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PREFACE TO THE SECOND EDITION 

The tirst edition of this book was published exactly half a century after 

the year (1908) in which set theory in its original, naive form created by 

Cantor, gravely shaken by the antinomies, underwent a thorough reconstruc¬ 

tion in the hands of Brouwer, Russell, and Zennelo. During the thirteen years 

that have passed since the publication of that edition there have been many 

developments in most of the topics that were discussed in it. But only in the 

axiomatic foundations have there been such extensive, almost revolutionary, 

developments as to warrant the almost complete rewriting of Chapter II by 

one of the authors (A.L.). The senior author, A.A. Fraenkel, had left upon his 

death in 1966, extensive notes for the updating of Chapter IV on the intui- 

tionistic conceptions of mathematics, but it was deemed necessary to invoke 

further help, since neither of the other authors felt himself on firm enough 

ground in this respect. We would like to thank Dr. D. van Dalen for his 

readiness to take upon himself, on short notice, this task, in connection with 

which Professor Heyting’s helpful comments should gratefully be acknowl¬ 

edged. 

In Chapter III, only Sections 3 and 4, dealing with Quine’s systems, were 

rewritten, while the remaining sections were left more or less intact. Similarly, 

Chapter V remained essentially untouched, with the exception of Section 7 

which was considerably updated. Section 8 would have deserved to be com¬ 

pletely revamped and enlarged, but this task had to be postponed for another 

occasion, in order not to delay publication of this edition still further. 

We tried to avoid discussing in detail those topics which would have re¬ 

quired heavy technical machinery, while describing the major results obtained 

in their treatment if these results could be stated in relatively non-technical 

terms. Thus the notions of Godel-constructibility and Cohen-forcing were not 

defined but many of the results obtained by means of these notions were 

discussed in considerable detail. Similarly, we did not remark on a treatment 

of the highly important and rapidly developing area of very large cardinals, 
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refrained from even defining such notions as compact, Ramsey, measurable, 

supercompact, and extendable cardinals, and restricted ourselves to provide 

references to the literature. 

The book contains repetitions of more than average frequency. The 

authors thought that many readers would prefer them to constant back- 

references; they have no illusions as to having hit on the right proportions. 

The bibliography is now self-contained. By dropping many older items, we 

were able to keep its size unchanged, in spite of many additions. No claims to 

any kind of exhaustiveness are now made. 

In 1966, a Russian translation of the first edition was published in Mos¬ 

cow. This translation, by Yu.A. Gastev, contains some 30 pages of additional 

bibliography, carefully prepared by the translator and updated till approxi¬ 

mately 1965. 

The main intention of the present edition is to serve as a first reference for 

those who would like to get acquainted with the state of the art in the 

foundations of set theory. 

Y.B.-H. 

A.L. 



CHAPTER I 

THE ANTINOMIES 

§1. HISTORICAL INTRODUCTION 

In Abstract Set Theory :) the elements of the theory of sets were present¬ 

ed in a chiefly genetic way: the fundamental concepts were defined and theo¬ 

rems were derived from these definitions by customary deductive methods. 

To be sure, some quasi-axiomatic ingredients were inserted there in the form 

of seven Principles, whose main purpose was the delimitation of the notion of 

set. The precise significance of these Principles will be discussed in detail in 

Chapter II of the present book. 

At a few places in Theory (pp. 11, 98, 201, 218), special precautionary 

measures had to be taken in order to avoid certain contradictions that would 

have otherwise evolved. These contradictions, arising mainly in connection 

with a natural unrestricted use of the notions of set, cardinal number, ordinal, 

and Aleph, have been called antinomies, or paradoxes, of set theory. In 

general, we say that a certain theory contains an antinomy when each of two 

contradictory statements, or else one single compound statement having the 

form of an equivalence between two contradictory statements, has been 

proved within this theory, though the axioms of the theory seem to be true 

and the rules of inference valid. 

Before we go into a detailed systematic investigation of the ways in which 

antinomies threaten the foundations of set theory, a few historical remarks 

are appropriate. Cantor’s discoveries, starting around 1873 and slowly ex¬ 

panding to an autonomous branch of mathematics, had at first met with 

distrust and even with open antagonism on the part of most mathematicians 

and with indifference on the part of almost all philosophers. It was only in 

the early nineties that set theory became fashionable and began, rather sud¬ 

denly, to be widely applied in analysis and geometry. But at this very 

1) A.A. Fraenkel, Abstract Set Theory, Amsterdam, 3rd ed., 1966, or 2nd ed., 1961. 
This book will henceforth be referred to as Theory or as T. 



2 THE ANTINOMIES 

moment, when Cantor’s daring vision seemed finally to have reached its 

triumphant climax, when his achievements had just received their final sys¬ 

tematic touch, he met the first of those antinomies. This happened in 1895. 

The antinomy was not published immediately. Two years later, Burali-Forti 

rediscovered it. Though neither Cantor nor Burali-Forti were able at the time 

to offer a solution, the matter was not considered to be very serious; this first 

antinomy emerged in a rather technical region of the theory of well-ordered 

sets, and it was apparently hoped that some slight revision in the proofs of 

the theorems belonging to this region would remedy the situation, as had 

happened so often before in similar circumstances. 

This optimism however was radically shattered when Bertrand Russell in 

1902 surprised the philosophical and mathematical public with the presenta¬ 

tion of an antinomy (see § 2) lying at the very first steps of set theory and 

indicating that something was rotten in the foundations of this discipline. But 

not only was the basis of set theory shaken by Ruselfs antinomy; logic itself 

was endangered. Only a slight shift in the formulation was required in order 

to turn Russell’s antinomy into a contradiction that could be formulated in 

terms of most basic logical concepts. 

To be sure, Russell’s antinomy was not the first one to appear in a basic 

philosophical discipline. From Zenon of Elea up to Kant and the dialectic 

philosophy of the 19th century, epistemological contradictions awakened 

quite a few thinkers from their dogmatic slumber and induced them to refine 

their theories in order to meet these threats. But never before had an anti¬ 

nomy arisen at such an elementary level, involving so strongly the most 

fundamental notions of the two most “exact” sciences, logic and mathe¬ 

matics. 

Russell’s antinomy came as a veritable shock to those few thinkers who 

occupied themselves with foundational problems at the turn of the century. 

Dedekind, in his profound essay on the nature and purpose of the num¬ 

bers *), had based number theory on the membership relation - his method 

of “chains” may even be taken as a basis for the theory of well-ordered sets 

(cf. T, p. 230) — and had utilized the notion of a set in its full Cantorian 

sense for the proof of the existence of an infinite (“reflexive”, cf. p. 45) set. 

Under the impact of Russell’s antinomy, he stopped for some time the publi¬ 

cation of his essay, the fundaments of which he regarded as shattered 1 2). Still 

more tragic was Frege’s fate: he had just put the final touches on his chief 

1) Dedekind 1888. 
2) See the preface of the 3rd ed. of Dedekind 1888; cf. Dedekind 30-32, p. 449. 
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work 1), alter decades of tiresome effort, when Russell wrote him about his 

discovery. In the first sentence of the appendix, Frege admits that one of the 

foundations of his edifice had been shaken by Russell 2). 

It is not surprising that many mathematicians who had just begun to 

accept set theory as a full-fledged member of the community of mathematical 

disciplines reversed their attitude. This reversal is typically illustrated by the 

leading mathematician of the time, Poincare, who himself had contributed to 

the propagation and application of set theory. For some years after 1902 he 

met Russell's own proposals for a rehabilitation of set theory (see Chap¬ 

ter III) with an air of mockery 3). 

Cantor himself, to be sure, did not for a moment lose faith in his theory in 

its full “naive” extent though he was unable to meet the challenge of 

Russell’s antinomy. Other scholars professed not to be especially disturbed by 

this and other antinomies and, distinguishing between “Cantorism” and 

“Russellism” 4), warned against attributing to the “artificially constructed” 

antinomies any decisive significance. It is however difficult to defend this 

attitude. Even if Burali-Forti’s antinomy does not appear so long as one 

restricts himself to the ordinals of a few number-classes (T, p. 216), this 

cannot release the serious thinker from the obligation of scrutinizing the 

theorems that involve the general concept of an ordinal; and the contemp¬ 

tuous reference to the “artificial” character of many antinomies should be no 

more convincing than the claim, say, that every continuous function has a 

derivative since continuous functions without derivatives are “artificial”. It 

may be safely stated that, on the contrary, throughout mathematics — and 

other disciplines — the investigation of the most general notions, in all their 

unrestricted generality, has often proved to be of extreme value for the 

advancement of research. To think that difficulties could be overcome simply 

by disregarding the general case 5) is somewhat naive. Finally, to draw a sharp 

line between mathematics (which is fine) and logic (which a self-conscious 

mathematician should shun for the benefit of his soul) is less than useless: 

*) Frege 1893-1903. 

2) But he set out immediately to repair the damage, though without success; cf. 

Frege 1893-03 II, pp. 253 ff, Geach-Black 52 (Preface and pp. 234 ff, especially note o 

on p. 243), Sobociriski 49-50 (pp. 220 ff), Quine 55. 

3) Poincare' 08, book 2. 

4) See e.g., Schoenfliess 00-07 II, p. 7; 11, pp. 250-255. 

5) Or by saying that one is going to disregard it; see the witty exposition in Jourdain 

18, pp. 75 ff. As RusselJ (08, p. 226) says: “One might as well, in talking to a man with a 

long nose, say ‘when I speak of noses, I except such as are inordinately long’ which 

would not be a very successful effort to avoid a painful topic”. 
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logic is constantly applied in mathematics, though this use is not often 

brought into the open and explicitly taken into account, and if one wishes to 

put restrictions on this application, as some intuitionists do (see Chapter IV), 

it is better to formulate these restrictions openly and clearly rather than 

leaving them in the dark. 

It is true that the field of mathematical activity proper, both in analysis 

and in geometry, is not directly affected by the antinomies. They appear 

chiefly in a region of extreme generalization, beyond the domain in which the 

concepts of these disciplines are actually used. It is in general not difficult to 

take precautionary measures in order to avoid the dangerous region. This is 

the main reason why many mathematicians recoiled so quickly from the 

initial shock caused by the appearance of the antinomies. The very fact that 

one continued to speak of paradoxes, or antinomies, rather than of contradic¬ 

tions serves as an indication that deep in their heart most modern mathemat¬ 

icians did not want to be expelled from the paradise into which Cantor’s 

discoveries had led them. 

Nevertheless, even today the psychological effect of the antinomies on 

many mathematicians should not be underestimated. In 1946, almost half a 

century after the despairing gestures of Dedekind and Frege, one of the 

outstanding scholars of our times made the following confession: 

We are less certain than ever about the ultimate foundations of (logic and) mathe¬ 

matics. Like everybody and everything in the world to-day, we have our “crisis”. We 

have had it for nearly fifty years. Outwardly it does not seem to hamper our daily work, 

and yet I for one confess that it has had a considerable practical influence on my 

mathematical life: it directed my interests to fields I considered relatively “safe”, and 

has been a constant drain on the enthusiasm and determination with which I pursued my 

research work 1). 

Though the present, book is officially dedicated to the treatment of the 

foundations of set theory alone, the fact that set theory is one, and according 

to some even the only 2), fundamental discipline of the whole of mathe¬ 

matics on the one hand, as well as part and parcel of logic on the other hand, 

will force us to interpret our topic very liberally and often go into a discus¬ 

sion of the foundations of logic on the whole and of mathematics on the 

whole. It is well known that many thinkers are at a loss to delimit the 

borderline between these disciplines. It is often said that set theory belongs to 

them simultaneously and forms their common link. We shall be in a better 

position to discuss this view later on. 

*) Weyl 46. 

2) See, e.g., Bourbaki 49, p. 7. 
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Having decided that a treatment of the logico-inathematical antinomies is a 

task that cannot be dodged, we shall proceed, in the subsequent sections of 

this chapter, to classify the known antinomies as well as to exhibit some of 

the most significant ones; we shall then present a preliminary and informal 

analysis ol these specimens and conclude this chapter with some remarks on 

the role of antinomies in the foundations of mathematics and on crises in the 

foundations of mathematics in general. 

§ 2. LOGICAL ANTINOMIES 

Since Ramsey *) it has become customary to distinguish between logical 
and semantic (sometimes also called syntactic or epistemological) antinomies. 

The significance of this distinction will become clear in the following section. 

In this section, we shall present three antinomies of the first kind, viz., the 

antinomies named respectively after Russell, Cantor, and Burali-Forti. 

1. Russell’s Antinomy 

In 1903, Russell1 2) published the antinomy he had discovered two years 

before and communicated to Frege by letter. The same antinomy was simul¬ 

taneously and independently discussed in Gottingen by Zermelo and his circle 

without however reaching the stage of publication. 

It seems to make perfect sense to inquire, for any given set, whether it is a 

member of itself or not. For certain sets one would hardly hesitate to commit 

himself to saying that they are not members of themselves: the set of planets, 

e.g., is certainly not a planet itself, hence not a member of itself. For other 

sets, one would as little hesitate to regard them as being members of them¬ 

selves; the set of all sets is an obvious example. Therefore it seems to make 

perfect sense to ask the same question with regard to the set of all sets that 

are not members of themselves. The answer to this question, however, is 

alarming: denoting the set under scrutiny by \S’, we see quickly that if A is a 

member of S, it belongs to the set of all sets that are not members of 

themselves, i.e. it is not a member of itself, but also that if S is not a member 

of S, it does not belong to the set of all sets that are not members of 

themselves, hence is a member of itself; taken together, we convince ourselves 

that A is a member of S if and only if S is not a member of S, a glaring 

1) Ramsey 26. 
2) Russell 03 (in particular § 78 and Chapter X). 
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contradiction, derived from most plausible assumptions by a chain of seem¬ 

ingly unquestionable inferences. 

The careful reader might perhaps have felt that the case was overstated. He might 

object that the contradiction was derived, among other premises, also from the assump¬ 

tion that there exists such a thing as the set of all sets that are not members of them¬ 

selves, the set we called ‘S\ hence that we are entitled only to derive that if S exists, 

then S is a member of S if and only if S is not a member of S, from which would only 

follow the falsity of the antecedent, by reductio ad absurdum, hence only that S does 

not exist or, in colloquial terms, that there just ain’t no such animal as S. 

Though this objection is valid (and will be taken into consideration later in Chap¬ 

ter III), it does but little to reduce the paradoxical character of the result arrived at. That 

there should not exist the set containing all those objects that satisfy a certain seemingly 

precisely delimited condition — viz., that of not containing itself as a member — is 

probably not less repugnant to common sense than a plain contradiction. 

A similar objection against another would-be logical paradox is not only valid but 

also conclusive. It is worthwhile to deal with this paradox, since it has not been generally 

recognized that there is indeed a decisive difference between this paradox and Russell’s 

which takes the sting completely out of it. In short, one considers the man who, sup¬ 

posedly, shaves all and only those inhabitants of a certain village who do not shave 

themselves. Abbreviating the expression ‘that inhabitant of the village who shaves all and 

only those inhabitants of the village who do not shave themselves’ by ‘b\ we arrive, by 

an argument which is completely analogous to that occurring in Russell’s antinomy, at 

the conclusion that b shaves b if and only if b does not shave b. Noticing, however, that 

we are only entitled to infer that if b exists, then b shaves b if and only if b does not 

shave b, we could only derive that b does not exist, i.e. that there is no such inhabitant 

of a village who shaves all and only those inhabitants of that village who do not shave 

themselves, a result which — though perhaps somewhat surprising to the unaware by¬ 

stander — is no more' paradoxical than, say, the fact that there is no inhabitant of a 

village who is both more and less than fifty years old. 

The condition which the luckless “village barber” was supposed to satisfy simply 

turned out to be self-contradictory, hence unsatisfiable. (This fact was masked by the 

circumstance that the insertion of just one inconspicuous word would have made the 

condition a perfectly satisfiable one: ‘... all other inhabitants...’.) The condition oc¬ 

curring in Russell’s antinomy, on the other hand, does not seem at all to be self-contra¬ 

dictory; the non-existence of a corresponding set is, consequently, a disturbing and 

unfamiliar result. 

The same careful reader who was supposed to make the above-mentioned and 

partially sustained objection might have also asked himself — recalling the contents of 

Theory — how the emergence of Russell’s antinomy can there be obviated. Trying to 

prove the existence of the paradoxical set, he will have noticed that this proof is not 

forthcoming: the relevant Principle of Subsets (T, p. 16) only enables him to prove the 

existence of a set satisfying a given condition if this set is a subset of a set already 

secured. Russell’s paradoxical set, however, cannot be proven to fulfil this additional 

condition. 

Let it be very clearly stated at the outset that there was absolutely nothing 

in the traditional treatments of logic and mathematics that could serve as a 

basis for the elimination of this antinomy. We think that all attempts to 
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handle the situation without any departure from traditional, i.e. pre-20th 

century, ways of thinking have completely failed so far and are misguided as 

to their aim. Some departure from the customary ways of thinking is defi¬ 

nitely indicated, though it is by no means clearly determined where this 

departure should take place. Indeed, 20th century research into the founda¬ 

tions of logic and mathematics can be fruitfully classified in terms of the 

place of departure from the Cantorian approach. This attitude will be adopt¬ 

ed in the following chapters. 

For the sake of historical completeness it should be admitted that certain misgivings 

as to the status of “self-referential” concepts, of which being-a-member-of-itself is an 

obvious specimen, were already voiced in the middle ages '). These misgivings, however, 

never were given the form of a clear proposal for a revision of the customary ways of 

thinking and expression. 

Certain “philosophical” doubts as to the validity of the tertium non datur, the logical 

law of the excluded middle, of which free use was made in the derivation of Russell’s 

antinomy, had already been uttered prior to the intuitionists (see Chapter IV), but again 

these doubts were nowhere formulated in anything approaching the way they have been 

expressed in the 20th century, and never until then was a non-Aristotelian logic develop¬ 

ed to any tolerable degree of completeness and responsibility. 

In order to show that Russell’s antinomy is not a specifically mathematical 

one, depending perhaps on some out-of-the-way peculiarities of the concept 

of set, we shall briefly reformulate it in purely logical terms. It seems to make 

perfect sense to inquire of a property whether it applies to itself or not. The 

property of being red, for instance, does not apply to itself since red is surely 

not red, whereas (the property of being) abstract, being itself abstract, applies 

to itself. Calling the property of not applying to itself ‘impredicable’, we 

arrive at the paradoxical consequence that impredicable is impredicable if and 

only if impredicable is not impredicable. The property-theoretical (logical) 

variant is as paradoxical as the set-theoretical (mathematical) one 2 ). 

2. Cantor’s Antinomy 

According to Cantor’s theorem (T, p. 70), the set Cs of all the subsets of 

any given set s has a greater cardinal than has s itself. Consider now the set of 

all sets, call it U. Its “power-set” CU, i.e. the set of all subsets of U, has then a 

greater cardinal than U itself, which is paradoxical in view of the fact that U 

by definition is the most inclusive set of sets. 

This antinomy was known to Cantor himself in 1899 though - ironically 

enough - it was published only in 1932 3). In June 1901, it came to the 

!) Cf. Bochenski 56, § 35. 

2) Russell 03, p. 102. 

3) Cantor 32. 
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attention of Russell who under its stimulation proceeded to construct his 

own antinomy which is of course much more elementary — at least superfi¬ 

cially so — since it makes no allusion to such technical concepts as subset and 

power-set. 

The strong connection between Cantor’s antinomy and Russell’s antinomy 

should be clear to all who recall the proof given for Cantor’s theorem in 

Theory’ (pp. 70—71). 

3. Burali-Forti’s Antinomy 

As the last antinomy of this group — the qualifier ‘logical’ is in this case 

rather misleading — we shall mention the historically earliest one. It is named 

after Burali-Forti who published it in 1897 1). Cantor himself, however, dis¬ 

cussed it as early as in 1895 and communicated it to Hilbert in 1896. 

The formulation of this antinomy is extremely simple: according to the 

Theorem 7 {T, p. 201), the well-ordered set W of all ordinals has an ordinal 

which is greater than any member of IV, hence greater than any ordinal. 

Again in the development of set theory, as presented in Theory, neither 

Cantor’s nor Burali-Forti’s antinomy are forthcoming since the existence of 

the relevant sets, viz. the set of all sets and the set of all ordinals, cannot be 

proven on the basis of the principles laid down there. The reader who guessed 

that the formulation given there to the Principle of Subsets was intended to 

obviate the emergence of these and other logical antinomies guessed correct¬ 

ly- 

§3. SEMANTICAL ANTINOMIES 

A few years after the appearance of the antinomies mentioned in the 

previous section, antinomies of a somewhat different kind made their debut. 

Again we shall treat here only a few of the more important ones. 

1. Richard’s Antinomy 

This antinomy, published by Richard in 1905 2), is of special significance 

since it is a sort of caricature of Cantor’s diagonal method (7\ p. 52). Many 

variants of this antinomy are known; the following is one of the simpler ones. 

Let us consider all those real numbers between 0 and 1 that can be unique¬ 

ly characterized by sequences of English words of any finite (but unbounded) 

') Burali-Forti 1897. 

2) Richard 05, 07. 
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length, e.g. ‘point eight’, ‘the positive square root of point zero seven four’, 

‘the smallest number satisfying the condition that the sum of the square of 

this number and its product by point one equals point three’. Clearly there 

are only denumerably many such numbers. Let R be their set. R can then be 

enumerated. Consider any such enumeration. We now characterize a real 

number r as that real number between 0 and 1 whose n-th digit after the 

decimal point is the cyclic sequent of the n-th digit of the n-th number in the 

enumeration under consideration (where ‘1’ is the cyclic sequent of ‘O’, 

..., and ‘O' the cyclic sequent of ‘9’). From an argument that is almost entirely 

analogous to that presented in T, pp. 52—53, it follows that r is different 

from all the members of R and is therefore not uniquely characterizable by a 

finite sequence of English words, in plain contradiction to the fact that r has 

just been characterized in this fashion, viz. by the italicized sequence of 

English words in the preceding sentence. 

Berry’s antinomy 1), essentially only an instructive and ingenious simplifi¬ 

cation of Richard’s antinomy, will not be discussed here since it has no 

additional theoretical interest and lacks the straightforward connection with 

the diagonal method that makes Richard’s antinomy so especially embarrassing. 

2. Grelling’s Antinomy 

In 1908, Grelling and Nelson 2) called attention to the following antinomy 

which they regarded as only a variant of Russell’s antinomy but which turned 

out to be essentially different from, though still remarkably analogous to, the 

paradox regarding the property of being impredicable. 

Grelling’s antinomy can be formulated very simply: A few English adjec¬ 

tives, such as ‘English’ and ‘polysyllabic’, have the very same property that 

they denote, e.g. the adjective ‘English’ is English and the adjective ‘polysyl¬ 

labic’ is polysyllabic, while the vast majority, such as ‘French’, ‘monosyllab¬ 

ic’, ‘blue’ and ‘hot’, do not. Calling the adjectives of the second kind hetero- 

logical, we immediately discover to our dismay that the adjective ‘heterologi- 

cal’ is heterological if and only if it is not heterological. 

3. The Liar 

Of this antinomy very many versions are known, among them quite a few 

that are not truly paradoxical at all. Some of these versions go back to 

antiquity, to the time when the Megaric philosophers used them to tease the 

1) Published for the first time in Russell 06. 

2) Grelling-Nelson 08. 
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members of Plato’s academy 1). We shall present here one of the more recent 

versions. 

Assume that John Doe utters on December 1st, 1970 the following English 

sentence and nothing else all day: “The only sentence uttered by John Doe 

on December 1st, 1970 is false”. Since this sentence is a declarative sentence, 

with nothing elliptical (like “The only sentence uttered by John Doe on 

December 1st is false”) or context-dependent (like “The only sentence utter¬ 

ed by him on December 1st, 1970 is false”) about it, one seems entitled to 

inquire whether this sentence is true or false. However, one realizes belore 

long that the sentence is true if and only if it is false. 

Against this antinomy one might raise the objection that it is based on a 

factual assumption, viz. that John Doe did utter a certain sentence, and 

nothing else, on a certain day. This is true enough but does little to diminish 

the paradoxical result. Besides, it has been shown that an analogous antinomy 

can be constructed which does not rely on any factual assumptions 2). 

§4. GENERAL REMARKS 

We have had no intention of presenting an exhaustive description of all the 

antinomies that have turned up in foundational research during the last seven¬ 

ty years3). Among those not treated here so far, the most important is 

Skolem’s paradox because of its basic significance in axiomatic set theory. 

But just for this reason its exposition and discussion will be postponed to 

Chapter V, §5. 

We have already remarked that only few mathematicians were seriously 

disturbed by the appearance of the antinomies. But even among those mathe¬ 

maticians who were alert to the crisis in the foundations of their discipline, 

brought about by the emergence of the antinomies, the great majority shared 

Peano’s opinion that Exemplo de Richard non pertine ad mathematica, sed ad 

linguistica, from which fact they concluded that qua mathematicians they 

need not bother about Richard’s antinomy and the semantic antinomies in 

general. Indeed, semantic terms like ’denote’, ‘characterize’, or ‘true’ are 

necessary ingredients of these antinomies, and these are not terms about 

which an ordinary mathematician will feel obliged to think very hard. Howev- 

*) Cf. Bocheriski 56, § 23. 
2) See Tarski 44, note 11. 

3) For an enumeration and careful description of some twelve antinomies, including 

the six treated here, see Beth 51, Ch. 17. 
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er in one of the most interesting developments in modern foundational re¬ 

search it became clear that the problem presented by the semantic antinomies 

was not just a methodological one of at most indirect relevance to mathe¬ 

matics proper, but rather served as the starting point for investigations of 

immense direct impact on modern mathematics. How this came about will be 
discussed in Chapter V. 

The literature dealing with the antinomies is very extensive. Whereas for 

the tirst tew years after the publication of Russell’s antinomy they were 

discussed chiefly by mathematicians, they later began to attract the attention 

ot logicians, methodologists, and philosophers at large in an ever increasing 

measure. Much of this literature is concerned with piecemeal solutions of the 

various antinomies, exhibiting no general methodological insight and often 

contradicting each other. Some of them are based on misunderstandings and 

errors, others lose themselves in epistemological or metaphysical consider¬ 

ations far from the point. On the whole it seems that though a piecemeal 

solution might occasionally be appropriate with regard to antinomies 

emerging in the context of natural languages r), insofar as they refer to 

language systems nothing short of the profound investigations described in 

the following chapters will do. 

All the antinomies, whether logical or semantic, share a common feature 

that might be roughly and loosely described as self-reference. In all of them 

the crucial entity is defined, or characterized, with the help of a totality to 

which it belongs itself. There seems to be involved a kind of circularity in all 

the argumentations leading up to the antinomies, and it is obvious that at¬ 

tempts should have been made to see therein the culprit. However a wholesale 

exclusion of all reasonings involving any kind of self-reference is certainly too 

strong a medicine and would throw away the baby with the bath-water. There 

are innumerably many ordinary ways of expression that are self-referential 

but still perfectly harmless and useful2). To characterize someone as the 

tallest man on a certain team is doubtless utterly innocuous as well as effec¬ 

tive, in spite of the fact that the characterization is performed on the basis of 

a totality to which the man himself belongs. And many a crucial concept in 

mathematics — as in every other discipline — is formed in a similar fashion. 

Not all self-reference leads to contradiction, and some self-reference seems to 

be an indispensable tool in science as in everyday life. 

Since the wholesale exclusion of self-referential concept formation is then 

*) A recent attempt for a solution of Liar-type antinomies in the framework of nat¬ 

ural languages was made by Bar-Hillel 57a, 66. 
2) For a witty and persuasive defence of self-referential reasoning, see Popper 54. 
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apparently not feasible, many authors looked for an additional criterium that 

would separate the sheep from the goats. We shall deal with some of these 

attempts in Chapter III. Here we shall mention only one such proposal. It 

amounts, in essence, to disqualifying those would-be concepts whose elimina¬ 

tion, on the basis of their definition, would lead to infinite regress 1); in 

positive terms, to accepting into the community ol scientifically legitimate 

concepts only those applicants for which finite eliminability can be shown. 

Without entering here into a detailed discussion, it should be remarked that 

this proposal, even if effective in overcoming all known antinomies, suffers 

from the following defect: the proof of finite eliminability, though often 

extremely tedious, will nevertheless have to be produced from scratch for 

every single newly introduced concept. It is doubtful whether mathematics 

could stand such a severe imposition. It is therefore understandable that this 

proposal could not dissuade other authors from looking for more efficient 

and practicable remedies. 

For those mathematicians who believe in the essential soundness of classi¬ 

cal mathematics, the task posed by the antinomies is that of constructing a 

system in which all the notions of classical mathematics can be defined and 

all (or essentially all) the theorems of mathematics up to and including anal¬ 

ysis can be derived but such that its consistency can be proved or, short of 

this, such that the argumentations leading to the known kinds of antinomies 

are effectively excluded. It seems that the achievement of this task will re¬ 

quire some radical changes in the “naive” attitude that is still prevalent 

among many mathematicians. It might not be necessary to abandon the belief 

in the essential soundness of classical analysis — as the intuitionists would 

advice us to do — but one might be persuaded to leave the paradise into 

which Cantor has led the mathematicians and to withdraw into a less opulent 

but more secure habitat. Those unwilling to do this might perhaps prefer to 

stay in the realm of plenty and build walls around it to keep away the beastly 

antinomies without, however, being certain that some of these beasts were 

not walled in themselves. This theme will be developed in a more prosaic way 

in the following chapters. 

§5. THE THREE CRISES 

The twentieth century is not the first period in which mathematics under¬ 

went a foundational crisis. It might add to the perspective in which con- 

1) This is “Behmann’s solution”, proposed in Behmann 31. 
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temporary antinomies should be looked upon if prior crises are, if only brief¬ 

ly, sketched. 

In the fifth century B.C., only a short time after mankind attained one of 

the most brilliant achievements in its history, viz. the development of geo¬ 

metry as a rigorous deductive science, two discoveries were made that were 

extremely paradoxical: the first was that not all geometrical entities of the 

same kind were commensurable with each other, so that, for instance, the 

diagonal ot a given square could not be measured by an aliquot part of its 

side 1) (in modern terms, that the square root of 2 is not a rational number); 

the other were the paradoxes of the Eleatic school (Zenon and his circle) 

developing with many variations the theme of the non-constructibility of 

finite magnitudes out of infinitely small parts2). 

This crisis shocked the Greek mathematicians into obtaining two more 

brilliant achievements 3 ): the theory’ of proportions, as contained in books 5 

and 10 of Euclid’s Elements, and the method of exhaustion, as invented by 

Archimedes, that was nothing less than a strict, though not sufficiently gener¬ 

al, forerunner of modern theories of integration. Their theory of proportions 

should have enabled the Greeks to define irrational number and develop, 

accordingly, an arithmetical theory of the continuum] somehow they did not 

quite make it. 

The Greek theory of proportions was soon forgotten — so much so that 

when rigorous arithmetical theories of irrational numbers were constructed in 

the second half of the 19th century, one was not at first aware of the fact 

that these methods were not in principle much different from those already 

in the possession of the Greek mathematicians two thousand years earlier. 

Before that, in the 17th and 18th centuries, the great power and fruitfulness 

of the newly invented calculus led most mathematicians of those times into 

feverish applications of the new ideas without caring much for the solidity of 

the basis upon which the calculus was founded 4). However, the shakiness of 

this basis became clear at the beginning of the 19th century, constituting the 

second crisis in the foundations of mathematics. 
In order to overcome this crisis, Cauchy, in the eighteen thirties, showed 

how to replace the irresponsible use of infinitesimals by a careful use of 

G The profound impression made by this discovery may be gathered from Plato’s 

report in Theaitetos that Theodoros had proved the irrationality of the square roots of 3, 

5, ... 17, a result that was later generalized by his pupil Theaitetos; cf. Reidemeister 49. 

2) See T, p. 7, footnote 1 and Griinbaum 67. 

3) Cf. van der Waerden 54. 

4) Typical for this attitude is d’Alembert’s famous dictum: Allez en avant, et la foi 

vous viendra. 



14 THE ANTINOMIES 

limits, whereas Weierstrass and others, in the sixties and seventies, demon¬ 

strated how all of analysis and function theory could be “arithmetized”. This 

solidification of the foundations was so successful that Poincare', in an address 

delivered in 1900 before the Second International Congress of Mathe¬ 

maticians on the role of intuition and logic in mathematics, could proudly 

claim that mathematics had by then acquired a completely solid and sound 

basis. In his own words: “Today there remain in analysis only integers and 

finite or infinite systems of integers ... Mathematics ... has been arith¬ 

metized ... We may say today that absolute rigor has been obtained” 1). 

Ironically enough, at the very same time that Poincare made his proud 

claim, it had already turned out that the theory of the “infinite systems of 

integers” — nothing else but a part of set theory — was very far from having 

obtained absolute security of foundations. More than the mere appearance of 

antinomies in the basis of set theory, and thereby of analysis, it is the fact 

that the various attempts to overcome these antinomies, to be dealt with in 

the subsequent chapters, revealed a far-going and surprising divergence of 

opinions and conceptions on the most fundamental mathematical notions, 

such as set and number themselves, which induces us to speak of the third 

foundational crisis that mathematics is still undergoing 2). 

1) Poincare 02. 

2) For a rather extensive bibliography on antinomies, up to 1956, see Ch. I, § 6 of 
Fraenkel-Bar-Hillel 58.. 



CHAPTER II 

AXIOMATIC FOUNDATIONS OF SET THEORY 

§1. INTRODUCTION 

The discovery of the antinomies led to major changes in set theory affect¬ 

ing both its contents and its methodology. Cantor’s definition of the concept 

of set1) reads (translated from German): “A set is a collection into a whole of 

definite distinct objects of our intuition or of our thought. The objects are 

called the elements (members) of the set”. The occurrence of the antinomies 

showed that the naive concept of set as appearing in Cantor’s “definition” of 

set, and in the most general conclusions derivable from it, cannot form a 

satisfactory basis for set theory, much less for mathematics as a whole 2). One 

may compare this function of the antinomies as controlling and restricting 

the deductive systems of logic and mathematics to the function of experi¬ 

ments as controlling and modifying the semi-deductive systems of sciences 

like physics and astronomy 3). The discovery of the antinomies called there¬ 

fore for a re-examination of the concept of set or, rather, of the way this 

concept was handled. This re-examination resulted in a great divergence in the 

diagnosis of the ills of Cantor’s set theory, and, naturally, different diagnoses 

led to the recommendation of different cures. 

Most of the various diagnoses and cures which came forth since the begin¬ 

ning of the present century can be classified into three main groups each of 

which divides into several subgroups, viz. the axiomatic, the logicistic, and the 

intuitionistic attitudes. This order of arrangement may be considered to pro¬ 

ceed from more conservative to rather revolutionary attitudes, though the 

logicistic frame comprises widely different degrees of radicalism. The arrange- 

*) Given in Cantor 1895-97 I, p. 481, at the start of the final exposition of his life- 

work in set theory. For earlier attempts to define this concept, see Cantor 1879—84 III, 

pp. 114 ff., and V, p. 587. 

2) Cantor himself recognized this fact after having concluded his work; see his letters 

to Dedekind of 1899 (Cantor 32, pp. 443-448) where he speaks of inkonsistenten 

Mengen. 

3) Cf. Bourbaki 49. 
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ment is, however, not a historical one; curiously enough, the first and decisive 

steps in each of these three directions were taken simultaneously and inde¬ 

pendently during the years 1906—1908. The present and the two following 

chapters exhibit some main features of the attitudes mentioned, in the above 

order. 
The various systems of set theory which emerged after the discovery of the 

antinomies differ greatly in their contents. Not only that certain statements 

concerning sets are truths in one system and at the same time are falsehoods 

in another system, but in many cases different systems use different lan¬ 

guages, and there is not always a natural translation of the statements in the 

language of one system to statements in the language of another system. The 

picture is quite different, as we shall see, with respect to the methodological 

basis of set theory. When those various systems of set theory were introduced 

they differed also considerably in their methodology. However, during the 

half-century which followed the discovery of the antinomies these differences 

have almost completely disappeared and a high degree of unanimity has been 

attained. 
The methodological basis of almost all branches of mathematics is the 

axiomatic method. It emerged with great perfection in Euclid's Elements (c. 

300 B.C.), was revived only in the course of the 19th century (again in 

geometry), and has developed impetuously since the beginning of the present 

century; most fields of mathematics and logic and some other scientific theo¬ 

ries have since been axiomatized. However, the axiomatization of the various 

fields of mathematics is usually based, explicitly or tacitly, on some fragment 

of set theory. For example, the axiom of induction of number theory is “If P 

is any set of natural numbers which contains 0 and which, for every natural 

number n contained in P. contains also n +1, then P contains all natural 

numbers”; rational numbers are defined as pairs (or sets of pairs) of integers; 

real numbers are defined as sets (or sets of sequences) of rational numbers, 

etc. Since axiomatization of a mathematical theory meant deductive develop¬ 

ment of the theory within, or with the aid of, some fragment of set theory, 

when set theory itself emerged as a mathematical theory towards the end of 

the 19th century, it did not seem to be a natural candidate for axiomatiza¬ 

tion. 

Until the discovery of the antinomies, set theory was a branch of mathe¬ 

matics of a methodological status somewhat similar to that of a natural 

science, as is evident from Cantor’s definition of the notion of set. As will be 

seen later, it is the contents of Cantor’s naive set theory, not its methodologi¬ 

cal status, that bears the blame for the logical antinomies. However, many of 

the amendments of set theory, or of mathematics in general, which were 
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brought forth in order to avoid the logical antinomies, especially those along 

the logicistic and, to a considerable extent, also the intuitionistic lines of 

thought, required a much stricter methodological basis for set theory. Since, 

as mentioned above, axiomatization of set theory in the traditional sense 

could not conform to strict methodological requirements, it was advocated, 

mostly by the proponents of the logicistic attitude, to base set theory directly 

on logic, i.e., either to consider set theory, and mathematics in general, as 

part of logic and to obtain the set-theoretical truths as logical truths, or, what 

turned out to be more adequate, to introduce some of the set-theoretical 

truths as axioms and deduce from them other set-theoretical truths by means 

of logic only. This point of view was gradually adopted also by the propo¬ 

nents of the other attitudes x) (the proponents of the intuitionistic attitude 

usually use a system of logic different from the standard one - but it is still a 

system of logic). This growing adoption of logic as the methodological basis 

of set theory, and through it of mathematics in general, brought logic into 

the limelight of foundational investigation in mathematics and was a major, 

if not the main, stimulant for the subsequent rapid development of mathe¬ 

matical logic and metamathematics. However, modern mathematical logic 

can by no means be defined as the study of the methodological basis of set 

theory; it is now an active and interesting branch of mathematics in its own 

right. 

A general description of the treatment of formal mathematical theories 

based on logic, and of the problems connected with it, is given in Chapter V. 

The second part of the present section contains a superficial sketch which is 

sufficient for the understanding of the axiomatic systems described in the 

present chapter. 

The most important directions taken in axiomatic set theory are, on one 

hand, that of Zermelo and his early successors, later taken up, with new and 

different approaches, by von Neumann, Bernays, Godel and Ackermann, and, 

!) In the beginning of Mostowski 55 the following illuminating sentences are found 

regarding the foundations, set theory, and the antinomies. “The present stage of investi¬ 

gations on the foundations of mathematics opened at the time when the theory of sets 

was introduced. The abstractness of that theory and its departure from the traditional 

stock of notions which are accessible to experience, as well as the possibility of applying 

many of its results to concrete classical problems, made it necessary to analyze its 

epistemological foundations. This necessity became all the more urgent at the moment 

when antinomies were discovered. However, there is no doubt that the problem of 

establishing the foundations of the theory of sets would have been formulated and 

discussed even if no antinomy had appeared in the set theory.” 
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on the other hand, that of Quine (New Foundations and Mathematical Logic). 

An exposition of the former direction is given in the present chapter while 

Quine’s methods are explained in Chapter III which deals with the logicistic 

foundation of set theory. 

The axiomatic attitude towards set theory and the foundations of mathe¬ 

matics differs from the logicistic and the intuitionistic attitudes not in that 

the latter attitudes are less strict in demanding a rigorous development of set 

theory, but in that it believes in the soundness of logic as used in mathematics 

throughout the ages and views the logical antinomies not as a failure of logic 

but only as a failure of Cantor’s basic assumption about sets as expressed in 

his “definition” of set. Therefore the cure advocated by the axiomatic atti¬ 

tude is to formulate new basic assumptions, in other words, new axioms, con¬ 

cerning sets in a way which will, at least apparently, avoid the occurrence of 

antinomies. 

We begin the exposition of axiomatic set theory with a detailed develop¬ 

ment of a modified form of Zermelo’s system in §§2—6. In §7 we shall treat 

modified versions of the systems of von Neumann and Bernays and related 

systems, as well as the system of Ackermann. We shall consider in detail the 

common features and the disparities of these systems. Special attention will 

be paid to the nature and the implications of the axiom of choice which is 

common to all these systems and which has, throughout the first half of the 

present century, formed a focus of discussions. 

As we shall see in the present chapter, Zermelo’s system and the systems 

of von Neumann and Bernays have so much in common that they can be 

regarded as different variants of the same theory. Zermelo’s system, with 

certain modifications in various directions, and with or without the classes 

added by von Neumann and Bernays, is used today by almost all mathe¬ 

maticians as the basis for set theory and the whole of mathematics 1). 

Before presenting Zermelo’s system a few explanations regarding the axio¬ 

matic method in general are in order; a more extensive treatment will be given 

in Chapter V. 

Every axiomatic theory (with the exception of axiomatic theories of logic 

itself) is constructed by adding to a certain basic discipline - usually some 

system of logic (with or without a set theory) but sometimes also a system of 

arithmetic - new terms and axioms, the specific undefined terms and axioms 

of the theory under consideration. However, mathematicians are in general 

not used to making the underlying basic discipline explicit. They assume that 

the interpretation of the “logical” words and phrases they employ, such as 

1) See Bourbaki 49 and 54. 
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‘not’, ‘and’, ‘if...then’, ‘all’, etc., as well as their performance within deduc¬ 

tion, is well known and not in need of special discussion. Yet, this happy-go- 
lucky attitude towards the basic discipline is not quite safe with respect to 

axiomatic set theory where antinomies are always lurking in the background. 

Theretore, an explicit taking into account of the basic discipline is now al¬ 

most universally accepted. This may be done in various degrees of depth and 

rigor. A complete exposition of the discipline presupposed in our further 

treatment of axiomatic set theory is out of question if only for reasons of 

space. We shall employ a somewhat uneasy compromise and describe the basic 

discipline in general terms only, referring the reader who is interested in 

details to the ample literature in existence *). 

In addition to being formalized, the language in which the axiomatic theory is for¬ 

mulated may also be symbolized, i.e. artificial symbols may be used instead of the words 

of a natural language. A complete symbolization - in contradistinction to a partial sym¬ 

bolization to which every mathematician is accustomed in his daily work — though cer¬ 

tainly involving a further increase in rigor and facility of mechanically checking proffered 

proofs and derivations, is something which for its effective use requires a preliminary 

training that can be neither presupposed nor required of the average reader, and which 

makes reading much more difficult even for the reader who has the necessary training. 

The use of logical symbolism in the main body of this book will therefore be restricted 

to a minimum, mostly for the formulation of the axioms and of some definitions. (A 

more extensive use of such symbolism will be made in the remarks and discussions 

printed in petit, the reading and understanding of which is not necessary for grasping the 

argument presented in the main body.) 

For our purpose of constructing an axiomatic set theory the basic disci¬ 

pline — unless otherwise stated — is assumed to be the so-called first-order 

predicate calculus. We mention here only that this calculus contains a set of 

connectives sufficient for expressing negation, conjunction, disjunction, con¬ 

ditional, and biconditional, and two quantifiers denoting universal and exis¬ 

tential quantification. For these notions we shall use the symbols ‘1’,‘a’, 

‘v’, ‘«+’, ‘V’ and ‘3’, respectively. These symbols are used in the language 

as follows, where 21 and 93 are arbitrary statements and V is an arbitrary 

variable: 121, 21a93 , 21 v93 , 21-*93 , 21+*93 , Vx2l, 3x21. These statements 

are read “it is not the case that 21”, “ 21 and 93”, “21 or 93”, “if 21 then 93”, 
“ 21 if and only if 93 ”, “for all x, 21”, “there exists an x such that 21”, respec¬ 

tively. The statement 21 in Vx2l and in 3x21 usually does assert something 

about x, i.e., in technical terms, ‘x’ occurs free in 21. 
The language in which one deals with the expressions of a given theory 

!) See, for instance, Rosser 53, Church 56, Quine 50, Kleene 67, Mendelson 64, or 

Shoenfield 67. In Church’s terminology we are proceeding according to the informal 

axiomatic method rather than according to the formal axiomatic method; cf. Church 56, 

p. 57. 
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(not with the entities denoted by these expressions!) is called the metalan¬ 

guage of this theory. In our case the metalanguage will be ordinary English, 

supplemented by a few symbols and some rules governing their use. The lan¬ 

guage in which the theory itself is formulated is called the object-language of 

this theory. In our case the object-language is a certain extremely restricted 

sub-language of ordinary English, again supplemented by a few symbols and 

their rules. 

As stated above, the object-language of a given theory is sometimes an artificial sym¬ 

bolic language. Only in very rare cases, however, when an extraordinarily high degree of 

precision and rigor is indicated or for certain very special purposes is the metalanguage 

itself taken to be a symbolic language, in which case its metalanguage, the meta-metalan¬ 

guage of the theory, is still some natural language. 

In order to refer in the metalanguage to particular expressions of the 

theory under discussion, names or other designations of these expressions 

have to be used. This can be done in various ways !). One of the simplest is to 

employ quotation marks. Often, however, particular signs of the metalan¬ 

guage are utilized and even more often those expressions themselves are used 

for this purpose. This last method in which some expressions are doing double 

duty, first as normal signs for something different from themselves and second 

as autonymous signs for themselves, is not without dangers. Since this method 

is, however, the one favored by almost all mathematicians, we shall use it 

when the other more exact methods would look pedantic and when no mis¬ 

understanding will be likely to arise. 

The situation is somewhat more complicated when reference has to be 

made not to particular expressions of the theory but to classes of such ex¬ 

pressions, e.g. to all expressions of a certain kind. In order to do this in a 

rigorous fashion metalinguistic variables have to be used. (A name of the 

object-linguistic variable tx\ such as ‘x’ or ‘the last-but-two letter of the 

English alphabet’, is of course a metalinguistic constant and not a variable 

itself.) Various rigorous methods have been proposed for handling this situa¬ 

tion 2), but we decide, again, not to use those methods but to rely on the 

context on the one hand, and on the common sense and good-will of the 

reader on the other. There will be a certain amount of inconsistency in all 

these matters, but this is probably to be preferred to a usage that would 

appear overpedantic to most readers. 

Within the framework of the first-order predicate calculus we have a 

(potentially) infinite list of individual variables x,y,z,w,x',y',z', w', etc. We 

*) For an extensive treatment of this question see Carnap 37, §41. 

2) See Carnap 37, Church 56 and Quine 51. 
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shall use these variables also as metamathematical variables which range over 

the variables. E.g., when we shall speak of the set of all statements x Gy (or 

all statements of the form x Gy) we shall mean thereby the set which con¬ 

tains, in addition to the statement xEv, also the statements yGz,zGz,uGy', 

etc. In most cases when we use variables as metamathematical variables for 

variables we shall assume, tacitly, that different variables stand for different 

variables. E.g., the set of all statements Vz(z£x«zGy) is also assumed to 

contain the statement Vw(«Gw^«Gu), but not to contain the statement 

Vx(x Ex *+x Gy). In some other cases we do not insist that different variables 

stand for different variables. E.g., when we mention the set of all statements 

xGy we usually mean the set which contains also the statement x Gx. In most 

cases the intended meaning will be obvious.from the context; in those cases 

where there might be some doubt we shall explicitly say what we mean. 

A statement is said to be closed if it contains no free variables. It is said to 

be open if it contains at least one free occurrence of a variable. E.g., the 

statements, “Every set x is a member of itself’ and “0 is the least natural 

number”, are closed statements, whereas “x is a set”, “There exist a z such 

that x<>'<z”, and “If x=z then x=y” are open statements. 

When we deal with a symbolized system we often use ‘(well-formed) 

formula’ instead of‘statement’. 

In the formula ‘3y(x^yY the variable ‘y’ is bound by the existential quantifier ‘3y’ 

but the variable ‘x’ is free; the formula is therefore open. In the formula ‘Vx3y(xGy)’ 

all the variables are bound, ‘y’ as before and ‘x’ by the universal quantifier ‘Vx’; the 

formula is therefore closed. 

An open statement in which the variable ‘x’ is free will also be called, 

according to mathematical custom, a condition on x. A condition on x can 

also have free variables other than ‘x’; those additional variables will be called 

parameters. For example, the statement “x is a member ofy” can be regarded 

as a condition on x andjp with no parameters, or as a condition onx with the 

parameter y, or as a condition on y with the parameter x, just as in ordinary 

mathematical usage the function ax + b can be regarded as a function of x 

with a and b as parameters, or as a function ofx,a,b with no parameters, etc. 

An axiomatic system is in general constructed in order to axiomatize a 

certain scientific discipline previously given in a pre-systematic, “naive”, or 

“genetic” form. The primitive, undefined terms of the system are meant to 

denote some of the concepts treated in this discipline while terms denoting 

the remaining concepts are introduced into the system by definition. The 

axioms of the system are meant to stand for some of the facts about these 

concepts while other facts are expressed by the theorems, i.e. the statements 
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that can be derived from the axioms on the basis of the underlying discipline. 

If a scientific discipline is axiomatized this discipline forms an interpreta¬ 

tion or a model of the axiom system. In general, however, the axiom system 

can be interpreted in many additional ways; in that case the original scientific 

discipline forms the intended or principal interpretation 1). 

§2. SOME BASIC NOTIONS, EQUALITY AND EXTENSION A LIT Y 

We shall now present two variants of Zermelo’s set theory, which we 

denote with ZF 2) and ZFC. In the first part of the present section we shall 

describe the language in which ZF and ZFC are formulated. In this and in the 

next three sections we shall list the axioms of ZF and ZFC. The axioms of 

ZF will be the axioms known as the axioms of extensionality (I), pairing (II), 

union (III), power-set (IV), subsets (V), infinity (VI), replacement (VII), and 

foundation (IX). ZFC will be the system obtained from ZF by adding to it 

the axiom of choice (VIII) as an additional axiom. We do not wish thereby 

to brand the axiom of choice as an axiom of set theory less legitimate than 

the others; on the contrary, as far as we are concerned, ZFC is a better system 

of set theory than ZF. We still segregate the axiom of choice because, as we 

shall see in §4, it is of a different nature than the other axioms and plays a 

special role in set theory and therefore it is desirable for our purposes to know 

exactly in which parts of our discussion the axiom of choice plays a signifi¬ 

cant role. 

As stated above, the discipline underlying ZF will be the first-order predi¬ 

cate calculus. The primitive symbols of this set theory, taken from logic, are 

the connectives, quantifiers and variables mentioned above and, possibly, also 

the symbol of equality (discussed below), as well as such auxiliary symbols as 

commas, parentheses and brackets. The only specific set-theoretical primitive 

*) See Church 56, p. 56; also Carnap 39 who uses a somewhat different terminology. 

The notion of an interpretation is discussed in detail in Chapter V, § 3. 

) This system is mostly referred to in the literature as the Zermelo-Fraenkel set 

theory. Some authors use the more appropriate name Zermelo-Fraenkel-Skolem set 

theory. It rests mainly on Zermelo 08a; cf. Zermelo 30. The principal modifications 

inserted in the following exposition are contained in Fraenkel 22, 22a, 26 and in Skolem 

23, 29. Cf. the formalizations in Wang-McNaughton 5 3 (pp. 15-18), Carnap 54 (§ 43), 

Suppes 60. A general survey of Zermelo’s intension is given in Weyl 46, pp. 10 f. 

While the criticism of Poincare 13 (Chapter IV) is unjustified in many respects, the 

criticism of Skolem 23 is incorporated in the following exposition. 
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symbol of ZF will be the binary predicate G which denotes the membership 

relation ). We shall read xGy as x is a member ofy”, and, synonymously, 

as “x belongs to j”, “x is contained in y”, “y contains x (as a member)” 2). 

The atomic formulae of ZF are the formulae of the formx Gy, and possibly 

also x—y; all other formulae are obtained from these formulae by means of 
the connectives and the quantifiers. 

The range ot the individual variables, the so called universe of discourse, 

consists of objects. Since we are dealing with set theory, it is natural to assume 

that each of these objects is a member of some set (which is again an object). 

This is in accordance with one of the tacit principles of Cantor’s naive set 

theory that every object can serve as a building block for a set 3). This set can 

be, for example, a set which contains just this single object. Some of the 

systems of set theory discussed in §7 abandon this principle. However, as far 

as ZF is concerned, this principle remains valid; it will be implemented by the 

axiom of pairing. Throughout the present chapter we shall mean by element 

an object which is a member of some object. In ZF the term ‘element’ is 

synonymous with the term ‘object’, yet we shall prefer to use the former so as 

to facilitate the comparison of ZF with those systems of set theory discussed in 

§ 7 in which not all objects are elements. 

Let us refer to those elements which have members as sets 4), and to those 

elements which have no members as individuals 5). When we develop a system 

of set theory we have to make up our mind as to how many individuals we 

want to have. The same question arises also with respect to the sets, i.e., we 

have to make up our mind as to “how many” sets we want to have. The latter 

question is indeed the central question of set theory, and in answering it we 

are guided mostly by the idea of preserving the intuitive rules for “construc¬ 

tion” of sets available in Cantor’s naive set theory, to the extent that they do 

not lead to contradictions. In contrast, the former question is of much less 

significance. In our answer to that question we cannot rely much on intuitive 

arguments since there are no ways of “constructing” individuals and, as a con- 

J) Schoenfliess 21 and Wegel 56 take as the primitive concept the part-whole relation 

(“x is a part, or a proper subset, ofy”) instead of the membership relation. Their systems 

are quite cumbersome and all they yield is a theory of magnitude which is far from being 

a full-scale set theory. 

2) We avoid the phrase “x is an element ofy” since we shall use the term “element” 

in a different meaning. 

) This follows from the axiom of comprehension — see § 3.1. 

4) The null-set, which has no members, will also be called a set — see below. 

5) This is not the standard meaning of “individual” in logic. Our individuals were 

called “Urelemente” by Zermelo. 
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sequence, there is nothing to tell us how many individuals to admit !). There¬ 

fore we shall be guided here by arguments of simplicity and elegance rather 

than by deep insights into the nature of the mathematical universe. 

The existence of at least one individual is called for by both philosophical 

and practical reasons. An individual is needed in order to serve as ihz founda¬ 

tion of the universe. Once we have an individual a, we can construct a set b 

whose only member is a, a set c whose only member is b, a set d whose only 

members are a and b, and so on. The way in which the universe of set theory 

is constructed, starting with a single individual, will be discussed at length in 

§5. The practical reasons which call for the existence of an individual are as 

follows. When we define the intersection of two sets r and s to be the set t 

which consists of those elements which belong to both r and s, we want the 

intersection to be defined even in the case where r and s have no members in 

common. In this case the intersection t has to be a memberless element, i.e., 

an individual. There are also many other examples where the existence of a 

memberless element makes things simpler. The same practical reasons which 

call for the existence of such an element also call for using always the same 

element for the intersection of any two sets r and s with no members in 

common, and for referring to this element as a set. Therefore we shall call 

this element the null-set and our sets are, from now on, the elements which 

have members as well as the null set. Let us, however, stress at this point that 

whereas the existence of at least one individual is required for serious philo¬ 

sophical reasons, referring to one of the individuals as the null-set is done only 

for reasons of convenience and simplicity, and can be regarded as a mere 
notational convention. 

Havipg decided that we need an individual we now face the question of 

whether we need more than one individual. It turns out that for mathematical 

purposes there seems to be no real need for individuals other than the null- 

set 2). Therefore we shall indeed not admit any such individuals in ZF. Thus 

all our elements are either sets which have members or the null-set. Hence, the 

terms ‘set’ and ‘element’ are synonymous in ZF. Yet, mostly for metamathe- 

matical purposes, there is also considerable interest in systems of set theory 

which admit individuals other than the null-set. Therefore we shall formulate 

the verbal versions of the axioms in such a way that they will serve, with 

) In tact, it ZF is consistent then so are corresponding systems of set theory with 

any prescribed number, finite or infinite, of individuals (in addition to the null-set dis¬ 

cussed below) — Mostowski 39, A. Levy 64. One can also prove this by a method similar 
to that of the index model of Rieger 57. 

) Fraenkel 22, p. 234, and 25. This attitude was adopted, among others, by von 
Neumann 25 and Bourbaki 54. 
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possible minor modifications which we shall point out as we go along, also as 

axioms for a corresponding system ot set theory which admits individuals *). 

Thus we shall distinguish between the term ‘element’, which in such a system 

refers also to the individuals, and the term ‘set’. Also, from now on we shall 

use the term ‘individual’ only for individuals other than the null-set; thus 

every element is a set or an individual, but nothing is both a set and an indi¬ 
vidual. 

One of the most fundamental notions of mathematics is the notion of 

equality. One can adopt any one of the following three attitudes towards 
equality. 

a) The equality symbol is understood to denote identity and is thus 

regarded as belonging to the underlying logic. In our case the underlying 

discipline is taken to be the first-order predicate calculus with equality 1 2). 

The basic properties of equality, which from the point of view of the present 

attitude are logical truths, are as follows. 

(0 Reflexivity: (For every x)x=x. 

(zz) Symmetry: If x =y then_y = x. 

(zzz) Transitivity: If x =y andy —z then x — z. 

(zv) Substitutivity: For every statement $(x), if ^(x) holds and x=x' then 

^(x') also holds. 

It is enough to require (zv) only for two particular statements ^B(x) as follows. 

(zv') If x Ey and x = x’ then also x' Ey; if y Ex and x =x' then also y Gx'. 

In the presence of (/)—(zzz), all of (zv) follows from (zv'); this is a particular 

case of the general fact that it is enough to postulate (zv) for atomic state¬ 

ments ^ (x) only, and to infer from this all other cases of (zv) 3). 
This attitude seems to have been adopted in essence by Zermelo 4). He 

regards x and y as equal when “they denote the same thing”, exhibiting there- 

1) In such an axiom system we need another primitive notion in addition to member¬ 

ship. This primitive notion can be taken be O — an individual constant denoting the 

null-set — or the unary predicate S(x), to be read "x is a set”. If we take 0 as the 

additional primitive notion, we define x to be a set if it is O or it has members, and we 

adopt, in addition to the axioms listed in § §2-5, also the axiom “0 has no members". 

If we take S(x) as the additional primitive notion then we define the null-set O as in 

§ 3.4 below, and we adopt the axiom "If x is a member of y then y is a set”. For axiom 

systems which admit individuals other than the null-set, see Suppes 60, Borgers 49, and 

Mostowski 39. 

2) Cf. Church 56, §48, or Mendelson 64, Ch. 2, §8. 

3) See Church 56, Exercise 48.4, and Mendelson 64, Prop. 2.25. 

4) Zermelo 08a. Whenever in the present Chapter Zermelo is mentioned without 

additional reference, this paper is meant; it is not only fundamental for our exposition 

in general but also contains many details appearing in the following sections. 
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by, incidentally, a confusion between use and mention of symbols 1). Elimi¬ 

nating this confusion one winds up saying that x and y are said to be equal 

when they are the same thing. This is also the attitude which we choose to 

adopt officially throughout this chapter. However, our treatment will cover 

the other attitudes as well. 

b) Equality is regarded as one of the primitive relations of the system, on 

a par with the others. In our case the equality symbol can be regarded as a 

second primitive binary predicate. (i)—(iii) and (iv') are now taken to be 

axioms of our system. All the instances of (/V), for all different statements 

^R(x), now become theorems of the system. For all practical considerations 

the system obtained by adopting this attitude is the same as that obtained by 

adopting attitude (a), since in both cases exactly the same statements are 

theorems of the system. 

c) Equality is introduced by a definition 2). In this case the definition 

must be such that (i)—(iv) become provable, either by arguments of logic 

only or by arguments which make also use of the axioms of set theory. As 

we shall see later there are several ways of defining equality in set theory. 

After these preliminary remarks we start establishing our system ZF. In 

general, no symbolism beyond the customary set-theoretic symbols ‘E’, ‘C’ 

etc. will be used. Only the axioms and some definitions will be fully sym¬ 

bolized, in addition to their semi-symbolic formulation. Instead of“]x=y 

and IxEy we shall usually write x=Ay and x (fry, respectively. When x =hy 

we say that x is different from y. 

DEFINITION I (Relation of inclusion). If y and z are sets such that for all 

x, if xCy then x Ez, we shall write y Cz and say that y is a subset of z (y is 

included in z); if, in addition, there is at least one w such that wEz but w^y, 

we write y Cz and say that y is a proper subset of z (ory is properly included 

in z). 

THEOREM 1. Every set is a subset of itself (xCx); if x Cy and y Cz then 

xCz. In other words, the relation C is reflexive and transitive. The relation C, 

on the other hand, is irreflexive, asymmetric, and transitive. (T, p. 129.) 

One has to distinguish clearly between the relations E and C (of which, in 

the present exposition, the first is primitive and the second derived). The 

confusion between them, enhanced by equivocations of English and other 

languages - the copula ‘is’ of Aristotelian fame is used in both these senses 

(and many others) — had disastrous consequences in the early development 

of logic. Frege seems to have been the first logician to point out the necessity 

*) See, e.g., Quine 51, §4. 

2) Fraenkel 27a; cf. A. Robinson 39, Hailperin 54. 
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ot this distinction; nowadays only beginners are prone to fall prey to the 

contusion between G and C. In our terminology, while a set always includes 

itselt and its subsets, it contains, in general, neither itself nor its subsets. 

Having in mind attitude (c) towards equality let us present the following 

definition. 

DEFINITION II. x is said to be membership-congruent toy; (x=my) if for 

all z, x Gz if and only if y Gz and also for all u, u Gx if and only if u Gy; in 

other words, x =my if every set which contains one of them contains also the 

other and every element contained in one of them is also contained in the 

other. 

In symbols, x =m y =Df-Vz(x Ez *+yGz) A V u(u Gx«« Gy) 1). 

It is easily seen that the relation of membership-congruence is reflexive, 

symmetric, transitive, and substitutive with respect to the atomic statements 

x Gy, i.e., (/)—(///) and (zV) hold for =m. If we adopt attitude (c), then the 

atomic statements x Gy are the only atomic statements of set theory (since 

x=y is introduced by a definition and can be regarded as an abbreviation of 

a non-atomic statement) and therefore we get that (z'v), too, holds for = 2). 

The proof of (/)—(z'v) for =m does not use any of the axioms of set theory, 

but only the definition of x =m y. Now, it can be easily seen that any defined 

relation x = y which satisfies requirements (/) and (z'v) must coincide with the 

relation = i.e., we get that for all x and y, x = y if and only if x =my. Since 

for any relation of equality which we may define, x = y is equivalent to 

x =my, we lose nothing by definingx =y asx =my 3). 

Our first axiom is 

AXIOM (I) OF EXTENSIONALITY. If xCy and yCx, then x=y; in 

other words, sets containing the same members are equal. 

In symbols, Vx Vy [ Vz(z Gx ++z Gy) -> x =y]. 

This axiom affirms the extensional nature of the sets, i.e., that each set is 

completely determined by its members. The antonym of the present meaning 

of ‘extensional’ is ‘intensional’. Sets would be of an intensional character 

if identity of sets would depend not only on their extension (i.e., on 

their members) but also on the way they are presented (“defined”). 

Thus, from an intensional point of view the set of all non-nega- 

') ‘=Df’ is short for ‘is short, by definition, for’, this symbol is of course a meta¬ 

linguistic symbol which does not belong to the object language of ZF. 

2) As in p. 25 above. 

3) Thiele 55, Quine 63. In essentially the same way we can define equality in any 

first-order theory with finitely many primitive symbols - Hailperin 54. This is in line 

with a tradition which goes back at least as far as Leibnitz (identitas indiscernibilium) - Cf. 

for instance Grelling 37. 
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tive real numbers and the set of all squares of real numbers are not necessarily 

identical, even though they have the same extension. The purely extensional 

notion of set is chosen to be the basic notion of set theory, rather than any 

intensional notion, for the following reasons. First, the extensional notion of 

set is simpler and clearer than any possible intensional notion of set. Second, 

whereas there is just one extensional notion of set, there may be many inten¬ 

sional notions of set, depending on the purpose for which those sets are 

needed '); so if we wanted to base set theory on some intensional notion of 

set, we would have to choose among the various intensional notions of set in 

a way which is bound to be at least somewhat arbitrary. Third, as we shall 

see, starting with the simple notion of extensional set we shall obtain, by 

means of the axioms, a system of set theory in which much more complicated 

notions can be constructed. In particular, we shall be able to construct inten¬ 

sional notions of set within our system 2). 

If we adopt one of the attitudes (a) or (b) towards equality then we know 

that if x=y then alsox=m>\ As a consequence of the axiom of extensional- 

ity we also get the converse that if x =m y then x =y. Thus, even if equality 

is taken to be primitive rather than defined, membership-congruence coin¬ 

cides with equality 3). 

Axiom I establishes the relation of having the same members as a charac¬ 

teristic property of equality in set theory. There is also a “dual” characteriza¬ 

tion of equality, which is given by the following principle. 

x —y if and only if every set z which contains one of the elements x 

and y contains also the other. 

In symbols, Vz(xGz Ez)**x —y. 

This principle cannot be proved from Axiom I alone. However, it will 

follow from the axiom of pairing (Axiom II below) that for every setx there 

is a set u whose only member isx, i.e., for every element u, u is a member of u 

if and only if v=x. Therefore, u is a set which contains x but does not con¬ 

tain any y which is not equal to x 4). 

One can use each of these two characteristic properties of equality in set 

(*) 

*) E.g., since the intension of a set is determined also by its definition we can choose 

between regarding verbally different, but logically equivalent, definitions as different 

definitions or as the same definition. 
2 

) We shall, actually, deal with a particular such notion in §3.5. 

) In order to get that membership-congruence coincides with equality it is enough 

to know that the statement x =y is equivalent in set theory to some statement which 

does not involve equality. 

) This proves the even stronger principle that if y is a member of every set which 
containsx then_y=x. 
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theory as a definition of equality, instead of membership-congruence. In each 

case one has to make sure that it will indeed follow from the axioms of the 

system that equality satisfies requirement (/v), i.e., thatx=y impliesx =m y. 

In both cases it follows trivially from the definitions of x =y and x =m y that 
ifx =m y then x —y. 

II we define that x=y if they are members of exactly the same sets, then 

it will follow trom the power-set axiom (Axiom IV below) or, alternatively, 

from the axioms of pairing and subsets (Axioms II and V below, respectively) 

that if x = y, then x and y have the same extension (i.e., for every element z, 

z Ex if and only if z E_y) 1), hence, by Axiom I, x —y if and only if x andy 

are membership-congruent. 

Now suppose we define that x —y if x and y have the same extension. 

Then Axiom I becomes a tautology, and in order to be able to prove that 

x=y implies that x and y are membership-congruent we have, essentially, to 

assume it as an axiom, i.e., we have to adopt the following 2): 

AXIOM I* . If x Ez andy =x then also y E z3). 

The former definition of equality is not appropriate for the systems of set 

theory considered in §7, in which there are many different objects which are 

not members of any object, since by that definition any two such objects are 

equal. On the other hand, in a system of set theory which admits individuals 

other than the null-set the latter definition is inappropriate, since it implies 

that all the individuals are equal to the null-set. Interestingly enough, by a 

slight deviation from ordinary usage, viz. by treating individuals as a special 

kind of sets (sets which contain themselves as their only member), Quine 4) 

succeeds in introducing equality by means of the latter definition without 

having to renounce individuals in his ontology 5). As he points out himself, 

1) Thiele 55, pp. 176f. 

2) Cf. A. Robinson 39. 

3) We can also use the following version of the axiom of extensionality: If x and y 

have exactly the same members then they are members of exactly the same sets. This 

version can serve as the axiom of extensionality independently of whichever attitude we 

adopted among (a), (b), (c), and of whichever definition of equality we use if we adopt 

attitude (c) - Scott 61; As we saw above in the case of attitudes (a) and (b), it follows 

from the axiom of pairing that if x and y are members of exactly the same sets then 

x=y. The converse of the present version of the axiom of extensionality, viz. that if x 

and y are members of exactly the same sets then they have exactly the same members, 

follows from the power-set axiom or, alternatively, from the axiom of pairing and 

subsets, as mentioned above. 

4) Quine 63, pp. 31-33. 
5) The assumption of the existence of such individuals does not introduce any contra¬ 

dictions in a system like ZF - Cf. Bernays 37—54 VII and Rieger 57. 
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the situation can be described alternatively by saying that the G-relation is to 

be interpreted as “is a member of, or is equal to, according to whether the 
right-hand object is a set or not” !). 

Whichever of the various methods discussed above one chooses for intro¬ 

ducing equality in set theory, the intended interpretation of ‘x =y’ is that the 

objects denoted by V and ‘y’ are identical. E.g., the direct way to say, in the 

language of set theory as given above, that a set z has exactly one member is 

to say that there is a member x of z such that every member y of z is equal to 

x; if equality is not intended to be necessarily identity, then such a set z can 

contain two or more members equal to one another. 

Since a set, according to the axiom of extensionality, is fully determined 

by its members, we may denote the (finite or infinite) set which consists of 

the members a, b,c, ... by 

{a, b,c,...} , 

where the order in which the members are written does not matter. 

DEFINITION III. Two sets which contain no common member are said to 

be disjoint. If the members of a set s are pairwise disjoint, s is said to be a dis¬ 

jointed set2). 

§3. AXIOMS OF COMPREHENSION AND INFINITY 

3.1. The Axiom Schema of Comprehension. Having determined, by means of 

Axiom I, one of the basic properties of the notion of set, our next task is to 

introduce axioms which guarantee the existence of sufficiently many sets, at 

least as many as are needed for the development of arithmetic and analysis. 

Let us pretend to be unaware of the logical antinomies and try to set up an 

axiom system by adapting Cantor’s “definition” of set (in § 1, p. 15) to our 

present rigorous setup. According to that “definition” every collection of 

!) This hardly differs from using equality as a primitive relation for individuals only 

and considering two sets to be equal if they have exactly the same members. One may 

doubt if the technical economy achieved by Quine’s method suffices to compensate for 

its susceptibility of misinterpretation (such a misinterpretation occurs in Quine 63, 

p. 285, where the axiom of foundation is said to clash with the existence of Quine’s 

individuals; the usual formulation of this axiom - Axiom IX - becomes now equivalent 

to “every non-void set x contains an individual or contains a sety such that x ny = O”; 

the flatter statement does not clash with the assumption of existence of individuals). 

) A set which contains no member or a single member is, trivially, disjointed. 
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dements is a set; therefore, for every rule or process by means of which a 
collection ot elements is obtained there is a set which contains exactly the 

elements which conform to the rule, or are obtained in the process, respec¬ 

tively. The simplest general axiom in this direction is the following 

AXIOM OF COMPREHENSION1). For any condition 33 (x) on x there 

exists a set which contains exactly those elements x which fulfil this condi¬ 
tion. 

In symbols, this axiom reads VZ] ...\/zn3y\/x(x<Ey ** 33 (X)), where Zj, ..., 

zn are the free variables of 33 (x) other than x, and y is not a free variable of 35 (x). 

On this occasion, let us remark that Axiom I, without any additional 

axioms, obviously implies that for every condition 33(x) on x there exists at 

most one set y which contains exactly those elements x which fulfil the con¬ 

dition 3^(x); in other words, if>’ j and 72 are two sets each of which contains 

exactly those elements x which fulfil the condition j£(x), then yx and_y2 are 
equal. 

Since we were guided by Cantor’s naive notion of set in formulating the 

axiom of comprehension, we can hardly be surprised when this axiom turns 

out to be inconsistent (i.e., it implies a logical falsehood). Russell’s antinomy 

can easily be derived from the axiom of comprehension as follows. We prove 

first, with use of logic only: 

THEOREM 2. There exists no set (element) which contains exactly those 
elements which do not contain themselves (in symbols: "13yVx(x&p<»x£x)). 

Proof. By contradiction. Assume that v is a set such that for every element 

x, x&y if and only if x^x. For x=y, we have if and only if ytfiy. 

Since, obviously, y£y or y^y, and, as we saw, each of y&y and y^y 

implies the other statement, we have both^e^ andy^y, which is a contra¬ 

diction. 
Theorem 2, which poses as a theorem of set theory, is really a theorem of 

logic (i.e., a logical truth) — it remains true with the membership relation 

replaced by any other binary relation. Theorem 2 directly contradicts the 

statement which is obtained from the axiom of comprehension by taking 

‘x ^x’ for 3S(x); therefore the latter statement is a logical falsehood. 

The axiom of comprehension is not a single statement of the object- 

language of ZF; by taking different conditions 33CO in the axiom of com¬ 
prehension we get different statements. Therefore the axiom of comprehen¬ 

sion is said to be an axiom schema. Each statement obtained from the axiom 

!) The first explicit use of this axiom seems to be in Frege 1893-1903 (I, §9) (where 

it is given in a somewhat different form). 
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of comprehension by taking a particular condition ^(x) is said to be an 

instance of this axiom schema, or an axiom of comprehension. As we saw 
above, the contradiction was obtained from the single instance “There exists 

a set y which contains exactly those elements x which fulfil the condition 

x^x” of the axiom schema of comprehension. 
The axiom of comprehension turned out to be inconsistent and therefore 

cannot be used as an axiom of set theory. However, since this axiom is so 

close to our intuitive concept of set we shall try to retain a considerable 

number of instances of this axiom schema. The instance which we used here 

to get a contradiction is by no means the only contradictory instance of the 

axiom schema of comprehension; moreover, there are non-contradictory 

instances of this axiom schema which contradict each other ]). Therefore, the 

decision as to which instances to keep is not an easy one; different decisions 

made at this point lead to different systems of set theory, as we shall see. Our 

guiding principle, for the system ZF, will be to admit only those instances of 

the axiom schema of comprehension which assert the existence of sets which 

are not too “big” compared to sets which we already have. We shall call this 

principle the limitation of size doctrine 2). 

As pointed out above, the set whose existence is asserted by a given axiom 

of comprehension is uniquely determined by that axiom. Therefore, in the 

verbal formulation of an axiom of comprehension we shall use the definite 

article (‘there exists the set of all ...’). 

3.2. The Axiom of Pairing. Ordered Pairs. We shall start with sets of very 
modest size by means of the 

AXIOM (II) OF PAIRING. For any two elements a and b there exists the 

set y which contains just a and b (i.e., a and b and no different member). 
In symbols: VflV£>3yVx[xGy «(x=flvx = 5)] 3). 

The set which contains just a and b is called the pair of a and b and is 

*) See Quine 63, pp. 66—68. Additional examples are easy to obtain once one notices 

that for every closed formula the instance 3yVx(xey *+x$x A~ly>) of the schema of 

comprehension is logically equivalent to <p A 3yVx(x fiy), cf. Putnam 57. 

2) This principle, implicit in Cantor 32 (p. 444), was first stated by Russell 06; see 
also pp. 135-136. 

3) Using the other axioms we can replace Axiom II by any of the following axioms, 

“For any different sets a and b there exists a set which contains just a and b” (Fraenkel- 

Bar-Hillel 58), “For any setsfl and b there exists their union” (Kuratowski 25),“For any 

sets a and b there exists a set which contains exactly all the members of a and the set b 

itself’ (Bernays 37—54 I). When we shall introduce Axiom VII (of replacement) it will 
be shown that it implies Axiom II. 
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denoted by ‘{a, b}' or, synonymously, by ‘{b,a}’. If in {a, b} a = b then a 

is the only member of the pair {a, a), which is denoted also by {a} and 
which is called the singleton, or unit-set, of a. 

Incidentally, it is only by means of Axiom IX that we shall be able to 
prove that the pair {a, b] is different from a and from b '). 

Given the elements a, b, c, and d, repeated application of Axiom II allows 

us to build various sets from these elements, for instance {{a, b},{c,d}}, 

{{a,b},c}, {{c,J}}, ... However, all sets obtained in this way have just one 
or two members. 

A simple notion which is extremely useful in mathematics is the notion of 

an ordered pair. The ordered pair {a, b) is an element which corresponds to a 

and b (taken in that order) such that 

(0 For all a, b,c, d, if (a, b) = (c, d) then a — c and b = d. 

As suggested by Wiener and Kuratowski such a notion can be defined in ZF 
by 

DEFINITION IV. (a, b) = {{a},{a,b}} 2). 

(/) is established by means of Definition IV as follows. Let (a,b) = (c,<i);then 

{a,6}} ={{c},{c,d}};hence{tf} = {c} or {a} = {c,d}. We shall now deal 
with two cases. Case (a): (a} = {c} and {a}^{c,d}. Since {a} = {c},a~c. 

{c, d} £{{c},{c, <i}} = {{a},{a, b}}, hence, by {c,d}=t{a}, we must have 

{c,d}= {a, b}. By {a} ^ {c,d} and a = cwe have d±a, thus <2£ {c,d}= {a,b} 

implies d = b. Case (b): {a} = {c,d}. Then c = d = a. {a,b}& {{a},{a, b}} - 

= {{a},{a, a}} = {{a}}, hence {a,b} = {a} and b = a=d. 

Almost all applications of the notion of an ordered pair to mathematics 

make use only of (/) and not of Definition IV. For example, the notion of an 

ordered triple, and in general, the notion of an ordered n-tuple, for n> 3, are 

defined by 

DEFINITION V. <a,b,c) =Df <a,(b,c». <Aj,...,an) =Df (a^ ,(a2,(a3, ••• 

..., (an_i,an))...)) 3). It follows immediately from (i) that the notion of an 
ordered n-tuple has the property corresponding to (/), namely that if 

(aj, ...,an) = (bj, ..., bn) then ai = bi for 1 

3.3. The Axioms of Union and Power-Set. To obtain sets of more than two 

members we have to look for another procedure. The operation of union is 

!) Cf. Rieger 57. 

2) Bourbaki 54 (and, to some extent, also von Neumann 25) introduces the pairing 

operation as a primitive notion and assumes (0 as an axiom. 

3) The use of natural numbers in this definition is only superficial. To define the 

notion of an ordered /?-tuple for a particular n, say 17, it is enough to have 17 different 

variables. For a different definition of ordered n-tuples see Skolem 57. 
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one of the simplest set-theoretical operations. According to our program of 

not introducing “too large” sets, the sets whose union is to be formed will 
not be taken arbitrarily — they must be members of a single given set. Thus 

we have 
AXIOM (III) OF UNION (or Sum-set). For any set a there exists the set 

whose members are just the members of the members of a. 

This set is called the union of the members of a, or the union-set (or sum- 

set) of a; it is denoted by lUa’. Hence, xEUa holds if and only if there is a 

zEfl (at least one z) such that x&z. 

In symbols: \/a3y\/x[xEy 3z(xEz A z&a)\. 

Roughly speaking, if the set a contains the members t, u, u, ... then just 

the members of t,u,v, ... are contained in Ua. Therefore, we shall sometimes 

denote the union-set of a by t U u U v U ...1), where the order of the terms is 

insignificant. 

If a and b are sets, their union aUb certainly exists. For by the axiom of 

pairing the pair {a,b)—p exists, and by the axiom of union also Dp = aUb 

exists. 

The axioms of pairing and union, taken together, enable us to “construct” 

sets of various kinds. For instance, using the notation introduced in §2, we 

know what the expressions ‘{a,b,c,dY and ‘{tfj, ...,anY denote — {a,b,c,d} 

is the set, if there exists such, whose members are exactly a, b, c, and d, and 

similarly for ‘{flj, ...,anY', by means of the axioms of pairing and union we 

can prove the existence of these sets. By the axiom of pairing, the set 

{{a, b), {c, d}} exists, hence, by the axiom of union, U {{a, b }, (c, d}} = 

{a,b,c,d} exists. The existence of {a±, ...,an } is shown similarly; the number 

of applications of the axioms in this proof depends, naturally, on n. 

U {a,b,c} is also denoted, as mentioned above, by a U b Uc. Precisely as 

in T, p. 85, we can prove that the sets a U Uc, (a U b)Uc and a U (b Uc) 

contain the same members and are, hence, equal. The general associativity of 
the union operation can be shown in a similar way. 

aUbUc contains the members of three sets a, b,c. Proceeding further in 

the same or in a similar way — provided we have at our disposal more than 

three different sets — we may obtain more and more comprehensive sets. But 

in spite of the considerable strength of the axiom of union, a glance at 

Cantor’s theory shows that the axioms of pairing and of union do not give us 

sufficient liberty in forming new sets, even if we make fairly strong assump¬ 

tions about the existence of initial sets. In fact, let us assume that there exist 

') Some authors write b + c for b U c and Za for Ua and call it, accordingly, the sum 

of b and c and the sum-set of a, respectively. 
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infinite ) sets ol the kind called denumerable, and even denumerably many 
different such sets. Not even with this assumption would the axioms of pair¬ 
ing and union be strong enough to guarantee the existence of a more-than- 
denumerable set; for instance, the existence of a continuum 2). 

Cantor s (second and principal) tool for reaching sets with a higher cardi¬ 

nality was (transtinite) multiplication, in particular exponentiation. We shall 

see that for this purpose the power-set (T, Theorem 2 on p. 70, the so-called 

‘Cantor’s Theorem’, and Theorem 2 on p. 112) is sufficient; hence we formu¬ 
late: 

AXIOM (IV) OF POWER-SET. For any set a there exists the set whose 

members are just all the subsets of a. 

In symbols: \/a 3y\/x(x Gy +>x C a). 

The set ot all subsets of a is called the power-set of a and is denoted by 
Pa 3). xGPa is true if and only ifxCa, i.e. if Vz(z Ex -»z Ga). 

3.4. The Axiom Schema of Subsets. In the axiomatic system, Axiom IV fulfils 

a decisive task, for without it we are not able to form comprehensive enough 

sets. Yet Axiom IV cannot be utilized for this purpose at the present stage of 

our axiomatization. For Axiom IV permits only the use of those subsets 

whose existence has previously been established. Now Definition I (p. 26) 

does not enable us to form subsets of a given set s but merely, given a certain 

set, to ascertain whether it is a subset of s, and the axioms of pairing and 

union allow the construction of very special subsets only. Hence Axiom IV 

by itself is not a tool anywise comparable to Cantor’s power-set. To use 

Axiom IV as an instrument for obtaining comprehensive sets another axiom 

is needed, apt to yield subsets of a given set in a general way. 

To realize this we start with a set S which contains at least two members 

Sj and s2; by the axiom of pairing the pair p = ) exists and is, by 

Definition I, a subset of S. Hence the power-set PS at any rate contains the 

member p. If S contains more than two members we may do the same with 

any two members of S, thus obtaining new members of PS. By means of the 

axiom of union we obtain more general subsets of S, but only such as are 

*) ‘Infinite’ and ‘denumerable’ are formally defined only in §3.6. We assume that the 

reader has an informal knowledge of these notions; we use them here only for a heuristic 

argument. 

2) Cf. Bernays 37—54 VI, where it is shown, in essence, that Axioms I—III, and V-IX 

do indeed hold in a “model” which consists only of finite and denumerable sets. 

) The notation for the power-set is by no means uniform in the literature. In 

Fraenkel—Bar-Hillel 58 and in T the power set of a was denoted by Ca; P was used there 

to denote the Cartesian (outer) product. 
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finite in the naive sense. For instance, if , s2, S3 are members of S, then, as 

we saw above, the set {5j, } exists; it is obviously a subset of S, i.e., a 

member of PS. 

Yet by such methods we fail to obtain infinite subsets of an infinite set S 
(other than S itself). If S contains all natural numbers we cannot even guaran¬ 

tee, at the present stage, the existence of the subset of all numbers greater 

than 1, let alone the subset of all even, or prime, numbers. Therefore, as yet 

we are not able to prove that PS has a greater cardinality than S. 
What we want may very loosely be described as follows. The axioms of 

pairing, of union, and of power-set have an expansive function inasmuch as 

they yield the existence of sets which, when compared to the sets to which 

the axioms were applied, turn out, in general, to contain something new. 

Now we are in need of a restrictive operation in order to obtain sets whose 

extent is less than that of the given set; viz., subsets of it. Therefore we add 

the 

AXIOM SCHEMA (V) OF SUBSETS (or Separation) *). For any set a and 

any condition '’P(x) on* there exists the set that contains just those members 

x of a which fulfil the condition ‘’jB(x). 

This set, which is, clearly, a subset of <7, is denoted by a^. In symbols 

axiom schema V reads 

VZj...Vzn \/a 3vVx [x Cy^xGaA ^2-(x)] , 

where Zj, ...,zn are the free variables of ^(x) other thanx, andjy is not a free 
variable of ^(x) 2). 

Axiom V plays, in many respects, a central role in ZF. This axiom schema 

(together with the axiom schema of replacement below) contains whatever 

is left of the general comprehension axiom in ZF, as distinguished from the 

particular cases of Axioms II—IV. Evidently, Axiom V admits general com¬ 
prehension only for members x of a given set. 

The history of the axiom of subsets is quite interesting and we shall review 
it here briefly. 

In 1908 Zermelo formulated this axiom as follows (translated from German). 
If the statement (f (x) is definite for all members of a set M, then M has always a 

') Zermelo’s term is Axiom der Aussonderung (axiom of ‘separating’, ‘singling out’, 
‘sifting’, or ‘selecting’, viz. selecting those members of a which fulfil the condition T(x). 

) Axiom schema V can be weakened by admitting only conditions T(x) with no 
parameters. From the weakened form of Axiom V one cannot prove directly the exis¬ 
tence of the intersection of two sets (see Theorem 4 below). However, the weakened 
form of Axiom V in conjunction with Axioms II—IV implies the full Axiom V. 
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subset Mq which contains those members of M tor which G(x) is true, and only those 
members. 

This sounds more similar to Axiom V than it really is. The difference between 

Zermelo s axiom of subsets and Axiom V is that the notion of a ‘condition tp(jc) onx’ 

in Axiom V is a well-defined notion, since in the beginning of § 2 we described explicitly 

what our object language is and at the end of § 1 we said that a condition '}?(*) on * is an 

open statement (of our object language) in which the variable * is free; on the other 

hand, Zermelo did not have any particular object language in mind and therefore his 

notion of a statement Cf(x) was quite vague. 

This vagueness of Zermelo’s notion of a statement threatened his system with appear- 

ence of antinomies of the semantical type. To avoid these antinomies Zermelo included 

in his formulation of the axiom of subsets the requirement that the statement G(x) 

should be definite for all members of M. The concept of definiteness was explained by 

Zermelo as follows. 

A question or statement 5 is said to be ‘definite’ if the primitive relations of the 

system ), by means of the axioms and the general laws of logic, determine without 

ambiguity whether 5 is true or not. Likewise, a statement G(x) whose variablex ranges 

over all members of a class SK is said to be definite if this statement is definite for each 

member x of the class 51. For instance, the question whether a eh, as well as whether 

McN, is always definite. 

What Zermelo meant by saying that the truth or falsity of 5 is determined by the 

primitive relations of the system is not that there is a procedure which leads to a decision 

whether if is true or false in a finite number of steps, but that once the primitive 

relation of the system (namely, the membership relation) is “given” then the very mean¬ 

ing of 5 makes it either true or false. Using modem terminology we can say that <5 is 

definite if it belongs to a formal system with an interpretation which makes G true or 

false; likewise, G(x) is definite for a class 51 of objects of the system if G(x) belongs to 

an interpreted formal system which makes G(x) true or false for every member of the 

class IK2). 

Zermelo’s vague notion of a definite statement did not live up to the standard of 

rigor customary in mathematics. This would be considered a serious shortcoming in the 

case of any axiomatic theory, let alone an axiomatic system of set theory, which is 

always viewed more suspiciously because of the antinomy ridden past of set theory. In 

1921/22, independently and almost simultaneously, two different methods 3) were 

offered for replacing in the axiom of subsets the vague notion of a definite statement 

by a well-defined, and therefore much more restricted, notion of a statement. 

The first method, proposed by Fraenkel, uses a certain notion of function 4) which 

is defined by the operations of Axioms II-V. Only statements of the form f(x)B-g(x) 

^What Zermelo meant by ‘system’ is a domain of objects on which the binary 

membership relation is defined. If the system satisfies the axioms it is called ‘set theory’. 

2) This explanation is similar to, but not identical with, Zermelo’s explanation of the 

notion of definiteness in Zermelo 29, p. 341. 

3) Fraenkel 22a and 25; Skolem 23 and 29 (§ 2). 

4) Cf. also Fraenkel 27 (pp. 103-115) and the important supplement given in von 

Neumann 28a. 
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and f(x)$g(x), where / and g are functions, are allowed in the axiom of subsets. This 

method seems to be more special than that of Skolem (which will be discussed immedi¬ 

ately) under which it may be subsumed, but it is sufficient for the purpose of developing 

general set theory *). 

The second method, proposed by Skolem and, by now, universally accepted because 

of its simplicity and generality, is the method adopted in our Axiom V, where the notion 

of a definite statement is replaced by that of a condition on x, i.e., a well-formed formula 

of the first-order predicate calculus with the free variable x, built up from atomic £- 

statements. 

Zermelo, while later admitting the need of formalizing his loose notion of definite¬ 

ness, rejected both methods just described 2), in particular because in his view they 

implicitly involve the notion of finite cardinal (natural number) which should be based 

on set theory. Therefore, within the frame of his axiomatic system he introduces a 

special axiomatization of the notion of definiteness. His system became thus somewhat 

similar to that of Skolem, but it has certain serious shortcomings which render it unde¬ 

sirable. 

Axiom V has the awkward property of being impredicative. (A definition 

of a set is called impredicative if it contains a reference to a totality to which 

the set itself belongs. One may also say that a definition written in symbols 

is impredicative if it defines an object which is one of the values of a bound 

variable occurring in the defining expression.) The significance and the riski¬ 

ness of impredicative definitions and procedures in mathematics, as well as 

various attempts made since Poincare and Russell to eliminate them or to 

render them harmless, will be discussed in Chapters 111 and V. Here just the 

special case of inrpredicativity involved in Axiom V shall be exhibited. When¬ 

ever the condition $(x), used in Axiom V to produce the subset of a given 

set a, essentially refers to the power-set Pa or to all sets, a particular subset 

of a is determined by the totality of all subsets of a, or even by the totality 

of all sets — which is just the procedure against which Russell’s vicious circle 

principle was directed. Naturally a Platonistic attitude would judge this situa¬ 

tion quite differently than a constructive attitude 3). 

Axiom V is distinguished from the preceding axioms in that it is an axiom 

schema, i.e., it consists of infinitely many instances. A very natural problem 

is the question whether Axiom V can be replaced by a finite number of 

(single) axioms. The answer to this question is negative 4), and the reason for 

*) See Fraenkel 25 and - for the theory of ordered and well-ordered sets, not covered 

by Zermelo — Fraenkel 26 and 32. Special existence theorems, e.g., those concerning 

ordinal numbers, need the supplement provided by von Neumann 28a. 

2) Zermelo 29. Cf. the (justified) criticism of this essay in Skolem 30. 

; Cf., for instance, Scholz 50; also Bernays 35. 

) Proved by Mostowski (cf. Montague 57); for improved results see Montague 61 

and Kreisel-Levy 68. The latter paper proves that Axiom V is not implied even by an 
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this negative answer can be attributed to the existence of instances of Axiom 

schema V of an “arbitrarily high degree of impredicativity”. On the other 

hand, the system ot von Neumann- Bernays discussed in §7, as well as that of 

Quine’s New Foundations (see Chapter HI) *), can be presented by means of 

a finite number of single axioms. 

Finally we draw a few simple conclusions from Axioms 1—V. We first 
define: 

DEFINITION. A set n which contains no member (i.e. for which 

“1 3 x(x £//)) shall be called a null-set. 

THEOREM 3. There exists just one null-set. 

Proof. Take tor ^(x) in Axiom V a self-contradictory condition onx, for 

instance x^x’. Then for any a 2) we obtain a subset y=a^ which contains 

no member, i.e. a null-set, and its uniqueness follows from extensionality. 

The null-set will be denoted by ‘O’ 3). According to Definition I on p. 26 

O is a subset of every set. 

THEOREM 4. For every two sets a and b there exists the set of the 

members that belong to both a and b. More generally, for every non-empty 

set t there exists the set of the members common to all members of t. 

These sets are called the intersection (or meet) of a and b, in symbols 

a Fb 4), and the intersection of the members oft, in symbols fl/. (If there is 

no x common to all members of t we have Dr = O). 

Proof. aFb may be defined as that subset of a which by Axiom V corre¬ 

sponds to the condition x£6. As to Dt, since we assumed that t is non-empty 

infinite consistent set r of axioms, if the number of quantifiers in the axioms of r is 

bounded. Nevertheless, by adding new symbols to the language any axiom schema can be 

implied by a finite set of closed formulas (Kleene 52a). For Axiom V this was done in a 

special way that is much simpler than the general way of Kleene, by von Neumann and 

Bernays (§7.2). Mostowski 55 (p. 20) gives a weaker form of Axiom V, due to Tarski, 

which makes the system finitizable. 

*) See the proof in Hailperin 44. The result is rather surprising since Quine’s original 

comprehension schema is impredicative. 

2) That there exists a set (or an object) at all does not follow directly from Axioms 

I—V, which only assert, at most, that if some set, or sets, exist then some other set exists. 

The existence of at least one set is a tacit assumption made at the point where it was 

decided to base set theory on the first-order predicate calculus and let the variables range 

over the sets. The first-order predicate calculus assumes non-emptiness of the range of 

values of the variables (the “universe of discourse”) by allowing to infer “there is an x 

such that...” from “for allx...”. In addition, Axiom VI (of infinity) below asserts explic¬ 

itly that some set exists. 

) Some authors use A, 0 or 0. 

4) Some authors use a*b. 
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it has at least one member; let c be some member of t. Let ^(x) be the 

condition “x is contained in each member of t". By Axiom V the subset c<p 

of c exists and its members are, obviously, just those common to all members 

of t, i.e., = Do 

As to the outer product of pairwise disjoint sets, we have 

THEOREM 5. For every set t there exists the set whose members are just 

those sets which contain a single member from each member of t. 

If the set t is disjointed then the set whose existence was just claimed is 

called the outer product *) of the members of t and is denoted by 11/ 2). 

If t contains the member 0 we have lit = 0. 

Proof. Since the members of the desired set are certain subsets of the 

union Uf we start from the power-set of Lb, i.e. from PUt = T, which exists 

by the axioms of union and power-set. Let the condition (x) be 

“for each sC r the intersection sHx is a singleton”. Then the set TmQT exists 

by Axiom V; its members are those subsets of Lb which contain just one 

member from each member of t. 

The remark regarding 0& is self-explanatory; indeed, since 0 contains no 

member there is no set having a common member with 0. 

Thus, of the three operations on sets introduced in §6 of Theory — union, 

intersection and outer product - the performability of the first has been 

postulated by the axiom of union while the performability of the two others 

within ZF has been proved (Theorems 4 and 5) by means of the axioms of 

power-set and subsets, which were required anyway. (Theorem 5 also enables 

us to show the existence of the insertion set; see T, pp. 111 — 112.) 

Once Axiom V is introduced. Axioms II—IV can be replaced, as easily 

seen, by the following weaker axioms, respectively: For any two elements a 

and b there exists a set y which contains a and b (and, possibly, additional 

members); for any set a there exists a set which contains all the members of 

the members of a; for any set a there exists a set which contains all the 

subsets of a. 

Let us now explore some consequences of Axiom V which we may call 

negative consequences, at least as far as set existence goes. 

THEOREM 6. There is no set which contains all sets. Furthermore, given 

any set a there is no set which contains all sets which are not members of a 

') The term “Cartesian product”, used for the outer product in Fraenkel-Bar-Hillel 

58 and in T, pp. 88-89, has been withdrawn because it is nowadays used for a somewhat 

different operation (see, e.g., §3.5). 

2) It was denoted in Fraenkel-Bar-Hillel 58 and in T by Pa; we now use P for the 

power-set operation. 
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(in particular, there is no set which is the complement of a). 

Proof. Assume that v is a set which contains all sets. Let ^(x) be the 

condition xtfix. By Axiom V there exists the set u<p, i.e., the set of all sets 

which are not members of themselves, which contradicts Theorem 2. Let a 

be any set, and assume that there is a set b which contains all sets which are 

not members of a. Then, as we saw above, by the axioms of pairing and union, 

aCb is also a set. But aCb is a set which contains every set, contradicting 

the first part of our theorem. 

3.5. Relations, Order, Functions. Even though Axioms I—V do not suffice 

for the full development of set theory, as we shall see further on, they are all 

that is needed for the reduction of various notions of mathematics and set 

theory to the notion of set, and for establishing the elementary properties of 

these notions. 

In §3.2 such a reduction has already been carried out for the notions of 

an ordered pair and an ordered n-tuple, in general. We now define: 

DEFINITION. The Cartesian product SXT of the sets S and T is the set 

which consists of all ordered pairs (x,y>, where xCS andy 6 T 1). 

The existence of SXT is proved as follows. If xCS and yCT then 

x,y<ESUT, {^},{x,y}eP(5Ur), (xj)={{x},{xj}}ePP(5Ur). Let 

<J$(z) be the condition on z given by “z is an ordered pair (x,y) such that 

xCS and yCT'\ (PP(NU r))<p is, by Axiom V, the required set SXT. 

Mathematicians are sometimes in need of “several different copies of the 

same set T”. This seems to be forbidden by the axiom of extensionality, yet 

the notion of an ordered pair and the operation of Cartesian product give us 

a way of getting around the restriction imposed by this axiom. For every 

s<ES the subset {5} XT of SXT (which consists of all ordered pairs <s,y), 

where y G71) can be considered as a copy of T with the memberyCTbeing 

represented by the pair (s,y)C {s} X T. Obviously, the representatives <5,yx), 

(s,yf> of different members y^ y^ of T are different. Also if , $2 are two 

different members of S, then the “copies” {sj}Xr and of T are 

disjoint. 

The next notion with which we shall deal is the notion of a binary relation 

(henceforth just relation). A general relation cannot be viewed as an element 

for the same reason that a general collection cannot be viewed as an element, 

namely, the occurrence of antinomies2). Only those relations 9\ for which 

1) This operation is similar to, but not identical with the operation of Cartesian 

product of T, which is called here ‘outer product’. 
2) Russell’s antinomy can be trivially adapted to relations as follows. Let r be the 
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there is a set which consists of all x’s and y’s such that x stands in the 

relation to y (this set is called the field of the relation ) will be repre¬ 
sented by sets, namely, by the set of all pairs <x,y> such that x and y are in 

the relation 9r1). Accordingly we define 

DEFINITION. A set r is said to be a relation if all its members are ordered 

pairs. 
We shall still speak also of relations which are not sets, or are not repre¬ 

sented by sets. General relations are given in ZF by a condition ^3 on two 
variables, such as a condition $(x,y) on x andy. E.g., the G-relation is given 

by the condition ‘xGy’ on x andy. Whenever we speak of a relation which is a 

set, as in the definition above, we shall denote it with a lower-case 

letter, as in ‘the relation f. 

Corresponding to our informal statement that if the field of a relation is a 

set then the relation can be represented by the set of all ordered pairs (x,y> 

such thatx andy are in the relation, we have 

TE1EOREM (-SCHEMA). For any condition ^?(x,y) onx and y, if there is 

a set z which contains all elements x and all elements y such that ^(x,y) 

holds, then there exists a set u which consists of all pairs (x,y> such that 

^$(x,y) holds. 

Proof. If z is a set as assumed, then every pair <x,y> for which ^(x,y) 

holds is a member of z Xz. Let £i(t) be the condition on t given by lt is an 

ordered pair (x,y> such that ^(x,y) holds’. (zXz)Q is the required set. 

DEFINITION. The domain of the relation r is the set u of all elements x 

for which there is a y such that (x,y>Er 2). The range of the relation r is the 

set v of all elementsy for which there is an element x such that <x,y)Er. The 

field of the relation r is the union of its domain and its range. (The existence 

of such sets u and v follows easily from the axioms of union and subsets.) 

DEFINITION. We say that a relation r is on the seta if r is a subset of a Xa, 

i.e., if the field of r is a subset of a. 

We shall now see how the notions of order and an ordered set can be 

reduced to the notion of set. 

DEFINITION, r is said to be an order (ordering relation) on the set a if r is 

a relation on a and the following (a)—(c) hold 3). 

relation which holds between x and y just in case x and y are relations and x does 

not stand in the relation x to y. As in Russell’s antinomy we obtain that r stands in the 

relation r to itself just in case it does not stand in the relation r to itself (Whitehead- 

Russell 10-13 I, Ch. II, VIII). 

') Ternary relations, quaternary relations, etc. are treated similarly. 

) Several authors refer to our domain as range and to our range as domain. 

3) This way of representing order by a set is due to Hausdorff 14, pp. 70 f. A differ- 
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(a) . If and (y, z)Er then Or,z)Gr (transitivity). 

(b) . For no x does U,x)Gr (irreflexivity). 

(c) . For all ditterent x and y in a, either (x,_y) or {y, x) Er (comparability). 

r is said to be a well-ordering of a if it is an order on a and 

(d) . Every non-void subset b of a (i.e., Qi-bCa) has a first member x in the 

order r, i.e., for every member y of b other than x we have <x,y)Er. 

An ordered set is an ordered pair (a,r) in which r is an ordering relation on 

a1)- A well-ordered set is an ordered set (a,r) in which r is a well-ordering 

of a. 

One of the most fundamental notions in mathematics is that of a func¬ 

tion 2). A function F is, roughly, a rule which correlates with each element x 

out of some collection a single element 3) denoted by F{x). The function F 

can also be viewed as a binary relation which holds between jc and y just 

in case y is F(x). The characteristic property of such relations 9t is that for 

every element jc there is at most one element y which stands in the relation 

to x. (We said ‘at most one element’ rather than ‘exactly one element’ since 

the function is not necessarily supposed to be “defined” for all elements jc.) 

DEFINITION. A set / is said to be a function if /'is a relation and for every 

x in the domain of / there is exactly one y such that <x,jp)£/; this y is 

denoted by fix). A function / is said to be a one-one function if for any two 

different members jc and z of its domain the values f(x) and f(z) are different 

too. 

As in the case of the relations we shall still speak of functions which are 

not sets4). General functions are given in ZF by conditions ))B(x,_y) on two 

ent way of representing an ordering relation by the set of.all the “initials”, was initiated 

by Hessenberg 06 and completed by Kuratowski 21 (for details see Fraenkel-Bar-Hillel 

58, pp. 127—131). The present method is preferable because of its generality (it applies 

to all relations on a set, not just ordering relations) and its simplicity. 

1) It is quite common to refer to this set as ‘the ordered set a'\ Notice that if c and s 

are two different orders on the set a then (a, c) and (a, s) are two different ordered sets 

and both are referred to as ‘the ordered set a\ Yet there is nothing wrong with this way 

of speaking as long as it is clear which ordering relation r one has in mind. 

2) von Neumann 25 and 28 even developed set theory with function, rather than set, 

as its basic notion, thus making it the basic notion of mathematics as a whole. (For a 

simpler development of the same idea, see R.M. Robinson 37.) For a newer attempt to 

base set theory on a generalized notion of function (abstract categories) see Lawvere 64 

and 66, and other papers by the same author. 

3) We shall not use the term ‘function’ for the so-called many-valued functions, which 

are just relations. 

4) An example very similar to that of footnote 2 in p. 41 shows that not all functions 

can be regarded as elements. 
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variables such that for every element x there exists at most one element y for 

which holds. Such conditions will be referred to as functional 

conditions. Whenever we speak of a function which is a set, as in the 

definition above, we shall denote it with a lower-case letter, as in ‘the 

function /”. 

The notion of equinumerosity of sets is now defined as follows. 

DEFINITION. A set S is said to be equinumerous (equivalent) to a set T if 

there is a one-one function / whose domain is S and whose range is T. Such a 

function /is said also to be a one-one mapping of S on T. 

We saw that various mathematical notions discussed in the present sub¬ 

section were successfully reduced to the notion of set. That general relations 

and functions could not be reduced to sets can by no means be regarded as a 

failure; this is prevented by exactly the same reason that prevents the general 

collection from being a set, namely the antinomies. We can still claim success 

in the treatment given here to the notions of relation and function because 

in our axiomatic framework we can deal with relations and functions without 

introducing these notions as primitive notions. They are handled either as 

sets, according to the definitions above, or, in the general case, as conditions 

on two variables. 

