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Preface 

This book has been written for the sophomore-junior level student who wishes to 

know more about the “new math.” The prerequisites for this book include some 

contact with college mathematics but not necessarily great mathematical skill. 

Ideally, the reader will have taken one quarter or one semester of calculus. 

There is currently a significant amount of repetition in post-calculus mathe¬ 

matics courses. It is not uncommon for a student taking four such courses to 

receive four separate sets of lectures on set theory. In the mathematics department 

of the University of South Florida, we have eliminated this duplication of effort 

by offering a sophomore-junior level course in set theory. This course, which is 

required of all mathematics majors, is also popular with upper level education 

majors who anticipate teaching mathematics. It is for these two groups of students 

that this book is primarily written, and the book is the outgrowth of many years 

of teaching this course. 

Presenting set theory within the framework of an axiomatic system is, without 

doubt, more satisfactory when one intends to be rigorous. But there is no axio- 

matization of set theory that is simple and easy enough for the beginning student. 

Therefore we have utilized, cautiously we hope, an intuitive approach to the 

subject. 

Also, we have endeavored to make the book self-contained. We have included 

the necessary basic material for the student who wishes to go on to such courses as 

topology, analysis, modern algebra, etc. But it is our hope that the material in 

this book would prove interesting to the student and teacher in its own right. It 

would be unfortunate to discover that a subject as interesting as set theory be 

regarded as useful only as a prerequisite course. 

The entire book is designed to be covered in one semester or two quarters. For 

a short one quarter course, we recommend omission of the last three chapters and 

a de-emphasis of Chapter 1. The instructor presenting such an abbreviated course 

may also want to omit sections 5 to 8 of Chapter 2 and section 3 of Chapter 3. 

Of course this book would never have been published without considerable 

assistance from many other people almost too numerous to mention. We are 

indebted, as always, to the many students at the University of South Florida who 

have taken a course in set theory from us in recent years. Almost without fail they 

have happily endured the uncertainties of a course taught from mimeographed 

notes and manuscript. 

We are indebted to our colleagues, Professors Marcus McWaters, George 

Michaelides, Leonard E. Soniat, and Frederic Zerla, all of whom taught a course 

from the mimeographed form of this book and made many helpful suggestions. 



We would particularly like to thank the following people: Professor A. W. 

Goodman for urging us to write this book and reading the first two chapters of 

the manuscript; Professor Arthur Lieberman for reading the entire manuscript 

and for many helpful discussions; Professors Klaus E. Eldridge of Ohio Univer¬ 

sity, David Isles of Tufts University, Eugene M. Kleinberg of M. I. T., and 

Wayne H. Richter of the University of Minnesota, for their constructive criticisms 

and helpful suggestions which were incorporated into the manuscript; and Mr. 

William R. Zigler for reading portions of the manuscript. 

Finally, we are grateful to Miss Wanda Balliet (now Mrs. Jimmie Alcus Evans) 

for her expert typing of the manuscript and to the staff of Houghton Mifflin 

Company who have turned a manuscript into a book. 

Shwu-Yeng T. Lin 
You-Feng Lin 

Tampa, Florida 
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1 / Elementary Logic 

In this chapter we introduce a minimal amount of logic, just enough to serve 
as a working tool for the remainder of this book. 

1. STATEMENTS AND THEIR CONNECTIVES 

The study of logic is the study of the principles and methods used in dis¬ 

tinguishing valid arguments from those that are not valid. The purpose of 

this preliminary chapter in logic is to help the reader to understand the 

principles and methods used in each step of a proof. 

The starting point in logic is the term “statement,” which is used in a 

technical sense. By a statement we mean a declarative sentence that is either 

true or false, but not both simultaneously. It is not necessary that we know 

whether the statement is true or false; the only qualification is that it should 

definitely be one or the other. Usually we can determine immediately 

whether a statement is true or false, but in some cases a little effort is 
required, and in other cases it may be impossible to reach a conclusion. 

The following examples should show what we mean. 

EXAMPLE 1. Each of the following is a statement. 

(a) Tampa is a city in the state of Florida. 

(b) 2+1 is 5. 
(c) The digit in the 105th decimal place in the decimal expansion of ^3 

is 7. 
(d) The moon is made of blue cheese. 

(e) There is no intelligent life on Mars. 

(f) It is raining. 

Clearly (a) is true while (b) and (d) are false. We are in doubt about 

the status (true or false) of (c) and (e), but this is due only to a defect 

in our knowledge. Thus (c) and (e) are also statements. The truth or 

falsity of sentence (f) depends on the weather at the time this statement 

is made. 

[i] 



EXAMPLE 2. None of the following is a statement, because it makes no sense 

to ask if any of them is true or false. 

(a) Come to our party! 

(b) The sky is rich. 

(c) How are you today? 

(d) Goodbye, honey. 

The statements quoted in Example 1 are all simple statements. A com¬ 

bination of two or more simple statements is a compound statement. For 

example, “2+1 is 5 and the digit in the 105th decimal place in the decimal 

expansion of is 7” is a compound statement. 

We are familiar with the use of letters to represent numbers in algebra. 

In the study of logic we use letters such as p, q, r, ... to represent state¬ 

ments. A letter such as p may represent either a simple statement or a 

compound statement. Unless otherwise stated, we shall use capital letters 

P, Q, R, ... to represent compound statements. 
There are many ways of connecting statements such as p, q, r, ... to 

form compound statements, but only five are used frequently. These five 

common connectives are (a) “not,” symbolized by ~ ; (b) “and,” symbol¬ 

ized by A ; (c) “or,” symbolized by V ; (d) “if ... then ...” symbolized 

by and (e) “... if and only if ...” symbolized by <->. 

In this section we discuss the connectives ~ and A, postponing the 

remaining connectives V, ->, and <-* until the next section. 

Let p be a statement. Then the statement ~p, read “not p” or “the 

negation of p,” is true whenever the statement p is false and is false when¬ 

ever p is true. For example, let p be the statement “This is an easy course.” 

Then its negation ~p represents “This is not an easy course.” 

The truth of depends upon the truth of p. It is convenient to record 
this dependency in a truth table: 

Table 1 

where the letters T and F stand for “true” and “false,” respectively. In the 

first column of Table 1 we list the two possible truth values for the state¬ 

ment p, namely T or F. Each line in a truth table represents a case that 

must be considered, and of course in this very simple situation, there are 

only two cases. Using the lines in Table 1 we see that if p is true then 

[2] 1 / Elementary Logic 



is false, and if p is false, then ~p is true. Thus Table 1 tells us the truth 
value of ~p in every case. 

Definition 1. The connective A may be placed between any two statements p 

and q to form the compound statementpAq whose truth values are given 

in the following truth table. 

Table 2 

The symbol p A q is read “p and q” or the “conjunction of p and q." For 

example, let p be the statement “The sky is blue” and q be “The roses are 

red.” Then the conjunction p A q represents “The sky is blue and the roses 

are red.” In a compound statement such aspAq, the individual statements 

p and q are called components. A component may be a simple statement or 

a compound statement. In a compound statement with two components, 

such as pAq, there are at most 4(=2x2) possibilities, called the logical 

possibilities, to be considered; namely: 

(1) p is true and q is true; 

(2) p is true and q is false; 

(3) p is false and q is true; 

(4) p is false and q is false. 

Each one of these four possibilities is covered in the four rows of Table 2. 

The last column gives the truth values of pAq. Inspection shows that 

p A q is true in only one case. That is, p A q is true when both components 

are true, and in the other three casespAq\s false. The thoughtful reader 

will realize that Table 2 reflects the way in which the conjunction “and” 

is used in everyday English. 
Using Tables 1 and 2, we can find the truth values of complicated state¬ 

ments involving only the connectives ~ and A. 

EXAMPLE 3. Construct the truth table for the compound statement 

~[(~A) A (~<?)] 

1.1 I Statements and Their Connectives [3] 



Solution. 

Table 3 

p q ~ p ~q ~ [(~<7) a(~<?)] 

T T F F F T 

T F F T F T 

F T T F F T 

F F T T T F 

Step 1 1 2 3 

If the method used in constructing Table 3 is not obvious, a word of 

explanation may help. The headings are selected so that the compound 

statement (last column) is gradually built from its various components. 

The first two columns merely record all cases for the truth values of p and q. 

We then use Table 1 to obtain the entries in the third and fourth columns, 

the corresponding truth values for ~p and ~q. In the next step we use 

the entries in the third and fourth columns and Table 2 to obtain the entries 

in the fifth column. Finally the entries in the fifth column and Table 1 give 

the entries in the sixth column—the truth values of r+u [(~P)A(~<?)]. The 

serious student should now copy this last compound statement, close the 

book, and try to reproduce Table 3. 

The statement in the above example, ~[(~p) A(~^)], uses parentheses 

and brackets to indicate the order in which the connectives apply. Often 

an expression can be simplified if we can drop some of the parentheses or 

brackets. The usual convention is to agree that ~ binds more strongly 

than A, i.e., the connective ~ should be applied first. Thus, for example, 

the expression (~/>) A(~g) is simplified as ~p /\ ~q. 

Exercise 1.1 

In Problems 1 through 10 an English sentence is given. In each case deter¬ 

mine whether the sentence is a statement (S), or not (N). 

1. On January 7, 1442, snow fell somewhere in Florida. 

2. Aristotle had flat feet. 

3. Socialism is wrong. 

4. The richest man in the world is Mr. Hunt of Texas. 
5. Jack and Jill are good. 

6. How much is this car worth? 

7. Keep off the grass. 

8. Always fasten your seat belt. 

[4] 1 / Elementary Logic 



9. The number 2987654321 + 37 is prime. 

10. Beethoven wrote some of Chopin’s music. 

11. Among the statements given in Problems 1 through 10, indicate those 

that you feel must be true (T), and those for which the status may 
be difficult to determine (D). 

In Problems 12 through 19 find the truth values for the given statements. 

Use the format of Table 1 or Table 2 for the two or four cases respectively. 

12. ~(~p) 13. ~ ~ /?)] 

14. p Ap 15. ~{p A ~p) 

16. p A ~q 17. A q 

18. (p A q) A ~p 19. 

20. In a compound statement involving three distinct components p, q, 

and r, how many cases are required to cover every logical possibility? 

How many cases are necessary if there are four distinct components? 

How many cases are necessary if there are n distinct components? 

21. The following is an attempt to arrange all the cases in a truth table 

for a statement involving three components p, q, and r. Complete 

this unfinished work. 

p q r 

T T 
T T F 

T T 

T F 

T T 

T F 

F F 

F F 

In Problems 22 through 25, find the truth tables for the given statements. 

Use the pattern developed in Problem 21 for the various cases. 

22. (pAq)Ar 23. pA(qAr) 

24. (p A ~ q) A r 25. ~q A (r Ap) 

2. THREE MORE CONNECTIVES 

In the English language there is an ambiguity involved in the use of “or.” 

The statement “I will get a Master’s degree or a Ph.D.” indicates that the 

speaker may get both the Master’s degree and the Ph.D. But in another 

statement, “I will marry Linda or Lucy,” the word “or” means that only 

1.2 I Three More Connectives [5] 



one of the two girls will be chosen. In mathematics and logic, we cannot 

allow ambiguity. Hence we must decide on the meaning of the word “or.” 

Definition 2. The connective V may be placed between any two statements p 

and q to form the compound statement p V q. The truth values of p V q are 

defined by Table 4. Thus V is defined to be the inclusive “or” as used in 

the first statement above. 

\ 

Table 4 

P 

T 

T 

F 

F 

q pvq 

The symbol p \/ q is read “p or q” or “the disjunction of p and q.” Notice 

that the conjunction of p and q is true when and only when the two com¬ 

ponents are both true (Table 2), whereas the disjunction is false when and 

only when the two components are false (Table 4). 

Let us compare the truth tables for pV q and ~(~/> A ~q) in Tables 

3 and 4. We find that in each case the last column is TTTF so that these 

two statements have the same truth values in each of the four logical possi¬ 

bilities. Showing that certain statements have the same truth values in each 

case is an important part of logic. In fact, logic treats two such statements 

as the same. 

Definition 3. When two statements P and Q, simple or compound, have the 

same truth values in each of all the logical possibilities, then P is said to 

be logically equivalent or simply equivalent to Q, and We write P = Q. 

In short, two statements are logically equivalent provided that they have 
the same truth table. Thus, we have 

pVq = ~(~pA~q) 

Although two logically equivalent statements are regarded as the same, 

as far as logic is concerned, we prefer the simpler statement “/? or q” to 

its more complicated equivalent statement, “It is not true that neither 
p nor q.” 

[6] 1 / Elementary Logic 



Definition 4. The connective -*■ is called the conditional and may be placed 

between any two statements p and q to form the compound statement 

p -> q (read: “if p then q"). By definition the statement p -> q is equivalent 

to the statement ~(p A ~q), and the truth values of p-+q are given in 
Table 5. 

Table 5 

Case P q ~ q p A ~ q p -> q [ = ~ (p a ~ q)\ 

1 T T F F T 

2 T F T T F 

3 F T F F T 

4 F F T F T 

A motivation of Definition 4 is in order. Let p be the statement “The 

sun is shining” and let q be the statement “I am playing tennis.” Then the 

compound statement p -» q is “If the sun is shining then I am playing 

tennis.” Now when do we consider such a statement false? Clearly p-> q 

is false if the sun is shining and I am not playing tennis, and only in this 

case. In other words p -> <7 is false if p A ~q is true, and only in this case. 

Consequently p -*• q is true if and only if ~(p A ~q) is true. But this is 

precisely Definition 4. We now study the truth table of p-*q, that is, of 

~ (p A ~ q). 

According to Definition 4, the meaning of the conditional statement 

p-+ q departs radically from our ordinary usage of “If p then q.” In our 

ordinary language,1 a sentence of the form “If p then q” is taken to mean 

that q is true whenever p is true. Therefore the cases in which p is false 

need not be considered. 
For example, the statement “If Lincoln shot Grant, then Jefferson was 

the first president” is regarded as nonsense, since both of the components 

are false. Consequently in ordinary usage one does not inquire whether 

such a compound statement is true. In creating a formal language, the 

logician wishes to assign a truth value to p ->• q for each of the four logical 

possibilities, even though two of the cases appear to be nonsense in our 

ordinary language. For a variety of reasons, which will appear in due time, 

logicians have settled on the definition adopted here. Thus in our formal 

language p -► q is true in every case except case 2 (see Table 5). As a con¬ 

sequence of this agreement, we will be able to prove some very simple and 

1 As opposed to “ordinary language,” logic is called a formal language. 
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useful theorems, without such an agreement the proofs of which would be 

awkward or very difficult.2 

We now introduce the last of the five most common connectives, one 

that appears frequently in the statements of mathematical theorems. 

Definition 5. The connective is called the biconditional and may be placed 

between any two statements p and q to form the compound statement 

p *-+ q (read: “p if and only if q”). The statement p <-► q is defined to be 

equivalent to the compound statement (p^q) A{q-*p), and the truth 

values of p q are given in Table 6. 

EXAMPLE 4. Find the truth table for p <-> q. 
\ 

Solution. Following the method described earlier we obtain Table 6. 

Table 6 

Case P q p~yq q-+p p ^ q [ = (/>-><?) a (<?->•/>)] 

1 T T T T T 

2 T F F T F 

3 F T T F F 

4 F F T T T 

Step 1 1 2 

From the above truth table, we observe that p q is true if both com¬ 

ponents are true or if both components are false. In any other case (cases 2 
and 3) the statement p <-» q is false. 

Exercise 1.2 
i 

In Problems 1 through 12 construct the truth tables for the given state¬ 
ments. 

1. p V ~p 

3. ~(~p V ~q) 

5. (~<?)->(~p) 
7. p A (<7 V r) 

9. p V {q A r) 

2. ~ (/? V ~p) 

4. V q 
6. q p 

8. {pAq)V (pAr) 

10. (/? V q) A (p Mr) 

2 See, for instance, Theorems 1 and 7 in Chapter 2. 

[8] 1 / Elementary Logic 



11. (pVq)Vr 12. pViqVr) 

13. Is the statement (~<?)-► (~/?) (Problem 5) logically equivalent to 
the statement p -> ql 

14. Is the statement ~p V q (Problem 4) logically equivalent to the state¬ 
ment p-+ ql 

15. From the statements in Problems 1 through 12, find those pairs of 
statements that are logically equivalent. 

16. In each of the following, translate the given compound statement 
into a symbolic form using the suggested symbols. 

(a) It is not the case that I am not friendly to you. (F) 

(b) If she is an angel, then she has two wings. (A, W) 

(c) The price of meat goes up if and only if the supply does not meet 
the demand of meat. (P, S) 

(d) Either the farmers will reduce the prices or the government will 
step in. (F, G) 

(e) If meat exports increase or more livestock is not raised, then 
prices will rise. (E, R, P) 

3. TAUTOLOGY, IMPLICATION, AND EQUIVALENCE 

Let us examine the truth table for the statement p V ~p\ 

Table 7 

P 

T 

F 

P 

We notice that the statement p V is true in every case, that is, in all 

logical possibilities. Such an important type of statement deserves a special 

name. 

Definition 6. A statement is said to be a tautology provided that it is true in each 

of all logical possibilities. 

Let P and Q be two statements, compound or simple. If the conditional 

statement P -* Q is a tautology, it is called an implication and is denoted by 

P=> Q (read: P implies Q). Thus, the following conditional statements are 

tautologies: 

(1) p^p. 
(2) pAq^qAp. 

1.3 / Tautology, Implication, and Equivalence [9] 
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(3) p^pKp. 

(4) p Aq -+ q.3 

In logic or mathematics, “theorems” are meant to be true statements, and 

a “proof” (of a theorem) is a justification of the theorem. 

Theorem 1. Let p and q be any two statements. Then 

(a) Law of Addition (Add.): p^>pMq. 

(b) Laws of Simplification (Simp.): pAq=>p, 
pAq=>q. 

(c) Disjunctive Syllogism (D.S.): (/?V q) A ~p=>q. 

Proof. We leave the proofs for (a) and (b) to the reader as exercises. 
The following is a simplified truth table for (p \/ q) A ~p -*■ q: 

Table 8 

(p V q) A ~ p —> <7 

T T T F F T T 

T T F F F T F 

F T T T T T T 

F F F F T T F 

1 2 1 3 2 4 1 

Let us take a moment to explain the construction of a simplified truth 

table: The truth values in Table 8 are assigned, column by column, in the 

order indicated by the numerals appearing in the bottom row of the table. 

In a simplified truth table, we write the truth values directly first under 

each component and then under the connectives. This saves space and 

time. 
Now, returning to the proof of the theorem, since the final step (step 4) 

in Table 8 consists of all T's, the conditional statement (p\/ q) A ~p -> q 

is indeed an implication. 

If the biconditional statement P <-> Q happens to be a tautology, it is 

called an equivalence and is denoted by P o Q (read: P is equivalent to Q). 

From Definition 5 and Table 6, P <=> Q provided that P and Q have 

3 We shall consider v and a to bind more strongly than —> and *-*■, and shall write 
p -* P v<7 for p -> (p vq), etc. See also the last paragraph of Section 1. 
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the same truth values in each of all logical possibilities, and conversely, 
P and Q have the same truth values in each of all logical possibilities 
provided P o Q. Thus, by Definition 3, PoQ and P = Q have the 
same meaning, and hence we may use and = interchangeably. 

Theorem 2. Let p and q be any two statements. Then 
(a) Law of Double Negation (D.N.): ~(~p) =p. 
(b) Commutative Laws (Com.): pAq = qAp, 

pVq = qyP. 
(c) Laws of Idempotency (Idemp.): pAp=p, 

PV P=P- 
(d) Contrapositive Law (Contrap.): (p -* q) = (~q ~p). 

Proof. We leave proofs for parts (a), (b), and (c) to the reader as exercises, but 
we give an outline of the proof of (d). 

We have the following simplified truth table for the biconditional state¬ 
ment (p -> q) •<-* (~q -+ ~p): 

Table 9 

(p q) <-» (~q ~P) 

T T T T F T F 
T F F T T F F 
F T T T F T T 
F T F T T T T 

Step 1 2 1 4 2 3 2 

Thus, Table 9 shows that p-* q is equivalent to ^ Cj —> ,‘N-/ p. 

The following theorem credited to Augustus De Morgan (1806-1871) is 
one of the most convenient tools in logic. 

Theorem 3. (De Morgan's Laws (De M.)). Let p and q be any two statements. 
Then ~(pAq) = ~pV~q 
and ~(p V q) = ~p A ~q. 

Proof. We shall prove the first part of this theorem and leave the other part to 
the reader as an exercise. We construct a simplified truth table for the 
biconditional ~(p A q) <-*■ (~p V ~q): 

1.3 I Tautology, Implication, and Equivalence [ii] 



Table 10 

r-*/ (P A q) <-» (~P V ~q) 

F T T T T F F F 

T T F F T F T T 

T F F T T T T F 

T F F F T T T T 

3 1 2 1 4 2 3 2 

The above truth table shows that ~(pAq) is equivalent to V ~q. 

Theorem 4. Let p, q, and r be any statements. Then 

(a) Associative Laws (Assoc.): (pAq) A r = p A (qAr), 

(p V q) V r = p V (qW r). 

(b) Distributive Laws (Dist.): p A (q V r) = (p A q) V (p A r), 

p V {q A r) — (p V q) A (p V r). 

(c) Transitive Law (Trans.): (p -*■ q) A {q -> r) => (p -> r). 

Proof. We leave the proofs for the Associative Laws and the second Distributive 

Law to the reader as exercises. 

Let us prove that p A (q Vr) = (pAq) V (p Ar). Since this involves 

three components, there are 23 = 8 logical possibilities to consider. The 

following truth table shows that p A (qVr) and (pAq) V (pAr) have the 

same truth values in each of all eight logical possibilities. Therefore, 
p A (q\Jr) and (pAq) V (pAr) are equivalent. 

Table 11 

P q r qv r pr\q p Ar pA{q\tr) (pAq)v (p Ar) 

T T T T T T T T 
T T F T T F T T 
T F T T F T T T 
T F F F F F F F 
F T T T F F F F 
F T F T F F F F 
F F T T F F F F 
F F F F F F F F 

For simplicity and space saving, we construct a simplified truth table 

as introduced in Table 8 for (p->q) A (q->r) -> (p^r). 

[12] I / Elementary Logic 



Table 12 

(.p —>• q) A (q -4 r) —» (P —» r) 

T T T T T T T T T T T 
T T T F T F F T T F F 
T F F F F T T T T T T 
T F F F F T F T T F F 
F T T T T T T T F T T 
F T T F T F F T F T F 
F T F T F T T T F T T 
F T F T F T F T F T F 

Step 1 2 1 3 1 2 1 4 1 2 1 

Since the final step (step 4) consists entirely of T values, the Transitive 

Law is proved. 

Because of the Associative Laws, the brackets in (pAq)Ar = 

p A (q A r) and (/? V q) V r = p\/ (q V r) become unnecessary, and the 

expressions p A q A r and p V q V r now have definite meanings, and 

similarly for px A p2 A ••• A />„ and />i V p2 V ••• V pn. 

Theorem 5. Let p, q, r, and s be any statements. Then 

(a) Constructive Dilemmas (C.D.): 

(p^> q) A (r^s) => (/? V r -> <7 V j), 

(/? -> g) A (r -+ s) => (p Ar q As). 

(b) Destructive Dilemmas (D.D.): 

(p q) A (r -> s) q V ~s -> ~/7 V ~r), 

(/7 —> q) A (r —> s) => (~q A ~s ~p A ~^). 

Proof. The proof of Theorem 5 is left to the reader as an exercise. 

Theorem 6. Let /? and <7 be statements. Then 
(a) Modus Ponens (M.P.): (p -» q) A p => q. 

(b) Modus Tollens (M.T.): (p -*■ q) A ~ q => ~p. 
(c) Reductio ad Absurdum (R.A.): (p->■ q) o (p A ~q -> q A ~q). 

Proof. Exercise. 
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Exercise 1.3 

1. Prove parts (a) and (b) of Theorem 1. 

2. Prove parts (a), (b), and (c) of Theorem 2. 

3. Prove that ~(pVq) = ~p A ~q. 

4. Prove part (a) of Theorem 4. 

5. Prove that p V (q Ar) = (pW q) A (/? V r). 
6. Prove that (p -> q) o (p A r q A r). 

7. Prove that (p*-*q) = (p Aq) V (~/? A ~#). 
8. Using De Morgan’s Law, write in ordinary language the negation of 

the statement “This function has a derivative or I am stupid.” 

9. Prove the following De Morgan’s Laws for three components. 

(a) ~(pAqAr) = ~pV~qV~r 

(b) ~(p\/q\/r) = ~pA~qA~r 

10. Can you generalize, without proof, De Morgan’s Laws for n com¬ 

ponents? See Problem 9 for n ~ 3. 

11. Prove the following Absorption Laws. 

(a) p A (p V r) = p 

(b) pV (p A q)=p 

12. Prove Theorem 5. 

13. Prove Theorem 6. 

4. CONTRADICTION 

In contrast to tautologies, there are statements whose truth values are all 

false for each of the logical possibilities. Such statements are called contra¬ 

dictions. For example, p A ~p is a contradiction. 

It is obvious that if t is a tautology then ~ris a contradiction; con¬ 

versely, if c is a contradiction then ~c is a tautology. 

Theorem 7. Let t, c, and p be a tautology, a contradiction, and an arbitrary 

statement, respectively. 

Then, 

(a) p A t o p, 

pV tot. 
(b) p V cop, 

p A c o c. 
(c) cop, and pot. 

Proof, (a) The following truth table for p A t p shows that p A t is equiv¬ 

alent to p. 
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Table 13 

p A t «-» P 

T T T T T 
F F T T F 

Step 1 2 1 3 1 

The other equivalence p\/ t o t may be proved similarly. 

(b) From the following truth table we find that the conditional statement 
p V c <-* p is a tautology and hence, p V c op. 

Table 14 

P V c P 

T T F T T 
F F F T F 

Step 1 2 1 3 1 

The proof for p A c <=> c is similar. 

(c) The truth tables of c->p and p -»t show that c^>p and are 
tautologies. 

Table 15 

c y P p -» t 

F T T 

F | T F 

T 

T 

For the remainder of this book, the symbol c with or without a subscript 

will stand for a contradiction; and the symbol t with or without a subscript 

will denote a tautology. 

Exercise 1.4 

1. Prove that p V t <=> t and p A c o c. 

2. Prove that ~/<=>c and ~cot. 

3. Prove the following Reductio ad Absurdum. 

(p A ~q -► c) o (p —► q) 

4. Prove that p A (p -*■ q) A (p -> ~q) o c. 

5. Prove that (p -> q) => (pV r -» qW r) for any statement r. 

1.4 / Contradiction [15] 



5. DEDUCTIVE REASONING 

The 17 laws summarized in Theorems 1 through 6 are very useful tools 

for justifying logical equivalences and implications, as illustrated in 

Examples 5 through 7. We shall call these 17 laws the rules of inference. 

It should be noted that these rules are selected just for convenient refer¬ 

ence and are not intended to be independent of each other. For instance, 

the Contrapositive Law can be established “deductively” by using other 

laws and relevant definitions, as the next example shows. 

EXAMPLE 5. Prove the Contrapositive Law, (p^>q) = {~q^>~p), by using 

relevant definitions and other rules of inference. 

Solution. (p -> q) = ~ (p A ~ q) Def. 4 
> 

= ~(~g A p) 

= <~[~A ~(~p)j 

- (~q-*~p) 

Com. 

D.N. 

Def. 4 

Therefore, (p -> q) = {~q -> ~p), by the Transitive Law. 

The method of proof used in Example 5 is called deductive reasoning or 

the deductive method, which differs from the method of proof by truth 
tables. 

In general, in deductive reasoning any previously stated axioms, defini¬ 

tions, and theorems and the rules of inference may be used. 

EXAMPLE 6. Prove the Disjunctive Syllogism by deductive reasoning. 

Solution. {p V q) A rv p   p A {p V q) Com. 

- (~pAp) V (~p A q) 

= cV(~pA^) 

= (~pA^)Vc 

= A q 

=> q 

~p A p = c 

Com. 

Th. 7(b) 

Simp. 

Dist. 

Finally, by the Transitive Law, (p V q) A p => q. 

EXAMPLE 7. Prove the following Exportation Law. 

{p A q->r) = Ip ->• (q -> #■)] 

by deductive reasoning. 
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Solution. \-P (q 0] — [/? —> ~ (<y A ~r)] 

= ~ [/? A (q A ~ r)] 

= — [(/? A q) A ~r] 

= (p A q-*r) 

Hence, (p A q -> r) = [/? -> (g -► r)]. 

Def. 4 

Def. 4, D.N. 

Assoc. 

Def. 4 

EXAMPLE 8. Prove that (p r) V (q -> s) = (p A q -> r V s) by deductive 
reasoning. 

Solution. (p -*■ r) V (<7 -> s) = ~(p A ~r) V ~(q A ~s) Def. 4 

= (~/> Vr) V (~£ V s) DeM, D.N. 

= (~p V ~<?) V (r Vi) Com.,Assoc. 

= -[(/> A ?) A ~(r V j)] DeM., D.N. 

