of cr is independent of the particular choice 

of £n(t) in Ix, so we have a strategy for I in A. To show that it is 

winning argue by contradiction as in the proof of 6G.7: if a is the play in 

some run of A in which I follows a but a£A, then \JtD(d(2t)) is a 

wellordering of countable rank, so there is an order-preserving map 

xt * it e Jx 

into the indiscernibles and in every position of the run of A* 

I (Xq &2 

II al, a3> £2 

I has not lost while I is following a winning strategy, which is absurd. 

Improving on earlier results of Martin, Harrington [1978] has proved 

the converse of this, so that 

(V«)[a# exists] <=> Det(X[) 

and the metamathematical hypothesis (V«)[«# exists] is equivalent to the 

very natural, game-theoretic hypothesis Det(X\). Martin [19?c] extends 

this beautiful result and shows that for many natural pointclasses AcA], 

Det(A) is equivalent to “the analytical content” of various large cardinal 

assumptions. 

81. Some remarks about strong hypotheses 

The need to consider strong set theoretic hypotheses has been ex¬ 

plained in the introduction to this monograph and again in Chapter 5 and 

in the introduction to Chapter 6: simply put, ZFC is just not strong 

enough to decide the most natural and basic questions about definable 

sets of real numbers. Here we will discuss very briefly some of the serious 

foundational questions which arise in the study of strong hypotheses. 

There are essentially three propositions whose consequences we have 

considered in some detail, Godel’s axiom of constructibility (V = L), the 
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assumption that measurable cardinals exist (MC) and various determinacy 

hypotheses among which the strongest (and most natural) is 

DetL{(R)<=>every game in L((R) is determined 

<=> L((R) 1= AD. 

We take it for granted that neither V = L nor DetL((R) is “obviously 

true” on the basis of our current understanding of the notion of set. 

MC is in a different category as it follows from strong “large cardinal 

axioms” whose truth can be supported by some a priori arguments, see 

Solovay-Reinhardt-Kanamori [1978], If we accept these large cardinal 

axioms as (at least) highly plausible on the basis of their meaning, then 

the chief foundational problem of descriptive set theory becomes simply 

to prove the fruitful hypothesis DefL((R); Martin [19?b] has recently 

broken new ground in this important program by showing that Det(Xl) 

follows from “the existence of a non-trivial, iterable elementary imbed¬ 

ding of some V* into itself.” 

We cannot do justice here to this foundational position that takes 

(some) large cardinal axioms as evident without going into the technical 

results of that part of set theory, so we will defer to the forthcoming 

Martin [ 19?c]. Suffice it to say that the surprising connection between 

large cardinals and determinacy hypotheses is quite fascinating indepen¬ 

dently of any philosophical considerations. 

It is also fair to remark that not all set theorists accept the intrinsic 

plausibility of large cardinal axioms. 

Going one step further, many set theorists do not adhere to the realistic 

approach towards mathematics which we have adopted throughout this 

book and are uncomfortable with references to the “truth” or “falsity” of 

complicated set theoretic propositions like V = L, MC and DetL(6t). 

Without embarking in one of those shallow and fruitless discussions of 

“formalism” versus “realism,” we will make just a few remarks to help 

clarify our position. 

The main point in favor of the realistic approach to mathematics is the 

instinctive certainty of most everybody who has ever tried to solve a 

problem that he is thinking about “real objects,” whether they are sets, 

numbers, or whatever; and that these objects have intrinsic properties 

above and beyond the specific axioms about them on which he is basing 

his thinking for the moment. Nevertheless, most attempts to turn these 

strong feelings into a coherent foundation for mathematics invariably lead 
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to vague discussions of “existence of abstract notions” which are quite 

repugnant to a mathematician. 

Contrast with this the relative ease with which formalism can be 

explained in a precise, elegant and self-consistent manner and you will 

have the main reason why most mathematicians claim to be formalists 

(when pressed) while they spend their working hours behaving as if they 

were completely unabashed realists. 

It is not unreasonable to accept naively that the universe of sets exists 

(and conforms substantially to the description we gave in the introduction 

to this chapter) and that we can reason about sets much as physicists 

reason about elementary particles or astronomers reason about stars— 

while conceding immediately that we are in no position now to make 

precise (or even talk eloquently about) the kind of “existence” we have in 

mind. And it is certainly natural (and useful) for a mathematician to 

behave as if the universe of sets existed and conformed to his common- 

sense ideas about sets. 

One of the main features of this consciously naive realistic approach is 

that it forces us to abandon any claims of absolute certainty for our 

assertions about sets. Instead of “axioms” (taken as unassailable, by 

definition, in the formalist approach), we must speak of “hypotheses” to 

be tested against each other and against our basic intuitions about sets, 

perhaps to be adopted temporarily and discarded later in the light of new 

evidence. To be sure, we have a great deal of confidence in the truth of 

some propositions (like the axioms of ZFC) which appear to be evident 

on the basis of the (incomplete and vague) description of the universe of 

sets we gave in the introduction to this chapter; for others, we must weigh 

carefully the evidence before we accept them (tentatively) as true or we 

reject them. 

The most serious foundational problem in this naive realistic approach 

to set theory is to determine what kind of evidence we may hope to find 

for favoring a hypothesis over its negation and how we should weigh such 

evidence. Before we comment briefly on this difficult question as it affects 

the hypotheses we have been studying, we should discuss the equally 

important problem of consistency for extensions of ZF. 

In 8F.11 we proved the consistency of the theory ZFC+ V = L (within 

our standard framework of realistic set theory or even constructively from 

the formal consistency of the weaker theory ZF according to the remarks 

following 8F.11); can we do the same for ZFC + MC or ZFC + DetL((R)? 

To formulate this question precisely in a general setting, suppose T is 
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any axiomatic set theory, i.e. any set of sentences of £e such that the 

corresponding set of (number) codes 

T# = {[xT:xeT} 

(as we defined these in 8A) is recursive. Since T# is a definable set of 

numbers, we can talk about T within the language ££. The precise 

definition of formal proof from the axioms in T to which we have often 

alluded is naturally effective, since we should be able to recognize when a 

sequence of assertions constitutes a correct proof. Proofs can be coded by 

numbers, so that for a given axiomatic set theory T, the relation 

ProofT(n. m) <=* n is the code of some sentence x 

and m is the code of a proof of 

X from the axioms in T 

is recursive and hence definable in ££, in fact ZF-absolute. Suppose then 

that <pT(x, y) is a formula of ££ such that for all standard models M of 

some fragment of ZF, 

ProofT(n, m) <=>MT(pT(n, m), 

let n0 be the code of some self-contradictory assertion (like (3z)[z^z]) 

and put 

Consis(T) «=> (Vy) ~i cpT(n0, y); 

now this formal sentence Consis(T) clearly expresses within ££ (and 

ZF-absolutely) the consistency of the axiomatic theory T. 

To simplify notation, put 

T^-if <=> if is a theorem of T 

<=> 4/ can be proved from the axioms of T. 

By the remarks after the proof of 8F.11, 

ZF\~Consis(ZF) —> Consis(ZFC + V = L). 

Unfortunately, the corresponding relative consistency assertions for 

ZFC + MC or ZFC + DetL{(R) cannot be proved, because of the follow¬ 

ing fundamental theorem of Godel. 

81.1. The Second Incompleteness Theorem of Godel. If T is a consistent 

axiomatic set theory at least as strong as ZF (i.e. ZF £ T), then Consis(T) 

is not a theorem of T. A 
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This is a very weak version of Godel’s celebrated theorem whose 

natural, general version does not refer explicitly to set theory—it expresses 

an inherent weakness of sufficiently strong axiomatic systems in any 

language. For our purposes here, however, this version is strong enough, 

in fact the following corollary suffices. 

81.2. Corollary. Suppose T is a consistent axiomatic set theory at least as 

strong as ZF and such that 

T\- Consis(ZF); 

then the assertion of relative consistency 

Consis(ZF) —» Consis(T) 

is not a theorem of T—a fortiori it is not a theorem of ZF. 

Proof. If both Consis(ZF) —> Consis(T) and Consis(ZF) were theorems 

of T, so would Consis(T) be a theorem of T, contradicting the second 

incompleteness theorem. H 

81.3. Corollary. If ZF + MC is consistent, then the relative consistency 

assertion 

Consis(ZF) —» Consis(ZF + MC) 

cannot be proved in ZF; similarly, if ZF + Det LitR) is consistent, then 

Consis(ZF) —> Consis(ZF + Det L((R)) 

cannot be proved in ZF. 

Outline of Proof. Consider first the easier case of the theory ZFC + MC 

and recall from 6G.9 that (using choice) every measurable cardinal is 

strongly inaccessible, so that in ZFC + MC we can prove the existence of 

a strongly inaccessible x\ but for such x, Vx is a model of ZF (by 8C.11) 

and the existence of a model for a theory implies by elementary means 

that the theory is consistent, so that 

ZFC+MCbConsis(ZF) 

and 81.2 applies. 

For the subtler case without choice, recall from 8H.3 that if x is 
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measurable, then Lx is a model of ZF; thus again 

ZF + MC b Consis(ZF) 

and 81.2 applies. 

Finally, by 7D.18 

ZF+AD\-MC, 

so that 

ZF + AD b Consis(ZF) 

and 

Consis(ZF) —» Consis(ZF + AD) 

cannot be established in ZF. But 

Consis{ZF + Det L (CR)) —»■ Consis{ZF + AD) 

can be established easily in ZF once the notion of proof is made 

precise—by using the inner model L((R) just as we use L to show the 

implication 

Consis(ZF) —> Consis(ZF + V = L). —I 

Much stronger results are known in this direction, for example 

Consis(ZF) —» Consis(ZF + Det(X})) 

cannot be established in ZFC and 

Consis(ZFC + MC) —» Consis(ZF + Det(Al)) 

cannot be established in ZFC + MC, assuming that the theories involved 

are in fact consistent (the second result is due to Solovay). 

Thus large cardinal and determinacy hypotheses are quite different 

from V = L in this respect; if they are consistent, then their consistency 

(relative to ZF) cannot be established, unless we are willing to accept 

methods of proof which go beyond ZFC and which may be suspect 

themselves. What are we to make of this? 

A formalist would conclude that the hypothesis of constructibility 

V = L is by far the best way to strengthen ZF, as it is safe (from the point 

of view of consistency) and it answers completely (and almost trivially) all 

the interesting questions of descriptive set theory. 

