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PREFACE 

What this book is about. The theory of sets is a vibrant, exciting math¬ 
ematical theory, with its own basic notions, fundamental results and deep 
open problems, and with significant applications to other mathematical 
theories. At the same time, axiomatic set theory is often viewed as a foun¬ 

dation of mathematics: it is alleged that all mathematical objects are sets, 
and their properties can be derived from the relatively few and elegant 
axioms about sets. Nothing so simple-minded can be quite true, but there 
is little doubt that in standard, current mathematical practice, “making a 
notion precise" is essentially synonymous with “defining it in set theory.” 
Set theory is the official language of mathematics, just as mathematics is 
the official language of science. 

Like most authors of elementary, introductory books about sets, I have 
tried to do justice to both aspects of the subject. 

From straight set theory, these Notes cover the basic facts about “ab¬ 
stract sets,” including the Axiom of Choice, transfinite recursion, and car¬ 
dinal and ordinal numbers. Somewhat less common is the inclusion of a 
chapter on “pointsets” which focuses on results of interest to analysts and 
introduces the reader to the Continuum Problem, central to set theory from 
the very beginning. There is also some novelty in the approach to cardinal 
numbers, which are brought in very early (following Cantor, but somewhat 
deviously), so that the basic formulas of cardinal arithmetic can be taught 
as quickly as possible. Appendix A gives a more detailed “construction” 
of the real numbers than is common nowadays, which in addition claims 
some novelty of approach and detail. Appendix B is a somewhat eccen¬ 
tric, mathematical introduction to the study of natural models of various 
set theoretic principles, including Aczel’s Antifoundation. It assumes no 
knowledge of logic, but should drive the serious reader to study it. 

About set theory as a foundation of mathematics, there are two aspects 
of these Notes which are somewhat uncommon. First, I have taken seriously 
this business about “everything being a set” (which of course it is not) and 
have tried to make sense of it in terms of the notion of faithful representation 

of mathematical objects by structured sets. An old idea, but perhaps this 
is the first textbook which takes it seriously, tries to explain it, and applies 
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it consistently. Those who favor category theory will recognize some of its 

basic notions in places, shamelessly folded into a traditional set theoretical 

approach to the foundations where categories are never mentioned. Second, 

computation theory is viewed as part of the mathematics “to be founded” 

and the relevant set theoretic results have been included, along with several 

examples. The ambition was to explain what every young mathematician 

or theoretical computer scientist needs to know about sets. 

The book includes several historical remarks and quotations which in 

some places give it an undeserved scholarly gloss. All the quotations (and 

most of the comments) are from papers reprinted in the following two 

marvelous and easily accessible source books, which should be perused by 

all students of set theory: 

Georg Cantor, Contributions to the founding of the theory of transftnite 

numbers, translated and with an Introduction by Philip E. B. Jourdain, 

Dover Publications, New York. 

Jean van Heijenoort, From Frege to Godel, Harvard University Press, 
Cambridge, 1967. 

How to use it. About half of this book can be covered in a Quarter 

(ten weeks), somewhat more in a longer Semester. Chapters 1-6 cover the 

beginnings of the subject and they are written in a leisurely manner, so that 

the serious student can read through them alone, with little help. The trick 

to using the Notes successfully in a class is to cover these beginnings very 

quickly: skip the introductory Chapter 1, which mostly sets notation; spend 

about a week on Chapter 2, which explains Cantor’s basic ideas; and then 

proceed with all deliberate speed through Chapters 3 - 6, so that the theory 

of well ordered sets in Chapter 7 can be reached no later than the sixth 

week, preferably the fifth. Beginning with Chapter 7, the results are harder 

and the presentation is more compact. How much of the “real” set theory 

in Chapters 7 - 12 can be covered depends, of course, on the students, the 

length of the course, and what is passed over. If the class is populated by 

future computer scientists, for example, then Chapter 6 on Fixed Points 

should be covered in full, with its problems, but Chapter 10 on Baire Space 

might be omitted, sad as that sounds. For budding young analysts, at the 

other extreme, Chapter 6 can be cut off after 6.26 (and this too is sad), 

but at least part of Chapter 10 should be attempted. Additional material 

which can be left out, if time is short, includes the detailed development of 

addition and multiplication on the natural numbers in Chapter 5, and some 

of the less central applications of the Axiom of Choice in Chapter 9. The 

Appendices are quite unlikely to be taught in a course (I devote just one 

lecture to explain the idea of the construction of the reals in Appendix A), 

though I would like to think that they might be suitable for undergraduate 
Honors Seminars, or individual reading courses. 

Since elementary courses in Set Theory are not offered regularly and 
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they are seldom long enough to cover all the basics, I have tried to make 

these Notes accessible to the serious student who is studying the subject 

on his own. There are numerous, simple Exercises strewn throughout the 

text, which test understanding of new notions immediately after they are 

introduced. In class I present about, half of them, as examples, and I assign 

some of the rest for easy homework. The Problems at the end of each 

chapter vary widely in difficulty, some of them covering additional material. 

The hardest problems are marked with an asterisk (*). 

Acknowledgments. I am grateful to the Mathematics Department of 

the University of Athens for the opportunity to teach there in Fall 1990, 

when I wrote the first draft, of these Notes, and especially to Prof. A. Tsar- 

palias, who usually teaches that Set Theory course and used a second draft 

in Fall 1991; and to Dimitra Kitsiou and Stratos Paschos for struggling with 

PCs and laser printers at the Athens Polytechnic in 1990 to produce the first 

“hard copy” version. I am grateful to my friends and colleagues at UCLA 

and Caltech (hotbeds of activity in set theory) from whom I have absorbed 

what. I know of the subject, over many years of interaction. I am especially 

grateful to my wife Joan Moschovakis and my student Darren Kessner 

for reading large parts of the preliminary edition, doing the problems and 

discovering a host of errors; and to Larry Moss who taught out of the 

preliminary edition in the Spring Term of 1993, found the remaining host 

of errors and wrote out solutions to many of the problems. 

The book was written more-or-less simultaneously in Greek and English, 

by the magic of bilingual DTgX1 and in true reflection of my life. I have 

dedicated it to Prof. Nikos Kritikos (a student of Caratheodory), in fond 

memory of many unforgettable hours he spent with me back in 1973, pa¬ 

tiently teaching me how to speak and write mathematics in my native 

tongue, but also much about the love of science and the nature of scholar¬ 

ship. In this connection, I am also greatly indebted to Takis Koufopoulos, 

who read critically the preliminary Greek version, corrected a host of errors 

and made numerous suggestions which (I believe) improved substantially 

the language of the final Greek draft. 

Palaion Phaliron, Greece November 1993 

1 Greek mathematicians owe a substantial debt of gratitude to Silvio Levy, 
whose lovely Greek fonts made it possible to use TDK and D-TjtX in Greek scientific 
publishing. Those interested in the package of public domain programs I have 
used to typeset the Greek edition should contact me by mail, or (preferably) 

electronically at ynm@math.ucla.edu. 
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Chapter 1 

INTRODUCTION 

Mathematicians have always used sets, e.g. the ancient Greek geometers 

defined a circle as the set of points at a fixed distance r from a fixed point 

C\ its center. But the systematic study of sets began only at the end of 

the 19th century with the work of the great German mathematician Georg 

Cantor, who created a rigorous theory of the concept of completed infinite 

by which we can compare infinite sets as to size. For example, let 

N = {0,1,...} = the set of natural numbers, 

Q = the set of rational numbers (fractions), 

1Z = the points of a straight line, 

where we also identify TZ with the set of real numbers, each point associated 

with its (positive or negative) coordinate with respect to a fixed origin and 

direction. Cantor asked if these three sets ‘‘have the same (infinite) number 

of elements,” or if one of them is “more numerous” than the others. Before 

we make precise and answer this question in the next chapter, we review 

here some basic, well-known facts about sets and functions, primarily to 

explain the notation we will be using. 

What are sets, anyway? The question is like “what are points,” which 

Euclid answered with 

a point is that which has no parts. 

This is not a rigorous mathematical definition, a reduction of the concept 

of “point” to other concepts which we already understand, but just an 

intuitive description which suggests that a point is some thing which has 

no extension in space. Like that of point, the concept of set is fundamental 

and cannot be reduced to other, simpler concepts. Cantor described it as 

follows: 

By a set we are to understand any collection into a whole of 

definite and separate objects of our intuition or our thought. 

Vague as it is, this description implies two basic properties of sets. 
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1. Every set A has elements or members. We write 

x G A <=>• the object a; is a member of (or belongs to) A. 

2. A set is determined by its members, i.e. if A, B are sets, then1 

A = B <=$■ (Vx)[x G A •<=>• x G B\. 

This last is the extensionality property. For example, the set of students 

in this class will not change if we all switch places, lie down or move to 

another classroom; this set is completely determined by who we are, not 

our posture or the places where we happen to be. 

Somewhat peculiar is the empty set 0 which has no members. The 

extensionality property implies that there is only one empty set. 

If A and B are sets, we write 

A C B <t=> (Vx)[x G A =>• x G B], 

and if A C B, we call A a subset of B, so that for every B, 

0 C B, BCB. 

A proper subset of B is a subset distinct from B, 

ACB ^ [A C B & A ^ B). 

From the extensionality property it follows that for any two sets A, B, 

A = B <*=*► ACB&BCA. 

We have already used several different notations to define specific sets 
and we need still more, e.g. 

A {ai,U21• i } 

is the (finite) set with members the objects ai, a2, ..., an. If P is a condition 

which specifies some property of an arbitrary object x, then 

A = {x | -P(x)} 

:We will use systematically, as abbreviations, the logical symbols 

& : and, V : or, -i : not, =>: implies, <=> : if and only if, 

V : for all, 3 : there exists, 3! : there exists exactly one. 
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is the set of all objects which satisfy the condition P, so that for all x, 

x G A P(x). 

For any two sets A, B, 

AUB 

AnB 

A\B 

{x | x g A v x g B) 

{x | x 6 d & x 6 B} 

{x | x e A &, x £ B} 

(the union of A, B), 

(the intersection of A, B), 

(the difference of A, B). 

The union and the intersection of a sequence of sets are defined in the same 
way, 

U An = {x | (3n G iV)[x G An]}, 
n=0 

oo 

f|^ = {x I (Vn G N)[x 6 An]}. 
n=0 

We will use the notation 

f '■ X —*Y 

to indicate that / is a function which associates with each member x of 

the set X some member /(x) of Y. Functions are also called mappings, 

operations, transformations and many other things. Sometimes it is 

convenient to use the abbreviated notation (x i—> f(x)) which makes it 

possible to talk about a function without officially naming it. For example, 

(x i—> x2 + 1) 

is the function on the real numbers which assigns to each real its square 

increased by 1; if we call it /, then it is defined by the formula 

/(x) = x2 + 1 (x G 1Z) 

so that /(0) = 1, /(2) = 5, etc. But we can say “all the values of (x i—► 
x2 + 1) are positive reals” without necessarily fixing a name for it, like /. 

In connection with functions we will also use the notations 

/ : X y-+Y -t=>df / is an injection (one-to-one) 
«=> (Vx,x' G X)[f(x) = f(x') => x = x'], 

/ : X —» Y <£=*>df / is a surjection (onto) 
« (VyeY)(3xeX)[f(x) = y}, 

f : X >—» Y <=>df / is a bijection or correspondence 

(VyeY)(3\xeX)[f(x)=y]. 
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For every f : X Y and A C X, the set 

f[A\ = {/(x) \ x e A} 

is the image of A under /, and if B C Y, then 

f-'[B\ = {xeX | f(x)eB] 

is the pre-image of B by /. 

If / is a bijection, then we can define the inverse function /-1 : Y —> X 

by the condition 

rl(y) = x <=> f[x) = y, 

and then the inverse image f~l[B] (as we defined it above) is precisely the 

image of B under /-1. 

The composition 

h =df gf : x z 

of two functions 

f • X Y, g :Y —> Z 

is defined by 

Hx)=g{f(x)) (i6l). 

It is easy to prove many basic properties of sets and functions using only 

these definitions and the extensionality property. For example, if / : X —> Y 

and A,B Cl, then 

f[A U B]= f[A] U S\B\. 

To prove this, we verify that an arbitrary y EY belongs to f[A U B\ if and 

only if it is a member of f[A) U f[B]\ 

y e f[A U B] (3x)[x G A(J B & y = f(x)] 

(3x)[(x G AV x G B) & y = f(x)] 

<h^> (3x)[x G A & y = f(x)] V (3x)[x G B & y = f(x)] 

y e f[A] V y G f[B\ 

4=^ yG/[i4]U/[B]. 

In some cases, the logic of the argument gets a bit complex and it is easier 

to prove an identity U = V by verifying separately the implications x G 
U => x G V and x G V =$■ x G U. 
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Problems 

xl.l. For any three sets A, B, C, 

Au(Bnc) = (dufi)n (Auc), 

An{Buc) = (AnB)u{Anc), 

A\(AnB) = A\B. 

xl.2. (De Morgan’s laws.) For any three sets A, B, C, 

C\(AUB) = (C\A)n(C\B), 

C\(dnB) = (C\A)U(C\B). 

xl.3. For every injection / : X >-> • Y, and all A, B C X, 

f[A n B} = f[A] n f[B], 
f[A\B] = f[A}\f[B}. 

Show also that these identities do not always hold if / is not an injection 

xl.4. For every / : X —>Y, and all A,BCY, 

f~1[A U B] = ri[A\u ri[B], 

f-^ADB] = f-^Alnf-^B}. 

xl.5. For every / : X —> Y and every sequence of sets Bn C Y, 

OO 

r1! U 
OO 

= Lb'W- 
71—0 n=0 

OO 

r'[ f| 
OO 

= n/-m. 
n=0 71 = 0 

OO 

/[ U a.) 

OO 

= [JflAn]- 
ra=0 n=0 

xl.6. For every injection / : X >—► Y and every sequence of sets An C X, 

OO 

/If\An 
n=0 

OO 

i=n hAj- 
n=0 

xl.7. The composition of injections is an injection, the composition of 

surjections is a surjection, and hence the composition of bijections is a 

bijection. 





Chapter 2 

EQUINUMEROSITY 

After these preliminaries, we can formulate the fundamental definitions of 
Cantor about the size or cardinality of sets. 

2.1. Definition. Two sets A, B are equinumerous or equal in cardi¬ 
nality if there exists a (one-to-one) correspondence between their elements, 
in symbols 

A =c B <j=*df (3f)[f:A^B\. 

This definition of equinumerosity stems from our intuitions about finite 
sets, e.g. we can be sure that a shoe store offers for sale the same number 
of left, and right shoes without knowing exactly what that number is: the 
correspondence of each left shoe with the right shoe in the same pair estab¬ 
lishes the equinumerosity of these two sets. The radical element in Cantor’s 
definition is the proposal to accept the existence of such a correspondence 
as the characteristic property of equinumerosity for all sets, despite “the 
fact that its application to infinite sets leads to conclusions which had been 
viewed as counterintuitive. A finite set, for example, cannot be equinumer¬ 
ous with one of its proper subsets, while the set of natural numbers N is 
equinumerous with N \ {0} via the correspondence (x^r + l), 

{0,1,2,...} =c {1,2,3,...}. 

In the real numbers, also, 

(0,1)-c (0,2) 

via the correspondence (x i—► 2x), where as usual, for any two reals a < (3 

(a,/3) — {x eTZ | a < x < /3}. 

(We will use the analogous notation for the closed and half-closed intervals 

[a,P\, [<*,/?)> etc.) 

2.2. Proposition. For all sets A, B,C, 

A —c A, 

A =c B => B =c A, 

A=c B & B =cC ==► A =c C. 
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7r : 3 1 0 X* 5 j/ 9 7 

it! t it 
m /(i) /(2> /(3) m m 

Figure 2.1. Deleting repetitions. 

Proof. To show the third implication as an example, if the bijections / : 

A >—» B and g : B >—» C witness the equinumerosities of the hypothesis, 

then their composition gf : A >—» C shows that A =c C. H 

2.3. Definition. The set A is less than or equal to B in size if it is 

equinumerous with some subset of B, in symbols: 

A<c B {3C)[C C B & A =c C\. 

2.4. Proposition. A<CB <=* (3f)\j:A~B). 

Proof. If A —c C C B and / : A >—» C witnesses this equinumerosity, then 

/ is an injection from A into B. Conversely, if there exists an injection 

/ : A >—» B, then the same / shows that A =c f[A\ C B. H 

2.5. Exercise. For all sets A, B, C, 

X A, 

A <c B & B <c C =r> <c C. 

2.6. Definition. T set ^4 is finite if there exists some natural number n 
such that 

A=c{i | i < n} = {0,1,..., n — 1}, 

otherwise A is infinite. It follows that the empty set 0 is finite, since 
0 = {i | i < 0}. 

A set A is countable (or denumerable^ if it is finite or equinumerous 

with the set of natural numbers N, otherwise it is uncountable. 

2.7. Proposition. A set A is countable if and only if either A = 0 or A 

has an enumeration, a surjection tt : N —» A, so that 

A = {tt(0), tt(1), tt(2), ... }. 

Proof. If A is countable and infinite, then we have (from the definition) a 

bijection n : N >—» A, and if A is finite, non-empty, then we have a bijection 
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/ : {i | i < n} >—>► A with some n > 0, and we can set 

f(i), if i < n, 

/(0), if i > n. 

To prove the converse, suppose A is not finite and it has an enumeration 

7r : N A. We must find another enumeration / : N —» A which is with¬ 

out repetitions, so that it is in fact a bijection of N with A, and hence 

A is countably infinite. The proof is suggested by Figure 2.1: we simply 

delete the repetitions from the given enumeration 7r of A. To get a precise 

definition of / by recursion, notice that because A is not finite, for every 

finite sequence do,... ,an of members of A there exists some m such that 

n(m) £ {ao,..., an}, and set 

m = *(0) 

mn = the least m > n such that n(m) ^ {/(0),..., /(n)}, 

/(n+1) = ir(mn). 

It is obvious that / is an injection, so it is enough to verify that every 

x E A is a value of /. This is clearly true for 7r(0) = /(0). If x = 7r(n + 1) 

for some n and x G {/(0),..., /(n)}, then x = f(i) for some i < n, and if 

x £ {/(0),..., /(n)}, then mn = n + 1 and f(n + 1) = n(mn) = x by the 

definition. ^ 

2.8. Exercise. If A is countable and there exists an injection f : B >—»■ A, 

then B is also countable; in particular, every subset of a countable set is 

countable. 

2.9. Exercise. If A is countable and there exists a surjection f : A—» B, 

then B is also countable. 

The next, simple theorem is one of the most basic results of set theory. 

2.10. Theorem. (Cantor) For each sequence A0, A\,... of countable sets, 

the union 
A = UZoAn = A0uA1U... 

is also a countable set. 

Proof. It is enough (why?) to prove the theorem in the special case where 

none of the An is empty, in which case we can find for each An an enumer¬ 

ation 7rn : N —» An. If we let 

a? = *■"(*) 

to simplify the notation, then for each n 

A-n = {«o > al i • ' •}) 
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Figure 2.2. Cantor’s first diagonal method. 

and we can construct from these enumerations a table of elements which 

lists all the members of the union A. The arrows in Figure 2.2 show how 

to enumerate the union: 

A = {a°, Oq) ai> ao> °i> • • ^ 

2.11. Corollary. The set of rational (positive and negative) integers 

Z = {...-2,—1,0,1,2,...} 

is countable. 

Proof. Z = iVU { —1, -2,..., } and the set of negative integers is countable 

via the correspondence (x i—> — (x + 1)). H 

2.12. Corollary. The set Q of rational numbers is countable. 

Proof. The set Q+ of > 0 rationals is countable because 

Q+ = U~=1{^|mGiV} 

and each {~ | tn £ N} is countable with the enumeration (m t—> ^). The 

set Q~ of < 0 rationals is countable by the same method, and then the 

union Q+ U Q~ is countable by the theorem. H 

This corollary was Cantor’s first significant result in the program of clas¬ 

sification of infinite sets by their size, and it was considered somewhat 

“paradoxical” because Q appears to be so much larger than N. Immedi¬ 

ately afterwards, Cantor showed the existence of uncountable sets. 

2.13. Theorem. (Cantor) The set of infinite, binary sequences 

A = {(a0,ai,...,) | (Vi) [a* = 0 V a* = 1]} 
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cvo : 

r*i 

: a 2 
1 

a o 
2 

Figure 2.3. Cantor’s second diagonal method. 

is uncountable. 

Proof. Suppose (towards a contradiction)1 that A is countable, so that for 

some enumeration 

A tti,...}, 

where for each n, 

an = (oq , a^,...) 

is a sequence of O s and l’s. We construct a table with these sequences as 

before, and then we define the sequence (3 by interchanging 0 and 1 in the 

“diagonal” sequence a®, aj,... : 

(3(n) = 1 - 

It is obvious that for each an, (3 ^ an, since 

(3(n) = 1 - an(n) ^ an(n), 

so that the sequence cto, ai,... does not enumerate the entire A, contrary 

to our hypothesis. H 

2.14. Corollary. (Cantor) The set 1Z of real numbers is uncountable. 

Proof. We define first a sequence of sets Co, Ci,..., of real numbers which 

satisfy the following conditions: 

1. Co = [0,1]. 

1To prove a proposition 6 by the method of reduction to a contradiction, we 
assume its negation —*6 and derive from that assumption something which violates 
known facts, a contradiction, something absurd: we conclude that 6 cannot be 
false, so it must be true. Typically we will begin such arguments with the code¬ 
phrase towards a contradiction, which alerts the reader that the supposition which 
follows is the negation of what we intend to prove. 
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Co 
c 1 
C2 

C3 

Figure 2.4. The first four stages of the Cantor set construction. 

2. Each Cn is a union of 2n closed intervals and 

Co A C\ A • • • Cn A Cn+l 2 ■ ' ' • 

3. Cn+i is constructed by removing the (open) middle third of each 

interval in Cn, i.e. replacing each [a, 6] in Cn by the two closed intervals 

L[a,b\ = [a, a + |(6 — a)], 

R[a,b\ = [a + §(6 — a), 6]. 

With each binary sequence <5 E A we associate now a sequence of closed 

intervals, 
Tpfi i?6 ho > , . . . , 

by the following recursion: 

F‘ = C0 = [0.1], 

s J LF‘, if<5(ra) = 0, 

n+1 \ RFif 6(n) = 1. 

By induction, for each n, is one of the closed intervals of Cn of length 

3~n and obviously 

F.‘3Ff3 = , 

so by the fundamental completeness property of the real numbers the 

intersection of this sequence is not empty; in fact, it contains exactly one 

real number, call it 

f(6) — the unique element in the intersection f)^L0^n- 

The function / maps the uncountable set A into the set 

OO 

C = f| Cn, 
n=0 

the so-called Cantor set, so to complete the proof it is enough to verify 

that / is one-to-one. But if n is the least number for which 6(n) ^ e[n) 

and (for example) 6(n) = 0, we have F% = Ffrom the choice of n, f(6) e 

Fn+i = LF^, /(e) G i?/+1 = RF%, and LF% D RF% = 0, so that indeed / 
is an injection. -| 
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The basic mathematical ingredient of this proof is the appeal to the 

completeness property of the real numbers, which we will study carefully 

in Appendix A. Some use of a special property of the reals is necessary: 

the rest of Cantor’s construction relies solely on arithmetical properties of 

numbers which are also true of the rationals, so if we could avoid using 

completeness we would also prove that Q is uncountable, contradicting 

2.12. 

The fundamental importance of this theorem was instantly apparent, the 

more so because Cantor used it immediately in a significant application to 

the theory of algebraic numbers. Before we prove this corollary we need 

some definitions and lemmas. 

2.15. Definition. For any two sets2 A,B, the set of ordered pairs of 

members of A and members of B is denoted by 

A x B = {(x, y) | x e A y E B}. 

In the same way, for each n > 2, 

A1x---xAn = {(xi,... ,xn) | x\ e Ai,... ,xn e An}, 

An = {(xi,... ,xn) | xi,... ,xn E A}. 

We call Ai x ■ ■ ■ x An the Cartesian product of Ai,..., An. 

2.16. Lemma. (1) If Ai,...,An are all countable, so is their Cartesian 

product Ai x ■ ■ ■ x An. 

(2) For every countable set A, each An (n> 2) and the union 

U“=2An = {(Xl,...,xn) | n>2,Xl,...,xneA} 

are all countable. 

Proof. (1) If some A, is empty, then the product is empty (by the defini¬ 

tion) and hence countable. Otherwise, in the case of two sets A,B, we have 

some enumeration 
B — {b0, bi,...} 

of B, obviously 

^B = ur=0(^w). 
and each A x {bn} is equinumerous with A (and hence countable) via the 

correspondence (x i—> (x,bn)). 

2In “mathematical English,” when we say “for any two objects x, y, we do 
not mean that necessarily x A 2/, e-S- assertion that “for any two numbers 

(x + yf - x2 + 2xy + y2” implies that “for every number x, {x + x) = 

x2 + 2xx + x2.” 
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(2) follows by induction for products of n factors and for (J^2An we 

appeal once more to 2.10. ^ 

2.17. Definition. A real number a is algebraic if it is a root of some 

polynomial 

P(x) = clq + cc\X + ■••-(- anxn 

with integer coefficients oo,,an E Z (n > 1, an 0), i.e. if 

P(a) = 0. 

Typical examples of algebraic numbers are \/2, (1 + \/2)2 (why?) but also 

the real root of the equation x5 +x+ 1 = 0 which exists (why?) but cannot 

be expressed in terms of radicals, by a classical theorem of Abel. 

2.18. Corollary. The set K of algebraic real numbers is countable (Can¬ 

tor), and hence there exist real numbers which are not algebraic (Liouville). 

Proof. The set II of all polynomials with integer coefficients is countable, 

because each such polynomial is determined by the sequence of its coeffi¬ 

cients, so that n can be injected into the countable set (J^12Z". For each 

polynomial P{x), the set of its roots 

A(P(x)) = {a | P{a) = 0} 

is finite and hence countable. It follows that the set of algebraic numbers 

K is the union of a sequence of countable sets and hence it is countable. H 

This first application of the (then) new theory of sets was instrumental in 

ensuring its quick and favorable acceptance by the mathematicians of the 

period, particularly since the earlier proof of Liouville (that there exist non- 

algebraic numbers) was quite intricate. Cantor showed something stronger, 

that “almost all” real numbers are not algebraic, and he did it with a much 

simpler proof which used essentially nothing but the completeness of TZ. 

So far we have shown the existence of only two “orders of infinity,” that 

of N—the countable, infinite sets—and that of 1Z. There are many others. 

2.19. Definition. The powerset V(A) of a set A is the set of all its 

subsets, 

V{A) = {A" | X is a set and A" C A}. 

2.20. Exercise. For all sets A,B, 

A=CB=>P(A) =CV{B). 
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2.21. Theorem. (Cantor) For every set A, 

A <c V(A), 

i.e. A <c V{A) but A V{A). 

Proof. That A <c V(A) follows from the fact that the function 

(x i-> {x}) 

which associates with each member x of A its singleton {x} is an injection. 

(Careful here: the singleton {x} is a set with just the one member x and it 

is not the same object as x, which is probably not a set to start with!) 

To complete the proof, we assume (towards a contradiction) that there 
exists a correspondence 

7r : A V(A) 

which witnesses that A =CV(A) and we define the set 

B = {x £ A | x 7r(x)}. 

Now B is a subset of A and 7r is a surjection, so there must exist some b £ A 

such that B = 7r(fe), and (as for each ieA) either b <E B or b ^ B. If b £ B, 

then b £ 7t(6) since B = ir(6), so that b does not satisfy the condition which 

defines B, and hence b £ R, contrary to hypothesis, lib ^ B, then b £ 7r(6), 

so that b now satisfies the defining condition for B and hence b £ R, which 

again contradicts the hypothesis. Thus we reach a contradiction from the 

assumption that the bijection it exists and the proof is complete. ~ H 

Remark. We have actually shown the somewhat stronger proposition, 

that for each A there is no surjection it : A —» V(A). A careful examination 

will reveal that this proof is a fairly straightforward generalization of the 

second diagonal method of proof by which Cantor showed that the set A 

of infinite binary sequences is uncountable. 

So there are many orders of infinity, and specifically those of the sets 

N <c V{N) <CV{V(N)) <c - -. 

If we name these sets by the recursion 

To = N, 
Tn+1 = V(Tn), 

(2.1) 

then their union = U^Lo^ ^as a a larSer cardinality than each Tn, 
Problem *x2.5. The classification and study of these orders of infinity is 

one of the central problems of set theory. 

The next obvious problem is the comparison for size of the two simplest 

uncountable sets, the real numbers 7Z and the powerset V(N) of the natural 

numbers. 
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2.22. Lemma. V(N) <c 1Z. 

Proof. It is enough to prove that V{N) <c A, since we have already 

shown that A <c TZ. This, however, is obvious by the map (X cx) 

which associates with each X C N the binary sequence 

cx(i) 
1, if i G X, 

0, if i £ X, 

and which is an injection because if some i belongs to one of the sets X, Y 

and not the other, then cx(i) / cy(«). H 

2.23. Lemma. TZ <c V(N). 

Proof. It is enough to show that 7Z <c V(Q), since the set of rationals Q 

is equinumerous with N and hence V(N) =c V{Q). This follows from the 

fact that the function 

x i—► 7r(x) = {9 G Q | q < x} C Q 

is an injection, because if x < y are distinct real numbers, then there exists 

some rational q between them, x < q < y and q G 7i(y) \ 7r(x). H 

From these simple Lemmas it follows that the equinumerosity 7Z =c 

V(N) will be a direct Corollary of the following basic theorem. 

2.24. Schroder-Bernstein Theorem. For any two sets A, B; 

A <c B & B <c A => A =c B. 

Proof.3 We assume that there exist injections 

f:A^B, g:B~A, 

and we define the sets An, Bn by the following recursion: 

Aq = A, Bq = B, 

An+1 = Sn+1 = /<7[-Bn], 

where fg[X] = {f(g(x)) \ x G X} and correspondingly for the function gf. 
By induction on n (easily) 

An 5 A An+\, 
Bn A f[An\ D Bn+U 

3A different proof of this theorem is outlined in Problems *x4.26, *x4.27. 
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Figure 2.5. Proof of the Schroder-Bernstein Theorem. 

so that we have the “chains of inclusions” 

Ao T g[Bo] 5 Ai D g[B\\ D A2 ■ ■ •, 
B0 2 f[A0] D B! D f[A!] D B2 - ■ ■. 

We also dehne the intersections 

v = n“o^». s* = n“„M.. 

so that 

B* = n^=0 Bn -A of [An] 2 = 5* 

and since / is an injection, by Problem xl.6 

f[A*] = f[nZoAn} = f)n=oflAn} = B*. 

Thus / is a bijection of A* with B*. On the other hand, 

A = A* U (A0 \ g[B0}) U (^[B0] \A1)U(A1\ g^}) U \ A2)... 

B = B*U(B0\ f[A0 ]) U (f[A0\ \B1)U(B1\ f[AL,]) U (/[A,] \ B2)... 

and these sequences are separated, i.e. no set in them has any common 

element with any other. To finish the proof it is enough to check that for 

every n, 

f[An\g[Bn\] = f[An]\Bn+1, 

g[Bn\f[An}} = g[Bn)\An+i, 
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from which the first (for example) is true because / is an injection and 

f\An \ g\B„}} = f[An] \ fg[Bn\ = f[An) \ Bn+l. 

Finally we have the bijection 7r : A >—» B, 

7T(X) = 
f(x), if x e A* or (3n)[x E An \ g[Bn]}, 

g~l(x), if x £ A* and (3n)[x G g[Bn} \ An+1], 

which verifies that A =c B and finishes the proof. 3 

Using the Schroder-Bernstein Theorem we can establish easily several 

equinumerosities which are quite difficult to prove directly. 

Problems 

x2.1. For every a < (3 where a, (3 are reals, oo or — oo, construct bijections 

which prove the equinumerosities 

=c (o,i) =c n. 

x2.2. For every a < /3, construct bijections which prove the equinumerosi¬ 

ties 

[a, (3) =c [a,P] =c 'll. 

x2.3. V(N) =c 1Z =c lZn, for every n > 2. 

2.25. Definition. For any two sets A,B, 

(A —* B) =df {f\f:A-*B} 

= the set of all functions from A to B. 

x2.4. For any three sets A, B, C, 

((A xB)^C) =c (A^(B^ O). 

*x2.5. Using the definition (2.1), for every m, 

Tm<cToo = Un=0r„. 
You need to know something about continuous functions to do the last 

two problems. 

*x2.6. The set U[0,1] of all continuous, real functions on the closed interval 
[0,1] is equinumerous with TZ. 

*x2.7. The set of all monotone real functions on the closed interval [0, 1] 
is equinumerous with 71. 



Chapter 3 

PARADOXES AND AXIOMS 

In the preceding chapter we gave a brief exposition of the first, basic results 

of set theory, as it was created by Cantor and the pioneers who followed him 

in the last twenty five years of the 19th century. By the beginning of our 

own century, the theory had matured and justified itself with diverse and 

significant applications, particularly in mathematical analysis. Perhaps its 

greatest success was the creation of an exceptionally beautiful and useful 

transfinite arithmetic, which introduces and studies the operations of addi¬ 

tion, multiplication and exponentiation on infinite numbers. By 1900, there 

were still two fundamental problems about equinumerosity which remained 

unsolved. These have played a decisive role in the subsequent development 

of set theory and we will consider them carefully in the following chapters. 

Here we just state them, in the form of hypotheses. 

3.1. Hypothesis of Cardinal Comparability. For any two sets A,~B, 

either A <c B or B <c A.1 

3.2. Continuum Hypothesis. There is no set of real numbers X with 

cardinality intermediate between those of N and TZ, i.e. 

(CH) (VIC TZ)[X <CN V X =CTZ\. 

Since 7Z =c V(N), CH is a special case of the Generalized Continuum 

Hypothesis, the statement that for every infinite set A, 

(GCH) (VX C A)[X <c A VX =c V(A)\. 

One immediate consequence of these two hypotheses is that the integers 

N and the reals TZ represent the smallest two “orders of infinity”; every 

infinite set is either countable, equinumerous with TZ or strictly greater 

than TZ in cardinality. 

1 Cantor announced the “theorem of comparability of cardinals’ in 1895 and 

in 1899 he outlined a proposed proof of it in a letter to Dedekind, which was not, 

however, published until 1932. There were problems with that argument and it 

is probably closer to the truth to say that until 1900 (at least) the question of 

comparability of cardinals was still open. 
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In this beginning “naive” phase, set theory was developed on the basis 

of Cantor’s definition of sets quoted in Chapter 1, much as we proved its 

basic results in Chapter 2. If we analyze carefully the proofs of those results 

we will see that they are all based on the following simple principle. 

3.3. General Comprehension Principle. For each n-ary definite con¬ 

dition P, there is a set 

A = {x | P(x)} 

whose members are precisely all the n-tuples of objects which satisfy P(x), 

so that for all x, 

fGd ^ P(x). (3.1) 

The extensionality principle implies that at most one set A can satisfy 

(3.1), and we call this A the extension of the condition P. 

3.4. Definite conditions and operations. It is necessary to restrict 

the comprehension principle to definite conditions to avoid questions of 

vagueness which have nothing to do with science. We do not want to admit 

the “set” 

A =df {x | x is an honest politician}, 

because membership of some specific public figure in it may be a hotly 

debated topic. An n-ary condition P is definite if for each n-tuple of 

objects x = (x\,... ,xn), it is determined unambiguously whether P(x) is 
true or false. For example, the binary conditions 

P(x,y) x is a parent of y, 

S(s,t) s and t are siblings 

-<=>• (3x)[P(x,s) & P(x,t)] 

are both definite, assuming (for the example) that the laws of biology de¬ 

termine parenthood unambiguously. The General Comprehension Principle 
applies to them and we can form the sets of pairs 

A =df {(x,y) | a: is a parent of y}, 

B =df {(s,£) | s and t are siblings}. 

We do not demand of a definite condition that its truth value be effectively 

determined. For example, it is a famous open problem of number theory 

whether there exist infinitely many pairs of successive, odd primes, and the 
truth or falsity of the condition 

G{n) <^=>df n £ N & (3m > n)[m, m + 2 are both prime numbers] 

is not known for sufficiently large n. Still the condition G is unambiguous 
and we can use it to form the set of numbers 

G =df (n 6 N | (3m > n)[m,m + 2 are both prime numbers]}. 
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The twin prime conjecture asserts that G = N, but if it is false, then C is 
some large, initial segment of the natural numbers. 

In the same way, an n-ary operation F is definite if it assigns to each 

n-tuple of objects x a unique, unambiguously determined object w — F(x). 

For example, assuming again that biology will not betray us, the operation 

the father of x, if x is a human, 

otherwise, 

is definite. The silly consideration of cases here was put in to ensure that F 

determines a value for each argument x. In practice, we would define this 
operation by the simpler 

F(x) =df the father of x, 

leaving it to the reader to supply some conventional, irrelevant value F(x) 

for non-human afis. Again, definite operations need not be effectively com¬ 

putable, in fact the determination of the value F(x) is sometimes the subject 
of judicial conflict in this specific case. 

In addition to the General Comprehension Principle, we also assumed in 

the preceding chapter the existence of some specific sets, including the sets 

N and 1Z of natural and real numbers, as well as the definiteness of some 

basic conditions from classical mathematics, e.g. the condition of “being a 

function,” 

Function(f, A, B) <t=> / is a function from A to B. 

This poses no problem as mathematicians have always made these assump¬ 

tions, explicitly or implicitly. 

The General Comprehension Principle has such strong intuitive appeal 

that the next theorem is called a “paradox.” 

3.5. Russell’s paradox. The General Comprehension Principle is not 

valid. 

Proof. Notice first that if the General Comprehension Principle holds, then 

the set of all sets 

V =df {x | x is a set} 

is a set, and it has the somewhat peculiar property that it belongs to 

itself, V E V. The common sets of everyday mathematics—sets of numbers, 

functions, etc.—surely do not contain themselves, so it is natural to consider 

them as members of a smaller, more natural universe of sets, by applying 

the General Comprehension Principle again, 

R = {x | x is a set and x x). 
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From the definition of R, however, 

ReR «=> R(£R, 

which is absurd. 

When it is more than just a mistake, a “paradox” is simply a fact which 

runs counter to our intuitions, and set theorists already knew several such 

“paradoxes” before Russell announced this one in 1902, in a historic letter 

to the leading German philosopher and founder of mathematical logic Got¬ 

tlob Frege. These other paradoxes, however, were technical and affected 

only some of the most advanced parts of Cantor’s theory. One could imag¬ 

ine that higher set theory had a systematic error built in, something like 

allowing a careless “division by 0” which would soon be discovered and dis¬ 

allowed, and then everything would be fixed. After all, contradictions and 

paradoxes had plagued the “infinitesimal calculus” of Newton and Leib¬ 

nitz and they all went away after the rigorous foundation of the theory 

which was just being completed in the 1890s, without affecting the vital 

parts of the subject. Russell’s paradox, however, was something else again: 

simple and brief, it affected directly the fundamental notion of set and the 

“obvious” principle of comprehension on which set theory had been built. 

It is not an exaggeration to say that Russell’s paradox brought a foun¬ 

dational crisis of doubt, first to set theory and through it, later, to all of 

mathematics, which took over thirty years to overcome. 

Some, like the French geometer Poincare and the Dutch topologist and 

philosopher Brouwer, proposed radical solutions which essentially dismissed 

set theory (and much of classical mathematics along with it) as “pseudothe¬ 

ories,” without objective content. From those who were reluctant to leave 

“Cantor’s paradise,” Russell first attempted to “rescue” set theory with his 

famous theory of types, which, however, is awkward to apply and was not 

accepted by a majority of mathematicians.2 At approximately the same 

time, Zermelo proposed an alternative solution, which in time and with 

the contributions of many evolved into the contemporary theory of sets. 

In his first publication on the subject in 1908, Zermelo took a pragmatic 

view of the problem. No doubt the General Comprehension Principle was 

not generally valid, Russell’s paradox had made that clear. On the other 

hand, the specific applications of this principle in the proofs of basic facts 

about sets (like those in Chapter 2) are few, simple and seemingly non¬ 
contradictory. 

‘The theory of types had a strong influence in the development of analytic 
philosophy and logic in our century and some of its basic ideas eventually found 
their place in set theory also. 
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Under such circumstances there is at this point nothing left 

for us to do but to proceed in the opposite direction [from that 

of the General Comprehension Principle] and, starting from set 

theory as it is historically given, to seek out the principles re¬ 

quired for establishing the foundations of this mathematical 

discipline. In solving the problem we must, on the one hand, 

restrict these principles sufficiently to exclude all contradictions 

and, on the other, take them sufficiently wide to retain all that 
is valuable in this theory. 

In other words, Zermelo proposed to replace the direct intuitions of Cantor 

about sets which led us to the faulty general comprehension principle with 

some axioms, hypotheses about sets which we accept with little a priori 

justification, simply because they are necessary for the proofs of the funda¬ 

mental results of the existing theory and seemingly free of contradiction. 

Such were the philosophically dubious beginnings of axiomatic set the¬ 

ory, surely one of the most significant achievements of 20th century science. 

From its inception, however, the new theory had a substantial advantage in 

the genius of Zermelo, who selected an extraordinarily natural and pliable 

axiomatic system. None of Zermelo’s axioms has yet been discarded or seri¬ 

ously revised and (until very recently) only one basic new axiom was added 

to his seven in the decade 1920-1930. In addition, despite the opportunistic 

tone of the cited quotation, each of Zermelo’s axioms expresses a property 

of sets which is intuitively obvious and was already well understood from 

its uses in classical mathematics. With the experience gained from working 

out the consequences of these axioms over the years, a new intuitive notion 

of “grounded set” has been created which does not lead to contradictions 

and for which the axioms of set theory are clearly true. We will reconsider 

the problem of foundation of set theory after we gain experience by the 

study of its basic mathematical results. 

The basic model for the axiomatization of set theory was Euclidean ge¬ 

ometry, which for 2000 had been considered the “perfect” example of a 

rigorous, mathematical theory. If nothing else, the axiomatic method clears 

the waters and makes it possible to separate what might be confusing and 

self-contradictory in our intuitions about the objects we are studying, from 

simple errors in logic we might be making in our proofs. As we proceed 

in our study of axiomatic set theory, it will be useful to remind ourselves 

occasionally of the example of Euclidean geometry. 

3.6. The axiomatic setup. We assume at the outset that there is a do¬ 

main or universe W of objects, some of which are sets, and certain 

definite conditions and operations on W, among them the basic con¬ 

ditions of identity, sethood and membership: 

x is the same object as y, x = y 
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Set(x) 4=4 £ is a set, 

x G y 4=4 Set(y) and x is a member of y. 

We call the objects which are not sets atoms, but we do not require that 

any atoms exist, i.e. it may be the case that all the objects are sets. 

This is the way every axiomatic theory begins. In Euclidean geometry 

for example, we start with the assumption that there are points, lines and 

several other geometrical objects and that some basic, definite conditions 

and operations are specified on them, e.g. it makes sense to ask if a “point 

P lies on the line L” or “to construct a line joining two given points.” 

We then proceed to formulate the classical axioms of Euclid about these 

objects and to derive theorems from them. Actually Euclidean geometry 

is quite complex: there are several types of basic objects and a long list 

of intricate axioms about them. By contrast, Zermelo’s set theory is quite 

austere: we just have sets and atoms and only seven fairly simple axioms 

relating them. In the remainder of this chapter we will introduce six of 

these axioms with a few comments and examples. It is a bit easier to put 

off stating his last, seventh axiom until we first gain some understanding 

of the consequences of the first six in the next few chapters. 

3.7. (I) Axiom of Extensionality. For any two sets A, B, 

A = B 4=4 (Vx) [x G A 4=4 x e B]. 

3.8. (II) Emptyset and Pairset Axioms, (a) There is a special object 0 

which we will call a set, but which has no members, (b) For any two objects 

x, y, there is a set A whose only members are x and y, so that it satisfies 
the equivalence 

teA 4=4- t = xvt = y. (3.2) 

The Axiom of Extensionality implies that only one empty set exists, and 

that for any two objects x,y, only one set A can satisfy (3.2). We denote 
this doubleton of x and y by 

{x, y} =df the unique set A with sole members x, y. 

If x = y, then {x,x} = {x} is the singleton of the object x. 

Using this axiom we can construct many simple sets, e.g. 

0. {0}, {{0}}, {0,{0}}. {{0},{{0}}},..., 

but each of them has at most two members! 

3.9. Exercise. Prove that 0 {0}. 
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3.10. (Ill) Separation Axiom or Axiom of Subsets. For each set A 

and each unary, definite condition P, there exists a set B which satisfies 
the equivalence 

x e B X £ A & P(x). (3.3) 

From the Extensionality Axiom again, it follows that only one B can satisfy 
(3.3) and we will denote it by 

B = {x £ A | P(x)}. 

A characteristic contribution of Zermelo, this axiom is obviously a restric¬ 

tion of the General Comprehension Principle which implies many of its 

trouble-free consequences. For example, we can use it to define the opera¬ 

tions of intersection and difference on sets, 

An B =df {x e A \ x e B}, 

A\B =df {x £ A | x £ B}. 

The proof of Russell’s paradox yields a theorem: 

3.11. Theorem. For each set A, the set 

r(A) =df {x e A | x ^ x} (3.4) 

is not a member of A. It follows that the collection of all sets is not a set, 

i.e. there is no set V which satisfies the equivalence 

x £ V 4=> Set(x). 

Proof. Notice first that r(A) is a set by the Separation Axiom. Assuming 

that r(A) £ A, we have (as before) the equivalence 

r(A) £ r(A) 4=4> r(A) £ r(A), 

which is absurd. ^ 

3.12. (IV) Powerset Axiom. For each object A, there exists a set B 

whose members are the subsets of A, i.e. 

X e B Set(X) feICA (3.5) 

Here X C A is an abbreviation of (Vt)[f £ X => t £ A], The Axiom of 

Extensionality implies that for each A, only one set can satisfy (3.5), we 

call it the powerset of A and we denote it by 

V(A) =df {X | Set(X) feIC A}. 
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3.13. Exercise. If A is an atom or A = 0, then V{A) — {0}. 

3.14. Exercise. For each set A, there exists a set B whose members are 

exactly all singletons of members of A, i.e. 

x e B <=$> (3t G A)[x = {£}]. 

3.15. (V) Unionset Axiom. For every object £, there exists a set B 

whose members are the members of the members of £, i.e. it satisfies the 

equivalence 

teB <=> (3X g £)[t e X). (3.6) 

The Axiom of Extensionality implies again that for each £, only one set 

can satisfy (3.6), we call it the unionset of £ and we denote it by 

U £ =df {t I (3Xe£)[teX}}. 

The unionset operation is obviously most useful when £ is a family of 

sets, i.e. when £ and each Ie£ are sets. This is the case for the simplest 

application, which (finally) gives us the binary, union operation on sets: we 

set 

Al)B = \J{A,B} 

using axioms (II) and (V), and we compute 

teAuB <=> (3X E {A, B})[t e X] 

<=>• t g A v t g B. 

It is convenient, however, to have (J £ defined for arbitrary objects £. 

3.16. Exercise. If £ is an atom, then (J £ = 0 and (J0 = (J {0} = 0. 

3.17. (VI) Axiom of Infinity. There exists a set I which contains the 

empty set 0 and the singleton of each of its members, i.e. 

0 G I & (Va:)[x G I =>• {T} G I]. 

We have not given yet a rigorous definition of “infinite,” but it is quite 

obvious that any / with the properties in the axiom must be infinite, since 
(VI) implies 

0ei, {0} g /, {{0}} g /,... 

and the objects 0, {0}, ... are all distinct sets by the Extensionality Axiom. 

The intuitive understanding of the axiom is that it demands precisely the 
existence of the set 

/ = {0,{0},{{0}},...}, 
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but it is simpler (and sufficient) to assume of / only the stated properties, 

which imply that it contains all these complex singletons. 

It was a commonplace belief among philosophers and mathematicians 

of the 19th century that the existence of infinite sets could be proved, 

and in particular the set of natural numbers could be “constructed” out 

of thin air, “by logic alone.” All the proposed “proofs” involved the faulty 

General Comprehension Principle in some form or another. We know better 

now: logic can codify the valid forms of reasoning but it cannot prove the 

existence of anything, let alone infinite sets. By taking account of this 

fact cleanly and explicitly in the formulation of his axioms, Zermelo made 

a substantial contribution to the process of purging logic of ontological 

concerns, a necessary step in the rigorous development of logic as a science 

in its own right in our century. 

3.18. Axioms for definite conditions and operations. Zermelo un¬ 

derstood definite conditions intuitively, he described them much as we did 

in 3.4 and he applied the Separation Axiom using various quite complex 

conditions without any special argument that they are, indeed, “definite.” 

We will do the same, because the business of proving definiteness is boring 

and not particularly illuminating. For the sake of completeness, however, 

we list here the only properties of definiteness that we will actually use. 

1. The following basic conditions are definite: 

x = y <=hdf x and y are the same object, 

Set(x) x is a set, 

x e y Set(y) and x is a member of y, 

2. For each object c and each n, the constant n-ary operation 

F{xi, ...,xn) = c 

is definite. 

3. Each projection operation 

F(xu...,xn) =Xi (1 <i<n) 

is definite. 

4. If P is a definite condition of n + 1 arguments and for each tuple 

x — xi,..., xn there exists exactly one w such that P(x, w), then the 

operation 

is definite. 

F(x) = the unique w such that P(x,w) 
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5. If Q is an m-ary definite condition, each i7) is an n-ary definite oper¬ 

ation for i = 1,..., m and 

P(x) «=*df Q(Fi(x),... ,Fm(x)), 

then the condition P is also definite. 

6. If Q, R and S are definite conditions of the appropriate number of 

arguments, then so are the following conditions which are obtained 

from them by applying the elementary operations of logic: 

Pi(£) <=>-df 

P2(x) <*=Aif 

Ps(x) <=>df 

Pfix) ^=hif 

Pfix) ■t=^df 

^P(x) 

Q(x) & R(x) 

Q(x) V R(x) 

(3 y)S(x,y) 

(Vy)S(x,y) 

P(x) is false, 

both Q(x) and R(x) are true, 

either Q(x) or R(x) is true, 

for some y,S(x,y) is true, 

for every y, S(x, y) is true. 

All the conditions and operations we will use can be proved definite by 

appealing to these basic properties. Aside from one problem at the end of 

this chapter, however, for the logically minded, we will omit these technical 

proofs of definiteness and it is best for the reader to forget about them too: 

they detract from the business at hand, which is the study of sets, not 

definite conditions and operations. 

3.19. Classes.Having gone to all the trouble to discredit the General Prin¬ 

ciple of Comprehension, we will now profess that for every unary, definite 

condition P there exists a class 

A = {x\P(x)}, (3.7) 

such that for every object x, 

x £ A 4=^ P(x). (3.8) 

To give meaning to this principle and prove it, we need a simple notational 

convention, and the important notion of a “class.” Every set will be a class, 

but because of the Russell Paradox 3.5, there must be more classes than 

sets, else (3.7) and (3.8) lead immediately to a contradiction. 

First let us agree that for every unary, definite condition P we will write 
synonymously 

x € P <=$■ P(x). 

For example, if Set is the basic condition of sethood, we write interchange¬ 
ably 

x e Set <=> Set(x) £ is a set. 
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This is just a useful notation. 

A unary definite condition P is coextensive with a set A if the objects 

which satisfy it are precisely the members of A, 

P =e A <^=bif (Vx)[-P(x) 4=^ x €E A], (3-9) 

For example, if 

P(x) x ^ x, 

then P =e 0. By the Russell Paradox 3.5, not every P is coextensive with 

a set. On the other hand, a unary, definite condition P is coextensive with 

at most one set because if P —e A and also P =e B, then for every x, 

x G A P(x) -<=>- x € B, 

and A = B by the Axiom of Extensionality. 

A class A is either a set or a unary definite condition which is not 

coextensive with a set. With each each unary P, we associate the class 

{the unique set A such that P =e A, 

if P =e A for some set A, 

P, otherwise. 

Now if A =df | -P(x)}, then either P is coextensive with a set, in which 

case P =e A and by the definition x G A ■$=> P(x) \ or P is not coextensive 

with any set, in which case A is a definite condition and 

x G A A(x) by the notational convention, 

P(x) because A = P. 

This is exactly the General Comprehension Principle for Classes enunci¬ 

ated above. 

3.20. Exercise. For every set A, 

{x | x e A} = A, 

and, in particular, every set is a class. Show also that 

{X | Set{X) & IC A} = V{A). 

3.21. Exercise. The class of all singletons {X \ (3y)[X = {y}]} is not a 

set. 

3.22. Exercise. For every class A, 

for some class B, A € B 

for some set X, A C X, 

A is a set 
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where inclusion among classes is defined as if they were sets, 

A C B -4=Kif (Vx)[x G A =4> x G B}. 

3.23. The Axioms of Choice and Replacement: a warning. Our ax- 

iomatization of set theory will not be complete until we introduce Zermelo’s 

last Axiom of Choice in Chapter 8 and the later Axiom of Replacement in 

Chapter 11. While there are good reasons for these postponements which 

we will explain in due course, there are also good reasons for adding the 

axioms of Choice and Replacement: many basic set theoretic arguments 

need them, and among these are some of the simplest claims of Chapter 2. 

Thus, until Chapter 8, we will need to be extra careful and make sure that 

our constructions indeed can be justified by axioms (I) - (VI) and that we 

have not sneaked in some “obvious” assertion about sets not yet proved 

or assumed. In a few places we will formulate and prove something weaker 

than the whole truth whose proof happens to need one of the missing ax¬ 

ioms. Now this is good: it will keep us on our toes and make us understand 

better the art of reasoning from axioms. 

3.24. About atoms. Most recent developments of axiomatic set theory 

assume at the outset the so-called Principle of Purity, that there are no 

atoms, all objects of the basic domain are sets. There is a certain appealing 

simplicity to this conception of a mathematical world in which everything 

is a set. We have followed Zermelo in allowing atoms (without demanding 

them), primarily because this makes the theory more naturally applicable 

to general mathematics and science. In any case, it comes at little cost, 

we simply have to say “object” in some situations where the atom banners 

would say “set.” It is important to notice, however, that none of the axioms 

requires the existence of atoms, so none of the consequences we will derive 

from them depends on the existence of atoms: everything we will prove 

remains true in the domain of pure sets, provided only that it satisfies the 

Zermelo axioms, as we stated them. 

3.25. Axioms as closure properties of the universe W. Whatever the 

domain W of our axiomatic set theory may be, it is clear that it does not 

contain all “objects of our intuition or thought” in Cantor’s expression; W 

is not a set, and it is certainly a perfectly legitimate mathematical object of 

our intuition about which we intend to have many thoughts. Granting that 

W is not all there is, we can fruitfully conceive of the axioms as imposing 

closure conditions on it. We have assumed (so far) that W contains 0, that 

it is closed under the operations of pairing {x,y}, (II), powerset V(X), 

(IV) and unionset |JA, (V), that it includes every definite subcollection of 

every set, (III) , and that it contains some set / with the stipulated property 

of the Axiom of Infinity, (VI). It is also possible to understand the Axiom 

of Extensionality (I) as a closure property of W: in its non-trivial direction, 
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it says that for any two sets A, B, 

A ^ B =>• (3t)[t 6 (A \ B) U (B \ A)], (3.10) 

i.e. every inequality A ^ B between two sets is witnessed by some legitimate 

object t £ W which belongs to one and not the other. 

This understanding of the meaning of the axioms is compatible with two 

different conceptions of the universe W. One is that it is huge, amorphous, 

difficult to understand and impossible to define; but every object in it is 

concrete, definite, whole, and this is enough to justify the closure properties 

of W embodied by the axioms. Let us call this the large view. The small view 

is that W consists precisely of those objects whose existence is “guaranteed” 

by the axioms, those which can be “constructed” by applying the axioms 

repeatedly: the axioms are satisfied because we deliberately put in W all the 

objects required by the closure properties they express. Neither conception 

is precise, to be sure, but they are different. On the small view, for example, 

there are no atoms, since none of the axioms demands their existence, while 

the large view clearly allows lots of them. 

Both of these views can be defended and they have played significant 

roles in the philosophy of set theory, and even in its mathematical practice, 

by suggesting the kind of questions one should ask, for example. We will 

come back to discuss the issue in Chapter 11 and Appendix B, when we will 

be in a position to be less flippant about it. In the meantime, we will often 

speak of the axioms as closure conditions on W, a useful heuristic device 

which is compatible with every philosophical approach to the subject... 

Problems 

x3.1. For each non-empty set £ and each X € £, we define the intersection 

of £ via X by 

nx£=df (V77 e Z)[x e U]}. 

Show that for any two members X, Y of £, 

n*£ = n 

i.e. the intersection fj^£ is independent of the specific X we used in its 

definition, and hence we can use for it the notation fj £ which does not 

exhibit X. Show also that A fl B — fj {A, B}. 

3.26. Definition. Two sets A, B are disjoint if A D B = 0. A set W is 

a connection of the two disjoint sets A and B (according to Zermelo) if 

the following three conditions hold: 
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1. Z eW =>• (3x E A,y E B)[Z = {x,y}\. 

2. For each x E A, there is exactly one y E B such that {x, y} E W. 

3. For each y E B, there is exactly one x E A such that {x, y} € W. 

x3.2. For any two disjoint sets A, B, the set E(H., B) of all connections of 
A with B exists—i.e. there exists a set E(H, B) such that 

W E E(H, B) •<=>■ W is a connection of A with B. 

3.27. Definition. Two sets A, B are equivalent according to Zermelo 
if there exists a third set C disjoint from both of them and connections of 

A with C and of B with C, in symbols 

A~z B <*=» (3C, W, W')[A n C = 0 & B n C = 0 
& W e E(A,C) & W' G E(B,C)\. 

*x3.3. The condition of equivalence according to Zermelo has the following 
properties, for any three sets A, B, C: 

A ~z A, 

A ~z B =^> B A, 

A ~ z B & B ~ z C =>- A ~ z C. 

x3.4. Prove rigorously that the following conditions and operations are 
definite, using only (I) - (VI) and the axioms in 3.18. (Here c is some 
arbitrary object.) 

Pi (x) <t=t-df X G C, 

Pi(x,y,z) z G x, 

Pi(X,Y) ^=^df icy, 

F(x) =df {z}> 

F{X,Y) =df iuy. 
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ARE SETS ALL THERE IS? 

Our next goal is to determine whether the basic results of naive set theory 

in Chapter 2 can be proved on the basis of the axioms of Zermelo. Right 

at the start we hit a snag: to define the crucial notion of equinumerosity 

we need functions; to define countable sets we need the specific set N of 

natural numbers; the fundamental theorem 2.21 of Cantor is about the set 

1Z of real numbers, etc. Put another way, the results of Chapter 2 are not 

only about sets, but about points, numbers, functions, Cartesian products 

and many other mathematical objects which are plainly not sets. Where 

will we find these objects in the axioms of Zermelo which speak only about 

sets? 