= (p A q -> r V 5) Def. 4 

Why we want to use deductive reasoning as opposed to truth tables may 

be seen from the following comparison: To verify the equivalence in 

Example 8 by the method of truth tables, we would have to construct a 

huge truth table with 16 ( = 24) cases (see Problem 20 of Exercise 1.1 or 

Problem 12 of Exercise 1.3); on the other hand, in the solution of Example 8, 

above, we established that equivalence in only five short steps. 

Exercise 1.5 

Prove the following tautologies by the deductive method. 

1. Modus Ponens: p A (p-+ q) => q 

2. Modus Tollens: ~qA(p->q)=>~p 

3. Reductio ad Absurdum: (/? -> q) o (p A ~q -» c) 

4. Disjunctive Syllogism: (p V q) A ~p => q 

5. Theorem 7(c): c => p 

6. (P -► 7) (P- -+P A q) 
7. (P q) ■ (P v <7 -► q) 
8. (P —y q) <=> ~p V q 

9. (P -> r) A (q- > r) 0 (p\/ q^r) 

10. (P -> q) A (.P-+r)<* ■ (p -> q A r) 

11. (P -> q) A (p-*~q) <=> ~ p 

12. (P -> q) V iP~*r)o ■ (p-*qV r) 

13. (P r) V (q^ ► r) 0 (p A q->r) 

1.5 / Deductive Reasoning [17] 



6. QUANTIFICATION RULES 

In any general discussion, we have in mind a particular universe or domain 

of discourse, that is, a collection of objects whose properties are under 

consideration. For example, in the statement “All humans are mortal,” 

the universe is the collection of all humans. With this understanding of 

the universe, the statement “All humans are mortal” may be alternatively 

expressed as: 

For all x in the universe, x is mortal. 

The phrase “For all x in the universe” is called a universal quantifier, and 

is symbolized as (Vx). The sentence “x is mortal” says something about x; 

we symbolize this as p{x). Using these new symbols we can now write the 

general statement “All humans are mortal” as 

(Vx)O(x)) 

Next, consider the statement “Some humans are mortal.” Here the 

universe (or domain of discourse) is still the same as for the previous 

statement. With this universe in mind, we can restate the statement “Some 

humans are mortal” successively as: 

There exists at least one individual who is mortal. 

There exists at least one x such that x is mortal. 

and as 

There exists at least one x such that p(x). 

The phrase “There exists at least one x such that” is called an existential 

quantifier and is symbolized as (3x). Using this new symbol we can now 

rewrite the statement “Some humans are mortal” as 

(3x) (p(x)) 

In general, suppose we have a domain of discourse U and a general 

statement p{x), called a propositional predicate, whose “variable” x ranges 

over U. Then (Vx)(/?(x)) asserts that for all x in U, the statement p(x) 

about x is true, and (3x)(p(x)) means that there exists at least one x in U 
such that p(x) is true. 

In elementary mathematics, quantifiers are often suppressed for the sake 

of simplicity. For example, “(x+ l)(x- 1) = x2- 1” in high school algebra 

books should be understood to say that “for every real number x, 

(x+ l)(x— 1) = x2 - 1.” In mathematics, “for every” and “for all” mean 

the same and both are symbolized by V; and “for some” means the same 

as “there exists” and is symbolized by 3. In less formal expressions, we 

often put the quantifier after the statement. For example, the statement 

“/(x) = 0 for all x” is just the same as “(Vx)(/(x) = 0).” 
* 4 
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In logic and in mathematics, the negation of the statement “p(x) is 

true for every x (in U),,, ~ [(Vx)(/?(x))], is considered to be the same as 

the assertion “there exists at least one x (in U) for which p(x) is false,” 

(3x)(~/?(x)). Similarly, ~[(3x)(p(x))] is considered the same as “there 

is no x (in U) such that p(x) is true”; or in other words, “p(x) is false for 

all x (in [/),” or (Vx)(~p(x)). We summarize in the following 

Rule of Quantifier Negation (Q.N.). Let p(x) be a propositional predicate, that 

is, a statement about an unspecified object x in a given universe. Then, 

~[(Vx)(p(x))] = (3 x)(~p(x)) 

and 

— C(3x) (/? (x))] = (Vx)(~p(x)) 

We have used “=” to denote that two quantified statements on both 

sides of = are considered the same in logic; this usage is consistent with 

the usage of = for logical equivalences, as will be seen in the next paragraph. 

To better understand the quantified statements (Vx)(p(x)) and 

(3x)(p(x)), let us inspect the case in which the universe of discourse con¬ 

sists of finitely many individuals denoted by a1,a2,a3,...,an. Then, since 

(Vx)(/?(x)) asserts that p{x) is true for every al,a2,a3, ...,an, the state¬ 

ment (Vx)(p(x)) is true if and only if the conjunction of 

p(ai),P(a2\p(ai), •••,/>(«„) 

is true. Thus, 

(Vx) (p(x)) amounts to p(at) A p{a2) A ••• A p(an) 

Similarly, 

(3x)(/?(x)) means p(aJ V p(a2) V ••• V p{an) 

Thus, the Rule of Quantifier Negation may be viewed as a generalization 

of De Morgan’s Laws (Theorem 3). 

EXAMPLE 9. Which of the following is equivalent to the negation of the state¬ 

ment “All snakes are poisonous”? 

(a) All snakes are not poisonous. 

(b) Some snakes are poisonous. 

(c) Some snakes are not poisonous. 
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Solution. The domain of discourse U is the collection of all snakes. Let p(x) 

be the propositional predicate which asserts that x is poisonous, (where 

the variable x ranges over U). The statement “All snakes are poisonous” 

is then translated into (Vx)(p(x)). According to Q.N., ~[(Vx)(/?(x))] 

is equivalent to (3x)(~p(x)), which represents “Some snakes are not 

poisonous.” 

Exercise 1.6 

1. Translate the statement from elementary algebra “The equation 

x2-3x+2 = 0 has solutions” into logical language using a quanti¬ 

fier. What is the domain of discourse here? 
2. Find the equivalent statement of the negation for each of the follow- 

ing'by using Q.N. 

(a) All snakes are reptiles. 

(b) Some horses are gentle. 

(c) Some mathematicians are not sociable. 

(d) All female students are either attractive or smart. 

(e) No baby is not cute. 
3. Find the domain of discourse for each of the five statements in 

Problem 2. 

4. Derive 

~[(3*)(p(x))] = (Vx)(~p(x)) 

from 

~[(V*)(<?(x))] = (3x)(~?(x)). 

5. Derive 

~[(Vx)(p(x))] = (3x)(~p(x)) 

from 

~[(3x) (<?(*))] = (Vx)(~g(x)). 

6. Prove that ~[(Vx)(~^(x))] = (3x)(<?(x)) and ~[(3x)(~g(x))] = 

(Vx)(i7(x)). [Hint: Use Q. N.] 

7. PROOF OF VALIDITY 

One of the most important tasks of a logician is the testing of arguments. 

An argument is the assertion that a statement, called the conclusion, follows 

from other statements, called the hypotheses or premises. An argument is 

considered to be valid if the conjunction of the hypotheses implies the 

conclusion. For examples, the following is an argument in which the first 

four statements are hypotheses, and the last statement is the conclusion. 
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If he studies medicine, then he prepares to earn a good living. 

If he studies the arts, then he prepares to live a good life. 

If he prepares to earn a good living or he prepares to live a good life, 
then his college tuition is not wasted. 

His college tuition is wasted. 

Therefore, he studies neither medicine nor the arts. 
It may be symbolized as: 

HI. M E 

H 2. A^L 

H 3. (EVL)^~W 
H 4. W 

C. ~ M A ~ A 

To establish the validity of this argument by means of a truth table would 

require a table with 32 ( = 25) rows. But we can prove this argument valid 

by deducing the conclusion from the hypotheses in a few steps using the 
rules of inference. 

From the hypotheses H3 and H4, {EM L) -> ~IF and W, we infer 

~(£V L), or equivalently ~E A ~L, by Modus Tollens and De Morgan’s 

Law. From ~E A ~L we validly infer ~E (and also ~L) by the Law 

of Simplification. From HI, M -» E, and ~E we validly obtain ~M. 

Similarly, from H2, A^L, and ~L, we validly infer ~A. Finally, the 

conjunction of ~M and ~A gives the conclusion ~M A ~A. In this 

proof, the rules of inferences Modus Tollens (M.T.), De Morgan’s Law 

(De M.), and Laws of Simplification (Simp.) are used. 

A formal and more concise way of expressing this proof of validity is 

to list the hypotheses and the statements deduced from them on one side, 

with the justification of each step written beside it. In each step the “justi¬ 

fication” indicates the preceding statements from which, and the rules of 

inference by which, the statement given in that step was obtained. For 

easy reference, it is convenient to number the hypotheses and the state¬ 

ments deduced from them and to put the conclusion to the right of the last 

premise, separated from it by a slash / which indicates that all the state¬ 

ments above it are hypotheses. The formal proof of validity for the above 

argument may thus be written as 

1. M-* E 
2. A ^ L 

3. (EVL)->~W 

4. W/ ~M A ~A 

5. ~(£VL) 

6. A ~ L 

7. ~ E 

(Hyp.) 

(Hyp.) 

(Hyp.) 
(Hyp. / Concl.) 

3, 4, M.T. 

5, De M. 

6, Simp. 
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I 

8. ~ L 6, Simp. 

9. ~ M 1, 7, M.T. 

10. ~A 2, 8, M.T. 

11. ~ M A ~A 9, 10, Conj. 

A formal proof of validity for a given argument is a sequence of state¬ 

ments each of which is either a premise of the argument or follows from 

preceding statements by a known valid argument, ending with the con¬ 

clusion of the argument. 

EXAMPLE 10. Construct a formal proof of validity for the following argument, 

using the suggested symbols: 

Either Winston is elected president of the board or both Halbert and 

Luke^re elected vice presidents of the board. If either Winston is elected 

president or Halbert is elected vice president of the board, then David will 

file a protest. Therefore, either Winston is elected president of the board 

or David files a protest. (W, H, L, D) 

Proof 1. W V (HAL) 

2. WVH-+D/:.WVD 
3. (W V H) A {WV L) 1, Dist. 

4. W V H 3, Simp. 

5. D 2, 4, M.P. 

6. D V W 5, Add. 

7. W V D 6, Com. 

There is another method of proof called indirect proof or the method of 

proof by reductio ad absurdum. An indirect proof of validity for a given 

argument is done by including, as an additional premise, the negation of 

its conclusion, and then deriving a contradiction; as soon as a contra¬ 

diction is obtained, the proof is complete. 

EXAMPLE 11. Give an indirect proof of validity for the following argument: 

p V q -> r 

s -» p A u 

q V s l :. r 

Proof 1. p V q -*■ r 

2. s -» p A u 

3. q V s / r 

4. ~r I.P. (Indirect Proof) 
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5. ~OV q) 

6. ~/? A 

7. 

8. ~ ^ 

9. ^ 

10. p A u 

11. p 

12. p A 

1,4, M.T. 

5, DeM. 

6, Simp. 

6, Simp. 

3, 8, D.S. 

2, 9, M.P. 

10, Simp. 

7, 11, Conj 

The statement p A ~p in step 12 is a contradiction; therefore the indirect 
proof of validity is complete. 

In contrast to an “indirect proof” the formal proof of validity intro¬ 

duced earlier may be called a “direct proof.” In a mathematical proof, a 

direct proof or an indirect proof may be used. The choice of the method 

of proof for a given mathematical argument depends on taste and con¬ 

venience. 

Exercise 1.7 

For each of the following arguments give both a direct proof and an 

indirect proof of validity, and compare their lengths. 

1. AM (B AC) 

B D 

C ^ E 

D A E -> A V C 

~A / C 

2. BM(C^E) 

B D 

~D -» (E -> A) 

~D / /. C -»• A 

3. (A V B) -> (A -> D A E) 

A A C/ A EMF 

4. AM B 

~B V Cl A AM C 

5. B V C -» B A A 

~ D / ~ C 

6. A A B C 

(A-+C)-> D 
~B M E/ A B D A E 

In the proofs of the following arguments, use the suggested symbols. 

7. If the population increases rapidly and production remains constant, 

then prices rise. If prices rise then the government will control prices. 

If I am rich then I do not care about increase in prices. It is not true 

that I am not rich. Either the government does not control prices or 

I do care about increase in prices. Therefore, it is not true that the 

population increases rapidly and production remains constant. (P\ 

The population increases rapidly. C: Production remains constant. 

4 
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R: Prices rise. G: The government will control prices. H: I am rich. 

/: I care about increase in prices.) 

8. If Winston or Halbert wins then Luke and Susan cry. Susan does not 

cry. Therefore, Halbert did not win. (W: Winston wins. H: Halbert 

wins. L: Luke cries. S: Susan cries.) 

9. If I enroll in this course and study hard then I make good grades. 

If I make good grades then I am happy. I am not happy. Therefore, 

either I did not enroll in this course or I did not study hard. (E: I enroll 

in this course. S: I study hard. G: I make good grades. H: I am happy.) 

8. MATHEMATICAL INDUCTION 

Another method of proof that is very useful in proving the validity of a 

mathematical statement P(n) involving the natural number n is the follow¬ 

ing principle of mathematical induction. 

Mathematical Induction. If P(n) is a statement involving the natural number n 

such that 

(1) P(l) is true, and 

(2) P(k)^>P(k+ 1) for any arbitrary natural number k, 

then P(n) is true for every natural number n. 

The above principle is a consequence of one of Peano’s Axioms for 

the natural numbers, which are included in the Appendix for reference. 

In order to apply the principle of mathematical induction to prove a 

theorem, the theorem must be capable of being broken down into cases, 

one case for each natural number. Then, we must verify both conditions 

(1) and (2). The verification of (1), that usually is easy, assures us that the 

theorem is true for at least the case n = 1. To verify the condition (2), we 

must prove an auxiliary theorem whose premise is LiP{k) is true” and 

whose conclusion is “P(k+ 1) is true.” The premise “P(k) is true” is 

called the induction hypothesis. 

EXAMPLE 12. Prove by mathematical induction that 

i -> n(n+1) 
l+2 + 3 + --- + /j = —-- for every natural number n 

Proof. Here P(n) represents the statement 

“1+2 + 3 + ••• + « 
n{n+\) „ 

2 
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In particular, P(l) represents “1 = (1 • 2)/2” which obviously is a true 

statement. Therefore, condition (1) for mathematical induction is satisfied. 

To prove that condition (2) is satisfied, we assume that P{k), which is 

“1+2 + 3H-fk = k(k+1)/2,” is true. Then add A:H-1 to both sides of 
this equality. We have 

1 + 2 + 3 +•••+& +(A:+1) = ~ 2 ^ + (&+!) 

k(k +1) 2(A+1) 

2 + 2 

_ (k+2)(k +1) 

2 

_ (A+l)(A + 2) 

2 

which shows that P(k+1) is true. We have now shown that the conditions 

(1) and (2) of mathematical induction are satisfied. Therefore, by the 

principle of mathematical induction, 1 + 2 + 3 + •••+« = «(« + l)/2 is 
true for every natural number n. 

The idea of mathematical induction may be used in making definitions 

involving natural numbers. For example, the definition of powers of an 
unknown number x may be defined by: 

x” + 1 = x"-x, for any natural number n 

The above two equations indicate that x1 = x, x2 = x-x, x3 = x2-x, ... 

and so forth. As another application we give the following inductive 

definition of the symbol C(n,r). 

Definition 7. Let n be a natural number and r an integer. The symbol C(n,r) 

is defined by 

C(0,0) = 1, C(0, r) = 0 for each r / 0, and 

C(n+ 1, r) = C(n,r) + C{n,r— 1) 

Theorem 8. If n and r are integers such that 0 ^ r ^ n, then 

C(n,r) 
n\ 

r\(n — r)\ 
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where n\ denotes the product n-(n— 1) - - • 3 *2 -1 of the first n consecutive 

natural numbers if n > 0 and 0! = 1 by convention. 

Proof. Exercise. 

Theorem 9. (The Binomial Theorem). If x and y are two variables and n is a 

natural number, then 

(jc + y)" = C(n, 0) xn + C(n, \)xn~ V + - + C(«,r)xn“y + 

+ C(n,n)yn 

Proof. We shall prove the validity of this theorem by mathematical induction. 

First, tfye theorem is clearly true for n = 1. To complete the proof, we 

assume the validity of the theorem for n = k; that is, we assume that 

(x+yf = C(k,0)xk + C(k,l)xk~* 1 2 3y+ - + C(k, r)x'l-y + ••• 

+ C{k,k)yk 

Then, by multiplying both sides of the above equality by (x+y), we have 

(x+y)k+1 = (x+y)lxk + C(k, l)xk~1y+ - + C(k,r)xk~y + - +/] 

= xk + 1 -f- [C(k, 0) + C(k, 1)] xky + ••• 

+ lC(k,r-\) + C(k,ry]x(k+1)-y + - +/+1 

= C(£+l,0)x*+1 + C(k+\,l)xky+--- 

+ C(k+l,r)xk+1-y + ••• + C(k+ \,k+ l)yt + 1 

which shows that the theorem is valid for n — k+ 1 if it is valid for n = k. 

Thus, by mathematical induction, the binomial theorem is true for all 

natural numbers n. 

The numbers C(n,r) in the binomial theorem are called binomial co¬ 

efficients. 

Exercise 1.8 

1. Prove Theorem 8 by mathematical induction. 

2. Show that C(n, 0) = 1 = C{n,n) for all natural numbers n. 

3. Prove by mathematical induction that for all natural numbers n, 

1 -2 + 2-3 + ••• + r-(r+ 1) + ••• + n(n+ 1) = %n(n+ l)(« + 2). 
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4. Prove by mathematical induction that for all natural numbers n, 

l2 + 22 + 3 2 + ...+n2 =£»(/!+l)(2n+l). 

5. Prove that for all natural numbers n, 

l3 + 23 + 33 + ••• + u3 = i«2(n + l)2. 

6. Prove that for all natural numbers n, 1 + 3 + 5 + ••• + (2« — 1) = n2. 

7. Prove that for all natural numbers n, 

1 i 1 _ 1 n 

b2 + 2r3 + jr4+-+ n(n+1) = «Tl' 

8. Prove the following Generalized De Morgan’s Laws. 

(a) ~(pl A p2 A ••• A pn) o ~px V ~p2 V V ~pn 

(b) ~{pi V p2 V ••• V pn) o ~pi A ~p2 A ••• A ~pn 

9. Prove the following Generalized Distributive Laws. 

(a) p A (qx V q2 V ••• V qn) o {p A qt) V (p A q2) V ••• V (p A qn) 

(b) p V (qt A q2 A ■■■ A qn) <»(pV qj A (p V q2) A ••• A {p V <7„) 
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2 / The Concept of Sets 

In this chapter, we introduce the concept of sets, subsets, and set operations 

(union, intersection, and complementation) together with the fundamental 
rules governing these operations. These are developed in parallel with Chapter 1 

on logic. Indexed families of sets are discussed. The chapter ends with the 

Russell Paradox and a historical remark. 

v 

1. SETS AND SUBSETS 

“What is a set?” is a very difficult question to answer.1 In this elementary 

book, we shall not go into any complicated axiomatic approach to Set 

Theory, but shall content ourself to accept the following: a set is any 

collection into a whole of definite, distinguishable objects, called elements, 

of our intuition or thought. This intuitive definition of a set was first given 

by Georg Cantor (1845-1918), who originated the theory of sets in 1895. 

Examples: 

(a) The set of all chairs in this classroom. 

(b) The set of all students in this university. 

(c) The set of letters a, b, c, and d. 

(d) The set of rules in our dormitories. 

(e) The set of all rational numbers whose square is 2. 

(f) The set of all natural numbers. 

(g) The set of all real numbers between 0 and 1. 

A set which contains only finitely many elements is called a finite set; 

an infinite set is one which is not a finite set. Examples (a) to (e) above 

are all finite sets, and Examples (f) and (g) are infinite sets. 

Sets are frequently designated by enclosing symbols representing their 

elements in braces when it is possible to do so. Thus, the set in Example 

(c) is {a, b, c, d) and the set in Example (f) may be denoted by {1,2,3,...}. 

The set described in Example (e) has no elements; such a set is called the 

empty set, which will be denoted by the symbol 0. 

1 Students will realize the difficulty when they come to Sections 7 and 8. 
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We shall also use capital letters to denote sets, and lower-case letters to 

denote elements. If a is an element of the set A, we write as A (read: 

“a is an element of A” or “a belongs to A,” whereas b $ A means that 
b is not an element of A. 

Definition 1. Two sets A and B are said to be equal or identical, in symbols: 

A = B, provided that they contain the same elements. That is, A = B 

means (Vx) [(x e A) *-* (x s /?)]. 

The order of appearance of the elements of a set is of no consequence. 

Thus, the set {a, b, c} is the same as {b, c, a} or {c, b, a), etc. Furthermore, 

since elements in a set are distinct, {a, a, b}, for example, is not a proper 

notation of a set and should be replaced by {a,b}. If a is an element of a 

set, a and {a} are to be considered different, that is, a / {a}. For, {a} 

denotes the set consisting of the single element a alone, whereas a is just 

the element in the set {a}. 

Definition 2. Let A and B be sets. If every element of A is an element of B, then 

A is called a subset of B, in symbols: A <=; B or B 2 A. If A is a subset 

of B, then B is called a superset of A. 

Thus, logically speaking, 

A £ B = (Vx) [(x e A) —> (x e 5)] 

Obviously, every set is a subset (and a superset) of itself. When A 2 B 

and A ^ B, we write A <= B, or B => A, which reads: A is a proper subset 

of B, or B is a proper superset of A. In other words, A is a proper subset 

of B provided that every element of A is an element of B, and there exists 

an element of B which is not an element of A. If A is not a subset of B, 

we write A £ B. 

Theorem 1. The empty set 0 is a subset of every set. 

Proof. Let A be any set. We are to prove that the conditional statement 

(x e 0) -> (x e A) 

is true for every x. Since the empty set 0 has no elements, the statement 

“x e 0” is false, whereas “x e A” may be true or may be false. In either 

case, the conditional statement (x e 0) ^ (x e A) is true according to 

the truth table for the conditional (case 3 and 4 of Table 5, Chapter 1). 

Thus, 0 ^ A for any set A. 

2.1 / Sets and Subsets [29] 



Theorem 2. If A ^ B and B £ C, then T £ C. 

Proof. We are to show that (x e A)=> (x e C): 

(x e A) => (x e B), because A £ B 

=> (x e C), because B £ C 

Hence, by the Transitive Law (Theorem 4(c) of Chapter 1), we have 

(x e A) => {x e C) 

Thus, we have proved that /l £ C. 

Exercise 2.1 

1. Show that the set of letters needed to spell “cataract” and the set of 

letters needed to spell “tract” are equal. 

2. Decide, among the following sets, which are subsets of which. 

(a) A = {all real numbers satisfying x* 1 2 3 4 5 6 7 8 9 — 8x + 12 = 0} 

(b) B={2,4,6} 

(c) C = {2,4,6, 8,...} 

(d) D = {6} 

3. List all the subsets of the set { — 1,0,1}. 

4. Prove that [(A £ B) A (B £ A)~\ <=> (A — B). [Remark: Frequently in 

mathematics the best way to show that A — B is to show that 
A £ B and B £ /L] 

5. Prove that (A £ 0) => (A = 0). 

6. Prove that 

(a) l(A c5)A(1?£ C)] => (A <= C) 

(b) [(A £ B) A (B c C)] => (A c C). 

7. Give an example of a set whose elements are themselves sets. 

8. In each of the following, determine whether the statement is true or 

false. If it is true, prove it. If it is false, disprove it by an example (such 

an example which disproves a statement is called a counterexample). 
(a) If x e A and A e B, then x e B. 

(b) If A £ B and Be C, then A e C. 

(c) If A <£ B and B £ C, then A<fC. 

(d) If A B and B <fC, then A C. 

(e) If x e A and A B, then x £ B. 

(f) If A £ B and x $ B, then x A. 

9. Given a set with n elements, prove that there are exactly C(n, r) sub¬ 
sets with r elements. 
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2. SPECIFICATION OF SETS 

One way of making a new set out of a given set is to specify those elements 

of the given set that satisfy a particular property. For example, let A be 

the set of all students in this university. The statement “x is female” is 

true for some elements x of A and false for others. We shall use the notation 

{x e A | x is female} 

to specify the set of all female students in this university. Similarly, 

{x e A | x is not female} 

specifies the set of all male students in this university. 

As a rule, to every set A and to every statement p(x) about x e A, there 

exists a set {x e A |/>(x)} whose elements are precisely those elements 

x of A for which the statement p(x) is true. In an axiomatic approach to 

set theory, this rule is usually postulated as an axiom, called the Axiom 

of Specification. The symbol {x e A | p(x)} reads: the set of all x in A 

such that p(x) is true. The notation of the form {x e A \ p(x)} which 

describes a set is called the set builder notation. 

EXAMPLE 1. Let R denote the set of all real numbers. Then 

(a) (x e R | x = x+ 1} is the empty set. 
(b) {x e R | 2x2 — 5x-3 = 0} is the set {-1/2, 3}. 

(c) {x € R | x2 +1 = 0} is the empty set. 

Because of their frequent appearance throughout the remainder of this 

book and in other topics of mathematics, the following special symbols 

will be reserved for the sets described: 

R = {x | x is a real number} 

Q = {x | x is a rational number} 

Z = {x | x is an integer} 

N = {n | n is a natural number} 

I = {x e R | 0 ^ x ^ 1} 

R+ = {x e R j x> 0} 

It should be noticed that NcZcQcR and NcR+ cR. 

It is quite possible that elements of a set may themselves be sets. For 

example, the set of all subsets of a given set A has sets as its elements. 

This set is called the power set2 of A and is denoted by &(A). 

2 In an axiomatic set theory, the existence of the power set is not taken for granted. 

Since the existence of a power set does not follow from the axiom of specification, a 

new axiom is needed; this axiom is usually called the Axiom of Power Sets and may 

be stated: For each set there exists a set of sets that consists of alt the subsets of the given 

set. 

2.2 / Specification of Sets [31 ] 



EXAMPLE 2. &({aj) = {0, {«}}, »{0) = {0}, and 0>({a,b}) = {0, {a}, {b}, 
{a,b}}. 

The name “power set” is motivated by the following theorem. 

Theorem 3. If A consists of n elements, then its power set A) contains exactly 

2" elements. 

Proof. The theorem is clearly true for A — 0. For a nonempty set A, we let 

A — {ax,a2,a2, Given an element ak of A, each subset of A has 

two possibilities: it either contains ak or it does not. Therefore, the prob¬ 

lem of finding the number of subsets of A may be considered as the prob¬ 

lem of filling a list of n blank spaces at random with the 

numbers 0 and 1, one number in each space. Each filling of the n blanks 

determines a subset X of A in the following manner: ak e X if and only 

if 1 appears in the &th space. Since there are exactly 2" different such 

fillings, there are exactly 2” subsets of A. 

It may be interesting to know the following alternative proof of 
Theorem 3. 

Alternative Proof. First the empty set 0 belongs to ZP(A). Next, each element 

x e A forms a subset {x} belonging to £P(A). Observe that the number 

of these singleton subsets is C(n, 1). Continuing, there are exactly C(n, 2) 

subsets of A containing exactly two elements of A.3 Finally, there is 

exactly C(n,n) = 1 subset of A containing n elements of A, namely the 

set A itself. Counting the empty set, the total number of subsets of A is 

equal to C{n, 0)4- C(n, 1)-|-\-C{n,n). Then using the binomial expan¬ 
sion for (1 + 1)", we have 

(1 + 1)" = C(n,0) + C(n, 1) + ••• + C(n,n) 

Thus, the number of elements in 0>{A) is (1 + 1)" = 2". 

Exercise 2.2 

1. Display within braces the elements of each of the following sets. 

A = {x e N | x < 5} 

B = {x e Z | x2 ^ 25} 

C = {x g Q | 10x2 + 3x- 1 = 0} 

3 See Problem 9, Exercise 2.1. 
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2. 

D = {x e R | x3 + 1 = 0} 

E = {xeR+ | 4x2 —4x— 1 =0} 

Denote each of the following sets by the set builder notation. 

A = {1,2,3} 

B = {— 

c= {1,3,5,7,9,...} 

D = {1-V3,1+V3} 

3. What are the elements of the power set of the set {x, {y,z}}7 How 
many elements does this power set contain? 

4. Let B be a subset of A, and let &{A : B) = {X e 0>(A) | B}. 

(a) Let B = {a, b] and A = {a,b,c,d,e}. List all the members of the 
set &>(A : B); how many are there? 

(b) Show that 0>(A : 0) = SP{A). 

5. Let A be a set with n elements and B a subset with m elements, njzm. 
(a) Find the number of elements in the set 0>{A : B). 

(b) Deduce Theorem 3 from (a) by setting B — 0. 

3. UNIONS AND INTERSECTIONS 

In arithmetic we can add, multiply, or subtract any two numbers. In set 

theory, there are three operations—union, intersection, and complement¬ 

ation—analogous respectively to the addition, multiplication, and sub¬ 
traction of numbers. 

Definition 3. The union of any two sets A and B, denoted by A u B, is the set 

of all elements x such that x belongs to at least one of the two sets A and B. 

That is, x 6 A u B if and only if x e A V x e B. 