In the naive, realistic approach consistency is very weak evidence for 
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truth—after all the theory ZF+-iConsis(ZF) is consistent (by the second 

incompleteness theorem) and it is obviously false. We must look for 

criteria other than consistency to evaluate the plausibility of a new 

hypothesis. 

The key argument against accepting V = L (or even X Q L) is that the 

axiom of constructibility appears to restrict unduly the notion of arbitrary 

set of integers; there is no a priori reason why every subset of a> should 

be definable from ordinal parameters, much less by an elementary defini¬ 

tion over some countable Some would go further and claim disbelief 

that the real line can be definably wellordered on any rank—it is quite 

plausible that the only sets of reals which admit definable wellorderings 

are countable. 

We are arguing here that there are some (perhaps weak) direct intui¬ 

tions which make V = L look implausible, just as there are some direct 

intuitions which lend credibility to large cardinal hypotheses like MC. 

No one claims direct intuitions of this type either for or against 

determinacy hypotheses—those who have come to favor these hypotheses 

as plausible, argue from their consequences as we developed them in the 

last three chapters. In addition to the richness and internal harmony of 

these consequences, two aspects of the theory we have developed deserve 

explicit mention. 

One is the naturalness of the proofs from determinacy—in each in¬ 

stance where we prove a property of n\ (say from Det(A])), the same 

argument gives a new proof of the same (known) property for 77using 

only the determinacy of clopen sets (which is a theorem of ZF). Thus the 

new results appear to be natural generalizations of known results and 

their proofs shed new light on classical descriptive set theory. (This is not 

the case with the proofs from V = L which all depend on the ^2*g°°d 

wellordering of X and shed no light on TI\.) 

The second point is the surprising connection between determinacy and 

large cardinal hypotheses on which we have commented many times and 

which lends credence to both. To take one example, the fact that n\ sets 

can be uniformized by III, sets follows both from MC and from Det(\]), 

by proofs which (at least on the surface) are totally unrelated; one tends 

to believe the result then and consequently to take both proofs seriously 

and to feel a little more sympathetic towards their respective hypotheses. 

At the present state of knowledge only few set theorists accept 

DetL(St) as highly plausible and no one is quite ready to believe it 

beyond a reasonable doubt; and it is certainly possible that someone will 



8 J] Some remarks about strong hypotheses 611 

simply refute Det L((R) (or even DetfXb) in ZFC. On the other hand, it is 

also possible that the web of implications involving determinacy hypoth¬ 

eses and relating them to large cardinals will grow steadily until it 

presents such a natural and compelling picture that more will succumb to 
its beauty. 

We should end by quoting directly a paragraph from Godel [1947] 

which was written primarily about large cardinals but which is perhaps 
even more relevant to determinacy hypotheses. 

“There might exist axioms so abundant in their verifiable conse¬ 

quences, shedding so much light upon a whole discipline, and furnishing 

such powerful methods for solving given problems (and even solving 

them, as far as that is possible, in a constructivistic way) that quite 

irrespective of their intrinsic necessity they would have to be assumed 

at least in the same sense as any well established physical theory.” 

8J. Historical remarks 

1 The brief introduction to logic in 8A-8C and our development of 

Godel’s theory of constructibility in 8D-8F follow quite standard lines 

and we will not attempt to provide specific references here. 

2 The present, general version of the approximation Theorem 8G.8 is 

due to Moschovakis and first appeared in Kechris-Moschovakis [1978b], 

but the result is implicit in Solovay [1969], [1970], The original proofs of 

Solovay used forcing techniques. 

3 For references to early work on inner models of set theory which 

reflect some determinacy, see Becker [1978], Our development in the 

exercises of 8G (starting with 8G.17) is based on the recent and still 

unpublished work of Harrington and Kechris. 

4 Finally, our brief development of the theory of indiscernibles in 8H 

follows closely Silver’s fundamental work in his Ph.D. Thesis, Silver 

[1971], See also the expository Silver [1973] which has references to 

earlier work, particularly Rowbottom [1971], Gaifman, and Scott [1961] 

where it was first shown that the existence of measurable cardinals 

contradicts V = L. 





REFERENCES AND INDEX TO REFERENCES 

The numbers after a name or mathematical work indicate the pages where there are 
references to this mathematician or work; e.g. something is said about John Addison on 
pages 9, 118, 189, etc. and his 1954 Doctoral Dissertation is mentioned on pages 7, 189 and 
270. 

J. W. Addison: 9, 118, 189, 204, 205, 270, 272, 380. 
[1954] On some points of the theory of recursive functions, Doctoral Dissertation, 

University of Wisconsin (1954): 7, 189, 270. 
[1959a] Separation principles in the hierarchies of classical and effective descriptive set 

theory, Fund. Math. 46 (1959) 123-135: 7, 64, 189, 270, 271. 
[1959b] Some consequences of the axiom of constructibility. Fund. Math. 46 (1959), 

337-357: 4, 278, 281, 285, 519. 

J. W. Addison and S. C. Kleene 

[1957] A note on function quantification, Proc. Amer. Math. Soc. 8 (1957) 1002- 
1006: 114. 

J. W. Addison and Y. N. Moschovakis 

[1968] Some consequences of the axiom of definable determinateness, Proc. Nat. Acad. 
Sci., USA 59 (1968) 708-712: 9, 380. 

P. Alexandroff 

[1916] Sur la puissance des ensembles mesurables B, Comptes Rendus Acad. Sci. 162 
(1916) 323-325: 113. 

W. J. Arsenin 

[1940] Sur les projections de certain ensembles measurable B, C. R. (Doklady) Acad. 
Sci. USSR (N.S.) 27 (1940) 107-109: 259. 

R. Baire: 1. 
[1899] Sur les fonctions de variables reelles, Ann. Matematica Pura ed Applicata, 

Serie IIIa, 3 (1899) 1-122: 1, 62. 

S. Banach: 299, 379. 
[1931] Uber analytisch darstellebare Operationen in abstrakten Raume, Fund. Math. 17 

(1931) 283-295: 62. 

J. Baumgartner: 379. 

H. Becker 

[1978] Partially playful universes, in Cabal Seminar 76-77 ed. by A. S. Kechris and 
Y. N. Moschovakis, Lecture Notes in Mathematics #689, Springer (1978) 

55-90: 572, 611. 

D. Blackwell 

[1967] Infinite games and analytic sets, Proc. Nat. Acad. Sci. USA 58 (1967) 1836— 
1837: 8, 380, 442. 

613 



614 References and index to references 

E. Borel: 1. 

L. E. J. Brouwer: 270. 
[1924] Beweiss, dass jede voile Funktion gleichmassig stetig ist, Konin. Neder. Akad. 

van Weten. te Amst. Proc. 27 (1924) 189-193; reprinted in L. E. J. Brouwer, 

Collected Works vol. 1, North Elolland, Amsterdam, 1975: 270. 

L. Carleson 

[1967] Selected problems on exceptional sets, Van Nostrand Math. Studies, Princeton, 

1967: 115. 

G. Choquet 

[1955] Theory of capacities, Annales de VInstitute de Fourier, 5 (1955) 131-292: 115. 

J. P. R. Christensen 

[1974] Topology and Borel structure, North-Holland Mathematical Studies #10, 

(North-Holland, Amsterdam, 1974): 62. 

A. Church: 5, 188, 269. 

[1936] An unsolvable problem in elementary number theory, Amer. J. Math. 58 (1936) 

345-363: 6. 

P. J. Cohen: 65, 275, 283. 

[1963a] A minimal model for set theory, Bull. Amer. Math. Soc. 69 (1963) 537-540: 530. 

[1963b] The independence of the continuum hypothesis, I, II, Proc. Nat. Acad. Sci. USA, 

50 (1963) 1143-1148, 51 (1964), 105-110: 4. 

Martin Davis 

[1950] On the theory of recursive unsolvability, Doctoral Dissertation, Princeton Univer¬ 

sity (1950): 6, 188. 

Morton Davis 

[1964] Infinite games of perfect information. Annals of Math. Studies, 52 (1964) 

85-101: 296, 297, 379, 424. 

C. Dellacherie: 147. 

F. R. Drake 

[1974] Set theory, an introduction to large cardinals (North-Holland 1974): 370, 380. 

P. Erdos and A. Hajnal 

[1958] On the structure of set mappings, Acta Math. Acad. Sci. Hungar, 9 (1958) 

111-131: 370. 

S. Feferman 

[1965] Some applications of forcing and generic sets, Fund. Math. 56 (1965) 325- 

345: 199. 

C. Freiling: vii. 

H. Friedman: 442, 444. 

[1971] Axiomatic recursive function theory, in Logic Colloquium 69, Gandy and Yates 

eds., (North-Holland 1971): 188. 

D. Gale and F. M. Stewart 

[1953] Infinite games with perfect information, Ann. Math. Studies, 28 (1953) 245- 

266: 289, 293, 379. 



References and index to references 615 

R. O. Gandy 

[1960] Proof of Mostowski’s conjecture, Bull. Acad. Polon. Sci. Math. Astron. Phys., 8 

(1960) 571-575: 245. 

K. Godel: 4, 5, 65, 274, 281, 285, 607, 608, 611. 

[1931] Uber formal unentscheidbare Satze der Principia Mathematica und verwandter 

Systeme I, Monatshefte fur Mathematik und Physik, 38 (1931) 173-198. (English 

translation in van Heijehoort, J. (editor), From Frege to Godel, A source book in 

mathematical logic 1879-1931, Cambridge, Mass. (Harvard Univ. Press), 

1967): 5. 

[1938] The consistency of the axiom of choice and the generalized continuum 

hypothesis, Proc. Nat. Acad. Sci. 24 (1938) 556-557 and Consistency proof for 

the generalized continuum hypothesis, Proc. Nat. Acad. Sci. 25 (1939) 220- 

224: 4, 285, 516, 518, 528. 

[1940] The consistency of the axiom of choice and of the generalized continuum 

hypothesis with the axioms of set theory, Annals of Math. Studies, Study 3, 

Princeton University Press, Princeton, New Jersey 1940: 285, 516, 518, 519, 

528. 

[1947] What is Cantor’s continuum problem? Amer. Math. Monthly 54 (1947) 515— 

525: 611. 

D. Guaspari 

[19??] The largest constructible J7] set, to appear: 247. 

P. Halmos 

[1960] Naive Set Theory, Van Nostrand, Princeton 1960: xii. 

G. H. Hardy and E. M. Wright 

[1960] An introduction to the theory of numbers, Fourth edition, (Oxford, 1960): 12. 