An obvious solution is to assume that these non-sets are among the atoms 

which are allowed by Zermelo’s theory and to add axioms which express 

our basic intuitions about points, numbers, functions, etc. This is possible 

but awkward and there is a much better solution. 

A typical example of the method we will adopt is the “identification” of 

the (directed) geometric line II with the set 7Z of real numbers, via the cor¬ 

respondence which “identifies” each point Pell with its coordinate x(P) 

with respect to a fixed choice of an origin O. What is the precise meaning of 

this “identification” ? Certainly not that points are real numbers. Men have 

always had direct geometric intuitions about points which have nothing to 

do with their coordinates and which existed before Descartes discovered 

analytic geometry. Every Athenian of the classical period understood the 

meaning of the sentence 

Phaliron is between Piraeus and Sounion along the Saronic 

coast1 

even though he was (by necessity) ignorant of analytic geometry. In fact, 

many educated ancient Athenians had an excellent understanding of the 

Pythagorean Theorem, without knowing how to coordinatize the plane. 

What we mean by the “identification” of II with U is that the correspon- 

1 These are seaside suburbs of Athens. 
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dence P i—> x(P) gives a faithful representation of n in 1Z which allows 

us to give arithmetic definitions for all the useful geometric notions and to 

study the mathematical properties of II as if points were real numbers. 

For example, the quoted sentence above is expressed by the inequalities 

x(Piraeus) < x(Phaliron) < x(Sounion), 

assuming that the coordinates increase in the easterly direction. In the same 

way, we will discover within the universe of sets faithful representations of 

all the mathematical objects we need, and we will study set theory on the 

basis of the lean axiomatic system of Zermelo as if all mathematical 

objects were sets. The delicate problem in specific cases is to formulate 

precisely the correct definition of a “faithful representation” and to prove 

that one such exists. 

We consider first the basic (ordered) pair operation. Intuitively, the pair 

(x, y) of two objects x and y is the “thing” which has a “first member” x 

and a “second member” y, and it is different from the unordered pair {x, y} 

since (for example) if x ^ y, then (x, y) ^ (y, x) while {x, y} = {y, x}. Thus, 

the first characteristic property of the ordered pair is the following: 

4.1. (x,y) = (x',y') 4=*- x = x' & y = y'. 

There is a second, perhaps less obvious characteristic property of pairs 
which makes it possible to define Cartesian products: 

4.2. For any two sets A, B, the class 

Ax B =df {(x, y) | x 6 A & y e B} 

is a set. 

Thus, the problem of representing the notion of “pair” in set theory takes 

the following precise form: we must define a definite operation (x, y) such 
that 4.1 and 4.2 follow from the axioms of Zermelo. 

4.3. Lemma. The Kuratowski pair operation 

{x,y) =df {{a;},{x,?/}} (4.1) 

has properties 4.1 and 4.2, 

Proof. 4.1. The direction 4= is obvious. For the non-trivial direction ==>, 
we distinguish two cases. 

If x = y, then {x,y} = {x,x} = {x}, the set (x,y) = {{x},{x}} = {{x}} 

is a singleton, hence the set (x',y') which is assumed equal to it is also a 
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singleton, so that x — y' and (x\ y') — {{a/}}; and since this last singleton 

is equal to {{x}}, we have x = x' and, hence, also y = x = x' = y'. 

If x ^ y, then the members of (x,y) are the singleton {x} and the 

doubleton {x,y}, and these must correspond with the members {x'} and 

{x',y'} of the equal set (x',y'), so that we must have {x} = {x'}, {x,y} = 

{x',y'}, and then, immediately, x = x' and y = y'. 

Proof of 4.2. The condition 

OrdPairA B(z) 4=>df (3x E A)(3y E B)[z = (x,y)\ 

is evidently definite for each fixed A, B, and hence to verify 4.2, it is enough 
to find for each A, B some set C such that 

x E A & y E B => (x, y) E C\ 

using this C, we can then construct the Cartesian product as a set by the 
Separation Axiom, 

A x B =df {z E C | OrdPaira,b(z)}. 

We compute: 

M, {x,y} C(dUB) 

{x}, {x,y} E V(AUB) 

{{x}, {x, y}} C P(A U B) 

(x, y) E V(V(A U B)), 

so that we can take C = V(V{A U B)). H 

4.4. Ordered pairs. We now fix a specific definite operation (x, y) which 

satisfies 4.1 and 4.2, perhaps the Kuratowski pair defined in the proof of 

4.3. perhaps some other: from now on we may forget the specific definition 

chosen, the only thing that counts is that the pair satisfies 4.1 and 4.2. 

x E A, y E B 

4.5. Exercise. Let 

Pair(z) 4=>df (3x)(3y)[z = (x,y)], (4.2) 

First(z) = df 

Second (z) =df 

It follows that 

the unique x such that (3y)[z = (x,y)\, if Pair(z), 

z, otherwise, 

(4-3) 

the unique y such that (3x)[z = (x,y)\, if Pair(z), 

z, otherwise. 
(4.4) 

Pair(z) z — (First(x), Second(y)). 
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{blue} x A 

{white} x B 

Figure 4.1. Constructing the disjoint union. 

Using the ordered pair we can easily define triples, quadruples, etc. as 

well as the corresponding products, e.g. 

(x,y,z) II 
P

-
 

>-
r>

 

<£
T (4.5) 

{x,y,z,w) =df (x,{y,z,w)) = {x,{y,{z,w))), (4.6) 

AxBxC =df Ax {B x C), (4.7) 

etc. By this definition, a tuple of length n +1 is a pair with second member 

a tuple of length n. 

4.6. Exercise. For all x,y, z,x',y', z', 

{x, y, z) = (V, y', z') 4=^ x = x' & y = y' & z = z'. 

4.7. Disjoint union. For each set A and fixed object blue, we can think of 

the set of pairs {blue} x A as a “blue copy” of A, the act of replacing each 

a G A by the pair {blue, a) being the set theoretic equivalent of painting a 

blue. We fix two such distinct “colors,” 

blue =df 0, white =df {0}, (4.8) 

and we define the disjoint union of two sets by the formula 

A i±J B =df {{blue} x A) U {{white} x B). 

The notion is useful, and it should be clear that the specific identity of blue 

and white must be deliberately and instantly forgotten, all that matters is 

that blue / white. 

4.8. Exercise. Show that for all sets A, B, A i±) 0 C A (+) B. Assuming that 

we use the Kuratowski pair to define products, give an example where the 

plausible inclusion A C A l±) B is not true. 

Next we consider the notion of relation which permeates mathematics. 

Intuitively, a binary relation P between objects x G A and y E B is a 
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condition which is satisfied by some x E A, y E B and fails for others. For 
example, the relation 

xRy a; is a son of y 

is defined on A — {men}, B = {women} and holds for x, y precisely if y 

has given birth to x. The obvious way to represent a binary relation in set 

theory is to identify it with its extension, the set of pairs which satisfy it. 

4.9. Definition. A binary relation on the sets A, B is any subset R of 

the Cartesian product A x B. We will use synonymously the notations 

xRy \ >df (x, y) E R. 

Obvious examples of binary relations are the identity and the relations 

of membership and subsethood restricted to some set A, 

x =A V *7=4-df xgA&i/6A&x = j/, 

X Ea y <^=bif XEA&J/EA&XGi;, 

«=Kif IC7CA, 

which by the definition are identified respectively with the sets 

=a =df {(x,y) € A x A | x = y}, (4.9) 

Ea =df {(x,y) E A x A | x E y}, (4.10) 

Ca =df {(X,T) E V(A) x V{A) | ICh}. (4.11) 

4.10. Relations and definite conditions. The definite conditions x = y, 

x E y and ICYon the domain of all objects are not relations according to 

4.9. in fact they are not even “coextensive” with sets of pairs, because their 

extensions are “too large.” This is important, the distinction between re¬ 

lations and definite conditions: briefly, every relation determines a definite 

condition but (in general) the converse does not hold. The precise situation 

is detailed in the next Exercise. In practice we will often refer to the relation 

= on the set A, meaning (without possibility of confusion) the restriction 

=A as we just defined it. 

4.11. Exercise. (1) For every binary relation R C (Ax B), the condition 

R*(x,y) 4=4>df (x,y) E R 

is definite. (Nothing to prove here, unless you want to practice applying 

3.18.) 

(2) For every binary definite condition P and any two sets A, B, the 

restriction 

Pa.b =df {(x,y) E Ax B \ P(x,y)} 

of P to A x B is a binary relation. 
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Binary relations with both arguments ranging over the same set are 

especially important, and they are classified and studied according to the 

structural properties they may enjoy. Here are three such properties which 

come up often, in various combinations. 

4.12. Definition. For each binary relation P C [A x A) on a set A we 

say that: 

P is reflexive ^=Nif (\/x E A)[xPx], 

P is symmetric <=bif (Vx,y G A)[xPy = => yPx\, 

P is transitive <t=hdf ('ix,y,z E A)[[xPy & y P z] ==>• xPz 

We call P an equivalence relation on A if it has all three of these prop¬ 

erties. Equivalence relations are very useful and we will meet examples of 

them in practically every chapter of these Notes. They are often denoted 

by symbols like ~, ~, so that their three characteristic properties take 

the form 

x ~ x, 

x ~ y => y ~ x, 

x ~ y & y ~ z => x ~ z. 

4.13. Exercise. On each set A, the identity relation {(x,y) | x = y E A}, 

the identically true relation {(x,y) \ x,y E A} and for each B C A the 
relation 

x ~a/b V -<=Nif x = y\/[xEBkyEB\ 

are all equivalence relations. 

4.14. Proposition. Suppose ~ is an equivalence relation on the set A, 
and for each x E A let 

[z,H = {y e A | x ~ yj (4.12) 

be the equivalence class" of x. We denote the set of all these equivalence 
classes by 

IA/~1 = {[x/~] G V{A) I X E A}. (4.13) 

It follows that for each x E A, [x/~\ 0, and 

x~y <=> [®/~] = [y/~]> (4.14) 

X?Ly <*=» [x/~\ n [y/~] = 0. (4.15) 

Each [r/~] is obviously a set, a subset of A, and it would be more appropri¬ 
ately named the “equivalence set” of x, but the classical terminology goes way 
back and has been frozen. 
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Conversely, for each family £ of non-empty and pairwise disjoint subsets 
of A such that A = (J £, the relation 

x ~ y 4=>-df (3X g £)[x g X & y g X] 

is an equivalence relation on A and [A/~] = £. 

Proof. Each [x/~] / 0, since x G [x/~]. By the transitivity and symmetry 
of 

t ~ x & x ~ y =4> t ~ y, t ~ y & x ~ y =4- t ~ x 

so that 

x~y =4 (V£GA)[t~x 4=4> £ ~ y] 

=► [*/~] = [y/H- 

This implies immediately both (4.14) and (4.15). For the converse, the 

reflexivity and symmetry of ~ are trivial. If x ~ y and y ~ z, then there 

exist sets X, Y in £ such that x,y G X, y, z G Y, so in particular y £ XDY 

and since the sets in £ are pairwise disjoint, we have X = Y, so x ~ H 

4.15. Exercise. What are the equivalence classes of the equivalence rela¬ 

tions in Exercise 4.13? 

Following up the same idea, we identify each ternary relation R on 

the sets A, B, C with the set of triples which satisfy it, so that a ternary 

relation on A, B, C is simply an arbitrary subset of A x B x C. We will 

use synonymously the notations 

R(x, y, z) <t=4>df (x, y, z) G R. 

As with relations, we represent functions in set theory by identifying 

them with their “graphs.” 

4.16. A function (or mapping or transformation) / : A —► B with 

domain the set A and range the set B is any subset f C (A x B) which 

satisfies the condition 

(Vx G A)(3!y G B)[(x,y) G /], 

in more detail, 

(Vx G A)(By G B)[(x,y) G /], 

(x, y) G / & (x,y') G / =4 y = y'. 

For each x G A and / : A -> 5, we will write, as usual, 

/(z) =df the unique y G B such that (x, y) G / 
= the value of / on the element x. 
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For any two sets A, B, we let 

(A - B) =df {/ C A x B | / : A - Bj (4.16) 

be the set of all functions from A to B. 

We will use all the familiar notations and abbreviations in connection 

with functions, e.g. sometimes writing the argument without the parenthe¬ 

ses or as an index, 

f(x) = fx = fx. 

The i—> notation is also useful; for example, an indexed family of sets is 

a function 

A = (i i—> Ai)i£j : I —y E 

for some / yf 0 and some E, where each Ai is a set. We refer to I as the 

index set and we define the union and intersection of the family in the 

usual way, 

U ieiAi =df {xe\JE\ (3iel)[xe Ai]}, 

DieIAi =df {xe\JE\ (VielKxeAi)}. 

We can also define the product of an indexed family, the set of functions 

which select for each ief one element from the value Ai, 

=<u {/ : I - UiaA> I (Vi e U[/W e A.]}. (4.18) 

Injections, surjections, bijections (correspondences), images and pre-ima¬ 

ges of functions are defined exactly as in the Introduction. We will be using 

the notations: 

(A >—> B) =df {/| / : A —y B fa / is an injection, one-to-one}, 

{A —yy B) =df {/| f : A —y B fa f is & surjection, onto B}, 

(A >—» B) =df (A y—y B) n (A —» B) (bijection, correspondence). 

We can use these to define equinumerosity and the size comparison condi¬ 

tion with no reference to objects outside our theory, 

A=CB 4=>df (3f)[f:Ay-yyB] 

A <c B 4=^>df (3f)[f \ A>~* B) 

(A^yB)^(b, (4.19) 

(Ay-*B)^Q. (4.20) 

4.17. Exercise. Prove from the axioms that A =c B =>- V(A) —c V(B). 

4.18. Exercise. Prove from the axioms that if A =c A! and B =c B', then 

A^B =CA'\±)B', A x B —c A' x B', (A -» B) =c (A' —> B'). 
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For each X C A, the restriction f \ X of a function f : A —> B is 

obtained by cutting / down so it is defined only on A", 

/ T X =df {(x,y) € / | a; G X}. (4.21) 

It is also useful to notice that the basic condition of “functionhood” 

Function(f) 4=>df (3A)(3B)[f G (A -+ £)] (4.22) 

is evidently definite. When we refer to a function f without identifying 

specific sets A, B such that f : A B, we will mean any set / which 

satisfies the condition Function(f). 

This identification in set theory of a function / : A B with the set 

of pairs {(x,y) E Ax B \ f(x) = y} has generated some controversy, be¬ 

cause we have natural “operational” intuitions about the notion of function 

and by “function” we often mean a formula or a rule of computation. For 

example, the two functions on the reals 

f(x,y) =df (x + y)2, 

g(x,y) =df x2 + 2xy + y2 

are identified in set theory, although they are obviously different as com¬ 

putation rules. There is no problem with this if we keep clear in our minds 

that the “definition” 4.16 does not replace the intuitive notion of function 

but only represents it within set theory, faithfully for the uses to which we 

put this notion within set theory, e.g. to define equinumerosity.3 

4.19. Cantor’s notion of cardinal numbers. Ironically, one of the most 

difficult, intuitive mathematical notions to represent faithfully in set theory 

is that of cardinal number, a most basic concept of the subject. Here is how 

Cantor introduced it in the same 1895 paper from which we quoted the 

“definition” of sets in the Introduction: 

Every set A has a definite ‘power,’ which we will also call 

its ‘cardinal number’. 

We will call by the name ‘power’ or ‘cardinal number’ of A 

the general concept, which by means of our active faculty of 

thought, arises from the set A when we make abstraction of its 

various elements x and of the order in which they are given. 

We denote the result of this double act of abstraction, the 

cardinal number or power of A by A. Since every element x, 

3Whether the intuitive notion of function-as-computation-rule can also be 

represented faithfully in set theory is an interesting problem, for which there 

does not exist yet a generally accepted solution. 
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Figure 4.2. Cantor’s construction of |A| for a four-element set. 

if we abstract from its nature becomes a ‘unit,’ the cardinal 

number A is a definite set composed of units, and this number 

has existence in our minds as an intellectual image or projection 

of the given set A. 

After some discussion, Cantor infers from this “definition” that cardinal 

numbers have the following two fundamental properties: 

A =c 2, (4.23) 

A =c B 3 = 1. (4.24) 

The first of these flows quite naturally from Cantor’s conception: the pro¬ 

cess of abstraction which associates with each x 6 A a corresponding “unit” 

ux evidently defines a correspondence x i—» ux between A and A. Cantor 

gives a brief argument for the second whose key phrase is that 

A grows, so to speak, out of A in such a way that from every 

element x of A a special unit of A arises. 

To get (4.24) out of this we must assume that the “special units of A” 

depend only on “how many” members A has and not the nature of these 

members, which begs the question of cardinality, but there it is. 

There is a third, more technical property of cardinal numbers, which 

Cantor uses routinely with no special mention to define and study op¬ 

erations which act on infinite families of sets: for every family of sets £, 

{X | X € £} is a set. Thus, however we understand Cantor’s construction, 

it is quite clear what we must do to represent it faithfully in set theory. We 

substitute modern notation for Cantor’s awkward double bar symbolism. 

4.20. Problem of Cardinal Assignment: to define 

the class of sets which satisfies 
an operation \A\ on 

A=c \A\, (4.25) 

II I 03 o 
II (4.26) 

for each £, {X | X e £} is a set. (4.27) 
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The problem is quite difficult and it was not solved until the twenties, by 

von Neumann, whose elegant construction uses both the Axioms of Choice 

and Replacement. We will present it in Chapter 12, as the culmination 

of a lot of work. In the meantime, notice that there are plenty of definite 

operations which satisfy (4.25) and (4.27), including the obvious |A| = A\ 

And as it turns out, these two properties suffice for the development of a 

very satisfactory theory of cardinality. 

4.21. Cardinal numbers (1). A (weak) cardinal assignment is any 

definite operation \A\ which satisfies (4.25), A =c \A\ and (4.27), i.e. for 

every family of sets £, {|X| | X G £} is a set. The cardinal numbers 

(relative to |A|) are its values, 

Card(n) 4=r- k E Card 4=f>df (3A)[ac = |A|], (4.28) 

A cardinal assignment \A\ is strong if in addition, for any two cardinal 

numbers k, X, 
k =c X <=> k = A, (4.29) 

which is easily equivalent to (4.26). 

We fix one, specific (possibly weak) cardinal assignment and we define 

the arithmetical operations on the cardinals as follows: 

K + A — df \k i±i A| =c K It) A, 

K • A =df |k x A| 

-
<

 

X
 o 

II 

=df l(A -*■ k)| — C (A A C) 

The infinitary operations are defined similarly:4 

Eie/'R =df \{(i,x) E I x\Ji£lKi\ cc e Ki}\, 

nieiK'i =df irw^i- 
The motivation is clear, e.g. the sum At + A is the “number of elements” in 

the set we get by putting together disjoint copies of /t and A. 

4.22. Exercise. There is only one choice for |0|, 

0 =df |0| = 0, (4-30) 

since only |0| = 0 satisfies 0 =c |0|. It is also convenient to set 

l=df|{0}|, 2 =df |{0,1}| (4.31) 

so we have handy names for the cardinals of a singleton and a doubleton. 

4It is traditional to use the cap Greek n to denote both the Cartesian product 
of sets and the cardinal operation of infinite product, and it does not really cause 

any confusion. 
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4.23. Exercise. For all cardinal numbers K\ —c K2, \\ =c A2, 

+ Ai =c K2 + A2, K'l ' Ai =c K2 ' A2, K^1 =c ■ 

4.24. Cardinal arithmetic. It looks quite silly to develop the theory of 

a weak cardinal assignment which could be just the identity \X\ = X, but 

the notation of cardinal numbers and the arithmetical operations on them 

is useful for expressing simply complex “equinumerosities.” Consider the 

formula 
fi;(A+M) =c (4.32) 

It looks obvious, it is true by Problem x4.15, and it expresses exactly the 

same fact as 

((A i±J (j,) k) =c (A —*• k) x (p —> k), (4.33) 

more simply, or so some would say. More significantly, (1) the systematic 

development of formulas like (4.32) leads to a cardinal arithmetic which in 

the end suggests new (and useful) facts about equinumerosities by analogy 

with ordinary arithmetic, and (2) when we do construct von Neumann’s 

strong cardinal assignment, we will have already proved all the interesting 

facts about cardinals with =c in place of = : all we will need to do is remove 

in our minds the subscript c from facts we already understand! 

The basic technique for proving identities of cardinal arithmetic is to use 

systematically (4.25) and its trivial consequence 

A=CB \A\ =c |B (4.34) 

In connection with the arithmetical operations on cardinals, the replace¬ 

ment properties of the simple Exercise 4.23 are also very useful. To prove 

the associativity of cardinal addition, for example, we compute: 

n + (A + fi) —c k l±J (A T p) 

—c k l±l (A i±i p) 

—c (k y A) 1+1 p 

=c (k + A) + p 

by def., 

by def. and 4.18. 

by a direct argument, 

reversing the steps. 

The mathematical essence of the proof is the alleged “direct argument,” 
which in this case is quite easy. 

To see how the more technical condition (4.27) comes into play, consider 
the equation 

lUie/^l =c (4.35) 

which should certainly be true when the sets in the family (z 1—> Ai)ieI are 

pairwise disjoint. To make sense of it, before trying to prove it, we must 

know that there is a function (z 1—> |^4j|), and that is exactly where (4.27) 
is used via the following. 
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4.25. Lemma. For every indexed family of sets A = (i i-> Ai)ieI, there 
exists a function f : I -*■ /[/] such that 

/(*) = |^4i| (* € /). 

Proof. By (4.27) with 

Z = {Al | ie/} = A[/], 

there exists a set IT which contains every \Ai\ for i G /, and we can set 

/ =df {(i,iw) e I x W | ic = |Ai|}. H 

As it happens, equations like (4.35) cannot be proved without the Axiom 

of Choice, so we will have little need of (4.27) before Chapter 8. 

4.26. Structured sets. A topological space is a set X of points endowed 

with a topological structure, which is determined by a collection 7 of subsets 

of X satisfying the following three properties: 

1. IjG T. 

2. A, B e 7 =* A n B G 7. 

3. For every family £ C 7 of sets in T, the unionset (J £ is also in 7. 

A family of sets 7 with these properties is called a topology on X, with 

open sets its members and closed sets the complements of open sets 

relative to X, i.e. all X \ G with G open. 

Notions like this of sets “endowed” with structure abound in mathemat¬ 

ics: there are graphs, groups, vector spaces, sheaves, manifolds, partially 

ordered sets, etc. etc. In each of these cases we have a set X, typically 

called “the space,” and a complex of related objects which impose a struc¬ 

ture on the space—functions, families of sets, other spaces with their own 

structure, etc. The pairing operation provides a simple and flexible way to 

model such notions faithfully in set theory. 

A structured set is a pair 

U = (A, S), (4.36) 

where A = Field(U) is a set, the field or space of U, and S is an arbitrary 

object, the frame5 of U. 

5It would be more suggestive to call S the structure of the structured set (A, §), 

but the word is heavily overloaded in logic and set theory and it is best to avoid 

attaching it to one more precise notion. Some people call “structures” what we 

have called “structured sets” here, at least when they are simple enough. 
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For example, a topological space is a structured set (A, T), where the 

frame T is a topology on X, as above. A group is a structured set 

U = (G, (e, -)) (4.37) 

where e G G and • : G x G —> G is a binary function, satisfying the group 

axioms, which do not concern us here. Notice that by the definition of triple 

(4.5), definition (4.37) is equivalent to 

U = (G,er). (4.38) 

It is quite common that the frame of a structured set is a tuple of objects, 

and then the structured set is also a tuple, with its field as the first element. 

We will meet numerous examples of this in the sequel. 

Following usual mathematical practice, we will systematically confuse a 

structured set with its field when the frame is understood from the context 

or is not relevant. For example, we will refer to “the topological space 

A” rather than “(A, T),” with “points” the members of A, “subsets” the 

subsets of A, etc. In the general case, the members of a structured set U 

are the members of Field(U), 

x G U 4=4>df x G Field(U), (4.39) 

the subsets of U are the subsets of Field(U), etc. Notice that the termino¬ 

logical convention (4.39) cannot possibly cause a misunderstanding: since 

we have (deliberately) not settled on a specific pairing operation—and have 

even left open the possibility that (A, S) may be an atom (!)—the statement 

x G (A, S) 

cannot possibly mean anything until we define it, and we just did this by 

(4.39). 

Problems 

The definition of ordered pair in the proof of 4.3 is due to the Polish 

set theorist and topologist Kuratowski. A few years before Kuratowski’s 

construction, the American analyst Wiener had discovered the following, 

somewhat more complex but interesting solution of this problem. 

x4.1. (Wiener) The properties 4.1 and 4.2 hold with the following defini¬ 

tion of pair: 

(®.y) =df {{0,1^}}, {{2/}}}- 

x4.2. Prove from the axioms that for all sets A, B, C, 
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x4.3. Prove from the axioms the theorem of Cantor 2.21, that for every 
set A, A <c V(A). Which axioms do you need? 

x4.4. For each function /, the domain of definition of / 

Domam(f) =df {x | (3y)[(x,j/) G /]} 

and the image of / 

Image(f) =df {y | (3x)[{x,y) G /]} 

are sets, and for each set B, 

Image(f) C B =4- / : Domain(f) —* B. 

As a consequence, 

Function^/) =4- / : Domain(f) —» Image(f). 

x4.5. A binary relation ~ C (A x A) is an equivalence relation on A if and 
only if there exists some set Q and a surjection 

7T : A —» Q (4.40) 

such that 

x ~ y 4=4- 7r(x) = 7r(y). (4.41) 

When (4.40) and (4.41) hold, we call Q a quotient of A by ~ and 7r 

a determining surjection of The proof of 4.14 yields the quotient 

\A/ r^j | and the determining surjection (x i—> [x/~]), but in specific cases 

there exist other quotients which help us understand better the structure 

of the equivalence relation at hand. 

x4.6. Suppose ~ is an equivalence relation on A and 7r : A —> A satisfies 

x ~ y 7r(x) = 7v(y) G [x/~]. 

Prove that 7r is a determining surjection witnessing that its image 7t[A] C A 

is a quotient of A by ~. 

x4.7. Fix an element xq G A in some set and define on the function space 

(A —> B) the relation 

f ~9 f(x0) = g{x0). 

Prove that ~ is an equivalence relation and find a determining surjection 

7r : (A —> B) —> B which witnesses that B is a quotient of (A —»• B) by 
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Figure 4.3. 

x4.8. Let xo yf X\ be two distinct elements in A and find a determining 

surjection which witnesses that (B x B) is a quotient of (A —*• B) by the 

equivalence relation 

/ ~ g «=Kif f(xo) = g(xo) & fix 1) = g(xi)- 

x4.9. Suppose ~ is an equivalence relation on A and / : A —> A is a 

function which respects i.e. 

x~y^ f(x) ~ f(y). 

Let Q be any quotient of A by Prove that there exists a unique function 

/* : Q —> Q such that the diagram in Figure 4.3 commutes, i.e. 7if = f*n, 

f*(nx) = 7r(/(x)), (x E A), 

where 7r : A —> Q is a determining surjection. 

x4.10. For all cardinal numbers, ft, fi, 

ft + 0 =c ft, ft ■ 0 —c 0, ft ■ 1 =c ft. 

x4.11. For all cardinal numbers ft, A, y,, 

ft + (A + y) =c (k + A) + y, 

ft A =c A -(- k. 

x4.12. For all cardinal numbers ft, A, y, 

ft-(X-y) =c («-A) ■ y, 

ft • A =c A • ft, 

ft • (A + y) =c k • A -t- ft • y. 

x4.13. For all cardinals ft, |P(«)| =c 2*. 

x4.14. For all cardinal numbers ft, X, y, 

ft c I5 ft c fti ft —c ft ' ft' 
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x4.15. For all cardinal numbers «, A, /i, 

(«-a r =c K^ ■ 

=c KX-K», 

=c KX». 

x4.16. For all cardinal numbers Ky A, ^ 

f CJ 
V

I k T A <c fi —F A, 

^ —c ft — y k ■ A <c n ■ A, 

A ^ c ft ^ KX <c K^y 

AC ^ r A )> <c AT 

x4.17. For all A, B and all cardinals k, A, 

Y\i£A^ = b), n<eA»= kA- 
x4.18. Suppose a ^ b are two distinct objects and na, Kb are cardinals, 
and prove that 

Ka + Kb =c J2ie{a,b}Ki’ 

Ka ' Kb =c riie{a,6}Kj- 

x4.19. Prove that for all indexed families of cardinals, 

K =c ZieiK ' 

x4.20. Show that k ■ A = 0 4=> k = 0 V A = 0. Show also one of the 
directions of the equivalence 

rU/«; = 0 4=4 (3i e 7)[«i = 0]. (4.42) 

(If you think you can show both directions of (4.42), think again and find 

your error, since one direction requires the Axiom of Choice.) 

x4.21. The notion of equivalence according to Zermelo 3.27 coincides with 

equinumerosity, i.e. 

A =c B 4=4 A ~z B. 

The definition 2.6 of infinite and finite sets refers to the set N of natural 

numbers and we cannot study these concepts axiomatically before we give 

a definition of N directly from the axioms. There is, however, another, 

simpler definition of these notions which we can give now and which we 

will later prove (with the Axiom of Choice) equivalent to 2.6. 
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Figure 4.4. Zermelo’s proof of the Schroder-Bernstein Theorem. 

4.27. Definition. A set A is infinite according to Dedekind if there 

exists an injection 

f :A>^B CA 

from A into a proper subset B C A (i.e. B ^ A). If A is not Dedekind- 

infinite, then it is Dedekind-finite. 

x4.22. If A is Dedekind-infinite and A =c B, then B is also Dedekind- 

infinite. 

x4.23. If A is Dedekind-finite, then every subset of A is also Dedekind- 

finite. 

x4.24. Every set I which satisfies the conditions 

0 E /, (\/x)[x G / =>• {x} E I] 

is Dedekind-inhnite. 

Most of the properties of Dedekind-finite sets require the Axiom of Choice 

for their proof. Here is one which does not, but it is quite difficult. 

*x4.25. If A, B are Dedekind-finite, then so is their union. 

The classical proof of the Schroder-Bernstein Theorem 2.24 uses induc¬ 

tion on the natural numbers and we cannot justify it now. In the next 

two problems we outline a very different proof (due to Zermelo), somewhat 

opaque in its motivation but elegant, short and in no way dependent on 

the natural numbers. 

*x4.26. If A' C B C A and A =c A!, then also A =c B. Hint: Suppose 

/ : A >—» A' is a correspondence which witnesses that A =c f[A\ = A', and 

Q = B\f[A) 
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is the set of objects in B which are not in the image of A by /. We define 

the family of subsets of A 

T={X| QUf[X]CX} 

and we first verify that its intersection is a member of it, 

T= df n^eT, 

so that Q U f[T] C T. With a bit more work we can show that, in fact, 

T = Q U /[T]; this identity then implies that 

B = T A (f[A\ \ f[T]), 

which completes the proof, since T and (f[A] \ f[T]) are disjoint sets and 

their union is (easily now) equinumerous with A. 

*x4.27. Use Problem *x4.26 to give a proof of the Schroder-Bernstein The¬ 

orem from the axioms. Hint: If / : A >—»■ C and g : C >-> A, then 

A =c gf[A] C g[C] C A, g[C} =c C. 



♦ 



Chapter 5 

THE NATURAL NUMBERS 

Our fundamental intuitive understanding of the natural numbers is that 

there is a (least) number 0, that every number n has a successor Sn, and 

that if we start with 0 and construct in sequence the successor of every 

number 

0, SO = 1, Si = 2, S2 = 3, ... 

forever, then in time we will reach every natural number. In set theoretic 

terms we can capture this intuition by the following axiomatic characteri¬ 

zation. 

5.1. Definition. A system of natural numbers is any structured set 

(N, 0, S) = (TV, (0, S)) 

which satisfies the following conditions. 

1. N is a set which contains the element 0, 0 G N. 

2. S is a function on N, S : N —> N. 

3. S is an injection, Sn = Sm =>■ n = m. 

4• For each n E N, Sn 0. 

5. Induction Principle. For each X C N, 

[0 Gl&(Vn6 IV) [n e X => Sn e X}] ==> X = N. 

These obvious properties of the natural numbers are called the axioms 

of Peano in honor of the Italian logician and mathematician who first 

proposed them as an axiomatic foundation of number theory. Most signif¬ 

icant among them is the Induction Principle, whose typical application is 

illustrated in the proof of the next lemma. 

5.2. Lemma. In a system of natural numbers (N, 0, S), every element n 

0 is a successor, 

nfi 0 =>■ (3m € N)[n = Sm], 
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and for each n, Sn ^ n. 

Proof. To prove the first assertion by the Induction Principle, it is enough 

to show that the set 

X = {n e N | n = 0V (3m G iV)[n = Sm]} 

satisfies the conditions 

0 G X, (Vn € N)[n G X =>• Sn G X], 

and both of these are obvious from the definition of X. In the same way, 

for the second assertion it is enough to verify that 50 ^ 0 (which holds 

because, in general, Sn ^ 0) and that Sn ^ n =4* SSn ^ Sn: this holds 

because S is one-to-one, so that SSn — Sn => Sn = n. H 

Number theory is one of the richest and most sophisticated fields of 

mathematics and it is by no means obvious that it can be developed on the 

basis of these five, simple properties; in fact, they do not suffice, one also 

needs to use set theory which (in its naive form) Peano took for granted, 

as part of “logic.” Here we will only show that the axioms imply the first, 

most basic properties of addition, multiplication and the ordering on the 

natural numbers, which is all we need. The proofs we will give, however, are 

characteristic samples of the use of the Peano axioms in the more advanced 

parts of the theory of numbers. 

If number theory can be developed from the Peano axioms, then to give 

a faithful representation of the natural numbers in set theory, it is enough 

to prove from the axioms the following two theorems. 

5.3. Existence Theorem for the Natural Numbers. There exists at 

least one system of natural numbers (N,0,S). 

5.4. Uniqueness Theorem for the Natural Numbers. For any two 

systems of natural numbers (iVi,0i,5i) and (iV2,02, 52), there exists one 
(and only one) bijection 

7r : Ni >—» iV2, 

which satisfies the identities 

tt(0i) = 02, 

7r(5in) = 527r(n) (n G Ni). 

A bijection 7r which satisfies these identities is an isomorphism of the two 

systems (Nx,0i,5i) and (iV2,02,52), so that the theorem asserts that any 
two systems of natural numbers are isomorphic. 

The Existence Theorem is very simple and we can prove it immediately. 
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5.5. Proof of the existence of natural numbers, 5.3. The Axiom of 

Infinity (VI) guarantees the existence of a set / such that 

0 G I, 
(Vn)[n G I =t> {n} G I]. 

Using this /, first we define the family of sets 

3 = {VC/|0gW& (Vn)[n G X =*► {n} G V]} 

so that obviously I G J, and then we set 

A' = n 0 = 0, S = {(n,m) G N x N | m = {n}}. 

To finish off the proof, it suffices to verify that this triple (N, 0, S') is a 

system of natural numbers. To begin with, N G 3, because X eJ => 0 E X 

and hence 0 G f) J = N, and by the same thinking, 

n G N ==> (VX G 0)[n G X] => (VV G J)[{n} G X] =l> {n} G N. 

This implies immediately the first two of the Peano axioms, the next two 

hold because (in general, for all n, m) {n} = {m} => n = m and {n} ^ 0, 

and the Induction Principle follows directly from the definition of N as an 

intersection. H 

To prove the Uniqueness Theorem 5.4, we need the next fundamental 

result of axiomatic number theory. 

5.6. Recursion Theorem. Assume that (N,0,S) is a system of natural 

numbers, E is some set, a G E, and h : E —> E is some function: it 

follows that there exists exactly one function f : N —► E which satisfies the 
identities 

/(0) = a, 

f(Sn) = h(f(n)), (n G N). 

The Recursion Theorem justifies the usual way by which we define func¬ 

tions on the natural numbers, by recursion1 (or induction): to define 

/ : N —> E, first we specify the value /(0) = a and then we supply a func¬ 

tion h : E —> E which determines the value f(Sn) of / at every successor 

Sn from the value /(n) at its predecessor n, f(Sn) = h(f(n)). Our basic 

intuition about the natural numbers with which we started this chapter 

1The terms “recursion” and “induction” are often used synonymously in math¬ 

ematics. We will follow the more recent convention which distinguishes recursive 
definitions from inductive proofs. 
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clearly justifies such definitions, so we should also be able to justify them 

on the basis of the axioms. 

Before we establish the Recursion Theorem, let us use it in the next proof 

which is a typical example of the way it is applied. 

5.7. Proof of the uniqueness of the natural numbers, 5.4. We as¬ 

sume that (Ah, Oi, Si) and (Ah, O2, S2) are systems of natural numbers. By 

the Recursion Theorem on (Ah, Oi, Si) with E = Ah, a = 02, h = S2, there 

exists exactly one function n : Ah —> Ar2 which satisfies the identities 

tt(Oi) = 02, 

7r(Sin) = S2n(n) (n G Ah), 

and it suffices to verify that this 7r is a (one-to-one) correspondence. 

(1) 7r is a surjection, n : Ah —» Ah- Obviously O2 G 7r[Ah] since O2 = 

7r(0i), and 

m G 7r[Ah] ==> (3n G Ni)[m = 7r(n)] 

=> 7r(Sin) = S2n(n) - S2m 

==> S2m G 7t[ATi] , 

so that by the Induction Principle on (AT2,02, <S2), ^Wi] = N2. 

(2) 7r is an injection, n(n) = n(n') => n = nh It suffices to verify that 

the subset of Ah, 

X — {n G Ni | (Vra G Ah)[7r(ra) = 7r(n) =>• m = n]}, 

satisfies the conditions 

Oi G X, n G X r~ 5hn G Af, 

since together with ifie Induction Principle on (Ah, (fi, Sh), these imply 

X = Ni, which means that 7r is an injection. For the first condition, 

m 7^ Oi => m = Sim1 by Lemma 5.2 

==> ^r(m) = -^(A'lm') = S2n(m') ^ 02, 

so that ix(rn) = 7r(01) = 02 =>■ m = 0\ and Oi G X. For the second 

condition, it is enough to show that 

n G X & 7r(m) = 7r(Sjn) m = Sin. 

By the hypothesis 

7r(m) = n(Sin) = S2n(n) ^ 02, 
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which implies that m ^ Oi, since 7r(Oi) = 02 and Oi <E X. By Lemma 5.2 
again, m = S\m' for some m' E N\, 

7r (m) = n(Sim') = 5'27r(m/) 

and the hypothesis n(m) = n(Sin) yields 

S2n(m') = S2TT(n), 

which implies 7r(m/) = 7r(n). This, in turn, implies m! = n because n E X, 
so that m — Sim' = Sin, the required conclusion. H 

5.8. Proof of the Recursion Theorem. Assume the hypotheses and 
define first the set A of all approximations of the function which we want 
to construct: 

p E A Function(p) (5.1) 

& Domain(p) C X & Image(p) C E 

& 0 E Domain(p) & p(0) = a 

& (Vn E N)[Sn E Domain(p) 

=>- n E Domain(p) & p{Sn) = h(p(n))]. 

We need to prove that there is exactly one function f : N —+ E (with 
domain of definition all of N) which belongs to A. 

Lemma. For all p,q E A and n E N, 

n E Domain{p) Cl Domain(q) =>• p{n) = q{n). 

Proof. The set 

X = {n E N | (Vp, q E A)n E Domain(p) fl Domain(q) => p(n) = q(n)} 

clearly contains 0, since every p E A satisfies p(0) = a. If 

nEX&pEA&qEA&SnE Domain(p) Cl Domain(q), 

then 

p(Sn) = h(p(n)) because p E A, 

= h(q(n)) because p(n) = <?(n), 

= q(Sn) because q E A, 

so that n E X =► G X, and hence, by the Induction Principle, X = X 

and the Lemma is true. 
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The Lemma implies immediately that at most one function / : N —> E 

belongs to .A, so to complete the proof of the theorem we need only show 

that at least one such / exists. This is the union 

/ = (JA = {(n,w) | (Bp G A)[n G Domain(p) & p(n) = w]}, 

which is a function, because 

(n,w) G / & (n,w') G f => (Bp, q G A)[(n, w) E p & (n, w') G q] 

=$■ w — w' from the Lemma, 

and then the definition of A and a similar calculation shows that / G A. 

The only thing left is to verify that Domain(f) = N, and for that we will 

use once more the Induction Principle. To begin with, 0 G Domain(f), 

since 0 G Domain(p) for every p G A. If n G Domain(f), then there exists 

some function p G A with n G Domain(p), and hence (easily) 

q = p U {(Sn, h(p(n)))} G A, 

so that Sn G Domain(q) C Domain(f). B 

5.9. The Natural Numbers. We now fix a specific system (N, 0, S) of 

natural numbers whose members we will henceforth call numbers or in¬ 

tegers. Following Cantor, we denote the cardinal number of N by the first 

Hebrew letter, 

Ko =df \N\. (5-2) 

Later we will meet its followers Ki, K2, etc. Functions a : N —> A with do¬ 

main N are called (infinite) sequences and we often write their argument 

as a subscript, 
an = a(n) (n G N, a : N —> A). 

An obvious choice for N would be the system which we constructed in the 

proof of the Existence Theorem 5.3, where 0 = 0, 

iV = {0,{0},{{0}},...} 

and Sn = {n}. Another choice which some would prefer on philosophical 

grounds is to assert that there exists, in fact, a set 

JV = {0,1,2,...} 

of the “true natural numbers,” which are not sets, and the successor func¬ 

tion S is nothing like the artificial (n 1—> {n}), but it is the natural function 

which associates with each number n “the next number” Sn. Zermelo’s the¬ 

ory allows such non-sets (like the “true numbers”) as atoms and requires 

only one thing: that the system of natural numbers satisfies the Peano ax¬ 

ioms, something which every serious person will surely grant. As far as the 

mathematical theory of numbers and sets is concerned, these two (and all 

other) choices of the objects we will call numbers are equivalent, since we 

will base all our proofs on the Peano axioms alone. 
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The Recursion Theorem is easier to apply in the following form. 

5.10. Corollary. Recursion with parameters. For any two sets Y, E 
and functions 

g :Y -»• E, h: ExY -► E, 

there exists exactly one function f : N xY —► E which satisfies the identities 

/(0, y) = g(y) (yeY), 

/(n + I,?/) = h(f(n, y), y,) (yeY,neN). 

Proof. For each y e Y, we define the function hy : E —> E x N by the 
formula 

hy(w) = h{w,y), 

and by the Recursion Theorem we know that there exists exactly one func¬ 
tion 

fy:N^ExN 

which satisfies the identity 

fy( °) = g(y)> 

fy{n + l) = hy(f(n)) = h(f{n),y). 

It follows immediately that the function / : N x Y —»• E defined by the 

formula 

f(n, y) =df fy(n) (y e Y,n e N) 

satisfies the conclusion of the Corollary. H 

5.11. Addition and multiplication. The addition function on the nat¬ 

ural numbers is defined by the recursion 

n + 0 = n, 

n + (Sm) = S'(n-fra), 
(5.3) 

and multiplication is defined next, using addition, by the recursion 

n ■ 0 = 0, 

n ■ Sm = (n • m) + n. 
(5.4) 

In more detail, we know from 5.10 that there exists exactly one function 

/ : N x N —> N which satisfies the identities 

/(0, n) = gin), 

f (Sm, n) = h(f(m,n),n), 
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where the functions g and h have been given as sets of pairs, 

g = {(n,n) G iV x N | n G N}, 

h — {((z,n),w) G (N x N) x N \ w = Sz}, 

and we define addition by 

n + m = /(m, n), 

i.e. + = {((n,m),w) | ((m,n),w) G /}. Such scholastic details do not 

enhance understanding (rather the opposite) and we will avoid them in the 

future. 

5.12. Theorem. Addition is associative, i.e. it satisfies the identity 

(n + to) + k — n + (to + k) (5.5) 

Proof. First for k = 0, 

(n + m) + 0 = n + m = n + (m + 0), 

using twice the identity w + 0 = w directly from the definition of addition. 

Inductively, assuming that for some k 

(n + m) + k = n + (m + k), (5.6) 

we compute: 

(n + to) + Sk S((n + m) + k) 

S(n + (m + k)) by (5.6) 

n + S(m + k) 

n + (m + Sk) 

where the steps we did not justify follow from the definition of addition. H 

The commutativity of addition is not quite so simple and requires two 
lemmas. 

5.13. Lemma. For every natural number n, 0 + n = n. 

Proof. By induction, 0 + 0 = 0 follows from the definition, and if 0 + n = n, 
then 0 + Sn = S(0 + n) = Sn. -| 

5.14. Lemma. For all n, m, n + Sm = Sn + m. 

Proof. By induction on m, first for m = 0, immediately from the definition: 

n + £0 = S{n + 0) = Sn = Sn + 0. 
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At the induction step, we assume that for some m 

n + Sm = Sn + m 

and we must show that 

Compute: 

n + SSm = Sn + Sm. 

n + SSm S(n + Sm) 

S(Sn + m) 

Sn + Sm 

by the definition 

from (5.7) 

by the definition. 

(5.7) 

H 

5.15. Theorem. Addition is a commutative function, i.e. it satisfies the 
identity 

n + m — m + n. 

Proof is by induction on m, the basis being immediate from Lemma 5.13. 

At the induction step, we assume that for some specific m 

and we compute: 

n + Sm 

n + to = m + n (5.8) 

S(n + m] ) by the definition w 

S(m + n] ) from (5.8) 

m + Sn by the definition 

Sm + n by Lemma 5.14. H 

5.16. Exercise. For every natural number n, the function (s n + s) is 

one-to-one, so that n + s = n + t => s = t, and in particular 

n + s = n ==> s = 0. 

5.17. Definition. A binary relation < on a set P is a partial ordering 

if it is reflexive, transitive and antisymmetric, i.e. for all x, y, 

x < x, reflexivity 

x <y & y < z =!> x < z, transitivity 

x <y h y <x =>• x = y, antisymmetry. 

In connection with partial orderings we will also use the notation 

x < y <t=hif x < y & x f y. 
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The partial ordering < is total, linear, or simply an ordering, if, in 

addition, any two elements of P are comparable in <, i.e. 

(\/x,y £ P)[x < y My < x], 

or equivalently 
(\/x,y £ P)[x <yV x = y\/ y < x\. 

5.18. Definition. The binary relation < on P is a wellordering of P, 

if it is a total ordering of P and, in addition, every non-empty subset of P 

has a least element, 

(VX C P)[X yf 0 =k (3a: £ X)(Vy £ X)[x < y]]. 

Correct English would have us call these “good orderings,” and in fact 

this is what they are called in every other language, but the awkward 

“wellordering” has been established so firmly that it is hopeless to try and 

change it. 

5.19. Definition. The order relation < on the natural numbers is defined 

by the equivalence 

n < m <=t-df (3s) [n + s = m\. 

The most basic property of < is: 

5.20. Lemma. For all natural numbers n, m, 

n < Sm <=r- n < mV n — Sm. 

Proof. If n < Sm, then there is some t such that n + t = Sm by the 

definition, and we consider two cases. Case (1), t = 0. Now n + 0 = Sm, 

hence n = Sm. Case (2), n + t = Sm for some t 7^ 0. Now, by (5.2), t = Ss 

for some s, so that n + Ss = Sm, hence S(n + s) = Sm, hence n + s = m 

because S is an injection and hence n < m. The converse direction of the 

Lemma is easier. H 

5.21. Theorem. The relation < on the natural numbers is a wellordering. 

Proof. Reflexivity is immediate from n + 0 = n and transitivity holds 

because n-\-s = m&zm + t = k n + (s + t) = k. To prove antisymmetry, 

notice that if n + s = m and m + t = n, then n-\-(s + t) = n and by Exercise 

5.16 we have s +1 = 0; this implies t = 0 (otherwise s + t is a successor) 
and hence m — n. 

Proof of linearity. We show that (Vn)[n <mVm<n],by induction on 

m. Notice first that for every n, n < Sn, because n + SO = Sn. 
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Basis. For every n, 0 + n = n and hence 0 < n. 

Induction step. We assume the induction hypothesis 

(Vn) [n < m V m < n] 

and show that for each n, n < Sm V Sm < n. The induction hypotheses 

naturally splits the proof up in two cases. If n < m, then n < Sm because 

m < Sm and < is transitive. If m < n, then for some t, m + t = n, and 

again we have two cases: if t = 0, then n = m < Sm, and if t ± 0, then 

t = Ss for some s, so m + Ss = n and from (5.14) Sm + s = n, hence 
Sm < n. 

Proof of the wellordering property. Towards a contradiction, suppose that 
X is non-empty but has no least element and let 

Y = {n e N | (Vm < n)[m £ W]}, 

so that obviously 

Y nX = 0. (5.9) 

It is enough to show that 0 G Y and n G Y Sn £ Y, because then 

Y = N by the Induction Principle and hence X = 0 by (5.9), which is a 
contradiction. 

Basis. OgY. Since 0 is the least number, we must have 0 ^ X (otherwise 

X would have a least member) and also m < 0 m = 0 ==>■ m <£ X, so 
OeY. 

Induction Step. The induction hypothesis n gY and the definition of 

Y imply that (Vm < n)m £ X, and then we know from Lemma 5.20 that 

m < Sn =>• m < nV m = Sn. Hence to verify that Sn E Y, it is enough 

to show that Sn £ X. But if Sn were a member of X, then it would be the 
least member of X since 

m < Sn <S=^> m < n by (5.20) 

=$■ m ^ X by the ind. hyp. 

This shows that < has the wellordering property and completes the proof 

of the theorem. H 

About wellorderings, in general, we will say a lot in Chapter 7. In the 

special case of the natural numbers, the fact that N is well ordered by < 

is another manifestation of the Induction Principle. 

Before we begin studying the applications of recursion to the theory of 

finite and countable sets, we should recall the warning issued in 3.23: some 

of them require the Axiom of Choice and we will not be able to justify 

them axiomatically until we add that axiom to our system in Chapter 8. 
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Most, however, can be established by judicious applications of the general 

method of proof which can be symbolized by the coupling 

recursive definition — inductive proof. 

First we repeat the definitions of Chapter 2, with the axiomatic notions 

now at our disposal. 

5.22. Definition. For any two natural numbers n < m, the (half-open) 

interval from n to m is the set 

[n, m) =df {k E N \ n < k & k < m}. 

5.23. Exercise. For each n, [n,n) = 0, and for all n < m, 

[n, Sm) = [n, m) U {m}. 

5.24. Definition. A set A is finite if there exists some natural number n 

such that A =c [0,n), infinite if it is not finite and countable if it is finite 

or equinumerous with N. The finite cardinals are the cardinal numbers 

of finite sets. 

The next crucial property of finite sets is the first, basic result in the 

field of combinatorics. 

5.25. Pigeonhole Principle. Every injection f : A >-* A on a finite set 

into itself is also a surjection, i.e. f[A] — A. 

Proof. It is enough to prove that for each natural number n and each g, 

g : [0, m) [0,m) => 9([0,m)] = [0,m), (5.10) 

for the following reason. If / : A >—>• A is an injection and ir : A >—»■ [0, m) 

witnesses that A is finite, we define g : [0, m) —> [0, m) by the equation 

9(a) = 7r(/(7r Hi))) (i < m), 

so that (easily) 

f(x) = TT~1(g(n(x))) (x e A). (5.11) 

Now g is an injection, as a composition of injections, so that from (5.10) it 

is a bijection; but then / is also a bijection, because it is a composition of 
bijections, by (5.11). 

The proof of (5.10) is (naturally) by induction on m. It is important to 

note at the outset that what we will show is the general assertion 

(Vh) [h : [0, to) >-> [0, to) =4> h[[0, to)] = [0, to)] , (5.12) 
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0 1 2 u ■ ■ ■ m — 1 m 

0 1 2 ••• v ••• m — 1 m 

Figure 5.1. Case 3 in the Pigeonhole Principle proof. 

because in the verification of the induction step for some g we will need 
the induction hypothesis for various other h’s. 

Basis. (5.10) is trivial when m = 0,1, because only one function g : 
[0,to) —> [0,m) exists in these cases and it is a bijection. 

Induction Step. We assume (5.12) for some m > 1 and we proceed to 
prove that every injection 

g : [0, Sm) >—[0, Sm) 

is a surjection. From Exercise 5.23 we know that 

[0, Sm) = [0, m) U {to}, 

and the proof naturally splits into three cases. 

Case (1). m ^ Image(g). Consider the restriction h of g to the interval 

[0,m), which is defined by 

Hi) = 9{i) (i<m), 

i.e. as a set of pairs, h = g \ {(m,g(m))}. This takes all its values in [0, to) 

and it is certainly an injection, so the induction hypothesis holds for it 

and hence /i[[0,m)] = [0, to). This means that g[[0,m)] = [0, to), which is 

absurd, because the Case Hypothesis implies g(m) < to so that the value 

g(m) is taken on twice and g is not an injection. 

Case (2). g{m) = to. By the same reasoning, the restriction h is a 

bijection h : [0, to) >—» [0, to), and hence (trivially now) g is also a bijection. 

Case (3). There exist numbers u,v < to such that 

g(u) = to, g(m) = v. 

In this most interesting case, we define the function h' : [0, to) —>• [0, to) by 

the formula 
.// n _ / g(i), if i < to & i ^ u, 

^ { v, if i = u. 

Now h' is an injection, because it agrees with g at all arguments except u, 

where it takes the value v; and v ^ g(j), for every j < to, because g(m) = v 

and g is an injection. The induction hypothesis applied to ti implies that 

h'[[0,m)] = [0, to), and using this (easily), g[[0, Sm)} = [0, Sm). H 
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As a first application we can give a rigorous proof of the following “ob¬ 

vious” result. 

5.26. Corollary. The set N of natural numbers is infinite. 

Proof. The function (n Sn) is a non-trivial injection of N into N. H 

It follows that “infinite, countable” means precisely “equinumerous with 

N," in accordance with our basic intuitions: a set A is countable, infinite 

just when \A\ —c K0. 

5.27. Corollary. For each finite set A, there exists exactly one natural 

number n such that A =c [0, n). We let 

#(A) =df the unique n G N[A =c \A\ =c [0, n)] (5.13) 

and we naturally call #(A) the number of elements of A. 

Proof. If A —c [0, n) and A =c [0, m) with n < m, then [0, n) —c [0, m) and 

the correspondence 7r : [0, m) >—> [0, n) contradicts the Pigeonhole Principle, 

since [0, n) is a proper subset of [0, m). H 

From this point on we can proceed to prove all the basic properties of 

finite sets by induction on the number of elements in them, which is essen¬ 

tially their cardinal number. The method is illustrated in the problems. 

The proof of the Schroder-Bernstein Theorem 2.24 used another variant 

of definition by recursion. 

5.28. Simultaneous Recursion Theorem. For each two sets E\, E2, 

elements a\ G E\, 02 G E2 and functions h\ : E\ xE2 —► E\, h^ '■ E\ XE2 —^► 
E2, there exist unique functions 

fi:N^Eu f2:N^E2 

which satisfy the identities 

/i(0) = au f2{ 0) = a2, 

/i(n + l) = hi(/i(n),/2(n)), /2(n + l) = M/i(n),/2(n)). 

Proof. Apply the Recursion Theorem 5.6 to E = E\ x E2, a = (ai,a2) 
and 

h(wi,w2) = w2), h2(wi,w2)) 

to get a function / : N —> E\ x E2 and then set 

/i(n) = First(f(n)), /2(n) = Second(f(n)), 

using the component functions of Exercise 4.5. H 
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The functions (n An) and (n i—> Bn) in the proof of 2.24 are defined 

by simultaneous recursion with E\ — V(A) and E2 = V{B) and the rest of 

the argument is elementary and can be based on the axioms. (Check it!) 

5.29. Strings. In Chapter 2 we used the n-fold Cartesian product An to 

represent sequences of length n from a given set A. This is not convenient 

when we wish to study the set of all finite sequences from A, and it is better 

to represent these using functions on initial segments of N. For each set A, 

we define the set of finite sequences, words or strings from A by 

A00 =df {u C N x A | Function(u) & Domain(u) = [0, n)}, 1 

A* =df U~o^, ( j 

and we let 

lh(u) =df max{i \ i = 0 V i — 1 G Domain(u)} (u G A*), (5.15) 

be the length of the string u, so that lh(u) = 0 exactly when u — 0 is the 

empty string. We also let 

u C v <=>dfuCv (u,v £ A*), (5.16) 

and we call u an initial segment of v if u C v. If ao, • • •, an-i are elements 

of A, we let 

• • • j =df {(0i ^0)5 • • • > 1) &n — l)} (5-17) 

be the sequence of these objects and, in particular (with n = 0,1), 

< > = 0, <a> =df {(0, a)}. (5.18) 

For any two strings u, i>, the string 

u*v = <«(0),...,u(lh(u) - 1), u(0),..., v(lh(v) - 1)> (5.19) 

is the concatenation of the strings u and v. For each / : N —> A and each 

natural number n, 

J(n) =df / r [0,n) = {(*,/(*)) | i<n} (5.20) 

is the restriction of / to the initial segment [0,n) of N. For example, 

7(0) = 0, 7(i) = {(o,/(o))},..., 

and we can recover / from /, since 

1 < n j\i) = f(n)(i). 
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Figure 5.2. A pairing of N x N with N. 

5.30. Definition. For each cardinal number n and each n £ N, we set 

5.31. Proposition. For each countably infinite set A and each n > 0, 

A =c A x A =c A^ =c A*. 

As equations of cardinal arithmetic, these read: 

(5.21) 

Proof. The inequalities from left to right are trivial, so by the Schroder- 

Bernstein Theorem it is enough to show N* <c N. We need to start with 

some injection 

p : N x N N, (5.22) 

suppose we have one. Using it, we define by recursion an injection 7in : 

iV(n+1) >—>• N, for each n, so that 

ir0(u) = u{ 0), 

7Tn+i(w) = p(7Tn(tt \ [0,n + l)),u(n + 1)); 

in full detail (for the last time), this comes from the Recursion Theorem, 
by setting 

7T0 = {(«, w) | u £ (0, w) £ u}, 

TTn+1 = {(u,w) I u £ N{n+2),w = p(irn(u \ [0,n + l),u{n + 1))}. 

Finally, the function 

n(u) = (lh(u) - 1,7Tih(u)-i(u)) 
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proves that IJ^LoN('n+1'> <c N, from which the full result follows immedi¬ 

ately by using p once more. As far as choosing a p to start with, everyone 

has their favorite way of coding pairs and Cantor’s illustrated in Figure 2.2 

will certainly do. Here is another one, due to Godel and pictured in Figure 
5.2: 

p(m, n) 

(to + l)2 — 1, if m — n, 

n2 + to, if m < n, 

m2 + m + n, if n < to. 

