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Introduction 

I descried, through the pages of Russell, the doctrine of sets, the 

Mengenlehre, which postulates and explores the vast numbers 

that an immortal man would not reach even if he exhausted his 

eternities counting, and whose imaginary dynasties have the 

letters of the Hebrew alphabet as ciphers. It was not given to me 

to enter that delicate labyrinth. (J. L. Borges, La cifra, 1981) 

The story of set theory, a ‘doctrine’ that deals with the labyrinth of infinity and the 

continuum, is sometimes told in a way that resembles beautiful myths. The Greek 

goddess Athena sprang full-grown and armored from the forehead of Zeus, and was 

his favorite child.1 Set theory is generally taken to have been the work of a single 

man, Georg Cantor, who developed single-handedly a basic discipline that has 

deeply affected the shape of modem mathematics. He loved his creature so much 

that his life became deeply intertwined with it, even suffering mental illness for its 

sake. The comparison between theory and goddess is interesting in other ways, too. 

Athena was a virgin goddess, whereas set theory is comparable to number theory in 

its purity and abstractness. She was the goddess of wisdom and of the polis, while 

set theory plays an organizing role in the polis of mainstream modern mathematics 

and represents one of the highest achievements of mathematical wisdom. She was 

also the goddess of war, which brings to mind the polemics and disputes brought 

forward by the discipline that will occupy our attention in the present study. 

There certainly is wisdom in the search for founding fathers or founding myths, 

especially when a new approach or a new discipline is fighting for recognition. 

Moreover, mathematicians tend to concentrate on advanced results and open prob¬ 

lems, which often leads them to forget the ways in which the orientation that made 

their research possible actually emerged.2 Both reasons help us understand why the 

tradition of ascribing the origins of set theory to Cantor alone goes back to the early 

20th century. In [1914], Hausdorff dedicated his handbook, the first great manual of 

set theory, to its “creator” Cantor. One year later, the Deutsche Mathematiker- 

Vereinigung sent a letter to the great mathematician, on the occasion of his 79th 

1 Athena, goddess of the Parthenon in Athens, was identified with the Roman Minerva. 

2 On founding fathers, see [Bensaude-Vincent 1983]. Kuhn [1962, chap. 11] analyzed how 
scientists, in their systematic work, are continuously rewriting and hiding the real history. 
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birthday, calling him “the creator of set theory.”1 Later on, Hilbert chose set theory 

as a key example of the abstract mathematics he so strongly advocated, and he con¬ 

stantly associated it with the name of Cantor (see, e.g., [Hilbert 1926]). This is natu¬ 

ral, for Cantor turned the set-theoretical approach to mathematics into a true branch 

of the discipline, proving the earliest results in transfinite set theory and formulating 

its most famous problems. 
But this traditional view has also been contested from time to time. Some twenty 

years ago, Dugac wrote that the birthplace of set theory can be found in Dedekind’s 

work on ideal theory [Dugac 1976, 29], Presented this way, without further expla¬ 

nation, this assertion may seem confusing.2 In the introduction to Dugac’s book, 

Jean Dieudonne wrote opinionatedly: 

the ‘paradise of Cantor,’ that Hilbert believed to be entering, was in the end but an artificial 

paradise. Until new order, what remains alive and fundamental in Cantor’s work is his first 

treatises on the denumerable, the real numbers, and topology. But in these domains it is of 

justice to associate Dedekind to him, and to consider that both share equally the merit of 

having founded the set-theoretical basis of present mathematics.3 

This viewpoint is also in agreement with some older views, for instance with Zer- 

melo’s in his famous paper on the axiomatization of set theory, which he called the 

“theory created by Cantor and Dedekind” [1908, 200], If one takes into account that 

Dedekind’s set-theoretical conceptions were very advanced by 1872, and that he 

and Cantor became - so we are told - good friends from that time (see chapter VI), 

the customary story appears problematic. This uneasy state of affairs was actually 

the starting point for my own work, though its scope grew and changed substantially 

in time. 

The thrust of the argument most frequently used by those who attributed the 

authorship of set theory to Cantor is just the following. Cantor was the man who, in 

the latter half of the 19th century, introduced the infinite into mathematics; this, in 

turn, became one of the main nutrients in the spectacular flowering of modem 

mathematics.4 If this is the whole argument, one can simply say that its premise is 

historically inaccurate, so the conclusion does not follow. For at least another 

author, Dedekind, introduced the actual infinite unambiguously and influentially 

even before Cantor. On the other hand, Cantor did inaugurate transfinite set theory, 

after others had started to rely on actual infinity and while the theory of point-sets 

was being studied by several mathematicians. 

1 [Purkert & Ilgauds 1987, 165-66]: “Schopferder Mengenlehre.” 

2 A similar but subtler pronouncement can be found in [Edwards 1980, 346], 

3 [Dugac 1976, 11]: “le ‘paradis de Cantor’ oil Hilbert croyait entrer n’etait au fond qu’un para- 

dis artificiel. Jusqu’a nouvel ordre, ce qui reste vivant et fondamental dans l’oeuvre de Cantor, ce 

sont ses premiers travaux sur le denombrable, les nombres reels et la Topologie. Mais dans ces 

domaines, il n’est que juste de lui associer Dedekind, et de considerer qu’ils partagent a titre egal le 

merite d’avoir fonde les bases ‘ensemblistes’ de la mathematique d’aujourd’hui.” 

4 I have paraphrased [Lavine 1996, 1], but see [Hausdorff 1914], [Fraenkel 1923; 1928], 
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The above shows that, despite the large number of historical works which have 

dealt with set theory in one way or another, we still lack an adequate and balanced 

historical description of its emergence. The present study attempts to fill the gap 

with a general overview that synthesizes much previous work and at the same time 

tries to provide new insights.1 

1. Aims and Scope 

The traditional historiography of set theory has reinforced several misconceptions as 

regards the development of modern mathematics. Excessive concentration upon the 

work of Cantor has led to the conclusion that set theory originated in the needs of 

analysis, a conclusion embodied in the very title of [Grattan-Guinness 1980], From 

this standpoint, it would seem that the successful application of the set-theoretical 

approach in algebra, geometry, and all other branches of mathematics came after¬ 

wards, in the early 20th century. These novel developments thus appear as unfore¬ 

seen successes of Cantor’s brainchild, whose most explicit expression would be 

found in Bourbaki [Meschkowski 1967, 232-33]. 

The present work will show, on the contrary, that during the second half of the 

19th century the notion of sets was crucial for emerging new conceptions of algebra, 

the foundations of arithmetic, and even geometry. Moreover, all of these develop¬ 

ments antedate Cantor’s earliest investigations in set theory, and it is likely that 

some may have motivated his work. The set-theoretical conception of different 

branches of mathematics is thus inscribed in the very origins of set theory. It is the 

purpose of Part One of the present work to describe the corresponding process. That 

will lead us to consider whether there was a flux of ideas between the different do¬ 

mains, trespassing disciplinary boundaries. 

Part Two analyzes the crucial contributions to abstract set theory made in the last 

quarter of the 19th century. This means, above all, Cantor’s exploration of the trans- 

finite realm - the labyrinth of infinity and the continuum - which started with his 

radical discovery of the non-denumerability of M in December 1873. It also means 

Dedekind’s work on sets and mappings as a basis for pure mathematics, elaborated 

from 1872. And, as a natural consequence, the interaction between both authors, 

who maintained some personal contacts and an episodic but extremely interesting 

correspondence. Particular attention will be given to the reception of their new ideas 

among mathematicians and logicians, ranging from the well-known opposition of 

Kronecker and his followers, to the employment of transfinite numbers in function 

theory, the rise of modem algebra and topology, and the expansion of logicism. 

1 Among previous historical contributions, the following, at least, stand out: [Jourdain 1906/14], 
[Cavailles 1962] (written in 1938), [Medvedev 1965], a number of books centering on Cantor - 
above all [Dauben 1979] and [Hallett 1984], but also [Meschkowski 1967], [Purkert & Ilgauds 

1987] - , [Dugac 1976], and finally [Moore 1982]. 
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In Part Three, a synthetic account of the further evolution of set theory up to 

1950 is offered, concentrating on foundational questions and the gradual emergence 

of a modem axiomatization. Apart from the attempt to offer, perhaps for the first 

time, a comprehensive overview, a novel feature that deserves special mention is the 

attention given to a frequently forgotten aspect of this period - the bifurcation of 

two alternative systems, Russellian type theory and Zermelian set theory, and their 

subsequent convergence. Along the way we shall review a wide range of topics, 

including aspects of the so-called ‘foundational crisis,’ constructivist alternatives to 

set theory, the main axiomatic systems for set theory, metatheoretical work on them 

(in particular, Godel’s results), and the formation of modern first-order logic in 

interaction with formal systems of set theory. 
One can see that the topics dealt with concentrate gradually from part to part. 

Part One studies the emergence of the set-theoretical approach against the back¬ 

ground of more traditional viewpoints. Without abandoning the question of how the 

language of sets became dominant. Part Two concentrates on abstract set theory, 

and Part Three has an even more restricted focus on the foundations of abstract set 

theory.1 

The reader must have noticed that we shall not just focus on set theory in the 

strictest sense of the word. If by those words the reader understands abstract set 

theory as it is presently studied by authors who are classified as mathematical logi¬ 

cians, he or she should turn to Parts Two and Three.2 Such a conception overlooks 

the question of how the set-theoretical approach to mathematics arose and why it 

came to play a central role in modem mathematics. These questions are certainly of 

much wider interest, and they seem no less important for the historian. Thus I have 

decided not to deal exclusively with (transfinite) set theory, but to pay careful atten¬ 

tion to the set-theoretical approach too, asking questions like the following: How did 

mathematicians arrive at the notion of set? How did they become convinced that it 

offered an adequate basis and language for their discipline? How could a mathema¬ 

tician (like Cantor) convince himself that it is important to develop a theory of sets? 

The whole historical development that we shall analyze is best described as a 

progressive differentiation of subdisciplines within the historical context of research 

programs that originally were unitary. We shall observe that, at first, the notion of 

set was employed in several different domains and ways, with no recognition of 

subdisciplinary boundaries. Gradually, mathematicians recognized differences be¬ 

tween several aspects that originally appeared intertwined in the traditional objects 

of mathematics - metric properties, topological features, algebraic structures, meas¬ 

ure-theoretic properties, and finally abstract set-theoretical aspects. In the process, 
new subdisciplines emerged. 

I realize that, in following this path, I risk the danger of being sharply criticized 

by lovers of neat conceptual distinctions. In general, it is not commendable to proj- 

1 An attempt to treat the development of abstract and descriptive set theory in full until about 

1940 would have required another volume, and of course a long period of preparation. 

2 And complement them with other works, like [Moore 1982], [Kanamori 1996], 
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ect present-day disciplinary boundaries on the past. In this connection, it is interest¬ 

ing to consider the rather negative review that K. O. May wrote [1969] of a book by 

the late Medvedev [1965] on the development of set theory (a book that I have not 

read, since it has never been translated from Russian, but which may be similar to 

the present work in some respects). May argued that, in order to counter the opinion 

that Cantor was the creator of set theory, Medvedev confused abstract set theory 

with the topological theory of point-sets. But Cantor himself did not differentiate the 

theory of point-sets from abstract set theory until as late as 1885, fifteen years after 

he had started to do original work involving sets (see chapter VIII).1 May also criti¬ 

cized Medvedev’s search for 19th-century precedents of the notion of set, like 

Gauss, since they never went beyond an implicit use of actual infinity. This is a 

more serious criticism, yet one may reflect on the fact that Dedekind, who indulged 

in a very explicit use of sets and actual infinity, mentioned Gauss’s work in order to 

justify his viewpoint (see §111.6).2 

One has to say that the theory of sets only becomes mathematically interesting, 

and controversial, with the acceptance of infinite sets. Here one should share May’s 

reservations, and I have decided to establish the acceptance of actual infinity as a 

criterion for ‘serious’ involvement with the notion of set.3 In this connection, one 

should distinguish between the acceptance of the actual infinite and the elaboration 

of a theory of the transfinite. Cantor’s work was very important on both accounts, 

but it was only in the second domain that he struck out on his own. It is commonly 

said that the mathematical tradition rejected the actual infinite, but that position was 

not universal in 19th century Germany (see §1.3). 

Distinctions like the preceeding one are very useful in any attempt to understand 

the development of set theory, and they are important for clarifying my approach 

and preventing misunderstandings. A second distinction, already indicated and inti¬ 

mately related to the first, is that between set theory as an autonomous branch of 

mathematics - as in transfinite set theory or abstract set theory - and set theory as a 

basic tool or language for mathematics: the set-theoretical approach or the language 

of sets. As indicated above, abstract set theory came about after the set-theoretical 

approach began to develop, not the other way around. 

A third important distinction is that between set theory as an approach to or a 

branch of mathematics and set theory as a foundation for mathematics. In our pres¬ 

ent picture of set theory, its three aspects, as a language or approach to mathematics, 

a sophisticated theory, and a (purported) foundation for mathematics, are so inter¬ 

twined that it may seem artificial to distinguish them. Nevertheless, within the con¬ 

text of the early history of sets it is essential to take these distinctions into account. 

1 The mathematical community as a whole began to assimilate the distinction only in the 1900s; 

abstract set theory appears in full clarity with the work of Zermelo in the same decade. 

2 The style of internal references is as follows: ‘§2.1’ indicates section 2.1 within the same 

chapter where the reference is found; ‘§VI.4’ indicates section 4 in chapter VI. 

3 The criterion of actual infinity justifies to some extent the exclusion of Weierstrass (§IV.2); 

also important in this connection are methodological questions (§1.4 and §IV.2). 
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Otherwise it becomes impossible to produce a clear picture of the development, 

which includes a rather complex interaction between the three aspects. The idea that 

sets constitute the foundation of mathematics emerged very early, and Cantor was 

by no means the leading exponent of this view. Its strongest proponent as of 1890 

was Dedekind, but I shall argue that Riemann was also an important voice advocat¬ 

ing this position.' Riemann took a significant step in the direction of introducing the 

language of sets, coupling this with the conception that sets are the basic objects of 

mathematics. There are good reasons to regard his early contribution as a significant 

influence on the early set-theoretical attempts of both Dedekind and Cantor. 

Thus, Parts One and Two deal mostly with a small group of mathematicians - 

above all Riemann, Dedekind and Cantor - whose work was closely interconnected. 

This made it possible to present quite a clear picture of the evolution from some 

initial set-theoretical glimpses, to what we can presently recognize as abstract set 

theory. To judge from May’s review, this may be what Medvedev’s work missed, 

making his research on the immediate precedents of set theory seem irrelevant. 

The notion of set seems to be, to some extent, natural for the human mind. After 

all, we employ common names (like ‘book’ or ‘mathematician’) and one is easily 

led to consider sets of objects as underlying that linguistic practice. For this simple 

reason, it is too easy to find historical precedents for the notion of set, and an incur¬ 

sion into such marshy terrain can easily become arbitrary or irrelevant. It is pre¬ 

cisely to avoid this risk that I have concentrated on contributions which can be 

shown to have been directly linked to the work of the early set theorists. Since all of 

these men were German mathematicians, the first two parts of the book concentrate 

on mathematical work written in the German language. 

In this connection, I would like to warn the reader that a study of the origins of 

the notion of set in Germany is immediately confronted with terminological diffi¬ 

culties. In contrast to Romance languages and English, where there were rather clear 

candidates for denoting the concept (ensemble, insieme, conjunto, set), the German 

language did not suggest a best choice. To give an example, both Dedekind and 

Cantor accepted that ‘ensemble’ was an ideal translation into French,2 but they used 

different German terms. Dedekind chose the word ‘System,’ Cantor changed his 

choice several times, but mostly used the words ‘Mannigfaltigkeit’ and ‘Menge.’1 In 

the early period, each mathematician made his own selection, and one must care¬ 

fully establish whether they were talking about sets, as commonly understood, or 

something else. The terminological question becomes particularly critical in the case 

of Riemann - the whole issue of his role in the early history of sets depends on how 

we interpret his notion of ‘Mannigfaltigkeit’ (see chapter II). I have decided to 

translate the relevant terms rigidly throughout the text, but it is important that the 

reader keep the problem of terminological ambiguity in mind. The mere fact that 

one finds the word ‘Menge’ [set] in a text does not in itself mean that the author is 

employing the right notion. And the mere fact that an author uses another word does 

1 See chapter II and also [Ferreiras 1996]. 

2 See Dedekind [1877] and Cantor’s 1885 paper in [Grattan-Guinness 1970]. 
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not mean that he is not employing the notion of set.1 

To end this section, I would like to comment on the opinion of some historians 

who have emphasized the difference between early notions resembling that of set 

(e.g., in Bolzano or in Riemann) and the modern notion, which has commonly been 

attributed to Cantor.2 As a result of taking sets to be determined by concepts, Rie¬ 

mann and Bolzano regard them as endowed with an antecedently given structure. 

Today one considers an abstract set and then freely imposes structures on it. This 

contrast might be turned into an argument against the thesis that any of these 19th 

century authors were important in the development of set theory. My answer is that, 

if such a criterion were rigidly applied, even Cantor’s work would not belong to the 

history of set theory. All earlier authors, including Cantor and Dedekind, started 

with conceptions akin to those of Riemann and Bolzano, and it was only gradually 

that they (eventually) arrived at an abstract approach. They began with the concrete, 

complex objects of 19th-century mathematics, and in the course of their work they 

realized the possibility of distinguishing several different kinds of features or prop¬ 

erties (that we would label as metric, or topological, or algebraic, or abstract prop¬ 

erties). The abstract, extensional notion of set developed gradually out of the older 

idea of concept-extension (see §11.2). Therefore, it is historically inadequate to con¬ 

trast a ‘concrete’ with an abstract approach as exclusive alternatives; rather they 

should be regarded as initial and final stage in a complex historical process.3 

2. General Historiographical Remarks 

Many of the recent historical works dealing with the emergence of set theory are of 

a biographical character. Certainly, the biographical approach to history has its 

strengths, but it also has weaknesses. It becomes quite difficult to avoid a certain 

partiality as an effect of excessive concentration on a single author, or simply due to 

empathic identification.4 From what precedes, it should be clear that the present 

writer has made an option for a less narrowly focused historical treatment - a col¬ 

lective approach. It is almost self-evident that great scientific contributions are col¬ 

lective work, and the emergence of set theory and the set-theoretical approach to 

mathematics is no exception. 
In Parts One and Two, the work of a small group of authors is studied through a 

‘micro’ approach, and the peculiarities of their orientation are analyzed by compari¬ 

son with competing schools or approaches. As much attention is paid to informal 

1 There were many more linguistic variants: ‘Klasse,’ ‘Inbegriff,’ ‘Gebiet,’ ‘Complex,’ ‘Viel- 

heit,’ ‘Gesamtheit,’ ‘Schaar,’ and so on. We shall encounter them along the way. 

2 See, for example, [Scholz 1990a, 2] and [Spalt 1990, 192-93]. 

3 It is quite obvious that, in general, the process of invention/discovery will go from the familiar 

and concrete to the abstract. 

4 This danger is present, for instance, in the most comprehensive historical account of Cantor’s 

life and work [Dauben 1979]. It is instructive to compare the partially overlapping contributions of 

Dauben and Hawkins to [Grattan-Guinness 1980], 
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communication (personal contacts, correspondence) as publications. Questions of 

influence thus become central, although I admit that a study of such questions must 

enter into the domain of the hypothetical much more than a more classical study of 

published work. Hopefully the reader will acknowledge the value of an inquiry of 

this kind. 
I have already mentioned that the reader will notice a gradual narrowing of the 

conceptual issues treated as the narrative develops from the emergence of the set- 

theoretical approach (Part One) to the foundations of abstract set theory (Part 

Three). This step-by-step concentration goes in counterpoint with a progressive 

widening of the group of actors. Set theory began as the brainchild of just a few 

original thinkers, and it gradually became a community enterprise; as a natural side- 

effect, the amount of work that the historian has to cover increases exponentially. 

The early history of set theory can only be adequately written when one aban¬ 

dons present disciplinary boundaries and makes at least some attempts to consider 

cross-disciplinary interactions. One has to pay attention to ideas and results pro¬ 

posed in several different branches of mathematics, if only because mathematicians 

of the late 19th century were by no means as narrowly specialized as they tend to be 

today.1 It must be taken into account that clear boundaries between various branches 

of mathematics were not yet institutionalized before 1900. The careers of the figures 

that we shall study are clear examples that specialization was only beginning, and that 

19th century mathematicians enjoyed a great freedom to move from branch to branch. 

But even granting these premises, there are still different ways to approach the 

history of mathematics. As I see it, my own approach tends to concentrate on the 

development of mathematical knowledge - the processes of invention/discovery, the 

evolution of views held by mathematicians (both single individuals and communi¬ 

ties), the research programs that the historical actors tried to advance, the schools 

and traditions that influenced their work. In this connection, it is convenient to clar¬ 

ify a few general historiographical notions that will be used in the sequel. 

Already in the 19th-century it was common to speak of scientific and mathe¬ 

matical ‘schools,’ although the meaning of the term differed somewhat from present 

usage in the history of science. Frequently the term carried a pejorative connotation, 

suggesting a one-sided orientation with excessive attention to some specialty, as 

happened when some authors referred to the Berlin school. Here we shall employ 

the word school exclusively in the customary sense of recent historiography, which 

started over two decades ago with a well-known paper of J. B. Morrell.2 In the pres¬ 

ent context, a research school is a group led normally by only one mathematician, 

localized within a single institutional setting, and counting on a significant supply of 

advanced students. As a result of continuous social interaction and intellectual col- 

1 The danger of excessive concentration on a single discipline is present in the excellent collec¬ 

tion [Grattan-Guinness 1980], the multi-disciplinary approach can be found, e.g., in [Moore 1982], 

which is also the best example of collective historiography in connection to our topic. 

2 On the historiographical issue see the recent overview [Servos 1993], on the example of Berlin 

[Rowe 1989], 
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laboration, members of a school come to share conceptual viewpoints and research 

orientations: philosophical or methodological ideas concerning how to do their 

research, heuristic views regarding what problems are worth being pursued, which 

paths are dead-ends, and so on. Research schools are not governed by written regu¬ 

lations, they emerge spontaneously as an implicit reciprocal agreement between 

professor and students “to form a symbiotic learning and working environment 

based on the research interests of the professor” [Rowe 1998], Schools are natural 

units within larger institutions, such as universities and faculties. Their great impor¬ 

tance comes from the fact that they seem to constitute the crucial link between the 

social and the cognitive vectors of mathematical (or scientific) work and research. 

One can mention several prominent examples of mathematical schools in 19th- 

century Germany, like Jacobi’s Konigsberg school, the school of Clebsch, and 

Klein’s Leipzig school, but the most famous one is the so-called Berlin school. 

Some characteristics of this famous school will be studied in chapter I and con¬ 

trasted with the views held by a group of mathematicians associated with mid¬ 

century Gottingen. Although I shall keep the traditional denomination ‘Berlin 

school,’ at this point I would like to mention a related issue that has been raised 

recently. David Rowe has suggested that one should differentiate schools from cen¬ 

ters, linking the first exclusively with the name of their (single) leaders. According 

to this, we should speak of the Weierstrass school, not the Berlin school.1 Certainly, 

in the 1880s Weierstrass and Kronecker entertained deep differences, so one should 

distinguish two schools at that time. But it is still open whether the kind of collabo¬ 

ration established by the Berlin mathematicians (above all Kummer and Weier¬ 

strass) in the 1860s and 1870s warrants talk of a single school. Here, I must leave 

the problem open. 
In chapter I we shall speak of a Gottingen ‘group’ formed by Dirichlet, Riemann 

and Dedekind, which is not called a school because, though in many respects it had 

similar characteristics, it lacked a noteworthy output of researchers (probably be¬ 

cause its temporal duration was very short). In other cases, I shall rename as a tra¬ 

dition what 19th-century authors called a ‘school,’ for instance the ‘combinatorial 

tradition.’2 Talk of a tradition implies that one can find a common research orienta¬ 

tion in different actors that do not share a common institutional site, but are linked 

by traceable influences on each other. One should find a significant amount of 

shared conceptual elements that may have to do with preference for some basic 

mathematical notions, judgements concerning significant problems to be studied, 

methodological views affecting the approach to mathematics, and the like.3 

1 See [Rowe, forthcoming]. An extreme view of schools as linked with single personalities was 

given by Hilbert in a 1922 address published by Rowe as an appendix. 

2 Another example would be the synthetic and analytic ‘traditions’ in geometry (formerly called 

‘schools’). 

3 In the case of Gottingen, I could also have talked of a Gottingen tradition, since one can make 

the case of common methodological orientations, of an essentially abstract and modernizing kind, 

in a whole series of actors related to that center, from Gauss to Hilbert and Noether. 
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On the other hand, as I have used the term above, a ‘research program’ concerns 

a single individual’s research projects, expectations, and preferences. Thus, I depart 

from the meaning given to the term by Lakatos [1970], which seems harmless for at 

least two reasons. Lakatos’s term has never been frequently used, in his sense, by 

historians of science, and the term is employed here only rarely. Which is not to say 

that I have not tried to analyze carefully the research programs (in the specified 

sense) of men like Riemann, Dedekind, Cantor, Zermelo, Russell, and so on. Of 

course, the projects of an individual are deeply influenced by the mathematical 

situation in which he or she has become a mathematician, that is, by affiliation with 

a school or the influence of traditions. To give an example, I shall try to show that 

Cantor deviated from the orientation of the Berlin school due, in good measure, to 

the influence of the Gottingen tradition, i.e., the orientations embodied in the writ¬ 

ings of members of the Gottingen group. 
There are other historiographical terms that can be found more or less fre¬ 

quently, but which I shall not employ. It may be useful, however, to mention a cou¬ 

ple of them in order to clarify the notions above. ‘Invisible colleges’ are groups of 

members of a single community or discipline, joined together by formal links (e.g., 

co-citation) and informal communication. One should reflect that normally we find 

members of different, and even opposing, research schools in a single invisible 

college (e.g., Riemann and Weierstrass, or Dedekind and Kronecker). It has been 

suggested that one might focus on a specific kind of invisible college, the ‘corre¬ 

spondence network,’ that would be particularly important in the case of mathematics 

[Kushner 1993]. Most of the actors studied here were, in fact, linked to each other 

through several correspondence networks, and it may be useful to read the following 

pages with that in mind. But the notion in question will not be explicitly used. 

I stated above that my approach stresses the development of mathematical 

knowledge - how it was obtained, refined, and generally adopted. It is my hope that, 

by paying attention to these issues, it will become possible to unearth the multiple 

connections between set theory and the broader context of modern mathematics. Set 

theory emerged as part of an evolving new picture of the discipline, incorporating a 

more conceptual and decidedly abstract approach to traditional problems. It has 

been one of my goals to afford an understanding of the novelties of that approach 

and the opposition and difficulties it had to face. In this way I also hope to contrib¬ 

ute to a richer understanding of the ‘classical’ world of 19th century mathematics. 

Standard historiography, with its tendency to project present-day conceptions (and 

myths), has frequently acted as a barrier cutting off a satisfactory interpretation both 
of the past and of the road to our present. 

Another key goal has been to delineate the conceptual shifts affecting disciplines 

and notions that are frequently taken for granted - e.g., the very notion of logic and 

the relations between logic and set theory. Such conceptual changes become a fasci¬ 

nating topic and stimulate reflection on the basic ideas that we are familiar with, 

calling attention to alternative possibilities for theoretical development. I believe the 

work may turn out interesting for the working mathematician in this particular way. 
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In writing the present book I have worked as a historian of mathematics, but I 

would like to mention that, by training, my background is in logic and history & 

philosophy of science. That may still be visible in the particular orientation I have 

given to the selection of material, and in the approach that I have preferred to take. 

For this reason the volume should be of interest to philosophers of mathematics, 

who will find detailed case studies that offer much valuable material for philosophi¬ 
cal reflection. 

This work is a fully revised and expanded edition of a book originally published 

in Spanish, El nacimiento de la teoria de conjuntos [Ferreiras 1993a], which in turn 

was an outgrowth of my doctoral dissertation, presented two years earlier. Improved 

versions of part of the material, contained in the papers [Ferreiras 1993; 1995; 

1996], have been incoiporated into the new edition. I thank Historia Mathematica 

and the Archive for History of Exact Sciences for their permission to include that 

material. 

The initial impulse came through Javier Ordonez (Madrid), who introduced me 

to the history of science and directed my doctoral work; above everything else, I 

wish to thank hisconstant support and friendship. During a fruitful stay at the Uni¬ 

versity of California at Berkeley, and later, I’ve had the opportunity to discuss di¬ 

verse aspects of the history of set theory with Gregory H. Moore (Hamilton, On¬ 

tario). For many years I have also profited from interaction with a leading expert on 

Dedekind, Ralf Haubrich (Gottingen); he helped me in the most diverse ways during 

the production of this book. David E. Rowe (Mainz) has been kind enough to revise 

the present edition and give his expert advice on many issues, big and small. Even 

though he and others have helped me correct the English, I fear the final version 

will still show too clearly that the author is not a native speaker. I can only ask the 

reader for indulgence. 

Several other people have been helpful at different stages in the preparation of 

this volume: Leo Alonso (Santiago de Compostela), Leo Corry (Tel-Aviv), John W. 

Dawson, Jr. and Cheryl A. Dawson (Pennsylvania), Antonio Duran (Sevilla), Solo¬ 

mon Feferman (Stanford), Alejandro Garciadiego (Mexico), Ivor Grattan-Guinness 

(Bengeo, Herts), Jeremy Gray (Milton Keynes), Hans Niels Jahnke (Bielefeld), 

Ignacio Jane (Barcelona), Detlef Laugwitz (Darmstadt), Herbert Mehrtens (Berlin), 

Volker Peckhaus (Erlangen), Jose F. Ruiz (Madrid), Erhard Scholz (Wuppertal). 

Thanks are also due to the Niedersachsische Staats- und Universitatsbibliothek Got¬ 

tingen, and particularly to Helmut Rohlfing, director of its Handschriftenabteilung, 

for their permission to quote some unpublished material and reproduce an illustra¬ 

tion. Another illustration comes from the Bancroft Library, University of California 

at Berkeley. 
And finally, how could I forget Dolores and Ines, who provided personal sup¬ 

port and also frequent distraction from the work! 

Sevilla, July 1999 Jose Ferreiros 





Part One: The Emergence of Sets within 
Mathematics 

Before coming to constitute the subject of a particular branch of mathematics, the 

notion of set emerged as a useful tool for the study of diverse problems in function 

theory, analysis, algebra, and even geometry. Thus, around 1870 one can see the 

notion employed in a number of different contributions published by German 

authors. It is the purpose of Part One to discuss carefully those contributions, how 

they began to configure a set-theoretical approach to mathematics, and the way they 

linked with the later development of abstract set theory. 

Disregarding glimpses that may be found in the work of earlier authors (Gauss, 

Dirichlet, Steiner), the first systematic and influential proposal of the notion of set 

as basic for mathematics can be found in Riemann (chap. II). In connection with his 

function-theoretic work and his deep analysis of geometrical notions, Riemann 

proposed the notion of manifold - which, for him, meant something akin to class or 

set - as the basis of pure mathematics. One can find evidence that his proposals had 

a notable impact on the work of Cantor and Dedekind. 

Riemann’s friend, Dedekind, elaborated a set-theoretical approach to algebra 

and number theory in his study of factorization in algebraic numbers, the ideal 

theory of 1871 (chap. III). One year later, three different definitions of the real 

numbers became known, all of them relying more or less consciously on the notion 

of set. Thus, with Weierstrass, Dedekind, and Cantor the problem of the founda¬ 

tions of arithmetic merged into the set-theoretical stream (chap. IV). At the same 

time, stimulated by Riemann the theory of point-sets began to appear in connection 

with the study of discontinuous functions in real analysis. This was quite an active 

focus of research, which in the 1870s saw contributions by Heine, Hankel, du Bois- 

Reymond, Smith, Dini, and notably Cantor (chap. V). 

More striking still - all this happens around 1868-72, while Cantor opened the 

realm of transfimte set theory with a surprising discovery made in December 1873. 

It is likely that, as a perceptive observer, Cantor was able to realize the great possi¬ 

bilities inherent in the notion of set judging from the role it was beginning to play 

in advanced contemporary work. This helps to explain how the project of an 

autonomous theory of sets came into being. It also makes clear that the set- 

theoretical orientation of mathematics was chronologically prior to the development 

of abstract set theory. 
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Figure 1. Gustav Lejeune Dirichlet (1805-1859) 



Institutional and Intellectual Contexts in 
German Mathematics, 1800-1870 

I 

It is a common characteristic of the various attempts to integrate the 

totality of mathematics into a coherent whole - whether we think of 

Plato, of Descartes, or of Leibniz, of arithmetization, or of the logicists 

of the nineteenth-century - that they have all been made in connection 

with a philosophical system, more or less wide in scope; always starting 

from a priori views concerning the relations of mathematics with the 

twofold universe of the external world and the world of thought.1 

In order to understand the growth of mathematical knowledge it is 

sometimes important to identify and consider the role played by schools 

of mathematical thought. Such a school usually possesses an underlying 

philosophy by which I mean a set of attitudes towards mathematics. The 

members of a school tend to share common views on what kinds of 

mathematics is worth pursuing or, more generally, on the manner in 

which, or the spirit in which, one should investigate mathematical prob¬ 

lems.2 

As will become clear in the body of the present work, a certain trend within 19th- 

century German mathematics, the so-called conceptual approach, seems to have 

been strongly associated with the rise of set theory. Therefore, it seems convenient 

to start by analyzing two different ‘mathematical styles,’ those that reigned in Got¬ 

tingen and Berlin immediately after 1855. Such will be the topic of §§4 and 5. The 

reason for that particular selection of institutions is simple: the main figures in the 

first two parts of the book are Rientann, Dedekind and Cantor. Riemann and Dede¬ 

kind studied at Gottingen, where they began their teaching career, while Cantor 

took his mathematical training from Berlin. It will turn out that the conceptual 

approach was present at both universities, but in different varieties, that we will 

identify as an abstract and a formal variety. The abstract conceptual approach that 

could be found at Gottingen promoted the set-theoretical orientation strongly. 

1 Nicolas Bourbaki [1950, §1], 

2 Hawkins [1981,234], 
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In order to better understand what the conceptual viewpoint meant, it is neces¬ 

sary to overview, however briefly, a number of trends in the foundations of mathe¬ 

matics that were influential in Germany during the first half of the century. As we 

have seen, an important part of the rise of set theory was the emergence of new 

language that expressed a novel understanding of mathematical objects - the lan¬ 

guage of sets and the idea that sets constitute the foundation of mathematics. This 

raised some questions that had already been discussed by the Greeks: what kind of 

existence do mathematical objects have, what methods are admissible in mathema¬ 

tics, and the famous issue of the actual infinite. These were philosophical questions, 

that the German mathematicians understood as such.1 In fact, those questions are 

not the exclusive domain of mathematics, and there is some evidence that the wider 

intellectual and philosophical atmosphere in Germany had some impact upon the 

mathematical discussion. Our discussion of these topics in §§1 to 3 will not aim to 

be complete, but just to clarify and make plausible this last thesis. We will observe 

that there has been some misunderstanding concerning such matters, and particu¬ 

larly the question of the infinite, since the actual infinite was not rejected by all 

German mathematicians as of 1800 or 1850. 

1. Mathematics at the Reformed German Universities 

The German scientific community seems to have been somewhat peculiar, within 

the context of the international panorama in the nineteenth-century. One has the 

impression that a certain intellectual atmosphere marked or conditioned German 

approaches to the sciences, including mathematics.2 That can be better understood 

by taking into account the institutional context of mathematical research, which 

emerged from the educational reform that was undertaken after the Napoleonic 

invasion. Such research as we will analyze throughout this book was clearly placed 

within the university context, but the 19th-century German universities were the 

result of a complex and radical transformation that began some time around 1810 

(see [McClelland 1980]). 

The traumatic Napoleonic invasion had the effect of making clear the need for 

important transformations in order to elevate the political, economical, military, and 

scientific situation in Germany to the level of France. To some extent, the Germans 

1 Riemann [1854, 255] regarded his discussion of the notion of manifold as “philosophical,” 
just like Kronecker [1887, 251] his analysis of number. Cantor [1883] entered into the philo¬ 
sophical arena in order to justify his introduction of transfinite numbers, while Dedekind [1888, 
336] felt the need to make clear that his “logical” analysis of number did not pressupose any 
particular “philosophical or mathematical” knowledge. 

2 As is well known, the meaning of the German word Wissenschaft is different from that of its 
English counterpart ‘science:’ it refers to any academic discipline, including history, philosophy, 
etc. When I write about the sciences, I mean the Naturwissenschaften - physics, chemistry, 
biology, etc. It is important to observe that mathematics was sometimes treated as being closer to 
the humanities in early 19th-century Germany. 
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explained the defeat to themselves by pointing to the high level of scientific educa¬ 

tion enjoyed by the French officers. That high level was a consequence of the edu¬ 

cational reform undertaken in France after the Revolution, particularly the creation 

of the Parisian Ecole Polytechnique in 1794. Here, a higher scientific education, 

including the calculus, was for the first time regularly available to students. The 

German states undertook parallel refonns, but some of them, especially in Prussia, 

did not simply copy the French model. On the contrary, they tried to forge their 

own peculiar model.1 While in France the universities had been abolished as an 

outmoded medieval institution, in Germany there were some precedents for a re¬ 

formed university, adapted to the cultural standards of the Enlightment, as was the 

case for Gottingen University in Hannover [McClelland 1980], 

The reforming impulse which came out of the Napoleonic era merged in a natu¬ 

ral way with the educational aspirations of the German Enlightment. In the second 

half of the eighteenth-century, this had given rise to so-called neohumanism, a 

movement that reacted against rationalistic viewpoints, aspiring to an integral for¬ 

mation [Bildung] of the individual, a kind of broad, harmonic education not guided 

by utilitarian aims. Such ideals were strongly fostered by historians and philologists 

like F. A. Wolf at the Prussian University in Halle, who is regarded as founder of 

the new ‘scientific’ philology and of the university seminar. Wolf devoted his ef¬ 

forts to turning history and philology, what he called the “science of antiquity” 

[Altertumswissenschaft], into a true “system,” to “unify it into an organic whole 

and elevate it to the dignity of a well-ordered ... science.”2 This was not done sim¬ 

ply for professional or academic reasons, but embodied a characteristic educational 

ideal. As Goethe said to Eckermann in 1827, 

A noble man in whose soul God has put the capacity for future greatness of character and 

high intellect will develop most splendidly through the acquaintance and the intimate inter¬ 

course with the lofty characters of Greek and Roman antiquity.3 

Neohumanist professors went beyond the traditional role of a university teacher, 

namely the transmission of well-established knowledge, to its expansion by means 

of criticism and research. Through the institution of the seminar, selected groups of 

students were taught how to do research by themselves, and research came to be 

seen as an indispensable ingredient of teaching. One further important aspect of this 

movement was its association with the late eighteenth-century struggle of the Wis- 

senschaften (philosophy, history, philology, mathematics, etc.) for a recognition of 

1 Prussian university reform was undertaken during French occupacion, and there was a con¬ 
scious attempt to establish clear counterparts of French cultural orientations: the university would 
be an exponent of Gentian Kultur as opposed to French civilisation, and in particular the notion 
of Bildung is opposed to a more utilitarian Ausbildung [formation or instruction]. See [Ringer 

1969], 

2 Quoted in [Paulsen 1896/97, vol. 2, 209]: “zu einenr organischen Ganzen zu vereinigen und zu 
der Wiirde einer wohlgeordneten philosophisch-historischen Wissenschaft emporzuheben.” 

3 As translated in [Jungnickel & McCormmach 1986, 4], 
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equality with, or even superiority over, law, medicine and theology - the traditional 

‘higher’ university faculties. 
The German reform of higher education is normally traced back to the founding 

of Berlin university in 1810. The Philosophical Faculty, housing the sciences, was 

given the task of preparing Gymnasium (secondary-school) professors, who were 

required by the Prussian state to pass an examination where their knowledge of 

philology, history and mathematics would be tested. Thus, the Philosophical Fac¬ 

ulty was established as an equal to the professional faculties, where mathematics 

found a sounder institutional frame.1 2 One should pause to consider what adaptation 

to the milieu of the Philosophical Faculty may have meant. Far from being mere 

practitioners, as frequently happened in the past, the mathematicians now became 

part of a small elite of university professors, and precisely within the context of the 

humanities, where the ideals of “living the sciences” (W. von Humboldt) and pure 

knowledge were strong. The implications of this move had been beautifully ex¬ 

pressed by Schiller in a short poem that was well known at the time, Archimedes 

and the Apprentice: 

To Archimedes came an eager-to-leam youngster; 

Initiate me, he said to him, into the divine art, 

That such magnificent fruits gave the Fatherland, 

And the city walls protected from the sambuca. 

Divine you call the art! She is, the sage replied, 

But so she was, my son, before she served the State. 

If you want fruits, those a mortal can also beget, 

He who woos the Goddess, seek in her not the maid? 

This cultural orientation helps to explain the 19th-century tendency toward pure 

mathematics, which was particularly noticeable in Germany.3 

By the early century, the Philosophical Faculty was dominated by history, phi¬ 

lology and philosophy, then living its golden age in Germany. The sciences did not 

enjoy strong support, a situation that was badly felt by physicists (see [Jungnickel 

& McCormmach 1986]). Mathematics was in a better situation, since it was re¬ 

garded as central for educational purposes, given its assumed relation with the 

training of logical and reasoning abilities. But, even so, the mathematics curriculum 

1 The import of such institutional changes for mathematical research has been carefully studied 
by Schubring [1983], 

2 Schiller, Die Horen (1795), in [Schiller 1980, 280]: “Archimedes und der Schuler./ Zu Ar¬ 
chimedes kam ein wissbegieriger Jiingling;/ Weyhe mich, sprach er zu ihm, ein in die gottliche 
Kunst,/ Die so herrliche Fruchte dem Vaterlande getragen,/ Und die Mauem der Stadt vor der 
Sambuca beschiitzt./ Gottlieb nennst du die Kunst! Sie ist’s, versetzte der Weise,/ Aber das war 
sie, mein Sohn, eh sie dem Staat noch gedient./ Willst du nur Fruchte, die kann auch eine Sterbli- 
che zeugen,/ Wer urn die Gottin freyt, suche in ihr nicht das Weib.” Quoted in [Hoffmann, vol. 5, 
624], Jacobi wrote a parody of this poem, that is quoted in [Kronecker 1887, 252], The ‘sam¬ 
buca’ was a war machine used by the Romans against Syracuse, Archimedes’ fatherland. 

3 Compare [Scharlau 1981]. I hardly need to make explicit that I am not making a case for a 
reductionistic explanation: the contextual factor will probably be only one among several others. 
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was elementary and rarely included the calculus [op.cit., 6-7], It was only gradu¬ 

ally that university professors raised their standards, partly in response to the 

French model, partly in imitation of the philologists, and partly as a result of the 

better mathematical level of students coming out of the reformed Gymnasia. The 

teaching of research topics started in the late 1820s, particularly with the courses 

and seminars offered by Jacobi at Konigsberg and, somewhat later, by Dirichlet at 

Berlin, both Prussian universities. 

From about 1830 there were periods of tension between the interests of the 

scientists and those of the humanists, that can be followed up to the early twentieth- 

century (see [Pyenson 1983]). But, even so, the context of the Philosophical Fac¬ 

ulty, and the neohumanist ideal of Bildung, promoted an atmosphere in which the 

‘two cultures’ were not separated. Throughout the century, we find scientists inter¬ 

ested in philosophy and philosophers interested in the sciences. In fact, the unity 

between philosophy and the sciences was repeatedly promulgated, for instance by 

the idealist philosopher Schelling, who originated the tradition of Naturphilosophie. 

Much has been written about the influence of this movement on German science, 

but here I would like to warn against simplifying assumptions. Many historians 

tend to identify neohumanism with idealism, and this with philosophy generally. 

But philosophy in Germany was not, by any means, identical with idealism, and 

many neohumanists opposed the Romantic trends, including idealistic philosophy. 

For instance, the above-mentioned Wolf was much closer to Kant than to the ideal¬ 

ists in philosophical matters [Paulsen 1896/97, vol. 2, 212-214]. Among philoso¬ 

phers, early 19th-century followers of Kant who remained close to the sciences and 

opposed the idealism of Schelling and Hegel included Fries and Herbart, whom 

Riemann regarded as his master in philosophy.1 

Thus, rather than paying attention to peculiarities of the idealists, it would be 

more useful to analyze the ideas they shared even with their detractors, since these 

marked the development of German science after the anti-idealist reaction of the 

1830s and 40s. It is my contention that much of the special ways of German scien¬ 

tists can be explained by their adaptation to the context of the Philosophical Fac¬ 

ulty, and by the fluid intellectual contact they established with the philosophers. 

Among the particular orientations that were promoted in the process are the prefer¬ 

ence for a strictly theoretical orientation, the concentration on narrowly defined 

specialties or branches of mathematics, and in many cases a close attention to the 

philosophical presuppositions of the advocated theories.2 The main authors studied 

in the present work afford good examples of such traits, and their philosophical 

preferences will be analyzed briefly (see especially §§II. 1 —2, VII.5, VIII. 1-2 and 

8). 

From the 1820s, there was a clear scientific renaissance in Germany [Klein 

1926, vol. 1, 17]. Peculiar idiosyncratic approaches began to be abandoned, and 

1 On Hegel, Fries, Herbart and mathematics, see [Konig 1990]. 

2 This had negative effects insofar as it implied lack of attention to applied topics and to inter¬ 
connections between branches, etc. See [Rowe 1989], where the fight against some implications 
of neohumanism around 1900 is discussed; see especially [186-87, 190], 
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closer attention was paid to foreign ideas. A professional scientific community 

began to emerge and fight for new standards in higher education. In 1822 the 

Naturphilosoph Lorenz Oken founded the Gesellschaft Deutscher Naturforscher 

und Arzte [German Association of Natural Scientists and Physicians], which from 

the 1828 meeting at Berlin would become dominated by scientists opposed to the 

ideas of Naturphilosophie. This move was related to the influence of Alexander von 

Humboldt, the famous traveler and naturalist, of neohumanist allegiances, who 

played an important role in promoting the sciences in his position as a court coun¬ 

selor in Prussia. In connection with mathematics, another important event was the 

founding in 1826 of the Journal fur die reine und angewandte Mathematik [Journal 

for pure and applied mathematics], directed by the engineer and high-level civil 

servant A. L. Crelle, who had always been keenly interested in mathematical re¬ 

search. Thanks to the availability of original material by such men as Abel, Jacobi, 

Dirichlet, and Steiner, Crelle’s undertaking was a great success, and acted as a 

binding agent for the emerging community of mathematicians.1 

The careers and ideas of Jacobi, Kummer and others might be used in order to 

show the impact neohumanism and philosophy had upon German mathematicians.2 

In discussing the role of Jacobi in the German scientific renaissance and the estab¬ 

lishment of the first important research school in mathematics, the Konigsberg 

school, Klein writes: 

If we now ask about the spirit that characterizes this whole development, we can in short 

say: it is a scientifically-oriented neohumanism, which regards as its aim the inexorably strict 

cultivation of pure science, and in search of that aim establishes a specialized higher culture, 

with a splendor never seen before, through a concentrated effort of all its powers.3 

The cases of Grassmann, Riemann and Cantor underscore the freedom and new 

possibilities of thought that the fluid exchange of ideas between philosophers and 

mathematicians could sometimes promote. But, of course, any institutional ar¬ 

rangement has its pros and cons. Dirichlet’s career reminds us of the negative ef¬ 

fects that neohumanist standards sometimes had; it will also serve to clarify several 

aspects of the situation in Germany at the time.4 

1 One should indicate, as David Rowe has urged me to do, that the emergence of a mathemati¬ 
cal community was not easy, due to the dispersion of professors, their adscription to different 
universities (with remnants of a guild mentality) and states, etc. The Deutsche Mathematiker 

Vereinigung was not easy to launch even in 1890. 

2 See [Jahnke 1991], and on Kummer [Bekenreier 1987, 196-203]. 

3 [Klein 1926, vol. 1, 114]: “Fragen wir nun nach dem Geist, der diese ganze Entwicklung 
tragt, so konnen wir kurz sagen: es ist der naturwissenschaftlich gerichtete Neuhumanismus, der 
in der unerbittlich strengen Pflege der reinen Wissenschaft sein Ziel sieht und durch einseitige 
Anspannung aller Krafte auf dies Ziel hin eine spezialfachliche Hochkultur von zuvor nicht 
gekannter Bliite erreicht.” 

4 No full biography of Dirichlet has yet been written, the best is still Kummer’s obituary (in 
[Dirichlet 1897, 311^44]). Important archival material can be found in [Biermann 1959], 
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In 1822, Gustav Lejeune Dirichlet, son of the town postmaster at Diiren, made 

the wise decision to take advantage from his family’s connections and study 

mathematics at Paris, not at any Gennan university. There he attended free lectures 

at the College de France and the Faculte des Sciences, and subsequently he became 

a key figure in the transmission of the French tradition of analysis and mathemati¬ 

cal physics to Germany. Early success with a paper on indeterminate equations of 

degree five, sent to the Academie des Sciences in 1825 and printed in the Recueil 

des Memoires des Savans etrangers,1 made him known in Parisian scientific circles. 

Dirichlet entered the circle around Fourier, then “secretaire perpetuel” of the 

Academie, and established contact with A. von Humboldt, who would promote his 

career in Prussia. Thanks to the support of Humboldt, Dirichlet was awarded an 

honorary Ph.D. from Bonn University in 1827, became Privatdozent at Breslau 

against faculty opposition, and was named extraordinary professor in 1828. Hum¬ 

boldt was again instrumental in bringing his young friend to Berlin, where he was 

forming plans for the creation of an important scientific center in imitation of the 

Ecole Polytechnique. Dirichlet became teacher of mathematics at the military acad¬ 

emy, shortly thereafter Privatdozent at the University, and in 1831 he was ap¬ 

pointed extraordinary professor. His brilliant career continued with further papers 

on number theory, and with a famous 1829 article on the convergence of Fourier 

series (see chap. V). In 1832, when only twenty seven, he became a member of the 

Berlin Academy of Sciences, and in 1839 he was promoted to an ordinary profes¬ 

sorship. 

But such a quick career had not conformed to all the rules then in force, and 

Dirichlet subsequently faced some difficulties. Since he had not studied at a Ger¬ 

man university, nor even completed his education at the Gymnasium [Schubring 

1984, 56-57], Dirichlet lacked some of the knowledge required by neohumanist 

curricula. Although it had been possible to avoid most of the consequences by 

means of an expeditious honoris causa, he had not satisfied a formality on the oc¬ 

casion of his qualification [Habilitation] as a Privatdozent at Breslau. Aspirants 

were required to submit a second thesis, written in Latin, and to defend it in an 

open discussion [Disputation] with faculty members, also to be conducted in Latin.1 2 

Dirichlet did not master the spoken language and was relieved from the Disputa¬ 

tion, but this had the effect that in 1839 the Berlin Faculty would not grant him full 

rights as a professor until he complied with that formality. That only happened in 

1851; in the meantime, Berlin’s most influential mathematics professor could not 

take part, as a voting member, in Ph.D. and Habilitation proceedings.3 

Dirichlet did not create a school in the strict sense, but among those who were 

his students and felt strongly influenced by him we find such important names as 

Heine, Eisenstein, Kronecker, Christoffel, Lipschitz, Riemann and Dedekind. His 

1 Legendre, who acted as a reviewer of the paper, was able to use Dirichlet’s results for a 

proof of Fermat’s Last Theorem for the exponent 5. 

2 This feature of the Habilitation varied from place to place, but was similar in Breslau and 

Berlin. 

3 On this issue, see [Biermann 1959, 21-29]. 
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contributions to number theory, following and making available Gauss s work, on 

Fourier analysis, multiple integrals, potential theory and mathematical physics, 

were all of fundamental importance. Moreover, in all of these fields he carried 

further the rigorization of mathematics. A famous passage in a letter from Jacobi to 

Humboldt says that it is only Dirichlet, not Gauss, Cauchy or Jacobi, who knows 

“what a completely rigorous mathematical proof is.” Jacobi goes on to mention the 

other specialty of Dirichlet, analytic number theory, and writes that he “has chosen 

to devote himself mainly to those subjects which offer the greatest difficulties.”1 

According to Eisenstein, Gauss, Jacobi and Dirichlet started a new style of argu¬ 

ment in mathematics, which avoids “long and involved calculation and deductions” 

in favor of the following “brilliant expedient:” “it comprehends a whole area [of 

mathematical truths] in a single main idea, and in one stroke presents the final re¬ 

sult with utmost elegance,” in such a way that “one can see the true nature of the 

whole theory, the essential inner machinery and wheel-work.”2 This has frequently 

been called the conceptual approach to mathematics, and will be of our concern in 

§§4 and 5. Some aspects of Dirichlet’s work, that are of consequence for the pres¬ 

ent study, will be mentioned in the following chapters. 

2. Traditional and 'Modern' Foundational Viewpoints 

There have always been many possible approaches to the philosophical problems 

raised by mathematics - empiricism, Platonic realism, intellectualism, intuitionism, 

formalism, and many other intermediate possibilities. From what we have seen, one 

may expect to find, among 19th-century German mathematicians, an influence of 

philosophical ideas and a greater speculative tendency than among their foreign 

colleagues. Interesting early examples that will not be discussed in detail here are 

those of Bolzano and Kummer. But more relevant for our purposes is the fact that 

the influence of philosophy seems to have led to an increase of intellectualist view¬ 

points in 19th-century Germany. 

Kantian philosophy has always been more congenial to scientists than idealism, 

so it is not surprising that during and after the acme of idealism it retained an im¬ 

portant status among them. A characteristic Kantian idea is that the subject (the 

philosophical 1) enjoys a central position in the world, or at least in our knowledge 

of the world. The world is regarded as a representation, a set of phenomena that 

unfold in the screen of consciousness. Such phenomena are not simply determined 

1 Letter of 1846, in [Pieper 1897, 99]: “Er allein, nicht ich, nicht Cauchy, nicht Gauss weiss, 

was ein vollkommen strenger mathematischer Beweis ist, sondem wir kennen es erst von ihm. ... 

D[irichlet] hat es vorgezogen, sich hauptsachlich mit solchen Gegenstanden zu beschaftigen, 

welche die grossten Schwierigkeiten darbieten; darum liegen seine Arbeiten nicht so auf der 

breiten Heerstrasse der Wissenschaft und haben daher, wenn auch grosse Anerkennung, doch 

nicht alle die gefunden, welche sie verdienen.” 

2 As translated in [Wussing 1969, 270], where this passage from Eisenstein’s autobiography, 

written when he was 20, is quoted in full. 
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by the stimuli coming from external objects, but also by some intrinsic characteris¬ 

tics of the subject’s mind. This situation of the representational world as codeter- 

mined by subject and objects may be seen as parallel to that of scientific theories, 

when viewed from the hypothetico-deductive standpoint, since theories are codeter¬ 

mined by mathematically stated hypotheses and laboratory experiences. If we ac¬ 

cept this parallelism, and take the conclusion that arises from it, we should come to 

think that mathematics is on the side of the subject. It should be related to the in¬ 

trinsic characteristics of the subject or, to use Kant’s phrase, to the a priori in the 

subject’s mind, and we thus arrive at an intellectualist conception. 

Intellectualism can be found in association with several different conceptions of 

the foundations of mathematics in early 19th-century Germany. Two examples are 

Kantian intuitionism, and also a brand of formalism linked to the so-called combi¬ 

natorial school. Let us begin with the latter. 

2.1. Formalist approaches. Around 1800, the combinatorial tradition was very 

influential among German mathematicians.1 This trend was headed by the Leipzig 

professor of physics and mathematics Carl F. Flindenburg, who from 1794 to 1800 

edited the first periodical devoted to mathematics in Germany, Archiv fur die reine 

und angewandte Mathematik, a journal that he used for the promotion of his con¬ 

ception of mathematics. Combinatorialists saw themselves as heirs to Leibniz, who 

had written about the ars combinatoria as a “general science of formulas,” provid¬ 

ing general combinatorial laws, that would embrace algebra as a subdiscipline 

[Leibniz 1976, 54-56]. Hindenburg and his followers regarded combinatorial the¬ 

ory as the core of pure mathematics and the basis for the theory of series, which 

they saw in turn as the foundation of analysis. Thus, the central themes for this 

tradition were issues in pure mathematics, including the much debated problem of 

the foundations of the calculus. Analysis became, for them, a theory concerned with 

the transformations of finite or infinite series of symbols, transformations that could 

be analyzed combinatorially.2 
The combinatorial approach was not far from contemporary viewpoints, such as 

Lagrange’s formal conception of the calculus in his 1797 Theorie des fonctions 

analytiques, and the related development of the calculus of operations [Koppel- 

mann 1971], One may say that combinatorialism developed some trends that were 

clearly present in 18th-century mathematics, trends which would also lead to the 

British tradition of symbolical algebra [Knobloch 1981; Pycior 1987], An influen¬ 

tial formulation of ideas related to those of the combinatorialists was given by the 

1 Although it has been customary to refer to this trend as the combinatorial school, following 

19th-century usage, I shall prefer the word ‘tradition.’ We reserve ‘school’ for those institutional 

arrangements in which small groups of mature mathematicians pursued more or less coherent 

research programs, joined by a certain style or ‘philosophy’ of research (in the sense of Haw¬ 

kins), training advanced students with which they worked side-by-side [see Geison 1981, Servos 

1993], On the other hand, ‘tradition’ seems apt to convey the idea of influence and community of 

interests and ‘philosophy,’ but on a looser institutional, geographical and/or temporal basis (see 

the Introduction). 

2 On this topic, see [Netto 1908], [Jahnke 1987; 1990], 
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Berlin professor Martin Ohm, brother of the famous physicist and a figure of some 

importance for what follows. His work was particularly successful among Gymna¬ 

sium teachers and also, one may conjecture, among self-taught mathematicians. 

Ohm clearly formulated the program of basing all of mathematics upon the notion 

of natural number, a program that can also be found in his colleague Dirichlet, in 

Kronecker, Weierstrass and Dedekind. According to Ohm [1822, vol. 1, xi—xiii] 

only natural numbers have a real existence, while the rest of mathematics can be 

seen as a theory of numerical signs. Ohm’s reconstruction of pure mathematics was 

largely based upon the manipulation of formulas in accordance with the algebraic 

rules, but on the basis of a purely analogical justification - an inheritance of the 

combinatorial tradition, and a trait he has in common with British symbolical alge¬ 

bra. That viewpoint made it possible to establish the use of divergent series on a 

sound basis, thus rescuing a peculiar characteristic of 18th-century analysis that 

would be severely criticized by Ohm’s great contemporaries Abel, Cauchy and 

Gauss.' 
The combinatorial approach can be labeled a purely formalistic viewpoint, since 

it regarded mathematics as a symbolical or syntactic construction. Ohm’s approach 

seems to have been only partly formalistic, since he accepted the natural numbers 

as given objects with their characteristic properties. But one might think that even 

this partly formalistic standpoint ought to be radically opposite to intellectualist 

tendencies. Symbols, however, may be taken to have primarily a mental existence, 

and this move changes the picture completely. In defining a formal power series, 

Ohm says that it is a function of indefinitely great degree, and, “therefore, an entire 

function that is never really representable, but only lives in the idea within our¬ 

selves” [Ohm 1855, 239]. Moreover, what is essential in the calculus, according to 

Ohm, is not numbers but operations, i.e., “actions of the understanding” - where 

understanding [Verstand] is a characteristically philosophical, and more specifically 
Kantian, term: 

In the most diverse phenomena of the calculus (of arithmetic, algebra, analysis, etc.) the 

author sees, not properties of quantities, but properties of the operations, that is to say, ac¬ 

tions of the understanding ... It turns out that one only calculates with “forms,” that is, with 

symbolized operations, actions of the understanding that have been suggested ... by the 

consideration of the abstract whole numbers.1 2 

The general symbolical rules, therefore, represent mental actions performed on 

mentally existing forms or symbols. Ohm’s mention of operations that are sug- 

1 The fact that Ohm’s approach was made rigorous by the differentiation between symbolical 

and numerical equalities, and the rules of interpretation of the symbolical calculus, has been 

emphasized by Jahnke [1987], See also [Bekemeier 1987], 

2 [Ohm 1853, vii]: “In den verschiedensten Erscheinungen des Kalkuls (der Arithmetik, Alge¬ 

bra, Analysis, u.u.) erblickt der Verf. nicht Eigenschaften der Grossen, sondern Eigenschaften der 
Operational, d.h. Akten des Verstandes ...” 
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gested by the consideration of whole numbers is a reference to the so-called “prin¬ 

ciple of permanence of formal laws,” which is also characteristic of British sym¬ 

bolical algebra, and can be found much later in the work of Hermann Hankel 
[1867]. 

Combinatorialism was very successful only until about 1810, but textbooks of 

that orientation continued to be published up to the mid-century. Ohm’s approach, 

on the other hand, seems to have been widely influential among Gymnasium teach¬ 

ers and those who were more or less self-educated in mathematics.1 As late as 1860, 

the Gottingen professor Moritz A. Stem published a textbook in which formalistic 

conceptions akin to Ohm’s were central (see [Jahnke 1991]). Several ideas strongly 

reminiscent of Ohm’s can be found in early writings of Dedekind, perhaps coming 

through his teacher Stem, and in Weierstrass, apparently through his teacher C. 

Gudermann [Manning 1975, 329-40]. 

An intellectualist conception of mathematics, couched in the language of 

‘forms,’ can also be found in Hermann Grassmann. Grassmann [1844, 33] began 

his work by elaborating a general theory of forms [Formenlehre] as a frame for 

mathematics. The transition from one formula to another he regarded as strictly 

parallel to a conceptual process that should happen simultaneously [op.cit., 9], A 

form, or “form of thought,” was simply an object posited by thought as satisfying a 

certain definition, a “specialized being generated by thought.” And “pure mathe¬ 

matics is the doctrine of forms” [op.cit., 24], This new, abstract conception of 

mathematics is related with the influence of several philosophers, from Leibniz to 

Schleiermacher, on Grassmann.2 Although he accepted the existence of an spatial 

intuition, Grassmann’s Ausdehnungslehre was not dependent upon intuition, since 

it constituted the abstract, purely mathematical foundation for geometry, which is 

empirical. Despite similarities with the combinatorialists and Ohm, Grassmann 

abandoned excessive reliance upon the symbolical, and more specifically he aban¬ 

doned reasoning founded upon analogy, thus going in the modem direction. Inci¬ 

dentally, it is worth noting that his approach promoted, like no other in early 19th- 

century Germany, a formal axiomatic structuring of mathematical theories. 

2.2. Intuitiveness and logicism. The great British empiricist Hume, in his epis¬ 

temological works, emphasized the fallibility of empirical knowledge. Perhaps for 

this reason, one of Kant’s basic presuppositions is that anything that is absolutely 

certain must not be empirical, but based solely upon the mental constitution of the 

subject. Necessary truth, including mathematical truth, must be a priori: 

1 A third edition of his Attempt at a completely consistent [consequenten] System of Mathe¬ 

matics (1822) came out in 1853/55. 

2 See [Lewis 1977] and [Otte 1989]. An interesting, short analysis of Grassmann’s mathemati¬ 

cal method can be found in [Nagel 1979, 215-19], 
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truly mathematical propositions are always a priori, not empirical, judgements, since they 

involve necessity, which cannot be gained from experience.1 

As we have seen, Kant regarded the world as a representation in the subject, partly 

determined by the impressions received from the “things in themselves,” partly by 

a priori characteristics of the subject’s sensitive and conceptual abilities. As is well 

known, space and time were not to be seen as traits of the external world, but as a 

priori forms of our sensitivity or intuition [Anschauung], that determine our repre¬ 

sentation of the world with absolute necessity. Mathematics develops the conse¬ 

quences that can be extracted a priori from our pure intuition, it develops the the¬ 

ory of the possible constructions within our forms of intuition, space and time. 

Having its origin in the subject, it is now possible to understand the necessity that 

accompanies mathematical knowledge. 

Kant’s explanation was satisfactory as far as geometry was concerned, but his 

discussion of arithmetic and algebra was unsystematic and vague. An attempt to 

correct this situation can be found in William Rowan Hamilton, the best example of 

a Kantian mathematician, which is not to be found in Germany, but in Great Brit¬ 

ain. In 1837 he published a paper, that went almost unnoticed, in which he regarded 

“algebra” as “the science of pure time” [Hamilton 1837]. This was a time when 

terminology was in flux: many mathematicians saw arithmetic, algebra and analysis 

as a unity, but the name used for that discipline varied greatly; some called it 

“analysis,” Hamilton preferred “algebra,” and, as we will see, several German 

mathematicians employed the term “arithmetic.” Within the Kantian frame, Ham¬ 

ilton’s conception gives rise to a quite satisfactory symmetric schema, in which 

geometry is the science of spatial intuition, and algebra the science of temporal 

intuition. Fifty years later, Helmholtz [1887] defended a version of that thesis when 

he proposed that the origins of natural numbers are related to the perception of 

time. Besides that speculative vision, Hamilton presented very interesting mathe¬ 

matical ideas, including the notion that what is essential in US. is the presence of a 

continuous ordering, a detailed and quite rigorous treatment of arithmetic, and the 

brilliant idea of introducing the complex numbers as pairs of real numbers. It seems 

that, this time, the philosophical garb was an obstacle for the diffusion of interest¬ 

ing thoughts. Nevertheless, his mathematical and philosophical ideas become well 

known later, thanks to the preface to his Lectures on Quaternions [Hamilton 
1853],2 

Around this time, the Kantian conception was quite influential in Germany. It 

was common to defend that all mathematical knowledge bears the mark of its intui¬ 

tiveness [Anschaulichkeit], A good example is given by the correspondence between 

Apelt, a philosopher follower of Fries, and thus a neokantian, and the mathe- 

1 [Kant 1787, 14]: “eigentliche mathematische Satze jederzeit Urtheile a priori und nicht em- 

pirisch sind, weil sie Nothwendigkeit bei sich fiihren, welche aus der Erfahrung nicht abgenom- 
men werden kann.” 

2 Both Cantor [1883, 191-92] and Dedekind [1888, 335] criticized this conception. 
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matician Mobius. Apelt commented upon Grassmann’s Ausdehnungslehre that it 

was remarkable, but based on a false philosophy of mathematics: 

An abstract theory of extension [Ausdehnungslehre] as he is looking for, can only be devel¬ 

oped out of concepts. But the source of mathematical knowledge is not in concepts, but in 

intuition. 

Mobius replied that he had not been able to read much in Grassmann’s book be¬ 

cause of its abstract character, and granted that intuition is the “essential trait” of 

mathematics.1 

Once again, this is a version of intellectualism, but quite different from the 

former brand. Here, the symbols and formalism are taken simply to denote those 

figures, numbers, etc. that are constructed in intuition. Such a viewpoint, that 

avoids enthroning the symbolical plane, and prefers to emphasize contentual as¬ 

pects, is actually closer to the conception that won the day. Against the formalists, 

Gauss, Cauchy and their followers would have contended that mathematics does 

not study symbols, but numbers, functions and the like. Symbols and operations 

only have a sense insofar as they represent objects and processes that seem to stand 

on a different plane. This is one, though only one, of the reasons why the names of 

Hindenburg and Ohm acquired a ludicrous ring late in the century.2 

The Kantian epistemological conception seems to have been widely influential 

in German scientific circles, even becoming a kind of basic ‘common sense.’ The 

emergence of logicist viewpoints late in the century, which is quite difficult to 

understand for present-day historians, can actually be better understood when seen 

in this context. The development of mathematics in the nineteenth-century showed 

a clear tendency away from the intuitive, and toward the abstract. The most com¬ 

mon example is non-Euclidean geometry, the emergence of a variety of consistent, 

alternative theories, which had the effect of denying the character of being basic or 

intuitive to any one of them. One of Gauss’s comments on this issue, in a letter to 

Bessel of 1830, employs a Kantian language for correcting Kant’s opinion: 

According to my most intimate conviction, the theory of space has a completely different 

position with regards to our a priori knowledge, as the pure theory of magnitudes. Our 

knowledge of the former lacks completely that absolute conviction of its necessity (and 

therefore of its absolute truth) which is characteristic of the latter. We must humbly ac¬ 

knowledge that, if number is only a product of our minds, space also has a reality outside our 

minds, and that we cannot a priori prescribe its laws completely.3 

1 Quoted in [Grassmann 1894, vol. 3, part 2, 101-02], 

2 Mittag-Leffler wrote in 1886: “Kronecker emploie toutes les occasions a dire du mal de 

Weierstrass et de ses recherches. 11 disait meme l’autre jour en parlant de lui et Weierstrass que 

Gauss etait peu connu et peu estime de ses contemporaines, tandis que Hindenburg etait le grand 

geometre populaire de ce temps en Allemagne” [Dugac 1973, 162], On Ohm, see [Bekemeier 

1987, 77-82], 

3 [Gauss 1863/1929, vol. 8, 201]: “Nach meiner innigsten Uberzeugung hat die Raumlehre zu 

unserm Wissen a priori eine ganz andere Stellung, wie die reine Grossenlehre; es geht unserer 
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Besides the example of non-Euclidean geometry, which only after 1860 began to 

affect the mathematical community as a whole, many more could be given. It suf¬ 

fices to recall the theory of real functions, the many anomalous examples that be¬ 

gan to proliferate after the mid-century. Or algebraic examples such as the quater¬ 

nions and other new kinds of numbers, and the abstract notion of group finding its 

place as an extremely useful tool for diverse applications. Or the evolution of num¬ 

ber theory in the modern direction of algebraic numbers. 

Now, suppose that we are thinking within a Kantian overall frame, and we are 

not willing to abandon the fundamental thesis that mathematics has its origins in the 

human mind, not in experience or the outer things. How can we possibly make 

sense of those changes? We need to take into account one more aspect of Kant’s 

philosophy. According to the Konigsberg philosopher, the a priori material of the 

human understanding does not simply consist in space and time as forms of intui¬ 

tion, it also includes a whole set of concepts or categories, that we systematically 

apply in categorizing the phenomena of the world. It suffices to take a look at the 

index of Kritik der reinen Vernunft, to see that Kant calls the doctrine of the forms 

of intuition “aesthetics,” and the doctrine of the categories or concepts of the under¬ 

standing “[transcendental] logic.” Gauss’s thoughts on geometry cast doubt on the 

real existence of an inborn form of spatial intuition, since the problem of the ge¬ 

ometry of real space is coming to be seen, to some extent at least, as an empirical 

issue. The post-Kantian philosopher Herbart, who counted some mathematicians 

among his followers, had already abandoned Kant’s postulate of the forms of intui¬ 

tion for purely philosophical motives, and criticized it sharply (see his 1824 Psy- 

chologie als Wissenschaft in [Herbart 1964, vol. 5, 428-29]). 

Likewise, even Hamilton’s supposedly intuitive foundation of algebra in pure 

time involves many abstract or conceptual elements that cannot possibly be related 

to any simple intuition. Among them are his consideration of “steps” in time, of 

ratios between such steps, and of pairs of previous elements [Hamilton 1837, 1853]. 

All this suggests that the basic thesis of the intuitiveness [Anschaulichkeit] of 

mathematics ought to be abandoned. On the other hand, the 19th-century develop¬ 

ment from the intuitive to the abstract confirms that mathematics has much more to 

do with pure concepts than was previously thought. To abandon the reference to 

intuition, while sticking to the idea that mathematics is a priori, is to consider 

mathematics as a theoretical development based solely upon concepts of the under¬ 

standing. That is to say, in Kantian terminology, as a development of ‘logic.’ 

I should make it explicit that the previous exposition has simplified some im¬ 

portant aspects, like the complex issue of the relations between “formal logic” 

(Kant’s term) and “transcendental logic.” But it is not my purpose to produce a 

philosophical analysis of Kantianism. Although Frege considered himself a Kan- 

Kenntniss von jener durchaus diejenige vollstandige Uberzeugung von ihrer Nothwendigkeit 

(also auch von ihrer absolute Wahrheit) ab, die der letztern eigen ist; wir mussen in Demuth 

zugeben, dass, wenn die Zahl bloss unseres Geistes Product ist, der Raum auch ausser unserin 

Geiste eine Realitat hat, der wir a priori ihre Gesetzc nicht vollstandig vorschreiben konnen.” 
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tian, I am not trying to defend that any one of the logicists was an orthodox Kan¬ 

tian. More interesting for present purposes is to consider the epistemological frame 

that was implicitly accepted by German scientists during the nineteenth-century. 

This seems to have been closely related to Kantianism, but not in an orthodox 

reading. Rather, scientists freely mixed some Kantian elements with several ideas 

taken from the sciences themselves. To give just an example, in the nineteenth- 

century it was quite common to think about human reason, instead of trying to be 

faithful to Kant’s pure reason - following Fries, it was common to adopt a psy¬ 

chologists reading of Kantian philosophy. Actually, in most cases the Kantian 

elements that can be found in a scientist or mathematician may be explained as 

coming through other scientists’ work, rather than from a careful reading of the 
philosopher. 

What is important, then, is that several mathematicians understood the abstract 

turn, and quite specifically, as we will see, the set-theoretical reformulation, as im¬ 

plying that mathematics is a development of logic [Frege 1884; Dedekind 1888],1 

Of course, to become a logicist was not simply to apply some Kantian thesis. By 

the late nineteenth-century, a serious occupation with logicist ideas meant to give a 

clear formulation of formal logic that might be seen as sufficient for founding 

mathematics, and this implied the need to go beyond received logical theory. We 

will pay attention to this issue later, particularly in chapters VII and X. At this 

point, however, it is important to emphasize that our present image of logicism is 

taken from the writings of Russell and his followers, which makes us loose histori¬ 

cal perspective, since the epistemological frame and quite specifically the notion of 

logic changed decisively in the period 1850-1940. Initially, logicism was typically 

a German trend that makes full sense against the background of a 19th-century 

epistemology permeated by Kantian presuppositions. Logicism was a reaction 

against the specific Kantian theory of the origins of mathematics, a reaction based 

upon, and favoring, the abstract tendencies that became quite evident after the mid¬ 

century.2 

As will be seen throughout this book, beginning with chapter II, most mathe¬ 

maticians and logicians in the second half of the nineteenth-century took the notion 

of set to be simply a logical notion. Actually, the logicist program would have been 

most implausible, for technical reasons, unless logic embraced some kind of set 

theory. During the early decades of our century, as a consequence of the set- 

theoretical paradoxes, the panorama changed radically. The paradoxes meant a 

revolution in the conception of logic; part, if not all, of set theory ‘divorced’ from 

logic, and the logicist program suddenly lost its plausibility. Subsequent changes in 

logical theory, which led to the wide acceptance of first-order logic as the main 

example of a logical system, even deepened the gap that separates us from 19th- 

1 The case of Riemann is different. He was a perfect example of the abstract trend, and some 

of his statements could incite logicist conclusions, but he was a careful philosopher and a fol¬ 

lower of Herbart. Now, Herbartianism avoids all apriorism, and therefore it is quite incompatible 

with logicism (see §11.1-2). 

2 This topic will be taken up in chapter VII. 
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century authors. The concept of ‘logic’ is also a historical one, and any attempt at 

understanding the emergence of logicism - directly related to the history of set 

theory - must be quite aware of the radical transformations which that concept 

underwent from 1850 to 1940. 

3. The Issue of the Infinite 

It has frequently been written that the Aristotelian horror infiniti reigned among 

scientists and mathematicians until Cantor’s vigorous defense of the possibility and 

necessity of accepting it. Like other extreme statements, this one does not bear a 

historical test. At least in Germany, and perhaps here it makes much sense to speak 

of national differences, there was a noticeable tendency to accept the actual infinite. 

The philosophical atmosphere could hardly have been more favorable, and there 

were several attempts to develop mathematical theories of the infinite. We shall 

begin with philosophy, and then consider the views of some mathematicians. 

The history of philosophical attitudes toward actual infinity in 19th-century 

Germany would be a long one. By the beginning of the century, during the time of 

idealism, the potential infinity of mathematics was called the “bad infinite” by 

Hegel and his followers. The implication was clear: there is a ‘good’ infinite that is 

actual in the highest sense, the philosophical infinite, the Absolute.1 It is well 

known that idealism affected an important sector of German scientists early in the 

century; among mathematicians, the best examples seem to be Steiner and Kum- 

mer. The philosophy of nature was also full of implications for the problem of 

infinity. Here the question normally took the form of deciding whether space and 

time are bounded or infinite, or whether the physical universe is or not made up of 

simple elements. These are the first and second “antinomies” discussed by Kant in 

his Kritik der reinen Vernunft [1787, 455-471], The issue was taken up by later 

philosophers, for instance by the anti-idealist Herbart, whom Riemann took as his 

mentor in philosophy (see §11.4.2 for his views on infinity). 

The work of Herbart shows a trait that seems to have been rather characteristic 

of German philosophy at the time - incorporation of elements taken from Leibniz’s 

philosophy. In the early 19th-century there seems to have been a revival of Leib- 

nizian ideas, also promoted by the idealists. And of course, Leibniz favored the 
actual infinite: 

I am so much for the actual infinite that, instead of admitting that nature abhors it, as is 

vulgarly said, I sustain that it affects her everywhere, in order to better mark the perfections 

1 [Bolzano 1851, 7]: “Hegel und seine Anhanger ... nennen es verachtlich das schlechte Un- 
endliche und wollen noch ein viel hoheres, das wahre, das qualitative Unendliche kennen, 
welches sie namentlich in Gott und iiberhaupt im Absoluten nur finden.” See Bolzano’s criticisms 
of Cauchy, Grunert, Fries, etc. in [op.cit., 9-13], 
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of its Author. Thus I believe there is no part of matter which is not, I do not say divisible, but 

actually divided; and consequently the least particle of matter must be regarded as a world 

full of an infinity of different creatures.1 

Certainly, this is not Leibniz’s position in all his writings,2 but it is the one that 

characterizes the whole spirit and the statements in his Monadologie, a work that 

advanced a conception of the universe as made up of simple metaphysical units 

[Leibniz 1714, §§57, 64-67]. In the wake of the Leibnizian revival, the ideas of the 

Monadologie were put into new life. Herbart elaborated an ontology of simple units 

called the “Reale,” which is reminiscent of Leibniz’s monads; the physicist and 

philosopher Fechner defended a Leibnizian Atomenlehre [Theory of atoms; 1864], 

somewhat like the physiologist and philosopher Lotze in his famous work 

Mikrokosmus [1856/64], As the reader can see, we are now talking about authors 

who were quite influential among the scientific community. In fact, even Cantor 

defended viewpoints similar to those of Fechner and Lotze [1932, 275-76]; he 

quoted Faraday, Ampere and Wilhelm Weber as his forerunners. 

Interestingly, Leibnizian ideas can be found in all the main authors that we shall 

deal with in Part One. Riemann was strongly influenced by Herbart, and his frag¬ 

ments on psychology and physics present us with viewpoints that are quite close to 

the author of the Monadologie. Riemann (and Herbart) seem to favor the Leib¬ 

nizian conception of space as an ‘order of coexistence’ of things (see §11.1.2). Also 

noteworthy is Riemann’s preference for the hypothesis of a material plenum and 

contact action, instead of Newtonian action-at-a-distance.3 His friend Dedekind was 

also in favor of this hypothesis, as he made clear in a noteworthy passage of his 

correspondence with Heinrich Weber: 

As far as I’m concerned, I very much favor the continuous material filling of space and [the 

Riemannian] explanation of gravitation and light phenomena ... Riemann adopted these ideas 

quite early, not in his late years ... Without doubt, his efforts went toward basing the most 

general principles of mechanics, which he did not want to revoke at all, upon a new concep¬ 

tion, more natural for the explanation of Nature. The effort of je/^preservation and the de¬ 

pendence - expressed in the partial differential equations - of state-variations from states 

immediately surrounding in space and time, should be regarded as the original, not as the 

1 The passage is quoted by Bolzano [1851, iii] and Cantor [1932, 179]: “Je suis tellement pour 
l’infini actuel, qu’au lieu d’admettre que la nature l’abhorre, comme Ton dit vulgairement, je 
tiens qu’elle l’affecte partout, pour mieux marquer les perfections de son Auteur. Ainsi je crois 
qu’il n’y a aucune partie de la matiere qui ne soit, je ne dis pas divisible, mais actuellement 
divisee; et par consequent la moindre particelle doit etre consideree comme un monde plein 
d’une infinite de creatures differentes.” 

2 According to Laugwitz [Konig 1990, 9-12], Leibniz spoke about infinity on three different 
levels: a popular one, a second for mathematicians, and the third for philosophers. At the second 
level, which is that of the Nouveaux essays, he favors the potential conception of limits, but at the 
third he presents the kind of approach that is typical of his Monadologie. 

3 See [Riemann 1892, 534-38]. The interrelation that Riemann seeks to establish between 
psychology and physics is also reminiscent of Leibniz. 
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derived. At least, this is how I think that his plan was ... Unfortunately, it is all so fragmen¬ 

tary!1 

Dedekind’s early approach to the natural numbers, traits of his elementary theory of 

sets, and even his logicist standpoint would seem to link back to Leibniz (see 

§VII.5). As regards Cantor, he frequently made explicit his strong interest in Leib¬ 

niz’s philosophy, and particularly in the attempt to elaborate a new, organicistic 

theory of Nature.2 
This common trait in the otherwise divergent views of Riemann, Dedekind and 

Cantor could help explain their attitude toward infinity. The influence of Leibniz’s 

Monadologie might be one of the key factors that impelled them to accept the ac¬ 

tual infinite. Another key factor, of course, was the development of mathematical 

ideas themselves, for instance (though not exclusively) in the foundations of the 

calculus. This brings us to the issue of attitudes toward actual infinity among Ger¬ 

man mathematicians. 
Ever since it was given by Cantor [1886, 371], the paradigmatic example of 

rejection of actual infinity has been a passage of an 1831 letter from the “prince of 

mathematicians” to Schumacher. Schumacher had sent an attempted proof of the 

Euclidean parallel postulate, and Gauss replied: 

But, as concerns your proof of 1), I object above all the use of an infinite magnitude as if it 

were complete, which is never permitted in mathematics. The infinite is only a fagon de 

purler, when we are properly speaking about limits that certain relations approach as much 

as one wishes, while others are allowed to increase without limit.3 

It has been argued that these statements had a very particular aim, and cannot be 

used against the set-theoretical infinite [Waterhouse 1979], Schumacher made some 

1 Dedekind to Weber, March 1875 [Cod. Ms. Riemann 1, 2, 24]: “Was rnich betrifft, so bin 

ich fiir die stetige materielle Erfiillung des Raumes und die Erklarung der Gravitations- und 

Lichterscheinigungen im hochsten Grade eingenommen ... Diese Gedanken hat Riemann sehr 

friih, nicht erst in seiner letzten Zeit, ergriffen ... Sein Streben ging oline Zweifel dahin, den all- 

gemeinsten Principien der Mechanik, die er keineswegs umstossen wollte, bei der Naturerklarung 

eine neue, natiirlichere Auffassung unterzulegen; das Bestreben der Se/h^terhaltung und die in 

den partiellen Differentialgleichungen ausgesprochene Abhangigkeit der Zustandsveranderungen 

von den nach Zeit und Raum unmittelbar benachbarten Zustiinden sollte er als 130 das Urspriing- 

liche, nicht Abgeleitete angesehen werden. So denke ich mir wenigstens seinen Plan. ... Leider ist 

Alles so liickenhaft!” 

2 See [Cantor 1883, especially 177, 206-07], [Cantor 1932, 275-76], [Schoenflies 1927, 20], 

[Meschkowski 1967, 258-59]. It is worth mentioning that in the 1870s there was a group of theolo¬ 

gians who accepted the actual infinite and were important for Cantor - above all Gutberlet and 

cardinal Franzelin; see [Meschkowski 1967], [Dauben 1979], [Purkert & Ilgauds 1987], 

3 [Gauss 1906, vol. 8, 216]: “Was nun aber Ihren Beweis fiir 1) betrifft, so protestire ich zu- 

vorderst gegen den Gebrauch einer Unendlichen Grosse als einer Vollendeten, welcher in der 

Mathematik niemals erlaubt ist. Das Unendliche ist nur eine fapon de parler, indern man ei- 

gentlich von Grenzen spricht, denen gewisse Verhaltnisse so nahe kommen als man will, 

wahrend andern oline Einschriinkung zu wachsen verstattet ist.” 
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assumptions about the behavior of geometrical figures in infinity, based upon mere 

analogy, and Gauss, led by his knowledge of non-Euclidean geometry, protested 

against such unjustified assumptions. However, Gauss’s statements are sharp and 

general: he takes as a model the theory of limits, understood in the sense of a po¬ 

tential infinity. On the other hand, some authors have indicated that, at times, Gauss 

employs infinitesimal notions that would seem to be plainly rejected by the above 

quotation. For instance, his differential geometry, like Riemann’s, can hardly be 

understood other than as infinitesimal mathematics (see Laugwitz in [Konig 1990, 

26]). 

Be it as it may, what is important for us is that Gauss was not the only German 

mathematician of that period. Others defended bolder positions. As early as 1788 

Johann Schultz, a theologian and mathematician friend of Kant, developed a 

mathematical theory of the infinitely great (see [Schubring 1982; Konig 1990, 155— 

56]). A very important contribution, that unfortunately was scarcely known in its 

time, was that of the philosopher, theologian and mathematician Bolzano, not only 

in his Paradoxien des Unendlichen [Paradoxes of the infinite; 1851], but also in the 

earlier Wissenschaftslehre [Theory of science; 1837], Bolzano introduced the no¬ 

tion of set in several different meanings: in general he talked about collections or 

concept-extensions [Inbegriffe], but he singled out those collections in which the 

ordering of elements is arbitrary [Mengen], and among these the ones whose ele¬ 

ments are units, “multiplicities” [Vielheiten; Bolzano 1851, 2-4], The notion of 

infinity is then carefully defined as follows: a multiplicity is infinite if it is greater 

than any finite multiplicity, i.e., if any finite Menge is only a part of it [op.cit., 6], 

Bolzano defended forcefully the actual infinite, showing that the “paradoxes” of 

infinity involved no contradiction at all, and attempted to elaborate a theory of 

infinite sets (see §11.6). 
It should be emphasized that some 19th-century mathematical developments 

depended upon accepting the notions of point and line ‘at infinity.’ Cantor himself 

mentioned this kind of precedent when he introduced the transfinite ordinal num¬ 

bers [Cantor 1883, 165-66], That happened particularly in projective geometry, 

which played a central role in geometrical thinking all along the century. Some¬ 

times the introduction of elements at infinity may have been just an instrumental 

move not implying an acceptance of actual infinity, but, as we shall see in the ex¬ 

ample of Steiner, at times it was accompanied by expressions that explicitly intro¬ 

duced the actual infinite. Another example is Riemann’s function theory. In 1857 

he took the step of ‘completing’ the complex plane with a point at infinity, thus 

turning it into a closed surface, which made it possible to reach general results in a 

simplified way.1 
Jacob Steiner, the great representative of synthetic geometry, seems to have 

been a defender of actual infinity. Furthermore, he introduced notions that consti¬ 

tute quite clear precedents of the language of sets and mappings. Steiner was a 

professor at Berlin, and thus a colleague of Dirichlet and, later, Jacobi. We will 

1 Riemann’s position vis a vis the infinite is analyzed in §11.4.2. 



22 I. Institutional and Intellectual Contexts 

consider his main work, bearing the long title Systematische Entwicklung der Ab- 

hdngigkeit geometrischer Gestalten von einander.1 The first trait of this work that 

calls attention is the language employed, strongly reminiscent of neohumanism and 

idealism. In the preface, Steiner indicates that his aim is to go beyond proving some 

theorems, to discovering the “organically interconnected whole,” the “organism” 

that gives a sense to the multiplicity of results. He aims at finding “the road fol¬ 

lowed by Nature” in forming the geometrical configurations and developing their 

properties.1 2 Steiner’s talk of “system” and “organism” may be compared, for in¬ 

stance, with Wolfs words quoted in §1. The similarity speaks for the free flux of 

ideas among mathematicians, philosophers and humanists, which in the case of 

Steiner is quite obvious, since in his younger years he was a teacher at the school of 

the famous Swiss pedagogue Pestalozzi. 
More interesting for our present purposes is to observe the way in which Steiner 

emphasizes the conception of line, plane, bundle of lines, etc. as aggregates of 

infinitely many elements. Aristotle and other conscious partisans of the potential 

infinite had carefully avoided that move. It seems revealing to find that it was pre¬ 

cisely authors like Steiner, close to neohumanistic and philosophical ideas, who 

broke with that restriction within a favorable intellectual context. Steiner says that 

in a straight line one may think “an innumerable amount” of points, and in the 

plane there are “innumerably many” lines and points.3 Coming to specifically pro¬ 

jective notions, he defines: 

II. The planar bundle of lines. Through each point on a plane innumerably many straight 

lines are possible; the totality of all these lines will be called “planar bundle of lines” ... 

The expression “the totality of all” will become prototypical of the works of Cantor 

and Dedekind that introduce sets. Later we read: 

V. The bundle of lines in space. ... Such a bundle of lines does not only contain infinitely 

many lines, but also embraces numberless planar bundles of lines (II.) and bundles of planes 

(III.) as subordinated elements or configurations ...4 

Steiner’s viewpoint is thus close to the language of sets, although still far from a 

general viewpoint, not to mention a straightforward analysis of the notion of set. 

1 Systematic development of the interdependence among geometrical configurations [Steiner 

1832], 

2 [Steiner 1832, v-vi]: “... organise!) zusammenhangendes Ganze ... Gegenwartige Schrift hat 

es versucht, den Organismus aufzudecken ...” [op.cit., vi]: “Wenn nun wirklich in diesem Werke 

gleichsam der Gang, den die Natur befolgt, aufgedeckt wird ...” 

3 Steiner [1832, xiii]: “In der Geraden sind eine unzahlige Menge ... Punkte denkbar.” 

4 Steiner [1832, xiii]: “Der ebene Strahlbiischel. Durch jeden Punkt in einer Ebene sind un¬ 

zahlige Gerade moglich; die Gesanuntheit aller solcher Geraden soli „ebener Strahlbiischel" ... 

heissen.” [Op.cit., xiv]: “Der Strahlbiischel im Raum. ... Ein solcher Strahlbiischel enthalt nicht 

nur unendlich viele Strahlen, sondern er umfasst auch zahllose ebene Strahlbiischel (II.) und 

Ebenenbiischel (ill.) als untergeordnete Gebilde oder Elemente ...” 
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But it could be set in line with work of Riemann, Dedekind and other authors (see 

chapters II-V), insofar as it presents a new conceptualization of previous theories, 

based upon notions related to that of set. Moreover, the notion of a transformation, 

in the sense of a one-to-one correspondence, had become central for projective 

geometry. That notion it set out by Steiner in full clarity: 

First a straight line and a planar bundle of lines will be related to each other, so that their 

elements get matched, that is, so that a certain line in the bundle corresponds to each point in 

the straight line.1 

This interesting passage, and similar ones in Mobius and Pliicker (see [Pliicker 

1828, vii]), obviously suggest the idea of one-to-one mapping. It is worth noting 

that Steiner regarded such correspondences as a key methodical element in order to 

show the “interdependence among the configurations,” which in his work consti¬ 

tuted “the heart of the matter.”2 

The much less romantic Mobius, in Der barycentrische Calcul, set out very 

clearly the notion of a one-to-one correlation of points in two different figures or 

spaces [Mobius 1827, e.g. 169, 266].3 4 He considered the simplest geometrical rela¬ 

tions that can be defined by means of such transformations, and ordered them sys¬ 

tematically: they were those of “similarity” (our congruence), “affinity,” and the 

most general one of “collineation” (see [Mobius 1827, zweiter Abschnitt, 167ff; 

1885, 519]). He argued that all such “relationships” belonged to elementary ge¬ 

ometry, because in all cases straight lines correspond to straight lines. A notable, 

but apparently little known fact, is that Felix Klein regarded Mobius’s study of 

geometrical “relationships” a clear precedent of his own Erlanger Programing On 

the other hand, one does not find in Mobius any statement that might betray an 

admission of actual infinity, nothing comparable to the above-mentioned words of 

his more romantic contemporary Steiner. 

Dedekind and Cantor were both aware of Steiner’s ideas, and the first also read 

Mobius very carefully.5 Dedekind had chosen geometry as the subject for his first 

1 [Steiner 1832, xiv-xv]: “Zuerst werden eine Gerade und ein ebener Strahlbiischel aufeinander 
bezogen, so dass ihre Elemente gepaart sind, d.h., dass jedem Punkt der Geraden ein bestinrmter 
Strahl des Strahlbiischels entspricht.” 

2 [Op.cit., vi]: “den Kern der Sache ... der darin besteht, dass die Abhangigkeit der Gestalten von 
einander, und die Art und Weise aufgedeckt wird, wie ihre Eigenschaften von den einfachem Fig- 
uren zu den zusammengesetztern sich fortpflanzen.” 

3 [Op.cit., 266]: The “essence” of collineation consists in that “bei zwei ebenen oder korperli- 
chen Raumen, jedem Puncte des einen Raums ein Punct in dem anderen Raume dergestalt ent¬ 
spricht, dass, wenn man in dem einen Raume eine beliebige Gerade zieht, von alien Puncten, 
welche von dieser Geraden getroffen werden (collineantur), die entsprechenden Puncte in dem 
anderen Raume gleichfalls durch eine Gerade verbunden werden konnen.” 

4 See [Klein 1926, vol. 1, 118], and also [Wussing 1969, 35M2], which includes a more detailed 
discussion of this aspect of Mobius’s work. 

5 Although Riemann spent the years 1847M9 at Berlin, apparently he did not attend Steiner’s 

lectures. 
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lecture course at Gottingen in 1854/55, when, as he said in a letter to Klein, he 

“made an effort to establish a parallelism between the modem analytic and syn¬ 

thetic methods” [Lorey 1916, 82], To prepare that course, he borrowed from the 

Gottingen library Steiner’s book, together with works by Chasles, Plucker [1828 

and 1835], and the barycentrische Calcul of Mobius.1 As regards Cantor, he him¬ 

self [ 1932, 151] indicated that the term “Machtigkeit” [power], which he used from 

1877 to refer to the cardinality of a set, was taken from one of Steiner’s works.2 

One may thus assume that Steiner played some role in the introduction of the no¬ 

tions of set and mapping, and the acceptance of the infinite, even if his statements 

are still vague and limited to a rather particular subject. We shall not, however, 

ascribe a particularly important role to his work in the events reported in the fol¬ 

lowing chapters. More centrally, we may assume that, when Cantor and Dedekind 

expressed their confidence in the importance of sets and/or mappings for mathe¬ 

matics, they also had geometry in mind. 

4. The Gottingen Group, 1855-1859 

The University of Gottingen was the most advanced German one in the late eight¬ 

eenth-century [McClelland 1980], and is famous in connection with mathematics, 

since it was here that Gauss worked in the early nineteenth-century, and by 1900 it 

had become a leading research center under Klein and Hilbert.3 But the Gottingen 

of 1850 was quite different from such a center. The teaching of mathematics was 

far from advanced. Gauss was a professor of astronomy, and he was not attracted 

by the prospect of teaching poorly prepared and little interested students the basic 

elements of his preferred discipline. Thus, he only taught some lectures on a re¬ 

stricted field of applied mathematics, for instance on the method of least squares 

and on geodesy [Dedekind 1876, 512; Lorey 1916, 82]/4 

Gauss was a retiring man, and, strange as it may seem, he was particularly hard 

to approach for mathematicians, less so for astronomers and physicists. Therefore, 

although Riemann and Dedekind established some contact with him, and the sec¬ 

ond was his doctoral student, one should not expect much influence from the direct 

1 As can be seen in the volumes of Gottingen’s Ausleihregister for the summer semester of 
1854 and winter semester of 1854/55. He paid particular attention to Mobius, since he borrowed 
his [1827] in the semesters of 1850/51, 1853, 1854 and 1855. Notably, Mobius calls (finite) sets 
of points “Systeme von Puncten” [e.g., 1827, 170]; the word “System,” also used by Riemann 
and by Dedekind himself in his algebraic work, will finally become his technical term for set in 
the 1870s (see chapter III and VII). 

2 Cantor refers to Vorlesungen iiber synthetische Geometrie der Kegelschnitte, § 2. Steiner 
used the term to indicate that two configurations were related by a one-to-one coordination. 

3 Klein came to Gottingen in 1886, strongly supported by the minister, with the purpose of 
building a center that could be compared with Berlin. He remained until 1913, while Hilbert 
came in 1895, until 1930. See [Rowe 1989], 

4 Lorey quotes in full a letter from Dedekind with reminiscences from his Gottingen time. 
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contact with him. Rather, it was through his writings that both were highly influ¬ 

enced and became his followers. 

The teaching of mathematics proper was in the hands of a rather unimportant 

Ulrich and of Stem, who has already been named. The latter was a specialist in 

number theory, with a difficult career because of being a Jew, although he seems to 

have been a good professor [Lorey 1916, 81-82], Ulrich and Stem founded in 1850 

a mathematico-physical seminar for the training of Gymnasium teachers, also led by 

Wilhelm Weber and another physics professor. To sum up, despite the presence of 

the “princeps mathematicorum,” Gdttingen was still a rather traditional university 

as far as mathematics is concerned. University lectures were not adjusted to the 

high level of contemporary research, since the characteristically German combina¬ 

tion of teaching and research had not yet arrived. Dedekind says that the teaching 

was perfectly sufficient for the purpose of preparing students for the Gymnasium 

entrance examination, but quite insufficient for a more thorough study [Lorey 1916, 

82], Projective geometry, advanced topics in number theory and algebra, the theory 

of elliptic functions, and mathematical physics were not available [ibid.]. 

The situation was different with physics. Wilhelm Weber had began to incorpo¬ 

rate Gottingen to the modernizing trend: 

Weber’s extensive lecture course on experimental physics, in two semesters, made the most 

profound impression on me. The strict separation between the fundamental facts, discovered 

by means of the simplest experiments, and the hypotheses linked with them by the thinking 

human mind, afforded an unmatchable model of the truly scientific research, as I had never 

known until then. In particular, the development of electricity theory had an enormously 

stimulating effect...‘ 

Thus, Weber was teaching on his own research topics, which brought new stan¬ 

dards of precision to electrical experimentation, and provided a first-rate theoretical 

contribution with his unification of electrostatics, electrodynamics and induction.1 2 

This came after his collaboration with Gauss on terrestrial magnetism in the 1830s, 

which, by the way, was the occasion for Gauss’s research on potential theory. In¬ 

terestingly, Weber’s methodology, as described by Dedekind, coincides essentially 

with Riemann’s in his famous work on geometry [Riemann 1854], 

The mathematico-physical seminar soon went beyond its initial purpose of 

training secondary-school teachers, to assume the function of affording a better 

laboratory training. Both Dedekind and Riemann participated in it [Lorey 1916, 

1 Dedekind in [Lorey 1916, 82]: “hat mir die iiber zwei Semester vertheilte grosse Vorlesung von 

Weber iiber Experimentalphysik den tiefsten Eindruck gemacht; die strenge Scheidung zwischen 

den durch die einfachsten Versuche erkannten fundamentalen Tatsachen und den durch den men- 

schlichen denkenden Geist daran gekntipften Hypothesen gab ein uniibertreffliches Vorbild wahrhaft 

wissenschaftlicher Forschung, wie ich es bis dahin noch niemals kennen gelemt hatte, und na- 

mentlich war der Aufbau der Elektrizitatslehre von grossartiger begeistemder Wirkung ...” 

2 See [Jungnickel & McCormmach 1986, 138-48], Weber’s main work was his ‘Elektrody- 

namische Maassbestimmungen’ of 1846. 
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81], although it was the latter who got more involved in physical practices, eventu¬ 

ally becoming Weber’s teaching assistant around 1854 [Dedekind 1876, 512—13, 

515], Riemann’s collaboration with Weber was the background for his many efforts 

to establish a unified treatment of the laws of nature. A manuscript note that must 

come from this or a later period, indicating Riemann’s research topics, mentions his 

great research on Abelian and other transcendental functions, and on the integration 

of partial differential equations, and goes on: 

My main work deals with a new conception of the known natural laws — expression of them 

by means of different basic notions - which would make it possible to employ the experi¬ 

mental data on the interactions between heats, light, magnetism and electricity, in order to 

investigate their interrelation.1 

This was also consequential for his mathematical work. Among experts on Rie- 

mann it is commonplace that, in his mind, ideas of a physical origin found a natural 

development in pure mathematics, and conversely [Bottazzini 1977, 30]. 

The combination of teaching and research came to Gottingen mathematics after 

Gauss’s death. In order to maintain the university’s renown in mathematical re¬ 

search, his professorship was divided into one for astronomy and one for pure 

mathematics, and, through the good offices of Weber, Dirichlet received and ac¬ 

cepted the call.2 This “opened up a new era for mathematical studies at Gottingen,” 

not because Dirichlet established new organizational arrangements (as Clebsch and 

Klein later), but because his brilliant lectures went all the way up to the research 

frontier. As Dedekind said, “through his teaching, as well as frequent conversations 

..., he turned me into a new man. In this way he had an enlivening influence on his 

many students ,...”3 
The presence of Dirichlet, Riemann and Dedekind at Gottingen, and the courses 

they taught from 1855 onward, turned Gottingen into one of the most important 

mathematical centers, to be compared only with Berlin and Paris. The three mathe¬ 

maticians had common traits in that they all followed lines initiated by Gauss, and 

promoted an abstract, conceptual vision of mathematics. They valued each other 

very much. In 1852, one year after the death of Jacobi, Riemann wrote that 

Dirichlet was, with Gauss, the greatest mathematician alive [Butzer 1987, 58]. 

Dirichlet also regarded Riemann as the most promising young mathematician in 

1 [Riemann 1892, 507; emphasis added]: “Meine Hauptarbeit betrifft eine neue Auffassung der 

belcannten Naturgesetze - Ausdruck derselben mittelst anderer Grundbegriffe - wodurch die 

Benutzung der experimentellen Data iiber die Wechselwirknng zwischen Warme, Licht, Magnetis- 

mus und Electricitat zur Erforschung ihres Zusammenhangs moglich wtirde.” 

2 Dedekind in [Lorey 1916, 82]. See [Jungnickel & McCormmach 1986, 170-72], Dirichlet 

used the call to try getting freed from the heavy teaching at the military academy, but the Prus¬ 

sian ministry reacted too slowly. 

3 [Lorey 1916, 82-83]: “... womit fiir das mathematische Studium in Gottingen eine neue Zeit 

anbrach. ... er hat durch seine Lehre, wie durch hiiufige Gesprache in personlichen Verkehr, der 

sich nach und nach immer vertrauter gestaltete, einen neuen Menschen aus mir gemacht. So 

wirkte er belebend auf seine zahlreiche Schuler ein ...” See also [Scharlau 1981, 35ff|. 
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Germany. And after Gauss’s death, in 1856, Dedekind wrote that Riemann was, 

after or even with Dirichlet, the most profound living mathematician [Scharlau 

1981, 37]. Within the group, Dedekind had the role of the student who, even as a 

Privatdozent, enjoyed for the first time the opportunity of a first-level mathematical 

education. Both Dirichlet and Riemann left him important posthumous duties. 

With regard to research fields, those of Riemann and Dedekind were quite far 

apart, since the former excelled in function theory and mathematical physics, while 

the latter devoted himself to algebra and number theory. In a sense, they divided 

among themselves the topics studied by Dirichlet, who was the most universal of 

them all. (This is understandable, since there was a growing trend towards speciali¬ 

zation all along the century.) But, underlying these differences, it is possible to find 

meeting points at a deeper level, that of theoretical and methodological preferences. 

This, and the net of influences they exerted on each other, makes it justifiable to 

speak about a group with common traits.1 

Although the point will become clearer in what follows (particularly chapters II, 

III, V), it is possible to give some examples at this point. The conceptual approach 

to mathematics is clear, for instance, in Cauchy, when he bases his treatment of 

analysis [Cauchy 1821] upon the notion of a continuous function, where continuity 

is defined independently of the analytical expressions which may represent the 

function.2 Such a viewpoint is taken further by Dirichlet when, in a paper on Fou¬ 

rier series [1837, 135-36], he proposes to take a function to be any abstractly de¬ 

fined, perhaps arbitrary correlation between numerical values.3 Already in 1829 he 

had given the famous example of the function f(x)=0 for rational x,f(x)=\ for irra¬ 

tional x [Dirichlet 1829, 169], which he (wrongly) took to be a function not repre¬ 

sentable by an analytical expression, and a non-integrable function. Riemann takes 

up Dirichlet’s abstract notion of function in his function-theoretical thesis [Riemann 

1851, 3], where he also makes reference to his teacher’s work on the representabil- 

ity of piecewise continuous functions by means of Fourier series (see chap. V). This 

became the subject of his Habilitation thesis [Riemann 1854b], where we find the 

famous definition of the Riemann integral, a definition that finally consolidated the 

abstract notion of function, since it opened up the study of discontinuous real func¬ 

tions. Lastly, Dirichlet’s notion of function was given its most general expression 

when Dedekind [1888, 348] defined, for the first time, the notion of mapping 

within a set-theoretical setting. 

1 In this case, I avoid the word “school” because there was not a relevant production of ad¬ 

vanced students, that would later become research mathematicians (see below). 

2 Euler understood by “functiones continuae” those that corresponded to a single analytical 

expression throughout. See [Youschkevitch 1976]. 

3 There has been some debate whether Dirichlet ever thought about applying this concept to 

functions more ‘arbitrary’ than piecewise continuous functions. The 1837 paper only considers 

continuous functions, but it is an expository paper published in a physics journal. It seems plau¬ 

sible to me that he entertained the abstract notion of function, but thought that in mathematics 

there is no need to consider highly arbitrary functions - except as counter-examples. 
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The emergence of the conceptual viewpoint was mentioned by Dirichlet in a 

frequently quoted passage in his obituary of Jacobi (see also Eisenstein’s descrip¬ 

tion in §1). According to him, there is an ever more prominent tendency in recent 

analysis, “to put thoughts in the place of calculations.”1 It is interesting, though, to 

consider the context of Dirichlet’s quotation. He was calling attention to the fact 

that, in spite of that tendency, there were fields in which calculations preserved 

their legitimacy, and that Jacobi had obtained admirable results in this way. Also in 

the work of Dirichlet it is possible to find a clever combination of new thoughts, 

which sometimes are extremely simple (i.e., the box principle in number theory), 

with complex analytical calculations. One has the impression that it was above all 

Riemann who brought the conceptual trend to a new level, and his friend Dedekind 

followed his footsteps. Among other reasons to think so, we may consider the fact 

that the approach promoted by Riemann and Dedekind was quite specific in com¬ 

parison with those of other Dirichlet students, such as Heine, Lipschitz or Eisen- 

stein, not to mention Kronecker. Dedekind [1876, 512] tells us that, around 1848, 

Riemann discussed with his friend Eisenstein the issue of the introduction of com¬ 

plex numbers in the theory of functions, but they were of completely different 

opinions. Eisenstein favored the focus on “formal calculation,” while Riemann saw 

the essential definition of an analytic function in the Cauchy-Riemann partial dif¬ 

ferential equations (see below). 

In this connection, it is telling that Dedekind’s most committed methodological 

statements consistently refer to Riemann’s function theory as a model. For Dede¬ 

kind always regarded himself as a disciple of Dirichlet. In 1859, when he had al¬ 

ready left Gottingen, he wrote to his family that he owed to Dirichlet more than to 

any other man [Scharlau 1981, 47], His debt to Dirichlet was particularly important 

in connection with his general formation as a mathematician, with number theory, 

and with the issue of mathematical rigor [Haubrich 1999, ch. 5], Nevertheless, 

when it came to mathematical methodology and the conceptual approach, the main 

name he mentioned was Riemann. The following text, written in 1895, is interest¬ 

ing enough to warrant full quotation. Dedekind therein defended his approach to 

the foundations of algebraic number theory, in contrast to those of Kronecker and 

Hurwitz. This gives the occasion for a passage in which he opens his “mathematical 

heart” [Dugac 1976, 283]: 

First, 1 will remember a beautiful passage in Disquisitiones Arithmeticae, which already in 

my youth made the most profound impression upon me. In art. 76 Gauss relates that Wil¬ 

son’s theorem was first made known by Waring, and goes on: “But neither could prove it, 

and Waring confesses the proof seems the more difficult, as one cannot imagine any notation 

that could express a prime number. - In our opinion, however, such truths should be ex¬ 

tracted from concepts rather than notations.” - In these last words, if they are taken in the 

most general sense, we find the expression of a great scientific thought, the decision for the 

inner in contrast to the outer. This contrast comes up again in almost all fields of mathemat- 

1 [Dirichlet 1889, vol. 2, 245]: “Wenn es die imnrer mehr hervortretende Tendenz der neueren 

Analysis ist, Gedanken an die Stelle der Rechnung zu setzen ...” 
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ics; it suffices to think about function theory, about the Riemannian definition of functions 

by means of characteristic inner properties, from which the outer forms of representation 

arise with necessity. But also in the much more limited and simple field of ideal theory both 

directions are effective 

At this point, Dedekind mentions that he has always set himself such requirements, 

and refers to a passage of an 1876 paper where he again takes Riemann’s function 

theory as a model, and states that a theory “founded upon calculation would not 

offer the greatest degree of perfection.”1 2 A similar idea is found in a letter to Lip- 
schitz written the same year: 

My efforts in the theory of numbers are directed toward basing the investigation, not on 

accidental forms of representation (or expressions), but on simple basic notions, and thereby 

- though this comparison may perhaps seem pretentious - to attain in this field something 

similar to what Riemann did in the field of function theory.3 

The relevant details of Riemann’s function theory will be mentioned in chap. II, 

while those concerning Dedekind’s ideal theory can be found in chap. III. At this 

point, however, we can give some simple examples which will be instructive, since 

they enable us to contrast the Gottingen abstract approach with the viewpoint 

adopted at Berlin (studied in the next section). Riemann sought, in his theory, to 

find global, abstract ways of determining complex functions by means of minimal 

sets of independent data [Riemann 1857, 97], As he had written in his 1851 disser¬ 

tation: 

1 [Dedekind 1930, vol. 2, 54-55]: “Ich erinnere zunachst an eine schone Stelle der Disquisi- 

tiones Arithmeticae, die schon in meiner Jugend den tiefsten Eindruck auf micht gemacht hat. Im 

Art. 76 berichtet Gauss, dass der Wilsonsche Satz zuerst von Waring bekanntgemacht ist, und 

fahrt fort: Sed neuter demonstrari potuit, et cel. Waring fatetur demonstrationem eo difficiliorem 

videri, quod nulla notatio fingi possit, quae numerum primum exprimat. - At nostro quidem judicio 

hujusmodi veritates ex notionibus quam ex notationibus hauriri debebant. - In diesen letzen Worten 

liegt, wenn sie im allgemeinsten Sinne genommen werden, der Auspruch eines grossen wissen- 

schaftlichen Gedankens, die Entscheidung fur das Innerliche im Gegensatz zu dem Ausserlichen. 

Dieser Gegensatz wiederholt sich auch in der Mathematik auf fast alien Gebieten; man denke nur an 

die Funktionentheorie, an Riemanns Definition der Funktionen durch innerliche charakteristische 

Eigenschaften, aus welchen die ausserlichen Darstellungsformen mit Notwendigkeit entspringen. 

Aber auch auf dem bei weitem enger begrenzten und einfacheren Gebiete der Idealtheorie kommen 

beide Richtungen zur Geltung ...” 

2 [Dedekind 1930, vol. 3, 296]: “une telle theorie, fondee sur le calcul, n’offrirait pas encore, 

ce me semble, le plus haut degre de perfection; il est preferable, comme dans la theorie modeme 

des fonctions ...” 

3 Dedekind to Lipschitz, June 1876, in [Dedekind 1930/32, vol. 3, 468]: “Mein Streben in der 

Zahlentheorie geht dahin, die Forschung nicht auf zufallige Darstellungsformen oder Ausdriicke 

sondern auf einfache Grundbegriffe zu stiitzen und hierdurch - wenn diese Vergleichung auch 

vielleicht anmassend klingen mag - auf diesem Gebiete etwas Ahnliches zu erreichen, wie Riemann 

auf dem Gebiete der Functionentheorie.” 
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A theory of those functions [algebraic, circular or exponential, elliptical and Abelian] on the 

basis of the foundations here established would determine the configuration of the function 

(i.e., its value for each value of the argument) independently of any definition by means of 

operations [analytical expressions]. Therefore one would add, to the general notion of a 

function of a complex variable, only those characteristics that are necessary for determining 

the function, and only then would one go over to the different expressions that the function 

can be given.1 

Riemann starts with what is general and invariant, and from it the many possible 

analytical expressions for the function would be derived. He thus needed a general 

definition of analytic function which, as we have already mentioned, he found in 

the Cauchy-Riemann equations [Riemann 1851,5-6]: 

du _ 3v du _ dv 

dx dy dy dx 

where u and v are the real and complex parts off(x+iy).2 This is a perfect example 

of his preference for simple fundamental properties as a basis for the development 

of the theory, which contrasts nicely with Weierstrass’s definition of analytic func¬ 

tions (next section). Further aspects of his theory, such as the introduction of Rie¬ 

mann surfaces, were consistent with that preference. 

Similarly, Dedekind preferred to use basic notions of an abstract character, such 

as his fields and ideals. In this, more basic case, avoidance of forms of representa¬ 

tion led to reliance on sets endowed with an algebraic structure. A field [Korper] 

was for him any subset of (C that is closed with respect to the four basic algebraic 

operations [Dedekind 1871, 224], An ideal was a set of algebraic integers which is 

characterized by two simple properties that can be stated in terms of sums, differ¬ 

ences and products of algebraic integers [op.cit., 251], As in the case of Riemann, 

the decision to base the theory upon such basic notions deviated sharply from es¬ 

tablished tradition, since it was then customary to focus on the numbers themselves, 

not on sets of numbers. Besides, it was customary in number theory to use ‘forms,’ 

or algebraic equations, freely in the development of the theory, but Dedekind 

avoided that completely since it meant reliance on expressions. His main reason for 

preferring abstract notions was their generality and lack of arbitrariness, which 

meant that they immediately conveyed what was “invariant” (his term) in the object 

defined, be it a field or an ideal. Once again, this definition of the basic objects, and 

1 [Riemann 1892, 38-39]: “Eine Theorie dieser Functional auf den hier gelieferten Grundla- 

gen wiirde die Gestaltung der Function (d.h. ihren Werth fur jeden Werth ihres Arguments) 

unabhangig von einer Bestimmungsweise derselben durch Grossenoperationen festlegen, indem 

zu den allgemeinen Begriffe einer Function einer veranderlichen complexen Grosse nur die zur 

Bestimmung der Function nothwendigen Merkmale hinzugefiigt wiirden, und dann erst zu den 

verschiedenen Ausdriicken deren die Function fahig ist iibergehen.” 

2 The reason for the name is that Cauchy had already recognized that a complex function is 

analytic if and only if it is differentiable, although he did not use the differential equations as a 

definition. 
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the further development of the theory, is in sharp contrast to Kronecker’s (next 
section). 

At this point it should be clear that Riemann and Dedekind brought forward the 

conceptual tendencies that could be found, more or less clearly, in the work of 

Gauss, Cauchy and Dirichlet. In doing so, however, they effected a clear turn in the 

meaning of ‘conceptual’ which would be extremely consequential for mathematics, 

since their work had an enormous impact upon 20th-century function theory and 

algebra. They consistently attempted to frame mathematical theories within the 

most general appropriate setting, in such a way that “outer forms of representation” 

were avoided, new basic objects were chosen, and a definition of the characteristic 

“inner” properties of these objects (i.e., a fundamental concept) was placed at the 

very beginning of the theory. We may refer to this particular brand of the concep¬ 

tual viewpoint as abstract conceptual. Thus, one of the characteristic traits of mod¬ 

em mathematics, which is frequently called its ‘abstract’ viewpoint, can be traced 

back to Riemann and Dedekind. 

The emergence of a research school following the abstract-conceptual approach 

to mathematics, promoted by Riemann and Dedekind, was hindered by a conflu¬ 

ence of events. Riemann, who succeeded Dirichlet at Gottingen in 1859, was inca¬ 

pacitated since 1862 due to a lung illness, spending most of the time in Italy and 

dying in 1866 at age forty. Dedekind was slow in publishing original research, so 

that he was offered almost no university position until 1870, and afterwards he 

consciously chose to remain at the Technical School in his birthplace Braun¬ 

schweig. After Riemann’s death, a great tradition of mathematicians consolidated at 

Gottingen with Clebsch, Fuchs and Schwarz, but these men came and went in rapid 

succession. It was only with the arrival of Klein in the 1880s, and later with Hilbert, 

that something that could be compared with a school was firmly established.1 The 

diffusion of the methodological viewpoint favored by Riemann and Dedekind was 

difficult and slow since the only available means, given the circumstances, was 

their published work. Besides this, only Dedekind’s rich correspondence with such 

mathematicians as Heinrich Weber, Frobenius and Cantor could have been instru¬ 

mental in spreading that standpoint. It is worth mentioning that it might be quite 

interesting to study H. Weber as a key figure in the diffusion of the conceptual 

approach.2 

1 Klein tried to bring farther the tradition of Gauss and Riemann, but he conceived for himself 

a role that was much broader and more ambitious than that of a school leader. And the impressive 

number of mathematicians who studied with Hilbert may not constitute a school, strictly speak¬ 

ing. For details and nuances concerning this period, the reader should consult [Rowe 1989], 

2 He was strongly influenced by Riemann’s work and by his collaboration with Dedekind 

(chap. Ill), and led an active academic career in Konigsberg (where he counted Hilbert among his 

students), Gottingen and Strassburg, among other places. He was also extremely influential 

through several important textbooks. 
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5. The Berlin School, 1855-1870' 

Berlin University, founded 1810, soon turned into the most important university in 

Prussia and all the German-speaking countries. Gauss might have ended up being a 

professor there, since Alexander von Humboldt made two attempts to bring him to 

Berlin, in the 1800s and 1820s.1 2 The already mentioned Martin Ohm became an 

extraordinary professor in 1824 (and was named “ordinary” professor in 1839, at 

the same time as Dirichlet). But the situation in mathematics was not notable until 

1828, when Humboldt and Crelle began to play an important role in their respective 

positions as court counselor and adviser on mathematics for the ministry. There was 

a tragically failed attempt to bring Abel to Berlin in 1829, the year of his death. But 

with Dirichlet and, from 1834, Jacob Steiner,3 lectures of a high level began to be 

offered. Dirichlet is usually considered to have shaped modem-style mathematics 

lectures, and also established an informal seminar with selected groups of students. 

As we have seen, however, there was the grotesque situation that he could not take 

part in doctorates and Habilitationen until 1851. The situation for mathematics 

became even better in 1844, when Jacobi came from Konigsberg to Berlin as a 

member of the Academy. The Academy of Sciences had been the most important 

scientific center in Berlin up to 1800, and it was a notable support for the new Uni¬ 

versity, since its members enjoyed the right to impart lectures. This possibility was 

exploited by Jacobi during his Berlin period, as it was by other mathematicians 

before and after.4 

Berlin had thus turned into an ever more important center for mathematics since 

about 1830. But the situation became even better and the actors changed completely 

in the 1850s, following the death of Jacobi in 1851 and Dirichlet’s transfer to Got¬ 

tingen in 1855. That same year, the specialist in number theory Ernst Eduard 

Kummer became Dirichlet’s successor, on his proposal. Kummer regarded himself 

as a disciple of Dirichlet, although he never attended one of his lectures. He had 

studied mathematics and philosophy at Halle in the late 1820s, becoming a corres¬ 

ponding member of the Berlin Academy in 1839, through Dirichlet’s proposal, on 

the basis of important work on the hypergeometric series. By then, he was still a 

Gymnasium teacher, but in 1842 he became professor at Breslau on the recommen¬ 

dation of Jacobi and Dirichlet. In this decade he began his path-breaking work on 

1 The name was coined in the 19th-century, and it is interesting to consider that, by then, the 

word “school” frequently had a negative ring, connoting a one-sided orientation. In this case, it 

may have also referred to the extremely powerful position of the school in academic matters. 

2 His purpose was to make him a professor at a new Polytechnical School that he was at¬ 

tempting to launch, as happened with Dirichlet and Abel later. Dirichlet was the only one who 

actually came to Berlin, becoming a professor at the University after Humboldt’s plans failed. 

See [Biermann 1973,21-27], 

3 Steiner (see §3) was also a protege of Humboldt and Crelle. He became an extraordinary pro¬ 

fessor and member of the Berlin Academy of Sciences in 1834. 

4 University professors customarily were members of the Academy. Among the mathemati¬ 

cians, this was only false for M. Ohm [see Biermann 1973]. 
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ideal numbers, that will be mentioned in chapter III; in the 1860s he made impor¬ 

tant contributions to geometry.1 For our purposes, it is important to emphasize that 

Kurnmer stressed more the formal and calculational aspect of mathematics, than its 

conceptual side (see [Haubrich 1999]). One may conjecture that this would have 

been different, had he been a real student of Dirichlet. 

A devoted teacher, Kurnmer became the driving force behind the new institu¬ 

tional arrangements at Berlin, which fully implemented the characteristically Ger¬ 

man combination of teaching and research. The institution of the seminar, created 

by the neohumanist philologists, had been adapted to the natural sciences at some 

places, as was the case with the famous Konigsberg mathematico-physical seminar 

of Jacobi and Neumann, established in 1834. Kurnmer and his colleague Weier- 

strass were the first to create a seminar devoted to pure mathematics. This happened 

in 1861 and was, together with the high quality and novelty of Weierstrass’s lec¬ 

tures, the reason for the immense appeal that Berlin exerted on young mathemati¬ 

cians throughout the world in the following decades. Karl Weierstrass, a completely 

unknown Gymnasium teacher, became a rising star after the publication of his first 

paper on Abelian functions in 1854. Until then, his mathematical education had 

been uncommon: he was basically self-taught, although he spent some time at an 

Academy in Munster, where the influence of his teacher Gudermann was notable. 

Interestingly, Gudermann was a follower of the combinatorial tradition (see [Man¬ 

ning 1975]), and some aspects of Weierstrass’s work - particularly his eternal reli¬ 

ance on infinite series - are reminiscent of that tradition.2 Weierstrass was also 

deeply influenced by the work of Jacobi and Abel on elliptic functions. In 1854 he 

received an honoris causa from Konigsberg, and Kurnmer began to care for his 

becoming a professor at Berlin. In 1856 he was appointed to Berlin’s Industrial 

Institute (later the Technical School), while rejecting offers from Austrian universi¬ 

ties; months later Kurnmer had obtained him a position as extraordinary professor, 

and full membership in the Academy. But it was not until 1864 that he became full 

professor and abandoned the Industrial Institute. 

Kurnmer and Weierstrass were in close personal and scientific contact with 

Leopold Kronecker, a wealthy man who lived privately at Berlin from 1855, and in 

1861 also became member of the Academy with the right to teach. Kronecker knew 

Kurnmer from his Gymnasium years, when the latter stimulated his mathematical 

interests; he studied at the University of Berlin, where he took his doctorate in 

1845, but also spent two semesters at Breslau, again with Kurnmer. In this way, 

Kronecker received a strong influence from both Dirichlet and Kurnmer, but some 

aspects of his work, particularly his interest in algorithms and effective calculation, 

bring him closer to the latter. In 1881, on the occasion of the 50th anniversary of 

1 See Biermann’s biography in [Gillispie 1981, vol. 7], or [Bierman 1973]. 

2 It would require a careful analysis to ascertain the depth of this influence, but it is clear from 

the outset that Weierstrass did not treat series in a purely formal way, as the combinatorialists, 

but rather viewed them in the ‘conceptual’ way of Abel and Cauchy (see [Jahnke 1987; 1991]). 

On the other hand, he was of the opinion that not all traits of the “combinatorial school” had been 

lost, as Hilbert recorded in his 1888 trip to Berlin (quoted in [Rowe 1995, 546]). 
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Kummer’s doctorate, he said that Kummer had provided the “most essential por¬ 

tion” of “my mathematical, indeed ... my intellectual life.”1 In 1883 he became a 

professor, after his teacher retired, but already in the 1860s and 70s he had gained 

an ever more influential position on university affairs, in Berlin and elsewhere in 

Prussia - and, after 1871, the Empire. 
The triumvirate turned Berlin into a world-renowned center. Weierstrass and 

Kummer established a coordinated, biennial structure of the university courses, 

which was in effect from 1864 to 1883. Kummer covered fundamental, well- 

established subjects such as elementary number theory, analytical geometry, the 

theory of surfaces, and mechanics, leaving his research topics for the seminar. His 

clear lectures were followed by as many as 250 students, an impressive number that 

Weierstrass eventually equaled. Weierstrass, like Kronecker, normally lectured on 

advanced research topics: analytic functions, elliptical and Abelian functions, and 

calculus of variations. With his sense for rigorous logical development and sys¬ 

tematization, he arranged his lectures so that he could build on what he had already 

proven, and thus he hardly cited other sources. Kronecker, on the other hand, was a 

demanding and less careful teacher, who had few students and lectured on the the¬ 

ory of algebraic functions, number theory, determinants and integrals. 

To some extent, there was a continuity between this and the previous genera¬ 

tion, since Dirichlet’s words on Jacobi can also be applied to the lectures of Weier¬ 

strass and Kronecker (and to Kummer’s seminar activities): 

It was not his style to transmit again the closed and the traditional; his courses moved totally 

outside the limits of textbooks, and dealt only with those parts of the discipline in which he 

worked creatively himself...2 

Such was the atmosphere in which Georg Cantor received his education as a 

mathematician, from 1863 to 1869. By this time, Berlin was reaching the height of 

its power, being led by a harmonious group of mathematicians who offered the 

most advanced course of studies in Germany. Cantor earned his doctorate in 1867 

under Kummer, and his 1869 Habilitation was also on a topic in number theory, 

enjoying the guidance of Kummer and Kronecker. Soon, however, he would devote 

himself to the theory of trigonometric series, and the influence of Weierstrass 

played an essential role in all of his work. 

As regards the characteristic methodological traits and mathematical style of the 

Berlin school, one may begin by saying that it was Kronecker and Weierstrass who 

expressed more openly and clearly their preferences. They shared a number of 

fundamental ideas, especially in the early period, up to about 1870. Both were stern 

partisans of the conception that mathematics must be rigorously developed starting 

1 As quoted by Bennann in [Gillispie 1981, vol. 7, 523]. 

2 [Dirichlet 1889, vol. 2, 245]: “Es war nicht seine Sache, Fertiges und Ueberliefertes von 

neuem zu iiberliefern, seine Vorlesungen bewegten sich sammtlich ausserhalb des Gebietes der 

Lehrbucher, und unfassten nur diejenigen Theile der Wissenschaft, in denen er selbst schaffend 
aufgetreten war...” 
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from purely arithmetical notions. This was an idea that they shared with Dirichlet 

(see [Dedekind 1888, 338]), an idea that could also be found earlier in the work of 

Ohm (§2).1 Nevertheless, the arithmetizing legacy of Dirichlet was taken up in 

diverging ways: in Dedekind it was tinged with abstract connotations, which ex¬ 

press themselves in a determined acceptance of the set-theoretical standpoint; in 

Weierstrass it was adapted to the formal conceptual viewpoint - accepting the irra¬ 

tional numbers, but emphasizing the point of view of infinite series (see below and 

§IV.2); in the case of Kronecker, arithmetization came to be understood more radi¬ 

cally, meaning reduction to the natural numbers, but without the use of any infini- 

tary means, be they series or sets. This difference of opinion between Weierstrass 

and Kronecker began to show up around 1870, and led to a growing estrangement 

in the late 1870s and, above all, the 1880s.2 

Weierstrass and Kronecker also shared a dissatisfaction with ‘generalist’ view¬ 

points in mathematics. They took pains to carefully consider the variety of particu¬ 

lar cases that can show up in any mathematical topic. This can be seen in the atten¬ 

tion that Weierstrass and his disciples paid to ‘anomalous’ functions - i.e., the fa¬ 

mous examples of nowhere differentiable continuous functions. This feature has 

been considered in detail by Hawkins [1981] in connection with the work of Fro- 

benius and Killing, both members of the Berlin school. Hawkins takes as a model 

Weiertrass’s 1868 theory of elementary divisors. It had been common to deal with 

issues in algebraic analysis in a so-called ‘general’ way, as if there were no singular 

types of situations for particular values of the arguments. Weierstrass’s theory of 

elementary divisors showed how to deal with those issues in a detailed way, paying 

attention to all possible special cases; as Kronecker said in an 1874 paper inspired 

by that theory, 

It is common - especially in algebraic questions - to encounter essentially new difficulties 

when one breaks away from those cases which are customarily designated as general. As 

soon as one penetrates beneath the surface of the so-called singularities, the real difficulties 

of the investigation are usually first encountered but, at the same time, also the wealth of 

new viewpoints and phenomena contained in its depths.3 

1 It is likely that Ohm’s ideas were influential on Weierstrass and Dedekind, in both cases be¬ 

fore 1855, i.e., before they established closer contact with leading mathematicians. This would 

explain similarities in their treatment of the elements of arithmetic (chapter IV). As we saw, 

Weierstrass may have been influenced by the combinatorial tradition, to which Ohm was close; 

Dedekind’s teacher Stern was also influenced by Ohm and the combinatorialists, and his Habili- 

tation lecture of 1854 is strongly reminiscent of Ohm (see also VII. 1). 

2 See [Biermann 1973] [Dugac 1973, 141^46, 161-63]. By 1884, Kronecker was promising to 

show the “incorrectness” [Unrichtigkeit] of all those reasonings with which “so-called analysis” [die 

sogenannte Analysis] works [Dauben 1979, 314], Such comments affected Weierstrass strongly, and 

led him to fear that his mathematical style would disappear after his death, but he did not have the 

strength to defend his viewpoint publicly. 

3 As translated in [Hawkins 1981,237]. 
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Or, as he said in 1870, “all those general theorems have their hideout, where they 

are no longer valid.”1 This philosophy of paying a close attention to special cases 

may have reinforced constructive tendencies in the Berlin school. 

Thus, the new group of Berlin professors pursued an approach to mathematics 

that is quite different from the abstract conceptual one, that we have seen in asso¬ 

ciation with the names of Riemann and Dedekind. The Berlin standpoint can also 

be called ‘conceptual,’ particularly in the case of Weierstrass, who followed in the 

tradition of Cauchy and Dirichlet. But it did not share what we have called the 

‘abstract’ turn, typical of Riemann. The differences between the Gottingen group 

and the Berlin school become evident when we consider the Berlin analogues of the 

basic notions, employed by Riemann and Dedekind, that we mentioned in the pre¬ 

vious section. In his theory of analytic functions, Weierstrass defined them as those 

functions which are locally representable by power series. This allowed him to base 

the theory upon clear arithmetical notions, and to elaborate its first rigorous treat¬ 

ment. A necessary prerequisite was the principle of analytic continuation, which 

made it possible to ‘reconstruct’ the entire function from its local power-series 

representation. Weierstrass was able to establish that principle, thus creating a 

method for generating, from a given local representation or “element,” a chain of 

new “analytic elements” defining the entire function.2 

Of course, this is what Riemann would have called an approach which starts 

from “forms of representation” or “expressions,” precisely what he was trying to 

avoid. Weierstrass, on the other hand, although admitting that Riemann’s definition 

was essentially equivalent to his, criticized its reliance upon the notion of differen¬ 

tiable real function. This was not satisfactory because, at that time, the class of 

differentiable functions could not be precisely delimited (see [Pincherle 1880, 317- 

318]). Weierstrass’s approach reduced the whole issue to representability by means 

of a perfectly specific class of series. Actually, it is clear in his work an interest in 

defining whole classes of functions by means of representability theorems using 

well-known simple functions. An interesting example is his 1885 theorem on the 

representation of continuous functions, in a closed interval, by an absolutely and 

uniformly convergent series of polynomials [Weierstrass 1894/1927, vol. 3, 1-37], 

This is quite obviously a constructive trait in Weierstrass’s approach to analysis. 

Riemann, on the contrary, regarded differentiability and the Cauchy-Riemann 

equations as perfectly precise conditions, in an abstract sense. His approach was 

superior in that it yielded a direct, global overview of the multi-valuedness of com¬ 

plex functions. It was inferior insofar as it raised problematic issues and was not 

easily to amend or treat with complete rigor. To sum up, in contrast to Riemann’s 

preference for global, abstract characterizations, Weierstrass was in favor of a local, 

relatively constructive approach. Borrowing the then-frequent terms ‘form’ and 

‘formal,’ we may refer to Weierstrass’s viewpoint as a formal conceptual one. In 

1 [Meschkowski 1969, 68]: “All solche allgemeinen Satze haben ihre Schlupfwinkel, wo sie 

nicht mehr gelten.” But here he was referring to the Bolzano-Weierstrass theorem! 

2 On Weierstrass’s theory, see [Dugac 1973] and [Bottazzini 1986]. 



§5. The Berlin School 37 

calling it ‘conceptual,’ I wish to emphasize that, in spite of his preference for repre- 

sentability theorems, he was no strict constructive. The conceptual element was 

clearly present in the notions Weierstrass established as the foundation of analysis, 

for instance his definition of the real numbers (chap. IV) and the Bolzano-Weier- 
strass theorem (below and chap. VI). 

The latter were elements that would come under severe criticism on the side of 

Kronecker. Although he and Weierstrass shared common points, they followed 

divergent lines of development, perhaps because of their dedication to such differ¬ 

ent fields. Kronecker came to advocate a radical arithmetization of the whole of 

mathematics, in the sense of acknowledging only the natural numbers and the alge¬ 

bra of polynomials, and requiring effective algorithms in connection with all the 

notions employed (see [Edwards 1989]). In a 1887 paper, Kronecker wrote: 

And I also believe that some day we will succeed in “arithmetizing” the whole content of 

these mathematical disciplines [algebra, analysis], i.e., in basing them exclusively upon the 

notion of number, taken in the most restricted sense, and thus in eliminating again the modi¬ 

fications and extensions of this notion [note: I mean here especially the addition of irrational 

and continuous magnitudes], which have mostly been motivated by applications to geometry 

and mechanics.1 

This is a sharp criticism of the theories of irrational numbers proposed by Weier¬ 

strass, Cantor and Dedekind (§IV.2). Kronecker regarded them as meaningless 

since they went beyond what is algorithmically definable from the natural numbers, 

depending upon the actual infinite instead. But the differences had already began to 

emerge around 1870. In his Berlin lectures, Weierstrass employed the Bolzano- 

Weierstrass theorem as a keystone; its proof was based on the principle that, given 

an infinite sequence of closed intervals of 08., embedded on each other, at least one 

real number belongs to all of them. Around 1870, Kronecker started to attack this 

principle and the conclusions drawn from it, as we know from Schwarz’s letters to 

Cantor. He regarded the Bolzano-Weierstrass principle as an “obvious sophism,” 

and was convinced that it would be possible to define functions “that are so unrea¬ 

sonable” that, in spite of satisfying all the conditions for the Bolzano-Weierstrass 

theorem, they would have “no upper limit.”2 Schwarz and Cantor, however, were 

on the side of Weierstrass and defended his principle as indispensable for analysis. 

1 [Kronecker 1887, 253]: “Und ich glaube auch, dass es dereinst gelingen wird, den ge- 

sammten Inhalt aller dieser mathematischen Disziplinen zu ‘arithmetisieren,’ d.h. einzig und 

allein auf den irn engsten Sinne genommenen Zahlbegriff zu griinden, also die Modification und 

Erweiterungen dieses Begriffs [Ich meine hier namentlich die Hinzunahme der irrationalen sowie 

der continuirlichen Grossen] wieder abzustreifen, welche zumeist durch die Anwendungen auf 

die Geometrie und Mechanik veranlasst worden ist.” 

2 [Meschkowski 1967, 68]: “Kronecker erlclarte ... die Bolzanoschen Schltisse als offenbare 

Trugschliisse” “dass man Funktionen wird aufstellen konnen, die so unvernunftig sind, dass sie 

trotz des Zutreffens von Weierstrass’ Voraussetzungen keine obere Grenze haben.” See [op.cit., 

239-40], 
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Kronecker can thus be regarded as the first constructivist, and it is only natural 

that his approach to algebraic number theory would be extremely different from 

Dedekind’s. The latter preferred a radically abstract, infinitistic approach employ¬ 

ing the notion of set. The former, not less radically, favored a constructivist, finitis- 

tic viewpoint. At the same time, both were extremely concerned about questions of 

mathematical rigor. The first basic notion that both needed, in the context of alge¬ 

braic number theory, was that of field. Whereas Dedekind defined it extensionally, 

as a certain set closed for algebraic operations, Kronecker defined it algorithmi¬ 

cally: a “domain of rationality” [Rationalitatsbereich] is the totality of all “magni¬ 

tudes” that are rationally representable over RJ by means of a finite set of genera¬ 

tors R \ R", R"', ... Of course, that ‘totality’ is conceived as a potential infinity, not 

an actually existing set. Dedekind would have objected that Kronecker's definition 

is based on “form of representation ... that could, with the same right, be replaced 

by infinitely many other forms of representation,” replacing R \ R ", R ... by other 

sets of generators (see [Lipschitz 1986, 59-60; Dedekind 1895]). 

The differences become even clearer when we consider the notions employed 

by both mathematicians in order to solve the main problem of algebraic number 

theory. In Kronecker’s eyes, Dedekind’s ideals were mere “symbols,” and his ap¬ 

proach was a “formal” one, since he did not grant the existence of infinite sets; 

meanwhile, Dedekind regarded them as “totally concrete objects” (see [Edwards, 

Neumann & Purkert 1982, 61]). Instead of ideals, i.e., sets of complex numbers 

with a certain structure, Kronecker relied on “divisors” that were not defined di¬ 

rectly, but in association with certain “forms” or polynomials. Using modem lan¬ 

guage, we can say that, in order to study the integers of a certain field K, Kronecker 

relied on the ring of polynomials K[x, x j x", ...]. The variables x, x', ... are intro¬ 

duced only formally and attention is focused on the coefficients. What is important 

is that those “forms” or polynomials make it possible to elaborate a method for the 

effective construction of the required divisors (see [Edwards 1980]). As Dedekind 

said, the introduction of polynomials in the development of algebraic number the¬ 

ory “always seems to me an auxiliary means that is foreign to the issue” and “mud¬ 

dies the purity of the theory” [Dedekind 1895, 53, 55], If such a method affords 

interesting results, there must be a deeper reason that can be formulated in ‘pure’ 

number-theoretical terms. 

On the basis of Weierstrassian analysis, Cantor found the possibility of devel¬ 

oping a theory of sets and infinity, but this led him to pursue a more abstract view¬ 

point, trespassing the limits set on mathematical research by the Berlin school. That 

provoked a strong negative reaction on the side of Kronecker, but even Weierstrass 

questioned Cantor’s introduction of quantitative differences among infinite sets, and 

he never openly defended the work of his former student. As we shall see, Cantor’s 

abstract turn can be related to the increasing influence of Riemann and Dedekind.1 

1 By the 1880s, as a result of theoretical differences mixed with personal difficulties, Cantor 

came to feel confronted with the Berlin school as a whole. In an 1895 letter to Hermite, he denied 

being a member of the school and stated that the mathematician he felt closer to was Dirichlet 

[Purkert & Ilgauds 1987, 195-96], 
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Manifolds 

Shyness, a natural consequence of his earlier sheltered life [as a child], ... 

never left him completely ... and frequently moved him to abandon him¬ 

self to solitude and to his mental universe, in which he unfolded [his 

thoughts with] the greatest boldness and lack of prejudices.1 

In mathematics, the art of posing questions is more consequential than 

that of solving them.2 

In this chapter we trace back the first influential appearance of a set-theoretical 

viewpoint to the work of Riemann. Of course, by speaking of “a set-theoretical 

viewpoint” I do not mean to suggest that Riemann reached technical results that we 

would classify today as belonging to set theory - only that he introduced set lan¬ 

guage substantially in his treatment of mathematical theories and regarded sets as a 

foundation for mathematics. This comes out in a public lecture given in 1854, on 

the occasion of his Habilitation as a professor at Gottingen, when he proposed a 

general notion of manifold - the famous ‘On the Hypotheses upon which Geometry 

is Founded,’ published posthumously by Dedekind in 1868. We shall refer to it as 

Riemann’s Habilitationsvortrag. 

Mentioning Riemann in connection with the history of sets is still quite 

uncommon, but there are indications that he played an important role in the early 

phases of development of the notion of set. From 1878 to 1890, his most creative 

period, Cantor referred to set theory as Mannigfaltigkeitslehre, the ‘theory of 

manifolds,’ employing the same word that Riemann had coined in his lecture of 

1854. Notably, the 1878 paper in which Cantor first employs the word addresses a 

problem that is directly related to Riemann’s Habilitationsvortrag, the characteri¬ 

zation of dimension. And Dedekind understood Cantor’s terminology to be related 

to the work of his close friend Riemann. In a letter of 1879, Dedekind proposed to 

1 [Dedekind 1876, 542]: "die Schuchternheit, ... eine natiirliche Folge seines friiheren ab- 

geschlossenen Lebens, ... hat ihn auch spater nie ganzlich verlassen und oft angetrieben, sich der 

Eisamkeit und seiner Gedankenwelt zu iiberlassen, in welcher er die grosste Kiihnheit und Vor- 

urtheilslosigkeit entfaltet hat." 

2 [Cantor 1932, 31]: “In re mathematica ars proponendi quaestionem pluris facienda est quam 

solvendi.” 
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replace the clumsy word ‘Mannigfaltigkeit’ by the shorter ‘Gebiet’ [domain] which, 

he said, is “also Riemannian” [Cantor & Dedekind 1937, 47]. A decade later, 

Dedekind kept mentioning ‘Mannigfaltigkeit’ as a synonym for set [Dedekind 

1888, 344], So it seems clear that both Dedekind and Cantor interpreted Riemann’s 

notion of manifold as the notion of set. This suggests that it may be important to 

analyze carefully the origins, scope and implications of Riemann’s new concept, as 

will be done in the present chapter. It is actually a basic thesis of this work that 

Riemann’s ideas, and above all his new vision of mathematics and its methods, 

influenced both Dedekind and Cantor (see chapters III, IV and VI). 

In order to properly understand the origins of Riemann’s new notion, we shall 

discuss the contributions of the two men that he regarded as his predecessors in this 

respect: Gauss and Herbart. We will also consider the traditional definition of 

mathematics as a theory of magnitudes [Grossenlehre], for Riemann explicitly 

presents his manifolds within this context. But the general definition of manifold, as 

given in the Habilitationsvortrag of 1854, is particularly difficult to interpret. In §2 

we shall deal with a necessary prerequisite for satisfactory understanding, namely 

the ideas of traditional logic; in fact, that section constitutes an important back¬ 

ground for much of the present book, since it explains how the notion of set was 

related to logic from 1850 to the early decades of the 20th-century. 

Figure 2. Bernhard Riemann (1826-1866) in 1863 
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Having done that, it will become possible to analyze Riemann’s contribution. §3 

considers the mathematical context in which his new notion was forged, and the 

way in which it seems to have emerged. Then, we will consider Riemann's indica¬ 

tions about how arithmetic and topology would be founded upon the notion of 

manifold, and, finally, the ways in which these contributions were influential upon 

the history of sets. The last section discusses the impact of Riemann’s ideas on his 

colleague and friend Dedekind, constituting a bridge to chapter III. 

1. The Historical Context: Grossenlehre, Gauss, and Herbart 

Part I of Riemann’s Habilitationsvortrag, which sets out the notion of an n- 

dimensional manifold, begins by asking for indulgence, since the author lacks 

practice “in such tasks of a philosophical nature” [Riemann 1854, 273], The imme¬ 

diate motivation for this incursion into the alleged realm of philosophy is the need 

of a deeper understanding of “multiply expanded magnitudes,” the need to derive 

this concept from “general concepts of magnitude” [op.cit., 272], Riemann thus 

conceives of his manifolds as intimately related to the notion of magnitude, in fact 

he establishes the new notion of manifold as the basis for a general, abstract theory 

of magnitudes [op.cit., 274], On the other hand, the only brief indications on how to 

confront his task can be found in the work of Gauss and Herbart, two Gottingen 

professors. We proceed to analyze the elements of this historical context. 

1.1. Mathematics as Grossenlehre. One should keep in mind that, by the mid- 

19th-century, it was still common to define mathematics as the science of magni¬ 

tudes. That was the customary definition up to that century, following the ancient 

Greek conception. Aristotle, for instance, distinguished two kinds of magnitudes, 

discrete and continuous, including number among the former, line, surface and 

body among the latter (Categories, 4b 20). In his view, mathematical propositions 

deal with magnitudes and numbers (.Metaphysics, 1077b, 18-20). This viewpoint 

offered a satisfactory overview of elementary mathematics, since it included the 

historical roots of this discipline, arithmetic and geometry, under a common con¬ 

ception. As is well known, beginning around 1600, with the work of Stevin and 

many other authors, magnitude and (real) number became coextensive [Gericke 

1971], 
This venerable definition of mathematics can be found again in Euler's Algebra, 

which begins with the following words: 
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First, everything will be said to be a magnitude, which is capable of increase or diminution, 

or to which something may be added or substracted. ... mathematics is nothing more than the 

science of magnitudes, which finds methods by which they can be measured. 

To give a couple more examples taken from German works of the 19th-century, we 

may refer to mathematical dictionaries. In the first decade of the century, Kliigel, a 

professor at the University of Halle, defined "magnitude (quantitas, quantum) as 

"that which is compound of homogeneous parts"; everything, in reality or in imagi¬ 

nation, that possesses the property of being such a compound is an object of 

mathematics, which is thus properly called the "theory of magnitudes."1 2 Even after 

1850, Hoffmann's dictionary defines mathematics as the "theory of magnitudes, the 

science of the magnitudes, which may be numerical magnitudes or spatial magni¬ 

tudes," corresponding to the distinction between the discrete and the continuous. 

With Hoffmann, a magnitude is again that which may be augmented or dimin¬ 

ished.3 
This traditional definition was not only common in dictionaries, but kept being 

employed by research mathematicians. We shall see that Gauss still spoke of a 

theory of magnitudes in connection with numbers and pure mathematics. We will 

see, however, that in emphasizing the possibility of an abstract theory of magni¬ 

tudes, and the need for topological investigations, he was going beyond the tradi¬ 

tional viewpoint, stretching it to include radical novelties. The same happens to a 

far greater extent with Riemann, but similar moves can also be found in authors 

such as Bolzano, Grassmann and Weierstrass. In fact, reconceiving the idea of a 

magnitude seems to have been one of the ways in which 19th-century mathemati¬ 

cians introduced novel abstract viewpoints and advanced toward the notion of set. 

Riemann meant his manifolds to become a new, clearer and more abstract foun¬ 

dation for mathematics, which is consistent with his strong interest in philosophical 

issues and with his conception of mathematical methodology (§1.4). Unfortunately, 

this has normally not been taken into account by historians,4 probably because they 

find difficulties in interpreting his - for us - obscure definition of a manifold (see 

§2), and because one can comfortably resort to modem concepts of differential 

1 [Euler 1796, 9]: “Erstlich wird alles dasjenige eine Grosse genennt, welches einer Vermeh- 

rung oder einer Verminderung fahig ist, oder wozu sich noch etwas hinzusetzen oder davon 

wegnehmen lasst. ... indent die Mathematic iiberhaupt nichts anders ist als eine Wissenschaft der 

Grossen, und welche Mittel ausfiindig macht, wie man dieselben ausmessen soli.” 