Definition 4. The intersection of any two sets A and B, denoted by A n B, is 

the set of all elements x which belong to both A and B. In symbols, 

A n B = {x | (x e A) A (x e B)}, or {x e A | x e B}. If A n B — 0, then 

A and B are said to be disjoint. 

For example, if .4 = {1,2,3,4} and B ={3,4,5} then A u B = 

{1,2,3,4,5} and A n B = {3,4}; if Im denote the set of imaginary num¬ 

bers, then the sets Im and R are disjoint. 
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EXAMPLE 3. In the following, the sets I,N,Z,... are as defined in the last 

section. 

(a) I n Z = {0,1} and N n I = {1}. 

(b) ZuQ = Q and Z n Q = Z. 

(c) I u I = I and I n I = I. 

Theorem 4. Let X be a set and let A, B, and C be subsets of X. Then we have 

(a) The unities: 

A u 0 = A 

A n X = A 

(b) The idempotency laws: 

A u A = A 
A n A — A 

(c) The commutative laws: 

A B = B kj A 

A n B = B n A 

(d) The associative laws: 

A u {B u C) = (A u B) u C 

A n (B n C) = (A n B) n C 

(e) The distributive laws: 

A n (B u C) = (A n B) v (A n C) 

A u (B n C) — (A u B) n (A u C) 

Proof. We leave the proofs of parts (a), (b), and (c) to the reader as exercises, 
(d). According to Definition 3, an element 

x e A u (B u C) <z> x e A V (x e B u C) 

and 

xeBkjCoxeBVxgC 

so 

x e A u (B u C) <=> x e A V (x e B V x e C) 

By the Associative Law (for the disjunction), (x s A) V (xe5VxeC) is 

equivalent to (x e A V x e B) V (x e C). The last statement, by Definition 

3, is equivalent to (x e A u B) V (x e C), and hence tox£(^ufi)uC. 
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Thus, we have 

x e A u (Bu C) o x e (A u B) u C 

By Definition 1, A v (B v C) = (A u B) v C 
The above proof may be condensed into a neat display of essential 

logical steps, with the justification of each step written on the right for 
easy reference: 

x e A u (Bu C) o (xe A) V (xeBu C) Def. u 

o (x e A) V [(xe B)V (xe C)] 
Def. u 

o [(xeA) V (XeB)] V (x e C) 
Assoc, for V 

<=> (x e A u B) V (x e C) Def. u 

o x e (A v B) u C Def. u 

Hence, by Definition 1, we have proved that A u (B u C) = (A u B) u C. 
The students should try to appreciate this kind of orderly precise proof 

by logic. 

We leave the proof of A n {B n C) = (A n B) n C to the reader as 
an exercise. 

(e). Again, only the first half of (e) is proved; the other half is left to 
the reader as an exercise. 

x e [A n (B u C)] <?> [(x e A) A (x e B u C)] 
Def. n 

o (xe A) A [(* e B) V (x e C)] 
Def. u 

<=> [(* e A) A (x e B)] V [(x e A) A (x e C)] 
Dist. Law of logic (Ch. 1) 

<=> [(x e A n B)V (x e A n C)] 
Def. n 

o x e [(A n B) u (A n C)] 
Def. u 

Hence, by Definition 1, A n (B u C) = (A n B) u (A n B). 

Exercise 2.3 

1. Prove that A<^BoA^jB=B. 

2. Prove that A^BoAnB — A. 
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3. Prove parts (a), (b), and (c) of Theorem 4. 
4. Prove the second half of Theorem 4(d). 
5. Prove the second half of Theorem 4(e). 
6. Prove that 

(a) A c C and B ^ C implies (A u B) c C 
(b) A ^ B and ieC implies A ^ (B n C). 
[Hint: Use Theorem 5 in Chapter 1, if you wish.] 

7. Prove that (A n B) u C = A n(^uC)<=>CeT. 
8. Prove that if T ^ i? then ^(v4) c: 0>(B). 
9. Prove that A'uB = AnB<^A — B. 

10. Prove that if A ^ B, then A u C £ 5 vj C and A n C ^ B n C for 
any set C. 

11. Prove that if'A C and B ^ D, then A u B ^ C D. 

> 

4. COMPLEMENTS 

There is, in set theory, an operation known as complementation, which 
is similar to the operation of subtraction in arithmetic. 

Definition 5. If A and B are sets, the relative complement of B in A is the set 
A —B defined by 

A — B = {x e A | x $ B) 

In this definition it is not assumed that B c A. 

EXAMPLE 4. Let 

A — {a,b,c,d} and B = {c,d,e,f} 

Find A — B and A — (An B). 

Solution. 
A - B = {a, b, c, d} - {c,d,e,f} = {a, b} 

and 
A — (A n B) = {a,b,c,d} — {c,d} — {a,b} 

Although the universal set in the absolute sense, the set of all sets, does 
not exist (see the Russell Paradox in Section 7), it does no harm to assume 
temporarily that all the sets to be mentioned in the rest of this book are 
subsets of a fixed set U which may be regarded (temporarily) as a universal 
set in a restricted sense. In order to state the basic rules concerning com¬ 
plementation as simply as possible, we assume, unless otherwise stated, 
that all complements are formed relative to this set U. We shall then 
write A' for U—A. 
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EXAMPLE 5. Show that A — B = A n B'. 

Solution. 

x e A n B' = (x e A) A (x e U- B) Def. n, Def. of' 

s (x e A) A [(x e U) A (x $ 5)] 

Def. 5 

= [(x e A) A (x e l/)] A (x $ B) 

Assoc. 

= (x e A n U) A (x <£ 5) 

Def. n 

= (x e A) A (x £ 5) 

= x e (A — B) 

A n U= A 

Def. 5 

Therefore, by Definition 1, A n B' = A —B. 

Theorem 5. Let A and B be sets. Then 

(a) (A')' = A. 

(b) 0' — U and U' = 0. 

(c) A n A' — 0 and A u A' — U. 

(d) A c B if and only if B' e A'. 

Proof. The proofs for parts (a), (b), and (c) use only the definitions and are 

left to the reader as exercises. We give a proof for part (d): 

A ^ B = [_(xe A) ^ {xe B)] Def. s 

Contrap. 

Def. of' 

Def. c 

= [(x^5)^(x^T)]4 

= [(x e B') ->(xe A')] 

= (B' c A') 

We have thus proved that (A ^ B) = (B' £ A'). 

In the above proof, again symbols and laws of logic (from Chapter 1) 

are used, which enable us to display each step of the proof neatly and 

precisely with supporting reasons on the right-hand side. The reader is 

encouraged to make full use of Chapter 1 for proofs whenever possible. 

The most useful property of complements is the following De Morgan’s 

4 Recall that the negation of xe B, ~(x e B), is denoted by x$ B. 
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Theorem. The reader should compare this theorem with De Morgan’s 

Law in Chapter 1. 

Theorem 6. (De Morgan s Theorem). For any two sets A and B, 

(a) (A u B)' = A' n B'. 

(b) (A n B)' = A' u B'. 

Proof (a); 

x e (A v B)' = ~[xe/l u B)] 

= ~ [(x g A) V (x g B)] 

- ~(x e A) A ~(x 6 B) 

* = (x g A') A (x g B') 

= x e (A' n B') 

Therefore, by Definition 1, (A u B)' — A' n B'. 

The proof for (b) is left to the reader. 

Def. of' 

Def. u 

De M. of logic 

Def. of' 

Def. n 

EXAMPLE 6. Let A, B, and C be any three sets. Decide whether the set 

A n (B- C) is the same as the set (A n B) — (A n C). 

Solution. 

(A n B) — (A n C) — (A n B) n (A C)' 

Example 5 

= (A n B) n (A' u C') 

De M. Th. (Th. 6) 

= (A n B n A') u (A r\ B n n 
Dist. 

= (A n A' n B) < j (A n B n n 
Com. 

= 0 u [A n (B nC')] 

Th. 5(c): ^ 1 nA' = 

- A n (B- -c) Th. 4(a), Example f 

Hence, we have proved that A n (B— C) = (A n B) — (A n C). 

Exercise 2.4 

t 

1. Let A and B be sets. Prove that A — B = A — (B n A). 

2. Prove parts (a), (b), and (c) of Theorem 5. 
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3. Let A and B be sets. Prove that B s A' if and only if A n B = 0. 
4. Let A and B be sets. Prove that (A-B)kj B = A if and only if 

Scl 

5. Prove Theorem 6(b). 

6. Let A, B, and C be any three sets. Prove that 

(a) (A-C)v (B-C) = (A<j B)-C 
(b) (A-C) n(B-C) = (AnB)-C. 

7. Let A and B be two sets. Prove that A and B-A are disjoint and 

that A u B — A u (B—A). (This shows how to represent the union 
A kj B as a disjoint union.) 

8. Let A, B, and C be any three sets. Prove that 

(a) (AnBnCy = A' u B' u C 
(b) 04 u BkjC)' = A' n B' n C'. 

Generalize these results to statements involving n sets 

Ai,A2,A3, ...,An. 

9. For any sets A and B, prove or disprove that 

(a) 0>{A) n 0(B) = 0>(A n B) 
(b) &(A) u &(B) = u B). 

10. Prove that if A £ C, B £ C, A u B = C, and A n B = 0, then 

A = C-B. 
11. Let A and B be any two sets. Prove that 

(A-B) u (B-A) - (A u B) — (A ri B). 

5. VENN DIAGRAMS 

To help in visualizing set operations and their results we introduce diagrams, 

called Venn diagrams, which illustrate them. We shall represent the imagi¬ 

nary relative universal set U by a rectangle and let subsets (of U) be circles 

drawn inside the rectangle. For example, in Figure 1 we represent two 

Figure 1. 
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sets A and B as two shaded circles; the doubly crosshatched part is the 

intersection An B and the total shaded area is the union Au B. 
Figure 2 shows two sets A and B that are disjoint. The shaded area in 

Figure 3 represents the complement A' of the set A. The set A — B, the 

relative complement of B in A, is represented by the shaded part in 

Figure 4. 

u 

Figure 2. 

Figure 3. 

Figure 4. 
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Figure 5. 

Figure 6. 

A typical Venn diagram of three sets A, B, and C may be drawn as 

Figure 5. These three sets divide the universal set U into 8 parts as indi¬ 

cated in Figure 6. 

Using the above diagram, we can give a simple heuristic argument 

for the validity of, for example, the distributive law, An(B'uC) = 

(An B) u (An C), as follows: From Figure 6, A n (B u C) consists of 

areas 2, 3, and 7. On the other hand, (A n B) u (A n C) is represented 

by the union of areas 2 and 7, and areas 3 and 7. Therefore, the equality 

A n (B v C) = (A n B) u (A n C) seems plausible. However, in math¬ 

ematics a heuristic argument cannot be accepted as a proof. 
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Exercise 2.5 

1. Draw a Venn diagram for A c: B. 
2. Draw Venn diagrams for A n B', A' n B, and A' n B'. 
3. Draw Venn diagrams for A u B', A' u B, and A' u B'. 

In Problems 4 through 10, draw Venn diagrams and give heuristic argu¬ 

ments that each of these statements is plausible. 

4. A n (B n C) = (A n B) n C 
5. Au (BuC) = (AuB) v C 
6. A u (Bn C) = (A u5)n (A uC) 

7. (AuB)' = A' nB' 
8. (AnB)' = A'uB' 
9. A u (B-,4) = 0 and ^ u (5-^4) = A u B 

10. (AvB)-(AnB) = (A-B) u (B-A) 

6. INDEXED FAMILIES OF SETS 

Recall that a set is a collection of elements that are all distinct. Roughly 

speaking a family is to be considered as a collection of not necessarily 

distinct objects called members. For example, {a, a, a,} is a family with 

three members a, a, and a. But the same family {a, a, a} considered as a 

set is just the singleton set {«} with only one element, a. 
Let r be a set and assume that with each element y of T there is associated 

a set Ay. The family of all such sets Ay is called an indexed family of sets 
indexed by the set T and is denoted by 

{Ay\ye T} 

For example, the family of sets: {1,2}, {2,4}, {3,6},..., {n, 2ri) ... may be 

considered as an indexed family of sets indexed by the set N of natural 

numbers, where A„ = {n, 2n) for each n e N. This family of sets may be 

denoted by {{«, 2n} \ n e N}. 

An arbitrary family of sets might not appear to be indexed, but in most 

cases one can easily find a set T which can be used to index the given family 

of sets. 

EXAMPLE 7. Index the family & of sets 0, N, Z, Q, R, and R. 

Solution. Since this family contains exactly six members (although two of them 

are the same), we choose T = {1,2,3,4,5,6} and let Al = 0, A2 — N, 

A3 — Z, A4 = Q, As = R, and A6 — R. The family of sets is then indexed. 

Virtually all symbols and notations used for sets will apply to families as 

well. For instance, 0eJ^ and R+ ^ !F will indicate respectively that 0 
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is a member of the family IF and R+ is not a member of fF. We may also 
write F = {0, N, Z, Q, R, R}. 

Let us now extend the concepts of union u and intersection n defined 

in Definitions 3 and 4 to an arbitrary family of sets. 

Definition 6. Let F be an arbitrary family of sets. The union of the sets in SF, 
denoted by (JA€^A or (J 3F, is the set of all elements that are in A for 

some A e SF. That is, 

U A = {x e U | x e A for some A e SF} 

If the family SF is indexed by the set T, the following alternate notation 

may be used: 

(J Ay = {x e U | x e Ay for some y e T} 
yer 

If the index set T is finite, T = {1,2,3,...,«} for some natural number 

n, more intuitive notations such as 

n 

(J At or Ax u A2 u ••• u A„ 
i = 1 

are often used for {JyEr^y 

EXAMPLE 8. Find the union of the family of sets 

{1}, {2,3}, {3,4,5},...,{«,«+1, ...,2n — 1}. 

Solution. This family of sets may be considered as indexed by T = {1,2,3,...,»}, 

where At = {/, i+1, ...,2z- 1} for each ie T. The problem reduces to that 

of finding (j"=1 {i, i+1, ...,2z-1}. Observe that each integer between 

1 and 2n- 1 belongs to some At in the family, and no other element belongs 

to any of these A{. Hence, 

{J {/, i+1, ...,2/— 1} = {1,2,3.2n —1} 
i = 1 

Definition 7. Let & be an arbitrary family of sets. The intersection of sets in 

denoted by f)AeJrA or is the set of all elements that are in A for 

all A e That is, 

P) A = {x 6 U | x e A for all A e SF} 
A e & 

4 
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Here, the statement “x e A for all A e&" may be expressed alternately 

as “A e ^ ^ x e A." The latter expression has an advantage in proving 

theorems, as we shall see in the coming Theorem 7. 

If the family & is indexed by the set T, the following alternate notation 

may be used: 

fj Ay - {x e U | x e A for all y e T} 

If the index set T is finite, T = {1,2,...,«} for some positive integer n, 

then as in the case of union we usually write 

n 

f) Ai or A1 n A2 n ••• n A„ 
i=i 

instead of f\yeTAy. 
Let a and b be any two real numbers. By an open interval (a, b) we mean 

the subset {xeR | a < x < b} of R. It follows that if a > b then the 

interval (a, b) — 0. 

EXAMPLE 9. Find the intersection of the family of open intervals 

Solution. We are to find the set P„eN(0, l/n). Intuitively speaking, the given 

family is a sequence of “decreasing” intervals (0, l/n), where the interval 

(0,1 In) “approaches” the empty set 0 as n becomes large. Therefore, 

we may conjecture that the intersection 0„eN(O, l/n) should be the empty 

set. We now prove that this conjecture is true. Suppose on the contrary 

that there exists some real number e 0„eN(O, l/n). Then we would 

have 0 < a < l/n for all « e N. This contradicts the fact that for a fixed 

a > 0 there always exists a sufficiently large n in N such that l/n < a. 
The contradiction shows that 0„eN(O, 1\n) = 0- 

Theorem 7. Let {Ay \ y e T} be the empty family of sets; that is, T = 0. Then 

(a) Uye 0 ~ 0‘ 

(b) Oye 0 ^y = U- 

Proof (a) To show {jye0 Ay = 0, we show equivalently that x£\Jye0Ay 
for all x (in U): 

Notation 

- ~ (xe Ay for some y e 0) Def. 6 

= (x $ Ay for all y e 0) Q. N. (Ch. 1) 

= (yG 0 -»■ x $ Ay) 
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The last statement is, by Theorem 7 (c) of Chapter 1, true for all x e U, 
because y e 0 is a contradiction. This completes the proof of part (a), 

(b) We shall prove that x e f)ye0Ay for all x in U. Observe that 

x g H Aym(xeAyVye0) Def. 7 
ye 0 

= (y e0 -> xeAy) 

The last assertion is, as we have explained in the proof of part (a), a true 

statement for all x e U. The proof is complete. 

Many theorems concerning operations of finitely many sets can be 

generalized to theorems concerning operations of an arbitrary family of 

sets. For example, the following generalizes De Morgan’s Theorem. The 

student should compare this theorem with Theorem 6. 

Theorem 8. (The Generalized De Morgan Theorem). Let {Ay | y e T) be an 

arbitrary family of sets. Then 

(a) (Uyer^y)' = PlyeT^y- 
(b) (OyeTAy)' = UyeT^y- 

Proof. We shall only prove part (a), and leave part (b) to the student. 

»(U4 = ~(xe (JO Def. of' 
\y e r / \ yer/ 

= ~ (3y e T) (x e Ay) Def. 6 

= (Vyer)(x?Ay) Q.N.(Ch.l) 

= (Vyer)(xGzi;) Def. of' 

= x g f] A'y Def. 7 
yer 

Therefore, by Definition 1, \JyerA'y = f)yerA'y. 

The following theorem is a generalization of Theorem 4(e). 

Theorem 9. (Generalized Distributive Laws). Let A be a set and let — 

{By | y g T} be an arbitrary family of sets. Then 
(a) A n (\JyerBy) = [Jyer(A n By). 

(b) ^u(n,.r^) = n,er(^*,)- 

Proof, (a) An element x is in the set A n ((Jj,6r5y) if and only if xg A and 

x g Uy e r -®y, which according to Definition 6, is equivalent to 

xGyl and x e By for some y e T 
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The last assertion may be expressed, by Definition 4, as 

x e A n By for some y e T 

which by Definition 6 is precisely x e \Jysr(A n By). Thus, by Defini¬ 

tion l. An ({JyerBy) = Uyer(A^By). 
The proof for part (b) is an exercise. 

Exercise 2.6 

1. Let T = {1,2,3,4} and Ax = {a,b,c,d}, A2 = {b,c,d}, A3 = {a,b,c}, 
= {a,b}. Find the following. 

(a) U• 

<b) nt-,A 
2. For ^any two real numbers a and b, by the closed interval [a, b] we 

mean the set {xeR| a^x^b}. If a > b, [a,b] = 0. Find the 
following sets. 

(a) Pl-eNPU/w] 
(b) U«eN[0,l/«] 

(C) Dn=l [0, l/«] 

3. Prove Theorem 8(b): (Hyer^y)' = Uyer^{- 
4. Prove Theorem 9(b): A u (Hyer^y) = f)rer(Au By). 
5. Expand 

(a) (Ax u A2) n (Bx u B2 u B3) 
into a union of intersections, and 

(b) (Ax n A2) u (Bl n B2 n B3) 

into an intersection of unions. [Hint: Use Theorem 9 several times.] 
6. Expand 

(a) (ur-i4wu;-i*j) 
into a union of intersections, and 

(b> 
into an intersection of unions. [See Problems 5.] 

7. Let {Ay | y e T} and {Bd | <5 e A} be any two families of sets. Expand 

(a) (Uyer^y) n (UaeA^a) 
into a union of intersections, and 

(b) (Oyer^y) U (f^eA Bd) 
into an intersection of unions. [See Problems 5 and 6.] 

7. THE RUSSELL PARADOX 

Now many of us may think we understand what is meant by a set—at 

least intuitively. Most of us taking a Set Theory course for the first time 

would not notice what is wrong in considering “the set of all sets” or the 
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so-called universal set” in the absolute sense. In fact, for a period of 

time (at least from 1895 when Georg Cantor first created a theory of sets, 

until 1902 when the Russell Paradox appeared), the existence of such a 

universal set was taken for granted. It was the famous English philosopher 

Bertrand Russell (1872-1970)5 who shook the mathematics community 

in 1902 by declaring that the admission of a set of all sets would lead 

to a contradiction. This is the famous Russell Paradox. We present this 

paradox as two seemingly contradictory lemmas from which' a theorem 
follows. 

Lemma 1. Suppose that there is a set ^ of all sets. Let R = {S e W | S i 5}.6 
Then R <£ R. 

Proof. Suppose on the contrary that Re R. Then by the specification of the 

set R, we must have R <£ R, which contradicts the assumption that Re R. 
The contradiction proves that R $ R. 

Lemma 2. Suppose that there is a set of all sets. Let R be the set {S e <7/ | S $ S}. 
Then Re R. 

Proof. Suppose the contrary, that R £ R. Then since ReW, we have Re R 
by the definition of R. This is a contradiction. Thus, Re R. 

5 Bertrand Russell was bom on May 18, 1872, at Trelleck, Wales. Before he was four, 

both of his parents died. He had been a shy, silent boy until he entered Trinity College, 

Cambridge University, in 1890. After three years of mathematics he concluded that 

what he was being taught was full of errors. He sold his mathematics books and changed 

to philosophy. In his Principia Mathemalica (1910-1913), a three-volume monumental 

work co-authored with Alfred North Whitehead (1861-1947), he attempted to recast 

set theory so as to avoid paradoxes. In 1918 he wrote, “I want to stand at the rim of 

the world and peer into the darkness beyond, and see a little more than others have 

seen. ... I want to bring back into the world of men some little bit of wisdom.” He 

certainly did, more than just “some little bit.” In the same year, he was put in prison 

for an unfavorable comment about the American Army. In 1950 he received the Order 

of Merit from the King of England and the Nobel prize for literature. In his later years 

he led a number of demonstrations against nuclear warfare. 

6 According to the rule of specification, R is a set which is often called “the Russell 

set.” 
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Theorem 10. There does not exist a set of all sets. 

Proof. In view of Lemmas 1 and 2, the set of all sets cannot exist. For, if it were 

otherwise, it would lead to the contradiction “7? £ R and R e 7?.” 

Paul R. Halmos puts it this way: “Nothing contains everything.”7 

8. A HISTORICAL REMARK 

The modern theory of sets is generally considered to have been created in 

1895 by the famous mathematician Georg Cantor8 (1845-1918), who 

noticed the need for such a theory while studying trigonometric series. 

Cantor wrote: “By a ‘set’ we shall understand any collection into a whole 

of definite distinct objects of our intuition or thought.” This definition 

does not prohibit anyone from considering the “set” of all sets, as Bertrand 

Russell did. The real difficulty in Cantor’s definition of a set is the word 

“collection.” What is a collection? Of course we can look it up in a dic¬ 

tionary and find something like these definitions: 

“collection: a group of collected objects.” 

“group: an aggregate or collection.” 

“aggregate: a collection.” 

These will hardly be of any help. When a mathematician gives a definition 

it is not intended to be a mere synonym such as “collection” for “set,” 

or a circular definition as we would find in a dictionary. Cantor apparently 

was not aware that the term “set” was really undefinable. 

To avoid any difficulty such as the Russell Paradox in set theory, we 

must accept the terms “set” and “element” as undefined terms, or primi¬ 

tives, and guide these primitives by a number of axioms, including the 

Axiom of Specification and the Axiom of Power Sets that have been 

introduced in Section 2. Other axioms such as “A = B if and only if A 

and B contain the same elements” (Axiom of Extension), “0 is a set” 

7 Paul R. Halmos, Naive Set Theory, D. Van Nostrand Company, Inc., New York, 
1960, p. 6. 

8 Georg Cantor was born in St. Petersburg, Russia, in 1845, moved to Germany in 

1856, studied mathematics at the University of Berlin (1863-1869), and taught at the 

University of Halle (1869-1905). One of Cantor’s interests was trigonometric series, 

which led him to look into the foundation of analysis. As a result, he created the 

revolutionary work on set theory and an arithmetic of transfinite numbers. 
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(Axiom of the Empty Set), “If A and B are sets then so is {A, B}” (Axiom 

of Pairing), and “If HF is a set of sets then is a set” (Axiom of Unions) 

are often given in axiomatic treatments of set theory. 

The Russell Paradox was not the only one to arise in set theory. Shortly 

after the Russell Paradox appeared, many paradoxes were constructed by 

several mathematicians and logicians. As a consequence of all these para¬ 

doxes, many mathematicians and logicians have contributed to several 

brands of “axiomatic set theory,” each designed to avoid these paradoxes 

and, at the same time, to preserve the main body of Cantor’s set theory. 

However, at the time of this writing, no one has yet come up with a com¬ 

pletely satisfactory axiomatic system for the set theory. 

Despite the aforementioned difficulties, Cantor’s set theory has today 

penetrated into every branch of modern mathematics, and it has proved 

to be of particular importance in the foundations of modern analysis and 

in topology. In fact, even the very simplest full-fledged axiomatic systems 

of set theory are entirely adequate for doing virtually all of classical math¬ 

ematics (e.g., the theory of real and complex numbers, algebra, topology, 

etc.). 
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3 / Relations and Functions 

The chapter begins with a discussion of ordered pairs and the Cartesian 

product of two sets. A relation is then defined as a set of ordered pairs. The 

intimate connection between a partition and an equivalence relation on a 

set is closely examined. The concept of a function is introduced as a special 

kind of relation. As a preparation for those readers who wish to pursue more 

modem mathematics, important properties of functions are studied. An 

abundance of examples is provided. 

1. CARTESIAN PRODUCT OF TWO SETS 

Given any two objects a and b, we may form a new object (a, b), called 

the ordered pair a,b} The adjective “ordered” here emphasizes that the 

order in which the objects a and b appear in the brackets is essential. 

Thus, (a, b) and (b, a) are two distinct ordered pairs. It should be noted 

that an ordered pair (a, b) is not the same as the set {a, b}. There is a satis¬ 

factory, but somewhat complicated, way of defining the ordered pair 

(a, b) as the set {{a},{a,b}}, from which the property “(a,b) = (c,d)o 

a = c and b = d” follows. (See Problem 11, Exercise 3.1.) 

Two ordered pairs (a, b) and (c, d) are said to be equal (=) if and only 

if a = c and b = d. For example, (x,j) = (7,8) if and only if x = 7 and 

L = 8. 
In analytic geometry, the Cartesian plane may be considered as the set 

of all ordered pairs of real numbers. We state this concept formally as 

follows: 

Definition 1. Let A and B be any two sets. The set of all ordered pairs (x,y), 

with xe A and y e B, is called the Cartesian product of A and B, and is 

1 Unfortunately the notation (a, b) for an ordered pair is the same as the notation for 

an open interval when a and b are real numbers. However, the careful reader should 

always be able to make the distinction from the context. 
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denoted by A x B. In symbols 

A x B = {(x, y) \xeAf\yeB) 

For the ordered pair (a,b), a is called the first coordinate and b is the 
second coordinate. 

EXAMPLE 1. Let A — {a,b,c} and B= {1,2}. Find the Cartesian products 
Ax B and BxA. 

Solutions. By Definition 1 above, we have 

A xB = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)} 

and 

B x A = {(\,a\{\,b),{\,c),{2,a),(2,b),{2,c)} 

We notice that Ax B / Bx A. We may picture the Cartesian product 
Ax B as the set of dots in the following figure. 

- + - 

i i 

+ + 
l I 

+- -h 
I i 

J L 
A 

Figure 7. 

EXAM PLE 2. Let A be any set. Find Ax 0 and 0 xA. 

Solution. Since A x0 is the set of all ordered pairs (a, b) such that a e A and 

b e 0, and since the empty set 0 contains no elements, there is no b in 0; 

therefore ^4x0 = 0. Similarly 0x^ = 0. 

Theorem 1. Let A, B, and C be any three sets. Then 

(a) A x (B n C) = (A x B) n (A x C). 

(b) A x (B u C) = (A x B) (j (A x C). 
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Proof. 

(a) (a, x) e A x (B n C) 

o (a e A) A (x e B nC) Def. 1 

o (a e A) A (xe B A x e C) Def. n 

o (a e A) A (a e A) A (x e B) A (x e C) 

Idemp., Assoc. (Ch. 1) 

<=> [(a e A) A(xe B)] A [(a e A) A (x e C)] 

Com., Assoc. (Ch. 1) 

[(a, x) e A x B] A [(a, x) e A x C] 

Def. 1 

<=> (a, x) e (A x B) n (A x C) Def. n 

Hence, by Definition 1 of Chapter 2, we have proved that 

A x (Bn C) = (Ax B) n (Ax C) 

Informally, this equality may be stated: The Cartesian product distributes 

over intersection. 

We leave the proof of part (b) to the reader as an exercise. 

Theorem 2. Let A, B, and C be sets. Then 

A x (.B-C) = (AxB)-(AxC) 

That is, the Cartesian product distributes over complementation. 

Proof. 