L. Harrington: vii, 300, 553, 611. 

[1977] Long projective wellorderings, Ann. of Math. Logic (1977) 1-24: 284. 

[1978] Analytic determinacy and 0#, J. Symbolic Logic 43 (1978) 685-693: 284, 604. 

L. Harrington and A. S. Kechris 

[19??] In preparation: 557, 559, 569. 

J. Harrison 

[1967] Doctoral Dissertation, Stanford University (1967): 243. 

F. Hausdorff 

[1916] Die Machtigkeit der Borelschen Mengen, Math. Annalen 77 (1916) 430- 

437: 113. 
[1919] Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Zeit. 5 (1919) 

292-309: 62. 
[1957] Set Theory, Chelsea Publishing Co., New York, NY 1957 (Translated from the 

(1937) third edition of Hausdorff’s Mengenlehre): 61. 

P. G. Hinman 

[1969] Some applications of forcing to hierarchy problems in arithmetic, Z. Math. Logik 

Grundlagen Math. 15 (1969) 341-352: 264. 

J. Hoffmann-Jorgensen 
[1970] The theory of analytic spaces, Various Publication Series nr. 10, Matematisk 

Institut Arhus, Danmark: 62. 



616 References and index to references 

T. Jech 

[1968] a), can be measurable, Israel J. Math. 6 (1968) 363-367: 374, 442. 
[1971] Lectures in set theory with particular emphasis on the method of forcing, Lecture 

Notes in Mathematics 217 (1971), Springer-Verlag: 285. 

T. John: 414. 

L. Kantorovitch and E. Livenson 

[1932] Memoir on the analytical operations and projective sets (I), Fund. Math. 18 

(1932) 214-279: 75, 114. 

A. S. Kechris: vii, 227, 270, 271, 321, 331, 342, 377, 432, 553, 611. 
[1973] Measure and category in effective descriptive set theory, Annals of Math. Logic 5 

(1973) 337-384: 9, 249, 262, 264, 266, 342, 357, 376, 553, 555. 
[1974] On projective ordinals, J. Symbolic Logic 39 (1974) 269-282: 9, 444. 
[1975] The theory of countable analytical sets, Trans. Amer. Math. Soc. 202 (1975) 

259-297: 9, 247, 249, 250, 318, 344, 346, 347, 571, 572. 
[1978] AD and projective ordinals, in Cabal Seminar 76-77, Lecture Notes in 

Mathematics #689, Springer-Verlag (1978) 91-132: 437, 442, 600, 602. 
[198?] The perfect set theorem and definable wellorderings of the continuum, to 

appear: 550. 

A. S. Kechris and D. A. Martin 

[1978] On the theory of III sets of reals, Bull. Amer. Math. Soc. 84 (1978) 149- 

151: 569. 

A. S. Kechris and Y. N. Moschovakis 

[1972] Two theorems about projective sets, Israel J. Math. 12 (1972) 391-399: 346, 
565. 

[1978a] editors, Cabal Seminar 76-77, Lecture Notes in Mathematics #689, Springer- 

Verlag (1978): 422. 

[1978b] Notes on the theory of scales, manuscript circulated in 1971 and published in 

Cabal Seminar 76-77, Lecture notes in Mathematics #689, Springer-Verlag 
(1978) 1-54: 572, 611. 

S. C. Kleene: 5, 118, 164, 188, 189, 193, 205, 269, 270, 272, 381, 382, 383, 386, 388, 
397, 400, 409, 444. 

[1938] On notation for ordinal numbers, J. Symbolic Logic 3 (1938) 150-155: 443. 
[1943] Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943) 41- 

73: 6, 7, 63, 171, 188. 

[1944] On the form of predicates in the theory of constructive ordinals, Amer. J. Math. 
66 (1944) 41-58: 443. 

[1950] A symmetric form of Godel’s theorem, Kon. Nederlandsche Akad. van 

Weterschappen, Proc. of the Section of Sciences, vol. 53 (1950) 800-802: 271. 
[1952a] Introduction to Metamathematics, (Amsterdam, North-Holland); Groningen 

(Noordhoff) and New York and Toronto (Van Nostrand), 1952: 6, 188. 
[1952b] Recursive functions and intuitionistic mathematics, Proc. of the International 

Congress of Mathematicians, (Cambridge, Mass. 1950), 1952: 6, 188. 
[1955a] On the form of predicates in the theory of constructive ordinals (second paper), 

Amer. J. Math. 77 (1955) 405-428: 6, 269, 270, 444. 
[1955b] Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 

(1955) 312-340: 6, 7, 188, 238, 269, 271, 444. 

[1955c] Hierarchies of number theoretic predicates, Bull. Amer. Math. Soc 61 (1955) 
193-213: 6, 7, 188, 224, 269, 401, 444. 



References and index to references 617 

[1959a] Countable functionals, Constructivity in Mathematics, A. Heyting, Ed., (North- 

Holland, Amsterdam, 1959) 81-100: 188. 

[1959b] Quantification of number-theoretic functions, Compositio Mathematica 14 

(1959) 23-40: 220, 271. 

E. M. Kleinberg 

[1977] Infinitary combinatorics and the axiom of determinateness, Lecture notes in 

mathematics, 612 (1977), Springer-Verlag: 422, 600. 

M. Kondo: 272. 

[1938] Sur l’uniformization des complementaires analytiques et les ensembles projectifs 

de la second classe, Jap. J. Math. 15 (1938) 197-230: 4, 235, 272. 

G. Kreisel 

[1959] Interpretation of analysis by means of constructive functionals of finite types, 

Constructivity in Mathematics, A. Heyting, Ed. (North-Holland, Amsterdam), 

(1959) 101-128: 188. 

[1962] The axiom of choice and the class of hyperarithmetic functions, Indag. Math. 24 

(1962) 307-319: 202, 203. 

K. Kunugui: 255. 

[1940] Sur un probleme de M. E. Szpilrajn, Proc. Imp. Acad. Tokyo XVI No. 3 (1940) 

73-78: 259. 

C. Kuratowski: 4, 204, 285. 

[1931] Evaluation de la classe borelienne ou projective d’un ensemble de points a l’aide 

des symboles logiques, Fund. Math. 17 (1931) 249-272: 63. 

[1936] Sur les theoremes de separation dans la theorie des ensembles, Fund. Math. 26 

(1936) 183-191: 64, 271. 

[1966] Topology, Vol. 1 (Academic Press, New York and London, 1966) (translated 

from the French Topologie, Vol. 1, published by PWN, Warsaw, 1958): 61, 63, 

64, 115, 269. 

C. Kuratowski and A. Tarski 

[1931] Les Operations logiques et les ensembles projectifs, Fund. Math, 17 (1931) 

240-248: 63. 

D. Lacombe 

[1955] Extension de la notion de fonction recursive aux fonctions d’une ou plusieurs 

variables reelles, Comptes Rendus Acad. Sci. 240 (1955) 2478-2480 and 241 

(1955) 13-14, 151-153: 188. 

[1959] Quelques precedes de definition en topologie recursive, Constructivity in 

Mathematics, A. Heyting, Ed. (North-Holland, Amsterdam, 1955) 129— 

158: 188. 

D. G. Larman 

[1972] Projecting and uniformizing Borel sets with sections I, II, Mathematika 19 

(1972) 231-244 and 20 (1973) 233-246: 259. 

M. Lavrentieff 

[1925] Sur les sous-classes de la classification de M. Baire, Comptes Rendus Acad. Sci. 

180 (1925) 111-114: 64. 

H. Lebesgue: 1. 
[1905] Sur les fonctions representables analytiquement, Journal de Math. 6e sene 1 

(1905) 139-216: 1, 62, 63, 114, 443. 



618 References and index to references 

A. Levy: 283. 
[1965] Definability in axiomatic set theory I, in Logic, Methodology and Philosophy of 

Science, Y. Bar-Hillel, ed. (North-Holland, Amsterdam, 1965) 127-151: 284. 

A. Louveau: 260, 273. 

N. Lusin: 2, 3,-4, 86, 91, 92, 193, 196, 205, 269, 270, 272. 
[1917] Sur la classification de M. Baire, Comptes Rendus Acad. Sci. Paris 164 (1917) 

91-94: 2, 63, 113, 114, 115. 
[1925a] Sur un probleme de M. Emile Borel et les ensembles projectifs de M. Henri 

Lebesgue: les ensembles analytiques, Comptes Rendus Acad. Sci. 180 (1925) 

1318-1320: 3, 63. 
[1925b] Sur les ensembles projectifs de M. Henri Lebesgue, Comptes Rendus Acad. Sci. 

180 (1925) 1572-1574: 3, 63. 
[1925c] Les proprietes des ensembles projectifs, Comptes Rendus Acad. Sci. 180 (1925) 

1817-1819: 3, 63. 
[1925d] Sur les ensembles non measurables B et l’emploi de la diagonale de Cantor, 

Comptes Rendus Acad. Sci. 181 (1925) 95-96: 63. 
[1927] Sur les ensembles analytiques, Fund. Math. 10 (1927), 1-95: 114, 271. 
[1930a] Sur le probleme de M. J. Hadamard d’uniformisation des ensembles, Comptes 

Rendus Acad. Sci. Paris 190 (1930) 349-351: 3, 64, 250, 259, 267, 271. 
[1930b] Lemons sur les ensembles analytiques et leurs applications, Collection de 

monographies sur la theorie des fonctions, Paris, Gauthier-Villars 1930: 61, 
114. 

N. Lusin and P. Novikov 

[1935] Choix effectiv d’un point dans un complementaire analytique arbitraire, donne 

par un crible, Fund. Math. 25 (1935) 559-560: 272. 

N. Lusin and W. Sierpinski 

[1918] Sur quelques proprietes des ensembles (A), Bull. Int. Acad. Sci. Cracovie, Serie 

A: Sciences Mathematiques (1918) 35-48: 114, 115, 269, 270. 
[1923] Sur un ensemble non mesurable B, Journal de Mathematiques, 9e serie, 2 (1923) 

53-72: 114, 115, 268, 269, 270. 

R. Mansfield: 65, 79, 534, 537, 574. 

[1970] Perfect subsets of definable sets of real numbers, Pacific J. Math. 35 (1970), 
451-457: 113, 114, 243, 534. 

[1971] A Souslin operation for n\, Israel J. Math. 9 (1971) 367-379: 596, 599. 
[1975] The nonexistence of wellorderings of the Baire space, Fund. Math. 86 (1975) 

279-282: 549. 

