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PREFACE 

When, in early adolescence, I first saw the proof that the real numbers 

were uncountable, it seemed the most wonderful thing in the world to 

me, and I found it quite strange that the rest of the world did not share 

my enthusiasm. Later, finding out that set theorists could actually prove 

some basic mathematical questions to be unanswerable and that large 

infinite numbers could effect the structure of the reals, I was even more 

amazed that the world did not beat a path to the set theorists’ door. 

More years later than I care to admit, this book is my response. I wrote 

it in the firm belief that set theory is good not just for set theorists, but 

for many mathematicians, and that the earlier a student sees the parti¬ 

cular point of view that we call modern set theory, the better. 

It is designed for a one- semester course in set theory at the advanced 

undergraduate or beginning graduate level. It assumes no knowledge of 

logic, and no knowledge of set theory beyond the vague familiarity with 

curly brackets, union, and intersection usually expected of an advanced 

mathematics student. It grew out of my experience teaching this material 
in a first- year graduate course at the University of Kansas over many 

years. It is aimed at two audiences—students who are interested in 

studying set theory for its own sake and students in other areas who may 

be curious about applications of set theory to their field. While a 

one- semester course with no logic as a prerequisite cannot begin to tell 

either group of students all they need to know, it can hope to lay the 

foundations for further study. In particular, I am concerned with 

developing the intuitions that lie behind modern, as well as classical, set 

theory, and with connecting set theory with the rest of mathematics. 

Thus, three features are the full integration into the text of the study of 

models of set theory, the use of illustrative examples both in the text and 

in the exercises, and the integration of consistency results and large 

cardinals into the text when appropriate ( for example, when cardinal 

exponentiation is introduced) . An attempt is made to give some sense of 

VII 
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the history of the subject, both as motivation, and because it is interes¬ 

ting in its own right. 
The first chapter is an introduction to partial orders and to 

well- ordered sets, with a nod to induction on M and a word about models 

of first- order theories. 
The second chapter introduces the basic set operations and all the 

axioms except for regularity and choice. Models for each axiom are 

defined on an ad hoc basis as the axiom is introduced, and many of the 

exercises involve properties of these models. This serves not only to 

orient the student towards thinking in terms of models, but also provides 

reasonably sophisticated material to help the student look carefully at 

basic concepts. 
The third chapter is on regularity and choice. It includes a section on 

transitive sets and a brief introduction to the ordinals. Examples of how 

to prove theorems using various versions of the axiom of choice are 

given. 
The fourth chapter is a glimpse of how to code mathematics into the 

language of set theory. 
The fifth chapter is on ordinals and cardinals, including ordinal and 

cardinal arithmetic. 
The sixth chapter is on models: The proof that a strongly inaccessible 

cardinal gives rise to a model of set theory, and a brief discussion of L. 

The seventh chapter is on infinite combinatorics. Topics discussed 

include partition calculus, trees, measurable cardinals, Martin’s axiom, 

stationary sets, and O. Its sections are not entirely independent; for 

example, weakly compact cardinals are introduced in the first section, 

explored further in the second, and appear again in the third. The length 

of discussion of the topics in this chapter is not determined by im¬ 

portance (very little is said about measurable cardinals, for instance, and 

stationary sets do not appear until the very end) but by pedagogical 
considerations. Thus, more difficult topics are given shorter shrift, and 
emphasis is placed on connecting small cardinals with large and explor¬ 

ing fairly simple situations which give rise to consistency results. 

If this book is used as a text, the core chapters are the first, second, 

third, and fifth. Although I am fond of the order and content of the other 

chapters, someone else teaching out of this book may easily disagree. 

The level of difficulty of various sections varies enormously, and some 

students may not be able to handle the more difficult material in chapters 

6 and 7. I would expect that most of the audience it is aimed at would not 

be able to finish it in one semester—chapter 7 is to be regarded as a 

smorgasbord, rather than a sit-down dinner. 

Finally, I hope that a reader completing this text will not only know a 
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good deal of basic set theory, but will have a sense of the richness of the 

field and of both the pervasiveness and unavoidable nature of mathema¬ 

tical uncertainty. 

Many mathematicians have added greatly to this work, and I would 

like to thank them for it. Much of what is good in this book is due to their 

help, while all of the errors, whether of omission or commission, are mine. 
Doug Cenzer, jean Larson, Jack Porter, and Bill Fleissner used early 

drafts in the classroom; their comments were crucial in shaping later 

ones. In addition, the following mathematicians made extensive and 

valuable suggestions on various versions of the manuscript: Jim Baum¬ 
gartner, Jim Henle, Istvan Juhasz, Aki Kanamori, Arnold Miller, Peter 

Nyikos, and Chaz Schwindlein. Many graduate students suffered through 

various incarnations of this book with me; in particular Tim LaBerge and 

Steve Schwalm did yeoman service. The technical typist, Sharon Gumm, 
deserves thanks for her speed and patience, a rare combination in 
humans. The Wiley production staff deserves special thanks. Finally, I 

would like to thank my husband, Stanley Lombardo, for his support and 

love. 

Judith Roitman 
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1 
SOME MATHEMATICAL 
PRELIMINARIES 

INTRODUCTION 

The reader is probably used to picking up a mathematical textbook 

and seeing the first chapter entitled something like “Set-theoretical 

prerequisites.” Such a chapter usually contains a quick review or an 
overview of the relevant set theory, from something as simple as the 

definition of the union of two sets to something as complicated as the 

definitions of countable and uncountable sets. Since this is a set-theory 
text, we reverse the usual procedure by putting in the first chapter some 

mathematics that will prove essential in the serious study of set theory: 

partially ordered and linearly ordered sets, equivalence relations, well- 

ordered sets, and induction and recursion. We also point (hopefully not 

too vaguely) in the direction of mathematical logic with some discussion 

of first-order theories and models. 

Why these topics in particular? 

The spine of the set-theoretic universe, and the most essential class of 

objects in the study of set theory, is the class of ordinals. One of the basic 

properties of an ordinal is that it is a well-ordered set. An acquaintance 

with various examples and properties of well-ordered sets is essential to 

the study of ordinals. 

Two of the basic techniques of set theory are transfinite induction and 

transfinite recursion, which are based on induction and recursion on the 

natural numbers. 
When set theory is applied to the rest of mathematics, the method¬ 

ology often used is to reduce the original question to a question in the 

area known as infinite combinatorics. The theories of partially ordered 

sets and of equivalence relations are essential elements of combinatorics. 

1 



2 SOME MATHEMATICAL PRELIMINARIES 

When a mathematical question can be settled only by set-theoretic 

techniques, that is often because consistency results are involved. This 

revolutionary method of set theory can be understood only with some 

reference to mathematical logic, in particular to models of first-order 

theories. An understanding of models is also crucial to the study of 

constructibility and large cardinals. 

Thus the choice of topics in this chapter. 
A brief word about the approach. Chapter 1 is written in ordinary 

mathematical style without set-theoretical formality (compare the 

definition of partial order in section 1.1 with the formal definition in 

section 2.3). The reader is assumed to be familiar with set-theoretic 

notation as found in most advanced mathematical texts, and we will make 

use of it throughout. The reader is also assumed to be familiar with the 

standard body of basic mathematics, e.g., the basic properties of the 

natural numbers, the integers, the rationals, and the reals. 

SECTION 1.1. PARTIALLY ORDERED SETS 

The most essential combinatorial idea we need is that of a partially 

ordered set. Here are the axioms defining a partial order < on a set X: 

For all x, y,ze X, 

PI (Reflexive), x < x 

P2 (Antisymmetric). If x < y and y < x then x = y 

P3 (Transitive). If x < y and y < z, then x < z. 

As shorthand, we say x < y (x is strictly less than y) if x < y and x ^ y. 
If < partially orders X, we call X a partially ordered set under < and say 

< strictly orders X. As will become clear from the examples, a set can 

have many different partial orders imposed upon it. There are two ways 

of referring to a set X with a partial order <. The first is to talk about X 

under <. But when it is clear from the context which partial order on X 
we are talking about, we just refer to the partially ordered set X. Let us 
check that certain structures are in fact partial orders. 

Example 1. The set of positive natural numbers1 N+= {1,2, 3,...}, 

where we define n<Dk iff n divides k. Is <D a partial order on N+? 

fN is the set of natural numbers, {0, 1,2,...}. 



PARTIALLY ORDERED SETS 3 

Check for PI: Every n divides n, so each n <Dn. 

Check for P2: If n divides k then n < k (where < is the usual order). 

If k divides n then /c < n. We know that n < k and k < n implies 
n = k. Hence k<Dn implies n = k. 

Check for P3: If n<Dk then k = in for some i. If k<Dm, then 

m = jk for some j. So if n<Dk and k<Dm, there are i, j with 
m = jk = jin. Hence n <Dm. 

Notice that the i, j, whose existence was needed for the proof of P3, 

must come from M+. The fact that 2 = §(3) does not imply 2 <D 3. 

Example 2. Let X be any set and define x <Ey iff x = y for all x, y g X. 
Is <E a partial order on X? 

Check for PI: Since each x = x, each x<Ex. 

Check for P2: If x<Ey, then x = y. So if x<Ey and y<Ex, then 

x = y- 
Check for P3: If x<Ey and y <Ez, then x — y and y = z, so x = z, 

so x <Ez. Thus P3 holds. 

Example 2 is instructive. Partial orders may in fact have very little 

structure. 

Example 3. Let X be any collection of sets and for all x, y e X define 

x <sy iff x <= y. (Recall from your previous studies that x ^ y iff, for all 

z, if z g x then z g y. In particular, x c: x. You may have seen cr written 

as c. Either convention is acceptable once it has been agreed upon. In 

accordance with most set-theoretic usage we adopt the former.) 

The proof that example 3 is a partial order is left to the reader. 

Example 4. Consider the set of real numbers R. The usual order on R 

can be defined directly from the algebraic structure of R. First define x to 

be nonnegative iff there is some yGR with y2 = x (i.e., “nonnegative” 

means “has a real square root”). Then define x<y iff y — x is non¬ 

negative. Finally show that < is a partial order. The reader is challenged 

to prove this algebraically. (Aside from the usual field axioms, you should 
assume that every sum of squares has a square root and if either a or b 

are nonzero then so is a2 + b2.) 

Example 5. Let X be all finite sequences of 0’s and Es. We define, for cr. 
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re X, cr< t iff t extends cr or t — cr. For example, 01001 extends 0100, 

which extends 010, which extends 01, which extends 0. So 0<01< 

010<0100<01001. Notice that if (7<t then the length of cr (ab¬ 

breviated 1(a)) is less than or equal to the length of t, /(t); i.e., if cr< r 
then /(cr)</(r). Also if we define ar to mean a followed by rje.g., 

010 10 = 01010), then if cr< t and a ± t there is some p with ap = t. 

We say “cr concatenated with r” for cFt. With this in mind, we show that 

this is a partial order: 

Check for PI: Immediate from the definition. 

Check for P2: If cr<r, then /(cr)</(r). If t<ct, then /(r) < /(cr). 

Thus a<T<a implies 1(a) = 1(t). Hence r does not extend cr; 

hence r = a. 

Check for P3: Suppose cr ^ t ^ p. If a = r or t = p, then cr < p. 

Otherwise there are ic, rj with cfT = r, t 17 = p. So p = cr ^ p, hence 

p extends cr, hence cr<p. 

Example 6. An extremely useful example of a partial order is the 

lexicographic (or dictionary) order on finite sequences. You have known 

this order since childhood: First there is an order on the letters of the 
alphabet, a < b < c .... Given two words p and p, we say p < q if either 

q = p, q extends p (cat < cattle), or if, in the first place at which they 
differ, the letter occurring in q comes after the letter appearing in p 

(cacophony < cat). 

We generalize this order as follows. For any set X, a useful set 

associated with X is the set of all nonempty finite sequences from X, 

which we call FIN(X). Now suppose X is a partially ordered set. Define 

the lexicographic order <L on FIN(X) as follows: cr< t iff one of the 
following holds: cr = t, t extends cr; or there are p, v, r\ with a = p?\ 

r= prj, and the first element of v is strictly less than the first element of 

17. We use the notation L(X) to refer to the set FIN(X) under this 
lexicographic order. 

For example, if X = R, we have (e, ir) <L (77, e, V2)^ (77, vTT). 

We show that if X is a partially ordered set, so also is L(X). First 

some notation: < is the partial order on X and cr(n) is the nth element of 
a. 

Check for PI: By definition each a<La. 

Check for P2: Suppose cr <lt<lct and cr ^ r. If r extends cr, then 

inspecting the definition of r:L shows that r^La. So some n is the 
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first place at which r differs from cr. Then a{n) < t(n) < ar(n), so 

cr(n) = r(n), which contradicts the definition of n. Hence cr = t. 

Check for P3: Suppose <j <lt <Lp. If either a = r or r= p, we are 

done. There are three remaining cases: (1) r extends cr; (2) p 
extends r; (3) neither of the previous cases holds. 

We will complete case 3 and leave the other cases to the reader. 

Let k be the first place at which a differs from r; let n be the first 

place at which r differs from p. If n> k, then p( k) > t( k) > a(k), 

and k is the first place at which p(/c) ^ cr(k), so p — c cr. If n< k, 

then p(n) > r(n) = cr(n), and n is the first place p differs from cr, so 
p >Lcr. 

SECTION 1.2. SOME FACTS ABOUT PARTIALLY 
ORDERED SETS 

Definition 7. Let < be a partial order on a set X. Two elements x, y of 

X are comparable iff x < y or y<x. They are compatible iff there is 

some z such that z < x and z < y. 

Note that if two elements are comparable then they are compatible, 

but not vice versa. In example 1, 3<D6 and 3<D9, but 6^D9 and 

6. 

Definition 8. A subset 8 of a partially ordered set is a chain iff it is 

pairwise comparable; i.e., if x, y e B, then x and y are comparable. B is 

an antichain iff no two elements of B are compatible. B is linked iff it is 

pairwise compatible. 

Definition 9. A partial order < on a set X is linear iff X is a chain, and 

we say X is a linearly ordered set, or linear. 

For example, example 4 is a linear order, but examples 1, 2, 3, and 5 

are not. Note that any subset of a linearly ordered set is linearly ordered. 

If X is not linear then L(X) is not linear (you can find two one-element 

sequences that are not comparable), but on the other hand 

Theorem 10. If X is linear, so is L(X). 

Proof. Suppose cr, re L(X), where cr ^ r and r does not extend cr. 

Let k be the first place at which they differ. Then, since X is linear, 

either cr(k) < r(/c) or r(/c) < cr(/c). So either ct<lt or r^Lcr. 
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Definition 11. Let X be a partial order, x £ X. We say 

(a) x is minimal iff, for all y 6 X, if y < x then y = x. 

(b) x is maximal iff, for all y £ X, if y > x then y = x. 

(c) x is a minimum iff, for all y e X, y>x; i.e., x is the smallest 

element of X. 

(d) x is a maximum iff, for all y £ X, y<x; i.e., x is the largest 

element of X. 

Note that a minimum element is minimal and a maximum element is 

maximal. 
Some examples: In example 5 the two one-element sequences 0 and 1 

are minimal, and there are no maximal elements. In example 2 every 

element is both maximal and minimal. In example 3 if X = {y: y^M} 

then N is a maximum and 0 is a minimum. 

Proposition 12. A maximum is the unique maximal element. A minimum 

is the unique minimal element. 

Proof. Suppose y < x for all y. If y is a maximal element, then either x 

and y are not comparable, which is false, or x < y. So x = y. The proof 

for minimums is similar. 

Note that a unique maximal element need not be a maximum and a 

unique minimal element need not be a minimum. For example, let 

X = (0,1]U[2, 3) under the ad hoc ordering x <A y iff x, y e (0, 1] and 

x < y (where < is the usual order on R) or x, y £ [2, 3) and x < y (see 
Figure 1). Then 1 is the unique maximal element, but 1 ^A 2; and 2 is the 
unique minimal element, but 2 r^A 1. 

Proposition 13. A maximal element in a linear order is a maximum. A 

minimal element in a linear order is a minimum. 

Proof. Fix x. Since the order is linear, for every y in the order either 

y > x or y < x. If x is minimal, then either y > x or y = x for all y, so x is 

a minimum. The proof for maximal elements is similar. 

l Q3 

06 2 

Figure 1 
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SECTION 1.3. EQUIVALENCE RELATIONS 

Here are the axioms for an equivalence relation = ona set X: 

For all x, y, z e X, 

El (Reflexive). x = x. 

E2 (Symmetric). x = yiff y = x. 

E3 (Transitive), if x = y and y = 2, then x = z. 

Example 14. Example 2 is an equivalence relation. 

Example 15. Recall that for a set X we define FIN(X) to be the 
collection of finite nonempty sequences of elements of X. We define two 
equivalence relations on FIN(X): ct = xt iff cr and r have the same 
length, and <r=2 t iff the last element of a equals the last element of r. 

Thus^ e.g., if X = R, then (tt, e, 4l) (VTT, 1, v/e) and (Tr,e,\l2)=2 
(1,V2). Both =\ and =2 are equivalent relations. 

Example 16. Let F be the set of all functions whose domain is N and 
whose range is a subset of N. For /, geF, define f=*g iff 
{n: f{n) ^ g(n)} is finite. Let us show that =* is in fact an equivalence 
relation. 

Check for El: {n: f(n) ^ /(n)} = 0 and hence is finite. 

Check for E2: If {n: f(n) ^ g(n)} is finite, so is {n: g(n) ^ f(n)}. 

Check for E3: Suppose {n: f{n) ^ g(n)} and {n: g(n) ^ h(n)} are 
both finite. Suppose /(n) ^ h(n) for some n. Then there are two 
possibilities: (Case 1) f(n) = g(n) and g(n) ^ h(n) and (Case 2) 
f(n) 7^ g(n). Note that there are only finitely many instances of each 
case, so {n: f{n) ^ h(n)} is finite as we wished. 

Definition 17. If x is an element of a set X with an equivalence relation 
= , then the equivalence class of x is denoted [x] and defined by 
{y e X: y = x}. 

Notice that if [y] = [x] and y' e [y], x' e [x] then [y'] = [x'J. 
Some notation: If = is an equivalence relation on X, we define X/= 

to be {[x]: x e X}. 

Example 18. We define a partial order on F/=*, as follows: [/]^[g] iff 
{n: f(n) > g(n)} is finite. This sort of definition should be familiar from 
analysis—we do not care what happens at the beginning of a sequence, 
just what happens from some point on. 
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We have to show that this is well-defined: If /'e[/] and g'e[g] and 

[/]<[g], can we conclude that [/'] < [g']? If [/l^tg], /'g[/]> ar|d 
g'e[g], then {n: f\n)> g'(n)} is a subset of the union of the following 

sets: {n: f\n) ± /(n)}, {n: f(n)> g(n)}, {n: g'(n) ^ g(n)}. Each of these 

sets is finite. So [/']<[g']. 

Proving that < is a partial order on F/=* is left as an exercise. This 

order is known as the Frechet order, and its study has ramifications in 

many branches of mathematics. 
There is a close relation between equivalence relations and partitions, 

where 

Definition 19. A partition P of a set A is a collection of subsets of A so 
that every element of A belongs to exactly one element of P. 

For example, if ap = {n £ N: p is the first prime number dividing n} for 

each prime p, then P — {{0, 1}} U {ap: p a prime} is a partition of N, since 
every natural number not equal to either 0 or 1 has a unique least prime 
dividing it. 

Another example: If Lr is the horizontal line in the plane through the 

point (0, r), then P = {Lr: reR} is a partition of the plane, since every 

point in the plane lies on a unique horizontal line and every horizontal 

line is some Lr. 
Notice that the elements of a partition P of A are pairwise disjoint and 

that A = Upep p, where Upep p = {x: for some p £ P, x e p}. 

We end this section by showing that partitions are essentially the same 
as equivalence relations. 

If P is a collection of subsets of A, we write x EPy iff there is some 
pe P with x, y e p. 

Lemma 20. If P is a partition of A, then the relation EP is an 
equivalence relation on A. 

Proof. Notice that EP is reflexive and symmetric for any P a collec¬ 

tion of subsets of A. We show that EP is transitive if P is a partition. 

Suppose x, y e p and y, z £ q, where p, q £ P. Since P is a partition, y is 

an element of exactly one element of P, so p = q and xEPz. 

Definition 21. Given an equivalence relation E on a set A, we define 

Pe = {[*]: xe A}, where [x] is the equivalence class of x under E. PE is 
usually written A/E, as in the remark after definition 17, or A mod E. 
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Lemma 22. If E is an equivalence relation on A, then PE is a partition of 
A. 

Proof. If xe[y] and xe[z], then yExEz, so y Ez, so [y] = [z]. 

Thus every element of A belongs to exactly one element of PE, as 
required. 

By working through the definitions, it is easy to show that P(ep) - P, 
for any partition P, and E{Pe> = E for any equivalence relation E. 

SECTION 1.4. WELL-ORDERED SETS 

In section 3.3 we will actually construct the mathematical universe (in a 

philosophically nonconstructive way). The spine of that universe will be 

the class of ordinals. Elsewhere we will do constructions and proofs using 

ordinals to mark the stages. When we talk about size we will usually insist 

that the infinite numbers marking size are ordinals. Although the uni¬ 

verse will in some sense be built out of operations on the empty set, this 

approach is too nihilistic to be very useful. The fact that the universe is 

built out of operations on ordinals, however, is extremely useful. In short, 

to study set theory you must study ordinals. Whatever an ordinal is (we 
will not define it until Chapter 3), its purpose is to be a canonical 

well-ordered set—we will eventually prove that every well-ordered set is 

order-isomorphic to an ordinal. So to understand set theory we must 

understand ordinals, and to understand ordinals we must understand 

well-ordered sets. 

Definition 23. A well-ordered set X is a linearly ordered set for which 

every nonempty subset has a minimal element. 

Example 24. Since every nonempty set of natural numbers has a least 

element, N is well-ordered. 

Example 25. Let X = {m/(m + l):meN}U{l + m/(m + 1): m e N} and 
order X by the usual order on the reals. Then X is well-ordered since it 

is the union of two increasing sequences and any nonempty subset must 

have either a least element in the first sequence or a least element in the 

second sequence. 

Example 26. Let X — {m/(m + 1): m e N} U {1 + m/(m + 1): m e N} U 

{2 + m/(m + 1): m 6 N}. Then X is well-ordered by the usual order on the 

reals. (The proof is left to the reader.) 
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Example 27. Let X = {n + m/(m + 1): n, m e N} ordered by the usual 

order on R. Then X is well-ordered. 

Proof. If Y is a nonempty subset of X then there is some least n such 

that Y fl {n + m/(m + 1): meN}^0. Then there is some least m for 

which n + m/(m + 1) e Y. This is the minimal element of Y. 

Being well-ordered is an example of a hereditary property, that is, 

a property inherited by every subset. 

Proposition 28. Every subset of a well-ordered set is well-ordered. 

Proof. If X is well-ordered, TcXandZc Y, then ZcX.soZ has 

a minimal element or Z = 0. 

A basic criterion foi well-ordered sets is the following theorem. 

Theorem 29. A linear order X is well-ordered iff there is no infinite 

descending chain of elements of X. 

Proof. An infinite descending chain has the form x0>xi>x2> 
Suppose X has such a chain. Then {x,: i e N} has no least element, 

so X is not well-ordered. For the other direction suppose Y<= X and y 

has no minimal element. Pick x<)£ Y. Since Xo is not minimal in Y, there 

is x\ e y with xi < x0. Since Xi is not minimal in y, there is x2 e Y with 

x2< X,. And so on. Thus there is an infinite descending chain of elements 

of X. 

Theorem 29 differs from the theorems we have seen so far in the 

sophistication of its proof. When we assumed that X was not well- 

ordered and constructed an infinite descending chain, no rule was given 

for choosing such x, uniquely. Thus, given x() there may be many 

candidates for Xi, and given each of these there may be many candidates 

for x2, and so on. That we can pick a path through this maze seems 

reasonable, but in fact we use a weak form of a somewhat controversial 

axiom, the axiom of choice. This axiom is defined and explored in 

chapter 3 and is critical to our discussion of size, or cardinality, in 

chapter 5. It is important to note later, when we work with well-orderings 

both with and without the axiom of choice, that only one direction of 

Theorem 29 holds without the axiom of choice. 
An immediate corollary to Theorem 29 is that the closed unit interval 

[0, 1] is not well-ordered. Neither is [0, l]flQ, where Q is the set of 
rational numbers. 
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Definition 30. Let X be a linear order and suppose x £ X. We say that y 

is the successor of x iff y > x and, for all 2 e X, if z> x then 2 > y. We 

denote the successor of x by S(x). We say that y is a limit if y is not the 
successor of any x. 

Notice that x cannot have two distinct successors. Notice that not 

every element in a linear order need have a successor: For example, no 

element in R has a successor under the usual ordering. Notice that a 

minimal element is a limit. More examples: Every element in R is a limit 

under the usual ordering; and in Example 27 the limits are all n, where 

n £ N, while the successors are all n + m/(m + 1), where m > 1. 

Proposition 31. Let X be well-ordered, x £ X. Either x is maximal, or x 

has a successor. 

Proof. If x is not maximal, {y:y>x} is not empty. The minimal 

element of this set is S(x). 

All our examples of well-ordered sets looked like a copy of N followed 

by a copy of N, followed by a copy of N .... In fact. Theorem 34 will 

show that this is essentially what all well-ordered sets look like (the 
“essentially” means that some well-ordered sets have a finite tail tacked 

on after all the copies of N). 

Definition 32. S°(x) = x; S"+1(x) = S(Sn(x)) for n > 0. 

Proposition 33. If n < m, then S"(x) < Sm(x) for every x. 

Proof. Suppose not. Let n<> be some natural number so that there is 

some m > n0 and some x for which Sn,,(x) > Sm(x). For this n(), let m0 be 

the least natural number greater than n0 so that S"°(x) > Sm°(x) for some 

x. Finally, let x0 be an element so that Sn°(x0)^ Sm°(x0). Since m0> n0. 
there is some k for which m0 = n() + k + 1. By the definition of successor, 

k cannot equal 0. Hence, by hypothesis on m(), Sn<)(x0)< Sm'> '(xo). By 

definition, Sm,,_1(xo) < Sm°(xo). So, by transitivity, S"°(x0) < Sm°(x0), 

which contradicts our definitions of m(), x„. Thus our hypothesis that the 

proposition fails is false. 

Proposition 33 has a more straightforward proof using induction, as 

we will see in the next section. 

Theorem 34. Let X be well-ordered, and let A be the set of limits in X. 
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Then 

(a) X c {S"(x): x e A, n 6 N}. 

(b) If x, y e A and x < y, then S"(x) < y. 

(c) If X has no maximum element, then neither does A. 

(d) If X has a maximum, then so does A. The maximum of A is some 

Sn(x), where x is the maximum of A. 

Proof, (a) Suppose X is well-ordered and does not satisfy (a). Then 

A = {x e X: x f Sn(z) for all z e A, n e N} is nonempty. Let x be the 

minimum element of A. Then x £ A, so x = Sn( y) for some ye X. Since 

xe A, then ye A. But then x is not minimal in A, which is a contradic¬ 

tion. So Xc {S"(x): x e A, n e M}. 
(b) Suppose not. Let n be least such that S"(x)>y or S"(x) is not 

defined. Then n ^ 0 since y>x. Since n = m + 1 for some m, either 

y = S"(x), or S"(x) > y > Sm(x); hence y = S"(x). But then y i A, a 

contradiction. 
(c) This follows immediately from (a). 

(d) Let y be the maximum of X. If y e A, we are done. If not, then by 

(a), y is some Sn(x), xe A. By (b), x is the maximum of A. 

We close with a useful class of well-ordered sets. 

Let Ln(X) be all sequences in L(X) of length <n, under the order 

— L- 

Theorem 35. If X is well-ordered, so is each Ln{X). 

Proof. Let Y be a nonempty subset of Ln(X). Then there is some x, 

which is minimal for {cr(1) e X: a 6 Y}. If a, r e Y and Xi = rr(l) and 

t(1)^Xi, then a<Lr. So we restrict our attention to A i = 

{cr: cr(l) = Xi}. If (x,)e Ah we have found our minimal element and 

are done. If not, every sequence in A\ has length at least 2. So let x2 be 

minimal for {cr(2): ae A,}. If cr, re A\ and cr(2) — x2, then ct<lt. So if 

(xi, x2) e Y, we have found our minimal element in Y. If not, we restrict 

our attention to A2 = {ere A,: <r(2) = x2} and note that every element of 

A2 has length at least 3. And so on. Since every sequence in Y has 

length at most n, the process stops in k steps for some k < n. We then 

have Y=> A, => A2 => • • • => A|c ar>d X\, x2,..., xk, where, if cr, tg Y and 
<x(i) = Xi for i = 1,..., k, then cr <L r, and (x,,..., xk) e Y. But then 

(xi,..., xk) is the minimal element we want. 

Thus, for example, each L„(N) is well-ordered. The limits are the 

minimal element (0) and all words of length less than n not ending in 0. 
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Let us check this for L2(N). Each one-element sequence (n + l) is a limit: 

Any sequence in L2(N) below (n + 1) is some two-element sequence 

(m, k), where m<n; the successor of (m, k) is (m,k +1); and 

(m, k + 1) < (n + 1). On the other hand, no sequence of length 2 is a 

limit: Each (m, k + 1) is the successor of (m, k), and each (m,0) is the 
successor of (m). 

Now for the general proof: offm + 1) > cr(m)T for all t; the word 

(xi,...,x„) is the successor of (x,,..., xn - 1) if x„ ^ 0; and 
(xi,..., xk, 0) is the successor of (x,,..., xfc). 

It is a useful exercise to embed the L„(N)’s into R. For example, the 

reader can check that L2(N) is order-isomorphic to the set of Example 

27. (We say that X is order-isomorphic to Y iff there is some 1-1 

function / from X onto Y so that x <x z iff /(x) < y/(z) for all x, z e X. 

We say that X embeds in Y iff X is order-isomorphic to a subset of Y.) 

It is not necessarily true that if X is well-ordered then so is L(X). In 

exercise 19, the reader is invited to show that L({(), 1}) is not well- 
ordered, where the order on {0, 1} is 0 < 1. 

SECTION 1.5. MATHEMATICAL INDUCTION 

Recall the principle of mathematical induction: 

Mathematical Induction, Version I. If 0 is in a set X and if “ne X” 

implies “« + 1 e X” for all natural numbers n, then every natural 

number is an element of X. 

Two variations are 

Mathematical Induction, Version II. If “k e X for all k < n" implies 

“n e X,” for every natural number n, then every natural number is 

an element of X. 

Mathematical Induction, Version III. If y'eX and “neX" implies 

“n + 1 g X”, for every n > j, then every natural number n> j is an 

element of X. 

Principles I and II are easily seen to be the same (just notice that 0 has 

no predecessors in N; thus the hypothesis of II vacuously ensures that 

0g X). Principle III is just principle I moved up a bit. 

Notice that the principle of mathematical induction follows from the 

fact that N is well-ordered: If “k G X for all k < n” implies “n G X”, for 

every «gN, and if N — X ^ 0, then let n be the least element of N — X. 

But k g X for all k < n by hypothesis on n. So, by the induction 

hypothesis, n G X, which contradicts the definition of n. 
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You have probably seen induction used to prove statements about the 

natural numbers, for example that £"=, i=n(n + l)/2. We give three 

examples of how to use induction. The first example assumes naive set 

theory. 
Let SP(X), called the power set of X, be the set of subsets of a set X. 

Theorem 36. If X is finite, so is ^(X). 

Proof. Suppose we know that for every set x of size less than n, ??(x) is 

finite. Let z be a set of size n. If z has no element, we have nothing to 

prove since it has only one subset, namely itself. So we may suppose 

there is some element a e z. Then every subset y of z falls into two 

classes: y <= z — {a} or y = xU {a}, where x (= z — {a}. By the induction 
hypothesis there are only finitely many sets in the first class and hence 

only finitely many in the second class. The sum of two finite numbers is 

finite, so we are done. 

The second example gives an alternative proof for the last theorem in 

section 1.4. 

Theorem 35. If X is well-ordered, so is each Ln{X). 

Proof. If n = 0, there is nothing to prove. So suppose n > 0 and 

suppose Ln-i(X) is well-ordered. For each cr of length n, let cr* be the 

first n — 1 elements of cr, and let a{n) be the nth element of cr. If 

{cr,: i e N} is a descending chain in L„(X), then infinitely many elements 

of the chain have the same length k. By hypothesis k cannot be smaller 

than n, so without loss of generality each cr, has length n. Since each 

crj+1*< cr,*, by the induction hypothesis there is some j so that if /, /' > j 

then <Ti* = cr,-*. Hence cr1+1(n) < CTj(n) for all / > y, which contradicts X 

being well-ordered. 

We have just shown that L0(X) is well-ordered and, for all n > 0, 

is well-ordered” implies ”L„(X) is well-ordered.” Hence, by 

the principle of induction I, each L„(X) is well-ordered, and we are 
done. 

A third example is an inductive proof of proposition 33. Recall 

Proposition 33. If n < m, then S"(x) < S,n(x) for every x. 

Proof. Fix n. We will show by induction on m that the statement 

holds for all m> n. By the definition of successor, it holds if m — n + 1. 
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Now suppose it holds for m. We must show it holds for m + 1. For each 

x, Sn(x)<S'n(x) by the induction hypothesis, and Sm(jc) < Sm+I(x) by 

the definition of a successor. So by transitivity, Sn(x)< Sm+I(jt), and we 

are done. 

A concept related to proof by induction is that of a recursive con¬ 

struction in which we build something up in stages: What we have at 

stage n determines what we do at stage n + 1. Here is a simple example. 

Theorem 37. Let {an: n e N} be a sequence of infinite subsets of N so that 

each an + t <= an. Then there is an infinite set a so that a — an is finite for 
each n; i.e., for each n, all but finitely many elements of a are elements 

of an. 

Proof. We construct a ={k\, k2,...} recursively. The requirement at 
stage n is that kmeam for all m<n. (Note: This sort of requirement 

serves the same function as the inductive hypothesis in a proof by 

induction.) Suppose we have constructed ku..., kn. Since an+l is 

infinite, it has some element k in it which equals no /q, for i < n. Let kn+, 

be such a /c, and keeping going. 

Let us prove that this construction works. Since n < m implies 

an 3 am. if n< m then km e an. Thus each an contains all but finitely 

many elements of a. 