2 [Kliigel 1803/08, vol. 2, 649]: "Grosse (Quantitas, Quantum) ist, was aus gleichartigen 

Theilen zusammengesetzt ist. ... Mathematik ... heisst daher ganz schicklich die Grossenlehre." 

Incidentally, we may mention that Kliigel revealed some influence of the combinatorial school, 

for instance when he modified that definition under the entry "mathematics," saying that this was 

the science of the "forms of magnitudes" [op.cit., vol. 3, 602], forms being equivalent to func¬ 

tions [op.cit., vol. 1, 79], 

3 [Hoffmann 1858/67, vol. 4, 144]: "Mathematik ist Grossenlehre, die Wissenschaft von den 

Grossen deren es Zahlengrossen und Raumgrossen gibt." [op.cit., vol. 3, 225]: "Grosse wird 

vielfach erklart als Dasjenige, welches sich vermehren und vermindern lasst." 

4 With the exception of the recent work of Laugwitz [1996]. 
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geometry while trying to interpret the Habilitationsvortrag. Nevertheless, Rie- 

mann's contemporaries had no option but to understand his own definitions, and, at 

a time when the foundations of mathematics were unclear, his comments on the 

issue should have caught the attention of at least some readers. 

1.2. Gauss on complex numbers and “manifolds.” In part I of his Habilitations¬ 

vortrag on geometry, Riemann [1854, 273] mentions that the only previous work of 

some relevance that he has had access to is a few short indications of Gauss, and 

some philosophical investigations of Herbart. 

When Riemann quotes Gauss's works in his Habilitationsvortrag, he clearly 

differentiates those linked to differential geometry, and those related to the general 

notion of manifold [Riemann 1854, 273, 276]. According to him, some indications 

that are relevant to the issue of manifolds can be found in an 1832 paper on 

biquadratic residues, in the 1831 announcement of that paper [Gauss 1863/1929, 

vol. 2, 93-148 and 169-78], and in the 1849 proof of the fundamental theorem of 

algebra, read by Gauss on the occasion of his doctorate's golden jubilee [op.cit., 

vol. 3, 71-102], The common trait of these works is that all of them deal with the 

complex numbers. It seems likely that Riemann had carefully studied them already 

by the time of his dissertation, 1851. In §3.1 we will see Gauss indicating the need 

of a theory of topology, in the context of his 1849 proof; part I of Riemann’s lec¬ 

ture was actually devoted to a discussion of fundamental concepts of topology on 

the basis of the notion of manifold (see [Riemann 1854, 274]). 

It is well known that Gauss played an important role in the full acceptance of 

the complex numbers, with the above-mentioned 1831 and 1832 papers.1 The im¬ 

mediate motivation for this contribution was a question in number theory, 

biquadratic residues, where Gauss found it necessary to expand the field of higher 

arithmetic and study the number theory of the Gaussian integers, a+bi with a,be 7L 

(§111.3). Anticipating criticism of this step, which might seem “shocking and un¬ 

natural” to some [1863/1929, vol. 2, 174], he decided to defend the full acceptabil¬ 

ity of complex numbers as mathematical objects. As we shall see in §3.1, Gauss 

seems to have relied on the idea of the complex plane since 1799.2 

Gauss regarded the interpretation of complex numbers as points in a plane as a 

mere illustration of the much more abstract meaning of complex numbers. He ar¬ 

gues that some physical situations afford an occasion for employing a particular 

kind of numbers, and some not. It suffices that there be situations where fractional 

parts or opposites occur, to make full sense of a theory of fractions or of negative 

numbers. The same happens with complex numbers, which, in his view, only find 

application when we are not dealing with substances, but with relations between 

1 The wide diffusion of the geometrical representation only took place around 1830, with the 

publication of some treatises in France and England, and then with the contribution of Gauss. See 

[Nagel 1935, 168-77; Pycior 1987, 153-56; Scholz 1990, 293-99]. Some interesting comments 

can be found in [Hamilton 1853, 135-37], 

2 The treatment of complex functions as conformal mappings, given by Gauss in 1825 (see 

§3.1), was also dependent on the idea ofthe complex plane [Gauss 1863/1929, vol. 2, 175], 
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substances [Gauss 1863/1929, vol. 2, 175-76], The use of real and complex units 

for measurement is required 

if the objects are such that they cannot be ordered into a single unlimited series, but only into 

a series of series, or, what comes to the same, if they fonn a manifold of two dimensions; 

and if there is a relation between the relations among the series, or between the transitions 

from one to the other, which is similar to the already mentioned transitions from one member 

of a series to another one belonging to the same series ... In this way, it will be possible to 

order the system doubly into series of series. 

The mathematician abstracts entirely from the quality of the objects and the content of 

their relations; he only occupies himself with counting and comparing their relations to each 

other.1 

We can here observe in some detail what Gauss meant by an abstract theory of 

magnitudes. In the 1832 treatise on biquadratic residues Gauss again uses the ex¬ 

pression ‘manifold of two dimensions.’2 

In the previous quotation, Gauss understands by a manifold a system of objects 

linked by some relations, the dimensionality of the manifold depending on proper¬ 

ties and interconnections of the relations. Though this is not the way in which Rie¬ 

mann conceived of manifolds in unpublished manuscripts of 1852/53 (§§1.3 and 

3.2), Gauss was calling attention to the properties that a physical system must have 

in order to be regarded as a 2-dimensional manifold, and this is part of what Rie¬ 

mann tried to analyze. Gauss suggested the terminology, the topological point of 

view, and some embryonic ideas on dimensionality. 

Toward the end of his 1831 paper, Gauss mentions the possibility of relations 

among things that give rise to a manifold of more than two dimensions [1863/1929, 

vol. 2, 178]. In lectures of the 1850s [Scholz 1980, 16-17] one can find indications 

of the possibility of n-dimensional manifolds, though without making explicit a 

satisfactory foundation. Actually, a move to notions of n-dimensional geometry 

was not infrequent in the early 19th-century, within the context of analytic or alge¬ 

braic problems involving n variables [Scholz 1980, 15-19], Several mathematicians 

1 This text is somewhat reminiscent of Cantor’s work [1932, 420-39] on /i-ply ordered sets. 

[Gauss 1863/1929, vol. 2, 176]: “Sind aber die Gegenstiinde von solcher Art, dass sie nicht in 

Eine, wenn gleich unbegrenzte, Reine geordnet werden konnen, sondern nur in Reihen von 

Reihen ordnen lassen, oder was dasselbe ist, bilden sie eine Mannigfaltigkeit von zwei Dimen¬ 

sioned verhalt es sich dann mit den Relationen einer Reihe zu einer andem oder den Ueber- 

gangen aus einer in die andere auf eine ahnliche Weise wie vorhin mit den Uebergangen von 

einem Gliede einer Reihe zu einem andem Gliede derselben Reihe, so bedarf es offenbar zur 

Abmessung ... ausser den vorigen Einheiten +1 und -1 noch zweier andern ... +;' und -/. ... Auf 

diese Weise wird also das System auf eine doppelte Art in Reihen von Reihen geordnet werden 

konnen. / Der Mathematiker abstrahirt ganzlich von der Beschaffenheit der Gegenstande und 

dem Inhalt ihrer Relationen; er hat es bloss mit der Abzahlung und Vergleichung der Relationen 
unter sich zu thun.” 

2 [Op.cit., vol. 2, 110]: "varietates duarum dimensionum." It is perhaps convenient to remind 

the reader that 'varietates' is the most adequate Latin translation of 'manifold;' accordingly, the 

name for this notion is 'variete' in French, 'variedad' in Spanish. 
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- Lagrange, Cauchy, Jacobi, Gauss - found it advantageous to employ geometrical 

language in order to clarify the analytical relations under study. By the mid¬ 

century, the British algebraists Cayley, Sylvester and Salmon made a similar move 

in their studies of homogeneous functions. In all of those cases ^-dimensional lan¬ 

guage was introduced only by analogy and, so to say, metaphorically. A different 

case is that of Grassmann’s attempt at a pure ^-dimensional geometry [Grassmann 

1844], since the move is here meant literally, just like in Riemann’s lecture; but 

there is no reason to think that Riemann knew of Grassmann’s work. 

1.3. Herbart on objects as ‘complexions’ of properties. Originally, Riemann 

matriculated at Gottingen in theology and philology, although within a year he 

shifted to mathematics. Interest for philosophical topics, however, never abandoned 

him, and in the early 1850s he studied closely the work of Johann Friedrich Her¬ 

bart, a professor at Gottingen until 1841. Reference to that work in Part I of the 

Habilitationsvortrag suggests how highly he valued Herbart’s ideas; a manuscript 

note that he left is clear enough: 

The author is a Herbartian in psychology and the theory of knowledge (methodology and 

eidology), but for the most part he cannot embrace Herbart’s philosophy of nature and the 

metaphysical disciplines that are related to it (ontology and synechology).1 

Riemann refers here to the peculiar names given by Herbart to the different parts of 

his doctrines. It should be noted, following Scholz [1982a, 415], that the part of 

Herbart’s philosophy that he adhered to conforms a kind of epistemology. Among 

Riemann’s philosophical texts, those on psychology and epistemology develop 

Herbartian viewpoints [Riemann 1892, 509-25], 

Herbart was a disciple of the idealist Fichte, but by the end of his student time 

he had become very critical of Fichte’s ideas. To mark his opposition to the idealist 

trend, so powerful in Germany, he always defined himself as a “realist”, although 

some idealist remnants can be found in his psychological theories [see Scholz 

1982a], On a more positive note, he regarded himself as a follower of Kant, but not 

an orthodox Kantian, since he tried to avoid some aprioristic traits that were still 

present in the Konigsberg philosopher. Many details in his doctrines were inspired 

by Leibniz, so that he became a link between the speculations of the great mathe¬ 

matician-philosopher and those of Riemann. 

In a discussion of the possible influence of Herbart’s ideas upon Riemann’s 

geometrical thought, Erhard Scholz has denied that they may have affected the 

precise content of the notion of manifold.2 More precisely, Scholz mentions some 

key elements of Riemann’s notion that are absent from any related ideas of Her¬ 

bart’s: multidimensionality, separation between topological and metrical aspects, 

1 [Riemann 1892, 508]: “Der Verfasser ist Herbartianer in Psychologie und Erkenntnistheorie 

(Methodologie und Eidologie), Herbart’s Naturhilosophie und den darauf beziiglichen metaphy- 

sischen Disciplinen (Ontologie und Synechologie) kann er meistens nicht sich anschliessen.” 

2 In this he distances himself from Russell and Torretti [Scholz 1982a, 414], 
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and the opposition between a simple local behavior and a complex global one 

[Scholz 1982a, 423-24], Herbart’s influence would have been more on the level of 

general epistemology and, most importantly, of a conception of mathematical re¬ 

search. Riemann transformed some characteristic traits of Herbart’s philosophy into 

guiding principles for his mathematical work [op.cit., 428], 

Herbart thought that mathematics is, among the scientific disciplines, the closest 

to philosophy. Treated philosophically, i.e., conceptually, mathematics can become 

a part of philosophy.1 According to Scholz, Riemann’s mathematics cannot be 

better characterized than as a “philosophical study of mathematics” in the Herbar- 

tian spirit, since he always searched for the elaboration of central concepts with 

which to reorganize and restructure the discipline and its different branches, as 

Herbart recommended [Scholz 1982a, 428; 1990a], 

One can certainly grant the general correctness of Scholz’s detailed analysis of 

the interrelations between the ideas of both authors, and still claim that there are a 

couple of more direct connections. Herbart’s conception of space is developed in 

his theory of continuity [Synechology], which explains the emergence of the no¬ 

tions of space, time, number and matter, all of which involve continuity. Herbart 

proposes a more or less psychological explanation of continuity, which emerges 

from the “graded fusion” [abgestufte Verschmelzung] of some of our mental im¬ 

ages [Vorstellungen; Herbart 1825, 192], His preferred examples were those of the 

tones, which give rise to a line, and the colors, which produce a triangle with blue, 

red and yellow at the vertices, and mixed colors in between [op.cit., 193]. As the 

quotation above makes clear, Riemann rejected the details of Herbart’s theory of 

continuity. But he seems to have adopted some quite general aspects of Herbart’s 

approach (compare [Scholz 1982a, 422-23]). 

Like Leibniz, Herbart rejects the Newtonian (and Kantian) conception of space 

as an absolute receptacle for physical phenomena; rather it seems to be an “order of 

coexistence” of things (see [Leibniz & Clarke 1717; Herbart 1824, 429]). Space 

does not have an independent reality, but is a form which arises in our imagination 

as a result of specific traits of the mental images which we gain in experience. As a 

result, all kinds of mental images may give rise to continuous serial forms, and in 

all such cases the conception of space arises. This suggests that anything can be 

geometrized, and explains why Herbart offered a unified treatment of time, matter, 

number and space, since in all of these cases spatial forms arise. Herbart [1824, 

428-29] made it explicit that spatial forms apply to all aspects of the physical 

world, and even to any domain of mental representation, including the unobserv¬ 

able. The conception of space as linked to the properties of physical objects is char¬ 

acteristic of Riemann’s Habilitcitionsvortrag. From a historical point of view it is 

quite interesting to find that, apparently, there was a connection between Leibniz’s 

and Riemann’s proposals of such a conception, the link being Herbart’s doctrines. 

Two other interrelations between the ideas of Herbart and Riemann are linked 

with the latter’s general definitions of the notion of a manifold. Here we shall ana- 

1 “Philosophise]! behandelt, wird sie selbst ein Theil der Philosophic ...” [Scholz 1982a, 437], 



§2. Logical Prerequisites 47 

lyze the influence of one aspect of Herbart’s thoughts about objects and space, and 

in §2 we shall consider that of his treatment of logic. 

In 1853, Riemann explained his idea of a manifold (see §3.2) by making refer¬ 

ence to the totality of all possible outcomes of a measuring experiment in which the 

values of two, or perhaps n, physical magnitudes are determined for a given physi¬ 

cal system. We may understand this as, essentially, the notion of the space of states 

for the given system. This is quite different from Gauss’s explanation of manifolds 

in the 1831 paper, but it happens to be quite similar to a key idea of Herbart’s. 

According to him, any object has to be considered as a bundle or “complexion” of 

properties, each of which can be regarded as located in a different qualitative con¬ 

tinuum. The idea is natural given his approach to continuity outlined above, and it 

is found in two passages that seem to have attracted the attention of Riemann, since 

he excerpted them [Scholz 1982a, 416, 419], Read by a person who was immersed 

in physical thinking, as Riemann was, that could only suggest the notion of a space 

of states, at least when we are talking about magnitudes that vary continuously, 

such as temperature and weight. 

Apparently, then, Riemann’s 1853 explanation of the notion of a manifold may 

have been suggested by Herbart, just like his 1854 definition must have been influ¬ 

enced by philosophical reading (see §2). Incidentally, it is worth mentioning that 

the word “manifold” [Mannigfaltigkeit] is extremely frequent in Herbart’s writings, 

although he employs it in the common sense, not in any technical sense. 

2. Logical Prerequisites 

For the purpose of his Habilitationsvortrag of 1854, Riemann presented a defini¬ 

tion of manifold that is clearly more general and abstract than that found in the 

earlier manuscripts. This definition seems to have puzzled modern commentators 

(see §4), the reason being that a proper understanding of it presupposes knowledge 

of the logical ideas current at the time. The reader may judge the difficulty by him¬ 

self, in trying to understand Riemann’s words without further help: 

Notions of magnitude are only possible where there is an antecedent general concept which 

admits of different ways of determination. According as a continuous transition does or does 

not take place among these determinations, from one to another, they fonn a continuous or 

discrete manifold; the individual determinations are called points in the first case, in the last 

case elements, of the manifold.1 

It is my contention that this somewhat obscure text will become quite clear by the 

end of this section. The difficulties encountered by commentators simply mirror the 

conceptual gap that separates traditional logic from contemporary logic, calling 

1 [Riemann 1854, 273]. The German text is given in §4. For the lecture of 1854 I employ Clif¬ 

ford’s translation [1882, 55-71], with my own corrections. 
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attention to a dramatic shift in the meaning of “logic” during the century from 1850 

to 1950.' 
The situation in logic around 1850 constitutes a crucial background for much of 

the present work, particularly for our discussion of Riemann and Dedekind, and of 

developments in the early twentieth-century. Nineteenth-century Germany was 

surprisingly prolific in logical publications, and the meaning of “logic” varied 

enormously from author to author, ranging from an idealistic to a formal concep¬ 

tion of logic [Ueberweg 1882, 47-79], But, although there are substantial difficul¬ 

ties in identifying the exact sources of the logical knowledge possessed by most of 

the authors we will consider, it is possible to produce a schematic portrait of the 

basic logical doctrine of the time and this will prove sufficient for our purposes. 

Internal evidence from Riemann’s and Dedekind’s writings strongly suggests 

that they only paid attention to logicians of the formal trend. During the modern 

era, logical doctrines had become confused with various epistemological, psycho¬ 

logical, and metaphysical ideas, a tendency that persisted throughout the 19th- 

century. But Kant and his followers started a reaction which emphasized the formal 

character of logic, and the need to treat it as an autonomous discipline [Ueberweg 

1882, 47-51].1 2 Notably, Herbart was one of the most outstanding defenders of this 

viewpoint against the idealists. As a matter of fact, Ueberweg distinguishes a Kan¬ 

tian and a Herbartian school among logicians, the latter being even clearer in its 

preference for a formal standpoint [op.cit., 52], One of the most successful and 

widely read logic treatises of the century was written by a Herbartian, the Leipzig 

professor of mathematics Moritz Wilhelm Drobisch ([1836], with four eds. up to 

1875). Ueberweg [1882, 53] says that this book was, “acknowledgedly,” the best 

exposition of logic from the formal point of view. 

Logicians of this formal trend championed a return to the Aristotelian concep¬ 

tion and doctrines, and presented a core of logical knowledge that was also incorpo¬ 

rated by all other authors (although embedded into a wider context). What is inter¬ 

esting for our purposes is that this core of traditional logic became the basis for the 

view that the theory of sets is properly a logical theory, promoting logicism, and the 

root for the famous principle of comprehension that played such a crucial role 

around 1900. It gave rise to a conception of logic that was widely influential among 

philosophers and mathematicians up to the early twentieth-century, when it had to 

be abandoned, or deeply modified, due to the impact of the so-called logical para¬ 

doxes. Riemann, too, rested upon this traditional doctrine in presenting his general 
definition of a manifold. 

What we are interested in, then, is the import of the traditional conception of 

logic for the notion of set. The reason why it was natural to regard the concept of 

set as a purely logical notion can be explained simply on the basis of Aristotelian 

1 For the history of logic, the reader may consult [Bochenski 1956] and [Kneale & Kneale 

1972], Regarding 20th-century logic, it is convenient to consult more recent works, such as [van 

tteijenoort 1967; Goldfarb 1979; Moore 1980 and 1988]. 

2 Interestingly, Kant’s formal views influenced even British authors such as DeMorgan 
[1858], 
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syllogistics. As is well known, traditional logicians held that any complex reason¬ 

ing is reducible to a chain of syllogisms, the arch-typical example of a syllogism 

being: “Every A is B, and every B is C; therefore, every A is C.”1 As we can see, a 

syllogism is a structured connection of judgments, i.e., affirmed or denied proposi¬ 

tions like “every A is B,” “some C is not D.” A proposition is formed by a subject 

and a predicate, that Aristotle symbolized by letters, linked by the copula “is.” 

Subject and predicate, in their turn, are simply concepts. This analysis of reasoning 

and propositions led to the usual structuring of traditional logic treatises, divided 

into three sections: “On Concepts,” “On Judgements,” and “On Conclusions.”2 

Reasoning appeared to be the result of different kinds of formal combination of 

concepts, by means of the logical particles “every,” “some,” “is,” “not.” It is not 

difficult to see how this conception of logic played some role as a source of the 

classical logic of our century, since it clearly identified the quantifiers as logical 

particles. According to Kant and his followers, concepts contained the whole matter 

or content of an argument, everything else being purely formal or logical. 

One further element that belonged to the core of traditional logic was a crucial 

distinction concerning concepts: that of comprehension or intension [Inhalt] vs. 

extension [Umfang] of a concept. This was an inevitable component of the section 

“On Concepts” in 19th-century logic textbooks. Its roots can be traced back to 

Antiquity, to Porphyry’s Isagoge, a third century commentary on Aristotle that was 

influential during the Middle Ages [Frisch 1969, 108-14; Walther-Klaus 1987, 9], 

But the modem locus classicus for the distinction is the Logique of Port Royal, one 

of the most widely read treatises of the 17th-century: 

In these universal ideas, it is very important to correctly distinguish the comprehension and 

the extension. 

By the comprehension of the idea we understand the attributes which it involves and which 

cannot be withdrawn without destroying the idea, as the comprehension of the idea of trian¬ 

gle involves extension, figure, three lines, three angles, equality of those angles summed up 

to two right angles, etc. 

By the extension of the idea we understand the subjects to which the idea applies, and which 

are also known as the inferiors of a general term which, in relation to them, is called supe¬ 

rior; as the general idea of a triangle extends to all the different species of triangles. [Amauld 

& Nicole 1662, 51] 

The notion of extension was interesting as a tool for analyzing the theory of syllo¬ 

gisms: by considering the relations between the extensions of subject and predicate 

1 This is not the form in which Aristotle himself gave the argument, but is the usual modern 
formulation of syllogisms in Barbara (see [Lukasiewicz 1957]). As the reader probably knows, 
Aristotle analyzed 13 more modes of deduction besides Barbara, divided into three “figures.” 
Traditional logicians added to Aristotle’s “categorical syllogism” two other kinds of “conclu¬ 
sions” - “hypothetical” and “disjunctive” syllogism - which actually correspond to propositional 

logic. 

2 Frequently there was a fourth part, devoted to methodology. This was a consequence of the 
modern confusion of logic and epistemology, and the source of a frequent misunderstanding. 
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in a proposition it was possible to justify Aristotle’s doctrines of the conversion of 

judgements, and of the syllogistic modes of deduction. 
The expositions of Herbart and Drobisch followed that early practice. A sum¬ 

mary of Herbart’s way of dealing with logic can be found in [Herbart 1808], which 

includes the distinction between intension and extension [op.cit., 218], and the 

employment of extensions for explaining the syllogistic conversion and deduction 

[op.cit., 220-21,223-26], In an introductory text of 1837, he defined the intension 

of a concept as the sum of its attributes, the extension as the set [Menge] of the 

other concepts in which the first appears as an attribute [Herbart 1837, 71]. Herbart 

makes an application of these ideas to the notion of number that is interesting from 

the point of view of later developments, although it is typically vague. The natural 

numbers form the extension of the concept of number; moreover, 

nobody would know what number is without first knowing what one, two, three, four are. 

The intension of this concept consists therefore in its extension.1 

The traditional approach undoubtedly suggested that classes or sets are a logical 

matter, since they emerged from an extensional analysis of concepts, an analysis 

that might be regarded as formal. In this way, it prepared the way for the assump¬ 

tion that the theory of classes, or the theory of sets, was a part of logic. Considera¬ 

tion of concept-extensions was absolutely common in logic, and so, when classes 

and sets emerged in the practice of mathematicians, the scene was set for an under¬ 

standing of these notions as belonging to logic. A notable confirmation of this is 

found in the introduction to Boole’s epoch-making The Mathematical Analysis of 

Logic [1847]: 

That which renders logic possible, is the existence in our minds of general notions, - our 

ability to conceive of a class, and to designate its individual members by a common name. 

[Boole 1847,4] 

The statement is unequivocal: according to Boole, concepts and their extensional 

counterpart, classes, are the very foundation of logic. The reader should recall that 

the main interpretation that Boole gave his logical calculus was in terms of classes.2 

The argument for the logical character of sets is, then, based on the role of con¬ 

cepts and concept-extensions in logic. If we accept that logic is purely formal, this 

argument would depend upon the additional assumption that classes belong in the 

formal analysis of propositions and arguments. Naturally, there seems to be room 

for interpretation in this matter. For instance, it was perfectly possible to think that, 

1 [Herbart 1837, 73-74]: “Die Zahlen selbst bilden eine Reihe unter dent Begriff der Zahl 
niemand wissen wtirde, was Zahl sei, wenn er nicht zuvor wiisste, was Eins, Zwei, Drei, Vier ist. 
Dieses Begriffes Inhalt beruht demnach auf seinem Umfange.” 

2 Similarly, post-Boolean logicians such as Schroder and even Peano designed their logical 
symbolism primarily for the purpose of applying it to classes, although of course they gave it the 
alternative propositional interpretation. 
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just like particular concepts do not belong to logic, neither does the extensional 

theory of concepts - since any concrete assumption concerning a class would be of 

a particular character, and logic ought to stay at a level of outmost generality. 

Something like this may have been Herbart’s standpoint, since he stated that con¬ 

cept-extensions are useful but not essential in logic [Herbart 1808, 216, 222], The 

main reason why Herbart took that position was, probably, that he regarded logic as 

a simple propaedeutics of knowledge [op.cit., 267], To accept that the theory of 

classes belongs to logic would mean to have a logical theory of too much content 

and power, no simple propaedeutics. A Herbartian might thus think that the auxil¬ 

iary tool of classes belonged to a different sphere of knowledge, perhaps to mathe¬ 

matics. There are reasons to think that this was Riemann’s own view, since he con¬ 

ceived of manifolds as the basic objects of the theory of magnitudes (§4). From this 

point of view, a class-theoretical analysis of logic would ipso facto be a mathemati¬ 

cal analysis. 

Nevertheless, a second argument seems to shortcut that interpretation. We have 

seen that traditional logicians analyzed the relation between the extensions of sub¬ 

ject and predicate, in order to justify the Aristotelian doctrines. Now, “Every A is 

B” establishes that the class of As is included in that of Bs; “No A is B” says that 

both classes are disjoint; “Some A is B” means that both classes have an (non-void) 

intersection, while “Some A is not B” means that there is a (non-void) class of 

objects that are A but not B. The notions of inclusion, intersection, disjointness and 

others, including union (“Plato is A or B”), arise naturally in an analysis of the 

propositions of traditional logic.1 Since, according to Kant and his followers, all 

that pertains to the effect of the logical particles upon concepts is purely formal, 

those set-theoretical notions are purely formal and belong to logic. In a word, one 

may say that assuming that the copula “is” is one of the logical particles (see above) 

makes set theory a part of logic.2 This is essentially the argument that one can find, 

almost a century later, in the work of the famous philosopher and logician Quine 

[1940], 
At this point, however, a clarification is in order. I am not arguing that the logi¬ 

cal theory of classes incorporated no novelty or departure from tradition but only 

that it involved no essential reconception of logic. Herbart’s definition of extension 

(above) shows a trait that is common to most logicians of the early 19th-century: 

there is no reference to classes of objects (individuals), only to classes of further 

concepts. This brings to mind the tendency of traditional logicians to concentrate 

upon hierarchies of concepts and to analyze the reciprocal relation genus-species. 

The hierarchy of concepts gives rise to a tree-like structure, the so-called tree of 

1 A more sophisticated analysis of extensional relations was given by the French mathemati¬ 
cian Gergonne early in the 19th-century [Styazhkin 1969]. 

2 Acknowledgedly the particle ‘is’ has several different meanings. A contemporary analysis of 
them would distinguish the meanings of identity, inclusion (or intensional subsumption) and 
membership (intensional predication). This analysis was first established by Peano and Frege late 
in the 19th-century, and as such is more advanced than what could be expected from traditional 

logicians. 
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Porphyry [Bochenski 1956, § 24.01-03]. This viewpoint suggested regarding ex¬ 

tension and intension as reciprocal elements: at any point in the hierarchy, the in- 

tensional elements are the concepts found above, while the extension is constituted 

by the concepts found below. In this way, the traditional conception suggested 

problems that, in retrospect, seem to have distracted from the successful develop¬ 

ment of a logical calculus of classes and a theory of sets.1 For instance, the first 

edition (and only the first) of Drobisch [1836] included an appendix with an at¬ 

tempt to establish a mathematical calculus of logic (see [Styazhkin 1969]), but this 

is quite different from Boole’s later efforts since it was guided by the idea of the 

tree of Porphyry. Thus, the advances made by logicians and mathematicians in the 

second half of the 19th-century depended upon a simplification of the scene,2 an 

indifference to the traditional problem of hierarchies coupled with a concentration 

on a purely extensional theory. 
It is also important to mention that logical theory enjoyed a wide diffusion in 

19th-century Germany.3 Sometimes it was part of the secondary school syllabuses 

for “philosophical propaedeutics,” as was the case in Austria and Bavaria. Some¬ 

times it was an integral part of the teaching of language and grammar courses in 

Gymnasia, as happened in Prussia and other states. This was due to the influence of 

the linguistic movement of General Grammar, which took as an essential assump¬ 

tion the strict parallelism between linguistic sentences and the logical propositions 

of formal logic (see [Naumann 1986; Forsgren 1992]). The teaching of German 

was intended to be logical propaedeutics and ultimately to lead to philosophy. Em¬ 

phasis on thinking and logic did not disappear even after General Grammar was 

superseded by the Historicist School [Naumann 1986, 110]. And, of course, logic 

was an important element of introductory philosophy courses given at the universi¬ 

ties. It thus seems safe to assume that educated Germans, at the time of Riemann, 

were familiar with the basic doctrines of traditional logic, including the idea of 

concept-extensions. 

To summarize, the conclusion that the theory of sets or classes belongs to for¬ 

mal logic was at least quite natural, judging from the traditional conception of the 

subject. Since the transition from a concept to its associated class was absolutely 

common, and taken for granted, it is also natural that the principle of comprehen¬ 

sion would eventually be articulated explicitly. This principle says that, given a 

well-defined concept, there is the class of all objects that satisfy the concept. The 

first precise formulation of the principle is to be found in Frege [1893], which is 

understandable, since no such general principle was needed for the purposes of 

traditional logic - only for the purpose of founding a powerful theory of sets. But 

the principle of comprehension was assumed as self-evident by many authors, in¬ 

cluding Dedekind and the young Hilbert. It also underlies Bolzano’s theory of sets 

1 I owe this insight to Gregory H. Moore. 

2 There were precedents for this step in tradition, for instance in Euler; see [Frisch 1969] and 
[Walther-Klaus 1987], 

3 This topic has not yet been sufficiently studied. A more detailed preliminary account, partly 
based on unpublished work done at Erlangen, can be found in [Ferreiros 1996, 13-15]. 
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as presented in his Paradoxien des Unendlichen [1851]. Bolzano introduced several 

notions related to that of set, distinguishing between cases in which the order is or 

is not taken into account. In his theory, sets depend on concepts, since his sets 

[Mengen] are always defined by a concept [Bolzano 1851, §§3-4], 

We are now in a position to understand Riemann’s definition of a manifold, 

quoted above. That definition seems, quite unequivocally, to rely on the traditional 

relationship between a concept and its associated class, a manifold being simply a 

class, the extension of a general concept. In §4 we shall comment on the definition, 

analyze more closely the connection Riemann established between manifolds and 

magnitudes, and consider his position concerning the actual infinite. But first, we 

will consider the broader mathematical context in which Riemann developed his 

new notion. 

3. The Mathematical Context of Riemann's Innovation 

Although Riemann presented the notion of a manifold in his famous Habilitations- 

vortrag, the context from which that notion emerged was broader. Since he pro¬ 

posed the new notion as a foundation for the theory of magnitudes, he must have 

seen connections between manifolds and all branches of pure mathematics. But the 

available evidence suggests that the notion arose, more concretely, in relation to 

Riemann’s function theory [Scholz 1980, 1982], Shortly afterwards, it became the 

basic notion for his new approach to differential geometry and the question of 

space, which in its turn was related to Riemann’s thoughts about a unified physical 

theory. 
Riemann’s function theory, known through an 1857 paper on Abelian functions, 

was the basis for the renown he enjoyed during his lifetime. That work was an 

outstanding feat, for it attempted to offer a general solution of the Jacobian inver¬ 

sion problem for integrals of arbitrary algebraic functions. This topic emerged from 

the fascinating competition that Abel and Jacobi sustained in the late 1820s on the 

subject of elliptic functions (the inverses of elliptic integrals). As for the importance 

that was attached to it, suffice it to say that Weierstrass became a rising star with his 

solution of the inversion problem for hyperelliptic integrals in 1854 and 1856. 

Riemann was tackling a much more general problem and his work, in spite of gaps 

in the proofs, aroused enormous excitement. His 1857 paper, together with the high 

opinion that Gauss, Weber and Dirichlet had of him, explains why Riemann was 

promoted to full professor at Gottingen, in 1859, without taking into account any 

other candidates. It also led to his election as a corresponding member of the Berlin 

Academy of Sciences that same year [Dedekind 1876, 522], 
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3.1. Function theory and topology.1 Riemann’s approach to function theory has 

already been mentioned as a key example of his methodological preferences in 

mathematical research (§1.4). It is well known that complex analysis only consoli¬ 

dated during the nineteenth-century with the ground-breaking work of Cauchy and 

the general treatments proposed by Weierstrass and Riemann (see [Bottazzini 

1986]). By 1850 known results afforded only a sketchy overview of the new branch 

of mathematics; Weierstrass and Riemann worked on trying to present a systematic 

development. As we have seen, both attempts at a synthesis were quite different, 

Weierstrass’s being the first rigorous one, Riemann’s being much more abstract and 

even visionary. It took a long time until his novel methods were given a sound 

foundation, which caused late-19th-century mathematicians to devote great efforts 

to reestablishing Riemann’s results in different ways. His theory employed new 

“geometrical” considerations, namely topological notions, which only in the early 

decades of the twentieth-century received a satisfactory treatment [Weyl 1913]. 

Riemann also made essential use of what he called the “Dirichlet principle,” which 

was severely criticized by Weierstrass in 1870, and reestablished by Hilbert in 1901 

[Monna 1975]. No wonder that his methods seemed to be “a kind of arcanum” that 

other mathematicians looked at with distrust [Klein 1897, 79]. 

In Riemann’s opinion, a satisfactory study of Abelian and other functions de¬ 

pended upon finding a system of conditions, independent from each other, that 

would be sufficient for determining the function [Riemann 1857, 97], Since the 

global configuration of analytic functions depends on their local behavior, the tra¬ 

ditional focus on formulas involved the use of redundant information. Riemann 

searched for a minimal set of determining conditions, which turned out to be partly 

analytical and partly geometrical [Scholz 1980, 62], The analytical data consisted in 

conditions on the real and imaginary parts of the function, as well as its behavior at 

poles and singular points. The geometrical side of the information consists in his 

idea of the Riemann surface, which became a key element in the study of multi¬ 

valued functions. 

Reliance on geometrical considerations was, to some extent, a legacy begetted 

by Gauss. In 1799 Gauss had taken advantage of the geometrical representation of 

complex numbers for his first proof of the so-called fundamental theorem of alge¬ 

bra (which from a modern viewpoint can be seen as part of function theory). That 

proof, however, obscured the fact by formulating the whole issue in terms of real 

numbers - one more example of Gauss’s caution or, as he said, fear of the clamor 

of the Boeotians [Gauss 1863/1929, vol. 8, 200], After having publicly defended 

the geometrical representation in 1831, Gauss came back to the fundamental theo¬ 

rem of algebra in 1849 and rewrote his first proof making free reference to the 

complex plane [Gauss 1863/1929, vol. 3, 74 and 114], Given a complex polyno¬ 

mial of degree «, Gauss analyzed the behavior of its real and imaginary parts in a 

way that was essentially topological, to conclude the existence of n roots. He wrote: 

1 On this topic, see [Bottazzini 1986; Laugwitz 1996, chap. 1], 
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I will present the proof in a dressing taken from the geometry of position, since in this way it 

attains its maximum intuitiveness and simplicity. But in essence the true content of the 

whole argument belongs to a higher domain of the abstract theory of magnitudes, independ¬ 

ent of the spatial, the object of which is the combinations among magnitudes linked by 

continuity, a domain which until now has been little cultivated, and where we cannot move 

without a language taken from geometrical images.' 

Gauss’s work had, therefore, begun to show the interest of a geometrico-topological 

approach to complex functions. 

Riemann’s doctoral dissertation also emphasized the usefulness of geometrical 

intuition for understanding complex functions. Departing from the geometrical 

representation of complex numbers, he regarded a complex function as a mapping 

[Abbildung] from one plane to another, and he showed that analytic functions de¬ 

termine conformal mappings [Riemann 1851, 6—7].1 2 But soon Riemann began to 

move beyond what Gauss had suggested. His interest in multi-valued functions led 

him to introduce so-called Riemann surfaces and to develop topological methods 

for studying them. This was the reason why Riemann’s theory was called “geomet¬ 

rical” at the time, although this characterization is far from satisfactory, since it 

overlooks many other important features of his approach. 

The branching properties of multi-valued functions had just began to be studied 

by Cauchy and, especially, by Puiseux. The notion of a Riemann surface was quite 

a natural idea, although it posed some difficult problems, including foundational 

ones. Rather than taking the domain of the function to be the complex plane, he 

imagined a surface of several sheets which covers the plane; over this domain, the 

function becomes single-valued [Riemann 1851, 7-9; 1857, 89-91]. A very simple 

example is f(z)2 = z, a function having two values at all points except z = 0 and z = 

oo, which are the only branching points. The associated Riemann surface has two 

sheets that are continuously linked: one can pass from one to the other by describ¬ 

ing a closed curve around the branching point. Riemann’s geometrical ‘invention’ 

[Klein 1897, 75] amounted to a geometrization of the branching properties of the 

function. All the related information, including the location of branching points, 

was simply determined by the surface.3 

1 [Gauss 1863/1929, vol. 3, 79]: “Ich werde die Beweisfuhrung in einer der Geometrie der 
Lage entnommenen Einkleidung darstellen, weil jene dadurch die grosste Anschaulichkeit und 
Einfachheit gewinnt. Im Grunde gehort aber der eigentliche Inhalt der ganzen Argumentation 
einem hohern von Raumlichen unabhangigen Gebiete der allgemeinen abstracten Grossenlehre 
an, dessen Gegenstand die nach der Stetigkeit zusammenhangenden Grossencombinationen sind, 
einem Gebiete, welches zur Zeit noch wenig angebauet ist, und in welchem man sich auch nicht 
bewegen lcann ohne ein von raumlichen Bildern entlehnte Sprache.” 

2 This linked again with work by Gauss, his 1825 treatise on conformal mappings, i.e., maps 
that involve “similarity in the least parts” of original and image [Gauss 1863/1929, vol. 4, 189— 
216; quoted in Riemann 1851, 6 note]. 

3 Klein and Weyl [1913, vi-vii] emphasized that, far from being mere tools, Riemann surfaces 
are an indispensable component, and even the foundation, of the theory of analytic functions. See 
[Scholz 1980, 56] for details concerning how Riemann described the surfaces. 
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Riemann [1857, 91] found it almost indispensable, in order to study Abelian 

and related functions, to resort to topological considerations. He developed new 

methods that enabled him to define the “order of connectivity” of a surface - the 

Euler characteristic - and, later, what Clebsch would call the “genus” of the sur¬ 

face, which defines the second Betti number [Scholz 1980, 57—64]. In the 1851 

dissertation he studied connected surfaces with a boundary, and analyzed their 

topological properties by means of dissection into simply connected components, 

making use of “transversal cuts” [Querschnitte] joining frontier points. In 1857 he 

analyzed closed surfaces, since he was now considering the complex plane com¬ 

pleted by a ‘point at infinity.’ The method also had to change, and he studied them 

by considering the maximal number of closed curves that do not form a complete 

boundary for a part of the surface. We thus find here rudimentary forms of ho¬ 

mological methods. The most astounding example of the intimate relations between 

topological notions and properties of functions was the Riemann-Roch theorem, 

which determines the number of linearly independent meromorphic functions on an 

Zweifach zusam menh&ngende Flache. 

Sie wird durch jeden sie 

nicht zerstiickelnden Querschnitfc 

q in eine einfach zusammen¬ 

hangende zerschnitten. Mit Zu- 

ziehnng der Curve a kann in ihr 

jede geschlossene Curve die 

ganze Begrenzung eines Theils 

der Flache bilden. 

Dreifach zusammenhangende Flache. 

In dieser Flache kann jede 

geschlossene Curve mit Zu- 

ziehung der Curven ax und % 

die ganze Begrenzung eines 

Theils der Flache bilden. Sie 

zerfallt durch jeden sie nicht 

zerstiickelnden Querschnitt in 

eine zweifach zusammenhan¬ 

gende und durch zwei solche 

Querschnitte, qx und q2, in eine 

einfach zusammenhangende. 

In dem Theile a fi y d der 

Ebene ist die Flache doppelt. 

Der flj enthaltende Arm der 

Flache ist als unter dem an- 

dern fortgehend betrachtet und 

daher durch punktirte Linien 

angedeutet. 

Figure 3. Doubly and triply connected surfaces, from [Riemann 1857], 

Riemann explains the behavior of transversal cuts and closed curves. 
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algebraic surface, having a given finite number m of poles, as a function of the 
genus p of the surface.1 

The connection between the topological methods developed in Riemann’s func¬ 

tion-theoretical work and the notion of manifold was obscured by the fact that, in 

order to make possible an easier understanding, his expositions in the former con¬ 

text were given in a geometrical dressing [Riemann 1857, 91]. Nevertheless, in the 

Habilitationsvortrag he made a clear reference to the existence of such a connec¬ 

tion [1854, 274], and made it explicit that he was establishing the “preliminaries for 

contributions to analysis situs” [op.cit., 286], Likewise, in his work on function 

theory he made it clear that those methods could be developed in abstraction from 

metrical relations and belong to “analysis situs.” Riemann wrote: 

With this name, employed by Leibniz, though perhaps not exactly in the same sense, we may 

designate a part of the theory of continuous magnitudes, in which the magnitudes are not 

regarded as existing independently of position and as measurable by each other, but where, 

dispensing with metrical relations altogether, only the relations among places and among 

domains in them are submitted to investigation.2 

Here we find a rather obscure definition of topology, which is however clear inso¬ 

far as it emphasizes the absence of metrical considerations, and as it links with 

Gauss’s earlier statements. Essentially the same definition was given in the famous 

Habilitationsvortrag [Riemann 1854, 274], to which we shall turn in §3.3. 

3.2. From surfaces to manifolds. Until recently, all that was known about Rie¬ 

mann’s notion of a manifold was the ideas presented in his 1854 Habilitationsvor¬ 

trag. But some manuscript documents that have been published by Scholz [1982] 

enable us to trace the development of Riemann’s ideas between his 1851 doctoral 

dissertation and 1854. These are four manuscripts dealing with continuous n- 

dimensional manifolds, n-dimensional topology, and the relation between mani¬ 

folds and geometry. Scholz has been able to date them: all were written in the years 

1851 to 1853. The manuscripts suggest that the idea of a manifold grew out of an 

attempt to find a satisfactory conceptualization of the Riemann surfaces that he had 

begun to employ in 1851. 

The text that gives support for this conclusion was published by Scholz as ap¬ 

pendix 4 to his paper [1982, 228-29], In my opinion, there are reasons to believe 

that this is actually the earliest of the fragments published by Scholz. Riemann’s 

1 Riemann estimated that number to be > m - p + 1, his student Gustav Roch established the 

precise result in Journal fur die reine und angewandte Mathematik 64 (1864), 372-76. 

2 [Riemann 1857, 91]: “... sind einige der analysis situs angehorige Satze fast unentbehrlich. 

Mit diesem von Leibnitz, wenn auch vielleicht nicht ganz in derselben Bedeutung, gebrauchten 

Namen darf wohl ein Theil der Lehre von den stetigen Grossen bezeichnet werden, welcher die 

Grossen nicht als unabhangig von der Lage existirend und durch einander messbar betrachtet, 

sondem von den Massverhaltnissen ganz absehend, nur ihre Orts- und Gebietsverhaltnisse der 

Untersuchung unterwirft.” 



58 II. Riemann’s New Notion of Manifold 

idea of manifold is presented here in more concrete terms than in any other frag¬ 

ment. Other fragments define continuous manifolds in reference to a “variable 

object” that admits of different “forms of determination,” i.e., that can be in differ¬ 

ent states. These states, or “forms of determination,” constitute the “points” of the 

manifold, which is defined as the totality of all these points.1 In appendix 4 this idea 

is illustrated with concrete examples: suppose we are making an experiment in 

which we measure one physical magnitude, a temperature; here all possible cases 

would be represented by the real numbers from -oo to +oo, i.e., by a one¬ 

dimensional continuous manifold. But in case we were measuring two physical 

magnitudes, say a temperature and a weight, the possible results would be repre¬ 

sented by two variables x andy, i.e., by a two-dimensional manifold [op.cit., 229], 

Since this approach entails no limitation of dimensions, we can similarly reach 

manifolds of an arbitrary number of dimensions by considering experiments in 

which a higher number of physical magnitudes have to be determined [ibid.]. 

Riemann emphasizes that the notion of a manifold, so defined, does not depend 

at all upon our geometrical intuitions [Scholz 1982, 228], The spatial notions of 

space, plane and line are only the simplest, intuitive examples of three-, two- and 

one-dimensional manifolds. To this extent, Riemann is simply following in Gauss’s 

footsteps, since Gauss had always emphasized the difference between an abstract 

theory of magnitudes and manifolds and its intuitive exemplification by means of 

spatial notions. But Riemann indicates that the notion in question is that of a multi¬ 

dimensional manifold and, moreover, that this notion affords a satisfactory basis for 

developing the whole of geometry without the least reliance on spatial intuition 

[ibid.]. In his opinion, on the basis of such manifolds it would be possible to give 

analytical definitions of the basic geometrical notions - he mentions that of a 

straight line - and to derive all axioms and propositions of Euclidean geometry as 

theorems. 
By the time he wrote this manuscript, he regarded such an abstract approach to 

geometry only as a theoretically interesting possibility, but thought that it would be 

“extremely unfruitful.” This new approach to the foundations of geometry would 

not yield a single new theorem, and it would make complex and obscure what ap¬ 

pears as simple and clear when explained in intuitive, spatial language (in [Scholz 

1982, 229]). It is plainly evident that Riemann was still a long way from realizing 

the novelties that he would be able to present in the 1854 lecture, after having un¬ 

derstood that his continuous manifolds were a satisfactory foundation for a gener¬ 

alization of Gaussian differential geometry, and that a single underlying topology 

gave room for many different metrical geometries (§1.2). 

1 In appendix 1 [Scholz 1982, 222] we read: “Wenn unter einer Menge von verschiedenen Be- 

stimmungsweisen eines veranderlichen Gegenstandes von jeder zu jeder anderen ein stetiger 

Ubergang moglich ist, so bildet die Gesammtheit dieser eine stetig ausgedehnte Mannigfaltigkeit; 

jede einzelne heisst ein Punkt dieser Mannigfaltigkeit.” Regarding the use of the word ‘Menge,’ 

see the Introduction. 
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While such an abstract approach at first appeared unfruitful to Riemann, the 

opposite held for the use of geometrical imagery as a tool in understanding multi¬ 

dimensional manifolds. Instead of developing geometry in an abstract way, 

One has thus always followed the opposite path, and every time that one has stumbled upon 

manifolds of many dimensions in mathematics, as in the doctrine of definite integrals within 

the theory of imaginary magnitudes, one has had recourse to spatial intuition. It is well 

known, how one thus wins a true overview of the matter, and how only in that way the es¬ 

sential points become evident.1 

Riemann refers here to the use of geometrical imagery and spatial intuition within 

the context of function theory as a paradigmatic example. The connection here 

established alongside the issues dealt with in the rest of the manuscript suggest a 

reconstruction of Riemann’s intellectual journey in developing his conception of 

manifolds. It suffices to follow his reasoning backwards. 

It seem natural to speculate that Riemann felt puzzled by his recourse to geo¬ 

metrical constructs, the Riemann surfaces, in function theory. There were actually 

several reasons to feel uneasy. First and foremost, the tendency in contemporary 

analysis was to avoid resorting to geometry and intuition; on the contrary, Cauchy 

and his followers reformulated previous geometrical ideas in abstract terms. Rie¬ 

mann had been educated in this tradition, where Dirichlet was one of the most 

prominent names, but the direction of his research seemed to contradict that ten¬ 

dency. Did function theory depend upon geometry in some way? Was the use of 

Riemann surfaces an ad hoc intuitive means for understanding multi-valued func¬ 

tions? And one might even ask, did the general theory outlined in his dissertation 

thus lack rigor? 

In the second place, Riemann surfaces did not belong to traditional geometry, 

since they could only be conceived as objects in higher-dimensional space. Was 

there a satisfactory foundation for higher-dimensional geometry? Moreover, and 

third, Riemann had analyzed the behavior of Riemann surfaces from the viewpoint 

of analysis situs, but again this lacked a satisfactory foundation at the time. Could a 

new approach to geometry be sketched, that answered to all of the above problems? 

As we can see, many questions could have been asked which gave occasion for a 

“philosophical study” of this area of mathematics, in the Herbartian spirit (see Ap¬ 

pendix). 
The text we have commented, and the 1854 Habilitationsvortrag, give reasons 

to think that Riemann considered all of the above questions, and was able to answer 

them by locating a new fundamental concept on which to reformulate the whole 

1 [Scholz 1982, 229]: “Man hat daher auch uberall den entgegengesetzen Weg eingeschlagen, 

und uberall, wo man in der Geometrie [Heinrich Weber suggests that one should read ‘Mathe- 

matik’] auf Mannigfaltigkeiten von mehreren Dimensionen stosst, wie in der Lehre von den 

bestimmten lntegralen der Theorie der imaginaren Grossen, nimrnt man die raumliche An- 

schauung zu Hiilfe. Es ist ja bekannt, wie man dadurch eine wahre Ubersicht iiber den Gegen- 

stand gewinnt und nur dadurch gerade die wesentlichen Punkte hervortreten.” 
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issue. Scholz’s appendix 4 indicates how Riemann was able to explain the relations 

between geometry and function theory. Riemann surfaces are obviously two- 

dimensional manifolds that can be embedded in some higher-dimensional space, 

i.e., in some higher-dimensional manifold. Far from making function theory, or, 

more generally, the theory of magnitudes, dependent upon geometry, the true situa¬ 

tion was that the notion of manifold was independent from geometrical intuition 

and made possible an abstract derivation of geometry. It also explained naturally 

how higher-dimensional constructs emerged. Riemann’s recourse to geometrical 

intuition in function theory simply became a ploy that greatly simplified the devel¬ 

opment of the theory. But he was convinced that his new approach could be given a 

completely rigorous abstract foundation. 

The new notion, foreseen by Gauss, was actually indispensable for an abstract 

theory of magnitudes, and Riemann found in it the right concept on which to base 

topology. Around 1852/53, Riemann wrote his ‘Fragment aus der analysis situs,’ 

first published in the 1876 edition of his collected works [Riemann 1892, 479-82],1 

He presented here a fragment of the topological theory of /7-dimensional manifolds, 

developing in an abstract way the homological method that he would publish in the 

1857 paper on Abelian functions, while indicating its relation to the dissectional 

method already used for Riemann surfaces in 1851 (see §3.1). This adds to the 

plausibility of Scholz’s reconstruction that manifolds emerged as a theoretical basis 

for Riemann surfaces, for, if so, it is only natural that the topological methods em¬ 

ployed with the latter would be used for the former. Furthermore, it is remarkable 

that this text should have been written before the Habilitationsvortrag. One may 

say that Riemann had developed all of the basic aspects of his notion of a manifold, 

and of his topological ideas, by the time he delivered the famous lecture in 1854. 

But these ideas only became known gradually, with their publication from 1868 to 

1876.2 The abstract foundation for all this work was further refined, and explained 

in some more detail, in the first part of his Habilitationsvortrag. 

3.3. Differential geometry and physical space. The Habilitationsvortrag made 

two main contributions, a generalization of Gauss’s differential geometry of sur¬ 

faces, and a deep contribution to the question of physical space. Thus, it attests to 

the profound interrelation of mathematical and physical thought in Riemann.3 The 

author was intent on making possible a deeper analysis of the concept of space and 

its presuppositions with the aim of freeing physical explanation from “conceptual 

limitations” and “traditional prejudices.” Such conceptual problems were, in his 

view, the task of mathematics [Riemann 1854, 286], Riemann proceeded by estab¬ 

lishing a succession of conditions that gradually delimited the properties of space. 

1 The dating is Scholz’s, see his [1982, 216 and 225-26], 

2 Riemann’s ideas on //-dimensional topology also became known through Betti, who had dis¬ 

cussed them with Riemann himself [Weil 1979]. 

3 On Riemann’s geometrical thought, the reader may consult [Gray 1989; Laugwitz 1996, 

chap. 3; Scholz 1980 and 1990a; Torretti 1984], 
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Rather than axioms, he called them “hypotheses,” since he regarded it as an empiri¬ 

cal task to determine their validity.1 

Riemann found a satisfactory point of departure, possessing the necessary gen¬ 

erality, in the notion of an /7-dimensional continuous manifold. He hoped that an 

this notion would make it possible, for the first time, to offer the general analysis of 

the notion of space that he wished [1854, 272], That notion he saw as basically 

topological in character, so the first part of the lecture is devoted to topological 

considerations (see §§5 and 6). The second part introduces the fundamental con¬ 

cepts of differential geometry, on the basis of a hypothesis that we may formulate 

as follows: one-dimensional measuring rods are freely movable without alteration 

of their lengths [op.cit., 276]. This enabled him to introduce metrical notions - the 

fundamental quadratic form that defines the length of a line element in so-called 

Riemannian manifolds, and the Gaussian curvature of the space at each point - 

establishing a wide frame within which the properties of ordinary physical space 

can be adequately located and characterized.2 Finally, in part three, he comes to the 

application of the previous ideas to physical space and the conceptual possibilities 

thus opened. 

The basic insight that made possible Riemann’s surprisingly new approach to 

the question of space was the following. Given an /7-dimensional continuous mani¬ 

fold, one may endow it with many different metrics so that spaces with very diverse 

metrical properties may have the same topological substructure in common [1854, 

283-84], This includes not only the cases where the curvature is constant at all 

points, which yield the (now) well-known non-Euclidean geometries, but spaces of 

variable curvature too. With this insight, Riemann brought the discussion on ge¬ 

ometry a long step farther from the work of Lobachevsky and Bolyai, which, by the 

way, he probably had not read [Scholz 1982, 217-221], Although he conceded as 

certain that physical space is a 3-dimensional manifold, the experimental task of 

investigating its metrics was open [Riemann 1854, 255, 265-66]. 

The wideness of the new frame in which Riemann was conceiving geometry, 

and the freedom of thought that he promoted with regard to all of the possible “hy¬ 

potheses,” become clear when he comes from the abstract mathematical study of 

manifolds to the question of physical application [1854, 284-86], Here we find the 

famous distinction between unlimited and infinite, the first time that the possibility 

of a finite space was seriously undertaken. But Riemann also points to the possibil¬ 

ity that the expression for the line element be different, so that the manifold may 

not be a ‘Riemannian’ one, in present terminology. Likewise, he admits the possi¬ 

bility that space may suffer observationally unnoticeable changes in the local cur- 

1 Being no positivist, he thought that empirical determinations of the validity of such condi¬ 

tions never yield absolute truth, and so he preferred “hypotheses” to “facts” [op.cit., 273], in 

contrast to Helmholtz [1868], 

2 Here Riemann built again on previous work of Gauss, the great 1828 paper on curved sur¬ 

faces [Gauss 1863/1929, vol. 4, 217-58] showing that the curvature of a surface is an intrinsic 

property, invariant under isometric transformations (“theorema eggregium”). Riemann elaborated 

the intrinsic viewpoint directly. 
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vature - a possibility that he found promising for a unified theory of the physical 

forces and that quickly caught Clifford’s attention.1 He even regarded it as possible 

that physical space may not be continuous, but “a discrete manifold” [op.cit., 286], 

Riemann’s geometrical ideas were novel and abstract, and their reception was 

slow, although they immediately caught the attention of some mathematicians.2 The 

analytical side of his investigations was quickly taken up, leading to a development 

of the theory of differential invariants that eventually ended in the emergence of the 

tensor calculus. His topological ideas also found a continuation. Geometers ac¬ 

cepted the differentiation of topological and metrical properties, and made use of 

Riemann’s ideas concerning spaces of constant curvature in the context of the open 

discussion of non-Euclidean geometries around 1870. But they kept framing ge¬ 

ometry within a more modest setting: the details of Riemann’s introduction of the 

notion of curvature and, above all, the idea of manifolds of variable curvature were 

difficult to understand or accept. Helmholtz gave some arguments intending to 

show that the notion of a space of nonconstant curvature was necessarily wrong, 

and they were quite successful at the time [Freudenthal 1962; 1981, 455]. Only 

after Minkowski’s interpretation of special relativity in terms of a 4-dimensional 

world, and after the advent of general relativity did the development of differential 

geometry receive a strong stimulus. 

Nevertheless, a small group of mathematicians seems to have been able to un¬ 

derstand Riemann’s most basic ideas better. Prominent among them are Dedekind 

and Cantor, in whose work notions of set theory and point-set topology were devel¬ 

oped. As we shall see, these men accepted the conceptual freedom with which 

Riemann had approached the “hypotheses upon which geometry is founded.” They 

explored the possibility of a discontinuous geometry, respectively a discontinuous 

physical space, and they took up the notion of a manifold in its original sense (§§6 

and V.4). 

4. Riemann's General Definition 

Riemann was addressing his lecture to members of the Philosophical Faculty, 

which is where mathematics and the sciences belonged. Thus, there was little need 

to make any explicit reference to the fact that his definition of a manifold depended 

upon basic ideas of contemporary logic, especially after having said that the task he 

was confronting was “philosophical” in character. He defined straightforwardly: 

1 See ‘On the Space-theory of Matter,’ in [Clifford 1882, 21-22]. For Riemann and physics, 

refer to §1.4 and [Laugwitz 1996, chap. 3], 

2 A review of the great number of 19th-century works that related to Riemann’s mathematics 

can be found in Neuenschwander’s appendix to the 1990 edition of Riemann’s Werke. 
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Notions of magnitude are only possible where there is an antecedent general concept which 

admits of different ways of determination. According as a continuous transition does or does 

not take place among these determinations, from one to another, they fonn a continuous or 

discrete manifold; the individual determinations are called points in the first case, in the last 

case elements, of the manifold.1 

I have chosen the literal translation ‘ways of determination’ for Riemann’s ‘Be- 

stimmungsweisen;’ Clifford wrote ‘specialisations.’ What Riemann meant can be 

gathered from the example he gives immediately below, a characteristically Her- 

bartian example: if we take the concept of color, each particular color, each par¬ 

ticular shade of blue or yellow, is a ‘way of determination’ of that general concept; 

the totality of these ‘specialisations’ forms a manifold. With §2 in mind, it should 

be easy to interpret the above explanation and the example. We find a clear refer¬ 

ence to the traditional concept-class relation, the manifold being the class or set of 

all “determinations” that fall under the general concept. 

Riemann’s definition has puzzled some modern commentators, probably be¬ 

cause they have had no contact with the ideas of traditional logic, and on this point 

the notion of logic has been crucially transformed by the impact of the paradoxes. 

Bourbaki [1969, 176] translates “element” where Riemann wrote ‘general concept,’ 

which may simplify his reader’s task, but definitely alters the original text. Scholz 

[1980, 30] was misled by Riemann’s definition into thinking that he called the 

general concept itself a manifold. Several details of Riemann’s Habilitationsvortrag 

can be used to corroborate my interpretation. That his manifolds are not just topo¬ 

logical objects is made clear by the fact that he accepts discrete and continuous 

manifolds (see below). Later in the lecture, we find a text which introduces Rie¬ 

mann’s famous distinction between unlimitedness and infiniteness [1854, 284]. He 

says that when we try to determine a metrical relation by experiment, “the possible 

cases form a continuous manifold,” giving rise to an unavoidable imprecision, 

while in an experimental determination of topological properties “the possible cases 

fonn a discrete manifold,” which involves no inaccuracies. Obviously, he is talking 

here about the set of possible cases, or possible results of a measurement. 

It is likely that the idea of connecting his manifolds of 1852/53 with concepts 

was suggested to Riemann by his reading of Herbart’s works. We have seen that, in 

his theory of spatial concepts, Herbart used the examples of the continua that fall 

under the concepts of tone and color. He went so far as to say that each property of 

an object should be regarded as located in a “qualitative continuum,” from which 

Riemann disagreed in his lecture [1854, 274], In an early work we find Herbart’s 

mention, within a discussion on the right way of teaching mathematics, of uthe 

1 [Riemann 1854, 273]: “Grossenbegriffe sind nur da moglich, wo sich ein allgemeiner Be- 
griff vorfindet, der verschiedene Bestimmungsweisen zulasst. Je nachdem unter diesen Bestim- 
mungsweisen von einer zu einer andern ein stetiger Ubergang stattfindet oder nicht, bilden sie 
eine stetige oder discrete Mannigfaltigkeit; die einzelnen Bestimmungsweisen heissen im erstem 
Falle Punkte, im letztern Elemente dieser Mannigfaltigkeit.” For the lecture of 1854 I employ 
Clifford’s translation [1882, 55-71], with my own corrections. 
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whole continuum that is contained under a general concept” [Herbart 1964, vol. 1, 

174].1 Such sentences may easily have suggested Riemann’s new definition. 

By identifying manifolds with the classes of logic, Riemann was stretching his 

new notion as far as possible, since any object of perception or thought can be an 

element of a class. There can be little doubt that the intention of generalizing as 

much as possible was one of the main reasons behind his new definition. In this 

way, he was also in a position to offer a reconception of the whole theory of mag¬ 

nitudes. Actually, the connection Riemann established between manifolds and 

magnitudes constitutes another difficulty for a satisfactory understanding of his 

general ideas. Part I of the Habilitationsvortrag is supposed to fulfill “the task of 

constructing the notion of a multiply extended magnitude out of general notions of 

magnitude.”2 We shall now turn to this second difficulty. 

4.1. Manifolds and the theory of magnitudes. In searching for a solution of the 

problems mentioned in §3.2, Riemann stuck to the traditional definition of mathe¬ 

matics as the science or doctrine of magnitudes. As we saw at the beginning, this 

traditional definition can be traced back to Aristotle, who distinguished two kinds 

of magnitudes, the discrete and the continuous. The same conception is found in 

handbooks and even in the work of research mathematicians up to the mid-19th- 

century. Of course, there was no clear or univocal theory behind the definition of 

mathematics as the doctrine of magnitudes since the notion of magnitude was left 

rather vague. During the 19th-century, several authors tried to give it a precise 

sense, and this seems to have been one of the ways in which novel abstract view¬ 

points, and even the notion of set, began to be employed. 

Let me give some examples. Bolzano [1851, 2] kept employing the traditional 

definition of mathematics, although he introduced the notions of ordered and unor¬ 

dered “sets” [Mengen] as a basis. Grassmann had formerly criticized the traditional 

definition, preferring to conceive of mathematics as the “doctrine of forms,”3 but in 

his later textbook on arithmetic he defined mathematics as “the science of the con¬ 

nection of magnitudes” [Grassmann 1861, def. 1], No basic change of viewpoint 

was involved here, simply a terminological change, as Grassmann was now ad¬ 

vancing an altered, abstract notion of magnitude: magnitude is any thing that can be 

said to be equal or unequal to something else, where a equals b means that we can 

substitute b for a in any proposition [op.cit., 1]. This extremely general definition 

employs the Leibnizian definition of equality, and seems to go far beyond the tra¬ 

ditional. Weierstrass differentiated “numbers,” meaning natural numbers, from 

magnitudes. His theory of rational and irrational numbers was formulated as a the- 

1 It is worth recalling that Riemann was particularly interested in Herbart’s early writings 
[Riemann 1892, 507-08], 

2 [Riemann 1854, 272]: “Ich habe mir ... die Aufgabe gestellt, den Begriff einer mehrfach 
ausgedehnten Grosse aus allgenreinen Grossenbegriffen zu construiren.” Part I bears the title: 
“Begriff einer nfach ausgedehnten Grosse.” 

3 [Grassmann 1844, 65]: “Formenlehre.” 
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ory of “numerical magnitudes,” a terminology inherited by Cantor himself. Weier- 

strass defined his ‘Zahlengrossen’ as aggregates of certain units, but it is not quite 

clear to what extent he regarded those aggregates as sets, or simply as infinite series 
(see §IV.2.1). 

Coming back to Riemann, the fact that he presented the notion of manifold as a 

new foundation for an abstract theory of magnitudes means nothing less than that 

he was proposing a new vision of the foundations of pure mathematics. His defini¬ 

tion of manifold explicitly establishes links with discrete and continuous magni¬ 

tudes, suggesting that arithmetic, geometry, and their higher developments can all 

be reestablished within the new framework. Like Gauss (see §3.1), he regarded 

quantitative or metrical relations as only a part of the general theory of magnitudes, 

the other being the topology of manifolds [Riemann 1854, 274], The reader may be 

wondering what exactly is the relationship he establishes between magnitudes and 

manifolds. Actually, a careful reading of the Habilitationsvortrag shows that he 

simply employed both words as synonyms, although he tended to prefer “manifold” 

as a technical term. It seems plausible that he kept talking about magnitudes in 

order to let his audience grasp more easily what he intended to talk about, but at the 

same time he tended to substitute his new notion of manifold for that rather vague 

traditional term. A clear example is part I of the lecture, where he analyzes what he 

technically calls an “n-ply extended manifold” or manifold of n dimensions; this 

part is entitled “Notion of an «-ply extended magnitude” [1854, 273 and, e.g., 276]. 

By establishing the theory of magnitudes upon the foundation of manifolds, 

Riemann transgressed the limits of the traditional conception of mathematics, turn¬ 

ing it into a discipline of unlimited extent and applicability, since it embraced all 

possible objects. Thus, his traditionalistic tenninology hides strongly innovative 

viewpoints. In §5 we shall discuss the details of his embryonic theory. 

4.2. Riemann on the infinite. Since we have set as a criterion for “serious” talk 

of sets the acceptance of the actual infinite (see Introduction), it is crucial to ask 

what Riemann’s position on this issue was. The answer must be tentative, since 

there is no evidence that may be called direct, strictly speaking, and we can only 

reconstruct his viewpoint. But there is reason enough to think that he accepted the 

actual infinite. 
First, we may recall that Leibniz was a partisan of the actual infinite at least in 

some of his work,1 and that his ideas were quite influential in 19th-century Ger¬ 

many. One of the authors who fell under his influence was Herbart, who also spoke 

for the actual infinite in his early years. In the late 1830s the philosopher would 

declare that true infinity can only be regarded as undetermined and incomplete,2 but 

1 Notably the Monadologie of 1714, see §1.3. 

2 There is a memorable passage in Cantor’s works [1932, 392-93] where he presents, against 
Herbart, an argument that might be called the trip and road argument, intending to show that the 
potential infinite presupposes the actual infinite. There he speaks about the “Herbartian dogma¬ 
tism” that only accepts the potential infinite, quoting extensively from [Herbart 1964, vol. 4, SB- 
89]; in particular, he gives the following quotation: “Hingegen ist bei einer unendlichen Menge 
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the reader should keep in mind that Riemann [1892, 507-08] preferred Herbart’s 

early ideas to his later developments. In the 1800s, Herbart talked about the service 

that metaphysics had made mathematics by eliminating the aversion of the notion 

of infinity; such aversion had led mathematicians to teach 

in strange ways, without that fundamental concept, that which only through it was accessible 

to the discoverer himself [Herbart 1964, vol. 1, 174]. 

By this time, Herbart devoted much time to mathematical studies, and he is most 

likely talking about the calculus and its discoverer Leibniz. Herbart also formulated 

the ontology of the ‘Reale,’ a version of Leibniz’s monadology, which again is 

based on the actual infinite. All of this is evidence for an acceptance of the actual 

infinite in Herbart’s early work, the one that Riemann found more convincing. 

As regards Riemann, the notion of continuous manifolds as sets of “points,” 

where these points are the counterparts of the “elements” of discrete manifolds (see 

his definition above), gives indirect evidence for a positive attitude towards actual 

infinity. Nevertheless, it might be argued that this does not go beyond the tradi¬ 

tional, ambivalent position of geometers, even though Riemann’s language appears 

to be more committed. More interesting information is given by a couple of pas¬ 

sages, one from Riemann’s philosophical manuscripts, the other from the Habilita- 

tionsvortrag. 

A surprising passage in the 1854 lecture assumes the existence of infinite¬ 

dimensional manifolds (or spaces), at a time when the idea of going beyond the 

third dimension was already bold. The text also shows that Riemann did not iden¬ 

tify the discrete with the finite, since he distinguishes the case of an infinite se¬ 

quence (a discrete infinity) from that of a continuous set: 

Nevertheless, there are manifolds in which the determination of position requires not a finite 

number, but either an infinite sequence or a continuous manifold of determinations of mag¬ 

nitude. Such manifolds are, for example, the possible determinations of a function for a 

given region, the possible shapes of a solid figure, etc.* 1 

This text can hardly have been written by a person who has serious doubts about 

the acceptability of actual infinity. But, should the reader still be skeptical about 

Riemann’s position, there is another piece of evidence that seems to be conclusive. 

A philosophical text called ‘Antinomien’ is the most explicit evidence of Rie¬ 

mann’s views regarding the infinite. Here he presents four pairs of contradictory 

propositions as theses and antitheses, no doubt following the famous example of the 

die Moglichkeit des Zahlens schlechthin ausgeschlossen, wed eben das wahrhaft Unendliche nur 

als ein Unbestimmtes, Unfertiges gefasst werden kann." 

1 [Riemann 1854, 276]: “Es giebt indess auch Mannigfaltigkeiten, in welchen die Ortbestim- 
mung nicht eine endliche Zahl, sondern entweder eine unendliche Reihe oder eine stetige Man- 
nigfaltigkeit von Grossenbestimmungen erfordert. Solche Mannigfaltigkeiten bilden z. B. die 
moglichen Bestimmungen einer Function fur ein gegebenes Gebiet, die moglichen Gestalten 
einer raumlichen Figur, u. s. w.” 
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Kritik der reinen Vernunft [1787, 454-489], Kant had tried to show that human 

reason falls naturally and inevitably into contradiction, when it considers some all- 

embracing notions - the world with its spatial and temporal limits, the simple or 

composite character of substances, the notions of causality and freedom, and the 

notion of God. (This, by the way, is the remote origin of the term “antinomy” as 

applied to the set-theoretical paradoxes, with the connotation that they are inevita¬ 

ble contradictions of our logic.) Riemann’s antinomies are, thematically, quite close 

to Kant’s: they deal with finite vs. continuous space and time, freedom vs. deter¬ 

minism, God as acting temporally vs. God as atemporal, and inmortality vs. a 

purely intelligible soul [Riemann 1892, 518-20], 

What is interesting for our present purposes is that these antinomies are pre¬ 

sented under the general headings “Thesis. Finite, representable” and “Antithesis. 

Infinite, conceptual systems which lie on the borders of the representable” [op.cit., 

518]. And a general comment on the relation between thesis and antithesis indicates 

that, under the latter, we find “concepts which are well determined by means of 

negative predicates but are not positively representable” [op.cit., 519].1 Thus, the 

notion of the infinite is well defined and seems to be completely acceptable - the 

same being the case for the notions of continuity, determinism, a providential God, 

and the soul. 

At the same time, this text enables us to observe an important, while perfectly 

natural, difference between Riemann’s position and the later results of Dedekind 

and Cantor. Certainly Riemann accepted the actual infinite, and regarded the notion 

of infinity as “well determined,” but he did not think that it would be possible to 

define it directly. Flence, Dedekind’s definition of infinite set (§§111.5 and VII.2) 

would most likely have been surprising to him, as it was to Cantor.2 Furthermore, in 

saying that the infinite is not positively representable, Riemann implied that it is not 

possible to investigate it directly [1892, 520], to set forth a positive theory. Thus 

Cantor’s achievements would have been even more surprising to him. 

5. Manifolds, Arithmetic, and Topology 

The manuscripts of 1851-53 only mentioned continuous manifolds, but in 1854 

Riemann’s interest in generalization was also shown by the fact that he included 

some spare comments on discrete manifolds. This is further evidence of his inten¬ 

tion to place manifolds at the foundations of the theory of magnitudes, and thus of 

pure mathematics. His comments make it clear that the theory of discrete manifolds 

1 “Thesis. Endliches, Vorstellbares.” “Antithesis. Unendliches, Begriffssysteme, die an der 
Grenze des Vorstellbaren liegen.” “Die Begriffssysteme der Antithesis sind zwar durch negative 
Predicate fest bestimmte Begriffe, aber nicht positiv vorstellbar.” 

2 [Dedekind 1932, vol. 3, 488]: “doch bezweifelte er [Cantor] 1882 die Moglichkeit einer ein- 
fachen Definition [des Unendlichen] und war sehr iiberrascht, als ich ihm ... die meinige mit- 

theilte.” 
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includes that of natural number, in accordance with classical conceptions. Immedi¬ 

ately after defining a manifold (see §5.1) he goes on: 

Concepts whose determinations fonn a discrete manifold are so common that, at least in the 

cultivated languages, any things being given it is always possible to find a concept under 

which they are included (hence, in the theory of discrete magnitudes, mathematicians could 

unhesitatingly proceed from the postulate that certain given things are to be regarded as 

homogeneous), ...' 

This text may again seem cryptic, but one should recall that Euclid defined number 

as a “collection of units,” and that it was customary at the time to discuss the notion 

of unit in elementary arithmetic textbooks. Actually, mathematicians and philoso¬ 

phers were puzzled by the fact that number-units ought to be equal and unequal at 

the same time (see [Frege 1884, ch. 3]). Riemann is suggesting that a formulation in 

terms of sets eliminates the problem: diverse objects can be regarded as equal or 

homogeneous (though not identical), insofar as they fall under the same concept, 

that is, belong to the same manifold. The first sentence also makes it clear that any 

objects whatsoever may become elements of a manifold, i.e., mathematical objects. 

The theory of numbers thus attains greater clarity thanks to the new notion. The 

next paragraph confirms that numbers express relations between manifolds: 

Definite parts of a manifold, distinguished by a mark or by a boundary, are called quanta. 

Their comparison with regard to quantity is accomplished in the case of discrete magnitudes 

by counting, in the case of continuous magnitudes by measuring.1 2 

The relation between manifolds and numbers is clearly suggested, though of course 

there is a great distance between this and a detailed, rigorous set-theoretical foun¬ 

dation of the number system. At any rate, the core idea of regarding sets as the 

basic referents for arithmetic was suggested by Riemann, and would be developed 

by his friend Dedekind, among other authors. 

Everything points to the conclusion that Riemann mentioned discrete manifolds 

for the sake of completion; his main interest was in continuous manifolds, since 

these formed the basis for his work on function theory, topology, and geometry. A 

footnote at the end of the lecture indicates that the section we are discussing “also 

constitutes the preliminary work for contributions to analysis situs.”3 One can say 

that the topological viewpoint was Riemann’s most important fundamental contri- 

1 [Riemann 1854, 273-74]: “Begriffe, deren Bestimmungsweisen eine discrete Mannigfaltig- 
keit bilden, sind so haufig, dass sich ftir beliebig gegebene Dinge wenigstens in den gebildeteren 
Sprachen immer ein Begriff auffinden lasst, unter welchem sie enthalten sind (und die Mathe- 
matiker konnten daher in der Lehre von den discreten Grossen unbedenklich von der Forderung 
ausgehen, gegebene Dinge als gleichartig zu betrachten), ...” 

2 [Riemann 1854, 274]: “Bestimmte, durch ein Merkmal oder eine Grenze unterschiedene 
Theile einer Mannigfaltigkeit heissen Quanta. Ihre Vergleichung der Quantitat nach geschieht bei 
den discreten Grossen durch Zahlung, bei den stetigen durch Messung.” 

3 [Riemann 1854, 286]: “Art. I bildet zugleich die Vorarbeit fiir Beitriige zur analysis situs.” 



§5. Manifolds, Arithmetic, and Topology 69 

bution to mathematics. With the preliminary analysis of the notion of n- 

dimensional manifold presented in the 1854 lecture, and the beginnings of an ab¬ 

stract topology in the posthumously published ‘Fragment aus der Analysis Situs,’ 

Riemann established the program for an independent theory of topological spaces 

[Bourbaki 1976, 192-93], 

From the manuscripts of 1851-53 on, it was perfectly clear that Riemann con¬ 

ceived of a non-metrical approach to the study of manifolds [Scholz 1982, 222- 

224], This involves his most important rupture with the traditional conception of 

magnitudes, and of mathematics as the theory of magnitudes.1 After the last 

sentence that we have quoted, he went on: 

Measuring consists in the superposition of the magnitudes to be compared; it therefore re¬ 

quires a means of transporting one magnitude as the standard for another. In the absence of 

this, two magnitudes can only be compared when one is a part of the other; in which case 

also we can only determine the more or less, and not the how much. The researches which 

can in this case be instituted about them form a general part of the theory of magnitudes, 

independent of metric determinations, in which magnitudes are regarded, not as existing 

independently of position nor as expressible in terms of a unit, but as domains in a manifold. 

Such researches have become a necessity for many branches of mathematics, e.g., for the 

treatment of many-valued analytic functions; and the want of them is no doubt a chief cause 

why the celebrated theorem of Abel, and the achievements of Lagrange, Pfaff, and Jacobi for 

the general theory of differential equations, have so long remained unfruitful.2 

The relation between topology on the one hand, and function theory and differential 

equations on the other, is unequivocally stated, so that the connection with other 

parts of Riemann’s work is clearly indicated. The above description of the topologi¬ 

cal viewpoint can be found again, almost word by word, in Riemann’s celebrated 

paper on Abelian functions [1857, 91] (quoted in §1.1). Certainly it is only a sug¬ 

gestive description, not a precise definition, but the details of Riemann’s topology 

of surfaces and manifolds served as further clarification. Quite clear was Riemann’s 

intention of dispensing with metrical considerations altogether, but topological 

1 Such a rupture has some precedent in Gauss (§2.1), and other contemporary authors also 
emphasized that mathematics is not restricted to the study of the quantitative. This is the case of 
Grassmann [1844] and of the British tradition of symbolical algebra [e.g., Boole 1847, 42], 

2 [Riemann 1854, 274]: “Das Messen besteht in einem Aufeinanderlegen der zu vergleichen- 
den Grossen; zum Messen wird also ein Mittel erfordert, die eine Grosse als Masstab fur die 
andere fortzutragen. Fehlt dieses, so lcann man zwei Grossen nur vergleichen, wenn die eine ein 
Theil der andem ist, und auch dann nur das Mehr oder Minder, nicht das Wieviel entscheiden. 
Die Untersuchungen, welche sich in diesern Falle iiber sie anstellen lassen, bilden einen allge- 
meinen von Massbestimmungen unabhangigen Theil der Grossenlehre, wo die Grossen nicht als 
unabhangig von der Lage existirend und nicht als durch eine Einheit ausdriickbar, sondem als 
Gebiete in einer Mannigfaltigkeit betrachtet werden. Solche Untersuchungen sind fur mehrere 
Theile der Mathematik, namentlich fur die Behandlung der mehrwertigen analytischen Func- 
tionen ein Bedtirfnis geworden, und der Mangel derselben ist wohl eine Hauptursache, dass der 
beriihmte Abel’sche Satz und die Leistungen von Lagrange, Pfaff, Jacobi fur die allgemeine 
Theorie der Differentialgleichungen so lange unfruchtbar geblieben sind.” 
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research up to the 20th-century was frequently framed within the setting of metric 

spaces, as was the case with Cantor’s pioneering work on point-sets (subsets of D8. 

or US.11; see §§V1.6—8). 
Part I of Riemann’s Habilitationsvortrag deals only with two points from the 

topological theory of manifolds: the concept of ^-dimensionality, and the parame- 

trization of an n-dimensional manifold [1854, 274], Riemann clarified the notion of 

dimension by considering how the manifold might be “reconstructed” starting from 

a one-dimensional path, going up to a 2-dimensional manifold, ... to manifolds of 

n-1 and, finally, n dimensions. This is reminiscent of the traditional idea of a me¬ 

chanical generation, which can be found in Aristotle, Proclus and Oresme, but 

mixed with the radically new acceptance of multi-dimensionality [Scholz 1980, 32- 

33]. More important was to establish the possibility of a local parametrization of 

points in the manifold, since this opened the way to the introduction of analytical 

concepts (fundamental metrics, Gaussian curvature) and therefore to differential 

geometry. The corresponding part of Riemann’s lecture [1854, 275-76] leaves 

unclear whether the parametrization is intended to be local or global. But Rie¬ 

mann’s awareness of the complex interrelation between local and global properties, 

elsewhere in the lecture, forces one to interpret these passages as referring to a local 

parametrization [Scholz 1980, 34-36]. 

In this way, Riemann discovered the “essential character” of ^-dimensionality in 

the fact that the determination of position in an ^-manifold requires n determina¬ 

tions of magnitude, i.e., n coordinates [Riemann 1854, 276], This conclusion was 

accepted by most authors, particularly by Helmholtz in his influential papers on the 

foundations of geometry [1868, 612], but it was questioned by Cantor’s work on 

one-to-one mappings from DR to H5.n (§VI.4). 

6. Riemann's Influence on the Development of Set Theory 

The development of Riemann’s views affords a partial answer to the questions how 

the language of sets emerged from classical mathematics, and how sets came to be 

regarded as a foundation for mathematics (§3). Riemann understood the surfaces of 

his function theory, and the manifolds of his differential geometry, as based on the 

notion of concept-extension, i.e., of class or set. On this basis, he proposed a revi¬ 

sion of the classical notion of magnitude; he regarded manifolds, i.e., classes, as a 

satisfactory foundation for arithmetic, topology and geometry - in a word, for pure 
mathematics (§§4-5). 

In Riemann’s work we do not find any development of an autonomous theory 

of sets, not even of the topology of point-sets, but only a rather general and still 

intuitive reconception of mathematics. It is natural, however, to think that his semi¬ 

nal ideas may have stimulated other authors to value the promise of sets, and to 

carry further the program of a reformulation of mathematics. The art of posing 

questions may not be “more consequential” than that of solving them, as Cantor 

believed, but no doubt it is equally important - and research programs are as im- 
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portant as technical results for the development of a new field. Were that correct, 

we should expect Riemann’s ideas to have influenced further developments on a 

general programmatic level, not in the customary way of particular mathematical 

results or techniques. Their effectiveness lay in their potential to suggest interesting 

ways of inquiry leading to particular questions and technical developments. This is 

clear, for instance, in connection with the emergence of point-set topology. Al¬ 

though the issue of Riemann’s influence will continue to be of our concern in other 

chapters, we shall explore it here in a preliminary way. 

Riemann’s new vision of mathematics remained unknown to the general public 

until 1868, when Dedekind published his works of 1854 in the Abhandlungen of 

the Gottingen Academy of Sciences. Before that, only close friends such as Dede¬ 

kind himself, and perhaps the Italian mathematicians, could have learned about his 

speculations. The treatises published in 1868 are the Habilitationsvortrag and the 

famous paper on trigonometric series, including the definition of the integral. Both 

appeared simultaneously, and immediately caused a sensation in the German 

mathematical world (see [Klein 1926, vol. 1, 173]). One must take into account that 

both papers were published together and both were widely read. Thus, an author 

influenced by Riemann’s work on real analysis may have also been influenced by 

his proposal of manifolds. 

6.1. Reception of the notion of manifold. The impact of the paper on trigono¬ 

metric series can be judged from work by Hankel, Heine, Cantor and du Bois Rey- 

mond that was published two or three years later (chapter V). Riemann’s new defi¬ 

nition of the integral opened the way for a systematic study of discontinuous func¬ 

tions, and thus constituted a most important background for the beginnings of the 

theory of point-sets. As for the paper on geometry, its impact can be gauged from 

the work of Helmholtz and Beltrami in 1868, and that of Klein in the 1870s, in¬ 

cluding his Erlanger Programm of 1872 [Scholz 1980, ch. 3], 

As I have said, Riemann’s sophisticated approach to differential geometry, 

particularly his conception of manifolds of variable curvature, was not taken up. 

Better fortune had the notion of manifold of constant curvature, the only viable one 

according to Helmholtz, and a very interesting proposal at a time when non- 

Euclidean geometries were in the midst of mathematical discussion. Helmholtz and 

Klein adopted the term “manifold,” but they interpreted it in a restricted way: 

Helmholtz [1868] concentrated on the space problem, and referred to Riemann’s 

paper for details regarding the idea of manifold, but he restricted his attention to 

continuous manifolds of constant curvature. Klein employed the word ‘Mannig- 

faltigkeit’ very frequently in his geometrical and function-theoretical work of the 

1870s and 80s. The earliest mentions seem to occur in 1872, not only in the Erlan¬ 

ger Programm,' but also in work on line geometry and non-Euclidean geometry 

[Klein 1921/23, vol. 1, 106-26, 311-43, 460-97]. In the famous Programm [1893] 

1 The Erlanger Programm enjoyed some diffusion from the 1870s, but only in the 1890s, 
when it was properly published, did it exert a great influence [Hawkins 1984], 
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he understands by a manifold essentially an ^-dimensional projective space en¬ 

dowed with a group of transformations. In work on algebraic surfaces, published in 

1873, he employs the idea in the sense of a hyperspace [Klein 1921/23, vol. 2, 11- 

44], 
In both cases, the influence of Riemann is clear in the abstract tendencies pro¬ 

moted by Helmholtz and particularly by Klein. The latter included in the Erlanger 

Programm a reference to the theory of invariants under one-to-one bicontinuous 

transformations, which is interesting in connection with nascent topology - that 

viewpoint constitutes an important complement to Riemann’s seminal ideas (see 

[Klein 1893; Johnson 1979, 127]). Klein went on to promote Riemann’s ideas, 

especially the notion of a Riemann surface, in practically all branches of mathe¬ 

matics. But he always understood the notion of a manifold in a specifically geomet¬ 

rical sense. The more general meaning of ‘Mannigfaltigkeif as set, and the con¬ 

nection between manifolds and the foundations of arithmetic and pure mathematics, 

were lost in these developments. 

Nevertheless, one should not overlook the possibility that the most general as¬ 

pects of Riemann’s notion of a manifold may have had a powerful influence on 

authors related with the early development of the theory of point-sets. In the case of 

Cantor, it is notable that from 1878 to 1890 he termed his field of study “theory of 

manifolds” [Mannigfaltigkeitslehre], And the first time it happened he established a 

direct relation to Riemann’s 1854 Habilitationsvortrag - it was the paper devoted 

to prove that all continuous “manifolds” have the same cardinality (see §VI.4). By 

showing that D5. and Mn are equipollent, Cantor cast doubt on Riemann’s idea that 

the “essential character” of ^-dimensionality is the need of n coordinates for giving 

the position of a point. Cantor presented his results as directly related to Riemann’s 

insufficient characterization of ^-dimensionality. 

It has been suggested that Cantor’s use of the word ‘manifold’ could have come 

from Weierstrass’s lectures [Johnson 1979, 128-129], but an analysis of the use of 

this term in extant transcriptions of those lectures suggests that Weierstrass never 

gave it the general meaning of set or class. Weierstrass seems to have called certain 

subspaces of IE.n ‘manifolds,’ which is similar to Gauss’s use of the word, and also 

to what a superficial reading of Riemann’s Habilitationsvortrag might suggest.1 

Such a usage would not allow for calling ‘manifold’ a set of points scattered in a 

line or space, which is the sense given to the word by Cantor in his papers of the 

period 1879-84. On the other hand, Riemann’s conception of manifolds as classes 

allows precisely this kind of use. Although his association of manifolds with 

concepts might seem to set narrow limits on acceptable classes, it should be noted 

that ‘being a point at which a given function is discontinuous’ would be considered 

as a concept by 19th-century logicians. It is in this sense that Riemann’s definition 

1 Cf. [Weierstrass 1986; 1988], also [Weierstrass 1894/1927, vol.7, 55-60], and [Pincherle 1880, 
234-237], Actually, Gregory H. Moore has communicated to me that apparently Weierstrass never 
used that word before 1868, and this suggests strongly that he took it from Riemann [1854], which 
was published exactly in that year. By this time, Cantor was already working on his Habilitation. 
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is ampler than Weierstrass’s or Gauss’s use of the word.1 Moreover, only Riemann 

talked about manifolds in a systematic way, in connection with arithmetic, analysis, 

and geometry. And it was only to Riemann that Cantor referred in his paper [1878], 
As I have mentioned at the very beginning of this chapter, it is remarkable that 

Dedekind himself understood Cantor’s terminology to be related to Riemann’s 

work. In a letter of 1879, he proposed to replace the clumsy word ‘Mannigfaltig- 

keit’ by the shorter ‘Gebiet’ [domain], which, he said, is “also Riemannian” [Cantor 

& Dedekind 1937, 47], Later on, he kept mentioning the word ‘Mannigfaltigkeit’ as 

a synonym for set [Dedekind 1888, 344], which he would probably not have done, 

had it meant a misunderstanding of Riemann’s original notion. In some respects, 

the reception of Riemann’s work [1854] by Cantor and Dedekind was better than 

that of any geometer; momentarily we shall see the case of Riemann’s 

“hypothetical” understanding of the foundations of geometry. 

6.2. Continuity and topology. Riemann based his discussion of manifolds on a 

distinction between discrete and continuous manifolds. This called for further 

elaboration, and there were open problems in connection with both sides of the 

distinction. The relation he established between discrete manifolds and numbers 

was still very rough and vague, but it may not be coincidental that Dedekind be¬ 

came the mathematician who elaborated more rigorously on the set-theoretical 

foundations of the number system. But the most pressing issues were the definition 

of continuity itself, and the development of the topological theory of continuous 

manifolds. 
In his Habilitationsvortrag, Riemann explained the continuity of a manifold by 

reducing it to the possibility of continuous transitions from any point to any other 

(which seems similar to path-connectedness). Since he presupposed this notion of a 

continuous transition along a path, his explanation was almost purely verbal. 

Notably, Dedekind wrote some manuscripts on basic topological notions. In the 

1860s he defined the notions of an open set, of its interior, exterior, and boundary, 

proving related theorems within the context of metric spaces (for a more detailed 

analysis, see §V.3). As he wrote in a letter to Cantor of 1879, this offers “a very 

good foundation” for a rigorous exposition of the elements of the “theory of 

manifolds,” independently of geometrical intuition [Cantor & Dedekind 1937, 48]. 

Moreover, Dedekind’s famous work on the real numbers [1872] includes the first 

abstract definition of continuity. The author himself emphasized that the definition 

was perfectly general, offering “a scientific foundation for the investigation of all 

continuous domains” (emphasis in the original, [Dedekind 1872, 322]). There is 

little doubt that he saw his definition as relevant to Riemann’s manifolds and to his 

conception of topology (see §IV.3). 

1 A difficulty still exists, though, when we consider that no concept can be associated to an arbi¬ 

trary set of points in the line. This might have been the reason why both Dedekind and Cantor later 
tended to dilute or even abandon the connection between concepts and sets (see chapters VII and 

VIII). 
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One more step along this line was given by Cantor in a famous paper where he 

offered, among other things, a new abstract definition of continuity [Cantor 1883, 

190-94], This definition, which is intimately related with Cantor’s definition of the 

real numbers, showed the way to be followed by subsequent topological approaches 

(see §VI.7). Finally, it is worth mentioning that the influence of Riemann seems to 

offer a satisfactory explanation for a noteworthy coincidence in Cantor’s and 

Dedekind’s papers on the real numbers. Both, in contrast to contemporary authors, 

are explicit on the need to postulate the Cantor-Dedekind axiom of continuity of 

the line, and both think that the axiom does not represent a necessary property of 

geometrical or even physical space. But the idea of considering continuity as a 

hypothesis would seem natural to anyone influenced by Riemann’s lecture on 

geometry (see §IV.3). 
The important point here is that, in all of those contributions, both set theorists 

were working within Riemann’s tradition. The same happens, of course, with 

Cantor’s ground-breaking contributions to point-set topology, in a series of papers 

published from 1879 to 1884, entitled “On infinite, linear point-manifolds” (see 

§VI.6). 

6.3. On the way to abstraction. One last point that should be mentioned is that 

Riemann’s abstract-conceptual approach to mathematics may have paved the way 

for the development of abstract set theory. This is particularly clear in connection 

with his conception of topology, which may be considered as a first step toward an 

abstract set theory. It is obvious that set theory emerged from the study of the con¬ 

crete sets suggested by the usual topics of traditional mathematics. In my opinion, 

the early history of set theory, up to about 1890, should be regarded as a process of 

progressive differentiation of distinct kinds of abstract features (or structures) that 

appear intertwined in those concrete, traditional sets. The first such distinction, in 

connection with questions of geometry and analysis, was that of topological vs. 

metric aspects, and here the importance of Riemann’s contribution is undeniable 

(§3). A second step was the beginnings of a study of algebraic structures, particu¬ 

larly clear in the context of Dedekind’s work on Galois theory and algebraic num¬ 

ber theory (chapter III). A third step was Cantor’s ‘discovery’ of the transfinite 

realm and of the abstract properties of cardinality and order (chapters VI and VIII). 

Naturally, these features were only gradually differentiated. In Cantor’s work on 

sets, transfinite and topological aspects are not clearly distinguished until the mid- 

1880s (see chap. VIII). Likewise, it is doubtful that Dedekind may have differenti¬ 

ated algebraic and topological properties in the modern way.1 As regards topology, 

certainly it was not the exclusive brain-child of Riemann. The appearance of non¬ 

metric geometries - projective geometry in particular - opened the way to topol¬ 

ogy, and important elements of the new theory appeared in the work of Gauss and 

Listing, in Weierstrass’s lectures, and so on. But Riemann drew the most general 

1 For him, the number system was more basic than any abstract structure [Corry 1996, chap. 
2], and the construction of the number system naturally led from sets endowed with algebraic 
properties to other sets with topological ones (but see §111.6.2). 
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consequences regarding the emerging topological viewpoint, and he did so in con¬ 

nection with the notion of a manifold. The effect of these new vistas on the devel¬ 

opment of set-theoretical ideas may be judged from a comparison of the work of 

Bernard Bolzano with that of Cantor. 

Bolzano is usually named whenever the origins of set theory are discussed, even 

though his writings exerted almost no influence on further developments. As we 

have seen, he proposed to base mathematics on notions similar to that of set (§5.2). 

He made a clear defense of actual infinity [Bolzano 1851, 6-24], and he proposed 

precise notions for treating infinite sets. In this way he even came quite close to 

such a central notion of set theory as cardinality (power, in Cantor’s terminology). 

But after having been close to the right point of view, he departed from it in quite a 

strange direction.' Bolzano recognized clearly the possibility of putting two infinite 

sets in a one-to-one correspondence while one of them is a subset of the other, and 

he argued that this involves no contradiction [Bolzano 1851, 27-28]. He gave two 

examples, the intervals [0,5] and [0,12], correlated by the function 5y = 12x, and a 

second similar example expressed geometrically [op.cit., 28-30]. In this way he 

came close to regarding equipollence as a criterion for measuring infinite “sizes,” 

but he resisted the conclusion that those sets have equal cardinality or “size.” He 

wrote: 

from that circumstance alone we are not allowed to conclude that both sets, if they are infi¬ 

nite, are equal to each other with respect to the multiplicity of their parts (that is, if we ab¬ 

stract from all differences between them); ... Equality of those multiplicities can only be 

inferred when some other reason is added, for instance that both sets have absolutely equal 

grounds of determination, i.e., that their mode of formation is absolutely equal.1 2 

It seems that the only right way to compare sets “with respect to the multiplicity 

of their parts,” and abstracting from all other differences, is by means of 

equipollence and cardinality. Perhaps Bolzano was misled by his ambiguous usage 

of the word “part,” which does not differentiate between element and subset, but it 

would be surprising that this alone might have been sufficient reason to lead astray 

his careful precision and logical rigor. Given the fact that he employed geometrical 

examples, it seems more plausible that the main source of his error was his 

familiarity with Euclidean geometry and classical analysis, which led him to give 

undue prominence to metric considerations. 

1 Here, I call ‘right’ the idea that cardinality is the only meaningful way to compare abstract 
sets "with respect to the multiplicity of their parts [elements] (that is, if we abstract from all 

differences between them)." 

2 [Bolzano 1851, 30-31]: “bloss aus diesern Umstande ist es - so sehen wir - noch keines- 
wegs erlaubt zu schliessen, dass diese beiden Mengen, wenn sie unendlich sind, in Hinsicht auf 
die Vielheit ihrer Teile (d.h. wenn wir von alien Verschiedenheiten derselben absehen) einander 
gleich seien; ... Auf eine Gleichheit dieser Vielheiten wird erst geschlossen werden diirfen, wenn 
irgendein anderer Grand noch dazukommt, wie etwa, dass beide Mengen ganz gleiche Bestim- 
mungsgrunde, z.B. eine ganz gleiche Entstehungsweise haben.” 
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Non-metric geometrical ideas seem to have been a prerequisite for the 

development of abstract set theory, particularly because the notion of cardinality 

would be applied to subsets of D8. and Mn before it could be abstractly formulated. 

The very fact that abstract and topological considerations were intertwined in the 

work of Cantor until about 1885 seems to reinforce this conclusion. Such non¬ 

metric considerations began to emerge within the work of projective geometers, 

and surfaced in the early evolution of topology. Judged from this viewpoint, 

Riemann’s contribution, and his explicit differentiation of topological and metric 

aspects, would seem to have been crucial in the way to abstraction. 
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Appendix: Riemann and Dedekind 

As we have seen (§1.4), Dedekind’s crucial formative period was the years 1855 to 

1858, when he already held his Habilitation. He emphasized above all the role 

played by Dirichlet in advancing and refining his knowledge of higher mathemat¬ 

ics, but also the figure of Riemann, whom he regarded as one of the greatest 

mathematicians. As he wrote, intercourse with both of them was inestimable, and 

he could expect that it would bring fruits [Scharlau 1981, 37]. 

For one full year, 1855-56, Riemann lectured on Abelian and elliptic functions, 

having Schering, Bjerknes and Dedekind as his audience [Dedekind 1876, 519], 

Both courses made a strong impression upon Dedekind. An 1856 letter to Riemann 

[Dugac 1976, 210], written after the second lecture had finished, mentions the 

“multiple teachings” that he owes him since a year ago, and asks Riemann to send 

the draft of his theory of Abelian functions. We have seen that Riemann’s function 

theory became a methodological model of key importance for his younger col¬ 

league (§1.4). From that work, Dedekind learnt the principle that “accidental forms 

of representation” ought to be avoided in favor of “simple basic notions” [Dedekind 

1930/32, vol. 3, 468]. One must look for fundamental concepts, in order to base any 

mathematical theory on characteristic, inner properties of the objects studied. Ex¬ 

ternal representations or notations, however useful for the purpose of calculation, 

should be relegated to a secondary role [op.cit., vol. 2, 54-55; vol. 3, 296]. All 

fragments in Dedekind’s work that deal with his basic methodological commit¬ 

ments happen to mention Riemann. 

As we shall see (§111.1), the notion of set was absent from Dedekind’s work up 

to 1855, even when he dealt with foundational issues. But it was conspicuously 

present both in his algebraic work of 1856-58, and his theory of irrational num¬ 

bers, which dates from 1858. It seems that here, again, Riemann’s example was 

decisive, although we do not have direct evidence for this claim. We do know that 

Dedekind was deeply involved with Riemann’s approach to function theory for at 

least a year, and thus he faced the problem of understanding the notion of a Rie¬ 

mann surface. Since both mathematicians maintained frequent personal contact, it is 

only natural to conjecture that Riemann must have informed his friend of his 

thoughts on the notion of manifold and its foundational role.1 

But Dedekind’s admiration for Riemann’s work, and his adherence to some of 

its basic tenets, does not mean that they both worked similarly in all respects. In 

particular, the sense of rigor was different, partly due to the fact that they worked in 

such different fields. In November 1874 Dedekind wrote to Weber, with whom he 

colaborated in editing Riemann’s works: 

1 We know that both discussed freely Riemann’s speculations, even those related to the “phi¬ 

losophy of nature,” i.e., physical theory, as happened in the summer of 1857 [Dedekind 1876, 

521], 
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I am not the profound expert on Riemann’s works that you take me to be. I certainly know 

those works and I believe in them, but 1 do not master them, and I will not master them until 

having overcome in my way, with the rigor that is customary in number theory, a whole 

series of obscurities.1 

It is notable how Dedekind emphasizes his belief in the correctness of Riemann’s 

results, which calls to mind the lack of rigorous proofs of many of them - think of 

Weierstrass’s then recent critique of the Dirichlet Principle, of the foundations for 

the topology of manifolds, etc. A passage in his biography of Riemann seems to 

offer Dedekind’s explanation for his difficulties. He says that Riemann’s brilliant 

power of thought and anticipatory imagination led him frequently to take very great 

steps that others could not follow so easily. And when one asked him to give a 

more detailed explanation of some intermediate steps of his conclusions, he might 

seem puzzled, and it caused him some effort to accommodate to the slower rea¬ 

soning of others and to leave their doubts aside [Dedekind 1876, 518-19]. By con¬ 

trast, Dedekind always characterized himself as a slow mind, a “step-wise under¬ 

standing” [Treppenverstand], that needed to fully master the basics of a subject in 

order to be able to work on it [Dugac 1976, 179, 261].2 

In 1863, having published Dirichlet’s Vorlesungen on number theory, Dedekind 

started to prepare a publication of his lectures on potential theory. On this occasion 

he attempted to prove what Riemann called the Dirichlet Principle, concerning the 

existence of a minimal continuous function on a given domain. It was some years 

before the critique of Weierstrass. In order to accomplish that goal, he looked for 

basic notions upon which to base an abstract development of the topological theory 

of manifolds (a topic mentioned in §6.2, to be analyzed in §IV.3). 

Three years later, in 1866, Dedekind was entrusted with Riemann’s Nachlass, 

with the assignment of selecting those parts that could be published. He revised it 

completely, brought some order to the chaotic mass of papers, and transcribed those 

parts that he could understand [Dedekind 1930/32, vol. 3, 421-23], Three pieces 

were ready for print, and he published them quickly - the already-mentioned Ha¬ 

bitation papers and a contribution to electrodynamics. There was also the so-called 

Pariser Preisschrift, related to the lecture on geometry, which became the motiva¬ 

tion for a rather deep involvement with Riemann’s differential geometry.3 Dede¬ 

kind wished to publish this paper accompanied by a commentary on its relations 

1 [Cod. Ms. Riemann, I, 2, 14a-r]: “namentlich bin ich nicht der griindliche Kenner der Rie- 

mann’schen Werke, fur den Sie mich halten. Ich kenne zwar diese Werke und glanbe an sie, aber 

ich beherrsche sie nicht, und ich werde sie nicht eher beherrschen, als bis ich eine ganze Reihe 

von Dunkelheiten mir auf meine Weise und mit der in der Zahlentheorie ublichen Strenge iiber- 
wunden haben werde.” 

2 Regarding questions of rigor, Dedekind’s point of reference was no doubt Dirichlet, who 

taught him the meaning of number-theoretical rigor (see above and [Haubrich 1999]). 

3 ‘Commentatio mathematica, ...,’ in [Riemann 1892, 391-404]; see the ‘Anmerkungen’ on 

[405-23], and extracts from Dedekind’s comments in the 1876 edition of the works. The other 

paper mentioned is ‘Ein Beitrag zur Electrodynamik’ [op.cit., 288-93], 
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with the lecture, and a detailed development of its analytical aspects. An 1875 letter 
to Weber says as follows: 

When I published [Riemann 1854] I expressed the intention of supplementing the analytical 

investigations, and in the following years (mostly 1867, I believe) I was quite busy with this 

topic, although later I renounced a publication completely, partly because others (Christoffel, 

Lipschitz, Beltrami) had taken up the subject, partly because in 1869 I was led, by the indis¬ 

pensable preparations for the second edition of Dirichlet’s number theory, to devote myself 

to a completely different field - namely establishing a general theory of ideal numbers, free 

from exceptions. Yesterday I revised my manuscripts of the time, very extensive, and I 

found among them three drafts, partly developed in much detail, for that supplementary 

treatise ... 1 have with me an enormous amount of material containing some investigations on 

particular spaces, e.g., of constant curvature, and other more interesting ones, but they did 

not go into those drafts, which interrupt sooner.1 

Thus, Dedekind devoted 2 or 3 years, immediately before elaborating the first ver¬ 

sion of his famous ideal theory, to Riemannian differential geometry. One may 

wonder whether this influenced in some way his radically new approach to alge¬ 

braic number theory (see §§111.3-4). 

Dedekind may have been the only mathematician in the last third of the 19th- 

century who worked on “more interesting” spaces than those of constant curvature, 

i.e., on spaces of variable Gaussian curvature.2 As we saw, this part of Riemann’s 

ideas was hardly understood by his contemporaries, most of whom followed Helm¬ 

holtz in accepting only manifolds of a constant curvature. In Dedekind’s Nachlass 

one can find several manuscripts with the title Tdeale Geometrie,’ which have not 

been carefully studied, and are not even well catalogued (see [Cod. Ms. Dedekind 

V, 8 and XII, l].3 The existence of these manuscripts is even a bit surprising, since 

Dedekind is normally taken to be the prototype of a pure algebraist and number 

1 [Cod. Ms. Riemann 1,2, p. 23v]: “Bei der Herausgabe dieser letzteren Abhandlung habe ich 

die Absicht geaussert, die analytischen Untersuchungen nachzuliefern, und ich habe mich in den 

nachsten Jahren (hauptsachlich 1867, wie ich glaube) lange mit diesem Gegenstande beschaftigt, 

spater aber die Publication ganz aufgegeben, theils weil Andere (Christoffel, Lipschitz, Beltrami) 

diesen Stoff ergriffen hatten, theils weil ich im Jahre 1869 durch die unerlasslichen Vorarbeiten 

zur zweiten Ausgabe der Dirichlet’schen Zahlentheorie gezwungen wurde, mich einem ganz 

anderen Felde, namlich der Herstellung einer allgemeinen, ausnahmslosen Theorie der idealen 

Zahlen zu widmen. Ich habe nun gestern meine damaligen, sehr umfangreichen Papiere 

durchsucht, und zwischen denselben drei, zum Theil sehr genau ausgefuhrte Entwiirfe zu einer 

solchen Nachtrags-Abhandlung vorgefunden ...; eine Menge von Untersuchungen von speciellen, 

z.B. constant gekriimmten und anderen interessanteren Raumen liegen bergehoch bei mir, sind 

aber in diese Entwiirfe, die vorher abbrechen, nicht mehr eingegangen.” 

2 Clifford’s famous contribution is just two pages presenting an interesting conjecture; see 

[Clifford 1882; Farwell & Knee 1990], 

3 The paper that probably contains what he intended to print was published a few years ago: 

'Analytische Untersuchungen iiber Bernhard’s Riemann Abhandlung tiber die Flypothesen 

welche der Geometrie zu Grunde liegen,’ in [Sinaceur 1990], In [Cod. Ms. Dedekind XII, 16] 

there is also a paper on congruence under constant curvature, and a short commentary on [Helm¬ 

holtz 1868]. 
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theorist. That impression is partly due to his extreme thoroughness when preparing 

a publication. As we shall see, by 1860 he could have published important research 

on algebra and algebraic number theory, but he refrained from going into print until 

he developed a completely general theory. Likewise, around 1870 he might have 

made important contributions to topology, differential geometry and the study of 

differential invariants. But he seems to have shared Gauss’s motto: ‘pauca sed 

matura.’ 

Figure 4. Richard Dedekincl (1831-1916) in 1868. 



Dedekind and the Set-theoretical 
Approach to Algebra 

As almost no other in the history of mathematics, Dedekind made an ef¬ 

fort to develop his discipline systematically, and in particular he prepared 

the ground for present-day ‘abstract’ mathematics - above all ‘modem 

algebra’ in the sense of van der Waerden’s book. He contributed in an 

essential way to clarifying the most important basic notions of algebra - 

fields, rings, modules, ideals, groups - and he dealt with the foundations 

of mathematics - real numbers, Cantorian set theory, set-theoretical to¬ 

pology. In this sense, we can regard Dedekind as an antecessor and im¬ 

portant precursor of Bourbaki.1 

The connections between the work of Dedekind and that of such figures as Noether 

or Bourbaki explain the close attention that historians have given him in the last 25 

years. It is certainly true that Dedekind’s work is the outcome of a serious and deep 

attempt to reconceive and systematize classical mathematics, and that it prepared 

the ground in an essential way for modem abstract mathematics. But the idea that 

Dedekind (and Galois) gave modern algebra its structure, which can be found here 

and there,2 is too simplifying - the emergence of the structural viewpoint in algebra 

was a lengthy process, and there is reason to doubt that Dedekind ever viewed 

mathematics from a strictly structural perspective. For him, pure mathematics was 

the science of numbers in all its extension and derivations, number systems being 

more basic than any possible abstract structure. Nonetheless, the abstract- 

conceptual viewpoint, that he took from Riemann and pursued in a new direction 

(§1.4), led him to prefer a kind of approach and methods that would prove to be 

1 [Scharlau 1981, 2-3]: “Erstens hat sich Dedekind wie kaum ein zweiter in der Geschichte 
der Mathematik um einen systematischen Aufbau seiner Wissenschaft bemiiht und insbesondere 
die heutige ‘abstrakte’ Mathematik - vor allem die ,moderne Algebra' im Sinne des Buches von 
van der Waerden - vorbereitet. Er hat wesentlich zur Klarung der wichtigsten algebraischen 
Grundbegriffe - Korper, Ringe, Moduln, Ideale, Gruppen - beigetragen und sich mit Grundla- 
genfragen der Mathematik - reelle Zahlen, Cantors Mengenlehre, mengentheoretische Topologie 
— beschaftigt. In diesem Sinne konnen wir Dedekind als Vorfahren und wichtigen Wegbereiter 
Bourbakis ansehen. ... Zweitens war Dedekind ... gepragt von bedeutenden Vorgangem.” 

2 E.g., van der Waerden in his introduction to Dedekind, Uber die Theorie der ganzen alge¬ 

braischen Zahlen (Braunschweig, Vieweg, 1963). On Dedekind and structural algebra, see 
[Corry 1996, particularly 70-71,79]. 
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extremely fruitful in the context of 20th-century structural mathematics. This ac¬ 

counts for his influence on Noether and others, and makes it particularly interesting 

to explore the methodological and conceptual traits of Dedekind’s work that un¬ 

derlay his preferred mathematical style. 
An essential part of Dedekind’s approach was the set-theoretical viewpoint, that 

he employed in all kinds of settings, but particularly for the development of the 

number system and in his algebraic and number-theoretical research. These two 

issues correspond, respectively, to his foundational interests and his main research; 

the former will be analyzed in chapters IV and VII, while the latter constitutes the 

topic of the present chapter. This division is observed here for expository reasons, 

and also in order to follow the chronological sequence of publications. However, 

the reader should not overlook that, with Dedekind, work on a particular mathe¬ 

matical theory was never independent from reflections on its place within an over¬ 

all view and systematization of the discipline. 

Dedekind regarded mathematics as an edifice built on set-theoretical founda¬ 

tions. This applies to arithmetic, algebra and analysis, but also to geometry, at least 

when treated in Riemann’s way (§11.7). Therefore, in a summary of his work such 

as Scharlau’s (quoted above) one misses the mention of his 1888 book on the natu¬ 

ral numbers, which was an attempt to lay down the foundation for pure mathemat¬ 

ics as a whole (see §VI1.3). The origins of Dcdekind’s set-theoretical approach are 

quite old: he was clearly moving along that path by the late 1850s, and he deepened 

his understanding of, and confidence in, that approach with the formulation of ideal 

theory in 1871. Our present purpose is to analyze the evolution of his conceptions 

throughout this period, particularly - but not exclusively - in connection with his 

work on algebra and algebraic number theory.1 Obtaining a clear vision of the state 

of his conceptions by 1871 is particularly important here, since Dedekind met 

Cantor in 1872, and they had occasion to comment on these issues (see §VI. 1). 

We begin considering the algebraic origins of Dedekind’s set-theoretical ap¬ 

proach in the late 1850s. Then we analyze the emergence of his new notion of field 

and of algebraic number theory. § 4 deals with his notion of ideal, together with the 

ideals that informed its formulation. After considering the roots of Dedekind’s 

infinitism in §5, we analyze briefly the diffusion of his conceptions and approach. 

1. The Algebraic Origins of Dedekind's Set Theory, 1856-58 

Dedekind took his Habilitation in 1854, but by then it was still unclear what his 

research field would be. The dissertations presented for his Ph.D. and Habilitation 

had been occasional work and did not reveal his talents.2 Dedekind’s crucial for- 

1 Such a task would be almost impossible, were it not for a good number of contributions that 
have rescued and analyzed important manuscripts shedding new light on Dedekind’s develop¬ 
ment between 1857 and 1871 [Purkert 1977; Scharlau 1981, 1981a, 1982; Haubrich 1999], 

2 ‘Ober die Elemente der Theorie der Eulerschen Integrate’ (1852) and ‘Uber die Transforma- 
tionsformeln fiir rechtwinklige Coordinatensysteme’ (1854). 
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mative period was the years 1855 to 1858 (§1.4), and he emphasized, above all, the 

role played by Dirichlet in advancing and refining his knowledge of higher mathe¬ 

matics. Besides, there was also the figure of Riemann (§11.7). 

Dedekind maintained very close relations with Dirichlet, attending all of his 

lectures, particularly those on number theory. Dirichlet indicated the gaps in his 

knowledge and gave him the means to fill them-[Scharlau 1981, 35; also 37, 40, 

47], After the lectures, they entered into extremely detailed discussion of the topics 

and proofs. In relation to this, Dedekind mentions that “the variety of methods that 

can be employed for the proof of one and the same theorem constitutes one of the 

main attractions of number theory.”1 Dirichlet showed him how number theory 

could be approached in a way that avoided formal steps, by focusing directly on the 

arithmetical properties of algebraic numbers. This is to say that Dedekind learnt 

from his cherished teacher the meaning of number-theoretical rigor, which also 

included the need to analyze carefully every proof in order to discover its true ker¬ 

nel and the most convenient proof method in order to approach it directly. So 

Dirichlet became his reference point regarding questions of rigor.2 

After some time devoted to projective geometry and probability theory, in 1855 

Dedekind started a study of recent algebraic work that would mark his future ca¬ 

reer. Beginning with Gauss’s work on cyclotomic equations in Disquisitiones ar- 

ithmeticcie, he quickly went on to the research of Abel and Galois on the theory of 

equations. By the end of the year he began serious study of so-called “higher arith¬ 

metic,” that is, works by Kummer, Eisenstein and others that are regarded today as 

contributions to algebraic number theory. As a result of this, he lectured on the 

Gaussian theory of cyclotomic equations and on “higher algebra” - which he es¬ 

sentially identified with Galois’ theory - in the winter semesters of 1856/57 and 

1857/58. It was the first time that a university course included a substantial discus¬ 

sion of the work of Galois [Purkert 1977], 
In this new field, Dedekind was able to obtain his first significant results. Most 

of his work of the period can be seen as a reformulation, systematization and com¬ 

pletion of the great contributions of his predecessors. It was a highly significant 

reformulation: Dedekind worked out independently and systematically the group- 

theoretical prerequisites for Galois theory, recognized that the theory was essen¬ 

tially concerned with field-extensions, and presented for the first time what is now 

regarded as the core of the theory - the relations between (in modern language) 

subfields of the splitting field and subgroups of the Galois group of a polynomial.3 

1 [Scharlau 1981, 48]: They have “... in den taglichen Zussamenkiinften die kleinsten Einzel- 

heiten von Neuem besprochen.” [Dedekind 1930/32, vol. 3, 394]: “Da die Mannigfaltigkeit der 

Methoden, welche zum Beweise eines und desselben Satzes dienen, einen Hauptreiz der Zahlen- 

theorie bildet, .... so lag es nicht im Sinne Dirichlets, sich ... auf den Inhalt dieser Vorlesung zu 

beschrancken.” 

2 On Dedekind and Dirichlet, see [Haubrich 1999, chap. 5], 

3 See the manuscript published in [Scharlau 1981] as ‘Eine Vorlesung iiber Algebra,’ and the 

comments by Scharlau himself [1981a, 107], and by Scholz [1990, 386-94] and Haubrich [1999, 

chap. 6]. Dedekind was much less interested in, or perhaps unable to make progress on, specific 

problems such as criteria of solvability. 
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Dedekind’s treatment of 1858, it has been said, could have become the first text¬ 

book on “modem algebra,” 40 years before Weber, and 75 years before van der 

Waerden [Scharlau 1982, 341; but see Corry 1996], Dedekind was also led to study 

some aspects of abstract group theory, including a very precise proof of the homo¬ 

morphism theorem (see below). His involvement with the theory of equations made 

him aware that it was extremely fruitful and clarifying to base it on field-theoretical 

notions, and this prepared his 1871 definition of fields. It also led to original re¬ 

search on the reciprocal decomposition of two irreducible polynomials.1 

Dedekind did not publish any of the above-mentioned reformulations and re¬ 

sults. There is little doubt that his work would have obtained recognition even if his 

abstract orientation probably would not have been followed. But he saw little value 

in mere reformulations of Gauss or even Galois, and, as regards original results, he 

preferred to wait until he had brought them to completion (see [Haubrich 1999, ch. 

6]). His extreme thoroughness when preparing a publication went, in a way, against 

his own interests.2. 
To sum up, in the late 1850s Dedekind began to move substantially in the di¬ 

rection of modern structural algebra, or - speaking more cautiously - advanced 

toward an abstract-conceptual reformulation of previous algebraic and number- 

theoretic work. To that end, he employed the language of sets. His attainments must 

be seen as triumphs of his methodological principles and preferences in the domain 

of algebra. By trying to understand “higher algebra” in a way that satisfied him, he 

was led to theoretical constructions that we recognize as essentially identical with 

the modem orientation. Our purpose in the present section is to analyze the impli¬ 

cations of his innovations for the emergence of set language. No attempt will be 

made to satisfactorily depict his algebraic and number-theoretical work, for which 

the reader is referred to the above mentioned contributions (particularly the general 

overview in [Haubrich 1999]). 

1.1. The Habilitationsvortrag of 1854. The lecture Dedekind gave for his Ha- 

bilitation, ‘On the Introduction of New Functions in Mathematics’ [Dedekind 

1854], is interesting here for two reasons. First, it already shows some traits of 

Dedekind’s thought that were to last for his whole life. He was deeply interested in 

the problem of rigor, and he also aimed to understand the historical evolution of 

mathematics. Some sentences could be used to characterize Dedekind’s work as a 

whole, for instance when he says that “turning definitions over and over again, for 

love of the laws or truths in which they play a role, constitutes the greatest art of the 

1 See [Scharlau 1982]. Since this can be reformulated as the reciprocal reduction of two fields, 

the editor regards it as the first significant result in field theory [op.cit., 343]; notably, the result 

dates back to December 1855. 

2 On the occassion of a vacant position at the University of Giessen, in 1868, Clebsch had to 

exclude Dedekind - “unfortunately,” as he wrote - from those who have contributed something 

from the scientific point of view [Dugac 1976, 155], 
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systematician.”1 The systematician’s art of Dedekind led him to transform many of 

the fundamental concepts in which the mathematics of his time were based. 

In his lecture, Dedekind claimed that the introduction of new functions, or new 

operations, is the key to the development of mathematics, and he analyzed the pe¬ 

culiarities of this process in mathematics - where, in contrast to other sciences, 

there is no room for arbitrariness [Dedekind 1854, 428, 430], He discussed care¬ 

fully the foundations of arithmetic, offering an excellent summary of his ideas at 

the time (§VII. 1). Dedekind presented the idea of gradually developing arithmetic, 

from the sequence of natural numbers to (C, through successive steps in which new 

numbers and operations are defined. This was the program the he would carry out 

in his later foundational works [Dedekind 1872, 1888], but there is one important 

difference. From 1872 Dedekind would emphasize the definition of the new num¬ 

bers themselves, while in 1854 he emphasized the problem of extending the opera¬ 

tions to the expanded realm. The change is especially important in light of the fact 

that, in 1872 and later, sets will be the means that allow him to define or ‘create’ 

new numbers. 
Thus, the second important point is that in Dedekind’s Habilitationsvortrag we 

do not find the slightest indication of the notion of set. This is the more noteworthy 

when we consider that his definition of the reals by means of cuts dates back to 

1858 [Dedekind 1872, 315], and that the notion of set is used time and again in his 

algebraic work of 1856-58. All of this supports the view that Riemann’s ideas 

were instrumental in convincing Dedekind of the usefulness of the notion of set. 

Recall that he attended and followed carefully the former’s courses on function 

theory in 1855/56, which he always regard as a model for his own research.2 

1.2. Dedekind’s set-theoretical approach. The abstract orientation of Dedekind’s 

mathematics and his preference for a set-structural approach are particularly clear 

in his exposition of group theory, both in ‘Eine Vorlesung fiber Algebra’ [Scharlau 

1981, 60-70] and ‘Aus den Gruppen-Studien, 1855-58’ [Dedekind 1930/32, vol. 

3, 439-45], Dedekind himself stressed that, in his 1856-58 lectures, he had 

presented group theory “in such a way that it could be applied to groups n of 

arbitrary elements 7t” [Dedekind 1894, 484 note]. In fact his original explanations, 

as registered in the manuscript edited by Scharlau, are noteworthy because they 

essentially constitute an axiomatization of group theory. After proving two 

theorems about the product of “substitutions,” which establish the associative law 

and the law of simplification (from any two of the equations: c])=0, (])‘ = 0‘, 

(])<j)‘=09‘, the third follows), he wrote: 

1 [Dedekind 1854, 430]: “Dieses Drehen und Wenden der Definitionen, den aufgefundenen 

Gesetzen oder Wahrheiten zuliebe, in denen sie eine Rolle spielen, bildet die grosste Kunst des 

Systematikers.” 

2 It was by trying to understand Dedekind’s path to the notion of set, in the period 1854-58, 

that 1 started to ponder Riemann’s important role in the early history of sets. 
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The following investigations are exclusively based on the two fundamental theorems which 

we have proved, and on the fact that the number of substitutions is finite: therefore, their 

results will be equally valid for any domain of a finite number of elements, things, concepts 

9, 0', 0"..., which from 0, 0' admit a composition 00', defined arbitrarily but in such a way 

that 00' is again a member of that domain, and that this kind of composition obeys the laws 

expressed in both fundamental theorems. In many parts of mathematics, but especially in 

number theory and algebra, we continuously find examples of this theory; the same methods 

of proof are valid here as there.1 

In fact, those two laws suffice to insure the existence of neutral and inverse ele¬ 

ments when we require, with Dedekind, the group to be finite.2 Some pages later, 

Dedekind applied the above remark to the particular case given by the law of com¬ 

position induced in the partition of a group by a normal subgroup, since this satis¬ 

fies the two laws in question [Scharlau 1981, 68], 

The standpoint taken here by Dedekind is noteworthy for its abstractness, being 

only comparable in the 1850s to that of Cayley; the mathematical community 

would only adopt a similar viewpoint in the 1890s [Wussing 1969], Nevertheless, 

one has to emphasize that Dedekind was not advancing the axiomatic or the ab¬ 

stract structural standpoint. Historians tend to think that his standpoint regarding 

groups was peculiar precisely because he was dealing with groups, not with more 

familiar mathematical objects; as we shall see, he never dealt with fields in an 

analogous way. Groups were a tool for the investigation of traditional objects, and 

the limited familiarity with them seems to have motivated his abstract axiomatic 

approach [Corry 1996, 77-80; Haubrich 1999, ch. 6]. 

At any rate, what is particularly interesting for us is that Dedekind consciously 

employs the language of sets: the word “domain” in the passage above refers to 

sets, while in some other paragraphs of the manuscript he used “complex” with 

apparently the same meaning (see also [Dedekind 1930/32, vol. 3, 440-45]). 

Moreover, in working with composition laws on the classes which form the 

partition of a group he was employing sets as concrete objects, submitting them to 

operations that are analogous to the traditional ones. One should note that 

Dedekind’s treatment of groups was formulated after having come under the 

1 [Scharlau 1981, 63; emphasis added]: “Die nun folgenden Untersuchungen beruhen ledi- 

glich auf den beiden so eben bewiesenen Fundamentalsatzen und darauf, dass die Anzahl der 

Substitutionen eine endliche ist: Die Resultate derselben werden deshalb genau ebenso fiir ein 

Gebiet von einer endlichen Anzahl von Elementen, Dingen, Begriffen 0, 0', 0"... gelten, die eine 

irgendwie defmirte Composition 00' aus 0, 0' zulassen, in der Weise, dass 00' wieder ein Glied dieses 

Gebietes ist, und dass diese Art der Composition den Gesetzen gehorcht, welche in den beiden 

Fundamentalsatzen ausgesprochen sind. In vielen Theilen der Mathematik, namentlich aber in der 

Zahlentheorie und Algebra finden sich fortwahrend Beispiele zu dieser Theorie; dieselben Methoden 

der Beweise gelten hier wie dort.” 

2 Modern axiomatization of groups (and fields) began with [Weber 1893], a paper strongly in¬ 

fluenced by Dedekind, and written after Lie’s work made new axioms for infinite groups neces¬ 

sary [Wussing 1969, 223-251]. 
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influence of Riemann’s function theory, and, most likely, of his abstract conception 

of manifolds.1 Significantly, many years later Dedekind would recommend to 

Cantor the word “domain” [Gebiet] as a substitute for the clumsy term ‘Mannig- 

faltigkeif [manifold], a substitute that is “also Riemannian” [Cantor & Dedekind 

1937, 47]. Riemann actually uses the word in the lecture on geometry (see, e.g., 

[Riemann 1854, 274, 275]). It is likely that a direct influence is acting here. 

The reader may suspect that Dedekind’s use of set language might have been 

incidental, or perhaps restricted to finite sets as above. Quite the contrary. The 

manuscript on Galois theory reveals a clear awareness of the role played by num¬ 

ber-fields, conceived as infinite sets (see §3). And other work of the period, par¬ 

ticularly a paper on higher congruences, written in 1856 and published the year 

after, makes the point indisputable. The reader need not understand the precise 

content of that paper in order to grasp the importance of statements like the fol¬ 

lowing for the emergence of the language of sets: 

The preceding theorems correspond exactly to those of number divisibility, in the sense that 

the whole system of infinitely many functions of a variable, congruent to each other modulo 

p, behaves here as a single concrete number in number theory, for each function of that 

system substitutes completely for any other in any respect; such a function is the representa¬ 

tive of the whole class; each class possesses its definite degree, its divisors, etc., and all those 

traits correspond in the same manner to each particular member of the class. The system of 

infinitely many incongruent classes - infinitely many, since the degree may grow indefi¬ 

nitely - corresponds to the series of whole numbers in number theory. To number congru¬ 

ence corresponds here the congruence of classes of functions with respect to a double 

modulus.2 

Dedekind employs here the words ‘System’ and ‘Klasse’; the first had also been 

used by Riemann in his lecture [e.g., Riemann 1854, 275, 279], According to 

Dedekind himself [Dirichlet 1894, 36], the second had been used for the first time 

in the sense of equivalence class by Gauss in his theory of the composition of quad¬ 

ratic forms. Riemann [1857, 101, 119] had also used the notion of “class of alge- 

1 Riemann’s definition ensured that manifolds could be fonued by any elements whatsoever, see 

§11.5. 
2 [Dedekind 1930/32, vol.l, 46-47]: “Die vorhergehenden Satze entsprechen vollstandig denen 

iiber die Teilbarkeit der Zahlen in der Weise, dass das ganze System der unendlich vielen einander 
nach dem Modulus p kongmenten Funktionen einer Variabeln sich hier verhalt, wie eine einzige 
bestimmte Zahl in der Zahlentheorie, indern jede einzelne Funktion eines solchen Systems jede 
beliebige andere desselben Systems in jeder Beziehung vollstandig ersetzt; eine solche Funktion ist 
der Reprasentant der ganzen Klasse; jede Klasse hat ihren bestimmten Grad, ihre bestimmten Divi- 
soren usw., und alle diese Merkmale komnren jedem einzelnen Gliede einer Klasse in derselben 
Weise zu. Das System der unendlich vielen inkongruenten Klassen - unendlich vielen, da der Grad 
unbegrenzt wachsen kann - entspricht der Reihe der ganzen Zahlen in der Zahlentheorie. Der Kon- 
gnienz der Zahlen entspricht hier Kongmenz von Funktionenklassen nach einem doppelten 

Modulus.” 
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braic functions” in his function theory.1 2 Dedekind presents very clearly the notion 

of equivalence class and the role played by representatives; equivalence classes are 

submitted to operations that he regards as perfect analogues of ordinary arithmetical 

operations. His emphasis on the fact that all functions in the class have all their 

characteristic traits in common is noteworthy in the light of traditional logic: such 

traits define the “intension” [Inhalt] of a concept, while the class constitutes its 

“extension” [Umfang], 
While speaking about classes of quadratic forms, Gauss had been careful to 

express himself in such a way that the implication of the existence of actual infini¬ 

ties was avoided. But Dedekind (and Riemann) had no such philosophical preju¬ 

dices. Dedekind chose rather to emphasize the fact that we are dealing with infi¬ 

nitely many classes, each of which contains infinitely many elements (functions). 

And he went so far as to trace an analogy between these infinite classes and the 

natural numbers, which were most concrete objects for a traditional mathematician. 

That makes plainly clear that he had no philosophical objection to make against 

actual infinity; quite the contrary: he regarded infinite classes as natural objects for 

a mathematician. With the exception of Bolzano [1851], no other mathematician 

would have gone so far in the 1850s. It thus seems that Riemann and Dedekind are 

the most significant early representatives of the introduction of the language of sets 

in mathematical research. 

1.3. The notion of mapping. Dedekind’s set theory, as developed in the 1870s 

and 80s, is not just a theory of sets. This may sound paradoxical, but the reason is 

simply that Dedekind employed the notion of mapping as a primitive idea and de¬ 

veloped carefully a theory of mappings (see § VII.2). The surprising fact is that this 

notion, too, emerged in his work of the 1850s. It seems quite likely that his reading 

of geometrical work by Mobius and Steiner prepared him to conceive of mappings 

in a general way (§1.3), but we find the notion clearly stated in the manuscript on 

Galois theory edited by Scharlau. This is obscured by the fact that Dedekind used a 

rather strange name for maps, namely “substitutions,” but there is substantial evi¬ 

dence that avails a set-theoretical interpretation of this notion. The manuscript be¬ 

gins as follows: 

Article 1 

Definition. By a substitution one understands, in general, any process by which certain ele¬ 

ments a. b, c, ... are transformed into others a’, b’, c\ ..., or are replaced by these; in what 

follows we shall consider only those substitutions in which the complex of replacing ele¬ 

ments a’, b’, c’ is identical with that of the replaced a, b, c? 

1 This corresponds to the “fields of algebraic functions” of Dedekind and Weber in their paper 
of 1882; see [Dedekind 1930/32, vol. 1,239], 

2 [Scharlau 1981, 60]: “Erklarung. Unter Substitution versteht man im Allgemeinen jeden 
Process, durch welchen gewisse Elemente a, b, c, ... in andere a’, b\ c’, ... iibergehen oder durch 
diese ersetzt werden; wir betrachten im Folgenden nur die Substitutionen, bei welchen der Com¬ 
plex der ersetzenden Elemente a’.b', c' mit dem der ersetzten a, b, c identisch ist.” 
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The general meaning of “substitution,” in the above definition, is that of mapping. 

Of course, one might doubt whether Dedekind had in mind only one-to-one maps, 

but there is also evidence that he dealt with non-injective mappings at the time. 

‘Aus den Gruppen-Studien’ includes a section on “Equivalence of groups,” 

which contains the homomorphism theorem.1 Dedekind assumes a given corre¬ 

spondence between the objects of a group M and those of a “complex” Mj, such 

that the image of a product of elements in M is the product of their images. He 

shows that Mj is then a group, considers what we call the kernel N of the homo¬ 

morphism, and shows that the partition M/N gives rise to an isomorphism 

[Aquivalenz] between the quotient group M/N and the image Mj. He also indicates 

that the “equivalence” so defined is transitive [Dedekind 1930/32, vol. 3, 440-41], 

Dedekind shows a very clear awareness that several elements in M may correspond 

to the same object in Mj, and therefore that a homomorphism is not an injective 

mapping. All of this is further confirmation that by 1858 at most he was employing 

the notion of mapping. 
A text written in 1879 is further evidence that his “substitutions” of the 1850s 

are simply what we now call maps. The text was not written with the purpose of 

establishing any kind of priority, it simply attempted to clarify notions introduced 

in the second version (1879) of his ideal theory, in the light of his (unpublished) 

work on set theory. It is also interesting because it includes the first public an¬ 

nouncement of the 1888 booklet, that will occupy us in chapter VII: 

It happens very frequently, in mathematics and other sciences, that when we find a system D 

of things or elements to, each definite element co is replaced by a definite element co' which is 

made to con-espond to it according to a certain law; we use to call such an act a substitution, 

and we say that by means of this substitution the element co is transformed into the element 

co', and also the system Q is transfonned into the system Q' of the elements co'. Terminology 

becomes somewhat more convenient if, as we shall do, one conceives of that substitution as 

a mapping of the system Q, and accordingly one calls co' the image of co, and also Q' the 

image of Q. [Note:] Upon this mental faculty of comparing a thing co with a thing co‘, or 

relating co with co‘, or making co‘ correspond to co, without which it is not at all possible to 

think, rests also the entire science of numbers, as I shall try to show elsewhere.2 

1 This fragment was, most likely, written before the manuscript on Galois theory, since only at 
the end it introduces the word “substitution.” It begins talking simply about “objects” that “corre¬ 
spond to” [entspricht] the “objects” of a given group. 

2 [Dedekind 1879, 470]: “Es geschieht in der Mathematik und in anderen Wissenschaften sehr 
haufig, dass, wenn ein System Q von Dingen oder Elementen co vorliegt, jedes bestimmte Element co 
nach einem gewissen Gesetze durch ein bestimmtes, ihm entsprechendes Element co’ ersetzt wird; 
einen solchen Act pflegt man eine Substitution zu nennen, und man sagt, dass durch diese Substitu¬ 
tion das Element co in das Element co', und ebenso das System D in das System Q' der Elemente co' 
iibergeht. Die Ausdrueksweise gestaltet sich noch etwas bequemer, wenn man, was wir thun wollen, 
diese Substitution wie eine Abbildung des Systems D auffasst und demgemass co' das Bild von co, 
ebenso Q' das Bild von Q nennt.” “Auf dieser Fahigkeit des Geistes, ein Ding co mit einem Ding co‘ 
zu vergleichen, oder co auf co‘ zu beziehen, oder dem co ein co‘ entsprechen zu lassen, ohne welche 
ein Denken iiberhaupt nicht moglich ist, beruht, wie ich an einem anderen Orte nachzuweisen ver- 
suchen werde, auch die gesammte Wissenschaft der Zahlen.” 
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With his remarks on the importance of this notion for “other sciences” as well as its 

relation to basic mental faculties, Dedekincl is already here suggesting his logicistic 

standpoint. The word ‘Abbildung’ can be found in Riemann’s function theory 

[1851, 5-6], and in a paper of 1825 by Gauss, but in the specifically geometrical 

meaning of conformal mapping. The word was later employed in general for func¬ 

tional relationships; according to Cantor, this usage seems to have started with 

Clebsch (see [Grattan-Guinness 1970, 87]). Dedekind followed these precedents, 

and from 1872 he systematically employed that word in the meaning of mapping 

(‘Abbildung’ has this meaning in German still today). It would be tempting to 

translate that word it by “representation,” which captures some connotations of the 

German word and makes it understandable that Dedekind could consider it as a 

basic logical operation. 

2. A New Fundamental Notion for Algebra: Fields 

Set and mapping would become the central notions for Dedekind’s understanding 

of arithmetic, algebraic number theory, algebra, and also, one may safely conjec¬ 

ture, analysis. But in the context of algebra and algebraic number theory, the focus 

would be on sets (mostly number-sets) with a given structure, and on structure¬ 

preserving mappings.1 
We have already mentioned how Dedekind, while working on Galois theory, 

arrived at a novel understanding of the role played by fields in that theory. In 1871 

he reminisced that, in the course of his lectures of 1856/58, he had become con¬ 

vinced that “the study of the algebraical relationship among numbers” was most 

conveniently based upon “a concept that is immediately related to the simplest 

arithmetical principles.”2 Correspondingly, in the manuscript Dedekind employs the 

name “rational domain,”3 and the notation S for the ground field of the polynomial 

under study. The ‘rational domain’ comprises all numbers that are “rational func¬ 

tions” of the roots of the polynomial, or that are “rationally representable” by 

means of those roots [Scharlau 1981, 84, 89], As Edwards [1980, 343] has re¬ 

marked, Dedekind’s idea of employing a single capital letter S, or K later, instead of 

a notation like (Q}(a) that suggests a particular basis, - or form of representation, in 

his terminology - characterizes his philosophy of mathematics. 

1 The history of the notion of field has been analyzed by Purkert [1973], but the reader should 
compare his exposition with [Haubrich 1999, chap. 6], on which 1 rely to some extent. 

2 [Dedekind 1930/32, vol. 3, 400]: “das Studium der algebraischen Verwandtschaft der 
Zahlen am zweckmassigsten auf einen Begriff gegriindet wird, welcher unmittelbar an die ein- 
fachsten arithmetischen Prinzipien ankniipt.” 

3 See, e.g., [Scharlau 1981, 83]: “rationales Gebiet.” 
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In the late 1860s, Dedekind came to employ the name ‘Korper’ [field, literally 

‘body’] for his former “rational domains,” and he made explicit their connection 

with the “simplest arithmetical principles”: fields “reproduce” through the four 

basic operations, the traditional four “species” of elementary arithmetic [Dedekind 

1930/32, vol. 1, 239, 242; vol. 3, 409], He chose the name ‘Korper’ because a 

number field constitutes a system possessing a certain completeness and closeness, 

an “organic totality” or a “natural unity,” analogous to those entities we call bodies 

in natural science, in geometry, and in the life of human society [Dedekind 1894, 

452 note]. As is well known, continental European languages follow Dedekind’s 

choice, while ‘Korper’ translates into the English term ‘field.’ 

It must have been by the late 1850s when Dedekind became convinced that the 

notion of field, together with operations on fields and “substitutions” or field ho- 

momorphisms, lead on the one hand to Galois theory, and on the other to ideal 

theory [Dedekind 1930/32, vol. 3, 401], Actually he went on to identify algebra 

with field theory [Haubrich 1999, ch. 6]. In 1873, he tentatively proposed to define 

“algebra proper” as “the science of the relationships among fields,” explaining that 

relations among equations can be translated into relations among fields.1 The same 

conception can be found again in his last version of ideal theory [Dedekind 1894, 

466, 482], where it becomes clear that he is equating algebra with the field- and 

group-theoretical content of Galois theory. We find here an interesting parallelism 

with Riemann: the fundamental role that fields play in algebra, according to Dede¬ 

kind, is similar to that of abstractly defined analytic functions in Riemann’s func¬ 

tion theory, or of his manifolds in the theory of magnitudes (including topology) 

and in geometry. The author himself points to this connection, without naming 

Riemann, in the preface of 1871 [Dedekind 1930/32, vol. 3, 396-97], Guided by 

his conviction, shared with Riemann, that any branch of mathematics should be 

based upon one fundamental concept, Dedekind came to propose a definition of 

algebra that is too restrictive, both judged from contemporary and from 20th- 

century standards. 
Dedekind’s first public presentation of the notion of field can be found right at 

the beginning of the 1871 exposition of ideal theory. This was contained in the 

tenth supplement to Dirichlet’s Vorlesungen, ‘On the composition of binary 

quadratic forms.’2 This supplement begins with an exposition of work by Gauss and 

Dirichlet, to which Dedekind made some original contributions, and then goes on to 

an extreme generalization of it. He writes that it will be convenient to adopt a 

higher standpoint and introduce a notion which seems very appropriate to serve as a 

foundation for higher algebra and those parts of number theory connected with it: 

1 [Dedekind 1930/32, vol. 3, 409]: “... gegenwartigen Stande der Algebra ... urn in einem 
Nichtkenner wenigstens eine dunkle Vorstellung von ihrem Charakter zu erwecken, vielleicht als 
... die Wissenschaft von der Verwandtschaft der Korper bezeichnen konnte.” He is referring to 
the “Entwicklung der eigentlichen Algebra” in recent times, through the ideas of Abel and Ga¬ 

lois, as he indicates below. 

2 The reasons for this title, and a brief description of the subject matter, can be found in §3.1. 
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By a field we shall understand every set of infinitely many real or complex numbers, which 

is so closed and complete in itself, that addition, substraction, multiplication, and division of 

any two of those numbers yields always a number of the same set. The simplest field is 

constituted by all rational numbers, the greatest field by all [complex] numbers. We call a 

field A divisor of field M, and this a multiple of that, if all the numbers contained in A are 

also found in M\ it is easily seen that the field of rational numbers is a divisor of all other 

fields. The collection of all numbers simultaneously contained in two fields A, B constitutes 

again a field D, which may be called the greatest common divisor of both fields A, B, for it 

is evident that any divisor common to A and B is necessarily a divisor of D\ similarly, there 

always exists a field M which may be called the least common multiple of A and B, for it is a 

divisor of all other common multiples of both fields. Moreover, if to any number a in the 

field A, there corresponds a number b = (p(a), in such a way that tj)(a+a') = (j)(a) + (p(a'), and 

<j>(aaj=<j>(a)<j>(a), the numbers b constitute also (if not all of them are zero) a field 

B=<p(A), which is conjugate to A and results from A through the substitution (]>; inversely, in 

this case A = \j(B) is also a conjugate of B. Two fields conjugate to a third are also conju¬ 

gates of each other, and every field is a conjugate of itself.1 

As Dugac [1976, 29] emphasized, one can hardly overestimate the significance of 

this rich passage for the history of sets and set-language. It incorporates all crucial 

ideas related to the notions of set and map as used in algebra, and Dedekind gives 

abundant proof of the mastery he had attained of the set-theoretical viewpoint by 

1871. There is little doubt that contemporary readers must have found it difficult to 

follow, accustomed as they were to an algebra and “higher” number theory formu¬ 

lated in terms of numbers and equations or forms (compare §§1.4 and 1.5). They 

were completely foreign to such a strong reliance on the notion of set in this do¬ 

main, and for this very reason Dedekind’s exposition had to attract strongly the 

attention of readers to his new standpoint - whether to accept it or refuse it. 

The terminology employed by Dedekind may seem strange, and so it will be 

worthwhile to devote a couple of paragraphs to commenting on the text. It is clear 

1 [Dedekind 1871, 223-224]: “Unter einem Korper wollen wir jedes System von unendlich 
vielen reellen oder komplexen Zahlen verstehen, welches in sich so abgeschlossen und vollstandig 
ist, dass die Addition, Substraktion, Multiplikation und Division von je zwei dieser Zahlen immer 
wieder eine Zahl desselben Systems hervorbringt. Der einfachste Korper wird durch alle rationalen, 
der grosste Korper durch alle Zahlen gebildet. Wir nennen einen Korper^ einen Divisor des Korpers 
M, diesen ein Multiplum von jenem, wenn alle in A enthaltenen Zahlen sich auch in M vorfinden; 
man findet leicht, dass der Korper der rationalen Zahlen ein Divisor von jedem anderen Korper ist. 
Der Inbegriff aller Zahlen, welche gleichzeitig in zwei Korpem A, B enthalten sind, bildet wieder 
einen Korper D, welcher der grosste gemeinschaftliche Divisor der beiden Korper A, B genannt 
werden kann, weil offenbar jeder gemeinschaftliche Divisor von A und B notwendig ein Divisor von 
D ist; ebenso existiert immer ein Korper M, welcher das kleinste gemeinschaftliche Multiplum von A 

und B heissen soil, weil er ein Divisor von jedem andem gemeinschaftlichen Multiplum der beiden 
Korper ist. Entspricht femer einer jeden Zahl a des Korpers A eine Zahl b = <p(a) in der Weise, dass 
<t>(a+aj = <p(a) + <l)(a), und <j)(aaj = (ji(a)<j)(aj ist, so bilden die Zahlen b (falls sie nicht samtlich 
verschwinden) ebenfalls ein Korper B = cf)(A), welcher mit A konjugiert ist und durch die Substitu¬ 

tion <|> aus A hervorgeht; dann ist riickwarts auch A = if/(B) mit B konjugiert. Zwei mit einem dritten 
konjugierte Korper sind auch miteinander konjugiert, und jeder Korper ist mit sich selbst konju¬ 
giert.” 
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from his definitions that “divisor” and “multiple” refer to the two sides of an inclu¬ 

sion, “greatest common divisor” denotes the intersection of two fields, and “least 

common multiple” the union, in the sense of the smallest field containing two given 

fields. Terminology for fields was analogous to that employed for modules and 

ideals,1 and here the reason for selecting those expressions was the intention to 

preserve an exact parallelism between the wording of elementary number- 

theoretical theorems, and their analogues in algebraic number theory. In the case of 

S, inclusion of principal ideals corresponds to the divisibility of their generators, 

and this led Dedekind to the analogy between inclusion and division that is em¬ 

ployed throughout his work on ideal theory and algebra. (Dedekind was very much 

aware of the arbitrariness of mathematical terminology and of the need to state 

explicitly all relevant properties of the notions involved.2) His terminology kept 

being employed until the 1930s: in 1935 Krull proposed to modify it, arguing that 

its motivation was historically clear, but it had become no longer tenable since it 

conflicted with the more basic set-theoretical language (see [Corry 1996, 230]). 

Dedekind’s treatment of “substitutions” is equally a model. The fact that he is 

considering non-injective morphisms is indicated by his comment that not all of the 

images should be zero, i.e., that the trivial case of a unitary field is discarded. We 

have seen that homomorphisms were already present in his group-theoretical work 

of the 1850s. The precision and conciseness with which he sets forth the reflexive, 

symmetric and transitive properties of field “conjugation” are likewise noteworthy. 

In later versions of his ideal theory, Dedekind emphasized the differences between 

the general notion of mapping, or “substitution,” and the algebraic notion of struc¬ 

ture-preserving maps (see [Dedekind 1879, 470-71; 1894, 456-57]). In the 1894 

edition, he used the word “permutation” in the sense of a field homomorphism 

[Dedekind 1894, 457]. The novelty and difficulty of his emphasis on morphisms 

can be judged from Frobenius’s comment to Weber, immediately after this publi¬ 

cation, that “his permutations are too incorporeal, and it is certainly unnecessary to 

take the abstraction so far.”3 

A little known fact is that Dedekind’s terminology for algebraic operations was 

taken up by Cantor in his decisive series of papers on point-sets of the years 1879 

to 1884. Cantor used the terminology of divisor and multiple to denote the set- 

theoretical operations of inclusion, intersection and union, thus revealing that he, 

for one, understood very well the set-theoretical underpinnings of Dedekind’s ideal 

theory. The terminology is introduced in the second paper of the series [Cantor 

1879/84, 145-46] and the latest instances are found in the sixth and last part 

[op.cit., e.g. 214, 226, 228]. This is striking because that terminology seems rather 

inappropriate in a general set-theoretical setting - Dedekind himself replaced it 

1 Although for fields A is a divisor of B means A c B, while for ideals it means B c A. 

2 See his letter to Lipschitz of 1876, quoted in §IV.l, also [Dedekind 1888, 360, 377-78] and 
the 1890 letter to Keferstein [Sinaceur 1974, 274], 

3 [Dugac 1976, 269]: “Seine neuste Auflage enthalt so viel Schonheiten, ... aber seine Permu- 
tationen sind zu korperlos, und es ist doch auch unnothig, die Abstraktion so weit zu treiben.” 
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when doing general set theory, starting in 1872 (see §6) - , and above all because it 

constitutes evidence that Cantor paid careful attention to the set-theoretical aspects 

of Dedekind’s work in the 1870s. 
The set-theoretical basis of Dedekind’s fields parallels the set-theoretical under¬ 

pinnings of Riemann’s manifolds, and Riemann’s avoidance of external “forms of 

representation” (see above and §1.4) has its parallels here too. In a paper of 1877, 

Dedekind defined a “finite field” [finite extension of (02] to be the set of all numbers 

of the form: 

<])(0) = Xq + Vj0 + Xo0~ +.. .+Xft_j0 

where x;e (02; this is similar to the modem notation (02 (a) for finite extensions of (02. 