A. A. Markov: 188. 

D. A. Martin: vii, 8, 9, 99, 101, 114, 267, 304, 318, 319, 320, 341, 342, 370, 373, 375, 
379, 380, 433, 437, 439, 440, 442, 444, 553, 565, 573, 574, 595, 604. 

[1968] The axiom of determinateness and reduction principles in the analytical hierar¬ 

chy, Bull. Amer. Math. Soc. 74 (1968) 687-689: 9, 380, 441, 442. 
[1970] Measurable cardinals and analytic games, Fund. Math. 66 (1970) 287-291: 364 

371, 379, 603. 

[1975] Borel determinacy. Annals of Math. 102 (1975) 363-371: 357, 358, 379, 441. 
[19?a] Projective sets and cardinal numbers, to appear in J. Symbolic Logic: 8, 9, 75 

97, 103, 113, 115, 433, 596, 599, 601. 



References and index to references 619 

[19?b] Infinite games, to appear in the Proceedings of the International Congress of 
Mathematicians held in Helsinki, 1978: 605. 

[19?c] Borel and projective games, monograph in preparation: 358, 374, 442, 573, 
604, 605. 

D. A. Martin and R. M. Solovay 

[1969] A basis theorem for sets of reals. Annals of Math. 89 (1969) 138-160: 8, 
596, 599. 

I. Maximoff 

[1940] Sur le systeme de Souslin d’ensembles dans l’espace transfini, Bull. Amer. Math. 
Soc. 46 (1940), 543-550: 113. 

Mazur: 379. 

A. E. Moschovakis: vii. 

N. R. Moschovakis: vii. 

Y. N. Moschovakis: 9, 202, 209, 270, 272, 304, 321, 325, 331, 347, 351, 380, 411, 433, 
562, 563, 564, 569, 572, 574, 611. 

[1967] Hyperanalytic predicates, Trans. Amer. Math, Soc. 129 (1967) 249-282: 271. 
[1969] Abstract first order computability I and II, Trans. Amer. Math. Soc. 138 (1969) 

427-504: 271, 444. 
[1970] Determinacy and prewellorderings of the continuum, Mathematical Logic and 

Foundations of Set Theory, Y. Bar-Hillel, Ed. (North-Holland, Amsterdam, 

1970), 24-62: 217, 271, 426, 429, 432, 434, 442, 443, 444. 
[1971a] Uniformization in a playful universe, Bull. Amer. Math. Soc. 77 (1971) 731- 

736: 9, 113, 310, 317, 321. 
[1971b] The game quantifier. Proc. Amer. Math. Soc. 31 (1971) 245-250: 411, 444. 
[1973] Analytical definability in a playful universe, Logic, Methodology and Philosophy 

of Science IV, P. Suppes et al., eds. (North-Holland, Amsterdam-London 1973) 

77-83: 9, 335, 339, 342, 349. 

[1974a] Elementary induction on abstract structures, (North-Holland, Amsterdam, 

1974): 271, 419, 444. 
[1974b] Structural characterizations of classes of relations, in Generalized recursion 

theory, J. E. Fenstad and P. G. Hinman, eds. (North-Holland, Amsterdam 1974) 

53-81: 271, 414. 
[1974c] New methods and results in descriptive set theory, Proceedings of the Interna¬ 

tional Congress of Mathematicians held in Vancouver in 1974, Vol. 1 251- 

257: 9. 

[1978] Inductive scales on inductive sets, in Cabal Seminar 76-77, Lecture Notes in 

Mathematics #689, Springer-Verlag, (1978) 185-192: 411, 573. 

A. Mostowski: 4, 189, 270, 285. 
[1946] On definable sets of positive integers. Fund. Math. 34 (1946) 81-112: 6, 63, 

188. 
[1951] A classification of logical systems, Studia Philosphica 4 (1951) 237-274: 6, 188. 

J. Mycielski 

[1964] On the axiom of determinateness, Fund. Math. 53 (1964) 205-224: 380, 424. 
[1966] On the axiom of determinateness II, Fund. Math. 59 (1966) 203-212: 380, 424. 

J. Mycielski and H. Steinhaus 

[1962] A mathematical axiom contradicting the axiom of choice, Bull Pol. Acad. 10 

(1962) 1-3: 379, 380, 422. 



620 References and index to references 

J. Mycielski and S. Swierczkowski 

[1964] On the Lebesgue measurability and the axiom of determinateness. Fund. Math. 

54 (1964) 67-71: 302, 380, 424. 

O. Nikodym 

[1925] Sur une propriete de l’operation sd, Fund. Math. 7 (1925) 149-154: 115. 

P. Novikoff: 4, 202, 205, 272, 285. 
[1931] Sur les fonctions implicites measurables B, Fund. Math. 17 (1931) 8-25: 250, 

259, 212. 
[1935] Sur las separabilite des ensembles projectifs de seconde classe, Fund. Math. 25 

(1935) 459-466: 270. 

J. C. OXTOBY 

[1957] The Banach-Mazur game and Banach category theorem, Annals of Math. 
Studies, 39 (1957) 159-163: 299, 379. 

[1971] Measure and category, Springer-Verlag, New York-Heidelberg 1971: 281. 

J. B. Paris 

[1972] ZFhX1} determinateness, J. Symbolic Logic 37 (1972) 661-667: 379. 

E. Post: 5, 188. 

H. J. Rogers 

[1967] Theory of recursive functions and effective computability, McGraw-Hill Book 

Company, New York 1967: 270. 

F. Rowbottom: 8. 

[1971] Some strong axioms of infinity incompatible with the axiom of constructibility, 

Annals Math. Logic 3 (1971), 1-44: 368, 594, 611. 

G. E. Sacks 

[1969] Measure-theoretic uniformity in recursion theory and set theory, Trans. Amer. 
Math. Soc. 142 (1909), 381-420: 266. 

[1976] Countable admissible ordinals and hyperdegrees. Advances in Math. 19 (1976) 

213-262: 247. 

J. Saint Raymond: 260. 

D. Scott: 8. 
[1961] Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci., Ser. des Sc. 

Ast. et Phys. 9 (1961), 521-524: 611. 

J. C. Shepherdson 

[1951] Inner models of set theory Parts I and II, J. Symbolic Logic 16 (1951) 161-190 

and 17 (1952) 225-237: 530. 

J. R. Shoenfield: 84, 522. 
[1961] The problem of predicativity, Essays on the foundations of Mathematics, Magnes 

Press, Hebrew Univ. Jerusalem (1961) 132-139: 64, 114, 524, 526, 530, 531, 
537. 

W. Sierpinski: 3, 4, 66, 94, 96, 193, 196, 269, 270, 272. 
[1924] Sur une propriete des ensembles ambigus. Fund. Math. 6 (1924) 1-5: 64. 

[1925] Sur une classe d’ensembles. Fund. Math. 7 (1925) 237-243: 3, 63. 
[1926] Sur une propriete des ensembles (A), Fund. Math. 8 (1926) 362-369: 114. 



References and index to references 621 

[1927] Sur la puissance des ensembles d’une certaine classe, Fund. Math. 9 (1927) 
45-49: 113. 

[1928] Sur les produits des images continue des ensembles C(A), Fund. Math. 11 (1928) 
123-126: 63. 

[1930] Sur l’uniformisation des ensembles mesurables (B), Fund. Math. 16 (1930) 
136-139: 272. 

[1950] Les ensembles projectifs et analytiques. Memorial des Sciences Mathematiques, 

CXII Paris, Gauthier-Villars, (1950): 2, 61, 64. 
[1956] General Topology, University of Toronto Press, Toronto 1956: 61. 

J. Silver: 8. 

[1971] Some applications of model theory in set theory. Annals of Math. Logic 3 (1971) 

45-110: 583, 584, 587, 594, 602, 611. 
[1973] The bearing of large cardinals on constructibility, Studies in Model Theory, M. 

Morley ed., M.A.A. Studies in Mathematics, 1973: 611. 

R. M. Solovay: vii, 8, 65, 114, 284, 318, 319, 320, 334, 376, 317, 378, 380, 404, 414, 
432, 442, 443, 444, 534, 546, 574, 596, 600, 609, 611. 

[1967] A non-constructible A3 set of integers, Trans. Amer. Math. Soc. 127 (1967) 

58-75: 591. 
[1969] On the cardinality of X\ sets of reals, Foundations of Mathematics, Bullof et al 

eds., Springer-Verlag, Berlin-Heidelberg-New York (1969) 58-73: 8, 286, 375, 
380, 537, 611. 

[1970] A model of set theory in which every set is Lebesgue measurable, Annals of 
Math. 92 (1970) 1-56: 4, 284, 611. 

[1978a] The independence of DC from AD, in Cabal Seminar 76-77, Lecture Notes in 

Mathematics #689, Springer-Verlag (1978) 171-184: 423. 
[1978b] A A\ coding of the subsets of “to, in Cabal Seminar 76-77, Lecture Notes in 

Mathematics #689, Springer-Verlag (1978) 133-150: 437, 602. 

R. M. Solovay, W. N. Reinhardt and A. Kanamori 

[1978] Strong axioms of infinity and elementary embeddings, Ann. of Math. Logic 13 

(1978) 73-116: 605. 

C. Spector: 196, 269, 270. 
[1955] Recursive wellorderings, J. Symbolic Logic 20 (1955) 151-163: 197, 269, 271. 
[1960] Hyperarithmetical quantifiers, Fund. Math. 48 (1960) 313-320: 245. 
[1961] Inductively defined sets of natural numbers, Infnitistic methods, Pergamon, New 

York, (1961) 97-102: 409, 444. 

J. Steel: 267. 
[1977] Ph.D. Thesis, University of California, Berkeley: 440. 

A. H. Stone 

[1962] Non-separable Borel sets, Rozprawy Matematyczne, 23 (1962), 40 pages: 113. 

M. Suslin: 2, 3, 79, 81, 90, 91, 114, 444. 
[1917] Sur une definition des ensembles mesurables B sans nombres transfinis, Comptes 

Rendus Acad. Science, Paris 164 (1917) 88-91: 2, 63, 113, 114. 

E. Szpilrajn-Marczewski: 115. 

H. Tanaka 

[1968] A basis theorem for 77} sets of positive measure, Comment. Math. Univ. of St. 

Paul, 16 (1968) 115-127: 266. 