Looking back we cannot but wonder that the simple notion of the purely 

extensional set turned out to be so powerful as to encompass so many 

mathematical notions which are, at least at first sight, much more complicated 

than the notion of set. We shall also see later (in §5) how the notions of 

cardinal number, ordinal number and order type can be reduced to the notion 

of set. 

3.6. The Axiom of Infinity. Axioms I—V (even with Axioms VII—IX added) 

do not enable us to prove the existence of an infinite set. Let us say that a set 

a is hereditarily finite if it is finite, its members are finite, the members of its 

members are finite, etc. (or, in other words, if the sets a, Ua, U Ua, ... are all 

finite). We notice that each one of Axioms II—V yields hereditarily finite sets 

when applied to such sets. Therefore, although we can prove by means of 

Axioms I—V the existence of infinitely many sets, e.g., 0, {0},{{0}}, ..., we 

cannot prove by means of these axioms the existence of a set which is not 

hereditarily finite 1). 

As long as we are interested only in elementary arithmetic and in finite 

sets, Axioms I—V are enough (or even just Axioms I, V and the axiom ‘for 

!) The arguments given here are an informal version of the proof of Bernays 37-54 

VI that the axiom of infinity is independent of the other axioms of set theory. 
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every a and b there exists a set c which contains exactly all the members of a 

and b itselt — i.e., a U {6}’) *). Dealing with natural numbers without having 

the set of all natural numbers does not cause more inconvenience than, say, 

dealing with sets without having the set ol all sets. Also the arithmetic of the 

rational numbers can be developed in this framework 2). However, if one is 

already interested in analysis then infinite sets are indispensable since even 

the notion of a real number cannot be developed by means of finite sets only. 

Hence we have to add an existence axiom that guarantees the existence of an 

infinite set; most simply, of a denumerable set. 

Before we proceed let us define the terms ‘finite’, ‘infinite’, ‘denumerable’ 

and ‘reflexive’, some of which we have already used. Since we shall not use 

these notions in the principal versions of the axioms, we shall not give a 

rigorous definition of these notion in ZF, but we shall remind the reader of 

those detinitions of these notions in informal set theory which can easily be 

adapted to axiomatic set theory. 

A set a is called finite if there exists a natural number n such that a is 

equinumerous with the set {0, 1, 1} of all natural numbers which are 

smaller than n, i.e., the members of a can be put into a one-one correspon¬ 

dence with the natural numbers less than n. (As mentioned above, the notion 

of a natural number can be developed on the basis of Axioms I—V) 3). a is 

called infinite if it is not finite. A set a is called denumerable if it is equi¬ 

numerous with the set of all natural numbers. (We still do not know whether 

there is a set which is the set of all natural numbers.) A set is called reflexive if it 

is equinumerous with a proper subset of itself 4). By means of Axioms I—V 

one can prove the following statements5). Assuming that the set of all natural 

numbers exists, a set is reflexive if and only if it has a denumerable subset 

J) Cf. Zermelo 09, Bernays 37—54 II (or Suppes 60), Quine 63. However, as a conse¬ 

quence of the method of Ackermann 37, we shall not be able to prove without axiom VI 

the theorems of arithmetic which are proved in analytic number theory but cannot be 

proved by elementary arithmetical proofs — for the existence of many such theorems see 

Kreisel-Levy 68. 

2) Quine 63, p. 119. 

3) Several definitions of the notion of a finite set, equivalent to the present one but 

not using natural numbers, were proposed, among others, by Zermelo, Russell, Sierpinski, 

Kuratowski, and Tarski. A complete survey is given in Tarski 25. Suppes 60, § 4.2 

develops the theory of finite sets within axiomatic set theory. 

4) This was introduced as the definition of the notion of infinite set by Peirce 33 

(pp. 210—249, 360 - cf. Keyser 41) and Dedekind 1888. Cf. also Bolzano 1851 (§20) 

and Cantor 1878. 

5) T, §2.5 and §3.5. Cf. Suppes 60, §5.3 (where the term ‘Dedekind infinite’ is 

used for ‘reflexive’). 
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(hence, trivially, every denumerable set is reflexive). Every reflexive set is 

infinite, in particular, all denumerable sets are infinite. 

Dedekind, just like Bolzano *) four decades before, believed that he 

had proved the existence of infinite sets. However, not only are their 

methods incompatible with the restrictions of our axiomatic system but 

they are just those that lead to the logical antinomies (Chapter I). Dedekind, 

for instance, contemplated the set T whose members are all “objects of 

thinking” and proves its reflexiveness as follows. If t is any member of T, the 

thought Y is an object of thinking’ is also a member of T. Hence the totality 

of all thoughts with the particular form Y is an object of thinking’ defines a 

proper subset Tq of T, and a one-to-one mapping between T and Tq is formed 

by correlating with every tGT the member of T() that expresses Y is an object 

of thinking’; therefore T is a reflexive set. Yet the set T is of the type that 

involves antinomies. In fact, after the publication of Russell’s antinomy 

Dedekind withdrew for some time his work — whose eminent importance, 

however, is independent of the mentioned argument. 

From the axiomatic viewpoint there is no other way for securing infinite 

sets but postulating them 1 2), and we shall express an appropriate axiom in 

several forms. While the first corresponds to Zermelo’s original axiom of 

infinity, the second implicitly refers to von Neumann’s method of intro¬ 

ducing ordinal numbers 3). 

AXIOM OF INFINITY Via4). There exists at least one set Z with the 

following properties 

(0 oez 
(it) if x GZ, also {x } GZ. 

AXIOM OF INFINITY VIb. There exists at least one set Zj with the 

following properties 

(Hi) oeZj 

(iv) if x GZj, also (x U {x})eZj 5). 

1) Dedekind 1888, §5; Bolzano 1851, § 13; Russell 03, § 339. Cf. the more elaborate 

examples given in O. Becker 27 (pp. 98 ff. of the book edition) and Scholz 28. 
2 

) See, however, Bernays 61a, where the existence of infinite sets follows from an 

axiom schema which does not directly postulate their existence. A similar situation 

occurs within the set theory of Ackermann (§7.7). 

) Zermelo 08a, von Neumann 23 (for von Neumann’s ordinals see § 5.2). 

) Axioms Via and VIb were called Axioms VII and VII*, respectively, in Fraenkel- 
Bar-Hillel 58. 

5) A stronger axiom schema of infinity than VI is introduced in Fraenkel 27 (p. 114, 

Axiom VIIc). Fraenkel’s axiom is equivalent, on the basis of axioms I-V, to the schema 

which asserts, roughly, that every “denumerable collection of elements” is a set (Bernays 

37-54 III). Fraenkel’s axiom is a direct generalization of Via or VIb, in that instead of 
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AXIOM OF INFINITY Vic. There exists at least one set Z2 with the 
following properties 

0) oez2 
(vi) if yEZ2 and y£Z2, also (x U {j})EZ?. 

In symbols, 

Via. 3z[OEz aVx(xEz-^{x}Gz)]. 

VIb. 3z[OEz aV.x(xEz^xU{x}Ez)]. 

Vic. 3z[OGz A VxVy(x Gz Ay Gz->x U {y }Gz)]. 

Vic implies Via and VIb, since a set Z2 as in Vic obviously satisfies the 

requirements for Z in Via and for Zj in VIb. Axioms Via and VIb have the 

advantage of assuming less than Axiom Vic but, on the other hand, the choice 

of the basic operation {x} in Via and xU{x} in VIb is somewhat arbitrary, 

whereas, as it turns out, Vic asserts the existence of more “rounded off’ 

sets *). 

The “first” members of any Z satisfying Via are evidently 0, {0}, {{0}}, 

{{{0}}}, etc., and they are different from each other; for instance, {0}A0 

because the former contains a member, viz. O, and the latter none. As to Zj, 

OeZj implies {0}GZj. Hence also {0} U {{0}} = {0,{0}}, and {0,{0}}U 

{{0, {0}}} = {0, {O}, {0, {0}}}, etc. are members of any Zj that satisfies VIb. 

In drawing the next conclusions from the axiom of infinity we content 

ourselves with the form Via; mutatis mutandis the results hold true for the 

form VIb as well. 

By Axiom Via there is a set Z which satisfies (/) and (ii). Let Z* be the 

intersection of all sets Z which satisfy (/) and (ii). To prove the existence of 

Z* from our axioms we let If? (x) be the statement “x is a member of every set 

Z' which satisfies (/) and (//)”; Zq3 is obviously the required set Z*. Clearly, 

Z* itself satisfies (/) and (ii); and since Z* is obviously a subset of every set 

Z which satisfies (/) and (ii), it is the least set with these properties. 

Proceeding from an intuitive point of view, let us consider the set W which 

consists exactly of the sets O, {0}, {{0}}, {{{0}}}, ... . W has indeed the 

properties (i) and (ii) of Via and is included in any set Z which has these 

properties. The same observation was also made above concerningZ*, there¬ 

fore we have WCZ*, Z* C W and, by extensionality, Z* = W. Thus we can 

write 

z* = {0, {0},{{0}},{{{0}}},...}. 

the functions {x} or x U {x} of x, more general functions are admitted. Fraenkel’s 

axiom follows from Axioms I-VII, but not from I-VI (since the system n2 of Bernays 

37-54 VI satisfies Axioms I-VI, but does not satisfy Fraenkel’s axiom). 

1) See footnote 2 on the next page. 
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Z* can be conceived as the set of all non-negative integers, for we may 

denote the null-set 0by the numeral ‘0’, {0} by ‘l’.and generally (x) by ‘the 

successor of x’ in the terminology of Peano’s axioms for natural numbers *). 

Starting from Axiom VIb instead of Via we obtain instead of the set Z* 

the set 

Zf = {0, {0}, {O, {0}}, {O, {O}, {0,{0}}}, ...} 

which may as well be conceived as the set of all non-negative integers. In fact 

the members of Z\ are the finite ordinals of §5.2. Of any two different 

members of Z\, one is both a member and a subset of the other, whereby a 

natural “order” is established in Z\ 1 2). 

Z*, as well as any set Z which satisfies (/) and (ii) of Via, is reflexive, and 

hence infinite, since by correlating each xEZ with (x}EZ we get a one-one 

mapping of Z onto a proper subset of itself which does not contain 0. The 

same holds true for any set Zj as in VIb, in particular for Z*, (and, a fortiori, 

for any set Z9 as in Vic). 

Hence versions Via—Vic of the axiom of infinity only require an initial 

member 0 and a primitive function whereas the mapping needed is not postu¬ 

lated but constructed 3). 

One can produce a great many different versions of the axiom of infinity. 

Here, we shall mention only two more versions 4): 

VId.. There exists a reflexive set. 

Vie. There exists an infinite set. 

On the basis of Axioms I—V and the axiom of replacement, introduced 

below, all of Axioms Via—Vie can be shown to be equivalent with each 

other5). Without the axiom of replacement one can show that Axioms VId 

1) Peano’s axioms consist of the following requirements concerning the set N of all 

natural numbers with the successor operation on it. 

a) There is a particular number, called 0, which is not the successor of any number, 

b) Each number other than 0 is the successor of at most one number, c) (Principle of 

mathematical induction) Every subset of N which contains 0 and which contains with 

each number also its successor coincides with N. 

2) If we go through the same construction, starting with Axiom Vic, we obtain a set 

Z\ which turns out to be the set R(lc) of §5.3. It follows easily from the axiom of 

foundation that this is exactly the set of all hereditarily finite sets. 

3) This is essentially the method of Dedekind 1888. 

) Bernays 37-54 II, Bourbaki 56. Axiom V.l of von Neumann 25 is equivalent to 
these on the basis of Axioms I—V. 

) Cf. any development of set theory which uses Vie, such as Bourbaki 56. 
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and Vie are equivalent '); and that neither of Via and VIb does imply the 

other2). Since, as we saw above, Vic implies Via and Vlb, and each one of 

Via, VIb implies VId and Vie, it follows that, on the basis of Axioms I-V 

alone, neither ot Via, VIb implies Vic, nor does either follow from VId or 

Vie. Axioms VId and Vie have the advantage of lack of arbitrariness and of 

assuming less than each of Vla-VIc. The disadvantages of VId and Vie are 

their reliance on the relatively complicated notions of finiteness and reflex- 

ivity, as opposed to the simple notions used in Vla-VIc, and the fact that the 

definition of the notion of a real number by means of Axioms I—V, VId (or 

Vie) is rather clumsy. 

In our heuristic classification of the axioms, as to whether they are 

instances of the axiom schema of comprehension or not, the axiom of 

infinity can, to some extent, be viewed as such an instance. Each of Via and 

VIb can be stated as “there exists a set which consists of all natural numbers”, 

for the respective notion of natural number, and Vic can be stated similarly. 

Unlike the case of the axiom of infinity, the authors know no proof of 

Axioms VIII and IX from the axiom schema of comprehension which does 

not make an outright use of the idea behind Russell’s antinomy or some 

similar antinomy. 

3.7. The Axiom Schema of Replacement. The axiom of infinity, which in 

itself guarantees only the existence of denumerable sets, when added to 

Axioms I—V enables us to obtain more extensive sets, e.g., the sets 

... where Z^> is the power-set of the set Z* above, and, for k> 2, 

ZU+1 1 =PZ^3. Nevertheless, Axioms I- VI are not sufficient to guarantee the 

existence of certain kinds of sets whose counterparts in Cantor’s theory have 

never been questioned. For example, as was mentioned above, one cannot 

prove from Axioms I—V, Via the existence of Z\. Presumably the simplest 

example of a set whose existence cannot be proved even by means of Axioms 

I—Vic is the denumerable set 

A = {Z*,Z(2\Z(3\ ...} . 

*) VId implies Vie since every reflexive set is infinite. To see that Vie implies VId 

we notice that if a is infinite then, even though one cannot prove, withoilt using also the 

axiom of choice (VIII), that a is reflexive, one can still prove that PPa is (Tarski 25). 

2) This is proved by methods similar to that used at the end of Bernays 37-54 VI. 

The result relies on the assumption that the axiomatic system which consists of Axioms 

I-V and any of Axioms Vla-VIe is consistent, i.e., free of contradiction. (If one such 

system is consistent any other such system is consistent too.) 
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The significance of the set >1 is emphasized by the fact that the union-set of A 

has a cardinal greater than the cardinal of any member of A (hence a cardinal 

> ft ), while our previous axioms are not strong enough to yield a set of this 

cardinality 1 ). 

In addition to the insufficiency of our axioms with respect to particular 

(extensive) sets, the general method of definition by transfinite induction 

and, in particular, the proof that to every well-ordered set there is a corre¬ 

sponding ordinal number (§5.2) 2) cannot be carried out on the basis ot 

Axioms 1—VI. The required supplement is the following axiom schema of 

replacement. 

Before we present a formal version of the axiom of replacement let us give 

an intuitive account of it. As was asserted on p. 32, our guiding principle in 

admitting axioms of comprehension is to admit only axioms which assert the 

existence of sets which are not too “big” compared to sets already ascer¬ 

tained. If we are given a set a and a collection of sets which has no more 

members than a it seems to be within the scope of our guiding principle to 

admit that collection as a new set. We still did not say exactly what we mean 

by saying that the collection has “no more” members than the set a. It turns 

out that it is most convenient to assume that the collection has “no more” 

members than a when there is a “function” which correlates the members of 

a to all the sets of the collection in such a way that to each member of a 

corresponds a set in the collection and each set in the collection is correlated 

to one or more members of a. However, even though applications of the 

axiom of replacement do not seem to directly admit sets of larger cardinals 

than those already available, the combination of this axiom with Axioms 

I—VI is very powerful and enables us to prove the existence of sets with 

extremely large cardinals (whereas by means of Axioms I—VI alone we could 

not get even sets with the cardinal N ). 

Let us use “^(t,x) is a functional condition on the set a" as short for “for 

every set t which is a member of a there is at most one set x such that ^(r, x) 

holds”. 

AXIOM SCHEMA (VII) OF REPLACEMENT 3) (or Substitution). 

For any set a, if ^B(Cx) is a functional condition on a then there exists a set 

1) Bernays 37—54 VI (take the system n2 with the generalized continuum hypothesis 
added). 

2) von Neumann 23 (see T, pp. 181 ff, and Suppes 60, Ch. 7). In the system tt2 of 

Bernays 37-54 VI in which Axioms I-VI hold, but not Axiom VII, there are well- 

ordered sets of every denumerable order type, but the system does not contain even the 

ordinal w2. (Hence, obviously, definition by transfinite induction fails in it.) 

3) It was suggested first by Fraenkel 22 and, independently, by Skolem 23 (No. 4). 

Previous hints are to be found in Cantor 32 (p. 444) and Mirimanoff 17 (p. 49). 
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which contains exactly those elements x for which sJ?(f,x) holds for some 
tea. 

In other words, il the domain of a function is a set, its range is also a set. 
In symbols, 

Vz j...Vz;? Va[X/u Vu Vw(zr 6 a A ip(ii, u) A ip(u, w)-> v — w)-> 

3vVx(x 6y ^ 3 t(tea A y{t, x)))] 

where u, v, w,y are not free in the formula <p(t,x) andzj, ...,zn are the free 

variables of ip(f,x) other than t andx 1’2). 

In view of the explanation which preceded the formulation of Axiom VII 

it is clear why we made the requirement that ^(f,x) should be a functional 

condition on the set a. Indeed, if this requirement were to be dropped from 

Axiom VII contradiction would ensue; by applying Axiom VII to the condi¬ 

tion t Cx, which is obviously not a functional condition on any set a, and by 

taking for a the set {0}, one obtains the existence of the set of all setsx such 

that OCx, which is just the set of all sets, contradicting Theorem 6 3). 

In order to present Axiom VII as an axiom of comprehension we can also 

formulate it as 

VII*. For any set a there exists a set which contains exactly those sets x for 

which there is a tea such that ^?(r,x) holds, and for no s^x does ^(7, s) 

hold, 

where ^(f,x) is any condition (not necessarily functional). 

VII* obviously implies VII. To see that VII implies VII*, consider any condition 

$(f, x). Let 1Q(r, x) be the condition “T(A x) holds and for no does T(A A hold”. 

!) ip{u, v) denotes the formula obtained from ^p(t,x) by substituting u and v for all 

free occurrences of t and x, respectively, in y?(f, x) (if u or v occurs in y>(?, x) as a bound 

variable it should be replaced by another variable before substitution). <p(t, w) is ob¬ 

tained similarly. 

2) As in the case of the axiom of subsets, if we weaken Axiom VII by admitting only 

conditions qs (?, x) without parameters we obtain an axiom schema which still implies 

VII (by means of Axioms II—IV). Also, if we weaken Axiom VII by requiring T(E x) to 

be a one-one functional condition on a (i.e., T(A x) is a functional condition, and if, for 

s, t^a, T(s,x) and T(f,x) hold then s~t), then the axiom schema thus obtained is 

equivalent to VIE To show that we proceed as follows. Let b be the set {^|iea}, where 

a i = (si sea A 3x(T(t, x) AT(E x)}, i.e., a( is the set of all members s of a for which the 

functional condition T yields the same value as for t. The existence of b follows from the 

axioms of power-set and subsets. VII is obtained by applying to the set b (in place of a) 

the functional condition D(u, x) given by “there is a t^u such that T(E x)”. 

3) Suppes 60, §7.1. 
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G(t,x) is, obviously, a functional condition on any set a. Substituting Q(f, x) for 

T(t, x) in VII we get VII* (with ip(f, x)). 
Another form of the axiom schema of replacement which is very common in the 

literature is the following, in which the condition is required to be functional on the 

whole universe, not only on a: 

Vzj...Vzn[V«VuVw(y>(«, u) Aif{u, w)^v = w)-> 

Va3>’Vx(xey <-> 3r(rea A^(f,x)))] 

where u,v, w,y are not free in the formula y{t,x) and zlt ...,zn are the free variables 

of y(t,x) other than t and x. This version is easily shown to be equivalent to VII. 

Axiom schema VII implies the axiom schema of subsets (directly) and the 

axiom of pairing (by means of the power-set axiom) 1). 
To prove the axiom schema of subsets we proceed as follows. Given any 

condition j$(x) we take for Q(?,x) the condition ‘V = x and ^(x)”, which is, 

obviously, a functional condition on any set a. Substituting Q(f,x) for ^(f,x) 

in VII we get that there exists a set which contains exactly those sets x for 

which D(f,x) holds for some (Ga, i.e., there exists a set which contains 

exactly those setsx which are members of a and for which ^3(x) holds. 

To prove the axiom of pairing we proceed as follows. By Theorem 3 

(p. 39) which uses only the axiom of subsets, which was just shown to follow 

from Axiom VII, the null-set 0 exists. By the power-set axiom there exists 

the set PPO— {0,(0}}. Let b and c be any sets. Let ^(f,x) be the condition 

“f — 0 and x = b or t= {0} and x = c”; this is, obviously, a functional condi¬ 

tion on any set a. Substituting {0, {0}} for a in VII and taking ^B(f, x) as given 

here we get the existence of a set which contains just b and c. 

Even though Axiom VII implies the axioms of pairing and subsets we shall 

not drop the latter axioms from our list. When one studies axiomatic set 

theory along the lines of the system ZF one encounters the axioms of pairing 

and subsets already in the beginning, where they are indispensable. Axiom VII 

is usually encountered much later, when more advanced topics are discussed. 

Also the axiomatic system which consists of Axioms I—VI (with, possibly, 

one or two of Axioms VIII and IX) is often encountered in the literature 2’3). 

A version of the axiom of replacement which is equivalent to VII on the basis of the 

axiom schema of subsets, but which does not imply the axiom schema of subsets, not 

even by means of Axioms I-IV, VI, VIII, and IX, is the following. 

J) Zermelo 30. 
2 

) Such a system is usually called Zermelo’s system and is denoted by Z. 

d) For a stronger version of Axiom VII which implies also some of the other axioms, 

see Bourbaki 54 (II, § 1, No. 6), Ono 57, A. Levy 60. For a weakening of Axiom VII 

which still retains much of the power of this axiom see Levy-Vaught 61. 
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For any set a, if 5? {t, x) is a functional condition on a then there exists a set which 

contains every set x for which there is a t<Ea such that 5)3 (t, x) holds 1). 
The only ditlerence between this and VII is that the set whose existence is claimed is 

now allowed to contain members x other than those for which there exists area such 

that $(r,x) holds. (Compare the alternative formulations of Axioms II—IV on p. 40). 

Axiom VII is in a certain sense also an axiom of infinity since together 

with Axioms I—VI it guarantees the existence of not just infinite but even 

extremely comprehensive sets 2). However, once the axiom of infinity is left 

out, Axiom VII no longer implies the existence of any infinite set, not even 
by means of Axioms I-V, VIII and IX 3). 

One may ask here, as we did in the case of Axiom schema V, if, in the 

presence of Axioms I—VI (and possibly also VIII and IX), Axiom schema 

VII can be replaced by a finite number of single axioms. The answer is, again, 
negative 4). 

§4. THE AXIOM OF CHOICE 

4.1. Formulation of the Axiom. Its Introduction into Mathematics. After 

having obtained, by means of the axiom of subsets, those subsets of a given 

set which are determined by a definite condition we raise the question 

whether possibly other subsets, not obtained in this way, may be conceived 

and admitted; and if so, how far such subsets are necessary for developing 

set theory. The present section deals with an axiom which yields such subsets. 

We start from a disjointed set t. According to Theorem 5 on p.40 the 

outer product 14? exists and its members, if any, are those subsets of Ut 

whose intersections with each member of t are singletons. We shall call the 

members of Wt selection sets of t. If t does not contain the null-set among its 

members the question arises whether fir might be the null-set O, i.e., whether 

J) This is a result of A. Levy not yet published. The proof uses the method of forcing 

of Cohen 66. 

) From the viewpoint of cardinals one may say that Axiom IV permits us to advance 

by single steps, while Axiom VII, in conjunction with III, allows us to progress to the 

limit of an infinite progression of such single steps. See A. Levy 60 for a formulation of 

the conjunction of Axioms VI and VII which stresses its similarity to stronger axioms of 

infinity. 

3) Bernays 37—54 VI, system n0. 

4) This was proved by Montague 61a (relying on the assumption that ZF is free of 

contradiction — otherwise Axiom VII can be replaced by the axiom 0=^0). For stronger 

results in this direction see A. Levy 65b and Kreisel—Levy 68. 
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there are no selection sets of t. The proof of Theorem 5, while showing that 

OEr implies llr=0, does not answer our question; though one would expect 

that, in the present case where t does not contain O, Y\t=£0, no valid argu¬ 

ment for it has been given so far. 

The guess that there exists a selection set of t relies on the following 

argument. Since each member of t contains at least one member one might 

choose one arbitrary member in each yEr. If there exists a set c which 

contains just all those arbitrary members, c is a subset of Ur and is indeed 

a selection set of t. In this case we therefore have cETIr, i.e. rir^O, which is 

the desired result. If Cantor’s “definition” of set (p. 15) is interpreted liberally 

enough, this introduction of the subset c of Ur can be considered as a valid 

argument which establishes the existence of the set c in naive set theory. 

In our axiomatic theory, this way of introducing the subset c of Ur is not 

in accordance with the axiom of subsets *) — except for the trivial case that 

every member of t contains one member only, in which case c=Ur satisfies our 

condition. In the general case, the subset c of Ur has not been defined by 

a definite condition $(x) that is characteristic, among allxEUr, of the xEc 

and only of them. On the contrary, suppose cC Ur is of the desired kind and 

y Ec belongs to a certain yEt; then, replacing y by a different member y' of 

the same y Er will yield a new subset c'cUr which differs from c, while c 

is also a subset of Ur with the desired property. Thus, contrary to the subsets 

postulated by the axiom of subsets, the subsets of Ur needed for our purpose 

are not uniquely determined. 

Of course, it is quite possible that some subset of Ur with the desired 

property may be obtained from the axiom of subsets or from other axioms 

and its existence will then guarantee that flrv^O. For example, let r be an 

infinite (say, a denumerable) disjointed set (r1? r2, ..., tk,...} whose members 

tk are non-empty sets of natural numbers. The existence of a selection set of t 

follows from the axiom of subsets applied to Ur, where j]B(x) is the condition 

given by “there is a member y of r such that x is the least number in the set 

y”. The subset of Ur thus obtained contains from every member tk of r just 

the least number in it. What enables us to get here a selection set by means 

of the axiom of subsets is the fact that in every non-empty set of natural 

numbers there is a unique least number. 

The situation is entirely different when t is an infinite set whose members 

!) The axiom schema of comprehension does not seem to be more useful here than 

the axiom of subsets since the required set c is anyway a subset of Ur (unless, of course, 

one uses the axiom schema ot comprehension in a way which makes use of the idea 
behind some antinomy). 
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are arbitrary sets of real numbers. Then, in general, we do not know a rule 

which simultaneously assigns to each member of t one of its members (except 

for the case that the sets have a special quality which enables us to form such 

a rule; for instance, when each member of t contains algebraic numbers, in 

which case such a rule can be obtained via any enumeration of the set of all 

algebraic numbers — T, p. 42). Therefore, the axiom of subsets does not seem 

to help us to get a selection set of t in this case, and, a fortiori, in more 

general cases. If we want to always have a selection set for t we are in need of 

a special axiom, namely the 

AXIOM (VIII) OF CHOICE !). If t is a disjointed set which does not 

contain the null-set, its outer product fit is different from the null-set. In 

other words, among the subsets of Ur there is at least one whose intersection 

with each member of t is a singleton. 

Axiom VIII may be written in symbols in the form 

Vi[Vx[xGf^ 3z(zEx) AVy(y£i 3z(zEx Az£y))]-» 

3uVx(x Et~> 3wVu[u = w^(uGm au£x)])] . 

In view of Theorem 5 on p. 40, Axiom VIII yields: 

The outer product of the members of a disjointed set t equals O if and only 

ifOGr. 
The terms ‘choice’ and ‘selection set’ originate from a psychological con¬ 

sideration which was formulated by Zermelo 2) as follows: One may express 

the axiom (VIII) also by saying that it is always possible to choose from 

each member M,N,R, ... of t a single member m,n,r, ... and to collect all these 

into a set. (The disjointedness of t guarantees that the set thus obtained has 

no more than one member in common with each member of t.) The conse¬ 

quences of this psychologistic formulation, which is liable to misunderstand¬ 

ing, will be described in §4.4 and §4.6. 

Using the notion of function one may express Axiom VIII as follows: 

VIII*. For any disjointed set t in which the null-set is not contained, there 

exists a function f (at least one) whose domain is t such that for each member 

s of t, f(s) is a member of s. Such a function/ is said to be a choice function 

on t. 
The equivalence of VIII and VIII* is shown as follows. Given a selection 

rfhis name originates with Zermelo (see below). B. Russell called it ihe Multiplica¬ 

tive Axiom. 

2) 08a, p. 266. Cf. Zermelo 04 and 08. 
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set c of t we can take as a choice function on t that subset of (XUt which 

consists of all the members which are of the form <s,x>, where {xJ^cHs, 

for some sC/. On the other hand, given a choice function / on t its range c 

is a selection set of t. 

A more useful version of the axiom of choice, which applies to arbitrary 

sets t rather than only to disjointed ones, is the following VIII**, which 

differs from VIII* only in that the word ‘disjointed’ is omitted. 

VIII**. For any set t in which the null-set is not contained there exists a 

choice function f i. e., a function f whose domain is t such that for each 

member s of t, /(j)Cs 1). 

The equivalence of VIII** and VIII is proved as follows. VIII** obviously implies 

VIII*, and hence also VIII. Let us now assume VIII and prove VIII**. Let u be a set 

which does not contain the null-set. Let t be the set which consists of the sets {s}xs, 
for all sew. (The existence of such a set t follows easily from the axiom of sub¬ 

sets since for every sew, {s}x s e P (w X Uw).) We shall now see that t satisfies 

the requirements of VIII. Every sew has a member x, since s=X=0, hence the correspond¬ 

ing member {s}Xs of t has a member <s,x> and therefore {sjXsvtO. Given two 

different members s1;S2 of w, the corresponding members {si}xsi and {s2)XS2 of t 

are disjoint, since if <x,y> is a member of ({sj }x sj) n ({s2)x S2) then x = s1 and 

x =S2, which contradicts Sj vtS2i thus any two different members of t are disjoint and 

t is a disjointed set. By Axiom VIII, t has a selection set f.f is a subset of Ut and thus 

every member of/is a member of so'me member {s}Xs of f, i.e., every member of/is 

an ordered pair <s, x) where xGs£w. This means that / is a relation and its domain is 

included in w. We shall now see that / is a function and its domain is exactly w. If 

<s,x>e/ and (s,y>e/ then, as we saw, x and y are members of s, hence <s,x> and 

is,y) are both members of the member {s}Xs of t. Since / is a selection set of t it has 

only one member in common with {s}Xs, hence {s,x)~ (s, y) and x =y. Thus for every 

s in the domain of /there is exactly one x such that (s, x>6/, i.e.,/is a function. To see 

that the domain of / is exactly w, let s be any member of w; then s X set, and/, being 

a selection set of t, has a member (s, x) in common with {s}x s, hence s is in the domain 

of /. For every s in the domain w of /, f(s) is the set x such that <s, x>e/, but we saw 

that in this case xgs, therefore /(s)Gs. Thus / satisfies all the requirements of VIII**. 

The axiom of choice is probably the most interesting and, in spite of its 

late appearance, the most discussed 2) axiom of mathematics, second only to 

Euclid’s axiom of parallels which was introduced more than two thousand 

1) K. Ono suggested (by hearsay) the following version of the axiom of choice which, 

like VIII, avoids the notion of function yet, like VIII**, applies to arbitrary sets t: For 

every set t, its union-set Uf has a subset c which has at most one member in common 

with each member s of t and which is not included in any other subset c' of \Jt which 

has the same property. Ono’s version obviously implies VIII. That VIII implies Ono’s 

version is shown by means of Zorn’s lemma - (p. 79). 

) See below (§4.6). Cf. the historico-critical exposition in Cassina 36; other exposi¬ 

tions of a general and non-technical nature are Fraenkel 35 and Zlot 60. 
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years ago. Prior to a closer examination of its character, its purpose, and 

its history, we shall glance over its “pre-history”. 

Presumably the first explicit, if negative, allusion is contained in a paper of 

G. Peano of 1890 J), concerning an existence proof for a system of ordinary 

differential equations, where he writes: However, since one cannot apply 

infinitely many times an arbitrary law by which one assigns (“on fait cor- 

respondre”) to a class an individual of that class, we have formed here a defi¬ 

nite law by which, under suitable assumptions, one assigns to every class of a 

certain system an individual of that class. — In our axiomatic language this 

would mean: Since one cannot presuppose the existence of a selection set of 

t as defined in Axiom VIII, we have constructed a condition furnishing a suit¬ 

able subset of Ut by means of the axiom of subsets. 

In 1902 2), Beppo Levi, while dealing with the statement that the union of 

a disjointed set t of non-empty sets has a cardinal greater than, or equal to, 

the cardinal of t, remarked that its proof depended on the possibility of 

marking (selecting) a single member in each member of t. 

To be sure, Cantor (and others) had applied the principle in question prior 

to Peano’s and Levi’s remarks. But he did so inadvertently, without being 

aware of using a procedure which previously had not been applied in classical 

mathematics or logic. 

In 1904, following a suggestion of Erhard Schmidt, Zermelo explicitly 

formulated the principle of choice and used it as the basis for his first proof 3) 

of the well-ordering theorem (T, pp. 222—227), and in 1908 for his second 

proof4). However, he could not then presuppose the set to be disjointed and 

therefore, since the notions of an ordered pair and of a function as in §3.5 

were not known, he could not formulate the principle as we did in VIII** 

and he had to use looser formulations using a notion of “functional corre¬ 

spondence”. In 1906, Bertrand Russell 5) formulated the axiom in its proper 

“multiplicative” form, restricted to a disjointed set t. In 1908 6), Zermelo 

*) Peano 1890, p. 210. 
2) Levi 02. According to a communication by letter from F. Bernstein, about 1901 

G. Cantor and F. Bernstein tried to construct a one-to-one correspondence between the 

continuum and the set of all denumerable order types (which has the cardinal of the 

continuum; T, p. 147). When they met with an insurmountable difficulty, B. Levi 

proposed to solve the difficulty by introducing the principle of choice which he for¬ 

mulated in a general form. 

3) Zermelo 04. 
4) Zermelo 08 (cf. the first edition of T, pp. 319-321, or Hausdorff 14, pp. 136— 

138). 

5) Russell 06, pp. 47-52. 

6) Zermelo 08, p. 110 and 08a, pp. 266, 273 ff. 
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showed how the general formulation can be obtained from the multiplicative 

form by means of the other axioms. 

In the present exposition, only the fundamental lines regarding the axiom 

of choice are given; the literature references will enable the interested reader 

to obtain exhaustive information. The chief points to be discussed here are: 

the consistency and the independence of the axiom; specialized forms of the 

axiom; its existential character; its applications in set theory and in mathe¬ 

matics on the whole; and, finally, the reaction of mathematicians to the claim 

that it is one of the principles underlying mathematical research. 

4.2. The Consistency and the Independence of the Axiom. Let us first recall 

that on p. 22 we denoted with ZF the system which contains all the axioms 

of set theory except the axiom of choice. The most fundamental metamathe- 

matical problems connected with the axiom of choice are the problems of its 

consistency (i.e., whether when added to the axioms of ZF it does not yield 

a contradiction) and its independence (i.e., whether the axiom of choice is or 

is not a theorem of the system ZF). In view of the new idea underlying the 

axiom and the controversy caused by it, any results concerning these prob¬ 

lems are highly interesting. 

A question which arises naturally in this connection is the question of the 

consistency of ZF itself (i.e., without the axiom of choice). If one can obtain 

a contradiction in the system ZF then both the axiom of choice and its 

negation are theorems of ZF (since every statement follows from the axioms 

of a theory in which a contradiction is provable). By Godel’s theorem on 

consistency proofs, if ZF is consistent then the consistency of ZF cannot be 

proved unless one uses in the proof some means which go beyond the means 

of this powerful theory (see Ch. V, §7) 1). Therefore, in order to get results 

concerning the consistency and the independence of the axiom of choice it is 

best to assume that ZF is consistent. All the results concerning the consis¬ 

tency and the independence of the axiom of choice or its weakened forms, 

and all other metamathematical results, which will be stated in the present 

section, will rely, tacitly, on the assumption that ZF is consistent (i.e., free 
from con tradiction ). 

In 1922, Fraenkel proved the independence of the axiom of choice 2) for 

an axiomatic system of set theory which admits infinitely many objects which 

1) If ZF is consistent then its consistency is unprovable even by the means ofZFC, 

as follows easily from Godel’s result that if ZF is consistent so is ZFC (see below) 

together with Godel’s theorem on consistency proofs applied to ZFC. 

2) Fraenkel 22a. 
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are not sets, i.e., individuals (ct. §2) *). This did not solve the problem of the 

independence of the axiom of choice with respect to ZF since the existence 

of non-sets is not compatible with the axioms of ZF, as the axiom of exten- 

sionality permits the existence of just one element which contains no member, 

viz. the null-set (Theorem 3 on p.39). Fraenkel’s proof was improved by 

Mostowski and Lindenbaum in 1938 2). 

Fraenkel’s proot uses a certain group-theoretic method, analogous to the 

method ot Galois theory in algebra. Without going into the mathematical 

subtleties of that proof let us see what makes it possible. In ZF our tools for 

obtaining “new” sets are the axioms of comprehension (p. 32). Since there is 

no characteristic which distinguishes one individual from another 3), when 

one uses an axiom of comprehension to obtain a set the only “asymmetry” 

which this set will have with respect to the individuals is that asymmetry 

which enter by means of the parameters zj, ...,zn of the condition used in 

the axiom of comprehension. Thus one can assume, without running into any 

contradiction, that there is an infinite set I of individuals and, at the same 

time, that every set is related in the same way to all individuals, except for a 

finite number of them; in particular, the only subsets of 1 are the finite sub¬ 

sets and their complements 4). Since it is an easy consequence of the axiom 

of choice that every infinite set is the union of two disjoint infinite sets 5), 

the assumptions which we just mentioned, and asserted to be non-contradic¬ 

tory, are not compatible with the axiom of choice. 

The major drawback of the Fraenkel—Mostowski method is not in the 

mere fact that a different axiom system is used, but in that this method shows 

only that one cannot prove the axiom of choice for sets t such that some of 

the members of Ur or of UUr, etc., are individuals. This method does not 

shed any light on whether the axiom of choice is needed to get a choice 

function for a set t of sets of real numbers, or of sets of sets of real numbers, 

etc. 

In 1938, Godel proved the consistency of the axiom of choice 6) and 

^Foi details concerning such systems and the question of their consistency, see 

footnote 1 on p. 24 and footnote 1 on p. 25. 

2) Mostowski 38 and 39, Lindenbaum-Mostowski 38. 

3) In mathematical terms one would say that every permutation of the individuals 

can be extended to an automorphism of the universe of elements. In the proof of this 

statement the appropriate version of the axiom of foundation plays a central role. 

4) Mostowski 38 (cf. A. Levy 58, p. 12). 

5) In ZFC one can prove that every infinite set includes a denumerable subset (T, 
p. 43); the latter is obviously a union of two disjoint denumerable sets. 

6) Godel 38, 39, 40 (or see Shoenfield 67, Cohen 63, 66, Karp 67, Jensen 67 or 

Mostowski 69). The proof of Godel 40 was carried out for a system of set theory very 
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thereby completely solved the consistency problem, together with the yet 

more difficult problem of the consistency of the generalized continuum 

hypothesis (see §6.1). 

Godel introduced a certain process which generates sets and called the sets 

generated by this process construe title. (This term has to be taken with a 

grain of salt, since some highly non-constructive notions are used in its 

definition.) The constructible sets are generated by the process in a sequential 

order one after the other, and this sequential order well-orders the construct¬ 
ible sets, i.e., every set s which contains at least one constructible set also 

contains a constructible set which is obtained by the process before any other 

constructible set in s. If t is a set of non-empty sets whose members are 

constructible sets then we can define a choice function /on t by means of the 

axiom of subsets, / is defined as that subset of t X Ut which consists of all 
the members of the form <s,x> where x is the first member of s to be 
obtained by the process. 

The next step is to consider the axiomatic system of ZFC+ obtained from 

ZF by adding to it the axiom of construe tibility, this axiom asserts that all 

sets are constructible. By our remark above it now becomes obvious that the 

axiom of choice is a theorem of the system ZFC+ since the existence of a 

choice function on any set t now follows from the axiom of subsets. Finally, 

it is shown that the system ZFC+ is consistent, which proves the consistency 

of ZFC (since any contradiction derivable in ZFC can, a fortiori, also be 
derived in ZFC + ). 

In 1951-1955, Specker, Mendelson, and Shoenfield 1), independently, 

proved that the axiom of choice does not follow from Axioms I—VII (which 

are all the axioms of ZF except Axiom IX of foundation). The system which 

consists of Axioms I—VII does, of course, admit no individuals. Their proofs 

closely follow the proofs of Fraenkel and Mostowski, the only essential 

difference being that the individuals are replaced by a special kind of sets 

(which are called unfounded sets — see §5). This transition from individuals 

to unfounded sets seems very natural when one considers Quine’s approach 

to individuals (pp. 29—30), according to which individuals can be viewed as 

sets of some special kind. The proof of the present result, like that of Fraenkel 

and Mostowski, still does not shed any light on the case where t is a set of sets 
of real numbers, or of sets of sets of real numbers,-etc. 

similar to the system G of §7.4, but the same proof is valid also for the system B of 

§7.6, and can therefore be directly translated to a proof for ZF. A different proof, 

which has no bearing on the problem of the consistency of the continuum hypothesis, 

is indicated in Godel 65 and carried out by Myhill-Scott 71. 

1 Specker 57, Mendelson 56a, and Shoenfield 55. 
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The problem of the independence of the axiom of choice with respect to 

ZF (i.e., without individuals and in the presence of the axiom of foundation 

IX), which is a much more difficult problem than the related problems whose 

solutions we mentioned '), held out till 1963, when it was finally completely 

and altirmatively solved by Paul Cohen 1 2). He showed, among other things, 

that in ZF one cannot prove Axiom VIII of choice, not even for the case 

where t is a denumerable set of sets of real numbers. The proof is highly 

technical; it makes use of the idea and techniques of Godel’s work on con- 

structibility, as well as of new techniques specially developed for this proof. 

Cohen also proved that some other consequences of the axiom of choice, 

which are, likewise, much weaker than the full Axiom VIII, cannot be proved 

in ZF. Several such examples will be discussed in the next subsection 3). 

Cohen’s method also yields many results not connected with the indepen¬ 
dence of the axiom of choice (see §6.1 and 6.2) 4). 

4.3. Special (weakened) Forms of the Axiom. We shall now discuss various 
statements of set theory which are consequences of Axiom VIII that seem to 

be weaker than the axiom but still do not seem to be provable from the 

axioms of ZF. The questions which we shall ask are whether what seems to 

us to hold does indeed hold, i.e., we shall ask: Do these statements indeed not 

imply Axiom VIII (with the aid of the axioms of ZF)? Are they indeed 

unprovable in ZF? (In some cases only one of these questions will be dis¬ 

cussed here.) Given two such different statements, we shall sometimes try to 

establish their relationship in ZF, i.e., to find out whether one of them 

1) See Shepherdson 51—53 III. 
2) Cohen 63/4, 65, 66. (See also Shoenfield 67, Jensen 67, Mostowski 69,and Rosser 

69.) 
3) In many such examples, the proof used to obtain a result by the method of P. 

Cohen borrows much from the proof used to obtain the corresponding weaker result by 
the method of Fraenkel and Mostowski. For a systematic study of some aspects of the 
relationship between the two methods, see Jech-Sochor 66, Jech 71 and Pincus <*>. 

4) The methods of Cohen have been modified by VopSnka 64, 65—67, Vop?Tnka— 
Hajek 65-67, Sacks 69, Shoenfield 67, Jensen 67, and Solovay 70. The most remarkable 
modification was achieved by Scott-Solovay °°. They use a model of set theory with 
truth-values in a complete Boolean algebra. They dispense with the ideas connected with 
constructibility, and as a consequence, the proof becomes easily adaptable also to type 
theory (see Ch. Ill, §2) and weaker set theories - Scott 67. An exposition of their 
method is given in Rosser 69, and also in Jech 71. The same construction, but with 
forcing instead of Boolean truth-values, is carried out by Shoenfield 71. 
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implies the other in the system ZF !). (Notice that in ZFC their relationship 

is trivial since both are theorems of ZFC.) 
Since all the questions of provability and independence which we shall 

discuss in the present subsection are concerned, unless mentioned otherwise, 

with the system ZF, we shall omit throughout this subsection all further 
reference to it and we shall say is provable” instead of "... is provable in 

ZF” and “...implies (does not imply) ...” instead of “... implies (does not 

imply) ... in ZF”, etc. 
Axiom VIII is equivalent (in ZF) to the statements which asserts that 

every set can be well-ordered (pp. 79—80); in particular, Axiom VIII implies 

the statement that the set of all real numbers can be well-ordered. If there is 

a relation r which well-orders the set of all real numbers then every disjointed 

set t of non-empty sets of real numbers has a selection set c\c can be taken as 

that subset of Ui which consists of all real numbers x which are the least 

members, according to the well-ordering r, of some member s of t. (This is 

very much like the proof on p. 54, where Ur consists of natural numbers.) 

However, as mentioned in §4.2, Cohen showed that one cannot prove that 

every disjointed set t of non-empty sets of real numbers has a selection set; 

therefore we know that one cannot prove that the set of all real numbers can 

be well-ordered 2). 

In Axiom VIII the set t, a selection set of which is claimed to exist, is 

supposed only to be disjointed and not to contain the null-set, while the 

cardinality of t and of the members of t remains arbitrary. The simplest way 

of specializing is, then, to impose restrictions upon these cardinalities 3). 

The most far-reaching specialization is obtained by assuming t to be finite. 

In this case, however, the axiom becomes redundant because it can be proved. 

It is sufficient to consider the case that t contains a single member, for the 

^The solutions to such problems, for systems of set theory with individuals or 

without the axiom of foundation, are surveyed in A. Levy 65, where further references 

are |iven (and will, therefore, be given here only in a few cases). 

) See, e.g. Rosser 69. Feferman and Levy showed that one cannot prove that there is 

any non-denumerable set of real numbers which can be well-ordered; see Cohen 66, Ch. 

IV, § 10. Moreover, they also showed that the statement that the set of all real numbers 

is the union of a denumerable set of denumerable sets cannot be refuted. 
3 

) Other specializations of Axiom VIII are obtained by imposing on t restrictions of 

a different nature. The specialization of Axiom VIII obtained by requiring the members 

of t to be compact Hausdorff topological spaces is implied by the prime ideal theorem 

for Boolean algebras (p. 65) and implies the axiom of choice for sets t of finite sets 

(tos-Ryll-Nardzewski 54, Rubin - Scott 54). Another specialization, due to Knaster (see 

Kondo 37), is obtained by requiring the members of t in Axiom VIII** to be linear 

perfect sets of points. 
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transition to any finite set t can be achieved by means of ordinary mathe¬ 

matical induction and of the axioms of pairing and of union without involving 
essential difficulties1). 

When t = {$} contains a single member, the problem is of a logical rather 
than ot a set-theoretical nature. According to the conditions of our axiom, s 

is a non-empty set; accordingly, the task is to “choose” a single member from 

a non-empty set. But for this purpose the axiom of choice is not required, 

contrary to an opinion expressed in various publications 2). 

In tact, for t ={s}, the existence of a selection-set follows, by the predicate 

calculus, from the assumption that s is not empty and from the existence of a 

singleton {x} for any given element x. 

Contrary to the case of a finite set r, the finiteness of the members of t 

does not trivialize the choice problem. Already Russell had, in an informal 

way, hinted at the gap between the use of a condition and the application of 

the axiom of choice by contrasting an infinite set t of pairs of shoes with a 

(say, equinumerous) infinite set of pairs of stockings. In the former case a 

subset of Ut may be constructively defined as containing all left shoes, and 

this set is evidently a selection-set of t, obtained without using our axiom. On 

the other hand, as long as manufacturers adhere to the regrettable custom of 

producing equal stockings for both feet there is no condition which simul¬ 

taneously distinguishes one stocking in each of the infinitely many pairs. 

Hence a set containing just one stocking from each pair exists only by virtue 

of the axiom of choice. If the set of pairs were, for example, denumerable 

then we could not without our axiom form a one-one mapping between the 

set t of all pairs and the set Ur of all stockings, proving hereby that the latter 

set was also denumerable. 

If we consider only the cardinalities of the members of r then the weakest 

non-trivial form of the axiom of choice is obtained by assuming the axiom of 

choice only for sets t all of whose members are finite sets, or even simpler, 

just pairs. 

We now ask the question whether the weakest form of the axiom of choice 

can be proved. Let us first consider the case where the set Ur can be ordered, 

i.e., where there is a relation r which orders this set. Since every sEr is a 

finite subset of Ur, s has a first member with respect to the order r. Therefore 

the subset of Ur defined by the condition “x is the first member of some 

*) Cf. Littlewood 54, Prop. 17. 

2) Notably Kamke 39 (§12), Denjoy 46-54 I, P. Levy 50. In these papers it is also 

erroneously maintained that the general axiom of choice can be inferred, without any 

further assumption, from the (trivial) case where t contains a single member. 
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sGt with respect to the order r" on x is a selection set of t. We saw that in 

this case the existence of a selection set is provable; in particular, this is the 

case when Lh consists of real numbers (which are always ordered by magni¬ 
tude). On the other hand, one cannot prove the existence of a selection set 

of t even for every disjointed denumerable set of pairs (or triples, or quadru¬ 

ples, etc.) of sets of real numbers 1). 

By what was said above concerning sets t for which the set Uf can be 

ordered, we get that in cases where the members of t are finite and the 

existence of a selection set of t is unprovable, also the existence of a relation 

which orders Ut (or any set which includes Uf) is unprovable. Therefore the 

result mentioned at the end of the last paragraph implies that one cannot 

prove that the set of all sets of real numbers can be ordered 2) and hence one 

cannot prove that it is possible to order the set of all real functions (i.e., the 

functions whose domain is the set of all real numbers and whose range 

consists of real numbers) 3). 

The statement that every set can be ordered is usually referred to as the 

ordering principle (or the ordering theorem) 4). We have already mentioned 

that the axiom of choice is equivalent to the statement that every set can be 

we//-ordeied; therefore, the axiom of choice implies the ordering principle. It 

is now natural to ask whether the ordering principle is equivalent to the 

axiom of choice. It turns out that the ordering principle does not even imply 

*) Cohen 63/4, 65, 66. Cohen has sets of natural numbers instead of our real num¬ 

bers, but the transition from sets of natural numbers to real numbers is immediate. Also 

Cohen mentions only pairs, but trivial modifications give also the results for triples, 

quadruples, etc. Cf. Feferman 65 where the corresponding result is proved for a non- 

denumerable set of pairs of additive cosets of the real numbers over the rational num¬ 

bers. 

2) Cohen 63/4, 65, 66, Mostowski 69, Ch. XIV, §5. In the same way Feferman 65 

derives from what was said in the last footnote the stronger result that one cannot prove 

that the set of all additive cosets of the real numbers over the rationals can be ordered 

) Since the set of real functions whose range is included in {0, l} is obviously 

equinumerous to the set of all sets of real functions. 

4) For stronger statements see Kinna-Wagner 55 (cf. Mostowski 58, Halpern-Levy 

71 and Feigner 71a), the order-extension principle in Szpilrajn 30 or Sikorski 64 (p. 211, 

(c)) (cf. Mathias 61 and Feigner 69), and Tarski 54. Kurepa 53 obtains a statement 

equivalent to the well-ordering principle by taking the conjunction of the ordering 

principle and the statement that every partially ordered set has a maximal “anti-chain” 

(see Rubin-Rubin 63, M15(K)). By what was said above, the ordering principle implies 

the axiom of choice for sets t of finite sets. The converse implication does not hold - see 
Lauchli 64, Marek 66a, and Pincus 
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the statement that the set of all real numbers can be well-ordered !); hence 

also the weakest form ot the axiom of choice does not imply this statement. 

A consequence ot the axiom of choice which implies the ordering principle 
is the statement that every Boolean algebra has a non-principal prime ideal 

(henceforth the Boolean prime ideal theorem - BPIT) 2). Since the ordering 

principle is not provable, the BPIT is unprovable too. Moreover, one cannot 

prove that there is a non-principal prime ideal in the Boolean algebra of all 

sets of natural numbers (with the usual union, intersection and complemen¬ 

tation operations) 3). In the other direction, it turns out that even the BPIT 

does not imply that the set of all real numbers can be well-ordered 4). 

A useful consequence of the axiom of choice is the following axiom of 

dependent choices 5): If b is a non-empty set, r a binary relation and for every 

there is a y&b such that (x,y)Er, then there exists a sequence 

(x1;x2, ■..,xk, ...) of members of b such that (xk, We' for every integer 

k> 1. The axiom of dependent choices implies the axiom of choice for 

denumerable sets t 6). As we mentioned above, on p. 61, the axiom of choice 

is unprovable for the case where Ms a denumerable set of sets of real num¬ 

bers; thus the axiom of dependent choices is unprovable, too. Moreover, even 

if one assumes the axiom of choice for denumerable sets t one cannot prove the 

axiom of dependent choices even for the case where b is the set of all real 

numbers 7). On the other hand, the axiom of dependent choices does not 

even imply the existence of a well-ordering of the set of all real numbers 8). 

*) See Halpern—Levy 71, where it is proved that the existence of a well-ordering of 

the real numbers does not even follow from the statements that every set is equinumer- 

ous to a subset of the Cartesian product of the set of all real numbers and some well- 

ordered set (which is even stronger than the statement of Kinna-Wagner 55 and, 

a fortiori, than the ordering principle). 

2) See Sikorski 64 for the Boolean-algebraic notions mentioned here and for a proof 

of the BPIT from the axiom of choice, and Los'-Ryll-Nardzewski 51 and 54 for the 

proof of the ordering principle from the BPIT. For various statements equivalent to the 

BPIT see Henkin 54, Los'-Ryll-Nardzewski 54, Rubin—Scott 54, Scott 54, Tarski 54, 

Luxemburg 64, Sikorski 64, §47, and Mendelson 64, § 12. 

,3) Feferman 65, Sacks 69, Mostowski 69, Ch. XIV, §6. 

) Halpern-Levy 71 (which uses the combinatorial theorem of Halpern-Lauchli 66). 

Theorem 33.1 of Sikorski 64 (on extension of homomorphisms) is implied by the axiom 

of choice and implies the BPIT; it is not known whether any of these implications is an 

equivalence - see Luxemburg 64. 

5) Bernays 37-54 III (Axiom IV* on p. 86), Tarski 48 p. 96. For a generalization see 

A. Levy 64. 

6) Bernays 37-54 III, p. 86. 
n 

) Jensen 66, Pincus °°. 

8) Feferman 64, Sacks 69. 
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Dedekind *) defined a set to be finite if it is not reflexive (see p. 45). Is 

Dedekind’s definition of finiteness equivalent to the definition given here? 
We mentioned (on p. 46) that one can prove that no finite set is reflexive. By 

means of the axiom of choice one can also prove that every infinite set is 

reflexive, i.e., that every infinite set includes a denumerable subset 2), and 

hence we get that in ZFC Dedekind’s definition of finiteness is indeed 

equivalent to the one given here. On the other hand, in ZF one cannot even 

prove that every infinite set of real numbers includes a denumerable subset 3). 

As to infinite sets of sets of real numbers (or infinite sets of real functions) 

one cannot even prove that such a set is always the union of two disjoint 

infinite sets 4). 

The axiom of choice implies the statement that the union of every dis¬ 

jointed set t which does not contain the null-set includes a subset equinumer- 

ous to t. (Indeed, any selection set of t is equinumerous to t by the function 

/of VIII*.) In ZF one cannot prove this statement even for the case where 

t is a set of real numbers s). It is not known whether this statement implies the 
axiom of choice 6). 

There are many statements of the arithmetic of cardinal numbers which 

are equivalent to the axiom of choice. In particular, such is the statement 

*) Dedekind 1888. 
2 

) This follows already from the axiom of choice for a denumerable set t 

(Whitehead-Russell 10—13 II, *124, Bernays 37—54 III, p. 85). 

3) See, e.g., Halpem—Levy 71. For a generalization see Jech 66a. 

4) This is shown by means of a “model” very similar to that constructed by Cohen in 

his proof of the unprovability of the weaker form of the axiom of choice (cf. Jech- 

Sochor 66). On the other hand, every infinite set of real numbers is the union of two 

disjoint infinite sets - see Tarski 25, p. 95, and A. Levy 58, Th. 2. For various definitions 

of fmiteness whose equivalence is provable only by means of the axiom of choice, see 

Tarski 25, pp. 93—95. The proof that those definitions are not equivalent in ZF is given 

in Jech—Sochor 66 and in Pincus °°. The properties of the cardinals which are finite 

according to Dedekind’s definition (the so-called Dedekind-finite cardinals) are studied 

in ZF by Ellentuck 65. Tarski has proved in ZF that if there exists one Dedekind-finite 

infinite cardinal then there are at least 2^° such cardinals. Tarski’s question, whether 

the existence of such a cardinal implies in ZF the existence of a pair of incomparable 

Dedekind-finite cardinals, is still open. 

) Tarski proved that if there is an infinite set v which has no denumerable subsets, 

then there is a disjointed set t of non-empty sets such that ut is equinumerous to a 

subset of t, while t is not equinumerous to any subset of Ut (i.e., the cardinality of t is 

strictly greater than that of Ut); see A. Levy 65, §3. A slight modification of Tarski’s 

construction allows one to make Ut a set of real numbers if v is such. 

6) This is unknown even for set theory with individuals (or without Axiom IX of 

Foundation).See A. Levy 65, §3 for related statements. 
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that for every transfinite cardinal m (i.e., for every cardinal > N0), m2 = m *). 
The outstanding open problem in this direction is whether the statement that 
lor every translinite cardinal m, 2m =m, which is a consequence of the axiom 

ol choice ), is equivalent to it 3). This statement can be phrased in terms of 

sets as lollows: For every reflexive set a, {0,1} X a is equinumerous to a. One 

cannot prove the latter statement even for all sets a of real numbers 4). 

An important consequence of the axiom of choice in analysis is the 

existence of a set of real numbers which is not Lebesgue-measurable 5). The 

existence of such a set is not provable in ZF, not even by means of the axiom 

of dependent choices (which is needed for the development of measure 
theory) 6). 

Returning to the weakest form of the axiom of choice, let us denote with 

Zn the axiom of choice for sets t all of whose members contain exactly n 

members each, where n is a finite number. The problem of the interdepen¬ 

dence of the Zn\ for different rc’s is an interesting problem of a combinatorial 

nature; it has been solved only recently 7). 

4.4. The Existential Character of the Axiom. Effectivity. Selectors. Save for the 

properly intuitionistic attitudes (Chapter IV) which are justified from their 

own point of. view, the majority of the attacks on the axiom of choice 8) 

3) Tarski 24, see Rubin—Rubin 63, I, §6. For the formal treatment of cardinals in 

ZF see §5.4. For results concerning finite powers of cardinals in ZF see Ellentuck 66. 

2) T, Theorem 15 on p. 219. 
3 

) This is unknown even for set theory with individuals (or without Axiom IX of 

Foundation). 

4) If b is a set which is infinite but not reflexive and a is the union of b with a 

(disjoint) denumerable set then a is reflexive and { 0,1} X a is not equinumerous to a - see 

A. Levy 58. Since one cannot prove that every infinite set b of real numbers is reflexive 

one cannot prove that every reflexive seta of real numbers is equinumerous to {0,1} X a. 

5) For elementary texts dealing with this notion see Halmos 50 and Munroe 53. In 

Van Vleck 08 and Sierpinski 27 it is shown that the existence of a non-measurable set 

follows already from the axiom of choice, applied to a set t of pairs. 

6) Solovay 70 or see Jech 71; one has to assume the consistency of the statement 

asserting the existence of an inaccessible number; without this assumption one can still 

prove that the axiom of dependent choices is consistent with the existence of a transla¬ 

tion-invariant measure defined on all sets of real numbers and extending the Lebesgue 

measure — Solovay 64, Sacks 69. It is yet unknown whether the axiom of determinate¬ 

ness of Mycielski-Steinhaus 62, which implies that every set of real numbers is measura¬ 

ble, is consistent with ZF (see Mycielski 64-66 and Mycielski—Swierczkowski 64). 

7) Mostowski 45, Gauntt 70; see also Szmielew 47 or Sierpinski 58, VI, §5. 

8) For instance, in addition to the literature quoted in §4.6, J. Konig 14 (pp. 170 f.), 

Dingier 31 (pp. 88 f. of the first ed.), Richard 29. 
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derived from not sufficiently appreciating its purely existential character. In 

fact, the axiom does not assert the possibility (with scientific resources 

available at present or in any future) of constructing a selection-set; that is to 

say, of providing a rule by which in each member s of t a certain member of s 

can be named. On the contrary, providing such a rule would mean obtaining 

the respective subset of Uf by the axiom of subsets, without involving the 

axiom of choice. The latter just maintains the existence of a selection-set, i.e. 

the non-emptiness of the outer product 7it (whose existence is guaranteed 

without our axiom). In other words, the axiom maintains that, its assump¬ 

tions fulfilled, among the subsets of Ut such subsets as contain a single 

common member with each member of t will not be absent, even if we fail 

to construct such a subset by means of the axiom of subsets. Too little 

attention was paid to this fundamental point during the first decades of the 

present century and thereby many sterile discussions were caused. 

We shall now study the notion of effectivity *) both for its own sake and 

for the sake of comparing it with the axiom of choice. 

To give proper weight to a definition, no matter whether within mathe¬ 

matics and logic or without, the existence of objects (at least one object) 

satisfying the definition should be shown. Normally this is done by providing 

a particular object that satisfies the definition, i.e., by giving an effective 

example. Not always need the example be given in a constructive way; its 

formation may make use of a non-predicative procedure or be based upon 

joining an existential proof which shows that there are objects satisfying 

the definition, to a demonstration that no more than one such object 

can exist. One may maintain that also in this way an effective example was 
given. 

The term ‘effective’ has been used in mathematics in many different 

meanings 2), sometimes even by one and the same author, which caused 

much confusion and many futile arguments. What is usually meant by 

‘effective’, as used in the last paragraph, is ‘definable’ (or ‘nameable’); from 

now on we shall use the term ‘effective’ only in this sense. A definable set is 

a set given by a condition jj^x) onx without parameters and such that in ZF, 

or in ZFC, one can prove that there exists just a single element x which 

') See Sierpiriski 58, pp. 25, 35-36, 48-49, 105-107 and Kuratowski 58, pp. 142- 

143, where further references are given. Some other, rather limited notions of effectivity 

resulted in the theory of the analytical and projective hierarchies, which is dealt with by 

Lusin 30 and Lyapunow-Stschegolkow-Arsenin 50 (see also Kuratowski 58 and 

Kuratowski—Mostowski 68), where further references are given. 

) In addition to the meaning which this term has here it is also often used in the 
sense of ‘decidable’ or ‘recursive’ (Chapter V). 
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satisfies this condition. It is just in this case that we can speak of “the set x 
such that ^?(x) holds” and give this set a proper name x). For example, the 

null-set. 0 is given by the condition “x is memberless”, and the setZ* (of p. 47) 

is given by the condition “x is a subset of every set Z which contains 0 and 

which for each of its members y also contains {7}”. The notion of a 
definable set is not a notion of the object language, it is a metamathematical 
notion. This is not the fault of the way in which this notion was introduced 

here; there is a profound reason behind this fact. If the notion of definability 

were a notion of the object language it would enable us to reproduce 

Richard’s antinomy (Chapter I) in ZF 2). Even though we can refer to 

arbitrary conditions ^?(x) in the object language (since conditions are finite 

strings, or sequences, of symbols and the symbols can be assumed to be 

certain sets), the semantical relation between the arbitrary condition and the 

elements fulfilling it cannot be defined in ZF. Thus we cannot refer in our 

object language to the non-definable sets. Similarly, we cannot refer to all 

definable sets by a single statement of the object language, yet we can refer 

to all definable sets by a statement-schema, i.e., by a particularly simple 

infinite set of statements (of the object language). Suppose we want to 

assert that no definable set is a well-ordering of the set of all real numbers; 

this can be expressed by the schema “If there is exactly one x which fulfils 

^(x) then this x is not a well-ordering of the set of all real numbers”. (The 

schema is the set of all such sentences obtained by taking all different condi¬ 

tions ^(x).) 

We now return to a question which has been considered earlier (on p. 63). 
Suppose that the set t, for which we want to get a selection set, consists of a 

single non-empty set s. As stated before, in this case the existence of the 

selection set can be established without using the axiom of choice, but this 

does not mean that we can give an effective example of a selection set of t. 

One can give an effective example of a selection set of t just in case s contains 

some definable element. Let us choose, for example, s to be the set of all 

well-orderings of the set of the real numbers; as a consequence of the axiom 

of choice, s is not empty, yet one cannot prove in ZFC that s contains any 

definable member as one cannot prove in ZFC that there is a definable 

well-ordering of the set of all real numbers 3) (i.e., in ZFC one does not get 

x)For the formal treatment of giving proper names to objects by means of the 

definite article, see, e.g., Rosser 53, Ch. VIII. 

2) Godel 65. 
3) Feferman 65. Cf. also A. Levy 65a, Th. 6, Mostowski 69, Ch. XV, §2, or Rosser 

69. 
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any contradiction from the schema “no definable set x is a well-ordering of 

the set of the real numbers”). Other results along the same line are: One 

cannot prove in ZFC that there is a definable ordering of the set of all sets of 

real numbers, or of the set of all real functions ‘) (which implies the former 

result). One cannot prove in ZFC that there is a definable non-measurable set 

of real numbers 2). The proofs of these results use the basic method which P. 

Cohen employed to prove the independence of the axiom of choice. 

The proof that the above set s is not empty makes essential use of the 

axiom of choice, but this in itself cannot be said to be the cause of the strange 

behavior of the set s, if strange it is. Let us consider the set s' which is defined 

as follows: s' is the set of all well-orderings of the set of the real numbers, if 

there are such well-orderings, and is the set which contains 0 as its only 

member, otherwise. The non-emptiness of s' can already be proved in ZF. In 

ZFC s and s' are, obviously, proved equal, hence one cannot prove in ZFC 

that s' has definable members. Admittedly, the definition of s' seems artificial, 

yet there is no scientific criterion which draws a line between natural and 

artificial definitions. Whether a definition is natural or artificial depends to a 

large extent on its verbal version; by rewording one can sometimes make a 

natural definition out of an artificial one 3). We shall also see later (in §6.1) 

other examples, totally unrelated to the axiom of choice, of definable sets 

which cannot be shown in ZFC to have definable members 4). 

We introduced definable sets by means of parameterless conditions ^(x). 
If we lift the ban on parameters we obtain the notion of a definable operation 

(or function). A definable operation on Zj, ...,zn is given by a condition ^B(x), 

without parameters other than Zj, ...,zn, such that one can prove in ZFC 

that for any given z j, ...,zn there is exactly onex which fulfils the condition 

^8(x); this set x depends, in general, on z} ,..., zn and is taken to be the value 

'fThis and several other results are, essentially, proved by Feferman 65 - see A. 

Levy 65a. 

2) 'This and additional results are proved by Solovay 70; his results are based on 

the assumption of the consistency of the existence of an inaccessible number (§6.4). 

3) E.g., we can say that an ordering r of a set a is as good as possible when it is a 

well-ordering, or, if a has no well-ordering, if it is any ordering. We can now define a set 

s", similar in its properties to the set s', as the set of all orderings of the real numbers 

which are as good as possible. However, there is a more subtle relationship between usage 

of the axiom of choice and existence of non-empty sets with no definable members — see 

A. Levy 69. 

4) Such an example is also given by the definable set of all non-constructible sets of 

natural numbers. Even if we assume that this set is non-void we cannot prove in ZFC 

that it contains a definable member — A. Levy 65a. 
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of the opeiation tor Zj, zn. Inasmuch as the definable sets are the sets to 

which one gives proper names, the definable operations are the operations 

which are given proper names. For example, the condition on x ”x consists 

exactly of the members of z1 and the members of z2” yields the binary 

operation ot union ZjUz2) "x consists of exactly those elements which are 

members ot both z^ and z2 yields the binary operation of intersection 

zl^z2> x has z as its only member” yields the unary operation {z}, “x 
consists exactly of the members of the members of z” yields the unary 
operation of union-set Uz, etc. 

A question which is stropgly related to the axiom of choice and to con¬ 

siderations of effectivity is the question whether for a given axiomatic system 

Q of set theory there is a definable unary operation a(z) (on z) such that one 

can prove in Q that for every non-empty set z, a(z) is a member of z. Such a 
unary operation will be called a selector (in Q) 1). 

We shall now see that if Q contains the axioms of union and subsets and a 

selector a(z) is available in Q then the axiom of choice is provable in Q. Given 

a disjointed set t which does not contain 0, a selection set of t is obtained by 

means of the axioms of union and subsets as a subset of Ut which consists of 

all the members which are a(s) for some member s of t. An example of a 

system of set theory with a selector is the set theory ZFC+ obtained from 

ZF by adding to it the axiom of constructibility (see p. 60 and §6.2). In 

ZFC+ a selector a(z) is obtained by means of the functional condition “ifz 

is a non-empty set then x is the first member of z obtained by Godel’s 

process, and if z is O then x is O too”. 

In ZFC no selector is available. This follows immediately from the possibil¬ 

ity of the existence of definable non-empty sets with no definable members, 

such as the non-empty set s of all well-orderings of the real numbers. If a 

selector a(z) were available in ZFC then one could prove in ZFC the existence 

of a definable member of s, namely a(s), but we know that such a proof is 

impossible (p. 69). It is a remarkable fact that there is a statement of the 

object language which asserts indirectly (in ZF or ZFC) the existence of a 

selector, and just that 2). (The assertion “there exists a selector” cannot be 

!) Cf. Montague-Vaught 59a. 

2) This is an axiom which asserts that every set is the value of a definable function 

for some ordinal arguments (we say: every set is ordinal-definable). Cf. Godel 65 and 

Myhill-Scott 71. This axiom also asserts, exactly, that every non-empty definable set 

has a definable member. For the relationship between the ordinal-definable sets and the 

constructible sets see. A. Levy 65a and McAloon 66. One can also consider the notion of 

a relative selector, i.e., a definable binary operation o(y,z) for which one can prove that 

there is a set y such that for every non-empty set z, a(y,z) is a member of z. As easily 
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directly expressed by a statement of the object language since such a state¬ 

ment would have to be something like “there is a condition jj$(x) with a single 

parameter z such that for every z there is just one x which fulfils the condi¬ 

tion, and if z is not 0 then this x is a member of z”, but, as was pointed out 

on p. 69. where the notion of definability was discussed, the semantical rela¬ 

tionship between x (or z) and ^B(x) cannot be expressed by the object lan¬ 

guage. 
One can also get from ZF a system of set theory with a selector by brute 

force. This is done as follows. First the object language is enriched by adding 

the operation a as a new primitive notion, in addition to the membership 

relation. This enrichment of the object language causes our notion of condi¬ 
tion (introduced on p. 21) to be richer too, since now we can express condi¬ 

tions which we could not express before. We denote with ZFCa the system 

of set theory formulated in our enriched language whose axioms are all the 

axioms of ZF, where the notion of condition in the axiom schema of replace¬ 

ment (and subsets) is the wider notion just mentioned, as well as the addition¬ 
al: 

AXIOM (VIIICT) OF GLOBAL CHOICE. For every non-empty set z, a(z) 

is a member of z1). 

seen, the availability of a relative selector in a system Q of set theory, which contains the 

axioms of union and subsets, in enough to establish the axiom of choice in that system. 

In ZFC not even a relative selector is available as, essentially, proved by Easton 70 

(where it is shown that Axiom VIIl£ of §7.3 is not provable in the system VNBC of 

§7.3). A statement of the object-language which, for ZF or ZFC, asserts just the exis¬ 

tence of a relative selector is “there exists a well ordering r of some set such that every 

set is ordinal-definable relative to r, i.e., every set is definable in terms of ordinals and 

the relation r”. (The proof is completely analogous to that of Myhill—Scott 71.) A 

system of set theory in which a relative selector is available but no selector is available is 

the system obtained from ZF by adding the axiom of relative constructibility 3a(y=L*) 
of Schoenfield 59, or 3k(V=L/c) of A. Levy 60a, formulated in the language of ZF. The 

existence of a relative selector in this system is trivial, the non-availability of a selector in 

this system is, essentially, shown by Feferman 65, §4, wherein the model obtained with 

8 = 1 there is no selector (since there is no definable well-ordering of the real numbers), 

but there is a set k such that V - L^, namely k = sQ. 

'jBourbaki 54 uses selectors for all properties rather than only for sets, i.e., for 

every condition ip(x) he introduces r^T(x) as a new constant (or function, if ^p(x) has 

parameters). tx is the e-operator of Hilbert (see Hilbert-Bernays 34-39 II). The axioms 

include, essentially, the axiom schema “if there is an x such that <P(x) then tx'?(x) is 

such” and an appropriate extension of the notion of condition in the axiom schema of 

replacement. The system of Bourbaki has a selector a(y) namely rx(x^y). On the other 

hand T*ip(x) can be defined in ZFCCT as “a(_y) where y is the set of allx’s of least rank 

such that ^(x)” (see §5.3 for the notion of rank). 
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As in the case, mentioned earlier, of a set theory Q with a selector, the 

axiom of choice is provable in ZFCa x). Let us now compare ZFCa to ZFC. 

Every theorem of ZFC is, obviously, a theorem of ZFCa. There are state¬ 

ments which are theorems of ZFCff, but do not belong to the language of 
ZFC because they contain the symbol a, such as Axiom VIIICT itself. How¬ 

ever, every statement which is formulated in the language of ZFC and which 

is a theorem of ZFCCT is also a theorem of ZFC 2). This also settles the 

question of the consistency of ZFCa. If one could derive a contradiction in 

ZFCa then OAO would become a theorem of ZFC a, and hence also of ZFC, 
contradicting Godel’s result on the consistency of ZFC. 

4.5. Some Typical Applications of the Axiom. A comparison of the axiom of 

choice with Axioms II—VII may cause the reader to wonder why we so 

strongly stress its significance. It might appear as if its statement, excluding 

the non-existence of a certain kind of subsets of U t, applied to special prob¬ 

lems and methods only and meant but little for the general theory. This sup¬ 

position seems to be supported by the fact that the axiom was introduced 

only at the beginning of the present century; that is to say, at a time when 

the bulk of both the theory of abstract sets and the theory of sets of points, 

including the nucleus of the modern theory of real functions, had already 

been developed. 

Yet this supposition does not to conform to the actual situation. On the 

contrary, fundamental and general theorems and methods in the theory of 

sets as well as in analysis, algebra, and topology are based on the axiom of 

choice. In some cases those theorems are based on the axiom of choice only 

in the sense that we do not know a way of avoiding its use, but also a remark¬ 

able number of them turn out to be equivalent to our axiom 3). True, the 

axiom was introduced only at the beginning of the 20th century, but it had 

been utilized long before while only much later was it observed that in the 

x) On the other hand, if we denote with ZFCT the set theory obtained from ZF by 

adding to it Axiom VIIICT, while the axiom schemas of subsets and replacement are not 

strengthened (i.e., only conditions which do not contain a are permitted in those axioms 

schemas), then by the second e-theorem of Hilbert-Bernays 34-39 II, § 1 (where we 

take o(z) instead of ex(xez)) every statement of the language of ZF (i.e., which does not 

contain a) which is a theorem of ZFa is also a theorem of ZF. Therefore, the axiom of 

choice, which is not provable in ZF, is also unprovable in ZFa. 

2) Feigner 71. 
3) For a very extensive list of mathematical statements equivalent to the axiom of 

choice see Rubin-Rubin 63. For newer results see Ward 62, Bleicher 65, Frascella 65 

Kruse 63, Gratzer 67, Feigner 67 and 69, in which further references are found. The 

reader will find a comprehensive and detailed technical treatment of the whole area re¬ 

lated to the axiom of choice in Jech °°. The authors became aware of that book too late 

to mention it whenever it is a relevant. 
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respective proofs an argumentation not used and recognized in earlier mathe¬ 

matics was involved. 
Therefore the axiom of choice must be admitted among the other ac¬ 

knowledged principles of mathematics. According to Hilbert ') it rests on 

“a general logical principle which is necessary and indispensable already for 

the first elements of mathematical inference”. 
To enable the reader to form his own opinion in this matter we shall now 

present a few characteristic applications of our axiom. Four examples will be 

given, selected not only in view of their fundamental character and of a 
minimum of technicality entering but also to cover a maximum variety of 

domains: two examples from the general theory of sets and one from each, 

analysis and algebra 1 2). 
The first example, taken from the elements of abstract set theory, con¬ 

cerns the operations on cardinals (addition, multiplication, exponentiation; 

see §§6 and 7 of Theory) and partly on order-types (T, §8) 3). Since the 

point is the same in all these cases it will be sufficient to take the simplest 

case, viz. the addition of cardinals 4). To obtain the sum of infinitely many 5) 

(finite or infinite) cardinals we assign to each cardinal as its representative a 

set with that cardinal 6) on condition that the representatives be pairwise 

disjoint; then the cardinal of the union of the representatives is the sum of 

the cardinals. Accordingly the sum would depend on the arbitrarily chosen 

representatives, yet the independence is guaranteed by a theorem (T, p. 82) 

stating that different ways of choosing the representatives necessarily yield 

equinumerous unions, hence the same sum-cardinal. 

1) Hilbert 23, p. 152. 

2) No example from topology is given here to avoid technicalities, see, e.g., 

Kuratowski 58. Rubin—Rubin 63 contains several topological statements equivalent to 

the axiom of choice (cf. also Ward 62). Lauchli 62 proves that Urysohn’s Lemma 

cannot be proved without the axiom of choice (see Jech-Sochor 66). 

) Of course, the non-vanishing of a product of non-zero cardinals is also an example, 

but this can barely be distinguished from the axiom of choice itself. 

4) For the role of the axiom in the arithmetic of cardinals in general cf., e.g., 

Sier^inski 58, Chapters V1II-X, and Bachmann 55, Chapters IV-V (see also Lauchli 61). 

) If the number of terms is finite the procedure is the same, but the axiom of choice 
is not required. 

6) Apparently, here arises the question how to “obtain” such representatives. If we 

use the notion of cardinal of ZF as on p. 98, the axiom of choice is already required 

to obtain a set of representatives. Actually, we do not have to use here cardinals at all 

and we can assume that representatives are used from the beginning. Accordingly, our 

example refers to the theorem in T, p. 82 rather than to cardinals proper; in fact, this 

theorem and its analogues are the key theorems of the infinite arithmetic of cardinals. 
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Now the prool ot this theorem is based on simultaneous one-one mappings 

between the representatives attached to the same cardinal by different 

choices. More precisely, if the cardinal f{t) = ct, where t runs over a certain 

set T, is represented once by a set at and again by bt (hence bt~at), let 

be a certain one-one mapping of at on bt \ by combining the mappings 

\Jj^ for all tGT we easily obtain a one-one mapping of the union of the sets 

at on the union of the sets br However, \£/W is not uniquely determined by 

the equinumerous sets at and bt\ save for trivial cases, there are various 

mappings between these sets, and infinitely many when at (hence bt) is 

infinite. The existence of the set of all one-one mappings of at on bt is 

proved by applying Axiom V to the set P (atXbt)', similarly one proves the 

existence of the set T whose members are all sets 'T® when t runs over T. 

But what we actually need, is a function \p which assigns to each member t of 

T a single member \p^ of 'I'W; to obtain such a function the axiom of choice 

is required, T taking the place of the set t in Axiom VIII**. 

Hence, the addition of cardinals depends on our axiom 1), provided the 

number of terms ct is infinite (even if the terms themselves are finite cardinals 

> 1). The same applies to the other operations with cardinals and with order- 

types. 
The axiom of choice is widely utilized in analysis; in particular in the 

theories of point sets and of real functions. Most of these applications 
involve technical notions of the theories concerned. Here we shall give an 

example from the very first elements of analysis with which all readers are 

familiar. 
One might expect the most common instance to be the following. After 

having proved that for each point x of a given set there exists at least one 

neighborhood of x — i.e. an open interval containing x — with a certain 

property, one chooses for each given x a definite such neighborhood. Appar¬ 

ently here our axiom is used inasmuch as for each x an arbitrary neighbor¬ 

hood is chosen simultaneously. However, in general the axiom can be 

dispensed with through a restriction to neighborhoods with rational ends; 

^Without the axiom of choice, when the cardinal number 2 is added to itself 

denumerably many times the result can be No (when one considers u{{l, 2},{3,4}, 

{5,6},...}) but may also be different from N0 (as in the case of ur, for a denumerable 

disjointed set t of pairs which has no selection set - the existence of such a set is not 

refutable in ZF, as was mentioned in p. 64). Also when the cardinal number N0 is added 

to itself denumerably many times the result can be No (since No • Nq = Nq) but may 

also be the cardinal of the continuum 2^°, since one cannot refute in ZF the statement 

that the continuum is the union of a denumerable set of denumerable sets — cf. Cohen 

66, Ch. IV, §10. 
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then only an (effective) denumerable set of possibilities is left for every x 

and it is easy to mark a definite one among them by a general rule. (Cf. 

exercise 11 in T, p. 47.) 
Yet with respect to concepts of an even more fundamental character we 

do depend on the axiom of choice. As usual (cf. T, p. 169) a point p shall be 

called an accumulation point of a subset K of the real line if in every neigh¬ 

borhood of p there is a point of K different from p. On the other hand one 

may base the elements of analysis upon the notion of limit point, defining p 

as a limit point of K if there exists a sequence (kv) of different points of K 

(u = 1,2, ...) such that the sequence has the limit p. 

Without the axiom of choice one easily proves that if p is a limit point of 

K,p is also an accumulation point of/C. On the other hand, let us also suppose 

that, for any subset K of the real line, every accumulation point of K is a 

limit point of K. From this supposition one proves the following statement 

*): If S = (S\,S2,St), ...) is a sequence of pairwise disjoint non-empty sets 

of real numbers, there exists a sequence of real numbers (Pi,P2>P3> •••) such 
that pk's with different indices k belong to different Sn’s. Conversely, it is 

easy to infer from ii without using the axiom of choice that every accumula¬ 

tion point of a subset K of the real line is a limit point of K as well. Hence, in 

ZF the equivalence between the notions “accumulation point of K” and 

“limit point of /C” is a necessary and sufficient condition for the validity of 

It can be shown that il is equivalent in ZF to the axiom of choice for a 

denumerable set t of sets of real numbers 1 2), which we know is unprovable 

in ZF (p. 61). Thus the axiom of choice is needed to establish the equivalence 

between two fundamental and elementary notions of analysis which usually 

are identified without further ado. 

This equivalence implies relations of equivalence between other fundamen¬ 

tal concepts of analysis which can be defined by means either of accumulation 

point or of limit point: not only those of 'derived set’ and of ‘closed 3), 

1) Sierpiriski 19, p. 120. 
2 

) The non-trivial direction, namely that f implies the axiom of choice for a denumer¬ 

able disjointed set t= {si,$2>s3> •••} of non-empty sets of real numbers is proved as 

follows. Given such a set t, let Sn be the set of all real numbers which “represent in some 

canonical way” the finite sequences (uu ...,un) for which each u/ is a member of s/, 

1 <i<n. It is easily seen that from a sequence (P1.P2.P3. •••) of real members such that 

P/c's with different indices belong to different Sn’s one can obtain a selection set for t 

(by means of an effective operation). 

3) One may define a set K of points as closed either (as in T) on condition that every 

accumulation point of K belongs to K, or on condition that every limit point of K 

belongs to K; analogically for the following concepts. 
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dense-in-itself, perfect set’ (T, pp. 169 f) but also the concept of continuous 

function. In tact, in the elements of analysis one uses either of the following 
two definitions of continuity: 

a) /(x)> defined for a<x<b, is called continuous at the point x0 of that 
interval if to every positive e there corresponds a positive 5 such that 

|x-x0|<5 implies |/(x)- /(x0)|< e. 

b) f(x) is called continuous at x0 if 

lim x^=x0 implies lim f(xk)=f(x0) . 
k-+°° k->°° 

While one easily proves that a function which is continuous at x0 in the 

sense a) is also continuous there in the sense b), the converse assertion cannot 

be proved without the axiom of choice !); more precisely, in ZF the validity 

of the axiom of choice for all denumerable sets t of sets of real numbers is 

necessary and sufficient for proving the equivalence of the definitions a) and 

b). 

Naturally, the same alternative exists for the definition of the derivative 

of a real function, where the situation is analogous to that regarding con¬ 

tinuity. 

It was a complete surprise for the mathematical world when in 1910 

Steinitz 2) called attention to the important task performed by the axiom of 

choice in algebra, both for certain problems of classical algebra and still more 

for abstract algebra (which became an important branch of mathematics 

through the influence of that very essay of Steinitz). 

To render a typical problem of this branch intelligible also to readers not 

familiar with modern algebra we proceed from a starting-point known to 

everybody, if not properly algebraic. 

The so-called fundamental theorem of algebra3) can be expressed as 

follows. A polynomial 

p(x) = a0xn +axxn~l + ... + an_lx + an (a0 ^=0) 

*) Yet the transition from b) to a) can be accomplished without the axiom if b) is 

presumed for the entire interval, i.e. for every convergent sequence of points from the 

interval. See Sierpiriski 19, pp. 131 ff. 

2) Steinitz 10, §§ 19-24 and van der Waerden 55 (ch. VIII-X). 

3) This name has historical reasons only. From a modern point of view the name 

should be attributed to the theorem stated below regarding an algebraically-closed exten¬ 

sion. 
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with integral rational coefficients ak and the positive integral degree n has at 

least one zero x = 71 within the field of all complex numbers; hence it has n, 

not necessarily different, zeros. 

However, the field of all complex numbers — which, as well as the field of 

all real numbers, is a concept of analysis and not of algebra — quite inciden¬ 

tally enters this theorem, viz. because it is a well-known and would-be 

“elementary” concept. Returning to algebra, by an algebraic number we 

mean any (complex) number that is a zero of p(x), i.e. a root of an algebraic 

equation p(x) = 0 with integral rational coefficients (cf. T, p. 8). The set of 

all algebraic numbers — which is denumerable, contrary to the set of all 

complex or real numbers — has the following two properties: 1) it constitutes 

a field with respect to addition and multiplication; 2) also if the coefficients 

ak are any algebraic numbers the polynomial p(x) has a zero, hence n zeros, 

in the field of all algebraic numbers. 

A field F (not necessarily a field of numbers) is called algebraically-closed 

if it does not admit an algebraic extension; that is to say, if every polynomial 

p(x) “in F” (i.e., with coefficients from F) has a decomposition into linear 

factors x-yk, yk belonging to F. In particular, F is called an algebraic 

algebraically-closed extension of a field Fq if Fq is a subfield of F, F is 

algebraically-closed, and every member of F is algebraic with respect to Fq, 

i.e. a zero of a polynomial in Fq. Therefore the field of all complex numbers 

is algebraically-closed, but not an algebraic extension of the field R of all 

rational numbers since the transcendental numbers are not algebraic with 

respect to R. On the other hand, the field A of all algebraic numbers is an 
algebraic algebraically-closed extension of R. 

The construction of the field A from R does not involve the axiom of 

choice, due to the denumerability of the field. However, one needs the axiom 

of choice to prove that there is essentially only one such extension of R 

(where by “essentially only one” we mean “only one, up to isomorphic 
extensions”) *). 

Now we may generalize this train of ideas by starting not just with the 

field R ol the rationals but with any field Fq whose members need not even 

be numbers. In this case, as proved by Steinitz, the above theorem still holds 

true, i.e. there exists one, and essentially only one, algebraic algebraically- 

closed extension F of Fq. Then, however, both parts of the theorem rest 
upon the axiom of choice 2). 

X) Laiuchli 62, Jech-Sochor 66. 
2 

) Lauchli 62, Jech—Sochor 66. One can also prove that the existence part of the 

theorem for a general field F0, together with the uniqueness part of the theorem for the 

field R, implies in ZF the weakest form of the axiom of choice, i.e., where t is a 

denumerable set of pairs, which is unprovable in ZF (p. 64). 
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This is a typical and important use of the axiom of choice in algebra; yet 
no single example can do full justice to the role of this axiom in algebra !). 

The use ot the axiom of choice in analysis and algebra has yielded an 
important by-product: a principle of an apparently different character which 

nevertheless turns out to be equivalent to the axiom of choice and which is, 

in many fields of mathematics, a welcome substitute for the axiom, since by 

using it one can often avoid not only the axiom of choice, but also trans- 
finite induction as well. 

As proved by Hausdorff 2), every partially (partly) ordered set (T, p. 131) 

includes at least one maximal completely (or totally) ordered subset, i.e., an 

ordered subset which is not a proper subset of any ordered subset. The proof 

uses the axiom of choice and follows the method of Zermelo’s first proof of 

the well-ordering theorem (T, pp. 224—227). Similar principles were intro¬ 

duced later, in several cases independently of Hausdorff, by Kuratowski, Zorn, 

and others 3). These principles are now usually referred to as Zorn’s lemma 

or maximum principles. We shall present here also the following maximum 

principle (Z) 4). 
Let us say that a relation < which partially orders a set A is inductive 

(on A) if every (completely) ordered subset B of A has an upper bound (i.e., 

if there is a member y of A such that x <y or x =y for every member x of B). 

(Z) If < is an inductive partial ordering of a set A then A has at least one 

maximal member with respect to < (i.e., there is a member z of A such that 

for no member x of A does z <x hold). 
Zorn’s lemma, in its various versions, is equivalent to the axiom of 

choice 5). One can also prove directly from it various theorems of abstract 

set theory which are usually proved by means of the axiom of choice or the 

well-ordering theorem 6). 
A last example is again taken from abstract set theory; it is the very case 

for which our axiom was originally introduced, viz. the well-ordering theorem 

and the comparability of cardinal numbers (T, pp. 224-228). 
In both proofs of the well-ordering theorem given by Zermelo 7) the 

*) See Lauchli 62 and Jech-Sochor 66 for several other essential uses of the axiom 

of choice in algebra. 

2) Hausdorff 14, pp. 140 f. 
3) See Rubin-Rubin 63,1, §4, for references and a more detailed discussion. 

4) Bourbaki 56, § 1, No. 4. 
5) See Rubin-Rubin 63 for the proofs and references; see also Feigner 67. Biichi 53 

investigates this equivalence from the point of view of type theory. 

6) See Halmos 60 (Sections 17 and 24) and Zorn 44. 

7) Zermelo 04 and 08. Bernays 34-57 IV, pp. 143-145, compares the axiomatic 

simplicity of both proofs and gives an intermediate one. 
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fundament is a simultaneous choice of particular (“distinguished”) members 

in every non-empty subset of the set s to be well-ordered; in other words, the 
supposition that a function / exists whose domain is the set of the non¬ 

empty subsets x of s, such that always /(x)Cx. 
The comparability theorem may either be inferred from the well-ordering 

theorem in view of the comparability of well-ordered sets or be proved 

directly through the axiom of choice (T, pp. 231—233). 

But the axiom of choice, the well-ordering theorem, and the comparability 

theorem are equivalent even in the following sense. It is evident that the well¬ 

ordering theorem implies Axiom VIII and is equivalent to it. For an arbitrary 

well-ordering r of the union Ut simultaneously well-orders every subset of 

Ut, hence every member of t\ therefore a selection-set of t exists by the 

axiom of subsets; for instance, the subset of Ut which contains out of each 

member s of t that member of s which is the first member of s in the well¬ 

ordering r. 

Incidentally, any well-ordering of an arbitrary set s assigns to every non¬ 

empty subset of s a “distinguished” member of the subset; thus one directly 

obtains from it also Axiom VIII**, where the disjointedness is not assumed. 

The transition to the comparability theorem from either the axiom of 

choice or the well-ordering theorem has just been mentioned. The converse 

direction is taken in Hartogs’ proof1). Starting with an arbitrary set s we 

obtain, without using the axiom of choice, a certain well-ordered set C which 

proves to be neither equinumerous to s nor to any subset of s. (This, by the 

way, means that no set exists whose cardinal surpasses the cardinal of every 

well-ordered set.) 

Hence, if we accept the comparability of sets as a principle, s is equinumer¬ 

ous to a subset of the well-ordered set C and has a cardinal less than C. s can, 

therefore, be well-ordered on account of a one-to-one mapping on a certain 

subset of C. Thus comparability implies the well-ordering theorem, hence the 

axiom of choice 2). Accordingly, these three statements are equivalent prin¬ 

ciples', taking one of them as an axiom we obtain the others as provable 

theorems. That the axiom of choice is favored in the foundations of set 

theory and of mathematics in general has its reason in the general logical 
character of this axiom. 

4.6. Mathematicians’ Attitude towards the Axiom. We conclude our survey of 

1) Hartogs 15 (or Rubin-Rubin 63,1 §3, or Suppes 60, p. 247). 

) For the consistency with ZF of statements which strongly negate the comparabil¬ 

ity theorem see Marek-Onyszkiewicz 66, Jech 66, and Takahashi 67. 
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the axiom of choice by a glance over the attitudes taken by mathematicians 
towards the axiom since its explicit formulation in the beginning of the 

present century. (The “prehistory” ol the axiom was described on pp. 59 f.) 
The negative attitude of most intuitionists, because of the existential 

character of the axiom, will be stressed in Chapter IV. To be sure, there are a 

few exceptions, for the equivalence of the axiom to the well-ordering theorem 

(which is rejected by all intuitionists) depends, inter alia, on procedures of a 

supposedly inrpredicative character; hence the possibility exists of accepting 

the axiom but rejecting well-ordering as it involves impredicative procedures. 
This was the attitude of Poincare. 

Save for the intuitionistic point of view, both the positive and the negative 

attitude towards our axiom are far more strongly influenced by emotional or 

practical reasons than by arguments of principle. 

For those accepting and using the axiom, the chief reason is its - or the 

well-ordering theorem's — indispensability for proving important theorems of 

analysis and set theory; this argument proved so strong that even scholars 

who in principle rejected existential procedures did not refrain from using the 

axiom to a certain extent in their analytic researches. As to algebra, the 

historical development can be hardly illustrated more strikingly than by the 

following quotation (translated) from Steinitz’ pioneer work *).“As yet many 

mathematicians take a negative attitude towards the principle of choice. With 

the increasing recognition that there are mathematical questions which cannot 

be decided without the principle, the opposition against it will presumably 

fade more and more. On the other hand, for the sake of purity of method it 

seems suitable to avoid the principle as far as its application is not required by 

the nature of the problem concerned. 1 endeavored to make this boundary 

clearly visible.” 

Yet the opponents have also been considerably influenced by psycholo¬ 

gical rather than logical reasons — in spite of the opinion of as authoritative 

an observer as Lebesgue who maintained that no discussion between the two 

parties had been possible “because they had no common logic” so that they 

could do no better than insult each other. (Cf., however, the quotations 

below on p. 84.) As a matter of fact, as long as the (implicit and unconscious) 

use of the axiom by Cantor and others involved just arithmetical operations 

with cardinals and order-types or guaranteed the non-vanishing of a product 

whose factors differ from zero — in short, involved only generalized arith¬ 

metical concepts and properties well-known from finite numbers — nobody 

took offence. The same applies to its use in some elementary proofs of anal- 

*) Steinitz 10, Einleitung. 
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ysis. Yet at the moment (1904) when the axiom, explicitly formulated, was 
used byZermelo to prove and confirm one of the earliest assertions of Cantor, 

viz. the well-ordering theorem, mathematical journals *) were flooded with 

critical notes rejecting the proof, mostly arguing that our axiom was either 

illegitimate or meaningless. 
True, various and widely different reasons for the rejection were given; 

but one cannot help feeling that the common denominator from which the 

various reasons derived was the unwillingness to accept its consequence, 

namely the theorem in which the opponents did not believe. This unwilling¬ 

ness deepened enormously when it became obvious that the main purpose 

connected with well-ordering since 1880, viz. to ascertain the place of the 

power of the continuum in the series of Alephs, had not become furthered 

a bit by the well-ordering theorem. The difficulties of this continuum prob¬ 

lem, more clearly perceived today than 90 years ago (see § 6.1), had by the 

turn of the century induced many mathematicians to believe that the (linear) 

continuum and more complicated sets could not be well-ordered at all; in 

other words, that 2^o; 22^o, etc. were no Alephs. Cantor’s contrary convic¬ 

tion, displayed dramatically at the Third International Congress of Mathe¬ 
maticians (1904; cf. T, pp. 222—3), carried little persuasion even for 

many set-theoreticians, let alone mathematicians in general. Now when 

Zermelo in his short notes 04 and 08, simple in technique in spite of their 

sagacity, proved just the contrary and confirmed Cantor’s conviction yet 

without providing a method of ascertaining the Alephs concerned, one was 

inclined to believe that Zermelo’s proofs yielded too much and were in¬ 

correct. On the other hand, the majority of critics did not contrive to find 

mistakes in the proofs and therefore distrusted their basis, the axiom of 

choice — not so much for itself as for its consequences. Of course, this scep¬ 

ticism is based upon not appreciating the existential character of the well¬ 

ordering theorem which a priori makes its usefulness for the decision of 

“constructive” questions like the continuum problem highly doubtful. 

To be sure, not all opposition directed against Zermelo’s proofs derived 

from antagonism to our axiom. There is the attitude of Poincare mentioned 

above, rejecting an (actual or apparent) use of an impredicative procedure in 

^See in particular vol. 60 of Mathematische Annalen (Zermelo’s first proof had 

appeared in vol. 59), Hadamard 05, and note IV in Borel 14. As becomes apparent 

especially in this note there was an early bifurcation among the opponents with regard 

to the case that the set t is denumerable; in this case Borel, as well as Denjoy 46-54, 

tended to accept the assumption that a selection set exists while Lebesgue saw at most 

psychological reasons for distinguishing between different transfinite cardinalities of t. 
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the proof. Poincare', in spite of his intuitionistic inclination (see Chapter IV), 

was ready to accept the axiom of choice, admitting the possible existence of 

rules which cannot be constructively, or anywise completely, formulated; in 
the present case the existence of subsets of U/ which cannot be obtained by 

means ol the axiom of subsets. This attitude is in accordance with his con¬ 

sidering non-contradiction as the decisive criterion of mathematical existence. 

Incidentally, the proofs of the well-ordering theorem have also been 

attacked with actually erroneous arguments1) while on the other hand 

insufficient proofs of the theorem have been proposed. 

Apart from the well-ordering theorem some statements of a quite different 

character - in particular geometrical statements - have been proved by means 

ot the axiom of choice, which because of their paradoxical character induced 

some mathematicians to reject the axiom 2). Presumably the earliest state¬ 

ment (1914) of this kind is Hausdorff’s discovery that half of a sphere’s sur¬ 

face is congruent to a third of it 3); other paradoxical consequences were 
found later 4). 

From the point of view of those mathematicians who rejected the axiom 

of choice the proof of a theorem by means of this axiom does not, of course, 

establish its truth, yet some of them were willing to grant that such a proof 
establishes the unprovability of the negation of the theorem by present 

mathematical methods. (By Godel’s result on the consistency of ZFC the 

negation of a theorem of ZFC is unprovable in ZF — the consistency of ZF 

being assumed 5).) 

It may surprise scholars working in the field of abstract or applied set 

theory that even after more than half a century of utilizing the axiom of 

choice and the well-ordering theorem, a number of first-rate mathematicians 

(especially French) have not essentially changed their distrustful attitude; not 

even such as have been working most successfully in the domain of point sets 

and of real functions. Some lectures and discussions delivered at an interna¬ 

tional conference on foundations of mathematics in Zurich 1938 6)are most 

*) In a sarcastic form many objections against the first proof are refuted in Zermelo 

08, where references to the literature (up to 1908) are given. 

2) E.g., Borel 46 and 47 and Bouligand 47; cf. the reaction of P. Levy 50. Denjoy 

(46—54, V) justly remarks that certain complications in analysis caused by the rejection 

of the axiom are no less paradoxical than the Banach-Tarski theorem (Footnote 4). 

3) Hausdorff 14, p.469. 

4) In particular, Banach-Tarski 24, von Neumann 29a, R.M. Robinson 47. 

5) This opinion was expressed by Lusin (Sierpiriski 58, p. 95) and also mentioned in 

Fraenkel 27, p. 86. 

6) Notably Lebesgue 41, Sierpiriski 41, and the respective discussions. 
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characteristic of what maybe called a stagnation of controversy during several 

decades, in spite of an enormous actual development of research in the field 

under discussion. It is remarkable what Lebesgue says there of his attitude 

toward the axiom of choice: Indicating thus my demands, it was not at all 

my intention to decide in favor of the purely negative attitude I have taken. 

I am far from regarding this attitude as a final one; it is just a provisional 

attitude, which I have been characterizing as a measure of caution, or even 

just of routine, for many years, since the very beginning of the controversy 

(translated from French) *). 

It has been mainatined that, after in 1904 “the powder keg had been 

exploded through the match lighted by Zernrelo” in his first proof of the 

well-ordering theorem, the strange situation emerged that those who up to 

that moment had utilized set theory were opposed to the axiom of choice 

while other mathematicians were ready to accept the axiom 2). Whether this 

is correct or not, at any rate the situation has since thoroughly changed 

due to various reasons: to the applications of the axiom to problems of 

almost every domain of mathematics; to the penetrating and many-sided 

investigations on statements equivalent to the axiom (from 1915 on) whose 

import is independent of the admission of the axiom; to the researches on the 

independence of the axiom (from 1922 on) in its weaker and stronger forms, 

confronted with our inability to prove many important results without the 

axiom; to the fact that none of the conclusions drawn from the axiom has led 

to a contradiction, a fact finally crowned by Godel’s proof of the consistency 

of the axiom, i.e. its compatibility with a reasonable system of axioms. 

It is true that the character of our axiom does not conform to the realm of 

l)l.c., p. 118. It is worth while to reproduce (in translation) some of Lebesgue’s 

subsequent remarks; he says with regard to our axiom: In the past, audacity and caution 

have been collaborating at each important progress. Why not do it once again? ... I de¬ 

sired to make it clear ... that the discussion has neither been nor is purely logical .... 

Each of us takes pains to understand, and to be certain of, a substratum underlying the 

words used. To this purpose we utilize comparisons, instances taken from History of 

Science, we proceed audaciously or timidly ... perhaps according to our age or to our 

race. Thus it is a question of trying to elaborate a new chapter of mathematics. What, 

then, is the use of logic? Certainly not to convince, to create confidence. ... At the his¬ 

torical moment ol the paradoxes of set theory, when we emerged from discussions where 

none of us saw a way of repairing a logic that appeared ruined, nevertheless we con¬ 

tinued applying that very logic to the problems we were studying; for an attitude of 

philosophical doubt taken in a discussion does not at all prevent the full certainty. 

... Logic does not create confidence ... The researches on the foundations and the 

method of mathematics should give plenty of space to psychology and even to aesthetics. 

) See Lebesgue 41 and Sierpinski 41. 
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pure arithmetic or to geometrical rigor in the Greek sense. But this does not 

justify its being made a scapegoat, considering that modern “classical” anal¬ 
ysis, and therefore geometry, in general - in contrast with intuitionistic 

mathematics (Chapter IV) — has not that character either!). Considering the 

fact that no possibility of construction is asserted there is no reason why the 

non-vanishing of the Cartesian product of non-vanishing sets or the idea of a 

well-ordering of the continuum should be regarded as hazardous hypotheses. 

True, the axiom of choice was explicitly formulated only in the twentieth 

century and apparently was not implicitly used earlier than two decades 

before. But, at that, every mathematical principle was once expressed for the 

first time, mostly long after it had been used implicitly and unconsciously. 

The development of mathematics through the centuries has been achieved 

in two directions: by drawing new conclusions from previously admitted 

premises; as well as, in a less conspicuous way by adding new premises or 

principles to those admitted before, in accordance with the needs of science. 