Let us analyze the notion of a recursive construction on the natural 

numbers, using theorem 37 as a guide. A recursive construction on the 

natural numbers is a sequence of sets {A„:neN} (in our example, 

A„={/q: i < n}), where A„ <= An+i for each n, and the final set con¬ 

structed is A = UneN A„. 
There is at least one requirement which holds for each An (in theorem 

37 the requirement is that km e am for all km e An), and this requirement 

is used to prove that A has the desired property. Notice that the phrase 
“recursive construction on the natural numbers” does not mean that A is 

a subset of N but rather that the elements of N are used to index the 

approximations of A. 
We will not give the proof that recursive constructions work, since the 

general theorem is abstract enough to lose coherence for many students 

(the interested student can find a proof in, say, Jech’s Set Theory). There 

are two points to prove: The set A exists, and A does what it is supposed 

to do. Existence comes about via the axiom of replacement (see section 
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2.9); that A works usually involves induction. The interested student can 

check our particular recursive constructions against these principles. 

Exercises using induction and recursion can be found from chapter 2 

on. 

SECTION 1.6. MODELS 

In this section we look at earlier material from the point of view of 

mathematical logic. There are three types of objects to be considered: 

languages, theories, and models. 

First-Order Languages 

In sections 1.1 and 1.3, we introduced sets of axioms for partially ordered 

sets and for equivalence relations. These axioms wene expressed in 

extremely restricted languages, languages with the following properties: 

(a) There was a fixed set of symbols for relations—“<” in section 1.1 

and “=” in section 1.2. 

(b) All sentences of the language were made up of logical words or 

symbols (“and,” “if... then,” “for all,” and so on), the 

symbols of (a), and variables. 

(c) There was only one kind of object referred to (in our examples the 

only objects considered were the points of the underlying set X). 

With some minor augmentation to allow for functions and constants, 

and more precision to rule out ambiguities, properties (a), (b), and (c) 

define what are known as first-order languages. 

Languages with properties (a) and (b) belong to the class of languages 

known as formal languages. Property (c) is the special property of 

first-order languages. For example, the statement “every subset of a 

partially ordered set is partially ordered in the restricted ordering” 

cannot be put in the first-order language of partially ordered sets—we 

cannot say “subset.” Another example is the statement “X is well- 

ordered by <.” The definition of well-ordered is that every subset has a 

certain property. But again, “subset” is not in our vocabulary. 

An example of a statement that can be translated into a first-order 

language is 

“X is linearly ordered by <” 
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whose translation is 

“Vx Vy Vz[x < x and (if x < y and y < x then y = x) and 

(if x < y and y < z then x < z) and (x < y or y < x)]” 

Here the first three clauses tell us that X is partially ordered; the last tells 

us that X is a chain. Notice that we do not actually refer to X in the 

statement. 

In Section 2.1 we will define the first-order language of set theory. 

Theories 

A first-order language does not, in itself, have any meaning. Just because 

we use the symbol does not mean that we have a partial order; just 

because we use the symbol does not mean that we have an 

equivalence relation. We give meaning to symbols by adopting a set of 

axioms: PI through P3 for < and El through E3 for =. Two types of 

theorems can be proved from a set of axioms: theorems in the language 
(e.g., propositions 12 and 13) and theorems that reach outside the 

language (e.g., theorem 10). It is worthwhile to restate proposition 12, 

first in English, and then in the restricted language. 

“A maximum is the unique maximal element. A minimum 

is the unique minimal element.” 

becomes 

“Vx[(Vy y < x) —* Vy((Vz z ^ y)—> y = x)] and 

Vx[(Vy y > x)-»Vy((Vzz y)-> y = x)].” 

The reader is invited to translate proposition 13 into the first-order 

language of partial orders. 
As for theorem 10—if X is linear, so is L(X)—it starts from X and 

proves something about L(X); but there is no way to refer to L(X) or 

even its elements in the nrst-order language of partial orders. 

We must be careful; things are not always as they seem. Thus lemma 

22 (“if E is an equivalence relation on A, then PE is a partition of A”), 
even though it is not first-order, translates into a first-order theorem of 

equivalence relations; to wit: “if VxVyVz[x = x and (x = y iff y = x) and 

(if x = y and y = z then x = z)] then [Vx3y(y = x) and VxVyVz (if z = x 

and z = y then y - x)].” 
A first-order theory is the collection of first-order formulas which can 
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be proved from a set of axioms. Thus the collection of sentences in the 

language of partial orders provable from PI through P3 is called the 

first-order theory of partial orders. Proposition 12 is in this theory, but 

theorem 10 is not. 
Not every important theory is equivalent to a first-order theory. For 

example, it can be shown that the concept of well-ordering cannot be 

captured by a first-order theory. 

Models 

Roughly speaking, a model of a theory is a structure for which the theory 

is true. Thus a model of the theory of partial orders is just a partially 

ordered set; a model of the theory of equivalence classes is just a set with 

an equivalence relation. In algebra, a model of group theory is a group 

and a model of ring theory is a ring. And so on. The study of models of 

first-order theories is called model theory. Using the language of model 

theory, in the examples of sections 1.1 and 1.3 we were verifying whether 

certain structures were models of certain theories. 

There are two salient facts about checking whether a structure is a 

model of a first-order theory. 

(A) You have to check only whether the axioms hold. 

Thus once a structure satisfies PI, P2, and P3, it automatically satisfies 

propositions 12 and 13. 

(B) You never look outside the structure. 

Thus in checking example 1, recall that 2 = (2/3) (3) did not imply 

2 <D 3 since 2/3 was not an element of the structure. 

A theory is said to consistent iff it contains no contradictions. Con¬ 

sistent theories are, of course, the only ones worth studying. 

Here are four important theorems about consistent first-order theories. 

1. The Completeness Theorem, Version I. A first-order statement (/> 

can be proved from a set of first-order axioms si iff </> holds in all 

models of si. (Note that this is essentially principle (A) above.) 

2. The Completeness Theorem, Version II. A first-order theory is 

consistent iff it has a model. (The interested reader can prove this 

equivalent to version I.) 
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3. The First Incompleteness Theorem. If a consistent, axiomatizable1 

theory is sufficiently complicated (in particular, if it encodes simple 

arithmetic on the natural numbers), then there is a statement in the 

language of the theory which the theory can neither prove nor 
disprove. 

4. The Second Incompleteness Theorem. If a consistent, axiomatizable 

theory is sufficiently complicated (in particular, if it encodes simple 

arithmetic on the natural numbers), then it cannot prove its own 
consistency. 

All four of these theorems are due to Godel. 

Consequences for Set Theory 

These concepts—of first-order theory and of model—have had profound 

effects on set theory. Set theory—in which we claim to be able to embed 

all of mathematics—is a first-order theory. Thus the completeness 

theorems apply. Furthermore, if it embeds all of mathematics, it certainly 

embeds simple arithmetic (we will actually do some of this in chapter 4), 

so the incompleteness theorems apply. It is the applications of the 

completeness and incompleteness theorems that give modern set theory 

much of its power and beauty. 

One can made a case for the statement that modern set theory is 

largely the study of models of set theory. Certainly it is the incomplete¬ 

ness theorems that have given set theory such essential application in 

other branches of mathematics. These themes—models and incomplete¬ 

ness—will reappear throughout the book. 

A word on what we will mean by models. The precise, formal 

definition of “model of a first-order theory” is quite abstract, and far too 

general to be stated in a set-theory text. Instead we will take the ad hoc 

approach of defining what it is for a set to be a model of each axiom as 

the axiom is introduced, always appealing to principle (B) above. The 

models we define are known as standard models. As the axioms get more 
complicated, the definitions of their models become more complicated. 

When this happens, we will simplify life by only defining what it is for a 

certain kind of set (a transitive set) to be a model. 

+An axiomatizable theory is, roughly speaking, one with a recognizable set of axioms, 
e.g., the theory of partial orders, or set theory. The definition of “recognizable” is that 
there is an effective algorithm which can decide whether an arbitrary formula in the 
language is an axiom or not. An effective algorithm is one which can be run on a computer. 
(More formal definitions exist, but this captures our intuiton well.) 
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The astute reader may have noted a seeming conflict between Godel’s 

second incompleteness theorem, which implies that set theory cannot 

prove that it has models, and the statement that modern set theory is 

largely the study of models of set theory. Both are true. Doing set theory 

is an act of faith, the same act of faith performed when we do any 

moderately complex mathematics, and the faith is that what we are doing 

is internally consistent. Formally, theorems involving consistency and 

models of set theory usually have one of two forms: “if set theory is 

consistent, then ...,” and “a model built in this way has those proper¬ 

ties,” thus escaping conflict with the second incompleteness theorem. 

EXERCISES FOR CHAPTER 1 

1. Show that the relation x <sy in example 3 is a partial order. 

2. Define x<my, for x,yeN, iff y — z = x for some z in N. Is this a 

partial order? 

3. Define the dual R~l of a relation R by xR~ly iff yRx. Show that 

R is a partial order iff R1 is. 

4. Show that the relation x Ey defined by “x E y iff x = y or x is an 

element of y” is not a partial order. 

5. Let X consist of all points (a, b) in the plane where a, b e N. Show 

that under the order “x < y iff x sits directly below y” X has 

infinitely many chains, infinitely many minimal elements, and no 

maximal elements. What about <~'? (See exercise 3). 

6. Let Y consist of all points (a, b) in the plane where a, b are in Z and 

define “r < y iff r = y or r sits directly below y.” How many chains 

does Y have? How many minimal elements? How many maximal 

elements? 

7. Prove that a maximal element in a linear order is a maximum. 

8. Find a partial order with seven maximal elements and three minimal 
elements. 

9. Let X be as in exercise 6. Show that for fixed b, {(a, b): a e N} is an 

antichain. More generally, show that A is an antichain in X iff no 

two elements of A have the same first coordinate. 

10. Show that example 2 (see example 14) is an equivalence relation. 

11. Consider the unit square 72 = [0, 1] x [0, 1] in (R2. For (a, b), (c, d) e 

I2, write (a, b) E (c, d) iff a = c and {b = 1 - d or b = d). Show that 

this is an equivalence relation. If we glue y to x iff x E y what 

geometrical shape results? 
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12. Again on the unit square, define (a, b) F (c, d) iff a = c and b = d; 

or a = c, bd = 0, and b = \ - d. Show this is an equivalence relation. 

If we glue x to y iff x Fy, what geometrical shape results? 

13. Show that the Frechet order (see example 18) is a partial order. 

14. Consider the point (1/3, 2/3) in the unit square. Referring to exercise 

11, what is the equivalence class of this point? Referring to exercise 

12, what is its equivalence class? 

15. Draw a picture of L3(N); of L4(N). How many limits does each have? 

16. Find a well-ordered subset of R isomorphic as an ordering to L3(N). 

17. Find a well-ordered subset of R with exactly seven limit elements and 

one maximal element, which is also a limit. 

18. Find a well-ordered subset of R with exactly seven limit elements and 

no maximal elements. 

19. (a) Let {0, 1} have the order 0 < 1. Show that this is well-ordered but 

L({0, 1}) is not well-ordered. 

(b) Show that L(X) is not well-ordered if the well-ordered set X has 

at least two elements. 

20. Suppose X is partially ordered and every nonempty subset of X has 

a least element. Show that X is well-ordered. 

21. Let X be well-ordered by <x, and let Y be well-ordered by <y. Let 

F = {f:f is a function from X to Y}. Let <L be defined on F by 

f<Lg iff, where x = min{y e X: f(y) ± g(y)}, /(x)<yg(x). Show 

that F is linearly ordered by <L. 





2 
THE AXIOMS, PART I 

INTRODUCTION 

In the nineteenth and early twentieth centuries mathematicians and 

philosophers were concerned with the foundations of mathematics far 

more urgently than they are today. Beginning with the effort to free 

calculus from its reliance on the then half-mystical concept of infinitesi¬ 

mals (there is a way of making infinitesimals precise, but it is modern, an 

unexpected fallout from formal mathematical logic), mathematicians 

interested in foundations were largely concerned with two mat¬ 
ters—understanding infinity and exposing the basic principles of mathe¬ 

matical reasoning. The former will be dealt with later; it is with the latter 

that we concern ourselves now. 

The basic principles of mathematical reasoning with which we will be 

concerned are the axioms of set theory. (There are other basic matters to 

deal with—for example, the laws of logic that enable us to discriminate a 

proof from a nonproof—which are the subject of mathematical logic.) 

Even restricting ourselves to deciding which statements are obviously 

true of the universe of sets, we find ourselves with several axiom systems 

to choose from. Luckily, the ones in common mathematical use are all 

equivalent (that is, they all prove exactly the same first-order theorems), 

as they should be if, indeed, they codify our common intuition. The 

system we shall use is called ZF, for the mathematicians Zermelo and 

Fraenkel, and is the one most widely used. 
Why should we bother with axioms at all? Isn’t our naive notion of a 

set enough? The answer is no. Promiscuous use of the word “set” can get 

us into deep trouble. Consider Russell’s paradox: Is the set of all sets 

which are not members of themselves a set? If X is defined by x e X iff 

x4 x, then X e X iff X £ X, which is a contradiction. No mathematical 

23 
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theory which leads to a contradiction is worth studying. And if we claim 

that we can embed all of mathematics within set theory, as we shall, the 

presence of contradictions would call into question the rest of mathema¬ 

tics. 
Another reason for elucidating axioms is to be precise about what is 

allowed in mathematical arguments. For example, in theorem 29 of 

chapter 1, we constructed a set by finding a first element, then a second, 

then a third, and so on ..., and then gathering everything together “at 

the end.” Is this a reasonable sort of procedure? We probably do not 

want to appeal to logic alone to justify it, since most people prefer proofs 

to be finite objects, and we are talking about an infinite process. The 

axioms of set theory will help us here. They will show that some infinite 

arguments are clearly sound (e.g., induction) and will also set limits on 

what we can do—the axiom of choice is controversial precisely because it 

allows a form of argument which some mathematicians find too lenient. 

By the completeness theorem, the existence of a set of first-order 

axioms which defines set theory would carry with it the benefit of the 

existence of models of set theory, if we could show the consistency of set 

theory. But, by the second incompleteness theorem, we cannot show this 

from within ZF. The consistency of ZF and the existence of models of ZF 

are articles of faith. 
If ZF is consistent, then, by the first incompleteness theorem, it has 

statements which hold in some models but not in others, just as some 

partial orders are linear and others are not. Such statements are called 

independent. Their associated questions (e.g., “is cf) true?”) are called 

undecidable. An easily stated undecidable question in ZF is: How many 

real numbers are there? Since all of mathematics can be done in the 
context of set theory, it is not unreasonable to expect that there are 

independent statements of general mathematical interest, and in fact 

there are. The most fertile fields for them so far are topology, algebra, 

and analysis. 

A note on ho^ this chapter is written: By the nature of the subject, 

there are times when we may seem unduly picky. Thus we must justify 

the use of ordered pairs, show that Cartesian products exist, and so on. 

Since we are trying to develop set theory axiomatically, ideally at each 

point we would use only the little bit of mathematics that has been 

deduced so far. But many of the concepts are best illustrated with 
reference to examples which can only be justified later, when we know 

more, but which are intuitively clear, the sort of thing the reader is 

mathematically used to. To avoid confusion, in this chapter and chapter 

3 when we refer to concepts that cannot yet be justified by what we have 

done so far, the text will be marked off by indentation. 
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SECTION 2.1. THE LANGUAGE, SOME FINITE OPERATIONS, 
AND EXTENSION ALITY 

Any mathematical theory must begin with undefined concepts or it will 

end in an infinite regress of self-justification. For us the concepts are the 

noun “set” and verb form “is an element of.” We have an intuition of 

their meanings. The axioms are meant to be a precise manifestation of as 

much intuition as possible. 

We write “x e y” for “x is an element of y”; “x 4 y” for “x is not an 

element of y.” Note that in the formal mathematical language the word 
“set” is superfluous—all the objects we talk about are sets. So we really 

have only the undefined symbol “e” and the logical shorthand “$L” 

Using just “e” and “4" we define some basic concepts. 

Definition 1 

(a) x <= y iff Vz(if z e x then z e y). 

(b) x U y = z iff Vtv(w e z iff (w e x or we y)). 

(c) x fl y = z iff Vw( w e z iff (w e x and w e y)). 

(d) x — y = z iff Vw(w e z iff (w e x and w 4 y)). 

(e) z = 0 iff Vw(w 4 z). 

These new symbols are, strictly speaking, unnecessary. For example, 

we will shortly prove 

VxVy(if x <= y and ycx then x = y) 

But this is just shorthand for 

VxVy[if(Vz(if z e x then z e y) and 

Vz(if z e y then z e x)) then x = y]. 

Definition 1 is not quite formal enough—it uses English words such as 

“or,” “and,” “if,” “then.” This can be avoided by restricting the lan¬ 

guage of set theory as follows: 

We allow variable symbols: x«, Xi, x2,.... 
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We allow constant symbols: c0, C\, c2,... .+ 

We allow other logical symbols: 

V (for all) 

3 (there exists) 

a (and) 

v (or) 

—> (if... then ...) 

~ (iff) 

= (equals) 

i (not) 

( (left parenthesis) 

) (right parenthesis) 

We allow a single nonlogical symbol: g. That is all. 

Thus, for example, we rewrite 

V w e z( w g x and w 4 y) 

as 

VjC] ((jCi G X2) -» (Xi G X3 A “I (Xi G X4)). 

Nearly everything we do in set theory can be done in this formal 

language, but our human brains find complicated formulas difficult to 

process. 

Later we will define, in the language of set theory, an important class 

of objects known as ordinals. Let us see how an intuitively clear state¬ 
ment about ordinals translates into the formal language. Compare the 

statement: 

if x, y are ordinals, then either xGyoryGxorx = y 

with its formal equivalent: 

+Constant symbols are used much as proper names are used, to refer to specific objects in a 

specific context (much as there are many Judys in the world, yet the name “Judy” causes no 

ambiguity when it is understood to refer to me). Thus the sentence “Vx,(x, £ c3)” changes 

its truth value according to which set is currently being named by c3, just as the question 

“Is Judy a mathematician?” has a different answer according to which Judy is being 

referred to. 
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VxVy((VzVw((z g w a w g x)-» z g x) 

a VzVw((z g w a w G y)—> z G y) 

aVzVw((zgxa w g x) —» (z g W V z — w v wgz)) 

AVzVw((zGyA WGy)->(zG W V z — wv wgz))) 

-"(xeyvx-yv yex)). 

Even this is not formal enough—we should change x to x,, y to x2, z to 

x3, w to x4. But this is unreadable. Being only human, we feel free to use 

our abbreviations, that is, our defined symbols and concepts, and to use 
the English language. 

Having accepted the symbols of definition 1, we would like to prove 

theorems about the operations they represent. To do this we need our 

first axiom, meant to capture our intuition that a set is defined by its 
elements, not by its description. For example, {xgN: x is divisible by 

2} = {x g N: 3x is divisible by 6}. 

Axiom of Extensionality. Two sets are equal iff they have the same 
elements: VxVy[(x = y)<-»Vz(z gx^zg y)]. 

Theorem 2. For all x and y, x = y iff (x c y and y <= x). 

Proof. Given x, y, 

x = yiffVz(zGx<H>zGy) 

iff Vz([z Gx^zGy] and [z G y—» z g x]) 

iff [Vz(z g x—> z G y) and Vz(z g y-» z G x)] 

iff (x <= y and y <= x). 

Theorem 2 provides us with a method of proof. To show that two sets 

are equal, it suffices to show that each is a subset of the other. 

Theorem 3. Let x, y, z be sets. Then 

(a) xUx = x = xDx (idempotence of U and fl). 

(b) xUy = yUx; xny = y(1x (commutativity of U and D). 

(c) x U (y U z) = (x U y) U z; x fl (y IT z) = (x fl y) D z 
(associativity of U, fl). 
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(d) x U (y fl z) = (x U y) D (x U z); x D (y U z) = (x D y) U (x D z) 

(distributive laws). 

(e) x <= y iff x fl y = x iff x U y = y. 

(f) x - (y U z) = (x — y) fl (x - z); x -(y fl z) = (x - y) U (x - z) 

(De Morgan’s laws). 

(g) 0 c x. 

Proof. We content ourselves with proving (e) and (g), leaving the rest 

as an exercise. For (e): Suppose x <= y. If z e x, then z e x fl y. Hence 
xcxflycx, so x fl y = x. Suppose x fl y = x. If z e x, then z e y by 

hypothesis. Hence y c x U y <= y, so xU y = y. Finally, if x(Jy = y and 
z e x, then z e x U y, so zey. Hence x <= y. Having come full circle, (e) 

is proven. 
For (g): Let x be a set. We must show that Vz(ze0^zex). But 

“ze 0” is false for all z; hence the implication we need is vacuously true. 

Let us define some more notation. If Xi ... xn are sets, then 

{*i,..., xn} = z iff (xi e z a • • • a x„ e z) a Vy e z(xi = y v • • • v x„ = y). 

If (f) is a formula in the language of set theory, then {*: <£(*)} =z iff 

Vy(y g 2 <-> <f>( y)). For example, {x: xeN and x > 10} = {11, 12,13 ...}. 

Curly brackets will also be used less formally, as in {2, 4, 6, 8, 10 ...} or 

{*i, x2, x3, x4 ...}, or more generally {*,: i e /}. These last uses will be 
formally defined in section 2.5, but we need them earlier for examples. 

It is time now to define the sets we are willing to call models of the 

axiom of extensionality. 

Suppose X is a set and x, y are distinct elements of X. Descending for 

a moment into anthropomorphic language, when can X recognize that 

x ^ y? Not only must there be some ze(x-y)U(y-x), but such a z 

must be an element of X—otherwise X is blind to its existence. 

(An analogy: N does not know of the existence of any multiplicative 

inverses other than 1; but Q does.) 

Definition 4. A set X satisfies (is a model of) extensionality iff, for all 

distinct x, y g X, X fl [(x - y) U (y - x)] ^ 0. 

Let us look at an example. X = {0, {0}, {{0}},...}. That is, if x0 = 0 

and, for each n e N, x„+1={x„}, then X = {x„:zjgN}. By exten¬ 
sionality and a little induction, x„ ^ xm iff n ^ m. Suppose n < m. 

Then xm_i G xm - xn. So X satisfies extensionality. 

Another example: X = {x, y} where Xn[(x-y)U(y-x)] = 0 and 
x ^ y. Then X does not satisfy extensionality, since any set which would 

enable it to distinguish x from y is excluded. 
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SECTION 2.2. PAIRS 

We already defined {x, y} in section 2.1. Our second axiom justifies 
talking about it. 

Pairing Axiom. For all sets x, y, {x, y} is a set: Vx Vy 3z (z = {x, y}). 

Note that {x, x} = {x} by the axiom of extensionality. We call {x} a 

singleton and {x, y}, where x ^ y, an unordered pair or, when the context 

is clear, just a pair. As we are about to see, the pairing axiom is actually 
quite strong. 

Often in mathematics we need to distinguish between two objects in a 
pair. For example, the point (2, 1) in R2 does not equal the point (1, 2) in 

R~. We need to define a concept of ordered pair (x, y) that will have the 

property: (x, y) = (z, w) iff x = z and y = w. This definition must be 

reducible to a formula using only e. There are many ways of doing this. 
The one used here is standard. 

Definition 5. For all sets x, y, (x, y) = {{x}, {x, y}}. 

When the context is unambiguous, we will take the liberty of calling an 
ordered pair just a pair. 

Theorem 6. For all sets x, y, z, w, (x, y) = (z, w) iff x = z and y = w. 

Proof. By extensionality and definition 5, if x = z and y = w, then 

(x, y) = (z, w). 

For the other direction, suppose (x, y) = (z, w). If {x} = {z, w}, then 

x = w = z and {x, y} = {z}, so x = y = z and y = w. If, on the other hand, 

{x} — {z} ^ {z, w}, then x = z ^ w. Since {x, y} = {z, w}, we again have 

y = w. 

Ordered pairs enable us to define ordered n-tuples and finite dimen¬ 

sional Cartesian products, e.g., R". There are two ways of doing this: an 

inductive method using minimal machinery, which works only for finite 

dimension, and a method using the definition of function, which general¬ 

izes to infinite dimension. We will eventually settle on the second 

method, but it is worthwhile to describe the first. 
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A Method for Cartesian Product 

Define (a) = {a}, and, if n > 2, define (a0,..., a„) = ((a0,..., an-i), an). 

Define X0 x • • • x X„ = {(a0,.. ., an): a, e X, for all 0 < i < n}. 

Thus, as an immediate corollary of the pairing axiom, if x0,..., xn are 

sets, so is (x0,..., x„). That X0 x • • • x Xn is a set if each X, is a set will 

be shown later. 

The clumsiness of this definition is offset by the fact that it needs no 
further set-theoretic machinery. In fact it essentially does not need set 

theory at all—any theory with a definition of ordered pair satisfying 

theorem 6 will do. The classical axioms of number theory (Peano’s 

axioms) give another example of such a theory. 

We want to define models of the pairing axiom. If x, y £ X, a £ X, and 

{x, y, a} £ X, then X thinks that {x, y, a} satisfies the definition of {x, y}, 

since a is invisible to X. With this motivation we have 

Definition 7. A set X satisfies (is a model of) pairing iff, for all x, y £ X, 

there is some z £ X with z fl X = {x, y}. 

In particular, if, for all x, y £ X, {x, y} £ X—we say such an X is 

closed under pairing—then X satisfies pairing. However, this is not a 

necessary criterion. 

Note that you can satisfy pairing and not satisfy extensionality, and 

vice versa. In general, a model for one axiom of ZF need not satisfy any 

of the others. 

This simple process—unordered pair to ordered pair to arbitrary 

n-tuple—coupled with a little arithmetic and a lot of hard work gives us, 

in fact, Godel’s incompleteness theorems. 

The first step is to code set theory by arithmetic. Thus, recalling the 
formal symbols of our language from Section 2.1, we code them as 

follows: 

V is assigned 

3 

0 

1 
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= is assigned 9 

e 10 

x, 11+2/ 

C; 12 + 2/. 

Thus the formula Vxi3x)7 —i (xi = xi7 v x7 e x)7) is coded by the 14- 
tuple (0, 13,1,45, 2, 7, 13, 9, 45, 4, 25, 10, 45, 8). 

The second step, which will be done in the second and fourth chapters 
of this book, is to embed arithmetic inside set theory. 

The third step (the interested reader can see proofs in any good logic 

text) is to show that, using arithmetic, there are formulas defining which 

sequences code formulas, proofs, theorems, and so on. For example, 

there is a set-theoretic formula ip so that if/(x) holds iff x codes a theorem 

of set theory. The statement “set theory is consistent” is then the 

statement ~i iff (a) where a is the code for the statement “0 = 1.” Thus set 

theory can talk about itself. 

Finally we have Godel’s incompleteness theorems for set theory, for 

whose proofs the reader is referred to any standard logic text: 

First Incompleteness Theorem (for Set Theory). There is a formula in the 

language of set theory which is independent from the axioms of set 

theory. 

Second Incompleteness Theorem (for Set Theory). If set theory is con¬ 

sistent, then it cannot prove its own consistency. 

By coding, these are actually statements in set theory itself, e.g., the 

first incompleteness theorem can be stated within set theory as: 

3x(</>(x) A -I i(/(x) A Vy(p(x, y)-> -i <My» 

where 

(p(x) means x codes a formula 

if/(x) means x codes a theorem 

p(x, y) means y codes the negation of the formula coded by x. 

Many theories are incomplete. For example, the theory of linear 

orders cannot prove or disprove the statement: 3xVy (x < y), since some 

linear orders have a least element and other linear orders do not. For 

most theories, incompleteness is expected and not interesting. But we 
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make the grandiose claim, which we will actually take some steps to 
support in chapter 4, that set theory captures our intuition of the 
mathematical universe; that is, all methods of all branches of mathema¬ 
tics are reducible to set theory. One might hope that every mathematical 
question we have is thus settled by it, but assuming the consistency of set 
theory, the first incompleteness theorem says no. There are questions of 
mathematics that mathematics cannot answer. The second incomplete¬ 
ness theorem adds that one of these undecidable questions is whether set 
theory itself is consistent. 

SECTION 2.3. CARTESIAN PRODUCTS 

Before defining ordered n-tuples so that the concept generalizes to 
infinite dimensions, we need to define relations and functions. 

Definition 8 

(a) A relation is a set of ordered pairs.+ 

(b) A relation k is a function iff for all x, y, z, (x,y)eR and 
(x, z)e R implies y = z. 

(c) The domain of a relation R is {x: 3y(x, y) e R} = dom R. 

(d) The range of a relation R is {y: 3x(x, y) e R} = range R. 

(e) The field of a relation R = field R = dom R U range R. 

We say that X is a domain (respectively range or field) of R iff 
X => dom R (respectively range R or field R). 

Note that domains, ranges, fields are not uniquely defined, but the 
domain, range, or field of a relation R is uniquely defined. 

For example, if dom/= N, f(n) = 2n for all n, then range / = the 
set of even integers, but R is both a domain and a range of /. 

Example 9. Here is the formal definition of equivalence relations: A 
relation R is an equivalence relation iff 

(1) If x 6 field R, then (x, x) e R. 

(2) If (x, y) e R, then (y, x) e R. 

(3) If (x, y) e R and (y, z) e R, then (x, z) e R. 

fWhat we are defining as relations are often called binary relations; what we define as 
functions are what are called unary functions. For other sorts of relations and functions, see 
the exercises. 
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Example 10. Here is the formal definition of partial orders: A relation R 
is a partial order iff 

(1) If x e field R, then (x, x) e R. 

(2) If (x, y) 6 R and (y, x) e R, then x = y. 

(3) If (x, y)e R and (y, z) e R, then (x, z)e R. 

The reader is assumed to be familiar with relations and functions. Let 
us specify some notation. 

Continuation of Definition 8 

(f) /[A] = {y: 3x e A(x, y) e /} for any relation /. 

(g) If (x, y) G / and / is a function, we write /(x) = y. 

(h) A relation on a set X is a subset of X2. 

(i) A function / on X is one for which X = dom /. 

(j) For any relation R, R ={(y, x): (x, y) 6 R}. 

(k) A function / is 1-1 iff f~l is a function. 

(l) If / is a function, dom /= A, and B is a range of /, we write 
f: A^B. 

(m) If f: A—> B and B = range /, we say / is onto B. 

(n) If /: A—> B is 1-1 and onto B, we say / is a set isomorphism (or 

bijection) between A and B. 

Using the concepts of definition 8, we now give our official definition 

of n-tuples and Cartesian products. 

Definition 11 

(a) An n-tuple (a0,..., an-t) is a function / with dom/ = 

{(),..., n- 1}, and a, = /(f). 

(b) The Cartesian product X()x • - • x X„_i is the set of all n-tuples / 

such that /(/) g Xi for each 0< i < n — 1. 

Notice that an ordered pair (as defined in section 2.2) is not the same 

as a 2-tuple (as defined in definition 11). Note also that, as we have not 

defined even 0 yet, we have not officially established that these 

definitions make sense. Nevertheless, from now on we assume that 

n-tuples and Cartesian products are defined as in definition 11. 

Before generalizing to infinite dimensions we introduce yet more 
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notation: If h is a function with dom h- I and each h( i) = x, for ie I we 

write {x,: i e /} and use it in two ways: 

Strict use: {*,: i e 1} = h. That is, we deeply care that x, is, so to speak, 

the ith element of the list; X;’s salient feature is that it is h(i). This is 

sometimes written as (X*: ie /) or (x,: i e /). 

Casual use: {x,: ie I} = range h. That is, we do not particularly care 

how x* got into the range of h, although it is convenient to consider 

it as being the z'th element; / is used to index range h. 

For example, in casual use [In: n e N} is exactly the set of even 

integers. In strict use {2n: n e N} is the function h:N^N whose 

value at n is 2n. The ambiguity of this notation usually causes no 

confusion since the use is clear from the context. 

Continuation of Definition 11 

(c) Given {x,:ze/} we define the Cartesian product flie/ */= 

{/: dom / = / and f(i) e x, for all ie /}. 

Elements of flie/ are called choice functions (because they choose 
an element out of each xT If for some X, each x, = X, we write 

Hie/ Xi = 'X\ note that 'X is just {/: / is a function, dom /= /, and X is a 
range of /}. 

While we will soon establish the existence of ordered n-tuples and the 
Cartesian product of finitely many sets from elementary axioms, the 

general existence of choice functions needs its own axiom, the axiom of 
choice, that will be discussed in chapter 3. 

SECTION 2.4. UNION, INTERSECTION, AND SEPARATION 

Definition 12 

(a) Ux = {2: 3y e x(z e y)}. 

(b) fix = {z: Vy e x(z e y)}. 

Notice that xUx = U{x, x} and is not the same as Ux: e.g., let 
x = {y}. Then x U x = x, but U x = y. 

When X = {x,: ie I}, we define Uie/ x, = UX, fl,€, x,- = DX. 

We are now ready to justify the definitions of section 2.1 by the 

Union Axiom. If x is a set, so is Ux: Vx 3y(y = Ux). 
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An immediate corollary is that if x, y are sets so is xU y (because 
{x, y} is a set, so U{x, y} is a set). By induction, given any neN and any 

sets x0,..., x„, x() U • • • U x„ is a set. 

There is no intersection axiom: Note that Vx(x e D0), so if D0 were a 

set, then the collection of all sets would be a set, which we will soon see 

leads to a contradiction in the presence of other reasonable axioms. To 

show that x D y is a set when x, y are sets we need the 

Axiom Schema of Separation. Suppose X is a set and $ is a formula. 

Then {x e X: </>(x)} is a set. More formally: Let cf) be a formula in the 

language of set theory, parameters allowed. Then Vx3y(ze y iff z E x 

and 4>{x)). 

Some authors refer to this as the axiom schema of comprehension. 

Note that this is a schema, not a single axiom—we need a different axiom 

for each </>. 

Let us agree for a moment that “the universe” means “the collection 

of all sets.” Using Russell’s paradox we prove 

Theorem 13. The universe is not a set: —i3x Vy(ye x). 

Proof. Suppose 3x Vy(y e x). Let x be such, and let (f> be the formula 

“z^z.” Let X = {zex:z^z}. Then Xex; hence XeX iff X ^ X, 

which is a contradiction. 

Theorem 14 

(a) x ^ 0 iff 3y(y = D x). 

(b) If x, y are sets, so are x — y and xfly. 