(a,x) 6 Ax (B—C) 

<=> (a e A) A (x e B— C) Def. 1 

<=> (a e A) A [(x eB) A (xi C)] Def. 5 (Ch. 2) 

o (a e A) A (a e A) A (x e B) A (x $ C) 

Idemp., Assoc. (Ch. 1) 

<=> [(a e A) A (x e 5)] A [(a e A) A (x £ C)] 

Com., Assoc. (Ch. 1) 

o [(a, x)e A xB] A [(a, x) <£ A x C] 

Def. 1 

<*■ (a, x) e (A x B) - (A x C) Def. 5 (Ch. 2) 
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Thus, we have proved that 

A x (B-C) = (AxB)-(Ax C) 

Exercise 3.1 

1. Describe each of the following sets geometrically by sketching a graph 
on the Cartesian plane. 

(a) {(x,y)e RxR | x = y} 

(b) {(rj)eRxR | x > y} 

(c) fe^eRxR ||*+j|^l} 
2. Under what conditions on the sets A and B will it be true that 

AxB = BxAl 

3. Prove Theorem 1 (b): A x (B u C) = (A x B) u (A x C). 

4. Prove that AxB = 0oA = 0V B = 0. 

5. Prove that, if A, B, and C are sets and A ^ B, then AxC £ BxC. 

6. If the set A has m elements and if the set B has n elements, how many 

elements (ordered pairs) does AxB have? 

7. The Cartesian product Ax A has nine elements among which are 

found (— 1,0) and (0,1). Find the remaining elements and the set A. 

8. Prove or disprove (by giving a counterexample) each of the following 

statements. 
(a) A x B c C x D if and only if A £ C and B c D. 

(b) The power set 0>(A x B) of AxB is the Cartesian product 

&(A) x 0>(B) of the power sets 0>(A) and 0>(B). 
(c) (Ax B) kj (Cx D) — (Akj C)x(Bkj D). 

9. Prove that, if A, B, C, and D are any four sets, then 

(AxC)n (BxD) = 04n£) x (CnD). 

10. Let A1,A2,..-,An be sets. Can you generalize Definition 1 to the 

Cartesian product A1xA2xA3 of three sets? Can you generalize 

this further to the Cartesian product Axx A2x x An of n sets? 

11. Define the ordered pair (x,y) to be the set {{x}, {x,>»}}. Use this 

definition to prove that (a, b) = (c, d) if and only if a = b and b = d. 

2. RELATIONS 

Given two sets A and B, not necessarily distinct, when we say that an 

element a of A is related to another element b in B by a relation 0t we 

are making a statement about the ordered pair (a, b) in the Cartesian 

product AxB. Therefore, a mathematical definition of a relation can be 

precisely given in terms of ordered pairs in the Cartesian product of sets. 
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Definition 2. A relation 2k from A to B is a subset of the Cartesian product Ax B. 

It is customary to write a2kb for (a, b) e 2k. The symbol a2kb is read “a is 

^-related to b." 

Often A and B are the same set, say X. In that case, we shall say that 2k is 

a relation in X instead of “from X to XFor example, in a community 

X,2 to say that a (for Albert) is the husband of b (for Bonita), is to con¬ 

sider Albert and Bonita as an (ordered) pair (a, b) in the relation XF (of 

being the husband of ...)• The symbol aJfb or {a,b) e XF may be read: 

“a is the husband of 6.” 

It is not necessary to put Bonita behind Albert in the ordered pair (a, b). 

We may say that Bonita is the wife of Albert, or that the ordered pair 

(b,aj is the relation if (of being the wife of ...). The symbol bifa or 

(b, a) e if may be read: “b is the wife of aIn this example, the relation 

if is called the inverse of the relation XF. 

Definition 3. Let A and B be two sets, not necessarily distinct, and let 2k be a 

relation from A to B. Then the inverse 2k~x of the relation 2k is the rela¬ 

tion from B to A such that b2k~xa if and only if a2kb. That is, 

2k~1 = {(b, a) | (a, b) e 2k} 

EXAMPLE 3. (a) Let A = {a,b), B = {x,y,z}, and let 2k^AxB be given 

by 2k = {(a,x),(b,y)}. Then 2k~x - {(*, a), (y,6)} £ Bx A. 

(b) Let 

2k = {(x, j) e N x N | x divides y} 

Then 

2k 1 = {(^, x) e N x N | y is a multiple of 

Let 2k be a relation from A to B. The domain of the relation 2k, denoted 

by Dom(^2), is the set of all those a e A such that a2kb for some b <= B; 

and the image of 2$, denoted by Im(^?), is the set of all those be B such 
that a2kb for some a e A. In symbols, 

Dom(^2) = [a e A \ {a, b) e 2k for some b e B} 

and 

Im(^2) = {b e B | (a, b) e 2k for some a e A] 

2 Here, X is the set of all members of the community. 
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In the example of the relations 0e (being the husband of ...) and 4V 

(being the wife of ...) in the community X, the domain of JV is the set of 

all men in X who are married, and the image of JV is the set of all women 

in X who are married, whereas, the domain of iV is the set of all the wives 

in X, and the image of 4V is the set of all the husbands in X. That is, 

DomOT) = Impf) 

and 

lm(iV) = Dom(Jf) 

Can you make a general conclusion? (See Problem 3 at the end of this 
section.) 

EXAMPLE 4. In Example 3(a), Dom(f) = {a,b} and Im(0) = {x,y}. In 

Example 3(b), Dom(^) = N = Im(^). 

Definition 4. Let 0t be a relation in a set X. Then we say that 

(a) 01 is reflexive if and only if Vx 6 X, x0lx. 

(b) 01 is symmetric if and only if x0ty => y0lx. 

(c) 01 is transitive if and only if x0ty A y0lz => x0tz. 

(d) 0t is an equivalence relation if and only if 01 is reflexive, symmetric, 

and transitive. 

The equals relation, =, on the set R of real numbers is clearly an equiv¬ 

alence relation. Let X be a set of colored balls and let any two balls a and b 

be related by 01 if and only if a and b have the same color. Then the relation 

01 is an equivalence relation. 

Equivalence relations are particularly important in modern mathema¬ 

tics. For instance, factor groups in algebra, quotient spaces in topology, 

and modular number systems in number theory all involve certain kinds 

of equivalence relations. 
Given a nonempty set X, there always exist at least two equivalence 

relations in X; one of these is the diagonal relation Ax (also called the 

Figure 8. 
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identity relation) defined by 

A* = {(*, x)\xeX) 

which relates every element with itself. Pictorially, if X is represented as a 

line interval, then lx X is a square and A* is the “main” diagonal of the 

square. 
There is, at the other extreme, always another equivalence relation 

01 — X x X on3 X. The relation A* is the smallest of all the equivalence 

relations among the subsets of Xx X that can be defined on X, whereas 

Xx X is the largest. 

EXAMPLE 5. Let m be an arbitrary fixed positive integer. The congruence 

relation = modulo m on the set Z of integers is defined by x = y (modulo m) 

if and only if x—y = km for some k e Z. The congruence relation is an 
equivalence relation on Z. 

Proof. 

(a) For each x e Z, since x—x — 0-m, we have x = jc (modm). Hence it 
is reflexive. 

(b) If x = y (modm), then x—y = km for some keZ. Consequently, 

y—x = (-k)m and -keZ, or y ee x (mod m). Hence it is sym¬ 
metric. 

(c) If x = y (modm) and y = z (modm), then x—y = kxm and y—z = 

k2m for some k1 and k2 in Z. Hence x — z = (x—y) + (y — z) = 

(kt +k2)m and k1+k2e Z, which shows that x = z (mod m). Hence 
it is transitive. 

Therefore, we have proved that the congruence relation (modulo m) is 
an equivalence relation on Z. 

As a special case for Example 5, let m = 2. Then x = y (mod 2) if and 

only if x-y is an even integer. Consequently, x = y (mod2) if and only 
if either both x and y are even or both * and y are odd. 

Exercise 3.2 

1. Let 01 be a relation from A to B. Prove that (0t~1)~1 = 0t. 

2. Let A~{a,b,c) and let 0t = {{a, c), (c, b), (a, b)}. Find the domain 
of 01 and the image of 01. 

3. Let 01 be a relation from A to B. Prove that 

When the domain of a relation Si in X is obviously X itself, most mathematicians 

prefer to say “relation 8/t on X" instead of “relation S& in X.” 
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(a) Dorn (52 _1) = Im(52) 

(b) Im(52_1) = Dom(^). 

4. Let A = {a, 6, c} and let 

S/t = {(cr, a), (6,6), (c, c), (a, b), (b, a), (c, a), (a, c)} 

Prove that S/t is reflexive and symmetric, but not transitive. 

5. Give an example of a relation that is reflexive and transitive, but not 
symmetric. 

6. Give an example of a relation that is symmetric and transitive, but not 
reflexive. 

7. Let 0t be a relation in a set X. Prove that 

(a) S/t is reflexive if and only if S/t 2 Ax 

(b) S/t is symmetric if and only if S/l — 0t~x 

(c) S/t is reflexive if and only if 0t~x is reflexive 

(d) S/t is symmetric if and only if 0t~x is symmetric 

(e) S/t is transitive if and only if 52 _1 is transitive 

(f) 0 is an equivalence relation if and only if 52-1 is an equivalence 
relation. 

8. Let X = Zx(Z-{0}). Define a relation ~ on I by declaring that 

{a, b) ~ (c, d) if and only if ad = be. Prove that the relation ~ is an 
equivalence relation. 

3. PARTITIONS AND EQUIVALENCE RELATIONS 

Definition 5. Let X be a nonempty set. By a partition (f of X we mean a set of 

nonempty subsets of X such that 

(a) If A, B e $ and A ^ B, then A n B — 0. 
(b) [jc^C = X. 

Intuitively, a partition of X is a “cutting up” of X into (nonempty dis¬ 

joint) pieces. 

EXAMPLE 6. Let m be any fixed positive integer. For each integer j, 0 ^ j < m, 
let Zj = {xeZ\ x-j = km for some k e Z}. Then the set 

{Zo, Z1? Z2,..., Zm_x} 

forms a partition of Z. In particular, let m = 2. Then the set of sets 

Z0 = {xeZ \ xis even} 

and 

Zx = {x e Z | x— 1 is even} = {x e Z \ x is odd} 

forms a partition of Z. (See also Problem 4, Exercise 3.3.) 
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There is a very close connection between the partition of a nonempty set 

and an equivalence relation on that set. In order to understand this con¬ 

nection, we shall first need the following definition. 

Definition 6. Let S be an equivalence relation on a nonempty set X. For each 

x e X, we define 

x/S = {y e X | ySx) 

which is called the equivalence class determined by the element x. The 

set of all such equivalence classes in X is denoted by X/S; that is, X/S — 
{x/S | x e X}. The symbol X/S is read “Xmodulo S,” or simply “Xmod S.” 

Theorem 3. Let S be an equivalence relation on a nonempty set X. Then 

(a) Each x/S is a nonempty subset of X. 
(b) x/S n y/S ^ 0 if and only if xSy. 
(c) xSy if and only if x/S = y/S. 

Proof. 

(a) Since S is reflexive, for each x e X, we have xSx. By Definition 6, 

x e x/S and hence x/S is a nonempty subset of X. 
(b) Since S is an equivalence relation and X / 0, we have 

x/S n y/S ^ 0 0 (3z)(z e x/S A zey/S) 

0 (zSx) A (zSy) Def. 6 

0 (xSz) A (zSy) S is symmetric 

0 xSy S is transitive 

(c) It follows immediately from (a) and (b) above that x/S = y/S => 

xSy. We now need to prove that xSy => x/S — y/S. Let xSy. Then 
* 

z e x/S => zSx Def. 6 

(zSx) A (xSy) => zSy S is transitive 

=> z e y/S Def. 6 

Since z is arbitrary, it follows that x/S c y/S. A similar argument gives 
y/S £ x/S; hence x/S = y/S. 

Theorem 4. Let S be an equivalence relation on a nonempty set X. Then X/S 
is a partition of X. 

Proof. By Theorem 3(a) and Definition 6, X/S = {x/S | x e X} is a family of 
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nonempty subsets of Z. We next show that 

xjS 7^ y/£J => (x/£) p (y/£) = 0 

by showing its contrapositive: [x/S n y/g / 0] => [x/<f = The 

last assertion is a direct consequence of Theorem 3(b) and (c). Finally, 

we have to show that = Z. This is also trivial, since each x in X 

belongs to xjS. This completes the proof of the theorem. 

We have just seen, in Theorem 4, that an equivalence relation on the 

nonempty set X gives rise to a partition of X. We shall next show that the 

converse of Theorem 4 is true; that is, each partition of X gives rise to 

an equivalence relation on X. 

Definition 7. Let “S be a partition of a nonempty set X. We define a relation 

Z/(F on X by x(X/$)y if and only if there exists a set A e tf such that 

x,yeA. 

Warning! The reader should read and compare Definitions 6 and 7 carefully 

to understand the delicate differences among these similar notations: 

x/<f, XjS, and Z/fF. 

Theorem 5. Let (f be a partition of a nonempty set X. Then the relation Z/(F 

is an equivalence relation on X, and the equivalence classes induced by 

the equivalence relation Z/fF are precisely the sets in (F. Symbolically, 

X/(X/$) = O'. 

Proof. Since every element x of Z is contained in some A e (F, x(Z/tF)x; that 

is, Z/(F is reflexive. The symmetry of Z/tF is a clear consequence of Defini¬ 

tion 7. To show that the relation Z/fF is transitive, let x, y, and z be three 

elements of Z satisfying 

x(X/$)y and y(X/3)z 

Then, by Definition 7, there exist A and B in fF such that x,yeA and 

y,z e B. Consequently, y e A n B # 0. It follows, by the definition of a 

partition, that A = B. Hence, x,zeA and hence x(Z/(F)z. Thus, Z/fF is 

an equivalence relation on Z. 
To show the remainder of the theorem, let x be an arbitrary element 

of Z. There exists one and only one set A in (F such that x e A. (Why?) 

Consequently, by Definition 7, we have 

x/(Z/iF) = A 

We have just proved that each equivalence class modulo Z/fF is a set in 

the family fF. Conversely, let A be any set in the partition T. Since A ^ 0, 
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there exists an element x in X that belongs to A. By our previous argu¬ 

ment, jc/(X/H) = A. This proves that X/(X/(F) = (f. The proof of the 

theorem is now complete. 

Any equivalence relation £ on the nonempty set X gives rise to a parti¬ 

tion X/<? (Theorem 4); this partition in turn determines an equivalence 

relation X/(X/£) (Theorem 5). The crucial fact is that X/(X/<f) = £ (see 

Problem 6). This together with X/(X/(f) = If establishes the intimate con¬ 

nection between equivalence relations and partitions. 

Let us illustrate Theorem 5 by a concrete example. Let Z0 and Zt be 

the set of even integers and the set of odd integers, respectively. Then 

if = {Z0,Zj} forms a partition of the set Z of integers. By definition of 

the relation Z/ff, we have a(Z/ff)6 if and only if either a,be Z0 or 

a,b e fcj. That is a(Z/3)b if and only if either both a and b are even or 

both a and b are odd. It is easy to verify that this relation Z/(f is indeed 

an equivalence relation. In effect, a(Z/S)b if and only if a = b(mod2). 

Therefore, the relation Z/£T is really the familiar congruence relation 

= (mod 2). [See Example 5.] 

Conversely, given the set Z together with the equivalence relation £ 

such that x£y if and only if x = y (mod 2), then 

(Z0 if a is even 

Z1 if a is odd 

Therefore, ZJ£ = {Z0, Zt}, which is clearly a partition of Z. 

Exercise 3.3 

1. Let (f be a partition of the nonempty set X. Prove that the equivalence 
relation X/ff = (JAe(rAxA. 

2. In Problem 1, let X be a finite set and let 

•f = {^i> A2,..., Ak} 

where the set A} contains rij elements for j = 1,2,...,k. Prove that 

the number of ordered pairs in the equivalence relation X/lS is exactly 
n\ + n| + ••• -\-nk. 

3. Let X = {a, b, c, d, e} and let ff = {{«, b}, {c}, {d, e}}. 

(a) Show that ff is a partition of X. 

(b) Find the equivalence relation X/ff on X explicitly as a set of 
ordered pairs. 

(c) Denote & = X/T and find a/i, b/£, c\g, d/£, and e/£ explicitly. 
4. Verify Example 6 for m = 3. 

5. Let X be the set Z of integers and let & be a relation on X defined by 
xS’y if and only if x—y = 5k for some integer k. 

* (a) Prove that the relation £ is an equivalence relation on X. 
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(b) Find the partition Xl<$ of X. 
(c) Verify that the equivalence relation X/(X/<f) is indeed the equiv¬ 

alence relation S. 
6. Let $ be an equivalence relation on the nonempty set X. Prove that 

XI{XjS) = S. 

4. FUNCTIONS 

Unquestionably, the concept of a function is one of the most basic ideas 
in every branch of mathematics. The reader may have learned the follow¬ 
ing definition: a function is a rule of correspondence that assigns to each 
element x of a certain set (called the domain of the function) one and 
only one element y in another set (called the range of the function). This 
definition is cloudy. What is meant precisely by a “rule”? In order to 
avoid ambiguities, mathematicians have devised a precise definition of a 
function using the language of sets. 

Definition 8. Let X and Y be sets. A function from X to Y is a triple (f X, Y), 
where / is a relation from X to Y satisfying 
(a) Dom(/) = JT. 
(b) If (x,.y) e/ and (x,z) e f then y — z. 

Let (f X, Y) be a function from X to Y. In what follows, we shall adhere 
to the custom of writing f: X -+Y instead of (f,X,Y), and y = /(x) in¬ 
stead of (x,y) e f. The reason that “y = /(x)” is a meaningful substitute 
for “(.x,y)ef ” is 

Every element x e X has a uniquely determined y e Y such that (x, >’) e f. 

To see that this assertion is true, let xeX. Then by condition (a) of Defini¬ 
tion 8, there exists an element y eY such that (x,y) e/; if there is another 
element z eY with (x, z) e /, then according to condition (b), z = y. This 
shows that y is uniquely determined by x e X. 

Let/: X-*Y be a function. If y = /(x), we say that y is the image of x 
under / and that x is a preimage of y under /. The reader may picture this 
as illustrated in Figures 9 and 10. We call the set Y, inf: X-* Y, the range 
of the function. The reader should notice that the range of a function need 
not be the same as the image of the function4 (see Example 7, below). We 
call the reader’s attention to the fact that some authors use the word “range” 

4 The image of the function/: X-> Tis the image, Im (/), of the relation/. Consequently, 

Im(/) = {/(x) 1 x e X}. , 
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to mean “image,” but for a technical reason, which will be apparent in 

Section 6, we make a distinction between “image” and “range” of a 

function. In general, the image of a function is a subset of the range of that 

function. 

Figure 9. / is the image of x 

Figure 10. x 1 and x 2 are preimages of / 

EXAMPLE 7. Let /: R-* R be defined by f(x) = [x] for all x in R, where 

[x] denotes the greatest integer e.g., [,/2] = 1, [ — i] = — 1. Here 

the range of / is R, whereas the image of / is Z, a proper subset of R. 

It is possible to alter the range of a function without otherwise changing 

the function. For instance, for the same relation / as in Example 7 above, 

/: R ->• Q and /: R -> Z are functions, because Definition 8 is satisfied. 

In general, we have the following theorem. 

Theorem 6. Let /: X -> Y be a function and let W be a set containing the image 

of f Then f:X->W is a function. 

Proof. We first prove that / is a relation from X to W: 

(x, y) ef=>xeXAye (Im/) Def. of Im 

=> x e X A y eW Im(/) £ W 

^(x,y)e XxW Def. 1 
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This proves that /c Xx W; in other words, / is a relation from X to W. 

Now since f:X^>Y is a function, Dom(/) = X and condition (b) of 
Definition 8 is satisfied. Therefore, f:X^>W is a function. 

Theorem 7. Let f:X~*Y and g : X-*• Y be functions. Then f = g if and only 
if /(x) = g(x), Vx e X. 

Proof. (1) Suppose that/=# and that x is an arbitrary element in X. Then, 

y = fix) o (*,t) 6/ 
(x,y) eg 

Notation 

f=9 

o g(x) = y 

Hence, f(x) - g(x). 

(2) Suppose that f(x) = g(x), Vx e X. Then 

(x,y) efoy =/(x) 

o y = g(x) 

(x,y) e g 

Notation 

Notation 

fix) =g(x) 

Notation 

This proves that f = g. 

If the domain and the range of a function are subsets of the set of real 

numbers, then, as in analytic geometry, the graph of the function may 

be sketched on the Cartesian plane. For example, the function in Example 

7 has the following graph. 

Figure 11. 
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EXAMPLE 8. Let A be a subset of a nonempty set X. Then the relation 

{(x,y) e Xx {0,1} | y — 1 if xe A and y — 0 if * £ A} 

gives rise to a function from X to {0,1}, known as the characteristic func¬ 

tion of A in X. This function is usually denoted by the Greek letter chi 

with a subscript A, %A • That is, 

Xa'- X {0,1} 

is defined by 

Xa(x) = 
1 

0 

if jc e A 

if xe X—A 

Although a function is, by definition, written (f,X,Y) or f:X-+Y, 

it is often a nuisance to have to write the domain and the range of the 

function explicitly when they are implicitly clear from the context. There¬ 

fore, we shall denote a function by f when the domain and the range of f are 

clearly understood, without explicitly giving the domain and the range of f 

EXAMPLE 9. Let Abe a set. The diagonal relation A* on X defined on page 56 

is a function from X to X. When we wish to stress that the relation Ax is 

a function, we use the alternative notation \x : X-> X, where lx(x) = x: 

for all x in X. The function lx is called the identity function on X. 

EXAMPLE 10. Let X and Y be two nonempty sets and let b be a fixed element 
of Y. The relation 

Cb — {(x,b) | x e X} 

gives rise to the function Cb: X-*Y given by Cb(x) = b for all x in X. 

The function Cb is called a constant function. 

In calculus, we have often seen a function defined by two (or more) 

rules of correspondence: for example, /?: R -> R defined by 

1 1 — 2x, if x ^ 0 
h(x) = 

{ x2 + 1, if x 0 

This function may be considered as the union of the following two func¬ 
tions: 

(1) /: (-oo,0] -> R defined by f(x) = \ -2x, dx e (-oo,0] 

(2) g : [0, oo) -» R defined by g(x) = x2+ 1, dxe [0, oo) 

The reader should notice that here Dom(/) n Dom(#) = {0} and that 

/(0) = <7(0). 

The last example motivates the following general theorem. 
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Theorem 8. Let /: A -> C and g : B -> D be two functions such that f(x) = 

g(x), Vx e A n B. Then the union h of / and g defines the function 

h=fyjg\ AyjB-+CyjD 

where 

h(x) = 
{g(x), if xeB 

Proof. Since / and g are relations, / £ Ax C and g c BxD, and we have 

h = f yj g ^ (Ax C) yj (Bx D) 

£(.AvjB)x (CkjD) 

because both AxC and BxD are subsets of (Ayj B)x(Cyj D). Thus, 

h is a relation from A u B to C u D. We leave it to the reader to verify 

that 

Dom (h) = Dom(/) u Dom(^) 

= A yj B 

This shows that the relation h satisfies Definition 8(a). 

For each element x e A — B, we may consider the following three cases: 

(1) xeA — B, (2) xeB—A, and (3) x e A n B. Since f:A-+C and 

g \ B-* D satisfy Definition 8(b) and /(x) = g(x) Vx e A n B, we have 

that h(x) is uniquely defined in each of the three cases. Thus the relation 

h satisfies Definition 8(b) as well. Hence, h \ A yj B C yj D is indeed 

a function. 

Exercise 3.4 

1. Test whether or not each of the following diagrams defines a func¬ 

tion from X — {x,y,z} to Y = {u,v,w}. 

(a) 
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(b) 

k 

(c) 

\ 

Let /: R -> R be the function given by 

5 if x is rational 
/(*) = 

-3 if x is irrational 

3. 

Find/(l/3), /(7), and /(l.323232-). 
Let the function /: R -> R be given by 

4x + 3 if x > 5 

/(*) = x2 - 2 

4-5x 

if — 6 ^ x ^ 5 

if x < — 6 

Find /(—7), /(3), and/(6). 

4. Let the function f:X-+Y be defined by the diagram 
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What is the image of this function? 

5. Let the function /: X -> R be defined by X = { - 2, - 1,0,1,2} and 

f(x) = x — 3 for all x e X. Find the image of the function / 

6. Each of the following expressions defines a function from R to R. 
Find the image, of each function. 
(a) f{x) = 2x2 + 5 

(b) g{x) = cos* 

(c) h(x) = x3 — 1 

7. Letlcy and /= {(x, x) \ x e X). Prove that /: X-+ Y is a func¬ 

tion. [Remark. This function is called an inclusion function which 
may be denoted by / : I c y.] 

8. Let X = {x,y,z} and 7 = {1,2,3}. Which of the following con¬ 

stitute functions from X to 7? If they do not, give the reason 
(a) /={(x,l),(j;,2),(z,3)} 
(b) g = {(x, 2), {y, 3), (z, 2)} 

(c) h = {(*,2) O 1)} 

(d) i = {(x, 1), (x, 2), (y, 1), (z, 3)} 

9- If X = [x,y,z] and Y— {1,2}, how many functions from X to Y 

exist? More generally, if the set X has m elements and if Y has n 
elements, how many functions from X to Y exist? 

10. How many of the functions in Problem 9 are constant functions? 

11. Let /: X-* Y be a function. Prove that every subset g of / gives rise 
to a function. 

12. Let/: X-> X be a function from X to X that is also a reflexive rela¬ 

tion on X. Prove that /must be the identity function lx : X-> X. 

13. Let X be the unit interval [0,1], Find a function f:X-*X that is 
a symmetric relation on X. 

14. Let f:X-*Y and g : Y be two functions with the same domain 

and the same range. Prove that if/£ g then f = g. 

5. IMAGES AND INVERSE IMAGES OF SETS 

Recall that if/: X -> Y is a function and if x and y are elements of X and 7, 

respectively, such that y — fix), then y is the image of x, and x is a pre¬ 

image of y. This concept can be extended naturally from elements to 

subsets as follows: 

Definition 9. Let/: X -> 7 be a function, and let A and B be subsets of X and 7, 

respectively. 
(a) The image of A under / which we denote fiA), is the set of all images 

fix) such that xe A. 
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(b) The inverse image of B under f which we denote / 1 (B), is the set 

of all preimages of y in B. 

Using set builder notation, we have the following expressions: 

f(A) = {/(x) \xe A) 

f-1(B) = {x\f(x)eB} 

Theorem 9. Let /: X-> Y be a function. Then 

(a) f{0) = 0- 

(b) f({x}) = {/(*)} Vx e X. 
(c) If^cfic X, then f(A) s/(£). 

(d) If <7 £ D £ Y, then f~1 (C) £/"1 (£>)• 
Theorem 9 follows easily from Definition 9; therefore the proof is left to 

the reader. 

Theorem 10. Let f:X-+Y be a function and let {Ay \ y e T} be a family of 

subsets of X. Then 

(a) /(UyeT^y) = Uyer/C^y)- 
(b) /(OyeT^y) — Oyer/(^y)- 

Proof (a) By repeated use of Definition 9 and Definition 6 of Chapter 2, we 

have 

yef\ o y = f(x) for some 

o y = /(x) for some 

o y ef(Ay), for some 

U f(Ay) 
y e r 

X £ [j Ay 
y e r 

x e Ay, for some 

y g r 

y e T 

Therefore, f({JyerAy) = [jyerf(Ay). 

(b) Since (~)yerAy ^ Ay for every y e T, by Theorem 9(c), we have 

/(flyer^y) -f(Ay), for every y e T. It follows from Definition 7 of 

Chapter 2 that/(f)v6r^y) £ Hyer/W- 
The inclusion symbol £ in Theorem 10(b) may not be replaced by 

an equals sign, as the next example shows. 

EXAMPLE 11. Let X = {a, b], Y = {c}, T = {1,2}, A, = {a}, A2 = {b}, and 

let/: X-» Y be the constant function,/(o) = f(b) = c. Then/L^ nAf) = 
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f(0) — 0, whereas /(A t) nf(A2) = {c}. This shows that f(f)yer4y) = 
Dyer/O4?) is not true in general. 

Theorem 11. Let f:X-+Y be a function and let {By \ y e T} be a family of 
subsets of Y. Then 

(a) f~1 (Uyer= {Jyerf~1 (By), 

(b) r1(nyerBy)=r)yerf-1(By). 

Proof, (a) By repeated applications of Definition 9, and Definition 6 of Chapter 
2, we have 

* 6/-1( U V) <*/(*) e (J By 
VEr / yer 

<=> f(x) e By, for some yeT 

o x e f~1(By), for some y e T 

^ x e (J f~\By) 
yer 

Thus, we have proved/_1 (Uv er.B,) = U?erf~X(By). 
(b) Replacing (J by P) and the phrase “for some” by “for all” in the 

proof of part (a) yields a proof for part (b). The student should write 

down each change, step by step, until he is fully convinced. 

Theorem 12. Let /: X -> Y be a function and let B and C be any subsets of Y. 