In fact one has arrived at the axiom of choice just as at other mathematical 

principles, viz. by a posteriori examining and logically analysing concepts, 

methods, and proofs actually found in mathematics whose original develop¬ 

ment in an intuitive manner rests on psychological rather than on logical 

foundations. This way of analysing then yielded the principle in question, 

and a reference to the intuitive or logical evidence of the principle was at best 

secondary 2). Thus the Greek mathematicians were induced to include the 

axiom of parallels among the principles of geometry — an achievement whose 

ingenuity was fully appreciated only more than two thousand years later. 

When the independence of the axiom of parallels was ultimately proved by 

the middle of the 19th century nobody proposed to renounce those parts 

of geometry (metric and affine geometry) which depended on the axiom. 

In an analogous way we should admit the argumentations of algebra, analysis, 

and set theory that use the axiom of choice but at the same time examine 

what results can be obtained without the axiom and avoid it whenever 

possible. Hereby one learns to distinguish the domains of mathematics which 

are independent of the existential principles of choice and well-ordering from 

those where they are indispensable. 

The analogy with geometry, where Absolute Geometry would correspond 

*) Cf. Hadamard 05. 

) In the philosophical systems of Kant and Fries this idea plays an essential part. In 

particular in logic many principles are chiefly justified by the evidence of their conse¬ 

quences (cf. Schiller 28) and in geometry one may regard the existence of similar but 

non-congruent figures as much more evident than the axiom of parallels. Thus it seems 

hardly possible to accept the contrary attitude of Collingwood 33. 
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to the former domains, suggests the question: what shape will analysis and set 

theory assume by accepting a principle contradicting the axiom of choice? 

Such a “non-Zermelian” theory in some sense corresponds to non-Euclidean 

geometry 1). 

The last remarks seem to suggest the attitude taken in Principia Mathe- 

matica, namely not to ask whether the axiom of choice is “true”, unavoidable, 

or admissible, but what additional parts of mathematics can be obtained by 

the admission of the axiom. This attitude appears even more legitimate today 

after the consistency and the independence of the axiom have been proved. 

This attitude is, however, opposed by Godel’s quasi-platonic conception of 

mathematical truth2), according to which the statement of the axiom has a 

categorical rather than a hypothetical character. 

§5. THE AXIOM OF FOUNDATION 

5.1. Introducing the Axiom. A very simple, but fundamental, question con¬ 

cerning the notion of set is left unsettled by Axioms I—VIII, namely: Does 

there exist a set s which is a member of itself 3)? If our set theory were based 

on the axiom schema of comprehension (p. 31) the answer would be trivially 

positive, since the set of all sets would be a member of itself (as is indeed the 

case in Quine’s set theory in which there is a set which contains all sets 

— see Chapter III, §3). However, there is nothing in Axioms I—VIII to indi¬ 

cate the existence or the non-existence of such sets4). This observation makes 

!) Alternatives to the axiom of choice, most of them concerning the theory of ordinal 
numbers, are discussed by Specker 57 and Bachman 55, §39 (some of these alternatives 
were proposed by Church 27). Out of the alternatives discussed by Specker 57,H (and Q 
was proved consistent by Feferman and Levy (see Cohen 66, Ch. IV, §10); the model 
used for this purpose also satisfies Gi- Alternative B is consistent (if and only if the 
existence of an inaccessible number is consistent) - Hajek 66. Other alternatives have 
not yet been proved consistent. An alternative of a different character is the axiom of 
determinateness of Mycielski and Steinhaus 62 (see also Mycielski 64-66 and Mycielski- 
Swierczkowski 64); for consequences of this axiom see also Addison-Moschovakis 68, 
Martin 68, andY.N. Moschovakis 70. 

2 
) Godel 47 (in particular, footnote 2). 

3 t 
) This question was first posed in the framework of axiomatic set theory, by 

Mirimanoff 17. (In type theory no set can be a member of itself, which is one aspect of 
Russell’s vicious circle principle.) 

) The existence of such sets is compatible with Axioms I-VIII - see footnote 5 on 
p. 29 and footnote 1 on p. 101. Also their non-existence is compatible with the Axioms 
- see §5.5. 
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room for a new axiom which is called upon to decide this question; such is 
our next and last axiom of ZF, the axiom of foundation. 

Each one of Axioms I—VIII was taken up because of its essential role in 

developing set theory and mathematics in general; if any single axiom were 

left out we would have to give up some important fields of set theory and 

mathematics. (Omitting Axiom 1 would, maybe, not jeopardize any field of 

mathematics, but would make the development of mathematics and set 

theory highly inconvenient.) The case of the axiom of foundation is, however, 

different; its omission will not incapacitate any field of mathematics. Yet, this 

axiom is of great interest in the study of the foundations of set theory. 

In our search for an axiom which settles the question of the existence of a 

set which contains itself let us try and see to what extent we can ,,construct” 

sets without stumbling on such a set. Our present account of this “construc¬ 

tion” will be informal; its rigorous development is postponed to §5.3. We 

shall temporarily widen the scope of our discussion by including in it also set 

theories which admit individuals but which are otherwise like ZF 1). 

We divide the universe of elements into layers. The bottom layer consists 

of all individuals — these are, in a certain sense, the simplest elements. (In ZF, 

which does not admit individuals, the bottom layer is empty.) The next layer 

consists of all sets of individuals — these can be considered to be the simplest 

sets. The third layer consists of all sets whose members are taken from the 
first two layers, i.e., sets which consist of individuals and sets of individuals, 

and so on. Whether there are individuals or not, in the second layer we get the 

null-set O, in the third layer we find the set {o}, the fourth layer contains the 

sets {{0}} and {O, {O}}, and so on. On top of the first co layers there is the 

co-th layer, which consists of all the sets whose members belong to the first 

co layers. In the co-th layer we find the sets Z* = {0, {0}, {{01}, ...} and 

Z* = {0,{0}, {O, {O}}, ...} (of pp. 47—48), one of which is taken to be the 

set of all natural numbers. In higher layers we find the set of all rational num- 

( )rs (defined in one way or another), and then the set of all real numbers, etc. 
As long as we proceed within the succession of the layers we will never 

reach a set which contains itself as a member, since all the members of a set 

in a given layer belong to lower layers. In the same way we can argue that 

within the layers there is no set which is a member of a member of itself, or 

a member of a member of a member of itself, etc. 

Every “set” t of layers is immediately followed by a new layer which 

consists of all sets whose members belong to layers in t or to layers which are 

lower than some layer of t. Our construction of the layers is such that the 

1) For such a set theory see footnote 1 on p. 25. 
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layers are stacked in a well-ordered fashion. Consequently, if one or more 

layers have members in common with a given collection of elements then 

there is a lowest layer which has members in common with that collection. 

In other words, if the collection of all elements a which fulfil a given condi¬ 

tion $ (a) has members in common with some layer then there is a layer X 
which is the lowest layer containing members of this collection, i.e., £ is the 

lowest layer containing elements a which fulfil ^3(a). Let u be an element in 

the layer 5 which fulfils ^B(a); u is either an individual or a set. If u is a set 

then all the members of u, if any, belong to layers lower than X and therefore 

none of them fulfils ^3(a); if u is an individual it is still true that no member 

of u fulfils $(a) since u has no members. 

Let us refer to the sets which belong to the various layers as well-founded 
sets. It conforms to a large extent with the intuitive notion of set that the 

only objects which can rightfully be called sets are the well-founded sets. If 

we take up this point of view we can assert, according to the last paragraph, 

the following 

AXIOM SCHEMA (IX) OF FOUNDATION (OR REGULARITY). If there 

is some element a which fulfils (a) then there is a minimal element u which 

fulfils j$(x), i.e., t/ fulfils ^B(a) but none of its members fulfils 5)B(a) !). 

In symbols, 

Vzi...Vz„[3a^(a)->3a(<p(a) a Vy (ye a->1^0)))] , 

where y is not free in the formula <^(x) and z j, ...,zn are the free variables of 
<p(a) other than a. 

We shall see later (in §5.3) that Axiom IX does indeed assert that all sets 

are well-founded. Let us now remark that even if one does not agree that only 

well-founded sets can be rightfully called sets, one can advance no argument 

for retaining sets which are not well-founded other than the desire for greater 

generality. This greater generality is not of much use since no field of set 

theory or mathematics is in any need of sets which are not well-founded. 

Opposing the desire for more generality there is always a desire for more 

restricted and definite notions, if by restricting the discussion no interesting 

')von Neumann 25, p. 239 and 29, p. 231; for different versions see already 

Mirimanoff 17 and Skolem 23, §6. Zermelo 30 introduced the name Axiom der 

Fundierung, because according to the axiom any “descending” sequence terminates (i.e., 

reaches its bottom or “foundation”) after a finite number of steps. Bernays 37-54 II 

uses the name 'Restrictive Axiom’. A peculiar axiom which is essentially the conjunc¬ 

tion of the axiom of extensionality and a weakened form of Axiom IX is given by 

Finsler 26 (Axiom II). 
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mathematical results are lost (see the discussion in §6.4). Thus one can 

accept Axiom IX not as an article of faith but as a convention for giving a 

more restricted meaning to the word ‘set’, to be discarded once it turns out 
that it impedes significant mathematical research. 

Opposed to this way of looking at Axiom IX several authors *) put the 

intuitive reasoning which led to the notion of a well-founded set as the very 

basis for the notion of set, on a par with extensionality and comprehension. 

This point of view adopts one of the basic tenets of the logicistic attitude and 

in particular of type theory (see Ch. Ill, §2). The weakest part of this point 

of view is that the reasoning leading to the concept of a well-founded set uses 

the well-ordering of the layers, and the notion of well-ordering of, let us say, 

non-denumerable sets is far from being simple or conceptually fundamental. 

Axiom IX in itself does not involve the concept of a well-ordering, but it 

seems that this concept is unavoidable in any attempt to give an intuitive 

justification of Axiom IX. Also, it is traditional with the axiomatic attitude, 

as opposed to the logicistic attitude, that the attitude towards an axiom is 

mostly determined by the usefulness of the axiom in mathematics. Since, as 

we remarked above, Axiom IX is not essential for mathematics, it cannot be 

regarded as fundamental by the traditional axiomatic attitude 2). 

Axiom IX was formulated so as to be suitable also for set theories with 
individuals, but from now on we shall limit the discussion to the present axi¬ 

omatic system which does not admit individuals. 

By substituting ~ ^B(x) for (x) in Axiom IX we get easily (by passing to 

its contrapositive) the following formulation of the axiom: Iftyix) is a condi¬ 

tion such that, whenever all the members of a set u fulfil (x), u itself also 
fulfils this condition, then every set fulfils ^B(x). In this formulation Axiom 

IX has the form of an axiom of induction 3). 

If we take for ^(x) in Axiom IX the condition x Ey we get 

IX*. If y is a non-empty set then y has a member u such that u f!y>=0. 

One can also prove that IX* implies Axiom schema IX and is, hence, 

!) Klaua 64, Kreisel 65, and Shoenfield 67. 

2) Bernays 46 says"... the weaker form of the vicious circle principle, that no totality 

can contain members involving this totality ..., as Godel says, ... is satisfied also by those 

systems of axiomatic set theory which have an axiom like Zermelo’s Axiom der Fun- 

dierung (our Axiom IX), restricting sets to those called ordinary by Mirimanoff 17 (our 

well-founded sets). However, in axiomatic set theory the guiding idea for avoidance of 

the paradoxes is not that of the vicious circle principle but of “limitation of size” ...”. 

3) Tarski 55, where it is mentioned that, as a consequence of Axiom IX, one can also 

define by induction (recursion) on the membership relation. 
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equivalent to it 1). Thus, in contrast to the axiom schema of replacement, 

Axiom schema IX can be replaced by a single axiom. We still chose the 

schema IX rather than IX* to serve as the principal version of the axiom 
because in some of the uses of the axiom Axiom schema IX is directly appli¬ 

cable whereas IX* is not 2). 

Let us consider now the case of a sequence (sj, s2, s3, ...) such that, for 

every /> 1, s^iCj;, i.e., ...Gs(-+1 GE s;G: ...GE s3 GE s2 G= . Let y be the set 

{sj, s2, ...}. By IX*, y has a member u such that u Hiy = 0, but this cannot 
be the case since if u is sk, for some 1, then fy+1 GEir Hy. Thus Axiom IX 

contradicts the existence of such a sequence (sj, s2, •••)• 

IX**. There is no sequence 1»^2»s3» •••) such ^iat> for every f ^ 1, 

$i+1 ^ si )• 

One can also prove, using the axiom of choice, that IX** implies IX* and 

is, hence, equivalent to Axiom IX 4). 

The proof is as follows. Let r be a relation on y which consists of all ordered pairs 

<u, v) such that u and v are members of y and 11£«. If y is not as in IX* then y and r 

satisfy the hypothesis of the axiom of dependent choices (p. 65) and hence also its con¬ 

clusion, which asserts the existence of a sequence (sj, s2, s3, ...) of members of y as in 

IX**. 

In IX** the terms Si,s2’s3’ of the sequence are not necessarily differ¬ 

ent from each other; thus Axiom IX rules out the existence of a set s which is 

a member of itself since in this case we get the sequence ...GsGiGs, or of a 

set s which is a member of a member t of itself since in this case we get the 

sequence ...s&t&s&t&s, etc. In the cases where sGs, s&t£=s, etc. we can 
also apply IX* directly to the sets {s}, {s, t], etc., respectively, to get a con¬ 

tradiction. Thus the axiom of foundation does indeed decide the question 
raised at the beginning of the present section. 

For the system ZFCa, discussed in §4.4, IX* can be given a particularly 

neat formulation. In ZFCa, if y is a non-void set then o(y) is always a mem¬ 

ber of y. Since by IX* a non-void set y has always a member u such that 

uTy = O we can take o(x) to be such a u and thus take up the following version 
ofIX*. 

IX* o(y) Dy = 0s). 

*) This was observed by Godel - see Bernays 37-54 VI, p. 68. This equivalence is 

unprovable in various systems of set theory weaker than ZF - see Boffa 69 and Jensen- 

Schroder 69, where references to earlier work of Vopgnka, Hajek, and Hauschild is given. 

2) Such as the proof of IX^ on p. 94. 

3) Mirimanoff 17, Skolem 23 (§6). 

) The use of the axiom of choice here is essential - see Mendelson 58. 

5) Bernays 58, p. 202. 
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IX*, in conjunction with VIIIa, which asserts tiia.ty=£ODo(y)Gy, obviously 
implies IX*. On the other hand, IX* does not exactly imply L C in the pres¬ 

ence ot Axioms I—VIIICT since the only assertion we made in VIII0 concern¬ 
ing o(y), lor y^O, is that o(y)Gy, and this, obviously, does not imply 

°{y)^y = 0 even if y has always a member u such that u = 0. However, 

once we assume Axioms I—VIIIff and IX* we can define an operation o' by 

o (y)~o{{u |u Gy&u Hy = 0}), and easily prove Axioms VIII0 and IX* with 
a replaced by o'. 

Let us now return to the informal discussion which led us to the adoption 

ot Axiom IX and try to make this reasoning precise. The major notion in¬ 

volved was the notion of the layers. If we want to give a correct definition of 

the layers it is convenient to have an indexing system for them. Since, as was 

mentioned above, the layers are stacked in a well-ordered fashion we shall use 

the ordinal numbers to enumerate the layers. This brings us to the topic of 
the ordinal numbers. 

5.2. Ordinal Numbers. In the discussion of the ordinal numbers we shall not 

use the axioms of choice and foundation. Also throughout the rest of the 

present section we shall not use these axioms where we can do without them; 

whenever we shall use them this will be mentioned explicitly. 

The ordinal numbers, as defined in T (p. 187), are the order types of well- 

ordered sets. In T (p. 138) the notion of an order type is not a defined notion 

of set theory; it is introduced by abstraction from the defined notion of 

similarity of ordered sets !). In a formal axiomatic theory this amounts to 

the introduction of a new primitive notion “the order type of (a,rY\ which 

we can write as (a,r), together with the axiom: (a,r) = (b, s) if and only if the 

ordered sets {a, r) and (b, s) are similar, and which the corresponding strength¬ 

ening of the axiom schemas (where ‘condition’ now also stands for formulas 

which contain the new order type symbol). We shall see that in ZF the notion 

of an order type can be defined, so there is no need to introduce it in ZF as 

a new primitive notion. However, before we can deal with order types in 

general we have to deal first with the ordinal numbers. 

We shall first discuss ordinal numbers informally, with the aim of later 

introducing a formal definition for this notion. 

Let us denote with Wfx) the set of all ordinals smaller than a; then we 

have 

(1.1) If (3<a then W(fi)C W(a) (trivial). 

J) See T, pp. 58/9 for the concept of abstraction. For the relation of similarity of 

ordered sets see T, pp. 134 f. and Suppes 60, p. 128. 
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(1.2) The relation < well-orders W(a.) and the order type of this ordered 

set is a (T, p. 197). 
Zermelo and von Neumann1) were led by (1.2) to define the ordinals in 

such a way that a becomes equal to W(a), i.e., each ordinal is the set of all 

smaller ordinals. E.g., the least ordinal 0 is the set of all smaller ordinals, i.e., 
0 = 0; the next ordinal is 1 ={0}, then 2 = (0,{O}}, and so on; the least infinite 

ordinal is the set of all finite ordinals co = (0,1, 2, ...} = (O, {0}, {0, {O}}, ...} 

(this is the set Z\ of p. 48). On these ordinals the relation < coincides with 

the G-relation, i.e., a</3 just in case aE(3 (—W(fi)). 

DEFINITION. A set x is said to be transitive if every member of x is a 

subset of x, i.e., if every member of a member of x is a member of x 

(UxCx). 

Replacing <, W(a) and W(J3) by E, a and j3, respectively, in (1.1) we see 

that if we take each ordinal to be the set of all smaller ordinals then each 

ordinal is a transitive set. Carrying out the same replacements also in the first 

half of (1.2) we see that our new ordinals satisfy the requirements of the 

following definition. 

DEFINITION. The set x is said to be an ordinal if x is transitive and the 

E-relation well-orders x, i.e., if (a) x is transitive, (b) for all uEx we have 

u flu, (c) for all u, u, w in x, if u EvEw then uEw, and (d) every non-empty 

subset z of x has a member u such that uEv for every member v of z other 

than u. (There is no need to require that for all u, v E x, u Ev or u = v or 

vEu, since this follows from the requirement on the subsetsz of x by taking 
z = {u,v}.)2) 

We shall now see that the ordinals as defined above do indeed behave as 

we expect them to. For this purpose we shall list here several theorems 

(numbered (2.1) to (2.8)) concerning the ordinals. Most of their proofs are 

easy and the reader can supply them himself with the aid of our hints or look 

them up in the literature 3). The variables a, /3, 7 will vary over ordinals; we 

shall also write a<(3foraG|3 and a<j3fora</3ora = j3. 

*)von Neumann 23 and Zermelo (unpublished) about 1915 (quoted by Bernays 

37-54 II, p. 6). These ordinals were discussed in detail by Mirimanoff 17 (who did not 

refer to them as ordinals). 

2) Another definition, essentially due to Mirimanoff 17, defines x to be an ordinal if 

x is transitive and for all u, v in x, u eu or u = u or uGw (Bernays 37-54 II, §5). The 

development of the theory of ordinal numbers from that definition, as well as the proof 

of the equivalence of the two definitions, makes an essential use of Axiom IX, since if x 

is a set such that x = {x} then x is an ordinal according to the present definition, but is 

not a true ordinal (see Bernays 37-54 VII, p. 87). 

3) E.g., Suppes 60, Sections 5.1 and 7.1. 
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(2.1) a is not a member of itself. 

(2.2) If a <j3 and |3< 7 then a <7. 

(2.3) If y 6a then y is an ordinal. (Hence a is the set of all ordinals smaller 
than a.) 

(2.4) If 7 C a and y is transitive theny Ea. (Hint: Let u be the least mem¬ 
ber of a not iny, prove u =7.) 

(2.5) For any two ordinals a, (3 a<P or a = j3 or P<a. (Hint: Otherwise, 
(2.4) implies that aDpEafip.) 

(2.6) If there exists an ordinal a which fulfils ^B(x) then there is a least 

ordinal p which fulfils $(x), i.e., j3 fulfils $(x) and no y<p fulfils $(x). 

(Hint: If a fulfils ^(x) but is not the least ordinal which fulfils ^(x) then 

take P to be the least ordinal in a which fulfils )$(x).) 

(2.7) For every well-ordered set (a, r) there exists a unique ordinal a — the 

ordinal number of (a, r) — such that (a, r> is similar to (a, Ea>, where Ea is 

the set of all ordered pairs <|3, 7) with P<y<a. 

(2.8) If all the members of a set x are ordinals then its union-set Ux is an 

ordinal too. (Ux is an upper bound ofx, i.e., for every ftGx, Ux.) 

One can define functions on the ordinals by transfinite induction (which 

is sometimes also referred to as transfinite recursion). Prior to the formulation 

of this procedure let us give an auxiliary definition. Given a function F, by 
means of a functional condition (p. 50), and a setx such that F(y) is defined 

for every _yEx, we denote with F|x the set of all ordered pairs (y,F(y)), 

where y Ex. F |x is a set by the axiom of replacement; it is called the restric¬ 

tion of F to x. 

DEFINITION BY TRANSFINITE INDUCTION ON THE ORDINALS. 

For every function G (given by a functional condition) which is defined on 

all sets, one can formulate a functional condition which yields a function F 

defined on all ordinals such that for every ordinal a F(a) = G(F \ a). Moreover, 

this function F is unique in the sense that if F’ is another function which is 

defined on ail ordinals and such that F'(a) = G(F' | a) for all ordinals a, then 

F' coincides with F on all ordinals, i.e., F'(a) = F(a) for every ordinal a x). 

5.3. Well-founded Sets. We shall now develop rigorous notions which corre¬ 

spond to the informal notions of the layers and the well-founded sets in §5.1. 

The set which we shall denote with R(a) will be, more or less, the union of 

the a first layers. 
DEFINITION. We define the function R on all ordinals by transfinite 

^See proofs in Suppes 60, p. 207, Th. 8 and T, §10, Th. 7. For more general 

schemas of proof and definition by induction see Montague 55 and Tarski 55. 
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induction as follows: 7?(a) = U(3<aP(7?(j3)) (where by the right-hand side we 

understand the union-set of the set of all P(K(j3))’s for a) 1). 
This definition is the particular case of the general schema of definition by transfinite 

induction which is obtained by taking for G the function given by G(x) = the union of 

all sets Pz, where z is a set such that for some y,(y,z) ex. 

It is easily seen that /?(0) = UO = O,^(l)= U{P(0)} = P(0) = (0},/?(2) = 
(O, {0}}, R(3) = (O, {0}, {{O}}, {0, {0}}}, and so on. We shall now list a few 
theorems (numbered (3.1) to (3.7)) related to the function./?, without full 

proofs 2). 

(3.1) For every ordinal a, R(ot) is a transitive set, i.e., if y £x ER(a) then 

yER(a). (Hint: Prove by induction on a.) 

(3.2) If (5<a then R(f)ER(a) (follows immediately from the definition 

of R) &ndR(p)CR(a) (by (3.1)). 
(3.3) y is a member of some R(a) if and only if y is a subset of some 7?(a). 

(Hint: By (3.2) and P(7?(a))C7?(a+l).) 

DEFINITION. A set x is said to be well-founded if it is a member (or a 

subset) of R(a) for some ordinal a. The rank p(x) of a well-founded set x is 

the least ordinal (3 such that x C *03). 

For a well-founded set x we have, as easily seen, 

(3.4) p(x)<a if and only if x CR(a). 

(3.5) p(x)<a if and only if x ER(a). 

(3.6) Ify£x theny is well-founded and p(y)<p(x). 

We shall now prove: 

(3.7) If all the members of a set z are well-founded then z, too, is well- 

founded. 

Proof. By the axiom of replacement there is a set u which consists of all 

ordinals p(y) for y£z. By (2.8), the set u has a strict upper bound (3; thus 

p(y)<l3 for eachy £ z. By (3.5) we have foreachy £z,y £/?(/3), i.e.,z QR(P), 
which establishes the well-foundedness of z. 

Now we can formulate Axiom IX as 

IX(3). All sets are well-founded. 

Let us now prove the equivalence of IX^3) and IX and thereby clarify the 

meaning of Axiom IX. First we assume IX and prove IX^3) by contradiction 

as follows. Assume that there is a set x which is not well-founded, then, by 

IX, there is a minimal set y which is not well-founded. Since y is a minimal 

non-well-founded set, every member ofy is well-founded, hence, by (3.7),y is 
well-founded, which is a contradiction. 

*) The function R is, essentially, the function ip of von Neumann 29. 

2) For proofs see Bernays 37-54 VI, pp. 66-67, and Shepherdson 51-53 II, §3.2. 
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Let us now assume IX*^) and prove IX. Given a condition ^B(x) such that 

there is a set u which fulfils ^(x), let us consider the following condition 

00) on y — y is the rank of some set x which fulfils ^(x)”. By IX<3> u is 

well-founded, hence p(n) is an ordinal which fulfils 00)- Therefore, by 

(2.6), there is a least ordinal & which fulfils 00)> i*c., there is a set x such 

that a = p(x) and x fulfils ^(x), whereas no set z with p(z)<a fulfils ^B(x). 

Since, by (3.6), for each member z of x, p(z) <p(x), no member ofx fulfils 
^(x); thusx is as required by IX. 

In ZFCct (p. 72) one can define a one-one function which maps the uni¬ 

verse of all sets on the collection of all ordinals or, what amounts to the same 

tiling, one can define a relation which well-orders the universe of all sets in 

such a way that for every set y all the sets which precede y in this well¬ 

ordering constitute a set *). As a consequence, one can prove in ZFCa the 

following schema. Given a collection of sets, determined by a condition $(x), 

there is a one-one function F (given by a functional condition) whose range 

is this collection and whose domain is either the collection of all sets (the 

universe) or a set. Informally, we can formulate this schema as follows. Every 

collection of sets is either a set or equinumerous to the collection of all sets. 

Since no set can be equinumerous to the collection of all sets (as follows 

immediately from the axiom of replacement and Th. 6 on p. 40) we can also 

formulate the schema as: A collection of sets is a set if and only if it is not 

equinumerous to the collection of all sets. This is the ultimate formulation 

of the “limitation of size” doctrine (p. 32) 2). 

5.4. Cardinal Numbers. Order Types. Isomorphism Types. We saw in §2.5 

*) This is proved, essentially, in Bernays 37—54 VI, pp. 69-71 and in von Neumann 

29 (see p. 137). That this cannot be proved in ZFC (for any function u(x)) follows easily 

from the results of Easton 64 (see 70). That this cannot be proved in ZFCa without 

using the axiom of foundation is shown as hinted here. Within a system which contains 

Axioms I-VIIIa and in which there is an infinite set u of indistinguishable setsy (such 

that, say, y — {y}), define a model (p. 292) that consists of the collection of all sets 

which are subsets of some transitive set that contains only finitely many members of u, 

and of the membership relation for such sets. In this model, Axioms I-VIIIa (with the 

same a) hold, whereas no relation well-orders (or even orders) the universe of sets. The 

statement in the text cannot be proved in a system of set theory which is like ZFCa but 

admits individuals. This is shown by a model as above, where u is now an infinite set of 

individuals. Notice that if u contains all the individuals then every set of individuals 

which is in the model is finite, hence there is' no set of the model which contains all 

individuals. 
2 

) A very similar statement was taken as an axiom by von Neumann 25 (Axiom IV2); 

cf. also von Neumann 29 (p. 227, B). 
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that many notions of set theory and mathematics can be reduced to the 

notion of membership, i.e., they can be defined within our theory. In the 

present subsection we shall see that this is also the case with respect to the 

notions of cardinal number and order type, as well as several other similar 

notions. 

Whichever way is used to define the cardinality |x| of the set x, the 

defined notion can be considered to correspond to the intuitive notion of 

cardinality only if we can prove 
(4.1) | jc | = |_v | if and only if the setsx and^ are equinumerous. 

The simplest way to define cardinal numbers would be to define the 

cardinality |x| of the set x as the set of all sets which are equinumerous to x. 

(This is the Frege—Russell definition *), which is also used in Quine’s set 

theory — Chapter III, §3.) However, even in ZFC such a set does not usually 

exist. E.g., if there were a set w which consists of all sets equinumerous to a 

given singleton, i.e., a set w which consists of all singletons, then Uw would 

be the set of all sets, contradicting Theorem 6 on p. 40. 

Even though the Frege—Russell definition is unavailable in ZFC, there is 

another, still quite natural, way to define cardinal numbers in ZFC. It is by 

sheer luck that we can specify for each set x a particular set which is equi¬ 

numerous to x, the choice of which is uneffected by replacing x with an 

equinumerous set. This is done as follows. 

DEFINITION, a is said to be a cardinal number if a is an ordinal number 

which is not equinumerous to any smaller ordinal. (The cardinal numbers are 

called initial numbers in T, p. 216.) The cardinality |x | of a set x is defined as 

the unique cardinal number a which is equinumerous to x. (The existence of 

such an a follows easily from the well-ordering theorem, (2.6), (2.7) and the 

transitivity of equinumerosity; the uniqueness of a follows from the transitiv¬ 

ity of equinumerosity and (2.5).) 

(4.1) is now easily shown. 

We shall now proceed to define the notion of an order type in ZFC. Which¬ 

ever way is used to define the order type (a, r) of the ordered set {a, r), the 

definition must be such as to enable us to prove 

(4.2) For any two ordered sets (a, r) and <b, s), (a, r) = (bTs) if and only if 
(a, r) is similar to <b, s). 

DEFINITION. The order type of the ordered set (a, r) is the set which 

consists of all ordered sets <|a|, s) which are similar to {a, r) (the order type 

of (a, r) is a subset of {| a |} X P(| a I X | a |)) 2). A set b is an order type if it is 
the order type of some ordered set. 

*) Frege 1884, §68, and 1893-03 I, §42;Rusell 03, § 111. 

l) This definition is due to A.P. Morse - see Scott 55. 



AXIOM OF FOUNDATION 97 

(4.2) can easily be shown once one uses the axiom of choice to prove that 
for every set a,\a\ exists. 

According to our definition of order types ordinal numbers are not order 

types. E.g., the ordinal number of the ordered set <0, O) is 0 whereas its order 

type is {(0,0)}. If we want the ordinals to be order types too we can define 

the order types as follows: The order type of the ordered set (a, r) is the 

ordinal of (a, r) if {a, r) is a well-ordered set, and is the set of all ordered sets 

< I a |, s) which are similar to (a, r), otherwise. 

In analogy to our definition of order types one can also define isomor¬ 

phism types of groups, rings and Boolean algebras, homeomorphism types of 

topological spaces, etc. 

In our definitions of the notions of a cardinal number, an order type, etc., 

in ZFC we made use of the full force of the axiom of choice (but we did not 

use the axiom of foundation); thus these definitions are not available in ZF. 

We shall now see that by means of the axiom of foundation one can give a 

general schema for definition by abstraction, in the sense of Cantor (see T, 

p. 59), by means of the notion of a ^-equivalence type *). This notion is a 

generalization of the notions of cardinal number, order type, etc. 

Suppose we are given the collection of all sets which satisfy a condition 

^(x). We say that a relation is an equivalence relation on this collection if 

the following requirements (a)—(c) are satisfied. 

(a) x=^x for every set x in the collection. (Reflexivity) 

(b) If x^y theny (Symmetry) 

(c) Ifxc^y andy^z thenx^z. (Transitivity) 

We want to define the ^-equivalence type of every set x in the collection, 

i.e., we want to correlate to every set x in the collection an element r(x) in 

such a way that we shall be able to prove 

(4.3) For every x and y which fulfil ^(x), r(x) = r(» if and only if x^y. 

If all sets which fulfil the condition ^S(x) constitute a set u then for eachx 

in u we can define r(x) to be that subset of u which consists of all members y 

of u such that y^x. It is easily seen that (4.3) does indeed hold in this case. 

In naive set theory we can again follow the Frege—Russell method and define 

r(x) to be the set of all sets^ such thaty^x. However, in ZF we cannot in 

general be sure that there exists a set which contains all these y’s. Therefore 

we define 
DEFINITION. Given a relation ^ which is an equivalence relation on the 

collection of all sets which fulfil a given, condition ^(x), we define, for the 

members x of this collection, the ^-equivalence type ofx, t(x), to be the set 

*) This notion, as presented here, is due to Scott 55. 
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u of all setsT of minimal rank such that y —x (i.e., u is the set of all sets^ 

such that y ^x and for no set z with p(z)<p(y) does z =*x hold). 

r(x) is always a set, since, as easily seen, t(x) C P(i?(p(x))). It is now easy 

to prove (4.3). 
This general notion of the ^-equivalence types generalizes the notions of 

cardinal numbers, order types, isomorphism types of groups, etc., since the 

latter notions can be taken to be the types which correspond, respectively, to 
the equivalence relations of equinumerosity of sets, similarity of ordered sets, 

isomorphism of groups, etc. (4.1) and (4.2) become particular cases of (4.3). 

For example, according to our present definition, the cardinality I .x | of a set x 

is the set which consists of all sets y which are of minimal rank among the 

sets equinumerous to x. 
Even though our present method is more general than that which we 

described on p. 96 above, in ZFC the method of p. 96 is sufficient, in 

practice, for all the cases where equivalence types are actually used. As far as 

ZFC is concerned the method of p. 96 is simpler since it does not appeal to 

the axiom of foundation or to the notion of rank, neither of which occurs 

in ordinary mathematical discussions *). 

5.5. Consistency and Independence of the Axiom of Foundations and of the 

other Axioms. As mentioned on p. 58, where the question of the consis¬ 

tency and the independence of the axiom of choice was discussed, it seems 

impossible to obtain a convincing proof of the consistency of ZF. Therefore, 

what we can reasonably hope to do with respect to a given axiom of ZF is to 

assume that the axiomatic system which consists of all other axioms is consis¬ 

tent and, using this assumption, to prove that ZF is consistent. 

From now on we shall refer to the axiomatic system consisting of Axioms 

I—VIII as ‘the system I—VIII’ and similarly to other systems. 

The question of the consistency of the axiom of foundation relative to the 

other axioms has been answered positively by Godel’s proof of the consis¬ 

tency of the axiom of choice (pp. 59—60). Godel, in essence, proved even the 

1) In set theory based on Axioms I-VII, i.e., ZF without the axiom of foundation, 

one cannot define even a notion of cardinality for which (4.1) is provable. Therefore, if 

one wants the notion of cardinality to be available one has no choice but to add the 

operation \x I as a new undefined notion to the language of set theory and add (4.2) as a 

new axiom (Tarski 24) and to strengthen the notion of condition in the axiom schemas 

appropriately. The fact that \x I cannot be defined in the system I—VII follows from the 

fact that after I x I is introduced in this system as a new primitive notion with axioms as 

above, one can prove in it new theorems which do not mention the notion of cardinality 

(see A. Levy 69a). 
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stronger result that if the system I—VII is consistent, so is ZFC *). We shall 

outline here an earlier proof, due to Skolem and von Neumann 2), that if the 

system I—VIII is consistent so is ZFC 3). We choose to present here von 

Neumann’s proof, even though Godel’s proof yields a much stronger result, 
because the former is a very simple illustration of some of the methods used 

in relative consistency proofs in set theory and in other mathematical theories 
(see Chapter V, §3). 

We shall now explain what we mean by an interpretation of (the language 

of) ZFC in the system I—VIII. Such an interpretation is given by means of a 

collection 21 of elements together with a binary relation (5 on this collection. 
Statements 0 of ZFC are interpreted by letting the variables vary over the 

members of the collection 21 and by taking G to be the symbol for the rela¬ 

tion ©. For every statement 0 of ZFC we obtain a statement 0* of the 
system I—VIII (0* happens to be in the same language as 0 , since the 

systems ZFC and I—VIII happen to use the same language) which asserts that 

the interpretation of 0 holds. For example, if 0 is x Gy then 0* is a state¬ 

ment which asserts that x andy are in the relation 6; if 0 is “For every set* 

there is a sety such that xGy” then 0* is “For every x in 2f there is ay in 2f 

such that x is in the relation S' toy”. In all the interpretations with which we 

shall deal, ‘equality’ is interpreted as equality. 

In order to prove the consistency of Axiom IX we shall produce a model 

of ZFC in the system I—VIII 4), i.e., we shall produce an interpretation of 

ZFC in the system I—VIII such that the interpretation 0* of every statement 

0 which is an axiom of ZFC is a theorem of the system I—VIII. In order to 

do this we must specify unambiguously the axioms of ZFC. For this purpose 

we shall use the following axioms as axioms for ZF: I, III, IV, Via, VII, VIII 

and IX*. (Axioms II and V are left out because they are implied by the other 

axioms.) 

In the system I—VIII, the function/? and the notion of a well-founded set 

are available (since nowhere in the definition of these notions and in the 

proofs of their elementary properties did we utilize the axiom of foundation). 

Let us now interpret the statements of ZFC as follows: The variables will 

!) See Shepherdson 51-53 1, pp. 164-5 or Rieger 57 (and footnote 6 on p. 59). 

2) Skolem 23, §6, and von Neumann 29. 

3) The same proof also shows that if the system I—VII is consistent so is ZF. 

4) For a detailed discussion of the notion of an interpretation, and its relationship 

with the notion of a model, see Ch. V, §3. By the terminology used there, we have here 

just an interpretation of ZFC in the system I—VIII; the term “model” is used there for 

a somewhat different notion. The reason why we use here this term is explained on 

p. 292. 
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range only over the well-founded sets and the G-symbol will retain the mean¬ 

ing of membership (i.e., 91 will be the collection of all well-founded sets and 

(£ will be the membership relation). Under this interpretation, if © is the 

statement “There is a set which has no member11, in symbols 3x~\ 3y(y Ex), 
then ©* is the statement “There is a well-founded set x which has no well- 

founded member”. 
Notice that originally only the range of the variables and the E-relation are 

interpreted; the defined notions of ZFC become interpreted only by inter¬ 
preting their definitions. For example, 0 is defined as the set which has no 

member; the interpretation 0* of 0 is therefore defined as the well-founded set 

which has no well-founded member. Since, by (3.6), the members of a well- 

founded set are well-founded, the only well-founded set without well- 

founded members is 0, thus O* = O. The equality of O and O* here is just an 

accident. Indeed, because the interpretation given here is a very simple and 

natural one, many defined notions coincide with their interpretations, but 

this is not necessarily the case with other interpretations. 

We shall use asterisks also to denote the interpretations of various defined 

notions of set theory. E.g., xC*y means ‘Every well-founded member of the 

set x is also a member of the set y’ (see Definition I on p. 26). For well- 

founded sets x andy ,x C*y holds if and only if x Cy (by (3.6)), thus we can 

say that C* and C coincide for well-founded sets. 

If © is Axiom I then ©* is “For all well-founded sets x,y if xC *y and 

y C*x then x —y”. Since, for well-founded sets,x C*y means x Cy andy C*x 

meansy Qx, as we saw above, 0* follows immediately from Axiom I. 

If © is Axiom III then © * is “For every well-founded set a there 

exists a well-founded set y which consists of the well-founded mem¬ 

bers of a”. For a given well-founded set a we choosey = Ua. If aCR(a) then, 

by (3.1), alsoy CR(a), hence y is well-founded. It is now easy to verify, using 
(3.1), thaty is indeed as required in ©*. 

It is also easy to prove that the interpretations of the following axioms 

hold: IV (since if aCR(a) then PaC./?(a+l)), Via (since the set R(co) is 

well-founded, 0Gf?(co) and ifxGi?(co) then {x}GR(co)), and VIII (since if t 
is well-founded so are Ut and all its subsets). 

As to Axiom schema VII, we have to show that the interpretation ©* of 

every statement © of the form “For every set a, if for every rEa there is at 

most one set x such that j)3(r,x) holds, then there exists a set y which con¬ 

tains exactly those sets x for which $(f,x) holds for some re a” (where y is 

not free in j|$(r,x)) does indeed hold. ©* is the statement “For every well- 

founded seta, if for every well-founded fEa there is at most one well-founded 

set x such that j]B*(r,x) holds, then there exists a well-founded set y which 
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contains exactly those well-founded sets x for which ^*(r,x) holds for some 

well-founded member t of a”, where $*(f,x) is the interpretation of 

Let 0(f,x) be the condition given by 7 and x are well-founded and ^*(f,x)” 

By the hypothesis of S*, D(f,x) is a functional condition on a. Therefore, 

by Axiom VII (in the system I—VIII), there exists a set y which contains 

exactly those sets* for which D(t,x) holds for some member t of a. We have, 

if and only if, for some member t of a, t and x are well-founded and 

^5*(f,x) holds, i.e., x Ey holds if and only if x is well-founded and for some 

well-founded member t of a ©*(f,x) holds. Since all the members ofj> are 

well-founded, by (3.7), y itself is well-founded; thus ©* is proved. 
Let us now conclude the proof that our interpretation is indeed a model 

of ZFC by showing that if @ is Axiom IX* then S* is a theorem of the 

system I—VIII. ©* is “Every well-founded set y which has at least one well- 

founded member has a well-founded member which has no well-founded 

member in common with y”. Given such a set y, among the well-founded 

members of y there is at least one member u of least rank; by (3.6), u has no 

member in common with y, as claimed in ©*. Notice that we did not use 

Axiom IX in the proof of ® *; the proof was carried out in the system 

I—VIII. 

To sum up what we did, we showed in the system I—VIII that there is a 

collection of objects, namely the collection of all well-founded sets, and a 

binary relation on this collection, namely the membership relation for well- 

founded sets, for which all the axioms of ZFC do indeed hold. This can be 

shown to guarantee that if there is no contradiction in the system I—VIII 

then there is no contradiction in ZFC. Moreover, this interpretation provides 

a very simple method by means of which if, God forbid, a proof of a contra¬ 

diction were found in ZFC one would also obtain a proof of a contradiction 

in the system I—VIII. For the detailed arguments which establish these claims 

see Chapter V, §3. The idea is, roughly, as follows. If one is given a proof of 

a contradiction in ZFC one can reproduce in the system I—VIII, by means of 

the interpretation given above, the arguments which lead to the contradic¬ 

tion. Thus one will get in the system I—VIII a contradiction from the notion 

of well-foundedness, which is a correctly defined notion of this system. 

Having dealt with the relative consistency of the axiom of foundation, we 

can also ask whether it is independent of the other axioms, assuming the 

consistency of the system I—VIII. As mentioned in passing at the beginning 

of the present section, one cannot even prove from Axioms I—VIII that no 

set contains itself *). Also, even if we add to Axioms I—VIII an axiom which 

1)The neatest proofs of this and the other results mentioned here concerning the 
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asserts that for no finite n> 1 does there exist a sequence ...,sn) such 

that sj G ...G s2e5i> one cannot prove the axiom of founda¬ 

tion. 
We have considered till now the questions of the consistency and indepen¬ 

dence of the axioms of choice and foundation. We shall now ask the same 

questions concerning the other axioms. Let us mention first the problem of 

establishing the (relative) consistency of the various axioms, i.e., we shall ask 

whether one can show that if ZFC with a certain axiom omitted is consistent 

then ZFC is consistent too. For reasons which come out of Godel’s theorem 

on consistency proofs, and which will be explained in Chapter V, pp. 328— 

329, this cannot be done in the case of the axioms of union, power-set, 

infinity and replacement, not even if relatively strong means of proof are 

admitted 1). The independence of each of those axioms (where one assumes 

for each of the axioms the consistency of the system consisting of all other 

axioms of ZFC) can be proved by appropriate models, or even by the same 

arguments which are used to show the impossibility of proving the consis¬ 

tency of those axioms 2). The axioms of pairing and subsets follow from the 

other axioms, as we have seen. As to the axiom of extensionality, if ZFC is 

consistent then this axiom, in each one of its versions, is independent of the 

other axioms 3). The answer to the question of whether it is possible to prove 

the relative consistency of the axiom of extensionality depends on the way 

in which equality is introduced (i.e., whether equality is taken to be a primi¬ 

tive notion of logic or set theory, or introduced by one of the three defini¬ 

tions we considered) and may depend also on the particular formulations of 
the other axioms 4). 

independence of the axiom of foundation are those of Rieger 57; for other proofs see 

Bernays 37—54 VII, Mendelson 56a, and Specker57. The consistency with respect to the 

system I—VII of an axiom which is, in some respects, an extreme opposite of the axiom 

of foundation was proved by Scott (cf. A Levy 65b, Th. 47), Hajek 65, and Boffa 68. 

J) In the terminology ofp. 328, each one of these axioms is a strengthening axiom, 

since for each such axiom <!> we can prove in ZFC the existence of a set which is a model 

of the system which consists of all the axioms of ZFC except <b. 

2) See p. 329. Such proofs are given by Bernays 37-54 VI and Mendelson 56. The 

axiom schema of replacement does not even follow from all other axioms and finitely 

many of its own instances (see footnote 4 on p. 53). 

3) A. Robinson 39. 

4) Scott 61. 



QUESTIONS UNANSWERED BY AXIOMS 103 

§6. QUESTIONS UNANSWERED BY THE AXIOMS 

6.1. The Generalized Continuum Hypothesis. One of the earliest central 

problems in set theory, which could not be answered even by the means of 

naive set theory (as long as one did not use the idea behind some antinomy), 

is the continuum problem. In Theory pp. 69, 228—230 the history of 

Cantor’s, and of the generalized continuum problem is sketched and refer¬ 

ences are given to the literature, where statements equivalent to the contin¬ 

uum hypothesis are introduced and where the hypothesis is used for proving 

various mathematical theorems 1). 

The generalized continuum hypothesis is the statement 

H: 2h<* = Na+1 , for every ordinal a. 
Cantor’s continuum hypothesis is that particular case of H where a = 0. 

Another version of the generalized continuum hypothesis is 

Hy If c is a transfinite cardinal then there is no cardinal d such that 

c < d < 2C (in other words, for every reflexive set a if b C Pa then | b I < I a I or 

|6| = 2'fll)- 

Hi implies the axiom of choice in the system I—VII 2). In particular,//j 

implies that for every a, 2^a is equal to some with j3>a; if j3 were greater 

than a+1 we would get Ka<Na+1 <2H“, which contradicts Hx, thus Hx 
implies also H. On the other hand, it is immediately seen, by means of the 

well-ordering theorem that the conjunction of H with the axiom of choice 

implies Hl (in the system I—VII) and is, hence, equivalent to Hx in that 

system. 
In the stronger system I—VII, IX (which also contains the axiom of 

foundation) even H implies the axiom of choice (in fact, in that system the 

axiom of choice is equivalent to the statement that for every ordinal a, 

2*a= Np, for some 13) 3). 
What we are now interested in is the question whether the continuum 

*) Notably, Sierpiriski 56 and Bachmann 55. Many of the consequences of the con¬ 

tinuum hypothesis are also consequences of Martin s axiom, which does not yield any 

information on the ordinal 7 for which 2^°= Hy - see Martin-Solovay 70 and Solovay- 

Tennenbaum71 (or Jech 71). 
2) Specker 54 proves that if //j holds for c=a and c=2a then 2° (and hence also a) is an 

aleph, i.e., a cardinal of a well-ordered set. (The proof is also given in Bachmann 55, 

§35, 1 and in Kuratowski-Mostowski 68, IX, § 6.) Earlier results in this direction are 

due to Lindenbaum, Tarski, and Sierpihski (see the proof in Cohen 66, Ch. IV, §12). 

That H does not imply the axiom of choice in the system I-V1I follows easily from the 

consistency of H combined with any Fraenkel-Mostowski-type “model” of I-VII in 

which the axiom of choice fails (such as given by Mendelson 56a or Specker 57). 

3) Rubin-Rubin 63, p. 17, Kruse 63. 



104 AXIOMATIC FOUNDATION OF SET THEORY 

hypothesis, in its simple or general form, can be proved or refuted by means 

of the present, or of another, system of axioms of set theory. Cantor’s 

efforts in the beginning of the 1880’s were tragically unsuccessful, and during 

the next fifty years no actual progress was made, Hilbert’s attempt notwith¬ 

standing *). 
In 1938, Godel proved, in his work which we have already discussed in 

§4.2, that the generalized continuum hypothesis cannot be refuted in ZFC 

(unless ZFC contains a contradiction). This was done as follows: In the sys¬ 

tem I—VII Godel constructed a model, in the sense of §5.5 (p. 99), of the 

system ZFC+ obtained from ZF by adding to it the axiom of constructibility 

(which asserts that all sets are constructible — see p. 60), thereby proving 

that if the system I—VII is consistent so is ZCF+ 2). Then Godel proved in 

ZFC + , in addition to the axiom of choice, also the generalized continuum 

hypothesis// 3). 
Since we shall now also discuss the independence of the continuum hypo¬ 

thesis and related statements, let us agree that throughout this and the next 

subsection all the results concerning consistency and independence of various 

statements of set theory will rely, tacitly, on the assumption that ZFC is 

consistent (or, what amounts to the same thing, that the system I—VII is 

consistent). 
In 1963, P.Cohen established the independence of Cantor’s continuum 

hypothesis, using the same methods he used in the proof of the independence 

of the axiom of choice, i.e., he showed that Cantor’s continuum hypothesis 

(and, a fortiori, the generalized continuum hypothesis) cannot be proved in 

ZFC. Moreover, Cohen proved that one cannot refute in ZFC any statement 

of the form 2^° = 8^, as long as ‘j3’ is the name of an ordinal which is defined 

in a “reasonable” way 4), (3X), and j3 is not the limit of a strictly increasing 

sequence yn, n<co, of ordinals. In particular, one cannot refute in ZFC any 

of the statements 2^° = or 2^0 = Na;+/l, where n is any fixed finite 

ordinal > 1 5). 

Cohen’s result, which we have just mentioned, is indeed the strongest 

independence result one could expect concerning 2^°; in ZF one can prove 

*) Hilbert 25. 

2) Godel 38, 39, 40; also Cohen 66, Shoenfield 67, Karp 67, Jensen 67, Mostowski 

69, Jech 71. 

3) The proof of Godel 40 was simplified by Doss 63 and Rieger 63. Still simpler 

proofs are given by the other authors mentioned in the previous footnote. 

4) Such as the “absolutely definable ordinals (in the weaker sense)” of Hajnal 61. 

5) Cohen 63/4, 65, 66; also Jensen 67 and 67b, Scott—Solovay °°, Sacks 69, 
Mostowski 69, Rosser 69, Jech 71. 
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that if = then p>0 (T, p. 112, Th. 2) and, as a consequence of the 
prool in T(pp. 118-119), that cxo (and, in particular, 2K o) cannot be the sum 

of a strictly increasing sequence of cardinal numbers (in which the Konig- 

Zermelo inequality — T, p. 98 — is used), P cannot be the limit of a strictly 

increasing sequence yn of ordinals. The requirement that p should be defined 

in a “reasonable way must be made in order to avoid definitions of p such 

as “the successor of the ordinal y such that 2*° = N For such a p the 
statement 2lS° = is obviously refutable. 

Proceeding along the same line of thought, let us now ask what ZFC does 

tell us concerning the value of 2^“ for a general a. By the well-ordering 

theorem, for every ordinal a there is an ordinal p such that 2*a = ; there¬ 

fore there is a function F defined on the ordinals whose values are ordinals 

such that for every a, 2K“ = . H asserts that for every a, F(a) = a+1. 

In ZFC we can prove the following statements (a)—(c) concerning the func¬ 
tion F. 

(a) F(a)>a (Cantor’s theorem, T, p. 112). 

(b) If a<P then F(a)<F(j3) (trivial). 

(c) F(a) is not the limit (union) of a set of ordinals smaller than F(a) which 

is of cardinality < tfa. (This is again proved by means of the Konig—Zermelo 
theorem — T, p. 98.) 

(d) If is a singular limit cardinal (i.e., a is a limit ordinal and is the limit 

(union) of a set of cardinality < of smaller ordinals) and for all ordinals 5 

such that 7<5<a, where y is some fixed ordinal <a, F(5) has the same 

value P, then also F(a) = p 1). 

It has been proved that, for every function Ffor which we can prove (a)—(c) 

in ZFC and which has a “reasonable” definition, one cannot refute in ZFC 

the statement which asserts that, for all the regular cardinals Na, (i.e., where 

N is not a singular limit cardinal — see also the definition on p. 110) 2),2^a 

= 3)- completely settles the question as far as regular cardi¬ 
nals are concerned (and, in particular, for all cardinals of the form F^+j); the 

case of the singular cardinals is still mostly open. In particular, it is not yet 

known whether one can consistently assume that 2 a = fta+2 for every 

ordinal a (or even only for every ordinal a<co) 4). 

Bukovsky 65 (also discovered by S. Hechler). 

2) For a detailed treatment of the notions of regular and singular cardinals, see 

Bachmann 55, §6. 
o 

) Easton 70; see also Rosser 69. 

4) There are versions of the generalized continuum hypothesis appropriate for set 

theory without the axiom of choice. For the formulation of those versions and for 

results related to their consistency and independence see Scarpellini 66, Derrick-Drake 

67, Marek 66. 
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On account of the comparability of the cardinals one can prove in ZFC 

the existence of a set of real numbers of cardinality ft]; yet all attempts to 

produce a definable set of real numbers such that its cardinality can be proved 

in ZFC to be ft] have failed x). If Cantor’s continuum hypothesis is added to 
ZFC the answer to this problem becomes trivial since then the set of all real 

numbers, which is obviously a definable set, can be shown to be of cardinality 

ft]. Thus, if we show that no definable set of real numbers can be proved in 

ZF to be of cardinality ft] then this also implies the independence of the 

continuum hypothesis. Indeed, one can prove the following stronger result: 

ZFC stays consistent when we add to it the statement 2^° = ft^, where 0 is 

as above (p. 104), and the schema (see p. 69) “All definable sets of real num¬ 

bers are finite, denumerable, or of cardinality 2^°” 2). 

Now that we know that neither the continuum hypothesis nor its negation 

is provable in ZFC, it is reasonable to ask whether set theory and analysis will 

bifurcate (or multifurcate) at the continuum hypothesis as plane geometry 

bifurcates (to Euclidean and hyperbolic geometries) at the axiom of parallels, 

on account of its independence of the other axioms of absolute geometry. 

According to Godel3), “Only someone who (like the intuitionist) denies that 

the concepts and axioms of classical set theory have any meaning (or any 

well-defined meaning) could be satisfied with such a solution, not someone 

who believes them to describe some well-determined reality. For in this reality 

Cantor’s conjecture must be either true or false, and its undecidability from 

the axioms as known today can only mean that these axioms do not contain 

a complete description of this reality”. How are we going to know whether 

in the “well-determined reality” of the sets the continuum hypothesis is true 

or false? Godel surmises that this question may be answered by “... other 

(hitherto unknown) axioms of set theory which a more profound under¬ 

standing of the concepts underlying logic and mathematics would enable us 

to recognize as implied by these concepts”. Godel considers as.natural candi¬ 

dates for this role axioms which say something on what is meant by the very 

notion of set, i.e., axioms which tell us whether the subsets of a given set are 

sets which are constructible or definable in some manner or are arbitrary 

multitudes of members of the given set; in Godel’s words: “... the continuum 

problem ... may be solvable by means of a new axiom which would state or at 

least imply something about the definability of sets”. 

However, one can hardly believe that many mathematicians will be inclined 

X) See, e.g., Hardy 04 and Lusin 34. 

2) A. Levy 70; it also follows from Solovay 70, Th. 3, part (4). 

3) All the quotations from Godel in the present subsection are taken from Godel 47. 
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to accept some new axiom solely, or mainly, on the basis of a metaphysical 

belief in its power to reveal the true nature of the concept of set. Mathemati¬ 

cians usually tend to accept a new axiom if it serves as a cornerstone for sig¬ 

nificant mathematical theories (as was the case, e.g.,with the axiom of choice) 

or, at least, if one can use it to prove a considerable number of interesting 

mathematical theorems. Such a position, though with somewhat stricter re¬ 

quirements, is also considered by Gddel: “... even disregarding the intrinsic 

necessity of some new axiom, and even in the case it had no intrinsic necessity 

at all, a decision about its truth is possible also in another way, namely, induc¬ 

tively by studying its “success”, that is, its fruitfulness in consequences and in 

particular in “verifiable” consequences, i.e., consequences demonstrable with¬ 

out the new axiom, whose proofs by means of the new axiom, however, are 

considerably simpler and easier to discover, and make it possible to condense 

into one proof many different proofs. The axioms for the system of real 

numbers, rejected by the intuitionists, have in this sense been verified to 

some extent owing to the fact that analytical number theory frequently 

allows us to prove number theoretical theorems which can subsequently be 

verified by elementary methods. A much higher degree of verification than 

that, however, is conceivable. There might exist axioms so abundant in their 

verifiable consequences, shedding so much light upon a whole discipline, and 

furnishing such powerful methods for solving given problems (and even solv¬ 

ing them, as far as that is possible, in a constructivistic way) that quite irre¬ 

spective of their intrinsic necessity they would have to be assumed at least 

in the same sense as any well established physical theory” *). 

Now, more than two decades after Godel wrote the passages quoted above, 

his hope for a more profound understanding of the notion of set resulting in 

some new axioms which settle the continuum problem has not yet been 

fulfilled, in spite of the great advances obtained during this period in the meta¬ 
mathematics of set theory (in particular, Cohen’s solution of the problem of 

the independence of the continuum hypothesis). On the other hand, the 

generalized continuum hypothesis turned out to be useful for proving many 

mathematical theorems 2), some of them even “verifiable”. Thus the general- 

*) From this point of view one cannot rule out the possibility of a bifurcation of set 

theory, since, as in the case of plane geometry, it is conceivable that each one of two 

incompatible axioms may be extremely rich in verifiable consequences. 

2) In addition to Sierpinski 56 and Bachmann 55, see, e.g., Erdos-Hajnal-Rado 65 

and Erd6s—Hajnal 66. In the case of Erdos 64, it is difficult to decide whether the con¬ 

sequences of the continuum hypothesis are more attractive than those of its negation. 

See J. Friedman 71 for a statement equivalent to the generalized continuum hypothesis. 
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ized continuum hypothesis is well on its way towards being accepted as one 

of the axioms of set theory, as used by most mathematicians. Nowadays most 

mathematicians would not doubt the truth of a mathematical theorem proved 

by means of the generalized continuum hypothesis, even though many of 

them would prefer a proof which does not use this hypothesis. The general¬ 

ized continuum hypothesis, even more than the axiom of choice, thrives on 

the lack of competition; no alternative to the generalized continuum hypo¬ 

thesis is known to produce any interesting mathematical results. Also from 

the very formulation of the generalized continuum hypothesis it is clear that 

every alternative which specifies exactly the cardinalities of 2^Q for all a’s, 

i.e., which specifies the function Fsuch that, for all a, 2^a=^/r(a), is almost 

bound to be somewhat artificial (unless some completely new ideas are 

applied) 1). 

6.2. The Axiom of Constructibility. This axiom has already been discussed 

earlier (pp. 64 and 104). In the system I—VII it implies the axioms of choice 

and foundation, as well as the generalized continuum hypothesis. We have 

also mentioned that Godel proved, essentially, that the system I—VII stays 

consistent when the axiom of constructibility is added to it. P. Cohen proved 

that the axiom of constructibility cannot be proved in ZFC, not even by 

means of the generalized continuum hypothesis 2). Moreover, he showed that 

even though the axiom of constructibility asserts that all sets are construct- 

ible, one cannot prove in ZFC (not even by means of the generalized contin¬ 

uum hypothesis) that there are more than denumerably many constructible 
real numbers 3). 

As an additional axiom for set theory the axiom of constructibility is 
somewhat attractive. It implies the axioms of choice and foundation as well 

as the generalized continuum hypothesis. It has also a good number of addi¬ 

tional mathematically interesting consequences4). The most dramatical conse- 

*) Maybe an axiom asserting that 2^° is a very large cardinal will do; e.g. the hypo¬ 

thesis that there is a real valued measure on all subsets of the real line - see Solovay 71 

and Kunen <*>. 

2) Cohen 63/4, 65, 66, Shoenfield 67, Jensen 67, Scott-Solovay °», Sacks 69, 

Mostowski 69, Rosser 69. For results which establish the consistency of the existence 

of non-constructible sets which are very simple from the point of view of definability, 

i.e., Ag-sets, see Jensen-Solovay 70 and Jensen 70. 

) Cohen 66, Ch. IV, § 10. For the stronger result that it is consistent with ZF that 

all the constructible real numbers are Aj, see Jensen-Solovay 70. 

) Consequences in the theory of effective and classical hierarchies - Addison 59 

and 62; consequences in infinite combinatorics - Jensen °°a; consequences in algebra 
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quence of the axiom of constructibility is the negation of the famous Souslin 

hypothesis (T, p. 166) '). The axiom of constructibility also appeals to one’s 
sense of economy — if we think of the ordinal numbers as a fixed given total¬ 

ity then the axiom of constructibility asserts that there are no sets other than 

those which can be proved to exist. However, it is by no means universally 

accepted that this economy is indeed a virtue; some mathematicians may 

consider it as a seclusion from the richness of set theory. Also, unlike the 

axiom of choice and the generalized continuum hypothesis, this axiom suffers 

from serious competition. There are alternatives to the axiom of constructi¬ 

bility which possess some attractions of their own. Such is the hypothesis of 

the transcendence of the infinite cardinal numbers 2), which is implied by the 

still stronger hypothesis of the existence of measurable cardinals 3). 

6.3. Axioms of Strong Infinity. Now let us examine, informally, the methods 

available in ZFC for obtaining sets of larger and larger cardinality. Our start¬ 

ing point for obtaining infinite sets is the axiom of infinity which guarantees 

the existence of denumerable sets, i.e., sets of cardinality N0. By means of the 

power-set axiom we can now obtain sets of the cardinalities 2K°, 22K°, ... . 

Let us consider the set A — {co, Pco, PPco, ...} (where co is the least infinite 

ordinal). The cardinality a of its union-set U A can be easily shown to be 

greater than those of all its members, i.e., a > N0, 2^°, 22K°, .... By means of 

the power-set operation we now get the sets PUA, PPUA,... of the respec¬ 

tive cardinalities 2a, 22a, ... . Then we consider the set B = { UA, PUA, 

PPUA, ... }; the cardinality b of UB is still greater than all the cardinals 

considered till now, and so on. Thus we have seen how to obtain sets of larger 

cardinality by means of the operations of power-set and union (the latter 

applied to sets which are obtained by means of the axiom of replacement). 

The way in which the operations of power-set and union effect the cardi¬ 

nalities of the sets considered, is as follows. The power-set of a set of cardinal- 

and model theory — Keisler 68 and Silver 71a; consequences in the theory of recursive 

functions of ordinal numbers — Machover 61, Takeuti— Kino 62, and Tugue 64. The 

axiom of constructibility also contradicts the existence of measurable cardinals — see 

p. 113. 

*) Jensen °° (see Jech 71). For an elementary exposition of Souslin’s hypothesis and 

references see Rudin 69. The first proof of the independence of the Souslin hypothesis 

was found by Tennenbaum 68 (and independently by Jech 67). The consistency of the 

hypothesis with respect to ZFC was established by Solovay-Tennenbaum 71 (see Jech 

71). The consistency of Souslin’s hypothesis with ZFC together with the generalized 

continuum hypothesis is shown by Jensen °°b. Jensen °°c discusses generalizations of 

Souslin’s hypothesis. 

2) Takeuti 65 and 65 a. 

3) For references see footnotes 1 and 3 on p. 113. 
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ity c is a set of cardinality 2C; the union set of a set D such that each ZEZ) 

has the cardinality d, is a set of cardinality at most X/?eD (where 

ZvrGD dt stands for infinite addition — see T, p. 83). Therefore we can say 
that a set of cardinality e cannot be obtained from sets of smaller cardinality 
by means of the operations of power-set and union, if for every cardinal 

number csuch that c< ealso 2C < e, and for-every indexed sum Yjt^D °f 

cardinal numbers dt such that for every rEZ), df< e and also \D\< e we have 

Z/reD d f<e. Actually, since the operation with the constant outcome N0 is 
also available, we shall be interested only in such cardinals e as above which 

are greater than Ng. Accordingly we define 

DEFINITION. A cardinal number e is said to be regular if it is infinite and 
it is not the sum of < e cardinal numbers each of which is < e (i.e., whenever 

e = Z/rez) df we have |D|>e or otherwise, for at least one ZEZ), df=e). 
e is said to be (strongly) inaccessible if (1) e > N0, (2) e is regular, and (3) for 

every c< e, we have 2c<e !). 

If there are inaccessible cardinals at all, then the least inaccessible cardinal 

t0 is “very big”, indeed. t0 is greater than each of Ng, 2^°, 21 2^0, ..., a, 2a, 

22a, ..., b, 2^, ... (where a and b are as on p. 109). Yet t0 is very small com¬ 

pared to the second inaccessible cardinal tj, which is greater than tg,2to, 

22t°, ..., t0 + 2to + 22*0 + ..., ... The third inaccessible cardinal is again much 

bigger, and so on. One asks, naturally, whether such enormous cardinals do 

indeed exist. With respect to the system ZFC one gets: If ZFC is consistent 

then one cannot prove in ZFC the existence of an inaccessible number e 2). 

The proof of this proceeds as follows. Let us consider the cardinals as par¬ 

ticular ordinal numbers, as on p. 96. Let S2I be the collection of all sets if 

there is no inaccessible cardinal; otherwise, let 91 be the set R(d), where d is 

the least inaccessible cardinal (R is the function defined on p. 94). (J is taken 

to be the usual membership relation for members of 91. Now it can be shown, 

1) This notion was first introduced by Sierpiriski-Tarski 30 and Zermelo 30. The 

adverb ‘strongly’ is added in order to distinguish these inaccessible cardinals from the 

weakly inaccessible cardinals (which are defined to be the regular cardinals Ra whose 

index a is a limit number) introduced by Hausdorff 08, p. 443, and 14. Every inacces¬ 

sible cardinal is also weakly inaccessible. These two notions are easily seen to coincide 

if the generalized continuum hypothesis is assumed, but they do not coincide in ZFC 

(see Cohen 66 and VopSnka 64). Definitions of the notion of an inaccessible number in 

the literature sometimes differ from the present one in that they admit R0, and some¬ 

times even 2, as an inaccessible cardinal. The present definition of this notion is appro¬ 

priate only in the presence of the axioms of choice; ,for another definition, appropriate 

even for ZF , see Levy 60 (Def. 1). 

2) Firestone-Rosser 49 (cf. already Kuratowski 25 and Baer 29). Independence 

proofs are given in Mostowski 49, Shepherdson 51-53 II, and Mendelson 56. 
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without much difficulty, that the collection 91 together with the binary 

relation (5 is a model, in the sense of p. 99, of the system obtained from 

ZFC by adding to it the axiom “there is no inaccessible cardinal”. This model 

establishes that the latter system is consistent if ZFC is, i.e., if ZFC is consis¬ 

tent then the existence of an inaccessible cardinal e cannot be proved in it. 

The next question which comes up in this connection is the following: 

Can one prove in ZFC that there is no inaccessible cardinal? Mathematical 

experience so far seems to deny this possibility. Considerable mathematical 

research has been done concerning inaccessible cardinals yet nothing seems 

to indicate that the assumption of the existence of an inaccessible cardinal 

leads to a contradiction. Of course, such an answer is hardly satisfactory; but, 

unless one proves eventually in ZFC that there are no inaccessible numbers 

— which seems highly unlikely — this seems to be the strongest statement 

that one can ever make in this direction. For reasons which are closely related 

to Godel’s theorem on consistency proofs, and which are discussed on p. 328, 

it is impossible to give a convincing proof that if ZFC is consistent so is the 

system obtained from ZFC by adding to it the axiom “there exists an 

inaccessible cardinal”, i.e., that if ZFC is consistent then the existence of 

inaccessible cardinals cannot be refuted in ZFC 1). 
Let us denote with ZFC# the axiomatic system which is obtained from 

ZFC by adding to it the axiom “there exists at least one inaccessible cardinal”, 

and let us see what we can say in ZFC# concerning the existence of at least 

two inaccessible cardinals. The second inaccessible cardinal is related to ZFC # 

in the same way as the first inaccessible cardinal is related to ZFC1. If ZFC# 

is consistent then the existence of a second inaccessible cardinal cannot be 

proved in ZFC#, and we cannot show that the existence of a second inaccessible 

cardinal is not refutable in ZFC#; yet, present mathematical experience indi¬ 

cates that this is indeed the case. (The proofs of these statements proceed 

along the same lines as the proofs of the corresponding statements concern¬ 

ing ZFC and the first inaccessible cardinal.) 
In the literature one can find axioms which assert the existence ot more 

and more inaccessible cardinals 2). When one comes to deal with the question 

of their consistency and independence, the phenomena observed above are 

*) Shoenfield 54a. 
2)Mahlo 11 and 12/3 (concerns only weakly inaccessible cardinals), Tarski 38 and 

39a (or Bachmann 55, §42), A. Levy 60 and 60b, Bernays 61a, Montague 62, Gaifman 
67, and tire references in footnotes 6 on p. 112 and 3 on p. 113. For axioms which in¬ 
volve also classes as well as sets (§ 7), see Bernays 61a, Takeuti 61 and 69. Many of 
these axioms are consistent with the axiom of constructibility - see Godel 40 (note 10 

in the second printing) and Tharp 66 (cl., however, p. 113). 
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repeated, i.e., one can show that a stronger axiom (that is, an axiom which 

asserts the existence of more inaccessible cardinals) is independent of a weaker 

one (if the weaker one is consistent), and that one cannot give a convincing 

proof of the consistency of the stronger axiom even if the consistency of the 

weaker one is assumed *). 

In 1914, Hausdorff wrote 2): “If there are regular initial numbers with a 

limit-index (and as yet one has not succeeded in discovering a contradiction 

in this hypothesis), the least among them has so exorbitant a magnitude that 

it will hardly ever come into consideration for the usual purposes of set 

theory.” We shall call Hausdorffs regular initial numbers with a limit-index 

weakly inaccessible cardinals; among them one finds all the inaccessible car¬ 

dinals 3). Contrary to Hausdorff s prediction, the inaccessible cardinals proved 

to have significance not only for the foundations of set theory, but also for 

certain applications 4). There is yet another aspect for which Hausdorff s 

prediction failed. By assuming the existence of inaccessible numbers we can 

prove many new theorems which have nothing to do with large cardinals, such 

as theorems about the arithmetic of the natural and real numberss) (though 

these theorems do not seem to be of the kind that will be encountered by a 

mathematician who is not interested in metamathematics). 

The attitude of the mathematicians towards the question of the existence 

of inaccessible cardinals, which has now become more acute than had been 

envisaged by Hausdorff, will be discussed in the next subsection. Let us only 

remark at this point that mathematicians would be much more inclined to 

accept the existence of inaccessible cardinals than to reject it. 

The inaccessible cardinals turn up most naturally when one considers 

properties 1(3 of cardinals which turn out to be such that (1) N0 has the 

property 1(3; (2) if a has the property 1(3 then 2a has the property i(3; and (3) if 

{b?}, tEH, is an indeed set of cardinals such that for each tEA, br has the 

property 1(3, and IA | has the property 1(3 too, then Yj t<EA a*so has the 

property 1(3 6). (1)—(3) imply that all the cardinals which are not greater than 

x) The axiom of choice plays no significant role in the results mentioned so far in the 

present subsection; i.e., ZFC can be replaced everywhere by ZF, provided we use the 

appropriate definition of the notion of inaccessibility (footnote 1 on p. 110). 

2) Hausdorff 14, p. 131. 

3) See footnote 1 on p. 110. 

4) See Sierpinski-Tarski 30, Kozniewski-Lindenbaum 30, Sierpiriski 34 (with ref¬ 

erences to other papers), and all the papers referred to in footnotes 5 and 6 below. 

5) Tarski 38 (p. 87), Mostowski 49, Kreisel-Levy 68. 

°) For such properties T and related research see Keisler-Tarski 64 (and Bukovsky 

65a), Erdos— Hajnal—Rado 65 (p. 109), and the many papers in their bibliographies 

(in particular, also the work of Hanf, Monk, and Scott). 
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an inaccessible cardinal have the property^ (i.e., if there is no inaccessible 

cardinal then all cardinals have the property and if there are inaccessible 

cardinals then all cardinals less than the least inaccessible cardinal have the 

property ^). In several cases one can prove that many of the inaccessible 

cardinals, and in particular the first inaccessible cardinal, the second inacces¬ 

sible cardinal, etc., have the property ^, but one still does not seem to be 

able to prove that all cardinals have this property. In this case the assumption 

that there exists a cardinal which does not have the property is sometimes 

referred to as an axiom of strong infinity, since it entails the existence of very 

“large” cardinals. Among the axioms of strong infinity obtained in this way 

the hypothesis of the existence of a measurable cardinalJ) deserves special 
attention. It is a very strong assumption in that it is stronger than almost 

all other known axioms of strong infinity 2). It has other interesting conse¬ 

quences, in particular it contradicts the axiom of constructibility; moreover, 

it implies that there are only constructible sets of natural numbers, and 

that some relatively simple sets of natural numbers are not constructible 3). 

It has also consequences concerning classical mathematical problems not 

related to the metamathematics of set theory, such as the Lebesgue measur¬ 

ability of certain sets of real numbers 4). The hypothesis of the existence of 

a measurable cardinal is compatible both with the generalized continuum 

hypothesis, and with the negation of the simple continuum hypothesis5). 

6.4. Axioms of Restriction. In 1922 Fraenkel proposed to add to set theory 

an axiom of restriction, i.e., an axiom which, written after all other axioms, 

reads, roughly: “There are no sets other than those whose existence follows 

directly from the axioms written down so far” 6). Such an axiom would be 

analogous to Peano’s axiom of induction in arithmetic and inversely analo- 

') This notion is defined, e.g., in Scott 61a, where references to results of Banach 

and Ulam are given, and in Shoenfield 67, §9.10. This notion has uses in algebra (see 

Fuchs 58, §47) and in geometry (see Kothe 60, §28.8) - cf. also Keisler-Tarski 64 and 

Chang 65. 

2) Keisler-Tarski 64, A. Levy 71, Solovay 66. 

3) Scott 61a, VopSnka 62, Gaifman 71, Solovay 67 (where earlier results of Row- 

bottom and Silver are referred to). The assumption of the existence of strongly compact 

(strongly measurable) cardinals is a stronger axiom of infinity; it contradicts even a weak 

version of the axiom of constructibility — VopSnka— Hrbacek 66 and Kunen 70. Still 

stronger notions of large cardinals are those of the supercompact cardinals of Reinhardt- 

Solovay °° and the extendible cardinals - see also Magidor 71 and 71a. 

4) Solovay 69, Martin-Solovay 69, Martin 70, and Mansfield 71. 

5) Silver 71, Jensen 67a, Levy-Solovay 67. 

6) Fraenkel 22, pp. 233-234 (Axiom der Beschranktheit). 
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gous to Hilbert’s Vollstandigkeitsaxiom (axiom of completeness) *) in geom¬ 

etry and analysis. While the latter, in order to gain categoricity, postulates 

that the domain is as comprehensive as compatible with the axioms, in the 

case of set theory, as in arithmetic, an axiom of restriction would demand the 

domain to be as narrow as compatible with the axioms2). This may mean 

that the domain is the “intersection” of all “models” of the system of axioms, 

provided that such an intersection can be consistently assumed to exist and 

to fulfil the axioms. Then, e.g., the non-existence of inaccessible numbers, as 

well as that of non-well-founded sets, could be proved (even without the 

axiom of foundation). Originally it was suspected that such an axiom of 

restriction cannot be formulated within our axiomatic theory 3); but, as we 

shall see, it is possible to formulate axioms which can be very reasonably 

equated with Fraenkel’s axiom of restriction; it is on the basis of the contents 

of these axioms, and on the desirability of restriction in general, that we have 

to accept or reject these axioms. 

When we say that there are no more sets than required by the axioms we 

mean to assert the schema: “If Q is a property such that every set whose 

existence follows from the axioms has the property Q then every set has the 

property Cl”. The difficulty which we now encounter is to express accurately 

the statement: “Every set whose existence follows from the axioms has the 

property G”. We have infinitely many axioms which imply the existence of 

sets (since all the instances of the axiom of replacement are such), so a 

straightforward attempt to formulate that statement would lead us to an 

infinite formula; therefore we have to proceed somewhat indirectly. Thus, 

our first axiom of restriction will be the following schema: 

FIRST AXIOM OF RESTRICTION. If Cl is a property for which (1)—(6) 

below hold, then every set has this property. 

(1) Ifx andy have the property Q so has {x,y}. 

(2) If x has the property G so has Ux. 

(3) If x has the property D so has Px. 

(4') Ifx has the property Q , and is any condition, then the subset x^ 

ofx determined by the condition also has the property Cl. 

(5) Some infinite set has the property Cl. 

(6') If x has the property Cl, ^ (t, z) is a functional condition on x, and 

for every f£x, ^(f, z) implies that z has the property Cl , then the set y 

which consists of all elements z such that $(f,z) holds for some tEx also has the 

property Cl. 

*) Hilbert 1899 (from the second ed. on, Axiom V2). 

) Axioms of this type are discussed in Carnap-Bachmann 36. 

3) von Neumann 25, Fraenkel 27. 
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(4') and (6') are still not single statements, since they mention all condi¬ 

tions1^ , but they can, obviously, be replaced by 

(4) If x has the property 0, and y Cx then y, too, has the property 0. 

(6) It x has the property 0 and f is a function whose domain is included 

in x, and its range y consists of elements which have the property 0, then 

y, too, has the property 0. 

One can prove, in the system I—VIII, that the first axiom of restriction is 

equivalent to the conjunction of Axiom IX (of foundation), and the state¬ 

ment which asserts that there are no inaccessible cardinals !). One can also 

prove that to the rather limited extent permitted by the general theorem on 

the non-categoricity of theories formulated in first-order logic (p. 300), an 

axiom like the First Axiom of Restriction, or its equivalent version mentioned 

above, will indeed guarantee the categoricity of set theory 2). 

In addition to the general arguments against the restriction axioms, which 

we shall present below, let us examine in particular what has been achieved 

by the First Axiom of Restriction. Since we have adopted the axiom of 

foundation anyway, all that we can prove by means of the First Axiom of 

Restriction is that there are no inaccessible cardinals and the rather direct 

consequences of that (see the preceding subsection). This is too little for the 

idea of restriction, which should be a very powerful tool (as are the axiom of 

induction in arithmetic and the axiom of completeness in geometry). In par¬ 

ticular, we cannot conclude anything from this axiom concerning the con¬ 

tinuum hypothesis 3). All this points towards searching for a stronger axiom 

of restriction. 

When we now consider again the First Axiom of Restriction, trying to 

strengthen it, we see that its relative weakness is due to the excessive strength 

of assumptions (4') and (6'). What we wanted to state in (1)—(6) is that if the 

collection determined by 0 (to which we shall refer loosely as “the collec¬ 

tion 0”) can serve as a model for ZF then this collection contains all sets. 

When we consider, for example, condition (4') we notice that in order for the 

collection to serve as a model for ZF it is not necessary that it should contain, 

together with a set x, every subset x?p of x determined by an arbitrary condi- 

*) The axiom of restriction of Carnap 54, §43, is also equivalent to the same state¬ 

ment (in the formal system given there). 

2) To obtain this categoricity result one has to formulate set theory in second-order 

logic, or with classes (see § 7), as is done to obtain categoricity in arithmetic and geome¬ 

try. The proof of categoricity is, essentially, contained in Zermelo 30. 

3) This easily follows from the proof of the consistency of the non-existence of 

inaccessible cardinals (see p. 110), knowing that each of the continuum hypothesis and 

its negation is consistent with ZFC. 
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tion ip, as demanded by (4*); it is enough if this holds only for those condi¬ 

tions ip which are defined by referring only to the members of the collection 

D.A corresponding weakening of (6') is now also called for. However, the 
schemas (4') and (6') were luckily equivalent to the single statements (4) and 

(6), but we are not that lucky with the new versions of (4') and (6'). Never¬ 

theless, by a considerable amount of effort and technical ingenuity, one can 

actually produce a single statement which can be proved to assert almost 

exactly what we are looking for. This is the 

SECOND AXIOM OF RESTRICTION (i) All the sets are constructible, and 

(ii) there are no transitive sets which are models of ZF 1). 

Part (i) of this axiom implies that all sets are well-founded; moreover, we 

know that it also implies the generalized continuum hypothesis. Part (ii) of 

this axiom implies, in particular, the non-existence of inaccessible cardinals. 

Thus we see that the Second Axiom of Restriction implies the First Axiom 

of Restriction, and is indeed quite a powerful axiom. Let us now also notice 
a feature that both axioms of restriction have in common. Each is equivalent 

to the conjunction of two statements, one of which states that certain “large” 

ordinals or sets of large rank do not exist (inaccessible ordinals in the first 

axiom, transitive models of ZF in the second axiom), and can therefore be 

called a limitation on the “size” of the ordinals; the other statement declares 
that certain complicated sets which do not necessarily have a large rank, or a 

rank at all, do not exist (non-well-founded sets in the first axiom, non- 
constructible sets in the second axiom) 2). 

Another axiom which was suggested 3) as a formalized version of the 

axiom of restriction is an axiom which asserts that every set “has a name”, 
i.e., for every set x there is a parameterless condition ip such that x is the only 

set which fulfils ip (in this case we say that ip is a description of x). This 

condition cannot be stated in our present set theory, but can be stated in 

the language of the von Neumann—Bernays set theory (§7)4). One may be 

erroneously led to regard this as an axiom of restriction if one takes the vague 

statement, “There are no sets other than those whose existence is provable 

from the axioms”, too literally. The fact that a set x has a description ip does 

!) Shepherdson 51-53 III. See also Mostowski 49, Cohen 63 and 66. 
2 

) See, e.g. Takeuti 69, for the distinction between these two kinds of restriction. 
3) Suszko 51. 
4 

) The consistency of this axiom with the axioms of VNB (§7.1) is proved by My hill 

52 (in order to obtain this result one has to assume that one can add consistently to VNB 

the full induction schema of set theory with classes (p. 139); cf. Montague-Vaught 59a). 

Moreover, as shown by Cohen 66, every transitive model of ZF in which the Second 

Axiom of Restriction holds also satisfies this axiom. 
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not mean that* must occur in every interpretation of set theory. The descrip¬ 

tion ^ of x is, in general, formulated by referring to all sets, and therefore, 

under a narrower concept of set, $ may describe some other set x or cease to 

be a description at all. Such an axiom does not refute the existence of inacces¬ 

sible numbers or of non-well-founded sets (the latter holds, of course, only if 
we do not assume the axiom of foundation) *). 

Having discussed the question of how to formulate the axiom of restric¬ 

tion, let us consider now the question of whether such an axiom is at all 

desirable. In the case of the axiom of induction in arithmetic and the axiom 

of completeness in geometry, we adopt these axioms not because they make 

the axiom systems categorical or because of some metamathematical proper¬ 

ties of these axioms, but because, once these axioms are added, we obtain 

axiomatic systems which perfectly fit our intuitive ideas about arithmetic and 

geometry. In analogy, we shall have to judge the axioms of restriction in set 

theory on the basis of how the set theory obtained after adding these axioms 

fits our intuitive ideas about sets 2). To restrict our notion of set to the 

narrowest notion which is compatible with the axioms of ZFC just for the 

sake of economy is appropriate only if we have absolute faith that the axioms 

of ZFC (and the statements which they imply) are the only mathematically 

interesting statements about sets. It is difficult to conceive of such absolute 

faith in the sufficiency of the axioms of ZFC 3) (as one would have in, say, 

the full axiom of comprehension if it were not inconsistent). Even if one had 

such a faith in the axioms of ZFC, it is likely that he would settle rather for 

something like an axiom of completeness, if there were some reasonable way 

of formulating it. 

When we discussed, in §6.2, the desirability of the axiom of constructibil- 

ity it was mentioned that it is highly dubious whether it should indeed be 

taken up as one of the axioms of set theory. Let us now see what the argu¬ 

ments are against that part of an axiom of restriction which limits the “size” 

of the sets. The usual arguments for and against the adoption of some state¬ 

ments as axioms involve some interplay between consideration of mathemat¬ 

ical elegance, on the one hand, and Platonistic attitudes on the other. For 

example, from a Platonistic point of view a strong case can be made for the 

existence of individuals, but from the point of view of mathematical elegance 

there is little that speaks for this assumption (i.e., the individuals do not con- 

*) This can easily be shown by the methods of Myhill 52 (or Cohen 66). 

2) See Godel’s opinion on this comparison in Benacerraf-Putnam 64, p. 270, and 

those of Mostowski 67 and Kreisel 67. 

3) Similar arguments are used in Zermelo 30. 
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tribute considerably to the existence of interesting mathematical structures), 

and so our sense of economy may well have the upper hand over our Platonis- 

tic tendencies. 

As to the question of the mathematical elegance of the axioms of restric¬ 

tion, we do not say that an axiom of restriction contributes to mathematical 

elegance just because we can prove stronger theorems by means of it. The way 

in which an axiom of restriction helps to prove a stronger theorem is often 

simply by denying the existence of sets which do not conform to the desired 

theorem. This would be regarded as dishonesty by the conscientious mathe¬ 

matician and is exactly the case with our axioms of restriction; it is, however, 

not the case with the axiom of foundation or the assumption that there are 

no individuals. There are no deep mathematical theorems which we are able 

to prove after assuming these axioms just because we have banished all oppo¬ 

sition (unless this happens in a too obvious way, as in the theorem that no set 

is a member of itself, and then such a transparent dishonesty cannot really be 

called dishonesty). After adopting these axioms we have, essentially, the same 

theory, only that the treatment and view are much more streamlined. 

If one takes the Platonistic point of view, there is a consideration, in addi¬ 

tion to mathematical elegance, which opposes size restrictions. As a result of 

the antinomies we know that there is no set which contains all sets; a reason¬ 

able way to make this conform to a Platonistic point of view is to look at the 

universe of all sets not as a fixed entity but as an entity capable of “growing”, 

i.e. we are able to “produce” bigger and bigger sets. The axiom of restriction 

points to the existence of some fixed natural universe of sets, but if the collec¬ 
tion of all sets in this universe is again a Platonistic entity, then why should it 

not be admitted as a new set by allowing a wider universe than that allowed 
by the axiom of restriction? *) When we try to reconcile the image of the 

ever-growing universe with our desire to talk about the truth or falsity of 

statements that refer to all sets we are led to assume that some “temporary” 

universes are as close an “approximation” to the ultimate unreached universe 

as we wish. In other words, there is no property expressible in the language of 

set theory which distinguishes the universe from some “temporary universes”. 

These ideas are embodied in the principles of reflection, which are, mostly, 
strong axioms of strong infinity 1 2). 

As a last remark let us mention that one can prove that if ZFC is consis- 

1) See Zermelo 30. Related arguments led von Neumann (in 25) to believe that no 

axiom schema of restriction can be formulated. 

2) A. Levy 60 and 60b, Montague 61a and 62, Bernays 61 and 61a, Takeuti 61 and 
69, Tharp 67. 
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tent it remains so even upon addition of the Second Axiom of Restriction !). 

On the other hand we know that we cannot prove that if ZFC is consistent 

then it remains consistent after adding to it an axiom which asserts the exis¬ 

tence ot an inaccessible number. This, however, will usually not be taken as 

an argument for the axiom of restriction as opposed to an axiom of strong 

infinity; we know that the reason for the impossibility of proving the relative 

consistency of strong axioms of infinity is due to Godel’s theorem on consis¬ 

tency proofs, and so this fact does not give rise to suspicions concerning the 

consistency of strong axioms of infinity (see pp. 328—329). 

§7. THE ROLE OF CLASSES IN SET THEORY 

7.1. The Axiom System VNB of von Neumann and Bernays. In the present 

section we shall discuss the various systems of set theory which admit, beside 

sets, also classes. Classes are like sets, except that they can be very compre¬ 

hensive; an extreme example of a class is the class which contains all sets. We 

shall analyze in detail the relationship of these systems to ZF. The main point 

which will, in our opinion, emerge from this analysis, is that set theory with 

classes and set theory with sets only are not two separate theories; they are, 

essentially, different formulations of the same underlying theory. 

We shall carry out a detailed discussion of an axiom system VNB due to 

von Neumann and Bernays which exhibits the typical features of set theory 

with classes. Later we shall consider, in somewhat less detail, the other main 

variants of set theory with classes, ignoring systems which differ only tech¬ 

nically from the systems which we shall discuss. 

In our exposition of set theory we had to use the metamathematical 

notion of a condition many times. We used it in formulating the axioms of 

subsets, replacement and foundation; we used it also in the least ordinal 

principle (2.6) on p. 93), in the (meta)theorem on definition by transfinite 

induction, and in definition by abstraction (in §6.4). When we look at other 

axiomatic mathematical theories to see whether they also make such a fre¬ 

quent use of the notion of a condition, we see that in some theories, e.g., the 

elementary theories of groups and fields in algebra, such a metamathematical 

notion does not occur at all, but in most theories this metamathematical 

notion is avoided only at the expense of developing the axiomatic theory 

within set theory, and using the mathematical notion of set instead of the 

metamathematical notion of condition. Thus, instead of formulating the 

*) Shepherdson 51—53 III. 
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axiom of induction of number theory as “For every condition ^(x), if 0 

fulfils the condition and if, for every x which fulfils the condition, x+1 fulfils 

it too, then every natural number x fulfils the condition”, we can say “For 

every set P, if 0 £ P and for every x, if x £ P then x+1 £ P too, then P con¬ 

tains all natural numbers”; and instead of saying “For every condition ^3(x), 

if some natural number fulfils the condition then there is a least natural num¬ 

ber which fulfils it”, we say “Every non-empty set P of natural numbers has a 

least member”. Here, where we axiomatize the notion of set, it may seem at 

first sight that our task is easier than ever, since we deal with sets anyway, but 

this is not the case. When one considers a mathematical theory A given within 

set theory, the most basic fact of set theory used in developing A is the fol¬ 

lowing principle of comprehenson: 

(*) For every condition ^3(x) of the theory A there exists a set Q which 

consists exactly of those objects (of the theory A) which fulfil the 

condition. 

If we apply (*) to set theory we get the axiom schema of comprehension (of 

§3.1), which we already know to be contradictory. To avoid this contradic¬ 

tion we seem to have no choice but to assume that not all the sets guaranteed 

by the principle (*) are sets of set theory. To distinguish between the sets of 

set theory, i.e., the objects which were discussed in §§1—6 above, and the 

sets guaranteed by the principle (*), we shall refer to the latter as classes. 

Thus we have two kinds of sets; the sets of the first kind are still referred to 

as sets or, synonymously, as elements, and their behavior is expected to be as 

determined by the theory ZF; the sets of the second kind are called classes 

and their theory will depend to a large extent on the class axiom of compre¬ 

hension (*). Actually, the notion of a class is not entirely new; we have 

already talked about classes in §§1-6, but there we used for them the term 
‘collection’. 

Now we set out to develop an axiom system for set theory with classes. As 

we shall see, there are several ways of doing that, some of which differ only 

in technical detail, while others show more fundamental differences. At this 
point let us make sure that we know what we intend by the notion of class. 

Having done that, we can write down axioms which, we believe, are true 

statements about our intended classes. We mean by a ‘class’, as we meant 

earlier by the informal term ‘collection’, the extension of some condition 

^(x), i.e., the class, collection, set, or aggregate, whatever you wish, of all 

sets x which fulfil the condition $(x). Let us recall here what we mean by 

‘condition’. A condition is any statement of the language introduced in §1. 

That language mentions only sets, membership and equality of sets and other 

notions defined in terms of these. Since we shall now deal with languages 
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which mention also classes, we modify the term ‘condition’ by the adjective 

'pure’; i.e., a pure condition is a condition which mentions only sets, member¬ 

ship and equality of sets and other notions defined in terms of these notions. 
In particular, a pure condition is not supposed to mention classes. In §§1—6 

all the conditions we dealt with were pure since these were the only condi¬ 

tions we could express in the language ol ZF. Using our present terminology 

we say that the classes are intended to be the extensions of the pure condi¬ 
tions. 

Let us note, at this point, that our present way of looking at classes as 

extensions of pure conditions is by no means the only accepted one. In §7.4 

we shall see a different point of view and study its implications concerning 
the axiomatic theory. 

We denote the system of set theory which we are now developing by VNB 

(after von Neumann and Bernays). In most of its details it follows the system 
proposed by Bernays in 1937 *). 

First, let us describe the language we shall use for VNB. Lower case letters 

will always stand for sets and capital letters for classes (other than O which 

still stands for the null-set). Now we have two kinds of membership, the 

membership of a set in a set (as in 0£{0}), and the membership of a set in a 

class (as in OEB where B is, say, the class of all sets which are not members of 

themselves). Both kinds of membership will be denoted by the same symbol 

£2). Expressions of the ioxmAEB or,4Ex are considered, for the time being, 

to be meaningless and are not allowed in our language, i.e., our gram¬ 

matical rules allow the use of ‘is a member of’ only after an expression which 

denotes a set. (We do not claim that the expressions A&B and A Ex are 

necessarily meaningless. On the contrary, we shall see later that we can attri¬ 

bute a very natural meaning to these expressions.) We also admit here state¬ 

ments of the form x =y and A =B as basic statements of our language. The 

possibility of admitting these statements as defined, rather than primitive, 

notions will be discussed in a short while. Expressions of the formx=yl are, 

for the time being, not allowed in our language. In addition, we have available 

in our language all the sentential connectives, i.e., ...or..., ...and... , if... then... 

... , ...if and only if... , it is not the case that... and so on, and the quantifiers 

for every set x ... , there exists a set x such that... , for every class X..., there 

exists a class X such that ... (in symbols,.Vx, 3x, VX, 3X, respectively). 

*) Bernays 37—54. 

2) Bernays 37-54 denotes the latter kind of membership with 77, i.e., he writes x 77 B 
where we write x^B. Even though we use here just one symbol e we can differentiate 

between the two kinds of membership according to whether we have on the right side of 

the e symbol a symbol for a set, such as (o), or for a class, such as B. 
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When we go on developing VNB we shall use a much richer language since we 

shall introduce many new notions by means of definitions. We shall refer to 

the language described here, without any defined symbols, as the primitive 

language of VNB, and its symbols will be called the primitive symbols. 

In §2 we had the choice of taking equality as a primitive notion (of logic, 

or set theory) or else as a defined notion. There we chose to adopt equality 

as a primitive notion of logic, and accordingly we now make the same choice 

with respect to classes. According to our intended notion of class, namely as 

the extension of a pure condition, two classes are identical if and only if they 

have the same members (this is what we mean by ‘extension’). Therefore we 

adopt the following axiom. 

AXIOM (X) OF EXTENSIONALITY FOR CLASSES. If for every element 
x, x is a member of A if and only if x is a member of fi, then A =fi. 

In symbols: Vx(xG,4 *+xEB)^A —B. 

Had we chosen in §2 to take equality as a primitive notion of set theory 

(attitude (b) on p. 26), or as a defined notion (attitude (c) there), then we 

would now still be faced with the same choice with respect to the classes. If 

we choose to define equality of classes, then we would have to define it so 
that the requirements of reflexivity, symmetry, transitivity, and substitutivity 

((/)—(zV) on p. 25) would be satisfied. In the case of sets we saw that the 
most direct way of defining equality is to use requirement (zV) for atomic 

statements (which was denoted there with (zv')) as the defining property of 

equality, since every other definition of equality must anyway be equivalent 

to that one. The atomic statements in which a class variable occurs are all of 

the form xGA and hence we would now define that A =B if for every ele¬ 

ment x, x&A if and only if xG.fi. As in the case of sets, any other definition 

of equality of classes would necessarily have to be equivalent to this one. This 

definition conforms also to our intuitive notion of class, as mentioned above. 

If we define equality of classes this way, and it seems to be the only reason¬ 

able way of doing it, then Axiom X of ex tension ality for classes does not have 

to be assumed as an axiom since it is now an immediate consequence of the 
definition of equality. 

Considering the intended meaning of the term ‘class’, it seems that the 

following axiom schema is the most natural axiom of comprehension for 
classes. 

There exists a class which consists exactly of those elements x which 

fulfil the condition $(x), where ^$(x) is any pure condition on x. 

The trouble is that (*) is a bit too weak. There are simple facts which are true 

about our intended classes which cannot be established by means of (*). E.g., 
let us consider the statement 
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(* 1 ^or every c^ass A there exists a class B which consists of all elements 
^** which are not members of A. 

This is certainly true for the intended classes since, if A is given by the pure 

condition ^(x), then B is given by the pure condition “it is not the case that 

^3(x)”. (*) is, therefore, sufficient to prove every instance of (**) for any 
particular class A determined by a pure condition, but is not sufficient to 

prove (**) in general !). Thus we see that if we adopt (*) as our only axiom 

of comprehension for classes, our handling of classes will be rather clumsy, 

which is a great disadvantage, as we introduced classes, to begin with, in order 

to get a more streamlined treatment. Therefore we prefer to choose the fol¬ 
lowing axiom. 

AXIOM (XI) OF PREDICATIVE COMPREHENSION FOR CLASSES2). 
There exists a class A which consists exactly of those elements x which satisfy 

the condition ^?(x), where ^(x) is a condition which does not contain quanti¬ 

fiers over classes, i.e., ^(x) does not contain expressions of the form ‘for 

every class X ... ” or “there exists a class X such that ... ” (but ^(x) may 

contain quantifiers over elements). 

It immediately follows from the axiom of extensionality for classes that 

the condition ^B(x) in Axiom XI determines a unique class A; therefore we 

can speak of the class of all elements x which fulfil ^B(x). Accordingly we 

lay down 

DEFINITION VI. (x|^(x)}, where ^(x) is a condition which does not use 
class quantifiers, is defined to be the class of all sets x which fulfil the con¬ 

dition ^B(x). The expressions (x|^B(x)} will be called class abstracts. 

Now, let us make clear exactly in which way classes and sets are supposed 

to be mentioned in ^(x) in Axiom XI and in Definition VI. Expressions of 

the form xEA, where A is a class variable, are of course permitted; quantifiers 

over class variables are forbidden. Which defined notions are to be allowed in 

^B(x)? The criterion is simple — defined notions are allowed only if, when we 

replace these notions in ^B(x) by their definitions, we obtain a condition 

expressed in the primitive language which contains no class quantifiers. E.g., 

if 0(x) is a condition which does not use any class quantifier, then the 

expression (x lQ(x)} is allowed in ^8(x), since j>e{x IO(x)} can be replaced by 

*) This can be shown rigorously by a method like that used below in §7.2 to prove 

that every statement of the language of ZF which is provable in VNB is also provable in 

ZF. 

2) This axiom is called predicative since it asserts only the existence of those classes 

which are given by a definition which does not presuppose the totality of all classes, 

unlike Axiom XII in §7.5 below. 
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0(jy) which does not involve any class quantifiers. 

To get an idea of what we can do by means of Axiom XI, we shall now 

define a few constant classes and operations on classes. Notice that these 

defined notions satisfy the requirement mentioned above, i.e., they can be 

replaced in expressions containing them by their definitions, without intro¬ 

ducing any quantifiers on class variables. 
DEFINITION. A = {x|x^x} (the null class). 

V = {x | x = x } (the universal class). 

A DB= {x\xEA orxEB] (the union of A and B). 

A H B = (x | x EA and xEB } (the intersection of A and B). 
-A — (x | x <£A } (the complement of A). 

The basic properties of these classes and operations are easily proved from 

their definitions. 

Now we shall see why we admitted in Axiom XI conditions ^?(x) exactly 

as stated above. Let us first become convinced that Axiom XI is not too wide 

for our purposes. To see this let us observe that Axiom XI is indeed true for 

our intended classes. Let ^3(x) be a condition as in Axiom XI, with the class 

parameters A\,...,Ajc. By our assumption on ^B(x), if it contains symbols 

other than the primitive symbols, we can replace them by their definitions 

without introducing class quantifiers, and thus get a condition in the primitive 

language equivalent to ^B(x). Since in the following there will be no need to 

distinguish between two equivalent conditions, we can assume that it is 

already ^(x) which contains only symbols of the primitive language, without 

containing any quantifiers over class variables. If A^^.^A^ are classes as 

intended, then for some pure conditions Dj(x), ..., Q^(x) we have Ai — 

{x|D,-(x)}, for 1</<A:. Since there are no class quantifiers in ^$(x), the 

only classes mentioned in it are A^,...,Ak, and the only places in which 

they are mentioned are expressions of the form y€d,', Since y EAt, for 

Aj = (x|D,-(x)}, can be replaced by Q/(y), $(*) is equivalent to a pure 

condition Q(x), and therefore the class (x|£l(x)}, which is a class as 

intended since >Q(x) is a pure condition, consists exactly of the elements x 

which fulfil the condition Q(x). To sum up, the conditions $(x) that we 

allow in Axiom XI differ essentially from pure conditions only in that they 

may also contain class parameters; once these parameters are given values 

which are classes determined by pure conditions, the condition ^(x) itself 
becomes equivalent to a pure condition. 

We shall also see in §7.2 that while Axiom XI is a schema it can be 

replaced, equivalently, by a finite number of its instances, all of which are 

simple enough to want to have around if one hopes to deal with classes in a 

neat way. This is another reason why Axiom XI cannot be said to contain 
too much. 



ROLE OF CLASSES IN SET THEORY 125 

Having hopefully convinced ourselves that we did not admit in Axiom XI 

too many conditions, we now have to convince ourselves that Axiom XI is 

not too narrow for our purposes. If we were to admit more conditions, and 

have a natural and simple criterion for which conditions to admit, it seems 

that we would have to admit at least all the conditions that involve no more 

than one existential (or universal) class quantifier. However, in this case we 

would get statements which are not true of our intended classes, since there 

are conditions Q(x) of VNB, involving one class quantifier, such that for 

every pure condition ^(x) the statement “for all x, 0 (x) if and only if $(x)” 

is refutable in VNB x), and hence there is no intended class A such that, for 
every element x,x EA if and only if x fulfils Q(x). 

One can formulate a statement in VNB which asserts that there are no 

classes other than those determined by pure conditions 2). This is, of course, 

true of our intended notion of class, but it is not implied by the axioms of 

VNB 3). Shall we add it as an axiom to VNB? Such a statement is relatively 

complicated and does not seem to be useful for proving theorems which one 

may ordinarily consider in set theory4). Since we are interested in the 

intended classes only to the extent that using them streamlines set theory, 

and this has been achieved by Axiom XI, there is no need to add an axiom 

which rules out all classes other than those determined by pure conditions. 

The way in which we introduced the classes is not confined only to set 

theory; on the contrary, Axiom XI can be used to introduce classes in any 

mathematical theory. Suppose we start with some mathematical theory T 

formulated in the first-order predicate calculus (with or without equality), 

and we add to it the following items: (a) a new kind of variables which we 

call class variables, (b) all the statements of the form xE.A, where x is a 

x) Such a condition Q(x), with one existential class quantifier in front, is given by 

the formula Stsf of Mostowski 51, p. 115, or can be obtained by diagonalization over the 

pure conditions as in Kruse 63a. 

2) This statement is formalized by Kruse 63a (it is also evident from Mostowski 51 

how to do it). An even stronger statement is considered in Myhill 52. 

3) Provided that the theory QM of §7.5 is consistent. In QM we can prove that there 

is a class which is not determined by a pure condition, since the existence of (x|Q(x)}, 

where Q(x) is as above, is provable in QM. This independence result can also be shown 

to follow from the weaker assumption of the consistency of VNB, by combining the 

methods of Easton 64 and Feferman 65. 

4) In particular any statement which mentions only sets and . which is provable in 

VNB using the assumption that all classes are determined by pure conditions is also 

provable in VNB without that assumption. This can be shown by the method used in 

§ 7.2 below to show that every statement which mentions only sets and which is provable 

in VNB is already provable in ZF. 
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variable of T and A is a class variable, as new atomic statements, (c) all the 

statements which can be obtained from the old and new atomic statements 

by means of the logical connectives and the quantifiers, and (d) Axioms X 

and XI of extensionality and predicative comprehension for classes as addi¬ 

tional axioms. The theory obtained from T by these additions is, up to 

possible trivial differences in notation, the predicative second order theory 

ofT x). 
Until now we set down the axioms we needed for the classes. As for the 

sets, we take the axioms of ZF, with some changes which are, essentially, 

just technical. 
First we take up all the single axioms of ZF, i.e., the axioms of Exten¬ 

sionality (I), Pairing (II), Union (III), Power set (IV), and Infinity (VI) 2). 

Since the main reason for introducing classes is to avoid metamathematical 

notions in the formulation of most of the axioms and theorems, and since 

the intended classes are just the extensions of pure conditions we can now 

replace the conditions by classes in the axiom schemas of ZF. 