The proof that it actually works is fun. H 

5.32. The continuum. The classical notation for the cardinal of V(N) is 

c=df \V(N)\ =c2K°. (5.23) 

The elementary facts about c are easy to establish, using the properties of 

Ko in (5.21) and elementary cardinal arithmetic. For example, 

c-c=c 2*o. 2^o =c 2ko+^o =c 2^0 =c c. 

The Schroder-Bernstein Theorem is also very useful, for example 

c =c 2^° <c K0Ko <c cK° =c (2Ko)K° =c 2K° Ko =c 2K° =c c, 

which by Schroder-Bernstein implies that 

c =c K0K° =c cK°. 

Some of the problems ask for computations of this type. On the other hand, 

the equinumerosity 7Z =c V{N) will follow from the axioms easily once we 

have defined the reals TZ in Appendix A, so the Continuum Hypothesis is 

equivalent to the proposition 

(CH) (V« <c c)[k <c K0 V ft =c c]. 

We will discuss CH in Chapter 10, it is not that easy to resolve. 

Problems 

x5.1. Multiplication on the natural numbers is associative. 

x5.2. Multiplication on the natural numbers is commutative. 

x5.3. Exponentiation on the natural numbers is defined by the following 

71° = 1, 

recursion on m: 
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Show that it satisfies the following identities (for n^O): 

n(m+k) _ nm-nk, 

n(m'k) - (nrn)k. 

x5.4. Suppose (iVi, 0i, Si) and (N2, 02,S2) are systems of natural num¬ 

bers, +1, -i, +2, '2 are the functions of addition and multiplication in these 

systems, and n : N\ >—»■ N2 is the “canonical” isomorphism between them 

according to Theorem 5.4. Show that 7r is an isomorphism with respect to 

addition and multiplication also, i.e. for all n,m £ Ni, 

n(n +i m) — ir(n) +2 n(m), n(n -i m) = n(n) •2 n(m). 

x5.5. Suppose (iVi, 0i, 5i) and (N2,02,S2) are systems of natural num¬ 

bers, <i, <2 are the respective wellorderings and 7r : N± >—» N2 is the canon¬ 

ical isomorphism. Show that n is order preserving, i.e. for all n,m E Ni, 

n <i m <s=^> 7r(n) <2 n(m). 

x5.6. Every subset B of an interval [0, n) is equinumerous with some [0, m), 

where m < n. It follows that if A is finite and B C A, then B is finite and 

#(5) < #(A). 

Every cardinal number is a set; a finite cardinal ac is a cardinal number 

which is a finite set. 

x5.7. Prove that for every finite cardinal number k, 

« =c [0, #(«)). 

x5.8. Show that for all n, m, [0, m) =c [n, n + m) and infer that the union 
of two finite sets A, B is finite and such that 

A n B = 0 =* #(d U B) = #(A) + #(B). 

It follows that for any two finite cardinals k, A, 

#(k + A) = #(«) + #(A). 

x5.9. If £ is a finite set and every member of it is a finite set, then the 
unionset (J £ is also finite. 

x5.10. The product of two finite sets A, B is finite and such that 

#(dxB)=#(i).#(B). 

It follows that for any two finite cardinals k, A, 

#(« • A) = #(«) ’ #(A). 
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x5.11. The powerset of every finite set A is finite and 

#{V{A)) = 2*^A\ 

It follows that for every finite cardinal k, 

#(2K) = 2#(K). 

x5.12. For all finite cardinals k, A, 

#(ka) = #(k)#(a). 

x5.13. For all cardinals k, 2k ^ K0. 

x5.14. c + c =c K0 • c =c c • c =c c. 

x5.15. cc =c 2C. 

x5.16. For every cardinal number k > 1, if k ■ k =c k, then 2K =c kk. 

x5.17. For each cardinal number k and each n G N, 

Kn=cK l[°’n)l, 

where the left side is defined by 5.30 and the right side is cardinal expo¬ 

nentiation. 

x5.18. For each n / 0, cn =c |c*| =c c. 

x5.19. For every 

g :Y —>■ E, h : E x N xY —> E, 

there exists exactly one function f : NxY —> E which satisfies the identities 

f(o,y) = g(y) (ycT), 

f(Sn,y) = h(f(n,y),n,y) (yeY,n£N). 

x5.20. The function p in the proof of 5.31 is a bijection. 

*x5.21. Every partial ordering < on a finite set P has a linearization, i.e. 

some linear ordering <’ of P exists such that x < y ==>■ x <’ y. 
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*x5.22. The marriage problem. Suppose B is a finite set and h : B —> 

V(G) is a function, such that for each x G 5, h(x) is a finite subset of G 

and 
x C B =*► |X| < IU {h(x) I x e X}\, (5.24) 

so in particular each h(x) ^ 0- Prove that there exists a function f : B —* G 

such that 

(Vx G JB)[/(x) G h(x)]. (5.25) 

Show also that both (5.24) and the hypothesis that each h(x) is finite are 

necessary for the existence of some / which satisfies (5.25). Hint: Consider 

whether or not there exists some 0 yf C C B such that \C\ = |(J {h(x) | x G 

C}\. The name of the problem comes from the traditional interpretation 

that B is a set of boys, G is a set of available girls and h assigns to each 

boy x the (finite) set h(x) of girls that he would be willing to marry. 

There are many other applications of the problem, more useful and less 

sexist, for example when B is a set of courses, G is a set of professors 

and h assigns to each course the set of professors who can teach it (“the 
scheduling problem”). 

The next problem justifies another form of recursive definition which is 

often useful in applications. 

x5.23. Complete Recursion. For each h : E* —»■ E, there exists exactly 

one function f : N E which satisfies the identity 

f{n) = h(f(n)). 

The next problem gives a characterization of countable, infinite sets di¬ 

rectly in terms of the membership relation, with no appeal to the defined 
notions of N and “function.” 

x5.24. Prove the equivalence: 

A=CN ^ (3£)[A = U£ 

& 0 g £ 

& (Vu G £)(3!y ^ u)[ttU {y} G £] 

& (VZ)[[0 G Z & (Vu G Z)(3\y u)u U {y} G2fl£] 

==► £ C Z]]. 
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FIXED POINTS 

The primary significance of the Recursion Theorem 5.6 is foundational, 

since the result justifies on the basis of the axioms a method of defini¬ 

tion of functions which is intuitively obvious. From a purely mathematical 

point of view, however, we can also view 5.6 as a theorem of existence and 

uniqueness of solutions for systems of identities of the form 

/(0) 
f(Sx) 

a, 
(6.1) 

h(f(x)) (x e N) 

where a (E E and h : E —>■ E are given and the function / : N —> E is 

the unknown. In this chapter we will prove an elegant generalization of the 

Recursion Theorem in the context of the theory of partial orderings, which 

implies the existence and uniqueness of solutions for systems of functional 

identities much more general than (6.1). The Continuous Least Fixed 

Point Theorem 6.21 is fundamental for the theory of computation, it- is 

the basic mathematical tool of the so-called fixpoint theory of programs. In 

the next chapter we will show that it is a special case of a much deeper 

Fixed Point Theorem of Zermelo, which is intimately related to the 

theory of wellorderings and rich in set theoretic consequences, for example 

it implies directly the Hypothesis of Cardinal Comparability, 3.1. Thus, 

in addition to its purely mathematical significance, the Continuous Least 

Fixed Point Theorem yields also an interesting point of contact between 

classical set theory and today’s theoretical computer science. 

In their simplest and most natural expressions, the Fixed Point Theorems 

are somewhat abstract and apparently unrelated to the solution of systems 

of functional identities to which we intend to apply them. To understand 

what they say and how to use them, we will need to introduce first some 

basic notions from the theory of partial orderings. 

6.1. A partially ordered set or simply poset is a structured set 

P = (Field (P),<P), 

where Field(P) is an arbitrary set and <P is a partial ordering on Field(P), 

i.e. a reflexive, transitive and antisymmetric binary relation. Notice that 
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Figure 6.1. A discrete and a flat poset. 

<P determines P because it is reflexive, 

x e Field (P) <=> x <p x, 

so we can specify a poset P completely by defining its partial ordering <p. 

In practice, however, the partial ordering <p is often clear from the context 

and we will tend to identify a poset P with its field Field(P), following the 

general convention about structured sets discussed in 4.26. For example, 

by the poset N we obviously mean the pair (N, <), where < is the usual 

ordering on the set of natural numbers. By this convention, the points of P 

are the members of Field(P), a subset I C P is a subset I C Field(P), etc. 

Each / C P is a poset in its own right, partially ordered by the restriction 

of <p to /, 

x <i y <^=>-df x <p 1/&16/&J/6/, (6-2) 

which is (easily) a partial ordering. We will often deal with posets which 

have a least element, and it will be convenient to use the same, standard 

symbol J_ (read “bottom” or “least”) for it, just as we use the same symbol 

0 for the additive unit of every number system: 

_L = -Lp =df the least element of P (if it exists). (6-3) 

Any set A can be viewed as a discrete poset in which no two elements 

are comparable, i.e. partially ordered by the identity relation 

x <y x = y (x, y € A). 

Just above these in complexity are the flat posets which have a least 

element, the only element involved in any comparisons: i.e. 

x <p y x = PM x = y. 

The simplest non-empty poset is a singleton {_L}, which is both discrete 

and flat. Additional examples of posets are the set N of natural numbers 

(with its usual ordering), as well as the sets Q and 1Z of the rationals 

and the reals which we have not yet defined carefully within axiomatic set 

theory. These are all linear (totally ordered) posets. There is a large variety 

of finite posets and their study constitutes an important research area of 

mathematics, but we will not be much concerned with it here. Mostly we 

will use them as counterexamples. In drawing posets we indicate x < y by 
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a b 

placing y above or to the right of x and drawing a line from x to y, which 

may pass through other points, e.g. c < e in Figure 6.2.1 

6.2. Definition. Let P be a poset, S C P and M £ P a member of P. 

1. M is an upper bound of S if it is greater than or equal to every 
element of S, (Vx £ S)[x < M], 

2. M is maximum in S if it is a member and an upper bound of S, 
i.e. M £ S & (Vx 6 5)[x < M]. 

3. M is a least upper bound of S if it is an upper bound and also 

less than or equal to every other upper bound of S, i.e. 

(Vx £ S)[x < M] & (VM')[(Vx 6%< M'] M < M']. 

If Mi, M2 are both least upper bounds of S, then Mi < M2 (because 

M2 is an upper bound and Mi is a least upper bound) and symmetrically 

M2 < Mi, so that Mi = M2, i.e. S has at most one least upper bound. 

When it exists, the least upper bound of a set S' is denoted by 

sup S — the least upper bound of S. (6.4) 

The term “sup” from the Latin supremum (maximum) is justified by the 

following observation. 

6.3. Exercise. If M is maximum of a set S in a poset P, then M is also 

the least upper bound of S. 

6.4. Exercise. In the poset of Figure 6.2, find subsets S with the following 

properties: (1) S has no upper bound. (2) S has upper bounds but no least 

upper bound. (3) S has a least upper bound but no maximum element. 

1 There are those who draw posets growing to the right, those who draw them 
growing up and even those who draw them growing down• to the best of my 
knowledge, nobody pictures posets growing to the left and it does not appear 
that any of the three common choices is dominant. 
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6.5. Exercise. In any poset P, an element M is the least upper bound of 

the empty set 0 if and only if M is the least element of P, i.e. 

_L = sup 0 (6-5) 

if _L or sup 0 exists. 

6.6. Exercise. The powerset V{A) of every set A is partially ordered by 

the relation 

X C Y 4=>yf X c Y C A, 

so that _L = 0 and for every S C V(A), the union 1J S is the least upper 

bound of S ? 

Less trivial and more interesting for our purposes is the next example of 

a poset. 

6.7. Definition. A partial function on a set A to a set E is any function 

with domain of definition some subset of A and values in E, in symbols 

f : A E <t=hif Function(f) & Domain(f) C AX Image(f) C E. (6.6) 

For example, (n i—> (n — 1)) is a partial function on the natural numbers 

defined only when n 7^ 0, [x i—> y/x) is a partial function on the reals 

with domain of definition {x \ x > 0}, etc. A finite sequence u G A* is a 

partial function u : N —>■ A, as we defined it in 5.29. The empty set 0 is 

(trivially) a partial function (with empty domain of definition!) and every 

(total) function on A to E is also a partial function, since (6.6) does not 

exclude Domain(f) = A, 

0 : A — f : A -> E => f : A — E. 

We will use systematically the convenient half-arrow notation for partial 

functions (recently established in computer science), as well as the common 

notations 

f(x) i x £ Domain(f), f(x) | <=>-df x ^ Domain(f) (6.7) 

for indicating that a partial function is defined or undefined at some point. 

6.8. Definition. For each A and E, 

(A - E) =d{ {/ C A x E | / : A - E} (6.8) 

2More pedantically, the partial ordering of V(A) is the restriction CA of the 
definite condition ICY to 'P(A), (4.11). 
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is the set of all partial functions from A to E, in analogy with the notation 

(hi —i- E) for the set of all (total) functions from A to E, (4.22). The set 
(■A E) is partially ordered by the relation C, 

f Q 9 <=> (VT <E A)[f(x) \g(x) | & f(x) = y(x)]], 

with least element _L = 0. 

6.9. Exercise. For each A, E, 

{A - E) = {/ f x I / : X - E & X c A}. 

Function restrictions are defined in (4.21). 

It is harder to find least upper bounds in these partial function posets 

than in powersets: for example, the set of two constant functions {x i—* 

0,x » 1} in (N —- N) has no upper bound at all, because any partial 

function above both (2 1—► 0) and (2 >-> 1) would need to satisfy the contra¬ 

dictory h(0) = 0 and h(0) = 1. On the other hand, linearly ordered subsets 

of (A —>■ E) have least upper bounds and this is a fruitful property of these 

posets, worth a name. 

6.10. Definition. A chain in a poset P is any linearly ordered subset S 

of P, i.e. a subset satisfying 

(V2, y e S') [2 < y V y < 2]. 

A poset P is chain-complete or inductive if every chain in P has a least 

upper bound. 

6.11. Exercise. The empty set is (trivially) a chain, hence every inductive 

poset P has a least element T = sup 0. 

6.12. Exercise. Every flat poset is inductive; a discrete poset is inductive 

only when it has exactly one element, in which case it is also flat. 

6.13. Exercise. The image {xn \ n E N} of a non-decreasing sequence 

xq < X\ < 22 < 

is a chain; thus, every non-decreasing sequence has a limit in an inductive 

poset, 

lim 2n =df sup {xn | n e N}. (6.9) 
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6.14. Proposition. (1) For each set A, the powerset V(A) is inductive. 

(2) For any two sets A, E, the poset (A E) of all partial functions from 

A to E is inductive. (3) For every poset P, the set 

Chains{P) = {S C P \ S is a chain} 

of all chains in P (partially ordered under C.) is inductive. 

Proof. (2) If S C (A —»• E) is a chain, then the union (J S is a partial 

function and obviously, (J S = sup S. (3) This is also proved by observing 

that the union of a chain of chains in a poset is also a chain. H 

6.15. Exercise. Neither N nor the finite poset of Figure 6.2 are inductive. 

6.16. Exercise. For each set E, the set P = E* U (N —> E) of finite and 

infinite sequences from E is an inductive poset, under C. 

6.17. Exercise. For any two sets A, E, the poset 

(A >—“ E) =df {/ G {A —>■ E) | / is one-to-one} 

of partial injections from A to E (partially ordered by C) is inductive. 

We will find the most significant applications of the fixed point theorems 

in partial function posets, but the proofs will use only the fact that they are 

inductive, and there are lots of other interesting examples. Some of them 

are described in the problems at the end of the chapter. 

Finally, we need to delineate the type of functions on inductive posets 

which must, necessarily, have fixed points. 

6.18. Definition. A mapping3 7r : P —> Q on a poset P to another is 

monotone if for all x,y 6 P, 

x <p y =k 7r(x) <q Ti(y). 

A monotone mapping need not be strictly increasing in the sense of 

X <py=> 7r(x) <Q n(y), 

e.g. every constant mapping is monotone. 

3 It is convenient to refer to tt : P —> Q as a “mapping” rather than a “function” 
(which means the same thing), because in the interesting applications P is some 
partial function space (A E), Q may be another partial function space, tt takes 
partial functions as arguments and (possibly) values and there are altogether too 
many functions around. Notice also that, pedantically, n : Field(P) —> Field(Q) 
is a mapping from the field of P to that of Q. 
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Figure 6.3. The Continuous Least Fixed Point Theorem. 

Notice that if n : P —> Q is monotone and S C P is a chain, then the 

image 7r[S] is also a chain; because given x = ir(it), y = tc(v) with u,v E S, 

either it < v, which implies x = ir(u) < n(v) — y, or v < u, which similarly 

implies y < x. This makes the next definition meaningful. 

6.19. Definition. A monotone mapping it : P —>• Q on an inductive poset 

to another is countably continuous if for every non-empty, countable 

chain S C P, 

7T(sup S) = Slip 7T[S']. 

6.20. Exercise. A monotone mapping tt : P —> Q on one inductive poset 

to another is countably continuous if and only if for every non-decreasing 

sequence Xq <p x\ <p ■■■ of elements in P, 

7r(limxn) = lim7r(xn). 
n n 

Here the limit on the left is taken in P and the limit on the right is taken 

in Q. 

6.21. Continuous Least Fixed Point Theorem. Every countably con¬ 

tinuous, monotone mapping n : P —> P on an inductive poset into itself 

has exactly one strongly least fixed point x*, which is characterized by 

the two properties 

7r(x*) = x*, (6.10) 

(Vy e P)[n(y) < y => x* < y). (6.11) 

Proof. The orbit of the least element T under n is defined by the simple 

recursion on the natural numbers, 

x0 = -L, 

xnpi = ir{xn). 
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Clearly x0 = _L < Xi, and by a trivial induction (using the monotonicity of 

7r), for every n, xn < xn+\. Thus, the limit 

x* =df lim xn = sup{xn \ n E N} (6-12) 
n 

exists by 6.13, and by the countable continuity of n, 

ir(x*) = 7r(limxn) = lim7r(a:n) = lim^n+i = x*. 
n n n 

For the second claimed property of x*, we assume n(y) < y and show 

by induction that for every n, xn < y. Basis, xq = _L < y, trivially. 

Induction Step. The Induction Hypothesis gives us xn < y, and we 

compute: 

xn < y =>• 7r(xn) < 7r(y), because n is monotone, 

=$■ xn+i < n(y) < y, by the assumption on y. 

Thus, y is an upper bound of the chain {xn \ n G N}, and hence, x* = 

sup {xn | n G TV} < y. H 

To apply the Continuous Least Fixed Point Theorem, we must formulate 

the problem at hand as a question of existence and (sometimes) uniqueness 

of solutions for an equation of the form tt(x) = x, where n : P P 

is monotone and countably continuous on some inductive poset P. This is 

typically the hardest part: to bring the problem in a form in which 6.21 can 

be applied. Verification of the countable continuity of ir is not necessary: 

because we will show in the next chapter that 6.21 remains true if we 

simply remove the hypothesis of countable continuity of n. In any case, 

most applications involve simple monotone mappings on partial function 

posets for which it is often trivial to recognize a much stronger, natural 

continuity property. 

6.22. Definition. A partial function g : A —>• E is finite if it has finite 

domain, i.e. if it is a finite set of ordered pairs. A mapping n : {A —»■ E) —> 

(B —1 M) from one partial function space into another is continuous, if 

it is monotone and for each f : A—* E, and each y G B and v G M, 

7r(/)(2/) = u => (3g C f)[g is finite & 7r(g)(y) = v}. (6.13) 

The notation is a bit convoluted but what it means is quite simple: to 

compute 7T(f)(y), we first compute the partial function f = 7r(/) and then 

we evaluate it at y, n(f)(y) = f(y); if 7r is continuous, then each value 

7r(/)(l/) of 7r(/), whenever defined, depends only on finitely many values 

of /. The continuity of specific mappings is often obvious, by inspection of 

their definition: we simply need to notice that each value 7r(/)(y) (when 
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defined) is determined from a finite number of values of f. For example, 

the mapping n : (N — N) -4 (N N) defined by 

tt(/) = (n f(n) + f(n2)) 

is obviously continuous, since each tt(/)(n) = f(n) + /(n2) depends only 

on two values of f. 

6.23. Exercise. Show that the mapping tt : (N TV) —> (N N) defined 
by 

AS) = (m-> s?_0/(»)) 
is continuous. Compute tt{u 1-4 2n)(2) for this tt. 

6.24. Definition. A function f : X —> Y from one topological space to 

another is (topologically) continuous, if the inverse image f~l[G] of every 

open subset ofY is an open subset of X. The definition of a topological 

space was sneaked in 4.26. as the first example of a structured set. 

6.25. Exercise. A function f : X —> Y from one topological space to 

another is continuous if and only if the inverse image /-1[F] of very closed 
subset ofY is closed in X. 

One might guess that our using the term “continuous” in Definition 6.22 

is not entirely accidental and that the notion of 6.22 has something to do 

with topological continuity. Indeed it does, the notions are equivalent when 

the proper topology is put on partial function posets, but we will have no 

need of this fact and will leave it for Problem x6.19. 

6.26. About topology. General (pointset) topology is to set theory like 

parsley to Greek food, some of it gets in almost every dish, but there are 

no great “parsley recipes” that the good Greek cook needs to know. Many 

notions and results of set theory are connected to topological ideas, but it is 

quite rare that you can prove an interesting theorem about sets by quoting 

some deep topological result. To avoid getting distracted with side issues, 

we will follow the general policy of giving the most direct, set theoretically 

natural definitions and proofs of the notions and results we need and leave 

the connections with topology for the problems. Occasionally the most 

natural approach is topological. 

6.27. Lemma. If S C (A —1 E) is a non-empty chain in a partial function 

poset and g C sup S is a finite function, then there exists some h G S such 

that g C h. 

Proof is by induction on the number of elements in the domain of g. Basis. 

g = 0 is the partial function which is nowhere defined. There is some h E S 
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since S is non-empty, and |C/j. Induction Step. The domain of g has 

n + 1 elements, so 
g = giU {(x,iw)} C supS, 

where g\ is a finite, partial function with just n elements in its domain, and 
by induction hypothesis, there exists some hi € S such that g\ C hi. Since 
(x, w) G sup S, there must also exist some h' G S such that (x, w) G hi, and 
since S is a chain, either hi C hi or hi C hi] the h we need is the larger of 
these two partial functions. H 

6.28. Lemma. Every continuous mapping n : {A E) —*■ (B —1 M) is 
countably continuous, in fact, for every (not necessarily countable) non¬ 
empty chain S C (A E), 

n(sup S) = sup7r[S}. 

Proof. We must show that if S C [A —>• E) is a non-empty chain with 
union / = sup S and 7r(f)(y) = v, then there exists some h E S such that 
n(h)(y) = v. By the strong continuity of n, there exists a finite g C /, such 
that already tt(g)(y) = v\ by the preceding Lemma, there exists some h G S 
so that g C h\ and by the monotonicity of 7r, this implies n(g) C n(h). In 
particular, since tt(g)(y) = v, we have n(h)(y) = v, so this is the h we need. 

H 

The Continuous Least Fixed Point Theorem is evidently a simple corol¬ 
lary of the Recursion Theorem on the natural numbers 5.6. In fact, it 
implies 5.6 by a fairly direct argument, which is worth looking at, as it 
illustrates how we intend to apply 6.21. 

6.29. Proof of the Recursion Theorem from 6.21. For each given 
a G E and function h : E —> E, we define the mapping 

tt : (JV — E) -+ {N — E) 

by the formula 

tt(/) = /', where f\x) = 
o, if x = 0, 
h(f(x - 1)), if x > 0, 

where / is any partial function from N to E and we understand the defi¬ 
nition naturally, so that 

x > 0 =* [/'O) I «=* Hf(x - !)) I ^ f(x - 1) !]• 

Written out in detail, the mapping n associates a set of pairs f'Q(NxE) 
with every / G (N —*• E) and it is defined by the equation 

*■(/) = {(0,a)} (6.14) 

U{(*.Mw)) I X > 0 & (x-l,w) G /} (.f:N — E). 
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This formal definition makes it quite obvious that 7r is monotone—just 

imagine substituting for / in (6.14) a larger /' D / and see that you get 

a larger 7r(//). It also makes it clear that tt is continuous, since each pair 

(x,h(w)) E 7r(/) (other than (0, a) which we throw in for free) is included 

because the single point (x - 1 ,vu) £ f. (In full detail: if n(f)(x) = v and 

x = 0, take g = 0 in the definition of strong continuity, and if x > 0, take 

g = {(x — l,u?)} C /, where v = h(w).) It follows that 7r is countably 

continuous, so by 6.21 it has a fixed point: that is, some partial function 

f* : N —- E exists which satisfies f* = 7t(/*), so that, immediately, 

/*(0) = a, (6.15) 

/*(:r + l) = /»(/*( X)) (/* (*H). (6.16) 

Theorem 6.21 does not guarantee that this f* is a total function, with 

domain of definition the whole N, but this can be verified by an easy 

induction on x using the identities (6.15) and (6.16). H 

Consider next a case where it is not quite so obvious how to define the 

function we want directly by the Recursion Theorem. 

6.30. Proposition. For each function h : N N and each infinite set 

A C N of natural numbers, there exists a (total) function f : N —» N which 

satisfies the identity 

,, x f 0, if n e A, , 
f^~{h(f(n +1)), ifn^A (6'17) 

Proof. We define the mapping 

tt : (N — N) -► (N - N) 

on the inductive poset of all unary, partial functions on N by the formula 

(6.18) 7T (/) = where f\n) 
0, if n £ A, 

h(f(n + 1))> ifn&A. 

In full detail, this means we set 

7r(f) = {(n, 0) | n € A} U {(n, h(w)) | n £ A & (n + l,w) £ f}, 

which implies by inspection that 7r is continuous, hence countably contin¬ 

uous. Thus we must have a fixed point / which satisfies (6.17), and it is 

enough to prove that this / is total. Assume towards a contradiction that 

f(n) t for some n. Notice that by (6.17), this means that n f A, else 

f (n) 1, in fact, /(n) = 0. We will prove by induction on i that f(n + i) T, 
which implies again that for all i, n + i (£ A, so that A C [0, n) is finite, 
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contradicting the hypothesis. Basis. If i = 0, then f(n + 0) = f(n) T, by 

assumption. Induction Step. Assume that f(n + i) t, so that by (6.17), 

once more, n + i A. Now this implies that f(n + i) = h(f(n + i + 1)) 

so that f(n + i + 1) f=> f{n + 1) | (since h is total), which violates the 

induction hypothesis. b 

6.31. Exercise. Prove in detail that the mapping 7r in this proof is con¬ 

tinuous. 

As a third, typical application of the Continuous Least Fixed Point The¬ 

orem we consider the Euclidean algorithm. 

6.32. Proposition. (1) There exists exactly one partial function f : N x 

N ^ N with domain of definition {(n,m) | n, m 0} which satisfies the 

following identities for all 0 < n < m: 

f(m,n) = f(n,m), 

f(n,n) = n, (6.19) 

f(n, m) = f(n,m-n). 

(2) The unique f* which satisfies the system (6.19) computes the greatest 

common divisor of any two natural numbers different from 0, 

f*(n,m) = gcd(n,m) (6.20) 

= the largest k which divides evenly 

both natural numbers n, m. 

Proof. With each partial function f : N x N N we associate the partial 

function /' : N x N —*■ N which is defined by the formula 

{/(m,n), if n > m > 0, 

n, if n = m > 0, 

/(n, m — n) if 0 <n <m, 

and we set 

Af) = /'■ 

The mapping 7r : ((N x N) N) —»■ ((N x N) N) is obviously continu¬ 

ous. It follows that there exists a least partial function f*:(NxN)-^N 
which satisfies 

vr cr) = r, 

and this is (easily) equivalent with the system (6.19). Proof that for all 

f*(n,m)l & f*(n,m) = gcd(n,m) 
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Figure 6.4. 

is by induction on the sum n + m. (Take cases whether n > m > 0, 

n = ra>0or0<n<TO, and use the simple property of the natural 

numbers, that for 0 < n < m, the common divisors of n,m are precisely 
the same as the common divisors ofn,m — n.) H 

In this example we do not need the Least Fixed Point Theorem to prove 

the existence of a solution for the system (6.19), since we can verify directly 

that the function gcd is a solution. Despite this, the proposition is impor¬ 

tant because it yields a characterization of the function gcd which suggests 

a specific—and simple—method for computing it. For example, using only 

the identities of the system, we compute: 

gcd (231,165) = £cd(165,231) = gcd( 165,66) 

= gcd (66,165) = gcd (66, 99) = gcd (66,33) 

= gcd133,66) = gcd (33,33) = 33. 

This computation of the value gcd (231,165) is much simpler than the trivial 

one, where we would search for the greatest common divisor by testing in 

sequence all the numbers from 165 moving down, until we would find some 

common divisor of 165 and 231. The example is quite general: the charac¬ 

terization of a partial function / as the least solution of a system of simple 

identities typically yields an algorithm, a “recipe” for the “mechanical” 

computation of the values of /, and this is the underlying reason for the 

significance of the Continuous Least Fixed Point Theorem in theoretical 

computer science. 

We end with a simple result about graphs which is related to the ideas 

of this chapter, see Problems x6.15 and x6.16. 

6.33. Definition. A graph is a structured set (G, —>g), where the set of 

edges —>q C G x G is an arbitrary binary relation on the set of nodes G. 

The transitive closure of a graph G is the graph G = (G, =>g), where 

x =>G y 4=>-df there is a path from x to y in G 

(320,. • •, zn)[x = z0 ->G Z\ & • ■ • & 2n_i >g zn = y]. 

We draw graphs much like posets, except we forget about the convention of 

“growing up or towards the right” and use arrows instead of lines: x —V 
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holds if there is an arrow from x to y, and x =>g U holds if you can move 

from x to y along the arrows of the diagram. In Figure 6.4 we have / —> /, 

a => a and a =>- c, but / yA d. 

6.34. Proposition. For each graph G, the transitive closure relation =3-c 

satisfies the equivalence 

x =^g y <=> x —*g y v (3z e G)[x —>-g z h z =^g y\- (6.21) 

Proof. Suppose first that (skipping the conjunction signs) 

x = Z0 —>G Zi >G ^2 >G ■ ■ ■ >G Zn = y, 

if n = 1, we have x —>g V, and if n > 1, then x —>g 2fi and Zi =>g y (by the 

definition of =^g)> so we have the right-hand side of (6.21), taking z = Z\. 

The converse is equally simple, taking cases on the two disjuncts of the 

right-hand side. 3 

Problems 

x6.1. For every partial ordering < on a set A, the converse relation 

x <' y 4=>df y < x 

is also a partial ordering. Of the inductive posets {A —* E) and V(A), which 

one has an inductive, converse poset? 

x6.2. Suppose <e is an inductive partial ordering on the set E, A is a set 

and < is the “pointwise” partial ordering on the function space (A —> E), 

f <9 <=^di (Vx e A)[f(x) <E g(x)] (f,g : A—> E). 

Prove that < is an inductive partial ordering on (A —+ E). 

x6.3. If the partial orderings <i, <2 on the respective sets Pi, P2 are 

inductive, then the following relation < on the Cartesian product P\ x P2 

is also inductive: 

(xi,x2) < (2/1,1/2) xi <1 yi & x2 <2 92- 

With this partial ordering, the poset Pi x P2 is called the product of the 

two posets Pi and P2. 
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x6.4. Suppose Pi, P2, Q are inductive posets. A mapping 7r : P1 x P2 —■> 
Q is separately monotone if for each x\ E Px, the mapping (x2 (-»• 

7r(xi,a:2)) is monotone, and symmetrically for each X2 E P2; 7r is sepa¬ 

rately, countably continuous if for each x\ E Pi, the mapping (x2 i—> 

7r(xi,a;2)) is countably continuous, and symmetrically for each a:2 E P2. 

Prove that 7r is monotone (on the product poset) if and only if it is sep¬ 

arately monotone, and countably continuous if and only if it is separately 
countably continuous. 

6.35. Definition. A point M is maximal in a subset S of a poset P if 
M is a member of S and no member of S is bigger, 

M E 5 & (Vrr E S)[M < x =*► M = x}. 

A point m is minimal in S if it is a member of S and no member of S is 
smaller, 

m E S & (fix E S') [a; < m =$■ x = m]. 

x6.5. Find in the poset of Figure 6.2 a subset S which has a maximal 

element but no maximum and another subset S' which has a minimal 
element but no minimum. 

*x6.6. Every finite, non-empty subset of an arbitrary poset P has at least 

one maximal and one minimal member. 

*x6.7. A finite poset P is inductive if and only if it has a least element. 

An important notion in computer science is that of a stream, for example 

the stream of bytes in a file transmitted over the telephone lines to my home 

computer from the University of Athens CYBER. A stream is basically 

a sequence, but it may be infinite, in the idealized case; terminated, if 

after some stage an end-of-file signal comes and my machine knows that 

the transmission is done; or unterminated, if after some stage the bytes 

stop coming, without warning, perhaps because the CYBER died or the 

telephone connection was interrupted. 

6.36. Definition. For each set A, we fix some t £ A (for example, the 

object r(A) of (3.4)) and we define the streams from A by: 

Streams (A) =df {a : N — Au{t} | (Vi < j)[a(j) |=> [cr(i) | & a(i) ^ t}]}. 

We call a stream a terminated or convergent if for some n, a(n) = 

t, in which case, by the definition Domain(a) = [0,n + 1); infinite if 

Domain(a) = N; and unterminated if Domain(a) is a finite, initial seg¬ 

ment of N but a does not take on the terminating value t. The infinite and 

unterminated streams together are called divergent. 
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x6.8. For each set A, the set of streams Streams(A) is an inductive poset 

under the natural, partial ordering C, where, as for strings, 

a C r <^=>df cr C r. (6.22) 

What are its maximal elements? 

x6.9. The concatenation of two streams is defined so that if a is di¬ 

vergent, then a -k t = a and if a is convergent with domain [0, n + 1), 
then 

i < n ==>■ a k r(i) = cr(i), a k r(n + i) — r(i). 

Prove that k is a continuous function (of two variables) on Streams (A). 

The full Least Fixed Point Theorem can be proved directly and easily 
for powersets: 

*x6.10. Suppose 7r : V(A) —► V(A) is a monotone mapping on a powerset. 
Prove that the set 

is the least hxed point of 7r, and 

A* = {J{X | WCtt(X)} 

is the largest fixed point of tv. 

The next few problems deal with “algorithmic” applications of the Least 
Fixed Point Theorem. 

x6.11. For each relation R 

f : N x A —>■ N such that 

f nRx 

\ -inRx 

It follows that 

f(n,x)l -<=> (3 m>n)[mRx], 

f(n,x) | => f(n,x) = the least m>n such that [mRx]. 

x6.12. For any three partial functions /0, g, h with domains and ranges 

such that the identities below make sense, there exists a least partial func¬ 
tion f : N x A ^ E which satisfies the identities 

/(0,z) = f0(x), 

f(n + l,x) = h(f(n,g(n,x)),n,x). 

C N x A, there exists a least partial function 

=> f(n,x) = n, 

=> f(n,x) = f(n + l,x), 
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x6.13. Prove that there is exactly one total function / : N x N —>• N 
which satisfies the identities 

/(0, n) = f(n, 0) = 0, 

/(n+l,m + l) = f(n,m) + 1. 

Compute /(5, 23) using these identities and “explain” what f(n , m) is, for 
any n, to. 

6.37. Definition. On the set E* of strings (finite sequences) from a set 
E defined in 5.29, we define the partial functions 

head(u) = u(0), (6.23) 

tail(u) = <tt(l),..., u(lh(u) — 1)>. (6.24) 

Notice that headiu) { when lh{u) > 0, and tail(u) is always defined, but it 
is the empty string when lh(u) < 1. 

x6.14. Prove that there exists a unique, total function r : E* —> E* which 
satisfies the identity 

rfu\ = / if lKu) < 1, 
\ r(tail(u)) * <head(u)>, iilh(u)>l. 

Compute r(<a, 6, c>) and describe r(u) in general. 

x6.15. Prove that for each graph G, the relation is the least (under 

C) transitive relation on G which includes the edge relation — 

x6.16. Prove that for every graph G with edge relation —the relation 

=>g is the common least fixed point of the following monotone operators 

on the poset V{G x G) of all binary relations on G: 

7Ti(R) = {{xi y) I x —y v (fi\z){x -^g z & (z, y) c P]}, 

tt2(R) = {(x,y) I x y v (3z)[(x,z) G R & 2 y]}, 

n3(R) = {(x,y) \ x-+g yV (3z)[x z y\ 

\Z(3z,w)[x —>G Z & (z,w) e R & W —>G y}}- 

x6.17. Let Pi, P2 be inductive posets and 

7Ti : Pi x P2 -> Pi, 

7r2 : Pi x P2 -> P2 

arbitrary countably continuous, monotone mappings, where Pi x P2 is the 

product. Prove that there exist unique least, mutual or simultaneous 

fixed points x*2 which are characterized by the properties: 

/ * * \ * 
'Ki(x1)x2) = xx, 

/ >(c \ sfe 

7r2(xi,x2) = x2, 



90 Notes on Set Theory 

?Tl(yi» 2/2) <1 y\ & 7T2(j/l,2/2) <2 V2 => &i <1 S/1 & X2 <2 2/2- 

The next problem is an algorithmic version of the well-known number 

theoretic result, that for any two natural numbers n, m yf 0, there exist 

(positive or negative) integers a, (3 such that 

gcd (n, m) = an + (3m. 

The proof uses some simple properties of the set 

Z = {... ,-3,-2,-1,0,1,2,3,...} 

of rational integers whose faithful representation in set theory we will de¬ 

velop in Appendix A. 

“xG.lS. There exists exactly one pair of partial functions 

a : N x N — Z, (3 : N x N ^ Z, 

with common domain of definition {(n,m) | n, to ^ 0} which satisfy the 

following identities for all n,m,k > 0: 

n ^ m ==> a(n, m) 

a(n, n) 

/5(n,n) 

a(n, n + &) 

/5(n, n + fc) 

/3{m,n), 

1, 

0, 

a(n, fc) — (3{n, k), 

(3{n,k). 

It follows that for any two natural numbers n,m^0, 

gcd (n, to) = a(n, m)n -f /3(n, to)to. 

Explain the algorithmic significance of the theorem, with examples of com¬ 
putations of a(n,m) and (3(n,m). 

6.38. Definition. For each finite partial function g : A —>■ E, the neigh¬ 

borhood determined by g in the poset (A —>• E) is the set 

N(g) =df {/ : A - E | g C /} 

o/ all extensions of g. A set G C (A E) is open in the topology of 

pointwise convergence if 

f (3<?, finite) [/ € N(g) C G]. 
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x6.19. Prove that the family of open sets in (A E) defined in 6.38 is a 
topology by 4.26, and a mapping 

7T : (A — E) -> {B M) 

is continuous in this topology by 6.24 if and only if it is continuous by 
6.22. 

6.39. Definition. A subset G C P of an inductive poset is Scott open 

if (1) it is upward closed, i.e. 

x <C y & x £ G V y £ G, 

and (2) for every non-empty chain S C P, 

sup S £ G =4> (3x £ S)[x £ G]. 

*x6.20. Prove that the family of Scott open subsets of an inductive poset 

P is a topology. Hint: Notice that a set F C P is Scott closed if it is 

downward closed and for every non-empty chain S, S C F ==>- sup S £ F, 

and work with the closed sets rather than the open ones. Instead of showing 

that the intersection G\ fl G2 of open sets is open, it is somewhat easier to 

show that the union of closed sets is closed. 

*x6.21. Suppose P and Q are inductive posets and n : P —> Q is a mapping. 

Prove that n is continuous in the relevant Scott topologies if and only if 7r 

is monotone and for every non-empty chain S C P, 

n(supS) = sup7v[S}. 

Hint: Prove and use the fact that for every c £ P, the set {x £ P | x < c} 

is Scott closed. 

*x6.22. Suppose A is a countable set and 7r : (A —>• E) —> (B —>■ M) is 

a mapping. Show that 7r is continuous (by the definition in 6.22) if and 

only if it is continuous with respect to the Scott topologies in the posets 

(A — E) and (B — M). 

The Continuous Least Fixed Point Theorem is often formulated for the 

class of directed-complete posets, particularly in Computer Science texts. 

6.40. Definition. A subset S C P of a poset P is directed if any two 

members of S have an upper bound in S, 

x,y £ S => (3z E S)[x < z Sz y < z\. 

A poset P is directed-complete (a dcpoj if every directed S C P has a 

least upper bound. 
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x6.23. Every chain in a poset is a directed set, hence, every dcpo is an in¬ 

ductive poset and the least fixed point theorems hold for directed-complete 

posets. 

x6.24. For each A and E, the posets (A E) and (A ^ E) are directed- 

complete. 

x6.25. A mapping tv : (A —- E) —> (B —>■ M) is continuous if and only if 

for each directed S C (A E), 

n(sup S) = supn[S]. 

x6.26. The product Pi x P2 (Problem x6.3) of two directed-complete par¬ 

tial orderings is also directed-complete. 

*x6.27. Every countable, inductive poset is directed-complete. 

Actually the notions of inductive and directed-complete are equivalent; 

for a monotone mapping tv : P —> Q on one inductive poset to another, the 

equation 

tv (sup S) — sup n[S] (6.25) 

holds for all non-empty chains S C P if and only if it holds for all non¬ 

empty directed sets S C P; and the characterization of Scott continuity in 

Problem *x6.22 holds whether A is countable or not. The proofs of these 

results are not elementary and require the Axiom of Choice; see Problems 

*x9.20 -x9.23. 
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WELL ORDERED SETS 

7.1. A well ordered set1 is a poset 

U = {Field (U),<u), 

where <u is a wellordering on Field(U), i.e. a linear (total) ordering on 

Field(U) such that every non-empty X C Field(U) has a least member. 
Associated with U is also its strict ordering <v, 

x < y <£=>■ x <u y <^=>-df x <u y & x ^ y. 

As we did with arbitrary posets in the preceding chapter, we will usually 

identify U with its field, talk about the points or subsets of U, meaning the 

members and subsets of Field(U), etc. 

The most basic results of the last two chapters were all proved by some 

combination of the coupled techniques 

definition by recursion - proof by induction. (7-1) 

In the simplest case, some function / : N —> E is defined by recursion, 

some properties of / are proved by induction and these in turn imply the 

theorem we want. Typical are the Continuous Least Fixed Point and the 

Schroder-Bernstein theorems which say nothing (explicitly) about recur¬ 

sion, induction or any functions with domain N, but whose proofs most 

assuredly use precisely these notions. We based the proof of the Recursion 

Theorem 5.6 directly on the Induction Axiom for the natural numbers. 

The key fact, however, which can be generalized is that N is well ordered 

by its natural ordering. Here we will generalize 5.6 to a powerful Transfi- 

nite Recursion Theorem 7.24 which justifies definition by recursion of 

functions f : U —> E on every well ordered set U. Coupled with Hartogs’ 

Theorem 7.34 which guarantees the existence of “arbitrarily large” well 

ordered sets, this makes it possible to apply the basic idea of (7.1) in situ¬ 

ations far removed from the natural numbers. A typical application is the 

xDo we dare call them wosetsl It’s not much worse than posets and it would 
sure save a lot of key strokes. 
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Figure 7.1. The low end of a long wellordering. 

Fixed Point Theorem 7.35 and its corollary, the Least Fixed Point 

Theorem 7.36, which is just 6.21 without the countable continuity hy¬ 

pothesis. 

7.2. A set A is well orderable if it admits a wellordering, so it is the field 

of some well ordered set (A, <). One of the chief lessons of this chapter is 

that well orderable sets behave much better than arbitrary sets, for example 

any two of them are comparable in cardinality, either A <c B or B <c A. In 

fact, every set is well orderable. Zermelo showed this in 1904, settling with 

one brilliant stroke the problem of Cardinal Comparability and a whole 

slew of related, regularity questions about arbitrary sets. We will prove 

Zermelo’s Wellordering Theorem in the next chapter, after we introduce 

the Axiom of Choice on which it is based. It is worth pointing out here, 

however, that the mathematical content of this fundamental result is just 

the sum of the Transfinite Recursion and Hartogs’ Theorems: the Axiom 

of Choice simply allows us to put the two together. 

7.3. Exercise. If C is well orderable and A <c C, then A is well orderable. 

7.4. Exercise. If C is well orderable and there exists a surjection f : 

C —» A, then A <c C, and hence A is also well orderable. 

7.5. Successor and limit points. The set N of natural numbers is well 

ordered by its natural ordering, and so is each of its finite initial segments 

[0, n) = {? G N | i < n}. 

Every well ordered set U looks at its low end like an initial segment of N. 

If it is not empty, it must have a least member which is typically denoted 
by 0 rather than J_, 

0 = 0u =df the least element of U. (7.2) 

It is pictured by a square in Figure 7.1. Each x € U other than the maxi¬ 

mum (which may or may not exist) has an element following it immediately, 

S (x) = Sjj(x) =df infv{y eU \ x <y}. (7.3) 

The values of the partial function S : U —^ U are the successor points of 

U. In addition, U may have limit points which are above 0 but not the 
successor of anything: 

Limitu(x) 4=>af 0 < x & (Vu < x)(3u)[u < v < x}. (7.4) 
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These are pictured by black boxes in Figure 7.1. The first limit, point of U 
is typically denoted by 

u = u>u =df inf {x G U | Limit(x)}, (7.5) 

when it exists, the points below it are the finite points and the points 

above it (including lo) are the infinite points of U. If U is infinite, then 
the function tt : ./V >—> U defined by the recursion 

7r(0) = Ou = the least member of U, 
7r(n + l) = Su(n(n)), 

establishes an order-preserving correspondence of N with the finite points 
of U. 

7.6. Exercise. For each subset I QU of a well ordered set U, the restric¬ 
tion 

x <i y <t=kdf X <u y & x,y G / 

of <u to I is a wellordering, so that I is a well ordered set in its own right 
with this ordering. 

7.7. Definition. A well ordered set U is an initial segment of V if 

Field(U) is a downward closed subset of Field(V) and <u is the restriction 

of <v to FieldiU): 

U C V <*=*df FieldiU) C Field(V) " (7.7) 

& (Vx,y G Field(U))[x <u y x <y y\ 

& (Vy G Field{U))(Vx <v y)[x G Field(U)\. 

Clearly V is an initial segment of itself, the trivial one. With each x G V 

we associate the proper initial segment of points strictly below x, 

seg(y) = segv(y) =df {x G V \ x <v y} ^ U. (7.8) 

More precisely, this is the field of seg(y), but the ordering is determined 

by V and we will talk about initial segments as if they were just sets, as 

usual. 

7.8. Exercise. If 0 is the least element of U, then seg(O) = 0, and if 

x G U has a successor, then 

seg(S(x)) = seg(x) U {x}. 

7.9. Proposition. A set I is an initial segment of a well ordered set U if 

and only if I = U or for some x G U, I = seg(x). 
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Proof. If / C U, let x = inf(U \ /) so that immediately, 

y £ seg(x) =i> y < x => y £ I, 

and it is enough to prove 

y £ I =► y < x 

to verify that I = seg(x). Towards a contradiction, if y £ I but y ft x, 

then we must have x < y, which implies x £ I because / is downwards 

closed, contradicting the choice of x. The converse is trivial. H 

7.10. Exercise. The family of initial segments of a well ordered set U is 

well ordered by the relation □. 

The general idea is to view a well ordered set U as a generalization of the 

natural number sequence 0,1, 2,..., possibly shorter than or of equal length 

to JV, typically much longer. The particular members of U will be of little 

consequence, it is the length of the sequence in which we will be interested. 

We introduce here the general notion of isomorphism which relates posets 

with the same shape, the shape of a well ordered set being just a “length.” 

7.11. Definition. A function tt : P —► Q from one poset into another is 

order-preserving if for all x,y £ P, 

x <py 7r(x) <q tt(y); 

a similarity is an order-preserving bijection tt : P >—» Q, and if one such 

exists we call P and Q similar, order isomorphic or copies of each 
other, and we write 

P =0 Q <^=hif (37T : P >—» Q)[tt a similarity]. 

The subscript o in =0 stands for “order type,” a fancier expression for 

“shape.” Notice that by our general convention of talking about a poset as 

if it were its field, we write tt : P >—» Q for similarities instead of the more 
explicit tt : Field(P) >—» Field(Q). 

7.12. Exercise. Every order-preserving tt : P —> Q from one poset to 

another is monotone; but there exist monotone mappings which are not 
order-preserving. 

7.13. Exercise. If P and Q are linear posets, then a function f : P —> Q 

is order-preserving if and only if it is strictly monotone, i.e. x <P y =» 

f{x) <q f(y)- In particular, order-preserving functions on well ordered sets 
are strictly monotone, and hence one-to-one. 
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o tp □ o o B 

0 1 2 

Figure 7.2. The successor poset to P and Succ(N). 

7.14. Exercise. For all posets P, Q, R, 

P =o P, 

P =0 Q & 

7.15. Lemma. If a poset P 

also well ordered. 

Proof. Given 0 fy X C P, 

image 7r[W] and verify (easily) that x = 7r“1(p) is <p-least in X, because 

7r preserves the orderings. H 

We can construct explicitly some fairly long wellorderings by starting 

with N and its finite initial segments and applying repeatedly several nat¬ 

ural operations on posets which yield well ordered sets on well ordered 

arguments. Here we look at just one of these, leaving the rest for the prob¬ 

lems. 

7.16. The successor of a poset P is obtained by adding a new point above 

all the members of P. To be specific, we can choose to add to the held of 

P the object 

tP =df r (Field (P)) (7.9) 

which is guaranteed by 3.11 to be a new element, and we set 

x <succ(p) V «=>df x <P y V [x E P k y = tP] V x = y = tP. (7.10) 

If P is finite with n elements, then Succ(P) has n + 1 elements, in fact, 

easily Succ([0, n)) =0 [0, (n + 1)). On the other hand, Succ(N) is countably 

infinite, but with a different, “longer” ordering than N, it has a maximum 

element which comes after all the natural numbers. 

7.17. Exercise. If P —a Q, then Succ(P) =0 Succ(Q). 

7.18. Exercise. If U is well ordered, so is Succ(U). 

P =0Q => Q =0 P, 

Q=0R => P =0 R. 

is similar to a well ordered set U, then it is 

let p G U be the <p-least element of the 
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Using this successor operation on posets, we can view each well ordered 

set U as a proper initial segment of another, 

U = segSucc{U)(tu) £ Succ(U). (7.11) 

7.19. Definition. A mapping 7r : P —> P on a poset to itself is expansive, 

if for all x £ P, x < tt(x). 

7.20. Theorem. Every order-preserving injection it : U y—>U of a well 

ordered set into itself is expansive. 

Proof. Towards a contradiction, assume that n : U >—► U is order-preserving 

but that for some x € U, 7r(x) < x, and let 

x* = inf{x 6 U | n(x) < x}. 

Thus, n(x*) < x*, so 7r(7r(x*)) < tv(x*) since 7r is an order-preserving 

injection, and this contradicts the choice of x*. H 

7.21. Corollary. No well ordered set is similar with one of its proper ini¬ 

tial segments, and hence no two distinct initial segments of a well ordered 

set are similar. 

Proof. Every similarity 7r : U ^-»seg(x) is (in particular) an order-pre¬ 

serving injection of U into U, so we cannot have 7r(x) < x, by the theorem. 

H 

Because a well ordered set may have limit points in addition to its 0 

and its successor points, it is easiest to generalize the principles of proof by 

complete induction and definition by complete recursion. 

7.22. Transfinite Induction Theorem. For every well ordered set U 

and every unary definite condition P, 

(Vy G U)[(Wx < y)P(x) =>• P{y)} =► (VyeU)P(y). 

Proof. Assuming the opposite, towards a contradiction, let 

V* =df inf{y E U | (Vx < y)P(x) & ->P(y)}; 

the hypothesis yields P{y*), which contradicts the choice of y*. H 

In specific cases, it is often just as easy to prove (fjy e U)P(y) by contra¬ 

diction rather than appeal to 7.22, in effect repeating this little argument. 

It depends on the statement to be proved and how much one is annoyed by 
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dealing with negative statements. We will illustrate both styles. Inciden- 

tally, the term '“transfinite” is used because U may be longer than N, the 

theorem also holds, of course, when U is finite or similar with N. 

The next lemma is the key step in the proof of the fundamental theorem 
which follows it. 

7.23. Lemma. Suppose U is a well ordered set and h : {U —>■ E) —> E 

maps the partial functions from U to E into E. It follows that for every 
t G U, there exists exactly one function 

at : seg(f) -► E 

which satisfies the identity 

at(x) = h(<rt \ seg(x)) (x < t). (7.12) 

Proof. By Transfinite Induction, assume that for each u < t there exists 

exactly one function au : seg (u) —* E such that 

cru(x) = h(au \ seg(x)) (x<u). (7.13) 

The induction hypothesis gives us nothing if t — Ojj is the least point in U, 

but the required conclusion is trivial in this case taking oo = 0. If u = Sv 

is a successor point in U, we set 

au = crv U {(u, h(av))}] 

now (7.13) holds for x < v by the induction hypothesis and it holds for 

x = v by the definition. For the last case, when t is limit, we need a 

Lemma. The set of functions {au \ u < t} is a chain under C, i.e. 

x < u < v < t => au(x) = av(x). (7-14) 

Proof. Assume not and let x be least such that (7.14) fails for some 

u < v < t. This means that 

ou \ seg(x) = ov r seg (a;), 

and then by the identity which au, av satisfy, 

au(x) = h(au \ seg(x)) 

= h(av f seg(x)) 

= 

which contradicts the choice of x. 
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We now take 

o-t = UK I u<t}\ 

this is a function with domain seg(t) by the Lemma, and it satisfies (7.12), 

since for each x < t, 

at(x) = au(x) for some u such that x < u < t, 

= h(au r seg(a;)) by ind. hyp., 

= h(at \ seg(x)) since cru \ seg(x) = at \ seg(z). 

This completes the proof of existence of at, and its uniqueness is obvious 

from (7.12). b 

7.24. Transfinite Recursion Theorem. For each well ordered set U 

and each function h : (U —^ E) —> E, there exists exactly one function 

f : U —> E which satisfies the identity 

f(x) = h{f f seg(x)) (xeU). (7.15) 

Proof. Consider the next well ordered set Succ(U) to U which has some 

point t = tjj on top of U, and the extension h! : (Succ(U) E) —> E of h 

defined by 
J h(a), if Domain(a) C U, 

( e*, if t € Domain(a), 

where e* is some arbitrary member of E, of no consequence. The function h' 

has the correct domain for applying the lemma to Succ(U) and h', because 

se§5ucc(t/)(^) = U- For the top point t the Lemma gives a unique / = at : 
U —> E which satisfies (7.12) for all x £ U. H 

Perhaps the simplest, non-trivial application of Transfinite Recursion 

is the definition of transfinite orbits for mappings of an inductive poset 

into itself. We consider first the basic case of expansive mappings, defined 

in 7.19. Expansive mappings are related to the monotone mappings we 

studied in the last chapter, but the two notions do not coincide; for example, 

the constant mapping I h 0 on V(N) is obviously monotone but not 

expansive, while 
f IU{1} ifOGX 

( IU{2} if 0 ^ 

is expansive but (easily) not monotone. It turns out, however, that results 

about expansive mappings can often be translated into similar results about 

monotone mappings. 

7.25. Iteration Lemma. Suppose n : P —>■ P is an expansive mapping 

on an inductive poset and U is a well ordered set. There exists a unique 
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Figure 7.3. The transfinite orbit of an expansive mapping. 

function a : U —> P which satisfies the following conditions: 

cj(0) = _L, 

if y = S(x), then a(y) = n(a(x)), (7.16) 

if Limit(y), then a(y) = supP {a(x) | x < y}. 

In addition, this a is monotone from U to P, i.e. 

x <y=> a(x) <P a(y). (7.17) 

Proof. The conditions in (7.16) just about give a definition of a by trans¬ 

finite recursion, except that there is a problem in the limit case if the set 

{cr(x) | x < y} is not a chain in P. To account for this possibility, we define 

a by appealing to 7.24 so that it satisfies the following: 

a(y) = < 

-L, 
n(a(x)), 

supp {a(x) | x < y}, 

T, 

if y = o, 
if y =S(x) for some x, 

if Limit (y) 

& (Van <x2 < y)[cr(a:i) <P a(x2)], 
otherwise, 

where <=<u is the wellordering of U, as in the statement of the theo¬ 

rem. The result follows directly from the following lemma, which implies 

in particular that the “otherwise” case in the definition of a never comes 

up. 

Lemma. For each y € U, 

X\ < x2 < y => cr(xi) <P a(x2). (7-18) 

Proof. Assume not and let y be least in U such that (7.18) fails. Since 

(7.18) holds vacuously when y — 0 is the least element in U, we need 

consider only two cases. 
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Case 1. y — S(x) is a successor point. Assume x\ < £2 < y. If x<i < x, 

we get cr(xi) <p cr(x2) by the choice of y. The only other possibility is 

that X2 = y, but then a(xi) <p cr(x) by the choice of y, and cr(x) < 

ir(a(x)) = cr(y) by the expansiveness of n. Thus, (7.18) holds for y, which 

is a contradiction. 

Case 2. y is limit. By the choice of y, 

xi < x2 < y =» a(x\) < a(x2), (7-19) 

so in order to get a contradiction, we only need show that x\ < y =>• 

cr(xi) <p cr(y). This holds because (7.19) also implies immediately that 

a(y) = supP {a(x) \ x < y}. ^ 

The transhnite orbit a : U P of a mapping 7r : P —> P guaranteed by 

the Iteration Lemma is obviously an extension of the orbit (n h x„) which 

we defined in the proof of the Continuous Least Fixed Point Theorem 6.21, 

at least if the well ordered set U is longer than TV. It is one of the tools we 

will use in the proof of the Least Fixed Point Theorem, as follows. 

7.26. Plan for a proof. Suppose that for the given inductive poset P, 

we can construct a well ordered set U such that there exists no injection 

a : U >-+ P. In particular, the transhnite orbit a \ U —> P of 7.25 cannot be 

an injection, and there exist x < y such that c(x) = cr(y). The monotonicity 

of o implies that 

x <u<y => a(x) = cr(u), 

x has a successor since it is not maximum in U, x < Sx < y and, hence, 

a(x) — a(Sx) = 7r(cr(a:)); 

in other words, the point a(x) is a fixed point of n. Thus, to prove that 

every expansive mapping n : P —► P on an inductive poset has a fixed 

point, it is sufficient to show that for each set P, there exists some well 

ordered set U which cannot be injected into P. This is precisely Hartogs’ 

Theorem, for which we aim next. To show it, we must study in some detail 

the question of comparability of well ordered sets as to length. 