622 References and index to references 

S. K. Thomason 

[1967] The forcing method and the upper semilattice of hyperdegrees, Trans. Amer. 
Math. Soc. 129 (1967) 38-57: 264. 

A. Turing: 5, 156, 188. 

R. Van Wesep 

[1977] Ph.D. Thesis, University of California, Berkeley: 440. 
[1978] Wadge degrees and descriptive set theory, in Cabal Seminar 76-77, Lecture 

Notes in Mathematics #689, Springer-Verlag (1978) 151-170: 440. 
[1978] Separation principles and the axiom of determinateness, J. Symbolic Logic, 43 

(1978) 77-81: 440. 

J. Von Neumann 

[1949] On rings of operators, reduction theory, Annals of Math. 50 (1949) 448- 

451: 240, 272. 

W. Wadge 

[19??] Ph.D. Thesis, University of California, Berkeley: 424, 440. 

P. Wolfe 

[1955] The strict determinateness of certain infinite games, Pacific J. Math. 5 (1955) 

841-847: 290, 379. 



SUBJECT INDEX 

In alphabetizing entries we have adopted the following conventions. 

(1) Greek letters are read as if they were spelled out in English. 

(2) Hyphenated expressions are read separated, as if the hyphen were a blank space. 

(3) Subscripts and superscripts do not count. 

For example, “zl^-huH” is alphabetized as if it read “delta hull” and precedes “zl} sets” 

which is placed as if it read “delta sets”. 

d, 68; 
o closure of the Lusin pointclasses 

under si 2B.5: 75; 

o closure of —ijT under si (r a Spector 

pointclass) 4C.6: 212. 

A-sets: 43; see analytic sets, 

abbreviations (formal): 458. 

absolute (relation, operation, object or 

formula): 500; see also ZF-absolute, abso¬ 

luteness theory. 

absolute Kleene pointclass: 165. 

absolutely T-inductive pointset: 407. 

absolutely hyperprojective pointset: 410; 
see HYP. 

absolutely inductive pointset: 410; see 
IND. 

absolutely measurable: see measurable, 

absoluteness theory: 8E; see also ZF- 

absolute. 

AD (axiom of determinacy): 379; basic 

theory: 7D. 

adequate pointclass: 158. 

algebraic (J-) over M: 543. 

a#-. 591. 

ambiguous Borel pointclass A°: 20; see 
Borel pointclasses of finite order. 

ambiguous part (of a pointclass): 151. 

analysis (the structure of): 452. 

analytic sets, X}: 43; 
- as continuous images of A IE.6: 43; 
- as projections of n° sets 1G.12: 58; 
- as X0-Suslin sets: 68; 

o perfect set theorem 2C.3: 81; 
o separation theorem 2E.1: 86; 
o simultaneous separation for a se¬ 

quence 2E.6: 91; 
- as unions and intersections of Kj 

Borel sets 2F.2: 94; 

o length of wellfounded X} relations 

2G.3: 103; 
o the property of Baire 2H.5: 110; 
o absolute measurability 2H.8: 111; 
o boundedness theorem for ordinal 

codes 4A.6: 197; 
o determinacy of X} 6G.7: 371; 

see also X} sets, 1I\ sets, Lusin 

pointclasses. 

analytical pointsets: 157 
- definable in the language of second- 

order arithmetic 8B.3: 467, 

8B.12: 470. 

antisymmetric relation: 104. 

Approximation Theorem 2H.1: 106; 
- over standard models of ZF 

8G.8: 544. 

arithmetic, second order: 452. 

arithmetic, the structure of: 451. 

arithmetical pointsets: 157; 
- included properly in A \ 3F.8: 173; 
- definable in the language of arithmetic 

8B.2: 467, 8B.11: 469; 

see also Kleene pointclasses. 

assignment: 456. 

axiom 
- of choice, results which depend on 

it: 7F; 
- of choice, countable for pointsets: 42; 

623 
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- of depended choices, DC: 423; 

- of determinacy, AD: 379; basic 

theory: 7D. 

axiomatic method: 448. 

axioms for ZF: 475. 

backwards (bar) induction: 82. 

Baire Category Theory 2H.2: 109. 

Baire-de la Vallee-Poussin class 62. 

Baire functions of class f: 59; basic 

theory: 1G; 

o functions of effective Baire class 

n: 165; basic theory: 3E.13-3E.14. 

Baire measurable functions: 112; 
o approximation by continuous functions 

2H.10: 112; 
o example in L of a function with II\ 

graph which is not Baire measurable 

5A.7: 280. 

Baire property: 110; 
- for Borel sets 2H.3: 110; 
o closure under the operation si, 

2H.5: 110; 
o example of a set without the property 

of Baire 2H.6: 110; 
o example in L of a set without the 

property of Baire 5A.8: 281; 
- for sets in A, granting Det(A) 

6A. 16: 300; 
- for sets in 3^A, granting Det(A) 

6G.11: 376; 
- for all sets under AD 7D.2: 424. 

Baire space A: 11; 
- homeomorphic with the 

irrationals: 12; 
- continuously surjected onto every Pol¬ 

ish space 1A.1: 12, 1G.2: 50; 
- Borel isomorphic with every perfect 

product space 1G.4: 54; 
- recursively surjected onto every per¬ 

fect product space 3D. 14: 154; 
- A [-isomorphic with every perfect pro¬ 

duct space 3E.7: 162. 

Banach-Mazur game G**(A): 298. 
bar recursion: 82. 
basic nbhds: 14; 

- relative to a fixed recursive 

presentation: 130. 

Basic Representation Theorem for 77 [ 

4A.3: 193. 

basic space: 17; 
- recursively presented: 729; 

- presented ZF-absolutely 8E.10: 512. 

basis of nbhds; see basic nbhds, basic 

space. 

basis (for a pointclass): 236; 
o A [ is not a basis for 77° 4D.10: 224; 

- for X\ 4E.5: 236; 
- for 2} 4E.8: 238; 
- for 77} 4E.10: 242; 

- for 2* (n>2) in L 5A.4: 278; 
- for X\n granting PD 6C.6: 317; 
o A}n+1 is not a basis for Fl\n under 

PD 6C.7: 317; 
o Martin-Solovay non-basis theorem for 

n\n 6C.9: 318; 
- for X2n+i under PD 6C.10: 319. 

best winning strategy: 339. 

boldface pointclass T (associated with 

F): 183; 
o properties when F is a Spector 

pointclass 4C.5: 277, 4C.6: 272. 

Borel codes: 388. 

Borel function: 49: see Borel measurable 

function. 

Borel injection, good: 52. 

Borel isomorphism: 49. 

Borel measurable function: 49; basic 

theory: 1G; 

- defined implicitly 2E.5: 90. 

Borel measure: 106. 

Borel pointclasses of finite order 2°, n°, 
A°: 20; basic theory: 1B-1D; 

o closure under V"> A“ IF.2: 45; 

- related to X°n, 77°, A° 3E.4: 160; 
o the prewellordering property for 2° 

(n> 2) 4B.8: 204; 

o failure of the separation property for 

2° 4B.11: 204; 
see also Kleene pointclasses, Borel 

pointclasses of countable order. 

Borel pointclasses of countable order, 2^, 
n^, A[j: 48; basic theory: IF, 1G; 

see also Borel sets. 
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Borel rational over M: 538. 

Borel sets B: 46; basic theory: IF; 

- as continuous, injective images of X 
1G.5: 56; 

o the Suslin theorem 2E.2: 90; 
o closure under injective Borel images 

2E.9: 92; 

o the property of Baire 2H.3: 110; 
- coded: 181, 388; 
- with countable sections 4F.17: 259; 
- with cr-compact sections 4F.18: 259; 

- determined 6F.1: 358; 
see also uniformization, analytic, X] 

sets, 77} sets. 

Borel sets of finite order: 20; see Borel 

pointclasses of finite order. 

Borel subsets of “X: 290 

bounded number quantification: 27. 

Boundedness Theorem for 17} 4A.4: 196; 
o for Il}-norms 4C.10: 213. 

Q: 13; see Cantor set. 

canonical basis of nbhds: 130. 

canonical coding: 186. 

Cantor-Bendixson Theorem 2A.1: 66. 

Cantor set Q: 13; 

- continuously injected in every perfect 

Polish space 1A.3: 16; 
- recursively injected in every perfect 

product space 3D.15: 154. 

CA-sets: 43; see II j sets, 

category: see meager sets. 

CCC (countable chain condition): 542. 

center of basic nbhd: 14. 

characteristic function: 122; 
- contracted: 238. 

characteristic of a structure: 460. 

character: 579. 

choice set (for /: A" —> Power(flj)): 426. 

Church-Kleene aq: 195; 
o proof that wfK = S} 4A.5: 197. 

Church’s Thesis: 121. 

class: 478. 

closed class of ordinals: 481. 

closed set of class £ (in the sense of 

Lebesgue): 62. 

closure ordinal: 405. 
- of an operative monotone set 

relation: 406. 

co-analytic sets, nj: 39; see 17} sets, 

analytic sets, Lusin pointclasses. 

code of a recursive function: 169. 

codes of formulas: 463. 

coding: 180; 
- induced by a good 

parametrization: 185. 

Coding Lemma (I) 7D.5: 426; 

- (II) 7D.6: 429. 

comeager set: 112. 

complementation: 19. 

Condensation Lemma 8F.4: 516. 

condensation point: 66. 

conjunction: 24. 

connected relation: 104. 

constructible hierarchy: 489. 

constructible universe L: 5A, 8D-8F; 

o equivalence of X^L with the exis¬ 

tence of a 2}-good well-ordering of X 
of rank Xj 8G.11: 549; 

o Xfl L c T} if 0# exists 8H.6: 591. 

construction principle: 90. 

constructive ordinals: 269, 443. 

continuous substitution: 27. 

continuously reducible (Wadge 

reducible): 424. 

countable chain condition, CCC: 542. 

countable conjunction, /\": 44. 

countable disjunction, V“; 44. 

countable pointset operation: 44. 

countable principle of choice for 

pointsets: 423. 

Countable Reflection Theorem 

8C.10: 485; 
- proved without using AC 8F.4: 530. 

covering game G^(A, s): 300. 

Covering Lemma 4C. 11: 214. 
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CPCA-sets: 43. 

C[X]: 17. 