Concerning this definition, Dedekind wrote to Lipschitz that it is “spoiled” 

[verunziert], since it relies on a form of representation that is somewhat arbitrary - 

0 could be replaced by many other numbers, and the definition presupposes that 

such changes leave the field invariant [Dedekind 1930/32, vol. 3, 468-69], Hence, 

he thought, one should prefer for reasons of principle the definition employed in 

1871: “a finite field is one that only possesses a finite number of divisors [sub¬ 

fields].”1 

Although we have only given the example of fields as evidence, the whole ex¬ 

position of Dedekind’s ideal theory in 1871 (and even more so in later editions) 

called attention to the importance of sets and set-structures in algebraic number 

theory. The very standpoint adopted required a constant exercise in the translation 

of problems formulated for numbers to the new and more abstract set formulation. 

One should finally mention that inclusion, union, intersection and mapping are all 

the basic notions presented by Dedekind in his set theory [1888], which makes even 

clearer its algebraic origins. When he began writing the first draft for his 1888 

book, in the year 1872, Dedekind presented the same notions he had employed the 

year before in his ideal theory, with the only difference that now they were freed 

from the natural algebraic restrictions (see §6). 

3. The Emergence of Algebraic Number Theory 

The theory of algebraic integers, which emerged in the period 1830-1871, gives a 

perfect example of the typical 19th-century orientation toward pure mathematics in 

Germany. The problems studied here had no practical application, they were pur¬ 

sued purely for knowledge’s sake. It has frequently been said that, with Dedekind’s 

publication of 1871, the theory at once reached its maturity, leaving far behind all 

previous attempts and sketches (see, e.g., [Bourbaki 1994, 101]). Dedekind intro¬ 

duced the notions of field, module, and ideal in the 1871 version of ideal theory, 

1 [Dedekind 1930/32, vol. 3, 468-69]: “ein endiicher Korper ist ein solcher, der nur eine end- 
liche Anzahl von Divisoren besitzt”. 
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and the notion of a ring (under the name ‘Ordnung’) in the 1879 version; these, 

together with Galois’s groups, would constitute the core of modem algebra.1 But 

Dedekind seems to have done more than simply elaborating the adequate solution 

for a noteworthy problem, since there are reasons to say that he created a new dis¬ 

cipline. On the other hand, the story of the names that he introduced in mathemati¬ 

cal research - “field,” “module,” “ideal” - is more complex than might appear.2 

3.1. Ideal factors. The theory of divisibility of natural numbers, or of the inte¬ 

gers, builds upon a well-known fundamental theorem: any natural number (integer) 

has a unique decomposition into a product of prime numbers. Building stones for 

the proof of this result, though not the theorem itself, can already be found in book 

seven of Euclid’s Elements, but the first detailed proof was given by Gauss in his 

Disquisitiones arithmeticae [1801], Up to this time, number theory was conceived 

as concerned only with the integers, although occasionally, in the work of Euler 

and others, complex numbers appeared as tools for the calculation of number- 

theoretical results. In 1832, Gauss was led to a ground-breaking innovation: he 

proposed an “extension” of the “field of arithmetic” to the imaginary numbers,3 and 

studied the divisibility properties of the Gaussian integers a+bi, with a, b e 7L. In 

this new domain, he defined the notions of a unit, prime number, etc., and was able 

to prove that an analogue of the fundamental theorem of elementary number theory 

was in effect. 

The motivation behind Gauss’s bold step was the proof of a certain result con¬ 

cerning biquadratic residues, a topic related to the study of so-called “higher reci¬ 

procity laws.” These are laws for the relationship between the solvability of two 

congruences x^ = p (mod q) and x^ = q (mod p)\ in case X=2 we have quadratic 

reciprocity, if X=3 cubic reciprocity, if X=4 biquadratic reciprocity, and so on. 

Gauss himself established the law of quadratic reciprocity in the Disquisitiones, 

publishing up to six different proofs during his life. In trying to prove higher reci¬ 

procity laws, Gauss recognized that their formulation and proof required the use of 

certain complex numbers. Actually, in 1832 he stated that the Gaussian integers 

were indispensable for biquadratic reciprocity, and he suggested that other laws 

would require the introduction of other kinds of complex numbers. This is what 

required an expansion of the field of arithmetic. 

It should be mentioned that reciprocity laws were one of the main topics in so- 

called “higher” number theory during the 19th-century, and, according to Kummer 

in 1850, the most interesting open problem [Haubrich 1999, ch. 1], Also important, 

' The notion of Ordnung [order; Dedekind 1930/32, vol. 3, 305] denotes rings of algebraic 
integers, while the ring of all integers, characterized by its integral closure, was called Hauptord- 

nung [main order]. Actually it was first used by Dedekind in 1877, while “ring” was first used by 

Hilbert [1897], 

2 As regards the emergence of algebraic number theory, I follow the reconstruction given by 
Haubrich [1999, chap. 4 and 7]. On the second topic, see [Corry 1996] and §6. 

3 [Gauss 1863/1929, vol. 2, 102]: “ita theoremata ... resplendent, quando campus arithmeticae 

ad quantitates imaginarias extenditur.” 
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and actually more central as seen by most mathematicians, was the study of so- 

called “forms,” for instance the binary quadratic forms 

ax2 + bxy + cy2, a, b, c e 2Z, 

that were carefully studied by Gauss too. Lagrange had introduced the notion of 

“equivalent” forms; Gauss studied the classes of equivalent forms and defined a 

“composition” of forms, showing that (in modem language) form-classes with that 

composition constitute an Abelian group. An exposition of these results was the 

context in which Dedekind presented his first version of ideal theory in 1871. The 

theory of congruences, including reciprocity laws, and the theory of forms were the 

two main branches of “higher” number theory around the mid-century (actually, 

from 1801 until almost the end of the century; see [Haubrich 1999]). 

After Gauss’s paper of 1832, some of the most important German mathemati¬ 

cians, including Jacobi, Kummer and Eisenstein, tried to prove higher reciprocity 

laws. The next decisive step would be given by Kummer, who was eventually able 

(in 1861) to prove the /kth reciprocity law for all regular prime X. He began working 

on the cubic case in the 1840s, but in 1844 he found a difficult obstacle: cubic reci¬ 

procity required employing the algebraic integers of Z2[a], where a is a root of 

unity (ab = 1), but Kummer found that, in general, decomposition of these complex 

numbers into prime factors ceased to be unique. To give a simple example, the 

numbers 2, 3, l+V-5 and l-V-5 belong to S[V-5], and they are not further 

decomposable into factors in this set. But they do not behave as primes: e.g., we 

have two different decompositions 6 = 2-3 = (l+V-5)-(l-V-5). Kummer’s bril¬ 

liant idea was to postulate the existence of “ideal” prime numbers such that unique 

decomposition was reestablished. In the previous case, we need three ideal primes 

p, qp q2, with 2 =p2, 3=q1q2, etc. 
Kummer expressed himself in a rather disconcerting way regarding those ideal 

numbers. He symbolized them by means of the same symbols employed for the 

given or “real” numbers of Z2[a], and assumed that they satisfied exactly the same 

formal laws; hence, they were taken to be numbers complying with certain well- 

determined conditions, “except for [their] existence” [quoted in Edwards 1980, 

342], His way of confronting this issue can be charged with having originated a 

certain lack of rigor in his presentation, and even some important gaps in his proofs 

[Haubrich 1999, ch. 2], But with him we find the seminal idea that would eventu¬ 

ally lead to a new theory of ideal numbers, attempting to explain the factorization 

properties of algebraic numbers in general, and to establish an analogue of the fun¬ 

damental theorem of elementary number theory in that general case. 

The process that led to this new theory of algebraic numbers was in no way 

straightforward or continuous (see [Haubrich 1999, ch. 4 and 7]). For Kummer and 

his successors, ideal numbers were simply a tool that was necessary for the proof of 

higher reciprocity laws. Number theory was conceived in the traditional way, com¬ 

plex numbers were still regarded with some distrust, and there was a very limited 

understanding of the arithmetic of algebraic numbers. The focus was on reciprocity 

laws, binary forms, etc., not on the auxiliary means of ideal numbers, nor on alge- 
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braic numbers. It would be Dedekind and Kronecker, some years later, who intro¬ 

duced two crucial novelties: they expanded number theory, as Gauss suggested, to 

all kinds of algebraic numbers; and they also felt concerned with the foundational 

problems raised by ideal numbers, trying to give that general theory a completely 
satisfactory foundation. 

By 1847, Kummer had solved the problem of the factorization of the cyclotomic 

algebraic integers, which in modem terms are the integers of cyclotomic fields 

(Q}(a), with ah = 1. At this point, only Kronecker and Dedekind undertook the proj¬ 

ect of developing a general theory of algebraic integers. There is evidence that 

Kronecker had obtained a general theory by 1858, but he refrained from publishing 

even an indication of his methods until 1882 (see [Edwards 1980, 329-30]). As 

regards Dedekind, he strove with that project throughout a period of 14 years - 

though with some interruptions - until he finally found a satisfactory generalization 

in 1870. The theory of Kronecker embraces also the more general case of fields of 

algebraic functions, studied by Dedekind and Weber in their [1882] (see §6.2). 

3.2. Algebraic integers. With Dedekind, we encounter a new discipline that has 

algebraic numbers, in particular algebraic integers, as its subject matter; algebraic 

numbers and sets of algebraic numbers (fields, rings) are at the focus of attention. 

This involved quite a radical departure from tradition, which emerged with the 

publication of Dedekind’s ideal theory [1871], Nineteenth-century “higher” number 

theory was put upside down: the theory of algebraic integers, a generalization of 

Kummer’s contribution, became the foundation and core, while the topic of binary 

and other forms became secondary, and reciprocity laws were not even mentioned 

by Dedekind.1 The reason why the new step was left to Kronecker and Dedekind 

seems to be that they had in common a number of motivations, including methodo¬ 

logical orientations and a certain vision of the relations between algebra and num¬ 

ber theory.2 One may conjecture that Dirichlet fostered that orientation in both of 

them, since he partially followed Gauss’s calling for an expansion of the field of 

arithmetic, and he always placed special emphasis on the number-theoretical under¬ 

pinnings of the theory of forms [Haubrich 1999, ch. 1], 

One serious difficulty in generalizing Kummer’s theory was the definition of 

algebraic integer, that is, of the very objects one should investigate.3 Kummer and 

his predecessors defined algebraic integers in a formal way, as numbers built in a 

certain way. To begin with, they did not talk about algebraic numbers, but used 

1 This is partly due to the fact that Dedekind deals mainly with the foundations of algebraic 
number theory; in other work, for instance on cubic fields (1900), Dedekind studies reciprocity 
laws (I thank Ralf Haubrich for this remark). 

2 See [Haubrich 1993; 1999]. Both worked on Galois theory in the 1850s, which led to a field- 
theoretical orientation in their number-theoretical work; both conceived of the new discipline as 
intimately related to algebra; both were deeply interested in foundational issues. 

3 Edwards [ 1980, 331,337] went as far as to say that this was the only real difficulty, but it is 
clear that Dedekind was not at all of the same opinion; see [Haubrich 1999], 
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expressions like “complex numbers composed from third roots of unity,”1 and 

similar ones, to denote their subject matter. In the case of cyclotomic integers, it 

was possible to show that the numbers in question were of the form 

f(a) = r() + rp a + ... + r^_2 ■ a^~2, 

with = 1, and r- e 7L. Thus, Kummer described his theory, in his crucial papers 

of 1847 and 1851, as dealing with complex numbers formed from roots of unity 

and integer numbers [Kummer 1975, vol. 1, 165-92, 363-484], 

In the case of cyclotomic fields, the integers happen to coincide with the num¬ 

bers of the above form, and, according to Dedekind, this fortunate circumstance 

was one of the reasons for Kummer’s success (see his letter in [Lipschitz 1986, 

61]). But in an attempt to extend the theory to more general cases, the formal ap¬ 

proach became extremely confusing. The obstacle could only be eliminated when 

number theorists began to think within the framework of algebraic number fields. 

Rather than going from the study of divisibility properties in YL to its formal expan¬ 

sion YY[a\, one had to think of extending (D to the field ©(a), then determine the 

(ring of) integers in (Q)(a), and finally study their factorization. To put it differently, 

the theory would only work if one called integers some quotients of numbers of the 

form f(a) above. The problem, then, was to define algebraic integers: what condi¬ 

tions should an algebraic number satisfy, in order to be called an integer? 

Kronecker and Dedekind would adopt radically opposite views on almost all 

issues in algebraic number theory, but here both proposed the same solution. A 

number in (D(a) is an integer just in case it is the root of a monic polynomial with 

coefficients in YL [Dedekind 1871, 236], Neither Dedekind nor Kronecker gave 

reasons for their definition, and neither indicated the historical path that led to it. 

Nevertheless, it is not difficult to conjecture how it came about [Scharlau 1981; 

Haubrich 1999, ch. 7], In the 1850s, both mathematicians were busy with Galois 

theory, and both came to consider the role played by fields in it, implicitly in the 

case of Kronecker, explicitly in Dedekind. Dedekind studied the work of Kummer 

after a rather detailed study of Galois, and it seems that he read his results from the 

standpoint of number fields right from the start. This must have suggested the idea 

of determining the set of integers starting from the field, and it seems that both 

mathematicians were thus easily led to the right definition of the integers [Haubrich 

1999, ch. 7], 

Around 1856 or 1857, Dedekind recognized that in general the subset of alge¬ 

braic integers of a given number field is not of the form YL[a]. And, to believe his 

later statements, he found the correct definition of algebraic integer almost imme¬ 

diately, guided by the field-theoretical orientation of his thoughts. In the period 

1858-62, Dedekind was at work on his first attempt to formulate a completely 

1 The title of an 1844 paper by Eisenstein is: “Beweis des Reciprocitatssatzes fur die cubi- 
schen Reste in der Theorie der aus dritten Wurzeln der Einheit zusammengesetzten complexen 
Zahlen” (in Journal fur die reine und angewandte Mathematik 27, 289-310). 
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general theory of the factorization of algebraic integers. To this end, it was neces¬ 

sary to study the algebraic properties of the set of integers o in a field. Some time 

around 1860, he was in the possession of a number of important results concerning 

algebraic integers: the sums, differences, and products of algebraic integers are 

integers (which implies that o is a ring); the roots of a polynomial with coefficients 

in o are likewise algebraic integers (o is integrally closed); and o has an integral 

basis (P[, ... (3n), such that co= with h{ e E, for all toe o [Haubrich 1999, 

ch. 7], In order to prove this last result, he probably had to introduce the notion of 

module and develop some basic results concerning it.1 This completes our picture 

of Dedekind’s state of development by 1860: he must have already mastered set- 

theoretical language as applied in algebra, since he developed basic results in the 

theory of fields, rings of integers [Hauptordnungen], and modules. 
Having solved the problem of the definition of integers, it was possible to at¬ 

tempt the generalization of Kummer’s theory in several ways. Kronecker looked for 

an approach that made possible the effective determination of ideal factors, in ac¬ 

cordance with his constructivist tendencies [Edwards 1980 and 1990]. Dedekind, in 

accordance with his abstract-conceptual orientation, finally came to avoid the pos¬ 

tulation of ideal factors and established a theory that deals with certain sets of alge¬ 

braic numbers, which he called ideals to honor Kummer’s seminal work. But in 

1860 he was still far from this viewpoint. 

4. Ideals and Methodology 

In the autumn of 1858 Dedekind left Gottingen and accepted a position at the 

Zurich Polytechnic (the later ETH). During the period at Zurich he seems to have 

kept working - though perhaps somewhat sporadically - on algebraic number the¬ 

ory, but around 1862 he abandoned original research and concentrated on preparing 

Dirichlef s lectures on number theory for the print.2 This opened a period in which 

he mainly devoted his time to the publication of the work of his mathematical 

masters - Gauss, Dirichlet, and Riemann. Some seven years went by before he 

made a second attempt to formulate a general theory of ideal factorization, while 

preparing a second edition of the Vorlesungen in 1869/70. 

1 A number set is a module when it is closed under addition and substraction [Dedekind 1871, 
242], An abstract conception of modules, including their relation to groups, can be found in 

[Dedekind 1877, 274], 

2 In a letter to the Gottingen physiologist Henle and his wife, he speaks of having renounced 
his earlier aspirations to fame: “eifrigem Arbeiten, nicht urn beriihmt zu werden - das habe ich 
aufgegeben - sondern urn Dirichlet’s Vorlesungen zum Druck fertig zu machen” [Haubrich 

1999], 
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His first attempt, in the period 1856-62, was based on higher congruences and 

led him quite far away, although never to the desired goal. It followed Kummer 

rather closely, insofar as it still depended upon the postulation of ideal prime num¬ 

bers and approached the determination of ideal factors by considering the irreduci¬ 

ble polynomial F(x) associated to every cyclotomic integer a. The ideal prime fac¬ 

tors of any prime p e 7L are essentially determined by means of certain higher con¬ 

gruences having to do with F(x) (see [Edwards 1980, 324—28; Haubrich 1999, ch. 2 

and 9]). But around 1862 Dedekind still lacked a way of proving the factorization 

theorem that could satisfy him, by being appropriately general. It had become pos¬ 

sible to approach the decomposition into ideal factors of algebraic integers of any 

kind, but Dedekind found that there are fields which contain prime numbers whose 

ideal prime factors cannot be studied by means of higher congruences. 
It is unclear whether he might have been able to sidestep this problem, but the 

fact is that by 1862 Dedekind had abandoned the whole issue and, due to his in¬ 

volvement with the publication of Dirichlef s and Riemann’s work (§11.7), he aban¬ 

doned the problem for several years. In 1869 he began preparing a second edition 

of Dirichlef s Vorlesungen, and this motivated a new attempt to establish a general 

theory of ideal numbers. This time, after about a year of work, he became con¬ 

vinced that a new formulation of the kernel of the theory itself in set-theoretical 

language was the only way of finding a satisfactory way out. (Interestingly, it has 

been possible to establish that most technical details of the 1871 theory must have 

been already in his possession by 1860-62, see §6.1.) The reformulation made 

possible a completely general proof of the fundamental theorem of factorization. 

4.1. Methodological demands. A detailed study of Dedekind’s motives for 

preferring his ideal theory yields two main conclusions.1 First, it reinforces the 

analysis of common methodological traits of the “Gottingen group” that was of¬ 

fered in §1.4; and second, it reveals that Dedekind regarded the ideals of his alge¬ 

braic number theory on a par with the elements of the number system, real num¬ 

bers, etc. Here, as with the irrational numbers, the issue was “the introduction or 

creation of new arithmetical elements.”2 His theory of algebraic integers was thus 

guided by the abstract conceptual approach that he had in common with Riemann, 

and also by the preference for arithmetization that he shared with Dirichlet and led 

farther. 

It will be convenient to start with Dedekind’s reasons for abandoning his first 

approach employing higher congruences. He gives two main arguments, mention¬ 

ing two imperfections that marred that approach. The first is simply the fundamen¬ 

tal principle that particular forms of representation ought to be avoided in favor of 

abstract concepts, the second consists in the exceptions mentioned above: 

1 Such a detailed study was initiated by Mehrtens [1979a] and Edwards [1980, 1983], See also 

[Haubrich 1999, chap. 5], 

2 [Dedekind 1877, 269]: ‘Tintroduction ou la creation de nouveaux elements arithmetiques”. 
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but although this investigation brought me quite close to the desired goal, I could not resolve 

to its publication, because the ... theory suffers mainly from two imperfections. One consists 

in that the investigation of a domain of algebraic integer numbers was based upon consid¬ 

eration of a certain number and of the corresponding equation, which is conceived as a con¬ 

gruence, and that the definitions of the ideal numbers (or better of divisibility by the ideal 

numbers) that are thus obtained do not immediately show the character of invariance that 

actually corresponds to those concepts, as a consequence of the particular form of represen¬ 

tation selected; the second imperfection of this kind of foundation consists in that sometimes 

peculiar exceptions appear, which call for special treatment.1 

By contrast, the notions of field, algebraic integer, and ideal are defined in an ab¬ 

stract way and do not require “forms of representation,” immediately suggesting the 

required “invariance” of the objects defined; and these “extremely simple notions” 

make a completely general proof of the factorization theorem possible [Dedekind 

1930/32, vol. 1,203], 

The second objection points to an important difficulty in the way to a com¬ 

pletely general theory,2 but it also has to do with a difference between Dedekind 

and Kunrmer. The latter was interested in calculating the prime factors of cycloto- 

mic integers, and was not worried by the need to employ several different methods 

that may depend upon our knowledge of particular properties of the concrete kind 

of numbers under investigation. This difference was partly due to the fact that 

Kunrmer regarded his theory of ideal numbers as a mere tool for research on reci¬ 

procity laws, and so he was not interested in the tool itself, but in the applications. 

But, in fact, Kunrmer even thought that the differentiation of several cases was 

inevitable and positive, and criticized Dedekind’s theory precisely for its abstract 

generality (see [Dedekind 1930/32, vol. 3, 481]; this is reminiscent of the differ¬ 

ences between Dedekind and Kunrmer’s disciple Kronecker, we find here the earli¬ 

est tensions between constructive and abstract approaches in mathematics). From 

Dedekind’s viewpoint, a theory was only completely satisfying when it attained the 

utmost generality, and this may have been the only reason why he did not publish 

the results of his first approach. 

1 [Dedekind 1930/32, vol. 1, 202]: “allein obgleich diese Untersuchungen rnich dem er- 

strebten Ziele sehr nahe brachten, so konnte ich mich zu ihrer Veroffentlichung doch nicht 

entschliessen, weil die so entstandene Theorie hauptsachlich an zwei Unvollkommenheiten 

leidet. Die eine besteht darin, dass die Untersuchung eines Gebietes von ganzen algebraischen 

Zahlen sich zunachst auf die Betrachtung einer bestimmten Zahl und der ihr entsprechenden 

Gleichung grundet, welche als Kongruenz aufgefasst wird, und dass die so erhaltenen Defini- 

tionen der idealen Zahlen (oder vielmehr der Teiibarkeit durch die idealen Zahlen) zufolge dieser 

bestimmt gewahlten Darstellungsform nicht von vornherein den Charakter der Invarianz erken- 

nen lassen, welcher in Wahrheit diesen Begriffen zukommt; die zweite Unvollkommenheit dieser 

Begriindungsart besteht darin, dass bisweilen eigentiimliche Ausnahmefalle auftreten, welche 

eine besondere Behandlung verlangen.” The exceptions mentioned in the second place are dis¬ 

cussed in [op.cit., 218-30]. 

2 The exceptions arise in connection with divisors of k = (o:Z[a]), the index of Z[a] in the 

ring of integers o; see [Haubrich 1999, chap. 9], They also affect the prime number p in the case 

of Rummer’s cyclotomic numbers, but Rummer knew how to give ad hoc an explicit decompo¬ 

sition. 
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Also important were some issues that affect the adequacy of the tools employed 

to the theoretical goals. Dedekind always separated clearly the problems that had to 

do with polynomials and algebraic equations, from those connected with number 

theory, even when he acknowledged that both kinds of questions were intimately 

related. The main criticism he had of Kronecker’s standpoint was that it mixed 

questions in number theory with other, totally different questions having to do with 

polynomials. Kronecker employed the so-called “methodical means of indetermi¬ 

nate coefficients,” which in modern terms can be seen as a way of determining 

ideal factors by embedding the ring of integers of the field under study in a ring of 

polynomials [Edwards 1980, 353-54], Dedekind regarded the employment of 

polynomials as an auxiliary means that is completely foreign to the question 

[Dedekind 1930/32, vol. 2, 53], In the 1890s he employed similar criticisms against 

Hurwitz’s way of dealing with the theory of ideals, an approach influenced by Kro¬ 

necker to some extent [op.cit., 50-58], 

Dedekind’s demand was that each theory ought to be developed with its own 

characteristic means, without employing foreign elements taken from other theo¬ 

ries; in a word, each theory should be stated and developed in a “pure” form. This 

requirement appears frequently in his writings, particularly those that have to do 

with the foundations of arithmetic: “I require that arithmetic ought to be developed 

out of itself’ [Dedekind 1872, 321; also see 1888, 338], The same can be found in 

the joint paper with Weber on algebraic functions [Dedekind & Weber 1882, 240], 

In order to satisfy this requirement of “purity,” Dedekind strove to analyze any 

new result that might employ any kind of auxiliary means: the result had to be 

understood at a deeper level; the proofs had to be transformed until the kernel was 

found that expressed the pure content behind the first result. He described in these 

terms the way in which he transformed an approach to ideal theory somewhat 

similar to Hurwitz’s into the fourth version of his ideal theory (see [Dedekind 

1930/32, vol. 2, 50-58]). In the context of number theory, “pure” meant expressed 

in terms of numbers, sets of numbers, and homomorphisms; here, he was always 

guided by the point of view of arithmetization: all complex objects, or concepts, 

ought to be genetically reducible to the natural numbers. Moreover, the theory 

ought to be strictly deductive, and of course auxiliary forms of representation 

should be replaced by abstract concepts. A reformulation of any rough first result in 

these terms would end in definitions of basic concepts characterizing the main 

properties of the objects under study, and would thus offer a sound basis for a de¬ 

ductive development of the whole theory. Once the main definitions had been 

found, a final effort had to be made in order to adapt, as closely and directly as 

possible, all means of proof to those basic properties and language. This is essen¬ 

tially the method that he applied in the cases of groups, ideals, Dedekind cuts, sim¬ 

ply infinite systems, etc. Of course, it required a disposition to accept new defini¬ 

tions, theoretical approaches, and means of proof - which, as Dedekind learnt, most 
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mathematicians would reject, preferring the familiar language in which they had 

been trained.1 

The methodological demands that affected Dedekind’s approach to ideal theory 

were in effect also applied to the definition of the number system. Dedekind devel¬ 

ops this relationship in a French paper of 1877, where he compares the case of 

ideals with that of real numbers as defined by means of cuts. In both cases, the issue 

is the introduction of new “arithmetical elements” in the progressive “construction” 

of the number system [Dedekind 1877, 268-69]. He summarized the demands in 
four points: 

1. “Arithmetic ought to be developed out of itself’ [Dedekind 1872, 321], avoid¬ 

ing foreign elements and auxiliary means - the notion of magnitude in the case 

of the reals, polynomials in that of ideals. 

2. When new elements are introduced, these must be defined in terms of opera¬ 

tions and phenomena that can be found in the previously given “arithmetical 

elements”: the arithmetic of (ED in the case of the reals, the arithmetic of (C in the 

case of the ideals.2 

3. The new definitions must be completely general, applying “invariantly” to all 

relevant cases: one should not define some real numbers as roots, some as loga¬ 

rithms, etc., and one should not employ different theoretical means in order to 

determine ideal factors in different cases, as Kummer (as a result of his different 

focus and orientation) had done. 

4. The new definitions must offer a solid foundation for the deductive structure of 

the whole theory: they ought to enable a sound definition of operations on the 

new “elements,” and the proof of all relevant theorems (see also [Lipschitz 

1986,65]). 

The same requirements are operative in the context of Dedekind’s theory of natural 

numbers, which, as will be seen in chapter VII, was conceived as the general frame 

for a satisfactory development of arithmetic, algebra, and analysis. 

As regards Dedekind’s insistent talk of ‘creation’, he was always convinced that 

mathematical objects and concepts are creations of the human mind. This was per¬ 

haps his most persistent philosophical conviction, one that he entertained from 

youth to death.3 In his eyes, the prototype mathematical object is number, and 

numbers are free creations [freie Schopfungen] of the mind [1888, 335, 360]. In a 

letter to Weber of 1888, Dedekind writes that we have the right to claim for our¬ 

selves such a creative power: 

1 See an 1895 letter to Frobenius in [Dugac 1976, 283], and also [Dedekind 1888, 337]. 

2 This requirement is particularly critical. Today we assume that it is better to treat the number 

system axiomatically, but this is done (explicitly or implicitly) within the frame of set theory. It 

may be argued that Dedekind’s viewpoint was almost unavoidable, as an intermediate step in the 

historical development (see §1V. 1). 

3 From the 1854 Habilitationsvortrag [Dedekind 1930/32, vol. 3, 431] to the third preface to 

Zahlen [1988, 343] written in 1911, five years before his death. See also [1872, 317, 323, 325], 



104 III. Dedekind’s Set-theoretical Approach 

We are of divine lineage and there is no doubt that we possess creative power, not only in 

material things (railways, telegraphs), but quite specially in mental things.1 

It is interesting to see how he reflects in a simple way, but seriously and coherently, 

about the impressive material changes in the world surrounding him, and how he 

links them to his own activities and his conception of mathematics. 

4.2. The heuristic way towards ideals. The strict methodological demands es¬ 

tablished by Dedekind would be satisfied by the new set-theoretical notion of ideal. 

Actually, the language of sets was always a most useful tool for him, entering in his 

attempts to apply his principles within the most diverse contexts. But, as we saw in 

§11.4, in the last half of the nineteenth-century sets were primarily conceived as 

logical classes, i.e., the extensional counterparts of concepts. This was Dedekind’s 

conception for a long time, too,2 and it turns out that the new notion of ideal 

emerged from considerations in which the logical transition from concept to class - 

the comprehension principle - was central. 
This, at least, is what the introduction to a paper of 1876/77, ‘Sur la theorie des 

nombres entiers algebriques,’ indicates. Here he described the path which led him 

to formulate the theory of the factorization of algebraic integers in terms of ideals. 

The introduction was meant to be a historical description of the process of his own 

reflections in which he “wrote each word only after the most careful reflection” 

[Lipschitz 1986, 59], Of course, any such account involves a good measure of ra¬ 

tionalization, although Dedekind was writing only six years after the innovation in 

question. His description is of special interest as it shows his implicit assumptions, 

including underlying conceptions in relation to the notion of set. 

Dedekind begins with a reference to his first approach of around 1860: 

I have not arrived at a general theory without exceptions ... until having abandoned com¬ 

pletely the old, more formal approach, and having replaced it by another which departs from 

the simplest basic conception, and fixes the eyes directly on the end. Within this approach, I 

do not have any more need of new creations, as that of Kummer's ideal number, and it is 

entirely sufficient to consider the system of really existing numbers which I call an ideal. The 

power of this notion resting on its extreme simplicity, and being my wish to inspire confi¬ 

dence in this concept, I shall try to develop the series of ideas which led me to this notion.3 

1 [Dedekind 1930/32, vol. 3, 489]: “Wir sind gottlichen Geschlechtes und besitzen ohne jeden 

Zweifel schopferische Kraft nicht bios in materiellen Dingen (Eisenbahnen, Telegraphen), son- 

dern ganz besonders in geistigen Dingen.” 

2 Until he accepted the implications of the set-theoretical paradoxes, apparently in 1897 or 

1899. Already in 1888 he supressed mention of concepts in favor of a more abstract approach to 

sets, perhaps due to his methodological preferences (see §VII.2). 

3 [Dedekind 1877, 268]: “Je ne suis parvenu a la theorie generate et sans exceptions ... 

qu’apres avoir entierement abandonne l’ancienne marche plus formelle, et l’avoir remplacee par 

une autre partant de la conception fondamentale la plus simple, et fixant le regard immediatement 

sur le but. Dans cette marche, je n’ai plus besoin d’aucune creation nouvelle, comme celle du 

nombre ideal de Kummer, et il suffit completement de la consideration de ce systeme de nombres 

reellement existants, que j’appelle un ideal. La puisance de ce concept reposant sur son extreme 
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It is noteworthy how Dedekind states that the set-theoretical approach to ideal the¬ 

ory “departs from the simplest basic conception, and fixes the eyes directly on the 

end.” In my opinion, this is not just a metaphor, but can be interpreted literally: the 

“simplest basic conception” involves the notions of number, number-operation, and 

set; the definition of the number-sets called ideals is determined by “fixing the eyes 

directly” on the goal of founding a theory of the divisibility of the integers in a 
field, as will be seen below. 

Dedekind wished to have a general, precise definition of all ideal factors to be 

considered, and also a general definition of the multiplication of ideal factors 

[1877, 268], This is consistent with his methodological demands (§5.1), but was 

also an outcome of his previous experiences with Kummer’s and his own first the¬ 

ory. None of them offered a general definition of all ideal prime factors, and Kum- 

mer had not defined satisfactorily the product of ideal factors, which Dedekind 

regarded as the reason for some deficiencies in his proofs [Haubrich 1999, ch. 2], 

Dedekind hoped that a joint definition of all the ideals would make possible a com¬ 

pletely general proof of the fundamental theorem, which is what he could not reach 
in his first theory. 

In his first theory, Dedekind introduced ideal factors - or better, defined divisi¬ 

bility by the ideal factors - in connection with one or more congruence relations 

that an algebraic integer might satisfy or not. To reach his desired new definitions, 

it was necessary and sufficient to determine what is common to all congruence 

properties A, B, C ... which are thus used, and to establish how two properties A, B 

associated with two ideal factors determine the property C which defines their 

product [Dedekind 1877, 268-69]. At this point, the comprehension principle of¬ 

fered a way of simplifying the task: 

This problem is essentially simplified by the following reflections. As such a characteristic 

property A serves to define, not the ideal number in itself, but only the divisibility of num¬ 

bers contained in o [the ‘Hauptordnung’ or ring of integers] by an ideal number, one is natu¬ 

rally led to consider the set a of all those numbers a in the domain o which are divisible by a 

certain ideal number; from now on I shall call such a system a, for short, an ideal, and so to 

each particular ideal number corresponds a certain ideal a. But as, reciprocally, the property 

A ... consists only in that a belongs to the corresponding ideal a, one may, instead of proper¬ 

ties A, B, C.., consider the corresponding ideals a, b, c... in order to establish their com¬ 

mon and exclusive character.* 1 

simplicity, et mon dessein etant avant tout d’inspirer la confiance en cette notion, je vais essayer 
de developper la suite des idees qui m’ont conduit a ce concept.” 

1 [Dedekind 1877, 270]: “Ce probleme est essentiellement simplifie par les reflections sui- 
vantes. Comrne une telle propriety caracteristique A sert a definir, non un nornbre ideal lui-meme, 
mais seulement la divisibility des nombres contenus dans o par un nombre ideal, on est conduit 
naturellement a considerer l’ensemble a de tous ces nombres a du domaine o qui sont divisibles par 
un nombre ideal determine; j’ai appellerai des maintenant, pour abreger, un tel systeme a un ideal, de 
sorte que, a tout nombre ideal determine, correspond un ideal determine a. Maintenant comme, 
reciproquement, la propriety A ... consiste uniquement en ce que a appartient a 1’ideal correspondant 
a, on pourra, au lieu des proprietes A, B, C.., considerer les ideaux correspondants a, b, c... pour 
etablir leur caractere commun et exclusif.” 
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The step towards set language, which Dedekind regarded as suggested “naturally” 

by the problem in question, was quite strange and difficult for his contemporaries; 

it was one of the reasons why ideal theory was not generally accepted until the 

1890s. What made it natural for him was his familiarity with the conceptions of 

traditional logic, where the transition from a property to a class was absolutely 

natural; and above all his confidence in the set-theoretical approach (the abstract- 

logical conception) of mathematics. Without the latter, the connection between sets, 

or any logical conceptions, and mathematics would seem completely unclear. 

At this point, Dedekind needed to find the properties that characterize the sets a, 

[\ ... mentioned above, i.e., a general definition of ideals consisting in necessary and 

sufficient conditions for a set of integers to be an ideal. Since the goal of the theory 

was to establish the laws of divisibility for algebraic integers, the “really existing” 

integers had also to be viewed from the set-theoretical viewpoint. This was easily 

done by considering principal ideals, sets of integers that are divisible by a given 

algebraic integer a. Through a study of the “phenomena” that one can find in this 

simple, pre-existing case, Dedekind was able to find two conditions that he judged 

apt for a general definition of ideals. The set of multiples of a satisfies the follow¬ 

ing two conditions: 
I. sums and differences of any two numbers in the set are again numbers be¬ 

longing to it, and 
II. products of any number in the set by any integer of the field are again num¬ 

bers belonging to the set. 
One simply had to turn this two properties of the simplest case into a definition of 

the general case: an ideal was defined to be any system or set of algebraic integers 

in a field that satisfies conditions I. and 11. [Dedekind 1871, 251; 1877, 271]. 

Thus, he obtained a general definition that was based exclusively on the arith¬ 

metic of (C and the notion of set, and hence satisfied the requirements that we ana¬ 

lyzed in the previous section. But Dedekind did not stop here. For many years he 

had been working with ideal numbers, and he felt the need to check whether the 

new definition made sense against that background. This was also necessary, be¬ 

cause he was still employing methods of proof taken from his first theory, and so 

had to prove that there is a perfect overlap between both approaches [Haubrich 

1999, ch. 10]. Dedekind [1877, 271] took pains to prove, after many vain attempts 

and with great difficulties, that any ideal, in the sense defined above, was either the 

set of multiples of a given integer (a principal ideal) or of an ideal number in the 

old sense. Actually, this is the content of the “fundamental theorem” that can be 

found in his first version of the theory [Dedekind 1871, 258]. The basic idea of 

going from an ideal factor to its corresponding ideal suggested to Dedekind, for the 

first time, a way of proving the fundamental theorem in its full generality. The set- 

theoretical viewpoint was crucial not only for the new basic definition, but especially 

for the new proof strategy that finally satisfied Dedekind’s requirement of generality.1 

1 The key idea was to construct a finite succession of ideals Uj embedded on one another, such 
that: op. ca0calc...co (where p e o), and ending with a maximal ideal [Haubrich 1999, ibid.]. 
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Ideals satisfied all of Dedekind’s demands concerning definitions, proofs, and 

the abstract conceptual approach to mathematics generally. This seems to have been 

the reason why he adhered to them, and to the set-theoretical viewpoint in algebraic 

number theory, ever after 1870, in spite of the novelty of his approach and the 

difficulties it posed for his contemporaries. 

5. Dedekind's Infinitism 

In 1872, one year after the publication of his ideal theory, Dedekind began to write 

a draft containing an “attempt to analyze the number-concept from a naive stand¬ 

point.” It already bears the original, and quite characteristic, motto: “Nothing capa¬ 

ble of proof ought to be accepted in science without proof.”1 The draft was contin¬ 

ued sporadically until 1878, rewritten in 1887, and then published as the famous 

booklet Was sind und was sollen die Zahlen? [1888]. The very first part of the 

draft, which has to be dated 1872, contains most of the basic notions in the later 

book: a definition of set or “system,” definitions of “part” (the abstract analogue to 

the “divisor” of algebraic number theory) and of the union operation, definitions of 

mapping and of infinite set, and a basic analysis of the series of natural numbers, 

including the crucial notion of “chain” [Dedekind 1872/78, 293-97], Most of these 

ideas will be studied in chapter VII, but here we shall consider the notions of set 

and mapping, and the definition of infinite set, as Dedekind presented them in 

1872. 

The very idea that Dedekind’s analysis was “naive” already calls for attention. 

In the draft he elaborated an abstract definition of the natural numbers, based on the 

notions of set and mapping. Apparently, the reason why this was regarded as “na¬ 

ive” is that both notions belong to logic, hence to the innermost constitution of 

sound common sense. Dedekind writes that both notions, on which he bases the 

number concept, would be indispensable for arithmetic even if the concept of car¬ 

dinal number were taken as given in so-called “inner intuition” [1872/78, 293]. 

Most likely, the word “arithmetic” is understood here, as 16 years later, in a broad 

sense that embraces algebra and analysis [Dedekind 1888, 335]. The author’s expe¬ 

rience in algebra, algebraic number theory, and the foundations of analysis is re¬ 

flected in that statement. 
As regards the notion of set, Dedekind explains it as follows: 

A thing is any object of our thought... 

A system or collection [or manifold] S of things is determined, when of any thing it is possi¬ 

ble to judge whether it belongs to the system or not. 

1 The draft was published as appendix LVI to [Dugac 1976, 293-309]. “Versuch einer Ana¬ 
lyse des Zahl-Begriffs vom naiven Standpuncte aus.” “Motto (eigenes): ‘Was beweisbar ist, soli 
in der Wissenschaft nicht ohne Beweis geglaubt werden.”’ [op.cit., 293], 
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The words “or manifold” were written on the right hand column, which Dedekind 

left blank initially, in order to employ it for later corrections or additions. On the 

same column we find a definition of set: 

We use to treat all those things that possess a common property, insofar as the differences 

between them are not important, as a new thing in front of all other things. It is called a 

system, or a collection of all these things.1 

The correlation between sets and properties comes up again in the immediately 

following pages [1872/78, 295-96]. Hence, in 1872 Dedekind employed the com¬ 

prehension principle to explain the notion of set; the word “Inbegriff ’ [collection] 

directly expresses the relationship between “Begriffe” [concepts] and sets. Like¬ 

wise, he seems to have been the first to express clearly the principle of extensional- 

ity, that can be found in the first quotation. At any rate, it seems quite indisputable 

that one should not hesitate to interpret his technical word “system” as denoting the 

notion of set. 
Next Dedekind explains what he means by “part” and “proper part,” introduces 

the union of two sets under the names “least common multiple” (taken from alge¬ 

braic number theory) or “compound system,” and finally presents the crucial no¬ 

tions of mapping and injective mapping: 

A system S is called distinctly mappable in a system T, when to every thing contained in S 

(original) one can determine a (corresponding) thing contained in T (image), so that different 

images correspond to different originals. 

On the right hand side we read a more straightforward definition of mapping 4> of ^4 

in B, by saying that to each element a of A “corresponds” an element a\<\> of B, and 

that the mapping is distinct when a '|<j) a ’’|(() whenever a ’ and a ” are different 

(today we write (j)(n) instead of a|(|)).2 The notion of mapping that he has in mind 

here is the general one, since on [1872/78, 296] he starts an “investigation of a 

(distinct or undistinct) mapping of a system S in itself.” This can be seen as a con¬ 

sequence of his long experience with homomorphisms in the context of algebra. 

1 [Dedekind 1872/78, 293]: “Em Ding ist jeder Gegenstand unseres Denkens ... Ein System 

oder Inbegriff [oder Mannigfaltigkeit] S von Dingen ist bestimmt, wenn von jedern Ding sich 
beurtheilen lasst, ob es dern System angehort oder nicht.” “Alle diejenigen Dinge, welche eine 
gemeinschaftliche Eigenschaft besitzen, pflegt man solange die Unterscheidung derselben nicht 
wichtig ist, den anderen Dingen gegeniiber wie ein neues Ding zu behandeln. Dasselbe heisst 
System, oder Inbegriff alles dieser Dinge.” 

[Dedekind 1872/78, 294]: “Ein System S heisst deutlich abbildbar in einem System T, wenn 
man fur jedes in S enthaltene Ding (Original) ein (zugehoriges, correspondirendes) in Tenthalte- 
nes Ding (Bild) so angeben kann, dass verschiedenen Originalen auch verschiedene Bilder ent- 
sprechen.” “Abbildung <j> des Systems A in dem System B. Jedem Ding a des A entspricht (durch 
a ist bestimmt) ein Ding a | <> = b des Systems B. Deutlichkeit einer Abbildung <>: a ’ | (j) und a " | <j) 
verschieden abgebildet, wenn a’, a" verschieden.” 
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Dedekind can now state his famous explanation of the infinite: 

The infinite and the finite. 

A system S is called infinite (or: the number of the things contained in S is called infinitely 

great), when there is a part U of S, which is different from S, and in which S can be mapped 

distinctly; the system S is called finite (or: S consists of a finite number of things), when 

there is no part U of S different from S, in which S is distinctly mappable.1 

It is notable that this text was written before any of Cantor’s papers on set theory, 

for it can be seen as the first noteworthy and influential attempt to elaborate an 

abstract theory of finite and infinite sets.2 One should perhaps add that, of course, 

there is nothing in Dedekind’s draft that prefigures Cantor’s path-breaking non- 

denumerability results of 1873 and later. 

We have no indication of the origins of Dedekind’s definition of infinity: on its 

first appearance it emerges in a fully developed form, so it might well have origi¬ 

nated some years earlier. What we know is that he had been relying on infinite sets 

from the late 1850s. Evidence includes the paper on higher congruences, written in 

1856 (§2), the 1858 theory of irrational numbers that was published in [1872], his 

work on fields and rings of integers which must date back to about 1860, and the 

ideal theory of 1871. Nevertheless, the question might be raised, why was Dede¬ 

kind so convinced of the acceptability of the infinite? What were the roots of his 

infinitism? This question was actually asked some years ago by Harold M. Edwards 

[1983], in a paper called ‘Dedekind’s Invention of Ideals.’ 

Edwards poses the question as follows. The version of ideal theory that Dede¬ 

kind published in 1871 can easily be reformulated (today, at least) in a way that 

avoids all reliance on infinite sets, by means of the concepts of divisor theory. Ed¬ 

wards regards that first version as Dedekind’s best, even though the great mathe¬ 

matician was dissatisfied with it and kept reformulating it in accordance with his 

“set-theoretic prejudices” [Edwards 1980, 321], But, with the goal of establishing a 

theory of the factorization of ideal numbers in mind (and forgetting about their 

influence on the further development of modern algebra), Dedekind’s later versions 

are unnecessarily complex. More generally, Edwards considers that, in all of ele¬ 

mentary algebra, the infinite sets involved are so “tame” that they can always be 

described in a finitistic way. In his opinion, Dedekind must have been prompted to 

“fly in the face of the doctrine against completed infinities” by “something from 

analysis” [1983, 12]. He knew that his theory of real numbers could not be devel- 

1 [Dedekind 1872/78, 294]: “Das Unendliche und Endliche. / Ein System S heisst ein unendli- 

ches (oder: die Anzahl der in S enthaltenen Dinge heisst unendlich gross), wenn es einen Theil U 

von S giebt, welcher von S verschieden ist, und in welchem S sich deutlich abbilden lasst; das 
System S heisst endliches (oder: S besteht aus einer endlichen Anzahl von Dingen), wenn es 
keinen von S verschiedenen Theil U von S giebt, in welchem S deutlich abbildbar ist.” 

2 The words “and influential” are written with Bolzano in mind. 
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oped constructively, hence he avoided taking steps in this direction within the con¬ 

text of ideal theory [op.cit., 14]. 

Edwards’ explanation does not look plausible. First, we know that Dedekind 

employed infinite sets in his algebraic work of 1856-58: we have the examples of 

the ‘rational domains’ (fields) in his early version of Galois theory, and of the paper 

on higher congruences. Here he stressed the fact that he was considering infinitely 

many classes, each of which contain infinitely many elements, but in spite of this he 

established an analogy between those infinite sets and the natural numbers, concrete 

objects for a traditional mathematician (§2). And all of this happened before the 

formulation of his theory of irrational numbers, late in 1858. (It would be more 

plausible to try finding the roots of Dedekind’s infinitism in Riemann’s ‘preju¬ 

dices.’) 

Second, Dedekind placed no special value on his theory of real numbers: he 

regarded it as a rather straightforward contribution, that simply came to fill a gap in 

the elements of the number system; other mathematicians would have formulated 

something similar had they devoted some effort to it [Dedekind 1930/32, vol. 3, 

470, 475], Therefore, it is highly implausible that he might have conditioned his 

cherished ideal theory on a trait of the much less valuable theory of real numbers. 

Third, the only text that I have been able to find where Dedekind tried to justify 

his use of infinite sets in ideal theory, establishes no relation between this and the 

real numbers. Instead, he traces an interesting parallel between his work and 

Gauss’s theory of the composition of quadratic forms in Disquisitiones Arithme- 

ticae. In a letter to Lipschitz of June 1876, he wrote: 

Just as we can conceive of a collection of infinitely many functions, which are still dependent 

on variables, as one whole, e.g., when we collect all equivalent forms in a form-class, denote 

this by a single letter, and submit it to composition, with the same right I can conceive of a 

system A of infinitely many, completely determined numbers in [the ring of integers] o, 

which satisfies two extremely simple conditions I. and II., as one whole, and name it an 

ideal.1 

Gauss had been very careful to express himself in a way that did not imply the 

existence of actual infinities, but it is clear that his reader Dedekind was not wor¬ 

ried by philosophical subtleties. 

Dedekind’s acceptance of the infinite does not have the appearance of a more or 

less ad hoc position, adopted to safeguard his theory of the real numbers. It rather 

looks like a deep-rooted conviction: infinite sets seemed to him perfectly acceptable 

objects of thought, that involve no contradiction, and that play a crucial role in 

1 [Lipschitz 1986, 62]: “So gut, wie man einen Inbegriff von unendlich vielen Functionen, die 
sogar noch von Variablen abhangen, als ein Ganzes auffasst, wie man z.B. alle aquivalenten Formen 
zu einer Formen-Classe vereinigt, diese wieder mit einem einfachen Buchstaben bezeichnet und 
einer Composition unterwirft, mit demselben Rechte darf ich ein System A von unendlich vielen, 
aber vollstandig bestimmten Zahlen in a, welches zwei hochst einfachen Bedingungen 1. und II. 
geniigt, als ein Ganzes auffassen und ein Ideal nennen.” 
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mathematics. This seems to be the reason why he took the side of the actual infi¬ 

nite. From the 1850s on, he accepted actual infinities as natural mathematical ob¬ 

jects, and in the 1880s he even tried to prove the existence of infinite sets, thus 

establishing the soundness and consistency of the notion of infinity (§§ VII.3 and 5). 

6. The Diffusion of Dedekind's Views 

In his tenth supplement to Dirichlet’s Vorlesungen of 1871, Dedekind proposed a 

new conception of “higher” number theory, understood as the theory of algebraic 

numbers, and approached it in a revolutionary way, namely, set-theoretically. He 

also suggested that a similar approach was appropriate for algebra, on the basis of 

the field concept. Given these rather strong changes in conceptualization and theo¬ 

retical orientation, it is not strange that the reception of his ideas was slow. Actu¬ 

ally, only in the 1890s did the theory of algebraic numbers begin to be generally 

treated more or less along his lines. In 1876, five years after publishing the new 

theory, Dedekind expressed surprise and happiness to know that Lipschitz had an 

interest in his work, for he was, with Weber, the only such mathematician (see 

[Lipschitz 1986, 48]).1 Dedekind had become convinced that his tenth supplement 

was just not read by anyone [Edwards 1980, 349], Nevertheless, in 1880 he was 

named a member of the Berlin Academy of Sciences for his number-theoretical 

work, on the proposal of Kronecker, who on this occasion expressed his difficulties 

with Dedekind’s terminology and methods (see [Biermann 1966]). 

6.1. Subsequent versions of Dedekind’s ideal theory. Not surprisingly, the main 

instrument for the diffusion of Dedekind’s views were his own refined versions of 

ideal theory. Three different versions were published, the first in 1871, the second 

in 1876-77 (French) and 1879 (German), and the third in 1894; each one diverges 

widely from its predecessor (plans for a new fourth version never reached comple¬ 

tion). 
Dedekind was not satisfied with his first presentation of the theory, because it 

was a kind of compromise. Due to the fact that the second edition of Dirichlet’s 

Vorlesungen was scheduled for late 1870, and the notion of ideal was first formu¬ 

lated in August of that year, he had to work under great time pressure in developing 

his new ideas. It was impossible to adapt the development of the theory to the set- 

theoretical characteristics of its central notion, as his methodological preference for 

a “pure” development of the theory demanded. Dedekind had recourse to the tools 

developed in his first approach to the factorization of algebraic integers. This is 

reflected in the fact that the proof of the fundamental theorem follows a detour 

1 As we have seen (§2), Cantor may be added to the list of those who had carefully read 
Dedekind’s ideal theory in the 1870s. One may add that he lectured on the theory of algebraic 
numbers at Halle [Purkert & Ilgauds 1987, 103]; see also [Cantor 1877], where he cites Dede¬ 
kind’s fields of algebraic numbers as examples of denumerably infinite sets. 
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through so-called “simple ideals,” which are defined by means of certain number- 

congruences, just like the ideal factors were in his first approach.1 Finally, all prime 

ideals are shown to be simple ideals, which eliminates this somewhat ad hoc tool. 

But the fact is that his proofs depended on notions defined by means of a form of 

representation, that always involves a degree of arbitrariness - precisely what the 

abstract conceptual methodology that he shared with Riemann recommended to 

avoid. 

The same shortcomings, as Dedekind saw them, were reflected in the fact that 

the product of ideals is only defined after the fundamental theorem has been 

proven. This notion ought to become the true basis for the whole theory, as he was 

finally able to do in the third version. Given the set-theoretical formulation of the 

theory, and particularly of the notion of ideal, Dedekind saw the main issue in the 

compatibility of two notions that emerge quite naturally. If two algebraic integers 

are such that a is divisible by (3, it is clear that a will belong to the principal ideal 

of [3, denoted o((3); likewise, if o(a) is included in o((3), it is clear that a is divisible 

by (3. Flence, there is a natural analogy between the inclusion of ideals and number- 

divisibility, which leads Dedekind to the following definition. An ideal 21 is divisi¬ 

ble by the ideal 23 if and only if 21 c 23. Accordingly, the natural definition of a 

prime ideal is the following: ‘p is a prime ideal if it is only divisible by o and '}) 

itself [Dedekind 1871, 252-53], But, on the other hand, it is natural to define ideal 

multiplication in the obvious algebraic way: for all a e 21 and (3 e 23, the additive 

closure of the set of all products a(3, which is again an ideal, is the product 2123 

[op.cit., 259]. Given these two notions, the main difficulty in the theory of ideals is 

to prove the following theorem: If the ideal (£ is divisible by the ideal 21 (<2 c 21), 

there is one and only one ideal 23 such that 2123 = d [Dedekind 1877, 272-73; 

1895, 50]. Once this has been proven, one can reach the required generalization of 

the fundamental theorem of factorization: Every ideal, that is different from o, ei¬ 

ther is a prime ideal or can be uniquely represented as a product of prime ideals. 

Dedekind’s aim was to establish these two theorems as directly as possible, with 

the simplest possible means, and taking as little as possible from other mathemati¬ 

cal theories. His reasonings should avoid reliance on particular numbers, instead 

trying to exploit directly the possibility of considering set-theoretical or algebraic 

relationships between number-sets, taken as wholes.2 This is consistent with Dede¬ 

kind’s understanding of the deductive structure of mathematical theories: a set- 

theoretical definition of ideals implied a strict reliance on sets and set-theoretical 

relations throughout the theory. This was attained in the second version, published 

1 See [Dedekind 1871, 255-58], That made it possible for Edwards [1980, 337—42] to refor¬ 
mulate Dedekind’s theory of 1871 in terms of the divisor theory of Borewicz and Safarevic, 
avoiding sets completely; and it enabled Haubrich [1999, chap. 9] to attempt a reconstruction of 
Dedekind’s first approach. 

2 See [Corry 1996, 103-20], where a more detailed analysis of Dedekind’s later versions can 
also be found. 
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in [Dedekind 1877] and in a new supplement XI to the 1879 edition of the Vorle- 

sungen, now bearing the straightforward title ‘On the theory of algebraic integral 

numbers’ [1879]. Here, forms of representation were avoided in favor of a “purer” 

derivation of the main results. Nevertheless, the proofs were quite complex, for 

Dedekind was only able to reach the fundamental theorem by a step-by-step elimi¬ 

nation of limiting assumptions. As he wrote, it was “a long chain of theorems!”1 

By contrast, the third version of 1894 offered a much more direct and powerful 

method for proving the fundamental theorem, that was based on a development of 

the theory of modules. Dedekind elaborated an algebra of modules, based on defi¬ 

nitions for the addition (algebraic union), substraction (intersection), product and 

division of modules. He established some characteristic results, including the fol¬ 

lowing modular identity [Dedekind 1894, 503]: 

(A+B+C) (BC+CA+AB) = (B+C)(C+A)(A+B) 

which became an essential tool in his new proof of the factorization theorem.2 On 

this occasion he also employed module-theoretical definitions of ideals and of Ord- 

nungen, which, however, stemmed in the 1870s; these definitions made possible the 

direct application of the algebra of modules. In the preface to this edition of the 

Vorlesungen, he wrote: 

Only the last supplement, that deals with the general theory of algebraic integer numbers, has 

gone through a complete reworking; both the algebraic foundations [Galois theory] and 

those that are properly number-theoretical receive a more detailed exposition, from the point 

of view that I regard, with that conviction afforded by many years, as the simplest, basically 

because it presupposes only a clear comprehension of the number domain and the knowledge 

of the basic rational operations.3 

This, again, was an expression of his ideal of purity and of the autonomy of number 

theory, as well as a recognition of the intimate links between Dedekind’s founda¬ 

tional work on the “number domain” and his ideal theory. Dedekind’s ideal was to 

base ideal theory directly on a theory of the number system and the number opera¬ 

tions, for which the general basis was given in [Dedekind 1888] (see chap. VII). 

This is also made clear by the frequent footnote references to that booklet in 

[Dedekind 1894], 

1 Letter to Lipschitz, [Dedekind 1930/32, vol.3, 468]: “eine lange Kette von Satzen!” 

2 His new research on modules also led to path-breaking work on lattice theory, which, how¬ 
ever, had little direct influence (see [Mehrtens 1979; Corry 1996, chap. 2]). 

3 [Dedekind 1930, vol. 3, 426; or Dirichlet 1894, v—vi]: “Nur das letzte Supplement, welches 
die allgemeine Theorie der ganzen algebraischen Zahlen behandelt, hat eine vollstandige Umar- 
beitung erfahren; sowohl die algebraischen als auch die eigentlich zahlentheoretischen Grundla- 
gen sind in grosster Ausfuhrlichkeit und in derjenigen Auffassung dargestellt, welche ich nach 
langjahriger Uberzeugung fur die einfachste halte, weil sie hauptsachlich nur einen deutlichen 
Uberblick fiber das Reich der Zahlen und die Kenntnis der rationalen Grundoperationen voraus- 

setzt.” 
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6.2. Later contributions: Weber and Hilbert. As we shall not come back to 

the history of algebra and algebraic number theory again, it seems convenient to 

end this chapter with a few indications of the reception and further elaboration of 

Dedekind’s ideas. No attempt is made to offer a general overview, 1 will content 

myself with some remarks on the relation between Dedekind and the influential 

work of Weber and Hilbert. 

In §11.7 we mentioned that Dedekind met Weber in 1873 and collaborated with 

him closely in the first edition of Riemann’s works, published 1876. This was the 

beginning of a deep friendship and scientific collaboration, that would be decisive 

for Weber’s later contributions to algebraic topics. Between 1878 and 1880, both 

corresponded on the theory of algebraic functions, which resulted in the publication 

of [Dedekind & Weber 1882]. This paper offered a purely algebraic treatment of an 

important part of Riemann’s function theory, including a novel definition of the 

Riemann surfaces, and a proof of the Riemann-Roch theorem. To this end, Dede¬ 

kind and Weber established a strict analogue of ideal theory for fields of algebraic 

functions, and the corresponding ring of “integral functions.” For this reason, the 

1882 paper has been considered as the first important example of a structural unifi¬ 

cation of widely different mathematical domains.1 It presented new notions and 

viewpoints that would be of crucial importance for the development of algebraic 

geometry in the 20th-century. Also noteworthy is the authors’ remark that consid¬ 

erations of continuity concerning the algebraic functions are not required at all in 

their work, and therefore the theory is “treated exclusively through means belong¬ 

ing to its own sphere.”2 This is, again, Dedekind’s demand for purity, but also one 

of the very first appearances of the idea that in algebraic work one should avoid 

topological considerations. 

The many-sided Weber continued to be interested in algebra and number the¬ 

ory. In [1893] he presented the general foundations of Galois theory, stimulated by 

the manuscript of Dedekind’s lectures in the 1850s (see [Weber 1895/96, vol. I]).3 

In the paper of 1893 one can find, for the first time, an explicit recognition of the 

relationship between groups and fields, regarded as abstract structures, together 

with the first axiomatization of the notion of field. While Dedekind had only con¬ 

sidered finite groups and infinite fields, Weber went beyond in analyzing both the 

finite and infinite cases in some detail. Like his friend, he emphasized the role 

played by extensions of fields, and the interplay between group-theoretical and 

field-theoretical notions in Galois theory, giving more attention to the nature of the 

1 Jean Dieudonne in a 1969 article on Dedekind for the Encyclopaedia Universalis, quoted in 
[Dugac 1976, 77], 

2 [Dedekind & Weber 1882, 240]: “Bis zu[m Beweis des Riemann-Rochschen Satzes] kommt 
die Stetigkeit und Entwickelbarkeit der untersuchten Funktionen in keiner Weise in Betracht. 
Dadurch wird ... [die] Theorie ... lediglich durch die seiner eigenen Sphare angehorigen Mittel 
behandelt.” 

3 In 1881, Paul Bachmann had already developed Dedekind’s suggestions in some detail, in a 
paper published in vol. 18 of Mathematische Annalen. Bachmann was one of the few students 
that attended Dedekind’s lectures in the 1850s. 
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solution of an equation than to actual calculations [Kiernan 1971, 141], Dedekind 

would also contribute to the subject the year after, when he proposed, for the first 

time, to view the group of the equation as group of the automorphisms of the split¬ 

ting field [Dcdekind 1894], The modern treatment of Galois theory, in the hands of 

Emil Artin, would follow this lead [Kieman 1971, 144-51], 

But perhaps Weber’s most important role, as long as algebra is concerned, was 

as a textbook-writer and teacher.1 Particularly important is the fact that David Hil¬ 

bert attended his lectures at Konigsberg until Weber’s departure in 1883. Weber 

had occasion to lecture on algebraic number theory, which he probably presented in 

Dedekind’s way, and this early exposure had a strong influence in Hilbert’s forma¬ 

tion. In the mid-1890s Weber published his textbook on algebra, which became a 

reference work for the new generation of algebraists. The introduction to his Alge¬ 

bra [1895/96, vol. 1] was a lengthy presentation of Dedekind’s ideas on the foun¬ 

dations of the number system. Vol. 1 dealt with algebra as the theory of equations, 

beginning with the elements and working up to Galois theory, presented in a rather 

concrete way, not abstractly as in [1893]. Vol. 2 dealt with more advanced material: 

the abstract theory of groups, and algebraic number theory. Interestingly, though, 

Weber’s approach to algebraic number theory is not close to Dedekind’s, but to 

Kronecker’s: he determines ideal factors by means of so-called “functionals,” 

which are essentially the same as Kronecker’s ‘forms’ or polynomials; only later he 

proceeds to show that his reformulation of Kronecker’s approach is equivalent to 

Dedekind’s. It seems likely that he chose this approach in order to offer a synthetic 

overview of previous work. After all. Dedekind had done more than enough to 

explain and promote his viewpoint, while Kronecker’s ideas had remained hardly 

accessible to other mathematicians. Meanwhile, Weber’s textbook became an im¬ 

portant instrument for the diffusion of some basic ideas of Dedekind’s, such as his 

notion of field, and even of his conception of algebra.2 

Although in the 1890s Dedekind’s conception of algebraic number theory began 

to enjoy wide acceptance, his strict adherence to the “structural” viewpoint, i.e., his 

preference for simple number- and set-relations, was not adopted by his immediate 

followers, with the exception of Weber. To give an example, Hurwitz defined an 

ideal as the course-of-values of a homogeneous linear form, the coefficients and 

values of which are integers in the field under study [Hurwitz 1894], Similar, al¬ 

though closer to Dedekind in that it avoids ‘forms’ in favor of number-relations, is 

the case of Hilbert: ideals are defined as “systems” of algebraic integers such that 

any linear combination of them, with coefficients in the ring, also belongs to the 

ideal [Hilbert 1897], 

1 He enjoyed a very successful career, teaching at the universities of Konigsberg, Marburg, 
Gottingen and Strassbourg, and the technical schools of Zurich and Charlottenburg (Berlin). 

2 A detailed analysis of Weber’s Algebra can be found in [Corry 1996, 34-45]. However, one 
must take into account that Weber’s presentation of algebraic number theory did not follow 

Dedekind. 
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Hilbert’s famous Zahlbericht [Number-report; Hilbert 1897] became the stan¬ 

dard reference work for the next generation of number theorists, strongly promot¬ 

ing the new set-theoretical concepts.1 Nevertheless, Hilbert did not follow Dede¬ 

kind in the way the theory was structured either. Already in his work on invariant 

theory, he had taken suggestions from [Kronecker 1882] and combined them with 

the abstract approach of [Dedekind & Weber 1882], a noteworthy combination of 

widely different viewpoints that is characteristic of the author. In his eyes, that 

contribution effected a subsumption of invariant theory under the theory of fields of 

algebraic functions (see [Corry 1996, ch. 3]). In developing ideal theory, Hilbert 

abandoned the ‘purism’ of his predecessor, employing theoretical means that Dede¬ 

kind would have regarded as formal and alien to the subject. In particular, he em¬ 

ployed a theorem that Dedekind had found by re-working on his own Kronecker’s 

approach to the theory of algebraic integers, a theorem independently proven by 

Hurwitz.2 Hilbert’s choice of arguments was guided by considerations of gener- 

alizability and usefulness in further research, which he judged on the basis of ex¬ 

tensive research of his own [Weyl 1944], His most important contribution was the 

formulation of new and prolific problems within algebraic number theory, leading 

to class field theory. 
Dedekind’s original definition of ideal, together with his style of reasoning and 

proof, reappeared in the textbook literature with van der Waerden’s Moderrte Alge¬ 

bra of 1930. One of van der Waerden’s main influences was Emmy Noether, a 

central figure in the movement of abstract algebra of the 1920s and 1930s, who 

explored ideal theory in the context of commutative and non-commutative abstract 

rings. Noether expressed an open preference for Dedekind’s mathematical style: 

For Emmy Noether, the eleventh supplement was an inexhaustible source of stimuli and 

methods. On all occasions she used to say: ‘It is already in Dedekind.’3 

In her edition of Dedekind’s works, she wrote that the conceptual constructions of 

supplement XI cross through the whole of abstract algebra [Dedekind 1930/32, vol. 

3,314], 

1 There is no detailed historical analysis of Hilbert’s Zahlbericht yet. See W. & F. Ellison in 
[Dieudonne 1978, 191-92], who refer to Weyl’s obituary, that can be found as an appendix to 
[Reid 1970], 

2 See [Hurwitz 1894, 1895; Dedekind 1895; Edwards 1980, 364-68], 

3 Van der Waerden, introduction to Dedekind’s ideal theory (Braunschweig, Vieweg, 1963): 
“Fur Emmy Noether was das elfte Supplement eine unerschopfliche Quelle von Anregungen und 
Methoden. Bei jeder Gelegenheit pflegte sie zu sagen: ‘Es steht schon bei Dedekind.’” On this 
topic, see [Corry 1996, chap. 5]. 
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The precise distinction of ideas of Extension does not consist in magni¬ 

tude: for in order to recognize distinctly the magnitude, one must resort 

to the integers, or to the other numbers that are known by means of the 

integers, so that from continuous quantity one has resort to discrete 

quantity, in order to have a distinct knowledge of magnitude 

The more beautiful it seems to me that man can rise to the creation of the 

pure, continuous number domain, without any idea of the measurable 

magnitudes, and in fact by means of a finite system of simple thought 

steps; and it is first by this auxiliary means that it is possible to him, in 

my opinion, to turn the idea of continuous space into a distinct one.1 2 

From what we have seen in the preceding chapters, around 1870 there were several 

indications that the notion of set might prove of fundamental importance for alge¬ 

bra, function theory, and even geometry. In the next chapter we shall consider an¬ 

other line of development, consolidated around that time, which led mathematicians 

working on real functions to pay attention to point-sets. In the present chapter we 

consider more elementary questions in analysis that also stimulated the emergence 

of a theory of sets, and which firmly established the conception of pure mathemat¬ 

ics as the science of number. This conception was crucial for Weierstrass, Dedekind 

and Cantor, the central (German) figures in the rigorization of the real number 

system. Each one of them presented a rigorous definition of the real numbers, to¬ 

gether with basic notions and results on the topology of IE.. 

It is well known that the need for a sound treatment of the real numbers was 

first felt in connection with the rigorization of analysis. The approach of Cauchy, 

based on the notions of limit and continuous function, can be taken to have been 

1 [Leibniz 1704, book II, chap. 16]: “La distinction precise des idees dans TEtendue ne con- 
siste pas dans la grandeur: car pour reconnoistre distinctement la grandeur, il faut recourir aux 
nombres entiers, ou aux autres connus par le moyen des entiers, ainsi de la quantite continue il 
faut recourir a la quantite discrete, pour avoir une connaissance distincte de la grandeur.” 

2 [Dedekind 1888, 340]: “Um so schoner scheint es mir, dass der Mensch ohne jede Vorstel- 
lung von messbaren Grossen, und zwar durch ein endliches System einfacher Denkschritte sich 
zur Schopfung des reinen, stetigen Zahlenreiches aufschwingen kann; und erst mit diesem 
Hilfsmittel wird es ihm nach meiner Ansicht moglich, die Vorstellung vom stetigen Raume zu 

einer deutlichen auszubilden.” 
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firmly implanted from the mid-century.1 Its characteristic tendency was to build 

upon notions of a geometric origin, e.g., the continuity of a function, but giving 

them a rigorous and abstract formulation in terms of numerical relations. The con¬ 

stant use of numerical conditions, and the notion of limit, made possible an impor¬ 

tant step forward in the elimination of the obscurities and inconsistencies of the 

calculus of the 18th-century. But, of course, absolute rigor had not been attained. 

Some basic theorems of an existential character still lacked an adequate founda¬ 

tion. Examples are the intermediate value theorem - if a continuous function takes 

positive and negative values at both ends of an interval, there is a real number in 

the interval which is a zero of the function; the theorem that, given a monotonically 

increasing and bounded sequence of real numbers, there is a unique real number 

that is the limit of the sequence; or the principle that, given an infinite sequence of 

embedded intervals of M, there is at least one real number that belongs to all those 

intervals. 
The gap is clearly visible, for instance, in the pioneering paper by Bolzano 

[1817] devoted to proving the intermediate value theorem. Bolzano anticipates the 

approach of Cauchy by attributing a decisive importance to limits and by giving the 

modern definition of a continuous function - with a proof of the continuity of poly¬ 

nomial functions - and the Cauchy condition for the convergence of sequences. 

This was the basis for his correct proof of the intermediate value theorem; but his 

attempt to justify the Cauchy condition turned out to be circular, because it lacked 

an arithmetical definition of real numbers. Bolzano’s memoir remained almost 

unknown at the time, but it is convenient to mention it here, because apparently 

Weierstrass himself relied on that work.2 

What was needed was a satisfactory theory of the real numbers, establishing the 

continuity (completeness) of US. This was accomplished by Weierstrass, Dedekind, 

Meray and Cantor, who presented definitions of the real number system on the 

basis of the rational numbers. In doing so, they seem to have sharpened and given a 

clear sense to the obscure declarations of Leibniz, quoted above. From a modern 

viewpoint, those definitions have to be interpreted as set-theoretical “construc¬ 

tions,” but it is a different issue how the authors themselves understood them, and 

how they fit into the historical context. The four mathematicians seem to differ as 

to their consciousness of the role played by the notion of set as a foundation for 

their theories. As a matter of fact, it was only gradually and after the publication of 

those theories, with the early development of set theory, that the mathematical 

community became aware of the foundational role played by the notion of set. 

1 For the approach of Cauchy, see [Kline 1972; Grattan-Guinness 1980; Bottazzini 1986]. A 
more specialized discussion can be found in [Grabiner 1981]. On its implantation in Germany, 
[Jahnke 1987]. 

2 It seems that, in the 1860s and 70s, he used to refer to it in his lectures, and admitted that he 
had taken up (and perfected) Bolzano’s methods; see the 1870 letter from Schwarz to Cantor in 
[Meschkowski 1967, 239], and the Flettner redaction [Weierstrass imp., 304]; Schwarz is also 
mentioned in connection with Bolzano in [Dedekind 1930/32, vol. 2, 356-57], 
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Here we shall center on the German contributions, in accordance with the limits 

set for the present work in the Introduction. At any rate, the work of Meray, first 

published in 1869 and similar to Cantor’s, did not exert an influence on the three 

German authors. The theories of Dedekind and Weierstrass seem to be the oldest, 

dating back to the late 1850s; Weierstrass presented his ideas regularly in his 

courses at Berlin. But all three were first made known to the public in 1872, when 

Cantor and Dedekind published their famous articles, and Kossak dealt with the 

ideas of Weierstrass in a book which, however, was disowned by the great Berlin 

mathematician [Kossak 1872], 

The rigorous definitions of the real numbers were, quite naturally, accompanied 

by work on the topology of the real line. The last section of this chapter will be 

devoted to related basic work by the three German mathematicians, including a 

short analysis of work by Dedekind that was only published in 1931. 

1. 'Construction' vs. Axiomatization 

The traditional definition of the real numbers relied on the notion of magnitude as 

previously given. Number was the ratio or proportion between two homogeneous 

magnitudes. This definition, based on the Greek theory of ratios, was first proposed 

by Stevin in the late 16th-century, and defended by such men as Newton and even 

Cauchy [Gericke 1971], Such an approach had its shortcomings: it did not account 

for complex numbers, nor even for negative numbers, and, above all, the continuity 

of IE was neither justified, nor explicitly required. This last point was particularly 

emphasized by Dedekind in his correspondence with Lipschitz: the continuity of 

the previously given domain of magnitudes was an implicit assumption, and the 

notion of magnitude was never precisely defined [Dedekind 1872, 316; 1930/32, 

vol. 3, 477; or Lipschitz 1986, 77-78], In fact, for the traditional conception of 

mathematics there was no question of postulating that the real numbers, or the 

magnitudes, have the desired properties. Reference to magnitudes involved the idea 

that mathematical objects exist in physical reality, and so there is no problem of 

existence. 

When it became clear that a rigorous development of analysis required a precise 

theory of the real numbers, mathematicians might have taken recourse to the axio¬ 

matic method, which in the form given to it in Euclid’s Elements had always been 

taken to be prototypical of mathematics. As a matter of fact, none of the authors we 

are considering followed that path. What they did was in essence to assume the 

rational numbers as given, and build the system of real numbers on top of the ra- 

tionals by means of certain infinitary “constructions.” Hilbert referred to this as the 

“genetic” approach, when he proposed the axiomatic approach, instead, as more 

convenient and precise [Hilbert 1900], One obvious reason for the option of the 

authors we shall consider is that the axiomatic method was not a paradigm for 19th- 

century mathematics, in the sense of a model followed in the actual conduct of 

research and writing. However, a number of mathematicians made contributions 
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that can be regarded as forerunners of modem axiomatics; this includes not only 

authors working on geometry, but also a good number of mathematicians that in¬ 

vestigated arithmetic and algebra. Among them we find the British school of sym¬ 

bolical algebra, and German authors such as Ohm, Grassmann, Hankel and Dede¬ 

kind. 

Actually, the fact that the foundations of analysis required an axiom of continu¬ 

ity (or completeness, in modem terminology) only became clear after the publica¬ 

tions of Cantor and Dedekind in 1872 that we shall review. Both were convinced 

that continuity had to be axiomatically postulated in the realm of geometry, but not 

so in arithmetic. Taking this into account, a historiographical question emerges: 

Why was the “construction” approach preferred by all authors around 1870? Why 

none of them opted for an axiomatic viewpoint? 

To some extent, we can point to reasons that were explicit in the mind of some 

of the historical actors. Dedekind regarded arithmetic as a development from the 

laws of pure thought, as a part of logic, and there are reasons to think that Weier- 

strass (and also Cantor early in his career) essentially agreed with that viewpoint. 

This, joined with the old conception of axioms as true propositions that cannot be 

proven, led them to the idea that arithmetic needs no axioms - everything can be 

rigorously proved starting from purely logical notions (see §VII.5). But, instead of 

following this issue farther, I would like to consider in this section some further 

reasons that are also interesting from a historiographical and philosophical view¬ 

point. The factors we shall review seem to have underlain the decisions taken by 

the historical actors, but they may appear to be meta-historical more than simply 

historical. Readers who are not interested in this kind of deeper reflection on the 

reasons for the limitations of thought in a period may safely skip the reminder of 

the present section and go directly to our exposition of the definitions of the real 

numbers (§2). 

Answering a question such as the above - why the genetic approach and not the 

axiomatic one - is not easy, because most likely a host of factors have played a role 

in determining the attitude of 19th-century mathematicians. We shall consider some 

plausible reasons. To begin with, there probably was the psychological need to 

somehow justify the fact that we talk about real numbers. Had they simply postu¬ 

lated the basic properties that were needed in order to obtain the desired theorems 

in arithmetic and analysis, the question might have arisen, why not talk about points 

or anything else, instead of numbers? There had to be something in common that 

all of the different number systems shared, and 19th-century mathematicians looked 

for a common genealogy, a ‘genetic’ process by which the more complex systems 

emerge from the simpler. The means by which the genetic process took place was 

some infinitistic ‘construction’ that in retrospect can be characterized as set- 

theoretical (although in all cases one had to work with sets of some more or less 

complex structure). 

The origins of this genetic program can be found in the work of Martin Ohm, 

already mentioned in §§1.3 and III. 1. Ohm gave it a very general formulation, for 

he attempted to give a consistent (i.e., unitary, systematic) presentation of arithme- 
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tic, algebra and analysis on the only basis of natural numbers. Natural numbers 

were regarded as given, and the basic operations on them were established by tak¬ 

ing into account their intuitive meaning. This enabled Ohm to formulate a set of 

fundamental equations as a starting point, from which the systematic development 

is carried out as follows. Ohm introduced the inverse operations - substraction, 

division, radication - and observed that they cannot always be carried out in the 

limited domain of the natural numbers. The requirement that it ought to be possible 

to realize them motivates an extension of the number system. In order to be rigor¬ 

ous, this extension must be accompanied by new definitions of equality and of the 

basic operations that can be applied to the new numbers; the process is guided by 

the requirement that the fundamental equations that were valid for natural numbers 

should be preserved.1 Interestingly, this basic program can be found again in Dede¬ 

kind (see §111.1) and also in Weierstrass;2 the same may be true of Heine [1872, 

174-75], It thus seems that there was a German tradition, a rudimentary program 

for the foundations of pure mathematics, that led to important results in the hands 

of Weierstrass and Dedekind. 

Ohm treated the new kinds of numbers as intellectual objects or mental sym¬ 

bols: given natural numbers a, b, the negatives were defined as symbols a-b; given 

integers a, b, the fractions were defined as symbols a/b. Ohm’s definitions of 

equality and the operations [Bekemeier 1987, chap. II] were correct in these cases, 

and so his treatment turns out to be equivalent to later ones relying on ordered pairs 

(especially when this is presented in a formal way, not purely set-theoretically). 

Ohm was more interested in finding satisfactory definitions of the operations on the 

new numbers, than in giving an explicit justification for our right to “create,” if 

only mentally, the new objects. On this point, his successors were more careful - 

actually, they tended to focus on the definition of the new numbers, rather than on 

defining the new operations. 

A more radical departure happened in connection with the reals, for Ohm intro¬ 

duced them successively as roots, logarithms, etc., while the 1872 definitions are 

completely general. We have seen (§111.5.1) that Dedekind explicitly criticized this 

point, a shortcoming related to the fact that with IE we are not facing an algebraic 

completion, but a topological one. Ohm’s more advanced proposals in analysis 

were based on calculations with purely symbolical, and equivocal, expressions. 

While Ohm took symbolic forms as the objects of mathematics, Cauchy was treat¬ 

ing symbols (numerical conditions, etc.) as mere tools for analyzing the properties 

of mathematical objects [Bekemeier 1987; Jahnke 1987]. Ohm’s successors opted 

for a compromise with the conception of analysis favored by Cauchy, what we have 

called the conceptual approach (§1.3), and so the German tradition was gradually 

adjusted to the new rigorous analysis. 

1 This is the well-known principle of the permanence of equivalent forms, that was formulated 
around the same time by Peacock in Britain, and which can still be found in Hankel [1867], 

2 See, e.g., his critical comments on [Kossak 1872] in a letter to Schwarz quoted in [Dugac 

1973, 144], 
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The factors that we have just reviewed can also be read in terms of a more theo¬ 

retical issue, the problem of rigor. The genetic approach made possible a rigorous 

treatment of the number systems, because the central requirement adopted by 

Weierstrass, Dedekind, and Cantor (and Ohm) was that the new numbers, together 

with relations and operations on them, had to be defined in exclusive reference to 

previous numbers, their relations and operations. The “construction’ of the real 

numbers presupposed only, or so it was said, the rational numbers. As these authors 

presented the matter, it seemed that the infinitary means employed by them were 

obvious or even transparent, not worthy of a more careful and explicit considera¬ 

tion. Perhaps the reason for this attitude was that they regarded them as logically 

admissible ‘constructions’ or procedures. This is certainly the case with Dedekind, 

and plausibly also with Weierstrass;1 Cantor would have inherited the attitude as a 

member of the Berlin school. In the long run, it became clear that the infinitary 

means employed called for a foundation in set theory and that this entailed peculiar 

difficulties. 

But, beyond questions of rigor, tradition, or psychological needs, I wish to point 

out a deeper and more urgent conceptual reason that seems to give a satisfactory 

explanation to the question why “construction” was preferred to axiomatization. 

During the last three quarters of the 19th-century, starting with Ohm in Germany 

and Peacock in England, we can observe a small trend of developments that gradu¬ 

ally prepared the emergence of the axiomatic mentality. These authors ceased to 

rely on empirical assumptions regarding mathematical objects, and tried to offer 

purely deductive developments of their theories, based on careful analysis of the 

assumptions involved.2 The British school became completely aware of the free 

interplay between formal conditions (abstract systems of algebraic laws) and mod¬ 

els or interpretations, a key insight that prepared the emergence of modem axio- 

matics and logic (see, e.g., the introduction to [Boole 1847]). But, throughout this 

period, mathematicians had a real problem with simply establishing a system of 

laws as a basis for subsequent work; they could not just decree that mathematics 

considers this or that axiom system. 

Mathematics had traditionally been regarded as a science that deals with some 

quite abstract, but no less real, objects - the magnitudes (see §11.1). The new trend 

advanced in the direction of superseding that outdated conception of mathematics, 

but the process was gradual, and they always paid careful attention to the question 

of interpretations. To grasp the limits of their viewpoints, we must recall that at that 

time the notion of consistency had not yet been formulated, the first proofs of rela¬ 

tive consistency by means of models were still to come, and, of course, nobody had 

1 Klein, who knew him personally, used to call him a “logician” [Klein 1926, vol. 1, 152, 
246], 

2 It is in this sense that they prepare the axiomatic orientation, though of course their approach 
is still far from 20th-century axiomatics with its emphasis on absolute freedom to set up consis¬ 
tent axiom systems. Even the notion of axiom evolved in the process (§3). 
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even dreamed of a formal proof of consistency in Hilbertian style.1 As late as 1910, 
Russell was still writing: 

freedom from contradiction can never be proved except by first proving existence: it is im¬ 

possible to perform all deductions from a given hypothesis, and show that none of them 

involve a contradiction!2 

Only by exhibiting a model of the system can we show its consistency; for, as Frege 

wrote Hilbert in the 1900s, truth implies consistency [Frege 1980]. 

In the early phases of the development, a purely axiomatic approach seemed to 

be a matter of merely playing with symbols. In 1835, De Morgan confessed that, at 

first sight, Peacock’s approach “appeared to us something like symbols bewitched, 

and running about the world in search of a meaning.”3 Although their explicit 

methodology placed more emphasis on other points, authors belonging to the Brit¬ 

ish tradition of symbolical algebra always paid careful attention to the possibility of 

giving interesting mathematical interpretations for their abstract systems of laws. 

The books of Peacock and his followers are full of such examples of interpreta¬ 

tions, and De Morgan even came to distinguish two parts of algebra, one devoted to 

the formal manipulation of laws, the other devoted to interpretation [Pycior 1983]. 

Analogous considerations apply to similar developments in Germany, to the writ¬ 

ings of Ohm, Grassmann and Hankel. Weierstrass and Dedekind, being exponents 

of the conceptual approach, were even more interested in avoiding purely formalis¬ 

tic games with symbols. 

Lastly, during most of the 19th-century, available means for the construction of 

models or interpretations were extremely limited; they were basically restricted to 

arithmetical or geometrical interpretations. The rise of set theory and of an abstract 

notion of structure were crucial in palliating those limitations. But, as a matter of 

fact, the ‘constructions’ of the real number system were pioneering examples of the 

use of (quasi) set-theoretic means for the construction of models, in a particularly 

complicated case. We thus come to the conclusion that an axiom system for the real 

numbers would not have been seen as a solution to the problem that mathematicians 

faced around 1870. To simply postulate an axiom system would have meant beg¬ 

ging the question by means of an arbitrary formalistic trick. The models of IE that 

our authors elaborated on the basis of (D played a key historical role in preparing 

the modem axiomatic mentality. Only after those models had been formulated, and 

with the modern set-theoretic viewpoint as a background, could Hilbert advance 

toward the characteristically 20th-century axiomatic standpoint. Besides, it was 

1 Euclidian or projective models for non-Euclidean geometry were given by Beltrami in 1868 
and Klein in 1871; see [Kline 1972, chap. 38], [Gray 1989]. Hilbert’s approach to the reals grew 
out of his work on the foundations of geometry; it seems that in 1899 he was still far from fo¬ 
cusing on consistency, not to mention formal consistency proofs. 

2 Quoted in [Grattan-Guinness 1980, 438], 

3 Quoted in [Pycior 1983, 216]. I have to say that I do not agree with Pycior’s interpretation 
of De Morgan’s attitudes toward symbolical algebra; see [Ferreiros 1990; 1991]. 
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Cantor and Dedekind who clarified the need for an axiom of continuity (complete¬ 

ness) in the axiomatization of the system of the real numbers.1 

2. The Definitions of the Real Numbers 

We proceed to a succinct analysis and comparison of the theories that were devel¬ 

oped by Weierstrass, Dedekind and Cantor. In recent times, this topic has been 

analyzed above all by Dugac, but early in the century it was carefully studied by 

several authors, due to its undeniable historical importance, and because the defini¬ 

tions of US. show quite clearly the conceptions of rigor promoted by each mathema¬ 

tician.2 But perhaps the best joint presentation was that of Cantor himself [1883, §9, 

183-190], though of course it does not offer a modem perspective. We have al¬ 

ready mentioned that the infinitary means employed are of different kinds, and the 

authors do not always explicitly presuppose a foundation in the notion of set. 

Weiertrass employs infinite series, Cantor uses Cauchy sequences, and Dedekind 

resorts to his cuts; in all cases we have sets with some more or less complex struc¬ 

ture, that of cuts probably being the simpler. 

2.1. Weierstrass: series. Weiertrass’s theory was never published by himself, it 

has to be analyzed through redactions of his courses made by his students; from the 

1860s, such redactions enjoyed a wide diffusion within the German mathematical 

community. Every two years, Weierstrass gave a course ‘Introduction to the theory 

of analytic functions’ at Berlin. Since he was convinced that the lack of rigor in 

analysis was due to a hasty and imprecise handling of the basic notions [Dugac 

1973, 77], he devoted about one quarter of the course to a careful exposition of the 

notion of number and the arithmetical operations [Ullrich 1989, 150], On the basis 

of several manuscripts originating in different years, both Dugac and Ullrich come 

to the conclusion that Weierstrass’s theory of numbers remained essentially un¬ 

changed from the early 1860s.3 

1 Thus, in my opinion, the rise of axiomatics cannot be seen as a direct development of for¬ 
malistic approaches; moreover, it is incorrect and anachronistic to regard the British school of 
symbolical algebra as a purely formalistic movement (see [Ferreiros 1990], and compare [Pycior 
1987] ). 

2 See [Dugac 1970, 1973, 1976] and his summarizing presentation in [Dieudonne 1978]. For 
early works, see [Pringsheim 1898], [Jourdain 1910], [Cavailles 1962], Perhaps I should add that 
the discussion in [Kline 1972, chap. 41] is not reliable. 

3 Dugac employs redactions by Schwarz (1861), Hettner (1874), Flurwitz (1878) and Thieme 
(1886), and also the expositions of Kossak [1872] (based on the course of 1865/66) and Pincherle 
[1880] (based on the 1878 course). Ullrich has studied redactions by Killing (1868) and Kneser 
(1880/81), beyond the already mentioned ones of Hettner and Hurwitz, which seem to be par¬ 
ticularly reliable [Ullrich 1989, 149]. Hurwitz’s redaction has been published as [Weierstrass 
1988] , 
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Like Ohm, Weierstrass assumed the natural numbers as given, and presented the 

operations on them in an intuitive manner; he also motivated the introduction of 

new numbers in a similar way, and like his predecessor he required the preservation 

of formal laws (see above and [Dugac 1973, 144]). But, in spite of assuming RJ to 

be given, his explanations of the notion of natural number seem to prefigure the 

notion of set. According to him, the notion of number is formed by gathering in 

thought several things in which a common trait has been discovered;1 particularly, 

it is formed when the things are identical for thought, in which case they are called 

the units of number (Hurwitz redaction, 1878, in [Dugac 1973, 96]). 

Rational and irrational numbers are presented as ‘Zahlengrossen,’ numerical 

magnitudes, but under the traditional denomination lies an abstract conception of 

magnitudes that also seems a prefiguration of the set-theoretical viewpoint. Taking 

into account the need to introduce “new elements” in order to be able to carry out 

the operation of division without limits, Weierstrass introduces the “exact parts of 

the unity,” numbers of the form Ha with ae RJ (Hurwitz redaction, 1878, in [Dugac 

1973, 97-98]). This way of dealing with the rationals opens the way for a satisfac¬ 

tory treatment of the irrational numbers, since both are defined as aggregates of the 

unit and its exact parts. Weierstrass defines a numerical magnitude, ‘Zahlgrosse,’ to 

be a “number whose elements are the unity and its exact parts, of which there are 

infinitely many” [op.cit., 98], One may have numbers containing infinitely many 

elements of that kind, as long as they are given through a well determined law 

[op.cit., 101]; like all other authors at the time, Weierstrass emphasizes the need of 

a defining property or concept. By introducing not just one unit, but four (which are 

called positive, negative, imaginary positive, and imaginary negative), Weierstrass 

is also able to solve the classical problems with the negative and complex numbers 

[op.cit., 96]. 
The intuitive idea will be to treat real and complex numbers as finite or infinite 

series built from units and their exact parts. But the comparison of ‘Zahlengrossen’ 

takes place through finite sums of their elements, which is a logical requirement, 

since we only presuppose the finite arithmetic of the naturals and rationals. A key 

point is that the series ought to converge, and Weierstrass gives as a defining prop¬ 

erty that there should exist an integer n greater than any finite sum of elements of 

the ‘Zahlgrosse.’ Rigor is thus attained by employing only finite sums of rational 

numbers; as Cantor explained: 

One sees that the productive moment connecting the set with the number which it defines, 

can be found here in summation; but one must emphasize as essential that one only employs 

the summation of a quantity of rational elements that is always finite, and that one does not 

set beforehand the number b to be defined as the sum of the infinite series (a„). This 

would be a logical error, because one rather obtains the definition of the sum only 

when it is equated to the given number b, which by necessity has to be defined previously. I 

believe that this logical error, which Mr. Weierstrass avoided for the first time, had been 

1 Compare Dedekind’s explanation of the notion of set as the mental gathering of different 

things, which, for any reason, are regarded from a common viewpoint [Dedekind 1888, 344], 
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committed by almost all in previous times, and was not noticed because it is one of the rare 

cases in which a true error cannot give rise to any important problem in calculations.1 

Each ‘Zahlengrosse’ may be represented in (infinitely many) different ways, 

since there are different collections of units and exact parts of the unit which turn 

out to be equivalent. In order to define equality, Weierstrass allows some transfor¬ 

mations that essentially make it possible to go from one representation to any other 

[Dugac 1973, 97-103], He also gives the following definition: a ‘Zahlengrosse’ ci' 

having a finite number of elements is called a part of another (arbitrary) ‘Zahlen¬ 

grosse’ a if a' can be transformed into some a ", so that all elements of a "are found 

as many times in a as well. Two numerical magnitudes a, b are equal if every part 

of a is a part of b, and inversely [op.cit., 103], Essentially, this means that the 

equality or inequality of real numbers are defined in terms of rational numbers, 

taken as their parts; finite sums are again the basis. Finally, the sum of a and b is 

the ‘Zahlengrosse’ that has as its elements all elements of a and b, taken together; 

and the product of a and b is the ‘Zahlengrosse’ whose elements are all possible 

products of elements of a times elements of b. 

Thus, Weierstrass was able to give a logically rigorous definition of the real 

numbers, although a rather prolix and complex one. Dedekind and Cantor will 

simplify the matter by taking the arithmetic of the rational numbers as given. In 

Weierstrass’s presentation, one can only object to the fact that the infinitely many 

“exact parts” of the unity are, apparently, introduced without any justification. 

Perhaps this is due to an oversight of Hurwitz in the redaction of the course; other¬ 

wise, we would have to think that, by sticking to the terminology of magnitudes, 

Weierstrass was not able to achieve total control of the implicit assumptions of his 

theory. His position tries to find a subtle compromise between the finite and the 

infinite, in line with his semi-constructivistic, ‘formal conceptual’ approach to 

mathematics (see §1.5). The infinite plays an essential role in the theory, since one 

departs from the infinitely many exact parts of the unity and since the irrational 

‘Zahlengrossen’ have infinitely many elements. But one never operates with infi¬ 

nitely many elements, since the arithmetic of US. is defined by means of finite sums 

of rational numbers.2 

1 [Cantor 1883, 184-85]: “Man sieht, dass hier das Erzeugungsmoment, welches die Menge 

mit der durch sie zu definirenden Zahl verkniipft, in der Summenbildung liegt; doch muss als 

wesentlich hervorgehoben werden, dass nur die Summation einer stets endlichen Anzahl von 

rationale)! Elementen zur Anwendung kommt und nicht etwa von vomherein die zu definirende 

Zahl b als die Summe Y,an der unendlichen Reihe (an) gesetzt wird; es wiirde hierin ein logischer 

Fehler liegen, w.eil vielmehr die Definition der Summe Y,an erst durch Gleichsetzung mit der 

nothwendig vorher schon definirten, fertigen Zahl b gewonnen wird. Ich glaube, dass dieser erst 

von Herrn Weierstrass vermiedene logische Fehler in friiheren Zeiten fast allgemein begangen 

und aus dem Grunde nicht bemerkt worden ist, weil er zu den seltenen Fallen gehort, in welchen 

wirkliche Fehler keinen bedeutenderen Schaden im Calcul anrichten konnen.” 

2 On a subtler level, one may notice that Weierstrass employs freely the universal quantifier 

(see, e.g., the convergence criterion that he employed). Most likely, no author of this early period 

was able to understand the implications of such a move (see chapter X). 
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A different matter is whether and to what extent Cantor is faithful to the Berlin 

master when he calls the ‘Zahlengrossen’ “sets” in the text that we have quoted. 

Weierstrass’s definition avoids using any word like ‘set’ or ‘aggregate,’ and it is not 

clear whether he conceives of the ‘Zahlengrossen’ as infinite sets or as infinite 

series. The fact that a ‘Zahlengrosse’ may contain the same number several times 

(see definition of ‘part’ above) suggests that the latter is the case. (Incidentally, this 

would be consistent with the central role that series play in his presentation of real 

and complex analysis.) But perhaps more important is the fact that Weierstrass does 

not seem to have employed any common notion, be it denoted by ‘set’ or ‘mani¬ 

fold’ or any other word, for the two cases of points and numbers (see §3.2). He 

neither seems to have completed the step from concrete notions to an general con¬ 

cept of set, nor to have advanced from sets with some structure to abstract sets; 

Dedekind and Cantor will make both steps, though not in their published work of 

1872. 

2.2. Cantor: fundamental sequences. The theory of Cantor is closely related to 

that of Weierstrass, even in the terminology employed: his purpose is to define 

what is to be understood by a ‘Zahlgrosse.’ Since he was a student of Weierstrass, 

the influence of the latter is beyond question;1 but Cantor was able to simplify the 

ideas of his teacher and give a much more elegant, concise, and practical presenta¬ 

tion, that enjoyed great success. Where Weierstrass employed convergent series, 

Cantor uses Cauchy sequences of rational numbers; the relation is quite obvious: 

any infinite series can be associated to the sequence of its partial sums, so that a 

Cauchy sequence corresponds to a convergent series. 

There is evidence that Cantor presented his theory in lectures of 1870 [Purkert 

& Ilgauds 1987, 37], but the occasion for publication came with a paper of 1872 on 

trigonometric series (to be analyzed in §V.3). Here it is enough to know that, in that 

paper, Cantor studied in detail some complex distributions of points on the real line, 

and felt the need to clarify the notion of real number in order to be able to present 

that work. It is doubtful whether he really needed to present his theory of irrational 

numbers for the purposes of the paper (see below). Perhaps he wished to take the 

opportunity of this article for an exposition of his ideas, knowing that Heine was 

going to give an exposition of them in a paper of his own [Heine 1872].2 

Cantor departs from the domain of rational numbers, which he denotes by A, in 

order to define the domain B of the reals. The basic means is what he would call 

some years later “fundamental sequences” (‘Fundamentalreihen,’ [Cantor 1883, 

186]); here he still talked of numerical magnitudes: 

1 Heine [1872, 173] and the disciples of Weierstrass usually regarded Cantor’s theory as a 

particularly fortunate version of Weierstrass’s theory. Fora detailed study, see [Dauben 1979]. 

2 Heine published his paper in the Journal fur die reine und angewandte Mathematik, giving 

due credit to his younger colleague; interestingly, Cantor published in the Mathematische Anna- 

len, then the semi-official journal of the Gottingen school of Clebsch. 
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When I speak of a numerical magnitude in general, it happens above all in the case that there 

is present an infinite series, given by means of a law, of rational numbers 

(1) aIt a2, a3, ... 

which has the property that the difference an+m-an becomes infinitely small with increasing 

n, whatever the positive integer m may be; or in other words, that given an arbitrary (posi¬ 

tive, rational) £ one can find an integer tij such that (an+m-an) < £, if n>nl and m is an 

arbitrary positive integer. 

This property of the series (1)1 will express by means of the words: “The series (I) has a 

certain limit b.’,] 

The symbols b will be the ‘Zahlengrossen’ that constitute the domain B of the real 

numbers. Mathematical terminology had not yet consolidated, so that the same 

word, ‘Reihe,’ was employed for series and sequences, but Cantor’s definition is 

unequivocal as to the intended meaning. The fundamental sequences have also been 

called ‘Cauchy sequences,’ for their defining property agrees with the criterion of 

convergence given by Cauchy (and Bolzano). 

Cantor goes on to make clear that the words “has a certain limit b” have in prin¬ 

ciple no other meaning than that of expressing the above mentioned property of (1). 

To every sequence one should in principle associate a different symbol b, b', b", ... 

and only then proceed to define the equality of ‘Zahlengrossen’ b and b'\ this can 

be done by considering the behavior of the corresponding sequences (an), (a as 

follows: b=b' if lim —> 0 when n —> co. (Cantor never employed equiva¬ 

lence classes in connection with his theory of DR, not even in [Cantor 1883, 185— 

86].1 2) Similarly, Cantor defines the order relations among the “symbols” [Zeichen] 

of the domain B, the relations between numbers of B and rational numbers, and the 

basic arithmetical operations [Cantor 1872, 93-94], For example, one says that 

b+b' = b" if among the corresponding sequences there is the relation 

lim (an+a 'n-a "n) —» 0 when n —» co. 

The real numbers take here the form of purely mental symbols associated to the 

fundamental sequences. Cantor tries to emphasize the abstractness of his approach 

when he writes that, in his theory, the numerical magnitude, “which in principle 

and in general lacks an object in itself, only appears as an element in propositions 

1 [Cantor 1872, 92-93]: “Wenn ich von einer Zahlengrosse im weiteren Sinne rede, so 

geschieht es zunachst in dem Falle, dass eine durch ein Gesetz gegebene unendliche Reihe von 

rationalen Zahlen: ... vorliegt, welche die Beschaffenheit hat, dass die Differenz an+m-an mit 

wachsendem n unendlich klein wird, was auch die positive ganze Zahl m sei, oder mit anderen 

Worten, dass bei beliebig angenommenem (positiven, rationalen) £ eine ganze Zahl nI vorhan- 

den ist, so dass (an+m-an) < £, wenn n> nj und wenn m eine beliebige positive ganze Zahl ist. / 

Diese Beschaffenheit der Reihe (1) driicke ich in den Worten aus: “Die Reihe (1) hat eine bestimm- 

te Grenze b.”” 

2 As we saw, Dedekind employed them in his algebraic work of 1857, and later (1870s and 

80s) in connection with his theory of the integers; see §VII.3. 
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that are endowed with objectivity.”1 The sentence makes apparent the difficulties 

one faced at the time in trying to express such a viewpoint. 

Let us now discuss the use to which Cantor put his theory of irrational numbers 

in this particular paper. What he really needed for his theorem on trigonometric 

series was the notions of limit point and derived set of a point-set (see §V.3), that 

he went on to present. The theory of irrational numbers was used, however, in order 

to give an example of a point set whose «th derived set consists of a single point. 

What is most notable is that, to this end, Cantor felt the need to introduce real num¬ 

bers of “higher kinds,” as Dedekind said [1872, 317], This is a peculiar trait of his 

theory, which he preserved in the second version of 1883, and which distinguishes 

it from the modem version. Having defined B as the totality of all ‘Zahlengrossen’ 

b [Cantor 1872, 93], he went on to define a new domain [Gebiet] C in analogous 

way, namely by means of fundamental sequences of elements of A and B [op.cit., 

95]. Continuing the process analogously, we arrive at domains D, E, F,... 

Cantor was careful to point out that, while there are elements in B which have 

no corresponding member in A, the same is not true for the higher kinds: to each c 

we can find a b, to each b a c, that we can regard as equal to each other. But, in his 

theory, 

it is ... essential to maintain the conceptual distinction between both domains B and C, just 

like the equality of two numerical magnitudes b, b' from B does not include their identity, 

but only expresses a certain relation that takes place between the sequences to which they are 

related.2 

The distinction was essential for him, because Cantor used it in order to give an 

example of a point-set of the «th kind; to this end, he takes a single point in the real 

line, and considers its abscissa as determined by a numerical magnitude of the «th 

domain, say L, that complies with some conditions. By resolving this ‘Zahlen- 

grosse’ into its elements of the (w-l)th, («-2)th, ... domains, say K, J, ..., he finally 

gets to infinitely many rationals; the corresponding point-set, of points with rational 

abscissa, is a point-set of the nth kind [1872, 98-99]. 
We may regard the need that Cantor felt to preserve that distinction as a purely 

psychological one, because one can easily get the same results by directly employ¬ 

ing sequences of real numbers. But this seems to be a fine example of the difficul¬ 

ties encountered in the early phase of development of set theory. Lacking a general 

theory of sets, there was no possibility of working with sets of sets, building unions 

1 [Cantor 1872, 95]: “in [der hier dargelegten Theorie] die Zahlengrosse, zunachst an sich im 

Allgemeinen gegenstandlos, nur als Bestandtheil von Satzen erscheint, welchen Gegenstand- 

lichkeit zukommt.” 

2 [Cantor 1872, 95]: “bei der hier dargelegten Theorie ... [ist es] wesentlich, an dem begriffli- 

chen Unterschiede der beiden Gebiete B und C festzuhalten, indern ja schon die Gleichsetzung 

zweier Zahlengrossen b, b' aus B ihre Identitat nicht einschliesst, sondem nur eine bestimmte 

Relation ausdriickt, welche zwischen den Reihen stattfindent, auf welche sie sich beziehen." 
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of families of sets, and the like.1 Cantor circumvented this limitation by means of 

the formal trick of distinguishing several different kinds of real numbers, according 

to the way in which they are determined. Besides, he kept finding that distinction 

useful in order to apply his conception of the real numbers directly to the analysis 

of the “conceptual content” [gedankliche Inhalt] of the formulas of analysis [Cantor 

1883, 189; 1872, 95]. A ‘Zahlengrosse’ / can always be set equal to a ‘Zahlen¬ 

grosse’ k, i, ... c, b, and inversely; and 

The results of analysis (disregarding a few known cases) can be brought into the fonn of 

such equalities, although the notion of number, as it has been developed here, carries in itself 

the germ for a necessary and absolutely infinite expansion (which is here touched upon only 

in reference to those exceptions).2 

This is the most notable point in this whole matter: Cantor’s thoughts on real 

numbers of higher kinds, and their relation with the theorems of analysis, led him to 

consider an extension of the higher kinds to infinity. In a way, this is an amazing 

anticipation of his later introduction of the transfinite numbers, although the context 

makes it clear that there is no direct relation between both.3 From his student years, 

Cantor was fond of philosophy and theology, and he was particularly interested in 

the philosophy of Spinoza, which ascribes a central role to the idea of absolute 

infinity (see § VIII. 1—2). This may have been one of the reasons why he showed an 

interest in expanding the domain of mathematics beyond the infinite, from such an 
early period. 

Cantor’s second exposition [1883] of the theory of real numbers includes a new 

theorem, that was not formulated in the first. After having defined the real numbers, 

one can rigorously prove that, given a fundamental sequence of real numbers (bn), 

there is a real number b (determined through a fundamental sequence of rational 

numbers) such that lim (bn) -A b when n -A oo [Cantor 1883, 187], Of course, it is 

not that Cantor was unaware of this fundamental property of IR in 1872, simply that 

his exposition had not been completely rounded off from a logical viewpoint. 

Dedekind’s 1872 paper, on the other hand, took the corresponding theorem as its 

culminating point. It thus seems that Cantor followed the model of his older col¬ 

league in the 1883 exposition. This difference is indicative of the different turn of 

mind of both mathematicians: Dedekind is the great systematician, who loved to 

As a matter of fact, Cantor did not normally employ sets whose elements are in turn sets in 

his work, not even in his mature work of the 1890s. His tendency to work with sets whose ele¬ 

ments are (intuitively considered) simple, may explain why he never rounded off his theory of IK. 
by using equivalence classes. 

2 [Cantor 1872, 95]: “Auf die Form solcher Gleichsetzungen lassen sich die Resultate der 

Analysis (abgesehen von wenigen bekannten Fallen) zuriickfuhren, obgleich (was hier nur mit 

Riicksicht auf jene Ausnahmen beriihrt sein mag) der Zahlenbegriff, soweit er hier entwickelt ist, 

den Keim zu einer in sich nothwendigen und absolut unendlichen Erweiterung in sich tragt.” 

3 The issue of the real numbers of higher kinds and their relation with the theorems and for¬ 

mulas of analysis would be worthy of a detailed study, which certainly would prove difficult. 
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pay careful attention to logico-mathematical details; in his attention to rigor, he can 

only be compared with Weierstrass. By contrast, Cantor is a more creative mathe¬ 

matician, who is interested above all in difficult problems and results, is less in¬ 

clined to engross himself in careful system-building, and tailors his methods to the 
needs of problem-solving. 

2.3. Dedekind: continuity and cuts. Dedekind was led to search for a theory of 

the irrational numbers by the unsatisfactory experience of having to resort to geo¬ 

metrical intuition in teaching the elements of the calculus. When he taught analysis 

for the first time, in 1858, he felt “more than ever before the lack of a truly scien¬ 

tific foundation of arithmetic” [Dedekind 1872, 315], and resolved to work steadily 

on the problem; he arrived at his theory in that same year.1 The fact that Dedekind’s 

theory is completely independent from the other two is further confirmed by the 

great technical differences. Weierstrass and Cantor employ infinitistic “constructs” 

that were usual in analysis, series and sequences respectively; Dedekind chooses to 

rely on a new means for “construction.” The resulting theory is simpler in that 

every real number corresponds to only one, or at most two, cuts, while it corre¬ 

sponds to infinitely many fundamental sequences or Weierstrass series. On the 

other hand, many analysts have preferred Cantor’s presentation, precisely because 

it only employs notions that are of frequent use in analysis and thus can be applied 

more directly. 

After careful research, Dedekind was convinced that the following theorem was 

a sufficient basis for analysis: if a variable magnitude x grows steadily, but not 

beyond all limits, it approximates a limit value [Dedekind 1872, 316, 332]; in mod¬ 

em terminology: a monotonically increasing and bounded sequence of real numbers 

has a unique limit.2 In his first lectures on analysis he could only give a geometrical 

justification for that theorem, although he was convinced that one could prove it 

abstractly in terms of the basic property of continuity. It ought to be possible to 

“discover its true origin in the elements of arithmetic and to obtain thereby a real 

definition of the essence of continuity.”3 The notion of continuity had a fundamen¬ 

tal role in analysis, as it had in Riemann’s work on manifolds (chap. II), but it was 

never defined, not even actually used for the proof of basic theorems [op.cit., 316], 

Dedekind’s search will be guided by the ideals of purity and autonomy for arithm¬ 

etic, and the methodological principles, that we have reviewed in §111.5. 

In fact, Dedekind was convinced that continuity was not a requirement of 

Euclidean geometry, that the need for a continuous domain of real numbers (or of 

1 Actually, on Nov. 24, 1858. The pedantic precision in Dedekind’s datings becomes less sur¬ 

prising when one knows that this meticulous man kept a journal in which he even noted down 

daily temperatures and correspondence received. 

2 The equivocal use of “magnitude” both for numbers and functions was also typical of the 

period; Dedekind followed this usage also in lectures. 

3 [Dedekind 1872, 316]: “Es kam nur noch daran, seinen eigentlichen Ursprung in den Ele- 

menten der Arithmetik zu entdecken, und hiermit zugleich eine wirkliche Definition von dem 

Wesen der Stetigkeit zu gewinnen.” 
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magnitudes) arises first in analysis. In his view, this explained why a theory of real 

numbers based on the Greek theory of ratios was insufficient and in lack of basic 

postulates - Euclid was not responsible, for he never aimed at that ad he did not 

need the axiom in question for his real purposes. The paragraph in which Dedekind 

communicates his opinion to Lipschitz, in 1876, is worthy of fu45 

11 quotation, for it brings the whole issue close to the modern axiomatic viewpoint:1 

Let us analyze all assumptions, both explicitly and tacitly made, on which the whole edifice 

of Euclidean geometry rests; let us grant the truth of all its theorems, the possibility of car¬ 

rying through all its constructions. (An infallible method for such analysis consists, in my 

opinion, in replacing all technical expressions by words that have just been invented (until 

then senseless); the building should not thereby collapse, if it is well constructed, and I assert 

that, e.g., my theory of the real numbers bears this test.) Never, so far as I have investigated, 

do we reach in that way the continuity of space as a condition that is indissolubly linked with 

Euclidean geometry. The whole system stands up even without continuity - a result that will 

certainly be astonishing to many, and which for that reason seemed to me well worthy of 

being mentioned.2 

The same idea comes up in the preface to [Dedekind 1888], where he affirms that 

even if we eliminate all spatial points that have a transcendent coordinate for a 

given coordinate system, leaving only those whose coordinates are algebraic num¬ 

bers, we still obtain a model where all Euclidean constructions can be carried out, 

and all Euclidean theorems preserve their validity [op.cit., 339-40], The correspon¬ 

dence gives evidence for the difficulties that the emergence of an axiomatic view¬ 

point had to face in this early period, for Lipschitz, a very apt mathematician, was 

unable to understand that axiomatic reading of the Elements. 

Dedekind’s article is carefully structured. §1 includes a brief analysis of the 

properties of (Q), in which the structure of field and the linear dense ordering are 

emphasized. In §2, the fact that points in a line satisfy the same order properties is 

employed as a justification for the correspondence between points and rational 

numbers. §3 includes a critique of the traditional definition of the reals, and attacks 

the key difficulty by giving a definition of continuity. In §4, an original proof for 

the existence of irrational numbers is given, and cuts on (Q) are employed in order to 

1 And prefigures a famous sentence of Hilbert, the one that talks about tables, chairs and mugs 
[Weyl 1944, 153], 

2 [Lipschitz 1986, 79; Dedekind 1930/32, vol. 3, 479]: “Man analysire alle Annahmen, 

sowohl die ausdriicklich als die stillschweigend gemachten, auf welchen das gesammte Gebaude 

der Geometrie Euklid’s beniht, man gebe die Wahrheit aller seiner Satze, die Ausfiihrbarkeit aller 

seiner Constructionen zu (eine untriigliche Methode einer solchen Analyse besteht fur mich 

darin, alle Kunstausdriicke durch beliebige neu erfundene (bisher sinnlose) Worte zu ersetzen, 

das Gebaude darf, wenn es richtig construirt ist, dadurch nicht einsturzen, und ich behaupte z.B., 

dass meine Theorie der reellen Zahlen diese Probe aushalt): niemals, so weit ich geforscht habe, 

gelangt man auf diese Weise zu der Stetigkeit des Raums als einer mit Euklid’s Geometrie un- 

trennbar verbundenen Bedingung; sein ganzes System bleibt bestehen auch ohne die Stetigkeit - 

ein Resultat, was gewiss fur Viele iiberraschend ist und rnir deshalb wohl erwahnenswerth 
schien.” 
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define the real numbers, and the natural order of IK. Then, §5 presents the order 

properties of IK.: a linear dense ordering that is also continuous; this last theorem is 

proved. Operations on the real numbers are defined in §6 in terms of cuts, and, 

finally, §7 includes proofs of the basic theorem on monotonically increasing se¬ 

quences, and of the Cauchy condition of convergence. 

The title and the whole exposition emphasize the fact that the definition of con¬ 

tinuity, and the proof of continuity of IK, constitute the core of the matter. This is a 

way of presenting the whole issue that differs from the expositions of Weierstrass, 

Heine and Cantor. Dedekind writes that only a precise definition of continuity will 

offer a sound foundation for “the investigation of all continuous domains.” This has 

to be read not only in the context of analysis, but also in that of Riemann’s work. 

Dedekind’s radically deductive methodology shows up in the remark that vague 

statements about “the uninterrupted connection between the least parts” would be 

useless, and that one needs a precise definition that may be actually used in real 

proofs.1 The basis for such a definition is found in the “phenomenon of the cut in its 

logical purity.”2 Already in (ED we find that any rational number q determines a 

partition of the set [System] into two disjoint classes A j, A2, such that all numbers 

in the first are less than any number in the second class; q itself can be ascribed to 

any class, at will (thus, we have two different but equivalent cases). 

In the case of a line, the reciprocal is also true, and here Dedekind sees the ker¬ 

nel of his theory: 

I find the essence of continuity in the inverse, therefore in the following principle: 

“If all points in the line are decomposed into two classes, such that each point in the first 

class is to the left of any point in the second class, then there exists one and only one point, 

which produces this division of all points in two classes, this cutting of the line in two 

parts.”3 

He takes this to be an axiom, an unprovable proposition (see below). Dedekind 

goes on to present a proof to the effect that, if D is a natural number but not a 

square, VD is not a rational number; this establishes the result that there are cuts on 

(D which are not produced by a rational number, and opens the way to the introduc¬ 

tion of new numbers: 

1 [Dedekind 1872, 322]: “nur durch [die Beantwortung dieser Frage] wird man eine wissen- 

schaftliche Grundlage fiir die Untersuchung aller stetigen Gebieten gewinnen. Mit vagen Reden 

iiber den ununterbrochenen Zusammenhang in den kleinsten Teilen ist naturlich nichts erreicht; 

es kommt darauf an, ein prazises Merkmal der Stetigkeit anzugeben, welches als Basis fiir wirk- 

liche Deduktionen gebraucht werden kann.” 

2 [Dedekind 1888, 341]: “die Erscheinung des Schnittes in ihrer logischen Reinheit.” 

3 [Dedekind 1872, 322]: “Ich finde nun das Wesen der Stetigkeit in der Umkehrung, also in 

dem folgenden Prinzip: ‘Zerfallen alle Punkte der Geraden in zwei Klassen von der Art, dass 

jeder Punkt der ersten Klasse links von jedem Punkte der zweiten Klasse licgt, so existiert ein 

und nur ein Punkt, welcher diese Einteilung aller Punkte in zwei Klassen, diese Zerschneidung 

der Geraden in zwei Stiicke hervorbringt.”’ 
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Whenever one finds a cut (A j,A2), which is not produced by any rational number, we create 

a new, irrational number a, which we regard as completely defined by this cut (Aj,A2); we 

shall say that the number a corresponds to this cut, or that it produces this cut.1 

Much has been said about the emphasis that Dedekind places on the “creation” 

of new numbers. It is essentially equivalent to Cantor’s introduction of the real 

numbers as “symbols” associated with the fundamental sequences, and, one should 

add, it is made rigorous by the requirement that the new numbers are to be regarded 

as “completely defined” by the cuts. Dedekind was always convinced that in 

mathematics we create notions and objects (see §111.1); this belonged in his basic 

convictions, his peculiar philosophy of mathematics.2 He thus takes a position that 

seems somewhat surprising from a 20th-century viewpoint: mathematical objects 

are human creations, but no constructivist limitations apply to that process; it may 

be called a non-constructivistic intellectualism. As late as 1911, he regarded the 

step from some elements to the corresponding set as the quintessence of our crea¬ 

tive mathematical powers [Dedekind 1888, 343], 

One further reason to introduce the irrationals as new objects was the goal of 

preserving the homogeneity of numbers: he attempted to preserve some of our 

intuitive ideas concerning numbers, and keep the notion of number free from for¬ 

eign traits (e.g., the fact that a cut contains infinitely many elements is completely 

foreign to our intuitive ideas regarding the reals; see the letter to Weber, [Dedekind 

1930/32, vol. 3, 488-90]). This explains why Dedekind behaves here in the oppo¬ 

site way as with ideals, in spite of his claim that his methodological principles are 

the same. Perhaps one might say that here we deal with elementary mathematics, 

while there we treat an advanced problem. At any rate, it was just a matter of pref¬ 
erence, as he wrote to Lipschitz in 1876: 

if one does not wish to introduce new numbers, I have nothing to object; the theorem which 

I have proved (§5, IV) says then: the system of all cuts in the domain of rational numbers - 

discontinuous in itself - constitutes a continuous manifold.3 

If we adopt this formulation, his treatment of the theory of cuts is essentially identi¬ 

cal with the theory of ideals. Incidentally, it is noteworthy that Dedekind employs 

here the Riemannian term ‘manifold,’ and not his ‘system,’ particularly in view of 

1 [Dedekind 1872, 325]: “Jedesmal nun, wenn ein Schnitt (A,, A2) vorliegt, welcher durch 

keine rationale Zahl hervorgebracht wird, so erschaffen wir eine neue, eine irrationale Zahl a, 

welche wir als durch diesen Schnitt {A/, A2) vollstandig definiert ansehen; wir werden sagen, 

dass die Zahl a diesem Schnitt entspricht, oder dass sie diesen Schnitt hervorbringt.” 

2 See, e.g., [Dedekind 1854] and, a third century later, the 1888 letter to Weber in [1930/32 
vol. 3,488-90], 

3 [Lipschitz 1986, 64-65; Dedekind 1930/32, vol. 3, 471]: “will man keine neue Zahlen ein- 

fiihren, so habe ich nichts dagegen; der von mir bewiesene Satz (§5, IV) lautet dann so: das 

System aller Schnitte in dem fiir sich unstetigen Gebiete der rationalen Zahlen bildet eine stetige 
Mannigfaltigkeit.” 
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the fact that Lipschitz had made important contributions to the theory of differential 

invariants, in connection with Riemann’s Habilitationsvortrag.1 

Once the irrationals have been “created,” Dedekind can proceed to define the 

order relations and arithmetical operations, exclusively on the basis of cuts [1872, 

326-27, 329-30], To give just an example, let us see how the sum of a and (3 is 

defined. We consider the corresponding cuts (A j, A2), (Bj, B2) and define a new cut 

(Cj, C2) as follows: any rational number c will belong to the class Cj if there are 

numbers a in A] and b in Bj such that a +b > c; the real number y that produces 
(C;, C2) is defined to be the sum a+ [3. 

The work culminates in the proof that IR is continuous, according to the defini¬ 

tion given above. This means that, given any cut on IR, there is one and only one 

number, rational or irrational, that produces it. The proof is extremely simple, for it 

suffices to consider the real number defined by the cut on © which is contained in 

the cut on IR [Dedekind 1872, 329], Finally, Dedekind goes on to prove the theo¬ 

rem on increasing bounded sequences that motivated the whole investigation, and 

also the validity of the Cauchy condition, proved directly on the basis of the conti¬ 

nuity of IR [op.cit., 332-33]. 

3. The Influence of Riemann: Continuity in Arithmetic and 
Geometry 

Dedekind employs the comparison between numbers and points in the line as an 

organizing thread for the presentation of his paper. This makes his exposition dif¬ 

ferent from those of Heine [1872] or Weierstrass, though notably not from that of 

Cantor. For Cantor, too, discusses the relation between his “numerical magnitudes” 

and the geometry of the straight line [Cantor 1872, 96-97]. More surprisingly, both 

mathematicians coincide in their break with the traditional conception of the matter. 

It had been customary to assume that the continuity of space or of the basic domain 

of magnitudes induces, through the definition of real numbers as ratios, the conti¬ 

nuity of the number system. But now we find two mathematicians who emphasize 

the point that it is possible to define abstractly a continuous number system, while 

geometrical space is not necessarily continuous. One needs an axiom, sometimes 

called the axiom of Cantor-Dedekind, to postulate that space is continuous. 

Both Cantor and Dedekind make it explicit that here we are talking about an 

axiom in the old sense of the expression - an unprovable proposition that is needed 

as a basis for the theory of space. They do not yet use the word “axiom” in the 

sense of modem axiomatics. Cantor puts the point more succinctly; one has to 

postulate that to each real number there is a corresponding point, and this is an 

axiom: 

1 After discussing the introduction of the real numbers, their correspondence goes on to deal 

with Riemannian topics [Lipschitz 1986, 82-85], 
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1 call this proposition an axiom, because not being generally provable belongs in its nature.1 * 

Dedekind and Cantor think that a discontinuous space is perfectly conceivable, and 

both of them returned to this issue later. Cantor comes back to it in a paper of 1882, 

where he states more explicitly the possibility of a discontinuous space, and uses 

his non-denumerability results for an interesting application: he elaborates on the 

possibility of a modified mechanics in which the underlying space would be dis¬ 

continuous, but continuous motion would be possible [Cantor 1879/84, 156-57] 

(see §VI.4.3). Dedekind discussed it again in his correspondence with Lipschitz 

(§1.3) and explains the matter in more detail in the preface to [Dedekind 1888], He 

asserts that the set of all points in US3 which have only algebraic numbers as coor¬ 

dinates is a model of Euclidean geometry; the discontinuity of this space would not 

be noticed or experienced by a Euclidean geometer [op.cit., 339-40; also Dedekind 

1930/32, vol. 3,478], 

In order to explain this surprising coincidence, 1 believe we must take into ac¬ 

count Riemann’s lecture on the hypotheses of geometry. This helps round the pic¬ 

ture that we started to draw in chapter II, for, if I am right, we find confirmation 

that [Riemann 1854] was not simply a pioneering contribution, but a really acting 

factor in the early development of set theory. In his lecture, Riemann regarded the 

properties of space as consequences of some hypotheses which are to be experi¬ 

mentally tested; they can be very probable, but never absolutely certain. The conti¬ 

nuity of physical space is taken as the first such hypothesis, so that the possibility 

that real space may be discontinuous, i.e., may be a discrete manifold, is never 

discarded. For instance, in the last section Riemann discusses the “internal cause” 

[innerer Grund] for the actual metrics of space. He remarks that the issue looks 

quite different if space is a discrete manifold, for then the principle of the metrics 

would be contained in the very notion of that manifold; while, if space is continu¬ 

ous, the cause of the metrics must be found somewhere else, in the linking forces 
that act on the manifold [Riemann 1854, 286]. 

Therefore, one should expect that a mathematician deeply influenced by Rie¬ 

mann would assume the hypothetical character of spatial continuity, and this is 

what happens with Cantor and Dedekind. As we have remarked time and again, 

Riemann’s influence on Dedekind is beyond question, both because of their inti¬ 

mate friendship and because of Dedekind’s involvement in the publication and 

further development of [Riemann 1854], The coincidence and the explanation I 

have just presented is more interesting in case it is accepted as evidence that Cantor 

too was under the influence of Riemann’s ideas. As regards this, one must take into 

account that Riemann’s lecture was published together with his Habilitation thesis 

on trigonometric series, and that this last work was crucial for Cantor’s work in the 

period 1870-72, which culminated in the paper that we have discussed. Since the 

1 [Cantor 1872, 97]: “Ich nenne diesen Satz ein Axiom, weil es in seiner Natur liegt, nicht all- 

gemein beweisbar zu sein.” Compare [Dedekind 1872, 322-23]: “Die Annahme dieser Eigen- 

schaft der Linie ist nichts als ein Axiom ... Hat iiberhaupt der Raum eine reale Existenz, so 
braucht er doch nicht nothwendig stetig zu sein.” 
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details will be discussed in chapter V, it is enough here to know that the techniques 

applied by Cantor in his work on trigonometric series were based on Riemann’s 

work on the same topic. Thus, Cantor was very familiar with at least one of the two 

papers; most likely, he was very familiar with both, since in 1877 he acknowledged 

that, for some years, he had been following the discussion on the foundations of 

geometry motivated by the work of Gauss, Riemann, Helmholtz and others [Cantor 

& Dedekind 1937, 33], In the next chapters we shall go on presenting further data 

that seem to justify my emphasis on the important role played by Riemann in the 

evolution of Cantor’s thought. 

One last comment regarding the axiom of continuity. As Dedekind and Cantor 

saw it, geometry depends upon an axiom that can be avoided in arithmetic, for an 

abstract definition of a continuous number domain is possible. In a way, this can be 

interpreted as proof that arithmetic is ‘superior’ to geometry, since it is a ‘purer’ 

discipline (reliance on axioms, in the old meaning of the word, means reliance on 

intuition or experience). Above all, the definition of the real numbers, coupled with 

the traditional conception of logic (§11.4), could lead rather directly to a logicist 

viewpoint. If number is purely a product of our minds, as Gauss thought (§1.2.2), 

one may easily conclude that arithmetic is a priori and a good candidate to being 

purely logical,1 especially in case one has a sufficiently wide conception of logic - 

for, then, all that arithmetic requires is the natural numbers plus logical conceptual 

means. Everything points to the interesting speculation that the abstract definition 

of the real numbers was the crucial novelty that triggered the emergence of logi- 

cism, not only in the case of Dedekind, but also of Frege. Of course, it remained to 

explain the natural numbers as purely logical, and this is what both authors at¬ 

tempted; both started to carry out this program in the 1870s, which is in good 

agreement with that hypothesis. 

4. Elements of the Topology of DS. 

Detailed study of the real numbers was accompanied by research on the topology of 

the real line and spaces. As we shall see in the next chapter, the theory of integra¬ 

tion and of trigonometric series showed the need for such research, and led Cantor 

to the notion of derived set. But his teacher Weierstrass had already prepared the 

stage with investigations that he presented in his lectures on function theory; the 

theory of point-sets emerged from the work of both mathematicians. Dedekind, too, 

did some basic research on topology in connection with the work of Dirichlet and 

Riemann, but he never came to publish, so that his work never had an effect on 

other mathematicians. Since the work of Weierstrass and Cantor connects directly 

with the next chapter, we shall begin commenting on that unpublished work. 

1 Schroder wrote that Weierstrass, Cantor and Dedekind had established the purely analytical 

character of the truths of arithmetic, and therefore Kant’s famous question: how are synthetic a 

priori judgements possible?, simply lacked an object [Schroder 1890/95, vol. 1,441]. 
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4.1. Dedekind and topology. In order to complement our discussion of Dede¬ 

kind’s conceptions as of 1872, it is interesting to consider a manuscript that was 

first published by Emmy Noether in the collected works of 1930/32. The manu¬ 

script bears the title ‘Allgemeine Satze iiber Raume’ [General theorems on spaces] 

and stems from the 1860s (my dating). 

In the 1860s, Dedekind was intensely engaged in the publication of the works of 

Dirichlet and Riemann. After the first edition of Dirichlet’s Vorlesungen iiber 

Zahlentheorie in 1863, he prepared for publication his lecture on forces that are 

inversely proportional to the square root of the distance [Dedekind 1930/32, vol. 3, 

393], where Dirichlet made important contributions to potential theory. Dirichlet 

employed here what Riemann would call the “Dirichlet principle.” Already in Got¬ 

tingen, Dedekind had noticed that there were “difficulties” in Dirichlet’s proof of 

the principle, and “occasionally” he discussed them with Dirichlet and Riemann.1 

While preparing the lecture for publication, Dedekind tried to find a satisfactory 

foundation for the principle, and actually he thought he was in a position to prove it 

[Dugac 1976, 177-78], The problem is to establish the existence of a minimal con¬ 

tinuous function on a given domain and under given boundary conditions; in order 

to prove it, Dedekind needed some basic notions on continuous domains, or, what 

comes to the same, he had to develop some elements of the topological theory of 

manifolds.2 

After 1866 Dedekind was absorbed by his work on Riemann’s Nachlass, and 

then, in 1869, he resumed work on ideal theory on the occasion of the second edi¬ 

tion of Dirichlet’s Zahlentheorie. He then abandoned the project of publishing 

Dirichlet’s lectures on potential theory, and thus it is clear that his manuscript was 

written some time between 1863 and 1869. This is further confirmed by a letter to 

Cantor of January 1879, that Noether quotes in full in her editorial comment 

[Dedekind 1930/32, vol. 2, 355; Cantor & Dedekind 1937, 47-48], Dedekind 

speaks about the need for precise definitions, independent of geometrical intuition, 

of the names or technical expressions of the theory of manifolds, and says that 

many years ago, while 1 still intended to publish Dirichlet’s lecture on potential, and to give 

a more rigorous foundation for the so-called Dirichlet principle, 1 occupied myself very 

much with such questions. I have some such definitions which, it seems to me, offer a very 

good foundation; but later I left the whole issue lie, and at present I could only offer some¬ 

thing incomplete, because 1 was extremely busy with the reworking of Dirichlet’s Zahlen¬ 

theorie.3 

1 See the letter to Heine, probably not sent, in [Dugac 1976, 177-78]. Most likely, and taking 

into account one of Heine’s publications, the letter was written before 1871, see [op.cit., 107], 

2 See [Sinaceur 1990, 239], where he remarks on the connection between the manuscript un¬ 

der discussion and his work on Riemann spaces (“ideal geometry”). 

3 [Cantor & Dedekind 1937, 47-48]: “Ich wiirde mir ein solches Urteil nicht erlauben, wenn 

ich nicht vor vielen Jahren, als ich noch die Dirichletsche Potentialvorlesung herausgeben und 

dabei das sogenannte Dirichletsche Prinzip strenger begriinden wollte, mich schon recht viel mit 

solchen Fragen beschaftigt hatte. Ich habe einige solche Defmitionen, die mir eine recht gute 

Grundlage zu geben scheinen; aber ich habe spater die ganze Sache liegen lassen, und konnte fur 
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Dedekind works within the context of metric spaces, without mentioning it 

explicitly, and presents the notions of open set, interior, exterior and boundary, 

together with elementary theorems. Once more, Dedekind’s technical term for sets 

is ‘System;’ the word ‘Korper,’ which from the second edition of the Zahlentheorie 

he employed exclusively for number fields, denotes open sets here:* 1 2 

A system of points p, p' ... forms a body [Korper], if for every point p one can determine a 

length 8 such that all points, whose distance from p is less than 5, also belong to the system 

P. The points p, p'... lie inside P? 

Next, Dedekind proves that the set of all points whose distance from a given point p 

is less than a given length 6 form an open set, which is called a “sphere” [Kugel]. 

Dedekind goes on to define that p “lies outside” [liegt ausserhalb] of the body 

(open set) P if there is a sphere with center p such that all of its points are not inside 

P; and he proves that if there is one point outside of the open set P, there are infi¬ 

nitely many such points and they form a ‘Korper.’ If P is an open set and n a point 

which does not lie inside, nor outside of P, one says that it is a “limit point” 

[Grenzpunkt] of P; the set [System] of all limit points of an open set P is called the 

“boundary” [Begrenzung] of P. The last theorem says that the boundary of an open 

set is not an open set [Dedekind 1930/32, vol. 2, 353-55], 

One may safely say that, had Dedekind published these ideas, together with his 

work on the Dirichlet principle, around 1870, the history of the theory of point-sets 

and of function theory would have been somewhat different. As always, his pres¬ 

entation is concise, clear, systematic and strictly deductive. Interestingly, Cantor, 

whose work inaugurated the study of the topology of point-sets, never fomrulated 

the notion of an open set - although he presented that of a closed set in 1884 [Can¬ 

tor 1879/84, 226], Dedekind’s approach would be rediscovered by Peano, who 

presented it in his Applicazioni geometriche del calcolo infinitesimale of 1887, and 

taken up by Jordan in his influential Cours d’analyse of 1893/96 (see [Hawkins 

1970, 86-90]). But the most important point, here, is that Dedekind applied the set- 

theoretical approach and terminology not only in his work on the number system, 

on algebra and on algebraic number theory, but also in the realms of topology, 

analysis, and Riemannian geometry. 

4.2. The principle of Bolzano-Weierstrass. In his already mentioned, biannual 

course on the theory of analytic functions, Weierstrass presented basic notions of 

the topology of US. and D&n. This was done after his careful discussion of the number 

den Augenblick nur Unvollstandiges geben, da ich durch die Umarbeitung der Dirichletschen 

Zahlentheorie ganz in Anspruch genommen bin.” 

1 This is further, internal evidence for my dating. 

2 [Dedekind 1930/32, vol. 2, 353]: “Ein System von Punkten p. p' ... bildet einen Korper, 

wenn fur jeden Punkt p desselben sich eine Lange 5 von der Beschaffenheit angeben lasst, dass 

alle Punkte, deren Abstand von p kleiner als 5 ist, ebenfalls dem System P angehoren. Die Punkte 

p, p'... liegen innerhalb P.” 
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system, and before the notion of analytic function was introduced. As prerequisites, 

Weierstrass showed that a bounded set of real numbers has greatest lower and least 

upper bounds, and proved a number of theorems by means of variations of the well- 

known method of bisection that Bolzano had employed in 1817 [Ullrich 1989, 153, 

156]. The theorems in question are: the Bolzano-Weierstrass theorem, the interme¬ 

diate value theorem (mentioned above), and the theorem that a continuous function, 

that is bounded inside a closed interval, reaches its maximum and minimum. We 

shall discuss the basic notions related with the Bolzano-Weierstrass theorem. 

I have mentioned that it is quite unclear whether Weierstrass’s approach can be 

characterized as set-theoretical. The Bolzano-Weierstrass theorem is presently 

formulated as the theorem that an infinite, bounded set of real numbers has a limit 

point. But even in 1874, when he knew of Cantor’s early work, Weierstrass formu¬ 
lated it as follows: 

Suppose that, within the domain of a real magnitude x, one has defined in a certain way 

another magnitude x', but in such a way that it can take infinitely many values, all of which 

fall within two definite limits; then, one can prove that within the domain of x there is at 

least one place a, such that in any arbitrarily small neighborhood of a there are infinitely 

many values of x'.1 

Certainly, Weierstrass employs the word “domain” [Gebiet], which denotes the set 

of possible values of x; he has the real line in mind, for immediately below he 

makes clear that x can take as values all real numbers from -oo to +oo. Later on, he 

even speaks of ^-dimensional manifolds [“eine nfache Mannigfaltigkeit”], meaning 

^-tuples of real numbers, that is, the ‘domain’ IRn (Hettner redaction, [Weierstrass 

unp., 313]).2 In a characteristic way, Weierstrass only uses those words for embed¬ 

ding spaces, but when it comes to arbitrary point sets, he prefers the old terminol¬ 

ogy of variable magnitudes, and so he seems to refrain from adopting a set- 

theoretical viewpoint. It is worth noting that the variable magnitudes have to be 

“defined in a certain way” - we must have a defining property in order to be able to 
talk about a variable magnitude, a function. 

The notion of neighborhood [Umgebung] is used in the modem sense, and, 

according to Dugac [1973, 120], it appears already in the lectures of 1861. On the 

other hand, the notion of limit point is clearly implicit in the formulation of the 

1 Hettner redaction, [Weierstrass unp., p. 305] (I thank Gregory H. Moore for making a copy 
available to me): “Es sei im Gebiet einer reellen Grosse x eine andere Grosse x' auf bestimmte 
Weise definiert, jedoch so, dass sie unendlich viele Werte annehmen kann, die samtlich zwischen 
zwei bestimmten Grenzen liegen, dann kann bewiesen werden, dass im Gebiete von x mindestens 
ein Stelle a gibt, die so beschaffen ist, dass in jeder noch so kleinen Umgebung von ihr es unend¬ 
lich viele Werte von x' giebt.” 

- According to Gregory Moore, who is studying the origins of Weierstrass’s notion of limit 
point, the Berlin mathematician seems to have started using the words ‘Gebiet’ and ‘Mannig- 
faltigkeif after 1868, which makes it likely that he was influenced by the publication of TRie- 
mann 1854], 
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theorem, but Weierstrass - in contrast with Cantor - does not seem to have intro¬ 

duced special terminology for it. This may be related to his methodological prefer¬ 

ences: instead of talking about limits points in an abstract way, Weierstrass prefers 

to explain carefully how the point a can be explicitly given by means of an arith¬ 

metical expression.1 Due to his extremely careful and explicitly arithmetical way of 

proceeding, the proof of the Bolzano-Weierstrass theorem for US. occupies slightly 

more than 5 pages in Hettner’s redaction, with 5 more pages devoted to the case of 
nsn. 

The proof method is that of bisecting intervals, or, better, /r-secting an interval. 

Given that the magnitude x' takes infinitely many values in an interval, if we divide 

it into n subintervals (of equal length), at least one of them must present infinitely 

many values ofx', etc. (Hettner redaction, [Weierstrass unp., 305-10]). The method 

rests on the principle that, given a sequence of closed intervals, embedded on each 

other, there must be at least one point that belongs to every interval. This can be 

taken to be a continuity or completeness principle; given its importance for Weier- 

strass’s students, and in particular for Cantor, we shall give it a name: the ‘Bol¬ 

zano-Weierstrass principle.’ (As we have already said, it seems that Weierstrass 

himself referred to Bolzano is his lectures.) However, Weierstrass did not formulate 

it as a particular principle: he just showed how to construct an expression for the 

point a from a given partition of the real line into intervals of equal length, so that a 

is characterized by means of a series [ibid.]. This, of course, agrees perfectly well 

with his definition of the real numbers. 

Already in 1870 Kronecker objected to that proof method, calling the proofs 

based on it “obvious sophisms” [offenbare Trugschliisse], and saying that Kummer, 

Borchardt and Heine agreed with him.2 Schwarz and Cantor believed that the Bol¬ 

zano-Weierstrass principle was unobjectionable, and admitted that they used it time 

and again. In work of 1884, Cantor comes back to this matter and points out - 

without mentioning his name - that the criticisms of Kronecker are purely skeptical 

arguments, comparable with the “paralogisms” of Zeno of Elea [Cantor 1879/84, 

212].3 Cantor also suggests that the “essence” of the principle can be traced back to 

work in number theory by Lagrange, Legendre and Dirichlet, and that it can also be 

found in Cauchy, so that there is no reason to link it exclusively to Bolzano and 

Weierstrass. 

4.3. Cantor’s derived sets. The notion of limit point and the Bolzano-Weier¬ 

strass principle became two basic pillars for Cantor’s work on point-sets. Most 

likely he took both from Weierstrass’s lectures; he attended the lecture on analytic 

functions in the winter of 1863-64. Cantor used those tools in connection with 

1 Hettner redaction, [Weierstrass unp., 308, 317]. 

2 See the letter from Schwarz to Cantor in [Meschkowski 1967, 68; also 239], It is difficult to 
believe that Heine agreed, in the light of his [1872], 

3 Compare a letter to Mittag-Leffler, written in that same year, where he compares Kro- 
necker’s arguments with those ofthe skeptics [Schoenflies 1927, 12-13], 
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radically new problems: his 1874 proof that the continuum is uncountable rests on 

the above mentioned principle (see §VI.2). But, interestingly enough, he gave the 

ideas of Weierstrass a characteristically abstract turn, and there are reasons to think 

that the influence of Riemann was here in action. 

[Cantor 1872] deals with a generalization of a theorem on trigonometric series, 

in fact the theorem that the function represented by a trigonometric series is unique. 

As we have said, the basic techniques employed come from Riemann [1854a], 

Heine and Cantor had seen the way of generalizing that theorem to the case where 

there are finitely many exceptional points, at which the trigonometric series is not 

convergent or does not coincide with the represented function. But it was Cantor’s 

merit to have noticed that the result admitted of a further generalization to some 

infinite sets of exceptional points. The notion of derived set was introduced in order 

to characterize in a precise way these infinite point-sets. 

To begin with, Cantor introduces some convenient terminology. When there are 

finitely or infinitely many ‘Zahlengrossen’ (resp., points), he will speak, “for brev¬ 

ity’s sake,” of a “set of values” [Wertmenge] (resp., a “set ofpoints” [Punktmenge]) 

[Cantor 1872, 97]. Curiously, the terminology employed here is different from that 

used in the introduction of the real numbers, where he speaks of the “domain” B 

[op.cit., 94-95], in accordance with Weierstrass’s terminology. It seems reasonable 

to conclude that Cantor still lacked an overall set-theoretical viewpoint; this would 

be the reason why he distinguished the case of the embedding space HR, called a 

‘Gebiet,’ from that of the point-sets within it, called ‘Mengen.’ Nevertheless, it is 

clear that Cantor was quite close to such a set-theoretical viewpoint. Disregarding 

Dedekind, no other German mathematician employed more consciously and ex¬ 

plicitly the notion of set as of 1872. The reader should recall, from the Introduction, 

that the word ‘Menge’ had initially a rough meaning: to speak of a ‘Punktmenge’ 

would sound like speaking of a mass of points. Perhaps for this reason, later on 

Cantor preferred to speak of ‘manifolds’ and ‘theory of manifolds,’ although he 

kept employing the terminology of 1872 (probably for brevity’s sake). It was from 

1895 that he finally decided to refer to set theory as ‘Mengenlehre’ throughout. 

In order to prepare the reader for the notion of derived set, Cantor next presents 

the idea of limit point and mentions in passing the Bolzano-Weierstrass theorem. 

His presentation of these basic notions differs from that of his teacher, who did not 

introduce a particular name for limit points, nor define them in abstracto (at least 

not in the 1874 lectures). Immediately thereafter, Cantor goes on to introduce the 

notion of derived set, which widens the gap that separates him from Weierstrass. In 

my opinion, the divergence is aptly described as the difference between the formal 

conceptual approach pursued at Berlin, and another viewpoint that is quite close to 

the abstract conceptual one promoted by Riemann. This is the relevant text: 

By a limit point of a point-set P I understand a point in the line whose position is such that in 
every one of its neighborhoods there are infinitely many points of P, where it may also 
happen that that same point belongs to the set too. By a neighborhood of a point one should 
understand here any interval which has the point in its interior. According to that, it is easy 
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to prove that a [“bounded,” Zermelo] point-set formed by an infinite number of points al¬ 
ways has at least one limit point. 

It is a well determined relation between any point in the line and a given set P, to be either a 

limit point of it or no such point, and therefore with the point-set P the set of its limit points 

is conceptually co-determined; this I will denote P' and call the first derived point-set of P. 

If the point-set P' does not consist of only a finite number of points, it also has a derived 

point-set P'\ which I call the second derived [set] ofP. Through v such transitions one finds 

the concept of the vth derived point-set pG) of P} 

Cantor’s mastery of set-theoretical language is evident in this passage, which 

clearly marks the difference in approach with Weierstrass. What is really original in 

this contribution is that Cantor does not consider limit points in isolation, so to say, 

as Weierstrass had done, but makes the step toward a set-theoretical perspective. As 

a result, ‘set derivation’ is conceived as an operation on sets. This, more than his 

theory of the real numbers, is what makes the Cantor of 1872 a mathematician that 

is clearly placed on the road to set theory. On the other hand, the reader should 

notice that Cantor motivates his introduction of the derived set P' by observing that 

the relation ‘being a limit point of P' is well determined, and so the set P' is con¬ 

ceptually determined, once P has been given. This confirms that his standpoint is 

analogous to that of Riemann in his [1854]: a set is understood as the extension of a 

concept.1 2 Cantor adds, of a ‘well defined’ concept, and perhaps this emphasis re¬ 

veals the influence of Weierstrass. 

For his theorem on trigonometric series, Cantor considered those point-sets 

whose nth derived set, for a natural number n, consists of finitely many points 

[Cantor 1872, 99]. Seven years later, in order to express that condition more con¬ 

veniently, he introduced the following terminology: if Pn = 0 for some n e RJ, P is 

a point-set “of the first species and of the nth type” [von der ersten Gattung und 

von der /?ten Art]; if the derivation process goes on for all finite n, P is a point-set 

“of the second species” [von der zweiten Gattung; Cantor 1879/84, 140], An obvi¬ 

ous example of a set of the second species is any dense set, for instance the set of 

1 [Cantor 1872, 98]: “Um diese abgeleiteten Punktmengen zu definiren, haben wir den Begriff 
Grenzpunkt einer Punktmenge vorauszuschicken. / Unter einem Grenzpunkt einer Puntmenge P 

verstehe ich einen Punkt der Geraden von solcher Lage, dass in jeder Umgebung desselben 
unendlich viele Punkte aus P sich befinden, wobei es vorkommen kann, dass er ausserdem selbst 
zu der Menge gehort. Unter Umgebung eines Punktes sei aber hier ein jedes Intervall verstanden, 
welches den Punkt in seinem Innern hat. Darnach ist es leicht zu beweisen, dass eine aus einer 
unendlichen Anzahl von Punkten bestehende [“beschrankte”] Punktmenge stets zum Wenigsten 
einen Grenzpunkt hat. / Es ist nun ein bestimmtes Verhalten eines jeden Punktes der Geraden zu 
einer gegebenen Menge P, entweder ein Grenzpunkt derselben oder kein solcher zu sein, und es 
ist daher mit der Puktmenge P die Menge ihrer Grenzpunkte begrifflich mit gegeben, welche ich 
mit P' bezeichnen und die erste abgeleitete Punktmenge von P nennen will. / Besteht die 
Punktmenge P' nicht aus einer bios endlichen Anzahl von Punkten, so hat sie gleichfalls eine 
abgeleitete Punktmenge P", ich nenne sie die zweite abgeleitete von P. Man findet durch v sol¬ 
cher Uebergange den Begriff der vten abgeleiteten Punktmenge P(v> von P.” 

2 Recall that, in defining the real numbers, Cantor says that the fundamental sequence is 

“given by a law” [op.cit., 92], 
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rationals in the interval (0,1), whose first derived set is all of [0,1]; here we have 

derived sets P", P"', which are all equal to each other. It was by considering 

this and more interesting examples of point-sets of the second species, that Cantor 

was led to the idea of employing “symbols of infinity” in order to determine the 

“type” of such sets (in the above sense). These symbols of infinity, which were 

introduced in print in 1880, are the forerunners of the transfinite numbers (see chap. 

VIII). 

Cantor’s derived sets, building upon ideas developed by Weierstrass in the 

context of the Bolzano-Weierstrass theorem, constituted a decisive step toward the 

theory of point-sets, which will be the topic of the next chapter. The arithmetizing 

approach incorporated in the definitions of the real numbers, that came to public 

knowledge in 1872, became the basis for a rigorous study of the topology of IK.. For 

some decades, the context of real functions and integration theory would give im¬ 

pulse to this new line of developments, which in the long run contributed essen¬ 

tially td the emergence of topology as a core, autonomous branch of 20th-century 

mathematics.1 We thus turn to real functions, integration, and point-sets. 