(c) x - fl y = U{x - z: z £ y} if y ^ 0. 

(d) x — U y = fl{x — z: z e y} if y ^ 0. 

Parts (c) and (d) are the infinitary De Morgan’s laws. 

Proof. We do (b): x-y = {zex:z^y}; xfly = {z£x:zey}. 

We do (c) ana leave (d) as an exercise: wex-fly iff (wex and 

w^fly) iff (wex and 3zsy(w^z)) if 3zsy(wsx and w i z) iff 

w E U{x — z: z E y}. 
Finally, we do (a). Suppose x = 0. Then Vw(w^ x), so the statement 

Vw( w E x —* z E w) is vacuously true for each z. Hence Vz(z e fix). But 

this is impossible, so fix is not a set. 
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For the other direction: If x ^ 0, then VysxfzEy) implies 3ye 

x(z e y). Hence fl x = {z e Ux: Vy e x(z e y)} which is a set by union and 

separation. 

We close this section with models of union and of separation. 

Definition 15. X is a model of union iff VxeX 3ze 

X(znX = U{ynX: y 6 x n X}). 

For example, let X = {a, b, c} where a = 0, b *= {0}, and c = {b, {{ft}}} = 

{{0}- {{{0}}}}- We show that X satisfies union. 110 = 0, 0flX = 0, and 

0 e X. So U0 e X. U{0} = 0, so U {0} e X. Finally, U{{0}, {{{0}}}} = {0, {{0}}} 

and {0, {{0}}} fl X = {0} £ X. So (U {{0}, {{{0}}}}) fl X e X, and we are done. 
For another example, let X = {xn: «eN} where jc() = 0 and each 

jt„+1 = x„U{xn}. We show that X is a model of union. First note 

that, by induction, for each x E X, x fl X = x. Then again by 

induction note that U x() = 0 £ X and each U xn+] — xn E X. That X 

is a model of union will then follow from 

Proposition 16. X is a model of union if, for all x E X, x c X and 

Ux£ X. 

Proof. Suppose x £ X. Since x c X, if ys x, then y £ X and y c X. 

Let z = Ux. Then zeX and z cz X. So z fl X = z = U {y: y e x} = 

U{y fl X: y E x fl X}, as required. 

Before discussing models of separation, we need to discuss relativizing 

a formula 0 to a set X. The idea is simple: Replace each “3x” by 

“3xe X,” and replace each “Vx” by “Vxe X.” The relativization of 4> 

is written </>x. The motivation, as always in models of first-order theories, 

is that to check whether a formula holds in X you just check the 

elements of X. Thus, in the language of linear orders, the closed unit 

interval is a model of the sentence “Vx(x < 1),” even though the bigger 

set R is not. If (f> is the formula “Vx(x< 1)” and X is the unit interval 

[0, 1], then 4>X >s the formula “Vx e [0, 1] (x < 1).” 
With this discussion in mind, we are ready for 

Definition 17. X is a model of separation iff for all formulas 4> with 

parameters in X, Vx E X 3z E X (z ft X = {y e x (T X: <f>x(y)}). 

While definition 17 is quite complicated, it has a simple corollary 

which will suffice for every application we will need. 
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Proposition 18. X is a model of separation if, for all x e X, if y c x, then 
ye X. 

The reader is asked to prove proposition 18 as an exercise. 

A final, quite technical, note about separation. The alert reader will 

have noted that the locution “for all formulas which occurs in both 

the definition of the axiom of separation and in definition 17, is not, 

properly speaking, in the language of set theory. However, using the 

coding techniques mentioned in section 2.2, we can translate this locu¬ 

tion into the language of set theory. Thus, as promised, everything we do 

can be done within set theory. 

SECTION 2.5. FILTERS AND IDEALS 

The standard set-theoretic operations enable us to define some com¬ 

binatorial concepts that will be returned to in chapters 3 and 7. These 

concepts—of filter and ideal—are of great importance not only in set 

theory but in topology and measure theory as well; a more generalized 
definition of ideal is essential in algebra. 

Definition 19. A filter on a set X is a family F of subsets of X so that 

(a) If a e F and X => b^> a, then b e F. (We say that F is closed under 

superset.) 

(b) If au , an are elements of F, so is ax fl • • • fl an. (We say that F 

is closed under finite intersections.) 

If 0 4- F, we say that F is proper. If some {jc} e F, we say that F is 
principal; otherwise F is nonprincipal. If, for all a <= X, either a or X — a 

is an element of F, we say that F is an ultrafilter. 

A filterbase on X is a family B of subsets of X whose closure Bs 

under superset is a filter (i.e., Bs = {a <= X: 3b e B(a b)}). 

Example 20. Let x e IR, and let B be the collection of open intervals 

(x-r, x + r) where r>(). Then B is a filterbase and Bs is a proper, 
nonprincipal filter and not an ultrafilter (neither {*} nor R-{x} are 

elements of Bs). 

Example 21. Let X be an infinite set, and let F = {flcX: X- a is 

finite}. Then F is a proper, nonprincipal filter and not an ultrafilter 

(every infinite set splits into two disjoint infinite subsets). 
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Example 22. Let X be any nonempty set, choose x e X, and let F = 

{Ye X;xe Y}. Then F is a proper, principal ultrafilter on X (since for 

every Y <= X either x <= YorxeX- Y). 

If you are wondering where the examples are of proper, nonprincipal 

ultrafilters, the answer is that such filters need the axiom of choice for 

their construction. This will be done in chapter 3. 

Some facts about ultrafilters: 

Lemma 23. Suppose F is an ultrafilter on a set X and a e F. If b <= a, 

then either b e F or a — b e F. 

Proof. If b £ F, then X — b e F, so a fl (X — b) = a - b e F. 

Lemma 24. Suppose F is a proper ultrafilter on a set X and X = 

fliU"-Ua„. Then some a, e F. 

Proof. If not, then each X — (a^ U • ■ • U ak) e F, where k< n, but 
X — (a, U • • • U a„) = 0. 

Corollary 25. Every proper ultrafilter on a finite set is principal. 

Proof. If X = {jti,..., jc„}, then X = {*,} U • • • U {*„}. 

The dual concept to a filter is that of an ideal. 

Definition 26. An ideal on a set X is a family J of subsets of X so that 

(a) If b e J and X => b => a, then a e J. (We say that J is closed under 
subset.) 

(b) If au ..., an are elements of /, so is at U • • • U an. (We say that J 
is closed under finite unions.) 

The connection between ideals and filters is 

Proposition 27. J is an ideal on X iff Fj = {X- a: a e J} is a filter on X. 

Proof. That J is closed under finite unions iff Fj is closed under finite 

intersections follows immediately from De Morgan’s laws. That J is 

closed under subsets iff Fj is closed under supersets follows from the fact 
that, for a, b subsets of X, b => a iff (X — a) => (X — b). 

We say that J is principal, nonprincipal, or proper according to 

whether Fj is principal, nonprincipal, or proper. We say J is a maximal 
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ideal iff Fj is an ultrafilter. We say K is a base for an ideal iff Ks, the 
closure of K under subset, is an ideal. 

Example 28. The collection of finite subsets of a given set X is an 

ideal, proper iff X is infinite. (Example 21 is the filter com¬ 
plementary to this ideal.) 

Example 29. Define a nonempty subset Y of R to be perfect iff it is 

closed, bounded, and has no isolated points (no isolated points 

means that every element of Y is the limit of a sequence of distinct 

points in Y). The collection of perfect subsets of R is a base for a 

proper, nonprincipal ideal. Another base for this ideal is the set of 
bounded closed intervals. 

SECTION 2.6. THE NATURAL NUMBERS 

We still have not proved that each ordered n-tuple, defined as in 2.11, is 

a set. Since this definition appeals to the natural number n, we need a set 

which can represent n in our set-theoretical universe. 

Note that we do not claim to settle any philosophical issues, such as 

“what is zero?” or “in what sense does the number three exist?” Our 

more modest goal is just to embed our mathematical intuition about 
natural numbers into the universe of sets so that we can count and do 

arithmetic within set theory. Later, in chapter 4, we will do the same for 
Q and R. 

We want the sets we pick to represent natural numbers to be, in 

some sense, natural choices. To this end we adopt two guiding principles: 

Principle A: Each n should have n elements. 

Principle B: For each n and m, n < m iff n e m. 

These principles, whose serendipity will become clear when we discuss 

ordinals and cardinals, give us no choice about our definitions. 
By principle A, 0 = 0. 

Now suppose we know n and want to define n + 1. Since n < n + 1, we 

must have nen+1; since m<n implies m<n +1, we must have 

nc n + l. So nil {n} <= n + 1 by principle B. But by principle A, since n 

has n elements and n U{n} has n + 1 elements, we cannot put anything 
more into n +1. So n + l = nU{n}. 

Thus 1={O} = {0}, 2 = {0, 1} = {0,{0}}, 3 = {0, 1,2} = {0, {0},{O, {0}}}, 
and so on. 

Thus if 0 is a set, so is each n. 
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Now for N. This is a thorny problem. We defined each natural number 

separately, in terms of its predecessors. This took infinitely many sen¬ 

tences. But we cannot say “jc € N iff x = 0 or x = 1 or x — 2 or x = 3 

or ..because infinite sentences are not allowed. How can we capture 

our intuition about N in a finite sentence? 
There are many ways to do this. The one we use looks at each natural 

number as an ordered set. The key properties each natural number x has 

are: 

Property C: Each x is well ordered by e, and if z e y e x, then z e x 

(we say that x is transitive). 

Property D: Each nonempty jc has exactly one limit element, namely 

0. 

Property E: Each nonzero jc has exactly one element with no suc¬ 
cessor, which we call jc — 1, and jc = (jc — 1) U {(jc — 1)}. 

A set jc satisfying properties C, D, and E will be called a finite ordinal. 

We define M to be the collection of finite ordinals. One task of the next 

section will be to show that N is a set. 

SECTION 2.7. TWO NONCONSTRUCTIVE AXIOMS: INFINITY 
AND POWER SET 

Definition 30. Let jc be a set. The successor of jc is defined as jc U {jc} and 

is denoted by S(jc). 

Note that if n is a finite ordinal, n + 1 = S(n). 

The Axiom of Infinity. There is a set having zero as an element which is 

closed under successor: 3jc(0e x and Vy e jc(S(y)e jc)). 

Notice that this is the first axiom which baldly asserts that sets exist 

(with the exception of extensionality, our previous axioms had the form 

“if these are sets, so is this”). An immediate corollary of the infinity 
axiom is that 0 is a set: Let jc be as in the axiom of infinity; by separation 

0 = {y e x: y ^ y}. Hence each natural number is a set. Using substitution 
again, it is easy to show that each n-tuple is a set. 

Now we are ready to prove that N is a set. 

Definition 31. A set jc is inductive iff 0 e jc and S(y) e x for all y e jc. 
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Theorem 32. Let x be inductive. If n is a finite ordinal, then n ex. 

Proof. Suppose there is some finite ordinal nix. Then {ken + 1: 

k i x} is nonempty, so it has a least element n*. Since x is inductive, 

0 £ x, so n* ^ 0. Hence n* is some k + 1 where ke x. But since x is 
inductive, n* = k + 1 £ x, contradicting our definition of n*. 

Corollary 33. N is a set. 

Proof. Let x be an inductive set whose existence is guaranteed by the 

axiom of infinity. Then N = {n e x: n is a finite ordinal}. 

Set theorists usually refer to M as (o. We will do this form now on. 

The last axiom of this section is the power set axiom. 

Definition 34. 2P(x) = {y: y c *} for each x. 

Power Set Axiom. If x is a set, so is @>(x): Vx 3y(z e y iff z <= x). 

We can now show that each Cartesian product of finitely many sets is 

a set. For example, X x Y = {(x, y) £ ^(^(X U Y)): x € X and y 6 Y}. 

Let us define models of these axioms. 

We want to define models of infinity and power set. So far, when we 

have defined a model for an axiom, the definition worked for what are 

known as standard models; that is, what the model thinks is £ really is £. 

But the definition of standard models of power set and infinity is too 
complicated for a book on this level. So we will simplify our definition by 

restricting the class of sets to which it applies, namely, to the class of 

transitive sets. This is not too great a loss, since every standard model is 

isomorphic to a transitive model. Transitive sets will be explored exten¬ 

sively in chapter 3. For now, we just mention that x is transitive iff 

zeyex implies zex. 

Definition 35. Let X be a transitive set. 

(a) X is a model of the power set axiom iff VxeXBys 

x(y n x = 2P(x) n x). 
(b) X is a model of infinity iff 3x e X(0 £ x D X a Vy £ x D 

X(S( y) £ x fl X)). 

Note that definition 35(b) has an immediate corollary that a transitive 

set X satisfies infinity if o> £ X and co <= X. 
As for 35(a), while it implies that a transitive set X satisfies power set 
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if Vx e X 0>(x)eX, it is far more consequential that this sufficient 

condition is not necessary. That “Vx e X^(x) eX” may fail, and yet X 

models power set—that is what makes life interesting. 

SECTION 2.8. A DIGRESSION ON THE POWER SET AXIOM 

What could be more natural than to gather all the subsets of a given set 

into a set? But in fact it is this operation that opens the door to most 

independence results of mathematical interest. 
For example, consider 2P(a>). Suppose a> e X and X satisfies power set. 

Then 8P((o) fl X e X, but there may be many subsets of to left out of X. 

Thus two models of set theory may disagree on how big is—one 

thinks it has size tox (to be defined later) and another thinks it has size co27 

(which is surely not oti). Since there are exactly as many real numbers as 

subsets of (o (we will prove this later), one model thinks there are exactly 

o>i many reals, another thinks there are exactly (o27, and so on. 

Here are four independent statements from four fields of mathematics. 

You do not have to know what any of the definitions mean to get a sense 

of the broad sweep of independence results. In all cases, it is the 

ambiguity about power sets that makes each statement independent. 

From general topology: There is a perfectly normal nonmetnzable 

manifold. 

From functional analysis: Every algebraic homomorphism from the 

Banach space C[0, 1] to an arbitrary Banach space is continuous. 

From algebra: Every uncountable Whitehead group is free. 

From measure theory: The union of fewer than continuum+ many 

measure zero sets has measure zero. 

Note that the first two statements appear free from any set-theoretic 

terminology, and the last two have only the barest trace of set theory (in 

talking about the size of an object). The last chapter of this book 

discusses some combinatorial objects which are associated with in¬ 

dependent statements. 

SECTION 2.9. REPLACEMENT 

The final axiom of this chapter—the axiom of replacement, also known as 

the axiom of substitution—is our last elementary way of introducing sets. 

fThe continuum is R. Thus ‘‘continuum many sets” means ‘‘as many sets as there are reals.” 
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Suppose we have a rule that ought to give a function; i.e., a formula <f> 

so that for all x, y, z if <f(x, y) and (f>(x, z), then y = z. (Such a </> is 

called a functional). Some examples of such <f> are y = * U {x},y = Ux, 

y = x fl 17. Given such a </> and a set A we would like there to be a 

function / where / = {(x, y): x e A and <f>(x, y)}. If such an / were to exist, 

so would its range; range / = {yeUU/: 3jceU U/((x, y) e /)}. 

For historical reasons we go backwards, stating that ranges exist and 
then proving that the relevant functions also exist. 

Replacement Axiom Schema. Ranges of definable functionals exist: If <f> 

is a formula so that Vx, y, z if </>(*, y) and z), then y = z, then 
Vw3s(s = {y: 3x e w <f>(x, y)}). 

Note that this is a schema—we have a different axiom for each 

functional. Note also that </> may have parameters, i.e., it may refer to 

specific sets. (For example, pick any set a. Let <f> be y = x U a. Then <f> 
qualifies for the replacement schema.) 

Theorem 36. Fix 0, and suppose Vx, y, z </>(*, y) and <f>(x, z) implies 
y = z. Fix a set A. Then there is a function / where dom/= A and 
fix) = y implies </>(*, y). 

Proof. Given </>, A, let s be as in the replacement schema. Then 

/ = {(*, y) e A x s: 0(x, y)}. 

The historical reason for stating the axiom of replacement in terms of 

images, rather than in terms of functions, is that it was first proposed to 

show that certain recursive constructions give rise to sets. 

Example 37. Define a) + o> = w U {S"(a>): new} where S is the successor 

operation. Why is a> + a> a set? Because of the following functional; 

</>(n, y) iff y = Sn((o). By replacement and union, we are done. 

Example 37 was historically the first use of the axiom of replacement. 

Example 38. Define Vo = 0; VB+1 = &(Vn). Now define Vw = UnetoV„. 
Why is Vw a set? Let <f>(n, y) iff 3(x0,..., xn)(y = xn, x« = 0, and, for 
k< n, each xk+x = $P(xk)). The reader is invited to prove that </> is a 
functional. 

Now let A = {y: 3n e (o (f>(n, y)}. A is a set by replacement, and 

K, = UA 

Example 39. Recall the construction of theorem 37 in chapter 1. Here 
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we had a sequence {an:ne o>} of infinite subsets of oj where each 

an => an+i, and we constructed a set A = {kn: neoj} to satisfy the pro¬ 

perty: each kne an. Now that we have replacement, we can actually 

prove that A is a set: Let t/f(x, y) iff 

(i) x = (*!,..., jcn) for some n, xx,..., xn. 

(ii) y is the least element of an+x -{x1;..., xn}. 

(iii) Each e at for j > i. 

Now let <Mn, y) iff 3(x1?..., xn-M((xu ..., x„-i), y) a Vfc < n 

(f>(k, xk)]. The reader can check that 0 is a functional and that {y: 3n 
</>(n, y)} is the desired set A. 

The attentive reader will note that the actual construction in chapter 1 

was not as restrictive as the construction here—kn was not required to be 

the least element of an not already chosen. The need for restriction (ii) 

here was to make 4> a functional; when we have the axiom of choice this 

sort of restriction—indeed the whole use of replacement in this sort of 

recursive construction—will become unnecessary. 

The final topic in this chapter is models of replacement. 

Definition 40. X is a model of replacement iff, for every functional <£ 

with parameters in X and every A e X, there is a set s e X so that 

sflX = {yeX:3x£ AOX <f>xU, y)} where <£x is the relativization of </> 
to X as in section 2.4. 

The attentive reader may wonder whether </>x is also a functional. The 

answer is yes, but the proof involves some mathematical logic and will be 
omitted here. 

Corollary 41. Suppose X is transitive. Then X is a model of replacement 

iff, for every functional 4> with parameters in X and every A e X, 
{y g X: e A </>x(x, y)} e X. 

For example, we show that Vw is a model of replacement, using the 

facts that every element of is finite and that the image of a finite set is 
finite. 

Suppose Ae Vw. Then AeVn for some n. Now suppose </> is a 

functional with parameters in Vw. Then B = {y e V*,: <f>V“(x, y) for 

some x e A} is finite. Let B = {y0,..., yk| for some k. Then if i < k, we 
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have rii with y, g Vnr So if n = supjn,: i < k}, B c= V„, so B g Vn+1, hence 

fie V„. 

EXERCISES FOR CHAPTER 2 

1. Take the following abbreviated formulas and put them into unab¬ 
breviated form: 

(a) xflycxlly. 

(b) [(x - y) U (y - x)] D [x IT y] = 0. 

(c) Vx3y(y ^ x). 

2. (a) Prove that the formulas (a), (b) of exercise 1 hold for all x, y. 

(b) Show that xriy=>yUxiffx = y. 

3= Prove the rest of theorem 3. 

4. Let X = {E,0} where E = {even integers} and O = {odd integers}. 

Show that X does not satisfy extensionality. 

5. Let X = {xn: ne N} be defined as follows: x0 = 0; x„+i = xn U {x„}. 

(a) Show by induction that if xn g xm g xk then xn g xk. 

(b) Show by induction that if n < m then x„ g xm. 

(c) Show by induction that if xn g xm then n< m. 

(d) Show that x„ = xm iff n — m. 

(e) Show that x„Gxm iff n< m. 

(f) Show by induction that each xn has exactly n elements. 

(g) Show that X satisfies extensionality. 

(h) Show that every subset of X satisfies extensionality. 

(Note: X is called the set of von Neumann natural numbers, see 

section 2.6.) 

6. Let X = {xn: n g N} where x0 = 0 and each x„+i = {*„}. Show that if 

Yc X then Y satisfies extensionality iff Y = {xk, xk+u xk+2,...} for 

some k or Y = {xk, xk+i, xk+2,..., xm} for some k, m. 

Note: In exercises 7, 9, and 20 you may make use of the following 
consequence of the axiom of regularity (presented in chapter 3): There 

are no sets x, y0,..., y„ with x e y0 e yi e • • • e y„ g x. 

7. Show that [x, y] = {x, {x, y}} is reasonable alternative definition of 

ordered pair; i.e., [x, y] = [z, w] iff x = z and y = w. 

8. Show that 0 satisfies pairing. 
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9. Show that any model of pairing with at least one element is infinite. 

10. This problem deals with a more general definition of relations and a 

more specific definition of functions than those given in section 2.3. 

Define X1 = X; define an n-ary relation to be a subset of some X" 
and an n-ary function to be a function whose domain is some n-ary 

relation. 

(a) Show that every set is a unary relation; hence every n-ary 

relation is also a unary relation. 

(b) Show that every function is a unary function. 

(c) Let R be an n-ary relation where n > 2. When is 

{((yi, • • •, y»-i), y„): (yi, • • •, y») e R} a function? 

(d) In logic it is common to define 0-ary relations as constants. Does 

this seem reasonable? 

11. Recall the definition of a group. There is a set G, a binary operation 

and an identity element e so that, for all x, y, z e G: 

(a) (Closure under °) 3w 6 G(x° y = w). 

(b) (Associative law) (x0 y)0 z = x ° (y ° z). 

(c) (e is the identity) x° e = x = e° x. 

(d) (Every element has an inverse) 3w(x° w = e = w°x). 

The purpose of this exercise is to translate this into the formal 

language of set theory. We rewrite x°y as /(x, y). We now have a 
set G, a binary function /, and an element e e G so that—what? 

Rewrite axioms (a) through (d) in this new language. 

12. Prove the following: 

(a) U y <= x if Vz 6 y(z <= x). 

(b) xcUyiffVzexBwe y(z e w). 

(c) U{x} = x. 

13. A set X is closed under union iff x e X implies U x e X. Find a set 
with exactly 7 elements which is closed under union. 

14. Show that if X is linearly ordered by <= then Vx, y e X(x U y € X). 

Find such a set X which is not closed under union; i.e., there is x £ X 

with U x 4 X. 

15. (a) Suppose x is a finite set of natural numbers. Show that U x = 
max x. 

(b) Suppose x is an infinite set of natural numbers. Show that 

U x = (O. 

16. Show that X models separation if Vx e X Vy <= *(y e X). 

17. Show that the family of example 21 is a proper, nonprincipal filter. 
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18. Show that the family of bounded perfect sets (see example 29) is 

closed under finite unions and that it is a base for a proper, non¬ 

principal ideal. 

19. Let Y = 3 = {0,1, 2}. Show Y does not model power set. 

20. (a) Show that for all x, X, if x e X then x e 2P(x) D X. 

(b) Show that every nonempty model of power set is infinite. (See 

the note before exercise 7.) 

21. Let x be a set, and let / be defined as follows: /(0) = x; f(n + 1) = 

U f(n) for all ne co. Show that both / and its range are sets; hence 

Unewf(n) is a set. 





3 
REGULARITY AND 
CHOICE 

INTRODUCTION 

The axioms of chapter 2 are essentially due to Zermelo (substitution is 

due to Fraenkel and, independently, to Skolem) and are generally con¬ 

sidered the elementary, noncontroversial axioms of set theory. These 

axioms mostly give ways of constructing sets, of building up the universe, 

so to speak. In this chapter we discuss the axiom of regularity, which 
essentially says that these are all the sets there are. The concepts of this 

axiom developed slowly, starting with Mirimanov in 1917 and ending 

with von Neumann in 1925. The other axiom discussed in this chapter, 

the axiom of choice, articulated and defended by Zermelo in 1908, is still 

controversial—there are mathematicians who do not grant it the same 
clearly intuitive label that the other axioms have, and when we add it to 

our list we warn everyone of its presence by using the acronym ZFC. So 

ZF (= Zermelo-Fraenkel) means all the axioms except choice; ZFC 

means all of them. 

Both regularity and choice cannot really be understood without a 

reasonable understanding of ordinals. To understand ordinals we must 

understand transitive sets. So that is our first order of business. 

SECTION 3.1. TRANSITIVE SETS 

Roughly speaking, a transitive set keeps no secrets from itself. It knows 

all there is to know about its elements; what you see is what you get. 

Definition 1. X is transitive iff Vy e X(y <= X). 

49 
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In other words, if X is transitive and z e y e X, then z e X. Note that 

every natural number is transitive. 

Lemma 2. Every transitive set models extensionality. 

Proof. Suppose X is transitive. If x, y e X and jc ^ y, then there is 

some fle(x-y)LKy-x). By transitivity, a e X, and we are done. 

Lemma 2 says that if a transitive set thinks two sets have the same 

elements then in fact they do. Similarly, if a transitive set thinks another 

set is empty, then indeed it is, and so on, for pairs, ordered pairs, unions, 

relations, functions, etc. 

Lemma 3. Let X be transitive. 

(a) If y 6 X and y fl X = 0, then y = 0. 

(b) If a, x, y G X and a fl X = {jc, y}, then a = {jc, y}. 

(c) If a, jc, y G X and a T1 X = (jc, y), then a = (jc, y). 

(d) If a, x e X and a fl X = U jc, then a = U jc. 

(e) If a e X and a fl X is a relation, then a is a relation. 

(f) If a G X and a fl X is a function, then a is a function. 

Proof. All parts of lemma 3 are corollaries of the following fact about 

transitive sets: If X is transitive and a £ X, then a fl X = a. 

Let us try to build a transitive set. 0 is of course transitive, as is {0}. 

Suppose we want a slightly more complicated transitive set, one, e.g., 

with {0} as an element. Then 0 must also be an element, and that suffices: 

{0, {0}} is transitive. In general, if jc is a transitive set, then so is S(x) (see 
the exercises). 

Lemma 4. X is transitive iff (J x c: X for all x c X. 

Proof. Suppose X is transitive, x c X. If y e jc, then y e X, so if 

z e y e x, then z e X. Hence (J jc <= X. On the other hand, if for all 

* c X, (J jc <= X, and if y 6 X, then |y)cX, so (J{y}c X, but (J{y} = 
y, so y c X and X is transitive. 

Lemma 4 gives us a standard way to construct transitive sets. 

Definition 5. The transitive closure of a set x (written TC(x)) is (x U 

U* u UU-* u • • •). 
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More formally, define fx by /x(0) = x; fx(n + 1) = \J fx(n) for all new. 

Then TC(x) = \Jneufx(n). 

Theorem 6. Let x be a set. Then TC(x) is transitive, and if x £ y and y is 
transitive, then TC(x)<= y. 

Proof. Suppose zeTC(jc), wez. Then z e fx(n) for some n, so 

w £ fx(n + 1), hence w e TC(x). Thus TC(x) is transitive. 

If x £ y and y is transitive, then fx( 0) = rcy, and, by the transitivity 
of y, if /,(n)c y, then /*(n + 1) <= y. So by induction each /*(«)<= y, 
hence TC(x) <= y. 

Corollary 7. A set x is transitive iff x = TC(x). 

Proof. TC(x) is transitive, and x c TC(x) for any x, so all we have to 

prove is that if x is transitive then TC(x) <= x. By transitivity of x, each 
/x(n)c x. By induction, TC(x)<= x. 

SECTION 3.2. A FIRST LOOK AT ORDINALS 

Recall from chapter 1 the strict order < derived from a partial order <. 

We say that a set X is strictly well-ordered by a relation £c X2 if the 

relation E+ given by 

x E+ y iff x E y or x = y 

is a well-ordering and E is the resulting strict order; i.e., if xE y, then 

x E+ y and x^y. 

Definition 8. An ordinal is a transitive set strictly well-ordered by £. 

Note that each finite ordinal is an ordinal. 
We usually reserve Greek letters for ordinals. We will shortly prove 

that co is an ordinal; this justifies our renaming of N. 

Definition 9. Let a, be ordinals. We write a < /3 iff a £ /3. 

For example, S(w) = caU{w} is an ordinal, called (not surprisingly) 

a) + 1. In general, if a is an ordinal, S(a) is written as a + 1, and we write 

S(a + n) as a + n + 1. Clearly each a < a + 1, and there is no ordinal (3 

with a < (3 < a + 1. 

Lemma 10. If a is an ordinal and f3e a, then /3 is an ordinal. 
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Proof. Suppose (3 e a. If /3 — a ^ 0, then a is not transitive, so /3 <= a, 

and /3 is strictly well-ordered by e. Suppose ye (3 and 8 e y. Since a is 

linearly ordered by e, by the transitivity of linear orderings, 8e (3. So (3 

is transitive. 

Lemma 11. If a is an ordinal, then a £ a. 

Proof. Otherwise a e a; i.e., e would not be a strict order. 

Definition 12. A is an initial segment of an ordered set L iff A c= L and 

for all t e A if s < t then s e A. 

For example, the open interval (—°°, a) is an initial segment of R, 

for all a e R. 

Lemma 13. If A is an initial segment of an ordinal a, then either A e a 

or A = a. 

Proof. That A is an ordinal follows by a proof similar to that of lemma 

10. Notice that for all /3 e a either (3 e A or (3 > y for all ye A. Suppose 

A^a. Then there is /3 e a with Ac (3. Pick the least such /3 and 

suppose A 7^ (3. Then there is 5 e (3 with A <= 8. But by transitivity of 

a, Sea, so (3 was not minimal, which is a contradiction. Hence A = (3, 

and so Ae a. 

Theorem 14. If a, /3 are ordinals, then a < j8, a = /3, or (3 < a. 

Proof. Given distinct a, (3 let A = a C1)3. A is an initial segment of 

a, [3 by transitivity, so A is an ordinal. Either Ae a or A = a. Either 

Ae (3 or A = /3. If Ae a and Ae 13, then Ae A, contradicting lemma 

11. So either A = a e (3 or A = j8 e a or A = a = j8. 

Theorem 15. w is an ordinal. 

Proof. By definition, w is a set of ordinals, so it is strictly well-ordered 

by e. We must show that (o is transitive. Suppose it is not. Let A — 

{«€&>: a <£ a;}. If A is nonempty, then it has a least element a*. Then 

a* 7^0. Suppose a* = /3+ 1 for some ]8 6 co. Then /3 a> and a* = 

^U{j3}cw, a contradiction. So w-{a*} is inductive. But when we 

proved that each inductive set had every finite ordinal as an element we 

were proving that c * for each inductive set x. Hence io c a>-{a*}, 
which is a contradiction. 
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Thus the first few ordinals are 0, 1,2, 3 ,... co, w + 1, w + 2, a» + 
3. 

All of chapter 5, most of chapter 6, and much of chapter 7 are 

concerned with ordinals, including quasi-concrete examples. For now we 

content ourselves with a few more useful facts. 

Theorem 16 (Induction on Ordinals) 

Version I (Set Version). Let a be an ordinal, c/> a formula, and suppose 

we know that for all (3 e a if 4>(y) holds for all y< (3 then <£(/3). Then for 

all (3 £ a, ci>((3). 

Version II (Class Version). Let </> be a formula, and suppose we know 

that for all ordinals (3 if 4>(y) holds for all y<(3 then </>(/3) holds. Then 

cf)((3) holds for every ordinal /3. 

Proof. Suppose not. Then there is a counterexample y so that (f)(y) 

fails. (For version I we insist that y< a.) Let 8 be the least counterex¬ 

ample; i.e., 8 is the least ordinal in {/3 < y: Then cf>(/3) holds for 

all (3 < 8. Hence by hypothesis (f)(8) holds, which is a contradiction. 

Notes on Induction 

1. The hypothesis on implies (f)(0) (since “V/3 < 0 <A(/3)” is vacu¬ 

ously true). 

2. If a = a>, then version I is equivalent to the usual induction on N. 

Closely related to induction is recursive construction on the ordinals. 

This generalizes recursive constructions on N just as inductive proofs 

generalize induction on N. As with induction, there are both set versions 

and class versions of recursive constructions on ordinals. Here is how a 

set recursive construction works. Given some ordinal a, a collection of 

sets {Xp: (3 < a} is described via some functional </>. By substitution this 

collection is a set; hence so is X = (3 < a}. Theorem 16 is then 

applied to the specific situation to show that, since each Xp satisfies a 

given induction hypothesis, X has the desired properties. Class recursive 

construction simply uses set recursion at each stage to eventually move 

through all the ordinals. Examples of recursive construction can be found 

in our uses of the axiom of choice, in the definition of the Va’s in section 

3.3, and in later chapters. 
Some notation: We use ON to denote the collection of all ordinals. 

“ON” is an abbreviation, and we must be careful how we use it since 

Theorem 17. ON is not a set. 
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Proof. Suppose 3x(x = ON). Then x is transitive and well-ordered by 

G, so x is an ordinal, so x e x, which is a contradiction. 

Legal uses of ON are in phrases like x g (J aeON .^(ar), which is 

shorthand for 3a (a is an ordinal and x <= a). Illegal uses are in phrases 

like ON g x. 
Note that every set of ordinals has a least element. Thus, by theorem 

14, we can, loosely speaking, say that ON is well-ordered. 

Corollary 18. Every set of ordinals is a subset of some ordinal; i.e., 
Vx 3aeON(xflONc«). 

The proof of corollary 18 uses the following useful observation: 

Corollary 19. If x is a set of ordinals, then [J x is an ordinal. 

Proof of Corollary 19. Since [J x is a subset of ordinals, it is strictly 

well-ordered by G. If S G y G [J x, then y e f3 for some /3 g x, so <5 G /3, so 

5 g (J x, hence (J x is transitive. 

If x c ON, we define sup x=[Jx. 

Note that sup x = the least ordinal a with (3 < a for all (3 e x. 

Proof of Corollary 18. Let x be a set and let y = xfl ON. By separa¬ 

tion, y is a set, and since y is a set of ordinals, [J v is an ordinal, say a. 

But then if (3> a, (3 £ y, so y <= a + 1, and we are done. 

SECTION 3.3. REGULARITY 

Axiom of Regularity. Every nonempty set has a minimal element (with 

respect to e): Vx ± 0 3y G x(x (T y = 0). 

The axiom of regularity has two general sorts of consequences, local 

and global. Let us look at the local consequences first. 

Theorem 20. Vx(x ^ x). 