DC, axiom of depended choices: 423. 

definable (by a term or formula, 

elementary): 465. 

definable class: 478. 

definable notions in set theory: 8C, 8D; 

o some useful definable notions 

8C.1: 473, 8D.1: 487. 

definable winning strategy; see Third 

Periodicity Theorem. 

definition by recursion: 100; 
- r-effective: 386; 
- on the ordinals, in 8C.2: 478; 
- on a wellfounded relation in 5£e 

8C.7: 483; 
- its ZF-absoluteness 8E.5: 509. 

Dellacherie’s Lemma 3D.1: 147. 

8,8: 212. 
5}: 196; 

o proof that = 4A.5: 197. 

K- 213; 
o basic facts under AD 7D.11: 436. 

A°, A°; see Borel pointclasses of finite and 

countable order. 

A}-functions (A{-recursive functions): 161; 
- injections 4D.7: 222; 
- as effectively Borel functions 

7B.9: 403; 
- ZF-absolute as operations 

8E.11: 513. 

A {.-hull of a pointset: 318. 

A-Selection Principle 4B.5: 203; 
- strong 4D.6: 222. 

A{ sets (hyperarithmetical): 157; 
o example of a non-arithmetical, A} set 

3F.8: 173; 
- as recursive, injective images of 7T° 

subsets of X 4A.7: 197, 4D.9: 223. 
- as the smallest effective cr-field 

7B.7: 401; 
see also Kleene pointclasses, Borel 

sets, uniformization. 

A-Uniformization Criterion 4D.4: 221. 

derivative (of a pointset): 67. 

determinacy: 292; basic theory: 6A; 

- of closed sets 6A.2: 289; 
- of ti 6A.3: 290; 
- preserved under —i 6A.4: 292; 
o example of a non-determined game 

6A.6: 293; 
- of Borel sets 6F.1: 358; 
- of 2j and n} sets 6G.7: 371; 
o PD not implied by Det(A{) 

8G.31: 572. 

determined (weakly) game: 446. 

disjunction: 24. 

double-* (Branch-Mazur) game: 298. 

dual pointclass: 19. 

dual projection: 27. 

Easy Uniformization Theorem 4B.4: 202. 

effective Baire class: 165; see also Baire 

functions of class £ 

Effective Perfect Set Theorem 4F.1: 243; 
- for Z{n+1 under PD 6E.5: 340; 

see also Perfect Set Theorem, 

effective cr-field: 401. 

Effective Strong Separation Theorem 

7B.3: 393. 

effective transfinite recursion: 385. 

effectively Borel map: 391; see also A }- 

function 

Ehrenfeucht-Mostowski theory: 579; basic 

result 8H.2: 579; 
- for ZFL and ZFL[d] 8H.3: 584, 

8FI.5: 587. 

elementary 

- language: 453; 
- equivalence: 460; 
- substructure: 461; 
- function, relation, object: 466. 

equivalent codings: 402. 

evaluation operation EW: 407. 

existential quantification: 25. 

F<r> fVs sets: 21. 

filter of sets: 364. 

finitely splitting tree: 251. 

First Periodicity Theorem 6B.1: 304. 

first-order definable; see elementary. 
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first-order language: 453. 

fixed point 

- of a monotone operation: 404; 
- of an operative, monotone set 

relation: 406. 

forcing: 283. 

formula: 455; 

- nl 471; 
- X0-. 483 
- ni, 472; 
- 494. 

free variable: 457. 

Fubini’s Theorem: 281. 

function; see individual entries for special 

kinds of functions, e.g. Baire measurable, 

T-recursive, partial, ZF-absolute, etc. 

Gs, GSa. sets: 21. 

Gale-Stewart Theorem 6A.2: 289. 

game: 287. 

game quantifier 9: 322; basic theory: 6D; 

- preserving the prewellordering prop¬ 

erty 6D.3: 325; 
- preserving the scale property 

6E.15: 351. 

T-depended choices 4C.12: 214. 

T-effective transfinite recursion: 386. 

F-enumerable sequence of pointsets: 148. 

F-good wellordering: 275; 

o basic facts about .Si-good wellorder- 

ings 5A. 

F-inductive pointset: 407. 

F-norm: 200. 

F on F (set relation): 413. 

T-recursive functions: 146; basic 

theory: 3D; 

- when F is a .£-pointclass with the 

substitution property 3G.1: 176; 
- when F is a Spector pointclass 

4C.3: 211; 
see also recursive functions, A- 
measurable functions. 

T-recursive partial functions: 175; basic 

theory: 3G; 

- when F is a Spector pointclass 

4D.1: 217. 

F-recursive points: 152; basic theory: 3D; 

o transitivity of X*(z)-, di(z)-recursive 

points 3E.16: 166, 3E.17: 166. 
F-recursive uniformity: 182 

F resembles /!}: 553. 

F-scale: 228; see also scale, scale prop¬ 
erty. 

F-singleton: 242. 

Godel wellordering 

- on pairs: 563; 
- on tuples: 564. 

good Borel injection: 52. 

good parametrization: 185; see also 
Parametrization Theorem. 

Good Parametrization Lemma 3H.1: 183. 

good semiscale: 100. 

good theory: 575. 

good universal set: 185. 

95°: 331; 
o characterization of 951° 7C.10: 414. 

Hr: 562; basic theory: 8G.22-8G.30. 

Harrington-Kechris Theorem 8G.20: 557. 

Hausdorff distance: 17. 

Hierarchy Theorem 

- for the Borel pointclasses of finite 

order ID.4: 38; 
- for the Borel pointclasses of countable 

order 1F.6: 48, 1G.11: 58; 
- for the Lusin pointclasses IE.3: 43; 
- for the Kleene pointclasses 3F.7: 173. 

homogeneous set 

- for a partition: 368, 369; 
- for a structure: 578. 

hull of a set, Hullk(A): 318. 

H[X]: 17. 

hyperarithmetical pointsets (in z): 401. 

hyperborelian pointsets (in the sense of 

Sierpinski): 113. 

hyperprojective pointsets, HYP, 
HYP: 410; basic theory: 7C; 

see also inductive pointsets. 

ideal of sets: 105; 
- regular from above: 106; 
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- satisfying the CCC in a model: 542; 

see also Approximation Theorem. 

imposed subgame: 358. 

indiscernibles: 578; basic theory: 8H; 

o Silver indiscernibles: 594; 
o uniform indiscernibles: 594. 

Index(C, T, u) (The Lusin-Sierpinski 

Index): 97. 

inductive pointsets, IND, IND: 410; basic 

theory: 7C; 

- resembling II] 8G.17: 553. 

infinite games of perfect information: 287. 

infinite path (in a tree): 76. 

inner model (of a set theory): 499. 

irrational number: 11. 

isolated point: 67. 

isomorphism of structures: 460. 

iterates (of a monotone operation): 404. 

J-algebraic over M: 543. 

J-transcendental over M: 543. 

justification (for a recursive 

derivation): 167. 

x-complete filter: 364. 

x-ideal of sets: 105. 

x-Suslin over M: 536. 

x-Suslin sets: 68; basic theory: 2B; 

- when c/(x)>co 2B.4: 75; 

- as projections of trees 2C.1: 77; 
o separation theorem 2E.1: 86; 
o Suslin theorem 2E.2: 90; 

- as unions and intersections of 

x+(x + l)-Borel sets 2F.2: 94; 
- when x=Kn 2F.4: 97; 

o projective sets are x-Suslin under PD 
6C.12: 321; 

- over a standard model M: 536; 
see also Approximation Theorem. 

x-Suslin sets in the sense of 

Maximoff: 113. 

x-Suslin system: 68. 

Kechris Perfect Set Lemma 8G.18: 554. 

kernel (perfect): 67. 

Kleene-Brouwer ordering: 195. 

Kleene pointclasses X°n, U°n, A°n, X\, U\, 
Al 157; basic theory: 3E, 3F; 

- relativized: 157; 
- related to the boldface classes 2° etc. 

3E.4: 160; 
- parametrized 3F.6: 172; 
o properties in L: 5A; 

o prewellordering property under PD 
6B.2: 309; 

o scale property under PD 6C.4: 317; 
o uniformization under PD 6C.5: 317; 
o Spector-Gandy theorem under PD 

6E.7: 342; 

o largest countable sets under PD 
6E.9: 344, 6E.10: 346, 6E.11: 346; 

o representation of A2n+1-sets as re' 

cursive, injective images of I72n-sets 

6E.14: 349; 
o n\n+1 resembles J7} under PD 

8G.17: 553; 
see also Lusin pointclasses. 

Kleene’s Basis Theorem for 4E.8: 238. 

Kleene’s Recursion Theorem 7A.2: 383; 
- for relations 3H.3: 187. 

Kleene’s set O: 269. 

Kondo-Addison Uniformization Theorem 

4E.4: 235; 
see also uniformization. 

Konig’s Lemma 4F.9: 251. 

Kunen-Martin Theorem 2G.2: 101. 

Kunugui’s Lemma 4F.13: 254. 

Kuratowski-Ulam Theorem 5A.9: 281. 

L; see constructible universe. 

L[T2n+1]: 552. 

A-algebra of sets: 86. 

A-Borel sets: 86; basic theory: 2E; 

o Suslin theorem 2E.2: 90. 

A-measurable functions: 49; 

o connection with T-recursive functions 

3D.22: 156; 

see also T-recursive functions. 

A-semiscale: 70. 

Largest Thin 17} Set Theorem 4F.4: 247. 

Largest Countable /72n+1 Set Theorem 

6E.9: 344; 
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o largest countable S\n+2 set 

6E.10: 346; 

o there is no largest countable S\n + l set 

6E.11: 346. 

Lebesgue measurable sets: 111. 

leftmost infinite branch: 238. 

length of a norm: 212. 

length of a wellfounded tree: 84. 

Lipschitz degree: 438. 

Lipschitz reducibility: 437. 

Lower Classification of A 4D.16: 225. 

lower semicontinuity property: 228. 

Lusin pointclasses 2*, FI*, A,': 39; basic 

theory: IE; 

o closure properties under V“> A“ 

IF.2: 45; 

o closure properties under the operation 

d 2B.5: 75; 

- as the boldface pointclasses associated 

with Si nl A ’ 3E.4: 160; 
- in L: 5A; 

- under PD: 6A-6D; 

- under AD: 7D; 

o projective sets definable in second 

order arithmetic or analysis 

8B.17: 472; 

o X] and X] as A-Suslin 8H.11: 599, 
8H.13: 601; 

see also analytic sets, Kleene 

pointclasses, S\ sets, 17} sets, S\ 
sets, Xi sets. 

Lusin-Sierpinski index: 97. 