The picture of the typical well ordered set in Figure 7.1 suggests that we 

should be able to compare any two of them, line them up side-by-side, the 

least element 0u of one facing the least element (V of the other, the next 

Su(0u) facing SV(0y), the first limit point up (if it exists) facing ujy, etc. 

until we run out of elements in either U or V. The precise version of this 

fact is a generalization of the Uniqueness Theorem for the natural numbers 

5.4. 
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Figure 7.4. Portrait of an initial similarity. 

7.27. Definition. An initial similarity 

n : U >—^ tt[U] C V 

from one well ordered set into another is a similarity of U with an initial 

segment ofV . If such an initial similarity exists, we say that U is less than 

or equal to V in length, in symbols: 

U <0V 4=* (31 C V)[U =0 /]. (7.20) 

We also write 

u <o V 4=»df U <0 V & U yh0 V. (7.21) 

By 7.9. every initial similarity n : U V is either a similarity with V, or 

one with a proper initial segment of F, so that 

U <0 V (3x eV)[U =0 segv(x)]. (7.22) 

7.28. Exercise. If n : U y^V and p : V y-^-W are initial similarities, then 
so is their composition pn : U >—» W. 

7.29. Proposition. For all well ordered sets U, V, W, 

U <0 U, 

U <o V & V <o w => u <0W, 

U <o V & V <o u -=» U =0 V. 

Proof. Only the third of these assertions needs proof and it follows from 

7.21. The composition pn of the initial similarities n : U p : V >-+U 

witnessing the hypothesis is an initial similarity pix : U >-* U, which if it 

were not onto, would witness that U is similar with one of its proper initial 

segments; so it is a bijection, and then 7r must also be a Injection. H 

7.30. Theorem. A function n : U —> V is an initial similarity of a well 

ordered set into another if and only if it satisfies the identity 

ix(x) = infv{y 6 V \ (Vu <u x)[n(u) <v y}}. (7.23) 
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Proof. If 7r : U >-> V is an initial similarity, then it is order-preserving and 

one-to-one, so it satisfies 

(Vu <u x)[ir(u) <y 7r(x)], (7.24) 

and hence 

2 = infv{y E V | (Vn <v x)[n(u) <y y]} <v ^(x). 

Since 7T is initial and z <y 7r(x), there exists some u E U such that n(u) = 

z. Assuming towards a contradiction that 2 = n(u) <y 7r(x), we infer that 

u <u x because 7r is an order-preserving injection, and hence n(u) <y 2 

by the definition of 2, which is absurd since z = 

Conversely, if 7r : U —> V satisfies (7.23), then it is an order-preserving 

injection, since by (7.23), u <u x =4> n(u) <y n(x). Suppose the image 

7t[U] is not an initial segment of V and choose x least in U such that 

there exists some y <y 7r(x), y ^ 7r[t/]. Now 7r[segc/(a;)] C V by the 

choice of x\ it is a proper initial segment since it does not contain y; so 

7r[seg!7(x)] = seg^(2) for some z E V, and (7.23) yields n(x) = 2. Thus 

y <v z and y E segy(2) = 7r[segc/(x)], which is absurd. H 

7.31. Comparability Theorem for Well Ordered Sets. For any two 

well ordered sets U, V, either U <0 V or V <0 U. 

Proof. The result is trivial if V = 0, so we may assume the minimum 0v 

exists. By the Transfinite Recursion Theorem 7.24, there exists a function 

7r : U —» V which satisfies the identity 

( ™fv{y E V \ (Vu <u x)[n(u) <v y]}, 

n(x) = l if (By E V)(Vu <u x)[tt(u) <v y], (7.25) 

I 0y, otherwise. 

In pedantic detail, we are applying here 7.24 with the mapping h : (U —>• 

E) —+ E, defined by 

h(p) 
infV{y £ V | (Vu E Domain(p))\p(u) <v y]}, 

if (By E V)(Vu E Domain(p))\p(u) <y y], 

0y, otherwise. 

We now distinguish two possibilities. 

Case 1. For every x ^ 0^/, 7r(rc) ^ 0y. This means that the second case 

in (7.25) never applies, 7r satisfies the identity (7.23) and it must be an 

initial similarity by 7.30. 

Case 2. For some a E U,a ± 0U} we have tt(a) = 0y. Let a be least in 

U7^ 0u and such that 7r(a) = 0y, and consider the restriction 

p = (n \ segv(a)) : segv(a) V. 
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Now p satisfies (7.23), so by 7.30 it is an initial similarity of segu(a) into 

V. In particular, the image p[segLr(a)] = 7r[seg[7(a)] is an initial segment 

of I/; if it were proper, then Trfseg^a)] = segv(z) for some z E V and 

(7.25) would yield 7r(a) = z ^ 0y, contradicting the choice of a; hence, 

= y• Thus, V =0 segv(a), which gives us an initial similarity 
of V into U. -| 

This fundamental theorem has a host of corollaries, some of which are 

worth listing immediately. This first gives us an easier way to compare well 

ordered sets. 

7.32. Corollary. For all well ordered sets U, V, 

U <0 V <==> (37t : U >—► V)[n is order-preserving]. 

Proof. Suppose 7r : t/ >—>■ W is order-preserving but U V, so that V <a 

l . It follows that V =0 segjj(x) for some x by (7.22), and composing the 

order-preserving injections we get an injection p : U >—> segt/(x) which is 

still order-preserving and violates 7.20. H 

7.33. Corollary. Wellfoundedness of <Q. Every non-empty class £ of 

well ordered sets has a <0-least member, i.e. for some Uq E £ and all 

U E £, Uq <o U. 

Proof. The hypothesis gives us some W E £, and if W is <G-least in £, 

there is nothing to prove. If not, then 7.31 implies that there exists well 

ordered sets in £ which are similar with proper initial segments of W, so 

the set 

J =df {x E W | (3U E £)[U =0 segM/(a;)]} (7.26) 

is non-empty and it has a <w-least element x. By the definition of J, there 

exist some Uq E £ such that Uq =a seglv(x) and we claim that this Uq is 

<D-least in £. To prove it, assume towards a contradiction that for some 

U E £, U0 jfo U\ hence U <Q Uq =a segw(x); hence U =Q segw(y) for 

some y <w x, contradicting the choice of x. H 

Most often this is applied when £ is actually a set, a family of well 

ordered sets, but occasionally it is convenient to cite it more generally for 

classes. For example, there exists a <0-least well ordered set which has a 

limit point, this would be Succ(N). 

After all this work, still we have not constructed any uncountable well 

ordered sets and it might appear that all our results apply only to peculiar, 

long reshufflings of N. Next comes the second basic theorem of the chapter 

which rectifies the situation. 
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7.34. Hartogs’ Theorem. There is a definite operation x(A) which as¬ 

sociates with each set A, a well ordered set 

X{A) = (h(A), <x(aj), 

such that x(A) A: i.e. there exists no injection ir : h(A) >—>• A. Moreover, 

X(A) is <0-minimal with this property, i.e. for every well ordered set W, 

W & A => X(A) <o W. (7.27) 

Proof. First set 

WO(A) =df {U | U = (Field(U),<u) (7.28) 

is a well ordered set with Field(U) C A}, 

and let be the restriction of the definite condition —a to WO{A), 

U~AV <F=^df U, V G WO (A) & U =0 V. 

Clearly ~A is an equivalence relation on WO (A), and we set 

h(A) =df \WO{A)I~a\ C V(WO(A)). (7.29) 

We order the equivalence classes in h(A) by their “representatives,” 

[U/~A] <X(A) [V/~a] «df U <0 V- (7.30) 

this makes sense because if 

[U/~A] = [U'/~A], \V/~a\ = [V'/~a], and U <0 V, 

then U' —0 U <0 V =Q V'. The fact that <X(A) a wellordering of h(A) 
follows easily from the general properties of <0, 7.31 and 7.33. Taking the 

negation of both sides of (7.30) we infer its strict version, 

V <o u <=> [V/~a] <x(a) [U/~A] (U,ve WO {A)). (7.31) 

The basic properties of the Hartogs operation are embodied in the following 

Lemma. For every a = [U/~a\ £ h(A), 

segx(A)(a) = {[segtf(®)/~A] | x G U} =0 U. 

In particular, every proper initial segment ofx{A) is similar with some U G 

WO(A), and every U G WO(A) is similar with a proper, initial segment 
ofx(A). 

Proof. We verify first the identity 

seSx(A)(«) = {[seg^®)/^] I x G U}. 
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If P — W/~a\ <x(A) a> flien V <o U from (7.31), and hence V =a segv(x) 
for some x G U, so that (3 = [segjy(a:)/~A]. Conversely, for each x G U, 

segu(x) <-o U, hence, [segv(z)/~A] <x(a) [U/~a] = oc, again by (7.31). 

To show the similarity 

U =0 segx(A)(a) = {[segf/(x)/~i4] | x G U}, 

define p : U —> h(A) by 

p{x) = [segu(x)/^A], (x G U)] 

p is a similarity of U with the image p[U], because 

x <u y segv(x) ^ segv(y) segu(x) <Q segv(y) 

[seg[/(^)/~A] <o [segL7(r/)/-A]. 

Suppose now, towards a contradiction, that there exists an injection 

7r : h(A) >—► A, 

and let B = n[h(A)] C A be its image. The injection 7r copies the wellorder¬ 

ing of h(A) to a wellordering of B, 

x <B V «=Kif 7r_1(a;) <x(A) 7r-1(y) (x,y G B), 

so that U = (B, <b) is a well ordered subset of A, and by its definition, 

U =0 X(A). (7.32) 

But U is similar with a proper initial segment segment of x(7l) by the 

Lemma, and hence U <0 x{A), which contradicts U —0 x{A)- 

To show the minimality of x(A), notice that if W <Q x(A), then W =0 

segx(A)(a) for some a = [U/~A\, so that W =D U by the Lemma. Thus, 

W <0 x(A) => W <c A, (7.33) 

since (the field of) U is a subset of A and similarities are injections. Taking 

the negation of both sides, 

W A => ~>[W <0 x(A)} => x(A) <o W. H 

Of course, we would like to prove that A <c x{A) instead of the timid 

x(A) A, and this is certainly true, but its proof depends on the Axiom 

of Choice. Wait for a bit until we finally bring the Deus ex Machina onto 

the stage. 
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The annoying details of this proof are forced on us by the fact that the 

restriction <,4 of the definite condition <G to WO (A) is not a wellordering, 

for the trivial reason that it is not antisymmetric: there may exist distinct, 

similar U, V G WO (A), in fact they always do, if A has more than one ele¬ 

ment. This is why we were forced to take h(A) as a set of equivalence classes 

rather than simply set h{A) = WO (A). Technically, <,4 is a prewellorder¬ 

ing (ugh!) and it is worth recasting the argument in a different form, after 

introducing this notion. See Problems x7.15 - x7.18. 

The Hartogs operation can be used to construct a general supremum 

operation for families of well ordered sets (Problem *x7.24), and it has 

many interesting properties. We use it next to extend the Continuous Least 

Fixed Point Theorem 6.21 to discontinuous mappings. Let us first put 

down, for the record, the Fixed Point Theorem for expansive mappings, 

which we have already discussed. 

7.35. Fixed Point Theorem (Zermelo).2 Every expansive mapping 7r : 

P —> P on an inductive poset has at least one fixed point, i.e. some x* 6 P 
satisfies the equation 

x* = 7r(x*). 

Proof. The argument given in 7.26 needs only some well ordered set U 

which cannot be injected into P, and U = x(P) does it. H 

7.36. Least Fixed Point Theorem. Every monotone mapping 7r : P —> 

P on an inductive poset has exactly one strongly least fixed point x* which 
is characterized by the two properties: 

n(x*)=x*, (7-34) 

{Vy e P)[n(y) < y => x* < y]. (7.35) 

Proof. A careful examination of the proof of the Iteration Lemma 7.25 and 

the proof of the Fixed Point Theorem 7.26 reveals that exactly the same 

construction of the fixed point for an expansive mapping works and yields 

the least fixed point of a monotone mapping. However, it is not necessary 

to do this, as the Least Fixed Point Theorem is an easy consequence of the 

Fixed Point Theorem. The basic idea is to observe that the given monotone 

mapping n is necessarily expansive on some inductive sub-poset of P. 

Let 

Q = {xeP\x< 7r(x) & (Vy)[7r(y) < y => x < y}} 

2 Zermelo did not formulate the Fixed Point Theorem in this generality, which 
is why it and many of its Corollaries have been attributed at various times to 
later mathematicians. But the famous ufirst proof11 of the Wellorderiny Theorem 
which Zermelo gave in 1904 proves exactly this result, trivially restricted to the 
special case which interested him. 
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and observe first that the restriction 

—Q= {(by) | x,y £ Q & x <P y} 

of <p to Q is also a partial ordering—this is automatically true for the 

restriction of <p to any subset of P. (We skip the subscripts p and q for 

the remaining of the argument.) In addition, ir[Q\ C Q, because 

x < tt(x) ==> tv(x) < n(ir(x)), 

and for every y, 

7r(y) <y & X <y => 7r(x) < 7T (y) < y, 

by the monotonicity of n. It follows that the restriction 

ttq = {(x,7r(x)) | x £ Q} 

of 7r to Q is a mapping on Q, it continues to be monotone (of course) and it 

is also expansive, because of the definition of Q. To apply the Fixed Point 

Theorem 7.35 to Q and ttq we need the following. 

Lemma. The poset Q is inductive. 

Proof. It is enough to show that for every chain S C Q, the least upper 

bound M = sup S (which exists in P because P is inductive) is a member 

of Q, i.e. (by the definition), (1) M < ir(M), and (2) for every y, 7i(y) < 

y =$• M < y. For (1) we compute: 

x G S => x < M because M is an upper bound of S, 

=> n(x) < 7r(M) because n is monotone, 

=> x < n(x) < 7r(M) because x E S C Q, 

and therefore 7r(M) is an upper bound of S and we have M = sup S < 

7r(M). (2) follows from the observation that every y such that 7v(y) < y is 

an upper bound of Q (from Q1 s definition), and therefore an upper bound 

of the smaller set S C Q, so that M = sup S < y. 

By the Fixed Point Theorem 7.35 now, there exists some x* £ Q, such 

that 7r(x*) = x* and (7.35) holds simply because x* £ Q. 

The uniqueness of x* is immediate from (7.34) and (7.35). H 

The full Least Fixed Point Theorem frees us from the necessity to check 

continuity in the applications of least fixed points to computer science, the 

fixpoint theory of programs. This is nice. It has, however, more significant, 

deeper applications to the general theory of sets, particularly in the study 

of definability in set theory as well as the construction of examples and 

counterexamples with specified properties. We will encounter several of 

these in the chapters which follow. 
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□ o o • • • ■ • • 

(0,0) (0,1) (0,2) ••• (1,0) (1,1) (1,2) 

Figure 7.5. The sum N +0 N. 

Problems 

x7.1. Every linear ordering of a finite set is a wellordering. (See the related 

Problem *x6.6.) 

7.37. The sum P +a Q of two posets P and Q is obtained by placing 

disjoint copies of P and Q side-by-side, every point of P preceding every 

point of Q. Formally, we set P +0 Q = R, where 

Field(R) =df ({0} x Field(P)) U ({1} x Field{Q)), (7.36) 

and for (i,x),(j,y) € Field(R), 

(i, x) <R (j, y) 4=^df i < 3 V [i = j = 0 & x <u y] (7 o7> 

V[i = j — 1 & x y}. 

The idea is that P is similar with the set {0} x Field(P) partially ordered 

by its second elements, by the obvious similarity (x i—> (0, x)), and again 

Q =0 {1} x Field(Q). 

x7.2. If P —o P' and Q =Q Q', then P +0 Q =a P' +a Q'. 

x7.3. For all posets P, Succ(P) =Q P +0 [0,1). 

x7.4. For all posets P, Q, R, 

P +o (Q +o R) —— o (P +o Q) +o R- 

x7.5. If U and V are well ordered sets, then so is their sum U +G V. 

x7.6. Prove that [0,1) +0 N —Q N N +G [0,1), so that the addition 

operation on well ordered sets is not commutative. 

7.38. The product P 0Q of two posets is obtained by replacing each point 
of Q by a copy of P. Formally, we let P 0 Q = R, where 

Field(R) = Field(P) x Field(Q), (7.38) 
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A : • • ■■■ 

A x B • • ... 

Figure 7.6. The product of two well ordered sets. 

and <r is the inverse lexicographic ordering of pairs i.e. we compare the 

second members first: for (x1, yx), (x2, y2) € Field(R), 

(xi,Vi) <R (x2, y2) -<=^df Vi <Q h2 v [yi = y2 & xx <p x2\. (7.39) 

There is no special reason for ordering pairs by looking at their second 

members first, it is just that Cantor chose to do it this way and it has 

stuck. 

x7.7. If P =0 P' and Q =a Q', then P-0Q=0 P' -0 Q'. 

x7.8. Prove that P -0 [0, 2) =0 P +0 P, but [0, 2) -0 N =a N N -0 [0, 2), 

so that multiplication of well ordered sets is not commutative. 

x7.9. For all posets P, Q, P, 

p -o (Q o R) =o (P o Q) -o R. 

x7.10. The product of two well ordered sets is well ordered. 

x7.11. For each well ordered set U, there exists a unique function Parity : 

U —> IV, such that Parity(y) = 0 if y = 0 or y is a limit point, and at 

successor points, 

Parity (S(x)) = 1 — Parity (x). 

x7.12. Every point y in a well ordered set U can be expressed uniquely in 

the form 

V = Sn(x), (7.40) 

where (1) x is either the minimum 0 or a limit point, (2) n is a natural 

number and (3) the function (■i,x) *—> Sl(x) is defined by the recursion 

S°{x) = x, Si+1(x) = SiS^x)). 

x7.13. For any two well ordered sets U, V, there exists at most one initial 

similarity n : U >—» tt[U] C V. 
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N-0{ 0,2): 

(0,0) 

□ 

(1,0) 

o 

(2,0) ... (0,1) (1,1) (2,1) 

o ■ • ■ ■ • • 

[0,2) -0N: □ o o o o • • • 

(0,0) (1,0) (0,1) (1,1) (0,2) 

Figure 7.7. Multiplication of well ordered sets is not commutative. 

x7.14. For all well ordered sets U, V, W, 

U <0 V k V <0 W => U <aW, 

U <QV kV <aW => U <QW. 

7.39. Definition. A prewellordering on a set A is any relation ^ C 

Ax A which is reflexive, transitive, connected (total) and grounded. “Con¬ 

nected” means that any two points in A are comparable, 

(\/x,y e A)[x ^ y V y ^ x\, 

and “grounded” means that every non-empty X C A has a ^ -least mem¬ 

ber, 

(VX a,I^ 0)(3x € X)(Vy e X)[x A y]. 

A prewellordering would be a wellordering, if only it were antisymmetric. 

x7.15. For each set A, consider the set 

B = {X C A | X is finite} 

of all finite subsets of A and set on B 

X Y <^=Nif X <c Y. 

Prove that is a prewellordering. 

x7.16. A relation A C A x A is a prewellordering if and only if there exists 

a well ordered set U = (Field(U),<u) and a surjection n : A —» Field(U) 
such that 

<=> n(x) <u n(y) (x, ye A). 

x7.17. For each set A, the relation 

U<AV <i=^df U, V e WO {A) k U <QV 

is a prewellordering of WO (A). 



Chapter 7. Well ordered sets 113 

_, 

□ o O O O ■ ■ ■ U 

Figure 7.8. Portrait of a prewellordering. 

x7.18. Rework the proof of Hartogs’ Theorem by applying the preceding 

two problems. 

x7.19. For every set A, there exists a well ordered set V such that there 

exists no surjection n : A—»V. 

x7.20. Prove that A <c B =>■ x{A) <G y(R). 

x7.21. Prove that x([0, n)) =a [0, n + 1). 

x7.22. If W is a well ordered set and W <c A, then W <a x(A). 

x7.23. For each set A and each well ordered set U, 

U <0 x(A) Field(U) <c A. 

*x7.24. The operation x{A) is definite, we gave an explicit definition of the 

field h(A) and the wellordering <X(A) °f x(A) from A. Define a similar 

operation sup(£), such that if £ is a non-empty family of well ordered sets, 

then: 

1. sup(E) is a well ordered set. 

2. U E £ => U <0 sup(E). 

3. If W is a well ordered set and for each U G £, U <a W, then 

sup(E) <0 W. 

*x7.25. Let < be a linear ordering of a set A and define on the poset V(A) 

the mapping 

n(X) =df {y e A | (Vs < y)[x G X}}. 

Verify that n : V{A) —> V(A) is monotone and give an example where it 

is not countably continuous. Prove that if Aw is the least fixed point of 7r, 

then 

x G Aw {(s,t) G A x A | s < t < x} is a wellordering. 
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There are situations where it is easier to use the proof of the Fixed Point 

Theorem 7.35 rather than its statement. 

*x7.26. Detailed Fixed Point Theorem. For each expansive or mono¬ 

tone mapping % : P —> P on an inductive poset P, there exists a subset 

D C P with the following properties: 

1. 

2. 

3. 

4. 

D is a well ordered chain in P. 

Every member of D is determined from its predecessors by the for¬ 

mula 

x = 7T(sup {y E D | y < x}). 

No point in D is a fixed point of 7r. 

The point 7r(sup D) is a fixed point of 7r, 

n(n(sup D)) = n(sup D). 

5. If 7r is monotone, then n(sup D) is the least fixed point of n. 

Prove also that these conditions determine D uniquely. 

*x7.27. Suppose P and Q are inductive posets and it : P x Q —> P is a 

monotone mapping on the product and define the mapping p : Q —> P by 

appealing to Problem x6.4 and the Least Fixed Point Theorem 7.36, 

P{y) = (px E P)[K{x,y)=x] /741x 

= the least fixed point of 7r(x, y) = x. 

Prove that p is a monotone mapping, and if n is countably continuous, then 

so is p. 

*x7.28. Bekic-Scott Rule. Suppose Pi, P2 are inductive posets, and 

TTl : Pi x P2 —>• Pi, 7T2 : Pi x P2 > P2 

are monotone mappings. Using the //-notation for least fixed points of 

(7.41), let 

p(x2) = (//x 1 E Pl)[7Ti(Xi,X2) = Xi], 

let 

x2 = (/UX2 E P2)[7r2(/o(x2),X2) = x2] 

be the least fixed point of the mapping x2 7r2(p(x2), x2) (which is mono¬ 

tone by *x7.27) and finally let 

(x*, X2) = (/i(xi,x2) E Pi X P2)[(7ri(xi,x2),7r2(xi,x2)) = (xi,x2)] 
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be the least fixed point in the product poset. Prove that 

xl — x2- 

The problem insures that we can compute simultaneous least fixed points 

by iterating the least fixed point operation (/jlx € P) on one inductive poset 

at a time. 



\ 



Chapter 8 

CHOICES 

8.1. The Axiom of Choice, AC. For any two sets A, B and any binary 
relation P C (A x B), 

(Mx £ A)(3y £ B)[xPy) ==>• (3/ : A —> B)(Vx £ A)[xPf{x)\. (8.1) 

This is the last and most controversial axiom of Zermelo. To understand 

how such an axiom might be needed, consider the classical example of 

Russell, where A is a set of pairs of shoes, B = jj A and 

xPy 4=^ y £ x. 

The function 

f(x) =df the left shoe of a; (x £ A) 

obviously selects a shoe from each pair, in symbols (\/x £ A)[xVf(x)\. 

If, however, A is a set of pairs of socks, then we cannot define a function 

/ : A —» (J A which selects one sock f(x) £ x from each pair, because (as we 

stipulate for the example), a pair of socks comprises precisely two perfectly 

identical objects. We can still prove that a selector function / exists when 

A is finite, by induction on the number of elements in A (Problem x8.1). 

But in mathematics we can imagine infinite sets of pairs of socks, and in 

that case we need something like the Axiom of Choice to guarantee the 

existence of such a function. 

Less amusing but more significant for mathematics is the proof of the 

basic theorem 2.10, where we consider a sequence A0, A\, ... of countable 

sets and we begin with the phrase 

It is enough to prove the theorem in the special case where 

none of the An is empty, in which case we can find for each An 

an enumeration 7rn : N —» An. 

Perhaps for each n “we can find” (i.e. “there exists”) some enumeration tt 

of An, but the rest of the proof needs a function (nn 7rn) which associates 

a specific enumeration nn with each n: which of the axioms (I) - (VI) can 
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Figure 8.1. A selector for P C A x B. 

be used to prove the existence of such a function? Here A — N, B = (N —► 

IT=0 A*) and 
nPi: <=> tv : N —» An, 

so that (Vn G N)(3n G B)[nPn] from the hypothesis that each An is non¬ 

empty and countable, and the Axiom of Choice guarantees precisely that 

there exists a function / : N —>■ B such that for each n G N, the value 

f(n) = 7rn satisfies nP7rn, i.e. it enumerates An. Such “silent” appeals 

to the Axiom of Choice are very common in mathematics and especially 

in analysis, where the classical theory of limits and continuous functions 

cannot be developed in a satisfactory way without choices. 

If we picture P C A x B as a subset of the product space, then the 

hypothesis (Vx G A)(3y G B)[xPy\ means that the fiber or section 

Px =df {y e B I xPy} (8.2) 

above each x G A is non-empty; the Axiom of Choice guarantees the ex¬ 

istence of a selector for P, a function / : A —» B which assigns to each 

x G A exactly one point in the fiber above it. There are two other, simple 

reformulations of the axiom which express in different ways the process 

of “collecting into a whole” any number of unrestricted, non-conflicting 

choices. 

8.2. Definition. A set S is a choice set for a family of sets £ if (1) 

5C(J£, and (2) for every X G £, the intersection S OX is a singleton. A 

choice set S selects from each X G £ the unique member of the intersection 

snx. 

8.3. Exercise. 7/0 G £, then £ does not admit a choice set. Also, ifafi^b, 

then the family £ = {{a}, {a, 6}, {6}} does not admit a choice set. 

8.4. Theorem. The Axiom of Choice is equivalent to the following propo¬ 

sition: every family £ of non-empty and pairwise disjoint sets admits a 

choice set. This is the version of AC postulated by Zermelo. 
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Proof. Assume first the Axiom of Choice and let U = (J £ be the union of 

the given family of pairwise disjoint, non-empty sets, which means that 

(VX G £)(3x G U)[x G X], 

The Axiom of Choice guarantees that there exists a function /:£—>(/, 
such that 

(VX 6 £)[/(X) e X]; 

we set S = /[£] = {/(X) | X G £} and the fact that the members of £ 

are pairwise disjoint implies easily that S intersects every member of £ in 
a singleton. For the converse, assume 

(Vx G A)(3y G B)[xPy], 

set for each x G A 

Ux = {(t,y) | tPy kt = x} 

and let 

£ = {Ux | x G A}. 

Each member of £ is non-empty by the hypothesis and it is determined by 

the constant, first member of the pairs in it, so any two members of £ are 

disjoint. If 5 is a choice set for this £, then the function 

f(x) = the unique y such that (x, y) G S 

easily satisfies the conclusion of the Axiom of Choice. H 

8.5. Definition. A choice function for a set A is any partial function 

e : V(A) —* A, such that 

0 ^ X C A=> s(X) i & e(X) g X. 

8.6. Lemma. The Axiom of Choice is equivalent to the assertion that ev¬ 

ery set admits a choice function. 

Proof. For every A, obviously 

(VX G V{A) \ {0})(3y G A)[y G X], 

and directly from the Axiom of Choice, there must exist some function 

e : V(A) \ {0} —> A such that 

(VX £ V(A) \ {0})[e(X) e X]. 

The converse is easy enough to leave for an exercise. H 

8.7. Exercise. If every set admits a choice function, then the Axiom of 

Choice is true. 
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8.8. But is it true? (1) Naively understood, the Axiom of Choice asserts 

that if each of a set of non-conflicting choices is possible, then they can all 

be made independently and their results collected into a completed whole, 

a set. By this understanding it is quite obvious, it can be justified by the 

natural interpretation we would give to the Powerset Axiom: when we grant 

sethood to the class {X | X C A} of all subsets of A, we truly mean all 

subsets of A, including those for which the membership criterion is not 

determined by some explicit law but by free choice, by chance if you will. 

The Axiom of Choice is different in form from the earlier “constructive” 

axioms (II) - (VI), because it postulates directly the existence of a set for 

which it does not supply a definition. Each of (II) - (VI) grants sethood 

to a specific, explicitly defined collection of objects, it legitimizes a special 

case of the most appealing (if false) General Comprehension Principle 3.3. 

The Axiom of Choice is the only Zermelo axiom other than Extensionality 

which is not a special case of the General Comprehension Principle. This 

is misstated on occasion, to make the claim that the Axiom of Choice is 

the only one which demands the existence of objects for which it does not 

supply a definition, which is not true: the Extensionality and Powerset 

Axioms do the same, in a more fundamental if indirect manner. 

Zermelo introduced the Axiom of Choice explicitly in 1904, in a brief 

paper in which he used it to prove that every set is well orderable. This was 

a long-standing conjecture, and Cantor had outlined a proof of it in a letter 

to Dedekind, then still unpublished. His proof, however (and the related 

proof of the Cardinal Comparability Hypothesis), depended on intuitions 

about sets which were not sufficiently explained. In contrast to this, Zermelo 

made it clear, from the start, that his own detailed proof depended on the 

Axiom of Choice, and he was immediately attacked for this by some of the 

leading mathematicians of the time, for introducing a questionable method 

to derive an implausible conclusion. Given the fact that choice principles 

were by no means new to mathematics and that they permeate Cantor’s 

earlier reasoning, it is fair to say that the shock was caused more by the 

realization of the power of the axiom than by its meaning. 

In the next theorem we list some of the more famous propositions about 

sets which are equivalent to the Axiom of Choice. We have used the tradi¬ 

tional names for these propositions, Lemma, Hypothesis, Theorem, which 

have been attached to them by the historical accident of when and how 

they were introduced in the mathematical literature. 

8.9. Theorem. The following propositions are all equivalent. 

(1) Axiom of Choice. 

(2) Maximal Chain Principle: every poset P has a chain S C P which 

is maximal, in the sense that for every other chain S', S C S' => S = S'. 
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(3) Zorn’s Lemma: if every chain in a poset P has an upper bound, 
then P has at least one maximal element. 

(4) Hypothesis of Cardinal Comparability: for any two sets A, B, 
either A <c B or B <c A. 

(5) Wellordering Theorem: every set is well orderable. 

Proof. We verify, round-robin style, that each of these propositions implies 

the next and finally (5) =>• (1). 

(1) => (2). The poset Chains(P) is inductive, 6.14. If P has no maximal 

chain, then every chain has a proper extension; the Axiom of Choice gives us 

a function 7r : Chains(P) —► Chains(P) such that for all S, S C 7r(S)] and 

7T is an expansive mapping with no fixed point in Chains (P), contradicting 

the Fixed Point Theorem 7.35. 

(2) =>• (3). By (2), P has a maximal chain S, and by hypothesis, S has 

an upper bound M which is maximal in P; because if M < y, then S U {y} 

is a chain properly extending S, which does not exist. 

(3) => (4) Every chain S in the poset (A ^ B) of all partial injections 

on A has an upper bound, namely, its union (JS\ Thus, by (3), there exists 

a maximal partial injection / : A >—>■ B. If 

a 6 A \ Domain(f), b G B \ f[Domain(f)\, 

then /U{(a, b)} is (easily) a partial injection which properly extends /; thus 

either f[A\ = B and / is total and witnesses A <c B, or f[Domain(f)] — B 

and the inverse partial injection f~l : B >—*• A is total and witnesses that 

B <c A. 

(4) => (5). Given A, let h(A) be the Hartogs set associated with A, 

which is well ordered by <X(A)- By Hartogs’ Theorem 7.34, A h(A), 

so (4) guarantees the existence of an injection / : A >—> h{A) and we can 

define on A the relation 

x ^ y —An f (a) Tx(n) /(y) • 

This is easily a wellordering. 

(5) =>• (1). If < is a wellordering of A, then the partial function 

e(X) = the <-least member of X 

is a choice function for A. ' 

8.10. But is it true? (2) The meaning of this theorem is that if we ac¬ 

cept the basic, constructive first six axioms of Zermelo, then the Axiom 

of Choice, the Maximal Chain Principle, Zorn’s Lemma, the Hypothesis of 
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Cardinal Comparability and the Wellordering Theorem express in five dif¬ 

ferent ways the same set theoretic principle. No doubt, the Axiom of Choice 

is the most direct and intuitive formulation of this principle, the one which 

makes it most obvious that it is true. The Maximal Chain Principle and 

Zorn’s Lemma are technical, abstract and hard to understand, but they are 

valuable for their applications, especially in analysis, algebra and topology. 

We will not do much with these propositions in the main body of these 

Notes and we have included them mostly because the mathematicians who 

use set theory rather than do it swear by them. The Cardinal Comparabil¬ 

ity Hypothesis is certainly easy to understand and plausible, but few would 

propose it as an axiom, it has the feel of a proposition which ought to be 

proved. Finally, the Wellordering Theorem is crystal clear in its meaning 

and it gives a mechanism for making choices which “explains” in some way 

the Axiom of Choice, but far from being obvious, it raises a flag of cau¬ 

tion. For example, what does a wellordering of the powerset of the natural 

numbers V(N) look like? Without some thought it is not even obvious that 

V{N) admits linear orderings (see Problem *x8.9). It is quite difficult to 

imagine the structure of the beast, and this naturally casts doubt on the 

truth of the axiom which implies its existence. It is hardly surprising that 

the commotion about the Axiom of Choice was caused by Zermelo’s proof 

of the implication (1) =>• (5), whose conclusion is still thought by many 

to be counterintuitive. 

We now consider two easy corollaries of the Axiom of Choice which ex¬ 

press simpler principles of choice. 

8.11. Countable Principle of Choice, ACN. For each set B and each 

binary relation P C N x B between natural numbers and members of B, 

(Vn € N)(3y £ B)[nPy] =* (3/ : N -> P)(Vn £ N)[nPf(n)]. 

8.12. (VI) Axiom of Dependent Choices, DC. For each set A and 
each relation P C A x A, 

a £ A & (Vx £ A)(By £ A)[xPy) 

=> (3/ : N -> A)[f(0) = a & (Vn £ N)[f(n)Pf(n + 1)]]. 

In contrast to the full Axiom of Choice which demands the existence of 

choice functions / : A -* B for arbitrary A, B, the Countable Principle 

of Choice ACn justifies only a sequence of independent choices from an 

arbitrary set B which successively satisfy the conditions 

0P/(0), 1P/(1), 2P/(2), ... . 

The Axiom of Dependent Choices also justifies only a sequence of choices, 

where, however, each of them may depend on the previous one, since they 
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must now satisfy the conditions 

f(0)PfW, /(l)F/(2), /(2)P/(3), ... . 

It is easily equivalent to the following, seemingly stronger principle which 

allows each choice to depend on all the preceding ones. 

8.13. Proposition. The Axiom of Dependent Choices is equivalent to the 

following proposition: for every set A and every relation P C A* x A between 

strings from A and members of A, 

(Vu G A*){3x G A)[uPx] => (3/ : N -> A)(Vn)[/(n)P/(n + 1)]. 

Proof. The implication from this version of DC to the “official” one is 

easy and we leave it for an exercise. Assuming now DC and the hypothesis 

of the seemingly stronger version, define on A* the relation 

uQv <=>-df (3x G A)[v — u * <x> & uPx]\ 

we obviously have (Vu G A*)(3u G A*)[uQv\, DC gives us a function 

g : N —► A* such that g(0) = 0 and (Vn)[g(n)Qg(n + 1)], and the function 

we need is (easily) f — [Jg. 3 

8.14. Theorem. (1) The Axiom of Choice implies the Axiom of Depen¬ 

dent Choices. 

(2) The Axiom of Dependent Choices implies the Countable Principle of 

Choice. 

Proof. (1) Let e : V(A) \ {0} —> A be a choice function for A and assume 

the hypothesis of DC. The function f : N -+ A that we need for the 

conclusion is defined by the recursion 

f(n) = a, 

f{n+ 1) = e({y G A | f(n)Py}). 

(2) Assume the hypothesis of the Countable Principle of Choice, let A = 

N x B, let a = (0,6) where 6 G B is any point satisfying OPb and define 

on A the relation 

(n, x) Q (to, y) <^=^>df m = n + 1 & mPy. 

The function / : N —► N x B supplied by DC for this a and Q takes pairs 

as values, so f(n) = (g{n),h{n)), ^(0) = 0, h(0) = 6 for suitable functions 

g, h, and for every n, g(n + 1) = g(n) + 1, g{n + 1 )Ph(n + 1). It follows 

that for every n, g(n) = n and nPh(n), as required by the conclusion of 

the Countable Principle of Choice. 3 
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We need a definition to formulate the most basic version of the Axiom 

of Dependent Choices. 

8.15. Definition. A graph (G, ->g) grounded or well founded if 
every non-empty subset of G has a minimal member: 

0 c S' C G =» (3m G S)(Vx G S)[-m ->G %]■ (8.3) 

A poset (P, <) is grounded if the associated “inverse strict graph ” (P, >) 

is grounded, which means that for every S, 

0CSCP=4 (3m G S)(\/x G S)[x < m => x = m]. (8.4) 

8.16. Exercise. Assume DC and prove that a linear ordering (P, <) is 
grounded if and only if it is a wellordering. 

8.17. Proposition. The Axiom of Dependent Choices is equivalent to the 

following proposition: a graph G is grounded if and only if it has no infi¬ 

nite, descending chains, i.e. there exists no function f : N —> G such 

that for all n, f(n) —>g f(n + 1), 

/(0) -G /(l) -G /(2) -G . ■ . ■ 

Proof. First assume DC. If / : N —* G is an infinite, descending chain, 

then the set {f(n) \ n E N} has no minimal element, so G is not grounded. 

Conversely, if G has a non-empty subset A with no minimal element, then 

(Vx G G)(3y G G)[x —>q y], and then DC gives us an infinite descending 

chain. 

Assume now that every graph which has no infinite descending chains is 

grounded and the hypothesis 

(Vx G A)(3y G A)[xPy\ 

of DC holds, and consider the graph (A,—>a) where 

x m y xPy (x, y e A). 

The conclusion of DC is exactly the statement that (A, —*a) has an infinite 

descending chain, so if it fails, there must exist some minimal s G 4; this 

means precisely that (fJy G A)-^[sPy], which contradicts the hypothesis of 

DC. H 

Grounded graphs have many of the properties of well ordered sets, in 

particular, we can prove propositions by induction and define functions 

by recursion over them, Problems x8.10 and *x8.11 and Theorem 11.5. 

The easy direction of this result makes DC particularly useful in studying 

them, as it is often simpler to verify that a given graph G has no infinite 

descending chains than to prove directly that G is grounded. 
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8.18. But is it true? (3) We have remarked that before it was formu¬ 

lated precisely by Zermelo, the Axiom of Choice had been used many times 

“silently” in classical mathematics, and in particular in analysis. These clas¬ 

sical applications, however, can all be justified on the basis of the Axiom of 

Dependent Choices, in fact most of them need only the weaker Countable 

Principle of Choice. This will become clear in Chapter 10 and Appendix A. 

Zermelo assumed the full Axiom of Choice because it is a natural hypothe¬ 

sis in the context of Cantor’s set theory; because it is needed in the proofs 

of the Wellordering Theorem and the Cardinal Comparability Hypothesis; 

and because it is indispensable for the development of cardinal arithmetic. 

This difference between the choice principles needed for classical mathe¬ 

matics and those required by Cantor’s new theory of sets explains in part 

the strident reaction to the axioms of Zermelo by the distinguished analysts 

of his time (including the great Borel), who had used choice principles rou¬ 

tinely in their work—and continued using them, as they denounced general 

set theory and called it an illusion: in the context of 19th century classical 

analysis, the Axiom of Dependent Choices is natural and necessary, while 

the full Axiom of Choice is unnecessary and even has some counterintuitive 

consequences, including certainly the Wellordering Theorem. 

We should also mention here that even in general set theory where the 

full Axiom of Choice is routinely accepted as obvious, many of the basic 

theorems do not need it, and in particular all the results of Chapter 3 can 

be based axiomatically on the Axiom of Dependent Choices. Notice also that 

we proved all the basic facts about well ordered sets in the preceding chap¬ 

ter with no appeal to choice principles whatsoever. For this reason, we“will 

deviate technically from Zermelo and we will put in our basic system the 

Axiom of Dependent Choices instead of the full Axiom of Choice. “Techni¬ 

cally,” because we take the position that there is no doubt about the truth 

of the Axiom of Choice and we will never hesitate to appeal to it when it 

is needed, we will simply include it (discreetly) among the hypotheses. 

8.19. Axiomatics: the theories ZDC, ZAC. The axiomatic system 

ZDC comprises the constructive axioms (I) - (VI) of Chapter 3 and the 

Axiom (VII) of Dependent Choices 8.12, The classical system ZAC of 

Zermelo includes, in addition, the full Axiom of Choice, AC, 8.1. Symbol¬ 

ically 

ZDC = (I) -(VI) + DC = (I) -(VII), 

ZAC = (I) - (VI) + AC = ZDC + AC. 

From now on and until Chapter 11, we will use in proofs the axioms of 

ZDC without explicit mention. When the Axiom of Choice is required, we 

will make a note of the fact by annotating the relevant proposition with the 

mark (AC). In Chapter 11 we will complete our axiomatization by adding 

to ZDC the Axiom of Replacement. 



126 Notes on Set Theory 

8.20. Consistency and independence results. Could we settle the con¬ 

troversy about the Axiom of Choice by simply proving or refuting AC from 

the constructive axioms (I) - (VI)? Neither possibility seems likely. On the 

one hand, AC is probably true, as are axioms (I) - (VI), and we cannot 

refute a true statement on the basis of true assumptions. On the other 

hand, AC appears to be a genuinely new set theoretic principle, and we 

cannot expect to prove it from the other ones, by logic alone. As a matter 

of fact, it can be shown rigorously that the Axiom of Choice can neither 

be proved nor refuted from axioms (I) - (VI). 

The most direct way to show that a certain proposition cannot be 

proved in a certain axiomatic system T is to produce a model of T, in 

which <f> is false. Consider the classical problem about plane Euclidean 

geometry, whether the Parallel Axiom1 can be deduced from the others. 

To show that it cannot, we declare that by “plane” we will mean the two- 

dimensional sphere, the surface of the unit ball, and by “line” we will mean 

any great circle on the sphere. The remaining primitive notions of plane 

Euclidean geometry can be defined naturally in this interpretation, and it 

is not hard to verify that the basic, simple axioms of Euclid are true with 

these definitions; thus, we have a model of plane geometry in which the 

Parallel Axiom fails, simply because any two great circles intersect. We 

conclude that the Parallel Axiom cannot be proved from the others “by 

logic alone,” because then it would be true in every interpretation which 

makes the other axioms true, and we have found one where it is false. 

To define a model for an axiomatic theory, in general, one needs to specify 

a domain of objects and interpret on it the primitives of the theory, so that 

the axioms are true. For a theory about sets, this means we must define 

sethood and membership on some domain, and we must also identify which 

conditions and operations on the domain will be considered definite. Models 

for ZDC and ZAC do not come cheap, the theories are too strong. We 

will study some very special models (“universes”) in Appendix B, but the 

most interesting constructions require delicate methods from mathematical 

logic which are outside the scope of these Notes: we will just state and 

discuss some of the many famous consistency and independence results of 

the subject as they become relevant in what follows. 

We have assumed at the outset, in 3.6, that our theory has a model, 

the standard universe of objects W, in which axioms (I) - (VI) (at least) 

are true. This assumption is natural and even necessary if our lives as set 

theorists are to have any meaning, but it is not included among the axioms 

of ZDC, ZAC or any of the other theories we will consider.* 2 It is almost 

Mhe Parallel (fifth) Axiom of Euclid is equivalent to the assertion that given 
a line L and a point P not on it, there exists exactly one line L' through P and 
having no points in common with L. 

2In fact it is not possible to assume such an axiom: adding the existence 
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never needed, except when we assert the existence of models of various 

theories: to construct those, we have to start with something, and that is 

always the assumed, standard model of our theory. 

8.21. Proviso for model existence assertions. Without further men¬ 

tion, all claims in these Notes of existence of models, consistency of theo¬ 

ries and independence of propositions are based on the existence of a model 

which satisfies axioms (I) - (VI) and (VIII), the Axiom of Replacement 

which we will introduce in Chapter 11. 

8.22. The consistency of the Axiom of Choice (Godel, 1939). Zer- 

melo’s theory ZAC with the full Axiom of Choice has a model and hence 

(I) - (VI) do not refute AC, or AC is consistent with (I) - (VI). Godel’s 

famous model L of constructible sets has many more canonical properties 

and it establishes the consistency of AC with theories much stronger than 

(I) - (VI). We will come back to it on several occasions. 

8.23. The independence of the Axiom of Choice (Fraenkel-Mostow- 

ski, 1939, Cohen, 1963). Each of the theories 

(I) - (VI) + -AC*, (I) - (VI) + AC/v+ -DC, ZDC+ -AC 

has a model. This means that we cannot prove ACyv from the construc¬ 

tive axioms (I) - (VI), we cannot prove DC from the constructive axioms 

and AC/\r, and we cannot prove AC in ZDC: each of these three choice 

principles is stronger than the preceding ones. The early model construc¬ 

tions of Fraenkel and Mostowski either contained atoms or had some other, 

technical defects which limited the possibility of generalizing them. Cohen 

constructed his models by his famous forcing method, which he (and oth¬ 

ers) also used to establish many more unprovability results. We will refer 

to it several times in the remainder of these Notes. 

Problems 

Let us call two propositions <p and ip constructively equivalent if their 

equivalence (p -<—>- ip can be established on the basis of the constructive 

axioms (I) - (VI), i.e. without appealing to any choice principle whatsoever. 

of a model of ZDC to the axioms of ZDC creates a new and stronger theory 
ZDC' and the further problem whether ZDC' has a model. In the best and 
most famous result of Mathematical Logic, Godel proved (rigorously) that this 
conundrum cannot be avoided, there exists no axiomatic theory (consistent and 
worth studying) which includes among its axioms or theorems the assertion that 

it possesses a model. 
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x8.1. Prove the Axiom of Choice (8.1) for finite A. 

Combined with Problem x5.24, the next problem gives a formulation of 

the Countable Principle of Choice AC/v directly in terms of the member¬ 

ship relation, with no reference to N or the concept of “function.” 

x8.2. The Countable Principle of Choice ACyv is constructively equivalent 

to the following proposition: every countable, infinite family £ of non-empty 

and pairwise disjoint sets admits a choice set. 

x8.3. The Axiom of Choice is constructively equivalent to the following 

proposition: for every A ^ 0 and every / : A —► B, there exists some 

g : B —>■ A such that for all x G A, f(g(f(x))) = f(x). 

x8.4. The Axiom of Choice is constructively equivalent to the following 

proposition: for each I and each indexed family of sets (i i—> A{) on /, 

(Vi G I)[Ai ± 0] =4> Y\ieIAi / 0- 

The Countable Principle of Choice is constructively equivalent to the propo¬ 

sition: for every sequence of sets (n ■> An), n G N, 

(Vn G N)[An 7^ 0] ElneNAn ^ 0. 

In the next four problems we establish that the Axiom of Dependent 

Choices is equivalent to several seemingly weaker principles of choice. 

*x8.5. The Axiom of Dependent Choices is constructively equivalent to the 

following proposition: for every non-empty A and every relation P C A x A, 

(Vx E A)(By G A)[xPy\ 

=> (3B C A)[B ^ 0 & (3/ : B —► B)(Vx G B)[xPf(x)}} 

*x8.6. The Axiom of Dependent Choices is constructively equivalent to the 

following proposition: for every relation P C A x A and a G A, 

(Vx G A)(By G A)[xPy\ 

=* (3 B C A)[a GB & (3/ : B —> B)(Vx G B)[xPf(x)}}. 

*x8.7. The Axiom of Dependent Choices is constructively equivalent to the 

following proposition: a poset P is grounded if and only if it has no infinite, 

descending chains, i.e. if for every / : N —► P, 

(Vn G N)[f(n + 1) < f(n)} => (Bn)[f(n + 1) = f(n)}. 
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It is also possible to formulate the Axiom of Dependent Choices directly 

in terms of the membership relation, but not in a very pretty manner. 

*x8.8. Prove that the following proposition is constructively equivalent to 

the Axiom of Dependent Choices: for every set A and every binary definite 

condition P, 

[0 G A & (Vu, v G A) [P(u, v) ==> (3D) [v = uU {a^}]] 

& (Vu G A)(3v G A)P(u,v)} 

=> (3B C A)[0 G B & (Vu G B){3!u G B)P{u,v)]. 

*x8.9. Prove that the following, lexicographic ordering on (N —> N) is 

indeed a linear ordering but not a wellordering: 

f <9 <^df / = g V (3n G IV) [(Vi < n)[/(i) = g{i)\ & f(n) < g(n)}. 

Infer that V(N) admits a linear ordering. 

x8.10. Grounded induction. For each grounded graph G and each unary 

definite condition P, 

(Vy G G)[(\/x)(y x P{x)) => P(y)] =>■ (Vy G G)P(y). 

*x8.11. For every grounded graph G and every function 

h: {G - E) E, 

there exists a unique (total) function / : G —> E which satisfies the identity 

f(x) = h(f \ {y gG | x y}) (x G G). 

Hint. Rework the proof of Theorem 7.24, using functions 

at '■ {x E G \ t x} 

defined on “initial segments” of the transitive closure =>g of *G ■ 





Chapter 9 

CHOICE’S CONSEQUENCES 

We will begin this chapter with a few results about countability whose 

proofs illustrate the difference between A.Cn, DC and AC, but our main 

task is to establish some important consequences of the full Axiom of 

Choice, including the basic laws of cardinal arithmetic. The telltale mark 

(AC) will grace practically all the numbered propositions. 

9.1. Theorem. Every infinite set has a countable, infinite subset, so for 

every cardinal number k, either k <c K0 or K0 <c k. 

Proof. If A is infinite, obviously 

(Vit G A*)(3y g A)(Vi < lh(u))[u(i) ^ y\. 

It follows from DC that there exists a sequence f : N —* A such that 

(Vn)(Vi < n)[f(i) / f(n)], 

and the image f[N] is a countable, infinite subset of A. The second assertion 

is trivial, taking cases on whether n is finite or infinite. H 

The point of the second assertion of the theorem is that while the general 

property of Cardinal Comparability requires the full Axiom of Choice, the 

special (and significant) case of comparability with Ko is a theorem of ZDC. 

In fact, it is possible to prove 9.1 using the Countable Principle of Choice 

ACtv instead of DC, Problem *x9.1, but the proof is somewhat more 

technical. This is a general fact about the relation between DC and AC^: 

many results whose natural proofs call for DC follow from the weaker 

principle, with some additional effort. 

Theorem 9.1 also settles the relation between infinite and Dedekind- 

infinite sets. 

9.2. Corollary. A set A is finite if and only if it is Dedekind-finite by 

4.27, i.e. if there exists no injection 7r : A >—> B C A from A into one of its 

proper subsets. 
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Proof. Finite sets are Dedekind-finite by the Pigeonhole Principle, 5.25. 
If A is infinite, let / : ./V >—► A enumerate without repetitions some infinite, 
countable subset of it. The injection 

, . f f(n + l) if for some n, x = f(n), 
*{x) = {x if x i m 

witnesses that A is Dedekind-infinite, since n[A] = A \ {/(0)}. H 

Next we consider an elementary but very useful result about trees, whose 
proof offers an additional illustration of the use of DC and its relation to 
ACn. 

9.3. Definition. A tree1 on a set E is any set T C E* of strings from E 
which is closed under the relation of initial segment, 

u C v £ T =>- ueT. 

By (5.16), for strings, u □ v <=> u C v. 

A lot of terms are used in the study of trees, most of them deriving from 
our picturing trees as, well, trees. The members of T are its nodes or finite 
branches, and every non-empty tree has 0 as its least node, the root. If 
u * <x> e T, then u is a parent of u * <x> and u * <x> a child of u 
in T. Each node other than the root has exactly one parent, but may have 
many children; if it has none, it is a terminal node. With each node u we 
associate the subtree 

Tu =df {w e T | w C u V u □ w} (9.1) 

of nodes comparable with u. Easily, 

Tu = U {Tv | v is a child of it}. (9.2) 

1 Trees occur in many branches of mathematics, differently defined depending 
on the special needs of the field. The present definition is the most general we 
will need in these Notes. 
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9.4. Exercise. Show (9.2). 

The infinite branches of a tree are its infinite sequences, and we collect 

them in the body of T, 

[T] =df {/ : N -> E | (Vn)/(n) G T}. (9.3) 

Every infinite branch of a tree involves an infinite number of distinct nodes, 

so finite trees have empty bodies. It is also easy to construct infinite trees 

with empty bodies: 

9.5. Exercise. Show that the tree 

T = {u E N* | (Vi < lh(u), i > 0)[u(z) < u(i - 1)]} 

on the natural numbers is infinite but has no infinite branch. 

9.6. Definition. A tree T is finitely branching if every node of T has 

at most finitely many children. Notice that the tree in 9.5 is not finitely 

branching (at the root), and it could not be, by the following, basic result. 

9.7. Konig’s Lemma. Every infinite, finitely branching tree has at least 

one infinite branch. 

Proof. Suppose T C E* is infinite, finitely branching, and let 

S =df {u ET | Tu is infinite} 

be the subtree of those nodes in T which are comparable with infinitely 

many nodes. Since T@ = T is infinite by hypothesis, the root 0 E S, and 

(9.2) implies that 

(Vu E S)(3v E S') fa is a child of u], 

because each u has at most finitely many children and the infinite set Su 

cannot be a finite union of finite sets. It follows by DC that there exists 

some g : N -► S such that g(0) = 0, and for every n, the value g(n + 1) is 

a child of g(n), i.e. g(n) Qg(n+l). Thus, the union 

/ = UitfOO I n e N) 

is a (total) function / : N —> E, and for each n, f(n) = g(n), i.e. / is an 

infinite branch of T. ^ 

Konig’s Lemma is very useful, especially in the following, more “con¬ 

structive” version. 
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9.8. Definition. A set of nodes B C T is a bar in a tree T, if every 

infinite branch of T passes through at least one node of B, 

(V/ G [T])(3n)/(n) G B. 

9.9. Fan Theorem. If T is a finitely branching tree and B is a bar for T, 

then there exists a finite subset 

Bq — {tii,..., un} C B 

which is also a bar of T. 

Proof. Let Bq comprise the minimal members of the bar B, 

B0 =df {u G B | (Vv ^ u)v i B}, 

and notice that Bq is also a bar, because if / G [T] and n is least such that 

/(n) G B, then J(n) G Bq. Let S be the tree of all initial segments of the 

nodes in Bq, 
S=d{ {veT | (3u G B0)v □ u}. 

Now S is a finitely branching tree (a subtree of T), and its terminal nodes 

are precisely the nodes in Bq, because no member of Bq is a proper initial 

segment of another. Thus, S cannot have an infinite branch, since B0 is a 

bar for T. By Konig’s lemma then, S is finite, and so its subset Bq is also 

finite. H 

The surprisingly simple proof of Konig’s Lemma is typical of arguments 

from DC, partly because its basic structure calls for DC, but also because 

of the following two reasons: 

(1) Konig’s Lemma can be proved for every tree T on a well orderable 

set E with no use of choice principles, Problem x9.4. In many applications, 

E = N or E is finite, and then we need no choice whatsoever. 

(2) Like 9.1, Konig’s Lemma can be proved by appealing to AC;v rather 

than DC, Problem *x9.3. 

Many of the applications of the full Axiom of Choice have the following 

form: first we state and prove in ZDC (or even with no choice at all) some 

interesting proposition about well orderable sets, and then we infer the re¬ 

sult we want for all sets by appealing to the Wellordering Theorem. Typical 

is the following generalization of the Hypothesis of Cardinal Comparability 

where (for the first and last time) we will state separately the corollary 

about all sets. 

9.10. Theorem. Wellfoundedness of <c. (1) For every non-empty class 

£ of well orderable sets, there exists some Aq G £ such that for every A G £, 

Aq <c A. 
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(2) (AC) Every non-empty class £ of sets has a <c-least member. 

Proof. By 7.33, let Uo = (A0, <o) be a <0-least well ordered set with field 

in £. If A G £, then there exists some wellordering < of A and by the choice 

of U0, (A0, <0) <0 (A, <), so that, in particular, A0 <c A since every initial 

similarity is an injection. H 

9.11. Lemma. The Next Cardinal. For every well orderable cardinal 
number k, the cardinal 

k+ =df |x(«)l (9-4) 

is also well orderable and it is least among the well orderable cardinals 
bigger than k, i.e. 

k, <c k+ , k <c A => k+ <c A, (9.5) 

for every well orderable cardinal A. Here xiK) is the Hartogs well ordered 

set of k, defined in 7.34. 

Proof. Since k+ is well orderable, it is comparable with k, it cannot be 

<c k by Hartogs’ Theorem 7.34, so k <c k+. The minimality of x(k) 

implies the rest. H 

We set 

Ki=df ^o+, K2=df K+... . (9.6) 

9.12. Exercise. (AC) Since (with AC) every two cardinal numbers are 

comparable, the Continuum Hypothesis CH and the Generalized Contin¬ 

uum Hypothesis GCH can also be expressed by the simple identities 

CH 4=^ 2K° =c Ki, GCH ^ (V«;)[2K =c k+}. (9.7) 

This, unfortunately, does not help their resolution. 

The next Lemma is often useful in arguments about well orderable sets. 

9.13. Definition. A best wellordering of a set A is any wellordering < 

of A in which every initial segment is smaller in cardinality than \A\, 

(V® G A)[|seg(®)| <c \A\\. 

9.14. Lemma. (1) Every well orderable set admits a best wellordering. 

(2) If <a, <b are best wellorderings of A and D, then 

A =c B => (A, <A) =0 (B,<b). 

In particular, any two best wellorderings of the same set are similar. 
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Proof. (1) Let U = (A, <) be <0-least in the class of all well ordered sets 

with field A and suppose (towards a contradiction) that there exists some 

x E A, A <c segu(x). This yields an injection n : A^> segu(x) and the 

relation 

u <' v <=^df 7r(tt) < tt(v) (u,v E A) 

is evidently a wellordering of A which is <D than segy{x) by 7.32, hence 

<0 U, contrary to the choice of U. (2) Suppose U = (A, <^), V = (5, <b) 

and (towards a contradiction) U =a segv(x) for some x E B. The similarity 

7r : A >—»■ segy (x) witnesses that 

\A\ =c |segy(a)| <c \B\, 

which is contrary to the hypothesis \A\ =c \B\. H 

Every best wellordering of a countable, infinite set is similar with the 

natural wellordering of N, and we can use best wellorderings to show that 

many properties of countable sets hold for all well orderable sets. Typical 
o 

is the next result, which generalizes the identity Ko =c and shows that 

the transfinite arithmetic of binary addition and multiplication is trivial. 