1 A development that seems to have been foreseen, however vaguely, by Riemann (§11.5). 
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For the stimulus to pursue these studies I am indebted essentially to the 

writings of Riemann, in particular his brilliant work on trigonometric se¬ 

ries, after the publication of which one needs no apology for devoting 

oneself to these questions, which, as this author remarks in agreement 

with Dirichlet, ‘stand in the most intimate connection with the principles 

of the infinitesimal calculus and may contribute to bring them to greater 
clarity and precision.’1 

In the 1870s the theory of functions of a real variable consolidated into an autono¬ 

mous branch of mathematics. Its initial development was intimately related to the 

theory of trigonometric series, a subject in which Dirichlet’s work was a milestone. 

Point-set theory was initially developed as a tool for the study of trigonometric 

series and real functions. Early steps in this direction were taken by Dirichlet, Lip- 

schitz and Hankel, but Cantor’s work on derived sets was considerably more so¬ 

phisticated than the previous rather rough ideas regarding possibilities for point-sets 

(i.e., subsets of D8). 

A key factor in the emergence of real variable theory was the publication of 

papers that acquainted the public with the ideas of Riemann and Weierstrass. The 

publication in 1868 of Riemann’s Habilitationsschrift, ‘On the Representability of a 

Function by a Trigonometric Series’ [Riemann 1854a], had an immediate impact, 

as can be seen from the quotation above. It seemed to most mathematicians that 

Riemann had found the most general conception of the integral, and his work im¬ 

mediately stimulated deeper research on real functions.2 Immediately afterwards, 

authors such as Heine, Schwarz, Cantor and du Bois-Reymond revealed several 

aspects of Weierstrass’s work on the foundations of analysis - e.g., the notion of 

uniform convergence and some examples of continuous nondifferentiable func¬ 

tions. 

1 [Hankel 1870, 70]: “Ich verdanke die Anregung zu diesen Studien wesentlich Riemann’s 
Schriften, in’s Besondere seiner glanzenden Arbeit iiber die trigonometrischen Reihen, nach 
deren Erscheinen es keiner Entschuldigung mehr bedarf, sich mit diesen Fragen zu beschaftigen, 
welche, wie ihr Verfasser in Uebereinstimmung mit Dirichlet bemerkt, ‘mit den Principien der 
Infmitesimalrechnung in der engsten Verbindung stehen und dazu dienen konnen, diese zu 
grosserer Klarheit und Bestimmtheit zu bringen.’” The quote, not completely literal, comes from 
[Riemann 1854a, 238]; compare [Dirichlet 1829, 169]. 

2 One of the very few critics of the Riemann integral would be Weierstrass in the 1880s, see 
[Dugac 1973, 141]. 
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Figure 5. Georg Cantor (1845-1918) around 1870. 

These ideas were made known outside of Germany too, thanks to Darboux in 
France, or Dini and Pincherle in Italy.1 

Initially, these authors seem to have worked under the assumption that the to¬ 

pology of point-sets would be sufficient for the theory of real functions. As time 

went by, however, it became clear that integration theory required its own peculiar 

notions, a realization reached around 1880 by du Bois-Reymond and Hamack. 

Then, in 1884, Stolz and Cantor presented the notion of ‘content’ (Cantor’s termi¬ 

nology, referring to outer content), which served as an immediate antecedent of the 

Jordan content and measure theory.2 Thus, in the 1880s a differentiation between 

1 Ulisse Dini published the first advanced textbook on the topic, Fondamenti per la teorica 

delle funzioni di variabili reali [1878], The work includes a modem definition of the real num¬ 
bers, following Dedekind, a detailed discussion of Cantor’s derived sets, and original contribu¬ 
tions to the theory of derivation. 

2 Still, there was a long intellectual journey before a satisfactory notion of measure was 
reached that would make it possible to supersede the Riemann integral. On this topic, see [Haw¬ 
kins 1970] and his brief summary [1980], 
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the topology of point-sets and notions of measure theory began to be made. Here, 

however, we study the common origins of both theories, for in this case the history 

of sets is again the history of a series of distinctions that were introduced only 

gradually. Besides, even after 1900 point-set topology and measure theory were 

regarded as integral parts of general set theory (see §IX.6). 

The history of real functions and point-sets has been studied by numerous 

authors; it has been the most exploited lode in the history of set theory. Relevant 

works range from those of Schoenflies [1900] and Jourdain [1906], to the recent 

paper [Cooke 1993], The monographs of Hawkins [1970] and Dauben [1979] have 

been an invaluable guide in covering this ground, particularly the more detailed 

account of Hawkins. Taking into account the availability of these works, I have 

striven for conciseness in my discussion of these issues. 

1. Dirichlet and Riemann: Transformations in the Theory of Real 
Functions 

Starting with Fourier’s Theorie analytique de la chaleur [1822], trigonometric 

series became the most general mathematical tool for the representation of real 

functions.1 This is one of the most famous cases of an influence of physical prob¬ 

lems (e.g., the diffusion of heat in solids) on the history of mathematical ideas. 

Fourier convinced himself that all functions that one might find in connection with 

physical problems could be represented by a series of the form 

oo 

f(x) = ciq + (ar cosrx + br sin rx), x e [—re, tc] 

r=1 

where the coefficients ai and bi were obtained by integration off(x), f(x) -cos rx and 

f(x) ■ sin rx within the interval of representation. Fourier was able to give plausible 

arguments to justify his viewpoint, but his work lacked a purely mathematical foun¬ 

dation. In the age of Cauchy, it could only be a matter of time before other authors 

tackled this problem. 

1.1. Arbitrary functions and the convergence problem. Throughout its early 

history, the study of trigonometric functions was linked with the very question: 

what is a function?2 In the 18th-century, d’Alembert suggested that a curve can 

only be called a function of a variable when it is governed by a single analytical 

expression throughout. Euler replied that one should accept more general functions, 

so-called ‘discontinuous’ functions, which may be represented by different laws in 

1 As is well known, Fourier series have an extremely interesting prehistory in connection with 
the 18th-century problem of the vibrating string, see the above-mentioned books by Hawkins and 
Dauben, [Grattan-Guinness 1980], [Bottazzini 1986], and even [Riemann 1854a], 

2 See the already mentioned works, especially [Hawkins 1970] and [Bottazzini 1986], and 
also [Youschkevitch 1976] and [Dugac 1981a]. 
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different intervals or even drawn freely by the hand. ‘Continuous’ meant that a 

function obeyed a single analytical law, but everything points to the conclusion that 

both Euler and his interlocutors presupposed continuity, in the sense of Cauchy, for 

all of the functions they had in mind. The real issue was, then, whether one should 

admit arbitrary (continuous) functions. Fourier, with his more sophisticated series 

in hand, was unequivocally for arbitrary functions, i.e., for admitting the idea that a 

function is any correspondence by which ordinates are assigned to abscissas; there 

was no need to assume that the correspondence ought to follow a common law 

[Fourier 1822, 430]. But he, again, seems to have assumed that one is talking about 

functions that are, in general, continuous in the modem sense [Flawkins 1970, 6]. 

Dirichlet too was radically in favor of the conception of functions as arbitrary 

laws; this is clear in the very title of his papers. As he wrote in the second, 

it is not at all necessary thaty depend on x throughout the interval according to the same law, 

one does not even need to think of a dependence that can be expressed by mathematical 

operations. ... This definition does not prescribe for the different parts of the curve any 

common law; it can be thought of as composed of the most different parts or totally without 

a law. ... Insofar as a function has only been determined in one part of the interval, the man¬ 

ner in which it is continued in the rest of the interval is left completely arbitrary.1 

It must be noted that, here, Dirichlet is defining the notion of a continuous function, 

and it has been discussed whether he ever seriously entertained the concept of a 

completely arbitrary function. One may safely assume that he did not see the need 

to develop a research program on discontinuous functions; this step would only be 

done after the publication of Riemann’s work (§ 1.2). 

The real issue in the case of Dirichlet is the unequivocal promotion of a purely 

conceptual approach to the notion of function. In the light of the above text, and 

using the terminology of chapter I, we might even say that he promoted an ‘abstract 

conceptual’ approach, in diametric opposition to the formal standpoint that was 

common at his time. This is clearly important in the context of our story, for it 

seems, in retrospect at least, that such an approach could only be adequately under¬ 

stood under a set-theoretical perspective: a function is any (arbitrary) one-one cor¬ 

respondence between the numbers of a domain and the numbers of a codomain.2 

But one has to acknowledge that Dirichlet never expressed himself in this way, nor 

did he make the slightest step, in print at least, in the direction of introducing the 

language of sets. The question whether he may have come closer to the set- 

1 [Dirichlet 1837, 135-136]: “Es ist dabei gar nicht noting, dassy in diesem ganzen Intervalle 
nach demselben Gesetze von x abhangig sei, ja man braucht nicht einmal an eine durch mathe- 
matische Operational ausdruckbare Abhangigkeit zu denken. ... Diese Definition schreibt den 
einzelnen Theilen der Curve gar kein gemeinsames Gesetz vor; man kann sich dieselbe aus den 
verschiedenartigsten Theilen zusammengesetzt oder ganz gesetzlos gezeichnet denken. ... So 
lange man iiber eine Function nur fur einen Theil des Intervalls bestimmt hat, bleibt die Art ihrer 
Fortsetzung fur das tibrige Intervall ganz der Willkiir iiberlassen.” 

2 This formulation, couched in slightly different language, was given for the first time by 
Dedekind [1888]; see §§111.6 and VII.2. 
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theoretical conception of mathematics and thereby influenced Riemann and Dede¬ 

kind through personal discussions, must be left unsettled. At any rate, it is clear that 

his mathematical style and methodology helped prepare the way for the new con¬ 
ception. 

Dirichlet’s proposal was not readily accepted by mathematicians who tended to 

prefer a formal approach. Weierstrass criticized his notion of function for being too 

general, so that it did not allow any conclusions to be drawn concerning the prop¬ 

erties of functions (see [Dugac 1973, 70-71]). His purpose was to determine a 

sufficiently wide class of functions that are analytically representable [op.cit., 70- 

71, 77]. Hermann Hankel, who attended both Riemann’s courses at Gottingen and 

Weierstrass’s at Berlin, echoed this criticism in a paper of 1870, when he said that 

Dirichlefs definition of function was “purely nominal” and insufficient for the 

needs of analysis, since his functions failed to possess “general properties.”1 Still, 

he began with Dirichlefs definition, and then went on to define continuous func¬ 

tions and investigate possibilities of analytical representation. This way of pro¬ 

ceeding is also found, in a more sophisticated way, in du Bois-Reymond (see end of 

§1-2). 
Let us now come to Fourier series. In the 1820s, criticism of divergent series 

was a lively issue, to which Gauss, Abel and Cauchy contributed. Fourier had not 

shown whether his series were always convergent, a problem that Poisson and 

Cauchy tried to solve, the latter in 1826.2 Their attempts were insufficient, and it 

was only Dirichlet [1829] who was able to offer a correct proof of the convergence 

of Fourier series. Dirichlet criticized Cauchy’s attempt on the basis of the distinc¬ 

tion between absolute and conditional convergence of series. His own approach 

was to determine a set of sufficient conditions on f(x) for the resulting Fourier series 

to converge. His proof transformed the «th partial sum of the series into an integral 

expression, and studied its behavior in the limit; historically it was extremely im¬ 

portant because it introduced new levels of rigor in analysis. What is of interest 

here is that Dirichlet showed that the Fourier series for f(x) converges to the mean 

value of its left and right limits, for all x in [-rc,rc], in case: 

(1) f(x) is defined and bounded for all x in the interval, 

(2) the number of maxima and minima off(x) is finite, and 

(3) f(x) is continuous except perhaps at a finite number of points. 

The next step in the theoretical development would be marked by attempts to 

weaken Dirichlet’s conditions. This problem inspired a good number of contribu¬ 

tions, in which mathematicians faced the study of functions with infinitely many 

maxima and minima, or infinitely many discontinuities, in a finite interval (see §2). 

Dirichlet himself suggested, in 1829, that all other cases would prove reducible to 

1 [Hankel 1870, 67]: “Diese reine Nominaldefinition, der ich im Folgenden den Namen 
Dirichlet’s beilegen werde, ... reicht nun aber fur die Bediirfnisse der Analysis nicht aus, da 
Functionen dieser Art allgemeine Eigenschaften nicht besitzen.” 

2 [Grattan-Guinness 1980, chap. 3], [Bottazzini 1986, chap. 5], 
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the one he had solved, and proposed a conjecture for the case in which the function 

has infinitely many discontinuities (§2). In a new expository paper, Dirichlet [1837] 

offered some reflections on how to treat functions that become infinite for certain 

values of x. Subsequently, it became crucial to study the distribution of such singu¬ 

lar points of a function, and so the topic led to the study of point-sets. 

Toward the end of his 1829 paper, Dirichlet commented that in his opinion the 

representability of a function depends exclusively on whether it makes sense to 

speak of its definite integral within the interval of representation. For this ensures 

that the Fourier coefficients will have a meaning. Thinking about the notion of the 

integral, it seemed to him that one single condition is enough to guarantee the exis¬ 
tence of the integral: 

it is necessary that the function (p(x) be such that, if a and b designate any two arbitrary 

quantities within -% and n, one may always locate between a and b two other quantities r 

and s that are close enough, so that the function remains continuous within the interval from 

r to 5. ... It will now be apparent that the integral of a function does not mean anything unless 

the function satisfies the condition we have enunciated.1 

Not all arbitrary functions satisfy that requirement: Dirichlet gave the well-known 

example of the function f(x) that is 0 for rational x and 1 for irrational x. His words 

suggest that he regarded that defining condition not just as necessary but as suffi¬ 

cient, and so it was interpreted by Lipschitz and others. The condition is purely 

topological in character; to put it in modem terminology, it is necessary and suffi¬ 

cient that the set of discontinuities of the function be nowhere dense in US.. The 

conjecture that integration theory only required the study of topological properties 

of point-sets was a pervasive and influential idea that remained very much alive up 
to the 1880s. 

1.2. The Riemann integral. For arbitrary functions to win a secure place in 

mathematics, they would have to be subjected to the operations of analysis, which 

implied the need to refine Cauchy’s ideas. As Dirichlet said [1829, 169], an attempt 

to generalize his theorem on the representability of functions by trigonometric 

series would require some details relative to the fundamental principles of infini¬ 

tesimal analysis. Although it was thought that discontinuous functions would never 

be used in the study of nature, work on them became interesting because of that 

connection with foundational issues, as well as their possible applications in ana¬ 
lytical number theory [Riemann 1854a, 237-38], 

1 [Dirichlet 1829, 169]: “II est necessaire qu’alors la fonction <j>(x) soit telle que, si Ton 
designe par a et b deux quantites quelconques comprises entre -n et 7t, on puisse toujours placer 
entre a et b d’autres quantites r et s assez rapprochees pour que la fonction reste continue dans 
1'intervalle de r a 5. ... On verra alors que l’integrale d’une fonction ne signifie quelque chose 
qu’autant que la fonction satisfait a la condition precedemment enoncee.” 
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While preparing his dissertation, Riemann had the opportunity to discuss the 

matter with Dirichlet [Dedekind 1876, 546], In fact, his investigation of trigono¬ 

metric series is preceded by a discussion of the concept of the integral. Dirichlet’s 

condition (3), that the function be continuous except at a finite number of points, 

does not really enter into his 1829 proof; it merely ensures that the Fourier integral 

coefficients make sense [Hawkins 1970, 13]. Riemann [1854a, 238-39] realized 

this, or perhaps Dirichlet himself pointed it out to him. He reformulated Dirichlet’s 

representability conditions as follows: a function is required to be integrable 

throughout the domain of representation, and it should not have infinitely many 

maxima and minima [1854a, 235, 237], From this standpoint, it would seem possi¬ 

ble to study the class of representable functions in full generality by means of a 

more careful analysis of the concept of the integral (or, as we would say, by ex¬ 

panding the definition of integrability). This is why Riemann’s work begins with an 

analysis of the concept of definite integral and the extension of its validity.1 

Cauchy defined the integral as the limit of a sum: given a partition of interval 

[a,b~\ into n-1 subintervals, ci=xq<xj< ...<xn_j<xn=b, the integral of a continuous 

function f(x) is the limit to which the sum 

S = (xl-x0)f(x0) + ... + (xnxn_l)f(xn_l) 

tends when the norm of the partition (the greatest of the lx— x;_;l) tends to zero. 

Riemann took the abstract notion of function seriously, accepting the challenge of 

expanding the notion of integral accordingly. To this end, he simply abandoned the 

continuity condition that Cauchy imposed, and required that the ‘Cauchy sum’ S 

tend to a unique limit value when the norm of the partition decreases. That limit 

value is then the integral of'f(x) between a and b [Riemann 1854a, 239], 

Next, Riemann stated without proof a different criterion for integrability, based 

on considering the maximum oscillation of f(x) within each subinterval, i.e., the 

difference between the maximal and minimal value off(x) in [x,_/,x,]. Finally he 

showed that this criterion is equivalent to the famous Riemann integrability condi¬ 

tion. If each subinterval [x,_/,x;] has length <d, this condition can be stated as fol¬ 

lows: 

For the sum S to converge, when all the [subintervals] become infinitely small, one has to 
require, beyond the boundedness of the function f(x), that, by adequately choosing d, the 
total magnitude of the intervals in which the oscillations are >c may be made arbitrarily 

small, whatever a may be.2 

1 [Riemann 1854a, 239]: “Ueber den Begriff eines bestimmten Integral und den Umfang 
seiner Giiltigkeit.” Here we find, again, the traditional logical terminology; see §11.2. 

2 [Riemann 1854a, 241]: “Darnit die Summe S, wenn samtliche 8 unendlich klein werden, 
convergirt, ist ausser der Endlichkeit der Function f(x) noch erforderlich, dass die Ge- 
sammtgrosse der Intervalle, in welchen die Schwankungen >a sind, was auch a sei, durch 

geeignete Wahl von dbeliebig klein gemacht werden kann.” 
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Riemann remarked that this is a necessary and sufficient condition, and showed that 

such a definition of the integral made possible the integration of highly discontinu¬ 

ous functions. 
He thought it convenient to present an example of an integrable function with a 

dense distribution of discontinuities, “since these functions have never been consid¬ 

ered before” [Riemann 1854a, 242], The function was somewhat similar to 

Dirichlet’s example, but it did not comply with the integrability condition Dirichlet 

had conjectured. Riemann defines the function (x) = x-n as the difference between 

the real number x and the closest integer n, except when x = n/2 for odd n, in 

which case (x) = 0. Then he considers the function 

/(x) - (x) + (2x)/ 22 + ...+(nx)/ n2+... 

which is discontinuous for all x = m/2n with m and 2n relatively prime, and there¬ 

fore has a dense set of discontinuities. Nevertheless, as an effect of the denomina¬ 

tors n2, f(x) satisfies the above integrability condition: for all a there are only 

finitely many points x = m/2n where the jump is greater than g [Riemann 1854a, 

242], 

Riemann’s memoir was rich in examples of such ‘pathological’ functions. Thus, 

he justified the notion of arbitrary function and stimulated study of pathological 

functions by showing how the notion of definite integral could be applied to them. 

It has been said that only after the publication of his work (1868) did the notion of 

arbitrary function emerge in mathematical practice in its full generality [Bottazzini 

1986,217], 

With the new analysis of the concept of integral, Riemann went on to his inves¬ 

tigation of trigonometric functions. It is convenient to comment on some points of 

this investigation, since they are directly related to the issues we shall discuss in 

what follows. Dirichlet looked for sufficient conditions for a function to be repre¬ 

sented by a convergent Fourier series. Abandoning that approach, Riemann tried to 

analyze in the most general way the necessary conditions a representable function 

must satisfy;1 his ultimate aim was, given a detailed analysis of such necessary 

conditions, to select sufficient conditions among them. This approach enabled him 

to forget about the way in which the coefficients of the series may be given, that is, 

it enabled him to introduce a distinction between trigonometric series and Fourier 

series. Riemann reduced the treatment of convergent trigonometric series to the 

case in which the coefficients an, bn tend to zero when n -» oo. He approached this 

case by considering an auxiliary function F(x) obtained by double formal integra¬ 
tion of the trigonometric series: 

1 [Riemann 1854a, 244]: “Wenn eine Function durch eine trigonometrische Reihe darstellbar 
ist, was folgt daraus tiber ihren Gang, liber die Aenderung ihres Werthes bei stetiger Aenderung 
des Arguments?” 
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with Aa - Z2d0; An = an sin nx + bn cos nx. F(x) is a continuous function that con¬ 

verges absolutely and uniformly, though Riemann did not remark on the latter 

point.1 Riemann’s main theorems referred to that function, and among them we find 
the following: 

F(x + 2a) + F(x — 2a) — 2 F(x) 

2a 
Theorem 2. 

always becomes infinitely small with a.2 

Riemann’s approach and methods had an immediate impact upon other mathemati¬ 

cians, particularly on Heine and Cantor, who employed the function F(x) and theo¬ 

rem 2 in an essential way in their work on the uniqueness of the representation by 

means of trigonometric series. 

The reformulation of the notion of integral opened up a wide new field for 

analysis, the realm of discontinuous functions, which had never been seriously 

considered before. The impact of Riemann’s ideas and the way in which they were 

received is reflected in a paper published by Paul du Bois-Reymond in 1875. Du 

Bois-Reymond [1875] made an attempt to classify arbitrary real functions accord¬ 

ing to their behavior “in the least intervals.” He accepted the notion of an arbitrary 

function and was a fervent supporter of the Riemann integral. His classification is 

based on a series of ever stronger requirements: the weakest condition is Riemann 

integrability; then comes continuity, and then the requirement of differentiability. 

Thus, within the realm of arbitrary functions he obtained three classes of functions, 

each embedded in the former: integrable functions, continuous functions, differen¬ 

tiable and “customary” functions. In order to show that differentiability is a 

stronger condition than continuity, du Bois-Reymond gave Weierstrass’s famous 

example of a continuous nowhere differentiable function. By the end of the paper, 

he referred to the issue of the distribution of singularities of a real function; he took 

up Cantor’s idea of derived sets, and also an erroneous conjecture due to Dirichlet 

that we shall consider in detail in the next section. 

1 The notion of uniform convergence would be introduced by Weierstrass. 

2 [Riemann 1854a, 248]: “Lehrsatz 2. ... wird stets rnit a unendlich klein.” 
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2. Lipschitz and Hankel on Nowhere Dense Sets and Integration 

With the notion of arbitrary function and the Riemann integral, the need to develop 

a theory of point-sets emerged, as can be seen from the work of Lipschitz and 

Hankel. Their contributions were still primitive and naive, but they started a trend 

that would lead to sophisticated results in integration theory and the topology of 

point-sets. 

Rudolf Lipschitz studied at Konigsberg and Berlin, regarding himself as a disci¬ 

ple of Dirichlet. He himself suggested that his article [1864] is a continuation of 

Dirichlet’s memoirs, reconstructed from suggestions that can be found scattered in 

his work. Lipschitz discussed how to weaken Dirichlet’s representability condi¬ 

tions, considering three cases: points where the function is unbounded, infinitely 

many discontinuities, and infinitely many maxima and minima [Lipschitz 1864, 

283], He thought that the first two cases were essentially solved on the basis of 

Dirichlet’s ideas, and so he focused on the third, which had created difficulties for 

Riemann. The long Latin title of his work states that he aims to investigate the de¬ 

velopment in trigonometric series of arbitrary functions of a variable, and mainly 

those which have an infinite number of maxima and minima within an interval. In 

this connection he contributed the so-called Lipschitz condition (see [Dauben 1979, 

10-11]), but here we are interested above all in his reconstruction of what may be 

called the Dirichlet conjecture. 

Dirichlet had indicated one important, albeit rather obvious, distinction to be 

made when talking about the distribution of singularities of a function: the set could 

be dense or ‘scattered,’ i.e., nowhere dense. The modem terminology suggests that 

the dichotomy does not cover all cases, but the mathematicians we shall review 

argued as if it was. Dirichlet conjectured that <p(x) would be integrable in [a,b] 

whenever the discontinuities of (p(x) are nowhere dense in the interval. This is the 

conjecture that Lipschitz tried to justify. It was accepted by many mathematicians 

until about 1880, when it came to be regarded as false. Lipschitz considered the 

case in which a function has infinitely many points of discontinuity ‘scattered’ in an 

interval. After quoting Dirichlet (see end of §1.1), he wrote that “by an appropriate 

reasoning” it is possible to divide the interval (~k,k) into finitely many intervals, in 

such a way that some subintervals, whose total length is arbitrarily small, contain 

infinitely many discontinuities; and the remaining subintervals contain only finitely 

many discontinuities of the function, thus satisfying Dirichlet’s representability 

conditions [Lipschitz 1864, 284], The reasoning involves an implicit assumption 

that Hawkins locates in the idea that the derived set P' of a nowhere dense set of 

discontinuities is at most finite.1 If so, one can cover the points of P' with intervals 

of arbitrarily small total length, in accordance with Lipschitz’s reasoning. 

1 In this he follows Montel, who translated Lipschitz’s paper into French (Acta Mathematica, 

vol. 36, 1912); see [Hawkins 1970, 14-15], 
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That implicit assumption is interesting because of its connections with Cantor’s 

work on derived sets (§IV.4.3). If Cantor read Lipschitz, which is likely,1 he would 

probably have interpreted his words in the above mentioned sense. Lipschitz does 

not mention the idea of a limit point, but there seems to be no other way to interpret 

his statement, and Cantor was acquainted with this notion from his student years in 

Berlin. Be that as it may, in 1872 Cantor introduced essential corrections in realiz¬ 

ing that, in general, P' will be an infinite point-set; Lipschitz’s naive assumption 

was thus superseded. 

The realization that nowhere dense sets have no bearing on integrability was the 

key of HankeTs [1870], dealing with functions with infinitely many oscillations 

(maxima and minima) or discontinuities. Hankel was interested in clarifying the 

notion of a function of a real variable. He wrote that the writings of Riemann were 

the stimulus for his studies (see quotation at the beginning of this chapter) and 

expressed his admiration for Riemann’s way of dealing with complex function 

theory [Hankel 1870, 68, 70], Showing a certain degree of dissatisfaction with 

Dirichlet’s definition of function, Hankel emphasized the need to impose some 

conventional restrictions on the class of‘legitimate’ functions [op.cit., 101-02] and 

looked for explicit analytical representations of the legitimate functions.2 Hankel 

presented a method of ‘condensation of singularities’ that he developed from Rie¬ 

mann’s example of integrable discontinuous function. His method enabled him to 

offer an analytical representation for the characteristic function of the irrationals, 

that Dirichlet had presented in an abstract way.3 

The novelty in Hankel’s paper was the attempt to systematically study “linearly 

discontinuous functions,” that is, functions with infinitely many discontinuities in a 

finite interval [Hankel 1870, §6], In treating this question, the author felt the need 

to formulate in an explicit and general way some basic notions having to do with 

point-sets: 

Whenever within a segment there lies a multitude of points possessing a certain property, I 

say that these points 

fill the segment if no interval, however small, can be given within the segment in which 

one does not find at least one point of that multitude; 

that on the contrary this multitude of points does not fill the segment, but that the points 

lie scattered on it, if between any two arbitrarily close points of the segment one can always 

give an interval, in which no point of the multitude lies.4 

1 Cantor came to work on this topic through Heine, who quotes Lipschitz in his [1870], 

2 In this he reminds one of Weierstrass, whose classes he attended. 

3 Cantor would propose a refinement of this principle of condensation of singularities in 1882; 

see [Cantor 1932, 106-13]. 

4 [Hankel 1870, 87]: “Wenn auf einer Strecke eine Schaar von Punkten liegt, denen eine ge- 

wisse Eigenschaft zukommt, so sage ich, dass diese Punkte / die Strecke erfullen, wenn in der 

Strecke kein noch so kleines Intervall angegeben werden kann, in dem nicht wenigstens Ein 

Punkt jener Schaar lage; / dass dagegen diese Schaar von Punkten die Strecke nicht erfullen, 

sondern die Punkte zerstreut auf ihr liegen, wenn zwischen je zwei beliebig nahen Punkten der 

Strecke immer ein Intervall angegeben werden kann, in dem kein Punkt jener Schaar liegt.” 
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Thus, Hankel seems to have been the first author who explicitly introduced notions 

of point-set theory - dense and nowhere dense - , although these ideas had been 

suggested by Dirichlet. The examples of point-sets he considered were very simple, 

e.g., the points of [0,1] with abscissa 1 In for rteRJ [Hankel 1870, 86], and he was 

led to hasty conclusions by them. In general, the errors and confusion of these early 

years were simply due to the scarcity of known examples of point-sets. 

Hankel went so far as to present an alleged proof of the theorem that, whenever 

the set of points in which the value of a function has a jump >c is nowhere dense, 

the total length of the intervals in which the oscillations are >2o can be made arbi¬ 

trarily small [Hankel 1870, 87], This faulty theorem offered necessary and suffi¬ 

cient conditions for integrability, leading to a simple and harmonious overall 

scheme. Hankel had two kinds of ‘linearly discontinuous functions,’ “pointwise 

discontinuous'’’ ones, which satisfy the theorem and therefore are integrable, and 

“totally discontinuous" functions which are not [op.cit., 89, 91-92], 

HankeTs work exerted a good measure of influence and was widely read, in 

spite of its somewhat unusual form of publication.1 Cantor published a review early 

in 1871, and in 1882 he wrote that it contained the first attempts, worthy of atten¬ 

tion, to make distinctions upon which a natural classification of the general concept 

of function could be based [Cantor 1932, 107-08]. Neither Cantor nor other 

mathematicians criticized Hankel’s incorrect theorem early in the 1870s, which 

suggests that these confusions reflected the state of knowledge at the time [Hawkins 

1970, 34-37], 

Up to this point, we have found three different conditions on point-sets: 1) be¬ 

ing nowhere dense, 2) having a cover of arbitrarily small total length, and 3) having 

a finite derived set. Only the second condition is crucial for integration theory; it 

gave rise to the notion of outer content. Cantor substituted for Lipschitz’s condition 

3) the more general requirement of being a point-set of the first species, i.e., a set P 

such that its «th derived set Pn is finite, for «e RJ. Even so, none of those three 

conditions is equivalent: there are nowhere dense sets of the second species (i.e., 

having a derived set /,c0) and also nowhere dense sets with positive outer content. 

But mathematicians still tended to regard them as equivalent. 

1 It was published as a Gratulationsprogramm of Tiibingen University; as late as 1882 it was 
reprinted in Mathematische Annalen. 
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3. Cantor on Sets of the First Species 

Cantor’s early work, including his dissertation and Habilitation under Kummer, 

dealt with number theory. In 1869 he went to the University of Halle as a Privat- 

dozent and came into contact with his senior colleague Eduard Heine, who made 

important contributions to the theory of real functions and who was interested in 

foundational issues. At the time, Heine was exploring the implications for trigono¬ 

metric series of Weierstrass’s work on uniform convergence and term-by-term 

integration. His paper of 1870 was important in calling attention to these issues. 

Heine oriented his young colleague toward the theory of trigonometric series, the 

topic of his first really important work, with five papers published between 1870 
and 1872. 

Although the problem had been suggested by Dirichlet many years before, with 

the exception of Riemann’s work, the contributions of Heine and Cantor were the 

first substantial ones. The new ideas on point-sets that the subject suggested to 

Cantor were definitely new and went far beyond Dirichlet, Lipschitz and Hankel. It 

was the first time that a wide class of infinite point-sets having no influence on the 

integral, and therefore on Fourier series, was precisely delimited. The impact of 

Cantor’s work on others was almost immediate, and some people were even led to 

according an undue prominence to Cantor’s sets of the first species [Hawkins 1970, 

36], 

3.1. The uniqueness theorem. Fourier based the existence and uniqueness of 

representations of arbitrary functions by means of a trigonometric series, on the 

validity of term-by-term integration of the series. But Weierstrass realized that 

uniform convergence was a necessary condition for term-by-term integrability of a 

series. Heine [1870] was the first to consider the implications this had for the theory 

of trigonometric series. Dirichlet, Fipschitz and Riemann had only determined that, 

under rather general conditions, a function can be developed into a trigonometric 

series with known coefficients, “but not, in how many different ways the develop¬ 

ment could take placeHeine was able to prove the uniqueness of representation 

under the condition of uniform convergence of the series, within the interval of 

representation, except at a finite number of points. 

It was Cantor who suggested to Heine the possibility of generalizing his result 

by admitting finitely many exceptional points [Heine 1870, 355], This went along 

the line of Dirichlet’s work and prefigured Cantor’s later efforts, that led to his 

work on point sets. 

Acknowledging his debt to the Halle professor, Cantor went on in 1870 to gen¬ 

eralize Heine’s result by requiring only simple convergence of the series. First, he 

1 [Heine 1870, 353]: “durch die Arbeiten von Dirichlet, Lipschitz und Riemann ist daher nur 

festgestellt, dass eine Function von x in einer Anzahl von Fallen sehr allgemeiner Natur sich in 

eine Reihe von der Form (V.), deren Coefficienten bekannt sind, entwickeln lasse, aber nicht, auf 

wie vieleArten die Entwickelung geschehen konne.” 
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proved that if the limit of An = an sin nx + bn cos nx is zero when n—>co, then the 

coefficients an and bn tend to zero; this is a particular version of the Cantor-Lebes- 

gue theorem [Cantor 1932, 71-79, 87-91]. The result complemented Riemann’s 

work in an important way, since it justified the introduction of Riemann’s function 

F(x) for any convergent trigonometric series (see §1.2). Next, Cantor conjectured 

that F(x) would be a linear function, and this would make it possible to transform 

the initial trigonometric series into a uniformly convergent one, which would lead 

to the desired result. In February 1870 he communicated his conjecture to Schwarz, 

who was able to prove the desired lemma on the basis of properties of F(x) that 

Riemann had established. With Schwarz’s lemma, Cantor established the unique¬ 

ness of representation for any convergent trigonometric series.1 
The whole episode can be regarded as a typical example of the results obtained 

by members of the Berlin school (see §1.5). Heine was not a member, but he en¬ 

joyed good relations with the Berliners and was acquainted with their viewpoints. 

In another letter of 1870, Schwarz indicated that the main merit in the proof of his 

lemma was should be credited to the principles of “Bolzano and Weierstrass” 

[Meschkowski 1967, 239], After Cantor told him that he had discussed the matter 

with Weierstrass, who found the proof irreproachable, Schwarz wrote: 

You can believe me, I am proud that the Berlin mathematical school, to which we both 
belong, can celebrate a triumph, once again a palpable result by which an important scien¬ 
tific question can be answered completely. You will recognize ever more, if you have not 
noticed it already, the great significance that one has to attribute to the distinguished school 
that we have enjoyed and the superiority we have gained by familiarity with the need for 
painstaking care in proofs, in contrast to the mathematical “romantics” and “poets.” At pres¬ 
ent I do not know of any mathematical school that offers its students such a solid foundation 
as the Berlin school.2 

This is one of the clearest statements about the atmosphere surrounding the Berlin 

school, as about the competition among schools that reigned in Germany at the 

time. It would be interesting to know whom Schwarz had in mind when he talked 
about “romantics” - perhaps Riemann himself. 

1 See [Cantor 1932, 82-83], The correspondence between Schwarz and Cantor can be found 
in [Purkert & Ilgauds 1987, 21]. 

2 [Meschkowski 1967, 240]: “Du kannst mir glauben, ich bin stolz darauf, dass die Berliner 

mathematische Schule, der wir beide angehoren, einen Triumph feiern kann, wieder ein greif- 

bares Resultat, durch welches eine wichtige wissenschaftliche Frage vollstandig beantwortet 

wird. Du wirst, wenn Du es nicht schon bemerkt hast, immer mehr wahrnehmen, welche grosse 

Bedeutung der ausgezeichneten Schule beizulegen ist, die wir genossen haben und welches 

Ubergewicht uns diese Angewohnung an peinliche Sorgsamkeit bei Beweisen gewahrt, den 

mathematischen “Romantikern” und “Poeten” gegeniiber. Gegenwartig ist mir keine mathema¬ 

tische Schule bekannt, welche ihren Schiilem ein so solides Fundament zu geben vennag wie die 
Berliner.” 
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3.2. Point-sets of the first species. The most important aspect, in the present 

context, is that Heine and Cantor set out, at the suggestion of the latter, to work on 

generalizing the representability result to discontinuous functions. Heine considered 

the possibility that the function be discontinuous, or the series not convergent, at a 

finite number of points within the interval of representation. He dealt with this case 

by means of a method based on Riemann’s theorem 2, a method that could also be 

applied to Cantor’s more general theorem [Heine 1870, 359]. Cantor’s argument 

above remained valid for every subinterval determined by adjacent exceptional 

points, so that F(x) is linear within each subinterval. By continuity of F(x) and 

Riemann’s theorem 2, if F(x) has a right or left derivative at a point, then it has both 

and they are equal. Therefore, F(x) is a single linear function throughout the inter¬ 

val (see Cantor’s 1871 paper in [Cantor 1932, 85]). 

Already in 1871 Cantor announced new extensions of this theorem. He had 

found a way to apply the same method to infinite collections of exceptional points, 

by considering the limit points and by reasoning inductively. The crucial idea was 

related to what Lipschitz had suggested, but Cantor gave it a perfectly clear sense 

and, more important, he was able to avoid the errors of Lipschitz. The new ideas 

were published in his fifth paper on the topic, which we have already analyzed in 

part; this was the article containing the theory of real numbers, the notion of limit 

point and the new idea of derived set (§IV.2.2 and §IV.4.3). Cantor went beyond 

the customary approach to analysis within the Berlin school, with its close attention 

to explicit analytical representations - what we have called Weierstrass’s ‘formal 

conceptual’ approach. He presented the notion of limit point as an abstract one, and 

took the crucial steps of considering sets of limit points and forming the derived set 

of a point-set. In so doing, Cantor was turning toward an abstract approach to 

mathematics that employed the language of sets. Perhaps he wanted to mark this 

change outwardly as well, for he published his new paper in Mathematische Anna- 

len, the journal associated with the school of Clebsch, and not in Crelle’s Journal. 

Like Hankel, Cantor turned to consider point-sets as such, but he went far be¬ 

yond his predecessor. Given a bounded infinite point-set P, the Bolzano-Weier- 

strass theorem ensures that it will have limit points, and Cantor takes the derived set 

P' of all such points as “conceptually” given [Cantor 1872, 98], P' will also, in 

general, be infinite, and therefore Cantor considers P", and so on. The examples he 

presented in 1872 were still quite simple: if/3 is the set of points of abscissa 1, 1/2, 

... 1 In, ... then P' consists of a single point, 0; if P is the set of points of rational 

abscissa, then P' is the interval [0,1] and the next derived sets Pn, ... coincide with 

P' [ibid.]. Cantor also indicated how his Zahlengrossen of higher kinds could be 

used to give examples of point-sets with a (nonempty) nth derived set, but he did 

not go into further details [op.cit., 98-99], 

Cantor was interested in what he would call, years later, point-sets of the first 

species, which are sets that have an empty derived set for some n; the remaining 

point-sets would be called of the second species [Cantor 1879/84, 140], Or as he 

put it in 1872: 
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It can happen, and this is the only case which interests us here, that after v steps the set P(v) 

consists of a finite number of points, so that it has no derived set itself. In this case we shall 

say that the original point-set P is of the Vth kind, from which it follows that P’, P”, ... are of 

the v-lth, v-2nd, ... kinds. 

From this standpoint, the domain of all point-sets of a definite kind will be regarded as a 

particular genus inside the domain of all conceivable point-sets, of which genus the so-called 

point-sets of the v11' kind form a particular kind.1 

Cantor’s opinion, at this time, regarding those point-sets which are not “of a defi¬ 

nite kind” is unclear. Later he wrote that as early as 1870 he had considered new 

symbols of infinity which he used in order to designate the ‘kinds’ of sets of the 

second species.2 

Cantor was now in a position to give a succinct formulation of his generaliza¬ 

tion of the theorem on trigonometric series: the series is unique if it converges to 

the represented function for all values of x except those belonging to a point-set of 

the first species [Cantor 1872, 99; see 92], The basic idea of the proof is simple, 

once one has the above prerequisites in hand. Cantor proceeds inductively on the 

order < of the derived set, applying Heine’s method each time [op.cit., 99-101], In 

this way he is able to show that, under the specified conditions, F(x) is a single 

linear function over the whole interval of representation. The essential condition is 

that the inductive process must terminate, i.e., that P(y) be finite for some vefd or, 

alternatively, that P constitute a point-set of the first species. Actually, the theorem 

can be extended to a set of exceptional points such that Pa is empty for transfinite 

a, in which case one has to use transfinite induction. But Cantor never came to this 

extension of the theorem, not even in the 1880s or 90s, after he had introduced 
transfinite numbers. 

3.3. Refined confusions. Cantor’s contribution represented the emergence of a 

sophisticated theory of point-sets; the ideas of Lipschitz and Hankel, by contrast, 

were either rather obvious or erroneous. But some previous confusions remained in 

a subtler form. If Lipschitz thought that a nowhere dense set must have at most a 

finite number of limit points, his successors came to think that first species sets 

1 [Cantor 1872, 98]: “Es kann eintreffen, und dieser Fall ist es, welcher uns hier ausschliess- 

lich interessiert, dass nach v Ubergangen die Menge P(v) aus einer endlichen Anzahl von Punk- 

ten besteht, mithin selbst keine abgeleitete Menge hat; in diesem Falle wollen wir die urspriingli- 

che Punktmenge P von der v,en Art nennen, woraus folgt, dass alsdann P', P", ... von der v-lten, 

v-2ten, ... Art sind. / Es wird also bei dieser Auffassungsweise das Gebiet aller Punktmengen 

bestimmter Art als ein besonderes Genus innerhalb des Gebietes aller denkbaren Punktmengen 

betrachtet, von welchem Genus die sogennanten Punktmengen vter Art eine besondere Art aus- 
machen.” 

2 [Cantor 1984, 55] (this is a footnote to the last page of [1879/84], part 2, which did not find 

its place in the Abhandlungen). Since Cantor showed at times an eagerness to anticipate the dates 

of his findings and publications, his word on this issue cannot be trusted completely. An example 

of such eagerness is his crucial Grundlagen [1883], which Cantor signed October 1882 even 

though we know from letters to Mittag-Leffler and Klein that he kept sending new material 

during the early months of 1883 [Cantor 1991, 95, 107, 109, 111], 
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exhaust nowhere dense sets. Around 1880, several mathematicians from different 

countries came to realize that there are nowhere dense sets of positive outer content, 

which therefore have to be of the second species (§4.1). But up to then, most 

mathematicians thought that point-sets of the first species are the most general kind 

of sets having no influence on the integral. This was a refined version of the 

Dirichlet conjecture [Hawkins 1970, 34-37]. 

Examples can be found in the contributions of du Bois-Reymond and Dini. 

After formulating the distinction between dense and ‘scattered’ sets, first given by 

Hankel, du Bois went on to identify nowhere dense sets with Cantor’s sets of the 

first species [du Bois-Reymond 1875, 35-36]. He maintained the Dirichlet conjec¬ 

ture in the following refined version: whenever the set of discontinuities of a func¬ 

tion is of the first species, the function is integrable within the corresponding inter¬ 

val. Dini proved that sets of the first species can be covered by means of finitely 

many intervals with arbitrarily small total length, i.e., using later terminology, that 

they have outer content zero [Dini 1878, §14], 

Cantor showed a great interest in Dini’s work, which he mentioned in the first 

of his series of papers [1879/84, 139]; this may even have motivated him to publish 

this work. He also wished to translate Dini’s book into German, and tried unsuc¬ 

cessfully to engage the collaboration of Dedekind.1 

Dini proved also a number of theorems that emphasized the importance of first 

species sets for integration theory,2 and thus gave “undue prominence” to them 

[Hawkins 1970, 36], In 1881/82, Axel Hamack would emphasize that one can ac¬ 

cept a wider class of point-sets, which includes first species sets, in Dini’s theo¬ 

rems. But in 1880 Hamack himself contributed to the confusion, in the worst possi¬ 

ble way, by defining sets of the first species as those sets that have outer content 

zero [Hamack 1880, 128]. 

4. Nowhere Dense Sets of the Second Species 

The main thrust behind the developments that we have reviewed thus far came from 

the idea that integration theory could be developed on the basis of purely topologi¬ 

cal notions. This assumption found clear expression in the erroneous conjecture of 

Dirichlet, which Hankel turned into a theorem (§2). With Cantor’s [1872], knowl¬ 

edge of the subsets of IE. became much more refined. In this section we shall see 

how even more sophisticated examples were given by several mathematicians, 

which made it clear that the Dirichlet conjecture was false and that integration the¬ 

ory required special new notions. 

1 See letters of 1878 and 1880 in [Cantor & Dedekind 1937, 42-43; Cantor & Dedekind 1976, 

233-34, 238], 

2 An example is the following. If/is an integrable function and g is a bounded function such 

that/pc) = g(x) except at a point-set of the first species, then g too is integrable and has the same 

integral as/[Dini 1878, §18ss]. 
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Mathematicians realized that several different, non-equivalent conditions were 

being considered, and in particular that sets of the first species do not exhaust no¬ 

where dense sets. As it turned out, the crucial property for integration theory was - 

in the terminology of 1885 - that of having (outer) content zero. Several mathema¬ 

ticians in different countries were able to make this step: Smith in England, du 

Bois-Reymond and Cantor in Germany, Volterra in Italy. It seems that the German 

mathematicians were unaware of the contributions of Smith and Volterra. All of 

them employed distributions of intervals as a method for defining sophisticated 
point-sets. 

The context in which the new ideas were elaborated is interesting, because from 

1879 to 1884 a great number of articles touching on the question of point-sets ap¬ 

peared in Mathematische Annalen. Among them we find Cantor’s papers ‘On infi¬ 

nite linear point-manifolds’ [1879/84], the first that studied point-set theory as an 

independent topic. This marks a clear difference between Cantor’s work and those 

of du Bois-Reymond and Hamack. But it is quite unclear whether du Bois- 

Reymond or Cantor was the first to give an example of nowhere dense set of posi¬ 

tive outer content, or even an example of nowhere-dense sets of the second species. 

As we shall see, these mathematicians had a clear feeling of competition at the 
time. 

Before we discuss German contributions, however, it will be convenient to 

consider those of H.J.S. Smith, who was the first to offer examples, and very clear 

ones. Unfortunately, his paper was not properly appreciated on the Continent, oth¬ 

erwise it would have accelerated even more the development of the theory of point- 
sets and integration theory.1 

4.1. Smith on the integration of discontinuous functions. A professor at Oxford 

University, Smith was an expert in number theory, and as such he was known to 

Cantor and Dedekind.2 In 1875 he published a paper ‘On the Integration of Discon¬ 

tinuous Functions,’ motivated by Riemann’s work [1854a] and also by the intention 

to criticize some points in [Hankel 1870], He was the first to criticize his alleged 

proof having to do with ‘pointwise discontinuous’ functions and offer a counterex¬ 

ample, the first counterexample to the Dirichlet conjecture. To this end, he em¬ 

ployed two methods for the construction of nowhere dense sets that are extremely 

clear and rigorous. It will be convenient to explain them here, in order to clarify the 
whole issue. 

The first method served to define examples of point-sets of the first species. 

Smith began with the set P, of all points of the form 1 In with ne RJ, and went on to 

the set P 2 of all points of the form l/«y+l/«2, ... In general we have Ps = {Mnj + 

\/n2 + ... + 1/fly}, which has as limit points all points of Ps_j and therefore is a set of 

the first species and .vth kind [Smith 1875, 145-47], Smith formulated a correct 

1 As indicated by Hawkins [1870, 40], the reviewer for Fortschritte der Mathematik did not 

realize the theoretical importance of Smith’s examples; he did not even mention them. 

2 See Cantor’s letter of Jan. 1879 in [Cantor & Dedekind 1976, 232], 
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inductive proof that Ps is nowhere dense. Here we have a very elegant way of giv¬ 

ing examples of the sets considered by Cantor. 

The second method employed a distribution of intervals.1 In his own words: 

Let m be any given integral number greater than 2. Divide the interval from 0 to 1 into m 
equal parts; and exempt the last segment from any subsequent division. Divide each of the 

remaining m-1 segments into m equal parts; and exempt the last segment of each from any 

subsequent division. If this operation be continued ad infinitum, we shall obtain an infinite 

number of points of division P upon the line from 0 to 1. These points are in loose order. 

[Smith 1875, 147] 

By ‘being in loose order,’ Smith means that the point-set is nowhere dense in [0,1]. 

After k steps, the total length of the unexempted segments is (1 - l/m)k, and so 

Smith remarked that when A'—>oo the points of P “occupy only an infinitesimal por¬ 

tion” of [0,1]. The union of P and P' is an example of what we call today a ‘Cantor 

set.’ This and the coming examples show that Cantor was not the first to give ex¬ 

amples of Cantor sets. 

Both of the foregoing examples are sets of zero outer content, but a variation of 

the last method enabled Smith to define a point-set of positive outer content. One 

proceeds as before, but at each step one diminishes much quicker the length of the 

exempted segments. First we divide [0,1] into m segments and exempt the last one 

from subsequent division; each of the remaining segments is divided into m2 parts, 

exempting the last one from further division; each of the remaining (m-\)(m2—\) 

segments is divided into m3 parts, and so on [Smith 1875, 148]. After k steps the 

total length of the unexempted segments is (\-\lm)-{\-\lm2)- ... -(1—1 lmk), which 

tends to a positive limit when k—>co. This limit is, in fact, the outer content of the 

set in question. On the basis of this example, Smith showed that the Dirichlet con¬ 

jecture, and Hankel’s theorem, are wrong; he also criticized some other points in 

[Hankel 1870]. Smith’s paper serves as a model for what number-theoretical rigor 

meant at the time; on the other hand, it only clarified previous ideas and did not 

open any essentially new perspectives. 

4.2. A German competition. Cantor’s first paper of the series on linear “point- 

manifolds,” as he now preferred to call them, was published in vol. 15 of Mathe- 

matische Annalen. It did not present new results, but rather gave a systematic expo¬ 

sition of ideas developed in previous papers. Among other things, he analyzed the 

relation between the property of being an “everywhere-dense” set, as he said, and 

the behavior of derived sets. In this connection, he promised to come back, in a 

future paper, to the question whether “every point-set of the second species is so 

constituted, that there exists an interval (a ... (3) in which it is everywhere-dense” 

[Cantor 1879/84, 141]. The contents of Cantor’s paper, and especially this com- 

1 The idea may have been suggested by an example of non-integrable function given by 

Hankel, see [Hawkins 1970, 30-31]. 
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ment, seem to have alarmed du Bois-Reymond. Apparently, he had corresponded 

on the subject with Cantor a few years earlier and had communicated to him a 

method for the construction of sets of the second species that solved this question in 

the negative. 
To establish his priority, du Bois-Reymond hastened to include a lengthy foot¬ 

note toward the end of a paper on the fundamental theorem of the integral calculus 

which he published in the next volume (no. 16) of the Annalen. Although the paper 

dealt with a different issue, du Bois found a natural way to introduce the topic by 

beginning with a critique of the condition of integrability that Dirichlet had estab¬ 

lished [du Bois-Reymond 1880, 128], He wrote that one can distribute “intervals 

pantachically” (‘pantachisch’ was his peculiar term for ‘dense’), so that one may 

cover [-7t,7t] densely with parts of a segment D < 2n. This made it possible to give 

an example of a function f(x) such that, for any interval within [—7t,7x], there is a 

subinterval where f(x) is continuous, but nevertheless the function is not integrable. 

Du Bois took f(x) = 0 over the densely distributed subsegments of D, and f(x) = 1 at 

all other points of [-71,7t]. The set of points at which the function takes the value 1 

has a positive outer content 2k-D, and so the function does not satisfy Riemann’s 

integrability condition. 

Du Bois-Reymond went on: 

One is led to this kind of distribution of intervals, of which I have several examples at hand, 

if one looks for points of condensation of order oo [derived sets J.F.], the existence of 

which I announced to Mr. Cantor at Halle by letter some years ago. I plan to deal on another 

occasion with this distribution, with condensation points of finite and infinite order of seg¬ 

ments that always become smaller, and finally with my choice of the expression ‘pantachi¬ 

cally’ in comparison with that adopted by Mr. Cantor’s later, everywhere-dense.1 

The rivalry between du Bois-Reymond and Cantor is plainly evident. This text is 

sufficient to establish that du Bois-Reymond discovered examples of sets of the 

second species independently of Cantor. On the other hand, it may well be that 

Cantor arrived at essentially similar examples before du Bois corresponded with 

him. As regards the notion of dense set, it originated in Dirichlet, and Hankel for¬ 

mulated it clearly (under the words ‘filling a segment’) well before Cantor or du 

Bois-Reymond. 

[du Bois 1880, 128]: “Auf diese Art der Intervallvertheilung, zu der ich verschiedene 

Beispiele bei der Hand habe, wird man gefuhrt, wenn man die Verdichtungspunkte der Ordnung 

co aufsucht, deren Vorhandensein ich vor jahren Herm Cantor in Halle brieflich anzeigte. Auf 

diese Vertheilung, ferner auf die Verdichtungspunkte endlicher und unendlicher Ordnung von 

immer kleiner werdenden Strecken, endlich auf meine Wahl des Ausdrucks ‘pantachisch’ vergli- 

chen mit dem spiiter von Herm Cantor angenommenen iiberalldicht gedenke ich bei einer an- 

deren Gelegenheit einzugehen.” 
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If du Bois-Reymond feared that Cantor would publish what he regarded as his 

idea without mentioning him, his fear was realized in the next volume of the Anna- 

len (vol. 17, 1880). This was the second installment of Cantor’s series of papers, 

dealing exclusively with derived sets ‘of an infinite order.’ Cantor defined derived 

sets such as Pfa), p(2ca), p(n<x>+m), etc 5 and toward the end of the paper indicated 

how to build a set with a single limit point of order co. His method was to take a 

sequence of disjoint intervals, bordering on each other and converging toward a 

point p, and to take within each interval a point-set of the first species, so that the 

“orders” of the point-sets “grow beyond all bounds” as the intervals approach p. 

Thus, for intervals (an,bn) such that the sequence of extremes converges to p, take a 

point-set Pn of the nth kind or ‘order’ within each interval. The union of these 

point-sets constitutes an example of the kind sought [Cantor 1879/84, 148], 

This episode seems to have caused the rivalry that developed between Cantor 

and du Bois-Reymond. But the dispute died out rather quickly, probably because of 

the importance and originality of Cantor’s new contributions, starting in 1882. One 

should not overemphasize the importance of the above episode as a priority dispute. 

It seems more interesting to consider it as an indication that the development of 

point-set theory was already a community enterprise by this time. In 1880 a third 

German mathematician of lower rate, Axel Hamack, was joining the competition 

for new results in point-set theory and integration theory.1 

Cantor’s example of 1880, like those of Smith and others,2 was enough to cor¬ 

rect the previous misunderstanding that nowhere dense point-sets must be of the 

first species; for it is easy to show that the former point-set of the second species is 

nowhere dense. On the other hand, it has outer content zero, as did the second (but 

not the third) of Smith’s examples. By 1880, mathematicians had reached a suffi¬ 

ciently refined understanding of point-sets, so that the scene was ready for the ad¬ 

vancement of sound notions for integration theory. 

5. Crystallization of the Notion of Content 

With the publications mentioned in the last section, it became clear that the crucial 

notion for integration theory was that of point-sets that can be covered by means of 

finitely many intervals, whose total length is arbitrarily small. This was explicitly 

emphasized by Axel Hamack in a textbook on the calculus [Hamack 1881] and in a 

paper published in the Annalen [1882], This insight would lead to the notion of 

1 The frictions between du Bois, Hamack and Cantor left traces in the latter’s correpondence; 

see particularly [Cantor 1991]. 

2 Volterra published in Giornale di Matematiche, in 1881, a paper on ‘p°mtwise discontinu¬ 

ous’ functions; the title shows the influence of Hankel. He criticized the Dirichlet conjecture 

essentially as Smith, and on the same basis he gave an example of a function g whose derivative 

g' is not Riemann integrable. This confirmed a conjecture of Dini, see [Hawkins 1970, 52-53]. 
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(outer) content, formulated by Stolz and Cantor in 1884, and to the Jordan content 

in the early 1890s [Hawkins 1970; 1980]. 
Hamack tried to introduce new terminology for point-sets, useful for integration 

theory. He termed ‘discrete sets’ those that we have been calling sets of outer con¬ 

tent zero; other point-sets, with positive content, were called ‘linear’ [Hamack 

1882, 238-39], This terminology was certainly inadequate, for ‘discrete’ had al¬ 

ways referred to the opposite of continuous. Hamack showed that Dini’s results 

could be readily generalized to ‘discrete’ sets of exceptional points [1881], proved 

that ‘discrete’ sets are nowhere dense, and gave an example of a nowhere dense 

‘linear’ set [1882, 239]. Some of Hamack’s ‘theorems’ turned out to be false, but 

his contributions were nevertheless important for the development of the notion of 

content. He also showed that Riemann’s integrability condition could be formulated 

in terms of outer content [Hawkins 1970, 59]. 

In order to apply the notion of content to integration theory, it was necessary to 

assign a number to every point-set in an interval, in accordance with the total length 

of the (finitely many) intervals needed to cover it. This was done simultaneously by 

Otto Stolz and by Cantor. Stolz called this number ‘interval-limit’ [Intervallgrenze] 

and defined it as follows. Take a point set P in (a,b) and consider a finite partition 

Tn of the interval; calling Sn the sum of the subintervals that contain points of P, 

and making the norm of the partition decrease with increasing n, it turns out that L 

= lim Sn is a well-defined number measuring P [Stolz 1884, 152], Stolz, in fact, 
n— 

showed that the content of a point-set does not depend on the way in which the 

partition is refined. He also showed that if L = 0, then P is a ‘discrete’ set in Har- 

nack’s sense, whereas if L > 0, then P in ‘linear’ [op.cit., 154], Finally, he general¬ 

ized those ideas to define the content of point-sets in the plane (subsets of D52). 

Cantor mentioned the work of Hamack and du Bois-Reymond in the fourth 

installment of his series ‘On infinite, linear point-manifolds.’ As in the work of 

those authors, the notion of content is only implicit here. Cantor mentioned that a 

necessary, but not sufficient, condition for (outer) content zero is that the point-set 

be nowhere dense. Looking for sufficient conditions, and in order to show the im¬ 

portance of his set-theoretical notions (see chapter VI), he proved that a point-set P 

with denumerable derived set P' always has content zero [Cantor 1879/84, 160— 

64], The sixth installment of the series contains a subsection devoted to giving an ex¬ 

plicit definition of ''content" [Inhalt], so called for the first time. Cantor’s definition 

is more general than Stolz’s, for it deals with subsets of Mn. He also presented the 
first notable theorems having to do with outer content.1 

Without entering into details, it suffices to say that Cantor defined the content of 

a bounded set P c IRn by considering the closed covering of P, that is, the closed 

set P u P\ and taking the w-tuple integral.2 This is a remarkable peculiarity of his 

1 This time he does not mention other mathematicians; see his letter to Klein, having to do 

with Hamack, where he says that it was due to ‘Nachlassigkeit’ and not to ‘bosem Willen’ [Purk- 
ert & Ilgauds 1987, 191-93]. 

2 See [Cantor 1879/84, 229-36] and [Hawkins 1970, 61-63], 
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approach, which seems quite interesting from our viewpoint. Stolz and Hamack 

wanted to use the notion of content as a basis for integration theory, and wished to 

define the integral in its terms. This is the natural way of proceeding if one is inter¬ 

ested in foundational problems, and especially in case one regards sets as a founda¬ 

tion for mathematics. On the contrary, Cantor is not interested in the foundations of 

integration theory, just the opposite: he uses the integral to study a property of sets, 

their content. This happened in 1884, and is consistent with the approach taken by 

Cantor in all his papers up to then. Thus, everything points to the conclusion that 

Cantor was far from taking set theory to be the foundation of mathematics or, at 

least, that he was far from being interested in developing the implications of that 

idea.1 
Cantor went on to prove some properties of the content, so defined, in connec¬ 

tion with other notions he had developed until then. For instance, what he called the 

“fundamental theorem,” that the content of a point-set P equals that of its derived 

set P' [Cantor 1879/84, 231]; this property was taken for granted at the time, which 

forced mathematicians to consider only finite coverings. Another interesting result 

of Cantor’s is that the content of a non-denumerable set P equals the content of the 

perfect set included in P' ([Cantor 1879/84, 235]; for the notion of perfect set, see 

§VI.6). 

One year later, Hamack published another paper that connected with those of 

Stolz and especially of Cantor. He presented his notion of discrete set again, em¬ 

phasizing that it was defined on the basis of finite coverings, and proving some 

general theorems in the style of Cantor’s. He emphasized that his definition of 

content did not presuppose the integral [Hamack 1885, 246-47]. A notable aspect 

of the paper is that Hamack mentions a ‘paradox’ that one encounters as soon as 

one considers the idea of covering a point-set by means of infinitely many intervals: 

one then finds that every denumerable point-set can be enclosed by intervals with 

arbitrarily small total length [op.cit., 242], As this remark shows, at this early phase 

in the development of measure theory, a definition of measure such as Borel’s, 

which employs denumerably infinite coverings, seemed quite paradoxical for it 

entailed that even dense denumerable sets have measure zero. Such a definition of 

measure or content would have contradicted Cantor’s fundamental theorem (see 

[Hawkins 1970; 1980]). 
In the origins of the theory of point-sets we find a clear example of the phe¬ 

nomenon that I mentioned in the introduction: the gradual differentiation of notions 

or structures that initially were combined, and sometimes implicit, in the classical 

objects of mathematics. The study of point-sets became an attractive topic in the 

early 1870s, due to a revitalization of real analysis motivated by Riemann’s work. 

Development of this theory was stimulated by its intimate connections with prob¬ 

lematic issues in the theory of trigonometric series, integration theory, and the very 

notion of function. The topology of point-sets was, and remained, an important 

1 In 1885, Cantor wrote that pure mathematics is pure set theory (see [Grattan-Guinness 1970, 

84]) and after this time he published some ideas concerning the set-theoretical foundations of 

number. By this time, however, he was well acquainted with Dedekind’s work (chapter VII). 
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topic in connection with complex and real function theory (see chapters VIII and 

IX). But the initial hopes that topological notions would be sufficient for a general 

treatment of integration had to be corrected. This happened in the early 1880s, 

when the notion of content emerged. 

Sometimes one finds the idea, expressed even by professional historians of 

mathematics, that point-set theory was the creation of a single man.' The foregoing 

gives plenty of evidence that this is far from the truth. In the rest of the book I shall 

not enter into a detailed analysis of subsequent developments in point-set theory, 

although in chapters VI, VIII, and IX I will make some comments in connection 

with other contributions of Cantor and their diffusion.1 2 

1 See, e.g., [Johnson 1979/81, part 1, 163], 

2 For detailed analysis, the reader may consult [Cooke 1993] and the summary given by 

Kanamori [1996], as well as older accounts like [Schoenflies 1900/08; Schoenflies 1913], Some 

important development after 1900 are discussed in [Johnson 1979/81], 



Part Two: Entering the Labyrinth - Toward 
Abstract Set Theory 

During the last quarter of the 19th century, Dedekind and Cantor published crucial 

contributions to abstract set theory. Dedekind attempted to elaborate an abstract 

basis for the rigorous foundation of pure mathematics - arithmetic, algebra, and 

analysis. Meanwhile, Cantor took the radical step of beginning to explore the realm 

of infinite sets and in the process created what is usually called set theory in the 

strict sense. These contributions proved to be deeper and much more influential 

than contemporary ones by Peano or Frege (on which see §IX. 1.2). Thus, the emer¬ 

gence of set theory was the result of a mostly mathematical development, although 

philosophical ideas played an important motivating role in it. 

The transfinite realm is presupposed in classical mathematics, as long as one 

understands the continuum as a set of points. But it was Cantor who first realized 

the labyrinth behind that basic idea. In December 1873 he proved that D8. is not 

equipollent to Fd and saw the possibility of distinguishing ‘sizes’ in the infinite 

(chap. VI). To analyze infinite sets, he introduced a whole series of notions - power 

or cardinality, notions of point-set theory, and the concept of well-ordering. Cantor 

posed the problems and developed the concepts and basic results that would estab¬ 

lish set theory as an independent discipline. By 1885 he had conceived of an ab¬ 

stract set theory based on the ideas of cardinality and ordering (chap. VIII). 

Meanwhile, the abstract viewpoint had been adopted by Dedekind as early as 

1872, but he pursued aims quite different from Cantor’s. He focused on the foun¬ 

dations of the number system, establishing them on the ‘logical’ notions of set and 

mapping. With it, he was also establishing the foundations for his abstract approach 

to algebra and other areas of pure mathematics (chap. VII). His work had an im¬ 

pact on such influential authors as Hilbert, and some of his ideas - particularly the 

notion of chain - were taken up in the later development of set theory. 

Part Two is devoted to delineating those lines of development and exploring the 

interaction between Cantor and Dedekind. We shall find that, unfortunately, there 

was a lack of collaboration and mutual reinforcement due to difficulties that 

emerged quite early in their relationship. But there were also several positive out¬ 

comes of their episodic correspondence and meetings. 





VI The Notion of Cardinality and the 
Continuum Hypothesis 

The ideas I have lately communicated to you are even for me so unex¬ 

pected, so new, that I will not be able to have a certain peace of mind, so 

to say, until I obtain from you, very esteemed friend, a decision con¬ 

cerning their correctness. So long as you have not given your approval, I 

can only say: je le vois, mais je ne le crois pas.1 

The present chapter will discuss Cantor’s first two articles on topics that would 

become the core of transfinite set theory - his famous work on the non¬ 

denumerability of the reals [1874] and the equipollence of continua of any number 

of dimensions [1878], This was the birth of the notion of cardinality or power of an 

infinite set,2 which Cantor presented to the public in the second paper, an epoch- 

making article which also contained his first version of the Continuum Hypothesis. 

The paper that might be regarded as the first published contribution to transfinite 

set theory [Cantor 1874] appeared under complex circumstances, and it was far 

from offering a clear idea of Cantor’s actual views. The crucial idea that infinite 

sets have different powers had been bom for him, but not for most of his readers. 

Apparently due to the influence of Weierstrass, his presentation failed to emphasize 

that point. Cantor’s abstract viewpoint and the notion of power only became clear 

with his second paper [1878], which makes several references to the first one in 

order to place it in a new light [op.cit., 120, 126]. Cantor even felt the need to re¬ 

formulate his 1874 proof five years later [Cantor 1879/84, part I], which under¬ 

scores the peculiar nature of the 1874 article. 

The content of both papers was first discussed in Cantor’s correspondence with 

Dedekind. Given the importance of this correspondence, and the fact that both 

mathematicians met a few times in the 1870s and 80s, it seems appropriate to pay 

1 Cantor to Dedekind, June 1877 (the French sentence means, ‘I see it but I do not believe 

it.’). [Cantor & Dedekind 1937, 34]: “die Ihnen jiingst von mir zugegangenen Mittheilungen sind 

fur mich selbst so unerwartet, so neu, dass ich gewissermassen nicht eher zu einer gewissen 

Gemiithsruhe kommen kann, als bis ich von Ihnen, sehr verehrter Freund, eine Entscheidung iiber 

die Richtigkeit derselben erhalten haben werde. Ich kann so lange Sie mir nicht zugestimmt 

haben, nur sagen: je le vois, mais je ne le crois pas.” 

2 I shall translate Cantor’s Mdchtigkeit into ‘p°wer-’ A little care and attention to the context 

should suffice to avoid mistaking this notion with that of power set [Potenzmenge], 
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close attention to their relations and exchange of ideas. The urgency to do so is all 

the more evident given Dedekind’s grasp of foundational issues. By the early 1870s 

Dedekind already had developed advanced set-theoretical conceptions, and one is 

naturally led to wonder whether he informed Cantor of his views. The correspon¬ 

dence also became a source of difficulties for Dedekind and Cantor. Although most 

historians have assumed that the exchange of letters was only interrupted in 1882,' 

as a matter of fact trouble seems to have begun in 1874. Relations between both 

mathematicians were difficult after that time, although they went through brief 

phases of tranquility in the years 1877 and 1882. The most important consequence 

of these difficulties was that in the 1880s, when they came to publish their mature 

ideas on abstract set theory, Cantor and Dedekind turned their backs on each other, 

so to say. There was a lack of collaboration and mutual reinforcement, and the 

theories they presented suffered from this. For these reasons, I shall pay close at¬ 

tention to this correspondence, which will also lead us to discuss briefly some as¬ 

pects of Cantor’s biography. 

In spite of Dedekind’s collaboration, the main problems and ideas that can be 

found in the correspondence, those that became crucial for transfinite set theory - 

especially the notions of derived set and cardinality - originated with Cantor. Just 

as he took the initiative in the correspondence, Cantor was the force behind the 

development of transfinite set theory (in contradistinction to general set theory). 

The last three sections of this chapter discuss some crucial results that Cantor pub¬ 

lished between 1882 and 1884, all of them linked to derived sets and cardinalities. 

After 1878, the main motivation for his set-theoretical work was the attempt to 

prove the Continuum Hypothesis (CH). The study of the cardinalities of point-sets 

by analyzing their derived sets led to noteworthy results, particularly the Cantor- 

Bendixson theorem, which established CH for closed point-sets. Along the way, 

Cantor was led to introduce important new notions belonging to the topology of 
point-sets, and he offered a novel definition of continua. 

1. The Relations and Correspondence Between Cantor and 
Dedekind 

Dedekind and Cantor first came into written contact in 1872, when they exchanged 

copies of their papers on the theory of real numbers. Cantor must have known 

Dedekind as the editor of the Vorlesungen uber Zahlentheorie, and of Riemann’s 

papers [1854, 1854a], In the summer of that same year they met by chance in Ger- 

sau, Switzerland, where both were spending their vacations [Cantor & Dedekind 

1976, 223], Dedekind was then about to reach 41 years of age, Cantor was 27. 

This first encounter might have been of great importance, but there is no docu¬ 

mentary evidence to inform us of any details. By then, Dedekind had developed 

1 See, e.g., [Grattan-Guinness 1974, 125-26] and [Purkert & Ilgauds 1987, 73-75], 



§ 1. The Relations and Correspondence Between Cantor and Dedekind 173 

very advanced foundational conceptions. As we have seen, he was in the possession 

of a set-theoretical formulation of algebraic number theory and algebra (§§111.2-3), 

detailed reflections on the set-theoretical definition of the number system (§§111.5.1 

and IV.2.3), basic notions of point-set topology (§1 V.4.1), and even the fundamen¬ 

tal notions of his mature abstract theory of sets and mappings (§111.6).' This all 

suggests that by 1872 Dedekind had already come to the conclusion, presented in 

[1888], that all of pure mathematics - arithmetic, algebra and analysis - was based 

on the theory of sets and maps. One is naturally led to wonder whether, on their 

first meeting, he informed Cantor of his views, thereby helping to shape the future 

orientation of his research. 

Certainly, a comparison of the published work of both mathematicians gives the 

impression of quite divergent research interests. Cantor worked on number theory, 

under the direction of Kummer, for his Ph.D. and Habilitation, but he quickly 

moved to research on trigonometric series in connection with Riemann and Weier- 

strass. His work up to 1884 seems to have remained within the realm of analysis 

and its foundations.1 2 Meanwhile, Dedekind’s research was in the fields of number 

theory and algebra, a clear contrast which might suggest that a direct, noticeable 

influence is implausible. Nevertheless, both mathematicians had wide-ranging 

interests, and a deeper look at their work reveals significant areas of overlap. 

Dedekind had a lively interest in analysis, which becomes particularly clear 

when we consider his unpublished work on the Dirichlet principle, leading to basic 

notions of point-set topology (§IV.4.1), and on the analytical aspects of Riemann’s 

differential geometry (chapter II, appendix). This helps explain why he was able to 

make a crucial contribution to the foundations of analysis with his work on the real 

numbers. On the other hand, Cantor’s work on point-sets was not just related to 

analysis; there is abundant evidence, which we shall review, that to him it was inti¬ 

mately connected with the foundations of Riemannian geometry. And he also kept 

his interest in number theory: this is shown particularly clearly by his later concen¬ 

tration on transfinite number theory, but also by his lecture courses at Halle (see 

[Purkert & Ilgauds 1987]). To summarize, the areas of overlap included founda¬ 

tions of analysis, topology, geometry - all of them topics linked with the name of 

Riemann - and of course set theory. 
Keeping this wide range of interests in mind, it is clear that many possible top¬ 

ics could have been touched upon in their 1872 conversations. Since both had just 

published and exchanged their papers on the real numbers, one may safely assume 

that they talked about the foundations of the number system. If so, it seems likely 

that Dedekind would have mentioned his conviction that sets and mappings are the 

basic notions of arithmetic, the basis on which it is possible to define the natural 

1 As the reader may recall (§111.6), the very beginning of an 1872 draft contains the exten- 

sional notion of set [System], the general notion of mapping, and Dedekind’s famous definition 

of infinite sets. 

2 The fact that Klein gave him the assignment of refereeing Lindemann’s work on the tran¬ 

scendence of re suggests that he was regarded as an expert in irrational and transcendental num¬ 

bers. 
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numbers and all of their extensions [Dedekind 1872/78, 293], The fact that Dede¬ 

kind began writing his draft for the later book Was sind and was sollen die Zahlen? 

in 1872 might be related to his casual encounter with a younger colleague who was 

independently advancing toward set theory. It is noteworthy that, in his crucial 

letter of Nov. 1873 posing the denumerability problem for IK., Cantor introduced a 

set-theoretical approach without any further motivation; he seems to take it as self- 

explanatory, which must have been due to prior knowledge that Dedekind was 

perfectly accustomed to such a viewpoint.1 But, since there is no detailed evidence 

concerning the 1872 conversations, we shall not speculate on the matter further. 

The fact is, that in 1873 both mathematicians started their well-known correspon¬ 

dence. 

Fraenkel remarked that, although its mathematical content is limited, the corre¬ 

spondence offers valuable insight into Cantor’s working ways and into the opposite 

characteristics of both minds, the ‘romantic’ Cantor and the ‘classic’ Dedekind 

[Cantor 1932, 456], Indeed, as regards their approach to mathematical research, 

both men seem to have been almost polar opposites. Dedekind was a stickler for 

rigorous arguments and conceptually clean, elegant theories, while Cantor appears 

to have been far more of a effusive character, interested above all in obtaining ad¬ 

vanced results by whatever means. In this connection, it is noteworthy that Cantor’s 

early work on set theory does not seem to have been an outcome of interest in the 

foundations of classical mathematics. Quite the opposite, Cantor employed all kinds 

of traditional means of proof - taken from arithmetic and analysis - to obtain so¬ 

phisticated results in the new field of research. Far from being taken as the founda¬ 

tion of mathematics, set theory seems to have been, in Cantor’s eyes, the highest 

level, the upper reaches of the edifice [Medvedev 1984], As we saw in the preced¬ 

ing chapter, this holds for his work up to 1884, too, and one would be tempted to 

say that it holds for all of his work.2 

In Fraenkel’s opinion, Dedekind’s style of thought had a visible influence on 
Cantor’s work: 

Much more ... than it is visible from the letters, the differences in character between Cantor’s 
early and later set-theoretical publications show indirectly the profound influence of Dede¬ 
kind’s more abstract style, which tends to proceed analytically and strives for rounded sys¬ 
tematization, in contrast with the more constructive style of the younger Cantor, which tends 
to advance by single strokes.3 

1 However, this might simply have been due to Cantor’s knowledge of Dedekind’s work 
[1871; 1872], 

2 Compare the critical comments of Zermelo on Cantor’s remarks [1895/97] on the foundation 
of the number system [Cantor 1932, 352, notes 4 and 5], It is true that an unpublished paper of 
1885 [Grattan-Guinness 1970] included remarks on set theory as the foundation of pure mathe¬ 
matics, but there is reason to think that these remarks were made under the influence of Dede¬ 
kind’s work (then still unpublished but known to Cantor since 1882, see §§VII.4 and VIII.3). 

3 [Cantor 1932, 456-57]: “Weit mehr allerdings, als es aus den Briefen ersichtlich wird, zei- 
gen mittelbar die Verschiedenheiten in der Anlage der friihen und der spiiteren mengentheore- 
tischen Veroffentlichungen Cantors den tiefgreifenden Eintluss der abstrakteren, mit Vorliebe 
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This seems to be a sensible way of analyzing the differences between Cantor’s 

early work in the 1870s and, for instance, the Beitrdge that summarized his set- 

theoretical work [1895/97], but it is always difficult to substantiate such claims, 

based on perceptions that are to some extent subjective. In support of his claim, 

Fraenkel cites Cantor himself acknowledging, in a letter of Aug. 1899, the “mani¬ 

fold stimuli and rich lessons” that he has received from his colleague’s “classic” 

writings.* 1 Due to those differences and also the significant difference in their ages, 

Cantor appears “by and large as the one who asks and takes,”2 Dedekind as the 
critic and counselor. 

The correspondence has now been published in full, although in scattered loca¬ 

tions. Zermelo included the letters of 1899, dealing with the paradoxes, in his edi¬ 

tion of Cantor’s treatises [Cantor & Dedekind 1932], A few years later, E. Noether 

and J. Cavailles edited the mathematical portions of the correspondence, except for 

the 1899 letters [Cantor & Dedekind 1937]. A French translation of both sets of 

letters can be found in [Cavailles 1962], and English readers may now have access 

to a reliable translation of that material in [Ewald 1996, vol. 2], The remainder of 

the correspondence seemed lost after World War II, but it was rediscovered in the 

United States, as part of Emmy Noether’s papers [Grattan-Guinness 1974], Pierre 

Dugac included the unpublished part of the correspondence as an Appendix to his 

book on Dedekind [Cantor & Dedekind 1976],3 All of these documents came from 

Dedekind’s Nachlass, so that Cantor’s letters are originals, while Dedekind’s are 

his drafts [Cantor & Dedekind 1932, iv; 1937, 11; 1976, 224], 

The exchange of letters we are discussing involves some of the most interesting 

documents of the 19th century insofar as the foundations of mathematics is con¬ 

cerned. But, in spite of its interest, and even though several historians have paid 

attention to it, it can be said that up to now it has not been fully analyzed. Most of 

those historians have used it as a source for studying Cantor’s biography and the 

evolution of his ideas.4 As a result, neither the frequency of the correspondence nor 

the nature of the relationship and collaboration between both mathematicians have 

been well understood. A partial exception is the work of Dugac [1976, 116-18], 

which stresses relevant facts like the tensions that aroused in 1874. Nevertheless, 

Dugac has not supported his narrative with further analysis, and it is even possible 

analytisch vorgehenden Art Dedekinds, die nach abgerundeter Systematik drangt, gegeniiber dem 

mehr konstmktiven Stil des jiingeren Cantors, der gerne zum Einzelstoss vorwartsstiinnt.” In 

[1930, 197], Fraenkel writes “logizistischen” instead of “mit Vorliebe analytisch vorgehenden.” 

1 [Cantor & Dedekind 1976, 261]: “die vielfache Anregung und reichliche Belehrung die ich 

aus Ihren classischen Schriften entpfangen habe.” 

2 [Fraenkel 1930, 196]: “dieser Unterschied, ... sowie die ... fiihlbare Altersdifferenz ... lassen 

im grossen und ganzen Cantor als den Fragenden und Nehmenden in diesem Briefwechsel er- 

scheinen.” 

3 Dugac overlooked parts of a letter of Nov. 1877 and another of Aug. 1899; both can be 

found in [Grattan-Guinness 1974, 112, 129]. 

4 See [Fraenkel 1930; Fraenkel in Cantor 1932], [Meschkowski 1967], [Grattan-Guinness 

1971; 1974], [Dauben 1979] and [Purkert & Ilgauds 1987], 
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to find some errors in it.1 Some years ago, I published a detailed analysis with the 

hope that it would be “balanced enough to settle the question,” that is, to finally 

draw an adequate picture of the relations between Cantor and Dedekind [Ferreiros 

1993]. Here we shall mention the most important general results, but the reader is 

referred to that paper for further details. 

The traditional view is that, after their first encounter, Cantor and Dedekind 

became close friends and met each other frequently. The first biographer of Cantor, 

Fraenkel, speaks of frequent meetings, most of which happened in Harzburg (a 

town located in the Harz mountain range, not far from Braunschweig and Halle). If 

this were true, one would presume to find a fairly intense interchange of ideas be¬ 

tween both mathematicians. But, in fact, the total number of meetings that we can 

trace from available evidence is just six in a period of 28 years [Ferreiros 1993, 

especially Appendix I], The first meeting happened by mere chance, and the same 

seems to have been the case with the second meeting in 1874 [Cantor & Dedekind 

1976, 228-29], The other four meetings took place in 1877, 1882 and 1899.2 After 

careful analysis, it seems likely that 1872 and 1882 were the only chances for sig¬ 

nificant unnoticed intellectual exchanges. 

As regards the frequency of correspondence, it can be said that the exchange of 

letters followed a peculiar rhythm, with intense periods of contact followed by long 

gaps. The main exchanges occurred in 1873, 1877, 1882 and 1899, each time in 

connection with Cantor’s current work.3 For most of the intermediate periods, we 

have confirmation of the absence of any contact; we shall have occasion to mention 

some of the related documents.4 It is not infrequent to find Cantor expressing regret 

about this state of affairs [Cantor & Dedekind 1976, 233, 258] and signs of relief 

when contact is renewed [op.cit., 232, 259], This pattern contrasts rather sharply 

with other correspondence of both mathematicians, e.g. Cantor’s with Mittag- 

Leffler, which involved hundreds of letters over a short period of time, or Dede¬ 

kind’s with Lipschitz, Frobenius, and especially his sustained and constant corre¬ 

spondence with H. Weber.5 

1 E.g., regarding the connections between a suggestion of Dedekind and a proof of Cantor 

[Dugac 1976, 117], and concerning Cantor’s interpretation of his theorem of 1878 [op.cit., 121- 
22], 

2 In May 1877 Cantor visited Dedekind in Braunschweig on his way back home from the 

Gaussfeier at Gottingen [Lipschitz 1986, 88]; in September 1882 they met twice, first at Har¬ 

zburg and then at the Naturforscherversammlung in Eisenach [Cantor & Dedekind 1937, 55; 

1976, 255-56]; in September 1899 they met for the last time, presumably at Harzburg, to discuss 

the set-theoretical paradoxes [op.cit., 260-62; Landau 1917, 54], 

3 The same is true for shorter exchanges in Jan. 1879 and Jan. 1880 [Ferreiros 1993,356-57], 

4 See [Cantor & Dedekind 1976, 228-29 and 232-39], esp. [232, 233], 

5 Dauben [1979, 2] remarks that it is revealing of Cantor’s personality that his friendships 

were intense but brief. But his difficulties with Dedekind were somewhat different from those 

experienced with Schwarz or Mittag-Leffler, in good measure due to the different personality of 
each partner. 
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2. Non-denumerability of DS. 

In 1867 Cantor defended the thesis that in mathematics the art of posing questions 

is of more consequence than that of solving them, and his career seems to have 

reflected this maxim to a good extent. The Continuum Hypothesis is, of course, his 

most famous problem, the one he left to posterity as an open question. Second in 

importance, but making that problem possible, is the question he posed in 1873: 

can the reals be put in one-to-one correspondence with the natural numbers? Actu¬ 

ally, one of the most peculiar aspects of his crucial discovery of 1873 is the very 

fact that he came to pose the question and take it seriously.1 As a matter of fact, 

Cantor’s involvement with cardinality problems in the 1870s does not seem to be 

directly linked to open questions in real analysis, although he did hope that the 

notion of cardinality would come to play a role. His 1873 question was a specula¬ 

tive one and may seem related to his philosophical interests, in particular the in- 

finitistic philosophy of Spinoza (see §VIII.2 and [Purkert & Ilgauds 1987]). 

On the basis of documents that have since been lost, Fraenkel [1930, 199] indi¬ 

cated that Cantor had already considered cardinality questions in Weierstrass’s 

seminar at Berlin, where he proved that CD is denumerable. In one of his letters to 

Dedekind from 1873, he says that he had posed the question on DS. to himself sev¬ 

eral years before [Cantor & Dedekind 1937, 13]. According to this letter, he had 

always wondered whether the difficulty he encountered with it was merely subjec¬ 

tive or inherent in the question. Many years later he remarked that he had first tried 

to establish an enumeration of M, and only after several unsuccessful efforts did he 

attempt to establish that such an enumeration is impossible [Fraenkel 1930, 237]. 

Cantor’s solution to the problem was published in a paper that, peculiarly, bore 

the title ‘On a Property of the Collection of all Real Algebraic Numbers’ [Cantor 

1874], The property in question was the denumerability of algebraic numbers, 

demonstrated in § 1 of the paper; §2 showed the non-denumerability of DS. and ap¬ 

plied both results to a new proof of Liouville’s theorem asserting the existence of 

transcendental numbers. The content of the paper had been discussed with Dede¬ 

kind in letters of November and December 1873. We shall follow events in the 

correspondence rather closely, almost day by day, in order to clarify some aspects 

of the matter.2 

2.1. Denumerability of the algebraic numbers. On 29 Nov. 1873 Cantor posed 

his problem to Dedekind as follows: 

1 Dauben [1979, 49] tried to link it directly to the discovery that first species sets have no ef¬ 

fect on integration, but there is no evidence to support this conjecture - rather the contrary, for 

Cantor said he had considered the problem years before. 

2 I should indicate that the most complete present-day edition of Cantor’s correspondence 

[Meschkowski & Nilson 1991] only includes excerpts from the correspondence with Dedekind, 

which are insufficient to judge some of the events we are going to discuss. Readers who may 

wish to scrutinize my narrative and interpretations more closely should keep this fact in mind. 
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Take the collection of all positive integral individuals n and denote it by («); consider, fur¬ 

ther, the collection of all positive real numerical magnitudes x and denote it by (x); then the 

question is simply, can («) and (x) be correlated so that to each individual in one collection 

there corresponds one and only one in the other? At first sight one says to oneself, no it is 

not possible, for (n) consists of discrete parts, while (x) forms a continuum; but nothing is 

won with this objection, and as much as I tend to the opinion that (n) and (x) admit of no 

univocal correlation, I can still not find the reason, which is what interests me, but perhaps it 

is very simple.1 

One tends to think, he went on, that (n) cannot be correlated one-to-one with the 

collection (p/q) of positive rational numbers, and yet it can be correlated not only 

with that collection, but also with 

(any,n2,...nv ) > 

where the are positive integers, and v is arbitrary. By this Cantor seems to have 

meant what we would call the set of v-tuples <n\, n2, nf>. 

Dedekind answered immediately, acknowledging that he was not able to solve 

the problem. He remarked that the problem was not worthy of much effort, for it 

had no practical interest, but he formulated and proved in detail the theorem that 

the collection of all algebraic numbers was, in later terminology, denumerable. This 

theorem was subsequently published in §1 of Cantor’s paper [1874], 

At this point, I have to make clear that, as stated before, Dedekind’s original 

letters have been lost. Moreover, there is no extant draft for any of his letters to 

Cantor of late 1873. All the evidence we possess for establishing the historical facts 

comes from Cantor’s letters, and from a set of notes on the 1873 correspondence 

that Dedekind wrote at an unknown date. Thus, the main evidence is to be found in 

Cantor’s letters, which are normally sufficient to establish the main facts. As re¬ 

gards Dedekind’s notes, it is my opinion that they are quite reliable. The mere fact 

that he always kept them for himself, and never claimed the theorem, already gives 

a motive for believing them. Dedekind never had an explicit, overt interest in the 

matter, whereas Cantor certainly did. Likewise, the tone in which the notes are 

written and the way in which Dedekind underscores the importance of Cantor’s 

contributions speak for their objectiveness.2 

1 [Cantor & Dedekind 1937, 12]: “Man nehme den Inbegriff aller positiven ganzzahligen In- 

dividuen n und bezeichne ihn mit («); ferner denke man sich etwa den Inbegriff aller positiven 

reellen Zahlgrossen x und bezeichne ihn mit (x); so ist die Frage einfach die, ob sich (n) dem (x) 

so zuordnen lasse, dass zu jedem Individuum des einen Inbegriffes ein und nur eines des andern 

gehort? Auf den ersten Anblick sagt man sich, nein es ist nicht moglich, denn (n) besteht aus 

discreten Theilen, (x) aber bildet ein Continuum; nur ist mit diesem Einwande nichts gewonnen 

und so sehr ich mich auch zu der Ansicht neige, dass (n) und (x) keine eindeutige Zuordnung 

gestatten, kann ich doch den Grund nicht finden und urn den ist es mir zu thun, vielleicht ist er 
ein sehr einfacher.” 

- Naturally, my impression that the notes are objective is also based on my views regarding 

Dedekind’s personality, as a result of the general impression obtained from reading many other 

letters to Cantor and others, etc. It is impossible to convey this to readers of the present work, and 
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Cantor’s answering letter of Dec.2 [Cantor & Dedekind 1937, 13] confirms that 
Dedekind had sent a proof of the following 

Theorem 1: The field of algebraic numbers can be put in one-to-one correspon¬ 
dence with the set (n) of natural numbers. 

The proof presented in Cantor’s paper [1874, 116] goes as follows. Algebraic num¬ 

bers are, by definition, roots of polynomials with coefficients in © or, by a trivial 

transformation, in 7L. If we take irreducible polynomials with first coefficient cig 

positive, to each algebraic number cocorresponds a single polynomialp(x), so that 

p(co) = ag con + ai con~J + ... + an = 0. 

Dedekind and Cantor now call height of p(x) the positive integer N = n-1 +\ag\ + 

+ |a;| + ... + |a„|. To each algebraic number co there corresponds one height N, to 

each height only finitely many polynomials, and therefore finitely many algebraic 

numbers. This is the fundamental fact in virtue of which one can use the height of 

polynomials to enumerate the algebraic numbers: one forms a sequence beginning 

with those numbers corresponding to polynomials of lowest height, and orders 

numbers of equal height according to any criterion (e.g., in the case of IK. one may 

use the natural order). 

Cantor did not claim independent discovery of the theorem in any of his letters 

of the period. Nevertheless, in the letter of Dec. 2, he stated that Dedekind’s proof 

is “more or less the same” that he used to establish the result on <n\, n2, 

mentioned previously. “I take + n2 +... + nv = 9t and I order the elements ac¬ 

cordingly.”* 1 Apparently Cantor thought that this was reason enough to use his col¬ 

league’s proof in print without naming him. But both proofs are not equivalent. The 

main question is whether Cantor could have conjectured the result of Theorem 1. 

First and foremost, at the time Cantor never claimed to have proved, nor even 

independently conjectured, Dedekind’s result. Still, one might consider the possi¬ 

bility that he had seen a connection between denumerability of ^-tuples and that of 

polynomials, from which he could have conjectured Theorem 1. Nevertheless, 

Cantor’s proof works only when all /?,■ are positive, as he had explicitly required 

[Cantor & Dedekind 1937, 12], To show that the set of polynomials is denumerable 

one must extend Cantor’s result to /r-tuples of integers, and to this end one needs to 

take into account explicitly the number v of elements (n in Dedekind’s height 

above). Otherwise to each 9ithere will be infinitely many ^-tuples, because some nt 

may be zero, and enumeration fails. This is where both proofs differ. 

I must leave to other historians the task of making their own informed judgements about the 

issue. 

1 [Cantor & Dedekind 1937, 13]: “Der von Ihnen gelieferte Beweis, dass sich (n) den Korper 

aller algebraischen Zahlen eindeutig zuordnen lasse, ist ungefahr derselbe, wie ich meine Be- 

hauptung irn vorigen Briefe erharte. Ich nehme n2+n22+...+nv2 = 9t und ordne damach die 

Elemente.” 
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Thus, technical reasons make it implausible, too, that Cantor could even have 

conjectured the result. In his notes on the 1873 correspondence (published only in 

1937), Dedekind says: 

soon afterwards, this theorem and proof [1 above] were reproduced almost literally, includ¬ 

ing the use of the technical tenn height, in the treatise by Cantor in Crelle[’s Journal] vol. 

77, with the only divergence, maintained against my counsel, that only the collection of all 

real algebraic numbers is taken into account.1 

Dedekind’s advice of stating the proof for all (real or complex) algebraic numbers 

was given on Dec. 25, after receiving a letter of Cantor in which he communicated 

that he had written and sent to the Journal a short paper, in which Dedekind’s 

“comments” and “way of expression” had been very useful.2 The title read ‘On a 

Property of the Collection of all Real Algebraic Numbers’ [Cantor 1874; Cantor & 

Dedekind 1937, 17]. According to it, Dedekind’s result was the main content of the 

paper! 

Despite the objective tone that he attempted to keep in these notes, Dedekind’s 

astonishment at his colleague’s behavior is apparent. Cantor’s decision to restrict 

the formulation to real numbers was partly linked to the circumstances in Berlin, as 

he explicitly acknowledged [Cantor & Dedekind 1937, 17]. We shall have occasion 

to consider the way he presented the matter in §3 below, but now we must turn 

back to early December 1873, when Cantor found his crucial result on DS.. 

2.2. Non-denumerability of IE. In his notes, Dedekind wrote that his opinion 

had been that Cantor’s original question was not worthy of much effort, but this 

view had been dramatically contradicted by Cantor’s proof of the existence of tran¬ 

scendental numbers [Dedekind & Cantor 1937, 18], Having confirmed that the 

difficulty was a serious one, Cantor devoted a few days to the matter, and on Dec. 7 

he was able to prove rigorously that the positive real numbers 0<x<l cannot be 

univocally correlated with the positive integers («). On the same day he sent the 

proof to Dedekind, convinced that he would be, as he said, the most indulgent 

critic. One day later, Dedekind sent an answer with his congratulations for the 

beautiful result [op.cit., 14-15, 19], 

Cantor proceeded by reductio ad absurdum. Assuming an enumeration of the 

reals numbers in (0,1) as given, he showed that there must be at least one such 

number not contained in that enumeration. The assumption that all real numbers in 

(0,1) can be enumerated thus leads to a contradiction, i.e., the reals in (0,1) cannot 

be mapped one-to-one to the naturals (n). The original proof of 1873 is quite differ- 

1 [Cantor & Dedekind 1937, 18]: “dieser Satz und Beweis ist bald darauf fast wortlich, selbst 

mit dern Gebrauch des Kunstausdruckes Hohe, in die Abhandlung von Cantor in Crelle Bd. 77 

iibergegangen, nur mit der gegen meinen Rath festgehaltenen Abweichung, dass nur der Inbegriff 

aller reellen algebraischen Zahlen betrachtet wird.” 

2 [Cantor & Dedekind 1937, 17]: “Dabei kamen wir, wie Sie spater finden werden, Ihre, mir 

so werthen, Bemerkungen und litre Ausdrucksweise sehr zu statten.” 
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ent from the famous, later proof by diagonalization. While this latter proof [Cantor 

1892] could be regarded as purely arithmetical, the former one employed topologi¬ 

cal properties of D5. and is quite interesting. In particular, Cantor employed the Bol¬ 

zano-Weierstrass principle which, in modern terminology, states that an infinite 

sequence of nested closed intervals of real numbers must have a nonempty inter¬ 

section (see §IV.4.2). 

The assumption, then, is that we have an infinite sequence 

(I) X], x2, x3, ... 

containing all real numbers in (0,1). Cantor’s proof of Dec. 7 was still quite com¬ 

plex, he decomposed the sequence (I) into infinitely many sequences, such that the 

members of each one are ordered by size. On this basis he was able to define a 

sequence of nested intervals, and the Bolzano-Weierstrass principle (that he as¬ 

sumed implicitly) yielded the existence of a real number r\ not in (I) [Dedekind & 

Cantor 1937, 14-15]. This proof admitted of a simplification that Dedekind gave in 

his letter of Dec. 8, by avoiding the intermediate step of decomposing (I) into fur¬ 

ther sequences. Cantor sketched the same simplification in a letter of the following 

day.1 

The second theorem can be stated as follows: 

Theorem 2. Given any sequence of real numbers, one can determine in any interval 

(a,(3) a real number q that does not belong to that sequence [Cantor & Dedekind 

1937, 16], 

The proof that Cantor presented in [1874, 117] is the following. Assume given an 

infinite sequence of the form (1) and an interval (a,(3). Call a', (3' the first two 

numbers in the sequence (I) that fall within (a,(3), so that a'< (3'; call a", [3" the 

first two numbers in (I) that fall within (a',(3'), so that a"< [3"; and so on. By con¬ 

struction, of must antecede of' and (3' must antecede (3” in the sequence (I), and we 

have a'< a"< and ... (3' < (3 < (3' . We thus obtain a sequence of nested 

closed intervals [a",[3"]; by the Bolzano-Weierstrass principle we conclude that 

there is a real number q that belongs to all of the [a”, (3”]. This number cannot 

belong to (I), for then we would have q = xp, but xp cannot, by construction, lie 

within the p-th interval {of, [3A), which contradicts our assumption. 

As a matter of fact, the final part of Cantor’s published proof is more detailed 

and circumvented. Instead of directly applying the Bolzano-Weierstrass principle, 

it considers three different cases. Either the number of intervals obtained in the 

above construction is finite, the last being [a'1, (3”]; in this case any qe(of', (3,!) 

will do. Or we obtain infinitely many intervals, in which case we have a monotoni- 

cally increasing, bounded sequence (a”) with limit a”, and a monotonically de- 

1 Dedekind seems to have come to doubt the veracity of this independent simplification 

[Cantor & Dedekind 1937, 16, 19]. 
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creasing, bounded sequence (f3n) with limit (3”. Then it may be that oc°°=(300, as 

happens when (I) is the collection of all real algebraic numbers, but r|=occo=pco 

cannot belong to (I), for the reason given above. Or it may happen that ac°<P°0, in 

which case any r\e (a00, (500) will do. This constitutes a proof of the Bolzano-Weier- 

strass principle on the basis of Dedekind’s preferred proposition (see §IV.2.3) that 

every monotonically increasing, bounded sequence of real numbers has a limit. 

Dedekind wrote later, in reference to Cantor’s letter of the 7th: 

To this letter, which I received on December 8, I replied on that same day with my con¬ 

gratulations on the beautiful success, and at the same time I ‘mirrored’ the kernel of the 

proof (that was still quite complicated) in a greatly simplified way; this exposition was also 

reproduced almost literally in Cantor’s treatise (Crelle[‘s Journal] vol. 77); but the phrasing 

that 1 had employed, ‘according to the principle of continuity,’ was avoided at the corre¬ 

sponding place! (p. 261, I. 10—14)1,2 

Here again, Dedekind betrays his astonishment: Cantor’s behavior did not appear to 

be the result of inadvertence, for he had intentionally avoided a passage that con¬ 

tained a reference to Dedekind’s ‘Continuity and Irrational Numbers’ [1872].3 The 

fact that the published version contains a proof of the Bolzano-Weierstrass princi¬ 

ple seems to support Dedekind’s comments. Cantor had used the principle implic¬ 

itly on Dec. 7, as if it were self-explanatory,4 and was still using it as late as 1884, 

when he remarked that it was hardly possible to replace it by an essentially different 

one [Cantor 1879/84, 212], But Dedekind, with his typical penchant for systematic 

development, preferred to derive it from the principle of continuity and the theorem 

that he took as basic for analysis in [Dedekind 1872], 

Cantor’s new theorem solved completely the initial question, but at the same 

time it opened up a vast new field of research. In one of his letters of early Decem¬ 
ber he wrote: 

I conclude from that, that among the collections and sets of values there are differences in 

essence, that until recently I could not examine.5 

1 This corresponds to the first five lines of the last paragraph of [Cantor 1874, 117], that is, to 

the point where the existence of a" and P“ is inferred. 

2 [Cantor & Dedekind 1937, 19]: “Diesen, am 8. December erhaltenen Brief beantworte ich an 

demselben Tage mit einern Gliickwunsch zu dem schonen Erfolg, indem ich zugleich den Kern 

des Beweises (der noch recht compliciert war) in grosser Vereinfachung ‘wiederspiegele’; diese 

Darstellung ist ebenfalls fast wortlich in Cantor’s Abhandlung (Crelle Bd. 77) iibergegangen; 

freilich ist die von rnir gebrauchte Wendung ‘nach dem Prinzip der Stetigkeif an der betreffen- 
den Stelle (S. 261, Z. 10-14) vermieden!” 

3 Recall that Cantor’s related paper [1872] did not mention any ‘principle of continuity.’ 

4 His exact words are [Cantor & Dedekind 1937, 15]: “Es lasst sich nun stets wenigstens eine 

Zahl, ich will sie r\ nennen, denken, welche im Innern eines jeden dieser Intervalle liegt; von 

dieser Zahl q, welche offenbar >0<|, sieht man rasch, dass sie in keiner unserer Reihen ... enthal- 

ten sein lcann.” 

5 [Cantor & Dedekind 1937, 16]: “ich schliesse daraus, dass es unter den Inbegriffen und 

Werthmengen Wesensverschiedenheiten giebt, die ich bis vor Kurzem nicht ergrimden konnte.” 
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The realm of infinity had turned out to be far more interesting than it had ever 

seemed, for it was possible to draw distinctions among infinite sets - in some sense, 

they were of different sizes. At this point, many new questions could be posed: are 

there sets of other ‘sizes,’ different from those of M and IE?; what is the precise 

contribution of irrational numbers to that particular difference in size?; does the 

new distinction allow applications in the theory of real functions? The reader 

should pause to consider that possibilities were wide open. For instance, it might 

have turned out that the set of irrational numbers is of a ‘size’ intermediate between 

those of Fd and IE, so that the ‘sizes’ of Fd and of the irrational numbers add up to 

that of IE. 

Cantor considered all of these questions, and this distinguishes him from all 

other mathematicians of the time, including Dedekind, who never again partici¬ 

pated actively in the development of the novel ideas of his colleague. E.g., it was 

only in 1899 that he included again a mathematical proof in one of his letters 

[Cantor & Dedekind 1932, 449], Still, there was something in common between 

both mathematicians, a disposition to accept the highly abstract theoretical implica¬ 

tions of results as the above. We shall see that this was far from being a common¬ 

place attitude at the time. 

3. Cantor's Exposition and the 'Berlin Circumstances' 

On Christmas day, 1873, Cantor informed Dedekind that he had written and sent to 

the Journal fur die reine und angewandte Mathematik an article, whose title he 

specified, containing the results they had recently discussed in their correspondence 

[Cantor & Dedekind 1937, 16-17]. Initially it had not been his intention to publish, 

but while in Berlin he communicated those results to Weierstrass, who visited him 

one day later in order to get the details of the proofs; “he was of the opinion that I 

should publish the matter, as long as it is related to the algebraic numbers.”1 Cantor 

mentioned that he had made use of Dedekind’s comments and ways of expression. 

Weierstrass’s opinion explains why Cantor chose the title ‘On a Property of the 

Collection of all Real Algebraic Numbers;’ no reference was made to the surprising 

property of the set of real numbers later called non-denumerability. In his answer, 

Dedekind recommended that he drop the word ‘real’ from the title, since the proof 

extends immediately to all algebraic numbers, but Cantor stuck to that restriction, 

partly for expository reasons, partly due to the “circumstances here,” namely in 

Berlin [den hiesigen Verhaltnissen; op.cit., 17, 20]. 

The proof of denumerability of the algebraic numbers appears relatively trivial 

to us today, because we are perfectly accustomed to the notion of denumerability 

itself, and also to the general strategy of denumerability (and non-denumerability) 

proofs. Weierstrass’s reaction suggests that, back in 1873, such a proof was by no 

1 [Cantor & Dedekind 1937, 17]: “er meinte, ich musste die Sache, soweit sie sich auf die al- 

gebraischen Zahlen bezieht, veroffentlichen.” 
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means trivial. His interest was due to the fact that the result offered him an inter¬ 

esting tool for the definition of special functions. Weierstrass had already employed 

enumerations of the rational numbers to define ‘pathological’ functions, and in 

Dec. 1874 he communicated to Schwarz an example of a continuous function f(x), 

based on Theorem 1 above, that is differentiable for transcendent x but non- 

differentiable for algebraic x [Dugac 1973, 140], Weierstrass’s attitude seems to 

grant the conclusion that, at a time when abstract set theory was in the future, de¬ 

numerability problems and proofs were anything but trivial or self-evident. 

The text of the article was also adjusted to the orientation expressed in the title. 

The abstract result that DSL is non-denumerable was not at all emphasized. As Cantor 

presented it, Theorem 2 was proved in order to give an application of the main 

result: a new proof of Liouville’s theorem that within any prescribed interval (a,(3) 

there are infinitely many transcendent numbers (reals that are not algebraic) [Cantor 

1874, 115-16]. The ‘essential differences’ between infinite sets, that were particu¬ 

larly interesting to Cantor, were only indicated as an addition or afterthought: 

Besides, the theorem of §2 presents itself as the reason why the collections of real numerical 

magnitudes that constitute what is called a continuum (say all real numbers that are >0 and 

<1) cannot be univocally correlated with the collection (v) [of all natural numbers]; thus I 

find the clear distinction between a continuum and a collection of the kind of the totality of 

all real algebraic numbers.1 

Dugac has called attention to an interesting passage in a letter of Dec. 27 where 

Cantor remarks that, following Weierstrass’s counsel, he had initially omitted “the 

comment on the essential differences between the collections,” but that he could 

include it later as a “marginal note.”2 This he did while proof-reading the paper, and 
the result is the text we have quoted. 

It thus seems that Weierstrass repudiated the idea that there may be essential 

differences among infinite sets.3 This is a clear indication of Weierstrass’s semi¬ 

constructivism, that sheds new light on the preference for the finite and the con¬ 

structive evidenced in his theory of real numbers and his approach to analysis (see 

chapter IV). Weierstrass was not a radical constructivist, for he accepted ‘classical’ 

notions and results concerning the real numbers, but to some extent he was close to 

1 [Cantor 1874, 116]: “Ferner stellt sich der Satz in §.2 als der Gmnd dar, warum Inbegriffe 

reeller Zahlgrossen, die ein sogenanntes Continuum bilden (etwa die sammtlichen reellen Zahlen, 

welche >0 und <1 sind) sich nicht eindeutig auf den Inbegriff (v) beziehen lassen; so fand ich 

den deutlichen Unterschied zwischen einem sogennanten Continuum und einem Inbegriffe von 

der Art der Gesammtheit aller reellen algebraischen Zahlen.” 

2 [Cantor & Dedekind 1976, 226]: “Die Bemerkung iiber den Wesenunterschied der Inbe¬ 

griffe hatte ich sehr gut mit aufnehmen konnen, Hess ihn auf Herm Weierstrass Rat fort; konnte 

ihn aber als Randnote spater, bei der Correctur, doch anbringen.” 

3 In the summer of 1874 he gave a course where he stated that two “infinitely great magni¬ 

tudes” are not comparable and can always be regarded as equal, and that applying the notion of 

equality to infinite magnitudes does not lead to any result (Hettner redaction, [Dugac 1973, 

126]). This might perhaps be related to his opinions on infinite sets. 



§3. Cantor’s Exposition and the “Berlin Circumstances” 185 

his colleague Kronecker. It is unclear when his attitude changed, but there is evi¬ 

dence that by the mid-1880s he was accepting the conclusion that infinite sets are 

of different powers (see Weierstrass’s letter of 1885 in [Mittag-Leffler 1923, 194]). 

A closer look at Cantor’s paper indicates that his whole presentation might be 

called semi-constructive. By establishing an enumeration of the algebraic reals and 

giving a method which allowed the determination within any given interval (a,(3) of 

numbers not contained in that enumeration, he was offering an effective procedure 

for the calculation of transcendent numbers. This seems to have been the expository 

reason behind his presentation. One might expect that kind of result would be 

agreeable to Weierstrass - even though his reactions and counsels suggest that this 

was not his initial reaction. On the other hand, the abstract non-denumerability 

result ran counter to traditional assumptions. Had Cantor emphasized it, as he did in 

the correspondence with Dedekind, there is no doubt that Kronecker and Weier¬ 

strass would have reacted negatively. To summarize, the first contribution to trans- 

finite set theory appeared under quite complex circumstances, offering far from a 

clear perspective on Cantor’s thoughts and interests. This explains the need he later 

felt to explain it again and throw new light on the crucial result of 1873. 

The ‘Berlin circumstances’ may also have been related to Cantor’s attitude 

toward Dedekind.1 A milder, but somewhat similar episode of ingratitude happened 

a few years later, in connection with [Cantor 1878] (see §4). On other occasions, 

Cantor had been honest and appreciative toward his colleagues; for instance, his 

papers of 1870-72 on trigonometric series acknowledge debts to Heine, Schwarz, 

Weierstrass, and Kronecker.2 But all of these names were closely tied to the Berlin 

school. Moreover, there is some evidence that Kronecker and Kummer were an¬ 

gered with Dedekind after the publication of his theory of algebraic numbers in 

1871. Allegedly, Kronecker possessed an equivalent theory since 1858, although he 

published it only in 1882 (see [Edwards 1980, 329]). Frobenius wrote that Kro¬ 

necker had never acknowledged Dedekind’s priority, and had never forgiven him 

for that publication. In a letter of 1883, Cantor remarked that Kronecker would be 

angered by seeing his name alongside Dedekind’s in connection with algebraic 

number theory.3 On the occasion of a visit he paid to Kummer in the 1880s, Dede¬ 

kind was received with the unfriendly salute “so you are coming to see whether I 

will pass away soon.”4 
These circumstances simply reflect the rather tense atmosphere of opposition 

between schools that reigned in Germany by the late 19th century. Cantor was in 

good relations with the Berlin masters throughout the 1870s. His famous confron¬ 

tation with Kronecker only emerged after 1882, and there is evidence of fluid rela- 

1 For further details on this topic, see [Ferreiras 1993, 35-52], 

2 [Cantor 1932, 71, 82, 84]. Nevertheless, his later problems with du Bois-Reymond and Har- 

nack (chapter V) are somewhat reminiscent of those he had with Dedekind, though milder. 

3 Frobenius to Dedekind, 1895 [Dugac 1976, 280; Ferreiras 1993, 351-52], Cantor to Mittag- 

Leffler, 1883 [Meschkowski & Nilson 1991, 144]. 

4 Mentioned by Dedekind in conversation with Bernstein in 1911 [Dedekind 1930/32, vol. 3, 

481]: “Er sagte: Sie kommen wohl, urn zu sehen, ob ich nicht bald abgehe.” 
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tions in 1877 and 1879 [Grattan-Guinness 1974, 112; Dugac 1976, 233]. Thus, one 

can safely say that he never faced more opposition from Kronecker than did Weier- 

strass himself [Biermann 1988, 137-39], It seems that Cantor was well aware of the 

feelings of Kummer and Kronecker back in 1873, and that he feared the enmity of 

the Berlin masters had he acknowledged Dedekind’s collaboration in a published 

work. This would certainly have handicapped his academic career, for which Can¬ 

tor entertained high hopes in the 1870s. In a word, the admiration of Weierstrass, 

fear of the reaction of Kronecker and Kummer, and fidelity to the Berlin school, 

weighed more than honesty to Dedekind, after all an isolated man without influence 

on university life. 

Dedekind never discussed the uncomfortable events of 1873/74 openly with 

Cantor [Cantor & Dedekind 1937, 20]. This seems somewhat characteristic of his 

personality: an extremely formal man, he probably took it for granted that Cantor 

would have to make the first move and explain his behavior. His interest in avoid¬ 

ing public polemics became explicit in an article of 1901, where he employs the 

“important property” of the field of algebraic numbers that Cantor “had been the 

first” to emphasize. A footnote indicates that Dedekind had “also” found that theo¬ 

rem but doubted whether it was fruitful until Cantor offered his beautiful proof of 

the existence of transcendental numbers [Dedekind 1930/32, vol. 2, 278], 

Nevertheless, from May 1874 onward Cantor’s letters remained unanswered 

(see [Cantor & Dedekind 1937, 21; 1976, 228-29]). Both met again by chance in 

Switzerland around October 1874, but in the light of all the evidence available, the 

meeting was probably less than cordial. A letter by Cantor of October 1876 con¬ 

firms that two more years passed without any news from each other [1976, 229], In 

addition, many years later Cantor himself recalled the tensions; in a letter to Hilbert 

of 1899 he speaks about his old desire to communicate with Dedekind on the prob¬ 

lem of the paradoxes, saying: 

Only this fall did I have the opportunity to discuss it with him, because for reasons unknown 

to me, he had been angry with me for years, and from 1874 he had almost broken off the 

earlier correspondence of 1871.1 

This letter was written during a period in which Cantor was about to begin suffer¬ 

ing serious attacks of mental illness [Grattan-Guinness 1971, 365-68], which may 

explain some of its peculiarities and forces us to treat its contents carefully. Still, as 

regards a break in the correspondence it fits well with the rest of the evidence. 

1 [Purkert & Ilgauds 1987, 154; Meschkowski & Nilson 1991, 414]: “Die Gelegenheit erhielt 

ich von ihm erst in diesem Herbst, da er mir aus mir unbekannten Grunden jahrelang geziimt und 

die alte Correspondenz von 1871 seit 1874 circa abgebrochen hatte.” Italics in the original. 
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4. Equipollence of Continua BS. and Mn 

Already in January 1874 Cantor had posed a new question, a kind of follow-up to 

the previous denumerability problems: 

Is it possible to correlate univocally a surface (say a square with inclusion of the boundary) 

with a line (say a straight segment with inclusion of the extremes), so that to each point of 

the surface there corresponds a point of the line and, inversely, to each point of the line a 

point of the surface?1 

He tended to think, no, but he was convinced that the question would be very diffi¬ 

cult to answer. Although Cantor still sent a few letters, Dedekind did not reply, not 

even after Cantor repeated the question in May. Only in 1877 did Cantor find the 

opportunity to discuss the problem with his colleague again. The year before Dede¬ 

kind had taken the initiative to send a couple of papers, his biography of Riemann 

and his French exposition of ideal theory. Thus he showed he was now open to 

reconciliation; in 1877 they discussed again on irrational numbers and finally came 

back to Cantor’s question. 

By then, Cantor had found a simple proof that it was indeed possible to corre¬ 

late one-to-one domains of any finite or (denumerably) infinite number of dimen¬ 

sions with a segment [Cantor & Dedekind 1937, 34], His formulation of the result 

in 1877 was much more abstract than it had been three years ago. As a matter of 

fact, Cantor followed very closely the terminology of Riemann [1854]: 

A continuous manifold expanded in n dimensions can be coordinated univocally and com¬ 

pletely with a continuous manifold of one dimension.2 

The Riemannian aspects of Cantor’s paper will be analyzed in §4.3. By this time he 

was also using the word “power” [Machtigkeit] for an extremely important new 

notion, that would become one of the cornerstones of transfinite set theory. Thus, 

he was able to state his new result as follows: two continuous manifolds, one of n 

dimensions, the other of m dimensions, are of the same power [Cantor 1878, 122], 

The 1878 paper in which he published those results bore the title ‘A contribution to 

the theory of manifolds,’ and would be of great significance. 

1 [Cantor & Dedekind 1937, 20]: “Lasst sich eine Flache (etwa ein Quadrat mit Einschluss der 

Begrenzung) eindeutig auf eine Linie (etwa eine gerade Strecke mit Einschluss der Endpunkte) 

eindeutig beziehen [sic], so dass zu jedem Puncte der Flache ein Punct der Linie und umgekehrt 

zu jedem Puncte der Linie ein Punct der Flache gehort?” 

2 [Cantor 1878, 122]: “Eine nach n Dimensionen ausgedehnte stetige Mannigfaltigkeit lasst 

sich eindeutig und vollstandig einer stetigen Mannigfaltigkeit von einer Dimension zuordnen.” 

This is almost exactly the formulation of [Cantor & Dedekind 1937, 29], 
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In his letter of June 1877 Cantor indicated that, for several years, his opinion 

had been that such a one-to-one correlation was impossible, and so he wished to 

know whether Dedekind considered the proof “arithmetically rigorous” [Cantor & 

Dedekind 1937, 25-26]. A few days later he wrote about his anxiety to know 

Dedekind’s reaction, for the new results were so unexpected and new that, before 

receiving his approval, he was only able to say: ‘je le vois, mais je ne le crois pas’ 

[I see it, but I do not believe it]. Dedekind indeed found a slight problem in that 

simple proof, but Cantor was in the possession of a more complex proof that his 

colleague acknowledged as completely rigorous. Dedekind also contributed to put 

the new theorem in focus by rigorously formulating the invariance of dimension 

under bicontinuous mappings (what we call homeomorphisms). Although these 

contributions were perhaps less important than the one he made to Cantor’s earlier 

paper, once again he had the unpleasant experience of seeing his remarks included 

in Cantor’s publication [1878] without mention of the source. 

4.1. The notion of power in 1878. Cantor’s letters to Dedekind of June and 

October 1877 show that by then he was fully in the possession of the crucial new 

notion of the power or cardinality of an infinite set [Cantor & Dedekind 1937, 25, 

40-41]. Interestingly, the word was taken from a lecture course by Steiner, where it 

was used to denote one-to-one projective coordinations [Cantor 1879/84, 151], 

Cantor began to employ it in a much more general sense, and started his 1878 arti¬ 
cle with a definition of the new notion. 

If two well-defined manifolds M and N can be coordinated with each other univocally and 

completely, element by element (which, if possible in one way, can always happen in many 

others), we shall employ in the sequel the expression, that those manifolds have the same 

power or, also, that they are equivalent 

The same definition can be found in the letter of October 1877 mentioned above; 

today we would say equipollent instead of ‘equivalent.’ Cantor went on to present 

the basic idea of subset or part [Bestandtheil] and to indicate elementary results on 

powers, some of which would later be regarded as theorems whose demonstration 
was problematic. 

While many findings in transfinite set theory have been quite surprising and 

contrary to presumed ‘intuitions,’ a few basic results appear intuitively clear. The 

following is one of the clearest instances. Cantor stated without proof that when¬ 

ever M and N do not have the same power, either M is equivalent to a part of N (the 

power of M is less than that of N) or N is equivalent to a part of M (the power of M 

is greater than that of N) [Cantor 1878, 119]. This is the theorem of comparability 

of cardinals, which remained unproved until 1904 when Zermelo established it as a 

1 [Cantor 1878, 119]: “Wenn zwei wohldefinirte Mannigfaltigkeiten M und N sich eindeutig 
und vollstandig, Element fur Element, einander zuordnen lassen (was, wenn es auf eine Art 
moglich ist, immer auch noch auf viele andere Weisen geschehen kann), so moge fur das Fol- 
gende die Ausdrucksweise gestattet sein, dass diese Mannigfaltigkeiten gleiche Mdchtigkeit 
haben, oder auch, dass sie dquivalent sind.” 
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corollary to the well-ordering theorem, by employing the Axiom of Choice (§IX.3). 

A decade earlier Cantor [1895/97, 285] had called attention to the need to prove 

carefully the result conjectured in 1878, and he was perfectly aware that well¬ 

ordering implied comparability of powers. 

Coming back to the 1878 paper, Cantor went on to give some examples of pow¬ 

ers. First we have the powers of finite manifolds, which coincide with the number 

of elements in the customary sense of the word. At this point, he warned the reader 

that infinite powers have a peculiar property: while the power of a part of a finite 

set M is always less than that of M itself, “this relation disappears completely in 

infinite manifolds, i.e., those that consist of infinitely many elements.”1 The fact 

that a manifold is a part of another, or is equivalent to a part of another, does not at 

all imply that the power of the first is smaller than that of the second [1878, 120]. 

This was traditionally regarded as paradoxical, in the strong sense of contradictory, 

for it went counter to the Euclidean principle that the whole is greater than the part. 

Ten years later, when Dedekind employed that peculiar property for a definition of 

infinite set, Cantor let him know that he had the priority, because he had published 

the above sentence back in 1878.2 But indicating a property and using it as a defini¬ 

tion on which to base a theory are completely different things; in this case, the first 

was done already by Galileo in the 17th century, and in the 19th by Bolzano, who - 

like Cantor - denied any contradictory character in that property of infinite sets. 

According to Dedekind, Cantor was astounded when in 1882 he showed him that 

there was indeed a simple definition of infinitude: “at times one possesses some¬ 

thing, without judging its value and significance adequately.”3 

The series of positive integers, RJ, constitutes the least infinite power; by this 

time, Cantor was not yet speaking of ‘denumerable’ [abzahlbare] sets, an expres¬ 

sion he started employing in 1879. But, he went on, in spite of being only the first 

infinite power the corresponding class of manifolds is quite rich. Among them we 

find the fields of algebraic numbers that Dedekind had defined in 1871,4 and also 

the point-sets of the first species that Cantor had defined in 1872 (such that the 

derived set Pn is empty for some finite n). Also included are the set of real or com¬ 

plex algebraic numbers, the ‘double sequences’ [Doppelreihen] - sets of pairs, and 

the ‘n-ply sequences’ [«-fachen Reihen] - sets of ^-tuples [Cantor 1878, 120], 
Finally, Cantor presented two basic theorems that, employing terminology he 

introduced slightly later, can be formulated as follows: 

If Mis a denumerable set, then every infinite part [subset] of M is denumerable. 

If M', M”, M”\ ... is a finite or infinite sequence of denumerable sets, their union 

M is also denumerable. 

1 [Cantor 1878, 120]: “dieses Verhaltniss hort ganzlich auf bei den unendlichen, d.i. aus einer 
unendlichen Anzahl von Elementen bestehenden Mannigfaltigkeiten.” 

2 The reader will recall that Dedekind stated his definition for the first time in 1872 (§111.6). 

3 Dedekind to Weber, January 1888 [Dedekind 1930/32, vol. 3, 488]: “man besitzt bisweilen 

Etwas, ohne dessen Werth und Bedeutung gehorig zu wiirdigen.” 

4 More precisely, Cantor mentions ‘finite fields’ [endliche Korper], i.e., finite extensions of CL 
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In 1882 he would remark that these two theorems are the basis for any denumer¬ 

ability proof [Cantor 1879/84, 152], 

The only other infinite cardinality that was known to Cantor at this time, was 

that of the continuum. His 1878 paper was devoted to an investigation of the pow¬ 

ers of n-ply manifolds [Cantor 1878, 120] and established that IE" has the same 

power as IE, which justifies our talking of the power of the continuum. As a result 

of his investigations on infinite powers, Cantor was led to conjecturing a first ver¬ 

sion of the Continuum Hypothesis; calling “linear manifold” any infinite subset of 

IR, he ended the paper saying: 

By an inductive reasoning, into which we shall not enter here,1 the theorem appears plausible 

that the number of... classes of linear manifolds is finite, and precisely equal to two. 

According to this, the linear manifolds would consist of two classes, the first of which 

includes all manifolds that can be brought into the form: functio ips. v (where v passes 

through all positive integral numbers); while the second consists of all those manifolds that 

can be reduced to the form: functio ips. x (where x can take all real values >0 and < 1 ).2 

Cantor promised to return to this question in the future, and he certainly did. With 

this conjecture, he had stated a basic goal for his future investigations, a leading 

objective that would, however, remain inaccessible. 

4.2. The theorem in the correspondence of 1877. As we have seen, Cantor was 

now in the possession of some abstract set-theoretical terminology, built around the 

words ‘manifold’ and ‘power.’ But, in order to formulate his questions in an arith¬ 

metically rigorous way, he preferred to phrase them in the terminology of analysis, 

namely speaking of variables and functions - this he called “purely arithmetical.” 

The question whether two manifolds IE and IE" can be coordinated one-to-one (see 

above) was rephrased as follows: consider p independent “variable real magni¬ 

tudes” X]... xp and another variable^, all of which take values in [0,1]; is it possible 

to correlate each “system of values” (x]: x2, ... xp) with a single value y, and in¬ 

versely? [Cantor & Dedekind 1937, 25; Cantor 1878, 122], As we see, this formu¬ 

lation is not purely set-theoretical, but employs the language of variables usual in 

analysis. Cantor used all kinds of means taken from traditional arithmetic and 
analysis in order to solve the question. 

The proof that he communicated to Dedekind in June 1877 was surprisingly 

simple; one can infer the general strategy from the simplest case, in which we have 

1 For a detailed analysis of this topic, including some remarks on this ‘inductive reasoning,’ 
see [Moore 1989]. 

2 [Cantor 1878, 132-33]: “Durch ein Inductionsverfahren, auf dessen Darstellung wir hier 
nicht naher eingehen, wird der Satz nahe gebracht, dass die Anzahl der ... Klassen linearer Man- 
nigfaltigkeiten eine endliche und zwar, dass sie gleich zwei ist. / Darnach wiirden die linearen 
Mannigfaltigkeiten aus zwei Klassen bestehen, von denen die erste alle Mannigfaltigkeiten in 
sich fasst, welche sich auf die Form: functio ips. V (wo v alle positiven ganzen Zahlen durchlauft) 
bringen lassen; wahrend die zweite Klasse alle diejenigen Mannigfaltigkeiten in sich aufnimmt, 
welche auf die Form: functio ips. x (wo x alle reellen Werthe >0 und <1 annehmen kann) 
zuriickfuhrbar sind.” 



§4. Equipollence of Continua M. and Mn 191 

only two variables X], X2. Employing the decimal representation, each point in the 

unit square is determined by two numbers 0.a,]a2... and 0It suffices to cor¬ 

relate those two numbers with the single one O.ccjfiia2fi2... in the unit segment 

[Cantor & Dedekind 1937, 26], Dedekind found the following problem: since the 

decimal representation is not univocal - e.g., % = 0.25 = 0.2499... - , Cantor had 

established the convention that finite representations are excluded; as a result, some 

points in the segment are not correlated to any point of the square or, in modern 

terms, the image of the one-to-one mapping is a subset of [0,1], (This proof and its 

‘faultiness’ can be found in [Cantor 1878, 130-31].) Dedekind ended by saying that 

he did not know whether the objection was an essential one [op.cit., 28], But, of 

course, in some sense Cantor had proven more than he wanted, as he remarked in 

his reply [ibid.]. 

It seems convenient to pause at this point and consider the situation. Cantor had 

established a one-to-one correspondence between an rc-dimensional continuum and 

a proper part of a one-dimensional continuum; one can trivially define another 

correspondence with the inverse effect. Was this not enough to regard the theorem 

as proven? None of the correspondents indicated this possibility, and it is evident 

that both assumed as an essential requirement that the correspondence should be 

exhaustive. The proof 1 have just sketched would rest on the Cantor-Bemstein 

theorem, that Cantor formulated but was not able to prove.1 But in 1877 there was 

no general theorem of set theory to rely on, and the penchant for arithmetical rigor 

that was characteristic of both Dedekind and the Berlin school demanded the im¬ 

mense effort of proving every single result in full detail and in the most explicit 

way. The reader should take this into account in order to appreciate the nature of 

Cantor’s early work on set theory. 

A couple of days later, Cantor sent Dedekind a much more complex proof that 

he had found earlier than the other one. This proof is interesting in several ways; it 

gives us an indication of the topics that had occupied Cantor’s attention in the long 

period from 1874 to 1877. We shall not enter into all details here.2 Essentially, the 

proof rests on two lemmas: the first is a version of the above theorem, but restricted to 

points in IE. and IE" with irrational coordinates. Cantor takes these points as repre¬ 

sented by continuous fractions (which completely avoids the possibility of double 

representation) and proves that to each irrational coordinate system of IE" one can 

associate a single irrational coordinate, following the strategy indicated above, so 

that the correspondence is one-to-one [Cantor & Dedekind 1937, 29-30; Cantor 

1878, 123], The second lemma is a proof that the irrational numbers in [0,1] can be 

univocally correlated with the whole interval [0,1] [Cantor & Dedekind 1937, 30- 

37; Cantor 1878, 124-29], 

1 We shall see in §VII.4 that Dedekind was the first to prove it in 1887. 

2 See [Cantor & Dedekind 1937, 29-33] or [Cantor 1878, 122-29], An English exposition can 

be found in [Dauben 1979, 60-65]. 
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The second result was particularly difficult to establish. Although Cantor did 

not indicate it explicitly, the lemma establishes that the set of irrational numbers has 

the power of the continuum. As we see, in his research on infinite powers Cantor 

had considered and solved the question: what is the cardinality of the set of irra¬ 

tional numbers? This was extremely important in order to clarify how irrational 

numbers contribute to the difference in power between (D and DR. 

In October 1877, Cantor found and sent to Dedekind a new and much easier 

proof that the irrational numbers have the power of the continuum. Both this [1878, 

129-30] and the earlier proof found their way into the paper, because of the intrin¬ 

sic interest of the lemmas involved. It will be worth presenting the second proof in 

exactly the same way as Cantor formulated it in the correspondence and the article, 

so that the reader can observe the way in which he employed variables. The theo¬ 

rem is: 

Given a variable e that takes all irrational values >{)<v and another one x that assumes all 

rational and irrational values that are >0 and < 1, 

e ~ x} 

a~b means that the values of the variable a can be correlated one-to-one with those 

of the variable b. Denote by ())v the sequence of all rational numbers in [0,1], by qv 

V2 
any sequence of irrational numbers (e.g. T)v = -); and consider a variable h that 

2n 
takes all values in [0,1] with the exception of those of (j)v and r|v. Then we have: 

x = { h, T|v, (j)v } 

e= ( Mv }• 

Cantor employs here a peculiar notation for the union set or, more precisely, the 

‘union’ of variables. But by a trivial transformation we can also write the last for¬ 
mula as follows: 

e = {^9 fi2v-l> fi2v } ■ 

Considering that h~ h,r\v~ T|2v-i, and (J>v ~ r|2v> we may conclude that 

x ~ e. 

The proof proceeds by decomposing both sets into disjoint sets that are pairwise 

equipollent, and it relies on the easy (but implicit) theorem that the unions of pair¬ 
wise equipollent sets are equipollent. 

As regards the above way of expression, Cantor seems to have regarded it as 

closer to the preferences of the Berlin school, for he kept employing it in the arti- 

1 [Cantor & Dedekind 1937, 41]: “1st e eine Verand., welche alle irrationalen Werthe >0<, an- 
zunehmen hat, x eine solche, welche alle rationale!! und irrationalen Werthe, die >0 u. <1 sind, 
erhalt, so ist: / e = x.” See [Cantor 1878, 129-30], 
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cles he published in the Journal fur die reine und angewandte Mathematik, but 

abandoned it when he ceased publishing there. We see that he might have gone on 

developing transfinite set theory in the language of analysis, but eventually he pre¬ 

ferred the more abstract language, closer to the preferences of Dedekind and Rie- 

mann. At any rate, that proof may be called ‘purely arithmetical’ in the peculiar 

sense of the time, which took some set-theoretical operations to be ‘arithmetical.’ 

Therefore it satisfied Cantor’s requirements. The same was not true of Cantor’s 

earliest proof of that result, which even employed the drawing of a discontinuous 

curve (to be sure, it would have been easy for Cantor to define it analytically). In 

that first proof, Cantor needed to show that an open interval (a,(3) has the same 

power as the respective closed interval [a,[3]. To establish this, Cantor used the 

lemma that (a,[3] has the same power as [a,(3] which is proved with the help of the 

“notable curve” that can be found below [Cantor & Dedekind 1937, 32; Cantor 

1878, 127-28], 

Figure 6. Curve showing [0, 1] and (0, 1] to be equipollent, from [Cantor 1878], It consists 

of the infinitely many segments ab, a’b',... and the isolated point c; points b, bdo not 

belong to the curve (op = pc = 1; the at and b, are obtained by halving intervals). 
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All of these proofs, and the lemmas contained in them, give us some indication of 

the topics that Cantor studied from 1874 to 1877. His interest in the study of infinite 

cardinalities led him to attempt a careful analysis of the powers of sub- and super-sets 

of DSL, including sets of irrational numbers and point-sets of the first species. It is not 

strange that he came to be regarded as an expert in irrational numbers: Klein gave him 

the assignment of refereeing Lindemann’s famous 1882 paper on the transcendence of 

7i.1 The final picture that Cantor obtained was extremely simple: all subsets of IR, or 

even IR" , seemed to be either denumerable or of the power of the continuum. Thus he 

formulated the restricted version of the Continuum Hypothesis; the language he used 

to this end was still that of variables and functions (see end of §4.1). 

4.3. Riemannian issues. Within the context of the contemporary discussion on 

real functions, Cantor’s contribution was taken to give one more example of a 

‘pathological’ function, a highly discontinuous f. IR —> IR” . In this regard, it is still 

frequently mentioned together with such functions as the Peano curve. But from 

Cantor’s viewpoint, the essential thing was its implications for the Riemannian 

theory of manifolds, for the discussion on geometry and the problem of space. This 

came out very explicitly in his paper: after presenting the notion of power and stat¬ 

ing that the purpose of his paper was to investigate the powers of /7-ply manifolds, 

he went on to put this in the context of recent work “on the hypotheses on which 

geometry is founded,” started by Riemann and Helmholtz [Cantor 1878, 120-22], 
In a letter to Dedekind of June 1877 Cantor goes one step further, suggesting that 

the whole investigation came out of his interest in the foundations of geometry. He 

says that, for several years [seit mehreren Jahren], he had followed with interest the 

efforts made, in connection with Gauss, Riemann and Helmholtz, to clarify the first 

assumptions of geometry [Cantor & Dedekind 1937, 33], In this connection, he had 

noticed that such research depended, in its turn, on an unproved assumption: that the 

number of coordinates needed to determine points in an /7-ply manifold is exactly n, 

which defines the dimension of the manifold (see § §11.6-7). He admits having shared 

that viewpoint, with the only qualification that he, unlike other authors, regarded that 

proposition as a theorem badly in need of proof. To make his viewpoint explicit, he 

formulated the question whether a continuous figure of n dimensions can be corre¬ 

lated one-to-one with a continuous segment, which he had asked several colleagues. 

Most of them answered, evidently not, and he too thought that a negative answer was 

the most plausible, until “very recently” he had found, by quite a complicated train of 

thought, that the question had to be answered in the affirmative [op.cit., 34], 

The kind of critique to which Cantor was subjecting the Riemannian assump¬ 

tions on manifolds and dimension seems reminiscent of the Weierstrassian critique 

of analysis and function theory. He was employing his new tools for the study of 

infinite manifolds - one-to-one correspondences and the notion of cardinality - to 

analyze and clarify those assumptions. It seems that an important objective for his 

research at the time was to analyze basic notions of Riemann such as continuity and 

See [Meschkowski &Nilson 1991, 73ff], 
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dimension. As regards the notion of continuity, shortly afterward he also employed 

derived sets to clarify it, which led him to develop basic ideas of point-set topology 

and to offer an abstract definition of the continuum. All of this helps us understand 

why the title of his crucial papers of the period 1879-84 referred to the ‘theory of 

manifolds’ [Mannichfaltigkeitslehre]. 
As a consequence of his recent theorem, Cantor drew the following conclusion, 

with which he ended the June letter mentioned above: 

Now it seems to me, that all philosophical and mathematical deductions that make use of that 

erroneous assumption are unacceptable. One must rather seek the distinction between figures 

with different number of dimensions in aspects completely different from the number of 

independent coordinates, which is taken to be characteristic.1 

In these sentences, the words ‘in aspects completely different’ are quite clearly 

exaggerated. Dedekind warned that Cantor’s words could be interpreted as casting 

doubt on the significance of the notion of dimension, and stated his convinction that 

the number of dimensions is, “now as before,” the most important invariant of a 

continuous manifold [Cantor & Dedekind 1937, 37], He admitted that the con¬ 

stancy of the number of dimensions was in need of a proof, but remarked that all 

previous writers on the subject had “obviously” made the implicit assumption that, 

in case of a change of coordinates, the new coordinates would be continuous func¬ 

tions of the old ones, and that which appears as continuous under one coordinate 

system would also be continuously linked under the second [op.cit., 38]. As a result 

of these reflections, he believed in the following proposition: 

If one succeeds in establishing a reciprocally univocal and complete correspondence between 

the points of a continuous manifolds A of a dimensions on the one hand, and the points of a 
continuous manifold B of b dimensions on the other, then, if a and b are unequal, this corre¬ 

spondence itself is necessarily a completely discontinuous one.2 

This is a precise formulation of the theorem of dimension invariance under ho- 

meomorphic mappings, only in converse form. The idea was clearly suggested by 

Cantor in the introduction to his paper [1878, 121]. 

Dedekind went on to say that the first proof communicated to him by Cantor 

established what would have been a continuous mapping, had all points of the unit 

segment been included in the image. In the second proof, the first step involving 

only points of irrational coordinate is continuous, but the remaining transformations 

1 [Cantor & Dedekind 1937, 34]: “Nun scheint es mir, dass alle philosophischen oder mathe- 
matischen Deductionen, welche von jener irrthumlichen Voraussetzung Gebrauch machen, un- 
zulassig sind. Vielmehr wird der Unterschied, welcher zwischen Gebilden von verschiedener 

Dimensionenzahl liegt, in ganz anderen Momenten gesucht werden miissen, als in der fur charac- 
teristisch gehaltenen Zahl der unabhangigen Coordinaten.” 

2 [Cantor & Dedekind 1937, 38]: “Gelingt es, eine gegenseitig eindeutige und vollstandige 
Correspondenz zwischen den Puncten einer stetigen Mannigfaltigkeit A von a Dimensionen 
einerseits und den Puncten einer stetigen Mannigfaltigkeit B von b Dimensionen andererseits 
herzustellen, so ist diese Correspondenz selbst, wenn a und b ungleich sind, nothwendig eine 

durchweg unstetige.” 
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introduce a horrendous, vertiginous discontinuity in the correspondence, by which every¬ 

thing is dissolved into atoms, so that every continuously connected part of one domain, 

small as it may be, appears in its image completely tom and discontinuous.1 

Dedekind ended by saying that his only intention was to avoid that Cantor enter into 

ungrounded open polemics against the “articles of faith” of the theory of manifolds. 

His correspondent was obviously very interested in those remarks, asking for more of 

them and saying that he would form his opinion on how to follow up the matter in 

their light [Cantor & Dedekind 1937, 39]. As a matter of fact, Cantor attempted to 

prove the invariance of dimension under bicontinuous mappings in a paper of 1879. 

Cantor’s suggestion [1878, 121] that dimension invariance might be a conse¬ 

quence of requiring the mapping to be bicontinuous provoked an immediate reaction. 

In that same year there were contributions by Liiroth, Thomae, Jurgens and Netto. The 

attempt of general proof published by Eugen Netto pointed in the promising direction 

of finding precise topological notions as a basis; it was well received by Cantor and 

Dedekind [1937, 47-48]. Nevertheless, Cantor did not find it completely satisfactory 

[op.cit., 43] and published his own attempt in 1879. Apparently, the question was 

regarded as solved after these two publications, but in 1899 Jurgens called attention to 

the unsatisfactory character of all published proofs.2 Only in 1911 did Brouwer finally 

prove the theorem of dimension invariance satisfactorily, on the basis of novel topo¬ 

logical ideas that opened up a new era for this subject. 

A few years later, Cantor published a new contribution that again suggests the 

influence of Riemann’s geometrical thought in his mathematical work. The third 

installment of [Cantor 1879/84] employs the non-denumerability of the real num¬ 

bers to show that there are discontinuous spaces in which continuous displacement 

is possible. We have seen (§11.1.2) that Riemann approached the question of physi¬ 

cal space by means of a series of more and more restrictive hypotheses. In a similar 

vein, Cantor had thought that the continuity of physical space, which is not a neces¬ 

sity in itself, is a consequence of continuous motion [Cantor & Dedekind 1937, 52], 

But this conviction vanished once Cantor noticed that in a space A, which is the 

result of substracting a denumerable dense set (e.g., the set of all points with alge¬ 

braic coordinates) from Mn , continuous displacement is still possible. This led him 

to speculate about the possibility of a modified mechanics, valid for such spaces A. 

This kind of physical application of his mathematical speculations is reminiscent of 

Riemann’s work on geometry. Interestingly, that result of 1882 found application 

years later in function theory, but Cantor never considered this kind of use.3 

1 [Cantor & Dedekind 1937, 38]: “die Ausfiillung der Liicken zwingt Sie, eine grauenhafte, 
Schwindel erregende Unstetigkeit in der Correspondenz eintreten zu lassen, durch welche Alles 
in Atome aufgelost wird, so dass jeder noch so kleine stetig zusammenhangende Theil des einen 
Gebietes in seinem Bilde als durchaus zerrissen, unstetig erscheint.” 

2 For these developments, the reader may consult [Dauben 1979, 70-76] and above all John¬ 
son’s work on the history of dimension theory [Johnson 1979; 1981], 

3 Borel used it for a question of prolongation of analytical functions in his Ph.D. thesis, which 
also refonnulated the notion of measure and gave the Heine-Borel theorem (see [Hawkins 
1980]). 
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The notion of power, that Cantor formulated in 1878 and which he came to see 

as the most basic and general characteristic of sets [1879/84, 150], remained a cen¬ 

tral notion of set theory. And his lonely journey of exploration of the realm of 

transfinite sets continued for years to come, guided by the key objective of settling 

the Continuum Hypothesis. In 1895 he would introduce new numbers, the alephs, 

to designate the different transfinite powers (chapter VIII); with the help of the 

arithmetic of alephs he was able to prove the basic result of [1878] with just a few 

pen-strokes [1895/97, 289], 

5. Cantor's Difficulties 

‘A Contribution to the Theory of Manifolds’ [Cantor 1878] was ready for publica¬ 

tion just seven days after the last July letter to Dedekind on the topic. During the 

half year that passed until the paper was published, one can notice in the letters that 

Dedekind had a very positive attitude toward his correspondent.1 The good atmos¬ 

phere is reflected in Dedekind’s readiness to help Cantor when the latter thought 

there was trouble with the publication of his recent results [Cantor & Dedekind 

1976, 231], This kind of atmosphere is never again found in the correspondence, 

which will frequently reflect Cantor’s worries that he may somehow have offended 

his colleague.2 There is little doubt that Dedekind was unhappy with the way in 

which his suggestions were employed, without mentioning him, in Cantor’s paper. 
The paper was sent to Borchardt, then the editor of Journal fur die reine und 

angewandte Mathematik, in July. One of Borchardt’s collaborators was an old 

friend of Cantor, and in November Cantor knew through him that the article had 

not yet been composed. His friend intimated that Borchardt had plans to delay the 

publication, which caused him much excitement (see the letter in [Grattan-Guinness 

1974, 112]). Once he got those news, Cantor started thinking about a separate pub¬ 

lication of the work, and wrote in this connection to Dedekind, who offered his help 

but recommended patience. It seems noteworthy that Cantor’s letter includes the 

following passage: 

The delay on the side of the Journal seems to me the more inexplicable, for during my re¬ 

cent stay at Berlin I talked in detail with our older colleagues, who stay very close to the 

Journal, about the content of the work and I found no objection to it from any side. On the 

contrary, the question was new to all and they were very surprised about the result, which 

certainly had been unexpected for me too, but they acknowledged the absolute correction of 

the proof.3 

1 See [Cantor & Dedekind 1976, 230], 

2 See especially the letter of January 1880 in [Cantor & Dedekind 1976, 233]. 

3 [Grattan-Guinness 1974, 112]: “Die Hinziehung von Seiten des Journals ist mir um so 
unerklarlicher, als ich wahrend meines Berliner Aufenthaltes jungst mit unseren alteren Fachge- 
nossen, welche dent Journal sehr nahe stehen, iiber den Inhalt der Arbeit ausfiihrlich gesprochen 
und von keiner Seite ein sachliches Bedenken dagegen gefunden habe. Im Gegentheil war alien 
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Less than a week later the issue had been satisfactorily solved, as Cantor told Dede¬ 

kind citing further news from his Berlin friend [Cantor & Dedekind 1976, 231; 

Grattan-Guinncss 1974, 113]But the event was not without consequences: never 

again did Cantor send a paper to the Journal fur die reine und angewandte Mathe- 

matik. Although no particular name is mentioned in his letters of the time, seven 

years later Cantor would blame Kronecker for the whole issue [Schoenflies 1927, 

5]. 
It may be interesting to compare that episode with a similar one that involved 

Weber and Dedekind, in connection with their famous paper on algebraic functions. 

The article, sent to the Journal for publication in 1880, appeared only in 1882, the 

issue being discussed with Cantor in this last year [Cantor & Dedekind 1976, 247- 

54], Kronecker regarded himself entitled to cause that delay until his related work 

[1882] was ready for the press. Weber and Dedekind had actually expressed their 

desire to see all of his investigations published, which Kronecker took as an agree¬ 

ment that their paper should be published after his [Cantor & Dedekind 1976, 253]. 

Dedekind stayed calm and showed no animosity toward his Berlin colleague; he 

just came to the conclusion that Kronecker was the victim of self-deception 

[Selbsttauschungen].* 2 Besides, he kept publishing in the Journal, regarding it as the 

leading mathematics journal. On that occasion, Cantor expressed his opinion of the 

“little despot” Kronecker and of the “negligence” [Bummelei] in the management 

of the Journal [op.cit., 252-53], This is actually the earliest occasion on which we 

have written confirmation of Cantor’s growing enmity toward his former teacher. 

Ever since Schoenflies published a paper on ‘The Crisis in Cantor’s Mathemati¬ 

cal Creation’ [1922], it has been an essential part of the folklore surrounding Cantor 

that the confrontation with Kronecker caused his mental illness, or at least his first 

nervous attack in 1884. Schoenflies based his argument on letters to Mittag-Leffler, 

editor of Acta Mathematica and a confidant of Cantor’s in the mid-1880s. Shortly 

before his depressive crisis, Mittag-Leffler informed Cantor that Kronecker had 

asked him to accept, “with the same impartiality” as he was publishing Cantor’s 

work, a paper in which he would show “that the results of the modem function 

theory and set theory do not possess any real significance.”3 (Acta Mathematica had 

been launched as an international journal devoted to the modem theory of func¬ 

tions, in close association with work of the Berlin and Paris schools.) Mittag-Leffler 

did not overlook that the move was as much against Weierstrass as against Cantor, 
but the latter could not help taking it extremely personally: 

die Frage neu und sie waren selir erstaunt uber das, ja auch fur mich unerwartet gewesene Re- 
sultat, fur welches sie jedoch die vollig richtige Beweisfuhrung anerkannten.” 

' As a matter of fact, no delay is apparent from the volume of the Journal in question (no. 
84)—quite the opposite, for another paper written at an earlier date is printed after Cantor’s. 

2 See [Dugac 1976, 253-54; Edwards 1980, 368-72], 

3 As quoted by Cantor in his answer [Schoenflies 1927, 5-6]: “dass die Ergebnisse der mo- 
dernen Funktionentheorie und Mengenlehre von keiner realen Bedeutung sind ... mit derselben 
Unparteilichkeit in die Acta aufnehmen, wie die Untersuchungen ihres Freundes Cantor.” 
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It is tremendously suspicious that he offers you precisely, for your journal, the product of the 

poison accumulated in him against function theory and set theory; I conjecture that with this 

he does not pursue any other aim but to banish me or better my articles from Acta, since he 

has attained the same perfectly well with respect to Crelle’s Journal. The reason why for 

seven years I have not sent anything there, is none other than that I reject forever any rela¬ 

tion with Mr. Kr[onecker].' 