Proof. If x G x, then {x} has no minimal element. 

Theorem 21. There is no infinite descending G-chain; i.e., if {x„: n g a>} 

is a sequence of sets, then Vn(x„+i e xn) is not possible. 

Proof. Otherwise {x„: n e o>} has no minimal element. 
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In fact, the statement of theorem 21 is equivalent to the axiom of 
regularity: 

Theorem 22. There is no infinite descending E-chain iff every nonempty 

set has a minimal element (with respect to e). 

Note. The point of theorem 22 is that the axiom of regularity is 

equivalent to the statement “there is no infinite descending E-chain,” so 

we cannot use regularity in the proof of sufficiency. 

Proof. One direction is just theorem 21. For the other direction, 
suppose regularity fails. Let x be a set with no minimal element. Let 

x()ex. Then x() is not minimal, so there is XiEXoflx. And X\ is not 

minimal, so there is x2 e Xi D x .. ., and so on. Thus we have ... x2e x, e 

Xo E x, i.e., an infinite descending E-chain. 

There is only one problem with this proof: We have used a subtle form 

of the axiom of choice. Given x we have many choices of potential x0’s. 

Given each x<> we have many choices of potential Xj’s. And so on. How 

can we pick a path through this maze? I think we are all agreed that we 

can, but the ability to do it relies on yet another axiom, a weak form of 

the axiom of choice called dependent choice. Since the system we will 

ultimately use is full ZFC, we can let theorem 23 stand as is, but we must 

recognize that we have invoked a new axiom to do it. In fact, it can be 

shown that some form of the axiom of choice is needed to prove theorem 

22. 
The global consequences of regularity need more definitions. 

In keeping with definition 30 in chapter 1 we have 

Definition 23. An ordinal cc is a limit ordinal if V/3 £ ON a ^ /3 + 1. If a 

is not a limit, it is called a successor. 

Theorem 34 in chapter 1 gives us our first picture of what ON looks 

like—a very very very long string of copies of to where the first element 

in each copy is a limit ordinal and the rest are successors. 

Definition 24. Define V<> = 0. If a is an ordinal, then Va+X = Va). If a 

is a limit ordinal, then Va = Vp- 

Definition 24 is a good example of a class recursive construction, 

generalizing our definition of Vw in chapter 1. 

Lemma 25. Each Va is transitive, and if a < /3, then Va <= Vp. 
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The proof of lemma 25 is left as an exercise. We use the lemma, 

however, in 

Lemma 26. If a < (3, then Va e Vp. 

Proof. By induction on /3. Suppose it is true for all y < /3; i.e., if y < f3 

and a < y, then Va e Vy. If (3 is a limit ordinal, then Vp = (J y<p Vy. 

Hence by induction hypothesis if y < /3, then Vye Vy+i c Vp. Otherwise 

fi = y + 1 for some y and Vp = Vy). Let a< /3. If a = y, then Vy e 

&(Vy), so Vye If a< y, then Va e Vy by induction hypothesis, so 

Va <=- Vy by transitivity, so Vae Vp. 

The next theorem says that the VQ’s are the way to build up the 

universe. 

Theorem 27. Vr 3ae ON(x 6 Va). 

Note. We write this as V = (J ae0N V„, where V is understood to 

abbreviate “the universe of sets.” 

Proof. Suppose a^(J«eONVa, t^at is, Va e ON(a ^ Va). Suppose 

flc U„e0N Va. Then for each x g a we assign the function rank x by 
rank x = the least a such that x <= Va. The range of the rank function is a 

set of ordinals, call it R, and R is a subset of some ordinal j3 by corollary 

18. Hence ac Vp, so by definition 24, ae Vp+\, which is a contradic¬ 

tion. So we assume a u aeON va. 
By transitivity of the Va’s, TC(a) ^ (J ae0N Va. Without loss of 

generality, assume a is transitive. 

There is some x e a, x^UaeON^. Let b = {xea:x transitive and 

x 4- U «eON Va}. Since b ± 0, it has a minimal element y. Since 

y^U«eowVa, we can argue again that y^U«€ON Va, so there is 

2 e y ~ U aeON Va. But then 2 6 y D b, so y was not minimal which is a 
contradiction. 

Let us explore the structure of the Va’s. 

Lemma 28. Each Va is a set. 

Proof. The Va’s are defined via power set, substitution, and union. 

Definition 29. For each x e V define rank jc = the least a with x cr Va. 

Note that if rank x = a then j8 = a + 1 is the least ordinal for which 
x e Vp. In particular, if x e Vp, then rank x < (3. 
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Lemma 30. If x e y, then rank x < rank y. 

Proof. Suppose rank y =/3. Then y i Vp and y^Vp. So xe Vp, 
hence rank x < /3 = rank y. 

An easy corollary (see the exercises) is that each rank a - a. 
Suspending the axiom of regularity for a moment, we use the Ws to 

characterize it. 

Theorem 31. V = jj ae0N V0 iff every nonempty set has a minimal 
element (with respect to e). 

Proof. Sufficiency is just theorem 27. To prove necessity, of course, 
we may not use regularity, since that is what we are trying to prove. 

So suppose V = (J QeON Va, and let x e V. (Recall: “xe V” is just 
shorthand for “x is a set.”) We may assume x ^ 0. Let a be the range of 
the rank function on x; i.e., a = {a:3yex rank y = cc}. Let a be 
minimal in a. Let y e x, rank y = a. Then y fl x = 0, since if z e y Pi x, 
rank z < rank y, which contradicts the minimality of a. 

Thus the axiom of regularity is equivalent to the statement “V = 
U aeON V„.” It gives a clear picture of how the universe is built up. We 
will assume the axiom of regularity from now on. 

Example 32. V,={0}. V2 = {0, {0}} = 2. V3 = {0, {0}, {0, {0}}, {{0}}}. You 
may find V4 as an exercise. As this exercise shows, the V„’s get large 
very quickly. 

Example 33. Suppose rank x = rank y = a. Then rank({x, y}) = a + l, 
rank((x, y)) = a + 2, rank(x U y) = a, and rank( (J x) < a. 

Let us prove just the last one: rank( (J x) < a. Since rank x = a, 
x <= Va. If ivezex, then rankz < a, so rank w < rank z < a, so we Va, 
so (J x ci Va, and we are done. 

We will return to the Va’s later, to check them as potential models of 
set theory. 

SECTION 3.4. A WORD ABOUT CLASSES 

Our uses of ON and V are examples of class notation. That is, we have 
collections which are too big to be called sets but are so easy to describe 
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that we find ourselves using shorthand when referring to them. That is 

what we shall mean by a class. 

Informal Definition 34. Let </> be a formula. The class defined by <£ is the 

collection of all x such that <f>(x) holds. 

Here are some more examples of classes: {jc: rank x > a>}; {a e ON: a 

is a limit}; {jc: jc is transitive}; {Va: a e ON}. 

Classes are not elements of our universe. Every time one pops up in a 

formula it can be gotten rid of by using the formula which defines it. 

There are versions of set theory which do incorporate classes as an 

integral notion, the most popular one being Godel-Bernays set theory 

(GB). But the ones which are commonly accepted can be shown to prove 

no more about sets than ZF does, and they carry a more cumbersome 

logical baggage. We lose nothing by restricting ourselves to ZF. 

SECTION 3.5. THE AXIOM OF CHOICE 

Axiom of Choice (AC). A product of nonempty sets is nonempty: If 

7^0 and, given the family {jc,: i e /}, each jc, 0, then [].e/ ^ 0- An 
element of f]ie/ -C is called a choice function. 

To give a more tangible image: If we think of each jc, as a pot, then 

we may dip down simultaneously into each pot and pull something out of 
each. 

Let us see where AC is not needed: If X f 0, then, for any I ^ 0, we 

already know that ‘X ± 0: pick aeX and let f(i) = a for all i. The 

axiom of choice is not needed because we pick just once from only one 
pot. 

The axiom of choice is not needed either if I is finite: We have already 

shown that the Cartesian product of finitely many nonempty sets is 
nonempty. 

Nor is the axiom of choice needed when the sets carry a strong enough 

structure. For example, if each X, is well-ordered, we can define /(;') as 

the least element of X, . By substitution, / is a function. Similarly, if each 

Xj is a ring with unity e,, we can define /(f) = e, for all And so on. 

If we have infinitely many pairs of shoes, we do not need the axiom of 

choice to pick one shoe from each pair: Just pick the left shoe. But if we 
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have infinitely many pairs of socks and want to pick one sock from each 

pair—then we need the axiom of choice. 

AC is embedded deeply in standard mathematics. We use choice to 

prove things that “ought” to be true, e.g., theorem 22 in this chapter, 

theorem 29 in chapter 1, the existence of a completion for each field, the 

existence of a basis for each vector space. It seems so natural that we 

often do not recognize we have used it. 

I will admit my bias here—the axiom of choice seems obviously true to 

me. If you share my bias, you need to be told why the absence of choice 

is worth thinking about. 

The first two reasons are of fairly recent origin. It is possible to prove 

theorems about ZFC by starting with models of ZF in which strong 

combinatorial principles hold which negate choice and then moving to 

models in which choice holds. Further, given strong enough assumptions 

about large cardinals (we will meet some large cardinals in chapter 5), 

there are natural models of ZF in which choice fails spectacularly. 

The third reason goes back to the origins of axiomatic set theory: 

Some people just do not like being cavalier about infinite processes. 

“Choose?” they say, “how do you choose? What rule do you use?” And 

they point to equivalent forms of the axiom of choice which are even 

more transparently nonconstructive. The chief of these is 

The Well-Ordering Principle (WO). Every set can be well-ordered: 

Vx 3a e ON 3/(/ is a 1-1 function from a onto x). 

“Show me a well-ordering of IR!” these people cry. And as it turns out, 

without some form of AC you cannot. 
AC holds the same relation to ZF as the parallel postulate holds to the 

other Euclidean axioms. It seems unnecessary, as if it ought to follow 

from the other axioms. It bothers people. And for a long time (although 

it took much less than thousands of years) people tried to show that 

either it followed from or was negated by ZF. 

In 1935 Godel showed that ZFC is consistent if ZF is. In 1963 Cohen 

showed that ZF + iAC is consistent if ZF is. So AC is independent from 

ZF. 
In the next section we prove that several statements are equivalent to 

the axiom of choice. After that we do not really need it until chapter 5, 

when we discuss cardinals. We will try to do without it there as long as 

we can, just to develop our sense of what can be done without it, but will 

quickly give up (very little in that chapter can be done without it) and 

from then on will simply assume ZFC for whatever we do. 
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SECTION 3.6. FOUR FORMS OF THE AXIOM OF CHOICE 

We have already stated AC and WO. We will state two more forms of 

the axiom of choice, give applications, and then prove our forms 
equivalent. 

Zorn’s Lemma (ZL). If every nonempty chain in a nonempty partial 

order P has an upper bound, then P has a maximal element. 

Hausdorff’s Maximal Principle (HMP). Every nonempty chain in a 

partially ordered set can be extended to a maximal chain. 

Here a maximal chain is a chain C so that if x £ C then {*} U C is not 

a chain. Equivently, C is a maximal element of the set of chains under <=. 

Let us give two applications of WO, ZL, and HMP. 

Definition 35. If X is linearly ordered by <, we say A is cofinal in X iff 
A <= X and for every x e X there is y e A, y> x. 

Some examples: (1) N is cofinal in Q which is cofinal in R. (2) Let 

X be linearly ordered with no endpoint. Then X is cofinal in L(X), 

the lexicographic order on lJ„<a)Xn. (3) If X has a maximal 
element m, then A is cofinal in X iff m e A. 

Theorem 36. Every linear order has a well-ordered cofinal subset. 

Proof 

Method I (WO). Given a linearly ordered set X, by WO we may write 

X = {xa: a< 13} for some ordinal (3. (Note that the order in which we list 

the elements of X has nothing to do with the original order on X.) The 

desired well-ordered cofinal subset of X is A = {jcy: V5 < y(xs < xY)}. 

Note that x0e A, so A is nonempty. We must show that A is cofinal and 
well-ordered. 

If x = xa e X, then either 3y < a with > xa or e A. If ^ A, we 

let y be the least y < a with xy> xa. Then if 8 < y, xs < xy, so jtY e A, 
and we have proven A cofinal. 

By definition, if jt0<Jta<x7 and Jca,xYeA, then a < y. Hence a 

descending chain in A corresponds to a descending chain in ON, so A is 
well-ordered. 

Method II (ZL). Let si be the collection of all well-ordered subsets of X 
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ordered by end-extension: A< B if A is an initial segment of B. Note 

that si has no infinite descending chains, since if A, > A2 > A3... and 

Xi € A, — Ai+1 then xt > x2> • • \ hence A, would not be well-ordered. A 

chain in si is a collection of well-ordered subsets so that if A, Be ^ 

then either A < B or B < A. To apply ZL we must show each nonempty 

chain has an upper bound. Let ^ be a nonempty chain. Then [J A 

for each A £ %, (J ^ is linearly ordered, and if (J had an infinite 

descending chain X\ > x2> • • *, then if A 6 ^ where Xi £ A, A would 

have an infinite descending chain, a contradiction. So (J ^ is well- 

ordered, hence [J si, and (J % is an upper bound for c€. By ZL si 

has a maximal element A. By maximality of A, if x £ X, there is y £ A 
with y > x. So A is as desired. 

Method III (HMP). Let si be as in method II, and by HMP let ^ be a 

maximal chain in si. We already know that [J is a well-ordered subset 
of X; since <€ is maximal, (J % is cofinal. 

Notes on Methodology 

1. Method I (WO) has a slightly constructive flavor. Set theorists 

often prefer proofs from WO because they make the inductive process 

clear. Using ZL or HMP is slicker, but it obscures what is going on. 

2. In using ZL the sticking point is in showing ZL actually applies; 

i.e., every nonempty chain has an upper bound. Be careful. 

3. The similarity of methods II and III, just as the similarity in the 

statements ZL and HMP, should not have gone unnoticed by the reader. 

4. The reader will have noticed that we have given no direct proof 

from AC. This is typical. Only when justifying an argument such as that 

used to prove theorem 22 is AC quoted directly. Its chief use is to look 

intuitive so that we will accept it and hence its disguises. 

To give us more practice, here is another theorem which depends on 

AC, again proved in three different ways. Recall the discussion of filters 

in section 2.5. As promised, we prove 

Theorem 37. If F is a proper filter on a set x, then it extends to an 

ultrafilter on x; i.e., there is an ultrafilter G on x, G F. 

Proof 

Method I (WO). Let F be a proper filter on x. By WO we enumerate 

9>(x) as {ya: a < /3} for some ordinal /3. 
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We will construct a sequence {Fa: a < ft) of subsets of &{x) so: 

(a) F0 = F. 

(b) If a < 8, then Fa <= Fs. 

(c) If A is a finite subset of some Fa, then P| A G Fa, P| A ^ 0. 

(d) If a < j3, then either ya g Fa+\ or x ya G jFa+1. 

You can check that these properties assure that U«<0 's an ultrafilter. 
We know what F() is. Suppose we know Fy for all y< a. If a is a limit 

ordinal, let F„ = U7«*F7. (You should check that Fa has the required 

properties.) Suppose a = y+ 1 for some y. If yy D a ^ 0 for all a G F, let 

Fa = Fy U {y-y} U {y7 fl a: a e Fy}. It is easy to check (a), (b), (d); (c) 

follows because finite intersections from Fy are in F7, so finite inter¬ 

sections from F7+1 have the form y7 D a where a e Fy. On the other hand 

if y7 fl a = 0 for some a e Fy, then x — y7 => a, so (x — y7) fi b => a ft b for 

all b g Fy, hence (x — y7) D b ^ 0 for all b e Fy. Let F7+i = FY U {x — y7} U 
{(x — y7) D b: b e Fy}. Again, (a) through (d) are satisfied. 

Method II(ZL). Let £F = {G: G is a proper filter on x, F<= G}. Partially 

order 2F by <=. If ^ is a nonempty chain in 5^, |J % g otherwise you 
would have at,..., a„, Gt,..., G„, a, e G, G G, £ Gi+i for /< n, 

P),<„a/^ G„, which contradicts G„ being a proper filter. So the hypo¬ 

thesis of Zorn’s lemma is met, and cF has a maximal element G. We must 

show that G is an ultrafilter. 

Suppose y ^ G for some y <= x. By the maximality of G there is a g G 

with y D a = 0. So x — y => a, hence x-ye G. 

Method III (HMP). Let & be as in method II, and let ^ be a maximal 

chain in By the methods of method II, (J ^ e ^ by the maximality of 
(J is an ultrafilter. 

Finally, we have 

Theorem 38. ZL <-> HMP <-> AC ^ WO. 

Proof. Our method is to show ZL^> HMP^ AC —» WO^ ZL. 

(i) We show ZL—» HMP. Let P be a partially ordered set, A a chain in 

P, and let 9? be the set of chains C in P with AcC. ^ is partially 

ordered by inclusion, and the union of a chain of chains is a chain. So % 

meets the hypothesis of Zorn’s lemma. Hence has a maximal element, 
and we are done. 
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(ii) We show HMP-+AC. Given {X,:ie/} where If0 and each 

X,^0, let 9 = {f:f is a function, dom fez /, and for each i e dom /, 

/(/)e X,}. (You should check that ^ is in fact a set, i.e., is not too big.) 

Order 9 by inclusion. Let be a maximal chain in 9. Then (J % e 9. 

Let /* = \J<g and suppose i <£ dom /* for some ie I. Let a e X;. Then 

/ U {(i, a)} = gef and g> f for all /e^, so ^ is not maximal, a 
contradiction. Hence /* e []ie/ X, . 

(iii) We show AC^WO. Let x be a set and let / = 2P(x) — {x}. For 

y£/ let zy = x-y. Let gel]y€/zy, and define f:9?(x)^x U{x} as 

follows: /(y) = g(y) for ye/; f(x) = x. We define a function by 
induction: h(0) = /(()). If we know h \ a, then fi(a) = /(&[«]) if fi[a] ^ x; 
otherwise fi(a) = {x}. 

Claim 1. For some a, h(a) = {x}. 

Proof. Otherwise let Z = {a e x: 3a h(a) = a}. Z is a set by separa¬ 

tion. If /3 < a, then fi(/3) e h[a], so h{\3) h(a) £ fi[a]; hence h is 1-1 

onto Z. Hence h~' is a function from Z onto ON, which contradicts the 
axiom of substitution. 

Claim 2. If a is the first ordinal where h{a) = {x}, then h \ a induces a 
well-ordering of x. 

Proof. If y h[a] and y e x, then h[a] x, so h(a) ^ {x}, a con¬ 

tradiction. 

(iv) We show WO-^ZL. Let P satisfy the hypothesis of ZL, and by 

WO let P = {pa:a<[3} for some ordinal /3. We define /:j8—by 

induction as follows: f(a) = ps if 8 is the least ordinal with ps > p for all 

p e f[a]. Otherwise f(a) = p0. Note that if f(a) = ps then either 5 = 0 or 

5>a. As in theorem 36, method I, po = f(0). Hence if A = {f(a): 

a < /3}, then A is a chain. By hypothesis, A has an upper bound p. 

Suppose p is not maximal in P. Then there is q = py > p. But then py> r 

for all r e f[y], so q = f(y), hence q e A and q < p, a contradiction. 

SECTION 3.7. MODELS OF REGULARITY AND CHOICE 

Definition 39. X is a model of regularity iff Vx e X with x fl X ^ 0 there 

is some yexDX with y fl x fl X = 0. 

Definition 40. Let X be transitive. X is a model of choice iff, for every 
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I e X and every set {*, : i £ 1} £ X where each x* f 0, there is a function 

f £ X where dom f = I and, for each / e /,/(/) £ x,. 

Note that, by transitivity, each Xj and f(i) are elements of X, and 

/eX. 

Theorem 41. Every set is a model of regularity. 

Proof. Given X and x £ X with x D X f 0, by regularity there is some 

y minimal in xflX; i.e., ylT(xnX) = 0. But this is just the y we are 

looking for. 

Theorem 42. Let X be a transitive set closed under power set and union 

(i.e., if x £ X, then 3?(x) e X and (J x £ X) where, in addition, a, b £ X 

implies a x b £ X. Then X models choice. 

Proof. Given /, {x;: i £ 1} both elements of X, note by the second and 

third hypotheses on X that 7x (J{x,: j'e 7}e X. If / is a choice function 

in nix*: /6 /}, then fez / x (J {jc, : /' 6 /}. Hence, since X is closed under 

power set, by transitivity f £ X, and we are done. 

Note that the proof of theorem 42 needed only weak closure under 

power set; if x £ X, then 5P(x) <= X. 

A word of caution: definitions 39 and 40 only provide models of one 

version of each axiom, e.g., without the other axioms of ZFC a model of 

AC need not be a model of WO. 

EXERCISES FOR CHAPTER 3 

1. Show that 

(a) If x is transitive, so are S(x) and x U 0*(x). 

(b) If x, is transitive for all ie I, so is [Jie/ x,. 

(c) If x, y are transitive, so is x fl y. 

(d) There are transitive x, y with x - y not transitive. 

2. (a) What is the transitive closure of X = {0, 3, {5, 7}}? 

(b) What is the transitive closure of X = {x„: n £ N} where x(> = 0 and 

each xn+\ = {x„}? 

3. (a) Show that each Va is transitive. 

(b) Show that if a < (5 then Va <= V^. 

Do not use lemma 26. 
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4. Prove that if x is nonempty and transitive then 0e x. 

5. Prove that for all ordinals a, rank a = a. 

6. Show that if rank x = rank y = a then 

(a) rank{x, y} = a + 1. 

(b) rank(x, y) = a + 2. 

(c) rank(x U y) = a. 

7. Find x so rank [J x = rank x. Find x so rank (J x < rank x. 

8. What is V4? 

9. (a) Show that every vector space has a basis, where a basis is a 

maximal linearly independent set. 

(b) Without using AC show that the vector space over IR of poly¬ 

nomials with coefficients in IR has a basis. (Hint: Define the 
basis.) 

10. A selector for a family {X,: ie /} is a 1-1 choice function. 

(a) Show that if, for each n < <u, Xn has at least n + 1 elements then 
{Xn: n < oj} has a selector. 

(b) Let 5eON. Show that if, for each a <8, (J pea Xp Xa then 
{XQ: a < 5} has a selector. 

11. Formalize and prove the following statement: Given a drawer with 

infinitely many pairs of socks, you can pick out one sock from each 

pair. 

12. We define a family of sets A to be pairwise disjoint if a D b = 0 for 

all distinct a, b £ A. Show that if B a $P(x) for some x then there is a 

maximal pairwise disjoint Ac B; i.e., A is pairwise disjoint, Ac B, 

and if ae B - A then A U {a} is not pairwise disjoint. 

13. We define a family of sets A to be linked if a D b ^ 0 for all a, b £ A. 

Show that if B c ^(x) for some x then there is a maximal linked 

A c B; i.e., A is linked, A c B, and if a £ B - A then A U {a} is not 

linked. 

14. We define a family of sets A to be centered if every intersection of 

finitely many elements of A is nonempty. Show that if B c 9?(x) for 

some x then there is a maximal centered Acfl; i.e., A is centered, 

A c £?, and if a £ B — A then A U {a} is not centered. 





4 
THE FOUNDATION OF 

MATHEMATICS 

INTRODUCTION 

We have made the claim that all of mathematics can be done in the 

language of set theory/ i.e., that every mathematical statement can be 

translated into a formula whose only nonlogical symbol is e. We have 

already substantiated some of this claim, in two ways: abstract structures 

such as linear orders have been defined in set-theoretic language, and 

concrete objects such as 0 and N have found representations as sets. The 

former is easier than the latter, and in this chapter it is the representation 

of concrete objects with which we are concerned. We will define set- 

theoretic representations of Z, Q, R, of the arithmetic operations on each, 

of the order relation on each, and show that R has the desired geometric 

property of “no holes.” 

Twenty years ago, when the impact of modern set theory on the rest of 

mathematics was just beginning, this material was standard in foun- 

+This claim depends, of course, on what you mean by mathematics. Intuitionists and 

finitists, who object to certain standard mathematical techniques, would declare set theory 

as we have presented it to be false, the former because it uses logical laws to which they 

object, such as the law of the excluded middle—either A holds or ~iA holds; the latter 

because they declare infinite objects absurd. But the same charges can be made against 

much of standard mathematics. Less philosophical and more relevant are the objections of 

category theorists, who deal with objects that are classes—all groups, all rings—and then 

bind these together into classes of classes, etc. There is a set-theoretic trick to deal with 

this: Limit the cardinality of the objects you are working with; e.g., discuss only all groups 

of size <k. But the category theorists respond, with some justification, that this is more 

than a tad artificial. There is no denying, however, that set-theoretic techniques have had 

powerful consequences in many fields of mathematics. This brief chapter seeks to develop 

the intuition behind this. 

67 
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dations of mathematics courses, where it was taught in some detail in lieu 

of more set theory. Now, when there is so much set theory to learn, this 

older material is often left out entirely, making the root of set theory’s 

profound impact on mathematics obscure. This chapter attempts a 

middle ground. To do all of this material in full detail would be tedious 

and would provide only the insight that it can be done. But this insight is 

itself a revolutionary one, and the reader deserves a demonstration of its 

reasonableness. That is the purpose of this chapter. Nearly all proofs are 

left to the exercises. 

SECTION 4.1. ARITHMETIC ON N 

We already know what the elements of M are and how order is defined. 

The arithmetic operations are defined by induction: 

n +N() = n; n +N(m + 1) = (n +N m) + 1 (where k + 1 is just S(k)). 

/i-N0 = (); n -N (m + 1) = (n -N m) +N n. 

n En 0=1; n EN (m + 1) = n -N (n EN m). Here n £N m is our notation 

for nm. 

In these definitions, the subscript N means that the operations are only 

defined on N2. 
We can also add the definitions: n — N m = k iff n +N k = m and 

n h-n m = k iff m -M k = n. 

Note that here, as throughout this chapter, our formulas are ab¬ 

breviations of formulas whose only nonlogical symbol is e. This point will 

not be made again. 

What needs to be checked here is that these definitions do what they 

are supposed to; i.e., if n +N m = k, then k is what we usually mean by 

n + m. Since our definitions are exactly the definitions we all learned in 

elementary school, this presents no problem. 

SECTION 4.2. ARITHMETIC ON Z 

Our first instinct is to represent the elements of Z by ordered pairs (n, m) 

where n,meo) and (n, m) represents the integer n-m. But then the 

representation of integers is not unique: is —2 to be represented by 

(0, 2), (1,3), (57, 59)...? So instead we use equivalence classes of 

ordered pairs of natural numbers: (n, m) = (n\ m') iff n +N m' = ri +N m. 

Then Z is identified with {[(n, m)]: n, m e w}. 
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We define arithmetic on Z as follows: 

[(n, m)] +z [(n', m')] = [(n +z m + N m')]. 

[(«, m)]-z [(«', m')] = [(n, m)] +z [(m', «')]. 

[(n, m)]-z[(n', m')] = [(((n -N n')+N(m -N m')), 

((n -N m') +N(m ■ N «')))]■ 

Note that, in Z, 0 is represented by {(«, n): n e o>} = ()z. 

Again, if a, b el and b ^ 0Z, we can define a +z b = c iff b z c = a. 
We define order on Z:[(n, m)] <z [(n\ m')] iff n +N m <N n' +N m. 

Now we have two sorts of questions to answer: Do our definitions do 

what they are supposed to do, and, since Z is a set of equivalence classes, 

are they well defined, e.g., if [(n, m)] = [(n', m')] and [(k,;)] = [(k', /')], 

does [(n, m)] +z [(/c, /)] = [(n', m')] +z [(k\ /')]? The reader will be asked 

to check some of this in the exercises. 

SECTION 4.3. ARITHMETIC ON Q 

Again, Q is defined to be a set of equivalence classes of ordered pairs. 

This time, the ordered pairs are in Z2, and (a, b) is supposed to be a 

representative of a/b. So let a, b, a', b1 el. We say (a, b) = {a\ b') iff 

a z b' = a' z b. We define Q = {[(a, b)]: a, b eZ and b ^ 0Z}. 

For readability, if a, beZ we write ab instead of a z b. 

We will define the operation of addition on Q and the relation of order 

on Q, leaving the rest to the reader: 

[(a, />)]+0[(<\ d)] = [((ad +z cb), bd)]. 

[(a, b)] <Q [(c, d)] iff b >z 0, d >z 0, and ad <z cb, where 0 is under¬ 

stood to be 0Z. 

Again, we have to ask if our definitions are well-defined, and if they 

do what they are supposed to do. 

Note that 0 is represented in Q as 0Q = {(a, b) e Q a = 0Z}, i.e., as a set 

of pairs of equivalence classes of pairs. 

SECTION 4.4. ARITHMETIC ON R 

The previous three sections have been primarily concerned with the 

algebraic properties of N, Z, and Q, with order a secondary concern, 
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definable from the algebra. Given the fact that Z is an algebraic exten¬ 

sion of N, and Q an algebraic extension of Z, this is what we would 

expect. But R is different. It adds elements that no simple equation with 

coefficients in Q can account for. And it has a crucial geometric property 

as an order that cannot be derived from its algebraic structure: R is a 

continuum; that is, it has no holes. This property of having no holes is 

formalized as the least upper bound property: Every bounded subset of R 

has a least upper bound. How can we represent R in terms of Q and still 

capture our intuition of R’s geometric completeness? This was an im¬ 

portant question in nineteenth century mathematics, one of the keys to 

making the notions of calculus precise. More than one formal solution 

was offered; the one which is easiest to work with (all of the solutions are 
provably equivalent) is the method of Dedekind cuts. 

Definition 1. A subset A of Q is said to be a Dedekind cut iff 

(a) A is a proper initial segment of Q, and 

(b) A has no largest element. 

R is defined to be the set of Dedekind cuts. Note that the union of 
Dedekind cuts is either a Dedekind cut or Q. 

The instinct here is that V2 is represented by {q e Q: q < >12}. Property 

(b) is to ensure that each real number has only one representative: We do 

not want both {q e Q: q < 17} and {q e Q; q < 17} to be elements of R. 

Defining addition is easy: A+R B = {a+Q b: a e A and be B}. 

For subtraction: A -R B = {q:Vb e B 3a e A (q <Q a -Q b)}. 

Defining multiplication on the reals is left to the exercises. 

Order is easy: A <R B iff Ac B. This is a linear order: Initial 

segments of a linear order (and Q is linearly ordered) are either 
equal or one is a proper subset of the other. 

What about the least upper bound property? Suppose si is a collection 

of Dedekind cuts. If si is bounded, then there is some Dedekind cut B 

where Acfi for all Ae si. But then (J si cannot be Q, so (J si is a 

Dedekind cut. [J si is clearly an upper bound for s&. We show it is the 

least upper bound: If C => A for all Ae si, then C => I I sd hence 

C>R LM- 
Now we must ask if our definitions make sense (e.g., is A +R B a 
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Dedekind cut?) and if they do what they are supposed to do. Again, this 

is left to the exercises. 

Note that the representation of 0 in R is {q e Q: q <qOq}, i.e., a set of 

equivalence classes of pairs of equivalence classes of pairs of natural 

numbers. 

EXERCISES FOR CHAPTER 4 

1. Show that our definition of multiplication on Z does what it is 

supposed to and that the order we defined on Z is linear. 

2. Show that our definition of addition on Z is well-defined. 

3. Define multiplication on Q, and show that it is well-defined. 

4. Show that if A and B are Dedekind cuts, so is A +R B. 

5. Show that our definition of subtraction works. 

6. Define multiplication on [R by cases: Both numbers are nonnegative; 

exactly one number is negative; both numbers are negative. 





5 
INFINITE NUMBERS 

INTRODUCTION 

Before Zermelo, before Fraenkel, before Frege defined the number zero 
in nearly ninety closely argued pages, there was Cantor.* 

Cantor’s achievement was monumental: He made the study of infinity 

precise. He discovered infinite ordinals, he discovered the variety of 

infinite cardinals, and he invented three of the most useful tools in 

mathematical logic: dove-tailing (the ancestor of time-sharing), 

diagonalization, and the back-and-forth argument (used in model 

theory). His work went so counter to the ideas of the time—infinity is out 

there were you cannot get at it, there is only one infinity, and nothing 

infinite can truly be said to exist anyway—that he was bitterly fought by 

philosophers, mathematicians, and even theologians (who associated 

infinity with God and hence saw Cantor as sacrilegious). But even his 

greatest critics had to admit that the only way to seriously deny the 

validity of his work, so rooted is it in mathematical practice, is to deny 

even that N is a set; i.e., to insist that only finite objects exist, as Aristotle 
had. Cantor’s great enemy Kronecker tried to convince other mathema¬ 

ticians that the infinite could not be spoken of, but the effort failed. In 

1925 David Hilbert acknowledged the general acceptance of Cantorian 
infinity by saying “no one can drive us from the paradise that Cantor 

created for us.” 

We have already talked about infinite ordinals a bit. In this chapter we 

give some basic facts about cardinality and then do some ordinal arith¬ 

metic, some cardinal arithmetic, and some more advanced work with 

cardinals. For the first two sections of this chapter we will point out all 

+Cantor’s pioneering work was done in the 1870s and 1880s; Frege’s Foundations of 

Arithmetic was written at the turn of the century; Zermelo’s seminal paper was in 1908. 
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uses of the axioms of choice. After that we simply assume that we are 

working in full ZFC—otherwise there is little that can be proved. 

SECTION 5.1. CARDINALITY 

Rather than defining a cardinal number (a task fraught with difficulties) 

we will define cardinality. We write |A| < |B| for “the cardinality of A is 

smaller than or equal to the cardinality of B” and |A| = |B| for “A and B 
have the same cardinality.” We define these forthwith: 

Definition 1. |A|<|B| iff there is a 1-1 function /: A—\A\ = |B| iff 

there is a 1-1 function from A onto B; \A\<\B\ iff \A\<\B\ and 

\A\t\B\. 
In particular, if A<^ B, then |A| < |B|. 

Definition 1 defines a relation between A and B. It does not define an 

object called “the cardinality of A." This phrase is just how our language 

works, a quirk of grammar. 
Why is definition 1 reasonable? You have a room with chairs. Suppose 

everyone in the room is sitting down. If there are some chairs left over, 

we know without counting that there are more chairs than people. If 

there are no empty chairs, we know without counting that there are the 

same number of chairs and people. Suppose every chair is full and there 

are some people left standing. Then we know without counting that there 

are more people than chairs. The chairs can be in rows, in a single line, in 

a circle, arranged as in a concert hall—it does not matter. We do not care 
about the arrangement, only whether every person has a chair or every 

chair a person. 