9.15. Lemma. For every infinite, well orderable set C, C x C —c C. 

Proof. Assume the contrary towards a contradiction, let C be a <c-least 

counterexample by 9.10 and let < be a best wellordering of C. By the 

choice of C, for every infinite point x E C, 

|seg(x)| + |seg(x)| =c 2 • |seg(x)| <c |seg(x)| • |seg(x)| <c |Cj. (9.8) 

The key step in the proof is the following definition of a new wellordering 

of the product C x C, due to Godel, which we have already met (somewhat 

concealed) in the proof of 5.31. We set 

(xuyi) <g (X2,V2) <=^df [max(xi,yi) < max(x2,y2)] (9.9) 

V[max(xi,yi) = max(x2,y2) & x\ < x2] 

V[max(xi,yi) = max(x2,y2) & xx = x2 

& Vi < V2}- 

The maximum here is obviously computed relative to the ordering <. 

Lemma. The relation <g is a wellordering of C x C. 

Proof. For each non-empty X C C x C, let w* be <-least such that for 

some (x, y) E X, max(x, y) = w*; next let x* be <-least such that for some 

y, (x*,y) E X and max(x*,y) = w*; and finally let y* be <-least such that 

(x*,y*) E X, max(x*,y*) = w*. 
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(a, 6) (b,b) 

seg (6) x seg (b) 

• (a, a) 

(a, 6) 

Figure 9.2. Initial segments of the Godel wellordering. 

The well ordered sets (C, <) and (C x (7, <g) are <0-comparable and by 

the choice of (C, <), (Cx C, <g) <a (C, <) is not possible, so we must have 

C <0 C x C; thus there exists some pair (a, b) of members of (7 such that 

(C, <) =o segCxC((a, 6)) = seg5((a, 6)), 

and we will reach the desired contradiction if we can show that the initial 

segment seg ((a, &)) <c C. We consider the possibilities arising from the 

relative positions of a and b in <, and we use the fact that the point 

max(a,b) must be infinite. 

Case 1, a = b. From the definition of the Godel wellordering, 

(u, v) <g (a, a) <^=^> [u < a &: v < a] V [u < a fo v = a\ V [u = a & v < &], 

so that 

seg3((a, a)) = (seg(a) x seg (a)) U (seg (a) x {a}) U ({a} x seg(a)), 

and by repeated applications of (9.8), 

|segg((a, a))| <c |seg(a)|2 + |seg(a)| ■ 2 <c |seg(a)| • 3 <c \C\, 

Case 2, a < b. Again from the definitions and because now max(a, b) = 

b, 
(u, v) <g (a, b) •<=>- [u < b L v < b\V [u < a & v = b\, 

seg ((a, 6)) = (seg(6) x seg(6)) U (seg(a) x {6}) and a similar computation 

shows again that |segg((a, b))\ <c \C\. 

Case 3, a > b. This time 

(u, v) <g (a, b) [u < a & v < a] V [u < a & v = a] V [it = a & v < b\, 

from which we reach a contradiction as in the preceding cases. H 
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9.16. Corollary. The Absorption Laws. (AC) If at least one of the 

cardinal numbers k, A is infinite and neither is 0, then 

k + A =c k ■ A =c max(K, A). 

Proof. Assuming that 0 <c k <c A and using the result A • A =c A from 

the Lemma, we compute 

A ^ T A —c ^ * A 5~c A • A —c A. H 

9.17. Corollary. (AC) For every indexed family of sets (i i—> Ki)iei and 

every infinite k, if |/| <c k and for each i £ I, Ki <c k, then <c K- 

Proof. Using AC and the hypothesis, choose for each i € / some injection 

7Ti : Ki >—* k, so that the mapping ((z,x) >—> (i,ni(x))) is an injection of 

{(i,x) | i G I & x £ K{} into / x k. The existence of such an injection 

implies that 

1/ X «| =c |^| • |k| =c «• ^ 

To find interesting problems and results in cardinal arithmetic we must 

consider operations with infinitely many arguments, of which the simplest 

are the following. 

9.18. Cardinal Minimum Lemma. There is a definite operation infC(E), 

such that for each non-empty family £ of well orderable sets, the value 

k = infc(E) has the following properties. 

1. k is a well orderable cardinal number. 

2. For some A e £, k =c A. 

3. For every B G £, k <c B. 

In addition, these conditions determine the value infc(E) up to =c, i.e. if 

k is any object which satisfies (1) - (3), then k =c infc(E). 

Proof. If the cardinal assignment \X\ is strong by 4.21, then 9.10 implies 

that there exists exactly one cardinal number which satisfies the condition 

Least(£,K) (3A £ £)[(V5 £ £)[A <c B] & k = |A|], 

and we can set 

infc(E) = the unique k such that Least(E, k). 
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We need to do more, since we have only assumed that \X\ is a weak car¬ 

dinal assignment and there may well exist many values of k which satisfy 
Least(E, k). 

By Lemma 2 in the proof of Hartogs’ Theorem 7.34, if A C [j E and 

< is a wellordering of A, then the well ordered set U = (A, <) is similar 

with some proper initial segment of XV = x((J£), and hence every A e £ 

is equinumerous with some proper initial segment of W. Thus we can set 

w =df the least x e W such that (3^4 e E)[A =c seg^(x)], 

m/c(£) =df Iseg^y (iy)|. 

Verification of the required properties of m/c(£) is quite trivial. H 

9.19. Exercise. Show the part of the theorem which follows the “in addi¬ 
tion. ” 

9.20. Cardinal Supremum Lemma. There is a definite operation supc(E), 

such that for every non-empty family £ of well orderable sets the set supc(E) 

has the following properties. 

1. k is a well orderable cardinal. 

2. For every A € £, A <c k. 

3. If B is well orderable and for all A 6 £, A <c B, then k <c B. 

In addition, these conditions determine the value supc(E) up to =C) i.e. if 

k is any object which satisfies (1) - (3), then k —c infc(E). 

Proof. Let C = /i((J£) be the Hartogs set for the union of £, which by 

Hartogs’ Theorem 7.34 is well orderable and greater in cardinality than 

every well orderable subset of (J £, including every A G £. We set 

supc(E) =df mfc({B C C | (V4 e £)[d <c £?]}) 

and verify easily the conclusion of the Lemma. H 

Infinite sums and products were defined in 4.21. We cannot say much 

about these, because infinite sums are as trivial as the finite ones (Problem 

x9.15), and infinite products are as complex as the Generalized Continuum 

Hypothesis, because 

2* =c rLe.2. 

There is, however, a very interesting inequality relating the two. 
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9.21. Konig’s Theorem. (AC) For any two families of sets (i i-> Aj) 

and (i i—> Bf) on the same index set 7 7^ 0, 

(Vi G I)[Ai <c Bi] => (J(9.10) 

In particular, for families of cardinals, (i i—* «j) and (i i—> Aj), 

(Vi G 7)[/Cj <c Aj] =£■ X^jg/K* Ilie/Ai- (9A1) 

Proof. By the hypothesis and AC, for each i there exists an injection 

7Tj : Aj ^ Bi, and since 7Tj cannot be a Injection, there also exists a function 

c : 7 —> (J iei^i such that for each i, c(i) G 77j \ 7tj [Aj]. We set 

/OM) 
7Ti(x), if X G Aj, 

c(i), if x ^ Aj, 

-*• /(*>*))• 

If x 7^ y and x, y belong to the same Aj for some i, then g(x)(i) — rq(x) 7^ 

7Tj(y) = g{y){i) because 7Tj is an injection, and hence g(x) 7^ y(y). If no A, 

contains both x and y, suppose x G Aj, y ^ Aj; it follows that g(x)(i) = 

7Ti(x) G ni[Aj] and y(y)(i) = c(i) G 73j \ 7Tj[Aj] so that again y(x) 7^ y(y). 

We conclude that the mapping g : (Ji€/Aj >—» n,gj &i is an injection, and 

hence 

U iei-A-i n^. 

Suppose, towards a contradiction that there existed a correspondence 

h '■ U ieiAi ^ TlieiBii 

so that these two sets are equinumerous. For every i, the function 

hi(x) ==df h(x)(7) (x e Aj) 

is (easily) an injection of A, into Bi and by the hypothesis it cannot be a 

bijection; hence by AC there exists a function e which selects in each 77, 

some element not in the image, i.e. 

e(i) G Bi \ hi[Ai], (i G 7). 

By its definition, e G riie / Bi, so there must exist some x G Aj, for some 

j, such that h(x) = e; this yields 

e(j) = h(x)(j) = hj(x) G Tiy[Ay], 

contrary to the characteristic property of e. 

The cardinal version (9.11) follows by applying (9.10) to Aj = {?'} x /Cj 

and Bi = Aj. ~\ 
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9.22. Exercise. (AC) Konig’s Theorem applies to the case I = k, Ki = 1 
and Xi = 2 and yields 

K UiGrelO <c E~c 2K, 

i.e. the theorem of Cantor. 

Despite its simplicity, Konig’s Theorem implies immediately the only 

non-trivial inequality about the cardinal number c of the continuum beyond 

Cantor’s K0 <c c, which is most naturally expressed using cofinalities. 

9.23. Definition. The cofinality of a well orderable, infinite cardinal 

number k is the least cardinal X such that some sum of X-many smaller 
than k cardinals is equinumerous with k: 

c/(/c) =df infc({I C k | for some indexed family (i i—>■ Ki)iei, 

(Vi G J)[«i <c k) & « =c JfieIKi}). 

Notice that the family of well orderable index sets whose infc we take is 

not empty, it contains k since 

«=«&«!■ (9.12) 

The general properties of infc imply the following basic properties of the 

cofinality operation: 

1. cf{n) <c k. 

2- k —c f°r some if ^ Ki) such that (Vi G cf(K))[n,i <c k]. 

3. If A is well orderable, (Vi G A)[Aj <c «] and k =c ^2ieXXi, then 

c/(k) <c A. 

Moreover, these conditions characterize cf{n) up to =c. 

A well orderable cardinal k is regular if cf(if) —c k, otherwise it is 

singular. It is convenient to define the operation c/(/c) and the regularity 

condition for well orderable k without assuming the full Axiom of Choice, 

but most results about these notions require AC. 

9.24. Exercise. is regular, because every finite sum of finite cardinals 

is finite. 

9.25. Corollary. (AC) For each infinite cardinal number k, 

cf (2K) >c K, 

and in particular, c/(c) >c K0, i.e. the continuum c cannot be expressed as 

a countable sum of smaller cardinals. 
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Proof. By Konig’s Theorem, if k,; <c 2k for every i G A with A <c k, then 

SiexKi <c Uiex^ —c IW 
_ (r)K\A _ Ott*A _ O/C 
— C ) —C ^ —C ^ 5 

which contradicts cf(2K) <c k. H 

9.26. Godel’s model L of the constructible sets satishes the Generalized 

Continuum Hypothesis, so for each k, 2k —c k+ is regular by Problem 

x9.17. Using Cohen’s forcing method, it is possible to construct models 

of ZAC in which c is singular, with cofinality c/(c) some regular cardinal 

between and c, for example Ki. 

We have left the basic properties of cofinalities for the problems, as they 

are very simple. We should remark, however, that it is not possible to study 

the topic seriously now, because without the Axiom of Replacement it is 

not possible to prove that singular cardinals existl 

Problems 

*x9.1. Show 9.1 using only the constructive axioms (I) - (VI) and the 

Countable Principle of Choice ACn. 

x9.2. Consider a system of airline routes which connects the (possibly 

infinitely many) cities of some world and assume the following. (1) From 

each city, there are only finitely many cities to which one can fly non-stop. 

(2) It is possible to travel by air from every city to every other city. (3) 

It is not possible to keep flying forever without visiting the same Airport 

twice. Show that this world has only finitely many cities. 

*x9.3. Show Konig’s Lemma 9.7 using only the constructive axioms (I) - 

(VI) and the Countable Principle of Choice ACjy. 

x9.4. Show Konig’s Lemma 9.7 for the case where T is a tree on a well 

orderable set E, with no appeal to choice principles. 

x9.5. Suppose T is a finitely splitting tree and B is a bar for T. Show that 

there exists some integer k, such that for all infinite branches / G [T], some 

f(i) G B, with i < k. 

x9.6. Suppose C is a well orderable set, f : C x C —AC. C, and let 

Af =df f| {X C C | A C A & f[X x X] C X} 
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be the closure of A under /. Show that if A is infinite, then Af =c A. 

Hint. Set by recursion Ho = A, Hn+1 — An U f[An x An) and show that 

Af = \JnAn. 

x9.7. Show that if C is well orderable, then so is the set C* of all words 
from C. 

x9.8. If you used ACjy or DC in Problems x9.6 and x9.7, do them again, 

using no choice principles at all. 

x9.9. Every Hartogs set h(A) is best wellordered by <xtA)- 

x9.10. If (n i—>■ Kn)neN and (n i—>• An)n£N are sequences of cardinal num¬ 

bers, and for every n, Kn <c An, then 

J2neNKn Ac IlneA^™ Ac 

x9.11. (AC) If (i i—> Ki)iei and (i i—► Aj)jej are families of cardinal num¬ 

bers on the same index set / and for all i £ I, <c A;, then 

—c Ac 

x9.12. (AC) For every indexed family of sets (i i—> Ai)ieI, 

in^i =c nie/i^i 
and the same for sums, with “disjoint union” on the left. 

x9.13. (AC) Explain the notation and prove the identity 

YlieiYljeJ(i)Ki3 ~c Um) | ieI & jeJ(i)}KiA 

x9.14. (AC) Prove the characterization of supc(£) claimed in 9.20. 

x9.15. (AC) For every family of infinite cardinal numbers (i i—>■ Ki) on a 

non-empty index set I, 

=c max(\I\,supc({Ki | i £ /})). 

x9.16. (AC) Show that for every infinite cardinal k, c/(c/(k)) =c c/(k), 

and hence c/(/c) is always regular. 

x9.17. (AC) For each infinite cardinal k, the next cardinal k+ is regular. 

x9.18. (AC) Show that for each infinite cardinal k, k <c kcAk\ 
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*x9.19. (AC) Every partial ordering < on a set P has a linearization, i.e. 

some linear ordering <' of P exists such that x < y =4> x <’ y. 

The next problem gives the basic fact which relates inductive and di¬ 

rected complete posets. Notice that by “chain” in a poset P we mean any 

subset CCP which is linearly ordered by the poset partial ordering <P; 

C is a well ordered chain if in addition, the restriction of <P to C is a 

wellordering. When we say that US is well orderable” for some S C P, we 

mean that S admits some wellordering <, which may be (and typically is) 

totally unrelated with the given partial ordering <P of P. 

*x9.20. If every well ordered chain in a poset (P, <P) has a least upper 

bound, then for every well orderable, directed subset S of P there exists a 

well ordered chain C with the following two properties. 

(1) S is bounded by C, i.e. for each x £ S there exists some y £ C such 

that x <p y. 

(2) For each y £ C, there exists a directed subset Cy C S such that 

\Cy \ <c |5'| and y = supCy. 

Notice that C may satisfy these conditions without being a subset of S. 

Hint: (W. Allen) Towards a contradiction, let S a be well orderable, di¬ 

rected and <c-least counterexample to the conclusion, verify first that S 

must be uncountable, and let < be a best wellordering of S. Define the 

function f : S x S —+ S so that x,y £ S => x,y <P f(x,y), and for every 

x G S, set 

Cx =df seg (x)f, 

with the notation of Problem x9.6. Show that this is directed, that sup Cx 

exists for each x £ S, and that 

C df {sup Cx | X £ S} 

is a well ordered chain in P which has properties (1) and (2) for S. 

*x9.21. (AC) The following three conditions are equivalent, for every poset 

P: 

1. Every directed set in P has a least upper bound. 

2. Every chain in P has a least upper bound. 

3. Every well ordered chain in P has a least upper bound. 

In particular: (AC) A poset is inductive if and only if it is directed complete, 
a depo. 
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*x9.22. (AC) Show that a monotone mapping 7r : P —»• Q on one inductive 
poset to another satisfies the identity 

n(supS) = supn[S] (9.13) 

for every non-empty chain S C P, if and only if it satisfies (9.13) for every 
non-empty directed SCP. 

x9.23. Prove that the characterization of continuity for mappings 7r : {A —>■ 
E)^{B — M) in *x6.22 holds for all A, E, B, M. 

x9.24. (AC) Finite Basis Lemma. Let 3 be a non-empty family of sub¬ 
sets of some set V, such that 

X G 3 « (V7C X)[Y finite ==>■ Y e 3]. 

Show that 3 has a maximal member (under C). 

’x9.25. Let 3 be a family with the finite basis property as in x9.24 and 

assume in addition that V is well orderable; show (without AC) that 3 has 

a maximal member. 

x9.26. (AC) If you know what vector spaces are and the basic facts about 

linear independence, prove that every vector space has a basis. Prove also 

without AC. that every well orderable vector space has a basis. Hint: 

Apply x9.24 or *x9.25 to the family of all linearly independent subsets~of 

the given space. 

*x9.27. (AC) If you know something about fields and algebraic extensions, 

prove that every field has an algebraic closure. Hint: The usual argument 

for this runs as follows. We consider the family 

A =df {F | F is an algebraic extension of K} (9-14) 

partially ordered by 

F± C F2 <=>uf F\ is a subfield of F2, 

we notice that it is an inductive poset, so that it has a maximal element K, 

and we verify that this K is algebraically closed. The argument is defective, 

because the family A in (9.14) is not a set. To correct it, in the interesting 

case where K is infinite, we need to notice that every algebraic extension 

of K is isomorphic with some field F =c K, so we can replace A in (9.14) 

ky 
A! =df {F C E | F is an algebraic extension of K}, (9.15) 

where E is some superset of K with cardinality greater than K. 
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*x9.28. Prove that every well orderable field (and in particular, every count¬ 

able field) has an algebraic closure. Hint: The idea is to avoid use of AC 

by using Transfinite Recursion to construct the closure explicitly. You still 

need the trick suggested in the previous problem. Do the countable case 

first, it clarifies which algebraic results are needed. 



Chapter 10 

BAIRE SPACE 

Next to the natural numbers, perhaps the most fundamental object of study 
of set theory is Baire space, 

A =df (iV —» AT), (10.1) 

the set of all number theoretic sequences. If we let 

C =df (N —> {0,1}) (10.2) 

be the Cantor set1 of all infinite, binary sequences, then C C J\f C (jV x N) 

and from now familiar computations, 

c =c 2Ko =c |p(iV)| =c \C\ <c |AT| <c |V{N x N)| =c \V(N)\ = c. 

Since M =c 1Z will follow as in Chapter 2 from the proper definitions in 

Appendix A, the Continuum Hypothesis 3.2 is equivalent to the proposition 

(CH) (yx C J\f)[X <c N V A =c A/]. 

In fact, there is such a tight connection between J\f, C and TZ that practically 

every interesting property of one of these spaces translates immediately to 

a related, interesting property of the others. In the problems we will make 

this precise for J\f and C and in Appendix A for TZ, where we will also draw 

the consequences of the results of this chapter for the real numbers.2 

The material in this chapter is not necessary for the comprehension of the 
two chapters which follow. 

LIt is traditional to use the same name for this subset of J\f and the set of real 
numbers defined in the proof of 2.14. Figure 2.4 explains vividly the reason for 
this and nobody has ever been confused by it. 

2One may think of Af as a “discrete,” “digital,” or “combinatorial” version of 
the “continuous” or “analog” 1Z. A real number x is completely determined by 
a decimal expansion x(0). x(l)x{2)..., where (n i—> x(n)) G Af, but two distinct 
decimal expansions may compute to the same real number. This is a big “but”, 
it is the key fact behind the so-called topological connectedness of the real line 
which is of interest in analysis, to be sure, but of little set theoretic consequence. 
We may view Baire space as a “digital version” of TZ because it does not make 
any such identifications, each point x G N determines unambiguously its “digits” 

x(0),x(l),.... 
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<2, 2> 
<2,1> 
<2,0> 

<2,1,1> 

✓ <1,2,3> 

<1, 2> 
<1,1> 
<1,0> 

;<o, 2> 
<0,1> 
<0,0> 

<1,2,1> ••• 

<0,1,1> 

<0,0,0> 

Figure 10.1. A small part of Baire space. 

Our aim here is to establish some elementary facts about A/" which bear 

on the Continuum Problem. We will define the family of analytic SUBSETS 

OF M and prove that every analytic set satisfies the Continuum Hypothesis, 

in the sense that it must be either countable or equinumerous with A/". 

This Perfect Set Theorem 10.18 is significant because essentially every 

set of interest in classical analysis is analytic, including all the Borel 

SETS which play a fundamental role in measure theory and integration. 

On the other hand, we will show in 10.26 that the basic and natural 

method of proving the Continuum Hypothesis for analytic sets cannot be 

extended to solve the full Continuum Problem, which remains open. In 

addition to their applications in analysis, these two results are of substantial 

foundational interest because their proofs illustrate beautifully the role of 

choice principles in classical mathematics. 

10.1. The structure of J\f. Our intuitions about A/” come from picturing 

it as the body of the largest tree on N in the terminology of 9.3 and (9.3), 

M = [iv*]. 

We will refer to subsets of Baire space as pointsets, the term “point” 

temporarily reserved for members of A/", infinite branches in N*. By the 

complement of a pointset, we will mean its complement in A/”, 

cA —A{ J\f\A. (10.3) 

It is convenient to extend the initial segment notation on strings, 

df u C x (u G N*, x G A0, u C x (10.4) 



Chapter 10. Baire space 149 

to indicate that a finite sequence u is an initial segment of the point x, an 

approximation of x which determines the first lh{u) values of x. For each 
u £ N*, the set 

=df {x E Af | u C x} = [IV*] (10.5) 

of points in Af which extend u is the neighborhood determined by u in 
Af. 

10.2. Exercise. The family of neighborhoods is countable. 

10.3. Definition. A pointset A is open if it is a union of neighborhoods, 
so that 

x £ A (3u)[x E Afu & Afu C A]\ 

closed if its complement is open; and clopen if it is both closed and open. 

10.4. Exercise. Every open pointset is the union of a sequence of neigh¬ 
borhoods. 

10.5. Proposition. (1) 0, Af and every neighborhood Afu are clopen. Ev¬ 
ery singleton {x} is closed. 

(2) The union [J9 of a family 9 of open pointsets is open and, dually, the 

intersection P| 1 of a family T of closed pointsets is closed. We set f) 0 = Af, 

so the intersection operation is defined for every family of pointsets. 

(3) The intersection G\ n G2 of two open pointsets is open, and dually, 

the union Fi U F2 of two closed pointsets is closed. 

Proof. These are all quite easy and we only give the proof of (3), as an 

example. If G1, G2 are open and x E Gi fl G2, then there exist u, v C x 

such that Afu G\ and Afv C G2. The finite sequences u, v are comparable 

since they are both initial segments of x, so suppose u C v, the argument 

being the same in the opposite case: now Afu ff Afv, so Afv C G\ fl G2, as 

required. The dual property for closed sets follows by taking complements. 
3 

Baire space is a topological space by the classical definition recounted in 

4.26, but a very special one, because of the next, basic connection between 

the topology and the combinatorial structure of the tree N*. In proving it— 

and in the sequel, routinely—we will use the following trivial equivalence 

relating a tree T and its body: 

x E [T] ^ (Vu C x)[u E T}. (10.6) 

It follows immediately from the definition of [T], (9.3). 
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10.6. Proposition. A pointset F is closed if and only if it is the body of 

a tree T on N, F = [T], 

Proof. If x ^ [T], then for some u C x, u £ T, and then Mu fl [T] = 0, so 

Mu Q c[T]; thus c[T] is open and [T] is closed. Conversely, if we associate 

with each pointset F the tree 

TF =di {uG N* \ (3x e F)[uFx}}, (10.7) 

then obviously 

F C [Tf]. 

If F is closed, we also have [TF] C F: because if x F, then for some 

u C x, Mu fl F = 0 by the openness of the complement cF, hence u ^ TF 

and x [Tf] by (10.6). H 

This basic characterization allows us to classify closed pointsets by the 

combinatorial properties of the trees which define them. It is not wrong to 

think of the cluster of combinatorial notions to come as the geometry of 

M, although it is not a “geometry” by any standard, classical definition of 

this term. 

10.7. Definition. Set 

u v <=>df u, v are incompatible 

(3i < lh(u), lh(v))[u(i) / u(i)], 

and, by extension, 

(10.8) 

u\x 4=^>df “'[« T x] <=> (3v □ x)[u | v\. 

A string u splits in a tree T if it has incompatible extensions in T and a 
tree T is splitting if every u G T splits in T, 

u G T ==>■ (3rti, u2 G T) [u C u\ & u □ U2 & ui \ u2] • 

A pointset P is perfect if it is the body of a splitting tree. Perfect sets 
are automatically closed. 

10.8. Proposition. Every non-empty, perfect pointset P had cardinality 
c. 

Proof. Suppose P = [T] with T non-empty, splitting, and choose functions 

l :T -> T, r : T -> T 

which witness the splitting property for T, i.e. for each u <E T, 

uQl(u), u£Zr(u), l(u)\r(u). 
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By the Least Fixed Point Theorem 7.36 (or 6.21), there exists a partial 
function 

a : {0,1}* — T 

from the tree of all binary strings into T which satisfies the identities 

cr(0) = 0, cr(u * <0>) = l(cr(u)), cr(u * <1>) = r(cr(u)), 

and by an easy induction on lh(u), a is, in fact, total and lh(u) < lh(a(u)). 

Moreover, a(u) C. a(u * <i>), for i = 0,1, and another easy induction on 

lh(v) establishes cr(u) □ a(u * v)\ this means that o is monotone, 

u □ v =^> cr(u) C cr(u), 

so we can define a function n : C —>• [T] by 

7r(x) =df sup {a(u) | uFx}. (10.9) 

The key property of a is that it also preserves incompatibility, 

u | v => a(u) | cr(w). (10.10) 

To see this, let i be least such that u(i) ^ v(i), so for some w we have 

w * <0> C u, w * <1> C v 

(or the other way around); now cr(u;*<0>) and cr(w*< 1>) are incompatible 

and the monotonicity property implies that a(u), a(v) extend them, so they 

are incompatible too. Finally, (10.10) implies that 7r is an injection, and 

this establishes that C <c [T], which is all we need. -H 

This simple abstraction of Cantor’s proof of the uncountability of the 

reals (2.14) suggests an attack on the Continuum Problem: to prove that 

an uncountable pointset has cardinality c, it is enough to show that it 

contains a non-empty, perfect subset. This is trivially true of open sets 

(because each J\fu is perfect) and it is also true of closed sets, less trivially. 

10.9. Cantor-Bendixson Theorem. Every dosed subset F of J\f can be 

decomposed uniquely into two disjoint subsets 

F = P (J S, PnS = 0, (10.11) 

where P, the kernel of F, is perfect and S, the scattered part of F, 

is countable. It follows that every uncountable, closed pointset has a non¬ 

empty, perfect kernel and hence has cardinality c. 

Proof. Let T — TF as in (10.7), so that T has no terminal nodes and 

F = [T], and set 

5 =df UM I ueTk \[TU}\ <CK0}, 

P =df F\S. 
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By its definition, S is the union of countably many, countable sets, so it is 

countable (note the use of AC;v here), and it remains to show that P is 

perfect. 

The set of strings 

fcT={ueT | \[TU]\ >c Ko} 

is easily a tree, and 

xeS « xeF &{3u\z x)[u i kT} 

is another way to read the definition of S. Since P = F\S, 

x e F & [x i F V (Vu C x)[u G kT}] 

(Vu □ x)[u € T] & (Vu C x)[u 6 kT] 

(Vu C x)[u G kT] 

x e [kT]], 

and it is enough to prove that kT is splitting. Suppose, towards a contra¬ 

diction that some u G kT does not split. This means that all extensions of 

u in kT are compatible and they define a single point 

x — sup {v € kT | u C v}. 

Since every extension of u in kT approximates x, 

[Tu] = MU[J{[TJ | U C u € T & \[TV}\ <c Ko}; 

this, however, implies that [Tu] is a countable union of countable sets, which 

is absurd. 

We leave the uniqueness of the decomposition (10.11) for the problems, 

xlO.l. H 

10.10. Definition. A family T of pointsets has property P if every un¬ 

countable set in T contains a non-empty, perfect subset. In this classical 

terminology,3 the family T of closed pointsets has property P, or (more 

simply) every closed pointset has property P. 

x e P 

3The classical terminology in question is quite absurd, but so well established 
that it would be folly to change it or bypass it. In any topological space, closed 
sets are .T-sets, from the French fermet, open sets are (/-sets, from the German 
Gebiete (it means region), countable unions of T-sets are lb-sets and countable 
intersections of T-sets are T^-sets, from the German words Summe and Durch- 
schnit for union and intersection, respectively. We will only use this terminology 
in passing references to Fa and Gs pointsets. 
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10.11. Exercise. If a family of points ets V has property P, then the family 

Ta of all countable unions of sets in T also has property P. 

Thus every Ta pointset, of the form 

^ = U n£N^n (10.12) 

with each Fn closed has property P. The same is true of every Qg set, of 

the form 

^ = n)neiv^™ (10.13) 

with each Gn open, but the proof is not that simple. It is best to jump 

directly to a much bigger family of pointsets, defined in such a way that 

proving property P for them is simple. The program is to define first the 

class of analytic pointsets, show that it has property P, and then establish 

some strong closure properties for it which will give us a wealth of pointsets 

with property P. 

10.12. Definition. Recall from 6.24 that a function / : X —> Y on one 

topological space to another is continuous if the inverse image /_1[G'] 

of every open set in Y is open in X. A pointset4 A C J\f is analytic or 

Suslin. if either A = 0 or A is the image of Baire space under a continuous 

function, in symbols, 

A =df {A C J\f | A = 0 V (3 continuous / : M —> M)[A = /[A/]]}. 

Continuity in A/” has a simple, combinatorial interpretation which is the 

key to its applications. 

10.13. Theorem. A function f : U -*■ Af is continuous if and only if 

there exists a monotone function r : N* —> N* on strings, such that 

f(x) = sup {r(u) | u □ x} (xeU) nni4l 

= lirnn T(x(n)). 1 U- ; 

When r : N* —> N* is monotone and (10.14) holds, we say that r com¬ 

putes the function /. 

Proof. If / satisfies (10.14), then 

f(x) G A/’t, <f=> (3uQx)[v Ft(u)}, 

4We stick to Baire space here because there are many competing, inequiva¬ 
lent definitions of “analytic sets” which are not equivalent in general topological 

spaces, although they all agree on J\f. 
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so each inverse image of a neighborhood 

= U {Mi I V t t(u)} 

is a union of neighborhoods and / is continuous. For the converse, suppose 

/ is continuous and let 

S(u)=dt {veN* | f[K\QK} (ueN*). 

Each S(u) / 0, since the root 0 G S(u), v □ v' G S(u) => v G S(u), and 

v, v' G S{u) =k f[j\fu] NV' ==► [v C t/ V v' □ v], 

since v \ v' Afv n Nv' = 0. Thus, there are two possibilities. 

Case 1. There is some v G S(u) such that lh(v) — lh(u). In this case we 

set 

r(u) =df v = the unique string in S(u) such that lh(v) = lh(u). 

Case 2. There is no v G S(u) such that lh(v) = lh(u). Now we set 

t(u) =df sup {v | v G S(u)}. 

The monotonicity of r follows easily from the implications 

«iEtt2=4 /[A/"Ul] D fWu2] => SM ^ 5'(u2), 

considering the possibilities in the definitions of r(iti) and t(u2). To prove 

(10.14), notice first that because r(u) G S(u), 

u □ x G TV =^> f(x) G A/"t(u) t(u) C /(x). 

Moreover, by the continuity of /, if v E f(x), then for some u □ x, f[Afu\ Q 

J\fv, hence v G S(u) and either immediately v □ r(it), if r(u) is defined by 

Case 2, or there is some ul extending u, with lh(u') = lh(v) such that 

v = t{u') in the other case. H 

It is useful to think of (10.14) as a computational characterization of 

continuity: the string function r(u) gives us better and better approxima¬ 

tions r(u) C f(x) to the value of /, as we feed into it successively finer 

approximations u C x to the argument. We can turn this picture into a 

precise and elegant result, in terms of the notions introduced in Chapter 6. 

10.14. Corollary. A function f : J\f —> J\f is continuous if and only if it 

is the restriction to M of some monotone, continuous mapping 
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on the inductive poset (iV —N). By Definition 6.22, a monotone mapping 

7r : (N —>• N) —> (N —> N) is continuous if it satisfies the equivalence 

n(x)(i) = w <t=t- (3u € N*)[u □ x & n(u)(i) = w}. 

Here we are using the fact that J\f as a subset of the inductive poset (N —>■ 

N), consisting precisely of all the maximal elements of (N —>• N). The basic 

observation is the decomposition 

(N — TV) = N* UN, jV*nW = 0. (10.15) 

Proof. If / : U —> U is continuous, let r compute it by the Theorem and 

take (literally) 

7T = r U /, 

i.e. 7r(u) = t(u) for u G N* and tt(x) = f(x) for x e J\f. The continuity of 

7r is trivial. The converse is very easy. H 

10.15. Exercise. Prove the “easy converse,” i.e. that if f : J\f —> J\f is the 

restriction to J\f of some continuous n : (N N) —> (N —^ N), then f is 
continuous. 

The Corollary makes it possible to recognize continuity of specific func¬ 

tions on Baire space instantly, by inspection, simply noticing that every 

digit f(x)(i) of each value f(x) can be computed using only finitely many 

values of x. As in Chapter 6, a passing remark that some function or other is 

“evidently continuous” accompanied by no proof typically means an appeal 

to this result. 

10.16. Definition. A pointset K is compact if K = [T] is the body of 

a finitely branching tree T on N. In particular, every compact pointset is 

closed and C is compact. 

Some cheating is involved in adopting this as the definition of compact¬ 

ness for pointsets, since there is a perfectly general definition of compact¬ 

ness for sets in arbitrary topological spaces, by which 10.16 is a theorem. 

Without comment, we did the same for perfection, which is also a general, 

topological notion. What we need here are the combinatorial properties of 

these pointsets specific to Baire space and we have relegated their topolog¬ 

ical characterizations to the problems, xl0.16 and *xl0.20. 

10.17. Proposition. (1) The image f[K] of a compact pointset K by a 

continuous function f : J\f —> Jf is compact. 

(2) The image f[K] of a compact and perfect pointset K by a continuous 

injection f : J\f >—>• A/* is compact and perfect. 
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Proof. (1) Suppose K = [T] where T is finitely branching, r computes / 

as in (10.14), and let 

S = TfW={v | (3x e K)[v Q f(xj\} 

be the tree of initial segments of the image f[K\. It is enough to prove that 

S' is a finitely branching tree and f[K] = [S']. 

To see first that S is finitely branching, suppose v £ S, let 

B =df {u £ T I v I t(u) V«c t(u)}, 

and suppose that x £ [T], If v \ f(x), then for some n, v \ r(x(n)), so x(n) £ 

B; and if v E /(x), then for some n, v E r(x(n)), and again n £ B. Thus, 

B is a bar for T, and by the Fan Theorem 9.9 it must have a finite subset 

Bq — {TO) • ■ • j — B 

which is also a bar. Thus, for every x £ K such that v E /(x), there exists 

some Ui such that v E r{ui) C f(x), so that every child of v in S is an 

initial segment of some r(uj), and there are only finitely many of those. 

Clearly, f[K] C [S]. To prove [5] C f[K], suppose towards a contradic¬ 

tion that y £ [S'] \ f[K] and let 

B =df {u £ T | t(u) | y}. 

Now B is a bar for T, because the only way that r(a?(n)) can be compatible 

with y for every n is if f(x) = y. By the Fan Theorem again, there is a 

finite subset 

Bq — {rto, • - -, Un} ^ B 

which is also a bar for T. Let 

k = max{lh(r(ui)) | i < n} + 1, 

and choose some x £ [T] such that y(k) C /(x), which exists because 

y £ [S'], so that y can be approximated arbitrarily well by points in the 

image of /. On the other hand, Ui C x for some i since Bq is a bar; hence 

r(ui) T /(x) because r computes /; so both r(ui) and y(k) are initial 

segments of f(x), and hence compatible; and since r(ttj) has smaller length 

than y(k), this means that r(iij) □ y, which contradicts the definition of 

B. 

(2) With the same notation as in (1) and the additional hypothesis, let 

v £ S, so that for some u £ T, v T r(w). Since T is splitting, there exist 

distinct points 

xi,x2 £ K 0 J\fu, 

and since r computes /, 

t(u) □ f(xi), t(u) C f{x2). (10.16) 
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But /(xi) ^ /(x2), because / is an injection, so there exist incompatible 
vi E f{x 1), v2 E f{x2), which extend r(u) by (10.16), so they split r(u) 
and the smaller u in S. -| 

10.18. Perfect Set Theorem (Suslin, 1916). Every uncountable, analytic 
set has a non-empty, perfect subset. 

Proof. Assume that A = f[N*] is uncountable, suppose r computes /, and 
let 

T=dt {ueN* | \f[Afu]\ >CK0}. (10.17) 

Clearly, T is a non-empty tree. 

Lemma. The tree T is r-splitting, i.e. for each u G T, there exist u\,u2 G 

T such that 

uQui, u E u2, r(tti) | r(u2). 

Proof. For any u G T and any fixed x G J\fu, 

fWu] = {/(x)} U Ui/tMi'] I r(u')\f(x)} (10.18) 

since f(y) E f{x) => r(u') E f(y) for some u' such that r(u') is incom¬ 
patible with f(x). If the Lemma fails at u, then 

u E uf G T t{v!) E /(x); 

thus each image f[Afu'} with r(rt') | /(x) in (10.18) involves some v! £ T 
and is countable, and there are only countably many choices for u!. Thus, 
f[.\fu] is the union of a singleton and a countable family of countable sets, 
hence countable, contrary to hypothesis. 

As in 10.8, we choose functions 

l : T T, r :T -► T 

which witness the r-splitting property for T, i.e. for each u G T, 

u E l(u), u E r(u), r(l(u)) \ r(r(u)), 

and we define by 7.36 or 6.21 a partial function 

a:{0,l}*-,T 

from the tree of all binary strings into T which satisfies the identities 

<r(0) = 0, cr(u * <0>) =/(cr(u)), <y{u * <1>) = r(a(u)), 

and which, as a consequence, is total and monotone. The key property of 
this cr is that it takes incompatible binary strings to r-incompatible strings, 
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and it is verified exactly as (10.10) was verified in the proof of 10.8. In 

addition, a computes a continuous g : C —> A/", 

g(x) = sup {a(u) | u C x}, 

and evidently 

g\c] £ [U• (10.20) 

Consider now the composition h = f g of the given / and this g, which is 

computed by the composition of r and a: 

h(x) = sup {r(cr(u)) | u □ x}. 

This is continuous and injective by (10.19), so its image h[C\ = fg[C\ is 

compact and perfect by 10.17, and it is included in f[T] C A by (10.20). 

H 

The result means nothing, of course, until we prove that there are lots 

and lots of analytic sets. 

10.19. Lemma. Every closed pointset is analytic. 

Proof. Let T — Th as in (10.7) for the given closed set F ^ 0, so in 

addition to F = [T] we also know that every string in T has an extension, 

there are no terminal nodes. Thus, we can fix a function l : T —> T such 

that 

ueT => u □ l(u) & lh(l(u)) — lh(u) + 1. 

Let also 

rtail(u) = u(lh(u) — 1) (lh(u) > 0) (10.21) 

be the partial function which strips each non-empty string of its last ele¬ 

ment. By 7.36 or 6.21, there exists a partial function r : N* —- T such 

that 

f u, if w € T, 

\ l(r(rtail(u))), if u ^ T, 

which is (easily) a projection of N* onto T, i.e. it is total, length preserving 

and the identity on T, and which (as a consequence) computes a function 

/ : A/" —» [T], H 

10.20. Lemma. Every continuous image of an analytic pointset is ana¬ 
lytic. 

Proof. If A = f[B] and B = g[J\f], then A = fg[Af], and the composition 

fg is continuous. H 
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10.21. Lemma. If f, g : M —► J\f are continuous functions, then the set 

E = {x | f(x) = g(x)} 

of points on which they agree is closed. 

Proof. Because distinct, points can be approximated by incompatible initial 

segments, 

x i E <=>• f(x) / g(x) 

{3u,v)[f(x)eMukg(x)eMvku |v], 

which means that 

cE = {J{f-1[Mu}ng-1\Mv] | 

so that cE is the union of open sets and hence open. H 

10.22. Theorem. Countable unions and countable intersections of ana¬ 
lytic pointsets are analytic. 

Proof. Suppose that An — fn[J\f\ with each fn continuous and define first 

/ : J\f —>• J\f by the formula 

/ 0) = fz(o)(tail(z)), 

where 

tail(z) = z(i + 1)) = (^(l), z(2),...) 

is the function which decapitates points. Evidently / is continuous: because 

each f(z)(i) can be computed from finitely many values of 2, first setting 

n = z(O) and then using the finitely many values of tail(z) needed to 

compute fn(tail(z)). Moreover: 

yeUn/nM (3n G N,X e M)[y = fn(x)} 

(32 e M)[y = fz(o)(tail(z))} 

taking 2(0) = n, tail(z) — x 

«=* (32 e M)\y = f(z)\, 

so Un^™ = fW) and the uni°n of the dn’s is analytic. 

The key fact for this argument was that the mapping 

2 1—* (^(O), tail(z)) 

is a surjection of M onto N x J\f—actually a bijection—with continuous 

components. To prove that the intersection fjnAn is analytic, we need a 

similar surjection 

7r : J\f —■» (N —> Af) 
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of M onto the set of infinite sequences of points. Fix some injection p : 

N x N >—» N and set 

Pn{z) — (**—*> z(p(n, »)))■ (10.22) 

Each pn : J\f J\f is clearly continuous and for each infinite sequence 

{xn}neN of points we can define 2 such that 

z(p(n, i)) = xn(i) (n, i £ N), 

so that 

Pni.z') = Xn (tL £ iV), 

in other words, the mapping 

7r(z) = («h pn(z)) 

is a surjection. Using ACat now, 

yef]nAn {Vn){3x)[y = fn{x)} 

'' '' (3{xn }n£iv) (Vtl) [y /n^n)] 
<t=^> (3s £ A/")(Vn)[y = /n(Pn(^))] 

(3z £ A0[(Vn)[/n(pn(z)) = /o(po(^))] 

& y = fo{po{z))]. 

For each n, the set 

Bn = {z £ A/" | fn(Pn(z)) = fo{Po{z))} 

is closed by 10.21, hence the intersection 

B = D n^n 

is also closed. From (10.23), however, 

fl nAri = foPo[B\, 

which means that the intersection of the An’s is analytic. 

(10.23) 

H 

10.23. Definition. The family B(X) of the Borel subsets of a topological 

space X is the smallest family of subsets of X which includes the open sets 

and is a cr-field, i.e. it is closed under countable unions and complemen¬ 

tation: 

(Vn)[An£B(X)] =*► \JnAneB(X), 

A £ B{X) =*► cA £ B(X). 

We are mostly interested in Baire space of course, 

B =df B(J\f) = the family of Borel pointsets. 
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10.24. Exercise. Prove that the definition makes sense, i.e. the intersec¬ 
tion 

B(X) = n{£ I ec£ 

&(V{^n}nC£)[(JnArie£] 

& (VA G £)[cA G £]} 

is a a-field which contains the open sets, and hence the least such. 

10.25. Corollary. Every Borel pointset is analytic (Suslin) and hence has 
property P (Alexandroff, Hausdorff). 

Proof. Let 

CA = {A C J\f | cAe A} (10.24) 

be the family of co-analytic pointsets, those with analytic complements. 

The family AnCA of pointsets which are both analytic and co-analytic 

is a (j-field, since it is closed under complementation by definition, and if 

each An G A fl CA, then (J nAn and 

C(U nAn) = Hn^n 

are both analytic by the theorem. Since every open set 

G = {jn{Mu\MuQG} 

is a countable union of neighborhoods, hence analytic, and also co-analytic 

by 10.19, AllCA is a a-field which contains all the open pointsets and 

hence includes every Borel set. H 

Suslin introduced the family of analytic pointsets in 1917 and proved a 

slew of theorems about it, including his famous characterization 

A fl CA = B. (10.25) 

He also showed that not every analytic pointset is an analytic complement, 

so the inclusion B C A is proper. The Borel sets had been introduced 

more than a decade earlier by Borel and Lebesgue and they were the key 

to the successful development of the theory of Lebesgue integration, one 

of the chief achievements of 19th century analysis. For most purposes of 

integration theory, including its later, fundamental applications to proba¬ 

bility, every pointset of interest is almost equal to a Borel set, in a precise 

sense which basically allows us to study the subject as if every pointset 

were Borel. Because of this, the special case of the Continuum Problem 

for Borel sets was thought very important and its simultaneous, indepen¬ 

dent solutions published by Alexandroff and Haussdorff in 1916 brought 
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instant recognition to those two, then very young and later very famous 

mathematicians. 

The family of analytic sets falls far short from exhausting the powerset 

of W, Problem xl0.8. Still, one might hope that the method we used to 

solve the Continuum Problem for them might be extended to prove the full 

Continuum Hypothesis, but this too is far from the mark. 

10.26. Theorem. (AC) There exists a pointset A C Af which is uncount¬ 

able but contains no non-empty perfect set. 

Proof. The key fact is that there are exactly as many non-empty, perfect 

sets as there are points in J\f: 

Lemma 1. If 7 = {P £ J\f | P ^ 0, P perfect}, then |CP| =c c. 

Proof. For each y £ A/", the pointset 

Ay = {x | (Vn)[y(n) < x(n)} 

is easily perfect, equally easily y ^ z ==> Ay ^ Az, hence c =c |Af| <c |CP|. 

On the other hand, each perfect set P = [Tp] is the body of a tree on N 
which determines it, so 

|3>l <c \V(N*)\=C \V(N)\=C c. 

Fix a set 

I =c c =c T, (10.26) 

for example I = c, and bijections 

a t-s- xa £ J\f, a Pa £V (a £ I) 

which witness the equinumerosities (10.26). Fix also a best wellordering < 

of 1. We will define by transfmite recursion on (7, <) pointsets 

Aa,BacN (a£l), 

so that the following conditions hold. 

1. Aa n Ba = 0, for each a £ I. 

2. a < (3 v Aa £ Ap, Ba £ By. 

3. \Aa\ =c \Ba\ =c |seg(o:)|. 

4. For each a £ I, Bsa C PQ / 0, where S is the successor function in 

the well ordered set (/,<). 
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Lemma 2. If Aa, Ba (a E I) satisfy (1) - (4), then the union 

^ — U ae;^Q 

has no non-empty, perfect subset, but \A\ =c c. 

Proof. A =c I =c c follows immediately from (3). If P ^ 0 is perfect, 

then P = PQ for some a E I, hence there exists some x E Pa n and 
then x £ A, by (4) and (1). 

The definition of Aa,Ba is practically forced on us by conditions (1) 

(4). We outline the argument for the proof of (1) - (4) by transfinite 

induction together with the clauses of the transfinite recursion definition, 

pedantically it should be separated out and explained after the definition 
is completed. 

(a) At the minimum 0 of /, set A0 = B0 = 0. 

(b) If A is a limit point of /, set 

^A — Uq<A^(»! B\ = Ua<A-®a- 

Conditions (1) and (2) hold trivially, (4) is not involved in this case, and 

(3) is verified by applying 9.17 both ways. For example, 

q < A =^> \Aa \ =c |seg(a)| <c |seg(A)| 

by the induction hypothesis, hence by 9.17 

I^a| —c | U A*| <c EtKA |Aa||seg(A)| <c |seg(A)|. 

a< A 

(c) Suppose /3 = Sa is a successor point in I. By the induction hypothesis, 

each of Aa and Ba are equinumerous with seg(a) and seg(a) <c I, because 

< is a best wellordering. Thus, \Aa\, \Ba\ are both smaller than c, hence 

\Aa U Ba | <c c, and we can find in the non-empty, perfect set Pa =c J\[ 
distinct points 

x,y E Pa\ (Aa U Ba); 

we set 

Ap = AaU{x}i Bp = Ba(J {y}. 

Conditions (1) and (2) are trivial, (4) is insured by the definition of Bp = 

Bsa, and (3) is immediate from the induction hypothesis, since each of Ap, 

Bp, seg(/?) has just one more point than its respective predecessor Aa, Ba, 

seg (a). H 

The construction obviously proves more than what is claimed in the 

theorem: \A\ =c c and both A and its complement cA intersect every non¬ 

empty, perfect set. We leave for the problems some additional variations 
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which make it even more obvious that the program of proving the Contin¬ 

uum Hypothesis by using the Cantor-Bendixgon Theorem is hopeless. 

Actually, it is not only this program for settling the Continuum Problem 

which fails: every attempt to prove or disprove CH from the axioms of 

ZAC is doomed, by the following two central independence results. 

10.27. Consistency of GCH, the Generalized Continuum Hypoth¬ 

esis (Godel, 1939). The model L of constructible sets satisfies the General¬ 

ized Continuun Hypothesis GCH, (3.2), so, in particular, the Continuum 

Hypothesis cannot be refuted in ZAC. 

10.28. Independence of the Continuum Hypothesis CH (Cohen, 

1963). There is a model of ZAC in which the Continuum Hypothesis fails, 

hence CH cannot be proved in ZAC. Cohen’s forcing model can be modi¬ 

fied in many ways to manipulate the cardinalities of pointsets and subsets 

of larger powersets. 

10.29. What does the independence of CH mean? Both the Godel 

and the Cohen methods of proof are very robust and they have been 

adapted to show that the Continuum Problem cannot be settled on the 

basis of many reasonable and plausible strengthenings of ZAC by addi¬ 

tional axioms. The same is true of the Axiom of Choice, of course, or the 

Axiom of Infinity for that matter, but it is clear that these propositions ex¬ 

press new, fundamental set theoretic principles which are most likely true 

but cannot (and, in fact, cannot be expected to) be proved from simpler 

axioms by logic alone. The Continuum Hypothesis has the look of a techni¬ 

cal, mathematical problem which should be settled definitively by a proof, 

but we seem to lack the insight needed to divine the necessary axioms. 

Much has been made of this independence of CH (and many more as¬ 

sertions about sets) from variants of the known axioms of set theory, and 

some have used it to argue against any objective reality behind the “for¬ 

mal,” axiomatic results of the subject. Using the method of arithmetization 

introduced by Gbdel, however, we can translate questions about the exis¬ 

tence of proofs into precise, technical conject ures about integers: since there 

exist such conjectures5 which (like CH) can be shown to be undecidable in 

the known, plausible axiomatic theories, are we then forced to deny objec¬ 

tive reality to the natural numbers? In fact, it is not possible to discuss such 

’The type of statements we have in mind here are of the form “if ZFC is 

consistent, then so is T,” where T is some strong extension of ZFC which, in 
fact, implies the consistency of ZFC. Godel’s Second Incompleteness Theorem 

implies that statements of this type are independent of ZFC (unless ZFC proves 
its own inconsistency), and there are many of them about whose truth there is 
genuine controversy. 
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problems intelligently without reference to notions and results of Mathe¬ 

matical Logic which are beyond the scope of these Notes, and we will resist 

the temptation. 

Incidentally, there are scores of interesting propositions about sets which 

cannot be settled on the basis of ZDC or ZAC, CH is only the most 

interesting of them. We mention here just three more independence results 

of this type, because they are relevant to the Perfect Set Theorem. 

10.30. (Godel, 1939) In the model L of constructible sets, there exists an 

uncountable, co-analytic set which has no proper perfect subset. This means 

that we cannot improve the Perfect Set Theorem 10.18 in ZAC to show 

that every co-analytic pointset has property P. 

10.31. (Solovay, 1970) There is a model of ZAC in which every “definable” 

pointset has property P. We will not attempt to define “definable,” but 

analytic complements are definable. 

10.32. (Solovay, 1970) There is a model of of ZDC in which every pointset 

has property P. 

Solovay’s models are constructed by Cohen’s forcing method, but like 

Godel’s L, they have many more canonical properties which yield numer¬ 

ous unprovability results. The first, Solovay model witnesses (with 10.30) 

that the property P for analytic complements cannot be proved or refuted 

in ZAC. The second Solovay model shows that ZDC cannot prove the 

existence of an uncountable pointset with no non-empty, perfect subset; 

DC is not a sufficiently strong choice principle to effect the construction. 

Problems 

xlO.l. Prove that the decomposition (10.11) of a closed pointset F into a 

perfect set P and a countable set S determines uniquely P and S. 

xl0.2. Give an example of a closed pointset F C J\f and a continuous 

/ : J\f —> J\f, such that the image f[F] is not closed. 

xl0.3. Prove that every open pointset is an Ta and every closed pointset 

is a Qs- The definitions are reviewed in Footnote 3. 

*xl0.4. Prove that the inverse image g~l[A\ of an analytic pointset A by a 

continuous function g : fif —>► Af is analytic. Hint: Aim for an equivalence 

of the form 

V G 9 1 [A] (3 x)[y = f(pi(x)) =g(p2 0))] 
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where / is continuous and pn are defined by (10.22), and then use 10.21. 

*xl0.5. Prove that 

V = U.eA,^.=»(3i)['4. =cV|, 

i.e. J\f is not the union of a countable sequence of pointsets of smaller 

cardinality. Hint: This follows easily from Konig’s Theorem 9.21, but the 

relevant special case does not need the full Axiom of Choice. 

xl0.6. (AC) Prove that for every k <c c, there exists a pointset A with 

|A| =c k which contains no non-empty, perfect subset. 

xl0.7. (AC) Prove that there exists an uncountable pointset A such that 

neither A nor its complement contain an uncountable Borel set. 

xl0.8. Prove that there are c-many analytic and Borel pointsets, \A\ =c 

\B\ =c c. 

10.33. Definition. A function f : X —> Y from one topological space into 

another is Borel measurable if the inverse image /_1[G] of every open 

subset ofY is a Borel subset of X. 

xl0.9. The composition gf : X —> Z of two Borel measurable functions 

/ : X —> Y and g : Y —* Z is Borel measurable. 

xlO.10. The inverse image /-1[A] of a Borel set A C Y by a Borel mea¬ 

surable function / : X —> Y is a Borel subset of X. 

10.34. Definition. Two topological spaces X, Y are Borel isomorphic 

if there exists a bijection f : X >—»• Y such that both f and its inverse 

/-1 : Y >—» X are Borel measurable. Borel isomorphic spaces have the same 

measure-theoretic structure and for all practical purposes can be “identi¬ 

fied” in measure theory. 

*xl0.11. Suppose f : X ^>Y and g : Y >—> X are Borel measurable injec¬ 

tions between topological spaces, with the following additional property: 

there exists Borel measurable functions f\ : Y —> X and g\ : X —> Y which 

are inverses of / and g in the sense that 

fif{x) = x (x € X), 

9ig{y) = y {y e Y). 

Prove that X and Y are Borel isomorphic. Hint: Use the proof of the 

Schroder-Bernstein Theorem 2.24. 
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xl0.12. Consider the Cantorset C as a topological subspace of J\f in the 

obvious way, the open sets being unions of neighborhoods of the form 

Afu = {x eC \ uQx} («e{0,1}*). 

Prove that C and J\f are Borel isomorphic. 

In the remaining problems we explore the connection of the specific, com¬ 

binatorial notions we studied in Baire space with their general, topological 

versions. 

10.35. Definition. A point x is a limit point of a set A in a topological 

space X if every open set which contains x contains also some point of A 
other than x, 

(VG)[G open and x G G => (By G A fl G)[x ^ y}]. 

A limit point of A may or may not be a member of A. A point of A which 

is not a limit point of A is isolated in A. 

xl0.13. Determine the limit points and the isolated points of the pointset 

B = {x G N | x(0) = 1 V (Vn)[x(n) = 2] V (Bn)[x(n) = 3]}. 

xl0.14. Prove that re is a limit point of A if and only if every open set 

containing x contains infinitely many points of A. 

xl0.15. Prove that a set is closed in a topological space X if and only if 

it contains all its limit points. 

xl0.16. Prove that a pointset P is perfect if and only if it is closed and 

has no isolated points, i.e. every point of P is a limit point of P. This 

equivalence identifies the specific definition of perfect pointsets we adopted 

with the classical, topological definition. 

10.36. Definition. A sequence (n h-> xn) of points in a topological space 

X converges to a point x or has x as its limit if every open set containing 

x contains all but finitely many of the terms of the sequence, 

limxn = x 4=hif (VG open ,x G G)(3n G A’)(Vi > n)[xi G G]. 
n 

xl0.17. Prove that a point x is a limit point of a pointset A if and only 

if x — limn xn is the limit of some sequence (n h-» xn G A) of points in A. 

Which choice principle did you use, if any? 
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xl0.18. Prove that a function / : J\f —» M is continuous if and only if 

f(\imxn) = lim/(xn), 
n n 

whenever limn xn exists. Which choice principle did you use, if any? 

xl0.19. A topological space X is HausdorfF if for any two points x ^ y, 

there exist disjoint open sets G n H = 0 such that x e G, y £ H. Prove 

that if /, g : X —> Y are continuous and Y is HausdorfF, then the set 

{x e X | f(x) = g(x)} is closed in X. 

10.37. Definition. An open covering of a set K in a topological space 

X is any family 9 of open sets whose union includes K, K C (J 9- A set K 

is compact in X if every open covering of K includes a finite subcovering, 

i.e. for every family 9 of open sets, 

Kc U9 ^ (3(9*0,...,Gne$)[Kc\Jn^Gi]. 

*xl0.20. Prove that a pointset is compact by Definition 10.16 if and only 

if it is compact by Definition 10.37. Hint: You will need Konig’s Lemma. 

xl0.21. Prove that for any two topological spaces X, Y, any continuous 

function / : X —> Y and any compact set K C X, the image f[K] is 

compact in Y. 



Chapter 11 

REPLACEMENT AND OTHER AXIOMS 

We have just about reached one of the goals we set in Chapter 4, which was 

to prove all the ‘’naive” results of Chapter 2 from the axioms of Zermelo. 

Only a couple of minor points remain, but they are significant: they will 

reveal that Zermelo’s axioms are not sufficient and must be supplemented 

by stronger principles of set construction. Here we will formulate and add 

to the axiomatic theory ZDC the Axiom of Replacement discovered in 

the early 1920's, a principle of set construction no less plausible than any 

of the constructive axioms (I) - (VI) but powerful in its consequences. We 

will also introduce and discuss some additional principles which are often 

included in axiomatizations of set theory. Using only a weak consequence 

of Replacement, we will construct the least Zermelo Universe Z, a re¬ 

markably simple set which contains the natural numbers, Baire space, the 

real numbers and all the significant objects of study of classical mathemat¬ 

ics. Everything we have proved so far can be interpreted as if Z comprised 

the entire universe of mathematical objects, yet Z is just a set—and a fairly 

small, easy to comprehend set, at that! Our main purpose in this chapter is 

to understand the Axiom of Replacement by investigating its simplest and 

most direct consequences. The real power of this remarkable proposition 

will become apparent in the next chapter. 