No doubt, Kronecker was a strongly opinionated person who did not hesitate to 

discredit the work of others, and who was in the habit of doing so mostly in per¬ 

sonal conversations. Weierstrass too suffered from it, though of course he did not 

become ill (see [Biermann 1988]). However, it is doubtful whether Kronecker had 

bad intentions; this was at least the opinion of Dedekind and Mittag-Leffler, who 

regarded him as an upright man.1 2 

Historians such as Grattan-Guinness [1971, 369], Purkert and Ilgauds [1987, 

79-81] have carefully studied Cantor’s illness, which according to their work 

seems to have been a manic-depressive one. They warn that Schoenflies’ sugges¬ 

tion, that the fight on the Continuum Hypothesis was an important causal factor, is 

mere speculation. And they remind us that such mental problems have endogenous 

causes - to some extent, it was Cantor’s disturbed mind and not merely Kronecker 

or some other external factor, which caused the trouble. On the other hand, external 

causes certainly contribute to the illness and the appearance of crises, and here one 

must take into account the impact on Cantor of the academic atmosphere, with its 

school fights and the presence of all-too-powerful men such as Kronecker. One 

should always be cautious not to accept uncritically Cantor’s sometimes distorted 

perceptions of the episodes, and here, too, one might add or complement other 

factors. The difficulties with the Berlin school were partly caused by narrow¬ 

minded conceptions of what a school ought to be [Rowe 1989], but partly also by 

methodological disagreements regarding how mathematics ought to be conceived 

and practiced.3 And it seems likely that the difficulties with Dedekind only added 

1 [Schoenflies 1927, 5]: “Es ist hochst verddchtig, dass er das Produkt des in ihm wider die 
Funktionentheorie und Mengenlehre angesammelten Giftes gerade Ihnen fur Ihr Journal anbieten 
liisst; ich vermute, dass er hiermit keine andere Absicht verfolgt, als mich oder vielmehr meine 
Aufsatze auch aus den «Acta» zu vertreiben, da ihm dasselbe mit Bezug auf das «Crellesche 
Journal)) durchaus gelungen ist. Der Grund warum ich seit sieben Jahren nichts dorthin 
geschickt, ist kein anderer, als dass ich fur immer jede Gemeinschaft mit Herrn Kr. perhor- 

resziere.” 

2 See the letter of Mittag-Leffler in [Meschkowski 1967, 246]. When Cantor, after his depres¬ 
sive crisis in 1884, attempted a reconciliation with Kronecker, he treated him in a kind and re¬ 
spectful way [Schoenflies 1927, 9-13; Meschkowski 1967, 248-52], 

3 Cantor realized this very well; in his [1883] one finds an inspired defense of abstract 
mathematics, that will be considered in chapter VIII. 
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more tension. If Cantor tended to an abstract conception of mathematics, his dubi¬ 

ous behavior of the 1870s cut the possibility of ties to one of its foremost expo¬ 

nents, whom Cantor himself regarded as the best interlocutor for the discussion of 

set-theoretical issues.1 
Cantor contributed to creating tensions and difficulties, even for himself, with 

some of his actions and decisions [Purkert & Ilgauds 1987, 53-55, 76, 93]. For 

instance, as he was dissatisfied with being in Halle [Cantor & Dedekind 1976, 228], 

he repeatedly applied himself to the Ministry for vacant positions at other universi¬ 

ties - a most uncommon procedure that could only make him appear as a trouble¬ 

maker. Kronecker offered Mittag-Leffler a critique of function theory and set the¬ 

ory, but this happened after Cantor had written to the Ministry applying for a va¬ 

cant position at Berlin. An oft-quoted letter from Cantor to Mittag-Leffler com¬ 

menting on his application talks about the intrigues of Schwarz and Kronecker 

against him, and about the effect he was certain to attain - that Kronecker would 

feel like bitten by a scorpion and would howl as if Berlin was the African desert, 

with its lions, tigers and hyenas [Schoenflies 1927, 3-4], Cantor’s reaction to Kro- 

necker’s proposed critique was positive at first, but after a few days Cantor threat¬ 

ened to end his collaboration with Acta in case Mittag-Leffler would accept Kro- 

necker’s article. Such hypersensitivity indicates that his illness was in an advanced 

state; a few months later, in May and June 1884, he suffered his first great depres¬ 

sive breakdown.2 

Although his work was finding acceptance (see §VIII.5), Cantor felt increas¬ 

ingly rejected by the German mathematical community. As we have seen, this was 

to some extent a natural consequence of the atmosphere of the period, to some 

degree a situation he had created for himself. In the early 1880s, when he felt de¬ 

finitively distanced from the Berlin school, he started looking for new allies. New 

possibilities opened up when Heine’s position became vacant after his death in 

1881, and Cantor attempted to bring Dedekind to Halle.3 Although Dedekind gave 

a negative answer to his proposal, Cantor still managed to have him named first in 

the official list. His colleague refused to leave Braunschweig, however, for reasons 

such as family ties and salary conditions, but still the episode seems to have bet¬ 

tered their relations. Twice Dedekind expressed that he was attracted by the pros¬ 

pect of collaborating with Cantor [Cantor & Dedekind 1976, 239-40, 246];4 

The way in which Cantor treated the issue of the theorem of denumerability of algebraic 

numbers might reveal the advancement of his mental illness. He seems to have tended to sup¬ 

press memory of the events: in January 1882 he wrote to Dedekind himself of “the serial ordering 

of all algebraic numbers, discovered by myself eight years ago” [Cantor & Dedekind 1976, 248] 

(compare [Cantor 1878, 126], where he mentions the theorem “presented by me”). 

2 See his letters from 1882 to 1884 in [Meschkowski & Nilson 1991], especially [59-61, 65, 

127-29, 162-73, 192-201], As he wrote in August, probably under the influence of his physician 

and his wife, the crisis had not been caused by the fatigues of working, but by “frictions that I 

could reasonably have avoided” [Schoenflies 1927, 9], 

3 See especially [Grattan-Guinness 1974, 116-23; Dugac 1976, 126-29], 

4 This seems to conflict with my interpretations. The explanation might be found in his cour¬ 

tesy, or in the good sentiments that Cantor’s proposal aroused; it might even be that Dedekind 
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During 1882, Cantor sent several letters on mathematical and institutional is¬ 

sues, the mathematical themes being noteworthy and constituting the most impor¬ 

tant exchange between 1877 and 1899 (see §§VII.4 and VIII.3). But by the end of 

the year, after a couple of personal meetings in September, the correspondence 

came to an end. Dedekind showed no interest in the last letters Cantor sent him, 

leaving them unanswered in spite of the fact that they included a detailed an¬ 

nouncement of the introduction of transfinite numbers [Cantor & Dedekind 1976, 

258; 1937, 55-59], We do not know exactly why the correspondence ended; it may 

have been something that occurred in the course of the personal meetings, or per¬ 

haps some other reason.* 1 

The vacant position at Halle was finally filled by A. Wangerin, the Berlin 

mathematicians’ choice and not someone proposed from Halle. Cantor’s feeling of 

isolation increased. He turned to foreign friends, especially Gosta Mittag-Leffler, 

editor of Acta Mathematical a journal launched in an ambitious way and counting 

on the collaboration of the leading mathematicians at Paris and Berlin. After his 

failure to get a position at Gottingen in 1885 he came to the conclusion that he was 

desined to remain in Halle. Then, in that same year, Mittag-Leffler recommended 

that he not publish a paper that had previously been accepted by Acta. Cantor felt 

that this was merely to protect the interests of Mittag-Leffler’s journal and that the 

Swedish mathematician was caving to the influence of Berlin. He stopped publish¬ 

ing in mathematical journals, feeling distanced from mathematicians.2 Although he 

kept doing some research, Cantor began to devote more and more time to his philo¬ 

sophical, theological and literary interests, including participation in a polemic then 

in vogue, in which he defended the view that Francis Bacon was the real author of 

Shakespeare’s works [Purkert & Ilgauds, 1987], 
Still, the story did not have a negative ending. On the basis of the bitter experi¬ 

ences made in the 1870s and 80s, Cantor became a strong advocate of the creation 

of a German mathematical association. He hoped that this new organization would 

help to prevent young mathematicians from being mistreated as he thought he had 

been. Cantor became the visible hand during the difficult period in which the Deut¬ 

sche Mathematiker-Vereinigung was being launched, although he was by no means 

the most important man behind. He was named the first president of the association 

and stayed in office from 1890 to 1893. Likewise, he did his best to promote inter¬ 

national congresses of mathematics, also hoping to open impartial forums where 

new ideas could be freely exposed and judged. 

had already come to the conclusion that there was something wrong in Cantor’s personality. 

1 Grattan-Guinness [1971; 1974] assumed it was because Cantor felt offended by Dedekind’s 

negative answer to the Halle offering, but as we have seen the situation was much more complex; 

besides, it was Dedekind who left the letters unanswered. 

2 See [Schoenflies 1927; Grattan-Guinness 1970; Purkert & Ilgauds 1987, 79-101]. 
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6. Derived Sets and Cardinalities 

In 1879 Cantor started publishing a collection of papers in Mathematische Annalen 

under the common title ‘On infinite, linear point-manifolds’ [Cantor 1879/84], 

These papers are regarded as his masterpiece; according to Zermelo they constitute 

the “quintessence” of their author’s work, making all other contributions appear 

just as precedents or complements [Cantor 1932, 246], Although they were pub¬ 

lished at a time when the theory of point-sets was being actively studied for the 

purposes of real variable theory (chap. V), Cantor’s articles are distinguished by the 

feature that they take the theory of sets as an autonomous domain of study. The six 

installments in this collection are of unequal length and depth, going beyond the 

limits suggested in the title. In fact, Cantor employed them as a means to publish 

his new ideas quickly; it would seem that he felt urged to establish the priority and 

superiority of his ideas against such potential competitors as du Bois-Reymond, 

Harnack, and Dedekind. 

Cantor was guided, above all, by the core objective of proving the Continuum 

Hypothesis. To this end, he studied in detail the powers of subsets of DS. (what he 

called ‘linear manifolds’), refining his theory of derived sets and looking for com¬ 

bined results on derived sets and powers. This led him to introduce some basic 

notions of point-set theory, which we regard today as having to do with the topol¬ 

ogy of point-sets. A note to the third installment of the series, published in 1882, 

contains a comment that seems worthy of attention: 

Most of the difficulties of principle that are found in mathematics have their origins, it seems 

to me, in ignorance of the possibility of a purely arithmetical theory of magnitudes and 

manifolds.1 

This suggests a way of understanding Cantor’s research up to that year, a second 

key motivation. It is likely that, when talking about the purely arithmetical theory 

of magnitudes, Cantor had in mind Weiestrass’s critical reworking of the founda¬ 

tion of analysis. The comment suggests that its author had not yet considered the 

possibility of reducing the theory of magnitudes (i.e., arithmetic) to set theory, so 

that he was still far from taking set theory as the foundation of mathematics.2 It 

would seem that it was Cantor’s aim to offer a detailed critique and rigorous devel¬ 

opment of basic ideas behind Riemann’s theory of manifolds, on an arithmetical 

basis and in analogy with the work of Weierstrass. It should be added that after the 

introduction of transfinite numbers in 1882, Cantor’s projects seem to have 
changed (see chap. VIII). 

1 [Cantor 1879/84, 156]: “Die meisten principiellen Schwierigkeiten, welche in der Mathe- 

matik gefunden werden, scheinen mir ihren Ursprung darin zu haben, dass die Moglichkeit einer 

rein arithmetischen Grossen und Mannichfaltigkeitslehre verkannt wird.” 

2 This interpretation is consistent with the way in which he approached results in set theory, 
see above and §V.5. 
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Cantor’s initial objective was to investigate ‘linear point-manifolds’ (subsets of 

EES.), since in the light of [Cantor 1878] these must already present us with all possi¬ 

ble cardinalities of subsets of a continuum. That is presented as a reason to give 

special attention to linear point-manifolds and to investigate their “classification” 

[1879/84, 139], To this end, the first part of the series introduces again the notions 

of derived sets, “everywhere-dense” sets, and cardinality or “power;” each suggests 

a way of classifying subsets of M. Cantor analyzes some interrelations between 

those notions before proceeding to a new exposition of the proof that US. is not de¬ 

numerable. He promises to employ the notion of derived set as a basis for the “sim¬ 

plest and most complete” definition of a continuum [Cantor 1879/84, 139],1 

The first two articles published in 1879 and 1880 do not really contain impor¬ 

tant new results, contrasting sharply with the next three installments, which abound 

in new theorems. The second part was published in the Annalen volume that was 

next to the one in which du Bois-Reymond promised a paper on derived sets of an 

infinite order (see §V.4.2). It contains the first public presentation of an old idea of 

Cantor’s in which the actual infinite figured prominently - that of introducing new 

symbols to characterize derived sets of a higher order. A footnote indicates that 

Cantor had come to this idea ten years earlier, i.e., around 1870.2 But his attempted 

classification of linear point-manifolds ultimately led Cantor to the idea of em¬ 

ploying derived sets for studying the powers of point-sets, and this was the source 

of very important results presented in parts 3 to 6. From his letters to Mittag-Leffler 

we know that Cantor worked “literally for years” on the proof of some theorems 

that can be found in these installments [Meschkowski & Nilson 1991, 88], so one 

may assume that around 1879 he had in mind some important results that resisted 

his attempts for a long time. 

6.1. Derived sets of an infinite order. In §V.4 we saw how point-sets with a 

derived set of an infinite order had been defined by means of the method of distrib¬ 

uting intervals. This allowed several mathematicians to offer examples of nowhere - 

dense sets with positive outer content. From Cantor’s viewpoint, it also gave a 

sense to the introduction of ‘symbols of infinity’ employed for a precise characteri¬ 

zation of such derived sets. As we shall see (§VI1I.3), these symbols formed the 

germ from which transfinite numbers grew. Although Cantor stated that he had 

come to the idea around 1870, it is quite unclear whether at that point he had inter¬ 

esting examples of point-sets with derived sets of an infinite order - that is, exam¬ 

ples other than the rational numbers or the algebraic numbers, whose derived set is 

already the continuum 08. of real numbers. The available evidence (see §V.4) sug¬ 

gests that interesting examples were first given by Smith and du Bois-Reymond, 

1 The definition was actually given in 1883 (see §VT.7). In the light of the crucial role that 

continuous manifolds played in Riemann’s work, that promise might seem to support the inter¬ 

pretation of Cantor’s projects given above. 

2 The note did not find its way into Zermelo’s edition of his treatises; see [Cantor 1984, 55] or 

Mathematische Annalen 17 (1880), 358. 
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who seems to have been the first to employ interval distributions. In contrast to the 

work of these authors, Cantor’s paper is remarkable for being disconnected from 

more particular mathematical concerns, and for presenting the whole issue in a 

purely abstract way. 

There is in Cantor’s paper a point of interest to us, that has not been noticed 

previously by historians. Cantor begins by introducing notation and terminology for 

some of the basic relations and operations on sets, and this terminology shows a 

strong resemblance to that of Dedekind’s algebraic number theory: 

NOTION 

set identity 

disjoint union 

inclusion 

union 

Intersection 

NOTATION 

P = Q 

P — {Pl> P2J —} 

(PcQ) 

P = TK(Pt, P2,...) 

P = $(Pb P2,...) 

TERMINOLOGY 

Pisa divisor of Q 

Q is a multiple of P 

P is the least common 

multiple of Pi, P2, ... 

P is the greatest common 

divisor of Pj, P2, ... 

While Cantor’s notations [1879/84, 145-46] are novel,1 his terminology for inclu¬ 

sion, union and intersection agree with Dedekind’s [1871, 224, 252-53] (see 

§111.2).2 On the other hand, Cantor was the first to suggest that one may form un¬ 

ions and intersections of infinite families of sets; and this was essential in the con¬ 
text of his paper. 

After such preliminaries, Cantor remarks that the successive derived sets of a 

given point-set P are included in each other: ... p(n) cr ... cr P" cz P' [Cantor 

1879/84, 146], The process of set derivation eliminates points, but does not add 

new points that were not already in P'. This was a crucial realization, for it enabled 

him to define the first derived set of an infinite order as the intersection of all de¬ 
rived sets of finite order. Cantor writes: 

pH = %(p ■ p-t _ pin)' j = $(p(n)' p(n+l)' j 

In general, the process of derivation will then continue with /,f00+7/, ... pfo+n), in¬ 

deed P<°°/ may in its turn have a derived set of infinite order, which at this time 

Cantor denotes by p(2co). Going on in this way, one reaches derived sets whose 

1 Notation for union and intersection was at least suggested by Dedekind’s work, since he 

employed Gothic m and d for the least common multiple and greatest common divisor of two 
ideals [1871, 252-53], 

2 Since this terminology makes little sense in the context of point-set theory, or of abstract set 

theory (Dedekind himself replaced it for this purpose in 1872), the question of its origins seems 
to be beyond doubt. 
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order is a multiple of °o, such as nco+m, and proceeds to co2, oo3, to polynomials 

like n()Com+n]Com-]+... +nm, to oo* and beyond. In the process, some derived sets are 

defined in the customary way p(n+1) = [p(n)\while others are defined by means of 

the intersection of infinitely many point-sets. These two different procedures are 

nothing less than the forerunners of the two generation principles that Cantor em¬ 

ployed in 1883 for defining the transfinite ordinal numbers (§VIII.3). 

Only the last paragraph gives an example of a point-set whose derived set P(°°) 

consists of a single point [Cantor 1879/84, 148], From a mathematical viewpoint, 

however, this example is of the utmost importance, for without it one might fear 

that the whole symbolism defined by Cantor is useless - derived sets of an infinite 

order might always be equal to each other. Cantor stated that it is equally simple to 
give examples for p(2x>) and higher orders. 

Employing a philosophical language, he wrote that “we observe a dialectical 

generation of concepts which leads always farther, and which in so doing remains 

free from any arbitrariness, necessary and consistent in itself.”1 But it is crucial to 

realize that the ‘concepts’ that Cantor is introducing relate directly to point-sets. 

The objective basis for the process was thus point-sets and their properties, while 

the ‘symbols of infinity’ were just notational devices which lacked any objective 

reference in themselves. This makes clearer the distance that separates Cantor’s 

ideas at this stage from his later consideration of the symbols as referring to true 

numbers. Taking this step involved a difficult conceptual reconsideration which, as 

we shall see (§VIII.3—4), was only possible on the basis of the new notion of well- 

ordered set. 

6.2. Cardinality results.2 Almost all of the new results that Cantor proved be¬ 

tween 1882 and 1884 emerged from research on the process of derivation in connec¬ 

tion with the notion of power. He studied the kinds of sets we find through derivation; 

when the process stops; and what information it affords about the original set, espe¬ 

cially about its cardinality. Particularly important was the Cantor-Bendixson theorem, 

which establishes a unique decomposition for derived sets P' into two sets of known 

properties, which implied that CH is valid for this particular kind of set. (Cantor an¬ 

nounced a weak version of it in September 1882, but he had been pursuing it for some 

years [Meschkowski & Nilson 1991, 88].) Attention to derived sets naturally led him 

to develop some topological notions of point-set theory, which he took much farther 

than his predecessors (but always in relation to limit points and derived sets). 

In the third installment, Cantor investigated subsets of DK", so-called 77- 

dimensional manifolds, because, as he said, they offer new viewpoints and results 

that are useful for the study of linear point-sets, and they are interesting in them¬ 

selves and for applications [1879/84, 149], The /7-dimensional case allowed him to 

1 [Cantor 1879/84, 148]: “wir sehen hier eine dialektische Begriffserzeugung, welche immer 

weiter fiihrt und dabei frei von jeglicher Willkiir in sich nothwendig und consequent bleibt.” 

2 It is impossible here to discuss Cantor’s work of the 1880s in full detail. See [Dauben 1979, 

chs. 4-5] and [Hallett 1984, 81-98], 



206 VI. The Notion of Cardinality and the Continuum Hypothesis 

prove a key theorem for his study of cardinality and derivation: given infinitely 

many (closed) n-dimensional subdomains in D8.n, which are disjoint except perhaps 

at boundary points, the set of such subdomains is always denumerable [op.cit., 

152]. One easily sees that such must be the case by taking into account that any 

such subdomain will contain points whose coordinates are all rational, and that the 

set of such points in US" is denumerable. Cantor did not follow this simple way, but 

established a one-to-one mapping between the points of IRn and the points in the n- 

dimensional sphere of unit radius in DB.n+l; he thus gained the possibility of enumer¬ 

ating the subdomains as a function of the volume of their images [op.cit., 153, 157; 

Dauben 1979, 84-85], 

That result was useful for the proof of a weak version of the Cantor-Bendixson 

theorem, due to Cantor alone. This weaker theorem says that whenever a point-set 

P is such that P' is denumerable, there exists some index a for which Pa vanishes 

(= 0), and conversely, if Pa vanishes for some a then P' and also P are denumer¬ 

able [Cantor 1879/84, 160; 1883, 171]. The result is remarkable not just as a first 

step toward the famous Cantor-Bendixson theorem, but also because of its applica¬ 

tions in function theory. Cantor was well aware that the theorem would make it 

possible to give a natural conclusion to Mittag-Leffler’s work on the representation 

of analytic functions,1 which generalized a famous theorem of Weierstrass. Mittag- 

Leffler had been working on the subject from the mid-1870s; in his [1884], on the 

basis of Cantor’s work, he was able to prove the Mittag-Leffler Theorem which 

solves the construction of analytic functions with an infinite set of isolated poles. 

Weierstrass was impressed by the work and said that the main problem of the the¬ 

ory, which had previously seemed a matter for the future, had found its most gen¬ 

eral solution (quoted in [Mittag-Leffler 1927, 25]). Thus, in this particular case 

Cantor was pursuing a result of very clear and concrete application to problems that 

were then regarded as central at the time. Moreover, the context of Cantor’s result 

was intimately connected with the introduction of transfinite numbers. 

In the fourth part of [1879/84] Cantor proved a restricted version of the result, 

for index oo as he wrote then (or, as he would say within a few months, the first 

transfinite number oo). His strategy employed the new notion of isolated set and the 

fact that isolated sets are denumerable [Cantor 1879/84, 158-59], A point-set P is 

isolated if and only if none of its limit points belongs to it (P n P' = 0), in which 

case every point in P can be enclosed in a neighborhood that does not contain any 

other element of the set. Taking such a collection of intervals [a,|3], that are disjoint 

except perhaps at the extremes, Cantor could apply the theorem he had proved in 

the previous issue, to conclude that this collection of intervals (and therefore P) is 

denumerable. Cantor remarked that while the set of intervals [a,[3] and the set E of 

the extremes a, (3 are both denumerable, this is not necessarily the case for the 

derived set of E [op.cit., 154], This remark indicates that Cantor had paid careful 

attention to what are now called ‘Cantor sets’ (in §V.4 we noticed that he was not 
the first to consider such sets). 

' See the correspondence of both mathematicians in [Meschkowski & Nilson 1991, 88-89], 
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By considering isolated sets, Cantor was able to obtain a good number of results 

on the cardinality of point-sets. First, if a derived set P' is denumerable, then so is P 

- call Q the set of elements of P that do not belong to P\ then P is the union of the 

isolated Q and a subset of P\ both being denumerable. Second, writing ’ for the 

difference of sets and *+’ for the union operation, Cantor [1879/84, 158] estab¬ 

lished the following decomposition: 

P’ = {P'-P") + (P"-P"') + ... + (/>«). 

Since the sets (Pn - Pn+I) are all isolated, it is easy to show that, if Z500 is denumer¬ 

able, P' and P must be denumerable, for P' is then a denumerable union of denu¬ 

merable sets. More particularly, every point-set of the first species (such that Pn = 

0 for some ri) must be denumerable [op.cit., 159-60]. 

The way to generalizing that theorem was opened by the possibility of extend¬ 

ing the same kind of decomposition into isolated sets to any derived set of infinite 

order Pa: 

P ' = (P'- P ") + (P "-P+ (P00 - P°°+7) + ... + (P<*). 

But, from the fact that Pa is denumerable, one can only conclude that so is P' in 

case the union is denumerable or, what comes to the same, if one has only denu- 

merably many indices preceding a (for the union of a non-denumerable family of 

nonempty sets is non-denumerable). Thus, in the context of this theorem it was 

natural to pay attention to sets of indices, and Cantor came to the idea of consider¬ 

ing ‘symbols of infinity’ with denunierably many predecessors. This is the simplest 

version of the so-called principle of limitation that was crucial for his 1883 theory 

of transfinite ordinals (§VIII.3.1). When Cantor announced the theorem in Septem¬ 

ber 1882 [1879/84, 171], he still lacked the basic results on the indices a that would 

enable him to prove it. The actual proof was only given in the sixth and last part of 

the series ‘On infinite, linear point-manifolds’ [1879/84, 220-21], after the transfi¬ 

nite numbers had been introduced. 
To conclude this section, we shall indicate a few more results connected with 

the circle of ideas that we have just delineated. Reading the above theorem of Can¬ 

tor’s in the converse form, one has proven that if a point-set P' is not denumerable, 

then Pa is also non-denumerable, a being a natural number or one of the ‘symbols 

of infinity’ [op.cit., 160]. Actually, Cantor was able to show that the derivation 

process only has to involve indices that are denumerable ordinals - as he said, 

numbers of the second number-class. The sixth part of his series of papers, pub¬ 

lished in 1 884, indicated this as follows: 

Actually ... the matter disposes itself so that in rigor, for point-sets within any domain Gn 

[D5.n ], only those derivations play a role whose ordinal number belongs to the first or second 

class of numbers. For one can show the extremely notable fact, that for every point-set P 

from a certain ordinal number a on, which belongs to the first or second number-class but 

not to any higher one, the derived set is either 0 [empty] or a perfect set. From which 
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follows that derivations of a higher order than a are all identical with the derived set p(af 

and taking them into consideration is superfluous 

The study of derived sets led Cantor to another new topological notion, that of 

perfect sets - a set P is perfect if and only if it is identical to its first derived P' = P. 

Whenever a point-set is non-denumerable, the derivation process ends up in a per¬ 

fect set. 

At this point, it was natural to consider decomposing any derived set P' into its 

perfect component and the rest. This was the idea behind the Cantor-Bendixson 

Theorem. Cantor showed that we always have 

P' = R + S, 

where S is a perfect set and R is denumerable [Cantor 1879/84, 223-24], In the 

Grundlagen [1883, 193], Cantor called R a reducible set, meaning that Ra= 0 for 

some a, but this is not true in general. The young Scandinavian mathematician 

Bendixson pointed out the error and showed that the correct result is as follows: 

there always exists an a such that R n Ra = 0 [Bendixson 1883]. In summary, 

Cantor had established that the derivation process yields only sets that are either 

denumerable or perfect, or composed of both. This seemed to confirm CH. 

7. Cantor's Definition of the Continuum 

The new notions that Cantor was introducing quickly became important for func¬ 

tion theory and the theory of point-sets. They all emerged from the basic concepts 

of limit point and derived set, which makes it plainly clear why they were eventu¬ 

ally called topological notions. In the sixth installment [Cantor 1879/84, 226, 228], 

the concepts of isolated and perfect sets were joined by the following new ones: a 

point-set is closed iff (if and only if) it contains all of its limit points (P' c P); a 

point-set is dense in itself iff all of its elements are also limit points of the set (P c 

Py, a point-set is separated iff none of its subsets is dense-in-itself. Cantor could 

now say that a point-set is perfect iff it is closed and dense-in-itself. 
The notion of perfect set became the basis for quite a general definition of con- 

tinua, a definition he had promised to give back in 1879 [Cantor 1879/84, 139], 

Thus, a basic objective of Cantor’s, clarifying the notion of the continuum, was 

attained. The definition was presented in §10 of the Grundlagen, which begins with 

1 [Cantor 1879/84, 218]: “In Wirklichkeit stellt sich zwar ... die Sache so, dass bei den 

Punktmengen innerhalb eines beliebigen Gebietes Gn strenggenommen nur diejenigen Ableitun- 

gen eine Rolle spielen, deren Ordnungszahl der ersten oder zweiten Zahlenclasse angehort. Es 

zeigt sich namlich die hochst merkwiirdige Thatsache, dass fur jede Punktmenge P von einer 

gewissen Ordnunszahl a an, welche der ersten oder zweiten Zahlenclasse, jedoch keiner hoheren 

Zahlenclasse angehort, die Ableitung P(a> entweder 0 oder eine perfecte Menge wird; daraus 

folgt, dass die Ableitungen hoherer Ordnung als a mit der Ableitung P(a) sammtlich identisch 

sind, ihre Inbetrachtnahme daher uberfliissig wird.” 
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reference to the unending philosophical discussions on the question, including the 

dispute between the partisans of Aristotle (the continuum is indefinitely divisible, 

but not a set of points) and those of Epicurus (it is composed of finite atoms). Can¬ 

tor does not intend to enter into such disputes, but only to give a “sober logical” 

[logisch-nuchtem] definition of the notion as needed in the mathematical parts of 

the theory of manifolds [Cantor 1883, 191]. It seems likely that one of the motives 

why he does not enter into the dispute is that his whole approach always presup¬ 

posed the view that the continuum is built up of infinitely many points, and de¬ 

fending this viewpoint against radically opposite ones brings into the picture all 

kinds of arduous problems. 

The definition was also discussed in three letters sent to Dedekind in 1882 

[Cantor & Dedekind 1937, 52-54], where we can read that a first attempt to gener¬ 

alize Dedekind’s notion of a cut came to nothing, while the notion of a denumer¬ 

able fundamental sequence complied naturally with the task. Dedekind’s definition 

of 1872 is clearly the most important precedent of Cantor’s, but it was too closely 

connected with the linear continuum and the assumption of a totally and densely 

ordered subset. Cantor wished to have a general definition that could be applied not 

only to continua like M and D5.n, but also to continuous subsets of these which might 

be composed of different parts, linked continuously, which might have different 

dimension numbers. In a word, his objective required the use of ideas of a more 

purely topological kind, and it is not surprising that Dedekind’s standpoint did not 

yield good results in that direction.1 

It is evident that continuous sets are unaltered by the derivation process: [0,1] is 

identical with its derived set. For this reason it was natural to require a continuum 

to be a perfect set. But, as we have seen, Cantor knew that perfect sets may be no¬ 

where dense. He needed an additional notion to characterize continua, and he found 

it in the idea of connectedness, which Weierstrass [1880] had employed a few years 

earlier, defining it in terms of neighborhoods. According to Cantor, a subset T of 

Mn is “connected” if for every two points t, t' in T, and every real number 8>0, it is 

possible to determine a finite set of points tj, t2 ... tn such that the distances 

ttl,tlt2, ...,tnt are all less than 5 [Cantor 1883, 194], On this basis, Cantor de¬ 

fined a point-continuum within D8.n as a “perfect-connected set” [ibid.]. 

Cantor’s notion of connectedness is somewhat strange, since according to it the 

set of rational numbers is connected. Since the early 20th century a different defi¬ 

nition of connectedness for topological spaces has become common; likewise, pres¬ 

ent definitions of continua are different from Cantor’s. Nevertheless, his definition 

showed the way in which topology would proceed. With this and other related 

notions, Cantor inaugurated the study of the topology of point-sets. For himself, a 

different stage was reached with the general theory of order types, to which the 

above definition could be adapted (see §VIII.4.2). 

1 Dedekind’s method can be applied to ordered spaces, while Cantor’s is the one to be used 

for metric spaces. This is how Hausdorff employed them in his epoch-making handbook [1914], 
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8. Further Efforts on the Continuum Hypothesis 

A key motivation of Cantor’s after 1878 was to prove CH. This is not to say that he 

was unaware of possible applications of set theory here and there, as was the case 

with the Cantor-Bendixson Theorem. Occasionally, his papers suggested possible 

applications of his theory - to function theory and geometry in part three of 

[1879/84] (see end of §4.3), to integration theory in part four.1 But Cantor does not 

seem to have pursued that kind of aim directly. Instead, he was focusing on point- 

sets, and later on well-ordered sets of transfinite numbers, mostly because he hoped 

to analyze them in sufficient detail so that the continuum problem would become 

solvable. 

As we have seen, sometime around 1880 he surmised that a joint analysis of 

derivation and cardinality might be the key to the problem. Thus he obtained new 

results on the powers of point-sets: denumerability of first-species sets, denumer¬ 

ability of isolated sets, relations between the power of P(a) and that of P (leading to 

the Cantor-Bendixson theorem). The process led to the transfinite ordinals 

(§VII 1.3), but also to the important notion of a perfect set P=P'. The Cantor-Ben¬ 

dixson theorem means that derivation yields only sets that are either denumerable 

or perfect, or composed of both. With an eye to CH, the next obvious question was: 

what is the power of perfect sets? Cantor was able to solve this in the last paper of 

the series [1879/84], During the mid-1880s he kept making strong efforts to prove 

CH; in the present section we shall consider some of these efforts.2 

The assumption of CH implied that perfect sets have to be either denumerable 

or of the power of the continuum. Already for his theorems on derivation and car¬ 

dinality, Cantor had needed the result that a perfect set cannot be denumerable. As 

we have seen, with his 1884 terminology one can say that a perfect set has to be 

closed (P' <zP) and also dense-in-itself (fcf); Cantor proved that a set P that is 

denumerable and dense-in-itself cannot be closed. To this end, he employed an 

argument based on the Bolzano-Weierstrass principle (§IV.4.2), and therefore his 

proof is reminiscent of the crucial theorem of 1874 [Cantor 1879/84, 215-18],3 

Late in 1883 Cantor was finally able to establish that perfect sets are equipollent to 

m. 
A perfect set P is not necessarily dense in every interval, it may, in fact, be 

nowhere dense. Cantor gave an example of this kind by methods that are intimately 

related to the interval distributions that had been employed to give examples of 

1 In connection with previous work by du Bois-Reymond and Harnack, he proved that if a set 

P is bounded and has a denumerable derived set P\ then it has content zero [Cantor 1879/84, 

160-61], This is an example of the central role Cantor expected the notion of power to play in 
mathematics generally. 

2 On this topic, see [Hallett 1984, 74-118] and especially [Moore 1989], 

3 Since P is denumerable, it can be put into the form of a sequence (pn); any neighbourhood of 

every pn contains infinitely many points of P, since it is dense-in-itself. On this basis, Cantor 

defines a sequence of nested spheres that determine a limit point of P not belonging to (p ). 
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nowhere dense sets with outer content zero (§V.4). The result was his famous ‘ter¬ 

nary set’ defined in an endnote to the Grundlagen: the set of all real numbers of the 

form 

c//3+ c2/32 + ... +cn/3n + 

where the coefficients cn can only take the values 0 and 2, is a perfect set that is 

nowhere dense in [0,1] [Cantor 1883, 207], The complement of the ternary set C is 

the union of infinitely many intervals that are densely distributed throughout [0,1], 

and so C is nowhere dense. Since those intervals are all open, C must contain all of 

its limit points, i.e., is closed. Moreover, one can prove that every number of the 

above form is the limit of a convergent sequence of such numbers, which means 

that CcC', i.e., that C is dense-in-itself. Therefore, C is a perfect set. 

In fact, all nowhere-dense perfect sets have as a complement in M a union of 

disjoint intervals that are densely distributed. And a theorem that Cantor proved in 

1882 (§6.2) shows that the set of those intervals must be denumerable. Cantor was 

able to employ these results to prove that nowhere dense perfect sets are equipollent 

to [0,1]. (If P is perfect and dense in an interval [a,b], it is rather trivial that it must 

have the power of the continuum, for in such case [a,b] must be included in 

P'=P.X) The proof of that result is of interest to us because it confirmed CH, and 

because it seems to have indicated the way toward a general theory of order types. 

This was the subject of an unpublished paper of Cantor’s in 1885, and constituted 

the last crucial development toward his mature abstract theory of sets (see §VII1.4). 

For these reasons we shall outline the core ideas of the proof, without entering into 

details. 

Cantor proved that any subset S of [0,1] that contains 0 and 1, is perfect, and is 

nowhere dense, can be put into one-to-one correspondence with the full interval 

[1879/84, 237^41 ]. As we have said, the complement R of S in [0,1] is a denumer¬ 

able union of open disjoint intervals (an,bn), whose endpoints an, bn, belong to S. 

The set J of the endpoints an, bn, must also be denumerable, but it determines S 

completely; Cantor showed that S = J' [op.cit., 237], Now Cantor’s key idea was to 

establish a one-to-one correspondence between the set of intervals {(an,bn)} and the 

set of rational numbers in [0,1] preserving the dense order within each set. This 

must be possible, for both are denumerable sets dense in [0,1]; the matter will be 

taken up in §VIII.4.2. 
All of the results that Cantor had obtained until 1884 contributed to making CH 

plausible. First, previously known sets and subsets of DS. turned out to be either 

denumerable or of the power (£ of the continuum. Moreover, basic set-theoretic 

operations on sets fulfilling the Hypothesis yield more such sets, and for the ele¬ 

mentary operations of transfinite arithmetic it suffices to consider those two pow- 

1 Nevertheless, this simple proof presupposes the then unproven Cantor-Bemstein theorem; 

thus Cantor had to give a rather prolix proof for the general case, see [1879/84, 241-43], 
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ers.1 As regards the process of derivation, recall that the Cantor-Bendixson Theo¬ 

rem states that P' = R u S, where R is denumerable and S is perfect; therefore, the 

process yields only denumerable sets or sets of power <1. And the fact that deriva¬ 

tion essentially ends with transfinite ordinals of the second number-class may also 

suggest that CH is true. 

But none of those reasons can be made into a proof of CH. As regards the deri¬ 

vation process, just like there are denumerable sets with a perfect derived (an obvi¬ 

ous example is ©[o,i]) there could be point-sets whose power is different from the 

known two, with the same property. An essential defect of Cantor’s theory of deri¬ 

vation and cardinalities is that it applied almost only to the derived sets; he was 

forced to refine the theory in order to be able to apply it more directly to the point- 

sets themselves. This Cantor was able to do in one particular case. Recall that de¬ 

rived sets always contain all of their limit points (for it is always true that A'cfj; 

Cantor was led to focus on sets of that kind (P' a P), which he called closed sets. 

He was in the condition to show that every closed set is the derived set of another 

point-set [Cantor 1879/84, 226-27], and this, in the light of the Cantor-Bendixson 

Theorem, suffices to show that closed sets satisfy CH. 

The sixth part of his series on linear point-manifolds ended as follows: 

We thus have the following theorem: 

An infinite closed linear point-set has either the first power or the power of the linear 

continuum, it can thus be thought either in the form funct. (v) or in the form funct. (x) ... 

In later paragraphs it will be proven that this notable theorem also has an ulterior validity 

for non-closed linear point-sets and also for all /v-dimensional point-sets. ... 

From this, and with the help of the theorems proven in [1883, 200; see §2.2] it will be 

concluded that the linear continuum has the power of the second number-class (II.).2 

The proof that is announced here was never published. Cantor’s strategy for prov¬ 

ing CH by means of an analysis of subsets of US. would be carried much farther by 

mathematicians of the 20th century. This happened in the context of descriptive set 

theory, and it was possible to attain stronger results,3 but it became clear that this 

strategy is limited and cannot be carried until the desired end. 

Nevertheless, Cantor still made some more attempts. A simplified form of the 

problem is the following: since non-denumerable closed sets have the power &, it is 

1 This argument can be found in an 1886 letter to Vivanti [Moore 1989, 94], 

2 [Cantor 1879/84, 244]: “Wir haben also folgenden Satz: / Eine unendliche abgeschlossene 

lineare Punktmenge hat entweder die erste Mdchtigkeit oder sie hat die Mdchtigkeit des Linear- 

continuums, sie kann also entweder in der Form Funct. (v) oder in der Form Funct. (x) gedacht 

werden ... / Dass dieser merkwiirdige Satz eine weitere Gtiltigkeit auch fur nicht abgeschlossene 

lineare Punktmengen und ebenso auch fur alle n-dimensionalen Punktmengen hat, wird in 

spateren Paragraphen bewiesen werden. ... / Hieraus wird mit Hiilfe der in B. XXI, pag. 582 

bewiesenen Satze geschlossen werden, dass das Linearcontinuum die Mdchtigkeit der zweiten 
Zahlenclasse (II.) hat.” 

3 For instance, Hausdorff and Aleksandrov established in 1916 that CH holds for the Borel 

sets, see [Hallett 1984, 98-118; Moore 1989; Kanamori 1996, §§2.3 and 2.5], 
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sufficient to find a closed set of the second cardinality. Cantor tried this path in 

1884, as we know from his correspondence with Mittag-Leffler. His views changed 

quickly during this period. In August he believed to have found an example of 

closed set of the second cardinality [Schoenflies 1927, 16], but soon he realized he 

was mistaken. In October he communicated to Mittag-Leffler new developments 

that were published the next year in Acta Mathematicci (see [Cantor 1932, 261- 

76]). The basis was the new notion of homogeneous set, which opened up the 

possibility of decomposing any point-set into disjoint parts, one isolated and two 

homogeneous.1 These three parts were called coherence, adherence and inherence. 

Again, this train of thought did not lead to the desired end, and we shall not enter 
into those ideas in more detail. 

In November 1884 he wrote to Mittag-Leffler with an extremely significant 
announcement - the refutation of CH: 

And when I exerted myself again with the same purpose these days, what did I find? I found 

a rigorous proof that the continuum does not have the power of the second number-class and 

furthermore, that it does not have absolutely any of the powers that can be determined by a 

number. 

As fatal as an error that one has sustained for so long may be, for the same reason its 

final elimination constitutes a much greater gain.2 

Nevertheless, one day later he wrote again, with the news that his last proof was 

flawed and that CH was again on its feet [Schoenflies 1927, 18-19], 

Since the publication of Schoenflies’ paper it has been customary to accept his 

view that these unfruitful efforts, together with the annoying opposition of Kro- 

necker, caused Cantor’s mental crisis and his withdrawal from mathematics (see 

§VIII.5). But Cantor had been working on CH for a long time already, and he kept 

doing so immediately after his mental crisis in 1884; as a matter of fact, the se¬ 

quence of alleged proofs and refutations that we have just reviewed came right after 

his recovery. Purkert and Ilgauds [1987, 79-81, 193-94] have employed the testi¬ 

monies of his doctors to show that, apparently, mathematical work and particularly 

work on CH was among the very few things able to help Cantor come out of the 

low phases in his manic-depressive illness. 

A new line of attack for the proof of CH emerged with the introduction of the 

transfinite ordinal numbers in 1882. This novel development happened within a 

complex context, which included Cantor’s current research, particularly on the 

1 A homogeneous set P is characterized as being dense-in-itself, and such that sufficiently 

narrow neighborhoods of its elements always contain parts of P of the same power [Cantor 1932, 

265]; for the definitions of coherence, adherence and inherence, see [op.cit., 265, 270]. On the 

connection between these ideas and the CH, see [Cantor 1932, 264; Schoenflies 1927, 17]. 

2 [Schoenflies 1927, 17]: “Und als ich in diesen Tagen wieder mich um denselben Zweck ab- 

nriithe, da fand ich was? Ich fand einen strengen Beweis dafiir, dass das Continuum nicht die 

Machtigkeit der zweiten Zahlklasse und noch mehr, dass es iiberhaupt keine durch eine Zahl 

angebbare Machtigkeit hat. / So fatal ein Irrthum, den man so lange gehegt hat, auch sei, die 

endgiiltige Beseitigung ist dafiir ein um so grosserer Gewinn.” 
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Cantor-Bendixson theorem, but also (it seems) his conversations with Dedekind in 

September 1882. The transfinite numbers motivated a shift in Cantor’s work toward 

an abstract theory of transfinite sets, independent of point-sets and topological 

notions. In order to be able to analyze those developments in their complex context, 

and also for expository reasons, I shall devote the next chapter to Dedekind’s the¬ 

ory of sets and mappings, on which he based his definition of the natural numbers 

and his understanding of pure mathematics. Then, in chapter VIII we shall continue 

our review of the development of Cantor’s ideas, analyzing his work from 1883 to 

the end of his career. 



VII Sets and Maps as a Foundation for 
Mathematics 

Nothing capable of proof ought to be accepted in science without proof.1 

Of all the aids which the human mind has for simplifying its life, i.e., the 

work in which thinking consists, none is so rich in consequences and so 

inseparably bound up with its innermost nature as the concept of number. 

Arithmetic, whose sole object is this concept, is already a discipline of 

insurmountable breadth, and there is no doubt that there are absolutely no 

limits to its further development. Equally insurmountable is its field of 

application, for every thinking man, even if he does not clearly realize it, 

is a man of numbers, an arithmetician.2 

According to Plutarch, the great philosopher Plato said: del 6 Osoq yecopsxpei, God 

eternally geometrizes. The sentence was remembered in 19th-century Germany, 

and it was subject to changes that reflect the changing conceptions of mathematical 

rigor and pure mathematics. During the first half of the century, one of the greatest 

German mathematicians said, asi 6 Gsoq apiOppii^ei, ‘God eternally arithmetizes;’3 

geometry had lost its privileged foundational position to arithmetic. Gauss was of 

the opinion that, while space has an outside reality and we cannot prescribe its laws 

completely a priori, number is merely a product of our spirit or mind [Geist; Gauss 

1863/1929, vol. 8, 201]. Dedekind essentially agreed, and his most important foun¬ 

dational work, Was sind und was sollen die Zahlen? [1888], bears the motto: del 6 

dvOpamoq dptOprjxiijst, ‘man always arithmetizes.’ It seems that, in Dedekind’s 

1 [Dedekind 1888, 335]: “Was beweisbar ist, soil in der Wissenschaft nicht ohne Beweis 

geglaubt werden.” 

2 Dedekind, undated manuscript [Dugac 1976, 315]: “Von alien Hilfsmitteln, welche der 

menschliche Geist zur Erleichterung seines Lebens, d.h. der Arbeit, in welcher das Denken 

besteht, ist keines so folgenreich und so untrennbar mit seiner innersten Natur verbunden, wie 

der Begriff der Zahl. Die Arithmetik, deren einziger Gegenstand dieser Begriff ist, ist schon jetzt 

eine Wissenschaft von unermesslicher Ausdehnung und es ist keinem Zweifel unterworfen, dass 

ilirer femeren Entwicklung gar keine Schranken gesetzt sind; ebenso unermesslich ist das Feld 

ihrer Anwendung, weil jeder denkende Mensch, auch wenn er dies nicht deutlich fiihlt, ein 

Zahlen-Mensch, ein Arithmetiker ist.” 

3 Kronecker [1887, 252] attributes the sentence to Gauss on the basis of apparently reliable evi¬ 

dence. Kline [1972, 104] says it was Jacobi who coined it, and quotes Plato’s dictum in [Kline 1980, 

16]. 
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Figure 7. Title page of Dedekind's What are numbers and what could they be? [also: ... 

what are they for 1] [1888], Notice the Greek motto: "man eternally arithmetizes. ” 
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view, numbers are not made by God, but by men;1 2 mathematics has nothing to do 

with a world of essences or a Platonic heaven, it is a free creation of the human 

mind [Dedekind 1888, 335, 360], 

Dedekind was above all an expert in algebraic number theory, and everything 

seems to point to the conclusion that he regarded pure mathematics as the science 

of number. But his attempts to establish arithmetic on a sound, rigorous foundation 

led him to view it as built upon a set-theoretical basis, upon the notions of set and 

mapping. Taking into account that Dedekind regarded these notions as logical ones, 

the text quoted at the top reads somewhat differently - number is built directly 

upon the logical notions of set and map, and therefore it is indissolubly linked to 

the innermost nature of thought. Far from being a purely philosophical vision, the 

idea took the form of a detailed and precise foundational program in Dedekind’s 

mind. This program was a private endeavor until the publication of his booklet 

[1888], to which we shall refer as Zahlen.1 

The title of this work can be taken to mean ‘What are numbers and what are 

they for?’ But its second part can also be read in a subtler way, as meaning what 

ought and could numbers be? The prologue begins with another motto that Dede¬ 

kind had coined already in 1872, ‘nothing capable of proof ought to be accepted in 

science without proof.’ In the author’s view, this basic requirement had never been 

satisfied, “not even in the foundation of the simplest science, that part of logic 

which deals with the theory of numbers.”3 One of purposes of this chapter is to 

analyze the meaning of Dedekind’s logicism and the reception it was given (§§2 

and 6), but in the light of Chapter III his self-ascription to logicism should not come 

as a surprise. 

The key ideas of Zahlen have to do with two main fields, general set theory and 

the foundations of the number system and pure mathematics. Dedekind’s set- 

theoretical ideas proved quite influential among authors such as Hessenberg and 

Zermelo, in the 1900s, or Kuratowski in the 1920s. His development of the theory 

of ordinal numbers and mathematical induction became a model for a rigorous 

presentation of the transfinite ordinals. In dealing with the natural numbers, Dede¬ 

kind has an eye on the ulterior rigorous development of the whole number system, 

beginning with the integers and rationals. Once the problem of the irrational num¬ 

bers had been solved to his satisfaction, the only foundational difficulty - and a 

great one, to be sure - was to find a satisfactory treatment of the natural numbers, 

that at the same time could constitute a foundation for the whole further develop¬ 

ment. 
Unfortunately, Dedekind’s exposition paid too little attention to motivating his 

theoretical developments and suggesting their scope. Many contemporaries (in- 

1 Kronecker is reported to have said, in a lecture to a congress of 1886, that good God made 

the integers, and all the rest is the work of man [Weber 1893a, 15]. 

2 Since the book is divided into numbers corresponding to definitions or theorems, we shall 

refer to them as follows: Zahlen.66 refers to proposition 66 in Dedekind’s numbering. 

3 [Dedekind 1888, 335]: “selbst bei der Begrtindung der einfachsten Wissenschaft, namlich 

desjenigen Theiles der Logik, welcher die Lehre von den Zahlen behandelt. 
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eluding Cantor, it seems - see §4) failed to appreciate correctly Dedekind’s motives 

and the nature of his theory. For these reasons, I shall provide a careful analysis of 

the work and describe how algebra and analysis fit into Dedekind’s foundational 

program. But, first, we have to analyze its origins, which brings us back to the 

beginning of our story in the 1850s. 

1. Origins of Dedekind's Program for the Foundations of 
Arithmetic 

Dedekind’s Habilitation as a Privatdozent at Gottingen took place in 1854, just a 

few days after Riemann’s. The conference he gave on that occasion has already 

been mentioned in §111.1.1. It bore the title ‘On the Introduction of New Functions 

in Mathematics’ [Dedekind 1854] and constitutes the earliest document of his 

foundational views. As examples of the introduction of new functions or opera¬ 

tions, he examined the trigonometric functions, integration (in connection with 

elliptic functions), and elementary arithmetic. Dedekind presented the program of a 

gradual, ‘genetic’ development of arithmetic, departing from the natural numbers. 

1.1. The program in the 1850s. Dedekind began with the ‘absolute integers,’ 

our natural numbers, regarded primarily as ordinals. The “successive progress” 

from one member of the number-series to another is the first and simplest operation 

of arithmetic, on which all others are based. Addition is obtained by collecting “into 

one act” several repetitions of that elementary operation, multiplication is built in a 

similar way from addition, and so is elevation to powers from multiplication. 

But these definitions of the fundamental operations no longer suffice for the further devel¬ 

opment of arithmetic, the reason being that it assumes the numbers with which it teaches us 

to operate restricted to a very narrow domain. The requirement of arithmetic, namely, to 

recreate again the entire existing number-domain through each of these operations, or other¬ 

wise said: the requirement of the unconditional possibility of carrying through the indirect, 

inverse operations of substraction, division, etc., makes it necessary to create new classes of 

numbers, since with the original sequence of the absolute integers that requirement cannot be 

satisfied.1 

1 [Dedekind 1854, 430-31]: “Aber die so gegebenen Definitionen dieser Grundoperationen 

gentigen der weitern Entwicklung der Arithmetik nicht mehr, und zwar aus dem Grunde, weil sie 

die Zahlen, mit denen sie operieren lehrt, auf ein sehr kleines Gebiet beschrankt annimmt. Die 

Forderung der Arithmetik namlich, durch jede dieser Operationen das gesamte vorhandene Zahl- 

gebiet jedesmal von neuem zu erzeugen, oder mit andem Worten: die Forderung der unbedingten 

Ausfiihrbarkeit der indirekten, umgekehrten Operationen, der Substraktion, Division usw., fuhrt 

auf die Notwendigkeit, neue Klassen von Zahlen zu schaffen, da mit der urspriinglichen Reihe 

der absoluten ganzen Zahlen dieser Forderung kein Geniige geleistet werden kann.” 
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Thus one obtains the negatives, the fractions, the irrationals, and finally the so- 

called imaginary numbers. Once the number domain has been extended, it is neces¬ 

sary to redefine the operations, until then restricted to the natural numbers, in order 

to be able to apply them to the “newly created” [neugeschaffenen] numbers.1 And 

this extension of the definitions is not arbitrary as soon as one follows the general 

principle, to declare valid in general the laws that the operations obey in their re¬ 

stricted conception, and to derive from them, inversely, the meaning of the opera¬ 

tions for the new number domains. This principle is analogous to Ohm’s ideas on 

how to generalize arithmetical operations, and to the famous ‘principle of perma¬ 

nence’ formulated by Peacock around 1830 (still found in [Hankel 1867]). 
To some extent, the program Dedekind presented in 18,54 was one he pursued 

throughout his life. The above ideas resonate in §1 of his paper on irrational num¬ 

bers, where Dedekind suggests how the rational numbers are defined on the basis of 

the naturals [1872, 317-18]. The laws of operation with the new numbers “can and 

must” be reduced to the operations with natural numbers [op.cit., 322]. But one can 

find an important difference: while in 1854 he emphasized the redefinition of the 

operations, in 1872 Dedekind emphasized the definition of the numbers themselves. 

He now disliked to see the operation defined as such, preferring to determine the 

result of the operation as a certain number - one should define the sum as a number 

unequivocally determined by the summands, not define addition (1878 letter to 

Weber, [Dedekind 1930/32, vol. 3, 486]). This change is especially important in the 

light of the fact that, in 1872 and later, sets were the means that enabled Dedekind 

to define or ‘create’ new numbers. He must have begun to employ sets for this 

purpose before 1858 (§111.1.1), which supports the interpretation that Rieniann’s 

ideas, that he came to know in the interim, may have played a decisive role in the 

process. 
In 1858 Dedekind devoted himself exclusively to the question of the founda¬ 

tions of the number system for a few months, until he formulated his definition of 

the real numbers by means of cuts ([Dedekind 1872, 316], § IV.2.3). Among his 

unpublished manuscripts one finds several that deal with the definitions of 7L and 

(Q).2 They present the customary definition of the integers as ordered pairs of natural 

numbers, and the rationals as ordered pairs of integers, including proofs of the main 

theorems. There is evidence that these manuscripts were written before 1872, and 

so it is not unlikely that they may also date back to the late 1850s. Dedekind re¬ 

quired that the definitions of new numbers should be “purely arithmetical” and free 

from foreign elements [1877, 268-69]. For this reason it is noteworthy that he 

freely employed sets as a valid means for such definitions. The reason seems to be, 

1 The genetic approach, on the basis of the integers, the motivation for the expansion of the 
number system, and the focus on a rigorous redefinition of the operations, can all be found in 
Ohm (§§1.3 and IV. 1). More specifically, see [Bekemeier 1987, chap. 2, particularly 103ff], or 

the shorter exposition in [Novy 1973, 83-89]. 

2 Preserved under the signatures [Cod. Ms. Dedekind III, 2] and [III, 4]. The viewpoint is 
rather elementary, and the terminology is not yet that of [1872/78]; the topic is referred to in 
[Dedekind 1872, 317-18], Thus, they seem to have been written before 1872 
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quite simply, his understanding of the notion of set as a purely logical one, and 

therefore admissible in any domain of thought, in connection with any ‘product of 

our mind.’ 
But, if Dedekind’s first contact with sets was through Riemann, it seems that he 

may have first encountered the genetic method of defining new numbers through 

William Rowan Hamilton. In 1854 Dedekind said that the extension of arithmetic 

to the irrational and imaginary numbers poses essential difficulties; the main diffi¬ 

culties of systematic arithmetic begin with the imaginaries [Dedekind 1854, 434], 

Interestingly, he never came to publish, or even write a manuscript, on the topic of 

the complex numbers. In 1857 he read Lectures on Quaternions,' the introduction 

to which presented Hamilton’s conception of the real numbers and his well-known 

definition of the complex numbers as pairs of reals [Hamilton 1853]. Thus, a few 

years after his Habilitation Dedekind could regard the problem of the complex 

numbers as satisfactorily solved, while the reals still posed a difficult problem. 

Hamilton’s treatment of the imaginaries is the earliest example of the use of or¬ 

dered couples to define new numbers, a key example of the genetic method. 

The introduction to Hamilton’s Lectures, like an earlier paper dealing with ‘Al¬ 

gebra as the Science of Pure Time’ [1837], presented quite interesting mathematical 

ideas under a dubious philosophical dressing.1 2 For Hamilton, the essential trait of 

the notion of real number is the continuous, one-dimensional order of progression; 

for some time he doubted whether it was convenient to identify this abstract order 

with the intuition of pure time (see [Hendry 1984, 70-72]). Finally, under the influ¬ 

ence of the philosophical ideas of Berkeley and Kant, he decided to do so, and this 

is why he regards algebra as the science of pure time [Hamilton 1853, 117]. This 

viewpoint had some advantages. Mathematically, reference to the continuity of 

intuited time eliminated the problem of the existence of irrational numbers and the 

need to pin down the difficult idea of the continuum. Time is treated as a given, and 

so many basic propositions of arithmetic follow from its properties, as happens with 

the law of trichotomy (given two temporal instants one has one and only one of the 

relations a = b, a<b, a>b). Philosophically, Hamilton obtained a beautiful scheme 

in which geometry emerged from the pure intuition of space, and algebra from that 

of time (the two pure forms of intuition, according to Kant). But his extreme reli¬ 

ance on philosophical ideas hindered the diffusion and acceptance of Hamilton’s 

ideas. 

Hamilton’s theory of the real numbers was a sophisticated version of the Greek 

theory of ratios. He conceived of “steps” or temporal transitions that pass from one 

instant to another, defining the real numbers as ratios of steps [Hamilton 1853, 

119-20]. (The notions of step and ratio, like that of couple below, are obviously 

abstract, not based on any presumed intuition of pure time). As regards the complex 
numbers, Hamilton writes: 

1 Dedekind borrowed Hamilton’s book from the Gottingen Library in 1857, as evidenced by 

the Ausleihregister kept at the Niedersachsische Staats- und Universitatsbibliothek. 

2 On this topic, see [Hankins 1976; Mathews 1978, Hendry 1984], 1 shall not refer to the 1837 

paper, a notable piece of work, since it is very likely that Dedekind did not read it. 
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I thought that without going out of the same general class of interpretations, and especially 

without ceasing to refer all to the notion of time, explained and guarded as above, we might 

conceive and compare couples of moments', and so derive a conception of couples of steps (in 

time), on which might be founded a theory of couples of numbers [Hamilton 1853, 121], 

This is how he presented the idea of employing ordered couples for a genetic defi¬ 

nition of complex numbers. His manuscripts suggest that he had come to this idea 

independently of his general vision of algebra, under the simple form of couples of 

real numbers [Hendry 1984, 76-78],1 

When Dedekind wrote, in 1888, that he regarded the number-concept as com¬ 

pletely independent from any idea or intuition of space or time, he seems to be 

replying to Hamilton.2 It is likely that, already in the 1850s, he was not attracted by 

the speculative idea of basing everything on the intuition of time. But he must have 

been attracted by the thought of defining new numbers as ordered pairs, for he 

employed this tool in his manuscripts on the integers and rationals. Had Dedekind 

come independently to this idea, he would have written at least a manuscript on the 

definition of the complex numbers, and he would have mentioned the question 

(e.g., in [1871] and [1872]). One is thus led to understand that he used the genetic 

method for 7L and (Q) under the influence of Hamilton’s treatment of (E, which 

Dedekind seems to have regarded as definitive. On the other hand, Dedekind found 

a more or less satisfactory frame for this kind of definition in the general theory of 

sets that he presented in [1888]. (Not completely satisfactory, since Dedekind failed 

to employ the notion of ordered pair as a primitive one, or to justify it in any other 

way.) 
To summarize, Dedekind had arrived at the idea of a ‘genetic’ development of 

arithmetic in 1854, plausibly under the influence of Martin Ohm, but it was only 

later that he came to merge this with the notion of set. In his algebraic and number- 

theoretical work, Dedekind began to employ sets and mappings around 1856 or 

1857, probably under the influence of Riemann (see above and §111.1). (The ab¬ 

stract conceptual methodology that he shared with Dirichlet and Riemann (§1.4) 

also played an important role in guiding his choices.) In 1857 he came to know 

Hamilton’s work, which for the first time offered what Dedekind regarded as a 

satisfactory treatment of the complex numbers, defined as ordered pairs of reals. It 

seems likely that in 1858, while devoting himself to the foundations of the number 

system, Dedekind established definitions of the integers and rationals that were 

1 Interestingly, Hamilton referred to the possibility of a theory of ordered sets or “systems” 

[1853, 132], as an extension of those of ordered couples and ordered quadruples (the quater¬ 

nions). The reader should take into account that Hamilton is properly talking of ordered n-tuples, 

not sets in the modem sense of the term. But one may assume that this kind of statement may 

have encouraged Dedekind in his tendency to introduce the abstract notion of set or “system” in 

arithmetic, algebra, analysis, and number theory. 

2 And to Helmholtz [1887], an article cited in [Dedekind 1888, 335]. A similar criticism can 

be found earlier in Cantor [1883, 191-92]; it is one of those instances in which one doubts 

whether they came independently to the same idea, or they discussed it in one of their few meet¬ 

ings. 
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modeled on Hamilton’s. He also employed a much more complex set-theoretic 

notion, that of a Dedekind cut, to define the real numbers. In this way, Dedekind’s 

genetic method came to be intimately linked with the notion of set. The general set- 

theoretic framework for such a genetic development of the number system is laid 

down in Zahlen [Dedekind 1888], 

1.2. Arithmetical foundations. Besides the general framework for a develop¬ 

ment of the number system, the other core element of Zahlen is the rigorous devel¬ 

opment of elementary arithmetic on the basis of sets and maps. Until the late 19th 

century, the elements of arithmetic had not been rigorously treated, and there had 

been a cleavage between authors who dealt with the elements, normally textbook 

writers, and authors who contributed to number theory or mathematical research in 

general [Novy 1973], The distance was narrowed by authors such as the Berlin 

professor Ohm, but it had not yet disappeared (Ohm was basically a teacher and 

textbook writer). An important step forward was accomplished by Hermann 

Grassmann in his Lehrbuch der Arithmetik [1861], which seems to be the most 

important precedent for Dedekind’s work.1 Grassmann based his treatment of 

arithmetic on the systematic application of mathematical induction, giving recursive 

definitions of the basic operations and rigorous proofs of the fundamental proper¬ 

ties [Grassmann 1861, 1-10, 17-28, 73-78]. He also analyzed the introduction of 

rational and irrational numbers, but here he was behind Weierstrass, Dedekind and 

Cantor, for he did not address the key problem of the existence of irrational num¬ 

bers (see Chapter IV and [Grassmann 1861, 99]). On the other hand, Grassmann’s 

approach tended to be axiomatic rather than genetic.2 

In comparison with Grassmann, Dedekind’s final contribution in Zahlen is 

much deeper, for he gives a general, set-theoretical foundation for the recursive 

approach to arithmetic. Dedekind’s basic set theory sufficed for defining the natural 

numbers abstractly, in such a way that he was able to justify the methods of 

mathematical induction and recursive definition (and even generalize them). One 

may say that, with his booklet, the hiatus between elementary and higher mathe¬ 

matics was suppressed for the first time, within the domain of arithmetic. 

The lecture [1854] indicated that one should introduce the number operations on 

the basis of the order of succession among numbers. This viewpoint is developed in 

two unpublished manuscripts, entitled ‘Arithmetical Foundations.’3 The manu¬ 

scripts present recursive definitions of addition and multiplication, upon which 

1 As late as 1876 Dedekind had not read this work [Lipschitz 1986, 74], which means that his 

contribution was independent. 

2 From this viewpoint, one has to say that his axiomatization of the real numbers is not ade¬ 

quate, for it does not include an axiom of continuity (completeness). Grassmann kept talking 

about ‘magnitudes,’ although in an extremely abstract sense; one should probably blame this 

reliance on a traditional approach for his inadvertence of the need to enforce a continuous num¬ 
ber-domain. 

3 ‘Arithmetische Grundlagen’ [Cod. Ms. Dedekind, III, 4, II], One should differentiate these 

manuscripts from the ones on 7L and © mentioned in § 1.1. 
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Dedekind based rigorous proofs by mathematical induction of the fundamental 

properties (associative, commutative, and distributive laws). It seems that the 

manuscripts must have been written between 1854 and 1872, so one may safely 

take them to stem from the 1860s. The reasons why they should be dated before 

1872 are the following. The ideas presented here will be published in Zahlen, but 

are not dealt with in the draft begun in 1872.' Right from the start, this draft adopts 

a much higher standpoint, which presupposes the material of ‘Arithmetical Foun¬ 

dations.’ Moreover, the last part of the manuscripts documents the emergence of 

the higher standpoint of Zahlen and the 1872/78 draft. 

Both manuscripts start with the “creation” [Erschaffung] of the natural numbers, 

beginning with 1 and forming the “successor” [folgende Zahl] of any number a by 

means of the “act +1” [Cod. Ms. Dedekind III, 4, II, p. 9, 11]. One thus has the 

number sequence 1, 1 + 1=2, 2+1=3, 3 + 1=4, ..., defined just like Leibniz did in 

the Nouveaux essais.1 2 Dedekind goes on to say that, because of that definition, 

everything will be proven by mathematical induction. He defines addition by means 

of the formula “a+(6 + l) = (a + b)+1” [ibid.] and proves the associative and com¬ 

mutative laws by induction. Similarly, he defines multiplication by a -1 = a and 

a-(b+1) = a b+a [op.cit., 10, 12], proving the commutative, associative, and 

distributive laws. 
Dedekind would not be satisfied with this kind of analysis of the natural num¬ 

bers, not even after it had been extended to a complete inventory of the fundamen¬ 

tal properties of M. A retrospective account of his investigations, in an 1890 letter 

to the Gymnasium professor Keferstein, contains the following noteworthy expla¬ 

nation of the problem he posed to himself: 

What are the mutually independent fundamental properties of this sequence N, that is, those 

properties that are not derivable from one another but from which all others follow? And 

how should we divest these properties of their specifically arithmetic character, so that they 

are subsumed under more general notions and under activities of the understanding without 

which no thinking is possible at all but with which a foundation is provided for the reliability 

and completeness of proofs and for the construction of consistent notions and definitions?3 

As we see, Dedekind wished to adopt a higher standpoint, which would enable him 

to divest the fundamental properties of M of their specifically arithmetic character. 

This he found in the ‘logical’ notions of set and mapping. In the next-to-last page of 

‘Arithmetical Foundations’ he recasts the definitions of addition and multiplication 

in an abstract way, regarding them as functions of two arguments. Addition, for 

instance, becomes “cp(a,d(b)) = dy(a,b)\ tp(a, 1) = t/(a)” [Cod. Ms. Dedekind 

1 The recursive definitions of the operations are only mentioned expeditiously at one point in 

the draft [Dedekind 1872/78, 303], 

2 [Leibniz 1704, book IV, chap. 7]. But Leibniz is not necessarily the source; Ohm, e.g., did it 

the same way (see [Bekemeier 1987, 167]). 

3 As translated in [van Heijenoort 1967, 99-100]. The German text, and a French translation, 

can be found in [Sinaceur 1974, 272], The letter was first noticed by Wang [1957], 
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III, 4, II, p. 12], The “act +1” has come to be regarded as a mapping d: Fd—>RJ. 

Therefore, the last page of the manuscript reformulates the original idea by writing: 

“Sequence [Reihe] 1, cp( 1 ) = 2, cp(2)=3, cp(3)=4, ...” [op.cit., 13].' 

With this simple step, Dedekind reached an abstract, unifying standpoint. The 

“simplest arithmetical act,” that of counting or, otherwise said, the successive crea¬ 

tion of the infinite series of natural numbers [1872, 317], has come to be seen as a 

mapping tp of Fd in itself. Previously, natural numbers had been the foundation on 

which all of arithmetic was developed, by means of the notions of set and mapping, 

which had proven their usefulness in the context of algebra and number the- 

ory(§§l.l and III.1-2). Now it seemed possible to define the natural numbers them¬ 

selves on the basis of sets and maps. The implications and further development of 

this change in perspective would be the subject of the draft for Zahlen, written 

between 1872 and 1878. As we have seen (§111.6), this draft begins with the notions 

of set and mapping, of which Dedekind writes: 

The concepts of system and of mapping, which will be introduced in the sequel in order to 

lay the foundation of the concept of number, and of cardinal number, remain indispensable 

for arithmetic even in case one wished to presuppose the concept of cardinal number as 

immediately evident (“inner intuition”).1 2 

The letter to Keferstein indicates that Dedekind considered the question of the 

independence of the basic properties he employed for defining Fd, although he did 

not treat the problem in a formal way. He also made an effort to characterize the 

number sequence completely [van Heijenoort 1967, 100], and this led him (through 

a noteworthy reasoning that will be discussed in §2.3) to the notion of chain. This is 

certainly the most original notion employed in Zahlen, and becomes the basis for 

mathematical induction. But first we need to comment briefly on the general set- 

theoretic notions developed by Dedekind. 

2. Theory of Sets, Mappings, and Chains 

An important part of the contents of Zahlen is perfectly general, an abstract theory 

of sets, mappings, and chains. It has been a frequent mistake, particularly common 

in Dedekind’s time, to think that, since the book deals with the natural numbers, its 

contents must be elementary, e.g., restricted to finite sets. Several remarks in the 

booklet suggest that Dedekind was offering an alternative foundation for the basic 

1 Dedekind then goes on to introduce addition, with some theorems, to define substruction, 
and to consider very briefly the introduction of the integers. 

2 [Dugac 1976, 293]: “Die Begriffe des Systems, der Abbildung, welche im Folgenden einge- 
fiihrt werden, urn den Begriff der Zahl, der Anzahl zu begrunden, bleiben auch dann fiir die 
Arithmetik unentbehrlich, selbst wenn man den Begriff der Anzahl als unmittelbar evident (‘in- 
nere Anschauung’) voraussetzen wollte.” For the meanings of ‘Zahl’ and ‘Anzahl,’ see [op cit 
300,303], 
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notions of set theory, also applicable to a reconstruction of Cantorian set theory. 

However, Dedekind refrained from making the least explicit reference to Cantor 

and his work, and he did not enter into the theory of transfinite ordinals or well- 

ordered sets.1 Thus, the arch giving structure to transfinite set theory is missing, and 

it would only be years later that Zermelo indicated how to establish a connection 

between both theories (§IX.4). 

The most original contributions made by Dedekind in Zahlen are all related to 

the notion of mapping. This distinguishes him from Cantor, who certainly em¬ 

ployed mappings, but never considered them explicitly nor even employed a com¬ 

mon word for the different kinds of mappings.2 Dedekind was the first mathemati¬ 

cian who focused explicitly on that general notion, whose algebraic origins (§111.2) 

and connection with the natural numbers (§1) we have already considered. The new 

ideas that Dedekind gradually forged and elaborated in his draft of 1872/78 are all 

related to the notions of mapping and of chain (which depends on the former). 

Actually, the theory of chains was his most important and original contribution to 

abstract set theory. 

2.1. Things and sets. §1 of Zahlen is devoted to formulating the most basic set- 

theoretic notions, to proving some elementary results that will be used later, and to 

studying the interrelations between those notions. The treatment is notable for be¬ 

ing more succinct and systematic than anything written until then, but otherwise it 

is not particularly interesting. The peculiar terminology can be easily translated into 

the modem one: he presents notions of “thing,” “system,” “part” (subset) and 

“proper part,” “compounded system” (union), and “community of systems” (inter¬ 

section).3 These are just the notions that he had fruitfully employed in the context 

of algebra and number theory (§111.2). It should be noted that Dedekind did not 

analyze more interesting operations like power set formation or Cartesian product; 

these would be introduced later in connection with Cantorian problems, the second 

by Cantor himself. An example of the results Dedekind established is the associa¬ 

tive law for the union operation (Zahlen. 16). 

An interesting aspect of Dedekind’s work was the underlying idea that all of the 

notions employed are purely logical. In a draft written in 1887, this section bore the 

title “Systems of Elements (Logic)” [Cod. Ms. Dedekind III, 1, III, p.2]. The pub¬ 

lished version eliminated the word in brackets, but as late as 1897 Dedekind still 

1 Actually, Dedekind eliminated a reference to Cantor that appeared in his 1887 draft of the 

preface (§VII.2.1 and [Cavailles 1962, 120]). Passages that are relevant to Cantorian set theory 

are the footnote to [Dedekind 1888, 387] and also [Zahlen.34 and 63], 

2 When it comes to one-to-one mappings, Cantor speaks of correlating [beziehen] or coordi¬ 

nating [zuordnen] univocally and completely, or else of a correspondence (§VI.2-4); in the 

context of well-ordered sets, he speaks of “mappings” [Abbildungen], meaning order- 

isomorphisms (§VIII.4.1); and in another context he talks of “coverings” [Belegungen], which 

correspond to Dedekind’s mappings (§VIII.7). 

3 [Dedekind 1888, 344-47]: “echter Teil,” “zusammengesetze System.,” “Gemeinheit der 

Systeme.” 
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referred to the “logical theory of systems” [Systemlehre der Logik; Dedekind 

1930/32, vol. 2, 113]. Everything suggests that Dedekind took it for granted that a 

theory of sets, manifolds, or classes (synonyms that he mentions explicitly) is a 

logical theory. But, although he made some efforts to convince the reader that the 

notion of mapping is a logical one, we find no such effort with respect to sets. The 

reason seems to be his awareness of the circumstances described in §11.2 (which 

deals with issues that are essential here), regarding the state of logical theory by the 

mid- 19th century. The logical character of the notion of set could be taken to have 

been established by the tradition of so-called ‘formal’ logic, on the basis of a con¬ 

nection between concepts and sets (which would lead to the principle of compre¬ 

hension). 

It seems that Dedekind conceived of logic, in agreement with an old tradition, 

as the “science” or discipline that deals with the most general laws of thought, those 

which are applied whenever we think about any particular subject matter. Among 

the notions that are always applied, we find the notion of set (linked to the very idea 

of concept) and the notion of mapping. In accordance with the view that the scope 

of logic is the broadest possible, Dedekind framed his set-theoretical ideas within 

the most general context. He began by defining a “thing” [Ding] to be any object of 

our thought [1888, 344], a definition that stems from 1872 at least [Dedekind 

1872/78, 293], He employed the Leibnizian definition for the equality of things: a 

and b are equal when everything that can be thought of a can also be thought of b, 

and conversely. 

The notion of set was explained as follows (it is noteworthy that, in contrast to 

the rest of his booklet, Dedekind does not call this a “definition”): 

It very frequently happens that different things a, b, c, ... considered for any reason under a 

common point of view, are collected together in the mind, and one then says that they fonn a 

system S' one calls the things a, b, c, ... the elements of the system S, they are contained in S' 

conversely, S consists of these elements. Such a system S (or a collection, a manifold, a 

totality), as an object of our thought, is likewise a thing; it is completely detennined when, 

for every thing, it is determined whether it is an element of S or not.1 

Dedekind’s conception of set can be regarded as a typical example of the old ‘na¬ 

ive’ approach, although he avoided associating too closely sets and concepts. His 

last remark contains a clear statement of the principle of extensionality - that a set 

is univocally detennined by its elements; at the same time, it suggests a dichotomic 

conception of sets, in the sense that a set is determined by partitioning the class of 

1 [Dedekind 1888, 344]: “Es kommt sehr haufig vor, dass verschiedene Dinge a, b, c, ... aus 
irgendeiner Veranlassung unter einem gemeinsamen Gesichtspunkte aufgefasst, im Geiste 
zusammengestellt werden, und man sagt dann, dass sie ein System S bilden; man nennt die Dinge 
a, b. c, ... die Elemente des Systems S, sie sind enthalten in S; umgekehrt besteht S aus dieser 
Elementen Ein solches System S (oder ein Inbegriff, eine Mannigfaltigkeit, eine Gesamtheit) ist 
als Gegenstand unseres Denkens ebenfalls ein Ding; es ist vollstandig bestimmt, wenn von jedem 
Ding bestimmt ist, ob es Element von S ist oder nicht.” 
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everything into two parts [Godel 1947; Wang 1974], Any thing may belong to a 

set, and every set is a thing, which opens the way to a free formation of sets of sets. 

Dedekind established no restriction on the possibilities of set formation, and the 

whole booklet (particularly Zahlen.66) relied on the acceptance of a universal set, 

“my world of thoughts, i.e., the totality S of all things that can be an object of my 

thought.”1 This is the basis for his dichotomic conception, and the door through 

which the set-theoretical paradoxes affected Dedekind’s system. 

Dedekind seems to have avoided associating sets and concepts too closely. It 

might have been easier to say that a set is determined by a common property shared 

by its elements, as he had done back in 1872 (§111.5), but Dedekind now preferred 

to leave undetermined what kind of “common point of view” may determine the 

set. He did indicate that it is sufficient that the set be determined in principle, 

whether or not we know a way to actually determine its elements; this made it clear 

that he did not share Kronecker’s view that one should restrict the process of con¬ 

cept-formation in mathematics [1888, 345; see 338], One can only speculate on the 

reasons for his decision to avoid explicit reference to concepts: it may have been 

that his methodological ideas, his preference for an abstract viewpoint, recom¬ 

mended the change; one might even wonder whether he may have been aware that 

a purely extensional (quasi-combinatorial) conception of sets implies the existence 

of sets that are not defined by any property. 

At any rate, it is certain that the association between concepts and sets, the com¬ 

prehension principle, guided Dedekind for a long time and determined his concep¬ 

tions (see §§111.4.2 and III.5). We have seen that around 1872 he defined a “system 

or collection” [Inbegriff] of things by reference to a “common property” that they 

share ([1872/78, 293], §111.5). The second, 1887 draft for Zahlen contains the fol¬ 

lowing statement: “A system can consist in one element (i.e., in a single one, in one 

and only one), it can also (contradiction) be void (contain no element).” What the 

second part of this sentence means is that a contradiction, a contradictory condition 

or property, determines the empty set. That is exactly the way in which Frege and 

Russell justified the assumption of an empty set. Likewise, while defining union¬ 

sets, Dedekind commented aside: “extension (of the concept) in contrast to restric¬ 

tion;” and in relation to the intersection, he wrote that it can be “void (contradic¬ 

tion).”2 In Zahlen itself we still find a vestige of the connection between sets and 

concepts, when Dedekind proves a theorem of (generalized) mathematical induc¬ 

tion, speaking of a set Z, and then goes on to translate it into the language of prop¬ 

erties (and of propositions) [ 1888, 355]. 

In the introduction to [Frege 1893], the great logician criticized Dedekind’s 

views by indicating three weak points - the lack of a clear distinction between 

1 [1888, 357]: “Meine Gedankenwelt, d. h. die Gesamtheit S aller Dinge, welche Gegenstand 

meines Denkens sein konnen, its unendlich.” 

2 [Cod. Ms. Dedekind, III, 1, III, p. 2]: “Ein System kann aus einem Element bestehen (d. h. 
aus einem einzigen, aus einem und nur einem), kann auch (Widerspruch) leer sein (kein Element 
enthalten). ... Erweiterung (des Begriffs) im Gegensatz zu Verengerung.” 
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inclusion and the membership relation; the confusion between a unitary set and its 

single element; and the exclusion of the empty set. Frege was intent on showing 

that any extensional conception of sets is unsatisfactory, and that one must begin 

with the purely logical, and intensional, notion of concept [op.cit., 2-3], His first 

criticism certainly spotted a weak point in Dedekind’s terminology and notation, a 

weakness that would first be remedied by Frege and by Peano, who introduced the 

symbol ‘eDedekind employed a special sign for inclusion (though I shall use the 

modern one), and wrote aaS when a is an element of S. This is because he admit¬ 

ted the formation of a unitary set from any thing a, and denoted both the thing and 

the unitary set with the same letter (Zahlen.3). But he was conscious that both are 

quite different notions, and perfectly aware of the “danger” of contradiction hidden 

in his notation.1 As regards the third point, we have seen that Dedekind defined in 

1887 the empty set just as Frege did, but in the book he preferred to exclude it “for 

certain reasons,” saying that in other contexts it might be comfortable to “imagine” 

[erdichten] such a set.2 3 Frege was troubled by this negligent way of speaking of the 

empty set, for it run quite contrary to his philosophical tendencies. A manuscript 

written by Dedekind in the 1890s, on a new definition of finite and infinite, intro¬ 

duces the empty set, denoting it by ‘0,’ and employs the notation ‘[a]’ to distin¬ 

guish the unitary set from the element a (see [1888, 342] and [Dedekind 1930/32, 

vol. 3,450-60]). 

2.2. Mappings. Dedekind’s exposition of the notion of mapping is quite mod¬ 

em, and his terminology remains to a great extent the present one. He defines a 

“mapping (p of a system S” as a “law” according to which to each element s of S 

there “corresponds” a certain thing (p(s) called the “image” of s? Then he goes on 

to present the notions of the image of a part (subset) of S, the restriction of cp to a 

part of the domain, and the identity mapping. Later we find the notion of a mapping 

“composed” of two given ones, \|/(cp(f)) or ipcp^) [op.cit., 349]; this was quite 

natural for Dedekind, given the way in which he used mappings in, e.g., group 

theory. 

One may criticize Dedekind for calling his explanation of what a mapping is, a 

“definition” [Erklarung], This is objectionable, because it plays the role of a primi¬ 

tive notion in his work, just like the notion of set, which he did not claim to have 

‘defined.’ To put it otherwise, establishing what a mapping is by reference to a 

1 See [Dedekind 1888, 345], an 1888 letter to Weber [Dugac 1976, 273], and the manuscript 

‘Gefahren der Systemlehre’ [Sinaceur 1971], where we can read that in 1888 he planned to write 

an announcement of the book, where he would have discussed this delicate point, as he does in 

the letter to Weber. 

2 [Dedelcind 1888, 345]. The reasons may have had to do with simplifying the proofs, or with 

his decision to begin the number sequence with 1, regarding 0 as an integer. 

3 [Dedekind 1888, 348]: “Unter einer Abbildung cp eines Systems S wird ein Gesetz verstan- 

den, nach welchent zu jedem bestimmten Element s' von S ein bestimmtes Ding gehort, welches 

das Bild von s heisst und mit cp(s) bezeichnet wird; wir sagen auch, dass cp(s) dem Element s 

entspricht.” 
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“law” may be regarded as a useful explanation, but as a definition it seems circular. 

It is interesting, though, that Dedekind’s definition is strongly reminiscent of 

Dirichlet’s explanation of functions as arbitrary laws (§V.l). This supports the 

interpretation that his general notion of mapping is taken to be the logical back¬ 

ground of the idea of function as used in analysis. 

The German word ‘Bild’ can have the meaning of image or figure, but also of 

mental picture or idea. Thus, ‘Abbildung’ could be translated into “representation,” 

which seems to capture an important part of the connotation of the term, as Dede¬ 

kind employed it. The book’s preface indicates that, if we consider what man does 

while counting, we are led to the faculty of the mind to relate things to things, to let 

a thing correspond to another, or “to represent” [abzubilden] one thing by another. 

This faculty of representing or mapping, which we always employ in counting, is 

also absolutely essential for thinking in general [1888, 335-36], This is the author’s 

characteristically brief argument for the logical nature of mappings. As we see, the 

very general sense of the term ‘Abbildung’ is coherent with the idea that it is a 

purely logical, completely general notion. 

In §3, Dedekind introduces the notion of injective mapping with a paragraph 

that is a model of the modern character of his exposition. A mapping (p of S is 

called “similar (or distinct)” [ahnlich (oder deutlich)] when to different elements of 

S there correspond different images [1888, 350], Behind the terminology employed 

lays the connotation of ‘Abbildung’ as representation, an injective mapping being a 

similar or distinct representation of the original (one is even reminded of Descartes’ 

or Leibniz’s clear and distinct ideas). Dedekind goes on to say that, since in this 

case (p(s)=cp(t) implies s—t, we can consider the “inverse mapping” <p , which is 

also a ‘similar’ mapping from S'=cp(S) to S. It is trivial, he says, that cp (S') = S, 

that cp is the inverse mapping of <p , and that the composed mapping (p cp is the 

identity mapping on S. 

This paragraph defining injective mappings ends by talking about bijective 

ones, which points to an ambiguity in Dedekind’s terminology. One can understand 

it as a consequence of the fact that he regarded as trivial the restriction of the range 

to the image S'=(p(S). (A later paragraph (Zahlen.36), devoted to defining what is 

meant by a mapping of a set in itself, makes it clear that Dedekind does not take the 

final set and the image to be always identical.) 
Injective or ‘similar’ mappings led Dedekind to consider what he calls “similar 

[ahnliche] systems,” i.e., equipollent sets. After proving that the relation of ‘simi¬ 

larity’ between sets is transitive, he defines equipollence classes [Dedekind 1888, 

351]. Here he is considering all sets as partitioned into classes of equipollent sets, 

and one should take into account that he has not yet adopted any restriction as to 

the sets he is considering. His general notions are valid for finite and infinite sets 

alike, and so we arrive at his version of Cantor’s notion of power or cardinality. 

The definition of cardinal numbers as classes of equipollent sets would be adopted 

by Russell [1903], after related (but intensional) ideas had been proposed by Frege 

and Cantor.1 

1 Frege did so in [1884], but Dedekind read this book for the first time in 1889 [Dedekind 
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2.3. Chains. §4 of Zahlen, devoted to the mapping of a system in itself, deals 

properly with the theory of chains and the principle of mathematical induction. The 

theory of chains is Dedekind’s most original contribution to abstract set theory, it is 

more general and independent of the topic of natural numbers. This theory is built 

on the basis of the general notion of map, without presupposing injective maps. 

(Dedekind realized that this was possible while writing the second part of his early 

draft [1872/78, 297-99]; later he wrote that the theorem of mathematical induction 

does not require an injective mapping [op.cit., 305-07]). 

But this interesting body of theory is the best example of how, in his absolute 

attention to rigor, Dedekind neglected to motivate his new ideas and offer the 

reader a grasp of their scope. It would have been very important to explain the role 

of chains in connection with the definition of numbers, a topic that appears only in 

the letter to Keferstein. And the reception of Dedekind’s work would probably have 

been better had he explained that results such as the Cantor-Bemstein theorem (§4) 

were consequences of chain theory. As he presented the matter, only a few mathe¬ 

maticians (especially Schroder and Zermelo, but surprisingly not Cantor) were able 

to appreciate his contribution adequately. Today it is easier to put everything in 

perspective, thanks to our knowledge of manuscripts and of the later development 

of set theory. 

The notion of chain was obtained by generalizing the conditions that a mapping 

on a set must satisfy in order to make proofs by induction possible. Dedekind con¬ 

vinced himself of the need for such a notion through a noteworthy argument that he 

explains in his 1890 letter to Keferstein. Clear traces of this train of thought can be 

found in the very first part of his draft [Dedekind 1872/78, 295], One is thus led to 

the conclusion that the notion of chain was forged in the early 1870s, most likely in 
1872. 

Using the concepts that we have already discussed. Dedekind was led to char¬ 

acterize Fd as a set with a distinguished element 1, for which a mapping (p is defined 

such that (a) cp is an injective map, (b) tp(Fd)cFd, and (c) 1 is not an element of 

(p(RJ). Under these conditions, and given his definition of infinite sets (§111.5, or 

§3), Fd is infinite - it is equipollent to its proper part cp(Fd). But, considering the 

possible sets that might satisfy conditions (a)-(c), Dedekind concluded that one 

needs something else to characterize FT. The argument is model-theoretic in char¬ 

acter,* 1 and is very clearly explained in the letter to Keferstein. 

The three conditions above would be valid for any system 5” that, besides the 

number sequence Fd, contains an arbitrary set T, to which we can always extend the 

mapping (p so that it remains injective while cp( 7)c T. Under the above definition, S 

would be called a number sequence, but we can define it in such a way that almost 

1888, 342; Sinaceur 1974, 275], 

1 Model theory is a branch of mathematical logic that considers the interplay between formal 

axiom systems and their models (i.e., mathematical structures that satisfy the axioms). Properly 

speaking, it consolidated around 1950, although one can find model-theoretic arguments in the 
1920s. 
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no theorem of arithmetic would be preserved, for proofs by induction would fail to 

establish the properties of the elements in T (the elements of T form, so to say, an 

ordering apart from the succession of numbers). 

What, then, must we add to the facts above in order to cleanse our system S again of such 

alien intruders t as disturb every vestige of order, and to restrict it to Nl This was one of the 

most difficult points of my analysis and its mastery required lengthy reflection. If one pre¬ 

supposes knowledge of the sequence N of natural numbers and, accordingly, allows himself 

the use of the language of arithmetic, then, of course, he has an easy time of it. He need only 

say: an element n belongs to the sequence N if and only if, starting with the element 1 and 

counting on and on steadfastly, that is, going through a finite number of iterations of the 

mapping cp (see the end of article 131 in my essay), 1 actually reach the element n at some 

time; by this procedure, however, I shall never reach an element t outside of the sequence N. 

But this way of characterizing the distinction between those elements t that are to be ejected 

from S and those elements n that alone are to remain is surely quite useless for our purpose; 

it would, after all, contain the most pernicious and obvious kind of vicious circle. The mere 

words ‘finally get there at some time,’ of course, will not do either; they would be of no 

more use than, say, the words ‘karam sipo tatura,’ which I invent at this instant without 

giving them any clearly defined meaning. Thus, how can I, without presupposing any arith¬ 

metic knowledge, give an unambiguous conceptual foundation to the distinction between the 

elements n and the elements tl Merely through consideration of the chains (articles 37 and 

44 of my essay), and yet, by means of these, completely!1 

Dedekind gave two different notions that are referred to by means of the word 

‘chain.’ Given a set S and a mapping cp: S —> S, a subset K of S is called a “chain” 

[Kette] if and only if cp(AT)cAi [Dedekind 1888, 352]; this notion is essentially 

dependent on cp. One might say that, for any map cp, there will be subsets of the 

domain that are ‘chains’ in Dedekind’s sense. A second, and crucial, notion is that 

of the “chain of the system A” [Dedekind 1888, 353], denoted by ‘Ag,’ where A is 

any subset of S. Aq is the intersection of all those subsets K of S that are chains 

(q(K)czK) and contain A; informally, the chain of A is the smallest chain that con¬ 

tains A, or the closure of A under cp in S. The set Aq is univocally determined, and 

so we are justified in calling it the chain of set A; on the other hand, the notion 

depends completely on the basic mapping cp, and so Dedekind proposed to use the 

notation l(po(Af if needed for the sake of clearness [ibid.]. 

Dedekind went on to prove three results that, as he remarked, suffice to charac¬ 

terize completely the notion of the chain of a set. Aq is a subset of S such that: 

AczAq (.Zahlen.45); cp(Aq)czAq (Zahlen.46); if KtzS is a chain and AaK, then 

AqclK (ZahlenAl) [1888, 353]. With this new notion, it is possible to characterize 

RJ completely and exclude the ‘intruders’ t (see above) by the following condition: 

(d) RJ is the chain of {1}, which Dedekind wrote 10 or tp0( 1). Otherwise said, an 

element n of S belongs to RJ if and only if n is an element of every subset K of S 

1 Letter to Keferstein, 1890, as translated by Wang and Bauer-Mengelberg in [van Heijenoort 
1967, 100-01 ]. The original text can be found in [Sinaceur 1974, 273-75]. 
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such that 1 e K, and (p(K)czK [van Heijenoort 1967, 101]. But let us go back to the 

theory of chains as developed in §4 of Zahlen. 

Dedekind investigated next some relations between the notion of the chain of a 

set and concepts he had introduced previously. In particular, he gave some results 

about the so-called “image-chain” [Bildkette] of a set, A 'q = (Aq)' = (A ')q; the chain 

Aq is the union of A and its image-chain A ' q [1888, 354], Finally we find the key 

result that underscores the importance of chains, a generalization of mathematical 

induction that forms the “scientific foundation” for that method of proof: 

59. Theorem of complete induction. In order to show that the chain A0 [cS] is a part of any 
system X - be this latter part of S or not - , it suffices to show, 

p. that A cl, and 
o. that the image of any common element of A0 and X is likewise an element of X.1 

The proof is not difficult. Dedekind considered the intersection G = Aq n X, which 

(by p and prop. 45 above) must contain A. Since G c Aq, we have (p(G) c: Aq, and 

also (by g) cp(G) c X; therefore (by definition of G) we have cp(G) c G, i.e., G is a 

chain. This, together with A c G, implies (by prop. 47 above) that Aq c G. Thus, G 

= Aq and Aq is a subset of X, as the theorem claims. 

Here, mathematical induction is not formulated for RJ, but for an arbitrary 

chain. This constituted an important generalization of induction in two respects: M 

is the chain of a unitary set {1}, but here one considers the chain of an arbitrary set 

A; and the mapping cp of RJ is injective, while here one considers arbitrary map¬ 

pings. This last point is, perhaps, less evident but more important; it seems to have 

been one of the main motives why Dedekind presented a general theory of map¬ 

pings in Zahlen (see §2.2). 

3. Through the Natural Numbers to Pure Mathematics 

Dedekind had the “dazzling and captivating” idea of grounding the finite numbers, 

and all of pure mathematics, on the infinite.2 To this end, he needed a general defi¬ 

nition of infinite set. The fact that he was so interested in this question, while 

Cantor had not paid attention to it until well into the 1880s, is symptomatic of the 

differences in their approaches to set theory (see [Medvedev 1984]). Cantor was 

interested in establishing results on point-sets and transfinite sets; he took the natu¬ 

ral numbers as given and so he could presuppose the notion of infinity (see [Cantor 

1878; 1879/84]). Dedekind regarded set theory as the foundation of mathematics, 

1 [Dedekind 1888, 354-55]: “Satz der vollstdndigen Induction. Um zu beweisen, dass die 
Kette A0 Teil irgendeines Systems X ist - mag letzteres Teil von S sein order nicht geniigt es zu 
zeigen, / p. dass A 3 X, und / a. dass das Bild jedes gemeinsamen Elementes von A0 und X eben- 
falls Element von X ist.” 

2 Hilbert [1922], in [Ewald 1996, vol.2, 1121], 
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and wanted to employ it to define the natural numbers and to develop arithmetic 

rigorously; thus he could not presuppose anything from arithmetic, and needed an 

abstract definition of infinity. 

3.1. Finite and infinite sets. The definition of finite and infinite sets that one 

finds in Zahlen is exactly the one that Dedekind formulated in 1872 (§111.5). S is 

infinite if and only if it is similar (equipollent) to a proper part of itself; otherwise, S 

is finite [Dedekind 1888, 356]. A footnote indicates that he had communicated this 

definition to Cantor in 1882 (see §VI.4.1) and to Schwarz and Weber some years 

earlier.1 

Dedekind’s step was noteworthy because, in contrast with the traditional defini¬ 

tion, he based the notion of natural number on a general theory of finite and infinite 

sets. The familiar and concrete was thus explained through the unknown, abstract, 

and disputable. It is not easy for a modern mathematician to appreciate the diffi¬ 

culty of this move, since 20th-century mathematicians are schooled in the abstract 

approach. From a modem viewpoint, the question whether one uses one or another 

definition of infinity is only interesting in connection with the means of proof re¬ 

quired to establish their equivalence, or to develop set theory (see, e.g., [Tarski 

1924]). But in the present context it is important to reflect on the historical and 

conceptual difficulties implied in Dedekind’s move. He was proposing a definition 

for a notion that, in Riemann’s opinion, could only be characterized negatively and 

stood at the boundary of the representable (§11.4.2). He was defining the infinite 

through a property that Galileo, and even Cauchy, regarded as paradoxical, for it 

contradicted the Euclidean axiom ‘the whole is greater than the part.’ 

§5 of Zahlen, where Dedekind gave his definition, contains a famous attempt to 

prove the existence of infinite sets (Zahlen.66). Much has been said about this - 

that proposition 66 is not worthy of the name of ‘theorem,’ and that its proof may 

be ‘psychological’ but not mathematical [Dugac 1976, 88-89]. One needs both 

historical and philosophical sensibility to judge it in its own terms and not anachro- 

nistically. The proposition was essential for Dedekind’s project, since he was at¬ 

tempting to establish pure mathematics as a branch of logic. This was equivalent, in 

his view, to saying that mathematics needs no axiom (see §5), and so he needed to 

prove everything. It was also a question of rigor, as he explained to Keferstein: 

does such a[n infinite] system exist at all in our world of thoughts? Without a logical proof 

of existence it would always remain doubtful whether the notion of such a system might not 

perhaps contain internal contradictions. Hence the need of such proofs (articles 66 and 72 of 

my essay).2 

1 As a matter of fact, it was only after the publication of Dedekind’s booklet that Cantor began 
to give definitions of finite and infinite, without naming him [Cantor 1887/88, 414-15; 1895/97, 

295], 

2 As translated in [van Heijenoort 1967, 101], though with a small change. 
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Dedekind is posing the problem of consistency, but in the 19th century the notion 

of a formal proof of consistency did not exist, and one only conceived of proving 

consistency by exhibiting a model (see §1V. 1). Bolzano [1851, 13] was the first to 

propose a proof of the existence of an infinite domain, and Dedekind transformed it 

to suit his different philosophical ideas and his strict definition of infinity. The 

proof will be analyzed in §5.2, where we shall see that it is quite interesting con¬ 

ceptually; it tries to remain within the realm of pure logic and, precisely, to avoid 

reliance on psychology. 
Bolzano and Dedekind have the merit of having realized for the first time the 

need to establish the existence of infinite sets as an explicit proposition within set 

theory. Their attempted proofs had to be abandoned, for they rely on the assump¬ 

tion of a universal set, which is dubious in the light of the paradoxes. This is why 

Zermelo established that proposition simply as an axiom, which he frequently 

called “Dedekind’s axiom” (§6.2; Zermelo’s axiom simply gives a particular exam¬ 

ple of a set that is Dedekind-infinite). The following commentary stems (as Landau 

explains) from Zermelo himself: 

Instead of simply postulating it axiomatically, Dedekind wishes to establish the existence of 

infinite systems, on which his theory of the number sequence rests, on the foundation of our 

‘world of thoughts,’ that is, the totality of everything that can be thought. ... But it was later 

shown (by Russell among others) that this world of thoughts cannot be regarded as a system 

in the same sense. Nevertheless, this more philosophical than mathematical foundation for 

his assumption is totally insignificant for the further developments [of Zahlen].' 

3.2. Natural numbers. We have reviewed in §2.3, in connection with the emer¬ 

gence of the notion of chain, the main points of Dedekind’s analysis of the natural 

numbers. Dedekind emphasizes the notion of ordinal number, not the cardinal 

numbers, and he focuses on an abstract characterization of the ordinal structure of 

the number sequence. Thus, his viewpoint can be labeled ‘structural,’ contrasting 

with the more ‘essentialist’ analyses offered by Frege [1884], Cantor [1887/88; 

1895/97], and Russell [1903], While Frege looked for concrete objects that are 

essentially fit to the characterization of cardinalities, Dedekind simply observed 

that any set isomorphic with RJ can be employed to express arithmetic theorems 

and to determine cardinalities univocally.1 2 

§6 of Zahlen presents the concept of “simply infinite system” [einfach unendli- 

ches System] and defines the number sequence. A set N is simply infinite when 

there is an injective mapping cp of N in itself, such that N is the chain of an element 

1 [Landau 1917, 56]: “Die Existenz unendlicher Systeme, auf der seine Theorie der Zahlen- 
reihe beruht, will Dedekind, anstatt sie einfach axiomatisch zu postulieren, auf das Beispiel 
unserer ‘Gedankenwelt’, d.h. die Gesamtheit alles Denkbaren, begriinden. ... Aber es hat sich 
doch spater (durch Russell u. a.) gezeigt, dass diese Gedankenwelt nicht als System im gleichen 
Sinne gelten kann. Doch ist diese mehr philosophische als mathematische Begriindung seiner 
Annahme fiir die weiteren Entwicklungen durchaus unerheblich.” 

2 Interestingly, in recent times there have been philosophical contributions that are reminis¬ 
cent of Dedekind’s viewpoint, see [Benacerraf 1965; Parsons 1990], 
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that does not belong to cp(7V). This distinguished element is called the ubase ele¬ 

ment' and denoted ‘1,’ and we say that N “is ordered by” cp. The key conditions 

are, therefore, (8) that cp be injective, (a) that cp(/V) c N, (y) that 1 g cp(/V), and ((3) 

that N= 10 [Dedekind 1888, 359] (see also [1872/78, 308-09]). Here we have a 

slight ambiguity, that I have already discussed: one should properly say that N is 

the chain of a unitary set {1} (not of an element), and write {1 }o- 

Dedekind’s four conditions a-S are essentially equivalent to the axioms given 

by Peano in [1889]; in particular, the chain condition (3 is equivalent to the axiom 

of induction. Peano acknowledged having consulted Dedekind’s book while pre¬ 

paring his own work [Peano 1889, 86; 1891, 93], but according to Kennedy [1974, 

389] by then he had already arrived at his axioms, and Dedekind’s work only con¬ 

firmed his results. 

After proving that every infinite set contains a simply infinite one (Zahlen.12), 

Dedekind goes on to define the natural numbers ‘by abstraction.’ He says that any 

‘simply infinite’ set represents the number sequence, as soon as we disregard the 

particular nature of its elements, considering only that they are different and that 

they are related by the ordering mapping cp [1888, 360]. This definition is later 

justified by proving that simply infinite sets are isomorphic to each other (see 

[op.cit., 377-78]). As he put it in a letter to Weber, the natural numbers are the 

“abstract elements” of simply infinite sets [Dedekind 1930/32, vol. 3, 489],1 A 

more modem way of saying it would be that the elements of such a set, considered 

in a purely formal way, are the natural numbers; or even more modem, that arith¬ 

metic studies the abstract structure <RJ,cp,l> of simply infinite sets. It is with re¬ 

spect to that “liberation of the elements from any other content (abstraction),” he 

says, that we are entitled to call the numbers “a free creation of the human mind.”2 

As we see, the ‘creative power’ of the mind seems to be under strict limits here! 

Dedekind based the theory of the order < among elements of RJ upon the theory 

of chains. He shows that, if n and m are different numbers, either n belongs to the 

chain of m'(m'q), or m belongs to the chain of n ' (n '<?); those conditions correspond 

to m<n and n<m, respectively (Zahlen.88-89). On this basis, one obtains all of the 

known laws of the less-than relation [1888, 361-68]. Dedekind introduces the no¬ 

tion of initial segment of the number sequence, denoting the set of all numbers that 

are not greater than n by Zn (Zahlen.98); of course, RJ = Zn u n 'q [op.cit., 365], i.e., 

initial segments are the complements of chains. Here we find, though only in a 

concrete setting, the notions of initial segment and remainder that Cantor would 

1 Weber was among the first mathematicians who showed an interest in Dedekind’s work; 
eventually, he even published a paper on ‘elementary set theory,’ in connection with Dedekind 

[Weber 1906]. 

2 [Dedekind 1888, 360]: “In Riicksicht auf diese Befreiung der Elemente von jedem anderen 
Inhalt (Abstraktion) kann man die Zahlen mit Recht eine freie Schopfung des menschlichen 

Geistes nennen.” 



236 VII. Sets and Maps as a Foundation 

later formulate for well-ordered sets in general. Dedekind also proves [op.cit., 364] 

that every subset of RJ contains one and only one least number (which shows that RJ 

is well-ordered). 

§8 is devoted to some basic theorems on finite and infinite subsets of RJ. Exam¬ 

ples are the following: every Zn is finite (in the sense of §3.1); Zn and Zm are not 

equipollent whenever n m; and every subset of RJ which does not have a greater 

number is a simply infinite set [Dedekind 1888, 368-69]. But the most important 

element in the rest of his essay is the theorem of recursive definition and its appli¬ 

cations. For the first time, a mathematician considers the question of justifying 

recursive definition, and Dedekind solves the problem in such a way that the exten¬ 

sion to the transfinite case is not too complicated. His theorem reads as follows: 

126. Theorem of definition by induction. Given any mapping 9 (similar or dissimilar) of a 

system Q in itself and also a certain element co in D, there is one and only one mapping \\i of 

the number sequence N, which satisfies the conditions 

I. v|/(Afi c Q, 

II. \|/(l) = co, 
III. \|i(n") = 0V|fin), where n denotes any number.1 

The theorem is restricted to RJ, and not formulated for an arbitrary chain, because a 

chain can be a finite set endowed with a cyclic order, and in this case the conditions 

I—III would lead to a contradiction {Zahlen. 130). Employing Cantor’s notions, 

Dedekind could have generalized the theorem so that any well-ordered set plays the 

role of RJ, which would yield transfinite recursion. 

Theorem 126 is employed at three key points in the sequel. In §10, to show that 

all simply infinite systems are equipollent (similar) to RJ, and therefore to each 

other [Dedekind 1888, 376], This means that all models of the conditions oc-8 

above are isomorphic, i.e., that Dedekind’s characterization of RJ is categorical.2 

The theorem of recursive definition is naturally also employed to justify the intro¬ 

duction of the arithmetic operations in §§11 to 13. These operations are defined are 

particular new mappings of RJ in itself, and their laws are proven by mathematical 

induction. And, finally, theorem 126 is used in §14 for introducing the cardinal 

numbers, i.e., in order to show that the ordinal numbers can be employed to express 
unequivocally the cardinality of a finite set. 

This last result is based on theorem 159, which establishes that if E is an infinite 

set, then every Zn (every initial segment of RJ) can be mapped injectively in E, and 

conversely [Dedekind 1888, 384-86], Dedekind remarks that the proof of the con- 

1 [Dedekind 1888, 371]: “Satz der Definition durch Induktion. 1st eine beliebige (ahnliche 
oder unahnliche) Abbildung 0 eines Systems Q in sich selbst und ausserdem ein bestimmtes 
Element co in Q gegeben, so gibt es eine und nur eine Abbildung t|/ der Zahlenreihe N, welche 
den Bedingungen / I. \j/(A0 3 Q, / II. \|/(1) = co, / III. V|/(«') = 0\|/(n) genugt, wo n jede Zahl be- 
deutet.” 

2 The notion of categoricity was first introduced by Veblen and Huntington in the 1900s. 
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verse, as evident as it may seem, is rather complex; given a mapping an into £ for 

every Z,„ one has to prove that £ is infinite. As Zermelo indicated [1908, 190], 

Dedekind’s proof rests implicitly upon the axiom of choice.1 On the basis of theo¬ 

rem 159, Dedekind proves that a set is finite or infinite according as it is equipol¬ 

lent to a Zn or not. And this, together with previous results, allows him to show that, 

to each finite set, there is a unique equipollent Zn. That is the basis for his definition 

of cardinal numbers (Zahlen. 161). As he had written in the preface, the notion of 

cardinal number is actually a very complex one, at least as presented in the context 

of his theory. 

When compared with those of Frege, Russell and Cantor, his presentation has a 

very important advantage. The direct definitions of the cardinal numbers given by 

these authors are inadmissible as a consequence of the paradoxes. Dedekind’s ex¬ 

position, from the ordinal to the cardinal numbers, can easily be adjusted to the 
frame of axiomatic set theory. 

3.3. Extension of the number system. In the foregoing we have summarily 

analyzed the contents of Zahlen, but we are still far from an adequate realization of 

its scope. This is something that Dedekind did not indicate clearly, in spite of a few 

comments in the book’s preface. There we find an indication that arithmetic em¬ 

braces algebra and analysis [Dedekind 1888, 335], and he also reserves for himself 

the right to offer a joint exposition of the extension of the number concept [op.cit., 

338], Actually, somewhere in the 1890s he started writing a manuscript entitled 

‘The Extension of the Number Concept on the Basis of the Sequence of Natural 

Numbers’ [Cod. Ms. Dedekind, III, 2, I], This was directly linked to Zahlen, and 

we read that Dedekind had treated there the operations on M in such a way that the 

foundation for the inverse operations was also won. The inverse operations were 

the motivation for the expansion of the number concept up to the complex num¬ 

bers. 

The first section of that manuscript deals with the introduction of zero and the 

negative numbers. Dedekind defines them by means of equivalence classes of pairs 

of natural numbers: after defining the equivalence relation on pairs, he shows that it 

is reflexive, symmetric and transitive, and therefore allows the introduction of 

equivalence classes. Next he analyzes the different kinds of equivalence classes, 

and establishes a correspondence between RJ and the ‘positive’ classes, that, he 

says, justifies talk of an extension of RF Finally, before coming to the operations, 

Dedekind defines a mapping of 7L in itself that establishes its linear ordering. This 

last might be characteristic of his views at the time, and probably was a source of 

difficulties as to how to proceed in the ulterior development. 
The second section, that was never written, would have dealt with the rational 

numbers. Clearly Dedekind was convinced that the general framework delineated in 

1 AC is employed when he uses the mappings an to define new mappings y/n that are exten¬ 
sions of each other. On that basis, one can finally define a mapping %'■ RDNC by the condition 

X(n) = %(")■ 
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Zahlen was sufficient for the introduction of the different kinds of numbers, ending 

with <C and its field structure. At this point, we have to take into account that, in the 

context of algebra, Dedekind did not operate with abstract structures, but only with 

number-structures, i.e., subsets of (C. His sets and mappings, which yielded the 

complex numbers, were thus a sufficient foundation for algebra as he conceived it. 

The role of particular kinds of mappings, what we call morphisms, in this context 

was mentioned in the 1879 version of ideal theory, and explicitly elaborated upon 

in the last, 1893 version.1 

It seems that Dedekind conceived of mappings as the foundation for the func¬ 

tions of analysis. We have already noticed the similarities between his ‘definition’ 

of mapping and the ‘definitions’ of function given by Dirichlet and Riemann 

(§V.l). Having defined IR and (C, real and complex functions were clearly at hand, 

and this is probably the way in which Dedekind understood how Zahlen offered a 

foundation for analysis [1888, 335]. Thus, we have reasons to think that the booklet 

was not just a detailed essay on the elementary topic of the natural numbers, but a 

contribution to the foundations of mathematics in general. Nevertheless, in his 

almost exclusive attention to the deductive structure of his theory, Dedekind ne¬ 

glected motivating the aims and scope of the edifice for his readers. Besides, his 

approach was too arduous and abstract to attract many readers as of 1890.2 

Incidentally, there is some evidence that, in his reflections on the foundations of 

pure mathematics, Dedekind also took into account geometry. As is well known, 

projective geometry was generally taken to be the most general foundation for that 

branch of mathematics in the late 19th century. After his Habilitation, Dedekind 

gave his first course at Gottingen on projective geometry, and he took the subject 

up again later, most likely in the late 1870s or the 1880s. In his Nachlass one can 

find the beginnings of a paper on the “presuppositions” of projective geometry and 

its relations to arithmetic.3 He presented an axiomatization of the notion of projec¬ 

tive space, based on definitions and axioms. He conceived of that space as a point- 

set, accepting once again the possibility that the number of points may be finite. It 

is interesting that he regarded geometry as based on axioms - in the old, pre- 

Hilbertian meaning of the word; this contrasts with his idea that arithmetic does not 

depend on such axioms (the contrast will be analyzed in §5). As concerns Rie- 

mann’s ‘ideal’ geometry, it seems likely that Dedekind may have regarded it as a 

part of analysis (see his manuscript in [Sinaceur 1990]). 

1 See [Dedekind 1893, §161, 456-57], In this work, Dedekind presented Galois theory as 
dealing with groups of automorphisms. 

2 Hilbert noted down, when he visited Berlin in 1888, everybody was talking about the book¬ 
let and mostly in critical terms (see his paper of 1931 in [Ewald 1996, vol. 2, 1151]). 

3 ‘Die Voraussetzungen der reinen Geontetrie der Lage und deren Beziehungen zur Zahlen- 
Wissenschaft’ [Cod. Ms. Dedekind XII, 3], The dating (late 1870s or 1880s) is my own, on the 
basis of the terminology employed, which suggests that Dedekind had already developed the 
elements of his theory of sets in the draft [1872/78], His use of the expression ‘Geometne der 
Lage’ may indicate that, at this time, he was influenced by von Staudt or by Reye. 
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4. Dedekind and the Cantor-Bernstein Theorem 

Chain theory is not limited to the purpose of characterizing the successor function 

on Fd, and mathematical induction was not the only notable consequence that 

Dedekind established. In 1887, while finishing off the details of his booklet, he 

found a proof of the Cantor-Bernstein equivalence theorem. This is an important 

basic theorem in the theory of cardinalities, that Cantor was the first to conjecture 

and Bernstein the first to prove satisfactorily in print. (The theorem is sometimes 

given the name of Schroder-Bemstein, for Schroder presented a proof in 1896 and 

published it in his [1898]; nevertheless, Schroder’s proof is flawed.) It reads as 

follows: 

Cantor-Bernstein Theorem. If set A is equipollent with a proper subset of set B, and B 

is equipollent with a proper subset of A, then A and B are themselves equipollent.1 

Oddly enough, Dedekind decided not to include this theorem in his booklet, thereby 

missing a good opportunity to show the importance of his chain theory. In an 1899 

letter to Cantor, Dedekind explains how young Felix Bernstein visited him in 

Flarzburg two years earlier, just after having proven the Theorem, “and was a bit 

shocked when I expressed my conviction that it is easy to prove with my means.”2 

Zermelo wrote in 1932 that Dedekind’s proof could still be regarded as “classical,” 

and that he did not understand why neither Cantor nor Dedekind published it 

[Cantor 1932, 451],3 

We know that, in the 1880s, Dedekind was aware of the importance the result 

had for Cantor. We have already mentioned (§VI. 1, see also §VIII.3) the long 

meeting that Cantor and Dedekind enjoyed at Harzburg in September 1882. This was 

a result of the betterment in their relations, apparently due to the issue of the vacant 

position at Halle, and we have considered its possible connections with the 

introduction of transfinite numbers. The fact that Cantor and Dedekind had discussed 

problems in general set theory is corroborated by Cantor’s letter of November 1882 

where he affirms having told Dedekind about his difficulties in proving the following 

result: 

If AT” c AT' c AT, and there is a one-to-one correspondence between AT and AT”, then 

AT' has the same power as AT and AT” [Cantor & Dedekind 1937, 55, 59],4 

1 The manuscript was found by Cavailles in Dedekind’s Nachlass, and published in [Dedekind 
1930/32, vol.3, 447-48], Cantor’s conjecture is in [1883, 201] and Bernstein’s proof in [Borel 1898]. 

2 [Cantor & Dedekind 1976, 261] or [Dedekind 1930/32, vol. 3, 448]: “und stutzte ein wenig, 
als ich meine Oberzeugung aussprach, dass derselbe mit meinen Mitteln (Was sind und was 
sollen die Zahlen?) leicht zu beweisen sei.” Berstein’s visit had been motivated by Cantor him¬ 

self, see §VIII.8. 

3 Zermelo had independently found the same proof and published it in [1908, 208-09]. 

4 Cantor mentions the lemma twice, the first time he regards it as solved by his theory of 
transfinite ordinals [op.cit., 55], which is how he presented the matter in [Cantor 1883, 201]; the 
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This is the crucial lemma in the proof of the Cantor-Bemstein Theorem. For this 

theorem assumes given injective mappings (p: A —> B, y/: B —> A\ using Cantor’s 

lemma with M=A, M'=y/(B), and M"=\i/(f(A), obviously M and M" are equipollent, 

and so if/(B) and B are equipollent to A. 

Since Cantor mentioned it both in person and in his letters, at least three times 

during 1882, and went on to discuss the theorem again in [1883, 201], one can hardly 

doubt that Dedekind was well aware of this interest. It is unlikely that when he proved 

the lemma and the theorem in 1887 he did not remember the matter. Nevertheless, 

Dedekind did not communicate the proof to Cantor. Even more mysterious: 

Dedekind's exposition of chain theory concluded with an obscure proposition which, 

as he himself remarked, was not to be used in the remainder of the book and whose 

proof was left to the reader. The last proposition in §4 of [Dedekind 1888] is an 

obscurely formulated version of the lemma above, with indication of the main points 

in its proof. The presentation is a bit obscure because the question is stated for 

arbitrary mappings. (This is coherent with the approach taken in the whole section 4, 

devoted to chain theory and characterized by not requiring mappings to be injective). 

Given a map (p, and using the notation K' for images Dedekind [1888, 356] 

starts by assuming that K' cL c K. This means that K, and also L (since L' a K') are 

chains (§2.3). Under these conditions, Dedekind asserts that one can always establish 

the following decomposition of L and K. Take U=K\L (the complement of L in K) 

and V=K\Uq (where Uq is the chain of set U)\ then one has 

K=UqvjV and L = U'q'mV, 

where U'Q is the image-chain of Uq (see §2.3). The proof of this result was left to the 

reader (consider that U and U'() are disjoint, their union being Uq), and Dedekind 

made no further comment on its meaning. Nevertheless, it is easy to see that if the 

mapping tp were injective, U0 would be equipollent to U'0, and so L and K themselves 

would be equipollent. This proves Cantor’s lemma precisely in the way that Dedekind 

proved it, and the Cantor-Bemstein theorem, in 1887 [Dedekind 1930/32, vol. 3, 
447-448], 

Why did Dedekind include this obscure proposition, whose purpose was unclear, 

and which played no role in his strictly deductive theory? ft seems likely that he 

wanted to test the alertness of his colleague by proposing the lemma in a deliberately 

obscure form, in the manner of many 17th-century mathematicians. If so, Cantor 

apparently failed the test, for in 1895 he still considered the Theorem unproved [Can¬ 

tor 1895/97, 285] and in August 1899 he accepted Dedekind’s proof as new [Cantor 

1932, 449-450], Beyond showing a lack of collaboration, the incident suggests that 

Cantor paid little attention to Dedekind’s theory. Actually, in a letter to Vivanti of 

1888 he describes ZahJen as an “artificial system” of 172 propositions that merely 

“tend to the most elementary, and sometimes the most trivial,” and which seems 

second he presents it as an open problem [op.cit., 59], as he would do in the ‘Beitrage’ TCantor 
1895/97,285], 
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“more adequate to obscure the nature of numbers than to clarify it.”1 The episode 

confirms the lack of collaboration and mutual reinforcement between both mathema¬ 
ticians during the 1880s. 

5. Dedekind's Theorem of Infinity, and Epistemology 

Riemann and Cantor had in common a deep interest in philosophical questions. By 

contrast, Dedekind is normally regarded as a mathematician in the purest form. 

There is no indication in his mature work or letters to suggest that he paid particular 

attention to any philosopher. But his work presents us with philosophical motives, 

which, however, could be explained simply by reference to ideas transmitted 

through the work of contemporary mathematicians and scientists. This indicates the 

degree to which the German intellectual atmosphere was permeated by such ideas 

(see §§1.2 and 3). At the same time, it suggests that one should be cautious in as¬ 

cribing direct philosophical influences to any author of the time. 

Even if he had no direct interest in philosophy, Dedekind was a coherent 

thinker. All of his statements reflect a unitary epistemological vision, based to an 

important extent on ideas that appeared as ‘common sense’ in his time, but also on 

serious reflection on his intellectual activity. Not surprisingly, his basic epistemo¬ 

logical framework seems to be that of Kantian philosophy, but he had to face the 

important transformation that was underway in 19th century mathematics. As a 

result, he rejected the Anschaulichkeit thesis (see §1.2) and embraced logicism. Also 

present in his views are traits of Leibnizianism: his early definitions of the natural 

numbers (§1.2), the definition of equality and the deductive organization of Zahlen, 

his position regarding actual infinity, and the logicist position itself.2 A particularly 

noteworthy piece of Dedekind’s work, intimately connected with his epistemologi¬ 

cal ideas, is the famous theorem of infinity that he presented in Zahlen. 

5.1. Logicism as a philosophy. While Cantor favored Platonism, Riemann and 

Dedekind seemed to think that mathematics has its origins in the human mind. But 

Riemann believed - with Herbart - that human concepts emerge from experience 

and that there is no a priori basis for our knowledge [Scholz 1982a], while Dede¬ 

kind was a logicist, who thought that number is an outgrowth of the a priori laws of 

logic. Dedekind was convinced that many mathematical notions are more complex 

than they appear: 

1 [Meschkowski & Nilson 1991,302]: “Das kiinstliche System der 172 sich nur um das Elemen- 
tarste und zum Theil Trivialste drehenden Dedekindschen Satze scheint mir mehr geeignet, die Natur 

der Zahlen zu verdunkeln als sie aufzuhellen.” 

2 Regarding deductive structure and equality, compare Leibniz’s ‘Non inelegans specimen’ 
[1966, 122-30], first published in 1840. For the rest, see §1.3 and below. 
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most people think that everything which has become familiar to them, unconsciously and 

mechanically, through lifelong practice, is also simple; they do not ponder at all how long 

the chain of thoughts frequently is, that thereby enters into play.1 

This was a comment apropos of ideal theory, but the same idea had previously been 

expressed in connection with the notion of cardinal number [1888, 337], Many 

contemporaries attributed our familiarity with numbers to an ‘inner intuition.’ 

Dedekind compared it with our ability to read - both reading and arithmetic pre¬ 

suppose complex logical processes that a cultivated person is able to carry out un¬ 

consciously and very quickly. Dedekind’s purpose was to reveal the unconscious 

logical process that underlies our most basic mathematical notions - to analyze 

them into their simplest foundations, and to present the long series of deductions on 

which each of our presumed ‘intuitions’ is based [ibid.].2 

We may offer the following reconstruction of the way in which Dedekind came 

to his logicist convictions. As a mathematician, he tended ‘naturally’ to rigor; a 

curriculum that he wrote at age 21 emphasizes that facet of his intellect, his inabil¬ 

ity to make progress in any field without basing each principle on the preceding 

ones, according to a “perpetual order and ... reason.”3 Later on, he used to charac¬ 

terize himself as a slow mind, a “step-wise understanding” [Treppenverstand], that 

needed to master fully the basics of a subject in order to be able to work on it 

[Dugac 1976, 179, 261]. This trait is manifest in the 1854 Habilitationsvortrag, and 

a rigorously deductive organization can already be found in the manuscript on 

Galois theory, written about 1858 or 1860 [Dedekind 1981], It may explain to some 

extent his interest in number theory, and it certainly explains his attraction for logic. 

Meanwhile, a usual conception of mathematics in early 19th-century Germany 

was marked by the thesis of intuitiveness [Anschaulichkeit], According to Kant, the 

subject’s a priori equipment includes both the forms of intuition (space and time) 

and the categories (inborn concepts of the understanding). Mathematics has to do 

with the a priori ‘construction’ of concepts in the intuition [Kant 1787, 741], This 

view seems more or less natural in the context of the traditional conception of ge¬ 

ometry and of the idea that mathematics is the science of magnitudes (§11.1). Kant’s 

ideas had been mirrored in the writings of authors like Hamilton and Helmholtz, 

who elaborated upon the topic of the intuition of time as the source of the number 

system.4 But during the 19th century mathematics was more and more becoming an 

1 Letter to Frobenius, February 1895, in [Dugac 1976, 283]: “die Meisten halten Alles, was 
ihnen unbewusst durch lebenslangliche Uebung mechanisch gelaufig geworden ist, auch fur 
einfach, und sie erwagen gar nicht, wie lang oft die hierbei ins Spiel kommende Gedanken-Kette 
ist.” 

2 Of course, this idea involves a confusion, well-known to some cognitive scientists, that is 
typical of the 19th century: to think that logic is somehow ‘in our brains,’ in our (real, psycho¬ 
logical) thinking, and believe that the real thinking process must reproduce the steps into which 
the task in question can be logically analyzed. 

3 [Dugac 1976, 179]: “perpetuo ordine et certa quadam ratione sequens praeceptum antece- 
dentibus innitatur.” 

4 For this reason, we have no direct evidence for a Kantian Dedekind, and one should be care- 
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abstract edifice, which did not necessarily deal with ‘truths,’ but which was con¬ 

structed along rigorously deductive lines. This was at least Dedekind’s orientation,* 1 

and it must have impelled him to revise traditional views. 

Under the influence of Riemann and Hamilton, but above all in connection with 

his own experiences in the fields of algebra and number theory, Dedekind’s search 

for rigor and systematicity led him to use set-theoretical notions ever more. Having 

been accustomed to traditional logic since the Gymnasium (§11.2), it seemed clear to 

him that a set or class can be regarded as the extension of a concept, and that a 

theory of sets ought to be a part of logic. Dedekind’s algebraic work, and his analy¬ 

sis of arithmetic, led him to focus on a second notion, that of mapping, which pre¬ 

supposed the idea of set. But he could convince himself that it is also a logical no¬ 

tion (§§2.2, 6.1). All of this suggested a way of harmonizing his mathematical 

tendencies, and understanding the new abstract mathematics in connection with 

customary epistemological ideas. Reduction of large parts of mathematics to sets 

and maps could thus be understood as reduction of mathematics to logic. 

The tendency to abstraction and away from Kant became patent, in the clearest 

way, with the set-theoretical definition of the real numbers (§IV.2). The traditional 

definition of the reals as ratios presupposed continuous magnitudes, and continuity 

could only be an axiom, an unprovable postulate, in the realm of geometry (§IV.3). 

But in the context of pure arithmetic it was possible to define logically (i.e., set- 

theoretically) a continuous number-domain [1888, 335-36]. The notion of continu¬ 

ity does not have to be understood as having empirical origins, nor does it require 

an intuitive source in the Kantian sense. Given the usual conception of axioms as 

indemonstrable propositions that are evidently true, that meant that the theory of 

real numbers does not depend on special axioms. Which, in turn, suggested the 

ambitious project of a non-axiomatic development of all of arithmetic, beginning 

with the natural numbers. This was undertaken by both fathers of logicism, Dede¬ 

kind and Frege. 
Dedekind’s logicist viewpoint comes out clearly in the first preface to Zahlen, 

where, for reasons like the above, he criticized the Anschaulichkeit thesis: 

In calling arithmetic (algebra, analysis) just a part of logic, 1 declare already that I take the 

number-concept to be completely independent of the ideas or intuitions of space and time, 

that I see it as an immediate product of the pure laws of thought.2 

ful with treatments like [McCarty 1995], 1 myself started twice to write papers on Dedekind and 
Kant, and then Dedekind and Leibniz, until I became convinced that available evidence was too 

scanty to warrant conclusions. 

1 It was also the orientation of contemporaries like Pasch and Weierstrass, and later Hilbert. 

2 [Dedekind 1888, 335]: “Indem ich die Arithmetik (Algebra, Analysis) nur einen Teil der 
Logik nenne, spreche ich schon aus, dass ich den Zahlbegriff fur ganzlich unabhangig von den 
Vorstellungen oder Anschauungen des Raurnes und der Zeit, dass ich ihn vielmehr fur einen 
unmittelbaren Ausfluss der reinen Denkgesetze halte.” 
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This is direct criticism of Kant, but also of Hamilton [1837; 1853] and Helmholtz 

[1887], both of whom based the theory of real numbers on the alleged intuition of 

time. Dedekind believed, by contrast, that only the arithmetical notion of continuity 

enables us to sharpen and make precise the ideas of space and time. The meaning of 

‘arithmetic’ is enlarged so as to include algebra and analysis, i.e., what many Ger¬ 

man mathematicians called ‘pure mathematics.’1 Also common at the time was the 

idea that logic is the science of the laws of thought - it can be found in such authors 

as Kant, De Morgan, Boole and Peirce (and the first two cases, at least, show that 

such conception is not necessarily associated with so-called psychologism). 

But Dedekind’s own reaction, like Frege’s, is still framed within the overall 

Kantian scheme. The tendency toward abstraction refutes the thesis of intuitiveness 

and liberates mathematics from the bond to intuition. If we still believe, with Kant 

and Leibniz, that pure mathematics is a priori, there only remains the possibility of 

ascribing to it a logical origin. Thus, one falls back on Leibniz’s thesis that mathe¬ 

matical propositions are “verites de raison” [1714, §33-35]. The doctrines of 

mathematics constitute purely mental, conceptual results, which, insofar as they are 

independent of experience, must be logical.2 

5.2. The theorem of infinity. This famous, or infamous, theorem is quite re¬ 

vealing of Dedekind’s epistemological ideas, and at the same time of his analytical 

abilities. The mere fact that it was included in Zahlen (prop. 66) shows Dedekind’s 

awareness of the logical presuppositions of his work and of set theory generally. 

Dedekind’s definition of infinity was the core of his investigation [1888, 356], 

since he based his theory of natural numbers on the notion of infinite set. Even the 

theory of finite subsets of RJ was based on the theory of chains, which are infinite 

subsets. Thus, proposition 66, be it an axiom or a theorem, was strictly necessary 

for his approach to the natural numbers and for general set theory - a point that 

would be acknowledged by posterity, beginning with Zermelo (§IX.4). Moreover, 

as we shall see, Dedekind’s logicism demanded that the existence of infinite sets 

should be proved, not just postulated. Dedekind also emphasized that the existence 

of an infinite set would establish the consistency of his theory (see §3.1). 

Nevertheless, the origins of the theorem are rather late. It is not to be found in 

the draft [1872/78], but only among the papers belonging to a second draft for 

Zahlen, written in 1887 [Cod. Ms. Dedekind III, 1, II, p. 32], We know that, in the 

meantime, Dedekind read Bolzano’s work [1851], which he came to know through 

Cantor, and which included a similar proof (see [Dugac 1976, 81, 88, 256]). But 

there were other reasons to pay particular attention to infinite sets in the 1880s. One 

1 This was not uncommon, though the overall discipline was sometimes called analysis 
[Gauss 1801, xvii] or algebra [Hamilton 1837, 6], Pasch [1882, 164], Kronecker [1887, 253] and 
Schroder [1890/95, vol. 1,441] agree with Dedekind in calling it arithmetic. 

2 This would be supported by a free or imprecise reading of Kant’s Kritik der reinen Vernunft, 

where by (transcendental) logic one understands the doctrine of the a priori, non-intuitive con¬ 
tents of the understanding [Kant 1787], Imprecise because it would not take into account the 
distinction between formal and transcendental logic. 
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reason, of course, was the heated debate generated by Cantor’s radical contributions 

and his defense of actual infinity. The work of Cantor and Dedekind encountered 

strong criticism from Kronecker, who tried to eliminate infinity from mathematics 

[Edwards 1989]. Kronecker regarded Cantor’s ideas as nonsense or even perverted, 

and criticized Dedekind’s ideal theory in print [Kronecker 1882], This polemical 

reception of infinite sets was certainly behind Dedekind’s theorem. In order to 

justify the actual infinite, Cantor adopted the discursive way of philosophical ar¬ 

gument (see §VIII. 1), while Dedekind tried to employ the deductive way. 

Dedekind acknowledged that his theorem was similar to one of Bolzano [1851, 

§13]. The first paragraphs of Paradoxien des Unendlichen are devoted to a discus¬ 

sion of the notion of infinity, both from a mathematical [§§2-10] and a philosophi¬ 

cal standpoint [§§ 11-12]. Having clarified the conceptual issue, Bolzano poses the 

problem whether this notion is also “endowed with objectivity” [Gegenstand- 

lichkeit; 1851, 13], whether there are things (infinite sets) to which it can be ap¬ 

plied. This question, and Bolzano’s answer, must have immediately caught Dcde- 

kind’s attention. The answer was: 

Already within the domain of those things which do not have any pretension of reality, but 

only of possibility, there indisputably are sets that are infinite. The set of propositions and 

truths in themselves is infinite, as one can easily see.1 

Bolzano’s standpoint may seem close to Cantor’s Platonism, but it is rather subtle. 

He speaks of truths in themselves, but he carefully differentiates between the real 

and the possible, which reminds one of Leibniz and Frege. As for the proof, he 

considers any true proposition A (e.g., ‘that there are truths’) and forms from it a 

different, true proposition, lA is true.’ He concludes that by iterating this process 

we obtain as many propositions as natural numbers, that is, an infinite set. 

Thanks to his definition of infinity. Dedekind was in a position to perfect Bol¬ 

zano’s proof. But this was not enough to satisfy him: he reformulated the basic 

terms of the proof so that they became coherent with his epistemological ideas. 

Obviously Dedekind was no Platonist, but also no empiricist: mathematical objects 

do not exist outside of our minds, but they are no simple outcome of our percep¬ 

tions or experience of the physical world. He was always convinced that mathe¬ 

matical objects and concepts are creations of the human mind (see §111.4.1). It is not 

by chance that Zahlen bears the motto: ‘man arithmetizes always,’ where man re¬ 

places the God of his predecessors. For this reason, he had some ‘nominalist’ bias, 

in the sense that he avoided reference to seemingly self-existing abstract objects, 

such as Bolzano’s ‘truths in themselves.’ 

1 [Bolzano 1851, 13]: “Es gibt schon im Reiche derjenigen Dinge, die keinen Anspruch auf 

Wirklichkeit, ja nur auf Moglichkeit machen, unstreitig Mengen, die unendlich sind. Die Menge 

der Satze und Wahrheiten an sich ist, wie sich sehr leicht einsehen lasst, unendlich.” 
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Coherently with that, Dedekind does not consider Bolzano’s set of truths, but 

“my realm of thoughts” [meine Gedankenwelt; 1888, 357]. It is not a matter of an 

objective world of propositions, independent of the mind, but of the totality of 

things that can be the object of human thought. Now, according to his definition, a 

set S is infinite iff there is a proper part of S equivalent with S; we just need to show 

an adequate mapping. To any element s of the ‘realm of thoughts’ S, we correlate 

the following image (p(s): ls can be an object of my thought.’ Under these condi¬ 

tions, cp(s) is a new possible thought, therefore an element of S. And the mapping cp 

is injective, for if a and b are different thoughts, then cp(a) and cp(6) are also differ¬ 

ent - they express different propositions, for although the predicate is the same, the 

subject is not.1 It remains to show that tp(5) is a proper part of S, which Dedekind 

does by pointing to an example like “my own ego” [mein eigenes Ich], which is a 

thing that can be an object of my thought (or so do Occidentals tend to think), but is 

not a proposition of the form (PCs').2 

Similarly to Bolzano, Dedekind does not consider actual, real thoughts, but 

possible thoughts. (This dispenses with the most obvious criticisms, such as those 

that Russell presents in [1919].) In some sense, the realm of logic is the realm of 

possibility, a very traditional idea indeed. Zermelo would write [1930, 43] that 

mathematical existence is ideal existence. Bolzano and Dedekind are not trying to 

show that actual infinity exists in the real world. They simply try to establish that 

the notion of infinity is valid within the realm of thought. But Dedekind’s proof 

fails because one cannot safely assume that ‘my realm of thoughts’ is a set 

(§VIII.8). In any event, these attempts have to be counted among the few serious 

ones to conclusively establish the consistency of the assumption of infinite sets. 

5.3. Dedekind’s deductive method. Dedekind influenced in important ways the 

axiomatization of the natural numbers, the real numbers, and set theory. But the 

approach he took in his works on the foundations of the number system is rather 

peculiar and calls for explanation. In particular, the question is why Dedekind’s 

strong deductivism did not lead to an axiomatic approach. Clarifying this point is 

important in order to judge his influence on Hilbert and his school (§6.2). 

Zahlen is notable for its deductive structure and, to some extent, all of Dedekind’s 

work is a natural precedent for the modern axiomatic method. The attempt to derive 

step by step, in a completely rigorous way, all of the propositions that are needed is 

one of the characteristic traits of the book. This is certainly a modem trait, which 

makes Dedekind come close to such authors as Frege, Russell, or Hilbert. His 

theories intended to satisfy the following requirement (see full quotation in §1 V.2.3): 

1 Connections between theorem 66 and traditional logic, particularly the analysis of proposi¬ 
tions into the form subject-predicate, are emphasized in ‘Uber den Begriff des Unendlichen,’ an 
unpublished article in response to Keferstein that can be found in [Sinaceur 1974], 

2 If we call ‘nry own ego’ v, the chain tp0(v) is a simply infinite set and could be identified 
with RJ, on the basis of Zahlen. 73. 



§5. Dedekind’s Theorem of Infinity, and Epistemology 247 

in replacing all technical expressions by newly invented arbitrary words (that until then lacked 

any meaning), the edifice, if well constructed, should not collapse, and for instance I affirm that 

my theory of the real numbers would bear that test. [Dedekind 1930/32, vol. 3, 479] 

If Dedekind said this about his theory of the real numbers, it must be true all the more 

of his 1888 booklet, which exhibits a rigid deductive structure and establishes the 

general framework in which the definition of IE. can be set up. In 1890 he stated that 

his theory of sets and the natural numbers seemed to him an “edifice built according 

to the canons of the art, perfectly compact in all its parts, unshakable.”1 

But in other respects Dedekind’s deductive method seems rather strange, and 

could even be called anti-axiomatic. Against Euclid’s classical model, later followed 

by Hilbert and his followers, in Zahlen we find no postulate or axiom, only definitions 

and theorems. The whole theory is derived exclusively from the basic notions of set 

and mapping, together with definitions of union, intersection, chain, etc. In my 

opinion, this peculiarity is intimately related to Dedekind’s logicist convictions and 

his conception of logic. His exposition, although completely abstract, is not formal. 

the notions of formal inference and formal proof, which Frege [1879; 1893] was 

beginning to use, are absent from his work. The underlying elementary logic - 

although transparently employed - is not made explicit, and above all arithmetic is 

understood as requiring no axiom. All of this places Dedekind’s contribution in a 

peculiar historical position, as an intermediate step that would quickly be 

abandoned (or, if you wish, superseded). But we shall see that it was not 

extraordinary in the context of his time. 

The traditional conception of axioms regarded them as evident, true propositions 

that do not admit of a proof. We have seen (§3.3) that in the context of geometry 

Dedekind admitted that axioms play an essential role, but not so in arithmetic. At this 

point, it is convenient to recall the development of 19th century geometry and 

compare it with the development of work on the number system. Euclid’s parallel 

axiom was certainly regarded as an acceptable assumption, but it had become clear 

that there were logical alternatives. By contrast, Dedekind ‘discovered’ that a 

continuous number-domain could be defined starting with the natural numbers, and 

that the natural numbers, in turn, could be defined through sets and mappings. In his 

eyes, this meant that in arithmetic there are no axioms - everything is just immediate 

consequences of logical notions and definitions. In this light, it would seem that he 

wanted to distinguish necessary propositions from possible assumptions; the first were 

immediate consequences of logic, while the second were axioms properly. 

It may be that, in this issue, Dedekind adhered to the influential Kantian 

epistemology. Kant defined axioms to be “synthetic a priori principles,” which are 

“immediately true” [Kant 1787, 760]. Since logic was conceived as a purely analytical 

science, no synthetic principle ought to play a role in it: logic was radically foreign to 

the use of axioms. This Kantian conception can still be found in the work of the 

German mathematical logicians Schroder [1890/95, vol. 1, 441] and Frege. It was 

1 [Sinaceur 1974, 259-260]: “ein[em], wie ich glaube, kunstvoll gefligten, in alien seinen Theilen 
fest geschlossenen, unerschiitterlichen Gebaude.” 
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apparently for that reason that Frege [1893; 1903] did not talk about arithmetical 

‘axioms,’ but about the “fundamental laws” [Grundgesetze] of arithmetic. Similarly, 

Dedekind seems to have thought that the logicist program demanded the development 

of arithmetic in a rigorously deductive way, without any recourse to axioms. 

The idea that a deductive theory can be based on definitions alone was not 

completely unknown in this period. In Schroder’s first logical work, devoted to the 

Boolean calculus, we can read that all theorems of logic are intuitive, for as soon as 

they are brought to conscience, they become immediately evident. And for this reason 

the basic statements (that Schroder introduces as axioms) could also justifiably be 

presented as consequences that are immediately given with the definitions [Schroder 

1877, 4], Schroder preferred to base the logical calculus on axioms, perhaps due to the 

strong influence that Grassmann exerted on him,1 while Dedekind’s was the opposite 

choice. Anyhow, Dedekind made a conscious effort to derive all immediate 

consequences of his definitions that would be needed later on. 

In a word, it seems that for Dedekind a theory can only be judged strictly logical 

when its propositions follow from basic logical notions, like those of set and mapping, 

without the use of any axioms. In this way, his theory can be considered strictly de¬ 

ductive but non-axiomatic - definitional instead. From a modem standpoint, this has 

to be considered a drawback, since axiomatic treatment allows better control of the 

theory. But one might add that Dedekind’s [1888] seems very easy to axiomatize. The 

only necessary principle that certainly escaped his attention was the Axiom of Choice 

(see §3.2). 

6. Reception of Dedekind's Ideas 

In considering the diffusion of Dedekind’s ideas, one should emphasize that the 

way he chose to present them was probably inconvenient. Instead of calling atten¬ 

tion to the set-theoretical contents of his booklet, or perhaps to its logicist program, 

the title of the book was the question: what are numbers, and what should they be 

(resp., are they for)? This could certainly be appealing for a general reader, but not 

for a professional mathematician. Even worse was the way in which he presented 

the contents. Although Dedekind was convinced that the book could be understood 

by anybody who possessed “sane common sense” [1888, 336], this is probably far 

from the truth, and he made no effort to simplify the task for his readers through 

side-comments. Instead, he developed in great precision a rather limited project, 

without making programmatic statements; and he left out results that could have 

enlightened readers, like the Cantor-Bemstein Theorem. Few readers were able to 

grasp properly the scope and possibilities of his theory - it was not well understood 

even by Cantor and Bernstein! 

1 This position was more Leibnizian (see, e.g., [Leibniz 1704, book IV, chap. 7]), while Dede¬ 
kind’s would appear to be Kantian. 
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The only thing that could have compensated these defects was the name of the 

author. A book on the natural numbers, written by one of the foremost specialists in 

number theory, certainly deserved attention. But most readers must have been sur¬ 

prised by the great complexity with which a seemingly simple topic was being 

treated. Dedekind anticipated that his readers would scarcely recognize their famil¬ 

iar numbers in the “shadowy forms” [schattenhaften Gestalten] that he was bringing 

before them, and that they would be frightened by the long series of simple infer¬ 

ences, proving truths that are supposed to be known by inner intuition [Dedekind 

1888, 336],1 In good humor, he wrote to Felix Klein, who had not read Zahlen, that 

he felt pity for those who might feel obliged to read it, and continued: 

What will the forbearing reader say at the end? That the author, in a squandering of inde¬ 

scribable work, has happily managed to surround the clearest ideas in a disturbing obscu¬ 

rity!2 

In fact, the reaction of some mathematicians was quite negative: du Bois-Reymond 

said that the work was “horrendous” [grasslich; Dugac 1976, 203]. But the overall 

impact was not so negative - a number of authors received this contribution posi¬ 

tively, and in time its effect became greater. 

6.1. Reception among mathematical logicians. One of the most interesting 

aspects in a study of the reception of Zahlen is to consider the reaction of 

contemporary logicians. Dedekind was a ‘pure’ mathematician, who had never 

published anything on logic, but in 1888 he dared to present a presumed logical 

theory as a foundation for arithmetic, and even for the whole of mathematics.3 His 

pioneering contribution is certainly surprising when viewed from the standpoint of 

20th-century logic: it is nothing but a general theory of sets and maps, which of course 

does not contribute to quantification theory, and which contains no mention even of 

propositional logic! Of course, Dedekind’s logic is not so strange when compared 

with the then-reigning algebra of logic, a logical calculus that had as its primary 

interpretation the operations on classes. Even if we consider Russell’s conception of 

logic as of 1903, Dedekind’s work can indeed indeed be regarded as logic - for logic 

has three parts, the calculus of propositions, the calculus of classes, and the calculus of 

relations [Russell 1903, § 13], and Dedekind’s contribution is related with the last two. 

1 By contrast, the possibility of forming such deductive chains was for Dedekind convincing 
proof that those truths are not gained by inner intuition. 

2 Dedekind to Klein, April 1888 [Dugac 1976, 189]: “Und was wird der geduldige Leser am 
Schlusse sagen? Dass der Verfasser mit einem Aufwande von unsiiglicher Arbeit es gliicklich 
erreicht hat, die klarsten Vorstellungen in ein unheimliches Dunkel zu hiillen!” 

3 Although he published four years after Frege [1884], Dedekind worked independently and 
did not even know that book until 1889 (see [Dedekind 1888, 342-43; van Heijenoort 1967, 
101]). Thus, Frege’s work could not make him feel secure or motivate him to publish (he was 
motivated by papers of Kronecker and Helmholtz, see [1888, 335]). 
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Among the diverse 19th-century conceptions of logic (see §11.2), we are interested 

in mathematical logic. Up to 1900, the principal names were Frege, Peano, Peirce, and 

Schroder, and we shall consider how these logicians reacted to Zahlen. There is 

substantial evidence that Dedekind’s logic (sometimes with more or less important 

modifications) was taken as a part of logic by all of these contemporaries. But, first of 

all, one should emphasize that Dedekind devoted practically no space to philosophical 

reflections. This contrasts not only with Frege and Russell, but also with Schroder, 

and it seems related to the main shortcomings in his presentation. The precise logical 

underpinnings of the crucial notions of set and map were not spelled out. As we have 

seen, Dedekind relied on the idea that every concept determines a set, but he chose to 

de-emphasize this point, and consequently he did not formulate the principle of 

comprehension. His approach to sets remained as vague as those we find in Cantor 

[1895/97] or Schroder [1890/95, vol. 1], Regarding mappings, he had the promising 

insight that they could be regarded as purely logical, but again he failed to clarify how 

exactly. Thus, his work made a strong case for the technical plausibility of the logicist 

program, but left crucial issues in the foundations of logic open. 

Dedekind did not feel a need to argue for the logical character of the notion of set, 

since this seemed to be sufficiently availed by traditional views and by recent work of 

logicians like Schroder.1 But his first preface to Zahlen showed a desire to convince 

the reader that the notion of mapping is indeed purely logical. According to him, 

mappings [Abbildungen] are an expression of the faculty of the mind to relate things 

to things, to let a thing correspond to another, or to represent [abbilden] a thing by 

another thing [Dedekind 1888, 336], This faculty, he says, is an indispensable 

ingredient of thought. He explicitly proposed to regard mappings as a kind of relation; 

at the same time, with his reference to abbilden he may have had in mind the role of 

words, ‘ideas,’ or any other form of representation of external objects, in the thinking 
process. 

The proposal came exactly at the right time and was very well received. For that 

was the time of development of a general theory of relations in the hands of Peirce 

and Schroder (and later Russell). Charles S. Peirce did not undertake a logicist 

position, but in 1901, writing on ‘Logic’ for a dictionary of philosophy and 

psychology, he pointed to Dedekind’s work as showing that the borderline between 

logic and pure mathematics is almost evanescent [Peirce 1931/60, vol. 2, 124-25], In 

1911 he would say that Dedekind’s conception of mappings was “an early and 

significant acknowledgment that the so-called ‘logic of relatives’ is an integral part of 

logic” [Peirce 1931/60, vol. 3, 389], On the other hand, one should mention that 

Peirce did not appreciate Dedekind’s contribution very much. He wrongly thought 

that Dedekind had not contributed a single result that Peirce had not proven before, 

and he even accused him of plagiarism for the definition of infinity.2 

1 There are references to [Schroder 1877] in the last pages of [Dedekind 1872/78], 

2 See [Gana 1985], Peirce’s accusation stumbles upon the fact that Dedekind formulated his 
definition in 1872. 
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Peano was soon acquainted with Dedekind’s booklet, acknowledging that he 

employed it while giving final form to his famous axiomatization of arithmetic [Peano 

1889, 86; 1891, 93], He had already made contributions connected with set theory, 

and mathematicians related to his school followed up the work of Cantor and 

Dedekind. Bettazzi and Burali-Forti were the ones who employed Dedekind’s work 

the most, publishing several articles in the years 1896/97 that dealt with the definition 

of infinity, in which context they discussed the Axiom of Choice [Moore 1982, 26- 

30], Peano’s logical work was in the tradition of Boole in that a single formal 

language was given a dual interpretation, both in terms of propositions and of classes 

(§IX. 1.2). It is clear that he took the notion of set or class to be logical, presupposing 

the principle of comprehension, but he was ambivalent toward the logicist viewpoint.1 

By and large, Schroder was the logician who received Dedekind’s foundational 

work more positively. He worked on the subsumption of his theories under the 

algebra of relatives, and it seems that Dedekind’s contribution brought his conversion 

to logicism. In 1890 he seemed to leave open the question whether one should join 

“those who, with Dedekind, consider arithmetic as a branch of logic” [Schroder 

1890/95, vol. 1, 441], but in 1898 he said that pure mathematics seemed to him just a 

branch of general logic [Schroder 1898, 149].2 Schroder devoted several pages of his 

major work, Vorlesungen iiber die Algebra der Logik [1890/95, vol. 3, 346-52], to 

offer a careful review of Zahlen. He stated that one of the “most important objectives” 

of his work was to incorporate all the essential parts of Dedekind’s book into the 

edifice of general logic that he was setting up [op.cit., 346], 

Schroder underlined the importance of Dedekind’s “epoch-making” contributions, 

emphasizing that he had acutely filled in a great gap, that until then could be found in 

all handbooks of arithmetic and algebra. He stressed how much the calculus of logic 

had to advance in its development, in order to make it possible to establish the lost 

connection in a really conclusive way [Schroder 1890/95, vol. 3, 349], Two out of 12 

lectures in volume three of the Vorlesungen are devoted to an examination of 

Dedekind’s theories: chapter 9 deals with chain theory,3 and chapter 12 with the 

theory of mappings, which of course Schroder conceived as relations of a particular 

kind. There is little doubt that his treatise was an instrument for the diffusion of 

Dedekind’s ideas around the turn of the century, especially outside Germany 

(Dedekind’s booklet was probably more widely read within Germany). 