Suppose, for every set A, we had defined a set |A| satisfying definition 

1. (We will actually do this under AC.) Then the relation < would be 

reflexive and transitive. In this loose way of speaking, the next theorem 

shows antisymmetry. 

Theorem 2 (Schrdder-Bernstein). If |A|<|B| and |B|<|A|, then |A| = 

\B\. 

At the end of this section we will show how easy it is to prove the 

Schrdder-Bernstein theorem using AC. Without AC it takes some care. 

Proof of the Schrdder-Bernstein Theorem. We are given /: A—> B and 

g: B—> A; both / and g are 1-1. Our task is to find some 1-1 h from A 
onto B. 
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By induction on w let us construct descending sequences {A„: n< (o) 

and {Bn: n < u>} where A = A0, B = B0, each An+1 cr A„, each B„+1 c 

Bn, and if n > 0 we let An = g[Bn_,] and Bn = /[A„_,]: 
Let A* = A„ — A„+i, B* = Bn- Bn+\. Let A1 = f) * A Dt ~ 

(^1 nCco Bn . 
< to B1 

Claim 1. For all n < co, f\ A* is onto B*+i and g | B* is onto A*+1. 

Proof. Since Bn+i = f\An] and Bn+2 = f\An+i] and since / is 1-1, we 
conclude that /[A„ — A„+iJ = B„+) - Bn+2. A similar proof works for g. 

Claim 2. A = A1 U (J U U „<« B*n. 

Proof. If xe B — B+, then there is some n with x£Bn. Let k be the 

least such. Then k > 0 since B = B0, so x e Bk-j. A similar proof works 
for A. 

Claim 3. {Af}U{A*: n < o>} is pairwise disjoint, as is {B1/ U {B*: n < a>}. 

Proof. Since if m < n then An <= Am+1, distinct A*’s are disjoint. And 

x 4. U n«o A* if x e Ar by definition of A+. A similar proof works for B. 

Claim 4. /1 A+ is onto Bf. 

Proof. Since Bf ^ Bi = /[A], Bf is a subset of range /. Since each 

/| A* is onto B*+I and / is onto B,, B+ <= /[A - [J n<aJ A*]. So by claims 

2 and 3, B+ = /[A1]. 

We are ready to construct a 1-1 function h from A onto B as 

follows: B | A+ = /; for all n < a>, h|A2„=/|A2„ and h\A2n+l = 

g-' | A2n+i. By claims 1 and 4, h is onto. Since / and g are 1-1, by claim 

3, h is 1-1. So we are done. 
This theorem justifies using the word “size” in connection with 

cardinality. 
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Two useful lemmas are 

Lemma 3. Assume AC. If some / takes a set A onto a set B, \ A\> |B|. 

Proof. For be B, let xb = f~\b). Let h e I“UeB xb. Since the xb's are 

disjoint, h is 1-1. So \B\ < |range h\. Since range It c A, we are done. 

Lemma 4. Suppose |X|^|Y|. Let xeX, ye Y. Then \X — {jc}| ^ 

\Y-{y}\. 

Proof. Let /: X-> Y be 1-1. Define /*: X-{x}^ Y-{y} as follows: 

/*(z) = f(z) if z ^ x and f(z) ± y. If z ± x and f(z) = y, let f*(z) = f(x). 

The reader can easily check that f* is 1-1 and dom(/*) = X — {jc}. 

Recall our earlier definition of finite ordinal. Using the terminology 

of this section, a set X is finite iff, for some new, |X| = \n\; a set which is 

not finite is called infinite. There is another useful characterization of 

finite, equivalent under AC. 

Theorem 5 

(a) If X is finite, then |X| ± | Y| for any proper subset Y of X. 

(b) Assume AC. If |X| ^ | Y| for any proper subset Y of X, then X is 

finite. 

Proof. For (a), by an argument similar to lemma 4, it suffices to show 

that if new and m< n then \m\ < |n|. This is immediate, since m < n iff 

m^n. 

For (b), notice that WO implies that every infinite set has a copy of co 

embedded in it. So let X be infinite, and let /: a>—>X be 1-1. Then let 

g: X — {/(0)} —> X be defined by g(a) = a if arrange/; g(/(n + l)) = 

f(n). Since g is 1-1 and onto, X has the same cardinality as a proper 

subset of itself, and we are done. 

A set X satisfying “|X| ^ | Y| for any proper subset Y of X” is called 

Dedekind-finite. Without AC there can be sets which are Dedekind-finite 
but not finite. 

Cardinalities can be classified in many ways. Our first, crude, attempt 

was to classify them as finite or infinite. Our second, slightly more subtle, 
attempt is 

Definition 6. A set X is countable iff |X|<|o>|; uncountable iff not 

countable. X is denumerable iff |X| = a>. 



CARDINALITY 77 

Cantor’s two great early theorems on cardinality were that the ration¬ 
al are countable but the reals are not. 

Theorem 7. Q is countable. 

We give two proofs. 

Proof 1. To each nonzero q e Q we associate the unique pair (nq, mq), 

where q = nq/mq, mq> 0, and nq, mq have no common divisors except 1; 

if q= 0, let nq =0, mq = 1. Let r, s, t be distinct prime numbers and 

define f (q) = rn« ■ sm« if q is positive; f{q) = I1"*1 • 5% otherwise. By 

arithmetic, / is 1-1. Since N embeds in Q, by the Schroder-Bernstein 
theorem we are done. 

Cantor did not come up with this proof—the Schroder-Bernstein 

theorem had not been proved yet. Instead he came up with the following 

proof, in which he invented a technique known as dove-tailing, which is 

the basic principle behind time-sharing. Because this method of proof is 

so important, we give it here. 

Proof 2. Let nq, mq be as in the first proof. We construct the function 

/:o>—»Q as follows: /(0) = 0. (Note that n0 = 0, m0=l). Suppose we 

know f(k) = qk. Let n = nqk, m = mqk, and let r = \n\ + m. 

Case 1. k is odd. Then f{k + 1) = -qk. 

Case 2. k is even. If m>l and there is y, m> j> 1 with j, r — j 
having no common factor except 1, pick the greatest such / 

where (r - j)tji range f\k + l and let f(k + 1) = (r-j)lj. 

Otherwise let f(k + 1) = 1/r. 

Here is a picture that explains the proof for even k: 

6 

1 

6 

5 
2 

5 
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Notice that the gaps are exactly fractions not in reduced form (e.g., 

I,!,!,! •••)• Notice that what we really have is an infinite number of 

tasks (“list every element in this row”) which we finish by doing a little 

on one, a little on another, then back to the first, now on to the third, 

back to the second, to the first, and so on, i.e., infinite time-sharing, also 

known as dove-tailing. 

With AC, a corollary to the proof of theorem 7 is that the countable 

union of countable sets is countable. 

The reason this proof does not generalize without AC is that we relied 

heavily on the fact that we have simultaneously at hand a well-ordering 

of each row. The generalization of theorem 7—if Y is infinite, and each 

|y| = | y| for ye Y, then |(J Y\ = | Y\—is not a theorem of ZF, even if Y 

is countable. There are models of ZF in which it fails, although it holds in 

ZFC. 
The next theorem is essentially Cantor’s second proof that the reals 

are uncountable. (The first proof was analytic and did not generalize.) 

The method is called diagonalization and is a powerful technique in set 

theory and logic, used, for example, to prove Godel’s incompleteness 

theorems, and frequently invoked in theoretical computer science. 

Theorem 8. For all x, |x| < |^(x)|. 

Proof. It is trivial to show that |x|<|^(x)|—just let /(y) = {y}. What 

we need to show is that \x\ 4 |^(x)|. 

Suppose / is a function from x to 0*(x). We construct a set y c; * with 

y 4 range / as follows: a e y iff a 4 f(a). If, for some a, y = f(a), then 
a g y iff a 4 y, a contradiction. 

The brevity of the above proof should not obscure its ingeniousness. 
The reader interested in how Cantor came upon it, and the mixed 

reception to the theorem, should read one of the historical books listed in 
the bibliography. 

It is useful to note that |^(x)| = \x2\ as follows: Define ^(x)—by 

T(y)(a) = 0 aey; *(y)(a) = 1 if a 4 y. (We write *(y) = = the 
characteristic function of y.) It is easy to show that x is 1-1 and onto. 
Hence, by theorem 8, each |x| < |x2|. 

Corollary 9 

(a) There is no biggest set: For all x there is some y, |y| > |x|. 

(b) IR is uncountable. 

Proof, (a) is clear. Let us do (b). 
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Let A be the set of reals between 0 and 1 which, in their decimal 

expansions, have only O’s and l’s, e.g., .101001000 .... Then A <= R, so 

|A|<|R|. But |A| = |"2|, since each element of A corresponds to a 

unique sequence of O’s and Ts. So |<a| < | A| < |(R|. 

It is time to face the question “what is a cardinal number?” The reply 

of the early set theorists was “|X| is the class of all Y with | Y| = |X|.” 

This is highly unsatisfactory: We want to define numbers as canonical 

objects and not as equivalence classes; if forced to deal with equivalence 

classes, we would at least want to cut them down to sets and not proper 

classes. This second objection can be dealt with—define |X| to be the set 

of all Y of minimal rank so | Y| = |X|—but the first objection remains. 

Without AC there is no useful way to define cardinal numbers. 

On the other hand, there is a class of ordinal numbers that look like 

good candidates for canonical cardinals. 

Definition 10. An ordinal k is an initial ordinal iff, for all a < k, |a| < |k|. 

For example, a> is an initial ordinal; co+\ is not (since the map 

/(()) = a), f(n + 1) = n is 1-1 from co onto oo + 1). Similarly, if a > to, then 

|a| = | a + l|. 
By a cardinal number we will mean an initial ordinal. Thus every 

infinite cardinal is a limit ordinal. 

Theorem 11. AC is equivalent to “every x is isomorphic to a unique 

cardinal number.” 

Proof. If AC fails, then some x is isomorphic to no ordinal, hence 

certainly not to an initial one. If AC holds, then by WO for each x there 

is an ordinal a with |x| = |a|. Let A = {y < a: |y| = |x|}. Let k = inf A. If 

\k\ = |/3| for some (3 < k, then j8 e A, which is a contradiction. So k is an 

initial ordinal, and we are done. 

Under AC, then, we can define the cardinality of a set. 

Definition 12. Assume AC. Then |x| = k iff k is the unique cardinal 

number for which |x| = |k|. 

The proof of the Schroder-Bernstein theorem under AC is now 

trivial: If |A| < |B| < | A| and k = |A|, A = |B|, then k < A < k, so k = A, 

and we are done. 
Let us introduce some cardinals: <o0 = o>; w, is the first uncountable 
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cardinal; in general if a e ON, then (oa+1 is the first cardinal greater than 

wa; if a is a limit, then wa = (J/3<a idp. (This is indeed a cardinal. 

Otherwise |o>a| = ojp < a>p+i for some (3<a, but a>p+i = \(op+i\^\(oa\, 

which contradicts (Op < (x)p+\.) o)a is sometimes written as Na when its 

cardinal nature is being emphasized, (n is the Hebrew letter aleph.) 

Notice that, since as an ordinal ioa = {(3: (3 < coa}, each coa = 

{/3 e ON: |/3| < &>„}. 
Assuming AC we write 2K = |K2| and define the 3a’s (3 is the Hebrew 

letter bet without its diacritical mark): 3<> = u>\ 3a+i = 23“ for all ordinals 

a; if a is a limit ordinal, then 2a = (J/3<a We will not use the bet 

notation, but many authors do. 

Note that the definition of the Ka’s does not depend on AC. 

If A = Na+1 and k = xa, we say A = k+ and A is a successor cardinal. If 

A = Na and a is a limit ordinal, we say A is a limit cardinal. A cardinal k 

is infinite iff a>< k. 

SECTION 5.2. ORDINAL ARITHMETIC 

Line up three tortoises. Then line up five more behind them. Eight 

tortoises are now lined up. This is how we define a + /3: a copy of a 
followed by a copy of (3. 

Line up three tortoises. Line up three more behind them. And again 

three more. And again. Three times four tortoises are now lined up. This 

is how we define a ■ (3: (a followed by a followed by a ...) (3 times. 
The formal definitions are inductive. 

Definition 13. For all ordinals a,/3:a + 0= a; a + (/3 + \) — (a + (3) + \ ; 
if jS is a nonzero limit, then a + /3 = (J y<p (a + y). 

Definition 14. For all ordinals a, (3: a ■ 0 = 0; a ■ (/3 + 1) = (a • (3) + a; if 
(3 is a limit then a • (3 = {J y<p (a • y). 

Note that the nonlimit clauses exactly parallel the definitions in N. 
Here is a picture of a + )3: 

a 

Here is a picture of a • (3: 

P 

P 
a a a 
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For completeness we include 

Definition 15. For all ordinals a,/3:a°=\; ap+l = ap ■ a; if /3 is a 

nonzero limit, then = (J y<f3 ay. 

Notice that addition and multiplication do not commute: 2 + co = 

sup{2 + n:n<a)}=o><fa> + l<o) + 2; 2 • co = sup{2n: n < a>} = co < 

co + 1 < a> + a> = ca • 2. We must also be careful not to confuse ordinal 

exponentiation with cardinal exponentiation: In ordinal exponentiation 

2“> = sup{2": n < oj} = co, but in cardinal exponentiation 2" > co. Unless 

otherwise noted, in this section all arithmetical operations are the ordinal 

operations. Subsequent sections use mostly cardinal operations, unless 

noted otherwise, with the exception that a + 1 is always the ordinal 

successor of a. 
While commutativity does not hold, associativity and left-distributivity 

do. 

Theorem 16. For all ordinals a, (3, y, 

(a) (a + (3) + y = a + ((3 + y) 

(b) (a ■ p) • y = a ■ (/3 • y) 

(c) a ■ (/3 + y) = a • /3 + a ■ y 

Proof. We prove (a); (b) and (c) are left to the reader. The proof of (a) 

is by induction on y. Suppose it is true for all a, /3 and all 8 < y. 

Case 1. y = 8 + 1 for some 8. Then 

(a + (3) + y = (a + (3) + (8 + 1) 

= [(a + (3) + 5] + 1 by definition of addition 

= [a + (/3 + 5)] + 1 by induction hypothesis 

= a + [(j3 + 8) + 1] by definition of addition 

= a + [/3 + (5 + l)] by definition of addition 

= a + (/3 + 7) 

Case 2. y is a limit. We shall need the following claim, whose proof is 

left to the reader: For all ordinals a and sets of ordinals A, sup{a + (3: 

(3 e A} = a + sup{/3: /3 e A). Given the claim: 

(a + (3) + y = sup{(a + /3) + 8: 8 < 7} 

= sup{a + (/3 + 8): 8 < y} by induction hypothesis 
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= a + sup{/3 + 8: 8 < y} by the claim 

= a + (/3 + y) by definition of addition 

Here is a picture of what is going on: 
Given: a: _ 

j8:- 

r. 
we have (a + j3) + y: (- 
and ct + (/3 + y):-( 

The picture for left distributivity is 

a •((3 + y): —-- - 

/3 + y 

(a • (3) + (a • y): -- -••• 

/3 y 

Right distributivity fails for ordinal arithmetic. For example, (ca + 
1) • a) = (o ■ oj. Here is a picture: 

at + 1:-— 

(o» + 1) ■ a> :  -... - -• • • - -... - -■ • • - 

But (a) • &>) + a) > (co ■ (o) + 1 > a) • a>. 

Let us give some concrete pictures of some small infinite ordinals. 

Definition 17. A well-ordered set has order type a iff the set is order- 
isomorphic to the ordinal a (where we say the set X under the order < is 
order-isomorphic to a iff there is a 1-1 onto function f: X-^a where 

y iff f(x) e /(y)). 

For example, under the lexicographic ordering: 

(i) [{0} x a] U [{1} x j8] has order type a + (3. 

(ii) (3 x a has order type a • /3. 

(iii) y x /3 x a has order type a ■ (3 ■ y. 

The assertions (i), (ii), and (iii) are easily proved by induction. 
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Now let us find sets of reals with desired order types. 

Example 18. We define numbers x„, xn>m, and x„,m,fc for n, m, ke o> as 
follows: 

x„ is .1 ... 1000. . . 

xn,m is .1 ... 101 ... 1000... 

n ones m ones 

Xn,m,k is . 1 ... 101 ... 101 , ■ ■ 1000 . . . 

n ones m ones k ones 

where the notation “000 ..means a final string of zeros. Then 

(a) {xn: n e to} has order type w. 

(b) {x„-m: n, me co} has order type co ■ co. 

(c) m n, m, k e a>} has order type co • co ■ co. 

Proof. We prove (b) and leave (a) and (c) to the reader. By (ii), it 

suffices to show that {x„,m: n, m e co} is order-isomorphic to co x co under 

the lexicographic order. That is, we must show that if (n, m) <L(k, j) 

then xn tn < xk'j. If (n, m) = (k, j), we are done, so we are left with two 
cases. 

Case 1. n<k. Then the ith decimal place of x„,m = the ith decimal 

place of xk,j for / < n. But the (n + l)st decimal place of x„,m is 0, and the 

(n + l)st decimal place of xkj is 1, so x„,m < xk,y. 

Case 2. n = k, m<j. Then the ith decimal place of xn-m = the ith 

decimal place of xk j for i < n + m + 1. But, if i = n + m + 2, the ith 

decimal place of x„,m = 0, and the ith decimal place of xnj = 1. So 

Xn, m ^ Xn j. 

The exercises expand on this method of embedding countable ordinals 

into R. 

The next theorem says that every well-ordered set has an order-type. 

Theorem 19. Every well-ordered set is order-isomorphic to an ordinal. 

Proof. Let X be well-ordered by <. We define / by induction on ON 
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as follows: /(0) is the least element in X. If f{a) is defined and in X, then 

f(a + 1) is the least element in X strictly greater than /(a), if such exists; 

otherwise f(a + 1) = X. If a is a limit and /()3) is defined and in X for all 

P< a, then f(a) is the least element in X strictly greater than all /(/3), 

P < a, if such exists; otherwise f(a) = X. 
Let y be the first ordinal for which /(y) = X. Then f\ y is order¬ 

preserving by definition. If f\ y is not onto X, let x be the least element 

in X with x f[y]. Let 8 = sup{a: f(a) < x}. Then f{8) = x and 8 < y by 

definition of y. So x e /[y], a contradiction. 

We mix cardinality and ordinality with 

Theorem 20. An ordinal a is countable iff some subset of R has type a. 

Proof. If XcR has type a, then X = {xp: ft < a} where if /3 < y < a 

then Xp < xy. Consider the open intervals Ip = (xp, Xp+\) in R. (If a = (3 + 

1, let xp+\=c°.) The Ip's are pairwise disjoint and each contains a 

rational, so there are only countably many of them. The function /: X—» 

0*(R) given by f{xp) = Ip is 1-1 and onto {lp\ ft < a}, so X is countable. 

Before proving the other direction we need 

Lemma 21. A nonzero countable limit ordinal is some (J n<a) /3n where if 

n< m then /3„ < pm. 

Proof. Lemma 21 is equivalent to the statement: For every countable 

limit ordinal a there is an order-preserving map /: to—* a with {y: 3/3 > y 

(P g range /)} = a. Suppose a is a countable limit. Let h\ co-* a be 1-1 

and onto. We define f.io-^a as follows: Let /(0) = h(0). Given f(n) let 

k be the least ordinal greater than n with h{k)>f(n) (why does k 

exist?). Let f(n + 1) = h{k). By construction, / is order-preserving and 

{y: 3p > y (P E range /)} = a. So we are done. 

Now we return to the proof of theorem 20. We show by induction that 

if a is countable then some subset of R has type a. Suppose it is true for 

each p < a. If a = p + 1, then, since R is order-isomorphic to the open 

interval (0, 1), some subset Y of (0, 1) is of type p. Then YU{1} is of 

type a. If a is a limit, since a is countable, a = jjn<tu pn where we can 
assume that if n < m then pn < pm. Let 8n be the order type of {y: p„ < 

y< /3,,+i}, let /„ be the open interval (n, n + 1) in R, and let Yn <= /„ be of 
type 8n. Then U„<u, Y„ has type a. 

Theorem 20 tells us why uncountable ordinals are so hard to picture: 

They cannot be embedded in R. Note that the second part of the proof 
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seems to use a mild form of choice, when we picked the Y„’s simul¬ 

taneously. In fact, choice is not needed—by taking a bit more care the 
sets of reals we construct can be made definable. 

Here are some examples of ordinal arithmetic equalities and in¬ 
equalities involving uncountable ordinals: 

Example 22 

(a) co + = o»|. 

(b) co ■ (j)\ — ajj. 

(c) a)w' = co,. 

(d) co, < co, + co < co, • co < coi". 

Proof, (a) co + to, = sup{<o + a: a < w,}, but each such co + a is count¬ 

able, so sup{o» + o:: a < w,} = w,. The proofs of (b) and (c) are similar. 
For (d), co, < co, + 1 < co, + co < co, + (co + 1) < cot + a>i = a»i • 2 < co\ • co < 

COi • (CO + 1 ) < COi • COi = COj2 < COi™. 

As in arithmetic on the natural numbers, ordinal arithmetic has the 
concepts of division and remainder. 

Theorem 23. Let 0 < a < (5 be ordinals. Then there are ordinals 8, y 
with y< a and (3 = a ■ 8 + y. 

Proof. Let 8 be the sup of {p: a • p < /3}. By definition of 8, a • 5 < 

/3 and a ■ (8 + 1) > /3. Let y be the order type of {17: a • 8 < 17 < /3}. Then 

a ■ 8 + y = (3 and y < a since /3 < a • (8 + 1). 

Ordinal arithmetic does not have a right-cancellation law. As the next 

theorem shows, counterexamples to right-cancellation are common. 

Theorem 24. For all ordinals /3 and all nonzero limit ordinals a, a + (3 = 

(3 iff (3 S: a ■ co. 

Proof. If a + (3 = /3, then (3 > a, so there are 8, y with (3 = a ■ 8 + y, 

y < a. Then 

„ / /.ox a8 + y if 8> oj 
a +(3 = a + (a ■ 8)+y= a(\ + 8)+y\ 

l> tro + 7 if 8 < co. 

Theorem 24 says the operation a+ has many fixed points. The 

operation a ■ also has many fixed points (see corollary 29). The 

operation + a (if a > 0) and • a (if a > 1) have none. 
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Theorem 25. For all ordinals a, (3, y, if /3 < y, then a + (3 < a + y, and if 

(3 < y and a > 0, then a ■ (3 < a ■ y. 

Proof. Immediate from definitions 13 and 14. 

It will turn out that, as a corollary to theorem 28, there will be many 

pairs a, (3 with a + /3 = a- /3;asa corollary to theorem 25, there are no 

(3 satisfying /3 + /3 = /3-/3ifj3>2. 

For completeness, we define infinite ordinal operations: 

Definition 26. For each ordinal /3, and each set of ordinals {ay: y < /3}. 

(a) oty = sup{£7<5 ay: 8 < /3} if /3 is a limit; if /3 = tj + 1, then 

®*y ljy<T) ^y 

(b) Y\y<p Uy = supines ay: 8 < /3} if /S is a limit; if j3 = Tj + l, then 

n -y</3 &y (n 
For example, in ordinal arithmetic, 0+l+2 + --- + o» = o> + w; 

0-1-2.(o = a) ■ (o. 

The operations of definition 26 are explored in the exercises. 
We close this section with a theorem about continuity and fixed points 

on the ordinals which establishes many of the fixed-point theorems for 

ordinal arithmetic. 

Definition 27. A class function / from ON to ON is said to be continuous 

iff it is nondecreasing and, for all limit a, f(a) = sup{/(/3): (3 < a}. 

For example, every constant function is continuous, and the function 

f(a) = (3 + a is continuous, for each fixed f3, as are the functions g(a) = 

(3 ■ a and h(a) = (3a. 

Theorem 28. A continuous strictly increasing class function defined on 
all the ordinals has arbitrarily high fixed points; i.e., for every a there is 

some (3> a with f{(3) = (3. 

Proof. Let a0 = f(a) and define an+] = f(an) for all finite n. Let 
a* = sup{a„: n G <a}. By continuity, f(a*) = a*. 

Corollary 29 

(a) Let a be a nonzero limit ordinal. Then there are arbitrary high (3 
for which a ■ f3 = /3. 
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(b) For every nonzero limit ordinal a, there are arbitrary high (3 with 
a. + (3 = a • (3. 

Proof 

(a) The function /(/3) = a ■ [3 is continuous, strictly increasing. 

(b) Let (3 be a fixed point for the function f{(3) = a • (3 where j3 > 

a ■ a). Then by theorem 24, /3 = a + (3. 

SECTION 5.3. CARDINAL ARITHMETIC 

In this section we study cardinal arithmetic in the presence of the axiom 

of choice. (Since without the axiom of choice there is almost nothing to 

say beyond the Schroder-Bernstein theorem, we will, in this section and 

for the rest of the book, automatically assume the axiom of choice unless 

otherwise noted, thus reversing our previous convention of always men¬ 

tioning explicitly the use of choice.) 

We introduce the following conventions: Lowercase Greek letters in 

the first part of the alphabet (a, (3, y, 5, and so on) represent ordinals, 

and arithmetic operations involving them (e.g., a + f3) are always ordinal 

operations; later lowercase Greek letters (e.g., k. A, p) represent car¬ 

dinals, and operations involving only them (e.g., k + A) are cardinal 

operations unless noted otherwise. Mixed operations (e.g., A + a) are 

ordinal operations as are all A + n where n is finite, unless otherwise 

noted. 
Let us define cardinal addition and multiplication. If you have three 

rings on one hand and four rings on the other, you have seven rings all 

together. That is how we define cardinal addition: the size of the union of 

two nonoverlapping sets. 

If a matrix has 35 rows and 20 columns, it has 700 entries. That is how 

we define cardinal multiplication: as the size of a product. 

Definition 30 

(a) Let X and Y be sets. We define |X| + | Y\ = |(X x {0}) U ( Yx {1 })|. 

(b) Let X, Y be sets. |X| • | Y\ = |X x Y|. 

Note that this definition does not depend on the axiom of choice. Let us 

give the version whose universality depends on choice. 
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Definition 31. Let k, A be cardinals. We define k + A = p iff there are 

disjoint sets A, B with |A\ = k, |B| = A, and \A U B\ = p; and k ■ A = 

|k X A|. 

The reader is expected to show that definition 31 is consistent with 

definition 30. 
We already defined one special case of cardinal exponentiation when 

we defined 2K as |K2|. Note that this is consistent with ordinary exponen¬ 

tiation on the integers. Also consistent with exponentiation on the 

integers is 

Definition 32. For any sets X, Y, |Y||X| = |XY|. In particular, if k, A are 

cardinals, AK = |KA|. 

Note that definition 32 again does not need the axiom of choice to 

apply to all sets. 
To prove the main theorem about cardinal addition and multiplication 

it will be convenient to define two classes of ordinals. 

Definition 33. An ordinal is even iff it has the form a + 2n where new 

(here addition means ordinal addition) and a is a limit ordinal. An 

ordinal which is not even is odd. 

Lemma 34. Let k be an infinite cardinal. Then k = |{or < k: a is even}| = 

|{a < k: a is odd}|. 

Proof. Let /(a + 2n)= a + n where a is a limit. Then / is 1-1 from 

the set of even ordinals below k onto k. And letting g(a + 2n + l) = 

a + 2n we see that the set of even ordinals below k has the same 

cardinality as the set of odd ordinals below k. 

An immediate consequence of lemma 34 is that, for all infinite 

cardinals k, k + k = k. 

Thus, while the definitions of infinite cardinal operations parallel their 

finite counterparts, their salient arithmetical properties can be quite 

different. It is easy to prove that cardinal addition and multiplication are 

commutative and associative and that the usual distributive law holds. 

But, unlike finite arithmetic, infinite cardinal operations are idempotent. 

Theorem 35. Let k, A be infinite cardinals. Then 

(a) (Idempotence) k + k = k = k k. 
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(b) k + A = sup{k, A}. 

(c) k • A = sup{k. A}. 

Proof. For (a): We have already shown that k + k = k. We must show 

that k ■ k = k. We do this by induction on infinite cardinals. Induction on 

cardinals reduces to ordinal induction as follows: Assuming a hypothesis 

is true for all infinite cardinals p < k = coa is assuming that it is true for all 

wp, (3 < a. So the induction is on the ordinal indices of the cardinals. 

To get started, note that the proof that the rationals are countable is 
essentially the proof that a> • to = a>. 

Now suppose for all infinite cardinals p< k, p ■ p = p. Well-order the 

set k x k as follows: (a, /3) < (7, 5) iff the ordinal sum a + (3 < the ordinal 

sum y+S; or the ordinal sum a + f3 = the ordinal sum 7+5 and a < 7. 

This is easily seen to be a linear ordering. It is a well-ordering: For any 

subset A of k x k there is a least ordinal sum a of pairs in A, and the set 

of pairs in A which sum to a has a pair with a least first element. We are 

done if we can show that the order type of this well-ordering is exactly k. 

Let Ba = {(7, (3) e k x k: 7 + (3 = a}, for each a<K. Then kXk = 

U«<« and by induction hypothesis each Ba has size at most |a| 

(because each element of Ba is in (a + 1) x (a + 1)). Let Cp = U«<0 

for each /3 < k. Note that Cp (3 x (3. By the induction hypothesis each 
l/3|=s|q,| < k, so kX k has, under this ordering, length at least k. Each 

Cp is an initial segment of k x k, so k x k has, under this ordering, length 

at most k. Thus the length is exactly k, and we are done. 

For (b): Without loss of generality suppose k < A. Then A < k + A < 

A + A which, as we already know, equals A. 

For (c): Again, without loss of generality suppose k<A. Again, 

A < k ■ A < A • A. But, by (a), A • A = A for all cardinals A, and we are 

done. 

Note that the statement k2 = k is equivalent to the statement that the 

arbitrary union of k many sets, each of size k, has size k. 

Theorem 36 

(a) For every infinite cardinal k, 2k = kk. 

(b) If k, A are cardinals, A infinite, and 2 < k < A, then ka = Aa. 

(c) If k, A, p are cardinals, then (ka)p = ka ' p. 

Proof. For (a): A function in kk is a subset of k x k, and we already 

know that |kXk( = k, from theorem 35. So there is a 1-1 cor¬ 
respondence from kk to 0>(k); hence \kk\ < 2* < kk, and we are done. 
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Note that (b) is an immediate corollary of (a). 

For (c), there is a 1-1 mapping <t> from functions from p into kk to 

functions from px A into k given as follows: If /:p-»KX, let be 

defined by /3) = 3). 

Notice that theorem 36 does not tell us exactly what any ka is. 

Theorem 35 told us exactly which cardinal was the sum or product of two 

infinite cardinals. We simply do not know this for exponentiation. 2" 

could be nearly anything in a very precise sense: If k is an infinite 

cardinal of uncountable cofinality (defined in the next section), then it is 

consistent with the axioms of set theory that 2" = k. A little more can 

and will be said in the next section, but not much more. Most questions 

involving exponentiation are undecidable. When one of them is dis¬ 

covered not to be, it is a major breakthrough (see the discussion of the 

singular cardinals problem in section 5.5). 

Although we cannot know what 2W really is (whatever that means), we 

can hypothesize what it might be. The continuum hypothesis (ab¬ 

breviated CH) is the hypothesis that 2“' = o;l; the general continuum 

hypothesis (abbreviated GCH) is that, for every infinite cardinal k, 

2K = k+. Cantor believed that CH was true and spent many fruitless years 

trying to prove it so. In 1937 Godel proved that GCH is consistent by 

showing that it holds in a particular model of set theory known as the 

constructible universe (see chapter 6). In 1963 Cohen proved that CH 

does not hold in all models of set theory, via the technique of forcing 

(invented by Cohen to show the consistency of the failure of CH and the 
consistency of the failure of AC; forcing has become the main method of 

showing statements consistent with ZF or with ZFC). 

SECTION 5.4. COFINALITY 

Our previous classifications of infinite cardinals—into countable and 

uncountable cardinals and into successor and limit cardinals—are far too 

coarse: The former even lumps all infinite cardinals except co into the 

same class. Here we develop a far more useful classification, based on the 
concept of cofinality. 

Recall that a set A is said to be cofinal in a linear order X iff A c X 

and for every x e X there is a e A with x < a. In particular, if A <= a and 

a is a limit ordinal, then A is cofinal in a iff a = IM. 

Definition 37. An ordinal a is cofinal in an ordinal /3 iff there is a 1-1 

increasing function from a to j8 whose range is cofinal in (3. 
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For example, an infinite ordinal a is cofinal in (3 + a, and in jS - a and 

j3“ if a is a limit (the arithmetic here is ordinal arithmetic), and in the 
cardinal (oa if a is a limit. Each a > 0 is cofinal in a. 

Note that it a is cofinal in (3 then a < /3 and that if a is cofinal in /3 
which is cofinal in y then cr is cofinal in y. 

Definition 38. The cofinality of an ordinal /3 is defined to be the least a 
with a cofinal in (3. We write a = cf(/3). 

If /S is a successor ordinal, then cf(/3) = 1. 

What sort of ordinals can be cofinalities? 

Theorem 39 

(a) An infinite ordinal of size k has cofinality at most k. 

(b) If a = cf(/3) for some (3, then a is a cardinal. 

Proof. For (a): Suppose |a| = k and p = cf(a). Let f: k—»a be 

1-1 and onto, and define g with dom gc k, range g cofinal in a by 

g(/3) = inf{/(y): y> (3 and f(y) > g(8) for all 8 < (3}. For some /3 < k, 

dom g — (3. Note that g is a strictly increasing function on f3 < k whose 

range is cofinal in a, so (3 > p. 

For (b): If |a| = k < a = cf( /3), then by (a) cf(a)<K. Hence some 

8 < k is cofinal in a which is cofinal in /3, so a is not the least ordinal 

cofinal in (3, a contradiction. 

On the other hand, not every cardinal is a cofinality, witness 

The important bifurcation of cardinals is given by 

Definition 40. A cardinal k is regular iff K = cf(/<). Otherwise k is 

singular. 

For example, is singular, but w, is regular. The latter follows from 

Theorem 41. For every cardinal k, k+ is regular (recall that k+ is the first 

cardinal strictly greater than k). 