According to (2) of 2.16, if A is a countable set and for each n > 2, 

An = A x • • • x A , 
"-V-' 

n times 

then the union U^°=2ATl a^so countable. The obvious way to prove this 

from the axioms is to define first the sets An by the recursion 

/(0) = A x A, 

f{n + 1) = f(n)xA, 

so that f{n) — An+2 and 

uZo^n+2 = umh 
Cantor’s basic 2.10 implies first (by induction) that each f(n) = An+2 is 

countable, and then that their union |J^=0An+2 must also be countable. Is 

(11.1) 

(11.2) 
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there an error? Certainly not in the proof by induction, which is no different 

than many others like it. There is a problem, however, with the recursive 

definition (11.1) which cannot be justified by the Recursion Theorem 5.6 

as it stands. To apply 5.6 we need a set E, a function h : E —> E on E and 

some a e E, which then determine a unique / : N —> E satisfying 

/(0) = a, 
f(n+ 1) = h(f(n)). 

(11.3) 

In the case at hand there is no obvious E which contains A and all its 

products An, and instead of a function h, we have the operation 

h(X) =df X x A, (11.4) 

which associates with each set X its product X x A with the given set A. 

To justify definition (11.1), we need a recursion theorem which validates 

recursive definitions of the form (11.3), for every object a and (unary) 

definite operation h. It looks quite innocuous, only a mild generalization 

of the Recursion Theorem—and it is just that—but in fact such a result 

cannot be established rigorously on the basis of the Zermelo axioms. 

11.1. (VIII) Replacement Axiom. For each set A and each unary def¬ 

inite operation H, the image 

H[A\ =df {H(x) \ x E A) 

of A by H is a set. As a construction principle for sets, the Replacement 

Axiom is almost obvious, as plausible on intuitive grounds as the Separation 

Axiom. If we already understand A as a completed totality and H associates 

in a definite and unambiguous manner an object with each x G A, then 

we can “construct” the image H[A] by “replacing” each x G A by the 

corresponding H(x). 

11.2. Axiomatics. The axiomatic system ZFDC of Zermelo-Fraenkel 

set theory with Dependent Choices comprises the axioms o/ZDC and 

the Replacement Axiom 11.1, symbolically 

ZFDC = ZDC + Replacement = (I) - (VIII). 

The corresponding system with the full Axiom of Choice is ZFAC, sym¬ 
bolically 

ZFAC = ZAC + Replacement = (I) - (VIII) + AC. 

From now on we will use all the axioms of ZFDC without explicit mention 
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and we will continue to annotate by the mark (AC) the results of ZFAC, 
whose proof requires the full Axiom of Choice.1 

Mostly we have used simple definite operations up until now, those di¬ 

rectly supplied by the axioms like V(A) and (J£ and explicit combinations 

of them, e.g. the Kuratowski pair (x,y) =df {{x}, {x,y}}. Once we assume 

the Axiom of Replacement, however, definite operations come into center 

stage and we will need to deal with some which are not so simply defined. 

We describe in the next, trivial Proposition the basic method of definition 
we will use, primarily to point attention to it. 

11.3. Proposition. Suppose C and P are definite conditions of n and 
n + 1 arguments, respectively, assume that 

(Vx)[C(x) =*► (3hn)P(x,u;)], 

and let 

f the unique w such that P(x,w), if C(x), 

F{X) =" { 0, otherwise 

The n-ary operation F is definite. 

In practice, we will appeal to this observation by setting 

P(x) =df the unique w such that P(x, w) (C(x)), (11.7) 

after we verify (11.5), without specifying the irrelevant value of F outside 

the domain we care about. The Axiom of Replacement often comes into 

the proof of (11.5). 

11.4. Exercise. For each unary definite operation F, the operation 

G(X) =df F[X] = {F(x) \ x e X} (Set(X)) 

is also definite. 

The next fundamental consequence of the Replacement Axiom general¬ 

izes the Transfinite Recursion Theorem in two ways: by allowing a definite 

operation instead of just a function in the statement, and by replacing 

the given well ordered set by an arbitrary grounded graph. The second 

generalization does not require the Replacement Axiom, Problem *x8.11. 

(11.5) 

(11.6) 

H 

At would be historically more accurate to honor the great mathematician 
and logician Skolem for the discovery of the Replacement Axiom, but the use 
of Fraenkel’s name and the letter F in acronyms to signify inclusion of the Re¬ 
placement Axiom has been sanctified by long-term usage and it is not realistic to 
try and change it. Fraenkel considered propositions similar to the Replacement 
Axiom, as in fact Cantor had done, much earlier. 



172 Notes on Set Theory 

11.5. Grounded Recursion Theorem. For each grounded graph G with 

edge relation —> and each unary definite operation H, there exists exactly 

one function f : G —* f[G] which satisfies the identity 

f(x) = H(f r {y e GI X -> y}). 

Proof. As in the proof of 7.24, we first show a lemma which gives us a 

set of approximations of the required function. Instead of the initial seg¬ 

ments of G (which do not make much sense for an arbitrary graph), these 

approximations are defined here on downward closed subsets of G. Recall 

the definition of the transitive closure of a graph =>g given in 6.33; we 

will skip all the subscripts in what follows, since only the single graph G is 

involved in the argument, and we will also use the inverse arrows, 

u <— t ^=bif t —> u <t=4> u is immediately below t, (11.8) 

x <^= t 4=4>df t =>• x <h=> x is (on some path) below t. (11.9) 

Lemma. For each node t G G, there exists exactly one function a with 

domain the set {x £ G | x <= t} which satisfies the identity 

&(x) = H(a \ {y E G \ y «- x}) (x<=t). (11.10) 

Proof. Suppose, towards a contradiction, that t is a minimal node of G 

where the Lemma fails. Thus, for each u <— t, there is exactly one function 
ou such that 

°u{x) = H(au \ {y E G | y <— a;}) (x <J= it). (11.11) 

First we notice that 

x<=u^tk,x<^v^t ==>• cru{x) = <t„(x); (11.12) 

because if x were minimal in G where (11.12) failed, then 

cru{x) = H(au \ {y £ G \ y <— x}) by (11.11), 

= H(av \ {y E G \ y <— x}) by the choice of x, 

= crv(x) by (11.11) for av. 

The operation it i-> ou which assigns this cr^ to each it <— t is definite, so 

by the Axiom of Replacement its image is a set and we can set 

=df U I u<~ t}] 

this ai is a function by (11.12), and by the definition, 
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By another application of the Replacement Axiom, 

a2 =df {(v,H(av f {x | x <- v})) | v «- t & -i(3u)[v <= u £]} 

is also a set, and by its definition it is a function with domain disjoint from 
that of (ti. Thus 

cr =df a i U <72 

is a function, and 

(3u)[£ —>u&'u=>x]V£—> u 

t^>x by 6.34. 

Moreover, cr satisfies (11.10) because cry and oy do. Finally, the same ar¬ 

gument by which we proved (11.12) shows that no more than one a with 

domain (r 6 G | x <= t} can satisfy (11.10), and that completes the proof 
of the Lemma. 

To prove the Theorem, we apply the Lemma as in 7.24 to “the successor 
graph” 

Succ(G) =df GU{1}, 

x >Succ(g) y 7=bif x y V [x = t k y e G], 

which has just one more node than G, at the top. 

11.6. Corollary. (1) For each well ordered set U and each unary definite 

operation H, there exists exactly one function f : U —r f[U] which satisfies 
the identity 

f(x) = H(f f seg(x)) (xeU). (11.13) 

(2) For each object a and each definite unary operation F, there exists a 
unique sequence (n 1-4 an) which satisfies the identities 

a0 = a, an+1 = F(an) (neN). (11.14) 

We call (n 1—> an) the orbit of a under F. 

Proof. For (1) we apply 11.5 to the graph (Field{U), >u), and for (2) to 

the graph (N, —>), where 

n —> m <=>df n = m + 1. H 

11.7. Exercise. Which definite operation H do we use to prove (2) of the 

Corollary? 

The orbit of a set A by the unionset operation reveals the hidden struc¬ 

ture of A under the membership relation by exposing the members of A, 

the members of the members of A, the members of those, etc. ad infinitum. 
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11.8. Definition. A class M is transitive if [JM C M, equivalently 

(\/x e M)(yt e x)[t e M], or just x e M => x c M. 

11.9. Exercise. The sets 0, {0, {0}}, {0, {0}, {05 {0}}}> the set 

iVo = {0, {0}, {{0}}, ••• } U1-15) 

postulated by the Axiom of Infinity and every class whose members are all 

atoms are transitive. 

11.10. Transitive Closure Theorem. Every set A is a member of some 

transitive set M, in fact, there is a least (under C) transitive set M = 

TC(A) such that A 6 TC(A). We call TC(A) the transitive closure of 

A. 

Proof. By (2) of 11.6, there is a unique sequence n TCn{A) which 

satisfies the identities 

TC0(A) = {A}, 

TCn+1(A) = U TCn(A), 
(11.16) 

and we set 

TC(A)=di {J%LoTCn(A). (11.17) 

Clearly A e TC(A) and TC(A) is transitive, because 

u £ TCn(A) => u C U TCn(A) = TCn+1(A). 

If M is transitive and A E M, then TC0{A) = {T} C M, and by induction 

TCn{A) C M =4> TCn+1(A) = U TCn(A) C (JM C M, 

so that in the end TC(A) = (JnTCn(A) C M. H 

11.11. Exercise. If A is transitive, then TC(A) = A U {A}. 

To understand better the remark about “revealing the hidden G-structure” 

of A, consider the following natural concepts. 

11.12. Definition. A set A is hereditarily free of atoms or pure if it 

belongs to some transitive set which contains no atoms; equivalently, if 

TC(A) contains no atoms. A set A is hereditarily finite if it belongs 

to some transitive, finite set; equivalently, if TC(A) is finite. A set A is 

hereditarily countable if it belongs to some transitive, countable set; 

equivalently, if TC(A) is countable. 



Chapter 11. Replacement and other axioms 175 

The point of the definitions is that {{a}} is a set but not a pure set 

if a is an atom, because we need a to construct it; {N} is finite but not 

hereditarily finite because we need all the natural numbers to construct 

it; {A/*} is countable but not hereditarily countable because we need to 

“collect into a whole” an uncountable collection of objects in M before 

we can construct the singleton {A/"} by one final, trivial act of collection. 

Put another way, {A/*} is not hereditarily countable because “its concept 

involves” an uncountable infinity of objects, the members of its sole member 

M. 

11.13. Exercise. A transitive class is pure exactly when it has no atoms. 

Consequently, the Principle of Purity 3.24 is equivalent to the assertion 

that every set is pure. 

11.14. Exercise. A transitive set is hereditarily finite if it is finite, and 

hereditarily countable if it is countable. 

Next we consider the closure of a set under both the unionset and pow- 

erset operations. 

11.15. Basic Closure Lemma. For each set I and each natural number 

n, let Mn = Mn(I) be the set defined by the recursion 

M0 = I, Mn+1 = Mn U U Mn U V(Mn). (11.18) 

The basic closure of I is the union 

M = M(/)=df U~oMn(/), (11-19) 

and it has the following properties. 

(1) M is a transitive set which contains 0 and I, it is closed under the 

pairing {x,y}, unionset (J £ and powerset P{A) operations and it contains 

every subset of each of its elements. 

(2) M is the least (under C) transitive set which contains I and is closed 

under {x,y}, [J £ andV{X). 

(3) If I is pure and transitive, then each Mn is a pure, transitive set and 

satisfies 
Mn+\ = V(Mn). (11.20) 

As a consequence, M is a pure, transitive set. 

Proof. (1) By the definition, 0, / G Mx C M. If x, y G M, then from 

the obvious Mn C Mn+1, there exists some m such that {x,y} C Mm, so 

{x,y} G Mm+i- The key inclusion for the remaining claims is 

x G Mn =4- x C (J Mn C Mn+1 C M, 
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which implies immediately that M is transitive. It also implies 

x G Mn =k U x C U Mn+1 C Mn+2, 

so x G Mn ==> [Jx G Mn+3 C M and M is closed under (Jx. The same 

argument shows that M is closed under V(X) and the last assertion follows 

by this closure and transitivity. 

(2) Closure of any M' under {x,y} and lj£ implies closure under A U 

B = U {A, B}, and the additional closure under V(X) implies by a simple 

induction that Mn G M' for each n, so M C M' by the transitivity of M'. 

(3) If I is transitive with no atoms, then every Mn is transitive and has 

no atoms by a trivial induction on n. This implies that M is a transitive 

set with no atoms and hence pure, but also that Mn U {jMn C V(Mn), so 

that Mn+1 = V(Mn). H 

11.16. Exercise. In connection with the proof of (3), is not the inclusion 

X QV(X) true for every transitive set X ? 

11.17. Exercise. If I C J, then for each n, Mn(I) C Mn(J), and hence 
M(I) C M(J). 

11.18. The Hereditarily Finite Sets. The least basic closure is that 

of the empty set, HF =df M(0) C M(J), for every I. In the classical 

notation, Mn(0) = Vn, so that the Cn’s and their union are determined by 

2 Picturing universes of sets by cones like this is traditional but misleading; 
the successive powersets grow hyperexponentially in size, so it would be more 
accurate to draw a cone with curved, hyperexponential sides. 
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the identities 

Fo = 0, Vn+l=V{Vn), HF=di\J™=QVn = M((t)). (11.21) 

For example, 0 £ Vi, {0} E V2 and {{0}, {{0}}} g V4! The set HF is pure 

and transitive, each Vn is finite by an easy induction, so every set in HF 

is pure and hereditarily finite, and HF itself is countable. These are the 

sets which can be constructed “from nothing” (literally, the empty set) by 

iterating any finite number of times the operation of collecting into a whole 

(putting between braces) some of the objects already constructed. 

The closure properties of M(I) itemized in (1) of 11.15 are precisely 

those required of the universe W by axioms (II) - (V), as we discussed 

them in 3.25, and if the set N0 of (11.15) demanded by the Axiom of 

Infinity (VI) is a subset of /, we also have No E M(I). Notice also that 

since M(I) is transitive, for A, B E M(I), 

A^B =>• (3 fEM(7))[fe {A\B)U (B\A)], (11.22) 

which says of M(7) what the Axiom of Extensionality demands of W by 

(3.10). This suggests that if we take “object” to mean “member of M(I),” 

for any I A N0, then we can reinterpret every proof from the axioms (II) 

- (V) as an argument about the members of M(I) instead of all objects, 

in the end proving a theorem about M(I) instead of W. It is an important 

idea, worth abstraction and a name. 

11.19. Definition. A transitive class M is a Zermelo universe if it 

is closed under the pairing {x,y}, unionset (J £ and powerset V(X) op¬ 

erations, and contains the set N0 defined by (11.15). The least Zermelo 

universe is Z = M(Ab), determined by the identities 

Z0 = N0, Zn+1=V(Zn), Z = UZoZn. (11.23) 

11.20. Exercise. The class Y\> of all objects is a Zermelo universe. Every 

Zermelo universe contains the empty set as well as every subset of each of 

its members. 

A Zermelo universe M is a model of the axioms (I) - (VI), and a very 

special model at that, since it interprets standardly the basic relations 

of membership and sethood—it only restricts the domain of objects in 

which we interpret propositions. The claim that logical consequences of 

(I) - (VI) are true in every Zermelo universe is called a metatheorem, a 

theorem about theorems. To make general results of this type completely 

precise and prove them rigorously requires concepts from Mathematical 

Logic. In specific instances, however, lemma by lemma and proposition by 

proposition, it is quite simple to see what the specific consequence of the 
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axioms means for an arbitrary domain of objects and to verify it in every 

Zermelo universe: this is because, in fact, we have been using the axioms as 

closure properties of the universe, about which we have assumed nothing 

more but that it satisfies them. 

11.21. Proposition. Every Zermelo universe M is closed under the Kura- 

towski pair operation (x, y) defined in (4.1), as well as the Cartesian product 

Ax B, function space (A —> B), and partial function space (A —>■ B) oper¬ 

ations, provided these are defined using the Kuratowski pair. In addition, 

if A E M and ~ is an equivalence relation on A, then ~ and the quotient 

W ] defined in 4.14 are also in M. 

Proof. The Kuratowski pair (x,y) = {{x}, {x,y}} of any two members of 

M is obtained by taking unordered pairs twice, so it is certainly in M. If 

A, B E M, then A U B = {J{A,B}, and by the proof of 4.3, A x B C 

V(V(A U B)) E M, so A x B E M. The rest are proved similarly. H 

11.22. Exercise. Every Zermelo universe M contains a system of natural 

numbers as defined in 5.1. 

11.23. Proposition. (1) The Axiom of Dependent Choices is true in ev¬ 

ery Zermelo universe M, in the following sense: if a G A G M, P C Ax A, 

P E M and N E M is a system of natural numbers in M, then 

a G A & (Vx G A)(3y G A)xPy 

==>- (3/ : N —> A)[f G M & /(0) = a & (Vn G N)f(n)Pf(n + 1)]. 

(2) (AC) The Axiom of Choice is true in every Zermelo universe M, in 

the following sense, following 8.4: for every family £ G M of non-empty 

and pairwise disjoint sets, then there exists some set S G M which is a 
choice set for £, i.e. 

S' C |J £, (}/X G E)(3u)[S nl = {w}]. 

Proof. (1) The hypothesis of the implication to be proved implies by DC 

that there exists some function / : N -»• A such that /(0) = a and for 

every n E N, f(n)Pf(n + 1). Since (N A) E M, we also have / E M 
by transitivity. 

Part (2) is proved similarly. -| 

Although we chose specific versions of the choice principles to simplify 

these arguments, their numerous equivalents are also true in every Zer¬ 

melo universe M. This can be verified directly, or by observing that the 

equivalence proofs we have given can be “carried out within M.” 
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11.24. Exercise. (AC) If M is any Zermelo universe, A, B £ M, and P 
is any binary definite condition, then 

(Va: <E A)(3y £ B)P(x,y) (3/ e M)[f : A -> B & (Vx G A)P(x,/(x))]. 

11.25. The least Zermelo universe. Let us concentrate on the least 

Zermelo universe Z, to focus the argument. It is a pure, transitive set, 

constructed by starting with the simple set No and iterating the powerset 

operation infinitely many times, much as we construct the natural numbers 

starting with 0 and iterating infinitely many times the successor operation. 

We can think of the sets in Z as precisely those objects whose existence is 

guaranteed by the axioms (I) - (VI). The natural interpretations of DC 

and AC are also true in Z, the latter under the assumption that AC is true 

in W. Using the closure properties of Zermelo universes already established 

and looking back at Chapters 5, 6 and 10 and ahead at Appendix A, we 

can verify that Z contains not only the specific system of natural numbers 

N we constructed in Chapter 5, but also the Baire space J\f defined from 

this N and the specific systems of rational and real numbers constructed 

in Appendix A. By the uniqueness results, any one of these systems is as 

good as any other, so we can say that Z contains the integers, Baire space, 
the rationals and the reals. 

Combining these remarks with some knowledge of classical mathematics, 

it is not hard to give a convincing argument that all the objects studied in 

classical algebra, analysis, functional analysis, topology, probability, differ¬ 

ential equations, etc. can be found (to within isomorphism) in Z. Many 

fundamental objects of abstract set theory are also in Z, all we have con¬ 

structed before this chapter in developing the theory of inductive posets, 

well ordered sets, etc. In slogan form: we can develop classical mathe¬ 

matics and all the set theory needed for it as if all mathematical 

objects were members of Z. 

The same can be said of every Zermelo universe, of course, but the con¬ 

crete, simple definition of Z makes it possible to analyze its structure and 

investigate the special properties of its members. For example, no set which 

is a member of itself belongs to Z\ because no X £ No satisfies X £ X (eas¬ 

ily), and if n were least such that some X £ X £ Zn+1, then X £ X C Zn 

by the definition, so X £ Zn, contradicting the choice of n. This looks 

good, we had some trouble with sets which belong to themselves. Actually, 

the iterative construction of Z ensures a much stronger regularity property 

for its members, discovered by von Neumann. 

11.26. Definition. An object x is ill founded if it is the beginning of a 

descending £-chain, i.e. if there exists a function f : N —> E such that 

x = f(0)3f(l)3f(2)3 
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Figure 11.2. {0, {0}} as a disappointing gift. 

Objects which are not ill founded are well founded or grounded, if X 6 

X, then X 3 X 3 X 3 • • • , so X is ill founded. Problem xll.14 gives a 

simple characterization of ill founded sets directly in terms of the 6 relation, 

which suggests that ill foundedness is a generalization of self-membership. 

11.27. Exercise. Atoms are grounded, as is 0 and Nq. A set is grounded 

if and only if all its members are grounded, if and only if its powerset is 

grounded. The class of all grounded sets is transitive. 

11.28. Proposition. If I is grounded, then so is its basic closure M(I). In 

particular, the least Zermelo universe Z and all its members are grounded. 

Proof. Assume that I is grounded, let (towards a contradiction) n be least 

such that Mn is ill founded and suppose that Mn 3 X\ 3 • • • is a descending 

6-chain. By hypothesis n > 0. Since x\ 6 Mn-i and x\ 6 y 6 Afn_i 

contradict the choice of n, we must have x\ C Mn-i, so X2 6 Mn_i and 

the descending 6-chain Mn-\ 3 x^ 3 • • • contradicts again the choice of n. 

It follows that M is also grounded, since any descending chain M 3 x\ 3 ■ ■ ■ 
would also witness that Mn is ill founded for whatever Mn contains x\. The 

consequence about Z follows because Nq is grounded. H 

In the old gag, the excited birthday boy opens up the huge box with his 

present, only to find inside it another box, and inside that another, and so 

on, until the last, tiny box is empty: his present is just the boxes. We can 

think of a pure, grounded set as a disappointing gift of this sort, except 

that each box may contain several boxes, not just one; no matter which 

one the birthday boy chooses to open up each time, eventually he finds the 

empty box, 0. Most axiomatizations of set theory ban ill founded sets from 

the start by adopting the following principle proposed by von Neumann. 

11.29. Principle of Foundation. Every set is grounded. This is also 

called the principle (or axiom) of Regularity in the literature. 

It is worth putting down here an equivalent version of this Principle, 
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which is somewhat opaque but useful. 

11.30. Proposition. The Principle of Foundation is true if and only if 
for every non-empty set X, there is some me X such that 

m = (11.24) 

Proof. Assume first the Principle of Foundation and suppose, towards a 

contradiction, that X ^ 0 but no m G X satisfies (11.24). This means that 
for some a G X, 

a G X & (Vm G X)(3t G X)[t G m], 

and then DC gives us an infinite descending G-chain beginning with X 3 a 

which contradicts the hypothesis. Conversely, if the Principle of Foundation 

fails and some infinite descending G-chain starts with some set 

X = /(0) 3 /(l) 3 /(2) 9 , 

then the set f[N] = {/(0), /(l),...} is not empty and intersects each of its 

members, so none of them satisfies (11.24). H 

11.31. Axiomatics. By far the most widely used—the “official”—system 

of axioms for sets is the Zermelo-Fraenkel Theory (with choice), which 

accepts the Principles of Purity 3.24 and Foundation in addition to those 

of ZFAC, symbolically, 

ZFC = ZFDC + AC + Purity + Foundation. 

There are many and convincing arguments in favor of this industry stan¬ 

dard, some of which we discuss immediately below. We will come back to 

the question in Chapter 12 and Appendix B, where we will also explain a 

few good foundational reasons for sticking with the weaker ZFDC in these 

Notes. As a practical matter, the principles of Purity and Foundation do 

not come up in the part of the subject we are covering, and the full AC is 

only needed rarely, so we can easily keep track of it. 

11.32. Are all sets grounded? The most blatant exception to the Prin¬ 

ciple of Foundation would be a set which is its own singleton, 

fi = {f2}. (11.25) 

We can think of as the ultimately frustrating gift: each box has exactly 

one box inside it, identical with the one you just opened, and you can 

keep opening them forever without ever finding anything. How about sets 

FPandFl2 such that 

T21 = {0, ST2}, O2 = {F21}? (11.26) 
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Figure 11.3. as the ultimately frustrating gift. 

These equations look unlikely, even bizarre, but it is not clear that our 
axioms rule them out. As a matter of fact they do not, we will construct in 
Appendix B some quite reasonable models of ZFAC which contain some 
fl — {11} and many other sets with similar properties. 

Recall the discussion about the large and the small heuristic views of the 
universe of objects W in 3.25. The large view conceives W as the largest 
possible collection of objects which satisfies the axioms, while the small 
view takes it to comprise just the objects guaranteed by them. 

On the large view, we have no more evidence in favor or against the 
Principle of Foundation now than we did back in Chapter 3, except that 
we have proved all these things about sets without ever using it. But then 
again, we never saw a need for ill founded sets either. 

On the small view, we have amassed some considerable evidence, at least 
for ZAC, and it is all in favor of the Principle of Foundation: we now 
have a precise idea of what sets are “guaranteed” by the axioms of ZAC, 
they are the members of Z and they are all pure and grounded. It may 
be argued that we did not build Z out of whole cloth, we worked within 
a “given” universe W of objects, in fact, we needed to assume that W 
satisfies the Axiom of Replacement in addition to the axioms of ZAC. This 
is certainly true, but so is the obvious response to it: aside from any rigorous 
axiomatization, the definition of Z and the proofs of its basic properties 
can be understood intuitively, naively, and they carry a considerable force 
of persuasion. An informal description of Z would have made perfect sense 
in Chapter 3, as an intuitive conception of “restricted set” which justifies 
the axioms of ZAC, the principles of Purity and Foundation among them. 
We have not been able to produce any such plausible, intuitive model of 
ZDC which contains ill founded sets from any hypotheses which do not 
beg the question.3 

Could we construct simple models like Z for the theory ZFDC? Let’s 
first give them a name. 

3Models like M(No Ufl) beg the question, because they need some Q with the 
requisite self-membership property to get started. 
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11.33. Definition. A Z-F universe is any Zermelo universe M which 

further satisfies the Axiom of Replacement in the following sense: for each 
A 6 M and each unary definite operation H, 

(Mx E M)[H(x) E M\ =>H[A} = {H(x) \ x e A} e M. 

The axioms of ZFDC assert precisely that the class W of all objects is a 

Z-F universe. 

11.34. Theorem. The von Neumann class 

V =df {X | X is a pure, grounded set} (11.27) 

is a Z-F universe. 

Proof. The fact that V is a Zermelo universe is quite trivial, most of it 

follows from Exercise 11.27. To verify that V also satisfies the Axiom of 

Replacement, notice that (whether A E V or not), if H is unary, definite 

and such that for every x E A, the value H(x) is a pure, grounded set, then 

the image Ft [A] has only pure and grounded members, so it is (easily) pure 

and grounded. H 

There is another, elegant and useful characterization of the pure grounded 

sets which follows easily from the Grounded Recursion Theorem 11.5. 

11.35. Definition. A Mostowski surjection or decoration of a graph 

G with edge relation —»• is a surjection d : G —» d[G] which assigns a set to 

each node of G such that 

d(x) = {d(y) | y <- x} (x E G). (11.28) 

11.36. Mostowski Collapsing Lemma. (1) Every grounded graph G 

admits a unique decoration do, and its image dG[G\ is a transitive, pure, 

grounded set. 

(2) A set A is pure and grounded if and only if there exists a grounded 

graph G and a node a;EG, such that A = dG{x) for the unique decoration 

dG of G. 

Proof. (1) The existence of a unique decoration of a grounded G follows 

immediately from the Grounded Recursion Theorem 11.5 applied to G, 

with the definite operation 

H{f) = Image(f) = {f(x) \ f(x) |}. 

The image dG[G] is transitive, since if s E t E dG[G], then s E t = dG(y) for 

some y E G, and then s = dG{x) for some x <— y, so s E dG[G}. Since each 
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dG(x) is a set, by (11.28), dG[G] is a transitive set with no atoms and hence 

pure. Finally, dG[C] is grounded, because if xq 3 x\ 3 • • • were an infinite, 

descending G-chain in it and so, Si, ...were chosen so that dG(si) = Xi, 

then so —*■ > • • • would be an infinite descending chain in the grounded 

graph G. 

(2) If A = dG{x) with x a node in some grounded graph, then A is 

a member of a transitive, pure, grounded set by (1) and hence pure and 

grounded. For the converse, let G = TC(A) be the transitive closure of X 

and define on it 

x -> y 4=>df V € x. 

The graph G is grounded, because G — TC(A) is a grounded set, Problem 

xll.16. In addition, 
dG{x) = x (xeG); (11.29) 

because if x were a G-minimal counterexample to (11.29), then 

dG(x) = {dG(y) | y *—G x}, 

= {y I V x} 

= {y I y e x} 

= x 

In particular, A = dG(A), which proves (2). 

by the choice of x, 

by the def. of —>, 

because x is a set. 

H 

The class V is not a set (Problem xll.20) and it is quite hard to find 

Z-F universes which are sets. See Problems *xl2.20, *xl2.21 and *xB.12. 

11.37. Consistency and independence results. All the consistency 

and independence results we have discussed in 8.22. 8.23, 10.27, 10.28. 

10.30 and 10.31 can be strengthened by adding the Axiom of Replacement 

to the relevant theories. This is as good a place as any to collect the most 

general versions of these fundamental results, which are outside the scope 

of these Notes. 

(1) (Godel, 1939) The universe L of constructible sets is a model of ZFC. 

which further satisfies the Generalized Continuum Hypothesis GCH. It 

follows that the Axiom of Choice AC cannot be refuted from the other 

axioms of ZFC, and that GCH cannot be refuted in ZFC. 

(2) (Cohen, 1963) None of the choice principles ACat, DC and AC 

can be proved from a weaker one using the constructive axioms of Zermelo 

(I) - (VI) and the Axiom of Replacement (VIII). 

(3) (Cohen, 1963) There is a model of ZFC in which the Continuum 

Hypothesis CH is false, so CH cannot be proved in ZFC. 

(4) (Solovay, 1970) There is a model of ZFC in which every “definable ”, 

uncountable pointset has a perfect subset, and hence has cardinality c . This 
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means, in particular, that we cannot define a specific pointset A and then 

prove in ZFC that it has cardinality intermediate between K0 and c. 

(5) (Solovay, 1970) There is a model of ZFDC in which every uncount¬ 

able pointset has a perfect subset, so we cannot prove in ZFDC the exis¬ 

tence of uncountable pointsets without perfect subsets. Solovay’s model also 

satisfies the Principles of Purity and Foundation. 

Problems 

xll.l. Prove the Separation Axiom (III) from the remaining axioms in 

the group (I) - (V) and the Axiom of Replacement (VIII). 

xll.2. For each set I, each unary definite operation F and each binary, 

definite operation G, there exists a least under C set A which contains A 

as a subset and is closed under F and G, i.e. 

A C A, x £ A => F(x) £ A, x,y £ A =>■ G(x, y) £ A. 

(The same is true for any number of operations, of any number of argu¬ 

ments.) 

xll.3. The Axiom of Replacement is constructively equivalent with the 

following proposition: for every set A and every unary definite operation 

F, there exists a set B which contains A and is closed under F, i.e. 

ACB& F[B] C B. 

xll.4. The Axiom of Replacement is constructively equivalent with the 

following proposition: for every set A and every unary definite operation 

F, the restriction 

F \ A =df {{x,F(x)) | x £ A) 

of F to A is a function, i.e. a set of pairs. 

xll.5. If (x, y) is a definite, binary operation which satisfies the first prop¬ 

erty of ordered pairs 4.1, then it also satisfies the second, 4.2. (This cannot 

be proved in ZAC, see Problem *xB.4.) 

xll.6. If \A\ is a definite operation which satisfies the first condition on 

weak cardinal assignments (4.25), then it automatically also satisfies the 

third one, (4.27). (This cannot be proved in ZAC, see Problem *xB.8.) 
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xll.7. The definite condition of functionhood defined in (4.22) satisfies 

the equivalence 

Function^) Set(f) & (Viw G f)(3x,y)[w = (x,y)] 

& (Vx,y,y')[[(x,y) g / & (x,y') e /] =► y = y'}, 

i.e. / is a function exactly when it is a single-valued set of pairs. (See also 

Problem *xB.9.) 

xll.8. There exists a unique sequence (n m K„) which satisfies the iden¬ 

tities 

*0 = \N\, Kn+1 = K+. 

We introduced these names for the first few infinite cardinals in (9.6), but 

this is not the same as proving the existence of the sequence (n e-> Kn). 

(See also Problem *xB.10.) 

xll.9. Extended recursion with parameters. For every unary definite 

operation G and every binary definite operation id, there exists a unary 

definite operation F which satisfies the identities 

F(0,y) = G(y), 

F(n + l,y) = H(F(n,y),y). 

xll.10. If £ is a non-empty family of transitive sets, then the union (J £ 

and the intersection f) £ are also transitive. 

xll.ll. For every class A there exists a least, transitive class A which 

contains A, that is, such that A C A and for every transitive class B, 
A C B ==>• A C B. 

xll.12. The class of all pure sets is transitive, as are the classes of hered¬ 
itarily finite and hereditarily countable sets. 

xll.13. If x\ Ex 2 G • • • G xn = xi, then x\ is ill founded. 

xll.14. An object x is ill founded if and only if there exists some set A 
such that 

x G A k (Vs G A)(3t G A)[s 3 t]. 

xll.15. If and 02 exist which satisfy (11.26), then they are distinct, 
hereditarily finite, pure sets. 

xll.16. A set A is grounded if and only if its transitive closure TC(A) is 
grounded. 
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*xll.l7. A set is in HF if and only if it is pure, grounded and hereditarily 

finite. Hint: Show first that every finite, transitive, pure grounded set 

is in HF. The members of HF are usually called the hereditarily finite 

sets, because the principles of Purity and Foundation are typically included 
among the axioms. 

xll.18. For each transitive set /, let 

J = {x € / | x is pure and grounded} 

and prove that 

M(J) = {iG M(I) | x is pure and grounded}. 

xll.19. If a set H = (F2} exists as in (11.25), then 

{x £ M(fl) | x is grounded} = HF. 

xll.20. Prove that the class V of all pure, grounded sets is not a set. 

xll.21. A class K of atoms supports a set A if 

x £ TC(A) & Atom(x) => x £ K. 

Prove that the class of sets supported by a fixed K is a Z-F universe. 

x 11.22. The class V[K] of grounded sets supported by a class K of atoms 

is a Z-F universe. 

xll.23. An extended decoration of a graph G is any surjection d : G —» d[G] 

such that for all x £ G, 

if x is an atom, 

{d{y) | y <— x}, if x is a set. 

Prove that every grounded graph admits a unique extended decoration and 

that a (not necessarily pure) set A is grounded if and only if there exists a 

grounded graph G) and some x £ G, such that A = d(x). 

*xll.24. Grounded £-recursion. For each unary definite operation H, 

there exists a definite operation F(t), such that for every grounded set x, 

F(x) = H(F \ x), 

where the function F \ x = {(t,F(t)) \ t £ x} is the restriction of the 

operation F to the set x. 
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This is a special case of the next, slightly more complex generalization 

of the Grounded Recursion Theorem 11.5. 

*xll.25. Suppose t < x is a binary definite condition which satisfies (1) 

for every x, the class {t \ t < x} is a set, and (2) there does not exist a 

sequence (n i—> xn) such that for all n, xn+i < xn. Prove that for every 

definite operation H there exists another F, such that for every x, 

F(x) = H(F \ {t\t< x}), 

where the function F \ {t \ t < x] = {(t,F(t)) | t < x} is the restriction 

of F to the set {t | t < x}. 
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ORDINAL NUMBERS 

The Axiom of Replacement finds its most important applications in von 

Neumann’s beautiful theory of Ordinal Numbers, and in the construc¬ 

tion of the Cumulative Hierarchy of pure, grounded sets. One can live 

without knowing the ordinals, to be sure, but not as well: they bring many 

gifts, among them true cardinal numbers which give substance to the “vir¬ 

tual” theory of equinumerosities with which we have been making do. The 

Cumulative Hierarchy extends the iteration of the power operation we have 

used to construct HF “as far as it will go” and presents the pure, grounded 

sets as the most compelling intuitive understanding of what sets really are. 

It is not so clear one can live without knowing that, not among set theorists, 

at any rate. 

Cantor describes his conception of “ordinal types” just a few pages after 

the definition of cardinals quoted in 4.19, and in a very similar vein. 

Every ordered set U has a definite ‘ordinal type,’ ... which we 

will denote by U. By this we understand the general concept 

which results from U if we only abstract from the nature of the 

elements u, and retain the order or precedence among them. 

Thus the ordinal type U is itself an ordered set whose elements 

are units which have the same order of precedence amongst one 

another as the corresponding elements of U, from which they 

are derived by abstraction. ... A simple consideration shows 

that two ordered sets have the same ordinal type if, and only jf, 

they are similar, so that of the two formulas U =0 V, U = V, 

one is always a consequence of the other. 

Cantor is speaking about arbitrary linearly ordered sets, but we will con¬ 

sider here only the problem of defining “ordinal types” for well ordered 

sets. He states explicitly the first key property 

U=aU (12.1) 

of the ordinal assignment operation and argues for 

U=QV u = v. (12.2) 
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0 {0} {0,{0}} {0,{0},{0,{0}}} ••• a wUM 

Figure 12.1. The von Neumann surjection. 

Cantor’s implied “simple consideration” for (12.2) should also justify (for 

well ordered sets) the stronger implication 

U <aV =>U HV; (12.3) 

because the position of a point i in a well ordered set depends only on 

the points preceding it, so the “unit” x abstracted from x and coding its 

place in U should depend only on the initial segment segu(x). Thus, the 

problem of representing Cantor’s conception of ordinals in axiomatic set 

theory comes down to the following: can we assign a well ordered set U to 

each well ordered set U, so that (12.1) and (12.3) hold? Von Neumann’s 

ingenious idea is to define U by replacing recursively each member of U by 

the set of its predecessors. 

12.1. Ordinal Numbers. The von Neumann surjection of a well or¬ 

dered set U is the unique surjection v — vu : U —»Vf/[£7] which satisfies 
the identity 

v(2/) = Me) | x <y} = v[seg(y)} (y G U). (12.4) 

We define the ordinal number of U to be the image 

ord(U) =df vu[U] (12.5) 

of U under its von Neumann surjection, and we set 

ON (a) a G ON 4=4>df (3 well ordered U)[a = ord(U)\. (12.6) 

12.2. Exercise. Verify that (12.4) is equivalent to v(y) = H(v \ seg(y)) 

where H is the definite operation H(w) = Image{w), set to 0, as usual, 
when w is not a function. 

Suppose for example that 

U : Of/, ly, 2[/,... Su(w>u) 

is a well ordered set with least element 0//, next If/, ..., first limit point 

toy, followed by the last (largest) point Su(u>u). We compute the values of 
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u 
7T 

— V 

vu 

ord(U) 
id(x) = x 

Vp 

ord{V) 

Figure 12.2. The von Neumann surjection under initial similarities. 

its von Neumann surjection by repeated applications of (12.4): 

v(0[/) = M*) 1 X < Ot/} = 0 = 0, 

= (v(^)| \ x <1 u} = {0} = 1, 
v(2[/) = Ms) I x < 2u} = {0,{0}} = 2, 

v(3 u) = Ms) x < 3u} = {0,{0},{0,{0}}} — 3, 

v{ll>u) = {v(s) | X < Uu) = {0,{0},{0,{0}},.. ■} =w 
v(Su(uju)) = Ms) x < Su(oju)} = u U {cu} 

v[U] = {0,l,2,...,w,wUM}. 

Notice that each value v(y) is independent of the particular element y G U, 

it depends only on the place of y in U, whether it is the first element, the 
fifth, the first limit point or whatever. This is a general fact about v which 
we can make precise as follows. 

12.3. First Ordinal Property. If it : U >—» 7r[C/] □ V is an initial simi¬ 

larity from a well ordered set U into another, then the diagram in Figure 

12.2 commutes, i.e. 

vf(tt(2/)) = vu{y) (yeU). (12.7) 

Proof. By transfinite induction on U, we compute: 

vv(7r(y)) = (vy(t) | t <v tt(2/)} by definition, 

= {v^(7r(:r)) | x <u y} because tt is initial, 

= (v[/(a:) | x <u y) by the ind. hyp. 

= V[/(y). H 

12.4. Exercise. Prove that the object lu = vu(u>u) assigned to the first 

limit point of every well ordered set U (which has one) by its von Neumann 

surjection is the set 

lu = n {X I 0 e X & (Va G X)[a U {«} G X}}. (12.8) 
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12.5. Second Ordinal Property. For each well ordered set U and each 

ycu, 
vu(y) = ord{segv(y)). (12.9) 

As a consequence, each von Neumann value vu(y) is an ordinal number, 

and conversely, each ordinal number a is the von Neumann value vu{y) 

of some point in a well ordered set. Put another way: each member of an 

ordinal is an ordinal and every ordinal is a member of an ordinal. 

Proof. The key identity (12.9) says directly that von Neumann values 

are ordinals, and also the converse, since each U = segsucc(U)^)i where 
Succ(U) is the next well ordered set to U, with t added on top, 7.16. To 

prove (12.9), apply 12.3 with n — (x (-»• x) the identity on W = segv(y), 

which is certainly an initial similarity of W into U. We get 

vwOO = vcr(7r(t)) = vu(t) (t <v y), 

and by the definition, 

vu{y) = {vu(t) I t <U y} = {vw(t) | t <u y} = ord(W). H 

Thus, we can think of ordinal numbers as standing either for lengths of 

well ordered sets, or for places of points in a well ordered set. The latter 

agrees more with the use of ordinals in ordinary language, where “first,” 

“second,” ... customarily describe the place of objects in a sequence. 

Next comes the basic fact about ordinal numbers. 

12.6. Third Ordinal Property. Each ordinal number a is well ordered 

by the relation 

u <a v 4=>df u = v V u G v (u,vEa), (12.10) 

and if a — ord(U) for a well ordered set U, then the von Neumann surjec¬ 
tion v : U —» a is a similarity. 

Proof. The crucial implication is 

v(ar) € v(y) => x < y (x,y e U) (12.11) 

where v : U —» a — ord{U) is the von Neumann surjection of any well 

ordered set U. Together with its converse 

x < y => v(x) e v(y) (x, y £ U) 

which follows from the definition of v, it implies directly that v : U a 
is a bijection satisfying 

x<y <=> v{x) <a v(y) (x,y e U), 
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which in turn implies immediately that <a well orders a and v is a simi¬ 
larity of U with the well ordered set (a, <a). 

To prove (12.11) by contradiction, suppose x is least in U such that for 
some y, 

v(x) G v(y), y < x. (12.12) 

We take cases on the inequality y < x. 

Case 1. y = x, so v(z) G v(x), hence v(x) = v(s) for some s < x and 

v(s) G v(s), which contradicts the choice of x. (Because with t = s, we 
have v(s) G v(t) and t < s.) 

Case 2. y < x. We now have both v(x) e v(y) and v(y) e v(x), so 

by the definitions we get s < x and t < y such that v(y) = v(s) and 
v(x) = v{t), so 

v(t) e v(s), v(s) E v(t). (12.13) 

Both s and t are below x, since for the latter, t < y < x, and (12.13) implies 

that whichever of s, t is smaller than the other contradicts the choice of x. 

H 

12.7. Corollary. (1) Every well ordered set is similar with an ordinal 
number. 

(2) Every well orderable set is equinumerous with an ordinal number. 

Proof. Part (1) restates 12.6 and Part (2) follows because similarities are 

bijections. H 

This remarkable result says, in effect, that there exist sufficiently long 

G-chains to mirror every wellordering and it is a characteristic consequence 

of the Replacement Axiom. As we have been doing with structured sets 

throughout, by “the ordinal o” we will mean ambiguously the set a, e.g. 

in (2) of 12.7, or the well ordered set («,<»), e.g. in (1) of 12.6. Notice 

that in this case the set a determines the ordering <Q by (12.10). 

The three properties of ordinals 12.3, 12.5 and 12.6 give a strong solu¬ 

tion to Cantor’s problem of defining ordinal types for well ordered sets, as 

we described it above. 

12.8. Theorem. The definite operation ord(U) on well ordered sets sat¬ 

isfies the conditions 

U =0 ord{U), 

U <0 V => ord(U) □ ord(V), 

ON (a) ==> a = {/3 E ON | (3 <Q o}. 

(12.14) 

(12.15) 

(12.16) 
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Proof. The first property (12.14) is a restatement of part of 12.6. To prove 

(12.15), suppose 7r : U >—» tx[U] □ V is an initial similarity. By 12.3, taking 

images, \y[n{U)} = vu[U}', since vy is a similarity of V with ord(V), 

it carries initial segments onto initial segments, so vu[U] = vy[7r[I/]] C 

ord(V). Finally, for (12.16), if a = ord(U), then: 

a = {vu(y) I y e u} by def. 

= {ord(segu(y)) | y eU} by (12.5) 

= {/? G ON | (3 <0 a}, 

the last because the well ordered sets which are <a U are exactly those 

similar with the proper initial segments of U. H 

Conditions (12.14) and (12.15) are precisely Cantor’s (12.1) and (12.3). 

The key, last condition (12.16) is characteristic of the von Neumann ordinal 

assignment and ensures its uniqueness, Problem *xl2.1. This is an inter¬ 

esting result, we formulated it as a problem only because it makes for a 

good one and we will not need to appeal to it. However, it is easy to get lost 

in proving scores of elementary properties of ordinals, some useful, others 

just challenging, and the proofs from the definition are a bit confusing: it is 

not entirely natural to think of the membership relation as an ordering. It 

is good practice, at least in the beginning, to prove properties of ordinals 

directly from conditions (12.14) - (12.16). 

12.9. Theorem. Characterization of ordinals. A set a is an ordinal 

if and only if it is transitive, pure, and well ordered by the relation 

x <a y x = y V x e y (x,y e a), (12.17) 

equivalently, if a is transitive, grounded, pure and connected, i.e. 

x,y e a ==> x € y V x = y V y £ x. (12.18) 

Proof. For one direction, suppose a = v[C] for some well ordered set U. 

Certainly a has no atoms, since every von Neumann value v(y) is a set, 

by its definition. If t £ x € a, then t G v(v) for some v G U such that 

v(u) — x, so t = v(u) for some u < v by the definition of v(u) and hence 

tea. This shows that a is transitive and it also satisfies the last condition 
by 12.6. 

For the converse, suppose that a is a transitive set with no atoms, well 

ordered by <a in (12.17). We prove by transfinite induction on a that for 
each yea, ord{sega(y)) = y: 

ord{sega(y)) = (ord(sega(a;)) | x <a y} by (12.16), 

= {ord(sega(a:)) | x G a & x G y) by def. of <Q 

= {x\xea&ixey} = aC\y by ind. hyp. 

= y, 
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where a 0 y = y holds because y E a and a is transitive with no atoms. 

(Where does the absence of atoms come in?) From this and 12.5 we get 

a = {y | y E a} = {ord(sega(y)) \ y E a} = (va(y) | y E a) = ord(a), 

so that a is an ordinal. 

The second characterization follows trivially. H 

Thus, in ZFC, ordinals are precisely the transitive sets which satisfy 

(12.18), which is the way they are often defined. It is a remarkably simple 

definition, but if you start with it, it takes some time and effort to see 

what it has to do with the faithful representation of well ordered sets and 

cardinals. 

The simple, uniform definition of the orderings <a in terms of E yields 

an equally simple characterization of the comparison of ordinals by initial 

similarities. 

12.10. Theorem. For every two ordinals a, (3, 

a <0 /3 <£=> a = (3 V a E (3 •<=>■ a □ (3 <=> a C (3. 

Proof. We give a round-robin argument of the strict versions of the claimed 

equivalences. 

(1) a <0 (3 ==> a E (3 follows immediately from (12.14) and (12.16), since 

the hypothesis means that a = ord(U) and (3 = ord(V) with U <0 V■ 

(2) a G /3 => a C (3 and (3) a ^ (3 => a C (3 follow equally easily from 

(12.14) and (12.16) and we will skip them. 

It remains to show a C (3 a <0 (3 to close the loop. Assume the 

hypothesis and let £ be the <c-least member of (3\a. Thus, for y G (3, 

b E £ =4> r] <0 £ =£■ T) E cx, 

by (12.16) and the choice of £. But also 

?7E«=>7?<0£^77E£ 

similarly, so a = £ G /3, and by (12.16) again, a <0 (3. H 

It is traditional to use for the ordering on ordinals the simplest notation, 

a < (3 ^=hdf ol <0 (3 (cx,/3 G ON), (12.19) 

keeping in mind its equivalent characterizations in (12.10). We summarize 

its properties in one, now simple result. 
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12.11. The order of ordinals. (1) The class ON of ordinal numbers is 

well ordered by the condition a < (3, in the following precise sense: 

a < a, 

a < (3 & /3 < 7 =>- a < 7, 

c: < (3 & (3 < a =>■ a = (3, 
ci:</9Vo' = /0V/9<ft, 

and for every definite condition P, 

(3a G ON)P(a) =» (3a G ON)[P{a) & (V/? < a)^P(/?)]. 

In particular, there is no infinite descending chain of ordinals, 

ao > c\ > a2 > • • • => (3n)[an = an+i]. (12.20) 

When P(a) holds for some a, we set 

(/ua G ON)P{a) = inf {a G CW | P(a)}. (12.21) 

(2) For each ordinal number there is a next one, 

S(a) =df (p/3 G ON)[a < (3} = a U {a}. (12.22) 

(3) Each set A of ordinal numbers has a least upper bound, 

sup A =df (p[3 G ON)(Wa G A)[a < (3} = [jA, (12.23) 

which is the maximum of A if A has one and 0 if A = ty. 

Proof is left for Problem xl2.2. 3 

12.12. Exercise. For each non-empty set of ordinals £, 

{pa G ON)[a G £)] = f|£- 

This follows from 12.10. 

The successor ordinals are those of the form S{a) and the limit or¬ 

dinals are those which are not successors or 0; they are obviously charac¬ 

terized by the property 

Limit{X) A 7^ 0 & A = sup {« | a < A}. (12.24) 

We can prove properties of ordinals by transfinite induction and define 

operations on them by transfinite recursion, as follows. 
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12.13. Induction on ON. For every unary definite condition P, 

(Vo)[(V£ < a)P{£) =* P(a)] =* (Va)P(c*). 

Proof. Assume the hypothesis and that ->P(o) for some a, let f3 = (pa € 

ON)^P(a) and derive a contradiction from -«P(/3) and the choice of (3. H 

12.14. Recursion on ON. For every unary definite operation H, there 
exists another F, which satisfies the identity 

F(a) = H(F \ a) (ON (a)). (12.25) 

Here F f a is the function {(£, P(£)) | £ E a} obtained by restricting P(£) 
to a = {{ | f < a}. 

Proof. For each /3, by 11.6 on the well ordered set (/3, </g), there exists 

exactly one function fp:/3-^Ep which satisfies the identity 

//3(a) = P(//3 t {x G P | x Cp a}) (a</3), 

= H(f0 \ a), (12.26) 

using the fact that <0 coincides with G and the members of (3 are ordinals. 
We claim that 

o < (3, a < 7 =^> f0(a) = /7(q); 

if not, there would exist a least a for which this fails for some (3 and 7, and 

then (12.26) yields a contradiction immediately. Thus, we can set 

F(<x) = fS(a) (a), 

so F(a) = fp(a) for any (3 > a and (12.26) implies the required identity 

for F(a). H 

Using this theorem, we can define arithmetical operations on ON and 

study their structure. We will leave most of this for the problems, but it is 

worth recording here the two most basic definitions, as examples of 12.14 

and in order to have some notation available to name specific ordinals. 

12.15. Ordinal addition and multiplication. There exist binary, def¬ 

inite operations a + (3 and a ■ (3 on the ordinals which satisfy the following 

identities: 

a + 0 = a, 
a + S(/3) = S(a + (3), (12.27) 

ex -fi A = sup {a + (3 | (3 < A}, if Limit(A). 

a ■ 0 = 0, 
0 • S{(3) 

d
 

+
 II (12.28) 

a ■ A = sup {a ■ (3 | (3 < A}, if Limit(X). 
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Proof. First we define by 12.14 a unary operation +a for each a which 

satisfies the identities above, and then we set 

& + (3 =df +a(/3), 

and similarly for multiplication. 

We have already mentioned 

cj = ord(N), (12.29) 

the ordinal of the number sequence, characterized in (12.8). The ordinals 

following it immediately are obviously 

u) T 1 = S'(cj), u> + 2 = S(u +1), lu T 3 = S(uj T 2),... 

and right above these comes 

u + ui = sup (w + n | n6w} = W'2. (12.30) 

This is the second limit ordinal, the first one above u>. Each u ■ n can be 

obtained by adding u to itself n times, directly from the definition. Next 

comes 

u2 = sup {u ■ n | n < cj}, 

after a while lu3 — u2 ■ u>, etc. 

Next we describe von Neumann’s elegant solution of the problem of car¬ 

dinal assignment 4.20 for well orderable sets, which is based on the fact 

that every one of them is equinumerous with an ordinal, 12.7. 

12.16. A von Neumann cardinal assignment is a definite operation 

|A| on the class of sets which satisfies the following conditions: 

A=C\A\, (12.31) 

A =c B =*► \A\ =c \B\, (12.32) 

(V£)[{|A| | A G £} is a set], (12.33) 

if A is well orderable, then \A\ — (fiK G ON)[A =c k]. (12.34) 

The first three of these conditions characterize “weak” cardinal assignments 

in the terminology of 4.21. The last condition (12.34) implies trivially that 
if A is well orderable, then for all B, 

A =c B 4=» |d| = \B\, (12.35) 

so that \A\ is a “strong” cardinal assignment by 4.21 on the class of well 

orderable sets. Of course, if AC holds, then every set is well orderable, so 

a Neumann cardinal assignment satisfies all of Cantor’s conditions for an 
assignment of cardinal numbers to sets. 
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12.17. Theorem. There exists a von Neumann cardinal assignment. 

Proof. We set 

\ a \ _ / £ ON)[A =c ac], if A is well orderable, , . 

1A1 “ \ A, otherwise. (12'36) 

It is quite easy to verify the first two conditions (12.31) and (12.32), and 

the fourth one (12.34) is trivial, using (12.7). The third condition (12.33) 

follows from the first two, easily, by the Axiom of Replacement. H 

12.18. Cardinal numbers (2). We now assume that the cardinal assign¬ 

ment with which we have been working since 4.21 in Chapter 3 is, in fact, a 

von Neumann assignment, so that it satisfies (12.34) in addition to (12.31) 

- (12.33). The values of |A| for well orderable A, the well orderable cardinals 

are also called von Neumann cardinals. Using (12.34) (easily), they are 

characterized as the initial ordinals, i.e. 

Cardv{K) <=hif Cardan) & k is well orderable, (12.37) 

k E ON & (VA < k)[A <c k], (12.38) 

Problem xl2.11. By 9.11, 

Cardy(n) Cardv(n+), 

and by 9.18 and 9.20. if £ is a non-empty set of cardinals, then 

(Vac e E)Cardy(n) =>■ Cardv(infc(E)) and Cardv(supc(E)); 

in fact immediately from (12.34), (12.23) and 12.12, if £ is a non-empty 

set of von Neumann cardinals, then 

m/c(£) = f] £> 5itpc(£) = sup £ = U £. 

12.19. Cardinals, Choice and Replacement.One can make a good 

case that Cantor’s units in the intuitive description of cardinals quoted 

in 4.19 are modeled faithfully by the von Neumann’s ordinals, and the 

quotation 

A grows, so to speak, out of A in such a way that from every 

element x of A a special unit of A arises 

describes precisely the construction of |A| = ord(A) = v[A] relative to 

some best wellordering of A, Problem xl2.9. Whatever the value of the 

imagery, von Neumann’s construction certainly makes it possible to delete 

the subscript c from all the equinumerosities we have established, applied 
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to von Neumann cardinals, so they become true identities of cardinal arith¬ 

metic. This is particularly useful if we work in ZFAC, which proves that 

all cardinals are von Neumann cardinals. 

We have been careful to state results about cardinality without assuming 

the full Axiom of Choice whenever this was possible, but of course the main 

effect has been to make clear just how poor cardinal arithmetic is without 

it. The main problem is the equivalence of cardinal comparability with AC: 
we do not have much of an arithmetic if we cannot compare cardinals, and 

we cannot assume comparability without (necessarily) conceding the truth 

of the full Axiom of Choice. 

Granting AC, how important is the existence of “true cardinals” which 

satisfy (12.35) and whose construction requires not only AC but also the 

Axiom of Replacement? Not much, by any account, unless you are aller¬ 

gic to subscripts. Thus, it might appear that von Neumann’s solution of 

the problem of Cardinal Assignment is primarily an exercise in mathe¬ 

matical elegance. There is some truth to this, but one must not draw the 

further conclusion that the Axiom of Replacement is unimportant for cardi¬ 

nal arithmetic, just because its basic identities can be established in ZAC, 
as equinumerosities. The problem is that ZAC cannot prove the existence 

of any cardinals above the first infinite sequence 

and in fact it cannot even show that the sequence (n i—> Kn) exists, Problem 

*xB.10. In particular, the existence of singular cardinals cannot be shown 

in ZAC, so that the whole theory of cofinality remains possibly vacuous 

without Replacement. 

The upshot is that to have a decent cardinal arithmetic, you must assume 

both the Axioms of full Choice and Replacement, i.e. to work in a theory 

at least as strong as ZFAC. It is sometimes assumed that the Principle of 

Foundation is also necessary for cardinal arithmetic, but this is not true— 

although some of the most important applications of cardinals are to the 

structure of von Neumann’s universe V of pure, grounded sets. 

12.20. Proposition. By recursion on a E ON, we set 

K0 = \N\ = uj, 

K/m = Kj, 
= sup{K[3 | (3 < A}, if Limit(X) 

Each Kq is a von Neumann cardinal, 

a < 0 =» <c Up (a,/3eON), 

and every von Neumann cardinal is Ka for some a. 

Proof is simple enough to leave for a problem, xl2.12. H 

(12.39) 
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The operation supplies a useful notation for cardinal arithmetic, es¬ 
pecially when we accept the Axiom of Choice. 

12.21. Exercise. The Axiom of Choice, AC, is equivalent to the proposi¬ 
tion that “every cardinal is an aleph, ” 

(AC) (VA)(3a)[.4 =c = «„]. 

12.22. Exercise. (AC) The Generalized Continuum Hypothesis is equiv- 
alent to the cardinal identity 

(GCH) 2K“ = Kq+1 {a G ON). 

12.23. The Cumulative Hierarchy of Pure, Grounded Sets. For 

each ordinal a we define the set VQ by the following recursion on ON. 

Vo = 0, 
VQ+1 = P(Va), 

Va = Un<A^i if Limit(X). 