1 On the Peano school, see [Borga, Freguglia & Palladino 1985] and also [Rodriguez- 

Consuegra 1991 ] for a discussion of its influence on Russell. 

2 The sense given to ‘arithmetic’ by Schroder is the same general sense in which Dedekind used 

the word [Schroder 1890/95, void, 441 footnote], Schroder’s logicism has been analyzed in detail 

by Peckhaus [1991; 1993], though without emphasizing the role of Dedekind’s work in his con¬ 

version to logicism. 

3 Schroder generalized the theory of chains further, observing that it does not strictly require 

mappings, but can be applied generally to binary relations. 
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6.2. Frege, Dedekind, and pre-Russellian logicism. Frege wrote that Dedekind’s 

book was the most complete work on the foundations of mathematics which had come 

to his knowledge lately [Frege 1893, vii], Nevertheless, he was the most critical of all 

contemporary logicians and expressed openly his dissatisfaction with the work of the 

pioneers of set theory (see his more particular criticisms of Dedekind in §2.1). He 

thought that contemporary notions of set were not really abstract notions, nor of 

course logical notions: they were just generalizations of the naive idea of a grouping 

of things. In his view, it was necessary to give primacy to the intensional viewpoint: 

sets or classes are no satisfactory foundation, and everything should be stated, instead, 

in terms of concepts.1 With these criticisms, Frege was rightly underscoring the need 

for more careful work on the foundations of logic, and the peculiar nature of the 

notion of set (Russell [1903] would rightly emphasize that it was half extensional, half 

intensional). But with his excessive emphasis on intensionality, Frege’s standpoint 

risked deviating from the mathematical theory of sets (see, e.g., the work of Weyl in 
chapter X). 

At any rate, his remarks did not mean that Frege wanted to dispense with set- 

theoretical ideas. For instance, he thought it possible to restate Cantor’s results in a 

more rigorous, purely logical way. Indeed, for his logicist reduction of arithmetic 

Frege needed an analogue of sets or classes, which he introduced as ‘extensions of 

concepts,’ preserving the old terminology of German logicians. It is sometimes said 

that Frege was the first to formulate in a precise form the principle of comprehension, 

with the basic law V of the Grundgesetze. However, as we shall see (§IX. 1.2), that 

law was nothing but a principle of extensionality, while comprehension was implicit 

in the very notation employed by Frege. Thus, it seems that nobody pinned down the 

crucial principle of comprehension before the emergence of the paradoxes. 

Frege subjected Dedekind’s mappings to objections which are similar to those he 

presented against sets. Mappings are not purely logical tools; instead, one should 

speak in the intensional tongue, namely about relations. However, as we have seen. 

Dedekind himself had pointed out that mappings are a kind of relation, saying that the 

ability of mapping is the ability of relating one thing to another. At any rate, Frege 

proposed to replace Dedekind’s systems by concepts, and his mappings by relations; 

to end his discussion of Dedekind’s ideas, he wrote: “Concept and relation are the 

basic stones on which 1 erect my edifice,” namely the Grundgesetze der Arithmetik 

[Frege 1893, 3]. Notice how other elements in Frege’s logical theory, like 

propositional connectives and quantifiers, are not mentioned in this sentence. This is 

because, although necessary for a careful development of his foundational program, 

those elements were not “basic stones:” they were not crucial for the logicist project. 

Meanwhile, Frege’s definition of natural numbers cannot be stated without referring 
to concepts, extensions of concepts, and relations. 

1 Frege criticized Dedekind’s notion of set in the introduction to his Grundgesetze [Frege 1893], 

and Cantor’s theory in reviews (see [Dauben 1979, 220-28]; [Frege 1895] criticizes Schroder in a 

similar vein). A lengthy and sophisticated defense of the extensional viewpoint can be found in 
[Schroder 1890/95, vol. 1,83-101], 
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In spite of Frege’s criticisms, there is a remarkable parallelism between his pair of 

basic notions, concept and relation, and Dedekind’s basic ideas of set and mapping. If 

we ignore the choices made by Frege on the basis of his preference for the purely 

intensional, this is just confirmation that Dedekind’s was indeed a logical theory. Most 

important, it indicates that the versions of logicism presented by Dedekind and Frege 

rested essentially on the same basis. The parallelism underscores how the logicist 

program needed set theory, or an equivalent device, in order to subsume arithmetic 

under pure logic. Logicism depended essentially on the notions of set and relation, 

conceived extensionally or otherwise. The lower levels of logical theory 

(propositional and quantification theory) did not play such a crucial role - which 

seems to undermine the argument that Dedekind was not really a logicist because 

he did not use a modern theory of formal logic. Set theory was an indispensable 

ingredient of the logicist’s logic, which is why the first wave of logicism was shaken 

by the paradoxes. For, as we shall see, the paradoxes undermined the traditional 

justification of the logical character of sets (the concept-set connection, the principle 

of comprehension) and necessitated radical changes in the received picture of logic 

and its demarcation. 

Logicism can be considered to have been in the air since modem mathematics in 

general, and set theory in particular, began to develop. But it was after the 1880s, 

when Frege and Dedekind published their independently developed views, that a 

growing logicist trend emerged within the mathematical community. In the 1890s and 

early 1900s, followers of logicism appeared in all the main European countries: 

Dedekind, Frege, and Schroder in Germany, Jourdain and Russell in Great Britain, 

and Couturat in France are the outstanding names. Throughout this period, Frege’s 

work was paid very little attention, and so one is led to think that Dedekind was - in 

the public’s eye - the main proponent of logicism until Russell came into the scene. It 

is significant that Schroder and Peirce associate the logicist position always with 

Dedekind, and never with Frege. The early form of logicism, however, has been 

mostly forgotten since from the 1900s Russell’s conceptions became enormously 

influential. But Russell and the Principia Mathematica [Whitehead & Russell 

1910/13] represent a second phase in the history of logicism, forced by the effect of 

the paradoxes.1 

6.3. Hilbert and his school. Among the mathematicians who showed an early 

interest in Dedekind’s work, the most interesting example is David Hilbert. Dede¬ 

kind’s influence is not only visible in the notions Hilbert employed in the context of 

algebra and algebraic number theory - like those of field and ideal [Hilbert 1897] - 

but also in his set-theoretical terminology and his approach to set theory. It is not a 

coincidence that Hilbert began his classic Grundlagen der Geometrie with the 

words: “We conceive of three systems of things: the things of the first system we 

call points.” The terms ‘system’ and ‘thing’ are taken from Dedekind’s Zahlen, a 

1 A more detailed and focused discussion of these issues can be found in [Ferreiras 1996], and 

an analysis of the fall of logicism in [Ferreiras 1997], 
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book that attracted Hilbert’s attention as soon as it was published.1 Also in the fa¬ 

mous address ‘Mathematische Probleme’ we find Dedekind’s terminology, pre¬ 

cisely where Hilbert explains the Cantorian problems of the power of the contin¬ 

uum and of well-ordering; he even seems to prefer the word ‘System’ for the ab¬ 

stract notion of set [Hilbert 1900, 298-99; also 301], And the same applies to his 

axiomatization of the real numbers [1900a, 1094-95], 

The high esteem in which Hilbert held Dedekind’s foundational work is clearly 

visible from several of his papers, and indirectly from the work of his students. In 

1904 he wrote that Dedekind had clearly acknowledged the mathematical difficul¬ 

ties which the founding of Fd poses, and had offered an “extremely sagacious” 

construction of the theory of natural numbers [Hilbert 1904, 130-31]. In his famous 

lecture on the infinite, he called Zahlen an epoch-making work [1926, 375] and in 

[1922] he labeled Dedekind’s thought of grounding the finite numbers on the infi¬ 

nite “dazzling and captivating,” although he wrote that it led to a dead end. This last 

comment points to the main problem we face while trying to ascertain the influence 

of Dedekind on Hilbert. All of his recorded comments on foundational matters 

come from 1900 or later, by which time Cantor had made him aware of the set- 

theoretical paradoxes, which created enormous difficulties for Dedekind’s theory 

(§IX.l). Thus, even the strong assumption that Hilbert was a convinced logicist in 

Dedekindian style for a decade (1888-98) would be compatible with the historical 
record. 

It is noteworthy that Hilbert’s Gottingen was the place where Dedekind’s heri¬ 

tage could more clearly be felt (also in the work of Emmy Noether). Indeed, some 

examples taken from the work of Hilbert’s students suggest that he may have 

stressed the importance of Dedekind’s work. In Das Kontinuum, Hermann Weyl 

presents a rather radical alternative to classical mathematics, criticizing traditional 

ways of proof and definition. He proposed an altered (predicative) conception of 

sets, and in this connection indicated that Dedekind’s set-theoretical treatment of 

the natural numbers in no way constitutes a ‘reduction’ of them to pure set theory.2 

A footnote, however, stated that it was not his intention to deny [anzutasten] the 

great historical significance of Zahlen for the development of mathematical thought 

[Weyl 1918, 16], Weyl linked the abstract, set-theoretical conception of mathemat¬ 

ics, in which he was schooled at Gottingen, with the names of Dedekind and Can¬ 
tor: 

1 [Hilbert 1930, 4]: “Wir denken drei verschiedene Systeme von Dingen: die Dinge des ersten 

Systems nennen wir Punkte." For his reaction in 1888, see [Dugac 1976 93- Ewald 1996 vol 2 
1151], 

For set theory has to be axiomatized, and then its formal develoment must presuppose the 

‘intuition of iteration’ and the number sequence [Weyl 1918, 116-17]; see §X.l. 
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Confined by tradition in that complex of thoughts which is linked above all to the names of 

Dedekind and Cantor, and which today certainly enjoys absolute dominance in mathematics, 

I found for myself and traversed the way leading out of this circle that I have here staked 

off.1 

The first part of this sentence should be read as a testimony of the atmosphere 

reigning, during the 1900s and early 1910s, at Hilbert’s and Minkowski’s Gottin¬ 

gen. 

My second example comes from a very different direction, which makes the 

argument stronger. According to his own recollections, Zermelo came to work on 

set theory and foundations under the influence of Hilbert [Moore 1982, 89], His 

earliest work on set theory was exclusively related to Cantor’s contributions, but 

later, espacially from 1905, he payed close attention to Dedekind’s [Peckhaus 1990, 

89-90], He devoted a crucial paper to show how the entire theory “created by Cantor 

and Dedekind” can be reduced to a few definitions and seven axioms [Zermelo 1908, 

200], Zermelo studied carefully the works of both predecessors in order to establish 

the basic postulates involved in set theory, and it has frequently been mentioned that 

Dedekind’s booklet may have suggested some of his axioms.2 In one particular case, 

there is no doubt: he called the axiom of infinity “Dedekind’s axiom” [Zermelo 1908, 

204; 1909, 186], Moreover, Zermelo used chain theory for some proofs presented in 

his papers and employed a transfinite generalization of Dedekind’s chains for his 

second proof of the Well-Ordering theorem (see §IX.4). The latter is, in my view, the 

best example of how his work synthesized and intertwined the ideas of Dedekind and 

Cantor. 

In the 1920s, Hilbert was in the habit of referring to the work of Dedekind, 

Cantor and Frege as the origins of modem mathematics and foundational research.3 

In a lecture course of 1920, he said that Minkowski and him had been the first in 

the younger generation of German mathematicians to take “Cantor’s side,” the side 

of abstract set theory [Ewald 1996, vol. 2, 946], As we have seen, there are reasons 

to think that by 1900 or even 1910 Hilbert identified the set-theoretical approach 

also with Dedekind. But it is not by chance that he later preferred to mention Can¬ 

tor, since Dedekind’s approach, in its concentration upon systematics and founda¬ 

tions, must have seemed somewhat one-sided to Hilbert. Characteristically, he 

decided to associate the name of set theory with the man who posed completely 

new questions in this area, opening up a pure, abstract paradise. This is, after all, 

the spirit of ‘Mathematische Probleme.’ And Hilbert’s decision has deeply influ¬ 

enced later perceptions of the emergence of the set-theoretical approach. 

1 [Weyl 1918, 35; see also 36]: “Durch Tradition eingesponnen in jenen ja heut in der 

Mathematik zur unbedingten Herrschaft gelangten Gedankenkomplex, der vor allem an die 

Namen Dedekind und Cantor ankniipft, habe ich ftir mich den aus diesem Kreise herausfiihren- 

den Weg gefunden und durchmessen, den ich hier abgesteckt habe.” 

2 See Noether’s comments in [Dedekind 1930/32, vol. 3, 390—391], and [Moore 1978; 1982], 

3 See, e.g., his articles in [van Heijenoort 1967, 375] and [Ewald 1996, vol. 2, 1119, 1121, 

1151]; or the appendixes to [Hilbert 1930], 





VIII The Transfinite Ordinals and Cantor's 
Mature Theory 

The essence of mathematics lies precisely in its freedom.* 

Just since our recent meetings in Harzburg and Eisenach [Sept. 1882], 

God Almighty saw to it that I attained the most remarkable and unex¬ 

pected results in the theory of manifolds and the theory of numbers, or 

rather that I found what fermented in me for years and what 1 have long 

been searching for.1 2 

On the whole, one may differentiate four phases in the development of Cantor’s 

research on sets. The first, from about 1870 to 1872, was devoted to the study of 

point-sets through their derived sets for the purposes of the theory of trigonometric 

series. The second stretched from 1873 to 1878 and focused above all on the study 

of infinite cardinalities (chap. VI). The third period, 1879 to 1884, was guided by 

the core objective of proving the Continuum Hypothesis (CH). Cantor studied in 

detail the powers of subsets of IR, looking for combined results on derived sets and 

powers, which led him to introduce basic notions of the topology of point-sets. Up 

to this point, however, he had not distilled an abstract conception of set theory, 

dissociated from topological properties. With the introduction of transfinite ordinal 

numbers, in 1883, he found a way of defining an increasing sequence of consecu¬ 

tive powers or cardinalities. His interests thereafter shifted from the theory of point- 

sets to that of ordered sets, and by 1885 he had conceived of a general theory of 

order types (i.e., types of totally ordered sets). Thus he finally arrived at a general, 

abstract analysis of sets based on the notions of cardinality and order. This fourth 

period went from 1885 to the end of his career. 

The crucial shift to abstract set theory occurred while Cantor was publishing 

‘On infinite, linear point-manifolds’ [1879/84], a collection of six articles of une¬ 

qual length and depth. In the third installment, published in 1882, Cantor began to 

1 [Cantor 1883, 34]: “das IVesen der Mathematik liegt gerade in ihrer Freiheit.” 

2 Cantor, November 5, 1882 [Cantor & Dedekind 1937, 55]: “... gerade seit unserm jringsten 

Zusammensein in Harzburg und Eisenach hat es Gott der Allmachtige geschickt, dass ich zu den 

merkwiirdigsten, unerwartetesten Aufschliissen in der Mannigfaltigkeitslehre und in der Zahlen- 

lehre gelangt bin oder vielmehr dasjenige gefunden babe, was in nrir seit Jahren gegahrt hat, 

wonach ich lange gesucht habe.” 
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Figure 8. Title page of Cantor's Foundations of a general theory of manifolds [1883J. The 

subtitle reads: a “mathematico-philosophical attempt” to contribute to the ‘‘theory of infinity. ” 
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discuss foundational questions and the scope of set theory, and this tendency 

reached a peak with the fifth installment [Cantor 1883], a veritable tour-de-force 

that dealt with both mathematical and philosophical questions. It was here that 

Cantor presented the transfinite numbers, which had an enormous importance in the 

development of his work. Transfinite numbers mark the crucial point at which 

Cantor turned to an abstract theory of sets. The importance he attached to them is 

reflected in the fact that he published this part of the series as a separate book enti¬ 

tled Foundations of a General Theory of Manifolds [Cantor 1883]. 

Cantor was conscious that he was plunging into a direct confrontation with 

widely held views regarding mathematical infinity and the notion of number. He 

decided to take the implications of his move seriously, entering into a detailed dis¬ 

cussion of the philosophical and theological implications, which also allowed him 

to unbridle his speculative interests. For the first time, the public came to know 

aspects of his viewpoints and personality that had previously been hidden. The 

Gundlagen [Cantor 1883] is thus an admixture of mathematical, foundational and 

philosophical considerations, one of the most extraordinary articles in the history of 

modem mathematics and, to be sure, one of great interest. 

In the present chapter, we shall outline the development of Cantor’s mature 

theory of sets, from the ordinals to the paradoxes. Starting from his foundational 

reflections and his notion of set as of 1882, we proceed to the transfinite numbers 

and the related interest in ordered sets. This marks a clear shift in the evolution of 

his views, differentiated neatly from the early work discussed in chapter VI (related 

to derivation and point-sets). Still, we shall consider the many ways in which Can¬ 

tor’s theory of point-sets suggested viewpoints and results for his theory of ordered 

sets. After a section devoted to the reception of his views and Cantor’s withdrawal 

from mathematical publications in the 1880s, the final sections deal with his work 

of the 1890s: Cantor’s Theorem [1892], the synthetic presentation of transfinite set 

theory in the Beitrage [1895/97], and the discovery of the paradoxes around 

1896/97. 

1. "Free Mathematics" 

The turn toward an abstract conception of mathematics and its methodology, im¬ 

plicit in Cantor’s research from the early 1870s and in his publications from 1879, 

became explicit in the Grundlagen. Cantor thought it necessary to confront the 

views of those mathematicians, like Kronecker, who objected to the free introduc¬ 

tion of new notions (particularly those having to do with the infinite) and the appli¬ 

cation of traditional methods of proof to them. As we have seen (§IV.4.2), already 

in the early 1870s Kronecker objected to the proof of the Bolzano-Weierstrass 

theorem as an obvious sophism. Apparently, he thought that a pure existence proof 

was not enough to guarantee the existence of a number having the desired proper¬ 

ties. Kronecker’s position amounted to a rejection of the tertium non datur as ap¬ 

plied to infinite sets. 
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1.1. Against finitism.1 §4 of the Grundlagen describes a standpoint of radical 

arithmetization of mathematics associated with Kronecker, although Cantor did not 

name him directly [1883, 172-73]. Kronecker planned to produce a constructive 

development of all branches of pure mathematics on the basis of the natural num¬ 

bers and the literal calculus [Buchstabenrechnung] of algebra [Kronecker 1887; 

Edwards 1989], He rejected the various definitions of the real numbers (§IV.2) 

since these involved the actual infinite and could not be reduced to notions defined 

algorithmically on the basis of the natural numbers. Cantor conceded that this kind 

of approach may help to eliminate errors and to attain some methodological ad¬ 

vantages, but he stated that it represents a kind of excess of zeal. Though in general 

he maintained a moderate tone, at times Cantor used somewhat derogatory expres¬ 

sions, as when he said that in this way a definite, but “rather banal and obvious” 

[ziemlich niichtemes und naheliegendes] principle is recommended to all as a 

guideline; or later, that no real progress has ever been due to such an approach and 

that it would hold back mathematics and confine it into the narrowest bounds 

[Cantor 1883, 173].2 3 
Since Kronecker’s objections to the new developments in mathematics re¬ 

minded Cantor of the Greek skeptics, and given his inclination to philosophy, it is 

no wonder that he turned his reply into a discussion of the most important philo¬ 

sophical arguments against actual infinity.-1 Cantor distinguished the “proper infi¬ 

nite" [Eigentlich-Unendliches], which corresponds to what is commonly called 

actual infinity, from the “improper infinite” [Uneigentlich-Unendliches] of poten¬ 

tial infinity [Cantor 1883, 165-66]. He quoted above all the arguments of Aristotle, 

which led to the scholastic sentence ‘infinitum actu non datur,’ but he also gave 

references to philosophers like Locke, Descartes, and even Spinoza and Leibniz 

[op.cit., 173-79], In essence, his argument was that the classical objections against 

infinite numbers were always based on a petitio principii - they assume or require 

that those numbers must possess all properties of the finite numbers, including 

some which contradict the nature of the transfinite [op.cit., 166, 177-78], for in¬ 

stance, if one stipulates that the result of an enumeration must always be the same, 

independent of the way the elements are ordered, then the notion of a transfinite 

‘number’ would be contradictory. In and of themselves, however, transfinite num¬ 

bers do not entail the least contradiction or inconsistency. Transfinite numbers 

constitute a completely new kind of number, whose laws and properties depend “on 

1 A very detailed, though perhaps over-systematic, discussion of Cantor’s views can be found 

in [Hallett 1984, ch.l]. The reader will find there an interesting analysis of Cantor’s “finitism,” in 

the sense of his quasi-finitistic or quasi-combinatorial conception of infinite sets. Here I employ 

the term ‘finitism’ in the usual meaning. 

2 It is not surprising that this kind of open polemics would bother Kronecker, who had never 

published his ideas. In personal conversations he went so far as to call Cantor a corrupter of the 

youth [Schoenflies 1927, 2], 

3 See [Cantor 1879/84, 212-13; Schoenflies 1927, 12]. Cantor’s interest in philosophy dates 

back to his student times, when he studied carefully the views of Spinoza [Purkert & llgauds 

1987, 183]; see also [Cantor 1932, 62]. 



§1. “Free Mathematics ” 261 

the nature of things” and ought to be the subject of careful research, not of our 
prejudices or arbitrariness [Cantor 1932, 371-72], 

In the Grundlagen, Cantor wrote: 

To the thought of considering the infinitely great not merely in the form of what grows 

without limits - and in the closely related form of the convergent infinite series first intro¬ 

duced in the seventeenth century - , but also fixing it mathematically by numbers in the 

detenninate fonn of the completed-mfinite, I have been logically compelled in the course of 

scientific exertions and attempts which have lasted many years, almost against my will, for it 

contradicts traditions which had become precious to me; and therefore I believe that no 

arguments can be made good against it which I would not know how to meet,1 

He went on to clarify that, in speaking of traditions, he did not only refer to what he 

had personally experienced (e.g., the viewpoints of the Berlin school), but also to 

traditions going back to the founders of modem science and philosophy. 

Along the way, particularly important in his endnotes. Cantor discussed all 

kinds of philosophical and theological questions. The notion of God or the Abso¬ 

lute played an important part in his thought, also in connection with set theory.2 

Among philosophers it had been customary to identify actual infinity with the Ab¬ 

solute, and to deny the possibility of determining the actual infinite by numbers, 

since this would have amounted to the impious idea that God can be determined by 

human reason. Cantor took it as his duty to defend his theory of the transfinite 

against theological objections, and he entered into correspondence with many 

theologians, particularly Catholics. He wished to convince philosophers and theo¬ 

logians that between the finite and the Absolute there is still an “unlimited hierar¬ 

chy” of concepts, the transfinite numbers [Cantor 1883, 176], and that his theory 

did not in the least imply that it is possible to determine the Absolute [op.cit., 175— 

77, 205], He proposed the following maxim: “Omnia seu finita seu infinita definita 

sunt et excepto Deo ab intellectu determinari possunt’’ - all things finite or infinite 

are definite and, God excepted, can be determined by the intellect [op.cit., 176], 

In an endnote [1883, 205] Cantor stated that the Absolute can only be acknowl¬ 

edged, not known, not even approximately known. And he went on to suggest that 

the absolutely infinite sequence of the transfinite numbers seems to be an adequate 

“symbol” for the Absolute [op.cit., 205], This served as an important background 

1 [Cantor 1883, 175]: “Zu dem Gedanken, das Unendlichgrosse nicht bloss in der Form des 

unbegrenzt Wachsenden und in der hiermit eng zusammenhangenden Form der im siebenzehnten 

Jahrhundert zuerst eingefuhrten convergenten unendlichen Reihen zu betrachten, sondern es auch 

in der bestimmten Form des Vollendetunendlichen mathematisch durch Zahlen zu fixiren, bin ich 

fast wider rneinen Widen, weil im Gegensatz zu mir werthgewordenen Traditionen, durch den 

Verlauf vieljahriger wissenschaftlicher Bemuhungen und Versuche logisch gezwungen worden 

und ich glaube daher auch nicht, dass Griinde sich dagegen werden geltend machen lassen, denen 

ich nicht zu begegnen wiisste.” 

2 This topic has been studied by all biographers, see [Meschkowski, ch. 8; Dauben 1979, ch. 6 

and 10; Purkert & Ilgauds 1987]. For its mathematical implications, see especially [Hallett 1984, 

40-48, 165-76] and [Jane 1995], 
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for his reaction to the set-theoretical paradoxes, since it suggested that there is no 

set of all ordinals, because the Absolute cannot be determined. If the totality of 

ordinals represents the Absolute, it should also be beyond what can be mathemati¬ 

cally determined, beyond the transfinite. There would be no set, no collection into a 

whole, of all ordinals (see § VI1I.8).1 

1.2. Mathematical existence. Cantor’s critique of Kronecker’s views reap¬ 

peared from a different standpoint in §8. Here Cantor explained his philosophical 

conception of mathematics and discussed the methodological requirements that are 

essential in this discipline, comparing the work of the mathematician with that of 

the natural scientist. His basic idea was a distinction between two senses in which 

one may treat the question of existence concerning any concept or idea, and in 

particular the existence of the transfinite numbers. First, one may judge the “intra- 

subjective or immanent reality,” which only depends on the concept being well 

defined, free from contradiction, and entering into fixed relations with previously 

available and accredited concepts [1883, 181-82], A different question is that of the 

“trans subjective or transient reality” which is ascribed to a given notion insofar as 

it represents processes or relations in the external world [op.cit., 181]. 

With this distinction in mind, Cantor affirmed that mathematics is distinguished 

from all other scientific disciplines in that, while scientists are busy above all with 

transient reality,2 mathematics “has to take into account only and exclusively the 

immanent reality of its concepts.”3 In mathematics, one freely introduces new no¬ 

tions, which however will be abandoned whenever they turn out to be unfruitful or 

inconvenient. Otherwise said, the essence of mathematics lies precisely in its free¬ 

dom, and restrictions on this freedom to form consistent notions are very danger¬ 

ous. For this reason, Cantor would replace the usual expression “pure mathematics” 

by the more pregnant name “free mathematics” [1883, 182], 

As justification for his viewpoint, Cantor mentioned first some philosophical 

ideas, and then the recent development of mathematics. Regarding the latter, the 

impressive development of function theory, of the theory of differential equations, 

and of algebraic number theory would never have come about without the above- 

mentioned freedom [op.cit.., 183], But, to believe his words, Cantor was led to his 

views on mathematics first and foremost by the conviction that both kinds of reality 

always correspond to each other - that every concept that exists in the immanent 

sense possesses a transient reality too. This is due to the essential unity of reality, 

the unity of the whole to which we ourselves belong [op.cit., 181-82], We find here 

the source of Cantor’s Platonism, of his conviction that transfinite sets exist in a world 

of ideas or in God’s intellect, and at the same time also in Nature (see end of §2). 

1 The point seems to have been first realized by Purkert; see [Purkert & Ilgauds 1987], 

2 Cantor went so far as to say that these disciplines are “metaphysical” in both their founda¬ 

tion and goals [1883, 183]; the idea would reappear in the following years. 

3 [Cantor 1883, 182]: “dass namlich [die Mathematik] bei der Ausbildung ihres Ideenmateri- 

als einzig und allein auf die immanente Realitat ihrer Begriffe Rucksicht zu nehmen ... hat.” 
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Cantor’s inspired defense of the abstract approach to mathematics was certainly 

one of the first. No wonder that Hilbert used to name him, alongside Dedekind, as 

one of the founders of the modem approach to mathematics (see §VI 1.6.2). If we 

undress his ideas from the philosophical language in which he couched them, and 

from his metaphysical convictions, Cantor’s opinion that one can only require 

mathematical notions to be well defined and consistent is a forerunner of Hilbert’s 

famous view - that we are entitled to assume the mathematical existence of an 

object as soon as the corresponding axiom system is consistent. Transfinite num¬ 

bers have certainly passed Cantor’s test, in the sense that they are generally ac¬ 

knowledged to be well-defined, intuitively consistent, and fruitful. 

2. Cantor's Notion of Set in the Early 1880s 

The third and fifth installments of Cantor’s series on linear point-manifolds 

[1879/84] contained, for the first time, general reflections on the basic notions of 

set theory. Before discussing them, it will be worthwhile to try clarifying Cantor’s 

linguistic usage. He employed preferentially the words manifold [Mannichfaltig- 

keit] and set [Menge], but these terms seem to have different connotations. Mani¬ 

fold is the more general term, ‘Menge’ is used in particular for sets of points or sets 

of numbers, i.e., the common mathematical examples of manifolds.1 Cantor re¬ 

garded the theory of manifolds as going beyond mathematics [1879/84, 152], in¬ 

cluding or being intimately connected with logic and epistemology [1883, 181]. 

Some aspects of Cantor’s thought about sets remained basically constant over 

the years. Like all other authors in the early period of the history of sets, he tended 

to think of them as given by a concept or a law, indeed he emphasized this aspect 

more than other contemporaries. To give some examples, in his definition of the 

real numbers he required the fundamental sequence to be “given by a law” [Cantor 

1872, 92-93], and while defining derived sets he said that P' is “conceptually 

given” together with P [op.cit., 98], The proof of non-denumerability of IK. begins 

by considering a sequence of real numbers given by any law [1874, 117], and 

throughout the paper Cantor always writes ‘Inbegriff instead of set.2 As late as 

1 882/83 we find similar statements. He explained a linear point-set by saying that it 

is a manifold of points belonging to the line which is “given by a law” [gesetzmas- 

sig gegeben; 1879/84, 149], Most important, his first explicit definition of set (see 

below) requires that the elements be joined into a whole by a law [1883, 204], 

Other elements of his conception were incorporated slowly. Starting in 1878, 

Cantor insisted that manifolds or sets have to be “well-defined;” for instance, his 

very definition of cardinality assumes two given well-defined manifolds [1878, 

1 See, e.g., the first sentence of endnote 1 in [1883, 204]. 

2 The term ‘Inbegriff,’ meaning class, is etymologically related to ‘Begriff,’ or concept. In my 

translations I have rendered it as ‘collection’ for lack of a better choice. 
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119; also 124], Similarly, the condition of being well-defined appears in the defini¬ 

tion of well-ordered set, and the “law” of well-ordering is taken to be valid for 

well-defined sets [1883, 168, 169], In 1882 he explained what he meant: 

I say that a manifold (a collection, a set) of elements that belong to any conceptual sphere is 

well-defined, when on the basis of its definition and as a consequence of the logical principle 

of excluded middle it must be regarded as internally determined, both whether an object 

pertaining to the same conceptual sphere belongs or not as an element to the manifold, and 

whether two objects belonging to the set are equal to each other or not, despite formal differ¬ 

ences in the ways of determination.1 

Cantor went on to say that one should not require that it be possible to actually take 

the relevant decisions with available means, it is only essential that the set be de¬ 

termined internally (or in principle). Here we find a precedent for the abstract 

methodology that was explained a year later by means of the idea of ‘immanent 

reality’ (§3.2). 
The above passage points quite clearly in the direction of the principle of exten- 

sionality - that a set is completely determined by its elements, irrespective of the 

way it may be given through defining properties, etc. It also underscores a key 

aspect of set theory that would be criticized by Brouwer and his followers: the 

application of the tertium non datur to infinite totalities. Finally, it emphasizes a 

characteristic of Cantor’s notion of set that differentiates him from, say, Dedekind 

or Frege. For him, the elements of a set must pertain to a certain “conceptual 

sphere” [Begriffssphare], be it the domain of arithmetic, of function theory, of 

geometry, or even those of logic or of epistemology [1879/84, 141, 150; 1883, 

181].2 In this connection, it is noteworthy that Cantor never considered sets having 

elements of unequal kinds - he studied sets of numbers, of points, or even of func¬ 

tions, but never mixed sets, and he seems to have refrained from considering sets of 

sets. It seems that he implicitly required the elements of a set to be homogeneous 

and to be apparent individuals. This may be linked to the above requirement of 

restriction to a certain conceptual sphere. It might explain some surprising charac¬ 

teristics of his views, for instance, why he did not formulate Cantor’s Theorem in 

terms of the power set (§6).3 

1 [Cantor 1879/84, 150]: “Eine Mannichfaltigkeit (ein Inbegriff, eine Menge) von Elementen, 

die irgend welcher Begriffsphare angehoren, nenne ich wohldefinirt, wenn auf Grund ihrer Defi¬ 

nition und in Folge des logischen Princips vom ausgeschlossenen Dritten es als intern bestimmt 

angesehen werden muss, sowohl ob irgend ein derselben Begriffsphare angehoriges Object zu der 

gedachten Mannichfaltigkeit als Element gehort oder nicht, wie auch ob zwei zur Menge ge- 

horige Objecte, trotz formaler Unterschiede in der Art des Gegebenseins einander gleich sind 

oder nicht.” 

2 This is reminiscent of the conditions for significativity that Weyl [1918] imposes on logic 

and therefore on his predicative set theory. Weyl, in turn, seems to have been influenced by 

Husserl. 

3 It may also explain why he never employed equivalence classes in the context of his defini¬ 

tion of real numbers, and why he distinguished higher kinds of real numbers in 1872 and 1883 
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Disregarding other conceptual spheres, the theory of manifolds embraces all of 

pure mathematics: arithmetic, algebra, function theory and geometry. In Cantor’s 

opinion, it embraces these domains and brings them to a higher unity on the basis 

of the notion of power, under which both the discontinuous and the continuous fall 

[1879/84, 151], The notion of cardinality is the most basic and important notion in 

set theory, for the power of a set is an invariant attribute of any well-defined mani¬ 

fold and should be regarded as “the most general genuine aspect for manifolds.”* 1 

Moreover, the concept of cardinality includes the notion of integer, “this foundation 

of the theory of magnitudes,” as a special case [op.cit., 150]. Even after the intro¬ 

duction of the transfinite ordinals, Cantor kept insisting on the view that cardinality 

is the simplest and primary notion of set theory. This viewpoint is implicit in the 

organization of the Beitrage, where the ordinals are discussed only after the finite 

and infinite cardinals, and where Cantor regards the notion of power as the “most 

natural, brief, and rigorous foundation” of finite numbers [1895/97, 289], I wish to 

emphasize this point, because it has recently been suggested that Cantor was im¬ 

mersed in an ordinal conception of sets, and an attempt has been made to explain 

his views systematically on this basis [Lavine 1996, 77-86], That reconstruction, 

sharp and interesting in itself, meets with a lot of contrary evidence.2 
Only in 1883 did Cantor offer for the first time an explicit definition of set: 

By a manifold or a set I understand in general every Many that can be thought of as One, 

i.e., every collection of determinate elements which can be bound up into a whole through a 

law, and with this I believe to define something that is akin to the Platonic eiboq or 15ea.3 

Once again, Cantor employs here the word ‘Inbegriff [collection] and emphasizes 

that it must be possible to turn the collection, the Many, into a whole or One, which 

is done by a law. Here, like a year earlier [1879/84, 149], it seems that one should 

understand by ‘law,’ in general, a conceptual condition;4 this reading is supported 

by references to Plato’s ideas and to Spinoza’s adequate ideas at several other 

places (endnotes 3, 5, 6 [Cantor 1883, 205-07]). The peculiar language of Many 

and One reflects the usage of ancient Greek philosophers, particularly Plato. 

(see §IV,2). 

1 [Cantor 1879/84, 150]: “das allgemeinste genuine Moment bei Mannichfaltigkeiten.” 

2 It seems clear, as a historical fact, that the reason why Cantor attributed great importance to 

order types was because only well-ordered sets allowed him to establish a satisfactory theory of 

transfinite powers. He regarded denumerability by ordinals as a distinguishing feature of transfi¬ 

nite sets [Hallett 1984, 146-50], but this does not imply that he had an ordinal conception of sets. 

3 [Cantor 1883, 204]: “Unter einer Mannichfaltigkeit oder Menge verstehe ich namlich allge- 

mein jedes Viele, welches sich als Eines denken lasst, d.h. jeden Inbegriff bestimmter Elemente, 

welcher durch ein Gesetz zu einem Ganzen verbunden werden kann und ich glaube hiermit etwas 

zu definiren, was verwandt ist mit dem Platonischen ei5og oder i5sa.” 

4 Perhaps Cantor employs ‘law’ instead of ‘concept’ because the condition may logically be 

more complex than a property. Lavine’s interpretation [1996, 85] seems forced and contrary to 

texts of a year earlier. Cantor’s reference (immediately after the text I have quoted) to the 

“piKTOv” seems to be simply related to his idea that transfinite sets are infinite but at the same 

time determinate. 
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With his reference to the relation between sets and Platonic ideas, Cantor intro¬ 

duced for the first time an element that would become characteristic of his philoso¬ 

phy of mathematics - extreme realism with respect to the objects of mathematics.1 

It appears that, up to the early 1880s, Cantor essentially accepted the views of his 

teacher Weierstrass, and of Dedekind too, according to which pure mathematics is 

related to pure thought. References to logic in connection with set theory abound in 

these years - to the principle of excluded middle in 1882 [1879/84, 150], to Well- 

Ordering as a law of thought [1883, 169], to the notion of the continuum as a 

“mathematico-logical” one and his definition of it as soberly logical [1883, 191], or 

to the principles of generation and limitation of ordinal numbers as “logical func¬ 

tions” [1883, 196, 199], But, since Cantor had always been interested in the philo¬ 

sophical views of Spinoza and others, it seems likely that throughout this period 

there was an unresolved tension between that logical approach to mathematics and 

his philosophical convictions regarding mathematical objects. 

The tension began to be resolved with the speculative principle that ‘immanent 

reality’ and ‘transient reality’ are always coincident. The ultimate reason for this 

notable convergence of idealism and realism is “the unity of the all to which we 

ourselves belong.”2 An endnote relates that principle to the philosophies of Plato, 

Leibniz, and Spinoza; the latter, for instance, wrote the famous sentence that the 

order and connection of ideas is the same as the order and connection of things 

[1883, 206-07]. Cantor was convinced that his theory of sets opened the way to a 

satisfactory development of the metaphysical and scientific views of Spinoza and 

Leibniz, leading up to an “organic explanation of nature” that would complement 

or even substitute the one-sided mechanical explanation [op.cit., 177], At several 

places in the Grundlagen he stated his conviction that the transfinite is present and 

real in the physical world and in the mental world. Cantor was certainly a romantic 

thinker, but the strong presence of these ideas, so close to the Naturphilosophie, is 

noteworthy.3 

Later in his life, Cantor distanced himself from the logical approach to mathe¬ 

matics, and particularly from Dedekind’s logicism.4 The paradoxes gave him a 

powerful argument against the views of Dedekind and other logicists, showing that 

one can at times define a Many that cannot be thought of as a One. His old philo¬ 

sophical and theological convictions aided him in accepting this situation and re¬ 

acting to it positively (see §VIII.8). At that time, he affirmed that he had reached 

1 See, e.g., the second quotation in [1895/97, 282], taken from Francis Bacon. Cantor com¬ 

pares his mathematical activity with the work of a “faithful scribe” transcribing the revelations of 

Nature. 

2 [Cantor 1883, 181—82]: “[die] Einheit des Alls, zu welchem wir selbst mitgehoren.” 

3 See [Cantor 1883, 177, 199, 204-07; Cantor 1932, 374-75], his published views of 1885 in 

[Cantor 1932, 261-76], and also the letters to Mittag-Leffler and Hermite in [Meschkowski 258- 

59, 275], 

4 However, in 1888 he still praised Dedekind’s tendency to give a purely logical foundation 

for arithmetic, although he criticized his work for other reasons (see his letter to Vivanti in 

[Meschkowski & Nilson 1991, 302]). 
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this standpoint already in the Grundlagen, but the evidence suggests that this may 

have been an overstatement, and that only gradually (especially in the 1890s) did he 

come to reject logicism and realize its limitations. 

3. The Transfinite (Ordinal) Numbers 

We have seen (§VI.6) that the proof of a result connected with the Cantor-Bendix- 

son theorem necessitated focusing on the ‘symbols of infinity’ and considering the 

set of all such symbols that have denumerably many predecessors. This was the 

motivation for a crucial turning point in Cantor’s work on transfmite sets - the 

introduction of transfmite numbers. Cantor was perfectly aware of the importance 

of this revolutionary step, and obtained from Klein, the editor of Mathematische 

Annalen, permission to publish the article separately as a book. The title under¬ 

scored the importance of its contents and revealed the new philosophical turn that 

Cantor was giving to his work: Foundations of a General Theory of Manifolds. A 

philosophico-mathematical attempt in the theory of infinity [Cantor 1883], These 

are the introductory words of the paper: 

The foregoing account of my researches in the theory of manifolds has reached a point 

where further progress depends on extending the concept of true integral number beyond the 

previous boundaries; this extension lies in a direction which, to my knowledge, no one has 

yet attempted to explore. 

My dependence on this extension of number concept is so great, that without it I should 

be unable to take freely the smallest step further in the theory of sets.1 

The developments analyzed in §VI.6 indicate that this was not mere rhetoric, but a 

true depiction of the situation in his research. Cantor went on to say that, although 

he was going to propose a daring extension of the number system “beyond the 

infinite,” he was firmly convinced that it would someday be seen as a simple, ade¬ 

quate and natural step. 

3.1. Origins in point-set theory. Let us first refresh our memory of how the 

‘discovery’ of transfinite numbers was motivated by Cantor’s attempts to prove part 

of the famous Cantor-Bendixson theorem. His aim was to show that, whenever a 

derived set Pa is denumerable, for any ‘symbol of infinity’ a, so is P\ and con- 

1 [Cantor 1883, 165]: “Die bisherige Darstellung meiner Untersuchungen in der Mannich- 

faltigkeitslehre ist an einen Punkt gelangt, wo ihre Fortfuhrung von einer Erweiterung des realen 

ganzen Zahlbegriffs iiber die bisherigen Grenzen hinaus abhangig wird, und zwar fallt diese 

Erweiterung in eine Richtung, in welcher sie meines Wissens bisher von Niemandem gesucht 

worden ist. / Die Abhangigkeit, in welche ich mich von dieser Ausdehnung des Zahlbegriffs 

versetzt sehe, ist eine so grosse, dass es mir ohne letzere kaurn moglich sein wiirde, zwanglos den 

kleinsten Schritt weiter vorwarts in der Mengenlehre auszufuhren.” 
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versely. This was to be based on the following decomposition of P' into isolated 

sets and Pa\ 

P' = (P,-P,') + (P"-P,") + ... + (Pco-Pco+]) + ... + (Pa). 

Since isolated sets are denumerable, and so is Pa by hypothesis, one may conclude 

that P' is denumerable, but only in case the union is denumerable or, what comes to 

the same, if there are only denumerably many indices preceding a (for the union of 

a non-denumerable family of nonempty sets is non-denumerable). Thus, in that 

context it was natural to pay attention to sets of indices, and Cantor came to the 

idea of considering ‘symbols of infinity’ with denumerably many predecessors. 

This is the simplest version of the so-called principle of limitation (see §3.3). 

The foregoing considerations apply to proving the ‘only if part of the theorem, 

but the ‘if part was more problematic: given a denumerable P\ Cantor wished to 

establish the existence of an a such that Pa = 0. This in fact required considering 

the class of all denumerable ordinals as a whole, and introducing the first non- 

denumerable ordinal. One can now appreciate that Cantor’s theorem necessitated 

the development of a theory of the ‘symbols of infinity’ and suggested a move 

toward considering them as mathematical objects. Since only this might justify, 

from his standpoint, that we consider sets of them and talk about existence results. 

It was easy for Cantor to see that all of the symbols he had previously intro¬ 

duced - all that can be expressed as equations in <» or, as he now wrote, co - satis¬ 

fied the denumerability condition. Turning this fact into a principle, Cantor consid¬ 

ered the class of all indices a that have denumerably many predecessors; this be¬ 

came the second number-class, the first number-class being that of the finite or 

natural numbers [Cantor 1883, 197]. Once he began considering the second num¬ 

ber-class, Cantor discovered that it was an example, not only of a transfinite power, 

but of the power immediately greater than that of denumerable sets [op.cit., 197— 

200], This opened the way for a long-desired development of the theory of cardinal¬ 

ities, since until then he lacked a natural definition of the higher powers [op.cit., 

167], The number-classes of “true integral, determinate-infinite numbers” turned 

out to be the natural and simple representatives of the regular succession of in¬ 
creasing cardinalities. 

Cantor must have expected from this a significant advancement with regard to 

the Continuum Hypothesis. The transfinite number-classes made it possible to de¬ 

fine a ‘scale’ of growing, consecutive cardinalities, against which it should in prin¬ 

ciple be possible to ‘measure’ the power of the continuum. Thus, from his stand¬ 

point, the transfinite numbers far outstripped the Cantor-Bendixson theorem in 

importance. This transpires in Cantor’s letters communicating the great novelty to 

his colleagues Dedekind, Weierstrass, Mittag-Leffler and Kronecker. To Dedekind 

he wrote that God Almighty had seen to it that he attained the most remarkable and 

unexpected results in the theory of sets and numbers, that he found “what fer¬ 

mented in me for years and what I have long been searching for” (see opening 
quotation). 
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3.2. From symbols to true numbers. Thus far the ‘symbols of infinity’ had 

just been indices in the derivation process, lacking any reality independent of the 

point-sets that carried them. One might compare them to operators like V, which 

were treated formally. The very name employed by Cantor, in its “modesty” [Can¬ 

tor & Dedekind 1937, 57], suggests this subsidiary character. Cantor was not able 

to think about the transfinite ordinals and the new number-classes until he con¬ 

vinced himself that it was possible to regard the indices as true numbers, as objects. 

His concern about the issue is clearly visible in the Grundlagen [1883, 165-70] and 

in the letters he sent to his colleagues. To Kronecker he explained how they “have 

to be conceived as numbers'" based on the facts that it is possible to determine their 

arithmetical relations, and that they can be conceived under a common viewpoint 

with the familiar finite numbers [Meschkowski 1967, 240]. More concretely, it was 

possible to define precisely a transfinite arithmetic (see §3.3) and it was possible to 

analyze the cardinal and ordinal aspects of the new numbers, in such a way that the 

old ones appear as specializations in the finite case [Cantor 1883, 168, 181]. 

Above all, the shift in Cantor’s viewpoint depended upon the explicit consid¬ 

eration of ordered sets, particularly well-ordered ones, for the first time in Cantor’s 

career. As Cantor himself remarked, all of this happened just after his meetings 

with Dedekind in mid-September of 1882 [Cantor & Dedekind 1937, 55]. We 

know from letters to Mittag-Leffler that in mid-October he was already in the pos¬ 

session of the new idea. The process thus occurred rather abruptly, within a month. 

I have been led to conjecture that his contacts with Dedekind may have played an 

important heuristic role in the discovery,1 since in September Cantor read at leisure, 

over more than a week, Dedekind’s draft for the later book [Dedekind 1888]. Let us 

briefly explore this issue, considering how knowledge of Dedekind’s ideas may 

have suggested to Cantor the introduction of ordered sets and the idea of regarding 

the ‘symbols of infinity’ as ordinal numbers. 

We have seen (§§VII. 1 and 3) that Dedekind definitely favored the view that the 

ordinal aspect of numbers is the primitive one. He defined the natural numbers as 

the elements of an ordered set of a special kind, while their use as cardinal numbers 

was the result of much subsequent development. The whole theory of numbers and 

sets that he established was based on so-called chain theoiy, which in fact formed 

the core of Dedekind’s draft [1872/78], Chains were the main tool for defining M, 

for rigorously establishing the properties of numbers, for proving results about 

finite and infinite subsets of M, and for defining the cardinal numbers. In this con¬ 

text, to any number n there corresponds a chain n(), which is simply the ordered set 

of all numbers m > n (in Cantor’s terminology, a well-ordered set of type to). Dede¬ 

kind introduced and used extensively notions of initial section and remainder, like 

the ones Cantor would later employ [1895/97, 314] in his general theory of well- 

ordered sets. Thus, his still unpublished work emphasized ordinal considerations, 

including extensive use of the simplest well-ordered sets (though of course without 

a general notion of well-ordering). 

1 This conjecture is discussed in section 2 of [Ferreiros 1995], 



270 VIII. The Transfinite Ordinals and Cantor's Mature Theory 

Assuming that Cantor and Dedekind discussed the latter’s draft at all in 1882, it 

is almost certain that the question which aspect of numbers is the primary one, 

cardinality or ordinality, must have been touched upon. For Cantor always held the 

opposite view: that numbers are primarily cardinal numbers. In 1882 he stated that 

the notion of cardinality is the most basic and important notion in set theory, since 

cardinality is an invariant attribute of any well-defined manifold [Cantor 1879/84, 

150]. Moreover, the concept of cardinality includes the notion of integer, “this 

foundation of the theory of magnitudes,” as a special case [ibid.]. Even after the 

introduction of the transfinite ordinals, Cantor kept insisting on the view that cardi¬ 

nality is the simplest and earliest idea, the “matrix notion” of set theory, as he wrote 

in 1885.’ The same viewpoint is implicit in the organization of the Beitrdge, where 

Cantor regards the notion of power as the “most natural, brief, and rigorous foun¬ 

dation” of finite numbers [1895/97, 289]/1 2 

Dedekind was well aware that this was Cantor’s position as early as 1887. In a 

second draft for his book, written that year, we find a version of its preface in 

which, after stating that cardinality is really a very complicated notion and not a 

simple one, he writes: “contrary to Cantor” [Cavailles 1962, 120; Cod. Ms. Dede¬ 

kind III, 1, II, 41], This seems to evidence that they actually discussed the matter in 

1882, since that had been the last time they met personally. In fact, Cantor’s letters 

to Dedekind after the Harzburg meeting reveal an increased awareness of orderings 

[Cantor & Dedekind 1937, 52-54], Here we find, for the first time, the idea that a 

set can be given many different orderings, and that some of its properties will de¬ 

pend on the assumed ordering. Cantor emphasized that it is only relative to some 

particular ordering that a set can be called a continuum [ibid.]. Thus, it is likely that 

Dedekind’s views stimulated Cantor to turn to ordinal considerations and recon¬ 

sider his previous problems in this new setting, conceiving of the ‘symbols of in¬ 

finity’ as ordinal numbers [Ferreiros 1995, 37-41], 

The former ‘symbols of infinity,’ if considered as elements of sets, offered 

examples of well-ordered sets, i.e., totally ordered sets such that every subset has a 

least element. Cantor was thus able to abstract and define the extremely important 

notion of well-ordering. Since, quite apart from the derivation process, the symbols 

are apt to represent the different types of well-ordered sets, “the reality ... of [the 

number] is established, even in those cases that it is definitely infinite.”3 Only by 

dissociating the symbols from the context of point-sets and derived sets, and by 

linking them to well-ordered sets, was Cantor in the position to regard them as true 
numbers, ordinal numbers. 

1 Unpublished paper of 1885 [Grattan-Guinness 1970, 86]: “Sie erscheint mir daher als der 

urspriinglichste, sowohl psychologisch, wie auch methodologisch einfachste Stammbegriff.” 

2 In [1895/97], Cantor discussed the ordinals only after the finite and infinite cardinals. In¬ 

deed, this is responsible for some methodological weaknesses of his exposition (see Zermelo’s 

editorial comments in [Cantor 1932]). 

3 [Cantor 1883, 168]: “so ist durch diesen Zusammenhang ... die von mir betonte Realitat der 

letzteren auch in den Fallen, dass sie bestimmt-unendlich ist, erwiesen.” 
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There were still other reasons why Cantor thought he was perfectly entitled to 

regard the transfmite ordinals as true numbers. One can rigorously define the arith¬ 

metical operations on the new numbers and investigate their properties. The trans¬ 

fmite and the finite numbers can be compared among themselves, obeying fixed 

laws. And the transfmite numbers entail no contradiction except if one unduly re¬ 

quires them to share all properties of the finite numbers - a petitio principii (see 

§1.1). Lastly, the principle of limitation (see §3.3) makes it possible to establish a 

definite connection between the ordinal numbers and the transfmite cardinalities. If 

one now descends from the transfmite to the finite, the ordinal and cardinal proper¬ 

ties of numbers come down to the well-known properties of finite numbers [Cantor 

1883, 181]. To emphasize his new standpoint and the idea that the novel numbers 

represent definite steps within the properly infinite, Cantor ceased employing the 

equivocal symbol co and chose instead co to represent the first transfmite number 

[op.cit., 195].1 

3.3. Cantor’s definitions. The presentation of the transfmite ordinals in Grund- 

lagen is “purely constructive,” as Zermelo said [Cantor 1932, 209], or even purely 

intuitive. Cantor does not make explicit the assumptions behind his new notion - he 

just accepts actual infinities unrestrictedly, taking for granted the existence of ever 

greater sets. This is presupposed in the possibility of unending application of the 

two basic principles that define the ordinals. The “first generating principle” [erste 

Erzeugungspr inzip] consists in adding a unit to a previously given number; this is 

assumed to be always possible. The “second generating principle” \zweite Er- 

zeugungsprinzip] is more complex: given a sequence of transfmite numbers without 

a greatest element, it allows the “creation” of a new number that will be regarded as 

the “limit of those numbers, i.e., will be defined as the number immediately greater 

than all of them” [Cantor 1883, 196]. Both principles are built by analogy with the 

two different ways of defining derived sets, either as sets of limit points of a previ¬ 

ously given set, or as intersections of a whole family of sets (§VI.6.1).2 3 The second 

principle justifies the introduction of numbers such as co itself, co2 (which follows 

co +n for all n), co2 (which follows all con), and co® (which follows all co11). The first 

justifies the introduction of numbers such as co+1, co2+n or comno + co™-1/?/ + ... 

+ corcm_/ + nm? 

The two processes can be employed repeatedly, and lead to transfmite numbers 

that go beyond every boundary. It seems, as Cantor said, that we may risk getting 

lost in the unlimited [1883, 196-97]. To avoid this, he introduced a third principle 

that plays an essential role, for it establishes a well-defined connection between the 

1 Cantor takes oo, as it figures in expressions such as lim f{x), to be a prototype of the im- 
X ~> 00 

proper infinite. 

2 But this process, unlike the ‘generation’ of transfmite numbers, had M or H£n as a clear basis. 

3 Instead of following the conventions of [Cantor 1883], where he wrote 2co, we are following 

the definitive notational convention introduced by Cantor in [1895/97] (as we shall see, addition 

and product of ordinals is not commutative). 
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transfmite ordinal numbers and the powers or cardinalities. This is the “principle of 

restriction or limitation” that, as we have seen, was suggested by Cantor’s strategy 

for proving the Cantor-Bendixson theorem (§3.1). 

If we now notice that all of the numbers previously obtained and their next successors fulfill 

a certain condition, [that the set of their predecessors is denumerable,] then this condition 

offers itself, if it is imposed as a requirement on all numbers to be formed next, as a new 

third principle ... which I shall call principle of restriction or limitation and which, as I shall 

show, yields the result that the second number-class (II) defined with its assistance not only 

has a higher power than [the first number-class] (I), but precisely the next higher, that is, the 

second power.1 

The condition is, more generally, that one shall “create” new numbers in accor¬ 

dance with the generating principles only as long as the corresponding set of prede¬ 

cessors has the power of a previously defined number-class [1883, 199], The first 

number-class is simply Rf, the second number-class is the set of all denumerable 

ordinals. Employing the aleph-notation that Cantor introduced in [1895/97, 293], 

the cardinality of RJ is Kq, whereas the cardinality of the second number-class is 

K i; the third number-class (III), consisting of ordinal numbers with X \ predeces¬ 

sors, has cardinality an<3 so on. 
In the process, number-classes are defined by a cardinality condition embodied 

in the principle of limitation, and the cardinalities are defined through the number- 

classes. The outstanding process that Cantor was thus able to contrive is not circular 

but, one might say, helical. The connection between ordinals and cardinalities made 

the transfinite numbers invaluable for Cantor. Only with their aid was he in a posi¬ 

tion to define the higher powers in an orderly and satisfying way, thereby laying a 

cornerstone for his mature theory of transfmite sets. 

3.4. Number-classes and powers. Cantor was able to prove rigorously that the 

second number-class (II) has a power that is immediately greater than that of RJ 

[Cantor 1883, 198-200], First, he showed that (II) is not denumerable by reductio 

ad absurdum, employing an argument reminiscent of the 1874 proof about IKL Es¬ 

sentially it went as follows. Suppose we are given a denumerable sequence (o^,) of 

numbers of the second class. If a certain number (3 in (an) is greater than all others, 

then [3 + 1 is a number of (II) that is not in the sequence. Otherwise the set of all 

numbers smaller or equal than those in (oq,) has no greater element but must be 

denumerable; therefore, the second and third principles (§3.2) allow for the ‘crea¬ 

tion’ of a new number y that belongs in (II) and is not in the sequence. 

[Cantor 1883, 197]: “Bemerken wir nun aber, dass alle bisher erhaltenen Zahlen und die 

zunachst auf sie folgenden eine gewisse Bedingung erfiillen, so erweist sich diese Bedingung, 

wenn sie als Forderung an alle zunachst zu bildenden Zahlen gestellt wird, als ein neues, zu 

jenen beiden hinzutretendes drittes Princip, welches von mir Hemmungs- oder Beschrankung- 

sprincip genannt wird und das, wie ich zeigen werde, bewirkt, dass die rnit seiner Hinzuziehung 

definirte zweite Zahlenclasse (II) mcht nur eine hohere Machtigkeit erhalt als (I), sondem sogar 

genau die nachst hohere, also zweite Machtigkeit.” 
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Next, Cantor proved that the power of (II) immediately follows that of Fd. This 

reduces to showing that any subset T of (II) is either finite, or denumerable, or of 

the power of (II), “quartum non datur ” Since it is always possible to order the 

elements of T and index them with numbers of (II), either we exhaust the second 

number-class and T has the same power as (II), or the indexation ends with a num¬ 

ber a of that number-class. And the predecessors of such an a must form at most a 

denumerable set. With these results, it is justified to call the cardinality of (II) the 

second transfinite power, and to denote it by N\, as Cantor did in 1895. The Con¬ 

tinuum Hypothesis now reads: [0,1] has the same power as (II) [Cantor 1883, 192]. 
Cantor was confident that his three principles for the generation of transfinite 

numbers and the limitation of number-classes sufficed to prove that there is an 

unending succession of number-classes, and therefore of powers. He wrote: 

by observing these three principles one can with the greatest certainty and evidence attain 

ever newer number-classes and with them all the different, successively ascending powers 

occurring in corporal and mental nature.1 

As one can see, Cantor was convinced that higher powers would be found in Na¬ 

ture, a theme that resonates through other papers of the 1880s. His absolute faith in 

both the mathematical and metaphysical existence of actual infinities (see §1) 

seems to have made him unable to anticipate possible objections and present his 

readers with stronger arguments for his standpoint. 

In an endnote he made it clear that we never reach a limit that cannot be tres¬ 

passed, and that to every transfinite ordinal there is a corresponding number-class 

and power [1883, 205]. But of course, anybody who did not share Cantor’s abso¬ 

lute faith in the existence of actual infinities would not be convinced. What is the 

justification for the extreme possibilities of continuation that are posited by the two 

generating principles? Cantor would later (but not in [1883]) emphasize that by 

reordering the elements of Fd we obtain all possible types of denumerable well- 

ordered sets; with this we seem to gain a secure foothold for the second number- 

class, since the example of H8. shows that there is at least one cardinality greater 

than that of Fd.2 But what about the first transfinite number of the class whose 

power is immediately greater than that of D8? Are we really entitled to assume its 

existence? Years later, Cantor would make a definite step forward in relation to 

these questions (see §7). 

With the transfinite numbers, and particularly the second number-class, Cantor 

gained a powerful new tool for trying to settle the cardinality of the continuum. The 

Continuum Hypothesis was now reformulated as follows: the continuum is equi- 

1 [Cantor 1883, 199]: “mit Beobachtung dieser drei Principe kann man mit der grossten Si- 

cherheit und Evidenz zu immer neuen Zahlenclassen und mit ihnen zu alien in der korperlichen 

und geistigen Natur vorkommenden, verschiedenen, successive aufsteigenden Machtigkeiten 

gelangen.” 

2 Otherwise, we would have to explain why (or postulate that) we are entitled to collect all 

denumerable ordinals a, or all possible orderings of Fd, into a set. 
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pollent to (II), it has the power of the second number-class (N i in the notation of 

1895). Cantor immediately promised to give a proof of CH with the new means at 

his disposal [1883, 171]. Already in 1882, just after introducing the transfmite 

numbers, he had seen the possibility of this new approach; he wrote to Dedekind: 

So far as I can see, our finite irrational numbers can be relatively easily determined with the 

help of the numbers a [of the second number-class], which I intend to pursue farther.1 

The idea was to make the limit ordinals correspond to irrational numbers. To this 

end, one would need to introduce analytic tools that could be applied jointly to the 

transfmite numbers of the second number-class and to the real numbers (see §§4.2 

and VI.8). Cantor worked on this new attempt until at least February 1885. That 

train of thought led him to consider D8. from a more abstract viewpoint, as a totally 

ordered set, but without taking into account its metric or topological properties. 

This suggested the development of a general theory of order types (§4.2). With this 

new theory, his set-theoretical ideas reached their maturity . 

4. Ordered Sets 

Cantor emphasized in the Grundlagen that a second key attainment due to the trans¬ 

fmite numbers was the notion of the “number” [Anzahl] of elements of a “well- 

ordered" [wohlgeordneten] infinite manifold [Cantor 1883, 168], The introduction 

of transfmite numbers led him to focus on the new notion of well-ordered set, 

which he came to view as fundamental for the general theory of manifolds [1883, 

169], 

4.1. Well-ordered sets. With the word ‘Anzahl,’ Cantor was making reference 

to the ordinal properties of the set, to the ordinal number associated with it. He 

distinguished the number [Zahl] from the cardinality or power [Machtigkeit] on the 

one hand, and the ordinality [Anzahl] on the other. A well-ordered set is commonly 

defined as a totally ordered set such that every subset has a least element. Cantor 

actually proved that subsets of the second number-class (II) always have a least 

element [1883, 200], but his definition of well-ordering was more complex, al¬ 
though equivalent: 

1 [Cantor & Dedekind 1937, 59]: “So viel ich sehen kann, lassen sich unsere endlichen Jrra- 
tionalzahlen verhaltnismassig einfach unter Zuhulfenahme der Zahlen a bestimmen, was ich 
noch weiter verfolgen will.” 
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By a well-ordered set one should understand any well-defined set in which the elements are 

bound to one another by a precisely given succession, according to which there is a first 

element of the set and both to every single element (provided it is not the last in the succes¬ 

sion) there follows a certain other, as also to every finite or infinite set of elements there 

corresponds a certain element, which is the next following element of all them in the succes¬ 

sion (unless there is absolutely no follower to them all in the succession).1 

Just as the cardinality of a set is invariant under one-to-one mappings, its ordinal 

number [Anzahl] is invariant under one-to-one correspondences that preserve the 

orderings, so that ci < b iff f(a) < f(b). In an unpublished paper of 1885 Cantor 

called these particular kinds of correspondences ‘Abbildungen’ [Grattan-Guinness 

1970, 86-87], a denomination that he kept employing in [1895/97],2 As we have 

seen, later on it became customary to employ ‘Abbildung’ for the general notion of 

mapping. 

Another theorem that is valid for well-ordered sets in general, but which Cantor 

formulated here for numbers of the second number-class (II), is the following. 

Given a sequence (a,) of elements of a well-ordered set, such that the elements 

diminish gradually in magnitude (if aa precedes ap then aa> ap), the sequence is 

finite [Cantor 1883, 200], The result may be surprising, but is easily established: 

the set of all elements in the sequence (a,-) that have finite index is a subset of a 

well-ordered set and will therefore have a least element ax, since (aj) is a dimin¬ 

ishing sequence and ax is the least element with finite index, ax can have no suc¬ 

cessor; therefore the sequence is finite. The results formulated in Grundlagen indi¬ 

cate that Cantor was quickly in the possession of detailed knowledge of the theory 

of well-ordered sets. But, as he ceased publishing mathematical work in 1885, the 

theory only received a detailed treatment in the second part of his Beitrage [Cantor 

1895/97], 
On the basis of well-ordered sets Cantor defined the operations of addition and 

product on the transfinite ordinal numbers. This was of the utmost importance to 

him, since the possibility of defining rigorously the basic operations among transfi¬ 

nite and finite numbers justified calling them ‘numbers.’ Given two disjoint well- 

ordered sets A and B, with ordinals a and (3 respectively, the union of A and B de¬ 

fines the ordinal a+[3 as soon as we stipulate that elements of A always precede 

those of B, and that the ordering within each set is preserved. The ordinal a-(3 

corresponds to the well-ordered set that would result from substituting disjoint 

copies of A for every element of B, preserving the ordering in B between elements 

1 [Cantor 1883, 168]: “Unter einer wohlgeordneten Menge 1st jede wohldefmirte Menge zu 
verstehen, bei welcher die Elemente durch eine bestimmt vorgegebene Succession mit einander 
verbunden sind, welcher gemass es ein erstes Element der Menge giebt und sowohl auf jedes 
einzelne Element (falls es nicht das letzte in der Succession ist) ein bestimmtes anderes folgt, wie 
auch zu jeder beliebigen endlichen oder unendlichen Menge von Elementen ein bestimmtes 
Element gehort, welches das ihnen alien nachst folgende Element in der Succession ist (es sei 
denn, dass es ein ihnen alien in der Succession folgendes uberhaupt nicht giebt).” 

2 Although it conflicted with Dedekind’s usage. Likewise, he called order-isomorphic sets 
‘similar,’ the same term that Dedekind [1888] employed for equipollent sets. 
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of the different A-copies [Cantor 1883, 170], As above, the definitions which we 

have just given follow the notational conventions of [1895/97], not those of [1883]. 

With those definitions Cantor established the existence of general laws for the 

elementary operations on transfmite numbers [1883, 170, 201], The operations are 

non-commutative, and so the order of factors is essential. It is easy to see that 1+co 

is different from co+l: we may take as representatives for both sets <a, 1, 2, 3, .. > 

and <1, 2, 3, ... a>, the first corresponding to the ordinal co( 1 + co=co), while the 

second has a last element and thus corresponds to an ordinal different from co. 

Likewise it is easy to see that co2 = co+co while 2co= oo: take two infinite sequences 

(an) and (bn), then co2 corresponds to <aj, ct2, .... bj, b2, ■■■>, while 2w corresponds 

to <aj, bj, a2, b2, ■■>■ On the other hand, both operations are associative, and they 

satisfy the distributive law, but only under the form y(oc+(3) = yoc+y(3 [1883, 201]. 

An important distinction that Cantor introduced is that between transfmite num¬ 

bers with an immediate predecessor, and those without such a predecessor (pres¬ 

ently called limit ordinals) [1883, 202], We shall not pursue in detail further results 

of transfmite number theory, whose position has been as isolated as that of ele¬ 

mentary number theory up to the 19th century. It suffices to mention a few more 

points. Cantor considered the issue of inverse operations, which of course is quite 

complicated due to the lack of commutativity [op.cit., 201-02]. He gave a defini¬ 

tion of prime transfmite number as a number a such that a=(3y is only valid in case 

y= 1 ory=a [1883, 170], Prime transfmite numbers may or may not be limit ordi¬ 

nals (the first two limit primes are oo and 00“); Cantor mentions that the sets of de¬ 

numerable prime numbers of the first and of the second kind both have the same 

power as (II) [op.cit., 202-03]. Finally he considered decomposition into prime 

factors and promised to show that, under certain conditions, it is essentially unique 

[op.cit., 170, 204], These topics would only receive detailed treatment in the Bei- 

trdge [1895/97], 
From the standpoint of well-ordered sets it was possible to give a new definition 

of the transfmite numbers, one that was both more elegant and more convincing. 

We find this clearly and concisely explained in a letter to Kronecker written in 

August 1884, immediately after their reconciliation (which did not last long).1 

Cantor wished “especially” [besonders gem] to come to an agreement with Kro¬ 

necker concerning the transfmite numbers of the second number-class. He said that 

these are “concepts, resp. signs or characters,” which he needed indispensably for 

the characterization of point-sets. (It seems likely that his reference to signs was 

meant to reflect the standpoint of Kronecker, who preferred to regard numbers 

simply as symbols [Kronecker 1887].) Cantor went on to describe a foundation for 

these numbers which is somewhat different from the one given in his papers, and 

which he hoped would be more agreeable to Kronecker: 

1 Cantor had already presented the matter this way during the Naturforscherversammlung of 
September 1883, and thought about publishing it [Meschkowski & Nilson 1991, 130, 136-38], 
He indicates the idea also in [1879/84, 213-14]. 
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I depart from the concept of a “well-ordered set” and call well-ordered sets of the same type 

(or the same [ordinal] number) those which can be related to each other in a reciprocally 

univocal way, preserving the rank-order in both sides, and now 1 understand by a number 

the sign or the concept for a certain type of well-ordered sets. By limiting oneself to the 

finite sets, one obtains in this way the finite integers. But if one goes on to overview all of 

the types of well-ordered sets of the first power, one necessarily arrives at the transfmite 

numbers of the second number-class, and through these to the second power.' 

From this standpoint, the objectionable ‘generating principles’ that Cantor had 

employed in [1883] became superfluous. 

But to complement this approach, and actually the whole elementary theory of 

transfmite numbers, a key element was missing - the Well-Ordering Theorem. In 

Grundlagen Cantor made a comment that shows he was aware of the problem to 
some extent: 

The concept of well-ordered set turns out to be fundamental for the entire theory of mani¬ 

folds. It is always possible to bring any well-defined set into the form of a well-ordered set; 

this seems to me a fundamental and momentous law of thought, especially remarkable be¬ 

cause of its general validity, to which I shall come back in a later treatise.1 2 

The presumed ‘law of thought’ would guarantee that the growing cardinalities of 

the number-classes are all of the transfmite powers, that is, it would warrant the 

comparability of cardinalities. Over the years Cantor came to think that it was nec¬ 

essary to give a detailed proof of the Well-Ordering Theorem and of cardinal com¬ 

parability. But the problem remained open, and in the Beitrdge [1895/97] he only 

mentioned cardinal comparability, failing to emphasize again the importance of 

well-ordering. Actually he wanted to devote a third part of the Beitrdge to this 

issue, but for reasons that will be analyzed in §VIII.8 he never published it. Al¬ 

though it was one of the most important gaps in the Cantorian theory of transfmite 

sets, the question remained little known except for specialists until its importance 

1 [Meschkowski 1967, 251-52]: “Es sind dies Begriffe resp. Zeichen oder Charactere, welche 
ich zur Characteristik von Punctmengen unentbehrlich brauche. ... / Ich gehe von dem Begriff 
einer “wohlgeordneten Menge” aus, nenne wohlgeordnete Mengen von gleichem Typus (oder 
gleicher Anzahl) solche, die sich unter Wahrung der beiderseitigen Rangfolge ihrer Elemente 
gegenseitig eindeutig aufeinander beziehen lassen und verstehe nun unter Zalil das Zeichen oder 
den Begriff ftir einen bestimmten Typus wohlgeordneter Mengen. Beschrankt man sich auf die 
endlichen Mengen, so erhalt man auf diese Weise die endlichen ganzen Zahlen. Geht man aber 
dazu iiber, die samtlichen Typen wohlgeordneter Mengen der ersten Machtigkeit zu iibersehen, 
so kommt man mit Nothwendigkeit zu den transfmiten Zahlen der zweiten Zahlenclasse und 
durch diese zur zweiten Machtigkeit.” Cantor does not forget to flatter the Berlin master by 
mentioning his “mathematical superiority” [mathematische Ueberlegenheit], that would be 
needed to solve open problems in transfmite number theory. 

2 [Cantor 1883, 169]: “Der Begriff der wohlgeordneten Menge weist sich als fundamental fiir 
die ganze Mannichfaltigkeitslehre aus. Dass es immer moglich ist, jede wohldefinirte Menge in 
die Form einer wohlgeordneten Menge zu bringen, auf dieses, wie mir scheint, grundlegende und 
folgenreiche, durch seine Allgemeingiiltigkeit besonders merkwiirdige Denkgesetz werde ich in 
einer spateren Abhandlung zurtickkommen.” 
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was brought forward by Hilbert in his famous address ‘Mathematische Probleme’ 

[1900] and subsequently became the topic of Zermelo’s polemical papers [1904, 

1908a], where it was proved by using the Axiom of Choice. 

4.2. Elements of a theory of order types. Until 1970 it seemed that the theory 

of order types had been developed by Cantor in the 1890s, since it was first pub¬ 

lished in the Beitrage. But Grattan-Guinness [1970] discovered and published a 

manuscript, entitled ‘Principles of a Theory of Order Types,’ that was ready for 

publication and even partly typeset in 1885. This paper outlined the last great de¬ 

velopment in Cantor’s theory of sets, which ended up being structured around a 

theory of powers or cardinalities, and a theory of order types, linked with each 

other through the types of well-ordered sets.(It also became clear that a disagree¬ 

ment with Mittag-Leffler, in connection with this paper, motivated Cantor’s con¬ 

scious decision to stop publishing in mathematical journals; see §5.2.) 

Late in 1883, Cantor proved that perfect sets have the power of the continuum 

(see §VI.8). His key idea was to establish a one-to-one correspondence between the 

complement of a perfect set S, i.e., a set of intervals {(an,bn)}, and the set of ra¬ 

tional numbers <Dl[o,]]- 1° modem tenninology, he showed that a set of disjoint open 

intervals is order-isomorphic with (QL Cantor assumed both sets given in the form of 

sequences (mn) and (qn) and gave a procedure for reordering (mn) in such a way 

that the correspondence (p between elements of the same index n preserves the 

dense order in both sides.1 As we see, the proof depended upon establishing an 

order-isomorphism between two sets that intuitively are very different - a set of 
rational numbers and a set of intervals. 

By that time, Cantor had also done the step to considering the transfmite num¬ 

bers as invariants associated with order-preserving correspondences between well- 

ordered sets, that is, as the order types of well-ordered sets. From this abstract 

viewpoint, the correspondence between {(an,bn)} and d£[o,i] could be understood as 

showing that both sets have the same order type. Besides, Cantor was considering 

the possibility of correlating limit ordinals with irrational numbers, which sug¬ 

gested looking at the continuum from an abstract, ordinal point of view (ignoring 

metric relations). This seems to have been the way in which he came to the idea of 

studying not only the types of well-ordered sets, but also those of “simply ordered” 
sets.2 

According to Cantor, two simply ordered sets are ‘similar’ [ahnlich] to each 

other if there exists a one-to-one correspondence which preserves the rank-order of 

the elements on both sides. The order type of a set is defined by Cantor as the “gen¬ 

eral concept” under which all simply ordered sets fall, that are similar to it [Grat¬ 

tan-Guinness 1970, 87], The notion of power is defined in a similar way, as a ‘gen- 

1 Having done that, it was possible to expand cp into a one-to-one correspondence between ^ 
and [0,1], since both the elements of L and the irrational numbers in [0,1] can be defined through 
fundamental sequences of elements of, respectively, {(an,bn)} and G2[0 

2 What we now call totally ordered sets, for which an order relation < is given such that, 
whenever a and b are different elements, then either a<b or b<a is the case. 
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eral concept’ associated with a class of equipollent sets [op.cit., 85].' Of the notion 

of power he said that it has 

emerged by abstraction from all of the peculiarities that a set of a determinate [equipol- 

lence] class may offer, either in relation to the constitution of its elements, or with respect to 

the relations and orderings in which the elements may be, be it among themselves or with 

things that lie outside of the set? 

Cantor seriously meant that every natural and transfmite number is a concept, since 

he criticized other authors for not defining them this way [Meschkowski & Nilson 

1991, 302], 

The examples of order types given by Cantor were rather obvious - the types 1, 

2, 3 ... of finite ordered sets, the type 0) of the set of natural numbers, the type q of 

the set of rational numbers, and the type 9 of the set of real numbers. These order 

types are the ones that he studied in more detail in the Beitrage [Cantor 1895/97, 

§§7-11, 296-311], In 1885 he paid special attention to q, proving a theorem that 

characterized this order type in purely set-theoretical terms. A simply ordered set M 

is of order type q if and only if it is denumerable, possesses neither a least nor a 

greatest element, and is such that between any two different elements m, n there 

exist always, under the given ordering, infinitely many other elements [Grattan- 

Guinness 1970, 87-88], The proof, Cantor said, is exactly the same that he had 

employed to show that perfect sets have the power of the continuum - take M and 

(Q}[oq] in the form of sequences and reorder the first to obtain the desired corre¬ 

spondence.1 2 3 This seems to confirm the key role that this result played in the new 

turn of Cantor’s ideas. 

In his Beitrage Cantor would complement this theory by studying the type 0 of 

the linear continuum. He showed that a simply ordered set X is of type 9 if and only 

if it is perfect, and there is a denumerable subset S such that between any two ele¬ 

ments of Xthere are elements of S [Cantor 1895/97, 310-11]. Once again, the proof 

has an important precedent in the 1880s, the analysis of perfect sets and the defini¬ 

tion of continua (§VI.7). As we see, within the new context Cantor replaced the 

condition of connectedness for that of having a denumerable dense subset. 

The unpublished paper presented also the operations of addition, multiplication, 

and inversion of types [Grattan-Guinness 1970, §§4 and 6], The inverse of type a is 

denoted by a*, and it is easy to see that q=q*, just like (l+0+l)=( 1+0+1)*; but 

in general an order type is different from its inverse. The definitions of addition and 

1 This model was also followed in the Beitrage, see [Cantor 1895/97, 282-83, 296-98]. Such 
definitions had already been published in Cantor’s 1885 review of [Frege 1884], see [Cantor 

1932,441], 

2 [Grattan-Guinness 1970, 86]: “entstanden durch Abstraction von alien Besonderheiten, die 
eine Menge von bestimmter Classe darbieten kann, sowohl in Ansehung der Beschaffenheit ihrer 
Elemente, wie auch hinsichtlich der Beziehmgen und Anordnungen, in welchen die Elemente sei 

es untereinander oder zu ausserhalb der Menge liegenden Dinge stehen konnen.” 

3 This theorem is the main result in §9 of Beitrage [1895/97, 304-06]. 
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multiplication are rather direct extensions of those given previously in the Grund- 

lagen. Just like in that paper, we find a definition of prime order type, and with it 

new problems that are similar to those of number theory, including the issue ot 

decomposition of an order type into prime types. This kind of question is properly 

what Cantor meant by ‘theory of order types’ [op.cit., 84]. The theory of order 

types also allowed some clarifications regarding the special properties that differ¬ 

entiate the transfinite ordinals from other order types. While in general order types 

admit of many automorphisms that preserve the order, the transfinite ordinals can 

only be ‘similar’ to themselves in one way [op.cit., 89-90]. On the other hand, if a 

is a finite ordinal, it is always true that a=a*, a condition that is never valid for 

transfinite ordinals. 
From the foregoing one might be tempted to conclude that Cantor’s 1885 work 

on order types was nothing but a rather trivial generalization from well-known sets 

and previous results of him. But, in fact, there is evidence that his main objective 

was to create tools that could be applied simultaneously to point-sets and ordered 

sets, finding a new way of approaching the proof of CH. It has to be said, however, 

that the paper of 1885 did not advance significantly toward a solution of the prob¬ 

lem. Cantor established in §7 an ordinal analogue of the notion of limit p.oint, suited 

to the abstract context of totally ordered sets. This was the notion of “principal 

element,” on which a generalization of the notion of fundamental sequence was 

based; both can also be found in § 10 of the Beitrdge. 

e being an element of A, it can offer the following phenomenon', if 'e denotes any element of 

A that appears before e according to the rank ... and if e' denotes any element of A that ap¬ 

pears after e according to the rank, ... then between 'e and e' (according to the rank) there lie 

always infinitely many elements of 4; if e satisfies this condition, we shall call it a principal 

element of A} 

This corresponds to the notion of limit point, but stripped from its properly topo¬ 

logical aspects and reduced to purely ordinal terms; from the viewpoint of order 

types, distance conditions have no sense. Similarly, the generalized ‘fundamental 

sequences’ have nothing to do with the Cauchy condition. A denumerable sequence 

of elements in A is nothing but a well-ordered subset of A of type to (or of the in¬ 

verse type to*, which Cantor defined in this paper). If there is in A a least element 5 

the rank of which is greater than that of any element in the sequence, then we may 

say that s is a “limit” of the sequence in A.1 2 

1 [Grattan-Guinness 1970, 92]: “Sei e ein Element von A, so kann dasselbe folgendes Vor- 

kommniss darbieten; wird mit 'e irgend ein dem Range nach friiher als e vorkommendes Element 
von A bezeichnet ... bezeichnen wir femer mit e' irgend ein deni Range nach spater als e 

vorkommendes Element von A, ... dann fallen zwischen 'e und e' (dem Range nach) stets unend- 
lich viele Elemente von A; erfiillt e diese Bedingung, so wollen wir e ein Hauptelement von A 
nennen.” 

2 Zermelo gives a simple example, the set {0, 'A, ...1-1 In, ..., 2} of type co+1, which possesses 
a principal element, 2, that is the limit of an co-sequence [Cantor 1932, 354]; if we regard it as a 
point-set in IE, obviously the set does not contain its only limit point, 1. 
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On that basis, Cantor introduced a number of notions that paralleled strictly 

those he was using at the time in the theory of point-sets. He formulated for ordered 

sets notions of dense-in-itself, isolated, closed, perfect, coherence, and adherence 

[Grattan-Guinness 1970, 93-95].' Quite clearly he was attempting to elaborate an 

abstract approach to both theories, with the hope that the parallel analysis would 

make it possible, e.g., to define a one-to-one mapping from the well-ordered second 

number-class (11) to DS.. We lack any information on his final conclusions regarding 

this attempt, in case there were any, but the fact is that in later years he did not 

follow this path again. 

In contrast with the Grundlagen, the new paper was of a purely mathematical 

character, due to Cantor’s fear that otherwise the public would only see the philo¬ 

sophical aspects of his writings.1 2 Nevertheless, the work contained some remark¬ 

able statements on the theory of sets and its applications. As regards set theory, for 

the first time Cantor distinguished the theory of point-sets from general set theory. 

Point-sets were regarded as the subject of a branch of applied mathematics, by side 

of function theory(!) and mathematical physics [Grattan-Guinness 1970, 84], Pure 

set theory was regarded as structured around the basic notions of power [op.cit., §3] 

and order type [op.cit., §4], This conception and scheme are exactly the ones that 

determine the organization of the Beitrdge [1895/97], 

After explaining what he understood by a theory of order types, Cantor went on 

to say: 

It constitutes a large and important part of the pure theory of sets (Theorie des ensembles), 

and therefore of pure mathematics, for the latter is in my opinion nothing but pure set the¬ 

ory.3 

This was a decisive step - the theory of sets or manifolds was no longer seen as one 

more branch of mathematics, but as the very foundation of the discipline. At the 

beginning of this chapter we saw that in the early 1880s Cantor seems to have re¬ 

garded pure mathematics as based on arithmetic, and divided into two general dis¬ 

ciplines built upon it, the Weierstrassian theory of magnitudes and the theory of 

manifolds that Riemann was the first to suggest. By 1885 his conception had 

changed, and we find the clearest statement he ever made that set theory is the 

foundation of mathematics. It seems likely that Dedekind’s ideas, particularly the 

set-theoretical foundation of the number system that Cantor came to know in detail 

1 On coherence and adherence, see §VI.8; theis connection with CH is indicated in [Cantor 
1932, 264; Schoenflies 1927, 17], Most of the ordinal notions that Cantor elaborated in these 
years reappear in the Beitrdge [ 1895/97], but not so these concepts. 

2 He took this impression from a review written by Tannery, and probably from the counsels 
of Mittag-Leffler [Grattan-Guinness 1970, 84], Even so, §1 discussed briefly the relations be¬ 

tween mathematics and metaphysics. 

3 [Grattan-Guinness 1970, 84]: “Sie bildet einen wichtigen und grossen Theil der reinen 

Mengenlehre (Theorie des ensembles), also auch der reinen Mathematik, denn letztere ist nach 
meiner Auffassung nichts Anderes als reine Mengenlehre.” 
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in 1882 (§VII.4), played a decisive part in this change. This might explain why 

Cantor did not present that vision again in his Beitrage. 

5. The Reception in the Early 1880s 

It has frequently been said that Cantor’s theories were not well received in his time, 

but this is clearly an overstatement. Schoenflies [1922, 99-100] wrote that the tri¬ 

umphal march of his ideas can be dated back to publications of Mittag-Leffler and 

Poincare, in the mid-1880s, which showed their great importance for function the¬ 

ory. But there are many more examples of quite a good reception, which is par¬ 

ticularly noteworthy given the radical and sometimes speculative nature of Cantor’s 

theories. Even so, Cantor felt rejected by German mathematicians and finally 

stopped publishing in mathematical journals. 

5.1. Reception. We have previously seen that the notions of derived set and set 

of the first species were almost immediately well received by du Bois-Reymond, 

Dini and Hamack (chap. V). The proof that US. and DSn are equipollent provoked an 

immediate reaction, with a host of papers by Thomae, Liiroth, Jurgens and Netto 

(§ VI.4.3). Neither did journals fail to support Cantor. Mathematische Annalen was 

open to the publication of his crucial series [1879/84] and the editor Klein was in 

good relations with him and showed interest in his work. Similarly, volume two of 

Acta Mathematica (1883) included the most important part of Cantor’s research, 

translated into French by disciples of Hermite, among them Poincare. The new 

topological notions that he developed around this time were also immediately taken 

over by authors such as Poincare, Mittag-Leffler, and even Weierstrass.1 The work 

of Mittag-Leffler [1884] on the representation of analytic functions employed ex¬ 

tensively sets of the first and second species, and the transfmite numbers of the 

second number-class. (Students of Mittag-Leffler such as Bendixson and Phragmen 

also worked on the theory of point-sets.) The work of Poincare dealt with automor- 

phic functions and employed tools from the theory of point-sets, for instance Can¬ 

tor’s results on nowhere-dense perfect sets in [Poincare 1885], 

Nevertheless, this is not to say that all of the implications that Cantor saw in his 

work, particularly those of a more radical and abstract nature, were well accepted. 

His cherished ideas on the general notion of power and the transfmite numbers 

stirred up doubts in many circles, and were particularly unappealing for older 

mathematicians. It was possible to accept the details of his 1878 proof that IE8. and 

US.'1 can be put into one-to-one correspondence, and still reject his definition of 

power as nonsensical. The proof would then show the need for a refinement of the 

1 For Klein, see the letters in [Purkert & Ilgauds 1987, 186, 190-91] or [Meschkowski & Nil- 

son 1991], As regards Acta, see [Mittag-Leffler 1927, 26], which ought to be corrected in the 

light of [Dugac 1984, 70-71], For Weierstrass, see [Mittag-Leffler 1923, 195; Dugac 1973, 
141], 
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notion of dimension, but not the radical result that ES. and D&n are ‘equal’ infinities 
in some sense. 

A typical reaction to Cantor’s work may be that of Hermite. When Mittag- 

Leffler obtained his collaboration for translating Cantor, he was confident that the 

French would soon accepts his ideas [Meschkowski 1967, 242-43], But as the 

translation proceeded, Hermite’s opinion worsened, and in April 1883 he wrote: 

The impression that Cantor’s memoirs produce on us is disastrous. Reading them seems to 

us a complete torture. ... Even acknowledging that he has opened a new field of research, 

none of us is tempted to follow him. It has been impossible for us to find, among the results 

that can be understood, just one that possesses a real and present interest. The correspon¬ 

dence between points in the line and in the surface leaves us completely indifferent, and we 

think that this remark, insofar as nobody has inferred anything from it, proceeds from such 

arbitrary methods that the author would have done better retaining it and waiting.1 

Apparently, Appell and Picard joined Hermite in his opinions, and only Poincare 

judged his work more positively. According to the latter, the problem with Cantor’s 

papers was that they lacked examples (letter to Mittag-Leffler, March 1883 [Dugac 

1984, 70-71]). Thus, the numbers of the second, and especially of the third num¬ 

ber-class had the appearance of form without matter, which was repugnant to the 

French spirit. But in his opinion this was just a defect in the exposition, that ob¬ 

structed the understanding of this “beautiful work,” the Grundlagen. 

It seems likely that Hermite’s comments correspond to the views that most 

contemporary mathematicians held. Cantor was strongly interested in the issue of 

transfinite cardinalities, and convinced that the notion of power would come to play 

a decisive role in analysis, but his approach to those questions was speculative and 

had little to do with research problems of a ‘real and present interest.’ To some 

extent Hermite revealed his ignorance of German work, like the papers on integra¬ 

tion written by Hamack and du Bois-Reymond,2 or perhaps, more than that, the 

differences in style and methodology between the French style and the more ab¬ 

stract one of German mathematicians. But it is quite clear that, in talking about sets 

of any power and ordinal number, Cantor was only supported by a strong confi¬ 

dence that he had, based more on philosophical and theological motives than in 

mathematical ones. It is not surprising that other mathematicians did not share his 

expectations and looked with distrust at the development of a daring theory almost 

on the air. 
Even Dedekind and Weierstrass did not express an interest in Cantor’s transfi¬ 

nite numbers. This indifference, and above all the negative reaction of members of 

the Berlin school such as Kronecker and Schwarz, affected Cantor strongly. One 

may conclude that he was hypersensitive and too anxious to see his ideas acknowl- 

1 [Dugac 1984, 209], as translated in [Moore 1989, 96], 

2 A similar ignorance is found in Borel, when many years later he wrote that Camille Jordan 

“rehabilitated” set theory by showing its usefulness for integration theory (see the quotation in 

[Hawkins 1970, 96]). 
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edged and admired. Another reason for his reaction was that, either consciously or 

unconsciously, he saw not only his ideas, but also his academic career threatened. 

Although Cantor felt rejected by German mathematicians, the young generation 

acknowledged his originality and worked in connection with his investigations. Du 

Bois-Reymond included the theorem of non-denumerability of D8. in his handbook 

[1882, 191-99].1 Harnack emphasized the importance of the notion of power 

[1885, 245], and employed Cantorian terminology and the transfmite ordinals. 

Scheffer, who died prematurely, applied Cantor’s ideas in function theory.2 Simi¬ 

larly, young Swedish mathematicians contributed to the theory of point-sets, fol¬ 

lowing in Cantor’s footsteps. 
To summarize, it can be said that, in spite of the speculative aims of his re¬ 

search, Cantor was able to attract the attention and recognition of a great many 

mathematicians. There seems to have been a generation gap, for members of the 

young generation were much more easily attracted. But their work, especially in 

cases such as those of Mittag-Leffler and Poincare, helped convince the older gen¬ 

eration of the meaningfulness of work in set theory. Cantor’s perception of the 

situation, as he expressed it in his letters, was far from being objective. 

5.2. Withdrawal from mathematics. In March 1885, Mittag-Leffler suggested 

to Cantor that he should temporarily withdraw the paper that was then being type¬ 

set, since the publication seemed premature to him [Grattan-Guinness 1970]. This 

caused their correspondence to stop, and seems to have motivated Cantor’s retire¬ 

ment from mathematical publication over the following decade. But one should add 

that the circumstances were complex. 

In May-June 1884 Cantor suffered his first mental crisis, following a period of 

great irritability, particularly in connection with Kronecker. After Cantor’s critique 

[1883] of Kronecker’s standpoint, and his later decision to apply directly for a 

vacant position at Berlin, Kronecker counterattacked in 1884 with his proposal of a 

paper for publication in Acta Mathematica (§VI.5). These frictions seem to have 

figured prominently among the factors leading to the crisis. One year later, taking 

into account the skepticism toward Cantor’s speculative ideas that reigned in Paris 

and Berlin, Mittag-Leffler wrote to warn him of the dangers of premature publica¬ 

tion: 

It could well be that you and your theories are not done justice in the time of our lives. Then 

they would be discovered again by somebody after 100 years or more, and it would be sub¬ 

sequently noticed that you had everything already, and finally there would be justice, but in 

that way you would not have exerted any important influence in the development of our 

discipline. And of course you wish to exert such an influence, as any other who devotes 

himself to science.3 

1 Du Bois-Reymond acknowledged Cantor’s originality but also claimed his part in some re¬ 

sults and ideas [1882, 178-79]. 

2 Cantor himself wrote a necrological note [1932, 368-69], 

3 [Grattan-Guinness 1970, 102]: “Ja es kann wold sein dass man Ihnen und Ihre Theorien nie 
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As we know from letters of 1896, Cantor understood this paragraph to mean that 

Mittag-Leffler regarded his theory as premature by a hundred years [Grattan- 

Guinness 1970, 104-05], No doubt, Mittag-Leffler was acting with the interests of 

his journal in mind, but he does not seem to have been dishonest. At any rate, his 

advice was not bad, since Cantor was as far as before from a proof of CH or any 

other important result. 

Cantor considered that Acta was from then on closed to him, just as he saw the 

Berlin Journal since 1878. In his irritability, he was convinced that his former part¬ 

ner had abandoned him under pressure from his enemies, the Berlin mandarins. 

Besides, in 1885 Cantor failed to get a vacant position at Gottingen (which went to 

Klein) and he finally abandoned any hopes of ever coming out of Halle. Cantor felt 

rejected by the German mathematicians. He did not stop doing research, but he 

decided to quit publishing in mathematics journals. Later in the decade he pub¬ 

lished a couple of papers in the Zeitschrift fur Philosophic und philosophische Kri- 

tik; these appeared in 1890 as a separate volume. He started devoting more and 

more time to interests of a philosophical, theological, and literary kind. Philoso¬ 

phers and above all theologians became his preferred interlocutors, and he even 

approached rather dubious personalities, such as the social reformer Julius Lang- 

behn.* 1 In 1891 he wrote to Langbehn that, in spite of taking part in the Naturfor- 

scherversammlung [Congress of natural scientists and mathematicians], he would 

find the time to see him daily, for “I must confess that, among the hundreds of 

colleagues that will gather around me this month, there is none who understands me 

as well as you do.”2 

It was not long before Cantor distanced himself from Langbehn, and in 1895 he 

decided to publish again in Mathematische Annalen. The outcome was an attempt 

to summarize and systematize his contributions to the theory of transfinite sets. 

Even before, in 1892, he had published a short but noteworthy piece in the first 

transactions of the Deutsche Mathematiker-Vereinigung. We shall devote the last 

two sections of the present chapter to these contributions of the 1890s. 

in unserer Lebenszeit Gerechtigkeit zu Theil kommen lasst. So werden die Theorien wieder 

einmal nach 100 Jahren oder mehr von Jemand entdeckt und dann findet man wohl nachtraglich 

aus, dass Sie doch schon das alles hatten und dann thut man Ihnen zuletzt Gerechtigkeit, aber auf 

diese Weise werden Sie keinen bedeutenden Einfluss auf die Entwicklung unserer Wissenschaft 

ausgeiibt haben. Und einen solchen Einfluss auszuiiben das wiinschen Sie nattirlich wie jeder 

Anderer der die Wissenschaft treibt.” 

1 See [Meschkowski 1967; Dauben 1979; Purkert & llgauds 1987] and Cantor’s letters in 

[Meschkowski & Nilson 1991], In particular, on his turn to a deeper religiousness see [Dauben 

1979, 140-48], on the Bacon-Shakespeare polemics see [Purkert & llgauds 1987, 82-92], 

2 [Purkert & llgauds 1987, 100]: “muss ich bekennen, dass unter den hunderten von Collegen, 

die sich in diesem Monate hier urn mich vereinigen werden, keiner ist, der mich so gut versteht 

wie Sie.” Langbehn wrote a best-selling book and is regarded as an intellectual forerunner of 

Nazism. Cantor broke with him and his racist ideas, but their correspondence is an interesting 

document of his opinions (see [op.cit., 95-101]). 
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6. Cantor's Theorem 

Cantor’s communication to the first, 1891 congress of the Deutsche Mathematiker- 

Vereinigung bore the title ‘On an Elementary Question in the Theory of Manifolds’ 

[Cantor 1892], The contents of this paper would constitute a keystone of transfinite 

set theory, more particularly of the theory of cardinalities. Here we find the proof of 

a result that is presently formulated as follows: the power set (set of all subsets) of a 

given set L has a greater cardinality than L itself. But, although it complements his 

set-theoretical work in an extremely important way, Cantor’s Theorem was not 

taken into account in his summarizing papers [1895/97], It was only in the 1900s 

that other mathematicians, above all Russell and later Zermelo, reformulated Can¬ 

tor’s Theorem in a purely set-theoretical way on the basis of the Power Set Axiom, 

and placed it in the cornerstone position that it merits. Moreover, Russell was led to 

his famous paradox by reflecting on that theorem as applied to some alleged sets, 

like the set of all sets (see §IX.2). 

In the 1870s, Cantor had satisfactorily proved that, once we accept as given the 

set of real numbers, there are at least two different cardinalities of infinite sets. 

Since all known examples of sets turned out to belong to one of these cardinalities, 

Cantor conjectured in the Continuum Hypothesis that they were the first and second 

transfinite powers. Later on, with the absolutely infinite sequence of transfinite 

ordinals, Cantor thought to have established in the Grundlcigen that there is no 

maximal transfinite cardinality. In one of the endnotes [1883, 205] he wrote that the 

sequence of ordinals trespasses any possible limit and, furthermore, that to any 

transfinite number y there is a corresponding yth cardinality. This alleged proof was 

completely dependent on the dubious second generating principle (§3) that Cantor 

introduced as a basis for his definition of the ordinals. If that principle were valid, it 

would follow that there is a non-denumerable ordinal, etc., but this was precisely 

the weakest point in his whole presentation. The principles on which the 1883 

‘proof rested were by no means as clear as the Power Set Axiom, which can be 

taken to be the basic principle behind the 1891 theorem. 

The notion of the ordinals had even led Cantor to start generalizing CH: the first 

suggestion of the Generalized Continuum Hypothesis can be found in an endnote 

[Cantor 1883, 207] which indicates that the set of all real functions has the power 

of the third number-class. This remark presupposes that the cardinality of the set F 

of real functions is greater than that of E8., which suggests that Cantor may already 

at this early time have been able to prove Cantor’s Theorem. The Generalized CH 

is then contained in the precision that this higher power of F is exactly the third 

transfinite cardinality (K2)- Unfortunately, Cantor did not enter into further details 

in the Grundlcigen. The question remained open whether there exist even greater 
infinite cardinals. 
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[Cantor 1892] presents for the first time the well-known method of diagonaliza- 

tion, which is employed in the usual proof that IE is non-denumerable. Incidentally, 

a proof procedure that is intimately related to diagonalization had already been used 

by du Bois-Reymond in the 1870s [Wang 1974, 570], but Cantor did not acknowl¬ 

edge this precedent. A new proof that IE is non-denumerable constitutes the first 

part of his paper. Actually, Cantor considered the more general case of the set of all 

infinite sequences formed out of two different “characters” m and w; this set is not 

denumerable [Cantor 1892, 278]. (That result can be applied to IE by assuming the 

real numbers in [0,1] given in dual representation, and excluding cases of double 

representation, as in §VI.4.2.) From any enumeration /y of such sequences, one can 

define a new sequence 5 not belonging to the enumeration. It suffices to make the 

first decimal cipher of 5 different from the first decimal cipher in rj (first sequence 

in the enumeration), its second decimal cipher different from the second cipher in 

t’2, its n-th cipher different from the /2-th one in rn. Cantor goes on: 

This proof seems remarkable not only because of its great simplicity, but especially because 

the principle followed therein can be extended immediately to the general theorem that the 

powers of well-defined manifolds have no maximum, or, what is the same, that on the side 

of any given manifold L one can always put another M whose power is greater than that of 

L.1 

This is called Cantor’s Theorem, and is normally formulated as follows: the set of 

all subsets of L has a greater power than L itself. 

In his paper, Cantor took L to be a linear continuum, and M to be the set of all 

functions /: L —» {0,1}. Such an Mis essentially equivalent to the set of all subsets 

of L, since each/can be regarded as the characteristic function of a subset of L 

(f takes the value 1 for elements of L that belong to the subset). Apparently, Cantor 

never saw it that way: L is a set of numbers while M is a set of functions, and a 

function was, in his eyes, something different from a set (we shall take this matter 

up in chapter IX). That may have been the reason why he did not include the nota¬ 

ble theorem of 1891 in his Beitrdge [Cantor 1895/97], 

The proof of Cantor’s Theorem can be given briefly. Let us consider an arbi¬ 

trary set L and the corresponding set of functions M, defined as above. First, it is 

clear that the power of M is not less than that of L, for the functions which take the 

value 1 for just one argument leL each, form a subset of M which is obviously 

equipollent to L. Assuming the law of trichotomy for transfinite powers - either 

two powers are equal or one is greater than the other - , it now suffices to show that 

the power of M is not equal to that of L. Were both sets equipollent, one could 

1 [Cantor 1892, 279]: “Dieser Beweis erscheint nicht nur wegen seiner grossen Einfachheit, 
sondern namentlich auch aus dem Grunde bemerkenswert, weil das darin befolgte Prinzip sich 
ohne weiteres auf den allgemeinen Satz ausdehnen lasst, dass die Machtigkeiten wohldefmierter 
Mannigfaltigkeiten kein Maximum haben oder, was dasselbe ist, dass jeder gegebenen Mannig- 
faltigkeit L eine andere M an die Seite gestellt werden kann, welche von starkerer Machtigkeit ist 

als LT 
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index the functions in M with elements of L, so that each function would appear 

under the form//. But such an assumption is contradictory; it is possible to define a 

new function g: L -» {0,1} that by construction cannot be any of the/. Just apply 

the above principle of diagonalization and take g(l)^fl0) f°r l^L, by making 

g(l)= 1 if/(Z=0, andg(7)=0 iff(l)=\ [Cantor 1892, 280], 

7. The Beitrage zur Begrundung der transfiniten Mengenlehre 

After ten years of almost complete silence, Cantor published his ‘Contributions to 

the Founding of Transfmite Set Theory’ [Cantor 1895/97] in Mathematische An- 

nalen, the journal that had accepted his crucial work of 1879/84. These two papers 

summarized his previous work, offering an overview of transfmite set theory and 

constituting an important instrument for its diffusion. As I have argued, there were 

few essential novelties in the Beitrage, but many of the ideas had remained unpub¬ 

lished or were accessible only in philosophy journals. The presentation was inno¬ 

vative, since Cantor made a serious attempt to present his ideas systematically, 

paying great attention to methodology. 

He started with his famous definition of ‘set’ (see §8.1) and a discussion of the 

theory of cardinal numbers. He defined the operations on cardinal numbers, addi¬ 

tion as the cardinal number that corresponds to the disjoint union of two sets of 

given cardinals, and product as the cardinality of the set of pairs M x N [Cantor 

1895/97, 285-87]. He was thus the first author to consider the Cartesian product of 

two sets, which he called the “connection-set” of M and N [Verbindungsmenge], 

and denoted (M ■ N).' A novelty of the 1890s was Cantor’s definition of the “expo¬ 

nentiation” [Potenzierung] of cardinals. To this end, he defined a “covering” 

[Belegung] of a set N with elements of the set M (which is simply a mapping of N 

in M, a function from N to M)1 2 and considered the “covering-set of N with Mf that 

is, the set of all such mappings. If N has cardinality b and M has cardinality a, then 

ab is the cardinal number of the set of all mappings from N to M [1895/97, 287-88]. 

Cantor showed how the basic properties of exponentiation made it possible to de¬ 

rive in just a few lines the whole content of [Cantor 1878] (see § VI.4.2). 

As one can see, the theory of transfmite sets led Cantor to consider set- 

operations that are rather strong, defining his ‘connection-set’ and ‘covering-set.’ 

Nevertheless, the Beitrage did not introduce the operation of power set formation 

nor discuss the Cantor Theorem. This is quite surprising, because it could have 

been done with the notions and operations introduced in the first part of the work, 

1 The notion of cardinal number, together with definitions of addition and multiplication, had 

already been given in the ‘philosophical’ paper [1887/88, 411-14], although at that point Cantor 

was not yet using the Cartesian product. 

2 [Cantor 1895/97, 287]. He wrote that “in a certain sense” a “covering” is “a univocal func¬ 

tion” of elements of N. 
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and since it was such an important complement to his theory of cardinals. This 

failure might perhaps be explained as a result of Cantor’s doubts regarding the 

connection between functions and ‘coverings.’ 

An important novelty in Cantor’s presentation was his emphasis on the idea that 

a few basic results on cardinalities had yet to be proved [Cantor 1895/97, 285], 

These included the law of trichotomy for cardinals - if a and b are cardinal num¬ 

bers, then one and only one of the following relations holds: a=b or a<b or a>b -, 

and the Cantor-Bemstein theorem (see §VII.4). Cantor promised to prove these 

results after having analyzed the “growing succession of the transfinite cardinal 

numbers” and their interrelations, but this material was not covered in the published 

papers. It would have been natural, at this point, to mention the Well-Ordering 

theorem too, since this yielded those basic results. The reason why Cantor refrained 

from doing so was, probably, that he regarded the notion of cardinal as more basic 

and prior to that of ordinal. 

The first part of the Beitrage concluded with the foundations of the theory of 

finite cardinals, and of Xq. The presentation was not exempt from methodological 

flaws, as Zermelo remarked in his edition of Cantor’s works [1932, 352-55], par¬ 

ticularly because Cantor lacked an adequate definition of finite set.1 It was here that 

Cantor first employed the Hebrew letter aleph for the cardinal numbers. Xq is the 

cardinality of denumerable infinite sets, X ] the next infinite cardinal, which is that 

of the class of denumerable ordinals, and so on. It is easy to prove that 2X0 is equi¬ 

pollent with IR, and so the Continuum Hypothesis could now have read: 

2N0= Xb 

though Cantor did not write this formula in the Beitrage. Similarly, the Cantor 

Theorem could have been formulated as follows: for any cardinal number a it holds 

that 2a>a (see [Cantor & Dedekind 1932, 448]). 
Two years later, Cantor published a detailed presentation of the theory of line¬ 

arly ordered sets, well-ordered sets, and the transfinite numbers of the second class 

(denumerable ordinals). This included, in five sections, the material that we have 

already reviewed in connection with the unpublished paper of 1885 (§4.2): order 

types and their operations, the particular cases of the orders r\ and 0, and the ex¬ 

panded notion of fundamental sequence. Then followed a detailed and careful pres¬ 

entation of the material first treated in the 1883 Grundlagen: three sections pre¬ 

senting the theory of well-ordered sets and introducing the transfinite ordinals, and 

six sections having to do with the theory of denumerable ordinals. Particularly 

noteworthy is the satisfactory treatment of well-ordered sets, leading up to a result 

that is the basis for the comparability of ordinal numbers [Cantor 1895/97, 319, 

321]. As for denumerable ordinals, Cantor showed again that the cardinality of the 

1 A rigorous introduction of finite cardinals and X0 would have required the previous devel¬ 

opment of the theory of well-ordered sets, but Cantor thought this ran contrary to the natural 

order. 
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set of denumerable ordinals is the cardinal that immediately follows Kq, and thus 

the “natural representative” of X] [op.cit., 332-33]. He gave a definition by trans¬ 

finite recursion for the exponentiation of ordinals, and then analyzed particular 

questions such as “normal forms” for denumerable ordinals, and the £-numbers 

(ordinals 8 such that £=coe). 
The Beitrage represent a mature contribution in which Cantor presented abstract 

set theory as such, independent of the real numbers and point-sets. They served the 

purpose of making transfinite set theory known and transmitting its basic results, 

and some of its open problems, to a new generation of cultivators.1 The first part of 

the work was immediately translated into Italian and French, and a full French 

translation was published in 1899; the English version had to wait until 1915. How¬ 

ever, Cantor’s lifework remained incomplete in several respects. The Beitrage did 

not address the most important problem that had guided his research, the Contin¬ 

uum Problem. In fact, their scope was considerably narrower than his previous 

work: Cantor did not go beyond the transfinite ordinals of the second number-class, 

which define the second transfinite cardinal. This may have partly been for exposi¬ 

tory reasons, since it was clear that his methods could readily be extended to a 

wider scope. But, above all, he did not come to publish his most original ideas of 

the period, related to the set-theoretic paradoxes and Well-Ordering, although he 

had planned to do so in a third part of the Beitrage. In the absence of a proof of 

Well-Ordering the work remained incomplete, lacking the key element that should 

connect the theories of ordinals and cardinals and show that every transfinite cardi¬ 

nality is an aleph. Although he did not mention the problem in print, Cantor was 

well aware of this shortcoming. 

8. Cantor and the Paradoxes 

Fortunately, Cantor’s original ideas concerning the paradoxes and Well-Ordering 

were discussed with Dedekind, with Bernstein (a student of Cantor), and with Hil¬ 

bert. Through them, particularly through Hilbert and Bernstein, they came to the 

knowledge of a few central figures in the history of set theory. In line with the 

approach I have followed in Part Two, we shall study the paradoxes mainly through 

Cantor and his letters to Dedekind and Hilbert, relegating to §IX.2 a short discus¬ 
sion of their public emergence. 

By early 1897 Cantor had discovered the paradox of the ‘set’ of all alephs, and 

realized that it contradicted the usual conception of sets as concept-extensions (i.e., 

the principle of comprehension). His reaction to the paradoxes was not at all de¬ 

spairing. In fact, this finding seemed to support his Platomstic conception of sets as 

opposed to the logicistic views of Dedekind and Frege. Furthermore, he realized 

1 The most important problems that had not been discussed here were highlighted by Hilbert 

in his famous address on mathematical problems [1900], See §IX.l. 
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that the paradox could be turned into a proof of Well-Ordering, a crowning 

achievement that would constitute an adequate conclusion for his new series of 

papers. Indeed, it seems likely that he may have found the paradoxes by reflecting 

about the Well-Ordering theorem. 

8.1. Paradoxes and theology. Cantor decided to approach Dedekind again, in 

order to discuss with him this delicate material which required a sound judgement 

in foundational questions. Since Hilbert was now acting as editor of Mathematische 

Annalen, he also wrote to him regarding his purpose. Judging from his letters to 

Hilbert [Purkert & Ilgauds 1987, 224-27], in 1897 Cantor formulated the paradox 

of all alephs as follows. If the totality n of all alephs is a transfinite set, it will have 

a certain cardinal number a, and the Cantor Theorem will imply that there is an¬ 

other aleph greater than a. But then, this new aleph would both belong and not 

belong to n, a contradiction [Meschkowski & Nilson 1991,388], 

The argument is not detailed enough to be completely convincing. Two years 

later he sent a much more careful proof to Dedekind [Cantor & Dedekind 1932, 

448]: if n is a set, so is T = uMa for all aePl, where Ma is any set of cardinality a 

(this step involves both the Axioms of Union and Replacement). Calling b the car¬ 

dinal of T, by the Cantor Theorem there is b'>b; but then T would contain a subset 

of greater cardinality than T itself, a contradiction. From these arguments, Cantor 

inferred that one has to differentiate two kinds of well-defined sets. In his letters to 

Hilbert of September 1 897 he said that a set can be ‘'finished” [fertig] or not, and 

only in the first case it is a transfinite set (on the notion of ‘finished,’ see below). 

Since the assumption that n is a transfinite set leads to a contradiction, one has to 

conclude that it is not a finished set. 

The reason why Cantor was not shocked by the contradiction is that, since 1883 

at least, he had differentiated sharply between the transfinite and the absolutely 

infinite. When Cantor introduced the transfinite ordinals on the basis of the two 

‘generating principles’ he was guided by the intuitive idea of an absolutely limitless 

sequence. This was linked with theological questions, for the infinite had tradition¬ 

ally been identified with God’s Absolute (see §1). Cantor wrote that, although he 

was certain that the transfinite numbers take us always farther, never reaching an 

insurmountable limit, he was equally convinced that in that way we never come to 

exhaust even approximately the Absolute. “The Absolute can only be acknowl¬ 

edged, but never known, not even approximately known;”1 that is to say, it cannot 

be mathematically determined. Thus the “absolutely infinite number-sequence” 

[absolut unendliche Zahlenfolge] seemed to him an adequate symbol for the Abso¬ 

lute. The contradictory character of n merely suggested that it is an absolutely 

infinite collection, and thus beyond our thinking abilities. 

1 [Cantor 1883, 205]: “Das Absolute kann nur anerkannt, aber nie erkannt, auch nicht an- 

nahemd erkannt werden.” The triadic distinction between finite, transfinite and absolute becomes 

even sharper in the philosophical papers (e.g., [Cantor 1887/88, 378]). See [Hallett 1984, 32-48; 

Jane 1995], 



292 VIII. The Transfinite Ordinals and Cantor's Mature Theory 

The letters to Hilbert suggest that Cantor had indicated the existence of the 

paradoxes obscurely in his papers of 1883 and 1895, but as regards the first this 

seems more than doubtful.1 2 On the other hand, it seems clear that the definition of 

set which opens the Beitrdge was actually meant to suggest the above viewpoint, 

that is, to prevent absolutely infinite collections from being called ‘sets’ (see letter 

to Hilbert in [Purkert & Ilgauds 1987, 227]), although it did so in an obscure and 

inefficient way: 

By a ‘set’ we understand any reunion M to a whole of definite, well-differentiated objects m 

of our intuition or our thought (which are called the ‘elements’ of M)} 

The collection of all alephs cannot be made a whole, for this entails a contradiction, 

and so it is not a ‘set.’ The above definition has time and again been presented as a 

perfect example of the naive standpoint in set theory, which is not quite true.3 The 

naive standpoint can be found explicitly in Frege and Russell, implicitly in Rie- 

mann and Dedekind. But the frequent confusion is understandable, for Cantor’s 

subtle distinction had not been sufficiently clarified at all. 

The first step that Cantor took, in order to clarify his new conception of the 

paradox and of ‘finished sets,’ was to write Dedekind and ask his student Bernstein 

to visit him.4 Bernstein says that Cantor had immediately realized that the contra¬ 

diction affected the ‘system of all things’ that underlied Dedekind’s theorem of 

infinity. In his correspondence of 1899, Cantor formulates the paradoxes using 

Dedekind’s terminology of systems, and he says explicitly that they affect the col¬ 

lection of everything thinkable [Cantor & Dedekind 1932, 443]. Dedekind had 

stated that every system is a thing [1888, 344] but this now became untenable, and 

his theorem that there is an infinite set vanished, bringing into question his whole 

logicistic project. Otherwise said, Cantor had shown that Dedekind’s logicistic 

notion of set is not sufficient as a basis for set theory, for it allows both ‘finished’ 

and ‘unfinished’ collections. According to Bernstein, in 1897 Dedekind had not 

arrived at a definite opinion, but in his reflections he had almost come to doubt 

whether human thought is completely rational. 

As regards Hilbert, his first reaction to Cantor’s argument was a perfect exam¬ 

ple of the traditional logical standpoint (Cantor quotes his words literally in the next 

letter). He could not accept that the set of all alephs is contradictory: 

1 As late as 1888 Cantor praised Dedekind’s work and did not indicate any inconsistency in it 

(see below). Thus, Purkert’s interpretation [1989] that the paradoxes were the motivation that led 

Cantor to write the Grundlagen seems to me over-optimistic. 

2 [Cantor 1895/97, 282]: “Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von 

bestimmten wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens (welche 

die ‘Eiemente’ von Mgennant werden) zu einem Ganzen.” 

3 This was first realized by Purkert (see [Purkert & Ilgauds 1987, 150-59]). 

4 Bernstein’s recollections, in [Dedekind 1930/32, vol. 3, 449], 
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The collection of alephs can be conceived as a definite well-defined set, for certainly if any 

thing is given it must always be possible to determine whether this thing is an aleph or not; 

and nothing more belongs to a well-defined set.1 2 

This might as well have been Dedekind’s first reaction, even in the terminology 

employed. Underlying this approach is the conception of the universal class, the 

collection of all possible things; a set is determined as a well-defined subcollection 

of this universal class. But, precisely, Cantor was implying that the universal class 

is not a ‘finished’ thing, a set. 

In 1899 Cantor had occasion to discuss the matter again by letter with Dede¬ 

kind; it was the last episode in their relations. He sent some very interesting letters 

including a detailed discussion of his attempt to prove the Well-Ordering theorem. 

First of all, Cantor tried to clarify his distinction between two kinds of collections. 

Now he employed a different terminology, calling a well-defined collection of 

things a ‘multitude’ [Vielheit] or a ‘system’ [Cantor & Dedekind 1932, 443], im¬ 

plying that Dedekind’s basic notion was inconsistent or at least insufficient. The 

key new idea is the following; 

A multitude can be constituted in such a way that the assumption that all of its elements ‘are 

together’ leads to a contradiction, so that it is impossible to conceive the multitude as a 

unity, as ‘one finished thing.’ Such multitudes I call absolutely infinite or inconsistent mul¬ 

titudes.1 

When a multitude can be collected to “one thing” without contradiction, it is called 

a ''consistent multitude' or a set [Menge], This was an interesting immediate reac¬ 

tion to the problem of contradictory ‘sets,’ that is reminiscent of von Neumann’s 

distinction between sets and classes some twenty years later. But in the absence of 

any independent criterion for ‘consistency,’ it was not satisfactory.3 Dedekind’s 

only remark was that he did not understand what Cantor meant by a ‘being to¬ 

gether’ of the elements [Cantor & Dedekind 1976, 261], again a clear example of 

their different styles of thought, intuitive and logical. 

1 [Meschkowski & Nilson 1991, 390]: “Der Inbegriff der Alefs lasst sich als eine bestimmte 

wohldefinirte Menge auffassen, da doch wenn irgend ein Ding gegeben wird allemal muss 

entschieden werden konnen, ob dieses Ding ein Alef sei oder nicht; mehr aber gehort doch nicht 

zu einer wohldefinierten Menge.” 

2 [Cantor & Dedekind 1932, 443]: “Eine Vielheit kann namlich so beschaffen sein, dass die 

Annahme eines ‘Zusammenseins’ aller ihre Elemente auf einen Widerspruch flilirt, so dass es 

unmoglich ist, die Vielheit als eine Einheit, als ‘ein fertiges Ding’ aufzufassen. Solche Vielheiten 

nenne ich absolut unendliche oder inkonsistente Vielheiten." 

3 For instance, M might be inconsistent and we have simply not yet found the contradiction. 

See [op.cit., 447-48], where Cantor proposes to introduce two ‘axioms’—that finite sets are 

consistent, “‘the axiom of arithmetic’ (in the old sense of the word);” and that each aleph is 

consistent. 
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Cantor reacted to the paradoxes through subtle philosophical (or, if you wish, 

purely verbal) distinctions. What was needed was clear criteria for sethood, not a 

discussion of the triad fmite/transfinite/absolute, however useful the latter may have 

been heuristically. The distinction between consistent and inconsistent systems, as 

it is, was far from solving the difficulties posed by the paradoxes. In his reflections 

on these matters, Cantor was actually led to formulate conditional set-existence 

principles that anticipate some of the Zermelo-Fraenkel axioms. His August 1899 

letter to Dedekind contains the following: every part of a set is a set (somewhat 

related to the Separation Axiom); two equipollent systems are either both sets or 

both inconsistent (close to the Axiom of Replacement and to von Neumann’s axiom 

- see §XI.3); given a set of sets, the union of its elements is also a set (Axiom of 

Union). This suggested a satisfactory way of approaching the issue, but neither 

Cantor nor Dedekind were any more in the position of carrying it through. 

8.2. Attempted proof of the Well-Ordering theorem. By 1899 Cantor had 

refined his arguments for the existence of set-theoretic paradoxes. He may have 

come to think that the paradox of the ‘set’ of all ordinals was more cogently for¬ 

mulated, for he based his proof of the Well-Ordering theorem on it. 

Consider the system of all transfinite ordinal numbers, which Cantor denoted by 

Q. In the Beitrdge Cantor had shown that if two ordinals a and (3 are different, then 

either a < (3 or (3 < a; likewise, he had shown that the relation < is transitive. This 

means that Q is linearly ordered by < Moreover, his theorems on well-ordered sets 

implied that every part of Q has a least element, so 

The system ST in its natural order of magnitude constitutes a 'sequence' [a well-ordered 

multitude].1 

Now, if we regard 0 as belonging to ST, as the first ordinal, it can be said in general 

that the ordinal number of the set of ordinals {(3: (3 < a } is precisely a; otherwise 

said, a is the type of the set of its predecessors. Since T> is well-ordered, if it were a 

set it would have an ordinal number 5 greater than all of the numbers in T>. But, by 

definition of T>, 8 would also belong to ST; thus we obtain 5 < 5, a contradiction. 

Hence, £T is an inconsistent, absolutely infinite collection.2 

Now, the problem is to show that every transfinite power, every cardinality of a 

set, is an aleph. The basic idea of the proof was as follows: if there were a collec¬ 

tion V whose cardinality is not an aleph, the whole system Q would be “projectible” 

into V; we would thus obtain a subsystem V equipollent to Q; thus V is inconsis¬ 

tent, and so is V. Therefore, every consistent multitude, every transfinite set, has a 

1 [Cantor & Dedekind 1932, 444-45]: “Das System T2 bildet daher in seiner natiirliche 

Grossenordnung eine ‘Folge A “Vielheit” is called a “Folge” in case it is “wohlgeordnet.” 

2 Next, Cantor appealed to the existence of a one-to-one mapping between the ordinals and 

the alephs (see [Cantor 1883, 205]) in order to derive from the paradox of ordinals the paradoxi¬ 

cal character of the system of all alephs [Cantor & Dedekind 1932, 446], 
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definite ordinal number and an aleph as its cardinal number. (Note that the proof 

relies on the three set-existence principles mentioned at the end of §1.2; it requires 

not just Replacement, but the principle that if f> can be mapped one-to-one onto a 

system, then this system is ‘inconsistent.’) 

The weak point in the proof is the first step, in which Cantor claims that it must 

be possible to ‘project’ or map Q into V. He probably reasoned that one can ‘pick’ 

elements of V successively, making them correspond to the ordinals in their natural 

order, and that the only way in which V can have no aleph as cardinality is by being 

so large that we employ all of the ordinals in the process. This is a very good intui¬ 

tive starting point, but in a rigorous proof one would need to replace the intuitive 

idea of ‘successively picking’ by an abstract principle. Zermelo remarked, in Kan¬ 

tian spirit, that Cantor applies the intuition of time to a process that goes beyond all 

intuition; he criticized Cantor for positing a fictitious entity of which it is assumed 

that it could make successive arbitrary choices [Cantor 1932, 451], The needed 

abstract principle is precisely the Axiom of Choice, “which postulates the possibil¬ 

ity of a simultaneous choice” [ibid.]. Zermelo also remarked that the employment 

of ‘inconsistent multitudes’ in the proof might throw doubts on its validity, for 

which reason he had avoided them in his own proofs of the Well-Ordering theorem. 

Had Cantor published the attempt, it would certainly have constituted an ex¬ 

tremely important contribution. It would have simplified the complex story of the 

discovery of the paradoxes, but those surprising arguments only came to the 

knowledge of a few mathematicians, having to be reelaborated independently by 

others. It might have started a public debate, and it is clear that an analysis of its 

underlying assumptions would have led to the Axiom of Choice. But the reason 

why Cantor did not publish the promised third part does not seem to be related to 

the problems that Zermelo indicated. The distinction between consistent and incon¬ 

sistent collections posed the general problem, which collections are sets. Cantor’s 

response was to look for ‘axioms’ of transfinite set theory and arithmetic like the 

following: there exist things; if V is a consistent multitude and 5 a thing not in V, 

then Tu{8} is also consistent. He would have also needed an Axiom of Infinity, 

but we do not know how he tried to formulate it (perhaps: co is a consistent system). 

He was still busy with this matter in 1900, and he never completed the paper (see 

letters to Dedekind and Hilbert, [Cantor 1932, 447-48; Meschkowski & Nilson 

1991, 405-13, 425ff]). 
As regards Dedekind, his reaction to the paradoxes shows that he was no longer 

able to find a way out. In September 1899 Cantor visited him to discuss the matter 

personally.' It seems that Dedekind’s only suggestion was that the problem might 

be related to the contradictions that arise when one does not differentiate between 

belonging and inclusion. He presented his colleague a detailed proof of one such 

1 In response to a mathematical almanach announcing that he had died the very same date of 

Cantor’s visit, Dedekind wrote the editor that day and month might be correct, but not the year. 

He had spent that day in very stimulating conversation with Cantor, who dealt a death-blow not 

to himself, but rather to one of his errors [Landau 1917, 54], 
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contradiction [Cod. Ms. Dedekind III, 1,V, p. 83], In 1903 Dedekind refused to let 

his Zahlen be reprinted because of the paradoxes. His last reaction to the problem 

can be found in the preface to the new reprint of 1911. He admits the significance 

and partial legitimacy of doubts about the “security” of important foundations of 

his views, but expresses his “trust [Vertrauen] in the inner harmony of our logic.” 

He thinks that a detailed investigation of the “creative power” [Schopferkraft] of 

the mind will lead to an unobjectionable formulation of the work. That creative 

power is identified, very narrowly, with our ability to create from determinate ele¬ 

ments a new determinate object, their set [System], which is necessarily different 

from those elements [Dedekind 1888, 343], 

Two aspects of this suggestion are noteworthy. Since Zermelo had sent his 

axiomatization [1908] to Dedekind, and the latter does not even mention it, there is 

reason to think that he could not accept it as a satisfactory way out. It must have 

seemed to him a compromise solution that, by resorting to axioms, run contrary to 

his logicistic convictions. Second, in emphasizing the idea that sets are formed out 

of their elements, Dedekind departed from the traditional idea of concept-extension 

and prefigured the iterative conception. In so doing, he was simply abandoning a 

more or less philosophical conception of sets, and resorting to a regular trait of his 

mathematical practice, embodied in the definitions of the different kinds of num¬ 

bers, of ideals, etc. The iterative conception is presently taken to be, by many 

authors, a satisfactory intuitive picture underlying axiomatic set theory. Prefigura¬ 

tions of it can also be found in other early authors, like Cantor himself (see [Wang 

1974]) and Hadamard, although it properly stems from work of the 1930s and 40s 

by Zermelo and Godel (see §XI.2). 



Part Three: In Search of an Axiom System 

Bom in the 1850s with Riemann and Dedekind, the set-theoretical approach was 

championed from about 1900 by Hilbert, who used his influence to foster the axio- 

matization of mathematical theories on the basis on set theory (§IX.l). Meanwhile, 

abstract set theory came of age with the contributions of Zermelo and Hausdorff in 

the 1900s. The years up to 1914 were thus a crucial period of diffusion and recog¬ 

nition for set theory in all its aspects - as a basic mathematical language, as a possi¬ 

ble foundation for mathematics, as an independent branch of the discipline. 

But the 1900s and 1910s were also the high time of Russell and his collaborator 

Whitehead. This should be enough to remind us that, while the period was one of 

recognition, it was also a time of ambivalence and confusion regarding prospects 

for the young theory. Russell heralded the contradictions or paradoxes that affected 

the foundations of set theory, calling for deep reform (§IX.2). Even more impor¬ 

tant, the 1900s saw a heated foundational debate, stimulated above all by Zermelo’s 

introduction of the Axiom of Choice and his proof of the Well-Ordering theorem: 

the acceptability of abstract mathematics was in question (§IX.3). Given this situa¬ 

tion, various solutions and approaches were offered, of which the most influential 

were Zermelo’s axiomatic system (§IX.4) and Russell’s theory of types (§IX.5). 

Just at the time when set theory was winning more and more adepts, a bifurcation 

occurred that would mark the following three decades of development. 

When World War 1 ended, there was not one single system of set theory. The 

situation had actually worsened, since Brouwer, Weyl, and others began to propose 

highly deviant, constructivist systems as alternatives to ‘classical’ set theory. The 

ensuing foundational debate, the so-called ‘crisis’ (§X.l and 5), established the 

atmosphere in which the final steps toward a satisfactory axiom system were to be 

taken. While the contrast between constructivists and ‘classicists’ consolidated, 

axiomatic set theory and the theory of types entered a noteworthy process of con¬ 

vergence. Type theory was given a so-called ‘simple’ formulation, closer in spirit to 

set theory (§X.3-4). And the latter became a logistic system, supplemented by new 

axioms that eventually suggested an intuitive motivation which is close to a key 

guiding principle of type theory (§§XI.2 and 5). The convergence between both 

systems was also behind some of the most important developments of the 1920s 

and 30s, including Zermelo’s late work and Godel’s relative consistency results 

(§XI.4). We shall study them in detail, together with the contributions of Skolem, 

Fraenkel, von Neumann, and Bemays that led the now usual first-order axiomatic 

systems (§§X.l-2, 5). 
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IX Diffusion, Crisis, and Bifurcation: 
1890 to 1914 

That the word ‘set’ is being used indiscriminately for completely differ¬ 

ent notions and that this is the source of the apparent paradoxes of this 

young branch of science, that, moreover, set theory itself can no more 

dispense with axiomatic assumptions than can any other exact science 

and that these assumptions, just as in other disciplines, are subject to a 

certain arbitrariness, even if they lie much deeper here - I do not want to 

represent any of this as something new.1 

The years up to 1914 were a crucial period of diffusion and recognition for set 

theory. During the 1890s the new vision of mathematics and the Cantorian ideas 

spread out, while the 1900s saw fundamental new contributions in the hands of a 

new generation of cultivators - Zermelo and Hausdorff above all. But this was also 

a period of heated debates surrounding the notion of arbitrary set and its expres¬ 

sions, the Axiom of Choice and the Well-Ordering Theorem. It was also the time in 

which the paradoxes emerged, heralded by Russell. Thus, the diffusion of set theory 

was accompanied by much ambivalence and confusion. The acceptability of ab¬ 

stract mathematics was in question, as were the relations between logic and set 

theory. 

Zermelo’s axiomatization and Russell’s theory of types turned out to be the 

most important and ambitious attempts at rebuilding set theory on adequate foun¬ 

dations. Zermelo treated set theory in the style of Hilbert and took a decided step 

toward its full extensionalization, while Russell tried to rescue as much as possible 

of the old naive (and intensional) approach based on the principle of comprehen¬ 

sion and the conception of sets as a part of logic. With their work, the future began 

to look better for the young discipline, but at the same time there was much unclar¬ 

ity since, as they were formulated in the 1900s, both approaches seemed irreconcil¬ 

able. Only in the 1920s and 30s a more harmonic picture emerged in a gradual 

process that will be the topic of the last chapter. 

In Part Two (§VI11.8) we studied the paradoxes through Cantor and his letters to 

Dedekind and Hilbert, here (§2) we shall offer a short discussion of their public 

emergence. §1 analyzes the diffusion of set theory up to the early 1900s, and §3 

discusses the early foundational debate surrounding the increasing recognition of 

the peculiarities of abstract mathematics. Then, in §§4 and 5 we shall consider the 

1 Julius Konig [1905] as translated in [van Heijenoort 1967, 145]. 
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systems proposed by Zermelo and Russell. The last section reviews some other pre- 

War developments briefly. 

1. Spreading Set Theory 

In retrospect, and disregarding [Cantor 1892], the 1890s appear as a period in 

which no central contributions to set theory were published, a period of stagnation. 

The most original work of the period with some connection to set theory came from 

the field of logic. But the panorama is not at all a negative one, since during that 

decade set theory enjoyed unprecedented diffusion and found new cultivators. An 

extremely important instrument for making abstract set theory known was Cantor’s 

Beitrdge, but the theory attracted interest mostly through its applications. This 

means, above all, applications in analysis and function theory. 

An increasing number of new handbooks of analysis emphasized the importance 

of the theory of point-sets. The process had already begun in the 1870s with Dini’s 

Fondamenti for the theory of real functions [1878], It continued in Italy with the 

work of Peano, particularly the great collective work he directed, Formulaire de 

mathematiques [1908] (five editions from 1895). This was an encyclopedic attempt 

to translate all major mathematical results into an unambiguous symbolic language, 

in which the notion of class played a primary role. In France, the influential Cours 

d’analyse by Camille Jordan [1893] showed plainly the important role that set the¬ 

ory was to play. Among other things, Jordan dealt with the problem of measuring 

areas and sets, refining the notion of content in order to treat adequately the inte¬ 

gration of functions of two or more real variables. Borel would write that Jordan 

‘rehabilitated’ set theory by showing that it was a useful branch of mathematics 

[Hawkins 1970], Subsequently, the French school of function theory made inten¬ 

sive use of set-theoretic notions. One has to mention here Borel’s Legons [1898], 

which started with basic notions of point-set theory and introduced his definition of 

measure. The book included Bernstein’s proof of the Cantor-Bemstein theorem, 

the first correct published proof (a previous attempt by Schroder failed, see §VII.4). 

The theory of point-sets and its applications was also made known in Germany 

by Schoenflies, in an exhaustive report on the development of the theory of point- 

manifolds [1900/08], and in England by the Youngs with their [1906], The diffu¬ 

sion was, thus, simultaneous in all the main scientific languages of that time. 

A kind of public breakthrough came with the First International Congress of 

Mathematicians in 1897, where two keynote speakers emphasized the importance 

of set theory in analysis. The French Hadamard spoke on possible applications of 

set theory, and the German Hurwitz on the theory of analytic functions. Developing 

work of Mittag-Leffler (§VI.6.2), Hurwitz suggested a classification of analytic 

functions based on the corresponding set of singularities, where Cantor’s notions of 

denumerable, closed and perfect played an important role (see [Purkert & Ilgauds 

1987, 144]). He also indicated the interest of investigating the topology of closed 
sets, a question that would be taken up by Schoenflies. 
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1.1. Hilbert and his circle. Another path along which set theory spread out was 

the various activities of Hilbert and his circle. Surprisingly, this has been less em¬ 

phasized by historians, probably because they have tended to focus narrowly on 

analysis. Hilbert’s work in algebra and algebraic number theory employed freely 

the set-theoretical approach. His decided support of the set-theoretical approach and 

the work of Cantor came out very clearly in his 1900 address to the Second Inter¬ 

national Congress of Mathematicians. As is well known, the first mathematical 

problem he posed for future research was Cantor’s Continuum Problem,1 and he 

also emphasized the importance of proving the Well-Ordering theorem. He was 

thus calling attention to the most important open problems in the field of abstract 

set theory, in a way that Cantor himself had not done in his last papers (of course, 

his correspondence with Cantor must have played a decisive role here). Hilbert’s 

presentation is not without interest: the Continuum Hypothesis is formulated in the 

weak form that every subset of D8. is either denumerable or equipollent to US.; con¬ 

cerning the other question, Hilbert does not ask for a general proof, but for a defin¬ 

able well-ordering of IK. [1900, 298-99], The set-theoretic terminology he em¬ 

ployed mixes those of Cantor and Dedekind (§ VII.6.2). 

Less noticed has been the fact that Hilbert’s second problem, the consistency of 

the axioms for the real numbers, is also related to the issue of set theory. Hilbert 

himself suggested this in [1900, 301], saying that the “existence” of Cantor’s 

“higher classes of numbers and cardinal numbers” can be established by a proof of 

consistency - just like the existence of the system of all real numbers. And he 

added: “unlike the system of all cardinal numbers or of all alephs,” for which no 

consistent axiom system can be set up. This is actually the first published mention 

of the paradoxes in Cantorian set theory - without making any fuss of it. 

But what is most important is to realize that the kind of axiomatization which 

Hilbert was proposing at the time (still today the most frequent among mathemati¬ 

cians) had set theory as its basis. I have already remarked that in Grundlagen der 

Geometrie he gives axioms for the elements [Dinge] of three sets [Systeme], and 

his axiom system for the reals is similar: one starts with a “system” of “things” and 

defines axiomatically relations and operations between them [Hilbert 1900, 300- 

01; 1900a], Most of the axioms give conditions on the elements, and therefore can 

be formalized in first-order logic. But Hilbert felt free to formulate axioms dealing 

with sets of elements; to formalize them, one needs to quantify over sets of ele¬ 

ments or, in modem terminology, one needs second-order logic.2 The conspicuous 

example of this is the famous Axiom of “Completeness” [Vollstandigkeit] that 

Hilbert included first in his axiomatization of the reals [1900a], and then in subse¬ 

quent editions of the Grundlagen der Geometrie (starting with the French and Eng¬ 

lish translations). 

1 Hilbert tried to solve it twice unsuccessfully, in [Hilbert 1926] and two years later. 

2 The same happens, e.g., with Dedekind’s chain-condition in his definition of the natural 

numbers (§VII.3.2). 
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In the case of the reals, Hilbert’s axiom of completeness says, essentially, that 

numbers form a set of elements which is maximal, that is, which is capable of no 

further extension as long as all of the other axioms hold [1900, 300; 1900a], A 

possible way of formalizing it would be the following: the set S of real numbers is 

such that, whenever S c T and T satisfies the remaining axioms (I-IV.l), then S = 

T. Sometimes it is said that Hilbert’s complicated axiom is metamathematical, be¬ 

cause in its formulation he referred to the satisfaction relation between axioms and 

models;1 sometimes it is remarked that the axiom is second-order. In fact, he was 

just reasoning in a way that was becoming customary in algebra: one defines a 

certain kind of structure (Archimedian ordered field, in this case) and thinks about 

all possible sets that are realizations of the structure; then, a maximality condition is 

enough to characterize univocally the set of real numbers. Completeness, in the 

usual sense, is a by-product of maximality. 

An interesting way of understanding what Hilbert did is to think that set theory 

belongs to the underlying logic in which the axiom system is formulated. This is 

likely to have been Hilbert’s own viewpoint by the late 1890s, as we have seen. The 

point is that, if talk of sets and elements (or systems and things) is just logical lan¬ 

guage, there is no essential difference between conditions affecting the elements 

and conditions affecting sets. For whenever we have a realm of things, reasoning 

about sets of such things is just logical reasoning. Of course, later Hilbert learnt that 

in foundational work one must be more careful, developing logic and mathematics 

simultaneously [1904], and even later, in the 1920s, he came to use formal axiom 

systems, which is a completely different way of working axiomatically. Set theory, 

however, kept playing a background role in regular mathematical work, which may 

help the reader understand the key importance that Hilbert ascribed to it. 

Hilbert contributed indirectly to the development of set theory by stimulating 

students and collaborators to work on it. Zermelo says that he started work on set 

theory under the influence of Hilbert, and that he realized its fundamental impor¬ 

tance thanks to the joint work of the Gottingen mathematicians [Moore 1980, 130], 

Although he had been introduced to set theory by Cantor himself, Bernstein did 

under Hilbert his doctoral work, in which he offered some abstract results and 

worked on generalizing the decomposition that Cantor had established for closed 

sets of reals (§ VI.8), which implied that the Continuum Hypothesis holds for them. 

Schoenflies was also close to Hilbert’s circle; he applied notions of point-set theory 

to simple closed curves in the plane, in contributions that led to Brouwer’s work on 

topology (§6). Thus, a good number of the most important German contributors to 

abstract and topological set theory were inspired by him. The list becomes almost a 

who is who if we take into account that Hausdorff s work on order types began 
under the influence of Bernstein. 

1 But one could take axioms I—IV. 1 to define a set-predicate, and in this way avoid relying on 
the satisfaction relation. 
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1.2. Contributions in logic. Already in 1884, Frege proposed to base arithmetic 

upon the notion of cardinal number, which he explained in a way that had some 

common points with Cantor. As we have seen (§VII.6.2), Frege criticized set theo¬ 

rists for employing an extensional notion as basic, being convinced that the only 

way to found arithmetic upon logic was to take the intensional ideas of concept and 

relation as a basis. In his view, assigning a number is making an assertion about a 

concept; if I say ‘Venus has 0 moons,’ that means there is no object falling under 

the concept ‘moon of Venus’ [1884, §46]. Frege defined a notion that plays the role 

of equipollence: concept F is “equmumerical” [gleichzahlig] with concept G if 

there is a one-to-one relation between the objects that fall under F and those that 

fall under G. Notice that this notion of ‘equinumerical’ does not presuppose num¬ 

ber. On the contrary, now Frege defines the [cardinal] number that corresponds to 

the concept F as the “extension [Umfang] of the concept: equinumerical with the 

concept jF” [Frege 1884, §§68, 72], In case Nq (or 3) objects fall under F - i.e., 

have property F - we would have defined the first transfinite cardinal (or the num¬ 

ber three). 

Frege’s definition has been frequently construed as if his concept-extensions 

were nothing but classes. If so, each cardinal number would have been defined as a 

class of equipollent classes. This was actually Russell’s proposal [1903, §111], but 

it is not faithful to Frege’s thought.1 Frege developed his approach in full detail, on 

the basis of a formal (but interpreted) system of logic, in his Grundgesetze der 

Arithmetik [1893; 1903], It is well known that his most important innovation was a 

very detailed system of second-order logic that is extremely close to 20th-century 

systems of mathematical logic.2 In the Grundgesetze he employed freely the notion 

of “course-of-values” of a (logical) function, which is a generalization of concept- 

extensions [Frege 1893, §3], If the function is what Frege calls a concept, say F(x), 

its course-of-values agrees with what had been called its extension [Umfang]; but 

the function can also be a relation, etc., and in these cases we can still speak of the 

corresponding course-of-values. Naturally, one is tempted to interpret Frege as 

taking a class to be the course-of-values of F(x) and a class of n-tuples as the 

course-of-values of an n-ary relation. But all he requires is that the course-of-values 

be an object, and that the same object correspond to concepts which apply to ex¬ 

actly the same things. His stipulations make it plainly clear that one can take any 

object whatsoever as the extension of a concept (see [Frege 1893, §§9-10]). 

Frege regarded the introduction of courses-of-values in his system as one of the 

most important innovations he had made. He remarked that not only the cardinal 

numbers, but also the negative, irrational, and in short all numbers have to be de¬ 

fined as concept-extensions [1893, 14]. Without courses-of-values, then, it would 

be impossible to develop his project [op.cit., ix-x], Frege denoted by ‘eO(e)’ the 

1 That can also be presented as a version of Cantor’s definition, according to which a cardinal 
number is a general concept under which equipollent classes fall, but again not faithfully. We can 
here observe how by 1900 set theory was not yet completely extensionalized. 

2 This can be found already in [Frege 1879], but one of the novelties in the meantime was 
precisely the introduction of‘courses-of-values.’ 
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course-of-values of any given function d>(x), and his symbolism allowed always the 

formation of courses-of-values (with only some formal restrictions [op.cit., §9]). 

Thus, the very symbolism incorporated the principle of comprehension, for it put 

no restrictions on the formation of concept-extensions. Frege’s basic law V [1893, 

36, 240] stated that two courses-of-values are identical when the corresponding 

concepts apply to exactly the same objects. In modem notation (and without re¬ 

specting some of Frege’s conventions) we can render it as follows: 

[80(e) = dH^oc)] <-» Vx[d>(x) = T^x)]. 

In words, a generalized equality can always be transformed into an equality of 

courses-of-values, and conversely; this is an analogue of extensionality. Frege an¬ 

ticipated that some authors might object his basic law V because it had not previ¬ 

ously been used by logicians, but he was convinced of its purely logical character 

[1893, vii]. His preface expressed great confidence in his viewpoint as the only 

rigorous one; he even said that nobody would be able to show that his principles 

lead to plainly false conclusions [op.cit., ix, xxvi]. Little did he anticipate the com¬ 

ing of Russell and his paradox; as evident as the above ideas and assumptions 

seemed at the time, Russell’s paradox showed plainly that they were untenable (§2). 

The theory of sets, under some form or another, constituted an integral part of 

all the important works on mathematical logic at the time. The first volume of 

Schroder’s Vorlesungen [1890/95] was a prolix presentation of the Boolean calcu¬ 

lus of classes, on the basis of an auxiliary discipline that he regarded as purely 

mathematical [op.cit., vol. I, 157]: the “identical calculus with domains in a mani¬ 

fold” [identischer Kalkul mit Gebieten einer Mannigfaltigkeit], In fact, this is es¬ 

sentially the Boolean algebra of subsets of a given set, but Schroder did not clarify 

what he understood by a ‘manifold.’1 The calculus of propositions [op.cit., vol. 2] 

was also presented as a particular case of the identical calculus. Schroder’s work 

was very influential, not only through direct followers of note like Lowenheim and 

later Skolem, but also because it was employed by Russell, Peano and Zermelo 

among others.2 It has been emphasized that Schroder’s tradition is responsible for 

the emergence of a metatheoretical approach to logic, and particularly of model 

theory [Goldfarb 1979; Moore 1987], 

Peano spent much effort in creating a precise and concise formal language 

suited for expressing mathematical propositions. The logical language that he 

elaborated from 1888 onwards was a refinement of Boole’s calculus, in which the 

notion of class had a primary role. His careful choice of an adaptable symbolism 

led him to introduce what is essentially the modem logical notation, although his 

treatment of quantification and of relations was imperfect. One of his most impor- 

1 He did establish two interesting requirements on manifolds in order that the identical calcu¬ 
lus become applicable. They must be “consistent” and “pure” [rein; op.cit., vol. 1, 212-13, 248, 
342], 

2 See [Russell 1903; Zermelo 1908], His work led him to some ideas that played a role in the 
history of lattice theory, and stimulated Dedekind to important but not very influential contribu¬ 
tions in this area [Mehrtens 1979], 
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tant contributions was the clear distinction between membership and inclusion, a 

merit he shares with Frege. Peano employed symbols like ‘8,’ ‘z>,’ ‘n,’ ‘u,’ 

among others [Peano 1891; 1908, 3-10], but historians of logic frequently tend to 

forget that, like Boole and many others, he gave a double interpretation of the sym¬ 

bolism, propositional and class-theoretical. ‘zf was read both as the conditional 

and as inclusion, ‘rV as the conjunction and as intersection, ‘e’ was ambiguous 

between a sign of predication and class-membership. Peano accepted the principle 

of comprehension, responsible for the emergence of contradictions, although he 

only relied on it implicitly [1908, 4-5, 9], 

Of the systematic work done by Peano and his collaborators in Formulaire de 

mathematiques, that on the foundations of arithmetic and geometry was the most 

influential.1 2 In the present context, it is particularly important to mention that his 

famous axiomatization of the theory of natural numbers [Peano 1889; 1891] is 

based on the notion of class. In this respect it is exactly like Hilbert’s early axiom 

systems (see §1.1). That is particularly visible in the axiom of induction, which uses 

a sign K for class; translated to modem symbolism, it postulates: 

[heK a 1 e k a ((xeN a xe k) x+ le k)] —> Nc k? 

It is significant that some of Peano’s associates (Vivanti, Gerbaldi, Bettazzi, Burali- 

Forti) published contributions to set theory during the 1890s. 