AXIOM (Vc) OF SUBSETS. For every class P and for every seta there exists 
a set which contains just those members x of a which are also members of P. 

In symbols: VPVa 3y Vx(x Gy **x Ga A x GP). 

Before we put down the axiom of replacement we have to deal first with 

the notions of relation and function. In § 3.5 we saw that these notions are, 

in many respect, similar to that of condition. Having all but replaced the 

mathematical notion of condition by the mathematical notion of class, we 

can now apply similar methods to the metamathematical notions of relation 

and functional condition. In the case of a general mathematical 

theory we cannot handle relations by means of classes, and we need new 

metamathematical notion of condition by the mathematical notion of class, 

we can now apply similar methods to the metamathematical notions of rela¬ 

tion and functional condition. In the case of a general mathematical 

there is a set which contains all x’s and all y's for which ^B(x,y) holds, 

whereas here we can deal with all relations). 

DEFINITION. A class A is said to be a relation if it consists only of ordered 
pairs. If A is a class then % (A) (the domain of A) is the class of all elements x 

for which there is a y such that <x,y>GA, and 3\ (A) (the range of A) is the 

class of all elements y for which there is an x such that <x,y>GA. A class A 

is said to be a function if it is a relation and, for all x, y, z, if <x,y >GA and 

*) See, e.g., Church 56, §58. 

) The latter axiom refers only to sets; therefore we have to replace now the capital 

letters used in its formulation by lower case letters. 
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(x, z)EA then y — z. It F is a 1 unction, and x£3)(F), then we denote by 

Fix') the elementy such that (x,y)EF. 
In symbols: 

9uT(,4)=Df Vx(x EA -*■ 3y 3z(x = (y,z))). 

^04)=DfW 3v(<x,_y>£M)}, 9f\(^)=Df {y\ 3jc(<x,-y>GJ4)}. 
c(M) =Dt- 9ie l (A) & Vx\/y((x, y) EA A (x, z) EA -+y = z). 

THEOREM (-SCHEMA). Let Qfxj’) be a condition on x andy (i.e., a rela¬ 

tion in the old, metamathematical, sense), then there is a unique relation A 

such that, for allx and y, <x, y) EA if and only if O (x, y) holds. If Q(x, y) is a 

functional condition, then there is a unique function F such that: xE X(F) 

it and only if there is a y such that holds, and for every x in X(F), 

£)(x,_y) holds if and only if_y =F(x). 

Proof. Given the condition Q(x,y), let A be the class which consists of all 

sets z which are ordered parts <x,y) such that 0(x,j>) holds. Obviously, 

C-(x,t) holds if and only if (x,y)EA. This immediately implies that 

xGX(,4) ifandonlyif, for some^, G(x,y) holds. If, in addition, G(x,y) 

is a functional condition, then A is obviously a function. ForxeX(M) we 

have, by definition of A(x), (x,A(x))EA; hence Q(x,M(x)) holds. Since 

d(x,_y) is a functional condition we have that, for all Q (x,y) holds if and 

only if_y =A(x). 

AXIOM (VIIC) OF REPLACEMENT. If F is a function, and a is a set, then 

there is a set which contains exactly the values F (x) for all members x of a 

which are in X (F). 
In symbols: 

VF(5nc(F)-» \Ja3b \Jy{yEb** 3 x(x£a Ax6 X(F) A = F(x)))). 

In formulating Axiom VIIC we were guided, for the sake of convenience, 

by the symbolic version of VII on p. 52, rather than by the main version of 

Axiom VIE Unlike Axiom VII, Axiom VIIC does not seem to imply the 

axiom of pairing, since ordered pairs are used in an essential way in the notion 

of function on which Axiom VII relies. On the other hand, in the presence of 

the axiom of pairing Axiom VIIC implies Axiom Vc (of subsets — the proof is 

exactly the same as the proof in §3.7 that Axiom VII implies Axiom V). 

AXIOM (IXC) OF FOUNDATION. Every class P which has at least one 

member has a minimal member u, i.e., u is a member oiP, but no member x 

of u is a member of P. 

In symbols: VP(3w(u EP)^- 3u(u EP A Vx(x Eu ->x^/>))). 

Axiom IXC follows the version IX of the axiom of foundation which is a 

schema. Alternatively, we can use here versions IX* or IX** which are single 

statements. The proof that IXC is equivalent to IX* and IX** is essentially 

the same as the corresponding proof for the schema IX in §5.1 and §5.3. 
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When we compare the classes with the sets, we see that there is a certain 

amount of overlap; we introduced the classes as the extensions of the pure 

conditions, but the sets are also the extensions of some of the pure condi¬ 

tions. For every sety we have the class {x|x£y} which has exactly the same 

members (but there is no set which has exactly the same members as the class 

{x|x^x}). It actually turns out that the distinction between the set y and 

the class {x|x€y} serves no purpose. Therefore, to avoid the looks, if not 

the substance, of such a distinction, let us define as follows. 

DEFINITION VII. z = A (and A = z) if z and A have exactly the same mem¬ 

bers. 

AEB if, for some member z of B, z = A. 
A Gy if, for some member z of y, z = A. 

A is a set if, for some z, z = A. 

A is a proper class if A is not a set. 

Now we have arrived at the convenient situation where equality and mem¬ 

bership are defined for any two objects. It is easily seen that we now have full 

substitutivity of equality (i.e., that x=A implies thatj]B(x) holds if and only 

if ^3(/l) holds). Since we have, as immediately seen, A = 0 we can, by the full 

substitutivity of equality, use O and A synonymously. The operation which 

we define on classes are also defined for sets since we can replace the class 

variables in their definitions by set variables. The outcome of such an opera¬ 

tion is a class, which may also be a set (in the sense of Definition VII). 

Using our present terminology we can rewrite the axioms of VNB as 

follows. 

I (Extensionality of sets). As in ZF . 

II (Pairing), {x \x is a or x is b) is a set. 

III (Union). (x|x is a member of a member of a] is a set. 

IV (Power set), {x \x C a} is a set. 

Vc (Subsets). P<~iy is a set. 

VIb (Infinity), (x |x is a finite ordinal} is a set *). 

VIIC (Replacement). If F is a function then 

{x | x—F(y) for someyEa nj£)(F)} is a set. 

IXC (Foundation). A O-*- 3u(u EA A u DA =0). 

X (Extensionality of classes). As on p. 122. 

XI (Predicative comprehension). As on p. 123. 

7.2. Metamathematical Features of VNB. In the transition from ZF to VNB 

1) It is easily seen that the set Z* of p. 48 consists exactly of all finite ordinals in the 
sense of §5.2. 
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the axiom schemas of ZF became single axioms of VNB; however, VNB has 

the extra axiom schema of comprehension — Axiom XI. The conditions jp(x) 

permitted in Axiom XI can be assumed, as we have already mentioned, to be 

formulated in the primitive language. In this language there is only a finite 

number of ways in which atomic statements can be made up, and only a finite 

number of ways in which more complicated statements can be formed from 

simpler ones. If we can make appropriate classes correspond to the various 

statements, and we find out how our construction of statements affects the 

corresponding classes, we can translate the finitely many rules for the con¬ 

struction of statements into finitely many rules for the construction of 

classes, and thus replace Axiom XI by a finite number of its instances *). 

Since a general statement involves an arbitrary finite number of free variables 

Xj, ...,x„ we have to deal here also with ordered n-tuples; actually, it will 

suffice to consider only ordered pairs and triples. 

The axioms which correspond to the propositional connectives are: 

AXIOM XII. For every class A there is a class C which consists of all ele¬ 

ments x which are not in A 

This axiom corresponds to negation : C = {x | it is not the case that xGA } = 

-A (C is called the complement of A). 

AXIOM XI2. For all classes A andi? there is a class C which consists of all 

common members of A and B. 
This axiom corresponds to conjunction: C= {x\xGA and xGB}~AEB. 

The axiom which corresponds to the atomic statement x Gy is: 

AXIOM XI3. There is a relation E such that < x, y > E jE’just in case that 

xGy 2). 

The axiom which corresponds to the existential quantifier “there exists a y 

such that” is: 

AXIOM XI4. For every relation A there exists a class C which consists ex¬ 

actly of the first members of the ordered pairs which are members of A. 

C— {x | there exists ay such that {x,y)GA } = X (A). (C is the domain of A.) 

The next axiom is needed because statements can contain parameters, and 

therefore we have to reckon with classes of the form {x I x Ey } or {x I x =y }. 

AXIOM XI5. For every set y there exists a class C which consists exactly 

of all the members of jy. 

J) This is due to von Neumann 25 (with some of the ideas originating with Fraenkel 

22a). For set theories like our VNB, where this is more surprising, it was shown by 

Bernays 37-54 I. We shall see in §7.5 that the fact that in Axiom XI the statements are 

not supposed to contain class quantifiers is used here in an essential way. 

2) There is no need for an axiom which corresponds to the atomic statement x ~y 

since it is equivalent to the formula Vz(zex^zey) which does not involve equality. 
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C={x|x£y}. Using Definition VII this becomes: For every set there is a 

class equal to it. An alternative to this axiom is 

AXIOM XI5*. For every set there exists a class C which contains y as its 

only member. 

C— {x\x=y}. Using Definition VII, this becomes: For every singleton set 

{7} there is a class equal to it. 

Now we have to add three axioms of a rather technical nature, which are 

needed in order to handle statements with more than one variable. 

AXIOM XI6. For every class A there exists a relation C which consists of 

all ordered pairs < x, y ) such that y E A. 
C= {{x,y)\y(=A} — read: C is the class of all ordered pairs <x, y) such that 

yGA. Notice that {(x,y)\y GA} is a new notation not previously used. 

AXIOM XI7. For every relation A there exists a relation C which consists 

of all ordered pairs (x, y) whose inverses {y, x) are in A. 

C= {(x,y)\(y,x)£A }. 

AXIOM XI8. For every relation A there exists a relation C which consists 

exactly of all ordered pairs «x,y>, z) such that {x,y, z) (= Oc, (y, z») is in A. 

C= {((x,y),z)\(x,y,z)£A}. 

Using the ideas outlined above, preceding the list of Axioms XII—XI8, one 

can prove that Axiom XI follows from these axioms '). 

Let us compare the systems VNB and ZF. First we notice that the language 

of VNB is richer, i.e., every statement of ZF is also a statement of VNB, yet 

no statement of VNB which involves class variables is a statement of ZF. 

Moreover, some of the statements of VNB express things which cannot be 

expressed in ZF at all. To make the latter assertion clearer we point out that 

this has a twofold meaning; first, there is a closed statement of VNB which is 

not equivalent in VNB to any statement of ZF 2); and, second, as we men¬ 

tioned above (p. 125), there is a condition 0(x) of VNB such that for every 

pure condition ^B(x) (i.e., for every condition ^(x) of ZF) the statement 

“Q (x) if and only if ^(x)” is refutable in VNB. 

Every statement of ZF which is provable in ZF is also provable in VNB. 

This is easily seen, since all the single axioms of ZF are also axioms of VNB, 

and all the schemas of ZF immediately follow from the corresponding axioms 

of VNB, by means of Axiom XI. Let us prove, for example, Axiom V (of 

')See the proof in Bernays 37-54 I, §3, Godel 40, pp. 8-11, or Mendelson 64, 

Ch. 4, § 1. The original proof is due to von Neumann 28, Ch. II, § 1. 

) Axiom VIII^ of §7.3 is such a statement. A stronger and more general example 

can be obtained by combining the method of A. Levy 65b, §7 with the truth definition 

of ZF of Mostowski 51. 
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subsets) in VNB. Let a be a set and '^3(x) a condition of ZF, i.e., a pure condi¬ 

tion. By the axiom of comprehension there is a class A which consists of the 

elements x which fulfil ^3(x); by Axiom Vc there is a set jh which consists of 

the common members of a and A, i.e., of those members of a which fulfil 

$(*)• 

So tar we have seen that whatever we can express and prove in ZF we can 

also express and prove, respectively, in VNB. We have also seen that some 

statements can be expressed in VNB but not in ZF. The next natural question 

which comes up is whether whatever can be expressed in ZF and proved in 

VNB can already be proved in ZF; more precisely, if 6 is a statement of ZF 

which is provable in VNB, is 0 necessarily provable in ZF? We shall give a 

positive answer to this question, and therefore we can say that even though 

VNB is a theory richer than ZF in its means of expression, VNB is not richer 

than ZF as far as proving statements which mention only sets is concerned. 

Thus, it one is interested only in sets and regards classes as a mere technical 

device, one should regard ZF and VNB as essentially the same theory, and the 

differences between those theories as mere technical matters. 

Our present task is not as easy as our earlier task of showing that every 

theorem $ of ZF is also a theorem of VNB. There we used the fact that the 

proof of 0 in ZF can be trivially reproduced in VNB. Now, if we are given 

a proof in VNB of a statement 0 of ZF, there is not always a way in which 

this proof can be reproduced in ZF, since the proof of 0 in VNB may involve 

statements which cannot be expressed in ZF. Attacking the problem from a 

different angle, we observe that if the statement 0 is not provable in ZF, 

there is no reason why 0 should be provable in VNB; after all, the new 

axioms of VNB do not give us any information about sets — they just assert 

the basic facts about the pure conditions, or the classes determined by these 

conditions, and those facts hold irrespective of whether 0 is true or false. 

This informal argument can be turned into a precise argument, as we do 

below. 

We shall now show that if the statement £ of ZF is not provable in ZF, it is also not 

provable in VNB. Suppose £ is not provable in ZF; then, by the completeness theorem 

of the first-order predicate calculus1), there is a set m and a binary relation e' on m (i.e., 

e' C m X m) such that (m, e'> is a model of ZF in which £ does not hold. We now define 

“classes” for this model. Let us say that u is a model-class if for some condition T(*) (of 

ZF) with n parameters and for some yq, u is the subset of m which consists 

exactly of all the members x of m which satisfy the condition T (x) in the model, when 

the values of the parameters are taken to beyj, ...,yn. By the very arguments which we 

used in §7.1 to justify the predicative axiom of comprehension and Axioms Vc, Vllc, and 

x)p.296. 
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IXC, one shows that if one interprets the notion of set as “member of m”, the notion of 

class as “model-class”, that of membership of a set in a set as e', and that of membership 

of a set in a class as membership (in a model-class), then all the axioms of VNB become 

true, while £ stays false. Thus £ is not provable in VNB 1). 

We have now shown that if a statement 0 of ZF is provable in VNB it is 

also provable in ZF, but we did it by means of an indirect argument. Thus, 

even if we know the proof of $ in VNB our method above does not show us 

how to get a proof of 0 in ZF by any method other than the ungainly way 

of scanning all proofs of theorems in ZF till we find a proof of 0 , which we 

know must be among them. To get another method which will actually show 

how to obtain a proof of 0 in ZF once a proof of 0 in VNB is known, we 

have to return to the idea mentioned above of reproducing in ZF the proof 

of 0 in VNB. As we have mentioned there, this is not always possible; how¬ 

ever, it turns out that if a statement 0 of ZF has a proof in VNB, we can 

always change this proof to another proof of 0 in VNB which is particularly 

simple and can therefore be reproduced in ZF 2). 

A particularly important consequence of what we have discussed just now 

is that if ZF is consistent so is VNB. Suppose VNB were not consistent then 

every contradictory statement of ZF, e.g., “some set is a member of itself, 

and no set is a member of itself’, would be provable in VNB. By the metama- 

thematical theorem discussed above every such contradictory statement is 

also provable in ZF, hence ZF is inconsistent too. Moreover, if Q is a theory 

obtained from ZF by adding to ZF a set T of axioms which involve only sets 

and Q' is the theory obtained from VNB by adding to it the same set T of 

axioms, then Q' is consistent if and only if Q is consistent 3). Thus all the 

results mentioned in §4 and §6 concerning the consistency and the indepen¬ 

dence of the generalized continuum hypothesis and the axiom of constructi- 

bility with respect to ZF go over to corresponding results with respect to 

VNB. In order to be able to transfer more consistency and independence 

*) This proof is due to Novak 51, Rosser-Wang 50, Mostowski 51. 

) The idea, due to Paul J. Cohen, is to change first the proof of £ in VNB to a cut 

free proof (as, e.g., in Schutte 50); the latter can be easily reproduced in ZF. An earlier 

method is given by Shoenfield 54. These proofs of Shoenfield and Cohen show that the 

Godel-number (see p. 306) of a proof of £ in ZF depends on the Godel-number of a 

proof of £ in VNB via a primitive recursive function, whereas the proof given above 

suffices to establish this dependence only via a general recursive function. 

) This is shown as follows. Q is consistent if and only if no statement £ which is 

a negation of a conjunction of finitely many statements out of T is provable in ZF. 

This, we know, holds if and only if no such statement £ is provable in VNB, which, in 

turn, holds if and only if Q' is consistent. 
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results from ZF to VNB, let us notice the following. When we showed that a 

statement 0 of ZF is provable in ZF if and only if it is provable in VNB, it 

mattered only that VNB contains the axioms of predicative comprehension 

(XI) and extensionality (X) and that, other than that, VNB consists exactly 

of the single axioms of ZF and of axioms corresponding to the axiom 

schemas of ZF. Therefore, the same result applies also to other pairs of 

corresponding theories. For example, we proved in §5.5 that the axiom of 

foundation is not refutable in the system which consists of all axioms of ZF 

other than the axiom of foundation. From what we said just now it follows 

that the axiom of foundation is also not refutable in the system which con¬ 

sists of all the axioms of VNB other than the axiom of foundation. Therefore, 

all the consistency and independence results of §§4—6 apply, literally, also 

to VNB. In fact, in each particular case it is evident anyway, without using 

the present general principle, that the proof of the relative consistency (or 

independence) applies equally well to VNB as it does to ZF. 

7.3. The Axiom of Choice in VNB. We can add to VNB the local axiom of 

choice of ZF, i.e., Axiom VIII, and obtain thereby a system which we denote 

with VNBC. By the results mentioned above, the statements 0 of ZF which 

are theorems of VNBC are exactly the theorems of ZFC. However, when one 

wants to have an axiom of choice in VNB one usually chooses a very natural 

global axiom of choice which is strongly related to the global axiom of choice 

VIIIa of ZFCa and which is presented below. 

Suppose that we start with a ZF-type set theory Q which has a selector 

o(x) in the sense of §4.4. It does not matter whether Q is obtained from ZF 

by addition of an axiom which allows us to define the selector (such as the 

axiom of constructibility), or if Q is obtained from ZF by adding a as a new 

operation symbol and adding Axiom VIIIa which asserts that cj(x) is indeed 

a selector; but, in the latter case, we have to widen our intended notion of 

class to also include extensions of conditions which involve selection, in 

addition to sets and membership. Let us consider, informally, the class F of 

all sets x which are ordered pairs (y, o(y)), where y is a non-void set. This 

class F is obviously a function, and for every non-void set y we ha\eF(y) = 

o(y), and since o{y)&y we have F(y)&y. This leads us to 

AXIOM (VIII§) OF GLOBAL CHOICE. There exists a function F whose 

domain contains all non-void sets, and such that for every non-void setjy, 

F(y) is a member of y 1). 

1) For many equivalent versions of Axiom VIIl£ see Rubin-Rubin 63, Part II; cf. 

also Isbell-Wright 66. 
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We shall denote with VNBCCT the system of set theory obtained from VNB 

by adding to it Axiom VIIl£. It is easily seen that Axiom VIII of local choice 

is a theorem of VNBC a (as we observed for ZFCCT in §4.4), and hence all the 

theorems of VNBC are also theorems of VNBCCT. Let us point out that the 

language of VNBa does not contain any selector symbol; Axiom VIII^ offers 

the advantages of a selector without the disadvantage of having to extend the 

language. The subscript o is used in the designation of Axiom VIII^ and 

VNBCa, even though they do not involve the symbol a at all, for the purpose 

of stressing their close relationship with Axiom VIIICT and ZFCa, respectively. 

In the same way in which one proves the metatheorem that the theorems 

of VNB which mention only sets are exactly the theorems of ZF one can also 

prove that the theorems of VNBC a which mention only sets are exactly the 

theorems of ZFCa which do not mention a *). Since, as we said in §4.4, the 

theorems of ZFCa which do not involve a are exactly the theorems of ZFC, 

we know that the theorems of VNBCa which involve only sets are exactly 

the theorems of ZFC and are, hence, also exactly the theorems of VNBC 

which involve only sets. Thus, as far as sets are concerned, VNBC and VNBCCT 

are the same theory. On the other hand (assuming the consistency of VNB), 

the two theories do not completely coincide, since Axiom VII1^ is not a 

theorem of VNBC 2). 

It follows from what we said above that if ZFC is consistent so is VNBCCT. 

Moreover, if any set T of statements of ZFC which can be added to ZFC as 

new axioms without causing a contradiction, the same addition will not intro¬ 

duce a contradiction in VNBCCT either. Thus the generalized continuum hypo¬ 

thesis and the axiom of constructibility are consistent with VNBC g. More¬ 

over, the axiom of constructibility (or any other axiom which implies in ZF 

the existence of a selector 3) implies Axiom VIII^ in VNB, since a class Fas 

required by Axiom VIII^ is given by the class of all ordered pairs Or, a(x)>, 

where x is a non-void set and o is some fixed selector. 

If we formulate in terms of classes the result we mentioned at the end of 

§5.3, we get the following theorem, which is proved by means of the global 

axiom of choice and the axiom of foundation. A class A is proper if and only 

*) Actually, one can also give a natural translation of all the statements S of ZFCa, 

including those which mention a, into statements of VNB such that S is a theorem of 

ZFCct if and only if its translation is a theorem of VNBCCT. 

) Easton 64. If Q' is a theory obtained from VNB by adding to it axioms which 

involve only sets and Axiom VIII§ is a theorem of Q' and if Q is the theory obtained 

from ZF by the addition of the same axioms, then there is in Q a relative selector (see 

footnote 2 on p. 71). The proof is, again, as at the end of § 7.2. 

3) Or even a relative selector. 
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if it is equinumerous to the class V of all sets (where by A being equinumer- 

ous to B we mean that there is a one-one function F whose domain is ^4 and 

whose range is B). Indeed, von Neumann chose to introduce a very closely 

related statement as an axiom which replaces the axioms of (subsets,) replace¬ 
ment and global choice 1). 

In analogy to Axioms VIIICT and IXCT of ZFCCT, we can also adopt the following strong 

versions of the axioms of global choice and foundation 

(*) A AOZ> o{A)^A 
(**) uC4)n/l=0. 
In the presence of Axioms VIII^ and IX, <j(A) can be defined in terms of a class F as in 

Axiom VIIl£ 2). 

7.4. The Approach of von Neumann. The way we introduced and motivated 

VNB in §7.1 is not the way this was done historically for set theory with 

classes. The first axiom system for set theory with classes was put forth by 

von Neumann in 1925 3). The main technical difference between his system 

and VNB is that he used the notion of function as the basic notion rather 
than those of set and class. Von Neumann recognized that the notions of 

function and class are interchangeable as basic notions for set theory. He 

gives, as a reason for his choice of the notion of function, the fact that every 

axiomatization of set theory uses the notion of function anyway, and hence 

it is simpler to use the notion of function as the basic notion. Now we are 

using functions (or functional conditions) mostly in our formulation of the 

axiom of substitution, but Fraenkel’s axiom system (mentioned on p. 37), 

which apparently influenced von Neumann, was also using functions in the 

axiom schema of subsets. Taking the axiom system of Fraenkel as a starting 

point, it really seems very reasonable to take the notion ol function, rather 

than that of set, as the basic notion. However, it turned out, in spite of a later 

simplification of von Neumann’s system 4), that this approach is rather clum¬ 

sy, and that it is after all simpler to take the notions of set and class, or only 

that of class alone, as the basic notions of set theory. 
What von Neumann regards as the first main feature of his theory is the 

following. In ZF the guiding principle in writing down the axioms is the 

doctrine of limitation of size (see p. 32), i.e., we do not admit very compre¬ 
hensive sets in order to avoid the antinomies.Von Neumann regards as the 

*) See p. 137 below. 
2) Bernays 58, Ch. VIII. a (A) is defined as Fit), where t is the set of the members of 

A of minimal rank (in the sense of §5.3). 

3) von Neumann 25 and 28. 

4) R.M. Robinson 37. 
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main idea of his set theory the discovery that the antinomies do not arise 

from the mere existence of very comprehensive sets, but from their element- 

hood, i.e., from their being able to be members of other sets. He uses the 

name ‘set’ not only for what we call sets, but also for what we call classes. 

To illustrate his ideas better we shall present a system G of axioms of set 

theory with classes which is very close to one given by Godel 1). 

In VNB we defined a set a and a class A to be equal when they have the 

same members. For every set a there is a class {x\xEa} equal to it. As far as 

our theory is concerned, the set a and the class serve exactly the 

same purpose. Therefore we can actually identify them and base the system 

G on classes only. 
In the theory G we have just one kind of variables for which we use capital 

letters. These variables are understood to refer to classes. The only primitive 

relation symbol, in addition to equality, is the membership symbol E2). We 

start with a definition. 

DEFINITION. A is a set if and only if there is a class Y such that X E Y. 

Now, having defined the notion of set we can use lower case variables for 

sets, in the same way that we used,in § 5.2, Greek-letter variables for ordinals. 

In other words, whenever we say “there exists a y such that ...” we mean 

“there exists a Y such that Y is a set and ...” and whenever we say “for every 

y ...” we mean “for every Y which is a set ...”. 

From this point on we just take up Axioms II, III, IV, Vc, VI, VIP, IXC, 

X and XI of VNB. The only difference is that, while the lower case variables 

in these axioms were part of the primitive language of VNB, they are now 

defined restricted variables in G. It is easy to prove that in VNB and G we 

can prove exactly the same theorems 3) (we have, of course, to make sure 

that we translate correctly, since VNB and G use different languages). 

Von Neumann’s system is like G in the sense that all sets are also classes 4). 

To get the flavor of his approach let us, for a while, call the classes sets and 

the sets elements. The elements are the sets which are also members of sets. 

There are some sets which are not elements, such as the set of all elements 

which are not members of themselves. Thus the doctrine of limitation of size 

*) Godel 40; see also Mostowski 39. 
2 

) The idea of using in a von Neumann-Bernays set theory just one kind of vari¬ 
ables and a single binary relation symbol is due to Tarski; see Mostowski 49, p. 144. 

3) See, e.g., Kruse 63a. 

4) Von Neumann’s system also admits individuals (in the sense of § 2). We shall not 
discuss individuals in the framework of set theory with classes, since admitting individ¬ 
uals here does not give rise to any new interesting discussions. For a system which is like 
G but admits individuals, see Mostowski 39. 
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is retained by von Neumann, but only in the sense that very comprehensive 

sets cannot be members of sets and not in the sense that such sets have to be 

avoided altogether. 

Von Neumann regards, as another major innovation of his system, the fact 

that, whereas in ZF the limitation of size doctrine serves only as a guide to 

the introduction of axioms, in his system it is actually incorporated as the 

following axiom: 

A set A is an element if and only if there is no function F which maps 

(*) it on the set V of all elements (i.e., the domain of F is ,4 and its range 

is V) !). 

This axiom is equivalent to the conjunction of the axioms of union (III), 

(subsets — Vc), replacement (Vllc), and global choice (VIII£) 1 2). (*) is attrac¬ 

tive from an aesthetic point of view but, contrary to von Neumann’s conten¬ 

tion, it does not embody the full limitation of size doctrine. Even though (*) 

establishes non-equinumerosity with the set V of all elements as a necessary 

and sufficient condition for elementhood, (*) in itself does not tell us when a 

given set is equinumerous to V. For instance, the axiom of power-set, which 

clearly falls within the limitation of size doctrine, does not follow from (*) 

and the other axioms of G 3). 

We have explicitly described VNB and G and mentioned the original sys¬ 

tems of von Neumann—Bernays and Godel. In all these systems essentially 

the same theorems are provable 4). As we saw, one can arrive at set theory 

with classes starting from two different motivations. We started first from the 

motivation of replacing the metamathematical notion of condition by the 

mathematical notion of class. This motivation was introduced by Quine and 

Bernays5). Thus classes, or at least proper classes, are regarded as a kind of 

objects different from sets, and in some sense less real than sets. On the other 

hand, von Neumann’s motivation regards classes and sets as objects of the 

same kind with the same claim for existence. The only difference between 

proper classes and sets is that, because of the antinomies, the proper classes 

cannot be members of classes whereas sets can. In the next two subsections, 

we shall continue these respective lines of thought, to arrive at new axiomatic 

systems for set theory with classes. 

1) von Neumann 25, Axiom IV2. 

2) See von Neumann 29 and A. Levy 68. 
3) To see this, consider the model rti of Bernays 37-54 VI, § 17, in set theory with 

the axiom of constructibility. 
4) Provided, of course, that the same attitude towards individuals is adopted. Not all 

the necessary proofs have been carried out in the literature because the matter is trivial 

but lengthy. 

5) Quine 63, Bernays 58. 
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7.5. Classes Taken Seriously — the System of Quine and Morse. Adopting von 

Neumann’s point of view, let us, for a short while, call again the classes sets 

and the sets elements, and let us even use lower case variables for the classes. 

The inconsistent axiom of comprehension of §3.1 requires that for every 

given condition $(x) there exists a set which contains exactly the sets x 

which fulfil the condition ^(x). Zermelo’s axiom of subsets (our Axiom V) 

amends this axiom of comprehension by requiring that the condition ^?(x) 

in it be of the form “x £« and Q(x)”, where a is a given set (i.ea parame¬ 

ter). On the other hand, von Neumann’s way of avoiding the antinomies is to 

require ^(x) to be of the form “x is a member of some set, and C(x)” or, 

equivalently, “x is an element, and G(x)”. Translating this back to our ordi¬ 

nary terminology and notation we obtain: 

AXIOM (XII) OF IMPREDICATIVE COMPREHENSION. There exists a 

class A which contains exactly those elements x which satisfy the condition 

^ (x), where ^3 (x) is any condition. 

This is more' than what we have in Axiom XI, in which the condition ^3(x) 

is not supposed to mention any class quantifiers; indeed, not all the instances 

of Axiom XII are provable in VNB '). Axiom XII has been suggested by 

Quine in 1940 as one of the axioms of a system of Iris which will be discussed 

in Chapter III, §4 1 2). The annexation of Axiom XII to VNB is due to A.P. 

Morse and Wang 3). Let us denote by QM the theory which consists of the 
axioms of VNB, with Axiom XI replaced by Axiom XII 4). 

Let us now study QM, comparing it with VNB. From the point of view 

that classes are extensions of pure conditions, QM is plain false since, as we 

saw above (in p. 125), some instances of Axiom XII fail for extensions of 

1) Provided that VN B is consistent - Mostowski 51, Kruse 63a. Stronger results can 

be proved by the methods of Kreisel-Levy 68 (Th. 11) - see footnote 4 on p. 139. 

1 First edition of Quine 51. 

) Wang 49, Kelly 55 (Classification axiom-scheme, in the Appendix), Morse 65( see 
pp. xxi-xxii). 

4) We should have added Axiom XII to G rather than to VNB, since G is more in the 

Une of the von Neumann approach; yet we chose to add it to VNB for the purpose of 

direct comparison of QM with VNB, since VNB and G can anyway be regarded as nota- 
tional variants of each other. 

A somewhat more detailed exposition of QM is given by Stegmuller 62, who borrows 

most of the technical features from Bernays 58. A very detailed development of a system 

strongly related to QM is carried out in Morse 65. This system has the unorthodox 

feature of identifying the notions of formula and term, thereby identifying the notions 

ot class and statement (a statement is equal to the null-class O if it is false and to the 

universal class V if it is true; a class is true if it contains 0).The strict equivalence of 

Morse’s system with QM has been verified by Tarski and Peterson (Morse 65, p. xxiii). 
For a system which comprises QM, see Bernays 61a. 
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pure conditions. Therefore, let us compare QM with VNB as to its desirability 

as a system of axioms for set theory, from von Neumann’s point of view 

mentioned above. The main argument in favor of QM is that once we agree, 

as von Neumann did, to avoid the antinomies not by forbidding the existence 

of large classes, but by denying their elementhood, there is no reason at all 

why we should stop at classes defined by conditions which do not involve 

class quantifiers and not admit classes defined by other conditions. Another 

argument in favor of QM is that when we define in VNB a class (x|^B(x)} we 

always have to check whether ^(x) is equivalent to a condition of the primi¬ 

tive language without class quantifiers. This requires some bookkeeping if one 

uses many defined notions of set theory 1). Nothing of this sort is needed in 

QM where (x | ^(x)} is always a class. 

A particularly embarrassing fact about VNB is that in VNB, unlike QM, 

one cannot prove all the instances of the induction schema, “If 0 fulfils the 

condition Q (x) and, for every natural number n, if n fulfils C(x) then n+l 

fulfils Q(x) too, then every natural number fulfils Q(x)” 2). In VNB the 
standard proof of the induction schema proves it only for conditions formu¬ 

lated in the primitive language without class quantifiers 3) (and for other 

conditions which are equivalent to such conditions). In practice, induction 

is indeed almost always used for such conditions only, but to be on the safe 

side one has to keep track of uses of class quantifiers not only for the defini¬ 

tion of classes, but also for the application of induction. 
Another aspect in which VNB and QM differ is that VNB can be given by 

a finite number of axioms, as we saw in §7.2, whereas QM cannot 4). The 

fact that VNB can be given by a finite number of axioms is not without 

!) E.g., Godel 40 keeps track of it by means of the metamathematical concept of a 

normal notion. 
2) Assuming that VNB is consistent - Mostowski 51; (see also footnote 4 below), 

3) The standard formulation of induction in VNB is by the single statement “For 

every class Q, if 0and if, for every n in Q, n+l, too, is in Q, then Q contains all the 

natural numbers,” — Bernays 37—54 11, §6. By Axiom XI this clearly implies the schema 

of induction for conditions D (x) without class quantifiers. 

4) Let VNB* be the system obtained from VNB by adding the induction schema 

above as an axiom (where C(x) varies over all conditions). VNB* is a subsystem of QM 

since the induction schema is obviously provable in QM. VNB * is strongly semantically 

closed in the sense of Montague 61 since finite sequences of classes can be handled as 

suggested by R.M. Robinson 45 and, hence, no consistent extension of VNB * without 

new symbols, and in particular QM, which we assume to be consistent, can be deter¬ 

mined by a finite number of axioms. Moreover, one can prove that no consistent exten¬ 

sion of VNB* can be determined by a set of axioms in the language of VNB with a 

bounded number of class quantifiers. (This follows from Theorem 5 of Kreisel-Levy 68, 
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its aesthetic appeal, but it is not a serious advantage for the following 

two reasons. First, there is no simple and direct way of using Axioms XI1 — 

XI8 for the run-of-the-mill theorems of set theory. If one adopts Axioms 

XII—XI8, the only reasonable way to develop set theory seems to first 

present the cumbersome proof of Axiom XI from Axioms XII—XI8 and then 

start using Axiom XI. Second, the notion of a proof in VNB is not simpler 

than the notion of a proof in QM, even though the notion of an axiom of 

VNB is (where we choose Axioms XII—XI8 to take care of comprehension), 

since in the proofs one uses rules of inference which are like schemas in the 

sense that they apply to infinitely many possible statements. For instance, 

the rule of detachment — modus ponens — allows one to derive from the two 

premises 1)3 and the conclusion Q, where 1)3 and Q are any statements out 

of the infinite set of all statements ’). 

We have not yet discussed the question whether in replacing Axiom XI 

by Axiom XII we introduce no contradictions. We shall now look into this 

question, as well as into the more general question of the comparison of the 

deductive power of VNB and QM. We know that, assuming that VNB is 

consistent, there is no convincing proof that if VNB is consistent so is QM. 

This is shown by means of Godel’s theorem on consistency proofs 2). How¬ 

ever, there is no reason why this should lead us to doubt the consistency of 

QM. We shall see below that if some reasonable set theories, which are formu¬ 
lated in terms of sets only, are consistent, so is QM. 

We have already mentioned above that some instances of Axiom XII are 
not provable in VNB, assuming, as we shall do throughout the present para¬ 

graph, that VNB is consistent. In fact, one can prove in QM infinitely many 

statements which involve only sets (or, for that matter, only natural numbers), 

and which are not provable in ZF (or in VNB) 3). Thus the transition from 

VNB to QM is of a different nature than the transition from ZF to VNB or 

by means of a truth definition which uses the ideas of Mostowski 51 and A. Levy 65b). 

Finally, assuming the consistency of VNB*, not all the instances of Axiom XII are 

provable in VNB *- this follows from Kruse 63a, Th. 5.2. Whatever will be said about QM 

in the present paragraph and in the two following ones applies equally well to the weaker 

theory, VNB *. 

1) In fact, axiom schemas can be considered to be rules of inference with 0 premises. 

) See p. 328; here one uses the fact that in QM one can prove the consistency of 

VNB - see Mostowski 51. 
3 

) Kreisel-Levy 68, Theorems 10 and 11. A particularly interesting such statement is 

the negation of the Second Axiom of Restriction (p. 116), which is provable in QM 

(Kurata 64), but is not provable in VNB (if VNB is consistent - Shepherdson 51-53 III). 

On the other hand, if QM is consistent then the negation of the axiom of constructibility 

is unprovable, also in QM, (Tharp 66). 
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from VNBC to VNBCa, which did not add any new theorems about sets. 

Still, one has to bear in mind that, as far as it is now known, those new 

theorems of QM are of a metamathematical character and do not seem to be 

theorems one would consider in a development of set theory for the ordinary 

purposes of mathematics. At the same time, the facts expressed by Axiom 

Xll are facts about classes which cannot be presented as facts about sets; one 

can construct a theorem of QM which is not implied in VNB by any statement 

which mentions only sets, unless the latter statement is refutable in VNB '). 

Now that we know that QM is the source of infinitely many new theorems 

concerning sets which cannot be proved in ZF, we can ask, naturally, whether 

the notion of class is indeed essential for obtaining these theorems, or whether 

these will be the theorems of some natural set theory stronger than ZF but 

still formulated in terms of sets only. The latter happens to be the case. All 

the theorems of QM which mention only sets are also theorems of some set 

theory ZM, formulated in terms of sets only, and obtained by adding to ZF 

a certain axiom schema of strong infinity which implies the existence of many 

inaccessible cardinals1 2). As a consequence, if ZM is consistent so is QM. 

Actually, one can verify by a relatively simple argument the following stronger 

result. Let ZF# be obtained from ZF by adding to it as an additional axiom 

the statement that there exists at least one inaccessible number. If the theory 

ZF# is consistent then QM is consistent too. Obviously ZF# is much weaker 

than ZM 3). 
Adopting von Neumann’s attitude of regarding classes as objects of essen¬ 

tially the same kind as sets, we went along with the consequences of this 

attitude which led us to the system QM 4). Let us now go back and examine 

1) Such a theorem is given by the proof of Th. 4 in Kreisel— Levy 68, where one has 

to use the truth definition for statements of ZF given by Mostowski 51, and the result 

on the equivalence of ZF and VNB. 
2) This is a version of an axiom schema proposed, in essence, by Mahlo - see A. Levy 

60. 
3) Actually, all the theorems of QM which mention only sets are theorems of the 

theory ZF * whose axioms (and theorems) are all the statements 3 in the language of 

ZF which can be proved in ZF to hold in every model R(6), where R is the function 

defined on p. 94 and d is an inaccessible number. (This easily follows from the discus¬ 

sion in Shepherdson 51-53 II, §3.7, provided we define an inaccessible number as in 

A. Levy 60, or else add the local axiom of choice to all the theories which we discuss 

here.) It is obvious that ZF* is consistent if and only if ZF# is consistent. All the 

theorems of ZF * are theorems of ZM (see A. Levy 60). On the other hand, the theorem 

of QM: “If there is an inaccessible number then ZF# is consistent” (which is proved 

along the lines of Mostowski 51) is not a theorem of ZF# (if ZF# is consistent), as 

follows from Godel’s theorem on consistency proofs. 

4) One additional advantage of QM is that one can formulate in its language a strong 

axiom schema of infinity of set theory, which agrees neatly with QM - Bernays 61a. 
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again von Neumann’s ideas. His addition of proper classes to the universe of 

set theory results from his discovery that it is not the existence of certain 

classes that leads to the antinomies, but rather the assumption of their ele- 

menthood, i.e., their being members of other classes; therefore he introduces 
these classes as proper classes which are not members of classes. This is not a 

completely satisfactory solution of the problem of the existence of collec¬ 

tions as objects, since now, even though proper classes are real objects, collec¬ 

tions of proper classes do not exist. The existence of real mathematical 

objects which cannot be members of even finite classes is a rather peculiar 

matter, even though in actual mathematical treatment such classes are rarely 

needed, and can, in case of need, be represented by some classes of sets !). 

One cannot just blame the antinomies for this peculiar situation; we shall see 

that if one proceeds carefully enough then the assumption that proper classes 

can be members of classes or of other objects can be seen not to cause any 

contradiction. 

One example of a system in which proper classes are members of some 

objects is as follows. We introduce a new kind of objects — hyper-classes — 

which are like classes except that, unlike classes, they can also contain classes 

as members. We shall use Greek letters as variables for hyper-classes, with the 

understanding that every class and set is a hyper-class and every set is a class. 

(We shall not carry out the rather trivial task of describing the formal frame¬ 

work in which this is done.) In addition to all axioms of QM, the system 

contains the following axioms. 

(a) Every member of a hyper-class is a class (or a set). 

(b) (Schema) There is a hyper-class a which consists of all classes (and sets) X 

which fulfil the condition j3(A), where jp(X) is any condition. 

This system can be seen to be consistent if the system ZF# mentioned above 

is 2), and yet such comprehensive classes as the class of all sets or the class of 

all ordinal numbers are members of some objects, namely of hyper-classes 3). 

Another, more extreme example of a system where comprehensive classes 

can be members of classes, is the following system ST2. The only variables 

of ST2 are class variables. Its primitive relations are the binary relation of 

membership - IFF - and the unary predicate of sethood - 5(X) (read: 

J) See, e.g., R.M. Robinson 45. 

) The proof is essentially the same as the proof of the (relative) consistency of QM 
(see footnote 3 on p. 141). 

3 ■. 

) In this system one can formulate an axiom which asserts the existence of a two¬ 

valued measure defined on all classes, which is a-additive for every ordinal a. (see, e.g., 

Scott 61a or Keisler-Tarski 64). This is a strong axiom of infinity, which, in a very 

natural sense, is much stronger than that mentioned in footnote 3 on p. 141. 
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X is a set). Lower case variables are introduced as defined variables which 

vary over sets. The axioms are: 

(a) A sethood axiom: Every member of a set is a set. 

(b) All the axioms of QM (these axioms contain upper and lower case vari¬ 

ables). The axiom of replacement is formulated as: 

If F is a function and a a set then there is a set which contains exactly the 

values F(x) which are sets, for all members x of a which are in the domain of 

F. 
(c) The axioms of ZF with all variables replaced by upper case variables. 

This is a two-tier set theory with sets in the bottom tier and classes in the 

upper tier. For instance, the class V of all sets is a class, as well as its power- 

class PV, which consists of all subclasses of V, its power-class — PPV, etc. A 

natural model of this theory can be given in the system ZF# as follows: We 

understand by “set” a member of R(d), where R is the function defined on 

p. 94, and 9 is a fixed inaccessible number, and by “class” we understand 

any set. Thus, assuming the consistency of ZF#, the system ST2 is also 

consistent. Moreover, every statement about sets which is provable in ST2 

is a theorem of ZM *). 
Before we continue our discussion of the possible ways of handling classes 

in set theory, let us look into the use of classes in category theory, which is 

a new branch of algebra. Mathematicians working in that theory have found 

that even a set theory like QM is insufficient for their needs. Categories are 

classes, which may also be proper classes, and category theory also deals with 

functions defined on classes of categories and with other kinds of objects 

which are unavailable in QM 2). Let us refer to the informal framework in 

which category theorists are working as category theory. Let us denote the 

informal power-class operation with P, i.e., for a class/l,Pj4 is the class of 

all subclasses of A (including the proper subclasses of A). Category theory 

involves only objects which are members of the classes V, PV, PPV,..., P" V, 

where V is the class of all sets and n is some fixed finite number. 
Some category theorists proposed to develop category theory within a 

system of set theory which is, essentially, ZF together with an axiom which 

asserts the existence of arbitrarily large inaccessible numbers 3).In this system, 

the sets R(9), where 9 is any inaccessible number, are called by the category 

1) The proof is along the same lines as the proof of the (relative) consistency of QM 

in footnote 3 on p. 141. 
2) For the part of category theory which can be developed in VNB or in QM see 

MacLane 61 and Isbell 63. 
3) Grothendieck, Sonner. See Kiihnrich 66 and Kruse 66, where further references 

are given. 
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theorists universes. We shall refer to these sets as subuniverses, out of respect 

to the real universe. The idea is now not to deal with categories related to the 

universe of all sets, but to deal with categories related to a subuniverse R{9). 

The latter categories are just subsets of R{9), or of some R(6+n), where n is a 

finite number; therefore one has sets of such categories, functions over such 

categories, etc. 
A similar, but simpler way of dealing with categories in set theory is to 

assume only the existence of at least one inaccessible number, to choose for 9 

a fixed inaccessible number and to agree to talk only about categories related 

to the subuniverse R(9). The reason why this way was not adopted by catego¬ 

ry theorists seems to be that they did not want to deprive the sets which are 

not members of the fixed subuniverse R(9) from the blessings of category 

theory. Since they assumed the existence of arbitrarily large inaccessible 

numbers, given any set x, there is, by the axiom of foundation, a subuniverse 

R(9) which contains x, and the category theory for this subuniverse applies to 

x. Looking deeper into the matter we see that even the assumption that every 

set belongs to some subuniverse is not sufficient for all conceivable 
needs of category theory; the results of category theory will concern in each 

case only the members of a subuniverse R(9), but not all sets. To give an 

example, suppose 0 (x,y) is some binary relation between groups, and sup¬ 

pose, for the sake of simplicity, that this relation holds or does not hold 

between x and y independently of the universe (or subuniverse) to which we 

refer in defining this relation. If we use category theory to prove the existence 

of a group g such that 0(g, h) holds for every group h, then with respect to 

the subuniverse R(9) this means that there is a group gER(9) such that 

<B(g, h) holds for every group h&R{9)\ but this does not establish in set 

theory the existence of a group g such that (£(g, h) holds for every group h, 

irrespective of which subuniverse it belongs to. 

The best way of developing category theory within set theory seems to be 

to use a system of set theory like the system ST9 described above. In ST2 we 

can use categories related to all sets. This seems to be close to the way 

category theorists think about it when they are caught unawares, 

since in this approach categories are classes, not necessarily sets, yet, in almost 

all respects, classes can be treated like sets in ST2. This can still be criticized 

as follows. Since the classes behave like sets this may mean that the classes of 

ST2 are really sets, even though they are called classes. Thus, when we say 

here “all sets” we exclude the proper classes, which should have been included 

too. Thereby we seem to have arrived again at the situation discussed above 

where we dealt with a single fixed subuniverse (here we have a universe of 

classes and a subuniverse of sets). This criticism can be easily overcome by 
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considering ST 2 only as a fa^on de parler for proving theorems about sets in 

the set theory ZM. We have mentioned above that every theorem of ST 2 

which concerns sets only is also a theorem of ZM. Since ZM deals with sets 

only, when we say in ZM “all sets” we mean just that. Categories are, gener¬ 

ally, objects of the system ST2, but theorems about sets which are proved by 

means of categories are also theorems of ZM. 
A different variant of ST 2 is obtained if we adhere to the limitation of size 

doctrine by requiring that a small class, e.g., a finite class, be a set even if its 

members are proper classes. In this variant we drop the sethood axiom (a) of 

ST2, and amend the axiom of replacement VIIIC in (b) to read: If F is a 

function and a is a set, then there is a set which contains exactly the values 

F(X), which may be sets or classes, for all members X of a which are in the 

domain of F. It should be noted that the axiom of union in (b) is: For every 

set a, there is a set b whose members are exactly the members of the sets 
which are members of a1). A natural model of this system is obtained in 

ZF # by interpreting ‘class’ as set, and ‘set’ as ‘set of cardinality <0’ 2). 

Stronger and more elaborate systems, which follow the basic ideas of the 

simple systems given here, are discussed in the literature; yet all such systems 

turn out not to yield any information concerning sets which is not contained, 

in one way or another, is some set theory of the ZF type 3), which for the 

systems considered here is ZF# or ZM. This process of adding bigger classes 

and hyper-classes has to stop somewhere; and we have to decide where to do 

so. QM is a good place to stop at for reasons of convenience and neatness, 

yet, apart from these considerations, this choice is as arbitrary as any other. 

This arbitrariness is, to some extent, due to the antinomies and hence un¬ 

avoidable; however, it is also due in part to the decision, originating with von 

Neumann, to admit classes other than sets as real mathematical objects. As 

mentioned in §7.4 above, we can use VNB without adopting von Neumann’s 

point of view. More consistent and radical solutions to the problem of devel- 

J) This is the correct way of reading the symbolic version of the axiom of union in 

§3.3; the verbal version of this axiom in §3.3 is refutable in the present system. 

2) In the system G * of Oberschelp 64, too, proper classes can be members of sets. 

However, due to an axiom of comprehension weaker than the one given here, the system 

G * is essentially equivalent to QM. (One can prove that for a suitably formulated version 

H of QM which admits individuals, and for the natural translation of the statements of H 

to the language of G *, a statement is a theorem of H if and only if its translation is a 

theorem of G * - the proof is essentially given in Oberschelp 64; a more constructive 

version can be obtained by the method of Paul Cohen mentioned in footnote 2 on 

p. 132. 
3) Takeuti 61 and 69; Solovay 66. 
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oping a system of set theory in which classes occur for the sake of conve¬ 

nience, while sets are still believed to be the only mathematical objects that 

exist, are handled in the next subsection. 

7.6. Classes not Taken Seriously — Systems of Bemays and Quine. In §7.1 we 

introduced classes in VNB, in order to be able to neatly handle extensions of 

pure conditions. If we do not intend to regard classes as real mathematical 

objects, then a second look suggests that the system VNB might be too strong. 

We know that VNB is not too strong in the sense that we can prove in it false 

theorems about sets, or even about classes, yet VNB is too strong in the sense 

that, as we shall see, the machinery it contains for handling classes is much 

more than needed for the desired streamlining of set theory. 

Bernays introduced *) an axiom system B which differs from VNB, in 

addition to purely technical matters, as follows. While B retains the full 

formalism that VNB has for handling sets and also retains the class variables, 

its language does not admit quantifiers over class variables. To partially com¬ 

pensate for this loss the language of B also admits, as primitive notions, the 

class abstracts {x | ^(x)}, where ^3 (pc) is any condition on x (of the language 
of B). Also, equality of classes is not primitive in B but is defined. The axioms 

of B are the axioms of VNB with the following changes: 

(a) the universal class quantifiers in front of the axioms of subsets (Vc) and 

replacement (VIIC) are dropped, 

(b) the axiom of extensionality (X) is dropped, and 

(c) the axiom of comprehension for classes (XI) is replaced by the schema: 

y is a member of the class (x| j|B(x)} if and only if y fulfils the condition 

¥(*)• 
Free class variables in a formula are interpreted as if they are universally 

quantified; e.g., the formula Vx(xG/l <+x^ {x\x^A }) is read “For every 

class A and for every element x, x EA if and only ifx^{x|x^/4}”. 

Even though the apparatus of B is more economical than that of VNB, 

it is enough for a streamlined approach to classes, since all the statements 

of VNB which are ordinarily used in mathematical arguments can also be 

expressed in B. B is closer to ZF than VNB. For instance, the proof that 

every statement of ZF which is provable in B is also provable in ZF is rather 

trivial (this should be compared to the corresponding proofs for VNB — both 

of which use deep theorems of logic) 1 2). When one compares B and VNB one 

1) Bernays 58. 
2 

) The completeness theorem of the first-order functional calculus for the proof 

given on p. 131, and the cut elimination theorem (or the e-theorem) for the proofs 
mentioned in footnote 2 on p. 132. 
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has to notice that the primitive symbols {jc|s$(x)} of B are defined symbols 

of VNB. It is obvious that every theorem of B is also a theorem of VNB; but 

also the converse is true, i.e., every statement of B which is a theorem of VNB 

is also a theorem of B 1). It is also worth noting that the embarrassing situa¬ 

tion in VNB, viz. that there are conditions for which induction over the 

natural numbers cannot be proved, is avoided in B since all those conditions 
of VNB involve class quantifiers. 

An even more radical attitude is advocated by Quine 2). He proposes a 

system which is just ZF, except that statements of the language of B which 

involve classes are considered to be shorthand versions of statements of ZF. 

The translation from shorthand (in the language of B) to longhand (in the 

language of ZF) is as follows. (The shorthand may sometimes be longer than 

the longhand.) The language of B contains, in addition to what is in the 

language of ZF, free class variables and class abstracts — {x| j)3(x)}. The free 

class variables are interpreted as metamathematical variables for class abstracts 

{x|^B(x)} in which the condition ^3 (x) has no class parameters; e.g., the 

statement 

(*) 3zVx(jGz^xGT Ax&{u\utfzB}) 
is understood to be a schema, where A and B stand for arbitrary class 

abstracts, i.e., the schema 

3zVx(x Ez (u|^(u)} Ax£ {u \ u Q (u)}}) . 

From this point of view the single statements contain no class variables, but 

they may contain class abstracts. These class abstracts can occur in such a 

statement only in a context likey E{x|j|3(x)} 3).y E(x|^B(x)} is taken to be 

shorthand for ^(y). Thus the statement (*) above is really shorthand for the 

schema 3z Vx(x£z(x)aIQ(x)), where ^(x) and G(x) are any condi¬ 

tions of ZF. Simple checking shows that all the axioms of B are, in the present 

interpretation, theorems or theorem-schemas of ZF. It can easily be seen that 

also the logical axioms of B are interpreted as theorems or theorem-schemas 

of ZF, and that the logical rules of inference used in B lead us here from 

theorems and theorem-schemas of ZF to other theorems and theorem-schemas 

of ZF. Therefore all the theorems of B are also theorems of Quine’s system, 

even though they are there interpreted somewhat differently. On the other 

Q There are two proofs for this fact, both very similar to the proofs mentioned in 

the previous footnote. 

) Quine 63. 
3) In fact, they may also occur as {x l'P(x)} = {y ICO’)} or as {x ID(x)} £y, etc., but 

these are defined expressions of the language of B (see the definitions on pp. 122 and 

128) and can therefore be eliminated. 
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hand, there are theorems of Quine’s system which cannot be proved in B, 

since there is a statement ©04) of B, with a free class variable A, such that 

when interpreted as a schema, all its instances are provable in ZF, and yet 

SCA) is refutable in QM *). 

7.7. The System of Ackermann. In the systems ZF and VNB the guiding 

principle for choosing the axioms was the limitation of size doctrine. Adher¬ 

ence to this doctrine prevented the occurrence of the known antinomies in 

those systems. In 1956, Ackermann2) proposed a system of axioms for set 

theory which is based on a completely different approach and which retains 

as axioms only the weakest consequences of the limitation of size doctrine, 

i.e., that a member of a set and a subclass of a set are sets. It is rather sur¬ 

prising that, as it turned out later, essentially the same theorems are provable 

in Ackermann’s system as in ZF. It is also possible to formulate Ackermann’s 

system for set theory with individuals 3), but we shall follow our earlier 

practice of considering only set theory without individuals.. 

In Ackermann’s system, which we denote with A, the universe consists of 

objects with a membership relation between these objects, denoted by the 

symbol E. Two objects which have exactly the same members are equal. 

Therefore it stands to reason to refer to these objects as classes, which we do 

from now on. Notice that these are not classes in the sense of extensions of 

pure conditions as in §7.1, or, for that matter, extensions of any conditions. 

These are classes in the vague sense for which we also use the words ‘collec¬ 

tion’, ‘aggregate’, etc., i.e., objects completely determined by their member¬ 

ship. Some of the classes are said to be sets. Unlike the system G of §7.4, 

not every class which is a member of some class is a set. The language of A is 
based on the first-order predicate calculus with equality. There is just one 

kind of variables — class variables; we shall use for them capital letters. The 

primitive predicate symbols are the binary membership symbol E and a unary 

predicate symbol M. We shall read M(A) as “A is a set”. We shall use lower¬ 

case letters as variables for sets. Lower-case variables are not primitive symbols 

of the language, we just say “for all x ...” instead of “for every class X if 
M(X) then ...” and similarly for the existential quantifier. 

DEFINITION. If A and B are classes such that every member of A is a mem¬ 

ber of B, we write A C B and say that A is a subclass of B. 

1) Such a schema was given by Mostowski - see A. Levy 60, §5. To see that it is 

refutable in QM use the method of Mostowski 51. 
2 

) Ackermann 56. 
3 

) Ackermann 56, §3. 
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In symbols, A CB =m\f X(XEA~+XEB). 
The axioms are: 

a) THE AXIOM OF EXTENSIONALITY. If the classes A and B have exactly 
the same members then they are equal. 

In symbols, VX(XEA *+XEB)^A= B. 

(3) THE AXIOM OF COMPREHENSION FOR CLASSES. There exists a class 

A which contains exactly those sets x which satisfy the condition ^(x), where 
^3(x) is any condition of A. 

The class A ot this axiom is assumed to contain only the sets x which 

satisfy ^3(x), rather than all classes X which satisfy ^(A), in order not to 

obtain here the contradictory axiom schema of comprehension of §3.1 (with 

sets replaced by classes). As in §7.1 we denote with (x|§S(x)} the class of 

sets x which satisfy ^?(x); the existence of this class being guaranteed by 

Axiom p. Now, if we repeat the proof of Russell’s antinomy we get that the 
class {x|x^x} is not a set. 

7) THE AXIOM OF HEREDITY. If Y is a member of the set x then Y is a 
set, too. 

In symbols, YEx-+M(Y). 

S) THE AXIOM OF SUBSETS. If Y is a subclass of the set x then Y is a set 
too. 

In symbols, YCx^M(Y). 

Let V be the class (x|Af(x)} of all sets. We saw above that the subclass 

{x|x^x} of F is not a set, hence, by AxiomS, V too is not a set. 

e) THE AXIOM OF COMPREHENSION FOR SETS. If the only classes X 

which satisfy the condition $(A) are sets then there exists a set w which 

consists exactly of those sets X which satisfy the condition (X), where 

$00 is any condition which does not involve the unary predicate M and 
which has no parameters other than set parameters. 

In symbols, VXiVx2 ... Vx„ [ VA($(A)^M(A))^ 3 wVA(AE w^(A))j, 

where ^(A) does not involve M and has no parameters other thanxj, ...,x„. 

This is the main axiom of comprehension for sets in A (7 and 5, too, are 

axioms of comprehension for sets). Unlike the axioms of comprehension for 

sets in ZF and VNB, and unlike Axioms 7 and 5, Axiom e is not motivated 

by the limitation of size doctrine. Before we discuss the motivation of Axiom 

e, let us first study the axiom from a technical point of view. If we lift the 

restriction that the condition ^3 (X) should not involve the predicate M, then 

by applying Axiom e to the condition M(X) A (X) we would obtain that 
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the class (x|$(x)} is a set, for every condition $(X). In particular, the class 

{x|x^x} is a set, which immediately yields Russell’s antinomy. Thus the 

restriction that the condition ^B(X) in Axiom e does not involve the unary 

predicate M is necessary for the consistency of A. Also the second restriction, 
viz. that ^}(X) may only have set parameters, is necessary in order to avoid 

Russell’s antinomy. Were it not for the restriction on parameters in Axiom e, 

we could have chosen, for j|B(X) in Axiom e, the condition IG Y, 

and thereby we would have had “for every class Y, if all the members of Y 

are sets then the class {x|x£T} is a set”. If we substitute for Y the class 

(x|$(x)}, where ^(x) is any condition, we get that every class (x|*P(x)} is 

a set. This again, immediately yields Russell’s antinomy. 

As a consequence of Axiom e, we get that if Q(x) is any condition with 

no parameters other than set parameters, and which does not involve the 

predicate Af, then G (.X) cannot be equivalent to M{X). This is shown as 

follows. Suppose M(X) is equivalent to Q(X), then if we take Q(X) 

for ^B(X) in Axiom e, we get that the class (x | x ^x } is a set, which, we know, 

is a contradiction. In other words, M(X) cannot be defined in A by means of 

the membership relation e (unless A is inconsistent). 

Ackermann justifies Axiom e as follows. Let us consider the sets to be the 

“real” objects of set theory. Not all the sets are given at once when one starts 

to handle set theory — the sets are to be thought of as obtained in some con¬ 

structive process. Thus at no moment during this process can one consider the 

predicate M(X) as a “well-defined” predicate, since the process of construct¬ 

ing the sets still goes on and it is not yet determined whether a given class X 

will eventually be constructed as a set or not. As a consequence, a condition 

^(X) can be regarded as “well-defined” only if it avoids using the predicate 

M. Also, parameters are allowed in such a condition ^(X) only to the extent 

that they stand for “well-defined” objects, i.e., sets. 

Ackermann’s justification of Axiom e is clearly insufficient. While one is 

not allowed to have in the condition ^(X) of this axiom a parameter Y which 

stands for a class which is not a set because membership in such a class is not 

“well-defined”, one is allowed to use quantifiers over all classes in ^B(X), i.e., 

$(X) may contain expressions like “for all classes Y ...”. If a single class is 

not “well-defined”, why is the totality of all classes “well-defined”? It is 

possible to refine Ackermann’s justification by some subtler arguments which 

may overcome the difficulty outlined here. However, taking into considera¬ 

tion all justifications known to the authors, Axiom e is still far from having 

the intuitive obviousness of, say, the axiom of replacement of ZF. Thus, what 

makes the system A interesting and trustworthy is not the arguments brought 
forth in favor of its axioms but rather the beauty of the proofs in A, and the 
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tact that A turned out to be equivalent in a strong sense to ZF, as we shall see 
below. 

The last axiom of A is: 

§) THE AXIOM OF FOUNDATION. If y is a non-empty set then y has a 

member u such that u Ply = 01). 

In symbols, y 3u(u Ey au Ply =0). 

When we come to compare A with ZF, we write the variables of ZF as 

lower-case variables, since in ZF all objects are sets. Every statement of (the 

language of) ZF is therefore also a statement of A. On the other hand, state¬ 

ments of A that mention classes which are not sets are not statements of ZF 

and have no natural translation into statements of ZF. Therefore, the ques¬ 

tion which we now ask is: Which statements of ZF are provable in A? It turns 

out that the statements of ZF provable in A are exactly the theorems of ZF. 

The proof that all the statements of ZF provable in A are theorems of ZF 

uses metamathematical arguments 2). In order to prove the converse, namely 

that all the theorems of ZF are provable in A, it is enough to prove in A all 

the axioms of ZF. Here we shall prove in A all the axioms of ZF other than 

the axiom schema of replacement. The proof of that axiom schema makes use 

of Axiom £ of foundation and involves metamathematical arguments 3). The 

other axioms of ZF are proved as follows. 
I. The axiom of extensionality of ZF follows immediately from Axiom a. 

II. The axiom of pairing. Given sets b and c we consider the condition 

“X = b or X = c”. This condition does not mention the predicate M, it has 

only set parameters, and every A satisfying it is a set. Therefore, by Axiom e, 

there is a set whose members are exactly b and c. 

III. IV. The axioms of union and power set are proved similarly by apply¬ 

ing Axiom e to the conditions “A is a member of a member of b” and “A is a 

subclass ofb” and using Axioms 7 and 5, respectively. 
V. The axiom of subsets. If b is a set and $(A) is any condition, not 

even necessarily in the language of ZF, then by Axiom (3 there is a class 

{x\x<Eb a^B(x)}, and by Axiom 5 this class is a set. If we knew that there 

exists at least one set then the existence of the null-set would follow from the 

*) This is Axiom IX* of §5.1. It is shown in Levy-Vaught 61 that the schema IX of 

§5.1 is now provable in A, and that if A without Axiom £ is consistent then A with 

Axiom £ is consistent. Axiom £ was not proposed by Ackermann 56, but we need it here 

for the purpose of comparing A with ZF. 

2) A. Levy 59. 

3) Reinhardt 70. 
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axiom of subsets, as in p. 39 (or directly from Axioms /3 and 5). However, 

here we have to use Axiom e to prove that there exists a set at all, so we may 

as well apply Axiom e to the condition A=AA and prove right away the 

existence of the null-set. 
VI. The axiom of infinity. It is rather surprising that this axiom can be 

proved in A since, unlike the systems of set theory discussed till now, none 

of the axioms of A directly mentions the existence of an infinite set. Let us 

prove the strongest version (Vic) of the axiom of infinity in §3.6 which is 

“There is a set a which contains a memberless set (i.e., the null-set) and such 
that, for all members y and z of a, yU{z} , too, is a member of a". Let us 

consider the following condition ^3(A) on X. “V is a member of every class/? 

such that B contains a memberless class and such that for all members Y and 

Z of B there is a member U of B which consists of Z and of the members of 

Y (informally, f/=TU{Z})”. The class V of all sets satisfies the require¬ 

ments for B in ^?(A), since there is a memberless set and since, by the axioms 

of pairing and union which we proved above, if Y and Z are sets then also the 

class FU {Z} is a set. Thus every class A which satisfies ^(A) is a member of 

V, and hence a set. Therefore the condition §2 (A) satisfies the assumption of 

Axiom 6, and Axiom e implies the existence of a set a which consists exactly 

of the sets A which satisfy ^B(A). This set can be easily seen to be as required 

by the axiom of infinity above. 

IX. The axiom of foundation, and in particular version IX*, follows imme¬ 

diately from Axiom £. 

Having presented the result that the same statements of (the language of) 

ZF are provable in ZF and in A, let us draw some conclusions. First, we get 

that A is consistent if and only if ZF is consistent, since a contradictory 

statement, say, “There exists a set x which is both a member of itself and 

not a member of itself’, is provable in A if and only if it is provable in ZF. 

Second, we get that if 2 is a statement of ZF, then 2 is consistent with A 

(i.e., not refutable in A) if and only if 2 is consistent with ZF. Therefore, if 

A is consistent then A is consistent with the axiom of constructibility and, 

a fortiori, with the axiom of choice and the generalized continuum hypo¬ 

thesis. Also, almost all the independence results of §4 and §6 still hold when 

ZF is replaced in them by A. 

Till now we have compared A with ZF; let us now say something about 

the relationship of A with the system QM of §7.5. As in the case of A and 

ZF a natural translation exists only from QM to A. In this translation the set 

variables of QM are translated as set variables of A while the class variables 

of QM are translated as class variables of A restricted to classes which consist 

only of sets. Using the proofs given above of the axioms of ZF it is easily 
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seen that the translation of all the axioms of QM other than Axioms VIIC of 

replacement are theorems of A. The translation of Axiom VIIC is not provable 

in A; in tact, it is an axiom of strong infinity for A *). If A is consistent then 

(the translation ot) Axiom VIII^ ot global choice is consistent with A since, 

as we mentioned above, it A is consistent then A is consistent with the axiom 
of constructibility, which implies Axiom VIll£. 

The central objects ot A are the sets, and, as we saw, we know quite a bit 

about the sets in A. As to classes which are not sets, Axiom 0 asserts the 

existence of such classes whose members are sets. No axiom handles directly 
classes which have members which are not sets, yet by means of Axiom e 

one can obtain many results about such classes. As a particularly simple 
example let us prove that there is a class A not all of whose members are sets. 

It there were no such class then a class X would not be a member of any 

class A unless X is a set. On the other hand, by the axiom of pairing, which 

we proved above, every set A is a member of some class. Therefore the 

property ot being a set would be equivalent to the property of being a 

member of some class; but we proved above, by means of Axiom e, that the 

property of being a set is not equivalent to any condition which does not 

mention the predicate M, and thus we have a contradiction. One can also 

prove much stronger results about classes whose members are not necessarily 

sets. For instance, by means of the axiom of foundation £ one can prove the 

existence of the class { V} whose only member is V (={jc|x = x}), and of 

the class PV which consists of all the subclasses of V, and of the class PPF, 
etc. 2). 

') This can be shown by the methods of A. Levy 59 and Levy-Vaught 61 - see A. 

Levy 59, p. 157. 

2) Levy-Vaught 61. On the other hand, one cannot prove in A any statement about 

classes which cannot be proved in ZF about sets — A. Levy 59. 



CHAPTER III 

TYPE-THEORETICAL APPROACHES 

§ 1. THE IDEAL CALCULUS 

We do not believe that there exists at this moment a single classification of 

the various approaches to the foundations of set theory which is decisively 

simpler and more “natural” than its competitors. We therefore make no such 

claim for the classification adopted here. The various approaches presented 

together in one chapter will, of course, have many common features, but the 

degree of communality will differ from chapter to chapter and the reader will 

notice that, occasionally, an approach dealt with in one chapter will have less 

in common with another approach treated in the same chapter than with one 

of the approaches mentioned in another chapter. As we see it, there exists a 

multi-dimensional continuum of possible attitudes out of which those that 

were historically chosen form a sometimes rather arbitrary-looking selection; 

of these systems those described in this book form an additional, perhaps not 

quite so arbitrary, selection. 

In order to get a good preview of the features that distinguish the ap¬ 

proaches to be treated in this chapter from those described in the preceding 

chapter, let us start with the presentation of a certain calculus that might be 

regarded as an adequate formalization of one “naive” approach: According to 

this approach, all the entities, if not within the whole universe, at least within 

the “universe of discourse”, are essentially alike in their status, and it there¬ 

fore makes always sense to claim that one of these entities is a member of any 

other entity, even of itself, though such a claim may be wrong, sometimes 

perhaps even absurdly wrong. All the variables of the calculus in which this 

view is to be formalized would then be of the same kind, and one formation 

rule of this calculus would state, for instance, that any expression of the form 

‘...e-or of the form ‘... =-’, where the dots and dashes are replaced 

by occurrences of variables (different or identical), is a formula, and that for 

certain versions of such a calculus, such expressions are the only atomic 
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formulae, from which the other formulae are formed with the help of the 
customary connectives, quantifiers, and parentheses. 

In addition, according to the same approach, all those entities which fulfil 

a given condition always constitute another entity, a class, and only one class, 

since any two classes which have all their members in common are identical. 

This means that the corresponding calculus will contain, first, an axiom 
{-schema) of comprehension that might be symbolized as 

() ByVx[x<Ey <X*)] , 

where VC*)’ represents any formula in which ‘x’ is free and the initial pair of 

parentheses is meant to indicate the universal closure *) of the following 
formula, i.e. to stand for the string of the universal quantifiers binding all the 

remaining free variables of VC*)’> if any; and, second, an axiom of exten- 
sionality that might be symbolized as 

VxVv[Vz(z£x +-+ z Ey) ^ x =y] . 

The calculus, whose outline has been given here, will be called — following 

Hermes-Scholz 1 2) — the ideal calculus and denoted by ‘K’. This calculus may 

be extended by adding one or both of the axioms of infinity and choice (see 
Chapter II). 

K and its extensions, though indeed constituting an ideal formalization of 

the naive approach in many aspects, have unfortunately one drawback: they 

are inconsistent. It is very easy to derive in them a formalized counterpart of 

Russell’s antinomy. Let us do this in some detail. 

Taking ‘x<j£x’ for \p(xf. in the axiom of comprehension, we get 

(1) By Vx (x Ey x ^ x) . 

According to a standard theorem of the first-order predicate calculus (which 

is again taken as the logic underlying the ideal calculus) we have 

(2) Vx(xGv +-*x^x)-> (yEy ±->y<fy) . 

According to a standard rule of the predicate calculus, 

1) For the term, see Church 56, p. 228; for the symbol, see Carnap 37, p. 94. 

2) Hermes-Scholz 52, pp. 57 ff. 
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(3) 3yVx(xey+->x?x)^ 3y(y£y+-*y$y) 

is derivable from (2). (1) and (3) yield together, by modus ponens, 

(4) 3.v(y£y *-*yfy) 

from which follows, according to another standard theorem, 

(5) ^y^y) ■ 

On the other hand, 

(6) yey+-+yEy 

is a theorem of the predicate calculus, from which, according to another stan¬ 

dard rule of this calculus, 

(7) 

can be deduced. (5) and (7), however, are obviously a pair of contradictory 

statements. A calculus in which both are provable is inconsistent. 

We may look upon the approaches discussed in the preceding chapter and 

to be discussed in the present chapter as so many different attempts to 

modify the ideal calculus in order to overcome its shortcomings. The “axiom¬ 

atic” attitudes of the preceding chapter do not essentially change the lan¬ 

guage: the two kinds of variables in the systems VNB and QM of §7 in the 

previous chapter are not indispensable — we presented (on pp. 136—137) a 

system G which has exactly the same language as the ideal calculus K, but 

is essentially equivalent to VNB, and one can also easily extend it to a system 

essentially equivalent to QM. The decisive changes are made in the axiom of 

comprehension: in Zermelo’s system it is replaced, on the one hand, by the 

much weaker axiom (-schema) of subsets, whose symbolization, adapted to 

our present purposes, is 

() Vz3y\/x [xey+-+(xEz V <p(jc))] , 

and, on the other hand, by a certain number of specific cases of the original 

unrestricted axiom of comprehension, i.e. by a certain number of axioms in 

which the original >(*)’ is replaced by certain specific formulae; in one case, 
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for instance, V00’ is replaced by ‘x Qz\ i.e. by ‘Vw(wEx -> wEz)’, and we 
get the axiom of power-set, 

Vz3 v Vx [x Ey Vw(wEi -> vcEz)] . 

A less tar-reaching weakening of the axiom of comprehension consists in 

introducing a different conjunctive component into the right side of the 

equivalence, viz. the formula ‘3z(xEz). - instead of Zermelo’s ‘x E z’ - 
getting thereby 

( ) 3y Vx [x Ey (3z(x Ez) A i/?(x))] . 

This axiom-schema 1), originating with von Neumann, at least in essence, 

assures the existence of a class comprising all and only those entities that 

fulfil a given condition and are members of some class or other, in short, of a 

class comprising all and only those elements that fulfil the given condition. 

(Zermelo’s axiom of subsets guaranteed the existence of a class answering a 

given condition only if its prospective members were already members of a 

given class.) It is still weak enough not to allow the reproduction of the 

argument leading to contradiction in the ideal calculus. The reader would do 

well to check this by himself. He will find that instead of arriving at a 

contradiction he will be able to prove only the harmless theorem that the 

class of those entities that are not members of themselves is a non-element. 

The common attitude characteristic for the approaches treated in the pre¬ 

ceding chapter can then be summarized by saying that its deviation from the 

naive approach consists in repudiating the assumption that to any given con¬ 

dition there always corresponds a (membership-eligible) class, viz. the class of 

all and only those entities that fulfil this condition. 

There exists a different attitude, going back in essence to Russell, that 

attempts to overcome the antinomies by tampering not with the axioms but 

rather with the language of the ideal calculus. By stipulating, e.g., that the 

string of symbols ‘x Ex’ be not a formula, the antinomy is overcome in the 

rather trivial sense that its counterpart can no more be formulated in the 

calculus. 

However, simply stipulating that no string of symbols of the form 

‘...E-where the dots and dashes are replaced by (occurrences of) the 
same variable, be a formula would not do. It can easily be shown that’a 

1) This is Axiom XII of p. 138 formulated in the language of the system G of p. 136, 

with small letters instead of capital letters. 
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Russell-type antinomy can be generated from the string "x Ey t\y Ex that 

would not be disqualified by the mentioned stipulation. In order to do away 

with all antinomies of this type, a more systematic and more radical deviation 

from the language of the ideal calculus seems to be required. 

§2. THE THEORY OF TYPES 

Instead of having only one kind of variables, as K does, the calculus we are 

now going to outline — we shall call it type theory and denote by ‘T’, in 

honor of its relationship to Russell’s type theory (see §8) — contains a 

denumerable hierarchy of levels of variables. Each variable belongs to one 

level and one only. The level-numbers, 1, 2, 3, ..., will be indicated by right 

superscripts. The only atomic formulae of T are again formulae of the form 

E-’, and of the form =-’, but now in formulae of the first kind 

the level number of the left-hand variable must be lower by exactly one than 

the level number of the right-hand variable, i.e., xi Eyi is a formula if and 

only if/' = / + 1, and in formulae of the second kind the level numbers of both 

variables must be the same, i.e., xl = y! is a formula if and only if i =/. 

Since T contains infinitely many levels of variables, the single axiom of 

extensionality of K has to be replaced by an axiom-schema of extensionality 

Vx‘ V/ [Vz/_1 (z^1 G x**-+ z'~l G /) -> x' = y' ] 

and the axiom-schema of comprehension 

( ) 3yi+l Mx1 [x‘Eyi+l *-> tfx1)} 

has become even more “schematic” in its new version. 

We have already seen that Russell’s antinomy is not reproducible in T. Let 

us check now that Cantor’s antinomy cannot be reproduced in it either. In 

order to obtain Cantor’s paradox we must prove the existence of the set v of 

all sets. In T we cannot even express that a set v contains all sets, since each 

variable of T belongs to exactly one level, and all we can say in T is that every 

entity of level i is a member of v. This is written as V.x*(.x* G v), and therefore 

v must belong to level / + 1. By the axiom schema of comprehension (where 

we take xl = xl for y?(.y'))> there is indeed such a v*+1. In K one obtains Can¬ 

tor’s paradox by showing that the power-set Pv of v is a subset of v; in T the 

power-set of v'+1 is easily seen to be vl+2 (which is the set which contains all 

entities of level i + 1), and vi+2 is not a subset of v*+1. 
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It can finally be shown that none of the customary arguments leading up 

to the other known logical antinomies are reproducible within T. As to the 

semantic antinomies, we shall waive their treatment for the time being, and 
take it up only later on. 

How good is T? This question is meant in two senses: (a) how much of 

naive set theory, and how much of classical mathematics in general, can be 

developed on its basis; (b) how sure can we be of its consistency? 

With regard to question (a), the following can be said. Let us supplement T 

by an axiom of infinity to the effect that the number of different objects of 

level 1 is ^ Q — where an object is regarded as belonging to a certain level if it 

belongs to the range of a variable of that level — and by axioms of choice for 

the various levels, and denote the resulting system by ‘T*’. T* is essentially 

equivalent to (a simplified version of) the system of Whitehead and Russell, 

which we shall denote by PM, presented in their celebrated work Principia 

Mathematica '), in winch counterparts of all basic theorems of classical set 

theory, arithmetic, and analysis have been rigorously proved and which is, 

therefore, almost generally considered to have provided a sufficient founda¬ 

tion for these disciplines 2). However, the avoidance of the logical anti¬ 

nomies, which inspired the transition from K to T, has been achieved only at 

the price of certain drawbacks, some of which will be mentioned here. 

Cardinal numbers can no longer be simply and uniquely defined as classes 

of equinumerous classes (see p. 96 and T, p. 59), in the tradition created by 
Frege, but, according to the level of the equinumerous classes, we get infinite¬ 

ly many cardinal numbers in each level (from two upwards). Each level has its 

own (quasi-)universal class, its own null-class, and the complement of a class 

becomes a quasi-complement, containing not all non-members of that class 

1) Whitehead-Russell 10-13. 

2) This essential equivalence is rather surprising in view of the fact that T is notation- 

ally so much inferior to PM, as it contains neither propositional nor relational variables. 

However, propositional variables can be replaced by schemata, a procedure introduced 

by von Neumann. Two-termed relations can be replaced by classes of ordered pairs, and 

ordered pairs in their turn by certain classes. If the ordered pair is homogeneous, i,e. of 

the form (xl,yl), it can be replaced by {{xz},{x(y'}}, according to the well-known 

method of Wiener-Kuratowski (cf. p. 33). Otherwise, i.e. if of the form y^),with 

i i= j, this pair has first to be “homogenized”, in a self-explanatory fashion, prior to the 

application of the Wiener-Kuratowski transformation. Many-termed relations, finally, 

can be replaced by classes of ordered n-tuples, which in their turn are reducible to 

ordered pairs in a way exemplified by the replacement of (a, b, c) by (a, (b, c>>, after 

homogenizing, if required. 
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but only those non-members that belong to the same level as the members of 

that class. 
Many mathematicians will find this reduplication repugnant, not only tor 

intuitive reasons but also, perhaps mainly, because it severely restricts their 

accustomed freedom of expression and notation and often requires compli¬ 

cated technical operations in order to overcome the unwanted notational 

restrictions. 
Some of these technical drawbacks could be overcome by utilizing a prin¬ 

ciple of typical ambiguity, in adaptation of a procedure of Principia Mathe- 

matica. Instead of proving each theorem with the variables (and constants 

introduced by definition) carrying with them general superscripts and pro¬ 

vided with occasionally long-winded clauses stating the relationships between 

these superscripts '), one could decide not to use those superscripts from the 

beginning but assume that each theorem is preceded by the clause ‘provided 

that all terms belong to the appropriate levels’. The resulting formalism 1 2) 

would look once more like that of K and one could think that it would be 

notationally as easily manageable. 

In practice, however, it would sometimes be quite difficult to keep track 

of all the tacit provisions 3). In addition, special care would have to be taken 

in the formulation of the rules of formation so that expressions leading to 

antinomies should not inadvertently be reestablished as formulae. Though, 

for instance, in a calculus embodying a principle of typical ambiguity, each of 

the two expressions be 6/ and ‘y Ex’ will separately be regarded as a for¬ 

mula, their conjunction ‘xEy&yET must most definitely be denied this 

character, on pain of reestablishing a Russell-type antinomy. 

1) Another procedure to the same effect would be to prove the theorem with the 

smallest possible superscripts attached to all occurring terms and proving once for all a 

meta-theorem stating that each theorem remains valid when all superscripts have been 
raised by the same amount. 

2) This formalism is called PM 4 in Quine 51a. Quine regards it as a certain version of 

PM. BeneS 52 points out that PM4 differs from PM — or rather from T — in containing a 

universal class and in completely abolishing the segregation of entities into types, the last 

deviation making PM4 “a set theory rather than a type theory”. Without trying to 

diminish the extent of the deviations, the issue seems to be a verbal one. Russell’s 

original type theory differed from Zermelo’s original set theory in countenancing an 

infinite hierarchy of universes of discourse as against a single universe with Zermelo, as 

well as in declaring certain formulae as meaningless regarded as meaningful by Zermelo 

(in addition, of course, to many other differences). In PM4, the first difference is indeed 

abolished, but the second subsists. Cf. also below, pp. 191 ff. 

3) For a case where the masters themselves, Russell and Whitehead, failed, see Godel 
44, pp. 145-146. 
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The required rules of formation are best stated in terms of stratification 

following Quine’s usage. An assignment of levels to variables is said to stratify 

a formula of the form ...E-if it assigns two consecutive levels to its 

left-hand and right-hand variables, and such an assignment is said to stratify a 

tormula of the form ... =-if it assigns the same level to both its variables. 

A general formula i// of K is called stratified if there is an assignment which 

assigns levels to all the variables which occur in the expanded form of the 

formula \}j, i.e., in the form it assumes when expanded to primitive notation 

exclusively, in such a way that it simultaneously stratifies all the atomic 

formulae in \jj (all occurrences of the same variable being, of course, assigned 

the same level). A formula of K will then, finally, be admitted as a formula of 

our calculus if and only if it is stratified. 

Though the careful specification of the language of this calculus would 

keep the logical antinomies out, working with it would require additional care 

in view, for instance, of the fact mentioned above that no longer can a 

conjunction of two formulae be automatically taken to be a formula itself. 

In addition, adoption of typical ambiguity does not help to overcome 

other intuitively repugnant features of T*, such as the reduplication of the 

universal and null classes, of the cardinal numbers, etc. 

With regard to question (b), i.e. the consistency of T*, let us be satisfied 

for the moment with stating that T* is consistent if the system of the axioms 

I—VI is; more will be said about this topic in Chapter V. Let us only remark 

at this point that the consistency of T* does not depend on the fact that the 

language of T* is restricted by the decree that the expression xi Eyi is not a 

formula unless j=i+1; T* would stay equally consistent if xlEyi would be 

taken to be a formula for all i and / (x‘ Eyi being false if j ¥= i + 1) 1). What 

makes T* consistent is that the axiom of comprehension of T* asserts only 

the existence of sets of level i + 1 which contain members of level / only. 

§3. QUINE’S NEW FOUNDATIONS 

The mentioned shortcomings of T* induced quite a few logicians to look 

for ways and means by which to avoid them, without — as much as possible — 

endangering the relative security of T*. One of the most interesting attempts 

in this direction was made by Quine, who tried to combine Zermelo’s ap¬ 

proach, which retained the language of K and excluded the antinomies, by 

1) See pp. 191-192 below for a formulation of type theory with variables which 
range over all objects of all levels. 
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giving up the unrestricted use of the axiom schema of comprehension, with 

Russell’s approach, which saw the culprit rather in the use of “meaningless” 

phrases. Would it not suffice to leave the language of the ideal calculus alone, 

i.e., not to discard the unstratified formulae, but rather to sterilize their 

harmful effects by restricting the V(x)’ of the axiom of comprehension to 

stratified formulae? 
The resulting system was described in a paper New Foundations for Mathe¬ 

matical Logic (1937) and became subsequently known simply as New Foun¬ 

dations. We shall denote with NF the system whose axioms are 

THE AXIOM OF EXTENSIONALITY, 

Vx V_y[Vz(zE x zEy) -» x =y], 

and 

THE AXIOM OF COMPREHENSION, 

() 3y Vx (x Ejp +-*■ <p(x )), 

where ip(x) is a stratified formula in which y does not occur free. NF differs 

from New Foundations only in the handling of equality, and this difference 

has no effect on what we whall say about NF. NF is, in some respects, 

convenient to handle, and many of the shortcomings of T* are indeed over¬ 

come. According to NF, there are unique universal and null sets, each set has 

a complement, the cardinal numbers are unique, etc. It is also interesting to 

notice that the axiom schema of comprehension of NF can be replaced by a 

finite number of axioms which are quite similar to Axioms XII— XI8 

(pp. 129—130) 1). 

What about the antinomies? Since the decisive formulae in the derivation 

of the customary logical antinomies are unstratified, the existence of the 

corresponding antinomic sets cannot be proved directly by means of the 

axiom of comprehension of NF. This in itself is, however, no guarantee 

against establishing the existence of the antinomic classes by an indirect 

proof 2). 

1) Hailperin 44. 

2) A simple example of a set whose existence is provable in NF, even though it is 

determined by a non-stratified condition, is the setz u{z). Using the stratified condition 

x e z V x = u for if lx) in the axiom of comprehension one can prove that, for all sets z 

and u, z u{«) exists, and hence, in particular, that the set z u{z}exists. However, this 

example is rather misleading. In fact, the stratification requirement on the formula y>(x) 
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As a set theory NF has serious drawbacks. First, one can prove in it 

theorems which contradict some simple and obvious facts of classical set 

theory. One can prove in NF that there is a sety which is not equinumerous 

to the set {{.\} |x Gy} of its singleton subsets - the universal set, e.g., is such 

a set. One can also prove that there is a set which is equinumerous to its 

power-set — here, again, the universal set is such. Does this not prove that 

Cantor’s antinomy can be reestablished in NF? No, it does not; Cantor’s 

theorem (T, p. 70) does not hold in NF. In its customary proof there occurs 

an unstratified formula, as the reader will verify for himself. Serious difficul¬ 

ties arise in connection with the fact that mathematical induction holds only 

for stratified formulae — in NF one cannot even prove that for every finite 

cardinal number n there are exactly n cardinal numbers less than n (provided 

NF is consistent) '). Also, the axiom of choice is not compatible with NF2). 

Finally, there is a certain property ^ (a), expressible in the language of NF, 

such that one can prove in NF that there is an ordinal a which has this 

property, but there is no least ordinal which has this property, i.e., the 

natural ordering of the ordinals is not really a well-ordering 3). 

The anomalies just mentioned can be overcome, in one way or another; 

Rosser indeed wrote an extensive textbook in which he shows how to develop 

a large part of mathematics in NF or in simple extensions of it 4). Mathemati¬ 

cal induction for all formulae can be added as an additional axiom schema to 

NF. As to the other examples mentioned above of strange behavior of sets in 

NF, we notice that the sets which behaved strangely were only very large sets, 

such as the universal set or the set all ordinal numbers. One can formulate 

notions of “relatively small” sets, prove that some of the above mentioned 

anomalies, e.g., the failure of Cantor’s theorem, do not hold for those sets, 

and enforce, by means of additional axioms, that the other anomalies, too, 

in the axiom of comprehension of NF can be restricted to the variable x and the bound 
variables of v>(x); for any such condition <p(x) the corresponding instance of the axiom 

schema of comprehension is anyway a theorem of NF, as we saw in the case of z u {z}. 

1) Cf. Rosser 53, Ch. XIII and Orey 64. 

2) This, at the time rather surprising, result was found by Specker 53. 

3) Rosser-Wang 50, p. 117. 'F(a) is the property “the set of all ordinals less than a has 

an order type less than a” which is expressible by a non-stratifiable formula; NF admits 

transfinite induction for stratified formulae only (cf. Rosser 53, Ch. XII). Rosser and 

Wang put it as follows: In every model of NF the set of all ordinals is not well-ordered 

by the natural ordering and hence no model of NF is “standard”. 

4) Rosser 53. Yet Curry 54a strongly questions the wisdom of choosing an NF-type 

system as a basis for a textbook of logic for mathematicians. 
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will not hold for those sets 1 2). For example, one may add to NF a new axiom 

which asserts that all “relatively small” sets can be well-ordered ). Let us 

also mention that the existence of an infinite set is provable in NF 3). There¬ 

fore one can develop in NF, without any additional axioms, all the mathe¬ 

matical theories which can be developed in T*, such as the theories of the 

natural and of the real numbers, the theory of real functions, etc. 
From the point of view of the philosophy and the foundations of mathe¬ 

matics the main drawback of NF is that its axiom of comprehension is jus¬ 

tified mostly on the technical ground that it excludes the antinomic instances 

of the general axiom of comprehension, but there is no mental image of set 

theory which leads to this axiom and lends it credibility. This could be 

forgiven only if NF would be a set theory which allows for a trouble free 

development of mathematics, at least to the extent that ZF does; in this case 

the elegance of basing set theory on a single syntactically simple form of the 

axiom schema of comprehension might compensate for the loss of a con¬ 

vincing intuitive justification for this particular form. However, we saw that if 

one aims at a reasonable development of mathematics in NF, one must add to 

it additional axioms. Those axioms, unlike the axiom of comprehension of 

NF, are motivated by direct mathematical needs, and thus the axioms of 

comprehension of the resulting system will not be based on one fundamental 

idea, and the simple elegance of NF will be lost in that system. Also the special 

attention given to the “relatively small” sets, and the possible special axioms 

concerning them, reintroduce the limitation of size doctrine (see p.32) 

through the back door. Since only the “relatively small” sets can be expected 

to be well-behaved, the reason for dealing with other sets becomes now 

esthetical rather than mathematical, e.g., the universal set and the comple¬ 

ments of “relatively small” sets exist, but those are sets which cannot partici¬ 
pate in ordinary mathematics. 

When we come to discuss the practicality of NF as a basis for mathematics, 

an additional point comes up. When we dealt with ZF, we specified exactly 

what the underlying formal language was, but this was not really necessary 

for the development of mathematics from it. Zermelo, in his original system, 

did not specify the underlying language without thereby incurring any un¬ 

desirable results. Specifying the language is absolutely necessary for meta- 

mathematical investigations of set theory and apparently avoids the seman- 

1) Such “relatively small” sets are the Cantorian and the strictly Cantorian sets - see 

Rosser 53, pp. 347, 486. 

2) Quine 63, p. 296. 

3) Specker 5 3, or cf. Quine 63, p. 299. 
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tical antinomies, but it is of no advantage to a mathematician who is not 

interested in the metamathematics of set theory and who is not worried 

about the semantical antinomies. The same remarks apply also to the theory 

QM (p. 138) which admits sets and classes. The reason why such a casual 

consideration of the language is tenable is because the axiom schemata of ZF 

and QM admit all formulae of the language (up to a natural restriction neces¬ 

sary in order to avoid the use of one variable for different things) and that 

even the use of reasonable stronger languages does not seem to endanger the 

consistency of those systems. On the other hand, in NF it is essential that the 

language be explicitly specified, since we have to be able to tell which for¬ 

mulae are stratified in order to know which applications of the axiom schema 

of comprehension are admissible in NF. For this purpose one has also to keep 

track of the status, with respect to stratification, of all the new operation and 

relation symbols which are defined in set theory. This puts a considerable 

burden on a mathematician to whom this bookkeeping does not seem related 

at all to the subject matter studied by him. We already voiced such criticism 

(on p. 139) with respect to the system VNB but it applies still more 
in the present case since there are few branches of mathematics in which 

formulae with bounded class variables would be used, while unstratified for¬ 

mulae are used much more often. 
The practical difficulty of getting a mathematical rather than a syntactical 

criterion as to which instances of the axiom of comprehension are admissible 

in NF has been somewhat eased by the “model” of Specker 1), which we 
shall now describe. Let TS be the system obtained from the type theory T by 

adding to it a unary operation symbol / and the following axiom schema 

winch asserts that / is an automorphism of the universe which for every i 

maps the objects of level i on the objects of level i + 1. 

(*) v/+13xi(f(x‘)=yi+l) A Vx' V/(x'=/ =/(/)) 

a vx‘V+Ve/+1 —/(x')e/(/+1)) 

The rules for computing the level of a term are such that if the level of a term 

t is j then the level of f(t) is /+1, e ,g„ the levels of fix1), f(yi+1), and /(/(*')) are 

i+l, i+2 and, i+2, respectively. Thus the axiom (*) does indeed satisfy the 

formation rules of type theory. In TS, formulae q(x') in which the symbol 

/ occurs are not allowed in the axiom schema of comprehension of type 

theory (p.158). The system TS is a “model” of NF in the sense that if q is any 

1) Specker 58 and 62. 
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sentence of the language of NF, and \p is a sentence of the language of TS 

obtained from 1/3 by putting level superscripts on the variables and by apply¬ 

ing the symbol / any number of times to the different occurrences of the 

variables (ip has, of course, to satisfy the formation rules of type theory), 

then y is a theorem of NF if and only if i// is a theorem of TS. TS is somewhat 

easier to work with than NF, at least to mathematicians used to ZF, since the 

restrictions on the use of its axiom of comprehension are simpler and more 

natural than those of NF; in TS, formulae used in the axiom of comprehen¬ 

sion, as well as all other formulae, have to satisfy the formation rules of type 

theory but, unlike stratification, those formation rules are very natural in the 

context of type theory. 

When we come to ask whether NF is at all consistent, we notice first that, 

by Godel’s theorem on consistency proofs (Chapter V, p. 313) if NF is con¬ 

sistent then we cannot expect to find a proof of the consistency of NF which 

uses no means beyond those of NF and, a fortiori, we cannot find such a 

proof which uses only the means of Peano’s number theory. Therefore we 

have to look for a proof of the consistency of NF in some set theory such as 

ZF, or to look for a possibly Unitary proof (Chapter V, p. 305) that if some 

set theory, say ZF, is consistent then so is NF. Nothing of the kind has been 

found yet, and the search for such a proof is still a major task of the meta¬ 

mathematics of set theory. As a consequence of this state of affairs and 

because of the lack of a clear mental image of NF as a set theory, one cannot 

take the consistency of NF for granted. A little light is shed on the question 

of the consistency of NF by noticing that the following is an immediate 

corollary of what was said above concerning the provability of y and i// in NF 

and TS. If we take for ip a sentence ip' v ~1 \p , then we can take \Jj to be of the 

form \p' a "1 t//, and we get that NF is consistent if and only if TS is. This does 

not establish the consistency of NF since we do not know whether TS is 

consistent, but it somewhat increases our confidence in the consistency of 

NF since, if NF and TS were both inconsistent, one could expect that a 

contradiction would be exhibited faster in TS, TS being a more natural theo¬ 

ry from a mathematical point of view 1). 

Let us close with a few remarks concerning individuals in NF. Quine chose 

to introduce individuals as sets* which are equal to their singleton,{x}. If NF 

is consistent then it remains consistent when one adds to it an axiom asserting 
that there are no individuals as well as when one adds to it an axiom asserting 

1) An investigation of the consistency of NF, from a different angle, is carried out in 
GriSin 69. 
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that there is at least one such individual 1). Quine chose to introduce indi¬ 
viduals in this way, rather than in the straightforward way used in the previous 

chapter 2), for reasons of syntactic elegance 3); in particular, he wanted to 
retain the full axiom of extensionality. As it turned out, the effects of this 

choice go far beyond questions of elegance; if Quine were to formulate NF so 

as to allow individuals which do not coincide with their singletons, and if he, 

consequently, changed the axiom of extensionality, he would get a much 

weaker theory NF' in which, unlike NF, the existence of infinite sets could 

not be proved and which, again unlike NF, can be shown to be consistent by 

a proof which uses no means beyond those of Peano’s number theory 4). 

§4. QUINE’S MATHEMATICAL LOGIC 

NF served as a basis for the formulation of another system of set theory 

by Quine in his book Mathematical Logic 5). This system, too, became 

known by the name of the book; we shall denote our version of it by ML. In 

ML, Quine follows von Neumann 6) in distinguishing between classes which 

can be members of classes, and are therefore called elements, and classes 

which cannot be members of classes. Since we want to compare ML with the 
other set theories which we have discussed, and in particular with NF, we 

shall refer to the elements as sets and to the classes which are not elements as 

proper classes', as in Chapter II, § 7, we shall use capital letters for class 

variables and small letters for set variables. The difference between the 

system G (or VNB) of Chapter II and ML is that in the former system the 

sets behave as they behave in NF. The axioms of ML are 

THE AXIOM OF EXTENSIONALITY, 

VA VB[\/x(xEA *->xEB)^A=B], 

THE AXIOM OF COMPREHENSION BY A SET, 

( ) 3yVx (x Ey *-» </?(x)) , 

1) Scott 62. 

2) See footnote 1 on p. 30. 

3) Quine 63, pp. 31-33. 

4) Jensen 69. 

5) Quine 51. 

6) See system G of Chapter II, § 7.4. 
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where y(x) is any stratified formula with set variables only, in which y does 

not occur free 1), and 

THE AXIOM OF IMPREDICATIVE COMPREHENSION BY A CLASS, 

() 3m(xer^^x)), 

where \p(x) is any formula in whichy does not occur free. 
The axiom of impredicative comprehension by a class is exactly Axiom 

XI1 of impredicative comprehension for classes of QM (p. 138). When we 

compare both axioms of comprehension of ML, we see that stratified for¬ 

mulae which mention only sets determine sets, whereas arbitrary formulae 

determine classes. In VNB it is exactly the “small” classes which are sets, but 

this is not the case here. The largest class of them all, viz. the universal class, 

is a set since it is determined by the stratified formula x=x. The class of all 

sets jc which are not members of themselves, which is a subclass of the 

universal set, is a proper class, as can be easily shown by repeating the argu¬ 

ment of Russell’s antinomy. The property of being a proper class is not even 
necessarily confined to large classes — even the class of all natural numbers 

(according to its usual definition in ML) cannot be shown to be a set 2). 

The axioms of NF, written with set variables, are obviously theorems of 

ML — the axiom of extensionality of NF follows directly from the corre¬ 

sponding axiom of ML, the axiom of comprehension of NF coincides with 

the axiom of comprehension by a set of ML. These are the only facts about 

sets mentioned in the axioms of ML; in addition to these the axioms of ML 

consist of that “part” of the axiom of extensionality which concerns proper 

classes, and this part can be essentially regarded as a definition of equality (p. 

122), and of the axiom of comprehension by a class, which says nothing 

about the existence of sets. As a consequence one can prove that if (S is any 

statement containing set variables only, then 0 is a theorem of M L if and only 

if it is a theorem of NF. In particular, by choosing for 0 a contradictory 
statement we get that M L is consistent if and only if N F is. The proof of this is 

similar to the proof that the corresponding relationship holds between the 

1) In 1940, in the first edition of Quine 51, Quine permitted also bound class vari¬ 

ables in ifix). That version of ML was shown to be inconsistent by Rosser 42 and 

Lyndon , since it implies the Burali-Forti paradox; in that system one can, essentially, 

carry out transfinite induction for the property (a) of p. 163 and of footnote 3 on that 

page. The present version of this axiom is due to Wang 50a. 

2) Rosser 5 2. 
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set theories VNB and ZF, given in the previous chapter (pp. 131 — 132) '). 

Notice that this relationship holds only between ZF and VNB, VNB having 

only an axiom of predicative comprehension by a class, but fails to hold 

between ZF and QM, QM having an axiom of impredicative comprehension 

by a class. This relationship holds between NF and ML, even though ML 

contains an axiom of impredicative comprehension by a class, for the follow¬ 

ing reason. In QM we can prove statements 3of ZF which cannot be proved 

in ZF, by first using the axiom of impredicative comprehension by a class to 

obtain certain classes and then using those classes in the axiom of subsets 

(Vc) to obtain certain sets. Nothing of the kind is possible in ML which has 

no axiom like the axiom of replacement (VIIC) which makes the existence of 

sets depend on the existence of classes. This feature of ML, which guarantees 

the consistency of ML if NF is consistent, is not an unmixed blessing. It is 

just the absence from ML of such axioms that casts serious doubts on the role 

of the classes in ML. If the proper classes do not affect the sets at all, perhaps 

one could do without proper classes at all? 

Starting from his system NF, Quine went on to propose ML and develop 
it. He was motivated, to a large extent, by the lack of full mathematical 

induction in NF 1 2). In ML, full mathematical induction is-available, but at a 

very high price. When we recall that every statement© which contains only 

set variables and which is a theorem of ML is also a theorem of NF, we see 

immediately that for the notion of natural number of NF, or for any other 

notion of natural number definable in NF, we cannot have full mathematical 

induction in ML unless we already had it in NF. Thus if we expect ML to help 

us with induction we must use in ML a notion of natural number unavailable 

in NF. Naturally, we take the natural numbers of ML to be sets rather than 

proper classes. The formula N(x) of ML which asserts that x is a natural 

number will contain quantifiers over class variables (since otherwise N(x) 

would have been available already in NF). Let us denote by NJ(x) the formula 

of NF which asserts that x is a natural number in the sense of NF. The 

1) Wang 50a, or Rosser 55, pp. 45-47. The only difference is that now we define all 

subsets of u to be model-classes. If ML is consistent, we cannot expect to obtain a 

method which directly produces a proof of S in NF from a proof of 2 in ML, as we had 

for VNB and ZF on p. 132 and in footnote 2 on the same page; if what we mentioned 

here about the provability of 6 in ML and NF were provable even in the theory of 

natural and real numbers (i.e., in second order number theory) then it would be provable 

also in ML, and we would obtain that ML is inconsistent, as in footnote 4 on p. 170. 

2) Quine 55, p. 165 and Quine 63, p. 300. As a consequence ML is not finitely 

axiomatizable (the proof of this is like the proof, in footnote 4 of p. 139, that QM is not 

finitely axiomatizable). 
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relationship between N(x) and NT(x) is that N(x) implies Nf(x) in ML but 

N'(x) does not imply N(x) in ML ') (unless ML is inconsistent). Thus, in ML 

we use a notion of natural number which is possibly more restricted than that 

of NF. 
Since N(x) contains quantifiers over class variables we cannot use the 

axiom of comprehension by a set to prove that the class {xjN(x)} of all 

natural numbers is a set; indeed, if ML is consistent, this class cannot be 

shown in ML to be a set 1 2). This makes N(x) a very poor formal counterpart 

of the intuitive notion of natural numbers. From a conceptual point of view, 

having two kinds of collections — sets and proper classes — can be tolerated 

as long as all the collections which play an active role in mathematics are sets, 

while only very large, or otherwise exceptional, collections are proper classes. 

The collection of all natural numbers is so central in the development of 

mathematics that it must be a set in any set theory worth its name. This state 

of affairs in ML is a drawback not only from the conceptual point of view. 

Even though ML includes the set theory NF, which is a fairly strong set 

theory in certain respects, nothing of the machinery of NF can be applied to 

the class (x|N(x)} of all the natural numbers of ML. Thus, while one can 

define real numbers in ML as classes and develop the arithmetic of real 

numbers 3), this is done in exactly the same way as one develops the theory 

of real numbers in second-order number theory, and is completely divorced 

of the “set theoretic” part of ML. As a consequence, not even the theory of 

real functions can be developed in ML 4). 

These drawbacks can be overcome in two different ways. First, one can 

strengthen ML by some additional axioms 5), in particular, by an axiom 

which asserts that the class (x|N(x)} is a set. Thus strengthened, ML does 

indeed become a reasonably strong set theory in which we can develop at 

1) Cf. the next footnote. 