Proof. By theorem 39, cf(/<+) = k+ or cfU+) < k. If the former, we are 
done, so suppose the latter. Then letting A =cf(/<+), we have an increas¬ 

ing cofinal 1-1 map /: A —» k+, where, if a < A, Aa = {y < k+: y< /(a)}, 

then k+ is the union of the Aa's. But then k+ is the union of at most k 

sets each of which has size at most k, so \k+\ = k, which is a contradic¬ 

tion. 
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We have shown that every infinite successor cardinal is regular. Are 

there any regular limit cardinals? Clearly a> is one. In the next chapter we 

will show that the existence of an uncountable regular limit cardinal 

implies the consistency of ZF. Hence, by Godel’s incompleteness 

theorems, ZF (and in fact ZFC) cannot prove the existence of a regular 

uncountable limit cardinal. Such a cardinal is called weakly inaccessible. 

(Strongly inaccessible cardinals will be defined in the next chapter.) On 

the other hand, the existence of an uncountable regular limit cardinal 

seems like little enough to ask of the universe, and inasmuch as set 

theorists can be said to believe in the existence of the mathematical 

universe (whatever “existence” means in this context) they can probably 

be said to believe in the existence of weakly inaccessible cardinals. 

Certainly theorems which begin “if there is a weakly inaccessible car¬ 

dinal, then ...” are regarded as innocuous. But, on the other hand, when 

a theorem does begin that way, an effort is always made to check that the 

hypothesis is necessary. 

SECTION 5.5. INFINITE OPERATIONS AND 
MORE EXPONENTIATION 

Generalizing section 5.3, we define infinite cardinal sum and infinite 
cardinal product as follows: 

Definition 42. Let I be an index set, k, a cardinal for each i e 7. We 

define £,e/ k, = |(Jie/Aj| where each |A;| = k, and the A,’s are pairwise 

disjoint. In an abuse of notation we define fLe/ k, = |n,-6/ Ki\ (here the 
first n means cardinal product, the second means set-theoretic product). 

The connection between infinite sum and infinite product is given by 
Konig’s theorem: 

Theorem 43. Suppose 7^0 and k( < A( for all iel. Then £ie, *, < 

0ie / A/. 

Proof. For each i e 7 let A, be such that | A,| = k, where the A,’s are 

pairwise disjoint, and let /, be a 1-1 map from A, into A* -{0}. For xe A, 

let fx(i) = fi(x); fx(j) = 0 if j ^ The map F{x) = fx shows that X,e/ k, < 

'0 i e / A;. 

To show that Xie/ « i1 FI«e/ Ai, we let F be an arbitrary map from 

U<e/(K' x{'}) 'nt° FIiei Ai and show that F is not onto. Let gQ , denote 
F(a, 0, and, for each iel let Kt = {ga,,(i): a < *,}. Since each \K,\< 
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Ki< A,, there is some y, e A, - K,. Let /(/) = y, for all iel. Then 

/Grange F iff /=ga.,-, for some a, i, iff f(i)eKj for some i; hence 
/ 4- range F. 

With the concept of cofinality and theorem 43 at hand we can get 

sharper theorems about exponentiation. The basic elementary theorem is 

Theorem 44. For each infinite cardinal k 

(a) kc{(k) > k, and 

(b) cf 2K> k. 

Proof. For (a): Let / be a 1-1 increasing cofinal map from cf k to k. 

Then k = |(J a<Cf<K> /(«) | =£ L<cf(K) |/(«)| < *cf k by Konig’s lemma. 
For (b): Let A = cf 2*. Then (2K)A = 2K if A < k, contradicting (a). 

Note that, since cf(A)<A for all A, theorem 44(b) implies the 
infinitary case of Cantor’s theorem that k< 2K. 

Theorem 44 nearly ends what can be said about exponentiation 

without getting into consistency results. (For example, we cannot prove 

that 2K>2A implies k > A.) The exceptions are the remarkable results 

due to Silver and to Galvin and Hajnal on the singular cardinals problem, 

and Bukovsky’s theorem+ (proved independently by Hechler) that kk is 

determined by kcHk). To put these results in context, and to explain the 

situation for regular cardinals, we first state 

Theorem 45 (Easton). Let F be a nondecreasing function from the class 

of infinite regular cardinals to the class of cardinals where cf F(k)> k for 

all k. (Note that F is a class and that F(k) need not itself be regular.) 

Then if ZFC is consistent, so is ZFC + “for all regular k, 2k = F(k).” 

Easton’s theorem is proved via forcing, the technique created by 

Cohen in 1963 to construct new models of set theory from old models, 

and is a complicated generalization of Cohen’s original proof that 2" 

need not be a>i. It completely settles the question of what the possibilities 

are for 2* if k is regular, saying that the constraint of theorem 44(b) is 

the only constraint possible. The proof of Easton’s theorem, as with all 

forcing proofs, is beyond the scope of this book. 

fA piece of the Bukovsky-Hechler theorem appears as exercise 28. For the full theorem, 

see Jech’s Set Theory. 
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After Easton’s theorem the question became “what about singular 

cardinals? Does the same sort of freedom exist there?" The surprising 

answer, due to Silver, was “not if the cofinality is uncountable. 

Theorem 46 (Silver). Suppose xa is a singular cardinal of uncountable 

cofinality and, for some fixed y<cf(a) and every ordinal (3 < a, 2Ke = 

Hp+y. Then 2K» = Ka+y. 

The version of Silver’s theorem we have given is not the strongest 

possible (for example, the hypothesis need not hold for every (3 < a, just 

for a large enough set of them), but it is the strongest version which is 

easy to state. Note that as an immediate corollary we have that, if k is a 

singular cardinal with uncountable cofinality and 2A = A* for all cardinals 

A < k, then 2* = k+. It is this consequence which is most widely known, 

and which made Silver’s theorem surprising, since Prikry and Silver had 

previously shown that, modulo the consistency of a cardinal stronger 

than a measurable cardinal (see chapter 7), there could be a singular 

cardinal k of countable cofinality where 2A = A+ for each infinite A < k 

but 2K = k++. (“There could be” means that it happens in some models of 

set theory, not that it happens in all of them.) 

Then Baumgartner, Prikry, and Jensen independently gave a purely 

elementary (in the sense that it only uses combinatorial set theory and no 

techniques from mathematical logic) proof of Silver’s theorem which 

Galvin and Hajnal generalized in still other directions. Galvin and 

Hajnal’s proof, while elementary in the sense that it uses no model 

theory, is quite a bit more advanced than the level of this book. It has as 

a consequence 

Theorem 47 (Galvin, Hajnal). If k is a singular cardinal of uncountable 

cofinality and if 2A < k for all A < k and if k < xK, then 2K <xK. 

The reader interested in seeing their proof is directed to either Jech’s 

Set Theory, which gives the entire proof, or to the text by van Dalen, 

Doets, and Swart (listed in the bibliography) which gives a special case of 

their proof. 

Further work on the singular cardinals problem for uncountable 

cofinality has been done by Jensen, who, in a remarkable result which has 

inspired analogues in other contexts, shows that the negation of various 

large cardinal axioms also affect the possibilities for 2K when k is 

singular. His work will be described briefly in chapter 6. Shelah has 

obtained exponentiation bounds in the case of countable cofinality. 
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SECTION 5.6. COUNTING 

In this section we compute the size of various mathematical objects. 

Example 48. IR. By section 4.4, every real corresponds to a set of 

rationals. So |IR| < cow = 2W. In the proof of corollary 9(b) we showed that 

|R|>2". So |R| = 2". 

Example 49. Polynomials. How many polynomials are there in one 
variable x with coefficients in R? Such a polynomial has the form 

Z/sn 6*', where n is finite and each r, e R. So there are exactly as many 
polynomials as there are finite tuples with elements in R. Thus there are 

IU »iea> R"| = co ■ 2W = 2W polynomials with coefficients in R. 

Similarly, there are co ■ co = co polynomials in one variable x with 

coefficients in Q. 

Example 50. The number of open sets of reals. Recall that an open set of 

reals is a union of open intervals with rational endpoints. Let $ be the set 

of intervals with rational endpoints. If u is open, we let /(«) = 

{J e Jf: J ci u}. The function / is 1-1 and $ is countable, so there are at 

most 2“ many open sets of reals. That there are exactly 2“ open sets of 

reals follows from the fact that, for every real r, R-{r} is open. 

Example 51. The number of irrationals. There are countably many 

rationals, and 2" many reals, so there must be 2" many irrationals. 

Example 52. The number of continuous functions from R to R. There are 

2<2°') functions from R to R. But there are only 2“ continuous functions 

from R to R, as follows: 
Every continuous function from R to R is determined by its values on 

Q, so there are at most lo||R| = (2“)“ = 2“ many such functions. There are 

at least that many: For each real r the constant function f(x) = r is 

continuous. 

Example 53. The number of 1-1 functions from co into a»,. First we show 

that there are co\w 1-1 functions from co into <uj. Surely there are at most 

that many. It suffices to find a 1-1 function G from Mcot into the set of 

1-1 functions from co into wXo»,. If /:a>—define G(f) = 

{(n, (n, a)): f(n) = a}. G is clearly a 1-1 function, as is G(f). 

Now note that, since co < coj < 2", 2" < co\M < (2")" = 2b>. Thus there 

are 2" 1-1 functions from co into o>t. 
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Example 54. Subsets of k of size k. Clearly 2* is an upper bound. If A is 
a subset of k, let f(A) = (J aeA {a} x k. Then / is a 1-1 function from 

0>(k) into @(k2) where each f(A) has size k. Since k = |k2|, the number of 

subset of k of size k is at least 2K; hence it equals 2K. 

Example 55. Well-orders on k. By definition, there are exactly k+ 

ordinals of size k. We show that there are 2K ways in which to well-order 

a set of size k. (Note that by theorem 45 2K need not equal k+.) 

2K is an upper bound, since every well-ordering of k is a relation on k, 

i.e., a set of ordered pairs in k2. Let A be a subset of k of size k. By 

example 54 there are 2K of these. Since k is a cardinal, A is well-ordered 
by 6 in order type k. Let <A be any well-ordering of k in which A under 

e is an initial segment. Since the <A’s are distinct, we are done. 

EXERCISES FOR CHAPTER 5 

1. Show by the methods of definition 1 that the following are countable 

sets: (o x a>\ to x to x to; the set of polynomials in one variable with 

integer coefficients. 

2. Show by the methods of section 5.1 that each of the following has 

the same cardinality as R: R2, R" for each finite n, the set of points 

on the surface of the unit sphere. 

3. Using exercise 2 and the Schroder-Bernstein theorem, show that 

|R| = |unit ball|. 

4. An exercise on the proof of the Schroder-Bernstein theorem: Let 

A = {(), 1} x to, B = to, f: A—>B where /(0, n) = 4n, f(\, n) = 4n + 3, 

g: B^> A where g(n) = (0, n). 

(a) What is each A„? B„? 

(b) What is Af? Bf? 

Note: In exercises 5 through 7 you may only use the methods of section 
5.1. 

5. (a) Show, assuming AC, that every infinite set has a countably 
infinite subset. 

(b) Show, assuming AC, that if X is infinite and V countable then 

|X| = |XU Y|. 

6. Assuming AC, show that |R| > &>,. 
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7. (a) Show that if |x| > 1 then |x| < |xjt|. 

(b) Assuming AC, show that |r[R| > co2. 

Note: In Exercises 8 through 15 all arithmetic is ordinal arithmetic. 

8. Find a set of reals of order type co + co + w + co + w. 

9. Show that y ■ (3 ■ a is order-isomorphic to a x /3 x y under the lexi¬ 
cographic ordering. 

10. Show that example 18(c) works. 

11. Suppose we have embedded a into R via /, where /(/3) = Xp for each 

18 < a, and each Xp lies strictly between 0 and 1. Now let us embed 

a ■ u) as follows: if i\i2i2 - • • is the decimal expansion of Xp, we let 

X(3,„ be the number whose decimal expansion is .1 ... 10h i2i3 .... 
, . n ones 

Show that {xpy. p < a, n < co\ has order type a • co. 

12. In this exercise we will find a subset of R of order type aFor each 

(ki, k2,..., kn) e ojn, let xkik2... kn be the real whose decimal expan¬ 

sion is 

.1 ... 101 ... 101 ... 10 ... 01 ... 1000 ... 
nones /c, ones k2 ones kn ones 

(a) Show that if k,jG<w" and k<Lj, then xk<xi. Conclude that 

{xk: k g con} has order type a>". 

(b) Show that if n < m, k g ojn, and j G com, then jck < Xj. 

(c) Show that {xk: for some n, k g u)n} has order type oj". 

13. List the following ordinals in nondecreasing order. State which 

ordinals are in fact equal to each other: w"1; 3"; wi"; to; coj; o>3; 

(t) • 3; o) • u)\; a>\ • (o. 

14. Now do exercise 10 replacing each by ca17, o>2 by co2o, (o2 by <o2i 

(e.g., oj| • to becomes cul7 ■ (o20). 

15. List the following ordinals in nondecreasing order. State which 

ordinals are in fact equal to each other (all arithmetic is ordinal 

arithmetic): £i<«o i, £/«,, oj ■ i, co, H.sa, i, [Ii<<^ (o • i, u) ■ (o, co(°, 

^i<a> ^ 5 I I s<<«> • 

Note: In exercises 16 through 33, all arithmetic is cardinal arithmetic. You 

may assume AC. 

16. (a) Show that k + k - 2 • k. 

(b) Show that k2 = k ■ k. 
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17. (a) Show that cardinal addition and multiplication are associative. 

(b) Show that cardinal addition and multiplication are commutative. 

(c) Show that k ■ (A + p) = x ■ A + k ■ p. 

18. (a) Show that no function from coi to co2 is onto. 

(b) (Hausdorff) Show that co"' = 2"'. 

19. Arrange the following cardinals in nondecreasing order. State which 

cardinals are in fact equal to each other: 

co"'-, 3"; coco; co3; co ■ 3; co • cox; a>i • co 

20. Show that cf(cf(ct)) = cf(a) for all ordinals a. 

21. Assume GCH. Show that if k is weakly inaccessible and A < k then 

2A < K. 

22. (a) Show that every singular cardinal k is the union of fewer than k 

sets each of which has size < x. 

(b) Show that no regular cardinal x is the union of fewer than x sets 

each of which has size < x. 

23. (a) Show that if x is regular and A < x then ka = k • sup{|pA|: p < k}. 

(b) Show that if k is weakly inaccessible and A < k then ka = 

sup{|pA|: p< k}. 

(c) Assuming GCH, show that if k is regular and A < k then ka = k. 

24. Show that the definitions of infinite cardinal sum and product are 

independent of the arrangement of the sets; i.e., if /: /—>/ is 1-1 

and onto, then Xie/ Zief ^/(o ^nd Oie/ Oie/ ^/(o- 

25. Show that each k • A =Xy<a xy and each ka = \}yc\ xy where each 
Ky — K. 

26. (a) Show that each £<e/ k, = |sup{K,: i e 7}| + |/|, where each k, > co. 

(b) Give an example of some ni€, k, which does not equal 
|sup{K,: i e 7}| + 171, where each > co. 

27. Use Konig’s theorem (theorem 43) to give a one-line proof that each 
k<2\ 

28. Show that if 2A < for every A < k then 2* = Kcf<K). 

29. Which of the following statements are true, which are false, and 
which are independent? 

(a) 2W = co,. 

(b) 2"= 

(c) 2“ < 2“'. 

(d) 2“ < 2W‘. 
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(e) 2"= ku, 

(f) 2W = o>|7. 

(g) Let k = x*,,. If 2A = A++ for A < k, then 2K = k++. 

(h) Let x = xWl. 2A < k for A < k and 2* = xK+. 

30. Recall the formal definition of a linear algebra with basis B over R as 

the set of terms where each r, e R, each e B, and n is 

finite. If |B| = k > a>, how big is the linear algebra with basis B over 

R? 

31. A Gs set is a countable intersection of open sets. How many Gs sets 

are there in R? In each R" (n finite)? 

32. (a) Let F be the filter on k > co defined by a e F iff k — a is finite. 

How big is F? 

(b) Let G be the filter on k>m defined by a e F iff |k - a\ < k. How 

big is G? 

33. How many 1-1 functions are there from co into &>2? From oj, into o»2? 





6 
TWO MODELS OF 
SET THEORY 

INTRODUCTION 

In this section we develop two models of set theory, VK where k is 

strongly inaccessible and Godel’s model L. For the first we must as¬ 

sume ZFC and the existence of a strongly inaccessible cardinal; for the 

second, since we are constructing a class and not a set model, only ZFC 

need be assumed. 

SECTION 6.1. A SET MODEL FOR ZFC 

An infinite cardinal k is said to be a strong limit iff, for all A < k, 2A < K. 

An uncountable regular strong limit is called a strongly inaccessible 

cardinal. Notice that a strong limit cardinal is in fact a limit: If k = A + 
for some A, then 2A > k. Hence a strongly inaccessible cardinal is also 

weakly inaccessible. 

Strongly inaccessible cardinals are often simply called inaccessible. 

Theorem 1. Let k be strongly inaccessible. Then VK is a model of ZFC. 

The proof of theorem 1 proceeds by a series of lemmas. 

Lemma 2. For all ordinals a, Va is a model of extensionality, regularity, 

and union. 

Proof. Each Va is transitive and every transitive set models exten¬ 

sionality; every set models regularity; and if x e Va, so is (J x. 

101 
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Lemma 3. Let a be a limit ordinal. Then Va models pairing and power 

set. 

Proof. If a is a limit, and x, y are elements of Va, then there is some 

/3<a with x, ye Vp. Hence {x, y}eV0+1, and ^(x)£ V^+2. Since 

V0+1 c Vp+2 c= Va, Va is a model of pairing and power set. 

Note that we have in fact proved something stronger: If a is a limit, 

then Va is closed under pairing and power set (i.e., if x, y are elements of 

Va, then so are {x, y} and 2P(x)). 

Lemma 4. Let a be a limit ordinal. Then VQ models choice. 

Proof. If a is a limit, then Va satisfies the hypothesis of theorem 42 in 

chapter 3 and hence is a model of choice. 

Lemma 5. Every transitive model closed under power set models 

separation. Hence if a is a limit, Va models separation. 

Proof. Suppose X is transitive and X is closed under power set. Then 

if y e X and is a formula, y<t, = {a e y: <t>( a)} e y) e X. Hence, since 

X is transitive, y<t>e X. 

Lemma 6. If a > a>, then Va models infinity. 

Proof. By induction, each n e Vn+\, hence a> c Vw, hence id e Va for 

each a> a). 

Lemma 7. If k is a regular strong limit cardinal, then each element of VK 

has cardinality less than k, and | VK| = k. 

Proof. For the first part it suffices to show that if a < k then j V0| < k. 

So suppose a < k and suppose we know that for all (3 < a, | Vp \ < k. If 

a = (3 + 1 for some /3, then | Va| = 2|ve( < k, by induction hypothesis and 

since k is a strong limit. If a is a limit, then Va = (J V0, hence | Va| is the 

limit of fewer than k ordinals of size less than k. So by regularitv of k, 

| Va\ must have size less than k. 

For the second part: VK is an increasing union of k many sets, so it has 

size at least k, but it is the increasing union of sets of size less than k, so 
its size is at most k. 

Lemma 8. If k is a regular strong limit cardinal, then VK models 

replacement. 

Proof. Suppose k is a regular strong limit cardinal. Let <t> be as in the 
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hypothesis of the axiom of replacement: If y) and 4>(x, z), then 
y = z, field (O) <= VK, and all parameters of <I> are elements of VK. Let 

Ae VK. Since k is a regular strong limit, |A|<k. Hence the set B = 

{y: e A (y = <F(x:))} has size less than k. Since field (<F) cyKiBc Vk. 
We show that Be VK. 

Let /: B—» k be defined by /(y) = rank y. Each /(y) < k, and there 

are fewer than k of them, so range / has a supremum a < k. Hence 
B <= V„, so Be Va+\, so Be VK. 

Theorem 9 

(a) Vw is a model of all axioms of ZFC except infinity. 

(b) If k is strongly inaccessible, then VK models ZFC. 

Proof. For (a): w is a regular strong limit. For (b): A strongly 

inaccessible cardinal is an uncountable regular strong limit. In particular 
it is bigger than a>. 

Notice that by the completeness theorem (see section 1.6), theorem 9 

shows that if Z* = ZFC minus the axiom of infinity then ZFC proves the 
consistency of Z*. 

Corollary 10. The following is not a theorem of ZFC: There is a strongly 

inaccessible cardinal. 

We give two proofs. The first is a simple use of the second in¬ 

completeness theorem. The second, while more complicated, serves as an 

introduction to two notions: a more sophisticated use of the “least 

counterexample” idea than we have seen so far and relativization of 

concepts from one model to another. 

Proof 1. Suppose k is strongly inaccessible. Then VK is a model of 

ZFC. So “there exists a strongly inaccessible cardinal” implies “ZFC is 

consistent.” But, by Godel’s second incompleteness theorem, ZFC can¬ 

not prove its own consistency. 

Proof 2. Suppose ZFC does prove the existence of a strongly inac¬ 

cessible cardinal, and let k be the least strongly inaccessible cardinal. By 

theorem 9, VK is a model of ZFC, so in VK there is an ordinal A which is, 

in VK, a strongly inaccessible cardinal, i.e., 

(i) If a < A, then there is no function in VK with domain a whose 

range is cofinal in A. (This is the statement that A is regular in VK\ 
note that regularity implies that A is a cardinal.) 
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(ii) If a < A, then there is no function in VK from a) fl VK onto A. 

(This is the statement that A is a strong limit in VK.) 

We now have to show that A is, in fact, a strongly inaccessible cardinal 

in V, which will contradict our definition of k. 

If there were, in V, a function from some a < A onto a set cofinal in A, 

then, by definition of the Vp's, this function would already exist in VK. So 

A is regular in V. Similarly, since 2P(a) D VK = 9P(a) for a < k and since, 

for a < k, any function from $P(a) onto A would already exist in VK, A is 

a strong limit in V. Thus A is strongly inaccessible in V, and we are 

done. 

The next section will indicate that we cannot even prove in ZFC the 

existence of weakly inaccessible cardinals. A cardinal whose existence 

cannot be proved in ZFC but whose existence has not been shown to be 

inconsistent with ZFC is called a large cardinal. Thus weakly inaccessible 

and strongly inaccessible cardinals are large cardinals. There is an exotic 

zoo of large cardinals: weakly compact cardinals, measurable cardinals, 

strongly compact cardinals, huge cardinals, not to mention the n-extend- 

ibles, Mahlo’s and weakly Mahlo’s, and so on. Most of the large cardinals 

are defined in terms of certain sorts of embeddings from the universe into 

a proper subset of itself and cannot really be understood without 

mathematical logic. For an out-of-date reference which remains excellent 

on the basics, the reader is referred to Drake. Two excellent surveys (also 

necessarily out-of-date) are the ones by Kanamori, Reinhardt, and Solo- 

vay and by Kanamori and Magidor. In the next chapter we will say a little 

bit about the combinatorics of weakly compact cardinals and measurable 
cardinals. 

SECTION 6.2. THE CONSTRUCTIBLE UNIVERSE 

In this section we sketch the construction of and state some facts about 

the constructible universe L. L was discovered by Gbdel as a way to 

prove that if ZF is consistent then so is ZFC. But it is Jensen’s painstak¬ 

ingly detailed techniques that have uncovered so much of the structure 

not only of L but of classes constructed in similar fashion. The tech¬ 

niques derived from Jensen’s work are grounded in concern for the level 

of complexity of definition of an object and hence cannot be studied 

without a prerequisite of an advanced mathematical logic course. Here 

we content ourselves with giving the bare definition of L and stating 
without proof some facts about it. 
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Definition 11. Let X be a set and 0 a formula in the language of set 

theory. We define the formula <FX to be the formula derived from <E> by 

replacing each “Vx,” occurring in 0> by ”Vx;£X” and by replacing 
each “3x;” occurring in by “3x; e X.” 

Definition 12. Let X be a set. We say a set A is definable from X iff 

there is a formula <I> with parameters in X so that A = {x e X: <Fx(x)}. 
The set of all sets definable from X is called Def(X). 

Note: The same formula may define different sets, depending on X. 

For example, each X is definable from itself via the formula “x = x.” 

Example 13 
(a) The set of even numbers is definable from o>. 

(b) For every ordinal a, if a <= X and X is transitive, then a is 
definable from X. 

(c) If a e X and X is transitive, then a is definable from X. 

(d) If a e X, then {a} is definable from X. 

(e) If a, b e X, then {a, b} is definable from X. 

(f) If a e X and X is transitive, then (J a is definable from X. 

Proof. For (a) consider the formula ”3y (x = y + y).” For (b), if 
aeX, consider the formula “xea.” Otherwise a = ON D X, so con¬ 

sider the formula “x is an ordinal.” For (c) consider the formula “x e a.” 

For (d) consider the formula “x = a.” For (e), consider the formula 

“x = a or x = b." For (f), consider the formula “3y (x e y e a)." 

Definability leaves a lot out. 

Theorem 14. For every infinite set x there is some y=x, y is not 

definable from x. 

Proof. Since a formula in Def(x) is a finite sequence whose elements 

are either symbols in the language or parameters in x, the number of 

formulas which can define sets in Def(x) is |x|, hence |Def(x)| < |x| < 2|x|. 

So some element of SP(x) is not an element of Def(x); in fact most of 

them are not elements of Def(x). 

Let us define L. 

Definition 15. Lo = 0. If a is a limit ordinal, then La = {Jp<aLp. If 

a = (3 + 1, then La = Def(L^). L = {_) „€on La. 
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Notice the lack of ambiguity here, compared to the definition of the 

VQ’s. Once you know x, Def(x) will not vary from model to model, but 

5?(x) might. 
We leave it to the reader to show by induction that La e Lp iff a < (3, 

and give as a sample 

Proposition 16. Each La is transitive. 

Proof. Suppose Lp is transitive for each (3 < a. If a is a limit, we are 

done, so suppose La = DeffL^) for some (3. Then if ye xe La, ye Lp, 

hence by Example 13(c), y e Def(Lp) = La. 

Proposition 17. Every ordinal is an element of L. 

Proof. It suffices to show that every ordinal is a subset of L. By 

induction, suppose (3 <= L for every (3 < a. If a is a limit, we are done. If 

a = (3 + 1 for some (3, then (3 e Ly for some y, hence {(3}eLy+l, so 

OL C Ly+ 1 • 

Godel showed that L is a model of ZFC and GCH. We content 

ourselves with proving some simple fragments of this theorem. 

Proposition 18. L is a model of pairing, union, and power set. 

Proof. For pairing and union, by example 13 if a, be La, then {a, b}e 

La+l and (J a 6 La+1. For power set, if a e L, then by the axiom of 

replacement there is some ordinal (3 so that 2P(a) fl L <= L0. (Note the use 

of class notation here.) The formula “xc a” then makes ^(affl L an 
element of Lp+ 

An important consequence of GCH is 

Proposition 19. Assume GCH. Then every weakly inaccessible cardinal 
is strongly inaccessible. 

Proof. Suppose k is a limit cardinal, and A < k. By GCH, 2A = A+< 

k. Hence k is a strong limit. So if k is regular, it is strongly inaccessible. 

So a corollary of the fact that L is a model of GCH is 

Corollary 20. A weakly inaccessible cardinal in L strongly inaccessible 
in L. 

For the proof of the next proposition we need a bit of notation. If A is 

a cardinal in L, then by (A+)L we denote the smallest ordinal a in L for 
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which there is no function feL with domain /= A and range f= a. That 
is, (A+)l is the ordinal that L thinks is A+. Notice that (A+)L < A+ if A is a 
cardinal in V. Otherwise, (A+)l<|A|+. 

Proposition 21. If k is weakly inaccessible, then it is strongly inaccessible 
in L. 

Proof. Since L cz V, if there is no function in the universe from a 
smaller ordinal onto a set cofinal in k, there is certainly no such function 
in L. So a regular cardinal in V is regular in L. Similarly, since any 
(A+)L < A+, a limit cardinal in V is a limit cardinal in L. So a weakly 
inaccessible cardinal in V is weakly, hence strongly, inaccessible in L. 

An immediate corollary of proposition 21 and the proof that L models 
ZFC and GCH is 

Proposition 22. If k is weakly inaccessible, then LK is a model of ZFC 
and GCH. 

By propositions 21 and 22, weak inaccessibility is a large cardinal 
property. 

Godel also proved 

Proposition 23. Every class containing all ordinals which is a model of 
ZF contains L as a subclass. 

The main use of L is that it models not only GCH but many other 
useful combinatorial statements, where useful means “can be used to 
show a wide variety of mathematical statements consistent.” The ques¬ 
tion becomes “does V = L?” 

The statement “ V = L” is known as the axiom of constructibility. It is 
called an axiom not because there is general agreement it is true—I 
doubt that anyone would make a claim for its philosophically self-evident 
nature. Instead, the word axiom is used to indicate a statement which 
makes a fundamental claim about the nature of the mathematical uni¬ 
verse, a claim which cannot be refuted within ZFC, whether or not we 
believe that claim to be true. CH is such an axiom. Another such axiom 
we will meet up with in the next chapter is Martin’s axiom. 

Since all the axioms of ZFC hold in L, and “ V = L" holds in L, the 
axiom of constructibility cannot be refuted in ZFC (just work inside the 
little piece of the universe we call L—how could you know anything else 
existed?). But are there models in which the axiom of constructibility 
fails? 
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Since L is a model of CH, it suffices to find a model in which CH fails, 

which Cohen did in 1963. So the axiom of constructibility is independent. 

Cohen’s method, which has been explosively developed in the years since 
his work, is called forcing. It too is based on ideas of mathematical logic 

and cannot be included in this book. Some basic references are Burgess, 

Jech (1971, 1978), and Kunen. 

The technique of forcing, which necessarily adds sets to L, gives an 

intuition (which can neither be proved nor disproved) that L is small. 

Assuming certain large cardinal hypotheses we can prove that L is very 

small. A useful large cardinal hypothesis is “0# exists.” The definition of 

0# is highly model-theoretic: 0# is defined to be a particular set of 

formulas which completely describe a certain kind of model of set theory. 

The existence of this sort of model turns out to be much stronger than 

the statement that set theory is consistent. “0# exists” is implied by some 

large cardinal hypotheses (e.g., “there exists a measurable cardinal”) and 

implies still others (e.g., “there is a weakly inaccessible cardinal,” to 
name the weakest). For example. Silver proved 

Theorem 24. If 0# exists, then co, is inaccessible in L. 

Note that the co, in theorem 24 is the real co,, not the ordinal that L 

thinks is co,. Thus if 0# exists, L is so small that it thinks the puny 

cardinal co, is a great big strongly inaccessible cardinal. Recall that the 

ordinal that L thinks is co, is denoted co[, and is the first ordinal with no 

1-1 function feL, so that /: co,-* co. A corollary to theorem 24, then, is 

Corollary 25. If 0# exists, then co, is countable. 

Another expression of the extreme smallness of L under large cardinal 

hypotheses is Jensen's covering theorem, stated in the form: The failure 
of “0# exists” is equivalent to L’s being reasonably large. 

Theorem 26 (Jensen’s Covering Theorem). 0# does not exist iff every 

uncountable set of ordinals x is contained in a set of ordinals vel where 

M = |yl- 

Corollary 27 (Jensen’ Singular Cardinals Theorem). If 0# does not 
exist, then for every singular strong limit cardinal k, 2k = k+. 

Sketch that Corollary 27 Follows from Theorem 26. By exercise 28 in 

chapter 5, it suffices to show that Kcf(K) = k+. So suppose x c k, |x| = 
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cf(K) = A < k where k is a singular strong limit. By the covering theorem, 

x <= yx for some yxe L where |yx| < A + < k (if A > co, we have |yx| = A), 

and yx <= k. Since GCH holds in L there are at most k+ many such yx and 

each SP( yx)< k by hypothesis. Recall that (k+)l< k+. So k has at most 

k+ many subsets of size A, hence ka has size no greater than k+; on the 

other hand, ka has size at least k+ and we are done. 

The ideas of theorem 26 have been extended and applied to other 

classes which resemble L in the canonical way in which they are 

constructed. 

The nonexistence of inner models of measurable cardinals is a 

sufficient hypothesis in corollary 27. 

EXERCISES FOR CHAPTER 6 

1. Consider V^+i. Which axioms of ZFC is it a model of? What about 
V . 9 V 9 
v OJ+CO • r CO I • 

2. Show that there is some subset of a> in L which is not definable from 

co. 

3. Show that each finite n is definable from a formula with no constants. 

4. (a) Show that if a, b £ x and x is transitive, then a x be Def(x). 

(b) Give an example where a, b e x but a x b £ Def(x). 

5. Show that La e iff a < (3. 

6. Show that each La <= Va. 

7. Show that the axioms of extensionality, separation, and replacement 

hold in L. 

8. Show that every cardinal in V is a cardinal in L. 

9. Assume that 0# does not exist. Let A = (k+)l and suppose cf(A)> a>. 

Show that A = k + . 





7 
INFINITE 

COMBINATORICS 

INTRODUCTION 

In this chapter we use the techniques and ideas already developed to 

explore some questions in infinite combinatorics. In no way are the areas 

chosen exhaustive of this enormous topic. We have chosen a few areas 

which are both fairly easy to describe and which have easily described 

consequences for the rest of mathematics. These areas are partition 

calculus, trees, CH, Martin’s axiom, stationary sets and Jensen’s principle 

O, and measurable cardinals. The sections in this chapter are largely but 
not completely independent of each other. A reader who knows some 

finite combinatorics and graph theory should find some of the concepts in 

the first two sections familiar; a reader who knows some measure theory 

should find the concepts of the third section familiar. 

There is a grand theme in this chapter, and that is the interrelatedness 

of the various topics. Thus, trees and partition calculus lead to large 

cardinals; trees are used to understand the real line; and the com¬ 

binatorial principles CH, MA, and O shed different light on the same 

combinatorial issues. 