But soon the most influential logician was Russell, who combined elements 

from the traditions of Peano and Frege with innovations of his own (see [Ro- 

driguez-Consuegra 1991]). Russell’s The Principles of Mathematics [1903] was an 

ambitious review of much previous work on the foundations of mathematics, par¬ 

ticularly of analysis, geometry, and logic.3 The book included many original view¬ 

points, of which the most important is, of course, his work on the paradoxes - or 

contradictions, as he wrote. Russell mixed freely philosophical and mathematical 

considerations, a trait that was to characterize all of his related work. He became 

the herald of the logicistic viewpoint. 

In the Principles, Russell spoke very favorably of the doctrines of Cantor and 

Dedekind. To give a couple of examples, he accepted Dedekind’s theorem of infin¬ 

ity and devoted a chapter to discussing his approach to arithmetic, although Russell 

was not sympathetic to Dedekind’s ordinal and structural conception of numbers 

[Russell 1903, §§234-43 and 338-39]. He also endorsed Cantor’s theories of car¬ 

dinal and ordinal transfinite numbers [op.cit., §§283-98]. As a matter of fact, in the 

preface Russell said that his main debts in mathematical issues were to Cantor and 

Peano.4 

1 On Peano and his school see [Kennedy 1974; Borga, Freguglia & Palladino 1985]. [Ro- 
driguez-Consuegra 1991] discusses carefully his influence on Russell. 

2 keK means that A is a class, or belongs to the class of all classes; N is the set of natural 

numbers. 

3 With particular attention to authors such as Weierstrass, Cantor, Dedekind, von Staudt, 

Pasch, Pieri, Peano, Frege and Schroder. 

4 By the time he wrote this, he was just falling under Frege’s influence; Frege’s work was 
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It has to be noted that it was Russell, not Cantor in his published work, who 

focused on the Cantor Theorem as a central result of great importance. He seems to 

have been the first mathematician who presented it as showing that the set of all 

subsets of S has always a greater cardinality than S itself [op.cit., §§346-47]. Thus, 

it was Russell who formulated it for the first time as a purely set-theoretical result. 

(In Cantor’s version it showed that, given a set S, a certain set of functions has 

greater cardinality, and functions were not taken to be sets.) In the process, Russell 

was the first to emphasize something like the Power Set Axiom. All of this was in 

itself an important contribution, for until then the theorem lay rather forgotten in 

the first annual report of the DMV and its significance had not been clearly grasped. 

Moreover, the Cantor Theorem led Russell to the discovery of his paradox. Thus 

Russell’s early reformulations of previous work were important in the process of 

extensionalization of set theory, although he was never partisan of a purely exten- 

sional conception of classes (see [1903, §§66-79]), and he gradually became more 

and more a Fregean on this account. 

2. The Complex Emergence of the Paradoxes 

The arguments that Cantor found between 1896 and 1899 showed the inadequacy 

of the logical conception of sets defended by Dedekind, Frege, Peano and others. 

Unfortunately he did not publish, and the arguments had to be rediscovered by 

others in a complex and convoluted process. It is plainly false that, as some have 

written, the paradoxes immediately created a stir and attracted the attention of 

mathematicians after the publication of a paper by Burali-Forti [1897], It was only 

in 1903 that it became clear for the mathematical community at large that there was 

trouble with the very notion of set - Russell’s work, The Principles of Mathematics, 

heralded the news. Here I shall just give a schematic account of the process, which 

has been very well studied by other authors.* 1 

In [1897], Burali-Forti published an argument that is formally close to the para¬ 

dox of the class of all ordinal numbers (see §VIII.8). Nevertheless, Burali-Forti 

had misunderstood Cantor’s notion of well-ordered set, and so he did not realize 

that the assumption that Cl is a set leads, by his argument, to a contradiction. In¬ 

stead, he thought the argument applied to a different kind of ordered sets, what he 

called ‘perfectly ordered classes,’ and showed that such sets are not well-ordered 

[Moore & Garciadiego 1981], The Italian mathematician had been close to the 

discovery of the paradox of the largest ordinal, but he missed it due to conceptual 

unclarities. Even when he realized that he had misconstrued Cantor’s definition, he 

saw no contradiction between Cantorian set theory and his work. It would be Rus- 

studied in an appendix. 

1 On this topic see [Grattan-Guinness 1978; Coffa 1979; Moore & Garciadiego 1981; Gar¬ 
ciadiego 1985, 1986, 1992; Moore 1988], For short summaries see [Garciadiego 1994; Moore, 
forthcoming]. 
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sell [1903, 323] who reformulated the argument of Burali-Forti as a contradiction 

and gave it its present name. 

Similarly, Russell himself published in 1901 an argument that is close to the 

paradox of the class n of all alephs (see §VIII.8). But he did not interpret it as 

showing that n cannot be assumed to be a set - at that time he rather thought he had 

shown that there is a very subtle fallacy in Cantor’s proof of the Cantor Theorem. 

Actually, Russell had originally been quite skeptical towards Cantor’s work, and it 

was only gradually that he came to accept it (see [Garciadiego 1992; Moore 1993]). 

By 1902 he regarded the Cantor Theorem as a correct result and thus came to think 

that the notion of set or class had to be essentially refined. He reformulated the 

previous argument as the paradox of the largest cardinal. 
As we see, the earliest publications that are related to the set-theoretic paradoxes 

were far from transmitting the idea that set theory is inconsistent. Moreover, they 

did not cause any great impact, not even when Hilbert indicated, without making 

fuss of it, that it is possible to show that the system of all cardinalities, or the system 

of all alephs, are not “mathematically existing concepts]” [Hilbert 1900, 301], By 

1900 doubts regarding the foundations of set theory were beginning to raise, but 

most authors hoped to be able to find alternative explanations that would leave the 

notion of set unaltered. The reason may be in the fact that the paradoxes of the 

largest ordinal and the largest cardinal elaborated on rather complex notions of 

transfinite set theory. One could thus hope that their source would be found in 

technical details of this particular theory, not in general set theory. 

The situation changed substantially after Russell hit on the paradox that bears 

his name. This had a distinctive character, for it did not employ sophisticated no¬ 

tions of Cantorian set theory - it was based on very simple notions that were then 

generally regarded as basic, purely logical ones: set, the membership relation, all, 

and not. The path which led Russell to his argument is noteworthy, and once more 

it shows how convoluted the whole issue was and how many obscurities sur¬ 

rounded the notion of set at the time. To begin with, in the 1890s Russell had been 

an adherent of idealist philosophy, convinced that in mathematics one always finds 

contradictions. Before formulating his famous paradox, he toyed with several oth¬ 

ers, including the Leibnizian paradox of the largest number [Moore 1988; 1993], In 

the gradual process of abandoning idealism and embracing Cantorism, Russell 

came to be shocked by an apparent paradox. The Cantor Theorem had to be false, 

for it is plainly clear that there is a greatest infinite number, the number of all things 

(remember that classes were taken to be things). Russell was convinced that there 

must be a universal class, a class of everything, and regarded this as a common- 

sense assumption.1 This is how he began to look for a fallacy in the Cantor Theo¬ 

rem. 

1 To Couturat he wrote that if one grants that there is a contradiction in the concept of a class 

of all classes, then the infinite always remains contradictory [Moore & Garciadiego 1981, 327]. 
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In the first half of 1901, Russell engaged in a more detailed analysis of the 

Cantor Theorem. Hoping to find the fallacy, he applied Cantor’s proof to the class 

of all classes, and the method of diagonalization led him to consider the class of all 

classes which are not members of themselves [Coffa 1979]. Let us call this class /?; 

it is defined by R = {x: x g x}, and there is no doubt that the principle of compre¬ 

hension warrants its existence. (In semi-Fregean notation, R = e(££ 8).') By consid¬ 

ering the definition of the Russell set, it is easy to see that 

R e Rif and only if R £ R. 

Using only basic notions and the principle of comprehension, Russell had found 

what we might call an elementary contradiction in the logical theory of classes. 

This went against all expectations that set theory had a secure place in logical the¬ 

ory, and therefore was consistent. 
Even so, Russell must have been unclear what the real significance of his argu¬ 

ment was, for he kept it to himself during a whole year. In June 1902 he finally 

decided to write the masters of logic, Peano and Frege, in order to know their reac¬ 

tion. Frege’s reply was extremely clear: the argument had a fundamental impor¬ 

tance, it cast doubt on the notion of course-of-values (or of concept-extension) and 

showed the inadequacy of his basic law V. By implication it cast doubt on the logi- 

cistic program as a whole [van Heijenoort 1967, 124-28]. This was spelled out 

clearly in the Appendix to volume 2 of his Grundgesetze: 

I cannot see how arithmetic could be given a scientific foundation, how numbers could be 

conceived as logical objects and introduced, if it is not allowed - at least conditionally - to 

go from a concept over to its extension. Can I always speak of the extension of a concept, of 

a class? And if not, how can 1 know the exceptions? Can we always conclude, from the fact 

that the extension of a concept coincides with that of a second one, that every object that 

falls under the first concept also falls under the second?1 2 

Frege immediately began to look for solutions, but it was not long before he came 

to conclude that all such attempts are unnatural, and that the logicistic project had 

failed. By the end of his life he asserted that the paradoxes had “destroyed” set 

theory, and he looked for a geometrical foundation of arithmetic [Frege 1969, 298- 

302], Russell, on the other hand, would be much more optimistic about prospects to 

save Frege’s program (§5). 

1 Frege did not employ a relation of membership. 

2 [Frege 1903, 253]: “Und noch jetzt sehe ich nicht ein, wie die Arithmetik wissenschaftlich 

begriindet werden konne, wie die Zahlen als logische Gegenstande gefasst und in die Betrachtung 

eingefiihrt werden konnen, wenn es nicht - bedingungsweise wenigstens - erlaubt ist, von einem 

Begriffe zu seinern Umfange iiberzugehn. Darf ich immer von dem Umfange eines Begriffes, von 

einer Klasse sprechen? Und wenn nicht, woran erkennt man die Ausnahmefalle? Kann man 

daraus, dass der Umfang eines Begriffes mit dem eines zweiten zusammenfallt, immer schlies- 

sen, dass jederunter den ersten Begriff fallende Gegenstand auch unter den zweiten falle?” 
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After the publications of Frege and Russell, the public became aware of the 

existence of difficulties in the foundations of set theory. The reaction was of course 

different among different groups, as can be seen in the very names given to the 

paradoxes.1 Russell [1903; 1908] preferred the straightforward but severe name 

‘contradictions,’ which is also the one Frege used. It is a purely logical expression 

with no other connotations, but in fact Russell was of the opinion the ‘contradic¬ 

tion’ that bears his name springs directly from common-sense [1903, §104], If so, 

there is something intrinsically wrong in our commonsense assumptions, in our 

logic, as several other authors have also suggested [Quine 1941; Godel 1944], That 

viewpoint is aptly conveyed by the name ‘antinomy,’ which, as Kant used the word 

[1787], indicates an unavoidable contradiction to which our thought leads. It seems 

that Poincare was the first to use ‘antinomy’ in the 1900s [1905/06]; later on the 

term was employed by Zermelo [1908] and popularized in Germany by Fraenkel 

[1928], The softest name is ‘paradox,’ meaning an apparent contradiction (see 

Konig’s quotation at the beginning of this chapter), and suggesting that it is only a 

incorrect formulation of set theory that leads to trouble. Not by chance, it is pres¬ 

ently the most common term. 

Russell thought that, since the contradictions spring from common sense, a deep 

reform of logic would be needed. He was not just interested in safe systems for 

mathematics, but (like Frege) in logic as the universal language [van Heijenoort 

1967a]. Others would think that the problem was a purely mathematical one, that 

the paradoxes were another symptom that recent work had been going along unac¬ 

ceptable lines. In this connection, the paradoxes were just one more element of the 

foundational debate - though, certainly, a powerful one (see §3). Still others 

thought that the paradoxes called for a simultaneous reform of logic and set theory; 

this was the case of Hilbert. 

Hilbert and some members (at least) of his circle had long been prepared for the 

emergence of the paradoxes, since he and Bernstein had first-hand information on 

the topic from Cantor, starting six years earlier. Zermelo had even found the Rus¬ 

sell paradox before Russell himself, but he does not seem to have regarded it as a 

menace to set theory, and he did not even care to publish.2 In 1904 Hilbert stated 

his opinion that paradoxes like Russell’s 

show, it seems to me, that the conceptions and means of investigation prevalent in logic, 

taken in the traditional sense, do not measure up to the rigorous demands that set theory 

imposes. ... a partly simultaneous development of the laws of logic and of arithmetic is 

required if paradoxes are to be avoided.3 

1 I thank Alejandro Garciadiego for calling my attention to this topic. 

2 The fact that he found it by 1900 is well-established by statements of his own, of Hilbert and 
of Husserl: see [Rang & Thomas 1981], also [Zermelo 1908a, 191] and [Peckhaus 1990, 25-26], 

3 [Hilbert 1904], as translated in [van Heijenoort 1967, 131]. 
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The trouble was more in logic than in set theory, taken as a mathematical theory. 

But, at any rate, it was necessary to clarify and systematize the foundations of set 

theory. One needed to rethink it thoroughly, for, unless one wished to embrace the 

full Cantorian Platonism, the only previously available alternative had been to base 

the notion of set upon logic. The task was taken upon himself by Zermelo, who 

solved it in an elegant and quite complete way (§4). 
But the reform of logic, that most people thought necessary, was complicated 

even more by the emergence of new paradoxes after 1904. In 1905, Richard and 

Konig published articles with paradoxes in which the notion of definability is pres¬ 

ent. The simplest of these was discovered by Berry and communicated to Russell: 

“the least ordinal not definable in a finite number of words” has just been defined in 

a finite number of words [Moore, forthcoming]. The Richard paradox [1905] is 

interesting in that it uses Cantor’s diagonal procedure to present what Richard him¬ 

self regarded as a merely apparent contradiction. As regards Konig, in 1904 he tried 

to show that the cardinality of the continuum could not be an aleph (§3), and the 

year after he presented an argument intended to show that it was not well-orderable. 

Assume it is well-ordered, and consider the set of definable ordinals; this must be 

denumerable (since definitions are finite combinations of a finite alphabet), and so 

there are undefinable ordinals. But then, by Well-Ordering, there is “the least un- 

definable ordinal,” a contradiction in terms [Konig 1905], 

As we see, paradoxes of different kinds emerged during a period of about ten 

years. Russell [1908] went on to compile a list of them, including the millenary 

paradox of the liar (or of Epimenides) and indicating that these are only a few out 

of an indefinite number of possible contradictions. He looked for a new system of 

logic in which all of these paradoxes would be solved in a more or less natural way 

(§5). A completely different line of attack was suggested by Peano [1906], who was 

of the opinion that the Richard paradox, and by implication those of Berry and 

Konig, belong to “linguistics,” not to mathematics or logic. Konig’s paradox, for 

instance, can be interpreted as showing that the notion of definability is imprecise 

and relative; it only becomes precise when we assume a well-established formal 

language, with a fixed set of symbols, and then the contradiction disappears. Thus, 

Konig’s paradox does not show that the assumption of a well-ordered continuum is 

contradictory. 

Peano’s long-standing interest in formal languages and awareness of the ambi¬ 

guities of natural language offered him a vantage point from which to judge the 

whole situation and simplify it. His proposal, however, only became common prop¬ 

erty after Ramsey made it again in a paper [1926] that proposed a simplification of 

Russell’s type theory (see §X.3.2). Other apt mathematicians and good thinkers 

tried to revise logic without relying on formal languages, which led them into 

marshy terrain.1 The variety of assumptions, confusions, and suggestions that were 

1 See, e.g., [Konig 1914], which tried to establish a consistent theory of arithmetic and set 
theory on the basis of a “synthetic logic” based on immediate intuition and with psychologistic 
overtones [op.cit., iii-iv]. Still, Konig was deeply acquainted with Cantor’s work and influenced 
by Dedekind and Hilbert. He distinguished many different senses of the word ‘set,’ rejecting 
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made in connection with the paradoxes helps us understand the long and confuse 

debate that followed. As a consequence of this, and of the foundational debate in 

general, a generalized feeling of insecurity prevailed among authors interested in 

foundational questions, lasting up to the 1930s (§X.l). In the end, the paradoxes of 

set theory have probably been the most important argument for the generalized use 

of formal axiom systems and formal logic in mathematics. It was only gradually 

that other advantages of formalization, particularly for metamathematics, became 

clear. 

3. The Axiom of Choice and the Early Foundational Debate 

After the turn of the century the field of set theory was full of activity, as is re¬ 

flected in the fact that since 1905 it was mentioned in chapter 2 of the review jour¬ 

nal Jahrbuch liber die Fortschritte der Mathematik, under the rubric ‘philosophy, 

set theory and pedagogy’ (after 1916 it got a separate chapter, see [Purkert & II- 

gauds 1987, 145]). But the decade of 1900 would also be full of polemics and criti¬ 

cism of set theory. Fortunately, although the polemics created confusion, it did not 

endanger the future of the young branch of mathematics. In any event, all of this 

shows that the mathematical community had reached a high degree of maturity 

regarding set-theoretic questions. 

The so-called foundational crisis is, of course, a very famous episode in the 

history of mathematics. But this is not to say that the related historical facts are 

well-known or properly appreciated. The ‘crisis’ is normally associated with the 

first third of the 20th century, and it is usually taken to have been caused by the set- 

theoretic paradoxes. Both points can be disputed. The paradoxes were an integral 

part of the polemics, but the great excitement and discussion that surrounded set 

theory in the 1900s was not due exclusively or even primarily to them. If we look 

for the most central and enduring topic of the discussion, we shall find that the 

debate was above all about the acceptability of abstract mathematics. The trend to 

abstraction that we have seen unfolding in Part One reached a peak with Zermelo’s 

[1904] proof of Well-Ordering on the basis of the Axiom of Choice. Since many 

found the idea of a well-ordering of IE particularly implausible, Zermelo’s proof 

started a heated debate.* 1 But if we interpret the foundational debate as having to do 

primarily with abstract mathematics, its earliest expression can be found around 

1870, in Kronecker’s objections to Weierstrass (see §§1.5 and IV.4.2). 

extensionality, and advanced toward a notion of ‘Cantorian set’ that allowed him to derive the 

classical theory. 

1 This conception of the debate was first emphasized by Moore [1978; see also 1982]. 



312 IX. Diffusion, Crisis, and Bifurcation 

As we have seen, Hilbert revitalized the question of Well-Ordering by men¬ 

tioning it in the context of the first problem he posed in the 1900 address before the 

Second International Congress of Mathematicians. Four years later, the Third Con¬ 

gress heard the Hungarian Julius Konig deliver a lecture in which he claimed to 

show that the power of the continuum is not an aleph. Cantor himself attended the 

lecture and it is said that, deeply moved, he thanked God tor having allowed him to 

see this refutation of his error.' The alleged proof was quite impressive technically 

and made extensive use of cardinal arithmetic (see [Moore 1982, 86-88]). But 

Konig relied on a proposition that Bernstein had established in his dissertation: 

^a° = Na ' , for every ordinal a. 

On the basis of this lemma and results of his own, Konig showed that the assump¬ 

tion that the cardinality of M. is an aleph (i.e., that it can be well-ordered) leads to 

contradiction. After the Congress ended, a few mathematicians met to discuss 

Konig’s argument; the group included Cantor, Hilbert, Schoenflies and Hausdorff 

(see [Schoenflies 1922, 100-01]). Later that year Hausdorff published a paper 

[1904] casting doubt on Bernstein’s lemma and establishing a correct related result. 

The lemma turns out to be inadequate when a is a limit ordinal, which is the crucial 

case, and so Konig’s refutation of Cantor’s Continuum Hypothesis fails.1 2 Even so, 

Konig’s work was not useless, for his proof can be turned into the result that 

2K° * for any limit ordinal [3 cofinal with to. 

At any rate, the episode at the International Congress had again focused atten¬ 

tion on the Continuum Hypothesis and Well-Ordering. A month and a half after the 

Congress, Zermelo sent a letter to Hilbert for publication in Mathematische Anna- 

len, which presented his proof of the Well-Ordering Theorem. This theorem was a 

crowning achievement, an essential complement to the elementary theory of trans- 

finite cardinals: all infinite cardinalities (the continuum in particular) are alephs, all 

powers are comparable. This, of course, plainly contradicted Konig, who, ironi¬ 

cally, had inadvertently employed in his lecture the Axiom of Choice (AC), which 

was the basis for Zermelo’s proof [Moore 1982, 86]. 

Zermelo was actually the first to present clearly AC and to claim that it is a 

mathematical axiom: 

The preceding proof rests on the assumption that in general there exist coverings y [see 

below], that is, on the principle that even for an infinite totality of sets there always exist 

correlations by which to each set corresponds one of its elements, or formally expressed, that 

1 [Kowalewski 1950, 202], who also reports that the newspapers mentioned the news of 
Konig’s lecture. 

2 Some authors tell the episode differently, following Kowalewski, who in 1950 wrote that 
Zermelo found the error just the day after the lecture [Moore 1982, 87]. But this is contradicted 
by another witness who was close to Hilbert and Zermelo, Schoenflies [1922, 100]. Since the 
only documentary evidence from that early time, Hausdorff s paper, does not mention Zermelo, it 
may well be that Kowalewski misremembered. 
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the product of an infinite totality of sets, each of which contains at least one element, is 

different from zero [the empty set]. Indeed, this logical principle cannot be reduced to a still 

simpler one, but it is unconsciously used in numerous mathematical deductions. So for ex¬ 

ample the general validity of the theorem that the number of parts into which a set is divided 

is less than or equal to the number of its elements, cannot be demonstrated otherwise than by 

thinking that each one of the parts in question is coordinated with one of its elements.1 

By the “product” of an infinite totality Zermelo may have meant the Cartesian 

product, a notion that had not been clearly formulated yet. The idea of employing 

the axiom for the proof was not original of Zermelo; from the beginning [1904, 

139, 141] he acknowledged that it had been suggested to him by a disciple of Hil¬ 

bert, the analyst Erhard Schmidt. 

AC is a prototype of abstract mathematics. It asserts that, given certain sets, 

another exists which in general we are not at all in a position to define explicitly 

(otherwise AC would be avoidable). It is a purely existential postulate of the kind 

that has no role in constructive mathematics. But, in fact, Zermelo was quite right 

in claiming that the principle had been unconsciously used in many mathematical 

deductions. Even future critics of AC had previously used it.2 The earliest cases of 

implicit but essential use found by Moore [1982, 14-16] are in a theorem of Cantor 

on sequential continuity of functions [Heine 1872, 183], and a result of Dedekind 

on modules [1877, 20-21]; one instance belongs to analysis, the other to algebraic 

number theory. The casual use of sequences of arbitrary choices was very wide¬ 

spread around 1900 in the field of analysis. To name a couple of examples, Borel’s 

proof of the so-called Heine-Borel theorem made implicit (but avoidable) use of 

AC; and Lebesgue’s proof that his measure is countably additive relied essentially 

on the axiom [Moore 1982, 65, 69-70]. 

Likewise, several basic results of set theory presuppose the axiom. Such are 

Cantor’s claim that the union of a denumerable family of denumerable sets is de¬ 

numerable, and his theorem that every infinite set has a denumerable subset; both 

require the denumerable form of AC [Moore 1982, 9], Actually, Cantor’s set- 

theoretical work is full of implicit uses of AC [op.cit., 3 Iff). A more explicit case 

was that of Dedekind’s theorem in Zahlen [1888, 384-86] that if there is an injec¬ 

tive mapping from Zn to Z for all n, then Z is infinite. 

Dedekind’s proof revealed quite clearly one way in which the axiom enters it, 

and it almost led to the first public discussion of the axiom [Moore 1982, 22-30]. 

His implicit use of AC was pointed out by a colleague of Peano in Turin, Rodolfo 

Bettazzi, in 1896; Bettazzi questioned as ill-advised the idea of accepting such a 

postulate. In this he had been preceded, and probably influenced, by Peano himself, 

who in 1890 wrote - in the context of a paper on differential equations - that one 

cannot apply infinitely many times an arbitrary rule by which one assigns to a class 

an individual of this class [op.cit., 76]. But another associate of Peano and Turin 

mathematician, Burali-Forti, presented a new postulate on which he based a proof 

1 [Zermelo 1904, 141], as translated by Bauer-Mengelberg, with some changes. 

2 A detailed analysis of implicit uses prior to 1904 is given in [Moore 1982, chap. 1]. 
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of Dedekind’s theorem. The new postulate was a consequence of the denumerable 

form of AC, but it convinced Bettazzi of the correctness of Dedekind’s result and to 

close this short, early discussion. 
The situation was quite different in 1904, because now the axiom had been used 

to establish a result that many thought implausible. Zermelo’s proof implied that 

there is a well-ordering of IR, but most mathematicians were convinced that it is 

impossible to determine effectively such a well-ordering. In the ensuing discussion 

there was a good measure of confusion as to the role of existence results in mathe¬ 

matics. Actually, this discussion and the whole foundational debate have been a 

fundamental contribution to the clarification of the difference between abstract and 

constructive mathematics. While Zermelo’s short contribution only occupied three 

pages, the next volume of Mathematische Annalen (vol. 60, 1905) included four 

papers that polemized against it, and two others that touched on the issue.1 The 

polemic papers were signed by Borel, Jourdain, Bernstein and Schoenflies. It was a 

clear reflection of the controversy that extended throughout Europe, giving rise to 

heated debates in Germany, England, and France [Moore 1982, chap. 2], 

Two noted followers of Cantor objected to Zermelo’s proof because they 

thought it employed principles that led to paradoxes, in particular to the Burali- 

Forti paradox. The proof applied AC to the power set of any set M in order to get a 

well-ordering of M. AC amounts to the existence of a “covering” [Belegung] y that 

to each non-empty subset M' c M assigns a distinguished element y(AO- Consid¬ 

ering certain well-ordered subsets of M that he called y-sets, Zermelo defined a 

well-ordered set Ly as the union of all y-sets.2 3 Finally he showed that Ly = M: he 

reasoned that Ly is clearly a subset of M, and, if they were not equal, M \ Ly would 

have a distinguished element m\ so that Ly u {m'} would be a y-set but not in¬ 

cluded in Ly, which is absurd [Zermelo 1904], The final step, in which Ly is ex¬ 

tended by a new element, raised the suspicions of Bernstein and Schoenflies, since 

the addition of a new element to £2 had given rise to Burali-Forti’s paradox. But the 

new element in Zermelo’s reasoning is already in M? At any rate, in 1908 Zermelo 

presented a new proof of Well-Ordering that dispensed with that method (see §4.1). 

Jourdain claimed to have proved the result earlier and in a simpler way. Fie had 

used certain principles to establish that every set has an aleph as its cardinality. 

Zermelo would later [1908a] analyze obscure points in that proof and indicate that 

Jourdain’s principles, which allow £2, are not sufficient to show that IR is a set. 

1 Konig’s final version of the lecture given the year before, and a paper by Georg Hamel on 
real functions. Only Hamel took the position of openly accepting the axiom. 

2 Zermelo thus relied on the existence of implicitly defined well-ordered subsets of M. This 
peculiar approach may be quite consistent with Cantor’s conception of sets as given with an 
ordering (he regarded pure sets as obtained by abstraction from the nature and ordering of the 
elements of a given set). 

3 Their wrong appreciation of the situation was due to the fact that Bernstein and Schoenflies 
wished to accept the class £2 of all ordinals as a set, so they had to restrict the ‘extension’ of sets. 
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Finally, Borel objected to the axiom itself. His paper had been requested by 

Hilbert as editor of the Annalen, and it now appears as the most important of the 

four. According to Borel, Zermelo had shown the equivalence of the problem of 

Well-Ordering and the problem of choosing a distinguished element from each 

subset of M. But he had not advanced a single step toward solving the second ques¬ 

tion, which seemed to him a most difficult one in cases such as that of the contin¬ 

uum [Moore 1982, 93]. In his view, any argument that assumes uncountably many 

arbitrary choices was outside the domain of mathematics [op.cit., 85], His skepti¬ 

cism was due to the fact that Borel was asking for an effective definition of a well¬ 

ordering of US.. His paper circulated among several first-rate French mathematicians 

and originated a very interesting discussion. The letters between Hadamard, Borel, 

Baire and Lebesgue were published in that same year [Hadamard et al. 1905]. 

Borel, Baire and Lebesgue were distinguished French mathematicians who 

worked all on real functions. In their work they made extensive use of notions of 

point-set theory, along the lines of Jordan (§1), and they relied implicitly on AC or 

used results that were dependent on AC [Moore 1982, 64-70], But when it came to 

confront the axiom directly, their affinity to constructivism became clear and they 

objected to it.1 The key idea is that a mathematical notion (e.g., a function or a set) 

does not truly exist unless it has been finitely defined by means of characteristic 

properties, in the sense that one has determined a rule which allows its explicit 

construction. When the notion embraces only finitely many cases, one can sidestep 

this requirement and think that it is in principle possible to comply with it, but the 

situation changes essentially in the infinite case. As we see, the three French 

mathematicians were close to the viewpoint of Kronecker, as comes out explicitly 

in the following letter of Lebesgue: 

if we wish to regard Zermelo’s argument as completely general, it must be granted that we 

are speaking about an infinity of choices whose power may be very large; furthermore, no 

law is given for this infinity, no law for any of the choices. We do not know if it is possible 

to name a rule defining a set of choices having the power of the set of the [subsets] Mwe 

do not know if it is possible, given an M', to name a [distinguished element] m 

In sum, when I scrutinize Zermelo’s argument, I find it, like many other general argu¬ 

ments about sets, too little Kroneckerian to have meaning (of course, only as an existence 

theorem ...).2 

Lebesgue himself noted that in his doctoral thesis he had proved the existence of a 

measurable set that is not Borel-measurable, although he continued to doubt that 

any such set can be named. Under these conditions, it was not legitimate to base an 

argument on the assumption that such a set is given. 

1 French mathematics had been less prone to abstraction than German mathematics through¬ 

out the 19th century. 

2 [Hadamard et al. 1905, 267], as translated in [Moore 1982, appendix, 316] with minor 

changes. 
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Of all them, Hadamard was the only decided partisan of abstract mathematics 

and set theory. It seemed totally correct to him, and useful, to speak of the existence 

of an object without being able to name it explicitly. He wrote: 

there are two conceptions of mathematics, two mentalities, in evidence. After all that has 

been said up to this point, I do not see any reason for changing mine. I do not mean to im¬ 

pose it. ... 

I believe that in essence the debate is the same as the one which arose between Riemann 

and his predecessors over the notion of function. The rule that Lebesgue demands appears to 

me to resemble closely the analytic expression on which Riemann’s adversaries insisted so 

strongly. And even an analytic expression that is not too unusual. [Footnote:] It seems to me 

that the truly essential progress in mathematics, from the very invention of the infinitesimal 

Calculus, has resulted from successively annexing notions which, some for the Greeks, some 

for the Renaissance geometers or the predecessors of Riemann, were ‘outside mathematics’ 

because it was impossible to describe them.1 

In later years, the abstract approach won the field, not least due to the influence of 

Gottingen and Hilbert’s authority, in spite of strong criticism on the side of intui- 

tionists and constructivists, which led to frictions and even ruptures in the 1920s 

[Mehrtens 1990; van Dalen 1995], 

To Hilbert, ‘existence’ simply meant non-contradictoriness: whenever an axiom 

system is consistent, we are entitled to regard the set of objects it describes as ex¬ 

isting. One is tempted to translate this into the slogan - mathematical existence is 

nothing but logical possibility. In the end, the mathematical community has come 

to acknowledge, more or less consciously, that the two approaches - abstract and 

constructivist - offer valuable results and constitute important parts of mathematics. 

Hadamard’s ‘two mentalities’ have come to coexist peacefully and complement 
each other. 

One must add that the foundational debate in the 1900s and later was considera¬ 

bly confuse and involved, because several different issues coalesced around it. All 

kinds of arguments and positions were exposed by the participants. Poincare, for 

example, was primarily intent on refuting logicism and showing that some kind of 

intuition is an essential element in mathematics [Poincare 1905/06, Goldfarb 1988]; 

he made a key point of the paradoxes or ‘antinomies’ (§2). The reader should take 

into account that many other secondary figures entered the debate, making it con¬ 

siderably difficult for anybody to reach a conclusion and adopt a coherent and well- 

argued standpoint. The issues under debate included the paradoxes and the proper 

conception of logic, the role of natural vs. formal language, and the proper concep¬ 

tion of mathematics, including the role of existence results and constructive meth¬ 

ods in it. Different authors assigned quite different weights to each of them. Zer- 

melo came to the conclusion that it was urgent to axiomatize set theory in order to 
clarify the situation. 

1 [Hadamard et al. 1905, 270], as translated in [Moore 1982, appendix, 318] with minor 
changes. 
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4. The Early Work of Zermelo 

Although some elements of modem axiomatic set theory only emerged in the 1920s 

and 1930s, one can safely say that Zermelo’s work represents the coming of age of 

the theory. The elements of the Cantorian edifice are rounded off, the viewpoints of 

Cantor and Dedekind are intertwined, and a rather precise system of axioms is 

proposed that allows recovery of their main results without contradictions. A good 

starting point for overcoming the foundational crisis is thus found. 

Ernst Zermelo went to Gottingen in 1897, after studying mainly at Berlin and 

working three years as an assistant to Planck at the Institute of Theoretical Physics.1 

His early reputation was as an expert in applied mathematics and theoretical phys¬ 

ics, but then he fell under the influence of Hilbert, who became a most important 

support for his career and brought changes in his field of activity: 

Thirty years ago, when I was a Privatdozent at Gottingen, 1 came under the influence of D. 

Hilbert, to whom 1 am certainly the most indebted for my scientific development, and I 

began to occupy myself with the foundational questions of mathematics, especially with the 

fundamental problems of Cantorian set theory, whose full significance became conscious to 

me only then, through the extremely fruitful collaboration of the Gottingen mathematicians.2 

In 1900/01 Zermelo gave a lecture course on set theory, following closely Cantor’s 

Beitrdge, by which time he independently discovered the Russell paradox. He 

seems to have viewed it as showing merely that any set which contains all of its 

subsets as elements is self-contradictory; the set of all sets is an example [Rang & 

Thomas 1981]. In 1902 he published a paper on the addition of transfinite cardi¬ 

nals, and the following year he discussed Frege’s theory of number, in comparison 

with those of Dedekind and Cantor, before the Gottingen Mathematical Society 

[Moore 1982, 89-90]. But it seems clear that the main motivation for his later con¬ 

centration on foundational issues was the controversy generated by his proof of the 

Well-Ordering theorem. 

To confront the critics, Zermelo thought it necessary to make explicit an axio¬ 

matic framework that would be sufficient to rescue Cantorian set theory and derive 

his own theorem, and that at the same time avoided the known paradoxes. From 

about 1905 he focused on this kind of question and quickly became convinced that 

he could overcome all criticisms [Peckhaus 1990, 29-30]. Until then, Zermelo had 

based his work mainly on Cantor’s, as is clearly visible from his 1904 proof (§3), 

e.g. in his use of the notion of ‘covering.’ After 1905 he developed an interest in 

1 For biographical data see [Peckhaus 1990, 77ff]. 

2 [Moore 1980, 130; Peckhaus 1990, 82]: “Schon vor 30 Jahren, als ich Privatdozent in Got¬ 
tingen war, begann ich unter dem Einflusse D. Hilberts, dem ich tiberhaupt das meiste in meiner 
wissenschaftlichen Entwickelung zu verdanken habe, mich mit den Grundlagenfragen der 
Mathematik zu beschiiftigen, insbesondere aber mit den grundlegenden Problemen der Cantor- 
schen Mengenlehre, die mir in der damals so fruchtbaren Zusammenarbeit der Gottinger Mathe- 
matiker erst in ihrer vollen Bedeutung zum Bewusstsein kamen.” 
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the foundations of number and studied in detail Dedekind’s work.1 This is clearly 

visible in his papers of 1908, which make explicit reference to Dedekind and em¬ 

ploy his notions and results. The papers were written in 1907, with just a few days 

distance, and they are closely linked to each other [Moore 1978]. As Moore has 

emphasized, it is quite clear that the paradoxes were not his main motivation for 

undertaking the work, although of course he had to confront them. Zermelo’s 

axiomatization was a rather decisive solution to the problems, but it took a long 

time before this came to be generally acknowledged. 

4.1. Defense of the Well-Ordering theorem. Zermelo’s theorem was a very 

important result that complemented the elementary theory of transfinite numbers, 

showing that all infinite cardinalities are alephs. But it found a negative reception, 

at least among the authors who decided to publish their views on the subject. Only 

Hadamard clearly favored it, and it was certainly strong support since Hadamard 

was one of the leaders of French mathematics. But his most influential compatriot, 

Poincare [1905/06], criticized the proof in a subtle way. Russell, who found a form 

of AC independently in 1904 [Grattan-Guinness 1972, 107], remained skeptical of 

it. Fortunately for Zermelo, Hilbert himself stood on his side on the matter, but only 

privately or in letters.2 It was thus imperative to come up again with a defense of 

the axiom and the proof, as Zermelo did in 1908. 

To well-order a set M by means of AC, as Erhardt Schmidt suggested, one 

needs to apply the axiom to the power set p(M). This step is employed in both of 

Zermelo’s proofs, but the second was simpler in that it avoided bringing into the 

picture well-ordered subsets of M. It defined explicitly a well-ordering of M on the 

basis of AC and p(M), using only simple set-operations. Moreover, its axiomatic 
assumptions were clearly laid out. 

The Axiom of Choice implies that, for each set M, there exists a choice func¬ 

tion, an arbitrary (non-injective) mapping 0: @(M) -» M, such that 0(5) e 5 for 

non-empty subsets 5 of M. Intuitively, it is easy to see that, on the basis of that 

mapping, one should be able to define a well-ordering of M. We start with Q(M) = 

m0; now, we consider Sj = M \ {m0}, and take 0(5/) = my, we proceed to S2 = Sj\ 

{mj}, taking Q(S2) = m2; and so on until we exhaust M. Since by definition 0(5) e 

5, the elements m(), mj, ... are different from each other and we obtain a well¬ 

ordering. But the difficulty lies in avoiding the imprecise traits of this sketch of a 
proof. 

First, it is unclear whether we can successively ‘choose’ the required elements; 

Zermelo replaces that imprecise notion by an abstract postulate that implies the 

existence of a simultaneous choice for p(Af). The word ‘choice’ itself is employed 

merely because it suggests the above intuitive notion, but it does not really convey 

what is going on. Second, it is necessary to define abstractly all of the subsets of M 

1 For further details on this point, see [Peckhaus 1991, 90-97], which offers numerous quota¬ 
tions from Zermelo’s manuscripts and letters to Hilbert. 

2 See his 1905 letter to Hurwitz, in [Dugac 1976, 271] or [Moore 1982, 109], 
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that will be needed, without making appeal to the transfinite ordinals. Otherwise 

one might have to resort to the class of ordinals f2, as Cantor had done, which 

would throw doubts regarding the reliability of the proof. Zermelo’s proof avoids 

employing ‘inconsistent sets’ or any other dubious notion. 

Zermelo found the key for solving the second point in Dedekind’s notion of 

chain, which he generalized to the transfinite case by using a customary method of 

definition. This kind of approach had already been taken by Hessenberg in an im¬ 

portant paper on the ‘Basic Notions of Set Theory’ [1906] that included the first 

careful development of the theory of ordered sets. Zermelo wrote that his procedure 

was modeled upon Dedekind’s theory of chains, and for the rest was customary in 

set theory [Zermelo 1908a, 190]. He could not use Dedekind’s chain theory di¬ 

rectly, since this was restricted to sets of type co. (The well-ordering of a transfinite 

set M cannot be described by means of a mapping cp: M —» M. Some elements of M 

will play the role of limit ordinals (co, <n+ oo, ...) and they will lack an immediate 

predecessor; thus such ‘limit elements’ cannot be characterized as the images of a 

preceding element.) 

Zermelo sidestepped the problem by means of a clever reconceptualization of 

the notion of order. Determining a total order among the elements of a set amounts 

to the same as associating to each one of the elements m a remainder Rm, i.e., the 

set of all its successors. Now, the order among the elements m can be characterized 

in terms of the generalized chain of their remainders Rm, which enables one to 

apply the viewpoint directly to the transfinite case by using the following definition 

[Zermelo 1908a, 184-85],1 A subsets of p(M) (i.e., a set of subsets of M) is a “0- 

chain” if and only if 

(a) if S e K, then S' = S \ 0(S) also belongs to K, and 

(,b) for every subset A = {S, T, ...} c K, its intersection n A e K. 

Condition (a) guarantees the step from S to S', so that we reach any S’1 but not A®; 

condition (b) is the key to ensure such transfinite steps to ‘limit elements.’ Thus, 

Zermelo’s generalized chains not only resemble Dedekind’s theory, but their defi¬ 

nition employs the characteristic idea that Cantor used for defining, e.g., derived 

sets of limit order. This is a graphic example of how the theories of both mathema¬ 

ticians were synthesized by Zermelo. 
Analogously to Dedekind’s definition of the chain of a set, Zermelo now con¬ 

siders the intersection of all 0-chains K to which M belongs, which is a new 0- 

chain M (= 0O(M), t0 use Dedekind’s notation). M is the set that we needed to 

define a well-ordering of M. Without getting too much into details, it will be clear 

that, in virtue of the definition of M, we have a one-to-one mapping 0: M -» M. 

11 introduce a minor modification in Zermelo’s definition to make it strictly parallel to Dede¬ 
kind’s. This makes it more general, since Zermelo included right away a condition (c) that M e K. 
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Every element me M is the image of a set in M that can be regarded as its remain¬ 

der Rm. And M is well-ordered by reverse inclusion, 3, its first element being M. 

Thus the one-to-one mapping 0 induces a well-ordering on M. 

Zermelo’s new proof was regarded as classical. A clear exposition of it can be 

found in Hausdorffs great handbook [1914, 136-38]. Hausdorff had actually been 

one of the few mathematicians who employed AC for obtaining original results in 

his work on order types (see §6).' Yet the most important early application occurred 

in Steinitz’ pathbreaking work on abstract field theory [1910]. Steinitz’ work was 

of fundamental importance for future research on ‘modem algebra,’ and he made 

explicit use of AC in order to prove, among other things, that any commutative 

field has a unique algebraic closure (up to isomorphism). Discussing this in the 

introduction to his article, he wrote: 

Many mathematicians sill stand opposed to the Axiom of Choice. With the increasing recog¬ 

nition that there are questions in mathematics which cannot be decided without this axiom, 

the resistance to it must increasingly disappear. On the other hand, in the interest of purity of 

method it seems expedient to avoid the above-named axiom in so far as the nature of the 

question does not require its use.* 2 

Here he proposed an attitude that was also being followed by Russell and Zermelo 

himself: the axiom was avoided whenever possible, and the dependence of other 

results on it was carefully investigated and clearly stated. This kind of approach 

was carried on with particular interest by Sierpitiski, who published in 1918 a 

lengthy survey on the role of AC in set theory and analysis [Moore 1982, chap 4], 

With his work, mathematicians started to become aware of how deeply analysis, 

and particularly the work of the French school, depended on the axiom. 

4.2. Axiomatization of “the theory created by Cantor and Dedekind.” By 1906 

Zermelo had established the general plan for his axiomatization, which was pub¬ 

lished in 1908. The programmatic statement that opens his paper is noteworthy: 

In the present paper I intend to show that the whole theory created by G. Cantor and R. 

Dedekind can be reduced to a few definitions and seven ‘principles’ or ‘axioms,’ apparently 

independent among themselves.3 

It turned out to be a fundamental contribution, the basis for what has been the gen¬ 

erally accepted approach to set theory since the 1920s, particularly in the second 

half of the 20th century. The axiom system was built with the aims of reconstruct¬ 

ing Zermelo’s own proof of Well-Ordering, Dedekind’s theory of finite sets and 

natural numbers, and Cantor’s theory of transfinite sets, their cardinalities and order 

For other cases in different areas, like Hamel and Vitali, see [Moore 1982, 100-01, 112]. 

2 [Steinitz 1910, 170-71], as translated in [Moore 1982, 172], 

3 [Zermelo 1908], as translated by Stefan Bauer-Mengelberg in [van Heijenoort 1967, 200], 
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types (see [1908, 201; 1908a, 189]). In the years 1908 and 1909 Zermelo published 

articles that showed how the system was well adapted for these purposes. His con¬ 

tributions synthesized the work of Cantor and Dedekind both at the level of goals 

and methods, and started developing their heritage. 

[Zermelo 1908] starts by presenting set theory as the branch of mathematics that 

investigates the fundamental notions of number, order, and function, thus develop¬ 

ing the “logical foundations” of all of arithmetic and analysis.1 But the existence of 

this discipline seems threatened by certain contradictions that “can be derived from 

its principles - principles necessarily governing our thinking, it seems.” The “Rus¬ 

sell antinomy” of the set of all sets that do not belong to themselves has the conse¬ 

quence that 

it no longer seems admissible today to assign to an arbitrary logically definable notion a set, 

or class, as its extension.2 

The author is thus very explicit in locating the key responsible for the emergence of 

contradictions in the traditional connection between concepts and sets - the princi¬ 

ple of comprehension, that played such an important role in the first 50 years of 

development of the set-theoretic viewpoint. 

For this reason, Zermelo goes on, Cantor’s definition of set has to be restricted, 

but it has not been possible to replace it by another definition that is as simple.3 

Under these circumstances there is at this point nothing left for us to do but to proceed in the 

opposite direction and, starting from set theory as it is historically given, to seek out the 

principles required for establishing the foundations of this mathematical discipline. [1908, 

200] 

Axiomatization was assuming a key methodological role in mathematics, for in¬ 

stance with Peano, and most influentially with Hilbert and his circle. Taking this 

lead, Zermelo looked for a system of principles sufficiently restricted to exclude all 

contradictions and, on the other hand, sufficiently wide to retain all that is valuable 

in set theory. His paper intends to show that the entire theory of Cantor and Dede¬ 

kind “can be reduced to a few definitions and seven principles, or axioms.” 

In analogy with chapter I of Hilbert’s Grundlagen [1930] (first edn. 1899, sec¬ 

ond 1903), Zermelo postulates a “domain 23 of individuals” among which are the 

sets and also urelements (non-set individuals). There is only one “fundamental 

relation” that is specific of set theory: membership, denoted by ‘£.’ An object b of 

the domain is called a set if and (except for the empty set) only if it has an element 

1 The expression ‘logical foundations’ is ambivalent, since it can be taken (or not) to mean 

that the foundations of mathematics are purely logical. 

2 [Zermelo 1908], as translated in [van Heijenoort 1967, 200], 

3 As we have seen (§VI1I.8) Cantor’s intention had been to exclude ‘inconsistent sets’ by em¬ 
phasizing the ‘collection into a whole’ of the elements. But in the absence of a more detailed 
explanation and development, his attempt was not even noticed by Zermelo and others. 
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a, so that a e b [1908, 201], The axioms postulate some conditions that must be 

valid for the fundamental relations among objects of the domain:1 

I. Axiom of “Determinacy” [Bestimmtheit]. If every element of M is an element 

of N and vice versa, then M = N. Every set is fully determined by its ele¬ 

ments.2 

II. Axiom of Elementary Sets [Elementarmengen], There is a (fictitious) set, the 

empty set, which Zermelo denotes ‘0.’ Given any two objects of the domain 

a, b, there exist the sets {a} and {a, b}. 

III. Axiom of Separation [Aussonderung], “Whenever the class-statement3 (£(x) is 

definite for all elements of a set M, M possesses a subset Mg containing as 

elements precisely those elements x of M for which (5(x) is true.” 

IV. Axiom of the Power Set [Potenzmenge], To every set T there corresponds 

another set IfT [p(7)j, called the power set of T, that contains as elements 

precisely all subsets of T. 

V. Axiom of Union [Vereinigung]. To every set T there corresponds another set 

[u7], called the union of T, whose elements are precisely all elements of 

elements of T. 

VI. Axiom of Choice [Auswahl].4 “If T is a set whose elements all are sets that are 

different from 0 [0] and mutually disjoint, its union 6T includes at least one 

subset Sj having one and only one element in common with each element of 
rp 55 

VII. Axiom of Infinity [des Unendlichen].5 There is in the domain at least one set 

Z such that 0 £ Z and that is so constituted that if a £ Z, then {a} £ Z. 

A particular difficulty is posed by Axiom III, which Zermelo presents as “in a 

sense” furnishing an adequate substitute for the general definition of set, by which 

he probably means the principle of comprehension. It embodies Zermelo’s response 

to the different paradoxes, where, following Hessenberg [1906, chap. 23 and 24], 

he distinguishes the purely set-theoretic [“ultrafinite”] paradoxes from those that 

have to do with definability and the like [Zermelo 1908, 202], The set-theoretic 

paradoxes are avoided by the expedient that Axiom III can never be used to define 

a set independently, it only serves to define a subset of a previously given set. This 

1 [Zermelo 1908, 201-04], as translated by S. Bauer-Mengelberg in [van Heijenoort 1967], 

2 This is the principle of extensionality, which had been indicated by Dedekind and, perhaps 
not so clearly, by Cantor. 

3 By ‘class-statement’ Zermelo means a logical condition in one variable, i.e., what Russell 
was calling a propositional function. 

4 The axiom is fonnulated for a family of disjoint sets in order to make it simple and more 
intuitive. 

5 Zermelo indicates that this axiom is esentially due to Dedekind. Indeed, he simply postulates 
a set that is infinite according to Dedekind’s definition, the relevant mapping being a -> {a}. 
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excludes the ‘set of all sets’ and the ‘set of all ordinal numbers.’ In fact, the princi¬ 

ple of comprehension can be interpreted as Axiom III applied to the assumption of 

a ‘universal set.’ But Zermelo turns the Russell paradox into proof by reductio ad 

absurdum that such a set does not exist. This means that “the domain 2$ is not itself 

a set,” which disposes of the “Russell antinomy” as far as Zermelo is concerned 
[1908, 203], 

The solution to the second kind of paradoxes depends on the introduction of the 

notion of a “definite” assertion or class-statement. He writes: 

A question or assertion @ is said to be definite if the fundamental relations of the domain, by 

means of the axioms and the universally valid laws of logic, determine without arbitrariness 

whether it holds or not. Likewise a “class-statement” £(x), in which the variable term x 

ranges over all individuals of a class is said to be definite if it is definite for each single 

individual x of the class 5L1 

There is a certain amount of ambiguity in this definition, which enters when Zer¬ 

melo refers to the ‘universally valid laws of logic’ and with his reference to a 

‘class.’ As he would remark years later [1929, 340], at the time there was no gener¬ 

ally accepted system of logic, so he could not base this part of the system on readily 

available work. Nor could he have made an explicit proposal of his own without 

entering into a full discussion of mathematical logic. His solution was pragmatic, 

but in my opinion a very clever and adequate one. The path to be followed was 

clearly indicated: he suggests that acceptable statements are those built from no¬ 

tions of mathematical logic and the fundamental relation ‘e’ (or at the most new 

notions defined from these); and he calls such statements “definite” if and only if 

logical laws and the set-theoretic axioms, taken together, determine without arbi¬ 

trariness whether the statement is true or false. The issue would be further clarified 

with the subsequent development of logical theory (see §§X.5, XI. 1 and XI.5). 

As Hessenberg noted [1909, 90], Axioms II and VII establish the simplest cases 

of finite and infinite sets, while IV and V allow us to ascend to all of the finite and 

infinite cardinalities.2 Axioms IV, VI, and VII have a purely existential character 

that is noteworthy. The Axiom of Infinity did not give rise to polemics (except for 

strict constructivists) because it was so deeply ingrained in the traditional orienta¬ 

tion of mathematics, for instance in analysis. The Power Set Axiom is an extremely 

powerful instrument, but only Baire took the step of denouncing it [Hadamard et al. 

1905, 264; Moore 1982, 313]. This is probably because it seems intuitive enough as 

an assumption about sets. 
While presenting the axioms, Zermelo proceeded to establish some simple con¬ 

sequences of them, and then he went on to develop in full detail the “theory of 

equivalence” [1908, 205-15]. Axiomatization normally implies some measure of 

1 [Zermelo 1908], as translated in [van Heijenoort 1967, 201], with a small change to accom¬ 

modate the word ‘Klassenaussage.’ 

2 This is not quite true, for (not to mention large cardinals) cannot yet be reached, see 

§XI.l. 
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artificiality. Zermelo was not able to define in a natural way the notion of mapping, 

nor Cantor’s cardinal numbers. He decided to dispense with Cantor’s numbers 

completely and to work directly with abstract sets. This was a high price to pay for 

axiomatic security, and in the 1920s von Neumann showed how to recover a certain 

degree of naturalness in the axiomatic setting.1 As regards the other notion, Zer¬ 

melo lacked ordered pairs, since means for defining the ordered pair within pure set 

theory were not yet known. But he was able to define a [Cartesian] “product” of a 

family of sets [1908, 204] and to find a partial substitute for mappings, one that 

worked only with disjoint sets [op.cit., 205].2 
Despite these inconveniences, his treatment of cardinal equivalence was mas¬ 

terly. He established the Cantor-Bemstein equivalence theorem, essentially as 

Dedekind had done twenty years earlier [op.cit., 208-09], proved the Cantor Theo¬ 

rem that every set is of lower cardinality than its power set [op.cit., 211-12], and 

demonstrated a very general theorem on cardinalities to which Fraenkel gave Zer- 

melo’s name.3 Finally, he proved that the number sequence, which he had previ¬ 

ously defined, is infinite, and (on the basis of AC) that every infinite set contains a 

denumerably infinite subset [op.cit., 214-15]. 

Zermelo planned to publish a sequel to his axiomatization, developing the the¬ 

ory of well-ordered sets and its application to finite sets and the principles of arith¬ 

metic [1908, 201]. He did not come to publish this work, except for the part that 

had to do with finite sets and mathematical induction. He treated the topic in [1909] 

polemizing with Poincare; this constituted his version of Dedekind’s theory. As for 

well-ordered sets, his second proof [1908a] of Well-Ordering contained enough to 

suggest how he would have treated the subject, and there was also the previous 

work of Hessenberg [1906]. Thus, he could be more than reasonably confident that 

his axiom system was sufficient for a development of all the essentials of abstract 

set theory. 

It is certainly true that Zermelo’s motivation for axiomatizing set theory came 

mainly from the polemics surrounding his 1904 theorem, and that his axiom system 

was in good measure the outcome of analyzing the postulates needed to frame his 

proof of Well-Ordering [Moore 1982, 142-60], But one should not overemphasize 

that, at least not to the extent of forgetting that Zermelo analyzed extensively the 

work of Cantor and Dedekind (at least since 1900 and 1905, respectively). His 

axiom system was not a hodgepodge of principles extracted from a single proof and 

gathered without any clear underlying conception. They could well involve some 

measure of arbitrariness, but they were the result of careful analysis of “set theory 

at it [was] historically given.” Thus it is not surprising that they have fared so well 

in the subsequent development of the theory. 

1 Around 1915, Zermelo himself was also working on an axiomatic definition of the ordinal 
numbers, see §XI.2. 

2 He was thus forced to prove that, given sets M and N, there exists another set M‘ equivalent 
to M and disjoint from N [op.cit., 206]. 

3 This [op.cit., 212] was a generalization of Konig’s inequality, as Zermelo went on to notice. 
Of course, he formulated it for abstract sets, not for cardinal numbers. 
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5. Russell's Theory of Types 

Russell had been one of the authors who formulated most clearly the ‘naive’ theory 

of sets or classes, i.e., the theory based on the principle of comprehension. This 

remained for him an inevitable component of any possible theory of classes, as we 

shall see. Likewise, he remained convinced that common sense leads us to assume 

the existence of a universal class, and of a complement for any existing class.1 But 

the paradoxes had shown that common sense is contradictory - ’’common sense is 

bankrupt, for it wound up in contradiction,” wrote Quine [1941, 153], It was 

obligatory to give up some common-sense logical hypothesis [Russell 1903, §105]. 

Even so, Russell remained optimistic as to the prospects of logicism, and so he 

looked for a solution that would save as much as possible from the Fregean ap¬ 

proach (see [Whitehead & Russell 1910, viii]). In essence, his solution was to cling 

to the principle of comprehension, restricting it by the severe conditions of type 

theory. 

5.1. The way to type theory. Appendix B to Russell’s Principles [1903] con¬ 

tained the first exposition of the doctrine of types, as an attempt to solve the contra¬ 

dictions. As a matter of fact, one can find here simple type theory, but in a very 

rough version. As Russell presents the idea, every propositional function cp(x) has a 

range of meaning, i.e., a “type,” understood as the class of all objects for which 

cp(x) is a meaningful (true or false) proposition [1903, §497], Thus we have a type 

of individuals, a type of classes of individuals, a type of classes of classes of indi¬ 

viduals, and so on. But several traits differentiate this early version from the later, 

mature one. First, and most important, we find here a conflation of types with 

classes, which is dangerous for the theory. As a matter of fact, Russell was willing 

to accept a “range of all ranges” or type of all types, but this brings new paradoxes 

into the picture [op.cit., §§498-500], Apparently, it was only much later that he 

finally gave up the idea of universal class.2 

Second, the theory is complicated because Russell thinks that a progression of 

types starts with each different kind of object [1903, §§497-98], and back in 1903 

•he regarded individuals, ordered pairs, propositions, and numbers (at least) as dif¬ 

ferent kinds of objects. Even if we reduce this proliferation of objects to the usual 

ones among logicians, individuals, classes and relations, the theory remains com¬ 

plex. From ordered pairs we proceed to classes of relations (extensional relations), 

but also to relations of relations, etc. Therefore, instead of a simple hierarchy, we 

have a branched tree of types. This problem was to remain so long as relations were 

not reduced to sets (§X.3.1); it can still be found in Principia Mathematica. But the 

1 Thus, Boolean algebra should apply to the whole universe of classes, not just to the subsets 

of a given set. 

2 Perhaps his unwillingness to do so was one of the reasons why he abandoned the theory of 

types for a few years. 
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theory in PM is much more complex yet, for after 1906 Russell adopted the vicious 

circle principle as his basic guiding principle in response to the paradoxes of all 

kinds. This led to ramified type theory. 
In [1906], written late in the previous year, Russell returned to the problem of 

the paradoxes, from which he concluded that a propositional function of one vari¬ 

able does not determine a class. The problem was now to determine when such a 

function determines a class, when, as he said, it is “predicative.” He proposed three 

different possible approaches, none of which coincides with type theory. First, what 

he called a “zig-zag theory,” which would admit as classes the extensions of some 

“fairly simple” propositional functions, but not of “complicated and recondite” 

ones. This would preserve two traits of the naive theory of classes that Russell 

regarded as natural: there would be a class of all classes, and each class would have 

a complement. But he found it difficult to implement this idea, in particular to char¬ 

acterize the ‘sufficiently simple’ propositional functions.1 A second approach 

would be a theory of “limitation of size,” which would ban those classes that are 

‘too big,’ particularly the “class of all entities.” Russell mentioned a previous at¬ 

tempt in this direction by Phillip Jourdain. This would make it possible to preserve 

much of Cantor’s work, but Russell found it imprecise, since it was unclear where 

exactly to put the limit, how far up the series of ordinals it is legitimate to go. 

(Zermelo set theory has frequently been called a theory of limitation of size, even 

by important set-theorists like Fraenkel and Bemays; in my opinion, however, that 

characterization is not very apt.2) Finally, there was a third approach, the most radi¬ 

cal: a “no-classes theory,” where classes and relations are “banished altogether” and 

one operates directly with propositional functions. Russell believed that this would 

require abandoning much of Cantor, but he preferred it because it seemed the most 

secure way out of the paradoxes [1906, 45-57]. 

In September 1906 Russell returned again to the theory of types, which he com¬ 

bined with elements from the no-classes view, but particularly with a new basic 

idea that he regarded as the key to solving the paradoxes - the vicious circle princi¬ 

ple. This novelty seems to have been an outcome of Poincare’s debate with Coutu- 

rat and Russell, among others, on the foundations of mathematics and the para¬ 

doxes. Poincare [1905/06] was above all interested in questioning the logicist pro¬ 

gram, affirming the key role of intuition in mathematics, and vindicating Kant’s 

philosophy of mathematics.3 But in the course of his work he proposed notions that 

would play an extremely important technical role in logic. This happens in the third 

part of his ‘Mathematics and Logic,’ published in 1906, precisely in response to 

1 Some authors have argued that Quine’s systems NF and ML are closest to being a zig-zag 

theory (see [Fraenkel, Bar-Hillel & Levy 1973; Ullian 1986; Wang 1986], For a discussion of 

Quine’s systems in the historical context of set theory and logicism, see [Ferreiros 1997]. 

2 The ZF system seems to be compatible with postulating sizes as big as one wishes. The view 

that the system implements a ‘limitation of size’ will only appeal, it seems, to those who regard 

the universal class as natural, and who are foreign to the notion of the cumulative hierarchy. 

3 On this topic, see [Goldfarb 1988]. 
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Russell’s paper [1906] mentioned above. Poincare focuses on the “Cantorian an¬ 

tinomies,” of which he emphasizes those of Burali-Forti, Zermelo-Konig, and 

Richard. After discussing Russell’s three ways out of the paradoxes, he proposes 

that the Richard paradox suggests the solution to all of the problems [Poincare 

1905/06, 1063], As Richard himself had indicated, the paradox was due to a vicious 

circle: once we take as given the class E of finitely definable decimals, it becomes 

possible to define a new decimal finitely. But this new number should not be taken 

to belong to E; in later terminology, it is of a different order than the elements of E. 

Thus, he concludes, “the definitions which ought to be regarded as non-predicative 

are those which contain a vicious circle’’' [ibid.]. Poincare means, in Russell’s ter¬ 

minology, that a propositional function which contains a vicious circle does not 

determine a class. He immediately goes on to apply the principle to block the Bu- 

rali-Forti paradox, but also the logicist definition of finite number and Zermelo’s 

proof of Well-Ordering [op.cit., 1063-69].1 

In a reply article, published in French that same year, Russell accepted Poin¬ 

care’s diagnosis [1906a], He went on to reform logical theory accordingly, and the 

new type-theoretic system was presented in [1908]. The paradoxes are all solved by 

noting that they share the characteristic of self-reference or reflexiveness. In each 

contradiction something is said about all cases of some kind, and from what is said 

a new case seems to be generated, which engenders a contradiction because it both 

is and is not a member of the totality. But the vicious circle principle postulates that 

the assumption of a class is illegitimate if it automatically leads to new members 

defined in terms of itself: 

‘Whatever involves all of a collection must not be one of the collection,’ or conversely: ‘If, 

provided a certain collection had a total, it would have members only definable in terms of 

that total, then the said collection has no total.’ [Russell 1908, 155] 

5.2. Types and orders. Russell’s formulation of the vicious circle principle is 

somewhat loose, but the principle becomes clearer later, when Russell describes his 

logical system. He explains that the type of an expression is determined by the 

variables contained in it: the expression must be of a higher type than the possible 

values of those variables [1908, 163], There must be no propositions of the form 

<|)(x), in which x has a value which involves (j) [Whitehead & Russell 1910, 40]; an 

expression like ‘())({x : 4>(x)})’ is always meaningless. 
Russell and Whitehead were thus led to speak of different types associated to 

propositional functions. They obtained not just a hierarchy of types, but a tree with 

infinitely many branches at each level. This is because the type of a propositional 

function t|)(x) depends both on the type of its arguments - the possible values of x - , 

1 The latter is due to the fact that the last step in Zermelo’s proof considered y-sets defined in 

reference to Ly, a vicious circle (see §3). The 1908 proof uses an impredicative definition, too. 
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and the type of the objects in the range of its bound variables [Russell 1908, 164— 

65; Whitehead & Russell 1910, 48-53], To give an example, the propositional func¬ 

tion 

3cp Vy F(cpO), x) 

has only the free variable x, an individual variable. We might thus think that it is of 

a second type, next above that of individuals, but the vicious circle principle forces 

us to pay attention to quantified variables too. In this way we notice that there are 

two bound variables, cp andy, of which <p ranges over propositional functions. Thus, 

the example in question must be at least a propositional function of the second 

order in Russell’s terminology. 
The theory was presented in a way that is somewhat unclear, for the connection 

between types and orders could have been explained more straightforwardly 

[Whitehead & Russell 1910, 37-55, 133, 161-67]. But we can think of it as two 

superimposed hierarchies, the hierarchy of types and the hierarchy of orders, the 

latter being the one that generates the ‘ramification’ (in later terminology). A type 

is defined as the range of significance of some function. Russell assumes that there 

are always values of x for which <))(x) is not just false, but meaningless. The type of 

4> is formed by the arguments with which (p(x) becomes meaningful and has values. 

Types must either coincide or be mutually exclusive [op.cit., 161], On the other 

hand, a function is of the first order if it involves no variables except individual 

variables; it is of the (n + 1 )th order if it has at least one argument or bound variable 

of order n, and none of a higher order [op.cit., 167]. One can only quantify over 

variables of some specified type and order, and if we quantify over variables of 

order m, the resulting expression is of order m+1. 

Thus, we can never legitimately speak of ‘all properties of a,’ which creates 

great difficulties in connection with mathematics. To give a couple of examples, we 

may define the ‘real numbers’ as objects of a certain type and order m, and consider 

a set S of them. If we now go on to, e.g., the greatest lower bound of S, it will be 

given as an object of order m+1, which does not belong to the ‘real numbers’ as 

previously defined. Classical analysis will become impossible. The same happens 

even with mathematical induction, for it can only be formulated for number- 

properties of a certain order, and thus induction will not be valid for properties of a 

higher order [Russell 1908, 167], Clearly one must either abandon classical mathe¬ 

matics1 or introduce some new assumption that makes it possible to recover the lost 

ground. This was the purpose of the infamous Axiom of Reducibility, which could 

only seem puzzling to readers. 

Russell calls a propositional function predicative if it is of the lowest order 

compatible with that of its argument [Whitehead & Russell 1910, 53], Thus, a 

function of individuals that has no bound variables, except perhaps individual vari¬ 

ables, is a predicative function. Similarly, a function of functions of the mth order 

that has bound variables of at most the mth order, is a predicative function. Sym- 

As Weyl did in Das Kontinuum [1918], developing a predicative alternative to set theory. 
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bolically, one uses ‘(f>(x)’ for propositional functions whose order has not been 

specified, and ‘(])!(x)’ for a predicative function of x; it is only allowed to quantify 

over predicative functions, which involves no loss of generality [op.cit., 165], The 
Axiom of Reducibility reads: 

every propositional function is equivalent, for all its values, to some predicative function of 

the same argument or arguments. [Whitehead & Russell 1910, 166] 

Symbolically and slightly modernized, 3/ Vx (cj)x *-> fix), and the corresponding 

form for relations [op.cit., 167], Now it suffices to postulate mathematical induction 

for predicative functions, since the axiom automatically extends it to propositional 

functions of any order; and similarly for the theory of real numbers. Talk of ‘all 

predicative functions of a’ becomes an efficient replacement for talk of ‘all func¬ 

tions of a.’ As Ramsey and others noticed, the Axiom of Reducibility has the effect 

of abolishing the hierarchy of orders and letting us to back simply to the hierarchy 

of types. 

It is particularly interesting to note that, in Russell’s eyes, the assumption of 

Reducibility was similar but essentially weaker to the assumption of classes [1908, 

167; Whitehead & Russell 1910, 58, 166]. This shows how deeply the principle of 

comprehension was ingrained in his mind: he could not imagine a theory of classes 

except as based on that principle. Thus, given a function (|) of any order, the as¬ 

sumption of classes would warrant that ‘4>(x)’ is equivalent to ‘x e a,’ where a is 

the corresponding class [op.cit., 58]. Since a would be an individual, the second 

expression is a predicative function of x. Thus, in the context of Russell’s logical 

theory, the principle of comprehension appears as a means to reduce the order of 

expressions. But, 

there is no advantage in assuming that there really are such things as classes, and the contra¬ 

diction about the classes which are not members of themselves shows that, if there are 

classes, they must be something radically different from individuals. It would seem that the 

sole purpose which classes serve, and one main reason which makes them linguistically 

convenient, is that they provide a method of reducing the order of a propositional function. 

We shall, therefore, not assume anything of what may seem to be involved in the common- 

sense admission of classes, except this, [the Axiom of Reducibility above] [Whitehead & 

Russell 1910, 166] 

Russell thinks he is retaining as much of classes as there is any use for, and little 

enough to avoid the contradictions which a “less grudging” admission of classes 

would entail [1908, 168; Whitehead & Russell 1910, 167]. 

Classes and relations are introduced in PM as abbreviations, as so-called “in¬ 

complete symbols” which merely serve to formulate shortly other expressions in 

which there is no reference to classes, but only to propositional functions [White- 

head & Russell 1910, 71-84], Russell regarded this as a great advantage of his 

viewpoint, for it involved the elimination of apparent but superfluous entities. Nev¬ 

ertheless, as Quine emphasized again and again, he had only reduced one Platonis- 
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tic abstract entity - classes - to another - abstract properties or attributes. In Quine’s 

opinion, there is no call even to distinguish properties from classes, except that 

classes are identical when their members are the same, while properties may still 

differ. Thus, Russell’s definition “rests the clearer on the obscurer, and the more 

economical on the less” [Quine 1941, 147-48]. To put it simply, Russell avoids 

postulating a realm of sets, as Zermelo had done, but in order to do so he resorts to 

postulating a realm of properties, for which he is even forced to assume strong 

existential postulates like the Axiom of Reducibility. This is one of the reasons why 

Weyl complained that PM did not reduce mathematics to logic, but to 

a sort of logician’s paradise, a universe endowed with an ‘ultimate furniture’ of rather com¬ 

plex structure and governed by quite a number of sweeping axioms of closure [Weyl 1944, 

272], 

Even if we disregard the hierarchy of orders and the uncomfortable assumption 

of Reducibility, Russell’s proposal still had some unpleasant traits. There is no 

longer one empty class, but an infinite series of empty classes, one for each type 

(the same applies to quasi-universal classes). Even worse, the same happens with 

numbers defined in the Frege-Russell style (§1.2): one finds new but different 

‘copies’ of 0, 1, ... for each type [Quine 1941, 152], Several symbols that Russell 

uses, like ‘A’ (empty class), ‘V’ (universal class), els (class of classes), and even ‘e’ 

(membership), are ambiguous because they only have a definite meaning when 

restricted to a specified type [1908, 174], 

5.3. Principia Mathematica. Whitehead & Russell’s PM is a work that has 

received the highest compliments, being called one of the greatest intellectual 

monuments of all time [Quine 1941, 139] and the most representative work of 

modem logic [Tarski 1964, 229]. This is no doubt due to the ambitious project that 

the authors set to themselves - to build a complete system of logic and to carry in 

detail the derivation of mathematics from it - and to the thorough and exhaustive 

way in which they developed it. PM conveyed the impression of a completely 

rounded off and extremely difficult work, that culminated the development of logi¬ 

cal theory.1 Its sheer extension, more than 2,000 pages in three volumes, certainly 

did much to impress the scientific world. Logicians such as Hilbert, Skolem, Car¬ 

nap, Quine, Godel and Tarski, essentially all who began to work in the period 

1915-1930, studied it carefully; thus it has been epoch-making for the influence it 

exerted [Tarski 1941, 229]. But it has to be acknowledged that, in some crucial 

points of detail, the work was less definitive and polished than it seemed. 

PM was a thorough treatment of logical theory in the whole extent that the word 

had as of 1910. It is not just an axiomatic development of modem logic, not even a 

system of higher-order logic: PM should be regarded as a detailed treatise of set 

1 It was a great contribution to the axiomatization of logic, corroborated by the painfully de¬ 
tailed, explicit derivation of hundreds of propositions. This seems to be the main reason why 
Hilbert, for instance, greatly admired the book. 
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theory too. To justify this statement, it suffices to review the contents summarily. 

Part I deals with mathematical logic as the theory of propositional connectives, 

quantifiers, classes and relations, based on Russell’s theory of types. Parts II and III 

develop the arithmetic of finite and infinite cardinals, complemented in part V on 

the basis of the theory of ordinals.1 Finally, part VI introduces and studies the inte¬ 

gers, the rationals and the real numbers, ending with an analysis of the logical basis 

of measurement. According to a knowledgeable opinion, the portions of PM that 

present the theory of cardinals and ordinals remained the authoritative work on the 

topic 25 years later, in point of rigor and comprehensiveness [Quine 1941, 158], 

The work did not, by far, emphasize the logicist program as much as Russell’s 

Principles, perhaps because Whitehead was not so convinced, particularly in view 

of certain difficulties. The fact that “Mathematics is just Symbolic Logic” was one 

of the most important discoveries of his time, wrote Russell [1903, §4], and even in 

1937 he did not see any convincing reason to modify that view.2 But no comparable 

statement can be found in PM. More surprising, not even the difficulties that such a 

viewpoint encounters are properly mentioned in Principia. The reduction of 

mathematics to logic was only possible on the conditional assumption of the Axiom 

of Infinity (for type one, i.e., for individuals) and the Multiplicative Axiom, a form 

of Choice. These assumptions are introduced along the way (e.g., [Whitehead & 

Russell 1910, 388, 481, 536-37]) but they are never mentioned in the introduction, 

not even in the new introduction of 1925. At any rate, it seems clear that, properly 

construed, it was only logicism in a pickwickian sense: mathematics had just been 

reduced to the non-logical Axioms of Infinity and Choice (not to mention the con¬ 

tentious Axiom of Reducibility). 

But, surprisingly, the weakest elements in this monumental book are all located 

in part I, the essential basis for the rest. The presentation of the logical system is 

marred by several faults; in Godel’s severe judgement: 

It is to be regretted that this first comprehensive and thorough-going presentation of a 

mathematical logic and the derivation of mathematics from it is so greatly lacking in formal 

precision in the foundations (contained in * 1—*21 of Principia) that it presents in this respect 

a considerable step backwards as compared with Frege. What is missing, above all, is a 

precise statement of the syntax of the formalism. [Godel 1944, 120] 

Whitehead and Russell did not differentiate clearly between propositions of the 

system and rules of inference,3 so that the second were poorly presented. Flere, as 

with differentiation between symbolic expressions and their referents, Frege’s work 

was clearly ahead. Actually, the problem is not so much an imprecise statement of 

the syntax, as Godel thought. Russell and Whitehead did not handle the distinction 

between syntax and semantics at all, which was the source of complications and 

1 Part IV presented a generalization of ordinal arithmetic, the so-called theory of ‘relation 

numbers.’ 

2 Introduction to the second edition of [1903]. 

3 A noteworthy example can be found in [Russell 1908, 170]. 
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obscurities (see [Quine 1941, 140-42]). It has to be said, on their behalf, that logi¬ 

cians only started to get clear about that distinction after World War I, thanks to the 

pioneering work of authors like Skolem and Hilbert. 

Russell’s peculiar conflation of syntax and semantics has the effect that his 

work is dealing with philosophical logic, and even metaphysics, throughout.1 With 

these characteristics in mind, it is easier to understand why he looked for a solution 

to all of the paradoxes, not just the set-theoretic ones, and why he thought that the 

solution required scrutiny and deep revision of the fundamental logical ideas 

[Whitehead & Russell 1910, 60]. When the distinction between syntax and seman¬ 

tics became more and more customary in the 1920s, it was possible to envisage a 

great simplification of the theory of types.2 This was first proposed by Ramsey in 

1926, on the basis of the distinction between two kinds of paradoxes, the logical 

ones and those that have to do with the notions of truth, definition, and the like. The 

second kind of paradox was blocked simply by the adoption of a perfectly specified 

formal language, and thus they could be taken to belong to ‘linguistics’ or seman¬ 

tics, as Peano had suggested. 

The theory of types in PM is also obscure and even contradictory in its motiva¬ 

tion. The vicious circle principle becomes the basis for a severe revision of logic 

that leads to ramified type theory. But then an axiom is introduced, simply on 

pragmatic reasons, that contradicts that Principle - the Axiom of Reducibility. The 

least one can say is that this axiom is self-effacing, for, in case it is true, the ramifi¬ 

cation was pointless to begin with (Quine in [van Heijenoort 1967, 152]). The worst 

is that the axiom contradicts the basic Principle that Russell regarded as the neces¬ 

sary element for solving the paradoxes. It decrees the existence of a “logician’s 

paradise” where one can do what one wished to [Weyl 1944, 272], No wonder that 

the authors denied the axiom any “self-evidence,” claiming only “inductive evi¬ 

dence” for it, since its consequences appear to be indubitable and nothing “proba¬ 

bly false” can be deduced [Russell & Whitehead 1910, 59], Caught between the 

vicious circle principle and the desire to justify classical mathematics, Russell was 

certainly honest in presenting the matter as he did. But, of course, his system could 
only puzzle attentive readers. 

Ramsey decided simply to accept several traits of classical mathematics as em¬ 

bodied in systems of set theory. In particular, he extensionalized the theory of types 

and accepted impredicative definitions, i.e., he rejected the vicious circle principle. 

In his view, this principle was only used in PM for solving the paradoxes, but the 

semantic paradoxes were blocked by formal languages, and the ‘logical’ ones by 

the hierarchy of types. In this way, he was able to go back to the simple theory of 

types, that was then adopted and refined by Godel and Tarski (see §X.4). With this 

1 The strange features of the famous Tractatus by his student Wittgenstein [1921] are thus 
more a symptom than a deviation. 

2 Likewise, systems of propositional and predicate logic started to be presented in the now 
customary way during the 1920s. Elements of the distinction between syntax and semantics can 
be found in Peano and Schroder, and also in Frege, insofar as he differentiates clearly between a 
name and its referent, between use and mention of an expression 
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modification, much of PM (especially from Part II) could remain unaltered, since 

the complications of ramified type theory were quickly lost of sight. Whitehead & 

Russell had already indicated that hardly anything in the book would be changed by 

the adoption of a different theory of types [1910, vii]. But if the letter remained 

valid, the spirit of the theory changed significantly. 

6. Other Developments in Set Theory 

After 1900, set theory was gradually enriched with many new results in different 

directions, which would merit an independent chapter. Here I can only indicate 

some of the relevant developments summarily.1 

Cantor proved for closed sets a decomposition P = R u S into a denumerable 

and a perfect subset, which implies that the Continuum Hypothesis (CH) holds in 

this case (§VI.8). In his dissertation of 1901, Bernstein was among the first to work 

on generalizing that result. This kind of work studied sets of reals that are definable 

in different ways, and led to descriptive set theory. The contributions of the French 

analysts Borel, Baire and Lebesgue, in their study of real functions and integration, 

merged with that line of development. Thus, for his theory of measure Borel con¬ 

sidered sets obtainable from intervals by complementation and countable union. 

These were called the Borel sets, and studied by several authors. Hausdorff [1914] 

defined a now classic hierarchy of Borel sets, and in [1916], simultaneously with 

Aleksandrov [1916], established the pathbreaking result that any uncountable Borel 

set of reals has a perfect subset. This satisfactory generalization expanded the do¬ 

main of validity of CH. 

Meanwhile, the early study of consequences of AC affected that line of devel¬ 

opment, for in 1905 Vitali proved that there is a set of reals that is not Lebesgue 

measurable, and in 1908 Bernstein showed the existence of a set of reals with no 

perfect subset. Both of them built on the assumption of a well-ordering of IR. These 

results suggested difficulties for the above line of attack to the Continuum Problem, 

which in fact encountered peculiar difficulties from the 1920s. Descriptive set the¬ 

ory emerged from about 1915 with the work of the Moscow school headed by 

Luzin, to which Aleksandrov and Suslin belonged. They defined and investigated 

the analytic sets, and in the 1920s the projective sets [Kanamori 1995], 

During the 1900s Hausdorff did extensive work on uncountable order types 

(linear orderings not restricted to well-orderings), refining Cantor’s ideas and ad¬ 

vancing further in the exploration of the transfinite [Hausdorff 1908], He was thus 

led to the notion of cofinality, to the Generalized CH, and to the notion of large 

cardinal. In this work, Hausdorff employed AC freely, and in his handbook he 

explored aspects of the Well-Ordering theorem which led him to advance a maxi- 

mality principle closely related to Zorn’s Lemma of 1935 [Hausdorff 1914, 140ff], 

1 For a brief review, written from a modern standpoint, see [Kanamori 1996]. 
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He also formulated the Hausdorff paradox [op.cit., 469ff], a forerunner of the better 

known Banach-Tarski paradox, showing the surprising consequences to which AC 

leads in the classical mathematical framework. 
Hausdorff [1908] considered the possibility of “exorbitant numbers” that are 

nowadays called the weakly inaccessible cardinals, but he was of the opinion that 

they would hardly ever come into consideration in set theory [Hausdorff 1914, 

131], Axioms of strong infinity asserting the existence of weakly inaccessible car¬ 

dinals were formulated in the early 1910s by Mahlo, in his pathbreaking work in¬ 

vestigating hierarchies of such cardinals. The topic of large cardinals would expand 

slowly at first, to become one of the major areas of axiomatic set theory in the sec¬ 

ond half of the century.1 In this process, Alfred Tarski and his Berkeley school 

would be one of the main driving forces. Tarski and Sierpinski [Tarski 1986, vol. 1, 

289-97] introduced the notion of (strongly) inaccessible cardinal in 1930, simulta¬ 

neously with Zermelo [1930], and Tarski [1938] went on to present axioms of 

strong infinity for (strongly) inaccessible cardinals. 

Coming back to the 1910s, Hausdorffs handbook presented a purely mathe¬ 

matical approach to set theory, developed informally in the style of Cantor, al¬ 

though more sophisticated. He spoke favorably of Zermelo’s axiomatization, but 

refrained from advancing a clear opinion on the issue and preferred to work naively 

in a book for beginners.2 There was no mistrust of the axiomatic viewpoint on his 

side: he presented an “axiomatization of point-set theory” [1914, vi] based on the 

notion of neighborhood, that is justly renowned (see below). All in all, it was a very 

interesting introduction to set theory, full of new viewpoints throughout, but par¬ 

ticularly oriented toward point-sets and their applications: more than half of the 

book (over 200 pages) is devoted to point-sets, topology, real functions and meas¬ 

ure theory. In contrast to Zermelo, Hausdorff was not acquainted with Dedekind’s 

work,3 but his approach favored a set-theoretic conception of mathematics. As 

Kanamori [1996, 17-19] has emphasized, he presented a purely set-theoretic notion 

of function contrasting sharply with the viewpoints of Cantor or Russell. He offered 

a reduction of ordered pairs to sets (although one that is neither very elegant nor 

convenient in an axiomatic framework) and he proceeded to define functions as sets 

of ordered pairs [1914, 32ff, 70ff]. He also pointed out the correlation between sets 

and their characteristic functions [op.cit., 37], which served to emphasize the con¬ 

nections between the Cantor Theorem and the power set, as Russell had done ear¬ 

lier (see §1.2). 

A question of particular interest in the context of the present work is the eman¬ 

cipation of topology, since it marks, by contrast, the public recognition of abstract 

set theory as an independent subject. It can be said that this last differentiation was 

prepared in the early 1910s, although its wide adoption should probably be dated in 

1 On this topic, see [Kanamori 1994], 

2 [Hausdorff 1914, 1-2], His confidence in the Zermelo system is even clearer in the second, 
very abridged edition [1927, 34], 

3 The bibliography only cites [Dedekind 1872]; see also chapters 2 and 9, where he fails to 
mention Dedekind in connection with functions and mappings. 
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the 1920s.1 Early in the century, Schoenflies applied notions of point-set theory to 

simple closed curves in the plane. His work was employed by Brouwer, who 

showed [1910] that most of Schoenflies’ results were incorrect. Brouwer undertook 

the study of /2-dimensional manifolds, introducing a new level of precision in the 

study of topology and opening a new era with his [1911] proof of dimension in¬ 

variance. His work began to combine the notions of point-set theory with the com¬ 

binatorial methods that originated in Poincare (see [Johnson 1979; 1981]), thus 

sowing the seeds for the spectacular flowering of topology after the War. But 

mathematicians still lacked an adequate definition of topological spaces that could 

establish a general framework for the subject. Here Hausdorff s contribution was 

very influential. 

Not surprisingly, there were precedents for Hausdorff s work. From about 1900, 

several mathematicians applied notions of point-set theory to new domains, such as 

sets of curves and sets of functions. This called for an abstract approach; Hilbert 

proposed in 1902 to define the topological notion of 2-manifold abstractly by 

means of neighborhood conditions (see [Hilbert 1930, appendix IV]). Independ¬ 

ently, Frechet proposed in 1906 that metric spaces could be axiomatized on the 

basis of a generalized notion of limit. In his handbook, Hausdorff analyzed differ¬ 

ent possible ways of founding the notion of a topological space - either on the basis 

of distance, of neighborhoods, or of limits - establishing a hierarchy of increasing 

generality in the order just given. He preferred to employ neighborhoods because in 

a sense they are more basic, since limits presuppose sequences, i.e., denumerable 

sets. Chapter 7 of his [1914] defined a “topological space” by means of four well- 

known axioms [op.cit., 213], Hausdorff s axiom system was happily selected: it is 

well-adapted to applications, precise, and sufficiently general, although he included 

the separation axiom that is characteristic of Hausdorff spaces. His exposition be¬ 

came a model of axiomatic development and made possible the emancipation of 

topology.2 
Nevertheless, Hausdorff himself regarded topology simply as a part of set the¬ 

ory, and even presented a theoretic argument to justify that viewpoint [1914, 209- 

10].3 Similarly, Schoenflies and the Youngs regarded the theory of point-sets and 

measure theory as parts of general set theory. Meanwhile, a minority of authors had 

begun to handle the distinction between abstract set theory and point-set theory or 

topology. This is notably the case with Dedekind’s Zahlen [1888] and Cantor’s 

1 The emergence of topology was a very complex, many-sided process. Here we pay attention 
to developments in set-theoretic topology leading up to the fundamental notion of topological 
space; for further details see [Manheim 1964, chap. 6; Johnson 1979; 1981]. Aspects of the rise 
of combinatorial and algebraic topology are studied in [Bollinger 1972; vanden Eynde 1992; 

Epple 1995]. 

2 Weyl had made a similar contribution previously [1913], also stimulated by Hilbert’s pro¬ 
posal. Hausdorff claims that his work was independent and that he presented it in 1912 at the 

University of Bonn [1914, 456-57]. 

3 The argument emphasized the similarity between the theory of order types and that of topo¬ 
logical spaces: an order relation can be taken to be a two-valued function of two arguments, and 
topology can be developed on the basis of a distance function. 
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Beitrdge [1895/97]; also with Zennelo’s work, that deals exclusively with abstract 

set theory. In general, however, it was only after World War 1 that abstract set the¬ 

ory found an important number of cultivators (§XI. 1—3). Topology came to be seen 

as an independent branch of mathematics extensively studied by authors of the 

North-American school, by Aleksandrov, Kuratowski, and others. 



X Logic and Type Theory in the Interwar 
Period 

Today there exits no single general set theory - but a naive, an 

intuitionistic, as well as several formalistic-axiomatic systems.1 

The simplified theory of types or the Zermelo set theory ... are 

at the present time the safest cities of refuge for the classicist in 

mathematics.2 

The 1920s atmosphere, among experts in foundational studies, was one of great 

insecurity. Most of them - intuitionists excluded - were looking for a symbolic, 

formal system that might provide a framework for all of mathematics. It had to be 

possible to reconstruct mathematics on a completely secure basis, to find a system 

maximally immune to rational doubt.3 But, in carrying out that project, caution was 

the keyword. Reminders were the by-then legendary paradoxes, which ruined the 

work of Frege and imperiled that of Cantor, the intuitionists’ indictment against 

modem mathematics, and the proliferation of divergent systems. During the inter¬ 

war period there was a great level of experimentation in the area of foundations, not 

infrequently leading to systems that turned out to be contradictory.4 Even those who 

were convinced of the final vindication of the ‘classical’ viewpoint of Cantor and 

Dedekind, like Hilbert, had to look for very careful ways of proceeding if they 

wanted to solve satisfactorily all of the problems posed. 

Until the 1920s few authors adopted Zermelo’s axiom system explicitly, and 

even among those who preferred a formal axiomatic standpoint, many kept favor¬ 

ing the theory of types. The reason was that it seemed to offer a safer framework. A 

noteworthy example is van der Waerden’s Moderne Algebra, the first textbook to 

advance the structural conception of its subject. The work begins by explaining the 

1 [von Neumann 1928, 321]: “...class es heute keine einheitliche allgemeine Mengenlehre gibt: 
sondem eine naive, eine intuitionistische, sowie mehrere forinalistisch-axiomatische Systeme.” 

2 [Church 1937, 95], 

3 This viewpoint, which dominated work in logic and foundations until World War II, has 
been called foundationalism [Shapiro 1991,25], 

4 Examples are systems presented by Church in the early 30s (see [Kleene & Rosser 1935]) 
and Quine’s ML in its original [1940] presentation (see [Rosser 1942] and [Ullian 1986; Wang 

1986; Ferreiros 1997]). 
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rudiments of set theory building on the principle of comprehension and the doctrine 

of types [van der Waerden 1930, 4ff], According to the great logician Alonzo 

Church, in spite of superficial differences, these two “widely accepted symbolic 

systems,” Zermelo set theory and simple type theory, are “in their currently ac¬ 

cepted forms essentially similar” [1939, 69-70], But Church argued that there is no 

convincing basis for a belief in the consistency of either system “even as probable” 

[ibid.]. This was certainly a strong judgement, but at any rate it is quite representa¬ 

tive of the period and the reigning ‘atmosphere of foundational insecurity,’ as I 

shall call it. 

By emphasizing the similarity between type theory (TT) and the Zermelo- 

Fraenkel system, Church gives expression to the fact that, during the interwar 

period, the formulation of type theory was affected by influences coming from its 

competitor. In the hands of Ramsey, Godel and Tarski, it became a system much 

closer to axiomatic set theory in its setup and spirit: an impredicative, Platonistic 

system, formulated in the way of Hilbertian axiomatics. Likewise, the Zermelo- 

Fraenkel system underwent a process of refinement in which it incorporated traits 

of simple TT (see §XI.2). This convergence of viewpoints, following the pre-War 

bifurcation, is one of the most interesting aspects of developments in this period, 

but up to now it has been paid little attention. 

The interwar atmosphere played also an important role as the context within 

which first-order logic emerged as the indispensable basic logical system. Its emer¬ 

gence cannot be understood apart from its natural environment, the foundations of 

mathematics. Serious doubts regarding the proper conception of mathematics, and 

desire of intellectual security, placed strong requirements on systems of logic. 

Above all, they should as far as possible avoid assumptions that were the topic of 

discussion in current foundational work. In its final form (§XI.5) the axiomatization 

of set theory would be framed within first-order logic. For all of these reasons we 

need to consider the foundational debate in some detail; then, we shall outline the 

developments in logic and its assumed province, type theory, that would affect 

strongly the evolution of axiomatic set theory. 

1. An Atmosphere of Insecurity: Weyl, Brouwer, Hilbert 

Debate over abstract mathematics can be traced back to around 1870, when Kro- 

necker started making objections to the procedures of Weierstrass, Dedekind, and 

Cantor (§§1.5, IV.4). Constructivist thinking surfaced again in a more polemical 

setting with the French school of Baire, Borel and Lebesgue, after Zermelo’s 1904 

proof of Well-Ordering. Deserving special mention are the influential but some¬ 

what peculiar views of Poincare, who offered some key new arguments but did not 

elaborate them into a coherent philosophy of mathematics (§IX.5.1). The polemics 

entered a new stage after the great War, reaching an unprecedented height due to 

the radical proposals of the intuitionists. The entree of Weyl and Brouwer from 

1918, and above all a series of conferences by Weyl in 1920, which he himself 
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described as a “propaganda pamphlet” for intuitionism [van Dalen 1995], started a 

heated debate in which Hilbert undertook to defend abstract mathematics. This was 

the start of a polemical discussion in which conceptual, professional, and even 

political issues coalesced, leading up to the ‘war of the frog and mice,’ as Einstein 

was to call it.1 

Hermann Weyl, one of the most universal mathematicians in his generation, has 

been regarded as Hilbert’s most gifted student. According to his own account, until 

the early 1910s he was a convinced follower of the abstract, set-theoretic mathe¬ 

matics that he identified with the names of Dedekind and Cantor [Weyl 1918, 35- 

36]. But around 1913 he started to question his earlier beliefs, partly under the influ¬ 

ence of the philosophy and logical investigations of Husserl,2 partly as a result of 

his attempt to make fully precise Zermelo’s axiom system. On the occasion of his 

Habilitation at Gottingen in 1909, he gave a lecture ‘On the definition of the basic 

concepts of mathematics’ [Weyl 1910], There he tried to perfect Zermelo’s system, 

particularly the notion of a ‘definite statement’ (§IX.4.2) by making explicit some 

logical principles of definition (see §5.1). Subsequently he tried to build set theory 

on this precise basis, but without presupposing the notion of the natural numbers 

[Weyl 1918, 36]: like Zermelo, he was trying to preserve the Dedekindian project 

of establishing set theory as a firm foundation for all of mathematics, and espe¬ 

cially for numbers. This led to complexities that he could not overcome. 

Only in connection with general philosophical insights, to which I was led by the rejection 

of conventionalism, did I realize that I was wrestling with a scholastic pseudo-problem, and I 

became firmly convinced (in accordance with Poincare, as little as I agree with his philo¬ 

sophical position) that the conception of iteration, of the natural number-sequence, is an 

ultimate foundation of mathematical thought -in spite of Dedekind’s “theory of chains.”3 

Furthermore, Weyl [1918, iii] was led to the conviction that classical analysis was 

an edifice built on sand, based on a vicious circle, and undertook a thorough revi¬ 

sion of set theory and analysis. Thereafter, he tended to prefer constructive ap¬ 

proaches to mathematical theories, a clear indication being that, allegedly, in his 

papers he was careful never to use the Axiom of Choice.4 

In his 1918 book Das Kontinuum, Weyl proposed a modified, predicative ver¬ 

sion of analysis. Although his approach was not as radical as Brouwer’s, his com- 

1 These wider aspects, including academic politics and outright political issues, have been ex¬ 

plored by Mehrtens [1990] and van Dalen [1995]. 

2 He had married a disciple of Husserl; see [Weyl 1918, 35-37] [Weyl 1954], 

3 [Weyl 1918, 36-37]: “Erst im Zusammenhang mit allgemeinen philosophischen Erkenntnis- 
sen, zu denen ich mich durch die Abkehr vom Konventionalismus durchrang, gelangte ich zur 
Klarheit dariiber, dass ich hier einem scholastischen Scheinproblem nachjagte, und gewann die 
feste Uberzeugung (in Ubereinstimmung mit Poincare, so wenig ich dessen philosophische Stel- 
lung im iibrigen teile), dass die Vorstellung der Iteration, der natiirlichen Zahlenreihe, ein letztes 

Fundament des mathematischen Denkens ist - trotz der Dedekindschen ‘Kettentheorie’.” 

4 Dieudonne in [Gillispie 1983, vol.13, 285]; as Dieudonne indicates, fortunately (or inten¬ 
tionally?) he dealt with theories in which he could do so with impunity. 
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merits on modem mathematics and set theory are noteworthy and instructive. Clas¬ 

sical analysis is guilty of making two untenable moves. First, it abandons the realm 

of well-defined notions and works with completely vague, nebulous conceptions - 

those of arbitrary set and arbitrary function in the sense of Dirichlet [Weyl 1918, 

15], According to Weyl, it is the essence of infinity to be inexhaustible. For this 

reason, one can never deal with infinite sets combinatorially, as if one could select 

infinitely many elements in an arbitrary way and collect them into a set. An infinite 

set can only be determined by explicitly giving properties that characterize its ele¬ 

ments [Weyl 1918, 13-15, 32-33]. But classical analysis forgets that properties are 

logically prior to sets. 
Second, there is a logical vicious circle in that one feels entitled to quantify over 

all sets, or all real numbers, as if there were a well-defined realm of properties cor¬ 

responding to both lawful and arbitrary sets, or a realm of numbers corresponding 

to both definable and undefinable real numbers [Weyl 1918, 19-23].1 If we define 

the reals as Dedekind cuts on the rational numbers, that can only be done in refer¬ 

ence to properties of rational numbers. The first section of a cut is made up of all 

rational numbers that possess a given property and, in the absence of ‘arbitrary 

properties,’ there is no way of proving that there always exists a least upper bound 

for any bounded set of real numbers [Weyl 1919, 45]. 

As we see, Weyl stuck to the traditional conception of sets as concept- 

extensions. His solution for the paradoxes consisted in strict adherence to the vi¬ 

cious circle principle, i.e., to predicativism. His motives were similar to Russell’s, 

but he was more radical in carrying through the program, partly because he was not 

guided by the goal of reducing mathematics to logic.2 In mathematics as in other 

fields, one deals with previously given objects, and previously given properties and 

relations among them. To avoid vicious circles, one must first build up predica- 

tively, from those primitives, a well-defined realm of properties and relations. Only 

after this process has been completed can we, in a second step, proceed to exten- 

sionalize. And it is evident that the new objects, the sets, are completely different 

from the primitive ones; they belong in a wholly different sphere of existence 

[1918, 15]. Thus, we obtain a realm of one- and multi-dimensional sets (sets and 

relations, as we now say), corresponding to the constructed properties and relations 

[op.cit., 31-32], We shall later (§5.1) analyze in more detail the logical basis of 

Weyl’s 1918 contribution. Suffice it to say that he was able to establish a construc¬ 

tive theory of the real numbers where only those real numbers that are explicitly 

definable from the rationals are obtained: 

More precisely, one makes the predicative levels (see below) collapse by quantifying over 
numbers or sets of any level whatsoever. 

2 To believe his own account [1918, 35], Weyl developed his ideas before coming to know of 
the related ones of Frege and Russell. 
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Through this conceptual restriction, a heap of points, so to say, is picked out from the fluid 

mass of the continuum. The continuum is pulverized into isolated elements ... Therefore I 

speak of an atomistic conception of the continuum.' 

He acknowledged [1918, 65ff] that the outcome was a far cry from the intuitive 

idea of the continuum, but at least it was an irreproachable, clear and sufficiently 

powerful mathematical replacement. In this constructive version of analysis, 

Cauchy’s criterion of convergence for sequences of real numbers is retained.1 2 

In that same year of 1918, Brouwer started the systematic development of intui- 

tionistic mathematics. It is well known that he had been considering a reform of 

pure mathematics since the time of his 1907 doctoral dissertation, in which he at¬ 

tacked set theory, e.g., the Well-Ordering Theorem. Although his ideas first came 

to the light in 1912, it was only after the Great War that he set to a careful devel¬ 

opment. This is reflected in his paper ‘Foundations of Set Theory, without Use of 

the Logical Principle of Excluded Middle’ [Brouwer 1918]. This is not the place to 

enter into a discussion of intuitionism, but it is important to give some basic indica¬ 

tions of his proposals. Brouwer explored in detail the consequences of adopting a 

very traditional position, the rejection of actual infinity. He elaborated on ideas 

suggested already by Kronecker, but he developed them in full detail with the aim 

of building an alternative to classical analysis. As Weyl wrote later [1946, 275], 

Brouwer sees the sequence of numbers as “a manifold of possibilities open towards 

infinity ... [which] remains forever in the status of creation.” Given the openness of 

the realm of numbers thus conceived, the principle of excluded middle cannot be 

applied to properties of natural numbers. It makes no sense to ask whether there 

exists a number of a given property, with the expectation that either such a number 

exists or every one has the opposite property. The existential statement only makes 

sense in case we have adequate procedures for the construction of a number with 

the property; and the negative general statement only when we have a construction 

procedure that, given any number, shows that it does not have the property. 

Brouwer developed an intuitionistic theory of sets that deviates enormously 

from Cantorian set theory. On this basis he established an intuitionistic topology of 

point-sets and intuitionistic analysis. Actually, what he called “Menge” in the 1920s 

was later termed “spread,” in order to avoid confusion. Spreads became the basis 

for an extremely original theory of the continuum. A spread is “a law” which asso¬ 

ciates certain actions to natural numbers; given a number, the spread generates 

either a certain sign, or nothing, or the stopping of the process [Brouwer 1918, 3; 

see 1925, 244^15], Brouwer requires that, after each non-stopped sequence of n-1 

1 [Weyl 1921, 149]: “Durch diese Begriffseinschrankung wird aus dem fliessenden Brei des 
Kontinuums sozusagen ein Haufen einzelner Punkte herausgepickt. Das Kontinuum wird in 
isolierte Elemente zerschlagen ... Ich spreche daher von einer atomistischen Auffassung des 

Kontinuums.” 

2 Also retained is a version of Cantor’s proof that the continuum is not denumerable, even 
though one can enumerate all possible sets of natural numbers [Weyl 1918, 25], For further 
remarks on how the set-theoretical ideas of Dedekind and Cantor are affected by his proposal, 

see [op.cit., 16, 19, 37]. 
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choices, one may always choose a new n-th numeral that does not stop the process. 

Each sequence of signs, be it finite or not, is an element of the spread, but, of 

course, the elements and the spread “cannot be presented as finished” [ibid.]. Since 

the ‘signs’ of Brouwer may always be represented by numbers, a spread may be 

thought of as a tree with natural numbers at its nodes, where some particular nodes 

are forbidden - the process is ‘inhibited’ at those points. Infinite paths down the 

tree of a spread are Brouwer’s “choice sequences,” sequences which are becoming 

or emerging through choice acts. They were the key new element that allowed a 

novel theory of the continuum. The continuum arises as a “medium of free becom¬ 

ing,” as Weyl said [1921, 151]; the single real numbers fit in it, but it is not con¬ 

ceived as an actually infinite set of real numbers.1 

In 1921, Weyl published his lectures of the year before, a “pamphlet” that de¬ 

scribed his own and Brouwer’s approaches, supporting the latter. He employed an 

evocative language in order to “rouse the sleepers” [van Dalen 1995], Making free 

use of a political metaphor, he compared the situation in mathematics with the great 

political and economic instability in Germany at the time. He began describing the 

explanations given to the paradoxes by important mathematicians as belonging to 

“that sort of half to three-quarters honest attempts at self-deception” that one fre¬ 

quently finds in politics and philosophy [Weyl 1921, 143], Explaining Brouwer’s 

viewpoint, he used the following metaphor [op.cit., 156-57]: if mathematical 

knowledge is a treasure, a purely existential result is just paper, a promissory note 

indicating that somewhere there ought to be a treasure. The existential theorem 

lacks value: only the concrete construction which provides a real example is valu¬ 

able. Thus, he was led to compare modern mathematics with the “paper economy” 

that reigned in his native country, and he cried: “this order cannot be maintained in 

itself... and Brouwer - that is the Revolution!” [op.cit., 158].2 

The proposals of Brouwer and Weyl were noteworthy, even if few mathemati¬ 

cians were open to such strong changes. One could hardly dismiss as unimportant 

the fact that several great mathematicians, from Kronecker and Poincare to Weyl 

and Brouwer, doubted the soundness of the new trend of abstract mathematics. 

Witness of the importance that the intuitionist proposals attained is the fact that 

Fraenkel included a discussion of them in his textbooks on set theory [1923; 1928], 

During the 1920s, the issue of the foundations of set theory could not be dealt with 

completely apart from the so-called ‘crisis.’ Von Neumann wrote in 1928 that at the 

time there was no single general set theory, but several systems - one naive, one 

intuitionistic, and several formalistic-axiomatic.3 The importance of intuitionism 

Brouwer introduced also another notion that corresponds to a different aspect of the classical 
notion of set - the notion of a “species,” roughly meaning a class of mathematical entities corre¬ 
sponding to a given property [Brouwer 1925, 245-46], On Brouwer’s theory of spreads and 
species, see [Heyting 1956; van Heijenoort 1967, 446-63; Troelstra & van Dalen 1988], 

2 Years later, he wrote that only with hesitation he could acknowledge those lectures, which in 
their “bombastic” style reflected the mood of the excited times after World War I [op.cit., 179], 

3 The latter included, beyond ZFC and von Neumann’s system, the weaker ones of Russell 
and of Hilbert and his school [op.cit., 321-22]. 
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was even enhanced by the way in which Hilbert reacted to it, and in the process 

adopted some of its ideas. 

Since the beginning of the century, Hilbert had been the champion of the axio¬ 

matic method and the leading spokesman for abstract mathematics. When his ad¬ 

mired pupil Weyl published his propaganda pamphlet for Brouwer’s intuitionism, 

Hilbert took it as his duty to demolish these critics and defend modem mathematics. 

He felt, it seems, that his own reputation was in question, and he put in the service 

of the cause not only his time and efforts, but also his best rhetoric abilities and his 

whole influence within the mathematics community. The contrast between Hilbert’s 

position before and after the entree of Weyl and Brouwer can be measured from a 

comparison of his lectures [Hilbert 1918] and [Hilbert 1922]. 

At first, he had been interested in axiomatics as the best method for the consci¬ 

entious development of any theory, mathematical or not, for the investigation of 

dependence and independence relations among its propositions, and for a deeper 

analysis of its foundations. It was mainly in this spirit that he studied the founda¬ 

tions of geometry in the famous 1899 work (with several reeditions, some of them 

substantial; see [Hilbert 1930]). After the publication of the set-theoretic paradoxes 

he began to explore the possibilities of the axiomatic method as a means for secur¬ 

ing once and for all the consistency of mathematical theories [Hilbert 1904], Even 

so, before 1920 both aims, the study of the inner structure of theories and the proof 

of consistency, were presented in a balanced way [1918, 148], 

But in ‘New Founding of Mathematics’ [1922] the aim of establishing consis¬ 

tency, in order to provide a final justification for classical analysis and set theory, 

was the only one in his mind.1 Hilbert was determined to show the falsity of the 

viewpoints of Weyl and Brouwer, which he compared with a dictatorship ci la Kro- 

necker [Hilbert 1922, 159]: 

1 believe that, just as Kronecker in his day was unable to get rid of the irrational numbers ... 

so today Weyl and Brouwer will be unable to push their programme through. No: Brouwer is 

not, as Weyl believes, the revolution, but only a repetition, with the old tools, of an at¬ 

tempted coup that, in its day, was undertaken with more dash [viel schneidiger] but never¬ 

theless failed completely; and now that the power of the state has been so well armed and 

strengthened by Frege, Dedekind and Cantor, this coup is doomed to failure.2 

Hilbert presents Cantor, Dedekind and Frege as the founding fathers of the abstract 

mathematics which he champions. They inaugurated the critique of analysis which 

led to deep axiomatic theories, particularly those of Zermelo and Russell, and to the 

logical calculus [op.cit., 162], Hilbert’s famous statement about Cantor’s paradise, 

quoted at the beginning of the next chapter, would follow three years later [1926, 

375-76], 

1 [Hilbert 1922, 159, 161-62, 174-75, 176-77], 

2 [Hilbert 1922, 160] as translated in [Ewald 1996, 1119] with minor changes. 
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Hilbert planned to dispel doubts concerning the foundations of mathematics by 

axiomatizing fully mathematics and logic, i.e., by going one step beyond customary 

axiomatics. The fact that notions and proofs can, indeed, be completely formalized 

by means of a finite system of axioms and rules had been empirically established 

by Whitehead & Russell [1910/13]. Hilbert’s new insight was that, having formal¬ 

ized a theory completely, the question of possible proofs in it becomes a combina¬ 

torial question that can be studied from a finite standpoint. One should thus turn the 

very notion of mathematical proof into the topic of a detailed mathematical investi¬ 

gation [Hilbert 1918, 155]. This was the origin of his Beweistheorie [proof theory], 

aimed not only at establishing consistency but, among other things, at finding deci¬ 

sion procedures for mathematical problems and establishing Hilbert’s credo that all 

mathematical questions are solvable [op.cit., 153], 
To carry out this project, he drew Paul Bemays to Gottingen as an assistant, and 

they started serious work in 1920 [Bemays 1935, 202], There is little doubt that the 

aging Hilbert profited very much from the exceptional abilities of his young col¬ 

laborator. They proceeded step by step, beginning with simple subsystems of 

arithmetic for which consistency was proved [Hilbert 1922, 170-72], The systems 

were progressively enlarged until Hilbert proved, or thought to have proved, the 

consistency of the full system of Peano arithmetic [op.cit., 176]. The essential traits 

of his Beweistheorie, as far as the goal of consistency was concerned, had been 

established by 1923.1 The key point was to show the consistency of applying the 

principle of excluded middle to propositions which make free use of ‘all’ and ‘there 

is’ [Hilbert 1923, 181]. Hilbert sketched a formal system for analysis and described 

a way of proceeding in the consistency proof [op.cit., 188-90], This would also 

establish the bridge to set theory. Since the proof of consistency would be finitary, 

Hilbert’s approach would have rehabilitated modern mathematics by the use of 

means acceptable to all parties in the foundational debate. Although Brouwer was 

not satisfied with a mere proof of consistency, there is little doubt that a success of 

the Hilbertian program would have sufficed to convince practically all mathemati¬ 

cians. 

Actually, Hilbert tended to present the matter as if it had already been solved.2 

At first it seemed that the consistency proof for analysis, i.e., for the theory of real 

numbers, worked [Bemays 1935, 210-11], Hilbert’s approach was developed by 

Ackermann [1924], who also thought to have solved the question. Later, von Neu¬ 

mann [1927] clarified some difficulties in Ackermann’s work and presented a con¬ 

sistency proof for a more restricted system. All of the participants thought that the 

investigations of Ackermann and von Neumann had actually established the con¬ 

sistency of arithmetic, and that the expansion to analysis was a matter of details;3 

even critics like Weyl accepted this diagnosis [1927]. Only after Godel established 

his incompleteness results [1931] did it become clear that the above-mentioned 

1 A more detailed presentation of the underlying ideas was given in [Hilbert 1926], and fur¬ 
ther details concerning the system in [1927], 

2 See [Hilbert 1922, 176-77; 1923, 178; 1926, 383; 1927, 479], 

3 See [Bemays 1935, 211] and also, e.g., [Hilbert 1929] and [Bernays 1930, 58], 
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proofs were not completely general. For Godel indicated how to demonstrate that a 

formal system for mathematics satisfying very general conditions cannot codify a 

proof of its own consistency.1 The prevailing optimistic state of opinion by 1930 

makes it even more surprising that Godel was able to tackle the problem as he did, 

looking for proofs of incompleteness and unprovability of consistency. His brilliant 

and surprising metatheoretical results, established by methods which complied with 

the strictest constructivist restrictions, contradicted some of Hilbert’s key assump¬ 

tions. They increasingly convinced mathematicians that Hilbert’s project of a fini- 

tary consistency proof could not be carried out.2 

Thus, even though it seemed for a while that Hilbert’s project was going to 

succeed, insecurity was again the outcome of the process. But this is not the place 

to discuss further the history of Hilbert’s program or its reception. Now we turn to 

considering the impact of the foundational debate on logic. 

2. Diverging Conceptions of Logic 

The whole debate on logic and the paradoxes in the first decade of the century had 

the effect of making quite unclear the notion of logic itself, and the scope of logical 

theory. Up to that point, the theory of classes or sets had been an undisputed com¬ 

ponent of logic, indeed its very core (§§II.2, VII.6, IX.1.2). But in the 1900s there 

was much confusion regarding what to do in response to the paradoxes. One could 

either try, with Russell, to preserve a strongly modified class theory as the prov¬ 

ince of logic, or treat the theory of sets as a properly mathematical one, like Zer- 

melo. 

Even worse, during the first third of the 20th century there was not a single 

tradition in logical theory, but different traditions endorsing diverse conceptions, 

none of which coincides with the first-order logic that has been regarded as the 

central core of logic since the 1950s.3 A well-informed person living in the 1920s 

would have taken notice of the following main traditions (leaving aside the propo¬ 

nents of traditional logic): the tradition of Principia, i.e., of Frege, Peano and Rus¬ 

sell; the algebraic tradition of Schroder, then in a weak position but presenting 

powerful results due to Lowenheim and Skolem; an emerging formalistic tradition, 

1 [Godel 1931] only contains a sketch of the proof of this second incompleteness theorem, 
based on the idea that some reasonings in his first incompleteness theorem could be strictly 
formalized. He planned to devote a second paper to the issue, but did not come to do so. See 

[Godel 1986, 137-38], 

2 See, e.g., [von Neumann 1947] and the ‘Nachtrag’ to [Bemays 1930, 60-61]. Hilbert him¬ 
self did not think so [Hilbert & Bernays 1934/39]. For detailed analysis of Hilbert’s program, see 
[Kreisel 1978; Detlefsen 1986; Hallett 1991], 

3 This historiographical point was prepared by van Heijenoort [1967] and forcefully estab¬ 
lished by Goldfarb [1979] and Moore [1988], Moore [forthcoming] lists five main approaches 

around the turn of the century. 
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guided by the needs of axiomatics and led by Hilbert; and, quite importantly, the 

deviant proposals of the critics of modem mathematics, Brouwer, Weyl, and also 

Skolem. 
The reigning confusion can be clearly grasped from prevailing opinions re¬ 

garding the relations between logic and mathematics. Until 1930, Principia Mathe- 

matica marked the conception of mathematical logic more than any other work. As 

we shall see, a simplified form of type theory was generally acknowledged as the 

natural system of mathematical logic around that time.1 Similarly, many logicians 

of the period evidenced the influence of Principia in their adherence to logicism 

[Ferreiros 1997], but this philosophical viewpoint proved to be much more contro¬ 

versial than simple type theory. 
Hilbert [1904, 131] and others believed that logic and mathematics need each 

other and have to be treated side by side, none of them being the foundation of the 

other discipline.2 A logic independent of mathematics would be a purely intuitive 

theory, but when it is formalized it starts depending on mathematics. Formalized 

logic presupposes the idea of finite iteration, which is basic for defining what a 

proof and a well-formed expression are. It would thus make little sense to attempt 

an ultimate foundation of number on the basis of formal logic [Skolem 1928, 517], 

On the other hand, it is clear that mathematics needs logic for the conduct of proofs. 

Axiomatic mathematical theories, beginning with Peano arithmetic, have to rely on 

an underlying logic. Thus, the foundations for both disciplines must be laid simul¬ 

taneously and in an interrelated way.3 
To add to the confusion, Brouwer viewed mathematics as a primary, original 

activity of man, and thought that classical logic had been derived from that activity. 

Our customary logic evolved from experience with finite sets, but in the course of 

time it came to be applied, with no justification, to infinite sets. As Weyl liked to 

say [1946, 276], “this is the Fall and original sin of set theory,” punished with the 

paradoxes. Thus, intuitionism is situated at the antipodes of logicism - logic is 

based on the primary activity of mathematics, rather than the latter being based on 

the universal ‘conceptual language’ of logic. 

Modem logic can be seen to have arisen from the confluence of three of the 

main traditions indicated above - that of the logicists Frege and Russell, that of the 

algebraists of logic Peirce, Schroder and Lowenheim, and that of Hilbert’s Beweis- 

theorie. Frege and Russell introduced the crucial idea of formal proof and all the 

formal machinery employed by modern logic, although their systems embraced 

higher-order logic. They pursued the dream of a grand logic (logica magna), the 

one true logic that speaks of the Universe in a fixed way; in their eyes the logical 

system is an interpreted system, not a purely formal one. Hilbert and his followers 

would emphasize the latter standpoint and thus shift substantially the conception of 

the subject. Meanwhile, Peirce and Schroder lacked a modem conception of formal 

1 This is said explicitly in [Carnap 1931, 46], 

2 There are indications that Hilbert abandoned that view in favor of logicism during the War 
(see [1918, 153; Hilbert & Ackermann 1928]), but only to return to it in the early 1920s. 

3 [Skolem, 1928, 517]. This was essentially Hilbert’s viewpoint in [1904], 
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systems and formal proof, but they systematically studied the question of possible 

interpretations of logical expressions on given domains. Thus, Frege and Russell 

prepared the syntactic ingredient of modem logic, refined and transformed by Hil¬ 

bert, while Schroder and Lowenheim prepared its semantic ingredient. Only the 

convergence of the three traditions, effected gradually in the work of Skolem, Hil¬ 

bert, Godel and others, could give rise to the distinctive 20th century approach to 

logic, the metalogical approach [Goldfarb 1979, 356]. 

Hilbert and his followers became the foremost proponents of the formal, finite 

standpoint; they were in a privileged position to effect the above-mentioned con¬ 

vergence of traditions. In their work, a most careful attention to formal systems was 

joined by free consideration of different possible interpretations, in the tradition of 

algebra and axiomatics.1 Insistence on purely formal systems would be a guiding 

principle leading to first-order logic. But it is interesting to note that the earliest 

proponents of first-order logic as the basic system were constructivists (§5). The 

whole development of logic in the 1920s and 30s, particularly the increasing con¬ 

centration on formal systems, owed much to the context of the foundational debate 

and, specifically, to the need to confront constructivist criticism. 

The most interesting aspect of this period, for our purposes, is that there were 

extreme divergences regarding the problems of set theory and the related issue of 

higher-order logic. Of course, the extent to which set theory was acceptable was 

very much in discussion: whether the Axiom of Choice, or even the Axiom of In¬ 

finity could be accepted, was a matter of opinion in which different authors di¬ 

verged greatly. In the tradition of Principia, the problem of the paradoxes was 

regarded as a logical problem, that called for a ‘natural’ logical solution - Russell’s 

type theory, which left no need for an independent theory of sets. The followers of 

Schroder had no common position. As 1 have said, this was a weak tradition, much 

weaker by 1920 than that of Principia. An orthodox position in line with 

Schroder’s would take set theory to be a part of logic, since his calculus of relatives 

involved sets and relations over a domain of individuals. This seems to have actu¬ 

ally been the viewpoint of Lowenheim, but he was never influential as long as basic 

foundational questions go. Much more important were the opinions of Skolem, who 

developed a powerful critique of the axiomatic movement and the ‘classical’ men¬ 

tality. He argued forcefully for the exclusive use of first-order logic in axiomatics, 

using this as a weapon against formalism (§5.2). 

Meanwhile, the formalists sided with Zermelo in treating set theory as a mathe¬ 

matical theory that called for axiomatization. Hilbert and his followers stressed the 

need for an underlying logic in axiomatics and chose a strong higher-order logic, in 

fact a version of type theory (see §4). At the same time, they were among the first 

to study first-order logic as an autonomous system, which they regarded as an im¬ 

portant subsystem of logic [Moore 1988; 1997]. It was only gradually that younger 

members of the Hilbertian school became partisans of first-order logic, particularly 

1 A similar tendency can be found among North-American authors such as Post, influenced by 
the axiomatic movement, and also, though less clearly, in Skolem (see [Dreben & van Heijenoort 

1986, 44-48]). 
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after Godel’s results. More details on the evolution of logic during the interwar 

period will be found in the following sections, particularly §§2 and 3. But from the 

foregoing overview it should be clear that the scope of logic and the problems of 

set theory were topics of heated debate within the context of the ‘foundational cri¬ 

sis.’ As a natural result, insecurity reigned and caution was the keyword. 

3. The Road to the Simple Theory of Types 

Until about 1930, Principia Mathematica left an unmistakable mark on the concep¬ 

tion of mathematical logic. True, Russell’s system faced important problems when 

presented as the foundation for a purely logical development of modem mathemat¬ 

ics. But one should differentiate the issue of the appropriate basic system of logic, 

from that of type theory as a foundational system for mathematics. Regarding the 

Axioms of Infinity and Choice (Multiplicative axiom) as properly mathematical 

ones, type theory became a purely logical system that seemed quite unobjectionable 

at the time. We shall still call this higher-order logical system ‘type theory,’ be¬ 

cause it includes axioms of comprehension and extensionality, that is, a general 

theory of classes. But the reader should keep in mind that no assumption is being 

made that the system affords a sufficient foundation for mathematics. 

The most influential simplification of TT was suggested by Chwistek and Ram¬ 

sey. Ramsey was able to avoid the ramification introduced by Russell’s theory of 

orders (§IX.5) and get along with the hierarchy of types alone. In the process, the 

system was completely extensionalized and he had to adopt a Platonistic viewpoint 

on the existence of classes that are satisfactory as a foundation for classical analy¬ 

sis. TT became an impredicative system, which implied the need to find a motiva¬ 

tion for it quite different from Russell’s. The work of Ramsey is extremely inter¬ 

esting as the first indication of a convergence between both systems, type theory 

and set theory, that began to develop. But before coming to him, we shall begin 

discussing what was chronologically the first great simplification of the system. 

3.1. Ordered pairs. Classes and relations are treated separately in Principia, so 

that at each level of the hierarchy of types we have to consider different types for 

classes, for binary relations, for n-ary relations. Likewise, Whitehead & Russell had 

to formulate two axioms of Reducibility, one for classes and one for binary rela¬ 

tions. Already in 1895 Schroder had treated binary relations as classes of ordered 

couples, and Peano did so too, but the notion of couple or ordered pair had not been 

satisfactorily analyzed. This situation affected set theory as much as type theory: a 

set-theoretical definition of ordered pair would greatly simplify the picture, by 

allowing a reduction of relations and functions to sets. In 1914, Norbert Wiener 

presented such a definition within the system of Principia. Simultaneously, Haus- 
dorff looked for one within set theory. 
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Wiener obtained a Ph.D. at Harvard in 1913, with a thesis comparing Schroder’s 

treatment of relations with that of Whitehead and Russell; this may have given the 

initial motivation for his improvement. While living in England on a fellowship, 

and attending a course on Principia by Russell, he published a short paper with his 

definition. Suffice it to say that Wiener employed the null set for differentiating the 

members of the ordered pair.1 This had the pleasant effect of dispensing with one of 

the two forms that Whitehead & Russell had to give the Axiom of Reducibility [see 

Wiener 1914, 224-25]. 

Notably, Russell did not regard this contribution as an important step forward 

for his theory. In the introduction to the second edition of Principia (1925) he 

stressed the significance of Sheffer’s stroke for simplifying propositional logic, but 

he did not even mention Wiener’s new definition of ordered pairs. The reason 

seems to be the following. While it was a simple step technically, conceptually it 

involved a wide change, since Wiener is treating relations extensionally. For philo¬ 

sophical reasons, Russell (like Frege) always preferred an intensional treatment of 

propositional functions - i.e., of concepts and relations. The situation would change 

after the adoption of simple TT in the form proposed by Ramsey, which was exten- 

sional from the beginning. 

Simultaneously with Wiener, Hausdorff [1914, 32] employed two distinguished 

objects, called 1 and 2, to define the ordered pair <a,b> as {{a, 1 },{b, 2}}. This was 

acceptable in the informal context in which he developed his work, but cumber¬ 

some within axiomatic set theory. As is well known, the most economical definition 

came seven years later, proposed by Kasimierz Kuratowski [1921]: <a,b> is de¬ 

fined as the set {{a},{a,b}}. It is noteworthy that this definition was a natural by¬ 

product of Kuratowski’s investigation of the theory of ordered sets [Hallett 1984], 

With these definitions, axiomatic set theory and extensional type theory have no 

need for a separate notion of function or of relation, in addition to the basic one of 

set. The reader will recall that Dedekind treated both notions as primitive (§VII.2), 

and the same has happened occasionally in modem treatments of set theory, such as 

Bourbaki’s. 

3.2. Toward simple type theory. The Principia version of type theory turned 

out to be highly controversial because of the Axiom of Reducibility. Most critics, 

even those who formulated systems very close to TT, regarded it as unacceptable - 

examples are Weyl, Wittgenstein, Hilbert, Ramsey, Godel, Waismann, and Quine. 

The motivation behind the vicious circle principle could hardly be other than that 

properties are not given, existing in some Platonistic realm, but are constructed. If 

properties existed independently of our definitions or constructions, there would be 

no reason to prohibit impredicative definitions.2 The Axiom of Reducibility decrees 

1 See [Wiener 1914, 225]. Translated into modem notation, < x,y > =Df { {{x},0}, {{y}} }; 
this complies with type restrictions, since there is a null set for each type. 

2 One may conjecture that part of the difficulty during this period was that many people 
lacked a clear understanding of the background motivations for the different viewpoints ad- 
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that, for any property of any order, there is a property of order 1 coextensive with 

it. But, if properties are constructed, one should be able to prove that proposition, 

otherwise it establishes an arbitrary decree. One can hardly avoid the conclusion 

that the axiom was in effect a renunciation from the vicious circle principle. 

In [1903], Russell characterized logical propositions as those which are true and 

absolutely general, but this was still somewhat vague. His student Wittgenstein, in 

the Tractatus finished in 1918, pointed out that accidental general validity must be 

distinguished from logical validity. One can perfectly well imagine a world in 

which the Axiom of Reducibility is invalid, therefore it is not a logical proposition 

but - if true - a happy accident [Wittgenstein 1921, §§6.1232, 6.1233]. Ramsey 

was also of the opinion that the only proposition in Russell’s system that is not 

tautological, “the blemish,” is actually Reducibility [1926, 162-3, 208].' Similarly, 

Weyl [1918, 36] regarded the Axiom as a clear indication of the “abyss” that sepa¬ 

rated him from Russell. As he later said, it was a symptom of Russell’s “complete 

volteface” and abandonment of the road of purely logical analysis [Weyl 1946, 

272], Russell himself acknowledged in 1925 that it was highly desirable to avoid 

the axiom, since its only justification was “purely pragmatic” [Whitehead & Russell 

1910/13, vol.l, xiv]. From about 1920, several authors worked on this project. 

Prominent among them was the Polish logician Leon Chwistek, who in 1921 

published the first proposal of simple type theory: 

For the elimination of this antinomy there suffices the simple theory of types, depending on 

distinction of individuals, functions of individuals, functions of these functions, and so forth. 

Distinction of orders of functions of a given argument, and introduction thereby of predica¬ 

tive functions, and in further consequence appealing to the principle of reducibility is from 

this point of view a superfluous complication of the system. It should be noted that removal 

of the above elements from the theory of types of Whitehead & Russell would render this 

theory extraordinarily simple and perspicuous. If therefore Whitehead & Russell could not 

make up their minds to the simplification, then they undoubtedly did that as a result of the 

conviction that a system of logic admitting the antinomy of Richard cannot be regarded as a 

final expression of that which it is possible to attain in the given sphere. Leaving this matter 

aside, we restrict ourselves to the assertion that the [ramified] theory of types together with 

the principle of reducibility cannot be maintained, because either it is false or else it repre¬ 

sents in intricate form that which fundamentally is simple.* 1 2 

vanced, in the present case, of the relationship between platonistic assumptions and impredica- 
tivity. 

1 But in fact Ramsey lacked a clear notion of tautology; by ‘tautological’ he means ‘true for 
an intended interpretation’ (see, e.g., [1926, 209-10]). Strictly speaking, a proposition is a tautol¬ 
ogy iff it is true for any combination of truth-values of its constituent elementary propositions 
[Wittgenstein 1921, §4.46], The doctrine of Wittgenstein and the Vienna Circle is flawed, since 
the notion of tautology only seems to make sense within the realm of propositional logic, as 
Tarski pointed out in 1934 [Tarski 1986, vol. 4, 694; 1956, 419-20], 

2 [Chwistek 1921], as translated by Church [1937a, 169]. 
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Thus, Chwistek distinguished two kinds of type theory, ‘primitive’ or ‘simple’ TT, 

and ‘pure,’ branched’ or ‘constructive’ TT. But he never accepted simple type 

theory as other than a provisional system, because it presupposes a realistic view¬ 

point that he could not accept. In 1924-25, he presented a system of ‘constructive’ 

TT without the Axiom of Reducibility, in which he accepted only finite types and 

those propositional functions that are constructible according to predetermined 

rules.1 Russell pointed out in the second edition of Principia [1910/13, vol.l, xiv] 

that Chwistek’s was a “heroic” decision, which led to sacrificing much of classical 

mathematics. But, as Church remarks [1937a], the introduction of arithmetic by 

means of special axioms makes his proposal more reasonable, in fact somewhat 

close to Weyl’s system. 

At any rate, the work of Chwistek remained little known because he published 

mostly in Polish, used a strange symbolism, and liked to enter into many obscure 

philosophical asides. The most influential modification of TT came in the mid-20s 

with Frank P. Ramsey, a student of Russell and friend of Wittgenstein, inspired to a 

large extent by the sophisticated understanding of logic proposed in the Tractatus. 

In 1926 he published a paper on ‘The Foundations of Mathematics’ which pre¬ 

sented a version of simple type theory and attempted to justify it. He explicitly 

advanced the mathematical motivation of offering a sound foundation for classical 

analysis. In reference to ramified TT, he wrote: 

as I can neither accept the Axiom of Reducibility nor reject ordinary analysis, 1 cannot be¬ 

lieve in a theory which presents me with no third possibility [Ramsey 1926, 180], 

Ramsey defended forcefully the idea that mathematics is “a calculus of exten¬ 

sions” [1926, 165], which had great implications for his proposed modifications of 

TT. He saw three main defects in the system of Principia. 1) The introduction of 

orders and ramification with the purpose of solving some of the paradoxes, which 

creates the need for the Axiom of Reducibility. 2) The treatment of identity, which 

creates problems in the interpretation of the Axiom of Infinity, making it look far 

from being a tautology. And 3) not admitting infinite “indefinable classes,” which 

leads to problems with the Multiplicative Axiom [op.cit., 173-181], Such ‘indefin¬ 

able’ classes cannot be mentioned by themselves, but they could be under the scope 

of quantifiers, and Ramsey thinks their assumption is essential for mathematics. 

Concerning problem 1), Ramsey proposed to distinguish two radically different 

kinds of paradoxes, as Peano had already suggested in 1906. Those which depend 

only on basic logical or mathematical notions, like Russell’s or Burali-Forti’s para¬ 

dox, are called “logical paradoxes” [Ramsey 1926, 171-72], These are the main 

problem, while the second group of paradoxes cannot affect a neatly specified logi¬ 

cal system, for they depend on “some psychological term, such as meaning, defin¬ 

ing, naming or asserting” [Ramsey 1978, 227-28].2 The second kind of paradoxes 

1 See [Grattan-Guinness 1979, 74], [Fraenkel, Bar-Hillel & Levy 1973, 200-05] and further 

references given here. 

2 Nowadays, Ramsey’s ‘logical’ paradoxes are called set-theoretical; his terminology reflects 
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are solved by applying the vicious circle principle to the logical symbolism, but not 

to the propositional functions that are supposedly referred by it [Ramsey 1926, 

192-200], Subsequent authors would simply point out that paradoxes of the second 

kind cannot be formulated in the formal languages of logical systems. In general, 

the proposals of Ramsey have the typical flavor of the pre-metatheoretical period, 

since he does not differentiate (and interrelate) clearly the spheres of syntax and 

semantics. But, although he failed to present the idea in its full simplicity, his dif¬ 

ferentiation made it possible to justify reliance on simple TT. The need for ramifi¬ 

cation and Reducibility disappeared, while the principle of the types of arguments 

was enough to stop the logical paradoxes. 
Trying to solve problems 2) and 3), Ramsey experimented with a system based 

on what he called "predicative propositional functions” [Ramsey 1926, 190], This 

was somewhat similar to the predicative system of Weyl (see §5.1), but Ramsey 

found it unsatisfactory, “every bit as inadequate as PM to provide an extensional 

logic,” i.e., a foundation for mathematics [op.cit., 201]. For those reasons, he came 

to the conclusion that the only way to obtain a complete theory of classes was to 

introduce non-predicative functions, which forced him “to treat propositional func¬ 

tions like mathematical functions, that is, to extensionalize them completely” 

[op.cit., 203]. In complete rupture with Russell and the tradition of Frege, he was 

abandoning the idea of the primacy of intensions and joining the proponents of set 

theory in their preference for extensions. Variables of the first type were to range 

over “functions in extension,” while variables of the second type would range over 

“predicative functions” [op.cit., 207]. This is not yet the simple TT that would be 

used by later authors, but it indicates the way. 

Ramsey had found a way to intuitively motivate a system that is formally very 

similar to that of Principia, but in spirit and interpretation much closer to set the¬ 

ory. He extensionalized completely, adopting a Platonistic viewpoint on the exis¬ 

tence of “functions in extension” (classes) that provide a foundation for classical 

analysis. He found ways of dispensing with the Axiom of Reducibility, but there 

still were many problems with the formal structure of the new system, in particular 

with how to delimit the realm of “functions in extension.” Ramsey lacked an inde¬ 

pendent characterization of what these functions are. All we seem to know is that 

they are the counterparts of arbitrary classes, but without a more detailed specifica¬ 

tion we seem to relapse into a pre-axiomatic viewpoint again, into naive set theory. 

Later authors would characterize the available propositional functions syntactically, 

but Ramsey was still far from this formal viewpoint. 

Ramsey’s class realism made understandable the Axiom of Choice (Multiplica¬ 

tive Axiom), and he also tried to find arguments showing the Axiom of Infinity to 

be tautological. He toyed with the idea that we do not need infinitely many basic 

objects, as Russell thought, but only “some infinite type” with infinitely many ele¬ 

ments, which we can then take as the type of individuals. But the admission of 

the fact that he viewed the type-theoretic theory of classes as a part of logic. After Tarski’s work 
on formal semantics, the other kind of paradoxes were called ‘semantic.’ 
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types of level co and greater also created huge difficulties, contradicting the initial 

spirit of TT. Since for these reasons he was not able to rescue Russell’s logicist 

project, Ramsey concluded his article on a pessimistic note [1926, 210-212],1 Nev¬ 

ertheless, early in the 1930s Godel and Tarski would formulate versions of simple 

TT that are quite satisfactory from a formal standpoint, and, though comparable to 

set theory in being Platonistic, much weaker than this theory in their existential 

assumptions. 

4. Type Theory at its Zenith 

The success of type theory as a logical system can be substantiated through writings 

of the most important logicians of the period. From about 1928, Principia ceased to 

be the main reference work in logic, since books such as Hilbert & Ackermann’s 

Grundziige der theoretischen Logik [1928] became available. This introduced a 

more advanced standpoint: the different formal systems are presented with greater 

clarity and precision, and metatheoretical questions are addressed. The work of 

Hilbert & Ackermann can actually be regarded as the first textbook that is paradig¬ 

matic of the new period in the development of logic, the metatheoretical period. It 

included a detailed study of advanced logical systems that were called ‘functional 

calculi,’ the so-called “restricted functional calculus” [engerer Funktionenkalkiil] - 

a system of first-order logic, and the “expanded functional calculus” [erweiterter 

Funktionenkalkiil] - a peculiar version of type theory. The restricted calculus was 

regarded as an interesting subsystem worthy of being studied independently, but for 

the purposes of an axiomatic development of mathematics the expanded calculus 

was thought indispensable. Set theory and arithmetic cannot be adequately treated 

in the restricted system, since the principle of induction, and notions such as num¬ 

ber, membership, and cardinality, have to be formulated in higher-order logic in 

order to capture their intuitive meaning. Hilbert never abandoned this appraisal of 

the situation (see [Hilbert & Bemays 1934/39, vol. 2]), which was also shared by 

other logicians, notably by Church [1956], 

Similarly, though less surprisingly, Rudolf Carnap presented versions of type 

theory in his different books on logic, beginning with [Carnap 1929]. Carnap was 

strongly influenced by Russell in matters of logic and philosophy, being the most 

prominent defender of logicism at the time in question. His [1929] was a summary 

and popularization of the logical system of Principia, but developed along the lines 

of Ramsey’s simple TT. Type theory is, again, the system proposed in Carnap’s 

defense of logicism [1931] at the famous 1930 Conference on epistemology of the 

exact sciences at Konigsberg, where Godel announced his first incompleteness 

theorem. In his most important work, The Logical Syntax of Language, Carnap 

1 Ramsey then tended to formalism with a 1928 contribution to the decision problem, estab¬ 
lishing the theorem that bears his name, and a 1929 article for the Britannica; and finally he 
tended to intuitionism, according to a review by Russell in Mind 40 (1931). 
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studied two formal systems: a form of first-order logic, called “language I,” which 

included primitive recursive arithmetic and was inspired by intuitionist ideas (see 

[Carnap 1937, §16]); and a form of type theory built on top of the previous system, 

called “language II.”1 
We could go on citing further examples, for instance from articles by Quine and 

Church. The latter in [Church 1940] presented a noteworthy and influential 

reformulation of simple type theory based on his lambda calculus, which produced 

a very elegant result; he presented axioms of infinity and choice because he wanted 

to preserve TT as a foundational system alternative to set theory.2 But if one had to 

choose the two most important authors as of 1930, most logicians and historians 

would select Godel and Tarski. Both of them seem to have regarded type theory as 

the natural (or at least the customary) system of logic at the time. TT is at the basis 

of their renowned contributions, Godel’s paper on undecidable propositions and 

Tarski’s on the concept of truth. Though published in different years, both papers 

were actually written in 1930-31, and the systems presented in them are coinci¬ 

dental. Quine [1986, 11] has written that TT received its “classical thumbnail for¬ 

mulation” with Tarski and Godel. 

The simplest version is Godel’s [1931, 150-55], while Tarski’s has the peculi¬ 

arity of being formulated in his metatheoretical symbolism, which makes it slightly 

more difficult to interpret. Besides, the only difference is that Tarski presents an 

Axiom of Infinity, while Godel has no need of it since his purpose is to give a type- 

theoretic formulation of Peano arithmetic.3 Godel [1931, 150-55] employs a formal 

language with indexed variables ‘x,’, ‘y,’, ‘z,’, ... for all natural numbers i, where i 

is the type of the objects that the variable refers to. Elementary formulas are of the 

form ‘jc;+ i(xi)’ ar>d we find the usual recursive definitions for well-formed formu¬ 

las. He lists five groups of axioms, the first group being that of the Peano axioms, 

while the rest synthesizes the logic of Principia. The system looks very much like 

current ones for first-order logic, except for the last two groups of axioms, devoted 

to the characteristic principles of type theory [1931, 154-55], The Axiom of Com¬ 

prehension, group IV, is any instance of 

Vvw (wn+j(vw) > cx) 

1 See [Carnap 1937] and [Sarkar 1992], Of the intuitionist authors which Camap quotes, the 

one who uses a system closer to language I is Weyl (§5.1). Type theory was still the preferred 

logical system in Carnap’s Introduction to Symbolic Logic, a handbook of 1954 in the original 

German. 

2 On Church’s life and work, including a description of his system for TT and comments on 

the implications it had for Henkin, see [Manzano 1997] (particularly [227-29]). 

3 See [Tarski 1933, 241-43] and for motivation of the system [Tarski 1931, 213-17]. Infinity 

was formulated by asserting the existence of a class of type 3 whose properties make necessary 

the existence of infinitely many individuals. Formulating the Axiom of Choice does not present 

any particular problem either. 
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where ‘un+i’ is not free in the arbitrary formula ‘a.’1 2 The Axiom of Extensionality, 

group V, is any instance of 

Vxm [x;(xm) -> xt = yt 

for any natural number i? The reader should keep in mind that predication plays 

here the role that membership plays in set theory. Otherwise said, instead of 

‘«h+i(Vk)’ we might as well write ‘vne un+ f, instead of ‘x,(x;__i) T/(x/-l)’ we 

might also write ‘x,_ie x;- <-» xt_\eyf3 These purely formal changes should help the 

reader grasp the relation between this version of TT and set theory. 

Godel’s system is formally very simple. It keeps the Axiom of Comprehension, 

which was responsible for the emergence of paradoxes in Frege’s system, but 

avoids these by means of the type restrictions, imposed by allowing only elemen¬ 

tary formulas of the form ‘x,e xi+f. The intuitive idea is that a class of type z'+l can 

only have classes of type i as its elements. There is an important difference in the 

formulation of this axiom, compared with Russell’s or Ramsey’s. Russell did not 

specify clearly what the domain of propositional functions is, corresponding to ‘oc’ 

in the Axiom of Comprehension above. He seemed to assume the existence of a 

realm of propositional functions (concepts or attributes) given as a Platonistic do¬ 

main. Godel and Tarski, on the other hand, are under the powerful influence of 

Hilbert’s axiomatics and formalism; in their system, ‘a’ represents an arbitrary 

well-formed formula of the language. The difference is huge, since a vague intui¬ 

tive notion has been replaced by a precise formal one. With this last change, simple 

type theory receives its definitive formulation. 

Tarski’s paper on the concept of truth in formalized languages is notable be¬ 

cause it gives the ultimate rationale of his preference for TT as of 1931 and 1933. 

The main reason was his adherence to the theory of semantical categories of his 

teacher, the philosopher and logician Stanislaw Lesniewski. Tarski started his ca¬ 

reer, early in the 1920s, devoting much time to set theory under the guidance of 

Sierpinski, and to the logic of Principia Mathematica as the subject of his doctoral 

thesis. In the context of set theory he used to employ Zermelo’s axiom system,4 and 

he was well aware that this system was more convenient for mathematical purposes, 

and more powerful too [Tarski 1986, vol.l, 186]. Nevertheless, in his joint paper 

with Lindenbaum recording their set-theoretical results, published in 1926, a choice 

was left open between the systems of Zermelo, Whitehead & Russell, and Lesniew¬ 

ski (see [op.cit., 173]). We may conjecture that the influence of Lesniewski was 

1 Tarski, following his teacher Lesniewski, called instances of this axiom “pseudo¬ 

definitions.” 

2 I have not formulated the axioms exactly as Godel did, but introduced slight simplifications 

that involve no conceptual change. He wrote: {Eu){vY\{u{v) = a)), making explicit the type re¬ 

strictions, and xiri[x2(X|) s y2(x,)] 3 x2 = y2, indicating that we may elevate the types. 

3 This is actually what Tarski did. He remarks on the relation between predication and mem¬ 

bership in [Tarski 1931, 214n], 

4 See, e.g., his papers of 1924 in [Tarski 1986, vol.l, 41, 67]. 
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getting stronger or becoming more conscious by this time. Be that as it may, in 

1930 Tarski regarded himself a follower of the “intuitionistic formalism” of 

Lesniewski [Tarski 1956, 62], When he started publishing on metamathematics and 

semantics, in 1930, he needed to make explicit a basic system of logic, and chose a 

Russell- or Lesniewski-style one [1986, vol. 1, 313ff].' 

According to Tarski, Lesniewski’s notion of semantical category is formally 

analogous to that of type, and the theory of semantical categories can be seen as an 

extension of simple type theory. Semantical categories are regarded as essential for 

a sound explanation of the meaningfulness of expressions: grammatical or syntacti¬ 

cal rules are not enough to guarantee meaningfulness.1 2 Every linguistic expression 

belongs to exactly one category, and the theory thus makes it necessary to differen¬ 

tiate the categories of individuals, classes of individuals, binary, ternary, etc. rela¬ 

tions of individuals, classes of classes of individuals, binary relations of classes of 

individuals, and so on [Tarski 1933, 215-219], In Tarski’s view, 

the theory of semantical categories penetrates so deeply into our fundamental intuitions 

regarding the meaningfulness of expressions, that it is scarcely possible to imagine a scien¬ 

tific language in which the sentences have a clear intuitive meaning but the structure of 

which cannot be brought into harmony with the above theory. [Tarski 1933, 215] 

As a result, Tarski avoided any theoretical means going beyond TT, finding that the 

notion of truth - which he showed how to define for languages of finite order - was 

not definable for what he called “languages of infinite order,” such as the full the¬ 

ory of types [Tarski 1935, 241ff].3 
Type theory kept being extremely influential throughout the 1930s. Logicians 

published important contributions to simple TT, among which we may mention 

Church’s formulation [1940] employing an original notation for types. Tarski, 

Gentzen and Beth gave proofs of the consistency of simple TT without Infinity and 

Choice.4 Fitch [1938; 1939] proved the consistency of ramified TT, thus shown to 

be quite a weak system. Some authors proposed cumulative versions of simple TT, 

where a class of type n can have members of any type lower than n [Church 1939, 

69]; this brings TT even closer to set theory. Whenever the foundations or the for¬ 

malization of mathematics were being discussed during this period, TT was men¬ 

tioned as one of the two main alternative systems, the other being axiomatic set 

theory.5 Nevertheless, in the course of the 1930s some key figures distanced them¬ 

selves from TT; most notably Tarski and Godel did so, as we shall see (§XI.5). 

1 This is the period reflected in the logical papers collected for [Tarski 1956], 

2 See [Fraenkel, Bar-Hillel & Levy 1973, 188-190], Lesniewski’s theory has an important 

precedent in Husserl, whose work affected Weyl in a similar way. 

3 He also thought it impossible to give a formal definition of the concept of logical consequence, 

a view that he would correct two or three years later (see [Tarski 1956, 293-295, 413 note 2]). 

4 See Journal of Symbolic Logic 2 (1937), 44. The question, however, is quite elementary, and 

there was corresponding work on ZF [Ackermann 1937], 

5 See, e.g., [Godel 1931, 144-45], [Tarski 1986, vol. 1, 236 and passim], [Church 1939, 69- 

70], or the retrospective comments in [Carnap 1963, 33]. 



§5. The Radical Proposal of First-Order Logic 357 

5. A Radical Proposal: Weyl and Skolem on First-Order Logic 

During the 1920s, only authors of a constructivist tendency, particularly Weyl and 

Skolem, regarded first-order logic as a natural underlying logic for mathematics. 

This is acknowledged by Carnap in his well-known 1931 presentation of the logi- 

cist viewpoint. After stating that he shared with the intuitionists the view that only 

those expressions which are constructed in finitely many steps should be recog¬ 

nized as properties, he went on: 

The difference between us lies in the fact that we recognize as valid not only the rules of 

construction which the intuitionists use (the rules of the so-called “restricted functional 

calculus”), but in addition, permit the use of the expression ‘for all properties’ (the opera¬ 

tions of the so-called “expanded functional calculus”). [Camap 1931,52] 

Carnap here followed the logical terminology of Hilbert & Ackermann (see §4). 

What he says is obviously wrong for Brouwer and his strict followers, since these 

authors do not use a classical logic like the first-order ‘restricted functional calcu¬ 

lus.’ The only authors of a clear constructivist tendency (not exactly intuitionists) 

that Camap could have in mind are Weyl in his [1918] and Skolem. 

Within the context of the 1920s, a decade marked by Principici, the proposal 

that logical theory had to be restricted to the extent of abandoning quantification 

over properties could only appear excessively radical. But in the course of time this 

minority position came to be generally accepted. Von Neumann seems to have been 

one of the earliest authors to join Weyl and Skolem, the third important proponent 

of first-order logic in the 1920s; but he did not argue explicitly for this move (§5.2). 

In the course of the 1930s most came to agree that, if one is looking for a strictly 

formal system, first-order logic is the only reasonable choice. Thus, the situation 

was finally ripe for the emergence of the modem first-order axiomatization of set 

theory. The reasons why first-order logic won the day are related to the needs of 

axiomatics, the goals of Hilbert’s Beweistheorie, and the basic metatheoretical 

results gathered around 1930. Reviewing the work of Weyl and Skolem will help us 

understand the more subtle and less well-known of these motives. 

5.1. Weyl’s proposals. As we have seen (§1), Weyl developed a system of 

predicative set theory and analysis, based on a detailed analysis of logic and certain 

convictions regarding the notion of infinite set. His reflections on the scope of logic 

led him to the conclusion that there are basically two possibilities for a mathemati¬ 

cian. In mathematics as in other fields, one deals with previously given objects, 

properties and relations. We are never given ‘all’ possible properties or relations, 

only a few, and we need to determine what the admissible properties are, as is 

shown by the fact that a naive notion of property, like naive set theory, leads to 

contradictions.1 

1 One just has to consider the property version of Russell’s paradox, or the paradox of ‘heter- 

ological’ [Weyl 1918, 2]. 
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One must either abandon the notion of ‘all properties’ or give it a clear sense. 