Then 

r\B-o =r\B)-r\o 

Proof. Let us examine the following equivalences: 

x e f~1(B— C) o f(x) e B — C Def. 9 

O fix) e B A fix) $ C Def. 5 (Ch. 2) 

o x e f~1(B) A x $ f~1(C) 

Def. 9 

O x e LT1 (6)-/-'(C)] Def. 5 (Ch. 2) 

This proves that 

f-\B-C)=r\B)-f-fC) 
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Exercise 3.5 

1. In Problem 2, Exercise 3.4, find 

(a) /({- 1,0,1}), it}), and /({2, log2}) 

(b) f~1 ({0,1}), /“1 ({- 3,3}), r1 ({4,5}), and /-1 ({- 3,4,5}). 

2. In Problem 3, Exercise 3.4, find 

(a) /({— 7,3,6}), /({— 8,2,7}), and/({-9,1,8}) 

(b) /-1 ({0,1}), /-1 ({- 3,3}), and /-1 ({1,2,3}). 
3. In Problem 4, Exercise 3.4, find f({v, w}),f /{c}), and / '({a, b}). 

4. Let f: X -+Y be a function, and let A ^ X, B ^ Y. Prove that 

(a) A <=r\f{A)) 

(b) /(r‘B)£J 
5. Let f\X-+Y be a function, and let A ^ X, B £ F. Find examples 

which show that the following statements are false. 

(a) if B*0, then f-'(B) # 0 

(b) f~1(f(A)) = A 

(c) f(f~\B))=B 

(d) f(X) = Y 

6. Prove that Problem 5(c) is true if f(X) = Y. 

7. Let/: X-> Y be a function such that f(X) — Y, and let B and C be 

subsets of Y. Prove that B = C if/-1 (B) = f~1 (C). Give an example 

which shows that the assertion is false if f{X) / Y. 

8. Let X and Y be two sets, and let px : X x Y -* X and pY : XxY-> Y 

be two functions given respectively by px(x,y) = x, pY(x,y) = y 

for all (x,y) e XxY (px and pY are called the X-projection and the 

Y-projection, respectively). Prove that if is a relation from X to Y, 

that is, 01 £ Xx Y, then px(£%) — Dorn^2 and pY{0l) — Im0t. 

9. Let /: X -*■ Y be a function, and let A £ X, B c Y. Prove that 

(a) f(A 1 (B)) —f(A) r\ B 

(b) f{f-HB))=f(X)nB. 

10. Let /: X^ Y be a function, and let B c y. Prove that 

f~l(Y-B) = X-f~\B) 

11. Let f:X-+Y be a function, and let A and B be subsets of X. Give 

an example which shows that it is not true that 

f(A-B) =f(A)-f(B) 

12. Prove Theorem 9. 

6. INJECTIVE, SURJECTIVE, AND BIJECTIVE FUNCTIONS 

In the study of functions, we find it convenient to give names to three 

important types of functions. 
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Definition 10. A function f:X^>Y is said to be injective or one-to-one provided 

that if xx,x2 e X with f{xx) = f(x2) then xx = x2. An injective function 

is called an injection. 

By the Contrapositive Laws in logic, we may say equivalently that the 

function /: X^ Y is an injection if and only if xx,x2 e X with xx # x2 

implies that f{xx) ^ f(x2). For example, the inclusion function in Prob¬ 

lem 7, Exercise 3.4, is an injection. 

Definition 11. A function/: X-> Y is said to be surjective or onto provided that 

if y eY, then there exists at least one x e X such that f(x) — y. A sur¬ 

jective function is called a surjection. In other words, /: X-> Y is a sur¬ 

jection if and only if f(X) — Y. 

The function in Example 7, Section 4, for instance, is not surjective. 

EXAMPLE 12. The sine function /:R->[-l,l] given by /(x) = sinx is a 

surjection; but if the range [—1,1] is replaced by R, then/:R->R is 

not surjective. 

Definition 12. A function /: X -> Y is called a bijection or said to be bijective if 

it is both injective and surjective. A bijection is also called a one-to-one 

correspondence. 

For example, the identity function in Example 9, Section 4, is a bijection. 

Definitions 10, 11, and 12 are illustrated in three diagrams on the following 

page. Sets X and Y are represented as sets of dots within the circles. In each 

picture, every dot in X is paired with some dot in Y by an arrow drawn 

between them. The set of pairs so obtained gives rise to a function 

/: X-*Y. 
For an injection, the result of Theorem 10(b) may be improved. 

Theorem 13. Let f:X-+Ybe an injection and let {Ay | y e T} be a family of 

subsets of X. Then 
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Proof. By Definition 9, and Definition 7 of Chapter 2, we have 

y e fl /W ^ T e r 
v e r 

o (3xy e such that y = /(xy)) Vy e T 

Since f:X-+Y is injective, all these xy’s are the same; we denote this 

element by x0. Then we have 

y e f) fW ^ a*o e such that ^ = /(x0), Vy e T 
yer 

o 3x0 e fj Ay such that y = /(x0) 
y e r 

~y€/{,0rA’) 
Therefore,/(Oyer A) = flyer/W- 

Figure 12. f: X -*■ Y is injective 

Figure 13. f: X -* Y is surjective 
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Recall that if is a relation from X to Y, then its inverse 

= {y,x) | (x,y)e@} 

is a relation from Y to X. Since a function f:X-+Y is a (particular kind 

of) relation from X to Y,f~1 is at least a relation from Y to X. It is natural 

to inquire when/_1 becomes a function. This question is considered in 

the following theorem. 

Theorem 14. Let /: X-*■ Y be a bijection. Then / 1 : X is a bijection. 

Proof. We shall first prove that the relation/-1 from Y to X forms a function. 

Since f:X-*Y is surjective, by Problem 3(a), Exercise 3.2, we have 

Dom(/-1) = lm(/) = Y. Thus, condition (a) of Definition 8 is satisfied. 

To show that f~* l 2 3 satisfies the other condition, we let {y,xY) ef~x and 

(y,x2) e/_1. Then we have (x1,y)ef and (x2,y)ef. Consequently 

/(xx) = y = f(x2). Now, because f:X^Y is injective, the last equality 

implies that xt — x2. Thus we have established that f~l\Y-*X is a 

function. 
To show that the function /-1: Y-* X is injective, let yx,y2 e Y with 

/-1Oi) =f~1(y2) = x (say). Then we have/(x) = and f(x) = y2, 
and hence yt — y2. This proves that/-1 is injective. 

Finally, it remains to be shown thatf~x : Y -* X is surjective. By Prob¬ 

lem 3(b) of Exercise 3.2, we have Im(/-1) = Dom(/) = X, which proves 

that/-1 is surjective. Thus the proof is complete. 

If /: X-* Y is a bijection, the function /_1 : Y-+ X is called the inverse 

function of/ (see also Problem 14, Exercise 3.6). 
By virtue of Theorem 14, if/: X-> Y is a bijection ( = one-to-one cor¬ 

respondence), we shall say that / is a one-to-one correspondence between 

the sets X and Y. 

Exercise 3.6 

1. Which of the functions in Problems 2, 3, and 4 of Exercise 3.4 are 

injective? surjective? 
2. Which of the functions in Problems 5 and 6 of Exercise 3.4 are in¬ 

jective? surjective? bijective? 
3. Let/: R -*• R be the function defined by f(x) = 3x—2, for all x e R. 

(a) Prove that the function / is a bijection. 

(b) Find the inverse f~x of/. 
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4. Let g : {-nil,nil) -> R be the function given by g(x) = tanx, for 

all —n/2 < x < 7i/2. Is this function bijective? If so, describe its 

inverse function. 
5. Prove that the characteristic function Xa '■ X-> {0,1} in Example 8, 

Section 4, is surjective if and only if 0 A A c X. When does 

XA : X-> {0,1} become an injection? 
6. Prove that the constant function Cb: X-> 7 is surjective if and only 

if 7 = {b}. When does Cb: X-> 7 become an injection? 

7. Prove that the ^-projection px : XxY-> X and the 7-projection 

pY : XxY->Y in Problem 8, Exercise 3.5, are surjective. When is 

the X-projection an injection? 
8. Prove that there is a one-to-one correspondence between the set N 

of natural numbers and the set of all even natural numbers. 

9. Prove that there is a one-to-one correspondence between this set Z 

offintegers and the set of all odd integers. 

10. Let X be a finite set with m elements and let 7 be a finite set with n 

elements. Prove that 
(a) If m > n, then there can be no injection f:X-*Y. 

(b) If m ^ n, there exist exactly nl/(n — m)l injections. 

[See also Problem 9, Exercise 3.4.] 

11. Let X be a finite set with m elements. How many bijections from X 

onto X exist? [Remark: A bijection from a finite set onto itself is 

sometimes called a permutation.] 

12. Let /: X -> Y be a function, and let A c X, B £ 7. Prove that 

(a) If /is injective, then f~x{f{A)) = A. 

(b) If/ is surjective, then f{f~l{B)) = B. 

13. Let/: X -> Y be an injection, and let A and B be subsets of X. Prove 

that f{A — B)—f{A)—f{B). [Compare this with Problem 11 of 

Exercise 3.5.] 
14. Prove the following converse of Theorem 14: Let f:X~*Y be a 

function such that f~l is a function from 7 to X. Then/: X-*■ Y is 

bijective. 

7. COMPOSITION OF FUNCTIONS 

To a thoughtful reader, a function f:X-^>Y may be considered as a 

machine that takes an arbitrary object x of the set X, operates on it in a 

certain way, and transforms it into a new object f{x), an output of the 

machine. This idea is illustrated in Figure 15. 

Let f:X-*Y and g : 7->■ Z be two given functions, where the domain 

of the second function is the same as the range of the first function. 

Imagine these two functions as two machines such as a washer and a 
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input 
f 

output 
fix) 

Figure 15. 

dryer. We don't have to be inventors to imagine the possibility of com¬ 

bining these two machines into one new machine; the result would be a 

washer-dryer combination that takes a dirty garment x, washes it so that 

it becomes a clean but wet garment f(x), and then dries it. The outcome is 

a clean and dry garment g(f(x)). The idea is illustrated in Figure 16. 

x 
input f 

9 

output 

gif lx)) 

h 

Figure 16. 

The “combination” of the machines f:X-*Y and g :Y-+Z results in 

a new machine, denoted by h : Z -> Z, which takes an arbitrary object 

x in X and transforms it into the object h(x) = g(f(x)) in Z. The tradi¬ 

tional notation for h is g of and (g°f)(x) = g(f(x)); the traditional name 
for the term “combination” is “composition.” 

Now we are ready for the following definition. 

Definition 13. Let f:X-+Y and g :Y-+ Z be two functions. The composition 

of these two functions is the function g°f\X-+Z where (g°f){x) = 

g(f(x)) for all x in X. In another notation 

g of = {(x, z) e XxZ \ 3y e Y such that (x,y) ef A (y,z)eg} 

EXAMPLE 13. Let/: R -> R and g : R -> R be two functions given respectively 

by /(x) = x+1 and #(x) = x2 for all x in R. Find the composition 

(g°f)(x) and (f°g)(x). 
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Solution. Using Definition 13, we have 

(1) (g°f) O) = #(/(*)) 

= g(x+1) 

= (x+l)2 

(2) 

= x2 + 2x + 1 

(f°g)(x) = f(g(x)) 

The result of Example 13 tells us that in general g°f^f°g\ therefore, 

functional composition is not commutative. 
\ 

Theorem 15. Functional composition is associative. That is, if /: XY, 
g :Y -> Z, and h : Z -» W, then 

(hog) of = ho(gof) 

Proof. We first note that both h°(gof) and {hog) of give rise to functions 

from X to W. Therefore, to show that ho(gof) = (hog)ofby Theorem 7 
of Section 4, we need only to show that [h o (g°f)~]{x) = [(hog) o/](x) 

for all x in X. We use Definition 13 to derive the following: 

lh ° (#°/)] (x) = h(gof(x)) = h(g(f(x))) 

and 

l(h°g) °/] O) - (h°g)(f(x)) - h(g(f(x))) 

for all x in X. This shows that [h o (goff\(x) = [(hog) o/](x), Vx e X. 
The proof is now complete. 

Theorem 16. Let/: X -* Y be a function. Then 

(a) If there exists a function g:Y^X such that gof=\x (where 

1* : X-+ X is the identity function defined in Example 9, Section 4), then 
f'.X^Y is injective. 

(b) If there exists a function h:Y-+X such that/o/7=lr, then 
f:X->Y is surjective. 

Proof (a) Suppose that there exists a function g : YX such that g °f= \x. 

Then for any Xj and x2 in X with /(xx) = /(x2), we have 

*1 = (g°f)(xi) = g(fCu)) = g(f(x2)) = (g of) (x2) = x2 
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This proves that/: XY is injective. 

(b) Suppose that there exists a function h :Y~* X such that f ° h — lr. 

Then for each y eY, there exists an element 

x = h(y) e X 

such that 

/(*) =f(Hy)) = (f°h)(y) = i Y(y) = y 

By Definition 11,/: X-* Y is surjective. 

Exercise 3.7 

1. Let /:R->R and #:R->R be two functions defined by /(x) = 

2x3 4 5 6 7 8 +1 and g(x) = cotx, respectively, for all x e R. 

(a) Find the composition g °/. 

(b) Find the composition /° g. 

2. Let /: R+ -» R and g : R -> R+ be two functions defined by /(x) = 

log10x and g(x) = 10*, respectively, for all xeR. 
(a) Find the composition #o/:R+->R+. 

(b) Find the composition /° g : R -» R. 

3. Let f g, and h be the functions given in Problem 6, Exercise 3.4. 

(a) Find the composition g of. 

(b) Find the composition hog. 

(c) Find the composition h ° (g°f). 
(d) Find the composition (h°g)o f 

(e) Compare your answers for h ° (g°f) and (hog) of; are they the 

same? 
4. Let/: X-*■ Y be a function. Prove that /° 1* =/= ly °f 
5. Let f:X->Ybe a bijection and let/~* 1 2 : Y-> X be the inverse func¬ 

tion of/. Prove that f~l °/= 1* and/°/_1 = ly. 
6. Let f:X-+Y be a function. If there exist functions g :Y~* X and 

h : X such that g of = lx and /° h = ly, prove that f:X-+Y 

is bijective and that g = h =/_1. 
7. Let/: X-*■ Y and g:Y~* Z be functions. Prove that 

(a) If f:X-+Y and g:Y-*Z are injective, then so is g of: X ^ Z. 

(b) If/: X->Y and g :Y-+ Z are surjective, then so is g °/: X-> Z. 

8. Let St be a relation from X to Y and let Sf be a relation from Y to Z. 
We may, as in the composition of functions, define the composition 

of these relations by 

o 01 = {(x,z)eXxZ\ (3y) [(x,y) &9tN(y,z)& £?]} 

which is a relation from X to Z. Prove that 
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(a) G^o^r1 = M~l 

(b) If furthermore ST is a relation from Z to W, then o (5^ ° ^2) = 
(,r o^)o^. 

9. Let f: X -+Y and # : Y -* Z be two bijections. Prove that g of: X -* Z 

is a bijection, and that the inverse function (g°f)~l :Z->F is the 

same as the composition /-1 °g~x :Z-+X of the inverse functions 

g-1 : Z^Y and/'1 : That is, (^o/r1 =f~1 og~\ 
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4 / Denumerable Sets 
and Nondenumerable Sets 

Dedekind s definition of an infinite set is used to discuss properties of infinite 

sets and of finite sets. It is proved, among other things, that denumerable 

sets are the smallest in “size" among the infinite sets. Properties and examples 

of denumerable sets and of nondenumerable sets are given. 

1. FINITE AND INFINITE SETS 

In Section 1, Chapter 2, we mentioned casually that a finite set is a set 

which contains only finitely many elements; although this concept may 

be developed into a more precise mathematical definition, we prefer an 

alternate definition (Definition 1) originated by Dedekind. 

It was pointed out in Section 1 of Chapter 2 that the set N of all natural 

numbers is an infinite set. Let Ne = {2,4,6,...} be the set of all even 

natural numbers. As the reader has shown in Problem 8, Exercise 3.6, 

there is a one-to-one correspondence between the set N and its proper 
subset Ne. 

In other words, 

A part is as numerous as the whole.1 

This strange property (of an infinite set) bothered many mathematicians 

including Georg Cantor. It was Richard Dedekind (1831-1916)2 who 

1 A striking difference from Euclid’s axiom: “The whole is greater than any of its parts” 
(325 b.c.). 

2 Richard Dedekind, one of the greatest mathematicians, was born on October 6, 1831, 
in Brunswick, Germany. At first, Dedekind’s interest lay in physics and chemistry; he 
considered mathematics merely as the servant of the sciences. But this did not continue 
long; by the age of seventeen he had turned from physics and chemistry to mathematics, 
whose logic he found more satisfactory. At the age of nineteen he enrolled in the Univer¬ 
sity of Gottingen to study mathematics, and he received his doctor’s degree three years 
later under Gauss. His fundamental contributions to mathematics include the famous 
“Dedekind Cut,” an important concept in the study of irrational numbers, which the 
reader may have an opportunity to study in a real analysis course. 
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made this property the defining characteristic of an infinite set. The fol¬ 

lowing definition was given by Dedekind in 1888. 

Definition 1. A set X is infinite provided that it has a proper subset Y such that 

there exists a one-to-one correspondence between X and Y. A set infinite 

if it is not infinite. 

In other words, a set X is infinite if and only if there exists an injection 

f:X-*X such that f(X) is a proper subset of X. Thus, the set N of natural 

numbers is an infinite set. 

> 

EXAMPLE 1. The empty set 0 and the singleton sets3 are finite. 

Solution, (a) Since the empty set has no proper subset, it cannot be infinite. 

Therefore, the empty set is finite, (b) Let {a} be any singleton set. Since 

the only proper subset of {a} is the empty set 0 and there is no one-to- 

one correspondence between {a} and 0, {a} must be finite. 

Theorem 1. 

(a) Every superset of an infinite set is infinite. 

(b) Every subset of a finite set is finite. 

Proof, (a) Let X be an infinite set and let Y be a superset of X, i.e., X £ Y. Then 

by Definition 1 there exists an injection /: X -*■ X such that f(X) # X. 

Define a function g : Y -> Y by 

. . f f(y) y e x 
g(y) = 

I 7 if ye Y-X 

We leave it to the reader to verify that the function g : Y -*■ Y is injective 

and that g(Y) # Y. It now follows by Definition 1 that Y is infinite. 

(b) Let 7 be a finite set and let X be a subset of 7, i.e., X cz 7. To show 

that X is finite, we suppose the contrary, that X is infinite. Then by (a), 

the set 7 must be infinite. This is a contradiction. Therefore, the set X is 
finite. 

3 A singleton set is a set which consists of one element alone. 
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Theorem 2. Let g : X -* Y be a one-to-one correspondence. If the set X is in¬ 
finite, then Y is infinite. 

Proof. Since X is infinite, by Definition 1 there exists an injection f: X ^ X 

such that f{X) X. Since g : X-+Y is a one-to-one correspondence, so 

is g 1 : Y —* X (Theorem 14, Chapter 3). We now have the following 
diagram of injections: 

v Y 

x -► x 
f 

Consequently, the composition h = g °f og~x :Y-*Y of injections is an 

injection [Problem 7, Exercise 3.7]. Finally, we have 

h(Y) = (,gofog-'UY) = (g°f)(g-\Y)) 

- (g°f)(X) = g(f(X)) 

and g(f(X)) # Y, because /(X) / X. 

Thus, h{Y) is a proper subset of Y and hence Y is infinite. 

Corollary. Let g : X -* Y be a one-to-one correspondence. If the set X is finite, 

then y is finite. 

Proof. Exercise. 

Theorem 3. Let X be an infinite set and let x0 e X. Then X— {x0} is infinite. 

Proof. By Definition 1, there exists an injection f:X-+X such that f(X) c X. 

There are two cases to be considered: (1) x0ef(X) or (2) x0 e X—f(X). 

In each case we must construct an injection g : X— {x0} -> X— {xr0} such 

that g(X- {x0}) # X- {x0}. 

Case 1. x0 e f(X). 
There exists an element xx in X such that f(xx) = x0. A function 

g : X - {x0} -*• X - {x0} 
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may now be defined by 

f{x) if x =£ xi 

x2 if x = xl e X — {x0} 

where x2 is an arbitrarily fixed element in the nonempty set X—f{X). 

It follows that g : X- {x0} -► X- {x0} is injective and that g(X- {x0}) = 

/(X-jxo,*!}) u {-x2} ^ ^-{x0}- Hence X-{x0} is infinite in this case. 

Case 2. x0 e X—f(X). 
Define a function# : A'-fxo} -»• -T-{x0} by#(x) =f(x) for all x e A'-jxo}. 

Since f\X-*X is injective, so is g : X— {x0} -> X— {x0}. Finally, 

g(X-{x0}) =f(X) - {f(x0)} ±X- {*0} 

Therefore, in either case, X—{x0} is infinite. 

In what follows, let us denote by Nk, k e N, the set of all natural numbers 

from 1 to k; that is, = {1,2,3, As an application of Theorem 3, 

we show in the following example that each is a finite set. 

EXAMPLE 2. For each k e N, the set is finite. 

Proof. We shall prove this by the principle of mathematical induction. By 

Example 1, the assertion is true for k = 1. Now assume that the set N* 

is finite for some natural number k. Consider the set Nk+ j u {k+ 1}. 

If Nfc+1 is an infinite set, then by Theorem 3 Nfc+1 — {A:H-1} = Nk is an 

infinite set, which contradicts the induction hypothesis. Thus, if N* is 

finite then Nfc+1 is finite. Therefore, by the principle of mathematical 

induction, the set Nfc is finite for every k e N. 

In effect, there is a close connection between a nonempty finite set and a 

set Nfc. 

Theorem 4. A set X is finite if and only if either X = 0 or X is in one-to-one 

correspondence with some Nfc. 

Proof If X is either empty or in one-to-one correspondence with some Nft, 

then by the corollary to Theorem 2 and Examples 1 and 2, the set X is 

finite. 

To show the converse, we show, equivalently, its contrapositive: If X ^ 0 

and X is not in one-to-one correspondence with any Nk, then X is infinite. 

Then we can take an element from X and, again, X— (xj is not empty; 
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for otherwise we would have X - {xj in one-to-one correspondence 

with Nj, a contradiction to the assumption about X. Similarly, we can 
choose an element x2 of X— {xj}. 

Continuing in this manner, suppose that we have chosen elements 

Xj,x2,...,xk of X. Then X—{x1,x2,...,xk} is nonempty; otherwise X = 

{xx,x2, ...,xk} would be in one-to-one correspondence with N*, a contra¬ 

diction to our assumption about X. Thus, we can always choose an 

element xk+l from X— {xj,x2, Then, by mathematical induction, 

for every natural number n, there exists a proper subset {jc,,x2, 

of X. Denote the set of xn chosen for every natural number n by T.4 Then 

the function f:Y-> Y— {xj defined by f(xk) = xk+l, for all k e N, estab¬ 

lishes a one-to-one correspondence between Y and its proper subset 

Y— {*,}. Therefore, by Definition 1, Tis infinite and hence, by Theorem 1, 

X is infinite. 

We mention here that Theorem 4 suggests an alternate definition of 

finite and infinite sets. We can define a set to be finite if and only if it is 

either an empty set or in one-to-one correspondence with some Nk, and 

to be infinite if and only if it is not finite. From this alternate definition, 

our Definition 1 can be proved as a theorem. However, this would require 

about the same amount of work as our present approach. 

Exercise 4.1 

1. Complete the proof of Theorem 1. 

2. Let g : X -*Y be a one-to-one correspondence. Prove that if X is 

finite, then Y is finite. 

3. Prove that the sets Z, Q, and R are infinite. 

4. Prove that if A is an infinite set, then so is A x A. 
5. Prove that if A and B are infinite sets, then A u B is an infinite set. 

6. Prove that the union of finitely many finite sets is a finite set. 

7. Let A and B be two sets such that A u B is infinite. Prove that at least 

one of the two sets A and B is infinite. 
8. Prove the following generalization of Theorem 3: If Y is a finite subset 

of the infinite set X, then X- Y is infinite. 

4 Here the authors have implicitly used the “axiom of choice,” an important axiom to 

be discussed in Chapter 6. One form of the axiom of choice may be stated as: “Let & 

be a nonempty set of nonempty subsets of a given set X. Then there exists a set R £ X 

such that for every Ce C n R is a singleton set.” This axiom will be used throughout 

this book without being mentioned explicitly. 
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2. EQUIPOTENCE OF SETS 

Two finite sets X and Y have the same number of elements if and only if 

there exists a one-to-one correspondence f:X-*Y. Although the phrase 

“same number of elements” does not apply here if X and Y are infinite, 

it seems natural to think that two (infinite) sets that are in one-to-one 

correspondence are of the same size. We formalize this intuition as follows: 

Definition 2. Two sets X and Y are said to be equipotent, symbolized as X ~ Y. 

provided that there exists a one-to-one correspondence f:X-*Y. 

Obviously, every set is equipotent to itself. Since the inverse of a one-to- 

one correspondence is a one-to-one correspondence (Theorem 14, Chapter 

3), X r*~> Y if and only if Y ~ X. Let us agree that the symbol f: X ~ Y 

represents “/: X -> Y is a one-to-one correspondence and hence X ~ Y." 

Using this convenient notation, the first half of the result of Problem 9, 

Exercise 3.7 may be restated as: Iff: X ~ Yand g : Y ~ Z then g °/: X ~ Z. 

We have thus proved the following theorem. 

Theorem 5. Let if be a set of sets and let 01 be a relation on if given by X01Y 

if and only if X and Y are members of if and X ~ Y. Then 01 is an equiv¬ 

alence relation on if. 

In the following example the symbols (0,1) and (—1,1) represent open 

intervals of real numbers, not ordered pairs of integers. 

EXAMPLE 3. 

(a) (0,1) ~ (— 1,1). 

(b) (— 1,1) ~ R and (0,1) ~ R. 

Solution, (a) The function /: (0,1) -> (- 1,1) given by f(x) = 2x-1 is a one- 

to-one correspondence. Hence (0,1) ~ (— 1,1). 

(b) The trigonometric function #:(—1,1)->R given by g(x) = 

tan(7rx/2) is a one-to-one correspondence; therefore (— 1,1) ~ R. The 

reader should verify this assertion by sketching a graph of g(x) = 

tan(nx/2). A rigorous proof may be obtained by verifying the following 
two observations: 

(1) g : (— 1,1) -> R is continuous and unbounded both below and above. 

(2) g\x) = (n/2) sec2(nx/2) > 0Vx=>g is strictly increasing. 
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Since the equipotence “relation” ~ is transitive,5 (0,1) ~ (-1,1) and 
(— 1,1) ~ R imply (0,1) ~ R. 

Theorem 6. Let X, Y, Z, and W be sets with XnZ=0=YnW, and let 

f\ X ~Y and g : Z ~W. Then/u g : (XuZ) ~ (YvW). 

Proof. Since /:X-> Y and g:Z^W are functions with X n Z = 0, by 

Theorem 8 of Chapter 3, fug: X'uZ-^Y'aW is a function. We leave 

it to the reader to prove that the latter function is a one-to-one corres¬ 
pondence. 

Theorem 7. Let X, Y, Z, and W be sets such that X ~ Y and Z ~ W. Then 
Xx Z ~ YxW. 

Proof. Let /: X ~ Y and g : Z ~ W. We define the function fxg\XxZ^> 

YxW by (fxg)(x,z) = (f(x),g(z)) for all (x,z) e Xx Z. We ask the 

reader to verify that the latter function is a one-to-one correspondence. 

Examining the various finite sets Nfc = {1,2,3, ...,kj as k increases and 

noting that the infinite sets Z, Q, and R (see Problem 3, Exercise 4.1) 

are supersets of N, it appears that the “smallest” infinite set is the set N 

of all natural numbers, or any set that is equipotent to N. We shall soon 

learn, in Section 4, that not all infinite sets are equipotent to N. 

Definition 3. A set X is said to be denumerable provided that X ~ N. A count¬ 

able set is a set which is either finite or denumerable. 

Let X be a denumerable set. Then there is a one-to-one correspondence 

/: N ~ X. If we denote 

/(1) = *1, /(2) = *2, /(3) = *3, f{k) = xk, ... 

then X may be alternatively denoted as ...,xk,...}; the dots 

are used to indicate that the elements are labeled in a definite order as 

5 Strictly speaking, is not a relation, because its domain is not a set (see Theorem 10 

of Chapter 2). But, we may call it a relation here if we consider it to be defined on any 

given set of sets Sf (Theorem 5). 
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indicated by the subscripts. An explanation of the term “countable” is 
now in order. For a finite set, it is theoretically possible to count its 
elements and the term is suitable. Even though the actual counting of all 
elements of a denumerable set X = {xx,x2,x3,...} is impossible, never¬ 
theless, the set X is in one-to-one correspondence with the natural, or 
counting, numbers. 

Theorem 8. Every infinite subset of a denumerable set is denumerable. 

Proof. Let Y be an infinite subset of the denumerable set X = {xx,x2,x3,...}. 
Let nx be the smallest subscript for which xni e Y, and let n2 be the smallest 
subscript for which x„2eY—{xni}. Having defined x„k_1eY, let nk be 
the smallest subscript such that x„k e Y— {xni, x„2, ...,x„k_1}. Such an 
x„k always exists for each k e N, because Y is infinite, which ensures that 
Y—{xni,x„2,...,x„k_i} # 0 for each k e N. We have thus constructed a 
one-to-one correspondence /:N ~F where f(k) — xnk for each k e N. 
Therefore, Y is denumerable. 