2) Rosser 52, p. 241. This proves, of course, that N(x) is not equivalent in ML to any 

stratified formula which contains only set variables. In Quine’s original 1940 version of 

ML, {x IN(x)} is directly shown to be a set, but that version is, alas, inconsistent. 

3) Quine 55, § §51-52. 

4) Let us denote by Con(NF) and Con(ML) some arithmetical statements which 

assert, in a natural way, the consistency of NF and that of ML, respectively. We men¬ 

tioned on the previous page and in the first footnote there Wang’s proof of Con(NF)->- 

Con(ML). That proof can be carried out m the theory of real functions (i.e., in third-order 

number theory); however, as we shall see, if ML is consistent then Con(NF) -» Con(ML) 

is not a theorem of ML. By a theorem of Wang (Rosser 52, Lemma 2), Con(NF) is a the¬ 

orem of ML; if one could also prove Con(NF) ->■ Con(ML) in ML then one could prove 

Con(ML) in ML which by Godel’s theorem on consistency proofs (p. 313) would mean 
that ML is inconsistent. 

5) Orey 55 and 56. 
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least as much of classical mathematics as can be developed in the type theory 

T*. However, if one recalls that ML was proposed as an improvement of NF 

because ML has full-fledged mathematical induction whereas NF has induc¬ 

tion for stratified formulae only, one may prefer to stick to NF since, once 

one starts adjoining to ML axioms as mentioned, one might as well add an 

axiom of full mathematical induction to NF. On p. 164 we voiced some 
criticism against adding new axioms to NF — the same criticism also applies 

to ML. The second cure to the maladies of ML, to be adopted by whoever 

prefers not to add axioms to ML, is to retreat, i.e., to abandon the definition 

N(x) of the notion of natural numbers in favor of the definition N'(x) used in 

NF. With the latter definition we can develop in ML all the classical mathem¬ 

atics one can develop in NF, but we have mathematical induction restricted 

to stratified formulae which contain set variables only. 

Finally, let us remark that in the set theories with classes discussed in the 

previous chapter we had two kinds of collections — sets, which are the collec¬ 

tions which play an active role in mathematics, and proper classes. We had a 

somewhat similar distinction in NF between the “relatively small” sets and 

the “relatively large” sets. In ML, even if strengthened by additional axioms, 

we have a threefold classification - relatively small sets, relatively large sets, 

and proper classes. While the main advantage of NF over ZF lies in the 

elegance of its axioms, ML, like NF, does not allow a simple and troublefree 

development of mathematics, without sharing this elegance. 

§5. THE HIERARCHY OF LANGUAGES AND 

THE RAMIFIED CLASS CALCULUS 

Before we turn to the presentation and discussion of the other trend 

noticeable in the type-theoretical approach, and as a partial preparation for 

this discussion, let us deal with a question which must have by long arisen in 

the mind of the careful reader: type hierarchies and stratification seem to 

work well enough for the avoidance of the logical antinomies, but what about 

the semantic antinomies? Indeed, it seems on first sight as if a Richard-type 

antinomy can be derived within a calculus embodying a type rule. For the 

purpose of descriptional simplicity, let us choose for illustration not the 

calculus T treated before, but a certain variant P which has natural numbers 

as individuals (rather than as certain classes of classes) and a few more axioms 

corresponding to the well-known Peano axioms for the arithmetic of natural 

numbers (p. 48, footnote 1); the reader will easily verify that the transition to 
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this variant is not essential for the validity of the following argument but 

only serves to simplify it considerably. There are in P denumerably many 

expressions determining classes of natural numbers. Let these classes be 

enumerated as, say, r\, r\, r\, ...; then the axiom of comprehension seems to 

ensure the existence of a class, say r\, that contains all and only those natural 
^ 11 

numbers n that do not belong to the class r„. Lq, being a class of natural num¬ 

bers determined by a well-formed expression, must be identical with some r\, 

say rjn. What about the relation between m and r)nl If m belongs to rjn, then 

from the identity of j-q and rjn and the definition of rq it follows that m does 

not belong to r)n; if m does not belong to rjn, it belongs by definition to Tq, 

hence to r*7 . The responsibility for this contradiction cannot be charged to a 

violation of the type rule. 
It can however be argued, and has been argued, that the condition ‘nGr'’ 

playing a decisive role in the above argument cannot really be formulated in 

the language of P. V*’ is short for ‘the n-th class of natural numbers deter¬ 

mined by expressions of P (according to some enumeration)’, hence is not (an 

abbreviation for) an expression of P itself but rather of the metalanguage of 

P. Strict adherence to the distinction between object-language and metalan¬ 

guage is enough to remove the ground from under the argumentation leading 

up to Richard’s antinomy (and the other semantic antinomies). By imple¬ 

menting the hierarchy of levels within one language by a hierarchy of lan¬ 

guages *), the last threats presented by the classical antinomies seem to have 

been successfully repulsed. 

Once more, there is a price to be paid for this success. The strict distinc¬ 

tion between the language layers looks counter-intuitive to many thinkers, to 

about the same degree as the strict distinction between the levels. In addition, 

the question must be raised whether the layering of languages excludes the 

detrimental possibility that a given object-language might contain expressions 

which — though not identical with metalinguistic expression — would still 

stand in some kind of isomorphic correspondence to them, thereby allowing 

for reestablishment of the semantic antinomies, if only in a roundabout way. 

This is a very serious possibility indeed, and in Chapter V the subject will be 
taken up again. 

Yet, if one wants to make sure that the semantic antinomies do not turn 

up in a roundabout way, one can use a different implementation of the type 

hierarchy considered so far. We recall that the “Richardian” class of natural 

1) This insight, prepared by Ramsey’s distinction between the logical and the “episte¬ 

mological” antinomies and Hilbert’s distinction between mathematics and metamathe¬ 

matics, is due mainly to Tarski; see Tarski 56, VIII. Cf. also Carnap 37, pp. 211 ff. 
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numbers was determined through reference to a totality, i.e. the totality of all 

such classes determined by expressions of P, of which it turned out to be a 

member itself. There have been, and still are, quite a few thinkers who regard 

such a type of determination, if “essential”, i.e. not replaceable by a deter¬ 

mination not exhibiting this feature '), as illicit, since viciously circular. No 

object, they would say, should be regarded as belonging to a certain totality if 

the very existence of this object can be shown only by the use of an expres¬ 

sion referring to that totality. By outlawing expressions purporting to refer to 

such over-inclusive totalities as the totality of all expressions, an illicit appli¬ 

cation of the axiom of comprehension can be avoided and the existence of 

the “Richardian” class and other antinomic classes no more proved. This aim 

can be achieved, e.g., by changing the language of T, to which calculus we 

now return after P has served its purpose, such that each variable will have to 

carry along with it not one but two indices, one, say a right superscript, 

indicating its level as before, the other, say a left superscript, indicating its 

“order”. The formulation of the axiom of comprehension is now changed to: 

If the highest order-index of any bound variable of level i + 1 occurring 

in ‘i^x')’ is j then 

() 3/+y+i vv (w+y+l ^(V)) 
(the order-index of V+1, being 1, if no such bound variable occurs in 

VCx)’ altogether). 

In the resulting ramified class-calculus, RT, the semantical antinomies are 

indeed eliminated. Trying to reproduce, e.g., the argumentation leading up to 

Richard’s antinomy we are immediately impressed by the fact that no longer 

does there exist in RT a counterpart for ‘for all classes of natural numbers of 

level f but only for ‘for all classes of natural numbers of level / and order k\ 

Forming the Richardian (class) corresponding to an enumeration of the 

classes of natural numbers of order k determined by the formulae of RT, we 
notice that its order is £+1, so that we no longer have any right to claim that 

it is identical with one of the classes of order k. 

The arguments which we have just given show that the semantical anti¬ 

nomies cannot be directly reproduced in RT. Moreover, the semantical anti¬ 

nomies, or any other antinomy, cannot even turn up indirectly in RT since 

1) This is the type of determination that is known as “impredicative”. Cf. Chapter II, 

p. 38 and below, § 10. 
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the consistency of this calculus is demonstrable (from certain relatively weak 

assumptions) 1). However, as might be expected, this very desirable trait has 

its price. On the basis of RT only a fraction of classical mathematics can be 

reconstructed. This will be easily understood, without our having to delve 

into details, as soon as we notice, e.g., that the least upper bound of a class of 

real numbers, constructed in RT in any natural way, is of an order higher 

than these real numbers 2). 
In order to counterbalance the deplorable loss of strength incurred by the 

ramification, one could stipulate an axiom of reducibility whose effect would 

be to ensure, corresponding to each class of a certain level and any order, the 

existence of a class of the same level and order 1 containing the same mem¬ 

bers as that class. These two classes would nevertheless not be regarded as 

identical since otherwise the effect of the introduction of the axiom of red¬ 

ucibility would be nothing but the exact cancellation of the ramification; but 

any two classes containing the same members are identical, according to the 

axiom of extensionality. This axiom would then have to be sacrificed. This, 

however, would now have repercussions of its own, which we shall not pursue 

here any further 3). 

1) Such a demonstration has been given many times, both model-theoretically, as in 

Fitch 38, and proof-theoretically, as in Lorenzen 51 and Schutte 52. For these two 

methods of consistency proofs, see Chapter V, §4. 

2) This difficulty was discussed already by Weyl 18, p. 23. 

3) Cf. below, p. 204. The situation concerning the axiom of reducibility is still quite 

confusing. The objection raised by Ramsey, Waismann and others, as if this axiom were 

of an empirical character rather than of a logical one, hence if true only factually so and, 

so to speak, by lucky coincidence — recalling a similar criticism against the axiom of 

infinity (see below, p. 185) - seems to have little justification. As a matter of fact, the 

axiom of reducibility is incomparably weaker than the unresticted axiom of comprehen¬ 

sion in the ideal calculus; this last axiom, however, is rejected by intuitionists and other 

constructivist authors not because it is regarded as empirically false or doubtful but 

because its acceptance does not square with a constructivist attitude. For a Platonist, the 

axiom of reducibility is no less logical than the axiom of comprehension, and if he 

rejects either or both, it is done because the logical system incorporating them is either 

contradictory or in some other sense inefficient. In an appropriate metalanguage, the 

logical character (“analyticity”) of the axiom of reducibility is easily demonstrable. See 

especially Quine 36, Copi 50, Church 51, Copi 54 (Appendix B) and Church 56, pp. 

354-356. 

Altogether, the real choice, as many have observed, seems to be between the simple 

theory of types, appealing to the Platonist, and the ramified theory without the axiom 

of reducibility, appealing to the constructivist. The latter has then the choice between 

the “heroic”, or rather, “quixotic” course taken in the twenties by Chwistek, for in¬ 

stance, of countenancing finite types only and being therefore obliged to sacrifice large 

parts of classical analysis, or working with types of transfinite order, in the line of Wang 

and Lorenzen to be discussed in the following sections. 
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The ramified calculus can be credited with being a forerunner of Godel’s 

notion of constructibility, which plays such an important role in the meta¬ 

mathematics of set theory (see pp. 60 and 108ff) 1). In introducing the 

constructive sets, only the notion of order is retained, while the notion of 

level is not used. 

§6. WANG’S SYSTEM 2 

Reinforcing ramified type theory through an axiom of reducibility never 

enjoyed much popularity, and is now generally regarded to have led into a 

blind alley. Ramified type theory as such, however, seems to be undergoing a 

process of rejuvenation at the hands of such able logicians as Wang and 
Lorenzen. It is not so much its capability of eliminating the semantic antinomies 

which makes it so attractive — this aim can be attained more simply through 

the method of language hierarchies outlined above — as its connection with a 

“constructivist” philosophy of mathematics. Postponing the philosophical 

discussion let us turn to the presentation of a system that aims at preserving 

the desirable features of a ramified type theory but avoids its undesirable 

traits without recourse to such dubious means as an axiom of reducibility. 

The major point of this system is that it restores to a sufficiently high degree 

the freedom of use of such phrases as ‘for all real numbers’ instead of the 
awkward ‘for all real numbers of order /’. The system we are going to present, 

Hao Wang’s system 2, exists so far only in outline 2) but this outline looks so 

interesting that at least a short discussion is indicated. 
The hierarchy of objects in 2 differs in many respects from that of RT. First, 

the messy two-dimensional array of RT is replaced by a one-dimensional 

array that manages to combine the level and order distinctions through allow¬ 

ing for “mixing of types”. The lowest (or 0-th) layer - we shall use this term 

instead of Wang’s own ‘order’ so as to keep it apart from the “orders” of RT 

- consists of some denumerable totality of objects (which may be taken to 

be, for instance, the positive integers or all the finite sets built up from the 

empty set). The first layer contains all the objects of the 0-th layer and, in 

addition, all those sets of these objects which correspond to conditions that 

contain no bound variables ranging over objects of the first or higher layers; in 

general, the «+l-st layer contains all the objects of the /?-th layer together with 

all such sets of these objects as are determined by conditions whose 

1) For this relationship, see Godel 38 and 44. 

2) Wang 54. 
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bound variables range over objects of the n-th layer at most. We have here a 

combination of a conception of cumulative layers 1 2) according to which all 

objects of a certain layer belong also to all higher layers — a rather serious 

deviation from the more customary conception of exclusive layers — with a 

strict embodiment of the vicious-circle principle 2), according to which no 

entity determined by a condition that refers to a certain totality should 

belong to this totality. For any two objects, there exists therefore a layer 

(hence, infinitely many ones) to which they both belong; the lowest layers, on 

the other hand, to which they belong separately may of course be different. 
Secondly, the hierarchy of layers is continued beyond the finite 

ordinals 3). Layer gj, for instance, is the union of all finite layers, and layer 

co + 1 contains, in addition, also such sets as are determined by conditions 

whose bound variables range over the objects of layer co at most. Attempts to 

extend the type hierarchy beyond the finite ordinals were made before 4), 

but in Wang’s system this device is exploited to its utmost. Though the naive 

freedom of expression is not yet fully restored by it and expressions corre¬ 

sponding to ‘for all real numbers’ are still not reestablished, we are already 

entitled to use ‘for all real numbers of finite layers’, though only from the 

partial system Sw+1 onwards, that deals with the entities of layer co, and not 

in any system with lower index. That this is indeed a far-going improvement 

can be realized from the fact, for instance, that the least upper bound of a set 

of real numbers that belong to layer n is, in general, an entity that belongs to 

layer n + 1, hence different from all these numbers, according to the vicious- 

circle principle and the exclusive-layer conception; in Wang’s system, how¬ 

ever, the original real numbers and the upper bound of their set do belong to 

a common layer, indeed to all layers from n + 1 upwards. This clears the 

ground for a proof of the least upper bound theorem pretty much along the 

traditional lines. And the situation is similar with respect to other basic 

theorems in analysis, such as the Bolzano-Weierstrass and the Heine-Borel 

theorems that proved to be stubborn obstacles in the way of any construc¬ 

tivist reconstruction of analysis. 

Wang also forms the union, 2, of all the partial systems 2a, where a is any 

1) The conception of cumulative layers (or orders) is not original with Wang. Cf., e.g., 

Quine 53, p. 123. 

2) For an especially penetrating discussion of this principle, see Godel 44, pp. 133 ff. 

3) Whitehead and Russell explicitly reject this procedure though their reasons are 

none too convincing. See Whitehead-Russell 10-13 I, p. 53. 

4) See, e.g., L’Abbe' 53, especially footnotes 2, 3, 4 and 15 in which the relevant 

literature is referred to; cf. Andrews 65. The set theory ZF itself is viewed by many 

logicians as an extension of type theory beyond the layer u> - see, e.g. Kreisel 65. 
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“constructive'’ ordinal of the second number class, but this procedure raises 

many moot questions with regard to the exact characterization of the term 

‘constructive’ in this context as well as with regard to the legitimacy of this 

procedure in general; these questions will not be discussed here. It is clear, 

however, and admitted by Wang, that 2 itself is no more a formal theory in 

the sense in which its partial systems 2a are. 
With this proviso in mind, we shall now describe the structure of 2 in 

outline. 2 is based on standard predicate calculus, meant to hold for entities 

of any layer. It seems that Wang intends to regard all entities as sets — as in 

the axiomatization of Chapter II - since he defines identity in terms of equal 

extension. (But he might also have in mind an adaptation of Quine’s treat¬ 

ment described above.) Leibniz’ principle is then taken as an axiom, in an 

appropriate form. Wang claims that all the sets of layer a are enumerable by a 

function Ea (i.e. a certain relation, hence a certain set - cf. p. 43) of layer 

a + 2, that a truth definition for 2a can be formulated in 2a+2, and that the 

consistency of 2a can be proved in 2a+2. (The transition to a + 2 comes 

about through the fact that in these definitions and proofs sets have to be 

used that correspond to formulae which contain bound variables ranging over 

entities of layer a + 1.) All sets of any subsystem 2a of 2 are therefore 

enumerable in some other subsystem of 2, and the consistency of each sub¬ 

system provable within some other subsystem, hence - in a sense which does 

not yet seem to be quite clear — all the sets of 2 are enumerable in 2 and the 

consistency of 2 provable in 2 itself; the Godel method of constructing 

undecidable statements (see Chapter V) is not directly applicable to 2. All 

this is achieved with the help of powerful axioms of limitation whose effect is 

to ensure that there are no entities in 2 except those enumerated by the 

functions Ea. Since the functions Ea, by enumerating all the entities of layer 

a, automatically well-order them, certain theorems corresponding to the 

axiom of choice are provable in 2. The continuum hypothesis, at any rate, is 

not independent of the other axioms but becomes either provable or refut¬ 

able, according to whether the equinumerosity between sets of layer a is 

defined by the existence of a one-one mapping (cf. p. 44) between these sets 

within 2a+2 (or higher layers) or within 2a itself. 
It is probably advisable to postpone judgment on the system 2 until a 

more detailed and rigorous exposition is available. But the partial system 

^cj + 1 is interesting on lts own account and looks indeed promising enough. 
True, many of the attractive (but also perhaps treachorous) features of 2, 

such as the inclusion of its own consistency proof, the immunity towards 

Godel’s incompleteness arguments, and — lor some thinkers at least — the 

enumerability of all its sets, do not hold for 2^+^but 2W+| seems, on the 
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other hand, to be quite sufficient as a foundation for large parts of analysis, 

with additional parts becoming reconstructible in, say, 2w2+| or 

Whereas is roughly equivalent to a ramified class-calculus (without an 

axiom of reducibility) J) - neither containing full-fledged counterparts of 

such decisive phrases as ‘for all real numbers of finite order’ — 2W+1, by 

containing bound variables ranging over all entities of layer co, i.e. over all 

entities of any finite layer, allows for the formulation of just such counter¬ 

parts and therefore takes care of all those procedures for the smooth opera¬ 

tion of which the axiom of reducibility was introduced. Whereas, however, 

the axiom of reducibility all but destroys the constructive character of the 

ramified class-calculus, this character is completely preserved in 2^ + j, there¬ 

by enabling Wang to present the outlines of a model-theoretic consistency 

proof similar to that given by Fitch 1 2) for the ramified class-calculus. Inciden¬ 

tally, Wang also claims to be able to give a proof-theoretic consistency proof 

for 20J + 1 (as well as for any partial 2a) analogous to those given by Loren- 

zen and Schutte 2) for the ramified class-calculus. 

And here we come to the one immediately apparent drawback of 2^+j 

(and of 2), if indeed a drawback it is: Cantor’s theorem (77 p. 70), according 

to which - among other things — the power-set of a denumerable set contains 

absolutely more members than this set, is not valid, and we saw that, on the 

contrary, any infinite sets can be enumerated in an appropriate partial system 

of 2. That part of Cantor’s theory which countenances indenumerable sets is 

thrown overboard, as a consequence of the repudiation of certain formulae 

which play a decisive role in the proof of this theorem, though his theory of 

transfinite ordinals (at least within the second number class and perhaps only 

insofar as they are “constructive”) is kept intact. However, there is a number 

of mathematicians and logicians who would not regard this consequence as a 

serious loss and would even welcome it as materializing their constructivist 

intuitions. If the price for providing mathematics with sound foundations is 

no more than renouncing a certain part of the paradise into which Cantor had 

led the mathematicians at the end of the 19th century, then some thinkers 

would not regard this price as too high 3). 

1) As is the essentially equivalent system Lu of Quine 53, pp. 124 ff. 

2) See footnote 1 on p. 174. 

3) A good semi-formal description of Wang’s system is given in Stegmiiller 56-57, 

pp. 66 ff. 
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§7. LORENZEN’S OPERATIONIST SYSTEM 

Wang's approach is admittedly strongly influenced by that of Lorenzen 

who in the early fifties developed his own version of constructivism in the 

foundations of mathematics. Lorenzen’s work culminated in a book Ein- 

fiihrung in die operative Logik und Mathematik 1), published in 1955. As 

evident from the title, Lorenzen now uses the adjective ‘operationist’ - 

probably the most adequate English rendering of the German term ‘'operativ' 

- in addition to the adjective ‘constructivist’. This is more than a mere verbal 

matter. According to Lorenzen, ‘contructivist’ in mathematics should be re¬ 

served for those methodological attitudes that insist on restricting their in¬ 

vestigations to the effectively calculable or describable, whereas ‘operationist’ 

indicates rather that the entities investigated are schematic operations. (There 

exists therefore a connection with the “operational” methodology of Bridg¬ 

man 1 2) and an ever closer contact with Dtngler’s 3 ) views.) For Lorenzen, 

the main (though not the only) subject of mathematics is the treatment of 

calculi — this should by no means be misunderstood as a claim that mathe¬ 

matics is a calculus, which Lorenzen would very definitely reject — where a 

calculus is understood to be a system of rules for schematic operations with 

figures, which may but need not be marks on paper; they might as well be 

pebbles (calculi) or any other physical objects. In addition to this precisifica- 

tion of the subject-matter of mathematics — and only slightly connected with 

it — Lorenzen stipulates that the methodical frame be as wide as compatible 

with the conditio sine qua non that all mathematical statements be definite. 

Due to the fact that Lorenzen — who in this respect shows a certain affinity 

to intuitionistic thinking (Chapter IV) - cares little for exact formalization, 

insisting that precisification is by no means identical with axiomatization or 

formalization, the exact meaning of this central term is not altogether clear. 

It certainly has nothing to do with the term ‘definite’ as used by Zermelo 

(p. 36) and is clearly wider than the term ‘definite’ as used by Carnap 4). In 

Carnap’s usage, a statement containing a regular (unlimited, or unrestricted) 

quantifier, such as V*<\p(x)\ is indefinite - and so is a language whose rules 

of formation allow for such sign-sequences as the formulae of the ideal calcu¬ 

lus — whereas it is definite in Lorenzen’s usage, more precisely refutation- 

1) Lorenzen 55; 62 and 65 contain simplifications in the foundations of logic and 

analysis, respectively. 

2) Bridgman 27. 

3) Dingier 13, 31a. 

4) For details, see Carnap 37, p. 45 and pp. 160 ff. 
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definite (widerlegimgsdefin.it), on condition that VO*)’ is definite, and this 

because ‘Vjop(xf is refutable through a derivation of an instance of 

being a derivation is a definite characteristic, since it is decidable through the 

performance of schematic operations on the figures that make up the lines of 

the derivation. 

Lorenzen’s system is then much more liberal than constructivist systems of 

the most rigorous brand that either contain no quantifiers at all or, at most, 

only limited quantifiers *) in which quantified statements with a constant 

limit are equivalent to conjunctions or disjunctions, respectively, of finite 

length. Nevertheless, it still excludes impredicative concept formations. The 

limitations thereby imposed are overcome, just as with Wang, by a utilization 

of the transfinite layers 1 2). Lorenzen, however, is able to go into much 

greater details in the justification of his hope that almost all of classical 

analysis will remain essentially intact, though certain reformulations will be 

required. Absolutely indenumerable sets don’t exist any more, of course; in 

those mathematical fields, such as topology or the theory of integration 

(Lebesgue measure theory is an immediate example), where the contrast: 

denumerable — indenumerable seems to play a decisive role, the contrast: 

primary — secondary — where a set is called primary’ if it belongs to a layer 

whose index is less than some arbitrary limit-number 9 j and secondary if the 

index of the smallest layer to which it belongs is greater than 9 \ but less than 

some other fixed (non-problematic, i.e. “constructive”) limit-number d2 - 

can in general serve as a satisfactory substitute. However, should it turn out 

that certain classical theorems will not be reproducible on the operationist 

basis, there remains the possibility of paying serious heed to the words of 

Skolem: “We ought not to regard all that’s written in the traditional text¬ 

books as something sacred”. 

The logic of dealing with schematic operations turns out to be the intui- 

tionistic logic (Chapter IV) in which the tertium non datur is not generally 

valid. By adding this law to the effective predicate calculus, Lorenzen gets the 

“fictional” predicate calculus, corresponding to classical functional logic. 

For the justification of this transition, Lorenzen uses an argumentation which 

is strongly related to the ideas developed by van Dantzig in connection with 

the so-called stable statements 3). 

The tact that Wang and Lorenzen, starting from quite different back- 

1) l.e., quantiiiers of the form for alt [some] x up to y*. For a theory of the 

generalized notion of restricted quantification, see Hailperin 57. 

2) These, however, are no longer needed in Lorenzen 65. 

3) van Dantzig 47. 
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grounds, the one from a Russell-Zermelo tradition, the other from a construc¬ 

tivist Hilbertism (Chapter V), converge to systems which have so much in 

common cannot but bring their streamlined version of the ramified type 

theory back into the race. The old animadversions against this theory do not 

hold any more. 

§8. THE LOGICISTIC THESIS 

Though we might have thought that metaphysical considerations should be 

of no relevance to the problem of providing a secure foundation for set 

theory (or mathematics in general), so long as one judges by what logicians 

and mathematicians say about this problem, this is definitely not so. Let us 

pause for a while to see this at some detail. 

Metaphysical convictions certainly make no difference — with the possible 

exception of some very tough-minded intuitionists — for the application of 

mathematics to science and technology. No director of research in some 

industrial outfit would inquire into the metaphysical beliefs of the mathema¬ 

tician he is about to hire. There seems to exist no correlation between these 

beliefs and the performances in which the director of research is interested. In 

the attempt to solve some set of differential equations, all mathematicians 

will peacefully cooperate though they might thereafter, during a lunch hour 

conversation, disagree violently about “the nature of mathematics”. We make 

these commonplace observations, not in order to disparage discussions about 

the nature of mathematics - this whole book is dedicated to the discussion of 

one aspect of this problem — but to put them in their right place. 

Most present-day thinkers — though by no means all *) — would agree that 

there are at least two different kinds of true scientific statements: the empiri¬ 

cal truths on the one hand and the logical and mathematical truths on the 

other. We shall take here this approach for granted and investigate only into 

the relation between the respective sets of the logical and the mathematical 

truths. Five views are theoretically possible concerning the relationship be¬ 

tween these two sets: they are identical; the set of mathematical truths is a 

proper subset of the set of logical truths; the set of logical truths is a proper 

subset of the set of mathematical truths; the two sets are mutually exclusive; 

the two sets are overlapping. In addition, one could of course also be less 

committal and subscribe to any disjunction of at most four of these theses. 

1) For a forceful presentation of the minority view, see Quine 53, especially essay II. 

Cf. also the remarks on signifies in Chapter IV, pp. 218-220. 
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Looking at the literature, one could indeed find expositions of each of the 

five fundamental views as well as of many of their disjunctions, it one were to 

take these expositions at their face value. This would, however, probably be a 

mistake since very often the terms ‘logical’ and ‘mathematical’ are used in 

different, sometimes in very different, senses by different authors (and occa¬ 

sionally by the same author in different publications), so that it is often very 

hard to distinguish between purely verbal and real disagreements, or to decide 

that a verbal agreement is an indication of a substantial agreement. 

We mention all this because the type-theoretical approach to the founda¬ 

tions of set theory, to the various variants of which this chapter is devoted, 

has often been identified with the logicistic approach to the foundations of 

mathematics, i.e. with the thesis that mathematical truths form a proper 

subset of the logical truths. This identification, however, is definitely mis¬ 

leading and due to nothing more but the fact that there is a union between 

the inventor of type theory and the foremost logicist of our time in the 

person of Bertrand Russell. Logicism, however, was created by Frege long 

before type theory was invented, and there are now many formulations of 

type-theoretical systems that do not embody the logicistic thesis. Let us turn 

now to an exposition of this thesis. 

The last quarter of the 19th century saw the triumph of the so-called 

arithmetization of mathematics. By explicit, though occasionally quite com¬ 

plicated, definitions, the various kinds of numbers, up to complex numbers 

and beyond, and the operations upon them were introduced on the basis of 

the natural numbers and the operations upon them. Almost all mathemati¬ 

cians were satisfied with this achievement and regarded with suspicion any 

further inquiry into the reducibility of natural numbers to other entities or 

into the deducibility of the arithmetical theorems from other theorems 1). 

Frege, however, had no great difficulties in showing 2) that all the interpreta¬ 

tions given in his time to the calculus of natural numbers were gravely defi¬ 

cient and that the last refuge of the mathematicians in this respect, i.e. leaving 

the calculus without interpretation, could not be seriously upheld since in 

certain contexts numerical signs must be regarded as interpreted, e.g. in 

“every quadratic equation has exactly two roots”. By his own interpretation, 

the natural numbers were the cardinal numbers [Anzahlen] of certain con- 

1) Let us recall Kronecker’s much-quoted dictum: “Die ganzen Zahlen hat der liebe 

Gott gemacht, alles andere ist Menschenwerk”. (God made the integers, everything else is 
human creation.) 

2) In his masterfully written Frege 1884. However, at least up to the turn of the 

century he met with the antagonism of most mathematicians. 
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cepts, with ‘the cardinal number of the concept F defined as short for ‘the 

extension of the concept equinumerous-with-the-concept-F’; finally, the 

statement ‘the concept G is equinumerous with the concept F was regarded 

as short for ‘there exists a one-one-correlation between the objects falling 

under the concept F and the objects falling under the concept G\ This last 

expression, Frege was able to show, could be reduced to purely logical expres¬ 

sions. With infinite care and meticulousness, using a strange geometrical 

symbolism, Frege continued to define one basic arithmetical term after the 

other, proving, as he went along, the fundamental arithmetical theorems 

governing these terms. For this purpose, he almost recreated formal logic, 

gave the first complete axiom system for the propositional calculus, and 

greatly expanded the predicate calculus. 

Even if Frege had been entirely successful in reducing arithmetic to logic — 

which he was not in view of the emergence of antinomies in his system *) —, 

it is not always sufficiently realized today and has not been sufficiently 

realized by Frege himself that this would still not have meant that all of 

analysis were reducible to logic, in spite of the already accomplished arith- 

metization of analysis. This is so because the arithmetization means reduction 

to “integers and finite or infinite systems of integers”, in Poincare’s terms 

quoted above (p. 14), hence not only to integers but also to what we would 

now call sets of integers. The reduction could therefore be regarded as com¬ 

pleted only if, in addition to arithmetic, also the general theory of sets — or 

at least the theory of sets of integers and, probably, of sets of sets of integers 

etc. — were “reduced” to logic. This, however, was never done nor even 

attempted by Frege. This really final step was attempted only by Russell (and 

Whitehead). It was when dealing with Cantor’s set theory in order to reduce it 

to logic that Russell ran afoul of his antinomy. This accident forced him to a 

revision of what logic amounted to and made him give it the specific shape of 

the Ramified Type Theory. Historically speaking, type theory is then an 

accidental by-product of an attempt to implement the logicistic thesis, but 

systematically their connection is very slight. In many current variants of 

type theory, given by Godel, Tarski, Carnap, and others, the logicistic thesis is 

abandoned and logic and arithmetic are simultaneously developed. 

We already mentioned above that the usual formulations of the logicistic 

thesis are far from being precise and universally accepted. The following 

formulation, e.g., seems to be precise enough: All specific mathematical 

terms are definable on the basis of the logical vocabulary, and for the proof 

of all mathematical theorems no axioms beyond the axioms of logic and no 

rules of inference beyond those accepted in logic are needed. The precision of 

this thesis, however, is not as great as it appears to be on first sight. There 

exists no universal agreement on the meaning of most of the terms occurring 

1) See above, pp. 2-3. 
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in it, such as ‘logic’, ‘axioms of logic’, ‘rules of inference’ or ‘logical vocabu¬ 

lary’. Depending on the specific interpretation of these terms as well as on a 

precisification of the term ‘mathematics’ itself, e.g. whether geometry is or is 

not to be regarded as mathematics (a decision that depends of course in its 

turn on the interpretation given to ‘geometry’), the logicistic thesis runs the 

whole gamut between an uninteresting truism through a pious hope, whose 

basis is not quite clear, to an almost obvious falsity. 

We have no intention of dealing here with the problem of the relationship 

between logic and mathematics in all its generality. (Cf. also Chapter IV.) At 

the moment, we are concerned only with set theory. Unfortunately, this does 

not reduce by much the vastness of the problem, nor is it thereby appreciably 

simplified. The situation is by no means such that there exists a clear concep¬ 

tion of what logic on the one hand and set theory on the other hand are, 

allowing a dispassionate, though perhaps still difficult, investigation into their 

relationship; on the contrary, different apriori conceptions of this relation¬ 

ship color the conceptions of these disciplines themselves, forming one com¬ 

plex of problems whose disentanglement is a formidable task indeed. 

The axiomatic approach to set theory, treated in Chapter II, is inherently 

neutral with regard to our problem. To construct set theory, or any theory, 

for that matter, as an uninterpreted axiom system based upon some smaller 

or greater fragment of logic — in Chapter II, this fragment consisted of the 

first-order predicate calculus (with equality) — means, by definition, that the 

question of interpretation of this axiom system is so far not taken up. It is by 

no means excluded that one possible interpretation should be a logical one, in 

the sense that the primitive terms of this axiom system — for most systems 

discussed in Chapter II just G — is defined on the basis of the vocabulary of 

either the underlying fragment of logic or of some more extensive fragment in 

such a way that the axioms become logical theorems. Of course, he who 

strongly believes in the existence of such a logical interpretation and more¬ 

over does not believe in the existence of other useful interpretations may 

regard the erection of an independent axiom system as a waste of time and 

prefer to present his theory from the beginning as a part of logic. This is what 

Frege and Russell, and many others after them, have done. By interpreting ‘G’ 

as denoting class-membership - which they take to be a logical notion though 

perhaps one that belongs to a “higher” part of logic - they identified from 

the very start the (mathematical) theory of sets with the (logical) theory of 

classes. 

This identification, however, meets with certain difficulties. They arise 

only when the realm of finite sets is left and therefore were of greater con¬ 

cern to Russell who intended to reconstruct all of set theory to its complete 
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Cantorian extent as part of logic than to Frege who, a contemporary of 

Cantor, was interested in the theory of sets mainly insofar as it was needed 

for the arithmetic of the natural numbers. Whereas most axioms of ZF are 

easily provable in logic after this identification, the counterparts of the 

axioms of infinity and of choice could not be proved in PM. For the counter¬ 

part of the first versions of the axiom of infinity of ZF this is immediately 

obvious since their formulation violates the rule of types adopted in PM, 

according to which the membership of any class must be homogeneous, 

whereas the classes whose existence is asserted by these axioms have a hetero¬ 

geneous membership. But neither can any statement to the effect that the 

number of individuals, i.e. of the entities belonging to the lowest level, is 

denumerably infinite be derived from the axioms of PM. For each statement 

provable on the basis of logic plus this axiom, a theorem in the form of an 

implication whose antecedent is the axiom and whose consequent is the 

statement is derivable from logic alone. Whitehead and Russell were therefore 

able to prove, corresponding to each mathematical theorem T for whose 

derivation the axiom of infinity Axlnf was needed, not T itself but rather 

Axlnf'-+T. But this meant, of course, that any such mathematical theorem T 

by itself could not be shown to be a theorem of logic unless Axlnf was taken 

to be an axiom of logic. The authors of PM, however, were very reluctant 

about taking this step since the content of this axiom, i.e. the existence of an 

infinity of individuals, had a definite factual look, indeed so much so that not 

only its logicality but even its truth was in doubt: whether the universe was 

composed of a finite or infinite number of ultimate particles - taking these 

particles to be the “individuals” of the system of PM, which was indeed one 

of the explicitly admitted interpretations — seemed to be a question which 

could be answered, if at all, only by physics, and this in spite of the fact that 

Inf Ax was formulated in logical terms exclusively. This situation was disturb¬ 

ing even for the authors of PM themselves and caused others to reject this 

“reduction” of mathematics to logic. 

The situation is different, but no less disturbing, with regard to the Axiom 

of Choice, or the Multiplicative Axiom - MultAx, for short - as Russell 

called one of its variants (see p. 57). Again there were large parts of higher 

classical mathematics whose derivation required the use of MultAx. But the 

authors of PM could not persuade themselves to treat it as a logical truth on a 

par with the other logical axioms. They had an intuitive notion of logical 

truth, from which they were unable to derive^ to their own satisfaction, either 

the truth or the falsehood of MultAx. Afraid that MultAx might eventually 

be shown to be false, they had to content themselves once more, with regard 

to those classical mathematical theorems T in whose proof MultAx was com- 
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monly used, to prove MultAx-* 7\ Though they likened the situation to that 

with which the geometrician is confronted by the Axiom of Parallels, it is 

doubtful whether this analogy is to be taken seriously: had they known - 

something that was proved only decades later — that MultAx is independent 

of their other logical axioms, i.e. that neither it nor its negation are derivable 

from them, it rather seems that they would have been ready to stretch their 

intuitive notion of logical truth — this notion was admittely never quite 

definite *) — so as to include MultAx rather than its negation. At any rate, no 

attempt was made by them to develop mathematics on the assumption of the 

truth of the negation of MultAx — in analogy with the development of 

non-Euclidean geometries. 

But with regard to MultAx, the situation should probably be looked upon 

not so much as throwing doubt on the reducibility of mathematics to logic as 

on the adequacy, reliability, and determinateness of our logical intuitions. 

There is certainly nothing specifically mathematical in its formulation. 

Whether it should, might, or should not, be accepted as an axiom, now that it 
is demonstrably independent of the other axioms, is a moot question within 

the philosophy of logic, into which to delve at any length and depth it is not 

feasible without a detailed discussion of this discipline, something that is 

beyond our reach here 1 2). 

It seems, then, that the only really serious drawback in the Frege-Russell 

thesis is the doubtful status of InfAx, according to the interpretation in¬ 

tended by them. But is this interpretation under which the individuals are 

certain factual entities like particles, events, etc., an integral part of the 

thesis? This is another moot question, in the discussion of which it is very 

difficult not to fall into verbal traps. But, whether regarded as an essential 

deviation from this thesis or an inessential reinterpretation of it, there exist 

logical systems which embody a unified simultaneous development of logic 

and arithmetic — the expression ‘reduction of mathematics to logic’ could be 

applied to this development only in a rather stretched sense — thereby man¬ 

aging to sidestep the disturbing problematic status of InfAx within PM. 

These systems, of which Godel’s system P mentioned above (p. 171) is one 

of the better known, are couched within what might be called, following 

Carnap, coordinate-languages 3). In such languages, in contradistinction to 

the more customary name-languages, the objects of the fundamental domain 

are not designated directly by proper names but indirectly by systematic 

1) See, e.g., Russell 19, p. 205. 

2) See, e.g., Mostowski 67, Bernays 67, and Korner 67. 
3) See Carnap 37, p. 12. 
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positional coordinates, i.e. by symbols that show the place of the objects in 

the system and thereby their positions in relation to each other. Instead of 

saying, then, that entity a, i.e. the entity whose proper name is V, is blue, as 

customary in name-languages, one says in a coordinate-language that the 

entity occupying such and such a position is blue. In some of the languages 

specifically constructed and treated by Carnap, the basic domain of positions 

is taken to be a one-dimensional series with a definite direction whose initial 

position is designated by ‘O’, the succeeding position by ‘0’’, etc.; in other 

words, the natural numbers are treated as the coordinates of these languages. 

Without going into any more detailed description of these languages, let us 

only notice that through adopting some Peano-type axioms the infiniteness of 

the basic domain becomes provable. But — and this is the decisive point — the 

fact that the infiniteness of the domain is part of the logic of the system is by 

no means as disturbing as within PM. No longer does the statement of infinity 

assert the existence of infinitely many different particles or other physical 

entities but rather the fact that the one-dimensional series of positions has no 

last member, leaving the answer to the question how many of these positions 

are occupied by physical entities entirely to extra-logical science. 

Those authors who have voiced strong feelings against existence assump¬ 

tions in logic, whether of an infinity of “entities” or even of at least one 

“entity”, seem to have had name-languages in mind; these objections look 

rather pointless when directed against coordinate-languages, where these “en¬ 

tities” are nothing but positions that might well be unonccupied. It appears 

that the strengthening of the logicistic attitude towards the foundations of 

mathematics entailed by the shift from name to coordinate-languages has not 

yet been sufficiently taken into account by most authors in this field. 

Let us notice in this connection that Carnap *) has succeeded in proving 

that the axiom of choice is analytic — where ‘analytic’ was understood to 
embody a certain refinement of the pre-systematic concept of logical validity 

— in his Language II, one of the mentioned coordinate-languages; for his 

proof, he assumed that an axiom of choice held in the metalanguage of 

Language II. This assumption does not make the proof circular in any formal 

sense but, on the other hand, it does not contribute to the solution of the 

problem whether such an axiom is to be regarded as a logical principle. 

Carnap himself, at least in the thirties, regarded this problem not as one 

referring to the material truth of the principle of choice but rather to its 

expediency. Since, within Language II, an axiom of choice is expedient and 

allows for the reconstruction of a mathematical calculus adequate for science 

1) Carnap 37, pp. 122 ff. Cf. already Ramsey 26. 
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and since it is unlikely that this language will turn out to be inconsistent, there 

is very little to be said against the admission of the axiom of choice as a 

logical principle, if one accepts Carnap’s ontology-free standpoint. 

§9. TYPES, CATEGORIES, AND SORTS 

The idea that not all objects are of one kind, in the sense that there are 

properties which can be meaningfully predicated of certain objects but not of 

others, is an old one and had originally no connection with the problem of 

antinomies. This conception can be traced back to Aristotle !), Schroder 

drew level distinctions in 1890 1 2), and indications to this effect are to be 

found in Frege’s writings 3). The philosopher E. Husserl dealt at length with 

categories of meaning [Bedeutungskategorien] 4) and exerted much influence 

on the Polish school of logicians. 
Russell himself was never quite satisfied with the ontological validity of his 

own type distinctions though he remained convinced that some sort of hierar¬ 

chy is necessary 5). In one of his later publications, he was even ready to 

admit — perhaps somewhat rashly — that his definition of types was wrong, 

insofar as he had originally distinguished different types of entities whereas 

he should have made these distinctions rather with regard to symbols 6). 

Among Russell’s followers, we can distinguish between those for whom 

type distinctions were a matter of intuitive coercion, a philosophical neces¬ 

sity, and those who regarded them as a necessary evil, something to be grudg¬ 

ingly admitted so long as no better way of avoiding the antinomies was in 

view. The foremost proponent of the first conception is probably the Polish 

logician Stanisfaw Les'niewski 7) for whom, as a matter of linguistic intuition, 

(almost) all expressions of any language, natural or artificial, belonged to 

exactly one semantic category out of a potentially infinite and highly rami- 

Jied hierarchy of semantic categories; this hierarchy consisted of two funda- 

1) Categoriae, ch. 3. 

2) See Church 39. 

3) But no more than indications. Frege’s hierarchy of Stufen was a consequence of 

certain formal considerations. He almost explicitly rejected a theory of types. See 

Church 39. 

4) Husserl 21-28 II 1, pp. 317 ff. Cf. also Bar-Hillel 57, 67. 

5) Russell 44, p. 692. 

6) Ibid., p. 691. 

7) Lesniewski 29; for the most thorough treatment of Lesniewski’s conceptions, see 

Luschei 62. 
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mental categories, that of names and statements (always including open 

names such as ‘the father of x’ and open statements, respectively), and an 

infinity of functor categories, distinguished according to the category and 

number of the argument-expressions of the functors belonging to them and to 

the category of the expression resulting from the application of these func¬ 

tors to their arguments. 

Among the simpler members of this hierarchy, we have the category of functors that 

out of a name form a statement, that out of two names form a statement,..., that out of 

a statement form a statement, that out of two statements form a statement,..., that out 

of a name form a name, that out of two names form a name, that out of a statement 

form a name, .... Using a convenient quasi-arithmetical notation originating with 

Ajdukiewicz 1), these categories could be denoted by 

s/n, s/nn.s/s, s/ss,..., n/n, n/nn,..., n/s. 

respectively. This symbolism also indicates how the more complex members of this 

hierarchy could be characterized and denoted: the category of a functor, e.g., that out of 

a functor (as argument) that out of a name forms a statement forms a functor (as value) 

that out of a name forms a statement would be denoted by ts/n//s/n\ A few illustrations 

taken from English (but to be evaluated cum grano salis) and the set-theoretical sym¬ 

bolism adopted in this book will help: 

Category English Set theory 

n John,poet x,y 

s John is a poet F{x),x^y 

s/n ... is-a-poet F{ ),...ey 

s/nn ... is-a- ...<=-, ... £- 

s/s It-is-not-the-case-that... H( ), Vx( ) 
s/ss ... if-and-only-if- ...<-►- 

n/n The-father-of... C( ) 

n/nn The-product-of... and- ... n- 
n/s whether ... {*!...} 

s/ns ... doubts-whether- V ... (...) 

s/n//s/n gracefully (in ‘John gracefully 

retired’) 

s/nn//s/nn gracefully (in ‘John gracefully 

greeted Mary’) 

/(in %') 

1) Ajdukiewicz 35, further elaborated in Bocheriski 49, Bar-Hillel 50, 53, Geach 70. 

This notation should be compared with those developed in Carnap 37, §27 (who uses 

‘functor’ in a sense which is roughly that of the expression ‘name-forming functor’ used 

here), and Church 40 for types of expressions. 
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For Lesniewski, transgressing the limits set by the Theory of Semantic 

Categories is a sin against logic, occasionally though not necessarily punished 

by the arisal of antinomies. The validity he claimed for his theory was quite 

apart from the fact that by adherence to it some of the logical antinomies 

could not be formulated *) and was based rather, as stated above, upon an 

intuitive insight into the conditions of meaningfulness of natural language 

expressions, in elaboration of Husserl’s views. Lesniewski, in his turn, was 

followed by a host of Polish philosophers and logicians, the most important 

among whom were Kotarbinski, Ajdukiewicz, and Tarski. How strong the 

influence of Lesniewski among his pupils was, can be judged, e.g., from a 

passage written by Tarski in the early thirties where he claims that 

the theory of semantical categories penetrates so deeply into the funda¬ 

mental intuitions regarding the meaningfulness of expressions that it is 

scarcely possible to imagine a scientific language in which the sentences 

have a clear intuitive meaning but the structure of which cannot be 

brought into harmony with the above theory 1 2). 

Later on, however, Tarski lost faith in the intuitive necessity of Lesniewski’s 

theory of semantic categories, probably when realizing the grave strictures 

imposed by it upon the structure of languages, and started investigating lan¬ 

guage systems in which this theory was not obeyed 3). It seems that Wang’s 

recent studies (cf. above, § 6) form a direct continuation of this line of 
thinking. 

Whatever the importance of the Theory of Semantical Categories as a 

logico-philosophical doctrine, there can be little doubt as to the importance 

for linguistics of its syntactical counterpart, the Theory of Syntactical Cate¬ 

gories 4 5), especially in the form of the notational calculus it was given by 
Ajdukiewicz s). 

1) Not all logical antinomies are due, according to Lesniewski, to a confusion of 

categories. Some result from a violation of certain rules of definition. In addition, 

Lesniewski claims that the current conception of the term ‘class’ confuses two quite 

different notions, namely that of “distributive class” and that of “collective class” 

(roughly the same distinction already made by Russell 03, pp. 68 ff, in terms of “class- 

as-many” and “class-as-one”) and traces in particular the origin of Russell’s antinomy to 
this confusion. Cf. Sobociriski 49-50. 

2) Tarski 56, p. 215. 

3) Ibid., VIII, Appendix 

4) Bar-Hillel 64, 67. 

5) See footnote 1 on p. 189; grammars built on these principles are now called 

“categorial grammars”; cf. Bar-Hillel 64. 
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Typical for the second, opportunistic conception of the theory of types is 

Reichenbach *) who regarded the fact that this theory made language consis¬ 

tent as its best possible justification. 

We shall not deal here with the various philosophical objections that have 

been launched against the theory of types, its intuitive plausibility, its appli¬ 

cability to natural languages, or its consistent formulability. Whatever the 

force of these objections with regard to natural languages, there can be no 

doubt that calculi embodying type distinctions can be constructed according 

to the highest standards of rigor and that it can even be proved of some of 

these calculi that they are consistent. Many mathematicians have nevertheless 

found the theory of types repugnant as a foundation for mathematics. There 

are probably many reasons behind this reaction. It might often be due to no 

more than an unanalyzed idiosyncratic aversion, leaving us nothing more to 

say about it besides acknowledging the fact, but the type division has also 

certain technical drawbacks some of which we have discussed above. 

Let us deal here with what is probably the most serious disadvantage of 

the Theory of Simple Types. Developing set theory on the basis of a logic 

incorporating a type stratification of its variables means that this logic is no 

more the predicate calculus of the first order but rather the predicate calculus 

of order co, i.e. one that contains quantifiable variables of any finite level 

whatsoever. Set theory as developed in Principia Mathematica, in contra¬ 

distinction to ZF, is therefore no more an elementary theory and no longer 

enjoys the desirable features of such a theory, the most important of which is 

that the proof procedures of its underlying logic are complete (see Chapter V, 

§4). In an elementary theory, all variables have the same range and there 

exists therefore just one single universe ot discourse. The set theory oiPrin¬ 

cipia Mathematica is not the only non-elementary one; so is the system VNB 

of von Neumann-Bernays in which there are two disjoint universes, that of 

the classes and that of the sets. 
Now, there exists a technique of converting any many-sorted theory, i.e. 

any theory containing more than one universe of discourse, into an equiva¬ 

lent one-sorted theory 1 2). Applying this technique to the set theory ot Prin¬ 

cipia Mathematica we arrive at a system that was called by Quine 3) the 

Standardized Theory of Types and which represents an interesting transition 

between the simple theory of types, or rather its still more simplified version 

T* of §2, and Zermelo’s original system. It is still a type theory in the sense 

1) Reichenbach 44, p. 38. 

2) See Schmidt 51, Wang 52a, Hintikka 55. 

3) Quine 56, and 63, §37. 
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that its ontology comprises individuals, classes of individuals, classes of class¬ 

es of individuals etc., and that these classes remain homogeneous. But it dif¬ 

fers from T* in that its variables are not merely typically ambiguous, i.e. rang¬ 

ing in a given context over a definite, though unspecified type, but fully gen¬ 

eral, i.e. always ranging over all types. 

Without going into the details of the highly elegant treatment given by 

Quine to this transformation, let us briefly describe one resulting system of 

axiom-schemata for the standardized theory of types. Let T0’ be the predi¬ 

cate that holds for all and only the individuals, ‘7V the predicate true of all 

and only the classes of individuals, etc. (Quine shows that all these predicates 

can be defined in terms of ‘G’ alone and need therefore not be added to the 
primitive notation.) The axiom-schemata of comprehension and extension- 

ality receive now the following form: 

0) ( ) iy[Tn+x(y) AVx(rn(x)->(xey «-*</>(*)))], 

(2) () Tn+l(x) A Tn+l(y) A Vw(Tn(w)->(w<=x+->wey))-*x=y . 

To these axioms a new set of axioms has now to be added through the axiom 

schema: 

(3) () xey^(Tn(x)^ 7-„tl(»). 

(The function of the ^-clauses in (2) is to prevent the identification of the 

individuals with each other and with the null-sets of the different types as 

well as the identification of the various null-sets among themselves.) 

Notice that according to (3) any formula of the form ‘x Gy’ where x and 

y do not belong to consecutive ascending types (and one of them belongs to 

some type), hence especially the formula 'xGx\ is false and not meaningless 

as in the original system. This is a straightforward effect of the standardiza¬ 

tion. That this deviation from the original approach has no technically perni¬ 

cious consequences should have some impact on the evaluation of those views 

that saw in the introduction of the category “meaningless” in addition to 

“true” and “false” the great philosophical achievement of the theory of 

types. 

For those adherents of the theory of types who are ready not only to 

trade meaninglessness for falsity (or truth, as the chips may fall) in order to 

achieve standardization but even to tamper with the original ontology for the 

sake of technical simplicity, Quine shows that a considerable increase in 

simplicity arises if the null-sets of all types are identified. A different but 
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equally considerable simplification results from the identification of the in¬ 

dividuals with each other and with the null-set of the lowest type, as in ZF. 

Half a century after Zermelo and Russell published their theories, indepen¬ 

dently of each other and starting from seemingly totally different and even 

contrary approaches, an almost complete reunion of these theories is now in 

full view. True, the deviations from the original attitudes through which this 

rapprochement is brought about are quite considerable and some of them 

might well be regarded as militating against the spirit of both Zermelo and 

Russell themselves. Many a Russellian will find it hard to swallow the notion 

of cumulative types. Those, however, for whom a satisfactory foundation of 

set theory means not so much a construction that corresponds closely to their 

intuitions but rather a system from which classicial analysis can be effectively 

reconstructed and which is either demonstrably consistent or at least within 

which the customary arguments leading up to the standard antinomies cannot 

be reproduced, will welcome these recent developments 1). 

§10. IMPREDICATIVE CONCEPT FORMATION 

It is now time to deal at some detail with another most interesting, though 

also highly obscure and controversial, ingredient of Russell’s original attempt 

at overcoming the antinomies: the recognition that impredicative concept 

formation is the root of all evil 2) to be eradicated by strict adherence to the 

vicious-circle principle. (The connection of this conception with the con¬ 

structivist approach to the foundations of mathematics will be discussed on 

pp. 196-197.) 
Part of the obscurity is caused by the fact that Russell uses, in the various 

formulations he gives the vicious-circle principle, at least three different terms 

which he seems to regard as synonymous: first, ‘definable’ in “If, provided a 

certain collection had a total, it would have members only definable in terms 

of that total, then the said collection has no total” 3); second, ‘presupposes' 

in “...it is possible to incur a vicious-circle fallacy at the very outset, by 

admitting as possible arguments to a propositional function terms which 

presuppose the function” 4); third, ‘involves’ in “A function is what ambigu- 

1) Wang-McNaughton 53, Klaua 64, Kreisel 65 and Shoenfield 67. More on the 

subject is found on page 89. 

2) Skolem 52 continues to regard this recognition as a natural one and accordingly 

recommends further study of the ramified type theory. 

3) Whitehead-Russell 10-13 I, p. 37. 

4) Ibid., pp. 37-38. 



194 TYPE-THEORETICAL APPROACHES 

ously denotes some one of a certain totality, namely the values of this func¬ 

tion; hence this totality cannot contain any members which involve the func¬ 

tion since, if it did, it would contain members involving the totality, which, 

by the vicious-circle principle, no totality can do” ‘). Godel shows 2) that we 

have before us three different principles rather than three formulations of the 

same principle, that the second and third of these principles are much more 

plausible than the first, and that it is only the first which obviates the deriva¬ 

tion of mathematics from logic and militates against procedures in constant 

use in classical mathematics. 
The presently existing confusions around the concept of impredicativity 

are enhanced by the fact that one now used the adjective ‘impredicative’ as a 

modifier for nouns denoting linguistic entities such as ‘definition’, ‘statement’, 

or ‘axiom’, non-linguistic entities such as ‘concept’, ‘property’, ‘set’, and 

even ‘procedure’ or ‘concept-formation’, without taking the necessary care in 

establishing the interconnections between these various uses. 

Of late, it has been shown that there exists an important difference in the 

conceptions of what forms an impredicativity between the two first and 

foremost proponents of the prohibition of impredicative concept formation 

in (logic and) mathematics: Poincare and Russell 3). This difference is of 

more than historical interest since it might well throw light on the currently 

much discussed question where the borderline between the harmful and inno¬ 

cent impredicativities lies. 

We shall gain in clarity, though we shall lose somewhat in generality, if we 

restrict the discussion of impredicativity to systems of the kind treated so far. 

This enables us to focus our attention to the axiom (-schema) of comprehen¬ 

sion (in its various formulations and variants, including the axiom of subsets). 

We shall say that a certain version of this schema, whose core is — as we recall - 

() 3yVx(xGy^^)) 

(where, according to the variant, ‘ip(x)’ is required to fulfil various conditions, 

and where the superscripts occurring in some variants are omitted as irrele¬ 

vant in our context), is impredicative if V(jc)’ contains a bound variable of 

the same kind (type, layer, level etc.) as y; in other words, and in a some¬ 

what less formal and rigid formulation, if the class whose existence is guaran- 

1 )Ibid., p. 39. 
2) Godel 44, p. 235. 

3) For the early history of the objections against impredicative procedures, see 

Fraenkel 28, pp. 247 ff. Cf. also Church 56, p. 347, footnotes 573 and 574. 
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teed by this axiom-schema belongs to the range of a bound variable occurring 

in the determining condition. Derivatively, we shall call impredicative also 

those conditions y?(.v) themselves which contain bound variables of higher 

level than that of x 1 2) and also the corresponding classes and the process of 

forming them, i.e. of proving their existence. 

Usually, one formulates the problem of impredicativity in terms of “impredicative 

definitions” rather than in terms of “impredicative concept formation”. This is partly 

due to the fact that PM — and other systems — have no axiom of comprehension but 

instead an (explicit or implicit) rule admitting ‘{x | y>(x)}’ - i.e., “the class of all x, for 

which y>(x) holds” - as an abstract-expression substitutable for a variable and an axiom 

(-schema) of conversion: ye{xlv>(x)}<-»i(7(}))J). In such systems, the principle of 

comprehension becomes a derivable theorem. (Indeed, from the tautology ^(x) «-> y?(x) 

we get xc{x | ^x)}^xe{x I y>(x)} by conversion, Vx[xe{x 1 y>(x)}<—*-x<E {x| ^>(x)}J 

by universal generalization, 3y Vx[x ey <—>x e{x | y>(x)}] by the above-mentioned 

rule and existential generalization, finally 3y Vx [xej <—► y>(x)] again by conversion 3).) 

If now a single symbol is introduced by definition as an abbreviation of such an abstract- 

expression and V(xO’ is an impredicative condition in the sense clarified above, this 

symbol is introduced by an “impredicative definition”. Since this definitional abbrevia¬ 

tion is, however, only a minor technical point, we shall continue to see the gist of the 

problem of impredicativity in the impredicative concept formation, whether through an 

application of the axiom-schema of comprehension or through the introduction of ab¬ 

stract-expressions. 

The vicious circle principle requires that measures be taken to disqualify 

impredicative concept formation. As for its justification, we must clearly 

distinguish between four quite different kinds of argumentation. The first is 

an argument from pragmatic effectiveness: the application of the principle 

overcomes the semantic antinomies. Its critics will then point out that other 

means are known — such as the theory of language hierarchies 4) — which are 

equally effective in this respect but less destructive in their effect on the 

reconstruction of mathematics. The second argument refers to the self-refe1' 

ential character of impredicatively defined terms. After over half a century of 

detailed discussion it should, however, be clear that self-reference as such 

without some additional qualification, though certainly circular in a sense, is 

by no means always viciously circular5). 

1) Here we disregard the requirements which concern the parameters of yj(x), i.e., the 

free variables of <p(x) other than x - see Chapter V, p. 330. 

2) Such is also the system of Bernays 58 — see system B on p. 146. 

3) Cf. Hilbert-Ackermann 28/49, 2nd ed. p. 125, 3rd ed. p. 137. 

4) Cf. Pap 54. 

5) See, e.g., the forceful and witty defense of the meaningfulness of self-referential 

expressions in Popper 54. 
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The third argument stresses that the applicability of an impredicatively 

formed concept in a given concrete case is not decidable and that any attempt 

in this direction must result in an infinite regress. To use an example of 

Carnap’s 1), modified to apply to system P (mentioned in §5): Consider the 

condition on x1, 

Vz2[7Gz2a Gz2-'►Sy1 Gz2)] -►x1 Gz2 

(where fSy1’ denotes the successor of y1), which may be read as ‘x belongs 
to all those sets that contain 7 and together with any natural number also its 

successor’. The axiom of comprehension guarantees the existence of a set 

containing all those natural numbers that satisfy this condition. Trying to 

find out whether 5, for instance, belong to this set, one has to check whether 

5 belongs to all sets of natural numbers that contain 7 etc., but in order to do 

this, one has, among other things, also to check whether 5 belongs to that set 

of natural numbers whose existence is guaranteed by the axiom of compre¬ 

hension — and we are very clearly running around in a vicious circle. Notice 

that the argument does not rely on the fact that the checking procedure 

requires the testing of infinitely many sets. There are indeed authors who 

object to such procedures in general, but then they reject not only impredica- 

tive conditions but all indefinite statements, i.e. statements containing essen¬ 

tially unlimited quantifiers of any type whatsoever. Here we are concerned 

with those who, though accepting indefinite conditions, reject impredicative 

ones. But if indefinite statements are not rejected, probably because a general 

statement is established not by a case-after-case test — which could indeed 

not be performed as it would consist of infinitely many operations — but 

rather by the construction of a proof, which is a finite operation, then the 

third argument is not very convincing either, since the applicability of an 

impredicative concept can often be established by a proof procedure. In the 

above-mentioned example, it is indeed very easy to prove that 5 does not 
belong to the set determined by the displayed condition. 

The fourth argument, and certainly the strongest one, refers to the non¬ 

constructive character of impredicatively introduced objects. We can hardly 

be said to have a clear idea of a totality if the membership of a certain object 

in this totality is determinable only by reference to the totality itself. Not 

only is this blurred view unsatisfactory from a philosophical standpoint 2), it 

1) Carnap 37, pp. 163-164. 

2) Intuitionism (see Chapter IV) rejects, of course, impredicative procedures. Cavail- 

les 47, p. 17, sees in this rejection the distinctive characteristic of the intuitionistic 
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might occasionally give rise to antinomies and will in any case cause great 

ditticulties in the construction of models that would prove the consistency of 

the system. The last point seems to be the decisive one and the one that has 

in the last years tocussed again the attention of the logicians on impredicative 

concept formations. Let us recall that the consistency of the ramified type 

theory (with an axiom of infinity but without the axiom of reducibility) has 

been proved long ago from relatively weak assumptions ]), whereas proving 

the consistency of the type theory T*, which contains an axiom of infinity, 

requires much stronger assumptions 2 ). 

The systems of Wang and Lorenzen embody a vicious circle principle in 

the sense that an object determined by a condition referring to a totality of 

objects of layer a is not itself of layer a but rather of layer a + 1. Since, 

however, mixing of layers is no longer forbidden, this does not exclude the 

possibility of there being a layer to which all objects of layer a as well as the 

object of layer a + 1 determined by a condition on these objects belong. In 

these systems, this holds indeed for layer a + 1 itself and for the infinitely 

many layers of a higher ordinal. The mixing of layers, however repulsive to 

thinkers of certain strong ontological convictions, does not reduce the con¬ 

structiveness of the system, nor does the use of transfinite ordinals if one 

restricts oneself here to the “constructive” ordinals of the second number- 

class. 

An entirely different, very interesting but so far rather abortive attempt to 
take the avoidance of impredicative concept formation seriously, was made 

by Hintikka 3). Utilizing a suggestion of Wittgenstein 4), later elab¬ 

orated by Kolmogorov and Zich 5), he exhibited a much weaker way of 

avoiding universal variables than the theory of orders or layers. He proposed 

to give bound variables an exclusive interpretation, in contradistinction to the 

customary inclusive interpretation. According to the customary interpreta 

tion, the statement, ‘There are at least two different individuals having the 

property F, is symbolized by 

program rather than in the rejection of the principle of excluded middle. This view is 

explicitly reaffirmed by Gilmore 56. 

1) In fact, the statement that ramified type theory with an axiom of infinity, RT*, is 

consistent is a theorem of the type theory T*, and hence the consistency of RT* does 

not imply that of T* - see Chapter V, p. 328. 

2) Fitch 38. 

3) Hintikka 56. 

4) Wittgenstein 22, 5.53—5.5352. 

5) Zich 48 which contains also, in a footnote, a reference to Kolmogorov’s relevant 

work. 
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3x 3y[x fyAP(x)/\P(y)], 

whereas in the exclusive interpretation of the bound variables this statement 

would be symbolized by 

3x3y [/>(*) A/>(»], 

with the word ‘different’ being taken care of by the distinctiveness of the 

variables. Notice that in the second symbolization, under the exclusive inter¬ 

pretation, the variables are not universal since their ranges are not allowed to 

coincide. The restriction of the universality is, however, not incorporated 

once for all in a rigid system of type and order indexes but is induced rather 

by their interplay within any given specific context. 

If we change the logical basis of the ideal calculus (of §1), i.e. the first- 

order predicate calculus, such as to accord with the exclusive interpretation 

of the bound variables, then the standard derivation of the antinomies will 

not come through. The derivation of Russell’s antinomy, for instance, will fail 

because step (2) *), which is in accordance with the standard (inclusive) first- 

order predicate calculus, would no longer be legitimate in the revised (exclu¬ 

sive) calculus. 

However, it is not necessary to revise the customary first-order logic in 

order to take account of the exclusive interpretation. The same end can be 

achieved without tampering with the usual formation rules of this logic. The 

desired exclusiveness can also be taken care of by explicit diversity conditions 

on the variables. The axiom schema of comprehension of the ideal calculus 

would now be revised in an entirely different way and look something like 

Cex: () 3yX/x[xEy+-*(xfy-*<p(x)] 

where each quantifier ‘3z’ in the original formulation of VC*)’ is replaced by 

‘3z(z fy A ...)’ and each quantifier ‘Vz’ by ‘Vz(z f y -» ...)’. Once more, the 

standard derivation of Russell’s antinomy would not work, though this time 

for a different reason. All we would arrive at, as the reader might check, 
would be the true formula 

3y\y Ey +-*(y fy -+~}yey)}. 

Of course, we may expect to have to pay a price for the interpretation of 

the axiom of comprehension along the exclusive line, an interpretation that 

1) On p. 155. 
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seems to be so efficient in overcoming the antinomies. Indeed, we can avoid 

here Cantor’s antinomy, for instance, only by becoming unable to derive 

Cantor’s theorem (which should not surprise us any longer). 

It may be claimed that Cex is the simplest modification of the axiom of 

comprehension that accords with Russell’s vicious circle principle, since the 

entity whose existence is asserted by Cex is the only one which is excluded 

from the ranges of the bound variables that occur in it. This might well be the 

cheapest materialization of Godel’s hunch !) according to which it should be 

possible to carry out the idea of limited ranges of significance without having 

to divide up the objects into mutually exclusive ranges. The distinctness 

clauses would then correspond to the “singular points’ which are mentioned 

by Godel in his metaphor. Hintikka’s system keeps our logical intuitions 

intact up to minor corrections; these minor corrections themselves are not 

even real deviations from our logical intuitions but embodiments of the exclu¬ 

sive interpretation which is the appropriate one in the case of the axiom of 

comprehension, though our intuitions are certainly not sharp enough to make 

this clear without the “help” of the antinomies. 

The problem of distinguishing, within mathematical reasonings in their 

pre-formalization stage, between the occurrence of essential, vicious impre- 

dicativities and inessential, innocent ones has always been a rather pressing 

one, from the first discussions between Poincare and Zermelo 1 2) on this 

point. Nobody ever seriously questioned the legitimacy of such a concept as 

the maximum of a function in a given interval, though its standard definition 

as a greatest of the function values in this interval is clearly impredicative. 

Poincare'’s own way of showing that this impredicativity is not essential is by 

redefining the maximum of a function as a greatest function value for all 

rational arguments rather than for all arguments; even if this function value 

itself turns out to be rational (and within the interval of the argument values), 

this is not entailed by the definition as such. Hintikka’s way is clearly much 

simpler and relies on the obvious fact that we can redefine the maximum of a 

function (within a given interval) as any one of these function values which 

are not smaller than any of the other function values (in this interval), a 

condition to be formalized with the help of a distinctness clause. 

Hintikka’s attempt, though, has so far turned out to be abortive for a 

simple reason: Cex still engenders contradiction, as Hintikka himself realized 

shortly after having made his proposal 3). Though a stronger revision of the 

1) Godel 44, p. 150. 

2) See, e.g., Fraenkel 28, pp. 250—251. 

3) Hintikka 57. 
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axiom of comprehension than the one embodied in Cex would avoid these 

new contradictions, the resulting system would, even if consistent, deviate 

from standard set theories in much more than no longer containing Cantor’s 

theorem. As a matter of fact, no further attempt was made since 1957 to 

continue along these lines. 

§11. SET THEORIES BASED UPON NON-STANDARD LOGICS 

The reader will by now have come to appreciate the grave obstacles that 

stand in the way of safeguarding a set theory that will be both strong enough 

to allow for the derivation of classical analysis as well as weak enough not to 

allow for the derivation of antinomies. All the systems of set theory discussed 

so far have in common that they are based either on classical first-order 

predicate logic or coincide with certain natural extensions of this logic. Their 

adherents believe that it is either too liberal an interpretation of the term 

‘formula’ or too liberal a use of the axiom of comprehension which is to 

blame for the occurrence of the (logical) antinomies. 

It is, however, understandable that some authors should have come to 

blame the shortcomings of existing set theories rather on the underlying logic 

and should, in consequence, have tried to arrive at a more satifactory set 

theory by changing this basic logic. The whole next chapter will be dedicated 

to the most important of these heresies — the intuitionistic conception; let it, 

however, be added immediately that this conception, together with a denial 

of classical logic, rejects the whole view as if set theory, or mathematics in 

general, were based upon some underlying logic. In this section we shall 

discuss very briefly some of the less spectacular attempts. 

11.1. Lesniewski’s Ontology. There is probably no country which has contrib¬ 

uted, relative to the size ot its population, so much to mathematical logic and 

set theory as Poland. Leaving the explanation of this curious fact to sociology 

of science, we shall dedicate the next two subsections to a brief outline of the 

contributions of two of the most original Polish thinkers to the foundations 

of set theory; Stanislaw Lesniewski and Leon Chwistek. Both of them per¬ 

ished during World War II. The fact that many of the most important writings 

of these authors were published in Polish, that Lesniewski wrote his German 

papers in a style that made no concessions to the reader - some of them are 

printed in an esoteric symbolism with hardly a word of explanation in ordi¬ 

nary language —, and that Chwistek often combined an equally excentric 

symbolism with obscure asides on metaphysics, philosophy of mathematics, 
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and science in general, did not encourage Western logicians to make special 

efforts to master their writings, and their untimely death - in the case of 

Chwistek, together with his most gifted pupils — still increased the difficul¬ 
ties. There can be no doubt as to the high originality of the contributions of 

these thinkers to the foundations of mathematics, and now, after the recent 

appearance of various authoritative articles in Western languages expounding 

Lesniewski’s teaching L), and, in particular, of Luschei’s monograph,2), and 

after the appearance of an English translation of Chwistek’s principal work 3) 

and of an extremely illuminating review of it, also in English4), we seem to 

stand at the verge of a real revival of interest in the work of these two 

logicians that has already fertilized the thought of many a worker in the 

foundations of mathematics. 
In this subsection, we shall give the barest outline of that part of Les'- 

niewski’s system which is most relevant to the theory of sets; the next subsec¬ 

tion will do the same for Chwistek’s system. 

Les'niewski called that part of his system which dealt with the logic of the 

particle ‘is’, or rather of the Polish particle "jest’, ontology. Though in a sense 

this theory dealt indeed with “the general properties of being”, the term 

‘ontology’ carries no metaphysical connotations. Other authors, in order to 

avoid explicitly the arisal of such connotations, prefer the term calculus of 

names 5). Within Les'niewski’s total system, ontology occupies an interme¬ 

diate position: it is based on protothetics, a generalized propositional calcu¬ 

lus, and serves, in its turn, as a basis for mereology which deals with the 

part-whole relationship. (Les'niewski has no need for predicate logic, as the 

predicational ingredient of this part of standard symbolic logic is taken care 

of in ontology while its quantificational ingredient belongs already to proto¬ 

thetics.) 
Ontology has just one primitive term in addition to those of protothetics, 

just one additional axiom, and some additional rules of inference. This primi¬ 

tive term is — ‘e’, which is however not meant to symbolize the class-member¬ 
ship relation but rather to serve as the symbolic counterpart of the natural 

language fesf (in Polish) or lesf (in Latin), and to a lesser degree of ‘is’ (in 

English). Modern logicians have often been at great pains to point out that 

1) Sobociriski 49-50, Stupecki 53, 55, Grzegorczyk 55. 

2) Luschei 62. 
3) Chwistek 48. The introduction by Miss Brodie should be perused with some reser¬ 

vation. 

4) Myhill 49. 

5) This is done, e.g., in Kotarbiriski 29. 
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the copula of traditional logic is highly ambiguous and that the English term 

‘is’, for instance, stands for class-membership, class-inclusion, and identity, 

respectively (and fulfils perhaps still other functions on occasion) in such 

sentences as ‘Socrates is wise’, ‘The dog is an animal’, and ‘Socrates is the 

husband of Xantippe’. Lesniewski took the contrary view that the Polish ‘jest' 

and the Latin 'est' should be regarded as non-ambiguous particles, whatever 

the situation in English. (The difference is caused by the fact that English - 

in contradistinction to Polish and Latin has articles, definite and indefinite, 

which are obligatory in the contexts ‘Socrates is ... man’, ‘The dog is ... 

animal’,‘Socrates is... husband of Xantippe’ — with sentences like ‘Socrates is 

white’ and ‘Tully is Cicero’ still more complicating the situation - whereas 

the corresponding Latin sentences would be ‘Socrates est homo', ‘Canis est 

animal', ‘Socrates est coniunx Xantippae' — and ‘Socrates est albus', ‘Tullius 

est Cicero'. We shall spare the reader the corresponding Polish sentences.) 
Lesniewski is completely successful in providing, through his axiom, his 

own term ‘e with a meaning which is a kind of conglomerate of the three 

mentioned meanings, without falling into contradiction. On the contrary, the 

consistency of ontology relative to protothetics can easily be proved. Les- 

niewski’s original single axiom of ontology, after some notational adaptations 

(which would however not have been approved by Lesniewski himself) is: 

r'ew<-> 3y(y e x) A V_y Vz [(>’ e x A z e x) y e z ] A V v(y ex^ye w). 

Since all symbols in this axiom, with the exception of ‘e’, are supposed to 

have their standard interpretation, we see that a Lesniewskian e-sentence is 

true only if to the left of the ‘e’ stands a non-empty, singular name; this 

follows from the first and second conjunctive components of the right side of 

the equivalence, respectively. Accordingly, such sentences as ‘Hamlet est 

albus' or ‘Canis est animal' are treated as false, the first since ‘Hamlet' is 

empty (i.e. not denoting), the second since ‘canis' is a general name. 

That Lesniewski’s theory of semantical categories should by no means be regarded 

simply as a kind of generalized linguistic counterpart of a simple theory of types *) is 

obvious from the fact that the symbols flanking the Lesniewskian V — and similarly 

with their natural-language counterparts - belong always to the same semantical catego¬ 

ry, even when the right-hand symbol is a class-symbol: ‘Socrates' and 'homo', in the 

1) This is the impression one could get from a not too careful reading of Tarski 56, 

pp. 213 ff, or Sobocinski 49—50 who often uses the expression ‘categories se'mantiques 

(types logiques)’ - and Tarski and Sobocinski are two of the most outstanding pupils of 

Lesniewski. Cf., however, Tarski 56, p. 213 n, from where it should be clear that Tarski 

is fully aware of the real situation. 
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sentence ‘Socrates est homo' belong to the same semantical category, i.e. to the category 

of names, whereas for Russell the denotata of these two words, i.e. Socrates and the class 
of men, belong to different types. 

Since LeSniewski’s ‘e’ is not meant to be a symbol for class-membership, it 

is preferable to regard his ontology not as a variant of set theory but rather as 

a rival ot set theory tor the foundations ot mathematics. This view does not 

exclude that counterparts of many set-theoretical axioms turn out - under a 

certain notational transformation — to be ontological theorems or that the 

ontological axiom should be transformed into a type-theoretical axiom. The 

latter possibility is easily materialized by interpreting ‘xew’ as ‘x is a unit- 

class of individuals, w is a class of individuals, and x C w’. 

How important a rival of set theory ontology is, or could be made to be, is 

a question which it is still very difficult to decide. But Lesniewski has con¬ 

vincingly shown that the standard arguments leading to the logical antinomies 

cannot be reproduced, in any of the various plausible rephrasings, in his 

system; some of the counterparts of these arguments fail to comply with the 

theory of semantical categories, others require certain steps which are not 
viable in ontology *). 

Let us finish this sketch by noting that what might be regarded as the 

ontological counterparts of the axiom of comprehension are treated at length 

by Lesniewski under the name of pseudo-definitions 1 2). 

11.2. The Systems of Chwistek and Myhill. After continuous struggles and 

many changes of mind, Chwistek — the highly original Polish logician whom 

we recall as the first influential critic of Russell’s ramified type theory 3) - 

finally constructed a system which, had it been presented in a less obscure 

language and a somewhat less forbidding terminology and symbolism, might 

well have exerted a decisive influence on the reconstruction of mathematics 

on a consistent “constructive” basis. This final system of Chwistek’s was 

published posthumously in Tiie Limits of Science in 1948. This book is so 

different from the Polish original, Granice Nauki, published in 1935, that it 

should by no means be regarded as a mere translation of it. Fortunately, 

Chwistek has now found an equally competent interpreter in the American 

logician Myhill who was able to bring Chwistek’s ideas closer to the main 

present currents of thought. Even so it is still impossible in the available 

1) For an exhaustive discussion of this issue, see Sobociriski 49-50, Luschei 62. 

2) For the significance of Lesniewski’s use of pseudo-definitions for the formulation 

of the second-order predicate calculus, see Henkin 53. 

3) See footnote 3 on p. 174. 
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space to describe Chwistek’s approach in any serious detail. Let us therefore 

content ourselves with stating that Chwistek’s set theory is a kind of “in¬ 

verted'’ ramified type theory, in the sense that classes always have members 

of “higher” types than themselves. The types are, in addition, cumulative — 

as, e.g., in Wang’s system 2 (§ 6) or in some of the systems discussed by 

Quine - but again with the direction inverted, each entity belonging to all 

types lower than any type to which it belongs. By adding to this ramified 

type theory a certain variant of the axiom of reducibility, Chwistek obtains 

what he calls a pure theory of types which can easily be proved to be consis¬ 

tent; by adding another variant he gets a simplified theory of types which, 

however, combined with a certain powerful metasystem is inconsistent. 

Chwistek’s pure theory of types, in its last stages, looks sufficiently similar to 

PM to make it plausible that classical analysis can be constructed on its basis. 

A completion of this program would therefore mean a proof of the consisten¬ 

cy of classical analysis from “nominalistic” assumptions whose soundness can 

hardly be doubted in any serious sense. 

Myhill himself, in an unfinished series of papers !), tried to complete the 

program. His own system is an inverted cumulative type theory with an 

all-inclusive type 0 but with no highest type. Vicious-circle paradoxes are 

avoided by arranging that no expression containing a quantified variable be a 

value of that variable. (In Myhill’s — as in Chwistek’s — system, expressions, 

not what the expressions denote, are values of variables; this curious feature is 

consistently carried through without involving him — or Chwistek, contrary 

to the general opinion — in fallacious thinking due to the “confusion between 

use and mention of signs”.) He uses a non-finitary consequence relation ac¬ 

cording to which certain formulae are regarded as consequences of appro¬ 

priate classes of formulae. This means, of course, that the system, though 

nominalistic in a sense, is anything but constructivistic. Its consistency can be 

shown, along the pattern of a proof by Fitch (p. 174, footnote 1), by trans- 

finite induction (up to e0, at least). A certain analogue of the axiom of 

reducibility can be shown to hold in the system. He is finally able to derive in 

the system (type-restricted) analogues of Bourbaki’s axiom system for set 

theory 1 2) (plus an axiom of replacement) including the axioms of choice and 

infinity, but excluding the axiom of extensionality. Interestingly enough, 

Myhill believes it to be very unlikely that analysis needs a principle of exten¬ 

sionality, probably being influenced in this by Chwistek who regarded it as a 

product of metaphysical idealism. It seems, however, that so far Myhill has 

1) See Myhill 49, 51, 51a. 

2) Viz., the system presented in Bourbaki 49. 
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not been able to accomplish the proof that a non-extensional Bourbaki set 
theory contains a model of extensional Bourbaki set theory '). 

11.3. Fitch's System. After years of constantly refining earlier attempts. F.B. 

Fitch published a textbook on Symbolic Logic 1 2) in which he developed a 

new, and in many respects heterodox, approach to this topic, promising to 

publish a sequel dealing with the detailed derivation of the more important 

theorems of mathematical analysis from his system 3). There is no need to 

deal here at length with its many notational and pedagogical innovations. 

Suffices it to state that Fitch’s system contains no variables, either free or 

bound — e.g., the class of entities greater than 2, customarily symbolized by 

‘x(x>2)’ or Ax(x>2)’, is rendered by Fitch as (3/3>2) or even (Caesar/Cae- 

sar>2) — and no type restrictions but, on the other hand, no general rule of 

excluded middle or law of extensionality, the last feature backed up by an 

extremely narrow treatment of identity, according to which an identity sen¬ 

tence is valid if and only if its two sides, in their disabbreviated form, are 

notationally the same, in other words, by avoiding the occurrence of nota- 

tionally different but logically synonymous sequences of primitive terms. 

(This requires, among other things, to treat one of the just mentioned expres¬ 

sions '(3//3>2)’ and ‘(Caesar//Caesar>2)’ as an “abbreviation” of the other, 

or both of them as “abbreviations” of a certain arbitrarily chosen expression 

of the form >2)’.) 

Antinomies are avoided either through the fact that the relevant deriva¬ 

tions fail to satisfy the mentioned restrictions on the proof procedures — this 

is the way in which Curry’s paradox 4), a variant of Russell’s paradox of 

particular interest insofar as it does not use negation, is overcome — or 

through the simple device of regarding each such antinomy as a proof of the 

fact that the proposition involved fails to satisfy the excluded middle. 

Russell’s paradox, e.g., in its original version but in Fitch’s notation, deals 

with the class (or attribute) {x/~\\x Gx]) (where be’ is not a variable) — to 

be denoted by ‘Z’ and winds up by proving that [Z GZ] **~\[Z GZ]. But 

1) This was one of the aims he set himself in MyhiO 51a, p. 135. 

2) Fitch 52. 

3) Among Fitch’s later papers that contain further developments of his system of 

Basic Logic - without yet amounting to a fulfilment of the promise -, we mention only 

Fitch 56, footnote 1 of which contains further references. 

4) This paradox was created in Curry 42. The role of Russell’s class of all classes that 

do not contain themselves as members is taken over there by the class of all classes such 

that if they contain themselves as members, an arbitrary statement is true. For a full 

formal derivation of the paradox, see Fitch 52, pp. 107—108. 
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this equivalence is not paradoxical by itself, it becomes so only under the 

assumption that the proposition ZGZ satisfies the excluded middle, i.e. that 

[Z£Z] v l[zez] holds; in that case the really paradoxical proposition 

[ZGZ] a"1[ZGZ] can be easily derived from the equivalence. Since Fitch 

claims to have shown the consistency of his system, he is able to conclude 

that ZGZ is one of those propositions for which the principle of the exclud¬ 

ed middle does not hold and which he terms indefinite — which should be 

clearly distinguished from Russell’s term meaningless 1). The Liar antinomy is 

overcome analogously. What this antinomy shows is that the proposition 

expressed by the sentence: “this proposition itself is false”, is indefinite. No 

structural criterium by which sentences expressing definite propositions 

would be distinguished from sentences expressing indefinite propositions is 

given. This is, of course, a drawback, though not so much with regard to 

natural language, for which no more effective criterium should be expected 2), 

as with regard to language systems; still it is not fatal, especially if such a 

system is demonstrably consistent, since in this case at least a sufficient 

condition for the indefiniteness of a proposition is provided, i.e. that from 

the assumption of its definiteness a contradiction can be derived. Incidental¬ 

ly, Fitch has a nde of excluded middle for identity, according to which every 

proposition of the form [a = b] is definite. 

Fitch’s main reasons for rejecting Type Theory are that, on the one hand, 

certain sorts of self-reference are required for philosophical logic as well as for 

the development of the theory of real numbers and that, on the other hand, 

this theory cannot be stated without violation of its own requirements 3). 

Fitch claims that his system is demonstrably consistent. This is achieved 

through certain restrictions on the proof procedures. These restrictions, how¬ 

ever, whatever their intrinsic plausibility, have the effect that one cannot 

always conclude from the validity of an implication and of its antecedent to 

the validity of its consequent or from the validity of two statements to the 

validity of their conjunction but must, in general, take into account the way 

in which the premises of these inferences were obtained. Part of the meaning 

ot a formula would then reside in the specific way of its derivation — which is 
no longer as esoteric an idea as it sounded in the past 4). 

1) As well as, of course, from Carnap’s term ‘indefinite’ mentioned above, p. 196. 
2) Cf. Bar-Hillel 57a, 66. 

3) This objection has often been made, e.g. by Weiss 28, and as often refuted. 

Though it certainly is not sound from a purely formal standpoint, it retains a certain 

heuristic value and is probably one of the strongest reasons why so many thinkers do not 

like type-theoretical systems. Cf. Godel 44, p. 149. 

4) It has become a central conception of generative-transformational grammar; cf. 
Chomsky 57. 
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In addition, the consistency proof provided by Fitch for his system seems 

not to be fully constructive, hence in a sense circular. In one decisive place, 

he uses, metalogically, an argument amounting to the transition from 

'Vx(p v ip(x))' to ‘p v \/x ip(x)’, which is not constructively valid (and is re¬ 

jected, for instance, in intuitionistic logic). This metalogical argument is, 

incidentally, used by Fitch in order to show that an analogous type of argu¬ 

ment, within the system, is eliminable *). 

Fitch’s system is one of the many erected during the last decades to avoid 

the antinomies through a departure from the classical first-order predicate 

calculus. In Fitch’s case, the departure takes the form of constructing the 

propositional calculus in such a way that the principle of the excluded middle 

is not generally valid in it. This, of course, recalls at once intuitionistic logic, 

to be treated at length in the next chapter. Fitch’s logic, however, is by no 

means identical with intuitionistic logic as formalized by Hey ting 1 2). 

This departure from classical logic does not make Fitch’s logic three¬ 

valued, indefiniteness — in Fitch’s sense — not being a third truth-value that 

could possibly be treated on a par with truth and falsity. Three-valued and, 

more generally, many-valued logics will be treated in the next subsection. 

11.4. Many-valued Logics. It seems rather natural to look for the culprit in the 

arisal of antinomies in a still different direction: in most, if not all, antinom¬ 

ies the crucial contradiction has, or can be given, the form of an equivalence 

between a certain statement and its negation. The final line of a derivation of 

Russell’s antinomy, for instance, is usually some variant or abbreviation of 

[x(x £ x) G x(x f x)] H [x(x ^ x) £ x(x ^ x)], 

the final line of a derivation of Grelling’s antinomy is something like ‘heter- 

ological’ is heterological <—»• “I (‘heterologicaT is heterological), etc. Now, such 

statements embody contradiction if the logic of the language in which they 

are formulated is the classical two-valued logic, in which any statement of the 

form 

p ~\p 

1) All these criticisms were launched by Ackermann 52. 

2) There are many resemblances between Fitch’s system and that developed by 

Ackermann 50; cf. also Ackermann 52-53 and Grize 55. 
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is indeed self-contradictory. But in some many-valued logics — i.e. logics in 

which the meta-principle that every (closed) statement has exactly one of two 

truth-values does not hold — and under some natural interpretations of ‘nega¬ 

tion’ and ‘equivalence’, statements of the mentioned form are no longer 

self-contradictory. In certain three-valued logics, such as the famous system 

l_3 of Lukasiewicz 1), the negation of a statement with the “intermediate” 

truth-value has itself the intermediate truth-value so that in this case a state¬ 

ment is equivalent (in truth-value) to its negation. 

Are then many-valued logics antinomy-free? This would be a rash conclu¬ 

sion. Though the derivation of such paradoxes as Russell’s and Curry’s would 

indeed not come through 2 ), it can be shown that in a set theory allowing for 

unrestricted comprehension and based upon certain of these logics, e.g. on 

the mentioned L3, a Curry-type paradox is derivable 3). 

The shift from the term ‘antinomy’ to ‘paradox’ that already occurred above, p. 205, 

in connection with the first mentioning of Curry’s paradox, is not accidental. The term 

‘antinomy’, as defined on p. 1, does not apply as such to negation-free or many-valued 

logics. Curry’s paradox consists not in proving that two contradictory statements are 

equivalent - notions which obviously involve (two-valued) negation — but in proving 

any statement whatsoever by seemingly innocuous procedures, thereby proving the 

system to be (formally) inconsistent (see Chapter V, §4). 

However, the avoidance of antinomies was by no means the only incentive 

that made logicians occupy themselves with many-valued logics. Many logi¬ 

cians treated such logics as pure calculi without insisting from the beginning 

on interpretation and application 4 5). Others believed that such logics might 

be of use in the analysis of certain epistemologically puzzling situations such 

as the assignment of truth-values to future contingent events s). Still others 

thought that some of these logics were better suited to deal with certain 

phenomena in quantum physics than classical two-valued logic 6). 

No serious attempt has been made so far to construct a set theory or a 

theory of numbers on a many-valued logic 7 ). There seems to exist no conclusive 

1) See Tarski 56, Chapter IV, 3. 

2) See, e.g., Bo£var 39, 43. 

3) See Shaw-Kwei 54, Prior 55. 

4) Cf., e.g., Rosser-Turquette 52, Introduction. 

5) See Lukasiewicz 30 and, among recent publications, e.g. Prior 53. 

6) See Reichenbach 44 and, out of the many writings by Destouches and Paulette 

Destouches-Fe'vrier dealing with this topic, e.g., Destouches-Fe'vrier 51 (with the sharply 
critical review of McKinsey-Suppes 54). 

°l) The construction of models of set theory in which the truth values belong to some 

Boolean algebra, as in Scott 67, Rosser 69, or Jech 71, should not be considered as such 

an attempt. Those Boolean-valued structures are used, as mentioned in Chapter II, to 

obtain the compatibility of certain set-theoretical statements with ZF and not in order 

to construct a system of set theory on a logical basis different from that of ZF., 
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apriori reason why certain many-valued logics should not prove to be fruitful 

and provide a secure foundation for set theory and mathematics. So long, 

however, as the proponents of these logics have not come forward with a 

lull-fledged set theory or arithmetic, the onus probandi doubtless rests upon 

them, in view of the fact that these theories will certainly become much more 

complex than they are today. Until then, it is best to refrain from any final 

evaluation 1). 

11.5. Combinatory Logic. We shall finally just mention that there exists a 

method of developing logic which is radically different from the “standard” 

ones. The so-called Combinatory Logic was founded by Schonfinkel and 

Curry 2) and is a highly interesting variant of modern symbolic logic. Since, 

however, its impact on the foundations of set theory does not seem to be 

very great, we shall here only call attention to a publication by Cogan 3) in 

which a set theory is formalized from the point of view of combinatory logic, 

after an illuminating presentation of the essentials of this logic itself. The 

system of Cogan turned out to be inconsistent 4), but Curry has expressed his 

conviction that the inconsistency can be avoided by a reformulation of the 

system. 

1) A survey and bibliography of some of the recent work on this topic is given in 

Chang 65a. 

2) Schonfinkel 24 and Curry 30. 

3) Cogan 55, Curry-Feys 58. 

4) Titgemeier 61. Other sources of inconsistency were found by students of Curry. 



CHAPTER IV 

INTUITIONISTIC CONCEPTIONS OF MATHEMATICS 

§ 1. HISTORICAL INTRODUCTION. 

THE ABYSS BETWEEN DISCRETENESS AND CONTINUITY 

The axiomatization of set theory (Chapter II) undertakes to avoid the 

antinomies that arise from the classical theory by restricting the concept of 

set or its mathematical use to such an extent as is suitable for that aim, but 

without fundamentally modifying the structure of the theory. Logicism 

(Chapter III) conceives the antinomies as a danger signal which concerns not 

only set theory but shows that something in the mathematical methods in 

general is out of order; therefore logicists attribute the defect to logic and its 

use in mathematics rather than to mathematics itself and propose a pene¬ 

trating reform of logic which, as one of its incidental consequences, entails the 
elimination of the antinomies. 

The attitude that is described in the present chapter is much more radical 

in its conception as well as in the consequences following from it. The 

mathematical schools which we will consider here maintain that traditional 

mathematics has misinterpreted and mismanaged the concept of infinity. 

They do not take the issue lightly, as most of them stress the fact that 

infinity is the very lifeblood of mathematics, to the extent that the part of 

mathematics dealing with finite concepts only is from the viewpoint of 

foundations almost trivial. With the criticism of the traditional treatment of 

infinity goes a thorough revision of concepts such as “existence”, “proof’ 

and “mathematical object”. Yet analysis and geometry as developed since the 

17th century and especially since the beginning of the 19th century have — so 

they argue — utterly disregarded the peculiar traits of infinity and their 

consequences for mathematics. The supposedly strict methods introduced 

into real number theory and calculus during the 19th century 1) from Cauchy 

1) For the interrelationship between infinity and the demand for strictness in math¬ 

ematical proof during various periods, cf. Pierpont 28. 
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to Weierstrass and Cantor, far from reaching the desired goal, have rather 

raised to an elaborate system the erroneous tendency of treating infinity with 
methods created for finite domains. 

According to this view the antinomies appearing at the turn of the century 

are but a secondary symptom, evolving at a rather accidental spot; actually 

they are caused by the brittleness ot the foundations of mathematics itself, 

rather than just logic or set theory. The emergence of contradictions in 

set theory is due to the tact that in no other branch of mathematics has such 

an abundant and unlimited use of infinity been made. All the same, the 

contradictions are due to traditional dealing with infinity in general and not 

to its application in the degree involved by set theory. Therefore the 

significance of the antinomies as warning signals can be met only by a reform 

of mathematics as a whole; this will automatically exclude not only the 

antinomies actually found hitherto but any conceivable antinomy. 
In addition, the concept of infinity in set theory assumes specific 

significance in connection with one of the oldest and most intricate notions 

of science in general, viz. continuity. True, the continuum is the very domain 

to which analysis and most of geometry refer. However, in these domains the 

continuum is presumed from the first as a basis while set theory ventures to 

construct the continuum in a way which appears as a special case of a more 

general method (power-set, diagonal method, Cantor’s theorem); a method 

which belongs to the strongest and the most daring procedures of set theory. 

The starting-point of this procedure is a discrete (discontinuous) aggregate, 

e.g. the denumerable set of all integers or of isolated points of a line. 

To be sure, the starting-point mentioned is itself an infinite set. But this 

type of infinity — in one or the other form of conceiving it, for instance, 

through iterated construction - is the very foundation of mathematics. Since 

it is the conditio sine qua non of mathematical reasoning the problem is not 

whether, but how, we should accept it, and various opinions and theories on 

this question are displayed in the present book: axiomatic, Platonistic, 

logicistic, intuitionistic, and metamathematical opinions or methods. 

Bridging the gap between the domains of discreteness and of continuity, or 

between arithmetic and geometry, is a central, presumably even the central 

problem of the foundation of mathematics 1). Cantor claimed to have 

bridged the gap, as claimed before by “classical” analysis; the sharpest 

criticism of these claims has been expressed by the intuitionistic schools. 

To understand the nature of the problem one should stress the funda- 

1) See Chevalier 29 where the problem is conceived in its generality, not only in its 
mathematical and physical aspects. Cf. also Jyirgensen 32, Fraenkel 37. 



212 INTUITIONISTIC CONCEPTIONS OF MATHEMATICS 

mental difference 1) between the discrete, qualitative, individual nature of 

number in the “combinatorial” domain of counting (arithmetic) and the 

continuous, quantitative, homogeneous nature of the points of space (or of 

time) in the “analytical” domain of measuring (geometry). Every integer 

differs from every other in characteristic individual properties comparable to 

the differences between human beings, while the continuum appears as an 

amorphous pulp of points which display little individuality. 

Bridging the gap between these two heterogeneous domains is not only the 

central but also the oldest problem in the foundations of mathematics and in 

the related philosophical fields. The existence of incommensurable magni¬ 

tudes discovered in the fifth century B.C. and for a while kept secret by the 

experts lest it might offend the public, had initiated the first crisis in the 

foundations of mathematics, especially in the Pythagorean school 2). This 
crisis found an apparently satisfactory settlement through the Greeks them¬ 

selves, while the second crisis, originating from the treatment of continuity in 

calculus and modern analysis in general, seemed to have been overcome in the 

sixties and seventies of the 19th century. Kronecker’s fanatic challenge to 

recognize integers only and to purge mathematics of all other numbers (see 

below) remained than a voice in the wilderness. 

As mentioned before, it is customary to assign the beginning of the third 

crisis in the foundations of mathematics to the turn of the century, with the 

appearance of antinomies in set theory. However, the real trouble began only 

a few years later, with the reactions to Zermelo’s first proof of the 

well-ordering theorem (1904; cf. p. 75), and from 1907 on with the 

intuitionistic frontal attack against classical mathematics which stands in the 

center of the present chapter. By then, not only set-theoretical antinomies but 

contradictions on the whole were shrinking to mere symptoms of the 

inadequacy of classical mathematics, which naturally was first visible at the 

outskirts of the mathematical field; yet without the emergence of contradic¬ 
tions the situation would have been no less disastrous. 

In the course of the discussions carried on since then it turned out more 

and more how closely these problems were related to those that seemed twice 
to have been solved, viz. the riddles of the Pythagorean and Eleatic schools 

and the difficulties which arose in the French and German centers of the 

theory of functions. Though the arguments have changed, the gap between 

1) Cf. Freudenthal 32, Weyl 31; in the latter paper also a musical illustration is given. 

2) Aristotle also points out the contrast between the discrete notions of reason 

(thought, counting) and the notions of the external world which seem to be continuous. 
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discrete and continuous is again the weak spot — an eternal point of least 

resistance and at the same time of overwhelming scientific importance in 

mathematics, philosophy, and even physics. The very same arithmetical 

theories ot real number which a generation before seemed to be the solid 

basis ot analysis now provoked the intuitionistic objections. 

Incidentally, it is not obvious from the first which of these two regions, so 

heterogeneous in their structures and in the appropriate methods of ex¬ 

ploring, should be taken as the starting-point. Certainly the discrete admits an 

easier access to logical analysis, and the tendency of arithmetization, already 

underlying Zenon's paradoxes, has been impressing its mark upon modern 

mathematics and may be perceived in axiomatics of set theory (Chapter II) as 

well as in metamathematics (Chapter V). However, the converse direction is 

also conceivable, for intuition seems to comprehend the continuum at once; 

mainly tor this reason Greek mathematics and philosophy were inclined to 

consider continuity to be the simpler concept and to contemplate combina¬ 

torial concepts and facts from an analytic view. Whereas some traces of the 

latter attitude are still visible in some intuitionistic opinions and are not 

missing even in Brouwer’s intuitionism (cf. below § 5), intuitionism in general 

considers arithmetic, say in the shape of mathematical induction, not only as 

the primary concept but as the origin of mathematics on the whole; it 

therefore tends to restrict analysis by imposing upon it “combinatorial” 
methods. 

Such intuitionistic restriction of the concept of continuum and of its 

handling in analysis and geometry, though carried out in quite a variety of 

different ways by various intuitionistic schools, always goes so far as to 

exclude vital parts of those two domains. (This is not altered by Brouwer’s 

peculiar way of admitting the continuum as a “medium of free growth”.) On 

the other hand, intuitionists maintain that the restricted system covers all 
legitimate mathematical processes. 

To establish the necessity of their restrictions, intuitionists critically 

analyze the methods of classical mathematics. In particular they claim that 

the dangers inherent in infinity, as emerging in 18th century’s mathematics 

and further aggravated by Dirichlet’s concept of an arbitrary function, have but 

seemingly been checked by the “classical” theories of real number, limit, 

continuity, integral, etc.; these theories are charged with logical circles which 

necessarily lead to contradictions. According to them, hardly any progress 

towards guaranteeing the solidity of classical mathematics has been achieved 

in the 19th century. 

On the other hand, it is maintained that the restricted system is sufficient 

for the needs of what may justly be called ‘mathematics’ — a notion taken, to 
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be sure, in a sense quite different from the traditional one. This claim shall be 

justified through basing arithmetic and the “meaningful” parts of analysis 

(including geometry) and set theory upon the mathematical constructions 

intuitionistically admitted. 

Thus, in striking contrast with the “conservative” steps taken in Chap¬ 

ters II and III to avoid the sources of danger revealed by the set-theoretical 

antinomies, we deal here with a revolutionary trend meant to thoroughly 

alter the essence of mathematics and its methods, at least in comparison with 

the tradition of the last three hundred years. In passing it should be noted 

that in the hypothetical case that the intuitionist attitude should oust the 

classical view it might take generations to save, and to firmly base with 

intuitionistic methods, those parts of mathematics which do not become 

meaningless or false according to the new conception. 

The group of mathematicians who call themselves intuitionists or neo- 

intuitionists 1) is composed of various and widely diverging trends which, 

save for few exceptions dating back to the 19th century, arose with the 

beginning of the present century. The name does not derive from the 

intuitively creative nature of mathematical discovery or invention 2) which is 

accepted universally but from the “primordial intuition” explained in § 5. 

One may trace back hints of this attitude to earlier periods of mathematical 
research, even to Greek antiquity 3). 

1) Various names have been used in the past, among them the now obsolete term 

‘neo-intuitionism’. We shall stick to the present terminology, which reserves ‘intuition- 

ism’ for Brouwer’s school. Older schools, especially the French school, are referred to as 
‘semi-intuitionism’. 

In the older French literature the name ‘pragmatist’ (so Poincare) or ‘realist’ is often 

found while the opponents are called ‘idealists’; this terminology may lead to confusion 
in view of the Platonistic use of the term ‘realist’. 

The name formalists for the opponents of intuitionism, particulary employed for 

Hilbert’s school of axiomatics and metamathematics, chiefly originates from polemic 

intentions and does not appropriately characterize that school. In fact “cantorians” or 

logicists are far more contrary to intuitionism than those “formalists”, who in some 

regards are more finitistic than intuitionists. 

2) A mathematician as remote from intuitionism as Hadamard beautifully described 

the intuitive character of mathematical creation (Hadamard 45). 

3) Ct. Boutroux 20 (especially Chapter IV), and Hadamard’s preface to Gonseth 26. 

According to the analysis of Aristotle’s theory of science as given in Scholz 30 (cf. 

O. Becker 36), the attitude ot this classic of ancient logic was rather neo-intuitionistic: 

he would have regarded intuitionistic mathematics as an eniOTjyuri, mathematical fields 

beyond this sphere only as a 6o£a. Also other Greek scientists, including Euclid, display 

an “intuitionistic” touch and strictly distinguish between constructibility and abstract 
existence; see, for instance, O. Becker 33. 

Among the forerunners of modern intuitionism, I. Barrow, the teacher of Newton, 

may be mentioned in view of his criticism of Euclid’s theory of proportions. 
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The number of scholars who adhere to intuitionistic principles, let alone 

those who actually adjust their methods of mathematical research to 

intuitionistic restrictions, has been but small so far and shows little tendency 

to increase. But it is highly remarkable that they include some of the out¬ 

standing mathematicians of the last generations from various countries, as is 

shown by the names of Kronecker, Poincare', Borel, Lebesgue, Brouwer, Weyl, 

and Skolem 1). To a large extent these and other mathematicians arrived 

independently at their daring ideas, forced as it were by an inability to adapt 

themselves to the traditional way of mathematical thinking; it is still more 

surprising that in spite of their relative isolation they showed themselves quite 

convinced of the final victory of their principles 2). It is as if those ideas were 

at a certain time in the air where, however, only people with a proper scent 

could track them. The arguments are sometimes just intuitive and dogmatic, 

at other times based on philosophical motives, or again using strictly 

mathematical reasons. Accordingly, the various intuitionistic trends are 

connected by a loose affinity of their basic ideas only while considerably 

diverging in the detailed pursuance of these ideas. 