The latter happens when we consider those properties and relations that can be 

constructed from the primitive by means of logical operations. This road leads to 

a predicative logic: one cannot accept impredicative concept formation since we 

are taking properties and relations to be constructed (see also §3.2). Weyl’s full 

predicative logic was essentially equivalent to Russell’s ramified type theory, but 

of course without the Axiom of Reducibility. On the other hand, a restricted form 

of logic, corresponding to our first-order, would correspond to the abandonment 

of ‘all properties.’ Trivially, it complies with type restrictions, since it only has 

variables for individuals. Thus, Weyl saw two possible logical frames in which to 

develop pure mathematics: a “strict procedure” [engeres Verfahren] and a “broad 

procedure” [weiteres Verfahren] employing predicative higher-order logic. But 

when analysis is developed predicatively, we must differentiate real numbers of 

different levels, and it becomes artificial and impracticable. This is why Weyl 

opted for the “strict procedure” [Weyl 1918, 21-23], We shall call Weyl’s pre¬ 

ferred logical frame ‘restricted logic,’ in adaptation of his words, in order to 

avoid begging the question of interpreting its relation to first-order logic.1 

One should mention that Weyl’s way of dealing with logical matters is 

somewhat peculiar, and does not measure up to the highest standards employed 

by authors of the two following decades. For instance, he does not clearly differ¬ 

entiate propositions from inference rules, nor does he make a difference between 

variables and schematic letters. Perhaps he intentionally avoided some of these 

ideas (particularly the first difference) because he wished to stay far from for¬ 

malistic mathematics and logic, and closer to intuitive conceptions and inten- 

sional logic. Most importantly, the logical principles that he presents are given 

under the form of principles for a logic of relations, although he suggests that 

parallel to these principles are some corresponding forms of inference [Weyl 

1918, 9-10, 29], His emphasis on relations is easy to understand considering that 

his purpose was to establish set theory as a theory of relation- and concept- 

extensions. 

Under the heading ‘Principles of the combination of judgements,’ Weyl 

[1918, 4-6] presents a logic of relations based on six operations. The principles 

are clearly established, reflect a careful analysis of logical inference, and can 

easily be seen to correspond to a first-order logic. We find principles allowing 

the negation of a relation, the conjunction and disjunction of two relations (prin¬ 

ciples 1, 3, 4). Principle no. 2 allows the “identification” of free variables in 

relations, that is, the step from R(x,y) to R(x,x). And two further principles allow 

the “'filling-out” [.Ausfullung] of a free variable in a relation. One (no. 5) is a 

principle of instantiation, i.e., it allows the construction of U(x,y,a) from U(x,y,z), 

a being one of the given objects (in modern terminology, a constant for individu¬ 

als). Principle no. 6 allows the existential filling-out of free variables, i.e., the 

1 Another possible denomination is “finite logic” [op.cit., 21 note, 32], responding to the idea 
that higher-order predicative logic is “transfinite” because it requires us to overview all the 
derived properties and relations, not simply the initially given individuals as in restricted logic. 
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step from U(x,y,z) to U(x,y, *), which is read: “there is an object z (of our cate¬ 
gory) such that the relation U(x,y,z) obtains” [1918, 5],1 

Weyl was well aware of the role played by existential propositions in mathe¬ 

matics, and, of course, of the relation between general and existential propositions 

[1918, 4, 7], In the “strict procedure” we employ the first-order existential quanti¬ 

fier, for we are only allowed to quantify over individuals, objects of the basic given 

category, such as natural numbers in the case of arithmetic [op.cit., 21, 31], In con¬ 

trast with Russell, Weyl was not guided by the goal of reducing mathematics to 

logic - on the contrary, he was of the opinion that the basic idea of iteration is a 

first foundation, and that reducing it to set theory, or even to axiomatic mathemat¬ 

ics, is circular and superfluous [op.cit., 12, 37-38], This made it more natural for 

him to renounce the expanded predicative logic and adopt first-order logic as a 

frame. To remedy the weakness of this logic, he attempted to find additional princi¬ 

ples, of a specifically mathematical kind, that would be sufficient to establish an 
alternative edifice of analysis [1946, 274],2 

At the time when Weyl published Das Kontinuum, Hilbert was also considering 

first-order logic in his lectures of 1917/18.3 From Hilbert’s standpoint, this re¬ 

stricted logic was a subsystem of type theory, which he carefully singled out be¬ 

cause he found it worthy of independent metatheoretical study. The main difference 

between both men is that Hilbert never accepted the radical idea of restricting logic 

to first-order (§4). It may have been that both came to first-order logic independ¬ 

ently, but one should also consider the possibility of direct influence. For Weyl 

started to consider that system while working on his attempt to improve Zermelo’s 

axioms for set theory, and this happened in the early 1910s, while he was still a 
Pnvatdozent at Gottingen.4 

Once Weyl’s viewpoint is understood, one can easily grasp a problem that logi¬ 

cians in the 1920s and 1930s must have considered. When we speak of higher-order 

logic, does it mean a Platonistic logic, treating the domain of properties as a pre¬ 

existing realm, or predicative logic? This raised doubts on the admissibility of even 

second-order logic, since it happens to be intimately entangled with precisely those 

questions regarding the meaning of existence in mathematics that were in discus¬ 
sion among the different parties in the foundational debate. 

1 In modern notation 3z U(x,y,z). Weyl realized that his notation was inconvenient, but he was 

not interested in formalizing mathematics. Similar principles, and in particular the analogue of 

first-order existential quantication, were already presented in [Weyl 1910], 

2 Thus, to the above logical principles of construction, he added further mathematical princi¬ 

ples - of substitution and above all of iteration (principles 7 and 8 [op.cit., 24-28]). We shall not 

discuss them in detail; suffice it to say that they establish the possibility of recursive definitions, 

what Weyl calls “iteration.” For a detailed analysis see [Feferman 1988]. 

3 For detailed analysis of these lectures, see [Moore 1997], They were the basis for the later 
book [Hilbert & Ackernrann 1928], 

4 See [Weyl 1910] and [1918, 35-36]. Weyl moved to Zurich in 1913. 
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5.2. Skolemism. In [1932], Zermelo criticized harshly what he called 

“Skolemism” for its negative effects on axiomatic mathematics in general, and set 

theory in particular. The referent of his exacerbation, Albert Thoralf Skolem, was a 

Norwegian mathematician who had studied under Sylow, among others, and taught 

at Oslo from 1918 [Nagell 1963; Skolem 1970]. Skolem worked on number theory, 

group theory, and logic and foundations, among other topics. His algebraic work 

shows the influence of Kronecker, so it is not surprising that he had a strong inter¬ 

est in constructive proofs of known theorems. Skolem started the study of primitive 

recursive arithmetic in a paper that was published in 1923, but written in 1919. This 

constituted, for him, the soundest foundation on which to base mathematics, a posi¬ 

tion he had in common with Poincare and Weyl [Skolem 1923, 299-300], Since the 

consistency of Zermelo’s axiom system can only be established by metamathemat¬ 

ics, which in turn needs recursive definitions and inductive inferences, it would be 

circular to insist on reducing the notion ‘finite’ to set theory. 

Skolem is mainly remembered for his decisive contributions to mathematical 

logic, above all the first important metalogical result ever proved, the Lowenheim- 

Skolem theorem. Already in the winter of 1915-16, during a post-doctoral stay at 

Gottingen, he communicated to Bernstein the surprising and radically new result 

that the notions of axiomatic set theory are unavoidably relative [Skolem 1923, 

300], This was simply a consequence of the (downward) Lowenheim-Skolem theo¬ 

rem, and the anecdote implies that by 1916 he had already studied Lowenheim’s 

work [1915], Skolem’s streamlined proof, and extensions, of Lowenheim’s main 

result appeared in [1920], but he did not address its implications for axiomatic set 

theory until 1922. The reason was that he believed it was “so clear” that axiomatic 

set theory “was not a satisfactory ultimate foundation of mathematics;” but having 

seen, to his surprise, that many mathematicians thought otherwise, he decided to 

present a critique. The occasion came in August 1922, at a congress of Scandina¬ 

vian mathematicians [Skolem 1923, 300-01], 

Skolem’s papers [1920; 1923] reveal detailed knowledge of the work of Cantor, 

Dedekind, Zermelo, and, among logicians, Schroder, Lowenheim, and Whitehead 

& Russell.1 His 1922 address is a masterpiece. Sharply conceived and clearly writ¬ 

ten, the author deals with foundational matters in a way that anticipates by a decade 

the level of precision that would become customary among mathematical logicians. 

Nevertheless, it was probably difficult to understand at the time, since most mathe¬ 

maticians lacked even an elementary knowledge of logical theory. The talk dealt 

with several questions surrounding Zermelo’s axiomatization. It showed some of its 

deficiencies and explained how to amend them; it offered a new, simpler proof of 

the Lowenheim-Skolem theorem and discussed Skolem’s paradox in an authorita¬ 

tive way; it elaborated on the issues of the consistency and non-categoricity of the 

axiom system. 

1 It was after studying Principia Mathematica in 1919 that he wrote his piece on “the recur¬ 

sive mode of thought,” i.e., primitive recursive arithmetic. 
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The only point that is not sufficiently explained in the address, and a very im¬ 

portant one for us, is Skolem s insight that axiomatizing set theory means giving a 

first-order formalization of it [1923, 292, 295-96, 300], Some historians have in¬ 

terpreted Skolem’s proposals as implying that he did not accept the possibility of 

any logic going beyond first-order, but this cannot be maintained in the face of later 

papers [1928, 516-17], It has to be said that Skolem does not speak of first-order 

logic; rather, he talks of ‘Zahlaussagen,’ which can be translated as “number- 

statements. 1 The intended meaning of this expression is that the propositions we 

employ refer only to individuals, to basic objects; we quantify only over individuals 

(in Skolem’s eyes, numbers are the foremost representatives of simple individuals). 

Skolem does not deny the possibility of what we call second-order logic but, like 

Weyl, he sees problems in it, because the question: what is the totality of all predi¬ 
cates?, is a difficult one [Skolem 1928, 516].2 

But Skolem’s basic insight lies elsewhere. The spirit of the axiomatic method 

implies the use of ‘number-statements,’ because in axiomatics one proceeds as if 

one knew nothing about the objects of the axiomatization, except what is explicitly 

formulated in the axioms. Since the 19th century it had been stressed that any ob¬ 

jects whatsoever may constitute a model of the axiom system, provided we can 

interpret the basic relations of the system appropriately. This is why “the objects of 

the axiomatization (in set theory the ‘sets’) will assume the role of individuals” 

[Skolem 1928, 517], Should we act as if the expression ‘all predicates of individu¬ 

als’ had a clear sense, for individuals of any possible model, we would be contra¬ 

dicting the spirit of axiomatic mathematics - or else assuming an important part of 

set theory. Think of predicates extensionally, as sets: ‘all predicates of individuals’ 

would then mean ‘all subsets of the domain.’ Using second-order logic presupposes 

that the meaning of ‘all subsets’ is fixed beforehand, independently of axiomatic set 

theory. In the context of the foundational debate, that was certainly an untenable 

position.3 Thus, axiomatic set theory, and in fact any formal axiom system, has to 

be formulated by means of ‘number-statements.’ 

Skolem believed, and he was probably right, that most mathematicians do not 

conceive of set theory axiomatically, but think of sets as given by specification of 

arbitrary collections. As proof of this fact, he pointed to the polemics surrounding 

the Axiom of Choice, which would be pointless with regard to a strictly axiomatic 

theory [1923, 300], Since the notion of set cannot be employed naively, one pro¬ 

ceeds to axiomatize; but “when founded in such an axiomatic way, set theory can- 

1 Lowenheim [1915] talks about “number-expressions.” 

2 He proposes two ways of solving the problem. One is essentially the same as Weyl’s predi¬ 

cative (expanded) logic, discussed above. The other would be to axiomatize the notion of predi¬ 

cate, but the result would be essentially equivalent to axiomatic set theory. Thus, non-predicative 

higher-order logic is certainly not a good candidate for a logical basis on which to axiomatize set 
theory. 

3 If one has goals different from providing a foundation for a given theory, for instance se¬ 

mantic goals, it may be sound to rely on higher-order logic [Shapiro 1991], This makes some 

sense ofZemrelo’s work around 1930 (see [Moore 1980]). 
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not remain a privileged logical theory” [op.cit., 292]. The basic relation of member¬ 

ship ceases to have a fixed meaning, it can be interpreted at will in models of axio¬ 

matic set theory. 
As for deficiencies in Zermelo’s system, Skolem points above all to the impre¬ 

cise notion of “definite statement,” which he regards as a very deficient point. His 

proposal is the now standard one: a definite proposition is a first-order formula, a 

“finite expression constructed from elementary propositions of the form aeb or 

a = b by means of the five operations mentioned,” conjunction, disjunction, nega¬ 

tion, universal and existential quantification [1923, 292-93]. This he regards as a 

very natural way of explaining Zermelo’s obscure notion, that immediately sug¬ 

gests itself. In fact, on the face of Skolem’s proposal it seems easy to read it back in 

Zermelo’s original explanation.1 But Zermelo disagreed [1929, 342], preferring a 

strong rendering of the Axiom of Separation in higher-order logic, which avoids the 

“finitistic prejudice” of “Skolemism” [1932] with its unfortunate consequence: the 

Skolem paradox. 
With the notion of definite proposition amended, Zermelo’s system is turned 

into a clearly specified set of ‘Zahlaussagen’ or first-order propositions. Actually it 

becomes an infinite sequence of such propositions, because the Axiom of Separa¬ 

tion has to be regarded as an axiom-schema, to be replaced by its denumerably 

many instances [Skolem 1923, 294-95], Skolem goes on to offer a rather weak 

proof of the Lowenheim-Skolem theorem, which relies only on the recursive mode 

of thought [op.cit., 293-94].2 It thus becomes clear that the theorem does not pre¬ 

suppose anything from set theory. The result reads as follows: 

Let there be given an infinite sequence Uj, U2, ... of number-statements numbered with the 

integers; if, now, it is consistent to assume that all these propositions hold simultaneously, 

they can all be simultaneously satisfied in the infinite sequence of the positive integers, 1, 2, 

3, ... by a suitable determination of the class and relation symbols occurring in the proposi¬ 

tions.3 

Since this immediately applies to Zermelo’s system, it is clear that among the do¬ 

mains which satisfy the axioms one can find denumerable domains. This brings 

with it the unavoidable relativity of the notions of axiomatic set theory, particularly 

the notion of cardinality [1923, 292, 296], 

On the basis of the axioms one can prove that there exists a non-denumerable 

set M, although from the outside it is clear that no such sets can be found in a de¬ 

numerable domain. This is paradoxical but, as Skolem explains, there is no contra- 

1 That a definite proposition is one for which “the fundamental relations of the domain [of the 

form ae b], by means of the axioms and the universaly valid laws of logic, determine without 

arbitrariness whether it holds or not” [Zermelo 1908, 201], 

2 Previously Skolem [1920] had offered a different proof using the Axiom of Choice and 

Dedekind’s theory of chains, with the stronger result that every model of the axiom system has a 

denumerable submodel. 

3 [Skolem 1923], as translated in [van Heijenoort 1967, 293]. 
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diction. It just means that, within the model or domain, there is no one-to-one map¬ 

ping of M onto the set representing the number sequence [1923, 295], “In the 

axiomatization, ‘set’ does not mean an arbitrarily defined collection,” but simply an 

object, an individual which is connected with some others by means of certain 

relations [ibid.]. And even if the domain consists of sets, the model’s power set of 

M may not contain all possible subsets of M, i.e., it may not contain some subsets 

which we might be able to determine from the outside. The resulting relativity of 

the notion of cardinality is, according to Skolem, the most important point in his 

address [op.cit., 293].' He also speculated with the possibility that, within the do¬ 

main, some sets may be declared infinite which are from without finite; and that in 

different domains one may even find representatives of Z0 which are different from 

each other.* 2 

Skolem went on to indicate that Zermelo’s axiom system had to be supple¬ 

mented in order to be sufficient for Cantorian set theory, and finally he dealt with 

questions of consistency and categoricity (see §§XI.l and 2). He showed that the 

axiomatization is not categorical, for which reason Skolem thought that the system 

may not decide the Continuum Problem [1923, 299 note]. The richness of the 

questions addressed by Skolem is evident, but his paper was probably little read, 

although it was cited by both Fraenkel [1925, 250-51] and von Neumann [1925, 

405], and the latter presented a detailed discussion of the Skolem paradox. At any 

rate, Skolem’s viewpoint that axiomatic set theory is, or has to be, formulated in 
first-order logic was very slow in being accepted (see chapter XI). 

Von Neumann seems to have accepted Skolem’s viewpoint that formal axiom 

systems must be framed within first-order logic. His systems of the 1920s accord 

with that tendency, as does his emphasis on the distance between naive set theory 

and its formal counterpart [1925, 395-97, 404-05; 1928a, 344], But he did not 

emphasize that feature explicitly, nor did he argue for that view, at least in print. It 

actually seems difficult to ascertain what his opinion was on the issue around 1925, 

because most authors lacked a precise notion of the distinction between first- and 

higher-order logic at the time. At any rate, von Neumann’s axiom system reveals 

good knowledge of recent logical work, and in [1925] he discussed the Skolem 
paradox in detail.3 

Later on, authors like Godel, Bemays and Quine would gradually adopt that 

conception, particularly after Godel [1931] proved that formal systems going be¬ 

yond first-order logic are incomplete, i.e., not completely formalizable (§XI.5). By 

“Skolemism”, Zermelo understood the doctrine that “every mathematical theory, 

including set theory, is realizable in a countable modelf which is a result of the 

presupposition that “all mathematical concepts and propositions must be repre- 

As we have seen, the result was known to him as early as 1916. He came back to the topic 

later, in a long paper where he also formulated explicitly a first-order version of ZF [Skolem 

1929], 

2 Following this trend of thought, Skolem was the first to study non-standard models of arith¬ 

metic in the 1930s. 

3 Further research, particularly on unpublished material, might settle that point. 
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sentable by a fixed finite sign-system.'n Unfortunately for him, the 1930s was a 

period in which mathematicians working on foundational questions were increas¬ 

ingly infected by the virus of Skolemism. It is quite telling that Zermelo’s antidote, 

the radical abandonment of that presupposition and the use of a powerful form of 

infinitary logic, found no echo during that period.1 2 Logic was increasingly coming 

to mean a theory based on a finitary formal system. 

1 [Zermelo 1932, 85]: “Von der Voraussetzung ausgehend, dass alle mathematischen Begriffe 

und Satze durch ein festes endiiches Zeichensystem darstellbar sein miissten, gerat man ... in die 

bekannte ‘Richardsche Antinomiewie sie neuerdings, nachdem sie schon lange erledigt und 

begraben schien, im Skolemismus, der Lehre, dass jede mathematische Theorie, auch die Men- 

genlehre, in einem abzahlbaren Modell realisierbar sei, ihre frohliche Auferstehung gefunden 
hat.” 

2 A detailed discussion of Zermelo’s proposal and his discussion with Skolem can be found in 

[Moore 1980], 
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We shall carefully investigate those ways of forming notions 

and those modes of inference that are fruitful; we shall nurse 

them, support them, and make them usable, whenever there is 

the slightest promise of success. No one shall be able to drive 

us from the paradise that Cantor created for us.1 

After 1918, most important contributions to the foundations of abstract set theory 

relied on modem axiom systems. But until the 1920s few authors adopted Zer- 

melo’s axiom system explicitly.2 As we saw in the preceding chapter, many favored 

the theory of types because it seemed to offer a safer framework, and at the same 

time it was sufficient for the limited amount of set theory that is necessary in so- 

called classical mathematics. As late as 1939 Alonzo Church was writing that the 

simplified theory of types and Zermelo’s set theory were essentially similar, and the 

“safest cities of refuge” for classicist mathematicians at the time.3 But the Zermelo 

system had to compete with another alternative, the system of von Neumann, pre¬ 

sented in 1925 and developed later by Bemays and Godel (see §3). 

Furthermore, between 1910 and 1940 a good number of treatises on set theory 

were still developed in naive style. An example is Sierpinski’s Legons sur les nom- 

bres transfinis [1928], where the author does not care to clarify the notion of set, 

nor to formulate a single axiom except AC - which is, to be sure, very carefully 

investigated.4 Similarly, Luzin in his Legons sur les ensembles analytiques et leurs 

applications [1930] works informally and even regards as the goal of “set theory” 

the following open question: whether it is acceptable to understand the continuum 

atomistically, as a set of points [op.cit., 2], One should also mention that there were 

very interesting contributions to the foundations of set theory developed within a 

naive, non-axiomatic context. This was the case with Mirimanoff, who advanced a 

great many new conceptions that would be taken up by other authors we shall re¬ 

view. For expository reasons, his work will be mentioned briefly in §2, although it 

was published before that of Fraenkel (§1). 

1 [Hilbert 1926] as translated in [van Heijenoort 1967, 375-76]. 

2 Among the few examples are Hessenberg [1909] and Hartogs [1915]. The latter proved that, 

in Zermelo’s system without AC, the comparability of cardinals implies Well-Ordering. 

3 See [Church 1937, 95; 1939, 69-70], 

4 Sierpiriski was interested in open problems, like those related to AC and CH, their conse¬ 

quences and equivalences. See [Moore 1982; 1989]. 
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Nevertheless, the situation was rapidly changing, mostly under the impact of the 

foundational debate. As we have seen, simple type theory was the result of an evo¬ 

lution in which Russell’s system was transformed to become closer to axiomatic set 

theory in its setup and spirit. At the same time, the Zermelo axioms were comple¬ 

mented and simplified, coming to be called Zermelo-Fraenkel system. In the hands 

of Skolem, von Neumann and Godel it was formulated as a “logistic” system, 

namely within the framework of formal logic, and in this way it came to resemble 

more closely (while superseding it) the work of Whitehead & Russell. Finally, the 

Zermelo-Fraenkel system came to incorporate traits of simple type theory, and in 

the process it gained a satisfactory backing in the idea of the cumulative hierarchy 

(§2.3). 
The present chapter focuses upon contributions to the foundations of set theory, 

with an eye to innovations at the basic level of the axiom system(s), and to some 

crucial metatheoretical results (§4 above all). We shall also finish reviewing the 

above-mentioned convergence of viewpoints, and reconstruct the emergence of the 

modem first-order axiomatization (§§3-5). Finally, we shall glance ahead with the 

aim to provide a glimpse of the manifold attitudes toward foundations and set the¬ 

ory after the Second World War (§6). 
It is convenient to clarify some abbreviations we shall employ, even though 

they are customary in works on set theory. ZF refers to the Zermelo-Fraenkel sys¬ 

tem without the Axiom of Choice, ZFC refers to the system with Choice. NBG 

refers to the system of von Neumann-Bemays-Gddel without Choice. By the end 

of the period we shall consider, after World War II, the choice between the systems 

ZF and NBG was still open among experts in mathematical logic. The following 

abbreviations will continue to be used as we have done in preceding chapters: TT 

(type theory), AC (Axiom of Choice), CH (Continuum Hypothesis), GCH (Gener¬ 

alized Continuum Hypothesis). 

1. The Contributions of Fraenkel 

The name of Abraham Fraenkel has come to be closely associated with axiomatic 

set theory, since the most common axiom system was and is called the Zermelo- 

Fraenkel system. The name was first used by Zermelo himself [1930, 29], and the 

rationale for its adoption was that Fraenkel suggested in 1922 that the system might 

be complemented by the Axiom of Replacement - but so did Mirimanoff in 1917 

and Skolem in 1922. Historically considered, the name given to the ZF system 

reflects Fraenkel’s role in the diffusion of set theory through his textbooks [1923; 

1927; 1928], his consistent reliance on Zermelo’s axiom system, and his refine¬ 

ments and investigations of that system. Neither Mirimanoff nor Skolem regarded 

Zermelo’s axioms as a convincing foundation. 

The name Zermelo-Fraenkel does not represent faithfully the actual importance 

of Fraenkel’s contributions to set theory as contrasted with those of other authors. 

He worked on improving the notion of ‘definite proposition,’ but his proposal ado- 
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lesced of some defects, as von Neumann showed [1928], and in the end it was not 

so influential as the contemporary one of Skolem’s. It may come as a surprise for 

the reader that, for years, Fraenkel himself refused to adopt the Axiom of Replace¬ 

ment in general set theory.1 And he did not foster the emergence of modern ver¬ 

sions of set theory, based on a refined conception of logic, in the same measure as 

Skolem and von Neumann did. None of these remarks, however, is meant to deny 
the importance of his contributions in the 1920s. 

Fraenkel devoted the early part of his career to algebraic work, which he started 

under the guidance of Hensel, giving axioms for p-adic systems and attempting to 

elaborate an abstract theory of rings [Corry 1996, 190-215], He had also received 

the stiong influence of an uncle who acquainted him with the North-American 

trend of postulate theory, an outgrowth of Hilbert’s early axiomatics fostered by 

E.H. Moore, Veblen and Huntington, among others [,op.cit., 198-202], This would 

become an important background for Fraenkel’s set-theoretical work, since his 

investigations of the Zermelo axiom system focused on typical questions of postu¬ 

late theory - independence and categoricity. The first, 1919 edition of his famous 

introduction to set theory emerged from lessons he gave to prisoner friends during 

World War I. The work, addressed to mathematicians and philosophers, was sub¬ 

stantially improved in subsequent versions during the 1920s [1923; 1928], becom¬ 

ing a widely used reference in questions of general and axiomatic set theory.2 

Fraenkel’s earliest publications on set theory, ‘On the Foundations of the Can- 

tor-Zermelo Set Theory’ [1922] and ‘On the Notion ‘Definite’ and the Independ¬ 

ence of the Axiom of Choice’ [1922a], were the outcome of research on the inde¬ 

pendence of Zermelo’s postulates. In the course of it, Fraenkel noticed that some of 

the axioms could be given simpler formulations,3 and that there was room for add¬ 

ing a new axiom of Replacement [1922, 231, 234], He also noticed that the system, 

as given by Zermelo, was far from categorically characterizing a realm of sets, and 

he introduced a new postulate trying to remedy that shortcoming (see below). 

Fraenkel’s most important result was that the Axiom of Choice is independent from 

the other postulates, which he was able to establish by considering a model Tit of set 

theory with urelements, in which there are denumerably many urelements [1922a, 

287], This problem was also particularly fruitful because it led him to realize the 

need to clarify Zermelo’s notion of ‘definite property’ [1922a, 286], By the very 

nature of his problem, Fraenkel had to show that all of Zermelo’s axioms, except 

Choice, are valid in the model (D? in question, and this was impossible for Separa¬ 
tion until the notion ‘definite’ used in it had been sharpened. 

Fraenkel’s solution was different from the now standard one, which Skolem was 

simultaneously suggesting (§X.5.2). He introduced a new notion of ‘function’ by 

1 The first to argue in earnest for Replacement, and to work out its consequences, was von 

Neumann in 1923. The history of Replacement has been carefully studied by Hallett [1984], 

2 Fraenkel, who was a Zionist, moved to Palestina and became a professor at the Hebrew Uni¬ 

versity in Jerusalem in 1929. See his autobiography [Fraenkel 1967]. 

3 The most important instance was Separation, apart from which only the axiom of Elemen¬ 

tary Sets was reduced to postulating pairs {a,b) (whence the name in use today, Axiom of Pairs). 
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means of a recursive definition [1922a, 286; 1925, 254; 1926, 132-33], Such 

‘functions’ are not general mappings, and Fraenkel did not even regard the notion 

as a new primitive idea of the axiom system [1922a, 286], It might be found ade¬ 

quate to name them ‘set-conditions,’ but we shall use the name ‘Fraenkel function,’ 

or ‘F-function,’ to remind the reader that we are not dealing with functions in the 

usual sense of mappings. Intuitively, Fraenkel’s idea was the following [1922a, 

286]: given any element x of a set, and possibly other objects, we may form a new 

set by means of a finite process consisting in prescribed applications of Axioms II- 

VI of Zermelo (§IX.4.2). The outcome is, for each particular x, a certain well- 

determined set, but we can also leave x indeterminate and conceive of the process 

as defining a ‘Fraenkel function’ (p(x). It turned out to be possible to define F- 

functions independently and to link them to the axiom of Separation without a 

vicious circle. 
Fraenkel kept refining his definition of F-functions in subsequent papers. The 

final formulation [1926, 132-33] was as follows. We define recursively the ‘F- 

functions of x:’ 

1. x and any constant c are F-functions of x; and so are the power set p(pc) and the 

union set u (x). 

2. Let m(x) be an F-function, cp(x,y) and \|i(x,y) F-functions of y, which may also 

depend on x, and let o be one of the relations =, e, g . Then the subset of m(x) 

determined by (p(x,y) o \|/(x,y) - i.e., the set of all elements y in m(x) such that 

(p(x,y) o \|/(x,y), guaranteed to exist by Separation - , is also an F-function of x. 

3. Let tp(x) and \|/(x) be two F-functions, then so are {cp(x),\|/(x)} (an unordered 

pair) and cp(v|/(x)). 

The Axiom of Separation was now given the following formulation [1925, 254]: To 

every set m and F-functions cp(y), \|i(y), there is a set 0 that contains all 

and only the elements y of m for which cp(y) o \)i(y) holds (with o defined as above). 
Fraenkel was aware that his proposal was restrictive. By so sharpening the ax¬ 

iom of Separation, he might be narrowing it too much, so it was doubtful whether 

the resulting system was equivalent to the original one of Zermelo [1922a, 286; 

1925, 251], For this reason, he devoted another paper [1925] to formulating his 

system carefully and developing the theory of cardinal equivalence, just as Zermelo 

had done (the paper bore the same title as Zermelo’s [1908]). This was followed in 

[1926] by a detailed axiomatic development of the theory of ordered sets, and six 

years later by a paper on the theory of well-ordering. Actually, F-functions were 

too narrowly defined, but this only became apparent in the context of the Axiom of 

Replacement (§2.2 and [von Neumann 1928, 322-24]). Shortly afterwards, Skolem 

showed that the Fraenkel functions are all equivalent to conditions (propositional 

functions) in the language of first-order logic with the basic set-theoretical relation 

e [Skolem 1929, 231-33], Considering his rendering of the F-functions, one can 

see that there are first-order conditions that correspond to no Fraenkel function. For 

this reason, the proposals of Skolem and Fraenkel for sharpening the Zermelo sys¬ 

tem were not equivalent. It was von Neumann [1928] who refined Fraenkel’s and 

turned it into equivalent with Skolem’s. 
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Already in [1922], simultaneously with Skolem, Fraenkel had noticed that cer¬ 

tain sets which Cantor regarded as existent could not be obtained from Zermelo’s 

axioms. Calling Z0 the set of natural numbers, Zj the power set p(Z0), Z? the set 

P(P(Zfl)), and so on, it was not possible to show that {Z0, Zj, Z2, ...} is a set. This 

means, assuming the Generalized Continuum Hypothesis, that cannot be shown 

to exist [1922, 230-31; Skolem 1922, 296-97], Reflecting on this issue, both 

mathematicians were led to considering the Axiom of Replacement. Skolem gave it 

a precise formulation, but Fraenkel only gave a hint at a formulation by saying that, 

given a set M, if we replace each of its elements by a “thing of the domain” we 

obtain a new set. The axiom still lacked a precise statement in which the intuitive 

idea of replacing was sharpened. Fraenkel would suggest one formulation later 

[1925, 260, 271], but he did not develop the idea because he felt that Replacement 

would be too powerful a postulate to assume it in general set theory [1922, 231, 

233; 1925, 252, 271], In his view, the axiom was apt for “special” topics in set 

theory, such as the existence of particular cardinalities. Von Neumann pressed for 

its acceptance, in connection with his proposal of a new axiomatic definition of the 
ordinal numbers. 

As I have said, Fraenkel was also interested in the question of categoricity of 

Zermelo’s system [Fraenkel 1922, 233-34], He remarked that, as formulated by 

Zermelo, the system made room for non-mathematical objects (called urelements), 

and that there was also room for ‘extraordinary sets’ in the sense of Mirimanoff. All 

of this means that the system is not categorical, e.g., that there must be non- 

isomorphic models. To remedy this shortcoming, he proposed to adopt a new ‘ax¬ 

iom’ analogous (but inverse) to Hilbert’s axiom of completeness (see §IX. 1.1). 

Fraenkel’s “axiom of restriction” required that the “domain” or model of axiomatic 

set theory be restricted to the smallest compatible with the remaining axioms [1922, 

234; 1923, 219].' That is, there would only be those sets whose existence is strictly 

required by the other axioms. Formulated as above, the ‘axiom’ is unacceptable - it is 

no condition on sets but on models of set theory, i.e., it is not an axiom but a meta¬ 

axiom. As von Neumann remarked [1925, 404-05], a precise formulation would 

require notions of naive set theory or reliance on a ‘higher set theory’ at the metatheo- 

retical level. And, in the second case, the ‘restriction’ would not be absolute but rela¬ 

tive to the particular model of the ‘higher set theory’ being used. 

The issue of Fraenkel’s axiom of restriction is a good example of the difficulties 

that most mathematicians must have had with formalized axiomatics during this 

early period. It was easy to relapse into naive set theory one way or another. At any 

rate, his reflections led Fraenkel to propose restricting axiomatic set theory to pure 

sets, that is, avoiding urelements other than 0 [1922, 234], as is normally done 

today. Slightly later, von Neumann [1925, 412; 1929, 498] found the way to ex¬ 

clude Mirimanoff s extraordinary sets by means of a new axiom. Foundation, 

which was independently found and adopted by Zermelo (see §2.3). 

1 The idea of such an axiom had already been considered by Weyl in his work of the early 

1910s; see [Weyl 1910, 304; 1918, 36], 
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2. Toward the Modern Axiom System: von Neumann and 

Zermelo 

The contributions of von Neumann advanced substantially in the direction of mod¬ 

em axiomatic set theory. But the fact that he established an important alternative to 

the ZFC system has led many authors to forget that he was also responsible for 

innovations in ZFC that have shaped its modem versions (see [Hallett 1984]). Some 

of von Neumann’s proposals had been anticipated in unpublished work of Zermelo, 

some were taken up and investigated further by him in the important paper [Zer¬ 

melo 1930]. This presented a clear theory of models of second-order ZF suggesting 

the idea of the cumulative hierarchy, which would later be emphasized by Godel. 

To complement our review of their work, we shall consider the earlier contributions 

of Mirimanoff, who advanced in this same direction, but non-axiomatically. 

2.1. Dimitri Mirimanoff. A professor at Geneva, Mirimanoff did important 

work in number theory, and worked on issues in set theory during the War. Here he 

attempted to explore the universe of sets as freely as possible, without committing 

himself to arbitrary restrictions beforehand. Thus he was led to distinguish between 

“ordinary” and “extraordinary sets” [1917, 42]. The latter are nowadays called non- 

well-founded sets, and they are characterized by giving rise to infinite “descents” 

...e X2 e xj € x. Examples would be any set that is an element of itself, xe x, or a 

couple of sets such that xey and ye x. These sets are ‘circular’ in some sense, or 

‘ungrounded’ in that we do not reach their ‘roots’ after finitely many steps. They 

played an important role in investigations of models of set theory, and they led to 

the Axiom of Foundation (see §2.3). Mirimanoff was also the first to employ the 

von Neumann ordinals (§2.2), under the guise of ordered sets called “S sets” [1917, 

44-48; 1917a, 213-17], He showed how the S sets can be defined independently of 

the notion of well-ordering, proved their basic properties, and presented clearly the 

essential relation between transfinite ordinals and S sets.1 
Mirimanoff s main purpose was to find a solution to the “fundamental problem” 

of set theory, posed by the paradoxes: “what are the necessary and sufficient condi¬ 

tions for a set of individuals to exist?”2 He showed that every ‘ordinary set’ has a 

given “rank,” which is the fundamental idea behind the cumulative hierarchy 

(§2.3), and solved the ‘fundamental problem’ of set theory (for the case of ordinary 

sets) as follows. A set of ordinary sets exists if and only if the ranks of its elements 

have a Cantorian bound, i.e., if there is an ordinal greater than all of those ranks 

[1917, 51]. Trying to make his presuppositions explicit, Mirimanoff [op.cit., 49] 

1 But, unlike von Neumann, he could not see whether this detoured way of dealing with ordi¬ 

nals “presents real advantages,” although it throws new light on Cantor’s theory [1917a, 217], 

Mirimanoff [1917, 45] considered also a criterion of set existence that would be characteristic of 

von Neumann’s axiomatization of set theory. 

2 [Mirimanoff 1917, 38]: “Quelles sont les conditions necessaires et suffisantes pour qu’un 

ensemble d’individus existe?” 
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was the first after Cantor to state naively, by reference to an arbitrary law, a princi¬ 

ple that would later be included among the ZF axioms as the Axiom of Replace¬ 
ment (see §1). 

As the reader can see, Mirimanoff s work was extremely rich and introduced a 

great many of the important novelties of the 1920s in the foundations of set theory. 

But he worked naively, regarding Zermelo’s approach as foreign to his own.' His 

three papers were published in L Enseignement Mathematique, which was certainly 

not a research journal, but still a widely read one. Nevertheless, all one can find is 

two citations of his work in Fraenkel and von Neumann, which acknowledge only 

his notions ot extraordinary sets’ and ‘descent.’ One is left wondering whether the 

fact that Mirimanoff wrote in French in a Swiss journal, combined with the tense 

post-War atmosphere, may have been the reason why German-speaking authors did 

not cite him. If so, political reasons would have caused his work to receive much 

less credit than it deserves. But let us proceed to those authors who have certainly 
been influential in the history of axiomatic set theory. 

2.2. John von Neumann. Von Neumann is a legendary figure of 20th century 

mathematics. In 1926 he received a diploma in chemical engineering from Zurich 

and a Ph.D. from the University of Budapest with a dissertation on set theory - his 

first field of research in pure mathematics. By the age of 30, when he was ap¬ 

pointed professor at the Institute for Advanced Study in Princeton, he had made 

fundamental contributions to set theory, Hilbert’s program, the foundations of 
quantum mechanics, and had started work in game theory. 

First of all, one should mention that von Neumann presented an original axiom 

system that was substantially different from Zermelo’s (see §3). His contributions 

advanced substantially in the direction of modern axiomatic set theory, and he was 

responsible for innovations in ZFC that have shaped its modem versions.1 2 In this 

connection, one should mention the Axioms of Replacement and Foundation, the 

modern axiomatic theory of ordinal and cardinal numbers, and the theorem that 

establishes the possibility and univocalness of transfinite recursive definitions. 
These are the aspects of his work that are of our interest at this point. 

Those innovations are the topic of two of his set-theoretical papers, ‘On the 

Introduction of Transfinite Numbers’ [1923] and ‘On Definitions by Transfinite 

Induction and Related Questions in General Set Theory’ [1928]. Both papers con¬ 

tained a definition of the ordinals that was apt to “give unequivocal and concrete 

form to Cantor’s notion of ordinal number” in the context of axiomatized set theo¬ 

ries [1923, 347], The well-known von Neumann ordinals are, to put it in Cantor’s 

terminology, representatives of the order types of well-ordered sets: 

1 See [Mirimanoff 1919, 35], In this later paper his lack of understanding for axiomatic issues 

comes out clearly. 

2 This point was emphasized by Hallett [1984]. 
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What we really wish to do is to take as the basis of our considerations the proposition: 

‘Every ordinal is the type of the set of all ordinals that precede it.’ But, in order to avoid the 

vague notion ‘type,’ we express it in this form: ‘Every ordinal is the set of the ordinals that 

precede it.’ This is not a proposition proved about ordinals; rather, it would be a definition of 

them if transfinite induction had already been established, [von Neumann 1923, 347] 

We thus obtain the series: 0, {0}, {0,{0}}, {0,{0},{0,{0}}}, {0, {0}, 

{0,{0}}, {0,{0},{0,{0}}}, ... }, ... Such representatives turn out to be particu¬ 

larly convenient in an axiomatic context, since they can be defined on the basis of 

the membership relation alone, being well-ordered by strict inclusion or else by 

membership. Moreover, since each ordinal has the appropriate cardinality, they are 

also particularly convenient for establishing the connection between ordinals and 

cardinals. In [1928, 325], von Neumann defined a well-ordered set AT to be an ordi¬ 

nal number if and only if, for all xe M, x is equal to the initial section of M deter¬ 

mined by x itself (as he wrote, x=A(x\M)). The elements of an ordinal number are 

also ordinal numbers. An ordinal is called a cardinal number if it is not equipollent 

to any of its elements [1928, 332-33]. 

In his paper [1923], von Neumann assumed the notions of well-ordered set and 

similarity and went on to prove that, to each well-ordered set, there is a unique 

corresponding ordinal. He presented the theory naively, but indicated clearly that it 

could be incorporated in an axiomatic framework, as he himself did later on [1928; 

1928a], The only restriction is that, in order to do so, one needs the Axiom of Re¬ 

placement, “Fraenkel’s axiom” as he said at the time [1923, 347], From this point 

on, von Neumann became the most consistent advocate of Replacement, which 

contrasts with Fraenkel’s doubts regarding the convenience of assuming such a 

powerful axiom in general set theory. As we have seen, Fraenkel had made precise 

Zermelo’s notion of a ‘definite’ condition by axiomatizing a certain notion of 

‘function,’ which was then used in the rigorous formulation of Separation and Re¬ 

placement. In [1928, 322-24], von Neumann showed that Fraenkel’s definition of 

‘function’ was insufficient for a satisfactory version of Replacement.1 Indeed, he 

proved that, when formulated on the basis of ‘Fraenkel functions,’ the axiom was 

superfluous, being provable from the rest of the system. Von Neumann went on to 

amend the ZF system, presenting a strengthened definition of ‘F-functions’ that was 

sufficient for his purposes and turned Replacement into an axiom that expanded 

Zermelo’s system essentially. He also indicated that the Axiom of Separation is a 

consequence of Replacement [1929, 497], 

The last part of [von Neumann 1928] was devoted to establish that it is always 

possible to satisfy a definition by transfinite recursion based on the ordinals, and 

that such definitions are univocal. Von Neumann proved that, given any condition 

(p in two variables, there is one and only one ‘F-function’ f with domain the ordi¬ 

nals, such that, for each ordinal a, we have /(a) = (p(/(a),oc).2 

1 This had become clear to him in correspondence with Fraenkel himself [1928, 323]. 

2 [von Neumann 1928, 334], 1 have introduced a slight change to simplify the original nota¬ 

tion. 
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For many years, since Zermelo’s axiomatization, Cantor’s ordinal and cardinal 

numbers lacked formalized counterparts and had been avoided in axiomatic set 

theory. It had even been customary to look for ways to avoid relying on transfinite 

numbers, or transfinite induction, in mathematical reasoning (see, e.g., [Kuratowski 

1921; 1922]). With von Neumann’s work, the use of ordinals and transfinite recur¬ 

sion became customary again, and axiomatic set theory began to look as it nowa¬ 

days does. In this work, von Neumann was apparently led by a desire to rescue as 

much as possible from Cantor’s approach to set theory, and to secure the widest 

possible scope for the theory. This was taken further in his original axiom system, 

giving his work a peculiar flavor, since he made bold proposals that must have 
looked quite risky at the time (§3). 

Von Neumann was also one of the first authors to investigate the metatheory of 

axiomatic set theory. This he did in connection with his own axiom system, ana¬ 

lyzing questions of categoricity [1925] and of relative consistency [1929], He was 

probably the lirst author to call attention to the Skolem paradox as a serious result 

which stamps axiomatic set theory “with the mark of unreality” and gives reasons 

to “entertain reservations” about it [1925, 405-09], As the reader will recall, the 

Skolem paradox is a consequence of the Lowenheim-Skolem theorem that applies 

to first-order fonnulations of set theory. Although von Neumann was not suffi¬ 

ciently explicit regarding this point, it seems that he accepted Skolem’s proposal 

that axiom systems ought to use first-order logic. His systems of the 1920s [von 

Neumann 1925; 1927; 1928; 1928a; 1929] seem to be intended as first-order, and 

certainly are formalizable within that frame. If that was his intention, von Neumann 

was the first mathematician to accept Skolem’s (and Weyl’s) views. 

For the purpose of his metatheoretical investigations, von Neumann introduced 

further axioms that served to make his axiom system more restrictive [1925, 411- 

12; 1929, 498]. He restricted the objects that the theory deals with to pure sets, i.e., 

he avoided urelements, following an idea of Fraenkel, and he formulated the Axiom 

of Foundation. Ideas behind this axiom had first been discussed by Mirimanoff and 

Skolem, and the issue was subsequently taken up by Fraenkel and Zermelo. Foun¬ 

dation is a very interesting axiom from our viewpoint, since it makes axiomatic set 

theory look much more similar to type theory. Actually, it is likely that some of the 

authors who worked on related ideas were looking for differences between type 

theory and set theory, as was probably the case with Skolem. With Foundation, ZF 

can be regarded as an extension of (cumulative) type theory to transfinite types, 

described in a logical language that is simpler than Russell’s (§§5 and X.4). This 

rapprochement of TT and ZF suggested an intuitive picture justifying the latter 

system, and it seems to have given reasons to feel more convinced of the consis¬ 

tency of ZF. 

On the basis of the Axiom of Foundation, von Neumann developed in [1929, 

503-05] the cumulative hierarchy in detail. Starting from the assumption that there 

is a domain satisfying an analogue of ZF, he employed the ordinals and Foundation 

to define a cumulative subdomain. Such a subdomain can be decomposed into 

‘sections’ that are currently called the ranks, indexed by transfinite ordinals. To 
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every set in the model there is a corresponding rank, namely the rank of least ordi¬ 

nal at which that particular set can be found [1929, 505], The ranks are cumulative, 

i.e., every rank contains all of the sets that appear in previous ranks - therefore the 

name cumulative hierarchy (see §2.3). Thus, the technical details of the definition 

of the cumulative hierarchy go back to von Neumann. Nevertheless, it should be 

added that von Neumann considered Foundation merely as a tool for investigations 

in the metatheory of his axiom system: he used the cumulative hierarchy to show 

that, if a certain system resembling ZF is consistent (has a model), then NBG is also 

consistent (see §3). But, apparently, von Neumann did not entertain adoption of the 

Axiom of Foundation seriously. 

2.3. Zermelo’s cumulative hierarchy. After a long period of silence, motivated 

by health problems, Zermelo published on set theory again in the late 1920s. Most 

important is his paper ‘On Boundary Numbers and Set-Domains’ [1930] where he 

investigated models of set theory - what he called ‘domains.’ On the basis of the 

“Zermelo-Fraenkel axioms” [1930, 29] supplemented with the “Axiom of Founda¬ 

tion” [op.cit., 31], Zermelo was able to produce a greatly illuminating picture of 

ZF-models. 
Zermelo was the first author who explicitly included Foundation among the 

axioms of ZF, and one of the first to accept Replacement wholeheartedly. His 1930 

version of the system was thus quite close to modern versions, but it differed by not 

being formulated in first-order logic. The system he outlined can be interpreted as 

second-order, as comes out particularly clearly in his formulation of Separation and 

Replacement. He explicitly emphasizes that the propositional functions (conditions 

or predicates) used for separating-off subsets, as well as the replacement functions, 

can be “entirely arbitrary” [ganz beliebig; 1930, 30], This means that they may 

include higher-order quantification and that the Skoleni paradox does not apply 

(see [Zermelo 1929; 1931 ]).1 By giving a second-order formulation of ZF, Zermelo 

obtained a system that is very powerful in the way of characterizing models, al¬ 

though quite weak from a foundational standpoint. 

The new Axiom of Foundation had been considered previously by von Neu¬ 

mann, who gave two different formulations in the context of his own axiom system 

[1925, 404, 411-12; 1929, 494-508]. Zermelo is said to have introduced the axiom 

independently [Bemays 1941, 6], and gave it the following form: 

1 Zermelo did not spell out the details of his logical standpoint, particularly the effect of sec¬ 
ond-order logic for the Skolem paradox. But see [Zermelo 1931] and [Grattan-Guinness 1979; 
Moore 1980; Dawson 1985a], A clear discussion of the logical aspects can be found in [Shapiro 
1991] or [Lavine 1994], 
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Axiom of Foundation: Every (inverse) chain of elements, each member of which is an ele¬ 

ment of the previous one, breaks up with finite index into a urelement. Or, what is equiva¬ 

lent: Every subdomain T [of a ZF-model] contains at least one element t0, that has no ele¬ 
ment t in T.1 

The first form of the axiom prohibits infinite e -descending chains, linking with the 

ideas of Mirimanoff and Skolem; as we can see, Zermelo kept allowing urelements. 

The second, alternative form had been given by von Neumann [1929, 498]; Zer¬ 

melo feels free to speak of arbitrary submodels, which reflects his reliance on sec¬ 

ond-order logic.2 He freely applies the set-theoretical terminology to models be¬ 

cause, as we shall see, in his picture the domain of every model becomes a set in a 

higher model. Zermelo goes on to say that Foundation excludes all kinds of ‘circu¬ 

lar sets, in particular sets that ‘contain themselves,’ and in general any ‘un¬ 

grounded’ sets. The new axiom, he argued, was actually valid in all previous appli¬ 

cations of set theory and therefore, “provisionally” [vorlaufig], brought no essential 
restriction to the theory [1930, 31]. 

The Axiom of Foundation was employed to great effect. Restricting sets in 

models of ZF to those that are well-founded, Foundation makes possible a decom¬ 

position of the model into what Zermelo called “layers” [Schichten] and “sections” 

[Abschnitte], presently called ‘ranks.’3 Every set is associated to a given rank, so 

that its elements belong to previous ranks, and the set itself serves as material for 

sets in the next ranks [1930, 29-30], One may describe the ranks as follows (see 
[op.cit., 36]): 

1. Rank zero, V0, is the collection of all urelements (one of which Zermelo identi¬ 

fied with the empty set); 

2- Va+l is the union of Va and a new ‘layer;’ it coincides with the power set 

P(Vcd\ 

3. if a is a limit ordinal, Va is the union [JVp of all previous ranks. 

(5<a 

The model itself is then identical with Vn = [JVp where n is the ‘characteristic’ of 

P<7t 

the model, defined below. 

1 [Zermelo 1930, 31]: “Axiom der Fundierung: Jede (rtickschreitende) Kette von Elementen, 
in welcher jedes Glied Element des vorangehenden ist, bricht mit endlichem Index ab bei einem 
Urelement. Oder, was gleichbedeutend ist: Jeder Teilbereich T enthalt wenigstens ein Element t0, 

das kein Element t in That.” 

2 Today one would require (with first-order quantification) that every non-empty set j in the 
domain have at least one element t, such that no element of t is also an element of s, 

3 The ‘layers’ Qa of Zermelo are not cumulative, in contrast to his ‘sections’ Pa [1930, 36]. 
Therefore it is the second which correspond to the ranks of the usual cumulative hierarchy; 
instead of Pa we shall write Va for the ranks, as has become customary. 
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In this work, Zetmelo relied on what he called ubasic sequences'’ [Grundfolgen; 

1930, 31], which are essentially the same as the von Neumann ordinals. According 

to Bernays, who worked with him at Zurich during the early 1910s, Zermelo had 

come to that idea independently around 1915, but had not published it (see [Ber¬ 

nays 1941, 6, 10; von Neumann 1928, 321]). 
Second-order ZF may be said to be quasi-categorical. The main result in Zer- 

melo’s paper is that every model of his version of ZF is fully characterized by two 

numbers: the cardinality of the “basis,” i.e., of the totality of its urelements, and the 

“characteristic” of the model, i.e., the least “basic sequence” or ordinal number not 

in the model [1930, 29, 40-42]. One can prove that the ‘characteristic’ must be 

what Zermelo called a “boundary number” [Grenzzahl]: not any ordinal, but a 

strongly inaccessible initial ordinal (here the fact that we are dealing with second- 

order ZF is essential). Given those two numbers - cardinality of the ‘basis’ and 

‘characteristic’ - two models of second-order ZF are isomorphic, and this is why 

one may call the theory ‘quasi-categorical.’1 If we disregard urelements, as is usual, 

models are categorically determined by the ‘characteristic,’ and any two models 

stack in a neat way, since one must be isomorphic to a section of the other [op.cit., 

41],2 
Zermelo thus provided a general analysis of the possible “structures” of models 

of ZF, a theory of the “model-types” [Modelltypen; 1930, 42]. Each model-type is 

determined by two numbers, ‘basis’-number and ‘characteristic,’ which Zermelo 

also calls, metaphorically, the “breadth” and the “height” of the model. He was 

working by analogy with Steinitz’s pathbreaking research on fields, as he acknowl¬ 

edged in the context of an automorphism theorem which he proved [op.cit., 42—43], 

The fact that the axiom system is not categorical, and we encounter an unlimited 

series of essentially different models, was no hindrance in his eyes. On the contrary, 

it was an “advantage” [Vorzug; op.cit., 45] because it afforded a satisfactory expla¬ 

nation of the “ultrafinite antinomies” and enriched the field of application of set 

theory [op.cit., 29, 45], As regards the paradoxes, one can see that the “ultrafinite 

non-sets” [ultrafinite Un- oder Ubermengen] of one model become legitimate sets 

in the next model. Only a confusion of the non-categorical theory of sets itself with 

a particular one of its models could give rise to the impression that the theory en¬ 

tails contradiction [op.cit., 47]. One also gets a picture suggesting why ‘all- 

embracing’ sets are never reached.3 

As regards motivation, it would seem that Zermelo, a strict defender of actual 

infinity, was trying to fix the Cantorian paradise. It was to this end that he kept 

emphasizing the need of a higher-order logic against Skolem [Zermelo 1929; 

1931], and it was to this end that he developed his theory of the different models of 

' This term is taken from [Heilman 1989] and [Lavine 1994], 

2 The same applies to different models with a single, common ‘basis’ of urelements (that dif¬ 

fer in their ‘characteristic’). Likewise, of two different models with the same ‘characteristic,’ one 

is always isomorphic to a subdomain of the other [1930, 42]. 

3 For a careful analysis of this paper, see Hallett’s introduction to his translation of the paper 

in [Ewald 1996, vol.2]. 
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ZF. As he emphasized, his work presupposed the existence of such models, which 

can be taken to be a basic article of faith for the modem mathematician. But he also 

argued that, assuming the consistency of the Zermelo—Fraenkel axioms, “the 

(mathematical, i.e., ideal) existence” of the models can be proved [1930, 43], 

The Axiom of Foundation is quite different from the other axioms in that it has 

no single known consequence for actual mathematical work outside set theory. But 

it clarified immensely the possibilities for models of ZFC, particularly in the sec¬ 

ond-order version of Zermelo. And, by forbidding ‘circular’ and ‘ungrounded’ sets, 

it incorporated one of the crucial motivations of TT - the principle of the types of 

arguments. As a result of Zermelo s clear analysis of the cumulative hierarchy of 

sets within a model, there emerged a Zermelo-Fraenkel system that was closer to 

type theory. We have seen that during the 1920s TT was transformed into a system 

much closer in spirit to set theory, a system dealing with extensional classes or sets 

that worked on an impredicative basis, sharing to that extent the Platonism of set 

theory (§X.3.2). Still, TT seemed to be safer than set theory, since it was more 

restrictive and its guiding principles seemed clearer than those of ZF (see, e.g., [von 

Neumann 1929, 495 note 7]). TT was well suited for developing analysis, but it was 

not powerful enough to develop set theory in all its extension. On the other hand, 

the way in which the paradoxes and any possible contradictions were avoided ap¬ 
peared clearer in the case of TT. 

Zermelo s layers are essentially the same as the types in the contemporary 

versions of simple TT offered by Godel and Tarski (§X.4). One can describe the 

cumulative hierarchy into which Zermelo developed his models as the universe of a 

cumulative TT in which transfinite types are allowed. (Once we have adopted an 

impredicative standpoint, abandoning the idea that classes are constructed, it is not 

unnatural to accept transfinite types.) Thus, simple TT and ZF could now be re¬ 

garded as systems that ‘talk’ essentially about the same intended objects. The main 

difference is that TT relies on a strong higher-order logic, while Zermelo employed 

second-order logic, and ZF can also be given a first-order formulation. The first- 

order ‘description’ of the cumulative hierarchy is much weaker, as is shown by the 

existence of denumerable models (Skolem paradox), but it enjoys some important 
advantages (§§5 and X.5). 

Zermelo did not yet present the idea of a single ‘universe’ of sets. His was a 

dynamic conception, essentially based on the idea of an open-ended sequence of 

bigger and bigger models, each of which can be identified with a set in the next 

model.1 He obtained the cumulative hierarchies from axiomatic set theory, never 

trying to justify the latter by the notion of a cumulative hierarchy. Nevertheless, his 

work suggested precisely this, that one may give an intuitive argument for the ZFC 

system on the basis of the so-called iterative conception. Godel spelled out what the 

iterative conception comes to almost two decades later:2 

1 Indeed, a double sequence of models, since we also have to take into account the many pos¬ 

sible ‘bases’ of urelements [Zermelo 1930, 42, 47], 

2 Godel had already presented this conception in conferences during the 1930s; see volume 3 

of his Collected Works. 
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As far as sets occur and are necessary in mathematics (at least in the mathematics of today, 

including all of Cantor’s set theory), they are sets of integers, or of rational numbers (i.e., of 

pairs of integers), or of real numbers (i.e., of sets of rational numbers), or of functions of real 

numbers (i.e., of sets of pairs of real numbers), etc. ... This concept of set, however, accord¬ 

ing to which a set is anything obtainable from the integers (or some other well-defined ob¬ 

jects) by iterated application of the operation ‘set of,’ and not something obtained by divid¬ 

ing the totality of all existing things into two categories, has never led to any antinomy 

whatsoever; that is, the perfectly ‘naive’ and uncritical working with this concept of set has 

so far proved completely self-consistent. [Godel 1947, 180] 

As he explained in a footnote, Godel did not regard this as the general concept of 

set, only as a specification (that is aptly expressed in the Axiom of Foundation); he 

also made clear that one must include transfinite iterations of the operation ‘set of.’1 

As one can see, he was the first to establish a radical contrast between this view¬ 

point and the old one, embodied in the work of Frege and Russell (but also Rie- 

mann and Dedekind) and based on the principle of comprehension.2 

Godel went on to say that the iterative conception of ‘set’ explains at once “that 

a set of all sets or other sets of similar extension cannot exist, since every set ob¬ 

tained in this way immediately gives rise to further application of the operation ‘set 

of and, therefore, to the existence of larger sets” [1947, 180]. This makes even 

clearer that he had in mind the picture of the cumulative hierarchy as suggested by 

Zermelo’s work. Below (§4) we shall see that he had used that picture in his crucial 

work of the late 1930s. It is noteworthy that, as Godel presented it, the picture links 

directly to the old tradition of a step-by-step ‘construction’ or definition of the 

number system from the integers (§IV.l, §§VII. 1 and 3). It should also be clear that 

set theory, as conceived by Zermelo and Godel in these works, is not motivated by 

a principle of limitation of size. 

3. The System von Neumann-Bernays-Godel 

Zermelo’s axiom system had been preferred by those who worked not so much on 

foundational questions, but on advanced issues in set theory and related areas. With 

the work of von Neumann, and particularly with the later developments and simpli¬ 

fications introduced by Bemays and Godel, the system NBG became a workable 

alternative. Von Neumann was in the possession of the essential ideas for his new 

axiomatization already in 1923, at age twenty. Fie described them in a letter to 

Zermelo, where he wrote that he owed the stimulus for this work exclusively to 

1 Strictly speaking, it is wrong to say that Godel offered the iterative conception as justifica¬ 

tion of the ZFC axioms. This was done by later authors. See [Klaua 1964], [Kreisel 1965], 

[Shoenfield 1967], [Boolos 1971], [Wang 1974], [Parsons 1977]. 

2 Comprehension obtains sets by dividing the universal class into two categories - objects that 

comply or do not comply with a given condition. 



§3. The System NBG 379 

Zermelo’s paper of 1908, but that he had deviated from his approach at a few es¬ 
sential points: 

1. The notion of ‘definite property’ had been avoided, presenting instead the “ac¬ 

ceptable schemas” for the construction of functions and sets. 

2. The Axiom of Replacement had been assumed, since it was necessary for the 

theory of ordinal numbers. (Later he also emphasized, like Fraenkel and 

Skolem, that it is needed in order to establish the whole series of cardinalities 
[von Neumann 1928a, 347].) 

3. Sets that are “too big” (e.g., the set of all sets) had been admitted, which he 

regarded as necessary to formulate Replacement. But “too big” sets were taken 

to be inadmissible as elements of sets, which sufficed to avoid the paradoxes.1 

Von Neumann later distinguished [1925, 403; 1928a, 348] between “domains” 

[Bereiche] and “sets” [Mengen]; it has become customary to call the first ‘classes.’ 

A class or ‘domain’ is defined, essentially, by means of the principle of comprehen¬ 

sion; von Neumann seems to have regarded this principle as the quintessence of 

what he called “naive set theory” [1923, 348; 1928, 325; 1929,496], 

Von Neumann’s approach to axiomatic set theory was strongly based on the 

idea of limitation of size:2 a class is a set if and only if it is not “too big.” For this 

notion, he established a strong criterion by means of his axiom IV.2, which we shall 
call von Neumann’s Axiom: 

A [class or domain] is “too big” if and only if it is equivalent to the [class or domain] of all 

things.3 

That is, a class c is not a set (i.e., is a proper class) if and only if there is a function 

g, such that to every thing x there is an element ye c for which g(y) = x [1928a, 

345, axiom IV.2], Of course, the function g is not a set, but a proper class. 

In von Neumann’s original presentation, the axiom system looked strongly 

deviant from Zermelo’s because he employed the notion of function, not that of set 

(resp. set-membership), as the primitive notion. But, as he himself remarked, this 

difference was only important from a technical point of view.4 He emphasized that 

the notions of set and function can easily be reduced to one another - a set can be 

regarded as a function that takes only one of two values (intuitively: being and not 

being an element) - and a function can be regarded as a set of pairs. Much more 

important is the fact that von Neumann’s Axiom turned out to imply the axioms of 

1 Von Neumann to Zermelo, August 1923, partly reproduced in [Meschkowski 1967, 289- 

91]. 

2 The latter had already been stressed by Fraenkel, whose work seems to have guided many of 

von Neumann’s reflections. 

3 [Meschkowski 1967, 290]: “Eine Menge ist dann und nur dann ‘zu gross’, wenn sie der 

Menge aller Dinge aequivalent ist.” In this letter, von Neumann employed naive terminology, as 

he would keep doing later, but it is clear that he was aware of the dangers. 

4 In his opinion the development of the system became much simpler this way [1928a, 346; 

1929,494], 



380 XI. Consolidation of Axiomatic Set Theory 

Separation, Replacement, and Choice. Actually it yields Global Choice: there is a 

single relation (a class, not a set) that simultaneously selects an element from each 

set of the universe. This is because one can use the axiom to derive the existence of 

a well-ordering of the universal class. Intuitively, the proof goes as follows: the 

class of all ordinals leads to the Burali-Forti paradox, therefore it is “too big” and, 

by axiom IV.2, equivalent to the class of all things. Since the class of ordinals is 

well-ordered, we obtain a well-ordering of the universal class, by which every set 

or class (i.e., every subclass of the universe) is well-ordered [1925, 398; 1929, 

496].' Moreover, von Neumann’s Axiom goes beyond what is strictly required for 

an axiomatic reconstruction of Cantorian set theory, since it warrants that all classes 

whose cardinality is smaller than that of the universal class are sets [1929, 496]. 

Von Neumann regarded these results as clear indication that his Axiom looked 

dangerous, and was thus led to prove the consistency of his axiom system relative 

to a simpler system, in which von Neumann’s Axiom is substituted by Replacement 

and Choice [von Neumann 1929], Call the simpler system S*, von Neumann’s 

original one S. His strategy was, first, to prove that S* retains its consistency when 

Foundation is added and urelements are not allowed; and second, to show that S 

follows from the resulting augmented system [op.cit., 499], This was the first note¬ 

worthy result in the metatheory of axiomatic set theory, and, as one can see, it in¬ 

cluded a proof of the consistency of Foundation relative to von Neumann’s system 

[op.cit., 498-506]. 

The system was later transformed and simplified by several authors, above all 

Bemays and Godel, for which reason it was given the name of NBG (von Neu- 

mann-Bemays-Godel). Bemays simplified it by bringing it closer to the traditions 

of logic and set theory: 

The purpose of modifying the von Neumann system is to remain nearer to the structure of 

the original Zemielo system and to utilize at the same time some of the set-theoretic concepts 

of the Schroder logic and of Principia Mathematica which have become familiar to logi¬ 

cians. As will be seen, a considerable simplification results from this arrangement. [Bemays 

1937,65] 

By formulating the system directly in terms of the primitive ideas of set and class, 

Bernays avoided the foreign appearance of the original system. His classes behaved 

in much the same way as those of the logical tradition, since they complied with the 

laws of Boolean algebra: there is a complement to any given class, etc. 

Establishing some rather natural “axioms for construction of classes” [1937, 

69], Bernays obtained a powerful device which allowed him to recover an analogue 

of the principle of comprehension. This was already a feature of von Neumann’s 

original system [1925, 400], but it became clearer in Bemays’ version. Here, one 

postulates class-existence axioms like the following: there exists a class which is 

the graph of the e -relation; to any given class there is a complementary class; for 

1 The formal derivation of the result can be found in [1928a, 396-99], 



§3. The System NBG 381 

any two classes there exists another which is their intersection; for any class A there 

exists the class of pairs A x V, where V is the universal class. As one can see, the 

class axioms do not include a comprehension principle directly, but they suffice to 

prove a certain comprehension principle. Bernays [1937, 76-77] proved a meta- 

theoretical result, establishing that there is a class that corresponds to any condition 

in the language of the system, where one quantifies only over sets, not over classes.1 

Meanwhile, Bernays’ set-existence axioms were very similar to those of Zer- 

melo-Fraenkel. This applies in particular to his Axioms of Infinity, Separation, 

Replacement, Union, and Power Set [1941, 2-5], Shortly afterward, Godel simpli¬ 

fied a bit more the class- and set-existence axioms of Bernays [Godel 1940, 37], 

Bernays had not identified co-extensional sets and classes [1937, 67], Godel found 

it simpler to identify them, postulating that every set is a class, and that, if a class X 

is a member of another, then A is a set [1940, 35], As regards sets, Godel simplified 

a bit by merging Separation and Replacement [1940, 38], The Axiom of Choice 

was given in a stronger form by Godel, bringing the system closer to the original 

very strong system of von Neumann. He postulated Global Choice, so that a single 

(class-)relation selects, simultaneously, an element from each non-empty set of the 

universe [1940, 39], Finally, Bernays included a “restrictive axiom,” Foundation, in 

the second formulation given to it by Zennelo (§2.3). As Godel wrote [1940, 38], 

Foundation is not indispensable, but it simplifies considerably the later work, and 

von Neumann [1929] had proved its consistency with the rest of the NBG system. 

NBG enjoyed wide acceptance from the late 1930s. A noteworthy contrast to 

ZFC is that the new system was finitely axiomatizable. In first-order ZFC we must 

use axiom-schemas of Separation and Replacement, which means that there are 

denumerably many axioms generated from each schema. For this reason, the sys¬ 

tem cannot be axiomatized by finitely many axioms. Meanwhile, NBG proceeds 

with finitely many axioms because classes play the role of ‘definite properties’ or 

first-order conditions in ZFC, and there are finitely many axioms for ‘construction’ 

of classes. Once again, this feature was already visible in von Neumann’s original 

presentation, but it became clearer with Bernays and Godel. 

In principle, the systems NBG and ZFC might have been essentially different, 

and this must have been the impression of some authors in the 1920s. However, the 

reformulation of Bernays, and his ‘class theorem,’ intimated the opposite. The 

situation was finally clarified in 1950, when several authors proved the metatheo- 

retical result that NBG (without Choice) is a conservative extension of ZF. This 

means that, if a theorem about sets can be proved in NBG, a corresponding propo¬ 

sition can also be proved in ZF. The result was established on the basis of the com¬ 

pleteness theorem of first-order logic by Rosser & Wang, Novak, and Mostowski, 

independently of each other.2 This showed that NBG is not stronger as an axiomatic 

1 This is the “class theorem” proved in the first installment of Bernays’ series of papers, 

nowadays called theorem of predicative existence of classes. 

2 In the 60s, Kripke, Cohen and Solovay, working independently, established that NBG with 

Global Choice is also a conservative extension of ZFC. The result was published later by Feigner 

[1971], 
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set theory than ZFC is. From then on, it became increasingly common to employ the 

axioms of Zermelo-Fraenkel in advanced work on the metatheory of set theory.1 

4. Godel's Relative Consistency Results 

Systems like type theory - not to mention weaker systems, due to the Hilbertian 

metamathematical school or to the constructivists - had been seriously entertained 

mostly by authors working on logic and foundations, not by practicing mathemati¬ 

cians. Reduction of the distance between TT and ZF eliminated the impression that 

TT was much safer than set theory; ZF gained a greater intuitive plausibility and 

doubts regarding its consistency diminished. The process continued during the 

1930s. Stricter formalization of ZF within the background of first-order logic, pro¬ 

moted (after Skolem) by authors like Godel, Bemays, Tarski and Quine, was also a 

source of renewed confidence (§5). But the most important change happened in 

1938, when Godel showed that AC and GCFI are consistent relative to the Zer¬ 

melo-Fraenkel system. These consistency results undermined any remaining cau¬ 

tionary reason to adopt TT. They showed that, if one is determined to adopt some 

version of ‘classical’ mathematics, axiomatic set theory (ZF or NBG) is a safe 

framework for the work, and perhaps the most natural one. 

After establishing his famous incompleteness theorems, Godel turned to set 

theory with the aim of settling fundamental questions on AC and CH. Quite early 

he came to consider the so-called ‘constructible’ sets as a model for axiomatic set 

theory without Choice (see Feferman in [Godel 1986, 9, 21]). In 1935 he wrote to 

von Neumann that he had proven AC to be valid for the constructible sets, i.e., he 

had established its consistency relative to the other axioms. Two years later he 

proved the relative consistency of GCFI.2 The results were announced in the Pro¬ 

ceedings of the National Academy of Sciences of the U.S.A. for 1938, with a de¬ 

tailed outline of the proof following the year after. In 1940, a monograph based on 

lectures given at Princeton in the fall of 1938 was published, with full proofs that 

are, however, less perspicuous than those of 1939. Interestingly, each time Godel 

stated the result for a different axiom system: in the announcement [1938] von 

Neumann’s system, in [1939] ZF, in [1940] his own (slight) modification of the 

system of Bernays. He also indicated that a corresponding theorem can be proven 

for the system of Principia, namely type theory [1938, 26], 

1 We shall not enter into more details regarding NBG here. Readers interested in a detailed 

analysis may turn, e.g., to [Fraenkel, Bar-Hillel & Levy 1973], I would also like to emphasize 

that the historical interplay between ZFC and NBG ought to be the subject of more detailed 

research. 

2 He refrained from publishing immediately, since he hoped to get further results regarding 

the independence of AC and CH (see Moore in [Godel 1990, 158]). 
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Godel’s method was to define on the basis of axiomatic set theory what would 

later be called an ‘inner model.’1 From our standpoint, it is noteworthy that type 

theory seems to have provided essential background for the work. Regarding the 
constructible universe, Godel wrote: 

This model, roughly speaking, consists of all ‘mathematically constructible’ sets, where the 

term ‘constructible’ is to be understood in the semi-intuitionistic sense which excludes im- 

predicative procedures. This means ‘constructible’ sets are defined to be those sets which 

can be obtained by Russell’s ramified hierarchy of types, if extended to include transfinite 

orders. The extension to transfinite orders has the consequence that the model satisfies the 

impredicative axioms of set theory, because the axiom of reducibility can be proved for 

sufficiently high orders. [Godel 1938, 26-27; see also 1944, 147] 

Much later, Godel would refer to this idea as one of the most fruitful outcomes of 

his Platonistic attitudes: a constructivist would never have considered going beyond 

finite orders.2 By viewing the theory of orders within the framework of ordinary 

(impredicative) mathematics, he was able to extend it to transfinite orders [Godel 

1944, 136], Now, it became possible to prove that every propositional function is 

extensionally equivalent to one of order a - where the ordinal a is so great that it 

presupposes impredicative set-formation. But “all impredicativities are reduced to 

one special kind, namely the existence of certain large ordinal numbers (or well- 

ordered sets) [e.g., (0)] and the validity of recursive reasoning for them” [ibid.]. 

One can thus describe the universe of constructible sets directly, within the 

formalism of set theory, by transfinite recursion on the ordinals. This definition 

makes it appear similar to Zermelo’s cumulative hierarchy, but also to simple type 

theory, which is how Godel presented it [1938, 31 note]. Take 

1. Lo = 0- 

2. La+] as the set of all subsets of La which can be defined by first-order condi¬ 

tions restricted to La, i.e., conditions containing only the following notions: ne¬ 

gation -i, disjunction v, the e-relation, elements of Laas parameters, and quan¬ 

tifiers V, 3 for variables with range La\ 

3. Lp = [Jfa , for all a<(3, if (3 is a limit ordinal.3 

A set .? is called “constructible” if there exists an ordinal a such that s e La. The 

essential difference between this and the usual cumulative hierarchy is the restric¬ 

tion on parameters and quantifiers imposed in 2. At stage a+1, one does not have 

the collection of all subsets of La, but only those subsets which can be defined by 

reference to ‘all sets of order a;’ here lies the predicative element. As a conse- 

1 Shepherdson [1951/53]. It was a very special inner model: the minimal one that contains all 

the ordinals and is transitive, i.e., such that, whenever x is in the model, so are elements ofx. 

2 Letter to Wang, 1968, in [Wang 1974, 10], 

3 See the 1939 abstract in [Godel 1990, 27], Godel writes Ma instead of the usual La, and I 

have modernized his logical symbolism slightly. 
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quence, new subsets of La may appear at stages later than oc+1, as happens for all 

infinite stages. 
Godel was well acquainted with previous work of Russell, Skolem, and Zer- 

melo, including his [1930] treatment of the cumulative hierarchy. He did not just 

combine the cumulative hierarchy of Zermelo with the first-order perspective of 

Skolem in order to obtain the constructible universe.1 The predicative element taken 

from Russell’s ramified type theory was also essential. As he consistently presented 

the matter [1938; 1939, 31; 1944, 136], Godel was led to the constructible sets by 

the comparison between axiomatic set theory and the two versions of type theory, 

ramified TT and simple TT. Taking into account the development of logical theory 

from type theory to first-order logic, and his earlier work within simple TT (§X.4), 

this seems rather natural. 
Godel was able to prove that the axioms of ZF hold in the universe of construc¬ 

tible sets, which is thus a model of ZF. He established that L0) is a model of Zer- 

melo’s axioms, and that the Axiom of Replacement is satisfied in Lq, Q. being the 

first inaccessible number [1938, 31]. Moreover, he was able to prove that AC and 

GCH also hold in the model. The proof was in two steps, which we shall present in 

reverse order. One part is to prove that the statement ‘every set is constructible’ is 

true in the model in question, La or Lq. To this end, one has to show that the 

statement is absolute, in the sense that it has the same meaning within the model as 

when regarded from without, from any ‘bigger’ model. Godel establishes that the 

operation of forming the set of all first-order definable subsets of a given set is 

absolute: the outcome is the same when the operation is carried in the cumulative 

hierarchy, or relativized to a given model. As a result, the statement ‘every set is 

constructible,’ the axiom of constructibility, is absolute and holds in each of the 

models. Within the context of the NBG system it was natural to formulate the ax¬ 

iom by writing V = L - the universal class is the class of constructible sets [Godel 

1940, 81]. This is the form in which it is now customarily written.2 

The other step consisted in showing that AC and GCH are consequences of V = 

L. The first was, according to Godel [1990, 27] an “incidental result” of his work 

on the Continuum Hypothesis. One can associate with each constructible set a 

unique first-order condition (having ordinals as parameters) as its ‘definition,’ and 

use these first-order expressions to establish a well-ordering of all constructible sets 

[1938, 29]. Since V = L is absolute, the well-ordering is also absolute in the above 

sense. Establishing the result on GCH took Godel two more years. It depends on a 

key lemma: any subset of Lm which is an element of some Lp is already an ele¬ 

ment of La . The proof employs “a generalization of Skolem’s method for con¬ 

structing enumerable models” (Godel in [1990, 27]); it uses an argument analogous 

to the Lowenheim-Skolem theorem, and what is nowadays called the ‘Mostowski 

1 As Solovay writes in [Godel 1990, 8], 

2 In ZF one writes: Vx3a (xeLa). Godel’s axiom has been extensively studied by logicians, 

specially since the 60s; see Solovay in [Godel 1990, 14-25], 
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collapse’ to a transitive set.1 That suffices to establish the Generalized Continuum 

Hypothesis, in virtue of the fact that the cardinalities of Lm and Lm within the 
UJa wa+\ 

constructible universe are Na and Ra+|. 

It is crucial that the whole reasoning outlined above - defining the models and 

proving that AC and GCH are valid in them - can be carried through within axio¬ 

matic set theory without Choice, for instance within ZF. This means that a contra¬ 

diction derived from ZFC+GCH could be transformed into a contradiction derived 

from ZF alone [Godel 1938, 32], If ZF is consistent, so is ZFC+GCH; in that sense, 

the Axiom of Choice and the Generalized Continuum Hypothesis are safe assump¬ 
tions.2 

Once these profound metatheoretical results had been established, there was no 

further reason to stick to simple TT or to regard type theory as a safer system. Zer- 

melo’s system (without Replacement but with Foundation) and simple type theory 

with Infinity can be regarded as alternative descriptions of one and the same do¬ 

main - a cumulative universe of sets (§2.3). Godel’s results showed that introduc¬ 

ing the Axiom of Choice, and even the Generalized Continuum Hypothesis, does 

not imperil the consistency of the system. Therefore, there is no reason to think that 

ZFC+GCH is more dangerous than TT with Infinity. And the fact that ZFC can be 

formulated in first-order logic became an argument for it (§5), reinforcing even 
more the position of axiomatic set theory. 

Godel’s relative consistency results stood as a rather isolated landmark in 

mathematical logic for a decade. After 1950, however, there was renewed activity 

in the study of models of set theory, beginning with inner models a la Godel (see, 

e.g., [Shepherdson 1951/53]), and continuing with the powerful method of forcing 

introduced by Paul Cohen in the 1960s. As is well known, Cohen showed that CH 

is independent from the usual ZFC axioms of set theory (Godel had tried to estab¬ 

lish this last result in the early 1940s, but unsuccessfully).3 Cohen’s work was re¬ 

garded by Godel as the most important development in set theory since its axioma- 

tization; it opened up a new era of intense activity in the metatheory of the system. 

The study of constructibility, together with the topics of large cardinals (§IX.6) and 

forcing, has formed one of the major areas of study in modem axiomatic set theory. 

1 Theorem 2 in [1938, 29], This is the version of the axiom of reducibility that Godel men¬ 

tioned (see above). For further details, see Solovay in [Godel 1990, 8-12] and [Godel 1938], 

2 In [1940], working within NBG, Godel was able to give detailed proofs of his results with¬ 

out having to deal with metatheoretical notions within axiomatic set theory. The result, however, 

was a much less intuitive proof than the one offered for ZF in [1938]. Godel himself admitted 

that the first exposition exhibited more clearly the basic idea of the proof in a note added in 1965 

[Godel 1940, 97] (see also Solovay in [Godel 1990, 12-13]). 

3 See [Moore 1988a], [Kanamori 1996] and Moore in [Godel 1990, 158-59], Forcing is a 

powerful method, based on first-order logic, for defining models with prescribed properties. 
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Figure 10. Alfred Tarski (left) and Kurt Godel in 1935. 

Courtesy Bancroft Library, Berkeley. 

5. First-Order Axiomatic Set Theory 

Skolem had started to argue for a first-order formulation of axiom systems, par¬ 

ticularly Zermelo set theory, as early as 1922. As we have seen (§X.5), this was a 

radical proposal, shared only by authors of constructivist tendencies like Weyl. Von 

Neumann seems to have been the first to join Skolem; his new system was formu¬ 

lated in such a way that it was translatable into first-order logic, and he seems to 

have shared Skolem’s attitude toward axiomatics. But the fact that his axiom sys¬ 

tem was “elementary,” in the sense of being formalizable in first-order logic, was 

only made explicit by Bemays [1937, 65], According to Bernays [ibid.], von Neu¬ 

mann’s was the first example of a system both adequate to arithmetic and elemen¬ 
tary. 

Since the early century, formalists had emphasized the metatheoretical ques¬ 

tions of independence, categoricity, and consistency of axiom systems.1 In 1928, 

Hilbert posed the problem of completeness for first-order logic [Hilbert & Acker- 

1 The Hilbertians laid much emphasis, too, on the decision problem [Entscheidungsproblem], 
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mann 1928], a problem solved in the affirmative by Godel in his 1929 Ph.D. thesis 

and [1930], But, as a result of his first incompleteness theorem [1931], it turned out 

that second-order logic is incomplete. In the atmosphere of foundational skepticism 

reigning during the interwar period, that afforded a new argument for first-order 

logic, to be added to those used previously by Skolem and others (§X.5). Since 

Leibniz, and particularly since Boole, it had been customary to conceive of logic as 

a calculus. Godel s striking results implied that second-order inference cannot be 

completely formalized - it cannot be codified by means of a satisfactory calculus. 

Thus, first-order logic seemed much better as a purely formal system of the kind 

that foundational studies in the 1930s required. And, of course, Skolem’s argument 

that axiomatic set theory can only rely on first-order logic retained its force. From 

about 1935, a number of authors emphasized that ZFC and NBG can be formalized 
within this elementary logic. 

That was the case with Tarski, Quine, Godel and Bemays. Up to 1933, or at 

least 1931, Tarski had been of the opinion that one must incorporate some kind of 

type restriction into logical systems (§X.4). But the 1935 postscript to his famous 

paper on the notion of truth records his abandonment of Lesniewski’s theory of 

semantic types [Tarski 1935, 268], Now, Tarski acknowledged that first-order logic 

is an acceptable system that suffices for codifying set-theoretical proofs. In contrast 

to type theory, first-order set theory is a “much more convenient and actually much 

more frequently applied apparatus” [op.cit., 271n], Similarly, while presenting a 

modification of ZF, Quine [1936] emphasized that, by formulating the system in 

first-order logic, one obtains the Skolem interpretation of ‘definite property’ auto¬ 
matically in the axiom-schema of Separation. 

Three years later, Godel’s first published proof of the relative consistency of AC 

and GCH was established for the ZF system, using Skolem’s interpretation of 

‘definite property.’ A ‘definite property’ (or relation) was understood as a “propo¬ 

sitional function over the class of all sets,” that is, as a condition with one (or more) 

free variable(s) in the language of first-order set theory [Godel 1939, 28, 31], The 

quantifiers were clearly restricted to first-order quantification over the intended 

domain of sets. In the booklet that he published the year after, Godel [1940] pre¬ 

sented a modification of the von Neumann-Bemays system and emphasized that, to 

everyone familiar with mathematical logic, it should be clear that the proofs could 

be formalized using Hilbert’s ‘engerer Funktionenkalkul,’ i.e., first-order logic 

[Godel 1940, 34], As we have seen, the fact that NBG is an elementary system, 

formalizable in first-order, had already been indicated by Bemays [1937, 65-66]. 

Bemays and Godel were definitely no relativists or constructivists in the style of 

Skolem, but they regarded first-order logic as the adequate underlying system for 

metatheoretical analysis of mathematical axiom systems.1 

Thus, it was in the context of axiom systems for set theory, in the second half of 

the 1930s, that first-order logic came to be regarded as a distinguished logical sys¬ 

tem. From the standpoint of the foundational debate and metamathematical studies, 

1 Godel even suggested that set and concept (viz class) are ‘higher’ logical notions (see 

[Godel 1944]). This makes clear that he was no first-order reductionist. 
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the proof-theoretical properties of that logic were perceived as highly desired ones, 

although the reasons remained unmentioned. First-order theories of arithmetic, the 

real numbers, or sets do not characterize categorically the intended objects, but they 

have the advantage that the basic logic system is completely formal. Second-order 

logic buys categoricity at the price of not being completely formalizable [Godel 

1931]. In an atmosphere of foundational skepticism and strict requirements con¬ 

cerning axiomatization, authors required tacitly that a logic ought to be proof- 

theoretically well-behaved, even if it did not work well from a semantic standpoint. 

Therefore, one may conclude that the main reasons for choosing first-order logic 

were its simplicity and completeness, its perfect agreement with the spirit of axio- 

matics and basic foundational work (particularly proof theory), and the fact that it 

did not pre-judge questions like the meaning of ‘all subsets.’1 

After World War II, mathematical logic enjoyed a new status at University 

departments, particularly in the United States. Tarski’s Berkeley and Church’s 

Princeton became leading centers for research in mathematical logic, and a new 

generation trained in metatheoretical work emerged. In line with the preferences of 

Bemays and Godel, the new generation of logicians increasingly acknowledged 

first-order logic as the standard logic system. Moreover, with the rise of model 

theory around 1950, first-order logic became a most interesting system. Its weak¬ 

ness turned out to afford a powerful method for transferring results from one model 

to another. From this point onwards, most mathematicians and experts in founda¬ 

tional studies have agreed that first-order axiomatic set theory is a very satisfactory 

framework. This came to mean that ZFC is the natural axiomatic framework for 

most of mathematics.2 

6. A Glance Ahead: Mathematicians and Foundations after 
World War II 

After the end of the War, the situation was ripe for axiomatic set theory to finally 

consolidate its key role within modem mathematics. During the 1930s it had been 

satisfactorily reformulated, and its logical basis had been deeply investigated. The 

heated foundational controversies had been left behind, and almost all mathemati¬ 

cians were ready to continue working in line with the abstract tradition, which 

found its interpreter, encyclopedic codifier, and public figure in Nicolas Bourbaki. 

But, of course, not all mathematicians emerged from the interwar period with equal 

confidence in the classical tradition. To conclude, we shall briefly review the views 

expressed in the late 1940s by some notable figures, including von Neumann, 

1 As second-order logic can be seen to do, when the system is interpreted extensionally 

(§X.5). 

21 skip here over the issue of choosing between ZFC and NBG (see §3). 



§6. A Glance Ahead: Mathematicians and Foundations 389 

Godel, Weyl, and Bourbaki.1 Needless to say, I shall make no attempt to deal with 

the topic comprehensively; my aim is just to sample a few relevant views, in order 

to convey the reader a feeling for the manifold possible standpoints. 

Von Neumann started to doubt the soundness of the abstract tradition very early 

on. Even in his contributions to axiomatic set theory, he expressed caution and 

skepticism regarding the validity of the systems he examined. Much later, in a pa¬ 

per for the general reader, he mentioned that his own views regarding mathematical 

truth had changed substantially, and humiliatingly easily, three different times in 

quick succession [1947, 6], Although he did not clarify what these changes actually 

were, it would seem that he was referring to the following periods. Up to [1923] he 

seems to have fully accepted Cantorian set theory and so he became interested in 

taking axiomatic set theory to the limits. But two years later he sounded a note of 

caution as a result of the constructivists’ critique, the work of Skolem, and his own 

investigations [1925, 395-96, 408-09, 412-13], He discussed in detail the Skolem 

paradox, indicating that axiomatic set theory leaves room for relativism, and he 

presented his reflections on the lack of categoricity of systems of set theory. Von 

Neumann thought that these might be arguments for intuitionism [1925, 412], He 

also stressed the distance between naive and formalized set theory, and the arbi¬ 

trariness of the restrictions introduced in axiomatic set theory [1925, 396; 1928a, 

347; 1929, 495], But shortly afterward, working on Hilbert’s program, he came 

quite close to proving the consistency of Peano arithmetic [von Neumann 1927], 

By this time he must have believed, like many others, that Hilbert would soon win 

the battle,2 but Godel’s incompleteness theorems shattered his beliefs and con¬ 

vinced him that Hilbert’s program was hopeless [1947, 6], After 1931 he ceased 

publishing on foundational issues. It seems that the blow dealt to Hilbert’s program 

by Godel’s results finally convinced him that mathematicians should devote them¬ 

selves to topics in areas of mathematics closer to applications. 

Von Neumann’s paper ended with the suggestion that, although mathematical 

ideas have empirical origins, they are creatively developed in a theoretical way 

governed mainly by aesthetic motives. And there is danger of degeneration: 

As a mathematical discipline travels far from its empirical source, or still more, if it is a 

second or third generation only indirectly inspired by ideas coming from ‘reality,’ it is beset 

with very grave dangers. It becomes more and more purely aestheticizing, more and more 

purely Fart pour Fart. ... In other words, at a great distance from its empirical source, or 

after much ‘abstract’ inbreeding, a mathematical subject is in danger of degeneration, [von 

Neumann 1947, 9] 

1 Another relevant but slightly earlier contribution is [Bernays 1935], which deals with Plato¬ 

nism in mathematics. 

2 By the long sought proof of consistency of the theory of real numbers. As regards axiomatic 

set theory, von Neumann thought that a consistency proof was beyond reach [1929, 495], 
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Such a discipline risks being developed along lines of least resistance, it may even 

end up as a disorganized mass of details and complexities. It is difficult not to read 

those lines as a reflection on von Neumann’s long experience with set theory. His 

last word was to caution that, when that stage is reached, the only remedy is the 

rejuvenating return to the source, the reinjection of more or less directly empirical 

ideas [ibid.]. It seems this is the remedy he applied to himself back in the early 

1930s. 
The skepticism of von Neumann contrasts sharply with the confident Platonism 

expressed by Godel by the end of the War. This came out for the first time in his 

paper on Russell’s logic, where he wrote that classes and concepts may be con¬ 

ceived as real objects, existing independently of our definitions and constructions 

[1944, 128]. The assumption of such objects is quite as legitimate as the assumption 

of physical bodies - classes and concepts are necessary to obtain a satisfactory 

system of mathematics, “in the same sense” as bodies are necessary for a satisfac¬ 

tory theory of our sense perceptions [ibid.; see also 131]. Furthermore, nothing 

expresses better the meaning of the term ‘class’ than the axioms of Separation and 

Choice, which had thus come to seem obvious to Godel [1944, 139], The only 

difficulty is that we do not perceive the notions of ‘concept’ and ‘class’ with suffi¬ 

cient distinctness, as the paradoxes show. This means that the axioms of set theory 

may have to be supplemented by new basic propositions, a position that Godel 

developed in detail three years later, in his only expository article [1947].' 

In connection with a review of the volume on Russell’s philosophy which in¬ 

cluded Godel’s contribution, Weyl [1946] summarized his own perceptions of the 

question ‘Mathematics and Logic’ and how it had evolved in the last half century. 

His aim was at least twofold: to show that the whole drift of research had been 

away from the Frege-Russell thesis that pure mathematics is logic [1946a, 601], 

and to emphasize again the importance of the debate between Brouwer and Hilbert, 

from which Godel seemed to be retiring [1946a, 603], He stressed once again the 

“transcendental character” and “high degree of arbitrariness” involved in systems 

like simple type theory and axiomatic set theory [1946, 278; 1946a, 603], He wrote 

that Russell had not founded mathematics on logic, but on “a sort of logician’s 

paradise,” an axiomatic world system, and that “belief in this transcendental world 

taxes the strength of our faith hardly less than the doctrines of the early Fathers of 

the Church” [1946, 272], The situation was essentially the same with the world of 

sets postulated in Zennelo-style axiomatics: there is no assurance of its consistency 

except the empirical support of having not yet led to any contradiction. Still, Weyl 

acknowledged that the ZF system is essentially simpler than Russell’s and “seems 

to be the most adequate basis for what is actually done in present-day mathemat¬ 

ics,” i.e., for the familiar “existential” or abstract mathematics [1946, 276-77, 278- 

79], 

1 Here the realistic view is again insinuated [1947, 179-81], but it was only in the second, 

1964 edition of the paper on Cantor’s continuum problem that Godel took it even further. 



§6. A Glance Ahead: Mathematicians and Foundations 391 

Weyl emphasized that we are less certain than ever about the ultimate founda¬ 

tions of mathematics. There is a choice between several different possible systems. 

Some emphasize the constructive tendency and so remain within the bounds of 

what may be legitimately called ‘evident;’ this is done most clearly and deeply in 

Brouwer’s intuitionism, less so, but remaining closer to customary mathematics, in 

Weyl’s system. Some systems tend to postulate a world of mathematical objects by 

means of axiomatic systems; this is done austerely by Hilbert and his followers, 

much less so by Russell, and with the greatest freedom in Zermelo’s axiomatic set 
theory. Weyl summed up the situation in the following diagram: 

W R Z 

B = Brouwer 

W= Weyl 

H= Hilbert 

R = Russell 

Z= Zermelo 

B H 

Systems located toward the bottom are taken to be deeper, more basic foundations; 

those located toward the left are more of a constructive tendency, toward the right 

more of an axiomatic tendency. Needless to say, Weyl’s sympathies fell on the left 
side, that of B and W. 

In spite of all their differences, there is one feature that von Neumann, Weyl and 

Godel shared. They no longer believed in the centuries-old tradition that mathe¬ 

matics plainly consists of true, evident statements. In their view, many mathemati¬ 

cal propositions have a hypothetical character; they are introduced as hypotheses 

that serve to explain and unify more concrete material. This is precisely the relation 

between the axioms of set theory and the theorems of arithmetic and analysis - the 

former are strong explanatory hypotheses, the latter are much more convincing, 

true-like, or evident. This interesting conclusion - diametrically opposed to the 

simplistic idea that mathematics is tautological or purely formal - seems to have 

been one of the profoundest outcomes, among deep thinkers, of the foundational 

debates. Russell began to express this new ‘hypothetical’ mood in Principia 

Mathematical [1910], Hilbert and Weyl went on in the 1920s comparing the real 

number axioms with the hypotheses of physics. Bernays, Godel, von Neumann and 

many others followed.1 

To some extent, the hypothetical conception was shared by a keynote speaker at 

the 1948 meeting of the Association for Symbolic Logic, a professor named Bour- 

baki from the University of “Nancago” who would become extremely influential 

among practicing mathematicians.2 His talk [1949] was devoted to laying out the 

1 See [Lakatos 1967], who calls this ‘quasi-empiricism,’ while I would prefer to speak of a 

hypothetical conception of (large parts of) mathematics. The most important popularizer of this 

view among philosophers has been Quine; see his [1953]. 

2 For Bourbaki’s hypothetical conception, see [1949, 3]. Perhaps I should mention that Bour- 
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foundations of mathematics in a way that he regarded as sound, relatively safe, and 

flexible enough for the working mathematician. As a peculiar, many-headed fol¬ 

lower of Hilbert, Bourbaki discussed his conception of logic as an integral part of 

mathematics and presented his version of first-order logic, the basic sign-language 

and grammar of the discipline. Having explained the meaning of the words ‘ax¬ 

iom,’ ‘proof,’ and ‘theory,’ he proceeded to list his basic axioms for mathematics. 

These are simply a version of first-order ZFC, for 

as every one knows, all mathematical theories can be considered extensions of the general 

theory of sets. [Bourbaki 1949, 7] 

The system had some peculiarities. It employed as primitives the notions of equal¬ 

ity, ordered pair, and membership. It lacked axioms of Union and Replacement, but 

included an axiom postulating the existence of the Cartesian Product of any two 

given sets. 

On these foundations, I state that I can build up the whole of the mathematics of the present 

day; and, if there is anything original in my procedure, it lies solely in the fact that, instead 

of being content with such a statement, I proceed to prove it in the same way as Diogenes 

proved the existence of motion; and my proof will become more and more complete as my 

treatise grows. [Bourbaki 1949, 8] 

Motion is proved walking. Bourbaki went on to present within the set-theoretical 

framework his interesting idea of the ‘mother structures’ [1950], and to systematize 

large parts of the mathematical tradition. But in the course of walking, the French 

group also came to experience some limitations to the confident belief they had 

expressed in 1949.* 1 Today we do not feel so sure that axiomatic set theory is the 

ultimate foundation, but certainly all mathematicians are accustomed to using it as 

the basic language to teach and learn in order to become a mathematician. To this 

extent, Bourbaki was right and simply expressed the working convictions of the 

20th century mathematician. 

baki was no real person, but a fictitious character invented by a group of French mathematicians, 

who published their joint work under that name. 

1 When the first volume of his treatise was published, Bourbaki [1954] had changed his axiom 

system slightly. Some indication of the difficulties can be found in [Corry 1996]. 
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Figure 1. Gustav Lejeune Dirichlet (1805-1859). 2 

Figure 2. Bernhard Riemann (1826-1866) in 1863. 40 

Figure 3. Doubly and triply connected surfaces, from [Riemann 1857]. 

Riemann explains the behavior of transversal cuts and closed curves. 56 

Figured. Richard Dedekind (1831-1916) in 1868. 80 

Figure 5. Georg Cantor (1845-1918) around 1870. 146 

Figure 6. Curve showing [0, 1] and (0, 1] to be equipollent, from [Cantor 1878], 

The curve consists of the infinitely many segments ab, a 'b', ... and the isolated 

point c; the points b, b... do not belong to the curve. 

Cop =pc= 1; points a and b{ are obtained by halving intervals.) 193 

Figure 7. Title page of Dedekind’s What are numbers and what could they be? 
[also: . .and what are they for?] [1888]. 

Notice the Greek motto: “man eternally arithmetizes.” 216 

Figure 8. Title page of Cantor’s Foundations of a general theory of manifolds 

[1883], The subtitle indicates that it is a “mathematico-philosophical attempt” 
to contribute to the “theory of infinity.” 258 

Figure 9. The Gottingen Mathematics Society in 1902. Sitting at the table we find 

Klein and Hilbert, at the extreme right Zermelo; standing in the second row are 

E. Schmidt (behind Klein) and Bernstein (behind Zermelo). 

Courtesy Niedersachsiche Staats- und Universitatsbibliothek Gottingen. 298 

Figure 10. Alfred Tarski (left) and Kurt Godel in 1935. Courtesy Bancroft Library, 
Berkeley. 335 
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369-71; 373; 375 

Mittag-Leffler, Gosta, 15; 141; 160; 176; 

185; 198-201; 203;206;213;266;268- 

69; 278; 281-85; 300 

Mobius, A. F. (1790-1868), 15; 23-24; 88 

Montel, Paul (1876-1975), 155 

Moore, Gregory H., xx; 48; 52; 73; 140; 

190;210-12; 251; 255; 283; 302; 304; 

306-18; 320; 323; 345; 347; 359; 367; 

374;382;385 

Mostowski, Andrzej (1913-1975), 381; 384 

N 

Nagel, Ernest (1901-1985), 13; 43 

Netto, Eugen (1846-1919), 11; 196; 282 

Neumann, Carl (), 33 

Newton, Isaac (1643-1727), 119 

Nicole, Pierre (1625-1695), 49 

Noether, A. Emmy (1882-1935), 81; 116; 

138; 175;254-55 

Novak, I., 381 

o 

Ohm, Martin (1792-1872), 12-13; 15; 32; 

35; 120-23; 125; 219; 221-23 

Oken, Lorenz (1779-1851), 8 

Oresme, Nicole (c. 1323-1382), 70 

P 

Paris, 9; 26; 198; 201; 284 

Pasch, Moritz (1843-1930), 243^-4; 305 

Paulsen, Friedrich (1846-1908), 5; 7 

Peacock, George (1791-1857), 121-23; 

219 

Peano, Giuseppe (1858-1932), 50-51; 139; 

194;228;235;250-51; 300; 304-05; 

308;310;313;321;332; 344-46; 348; 

351;354;389 

Peirce, Charles S. (1839-1914), 244; 250- 

51;253;346 

Pestalozzi, J. Heinrich (1746-1827), 22 

Pfaff, Johann Friedrich (1765-1825), 70 

Phragmen, Lars Edvard (1863-1937), 282 

Picard, Emile (1856-1941), 283 

Pieri, Mario (1860-1913), 305 

Pincherle, Salvatore (1853-1936), 36; 73; 

124;146 

Plato (427-347 b.C.), 3; 51; 216; 265-66 
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Pliicker, Julius (1801-1868), 23-24 

Plutarch (3rd cent.), 216 

Poincare, Jules Henri (1854-1912), 282; 

284;309;316; 318; 324; 326-27; 335; 

338-39; 342; 360 

Porphyry (3rd cent.), 49; 51 

Post, Emil (1897-1954), 347 

Pringsheim, Alfred (1850-1941), 124 

Proclus (410—485), 70 

Puiseux, Victor (1820-1883), 55 

Purkert, Walter, 20; 38; 82-83; 90; 111; 

127;158;166;172-73; 175; 177; 186; 

199-201; 213; 260-62; 282; 285; 291— 

92; 300; 311 

Q 

Quine, Willard Van Orman (b. 1908), 51; 

309; 325-26; 329-32; 337; 349; 354; 

363;382;387;391 

R 

Ramsey, Frank P. (1903-1930), 310; 329; 

332;338;348-53; 355 

Richard, Jules-Antoine (1862-1956), 310; 

327;350 

Riemann, G.F. Bernhard (1826-1866), xv- 

xvi; xviii-xix; 1; 3-4; 7-9; 17-31; 36; 

38-48; 51-79; 81-83; 85-88; 90-91; 94; 

99-100; 110; 112; 114; 131;133-39; 

142-55; 157-59; 162; 165-67; 172-73; 

187; 193-94; 196;202-03;218-21; 233; 

238; 241—43; 281; 292; 316; 378 

Roch, Gustav (1839-1866), 56; 114 

Rosser, J. Barkley (1907-1989), 337; 381 

Rowe, David, xviii; xx; 7-8; 24; 31; 33; 

199 

Russell, Bertrand A.W. (1872-1970), xi; 

xiii; xix; 17; 45; 123; 227; 229; 234; 

237;246;249-53; 286; 292; 299; 303- 

10;317-18; 320-34; 340; 342-52; 355; 

358-60; 366;373; 378;383-84; 390-91 

5 

Safarevic, Igor R., 112 

Salmon, George (1819-1904), 45 

Scharlau, Winfried, 6; 26-28; 76; 81-86; 

88; 90; 98 

Schelling, Friedrich Wilhelm Joseph 

(1775-1854), 7 

Schering, Ernst C.J. (1833-1897), 77 

Schiller, Friedrich von (1759-1805), 6 

Schleiermacher, Friedrich Ernst Daniel 

(1768-1834), 13 

Schmidt, Erhard (1876-1959), 313; 318 

Schoenflies, Arthur Moritz (1853-1928), 

20;147; 168; 198-201; 213; 260; 281— 

82;300;302; 312; 314; 335 

Scholz, Erhard, xx; 43^47; 53-61; 63; 69- 

70; 72; 83; 241 

Schroder, F.W.K. Ernst (1841-1902), 50; 

137;230;239;244; 247; 250-53; 300; 

304-05; 332; 345^49; 360; 380 

Schultz, Johann (1739-1805), 21 

Schumacher, Heinrich Christian (1780— 

1850), 20 

Schwarz, Hermann Amandus (1843-1921), 

31; 37; 118; 121; 124; 141; 145; 158; 

176;184;200; 233; 283 

Shakespeare, William (1564-1616), 201; 

285 

Sheffer, Henry (1882-1964), 349 

Shepherdson, John C. (b. 1926), 383; 385 

Sierpinski, Waclaw (1882-1969), 320; 334; 

355;365 

Skolem, Thoralf (1887-1963), 304; 330; 

332;345-47;357; 360-63; 366-69; 

373-77; 379; 382; 384-87; 389 

Smith, Henry John Stephen (1826-1883), 

1; 162-65; 203 

Solovay, Robert M., 382; 384-85 

Spinoza, Baruch (1632-1677), 130; 177; 

260;265-66 

Steiner, Jacob (1796-1863), 1; 8; 18; 21— 
24; 32; 88; 188 

Steinitz, Ernst (1871-1928), 320; 376 

Stem, Moritz A. (1807-1894), 13; 25; 35 

Stevin, Simon (1548-1620), 41; 119 

Stolz, Otto (1842-1905), 146; 166-67 

Suslin, Mikhail (1894-1919), 333 
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Sylow, Peter Ludvig M. (1832-1918), 360 

Sylvester, James Joseph (1814-1897), 45 

Tannery, Jules (1848-1910), 281 

Tarski, Alfred (1901-1983), 233; 330; 334; 

338; 350-56; 377; 382;387-88 

Thieme, K. Gustav Hermann (1852-1926), 

124 

Thomae, Johannes Karl (1840-1921), 196; 

282 

Ueberweg, Friedrich (1826-1871), 48 

Ulrich, Georg K.J. (1798-1879), 25 

van der Waerden, Bartel Leendert (1903— 

1996), 81; 84; 116; 337 

van Heijenoort, Jean (1912-1986), 48; 

223-24; 231-32; 234; 249;255;299; 

308-09;320-23;332;342; 345;347; 

365 

Veblen, Oswald (1880-1960), 236; 367 

Vitali, Giuseppe (1875-1932), 320; 333 

Vivanti, Giulio (1859-1949), 21 1; 240; 

266;305 

Volterra, Vito (1860-1940), 162; 165 

von Neumann, John (1903-1957), 293-94; 

324;337;342;344-45; 357; 363; 365- 

82; 386-91 

von Staudt, Karl Georg C. (1798-1867), 

238;305 

Weber, E. Heinrich (1842-1913), 19-20; 

31; 59; 78; 84; 86;88;93; 97; 102-03; 

111; 114-16; 134; 176; 189;198;217; 

219;228;233;235 

Weber, Wilhelm (1804-1891), 19; 25-26; 

53 

Weierstrass, Karl T.W. (1815-1897), xviii- 

xix; 1; 12-13; 15; 30; 33-38; 42; 53-54; 

64; 73-74; 78; 117-27; 131; 133;135; 

137;139-45; 149; 153; 155; 157-59; 

171;173; 177;181-86; 194; 198; 202; 

206; 209-10; 222; 243; 259; 266; 268; 

281;283;305;311;338 

Weyl, Hermann (1885-1955), 54-55; 116; 

132; 252; 254-55; 264; 328; 330; 332; 

335;338-44;346;349-52; 354; 356-61; 

369;373;386;389-91 

Whitehead, Alfred North (1861-1947), 

253;325;327-33; 344; 349-50; 355; 
360; 366 

Wiener, Norbert (1894-1964), 348^19 

Wilson, John (1741-1793), 28 

Wittgenstein, Ludwig (1889-1951), 332; 
349-51 

Wussing, Hans, 10; 23; 86 

z 

Zeno of Elea (5th cent. b.C.), 141 

Zermelo, Ernst F.F. (1871-1953), xii-xiii; 

xix; 143; 174-75; 188; 202-03; 217; 

225; 230; 234; 237; 239; 244; 246;255; 

270-71; 278; 280; 286; 289; 294-96; 

299;302;304;309-24; 326-27; 330; 

334;337-39; 343; 347; 355;359-86; 

391 

Zorn, Max (1906-1993), 333 

W 

Waismann, F. (1896-1959), 349 

Wang, Hao (b. 1921), 223; 227; 231; 287; 

296;326;337;378;381-83 

Wangerin, Albert (1844-1944), 201 

Waring, Edward (1736-1798), 28-29 
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A priori, 3; 11; 13-17; 137; 165; 216; 241— 

44;247 

Abbildung, see mapping, 55; 89-90; 108; 

224; 228-29; 236; 275 

Absolute, 18; 261; 291 

Abstraction, 57; 74; 93; 235; 243-44; 279; 

311; 314-15 

Acta Mathematica, 155; 198; 201; 213; 

282; 284 

Aleph numbers, 197; 272; 289-95; 301; 

307; 310; 312; 314; 318 

Algebra, xiii; 1; 11-14; 16; 25; 27; 31; 37; 

43; 54; 69; 79; 81-84; 86;90-92;95; 

97;99; 103;107;108; 111; 113-17; 

120-24; 139; 173;218-21; 225; 237-38; 

243-44; 249-51; 253; 260; 265; 301-02; 

320;325;347;380 

modern, xiii; 81; 84; 95; 109; 320 

symbolical, British school, 11; 13; 69; 

120;123-24 

Algebraic integer, 30; 94-98; 100-01; 104— 

06;112-13; 116 

Algebraic number theory, 28; 38; 75; 79; 

82-83; 90; 93-100; 107-08; 114-16; 

139;173;185;204;217;253;262;301; 

313 

Analysis, xiii; 1; 4; 9-16; 22; 27-28; 33; 

35-38; 46; 49-51; 57; 59-61; 69; 71; 

73-75; 82; 90; 100; 103; 107;109;113; 

115-17;119-22;124; 127; 130-33; 139; 

145; 149-53; 159; 167-68; 173-77; 182; 

184; 190; 193-94; 202; 210; 212; 218; 

221;223;231;234;237-38; 243; 246; 

254;258;260;279;281;283; 295; 300- 

01; 305; 308;313; 320-24; 328;331; 

339; 341;343-45;348; 350-52; 357-59; 

376-77; 382; 387; 391 

Analysis situs, see topology, 57; 59; 69 

Anschaulichkeit, see intuitiveness, 14; 16; 

55;241 —43 

Anschauung, see intuition, 14; 59; 224; 292 

Antinomies, see paradoxes, 67; 309; 316; 

321;323; 327; 350; 376; 378 

Arithmetic, xiii; 1; 12; 14; 35-36; 41; 43; 

64-65; 68-73; 82; 83; 85; 88; 90-91; 

95-97; 100; 102-03; 106; 118; 120-26; 

128; 131;135; 137; 141;173-74; 181; 

190-93; 197; 202; 211; 216-24; 231; 

233;235-38; 242^43; 247-49; 251-53; 

264-66; 269; 271; 281; 293; 295; 303; 

305;308-12; 321; 324; 331; 344; 346; 

351- 54; 359-60; 363; 388-91 

transfinite, 211; 269 

Arithmetization, 3; 35; 37; 100; 102; 260 

Automorphism, 115; 238; 280; 376 

Axiomatization, xii-xiii; 85-86; 119-24; 

132; 135; 222; 237-38; 243; 246-48; 

251;254; 296; 299; 301; 305; 316-18; 

320; 324; 330; 334-38; 342-47; 349; 

352- 53; 355; 357; 359-63; 365-73; 377; 

378-83; 385-92 

Axioms, 58; 60; 74; 86; 120-23; 132-33; 

135-37; 222; 230; 233-38; 243-44; 247; 

255; 263; 293-95; 301-02; 305; 311-18; 

320-24; 329-30; 332; 334-35; 337;339; 

344;348;350-51;354-55; 359-63; 

365-87; 390-92 

Axiom of Completeness, see continuity, 

91; 118; 120; 137; 141; 222-23;302; 

369;381;386;388 

Axiom of Choice, 189; 237; 248; 278; 

295;299;311-15; 318; 320;322; 

324; 333; 339; 347; 354; 361-62; 
365-67; 381-85; 387 

Axiom of Foundation, 216; 370; 373-77; 

380-81; 385 

Axiom of Infinity, 295; 322; 331; 347; 
351;354 
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Axiom of Pairs, 322; 367 

Axiom of Power Set, 286; 306; 322-23; 

381 

Axiom of Reducibility, 328-32; 349-52; 

358 

Axiom of Replacement, 291; 294-95; 

366- 69; 371-72;374; 379-81; 384- 

85;392 

Axiom of Separation, 294; 322; 362; 

367- 68; 373-74; 380-81; 387; 390 

Axiom of Union, 291; 294; 322; 381; 

392 

Principle or Axiom of Comprehension, 

48—49;52; 104-05; 108; 113; 226- 

27; 250-53; 290;299; 304-05; 308; 

321-22; 325; 329; 338; 348; 378-80 

Principle or Axiom of Extensionality, 

108; 226; 252; 264; 304; 311; 322; 
348;355 

von Neumann’s Axiom, 294; 363; 370; 

379 

B 

Begriff, see concept, 50; 63-64; 68; 90; 

143;151;216;224;246;263;277;308 

Beitrage [Cantor 1895/97], 69; 175; 240; 

259; 265; 270;275-82; 287-90; 292; 

294;300;317 

Belegung, see covering, 288; 314 

Berlin school, xvii-xix; 32; 34-36; 38; 122; 

158-59; 185-86; 191-92; 199-200; 261; 

283 

Beweistheorie, see proof theory, 344-46; 

357 

Bildung [education or formation], 5; 7 

Bolzano-Weierstrass principle, 37; 182 

Bolzano-Weierstrass theorem, 37; 140 

c 

Cantor’s Theorem, 259; 264; 286; 288; 

291;306-07; 324; 334 

Cantor-Bendixson theorem, 172; 191; 205— 

06; 210-12; 239^40; 267-68; 272; 289 

Cardinality, 24; 73; 75-76; 171-72; 177; 

188;190; 192-94; 202-03; 206-07; 210; 

213; 229; 239; 258; 264-65; 268;270- 

75;277-78; 283; 286; 288-91; 294-95; 

306-07; 310; 312; 314; 318; 320; 324; 

353; 363; 369; 372; 376; 380; 385 

Cardinals, see power, Mdchtigkeit, 8; 134; 

171-72; 185; 188-89; 192-94; 197; 

202-03; 210-13; 218; 239; 258; 265; 

268; 270-74; 277-78; 282; 286-90;307; 

312; 317-18; 320; 323-24; 331; 334; 

365;369;372;385 

comparability of, 188; 277; 365 

inaccessible, 334 

large, 323; 334; 385 

Chain theory, 224-25; 230-32; 235; 239- 

40; 244; 249; 251; 255; 269; 319; 339; 
362; 375 

Classes, see Klasse, sets, 1; 36; 50-53; 64; 

71; 73; 86-88; 96; 104; 106; 110; 116; 

128; 130;133;135;149; 151; 153;155; 

157; 161; 189-90; 207; 212-13;221; 

226;229;237;243; 249-52; 263-64; 

268; 272-77; 279; 281-83; 286;289; 

293;300-08; 313-14; 319; 321-23; 

325-27; 329-31; 337; 342; 345;348; 

351-56; 362; 365; 377-81; 384; 387; 

390 

logical, 50-53; 104; 301-08; 325-27 

von Neumann’s, 379-81; 384 

Collections, see Inbegriff, sets, 68; 92; 107; 

110; 178;180-82; 202; 206;227;258; 

262-65; 291-95; 321; 327; 363; 375; 

383 

consistent and inconsistent, 295 

Combinatorial tradition, xviii; 11-12; 33; 

35 

Completeness, 4; 20; 36; 56; 91-92; 113; 

118;120;124; 141; 177;195;203; 222- 

23;232;252;283; 288;302; 310; 330; 

350; 352; 369; 381; 386; 388; 392 

Concepts, see Begriff, xvi; 18; 21; 27-28; 

31; 40; 42; 43; 46-53; 59-61; 63;66-71; 

73;77;85-86; 90-91; 100-02; 104-05; 

107-08; 111;116;125; 127; 143; 148; 

151-52; 156;205;208;216;221;224; 

226-28;230;232;234;237;242;245; 

250;252-53; 261-63; 265; 267; 276-79; 

281; 290;303; 307-08; 321; 339-40; 

349;354-56; 358;378; 380;387;390 
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extension of, see Umfang, xvi; 49-50; 

252-53;296 

intension of, 49-50; 52 

Conceptual approach, 3; 10; 27-28; 31; 74; 

100; 107;121-23; 142; 148 

abstract, 3; 31; 36; 100; 107; 112; 142; 

148;221 

formal, 35; 126; 142; 159 

Congruence, 23; 79; 87; 95-96; 100-01; 

105;109-10; 112 

Consistency, 111; 122-23; 234; 244-46; 

293; 301; 338; 343-14; 356; 360; 363; 

373-74;377;380-82; 385-87; 389 

relative, 122; 373; 382; 385; 387 

Constructivism, 36; 101; 126; 134; 174; 

184-85;260;271;313-16; 339-41; 351; 

360;391 

Content (outer), 37; 44-45; 49; 51; 55; 87; 

91;102;106;114;130; 146; 156; 161- 

68; 171; 174; 177; 180; 197; 203; 211; 

235;288; 300;392 

Continuity, see Axiom of Completeness, 

27; 46; 47; 67; 74; 114; 118-20; 131-33; 

135-37; 141; 148; 151; 153; 159; 182; 

194;196;222; 243-44; 313 

Continuum, xi; xiii; 47; 63; 142; 171-72; 

178;187;190-95; 203; 208-13; 220; 

254; 268; 270; 273;278-79; 287; 310; 

312; 315; 341; 365; 390 

Continuum Hypothesis, 171-72; 177; 194; 

199;202; 205; 210-13; 258; 268; 273; 

280-81; 285-86; 289; 301-02; 312; 333; 

365;369;382-85 

Contradictions, see paradoxes, antinomies, 

inconsistencies, 21; 6^; 75; 110; 123; 

180;189;227-28; 234; 236; 260; 262; 

271;287;291-94; 295; 305-10; 312; 

317;321;325;327;329;332;337;357; 

363;376-77 

Convergence, xiii; 9; 36; 118; 126-28; 133; 

142;145; 147;149; 152-53; 157-59; 

211;261;266;338; 341; 347-48; 366 

uniform, 145; 153; 157 

Correspondence, xiii; xvii; xix; 14; 19; 31; 

119; 131-32; 135-36; 158;171-72; 

174-80; 183; 185-86; 194-97; 201; 206; 

211-13; 225; 261; 283-85; 292; 301 

[Korrespondenz], see mapping, 23: 75; 

89;148;177;179;190-91; 194-96; 

211;237;239; 275; 278-79; 283; 372 

Covering, see Belegung, mapping, 166-67; 

288-89; 312;314;318 

Cumulative hierarchy, 366; 370; 373-75; 

377-78; 383-84 

D 

Dedekind cut, 56; 85; 102; 103; 124; 131- 

35;340 

Definition, 13; 27-29; 30-31; 36-38; 40- 

42; 47—48; 51; 53; 57; 62-66; 68; 70-74; 

84-85; 87; 89; 91; 94; 97-99; 103; 105— 

09;112-14; 116; 118-19; 121; 125-28; 

131-33; 135; 137; 141; 146; 148-49; 

151-52; 155; 166-67; 172-73; 179; 184; 

188-89; 195; 203; 208-09; 214; 219-23; 

226;228-38; 241; 243-45; 250; 253-54; 

263-65; 268; 274; 276; 279-80; 283; 

286;288-90; 292; 294; 300-01; 303; 

306-08; 315; 318-19; 321-24; 327; 330; 

332; 335; 339; 348^19; 356; 368-69; 

371-74; 378; 383-84 

impredicative, see predicativism, 327; 

332;349 

Denumerability, xii; 109; 136; 166; 167; 

171; 174;177-80; 183-85; 187; 189-90; 

194;196;200;203;206-12;263;265; 

267;272-73; 279-80; 284; 286-87; 289; 

300-01; 313-14; 333; 335; 341; 362; 

377 

Deutsche Mathematiker Vereinigung, 8; 

201;306 

Diagonalization, 181; 286-88; 308 

Dimension, 44; 58; 66; 70; 171; 187-88; 

194-96; 209; 283; 335 

Ding [thing], 89; 108; 226; 228; 293 

E 

Empiricism, 10; 391 

Epistemology, 13; 15; 17; 45-46; 48; 241; 

243-45; 247; 263-64; 353 

Equations, theory of, 83-84; 115 

Equipollence, 73; 75-76; 171; 188; 192— 

93; 210-11; 229-30; 233; 236-37; 239- 

40; 273; 274; 279; 282; 287-89; 294-95; 
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273; 274; 279; 282; 287-89; 294-95; 

301;303; 372 

Equivalence class, 87; 128; 130; 237; 264 

Existence, mathematical, 4; 12-13; 16; 38; 

50; 54; 57; 66; 78-79; 86; 96; 111; 119; 

123;132;138;150;157;164;177;ISO- 

82; 186; 220; 222; 227; 233-34; 244; 

246; 262-63; 268;271;273;276;292; 

294-95; 301;308-09; 314-16; 318; 321; 

325; 332-34;340;342;348; 352; 354- 

55; 359;369-70;377-78; 380;383;392 

Extensional, xvi; 38; 50-52; 104; 174; 

227-28; 252-53; 303; 306; 325;349; 

352;361;381;383;388 

Factorization, 1; 96-101; 104; 111-13 

Fields, see Korper, 10; 24; 27-30; 37-38; 

43; 71-72; 78; 81-84; 86-95; 97-98; 

100-02; 105-06; 109-11; 114-15; 139; 

153; 173-74; 179; 182;186; 189;216- 

17;242-43; 253; 283; 300-02; 311; 

316-17; 320;340;357;371;376 

Finitism, 260 

Formal system, xiii; 337; 344-45; 347; 

353-54; 357; 363; 387 

Formalism, 10-13; 15; 123-24; 331; 337; 

342;345;347; 353; 356; 358; 383 

Forms, 12-14; 29-31; 38; 46^17; 64; 77; 

87-88; 90-92; 94; 96-98; 100-02; 110; 

112-13; 115; 121; 125;128;130;162; 

181; 190;211-12; 245; 249; 276; 288; 

290;327;329;354-55; 362 

quadratic, 90-92; 96-97; 100 

Foundational debate, xiii; 299; 309; 311; 

314; 316-17; 338; 344-48; 359-61; 366; 

387; 391 

Foundations of mathematics, xiii; xvii; 1; 4; 

11; 20; 28-30; 43; 58; 65; 68; 71-74; 

78;81-82;85;97;102;107;113-15; 

120;123; 137;145;167; 173-75; 194; 

217-19; 221-22; 238; 242; 246; 250; 

252;255;289;296;299; 305; 307; 309- 

10;318;321;331;337-38; 342-44; 346; 

356;360;365-66;371; 382; 391-92 

Function theory, xiii; 1; 21; 27-29; 31; 53- 

54; 57; 59; 70-71; 77; 85-87; 88; 90-91; 

114; 117; 137; 139; 145; 155; 168; 194; 

196; 198-200; 206; 208; 210; 262; 264- 

65;281-82; 284; 300 

Functions, see mapping, xiii; 1; 12; 15-16; 

21; 25; 27-31; 33-36; 42-43; 45; 53-57; 

59-60; 66; 69-73; 75; 77-78; 85-88; 

90-91; 97; 102; 110;114; 116-18; 124; 

131;137-39;142;144-65;167; 183-84; 

190;194-96; 198-200; 206; 208; 210; 

218;223;229;238; 262; 264-66; 281— 

82;284;286-88; 289; 300; 303-04; 306; 

313-16; 318; 321-22; 325-29; 333-35; 

340;348-52; 355; 367; 372-74; 378-79; 

383;387 

Abelian, 33-34; 53; 60; 70; 77 

abstract notion of, 27; 151 

algebraic, 34; 53; 88; 97; 102; 114; 116; 

198 

analytic, 30; 34; 36; 54-55; 69; 91; 124; 

140; 142;206;282; 300 

arbitrary, 148; 150; 153-54; 157 

continuous, 27; 35-36; 78; 117-18; 138; 

140; 148-49; 151; 153; 184; 195 

differentiable, 36 

discontinuous, 1; 72; 148; 150; 152-56; 

159;162 

elliptic, 25; 33; 53; 77; 218 

G 

Galois theory, 75; 83; 87-89; 91; 97-98; 

110; 113-15; 238; 242 

Gebiet [domain], see sets, 40; 66; 73; 86- 

87;90; 129;140;142; 160;218 

Genetic approach, 119-20; 122; 218-22 

Geometry, xiii; 1; 13—16; 21—23; 25; 33— 

34; 37; 41^15; 53-55; 57-62; 65; 70-76; 

78-79;82-83; 87-88; 90-91; 114; 117; 

120;123;131-32;135-39; 173; 194; 

196; 210; 216; 220; 238; 242; 247; 264- 

65; 305; 308; 343 

algebraic, 114 

differential, 21; 42-43; 53; 58; 60-62; 

70-72; 79; 173 

Euclidean, 15-16; 21; 58; 72; 75; 123; 

132;136 
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projective, 21; 75; 83; 238 

Gesamtheit [totality], see sets, 226-27; 234 

Gesellschaft Deutscher Naturforscher und 

Artzte, 8 
God, 5; 67; 216-17; 245; 258; 261-62; 

268;291;312 

podel’s incompleteness theorems, 345; 

353;382;387;389 

Gottingen, xviii-xx; 3; 5; 13; 24-26; 28- 

29; 31-32; 36; 39; 41; 45; 53;71;99- 

100; 115; 127; 138; 149; 176; 201; 218; 

220; 238; 254-55; 285;302;316-17; 

339;344; 359-60 

Gottingen group, xix; 24; 36; 100 

Grosse, see magnitude, Zahlgrosse, 20; 30; 

42; 64; 70; 140 

Groups, group theory, xix; 5; 11; 32; 81; 

84-86; 89; 95; 99;102;115;228;238; 

309;354;360 

Grundlagen [Cantor 1883], 30; 113; 160; 

208; 211; 222; 253; 259-61; 267; 269; 

271;274-75; 277; 280-81; 283; 286; 

289;292;300; 321 

Gymnasium, 6-9; 12; 25; 32; 52; 223; 243 

H 

Hilbert’s program, 345; 371; 389 

Homomorphism, 84; 89; 91; 93; 102; 108 

Ideal, xii; xvi; 1; 5-7; 29-30; 33; 38; 78- 

79; 81-82; 89; 91; 93-94; 96-97; 99- 

107;109-16; 131;134; 138; 187;204; 

238;242;245-46; 253; 296; 377 

— theory, xii; 1; 29; 79; 82; 89; 91; 93- 

94; 96-97; 102-03; 105-07; 109-11; 

113; 116; 138; 187; 238; 242;245 

Idealism, 7; 10; 18; 45; 48; 266; 307 

Inbegrijf, see collections, sets, 92; 108; 110; 

178;180; 184;226-27; 263-65; 293 

Incompleteness, 65; 138; 290; 329; 344-45; 

353;363;382; 387; 389 

Inconsistencies, see contradictions, 118; 

293-94; 307; 319; 321 

Independence, 224; 343; 367; 382; 386 

Induction, 25; 160; 217; 222-24; 227; 230; 

232;235-36; 324; 328-29; 353; 372-73 

principle of mathematical, 217; 222-24; 

227;230;232;236; 324; 328-29 

transfinite, 160; 372-73 

Infinitesimal, 21; 150; 163 

Infmitism, 38; 82; 107; 109-10; 120; 131; 

177 

Infinity, xi-xiv; 4; 18-24; 38; 56; 65-68; 

88; 109-10; 125-26; 130; 144-15; 160; 

183; 193; 203; 205; 207; 224; 232-34; 

241;244-46; 250; 254-55; 259-61; 

267-70; 291-92; 305; 308; 315-16; 334; 

340—41; 354; 362; 376 

actual or proper, xii; xiv; 4; 18; 20-21; 

23; 37; 53; 65-66; 68; 88;111;203; 

241;245-46;260-61;341;376 

Dedekind infinite, his definition of, 68; 

107; 109; 173; 189; 230; 233-34; 

244-45; 251 

Dedekind’s theorem of, 241; 244; 292; 

305 

potential or improper, 18; 21-22; 38; 65; 

260 

simply infinite, 102; 234-36; 246 

symbols of infinity, 144; 160; 203; 205; 

207; 267-70 

Integral, 5; 27; 52; 71-72; 95; 99; 113-14; 

145-46; 147; 149-54; 157; 161; 163-64; 

166;178; 190; 251; 267-68; 304;311; 

391 

Riemann, 27; 145—46; 150; 153-54 

Integration theory, 26; 137; 144; 146—47; 

150;152-54; 156-57; 161-62; 165-67; 

177;210;218;283;300;333 

Intellectualism, 10; 15; 134 

Intensional, 51-52; 228-29; 252-53; 299; 

303;349; 358 

Intuition, see Anschauung, 13-16; 55; 58- 

59;74; 131;137-38; 220-21; 224; 242- 

44;249;255; 292; 295; 310;316;326 

intuitiveness, see Anschaulichkeit, 14; 

16;55;242;244 

Intuitionism, 10-11; 337-39; 341—13; 353; 

356;383; 389-91 

Isomorphism, 89; 225; 278; 320 

Iterative conception of sets, 296; 377-78 
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Journal fiir die reine und angewandte 

Mathematik, 8; 56; 98; 127; 159; 180; 

182-83; 192; 197-99;285; 356 

Kantianism, 10-17; 45^46; 241; 243-44; 

248;295 

Klasse, see classes, sets, 87; 133; 190; 308 

Korper, see fields, 30; 81; 91-92; 94; 139; 

179;189 

Law of thought, 226; 244; 277 

Limit point, 129; 139-42; 155; 159; 160; 

162; 165;205-06; 208; 210-12; 271; 

280 

Limitation of size, 326; 378; 379 

Limits, 19-21; 34; 38; 65; 67; 73; 118-19; 

122; 125;131;140-41; 149;202; 216; 

235;261;335; 389 

Logic, see law of thought, xiii; xix-xx; 16- 

17; 40; 47-52; 62-64; 67; 88; 106; 120; 

122;137;151;217;226;230;234;241— 

44;246-53; 263-64; 266; 292; 296; 

299-304; 308-10; 316; 323; 326; 330- 

32; 337-38; 340;344-63; 366-68; 374- 

77; 380-81; 384-88; 390-92 

classical, 346; 357 

first-order, xiii; 17; 297; 301; 332; 338; 

345; 347; 353-54; 357-59; 361-63; 

366;368; 373-75; 377; 381-88; 392 

formal, 16-17; 47-52; 225; 252; 311; 

346;366 

higher-order, 330; 346-48; 353; 358-59; 

361-63; 374; 376-77 

modem, 304; 330; 346 

propositional, 49; 249; 349-50 

second-order, 301-03; 359; 361; 370; 

374-77; 387-88 

traditional, 40; 47-52; 63; 88; 106; 151; 

243;246;292; 345 

Logicism, xiii; 15; 17; 20; 48; 137; 217; 

241-54; 266; 305; 316;325-26;331; 

346;353;357 

Mdchtigkeit, see power, cardinals, 24; 171; 

187-88; 212-13; 272; 274; 277; 287 

Magnitude, see Grosse, Zahlgrosse, 15; 20; 

37-38; 40-42; 44; 47; 51;53;57-60; 

63-71;91; 103;117; 119; 122;125-29; 

131; 135; 140-41; 151; 184; 190;202; 

222;242;275;281;294 

continuous, 37; 57; 65; 69; 243 

discrete, 68-69 

variable, 131; 140 

Manifolds, see Mannigfaltigkeit, 1; 4; 39- 

48; 51; 53; 57-79; 87;91;94; 108; 127; 

131;134; 136; 138;142; 162-63; 166; 

175;187-90; 194-96;202-03; 205;207; 

209;212;226;258;263-65;267;270; 

274; 277; 281; 287; 304; 335; 341; 366; 

389 

continuous, 57-58; 60-61; 63; 66; 68- 

69; 72-73; 134; 187; 195;203 

discrete, 47; 61; 63; 66; 68-69; 74; 136 

Mannigfaltigkeit, see manifolds, sets, xvi; 

40; 44; 47; 58; 63; 66;68-70;72-73; 

83; 87; 107; 134; 140; 187; 195; 226; 

287;304 

Mapping, see Abbildung, correspondence, 

covering, function, 23-24; 55; 88-94; 

107-08; 173;191; 195-96;206;217; 

223-32; 234-38; 240; 243; 246-48; 250; 

253;275;281;288;294-95; 313;318- 

19;324;363 

bijective, one-to-one, 23-24; 71-72; 75; 

89; 148;177-80; 187-88; 190-92; 

194;206;211;225;229;239;275; 

278; 282; 283; 294-95; 303; 319-20; 

363 

injective, 89; 93; 108; 229-32; 235; 240; 

246;313; 318 

Mathematics, passim 

modern, xi-xii; xiv; xix; 31; 253; 255; 

259; 337; 340; 342-44; 346; 348; 388 

pure, 1; 6; 11-13; 26; 33; 42; 53; 65; 71- 

72;81-82; 94; 117; 167; 173-74; 
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216-17; 232; 238; 244; 250; 260; 

262;265-66;281;341; 358; 371; 390 

Mathematische Annalen, 114; 127; 156; 

159; 162-63; 202; 267; 282;285;291; 

312;314 

Measure theory, 146; 167; 334-35 

Menge, see sets, xvi; 21-22; 50; 58; 65; 79; 

126; 142—43; 160; 208; 245; 263-65; 

275; 277; 279; 292-93; 341; 379 

Metamathematics, metatheory, xiii; 302; 

311; 345; 352-56; 357; 359-60; 366; 

369; 373-74; 380-82; 385-88 

Metaphysics, 19; 48; 66; 262; 266; 273; 

332 

Methodology, xviii; 25; 27-28; 31; 34; 42; 

45; 49; 77; 82; 84; 97; 99-100; 103-05; 

111; 123; 131; 133-34; 141; 149; 199; 

221; 227; 259-60; 262;264;270;283; 

288-89; 321 

Model theory, 230; 304; 388 

Modules, 81; 93-94; 99; 113; 313 

N 

Naturforscherversammlung, 176; 276; 285 

Naturphilosophie, 7; 8; 266 

NBG (von Neumann-Godel-Bemays set 

theory), 366; 374; 378; 380-88 

Neighborhood, 140; 142; 206; 209; 213; 

334-35 

Neohumanism, 5; 7-9; 33 

Non-denumerability, xiii; 109; 136; 167; 

171;177; 183-85; 196; 207-08;212; 

263; 268; 284; 286-87; 362 

Number theory, xi; 1; 9-10; 16; 25; 27-28; 

30; 32; 34; 38; 43; 75; 77-79; 82-83; 

86-87; 90-102; 107-08; 111-16; 139; 

141; 150; 157; 162; 173; 185; 204; 217; 

221-22; 225; 242-43; 249; 254; 262; 

276-77; 280; 301; 313; 360; 370 

Number-classes, 207; 212; 268-69; 272- 

77; 281-83; 290 

Numbers, passim 

algebraic, 1; 16; 28; 38; 75; 79; 82-83; 

90; 93-100; 107-08; 111; 114-16; 

132; 136; 139; 173; 177-81; 183; 

185-86;189;200;203-04; 217; 254; 

262;301;313 

cardinal, 224; 229; 234; 236-37; 242; 

269-70; 288-89; 291; 295; 301; 303; 

324;372-73 

complex, 14; 28; 38; 43; 54-55; 92; 95- 

96; 98; 119; 125; 219-21; 237 

ideal, 33; 78; 96; 100-01; 106; 109 

integer, 30; 38; 43; 94-95; 97-106; 109- 

10;111-13; 115-17; 121; 128; 163; 

178-80; 189-90; 217-19; 221; 224; 

267; 277; 331; 362; 378 

irrational, 37; 64; 77; 100; 109-10; 125; 

127; 129; 131-32; 134; 183; 187; 

191-94; 219-20; 222; 274; 278; 343 

natural, 12; 14; 20; 35; 37; 50; 64; 82; 

85; 88;103; 107; 110; 121; 125; 137; 

177; 179; 214; 217-19; 222-25; 230- 

31; 232-35; 237-38; 241; 243^17; 

249;253-54; 260; 268-69; 279; 301; 

305; 320; 339; 341; 354; 359; 369 

ordinal, 21; 205; 213; 217; 236; 258; 

266;269-72; 275; 289; 294; 306; 

323-24; 369; 372; 379; 383 

rational, 92; 119; 122; 125-30; 132; 134; 

178; 184; 192; 203; 209; 211; 219; 

221; 238; 278-79; 331; 340;378 

real, xii; 1; 14; 37; 54; 58; 74; 81; 85; 

100;103; 109-10; 117-44; 146; 159; 

171;173;177;180-85; 196; 203; 

211;220-22; 243-47; 254; 260; 263- 

64;279;286; 287; 290; 301-02; 328- 

29;331;333; 340-42; 344; 358; 378; 

388-89 

transcendental, 177; 180; 186 

transfinite, xiii; 4; 130; 144; 160; 201— 

03;207;210; 214; 239; 259-62; 267- 

68; 271-78; 282-84; 289; 291; 305; 

318;373 

Order, xii-xiv; xix; 3-4; 8; 14; 17-19; 21; 

23; 26; 38; 40; 44-46; 51; 53;56-57; 

65;75;77-78; 82-83; 87; 95; 98-99; 

102-03; 105; 108; 115;117; 120-21; 

125-30; 133; 135-36; 138; 140; 142^13; 

153; 160;162-66; 171; 177; 179;183— 

84; 189-92; 200; 203-05; 208-09; 211- 
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4;189-92; 200; 203-05; 208-09; 211- 

13; 219-20; 222; 224-25; 230-32; 235- 

37;242;245^46; 251; 253-55; 258; 

264-66; 269-70; 273-80; 289; 291-92; 

294-95;300-04;308; 311; 314-16; 

318-22; 327-30; 333; 335; 338; 341-48; 

350; 353-63; 366; 368; 370; 371-77; 

380-89; 392 

Order types, 209; 211; 258; 265; 274; 278- 

80;289;302;320;333;335;371 

Ordinals, 21; 205; 207; 210-13; 217-18; 

225;236;240;258-59; 262; 265-66; 

268-76; 278; 280;284; 286; 289-90; 

294-95; 306; 310; 314; 319; 323-24; 

326; 331; 369-70; 371-74; 376; 379-80; 

383-84 

von Neumann, 370; 371; 376 

Paradoxes, see antinomies, contradictions, 

17; 21; 48; 63; 67; 104; 167; 175-76; 

186;227;234;237;252;254;259;262; 

266;290-95; 299;304-11; 314; 316-17; 

322-23;325-27; 332; 334; 337; 340; 

342-43; 345; 347; 351-52; 355; 358; 

360; 362-63; 373-74; 376-77; 379-80; 

389-90 

Burali-Forti paradox, 314; 351 

Russell paradox, 304; 309; 317; 323 

Philosophy, xviii; xx; 3-16; 18; 20; 22; 32; 

36; 41-47; 52; 59-60; 62; 66; 77; 88; 

90; 120; 130; 134; 177; 195; 201; 205; 

209;217;220;228;234-35; 241; 245; 

250;259-62; 266-67; 281; 283; 285; 

288;292;294;305;307;311;326; 332; 

338-39; 342; 346; 349; 351; 353; 390- 

91 

Philosophy of mathematics, 10-18; 41-47; 

90; 99-111; 119-24; 134-37;241-46; 

259-66; 311-16; 326;338-45; 388-92 

Physics, 9-11; 19; 25-27; 33; 43^14; 46- 

47; 53; 58; 60-62; 74; 77; 119; 136; 

147; 196;245;266;281;317;390-91 

experimental, 25 

mathematical, 9-10; 25; 27; 281 

Platonism, 241; 245; 262; 310; 388; 390 

Polynomials, 36-38; 54; 83; 90; 98-103; 

115; 118;179; 205 

Power, see Machtigkeit, cardinals, 8; 12; 

24; 34; 36; 51; 78; 103-04; 134; 171; 

185; 187-94; 197; 202-03; 205;210-13; 

218; 225; 229; 235; 239; 254;258; 264- 

65;268;270-79; 282-84; 286-88;294; 

296;312;314-15; 322; 324; 334; 343; 

363;368-69; 375 

Predicativism, see definition, impredicative, 

254;264;326-29; 339-40; 349; 352; 

357-59; 361; 381; 383 

Principia Mathematica [Whitehead & 

Russell 1910/13], 253; 325; 329-32; 

352;355;360; 380; 391 

Proof, 9-10; 20; 28; 37; 43; 54-55; 83-84; 

86; 92; 95-96; 100-07; 111-14; 116; 

118;123;131-33; 135; 137-38; 141-42; 

149; 151; 156;158; 160; 162-63; 171; 

174-75; 177; 179-97; 203; 206-07; 

210-13; 216-17; 232-34; 236; 239-40; 

244—47; 249; 254-55; 259; 263; 267; 

272; 274; 277-80; 282-87; 290-91; 

294-97; 300-01; 307-08; 311-14;317— 

20; 323-24; 327; 335; 338; 341; 343-46; 

360-62; 380; 382; 384; 388-89;392 

Proof theory, see Beweistheorie, 344; 388 

Proposition, 49-50; 64; 133; 135-36; 182; 

194; 195; 217; 233-34; 240; 244-46; 

312;325;350; 362; 366; 372; 381 

Propositional functions, 322; 325-29; 349; 

351-52; 355; 368; 374; 383; 387 

Psychology, 19; 45^16; 48; 120; 122; 129; 

233-34; 242; 250; 351 

Q 

Quantifiers, 126; 253; 331; 351; 359; 383; 

387 

R 

Rank of sets, 277-78; 280; 370; 373-75 

Recursion, 236; 290; 372; 383 

recursive definition, 222-23; 236; 354; 

359-60; 362; 368; 371; 383 
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theorem of, 236 

transfinite, 236; 290; 373; 383 

Relations, xix; 3; 16; 20; 23; 43-44; 49; 51; 

57; 59; 65; 69; 83; 91; 97; 105; 112; 

115;118;122;128;135;158;171-72; 

176;185;200;204;210; 220; 232; 238- 

39;250;252;262;269;278-79; 281-82; 

289;293;299;301;305; 322-23; 325- 

26;329;331;340;343;346-49; 356-58; 

361-63; 368 

equality, 6; 49; 64; 121; 126; 128-29; 

184;226;241; 304; 392 

identity, 51; 113; 129; 204; 228-29; 351 

logical, 250-51 ;262; 269; 278-79; 

281-82; 289; 293; 299; 301; 305; 

322-23; 325-26;329; 331; 340; 343; 

346-49; 356-58; 361-63; 368 
membership, 33; 51; 228; 305; 307; 321; 

330;353;355; 362; 372; 379; 392 

similarity, 22-23; 55; 229; 335; 338; 372 

successor, 32; 223; 275 

Riemann surface, 30; 54-60; 72; 77; 114 

Rigor, 10; 12; 14; 28; 34; 36; 38; 54; 59- 

60; 69; 74; 76-78; 83-84; 96; 117; 119; 

121-22; 124; 126; 134; 138;144; 149; 

162-63; 174; 188;190-91; 202; 207; 

213; 216-17; 219; 222; 230; 242-43; 

247; 252; 265; 270; 289; 295; 304; 309; 

331 

Rings, 15; 32; 38; 81; 95; 98-99; 101-102; 

105;109-110; 114; 116;367 

Science, xvii; xix-xx; 4-9; 11; 14-15; 17; 

19; 21; 25; 28; 32-33; 41-42; 46; 64; 

74; 81; 84; 89; 91; 107; 114; 117; 122; 

131; 158; 216-17; 220;226;232;242- 

44; 247;261-62;266;284;299-300; 

308; 317; 330; 356 

School of research, xvii-xix; 3; 8-9; 11; 

31-32; 34-36; 38;48;120; 122; 158-59; 

185-86; 191-92; 198-200; 245;250; 

253-54; 261;284; 300;320;333-34; 

336; 338;348;382 

Schroder-Bernstein theorem, see Cantor- 

Bemstein, 239 

Sequences, 37; 66; 82; 85; 1 18; 124; 127— 

31; 133-35; 141; 143;165; 179; 181; 

189-90; 192; 209-11; 213; 223-24; 228; 

230-31; 234-36; 255; 258; 261;263; 

271-72; 275-76; 278-80; 286-87; 289; 

291; 294; 313; 324; 335; 339; 341; 362- 

63; 376-77 

fundamental, 127-31; 134; 278; 280 

Series, 9; 11-12; 27; 32-36; 44; 65; 71-72; 

74;77;87;93; 104; 107; 124-25; 127— 

29; 131;136-37; 141-43; 145; 147-54; 

157-61; 163; 165-66; 168; 173; 189; 

196; 203; 207; 212; 218; 224; 242; 249; 

258-59; 261; 263; 282; 291; 326; 330; 

338;372;376; 381 

convergent, 36; 127 

divergent, 12; 149 

Fourier, 9; 27; 147; 149; 152; 157 

power, 12; 36 

trigonometric, 34; 71-72; 127; 129; 

136-37; 142-43;145; 147; 150-54; 

157-58; 160;167;173;258 

Sets, see classes, collections, manifolds, 

system; see iterative conception, rank; 

see Gebiet, Gesamtheit, Inbegriff, 

Klasse, Mannigfaltigkeit, Menge, Um- 

fang, Vielheit, 1; 3-4; 10; 16-17; 20-24; 

29—30; 35; 38—39; and passim 

Borel sets, 212; 333 

bounded, 140; 166;340 

Cantor sets, 163; 206 

Cartesian product of, 225; 288; 313 

closed, 139; 167; 212; 300-02; 333 

complement of, 72; 138; 199; 211; 240; 

266;277-79; 289; 312; 316; 325-26; 

333;370;380 

concept of, xiii-xvi; 1; 17; 21—22; 38— 

40; 42; 48; 64;77;85; 92; 104; 106; 

107; 117-18; 124-25; 127;142; 173; 

197; 220-21; 226; 228; 250-52; 254; 

259; 263-65; 292; 306-07; 310; 342; 

361;365;378 

constructible, 382-84 

definition of, 107-08; 263-66; 292; 

321-22 

dense, 152; 154-56; 160-62; 164; 196; 

203; 211 

denumerable, 167; 189; 190; 207; 211- 

13;268;273;313;335 
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derived, 129; 137; 141-46; 153-56; 

159-60; 163-67; 172; 189; 195;202- 

OS; 210; 212;258;263;267; 270-71; 

282;319 

empty set, 159-60; 189; 207; 227-28; 

313-14;318;321-22; 330; 375; 381 

finite, 38; 87; 209; 224; 236-37; 277; 

289;293;320;324; 346 

first species, 143; 156-57; 159-62; 165; 

177;189;193;207;282 

infinite, xiv; 21; 38; 68; 75; 87; 107; 

109-11;127; 171; 173; 183-84; 188- 

89; 206; 229-30;233-36; 244-46; 

260;275;286;289;292; 313; 323- 

24;340;342; 346; 357 

intersection of, 51; 93-94; 113; 204-05; 
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165-66; 203; 209-11; 282 

open, 74; 139 

perfect, 167; 207-11; 278-79; 282 
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117; 129; 137; 139; 142-47; 150; 

154-57; 159-63; 165-69; 172-73; 

189; 193-95; 202-14; 232; 238; 258- 

59; 263;267; 269-70; 276; 280-82; 
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314;322;324;334;363; 368-69; 375 

second species, 143; 156; 159-65; 282 
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transfinite, xii; 171-72; 185; 187-88; 

193;214;225;232;259;262;265; 
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Mathematics 

Labyrinth of Thought discusses the emergence and 
development of set theory and the set-theoretical approach 
to mathematics during the period 1850-1940. Rather than 
focusing on the pivotal figure of Georg Cantor, it makes an 
explicit attempt to analyze his work and the emergence of 
transfinite set theory within the broader context of the rise of 
modern mathematics. The author thus addresses such central 
questions as these: Why and how did mathematicians begin pay¬ 
ing close attention to the notion of set? What role did the notion 
of set play in the emergence of modern mathematics? How did set 
theory turn into an autonomous branch of mathematics, and how 
did our present conception of the theory become widely accepted? 

The text has a tripartite structure. Part 1, entitled The Emergence of 
Sets Within Mathematics, analyzes the initial motivations for a mathe¬ 
matical notion of set within several branches of mathematics (function 
theory, geometry, algebra, algebraic number theory, real analysis). This 
initial section of the book centers on set-theoretical mathematics rather 
than set theory proper, emphasizing the role played by Riemann in the 
early development of the notion of set. In Part 2, Entering the Labyrinth - 
Toward Abstract Set Theory, attention turns to the earliest set theories, 
their evolution and their reception by the mathematical community. This 
includes a compact study of Cantor's path-breaking contributions, a detailed 
analysis of the foundational work of Dedekind (among others), and a dis¬ 
cussion of the complex interactions between both mathematicians. Part 3, In 
Search of an Axiom System, studies the four-decade period from the discovery 
of set-theoretic paradoxes around 1900 to Goedel's results on the independence 
of the Axiom of Choice and the Continuum Hypothesis, an era during which set 
theory gradually assimilated into mainstream mathematics. Attention is given 
to the evolution of axiom systems for set theory and the formalization of those 
systems within the emerging frameworks of formal logic. In particular, the interplay 
between set theory and type theory is subjected to close scrutiny, as is the inter¬ 
action between set theory and modern systems of (first-order) logic. 
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