A shorter but less intuitive alternate proof of Theorem 8 is indicated in 
Problem 10 at the end of this section. The following corollary is an im¬ 
mediate consequence of Definition 3 and Theorem 8. 

Corollary. Every subset of a countable set is countable. 

More examples and properties of denumerable sets are given in the next 
section. 

Exercise 4.2 

1. Complete the proof of Theorem 6. 
2. Complete the proof of Theorem 7. 
3. Prove that if X and Y are two sets, then XxY ~ Yx X. 
4. Prove that if (X— Y) ~ (Y — X) then X ~ Y. 
5. Prove the following generalization of Theorem 6: Let {Xy | y e T} 

and {Ty | y e T} be two families of disjoint sets such that Xy ~ Yy 
for each y e T. Then [jyerXy ~ U,erYy 

6. Prove that if A is a denumerable set and Y is a finite subset of X, 
then X—Y is denumerable. [Compare with Problem 8, Exercise 4.1.] 
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7. Prove that if X is a denumerable set and 7 is a finite set, then X u Y 
is denumerable. 

8. Prove that the set Ne of all even natural numbers and the set N0 of 
all odd natural numbers are denumerable. 

9. Let A be a nonempty set, and let 2A be the set of all functions from 
the set A to the set {0,1}. Prove that A) ~ 2A. 

10. Let I be a denumerable set and Y an infinite subset of X. Let 
g : X ~ N, and let h : Y -» N be defined by 

h{y) = the number of elements in {1,2,3, ...,g{y)} n g(Y) 

Prove that h is a one-to-one correspondence and hence that Y is 
denumerable. 

3. EXAMPLES AND PROPERTIES OF DENUMERABLE SETS 

The set Ne of all even natural numbers and the set N0 of all odd natural 

numbers are denumerable (Problem 8, Exercise 4.2). Since the union 

NeuN„ ( = N) of these two denumerable sets is denumerable, the next 
theorem should be predictable. 

Theorem 9. The union of two denumerable sets is denumerable. 

Proof. Let A and B be any two denumerable sets. We shall show that A u B 
is denumerable in the following two cases: 

Case 1. A n B — 0. 
Since A ~ N and N ~ N0, we have A ~ N0. Similarly, we have B ~ Ne. 

Consequently, by Theorem 6, we have (A u B) ~ (N„ u Nc) = N, which 

shows that A u B is denumerable. 

Case 2. A n B ^ 0. 
Let C = B—A. Then A u C = A u B and A n C = 0; the set C £ B 

is either finite or denumerable [corollary to Theorem 8], If C is finite, 

by Problem 7 of Exercise 4.2, A u C is denumerable, whereas if C is 

denumerable, then A u C is denumerable by case 1, above. 

Therefore, the set A u B is denumerable. 

Corollary. Let A1,A2,...,An be denumerable sets. Then [Jnk=iAk is de¬ 

numerable. 

Proof. Left to the reader as an exercise. 

We ask the reader to verify the next example. 
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EXAMPLE 4. The set Z of all integers is denumerable. 

Theorem 10. The set N x N is denumerable. 

Proof. Consider the function /: N x N -> N given by 

f(j,k) = 2J3k 

for all (j, k)e N x N. This function is injective, so that 

NxN~ /(NxN) c N. 

Since N x N is infinite, so is /(N x N). By Theorem 8, /(N x N) is de¬ 

numerable and hence the set N x N is denumerable. 

Corollary. For each he N let Ak be a denumerable set satisfying Aj n Ak = 0 

for all j k. Then is denumerable.6 

Proof. For each k e N, let fk: N-»Nx {A:} be the function given by fk(j) = 

(j, k) for all j e N. Clearly, each /t:N^Nx {k} is a one-to-one cor¬ 

respondence. That is, N~Nx{£}. Since Ak ~ N and N ~ N x {k} for 

each k e N, we have Ak ~ N x {k} for each k e N. It then follows from 

Problem 5 of Exercise 4.2 that ~ IJteNNx {k}. But the set 

UftelvN x {k} equals the denumerable set NxN. Therefore, U*eN.4k is 
denumerable. 

EXAMPLE 5. The set Q of all rational numbers is denumerable. 

Proof. We shall represent each rational number uniquely as plq, where 

pe Z, <7 e N and the greatest common divisor of p and q is 1. Let Q + 
be the set of all such plq > 0, and let Q_ = {—plq \ plq e Q + .} Then 

Q = Q+ u{0}uQ_, It is evident that Q+ ~ Q- Hence, to show that 
Q is denumerable, it is sufficient to show that Q+ is denumerable. To this 

end, we consider the function /: Q+ ->NxN given by f(p/q) = (p, q). 

Since this function is injective, we have Q+ ~/(Q + ) £ NxN. Since 

Q + , as a superset of N, is infinite, /(Q+) is an infinite subset of the de¬ 

numerable set NxN. Therefore,/(Q + ) is denumerable and consequently 
Q+ is denumerable. The proof is now complete. 

The next theorem indicates that the denumerable sets are, in a sense, the 
smallest in “size” among the infinite sets. 

6 This result is true without the hypothesis “A n Ak = 0 for all j # k." See Problem 7. 
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Theorem 11. Every infinite set contains a denumerable subset. 

Proof. Let X be any given infinite set. Then X A 0 so that we can pick an 

element, call it x1, from the set X. Next, let x2 be an element in X— {xj. 

Similarly, pick an element x3 from the nonempty set X—{xl,x2}. Having 

so defined xk^1 we let xk be an element of X— {xt,x2, ...,xt_!}. Such 

an xk exists for every k e N, because X is infinite, which ensures that 

X— {x1,x2, ...,xfc_j} A 0 for every k e N. The set {xk \ k e N} is a 

denumerable subset of X, and the proof is now complete. 

Exercise 4.3 

1. Prove the assertion of Example 3: The set Z of all integers is de¬ 

numerable. 

2. Prove the corollary to Theorem 9. 

3. Prove that the union of finitely many countable sets is countable. 

4. Prove that if A and B are denumerable sets, then so is Ax B. In par¬ 

ticular Z x N, Z x Z, and QxQ are denumerable. 

5. Find an injection /:Q-+ZxN and give an alternate proof for 

Example 5. 
6. Prove that the set of all circles in the Cartesian plane having rational 

radii and centers at points with both coordinates rational is denumer¬ 

able. 
7. Prove that if for each k e N, Bk is a denumerable set, then (JfceN Ac 

is denumerable. 

4. NONDENUMERABLE SETS 

All infinite sets that we have seen so far have been denumerable. This 

may lead the reader to wonder whether all infinite sets are denumerable. 

It is commonly thought that Georg Cantor tried to prove that every 

infinite set is denumerable when he first began his development of set 

theory. However, he surprised himself by proving that there exist non- 

denumerable sets. 

Theorem 12. The open unit interval (0,1) of real numbers is a nondenumerable 

set. 

Proof. Let us first express each number x, 0 < x < 1, as a decimal expansion 

in the form .x1x2x3..., where xn e {0,1,2, ...,9} for all n e N. For 
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example, 1/3 = .333..., ^2/2 = .707106.... In order to have a unique 

expression, for those numbers with a terminating decimal expansion such 

as 1/4 = .25, let us agree to decrease the last digit by one and append 

9’s so that 1/4 = .24999... not .25000.... Under this agreement, two 

numbers in the interval (0,1) are equal if and only if the corresponding 

digits in their decimal expansions are identical. Thus, if two such numbers 

x = x2x3... and y = .yx y2 T3 have one decimal place, say the Arth 

decimal place, such that xk # yk, then x±y. This is a crucial point upon 

which our proof rests. 
Now suppose that the set (0,1) is denumerable. Then there exists a one- 

to-one correspondence/: N ~ (0,1). So we may list all elements of (0,1) 

as follows: 

/(l) = -All °12al3 ••• 

/(2) = •(321 °22^23 ••• 

/(3) = -#31 a32 a33 •” 

> 

(*) 

f(k) — .akl ak2ak3 ... 

where each ajke{ 0,1,2,...,9}. 
We shall construct a number ze (0,1) which cannot be found in the 

above listing of /(&)’s. This contradiction will imply that our earlier sup¬ 

position that (0,1) is denumerable was wrong and that the set (0,1) is 

nondenumerable. Let z = .zt z2z2... be defined by zk — 5 if akk / 5 and 

zk = 1 if akk = 5, for each ke N. The number z = .z1z2z2... clearly 
satisfies 0 < z < 1; but z =4/(1) since zx aiu z //(2) since z2 ^ a22,..., 
and in general z / f(k) since zk =£ akk, for all ^eN. Therefore, z$/(N) = 

(0,1). We have now the promised contradiction, and the proof is complete. 

Corollary. The set R of all real numbers is nondenumerable. 

Proof. We have proved, in Example 3(b), that R ~ (0,1). Now (0,1) is non¬ 

denumerable; therefore its equipotent set R must be nondenumerable (see 

Problem 1). 

EXAMPLE 6. The set of all irrational numbers is nondenumerable. 

Proof. We have shown, in Example 5, that the set Q of all rational number is 

denumerable. The set of all irrational numbers is, by definition, the set 
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R —Q. It is easy to see that R — Q is an infinite set. To show that R —Q 

is nondenumerable, we suppose the contrary, that R-Q is denumerable. 

It then follows that the union (R —Q) u Q = R is denumerable (Theorem 

9). This contradicts the corollary to Theorem 12. Therefore the set R —Q 

of all irrational numbers is nondenumerable. 

Remarks. (1) The method of proof used in Theorem 12 is called Cantor’s di¬ 

agonal method, because it was originated by Cantor and the construction 

of the key number z = .ztz2z3... hi the proof is based on the digits 

a\ i, °22, °33, ••• on the principal diagonal of the table (*) of digits. This 
proof, though it might not be easy for the beginner to appreciate, reveals 

Cantor’s ingenuity. 

(2) The existence of nondenumerable sets shows that there are classes 

of infinite sets. In fact, as the reader shall see in the next chapter, there 

is an abundance of “equipotence classes” of infinite sets. 

Exercise 4.4 

1. Let A and B be two equipotent sets. Prove that if A is nondenumer¬ 

able, then B is nondenumerable. 
2. Prove that every superset of a nondenumerable set is nondenumerable. 

3. Using the result of Problem 2, above, give an alternate proof for the 

corollary to Theorem 12. 
4. Prove that the set of all irrational numbers between 0 and 1 is non¬ 

denumerable. 

* 
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5 / Cardinal Numbers 
and Cardinal Arithmetic 

The concept of cardinal numbers is introduced. Similarities and distinctions 

between properties of finite and transfinite cardinal numbers are exhibited 

in the course of exploring cardinal arithmetic—addition, multiplication, and 

exponentiation. The chapter ends with a historical remark on the (general¬ 

ized) continuum hypothesis. 

1. THE CONCEPT OF CARDINAL NUMBERS 

Very naturally, the concept of numbers entered our lives early. We were 

able to notice, for example, the similarity between three apples and three 

oranges and the distinction between two fingers and four fingers. Although 

we had a concept of number, most of us did not have a precise definition 

of number. We have known, for example, that 2 + 3 — 5, 3 < 4, 6 x 7 = 42, 

etc. This leads us to believe that we don’t need to know what a number 

really is; what we should know are equality and order between numbers, 

and how to calculate with numbers—just as chess players are not con¬ 

cerned with what a knight is, but rather with how it performs. Therefore, 

we do not define here what a cardinal number is,1 but just introduce it as 

a primitive concept relating to the “size” of sets. The important rules 

guiding this new concept are 

C-l. Each set A is associated with a cardinal number, denoted by card,4, 

and for each cardinal number a there is a set A with card A = a. 

C-2. Card A = 0 if and only if A = 0. 

C-3. If A is a nonempty finite set, i.e., A ~ {1,2,3, ...,£} for some k e N, 

then card A — k. 

C-4. For any two sets A and B, card A = card B if and only if A ~ B. 

The rules C-2 and C-3 define the cardinal numbers of the finite sets— 

the cardinal number of a finite set is the number of elements in that set. In 

axiomatic treatments of set theory, C-l and C-4 are usually postulated as 

1 Perhaps the reader should be informed that it is possible to define the cardinal numbers 
as the “initial ordinals.” See page 138. 
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an axiom, called the axiom of cardinality. The beginner might find C-l 

and C-4 rather difficult to accept, because these rules do not say much 

about card ,4 when A is an infinite set. This difficulty will be overcome 

gradually as we proceed—just as the reader did not know what calculus 

was until he was about halfway through the course. At this stage, we may 

say, roughly, that the cardinal number of a set is the property that the 

set has in common with all sets that are equipotent to it. 

Exercise 5.1 

1. Show that the natural numbers are cardinal numbers. 

2. Give three cardinal numbers which are not natural numbers. 

2. ORDERING OF THE CARDINAL NUMBERS— 
THE SCHRODER-BERNSTEIN THEOREM 

We shall call the cardinal number of a finite set a finite cardinal number, 

and the cardinal number of an infinite set a transfinite cardinal number. 

The rules C-2 and C-3 of the previous section show that the finite cardinal 

numbers are precisely the nonnegative integers. Thus, the finite cardinal 

numbers have an inherited natural order: 0 < 1 <2< ••• <k <k + 1 < 

For any two transfinite cardinal numbers, the rule C-4 tells us when they 

are equal and when they are not equal. But we will not be satisfied with 

just that; when they are unequal we wish to be able to tell which one is 

“less” than the other. 

Definition 1. Let A and B be sets. Then card A is said to be less than card B, 

denoted by card A < card B, provided that the set A is equipotent to a 

subset of B but the set B is not equipotent to any subset of A. 

Althoughthis definition is designed to order transfinite cardinal numbers, 

it applies to finite cardinal numbers as well, and when it is applied to finite 

cardinal numbers the result is the same as the traditional natural ordering 

mentioned above. 

EXAMPLE 1. cardN<cardR. 

Proof Since the set N is a subset of R, N is equipotent to a subset of R, 
N ~ N c R, but from Section 4, Chapter 4, we know that the infinite set 
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R is nondenumerable. Hence,' R is not equipotent to any subset of N. 

By Definiton 1, we have cardN < cardR. 

So far it is not clear to us how two cardinal numbers card A and card B 

compare when the set A is equipotent to a subset of B and the set B is 

equipotent to a subset of A. Georg Cantor conjectured that, in this case, 

card/! should be equal to cardi?. Later, in the 1890’s, this conjecture was 

proved, independently, both by F. Bernstein in Cantor’s seminar, and by 

E. Schroder on the basis of a logical calculus. This celebrated result is now 

generally known as the Schroder-Bernstein Theorem. 

Theorem 1. (Schroder-Bernstein Theorem). If A and B are sets such that A is 

equipotent to a subset of B and B is equipotent to a subset of A, then A 

and B are equipotent. 

We shall first prove the following special case of Theorem 1, from which 

Theorem 1 follows easily. 

Lemma. If B is a subset of A and if there exists an injection /: A-+ B, then 

there is a bijection h : A ~ B. 

Proof. If B is A, then the identity function on A is such an /?. Suppose that B is 

a proper subset of A, and let C denote the set {Jn^0fn{A — B), where 

f° is the identity function on A and, for each positive integer k and for 

each xeA,fk(x) =/(/k_1(x)). For each z in A, define h(z) as follows: 

z e C 

z e A — C 

Observe that A — B is a subset of C,/(C) £ C, and that if m and n are 

two distinct nonnegative integers, say m < n, then fm(A — B) and fn(A — B) 

are disjoint. For otherwise, there exjst x and x' in A — B such that/m(x) = 

/"(x'), which leads to fn~m(x') = x e B n (A-B), a contradiction. 

Finally, by the definition of h and the last observation, we have 

h{A) — (A — C) u /(C) 

= A- fn(A — B) 

A — [J fn{A — B) u (J fn(A — B) 

= A - (A-B) 

= B 
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From these observations and the fact that / is injective, it follows that 
h : A -> B is a bijection. This completes the proof of the lemma. 

The main idea behind the above proof may be visualized in the following 

illustrative diagram, where the whole rectangle represents the set A: 

Figure 17. 

Proof (Theorem 1). Let A0 and B0 be subsets of A and B, respectively, such 

that A ~ B0 and B ~ A0, and let f0: A ~ B0 and g0 : B ~ A0 be two 

bijections. Let f: A -> A0 be given by f(x) — g0(fo(x))> which is an injec¬ 
tion. Hence, by the above lemma, there is a bijection h: A ~ A0. Con¬ 

sequently, the composition 1 o h : A ~ B of two bijections h : A ~ A0 

and g^1 ; A0 ~ B is a bijection.2 

It is convenient to write card A^ card B to mean card v4 < card i? or 

card^l = card B. The following corollary is an immediate consequence 

of the Schrdder-Bernstein Theorem. 

Corollary. If A and B are sets such that card^4 ^ cardB and card/? ^ cardT, 

then card A = card B. 

2 This proof and the preceding lemma are adopted from R. H. Cox, “A Proof of the 
Schroeder-Bernstein Theorem,” American Mathematical Monthly, 75, No. 5 (1968), 

508. 
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So far we know very little about transfinite cardinal numbers, because 

we have seen only two such cardinal numbers, card N and card R. Natural¬ 

ly, we would like to know whether there are other transfinite cardinal 

numbers. The answer to this question is given in the next section—there 

is indeed an unlimited supply of distinct transfinite cardinal numbers. 

Another important question is this: If m and n are two distinct finite 

cardinal numbers, then either m < n or n < m; is this true for transfinite 

cardinal numbers? The answer is Yes, but the proof depends on a result 

of the next chapter and is therefore postponed until Theorem 4 of 

Chapter 6. 

Exercise 5.2 

1. Let'rt be any finite cardinal number. Prove that n < cardN. 

2. Let a be any transfinite cardinal number. Prove that card N ^ a. 

Thus, cardN is the smallest transfinite cardinal number. 

3. Let A and B be sets. Prove that card A ^ card B if and only if there 

exists an injection f.A^B. 

4. Let A, B, and C be sets. Prove that 

(a) If card A ^ card B and card B ^ card C, then card A ^ card C. 

(b) If card A < card B and card B < card C, then card A < card C. 

5. Prove that if A and B are sets such that A £ B, then card A ^ card B. 

6. Prove that if A, B, and C are sets such that iggcC and A ~ C, 

then A ~ B. 

3. CARDINAL NUMBER OF A POWER SET—CANTOR'S THEOREM 

Let X be a set. Recall that the power set 2P{X) of X is the set of all subsets 

of X (Section 2, Chapter 2). Georg Cantor himself proved that card X < 

card^(Y). The significance of this theorem is that it furnishes a way of 

constructing a far-reaching sequence of new (transfinite) cardinal num¬ 

bers. For example, we have 

cardR < card^(R) < card^(^(R)) < •••. 

Theorem 2. {Cantor's Theorem). If X is a set, then cardY < card^(Y). 

Proof. If X—0, then card0 = 0 < 1 = card^{0). Hence, it remains to 

prove the case where X^0. In this case, the function g\X-^0>{X) 

given by g{x) = {x} e ^(X), for all x e X, is injective. Thus, the set X 

is equipotent to the subset {{x}|xeY} of PA{X) or, equivalently, 
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card X ^ card fP(X). From this, to show that card X < card 0>(X), it is 

sufficient to show that X is not equipotent to SP{X). 

Assume on the contrary that there is a bijection /: X ~ &(X); our aim 

is to prove that this assumption leads to a contradiction. Consider the 

set 5 = {xel |x£/(x)}, which consists of those elements of X that 

are not contained in their images under/. Since S' e X) and/: X ~ 0>{X), 

there exists an element e e X such that f(e) — S. Either e e S or e <£ S. 

Case 1. e e S. 

It follows, by the definition of S, that e $ f(e); that is impossible, because 

f(e) = S and e e S. 

Case 2. e $ S. 

Since f{e) = S, we have e $ f(e). Consequently, by the definition of S, 

e e S and hence e e f(e). This again is impossible. 

A contradiction has been obtained and the proof of Cantor’s Theorem 

is complete. 

In view of Cantor’s Theorem, a very natural question to arise was, 

Is there a cardinal number x such that 

cardN < x < card^(N) 

This question, called the continuum problem, captured the attention of 

Cantor and other mathematicians for a long time. More about this problem 

will be found in Section 8. 

Exercise 5.3 

1. Show that there is no largest cardinal number. 
2. Let A and B be sets. Prove that if A ~ B then card ZP(A) — card 3P(B). 

3. Let A be any denumerable set. Prove that the power set 0>(A) of A 

is nondenumerable. 

4. ADDITION OF CARDINAL NUMBERS 

There is already an arithmetic for finite cardinal numbers. For instance, 

if k and / are two finite cardinal numbers, the sum k+l and the product 

kl have their traditional meanings. We now try to generalize these con¬ 

cepts to cover the transfinite cardinal numbers as well; that is, to develop 

an arithmetic that applies to all cardinal numbers, finite or transfinite, 

and that will preserve the traditional meanings and properties of the arith¬ 

metic of finite cardinal numbers. 
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Definition 2. Let a and b be cardinal numbers. The cardinal sum of a and b, 

denoted by a + b, is the cardinal number cardOlui?), where A and B 

are disjoint sets such that card A = a and card B = b. 

To show that Definition 2 is well-defined, the reader should first observe 

that for any two cardinal numbers a and b (not necessarily distinct), by 

the rule C-l of Section 1, there exist sets X and Y such that card X= a 

and card Y = b, where the sets X and Y need not be disjoint. But this 

causes no problem, since we may select A = Xx{0} and Z? = Fx{l}; 

then A ~ X, B~Y, and AnB=0. Thus, a + b = card(^ u B) and 

this is uniquely defined; for if there are other disjoint sets A' and B' such 

that A' ~ A and B' ~ B, then by Theorem 6 of Chapter 4, we have 

(A' u B') ~ (A<u B) or, equivalently, card (A' u Bj = card (A u B). 

We have thus proved the following theorem: 

Theorem 3. Let a and b be cardinal numbers. Then 
(a) There exist disjoint sets A and B such that card^4 = a and card B = b. 

(b) If A, B, A’, and B’ are sets such that card,4' = card ,4, card B' = 

card B, A n B — 0, and A' n B' = 0, then card(,4' u Bj = 

card(/4 u B). 

The following example shows that Definition 2 agrees with the ordinary 

sum of two natural numbers when it is applied to two finite cardinal 

numbers. 

EXAMPLE 2. Find the cardinal sum 4 + 3 of the two finite cardinal numbers 

4 and 3. 

Solution. Since N7 = N4 u {5,6,7}, cardN4 = 4, card {5, 6,7} = 3, and the 

sets N4 and {5,6,7} are disjoint, we have 

4 + 3 = card(N4 u {5,6,7}) 

— cardN7 = 7 

which agrees with the ordinary sum of two integers. 

Since the union of sets is commutative and associative we have the 

following corresponding properties about the cardinal sum. 

Theorem 4. Let x, +, and z be arbitrary cardinal numbers. Then 

(a) x++ = + + x (Commutativity). 

(b) (x+y) + z = x + (y+z) (Associativity). 
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Following Georg Cantor, the symbols K0 (read a/eph-null; K is the first 

letter of the Hebrew alphabet) and c have been used respectively to denote 

the cardinal number of a denumerable set and the cardinal number of 

the continuum, where continuum means the set of real numbers. In other 
words, N0 = cardN and c = cardR. 

EXAMPLE 3. Find the cardinal sum N0 + Nk0. 

Solution. Let Ne and N0 denote, respectively, the set of even natural numbers 

and the set of odd natural numbers. Then, Nc and N0 are disjoint de¬ 

numerable subsets of the set N, and their union is N. Consequently, by 
Definition 2, 

N0 + = card Ne + card N0 

= card (Ne u N0) 

= cardN 

= «o 

The result of Example 3 is a distinctive property of the transfinite cardinal 

numbers; for finite cardinal numbers, n + m — n is true only for m = 0. 

The reader should prove, as an exercise, that c+c = c. 

EXAMPLE 4. Find the cardinal sum X0 + c. 

Solution. We have learned from Example 3, Section 2, Chapter 4, that the 

open interval (0,1) and the set R of real numbers are equipotent. Hence, 

card(0,1) = cardR = c. Let S = Nu(0,1). Then since N and (0,1) are 

disjoint, cardS = N0 + c. On the other hand, since R~(0,l)cS and 

S ~ S c R, by the Schroder-Bernstein Theorem (Theorem 1), we have 

S ~ R. Therefore, N0 + c = c. 

Exercise 5.4 

1. Prove that x + 0 = x for any cardinal number x. 

2. Let x and y be two cardinal numbers. Prove that x+y = y + x. 

3. Let x, y, and z be cardinal numbers. Prove that {x+y) + z = 

x + {y+z). 
4. Let n be an arbitrary finite cardinal number. Prove that 

(a) n + N0 = K0 

(b) n + c = c. 

5. Prove that c+c = c. 
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6. Let x, y, and z be cardinal numbers. 

(a) Prove that if x ^ y then x+z ^ y+z. 

(b) Show, by an example, that part (a) above is not true if is 

replaced by 

5. MULTIPLICATION OF CARDINAL NUMBERS 

We now define the multiplication of cardinal numbers in such a way that 

for finite cardinal numbers, the result agrees with the ordinary multipli¬ 

cation of nonnegative integers. 

Definition 3. For any cardinal numbers a and b, the cardinal product ab is de¬ 

fined to' be the cardinal number of the Cartesian product Ax B, where 

card A = a and card B — b. 

To see that Definition 3 is independent of the choice of representatives 

A and B, let X and Y be sets such that A ~ X and B ~ Y. Then, by 

Theorem 7 of Chapter 4, AxB~XxY and hence card (A x B) = 

card (XxY). It is also clear that this definition gives the right answer 

when a and b are finite cardinal numbers. Since we are all familiar with 

the multiplication of nonnegative integers, our main interest here is the 

product of transfinite cardinal numbers and the product of a finite and a 

transfinite cardinal number. First, let us list an easy consequence of 
Definition 3. 

Theorem 5. Let x, y, and z be arbitrary cardinal numbers. Then 

(a) xy = yx (Commutativity). 

(b) (xy)z — x(yz) (Associativity). 

(c) x(y + z) = xy +xz (Distributivity). 

Proof. Exercise. 

EXAMPLE 5. Let x be an arbitrary cardinal number. Evaluate: 

(a) lx. 

(b) Ox. 

(c) K0K0. 
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Solution. Let A be a set such that carets = x. 

(a) Since the Cartesian product {1}xT is equipotent to the set A, we 
have lx = x. 

(b) Since 0 x A — 0, we have Ox = 0. 

(c) Since NxN ~ N (Theorem 10, Chapter 4), we have N0N0 = N0. 

EXAMPLE 6. Prove that cc — c, where c = cardR. 

Proof. Since the set R and the open unit interval (0,1) of real numbers have 

the same cardinal number c, to show that cc ^ c, it is sufficient to show 

that there is an injection from the Cartesian product (0, l)x(0,1) to the 

interval (0,1). To this end, let us agree that each x e (0,1) is expressed 

by its infinite decimal expansion so that, for example, the number \ will 

be .4999... but not .5. Thus we will have a unique expression for each 

number in (0,1). Now, we leave it to the reader to verify that the func¬ 

tion /: (0,1) x (0,1) -> (0,1) defined by 

/(.x,x2x3•••, .y1y2y3—) = ■x1y1x2y2--- 

is injective. This completes the proof that cc ^ c. The proof that cc ^ c 

is left to the reader. 

Exercise 5.5 

1. Prove Theorem 5. 
2. Let x, y, and z be cardinal numbers such that x ^ y. Prove that 

xz < yz. 
3. Prove or disprove the following statement: If x, y, and z are cardinal 

numbers such that x < y and z / 0, then xz < yz. 

4. Let n be a finite cardinal number. Prove that «N0 = N0. 

5. Let x and y be cardinal numbers. Prove that 

(a) If xy = 0 then x = 0 or y = 0. 

(b) If xy = 1 then x = 1 and y — 1. 
6. Show that the function /: (0,1) x (0,1) -»(0,1) defined by 

f(.xlx2x3 —, .yx y2y3—) = -x1y1x2y2 — 

in the proof of Example 6 is bijective. 

6. EXPONENTIATION OF CARDINAL NUMBERS 

Let a and b be cardinal numbers, finite or transfinite. In order to give a 

satisfactory meaning to ba (read: uth power of b), we first examine the 

finite case: 23 = 2-2-2 and, in general, nm = n n.n (m factors). We 
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could generalize this concept to the transfinite case by introducing 

“generalized Cartesian products,” but there is an approach that works 

without reference to generalized Cartesian products. Let A be a set with 

m elements and B a set with n elements. How many functions are there 

from A to B (see Problem 9, Exercise 3.4)? Since each element of A has 

n choices for its image, and this selection of image may be made indepen¬ 

dently m times (once for each element of A), the answer is n n.n — nm. 

This concept is generalized as follows: 

Definition 4. Let a and b be cardinal numbers with a / 0. Let A and B be sets 

such that card A — a and card B — b. Denote the set of all functions 

from A to B by BA.. We define ba = card/?'* * 4. 

> 

Before we can accept Definition 4, we need to verify that this definition 

is independent of the choice of representatives A and B. The following 

theorem is what is needed. 

Theorem 6. Let A, B, X, and Y be sets such that A ~ X, B ~ Y. Then BA ~ Yx. 