For the first time in modern mathematics intuitionistic ideas appeared in 

Berlin in the seventies and eighties of the 19th century with Kronecker and a 

few of his pupils 3). Their fight against the modern methods in the theories of 

real numbers and functions, as developed especially by Weierstrass and his 

school, proved on the whole unsuccessful, in spite of Kronecker’s great 

authority; its principal and tragic effect was a considerable suppression of 

Cantor’s ideas during two decades. The theories of real numbers, of functions, 

and of sets emerged victorious and, owing to their triumphal progress all over 

analysis, not even the alarm brought on by the antinomies of set theory at the 

beginning of the present century was felt initially, except at the very outskirts 

of mathematics. 

However, with the first proof of the well-ordering theorem (1904) a 

general attack began mainly by French scholars, including a number of 

analysts who had themselves taken an active part in the application of set 

1) The highly gifted British mathematician F.P. Ramsey (who dealt chiefly with 

foundational problems and died in 1930 at the age of 27) also took an inclination to 

intuitionism (according to Russell 31) after having opposed it in his earlier publications. 

Cf. furthermore Herbrand’s attitude. 

2) This already applies to Kronecker. Cantor however retorts: This is, so to speak, a 

question of strength ... it has to turn out whose ideas are more powerful, more com¬ 

prehensive, more productive, Kronecker’s or mine; the success only will decide our 

conflict in due time. (Schoenflies 28, p. 12.) 

3) See, in particular, Kronecker 1887. - Holder’s criticism of the arithmetical theo¬ 

ries of the continuum dates from 1892; cf. Holder 24, p. 194. 
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theory to the theory of functions, such as Baire, Borel, Lebesgue 1); 

distinguished foreign mathematicians, e.g. Lusin, later joined this Paris School 

of intuitionists, while others, for instance Pasch, independently took a 

similar line. Poincare even ventured, at one time, to reject set theory in 

general and to charge the methods of many classical branches of mathematics 

with the illicit use of impredicative procedures (pp. 181 f)2); despite the 

weakness of many arguments in his attacks on Zermelo and Russell, the 
authority of the foremost mathematician of his generation contributed to 

creating an atmosphere of alarm and to preparing the ground for the assaults 

of the Dutch school. The objections against the axiom of choice raised by 

almost all intuitionists — except for Poincare' whose view in this respect and 

in the question of mathematical existence in general is sui generis 3) — 

attracted the attention of wider circles, even when many other scruples began 

losing ground in view of the successful axiomatization of set theory. The 

attitude of the members of the Paris School exhibits on many occasions 

examples of a penetrating analysis of foundational and set theoretical 

problems, though it shows a certain lack of consistency. Although their 

action is usually connected with the discussions concerning the axiom of 

choice, they also expressed their opinions on matters of a much wider 

philosophical bearing. A few examples may serve to illustrate some of their 

views. 

(i) According to Lebesgue 05, p. 205, an object exists when it has been 

defined in finitely many words. Borel in this context speaks of “effec¬ 
tively defined” objects. 

(ii) Lebesgue rejects the concept of an arbitrary number sequence, he only 
accepts those determined by a law. 

(hi) Baire protests against the use of the power set of a given set as being 
well-defined. 

Many of these issues were to be taken up later by Brouwer and his 
followers. 

1) Yet most scholars of this trend, in contrast with intuitionists, were not eager to 

apply their principles in the practice of their own analytical researches. 

2) However, the attitude taken by Poincare'(who died in 1913) was far less radical 

during the last years of his life. One should remember that later (see Poincare' 10) he gave 

a new proof for one of the strongest theorems of set theory, the non-denumerability of 

the continuum. (It is misleading that the posthumous collection of essays (Poincare' 13), 

some of which had appeared long before, bears the title Demieres Pensees.) - Here we 

may disregard the conventionalistic ingredient of Poincare’s mathematical philosophy, 

which is essentially restricted to geometry (and physics); cf., for instance Rougier 2o’ 
Mooij 66. 

3) Poincare' 08, Chapter V, part III. 



HISTORICAL INTRODUCTION 217 

At some points their criticism even surpasses Brouwer’s, e.g. Borel in 47 

p. 765 states that the very large finite involves the same difficulties as the 
infinite, thus anticipating ideas of Esenin-Volpin 61. 

In 1907 the Doctoral Thesis of Brouwer marked the first step in a distinct 

intuitionistic direction for which he at first introduced the term neo-intu- 

itionism. Besides several of his pupils in Amsterdam — hence the name 

Dutch School — a few others joined his circle, in particular (during the 

1920 s) Weyl, who before had taken an attitude of his own 1) which in some 

respects resembled the Paris school. Especially in the decade beginning 1918 

Brouwer unfolded his banner to an impetuous attack on traditional mathe¬ 

matics and to a thoroughly new foundation of analysis and set theory, which 

for some time deeply alarmed the mathematical world and provoked no less 

vehement reactions, occasionally producing something like Homeric talks; 

nevertheless quite a few of his opponents proved themselves considerably 

influenced by the new ideas. (While this is usually pointed out for the later 

works of Hilbert and his school from the 1920’s on, one is in the habit of 

forgetting that Hilbert’s earliest research in logic, which preceded Brou¬ 

wer’s Thesis and at that time remained almost unnoticed, might be regarded 

as an intuitionistic program more radical than intuitionism.) Brouwer’s 

principles were far more revolutionary than those of earlier intuitionists, 

although in the theory of the continuum he was less rigid. His radical attitude 

is the reason why he found a good deal of both support and opposition in 
philosophical circles. 

Describing separately the various trends of intuitionism and their implica¬ 

tions with regard to the extent of “legitimate” mathematics would require a 

lengthy exposition. Therefore we shall mainly exhibit the principles of 

Brouwer’s intuitionism and their consequences while including other trends in 

the literature and describing some of their chief ideas. The features in which 

Brouwer’s intuitionism in principle differs from other intuitionistic trends are 
chiefly the following: 

A) The conception of the nature of mathematics and mathematical 

existence, involving Brouwer’s attitude towards the relation of mathematics 
to language and logic (§ § 2—4). 

B) Brouwer’s theory of the continuum, in particular the choice sequences 

(§ 5), based on his peculiar definition of set and species. 

1) See Weyl 18 and 19 and the first part of 21. Later, however, Weyl swerved 

considerably from intuitionism, in particular from its intolerance of other opinions; cf. 

Weyl 26 (§ § 10-11) and his remarks at the end of Hilbert 28. 
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Literature on various aspects and modifications of intuitionism is abun¬ 

dant. Instead of listing all the relevant papers we refer the reader to the 

bibliographies of the following texts; Beth 59, Bockstaele 49, Fraenkel— 

Bar-Hillel 58, Heyting 55, Kleene 52, Kleene-Vesley 65, Mooij 66, Mostow- 

ski 66. However, literature pertaining to particular fields and problems, such 

as the principle of the excluded middle and intuitionistic logic, even when 

embedded in more general considerations, is given in the following sections. 

(For literature on the axiom of choice and its existential character, see 

Chapter II, § 4.) 
Brouwer himself refused to acknowledge most interpretations of his 

attitude, including some of the Dutch school itself. 
The prominent critics of intuitionism start either from logicistic or from 

formalistic principles; cf. Chapters III and V. Some other critical or polemic 

papers, partly of a philosophical nature, are given here 1). 
This historical exposition is a suitable opportunity for presenting a 

somewhat related attitude which, nevertheless, cannot be subsumed under 

intuitionism and which in many respects is even more radical than intui¬ 

tionism. It dates back to about 1910 and has, not quite accidentally, the 
same geographical origin (Amsterdam) as intuitionism; its Dutch name is 

Signified (signifies in English) and its character is largely relativistic and 

pragmatic. In its mathematical direction this attitude was developed by 

Mannoury2) but it was also applied to other sciences, including sociology 

and law. Some Dutch mathematical intuitionists, notably Brouwer and Van 

Dantzig, showed a close connection to signific ideas. However, these ideas 

have obtained practically no recognition outside the Netherlands, partly 

because of the rather obscure form of their exposition. 

As shown in §§ 2 and 3, the intuitionistic criticism of traditional 

mathematics is directed against its treatment of infinite and indefinite 

aggregates, which form the chief part and the characteristic feature of 

mathematics on the whole; with respect to closed finite aggregates, even if 

their extent surpasses human imagination, the classical attitude is not altered. 

1) Bernstein 19, Holder 26, Ramsey 26 and 27, Cassirer 29 (in particular Part 3, 

Chapter IV refers especially to O. Becker), P. Levy 30, Ambrose 35 and 36. Curry 51 

and Dieudonne' 51 derive their arguments against intuitionism from finitistic attitudes. 

2) Mannoury 25, 31, 34, Morris 38. The comprehensive expositions Van Dantzig 46, 

49a and Vuysje 53 - the latter containing an extensive bibliography - give very clear 

surveys of signifies in its original (Dutch) sense. The paper de Iongh 49 contains a critic¬ 

ism of intuitionism from the signific viewpoint and stresses the distinction between men¬ 

tal construction and its linguistic expression. 
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Therefore the conception of some mathematical statements as objective 
truths does not become meaningless in intuitionism. 

Yet among the philosophical interpreters and adherents of Brouwer’s 
doctrine one finds “anthropological-existential” influences 1) which stress the 

subjective significance in comparison with the objective one. More radical 

steps in this direction, long betore the rise of existentialism, were made by 
the signiflc school. 

Signifies starts from a critical examination of language and of methods of 

expression and denotation in general and is thus somewhat related to modern 

semiotics, especially to its pragmatic branch as conceived by certain Polish 

and American schools and by the Vienna Circle 2). Signifies, however, has in 

mind not the ordinary analysis of “meaning” but rather a theory of “psychic 

associations underlying human acts of language”. The stress is laid on the 

perceptions and emotions connected with the terms or symbols. A character¬ 

istic feature of this rather psychological attitude is its conception of language 

as an activity by which man tries to influence the behavior and the vital 

power of others 3). This applies not only to “acts of volition which demand 

obedience” but as well to mere “indicative” acts of communication, including 

the symbolic language of mathematics; according to Mannoury not even in 

the latter, the social significance of which should not be overlooked, is the 

subjective, persuasive, emotional character of language altogether lacking4). 

A mathematical formula would, then, not have a meaning per se but 

according to the purpose for which it is used. Thus Mannoujy’s mentioning of 

mathematics and mystics in one context is not accidental. The emotional and 
psychological moment, and this alone, is apt to explain the choice of 

principles (axioms) underlying mathematics and is still more perceptible in 

mathematical models of the external world as constructed in theoretical 

physics. Yet even Mannoury admits that the assertions of mathematics are to 

1) Especially in O. Becker 27. Also in Borel’s and Lusin’s mathematical writings such 

influence is felt, quite independently of phenomenology. 

2) Cf., for instance, Hahn-Neurath-Carnap 29, or Morris 38. 

3) Here both a congeniality and a contrast with Brouwer’s attitude (especially in 29), 

as described in §2, become manifest. According to signifies, not only the exposition of 

mathematics but even mathematics itself (mathematical thought) has a partly linguistic 

character. 

4) It was mainly this attitude, related to a psychological foundation of logic (as in the 

schools of Hey mans and Mach), which repelled most mathematicians. Cf. the ironical 

remarks in Jourdain 18 (p. 88) about evaluating the product 6-9 by working out, from 

the answers obtained in an examination among school-boys, the average to six decimal 

places; or about evolutionary ethics expecting to discover what is good by inquiring what 

cannibals have thought good. 
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a higher degree independent of sentiments of like and dislike than those of 

any other science. In this light one might interpret Kant’s well-known maxim, 

measuring the scientific character of a doctrine by the applicability of 

mathematics to it. 

§ 2. THE CONSTRUCTIVE CHARACTER OF MATHEMATICS. 

MATHEMATICS AND LANGUAGE 

The fundamental thesis of intuitionism in almost all its variants says that 

existence in mathematics coincides with constructibility. While in intuition¬ 

ism stress is laid on the very character of mathematics as involved by this 
thesis, in other trends at least the restrictions imposed on the field of 

admissible mathematical procedures derive from the thesis. 

Mathematics is, according to Brouwer, not a theory, a system of rules and 

statements, but a certain fundamental part of human activity, a method of 

dealing with human experience, consisting primarily in the concentration of 

attention to a single one among our perceptions and in distinguishing this one 

from all others. 

In Brouwer’s first systematic exposition of his foundational views (his 

Ph.D. Thesis of 1907) it is argued that in mathematics (and all other activities 

of the intellect) the discrete and continuous aspects occur side by side as 

inseparable complements and that neither can be founded on the other 1). 

In Brouwer’s words: “The primordial intuition of mathematics and every 

intellectual activity is the substratum of all observations of change when 

divested of all quality; a unity of continuity and discreteness”. Later, after he 

introduced spreads, he abandoned this view and showed how to construct the 

continuum by means of choice sequences. 

As the primitive act of intellectual construction in general, intuitionism 

conceives “the splitting-up of moments of life into qualitatively different 

parts which, separated only by time, can be reunited”. Parallel to this general 

conception, in a remarkable similarity to a well-known idea of Plato’s, the 

primitive act of mathematical construction is maintained to be “the process 

of stripping this splitting-up of any emotional content until the intuition of 

abstract bi-unity remains” 2). Accordingly, mathematics in its entirety con¬ 

sists of mental processes that can be built up by an unlimited sequence of 

1) Brouwer 07, p. 8. Cf. the clarification of many obscure formulations of Brouwer 

(particularly in the programmatic writings 07 and 29) in Van Dantzig 47 and Hey ting 55. 

2) Brouwer 12. 
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steps repeating such primitive mathematical acts indefinitely - a definition 

which is more comprehensive than any other and includes logical processes as 

well as many procedures of natural sciences. No other science — certainly not 

logic or philosophy — can, then, serve as a basis for mathematics. According 

to this conception, the use of mathematical procedures is not the exclusive 
privilege ot science, but is to be found also, spontaneously and often 
subconsciously, in everyday thinking. 

Obviously, this intuitionistic “definition” of mathematics does not supply 

us with an exact determination of what procedures, among those found in 

traditional mathematics, can be regarded as “constructive” and therefore 

legitimate within Brouwerian mathematics. Yet the apparently dogmatic 

character ot the above definition is mitigated by certain remarks (above, 

p. 213) about the necessity and the sufficiency of intuitionistic restrictions. 

The emphasis laid on the construction of mathematical entities and even 

the identification between existence and constructibility in mathematics is by 

no means a novelty. Definitions in mathematics usually raise the question 

whether an object satisfying the definition can be constructed (effective 

examples). Also the classical problems of Greek geometry — notably 

duplication of the cube, trisection of the angle, squaring of the circle — are 

problems of construction, in this case, of construction with ruler and 

compasses. Hilbert who was fought by mtuitionists as the protagonist 

of their opponents, after having first solved a fundamental problem of 

invariants by existential methods 1), found it worthwhile to look also for 

constructive solutions of related problems which in principle were included in 
the existential procedure. 

In § 4 of Chapter II some procedures of a purely existential character 

were exhibited. Such procedures are found chiefly in analysis, geometry and 

set theory, but they are not altogether missing even in arithmetic and algebra. 

Their common feature is that certain mathematical objects (numbers, cor¬ 

respondences, functions, sets etc.) are shown to exist not on account of their 

derivation from simpler objects by a step by step construction but by means 

ol an argumentation which appeals to logical compulsoriness. Mostly this, is 

done in the way of an alternative between mutually exclusive possibilities in 

view of the principle of excluded middle (see below § 3), or by showing that 

the non-existence of an object with the desired quality would involve a 

1) This first proof of the existence of a finite set' of invariants (1890) was called by 

Gordan “theological” because it made essential use of an existential reasoning (“there 

must be an invariant of the lowest possible degree”) from which an actual invariant of 

the kind in question cannot be constructively derived. 
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contradiction (whereas the nature of the contradiction does not yield a 

method of constructing a suitable object). A well-known instance, which 

appears at the very beginnings of analysis, is the theorem that every infinite 

bounded set of points has at least one accumulation point, proven by 

iterated bisection. During the 19th century demonstrations of this type were 

not only quite current but even specially appreciated for their acute and bold 

character. On the other hand, they have the disadvantage of not granting an 

insight into the nature of the object secured; if, for instance, the object is a 

number, a proof of the existence of a number with the desired property need 

not enable us to estimate, say, the magnitude of the number. 

Intuitionism and most other intuitionistic trends, admitting construction 

alone as a legitimation for existence in mathematics, deny such procedures 

any binding power and do not accept the existence of the objects concerned 

as long as they are not secured in a constructive way. In particular, 

intuitionists maintain that identifying mathematical existence with non¬ 

contradiction would mean degrading mathematics to a mere game 1). Only 

Poincare', though in other directions taking a most radical attitude, regarded 

freedom from contradiction as a sufficient legitimation for existence (as does 

the formalistic school) and even accepted the principle of choice. 

This principle and the well-ordering theorem resting on it presumably 

constitute the most characteristic instance of a purely existential mathemati¬ 

cal statement2 ). In fact, the latter theorem, which asserts the existence of 

procedures (or sets) that well-order a given set without showing how to 

obtain such a procedure, is the prototype of an intuitionistically meaningless 

statement. The uselessness of the well-ordering theorem for ascertaining, say, 

the place of the power of the continuum in the series of alephs is interpreted 

as a mere symptom, to be expected in advance, of the theorem’s voidness of 

meaning. 

Far beyond this extreme instance all existential propositions are viewed by 

intuitionists with suspicion. The content of such propositions is not clear in 

so far as no actual effective procedure is involved in Finding the object, 

the existence of which has been asserted. In many practical instances, 

however, a construction of the object can be abstracted from the proof of the 

existential statement. The constructive content of a statement “there exists 

1) The phenomenological-existentialist brand of philosophy (cf. O. Becker 27, for 

instance p. 442) considered intuitionistic mathematics to be a science that “discovers 

actual phenomena which are comprehensible to original and adequate intuition and can 

be existentially interpreted”. 

2) Cf., however, Suetuna 51—53. (The concept of ‘set’ used there is somewhat ob¬ 
scure.) 
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an object a with the property P" consists of a construction of an object a and 

a proof that a has the property P. In many instances, however, the abstract 

has been derived from a statement proper; for instance, from the statement ‘2 

is an even prime’ we can derive the abstract ‘there exists an even prime’. 

Brouwer has compared the situation to that of coming across a document 

which says that a treasure is hidden somewhere. This is not a proper state¬ 

ment as long as the spot where the treasure is hidden has not been specified; 

yet the document may cause a treasure-hunter to obtain a statement of the 

torm 'here a treasure is hidden’ by stimulating him to dig and find the 

treasure. From this we may proceed to the abstract which, however, has its 

only justification in the underlying singular statement. 

In these and similar cases it is fairly obvious which statements and 

procedures are not constructive. But one can hardly maintain that the 

positive meaning of “constructiveness” is sufficiently clear with respect to 

procedures employed up to now or to be employed in the future in what has 

always been understood as “mathematics” — save for mathematical induction 

(§ 5) ‘). As a matter of fact, several attempts and suggestions of defining 

‘construction’ were made, chiefly from outside intuitionism 1 2). These sugges¬ 

tions only seem to indicate that the concept of construction has a relative and 

not an absolute character; there are higher (stronger) and weaker degrees of 

the concept 3) and this even applies to the domain of arithmetic4). Thus the 

question loses its dogmatic character and, analogous to the axiomatic 

procedure, assumes the form: what parts of mathematics, or of a certain 

mathematical branch, can be obtained from a given starting-point by means of 

such-and-such “constructive” methods? In fact, an opposite (dogmatic) 

attitude should have induced the Greeks to infer from their conception of 

1) For the meaning of ‘construction’ within the Paris school of intuitionism, cf. §5. 

2) Among the earlier papers, before Kleene’s book of 1952, we should mention 

Menger 28 (p. 225), 30, 31, Rosser 36, Hermes 37; particularly Kleene 43 (No. 16), 45, 

Post 44, D. Nelson 47 and 49. Rasiowa 54 gives a topological explanation. 

3) See Mostowski 59; cf. also Hey ting 58 and Dienes 52 who distinguishes between 

different degrees of rigor, the first of which coincides with intuitionism. 

4) For instance, with respect to a sequence of integers there is a difference in con¬ 

structiveness between the existence, for every n, of a rule enabling us to calculate the nth 

term of the sequence (or the first n terms) by means of a finite number of steps, and the 

existence of a rule which enables us to calculate, by means of a finite number of steps, 

the nth term (or the first n terms) for every n. The former possesses a weaker degree of 

constructiveness than the latter. The intuitionistic interpretation of logical connectives 

bears on the above considerations. 

The indicated difference in degree of constructivness actually figures in everyday 

mathematics, cf. Rogers 67, p. 68, Th. XIV. 
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geometrical construction that, in general, there exists no angle equal to the 

third of a given angle. 
Brouwer impetuously opposed this opinion and maintained that there is an 

absolute concept of constructiveness and that this concept settles what is 

comprehended in mathematics and what parts should be excluded as 

belonging to pseudoscience. Indeed quite a number of constructive proce¬ 

dures have been described and a certain “mathematical attitude of mind’’ 

may be suggested by general hints. But any list of constructive mathematical 

principles is not only incomplete but also necessarily remains incomplete- 

able 1); for, within the limits of the general notion given above for 

“mathematical” procedures, we must not limit the liberty of creative mind to 

further extend its constructive faculties. Hence we can never predict what 

special ways of construction might be needed for reaching a particular goal. 

The situation may be compared to a mountaineering expedition for which 

you may fairly well give a list of “admitted” alpinistic procedures and 

prohibit others, for instance driving nails into rocks, while you can never 

foresee all devices that may become life-saving, and therefore admitted, 

at a certain stage of an ascension. 

The conception according to which mathematics is the mental activity 

described above rather than the oral or written expression of such activity has 

a decisive influence on the relation between mathematics and language 1 2). 

Apparently the process of thinking, i.e. of mental creation, is not intrinsically 

connected with a linguistic expression; only for the exchange of thought (the 

communication of ideas) do we need spoken language or its written 

equivalent. In this context the weakness of mathematical language in 

comparison with mental construction is stressed, for any language is, says 

Brouwer, vague and prone to misunderstanding, even symbolic language 

(since mathematical and logical symbols rest on ordinary language for their 

interpretation). Hence mathematical language is ambiguous and defective; 

mathematical thought, while strict and uniform in itself, becomes subject to 

obscurity and error when transferred from one person to another by means of 

speaking or writing. It would therefore be a fundamental mistake to analyze 

mathematical language instead of mathematical thought. This pointed distinc¬ 

tion between construction in mind and its expression in language is contrary 

not only to logicism (Chapter III) and metamathematical method (Chapter V) 

but also to the view, uninfluenced by mathematical considerations, of leading 

1) In a certain sense, one might consider this attitude (and the maintained impossibil¬ 

ity of including mathematics within a formal system) to be confirmed by Godel’s incom¬ 

pleteness theorem (Chapter V, §7). 

2) See, in particular, Brouwer 29,49, 54. 



CONSTRUCTIVE CHARACTER 225 

philosophers from Plato through Lxibniz to W. Von Humboldt and E. Cassirer 
who assert that all abstract thinking is dependent on language 1). 

Ibis attitude not only applies to mathematical theorems (and definitions) 

but still more so to mathematical proof. The construction itself constitutes 

the proof and one should drop the usual idea as though the demonstration 

were intended to convince the reader of the soundness of an argumentation 

by basing it, step after step, on recognized principles. Since construction is an 

activity it can not be communicated adequately; instead one uses the fragile 

crutch of words or symbols. There is neither exactness nor safety, says 

Brouwer 2), in the “transfer of will” by means of language, and this also 

applies to the transfer of will expressed by the construction of a mathemati¬ 

cal system. Hence for mathematics there exists no safe language which 

excludes misunderstanding in talk and prevents mistakes of memory; this 

defect is regarded as support of the contention directed against formalism 

that the exactness of mathematics should be found not “on paper” but “in 
the mind of man”. 

Brouwer in his later papers fully accepted the mathematical consequences 

of the above views. The fact that language is a deficient vehicle for the 

purpose of transferring mathematics naturally fits into a solipsist philoso¬ 

phy 3), which appears to be the most suitable background for the proce¬ 

dures involving the mental activities of “a mathematician” (the “creative 

subject”). It must be stressed that the intuitionistic thesis about mathematics 

and language is inacceptable to the majority of mathematicians for the very 

reason that it makes mathematics a private affair rather than an organized 
intersubjective phenomenon. 

Many outstanding mathematicians from Sylvester to Poincare have com¬ 

pared mathematics to music. Intuitionism adds a further and more pene¬ 
trating analogy; as a composer may teach a beginner how to compose a 

symphony — not by merely teaching harmonics but by describing how he had 

done it — so a mathematician would initiate a student in the constructive 

mystery of mathematical production, while the demonstration has a second¬ 

ary value only. 

The intuitionistic conception of language directly influences the problem 

of the antinomies, which are considered mere combinations of 

1) Cf. Schlick 26. On the other hand several philosophers (for instance Greenwood 

30), sometimes with a psychological argumentation, accept the distinction between 

mathematics and its exposition and even extend it. 

2) Brouwer 29, p. 157. 

3) Cf. Heyting 56, VIII, Kreisel 65, p. 119. 
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words, void of meaning and without constructive content. In a construc- 

tivistic conception of mathematics, based on intuitionistic principles, no 

meaningful formulation of the antinomies is possible. Hence for intuitionists 

there is, properly speaking, no problem of antinomies. It is difficult duly to 

appreciate the intuitionistic attitude towards mathematical language without 

plunging into Brouwer’s general opinions on human civilization. The follow¬ 

ing brief description may serve to present the reader with an outline of 

Brouwer’s views. 1) 
The mind of an individual experiences sensations. The individual identifies 

certain sensations and starts to recognize iterative sequences of sensations 

with the property that if one of these sensations occurs the others are 

expected to occur also, in a specific order. Such sequences are called causal 

sequences. The individual will try to use his knowledge of causal sequences to 

obtain certain desired sensations by producing a sensation that precedes the 

desired sensation in a previously experienced, causal sequence. This shift from 

end to means is called “cunning act” by Brouwer. Certain complexes of 

sensations are independent of the order in time, and their dependence on the 

individual is small or nil. These complexes are called things, e.g. external 

objects, human beings. The whole of things is called the external world of the 

individual. The relation of the individual with other individuals (which are 

again sensation complexes, i.e. things) is described by identification of causal 

sequences, observed by the individual, of itself and of other individuals. This 

identification justifies the term “acts of other individuals”. It is observed by 

the individual that causal acts (i.e. cunning acts based on knowledge of causal 

sequences) of itself and other individuals are highly dependent. Hence the 

need for cooperative causal acts arises. This is where scientific thinking, as an 

economical way to deal with large groups of these causal acts, is introduced. 

Scientific thinking as such is based on mathematics. The genesis of mathe¬ 

matics takes place at the creation of two-ities. Brouwer construes the two-ity 

from a move of time, which is a concept defined with respect to the indi¬ 

vidual. Namely: a move of time takes place when one sensation gives way to 

another. Both sensations are retained in their proper order and constitute a 

two-ity. The individual abstracts all quality of this two-ity and uses it as the 

basic ingredient for iterative processes. These iterative procedures can create 

predeterminately or more or less freely infinite proceeding sequences of 

mathematical entities previously produced. 

The place of language in Brouwer’s conception is that of a device for the 

1) These views are expounded in Brouwer 29, 49. Cf. Mannoury 34 (see above, 

p. 218), Heyting 67. 
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transmission ot will ot the individuals that make up society. With respect to 

mathematics Brouwer considers language, including logic, as a phenomenon 

accompanying the wordless mathematical construction processes of the 

individual. As a consequence Brouwer maintains that logic does not precede 

mathematics but, on the contrary, is preceded by mathematics. 

§ 3. THE PRINCIPLE OF THE EXCLUDED MIDDLE 

In the following sections we shall survey the consequences, both for logic 

and mathematics, of the fundamental thesis described in § 2. §§ 3 and 4 

deal with the consequences for logic, §§ 5 and 6 with mathematics. While in 
the present section an informal exposition is given, including references to the 

extensive literature on the subject, § 4 deals with the intuitionistic logical 
calculus. 

From the first 1) Brouwer raised the question which among the principles 

of Aristotelian logic could be retained from the intuitionistic point of view. 

His answer is, the principle of contradiction but not the principle of the 

excluded middle (tertium non datur) in its general sense. This constantly 

repeated claim as to the invalidity of the tertium non datur in mathematics 

and in infinite domains in general quickly became the centre of prolonged 

dispute between adherents of intuitionism and its opponents. (The Paris 

school and other intuitionistic trends did not accept the attitude of the Dutch 

school towards the excluded middle.) To perceive the great importance and the 

wide application of the principle of the excluded middle in mathematics let 

us just recall that it is the fundament of indirect proof. The heated 

discussions concerning the validity of the tertium non datur may erroneously 

have created the impression that after all the intuitionistic revolution boils 

down to founding mathematics on just another logic. Actually intuitionists 

consider the tertium non datur as a symptom of the disease of classical 
mathematics, and they do not intend to cure symptoms. Anyhow, the 

tertium non datur turned out to provide the Dutch school with a pointed 

slogan. 

1) Brouwer 08. Cf. Brouwer 54, where he says “the long belief in the universal 

validity of the principle of the excluded third” ... is considered “as a phenomenon of 

the history of civilization of the same kind as the old-time belief in the rationality of 

7T . . 
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As a historical detail we may point out that in his Ph.D. thesis Brouwer 
defended the priority of mathematics over logic, but at the same time accepted 

the tertium non datur (Brouwer 07, p. 132). In 1908 he reconsidered the 
tertium non datur (at the instigation of Mannoury (?), see Van Dantzig 57) 

and questioned its validity. As a matter of fact, the use of the principle of the 

excluded middle for finite domains was never questioned 1). One should, 

however, be careful not to apply the principle in that case rashly. The state¬ 

ment “Fermat’s conjecture holds or does not hold for the first 10,000 natural 

exponents” is only apparently an instance of the tertium non datur for a 

finite domain, since in the expanded version there occurs an unrestricted 

number quantifier. Brouwer’s formulation reads: For every assertion of possi¬ 

bility of a construction of a bounded finite character in a finite mathematical 

domain the principle of the excluded middle holds 2). 
Note that the notion “finite” is used in its strong, intuitionistic sense. That 

is, a set is finite if there is a constructive one-one correspondence between the 

set and an initial segment of the natural number-sequence. Consider the set 

consisting of all natural numbers n with the property that the nth decimal of 

7T is not preceded by a string of 9 sevens if a string of 9 sevens occurs in the 

expansion of n, otherwise let the set consist of the number 1 only. This set 

would be recognized as being finite by traditional mathematics. An intui- 

tionist, however, has no means to establish the aforementioned correspon¬ 

dence, hence for him the finiteness of the set is an open problem. 

Since the principle of the excluded third does not present difficulties in 

the essentially finite case, let us consider statements involving infinitely many 
objects. 

We will examine a number of simple examples. Consider the following 

expressions, where n ranges over the positive integers. 

1) 2n + 1 is a prime number; 

2) the nth digit after the point in the decimal expansion of 7T = 3.14159... 
is 7; 

1) It must be pointed out, however, that generally a certain amount of idealization is 

involved. Instead of actually carrying out tests, etc. one convinces oneself that it is 
possible to do so. 

2) Cf. Brouwer 52-53, p. 141. 
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3) every geographical map containing n regions (countries) can be 
colored 1) by means of at most four colors; 

4) 2n + 1 being a prime number, there exists a greater prime number of the 
form 2m + 1 (m >n)2); 

5) n and n + 2 forming a pair of twin primes (i.e. a pair of prime numbers 

the difference between which is 2), there exists a larger pair of twin primes; 

6) there exists a triplet (x, y, z) of natural numbers (a “Fermat triplet”) 
such that 

xn+2 +yfl+2 =zn+2 . 3) 

We add the following statement which is related to 2) yet contains no free 
variable: 

7) There exists an integer n such that the nth. digit in the decimal expan¬ 

sion of 7t and its six successors (the (n + l)st, (n + 2)nd, (n + 6)th digit) all 
equal 7. 

By universal quantification over n we proceed from 3) to the statement: 

8) Every geographical map can be colored by means of at most four colors. 

By giving n a definite value we may also turn 1)—6) into statements and 

then raise for each of 1) to 8) the question whether the statement is true or 

false. That is to say, we will examine a number of particular instances of the 

general principle “every meaningful statement p is either true or false”, i.e. 

p v ~\p (tertium non datur). 

Let us consider our examples and weigh the grounds for accepting or 
refuting the principle in each separate case. 

In the cases 1) and 2), it may at the present stage of research prove 

difficult, for large values of n, to reach the actual decision whether the state¬ 
ment is true or false; the same applies to 3) when n > 37 (for n < 37 it is 

demonstrably true). Yet in principle the decision can be reached; for a given 

n, only a finite number of tests is necessary to ascertain whether n does, or 

does not, have the property in question. For this very reason we may anticip¬ 

ate the result; n either does or does not have the property, i.e. the statement 

is either true or false. Therefore a theorem proved on either of the assumpt- 

1) On condition that different colors are given to any two adjacent regions, i.e. to 

regions that have in common a portion of their boundaries (and not only isolated 

points). It is assumed that the map is drawn on a plane or on the surface of a sphere. 

2) Mersenne numbers, i.e. primes of the form 2 - 1, yield examples similar to 1) 

and 4). 

3) The exponent is written in the form n + 2 because, as is well known, there exist 

(infinitely many) solutions (x, y, z) of the equation x2 + y2 = z2. 
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ions that 2131072 + 1 is prime and that it is composite would be true also in 

the eyes of Brouwer, though we do not know which assumption is true. 

The same argument, which relies upon the possibility of testing by finitely 

many steps, allows us to state, for example, with respect to the population of 

London at a certain moment that either each inhabitant of London is at most 

99 years old or that there exists at least one such inhabitant whose age is 

100 years or more. *). Thus, according to the Dutch school, the principle of 

the excluded middle is just a statement among millions of others, having no 

claim whatsoever to universal validity. In those cases where the principle 

holds a mathematical proof can be provided. In particular one can prove the 

validity of the principle in the case of a finite domain by referring to a finite 

examination procedure, be it an indiscriminating search procedure or an eco¬ 

nomic algorithm. 

On the other hand, there is not the slightest argument in support of such a 

conclusion when an infinite aggregate is concerned. One should beware, says 

Weyl 1 2 *), of the idea that, after an infinite aggregate had been defined, we may 

now proceed as if its members were spread before our eyes and we can check 

them one by one to find out whether there is among them an element of a 

certain kind; though this idea is perfectly legitimate for finite aggregates, it 

makes no sense with respect to an infinite aggregate. 

Obviously such is the situation in the instances 4)—8) given above. The 
instances 4) and 5) resemble each other. It is well known that, if m is divisible by 

an odd integer > 1, 2m + 1 is a composite number; among the other 

values of m, i.e. among the powers of 2, m = 24 is the largest integer for 

which 2m + 1 is known to be prime (as is the case for m = 20, 21 22 2^), m = 
21945 jj-jg iargest one for which 2m + 1 is known at present to be composite, 

while between these two values of m over forty have been successfully tested 

(among them 2a with a = 5 to a = 12 but not 217 = 131072). At present, 

then, it is not only unknown whether the set of primes of the form 2n + 1 is 

finite or infinite but even whether it contains just six or at least seven mem¬ 

bers; that is to say, whether 21 6 + 1 is the greatest prime of this form or not. 

5) is also unsolved for the time being: we do not know whether there is a last 

pair of twin primes (which seems improbable) or whether there are infinitely 

many such pairs. 

In the case of 6) — contrary to 1)—3) — not even for a given value of n 

1) One should keep in mind that this type of example has slippery aspects, e.g. the 

finiteness of the set under consideration is often debatable. 

2) Weyl 21, p. 41. Cf. the distinction made by philosophers (e.g., Husserl) between 

“individual” and “specific” generality; see Carnap 37, § 15. 
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need a decision be obtainable by a finite number of steps, for to achieve it 

one would have to test infinitely many triplets {x, y, z). In fact, no Fermat 

triplet is known and it seems probable that none exists; but while, for infinit¬ 

ely many values ot n, the non-existence of triplets has been proved there 

remains another infinite set of integers n for which we do not know the 
answer. 

Finally, 7) is somewhat similar to 4) and 5) and is related to 2) though not 

quite in the same way as 4) is related to 1). For a given n one can in principle 

decide not only whether the nth decimal of n, an, equals 7 but also whether 

an ~ an +1 ~ ••• ~ an+6 ~ 7 or not- Yet 7) requires an existential quantification 
over n. 

Likewise, 8), on account of n ranging over the infinite set of natural num¬ 
bers, presents a case which has neither been proved nor refuted at the mo¬ 
ment. 

The above examples may have falsely created the impression that in the 

case of an infinite domain there is no hope for intuitionists to establish the 

validity of statements involving unrestricted quantification. That this is not 

the case is illustrated by the following example: For every prime number p 

there exists a larger prime number q. Indeed we have known since Euclid that 

the set of primes is infinite, but we know more: there is an effective finite 

procedure for calculating “the next prime”. So the above statement is intui- 

tionistically valid because of the existence of an effective procedure which 
provides for each p the required q. 

We have discussed the examples l)-8) at length in order to make Brou¬ 

wer’s attitude towards the principle of the excluded middle conspicuous. 

Take e.g. 4) with n = 16. In order to show the validity of the tertium non 

datur we have to show that either (a) there exists a prime of the form 2m + 1 

with m > 16 or (b) there is no prime of the form 2m + 1 with m > 16. The 

latter is equivalent to (b') all numbers of the form 2m + 1, with m > 16, are 

composite. Flowever, neither (a) nor (b') have been established until now. So 

the validity of this instance of the excluded third is open. This rather negative 

situation has sometimes been called a third one. It has a temporary character, 

for tomorrow we may discover a suitable m to validate (a), or succeed in 

finding a general proof for (b')_ In intuitionistic literature one often encount¬ 

ers examples of the kind mentioned. Preferable to such special problems is a 

general instance of undecidability in the mathematical branch under consider¬ 

ation 1); then the “third case” is justified by the assumption that there is no 
general decision method. 

1) For branches that contain the notion of choice sequence (or real number) there are 

stronger means to refute the principle of the excluded middle (see § 6). 
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The name “third one” was doubtless an unfortunate choice, as it led some 

philosophers to believe that intuitionists use a three-valued logic 1). As a 

matter of fact, the third case is of quite a different nature than the two others. 

Apart from technical reasons 2), a three-valued interpretation conflicts with 

the basic meaning of the logical connectives (see § 4). 

Brouwer’s rejection of the principle of the excluded middle basically rests 

on his interpretation of the logical connectives. Let us examine a simple 

instance of the principle of excluded middle from both Platonist and Brou- 

werian points of view. Let p be the statement 3xv4(x), where x ranges over 

the set of natural numbers. We first assume Platonist principles. The truth of 

3xA(x) v~Ebo4(x) follows from the fact that the set of natural numbers is a 

completed whole and hence admits of inspection of all instances A(Q), ,4(1), 

A(2),... simultaneously (e.g. by a Platonist supermind). Clearly, either for 

some n a valid instance A{n) is encountered or for no nA(n) is valid; the latter 

is equivalent to ~I3,4(x), so 3xA(x) v A3xA{x) holds. Note that this argu¬ 

ment is an immediate generalisation of the inspection by cases for a finite 

domain, in fact it comes down to an infinite search procedure, considered as 

completed. 

Now let us consider 3x,4(x) V 13x/l(x) from an intuitionistic point of 

view. In order to establish the validity of 3xA{x) one has to provide a con¬ 

struction of a natural number k and a proof of A(k). The validity of 

H3xA(x) is established by showing that it cannot be the case that 3xA{x). 

But if for no individual n A(n) holds, then for all n A (n) does not hold and 

vice versa. I.e. ~13x,4(x) and Vx~M(x) are intuitionistically equivalent. 

So for the validity of the second part of the disjunction a uniform proof- 

schema 7r(x) is required, such that 7r(x) provides for each individual n a proof 
7r(«) of ~1 A(n), i.e. 77(77) proves that A(n) is false. Now we sum up the validity 

of the principle of the excluded middle for the statement 3xA(x) as follows: 

Either there is construction of a natural number k and a proof of A{k), or 

there is a uniform proof that shows the falsity of A(n) for each natural num¬ 

ber 77. It is not clear at all that this last statement holds (indeed for variables 

ranging over reals we can show it to be contradictory), hence the intuitionist 

has no intuitive grounds for accepting the principle of the excluded middle. 

There are classes of statements p such that p w~]p holds, e.g. quantifierfree 

formulae of arithmetic. In general, however, each instance must be examined. 

Brouwer gives the following directions with respect to the principle of the ex- 

1) Cf. Barzin-Errera 27, Hey ting 33. 

2) According to Godel 33a, no finite-valued interpretation is adequate for intuitionis¬ 

tic propositional logic. Cf. Schmidt 60, p. 369. 
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eluded middle *): The rejection of thoughtless application of the principle 

ot the excluded middle and the recognition of the facts that 1) the investiga¬ 

tion of the grounds of justification and domain of validity of the principle 

constitute an essential object of foundational research in mathematics, 2) the 

domain ot validity in intuitive (contentual) mathematics comprises finite 
systems only. 

Whenever the range of the tree variable that occurs in a general statement 

is finite - more precisely, when it contains only a finite number of objects 

each of which can be exhibited individually - the Dutch school admits that 

negating the statement produces an existential statement. For instance, given 

a finite group, negating its commutativity means that there is at least one pair 

of members x0,To such that x^Pq ^TqXq- But then the existential statement 
obtained by negation has a constructive character since the general statement 
is but the conjunction of a finite number of decidable statements. In the 

example given above “all inhabitants of London are at most 99 years old” the 

meaning is: a^ is at most 99 and so is a2 ••• ar*d so is an, where the set 

(al represents the population of London. Hence negating the state¬ 
ment produces the disjunction: al is at least 100 or a2 ... or an (in the 

non-exclusive meaning of ‘or’). By this procedure at least one counter-in- 

stance can be constructed and the supposedly existential statement becomes 

intuitionisticaliy legitimate. If, however, the variable “x” of the general state¬ 

ment 'stkA(x) ranges over an infinite domain, there is no analogue of the 

replacement of a universal quantification by a finite conjunction. Hence we 

must look for the meaning of nVx,4(x) and 3x~l4(x). _lVx/4(x) has the 

intuitive interpretation (i) it is impossible that there is a proof of VxA{x), 

3x~L4(x) has the intuitive interpretation (ii) an n can be computed such that 

A(n) has no proof. It is fairly plausible that from a weak property like (i) no 

computation as required in (ii) can be abstracted, (ii) gives more information 
than (i)! We will return in § 4 to this problem. 

Hence the use of the principle of the exluded middle in natural science 

would depend on the conditions of the finiteness and the atomistic structure 
of the universe ). 

To avoid misunderstandings of the present point the importance of which 

has been stressed time and again by the Dutch school, let it be clear that the 

1) Brouwer 28. 

2) Brouwer 24. Yet he expressly adds the remark that, as far as mathematics is applied 

in natural science, the fulfilment of these conditions referring to nature does not release 

us from the intuitionistic purification of the mathematical procedures inasmuch as these 

refer to infinite and continuous domains. 
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legitimacy of negating general statements and of affirming existential ones, 

hence of applying the tertium non datur, does not depend so much on the 

finiteness of the domain as on the definite limitation ot the domain s exten¬ 

sion. This means the exclusion not only of choice sequences (§ 5), but also of 

certain domains of ordinary life and processes of nature; say, the domain of 

all plants. 
An example of a similar kind is obtained as follows. Certainly the state¬ 

ment ‘for all x, x has eight different greatgrandparents’ is false when ‘x’ 

ranges over all men; it is equally false when ‘x’ ranges over the descendants ot 

a certain person who still has procreative descendants. Yet the existence 

among those descendants of a person that has less than eight greatgrand¬ 

parents cannot be stated either. This example is related to the question, 

broached allegedly by Aristotle, about the validity of the principle of the 

excluded middle for future events 1); in particular for events subject to the 

freedom of will, or to indeterminism in nature. 
It is true that the “ordinary” mathematician or philosopher as well as 

“ordinary common sense” is inclined to oppose the intuitionistic attitude 

towards the principle of the excluded middle. No matter whether a decision 

can be reached now or will be reached at any future time, the “objective” 
state of affairs — so they would maintain — necessarily causes the statement 

to be either true or false. Applied to the example 4) of p. 229, either there 

exist only six primes of the form 2n + 1 or there exist at least seven. Such 

argumentation, answers Brouwer, relies upon a double misunderstanding. 

First upon the idea that mathematics deals with external facts or with Platon¬ 

ic ideas existing independently of the mathematician’s activity; yet just this 

activity and nothing else creates mathematics, as follows from what was said 

in § 2. Even if one believes in some “objective truth” its character is meta¬ 

physical and mathematical proofs cannot be based upon metaphysical argu¬ 

ments. Secondly, the assertion of the tertium non datur is, consciously or 

not, influenced by an unjustified generalization to infinite domains of a pro¬ 

cedure which is legitimate for finite domains only; the process of perusing an 

infinite domain can never be finished, hence its “result” must not be anticip¬ 

ated, not even in principle. 

Take the case of a theorem that is proved under either of the assumptions 

that the statement p is true (six primes only) and that p is false (at least seven 

primes); not even in this case may you accept, according to Brouwer, the 

theorem as settled, as long as the statement is not either demonstrated by a 

1) For these questions, in particular that regarding future events, see for instance, 

Schlick 31 (p. 158), A. Becker 36, Toms 41. 
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general method — that is to say, by comprehending the infinite domain 

through a finite or intuitionistically legitimate procedure (such as a character¬ 

istic property, mathematical induction, etc.) - or refuted by a counter-in¬ 

stance. Hence the indirect method ot proving is inadmissible in general. That 

is to say, indirect proofs generally prove negative facts. The usual procedure 

is to depart trom ~1A and derive a contradiction; in ordinary mathematics 

one then concludes A, in intuitionistic mathematics one only concludes ~T\A. 

A simple mathematical example (due to Heyting) may elucidate the distinc¬ 

tion between A and ~1~\A. Detine an - 3 if up to the /7th decimal of n no 
oo 

string of 7 consecutive sevens has occurred, an = 0 else. The sum Tj a \0~n 

77=1 n 

is a real number a. We show that it is impossible for a not to be irrational. 
Suppose a is irrational, then it is impossible that a is of the form 0,333...3, so 
no string of 7 sevens occurs in n. Hence a = 1/3 but this contradicts the 

supposition that a is irrational. Therefore a is not irrational. The question 

whether a is rational cannot be answered, since we cannot compute p and q 

(integers) such that a = p/q as long as we have no definite knowledge concern¬ 

ing the status of the mentioned string of sevens. Summing up, we know that 
“in {a is rational), but we have no evidence to assert that a is rational. Coun¬ 

terexamples of this kind are customary in intuitionism; they are called weak 

counterexamples because they are based on insufficient knowledge at this 

moment. Sometimes one can show that a certain statement P is absurd, that is 
prove “1 P\ then one calls P a strong counterexample. The status of proposi¬ 

tions proved by classical means, such as the tertium non datur, will be dis¬ 

cussed in §4. Some authors have tried to refute the rejection of the principle 

of the excluded middle by tracing out a would-be contradiction. Such attempts 

could not but fail; for by omitting one of the principles or rules of a logical 

system one obtains a restriction of its operational field and of its consequen¬ 

ces and not an extension which might involve contradiction. Against certain 

misunderstandings it should be stressed that Brouwer does not intend to 

replace the principle of the excluded middle by its negation, i.e. to introduce 

a third case proper, opening the way for a principle of quartum non datur 1 ). 

The “third” case is one for which nothing positive can be stated, which 

excludes its coordination with the two other cases. 

1) Whereas Brouwer’s attitude has to some extent revived the discussions on three- 

valued logic, it should be stressed that the admission of many-valued logics does not 

imply Aristotelian logic to be contradictory - just as the consistency of non-Euclidean 

geometries does not mean that Euclidean geometry contains a contradiction. 
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Accordingly, as confirmed by a symbolic exposition of intuitionistic logic 

(§ 4 or Kleene 52), the (predicate) logic of Brouwer is not in opposition 

to classical logic but constitutes a part of it. This torso, in consequence of its 

renouncing the use of the tertium non datur, loses a good deal of the simpli¬ 

city and lucidity of traditional logic. On the other hand, even for those who 

oppose the Dutch school it is interesting to investigate the remaining part of 

classical logic and to examine how far one can proceed by its means; thus one 

obtains a domain apt to show the independence of the principle of the 

excluded middle. 
Regarding the principle of contradiction, Brouwer points out that accord¬ 

ing to Iris attitude this principle is not actually used when one proves an 

impossibility by indicating a contradiction. Virtually this only means the 

failure of a mathematical construction which should satisfy certain condi¬ 

tions 1). 

Throughout this section Brouwer’s attitude towards the principle of the 

excluded middle has been illustrated by examples referring to integers. Of 

course it applies all the more to sequences or sets of integers. Instead of the 

question “Does there exist in a given set of integers an integer with a certain 

property?” we then ask “Does there exist in a given set of sequences of 

integers (for instance, in a given set of decimals) a sequence with a certain 

property (meaningful for sequences of integers; for instance, periodicity)?”. 

The criticism of intuitionists regarding a question of the latter kind does go 

further; for here not only do they reject the use of the tertium non datur, but 

the very notion of an arbitrary sequence of integers, as denoting something 

finished and definite, is declared illegitimate. Such a sequence is considered to 

be a “growing” object only and not a “finished” one (see § 5). Therefore it is 

in general problematic to answer the question of its having such-and-such 

properties. In § 5 we will examine the peculiarities of the notion of sequence. 

The abandonment of the principle of the excluded middle, besides its 

significance for logic (see § 4), has a psychological effect extending across 

mathematics as a whole, namely on the conviction that every mathematical 

problem can in principle be solved. To be sure, in another sense this convict¬ 

ion has been shaken by Godel’s incompleteness theorem (Chapter V). But 

then the undecidability asserted in this theorem refers to a definite basis from 

which the attempt to solve the problem is being made. Intuitionism, however, 

rejects that conviction as a quite groundless belief for any basis and empha¬ 

sizes this rejection by pointing out that one cannot make a distinction be- 

1) Brouwer 07 (p. 127) and 08. 
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tween constructively solving a problem and the “intrinsic” or “objective” 

truth about the problem, as it were, independently of its solution — the latter 

being meaningless, a metaphysical speculation drawn from Platonism. 
It is quite surprising - and scholars of the present generation are apt to 

forget it — how thoroughly mathematical outlook and trust have changed 

within a few decades. In 1900, at the Second International Congress of 

Mathematicians in Paris, Hilbert opened his historic lecture on (unsolved) 

mathematical problems 1) with the proud words which then expressed a com¬ 

mon belief of mathematicians: all of you certainly share the conviction that 

each definite mathematical problem necessarily admits of a strict settlement, 

and you are aware of the continuous call addressing you “behold the pro¬ 

blem, seek its solution; you can find it by pure thought”. (The term ‘solution’ 

of course includes negative solutions as for the classical construction prob¬ 

lems of geometry (unsolved by the Greeks), and independence proofs as for 

the axiom of parallels, or for the continuum hypothesis — see Ch. II.) 2) 

The certainty of a solution seems to distinguish mathematics from other 

(inductive) sciences where the ghost of everlasting failure and of a final ignor- 

abimus troubles the mind of the scholar. It was this certainty which induced 

mathematicians to continue, through many centuries, their attempts to solve 

problems like that of Fermat’s last theorem. 

The conviction of the solvability of all mathematical problems was not 

based upon properly logico-mathematical arguments but mainly upon actual 

scientific experience and the reflection that the concepts of mathematics, 

hence also its problems, oiiginate from the sphere of human thought and 

(internal) intuition only — in contrast with other, especially natural, sciences 

where external experience is essential. Accordingly, human reason ought to 

be capable of solving the problems put by itself, and it should consider it a 

point of honor to do so. Yet in addition to such emotional impulses the belief 

in the logical principle of the excluded middle has been, and still is, a power¬ 

ful motive for the conviction of solvability; both were simply identified by 

Brouwer 3). 

1) HObert 00. 

2) It is a common belief among mathematicians that the process of thinking that 

leads to solving a problem is always finite. The formalists, with their finitistic meta¬ 

theory, claimed that proofs are finite objects, a fact acknowledged by most mathema¬ 

ticians. Notable exceptions are Brouwer (see Brouwer 27, footnote 8 and Kreisel-Newman 

69) and Zermelo 35. 
3) For this complex of questions on a lower level cf. Hessenberg 06 (Ch. XXII), 

P. Levy 26, 26a, 27, Wavre 26. On a higher level the questions reappear in connection 

with the problems of completeness, incompleteness and consistency within deductive 

systems; see Chapter V. 
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Before the first quarter of the 20th century had elapsed, the belief express¬ 

ed and glorified by Hilbert, which had been a strong stimulus giving scholars 

confidence in a final success, was breaking down and was even explicitly 
declared by prominent mathematicians to be an unsubstantiated prejudice. 

The rejection of the tertium non datur was not the only factor, but certainly 

an influential one in this surprising development; intuitionism considers, with 

respect to a problem P, various possibilities: (1) a positive solution by means 

of a proof, (2) a negative solution by a constructive counter-example, (3) a 

negative solution by a proof of the impossibility of P (e.g. by a reductio ad 

absurdum), (4) the lack of either a positive or negative solution. A solution of 

P by means of classical mathematics may very well leave the intuitionist in 

case (4), because of the use of non-intuitionistic reasoning. 

There is no doubt that, far beyond intuitionistic circles, the conviction of 

universal solvability has been shaken emotionally. 1) 

Recently the close connection between the problem of solvability and the 

theory of certain algorithms (in particular of recursive functions, see Chapter 

V) on the one hand, and intuitionistic logic (§4) on the other, has been 
stressed in a number of important papers. 

§4. MATHEMATICS AND LOGIC. LOGICAL CALCULUS 

In § 2 and § 3 we have dwelt on mathematics, logic and the relation 

between the two. From our outline of the fundamental principles of intui¬ 

tionism the intuitionistic thesis concerning the status of logic can be made 

clear. Mathematics consists of a mixed collection of procedures and objects 
ranging in nature from strictly constructive to freely generated. Logic, on the 

other hand, is the theory of forms which express thought, hence the theory 

of mathematical exposition which arises subsequent to mathematical con¬ 

struction and constitutes an abstraction from mathematics. Thus logic is 

chiefly degraded to a “phenomenon of language”; Brouwer’s attitude towards 

the relation between mathematics and language, as explained on p. 226ff, 
completely determined his conception of logic. In his doctoral thesis Brouwer 

1) It is characteristic (though methodically conforming to the line of metamathe¬ 

matics) that Hilbert himself later (in 25; cf. also 18, pp. 412 ff) formulated the problem 

in the sense that general solvability should be consistent, i.e. non-contradictory. It is true 

that in later essays (especially in 31) he proceeds from ‘non-contradictory’ to ‘true’. Yet 

these researches, in spite of the title of the paper 31, belong to metamathematics (cf. 
Chapter V). 
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writes. It is evident that in the language, accompanying mathematics, the 

order of words is determined by laws; it is, however, erroneous to consider 

those laws as fundamental in the creation of mathematics. The laws of logic 

become the laws of symbolization of thinking, hence they may be applied 

only as tar as they are compatible with the intuitive basis and the constructive 

development of mathematics. In particular, the principle of the excluded 

middle is applicable in finite domains and is in them both a consequence and 

an anticipation ol a certain property of constructions within such domains 
(p. 228). 

This order of precedence, conceiving logic as succeeding mathematics, is 

well suited to the character of arithmetic — which is significant since arith¬ 

metic is the principal basis of mathematics according to intuitionism. In fact 

arithmetical statements are proved more naturally by construction than by 
logical deduction from more general laws. 

Yet it has remained difficult to grasp from Brouwer’s explanation what 

precisely is meant by intuitionistic logic as abstracted from mathematics and 

still more difficult to comprehend the principles leading to his conception of 

the relation between mathematics on the one side, language and logic on the 

other. A good deal of these difficulties derive from the informal and rather 

rhetorical character of Brouwer’s explanations which he justifies, and even 

insists upon, in view of the informal, nonsymbolical, dynamic character of 
construction itself. 

Therefore it was a decisive step towards clearing up the nature of the 

controversy — the most decisive step since the establishment of intuitionism 

in 1907 — when in 1930 Brouwer’s pupil Heyting undertook to present the 

main contents of intuitionistic logic and mathematics in a symbolic form of 

essentially the usual kind, subject to a few modifications and additions evolv¬ 

ing from certain peculiarities of the new logic 1). 

To be sure, the Dutch school does not regard Hey ting’s system as an 

1) Heyting 30 and 30a; cf. Heyting 30b, 34, 46, 48, 55, 56; also Freudenthal 35 and 

36a, McKinsey-Tarski 48, Lorenzen50, 62, Kleene 52, Myhill 67. In particular, see Kreisel 

62, 65, Beth 59, Kleene-Vesley 65, Kripke 65 and their bibliographies. McKinsey 39 proved 

the independence of Hey ting’s primitive symbols (for the propositional calculus). 

Fitch 49 extended Heyting’s calculus to modal concepts such as necessity and possibili¬ 

ty. Topological interpretations of Heyting’s propositional calculus were given (inde¬ 

pendently) in the comprehensive essays Stone 37 and Tarski 38a; cf. Beth 59 (Ch. 15), 

Rasiowa-Sikorski 63. 

A useful modification of Heyting’s propositional calculus (and of Johansson’s minimal 

calculus), fit for a splitting-up into subsystems of axioms, was given in Schroter 57. Cf. 

Wajsberg 38, Schroter 56a. Also see Prawitz 65. 
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orthodox codification 1). Such a sceptical attitude results from the funda¬ 

mental impossibility of ever exhausting the totality of processes that may be 

considered legitimate and is connected with a more fundamental argument: 

an exposition in the language of symbolic logic with its static character is, in 

principle, inadequate to describe the dynamic and never closed domain of 

mathematical activity and can, therefore, only give a hint at the operational 

field of admitted constructions. Hence it would be an illusion to think that a 

system of formulae and inference rules could completely describe intuition- 

istic mathematics. 

With such restrictions, however, Heyting’s system has been accepted by 

the Dutch school. Hereby an enormous progress has been obtained for the 

purpose of comparing traditional (Aristotelian) logic and classical mathema¬ 

tics with their intuitionistic counterparts. 

Even before Heyting’s papers Glivenko had ingeniously proved 2) two im¬ 

portant results, viz. (1) whenever a proposition p is provable classically, the 

absurdity of the absurdity 3) (hence the non-contradictoriness) of p is prov¬ 

able intuitionistically, (2) whenever the absurdity of p is provable classi¬ 

cally it is also provable intuitionistically. Formal intuitionistic logic has devel¬ 

oped considerably since Heyting laid down the first formalisations. In parti¬ 

cular the emergence of semantics with a plausible foundational motivation, as 

provided by Beth, Kripke, Kreisel and others 4), lent considerable impetus to 

intuitionistic logic. It is, however, neither possible nor appropriate to exhibit 

here intuitionistic logic or mathematics in its present state, as it would con¬ 

flict with the scope of this book (whose main subject is set theory). For an 

extensive treatment of intuitionistic mathematics and logic (both intuitive 

and formalized) the reader is referred to the following texts: Heyting 56, Kleene 

52, Kleene-Vesley 65, Kreisel 65, Troelstra 69. Instead of trying to 

keep up with present developments we will concentrate on the basic features 

of logic and mathematics. We begin with an exposition of intuitionistic logic 

and its divergencies from the classical one. Heyting constructed a formal 

system for intuitionistic propositional logic and predicate logic, using a stand¬ 

ard formalisation. Fet us first consider the propositional calculus. Its language 
contains the connectives A, v, and 1, and the set of axioms consists of 

1) Cf. Heyting’s own criticism, for instance in 54 and 56. 

2) Glivenko 29. See the exposition in Kleene 52, pp. 492 f. 

3) The term absurd used by Brouwer for intuitionistic negation signifies, in accor¬ 

dance with its meaning in Dutch, ‘contrary to reason’ in view of a proof (and not ‘non¬ 
sensical’ or ‘ridiculous’). 

4) Beth 56a, Kripke 65, Kreisel 65, Grzegorczyk 64, Goodman 68, 70. 
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intuitionistically valid (in the intuitive sense!) propositions. Heyting’s system 

actually is a subsystem of classical propositional logic, obtained by replacing 

the axiom of the excluded third (i.e. pv~\p) by a weaker statement which 

states that from p and ~]p every statement q can be deduced (i.e. 

p^i~]p-^q)). Johansson 1) even rejected the latter proposition, thus arriving at 

his minimal calculus. It has been shown in various ways that in Heyting’s 

system p v-1p is not derivable, hence his calculus is a proper subsystem of the 

classical calculus. This also shows that Heyting’s system is not complete, i.e. 

the addition of an underivable proposition to the axioms does not produce an 
inconsistent system. 

The crucial factor in ascertaining the validity, according to intuitionistic 

standards, of the axioms is the availability of a standard semantics compar¬ 

able to the two-valued semantics for classical logic. Unfortunately intuition- 

ism, with its character of perpetual development, on principle defies such an 

ultimate characterization of its proof procedures and linguistic description. 

We will proceed with the description of an interpretation of the logical con¬ 

nectives, which is motivated by the fundamental principles of intuitionistic 

mathematics 2). The following interpretation, which was implicit in Brouwer’s 

writings, was formulated by Heyting 3). Kreisel extended these ideas to 

the extent of a theory of constructions 4). Recalling the nature of mathema¬ 

tics, according to Brouwer’s philosophy, we recognize that the truth of a 

statement concerning a state of mathematical affairs can only be established 

by a construction. In simple cases, like 5 + 2 = 3 + 4, it is fairly clear what 
kind of construction is needed to establish the truth. In general, rather compli¬ 

cated complexes of constructions, constructions applied to constructions etc. 

may be required. It is quite in accordance with the intuitionistic principles to 

state that proofs are constructions 5). Now let us interpret the meaning of the 

logical connectives in terms of proofs (i.e. constructions). First we formulate 

the interpretation in intuitive terms: 
A proof of A vB is obtained by providing a proof of A or a proof of B (in 

the sense that we effectively know which of the two cases applies). 

1) Johansson 36. 

2) An early interpretation that takes account of the intuitionistic principles was 

given by Kolmogoroff 32. He interpreted intuitionistic logic as a calculus of problems. 

In many respects it resembles Heyting’s interpretation. 

3) Heyting 56 Ch. VII, Heyting 30b. 

4) Kreisel 62, 65, Goodman 68, 70. 

5) The fundamental role of the notion of construction is strikingly analogous to the 

role of the notion of set in classical mathematics. 
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A proof of A/\B is obtained by providing a proof of ^4 and a proof of B. 

A proof of A^B is obtained by providing (i) a construction which converts 

any proof of A into a proof of B and (ii) a proof of (i). 
A proof of ~\A is obtained by providing a proof of A -> 1, where 1 is a sim¬ 

ple false statement like 0=1. 

A proof of BxA(x) is obtained by providing an element e and a proof a 

such that a proves A(e). 
A proof of Vxd(x) is obtained by providing (i) a construction a such that, 

for any element e, a(e) proves A(e) and (ii) a proof of (i). 
A formula is said to hold or to be true if it has a proof in the above sense. 

This intuitive form has been given a precise formulation by Kreisel and 

Goodman. For the purpose of heuristic guidance the refinement in the inter¬ 

pretations of -* and V can be dropped. That is to say, it generally suffices to 

convince ourself of the existence of a construction that converts proofs of A 

into proofs of B, in the case of implication, and of a construction that for 

each e produces a proof of A(e), in the case of general quantification. For 
a deeper analysis of the theory of constructions, we refer the reader to 

the expositions in the literature. One fundamental point, that was stressed by 

Kreisel, should, however, be mentioned. The notion “a is a proof of A” is 

decidable, i.e. the intuitionist recognizes a proof when he sees one! This 

certainly is a quite reasonable idealization if one departs from the solipsist 

point of view. The interpretation hence accomplishes a reduction of the 

meaning of the logical connectives to ordinary, decidable two-valued logic. 

The interpretation of the implication is of particular interest, as the classi¬ 

cal procedure of definition by cases does not apply. The basic assumption of 

two-valued semantics is the possession of truth-values by all statements (wahr- 

heitsdefmit *)), whereas intuitionists reject this assumption on principle. The 

following example 1 2) shows that an implication can be true although the truth 

of its components is undecided. Let A be: “there is sequence of 9 consecutive 

nines in the decimal expansion of it”, and B: “there is a sequence of 8 

consecutive nines in the decimal expansion of n”. Clearly A^-B is true, as 

every proof of A can be trivially converted into a proof of B (and the proof 

of this fact is likewise trivial). Guided by the above interpretation the reader 

will be able to check the validity of a reasonable supply of formulas. E.g. 

consider A->(B~+Ay, this statement holds if we have a construction for con¬ 

verting any proof of A into a proof of B~*A, i.e. into a construction convert¬ 

ing a proof of B into a proof of A. Now, given a proof a of ,4 the (constant) 

1) Lorenzen 62. 

2) Cf. Heyting 36. 
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construction c that converts any proof b of B into a satisfies the last require¬ 

ment, so the construction we look lor is the one that has for argument a the 

value c (in A-symbolism: '\a-(Xb-a)). The interpretation of the quantifiers is 

illuminating because in the case ol the existential quantifier it brings out the 

constructive character, and in the case of the universal quantifier it shows 

that (independent ot the intended domain) there is no commitment to infi¬ 
nite sets as completed objects. That is to say, Vx4(x) holds if there is a 

proof-schema a such that, for any object p that is presented, a(p) is a proof of 

A(p). One should note the uniform character of the proofs of the various 

formulas A{p). This is in accordance with the basic principles: if we have 
evidence now that, for all possible p\, A(p) has a proof, then the evidence 

must provide us with a method for constructing all possible proofs required in 

the future. Such a method is exactly the proof-schema we mentioned above. 

The constructive character of the existential quantifier is in complete ac¬ 

cordance with Brouwer’s view that an existence statement is nothing but an 

abbreviation of a statement of the form: “I have a construction such 

that ...”. As indicated, the interpretation of the negation is but a special case 
of the interpretation of the implication. 

Returning to Heyting’s formalization of intuitionistic logic we remark that 

the axioms are all valid under Heyting’s interpretation 1). As Heyting’s sys¬ 

tem is a subsystem of classical logic, the consistency of the latter system 
entails that of the former system. There is a remarkable relation between 

intuitionistic and classical logic, as pointed out by Glivenko and Godel 2). Let 

h (h,) stand for “derivable in classical (intuitionistic) logic”. Then we have, 

for propositional logic, 1— ^4 if and only if h,-TTA, in particular h ~TA 

iff Hi ~]~\AA. But H ~1 A AHA, so |—A A iff HA. This result sheds 
light on the special character of negative propositions. 

For predicate calculus a more restricted version holds. Godel formulated a 
translation of the formulas of arithmetic by the following inductive procedure: 

(1) For atomic formulas A, A'= A, 

(2) (AaB)' = A'a B', 

(3) (AvB)' = A(AA'aA5'), 

(4) (A B)' = A (A'A HR'), 

(5) (AA)' = AA', 

1) For a detailed account see e.g. Goodman 68, 70. 

2) Glivenko 29; Godel 32, 33; Kleene 52, § 81. 
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(6) (Vx/4(.x))' = MxA'(x), 

(7) ((*))' = HVx 1/4'(*)• 

Note that v, and 3 have been eliminated and that the meaning has been 

weakened by the translation. 

For this translation we have \-A iff |— -/T. This result can be summarized 

as: intuitionistic arithmetic is only apparently weaker than classical arith¬ 

metic since the latter can be reproduced (according to the translation) within 
the intuitionistic system. It follows that intuitionistic arithmetic is consistent 

if and only if classical arithmetic is. 
The translation preserves the classical validity (meaning), but certainly not 

the intuitionistic validity (meaning), so the fragment of arithmetic, defined 

by the translation, cannot be accepted by intuitionists as a substitute of 

arithmetic proper. 

Heyting’s formalization was given in the form of a Hilbert-type system. 

Other formalizations were provided by Gentzen 34a, Beth 56a, 59, Spector 
62, and others. 

A large number of formal properties of intuitionistic logic have been dis¬ 

covered in various ways. Some of them we mention below. 

a) Intuitionistic propositional logic was shown to be decidable 1). Although 

this is a very pleasing result no special intuitionistic significance is attached 
to it. 

b) Intuitionistic predicate logic and arithmetic have the disjunction proper¬ 

ty and the existential property 2), which (formulated for arithmetic) read as 
follows: 

If \-{A vB, then \~tA or |—. B\ 

if (—7-3t/1(x), then K A (n) , for some numeral n. 

This result is very gratifying from the intuitionistic point of view as it shows 

that the formal systems reflect the strong properties of disjunction and 

existential quantification. The properties, however, can get lost if one takes 

intuitionistic logic and adds axioms in a careless way 3). 

c) Intuitionistic predicate calculus is semantically complete with respect to 

1) Jankowski 36; Gentzen 34; McKinsey and Tarski 46, Rieger 49, Kleene 52, § 80. 

2) Godel 32, Gentzen 34, Harrop 56, Kleene 62, Joan R. Moschovakis 67, Rasiowa- 
Sikorski 63. 

3) For example, if one adds the tertium non datur; see Kreisel-Putnam 57, Kleene 62 
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a number of semantics 1). Since all these semantics freely use a non-intui- 

tionistic meta-language, the result is not acceptable to intuitionists. Kreisel 2) 

has pointed out that intuitionistically acceptable completeness proofs meet 
with serious obstacles. In particular, assuming Church’s Thesis one can show 

the incompleteness ot intuitionistic predicate logic. 

d) In contrast to classical logic, the intuitionistic monadic predicate calculus 
is undecidable 3). 

e) It has been shown by McKinsey that the connectives of intuitionistic 
propositional calculus are independent. 

Since Heyting wrote down the first formal systems of intuitionistic logic in 

1930, several others have been proposed, each having certain advantages for 

the particular goals of the respective authors 4). The system listed below is 
taken from Kleene’s Introduction to Metamathematics. 

Axiom-schemata for propositional logic. 
1. A^(B-+A) 

2. (A^B)^ [(A-+(B->C))-+(A-*C)} 
3.. A ^(B->(AaB)) 

4. (AaB)^A 

5. (AaB)^B 

6. A -» (AwB) 

7. B -» (A wB) 

8. (A -> Q -> [(B-+C) -+(AwB)^0] 

9. (A ^B)^ [(A -+~\B)-+nA] 
10. ~1 A -* (A -> B). 

Rule of inference. If A and A ~*B then B. 

Axiom-schemata for predicate logic. 
11. VxA(x)^> A(t) 

12. A(t)~* 3xA(x). 

Rules of inference. IfC-^A(x), then V xA(x) 

If A(x)^> C, then 3x4 (.*)->■ C. 

In the last two rules x does not occur free in C, and in 11 and 12 t is a term 

which is free for x in A(x) 5). 

1) Rasiowa-Sikorski 63; Beth 56a, Kripke 65. 

2) Kreisel 62a, 70. 

3) Maslov et al. 65; Kripke, unpublished. 

4) Heyting 30, Gentzen 34, Beth 56a, Rasiowa-Sikorski 63, Schutte 68, Kleene 52, 
Spector 62. 

5) I.e. no variable in t is bound in A(x) after substitution of t for x 
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One obtains the axiom-system for classical logic by replacing 10 with 10°: 

A wAA. 
The axiom A A -> (A -> B) can be interpreted as: from a contradiction any 

statement may be concluded (ex falso sequitur quodlibet). This axiom has 
met with criticism from those who believe that it embodies an illegitimate 

strengthening of the notion of implication. I. Johansson *) developed mini¬ 

mal logic, obtained from the above system by dropping 10. In order to 

understand the problem, let us consider 10*: (~lA A A)-* B, which is equiv¬ 

alent to 10. The interpretation of 10* reads: there is a construction c such 

that c(a) is a proof of B if a is a proof of A A A A. However, it is easy to 

verify that A A A A has no proof. Since the proof-interpretation presupposes 

decidability of the proof relation, ordinary two-valued logic can be applied. 

As a consequence, for any construction c we have that “a is not a proof of 

~~IA A A or c(a) is a proof of 5”, which is correct. 

Among the many semantics that have been provided for intuitionistic logic 

there is a closely related group which has a rather good intuitionistic motiva¬ 

tion, although the metalanguage is non-intuitionistic in each case. The first 

of these semantics was introduced by Beth, in connection with his semantic 

tableaux. Later versions were presented by Kripke and Grzegorczyk 2). As 

Kripke’s methods present certain advantages we will sketch here the Kripke- 

semantics. Imagine an (idealized) mathematician, who is pursuing mathe¬ 

matical research and let his activity proceed in stages. The set of all possible 

relevant stages is partially ordered by the relation “after”; note that in general 

each stage of research can be continued “in several directions”. Now the 

meaning of the logical connectives is explained in terms of the research and 

its stages. It is assumed that the mathematician at each stage establishes 
atomic facts and from these deduces more complicated statements by cer¬ 

tain rules. So far the intuitive picture; to define a Kripke model we consider 

a partially ordered set S (with order <) and an assignment / of sets of atomic 

formulas to elements of S such that 1(a) C /(|3) if (3 < a (intuitively 1(a) is the 

set of formulas established at stage a, the condition therefore states thbt the 

mathematician never forgets). The assignment I is extended to all formulas by 
the convention that 

Aw BE 1(a) iff A E 1(a) or BE 1(a) 

A A BE 1(a) iff A E 1(a) and B E 1(a) 

*) Johansson 36. 

2) Beth 56a, 59, Kripke 65, Grzegorczyk 64; see also Schiitte 68. 
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A BE 1(a) iff for all 0 such that |3 < a, 

A £7Q3) or BE 1(0) 

A A EI(a) iff for all )3 such that (3 < a, A ^ 1(0) . 

We refrain from interpreting the quantifiers; the reader can consult the exist¬ 

ing literature. The intuitive meaning of v and A is clear. A -» B holds at stage 

a it at any later stage we know that B holds as soon as A holds, likewise ~IA 

holds at stage a if A holds at no later stage. These interpretations fit very well 

in the intuitionistic ideas. A formula A holds (is true, valid) in a Kripke model 

it it holds at all stages, i.e. if ^4 EI(a) for all a. A formulae! is true if it holds 

in all Kripke models. The Kripke semantics is complete with respect to 

Heyting’s predicate calculus, i.e. truth in the sense of Kripke semantics and 

provability are equivalent. Therefore the Kripke models prove to be very 
suitable for independence results, etc. 

One example will suffice: Let S = (0,1} and 0 < 1. Define 7 by 7(1) = 0, 

7(0) = { A }. Now —I/4E7(1), because ^467(0), so neither A nor ~)A hold at 

stage 1, therefore A\j~\A does not hold at stage 1. The tertium non datur is 
not true in the Kripke semantics, hence it is not derivable in intuitionistic logic. 

No discussion of intuitionistic logic and semantics is complete that does 

not mention Kleene’s realizability notion. This notion, which can be viewed 

as a constructive semantics, is the result of an application of recursion theory. 

Kleene 1) defined the notion x realizes A, where x is the Godel-number of a 

partially recursive function. Let us not go into details and loosely interpret 

x realizes A as “x effectively validates A". It is interesting to check the case 

of implication in Kleene’s inductive definition: x realizes A -*■ B if for every 

y such that y realizes A we have { x }(y) realizes B2 3). 

In our loose interpretation this becomes: “If y effectively validates A, then 

{x}(y) effectively validates 7?”. As in the proof interpretation there is a uni¬ 

form procedure to find the “effectively validating” number. Kleene and 

others used the realizability concept for many proof-theoretic purposes 3t). 

Of a similar nature is the functional interpretation introduced by Godel 4). 

It must be remarked that intuitionistic predicate logic is not complete for 

either Kleene’s realizability or Godel’s (Dialectica)interpretation (Godel 58). 

1) Kleene 45, 52, §82. Nelson 47. 

2) (x) denotes the partial recursive function with Godel number x; it is assumed that 

the function is defined fory. 

3) Kleene 62, Nelson 47, Kreisel-Troelstra 70. 

4) Godel 58, Kreisel 59, Spector 62, Howard 68, see also Mostowski 66, p. 90 ff. 
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As a matter of fact, both strengthen the intended meaning of the logical con¬ 

nectives. 
A list of the most conspicuous formulas that fail to be intuitionistically 

valid is displayed below. 

(1) r-j-nA'+A 

(2) f~i~](AAB)-*~\Av~\B 

(3) t-i(A-+B)v(B^A) 

(4) Jf~i ((A^B)-+A)-+A 

(5) ]{-i(A->B)->(-}A vB). 

Particularly important is the failure of the following rules on negating quanti¬ 

fied statements. 

(6) jf-f “1 VxA (a) -> 3x~]A (.x) 

(7) Jf~i~1i^x~\A(x)^3xA(x) 

(8) ^.“13x-U(x)-> VxA(x) 

(9) ^113jcd(x)^3jclldW 

(10) h(Vxlld(x)^llVxd(x) 

(11) JK (A -> 3x5)) -+ 3x{A -+B{x)) (x not free in A) 

(12) K~i Vx (A v 5(x)) -> (A v Vx5(x)) (x not free in A ) 

(13) H~i (VxJ4(x)->-5)->- Vx(^4(x)->5) (x not free in B) . 

Using the construction interpretation one can make the invalidity of these 

formulas plausible. E.g. take (6); from the fact that we have a construction 

that converts every proof of Vxd(x) to a proof of a contradiction it is hard 

to see how we can construct an element e such that there is a proof of ~\A(e), 

let alone that we have a uniform construction for the transformation of the 

proofs. In general, however, an ordinary mathematical example will be of just 

as much, or more, assistance, A counterexample to (6) is obtained by taking 

x = 0 vx ^ 0 for A{x), where x ranges over real numbers. It has been shown 

that nVxt(x = 0vx^0) holds (see §5). On the other hand 3x~l (x = 0 v 

x^O) implies 3x (x =£0 a lx ^ 0), which is contradictory. So (6) does not 

hold! 
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The study of formal systems (and their interpretations) for analysis has 

been initiated by Kleene. Many results are now available in the literature 1). 

Noting how much of the standard machinery of classical logic has been 
abolished by intuitionists, he who is familiar with the lucidity and simplicity 

of the classical logical calculus will not readily submit to the complications 

involved by the mentioned restrictions. It must be remarked, however, that a 

number of mathematicians never felt at home in the paradise created by 

Cantor; in particular, constructive and numerical mathematics side with 

Brouwer 2) rather than with Hilbert, E.g. the intermediate value theorem of 

Weierstrass 3) is not much help if one wants to compute a zero of a function; 

one has to employ some approximation procedure, i.e. an intuitionistically 
significant procedure! 

A reconciliation between classical and intuitionistic mathematics was sug¬ 

gested by Brouwer in 1928. Another attempt in this direction was made by 

Van Dantzig along the lines of a weak embedding of classical logic in intui¬ 

tionistic logic as given by Godel 4 5). Van Dantzig considered the stable part of 

intuitionistic mathematics, where a formula A is called stable if (A-^nnA), 

with connectives such as in Godel’s translation (see p. 243). This procedure 

works well in certain theories; in the theory of real numbers, however, it 

breaks down. Van Dantzig also developed a part of intuitionistic mathema¬ 

tics, involving only positive statements, which he called affirmative mathema¬ 

tics. 

Serious objections against the concept of negation were raised by G.F.C. 

Griss. s) Griss argued that our knowledge and insight in properties of mathe¬ 

matical objects is solely based on constructions that are actually — or at least 

can be — performed. Hence a notion, based on the impossibility of a con¬ 

struction, cannot be clear. As a consequence, negation does not deserve a 

place in mathematics. Griss calls intuitionistic mathematics, trimmed accord¬ 

ing to his views, negationless mathematics. In spite of the negative name Griss’ 

program is strictly positive, more so than Van Dantzig’s affirmative mathe¬ 

matics. 
Although some work has been done within negationless mathematics, 

Griss’s program has generally been considered a curiosity as far as actual 

everyday mathematics is concerned. 

1) Kleene-Vesley 65, Kreisel-Troelstra 70. Scott 68, 70. 

2) See, for example, Bishop 67, although Brouwer is not spared criticism there. 

3) If a continuous function / satisfies /(0) < 0 and /(l) > 0, then there exists a num¬ 

ber a such that 0 < a < 1 and f(a) = 0. 

4) Van Dantzig 47, written in 1942, cf. Godel 32, Kleene 52, §81. 

5) Griss 44-5 1, Vredenduin 54, Heyting 56, § 8,2. 
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Brouwer staunchly maintained his views on the admissibility of the notion 

of negation and its use in mathematics *). We shall return to his views in § 5. 

Viewed in retrospect, Brouwer’s arguments seem to outweigh Griss’s objec¬ 

tions. 

A satisfactory presentation and a criticism of the program of Griss was 

given by Gilmore 1 2). By introducing a certain deductive theory H formalized 

within intuitionistic logic, a subtheory of which contains the theory of the 

relation # (§6), Gilmore was able to express the consequences of Griss’s 

criticism which would discard many of the predicates and statements of H 

because they do not satisfy the condition of ‘positive nonnullity’. (This con¬ 

dition rejects the empty set (null-class) and any statement which is not true. 

More precisely, a predicate or statement p is admitted only after the proof of 

3xp, where 3* stands for a row of existential quantifiers (empty when p is a 

statement], namely one for each free variable of p.) Yet, in addition to the 

predicates and statements admitted by Griss, Gilmore exhibits a further class 

of predicates and statements whose introduction does not contradict Griss’s 

principles, namely those which are equivalent to contradiction within H; e.g., 

xl#xl. 

Now Griss’s main innovation, viz. the rejection of negation, can be intro¬ 

duced by defining negation as the implication of a predicate which plays the 

role of the null-predicate (provided such a predicate exists in the system). 

Also the limitation in the use of disjunction, conjunction, implication, and 

quantification can be mastered. The effect of Griss’s criticism of the intui¬ 

tionistic predicate calculus can be expressed, according to Gilmore, by adding 
a certain axiom for every “atomic” predicate and statement. 

To be sure, Griss would not have accepted the deductive theory H on 

which Gilmore’s results depend - similar to the orthodox intuitionistic atti¬ 

tude towards Heyting’s system (p. 240). 

Gilmore’s achievement is, on the one hand, a step forward within Griss’s 

program of constructing a system of negationless mathemetics but, on the other 

hand, also a criticism of Griss’s ideas inasmuch as his ‘nullity’, the rejection 

of which is Griss’s cornerstone, proves to be a relative and not an absolute 

concept. While seemingly Van Dantzig’s “affirmative mathematics” and Griss’s 

“negationless mathematics” are in agreement, since both reject negation and 

demand that theorems expressed by means of negation either be translated 

into a positive form or, when this proves impossible, be dropped - there is 

the difference that in Griss’s system of mathematics negation can be defined 

1) Brouwer 48. 
2) Gilmore 53. 
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and the system can thus be converted to a system like Heyting’s. This does 

not hold for Van Dantzig’s system which rejects disjunction, the essential tool 
of that conversion 

The latest development in the constructive foundations of mathematics is 

the so-called ultra-intuitionism, which was discussed by A.S. Esenin-Volpin in 

1959 1). Esenin-Volpin’s criticism cuts deeper than any of the earlier at¬ 

tempts to reform mathematics, it does not even spare Brouwer. The ultra-in- 

tuitionistic criticism is directed against the current interpretation of the no¬ 

tion “finite”. Indeed objections of a similar kind have been raised earlier 2) 

but they were not employed before as a point of departure for systematic 
foundational work. 

Esenin-Volpin considers natural sequences which are discrete procedures, 

that start with an initial event (say 0) and such that with each event a there 

exists a successor event a . The following conditions are imposed: “10 = a and 

a = b' -*■ a - b. The natural numbers form such a natural sequence. According 

to Esenin-Volpin it is highly questionable whether for instance 1012 is a natu¬ 

ral number, or put otherwise, whether the natural sequence of counting will 

ever lead up to 1012. This attitude entails the rejection of the full principle of 

complete induction, the closure of the natural number sequence under the 

sum-, product- and exponentiation-operation and the following consequence 

of the rule of modus ponens: if \~A and \~A -> B, then f- B. Thinking of 

lengths of proofs, to conclude HZ? from \~A and t~A -> B one needs extra 

proof steps. Likewise the rule “if l~ A and I~B, then h A aZ?” is questionable. 

In particular Esenin-Volpin exploits this phenomenon in the case where A 

and ~1A have been proved, but no proof of A a~IA is available. 

He defines a theory T to be contradictory if T \-A A ~\A, so the derivabi- 

lity of A and 1A does not yet make a theory contradictory. Esenin-Volpin 

develops from theses ideas a sketch of a consistency proof for ZF. The 

program of ultra-intuitionism has not yet been carried out in detail. Both 

proof theory and model theory are still lacking. In its present form the 

program presents an attitude considerably weaker than the intuitionistic one. 

Considering the stress on finiteness it would perhaps be proper to classify the 

program as finitistic in the sense of Hilbert. 

1) Esenin-Volpin 61, 70. 

2) E.g., Van Dantzig, 56. 
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§5.THE PRIMORDIAL INTUITION OF INTEGER. 

CHOICE SEQUENCES AND BROUWER’S CONCEPT OF SET *) 

The mathematician, tired of dogmatic principles underlying the intuition- 

istic program and of the painful restrictions imposed on classical procedures 

of definition and proof, will want to learn how mathematics can retain its 

infinite character without which it would loose much of its interest. It seems 

that Weyl, who had first created his own peculiar semi-intuitionistic system 

and then accepted the attitude of Brouwer, providing it with additional argu¬ 

ments, was the originator of the slogan: “mathematics is the science of infinity”. 
The nucleus of positive intuitionistic principles, common to all intuition- 

istic trends from Kronecker to the present day, is the “primordial intuition” 

(Urintuition) of positive integer or of the construction by mathematical in¬ 

duction. Induction is also the prototype of those constructions with which 

mathematical activity is identified (pp. 226ff). This, of course, does not mean 

that Brouwer would accept the infinite sequence of positive integers as a 

mathematical object or as a legitimate idea at all — as Weyl’s semi-intuition- 

ism still did; it is the law for the construction of integers and not their 

would-be aggregate which is accepted. As Poincare says, “Quand je parle de 

tous les nombres entiers, je veux dire: Tous les nombres entiers qu’on a 

inventes, et tous ceux que Von pourra inventer un jour.... et c’est ce “que 

Von pourra” qui est Vinfini.” It therefore makes no sense to ask whether 
there exists an integer with a given property — except for the cases where an 

integer with the property can be named, or else it can be proved that no such 
integer exists. 

We shall not enter into a philosophical analysis of “primordial intuition”. 

0. Becker (originally from Heidegger’s existentialist school) who devoted two 

books chiefly to an analysis of intuitionism maintains 1 2) that one should not 

conceive it as a “sensorial” or “empirical” intuition but as the kind of imme¬ 

diate certainty with which we are given the fundamental facts of logic, arith¬ 

metic, and combinatorics. This intuition is peculiar to mathematics and can 

be reduced to the indefinitely repeated bisection of the unit, a process whose 

1) Most subjects of § § 5 and 6 are treated in more detail (and partly with closer 

adherence to the Dutch school) in the book Heyting 56. (Cf. the penetrating review by 

S. Kuroda 56.) Moreover, as far as § 6 and the second half of § 5 are concerned, a more 

modern viewpoint is taken in the book Kleene-Vesley 65. 

2) O. Becker 27, pp. 446 ff (cf. p. 463) in the Jahrbuch pagination. Becker even 

ventured to base transfinite ordinals upon such intuition. 
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fundamental significance has already been pointed out by Plato. As will be 

shown presently, Brouwer utilizes the primordial intuition for defining choice 

sequences and sets, thus extending the realm of intuition from the discrete 

and countable domain of arithmetic to the continuous (and somehow non- 

denumerable) domain of analysis. From this primordial intuition of number 

the name inflationism, which can easily mislead the reader, has been derived. 

The precursor of mathematical intuitionism, Kronecker, coined the slogan: 

“God made the integers, everything else is the work of man.” Poincare, who 

adopted a similar attitude, exhibited in full detail *) the idea that mathema¬ 

tics, seemingly constituting an immense tautology consisting of analytic state¬ 

ments which are obtained by syllogistic inferences, derives its synthetic and 

creative character chiefly from a synthetic principle a priori in the sense of 

Kant, viz. from mathematical induction 1 2). Weyl stressed 3) that mathematics 

altogether — including “the logical forms of its expansion” — is dependent on 

natural number. Of course, intuitionists do not accept the view, suggested by 

the axiomatic attitude, that mathematical induction might be considered an 

ingredient of a definition of integers, for then one ought to show the exist¬ 

ence of an object satisfying the definition which again would require induc¬ 

tion. 

The weight attributed to induction by intuitionists of all trends is explain¬ 

ed by the fact that constructing through finite procedures can only yield 

statements of a finite character whose contents can, in principle, be verified 

by finitely many tests. Yet the main statements of arithmetic do not have this 

character but are transfinite; for instance, ‘x+ 1 = 1 + x for each positive 

integer x’ or ‘for each prime number p there exists a greater prime number in 

an interval dependent on p\ To be sure, there is a fundamental difference 

between such statements of analysis and set theory which are transfinite in a 

higher sense; for instance, the theorem that every bounded set of real num¬ 

bers has a least upper bound, or the well-ordering theorem. The above arith¬ 

metical statements can be finitely verified in each particular case (each value 

of x, or of p) though the general statement, just because of its transfinite 

1) Particularly in Poincare 03, Chapter I. 

2) In later years (in particular in Poincare 08) he modified his earlier attitude of attri¬ 

buting to induction alone a creative character and considered it to be only the simplest 

among various creative principles. It seems that he even regarded the axiom of choice as 

one of them. This shows the fundamental difference between him and the Dutch school. 

On the other hand, scholars akin to this school (for instance, Van Dantzig 32) pointed 

out that the creation of new formalisms, on account of analogy etc., also belonged to the 

intuitive activity of mathematicians. 

3) In his comprehensive summary 21 of the development of intuitionism, p. 70. 



254 INTUITIONISTIC CONCEPTIONS OF MATHEMATICS 

nature, would require an infinite sequence of verifications which cannot be 

accomplished. Poincar6 believed that this possibility of verifying the particular 

cases of the intuitionistically legitimate transfinite statements is the very 

reason that enables mathematicians — in contrast, for instance, to philoso¬ 

phers — to understand each other in spite of the defects of language; when¬ 

ever the situation becomes doubtful it can be put to the test by a verification 

which serves as the supreme arbiter. On the other hand, the transfinite state¬ 

ments of analysis and set theory which cannot be tested in a similar way — 

the classical example being the well-ordering theorem — remain obscure and 

eternally exposed to misunderstanding. It is remarkable that since the 20’s 

and 30’s of the present century leading representatives of the so-called form¬ 

alist school, beginning with Hilbert, von Neumann, Gentzen, etc., have adopt¬ 

ed this intuitionistic attitude and nevertheless obtained remarkable results, 

notwithstanding the threat of Gbdel’s incompleteness theorem (Chapter V). 

While the semi-intuitionists, especially of the French school (including 

Weyl in his first period), were at least theoretically ready to put up with the 

blockade of analysis and geometry involved by the restriction to induction as 

the transfinite process in mathematics, Brouwer’s seemingly more radical 

trend endeavored to create an outlet through the concepts of choice sequence 

and of spread and species. 

After the concept of positive integer, the next or equally important 

mathematical (and scientific) concept is the continuum (cf. § 1). One may 

classify various attitudes in the foundations of mathematics according to the 

kind of “continuum” they admit. The classical continuum concept of the 

nineteenth century corresponds, on the one hand, to the Greek conception 

which accepts the continuum as “given” by nature or as its mathematical 

reflection, on the other hand to Cantor’s conception of set according to 

which a set is given if, for any object, it is “internally settled” whether it 

belongs to the set or not. The deficiency of these conceptions compels us 

either to take an axiomatic attitude which renounces a definition of set 

altogether (Chapter II) or to put up otherwise with more restricted concep¬ 

tions. In this respect semi-intuitionists have taken different and not always 

consistent attitudes 1) which were sometimes interpreted in the sense of “ex- 

tensional definiteness”2); at any rate, the set of all properties of integers, 

1) The presumably last expression of Lebesgue’s attitude (of 1938) is found in Le- 

besgue 41; cf. Sierpinski 41, p. 137. 

2) So, in particular, Weyl’s “atomistic” continuum (Weyl 18, cf. 19 and 21; cf. the 

philosophical analysis of these and the neo-intuitionistic attitudes by O. Becker, also 

Skolem 29, § 3). In Becker’s work the alleged dependence of mathematics on the notion- 

of time and in general the anthropologic-existentialistic arguments are closely connected 
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which essentially coincides with the classical continuum, is not legitimate in 

this sense. (Cf. the impredicative definitions. Chapter III.) Hence the continua 

ot Weyl, Lebesgue, Lusin, etc. are denumerable, though they cannot be enu¬ 
merated within the system. 

Brouwer has introduced a lundamentally novel and important moment 
into this discussion. His constructivistic attitude conforms to the views men¬ 

tioned: a single real (irrational, transcendental) number is conceived as a law 

defining it and the , classical continuum cannot be attained by arithmetical 

operations 1). Nevertheless, he maintains that a veritable continuum which is 

not denumerable can be obtained as a medium of free development; that is to 

say, besides the points which exist (are ready) on account of their definition 

by laws, such as e, it, etc., other points of the continuum are not ready but 

develop as so-called choice sequences. As it has been said, the choice sequen¬ 
ces “free the infinite from the concept of law”. 

Thus both the rejection of geometry altogether (Weyl) and the distinction 

between a discrete-atomic analysis and a continuous geometry (Holder, Lu¬ 
sin) become unnecessary for Brouwer. 

The following attempt to analyze the concept of choice sequence is mainly 

historically motivated: to exhibit the creation of this remarkable concept by 

Brouwer and its later development by him and others. For a more systematic 

mathematical-logical treatment of this concept, as well as the concepts of 

spread and species (set), the reader should turn to the literature 2). The most 

familiar example of a choice sequence is the one with natural number values. 

with intuitionistic conceptions (especially in O. Becker 27, 29, 30); cf. the well-founded 

refutation in Cassirer 29. 

Weyl does not pretend that his continuum reflects the classical notion; on the con¬ 

trary, he despairs, for logical reasons, of the possibility of such a reflection and is forced 

to be satisfied with extracting discrete “atomic drops” from the continuous “pulp” by 

rather arbitrary principles of construction. A similar attitude is established by Borel’s 

restriction to nombres calculables, i.e. real numbers which can be effectively approxi¬ 

mated by rational numbers; however, Borel’s notion is rather involved (cf. Sierpifiski’s 

example 21, p. 114, of an effectively defined integer which is not “calculable”). 

1) It is remarkable that as early as 1892, when such ideas were rather unusual. Holder 

(cf. 24, pp. 193 f, 349 ff, etc.) denied this possibility. However, not being ready to aban¬ 

don the mathematical branches which depend on the classical continuum, he accepted it, 

if not as an arithmetical-analytical construction, at least — similarly to the Greek atti¬ 

tude — as a kind of aprioristic schema which cannot be constructed by thinking but may 

serve as an object of thinking. Similar ideas appear among the French semi-intuitionists; 

cf. Borel 14, note IV, and Lusin 27, p. 33. 

2) E.g. see Heyting 56, Kleene-Vesley 65, Kreisel 65, 68, Troelstra 69, 70, Kreisel- 

Troelstra 70, Myhill 67. 
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Such a sequence a is obtained by successive choices of natural numbers in 

such a way that in the course of the process restrictions on future choices 

may be placed. One may represent a choice sequence as a sequence of pairs 

<tf0, R0), (ax, R{>, R2), ••• where the R/s are conditions on sequences of 

natural numbers. The conditions may get “narrower”, i.e. if R{a holds then 

Ri+sot holds too. An extreme case presents itself if the relation Rq determines 

a unique sequence a; we then say that a is determined by a law (i.e. Rq). 

The class of sequences predetermined by a law is called the class of lawlike 

(or constructive) sequences. Another extreme is met if no restrictions at all 

will be placed on future choices; these sequences were termed lawless by 

Kreisel1). These choice sequences cannot be conceived as finished, com¬ 

pleted objects; at every moment only an initial segment is known. It was 

Brouwer’s brilliant idea to employ this device of choice sequence to overcome 

the difficulties of a constructivist’s continuum. One can simply take the 

collection of dyadic intervals \k j = [ak/2l, ak+2/21], where Xk-ak is a fixed 

enumeration of the integers, and consider choice sequence of nested intervals 
\k 1. The continuum is then made up of all equivalence classes of choice 

sequences, among which there are lawlike reals like e, \j2\-n, but also many 

others. In this way, one obtains the continuum as an unfinished, growing 

object. Besides choice sequences of natural numbers there are choice sequen¬ 

ces of various mathematical objects. Knowledge about properties of a choice 

sequence a has to be established at a certain moment when only a finite 

initial segment of a is available. So if, for example, one has established that a 

represents a positive real number, then this is so because one of the choices is 

an interval [a,b] with a>0. Automatically all choice sequences with the same 

initial segment, up to [a,b], represent positive reals. 

Accordingly a choice sequence is not the kind of object to consider isolated. 

The conception of the continuum as an aggregate of existing points (mem¬ 

bers), which is at the bottom of nineteenth century analysis and of Cantor’s 

set theory, is replaced by an aggregate of parts which are partially overlapping 

and which are so to speak the manifestations of real numbers still to be 

generated. In Brouwer’s notion of spread (German: Menge) the properties of 

choice sequences are exploited. Brouwer’s original definition is rather compli¬ 

cated. By now some clear expositions are available 2). Nevertheless we will 

1) Kreisel 68. Note, however, that among intuitionists there is some controversy 

whether this concept is legitimate. See for example Brouwer 52-53 p. 142, footnote. 

2) Hey ting 56, Kleene-Vesley 65, Troelstra 69. 
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give an informal exposition here because the notion plays an important role 

in intuitionistic mathematics. Since we will consider natural numbers, finite 

sequences of natural numbers and (infinite) sequences of natural numbers, let 

us adopt the following notation: (if necessary with index) denote 

natural numbers; a,b,c,d... denote finite sequences of natural numbers, where 

ai is the r-th number in the sequence; a, j3,... denote infinite sequences (func¬ 

tions); ak is the sequence <a0, ...,a(fc-l)>. * denotes the concatenation opera¬ 

tion, i.e.^j ...nk)*<nk+l ... nl) = (nl,..., nj> 1). 

A spread-law is an effective procedure S that operates on finite sequences 

of natural numbers; we say that S accepts a if Sa = 1, otherwise Sa = 0; S is 
subject to the following conditions: 

(i) S accepts at least one sequence of length 1. 

(ii) IfSa*(k) = 1 thenSa= 1. 

(iii) If Sa = 1 then there exists at least one k such that Sa*(k) = 1. 

In plain words a spread-law determines a collection of finite sequences with at 

least one member, closed under predecessor and with at least one successor 

for each member. One can conceive this collection as a tree. The infinite 
sequences each initial segment of which is accepted by S constitute a spread. 

So far only spreads with number sequences have been defined. One can 

generalize the concept by introducing an extra mapping D which assigns 

mathematical objects to acceptable sequences. Thus infinite sequences of 
mathematical objects are obtained. The pair (S,D) is called a dressed spread; 

D is the dressing of S. 

Examples of spreads are: 

1. The spread determined by Sj, with the property 

51<0>=51<1)= 1, 

51a*(/:) = l iff 51a=landfc<l. 

2. The spread determined by 52, with the property 

^2 = Atf • 1 

3. The dressed spread with 

S3<0>=S3<1> = S3<2> = 1 
S3a*(k)= 1 iff k <2 

and 

D((k0, ..., kn)) = (/ro-02-1 + (*!-l)2“2 + ... + (kn-. 

The spread determined in the respective cases 1,2, 3 is called the binary fan, 

1) In the literature one mostly uses codings of sequences instead of sequences. 
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the universal spread, and the closed interval [—1,1] *). The spreads of the 

examples 1 and 3 have the special property that for each a there are finitely 

many k’s such that Sa * (k) = 1; such spreads are called finitary spreads or 

fans. In general, it is the dressed spreads that occur in actual mathematics 

such as analysis or topology 1 2 3), but for simplicity we consider plain spreads 

only. From the point of view of foundations not much is lost thereby. 
The notion of spread is the constructive notion of set in intuitionism; even 

though it is infinite and unfinishable, it has the important characteristic of a 

step by step approximation. Another notion introduced by Brouwer is that of 

a species. A species is (the extension of) a property of previously defined 
3 

mathematical objects ). 
Examples of species are 

1. Xl = {n\n>2/\3x>03y>Q3z>0{xn+yn=zn)} 4) 

2. The species A2 of all prime twins. 

3. The species X3 of all irrational reals. 

4. The species X4 of all subspecies of N (N is the species of natural num¬ 

bers). 

From the examples one may conclude that species can be very wild indeed. 

E.g. for Xj it is unknown whether it is empty or not, for X2 it is unknown 
whether it is finite or infinite. 

The theory of species is still poorly developed and it may have surprises in 

store. For instance, the following uniformity principle is consistent with 

respect to intuitionistic analysis: V X3 xA{X ,x)r+2i x\J XA{X ,x) (due to A.S. 

Troelstra). One gathers from it that “ the existence of a number for each 
species such that...” can be very strong. 

For the theory of choice sequences a number of intuitionistically plausible 

(if not valid) principles have been put forward, which make intuitionistic 

analysis divergent from classical analysis instead of merely a subtheory (as in 
the case of arithmetic). 

Brouwer’s principle or the continuity principle: If for each choice sequence 

a we can determine a natural number n such that A(cc,n) holds, then n can 

already be determined on the knowledge of an initial segment of a5). 

1) Notice the analogy between the binary fan (the universal spread) and the Cantor 
space (the Baire space). 

2) Freudenthal 36 was the first to apply the spread techniques to the study of topo¬ 

logy without recourse to a metric. See also Troelstra 67. 

3) Note the connection with the comprehension principle. 

4) As usual {n\A(ri)} stands for the species (set) of all n with the property A. 

5) Brouwer 27, Kleene-Vesley 65, Howard-Kreisel 66. 
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A formalization reads: Va 3x.4(a,x) ->■ Va 3x 3y V/3(ay = /3'y -M(/3,x)). 

Kleene also introduced a continuity principle for functions (choice se¬ 

quences) which claims that if to each a a 0 is correlated, the value of /3(f) is 

determined by t and an initial segment of a. Unfortunately this principle con¬ 
flicts with another intuitionistic principle (Kripke’s schema). 

In intuitionistic analysis various forms of choice principles are accept¬ 

able 1); we will discuss a simple case here. Suppose that for each natural 

number x a natural number^ exists such that a certain relation A(x,y) is ful¬ 

filled. Interpreted intuitionistically, this means that given an xthe correspond¬ 

ing y can be computed; moreover, we know that this can be done for 

all natural numbers. Clearly we must then possess a computation schema 

that allows us, whenever a number x is presented, to compute the correspond¬ 
ing y. But then, in effect, we have an effective function a that computes y. 

Therefore the choice principle Vx 3yA(x, jp) -+ 3a VxA (x,a(x))i is intuition¬ 
istically true. 

Kreisel has introduced an important class of operations, the so-called 

Brouwer operations. This class K consists of neighbourhood functions on the 
universal spread (classically one can prove that K is exactly the class of all 

representing functions of all continuous mappings from the Baire space into 

a set of natural numbers). The arguments of functions of K are finite 

sequences of natural numbers. For convenience we define the x-shift of a 
function a by a* (</i1#..., nk)) = a(<x, nh ..„ nk)). 

Now K is inductively defined as the smallest class P such that 1) It con¬ 

tains all non-zero constant functions, 2) if a(0) = 0 and for all x, a^ GP, then 
a£R 

Let us denote elements of K by e, f, g. One can visualize the action of e by 

imagining the universal spread (N^), where e successively computes {nj>, 

(nlin2), (ni> n2> n3^> ••• al°ng some infinite branch. In general e will first 
produce zero’s until it, after a finite number of steps, produces a positive 

number, from then on it remains constant. In effect one easily proves by 
induction: 

and 
Va3x(e(ax) 0) 

's/a V6(e(tf)=A0-*e(a) = e{a*b)). 