The von Neumann universe is the union of all the Va’s 

v =df UaeOA^a = {x I for some a G ON,x G VQ}, (12.40) 

and on it we define the rank operation by 

Rank(x) = (iaa E ON)[x e Va+1\ (x G V). (12.41) 

We have already used the symbol V to denote the class of pure grounded 
sets, because of the next result. 

12.24. Theorem. (1) Each Va is a pure, transitive, grounded set, and 

a<P^Va CVp. 

(2) If X is a limit ordinal, A > u ■ 2, then Va is a Zermelo universe. 

(3) For each pure set A, A C V => A G V. 

(4) The von Neumann universe V comprises the pure, grounded sets and 

is a Z-F universe. 

Proof. The arguments for Parts (1) and (2) are those we used to prove the 

corresponding properties of the basic closure sets M(I) with transitive / 

in x9.6, and we will not repeat them. 

(3) Assume that A C V and let Rank[A] = {Rank(x) | x G A} be the 

image of the rank operation on A. This is a set of ordinals, so there exists 

some ordinal k strictly above its members, 

x G A =$■ Rank(x) < k => x G VK, 
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Figure 12.3. Logarithmic rendition of the pure, grounded sets. 

and (using the purity of A) A = {x G VK \ £ G A} G VK+i. 

(4) We use the contrapositive of (3), which says that for pure A, 

A £ V =* (3x G A)[x i V]. (12.42) 

Suppose hrst that M is pure, transitive and grounded but M £ V. The 

transitivity of M and (12.42) yield 

(Vx G M,x £ V)(3y E M,y g V)[y G x\, 

and then DC gives us a descending G-chain which proves M ill founded, 

contradicting the hypothesis. Thus, every pure, transitive, grounded set is 

in V, so for every pure, grounded set A, TC(A) G V, and then A G V, since 

A G TC(A) and V is transitive. H 

12.25. The naive notion of pure, grounded set. In discussing the 

Principle of Foundation in 11.32, we argued that the definition of the least 

Zermelo universe Z and the proofs of its basic properties can be understood 

directly and naively, as we usually understand mathematics, and that they 

carry considerable force of persuasion as an intuitive conception of “set” 

which justifies the axioms of ZAC and the Principle of Foundation. In the 

same vein, we can argue that the “construction” of von Neumann’s universe 

V in 12.23 and 12.24 can be understood directly and naively outside the 

details of any specific axiomatization, and that it puts forward a natural, 

intuitive conception of “pure, grounded set” which justifies the axioms of 

ZFC. It is worth looking into these arguments a little closer. 

The construction of Z begins with the infinite set 

iVo = {0,{0},{{0}},...} 
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and iterates the powerset operation 'P(A) infinitely many times. Since the 

infinity of iterations involved is no more and no less than that embodied 

by No, we can say that to understand Z we must understand two infini- 

tary things: the set Nq (basically the natural numbers) and the powerset 
operation. 

The construction of V starts with nothing, the empty set, but it proceeds 

to iterate the powerset operation V(A) through all the ordinals. On the 

same analysis, it is fair to say that to understand V we must understand 

the class of ordinals ON and the powerset operation. One may attempt to 

speak eloquently about the ordinals and justify them, as one might try to 

justify the natural numbers or the powerset operation. It should be clear, 

however, that the ordinals represent a separate and different new ingredient 

in our intuitive understanding of V, they cannot be reduced to N0 and the 

taking of powersets. Prom this point of view, the justification of the axioms 

of ZFC which we find in this intuitive construction is considerably weaker 

than the justification of ZAC we get from contemplating Z. 

In Appendix B we will consider alternative set universes, including some 

which contain both atoms and ill founded sets, and in more advanced 

textbooks one can find a multitude of fascinating models of set theory 

constructed (primarily) by extensions and combinations of Godel’s con- 

structibility and Cohen’s forcing. Part of the reason we have worked here 

in the weak systems of ZDC and ZFDC is to ensure that the elementary 

results of the field which we have covered apply directly to (essentially) 

all these models. These models, however, are all constructed starting with 

some given model of ZFDC, and it does not seem possible to produce 

for any of them independent, intuitive notions of what sets are, which 

justify directly the axioms they satisfy. It appears that (as of now), the 

intuitive conception of pure, grounded set, which is gleaned from an 

informal analysis of 12.23 and 12.24, is by far the best replacement we 

have for Cantor’s unfettered (and self-contradictory) notion of “collection 

into a whole of definite and separate objects.” 

Problems 

*xl2.1. Characterization of von Neumann ordinals. Suppose <f){V) is 

a definite operation which assigns well ordered sets to well ordered sets and 

which satisfies the following three conditions: 

v=0 

U<0V=*<l>(U)Q<j>(V), 

Field(<j>(V)) = {Field(<p(U)) | U <Q V}. 

Prove that ord(V) = a => 4>(V) — (a, <<*)• 
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x!2.2. Prove 12.11. 

xl2.3. The class ON is not a set. 

xl2.4. For every ordinal a 

a + 1 = ord(Succ(a)), 

by the definition of the successor poset Succ(P) in 7.16. 

xl2.5. For all ordinals a, (3, 

a + (3 = ord(a +0 (3) 

by the definition of addition of posets in 7.37. Infer from this that addition 

of ordinals is associative but not commutative, or give independent proofs 

of these facts. 

xl2.6. For all ordinals a, (3, 

a ■ (3 = ord(a ■0 (3) 

by the definition of multiplication of posets in 7.38. Infer from this that 

multiplication of ordinals is associative but not commutative, or give inde¬ 

pendent proofs of these facts. 

xl2.7. Define an operation of exponentiation on the ordinals which (for 

a 0) satisfies the conditions 

ax = sup {a13 | (3 < A}, if Limit(A). 

Which of the usual laws of exponents are valid for ordinal exponentiation? 
For example, is it always true 

a(h+7) = af3 . q1 ? 

*xl2.8. The only ordinals which belong to the least Zermelo universe Z are 
the finite ones. 

xl2.9. If < is a best wellordering of A, then \A\ = V[/[^4], i.e. \A\ is the 

ordinal assigned to the well ordered set (>1, <) by its von Neumann surjec¬ 
tion. 

xl2.10. The class Cardv of von Neumann cardinal numbers is not a set. 
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xl2.11. Prove the characterization (12.37). 

xl2.12. Prove Proposition 12.20. 

xl2.13. (AC) The definite operation na is defined by the following recur¬ 
sion on ON: 

P> = K0 = \N\ = u>, 

P+i = 2nN (12.43) 

Ha = sup Phi /3 < A}, if Limit(A). 

Prove that for every ordinal a, 

|"ho;-)-Q | 

12.26. Definition. A unary, definite operation F on the ordinals is nor¬ 
mal if it is monotone, 

a<(3^ F{a) < F((3), 

and continuous at limit ordinals, i.e. 

F(A) = sup{F(/3) | < A}, if Limit(X). 

*xl2.14. Every normal operation on the ordinals has a fixed point, i.e. 

F(a) = a holds for some a. 

*xl2.15. (AC) There exist von Neumann cardinals k, A, such that 

K, ^ K 5 A • 

12.27. Definition. Suppose A < k are infinite limit ordinals. A function 

f : A —> k is cofinal if it is strictly monotone, i.e. 

a < (3 < X => f(a) < f(/3) < k, 

and unbounded, i.e. 

sup {f(oi) | a < A} = k. 

The identity (a m a) is a cofinal function on every limit ordinal, for ex¬ 

ample, but (fin Kn) is also cofinal, from uj to 

*xl2.16. Prove that for all von Neumann cardinals A < k, there exists a 

cofinal function / : A —> k if and only if c/(A) = c/(re). Hint: The cofinality 

operation c/(«) is defined in 9.23. The problem calls for the verification of 

several simple results of cardinal arithmetic about von Neumann cardinals, 

without assuming the full Axiom of Choice. 
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xl2.17. For every regular A, c/(Ka) = A, so there exists cardinals of every 

regular cofinality. 

*xl2.18. Prove that there exist singular von Neumann cardinals of every 

regular cofinality. 

xl2.19. For every von Neumann cardinal A with c/(A) > the set Va 

is a Zermelo universe which further satisfies the following special case of 

the Replacement Axiom: if F is a definite operation such that x G Va ==>- 

F(x) G Va, then the image F[A] of every countable A E Va is also in Va- 

12.28. Definition. (AC) An uncountable cardinal number k is strongly 

inaccessible if it is regular and 

A < K =4> 2a < K. 

*xl2.20. (AC) If k is strongly inaccessible, then VK is a pure and grounded 

Z-F universe. 

*xl2.21. (AC) If a pure and grounded set M is a Z-F universe, then M = 

VK, for a strongly inaccessible cardinal k. 

12.29. Frege cardinals. We have followed Cantor in his approach to the 

theory of cardinal numbers, by which the property 

A =c \A\ (12.44) 

is most fundamental. There is another approach due to Frege, which takes 

|A| to be not a set of “units” equinumerous with .4. but the abstract notion 

of “being equinumerous with A.” Frege understands “1”, for example, as 

the common property of all singletons. To model this idea in set theory, it 

is not important to define |A| so that it is equinumerous with A, in fact, it 

is not even necessary for |A| to be a set! The only important property of 

cardinals is the last one, 

(12.45) 

which (in effect) makes the operation |A| a “determining surjection” of the 

“equivalence condition” =c, with the cardinal numbers as the “quotient 

class,” in the natural extension to classes of the terminology in x4.5. Frege 

tried to capture this idea by setting 

|A| = {X \ X =c A}, (12.46) 

but the class {X | X =c A} is not a set (when A yf 0, easily) and the 

(necessary for the theory) assumption that it is led Frege to a contradiction. 
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Von Neumann cardinals reconcile the Cantor and Frege approaches by 
satisfying both (12.44) and (12.45), but their definition depends on both 
the Axioms of Choice and Replacement. Problem xl2.23 describes another 
approach, due to Scott, which succeeds in defining Frege cardinals without 
the Axiom of Choice, but (essentially) only for pure, grounded sets. Scott’s 
construction is important, not so much for rescuing Frege cardinals (since 
little cardinal arithmetic can be done without AC anyway), but for the 
simplicity and elegance of the method, which has many uses beyond the 
present one. First we describe Scott’s general method, and then its appli¬ 
cation to Frege cardinals. 

12.30. Definition. An equivalence condition on a class A is any bi¬ 
nary, definite condition ~ which has the properties of an equivalence rela¬ 
tion, i.e. for all objects x,y,z e A 

x ~ x, x ~ y => y ~ x, x ~ y & y ~ z =>• x ~ z. 

A unary, definite operation F is determining for ~ if 

x ~ y <=> F(x) = F(y) (x, y E A); 

the class of values of F for arguments in A is the quotient class of A by 
determined by F, 

F[A] =df {-F(aO | x e A}. 

For example, the condition =Q of similarity is an equivalence condition on 
the class of well ordered sets, and the von Neumann ordinal assignment 
ord{U) is a determining operation for it, with quotient the class ON of 
ordinals. The condition =c of equinumerosity is an equivalence condition 
on the class of well orderable sets, and the von Neumann cardinal \A\ 
operation is determining for it, with quotient the class of von Neumann 
cardinals. 

We can think of an equivalence condition ~ona class A very much as 
if A were a set and ~ C A x A an ordinary equivalence relation on it. 
There is no easy way to define a determining operation for however, 
because the classical construction of equivalence classes 4.14 truly leads 
to “classes” which need not be sets in this case: this is the problem with 
Frege’s definition of the number 1 above. 

xl2.22. (Scott) Suppose ~ is an equivalence condition on a class A of 
pure, grounded sets, and for each x G A let 

p(x) =df (pa e ON)(3y e Va)[y ~ x], 

F(x) =df {y e Vp(x) | y ~ x}. 

Prove that F is a determining operation for ~ on A. 
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xl2.23. (Scott) Define the Scott cardinal |d|s of every set A which is 

equinumerous with a pure, grounded set, so that for all such sets A and B, 
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THE REAL NUMBERS 

In this Appendix we will show how the rational and the real numbers can be 

represented faithfully in set theory as the natural numbers are; that is, we 

will identify some characteristic, set theoretic properties of these systems 

and we will prove from the axioms of ZDC the existence and uniqueness 

(up to isomorphism) of structured sets with these properties. The proofs 

are quite simple as far as set theory goes, but they use ideas from algebra 

and analysis, which we will present in outline. 

The basic tool we need is the construction of quotients of a set A by 

an equivalence relation on A described in Problem x4.5. Recall that a 

determining surjection for an equivalence relation ~ on a set A is any 

surjection 

7r : A —» B 

such that for all x, y £ A, 

x ~ y •<=>■ 7t(x) = 7r(y). 

When this holds, we call B a quotient of A by rsj * The canonical surjection 

of ~ is the mapping 

x i—► [x/~] (x £ A) 

with quotient the set of equivalence classes [A/~J, but there may be others, 

more illuminating of the situation, e.g. those described in Problems x4.6, 

x4.7 and x4.8. Determining surjections are especially useful in the study 

of congruence relations. 

A.l. Definition. Suppose ~ is an equivalence relation on A and 

f : A x A-* A 

is s binary function. We call ~ a congruence for f if for all x,x',y,y £ 

A, 
x ~ x' k y ~ y’ =>• f(x, y) - fix', y'). 

The material in this Appendix can be read after Chapter 10. It assumes some 
theoretical knowledge of the Calculus, and it is not a prerequisite for understand¬ 

ing the remainder of these Notes. 
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Similarly, ~ is a congruence for a binary relation P C A x A, if for all 

x,x',y,y', 
x ~ x' & y ~ y' =>• [a:.P2/ x'Py\. 

We can obviously define the notion of congruence for functions and relations 

of any number of arguments, in the same way. 

The next theorem deals with one of the simplest and most basic algebraic 

constructions. 

A.2. Theorem. Let tx : A —» B be a determining surjection of some equiv¬ 

alence relation so that for all x,y in A, x ~ y ix{x) = tx(y). 

(1) //~ is a congruence for a function f : A x A —> A, then there exists 

exactly one function fn:BxB^B on the quotient B which satisfies the 

identity 

fn{n(x),7r(y)) = Tr{f(x,y)) (x,y € A). (A.l) 

(2) If ~ is a congruence for a relation P C A x A, then there exists 

exactly one relation P77 C B x B on the quotient B which satisfies the 

condition 

7r(x) P7rn(y) xPy (x, y G A). 

Proof. The form of (A.l) makes it clear that at most one function can 

satisfy it, so it is enough to show that at least one function does. Put 

r =df {((7r(a;),7r(2/)),7r(z)) | x,y,z G A & f(x,y) = z}. 

To verify that the set of pairs fn is a function, we must check that 

((u, v), w), ((«, v),w') E fn => w = w'. (A.2) 

From the hypothesis of (A.2) and the definition of fn, there exist x,y,z G A 
such that 

u = tt(x),v = Tr(y), w = n (z),f(x,y) = z 

and also x',y',z' G A, so that 

u = n(x'), v = 7r(y'), w' = tt(z'), f(x', y') = z'. 

It follows that 

tt(x) = ix(x'), vr(y) = vr(y'), tt(f(x, y)) = n(f(x', y')) 

since ~ is determined by ix and it is a congruence for /, and the last of 

these equalities yields the desired w = w1. 

The characteristic property (A.l) of /77 follows immediately from its 

definition and the proof of Part (2) is similar. H 
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A.3. Exercise. Prove Part (2) of A.2. 

The axiomat ic characterizations of the rationals and the reals are based 

on the notion of an ordered field, which codifies the basic properties of 

addition, multiplication and ordering in these number systems. 

A.4. Definition. A field is a structured set 

(F, 0,1, +, •) 

of objects with the following properties. 

(FI) 0,1 6 F 0 ^ 1. and +, ■ are binary functions on F. 

(F2) The addition function + satisfies the identities 

1. {x + y) + z = x + (y + z), 

2. x + y = y + x, 

3. x + 0 = x, 

and for every x, there exists some x', such that x + x' = 0. 

(F3) The multiplication function ■ satisfies the identities 

1. (x ■ y) ■ z = x ■ {y ■ z), 

2. x ■ y = y ■ x, 

3. x ■ 1 = x, 

and for every x 0, there exists some x", such that x ■ x =1. 

(F4) Addition and multiplication together satisfy the identity 

x ■ {y + z) = x • y + x ■ z. 

A.5. Lemma. Every field F has the following properties: 

(1) For each x there exists exactly one x' such that x + x' = 0, and we 

denote it —x; for every x ^ 0 there exists exactly one x such that x-x — 1 

and we denote it by x_1. 

(2) x-0 = 0. 

(3) x ■ y = 0 => x = 0V y = 0. 

(4) (-x)-y = -(x-y). 
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Proof. (1) If x + x' — 0 and x + y = 0, then from the axioms 

y = y-\-0 = ()Jry = (x + X'j -\- y = X + (x' + y) 

= x + (y + x') = (x + y) + x' 

= 0 + x' = x' + 0 = x’. 

The proof about x~l is similar. 

(2) x • 0 = x ■ (0 + 0) = x ■ 0 + x • 0, and therefore 

0 = x ■ 0 H—(x ■ 0) = (x ■ 0 + x • 0) H—{x ■ 0) 

= x ■ 0 + {{x ■ 0) H—(x ■ 0)) = x- 0 + 0 = a;-0. 

(3) If y 7^ 0, then some ?/-1 exists such that y ■ y~l = 1, so that 

X = X ■ 1 = x ■ (y ■ y_1) = (x ■ y) ■ y^1 = 0 ■ y_1 = y~l ■ 0 = 0. 

(4) x ■ y + (-x) ■ y = y ■ x + y ■ (-x) = y ■ (x + (-x)) = y- 0 = 0, and (1) 

implies that (—x) ■ y = —(x ■ y). H 

We gave this proof in full as an example, justifying each step from the 

field axioms. In the future we will cut corners, skip details or (more often) 

use identities which obviously hold in every field without proof or explicit 

mention. 

A.6. Exercise. Every field F satisfies the identity 

(x + y)2 = x2 + 2 xy + y2, 

where 2 = 1 + 1. (Give the proof in full detail.) 

A.7. Exercise. The doubleton {0,1} of the first two natural numbers is a 

field, with the obvious operations, and in this field 1 + 1 = 0. It follows that 

the field axioms do not imply 1 + 1^0 and we must be a bit careful! 

A.8. Definition. An ordered field is a structured set 

(F, 0,1, +, •, <) 

where (F, 0,1, +, •) is a field, the binary relation < is a linear ordering of 
F and the following conditions hold for all x,y,z G F: 

x < y =+> x + z < y + z, 

z > 0 & x < y =+ z ■ x < z ■ y, 

where z > 0 naturally abbreviates 0 < z & 2 / 0. 
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A.9. Exercise. In every ordered field, 

z > 0 & x < y =>• z ■ x < z ■ y. 

A. 10. Lemma. Every element x in an ordered field F satisfies the in¬ 

equality x ■ x = x2 > 0, so that 0 < 1 and for all x, x > 0 => x + 1 > 0. 

Proof. If x = 0, then x2 = 0 > 0, and if x > 0, then x-x > x-0 = 0, so that 

the only interesting case is when x < 0. Adding -x to both sides of this 

inequality, we get 0 < —x, so that we can multiply x < 0 by — x and we get 

(—x) ■ x < (—x) • 0, i.e. — (x2) < 0 from the preceding Lemma, and adding 

x2 to this inequality we get 0 < x2. The conclusion 0 < 1 follows because 

0^1 and 1 = l2, and the last claim holds because 0 < x => 1 < x +1, so 

that 0 < x + 1 by the transitivity of <. H 

The Lemma makes it clear that we will not find in ordered fields the 

anomaly 1 + 1 = 0 of Exercise A.7. Something much stronger is true. 

A.11. Lemma. Suppose F is an ordered field and set 

NF = D{X c f \ o e x & (Vx)[x EX =>X + Ie X]}-, 

it follows that (Np, 0, (x i—> x + 1)) is a system of natural numbers. The 

members of Np are the natural numbers of F. 

Proof. By (x e-» x + 1) we mean the function S which associates with 

each x £ Np the element x + 1 of F, which is also a member of Np by 

the definition. The first three axioms of Peano are obvious and the fourth 

(x + 1 0) holds because by the definition, 

Np C {x £ F | 0 < x}, 

and by the Lemma, x > 0 =1* x + 1 > 1 > 0. The Induction Axiom follows 

immediately from the definition of Np as an intersection. H 

A. 12. Exercise. Suppose F is an ordered field, N — Np is the set of 

its natural numbers and +yv> 'N> the addition, multiplication and the 

wellordering of Np as these are defined in Chapter 5. Prove that these 

functions and the relation < coincide with the respective objects in F, e.g. 

(Vx,y £ N)[x +N y = x + y}. 

The basic idea for the axiomatic characterization of the rationals is that 

they are an ordered field and that every fraction is a quotient of integers, 

u — v 

TO 
= TO 1 • (u~v), 
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where to, u and v are natural numbers and to ^ 0. This simple observation 

yields not only the axioms for the rationals, but also proofs of their existence 

and uniqueness. 

A. 13. Definition. A system of rational numbers is any ordered field 

F which satisfies the condition 

(Vx)(3to,m,wG Np)[m 0 & x = m~x • (u — v)}. 

A.14. Theorem. Uniqueness of the rationals. For any two systems of 

rational numbers F1, F2 there exists exactly one bijection 

7r : F1 F2 

which is an isomorphism, i.e. 

1. ^(O1) = 02, ^(l1) = l2. 

2. 7t(x +1 y) = -k(x) +2 n(y), 7r(x -1 y) = tv(x) 2 ir(y). 

3. x <1 y 7r(x) <2 7r(y). 

In stating this theorem we decorated the various objects wdth the super¬ 

scripts 0 or 1 to clarify the field to which they belong, e.g. +1 is addition 

in F1 and 02 is the zero element of F2. This is awkward and unnecessary, 

because it is always obvious which superscript is needed: e.g. the identity 

7r(0) = 0 cannot mean anything else but 7r(01) = 02, since 7r is a function 

with domain F1 and image F2. In the proof and in the future we will fol¬ 

low the general algebraic practice by which all the zero elements are 0, all 

additions are +, etc. We will also begin to skip the • of multiplication, 

xy =df x ■ y. 

Proof. By the uniqueness of the natural numbers and A.ll, we know that 

there exists a “canonical” isomorphism 

p : N1 y-» N2, 

where N1 and N2 are the sets of natural numbers in F1 and F2, respec¬ 

tively. We set 

7T = {(to-1(u - u),p(to)_1(p(u) - p(u))) I m,u,v G A1, to ^ 0}, 

so that 7r C F1 x F2 and it is enough to show first that n is a function, then 

that it is a bijection, and finally that it is an isomorphism, as we defined 

this in the formulation of the theorem. 
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To verify first that 7r is a function, we must show that if 

mf\u1-v1)=m^(u2-v2), (A.3) 

then 

p{mlyx{p{u1) - p(Vl)) = p{m2)~\p{u2) - p(v2)). (A.4) 

The field axioms imply easily that (A.3) and (A.4) are respectively equiv¬ 

alent to 

Tfi2U\ -f- vri\v2 = miu2 + m2vi, 

p(m2)p{ui) + p(mi)p{v2) = p(rrii)p(u2) +p(m2)p(vi), 

and the first of these yields immediately 

p{m2ui + m\V2) = p(nriiu2 + m2v i) 

which in turn implies the second, because p is an isomorphism of N1 with 

N2 and it respects addition and multiplication by Problem x5.4. 

The same simple method can be used directly to prove the additional 

conclusions, that it is one-to-one and finally an isomorphism. H 

A. 15. Exercise. Work out in detail the proofs of 

n(x + y) = ir(x)+ir(y), 

x < y 4=^ 7r(x) < 7r(y). 

A.16. Theorem. Existence of the rationals. There exists a system of 

rational numbers. 

Proof. If we have the rationals, we can define the set 

A = {(m, u,v) | m, u, v 6 N & m / 0} 

of triples of integers, and on it the relation 

(to, u, v) ~ (to', u', v') <t=>df m'u + mv' = mu' + m'v, 

which (quite obviously) satisfies 

(to, u, V) ~ (to7, u', v') 

This means that ~ is an equivalence 

u — v vl — v1 

relation determined by the surjection 

7r A Q, 7r(m, u, v) = 
u — v 

m 
(A.5) 
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We do not have the rationals yet, but we have A and the idea for the 

proof is to define the rationals as a quotient of A by ~ so that (A.5) holds. 

First we must show that 

(1) ~ is an equivalence relation. As an example, we verify that ~ is 

transitive. From its definition, if 

(mi,ui,vi) ~ (m2,u2,u2) & (m2,u2,u2) ~ (m3,u3,r3), 

then the identities 

m2ui+miu2 = miu2+m2ui, 

m3u2 + m2v3 = ra2u3 + m3v2 

hold in the natural numbers, and if we multiply the first of these by m3 

and the second by mi and then we add them, we get 

m3m2'Ui + m3miV2 + mim3u2 + mim2v3 

= m3miti2 + m3m2Ux + mim2u3 + mim3u2. 

Subtract now m3miu2 and mim3u2 from the two sides and divide by m2, 

which gives 

m3ui + miv3 = miu3 + m3v i, 

i.e. (mi,ui,vi) (•m3,u3,v3). Reflexivity and symmetry are proved in the 

same way. 

(2) Definition of the rationals. Since ~ is an equivalence relation, there 

exists a surjection 

7r : A —» Q 

onto some set Q which determines it, so that 

(mi,ui,V\) ~ (ur2,u2,n2) -<=>■ 7r(mi,«i,«i) = 7r(m2,u2,v2). 

This Q is the set of rationals in the system under construction, and it 

remains only to specify 0 and 1, to define addition, multiplication and the 

ordering and finally to prove that the axioms for the rationals hold. To help 

follow the argument we will start right away using the notation 

u — v 

m 
=df 7r(m,u,v) 

as an abbreviation, i.e. without defining separately “subtraction” or “divi¬ 

sion.” 

The zero and the one are defined in the obvious way, 

0 = 
0-0 

=df 7r(l, 0,0), 1 = 
1 - 0 

1 1 
df tt(1, 1,0). 
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(3) Addition of nationals. With the representation of rationals as quo¬ 

tients of a difference of numbers by a number which we are using, the 

classical formula for addition of fractions takes the form 

ui ~ ^1 ^2 — V2 _ (m2u\ + miu2) — (m2v\ + miv2) 

mi m 2 mim2 

So we define first on the set A the binary function /+ which corresponds 

to this formula, 

f+((mi>uhVi), (m2, U2,v2)) = (mim2, (m2u\ + miu2), (m2vi + miu2)). 

With a bit of arithmetic we can prove that for all x,y,x',y' e A, 

x~x'ky~y'=> f+(x,y) ~ f+(x',y'), 

i.e. ~ is a congruence for f+. It follows by A.2 that there exists a (unique) 

function 

+ : Q x Q —> Q 

wrhich satisfies the identity 

-k(x) + 7r(r/) = n(f+(x,y)) (n(x),ir(y) £ Q). 

Verification of the axioms (F2) for addition needs a bit more of arithmetic, 

but at least the condition for 0 is obvious: 

7r(m, u, v) + 7r(l, 0, 0) = n(m -1,1-u + m-0,1 • u + m • 0) = n (m, u, vj. 

(4) Multiplication of rationals. Following the same method, we define first 

the function f.:AxA—+A which corresponds to multiplication when we 

represent rationals by triples of natural numbers, 

/.((mi, Ui, tq), (m2,u2,v2)) =df (m1m2, uiu2 + + u2vi), 

we verify next that ~ is a congruence for /. and we define the multiplication 

operation on fractions • by A.2 so that it satisfies the identity 

n(x) • 7r(y) = n(f.(x, y)) (vr(x), tt(y) £ Q). 

Verification of axioms (F3) and (F4) requires just a few computations. 

(5) Ordering of the rationals. The critical equivalence in this case is 

Ui — Vi ^ u2 — v2 
—=- < - m\v2 -f m2u\ < m2v\ + m\u2. 

mi m2 

We first define the relation P C A x A by 

(mi,u\,v\) P(m2,u2,v2) 4=>df m\v2 + m2u\ < m2vi + miu2, 
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we verify that ~ is a congruence for P and using A.2 we define < on the 

quotient Q so that 

vr(cc) < 7r(y) xPy (n(x),n(y) E Q). 

That < is a linear ordering and the structures set 

(Q, 0,1, +,-,<) 

is an ordered field follow with little difficulty. 

It remains to verify that Q is a system of rational numbers. 

Lemma 1. For each natural number k, 7r(l, A:, 0) G Nq, i.e. the rational 

7r(l, k, 0) belongs to the set of natural numbers of the ordered field Q. 

Proof. By induction on k, 7r(l,0, 0) = 0 (by definition) and (easily) by 

the definition of rational addition 

7r(l, Sk, 0) = 7r(l, k, 0) + 1, 

so that 7r(l, k, 0) G Nq =>• 7r(l, Sk, 0) G Nq. 

Lemma 2. For all (m,u,v) G A, 

7T(m,u,v) = 7r(l, m, 0)_1(7r(l, u, 0) - 7r(l,w,0)), (A.6) 

where ~l and — are the multiplicative and additive inverse (partial) func¬ 

tions of the field Q. 

Proof. Having proved already that Q is a field, we know that (A.6) is 

equivalent to 

7r(l, to, 0)7r(m, u, v) + 7r(l, v, 0) = 7r(l, u, 0), 

and the latter identity is easy to verify with a direct computation. 

The two Lemmas together show that the structured set (Q, 0,1, +, •, <) 

satisfies the characteristic property of the rationals and this completes the 

proof. H 

As we did with the natural numbers, we now fix a specific system of 

rational numbers 

(Q, 0,1, +, •, <) 

whose elements we will henceforth call rationals. This is convenient, it 

helps avoid awkward expressions like “members of any system of rational 

numbers” and the like. However, it is important to emphasize (once more) 

that the significant mathematical fact is the existence and uniqueness up to 

isomorphism of one such system: it was precisely the corresponding math¬ 

ematical facts about the natural numbers that we have used in the proofs 

of this Appendix, not the specific identity of “the natural numbers.” 
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A.17. Exercise. The set Q of rationals is countable. 

A. 18. Exercise. In the proof of Part (1) of the theorem we “subtracted” 

the same number from an identity and then “divided” an identity by the 

same number. Justify these steps by verifying the following two properties 
of the natural numbers: 

x + y = x + z ==>■ y = z, 

c-x = c- y&;cyl 0 =>■ x = y. 

A. 19. Exercise. For every ordered field F, there exists exactly one imbed¬ 
ding of the rationals in F, i.e. an injection 

n : Q F 

which satisfies the identities 

tt(0) = 0, tt(1) = 1, 
tt(x + y) = n(x) + ir(y), n(xy) = ir(x)n(y), 

x < y 7r(x) < n(y). 

It follows that the image 7x[Q\ C F of n is a system of rational numbers 

(with the 0 and 1 of F and the restrictions of the operations and the ordering 
ofF). 

There is a beautiful theorem of Cantor which characterizes the ordering 

of the rationals independently of their algebraic structure. For it, we need 

first some definitions. 

A.20. Definition. Suppose < is a linear ordering on a set A and B C A. 

We call B dense in A if 

(Vx, y G A)[x < y => (36 £ B)[x < b k b < y}]. 

A linear ordering < is dense in itself if its field (A) is dense in A. 

A.21. Exercise. The ordering of every ordered field is dense in itself and 

has no minimum or maximum element. 

A.22. Theorem. (Cantor) Every linear, dense in itself ordering <A with¬ 

out minimum or maximum element on a countable set A is similar with the 

ordering <Q of the rational numbers, i.e. there exists an order-preserving 

correspondence f : Q >—» A. 

Proof. From the hypothesis and the fact that Q is countable, there exist 

enumerations without repetitions 

Q = {r0,7T,A = {a0,a1,...} 



220 Notes on Set Theory 
\ 

of Q and A. We will define by recursion a sequence 

fo, fli ■ • • > 

with the following properties, for every n £ N. 

1. fn is a finite, partial function from Q to A, i.e. Function(fn) & fn O 

Q x A, and fn is finite as a set of ordered pairs. 

2. fn is monotone and one-to-one on its domain, i.e. 

x,y £ Domain(fn) & x <q y fn(x) fn(y)- 

3. fn Q fn+1. 

4. {r0, rrnj C Domain(fn). 

5. {a0,ai,... ,an} C Image{fn). 

If we can succeed in this, then the union / =df (J n=o°/n is (easily) a 

function by (3), it is one-to-one and monotone by (2) and 

Domain(f) = Q, Image(f) = A 

by (4) and (5). 

At the basis of the recursive definition we start with 

Po = {(An a0)}, 

so that all the conditions of the result hold trivially. 

Suppose now that we have already defined fn and enumerate its finite 

domain of definition and image in increasing order: 

Dn {ZO -t-1 <Q ' ‘ ' 

In {Vo ^A Hi Pm} ■ 

Since fn is monotone, we have 

fn{xi) = yl (i = 0,..., m). 

We construct the next fn+1 in two steps, i.e. first we will define some 

fn+l 3 fn which satisfies (1) - (4) and then fn+i D fn+1 which satisfies all 

(1) - (5)- 

Step 1. If rn+i e Domain(fn), set f'n+i = fn■ Otherwise there are three 

cases. 
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Case 1. rn+1 <q x0. In this case we find some y' € A satisfying y' <A y0 
(which exists because A has no minimum) and set 

fn+i = fn U {(rn+i,y')}. 

Case 2. rn+1 >q xm. In this case we find some y1 G A satisfying y' 

ym (which exists because A has no maximum) and we set 

fh+i = fn U {(rn+i,y')}. 

Case 3. For some i, xt <q rn+i <q Xi+\. In this case we find some 

y1 £ A satisfying <A y' <A yi+l (which exists because A is dense in 

itself) and we set 

fn+1 = fn U {(rn+i, 2/')}- 

In all cases, the proof that fn+1 satisfies (1) - (4) is simple. 

In Step 2 of the construction we consider the element an+i of A and we 

distinguish again cases: first if an+\ G Image(f!n+1) (in which case we set 

fn+i — fn+i) and ^ not, then three cases again, in symmetry with Step 

1. We skip the details. H 

The fundamental intuition about the real numbers is that on the one 

hand they are an ordered field, so that their arithmetic and ordering sat¬ 

isfy the same laws as the rationals, and on the other, they are in one-to-one 

correspondence with the points of the “complete” geometric line so that 

there are no “gaps” between them. In formulating the property of com¬ 

pleteness we follow Dedekind. 

A.23. Definition. A linear ordering < on a set A is complete if every 

non-empty subset of A which has an upper bound has a least upper bound. 

A system of real numbers is any complete, ordered field, i.e. any 

ordered field in which the ordering is complete. 

A.24. Exercise. The ordering of the rationals is not complete, because the 

set 

X = {r | r2 < 2} 

is bounded from above but has no least upper bound. 

A.25. Lemma. Every complete, ordered field F has the archimedean 

property 

(Vx G F)(3n G N)[x < n], 

i.e. the set N = NF of its natural numbers is not bounded from above. 
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Proof. Assume towards a contradiction that the set N has an upper bound, 

so that it has a least upper bound x = sup N by the completeness property. 

The element x — 1 is not an upper bound of N because x — 1 < x, so there 

must exist some n G N, x - 1 < n: but this implies x < n + 1 which 

contradicts the assumption that x is an upper bound of N. 3 

A.26. Exercise. In every complete, ordered field F, 

A.27. Exercise. In every complete, ordered field F, 

x < y => (3r £ Q)[x < r & r < y], 

where Q = Qf is the set of rationals in F. (Density of the rationals.) 

We now aim to show that there exists a complete ordered field and that 

any two complete, ordered fields are isomorphic. Because the complete¬ 

ness property is geometric (or topological), these proofs of existence and 

uniqueness depend on geometric ideas. Specifically, we will need some basic 

definitions and results from the theory of limits which is studied in Calcu¬ 

lus. We will review these here, briefly but without limiting ourselves to 

the absolute minimum list of theorems necessary to prove the existence 

and uniqueness of the reals: we have included several Lemmas and Exer¬ 

cises because they support the proposition that the notion of a complete, 

ordered field represents faithfully our geometric intuitions about the real 

numbers. 

Since we will be manipulating (infinite) sequences a great deal, we will 

use consistently the familiar, simple notation which avoids the introduction 

of a distinct name for each sequence and treats the variable as an index, 

so that a sequence (n i—> an) is denoted by <an> or <ao, a\,... >,. For 

example, the sequence 

is the function / : N —> Q defined by the formula 

The absolute value function is defined in every ordered field in the 

usual way, 
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A.28. Definition. Suppose (A, 0,1, +, •, <) is an ordered field. 

(1) A sequence <xn> of elements of F converges to x £ F or has 
limit x, if 

(Ve G F, e > 0)(3AT e N)(Vn £ N)[n > K =» \x - xn\ < e\. 

We will use the notation 

xn —> x <t=>df <xn> converges to x. 

(2) A sequence <xn> has the property of Cauchy, or (simply) is Cauchy 

if 

(Ve £ F,e> 0)(3K £ A)(Vn,m £ N)[n,m > K => \xn - xm\ < e]. 

A.29. Definition. For all a < b in an ordered field F, the set 

(a, b) =df {x e F | a < x < b} (A.7) 

is the open interval with endpoints a and b. A set G C F is open if it is 

a (possibly empty) union of open intervals, equivalently 

x £ G (3a < b)[x £ (a,b) C G}. 

We will also use the standard notations for closed and half-open intervals, 

e.g. 

(a, b] = {x £ F | a < x <b}. 

A.30. Exercise. Prove that the family of open sets in an ordered field is a 

topology and that the definition of limits for sequences in A.28 is equivalent 

to the topological definition of limits given in 10.36. 

These definitions are notorious for the difficulty of understanding what 

they mean and learning how to use them. We emphasize that here we 

study them in the context of an arbitrary ordered field which need not be 

complete, for example, the rationals. It is useful to formulate conditions 

equivalent to convergence and the property of Cauchy, on the basis of the 

following notion. 

A.31. Definition. A sequence <xn> in an ordered field settles in an 

open interval (a,b), if after a certain stage all its terms belong to some 

closed subinterval [a',b'} C (a,b): 

<xn> (a, b) <t=hif (3.A, a', 6')(Vn > A")[a < a' < xn < b' < b\. 

Notice that if <xn> *** (a, 6), then all its terms after a certain stage belong 

to (a, b), 

<xn> -w (a, b) => (3A')(Vn > A)[a <xn< bf 
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this weaker property is all we need for many applications of the definition 

of <xn> (a, b). 

A.32. Exercise. <xn> -w (a, 6) if and only if there exists some 6 > 0 

such that a + 6 < b — 6 and the set {n £ N \ xn £ [a + 6, b — 5]} is finite. 

A.33. Exercise. For all open intervals /, J, <xn> -w / & I C J =4* 

<xn> J. 

A.34. Exercise. For all open intervals /, J, 

<xn> I & <xn> J => <xn> -w/nj ==>• I n J 7^ 0. 

A.35. Exercise. Every sequence <xn> which settles in some open inter¬ 

val (a, 6) is bounded, fie. 

(Biu) (Vn) [zn < ru]. 

The next Lemma makes it possible in many cases to avoid the so-called 

“method of epsilonics,” which is illustrated by its proof. 

A.36. Lemma. For every sequence in any ordered field F: 

(1) <xn> converges to x if and only if <xn> settles in every open in¬ 

terval which contains x, 

xn —> x (Va, b G F)[a < x < b => <xn> (a, b)}. 

(2) <xn> is Cauchy if and only if for every e > 0, there exists an open 

interval (o, b) in which <xn> settles and such that (b — a) < e: 

<xn> is Cauchy <=4> (Ve > 0)(3a, 6)[a < 6 < a + e & <xn> (a, 6)] 

Proof. (1) If xn —> x and a < x < b, then the definition of convergence 

with 
min(x — a,b — x) 

6 ~ 2 

supplies a number K such that 

n > K \x — xn\ < 
min(x — a, 6 — x) 

which with a bit of inequality massaging implies that 

n > K - 
, a + x x + b 

a < a = —— < xn < —— = b <b, 
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so that <xn> -w (a, b). For the other direction, for every e > 0, <xn> ^ (x— 

e, x + e), so that for some K, 

n > K =>■ |x — xn| < e. 

(2) If <xn> is Cauchy, then for every e > 0 there exists some K such 

that n, m > K =>- \xn — xm\ < which immediately implies that 

<xn> (xa — |,Xa + |), and this interval has length e. In the other 

direction, for every e > 0 there exists some (a, b) with (b — a) < e, so that 

<xn> (a, 6), and hence for some A', 

n,m > K => [a < xn < 6 & a < xm < b => \xn — xm| < 6 — a < e], 

which means that <xn> is Cauchy. H 

A.37. Corollary. If <xn> converges to some x, then it is Cauchy. 

Proof. For every e > 0, <xn> (x — + |) by (1) of A.36, so it is 

Cauchy by (2) of A.36. H 

A.38. Exercise. xn —> x & xn —> y x = y. This allows us to introduce 

the classical notation 

x — lim xn <==>df %n ~> x- 
n 

A.39. Lemma. If <xn> is Cauchy in a complete, ordered field F, then 

<xn> has a limit, i.e. xn —»• x with some x. 

Proof. Let 

X =df {u e F I (3v){u < V Sz <xn> (u,u)]}. 

Since <xn> is Cauchy, there exists some (c,d) such that <xn> -w (c,d), 

and hence 

u £ X V u < d, 

since d < u => <xn> ^ (c, d) D (u, v) = 0 which is not possible; hence X 

is bounded from above and it must have a least upper bound 

x = sup X. 

We will show that 

a < x < b =r* <xn> -w (a, 6) 

which implies xn —► x by A.36. Using the hypothesis a < x < b and the 

fact that <xn> is Cauchy, we find first some (u,v) such that 

v — u < min(x — a,b — x), <xn> (u, v). (A.8) 
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By definition, u £ X, and hence (a) u < x, because x is an upper bound 

of X. On the other hand, v is also an upper bound of X (because the 

assumption <xn> ■w (v! with v < vl implies that <xn> settles in two 

disjoint intervals), and hence (b) x < v, since x is the least upper bound 

of X. Now (a) and (b) together yield (c) u < x < v, which together with 

(A.8) implies a<u<x<v<b, so that <xn> (a, b). 

The next two basic theorems relate completeness as we defined it (fol¬ 

lowing Dedekind) with the notion of completeness historically associated 

with the name of Cantor. 

A.40. Theorem. The Nested Interval Property. Suppose that every 

Cauchy sequence in an ordered field F converges, and that 

[xo,Vo\ 2 [xi,yi] 2 ••• (A-9) 

is a nested sequence of closed intervals such that 

lim(yn — xn) = 0; (A.10) 
n 

it follows that the intersection On[xn,yn\ is a singleton 

rinfcn.Vn] = 

and its only member is the common limit of the sequences <xn> and <yn>, 

w — lim xn = lim yn. 
n n 

Proof. The basic observation is that for every number K and every 6 > 0, 

<xn> -w [xk — <5,Vk + <5] by (A.9). Now (A.10) implies that <xn> is 

Cauchy and hence xn —> x for some x, using the hypothesis. In addition, 

x < xk => <xn> ^ (x — 1 ,Xk) by A.36, which contradicts the basic 

properties of the relation -w since (x — 1 ,xk) H [xk^k] = 0, hence, 

xk < x, for every K. By a similar argument x < yK, for every K, so that 

in the end x G f|nK>Vn]■ Symmetrically, <yn> converges, y = limnyn G 

Pintxn,Vn\, and for every n, \x - y\ < (yn - xn) which implies x = y by 

(A. 10) and completes the proof. H 

A.41. Theorem. An ordered field F is complete if and only if it has the 

archimedean property (A.25) and every Cauchy sequence in F has a limit. 

Proof. One direction is known from Lemmas A.25 and A.39, so it is 

enough to show that if F has the archimedean property and every Cauchy 

sequence in F converges, then F is complete. 

Suppose then that A is a non-empty, bounded from above set in F, 

so that there exists some point xq G X and some upper bound yo oi X. 

Beginning with [x0, yo], we define by recursion a sequence of closed intervals 

[xn>yn\ which satisfy the following conditions: 
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1. Xn A Xn_|_i <7 1 Vni 

2. (yn - Xn) = 2~n(y0 - x0), 

3. [xn, yn] nl^0, 

4. (Vx G X)[x < yn]. 

In detail, to define [xn+1, yn+1] we distinguish two cases: if vj = \{xn + 

yn) is an upper bound of X, we set [xn+i,yn+i] = [xn,w\, otherwise 

[xn+i,2/n+i] = [w,2/n+i]- Proof that [xn+1,yn+i\ satisfies (1) - (4) is trivial. 

Lemma. limn(yn — xn) = 0. 

Proof. The archimedean property implies that for every e > 0, there 

exists some natural number K > 0 such that 

yo - x0 
< K < 2k , 

e 

where the inequality I\ < 2K is verified easily (by 

that for every n > K, 

{yn ~ xn) = 2~n{y0 - x0) < 2~K(y0 - 

induction!). It follows 

Xq) < e, 

which completes the proof of the Lemma. 

Now A.40 implies that 

fl [Xn,yn] = {w} 

where w = limn xn = limn yn, and it is enough to verify that this common 

limit w is the least upper bound of X. We compute: 

w < t <yn> (w 

yn ^ t 

t i x 

IT) because limn yn — w, 

for some n, 

because yn is 

an upper bound of X, 

so that w is an upper bound of X. Also, 

t < w <xn> -w (t,w+ 1) 

t < Xn 

(3x eX)[t< x] 

because limn xn = w, 

for some n, 

by the definition of xn, 

so that there is no upper bound of X smaller than w. H 

It is worth pointing out here that there exist Cauchy complete ordered 

fields wTich are not archimedean, Problem *xA.2. 

Following Cantor (up to a point), we will construct a complete, ordered 

field as a quotient of the Cauchy sequences on the rationals by the following, 

natural equivalence relation. 
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A.42. Definition. We call two sequences of nationals <xn> and <yn> 

asymptotically equivalent if their difference converges to 0, in symbols, 

~ *Cyni> '' hif {xn yn) * 0- 

A.43. Theorem. (1) Two Cauchy sequences <xn> and <yn> are asymp¬ 

totically equivalent if and only if they settle in the same open intervals: 

<xn> ~ <yn> (Va < b)[<xn, > (a, b) <yn, > (a, b)]. 

(2) If <xn> and <yn> are Cauchy, then 

<xn> 76 <yn> => (there exist open intervals I, J) 

[I n J = 0 & <xn> -w / & <yn> ^ J]. 

(3) The relation « is an equivalence relation on the set 

G(F) =df {<xn> | <xn> is Cauchy on F}. 

Proof. (1) Suppose first that <xn> ~ <yn> and <xn> ^ (a,b), so that 

for some Kq and some S > 0. 

n > Kq =>■ a + 6<xn<b — 6. 

Using <xn> « <yn>i choose Kx such that 

n> Ki =4> \xn -yn| < f 

— F Xn T 2 ^ yn T "F 2 ' 

From these two implications we get easily that 

6 6 
n > max(K0, Kx) => a+-<yn<b-~, 

so that <yn> (a, 6). In the other direction, for every e > 0 there exists 

an open interval (a, b) with b — a < e such that <xn> (a, b) by (2) of 

A.36, so by the hypothesis, we also have 

n > K =>• [a < xn < b k a < yn < b] =t> \yn - xn\ < e. 

(2) Directly from the definition of convergence, 

-'[(xn - yn) -► 0] (3e > 0)(V/F)(3n, m > K)[\xn - ym\ > e]. (A.11) 

By A.36, there exist open intervals / and J of length < | (with this e) 

such that <xn> I and <yn> J. If some 2 G / fl J existed, then for 

K sufficiently large so that 

n,m > K xn G I & ym C J, 
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we would have 

n,m > K \xn Vm\ A \%n z\ + \z ~ Um | < ~ + ~ — £, 
Zj Z 

which contradicts (A.11). 

(3) The reflexivity and symmetry of « are trivial. To show its transitivity, 

notice that by hypothesis and (3) of Lemma A.36, for every (a, 6), 

<xn>-w (a, b) <yn> (a, b) 

so that by (1), <xn> m <zn>. 

<zn> -w (a, 6), 

H 

A.44. Exercise. If <xn> and <yn> are both Cauchy and xn —> x, then 

<xn> « <yn> ->■ a. 

At this point we could appeal to the existence of some quotient B of the 

set 

C = G(Q) =df {<rn> | <rn> is Cauchy in the field of rationals} 

by ~ and define the necessary functions and an ordering on B so that it 

becomes a complete, ordered field. This is one of the classical proofs of the 

existence of the real numbers, connected with the name of Cantor. Instead 

of this, we will construct a specific quotient of C by « which simplifies the 

proof a bit and (more significantly) relates this construction with the other 

classical proof of the existence of the reals, following Dedekind. The basic 

idea of Dedekind was that a real number x is completely determined by 

(and hence can be “identified” with) the set 

( oo, x) fl Q =df {r e Q \ r < x} 

of all rationals preceding it, and that the sets of the form (-oo, x) C Q can 

be characterized directly by three simple conditions. 

A.45. Definition. A Dedekind cut is any set X of rational numbers 

which satisfies the following three conditions: 

1. 1/0, (Q\X)/0. 

2. r < q & q G X =>> r G X. 

3. q € X => (3r)[g < r & r E X}. 

We set 
T> =df {A C Q | X is a Dedekind cut}. 
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A.46. Exercise. A set X C Q is a Dedekind cut if and only if it is 

non-empty, bounded from above, with no largest member and “downward 

closed, ” i.e. such that r < q & q £ X =4> rel. 

The next theorem is basic for the proof of existence of the real numbers. 

A.47. Theorem. For each Cauchy sequence of rationals <xn>, let 

Tx(<xn>) =df {a £ Q I (36)[a < 6 & <xn> (a, 6)]}; 

it follows that each value n(<xn>) is a Dedekind cut and that the function 

7T : C —^ T 

is a surjection which determines the equivalence relation so that D is a 

quotient ofC. 

Proof. That each 7r(<xn>) is a Dedekind cut is quite easy from the defi¬ 

nitions and the general properties of the relation -w , and the equivalence 

<xn> « <yn> <=> n(<xn>) = n(<yn>) 

is an immediate corollary of A.43. The only thing which is not completely 

obvious is that for every cut X there exists a Cauchy sequence <xn> £ C 

in the rationals such that 7r(<xn>) = X. For this we construct a nested 

sequence of closed intervals in the rationals 

[xo,Vo} 2 [xuyi\ 2 ... 

exactly as in the proof of A.41, beginning with some xo £ X and some 

yo £ X, so that, in fact, yo is an upper bound of X. We argue as in A.41 

that the non-decreasing sequence <xn> is Cauchy, and that, in addition, 

for all n, 

Xn £ X & yn (f X, 

because X is downward closed and has no largest member. Then we com¬ 

pute: 

a£ n(<xn>) =>- (36)[a < 6 & <xn> (a, 6)] 

=> (3 n)[a<xn\ 

=> a £ X because xn £ X. 

To see that X C n(<xn>), notice that if a £ X, then there must exist some 

natural number K such that a < xk, because the opposite supposition 

iyn)[xn < a] implies (easily) that a is the largest point in X, and X 

does not have a largest point. Thus, for n > K, xK < xn < yK, hence, 

<xn> -w (xk,Vk + 1) and a £ Tr(<xn>). H 
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A.48. Theorem. Existence of the real numbers. There exists a com¬ 
plete, ordered field. 

Proof. For the domain of the filed we take the set T) of Dedekind cuts and 

for 0 and 1 we take the obvious: 

0 =df {r <= Q | r < 0} = 7r(<0>), 

1 =df {r e Q j r < 1} = 7r(<l>). 

In order to define addition and multiplication on D we need the following 

two Lemmas, where all the sequences are Cauchy in the rationals. 

<xn> « <x'n> & <yn> ~ <y'n> 

=> <xn + yn> ~ <x'n + y'n> (A.12) 

<xn> « <x'n> & <Vn> ~ <y'n> 

=4> <xn ■ yn> w <x'n-y'n> (A.13) 

These are the useful interpretations of the classical theorems from the the¬ 

ory of limits, 

lim(xn +yn) = limn xn + limn yn, 
n 

lim(xn • yn) = limn xn • limn yn, 
n 

in the case at hand, when the limits need not exist since the sequences are 

in the incomplete ordered field of the rationals. They are not hard to verify 

after all the preparatory work we have done and we will skip the details. 

The equivalences (A.12) and (A.13) assert that ~ is a congruence in C for 

the functions 

(<Xn>, <yn>) <Xn + Vn>i 

, <^yn^> ) 1 > ' 2/n^ > 

so that by A.2 there exist functions + and • on the quotient D which satisfy 

the identities 

7Y(<xn>) + TT (<yn>) = 7T (<xn + yn>), 

7v(<Xn>) ■ n(<yn>) = 7T(<xn-yn>). 

We take these + and ■ for the operations of addition and multiplication in 

V. 

Next we must show that (D,0,1,+, •) is a field, but this part of the 

proof is quite trivial, if a bit tiring in its details (which we will skip). The 

existence of additive inverses, for example, follows from the obvious 

7r(<a:n>) + 7r(< xn>) — 7r(<xn + ( xn)>) 7r(<0>) 0 
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where the only “delicate” point is the observation that if <xn> is Cauchy, 
then so is < - xn>. To check the corresponding property for multiplication, 

given a Cauchy sequence <xn> ^ <0>, set 

Vn —df 
l/Xn, ^ Xn ^ 0, 
1, if Xn = 0, 

(A.14) 

verify that <yn> is also Cauchy and then compute: 

n(<xn>) ■ n(<yn>) = n(<xn ■ yn>) = ?r(<l>) = 1. 

The basic observation (from (2) of A.43) is that 

<xn> 76 <0> => (36 > 0)[<a:n> -h (-6,5)] 

=> (36 > 0, K)(Vn > K)\xn\ > 6 

with which we begin the proof that <yn> is Cauchy, but some epsilonics 
are unavoidable. The related result from the theory of limits is the assertion 

lima;n ^ 0 lim ( — 1 = 
xT lim„ xr 

traditionally known as the first hard theorem in Calculus, when it is taught 
rigorously. 

Next we define on D the relation 

X <Y 4=>df ACT, 

which is certainly a partial ordering; it is also linear, because for any two 
Dedekind cuts X and Y, directly from the definition, 

r e (Y \ X) (Vg G X)[q < r] & (\/q < r)[q 6 Y] 

=$■ ACT, 

and, of course, X j- Y =^> (3r)[r 6 (A \ T)] V [r e (Y \ A)]. Appealing 
once more to the definition of Dedekind cuts, we can also show easily that 

/CD => (jl = Qy\JI £T>. (A.15) 

(For example, if r were the largest point in the union (J I, then r G A for 
some A El and then r would also be the largest point A C /, which has 
no largest member.) From (A.15) we infer that every set / CD which is 
bounded above has a least upper bound, because 

(VA G /) [A < Z] =* U / C Z C Q => u I e V, 

and the union (J / is obviously the least upper bound of I in the relation 
< = C. 
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It remains to verify that for all X, Y, Z E T> 

X<Y => X + Z<Y + Z, (A.16) 

[Z>0&X<Y] =» Z ■ X < Z ■ Y, (A.17) 

since these implications imply then immediately their versions with <. 

Considering the more difficult (A. 17) as an example, choose first Cauchy 

sequences such that 

7r(<2n>) = Z, 7r(<xn>) = X, n(<yn>) = Y, 

and verify (easily) from the definitions (and A.43) that there exist rationals 

x° < x1 <y° < y1 

satisfying 

<xn> (x°, x1), <yn> ^ (y0^1), 

and that for each e > 0 we can find some z° and z1 such that 

0 < z° < z1, (z1 - z°) < e, <zn> (z°,z1). 

It follows that 

<zn ■ xn> (z° ■ x°, z1 • x1), <zn ■ yn> -w (z° ■ y°, z1 ■ y1), 

and the desired conclusion Z • X < Z Y will follow quite easily, if we could 

choose 2°,z1 so that 
zlxl < z°y°, 

or equivalently, 
xx(zl - z°) < Z°(y° - x1). (A.18) 

Now (A. 18) is obvious if x1 < 0, because in that case xfy^1 - z°) <0 and 

z°(y°—x1) > 0. If x1 > 0, we find first some 6 > 0 such that <zn> (6, oo) 

and then z°, z1 such that 

0 <6<z°<z\ <zn> (z0^1), (z1-z°)< 
6(y° — x1) 

xi^ 

which imply (A. 18): 

xV - Z°) < X1 AdzCl < z0{y0 - X1). 

Verification of (A. 16) is substantially simpler and completes the proof of 

the theorem. H 

A.49. Exercise. Prove that for all Dedekind cuts X, Y and Z: 

X ■ (Y + Z) = X ■ Y + X ■ Z. 

(Use the formal definitions of + and • given in the proof of A.48.) 
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A.50. Exercise. Prove (A. 12) and (A. 13). 

A.51. Exercise. Show that if <xn> is Cauchy in an ordered field and 

<xn> 76 <0>, then the sequence <yn> defined by (A. 14) is also Cauchy 

and <xnyn> ~ <1>. 

A.52. Theorem. Uniqueness of the real numbers. For any two com¬ 

plete, ordered fields F1 and F2, there exists exactly one bijection 

7T* : F1 >-» F2 

which is an isomorphism, i.e. 

1. 7T*(0)=0, 7T* (1) = 1, 

2. 7r*(x + y) = 7r*(x) + Tr*(y), iv*(xy) = ir*(x)n*(y), 

3. x <y 7r*(x) < 7r*{y). 

Proof. By the uniqueness of the rationals A. 14, there exists (exactly one) 

isomorphism 

7r : Q1 >-» Q2, 

where Q1, Q2 are the sets of rationals in the two fields F1, F2, and the 

problem is to extend this n to the whole of Fl. 

Lemma 1. For each x G F1, there exists a sequence <xn> of rationals 

in F1, such that \imnxn = x. 

Proof. Using the density of the rationals (Exercise A.27), we can find 

for each nGiV a rational xn G Ql such that \x — xn\ < l/(n + 1), and then 
(easily, using problem A.26) limn xn = x. 

Lemma 2. For each sequence <xn> of rationals in F1, 

(3x € ir'1)[lim = x] =^> (3x* G F2)[lim7r(xn) = a:*]. 
n n 

Proof. We know that 

U < V <t=t> 7t(u) < 7r(v) (u,v G Q1) 

because n is an isomorphism, so that for all a, b G Q1, a < b, 

<xn> (a,b) 4=4- <ir(xn)> -w (7r(a),7t(6)). (A.19) 

If <xn> converges, then it is Cauchy, so that <7r(xn)> is also Cauchy by 

(A. 19) and A.36 (using A.26 once more), and therefore <7r(a:n)> con¬ 
verges because F2 is complete. 
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We can use the same simple idea to verify the third basic fact we need. 