SECTION 7.1. PARTITION CALCULUS 

Here is a party trick: If you have at least six people together in a room 

either three of them knew each other previously, or three of them were 

strangers to each other previously. Why is this? Suppose no three of them 

knew each other previously. Pick out a person, call him Murgatroyd, and 

the rest of the group divides into two sets: the people Murgatroyd knew 

ill 
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previously, call it class I, and the people Murgatroyd had never seen 

before, call it class II. If two people in class II had never seen each other 

before, say Jane and Sally, then we are done, since Murgatroyd, Jane and 

Sally had all been strangers to each other previously. So we may assume 

that all the people in class II knew each other before, hence it must have 

size at most two. So there are at least three people in class I. Murgatroyd 

knows all the people in class I, so if two of them knew each other we 

would have three people who all knew each other, a contradiction. 

Otherwise no two people in class I knew each other, and we are done. 

This party trick is the simplest example of a class of theorems known 

as Ramsey theorems, after the brilliant English mathematician who 

discovered them and died tragically young. To generalize this party trick 

it helps to develop some notation; this notation in turn inspires variations 

which give rise to some of the most difficult, interesting, and useful, as 

well as some of the most arcane, concepts in infinite combinatorics. Since 
all of these ideas have to do with partitions, their study is known as 
partition calculus. 

We will develop the notation by analyzing the party trick. 

We have a property of pairs of people: Either they know each other or 

they do not. Thus we really have a partition of [X]2 = {{jc, y}: x, y e X 

and x ^ y}. (In general, given a set X we define [X]* to be the set of 

subsets of X each of which has size k; [X]<k is the set of subsets of X 

each of which has size strictly less than k.) This partition of [X]2 has two 

pieces: “know each other,” and “do not know each other.” We are 

asking: Can you find a subset of three elements all of whose pairs lie in 

the same piece of the partition? Such a subset is known as a homo¬ 
geneous set. 

Definition 1 

(a) Recall from chapter 1: {P,: ie 1} is a partition of a set Z iff 

(J/e/P, = Z and the P’s are pairwise disjoint. Note that some of 
the P,’s can be empty. 

(b) If [X]p is partitioned into sets {P,: ie /}, then Y<= X is homo¬ 
geneous for the partition iff, for some i, [ Y]p c p. 

Thus the party trick can be rephrased as follows: If |X|>6, and [X]2 

is partitioned into two sets, then there is some Y homogeneous for the 
partition, Yc X, | Y| > 3. 

More compactly, we write this as 6 (3)1, meaning that if you 
partition the pairs (this is the upper 2) of a set of six elements into two 
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pieces (this is the lower 2) you will have a homogeneous subset with at 
least three elements. 

Let us give some examples of homogeneous sets. 

Example 2 

(a) If we partition [<a]2 into two pieces, the pairs whose product is 

even, and the pairs whose product is odd, then all sets consisting 

solely of even numbers are homogeneous. A set which contains at 
least two odd and at least one even element cannot be homo¬ 

geneous. 

(b) Partition the three element subsets of R2 according to whether the 

elements are collinear or not. Then Y is a homogeneous subset iff 

Y is a subset of some straight line or no three elements of Y are 

collinear. Thus straight lines are homogeneous, circles are homo¬ 

geneous, parabolas are homogeneous, but cubics are not. 

Returning to our task of generalizing the arrow notation, we write 

k—»(A)P iff for every partition of [k]p into a pieces, there is a homo¬ 

geneous subset of size A, i.e., a set A e [k]a where [A]p is contained in a 

single element of the partition. Ramsey’s theorem for finite sets is that for 

all finite j, m, k there is an n with n —> (y)JT- 

The infinite version of Ramsey’s theorem is 

Theorem 3. For all finite n and m, 

Before giving the proof of Ramsey’s theorem, we will give an ap¬ 

plication of it and a few easy facts involving arrow notation. 

Theorem 4. Every infinite partial order has either an infinite antichain or 

an infinite set of pairwise compatible elements. 

Proof. Let A be an infinite countable subset of the given partial order, 

and let [A]2 = Pt U P2 where {x, y}e P\ iff x and y are incompatible; 

otherwise {x, y} e P2. Let H be an infinite homogeneous set for this 
partition. If [H]2 <= pu then H is an infinite antichain; if [H]2c P2, then 

H is an infinite set of pairwise compatible elements. 

The exercises give several more applications of Ramsey’s theorem. 

Proposition 5. For all cardinals k, A, p, cr, t, if k—>(A)p, then 

(a) If t> k, then r-*(A)p. 
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(b) If t<A, then k-*(t)p. 

(c) If t<(t, then k—»(A)?. 

Proof. For (a): Given a partition {Pa: a < a} of [r]p we consider the 

auxiliary partition {P*: a < cr} where P* = Pa D [/<]p. The homogeneous 

set for the P*’s will work for the Pa's as well. 

For (b): Given a homogeneous set of size A, cut it down to one of size 

T. 

For (c): Any partition into r sets is also a partition into a sets, where 

the extra sets are simply declared to be empty. 

Note that for each infinite k, k—>(k)\ and k—>(k)2. Thus the simplest 

nontrivial arrow relation on an infinite k is k—>(k)Let us prove some 

results about this relation. 

Proposition 6. If k is infinite, and k—>(k)2, then k—»(k)™ for all 

m £ (o. 

Proof. We work by induction on m. If k—>(k)„-i, then, given a 
partition Pt,..., Pm of [k]2 into m pieces let P\ = Px U P2 and for i > 1 

let P'i=Pi+j. The P'’s form a partition of size m —1, so k has a 
homogeneous set Y of size k. If [y]2<=p'i for / > 1, we are done. 

Otherwise [Y]2c:P1UP2 and by invoking k—>(k)2 we can find a 
homogeneous subset of Y of size k. 

It is in fact true that if k—>(k)2 then k—>(k)2 for every finite n and 

every ordinal a < k, but we will not prove it. Instead we prove 

Theorem 7. If a>—»(ca)2, then for all finite n, m, o> —(o>)^. 

Ramsey’s theorem will then be complete by proving 

Theorem 8. a)-*(io) 

In fact, the proof of theorem 8 is an easier version of the proof of 
theorem 7, so we do it first. 

Proof of Theorem 8. Suppose we have partitioned [a>]2 into two 

pieces, P0 and P,. We recursively build a sequence of natural numbers 

{kj\ j<(o} and a sequence of infinite sets {At: j < to} so that each A;+1 c 

Aj, each k/£Ay, and for each j there is some z with A)+| c 

{•u: {kj, m} e P,}. How do we do this? Let k0 = 0 and A0= o). If we have 

Ay, kj, /< m, satisfying the above requirements, notice that there is some 
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( so that A — {k: k> km, k e Am and {/cm, k} e P,} is infinite. Let Am+I = 
A, /cm+1 6 Am+1, and continue. 

/co A i 

ko k\ A 2 

Now that we have the /c„’s, define f(n)=i iff for all meA„+1, 

{/cn, m}e P,. The function / is defined for all n, and since its range is 

{0, 1} it is constantly equal to some i on some infinite set B. But then if 

n, m are elements of B, {kn, km} e Pt, so {kn: n e B} is homogeneous. 
Theorem 8 is proved. 

Proof of Theorem 7. By proposition 6 it suffices to fix m and work by 

induction on n. Suppose and suppose SP = {Pu ..., Pm} is a 
partition of [o>]"+1. For each k e w let Pk = {5 e [w]n: s\J{k}e Pt} and let 

SPk = {P^,..., Pkm). Note that each SPk is a partition of [a>-{/c}]". We 

now construct kj, A, as in the proof of theorem 8, with the additional 

requirement that each Ay be homogeneous for each SPk', r< j. How can 

we do this? Given A;, kj e Ay, we let Bo<= A; be homogeneous for 

B[ c Bo be homogeneous for 2Pk', B'2C B\ be homogeneous for &k*, 
and so on. Then Bj is homogeneous for all 2Pk', /•<;', and we let 
Ay+i = B\. 

Now we assign /(/) = i iff A/+1 <= pb? note that there is some i so that 

B = {/: /(/) = /} is infinite, and again note that {/c,: /e B} is homogeneous 
for the original partition 

m 
Our goal now is to show that, in fact, k-*(k)2 is a large cardinal 

property, i.e., k-^(k)1 implies that k is strongly inaccessible for un¬ 

countable k. First we will show that k is regular; then we will show that k 

is a strong limit. On the way to the second goal we will prove a negative 
partition relation and a fact about the lexicographic order of independent 

interest. 

Theorem 9. If k—»(/<)then k is regular. 

Proof. Let Ka, cr<cf(K), be an increasing sequence of cardinals 
cofinal in k. For each ordinal /3 < k we write /(/3) = least « with (i < Ka 
and write /3 ~ y iff /(j3) = /(y). Then ~ is an equivalence relation 

dividing [k]2 into two pieces: Pi consists of all those pairs having relation 

~, P2 consists of all those pairs that do not. Since each Ka < k, no 

homogeneous set Y of size k can have [ Y]2 <= P\. Hence a homogeneous 

set of size k picks at most one element out of every equivalence class for 
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hence at most one element between each Ka and Ka+X. Hence 

cf(/<) -- K. 

Theorem 10. The lexicographic order on the set A2 has no increasing 

chains ordered in type A+ and no decreasing chains inversely ordered in 

type A+. 

Proof. Suppose we had F = {/„:«< A+}, each /QeA2, and if a < p, 

then fa <Lfp, where <L is the lexicographic order. For each f e F define 

d(f) to be the least y<A so that, for some geF, /(y)<g(y) and 

/1 y = g I y- Note that f(d(f)) = 0 for all /. Let Fy = {f £ F: d(f)= y}. If 
feFy, geF, let us say that g is a witness for / if f\ y=g| y, and 

/(y) < g(y). Notice that such g 4 Fy. 

Subclaim. Suppose /e Fy, g is a witness for /. Then h<Lg for every 

h e Fy. 

Proof of Subclaim. Suppose not. Then there is heFy with h>Lg, 
hence h >Lf. Since /e Fy, f \ y = h \ y. What is h{y)? If h{y) = 0, h <L g, 
a contradiction. So h(y) = 1. But then h 4 Fy, a contradiction. 

Returning to the proof of theorem 10, each Fy<^{fa: a< 5} for some 

8 < A+, where /s is a witness for some /e Fy. Thus each |Fy| < A, and, 

since F = (J y<A Fy, |F| = A, a contradiction. 

A similar proof shows that there is no {/„: a < A+}, each fa £ A2, and if 

a < j3 then fa >Lfp- 

Theorem 11. For all infinite cardinals, A, 2X 

Proof. Let {fa• 0^2 }, list the elements of 2, and again let be 

the lexicographic order. We partition [A2]2 into two pieces: Px = 

{{a,p}:a<p and fa <Lfp} and P2 = {{a, p}: a < p and /a>L/^}. A 
homogeneous set for F, is a well-ordered increasing chain; a homo¬ 

geneous set for P2 is a decreasing chain inversely well-ordered. By 
theorem 10, neither we can have size A+, and theorem 11 is proved. 

Theorem 11 is especially interesting in light of the Erdos-Rado 

theorem, which we will not prove here. 

Theorem 12 (Erdos-Rado). (2A)+-^(A+)i 

Thus we know exactly which cardinals /u. satisfy ix^>(\+)2. 
Finally, we show, as promised 
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Theorem 13. If k—>(k)then k is a strong limit. 

Proof. Suppose, by contradiction, there is some A < k with 2A > k. 

Then k-*(k)\ implies «^(A+)i which implies 2a^(A +)j, contradicting 
theorem 11. 

Since theorem 13 says that k-^(k)\ is a large cardinal property for 
uncountable k, we give it a name. 

Definition 14. An uncountable cardinal k is said to be weakly compact 
iff k —* (k)|. 

In the next section, we will see that weakly compact cardinals have 
other interesting combinatorial properties. 

SECTION 7.2. TREES 

A tree is a partially ordered set in which the predecessors of each 

element are well-ordered; i.e., if t = {s:s<t}, then each t is well- 
ordered. 

In this diagram: 

q<p 
q is a predecessor of p 

p is a successor of q 

If T is a tree and re T we say the height of / is the order type of t, 

i.e., the ordinal isomorphic to f, and the height of T is the sup of all 

heights of elements of T. We write T(a) for the set of elements of T of 

height a and Ta for the set of elements of T of height strictly less than 

a. T(a) is called the crth level of T; Ta is called an initial segment of T. 

For example, if X is a set and k a cardinal then T — (3 < k} is 

a tree of height k under the ordering f^g iff g|dom/ = /; each 

T(a) = "X; and each Ta = (J{PX: (3 < a}. If X = 2, we call this tree the 

binary tree of height k; if X = k, we call this the K-branching tree of 

height k. 
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Note that every subset of a tree is a tree under the induced order. 

A branch of a tree is a maximal linearly ordered subset. For example, 

an element of K2 is the union of a branch of the binary tree of height k. 

An antichain in a tree is a collection of elements which are pairwise 

incomparable. For example, a level of a tree is an antichain. Another 

example: In the binary tree of height a> if cr„ is the function with domain 

n + 1 whose value below n is 0 and whose value at n is 1 then {crn: new) 

is an antichain. 

In an abuse of notation, we say that two elements of a tree are 

incompatible iff they are incompatible under <_1, where p<^'q iff 

q<p. 

The main subject we will consider in this section is the relation 

between the length of a tree’s branches and the size of its levels or of its 

antichains. These rather innocent-looking questions will quickly involve 

us in consistency results and large cardinals. First, a basic lemma. 

Lemma 15. Two elements in a tree are incomparable under < iff they are 

incompatible (recall that incompatible is defined as incompatible under 

Proof. Note that two elements are comparable under < iff they are 
comparable under <_1. Incompatibility always implies incomparability in 

a partial order, so we need to prove only one direction. Suppose t, 5 are 

not incompatible. Then there is some r with s, te r. But r is linearly 

ordered, so s, t are comparable. 

That compatibility under <_1 = comparability is a major aspect of 

trees; in fact, it serves to define them in the finite case. 

Our main combinatorial concern will be 

Definition 16. A cardinal k has the tree property iff for every tree T 

whose levels and branches each have size less than k, T has size less than 

k. Equivalently, k has the tree property iff every tree of size k whose 

levels have size smaller than k has a branch of size k. 

For example, a singular cardinal does not have the tree property: Let 

k be singular of cofinality A, and let {kq:o:<A} be an increasing 

sequence whose union is k. We let fa be the function with domain kq 

whose value at each [3 < ku is constantly equal to a, and let T be the tree 

of initial segments of the /„’s ordered by inclusion; i.e., ge T iff there are 

some (3, a with g = fa\ (3, and g < h iff h | dom g = g. Then T has height 

k, hence size at least k, each level of T has size A < k, but T has no 
branch of size k. 
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We will prove that a> has the tree property, that o>, does not have the 

tree property, and that weak compactness is equivalent to having the tree 

property and being strongly inaccessible. 

Theorem 17 (Konig). a> has the tree property. 

Proof. Suppose T is an infinite tree with every level finite. We must 

construct an infinite branch. Choose t0 on level 0 to have infinitely many 

successors (since T is infinite and T(0) is finite, such a t0 exists), and let 

S0 be the set of successors of t0, S0 = {s: s> t0}. Note that S0 is an infinite 

tree with all levels finite, so we can choose q on the Oth level of S0; q has 

infinite many successors in S0. Let Si be the set of successors of q. Si is 

an infinite tree with all levels finite, so we pick t2 in Si(0); t2 has infinitely 

many successors in Si, let S2 be the set of successors of t2 in Si, and so 

on. In this way we construct in T an infinite sequence t0< h< t2< 

t3 . .., and by extending to a maximal linearly ordered subset we have an 

infinite branch. 

Theorem 17 is known as Konig’s lemma. The Konig of Konig’s lemma 

is not the Konig of Konig’s theorem (theorem 43 in chapter 5). 
Theorem 17 is quite handy when trees must be constructed ad hoc in 

th course of a proof. For example, if you have a tree of sets with all levels 

finite, ordered so that s < t implies t e s, then you know your tree is finite. 

The young Aronszajn, taking a quick vacation from his usual preoc¬ 

cupation of functional analysis, proved 

Theorem 18 (Aronszajn). o>i does not have the tree property. 

Before giving the proof of theorem 18, we give 

Definition 19. A tree is Aronszajn iff it has height o)i but all levels and 

branches are countable. 

Thus the proof of theorem 18 is exactly the proof that Aronszajn trees 

exist. In fact we will construct an Aronszajn tree with a special property 

(called, in somewhat pedestrian fashion, a special Aronszajn tree). 

Proof of Theorem 18. We will construct our Aronszajn tree T to 

have, as elements, subsets of Q which are well-ordered in the usual 

ordering on Q; the ordering will be end-extension; i.e., cr < t iff <r is a 

proper initial segment of r. Since the union of a branch will be a 

well-ordered subset of Q, and since Q is countable, no branch of T will 

be uncountable. In our construction we will require that if ere T then 

supo-eQ and, to ensure that the construction can continue, we will 
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require that 

(*) if a < /3, a g Ta, and qe Q, with q > 0, then there is some re T( /3), 

t > 0, and sup r = sup <r + q. 

Property (*), restricted to initial segments of our tree, together with the 

other requirements on elements of T, will be our induction hypothesis. 

Given Ta we will construct all of T{a) at once; thus once a level has 

something in it nothing more is added, so we can control the size of our 

levels. 

So suppose we have Ta, a < &>!, where Ta is countable, each element 

of Ta is a well-ordered set of rationals with rational sup, and, for each 
positive rational q, if /3 < y < a, then for each ere T(/3) there is re T( y) 

with t> a and sup r = sup cr + q. We list Ta as {cr,: i < a)} and proceed as 

follows to construct T(a). 

Case 1. a is a successor, say a = /3 + 1. Then for each finite z, and 

positive rational q, we pick some element r,-,, of T((3) which 

extends or is equal to cr, so that sup t,^ — sup zr, < q, 

and extend r,i<? to a well-ordered sequence in Q, r*q, 

so that sup r*q = sup <Ji + q. (We can always do this by ex¬ 
tending Tjtq by the element sup cr, + q.) Now let T(a) = 

{T*q: ieco,qeQ}. 

Case 2. a is a limit. Then there is an increasing sequence {<*„: n e a>} 

whose union is a. For each positive rational q we pick an 

increasing sequence {pqt„: n e (o} of positive rationals con¬ 

verging to q, and for each finite z, n and rational q we pick 

Tj.n.q comparable to cr* and Tiin_i,q, so that TUt,e T(a„), and 

if Ti,n,q > cri, then sup r, „ q = sup cr* + „. Then, for fixed 

U,T,.,= U{W « g a>} is a well-ordered subset of Q 
whose sup is sup cr, + q. Let T{a) be the set of all r^’s. 

In both cases the levels constructed are countable and remain so. In 
both cases the construction continues so that the induction hypothesis is 

satisfied, and thus the construction does not come to a halt on any 

countable level. Thus, if T = [_J{T(a): ere cui}, T is an Aronszajn tree. 

Definition 20. An uncountable tree is said to be special iff it is the 
countable union of antichains. 

Note that the tree we constructed in the proof of theorem 18 is, in 

fact, special, since, for each rational q, {<xe T: sup cr = q} is an antichain. 
Is every Aronszajn tree special? 
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Definition 21. A Suslin tree is an uncountable tree with no uncountable 

branches and no uncountable antichains. 

Thus a Suslin tree is an Aronszajn tree (see the exercises), and no 

Suslin tree is a special Aronszajn tree (see the exercises). Note that every 

uncountable subset of a Suslin tree is a Suslin tree. While Aronszajn trees 

are real (i.e., their existence can be proved in ZFC), with Suslin trees we 

are deeply in the realm of the undecidable. To see just how deeply, let us 

introduce some abbreviations and list some consistency results: 

Definition 22 

(a) SH is the statement: There are no Suslin trees. (SH stands for 

“Suslin’s hypothesis.”) 

(b) EATS is the statement: Every Aronszajn tree is special. 

Recall that CH is the continuum hypothesis: 2" = Later in this 

chapter we will meet MA, or Martin’s axiom, and MA + ~iCH, or 

Martin’s axiom with the negation of the continuum hypothesis. We are 

ready to survey what is known about SH and EATS. 

Theorem 23 

(a) SH is consistent. 

(b) —iSH is consistent. 

(c) Furthermore, if V = L, then ~iiSH holds. 

(d) And, under MA + —iCH, SH holds. 

(e) Furthermore, under MAT-iCH, EATS holds. 

We will prove (c) and (d) later in this chapter. Note that (c) implies (b) 

and (e) implies (d) implies (a). Theorem 23 is stated as it is to give some 

historical perspective. In the early 1960s (b) was independently proved 

by Jech and Tennenbaum; Solovay and Tennenbaum proved (a), which 

they and Martin turned into (d); and Jensen proved (c). A few years later 

Baumgartner, Reinhardt, and Malitz proved (e). 
What theorem 23 leaves out is whether SH + ~iEATS is possible, and 

whether SH is consistent with either CH or 2" not regular. 

Theorem 24. The following are consistent: 

(a) CH + SH. 
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(b) SH + “iEATS. 

(c) SH + CH + ~iEATS. 

(d) SH + 2" = 

Again, although (c) implies both (a) and (b), theorem 24 is given in 

this form for historical perspective. Jensen proved (a) in the late 1960s; 
Shelah proved (b) in the mid-1970s; Schlindwein proved (c) in the 

mid-1980s; and Laver proved (d) in the mid-1980s. 
Now none of this could have been imagined when Suslin, back in the 

1920s, came up with his hypothesis. What question was motivating him? 
Suslin was not thinking of trees at all, but of lines. In particular, he was 

thinking of the real line, which has the properties that 

(i) No collection of pairwise disjoint intervals is uncountable, and 

(ii) There is a countable dense subset. 

Clearly (ii) implies (i). Which of these properties alone characterize 

subsets of the real line? We will show below 

Theorem 25. A linear order satisfies (ii) iff it is order-isomorphic to a 

subset of the reals. 

But does (i) suffice? Suslin’s hypothesis, the way Suslin stated it, was 

that (i) does suffice, i.e., (i) implies (ii). If Suslin’s hypothesis fails, there is 

a linear order satisfying (i) and not (ii). Such an order is known as a Suslin 

line, and it clearly cannot embed in a suborder of the reals. The 
connection between lines and trees showing that both versions of SH are 

equivalent was worked out independently and with much duplication of 

effort over the next 20 years, and it is to this that we now turn our 

attention. 

In the discussion that follows we generalize the usual notation of 

intervals on R to arbitrary linear orders. Thus, in a linear order X, (x, y) 

means {z: x < z < y}; the endpoints of (x, y) are x and y; if z e (x, y), we 

call (x, y) an interval around z; x e A iff every interval around x contains 

an element of A; and A is dense in X iff X = A. (A is called the closure 
of A.) 

Let us prove theorem 25. The first step is an important theorem of 
Cantor. 

Definition 26. A linear order is dense iff for every x < y there is z with 

x < z < y. 



TREES 123 

Theorem 27 (Cantor) 

(a) Every nonempty countable dense linear ordering without endpoints 
is order-isomorphic to Q. 

(b) Every countable linear ordering is order-isomorphic to a subset of 

Q. 

Proof 

(a) Let X be a countable dense linear ordering without endpoints, and 

enumerate X as {xn: ne <y}. Let Qe{qn: ne w}. We construct /: X-»Q, 

so x < y iff f(x) < f(y) as follows: Let f(x0) = q0■ Suppose at stage k we 

have defined / on Xk = {xn: n < k} and we have also defined f~x on 

Qfc = {qn: n < k}. 

Let Ak = Xk U /-1[Qfc] be the domain of / at stage k. We want to 
define f(xk) and f~x{qk). 

If xk e Ak, we know /(xk). Otherwise, suppose a = sup{jc e Ak: x < xfc}, 
b = inf{x e Ak: x > xk} are both defined. Since a < b, f(a) </(/>). Note 

that f[Ak] fl (/(a), f(b)) = 0. By density of Q, (/(a), f(b)) ^ 0. Pick some 

q with /(a) < q < f \b). Let f(xk) = 

The case where either a or b is not defined is left to the reader. 

If qk g f[Ak U {*k}], we are done. Otherwise suppose a = 

sup{p e f[Ak]: p < qk}, b = inf{p e f[Ak\. P > Pk} are both defined. This 

time Ak fl (/~’(a), /_1(6)) = 0, but, by density, there is some x^xk, 
x e (/_1(a), f~'(b)). Pick such an x and let f{x) - qk. 

Again, the case where either a or b is not defined is left to the reader. 

(b) Let X be a countable linear ordering. By a countable recursive 

construction, extend X to a countable dense linear ordering with no 

endpoints, X*. Since X* is order-isomorphic to Q, we are done. 

The argument in (a) is Cantor’s back-and-forth argument, widely used 

in model theory, the third method of proof invented by Cantor which we 

have seen. 

A corollary of theorem 27 is 

Theorem 28. A linear order with a countable dense set is order-isomor¬ 

phic to a subset of R. 

Proof. Let X be a linear order with a countable dense set D. Then 

every point in X is the supremum of an initial segment of D. Let D be 

order-isomorphic to Y<= Q. Then X is order-isomorphic to a subset of 

y, where Y is the closure of Y in R. 

Since every subset of R has a countable dense set, theorem 25 is 

proved. 
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Having shown that Suslin’s hypothesis for lines makes sense, we are 

ready to turn our attention to the connection between trees and lines. 

First, some facts about trees. 

Definition 29. A tree is a splitting tree iff above every element are two 

incomparable elements; i.e., for all t there are r,s>t with r,s not 

comparable. 

Proposition 30. If there is a Suslin tree, there is a Suslin tree which is a 

splitting tree. 

Proof. Let T be a Suslin tree. Let S = {re T; if r, s > t, then r and s 

are comparable}. Let A be the set of minimal elements of S. A is an 

antichain, so it is countable. If teA, then {reT:r>t} is countable, 
since it is a chain. So T — UlaUe T: r> t} is an uncountable subtree 

of T, hence Suslin. 

Proposition 31. An uncountable splitting tree is Suslin iff it has no 

uncountable antichains. 

Proof. Suppose a splitting tree has an uncountable branch b. For each 

t £ b there is some rt> t with rt£ b. Then {rt: te b} is an uncountable 

antichain, so the tree is not Suslin. 

Now we show how to associate lines to trees and trees to lines. 

Proposition 32. Every tree extends to a linear order. 

Proof. Suppose T is a tree under the order <T. Let <a be an 

arbitrary linear order on T(a). For xe T(a) and ft < a we define x(/3) to 

be the unique z e T(/3) with z < x. We define the linear order on T as 

follows: x < y iff 

(i) x<Ty or 

(ii) if a is the least ordinal with x(a) f y(a), then jt(a)<ay(a). 
It is easy to check that this is a linear order. 

An order extending <T constructed as in the proof of proposition 32 

will be called a canonical linear extension. 

Definition 33. Let X be linearly ordered. A tree of intervals on X is a 

tree whose elements are intervals in X ordered under the following 

order: 1 < J iff J c /, where incomparable intervals are disjoint. 
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Thus, as we move up in a tree of intervals, the intervals grow smaller. 

Theorem 34. There is a Suslin line iff there is a Suslin tree. 

Proof. Recall that if there is a Suslin tree then there is a splitting 

Suslin tree. We need an analogous fact about Suslin lines. 

Proposition 35. If there is a Suslin line, then there is a dense Suslin line. 

Proof. Suppose X is a Suslin line. If a, b e X, a< b, and the interval 

(a, b) is empty, say that a, b are a bad pair. For each bad pair (a, b), 

insert a copy of Q between a and b and let X* be the resulting linear 

order. Note that X has a countable dense set iff X* has one, and that an 

uncountable disjoint family of open sets in X* gives rise to a disjoint 

family of open sets in X of the same cardinality. So X* must be Suslin. 

Let us return to the proof of theorem 34. Assume there is a Suslin line. 

Then there is a dense Suslin line, so let X be one. We construct a Suslin 

tree of intervals on X by uncountable recursion. The main step is the 

following 

Claim. Suppose X is a dense Suslin line. Then there is a countable 

splitting tree of intervals on X, and every countable splitting tree T of 

intervals on X has an extension Sf1 T which is also a countable splitting 

tree of intervals on X. 

Proof. Let A = {jc : x is an endpoint of some interval J e T}. (If T = 0, 

A=0.) Since T is countable, A is countable. Since no countable set is 

dense in X, there is some interval / so that I fl A = 0. Hence, for any 
interval /, c/, and any JeT, either Jj D J = 0 or fj <=/. Since X is 

dense, there is a nonempty splitting tree Si where every J e Si is a 

subinterval of I. Let S = T U Si. 

Using the claim, we build up an increasing sequence of countable 

splitting trees {T“: a < taj and let T"1 = (J T“. Since T"1 is an 

uncountable splitting tree with no uncountable antichains, it is Suslin. 

Thus the existence of Suslin lines implies the existence of Suslin trees. 

For the other direction, let us assume we have a splitting tree T which 

is Suslin under the order <T. Let B = {b: b is a branch of T}, and let 

7* = TUB. We give T* the following tree order <+: 

(i) If t, s 6 T, then t <+ s iff t<Ts- 

(ii) If t e T and b e B, then t <+ b iff teb. 

(iii) If te T* and b e B, then b^+ t if b ± t. 
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Now let < be a canonical linear extension of ^+. We show that B 

under the order < is a Suslin line. 
It has no countable dense set: Since every branch is countable, any 

countable set is contained in some countable initial segment T*, and if t 

is an element of T with height greater than a, by splitting there is some 

se T with t<Ts and the interval (t, s) under the ordering < has at least 

three elements of B in it (see picture), hence contains a nonempty 

interval in B. But since t<Ts, any b in (r, s)flB cannot be in T*, so T* 

was not dense. 

Suppose we have a pairwise disjoint collection C of nonempty inter¬ 

vals in B. Since the endpoints of the intervals in C are in B, the 

endpoints of each / in C are not comparable in T*. For each interval 

7 = (r/,s/) in C, let /* = {re T: rt < t< Sj}. Pick b(I)£l and tj e 
b{I)~ S/. Then (,6 and if t,<Ttj, then be/*. But then b(J)eI, 

which contradicts the intervals being pairwise disjoint. Hence the b’s are 

incomparable in T, hence C is countable. 

Theorem 34 was first proved by Kurepa in 1935 and published in a 

Belgrade journal where it languished unnoticed by the rest of the world. 

It was rediscovered independently in the 1940s by Sierpinski in Poland 
and by Miller in the United States. 

Now that we have connected our study of trees to questions about the 
real line, let us connect trees to large cardinals. 
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Theorem 36. An uncountable cardinal k is weakly compact iff it is 

strongly inaccessible and has the tree property. 

Proof. Suppose k is weakly compact. We already know from the last 

section that it is strongly inaccessible, so it remains to prove that it has 

the tree property. 

Suppose T is a tree of size k in which each level has size strictly less 

than k. List the elements of T as {ta: a < k}. Let <T be the tree order on 

T, and let < be a canonical linear extension of it. Let P0 be the set of all 

pairs {a, (3} where a < (3 and ta<tp\ let Px be [k]2-P0. Let H be 

homogeneous for this partition, \H\ = k, and let A — {t:t<Tta for k 

many a e H}. Since {ta: a e H} is a subtree of T of size k and since each 

level of T has size less than k, API T(a)^0 for each a < k. We will 

show that A is a branch. Suppose not. Then there are two incompatible 

elements (in the ordering <T) t, s in A with t<s. For high enough 

a < (3 < y elements of H, we have t<Tta<Tty and s<Ttp. But then 

ta<ty and tp ^ ty, so H is not homogeneous, a contradiction. 

• s 

For the other direction, if k is strongly inaccessible and has the tree 

property, given a partition of [k]2 into two pieces P0, Pi, we inductively 
construct a tree T = {ta: a< k} of functions ordered by end-extensions 

as follows: to = 0. If we have {tp:p<a}, we define ta inductively as 

follows: rtt(0) = i iff {a, 0} e P,; for each succeeding y we ask if, for some 

P < a, ta\y=tp. If the answer is no, we stop and declare ta to be 

defined. If the answer is yes, then p is unique and we define ta(y) = i iff 

{a, p}e Pi. Since elements of T with same height have the same domain. 
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by strong inaccessibility every level of T has size less than k. So by the 

tree property, T has a branch B of size k. Define C, to be the set of all a 

where both ta and tai, are in B. For some i, C, has size k, but if 

a < j3 £ C,, then tp > tai, so {a, /3} e P, and we are done. 

A theorem which we will not prove here is that not every strongly 

inaccessible cardinal is weakly compact. Thus, weak compactness is a 

stronger large cardinal property than inaccessibility. 

SECTION 7.3. MEASURABLE CARDINALS 

Measurable cardinals are the last large cardinals we shall talk about; they 

are also the smallest of the really big cardinals, in a sense we will make 

precise later. To define them we have to make some further definitions 
about ultrafilters. Recall from chapter 2 that a proper ultrafilter on a set 

X is a family S' of subsets closed under supersets and finite intersection, 
with 

(1) S'. 

(2) For every AcX either Ae ^or X-Aef. 

We call S' a nonprincipal ultrafilter if, in addition, 

(3) Every element of S is infinite. 

Recall that if S' is an ultrafilter, Aef, and A = B U C, then either B or 
C is an element of S. 

Definition 37. An ultrafilter S is said to be k-closed iff, for every .sd a S' 

with |^| < k, 3'- 
Thus, every ultrafilter is w-closed. 

Note that a K-closed nonprincipal ultrafilter contains no sets of size 
smaller than k. 

Definition 38. An uncountable cardinal k is a measurable cardinal iff 
there is a K-closed nonprincipal ultrafilter on k. 

Why are these called “measurable?" If you know any measure theory, 

consider a two-valued measure on 0>(k) as follows: Given the K-closed 

ultrafilter S we define the measure fx by /n(A)= 1 if Ae S'; n(A) = Q 

otherwise. You can check that this is a measure. It is what is known as a 



MEASURABLE CARDINALS 129 

K-additive measure, that is, the union of fewer than k many disjoint sets 

has measure equal to the sup of the measures of the individual sets. (Note 
that no two distinct sets in & are disjoint.) 

Theorem 39. Every measurable cardinal is weakly compact. 

Proof. Let k be measurable. We must show that k-»(k)|. 

So let SF be a K-closed ultrafilter on k, and let [k]2 = P„ U P\. We 

imitate the proof of theorem 7 in section 7.1. Let a0 = 0. Since ?F is an 
ultrafilter and k = {0} U {/3: j3 > 0 and {0, 0} e P0} U {/3: j8 > 0 and {0, jS} e 

Pi}, there is a unique i with {/3: (3 >0 and {0, (3} e P,}e Let i0 be this 

unique i, and let A0 = {(3: /3 > 0 and {0, /3} e Pj. 