Lusin-Sierpinski ordering: 195. 

Lusin sieve: 268. 

Mansfield’s Perfect Set Theorem 

8G.2: 537. 

Mansfield’s Lemma 8G.1: 534. 

Martin measure on the degrees: 441. 

Martin-Solovay Theorem 8H.9: 596. 

MC: 365. 

meager sets: 106; 
o the ideal of meager sets is regular 

from above 2H.4: 110; 
o computation of “{y : P(x, y)} is 

meager” 4F.19: 262; 

o non-meager sets in 77} have 4} 

members IF.26: 264; 
o the ideal of meager sets satisfies the 

CCC in L 8G.6: 541. 

measurable cardinals: 365; basic 

theory: 6G; 

o Kj is measurable under AD 

7D.18: 442. 

measurable functions (relative to a meas¬ 

ure /x): 772; 

o non-Lebesgue measurable function 

with 77} graph, in L 5A.7: 280; 
see also Baire measurable, Borel 

measurable, X°-measurable. 

measurable sets (relative to a measure ju): 

ill; 
- closed under the operation d 

2H.8: 111; 
o non-measurable A\ set in L 

5A.8: 281; 
o absolute measurability for sets in A, 

under Det(A) 6A.18: 302; 
o absolute measurability for sets in A, 

under Det(Aj) 6G.12: 377; 

o the ideal of sets of measure 0 satisfies 

the CCC in L 8G.6: 547. 

metamathematical method: 448. 

minimal strategy: 339. 

minimal winning position: 337 

minimalization: 119. 

model (of a theory): 485. 

monotone S- (or 77-) collection: 407. 

monotone pointset operation: 404. 

monotone set relation: 405. 

Mostowski Collapsing Lemma 8C.9: 484; 
o Mostowski collapsing map: 485. 

Mostowski’s Theorem 8E.4: 507. 

p.-measurable function (or set); see 
measurable. 

multiple-valued strategy: 446. 

X: see Baire space 

nbhd basis; see basic nbhds, basic space, 

nbhd diagram Gf: 146. 

nbhd fan: 251. 
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negation —1: 19, 24. 

neighborhood; see nbhd. 

nodes (of a tree): 76. 

norm: 69; 
- regular: 105; 
o the associated prewellordering 

2G.8: 105. 

Norm-Transfer Theorem for 9 6D.3: 325. 

normal measure (ultrafilter): 366. 

normed pointclass: 201; see also prewell¬ 

ordering property. 

notions (in set theory): 501. 

Novikov-Kondo-Addison Uniformization 

Theorem 4E.4: 235; 
see also uniformization. 

nowhere dense set: 106. 

O: 269. 

to: 11. 

cofK: 195; 
o Proof that cofK=S[ 4A.5: 197. 

open set of class | (in the sense of 

Lebesgue): 62. 

operative set relation: 405. 

ordering: 104. 

ordinal code: 192. 

P computes f on D: 175. 

parametrization: 35; 
- good 185; 

see also next entry. 

Parametrization Theorem 

- for X° 1D.1: 36; 
- for S°, n° ID.2: 36; 
- for Xl n[, IE.3: 43; 
- for X% n° IF.6: 48, 1G.11: 58; 
- for 2°, 11°, X\, n‘ in the associated 

Kleene pointclasses 3E.4: 160, 
3E.9: 164; 

- for X°n, n°n, XI n\ 3F.6: 172; 
o good parametrization lemma 

3H.1: 183; 
- for A and A(x) when F is a Spector 

pointclass 4D.2: 219; 
- for IND and IND 7C.3: 411. 

parametrized pointclass: 36. 

partial function: 174; see also F-recursive 

partial function, recursive partial function. 

partial ordering: 104. 

partition 

- of x[n]: 368; 
- of x<<u: 369. 

payoff (of a game): 287. 

PC A sets; see X\ sets. 

PD, projective determinacy: 302. 

perfect kernel: 67. 

perfect set: 66; see also next entry. 

Perfect Set Theorem 

- for closed sets 2A.2: 67; 
- for x-Suslin sets 2C.2: 79; 
- for X\ 2C.3: 81; 
- failing for the class of all pointsets 

2C.4: 81; 
- effective, for 2} 4F.1: 243; 
- failing for Il\ in L 5A.8: 281; 
- for A, granting Det(A) 6A.12: 297; 
- for X\n+1 under PD 6E.5: 340; 
- for 3*A granting Det(A) 6G.10 : 375; 
- for all sets granting AD 7D.2: 424; 
- for sets x-Suslin over a standard 

model of ZF 8G.2: 537, 8G.13: 550; 
- for X\ over L 8G.4: 537. 

perfect space: 11; 
o continuous injection from Q 

1 A.3: 16; 
- Borel isomorphic with AT 1G.4: 54; 

- A [-isomorphic with Af 3E.7: 162. 

Periodicity Theorem 

- First 6B.1: 304; 
- Second 6C.3: 311; 
- Third 6E.1: 335, 6E.2: 339. 

n° sets; see Kleene pointclasses. 

n“, n° sets; see Borel pointclasses of finite 

and countable order. 

Tl\ sets: 157; 
- related to IlJ 3E.4: 160; 
o Basic representation theorem 

4A.3: 193; 
o Boundedness theorem 4A.4: 196; 
o the prewellordering property 

4B.2: 201; 
o the reduction property 4B.10: 204; 
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o failure of separation 4B.12: 205; 
- as the least Spector pointclass 

4C.2: 209; 

o upper classification of 2jn9C 

4D.14: 225; 

o lower classifications of 2}Fl0C 

4D.16: 225; 
o the scale property 4E.1: 228; 
o the uniformization property 

4E.4: 235; 
o Spector-Gandy theorem 4F.3: 245; 
o largest thin 17} set theorem 

4F.4: 245; 
o Suslin-Kleene theorem 7B.4: 397; 

see also analytic sets, Kleene 

pointclasses, 2} sets. 

11} sets: 39; see 17} sets, analytic sets, 

Lusin pointclasses, 2 J sets. 

pointclass: 19; 
- closed under a set operation: 27; 

- closed under a countable set 

operation: 44; 
o .2-pointclass: 147; 
- relativized: 151, 3E.15: 166; 
o adequate pointclass: 158; 
o 2-pointclass with the substitution 

property: 3G.1: 176; 
o the associated boldface pointclass 

T 183; 
o Spector pointclass: 207; 
o the associated ordinals 5, 8: 212; 
o 2*-pointclass: 381; 
- resembling 17}: 553; 

see individual entries for specific 

pointclasses and specific types of 

pointclasses. 

pointset: 19. 

pointset operation: 24. 

Polish space: 11; see also basic space, per¬ 

fect space, product space. 

positive 

- analytical set relation: 408; 
- arithmetical set relation: 408; 
- analytical inductive on 57: 410; 
o pos 2°, pos 17°, pos 2},, pos nj: 407. 

prewellordering: 104; 
- related to a regular norm 2G.8: 105; 

see also the next entry. 

prewellordering property: 201; 
- for 17}, nj 4B.2: 201; 
- for 2}, 22 4B.3: 202; 
- for 2°, 2° (n> 2) 4B.8:204; 
- not holding for both F and -iF 

4B.13: 206; 
- for XI Xl (n>2) in L 5A.3: 278; 
- for fl2n+1, n2n + 1 and 22n+2, 2{tl+2 

under PD 6B.2: 309; 
- preserved by D 6D.3: 325; 
- for IND. IND 7C.3: 411. 

primitive recursion: 119; 

principal ultrafilter: 364. 

Principle of F-depended choices 

4C.12: 214. 

product space: 17; 
- presented recursively: 130; 
- of type 0: 140; 
- of type 1: 141; 
o recursively homeomorphic spaces of 

the same type 3D. 13: 154; 
- A {-isomorphic with 57, when perfect 

3E.7: 162; 
- presented ZF-absolutely 8E.10: 512, 

8E.11: 513. 

projection: 24; 
- along u>: 19; 
- function: 135. 

projective determinacy, PD: 302. 

projective sets: 39; see also Lusin 

pointclasses. 

proof by induction (on a wellfounded 

relation): 100. 

property of Baire; see Baire property, 

property P; see Perfect Set Theorem, 

quantifier manipulations: 29-31, 41-42. 

quasistrategy: 446. 

(R; see real numbers, 

radius of basic nbhd: 14. 

Ramsey cardinal: 370; 
- implying that ol# exists 8H.15: 602; 

- implying Det(2j) 8H. 16: 603. 

rank function 

- of a tree: 83; 
- of a wellfounded relation: 100; 
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- characterized as the smallest norm 

2G.7: 104. 

rank of a set: 495. 

rational over M: 538. 

real numbers (R 

- as a perfect Polish space: 11; 
- presented recursively: 129; 

see also product space, recursive 

real numbers. 

Recursion Theorem 7A.2: 383; 
- for relations 3H.3: 187. 

recursive derivation: 166. 

recursive functions 

- on co: 121; basic theory: 3A; 

- on product spaces: 3D; 

- relativized to some z: 151; 
- connection with continuity 

3D.21: 156; 
see also T-recursive functions, 

recursive homeomorphism: 154. 

recursive pointset: 141; 
- in a pointset of type 0: 238. 

recursive presentation: 128; basic 

theory: 3B. 

recursive real numbers: 155; basic 

theory: 3D.18-3D.19. 

recursive relations on a>: 122. 

recursively enumerable set: 144. 

recursively equivalent codings: 402. 

reduction: 34; 
- for 2° (n> 2) 1C.7: 35; 
- for 2° (£>2) IF.9: 49; 

see also next entry. 

reduction property: 204; 
- as a consequence of the prewellorder¬ 

ing property 4B.10: 204; 
- implying the separation property for 

the dual class 4B.11: 204; 
see also prewellordering property. 

Reflection Theorem 8C.4: 482; 
- countable 8C.10: 485; 
- countable, proved without AC 

8F.14: 530. 

reflexive relation: 104. 

regular from above (ideal): 106. 

regular measure: 280. 

regular norm: 105. 

regular %-Suslin system: 70. 

relation: 19. 

relative constructibility: 531. 

relativization of a pointclass: 151. 

remarkable character: 587. 

resolvents of a pointset: 212. 