Lemma 3. For any two Cauchy sequences in the rationals of F1, 

[limaJn = limyn] =>> lim7r(xn) = lim7r(t/n). 
71 n n n 

The Lemmas guarantee that we can define unambiguously for each x e 

F\ 

n*{x) =df lim 7r(xn), where limxn = x, with xn e Q1. (A.20) 

Since for each rational x G Q1, limn x = x, we have 

n*(x) = lim7r(a;) = n(x), 
n 

so that 7r* is an extension of ix. It remains to verify that tx* is an isomor¬ 

phism of F1 with F2. 

Suppose first that 

x limxn, y limyn, xn,yn G Q , x <G y. 
n n 

This implies immediately (by A.36) that there exist rationals a, b, c and d 
satisfying 

<xn> (a, b), <yn>~+(c,d), b < c, 

and hence by (A. 19) 

<7r(o;n)> (vr(a), 7r(fc)), <ix(yn)> -w (ir(c),7r(d)). 

It follows that 

7r*(x) = lim7r(a:n) < lini7r(yn) = n*(y) 
n n 

because 7r(b) < ir(c), and this completes the proof that tx* respects the 

relation <: 

x < y =>• tx*(x) < 7x*(y). 

Directly from this, n* is an injection and it respects the ordering, 

x < y *<=> 7x*{x) < 7x*(y). 

The rest is trivial (if tiresome) and follows mostly from the limit theorems 

of the Calculus, which hold in every complete, ordered field—and can be 

proved easily with the tools we have developed. As an example: 

n*(x + y) =df limn7r(xn+yn), where xn -> x, yn -* y, xn, yn G Q1, 

= limn {7x{xn) + 7x(yn)\ 

= limn 7x(xn) + limn 7r(yn) 

= 7X*(x) +7X*(y). 
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The crucial step in this computation is the identity 

lim [7r(xn) + n(yn)\ = lim7r(xn) Tlimyr(yn). 
n n n 

We skip the details. H 

A.53. Exercise. Work out the details of the proof of 

tt*(x + y) — 7r*(x) + 7T*(y). 

A.54. The real numbers. As we did for the natural numbers and the 

rationals, we now fix some complete, ordered field 

(n, 0,1,+,-,<), (A.21) 

whose members we will call real numbers. We emphasize once more that 

fixing some TZ is only a convenience and the specific choice of TZ is of no 

importance: the fundamental mathematical fact for the development of 

analysis is that a complete, ordered field exists and that any two complete, 

ordered fields are isomorphic. 

A.55. Exercise. Prove Corollary 2.14 in Chapter 2 from the axioms. 

The open sets of real numbers defined in A.29 form a topology by the 

easy Exercise A.30, so we have notions of Borel sets of reals and Borel 

measurable functions from TZ to other topological spaces and vice versa, by 

10.23 and 10.33. The notion of Borel isomorphism was defined in 10.34. 

The next theorem makes it possible to transfer results about Baire space to 

the reals, and it is the main tool for analyzing the set theoretic properties 

of TZ. We will omit its proof, which is quite simple, using Problems *xl0.11 

and xl0.12. 

A.56. Theorem. As a topological space, TZ is Borel isomorphic with the 
Baire space J\f. 

Problems 

*xA.l. Let F be the set of all rational functions with integer coefficients on 

TZ, i.e. all real functions which can be represented as quotients of polyno¬ 

mials with integer coefficients and prove that it is a field with the obvious 

algebraic operations. Show that the relation 

/ < 9 <=>df (3x)(Vy > x)[/(y) < g{y)\ 

is an ordering on F, and with it F is a non-archimedean ordered field. 
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*xA.2. Prove that there exists an ordered field which is not complete, but 

in which every Cauchy sequence has a limit. Hint: Show that every ordered 

field has a Cauchy completion. 

xA.3. Every open set of reals is a countable union of disjoint open inter¬ 

vals. 

xA.4. Every closed interval of real numbers [a, b\ is compact, in the topo¬ 

logical sense, 10.37. 

xA.5. Every closed set of real numbers is a countable union of compact 

sets. 

xA.6. Every closed set of real numbers F can be written uniquely as the 

disjoint union of a perfect and a countable set. 

xA.7. Prove Theorem A.56. 





Appendix B 

AXIOMS AND UNIVERSES 

The serious study of models of axiomatic set theories depends heavily on 

methods from mathematical logic which are outside the scope of these 

Notes.1 Here we will consider only Set Universes, generalizations of the 

Zermelo and the Z-F universes of Chapter 11, which are very special models 

and can be studied by standard mathematical techniques, as we study fields 

or topological spaces. First we will prove that the Zermelo universes of 

Chapter 11 are models of ZDC and the Z-F universes are models 

OF ZFDC; this will give us a better understanding of these universes, and 

it will also yield some simple Consistency and Independence results 

for the corresponding theories. In the main part of this chapter we will 

construct some new set universes with quite different properties, including 

the Antifounded Universe of Aczel which contains a rich variety of ill 

founded sets. We will glean some consistency results from these models 

too, but consistency results are not our main concern: our primary inter¬ 

est is to explore and understand several natural, intuitive notions of SET 

and compare them with the standard conception of PURE, grounded set 
discussed in 12.25. 

We begin with a result about the least Zermelo universe Z which is 

somewhat surprising, given how much we promoted Z in 11.25 as a rich 

collection of sets which contains all objects of interest of classical mathe¬ 

matics. 

B.l. Theorem. The set HF of all hereditarily finite sets is not a member 

1For those who do know logic, we remark here that the most natural way 
to formalize the theories we have studied is in a many sorted predicate logic 
with identity, with separate variables for objects, definite conditions and definite 
operations of every arity, and relation symbols Set and G. Notice that we did not 
assume in 3.18 any extensionality principles for conditions or operations, and 
we have never appealed to such principles. This means that to get (a notational 
variant of) the classical Godel-Bernays Theory from the ZFC of 11.31 we must 
add extensionality for conditions. On the other hand, precisely because we did not 
include any extensionality axioms for conditions, we can view the present ZFC 
as a notational variant of the classical Zermelo-Fraenkel Theory, by interpreting 
“conditions” to be just “formulas with set parameters.” 
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of Z; in fact, there is no set A G Z such that 

0gA& (VI)[Ie A=>V(X)E A]. (B.l) 

Proof. For each x G Z, we let 

level(x) = the least n such that x G Zn, (B.2) 

so that members of Nq have level 0, but 

level(x) > 0 =4> level({x}) = level(x) + 1; 

because x G Zn =$■ {x} G Zn+1, and if {rc} G Zn with n > 0, then 

{x} C Zn_i by (11.20), which implies x G Zn-\. Define now by recursion 

the sets 

Ao = {0! {0}}> Ai+1 = {An}. 

Clearly, each An G HF, level(Ao) = 1, since Ao C No but Ao £ No, and by 

induction, level(An) = n + 1. 

Suppose now that there is some A G Z which satisfies (B.l), and notice 

that Ao G P('P(0)) G A, and then by induction, for each n, An G A. 

If A G Zm, then each An G Zm because Zm is transitive, and hence 

level(An) < m for each n, which violates what we just proved. H 

A similar argument shows that (with Kuratowski tupling) ^ 

Z, Problem *xB.2, and it is quite easy to extend it to show that Z misses 

many more very simple sets, but the fact that it lacks HF is undoubtedly 

the most startling of the lot. The construction of HF is so direct, it seems 

to follow so naturally from our most basic intuitions about sets, that it is 

really hard to believe that we developed all this set theory in Chapters 3 - 

10 and Appendix A from axioms which do not guarantee its existence. One 

may try to write off this feature of the Zermelo axioms as a small oversight 

of Zermelo and strengthen the axioms in some minor way to ensure the 

existence of HF, but this is the wrong way to go. On the one hand, we 

know the natural extension of ZAC, it is the addition of the Replacement 

Axiom which can be justified by arguments only marginally different from 

those used to justify the Separation Axiom. And on the other hand, the 

importance of ZAC lies precisely in its two, contradictory features: that it 

can prove so much about classical mathematics (which is its real domain), 

while it can be interpreted in such simple, easy to comprehend models like 

Z. Whatever doubts may have lingered about the soundness of set theory 

from the paradoxes should be at least moderated by the strength of ZAC 

and its ease of interpretation. 

We still need to make precise the sense in which Z is a “model” of ZDC. 

Perhaps the simplest way to introduce the key, new idea we need, is to try 

and reinterpret B.l as an independence result. 
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B.2. Theorem? We cannot prove in ZDC the proposition that some set 

A exists, which contains the empty set and is closed under the powerset 
operation. 

Proof. Spelled out symbolically for precision, the proposition in question 
is 

0 4=^df (3A)[0 g A & (VX)[X g A =>• V{X) G A]]. 

Suppose, towards a contradiction, that 0 is a theorem of ZDC. Since the 

least Zermelo universe Z has all the closure properties demanded by the 

axioms of ZDC, any proof of cf from these axioms could be translated into 

a proof of the interpretation of 0 in Z, which is 

<t>{Z) «=* (3A G Z)[0 G A & (VX G Z)[X G A => V(X) <= A}}. 

As a consequence, f)(Z) is true, so there exists a set Ae Z satisfying 

0 G A & (VX G Z)[X G A =>■ V{X) G A], 

which by the transitivity of Z is equivalent to 

0G A& (VI)[lG A=^V(X) G A]; (B.3) 

by B.l, no A G Z satisfies (B.3). H 

The argument is unfamiliar, unless you know a lot of logic, and in any case 

it is incomplete, only a sketch. What we need to elucidate is the meaning 

of “interpreting a proposition in Z,n the move from <j> to above, and 

it may help to consider an example. Suppose we have located a traditional 

mathematician (perhaps an old-fashioned analyst) who disclaims any inter¬ 

est in general set theory beyond its applications to classical mathematics, 

he has studied Chapters 3-10 and Appendix A and he is convinced that 

all the objects he cares about live in Z. In an effort to simplify his world, 

he declares that henceforth by “object” he will mean “member of Z” that 

is his universe. Suppose further that this person now utters the Powerset 

Axiom and claims that he believes it. What does he mean? Spelled out in 

terms of the primitive notions of sethood and membership, the powerset 

axiom reads as follows: 

(IV) : For each object A, there exists a set B, such that for every X, 

X G B 4=A Set(X) & (Wt)[t G X £ G A], (B.4) 

Replacing “object” by umember of Z" in this, we get something rather 

different. 

(iv)(Z) : For each A G Z, there exists some set B G Z, such that for 

every X G Z, 

IgB^ Set(X) & (Vt G Z)[t eX^teA}. (B.5) 
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This is what our friend really means when he tries to tell us that every 

set has a powerset, and it differs enough from the Powerset Axiom that 

its truth is not immediately apparent. To prove it, for each A E Z, we 

naturally take B = V{A), which is also in Z and satisfies (B.4), for every 

X. Notice next that for each X E Z, 

(Vt E Z)[t E X =>• t E A] 4=^ (Wt)[t E X => t E A], 

easily, by the transitivity of Z. This reduces (B.5) to 

X EB <=> Set(X) & (Vt)[t e X => t E A], (B.6) 

which is true for every X and hence (in particular) for every X E Z. 

As a matter of fact, all the axioms of ZDC yield true propositions when 

we replace in them “object” by “member of Z". It follows that all the 

theorems derived from the axioms of ZDC by logic alone also yield true 

propositions when we understand them as assertions about Z in the same 

way, so our stipulated classical friend can safely work in ZDC and be 

assured that he is proving statements which are true of his world. This 

not entirely trivial proposition expresses the fact that the universe Z is a 

“model” of ZDC. 

B.3. A set universe A4 is any triple M,S,E, of a class (which may be 

a set) M, a subclass S C M, and a binary definite condition E such that 

E(x, y) =>■ x,y E M and for each x E M, 

bm(%) =df {t | tEx} is a set, (B.7) 

which means that for some set X and all t, 

t E X Eft, x). 

We write synonymously 

tEx 4=> E(t,x) 

for the condition E, which interprets the E condition in M, and we call 

bm(x) the body of each x E M. The ATobjects are the members of M 

and the A4-sets are the members of S. An n-ary definite condition is an 

A4-condition if it only holds of objects in M, i.e. 

E(xi,..., Xfi') V X\,..., xn E XL| 

and a definite n-ary operation F is an A4-operation if it assigns ATobjects 

to ATobjects, i.e. 

Xi,... ,xn E M => F(xi,... ,xn) E M. 
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A universe Ad is natural if the class M is transitive and S, E are the 

standard sethood and membership conditions, i.e. 

X e M => X C M, 

x E S x e M & Set(x), 

xEy 4==^ x,y 6 M & x 6 y. 

A natural universe Ad is completely determined by the transitive class M 

of its objects and we will identify it with that class, i.e. when we refer to 

the universe M for a transitive class A/, we will mean the natural universe 

with objects the members of M. Notice that in a natural universe the body 

of each object is the set of its members, 

bAf(s) = {t\ tex} (ie M); (B.8) 

this means that bM(x) = x, if x is a set, but bM(x) = 0 if x is an atom. 

The relativization to a universe Ad of a proposition 6 is the proposition 

6{M) constructed by replacing “object” by “Ad-object”, “set” by “Ad-set”, 

“x G y” by “xEy”, “condition” by “Ad-condition” and “operation” by 

“Ad-operation", consistently wherever these expressions occur in 6. If Q(m) 

is true, we say that 9 is true in the universe Ad or (synonymously) that 

Ad satisfies or models 6. 

A universe Ad is a model of an axiomatic system T if every axiom of 

T is true in Ad, i.e. if the relativization 0(M) of every axiom 6 of T is a 

true proposition. If this holds, we call Ad a universe of T, or simply a 

T-universe. 

B.4. Propositions and relativizations. By proposition we mean any or¬ 

dinary, definite mathematical statement or assertion, just like the axioms, 

hypotheses and theorems we have considered so far. This is not completely 

precise, everyday mathematical English not being a perfectly specified lan¬ 

guage. The basic idea is that for all objects x and y, the expressions x = y, 

x 6 y and Set(x) are propositions; for each definite condition P and ob¬ 

jects xi,..., xn, the expression P(x\,..., xn) is a proposition; and that 

propositions may be combined by the basic operations of logic, -i, V, 3 and 

the like. Relativizations2 to a set universe Ad are computed as one might 

2To those who know formal logic, it might appear that the completely precise 

(syntactical) relativization operation on formulas is much easier to understand 

than this relativization operation, which is applied directly to propositions of 

“mathematical English.” But to apply the formal relativization process, we must 

first “formalize” the ordinary language propositions in which we are ultimately 

interested, and a moment’s thought will convince you that the formalization 

process is exactly as “vague” as the present operation of relativization. It may 

be argued that we know how to formalize a certain proposition precisely if we 

can interpret it in some arbitrary structure, i.e. precisely if we can understand 

its informal relativizations. 
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expect, e.g. 

(x = y)(M) 

Set{x)^M^ 

(x £ y){M) 

P(xi,... ,xn)(M} 

((f) & lf>)<'M'> 

((Vx)cf>){M) 

((yp)cf))(M) 

x = y, 

x E S, 

xEy, 

P(xi,... ,x„), 

->(9^), 

(Vz £ M)<f)(M\ 

(VP)[(Vx,y)[P(x,y) x,y € M] 0(M)], 

where P varies over binary, definite conditions, etc. In the proofs which 

follow, we will take care to spell out laboriously the relativizations of all 

the propositions that concern us. This will produce many examples which 

illustrate the notion, and it will also ensure that the specific results we 

claim will be precise and rigorously established even if the general notion 

of proposition and the relativization process are not precisely delimited. 

On the other hand, much of the significance of the results comes from the 

following general principle. It says simply that logical consequences of true 

(in Ad) propositions are true (in Ad) for any universe Ad, and, of course, 

it holds for arbitrary models of arbitrary axiomatic theories, not just set 

universes. 

B.5. Principle of Soundness of Logical Inference. If a proposition 9 

is a theorem of an axiomatic system T (i.e. it can be proved by logic alone 

from the axioms ofT), then every universe of T satisfies 6. 

B.6. Universes vs. general models.According to the discussion in 8.20, 

to define a model of an axiomatic set theory we must specify a domain of 

objects, define on it the conditions of membership and sethood and also 

specify which conditions and operations on the domain will be considered 

definite. Set universes are very special models in two ways. 

(1) When we view a set universe Ad as a model for an axiomatic set 

theory, we take its definite conditions to be all the definite conditions of 

our basic domain W, and we take for its definite operations all the Ad- 

operations, i.e. the definite operations of >V which take Ad-objects to Ad- 

objects.3 It is routine to verify that all the axioms for definite conditions 

and operations listed in 3.18 hold with this interpretation, Problem xB.l: 

3More pedantically, the definite conditions of Ad are the restrictions to M 
of the definite conditions in the intended universe W, and similarly for the 
operations. 
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thus, to prove that a set universe Ad is a model of (say) ZFDC, it is enough 

to prove the relativizations to Ad of axioms (I) - (VIII). 

(2) Because we assume that the body b^(x) of each x E M is a set, 

Ad-sets cannot be “larger” than the sets of the intended universe W, for 

example, there cannot be an Ad-set x such that for all t, tEx. 

Natural universes are even more special, of course, they only restrict the 

domain of objects to some transitive class—and this makes it especially 

simple to understand the meaning of the relativization operation for them. 

From the mathematical point of view, natural universes are subuniverses of 

W and they inherit their structure from W, much like subgroups, subposets, 

topological subspaces and the like are specified by a subset of some given 

space and inherit the relevant structure from it. The additional subtlety 

here is that we need to interpret (relativize) in these subuniverses propo¬ 

sitions which are logically quite complex, more complex than the typical 

identities or inclusions which come up in Algebra or Topology. 

We begin with the verification of the axioms we have been studying in 

natural universes which we have already introduced, where the notions are 

most familiar. 

B.7. Lemma. Every transitive class M satisfies the Axiom of Extension- 

ality. 

Proof. The relativization to M of the Extensionality Axiom reads as fol¬ 

lows: 

(I)(M) : For all sets A, B E M, 

A = B 4=^ (Vz G M)[x G A x G B}. 

If A = B, then A and B have the same members, so they certainly have the 

same members in Af. To prove the converse, we must show that if A ^ B, 

then there must exist some x G Af, such that either x E A\B or x E B\A; 

but if A / B, then there certainly exists some 

X £ (A \ B) U (B \ A) C A U B, 

A, B C M because M is transitive, and hence this x is also in M. H 

B. 8. Lemma. Every Zermelo universe Af is a natural universe of axioms 

(I) - (vi). 

Proof. We consider in turn each of the axioms (I) - (VI) other than (I) 
just shown and (IV) for which we gave the argument in the example above. 

The reader is advised to compare the relativization of each axiom to M 
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which we must prove with the original statement of the axiom in Chapter 

3. 

(II) (M) Empty set and Pairset: (a) There is a special object y G M which 

is a set but has no members in M. (b) For all x,y G M, there is a set 

z G M such that 

(Vi G M)[t G z t = x V t = y\. (B.9) 

(a) 0 G M by hypothesis, it has no members whatsoever, so it certainly has 

no members in M. (b) If x, y G M, then z = {x, y} G M by hypothesis, 

and it obviously satisfies (B.9), since it satisfies the stronger 

(Vt)[t G z -4=>- [i = x V t = y]\. 

(III)(A/) Separation Axiom: For each A G M and each unary, definite 

condition P, there exists a set B G M which satisfies the equivalence 

(Vx G M)[x G B 4=^> x G A & P{x)\. (B.10) 

Suppose A G M. By the Axiom of Separation, there exists some B which 
satisfies 

(Vx)[x G B 4=4> x G A & P(x)]. (B.ll) 

Now B C A, so B e V(A) G M, so B G M because M is transitive, and 
(B.ll) implies the weaker (B.10). 

(V)(7l/) Unionset Axiom: For each £ G M, there exists a set B G M 
which satisfies the equivalence 

(Vt G M)[t (Ag M)[X Gf&tG X]]. (B.12) 

Again, we naturally take B = (J £, which is in M by hypothesis and satisfies 
the equivalence 

(Vt)[t G B 4=> (3X)[X G £ & t G X]]. (B.13) 

Using once more the transitivity of M, immediately, for every t, 

(3A)[A G £ & t G X] ^ (3X G M)[X G £ & t G X], 

so that (B.12) reduces to 

(Vt G M)[t G B 4=^ (3X)[X G £ & t G X]], 

which is implied by the stronger (B.13). 

(VI) M) Axiom of Infinity: There exists a set I £ M such that 

0 G / & (Vx G M)[x G / => {x} G /]. 

This is quite simple, taking / = N0 G M. -| 
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B.9. Theorem. (1) Every Zermelo universe is a natural universe of ZDC, 

and every Z-F universe is a natural universe of ZFDC. 

(2) (AC) Every Zermelo universe is a natural universe of ZAC, and 
every Z-F universe is a natural universe of ZFAC. 

In particular, Z and every d/(/) such that Nq C I are natural universes 
of ZDC. or universes of ZAC, granting AC. 

(3) (von Neumann) (AC) The von Neumann universe V is a natural 
universe of ZFC. 

Proof. The relativizations of DC and AC were proved in 11.23 and the 

relativization of the Axiom of Replacement is exactly the defining condition 

of a Z-F universe in 11.33. For Part (3), we have already shown that V is a 

Z-F universe in 11.34, so it only remains to prove the relativizations to V 

of the Principles of Purity 3.24 and Foundation 11.29. The first of these 
is 

Purity{V) : For every x G V, Set(x), 

and it is true simply because every object in V is a set, and the interpre¬ 

tation of "sethood in V is the standard one. For the second, it is easiest 

to relativize the elementary version of the Foundation Principle in 11.30. 

Foundation^V) : For every set X G V, there exists some m G X such 
that m fl X is empty in V, i.e. 

(VfGV)[f^mVf^4 

✓ 

The negation of this would give us an I G V and some a e X such that 

(Vm G X)(3t G X)[t G m], 

which by DC (as in the proof of 11.30) implies that X is ill founded, 

contradicting the assumption X G V. H 

The Soundness of Logical Inference B.5 combines well with B.9 to yield 

many simple but interesting independence results about ZDC and ZAC: 

to prove that a proposition 0 cannot be a theorem of ZDC, it is enough 

to find some I D Nq such that is false. This is exactly the way we 

proved B.2, a bit clumsily without the precise notions. We have included 

in the problems several examples of this kind. 

By the same reasoning, Part (3) of Theorem B.9 implies that we cannot 

refute in ZFAC the Principles of Purity or Foundation, because V is a 

model of ZFAC which satisfies these principles. It should also be obvious 

that we cannot prove these principles in ZFAC, but to establish this rigor¬ 

ously we need to construct universes of ZFAC which are not natural. The 

basic tool for such constructions is the next simple notion. 
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B.10. Definition. A Rieger universe is any set universe M. = M,S,E 

such that for every set Y C M, there exists exactly one M-set X satisfying 

Y = b_yoi(^)- For each Y C M we set 

Pm(Y) =df the unique X G S such that b^(X) = Y, (B.14) 

so that pm is a definite operation and immediately from its definition, for 

every 7 CM, 

X = Pm(Y) 4=4> X e S XbM(X) = Y, (B.15) 

tEpM{Y) 4=> teY. (B.16) 

B.ll. Rieger’s Theorem. Every Rieger universe is a universe of ZFDC. 

Proof. Fix A4 = M, S, E with the Rieger property and let b(x) = bx(x), 

skipping the subscript since Xi is the only universe around. We verify in 

turn the relativizations of all the axioms of ZFDC. 

(I)(At) gxtensionality Axiom: For all A, B G M, if S{A) and S(B), then 

A — B <t=4> (Vx E M)[xEA 4=^ xEB). 

If A = B, then surely, for all x, xEA 4=4> xEB. Conversely, if for 

all x e M, xEA xEB, then b(A) = b(J3); by the Rieger property, 

there is exactly one C G S such that b(A) = b(C'), so we must have C — A, 

and similarly C = B, hence A = B. 

(If) (At) £)mptySet and Pairset: (a) There is a special object y € S such 

that (Vf G M)~<tEy. (b) For all x,y G M, there is some z G S such that 

(\/tEM)[tEz t — xYt = y], 

For (a), choose y so that y G S and b(y) = 0, and for (b) choose z £ S so 

that b (z) = {x,yj, both times by applying directly the Rieger property. In 

the case of (b), for example, we compute: 

tEz t G b(z) [t = xVt = y\, 

which is the required conclusion. 

(IV)(A1) 
Powerset Axiom: For each A G M, there exists some B G S, 

such that for every X G M, 

XEB 4=^ X G S & (Vf G M)[tEX =>tEA]. 

Given AgM, choose B G S' by the Rieger property so that 

b(B) = {p(Y) | ycb(4)}, (B.17) 
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where p(Y) — pm(Y) is the Rieger operation associated with M by (B.14), 
and compute: 

XEB 4=^ X £ b(B) 

*=* (3h)[hCb(d)&I = p(7)] 

« (3h)[ycb(d)&[Ie5&b(I) = h]] by (B.15) 

<*=» X £ S & b(X) c b(A) 

X e S & (Vt e M)[tEX =>tEA}. 

Verifications of the remaining axioms in Xi are similar, following the same 

ideas as in the proof of Theorem B.9, and we leave them for the exercises. 

H 

B.12. Exercise. Prove that a set universe M = M,S,E is a Rieger uni¬ 

verse if and only if (1) it satisfies the Axiom of Extensionality, and (2) for 

every Y C M, there exists some X £ S such that b m(X) = Y. 

B.13. Exercise. Every Rieger universe is a model of the Axioms of Sep¬ 

aration (III) and Replacement (VIII). 

B.14. Exercise. (AC) Every Rieger universe is a model of ZFAC. 

B.15. Relativization of “faithfully modeled” notions. The Choice 

Principles DC and AC are formulated in terms of the notions of “function” 

which was defined in Chapter 4 using an “arbitrary but fixed” ordered pair 

operation 4.4. and “system of natural numbers,” which was also “arbitrary 

but fixed” in 5.9. It is not completely obvious how to relativize propositions 

involving such “faithfully modeled” notions, since (for example) a given 

universe A4 may not be closed under the chosen ordered pair operation. 

We avoided the problem in 11.23 and B.9 by assuming that the fixed 

ordered pair is the Kuratowski pair under which every universe satisfying 

(I) - (VI) is closed, but there may be some lingering vagueness on how 

to deal with this problem in general. There is an easy solution for Rieger 

universes, which we outline in Problems xB.13 and *xB.14. In discussing 

Rieger universes from now on, we will assume tacitly that we have fixed an 

ordered pair operation, a system of natural numbers, etc. for each of them, 

and we will relativize propositions which involve these faithfully modeled 

notions in terms of these fixed operations. Problems xB.13 and *xB.14 

make it clear that which particular definitions are chosen is irrelevant for 

the results. 

B.16. Proposition. There exists a Rieger universe Ma in which every 

set is equinumerous with a set of atoms; in particular, we cannot prove in 

ZFDC that every set is pure. 
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Proof. The idea is to code every set A by the pair (0, A) in Ma, and to 

declare that every object which does not code s set in this way is an atom. 

We set 

x G Ma x = x, so Ma = ' 

X G Sa ^=^df (3A)[Set(A) & x 

xEa (0, A) <t=^>df X G A, 

and proceed to verify that Ma = Ma, Sa, Ea is a set universe, that it 

has the Rieger property and that it satisfies the proposition “every set is 

equinumerous with a set of atoms. ” 

Skipping the subscript Ma, clearly 

f 0, if for all sets A, x 7^ (0, A), 

{ A, if for some (necessarily unique) set A, x = (0, A), 

so each b(x) is a set. For the Rieger property, we notice first that for each 

set A C Ma, (0, .A) G Sa and b((0,A)) = A; if x G S and b(x) = A, then 

x — (0, B) and b(x) = B for some set B, by the definition, so we have 

A — B and x = (0, A), as required. The Rieger operation is very simple in 

this case, 

P(K) = (o,n 

The relativization to Ma of the proposition “every set is equinumerous 

with a set of atoms” is the assertion that for every Ma-set (0,21), there 

is a bijection in Ma between (0, A) and some Ma-set of atoms (0, B). We 

take 

B =df {(IT) | t G A}; 

now (0, B) G Sa and, by the definition, 

xEa (0, B) =t> x G B =*• {Vy)[x ^ (0, y)\ => x £ Sa, 

i.e. each Afa-member of (0, B) is an atom in Ma■ If (x,y)a is the ordered 

pair operation of Ma and 

/ =df p{{t, (1T))0 \t G A}, 

then Ma recognizes / as a bijection between the 2\da-sets (0, A) and (0, B). 

H 

By the anthropomorphic uMa recognizes f ...” we simply mean that if 

A! = (0, A) and B' = (0, B) are the objects in Ma which code the the sets 

A and B. respectively, and if we set 

0 <=^df / C A x B & (Vx G A')(By G B')(x,y) G / 

&(Vy6S')(3!*Gi4/)[(*,y)G/], 
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then the relativization of the proposition 9 to Ma is true. This 

relativization can be computed in principle, but it is quite messy. It is best 

to develop a machinery for arguing about relativizations without actually 

writing them out, and for this the following, traditional “model theoretic” 

notation is very useful. For each set universe Ad and each proposition 9, 

M\= 9 4=^df Q is true in Ad <*=>■ 9^M\ (B.18) 

We read Ad |= 9 “Ad models 9”, but also “M thinks that 9”, “M believes 

that 9 ’, etc. as befits the occasion. For example, for each pair of classes M, 

S and each binary condition E, let 

Setuniv(M, S, E) (Vu,v)[uEv => u,v G M] 

& (Vf)[f e S =4> t e M] 

& (Vrr)[a; G M ==>• 

(BX)[Set(X) & (V£)[i G X <^> tEx}} 

be the fairly complex proposition which asserts that M, S, E comprise a 

set universe. Consider also 

Rieger(M, S, E) «df (VY)[(Set(Y) & Y C M) 

=^(3\X eS)[Y = bM(X)}} 

(vy)[(5e«(y) kY CM) 

=> (3\X G 5)(Vi G M)[t G Y « tEX}\, 

which asserts that Ad is a Rieger universe. These are propositions about 

M, S and E, which may be true or false; whether they are true or not, it 

makes sense to interpret them (relativize them) in some universe AT and 

ask if AT thinks that M, S, E comprise a Rieger universe! There is an 

obvious question here, which has a simple and useful answer. 

B.17. Theorem. Suppose Adi = Mi, S\, E is a Rieger universe, S2 C 

M2 C Mi are classes and E2 is a binary condition such that xE2y =>• 

x,y <E M2; if 

M\ (= Setuniv(M2, S2, E2) & Rieger(M2, S2, E2), 

then M2 = M2, E2, E2 is also a Rieger universe. 

Proof. To show first that AI2 is a set universe, we must verify that for 

every x G M2, 

(3y G Set)(Vt)[t G Y <=> t G M2 & tE2x\. (B.19) 

Fix some x G M2. The proposition (B.19) is true in Adi since 

Adi 1= Setuniv(M2, S2, E2), 
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which means that some Yi £ S\ exists such that for all t £ Mi, 

tEi Yi t £ M2 & tE2x; (B.20) 

and since Mi is a set universe, there exists some set Y such that for all t, 

t eY 4=^ teMi ktElYi-, (B.21) 

now (B.20) and (B.21) together imply what (B.19) demands for the given 

x £ M2 and some Y. 

To show that M2 is a Rieger universe, we must show first that if Y C M2, 

then there exists some X2 £ S2 such that for every t £ M2, 

t £ Y «=> tE2X2, (B.22) 

and then verify that this X2 is unique. Since Y C M2 C M\ and M\ is a 

Rieger universe, there exists some X\ £ S\ such that for all t £ Mi, 

teY <=* tE1X1; (B.23) 

working in M\, we apply the Rieger property for M2 to the Adi-set Xi, 

to get some X2 £ S2 such that 

M\ [= (Vt)[t £ M2 =>- [t £ X\ tE2X2]]- (B.24) 

and computing the relativization, this means that 

(\/t £ M\)[t £ M2 -'r' [tEl X\ <—v tE2X2]]. (B.25) 

Compute now, for any t £ M2 C M\: 

t£R « tEiXi by (B.23), 

<==» tE2X2 by (B.25), 

which proves (B.22). The fact that at most one X2 £ S2 can satisfy (B.22) 

for every t £ M2 is proved similarly. H 

Remark: Notice that in relativizing (B.19) in this proof, we left the 

clause t £ M2 alone. In computing relativizations, “primitive” propositions 

of the form P{x\,..., xn) (which express that a definite condition P holds 

of the objects X\,..., xn) are their own relativizations. 

This simple theorem makes it possible to construct universes within uni¬ 

verses within universes, each time using the properties of the model just 

constructed. Consider, for example, the next Corollary of B.16. 

B.18. Proposition. There exists a Z-F universe M which has exactly one 

atom. 



Appendix B. Axioms and universes 253 

Proof. Suppose c is an atom and let 

Mc =df {x | (Vt E TC(x))[->Set(t) =► t = c}} (B.26) 

be the class of objects supported by {c} in the sense of Problem xll.21. It 

is quite easy to verify that Mc is transitive and for each set X, 

ICMc^Ie Mc, 

so the natural universe Mc has the Rieger property and by B.ll it is a 

model of ZFDC; and it is quite clear that it has exactly one atom, c. 

So far so good, as long as there exists at least one atom, which may or 

may not be true in our intended domain W. But there are lots of atoms in 

the Rieger universe Ma of B.16, so what we need to do is to interpret the 

proof of the preceding paragraph in the universe Ma- This argument runs 

as follows. 

Let 

<f(M,S,E,c) 4=bif Setuniv(M, S, E) & Rieger(M, S, E) (B.27) 

X^Set(c) & (Vf E M)[t £ S =$■ t = c] 

be the proposition which asserts of M, S, E,c that they have the properties 

we are interested in, and let 

9 <^df (3M)(3S)(3E)(3c)<j>(M,S,E,c) (B.28) 

be the proposition which asserts that some M, S, E, c with these properties 

exist. We have proved 0 from the hypothesis that some atom exists, and 

other than that we have only used the axioms of ZFDC—what else is 

there! Hence this 6 is true in every universe of ZFDC which has an atom, 

in particular Xia, i.e. 

Ma |= 0- 

This means that for some Ada-classes M, S, some binary _A4a-condition E 

and some Ada-object c, 

Mah<f>(M,S,E,c), 

and in particular 

Ma h Setuniv(M, S, E) & Rieger(M, S, E), 

so by B. 17, M = M,S,E is a Rieger universe. In addition 

Ma (= ~'Set(c) & (V7 E M)[t (£ S =>■ t = c], 

which means precisely that 

Mi [= -iSet(c) & (Vt)[~1 Set(t) =£■ t — c], 

the required conclusion that M believes that exactly one atom exists. H 
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Figure B.l. Two decorated, ill-founded graphs. 

It is not hard to manufacture Rieger universes with various types of ill 

founded sets, by a combination of the techniques in B.16 and B.17. Some 

of the problems are about such results. Here we will concentrate on the 

construction of Aczel’s Antifounded Universe A, which has a rich variety 

of ill founded sets with well understood structure. 

The idea for A comes from the Mostowski Collapsing Lemma 11.36, 

which gives a “structural” characterization of pure, grounded sets. Recall 

that by 11.35, a decoration of a graph G is any surjection d : G —» d[G\ 

such that 

d(x) = {d{y) | y <- x} (xeG), (B.29) 

where —» is the edge relation on G and is its inverse, 

y x -<=> y is a child of x <!=!> x —» y. 

Each grounded graph G admits a unique decoration do, and the pure, 

grounded sets are all the values dc(x) of these decorations. Can we also 

“decorate” the nodes of ill founded graphs to get pure, ill founded sets which 

are related to ill founded graphs in the same way that pure, grounded sets 

are related to grounded graphs? 

B.19. Antifoundation Principle, AFA. Every graph admits a unique 

decoration. 

In Figure B.l we have labeled the nodes of two ill founded graphs by 

the values of their unique decorations, assuming that such exist. By the 

definition of decoration, 

ft = {ft}, fl1 = {0,n2}, ft2 = {T21}, (B.30) 

i.e. f1, ft1 and ft2 are the “ultimately frustrating gifts” we discussed in 

11.32. We can refer to “the” frustrating gifts, because, in fact, the equa¬ 

tions in (B.30)—or the graphs in Figure B.l—characterize these sets under 

AFA, as follows. 

B.20. Proposition. (AFA) (1) There is exactly one set 12 which is its 

own singleton. (2) There is exactly one pair of sets ft1, ft2 such that ft1 = 

{0, ft2} and ft2 = {ft1}. 
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Proof. (1) If X = {X} and Y — {T}, then we can use either X or Y to 

decorate the single node graph in Figure B.l; but this graph has only one 

decoration by AFA, so X = Y. The proof of (2) is similar. H 

This “uniqueness” part of the Antifoundation Principle we just applied 

makes it possible to specify and analyze the structure of ill founded sets 

with diverse properties, and is the main advantage of the antifounded uni¬ 

verse A over other models which contain ill founded sets. We now proceed 

to its construction. 

B.21. Definition. A pointed graph is a pair (G,po) of a graph and a 

node in it, in full detail, a structured set (G, —>GiPg) where pc E G and 

—>g is a binary relation on the field G. The designated node pc is the point 

of the pointed graph. 

B.22. Pictures.A pointed graph (G,p) is a picture of a set A, if there 

exists a decoration d : G —» d[G\ of G such that dc(p) = A. The canonical 

picture of a pure set A is the pointed graph (TC(A), 3, A), where TC(A) is 

the transitive closure of A and 3 is the restriction of the inverse membership 

condition to TC(A). This is a picture of A, because the identity function 

d(x) — x is obviously a decoration of it, A E TC(A) and d(A) = A. 

B.23. An isomorphism between two graphs G and H is any bijection 

7r : G >—»• H such that 

x >G V 7r(x) n(y) (x,yeG), 

and an isomorphism between two pointed graphs (G,p) and (H, q) is a graph 

isomorphism n : G —> H such that n(p) = q. We call G isomorphic with 

H if there exists an isomorphism nG : H of the appropriate kind. 

It is easy to construct non-isomorphic pointed graphs which picture the 

same set, even grounded ones, e.g. see Figure B.2 where we have labelled 

the nodes with the values of the unique decorations. On the other hand, 

we would expect that if a pointed graph (G,p) admits a unique decoration 

dG, then the set A = dG[G\ captures some important invariant of (G,p). 

The next fundamental definition captures that invariant. 

B.24. Definition. A relation R C G x H is a bisimulation between two 

pointed graphs {G,—*g-,Pg) and (H, ~^h,Ph)> if it relates the points, i.e. 

PgRph and, also satisfies the implication 

xRy (\/u <—g 3?)(3u < h y)uRv (B.31) 

& (Vu *—h y)(3w —g x)uRv. 
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Figure B.2. Non-isomorphic, bisimilar, grounded graphs. 

Two pointed graphs G, H are bisimilar if some bisimulation between them 

exists, 

G —— bs H 4=>df (3-R C G x H)[R is a bisimulation]. (B.32) 

As usual with structured sets, we will often refer to “a pointed graph G,” 

skipping the explicit reference to the edge relation —>g or the point when 

it is obvious or irrelevant—we already did this in (B.32). 

B.25. Exercise. Isomorphic pointed graphs are bisimilar, and so are the 

non-isomorphic, grounded, pointed graphs G and H in Figure B.2. 

B.26. Exercise. If a is a minimal node in a graph G and b is a minimal 

node in H, then {(a, b)} is a bisimulation of the pointed graphs (G, a) and 

(H, b). 

B.27. Exercise. Let L be the “single loop” graph on a singleton {a}, with 

the one edge pair (a, a), and on the set of integers N define the successor 
edge relation 

n —m 4=>df n + 1 = m. 

Show that the relation {(a,z) | i £ N} is a bisimulation of (L,a) with 
(N, n), for every n. 

B.28. Lemma. The condition =bs is an equivalence condition on the class 
of all pointed graphs. 

Proof. Of the three properties of an equivalence condition (defined in 

12.30), only the transitivity of =bs is not immediate. To prove that, sup¬ 

pose Gi, G2 and G3 are pointed graphs, Ri is a bisimulation of G1 with 

G2 and R2 is a bisimulation of G2 with G3, and let 

xRz 4=>df {3y)[xRiy & yR^z] (B.33) 

be the “product relation” of R1 and R2. It is clear that R relates the points 

Pi and p3 of Gi and G3, because P1R1P2 and p2R2p3 hold. Suppose that 
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a Q 

Figure B.3. Many pictures of H : (L,a) and each (N,n). 

xRz, so there exists some y E G2 such that xR\y and yR2z. If u <~i x, 
then by (B.31) for Ri, there exists some v 2 V such that uR±v, and 
then by (B.31) for i?2, there exists some w <— 3 z such that vR2w, which 
together with uR\v establish uRw. This is half of (B.31), and the other 
half is equally easy. H 

With these definitions, we can now prove that for a grounded graph 
G and any p E G, the properties of (G,p) coded by the value dG(p) of its 
unique decoration are exactly those preserved under bisimulation of pointed 
graphs. 

B.29. Theorem. For all grounded graphs G and H with associated deco¬ 
rations do and dn, and for all p E G and q E H, 

dG(p) = dH(q) (G,p) =bs (H, q). (B.34) 

Proof. We verify first that the relation 

R = {(x,y) E G x H | dG(x) = dH(y)} (B.35) 

satisfies (B.31), as follows: 

xRy => {dG(u) | u <—G x} = {dH(v) \ v ^h} by the def. of decoration 

=> (Vu *-G x)(3v <-h y)[dG{u) = dH(v)] 

& (Wv <—H y)(4 G x)[dG(u) = dH{v)\ 

=> (Vit *—G x)(3u <r-H y)uRv 

& (Vu *—n y)(3u <—G x)uRv. 

Hence, if p E G, q E H, and dG(p) = dn(q), then the relation R of (B.35) 

establishes that (G,p) =bs {H,q). 

For the converse, suppose towards a contradiction that p is minimal in 
G such that there exists some q E H and a bisimulation R of the pointed 

graphs (G,p) and (H,q), but dG(p) 7^ dH{q)- Now 

(Vu <t-g p)(3v *-H q)uRv, 

hence, 
(Vu <—G p)(3u <r-H q)[dG{u) = dH{v)\ 
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by the choice of p, and, similarly, (\/v <—h g)(3u *~g p)[dG{'a) = dn(v)], 

which proves dc(p) = dn(q), contradicting the choice of p. H 

It is a crucial property of AFA that it yields the same characterization 

of bisimulation for all graphs, by quite a different argument. 

B.30. Theorem. (Aczel) (AFA) For all graphs G and H with associated 

decorations do and dn, and for all p e G and q G H, 

dG{p) = dH(q) «=> (G,p) =bs (H,q). (B.36) 

Proof. The left-to-right implication in (B.36) is proved exactly as in B.29, 

that part of the argument did nor depend on the given graphs being 

grounded. 

Suppose now that the edge relations of G and H are —>q and —and 

R C G x H is a bisimulation of G with H. We can turn R into a pointed 

graph, with point the pair (pg,Ph) and edge relation the product of — 

and —*h‘- 

ip, q) (u, v) 4=>df P >G u & q -*h v. 

If dc is the unique decoration of the graph G (forgetting the point) given 

by AFA, define on R the function 

dG(P,<l) =df dG(p), 

and compute: 

x£d%(p,q) «$=» x£dG(p) 

<J=4> (3it •*— G p)[x = dG(u)] 

<=> (3u <— g p)(3u h q)[uRv & x = dc(u)] (B.37) 

«=> (3(u,v)+-(p,q))[x = d%(u,v)], 

where the key equivalence (B.37) holds because R is a bisimulation and 

pRq, and hence for each u <— q p, there exists some v <— jj q satisfying 

uRv. Thus, the function dq is a decoration of R, and the corresponding 

extension 

dH(p,q) =df dH(q) 

of the decoration dn of H is also a decoration of R, by the same argument. 

By AFA then, for all (p, q) e R, 

dc{p) = d%(p, q) = d%{p, q) = dH(q), 

which completes the proof. H 

This characterization under AFA of the properties of (G,p) which are 

coded into the value dc{p) of its unique decoration, suggests a method for 

the construction of A. 
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B.31. The Antifounded Universe.Let 

•A-0 =df {(G, -*g,Pg) € V | —>g Q G x G & pc E G} (B.38) 

be the class of all pointed graphs on pure, grounded sets, and on Aq define 

the binary definite condition 

('G,pG)£o{H,pH) <=>d{ (3q E H)[q <-H pH & (G,pG) =bs (H,q)], 

(B.39) 

skipping the edge relations in the notation. 

First we note that Eo respects bisimulation: 

G\£oHi & Gi =bs G2 & Hi =bs H2 =>- G2EqH2- (B.40) 

To prove this, suppose —*i,pi are the edge relation and the designated 

node of H1, and similarly with —*2, P2 for H2. The hypothesis of (B.40) 

gives us some q\ 1 pi such that 

G2 =bs G\ =bs (Hi,qi), (B.41) 

and a bisinrulation R of (Hi,pi) with (H2,P2)- By the basic property of 

bisimulations, there must exist some q2 <—2 H2 such that q\Rq2] this means 

that R is a bisimulation of {H\,qi) with (H2,92), and then (B.41) with the 

transitivity of =bs gives G2 =bs (-^2,92), hence G2E0H2. 

Now each G G Ao is a pure, grounded set (a triple in V), even if it is 

ill founded as a graph, and the bisimulation condition =bs is an equiva¬ 

lence condition on Ao by B.28. By Problem xl2.22, there exists a definite 

operation a which is determining for =bs, he. for G, H E Ao 

G =bs H <*=* a(G) = a(H). 

The domain of the antifounded universe is the quotient class of Ao by =bs, 

A =df {a(G) | Ge Ao}- (B.42) 

We define on A the membership condition 

xey (3G, H)[x = a(G) & y = ct(H) & GeqH], (B.43) 

unambiguously by (B.40), and finally we take the Pure Antifounded Uni¬ 

verse to be the triple A,A,e. We will refer to it by the name of its domain 

A, which is also the collection of its sets--there are no atoms in A. 

B. 32. Theorem. (Aczel) (AC) A is a Rieger universe, which further sat¬ 

isfies the Antifoundation Principle AFA, the Axiom of Choice AC and the 

Principle of Purity. 
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Proof. The key property of A is that for each graph H £ V with edge 

relation and each node p 6 H, 

ba(<x(H,p)) = {a(H,q) | q *-H p}, (B.44) 

which follows from the following trivial computation: 

xebA(a(H,p)) (3G £ A0)(3q <—H p)[x = a(G) & G =bs (H, q)) 

<t=^> (3q <-H p)[x = a(H,q)\. 

This implies, in particular, that, each bA{x) is a set, so A is a set universe. 

For the Rieger property, suppose Y C A and (using AC) choose for each 

y £ Y a pointed graph Gy £ Ao, such that (1) a(Gy) = y. By replacing 

each Gy by an isomorphic copy if necessary, we can also ensure that (2) 

y ^ z =>■ Gy fl Gz = 0, and (3) for all y £ Y, 0 ^ Gy. Let 

H =df \J{Gy \ y £Y} U {0}, 

u v <=>d{ (3y £ Y)[u —+y rV(u = 0& r = Py)]i 

where —+y and py are the edge relation and the point of Gy. The pointed 

graph H with edge relation —and point 0 is obviously in Ao, and for 

each y £ Y, 

(H,py)=hsGy (B.45) 

by the trivial (identity) bisimulation 

{(u,v) £ H x Gy \ u = v}; 

thus, by (B.44), and the definition, 

bA(a(Hj)) = {a(H, q) \ q # 0} 

= {<x(H,py) | y eY} 

= {a(Gy) | y £ y} by (B.45) 

= Y. 

To prove the uniqueness of oc(H), suppose H' is any pointed graph in Ao 

with edge relation —►' and point q' such that 

Ge0H' a(G) £ Y. 

By (B.44) again, 

bA{a(H',q')) 

Thus, for each y e 7, 

{a(H\q) \q^> q'} 

{a{H,py) I y eY} by hyp. 

V = aiGy) = a(H,py)ea(H'), 
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and we can choose (by AC) some qy q' and a bisimulation Sy of (H,py) 

with (.H',qy); and conversely, by the same argument, for each q q1 we 

can choose some yqEY and some bisimulation Tq of (H,qy) with (H\q). 

It is now easy to verify that the union 

R = U {Sy I P, -H 0} U {T, | «^V}u {(»,«')} 

is a bisimulation which establishes that H =bs H', i.e. ot(H) = a(H'). 

Finally, to verify AFA for A, suppose G is a graph in A with edge 

relation —£ A. To prove that G admits a decoration in A, it is enough 

to define an A-operation <5 such that 

A \= (Vp G G)[5(p) = {5(g) | q < g p}], (B.46) 

since A is a Z-F universe, so it “knows” from (B.46) that the restriction of 

8 to G is a function, which is then a decoration of G. Let 

H =df MG) e V, 

and make H into a graph in V with the edge relation 

x -+h V ^=bif A\= x ~^Gy (x, y G H). (B.47) 

For each p G H, set 

<5(p) =df a(H,p) e A (p G H) 

and compute: 

b>i(5(p)) = {a(H, q) \ q p} by (B.44) 

= {ot(H,q) | A^q^cv} by (B.47) 

= {5{q) 1 -A H q +-g p} by (BAS) 

Put another way, for each peG, 

xe8(p) A |= (3q <—g p)[x = %)]. 

which is equivalent to (B.46). 

It remains to show that G admits at most one decoration in A, and for 

this it suffices (as above) to show that if 8' is any A-operation such that 

A (= (Vp G G)[5'(p) = {<$'(<?) | Q i g p}], (B-49) 

then 8'(p) = 5(p), for every p G H. Given such a 8', choose (by AC) a 

pointed graph H'p with point rp for each p G H, such that 

8'(p) = a(H'p) (peH), 
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and make sure as in the proof of the Rieger property that these graphs are 

all pairwise disjoint. If H' = (J {H'p | p G H] is the union of all the graphs, 

then 

S'ip) = a(H',rp) (peH), 

since (trivially) the identity relation {(y, q) | q G H} is a bisimulation of 

(H'p, rp) with (H, rv). We now claim that the relation 

R =df {(/b s) G H x H' | a(H', s) = <5'(p)} 

is a bisimulation of (H,p) with (H',rp) for each p G H. This will complete 

the proof, because for p G H, a(H',rp) = S'ip), hence pRrp, and hence 

6 (p) = a{H,p) = a(H',rp) = 6'ip). 

To show the somewhat less trivial half of the italicized statement, let —d 

be the edge relation of H\ assume pRs and compute: 

a{H', t)ea{H', s) 

aiH',t)e6'ip) because pRs 

for some q <—h P, a{H', t) = ^(g) by (B.49) 

for some q <r—H p, qRt. 

The Axiom of Choice for A follows from B.14, and the Principle of Purity 

is trivial. 

Problems 

xB.l. Prove that for each set universe M. = M, S, E, the axioms for defi¬ 

nite conditions and operations listed in 3.18 become true, if we replace in 

them “condition” by “Ad-condition”, “operation” by “Ad-operation”, G by 

E, Set by S and (Vp) by (Vy G M). 

*xB.2. Suppose pairs and Cartesian products are defined by the Kuratowski 

operation of 4.3. Show that U ,T=2{-^o}n ^ Z and infer that the following 

proposition is not a theorem of ZDC: for each set A, there exists a function 

f : N —> f[A\ such that 

/(0) = A x A, fin + 1) = fin) x A. 

*xB.3. Construct a definite operation (x,y)' with the following properties. 

(1) (x, y)' is an ordered pair operation, i.e. it satisfies 4.1 and 4.2. (2) If 

X,Y G Z, then their Cartesian product X x Y is also in Z. (3) If U^°=2 ^ 

is defined using this pair, then for each A G Z, U,^°=2 An G Z. 
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*xB.4. Show that'the implication 4.1 ==> 4.2 is not a theorem of ZDC for 

an arbitrary definite operation (x,y). 

*xB.5. Verify that if I is a transitive set, then 

A E M(I) =}► TC(A) E M(I). 

xB.6. For each I, define Kn(I) by the recursion 

Ao(/) = /, Kn+1(I) = Kn(I)uV(I<n(I)). (B.50) 

Show that 

Mn(I)QKn(TCn+1(I))CM(I), 

where TCn(I) and Mn(I) are defined by (11.16) and (11.18), respectively. 

"xB.7. Find some / D Nq such that TC(I) £ M(I). Infer that ZDC cannot 

prove that “every set has a transitive closure.” 

"xB.8. The implication (4.25) =t- (4.27) cannot be proved for an arbitrary, 

definite operation Aj in ZDC. 

*xB.9. The equivalence in Problem xll.7 is not a theorem of ZDC. 

*xB.10. Assume that the full Axiom of Choice and the Generalized Con¬ 

tinuum Hypothesis is true, so for all cardinals k, 2k =c k+. Prove that" 

(n Kn) C Z, (fin Kn) ^ Z. 

Infer that ZAC cannot prove the existence of an infinite, increasing se¬ 

quence of infinite cardinals, i.e. the proposition 

e : (3/ : N /[iV])(Vn e N)[N <c f(n) <c f(n + 1)]. 

*xB.ll. Show that ZDC cannot prove the proposition “the wellordered set 

N of integers is similar with an ordinal”. Hint: Use Problem *xl2.8. The 

less trivial part of the problem is how to compute (or avoid computing) the 

relativization of this fairly complex proposition. 

*xB.12. (AC) Show that ZFC cannot prove that strongly inaccessible car¬ 

dinals exist. Hint: Go by contradiction and interpret the meaning of the 

alleged theorem in VK, where k is the least strongly inaccessible cardinal. 

xB.13. An ordered pair operation in a Rieger universe A4 is any binary 

Ad-operation C such that for all x,y,x',y' E M, 

C{x, y) = C{x\ y') <$=>• x = x' & y = y . (B.51) 
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Cartesian products and function spaces relative to C are defined by 

AxcB =df p{C(x,y) | xEA,yEB}, 

(A —*c B) =df p{feM\(ytEf)[tEAxcB) 

& (VxEA)(3\yEB)[C(x,y)Ef}}, 

where p(Y) is the Rieger operation of M defined in (B.14). Verify that 

these definitions make sense (i.e. p is applied to appropriate arguments) 

and hence A Xc B and A —>c B are .Ad-operations. 

*xB.14. Define triples, structured sets and systems of natural numbers in an 

arbitrary Rieger universe A4, relative to an arbitrary ordered pair operation 

C(x,y) in Xi. Formulate the Choice Principles DC, ACat and AC using 

these notions and prove that every Rieger universe M. satisfies DC, and if 

AC is also true, then M. also satisfies AC. 

xB.15. Show that the Rieger universe Xia of B.16 has an ordered pair 

operation C such that for all x and y, the “pair” C(x,y) is an atom. 

*xB.16. (AC) Define a Rieger universe M. which satisfies the following two 

propositions. 

(a) There exists a binary, definite condition <a which well orders the 

class of atoms, in the sense that (1) for all atoms a, 6, c, 

a < a, [a < b & b < c] => a < c, [a < b & b < a] => a = c, 

(2) for every two atoms a, b, either a < b or b < a, and (3) every non-empty 

set of atoms has a <-least member. 

(b) Every set X is equinumerous with an <-initial segment of atoms, i.e. 

for some atom b, X =c {a | Atom(a) & a < b}. 

Hint: Make the ordinals atoms in some Rieger universe. 

*xB.17. Define a Rieger universe which has at least two, distinct self¬ 

singletons, i.e. sets a and b such that a ^ 6, a = {a} and b = {b}. Hint: 

Start with a universe which has two atoms and imitate the coding con¬ 

struction in B.16. 

*xB.18. Define a Rieger universe which contains an infinite sequence of 

distinct sets Xq,x\, ..., such that for each i, X{ = {xj+i}. 

xB.19. Given a graph G and a node p e G, let 

G \ p = {x e G | x=pVp=»x} 
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consist of p and all the nodes on a path below it. Consider G \ p as a 

subgraph of G, with the restriction of the edge relation —to it, and 

prove that 

(G,p) =bs (G \ p,p). 

B.33. Definition. A partial bisimulation between two graphs G and H 

is any relation R C G x H which is a bisimulation of the pointed graphs 

(G,p) and (H.q) for every (p,q) 6 R; it is a total bisimulation if in 
addition 

(Vp G G)(3q G H)pRq & (Mq G H)(3p G G)pRq. 

Two graphs are bisimilar if there exists a total bisimulation between them. 

xB.20. For all pairs of graphs G, ff, there exists a largest (under C) partial 

bisimulation R between G and H, and G =bs H if and only if this largest 

bisimulation is total. 

xB.21. Two graphs G, H are bisimilar if and only if every pointed graph 

(G,p) with p G G is bisimilar with some (ff, <?), q G if, and conversely, 

every (H,q) is bisimilar with some (G,p). 

xB.22. (AFA) Prove that there exists distinct, pure sets x, y and z such 

that 

x 3 y 3 z 3 x, 

and draw a picture of them. 

*xB.23. (AFA) Prove that there are only two, transitive, pure singletons. 

How many transitive, pure doubletons are there? Draw pictures of them. 

xB.24. (AFA) With the Kuratowski pair, prove that there exists a pure 

set x such that 

x = (0,x), 

and draw a picture of it. 

xB.25. (AFA) With the Kuratowski pair, prove that there exists a pure 

set x such that 

x = {(n,x) | n G N}, 

and draw a picture of it. 
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The axiomatic theory of sets is a vibrant part of pure mathematics, 
with its own basic notions, fundamental results, and deep open 
problems. At the same time, it is often viewed as a foundation of 
mathematics so that in the most prevalent, current mathematical 
practice “to make a notion precise” simply means “to define it in set 
theory.” This book tries to do justice to both aspects of the subject: 
it gives a solid introduction to “pure set theory” through transfinite 
recursion and the construction of the cumulative hierarchy of sets 
(including the basic results that have applications to computer sci¬ 
ence), but it also attempts to explain precisely how mathematical 
objects can be faithfully modeled within the universe of sets. 

Topics covered include the naive theory of equinumerosity; para¬ 
doxes and axioms; modeling mathematical notions by sets; cardinal 
numbers; natural numbers; fixed points (continuous least-fixed-point 
theorem); well-ordered sets (transfinite induction and recursion, 
Hartogs’ theorem, comparability of well-ordered sets, least-fixed- 
point theorem); the Axiom of Choice and its consequences; Baire 
space (Cantor-Bendixson theorem, analytic pointsets, perfect set 
theorem); Replacement and other axioms; ordinal numbers. There 
is an Appendix on the real numbers and another on natural models, 
including the antifounded universe. 

The book is aimed at advanced undergraduate or beginning gradu¬ 
ate mathematics students and at mathematically minded graduate 
students of computer science and philosophy. 
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