The elements of K represent continuous functionals in the following natural 
way: <Fe(a) = y iff 3 x(e(ax) = y + 1), i.e. let e work on initial segments of a 
and pick the first positive value minus one. 

1) Cf. Kreisel-Troelstra 70, p. 263, Kleene-Vesley 65, p. 14. 
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Now the use of K for the study of intuitionistic analysis is embodied in 

the (intuitionistically plausible) postulate: each continuous functional is a <Pe 
(for some eEK). The consequences of this postulate are far-reaching. E.g. 

Brouwer’s bar theorem is a consequence (actually in some sense the bar 

theorem is equivalent to the postulate 1)). The bar theorem was first 

used by Brouwer in the famous proof that every real function on a 

closed interval is uniformly continuous 2). The bar theorem reads 

[Va \tb(P(a)-+P{a*b)) A \fa(Mx Q(a*{x))-+Q{af) A Va3xP(ax) A \/a(P(a) -> 

<2(a))] -> \/aQ(a). As a matter of fact the bar theorem can be viewed as an 

induction principle for well founded sets of finite sequences 3). From the 

bar theorem and Brouwer’s principle one deduces the fan theorem: If to each 

a of a fan a natural number n is associated, then there exists a number k 

such that for all sequences a the value is already determined by an initial 
segment of length k. The fan theorem itself is instrumental in establishing 

the uniform continuity of functions defined on closed intervals. From the 
continuity theorem Brouwer extracted a refutation of the principle of the 

excluded middle 4) as follows: let Rat(a) stand for “the real number a is 

rational”. Suppose Va£ [0, 1] (Rat(a) v“l Rat(a)). Then the characteristic 

function of Rat is fully defined on [0, 1]. But according to the above con¬ 

tinuity theorem this characteristic function is uniformly continuous; as there 

is at least one rational number in [0, 1], the function is constant, with value 

1. This contradicts the fact that there is at least one irrational point between 
0 and 1. So we conclude “IVaG [0,1] (Rat(a) v~l Rat (a)). 

As Brouwer created intuitionistic mathematics before the notion of recur¬ 
sive function was conceived, it is interesting to see what the impact of the 

theory of recursive functions on intuitionism is. 

At many points in the intuitionistic literature effective procedures or 

computable functions are made use of and one may well wonder whether 

recursive functions would do. The question to be asked is: does Church’s 

Thesis hold? Church’s Thesis claims that every effectively computable func¬ 

tion is (general) recursive. It is noteworthy that in contrast to classical mathe¬ 

matics Church’s Thesis can be formulated in formalized intuitionistic 

mathematics. There are several ways of doing so; for example Kreisel5 ) used 

a system with variables for lawlike functions to obtain a formulation. One 

1) Troelstra 69, pp. 40, 41. 

2) For a detailed analysis see Kleene-Vesley 65, Ch. I, p. 6. 

3) For the connection between the bar theorem and transfinite induction see Howard- 
Kreisel 66. 

4) Brouwer 28. 

5) Kreisel 65, 2.7. 
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can, however, avoid the use of special variables by going back to the meaning 

of the statement Vx 3yA(x, y), where A does not contain choice parameters. 

To an intuitionist the assertion Vx3yA(x,y) means “there is an effective 

procedure to compute for each x the corresponding^”. So a natural formula¬ 
tion of Church’s Thesis is the following schema: 

Vx 3yA(x,y) -> 3n [Vm 3kT(n, m, k) A Vxy4(x, {/i }(*))] . 

(T is Kleene’s T-predicate, which has the heuristic meaning: ‘T(«, m, k) iff 

the Turing machine with Godel number n and input m performs the compu¬ 
tation k'\) So the thesis actually belongs to the object language and hence 

may be provable or refutable. So far Church’s Thesis still presents an open 

problem. It has been shown to be consistent with various versions of intui- 

tionistic analysis 1). It must, however, be remarked that on the basis of the 

intuitionistic foundations of mathematics a strictly mechanistic characteriza¬ 
tion of effectivity does not seem probable. 

Quite a different question is whether the universe of analysis, i.e, the 

collection of number theoretic functions, can be taken to consist of recursive 

(or even lawlike) functions. Here the answer must be negative, the notion of 

choice sequence being clearly of vital importance for intuitionistic mathemat¬ 

ics. A formal hint in that direction is the failure of the fan theorem in the 
case that one admits recursive functions only 2). 

Apart from Brouwer’s work there have been other attempts to develop a 

constructivistic theory of the continuum. 

Of the “semi-intuitionistic” continua, the continuum introduced by Weyl 

in 1918 (and later abandoned by him in favour of Brouwer’s continuum) has 

been examined most thoroughly, notably by Grzegorczyk 3). The latter’s 

formalization of Weyl’s informal restriction to certain “e(lementary) d(efina¬ 

ble)” analytical methods starts with the arithmetic of integers; the class of 

e.d. relations shall be closed with regard to the logical operations of the 
propositional calculus and to universal quantification over an integer varia¬ 

ble. The notion of an e.d. function is defined by means of the minimum (least 

integer) of an e.d. number-theoretical relation, provided a minimum exists. 

An e.d. functional is analogously defined over a finite number of functions 
and such that it assumes integral values. 

By means of these notions, e.d. analogues of the classical concepts of real 

1) Kreisel-Troelstra 70. 
2) See Kleene-Vesley 65, p. 112. 
3) Weyl 18 and 21, Greegorczyk 54. 
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number and of sequences and sets of real numbers are defined. It is confirmed 

that the “semi-continuum” (field) of e.d. real numbers is denumerable, and 

an essential part of the e.d. analysis of continuous functions is developed. 

Differentiation and integration on families of continuous functions prove 

e.d. and an e.d. continuous function defined on an interval whose ends are 

e.d. assumes its maximum at an e.d. value. The theory of recursive functions 

also provided a suitable starting point for a constructive version of analysis. 

One can introduce a “continuum” consisting of recursive reals (i.e. reals with 
a recursive Cauchy sequence). Many interesting results have been obtained; 

for instance, a version of the continuity theorem 1). The usual techniques of 

recursion theory provide also many counterexamples to theorems from clas¬ 

sical analysis. 
Under the influence of the mathematician A.A. Markov, a Russian school 

of constructive analysis came to flourish 2). The Russian school actually em¬ 

ploys constructive (i.e. intuitionistic) logic in its mathematical research. Mar¬ 

kov introduced, however, one new principle that lacks intuitionistic motiva¬ 

tion: ~\~\3xAx -> 3xAx for primitive recursive A (Markov’s principle). 

The relation of Markov’s principle to formal intuitionistic systems has 

been studied by a number of logicians 3). 

Thus far we have examined the connection between Brouwer’s definition 

of set and certain fundamental concepts of the foundations of mathematics in 

general. But we may also raise the “practical” question, what category of sets 

in classical mathematics is represented by Brouwer’s sets. Menger 28 showed 

that there is a close relation 4 ) between the sets in Brouwer’s sense and the 

abstract analytic sets 5); however, the tertium non datur is required to show 

this relation. To clarify this connection we start with the concept of ramified 
set6 ). 

Let D be a class of objects in which an operation is defined such that, to any (finite 

or denumerable) sequence of objects from D, an object corresponds which need not 

1) See Y.N. Moschovakis 64, Klaua 61, Mazur 63. 

2) The activity of the school covers a wealth of subjects. For information the reader 

is referred to the Mathematical Reviews or the Zentralblatt. As examples we just mention 
here Markov 58, Sanin 62. 

3) Kleene-Vesley 65, Kreisel 62a, Troelstra 71. 

4) Hey ting criticizes Menger for not appropriately considering choice sequences. 

5) The concept of analytic set was first introduced by M. Souslin in 1917; therefore 

some authors, for instance Hausdorff, use the term ‘Souslin’s sets’. The first expositions 

of the theory of analytic point sets and also of abstract analytic sets are found in Haus¬ 

dorff 22, § § 19 and 32, and in Lusin 27 (cf. 30). 

6) Menger 28, p. 213. A very interesting historical outline is given in Sierpinski 63. 
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belong to D. It dlt d2...., dg,... are objects Of D given in this succession, we denote the 

result of the operation by ip(d^, d2,..., dg,...). 

Furthermore, to any finite sequence of positive integers (nl,n2, ...,nf), let there 

correspond an object of D which shall be denoted by dnn^. 

For a given infinite sequence of integers v = (n1( n2.n^, ...) we consider the 

sequence {dn^, dn n^,..., dn^ rt2...nic> •••) an^ denote "') 

by dv. Each of the objects dn^, dn^ „2,..., dn n2...nk is called a constituent of dv. 

Then the set of all objects dVi when v runs over all infinite sequences of positive integers, 

is called a ramified set; more precisely, the ramified set obtained from the class of objects 

{dn1 n2...nk} by the operation \jj, where k, nlt n2,... are any positive integers. 

{dni n2...nk } shall be called the class producing the ramified set. 

If the objects of D are sets and \p is the operation of intersection n, the 

ramified set is the set of all intersections^, v denoting all infinite sequences 

ot positive integers. The union of all sets dv is called the analytic set produced 

by the class of sets{d„]n2...„^}. (The same analytic set may be produced by 
different classes of sets.) 

One easily sees that there is a close connection between this concept and 

Brouwer’s concept of set (spread). By essentially using the principle of the 

excluded middle, Menger showed that the sets in the sense of Brouwer’s 

definition coincide with those ramified sets for which every object f O (the 

null-object) of the producing class is a constituent of at least one dv. Thus, by 

means of the tertium non datur, every ramified set proves to be a set in 

Brouwer’s sense. 

The main importance of these results lies in the fact that analytic sets have 

been extensively studied and are, incidentally, considered by many (especially 

French) mathematicians, who are remote from intuitionism, to be the only 

“definable” sets. On the other hand, the results have not much significance 

from the intuitionistic point of view because they depend on the principle of 

the excluded middle. 

In the years following 1948, Brouwer, in a number of papers, further 

exploited the characteristic properties of intuitionistic mathematics. He based 

the proofs of several theorems on the activity of the creative mathematician. 

These theorems (e.g.: “apartness is strictly stronger than inequality”) had 

been considered extremely plausible, but until then no proof had been given. 

Lately, Brouwer’s papers on essentially negative properties, contradic¬ 

toriness of parts of classical mathematics, etc. have led to a more systematic 

study of the idealized mathematician and his manifestations. Notably Kreisel, 

Kripke, and Myhill have considered the subject !). It is important as it allows 

a closer analysis of Brouwer’s historical arguments and because it has impor¬ 

tant consequences for the existence of functions. 

1) Kreisel 67, Myhill 67. 
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Brouwer explicitly introduced a subjective element in mathematics by 

reference to the activity of a creating subject 1). Kreisel has laid down a few 

fundamental principles which involve a new primitive notion Hn, which is 

interpreted as “the creative subject has at stage n evidence for The 

underlying idea is that the creative subject’s activity proceeds in stages. The 

following principles were proposed 2). 

(i) hnAv~1 A 

00 (h„A)-*A 

(iii) (\-nA Atn>n)-> \-mA 

(iv) A -+113« hnA 

Ova) A -> 3n hn A . 

(i) asserts that the notion “t~„” is decidable, (ii) asserts that A holds as 

soon as the creative subject has evidence for A, (iii) states that the creative 
subject does not forget, and finally (iv) states that if A is true, it is absurd that 

the creative subject will never find evidence for it. Actually a stronger form 

(iva) is plausible on the solipsist basis: if A holds then the creative subject 
must already have evidence for A. The new notion is still highly problematic, 

careless handling can easily produce contradictions 3). The introduction of a 

new primitive notion can be avoided, while at the same time preserving the 

advantages of the method by Kripke’s schema. 

Suppose one defines a function a by 

a(n)= j° 

then 

(w) 3a[{Vx (cur=0)<-»~U} A (3x (ax^O)-*yf}] 

holds if one uses (iv). By applying (iva) one shows that 

(s) 3a[3x(ax=£0) ++A]. 

1) Brouwer 49. 

2) Kreisel 67, pp. 158-161. 

3) Cf. Troelstra 69, p. 105. 

if 

if \-„A 
for a given A; 
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(w) is called Kripke’s schema; we will call (s) Kripke’s strong schema. One 
notes here the analogy with the comprehension schema. It turns out that 

Kripke’s schema is powerful enough to formalize most of Brouwer’s historical 

arguments 1). Instead of pursuing Brouwer’s arguments, let us look closer at 

the functions provided by Kripke’s schema. If the formula A does not contain 

choice parameters, we conclude from the decidability of the notion \~n that 

the function a is lawlike (effective). Myhill called these functions empirical. 

The empirical functions embody a considerable expansion of the known law¬ 

like functions. The empirical functions have many unexpected properties, for 

instance it is provable that the class of empirical lawlike functions is not 

enumerable by a lawlike function. This shows that Church’s Thesis does not 

hold for that class, a result that is not surprising if one realizes that the Thesis 

was formulated tor “mechanically” computable functions. However, there is 

no doubt that Kripke’s schema is intuitionistically well motivated. In effect 

Myhill, in his formalization of intuitionistic analysis 2), includes it among his 
axioms. 

§ 6. MATHEMATICS AS TRIMMED ACCORDING 

TO THE INTUITIONISTIC ATTITUDE 

After the preceding sections it is clear that the historical field of mathema¬ 

tics has to undergo serious restrictions in order to conform to the principles 

imposed by the intuitionists. In this final section we shall give a survey of the 

effect produced by these restrictions and of what can be saved; mostly we 

shall refer for details (in a positive or negative direction) to the intuitionistic 

literature, elaborating the arguments in a few characteristic cases only. In 

general we limit ourselves to Brouwer’s intuitionism, while restrictions elimi¬ 

nating negation (pp. 249ff) shall be disregarded altogether. 

Arithmetic and algebra in the strict sense are less affected than other 

branches. In those parts of algebra where only discrete species appear so that 

for any two members it can be decided whether they are equal or not, 

constructive methods should be applied which produce a result by a finite 

number of steps, as Kronecker had already done in his treatment of certain 

arithmetical problems, rejecting the (simpler) “classical” methods. The finite 

extensions of the field of rationals (or of a field with pn members) belong to 

this part of algebra. But far-reaching modifications prove necessary wherever 

1) Hull 69. 

2) Myhill 68. 
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the distinction between 0 and #0 (see below) is unavoidable; for instance 

in the field of real numbers. Hence the very definition of a field becomes com¬ 

plicated, for not every non-zero element has an inverse. In the field of all real 

numbers, for instance, a~^ only exists if a #0, i.e. if a rational number can be 

named which lies between 0 and a 1). The apartness relation # was intro¬ 

duced as a positive analogue of Heyting characterized it by the properties 

1) ~1 a #b a - b 

2) a#b -*■ Vc (a#c Vb# c). 

From 1) and 2) one immediately concludes a#b b #a and a #b -> a=Ab. 

A somewhat surprising feature is the identity ~\—\a = b •*-+ a-b', this follows 

from 1) by taking double negations. The presence of an apartness relation is 

of the greatest importance for the building of a positive theory. In the theory 

of reals, a #b is defined by 3.k{\a-b\ > 1 Ik). 
The theory of groups with an apartness relation is not greatly different 

from the ordinary theory, but the properties of rings and fields become rather 

involved. In a ring without divisors of zero or in a field one cannot, from 

ab = 0 and a 0, conclude b = 0; if this conclusion is generally valid the ring 

is called ‘regular’, and if it moreover contains for every a #0 an inverse a-1, a 

‘field’. According to this definition, the rationals as well as the real and the 

complex numbers constitute fields. An intuitionistic treatment of the funda¬ 

mentals of algebra was given by Heyting 2). Other constructive approaches to 

algebra led to the so-called computable algebra 3), based on recursion theory. 

In analysis the difficulties are much more fundamental, and the restric¬ 

tions involved prove rather catastrophic. With the introduction of real num¬ 

bers by the device of choice sequences, the comparison of numbers according 

to magnitude becomes impossible in general4); in other words, given real 
numbers a and b, the trichotomy a ^ b ceases to be valid. A characteristic 

example is the following. It is unknown whether in the decimal expansion of 

7T a sequence of (at least) seven 7’s will occur; if so, let h denote the place 

after the decimal point (i.e. the index of the respective digit in 7r = 

1) For this and the following see Heyting 34 (or 55), 56, 41. 
2) Heyting 41, 56. 

3) Frohlich-Sheperdson 56, Rabin 60, Lambert 68, ErSov 68, Mal’cev 61. For earlier 

constructive treatments see Kronecker 1882, 1883, Van der Waerden 30, Vandiver 34- 

35. 

4) See also Brouwer 50, in addition to his earlier papers. For a thorough treatment, 

see Kleene-Vesley 65, Ch. Ill and IV, and Kreisel-Troelstra 70. 
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3.#^2•••#/;•••) where for the first time such a sequence starts. Now we define 
a decimal p, which begins with 0.777 ..., as follows: if h exists as defined, 

replace the digit 7 at the /ith place after the point in p by 6 if h is odd and 

by 8 if h is even, hence all digits ot p are 7 “if no h exists”. The real number p 

is effectively defined since, simultaneously with the expansion of 7r, the suc¬ 

cessive digits of p can be calculated. But without the tertium non datur it 

cannot be asserted that one of the cases p = p<-^ or p>^ holds true, or even 

that either p = \ or p # ^. This does not contradict the fact that the rational 

numbers are comparable; for p cannot, according to our present knowledge, 

be considered rational — though after a possible decision regarding the integer 
h (non-existent, odd, even), p proves to be a rational in each case. Brouwer, in 

his later papers, proved an even more amazing tact: 1 Va(a 0 -» a # 0), 
where a ranges over reals 1). 

The incomparability of real numbers fatally affects many classical proofs in 

analysis. While in a few cases certain intuitionistically invalid proofs have 

been replaced by constructive ones, for the majority this has not been 

achieved nor is there any prospect of achieving it; still worse, in some cases 

the negation of the formula under consideration can be proved. 

An elementary example may illustrate the situation. For the so-called 

fundamental theorem of algebra dozens of proofs have been given since the 

end of the 18th century. Many of the proofs use various theorems from the 

theory of (real or complex) functions, sometimes also topological facts, while 

others (such as the second proof of Gauss, simplified by Gordan) are com¬ 

pletely arithmetical except for the use of the elementary analytic theorem by 

which every algebraic equation with real coefficients and an odd degree has a 

real root. Proofs of the first kind had already been rejected before the turn of 

the 19th century by intuitionists such as Kronecker and Mertens. 

Yet the “arithmetical” proofs, too, contain ingredients which are not ac¬ 

ceptable to intuitionists; in fact, in 1924 new proofs of the fundamental 

theorem were independently published by scholars from three different coun¬ 

tries 3 ) who maintained that no sound proof had been given before. An essen¬ 

tial shortcoming of most “arithmetical” proofs can be described as follows. 

In order to get rid of multiple roots of the given equation one has to ascertain 
whether its discriminant equals 0. For instance, the equation x3 — f|x+2p3=0, 

where p is the real number defined above, has the discriminant D = 

1) Brouwer 49, Heyting 56, § 8.1.2, Hull 69. 
2) Brouwer 48; cf. Brouwer 49 and Van Dantzig 49. 

3) Brouwer-de Loor 24, Skolem 24, Weyl 24; Rosenbloom 45. Cf. Van der Corput 46, 

Rice 54. Fundamentally, this argumentation, too, goes back to Kronecker (1882; 

cf. Fine 14, Vandiver 34—35 [Annals of Math. ]). 
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—108(|)6—p6). In this case D is intuitionistically neither equal to nor apart 

from 0. Generally speaking, the impossibility of basing the proof on the alter¬ 

native that the discriminant is either 0 or a positive or a negative number, 

makes the proof illusory. Therefore a proof is required (and can be given) 

which enables us to calculate the roots of the equation numerically with any 

desired precision, starting with an approximation of the coefficients by ratio¬ 

nal numbers; for the discriminant of an algebraic equation with rational coef¬ 

ficients is also intuitionistically either equal to or apart from 0. As a matter of 

fact, the constructive proof brings its own reward: as a by-product one obtains 

that that root depends continuously on the coefficients (in a certain range). 

In the foundations of analysis, the theorem of Bolzano-Weierstrass ), the 

convergence of a bounded monotone sequence of real numbers, the existence 
2 

of a zero for a continuous real function /(x) with/(a) < 0 and f{b) >0 ), the 

theory of Dedekind cuts, and the existence of the least upper bound for a 

bounded set (species) of real numbers and of a maximum for a continuous real 

function in a closed interval are among the victims of the intuitionistic criticism; 

these theorems prove either false or meaningless. In the case of Bolzano- 

Weierstrass, for instance, the obstacle is the alternative between mutually 

exclusive cases which uses the tertium non datur. It is also required for the 

comparison of two Dedekind cuts k = (Kj | A2) and X = |L2) in the form: 

either all rationals of L j belong to Ky or else there exists in A2 a rational 

which is not contained in A^. 

Regarding convergence and the theory of infinite series, Brouwer claim- 

ed ) that the notion of convergence ought to be split up into different 

notions, and Belinfante in a series of ingenious papers 1 2 3 4) showed that Brou¬ 

wer’s distinction between “positive” and “negative” convergence leads to two 

quite different theories only the first of which is similar to the classical 

theory. Absolute convergence and summability are also dealt with by Belin¬ 

fante. Interest in these traditional areas of calculus has waned 5). The collec¬ 

tion of intuitionistic real functions is severely hamstrung, compared to the 

classical counterpart, by Brouwer’s theorem that every function, which is 

1) For the use of the tertium non datur in this theorem, cf. Billing 49 and Rice 54. 

2) Note that in the premise/(a) and f(b) are supposed to be apart from 0. 

3) Brouwer 25. 

4) Belinfante 29, 30, 38, 38a. See also Dijkman 46, 52, 62 and Van Rootselaar 52. In 

particular, Dijkman modifies the concept of “negative convergence” so as to preserve 

the classical theorems about the convergence of the sum and the product of convergent 

series. 

5) However, quite recently W.Gielen has proved the equivalence of absolute and un¬ 

conditional convergence using Brouwer’s principle for numbers (unpublished). 
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defined on a closed interval, is uniformly continuous l). This is a very deep 

theorem, based on fundamental intuitionistic principles. One might think that 
a function / with the following definition 

if x = 0 

else 
x 

provides a counterexample. This /, however, is not everywhere defined in 
[—1,1], namely not for those arguments x for which it is unknown whether 
x = 0 or x # 0. 

One has to keep in mind that the often deplored impoverishment of 

mathematics by the intuitionistic purge is but one side of the story. Certainly, 

quite a number of theorems are rejected, but also some quite strong theorems 

are added. The mentioned continuity theorem is one of these. For other 
examples the reader is referred to Heyting’s monograph 56. 

M.J. Belinfante has developed large parts of the theory of complex analyt¬ 

ic functions. He proved some of the fundamental theorems, including the in¬ 

tegration of the logarithmic derivative and Picard’s theorems2). The area as 

such does not seem to present intuitionistically challenging problems that 
could not be formulated in the theory of real functions. 

Generally, in arithmetic and still more in analysis even those results which 

remain meaningful and true in the eyes of intuitionists mostly require new 

proofs which are very complicated; one of the reasons is the impossibility of 

using indirect proofs (see above p. 235) 3 ).. In mathematical practice, intui¬ 

tionists presuppose knowledge of the “illusory” classical proofs in order to 

motivate their criticism and ..o make it clear why new demonstrations are 

required. 
There exists no autonomous geometry for intuitionism, no more than for 

Weyl’s semi-intuitionism - except for the very concept of continuum which is 

saved by the choice sequences. The notions of real number and continuum 

precede the notion of space. In the familiar cases spaces are constructed as 

manifolds over the continuum. Of course, one can apply the axiomatic 

1) Brouwer 24a, 27, Heyting 56 (p. 46), Kleene-Vesley 65 (§15). 

2) Belinfante 31. Cf. Goodstein 51 Ch. VI, where besides functions of a complex 

variable, measure theory and constructive topics of topology are also treated from a 

viewpoint not much different from Brouwer’s. 

3) Cf. the historical exposition Goodstein 48. 
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method (based on intuitionistic reasoning (logic)), but one has to keep in 

mind that it is not autonomous. Axiomatic theories are nothing but conve¬ 

nient vehicles economizing intuitive reasoning. So the meaning of a theorem 

T being derived from an axiom system E is that, whenever we have constructed 

a mathematical system that satisfies E, we automatically know that T is satis¬ 

fied, too. In the particular case of geometry, it is by analytic geometry that 

we provide meaning to the axiomatic frame !). 

In a somewhat paradoxical way the crisis of the tertium non datur influen¬ 

ces geometry; Desargues’s theorem, for instance, after having been proven on 

the one hand for triangles situated in the same plane and on the other hand 

for triangles in distant planes, should not be considered to be proven altogeth¬ 

er, because “in general” a decision between the two cases cannot be reach¬ 

ed 1 2). In topology, especially in combinatorial topology and Euclidean 

spaces, Brouwer provided the basic notions and laid down the basis for later 

work; he also reformulated part of his earlier work in topology (e.g. the 

Jordan curve theorem, 25a, the notion of dimension, 26, the fixed-point 

theorem, 52). In 1926 Brouwer investigated the problem which spaces are 

intuitionistically meaningful using methods based on a metric. Freudenthal, 

in 1936, succeeded in constructing topological spaces in an intrinsically topo¬ 

logical way, independent of metric notions. Since then Troelstra has consider¬ 

ably extended Freudenthal’s methods and results 3). A fruitful notion intro¬ 

duced by Brouwer 4) is that of a catalogued or located set (species). In 
general one cannot expect a subset B of A to be decidable 5 6), i.e. 

V* EA (xEBvx^B); as a matter of fact it is a corollary of the continuity 

theorem that the only decidable subsets of [0,1] are the empty set and 

[0,1] ). The closest we can get to a notion of a “well-behaved” set S in a 

metric space is to require that for every point p its distance from S can be 

determined. Sets with that property are called catalogued. Catalogued sets are 

basic in branches of intuitionistic mathematics that involve topology 7). In 

measure theory and functional analysis the early work of Brouwer was con- 

1) See Heyting 28a, 59, Van Dalen 63. Applications of the axiomatic method are also 

made in Algebra (Heyting 41), Hilbert space (Heyting 53), Topology (Freudenthal 36, 
Troelstra 68). 

2) Heyting 28a, p. 511. 

3) Troelstra 66, 68. 

4) Brouwer 19, p. 13. 

5) Removable or detachable, in intuitionistic literature. 

6) The “Unzerlegbarkeit” of the continuum, cf. Heyting 56, p. 46. 

7) Outside intuitionism the concept has been employed by Bishop 67 See further 
Van Dalen 68. 
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tinued by Heyting and Van Rootselaar '). Heyting considered the intuition- 

istic theory ot Hilbert spaces and proved the Riesz-Fischer theorem. Van 

Rootselaar generalized the notion of the Brouwer integral. Recently, Ashwini- 
kumar and Gibson 1 2) have further extended the work of Heyting and Van 

Rootselaar. The most revolutionary changes, naturally, are found at the very 

roots of intuitionism, where such notions as choice sequence, spread, and 
species are introduced. These concepts were explained in the preceding sec¬ 

tion. The construction of the continuum as a spread, compared to various 

other constructive conceptions of the continuum, is certainly a major achieve¬ 

ment of Brouwer. Moreover, facts like the continuity theorem and the inde- 

composability of the continuum confirm that the continuum has the desired 

intuitive properties. Brouwer 3) called spreads and elements of spreads (i.e. 

choice sequences) mathematical entities. Starting with mathematical entities 

he built a hierarchy ot species: a property of mathematical entities is a species 

of the first order, a species of the second order is a property of 

mathematical entities and of species of the first order, etc. Thus “species” 

means approximately what is meant by “set” in the constructive stage of 

classical set theory. As the elements of a species S must already be defined 

(independent of 5), impredicative definitions are excluded. Many notions of 

set theory are split up into several non-equivalent notions in the theory of 

species. E.g. the identity relation between sets has two intuitionistic counter¬ 
parts: 

(i) the identity relation:\/aGA 3 b GB (a=b) A Vb<EB3a<EA (a=b), 

00 the congruence relationVb<EB (a=£b) A~\BbEB \fa<EA {att). 

This splitting of classical notions is a general phenomenon 4). The theories of 

cardinals, ordered species, and ordinals (well-ordered species) are considerably 

more complicated then their counterparts in classical mathematics. A few 
examples may suffice. 

J.J. de Iongh considered the following notions of finiteness: (i) 5 is finite 

if S is in one-one correspondence with an initial segment of the natural num¬ 

ber sequence, (ii) S is quasi-finite if it is the image of a finite species, (iii) S is 

pseudo-finite if S is a subspecies of a finite species, (iv) S is bounded in num¬ 

ber by n if S does not contain a subspecies of n elements, and some refine- 

1) Brouwer 23, Heyting 51, 53 (cf. 56, Ch. VI), Van Rootselaar 54. 

2) Ashwinikumar 66, Gibson 67. 

3) Brouwer 18-19, 25-27. 

4) Brouwer 24b, Dijkman 52, cf. Heyting 56,7.3.2. 



272 INTUITIONISTIC CONCEPTIONS OF MATHEMATICS 

ments. Mixtures like pseudo-quasi are also permitted. De Iongh’s results are 

contained in Troelstra 67, where countability predicates are also con¬ 

sidered. 
It turns out that most of the finiteness notions are distinct; for example 

quasi-pseudo-finite implies pseudo-quasi-finite, but the converse is not true. 

With respect to the theorem of Cantor-Bernstein, recently two results have 

been obtained. Troelstra ^showed that if one allows empirical functions, the 

Cantor-Bernstein theorem holds for species of natural numbers. On the other 

hand, VanDalen 1 2 ) proved the Cantor-Bernstein theorem for fans to be contra¬ 

dictory. Let us call two species S and T equivalent (gleichmachtig) if there 

exists a one-one mapping of S onto T, and let S^T stand for “there is a 

one-one mapping /: S -* T, but no one-one mapping g of T onto S'\ Now 

consider the continuum C and the species N of natural numbers. The exist¬ 

ence of a one-one mapping of N into C is clear. Suppose now that there is a 

one-one mapping f: S-*N; according to the continuity theorem (p. 260), / 

must be continuous and hence constant. This contradicts the supposition that 

/is one-one. We conclude now that N < C 3). Note that no diagonal argument 

is used! Essentially the same continuity arguments show that TV^C, 

where B is the binary fan. Apparently there is an abundance of distinct 
cardinalities, however, all of which are, from a classical point of view, <2^°. 

There is no evidence whatsoever for higher cardinalities. Brouwer, in his 

thesis, denied them any mathematical content. Should one for example want 

to consider Cc, then all one obtains is the species of all continuous real 

functions. So the diagonal procedure is not applicable. From the classical 

point of view this does not represent an increase in cardinality. 

The status of the axiom of choice in intuitionistic mathematics is rather 
remarkable. Under certain circumstances there are arguments in its favour and 

under different circumstances the axiom is refutable. Consider a statement of 

the form V x3yA(x,y), where x and y range over natural numbers. This 
statement holds intuitionistically if, for each x that is presented, a correspond¬ 

ing y can actually be calculated and, moreover, there must be a uniform 

procedure for the calculation. This uniform procedure provides us with a 

choice function, so the axiom of choice holds in this case 4). The axiom does 

not hold in general. Consider for example the statement: “for each real 

number a there exists a natural number n such that a<n”. The statement 

1) Troelstra 69, p. 104. 

2) Van Dalen 67. 

3) See Brouwer 25-27, p. 253. 

4) Cf. Kleene-Vesley 65, p. 17, 2,2. 
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evidently holds, but there is no choice function, because if there were one, it 

would have to be continuous and hence constant. Note that the dependence 

of n on a is intensional (i.e. n depends on the representation of a) while the 
notion of function is extensional. 

The intuitionistic theory of order necessarily diverges from the usual one, 

as the trichotomy a ^ b fails in a number of important cases. Instead the fol¬ 

lowing formulae may hold: (i) “1 (a < b) A "1(6 < a) -> a = b, (ii) a<b-+\/c 

{a <cv c <b). For a survey of the theories of order we refer to Heyting’s 
monograph. Brouwer used his method of the creative subject to establish 

some strong facts, e.g. H \/a [a =£ 0 -> (la > 0 v < 0)] 1 ) in the theory 

of reals. Kleene extensively analyzes a number of Brouwer’s results in the 
framework of the formal system of Kleene-Vesley 1 2). 

The theory of well-ordered species is based on the following constructive 
generation principles: 

(i) the ordered union of a finite number of well-ordered species is a well- 
ordered species, 

(ii) the ordered union of a countable sequence of well-ordered species is a 

well-ordered species. 

The generation process starts with the singleton. Note that this approach to 

we 11-ordering goes back to the early papers of Cantor. 

The well-ordered species share many properties with their classical coun¬ 

terparts, such as “every well-ordered species has a first element”, “every 

descending sequence a± a3-- in a well-ordered species has a last element 
(i.e. is finite)”, and the principle of transfinite induction. However, the prop¬ 

erty that is mostly used to characterize well-ordered sets, i.e. “every non¬ 

empty subset of a well-ordered set contains a least element” does not hold for 

well-ordered species. Even the weaker statement, “every inhabited 3) sub¬ 
species contains a least element”, fails. 

It must be noted that all well-ordered species are countable. Considerable 

parts of the theory of well-ordering have been developed by Brouwer 4 5). A 

relation between the class K (p. 259) of neighbourhood functions and the 

class of well-ordered species was noticed by Troelstra s); as a matter of fact 

he showed that each is explicitly definable in the other. 

1) See Hey ting 56, p. 118. 

2) Kleene-Vesley 65, Ch. IV. 

3) 5 is inhabited if3x(xe5), to be distinguished from “non-empty” (i.e. IVx 

(*<£$)). 
4) Brouwer 25-27 III. 

5) Troelstra 69, § 14.5. 
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The notion of well-ordering played a key role in the bar theorem 1). The 

fundamental importance of well-ordering appears from Brouwer’s insistence 

on the legitimacy of infinite proofs (as well-ordered species of “elementary 

conclusions”) 2). Intuitionistic set theory, in the form of a theory of species 

and a theory of choice sequences and spreads, has certainly developed since its 

initiation. Although the progress along the traditional lines, pointed by Brou¬ 
wer, is modest, the study of formal aspects has come to flourish by the work of 

mathematicians such as Kleene, Kreisel, Myhill, Troelstra, and Vesley 3). In 

view of the severe restrictions that intuitionism imposes on mathematics it is 

not surprising that only a handful of mathematicians have been willing to 

accept the intuitionistic principles as far as the daily practice of mathematics 

is concerned. On the other hand, the study of formal properties of intuition¬ 

istic logic and mathematics has enjoyed popularity ever since Heyting’s for¬ 

malization in the thirties. The school of Hilbert and some other trends show 
already for some time full understanding for the basic attitude of intuition¬ 

ism, as is apparent from the work of Clifford Spector and others. Moreover, 

there is the remarkable stimulating influence of intuitionism which, mainly in 

connection with recursion theory (see Chapter V), has suggested a number of 

improvements in classical analysis 4) and produced a wealth of new (classical¬ 

ly significant) problems and results in proof theory and model theory, nota¬ 

bly through the work of Kleene and Kreisel. 

In conclusion one can say that the fierce disputes between formalists and 

intuitionists belong to the past. Although both sides stick to their fundamen¬ 

tal principles, a mutual appreciation has developed, which has already begun 
to bear fruit5). 

1) See Brouwer 27, 54. 

2) Brouwer 27, footnote 8, cf. Kreisel-Newman 69. 
3) Loc. cit. 

4) See for instance Grzegorczyk 59, Bishop 67. 

5) The conference on intuitionism and proof theory (Buffalo, 1968) convincingly 

bears witness to that, see Kino-Myhill-Vesley 70. 



CHAPTER V 

METAMATHEMATICAL AND SEMANTICAL APPROACHES 

§ 1. THE HILBERT PROGRAM 

So far, we have discussed three main approaches to the problem of 

rebuilding the foundations of set theory, the “naive” Cantorian conception of 

which was so badly shaken by the antinomies. The Brouwerians believed that 

this conception was wholly wrong from the beginning. They accused it of 

misunderstanding the nature of mathematics and of unjustifiedly transferring 

to the realm of infinity methods of reasoning that are valid only in the realm 

of the finite. By regaining the right perspective, mathematics could be 

constructed on a basis whose intuitive soundness could not be doubted. The 

antinomies were only the symptoms of a disease by which mathematics was 

infected. Once this disease was cured, one need worry no longer about the 

symptoms. All Russellians thought that our naiveness consisted in taking for 

granted that every grammatically correct indicative sentence expresses some¬ 

thing which either is or is not the case, and some — among them Russell 

himself — believed, in addition, that through some carelessness a certain type 

of viciously circular concept formation had been allowed to enter logico- 

mathematical thinking. By restricting the language — and proscribing the 

dangerous types of concept formation — the known antinomies could be 

made to disappear. Their faith in the consistency of the resulting, somewhat 

mutilated, systems was less strong than that of the Brouwerians, since certain 

intuitively not too well founded devices had to be used in order to restore at 

least part of the lost strength and maneuverability. Zermelians, finally, 

thought that our blunder consisted in naively assuming that to every 

condition there must correspond a certain entity, namely the set of all those 

objects that satisfy this condition. By suitable restriction of the axiom of 

comprehension, in which this assumption is formulated, they tried to con¬ 

struct systems which were free of the known antinomies yet strong enough to 

allow for the reconstruction of a sufficient part of classical mathematics. 

Their faith in the consistency of the resulting systems was based on nothing 
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more — but also on nothing less — than the fact that the usual ways of 

deriving the known antinomies could not be reproduced. 

The adherents of the axiomatic approach to the foundations of set theory, 

and to a somewhat lesser degree the adherents of the type-theoretical 

approach, were badly in need of a proof of the consistency of their systems. 

The classical method of providing such a proof, viz. the exhibition of a model 

taken from a theory whose consistency was not in doubt — in the tradition of 

Beltrami who in 1868 proved that certain non-Euclidean geometries were 

consistent (relative to Euclidean geometry, as we would say now) by 

constructing a model for them within Euclidean geometry, or of Hilbert who 

in 1899 constructed a model for Euclidean geometry within real number 

theory, thereby proving its consistency (relative to real number theory) — 

could not be applied: finite models were obviously not suitable, and no 

conceptual framework within which an infinite model could be constructed 

might be regarded as safe, in view of the antinomies. A different method was 

needed. It was Hilbert who supplied it, dimly in 1904, but with increasing 

precision and pregnancy from 1917 1): it must be shown that the standard 

mathematical proof procedures are strong enough to derive all of classical 

mathematics — including all of Cantor’s set theory — from suitable axioms 

but not so strong as to derive a contradiction. That classical mathematics was 

basically sound was an act of faith with Hilbert which was never shaken by 

the antinomies. 

Hilbert intended to carry his program through in two steps: first, all of 

mathematics — as a matter of fact, he was thinking mainly of arithmetic, 

analysis and set theory, — had to be formalized 2), i.e. a formal system, or 

formalism, had to be constructed from whose axioms should be derived at 

least the beginnings of mathematics to a degree corresponding to that 

achieved, say in Principia Mathematica, with the help of a certain definite set 

of rules of inference. The system was to be formal in the sense that only the 

kind and order of symbols, upon whose sequences the rules of inference were 

to operate, was to be taken into account but not, for instance, their 

“meaning”. Such a system could be sufficiently mastered by a minimum of 

intuition, the so-called “global intuition” required to decide whether two 

symbol occurrences are occurrences of the same symbol or of different 

symbols, a kind of intuition that requires no intellectual powers at all and can 

be built into suitably constructed machines. Whether a series of symbol se¬ 

quences is or is not a proof of its last sequence can, in such a system, be 

1) Cf., e.g., Hilbert 22, p. 160. 

2) Ibid., p. 174. 
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mechanically checked by using essentially nothing more than a purely 

mechanical operation of matching. This complete formalization goes far 

beyond the kind ot formalization provided in formal axiomatics. There one 

relies on an “understood” logic and is satisfied with a complete listing of all 

specific primitive terms and an enumeration of ail assumptions formulated in 

these terms necessary for the derivation of a certain body of theorems and 

takes pain that the intended meaning ot the specific, extra-logical terms of 

the theory under treatment should never enter into the derivations unless 

explicity expressed by the axioms. (Incidentally, it was Hilbert himself who 

brought the formal axiomatic method to its perfection.) Here, the intended 

meaning of all terms is to be disregarded, including that of the logical terms. 

If one wants to infer the fact that 0 is true from the fact that 0 and 0 is 

true, then this can no longer be done by implicit, or even explicit, reliance on 

the meaning of ‘and’ but this inference has to be made on the basis of suitable 

axioms and rules exclusively. Hilbert’s kind of formalization is based on what 

is sometimes called the logistic method. Hilbert was, of course, in a position 

to rely on existing axiomatizations of certain parts of mathematics, such as 

Peano’s axiomatization of number theory and Zermelo’s axiomatization of 

set theory, as well as on existing formalizations of logic, provided by Frege 
and Russell-Whitehead, though especially the system of Principia Mathemati- 

ca was not quite up to the standards necessaiy for his purpose. The various 

systems of formalized arithmetic, developed by Hilbert and his school 1) over 

many years of hard work, started indeed from an almost mechanical superpo¬ 

sition of Peano’s axiom system on the Principia Mathematica First-order predi¬ 

cate calculus, though later developments went far beyond this stage and 

exhibited great originality. 

In the second step, Hilbert planned to show that the application of the rules 

of inference to the axioms could never lead to contradiction, or rather to 

formal inconsistency in one of the senses of this term (with which we shall 

deal later, in § 4, at length), e.g. that there could exist no valid formal proof 

the endformula of which would be ‘1 - 2’. The argumentation by which this 

impossibility metatheorem was to be established had to be of such an 

elementary character that its soundness could not possibly be doubted. All 

those kinds of argumentation which the intuitionists found objectionable 

within mathematics, such as the use of the tertium non datur for infinite sets 

or the inference from the falseness of a universal statement to the truth of a 

certain existential statement, not to mention impredicative concept forma- 

1) For a careful and and very detailed description of these systems, see Hilbert- 

Bernays 34-39. 
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tions and the use of the axiom of choice, were to be banned from that 

metatheory in which the proof procedures of mathematics were to be 

investigated and which Hilbert called therefore metamathematics or proof 

theory. As a matter of fact, he even went beyond the intuitionistic strictures 

when he insisted that only finitary arguments were to be allowed in proof 

theory. But just as the intuitionists never committed themselves to a 

complete specification of what proof procedures were admissible — such a 

commitment would have militated against their basic stand — so Hilbert never 

produced a univocal statement as to what procedures were regarded by him as 

finitary. The nearest to such a specification can perhaps be found in the 

following quotation from Herbrand, that highly gifted French Hilbertian 
whose early death put an end to great hopes: 1) 

We understand by an intuitionistic [i.e. finitary] argument an 

argument that fulfils the following conditions: one always deals with a 

finite and determined number of objects and functions only; these are 

well defined, their definition allowing the univocal calculation of their 

values; one never affirms the existence of an object without indicating 

how to construct it; one never deals with the set of all the objects x of 

an infinite totality; and when one says that an argument (or a theorem) 

holds for all these x, this means that for every particular* it is possible 

to repeat the general argument in question which should then be treated 
as only a prototype of these particular arguments. 

It should be stressed that the task of metamathematics was not only to 

show the consistency of mathematics proper by safeguarding it against the 

antinomies; among other things, it was meant to protect mathematics from 

the restrictions that other schools, especially those of intuitionistic proveni¬ 
ence, were trying to impose upon it 2). 

Had Hilbert succeeded in carrying out his original program, this might have 

been the end of foundational research for most mathematicians as it would 

have been for Hilbert: this kind of research for him was a not too pleasant 

duty that he felt obliged to perform but which distracted him from other 

more attractive occupations. True, a minority would still have claimed then, 

as they do now, that consistency of a formalism as such is by no means a 

sufficient condition for the material truth of any of its interpretations. Even 

if a formal system in which, say, an axiom of choice is contained, is 

1) Herbrand 32, p. 3, footnote 3. 

2) See Hilbert 22, p. 174. 
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demonstrably consistent, selection functions — so this minority would argue 

— just don't exist. To which Hilbert — in this respect being, strangely enough, 

in the good company of Poincare — would have replied that mathematical 

existence is nothing but the consistency of the system 1). But we shall leave 

the discussion of mathematical existence to the last section. 

Fortunately — if we may be allowed to be for a moment somewhat 

light-hearted on such a serious matter — neither Hilbert nor any of his 

brilliant followers and associates did succeed in accomplishing this program, 

not because of any lack in ingenuity but — just because it could not be 

done 2). However, during the pursuit of this, as we now know by hindsight, 
Utopian aim — as it so often happened in the history of mathematics — an 

enormous wealth of new theories, concepts, and techniques was developed 

which have already proved to be extremely interesting and fruitful and 

promise to become even more so in the future. The Godel theorems of 1931, 

from which the inaccomplishability of the original Hilbert program can be 
deduced (see § 6), did shatter certain illusions, to be sure, but they have also 

been hailed — rightly, we believe — as belonging to the greatest achievements 

of abstract human thinking in recent times. Hilbert was wrong when he 

attempted to belittle the crisis into which mathematics had be thrown by the 

antinomies, and his belief in the essential decidability of all mathematical 

problems turned out to be unjustified, at least if decidability is understood as 

decidability in one specific formal system. No unique and universally 

accepted way of reconstructing mathematics exists or is in view, and in this 

sense the foundational crisis is still in force. But many a scientist wishes that 

his field were in as “critical” a state as mathematics, and few are the 

mathematicians who are really depressed by the existing uncertainties in the 

foundations. Dealing with these foundations has, surprisingly enough, turned 

out to be not only a job that had to be undertaken for reasons of intellectual 

sincerity or philosophical meticulousness but something that was infinitely 

rewarding, exciting, and fruitful. 
We shall not try to present the rise and decline of the Hilbert program in 

all its historical details, interesting as such a presentation would doubtlessly 

be 3). We shall rather introduce first the concepts in which its present status 

can be understood and then describe in outline the main results of the 

1) For some recent discussions of the relationship between consistency and 

mathematical existence, see Bernays 50 and Beth 56. 

2) For a detailed account of the present status of the Hilbert program, see Kreisel 64. 

3) For one such presentation, see Heyting 55, pp. 36 ff; for another, older one, see 

Bernays 35 a. 
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theories that were developed during its pursuit. At the end of the chapter, and 

thereby of the book, we shall deal with some of the philosophical problems 

connected with the foundations of set theory. 

§ 2. FORMAL SYSTEMS, LOGISTIC SYSTEMS AND FORMALIZED 

THEORIES 

Let us start with a general description of the structure of a certain 

important class of formal systems and then illustrate it by a partial 

description of a certain number-theoretic formalism as well as by a complete 

description of a set-theoretical formalism such as might arise from a complete 

formalization of the set theory ZF presented in the first section of Chapter II. 

We have no intention to describe here the structure of all possible formal systems. 

This was not even quite done by Carnap who dedicated more than 120 pages of his 

masterwork, The Logical Syntax of Language, to General Syntax, i.e. to the theory of 

formal systems in general 1). 

The following remark as to terminology is appropriate: for any of the technical terms 

to be used in this and the following sections, there exist many, occasionally very many, 

synonyms and near-synonyms. On the other hand, many of these terms are homographs 

and carry different meanings, sometimes with the same author in different or even in the 

same publications. The reader would only have become bewildered had we tried to list 

all the synonyms in every case. Therefore, we shall use in general only one or two terms 

for each concept. When comparing our statements with those found in the literature, 

great care will therefore have to be taken in determining what corresponds to what. As 

an illustration only let us notice that ‘formal system’ has the following synonyms: 

formalism, calculus, formal calculus, uninterpreted calculus, abstract calculus, syntactical 

system, formal language, formal logic, codiflcate, and many others. 

A formal system 2) is determined by the following five sets: 

(1) A set of primitive symbols, the {primitive) vocabulary, divided into 

various kinds, such as variables, constants, and auxiliary’ symbols. If the vo¬ 

cabulary is finite, it can be given simply in form of one or more lists. If it is 

infinite, and in practice also if it is very large, its membership is established 

in the metalanguage by inductive means, using syntactical variables. In any case, 
being a primitive symbol has to be an effective notion, enabling us to 

determine in a finite number of steps whether or not a given symbol is 

primitive. The primitive symbols are to be regarded as indivisible whatever 

their external look and whatever the way of their specification. 

1) Carnap 37, pp. 153—275; see especially p. 167. 

2) Curry’s views on the nature of formal systems, expressed in Curry 50, 51, 54 and 

63, though idiosyncratic and occasionally somewhat obscure, should be consulted by 

any serious student of this problem. 
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In almost all formalisms the number of variables belonging to the primitive 

vocabulary is infinite. The following inductive specification would still make the notion 
of being a variable an effective one: 

(a) V is a variable. 

(b) If £ is a variable, then £ | is a variable. 

(c) The only variables are those provided by (a) and (b). 

(Thus a “general” variable is of the form ‘;t||| 

Any finite string ot symbols is called an expression *). The number of 

expressions is therefore at least denumerably infinite even if the vocabulary is 
only finite. 

(2) A set of terms as a subset of the set of expressions, determined by 
effective rules. 

Continuing our illustration, we might have the following rules: 

(d) Each variable is a term. 

(e) If a 1 2) is a term, then ^(a) 3) is a term. 

(f) If a and (3 are terms, then (a + (3) and (a • f3) are terms. 

(g) The only terms are those provided by (d), (e), and (f). 

It can easily be checked that being a term is indeed an effective notion in this formal¬ 
ism. 

(3) A set of formulae as a subset of the set of expressions, determined by 

effective rules with the help of the notion of term, whenever this notion has 

been determined (which is not always the case). 

We might have, for instance, the following rules: 

(h) If a and 13 are terms, a = 0 is a formula. 

(i) If 0 is a formula, then 1(0) is a formula. 

(j) If 0 and 0 are formulae, then (0) -* (0) is a formula. 

(k) The only formulae are those provided by (h), (i), and (j). 

Once more the effectiveness of the notion of formulahood is evident. 

One might occasionally want to introduce terms and formulae by a simultaneous 

induction. We could have, e.g., such a rule as 

(l) If 0 is a formula and £ is a variable, then (\£)0 is a term (where A’ is a certain 

primitive constant). 

1) In spite of our general decision not to mention divergent terminologies, a 

comparison with the terminology used in Church 56 is often indicated, in view of the 

extraordinary meticulousness with which this terminology has been prepared and 

explained. Church uses ‘formula’ instead of our ‘expression’ and ‘well-formed formula’ 

instead of our ‘formula’. 

2) Where a is a syntactical variable ranging over the expressions of the formalism. 

3) Where ‘S' is a constant of the formalism; ‘S' is used autonymously - see 

Chapter II, p. 20 — in 'S(a)'. Had there been some point in avoiding such a usage, we 

could have said instead: “... then ‘S' ^ a (the concatenation of ‘S' and a, i.e. the 

sequence consisting of ‘S’ followed by a) is a term”. 
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(4) A set of axioms as a subset of the set of formulae. If this set is finite, 

the axioms can, at least in principle, be listed. If not, they may be given 
through axiom-schemata formulated in the meta-language with the help ot 

syntactical variables. The rules have to be such as to guarantee the effec¬ 

tiveness of the notion of axiomhood. 

Still continuing our illustration, we might have, among others, the following axiom- 

schema: 

(m) All formulae of the form (a = (3) -> ((0) -*■ (0)) are axioms, if a and /3 are terms, 

0 and 0 are formulae, and 0 differs from 0 only in containing f3 at a place where 0 con¬ 

tains a free ocurrence of a. 

It is again obvious that checking whether a formula is or is not an axiom in accord¬ 

ance with (m) is an effective procedure. 

(5) A finite set of rules of inference according to which a formula is 

immediately derivable as conclusion from an appropriate finite set of 

formulae as premises. 

Most formalisms contain a rule of inference either identical with or equivalent to the 

rule of detachment (or modus (ponendo) ponens): 

(n) From a set of formulae consisting of two formulae of the form 0 and (0) -*■ (0), 

0 is immediately derivable. 

A finite sequence of one or more formulae is called a derivation from the 

set T of premises if each formula in the sequence is either an axiom or a 

member of T or immediately derivable from a set of formulae preceding it in 

the sequence. The last formula of the sequence is called derivable from T. A 

derivation from the empty set of premises is called a proof of its last 

formula, hence of each of its formulae. A formula is called provable or a 

formal theorem if there exists a proof of which it is the last formula. 

It follows that the notion of being a proof is effective. But it does not 

follow that the notion of theoremhood is effective. There need not exist, 

from all we know so far, a general method that would, for a given formula, 

either tell us how to construct its proof or else show that no proof is possible. 

This does not exclude, of course, that theoremhood might not still be a 

demonstrably effective notion for certain formal systems. Once upon a time, 

some mathematicians had hoped that all of mathematics could be formalized 

in a formal system of the latter kind. 

The rules determining the membership of the sets (1) - (3) above, i.e., the 

rules determining the language, are called rules of formation, those determin¬ 

ing the membership of sets (4) and (5) above are called rides of transforma¬ 
tion. 

A formal system may be schematically regarded as an ordered quintuple of 
sets fulfilling certain requirements. 
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Terms and formulae will be called open ’) if they contain at least one free 

occurrence of a variable, closed if they contain no free variables. Instead of 
‘closed formula’ we shall usually say ‘sentence’.2) 

We are now ready to present one of the many formal systems into which the set 

theory ZF can be formalized. 

A. Rules of formation 

1. a is a primitive symbol (of ZF) if and only if it is one of the following symbols: 

a. Individual variables: 'x\ lX|’, \X||’, ... (ad infinitum). For the 10 first variables 

following ‘x’ we shall use as abbreviations the following symbols, in this order: 'y', ‘z’, 

‘vv’, V, V, Y, 's', 't',‘p’, ‘q’. 

b. Primitive predicates', the binary predicate ‘e\ 

c. Logical constants: 

a. Connectives: ‘“I’, ‘V’, ‘A’, *-»■’,‘ 

j3. Quantifiers: the universal quantifier V, 

the existential quantifier 3. 

7. The equality symbol: ‘=’. 

d. Auxiliary symbols: ‘(’, ‘)’. 

3. is a formula if and only if it has one of the following forms: 

a. £ = r) or £ e p, where £ and 17 are variables; a formula of these forms is called atomic. 

b. H(iH, 0/0 v (x), (f) a (x), (i/Q-’Tx), ('/0~(x), where f and x are formulas. 

c. CVO(f), (3 £)(t/0, where £ is a variable and f is a formula. 

B. Axioms and rules of inference 

4. yj is an axiom if and only if it has one of the following forms: 

a. Axiom schemata of the propositional calculus : 

0/0 -»((x) (</0), -* ((’/'-’•(x^p)) -* 3), 
('I'-’-x) -*■ -*•“1 vO, Hlx-^x , 
</> -»■ (x->4> A x), (</* A x) -*■ , (vF A x) ->■ x , 
f -+ i'P Vx), x -*■ (.f v x), (f-^p) ((x-^p)-* (V'Vx-’-p)), 
(,t+*x) -*■ (0++x) -»■ (x~"P), i'p-'x) -*■ (ix->f) -* ('P**x)) , 
where \p, x and p range over all formulae 4). 

1) An interesting light is thrown on the intricacies of the terminological situation by 

the fact that Carnap, who until 1950 was employing the term ‘open sentence’ for our 

‘open formula’, started using the term ‘(sentential) matrix’ in a book - Carnap 50 - 

published that year, thereby adopting a term advocated by Quine in publications prior to 

1950. Quine himself, however, in a book published in that very year - Quine 50 - 

decided to use ‘open sentence’, admittedly following Carnap’s usage; see Quine 50, 

p. 90n. 

2) We shall, however, continue to use the term ‘statement’ instead of ‘sentence’ as an 

informal term applying to natural languages and unformalized theories. 

3) In this and the following formulae, some parentheses are omitted, under certain 

obvious tacit conventions. 

4) This is taken from Kleene 52, p. 82. 
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b. Axiom schemata of the predicate calculus: 

Vj\// -*• x, where \p ranges over all formulae, f and p range over all variables and 

X is a formula obtained from \p by replacing in it one or more of the free occurrences of 

£ which are not within the scope of a quantifier Vp by occurrences of p. 

c. Axioms of equality: Vx (x=x), £ = p -> (1// -*■ x), where \p is any formula and x is a 

formula obtained from \p as in 4b. 

d. Specific axioms {and axiom schemata): 

I. (Axiom of Extensionality) 

Vx Vy [Vz (z ex +* z Gy) -* x =y ] -1) 

II. (/I x/om of Pairing) 

VxVy3zVw(«ez««=x V u=y). 

III. {Axiom of Union) 

Vx3yVz(zGy <-* 3f(f Gx Az6()). 

IV. {Axiom of Power-Set) 

Vx3y Vz(zGy ** Vw(u6z ->u£x)), 

V. {Axiom-Schema of Subsets) 

{ ) Vx3y Vz(z Gy ** z -»x A \p). 

where ‘y’ does not occur free in the formula \p and where ‘( )’ stands for a string of 

universal quantifiers binding all the free variables of (except ‘z’). 

Vic. (Axiom of Infinity) 

3z{3« [ Vu(Hu ew) A uGz] A VxVyfxGz Ayez-+ 

3l((ezAVw(vi'£(«w6xVw=y))]} . 

VII. (Axiom Schema of Replacement) 

( ) Vu VvYw{y{u, u) A yj(u, w) ->■ v = w) -*■ 

[Vx3yVu(uGy 3w(w G x Ayj(w,u))], 

where ^>{u,v) is any formula, <p(u,w) is the formula obtained from <p{u,v) by substituting 

w for all free occurrences of v in v) and by relettering the bound occurrences of v in 

1f{u,v) if necessary to avoid collision of variables, and where ( ) is as for Axiom-Schema 

V above. 

IX* (Axiom of Foundation) 

Vx{3y(y Gx)-*-3y[y Gx A ~l3z (zGxAzGy)]j • 

The reader will have noticed that the symbolic versions of the specific axioms are 

sometimes more cumbersome than those given in Chapter II. This is due to the fact that 

in the formulation presented here we have completely avoided any use of defined sym¬ 

bols such as ‘0’ or ‘U\ This was done because we wished to dodge the problem of the 

status of definitions in formal systems. Let us only remark that if definitions are to be 

allowed as a part of a formalism (and not as metatheoretical devices), certain rules of 

definition have to be laid down with which the definitions will have to comply. 

1) All parentheses, brackets, and braces are to be regarded as variants of the same two 

auxiliary symbols. 



FORMAL SYSTEMS 285 

5. is immediately derivable from (the set of) the formulae \p and x if 

a. (Rule of detachment, modus ponens): \is\p , 

or else if f has the form p -*• a and <p has the form 

b. (Rule of consequent universalization)-, p -* V£a, where £ is not free in p, or 

c. (Rule of antecedent existentialization): 3 %p -+ a, where f is not free in a. 

Rules 4a and 5a form a complete set of transformation rules for the propositional 

calculus. Together with rules 4b and 4c and with the rules of inference 5b and 5c they 

form a complete set of transformation rules for the first-order predicate calculus with 

equality. We now have a clearer image of the sense in which the system ZF has this 

calculus as its basic logical discipline. 

The notion of formal system, as developed so far, is a rather narrow one, 

with strong requirements of effectiveness, and is probably very close to, if not 

identical with, the one Hilbert had originally in mind. For certain purposes, 

however, it is useful, and for other purposes even necessary, to investigate 

systems with weaker requirements of effectiveness. Whether we call such 

systems ‘formal systems’, too, perhaps with some qualifying phrase, or 

artificially confine one or more of the synonyms mentioned above (p. 280) 

for this wider conception, or coin some new terms, is of course a purely 

terminological matter. We shall from now on use ‘logistic system’ for ‘formal 

system with strong requirements of effectiveness’ and employ qualifying 

phrases, where necessary, to distinguish between the different shades of 

formal systems. 

Until recently, only formal systems with an at most denumerably infinite 

vocabulary were investigated. Lately, however, the revival of the algebraic 

approach to logic has also caused an increase of interest in systems with a 

non-denumerable vocubulary !). 

Expressions are usually regarded as finite linear symbol strings, but 

occasionally expressions of infinite length are taken into consideration 1 2). 

Then there are formal systems in which the notion of formulahood is not 

effective. To mention just one example, Hilbert and Bernays introduce the 

iota-operator of definite description in such a way that an expression of the 

form (i£)q>, where \ is a variable occurring free in g>, is regarded as a term only 

when the “uniqueness condition” 3t?V£[^(^=r?)] is provable 3). Since prov¬ 

ability is, in general, not an effective notion, as we saw above, there exists no 

1) The use of a non-denumerable vocabulary is now a standard practice in model 

theory — see e.g. A. Robinson 63 or Kreisel-Krivine 67. 

2) See, e.g., Karp 64, Barwise 68 and 69. 

3) Hilbert-Bernays 34-391, pp. 383 ff. Other authors, following Frege and Russell, 

take care that iota-expressions should always be terms; cf. Carnap 47, pp. 33 ff and 

Schr'o'ter 56. 
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generally effective method of determining whether (t£)0 is a term, hence no 

effective method of determining whether certain expressions containing (i£)0 

as a part are formulae 1). 

With regard to axioms, we had already allowed their number to be infinite, 

even for a logistic system, so long as their specification within the metalan¬ 

guage is such as to provide for an effective procedure of testing whether a 

given formula is or is not an axiom. Nevertheless, since systems with a finite 

number of axioms have definite theoretical advantages, the problem of the 

finitizability of a given infinite axiom system, i.e. the establishing of a finite 

axiom system whose set of theorems coincides with the set of theorems of 

the former system, is an important one that has often been discussed with 

respect to the various set theories (cf. below, p. 324). 

Sometimes, however, one has occasion to deal with formal systems whose 

notion of axiomhood is only semi-effective in the sense that though there 

exists a mechanical procedure which, for any given formula, would determine 

after a finite number of steps that it is an axiom if it is one, there exists no 

mechanical procedure that would determine, after any number of steps, that 

a formula is not an axiom if it is not one 2). 
With regard to the rules of inference, whereas for logistic systems the num¬ 

ber of premises in any immediate derivation is by definition always finite, 

there are formal systems that contain rules of inference in which a conclusion 
is immediately derivable from a denumerably infinite number of premises. 

The best-known of such rules is the following so-called rule of infinite induc¬ 

tion. Assume that one is dealing with a system which has a formula v(f) 

“asserting” that £ “is” a natural number and which contains a symbol n for 

each natural number n. The rule of infinite induction states that for each for¬ 

mula </>(£), V£(i>(£)-»-(/?(£)) is immediately derivable from the infinitely many 

1) The arguments brought forward in Church 56, pp. 52-53, to the effect that 
systems, whose rules of formation and transformation are non-effective, are not suitable 
for purposes of communication do not sound too convincing. Communication may be 
impaired by this non-effectiveness but is not destroyed. Understanding a language is not 
an all-or-none affair. Our quite efficient use of natural languages shows that a sufficient 
degree of understanding can be obtained in spite of the fact that “meaningfulness”, 
relative to natural language, is certainly not effective. 

For a discussion of calculi for which some or all of the notions of formula, axiom, 
and rule of inference are non-effective, see especially Carnap 37, § 45. 

2) It has, however, been proved by Craig that for any formal systems with a 
semi-effective set of axioms there exists an equivalent formal system with an effective set 
of axioms; see Kleene 52a and Craig 53. The theorem as such is formulated not in the 
intuitive terms ‘effective’ and ‘semi-effective’ but rather in their strict counterparts 
‘(general) recursive’ and ‘recursively enumerable’ to be discussed below, pp. 308f. 
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formulae ip(0), v?(l), ... . The extreme intuitive plausibility of such a rule does 

not alter the tact that it transcends the tramework allowed in a logistic sys¬ 
tem. We shall come back to this rule later. 

Finally, occasions arise to investigate systems whose set of sentences, 

meant to be the counterparts of the true sentences of the intuitive theories 

which these systems are designed to systematize, can no longer be assumed 

altogether, or at least ab initio, to be identical with the set of sentences 

formally derivable from some set of axioms. Let us not stretch the term 
‘formal system’ any turther to make it cover even such systems, but let us 

rather use the term ‘formalized theory’ for that purpose (each formal system 

being a formalized theory but not vice versa, just as we decided before to use 

the term ‘logistic system’ such that each logistic system is a formal system but 

not vice versa). Whereas a formal system is determined by its set of provable 

sentences, a formalized theory is determined by its set of what we shall call 

valid sentences. The exact extension of this term has to be defined from case 

to case, the only general condition which such a definition will have to fulfil 

being that the set of valid sentences should be closed with respect to 

derivability, i.e. that every sentence derivable from valid sentences by the 

rules of inference should be valid itself; this again entails that all logical 

axioms as well as the sentences derivable from them, i.e. all logically valid 

sentences, will be among the valid sentences. If our formalized theory is a 

formal system then the valid sentences are exactly the provable sentences, or 

theorems, of the system. The schematical representation of a formalized 

theory will then consist of an ordered sixtuple of sets: a set of symbols, a set 

of terms, a set of formulae, a set of logical axioms, a set of rules of inference, 

and a set of valid sentences, with various relations obtaining between, and 

various conditions fulfilled by, these sets. 1). 

Whether a given theory, presented initially as a formalized theory, can also 

be equivalently represented as a formal system, perhaps even as a logistic 

system, in other words, whether the set of valid formulae of this theory can 

be exhaustively described as the set of sentences derivable from some initial 

set of axioms by some rules of inference, these axioms and rules fulfilling 

more or less rigid requirements of effectivity, is a problem, often a very 

difficult one, always a decisive one. In still other words, the problem is 

whether a given formalized theory is axiomatizable, i.e. equivalent to an 

axiomatically built formal system. As a matter of fact, Hilbert and many 

other mathematicians and logicians had assumed that all of mathematics is 

1) E.g., the set theory ZF* of footnote 3 on p. 141 is essentially presented there as 

a formalized theory. 
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axiomatizable. Anticipating results to be mentioned later, let us state, 

however, that many mathematical theories, including such “simple” ones as 

the arithmetic of natural numbers, have turned out to be nonaxiomatizable, 

to the amazement of them all. 

§ 3. INTERPRETATIONS AND MODELS 

A formalized theory is usually set up in order to formalize some intuitively 

given theory. Whether, and to what degree, this aim is achieved can only be 

determined after the formalized theory is provided with an interpretation, 

with the help of suitable rules of interpretation, turning thereby into an 

interpreted calculus. These rules can take many forms, but their common 

function is to provide each sentence of the formalized theory with a meaning 

such that it turns into something that is either true or false, i.e. into a 

statement, though no effective method need of course be provided for 

deciding whether it is the one or the other. 

We shall sketch here one way of providing an interpretation for first-order 

theories, both because they are the most important and best studied sorts of 

formalized theories and for the sake of simplicity. 

A full-fledged first-order theory T contains some standard set of logical 

constants (including a symbol of equality) and auxiliary symbols, a denumer¬ 

able set of variables ranging over the same set of entities, and an at most 

denumerable set of extra-logical constants comprising individual constants, 

unary, binary, ..., n-ary predicates and operation symbols; this last set is 

assumed to be ordered in some sequence without repetitions. (The auxiliary 

symbols and the operation symbols are theoretically superfluous but are in 

practice often very convenient.) Such a theory is interpreted by providing the 

logical symbols with their usual signification, by fixing the universe (of 

discourse)U over which the variables range, and by assigning, through rides of 
designation, to each individual constant some member of U, to each unary 

predicate a certain subset of U and in general to each n-ary predicate a certain 

n-ary relation whose field is a subset of U, finally to each n-ary operation 

symbol an n-ary function from ordered n-tuples of U to members of U. 

Calling the sequence consisting of U and these individuals, sets, relations, and 

functions ordered in a way similar to that of the constants to which they are 

assigned, a structure, semi-model, or {possible) realization of T, rides of truth 

finally determine under what conditions a formula of T is true in a given 

structure, relative to a given value-assignment to its free variables if it contains 

such. (These rules determine, of course, also truth conditions for all the 
sentences.) 
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An interpretation of a given theory T is called sound if under it all the 

valid sentences ot T become true in the structure determined by the 

interpretation; this structure itself — and often also the assigning function — 
it then called a model of the theory. 

In the special case, when the given formalized theory is a formal system, if 

the axioms of this system become true under some sound interpretation, and 

its rules ot inference are truth-presenting, i.e. leading always from true 

premises to true conclusions, then the theory has a sound interpretation, in 
other words, there exists a model of the theory. 

Let us illustrate by giving a complete set of rules of interpretation for Z, i.e. ZF 

minus the axiom VIII of replacement which is a set theory more similar to the original 

theory of Zermelo. 

a. If 0 and 0 are sentences, then “10 is true if and only if 0 is not true. 0V0 is true if 

and only if either 0 or 0 (or both) are true, etc. 

b. The universe U is the set R(cu-2), where R is the function defined on p. 94; i.e., 

the universe contains the null-set O, its power-set PO, the power-set P2Oof PO,...,PnO (for 

all finite n), the union R(cu) of these, PnR(cu) (for all finite n), as well as all the 
members of these sets. 

c. ‘e’ designates the relation being-a-member-of (with its field restricted to U), i.e. the 

set of all the ordered pairs whose first element is a member of the second one, where both 

belong to U. 

d. An atomic formula of the form £=77 (where £ and 77 are variables) is true, relative 

to a given value-assignment to £ and rj, if and only if the same set is assigned as value to 

£ and 77. 

e. An atomic formula of the form £&p (where £ and 17 are variables) is true, relative to 

a given value-assignment to £ and rj, if and only if the set assigned as value to £ is a 

member of the set assigned as value to 77. 

f. A formula of the form V£0 (where 0 is a formula and £ a variable) is true, relative 

to a given value-assignment to all the free variables of 0, if and only if 0 is true, relative 

to any value-assignment that differs from the given one at most by the value assigned to 

£• 
g. A formula of the form 3£0 (where 0 is a formula and £ a variable) is true, relative 

to a given value-assignment to all the free variables of 0, if and only if 0 is true, relative 

to at least one value-assignment that differs from the given one at most by the value 

assigned to £ 1). 

Let us now introduce a few semantical terms which we shall need in the 

sequel. An open formula will be called valid 2) in a given structure if it is true 

in this structure relative to every value-assignment to its free variables, 

satisfiable if true relative to at least one such value-assignment. A sentence 

1) In order to see that the interpretation provided by these rules is sound, we have to 

verify that all axioms of Z are true in the structure ( U, is -a-member-of). This is easy. 

2) The concept of a formula valid in a given structure should not be confused with 

the concept of a sentence valid in a formalized theory. 
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true in every structure is logically true, and an open formula valid in every 

structure - logically valid. A sentence true in every structure in which all the 

sentences of a given set of sentences are true is called a logical consequence of 

this set. 
When a sentence 0 is derivable from a set of sentences T, it is also a logical 

consequence of T, but the converse does not generally hold. It does hold, 

however, with regard to first-order theories, according to the extended Godel 
completeness theorem (p. 296 below). For such theories we have then also 

that a formula is logically true if and only if it is logically provable, in other 

words, that the proof procedures of the underlying logic are complete *). 

Whereas sound interpretability (having a model) is a semantic property of 

a formalized theory T, interpretability in another formalized theory T' is a 

syntactic property of T, to the definition of which we turn now1 2). 

Let T and T' be first-order theories. The syntactic notion of an interpreta¬ 

tion of T in T' originates, like almost all interesting syntactic notions, from 

semantical ideas. We have in mind first an interpretation (in the informal 

sense) of the language of T as having a universe of discourse which is a 

subclass of the universe of discourse of T', i.e., in the language of T one talks 

about the members of a subclass of the class of objects about which one talks 

in T\ Moreover, this subclass is to be a subclass which can be referred to in 

T', and therefore it is to be a subclass given by a formula x(*) of T' with no 

free variables other than x. A statement “for all x...” of the language of T is 

now interpreted as the statement “for all x such that x(*) ...” of T', and a 

statement “there is an x such that ...” of the language of T is interpreted as 

“there is an x such that x(*) and So far we have interpreted in T' only 

the universe of discourse of the language of T and we have still to interpret in 

T' the extralogical symbols of the language of T. An n-ary relation symbol of 

this language is interpreted in T' by an n-ary relation expressible in T', i.e., by 

a formula p(x1,...,x/I) of T' with no free variables other than Xj,...^; 

individual constants and operation symbols of the language of T are 
interpreted similarly. 

Therefore, an interpretation of the language of T in T' is given syntactical¬ 

ly by a formula x(*) of T' as above, and by an assignment which assigns to 

each /r-ary relation symbol of the language of T a formula p(xlv..,x„) of T' as 

above, to each individual constant of T a term r of T' without free variables, 

and to each /7-ary operation symbol of T a term r(xlv..,x„) of T' with no free 

1) Cf. the remarks on p. 298 in regard to elementary theories. 

2) We follow Tarski-Mostowski-Robinson 53, where, on p. 29, our interpretability is 
called relative interpretability. 
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variables other than x j ,...,xn. Let ip be a formula of T. The interpretation * 

ot <p is obtained trom ip as follows. We replace in ip each quantifier Vx and 3.x 

by Vx(x(x)-> and 3x(x(x)a, respectively, each individual constant t by the 

term r assigned to it, each term F(sj ,...,$„) by r(slv..,s„), where T(xrlv..,x„) is 

the term assigned to F and are terms (which also undergo the same 

changes), and we replace each atomic formula P(,sqwhere P is an n-ary 

relation symbol other than the equality sign, by p(slv..,s„), where 

p(Xj,...,x/7) is the formula corresponding to P. Since the universe of discourse 

is always assumed to be non-void in logic we shall also demand that 3xx(x) be 

valid in T. Once this requirement is satisfied, one can easily show that the 

interpretation ip * of every logically valid sentence <p of the language of T is a 

valid sentence of T' M; moreover, if <p is a logical consequence of ip1v..,ip 

then <pj,...,<pw imply <p in T . If also the interpretation ip* of every sentence ip 

valid in T is valid in T' we say that we have an interpretation ofJ in T', rather 

than just an interpretation of the language of T. If T is given by means of a 

set of axioms and we want to show that a given interpretation of the language 

of T in T' is indeed an interpretation of T itself in T', it is enough to show 

that for every axiom ip of T, ip* is valid in T'; since every theorem i// of T is a 

logical consequence of a finite number (pj,...,ipw of axioms of T, also \p* is 

valid in T\ We say that T is interpretable in T' if there is an interpretation of 

TinT'. 

One of the main uses of interpretability is to obtain proofs of relative 

consistency. If we have an interpretation of the formal system T in a formal 

system T' and T' is consistent then so is T. To see this we notice that the 

interpretation (ipA“]ip)* of ipA~l<p is ip*A~lip*; if T were inconsistent then pA~l<p 

would be a theorem of T, and therefore its interpretation ip*A“l<p* would be a 

theorem of T', which is impossible if T' is consistent. This is the way in which 

it was proved, e.g., that if the set theory ZF is consistent then so is ZFC 

(p.60). That was done by constructing an interpretation of ZFC in ZF. The 

universe of discourse of ZFC was interpreted as the class of all constructible 

sets, i.e., the formula x(*) was taken to be a formula which asserts that x is 

constructible, and the membership relation of ZFC was interpreted as 

membership. This is indeed an interpretation of ZFC in ZF since the 

interpretations of all the axioms of ZFC are theorems of ZF2), 

1) The requirement that 3x\(x) be valid is indeed necessary, since the interpretation 

of the logically valid sentence 3x(x=x) is 3x(x(x)Ax=x) which is obviously equivalent to 

3xX(x). 

2) For some proofs of relative consistency, and for some other applications, more 

general notions of interpretability are needed. This is the case, e.g., with respect to the 

proof of the consistency of classical number theory relative to the intuitionistic one - 

see p. 243. 
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We saw that if we have an interpretation of T in T' then we can prove the 

metamathematical statement that if T’ is consistent then so is T. To what 

extent can we trust such a proof of relative consistency? That depends on the 

means used in that proof. If we were to use in that proof all the means of a 

theory which is as strong as T itself, then such a proof would not be very 

convincing; e.g., the knowledge that we can prove in T itself the metamathe¬ 

matical statement that if T' is consistent then so is T 1 2) yields no information 

on the consistency of T, since if T happens to be inconsistent then every 

statement is provable in T, and in particular the statement that T is consist¬ 

ent. However, it turns out that the proofs of relative consistency carried out 

by means of interpretations are, as a rule, such that they use only strictly 

finitary means and their formal counterparts can be carried out in primitive 

recursive arithmetic i). The proof of the relative consistency shows actually 

that, under some very natural assumptions, we have a simple procedure such 

that once we are given a formal proof of a contradiction in T the procedure 

yields a formal proof of a contradiction in T'. In the case of ZFC and ZF 

mentioned above, and in many other cases, one can prove that the length of 

the proof of the contradiction in T' and the number of steps needed to obtain 

this proof from the proof of the contradiction in T are of the order of 

magnitude of the length of the latter proof. 

As we saw, the notion of an interpretation of T in T' is a syntactical no¬ 

tion; however, it is also related to important semantical facts. Given an inter¬ 

pretation of T in T' and a structure 51 which is a model (or sound interpreta¬ 

tion) of T', then the interpretation of T in T' determines a model 53 of T as 

follows. The universe of 53 is the set of all members of 51 which satisfy x(x) 
in 51 (i.e., the members u of 51 such that the value-assignment which assigns 

the object u to the variable x makes x(*) true in 51). The n-ary relation of 53 

denoted by the relation symbol P is the set of all n-tuples of members of 51 

which satisfy p(x1,...,x„) in 51, where p(xj,...,x„) is the formula of T' 

assigned to P by the interpretation of T in T'. We similarly obtain the disting¬ 

uished individuals of 53 (denoted by the individual constants) and the opera¬ 
tions of 53. 

Since, as we saw, an interpretation of T in T' directly determines a model of T for 

every model of T', an interpretation of T in T' is often referred to as a “model of T in 

T'.” It is not uncommon among mathematicians who set up an interpretation of one 

1) Whether this can be proved directly if T “speaks about” expressions of its lan¬ 

guage, or indirectly via a Godel-numbering (see § 6 below) it T contains arithmetic. 

2) See Goodstein 57 for primitive recursive arithmetic. The notion of a finitary proof 

is explained on p. 278; the proofs in primitive recursive arithmetic are finitary even 

according to the most exacting standards. 
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theory in another one to have in mind only the model-theoretic construction we men¬ 

tioned and not the syntactical notion of an interpretation which yields the finitary 

relative consistency proof. 

4. CONSISTENCY, COMPLETENESS, CATEGORICALNESS, 

AND INDEPENDENCE 

A formalized theory is interesting only if it is free from contradiction. It 

gains in interest if it answers all pertinent questions. And one might wish that 

it should uniquely characterize its subject matter. 

These formulations are of course very vague. They form nevertheless the 

starting-point for the rigorous definitions of the many metatheoretical 

concepts to which we shall turn now. Whereas at the beginning it was thought 

that the rigorous concepts answering the three above-mentioned desirable 

properties of theories would turn out to be relatively simple and unambig¬ 

uous, at least in the case of axiomatically built theories, we have come to 

realize that there exists a whole battery of terms x) explicating the various 

aspects of these properties. We shall not try to be exhaustive, especially since 

some of these terms refer to exceedingly complex situations whose descrip¬ 

tion would require many pages. 
A formalized theory (formal system) T is called formally consistent if not 

every sentence of T is valid (provable), otherwise formally inconsistent. If 

T is a first-order theory (but not only then), its formal consistency implies 

that there is no sentence 0 of T such that both 0 and 10 are valid (provable) 

in T. A class of formulae of a given formal system is called consistent as to 

derivability (as to consequences) 1 2) if not every formula of this system is 

derivable (is a logical consequence) from this class. It follows that the class of 
extra-logical axioms of a consistent formal system is consistent as to 

derivability. 

One can easily deduce from these definitions, together with those of the 

preceding section, that a formal system is soundly interpretable (has a model) 

if and only if its class of extra-logical axioms is consistent as to consequences. 

On the other hand, it is clear that if a class of formulae is consistent as to 

1) Many of these terms were used before in this book informally or semiformally, 

sometimes with forward references. We are now paying our debts. 

2) These are Church’s terms; see Church 56, p. 327. Hermes-Scholz 52, pp. 31-32, 

use ‘syntactically consistent’ and ‘semantically consistent’ in approximately the same 

sense. 
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consequences, it is consistent as to derivability. It follows that if a formal 

system has a model, it is formally consistent. For first-order theories, the 

converse of this last statement holds too, since in these theories the concepts 

of logical consequence and derivability are entirely equivalent. 

One way, then, of proving the formal consistency of a theory is to show in 

its metatheory that it possesses a model. Such a consistency proof, however, 

can be regarded as absolute only if the metatheory is unimpeachable. 

Otherwise, it carries conviction only relative to the degree in which we are 

convinced of the consistency of the metatheory. For certain theories, such as 

number theory, analysis, and set theory, it looks hopeless to find a suitable 

metatheory that would not be at least as suspect as these theories themselves, 

in fact, that would not contain counterparts of these very theories them¬ 

selves 1). It was this hopelessness that made Hilbert invent a different, namely 

the syntactical method of providing consistency proofs. 

Another way of proving the formal consistency of a theory T is by 

establishing a normal truth definition for it in some other theory T'. One 

says, following Tarski 2), that a formal theory T' possesses a truth-definition 

for another formal theory T if there exists in T' a predicate, say ‘7V\ such 

that all sentences (of T') obtainable from the expression 

Tr(x) if and only if p 

by substituting for ‘x’ a name (or some other designation) of any sentence of 

T and for ‘p’ a translation of this sentence into T' are provable in T'. The 

truth-definition is called normal, following Wang 3), if in addition the formal 

counterpart of Vx[a is a theorem of T ^ Tr(x)] is provable in T\ 

The possibility of establishing a truth definition in T' for T does not 

necessarily mean that T' is stronger than T4) — though T' must not be 

identical with T, or a subtheory of T, in view of Tarski’s truth theorem (cf. 

below, p. 312)— but this feature does not by itself guarantee the possibility 

of establishing the consistency of T in T', contrary to what was generally 

believed for a time 5). Only the possession of a normal truth definition does 

1) Cf. Kleene 52, p. 131. 

2) Tarski 36. (56, VIII, pp. 187 ff>. 

3) Wang 52b; this important paper contains a very thorough investigation of the 

whole problem of the relationship between truth-definitions and consistency proofs. 
A) Ibid., pp. 269 and 272. 

5) This belief originates with Tarski 36 (56, VIII, p. 236) who created the method of 

proving consistency through the establishment of a truth definition. Wang 50 and 

Mostowski 51 showed that this belief was not quite justified, as the metatheory T' might 

not be powerful enough to contain a certain strong form of the principle of 
mathematical induction. 
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guarantee the consistency, but then T' must be definitely stronger than T, 

wliich once again destroys the epistemological value of the consistency proof. 

Formal systems with the natural numbers as individuals and containing a 

notation, primitive or defined, tor each such number — we may then as well 

assume that they contain the ordinary numerals ‘O', ‘1’, etc. — are called 
o>consistent *) it there exists no formula 0 free in £ such that 0(0) (i.e. the 

formula resulting from 0 by substituting everywhere ‘0’ for £), 0(1), 0(2), ..., 

and n(V£)0 are theorems, otherwise to-inconsistent. co-consistency clearly 
implies formal consistency but the converse does not hold. 

A formally consistent but co-inconsistent system would not be intuitively 
satisfactory. A mathematical system might well be demonstrably consistent 

but, being co-inconsistent, might still contain certain theorems that would be 
regarded as intuitively false. 

A formalized theory T is called formally complete if there is no proper 

consistent extension of T with the same vocabulary, otherwise formally 

incomplete. If T is a first-order theory (but not only then), its completeness 

implies that, for every sentence 0 of T, either 0 or 10 is valid in T. A class of 
formulae of a given formal system T is called complete as to derivability (as 

to consequences) if from it, for every sentence 0 of this system, either 0 or “10 

is derivable from (is a logical consequence of) this class. It follows that the 

class of extra-logical axioms of a formally complete first-order theory is com¬ 

plete as to derivability, hence also complete as to consequences. 

In addition to the absolute notions of formal consistency and complete¬ 

ness, there are a host of relative notions of consistency and completeness 

applying to formal systems, where the relativization concerns either some 

property of the provable formulae or some intended interpretation. If in a 

formal system all sentences that are true under all possible interpretations, or 

under all intended interpretations, or under all interpretations of a certain 

kind, or under some specific interpretation, are provable, then this system is 

said to be complete with respect to truth under all interpretations, etc. 1 2). 

Of special interest are the two concepts of completeness with respect to truth 

under all interpretations and under all intended interpretations, either of 

which — not properly distinguished until the investigations of Henkin in 

1947 3) — might have been referred to when one was speaking about 

(semantic) completeness of a formal system (without qualification). 

1) The term was introduced in Godel 31. It was later generalized in many different 

directions. 

2) Cf. Kleene 52, p. 131; Wang 53, p. 440. 

3) Cf. Henkin 50; the idea as such probably originates with Skolem. 
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The best known and most important completeness theorem is the Godel 

completeness theorem.1) It asserts that the first-order predicate calculus is 

complete with respect to all interpretations of this calculus and even with 

respect to all interpretations of this calculus in denumerable structures, i.e., 

every sentence of first-order predicate calculus which is true in every 

(denumerable) structure is provable in first-order predicate calculus. Applying 

the Godel completeness theorem to a sentence "10 we find out that if "10 is 

not provable then it is false in some structure. In other words, if no 

contradiction can be derived from 0 then 0 is true in some structure. The 

extended Godel completeness theorem asserts that if 0 is a set of sentences 

consistent as to derivability then <t> has a model (sound interpretation), i.e.,<f> 

is consistent as to consequences. As a consequence of this theorem we know 

that in the first-order predicate calculus a sentence 0 is a logical consequence 

of <Tjust in case that 0 is derivable from<t>1 2). 

The situation is different with regard to higher-order predicate calculi. The 

second-order predicate calculus, for instance, differs from the first-order 

calculus in that it has quantifiable predicate variables. Its rules of interpreta¬ 

tion must provide the predicate variables with suitable ranges of values. In the 

intended (principal) interpretations, the range of each n-ary predicate variable 

is the set of all n-ary relations over the universe U, i.e. the set of all sets of 

ordered /z-tuples of members of U. If the ranges are arbitrary subsets of these 

sets, we get a larger class of interpretations among which those that are 

non-intended and sound are called the secondary> interpretations. It follows 

from Godel’s incompleteness theorem (below, p. 310) that the second-order 

predicate calculus is not complete with respect to truth under all principal 

interpretations, but Henkin 3) succeeded in proving that it is complete with 

respect to truth under all sound interpretations, principal and secondary 4), 
as is the calculus of order co (the simple theory of types). 

Models of second and higher order calculi, which correspond to the 

principal interpretations, are called standard by Henkin, those corresponding 

to any sound interpretation are called general, general models corresponding 

to secondary interpretations are called non-standard. We have then, in these 

terms, that all sentences true in every general model of the second-order 

calculus are provable in it but that this is not the case for all the sentences 

1) Godel 30. 

2) A proof of the extended Godel completeness theorem and a dicussion of its 

consequences is contained in every intermediate or advanced textbook of mathematical 

logic; e.g., Mendelson 64, A. Robinson 63, or Shoenfield 67. 

3) Henkin 50. 

4) See Church 56, § 54. 
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which are true in every standard model (of which there are of course 
more)1). 

Among the many relative consistency notions, let us mention only 

consistency with respect to satisfiability under some interpretation with a 

non-empty universe, known simply as (semantical) consistency. A formal 

system is then semantically consistent if its set of provable formulae is 

satistiable under some interpretation with a non-empty universe, in short, if it 

has a model. It follows from the extended Godel completeness theorem that 

if a tirst-order theory is formally consistent it has a model. Since the converse 

of this is rather obvious, we have the important result that for such theories 

semantical and formal consistency coincide, hence that the in general 

non-finitary notion of semantical consistency is replaceable, for such theories, 

by the linitary notion of formal consistency. The proof Godel himself gave of 

his theorem is, however, non-constructive. But Hilbert and Bernays were able 

to prove by finitary means a somewhat weaker completeness theorem 2). 

Formal systems fulfilling the conditions mentioned above in connection 

with the definition of co-consistency are called co-complete if, for every 

formula 0 free in £, V£0 is a theorem whenever 0(0), 0(1), 0(2),... are 
theorems, otherwise co-incomplete 3). 

A formal system is called categorical (or monomorphic) if it has a model 

and all its models are isomorphic with each other, i.e. if there exists a 

one-to-one correspondence between the universes of any two models such 

that all relations and operations are preserved 4). 

It can easily be proved that every categorical set of axioms is complete as 

to consequences. In fact, were it not so, there would exist a sentence 0 in the 

1) For the whole issue of intended interpretations and standard models, see the 

interesting paper Kemeny 56, but the reader should beware of divergencies in the 

terminology. 

2) See Hilbert-Bernays 34—3911, pp. 252—253; Kleene 52, pp. 395-397. 

3) The concept of co-completeness — for a larger class of formal systems — was 

introduced in Tarski 33. 

A good semi-formal discussion of various notions of completeness is to be found in 

Copi 54. But the reader should notice that Copi uses ‘model’ as a synonym for 

‘non-empty universe’. Cf. also De Sua 56. 

4) For a rigorous definition, see, e.g., Church 56, pp. 327-330 or Tarski 56, X, 

p. 390. The first formulations of the idea of categoricalness are due to Huntington and 

Veblen (the latter of which was the first to use the term, following a suggestion by the 

philosopher John Dewey), though it was known in essence already to Dedekind and 

Cantor; cf. Fraenkel 28, pp. 341 ff. A comparison of the statements made there — more 

than forty years ago — with those contained in the present book, with regard to categori¬ 

calness of arithmetic and other aspects of axiomatics, should be quite revealing. 
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theory under discussion that would be true in some models of the axiom set 

and false in others; therefore not all models would be isomorphic. 

On the other hand, there exist sets of axioms which are complete as to 

consequences, or even as to derivability, and non-categorical. Of this kind is, 

for instance, the elementary theory of succession in the natural numbers, i.e. 

the first-order predicate calculus with the Peano axioms but without the 

recursive “definitions” of addition and multiplication as its extra-logical 

axioms 1). 

For some time it was thought that the notion of (absolute) categoricalness 

would provide the basis for a significant dichotomy of all kinds of theories, 

separating one-model theories (see below, p. 343) such as ordinary arithmetic 

from many-model theories such as group theory. However, when it was 

proved that no consistent First-order theory which possesses an infinite model 

is categorical, if only for the simple reason that each such theory possesses 

models of arbitrary infinite power 2), absolute categoricalness lost its signifi¬ 

cance with regard to such theories. Weaker notions of relative categoricalness 

were therefore introduced and, in the last years, extensively studied. 

We wish to digress here and say a few words concerning arithmetic. By 

Peano's (or elementary) number theory we mean the first-order theory with 

equality whose extralogical symbols are 0 ,' (for the successor operation), + 

and • , and whose axioms are 

(a) a f 0 . 

(b )x +x=y . 

(c) ip(0) a Vx(ip(x)->- ip(x'))-> Vxg>(x), for every formula <,p(x) of that language 

(this is the axiom-schema of induction). 

(d) x + 0 = 0 A x +y' = (x + y)'. 

(e) x -0 = 0 A x- y' = x-y + x . 

By second-order number theory (or arithmetic) we mean the second-order 

theory with the same extralogical symbols and with the axioms (a), (b), (d), 
(e) and the following strong induction axiom: 

(c') p(0) A Vx(p(x)->-p(x')) Vxp(x), where p is a predicate variable. 

By n-th order number theory, for n> 2, we mean the n-th order theory with 

the same extralogical symbols and the same axioms as second-order number 
theory. 

Peano’s original axiom system, first formulated in 1889, can be symbol- 

1) See, e.g., Wang 53, p. 422. 

2) For theories with an at most denumerable vocabulary, this result was obtained by 

Tarski, see Skolem 34, p. 161. It was later proved by A. Robinson and Henkin, 

independently, under a less restrictive assumption. A still stronger result is given in 
Tarski-Vaught 57, pp. 92 ff. 
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ized within first-order predicate calculus with predicate variables. In Peano’s 

original system the successor operation is regarded as primitive, whereas the 

operations of addition and multiplication are introduced by definitions, 

through the recursion equations in (d) and (e) above. We know now that this 

way of introducing addition and multiplication is legitimate only within an 

appropriate predicate calculus of at least second order; in the framework of 

tirst-order predicate calculus these equations are taken to be the additional 
axioms (d) and (e). 

Peano himself acknowledges his debt to Dedekind 1) whose characteriza¬ 

tion of the natural numbers, however, is not quite axiomatic in the modern 

sense. Dedekind, in his turn, recognizes a kinship to Frege’s work 2), though 

Frege himself tended rather to stress the differences. A definition of addition 

and multiplication through informally stated recursion equations was already 

given by Peirce in 1881 but was not known to either Frege, Dedekind or 
Peano. 3). 

On the other hand, since Skolem was the first to point out the limitations 

ot the axiomatic method in characterizing within a first-order calculus the set 

of all true arithmetical statements 4), the term ‘Skolemf’s) arithmetic’ would 

serve as a useful abbreviation for those systems of non-axiomatic first-order 

arithmetic whose notion of validity is defined as truth under the ordinary 
interpretation. 

Skolem’s arithmetic (and, a fortiori, Peano’s number theory) is not 

categorical; it has been shown that this system possesses also models whose 

universe contains additional entities 5), besides the “standard” natural num¬ 

bers, i.e. the number 0 and the numbers obtained from it by applying a finite 

number of times the successor operation. The customary arguments for the 

categoricalness of the arithmetic of natural numbers do not prove the 

absolute categoricalness of first-order arithmetic. What they do prove is that 

1) See, e.g., Peano 03 and Dedekind 1888. 

2) He refers especially to Frege 1884. 

3) These historical remarks are based on Wang 57. 

4) Skolem 34. 

5) See Skolem 34 and 55; the second paper contains simplifications of the 

well-known proofs and constructions presented in the first one as well as outlines for the 

construction of non-standard models for various fragments of elementary arithmetic. In 

Henkin 50, p. 91, the result is mentioned that every non-standard denumerable model 

for the Peano axioms has the order type to + (*to + to)p where *ct> + to is the type of the 

integers and p the type of the rationals, both in their natural order. Malcev 36 had 

already proved that elementary arithmetic has models of any given infinite cardinal. 
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this system is categorical relative to the standard natural numbers (which is 

rather trivial). All models of elementary arithmetic whose universe contains 

only these numbers are indeed isomorphic 1). 

One could try to impose this limitation to standard numbers by adding an axiom of 

restriction (of. Chapter II, p. 113) to Peano’s arithmetic, say of the form 

Vx[x = 0 V x = 0' V x = 0" V ...]. 

But this expression is clearly, and unfortunately, of infinite length, hence not legitimate 

within the framework of a first-order theory. And there is no way of reformulating it 

legitimately. 

The absolute non-categoricalness of the usual set theories (in which 

number theory can be developed) follows immediately from their incomplete¬ 

ness (see Godels’s incompleteness theorem, below, p. 310). It is also a direct 

consequence of the Lowenheim-Skolem theorem (§ 5) which guarantees the 

existence of models with denumerable universes, whereas the intended 

models of these set theories have non-denumerable universes. There arises 

therefore the highly interesting question whether these theories are categori¬ 

cal in some relativized sense, e.g. whether they are categorical relative to their 

natural numbers or relative to their ordinal numbers 2). 

Various notions of relative categoricalness have been developed, of which 

categoricalness relative to the natural numbers of the theory is just an 

example. More generally, one says that a formal system S is categorical 

relative to its subsystem S' if and only if any two models of S that are 

extensions of two isomorphic models of S'are isomorphic, and one says that 

S is categorical relative to a set of predicates definable in it if and and only if 

any two models of S in which the predicates of this set are isomorphically 

interpreted are isomorphic. (Categoricalness relative to the natural numbers, 

for instance, is categoricalness relative to the set of three predicates inter¬ 

preted as denoting the property of being a natural number, of being equal to 

zero, and the successor relation, respectively.) 

A related notion is that of categoricalness in a given cardinal, introduced 

independently by Vaught and Los3). A formal system is called categorical in 

1) Wang 53, pp. 422 and 425. 

2) Ibid., p. 425 and Wang 55, pp. 69—70; cf. also Wang 53a. 

3) For a detailed discussion see Shoenfield 67, § 5.6. 
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a given cardinal if any two ot its models whose universes are of this cardinality 

are isomorphic. Systems which are absolutely non-categorical may well be 

categorical in some cardinal, in many cardinals, even in all cardinals. 

First-order theories (with countable vocabulary) categorical in one uncount¬ 

able cardinal are categorical in every uncountable cardinal1). 

One says that an axiom, within a formal system, is independent as to 
derivability (as to consequences) if it is not derivable from (not a conse¬ 

quence of) the set of the remaining axioms. It follows immediately that an 

axiom is independent as to derivability if it is independent as to consequences 

and that an axiom is independent as to consequences if and only if the set of 

the remaining axioms possesses a model in which this axiom is false 2). 

Establishing the independence of an axiom through exhibition of an indepen¬ 

dence example is, ot course, the classical method that was used in effect 

already by Beltrami and Klein in their investigation on the consistency of 

hyperbolic geometry relative to Euclidean geometry and later by Peano and 

Hilbert in their studies in the axiomatics of arithmetic and geometry, 
respectively. 

It follows immediately from the definition that an axiom <p is independent, 

within a first-order theory T, if and only if the theory T' resulting from T 

through replacement of 0 withH0 is consistent. One says, in this case, that 10 

is compatible (or consistent) with the remaining axioms. 

A set of axioms is called irredundant if each of its axioms is independent, 

otherwise redundant. A generation ago, there was a great deal of discussion 

around the importance of irredundancy in the evaluation of a formal system. 

Though there are even today some axiomaticians who regard irredundancy as 

1) Morley 65. This is generalized to first-order theories with uncountable vocabulary 

by Shelah 70. 

Section 2 of Tarski 56, X (pp. 308—319) contains important remarks on various 

other aspects of the notion of categoricalness and its application to scientific theories in 

general. Cf. also the closing remarks of XIII, pp. 390 ff, dealing, among other things, 

with the notion of non-ramifiability, another explicatum of the intuitive notion of 

completeness, and its relation to categoricalness and formal completeness. In this essay, 

originally published in 1935, the axiomatically built arithmetic of natural numbers is 

regarded as categorical, but Tarski refers there not to A® but to A00. 

The notion of notational (or expressive) completeness with respect to a given subject 

matter deserves at least to be mentioned. Its meaning should be clear. As an illustration, 

let us only mention that the ordinary propositional calculus, based upon lrT and as 

the only connectives, is notationally complete with respect to truth-functions, in short: 

is truth-functionally complete, since it can easily be shown that all truth-functions are 

expressible on this basis. This result, together with a proof of the formal completeness 

(and decidability) of the propositional calculus, was first obtained in Post 21. 

2) Cf. Church 56, p. 328. 
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a conditio sine qua non for a set of sentences to serve as a set of axioms, the 

consensus of most authors is that irredundancy as such has at most some 

aesthetic and didactic value, but that independence investigations and proofs 

are apt to provide important insights into the structure and scope of a given 

theory. 
A rule of inference is called independent within a theory T if the set of 

theorems of T includes the set of theorems of the theory T', resulting from T 

through omission of this rule, as a proper part. 
In view of the far-reaching correspondence existing within axiomatic 

systems between axioms and (proper) theorems on the one hand, primitive 

and defined terms on the other hand, investigations in the irredundancy of 

the set of axioms of such a system are often supplemented by studies in the 

irredundancy of the primitive vocabulary, understood as the indefinability of 

any primitive term (with respect to the remaining primitive symbols) 1). 

§ 5. THE SKOLEM-LOWENHEIM THEOREM; SKOLEM’S PARADOX 

One of the central theorems of logic, which is also of prime importance in 

applications of logic to set theory, is the Skolem-Lowenheim theorem 2). We 

shall present here a version of this theorem which, though not the strongest 

there is, is sufficient for our purposes. 
Suppose 91 is a structure which consists of an infinite set A and a finite or 

denumerable number of relations R lr/?2.— on For every infinite cardinal b 
which is less than the cardinal \A I of A there is a subset B of A of cardinality b 

and which has the following property. Let 33 be the structure which consists 

of the set B and of the relations R\,R'2,... which are just the relations 

RyJZ 2,... ^ restricted to the set B. For every sentence ip of the first-order 

language which corresponds to 31, i.e., whose extra-logical symbols are just 

relation-symbols which refer to the relations R lv/?2,... of 31, is true in 33 if 

and only if y is true in 31. Therefore, if T is a first-order theory and 31 is a 

model of T, then 33, too, is a model of T. 

By the Godel completeness theorem, if ZF is consistent then it has a 

denumerable model, i.e., there is a structure 31 which consists of a denumer¬ 

able set A and a binary relation E on A such that 31 is a model for ZF with £ 

interpreted as.the binary relation E. If a member c of ,4 stands in the relation 

1) For a recent investigation along this line, see Beth 53. Cf. also A. Robinson 56, 57, 

and Craig 57. 

2) Tarski-Vaught 57, Cohen 66,1, § 5, Shoenfield 67, Ch. 5. 
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E to a member b of A we shall say, for the sake of convenience, that c is a 

member ot b in 2f (even though c is not necessarily a member of b in the 

“real world"). Accordingly, we shall speak of b as if it were the set (c| cEb } *). 

Similarly, we shall also denote by co the only member x of A which satisfies 

in 21 the formula “x is the least infinite ordinal", etc. It is a theorem of ZF 

that there are uncountable sets, thus the set A must have a member a such 

that in the structure 21 it is true that a is not denumerable, i.e., a has uncount- 

ably many members in 21, while all the members b of a in 21 are members of 

A, which is a denumerable set. This is what is known asSkolem’s paradox 1 2). 

It is easy to see that Skolem’s paradox is no paradox at all. When we say 

that a is uncountable in 21 we mean that there is no one-one function fin A 

which maps a on co but this does not deny the existence of a one-one 

function mapping a on co which does not belong to A. Let us consider also 

another example. Since there are countable ordinals there are well-order¬ 

ings of co of fs i different order types; however, only countable many of these 

well-orderings can be in 21 since A is a countable set. Thus the cardinal Nj of 

21 is really a countable ordinal. This phenomenon of the uncountable 

cardinals of 21 being countable in the universe is called the relativeness of the 

cardinals. But not only the cardinals are relative, many other notions of set 

theory are relative, too. Even the notion of a finite number is relative, since 

there are also non-standard models 21 of ZF which contain members x which 

satisfy the formula “x is a finite number" in 21, but which do not correspond 

to any finite number3). 

This relativeness of the cardinals was very disturbing to Skolem and von 

Neumann. 4) Von Neumann claimed that this relativeness brands the notions 

of set theory with the mark of unreality and therefore serves as an argument 

in favor of intuitionism. How can one, for example, trust non-denumerable 

cardinals when it may turn out that the structure one is speaking about is 

such that all the sets in it are really finite or countable? 

One should recall that in the 1920’s the Godel completeness theorem had 

not yet been obtained and mathematicians were not yet aware of all the 

1) If one assumes the existence of a well-founded model of ZF, which is a somewhat 

stronger assumption than the mere consistency of ZF, one can prove that there is a 

denumerable model A of ZF in which, for every b&a, b is indeed [c\cEa] (i.e., A is 

transitive in the sense of p. 92 and E is the restriction of the membership relation <E to 

A); Mostowski 49, Shepherdson 51-53 I, § 1.5, or cf. Cohen 66, II, § § 7,8. 

2) Skolem 23. The Godel completeness theorem had not yet been discovered at that 

time; Skolem obtained this “paradox” by means of the Skolem-Lowenheim theorem. 

3) See p. 299 and footnote 5 on that page. 

4) Skolem 23 and 29, von Neumann 25. 
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aspects of the non-categoricity of the first-order theories. Also, at that time 

the axiom systems used by mathematicians were not formulated as first-order 

theories, they were formulated within informal set theory. Since these were 

essentially second-order theories one had indeed categorical axiom systems 

for natural number theory, for real number theory and for geometry. Since 

such an informal set theory is not available for an axiom system of set theory 

(if one wants to avoid vicious circles), one has to use for an axiomatization of 

set theory only first-order predicate calculus, and since first-order theories are 

not categorical, the notions ot set theory are relative. As a matter of fact, the 

absoluteness of the notions of number theory and geometry is to some extent 

deceptive. Those notions are based on set-theoretical notions, and since the 

latter turn out to be relative, the former are relative, too1). 