Now suppose, at stage tj < k we have a descending sequence {A7: 

y< rj} of elements of SF, ordinals ay for y< 17, where if y < 8 < 17 then 

as e Ay and ay < inf( Ay), and numbers iy for y < 17 where {a7, /3} e Piy if 

13 e Ay. Consider fj7<^ \ = Since $F is K-closed, Aef. We pick 

av& A. Since av + 1 < k, and since k = sup{/3: (3 > av and {av,{3}e 
Po} U {(3: (3> av and {a^, /3} e Pj U a^+i, there is some i = iv with A'v = 

{(3: (3 > av and {a^, /3} e Pir>} e SF. Let Av = A'v fl A. Finally, note that 

there are k many iy s that are the same i. Then {ay: iy = i} is the desired 

homogeneous set. 

In fact it is true that if k is measurable then there are k many weakly 

compact cardinals below k, but we will not prove that. 

Measurable cardinals are of particular interest because of the fol¬ 
lowing: 

Theorem 40. k is measurable iff there is a 1-1 map j from the universe V 
to a transitive subclass M containing all the ordinals where 

(1) If <T> is a formula and a.\ through an are sets then ..., an) 

holds in V iff d>(/(a 1),..., j(an)) holds in M.f 

(2) j is the identity on VK. 

(3) ;(k) > k. 

Theorem 40 says that the existence of a measurable cardinal guarantees 

the existence of a properly smaller copy of the universe. This is what 

gives measurable cardinals their power. The really big cardinals alluded 

fLet us give an example of <t>(j(at),..., j(a„))- Suppose 4>(y) is Vx(y e x—> 3z(y e z)). 
Then 4>(/(y)) is the formula Vx(x e j{y)~* 3z{j{y) e 2). The point is that variables which 

are attached to quantifiers do not have j applied to them. 
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to in the first paragraph of this section are exactly those which admit 

more and more powerful sorts of embeddings satisfying properties (1) 

through (3). 
While we do not have the logical machinery in this book to prove 

theorem 40 in both directions, we can prove one direction and use the 

map j to show that measurable cardinals do not exist in L. 

First, let us explore what property (1) tells us about j. 

Proposition 41. Suppose j is a 1-1 map; j: V—»M, where M is a 

transitive subclass of V, M contains all the ordinals, and property (1) 

holds. Then 

(a) For every x, y, y(x - y) = j(x) - j{ y). 

(b) For every x, j(f) x) = C\j(x). 

(c) For every x, y, if x <= y, then y'(x) <= j(y). 

(d) If x = {ya: a < A}, then j(x) = {za: a< /(A)}, where, if a < A, then 

Zj(u) y( ya). 

Proof. We prove (a), (b), and (d), leaving (c) to the reader. 

(a) x - y satisfies Vz(z ex-yiffzex and z 4 y)- So y(x — y) satisfies 

Vz(z g y'(z - y) iff z e y'(x) and z 4 y(y)). But “z e y(x) and z 4 /(y)” 
is the definition of y'(x) — y( y), so y'(x — y) = y'(x) — y( y). 

(b) The proof is similar to the proof of (a), using the fact that fix 

satisfies Vy(y e fix iff Vz e x(z e y)). 

(d) Now let / be the function f{a) = ya for a < A. Since x is the range 

of /, y'(x) is the range of y(/), and y'(x) = {za: a < y(A)}, where 

/(/)(«) = za. So if y = f{a), y'(y) = j(f)(j(a)) = zj(a). 

Theorem 42. Suppose there is a 1-1 map y: V—»M, where M is a 

transitive subclass of V, M contains all the ordinals, and properties (1), 

(2), and (3) of theorem 40 hold. Let k be the cardinal of (2) and (3). Then 

k is measurable. 

Proof. We define ^byxG^iffxcK and k g y'(x). We need to show 

that & is nonprincipal, closed under superset, closed under intersection 

of fewer than k elements, and that if x c: k then either x G & or 

k — x G 

& is nonprincipal: Since a < k implies {a}G VK implies y({a}) = {a}, 
no {a} G 

& is closed under superset: If k g y(x) and x <= y, then, by proposition 
41(c), k g y(y). 
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If A < k and {xQ: a < A} c= 5^ then P| a<Axa e By proposition 41(d), 
if X = {xa: a < A}, then j(X) = {j(xa): a < A}—this is because /(A) = A. 

By proposition 41(b), j((~] X) = (~]j(X). So f| X e & iff kgj((\x) iff 
KG rum iff V«<A(«6 j(xa)) iff X c f _ which is true. 

If x C K, then either xe^or k - x e j(x) <= j(K) and k e ;'(k), so 

either K&j(x) or k e j(k) — j(x) — j(k — x) by proposition 41(a). 

The next theorem says that measurable cardinals do not exist in L. 

Theorem 43 (Scott). If V= L, then there are no measurable cardinals. 

Proof. Suppose not, and let k be the smallest measurable cardinal. Let 

j, V, M be as in theorem 40. Then, in V, k satisfies the statement “k is 

the least measurable cardinal.” So, in M, j(k) satisfies the statement “/(/<) 
is the least measurable cardinal.” Since V = L <= M <= L, M = L and k is 

measurable in M. Thus }{k) = k, a contradiction. 

Beyond the scope of this book, but important to mention, is the 

connection between large cardinals and the Axiom of Determinacy or 

AD. AD says that certain infinite games have winning strategies, and 

contradicts AC. There is a rich literature on infinite games and their 

strategies, which is closely connected to descriptive set theory—descrip¬ 

tive set theory is the study of the classification of sets of reals begun by 

Borel and continued by the Polish school of Kuratowski and Sierpinski. 

One of the more remarkable recent developments in set theory has been 

the connection of descriptive set theory, its roots comingled with the 

roots of topology and analysis, with large cardinals, beginning with 

Solovay’s theorem that under AD the cardinal is measurable, and 

moving to results spearheaded by Woodin, Steel, Martin, and Shelah, 

among others, which say that the existence of certain large cardinals 

implies the existence of an inner model of AD. 

SECTION 7.4. CH 

In this section we apply CH to some combinatorial questions about ^(ca), 

and co,. In the next section we apply Martin’s axiom to these same 

questions. 
Recall from chapter 2 the definition of a nonprincipal ultrafilter. 

Recall from chapter 1 the Frechet order on "ca: We define / =* g if 

{n: f(n) ^ g(n)} is finite, and define /<* g iff /= g or {n: f{n)> g{n)} is 

finite. While <* is not a partial order on wa), it defines a partial order on 
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the equivalence classes modulo =* and is called, in an act of generosity, 
the Frechet order. 

The concepts we will work with in this section and the next are defined 
in 

Definition 44 

(a) Let S' be an ultrafilter on oj. si c S' is said to be a base for S' iff 
for every element A of S' there are A0,..., An e si with A D 

i < n Aj. 

(b) Let si be a family of subsets of to. si has a lower bound iff there is 
some infinite A with A - B finite for all B e si. 

(c) Let F be a family of functions in "&>. F is said to be dominating iff 
for every gewoj there is some / e F with g<* /. 

(d) Let F be a family of functions in "w. F is said to be dominated iff 
there is some g e with g >* / for each feF. In this case we say 
g dominates F. 

We will prove 

Theorem 45. Assume CH. Then 

(a) Every base for a nonprincipal ultrafilter on w has size 2". 

(b) Every dominating family in "to has size 2W. 

The proof of theorem 45 will follow from 

Theorem 46 

(a) If si is a countable family of subsets of io where every intersection 
of finitely many elements of si is infinite, then si has a lower 
bound. 

(b) Every countable family in “oj is dominated. 

Proof That Theorem 45 Follows from Theorem 46. Since CH holds, 
any subset of 0>(w) or of "to is either countable or has size 2". A base for 
a nonprincipal ultrafilter cannot have a lower bound A, since then A 
could be split into two infinite sets neither of which is in the filter; and a 
dominating family cannot be dominated by a function g, since the 
function h(n) = g(n) + 1 would be a counterexample to the family’s being 
dominating. 
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Proof of Theorem 46. Theorem 46(a) is immediate from theorem 37 in 
chapter 1, so we just prove (b). 

Let F be a countable collection, F = {/,: i < w] c We define a 

dominating g as follows: g(n)= 1 + £,<„ f,{n). Then, for each i, g(n)> 
fi(n) for all n > i, and F is dominated. 

In the next section we will prove, under Martin’s axiom, analogues of 

theorem 45. Thus we will have an example of how Martin’s axiom and 

the continuum hypothesis allow us to draw similar conclusions. In con¬ 

trast, the next theorem fails under MA + ~iCH. 

Theorem 47 (Erdos-Rado). Assume CH. Then there are H, K with 

(o x at, = H U K so that if A e [to]" and B e [to,]"1 then Ax B is a subset 
of neither FI nor K. 

Theorem 47 is an example of the negation of a generalization of a 

partition relation. This type of generalization has the form: Every time 

you split an object into a fixed number of pieces, one piece contains a 

copy of the object. Theorem 47 says that under CH, if the object is 

to x o)u and you split it into two pieces, you need not get a copy of to x toj 

contained in one piece. 

Proof of Theorem 47. Using CH, let {aa: a < toj enumerate [to]". 

Using a recursive construction of length &>i, at stage (3 we will decide 

which (k, /3) go into H and which into K. So at stage /3 let {Cn: n < co} 
enumerate {aa: a < /3}. Since each Cn is infinite, we pick disjoint infinite 

sets £,Fc(o with C„ D £ /0 and C„ FI F ^ 0 for all n. If ke E, put 

(k, j3) g H; otherwise put (/c, (3) e K. 
Now suppose B is uncountable and A is infinite. Then A is some aa 

and there is some (3 £ B with /3 > a. But by construction there is some 

ke A with (k, (3) e H, and some j e A with (/, (3) e K. So A x B H and 

Ax B<£ K, which is what we wanted to prove. 

SECTION 7.5. MARTIN’S AXIOM 

Martin’s axiom is a statement about partial orders. Before stating it we 

need some definitions. 

Definition 48 

(a) A partial order is said to be ccc iff every antichain is countable. 

(The initials “ccc” stand for “countable chain condition,” even 
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though it is antichains that are the subject. The misleading nature 

of this notation has been noticed and there have been attempts to 

change it, but tradition outweighs reason, old habits die hard, and 

“ccc” it remains.) 

(b) A set D is dense in a partial order X iff for every x e X there is 

some y e D with x> y. 

Notice that this use of the word “dense” is quite different than the use 

in section 7.2. For example, (—°°, 1) satisfies definition 48(b), but it is not 

dense in R as a linear order. 

Example 49. The partial order of open sets in R under inclusion is a ccc 

partial order, since every interval contains a rational, hence every 

collection of disjoint open sets is countable; the collection of open 

intervals with rational endpoints is a dense subset of this order. 

Example 50. If T is the binary tree on (o and D = {feT: for some n 

dom/=n + l and f(n)~ 0}, then / is dense (given an arbitrary g&T 
extend it to a function whose last value is 0); since T is countable, it is 
ccc. 

Another example of a ccc partial order is a Suslin tree under <_1. This 

has no countable dense set. 

Definition 51. A subset G of a partial order X is said to be a filter if 

every finite subset of G has a lower bound in G, and if x e G and y > x, 
then y e G. 

Notice that a filter on a cardinal k is exactly a filter on the partial 
order 3(k), ordered under inclusion. 

Notice that every filter in a tree under <_1 is a chain (because any two 

elements of a filter are compatible hence, in a tree, comparable under 

^). 

Definition 52. Let S' be a family of dense subsets of some partial order 

X, and let G be a filter on X. Then G is said to be ^-generic iff 

G D D ^ 0 for all D £ 3). We say that G meets D for all D e 3. 

For example, suppose X is a splitting partial order; that is, for every 

x£ X there are at least two incompatible elements below x. Then for 

every chain C of X the set Dc = {x: x<£ C} is dense. Hence a filter 

meeting each Dc could not be a chain, and if X is a tree, then there is no 
filter generic for {Dc: C a chain}. 
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The question is: when do generic filters exist? Given a family © of 

dense sets, when are we guaranteed the existence of a ©-generic filter? 

Lemma 53 (Rasiowa-Sikorski). Let X be a partial order and © a 

countable family of dense sets. Then there is a ©-generic filter on X. 

Proof. In fact, the filter will be generated by a chain. 

So let © = {Dj-. i < a>}. We define G = {g,: i < w} as follows: Let g0e 

D0. Since D] is dense there is some gi e Dj, g, < g0. Since D2 is dense, 

there is some g2 e D2, g2 < g,. And so on. Then G* = {x: 3ge G(x > g)} 

is the desired filter. 

The Rasiowa-Sikorski lemma is of fundamental significance in the 

theory of forcing. Martin’s axiom, which is really a way to summarize lots 

of forcing arguments in one combinatorial principle, is almost a general¬ 

ization of the Rasiowa-Sikorski lemma. 

Martin’s Axiom. If X is a ccc partial order and © is a family of fewer 

than 2" many dense subsets of X, then there is a ©-generic filter on X. 

We abbreviate Martin’s axiom as MA and note two variations of it: 

MA + —iCH is the statement “MA holds and CH fails.” MAN| is the 

statement “If X is a ccc partial order and © is a family of at most iox 

many dense subsets of X, then there is a ©-generic filter on X.” Note 

that by lemma 53 CH implies MA, and MA + ~iCH implies MAx, which, 

by exercise 22, implies —iCH. MA is independent of ZFC + -iCH, that is, 

there are models of ZFC + -iCH in which MA holds (Solovay, Martin) 

and others in which it fails. 

We will prove 

Theorem 54. Assume MA. Then 

(a) 2“ is a regular cardinal. 

(b) Every base for an ultrafilter on (o has size 2". 

(c) Every dominating family in “ca has size 2". 

We have stated theorem 54 as an analogue of theorem 45. Note, 

however, the contrast between CH and MA + “iCH: Under CH every 

base for an ultrafilter and every dominating family has size o»,; under 

MA + —iCH, no base for an ultrafilter and no dominating family has size 
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Theorem 55. Assume MA. Then if o> < k < 2W, 2K = 2". In particular, 

under MA + -iCH, 2" = 2“\ again in contrast to CH. 

Theorem 56. Assume MA^,. Then there are no Suslin trees. 

Theorem 56 is due to Solovay and Tennenbaum. Theorem 54(b) is 

due to Booth; the rest of theorems 54 and 55 are due to Solovay and 

Martin. We prove them in order of ease of proof. 

Proof of Theorem 56. Suppose there is a Suslin tree. Then, by exercise 

16, there is a Suslin tree T so that every element has successors of 

arbitrarily high height. That is, for a < u)\, if Da={te T: height t > a}, 

then each Da is dense under <-1. By hypothesis there is some filter G in 

the sense of <-1 meeting each Da. But then G is uncountable and is a 

branch, so T is not Suslin after all. 

Proof of Theorem 54(6). Let sd be a family of subsets of a> of size less 

than 2“ where every finite subset of sd has infinite intersection. We will 

show that sd has a lower bound. This will prove the theorem, since any 

family of subsets of (o either has size less than 2" or has size 2", and no 

base for a nonprincipal ultrafilter has a lower bound. 

We get our lower bound by means of a partial order P defined as 

follows: 

Elements of P are ordered pairs (a, F) where a is a finite subset of a> 
and F is a finite subset of sd. The order is (a, F) < (a’, F') iff a =3 a', 

F => F', and a - a' c P) F'. That is, every new element of a is a member 

of each set in F\ 
The reader should check that this really is a partial order. We will 

check that it is ccc: Note that each (a, F) is compatible with each 

(a, F'), since no new elements are added to a. Since there are only 

countably many finite subsets of co, we have P a countable union of 

pairwise compatible sets, hence P cannot have an uncountable antichain. 

Now we need a small collection of dense sets. (In the presence of MA, 

“small” always means “size less than 2".”) For each Aesd let DA = 

{(a,F): AeF}. Each DA is dense: Given (a, F) note that (a,F)> 

(a, F U {A}) £ Da. 
We also need, for each finite n, Dn = {(a, F): \a\> n}. Each D„ is 

dense: Given (a, F) let ftc f]F where |6| = n. Then (a,F)> 
(aUb,F)<=Dn. 

Since \sd\<2°>, by MA we have some filter G meeting each DA and 

each Dn. Let A* = (J{a: some (a, F) e G}. We must show that A* - A 

is finite, for all Ae si, and that A* is infinite. 
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Pick (a,F)eGC\DA. Then for each neA*-a, ne(~]F, so, in 
particular, n e A. Thus A* — A <= a, which is finite. 

As for the cardinality of A*, since G meets each D„, | A*| > n for all 
finite n. So A* is infinite. 

Proof of Theorem 54(c). The proof is similar to that for theorem 

54(b): We show that every small family of functions is dominated via an 

appropriate partial order, hence a dominating family cannot be small. 

So suppose F is a family of functions in 10 co, |F|<2". We define the 
partial order P as follows: 

Elements of P are pairs (s, E) where 5 is a function from some n into 

(o and E is a finite subset of F. We say (s, E)<(s', E') iff 5 extends s', 

E ^ E' and, for all /e E' and all n e dom s — dom s', s(n) >f(n). 
P is ccc since any two (s, E), (s, E') are compatible; hence, P is the 

union of countably many pairwise compatible subsets, so has no un¬ 

countable antichains. 

For each finite n we let Dn = {(s, E): n e dom s}. For each /eF we let 

Df = {(s, E): fe E}. The reader can check that each Dn and each Df is 

dense. By hypothesis we have fewer than 2“ of them, so by MA there is 
some filter G which meets every Dn and every Df. Let h be defined by 

h{n) = k iff there is some (s, E) e G with s(n) = k. Since G is a filter, h is 

well-defined. Since G meets each D„, dom h = co. Let (s, F)e Df D G. 
Then if n £ dom s, h(n) > f(n). So h dominates each / in F. 

Theorem 54(a) follows from theorem 55: If CH holds, 2" is regular; if 

CH fails, since 2cf<2“)> 2", by theorem 55 cf(2") cannot be less than 2". 

So the last thing to do is prove theorem 55. First some more 

definitions. 

Definition 57. A collection of infinite subsets of a countable set X is said 

to be an almost disjoint family on X iff any two distinct elements of the 

collection have finite intersection. 

For example, if T is the binary tree of height co and B is the set of 

branches of T, then B is almost disjoint, since any two distinct branches 

have at most finitely many elements of T in common. 

Lemma 58. There is an almost disjoint family on (o of size 2". 

Proof. Let / be a 1-1 onto function from the binary tree T of height co 

to co. Let B be the set of branches of T. \B\ = 2“ since every function in 

“2 defines a unique branch. Define g(b) = {n: f~\n) e b}. Then {g(b): b e 

B} is the desired family. 
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Definition 59. Let si be an almost disjoint family on a>, and let si, 

<€ 7^ si. The partial order consists of all pairs (a, E) where a is a 

finite subset of (o and E is a finite subset of c€. The order on P &^ is 

defined as follows: (a, E) < (a', E') iff a => a, E^E', and (a — a')f) 

((J E') = 0, i.e., any new element of a is not in any set in 

Note that any two (a, E), (a, E') are compatible, hence P^,<g is ccc 

and, for each A &<€, DA = {(a, E): A e E} is dense. Since si - ^ is 
nonempty, no finite union from equals a> or covers any element of 

si-%, and each Dn = {(a, E): \a\> n} is dense for finite n. For A e 
si - <€, Da,„ = {(a, E): \a fl A\ > n} is dense. 

Lemma 60 (Solovay’s Lemma). Assume MA. Let si, <€ be as in 

definition 59. If \si\<2<°, then there is a set a> so that, for each 

A e si, AD Acg is finite iff A € <€. 

Proof. We have fewer than 2" many D„’s, DA’s, and DA.„’s, so by 

MA there is some filter G meeting all of them. Let A^ — (J{a: some 

(a, E)e G\. Bv the DA’s, A% fl A is finite for all Ae c€\ by the DA-n’s, 

A^ fl A is infinite for all A 6 si - c€. 

The partial order P^,^ is known as almost disjoint forcing, and has 

many applications apart from the one we are about to give. 

Proof of Theorem 55. Suppose io<k<2“. Let si be an almost 

disjoint family of size k. (si exists by Lemma 58.) There are exactly 2* 

many subsets of si, and for each we have A% c <o as in lemma 60. If 

^7^^' and Ae^— <£', then A^fl A is finite and A<*- ft A is infinite. 

Hence no two A^’s are the same. Hence 2W > 2K, and we are done. 

Now let us show that the conclusion of theorem 47 fails under 

MA + nCH. 

Theorem 61 (Baumgartner-Hajnal). Assume MA + ~iCH, and suppose 

a) x an = H U K. Then there is an infinite set A and an uncountable set 
B, so either Ax B c H or Ax Be K. 

Proof. For each a < (ou let A„ = {n: (n, a) e H}. Notice that if Ba = 

u) — Aa, then Ba = {n: (n, a) e K}. Let f be a nonprincipal ultrafilter 

on w. For every a, either Aa or Ba E Either uncountably many Aa’s 

are in 3F, or uncountably many Ba's are in Without loss of generality, 

assume the former, and let E = {Aa: Aa e &}. By the proof of theorem 

54(b), E has a lower bound A. Now, for Aa e E, let na be the least n, so 
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A — Aa c n. There is an uncountable set B and a fixed n with na — n for 

all a £ B. But then (A - n) x B <= H, as desired. 

SECTION 7.6. STATIONARY SETS AND O 

In this final section we discuss a combinatorial principle which streng¬ 

thens CH. This principle, known as O, holds in L and was formulated by 

Jensen as a crystalization of his proof that Suslin trees exist in L (just as 

MA was formulated as a crystalization of the proof that Suslin trees need 

not exist). L is a rich source of powerful combinatorial principles, with 

fanciful ad hoc names such as ♦ (club, a weakening of O: O = «fc+ CH), 

□ (box), and the existence of a morass. Any of Devlin’s books on 

constructibility will have material on all of these, while further discussion 

of O and □ can be found in Jech’s Set Theory. 
Before stating O we need to characterize some interesting sets of 

ordinals. 

Definition 62. Let k be a cardinal. 

(a) A subset A of k is said to be closed iff, for all B <= A, if B is not 

cofinal in k then sup B e A. 

(b) A club subset of k is a closed subset cofinal in k. (“Club” is short 

for “closed unbounded.”) 

For example, all subsets of a> are closed, so every unbounded subset of 

a; is a club. If k is uncountable, then {«</<:: a is a limit ordinal} is a 

club, since the limit ordinals are cofinal in k and every supremum of a 

subset of limit ordinals is itself a limit ordinal. 
Notice that if A is club in k and cf(/<) = A, then A must contain 

elements of every cofinality below A: Every cofinal set has order type 

>A, so if p is regular and p< A, then each closed unbounded set has a 

subset of order type p whose sup has cofinality p. 
Notice that if cf(/<)> a) then the intersection of two clubs is a club. 

(In fact something stronger is true—see exercise 26.) 

Definition 63. Let k be a cardinal. A subset A of k is said to be 

stationary iff A fl C ^ 0 for all club subsets C of k. 

For example, if k has uncountable cofinality, then by the note above 

{a < k: cf(a) = a>} is a stationary set, and every club is stationary. If k has 

cofinality at, then S is a stationary subset of k iff k - S is bounded below 

K. 
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The division of sets into stationary and nonstationary sets is an 

important one. To give an idea of the power of stationary sets, we state 

two theorems about them. 

Theorem 64 (Fodor). Let k be a regular uncountable cardinal. If / is a 

function on a stationary set S c k and f(a) < a for all nonzero a 6 5 

(such a function is called a regressive function), then there is a stationary 

S' <= S with / constant on S'. 

Theorem 65 (Solovay). Every regular uncountable cardinal k is the 

union of k many disjoint stationary subsets of k. 

We will prove Fodor’s theorem. The reader is referred to any standard 

advanced set-theory text for the proof of Solovay’s theorem. 

Proof of Theorem 64. Suppose / is regressive on S, where S is 
stationary in some regular uncountable k. If the theorem fails, then for 

all a < k there is a club Ca where / misses a on Ca D S; i.e., if 

(3 £ Ca D S, then /(/3) ^ a. 

Let C = {/3: Va < /3(/3 e Ca)}. Let us show that C contains a club. 

Define g: k—» k by g(y) = inf fla<7 Ca. Without loss of generality, g is 

increasing. 

Claim. The function g is continuous. 

Proof. Suppose y = suply: i e A} where A < k. Let 8 = sup{g(-yi): i e 

A}. Since each g(y,) £ f| Ca, for all i. Hence 8e 

fl c«- since each g(y.) i n «<7i+1 ca, 5 = inf n a<7 Ca. So 5 = g(y). 

Returning to the proof of theorem 64, an adaptation of the proof of 

theorem 28 in Chapter 5 shows that every increasing continuous function 

on k has a club of fixed points. So let D be a club of fixed points for g. 

Then D is contained in C. Since C contains a club and S is stationary, 

there is some nonzero p e C D S. Since p e Ca for all a< p, f(p)> p. a 
contradiction. 

As another example of the importance of stationary sets, consider this 

more general version of Silver’s singular cardinals theorem (theorem 46, 
chapter 5). 

Theorem 66 (Silver). Suppose xa is a singular cardinal of uncountable 

cofinality and, for some fixed y<cf(a), there is set S stationary in a so 
that, for all j8eS, 2^ = Then 2X» = *a+y. 
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Stationary sets and their generalizations permeate modern set 

theory—for example, they are crucial in forcing and large cardinal 

theory—but we will give only one further example of their use, in the 

principle O, which holds in L. 

O. There is a sequence {Aa: a < o>,} so that Aa c a and, for each set 
A c {a: Afltt = Aa} is stationary. 

We call the sequence {Aa:a<(o1} a O-sequence and say that it 
captures each A <= on on a stationary set. 

Notice that under O each countable subset of o>, equals stationarily 
many Aa’s. 

Notice that O implies CH: Since each subset of w equals stationarily 
many Aa’s, we can have at most to, of them. 

We use O to get a Suslin tree. 

Theorem 67. Assume O. Then there is a Suslin tree. 

Proof. Let {Aa: a < to,} be a O-sequence. We will use this sequence 
to construct a Suslin tree T whose elements will be countable ordinals. 

Let A = {5a: to < a < to,} enumerate all countable limit ordinals. Note 

that A is a club. Before giving the construction we need one more 

definition: An antichain in a partial order is maximal iff every element in 

the partial order is compatible with some element of the antichain. By the 

axiom of choice, every antichain in a partial order extends to a maximal 

antichain. 
We will construct T so 

(*) each Ta <= 8a and Ta is a splitting tree. 

Start out by letting Tw be any countable splitting tree of height co whose 

elements are the finite ordinals. Now suppose, for infinite a, we have Ta. 
We check Aa. Is it a maximal antichain in the tree TQ? If not, we do 
whatever we like to extend Ta to Ta+1 so (*) is not violated. If Aa is a 

maximal antichain in Ta, then, for each element /8 of A« we let bp be a 

branch of Ta with jSebp. We have chosen a countably infinite set of 

such bp's and 8p+i — 8p is countably infinite, so we can extend Ta to Ta+i 

so each new element of Ta+1 is an upper bound for some bp. Since every 

element added to T from then on has height >a and hence is compar¬ 

able to some element in T(a), Aa will be a maximal antichain for T. 

Since T is a splitting tree, it suffices to show that it has no uncountable 

antichains. So suppose A is an uncountable antichain of T. A extends to 

a maximal antichain, so since we are trying to show that A does not exist 



142 INFINITE COMBINATORICS 

we might as well assume that A is itself maximal. Consider C = 

{a: A D Ta is a maximal antichain in Taj. We show that this set is a club 

in o)\. Clearly C is closed. 
Suppose a < a>i. For each element t in Ta+i we pick some a, e A with 

t, a, comparable (note that t may equal a,). Let 70 = sup({a + 1} U {/3: for 

some t in Ta+l, ate T(/3)}). Now for each t in Tyo+u pick some a,e A 

with t, a, comparable and let 71 =sup({70+ l}U{/3: for some t in Tyo+U 

a,e T(/3)}). And so on. Finally, if y = sup{yn: n < co}, then 7e C and 

7> a. Thus C is unbounded. (This sort of argument is called a Lowen- 

heim-Skolem closure argument.) 
Since {Aa:a<o»1} is a O-sequence, there is some 8a e C D A with 

A fl 8a = ASa. ASa is maximal in TSa since 8a e C. Thus, by construction 

of T, A = ASa contradicting that A is uncountable. 

This is a classic use of O: You kill off every possible counterexample 

by killing off some reflection in the O-sequence. 

The general technique of reflection—in order to check something at a 

high level you look at its reflections down below—permeates not only 

infinite combinatorics on small cardinals (e.g., O) but also is a key 

element of certain large cardinal principles (e.g., supercompact cardinals) 

and forcing techniques (e.g., proper forcing). One of the major themes of 

set theory in the 1980s has been the importance of stationary sets and 

reflection, so it is fitting that these techniques end this book. 

EXERCISES FOR CHAPTER 7 

1. (a) Show that the statements in example 2(a) are true. 

(b) Show that in the partition of example 2(b) cubics are not homo¬ 
geneous. 

2. A weak antichain in a partial order is a set of pairwise incomparable 

elements. Use Ramsey’s theorem to show that every infinite partial 

order has either an infinite chain or an infinite weak antichain. 

3. Use Ramsey’s theorem to show that every infinite set of integers has 

an infinite subset X so that either (1) if n<m are elements of X 

then n divides m or (2) if n < m are elements of X then n does not 
divide m. 

4. Use Ramsey’s theorem to show that every infinite set of natural 

numbers has an infinite subset X so that either every three distinct 

elements in X sum up to a prime or no three distinct elements in X 
sum up to a prime. 
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5. Use Ramsey’s theorem to show that if A is a finite set of primes then 

every infinite set of natural numbers has an infinite subset X so that 

either there is some fixed p in A where every four distinct elements 

of X sum up to a multiple of p or no four distinct elements of A sum 
up to a multiple of any element of A. 

6. Use Ramsey’s theorem to show that every infinite linearly ordered 

set has either an infinite increasing sequence or an infinite decreasing 
sequence. 

7. Use the Erdos-Rado Theorem to show that if a partial order has size 

>2W then it has either an uncountable chain or an uncountable weak 

antichain (see exercise 2 for definition of weak antichain). 

8. Consider the set of increasing well-ordered sequences of elements of 

R, ordered by end-extension (g>/ iff / is an initial segment of g). 

Show that this is a tree. What is its height? What is the size of each 
level? 

Note: A well-ordered sequence is a function from some ordinal a 
into R. The ordinal a need not equal a). 

9. We say a tree T is a tree of subsets of some set X iff (1) every 

element of T is a subset of X, (2) a<Tb iff a => b, (3) if a, b are 

incompatible in T then a fl b = 0. Suppose T is a tree of subsets of 
X.Show 

(a) T has no collection {an: n < co} where each an <= a„+]. 

(b) |height T| < |X|. 

(c) Each level of T has cardinality at most |X|. 

(d) It is possible to have height T > |X|. 

10. Using Konig’s lemma, show that if the human race is to survive 

forever then some woman must have a female descendant in each 

subsequent generation. 

11. Let T be a tree whose elements are ordinals where a<T/3 implies 

a> 13 and each level of T is finite. Show that T is finite. 

12. Let T be a tree whose elements are sets where a<Tb implies b e a 

and each level of T is finite. Show that T is finite. 

13. Show that every countable linear order extends to a countable dense 

linear order with no endpoints. 

14. (a) Show that an uncountable subset of a Suslin tree is Suslin. 

(b) Show that an uncountable subset of a Suslin line need not be 

Suslin. 
(c) Show that if there is a Suslin line then there is one whose every 

uncountable subset is Suslin. 
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15. Show that a tree of height a>\ which is the union of countably many 

antichains is not Suslin. 

16. Say that a Suslin tree is nearly normal iff every node has uncountably 

many sucessors. 

(a) Show that if T is a nearly normal Suslin tree then every element 

of T has at least two incompatible successors. 

(b) Show that if there is a Suslin tree then there is a nearly normal 

Suslin tree. (Method 1: Attach a copy of the original tree to 

every node which has only countably many successors. Method 

2: Throw out all nodes with only countably many successors.) 

17. An Aronszajn line is any linear order extending that of an Aronszajn 

tree. Show 

(a) If an Aronszajn line extends a special Aronszajn tree, then the 

line has uncountably many pairwise disjoint intervals. 

(b) No Aronszajn line embeds in an order-preserving fashion into R. 

18. Show directly, without using theorem 39, that every measurable 

cardinal is regular. 

19. Let k be measurable and let j, M be as in theorem 40. Show 

(a) The statement “/(k) is measurable” holds in M. 

(b) If k is the smallest measurable cardinal in V, then “ k is not 

measurable” holds in M. 

20. Let j be as in theorem 40, and show that if x c y then j(x) <= j( y). 

21. Assume CH. Show that there is a tree of size cox and height awith 

at least co2 many uncountable branches. (Such a tree is called a 

Canadian tree.) (Hint: it is a standard example). Note: The con¬ 

sistency of “ZFC + there are no Canadian trees” is equiconsistent 

with the consistency of “ZFC + there is an inaccessible cardinal.” 

22. (a) Let T be a tree. Show that T has no filter generic for all Dc, 

where Dc is defined as in the paragraph after definition 52. 

(b) Show that M implies ~iCH. 

23. Use the Rasiowa-Sikorski lemma to reprove theorem 46. 

24. An almost disjoint family sd is maximal iff every infinite subset of co 
has infinite intersection with some element of sd. 

(a) Show that under CH every maximal almost disjoint family on co 
has cardinality 

(b) Show that under MA every maximal almost disjoint family on co 
has cardinality 2". 

25. A scale is a dominating family in 01 co well-ordered by <*. Show that 

(a) Under CH there is a scale of order-type 

(b) Under MA there is a scale of order-type 2“. 



EXERCISES FOR CHAPTER 7 145 

26. Show that if cf(/<) = A > <o then the intersection of fewer than A 

many club subsets of k is a club subset of k. 

27. Let k be regular, /: k—» k, f continuous and |range f\ = k. Show that 

{a: f(a) = a} contains a club. 

28. Show that if k has countable cofinality then S c= K is a stationary 

subset of k iff k — S is bounded below k. 

29. Let {Aa: a < o>} be a O-sequence. Show that for no countable set A 

is {a: A = Aa} a club. 
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