Restricted Quantification Theorems 

4D.3: 220. 

restricted second under relation on 8: 567. 

run of a game: 287. 

satisfaction: 456. 

scale: 228; basic theory: 4E; 

- very good: 231; 
o existence of very good scales 

4E.6: 237; 
see also scale property, 

scale property: 228; 
- for n\, n[ 4E.1: 228; 
- for Xl Xl (n>2) in L 5A.5: 279; 
- preserved under 3'^ 6C.1: 310; 
- for n\n+1, n\n+1 under PD 

6C.4: 317; 
- preserved under D 6E.15: 351; 
- for X°n 6E.16: 357; 
- for IND. IND under Det(HYP) 

7C.5: 411. 

scaled pointclass: 228. 

Second Incompleteness Theorem of Godel 

81.1: 601. 

second order arithmetic: 452. 

Second Periodicity Theorem 6C.3: 311. 

section of a pointset (fiber): 33. 

Selection Principle 

- for X° subsets of SCxT), 9C of type 

<1, 'y of type 0 3D.12: 154; 
see also A-Selection Principle. 

self-dual degree: 438. 

semirecursive pointsets, 2°: 135; basic 

theory: 3C; 

- relativized to a point z: 151; 
- characterized in terms of the metric 

3C.12: 145; 
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o selection principle 3D.12: 154; 
see also Kleene pointclasses. 

semiscale: 69; 
- good: 100. 

sentence (formal): 457. 

separation: 35; 
- for n° (n > 1) 1C.8: 35; 
- for (£>1) IF.10: 49; 

- for *-Suslin sets 2E.1: 86; 
- simultaneous, for a sequence of X} 

sets 2E.6: 91; 
- for X}, X}, 77|, n'2 4B.11: 204; 
o failure of separation for the duals of 

these pointclasses 4B.12: 205; 
see also reduction property. 

separation property: 204. 

Separation Theorem 2E.1: 86; 
- effective 7B.3: 393. 

set 

- of Baire-de la Vallee Poussin class 

‘ f: 62; 

- of indiscernibles: 578; 
- of row £ in the sense of 

Lebesgue: 62; 
- relation: 405; 
- relation, F on f: 413; 
- theory (the structure of): 452. 

see individual entries for specific 

pointclasses of sets. 

Shoenfield’s Lemma 8F.8: 522. 

Shoenfield’s Theorem (I) 8F.9: 524; 

- (II) 8F.10: 526. 

Sierpinski’s formulas 2F.1: 94. 

sieve: 268. 

435. 

e-compact pointset: 258. 

cr-finite Borel measure: 106. 

X0 formula: 483. 

Xj formula: 494. 

X^-good wellordering: 275. 

<7- ideal: 105; 
- over a standard model M: 541; 
- satisfying the CCC in a model 

M: 542. 

X°-measurable functions: 59; basic 
theory: 1G; 

o relation with Baire functions of class f 

1G.17: 59, 1G.19: 60. 

X-pointclass: 147; 
- with the substitution property 

3G.1: 176; 
- need not be adequate 3G.3: 178. 

X*-pointclass: 381; basic theory: 7A. 

X° sets: 157; 
o uniformization for subsets of 9CXo> 

when ns: 2, 3E.10: 164; 
o prewellordering property when n> 2 

4B.8: 204; 
o reduction property 4B.10: 204; 
o failure of separation property 

4B.12: 205; 
o scale property 6E.16: 357; 

see also X? sets, Kleene 

pointclasses. 

X°, X^ sets; see Borel pointclasses of finite 

and countable order. 

XJ sets: 157; 
- related to analytic sets 3E.4: 160; 
- as projections of 17° sets 3E.12: 165; 
o the separation property 4B.11: 204; 
o effective perfect set theorem 

4F.1: 243; 
o countable Xj sets, represented 

4F.5: 249; 

- defined ZF-absolutely 8E.11: 513; 
see also analytic sets, 77} sets, 

Kleene pointclasses. 

X} sets; see analytic sets. 

Xj sets: 157; 
o the prewellordering property 

4B.3: 202; 
o the reduction property 4B.10: 204; 
o failure of separation 4B.12: 205; 
- as the smallest Spector pointclass 

closed under 3^ 4C.2: 209; 
o upper classification of 

4D.14: 224; 

o lower classification of 

4D.16: 225; 

o uniformization property 4E.4: 235; 
o basis theorem 4E.5: 236; 

o absoluteness over L 8F.9: 524; 
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o failure of ZF-absoluteness 

8F.18: 531; 
o approximation by Borel sets over an 

inner model 8G.9: 546; 
see also X2 sets, 17] sets, Kleene 

pointclasses. 

sets: 39; 
- as Kj-Suslin sets 2D.3: 84; 
- as unions of Kj Borel sets 2F.3: 96; 
o length of X] wellfounded relations 

2G.4: 103; 
o the prewellordering property 4B.3: 202; 
o the reduction property 4B.10: 204; 
o regularity properties granting MC 

6G.10: 375, 6G.11: 376, 6G.12: 377; 
- characterized as unions of Borel sets 

under AD 7D.10: 434; 
o regularity properties when (Va)[o# ex¬ 

ists] 8G.9: 546; 
see also X] sets, Lusin pointclasses. 

Silver indiscernibles: 594. 

similarity type of a structure: 460. 

simple space: 183. 

Skolem-Lowenheim Theorem 8A.4: 461. 

Skolem set: 461. 

Solovay games: 443. 

Solovay’s computation of a# 8H.6: 591. 

space 

- basic: 17; 
- of type 0: 140; 
- of type 1: 141; 
- product: 17. 

Spector-Gandy Theorem 4F.3: 245; 
- for nL+i under PD 6E.7: 342. 

Spector pointclass: 207; basic theory: 4C, 

4D; 

0 0 2“ is a Spector pointclass 6D.4: 331; 
o IND is a Spector pointclass 7C.3: 411; 

see individual entries for specific Spec- 

tor pointclasses. 

standard model (or a set theory T): 499; 
o smallest standard model of ZF 

8F.15: 530. 

standard universe of sets: 451. 

star game G*(A): 295; 

o connection with perfect subsets 

6A.10. 296, 6A.11: 297. 

strategy: 287. 

strict part (of a wellfounded relation): 99. 

strongly inaccessible cardinal: 374. 

structure: 452; basic theory: 8A, 8B. 

- of arithmetic: 451; 
- of second order arithmetic, analysis, set 

theory: 452. 

subgame: 288. 

substructure: 461. 

- elementary: 461. 

substitution property: 175. 

suitable for our purposes: 416. 

sup game: 305. 

Suslin sets: 68; see x-Suslin sets. 

Suslin Theorem 2E.2: 90; 
- for Ajn+i under AD 7D.9: 433. 

Suslin-Kleene Theorem 7B.4: 397. 

symbolized English: 459. 

symmetric difference: 105. 

term: 454. 

theory: 485. 

0 : 425. 

thin pointset: 247; 
o largest thin 17] set theorem 4F.4: 247. 

Third Periodicity Theorem 6E.1: 335, 
6E.2: 339. 

total function: 175. 

totally disconnected space: 12. 

transcendental (J) over a model M: 543. 

transfinite recursion; see definition by recur¬ 

sion. 

- T-effective: 386. 

transitive class (or set): 484. 

transitive relation: 104. 

tree: 76. 
I 

trivial function: 135. 

trivial substitution: 407. 

truth: 458. 

Turing degrees, equivalence, reducibility: 156. 
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type 0 (space): 140. 

type 1 (space): 141. 

ultrafilter: 364. 

unbounded class of ordinals: 480. 

Uniform Closure Theorem 3H.2: 186. 

uniform indiscernibles: 594. 

uniform in x: 557. 

uniform reduction property: 206. 

uniformity: 182. 

uniformization: 33; 
- for 2° subsets of 0C x o> (n>2) 

1C.6: 33; 
- for 2° subsets of 9CXw (£>2) 

IF.8: 48; 
- for 2° subsets of 9Cxa>, type (9C)sl 

3D.12; 154; 
- for 2° subsets of 2C x a> (n > 2) 

3E.10: 164; 
- for r subsets of SCxco when F is ade¬ 

quate, normed, closed V“ 4B.4: 202; 
o A-uniformization criterion 4D.4: 221; 
o example of a J7° set not uniformizable 

in 2} 4D.11: 224; 
- for Borel sets whose sections have 

isolated points 4D.12: 224; 
- for convex Borel sets in (R'1 

4D.13: 225; 

o uniformization lemma 4E.3: 233; 
- for n\, n;, X\, X\ 4E.4: 235; 
- for X\ 4E.9: 240; 
- for Borel sets with compact sections 

4F.12: 254; 

- for Borel sets with cr-compact sections 

4F.16: 258; 
- for Borel sets with non-meager sec¬ 

tions 4F.20: 264; 
- for Borel sets with sections of positive 

measure: 266; 
o failure of uniformization of a X} set 

by a difference of 2} sets 4F.22: 267; 

- for X\, 2i (n> 2) in L 5A.4: 278; 
- for n\n+i, X2n, X2n under PD 

6C.5: 317; 
- for Ajn+i sets with countable sections 

under PD 6E.6: 342; 
- for IND, IND granting Det(HYP) 

7C.5: 411. 

uniformization property: 235. 

universal quantification: 27. 

universal sets: 35; see Parametrization 

Theorem. 

universe of sets: 451. 

Upper Classification of A H9C for a Spec- 

tor pointclass F 4D.14: 225. 

vacuous quantification: 21. 

variation of a function: 23. 

very good scale: 231. 

von Neumann Selection Theorem 

4E.9: 240. 

Wadge degrees: 438; 
- wellfounded under AD 7D.14: 439. 

Wadge reducible: 424. 

Wadge’s Lemma 7D.3: 424. 

Weakly determined game: 446. 

wellfounded model of ZFL [a]: 576. 

wellfounded part of a tree: 93. 

wellfounded relations: 99: 

- when they are x-Suslin 2G.2: 101; 
- when they are 2{ 2G.3: 103; 
- when they are 2^ 2G.4: 103; 
- when they are Borel or A, 

2G.6: 104; 
o their strict part 99. 

wellfounded tree: 82. 

wellordering: 104; 
- T-good: 275. 

winning strategy: 288; 
o quasistrategy: 446. 

Zermelo-Fraenkel set theory, ZF: 475; 
o its formal axioms 475; 

o basic theory of definability in ZF: 8C; 

o smallest standard model 8F.15: 530; 
- with the axiom of choice, ZFC: 477. 

ZF-absolute 

- notions: 501; 
- set, as a relation: 510; 
- function, as an operation: 511. 

ZFC: 477. 

ZFL, ZFL[6c]: 575. 
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