What are the philosophical projections of the relativeness of the notions ot 

set theory? To a Platonist the notions of set theory are not really relative. 

From his point of view, the existence of sets and the truth of statements 

about.sets are not determined by an axiom system. It goes the other way - 

the axioms are set up so as to provide true information about the existing 

sets.2) The notions of set theory become relative only when applied to 

models of set theory which consist of a class A and a binary relation on it, 

but these models are not the real thing. To a Platonist the notions of set 

theory are absolute almost to the same extent to which Fermat’s last theorem 

is regarded as absolute by most mathematicians, in spite of the fact that there 

are non-standard models for number theory. On the other hand, a steadfast 

formalist is not bothered at all by the relativeness of the notions of set 

theory. From his point of view it is only the statements and the proofs of set 

theory that really count, not the vague objects and relations which they are 

supposed to denote. It is only those whose opinions lie in between to whom 

the relativeness of the notions of set theory is philosophically significant. 

Those are the people who believe that set-theoretical concepts do indeed 

exist, however not in an absolute fashion which is independent of the axioms, 

but rather as a consequence of the axioms. In the time that had passed since 

the discovery of the relativeness of the notions of set theory, even those 

people who hold the last mentioned point of view have learned to live with 

the fact that First-order axiom systems do not determine structures uniquely, 

and are no longer disturbed by it, no more than, say, by Godel’s incomplete- 

1) von Neumann 25. For treatments of Skolem’s paradox additional to those already 

mentioned, see Skolem 41 (and the vigorous discussion following it), Kreisel 50, Kleene 

52, p. 426, Myhill 53, and Wang 53. 

2) See, e.g., Kreisel-Krivine 67, Appendix I1A, and Shoenfield 67, § 9.1. 
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ness theorem which asserts that one cannot derive all the number-theoretic 

truths from a recursive set of axioms (p.310 below). 

§ 6. DECIDABILITY AND RECURSIVENESS; ARITHMET1ZATION 

OF SYNTAX 

The last property of formalized theories to which we shall turn now is 

decidability. The intuitive meaning of this notion is clear enough: a formal¬ 

ized theory T is decidable if there exists an effective, uniform method — a 

so-called decision method - of determining whether a given sentence, 

formulated in the vocabulary of T, is valid in T, and undecidable otherwise. 
The problem whether there exists a decision method for T, in other words, 

whether T is decidable, is then called the decision problem for T. If T is a 

formal system, we have instead of the general decision problem for validity 

the more specific decision problem for provability. One occasionally discusses 

also decision methods for other notions, such as formulahood, axiomhood, 

etc. 

Decidability is clearly a highly desirable property of theories. In a 

decidable theory, every problem that can at all be formulated in its 

vocabulary has an answer that can be obtained by mechanically following a 

fixed recipe or, to use the terminology of computing machinery, a routine. It 

was hoped for a time — and it was the task of the Hilbert program to realize 

this hope — that the formal system into which classical arithmetic and analysis 

could be systematized and adequately axiomatized would be decidable as to 

provability as well as (formally and semantically) complete and categorical. 

The Hilbert school believed, in addition, that all this, together of course with 

consistency, could be proved by finitary metamathematical methods. 

The pursuit of this aim led to a host of important insights, with regard to 

both the various interesting general connections between the mentioned 
metatheoretical notions and the consistency, completeness, categoricalness, 

and decidability of various sub-theories of the envisaged total logico-mathe- 

matical theory. Before we proceed to mention some of the results of these 

insights, let us briefly describe the technique of the arithmetization of syntax 

that has allowed us to deal with all these matters by a unified method whose 

major tool was the theory of recursive functions, and at the same time 

enabled us to replace the somewhat vague notions of effective and semi-effec¬ 

tive procedures by the precisely defined concepts of (general) recursiveness 

and recursive enumerability. 
We can say, with considerable justification, that the axiomatic approach to 
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the foundations of set theory eliminates the antinomies: the logical ones, 

because of the limitations which the axiom system imposed upon the 

existence proofs, the semantical ones, because those semantical terms like 

‘true’, ‘definable’, ‘denotes’, etc., that occupied the central place in their 

derivation could not be reproduced within the framework of these systems. 

But whereas the first contention seems to be reasonably well established, the 

second one was left unjustified, hoping that the reader would agree that the 

mentioned semantical terms could not well be expressed on the basis of a 

vocabulary that included, in addition to the logical terms of the first-order 

predicate calculus, just the symbol of set membership. 

As a matter of fact, however, this second contention is far from being 

obviously correct. Most set theories developed (or outlined) in previous 

chapters of this book are strong enough, in spite of their poor primitive 

notation, for having all, or at least certain large parts, of classical arithmetic 

and analysis developed within them. Could not a method be found of 

developing within them their own syntax and semantics? And would then not 

the semantical antinomies be once more reproducible? 

This was the question that Tarski and Godel, independently, put them¬ 

selves in the late twenties. The answer at which they arrived was highly 

surprising and led to further unexpected and interesting results. The story has 
been often told, in all degrees of formality and rigor, and we shall be very 
brief. 

For purely technical reasons of expediency, let us consider a formalization 

of ZF which is somewhat different from the one given above pp. 283 ff. 

According to the new rules of formation, there are just 10 primitive symbols: 

=,E,x, !,!,->,<*, V, (, ). 

(It is very easy to see that this primitive notation is sufficient. There is no 

need to show this in detail. Nor shall we indicate the changes in the rules of 

transformation required for the adaptation as they, too, would be purely 

mechanical.) Let the numbers 0 through 9 be assigned to these symbols, say in 

the given order, and let to every expression (string of symbols) which does 

not begin with ‘=’ be assigned as its Godel number the number expressed by 

the corresponding string of digits. The assignment is clearly one-to-one. 

The Godel number of ‘x,ex|||’ would be, for instance, 2312333, and the Axiom of 
Power-Set, whose unabbreviated formulation would now be 

(Vx) C1(VX|) n((V.X||) ((X|| £EX|) ** ((VX|||) ((X|||eX||)-^(X|||GX))))))) , 

will have 

8729848723984887233988233123968872333988233312339582333129999999 

assigned as its Godel number. 
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The set ot variables is represented through this device by a certain set of 

integers, viz. the set {2, 23, 233,...}; similarly for the set of atomic formulae 

in general, of axioms etc. The corresponding sets of integers are easily 
recursively defined. 

The number assigned to a sequence of formulae, such as a derivation 

composed of the formulae 0j, 02>—» 0„ in order, is II? = where pi is the 

/-th prime number and gj the Godel number of 0;-. Thereby the syntactical 

notions of derivation, proof, etc. become arithmetically representable. Notice 

that ‘0 is a theorem’ is represented by the arithmetical sentence ‘there exists a 

number x which is the Godel number of a proof such that the Godel number 

of 0 is the power of the largest prime number in the decomposition of x into 
a product of prime number powers’ 1). 

We recall that the notion of proof in a logistic system is effective in the 

sense that there exists a mechanical procedure of testing whether a given 

series of formulae is or is not a proof, but that the notion of theoremhood is 

in general only semi-effective in the sense that there exists in general no 

mechanical procedure of testing whether a given formula is a theorem, though 

there exists a mechanical procedure of generating all theorems, one after the 

other, such that if the formula under investigation is a theorem, it will, after 

finitely many steps, appear in this list. (But there does not in general exist a 

mechanical procedure that would simultaneously grind out all non-theorems 

one after the other). 

This characterization of effectiveness and semi-effectiveness suffers from 

the defect that the notion of mechanical procedure which plays a decisive 

role in it is so far left in a state of unanalyzed vagueness. Many different, 

partly or wholly independent, attempts were made to explicate it and, 

interestingly enough, almost all of the strict notions brought forward in this 

attempt have proved to be equivalent 2). This being so, we can restrict 

1) The most extensive treatments of Godel representation and the arithmetization of 

syntax are to be found, in addition to Godel 31 itself, in Hilbert-Bernays 34-39, Carnap 

37, Kleene 52, Ladriere 57, and Shoenfleld 67. A simple account is to be found in 

Wilder 52. 

2) More specifically, the following notions were proved to be equivalent: (1) general 

recursiveness, introduced in Herbrand 31 and Godel 34 in generalization of the notion of 

primitive recursiveness used in Godel 31, pp. 179—180; (2) \-definability, introduced in 

Church 36, pp. 346 ff; (3) computability by appropriate machines in Turing 36 and Post 

36; (4) reckonability in Godel 36; (5) ‘regelrecht auswertbar’ (“which can be evaluated 

according to rule”) in Hilbert-Bernays 34—3911, pp. 392 ff; (6) binormality in Post 43; 

(7) normal algorithm in Markov 54 (and earlier publications dating back to 1947). The 

equivalence of (1) and (2) was proved in Church 36 and Kleene 36, that of (2) and (3) in 

Turing 37; see Kleene 52, pp. 320-321. 
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ourselves here to mentioning the most intuitive explication of the notion of 

effective procedure provided independently, and with some variation, by 

Turing and Post in 1936 *) in respect of numerical computation: there exists 

an effective procedure of computing the value of a function from (n-tuples 

of) natural numbers to natural numbers, if a machine of a certain specific 

design (of a somewhat idealized type, as its “memory” is assumed to be 

infinite or at least infinitely extensible) can be programmed to perform this 

computation for any arguments. For an exact description of these machines 

— the so-called Turing machines — we refer to the literature 1 2). We can now 

define: A given n-ary number-theoretical function / is called Turing-comput¬ 

able if there exists a Turing machine that computes its value for any «-tuple 

for which it is defined. 
The thesis that Turing-computability (or general recursiveness, or any 

other of the equivalent notions mentioned above, p.307, footnote 2) is an 

adequate explicatum for the pre-systematic notion of effective calculability is 

known as Church ’s thesis 3). In view of ever recurring misunderstandings (and 

misleading formulations in terms of ‘is identical with’ instead of ‘is an 
adequate explicatum of), it must be stressed that a thesis of this kind, 

claiming that a notion rigorously defined with respect to some formalized 

theory adequately explicates some intuitive notion, is, by definition, not 

susceptible to exact proof. The evidence for the correctness of Church’s thesis 

is nevertheless overwhelming. In addition to the fact already mentioned that 

almost all explications proposed so far for effective calculability have proved 

to be equivalent, every function acknowledged to be effectively calculable, 

for which general recursiveness has at all been investigated, has indeed been 

found to be so. Since a number-theoretical property (or relation) is effective¬ 

ly decidable if and only if its characteristic function - i.e. the function whose 

value for a given n-tuple of natural numbers as argument is 0 if this property 

(or relation) holds for this tuple, and 1 otherwise - is effectively calculable, 

we see that the notion ot effective decidability of number-theoretical 

properties and relations, hence of number-theoretical predicates, is adequate¬ 

ly explicated by general recursiveness. Since all syntactical (metamathemati- 

cal) predicates are mapped by arithmetization into number-theoretical predi¬ 

cates, we realize that all syntactic questions such as whether a given formal 

system is decidable are mirrored into corresponding number-theoretical 

1) Turing 36 and Post 36. 

2) The most readable descriptions are given in Peter 51, Kleene 52, and Davis 58. 

3) This thesis was first formulated in Church 36. Its best exposition and justification 
is in Kleene 52, pp. 300 ff. 
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questions such as whether a certain number-theoretical property is general 
recursive. 

A set S of natural numbers is called general recursive if the property of 

being a member ot S is general recursive, and recursively enumerable if it can 

be enumerated by a general recursive function /, i.e. if there exists a general 

recursive / such that the sequence of values /(0), /( 1), /(2),... enumerates 

(allowing repetitions) the members of S. A set of metamathematical objects 

(expressions, formulae, axioms, proofs, etc.) is called general recursive 

{recursively enumerable) if the set of corresponding Godel numbers is so. It 

can be shown that a general recursive non-empty set of natural numbers is 

recursively enumerable and that a set ot natural numbers is general recursive 

if and only if it and its complement are recursively enumerable. An example 

of a set which is recursively enumerable but not general recursive can be 
ettectively constructed. That there exist also sets which are not even 

recursively enumerable follows already from a simple consideration of 

cardinalities: the set of all recursively enumerable sets is only denumerable 1). 

It follows from the definition of ‘logistic system’ that the expressions of a 

logistic system admit an effective Godel numbering and that their properties 

and relations and the operations upon them are all recursively representable. 

More specifically, the axioms of a logistic system form a general recursive set, 

and the rules of inference determine general recursive derivability relations. 

The set of theorems of a logistic system is therefore recursively enumerable. 

The original Hilbert program amounts, then, in these terms to the 

construction of a consistent, complete, decidable, and categorical logistic 

system whose set of provable sentences would coincide with the set of 

intuitively true mathematical statements and such that it could be shown, via 

arithmetization, in recursive arithmetic, i.e. in that part of arithmetic which 

contains general recursive functions, properties, and relations exclusively, that 

the system possesses all these desirable properties. 

1) For all these results and in general for an admirable treatment of the theory of 

recursive number-theoretic functions, we refer to Pe'ter 51, Kleene 52, Davis 58, and 

Rogers 67. During the 48 years of its existence (we are probably entitled to date its 

origin with Skolem 23a), this theory has developed into a full-fledged and constantly 

expanding new branch of mathematics. The related theory of algorithms has been mostly 

developed by A.A. Markov and other Russian authors and has so far received its 

authoritative presentation in Markov 54 and Curry 63. 
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§ 7. THE LIMITATIVE THEOREMS OF GODEL, TARSKI, CHURCH 

AND THEIR GENERALIZATIONS 

That the attempt to carry out the Hilbert program, as formulated in the 

preceding paragraph, would run into troubles was not too surprising: any 

logistic system strong enough to have all of classical mathematics developed 

in it would certainly contain all of classical number theory, hence presumably 

all of its own syntax and semantics. But does this not entail that the semantic 

antinomies, of the Liar and Richard types, could be reestablished within such 

a system? 

As already mentioned above, Godel and Tarski asked themselves precisely 

this question. The partial answer at which Godel arrived is 

GODEL’S (INCOMPLETENESS) THEOREM: ') Every logistic system 

rich enough to contain a formalization of recursive arithmetic is either 

oinconsistent or else contains an undecidable (though true) formula, i.e. a 

formula that can be neither proved nor refuted with the means of this system 

(though it can be shown to be true with the help of additional means outside 

of the system); in other words, any co-consistent system of this kind is 

(syntactically and semantically) incomplete. 

Godel established his theorem constructively, for a given logistic system 

fulfilling the mentioned condition, the Godelian undecidable sentence can 

actually, time and patience allowing, be written down in primitive notation. 

The truth of this undecidable sentence follows from the fact that, suitably 

interpreted, it states that this very sentence itself (more precisely, the 

sentence with a certain Godel number — which then turns out to be the 

Godel number of the sentence by which this statement is made) is not 

provable (in the given system) 1 2). 

It follows immediately from Godel’s theorem that Skolem’s arithmetic is 

not axiomatizable. 

This, then, is the revenge of the Liar’s ghost: the attempt to arrive at an 

antinomy through the construction of a sentence within formalized arithme¬ 

tic that (intuitively) states that it itself is non-provable does not meet with 

success, but only because — contrary to expectation and hope — a sentence 

non-provable within such a formal system is not thereby necessarily refutable, 

1) Godel 31. 

2) There are some authors who are still unable to swallow the fact that there should 

be a sentence which is not provable - in some object-language - but can be shown to be 

true - in its metalanguage. For one such discussion, see, e.g., Goddard 58; cf. also 
Wittgenstein 56, pp. 50-54. 
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there being sentences which are neither. That completeness’ price is inconsis¬ 

tency, for logistic systems rich enough to contain recursive arithmetic, 

including all set theories worth their name formalized as such systems, is a 

result which was doubly unexpected: first, for its content, second, for the 
fact that it could be proved according to standards of rigor which were the 

highest known, higher even than those customarily used in mathematical 

proofs. With its philosophical implications we shall deal later on. 

Since there exist many excellent descriptions of the background of Godel’s theorem, 
its methods, generalizations and ramifications, ranging from the monographs of Ladrifere 
57 — containing, among other things, an almost exhaustive bibliography up to 1955 — 
and Mostowski 52 — unifying Godel’s results with those obtained by Tarski to be 
mentioned shortly - through Kleene’s exceedingly rigorous treatment 52 and the 
detailed and painstaking description given by Hilbert-Bernays 34—39, to the semi- 
formal exposition by Rosser 39 and the informal, but still responsible and highly readable 
accounts by Nagel and Newman 58 and Findlay 42 — not to mention the many 
shorter outlines of which the best is probably still Godel’s own informal introduction to 
his 1931 paper - we did not deem it appropriate to go here into further details. Let us 
only mention that though Godel’s undecidable sentences remind us strongly of the Liar, 
the argument by which he arrived at his discoveries is reminiscent rather of Richard’s 
antinomy and is, like it, decisively based upon a diagonalization processx). 

Godel’s theorem holds for co-consistent logistic systems. How much can 

his result be generalized? Rosser 2) showed that co-consistency can be 

replaced by the weaker property of simple consistency. Other generalizations 

are due to Tarski and Mostowski 3). They are based on the notion of 

(semantic) definability introduced by Tarski 4), later generalized by 

Mostowski 5) and finally still more generalized by Tarski himself6). We shall 

present here the latest version. 
Let A be any formalized theory whose logical basis includes at least the 

first-order predicate calculus with equality and in which an infinite sequence 

of terms A0, Al5An,... containing no variables is available. A subset P of 

the set N of all natural numbers is said to be definable in A if there is a for¬ 

mula 0 of A, free in some fixed variable £, such that0(A„) — i.e. the sentence 

arising from 0 through replacing £ everywhere by A„ - is valid in A whenever 

nEP and I0(A„) is valid whenever nEN and ntfLP. In a similar way, defin¬ 

ability is defined for relations and functions. 

1) See, e.g., Mostowski 52, pp. 7 ff. Wang 55b shows how each semantical antinomy 

can be made to generate undecidable sentences. 

2) Rosser 36a. 
3) See, especially, Tarski 39, Mostowski 52, pp. 97 ff, and Ladriere 57, pp. 335 ff. 
4) See Tarski 56, VI (the enlarged English translation of Tarski 31). 

5) See Mostowkski 52, pp. 74-75. 
6) Tarski-Mostowski-Robinson 53, pp. 44 ff. 
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Let now G(0) be the Godel number of 0, according to some Godel num¬ 

bering which may be left here undetermined, and let En be that expression of 

A whose Godel number is n. Let D (the diagonal function) be the function 

defined by 

D(n) =Df G(En{ An)) 

(the value of the diagonal function for the argument n is the Godel number of 

the expression obtained from the expression whose Godel number is n by 

replacing everywhere the variable £ by the term Aw; if En does not contain £, 

En(An) is, of course, just En itself), and let, finally, V be the set of Godel 

numbers of all valid sentences of A. The following result can then be 

established: 

TARSKI’S UNDEFINABILITY THEOREM: If the theory A (fulfilling the 

above-mentioned conditions) is consistent, then the diagonal function D and 

the set Vof all valid sentences (of A) are not both definable in A. 

From this theorem it follows immediately that if in a consistent theory the 

diagonalizing function is definable, its set of valid sentences is not definable. 

Since D can be shown to be general recursive, no theory strong enough to 

contain recursive number theory may contain a definition for its V. We 

obtain then, finally, as a special case of Tarski’s undefinability theorem 

replacing, for historical reasons, ‘validity’ by ‘truth’ — 

TARSKI’S TRUTH THEOREM: ') The notion of truth (the set of all true 

sentences, the truth-set) of a consistent formalized system containing recur¬ 

sive number theory is not definable in this system 1 2). 

Whereas Godel’s theorem shows that the deductive power of any given 

sufficiently rich system is intrinsically limited, Tarski’s theorem discloses the 

limitations in the expressive power of such systems. Paraphrasing a colorful 

dictum by Quine, we may say that the ontology bitten off in such systems is 

larger than they are able to chew. This is not as surprising as it might look at 

the first moment. After all, the set of definable properties and relations is 

only denumerable — since the set of defining formulae is so, of course — 

whereas there are nondenumerably many subsets of the set of all natural 

numbers. What was not quite expected is that the set of the Godel numbers 

of all true sentences of a given consistent logistic system should inevitably be 

among those sets for which no defining expression exists in this system. 

Let us mention that Godel’s theorem has been shown to hold also for 

1) See Tarski 56, p. 247; the footnote there tells the story. Cf. Quine 52. 

2) An extremely elegant, simple and direct proof of Tarski’s theorem is given in 
Smullyan 57. 
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certain formal systems which are not logistic systems in the sense that they 

allow transfinite rules of inference such as the rule of infinite induction 1). In 

what sense systems which transcend the Godel-Tarski limitations, so-called 

non-Godelian systems, can be regarded as satisfactory foundational systems 

of mathematics is a question that deserves most careful investigation. Wang’s 
system 2, treated in Chapter III, § 6, is admittedly not a logistic system. 

Other systems proposed in this connection either contain no proper negation 

sign, such as certain systems constructed by Fitch and Myhill 2), or no proper 

universal quantifier, such as systems by Church and Myhill 3), or no proper 

sign of material implication, such as a system by Church 4). The exact scope 

and efficiency of such heterodox systems still remains to be explored 5). 

Just as Godel’s theorem showed that the (semantical) notion of arithmeti¬ 

cal, hence mathematical, truth could not be exhaustively mirrored by the 

(syntactical) notion of provability within one logistic system, thereby 

destroying the basis of simple-minded formalistic attitudes towards the 

foundations of mathematics, so did a corollary of this theorem show that the 

foremost aim of the original Hilbert program could not be achieved. This aim, 

we recall, consisted in proving the formal consistency of number theory with 

the help of only a part of the proof procedures employed in number theory 

itself, viz. the “finitary” ones. But however liberal we are ready to be in 

interpreting this equivocal term, so long as the finitary proof procedures are 

taken to transcend the proof procedures admitted in logistic systems only 

moderately — if at all — (one such moderate transcension would be the 

admission of a rule of infinite induction), the possibility of obtaining a iinitary 

consistency proof of number theory is excluded by 

GODEL’S THEOREM ON CONSISTENCY PROOFS 6): No sentence that 

could adequately be interpreted as asserting the consistency of a logistic 

system containing number theory is provable within this system7). 

1) See Rosser 37; Tarski 39; Kleene 43, p. 68; Mostowski 49. 

2) Fitch 42, 44, Myhill 50, 50a. Later systems of Fitch contain negation which does 

not, however, obey the tertium non datur; see, e.g., Fitch 52. 

3) Church 34 which contains an infinite hierarchy of universal quantifiers, and Myhill 

50a. 

4) The system of Church 34 exhibits also an infinite hierarchy of signs for material 

implication. 

5) Some of the “heterodox” systems treated in the last sections of Chapter III are 

non-Godelian, too. 

6) For its proof, see, e.g., Kleene 52, pp. 209-210, or Shoenfield 67, § 8.2. 

7) For a discussion concerning the conditions under which a sentence can be 

adequately interpreted as asserting the consistency of a logistic system, see Hilbert- 

Bernays 34-39 II, pp. 285-286 and Feferman 60. 
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The enormous efforts made by Hilbert and his school to carry out his 

program 1) enabled them to prove by strictly finitary means the consistency 

of a very extensive subsystem of arithmetic, the remaining gap consisting in 

that this subsystem contained the inductive principle only in a weakened 

form which did not allow for its application to quantified sentences. Godel’s 

corollary shows that their failure to achieve the aim in its totality was not due 
to lack of ingenuity; on the contrary, we now know that they went about as 

far as they possibly could. 

The question then arises whether the consistency of number theory could 

not be proved by the use of methods which, though in general forming only a 

proper part of all the methods used in number theory itself, transcend these 

methods in just one respect, the additional method, no longer finitary in the 

original sense, still being “finitary” in some extended sense that would 

conform to the basic philosophical attitude of the formalists. However, since 

this attitude has not been univocally and authoritatively formulated 2), no 

unique and universally acceptable answer to this rather vague question can be 

expected. As a matter of fact, a few years after the publication of Godel’s 

theorem on consistency proofs, Gentzen 3) was able to prove the consistency 

of number theory by using, as the only method trancending those used in 

number theory proper, transfinite induction up to the first e-number e0. This 

method is finitary in a certain well-determined extended sense, or construc¬ 

tive, as we shall prefer to say, in order not to have constantly drag along those 

bothersome qualifications, “in a certain sense”. That Gentzen proved his 

theorem for a formal system which differs in many essential features from the 

logistic systems considered so far — whereas the calculi we dealt with embody 

theorem logics, Gentzen’s calculi embody another major form of logic, viz. 

rule logic 4) — is of no importance for our purposes, since his results can be 

easily transferred to standard logistic system 5). Gentzen’s constructive proof 

of the consistency of Peano’s number theory was later followed by other 
constructive proofs of the same result6). 

In addition to its philosophical consequences concerning Hilbert’s 

1) Hilbert-Bemays 34-39, Ackermann 40, Kreisel 64. 

2) Cf. above, p. 278. 

3) Gentzen 36, 38, Schiitte 60. 

4) Hermes-Scholz 52 distinguish two main forms of logic: Satzlogik and Regellogik 

(Folgerungslogik, Konsequenzenlogik). Kleene 52, p. 441, distinguishes between 

Hilbert-type systems and Gentzen-type systems. 

5) Cf. Gentzen 36 and Ladriere 57, pp. 208 ff. 

6) Ackerman 40 (see Wang 63, Ch. XIV) uses the e-substitution method, while Godel 

58 (see Shoenfield 67, § 8.3) uses functionals of finite type. 
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program, Godel’s theorem on consistency proofs is also very important from 

a mathematical point ot view. It serves as a basic unprovability result from 

which one can obtain many other unprovability results. One example is the 

theorem that it the system VNB of Chapter II, § 7 is consistent then not all 

the instances of the axiom-schema of inrpredicative comprehension of QM 

(XII on p. 138) are theorems of VNB1). 

A third type of limitation on formal systems is provided by those 

theorems in which it is stated that the decision problem for validity 

(provability) is unsolvable for certain kinds of formal systems, i.e. that these 

systems are undecidable as to validity (provability) 2). 

Using once more the direct method of diagonalization, Church was able to 

prove in 1936 3) that Peano’s number theory (as well as certain fragments of 

it) is undecidable. Since an axiomatized theory resulting from an undecidable 

axiomatic theory through omission of a finite number of axioms (but keeping 

the vocabulary) is clearly undecidable itself, Church was able to show4), by 

omitting all the finitely many extra-logical axioms from a suitable modified 

fragment of elementary arithmetic, that the first-order predicate calculus is 

undecidable, in other words, that the set of its theorems, though of course 

recursively enumerable, is not general recursive, in still other terms, that 

though this calculus contains a complete proof procedure it contains no 

complete disproof procedure. Since Rosser was able to prove in the same 

year s) that every consistent extension of Peano’s number theory is undecid¬ 

able, in short that this system is essentially undecidable, we have altogether 

the following two basic results: 

CHURCH’S UNDECIDABILITY THEOREM: The first-order predicate 

calculus is undecidable. 

1) See footnote 1 on p. 138. Additional applications of Godel’s theorem are given in 

the next section. 

2) The reader should beware of the trap caused by the equivocal functioning of 

‘decidable’. A formalized theory that contains an undecidable sentence, i.e., a sentence 

which is neither provable nor refutable within the theory, is thereby formally incomplete 

but not necessary undecidable itself, and an undecidable theory need not contain an 

undecidable sentence. Godel’s incompleteness theorem has often been called an undecid¬ 

ability theorem, a usage we have avoided in order not to increase the danger of 

confusion. 

For the distinction between ‘undecidable’ and ‘unsolvable’ as qualifying problems, 

and for the inappropriateness of speaking about “unsolvable problems”, see the revealing 

discussion in My hill 52a, pp. 167 ff; however, not all formulations given there are 

watertight. Cf. also Turing 54 and Rabin 58, p. 175. 

3) Church 36. 

4) Church 36a. 

5) Rosser 36. 
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CHURCH-ROSSER’S UNDECIDABILITY THEOREM: Peano’s number 

theory is essentially undecidable. 

Investigations into the decidability and undecidability of the various 

logical and mathematical theories received an additional impulse through the 

advent of the fast electronic computers. With their help, it was hoped, many 

mathematical problems might become practically solvable if their theoretical 

solvability could somehow be guaranteed, in the simplest case through a 

proof of the recursive decidability of the theory in which these problems 

were formulated. It was probably under this impact that Tarski, for instance, 

finally published his decision method for elementary algebra and geometry 1) 

which he had already obtained, in essence, in 1930. And though this method 

is still not practical enough for even the fastest existing computers, it is not 

inconceivable that through simultaneous improvements of the method and of 

the computers we will eventually reach the stage when open problems in 

these and other fields will be handled and solved by these machines. 

One of the main methods of proving the decidability of logical and 

mathematical theories is the method of the elimination of quantifiers. This 

method consists of a procedure which allows one to eliminate quantifiers 
from formulae by passing to equivalent formulae with less quantifiers. Apply¬ 

ing this procedure a sufficient number of times one finally arrives at partic¬ 

ularly simple formulae for which is is easy to determine whether they are valid 

or not. 2) This was the method used by Tarski to obtain his decision proce¬ 

dure for elementary algebra and geometry (real closed fields). Some of the 

other theories which have been proved decidable by this method are the 
first-order and second-order monadic predicate calculus (i.e., with only unary 

predicate constants and variables) 3), the theory of dense ordered sets, the 

theory of a single equivalence relation, the theory of addition of integers, 4) 

the elementary theory of abelian groups, 5) and the theory of algebraically 
closed fields. 

Several theories were proved to be decidable by different methods, such as 

1) Tarski 51. For elaborations and variants of this method, see Seidenberg 54, Meserve 
55, Schwabhauser 56. 

2) A detailed exposition of this method is given in Kreisel-Krivine 67. 
3) Cf. e.g., Ackermann 54. 

4) Presburger 30. 

5) Szmielew 55. 
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the first-order theory of ordered sets, >) the theory of finite fields, 1 2) and the 
monadic second-order theory ot binary trees3) 

A simple argument shows that every logistic system which is complete (as 

to derivability) is also decidable. 4) This lends additional incentive to proving 

that certain theories are complete, such as the first-order theory of complex 

and algebraic numbers. 5) An interesting sufficient criterion for the formal 

completeness ot a first-order theory is known as Vaught’s test 6). According to 

it, such a theory is complete if it has no finite models and is categorical in 

some infinite power. Another notion useful for proving the completeness of 
first-order theories is the notion of model completeness7). 

The proofs ot the decidability of theories by methods other than the 

quantifier elimination method often yield only such procedures for deciding 

whether a sentence ip is valid or not in the respective theory which are 

nothing but a blind search for a proof of or of Hip, or for something else 

related to g>. If this is indeed a decision procedure then the search is bound to 
end sometime, but not necessarily during the lifetime of our galaxy. However, 

even such proofs contribute towards more direct solutions of the decision 
problem by encouraging mathematicians to look for such8). 

On the other hand, many theories were proved to be undecidable. For a 

tew theories this was done directly, through a kind of diagonal argument, as 

was the case with Church’s theorem. For some others, use was made of the 

theorem that an essentially undecidable theory induces this property in every 

consistent theory which is interpretable in it 9). Since Peano’s number theory 

is essentially undecidable and interpretable in many axiomatic set theories, all 

these theories - if consistent - are essentially undecidable. The set theories 

VNB and G of Chapter II, § 7, being finitely axiomatizable, thereby 

exemplify the existence of essentially undecidable and finitely axiomatizable 
theories. 

1) L'auchli-Leonard 66, and Lauchli 68. 

2) Ax 68. 

3) Rabin 69,70. Rabin used the decidability of this theory to prove the decidability 

of many other theories. 

4) See, e.g., Shoenfield 67, p. 132. 

5) A. Robinson 59; for additional examples see Keisler 64. 

6) It is due to Los and Vaught, cf. Vaught 54 or Shoenfield 67, p. 89. See also 
Henkin 55. 

7) A. Robinson 63, Ch. IV. 

8) For example, after Ax-Kochen 65 and ErSov 65 proved that the theory ofp-adic 

fields is decidable, P. Cohen found a decision procedure for this theory which uses the 

quantifier elimination method. 

9) See Tarski-Mostowski-Robinson 53, p. 22. Theorem 7. 
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The scope of the undecidability proofs was greatly increased when some 

finitely axiomatizable and essentially undecidable fragments of Peano’s 

number theory were discovered ‘).This enabled several logicians to prove, by 

various means, the undecidability of many theories, such as the elementary 

theories of groups, rings, fields, lattices, commutative rings, ordered rings, 

non-densely-ordered rings, modular lattices, complemented modular lattices, 

and distributive lattices, as well as the first-order theories of a single binary 

relation, a single symmetric relation, a single symmetric and reflexive relation, 

two equivalence relations, and two unary operations 2). 

Of special interest for us is the fact that by this method the essential 

undecidability of a small fragment of set theory could be shown3). This 

fragment contains ‘G’ as the only extra-logical constant and just three 

extra-logical axioms, viz. the axiom of extensionality (I, on p.27), an axiom 

stating the existence of a null-set, and an axiom guaranteeing, for any given 

sets x and y, the existence of a set z whose members are all the members of x 

as well as y itself 4). This is a stronger result than the one mentioned two 
paragraphs before. 

For theories whose undecidability has been proved or for which decid¬ 

ability has so far been neither proved nor refuted, restricted decision 

problems arise, i.e. problems as to whether certain proper subsets of the set of 

all their valid sentences are general recursive. For Skolem’s arithmetic, e.g., 

which is a complete, non-axiomatizable and essentially undecidable formal¬ 

ized theory, the problem as to the general recursiveness of the set of all valid 

sentences of the form 

(1) (a=j3), 

where a and 0 are terms (polynoms) all whose free variables are among 

the |2, . • £n, is nothing but the famous tenth problem of Hilbert 5). 

This problem has been solved only recently by Matijasevic, using results of 

Julia Robinson, Davis and Putnam 6). The answer is negative, i.e., the set of all 

1) Tarski-Mostowski-Robinson 53. The theory given there has the axioms (a), (b), 

(d), (e) of p. 298 together with the axiom xtO-> 3y (*=/). See also the theory N of 

Shoenfield 67, p. 22 and Ch. 6. 

2) For these and other results see Tarski-Mostowski-Robinson 53, Rabin 65, Ersov 66, 

Shoenfield 67 (§ 6.9 and the problems at the end of Ch. 6) and their bibliographies. 

3) Tarski-Mostowski-Robinson 53, p. 34. 

4) See footnote 3 on p. 32. 

5) Raised in his talk to the International Congress of Mathematicians in Paris, 1900 
(Hilbert 00). 

6) Matijasevic 70, Julia Robinson 52, 69, Davis-Putnam-Robinson 61. 
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valid sentences of the form (1) is not recursive. This is proved by showing 

that for every recursively enumerable set A of natural numbers there are 

terms .„,£«) and j3(£,£i,.such that for every natural number k, 
k&A if and only if 

(2) ai1ag2...Hi/I Mia ..a„)=/3(kal5-.a„)] 

is valid (where k is the standard term denoting k). If the set of all valid sen¬ 

tences of the form (1) were recursive then the set of all valid sentences (2) 

would also be recursive, since the sentence (2) is of the form (1), for every 

value of k. This would imply, in turn, that the recursively enumerable set A is 

necessarily recursive, but we know that not every recursively enumerable set 

is recursive (p. 309 above). 

For elementary group theory, the problem of whether the set of all valid 
sentences of the form 

V*iV«2...V*b0, 

where 0 is a formula without quantifiers, is general recursive has only recently 

been proved to be unsolvable. This problem, better known in a different but 

equivalent formulation ‘), is the famous word-problem which was proposed 

by Thue in 1914 and had defied mathematicians for almost 40 years. Already 

in 1947, Post and Markov had independently shown its unsolvability for semi¬ 

groups 1 2). In 1950, Turing 3) showed that this problem is unsolvable for 

semi-groups with cancellation. But only later did Novikov and Boone, indepen¬ 

dently, succeed in proving the recursive unsolvability of the word-problem for 

groups 4). 

As mentioned on p.315, the question of the logical validity of the 

sentences of the first-order predicate calculus is undecidable. It is therefore 

appropriate to consider various natural subsets B of the set of all sentences of 

the first-order predicate calculus, and ask whether the question of the logical 

validity of the sentences of B is decidable or not. A simple example of such a 

set B is the set of all existential sentences, i.e., the sentences which consist of 

1) Cf. McKinsey 44, p. 68. 

2) Post 47, Markov 47; Kleene 52, pp. 382 ff. For stronger results see Shepherdson 

65-. 

3) Turing 50. 
4) Novikov 55, Boone 54-57. At present the simplest proof is that of Britton 63, 

while the stronger result is that of Higman 61 (its proof is also given in the appendix of 

Shoenfield 67). For other related results see Chapham 64. 
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a string of existential quantifiers followed by a quantifierless part. Positive 

and negative answers have been obtained for various sets B1). 
The reader might have already asked himself whether there might not exist 

a decision method by which it could be effectively determined for every 

given formalized theory, whether it is decidable or not. However, a rather 

simple argument shows that, at any rate for finitely axiomatizable first-order 

theories, no such general method could possibly exist, hence that this 

second-degree decision problem, so to speak, is unsolvable 2). Other higher- 

degree decision problems deal, for instance, with the existence of an effective 

procedure of deciding, for every given presentation of a certain algebraic 

structure, such as of a semi-group, of a semi-group with cancellation, or of a 

group, whether the structures defined by these presentations have certain 

algebraic properties such as cyclicity, finiteness, simplicity, decomposability 

into a finite product, etc. By combining Markov’s methods with Novikov’s 

mentioned result, Rabin has been able to prove the recursive unsolvability of 

a large number of group-theoretic problems 3). The recursive unsolvability of 

the topological homeomorphism of four-dimensional manifolds, given explic¬ 

itly as polyhedra, was established by Markov4). 

Aspects of relative decidability problems were treated by Post who 

introduced 5) the term ‘degree of recursive unsolvabilitv ’ which served as the 

basis for a classification of functions, properties, relations, and sets into 

equivalence classes created by the reflexive, symmetric, and transitive relation 

‘A is recursive in B and B is recursive in A' 6). The least degree is that of the 

general recursive functions etc., the decision problem of which is recursively 

solvable, of course 7). This issue is too intricate to be treated here in any 
detail 8). 

1) Ackermann 54, Klaua 55, Church 56 (pp. 246 ff.) and Kahr-Moore-Wang 62. 

2) Tarski-Mostowski-Robinson 53, p. 35. 

3) Rabin 58. For a survey of more recent results see Boone 68. 

4) Markov 60; for additional results, see Boone-Haken-Poenaru 68. 

5) Post 44. 

6) For the notion of (general) recursiveness of a function in other functions, see 

Kleene 52, p. 275; for the other notions, see ibid., pp. 276 and 307. Another excellent 

book dealing with this subject is Rogers 67. 

7) The word ‘unsolvability’ is therefore slightly misleading in this context, as is, 

incidentally, the word ‘degree’, the “degrees” being classes and not, as one might have 

thought, numerical measures of some sort. 

8) It is treated in Rogers 67, Sacks 63, Yates 70. In 1956, a question raised in Post 

44, which has become known as Post’s problem and which has been considered as one of 

the most important open foundational problems, was almost simultaneously, but 

independently, answered in the negative by a 19-year old American student, 



METAMATHEMATICS AND SEMANTICS 321 

§ 8. THE METAMATHEMATICS AND SEMANTICS OF SET THEORY 

We are now ready to present in a systematic fashion the major results of 

the metamathematical and semantical investigations into the foundations of 

the various set theories treated in the preceding chapters. First, however, we 

shall summarize the generic relationships of some metatheoretical terms intro¬ 

duced in this chapter with the help of a few tree-diagrams. This should be 

helpful, in view of the fact that the terminological situation in this field is in 

general still rather confused, that the technical terms preferred in this book 

are not always the most customary ones, and that the meaning of most terms 

is by no means self-explanatory. 

Among others, we made the following distinctions. 

theories 

formalized intuitive 

] 
other formal (systems) 

logistic (axiomatic) other 

formalized theories 

axiomatizable non-axiomatizable axiomatizable theories 

decidable undecidable finitely axiomatizable other 

essentially other 

undecidable 

R. Friedberg and a 17-year old Russian student, A.A. Mucnik (see Rogers 67, § 10.2). 

Post’s problem was whether all degrees of unsolvability of recursively enumerable sets 

could be linearly ordered by the relation is-recursive-in. Friedberg and Mucnik were able 

to construct two recursively enumerable sets whose degrees of unsolvability are incom¬ 

parable with respect to this relation. 
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formalized theories 

first-order second-order other 

formalized theories formalized theories 

i _ !_ZL_ 
formally inconsistent formally consistent formally incomplete formally complete 

w-inconsistent cu-consistent recursively recursively 
completable incompletable 

formal systems 

semantically consistent semantically inconsistent 

(sound) 

formal systems 

semantically 

complete 

semantically 

incomplete 

logistic systems 

categorical non-categorical 

relatively categorical other 

categorical in power other 

The first question that confronts us with respect to intuitive theories is 

whether these theories can and should be formalized. It is well known that 

one of the basic tenets of the intuitionistic approach is that no formalized 

theory can do full justice to intuitive (which is for them intuitionistic) 

mathematics or any of its subtheories. Heyting, who formalized intuitionistic 

propositional and predicate logic (cf. Chapter IV, § 4), has always been very 

insistent that his own formalization should by no means been treated as an 

adequate representation of intuitionistic modes of argumentation, and that in 

general: 
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no formal system can be proved to represent adequately an intuition- 

istic theory. There always remains a residue of ambiguity in the 

interpretation of the signs, and it can never be proved with mathemati¬ 

cal rigour that the system of axioms really embraces every valid method 
of proof 1). 

It is therefore the more interesting that Beth has succeeded in proving 2), in 

spite of this explicit disavowal of its originator, that Heyting’s propositional 

and hrst-order predicate calculi are complete with respect to intuitionistic 

arguments, in a very pregnant sense, hence that this part of intuitionistic logic 

at least can be exhaustively formalized and even axiomatized. A notion of 

(intuitionistic) truth can be satisfactorily defined for intuitionistic elementary 

logic under which the resulting formalized theory is complete and Heyting’s 
logistic system semantically complete. 

There are very many mathematicians, and even more so other scientists, 

who doubt it very much whether mathematical (and other) theories should be 

formalized even if they can be so in principle, suspecting that the fruits of 

formalization are not worth the effort. It is very difficult to discuss this issue 

in abstracto, but the present book will not have attained its aim unless the 

reader has become convinced that only through formalization can many im¬ 

portant problems be given a formulation which makes it worthwhile to 

attempt their solution. The two outstanding examples discussed in this book 

are the formalization of intuitionistic logic just mentioned which enabled 

many mathematicians and logicians, who had no intuitionistic inclinations, to 

react to intuitionistic mathematics otherwise than by just shrugging their 

shoulders, and the formalization of Zermelo’s concept of “definiteness” (cf. 

Chapter II, pp.36 ff) 3). 

Unless a formalized theory is presented ab initio as an axiomatic system, 

so that its set of valid sentences is from the start identified with the set of 

sentences provable in this system, or — to put it positively — whenever the set 

of valid sentences of a theory is determined semantically rather than syntacti¬ 

cally, the question arises whether this set is recursively enumerable, i.e. 

whether the theory is axiomatizable. 

With regard to Skolem’s arithmetic, the answer is of course negative: the 

(recursive) non-axiomatizability of this theory is an immediate consequence 

of Godel’s incompleteness theorem. Skolem's arithmetic possesses a well- 

1) Heyting 56, p. 102. 

2) Beth 56a, cf. also Kripke 65. 

3) For an interesting balanced discussion of the merits and demerits of formalization, 

see Wang 55a; cf. also Dubarle 55. 
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determined semantic notion of validity and is complete under this notion, its 

completeness being a simple consequence of a precise truth-definition; but no 

sufficiently rich axiomatic subtheory is complete. 
With regard to set theory, the situation seems to be different. There exists 

at present no formalized theory having the same status relative to (intuitive) 

Set Theory as Skolem’s arithmetic has relative to (intuitive) Number Theory. 

There exists no generally accepted truth definition for a formalized set theory 

from which its completeness could be deduced, since there exists no universe 

of “standard” sets that could in any serious way be compared with the 

universe of standard natural numbers. This point, seemingly of the greatest 

importance for the understanding of what set theory is about, has hardly 

been discussed in the literature, and the few existing discussions are 

incompatible and inconclusive. We shall later return to it. 

Among the axiomatizable theories, those that are from the beginning 

based upon a finite number of axioms form an interesting subclass, though 

the exact significance of this feature is not quite clear, in all its generality. We 

know, for instance, that the classical propositional calculus is finitely 

axiomatizable, if a rule of substitution is admitted among its rules of 

inference, but is no longer so if modus ponens is its sole rule of inference. But 

here the explanation is relatively trivial. It is only with regard to first-order 

theories that the issue becomes both important and complex. Finite axio- 

matizability, for such calculi, means that the number of their specific axioms 

is finite, disregarding the way in which their basic logic is formalized. The 

schema of mathematical induction — standing for an infinity of axioms — in 

elementary arithmetic cannot be replaced by a finite number of axioms 

(formulated in the original vocabulary)1). Among the set theories treated in 

previous chapters some, such as VNB and G, were finitely axiomatized from 

the start by their originators, others that had an infinite number of axioms in 

their original presentation, such as NF, were later shown to be finitely 

axiomatizable, of others it could be proved that they were not finitely 

axiomatizable — this is the case for Zermelo’s original theory, for ZF, QM and 

ML 2). The latter results are based, of course, on the assumption that the 

systems in question are consistent. 

We already saw above, p.315, the import of finite axiomatizability in 

connection with undecidability proofs. This feature is equally important for 

other metamathematical investigations. Finitizability of a given infinite axiom 

1) Ryll-Nardzewski 53, Montague 61, Kreisel-Levy 68. 

2) Wang 52, Montague 61, Kreisel-Levy 68. 
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system is therefore always an interesting problem. The question whether 

finitely axiomatizable systems have any real epistemological advantage over 

other axiomatic systems is more complex. So long as an axiomatic system is 

axiomatizable with the help of a finite number of axiom-schemata (in 

addition, perhaps, to a finite number of axioms proper), no serious advantage, 

from an epistemological point of view, can apparently be claimed. Ail systems 

of set theory which we may come across are indeed axiomatizable by a finite 
number of axiom achemata of one kind or another 1). 

The proof of the existence of non-axiomatizable formalized theories is 

doubtless one of the most important achievements of recent foundational 

research. The philosophical and epistemological implications of this result 
have not yet been exhaustively evaluated. 

Let us conclude this section with a study of the role of results concerning 

the existence of consistency proofs for various set theories. There are finitary 

proofs of the consistency of some very weak systems of set theory, such as 

the simple theory of types without an axiom of infinity, but this means, by 

Godel’s theorem on consistency proofs (p. 313), that these systems of set 
theory are not adequate even for Peano’s number theory. Because of Godel’s 

theorem we know that the consistency of a system of set theory sufficient for 

any reasonable part of mathematics cannot be proved by finitary means, since 

it cannot be proved even in the theory itself. There is still an extremely 

remote possibility that one may prove the consistency of some strong set 

theory by using in the proofs non-finitary means which are not available in 

that theory but which have some kind of independent justification; nothing 

of this kind has been discovered so far for systems of set theory such as ZF2j. 

What about non-finitary consistency proofs for systems of set theory? 

Suppose we want to prove the consistency of type theory with an axiom of 

infinity - which is the theory we denoted in Chapter III (p. 159) by T *. 

Assuming, on the intuitive level, the existence of an infinite set U, the infinite 

sequence U,PU,PPU,... is a model for T * once we interpret the variables of 

level 1 as varying over U, the variables of level 2 as varying over PU, and so on. 

Thus T * has a model and it is therefore consistent. Such a consistency proof 

will be taken seriously only by a determined Platonist who considers the 

1) See Vaught 67. Kleene 52a proved that first-order theories can always be finitely 

axiomatized through enlarging their original vocabulary; see also Craig-Vaught 58. 

Hermes 51 proved that finite axiomatizability can also be achieved through adding 

(artificial and opaque) rules of inference to the underlying logic. 

2) Another unsuccessful attempt to obtain such a consistency proof for ZF has been 

made by Esenin-Volpin 61. Cf. also the consistency proofs of Peano’s number theory 

mentioned on p. 314 and footnote 6 on that page. 
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existence of an infinite set U and its iterative power sets as absolute 
mathematical facts independent of any particular axiom system for set theory. 

According to this point of view, an axiom system like T * is given just in order 

to describe what happens in the “real world” and it is not the case that the 

“real world” is the way it is just because there is an axiom system which 

asserts this. A non-Platonist cannot accept this argument; to him the purpose 

of T * is to “set up a world of sets” and one is not justified in using this very 

world to prove the consistency of T *. To an extreme Platonist the question 

of the consistency of a system of set theory is not really a central 

foundational problem. He will discard a theory at the point when it turns out 

not to fit the “true facts” about the universe, even if it is consistent. To put it 

more strongly, an extreme Platonist, like a physicist, will prefer an inconsis¬ 

tent theory some parts of which give a faithful description of the real 

situation to a demonstrably consistent theory which gives “wrong informa¬ 

tion” about the universe. Notwithstanding these fundamentally different 

philosophical attitudes, there is little disagreement among mathematicians as 

to the mathematical importance of the finitary consistency proofs on the one 

hand and of the consistency proofs by means of models on the other hand. 

The reason for this unanimity is that proofs of the consistency of various 

systems of set theory and other theories turned out to yield many additional 

results which are interesting to Platonists and formalists alike 1). 

For example, the proof that if ZF is consistent then so is VNB 

immediately yielded the stronger and much more interesting result that the 

statements of the language of ZF which are provable in VNB are exactly the 

theorems of ZF. Another example is the proof in QM that ZF is consistent. 

This proof turned out to yield the result that there are infinitely many 

different statements of number theory which are provable in QM but not in 

ZF, and even stronger results. 2) We shall not discuss here the stronger results 

obtained by the methods of the consistency proofs. What we shall study is 

the relationship between the existence of certain natural models for systems 

of set theory and the existence of consistency proofs for these systems. 

As a consequence of Godel’s theorem on consistency proofs and according 

to the accumulated experience in this field one can say that the available 

consistency proofs for systems C of set theory turn out to be of the following 

two kinds. First, there are the proofs of the consistency of C in some stronger 

system D of set theory; these are based, essentially, on the construction in D 

of a model of C; An example of such a proof is the proof in QM that ZF is 

1) For a similar situation in number theory, see Shoenfield 67, pp. 214, 223. 

2) Kreisel-Levy 68, Theorems 10 and 11. 
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consistent. Second, there are proofs, which use only finitary or otherwise 

relatively weak means, that it some system B of set theory is consistent then 

so is C. It was by such a method that the consistency of the axiom of choice, 

i.e., of ZFC was proved, viz. by proving (see p.60) that if ZF is consistent 
then so is ZFC. 

Let us observe the following hierarchy of systems of set theory, all of 

which are formulated either in the language of ZF or in that of VNB. 
Aj. ZF without the axiom of infinity VI 

A2. QM without the axiom of infinity VI 

A3. ZF without the axiom schema of replacement VII and with Vic as 

its axiom of infinity (this is close to Zernrelo’s original system.) 

A4. QM without the axiom of replacement and with Vic as its axiom of 
infinity 

A5. ZF 

A6. QM 

A7. ZF strengthened by an axiom IN asserting the existence of an 
inaccessible number 

A8. QM strengthened by IN 

A9. ZF strengthened by an axiom IN2 asserting that there are at least 
two different inaccessible numbers. 

Let us recall from Chapter II, § 5.3, that R(a) is the a-th iteration of the 

power-set operation applied to the null-set. We shall now be interested in 

models of the systems A;-, 1 < i <9, where the only extra-logical symbol G’ is 

interpreted as the membership relation and where the universe of the sets is 

R(a) and the universe of the classes, for the systems formulated in the 

language of VNB, is PR(a) = R(a+1). We shall refer to such models as natural 

models. We shall now list, next to the symbol of each system, that R(a) (and 
R(a+1) where applicable) with the smallest a which constitutes a model of 

the theory 1). In the following list, , #2, and #3 will denote the first three 

inaccessible numbers in that order. 

Aj . R(co) 

A2. R(cu) and R(to+l) 

A3. R(gj+co) 

A4 . R(co+co) and R(cu+co+l) 

A5 . R(£j), where is a certain ordinal <3j 

Ag. R(i?1)and R(#]+l) 

A7 • R(£2), where £2 is a certain ordinal between and 

1) Tarski 56a, Montague-Vaught 59. 
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Ag . R($2+l ) 
A9 . R(£ 3), where £3 is a certain ordinal between x)2 and #3. 

We denote by Con(Ay) the set-theoretical statement, formulated by means 

of set variables only, which asserts that Ay is consistent. Let us notice that no 

arithmetization of the syntax is needed for the formulation of Con( A,-). Since 

the languages of ZF and VNB use only denumerably many symbols, these 

symbols can be identified with some distinct sets, even in Aj. All the Ay’s 

admit the existence of finite sequences of sets and have mathematical 

induction; thus we can define in all the Ay’s the notions of a formula and a 

proof. 
Throughout the following discussion we shall use i and j for two indices 

such that 1 < z </< 9. The existence of the universe (or universes) of the 

smallest natural model of Ay is provable in Ay; this universe will be a proper 

class in A• when / = 2,4 and z = /-l). One can therefore prove in Ay the formal 

statement Con(Ay) which asserts the consistency of Ay ! ). 

It is, of course, easy to give a Unitary proof of Con(A.)->- Con(Ay) since in 

some of the cases all the axioms of Ay are also axioms of Ay, and in the other 

cases one can prove in Ay the existence of a model of Ay and this yields 

directly an interpretation of Ay in Ay. However, the interesting question is 

whether one can prove Con(Ay) -* Con(Ay). Such a proof would reduce the 

question of the consistency of the stronger theory Ay to that of the weaker 

theory Ay. The answer here is negative (if Ay is consistent). Suppose there 

were a finitary proof of Con(Ay) -> Con(Ay), or even a proof of this statement 
in Ay, then since Con(Ay) is provable in Ay we could also prove Con(Ay) in Ay, 

and, by Godel’s theorem on consistency proofs, Ay would be inconsistent. 
What does this mean in terms of our approach to the question of the 

consistency of strong axioms of set theory? Given a system B of set theory, 

such as ZF, we shall call a strengthening axiom an axiom such as IN, which 

when added to the system B yields a system C of set theory whose relation to 

B is like that of Ay to Ay in the hierarchy above. Suppose we add to a system 
B of set theory a strengthening axiom ijj to obtain a system which we denote by 

B+i/z. We would like to have a proof that if B is consistent so is B+i/z; but as 

we have seen just now, no such proof is possible even in B itself (if B is 

consistent). We do have a proof of Con(ZF) -> Con(ZF+IN) in ZF+IN9 but 

this is of no avail since if we doubt the consistency of ZF+1N we cannot 

believe in the consistency of ZF+IN2, let alone in the truth of its theorems. 

1) In most cases, the model of Ay is a set and we can apply the formal version of the 

easy general theorem that if a theory has a model then it is consistent. For the other 

cases, we use the methods of Mostowski 51 and Montague-Vaught 59. 
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Therefore, if we add a strengthening axiom to a system of set theory we 

cannot establish consistency ot the new system relative to the old one by 

means ot a relative consistency proof. It seems that the only thing to do is to 

develop the new system, and as more and more of its theorems are discovered 

while no contradiction is derived we can become more and more convinced 

that the new system is practically consistent. By the system being “practically 

consistent” we mean that in it there is no derivation of feasible length for a 

contradiction; if there “exists” in it a derivation of a contradiction whose 

“length” (say, its total number of symbol occurrences) is greater than the 

number ot atoms in the universe, there is no chance of finding it while 
proving theorems of the system. 

We can also make a general statement about the independence of 

strengthening axioms. We shall prove that if B is a consistent system of set 

theory and \p is a strengthening axiom with respect to B then ip is 

independent of B, i.e,, \p is not a theorem of B. This can be shown in two 

different ways. The first and straightforward way is to get an interpretation 

of B+~h// in B. In fact, in each one of the interpretations of Ay in Ay above 

which are used to show that Ay is “stronger” that Ay one can easily see that 

~\4> “holds” in that interpretation. The second way is as follows. Since \p is a 

strengthening axiom, Con(B) is a theorem B+\p. If \Jj were provable in B then 

Con(B) would already be a theorem of B and, by Godel’s theorem on 

consistency proofs, it would follow that B is inconsistent. 

Let us remark that the list Ay — A9 above is by no means complete. Our 

choice was mostly arbitrary and our sole intention was to point out the 

relationship between stronger and weaker systems of set theory. 

In the list Ay,...,A9 of systems of set theory the special relation of Ay to 

Ay, for i < /, is consistent with the fact that the smallest natural model of Ay- 

consists of a larger R(a) than that of Ay. Even though this is a very distinct 

phenomenon it is difficult to formulate a natural general principle to this 

effect. To see the difficulty let us observe the following example. If we 

replace A2, which is QM without the axiom of infinity, by A), which is VNB 

without the axiom of infinity, we still have that the smallest natural model of 

A), like the smallest natural model of A2, consists of the universes R(co) and 

R(co+l) but, assuming that Ay is consistent, Con(Aj) is not provable in A). 

The latter statement is proved as follows. In Chapter II, §7.2, we showed that 

every statement of the language of ZF which is provable in VNB is already 

provable in ZF. In the same way we get here that every statement of the 

language of ZF which is provable in A2 is already provable in Ay. Since 

Con(Aj) is a statement of the language of ZF, if it were provable in A2 it 

would also be provable in Ay and, by Godel’s theorem on consistency proofs, 

Ay would be inconsistent. 
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An even more extreme example is the following. Let Aj be the system 

A, strengthened by the additional axiom Con(ZF). The universes ol the 

smallest natural models ol A[ and ZF are R(co) and R(£j), respectively, with 

much larger than co (it is provable in every A,- with i > 6 that R(co) is the 

universe of a model of A*), and yet Con(ZF) is obviously a theorem of Aj 
while Con(Aj) is not a theorem of ZF (assuming that ZF is consistent - this 

follows from Godel’s theorem on consistency proofs since there is a simple 

finitary proof of Con(A*) -> Con(ZF)). 
Let us finally consider one more example that will throw much light on 

the question of the existence of a consistency proof for one theory in another 

and on the role of impredicativity in these matters. 
For n> 1, let each.of K„, \n, and Jn be number-theory formulated in n-th 

order logic, i.e., the language of each of those systems is the language of the 

type theory T (of Chapter III, §2) with variables of the first n levels only. 

The variables of level 1 are taken to be number variables. The axioms are the 

usual axioms of Peano’s number theory (p. 298) - the number variables being 

variables of level 1. For n- 1, we take as an axiom of induction the axiom- 

schema of induction (c) of p. 298; for n > 1, we use the axiom 

Vy2 [0G /\ Vx1 (x1 E_y- -> x* + 1 Gx2) -* Vx1 (x1 Ey^)]. 

The axiom of comprehension is 

3y+1 Vx'(x'Ey+1 +*ip(x')), where i<n andjd+1 does not occur 

free in ip(x')- 

Kn, I and Tn differ in the restriction on the formula ip(x') in the 

axiom-schema of comprehension. In Tn,y(xl) can be any formula of the 

language we use here; in ln,ip(xl) is required to be a formula such that the 

levels of all variables in it are at most z+1;in Kn,i/>(xz) is required to be a 
formula such that the levels of all the free variables in it are at most z+1 and the 

levels of the bound variables in it are at most z. Tn can be called n-th order 

impredicative number theory\ since in the axiom-schema of comprehension 

the object yi+ ] is determined by the formula y(x‘) which refers to the 

totalities of all objects of arbitrary levels greater than z. Kn can be called n-th 

order predicative number theory since the object y+1 is determined in the 

axiom of comprehension by means of the totalities of all objects of levels 1 to 

z and also by finitely many objects of level z + 1, but the totality of all objects 

of level /, for />z, is not referred to in ^(x1). \n is already impredicative, since 

yi+1 is determined by ip(x') which may refer to the totality of all objects of 

level z+1, but it is “less impredicative” than Jn, since ip(x‘) does not refer to 

the totalities of all objects of level /, for />/+!. 
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We denote by Kw, lw, and number theories formulated in co-th order 

logic, i.e., in simple type theory. They have the same respective axioms as K/;, 

Iyi > and Jn above, without the restriction / < n in the axiom-schema of 

comprehension. The relations between the various systems are as follows. K|, 

11 > and Tj are just Peano’s number theory. I2 and T? are both just 

(impredicative) second-order number theory. In T->, which is identical with 

l2, one can prove Con(Kw) (but, by Godel’s theorem, if Tj is consistent then 

one cannot even prove Con(Kj) in T3);in T3 one can prove Con(lw) (but, by 

Godel’s theorem, if T2 is consistent then one cannot even prove Con(l2) in 

T2) 1 )• T2 (— Con(Kj) is obtained in the same way as QM [— Con(ZF)2), there 

is a Unitary proof of Con(Kw) -> Con(K,;+1) which is like the finitary proof of 

Con(ZF) -> Con(VNB) (see p. 132 and footnote 2 on that page), and 

Vn Con(K„) *+ Con(K J is obviously finitarily provable; hence we have 

T2 |—ConfK^). T3 (— Con(l„) -*■ Con(lw+1) is obtained like the proof that 

Con(NF) -> Con(ML) (p. 168), and since Vn Con(i„) ** Con(lw) is finitarily 

provable we have T3 |— Con( 1^). The fact that l2 is already “stronger” than 

Kw and that T3 is “stronger” than lw is explained by the differences in the 

impredicativity of the respective systems 3). 

§9. PHILOSOPHICAL REMARKS 

On many occasions, when our discussions reached a certain ticklish, 

“philosophical” stage, they were disrupted by the remark that the issue will 

be taken up “later on”. It is now high time that we pay our accumulated 

debts. Not that the reader is likely to rise, after the reading of this last 

section, with the feeling that all his problems have now found their final 

solution. Very few judgments will be passed here, and the only progress that 

might possibly be made will consist in formulating some of these problems 

and the various views on them in a more systematic fashion which could 

contribute to a better understanding. 

Our first problem regards the ontological status of sets — not of this or the 

1) McNaughton 53; see also A. Levy 60c. 

2) Mostowski 51. 

3) Using the methods mentioned in the last footnote it is easy to verify that the 

statements of first-order number theory provable in any of the K^’s and in Kw are 

exactly the theorems of Tj, and that the statements of first-order number theory 

provable in any of the I ’s and in lw are just those which are provable in T2. On the 

other hand, for every n > 1, there are infinitely many different statements of first-order 

number theory which are provable in Tn+j but not in Tn — see Kreisel-Levy 68, Th. 10. 
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other set, but of sets in general. Since sets, as ordinarily understood, are what 

philosophers call universals, our present problem is part of the well-known 

and amply discussed classical problem of the ontological status of the 

universals. The three main traditional answers to the general problem of 

universals, stemming from medieval discussions, are known as realism, 

nominalism, and conceptualism. We shall not deal here with these lines of 

thought in their traditional version but only with their modern counter¬ 

parts known as Platonism 1 2), neo-nominalism, and neo-conceptualism 

(though we shall mostly omit the prefix ‘neo-’ since we shall have no 

opportunity to deal with the older versions). In addition, we shall deal with a 

fourth attitude which regards the whole problem of the ontological status of 

universals in general and of sets in particular as a metaphysical pseudo-prob¬ 

lem. 

A Platonist is convinced that corresponding to each well-defined (monad¬ 

ic) condition there exists, in general, a set, or class, which comprises all and 

only those entities that fulfil this condition and which is an entity on its own 

right of an ontological status similar to that of its members. Were it not for 

the antinomies, the calculus that would best represent his intuitions would be 

the ideal calculus K (p. 155) or something of this kind, whose main feature is 

an unrestricted axiom-schema of comprehension. Things being as they are, he 

reluctantly admits that his vision of what constitutes a well-defined condition 

might be slightly blurred and declares himself ready to accept certain 

restrictions in the use of the axiom-schema of comprehension, temporarily 

working with a type theory or a set theory of a Zermelian brand, but hoping 

that sooner or later someone will be able to show that much less radical 

interventions will do the trick. Of course, some Platonists may convince 

themselves, or become convinced by others, that the objects of the world 

they live in are really stratified into types and orders and, as a consequence, 

accept type theory not as an ad hoc advice but as an expression of hard fact. 

A neo-nominalist declares himself unable to understand what other people 

mean when they are talking about sets unless he is able to interpret their talk 

as a faqon de parler. The only language he professes to understand is a 

calculus of individuals, constructed as first-order theory. With regard to many 

locutions used in scientific or ordinary discourse, which prima facie involve 

1) For an able, modernized description of these classical views, see Stegmuller 

56—j7, these papers present equally well some ol the contemporary views. 

2) This term, in the present sense, seems to have been used first in Bernays 35. 

Whether Plato was, or even would have been, a Platonist is a moot question. Cf., e.g., 
Henle 52. 



PHILOSOPHICAL REMARKS 333 

sets, he has little trouble in translating them adequately into his restricted 

language. This is the case, lor instance, for such a common statement as ‘the 

set ot the a s is a subset ol the set of the b's\ which he renders as ‘for all x, if 

x is a, x is b . With regard to other locutions and devices he has greater 

trouble. The quite common kind ot concept formation by which the ancestral 

Oi a given asymmetric and intransitive relation is formed — the resulting 

relation then being transitive is easily formulable in set theory. Assuming, 

e.g., that the relation is-greater-by-one-than in the domain of integers is 

available (but not yet is-greater-than), one defines: x is-greater-than y if and 

only if x is-different-from y and x belongs to all sets, which contain y and all 

integers greater-by-one-than any of its members. The corresponding concept 

formation within a calculus of individuals calls, in certain cases, for a 

considerable amount of ingenuity and seems to be hardly feasible in other 
cases 1). It is well known that expressions of the kind “the cardinal number 

of the set a is 17” (or “... at most 17”, or “ ... at least 17”, or “ ... between 12 

and 21” etc.) can be readily rendered in first-order predicate calculus with 

equality. But a sentence like “There are more cats than dogs” causes again 

grave difficulties, and though these can be overcome in this and any other 

particular case, no general method is available for a nominalistic rendering of 
“There are more a’s than Vs” 2). 

The difficulties in rephrasing all of classical mathematics in nominalistic 

terms seem, and probably are, insurmountable. Inasmuch as Cantorian set 

theory, the theory of transfinite cardinals, and similar theories are concerned, 

nominalists are only too happy to get rid of them and will regard the “loss” 

incurred with equanimity. But they have a healthy respect for those parts of 

mathematics which are used in the sciences and many would rather renounce 

their philosophic intuitions than curtail the useful mathematics. The only 

serious ways out of their predicament are either to go on using all the useful 

parts of mathematics in the hope - admittedly not too well founded 3) - 

that one day someone will produce an adequate rephrasing in nominalistic 

terms, or else to declare that all higher mathematics is an uninterpreted 

calculus which remains manageable despite its lack of interpretation through 

the fact that its syntax is formulated, or formulable, in a well-understood 

nominalistic metalanguage 4 ). How exactly an uninterpreted (and directly 

1) Cf. Goodman-Quine 47, N. Goodman 51, 56, Quine 53. 

2) See N. Goodman 51, pp. 37 ff. 

3) For reasons why it is hopeless to find an interpretation for an axiom of infinity 

which would be palatable for a finitistic nominalist, see Henkin 53a, p. 27. 

4) Cf. Goodman-Quine 47. 
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uninterpretable) calculus is able to perform its useful function of mediating 

between interpreted empirical statements is an issue that is still far from being 

definitely clarified, in spite of the great efforts put into this task by many 

philosophers of science 1). We recognize here a relationship with the formalis¬ 

tic (Hilbertian) approach which regards a certain part of mathematics — 

essentially recursive number theory — as being interpretable and the remain¬ 

der as an uninterpreted calculus useful as a means of transformation of 

meaningful statements into other meaningful statements and compares this 

status of the “ideal” parts of mathematics to the status of the “ideal” points 
in affine geometry. 

It is only one step from here to the adoption of an “as-if” philosophy, 

and Henkin 2) intimates that a finitistic nominalist, i.e. one who believes that 

the universe which for him is always just one homogeneous domain of 

individuals — whatever these individuals may be — comprises only finitely 

many elements, could very well assume the existence of infinitely many 

objects as a useful pretense (the older word was ‘fiction’)- He sees, of course, 

that as soon as one is ready to pretend one might as well pretend that there 

are universal and use a full-fledged Platonistic language — while still denying 

that one thereby accepts the ontological commitments usually connected 

with such languages — but feels that there is some difference between these 

two pretenses, a difference which makes it easier for a conscientious 

nominalist to accept the first than the second pretense; Henkin admits that he 

knows of no objective criterion for this distinction. He is certainly right that 

this kind of behavior, using linguistic forms without accepting the conjugate 

ontological commitments, does look somewhat frivolous and is therefore in 
need of further clarification 3). 

There are authors who are attracted neither by the luscious jungle flora of 

Platonism nor by the ascetic desert landscape of neo-nominalism. They prefer 

to live in the well-designed and perspicuous orchards of neo-conceptualism. 

They claim to understand what sets are, though the metaphor they prefer is 

that of constructing (or inventing) rather than of singling out (or discovering), 

which is the one cherished by the Platonists, these metaphors replacing the 

older antithesis of existence in the mind versus existence in some outside (real 

or ideal) world. They are ready to admit that any well-determined and 

perspicuous condition indeed determines a corresponding set - since they are 

1) For a thorough, recent discussion of a closely related topic, namely the status of 

theoretical terms in empirical science, see Carnap 56 and Hempel 58. 

2) Henkin 53a, p. 28. 

3) See Carnap 50a, 56, Alston 58, Issman 58. 
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able in this case to “construct” this set out of a stock of sets whose existence 

is either intuitively obvious or which have been constructed previously — but 

they are not ready to accept axioms or theorems that would force them to 

admit the existence of sets which are not constructively characterizable 1). 

Therelore, they do not accept sets that correspond to impredicative condi¬ 

tions (unless, of course, these conditions are demonstrably equivalent to 

predicative ones) and deny the validity of Cantor’s theorem in its naive, 

absolute interpretation as endowing the power-set of a given set with a higher 

cardinal than that of the given set itself. Absolute non-denumerability is 

declared to be void of sense, though an infinite set may not be enumerable 
with certain given means. 

A nominalistic interpreted set theory, with ‘G interpreted as ‘is-a-member- 

of’, is, of course, a contradictio in adiecto. But we already mentioned that 

some nominalists are ready to use set theory as an uninterpreted calculus 

fulfilling transformational functions. Both Platonists and conceptualists insist 

that set theory (and mathematics in general) must be interpretable and 

understood as such and have no use for uninterpretable calculi. They differ in 

their conception of intelligibility. 

It goes without saying that each of these broad philosophical views splits 

into many narrower ones, that their borders are blurred, and that it will often 

be very difficult to pin some author down to one of them. Logicism is usually 

regarded as one brand of Platonism, but Russell himself, during his 70 years 

of philosophic activity, expressed many ideas which were conceptualistic and 

even nominalistic. Ramified type theory has a definite conceptualistic flavor, 

but the axiom of reducibility is obviously Platonistic. When he professed a 

no-class theory, this was understood by many as a strictly nominalistic 

continuation of the use of Occam’s razor. (This was, however, definitely a 

misunderstanding, partly created by the ambiguity in Russell’s use of the 

term ‘propositional function’ for ‘open formula’ and ‘attribute’ simultaneous¬ 

ly. Russell indeed showed how to eliminate classes in favor of “propositional 

functions”, but these functions were just attributes (properties or relations), 

hence at least as “universal” as classes; Russell, due to his ambiguous usage, 

deceived himself in thinking that they were linguistic forms 2).) Gddel is now 

usually regarded to be a Platonist, but his first publications were strongly 

influenced by the Hilbert school and even by Skolem’s still more radically 

conceptualistic thinking. His postulate of constructibility (p. 60) is clearly 

1) For a discussion of this point, as well as of the whole issue treated in this 

subsection, see Beth 56, pp. 41 ff. 

2) Cf. Quine 53, pp. 122-123. 
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conceptualistic and has been hailed and accepted as such by conceptualists, 

but Godel himself refuses to regard it as a true set-theoretical statement. 

Hilbert is the father of modern formalism, but his metamathematics is 

strongly conceptualistic and the talk about the “ideal’ nature of most higher 

mathematical notions is far from being unambiguously classifiable into any of 

the standard views. Lorenzen’s operationism must be dubbed a blend between 

conceptualism and nominalism of the “as-if” brand, but this characterization 

is of only little help in revealing the idiosyncrasies of his approach. Quine, 

starting as a logicist, has for many years tried to uphold a nominalistic 
position but he now feels that conceptualism is a position into which he can 

lapse when tired of his quixotic attempts at nominalistic reconstruction, 

while allaying “his puritanic conscience with the reflection that he has not 

quite taken to eating lotus with the platonists” l). Tarski’s first publications 

exhibited an attitude, derived from Lesniewski, which he characterized as 

intuitionistic formalism, but this is no longer his present attitude 2). Whereas 
he formerly had troubles in justifying operating with infinite sets of 

sentences, he now operates, apparently with few pangs of conscience, with 

languages whose set of individual constants is of any cardinality. 

It would be easy, far too easy, to continue in this vein. There are very few 

contemporary logicians and mathematicians who have consistently and 

unflinchingly adhered throughout all their lifetime to one philosophic view. 

Among the exceptions we may count Brouwer who has been a whole-hearted 

and uncompromising conceptualist all his life (though this attitude is 

occasionally bracketed in some of his “classical’’ contributions to topology), 

Church who has always professed a straightforward, though never dogmatic, 

Platonism, and Goodman who so far has not yielded to the conceptualist 

temptation and continues to adhere to a stead-fast extreme nominalism, 

which if anything is growing more radical in time. It must be noted, however, 

that his nominalism is of a special brand which has very little in common with 

classical nominalism. It is what we might call purely syntactical nominalism, 

insisting that the only legitimate language form is a first-order predicate 

calculus but putting no restrictions, at least no official ones, on the 

ontological status of the individuals themselves which, for all he cares, might 

even be intimations of immortality, numbers, or sets, which would, however, 
be rather “sets” since such sets could not be said to contain members. To put 

it in slogan form: Goodman has no objections against sets, he is only unable 
to understand sets-of 3). 

1) Ibid., p. 129. 
2) Cf., e.g., Tarski 56, p. 62. 
3) For the clearest description of this brand of nominalism and for a very able 

defense of its many unusual contentions against various objections, see N. Goodman 56. 
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Most authors who occupied themselves with the foundations of mathemat¬ 

ics have exhibited a curious unsteadiness in matters philosophical. It was only 

natural toi them to ascribe these changes of mind to their increasing maturity 

ot thinking and to regard their later positions as better justified than their 
earlier ones, in whatever direction the shift might have gone. 

It is understandable, on the other hand, that some thinkers should have 

seen in these vagaries a confirmation of their view that the three major 

ontological conceptions treated above should all of them be objectively 

irrelevant to the foundations problem, whatever those who upheld these 

conceptions thought about the matter and however strong their feelings were 

in this respect. Set theories, so these authors came to think, should not be 

judged by their ontologies (in Quine’s sense) but by their fruits. Whether 

there are impredicative sets or not is not a matter to be decided by theoretical 

arguments nor a matter of (irrational?) belief based upon intuition or 

conscience. The prevalent opinions to the contrary are caused by a fusion of, 

and contusion between, two different questions: the one whether certain 

existential sentences can be proved, or disproved, or shown to be undecid- 

able, within a given theory, the other whether this theory as a whole should 

be accepted. Whether the existence of a set which is the union of three given 

sets is provable in ZF is a serious question though easily answerable in the 

affirmative, as we know. Whether the non-existence of a non-trivial inacces¬ 

sible number is provable in ZF is an even more serious question which is so 

difficult that we don’t know the answer. The same question with respect to 

Ay (of p. 327) is trivially answerable in the negative. For still other theories 

the answer is affirmative, trivially or deeply so. Whether Z or B or A? or T* 

or ML or 2 or what have you should be accepted is another very serious 

question but of an entirely different kind. It is a matter of practical decision, 

based upon such (theoretical) considerations as likelihood of being consistent, 

ease of maneuverability, effectiveness in deriving classical analysis, teachabil¬ 

ity, perhaps possession of standard models, etc. It is by fusing these two 

questions that such pseudo-problems as whether there exist non-denumerable 

sets (as such, absolutely, not within a given theory) are posed, leading either 

to futile pseudo-theoretical discussions or to the feeling that such a question 

is answerable only through an appeal to intuition and philosophical con¬ 

science, on the basis of which the Platonist would answer this question with a 

clear ‘yes’, the conceptualist and nominalist with an equally clear ‘no’, though 

out of entirely different intuitions. 

The foremost exponent of this fourth, anti-ontological view was Carnap. In 

one of his later formulations 1), he coined the terms internal and external 

1) See Carnap 50a. 
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existence questions for the two kinds of questions mentioned above, though 

he did not directly apply this distinction to the foundations of set theory. 

This application does look to us, however, rather straightforward and we are 

convinced not to have misrepresented Carnap’s view on this point. 

This view is not without its own difficulties. We shall not discuss them 

here. Let us only stress that the presentation given here probably exaggerates 

the degree of disagreement between such authors as Quine and Carnap. 

Though Quine is used to say that by accepting a certain theory you have 

taken upon yourself certain absolute ontological commitments and Carnap 

denies just this, it is not yet clear to what degree this clash is not wholly or 

mostly verbal 1). 

Among the neo-conceptualists, we already had opportunity (Chapter III, 

p. 196) to mention those who reject not only impredicative concept-forma¬ 

tions but the more extensive class of indefinite (in Carnap’s sense) concept- 

formations, who reject — to formulate it metalinguistically — languages with 

unlimited quantification. These authors, among whom may be reckoned 

Poincare’, Brouwer, Wittgenstein, Skolem and Goodstein, arrive at their 

rejection of these transfinite operations from the observation that there exists 

no decision procedure for the truth of quantified statements. Identifying 

meaningfulness with effective verifiability 2), they immediately arrive at the 

conclusion that sentences containing unlimited quantifiers are in general 

meaningless. 

Though this position, qua philosophical attitude, is highly questionable — 

the major counter-argument being that it would cripple mathematics just as 

the parallel view concerning empirical statements would cripple empirical 

science — theories complying with it have, of course, their attractions. An 

arithmetic, for instance, that starts with relations (or operations) which are 

effectively decidable in each specific instance and proscribes the use of 

unlimited quantifiers in further concept-formations, remains intuitive all the 

way and is one of the safest and least doubt-ridden theories dealing with an 

infinite universe. It is understandable that Hilbert should have wanted to 

prove in this highly intuitive recursive number theory that mathematics is 

formally consistent. Skolem was able to develop a great part of classical 

1) Cf. the last sections of Carnap 50a and Quine 53, Essay II (p. 46), respectively. 

2) The corresponding identification in respect of empirical statements stems from 

Peirce and played, as the verifiability criterion of meaning, a central role in the early 

stages of logical empiricism. For the story, see, e.g., Carnap 36—37. 
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arithmetic in this theory and Godel succeeded in showing that it suffices for 

the arithmetization of the elementary syntax of any formal system 1). 

In definite languages, in spite of the fact that classical propositional logic 

holds in them, those uses of the principle of the excluded middle to which 

intuitionists object and which are partly responsible for the antinomies are 

obviated in that they just cannot be formulated. Unrestricted generality is 

expressible by means of free variables, but unrestricted existentiality is not 

expressible at all: asserting 4F(x)’ is to assert that all x are F, but asserting 

‘~F(x)’ is not to assert that not all x are F but rather that all x are not-F or 
that no x are F. 

That the ban on ordinary (unlimited) quantifiers does not have those grave restrictive 

effects which one might have expected can be illustrated by the following rather trivial 

example. Assuming that the binary predicate 'D' (“divides”) has already been defined in 

some theory of natural numbers, one would normally define the unary predicate 'P' 

(“is-prime”) in something like the following fashion: 

P(x) =Df x > 1 & Vy (DOx) «(y = l V y =x)). 

Simply replacing ‘Vy’ with ‘Vy<x’ — read: ‘for ally from 0 up to and including x’ - will 

now turn the trick. In general, whenever a decidable attribute is introduced, one only 

needs to find some upper bound of the numbers involved in order to be able to replace 

the unlimited quantifiers by limited ones. 

It has therefore been proposed 2) to see in a definite language, such as 

Language I of Carnap, the realization “in a certain sense” of the more radical 

among the conceptualistic tendencies, sometimes called ‘finitary’ or ‘con¬ 

structivist’. While such authors as Skolem or Goodstein would probably agree 

to such a formulation of their views, the intuitionists would not, though 

perhaps for no other reason than that no formalization adequately expresses 

their intuitions. 

Lorenzen, on the other hand, while he strongly rejects impredicative 

concept-formations, most definitely accepts unlimited quantification 3), re¬ 

fusing to be hampered by the verifiability criterion. His philosophy is not 

conceptualistic — sets for him are nothing but propositional forms4), 

conditions with free variables, and not, as with a normal conceptualist, the 

extra-linguistic entities corresponding to these forms. Nor is Lorenzen a 

syntactical nominalist and least of all a Platonist. But he is not a Carnapian 

1) In Goodstein 57, this theory has found its authoritative textbook. Nothing is 

presupposed, not even propositional calculus. For the philosophy behind it, see 

Goodstein 52. 

2) See Carnap 37, p. 46. 

3) Lorenzen 55, p. 6. 

4) Or rather, they are obtained by abstraction from equivalent propositional forms, 

the same set corresponding to all equivalent forms. 



340 METAMATHEMATICAL AND SEMANTICAL APPROACHES 

either. Mathematics for him is not an uninterpreted linguistic framework to 

be judged by its properties of fruitfulness etc., but is an interpreted theory of 

schematic operations with uninterpreted calculi. 

In spite of many divergencies, Curry’s philosophy of mathematics 1) is 

most closely related to that of Carnap. Like him, he rejects any ontological 

commitments2) and stresses acceptability3) as the criterion by which 

mathematical theories should be judged. He calls his view empirical formalism 

to distinguish it from Hilbert’s version of formalism, from which it indeed 

diverges considerably; pragmatical formalism would probably be abetter label. 

Curry’s insistence that the formalist definition of mathematics (as he gives it) 

requires no philosophical presuppositions and that philosophical differences 

should be transferred rather to the level of acceptability squares well with 

Carnap’s latest views, and his distinction between discussions around the 

truth of some given mathematical statement within a given system and that of 

the acceptability of the system as a whole is probably equivalent to that 

between internal and external existence questions of Carnap. 

Curry goes on to deflate the importance of provable consistency for 

acceptability, in contradistinction to Hilbertian formalism. This difference in 

attitude is admittedly only a matter of degree, since Hilbert himself did not 

see in consistency a sufficient condition for acceptability 4). And intuitive 

evidence is, in Curry’s view, a luxury which mathematics can easily afford to 

forego. “So far as acceptability for physics is concerned, analysis has no more 

need for a consistency proof than it has of intuitive evidence” 5). 

Curry’s final plea for tolerance in matters of acceptability 6) mirrors, 

probably on purpose, Carnap’s famous tolerance principle 7). Any author 

who, for reasons of intuitive convictions, insists that only mathematical 

systems of a certain kind have a raison d’etre would do well to ponder once 

more whether his intolerance does not hamper the progress of science rather 

1) Curry’s views underwent many changes with the years. In addition, many of his 

publications appeared - due to World War II — years after they were written, sometimes 

after the appearance of later compositions. This, and frequent changes of terminology, 

tends to blur the evaluation of Curry’s contributions to the foundations of mathematics. 

The present passage is based mostly on Curry 51 (originally written in 1939), which was 

later condensed in Curry 54. 

2) Curry 51, p. 31. 

3) Ibid., pp. 59 ff. 

4) Cf. Hilbert 25, p. 163. 

5) Curry 51, p. 62. 

6) Ibid., p. 64. 

7) Carnap 37, p. 5 1. 
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than channel it into the only promising road. Whereas constructibility could 

well be a necessary condition for the acceptability of a mathematical theory 

lor certain purposes, say for metamathematics or for electronic computation, 
so that theories of the constmctible — to use a confrontation made by 

Hey ting :) - deserve to be studied by mathematicians of any philosophi¬ 

cal conviction and has indeed been studied by authors with strongly divergent 

convictions as well as by authors with no philosophical convictions, the claim 

that the only legitimate mathematics is constmctible mathematics has little 

chance ol convincing anybody who does not share the specific convictions of 
the intuitionists. 

We have had no intention to present here a summary of all current 

philosophies ol mathematics. A few more remarks on this topic are however 
appropriate. 

We had not mentioned at all that conception of mathematics which sees in 

it an empirical science, distinguished at most in degree from other empirical 

sciences. We had not done it so far, because we cannot imagine what 

justification there might be for the belief that “the source and ultimate raison 

d etre ol the notion ol number, both natural and real, is experience and 

practical applicability” 1 2), though this is the belief of Mostowski, and similar 

formulations are to be found in many other publications, starting with John 

Stuart Mill. Unless, ol course, by this formulation nothing beyond the trivial 

view is meant that experience has led humanity to develop mathematics. This 

trivialization is however very unlikely, since it is hard to see how from this 

interpretation one can “draw the conclusion that there exists only one 

arithmetic of natural numbers, one arithmetic of real numbers and one theory 

of sets’ 3). But in what other sense can infinite sets be said to have their 

source in experience? (We have little quarrel with the view that the ultimate 

raison d’etre of the notions of number and set are practical applicability, but 

we fail again to see how from this view the uniqueness of number theory and 
set theory can be derived.) 

This attempt to abolish the qualitative distinctness of the formal sciences 

(logic and mathematics) from the real (empirical) sciences, which does not 

seem to us to have been substantiated 4), should not be confused with 

1) In the Symposium on Constructivity in Mathematics, Amsterdam 1957; see 
Heyting 59a. 

2) Mostowski 55, p. 16. 

3) Ibid. 

4) For the latest attempt in this direction, see Kalma'r 67 and the ensuing discussion. 
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another recent attempt, undertaken by Quine 1) and others, to abolish the 

borderline. It differs from the first attempt, to put it in slogan form, in 

claiming that the empirical sciences are less “empirical” than one usually 

thinks rather than in claiming that the formal sciences are less “formal”. The 

arguments for this view are rather convincing, but the conclusion is not 

necessarily forthcoming. One could as well, perhaps even better, draw the 

conclusion that in an empirical theory a theoretical sub-theory should be 

distinguished from an observational sub-theory, so that mathematics, or 

appropriate sections of it, would form together with the specific theoretical 

sub-theory a calculus which is not directly interpreted at all but receives a 

partial and indirect interpretation through rules of correspondence which 

connect the theoretical terms with the observational terms of the observa¬ 

tional sub-theory 2). 
Many attempts have been made to interpret some metamathematical 

theorems such as the Lowenheim-Skolem theorem or Godel’s incompleteness 

theorem as discrediting certain ontological views and bolstering others. We do 

not believe that these attempts were succesful. We had already opportunity to 

express our doubts in this respect with regard to Lowenheim-Skolem (§5). 

With regard to Godel’s theorem, we would like to endorse Myhill’s penetrat¬ 

ing critique 3) of the argument from the divergence of ‘provable’ and ‘true’ 

and insist, like him, that this argument does not disprove nominalism (though 

we would by no means concur with Myhill’s psychological interpretation of 

the limitative theorems of Godel, Church, etc.). On the contrary, we believe it 

to be unlikely that any new mathematical or metamathematical results will 

ever definitely refute any ontological standpoint, though they might conceiv¬ 

ably have some influence on the readiness to adopt such a standpoint, for 

reasons which are extra-rational. Should one want to go on from here and 

conclude that all ontological views on mathematics, since irrefutable, are 

thereby also irrelevant for mathematics, though not necessarily for mathe¬ 

maticians, we see no good reasons against such a conclusion. 

We are now in a position better to evaluate, though perhaps not to solve, a 

problem which was raised above (p. 323). There we saw that the incomplete¬ 

ness of certain logistic systems can sometimes be interpreted as the non- 

axiomatizability of certain formalized theories. But whereas this interpreta¬ 

tion was rather natural with regard to arithmetical theories, it was quite 

1) The locus classicus is Quine 53,1. 

2) This is the view of Carnap 56. 

3) Myhill 52a, cf. Turquette 50. 
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dubious with regard to set theories. While there exists at least one formalized 

arithmetic which is complete under a perspicuous and natural notion of 

validity, viz. Skolem's arithmetic, nothing of this kind seems to hold for set 
theory. 

In what sense then, if in any, does there exist a unique notion of set 

(natural number) governed by a unique Theory of Sets (Theory of Natural 

Numbers), ol which existing axiomatic set theories (arithmetics) are incom¬ 

plete approximations? We already saw that some empirical realists, such as 

Mostowski, would answer this question by claiming that there exist sets and 

natural numbers in (approximately) the same sense in which there exist 

animals and stones and that Set Theory and Arithmetic are unique in the 

same sense in which Zoology 1) and Mineralogy are unique. It is conceivable 

that other empirical realists would want to make here a distinction and assert 

reality and uniqueness only of numbers and their theory but not of sets. We 

already declared ourselves unable to understand either stand. 

All Platonistic realists believe in the uniqueness of numbers, not as 

empirical entities but as Platonic ideas, and of their theory. (It is unimpor¬ 

tant, for our purposes, what terms are used to denote the specific “mode of 

being” of these entities to distinguish it from the mode of being of animals 
and stones. Some use qualifying adjectives, others distinguish between ‘being’, 

‘existence’, ‘subsistence’, ‘reality’, etc.) Godel, for instance, believes “that the 

assumption of such objects (classes and concepts) is quite as legitimate as the 

assumption of physical bodies and there is quite as much reason to believe in 

their existence” 2). But it is not clear whether this view entails the uniqueness 

of classes and concepts, or whether various, perhaps even mutually incompati¬ 

ble, systems of such entities could fulfil the task of allowing to “obtain a 

satisfactory system of mathematics”. We are not convinced that the distance 

between the pragmatic Platonism of Godel and the pragmatic formalism of 

Carnap and Curry is as great as the customary formulations would make one 

think. Believing in the existence of sets because they are necessary for 

obtaining some satisfactory system and accepting some set theory because it 

is helpful for obtaining some satisfactory system is the abyss between these 

views really so deep? 

1) Notice that even Russell, for some time, expressed himself in a similar vein. In 

Russell 19, p. 169, we read: “Logic is concerned with the real world just as truly as 

zoology, though with its more abstract and general features”. The last clause, of course, 

raises some doubts about the seriousness of this mode of expression, which he 

abandoned very soon in any case. 

2) Godel 44, p. 137; cf. also 47, from which we already quoted on p. 106 of 

Chapter II. 
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Conceptualists and nominalists have little reason to believe in the unique¬ 

ness of the notion of set, though most conceptualists would believe in the 

uniqueness of the natural numbers series which serves them as the major basis 

for their constructions. But the constructions themselves need not proceed in 

a unique fashion. 
For the anti-ontologists. the whole problem does not arise. 

It is easy to understand the urge for the belief in the uniqueness of Set 
Theory. Set-theoretical notions enter everywhere in non-elementary theories, 

and if set theory itself is treated as an elementary axiomatic theory, every 

non-elementary theory can as well be regarded as the union of two 

elementary theories, an elementary set theory and some elementary theory 

which is specific for the discipline treated. The decisive notion of an 

“absolute model” of a non-elementary theory, i.e. a model in which all 

set-theoretical notions receive their standard interpretation, is unique only to 

the degree that there exists one unique standard interpretation of these 

notions. It is true, therefore, that the notion of an absolute model “will gain 

essentially in value only when the difficult problems of the foundations of 

the theory of sets are solved; this will enable mathematicians to agree to one 

method of establishing that theory” 1). But so far we don’t see any reason 

compelling us to believe that there will be a unique solution to the 

foundational problems of set theory which will induce all mathematicians to 

accept one such theory as the Set Theory. It is doubtful whether such a belief 

is pragmatically necessary in the sense that otherwise a chaotic situation 

would arise in which every mathematician would work with his own set 

theory. The pragmatic criterion of acceptability should suffice to keep the 

situation under control. The existence of many competing set theories, at 

least so long as they induce little changes in the day-by-day work of the 

mathematician and physicist, is hardly harmful enough to justify the 

imposition of some credo or other in this respect. So long as the belief in the 

objective reality (whatever this may mean) and the resulting uniqueness of 

the notion of set and its theory is a kind of tranquilizer and does not lead to 

the dogmatic rejection of proposed set theories — and notice that even 

Mostowski states in no uncertain terms that “there are no criteria indicating 

the proper choice among all these numerous [set theories] ” 2 ) — it remains a 

harmless, and in a certain sense even helpful, metaphysical act of faith. But 

there is often only one step from the belief in the existence of an objective 

criterion that would uniquely determine the issue between competing 

1) Mostowski 55, p. 12. 

2) Ibid., p. 19. 
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theories and the belief that one has found this criterion and is therefore 

entitled to disqualify all these theories, except possibly one, in the name of 

some earthly or heavenly reality. There are many authors who prefer 

perturbation out of freedom to tranquility out of external coercion. 

The attitudes on how set theory might be given a satisfactory foundation 

are as yet widely divergent, and a host of problems connected herewith are 

far from being solved. Nevertheless, the great majority of mathematicians 

refuse to accept the thesis that Cantor’s ideas were but a pathological fancy. 

Though the foundations of set theory are still somewhat shaky, these 

mathematicians continue to apply successfully its concepts, methods, and 

results in most branches of analysis and geometry as well as in some parts of 

arithmetic and algebra, confident that future foundational research will 

converge towards a vindication of set theory to an extent that will be 

identical with, or at least close to, its classical one. This attitude is compatible 

with a readiness to interpret set theory in a way which might diverge 

considerably from the customary ones, in line with the apparently existing 

need for a reinterpretation of logic and mathematics in general. 
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axiom of replacement 50f, 127f, 141, 

284 

axiom of restriction 113-116, 300 

axiom of strong infinity 109f, 113, 118 

axiom (-schema) of subsets (separation) 

36, 126, 128, 149, 156, 284 

axiom of union 34, 128, 145, 284 

axiom schema 31, 38 

axiom, multiplicative 185 

axiom, strengthening 328 

axiomatic attitude 15 

axiomatic method 16 

axiomatic system 21 

axiomatizability 287, 325 

axiomatization 16 

Behmann’s solution 12 

bar theorem 260 

Boolean algebra 61, 65 

Boolean prime ideal theorem 65 

Bolzano-Weierstrass theorem 176, 268 

Brouwer operation 259 

Brouwer’s principle 258 

Burali—Forti’s antinomy 3, 8, 168 

Cantor’s antinomy 7f, 158, 163, 199 

Cantor’s theorem 35, 163, 178, 19 

Cantor-Bernstein theorem 272 
cardinality 96 

cardinals (cardinal numbers) 46ff, 182 

cardinals, addition of 74, 97f, 110 

cardinals, compact 113 

cardinals, comparability of 79 

cardinals, extendible 113 

cardinals, inaccessible 110, 112 

cardinals, measurable, 109, 113 

cardinals, regular 105, 110 

cardinals, relativeness of 303 

cardinals, singular 105 

cardinals, supercompact, 113 

cardinals, transcendence of 109 

cardinals, weakly inaccessible 112 

categories 43 

categories, functor 189 

categories, fundamental 189 

categories, meaning 188 

categories, semantical 188 

categories, syntactical 190 

categorical 297, 300 

category theory 143 

choice, dependent 65 

choice function 55 

choice sequence 255ff 

Church’s thesis 260, 265, 308 

Church’s undecidability theorem 315 

class 119ff 

class abstract 123 

class, proper 128, 134f, 167 

class, universal 124 

complement 41, 124, 129 

complete 295 

complete, u>~ 297 

complete algebra 266 

completeness theorem 296 

comprehension 31, 120, 123, 138, 146, 

149 

computable 308 

conceptualism 332, 334f 

condition 21, 121 

condition, functional 44, 50 

congruence 271 

connectives 19 

consistency 58, 98f, 102 

consistency proofs 325 

consistent 193 

consistent, cj~ 295 

constructibility 220f, 225 

construction, mathematical 220, 225 

constructivist, 179, 181 

contain 23, 27 

continuity 211 

continuity principle 258 

continuum 13, 35, 254ff 

continuum hypothesis 103, 177 

continuum hypothesis, generalized 103 

continuum problem 82, 103 

contradictions 1, 4 

counterexample 235 

creative subject 225, 264 

crises, foundational 13f 
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Curry’s paradox 205 

decidable 305 

decision problem 305, 316 

decision problem, restricted 318 

decision method 316 

Dedekind finite 66 

Dedekind infinite 45 

definable 58,7Of, 311 

definable, ordinal 71 

definite 36, 17 If, 323 

definition, pseudo- 203 

denumerable 45 

degree of unsolvability 320 

description 116 

determinateness 67, 86 

discreteness 211 

disjoint 30 

domain (of a relation) 42, 126, 129 

Dutch school 217 

effective 68 

effective, semi- 286 

element 23 

equality 25, 122, 128 

equality, substitutivity of 25, 128 

equinumerous 44 

equivalence 44, 97f 

equivalence type 97f 

existence (in mathematics) 220ff 

expression 281 

extensionality 27ff, 122, 149 

fan 258 

fan, binary 257 

fan theorem 260 

field (of a relation) 42 

finitary 278 

finite 44f, 228 

finite, hereditarily 44, 48 

finite, pseudo- 271 

finite, quasi- 178 

finitizable 286, 324 

formal system 276, 280 

formalism 340 

formalism, empirical 340 

formalism, pragmatic 340, 343 

formalized (theory) 287 

formula 21. 154f 

formula, open 200f 

foundations (of set theory) 4, 17 

Frege-Russell definition (of natural 

numbers) 96 

function 43, 126 

function, empirical 265 

functional condition 44, 50 

fundamental theorem of algebra 77 

Gentzen’s calculus 314 

Godel number 306 

Godel translation 243 

Codel's theorem on consistency proofs 

58,170 

Codel's (incompleteness) theorem 177, 

310,323,342 

Grelling’s antinomy 9 

Heine-Borel theorem 176 

Heyting’s calculus 245 

hierarchy of languages 17 2f 

Hilbert’s program 275, 279, 305 

Hilbert’s e-operator 72 

hyper-class 142 

identity 25 

impredicative 38, 138, 169, 173, 180, 

193ff. 277 

inclusion 26 

inconsistent 293 

indefinite (statement) 196 

independent 102, 301 

individual 23f, 59, 166 

induction (on natural numbers) 16, 89, 

139,163,169, 252 

induction, infinite 286 

induction, transfinite 93, 163 

inductive 79 

infinity 210 

intensional 27f 

interpretation 99, 288, 290, 296 

interpretation, exclusive 197 

interpretation, inclusive 197 

interpretation, sound 289 

intuitionism 21 Off 

intuitionism, neo- 214, 217 

intuitionism, semi- 215, 252, 254, 269 
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intuitionism, ultra- 251 

intuitionistic attitude 15f 

inverse 130 

Konig—Zermelo inequality 105 

Kripke’s schema 264 

languages, coordinate 186 

languages, name- 186 

layers 87, 176, 180 

layers, cumulative 176 

least upper bound 176 

Leibniz’ principle 27, 127 

levels 158 

Liar, The 9f 

limit point 76 

limitation of size doctrine 32, 95, 135, 

137,164 

logic 17, 183 

logic, combinatory 209 

logic, intuitionistic 239ff 

logic many-valued 207 

logic, mathematical 167f 

logic, non-standard 200 

logic, rule 314 

logic, theorem 314 

logical consequence 290 

logicism 18If, 335 

logicistic attitude 159 

logistic method 277 

Lowenheim—Skolem theorem 302, 341 

many-sorted (theory) 191 

Markov’s principle 262 

Martin’s axiom 103 

mathematics, affirmative 249f 

mathematics and language 224ff 

mathematics and logic 238ff 

mathematics, arithmetization of 182 

mathematics, negationless 149f 
maximum principle 79 

mereology 201 f 

membership 23 

membership congruence 27 

mental activity 224 

metalanguage 20 

metamathematics 278 

minimal calculus 241 

model 99, 392 

model class 131 

model completeness 317 

model, general 296 

model, standard 296 

model, non-standard 296 

names 189 

neo-conceptualism 332ff 

neo-nominalism 3 3 2ff 

nominalism 332f 

nominalism, syntactical 336 

normal notion 139 

null class 124 

null set 24, 39 

number theory, see arithmetic 

numbers, algebraic 78 

numbers, complex 78 

numbers, initial 96 

numbers, natural 45 

numbers, rational 45 

numbers, real 45, 78 

one-sorted (theory) 191 

ontology 23, 200, 337, 344 

operationist 17 9f 

order (ordering relation) 42, 173 

order extension principle 64 

order type 96ff 

ordered pair, triple, u-tuple 33 

ordering principle (theorem) 64 

ordering, well- 43 

ordinals (ordinal numbers) 9If, 163 

pair 32f 

paradoxes (see also antinomies) 1,4 

parameter 2 

Paris school 216f 

Peano’s axioms 48 

Platonism 326, 332, 343 

polynomial 77 

Post’s problem 320 

predicate calculus 19, 25, 39, 295, 315f 
primitive 122 

principle of contradiction 227, 252 

principle ot choice (see also axiom of 

choice) 259 

principle of excluded middle 206, 218, 

227ff, 268, 277 
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product, Cartesian 40f 

product, outer 40 

proof 225 

proof, indirect 227 

proof interpretation 241 

proof theory 278 
protothetics 20If 

quantifiers 19, 123, 146 

quantifiers, elimination of 316 

quantifiers, limited 180 

ramified class calculus 173 

range (of a relation) 42, 126 

rank 94 

real functions, theory of 170 

realism 332 

realizability 247 

recursion, transfinite 93 

recursive 132, 308f 

recursive, primitive 132 

recursive reals 262 

recursively enumerable 309 

redundant 301 

reflection 118 

reflexivity 25 

regularity 88 

relation 4If, 126 

Richard’s antinomy 8, 10, 150, 172 

rules of formation 282 

rules of transformation 282 

Russell’s antinomy 5ff, 11, 31, 41, 46, 

150, 155, 168, 198, 205 

satisfiable 289 

selector 71, 133f 

selector, relative 7 

self-reference 11 

semantics 240 

semantics, Kripke 246 

sets 23, 128, 136, 142f 

sets, analytic 263 

sets, Brouwer 262 

sets, Cantorian 164 

sets, catalogued 270 

sets, comparability of 66 

sets, constructible 60, 104, 113, 175 

sets, disjointed 30 

sets, infinite 2, 45, 48 

sets, primary 180 

sets, ramified 262 

sets, reflexive 2, 45, 48 

sets, secondary 180 

sets, selection 53 

sets, transitive 92 

sets, unfounded 60 

sets, unit 33 

sets, well founeded 88, 94, 99f 

sequence, lawless 256 

sequence, lawlike 256 

signifies 218 

similarity 91 

singleton 33 

Skolem’s paradox 10 

Skolem-Lowenheim theorem 302, 342 

Souslin’s hypothesis 109 

species 258 

spread 256ff 

spread, dressed 257 

spread, finitary 258 

spread law 257 

spread, universal 258 

stable 180, 249 

statement 21, 189 

statement schema 69 

stratification 16 If 
structure 288 

subclass 148 

subset 26 

sum set 34 

symmetry 25 

syntax, general 280 

syntax, arithmetization of 305 

tertium non datur, see principle of ex¬ 

cluded middle 

Tarski’s truth theorem 312 

Tarski’s undefinability theorem 312 

theories, classifications of 32If 

transitivity 25 

truth definition 294, 312 

truth definition-, normal 294 

types, theory of 158f, 191 

typical ambiguity 160 

Turing machines 308 

structure 315, 317 
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undefinable 312 

union 34, 124 
universe 23 

universal closure 155 

universals 332 

Urelemente 23 

Urysohn’s lemma 74 

valid 289f 

variables 20 

Vaught’s test 317 

vicious circle principle 38, 86, 89, 173, 

176,193,197 

well-ordering theorem 82, 96, 215 

word problem 319 

Zenon’s paradoxes 213 

Zorn’s lemma 56, 79 
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