Proof. Let g : A ~ X and h : B ~ Y be bijections. Then we define the function 

\jj \ BA -*YX 

by il/(f) : X-+ Y, where <A(/) (*) = h °f o g~l(x) for all / e BA. 

* 

^ Y 

We leave it to the reader to prove that the function t]/ \ BA -> Yx is 
bijective. 

EXAMPLE 7. Let A be a set. Compare the cardinal numbers card£P(A) and 
2card A 

4 

Solution. Let B= {0,1}. We assign to each subset D of A the characteristic 
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function Xd'- A-+ B defined in Example 8, Chapter 3. The function from 

to Ba which sends D to Xd is bijective (Prove it!). Thus, the sets 

A) and BA have the same cardinal number; that is, card0>(A) = 
card Ba = 2catdA. 

Theorem 7. Let a, x, and y be cardinal numbers. Then aV = ax+y. 

Proof. Let A, X, and Y be sets such that card A = a, cardZ=x, card Y = y, 

and X n Y = 0. Then, by Definition 2, cardfiYu Y) = x + y. It is suf¬ 

ficient to show that the sets Ax x Ar and AXuY are equipotent. To this 

end, we assign to each pair (fg) of functions, f e Ax and geAY, the 

function f,ugeAXuY [see Theorem 8, Chapter 3], We leave it to the 

reader to verify that this assignment establishes an equipotence between 
the sets Ax x AY and AXuY. Hence, aV = ax+y. 

Theorem 8. Let x, y, and z be cardinal numbers. Then (zy)x = zyx. 

Proof. Let X, Y, and Z be sets with cardinal numbers x, y, and z, respectively. 

According to Definition 4, the theorem is proved if we establish that 

Z* ** ~ (Z')'L Before showing this equipotence, we first need a notational 

convention: For a given function f:YxX~*Z and a given element 

aeX, there exists a function fa:Y-*Z defined by fa(b)=f(b,a) for 

all b eY. We leave it to the reader to show that the function i)/ : ZY xX -> 

(ZY)X which assigns to each fsZYxX the function efe(ZY)x given by 
ef(a) = fa for all a e X is a bijection. 

Recall that the ^-projection pA: Ax B -> A is a function that assigns 

a to each ordered pair (a,b) e Ax B; the 5-projection pB: Ax B -> B 

is similarly defined [see Problem 8, Exercise 3.5], 

Theorem 9. Let a, b, and x be cardinal numbers. Then (ab)x — axbx. 

Proof. Let A, B, and X be sets with cardinal numbers a, b, and x, respectively. 

The function ip : (Ax B)x -> Ax x Bx which pairs each /: X -» Ax B 

with the function (pA°fpB°f) in Ax x Bx is bijective (Prove it!). Hence, 

by Definition 4, (ab)x — axbx. 

Recall that the symbols K0 and c denote the cardinal numbers of the 

sets N and R, respectively, and that Q ~ N (see Example 5, Chapter 4) 

and (0,1) ~ R (see Example 3, Chapter 4). Thus K0 is the cardinal number 

of Q and c is the cardinal number of the interval (0,1). 

* 
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Theorem 10. 2K° = c. 

Proof. We shall prove this in two steps, showing first that c ^ 2N° and then 

that 2N° ^ c. 
Consider the function /: R -» ^(Q) defined by 

f(a) = {x e Q | x < a}, for all ae R 

This function is injective: If a < b are two distinct real numbers, then 

there exists a rational number r such that a < r < b.3 Then ref(b) but 

r $ f(a), and hence / is injective. This proves, by using the results of 

Problem 3, Exercise 5.2, and Example 7, that 

c < card^(Q) = 2N° 

To prove the reverse inequality, let ip : {0,1}N->R be the function 

given by 

«/,(/) = 0./(l)/(2)/(3). •• 

where /e {0,1}N. Note that ip(f) is a decimal number (consisting of 

0’s and l’s). If fge{0,1}N and /# g, then iP(f)^^P(g) because the 
decimals which define tp(f) and ip(g) are distinct. Therefore, ip : {0,1}N -» 

R is injective, and hence 2K° ^ c. 

Corollary. N0 < c. 

Proof. By Cantor’s Theorem (Theorem 2) and by the result of Example 7, we 

have 

N0 < card ^(N) = 2cardN = 2N° = c 

Exercise 5.6 

1. Prove that the function ip : BA -* Yx in the proof of Theorem 6 is 

bijective. 

2. Let a be an arbitrary cardinal number. Prove that a0 = 1, a1 = a, 
lfl= 1, and 0fl = 0 if a^O. 

3. Show that 2" > a for any cardinal number a. 

4. Let a, b, x, and y be cardinal numbers such that a ^ b and x ^ y. 

Prove that ax ^ by. 

5. Prove that /7X° = c = Nq0 for any finite n ^ 2. 

3 Because the rational numbers are a dense subset of the real numbers. 
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6. Prove that cN° = c = cn for any finite n ^ 1. 

7. Let C denote the set of all complex numbers. Prove that card C = c. 
8. Prove that K0 c — c. 

9. Prove that the function from 0>(A) to {0, l}-4 which pairs each D 

in 3P(A) with Xd is bijective. 

10. Let A, X, and Y be sets such that X and Y are disjoint. Prove that 

the function from AxxAr to AXuY which pairs each (f,g) in 

Ax xAy with /u g in AXuY is bijective. 

11. Prove that the function i]/ : ZrxX -> (ZY)X in the proof of Theorem 8 

is bijective. 

12. Prove that the function i// : (A x B)x -> Ax x Bx in the proof of 

Theorem 9 is bijective. 

7. FURTHER EXAMPLES OF CARDINAL ARITHMETIC 

In Example 6, it was proved directly that cc = c. Now, using Theorem 10, 

2No — c, a shorter proof can be given. 

EXAMPLE 8. Prove that cc = c by using Theorem 10 [cf. Example 6]. 

Proof. It follows from Theorems 7 and 10 and Example 3, N0 + N0 = N0, that 

cc - 2No 2n° = 2No + No = 2Xo = c 

EXAMPLE 9. Compare the cardinal number of the set {/|/:R->-R} of all 

functions from R to R and the cardinal number c of R. 

Solution. We have 

card {/ 1 /: R R} = cc Def. 4 

= (2Xo)c Th. 10 

_ 2n°c Th. 8 

- 2C Prob. 8, Ex. 5.6 

> c Example 7, Th. 2 

Therefore, card {/1 /: R -* R} > cardR. 

EXAMPLE 10. Let C(R,R) and C(Q,R) be the sets of continuous real-valued 

functions with domain R and domain Q, respectively. Let A^(R, R) be 
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the set of all real-valued constant functions with the domain R. Prove 

that 

cardC(R, R) = cardC(Q, R) = card/f(R, R) = c 

Proof4 To each function/: R -» R, there corresponds a function/1 Q : Q -> R 

defined by (/1 Q)(x) =/(x) for all x e Q. The function /1 Q is called 

the restriction of /to Q. Hence, there is a natural function 

^:C(R,R)-> C(Q,R) 

which takes each /e C(R, R) to its restriction /1 Q on Q. It is clear that 

the restriction of a continuous function is continuous. Therefore, 

ij/: C(R, R)-» C(Q, R) is a well-defined function. 

It follows from the'density property of the rational numbers in the real 

numbers that for each real number x there is a sequence (x„ | n e N} of 

rational numbers such that 

lim xn = x 
n—* 00 

Consequently, if any two continuous functions /#:R->R have the 

property that f(x') = g(x') for all x' e Q, then /(x) = g{x) for all xeR. 

In other words, the function ij/: C(R, R) -» C(Q, R) is injective. There¬ 

fore, we have 

cardC(R, R) ^ cardC(Q,R) 

< cardRQ 

= (2N°)No 

_ 2(n°no) 

= 2No = c 

by Theorems 8 and 10. 

Now, consider the set /f(R, R) of all real-valued constant functions 

with the domain R. Since to each real number a, there exists a constant 

function fa: R -> R defined by /fl(R) = {a}, we have 

card/f(R, R) = c 

Since each constant function fa : R -> R is continuous, we have K(R, R) c 
C(R,R). Therefore, 

c = card/f(R, R) ^ card C(R, R) 

4 The proof may be omitted at the discretion of the instructor. 

[106] 5/ Cardinal Numbers and Cardinal Arithmetic 



which combined with the inequality obtained in the last paragraph, gives 

c = card tf(R, R) ^ card C(R, R) ^ card C(Q, R) ^ c 

This completes the proof that card C(R, R), card C(Q, R), and card K{R, R) 
are all equal to c. 

The result of Example 10 indicates that the constant functions are as 

“numerous” as the continuous functions. This is another illustration of 
the curious properties of infinite sets. 

EXAMPLE 11. Find the cardinal number of the set D{R, R) of all differentiable 

real-valued functions of a real variable. 

Solution. Since each constant function is differentiable and each differentiable 
function is continuous, we have 

A(R,R) £ D(R, R) c C(R, R) 

By Example 10, we have 

c = cardAf(R, R) ^ card£)(R, R) cardC(R, R) = c 

Therefore, card £>(R, R) = c. 

Exercise 5.7 

1. Show that the ^-dimensional space R" = RxRx - xR {n factors) 

contains “just as many” points as the unit open interval (0,1). 

2. The classic Hilbert space consists of all infinite sequences (xl,x2,x3,...) 

of real numbers, called points, for which the series x\ + x\ + x\ -I— 

converges. Show that the classic Hilbert space contains “just as many” 

points as the real line R. 

3. Let RN° be the set of all infinite sequences (x!,x2,x3,...) of real 

numbers, called points of the space RNo. A lattice point in RN° is a 

point (x1,x2,x3,...) such that all xk’s are integers. Show that the 

space Rx° contains “just as many” points as the set of all lattice 

points in RN°. 
4. Show that there are “just as many” functions of one real variable 

which assume only the values 0 and 1 as all real-valued functions of 

n real variables, where n is any natural number. 

5. Let the cardinal number of the set {/|/: R-*R} of all real-valued 

functions of one variable be denoted by f. Show that 

f" = fMo = fc = f 

for all n e N. 
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8. THE CONTINUUM HYPOTHESIS AND ITS GENERALIZATION 

Since every infinite set contains a denumerable subset (Theorem 11, 

Chapter 4), the cardinal number K0 is the smallest transfinite cardinal 

number. An important question, known as the continuum problem, was 

raised by Cantor about 1880: Is there a cardinal number that lies strictly 

between K0 and 2X° ( —c)? In set language, are there any nondenumerable 

infinite subsets of R with cardinal number less than that of R? Cantor 

and many leading mathematicians had tried in vain to solve this problem. 

Since no such set had been found anywhere in classical mathematics and 

there seemed to be no way of finding one, it was conjectured by Cantor and 

others that the answer to the continuum problem must be no. This con¬ 

jecture is known as the continuum hypothesis. 

\ 

Continuum Hypothesis. There is no cardinal number x satisfying Nv0 < x < c 

(=2N°). 

A question closely related to the continuum problem, usually referred 

to as the generalized continuum problem, is the following: Is there any 

cardinal number that lies strictly between a transfinite cardinal number 

a and 2°? This question too has not been answered. The conjecture 

that no such cardinal number exists is called the generalized continuum 

hypothesis. 

Generalized Continuum Hypothesis. For any transfinite cardinal number a, there 

is no cardinal number x such that a < x <2a. 

As early as 1900, at the International Congress of Mathematicians in 

Paris, the great German mathematician David Hilbert5 (1862-1943) 

presented a list of 23 important unsolved mathematical problems, the 

first of which was the continuum problem. There was no progress made 

5 David Hilbert (1862-1943), an outstanding mathematician of all time, was a professor 

of mathematics at the University of Gottingen, Germany (1895-1943). He influenced 

the entire world of modern mathematics, ranging from 19th century algebra to modern 

logic and mathematical physics. The famous Hilbert space is one of his many contribu¬ 

tions. Hilbert believed that all mathematical ideas fit together harmoniously. 
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in solving this problem until 1938, when Kurt Godel6 (1906- ), the 

outstanding logician of the century, proved that if the generalized con¬ 

tinuum hypothesis is added to the current axioms for set theory, then 

any contradiction that might be implied by this system of axioms could 

be formulated as a contradiction implied by the initial axioms (without 

the generalized continuum hypothesis) alone.7 In other words, the general¬ 

ized continuum hypothesis is relatively consistent with the axioms of 
set theory. 

Finally, in 1963, a significant achievement was made by the young 

mathematician Paul J. Cohen (1934- ) of Stanford University, who 

declared that the generalized continuum hypothesis is unprovable on the 

basis of the current axioms for set theory. Therefore, the status of the 

generalized continuum hypothesis in set theory is analogous to that of 

Euclid’s parallel axiom (the Fifth Postulate) in geometry. We may postu¬ 

late them or deny them, in either case obtaining a consistent theory of 

mathematics. 

6 Kurt Godel (1906- ) of the Princeton Institute for Advanced Study in New Jersey 

was born in Czechoslovakia. He first achieved fame at 25. Famous scholars including 

Bertrand Russell (1872-1970) and Alfred North Whitehead (1861-1947) had suggested 

the existence of absolute guides to the truth or falsity of certain mathematical statements. 

Godel shocked the world by proving that what Russell and Whitehead sought did not 

exist. His other major contributions include the proof of the completeness of quantifica¬ 

tion logic and the proof of the consistency of both the generalized continuum hypothesis 

and the axiom of choice. 

7 See K. Godel, The Consistency of the Axiom of Choice and of the Generalized Continuum 

Hypothesis with the Axioms of Set Theory, Princeton University Press, Princeton, N.J., 

1940, 66 pp. Rev. ed., 1951, 74 pp. 
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6 / The Axiom of Choice and 
Some of Its Equivalent Forms 

The axiom of choice and three frequently used equivalent principles—the 

Hausdorff maximality principle, Zorn's lemma, and the well-ordering prin¬ 

ciple of Zermelo—are introduced. It is proved, in a circular chain of impli¬ 

cations, t!jat the axiom of choice and these three important mathematical 

principles are all logically equivalent. The principle of transfinite induction 

is given together with a demonstration of how this induction may be used in 

mathematical proofs. A short historical comment of the axiom of choice ends 

the chapter. 

1. INTRODUCTION 

Suppose that you enter a fruit market that has a number of (nonempty) 

baskets of fruit. If you are allowed to choose one (and only one) fruit 

from each basket as free samples, you know this would not be a difficult 

task. But the following similar question, which may be seemingly trivial 

at first glance, is really complex: 

Given a nonempty set if whose elements are disjoint nonempty sets Sa, 

does there exist a set R which has as its elements one element xa of each 

S ? 

The real difficulty lies in the case where if is infinite. At the beginning 

of the twentieth century, Ernst Zermelo (1871-1953) and others made 

unsuccessful attempts to answer this question. Zermelo felt that this 

question might be unsolvable and that the only way to avoid the 

difficulty was to postulate an axiom, which has since been known as the 

axiom of choice. We state this axiom in its general form in terms of 

functions: 

Axiom of Choice. To any nonempty set if whose elements are nonempty sets, 

there exists a function called a choice function f:^^\),p^A such that 
f(A) e A for all A e if. 
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The axiom of choice is now indispensable for proving many important 
results in various areas of contemporary mathematics. In fact, a dis¬ 
guised use of the axiom of choice was made earlier in the proof of Theorem 
11, Chapter 4. 

Mathematicians have since discovered several other principles that 
often can be used as convenient substitutes for the axiom of choice. These 
principles, though seemingly bearing no resemblance to the axiom of 
choice, were soon shown to be equivalent to the axiom of choice. To 
understand some of these principles and their connection with the axiom 
of choice, we need a few definitions. 

Definition 1. A relation ^ on a set A is called a partial order relation if and 
only if the relation < is reflexive and transitive on A and antisymmetric 
on A: that is, if a s$ b and b < a then a = b. A partially ordered set is a 
pair (A 9 ^ ), where A is a set and ^ is a partial order relation on A. 

Definition 2. A total order relation < on a set A is a partial order relation such 
that for any pair of elements a and b in A, either a ^ b or b ^ a. A totally 
ordered set is a pair (A, where A is a set and ^ is a total order relation. 

When the partial (total) order relation on A is unmistakably clear from 
the context, we may simply say that A is a partially (totally) ordered set. 
Total order relations and totally ordered sets are also called linear order 
relations and linearly ordered sets, respectively. It is evident from the 
definitions that a totally ordered set is a partially ordered set, but a par¬ 
tially ordered set need not be a totally ordered set (see Example 2, below). 
Let B be a subset of a partially ordered set (A, 01), and let be the inter¬ 
section 01 n (BxB) of 01 with BxB. Then (B,^b) is a partially ordered 
set; it may happen that is a total order relation on B, in which case B 
is called a totally ordered subset of the partially ordered set (A,^). A totally 
ordered subset of a partially ordered set is also called a chain. 

If (v4,=%) is a partially ordered) totally ordered) set, we may say, equiv¬ 
alently, that the set A is partially ordered (totally ordered) by <. In either 
case, we may write a ^ b for b ^ a, and a < b or b > a for a ^ b and 

a A b. 

EXAMPLE 1. Let X be a nonempty set. The power set 0>(X) of X is partially 
ordered by the inclusion relation £ on 0>(X). 

EXAMPLE 2. Let be the relation defined on R2 by (alta2) (b^bj) if 
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and only if ax ^ bx and a2 < b2. The reader should verify that the rela¬ 

tion is a partial order relation on R2. Since neither (1,2)<' (2,1) nor 

(2,1) (1,2), the relation is not a total order relation on R2. 

EXAMPLE 3. In Example 2, the diagonal A = {(x,x) | x e R} of the plane R2 

is a chain. 

Exercise 6.1 

1. Let T be a partition of a nonempty set X. Prove that there exists a 

set R c X such that for every C e T, C n R consists of one and 

only one element; such a set R is called a set of representatives for (T. 

2. Let /: A -> B be a surjection. Prove that there exists a subset C of 

A such that C is equipotent to B and hence card A ^ card B. 
3. Prove the statement of Example 1. 

4. Show that 

(a) the identity relation “ = ” on a set is a partial order relation. 

(b) the ordinary relation on the set of real numbers is a total 

order relation. 

5. Let F be the set of all functions /: R -» R, and let 

ft = e Ex F | /(x) < g(x), Vx e R} 

Prove that (F,3l) is a partially ordered set. 

6. Prove that the set N of natural numbers together with the relation 

“x divides y” is a partially ordered set. 

7. Let (R2,^') be the partially ordered set of Example 2, and let m be 

any nonnegative real number. Prove that the subset {(x, mx) | x e R} 
of (R2,^') is a chain. 

8. Let {Ay | y e T} be a family of nonempty sets; that is, each Ay 0. 

Then the generalized Cartesian product PyerAy of the family 

{Ay | y e T} is defined to be the set of all functions/: T ->• (Jyer^4 

such that f{y) e Ay for all y e T. Prove that if T ^ 0 then PyerAy 
is not empty. 

9. Using the same notation as Problem 8, prove that if T = (1,2, ...,n} 

is finite then there is a one-to-one correspondence between PJErd)t 

and the set {(xx, x2, .-^xj | x; e Ax for all i e T} of n-tuples. 

10. Let A and B be nonempty sets and let M be a relation from A to B 
with Dom J = A. Prove that there exists a function f:A-+B such 
that/c 

11. Prove that a function f\A-*B is surjective if and only if there 

exists a function g.B^A such that f°g— 1B, the identity func¬ 
tion on B [cf. Theorem 16, Chapter 3]. 
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2. THE HAUSDORFF MAXIMALITY PRINCIPLE 

In modern algebra and in topology, we often find it more convenient to 

use the equivalent Hausdorflf maximally principle than to use the axiom 

of choice. In order to understand this principle, a few more new terms 
are needed. 

Definition 3. Let (A,^) be a partially ordered set. 

(a) An element u e A is said to be an upper bound for a subset B of A if 
and only if u ^ b for all b e B. 

(b) An upper bound u0 for B is the least upper bound for B if and only 

if «0 < u for every upper bound u for B. 

(c) An element e e A is said to be maximal if and only if e ^ a implies 

e = a for all a e A. 

Definition 3 has a dual form which we state separately as 

Definitions'. Let (/!,=$) be a partially ordered set. 

(a) An element v e A is a lower bound for a subset B of A if and only if 

v < b for all b e B. 

(b) A lower bound v0 for B is the greatest lower bound for B if and only 

if v0 ^ v for every lower bound v for B. 

(c) An element e' e A is minimal if and only if a ^ e' implies e' = a for 

all a e A. 

EXAMPLE 4. Let X be a nonempty set and let ^ be a subset of the partially 

ordered set (0>(X), c) [see Example 1]. Then the least upper bound of 

is ar*d the greatest lower bound of Sft is 

The following theorem plays an important role in proving the equiv¬ 

alence of the axiom of choice to other principles. The proof of this theorem 

is tedious, and perhaps discouraging; therefore the authors suggest that 

beginners take this theorem for granted, and omit the proof in their first 

reading. 

Theorem 1. Let (A,<) be a nonempty partially ordered set such that every 

totally ordered subset of A has a least upper bound in A. If /: A-> A 

is such that /(a) ^ a for every a e A, then there exists p e A such that 

f(p) = P- 
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Proof. Let a be an arbitrary element of A that remains fixed throughout the 

proof. A subset B of A is called admissible if and only if it has the follow¬ 

ing three properties: 

(i) a e B. 

(ii) f(B) <= B. 
(iii) Every least upper bound of a totally ordered subset of B belongs to B. 

Let be the set of all admissible subsets of A. Then, since the set A itself 

is admissible, SA # 0. An intersection of admissible sets is admissible; 

hence the partially ordered set (J>, £) has a unique minimal element 

B0 = (~)BemB. Since the set {x g A \ x ^ a] is clearly admissible, we 

have 50s{xed Thus 

(iv) x a for all x e B0. 
Let C = {x g B0 | y e B0 and y < x imply fiy) ^ x}. We shall prove 

that (v) x g C and z e B0 imply either z^xorz >f(x). 

Fix x,e C, and denote D = {z e B0 \ z ^ x or z ^/(x)}. Then the con¬ 

dition (iv) shows that D satisfies (i). The set D satisfies (ii): for if z 5=/(x), 

then /(z) 5s z ^/(x); if z = x, then /(z) = /(x); and if z < x, then since 

x e C we have/(z) ^ x. The set D also satisfies (iii): If u is a least upper 

bound for the totally ordered subset E of D, then either y ^ x for all 

y e E, and consequently u ^ x, or y 5= /(x) for some y e E, and con¬ 

sequently u 5s f{x). Thus, D is admissible and hence D = B0, which 

proves the statement (v). 
We now prove that C is admissible. The set C satisfies (i) vacuously. 

To show that C satisfies (ii), we show that if x e C, y e B0, and y < fix), 

then fiy) ^ fix). By (v), we have either y^fix) or y ^ x, so that if 

y < fix) then y ^ x. Since x e C, y < x implies fiy) ^ x (^/(x)). If 

y = x then fiy) = fix). To prove that C satisfies (iii), let w be the least 

upper bound for the totally ordered set G^C. To verify that w e C, 

let y e B0 and y < w. We have, by (v), that each x e G has the property 

that either y ^ x or y 5s fix). The inequality y 5* fix) 5* x cannot be 

true for all x e G, for then y ^ w, which contradicts the choice of y. There¬ 

fore, there exists an x e G such that y ^ x. If y < x then, by the definition 

of C, fiy) ^ x ^ w. If y — x then, since y < w, there exists azeC such 

that y < z. Whence, by the definition of C, fiy) ^ z ^ w. Thus, fiy) ^ w 

and hence w e C. Now, since the set C is an admissible subset of B0, we 

must have C — B0. Consequently, by (v), B0 is totally ordered. Let p be 

the least upper bound of B0; then p e B0 and p < f(p) ^ p, so that 

AP)=P. 

We are now ready to prove the Hausdorff Maximality Principle by use 

of the axiom of choice. 
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Theorem 2. (Hausdorff Maximality Principle). Let the set ST of all totally 

ordered subsets of a partially ordered set (A,^) be partially ordered by 

inclusion, £. Then (3T, <=) has a maximal element. 

Proof. Suppose on the contrary that ST has no maximal element. Then to each 

T e ST, there is associated a nonempty set 

r* = {rej|r'D t} 

By the axiom of choice, there is a function g with domain {T* \ Te ST) 

satisfying g(T*)eT*. Consequently, there is a function f'.ST^ST 

defined by f(T) = g{T*) zd T for all Te ST. Then using Example 4 we 

see that {3T,^) together with the function /satisfies the hypotheses of 

Theorem 1. But f(T) => T for all fe/a contradiction. Thus, the theorem 

is proved. 

Exercise 6.2 

1. Let B be a subset of the partially ordered set (T,^). Prove that a 

least upper bound (greatest lower bound) of B is unique if it exists. 

2. Give an example of a subset of a partially ordered set that has neither 

a least upper bound nor a greatest lower bound. 

3. Let X = {a, b, c} and let the power set f?{X) be partially ordered 

by the inclusion c. Find all upper bounds, all lower bounds, the 

least upper bound, and the greatest lower bound for the set 

{{a,b},\c,a}}. 
4. Prove the statement of Example 4. 
5. In Problem 3 find maximal and minimal elements of 0>{X). 

6. Find maximal and minimal elements of the partially ordered set 

£P(X) in Example 4. 
7. Give an example of a partially ordered set that has more than one 

maximal element and more than one minimal element. 

8. Prove that if a totally ordered set has a maximal (minimal) element, 

then it has a unique maximal (minimal) element. 
9. Give an example of a totally ordered set that has neither a maximal 

element nor a minimal element. 
10. Let {3T, c) be as in Theorem 2, and let be a totally ordered sub¬ 

set of ST. Prove that T0 = f) iTe & I r for a11 T' e^o) is 
the least upper bound of £P0. 

11. Prove the following. Let (T,s0 be a nonempty partially ordered set 

such that every totally ordered subset of A has a greatest lower 

bound. If/: A -*• A is such that f{a) ^ a, for every a e A, then there 

exists qe A such that f(q) = q. [Hint: Use Theorem L] 
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12. Let (A,^) be a partially ordered set and let B be a totally ordered 

subset of A. Prove that A has a maximal totally ordered subset C 

such that B^C. [Hint: Use Theorem 2.] 

13. Let UL^) be a partially ordered set. A subset B of A is called an 

antichain if and only if for any two distinct elements x and y in B, 

neither x ^ y or y ^ x. Prove that every antichain is contained in 

an antichain which is maximal with respect to inclusion e. [Hint: 

Use Theorem 2.] 

3. ZORN'S LEMMA 

Perhaps one of the most widely used equivalent forms of the axiom of 

choice is Zorn’s lemma, which first appeared in 1914. The name Zorn’s 

lemma, which has been popularly used, is somewhat misleading; “Zorn’s 

principle” would have been a more suitable name. 

In Theorem 2, we actually proved that the axiom of choice implies the 

Hausdorff maximality principle. In the proof of the next theorem, we 

shall show that the Hausdorlf maximality principle implies Zorn’s lemma. 

Theorem 3. (Zorns Lemma). Let (A,^) be a partially ordered set in which 

every totally ordered subset has an upper bound. Then A has a maximal 

element. 

Proof. By the Hausdorff maximality principle, has a totally ordered 

subset B that is maximal with respect to set inclusion Let u be an 

upper bound of B; u exists by hypothesis. We shall prove that the 

element u is a maximal element of A. If there is an element x e A such 

that x ^ w, then B kj {x} forms a totally ordered subset of 04,<) that 

contains the maximal totally ordered subset B. Consequently, we must 

have B u {x} — B, whence x ^ u. This proves that u is a maximal element 

of (A,«$). 

Theorem 3 is a typical existential (as opposed to constructive) propo¬ 

sition; it merely asserts the existence of a maximal element in a certain 

partially ordered set. The proof of Theorem 3 gives no constructive 

method of finding such a maximal element. A similar comment can be 

made about Theorem 2 and all the results in the remainder of this chapter. 

As an application of Zorn’s lemma, we shall establish the following 

theorem, the proof of which was promised at the end of Section 2, 
Chapter 5. 
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Theorem 4. Let A and B be nonempty sets. Then either there is an injection 
from A to B or there is an injection from B to A. 

Proof. We consider the set SC of all pairs (Aa,fa), where Aa is a subset of A 

and/a: Aa -> B is an injection. We define the relation < on SC by writing 

(Aa,f) ^ (Ap,fp) if and only if Aa ^ Ap and fa^fp 

This relation is clearly a partial order relation. In order to apply Zorn’s 

lemma, we need to be sure that any totally ordered subset = 

{(Ay,fy) I yen Of ar has an upper bound. One natural candidate for 

an upper bound for ST is (Uyer^„ LUr/y)- Denote Al = [jyerAy 
and /, = Uyer/y; then f: Ax~* B is given by f(x)=fy(x) if xeAy 

and (Ay,fy) e ST. To prove that/! : Ax -» B is well-defined, suppose that 

x belongs to another subset As, SeT. Then (Ay,fy)^(As,fd) or 

(As,fs) < (Ay,fy), and we have fy(x) =fs(x) in either case. Therefore, 
/i : A! -> B is a well-defined function. Next, we show that f : Ax -> B 

is injective. Suppose that f (x) = ft (y) for some x and y in Ax. Then there 

exist (Ay,fy) and {Ad,fd) in ST such that xeAy and yeAs. As before, 

either (Ay,fy)^{Ad,fd) or (Ad,fd)^(Ay,fy). We may assume that the 

first alternative is true; then it follows that fd(x) =f6(y), and hence 

x = y, because fs is injective. This proves that fl\ A t -> B is injective. 

Thus, (A^f) ^ (Ay,fy) for all y e T, so that (^,<) satisfies the hypoth¬ 

esis of Zorn’s lemma. Hence SC has a maximal element, which we denote 
by (A,f). There are two obvious cases: 

Case 1. A = A. 

In this case, /: A -> B is an injection and the theorem holds. 

Case 2. A ^ A. 

Let jc0 e A — A. In this case, we claim that/: A -*• B is bijective. For other¬ 

wise, there exists an element y0 e B—f(A). The function/: A u {x0} -* B, 

defined by f(x0) = y0 and f(x) =f(x) for all x e A, is clearly an injection. 

Thus, (A u {x0},/) > (A,f), contradicting the maximality of (A,J). This 

proves that /: A -* B is bijective and consequently, / -1 defines an injec¬ 

tion of B onto the subset A of A. The proof is now complete. 

The following is an immediate consequence of Theorem 4. 

Corollary. Let A and B be sets. Then either card A < card B or card B < card A. 

Thus if m and n are two distinct cardinal numbers, then either m < n 

or n < m. 
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Exercise 6.3 

1. Let (A,<) be a partially ordered set in which every totally ordered 

subset has a lower bound. Show that A has a minimal element. 

2. Prove that Zorn’s lemma implies the Hausdorff maximality principle. 

3. For students who have studied abstract algebra: prove that every ring 

with identity has a proper maximal ideal. 
4. For students who have studied linear algebra: prove that every vector 

space has a basis. 

5. Prove the corollary to Theorem 4. 
6. A partially ordered set (L,<) is called a lattice if and only if every 

subset {x,y} with two elements has a (unique) least upper bound, 

denoted by xV y, and a (unique) greatest lower bound, denoted by 

xAj'. Prove that a lattice in which every chain has an upper bound 

ha,s a unique maximal element. 
7. Let (T,sg) be a partially ordered set in which every totally ordered 

subset has an upper bound, and let a e A. Then A has a maximal 

element u such that « ^ a. 
8. Let B be a set. A set IF of subsets of B is said to have finite character 

provided that A e IF if and only if every finite subset of A belongs 

to 3r. Prove that if & has finite character, then (JF, c) has a maximal 

element. 
9. Let A be an arbitrary set with more than one element. Prove that 

there exists a bijection /: A -> A such that /(x) / *, for all x e A. 

4. THE WELL-ORDERING PRINCIPLE 

We now make another application of Zorn’s lemma to prove an astonish¬ 

ing principle in set theory, the Well-Ordering Principle of Ernst Zermelo 

(1871-1953). 

Definition 4. A totally ordered set (A,^) is said to be well ordered if and only 

if every nonempty subset B of A contains a (unique) minimal element; 

that is, if there exists an element b e B such that b ^ x for every x e B. 

Such an element b is called the least element of B. If (T,^) is a well-ordered 

set then the relation < is called a well-order relation. 

EXAMPLE 5. (a) The set of natural numbers is well ordered under the ordinary 

“less than or equal” relation, (b) The set of rational numbers under the 

ordinary “less than or equal” relation is not well ordered. 
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Let us say that a set A can be well ordered if there exists a well-order 
relation on A. 

Theorem 5. (IWell-Ordering Principle). Every set can be well ordered. 

Proof. Let A be an arbitrarily given set which is to be well ordered. Consider 

the set A* of all well-ordered sets (y40.<o). where A0 c A. We partially 
order A* by writing (A0,^0)<* if and only if 

(i) A0 <=At 
(ii) x,yeA0 and * y imply x y 

and 

(iii) x e A1-A0 implies for all y e A0. 

The reader should verify that this relation «$* is really a partial order 

relation on A*. In order to apply Zorn’s lemma, we show that any totally 

ordered subset £8 of (4*,^*) has an upper bound. The natural candidate 

for this upper bound is (U^ e® where x^' y if both x and y belong 
to some A0 such that (A0,^0)e&, and x^0y. Obviously, 

is an upper bound for ^ if belongs to A*. We shall prove 

that is well ordered and hence belongs to A*. Part of this 
proof includes the routine verification, which we leave to the reader, 

that is a total order relation on lJa<=ssA. Let S’ be a nonempty subset 

°f UAe®A. Then there exists (A0,^0)e& such that A0 intersects S. 

Since (40,<0) is well ordered, S n A0 contains a unique least element, 

say Xq, (of S n A0). It follows that for any y e S, there exists (A1,^1)e^f 

such that (y40,^0)^* and x0,yeAx; whence, and hence 

x0 y■ Thus, x0 is the least element for S’ under so that 
is well ordered. 

By Zorn’s lemma, has a maximal element 04 !,<*). We claim 

that Ax— A and hence (A,^x) is well ordered. For, if Ax ^ A, take any 

xx eA — Ax and extend <0 to Ax u {xx} by defining x^x! for all 

xeAx; then (Ax u {xj},^) is strictly greater than (^4!,^t) under 

which contradicts the maximality of (A1,^1). The proof of the well¬ 

ordering principle is now complete. 

The well-ordering principle is another outstanding example of a non¬ 

constructive proposition. The proof of Theorem 5 gives no indication of 

how a “well-ordering” of the elements of A is to be accomplished; it 

merely asserts the existence of a well-order relation. In fact, it is not even 

known how the set of real numbers can be well ordered. 

1 For simplicity of notation, hereafter the subscript A e 38 will mean (A, <) e 38. 
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We have now shown the following chain of implications: axiom of 

choice Th? Hausdorff maximhlity principle Ti,* 1 2 3 4 Zorn’s lemma Ti^5 6 7 well¬ 

ordering principle. 

To complete the proof that all these four principles are equivalent, it 

is sufficient to show that the well-ordering principle implies the axiom of 

choice. 

Theorem 6. The well-ordering principle implies the axiom of choice. 

Proof. Let If be any nonempty set whose elements are nonempty sets. By the 

well-ordering principle, there exists a total order relation ^ such that 

is well ordered. Consequently, each set A e If contains a 

least element. Therefore, /: if -> [fAe:f A, defined by /(A) — the least 

element of A, for all A e f, is a well-defined choice function. This proves 

the axiom of choice. 

We have thus established the equivalence of the axiom of choice, the 

Hausdorff maximality principle, Zorn’s lemma, and the well-ordering 

principle. In the remainder of this book we will accept the axiom of choice 

(and the three other equivalent principles) and use it freely. 

Exercise 6.4 

1. Show that the set of real numbers under the usual “less than or equal” 

relation of real numbers is not well ordered. 

2. Prove directly, without using Theorem 5, that the set of rational 

numbers can be well ordered. 

3. Prove that every subset of a well-ordered set is well ordered under the 
inherited ordering. 

4. Let (A,^) be a partially ordered set such that every nonempty subset 

B contains a lower bound; that is, if there exists beB such that 

b^x, for all xeB. Prove that the partially ordered set (,4,^) is 
totally ordered and hence well ordered. 

5. Prove that the relation defined in the proof of Theorem 5 is a 
partial order relation on A*. 

6. Prove that the relation defined in the proof of Theorem 5 is a total 
order relation on \JAe#A. 

7. Let (A,^) be a totally ordered set. A sequence of elements al,a2,a3,... 
in A is said to be strictly decreasing if ax > a2 > a3 > •••. Prove that 

a totally ordered set is well ordered if and only if the totally ordered 

set contains no infinite strictly decreasing sequence. 
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5. THE PRINCIPLE OF TRANSFINITE INDUCTION 

For convenience in expressing the principle of transfinite induction and 

for the development of ordinal numbers in the next chapter, we now 

introduce the notion of a segment. 

Definition 5. Let (/L^) be a totally ordered set. A segment of A is a subset 5 

of A such that if y e S, x e A, and x ^ y, then x e S. A proper segment 

of A is a segment which is a proper subset of A. 

EXAMPLE 6. Let L4,^) be a well-ordered set, and let x be an arbitrary element 

of A. Then the empty set, the set A, and the set Ax = {a e A \ a < x} are 

segments of A. 

Theorem 7. Let (A,^) be a well-ordered set. Then 
(a) Any union or intersection of segments of A and all segments of a 

segment of A are again segments of A. 
(b) For each segment S of A, except A itself, there exists an element 

x 6 A such that S = Ax, where Ax = {a e A \ a < x}. 

Proof, (a) Let IF be a family of segments of A, and let y e {Jse&S- If xe A 
and x ^ y, then since y belongs to some segment S0 e F of A, we have 

x e S0 and hence xe Therefore, IJSeiir>S is a segment of A. 

Similarly, the intersection of the family F of segments of A is a segment 

of A (see Problem 3). 
Let S' be a segment of A and let T be a segment of S. Let y e T, x e A, 

and x < y; we are to show that x e T. First, since y belongs to the segment 

S, we have xe S; then from y e T, x e S, x ^ y, and the hypothesis that 

T is a segment of S, we have xeT. This completes the proof that T is a 

segment of A. 
(b) Let S be a segment of A such that S ^ A. Then the nonempty set 

A - S has a least element, say x. It is an easy exercise for the reader to 

verify that S = Ax. 

The following theorem is a prelude to the principle of transfinite in¬ 

duction. 

Theorem 8. Let (^4,^) be a well-ordered set, and let if be a set of segments of 

A such that 
(1) any union of members of if belongs to if, 
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(2) if Ax e if then Ax u {x} 6 !f. 

Then If contains all segments of A. 

Proof. Suppose that there exists an element xeA such that the segment 

Axg!f. Then, since (/!,<) is well ordered, the nonempty subset B = 

{xeA | Ax $ if} has a least element a. Since a e B, Aa<£lf. If y e A and 

y <a then y $ B and hence Ayeif. By the hypothesis (1), \Jy<aAy e if. 

By Theorem 7, there exists an element be A such that \Jy<aAy = Ab. 

Consequently, b < a (see Problem 9). Now using the hypothesis (2) and 

Theorem 7, we have 

Ab u {6} = Ac e If for some c e A 

Hence, we have b < c < a. Consequently, 

be Ac^ [j Ay = Ab 
y<a 

which contradicts the fact that b$ Ab. Therefore, Ax e if for all xe A. 

It remains to be proved that A e if. Now by the hypothesis (1) we have 

{JxeAAxef. If [jxeAAx — A, then there is nothing left to be proved. 

Suppose that \JxeAAx # A\ then there exists an element deA such 

that [jxeAAx = Ad. By the hypothesis (2), Ad u {d} e if. It follows that 

x < d for all x e A, and hence A — Ade> {d} e f, completing the proof. 

Remark. In Theorem 8, the hypothesis (1) implies 0 ef. For, “0 e if” may 

be deduced from the hypothesis (1), “any union of members of if belongs 

to if,” by taking the “empty union” of the members of if (see Theorem 

7(a), Chapter 2). Therefore if is nonempty. 

Theorem 9. (Principle of Transfinite Induction). Let (A,^) be a well-ordered 

set. For each xeA, let p(x) be a statement about x. If for each xeA, 

the hypothesis “p(y) is true for every y < x” implies that “p(x) is true,” 

then p(x) is true for every xeA. 

Proof. Suppose there is some x such that p(x) is false. Then B = {x e A \ p(x) 

is false} is a nonempty subset of A, and hence has a least element x0. 

Since x0 e B, p(x0) is false. If y e A and y < x0 then y $ B, and hence p{y) 

is true. Thus p(y) is true for every y < x0. Thus p(x0) is true, a contra¬ 

diction. Therefore, p(x) is true for all x in A. 

The next theorem is a typical example of how transfinite induction 

is used in proving mathematical results. This theorem will be used in the 
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development of the ordinal numbers in Chapter 7. First we need another 
definition. 

Let (A,^) and (B,<') be well-ordered sets. A function f:A-+B is 

said to be increasing if and only if a ^ a' in (/4,^) implies f(a)^'f(a') 

in (5,^'), and to be strictly increasing if and only if a < a' in 04,^) implies 

/(<*)<'/(«') in (B,<)• 

Theorem 10. Let L4,=%) and (B,<') be well-ordered sets. If f.A-+B is in¬ 

creasing, f(A) is a segment of B, and g : A -> B is strictly increasing, then 

fix) g{x) for all x e A. 

Proof. In order to use transfinite induction, for each x e A, let p(x) be the 

statement “/(*)<'# (■*)•” To show that the hypothesis of Theorem 9 is 
satisfied, we suppose on the contrary that there exists an element a e A 

such that p(x) is true for all x < a, but p(a) is false. That is, f(x) g(x) 

for all x < a and g(a)<' f(a). Since g is strictly increasing and / is in¬ 

creasing, we have 

fix) < g{x) <' g{a) <' f(a) < f(y) 

for all x < a and for all y ^ a. It follows that g(a) <’f (a) and g(a) $ f(A), 

contradicting the fact that f(A) is a segment of B. Therefore, for each 

xe A, if fiy) g{y) for all y < x then f(x)^' g(x). By the principle of 

transfinite induction, f(x) g{x) for all xeA. 

Exercise 6.5 

1. Let N be the set of all natural numbers, and for each k e N, let = 

{1,2,3Find all the segments of (N,<), where denotes the 

usual “less than or equal” relation for natural numbers. 

2. Prove the statement of Example 6. 

3. Let 04,^) be a well-ordered set. Prove that 
(a) The intersection of an arbitrary family of segments of A is a 

segment of A. 
(b) For each xe A, Ax u {*} is a segment of A. 

4. Complete the proof of Theorem 7 (b). 
5. Give a direct proof of Theorem 9. [Hint: Use Theorem 8.] 
6. Let (/4,s$) and (B,sC) be well-ordered sets, and let/:^4->5 be in¬ 

creasing such that f{A) is a segment of B. Prove that / takes every 

segment of A to a segment of B. 
7. Prove that in a well-ordered set every subset that is bounded above 

has a (unique) least upper bound. 
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8. Let 04,^) be well ordered. Prove that for each x e A, x is the least 

upper bound of the segment Ax of A. 

9. Prove that b < a in the proof of Theorem 8. [Hint: Consider (i) b = a 

and (ii) a < b.] 

6. HISTORICAL REMARKS 

It may be worth knowing a brief history of the axiom of choice; in many 

respects it is similar to that of Euclid’s parallel axiom and of the con¬ 

tinuum hypothesis (see Section 8, Chapter 5). 

As early as the 1880’s, Georg Cantor had already implicitly used, in 

the proof of some theorems, reasoning which was essentially equivalent 

to the aifiom of choice; yet he was not aware of using a new powerful 

axiom. In 1904, Ernst Zermelo (1871-1953) after careful study stated the 

axiom of choice explicitly and used it to prove the earth-shaking well¬ 

ordering theorem (we also called it the well-ordering principle). Because 

there is no known way of well-ordering even the familiar set of real num¬ 

bers, despite the assertion of the well-ordering theorem, for a period of 

at least six years after the appearance of that theorem, many papers 

appeared that were critical of Zermelo’s proof. Most rejected the axiom 

of choice. Most critics had to admit, however, that if the axiom of choice 

were accepted they could find no mistake in Zermelo’s proof of the well¬ 

ordering theorem. Therefore, the rejection of the well-ordering theorem 

would amount to the rejection of the axiom of choice. There seemed to 

be only two alternatives: 

(a) Accept in principle only constructive but not purely existential 

results, and consequently, restrict the methods and domains of math¬ 

ematics to such an extent that, outside of arithmetic, only narrow areas 

could be investigated. 

(b) Accept constructive as well as purely existential results including 

the axiom of choice, and consequently, solve more problems and expand 

mathematics. 

Before anyone could intelligently decide which alternative to follow, 

two difficult questions had to be considered: 

(1) Is the axiom of choice independent of the other axioms, or can it 

be proved by means of other existing axioms of mathematics? 

(2) Is the axiom of choice consistent with the classical axioms of math¬ 

ematics, or can the addition of the axiom of choice to the classical axioms 

of mathematics result in a contradiction? 

As in the case of the continuum hypothesis, many mathematicians 

spent a great deal of energy trying to answer these two questions. Many 

years later, in 1938, Kurt Godel (1906- ) answered the second question 

by proving that addition of the axiom of choice to the existing axioms 
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of mathematics would not produce any contradiction.2 Godel’s con¬ 

tribution gave the mathematical community and especially the users of 

the axiom of choice great confidence and comfort. But the search for the 

answer to the first question went on and on. Finally, in 1963, Paul Cohen 

solved the question completely. He proved that the axiom of choice was 

indeed independent of the other existing axioms. In other words, the 

axiom of choice could not be proved as a theorem using the classical 

axioms of mathematics. 

Today, the axiom of choice has been widely accepted as a new axiom, 

and it has proved indispensable for modern real analysis, the theory of 

transfinite cardinal and ordinal numbers, modern algebra, and for wide 

areas of topology. 

2 K. Godel, The Consistency of the Axiom of Choice and of the Generalized Continuum 

Hypothesis with the Axioms of Set Theory, Princeton University Press, Princeton, N.J., 
1940, 66 pp. Rev. ed., 1951, 74 pp. 
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7 / Ordinal Numbers 
and Ordinal Arithmetic 

The concept of ordinal numbers is introduced, and the curiosities of ordinal 

arithmetic are pointed out as the ordinal sum and product are explored. The 

cardinal numbers are revisited as the initial ordinals, and the Burali-Forti 

paradox is exhibited. 

1. THE CONCEPT OF ORDINAL NUMBERS 

Loosely speaking, in finite arithmetic, the cardinal numbers are the 

“counting” numbers: 1,2,3,..., and the “ordinal numbers” are the 

“ranking” numbers: first, second, third, and so on. The distinction be¬ 

tween the finite cardinal numbers and the finite ordinal numbers is so 

trivial that the natural numbers may be used to serve in both capacities. 

But what exactly is an “infinite ordinal number”? Just as a transfinite 

cardinal number arises from an infinite set, an infinite ( = transfinite) 

ordinal number arises from an infinite well-ordered set. The following 

definition for well-ordered sets resembles the equipotence relation for 

general sets. 

Definition 1. Two well-ordered sets (A,^) and (B,^') are said to be order- 

isomorphic if there exists a bijection f\A^B such that if al,a2 e A and 

a1 ^ a2, then f(ax) f(a2). Such a function f:A-+B is called an order- 

isomorphism. 

It follows that if /: A -> B is an order-isomorphism, then so is/-1 : 

B -> A, and that if furthermore g : B-* C is an order-isomorphism, then 

the composition g°f\A->C is an order-isomorphism. If (v4,^) and 

(B,^r) are order-isomorphic, we write (A,^) se (B,^') or simply A « B. 

Like the equipotence relation ~, the order-isomorphic “relation” « is 
reflexive, symmetric, and transitive.1 

1 Here we call a a relation in the sense that it is a relation on any given set of well- 
ordered sets. Cf. Theorem 5 of Chapter 4. 
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In general, we shall consider the ordinal numbers, finite or transfinite, 

as a primitive concept subject to the following rules: 

0-1. Each well-ordered set (.4,^) is assigned an ordinal number, denoted 

by ord(^4,^), and if a is an ordinal number then there is a well- 

ordered set (/4,s%) such that ordfyl,^) = a. 

0-2. Let (/l,s=0 and be well-ordered sets. Then ord(^4,^) = 

ordfi?,^') if and only if (A,^) « (BSince any two finite well- 

ordered sets having the same number of elements are order-iso¬ 

morphic (see Problem 1), we shall adopt the following convenient 
notations: 

0-3. ord(^4,<) = 0 if and only if A — 0. 

0-4. If (v4,^) is a well-ordered set such that A ~ {1,2for some 

k e N, then ord(^4,^) = k. 

The ordinal number of the set N of natural numbers, with the usual 

less than or equal relation, is customarily denoted by the Greek omega, 

w. Thus, co = ord{l,2,3, ...}.2 

A given set has only one cardinal number, but a set may have distinct 

ordinal numbers under different well-orderings. For example, the set of 

natural numbers may be well ordered as 

(N,0 = {1,2,3,...} 

and as 

(N,<) = {1,3,5,...,2,4,6,...} 

We leave it to the reader to verify that these two well-ordered sets are not 

order-isomorphic. Consequently, ord(N,^') # co. 

Exercise 7.1 

1. Let A and B be two equipotent finite sets, and let 04, <) and (B,s$') 

be well ordered. Prove that 04,=0 and (B,<) are order-isomorphic. 

2. Let (A,^) be a totally ordered set which is the union of two sub¬ 

sets B and C such that both B and C are well ordered under the 

ordering inherited from the ordering < of A. Prove that 04,^) is well 

ordered. 
3. Let the set N of natural numbers be well ordered as 

(N,0 = {1,2,3,...} 

2 Throughout the remainder of this chapter, the order in which the elements of a set 

are listed will indicate the ordering of the set. Thus, (1,2,3,...} denotes the usual well- 

ordered set of natural numbers, and (1,3,5, ...,2,4,6,...} denotes another ordering of 

the set N. 
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and as 

(N,<') = {1,3,5, ...,2,4,6,...} 

Prove that (N,^') and (N,^) are not order-isomorphic. 

4. Show that (N,<') in Problem 3 above is well ordered. 

2. ORDERING OF THE ORDINAL NUMBERS 

The rule 0-2, given in Section 1, tells us when two ordinal numbers are 

equal, and when they are not equal. If two ordinal numbers are not equal, 

we wish to be able to say one is “less” than the other. The following defini¬ 

tion is designed just to serve that purpose. 

Definition 2. Let a and P be ordinal numbers and let (A,^) and (B,^r) be well- 

ordered sets such that a = ord04,O and ft = ord(5,<'). Then we say 

that a is less than or equal to /?, in symbols a =^/l, or P a, if and only if 

(A,^) is order-isomorphic to a segment of (BIf oc^P and a # P, 

we write a -< P or P > a. 

It is clear that Definition 2 is independent of the choice of representing 

well-ordered sets (A,^) and (B,^'), and that the relation “=^” is reflexive 

and transitive. The antisymmetry of ^ is proved in Theorem 2, so that 

is a partial-order “relation.” Our eventual goal is to prove that it is 

a total order “relation.”3 

Theorem 1. The only order-isomorphism of a well-ordered set (A,^) onto a 

segment of (,4,<) is the identity function of A onto A. 

Proof. Suppose on the contrary that there exists an order-isomorphism 

f:A-+Aa, for some segment Aa of A. Then f(a) < a and consequently 

the set B = {x 6 A \ f(x) < x} is not empty. Let b denote the least element 

of B. Then f{b) < b, and since an order-isomorphism is strictly increas¬ 

ing, we have f(f{b)) < f(b). This proves that B contains the element f(b), 

which is less than the least element b of B, a contradiction. The contra¬ 

diction shows that a well-ordered set cannot be order-isomorphic to any 

of its proper segments. To complete the proof of the theorem, it remains 

3 Strictly speaking, “=^” is not a relation, because its “domain” is not a set (see Theorem 

13). But, we still call it a relation as defined on any given set of ordinal numbers. Cf. 

Theorem 5 of Chapter 4. 
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to be shown that the identity function \a:A-*A is the only order- 
isomorphism of A onto A. 

Let g : A -> A be an order-isomorphism. Then, since both g : A -> A 

and the identity function 1a:A->A are strictly increasing, by using 

Theorem 10 of Chapter 6 twice, we have l^(x) ^g(x) < l^x) for all 
x e A. Therefore, g = \A. 

Theorem 2. If a and p are ordinal numbers such that a P and P a, then 
a = p. 

Proof. Let (A,^) and (Bbe well-ordered sets such that ord(^,<) = a and 

ord(5,^') = p. By the hypotheses a p and p a, we have two order- 
isomorphisms 

/: A -> D and g : B -*■ C 

where C and D are segments of A and B, respectively. Consequently, the 

function h : A -» C given by /7(x) = g(f(x)), for all xeA, is an order- 

isomorphism of A to a segment, say E, of C. By Theorem 1, and Theorem 7 

of Chapter 6, we must have E = A. Consequently, C = A and the order- 
isomorphism g : B -> A shows that a = p. 

We have now completed the proof that the relation for the ordinal 

numbers is a partial order relation. This property will be strengthened, 

by the following theorem, to total order. 

Theorem 3. For any ordinal numbers a and P, either a p or a ^ p. 

Proof. Let L4,^) and (B,^') be well-ordered sets such that ord(^,^) = a and 

ord — p. We shall prove that either A is order-isomorphic to a 

segment of B, or B is order-isomorphic to a segment of A. An element a 

of A will be called admissible if the segment Aa of A is order-isomorphic 

to some segment Bb, b e B, of B. Let M denote the set of all admissible 

elements of A. It follows from Theorem 1 that for each admissible element 

a, there exists a unique element b s B such that Aa a Bb (see Problem 8). 

Consequently, there is a well-defined function f:M-+B given by f(a) = b 

if Aa x Bb. It is again a consequence of Theorem 1 that the function / 

is injective. We leave it to the reader to verify that f:M-+B is strictly 

increasing and that f(M) = N is a segment of B. 

Now, suppose that neither A is order-isomorphic to a segment of B nor B 

is order-isomorphic to a segment of A. Then A — M and B — N are non¬ 

empty; let p and q be the least element of A-M and B—N, respectively. 
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Then we must have Ap = M ^ N — Bq, and hence p is admissible, a con¬ 

tradiction. The proof of Theorem 3 is now complete. 

The following theorem is another easy consequence of Theorem 1. 

Theorem 4. Let (A,<) and (B,^') be two well-ordered sets. Then ord(v4,<)-< 

ord(Z?,^') if and only if A is order-isomorphic to a proper segment of B. 

Proof. Exercise. 

We now summarize the results of this section in the following trichotomy 

theorem. 

Theorem 5. Let a and /? be any two ordinal numbers. Then exactly one of the 

following is true: 

(a) a -< ft 

(b) a = P 
(c) a >- p. 

Exercise 7.2 

1. Show that ord {1, 3, 5, ...,2,4,6,...} > ord{l,2,3,...} (cf. Problem 3, 
Exercise 7.1). 

2. Prove the following assertion that appears in the proof of Theorem 3: 

For each admissible element a, there exists a unique element be B 
such that Aa& Bb. 

3. Show that the set M of admissible elements, in the proof of Theorem 3, 
is a segment of A. 

4. Prove that the function f:M-+B, which appeared in the proof of 

Theorem 3 and is given by f(a) = b if Aa « Bb, is injective and strictly 
increasing, and that f(M) is a segment of B. 

5. Prove Theorem 4. 

6. Let k be any natural number. Prove that 

(a) ord{/c,k+ l,k + 2,...} = co 

(b) ord{k,k+\,k + 2, ...,0,1,2,3,— 1} ><u. 

7. What is the smallest transfinite ordinal number? 

8. From the proof of Theorem 3, show that for each admissible element 

a, there exists a unique element b e B such that A.k, Bh. 
U D 
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3. ADDITION OF ORDINAL NUMBERS 

For any two disjoint well-ordered sets (A,^) and (B;<) we shall define 
the total order relation on A u B as follows: 

(1) If a and b are both in A (or in B), then we write a b if and only if 
a ^ b (or a b). 

(2) If a e A and b e B, we agree that a b. 

It is easy to see that (AuB,^*) is a well-ordered set4 (see Problem 2, 

Exercise 7.1). Our natural candidate for the “sum,” ord(+,^) + ord(.5,;0, 

is ord(/f u i?,^*). In the case where A and B are not disjoint, a little 

additional work is needed: Form the Cartesian products A x {0}, Bx {1}, 

and define in A x {0} the well-order relation by (o,OK0 (b, 0) if and 

only if a < b in C4,<). Similarly, define on Bx {1} by (c, l)<j (d, 1) 

if and only if cC'd. It is obvious that (A x {0},^0) « (A,<), (Bx {1}, ^') « 

(B,^'), and A x {0} and 5x{l} are disjoint. Thus, if A and B are not 

disjoint, we may use the disjoint sets (^4x{0},^0) and (iS x {1},<i) as 
reasonable substitutes for (A,^) and (B,;$'). 

Definition 3. Let a and p be ordinal numbers. The ordinal sum of a and p, 

denoted by a + P, is the ordinal number ord(A u B,^*), where b4,^) 

and (B,^’) are disjoint well-ordered sets such that ord(v4,^) = a and 

ord(5,0 = /J. 

In Problem 1 the reader is asked to justify that the definition of the ordinal 

sum, gi + (3, is independent of the choice of representing well-ordered sets. 

If a and ft are two finite ordinal numbers, the ordinal sum a + P agrees 

with the usual sum of two nonnegative integers. But, for transfinite ordinal 

numbers, the properties of the ordinal sum may be very different from 

the finite case; for example, a + p need not be the same as p+a. (see 

Example 2, below). 

EXAMPLE 1. Find the ordinal sum 5 + 4 of the two finite ordinal numbers 

5 and 4. 

Solution. Since 5 = ord{0,1,2,3,4} and 4 = ord{5,6,7,8}, we have 5 + 4 = 

ord{0,1, ...,4,5,..., 8} = 9. 

4 It should be noted that in (+ u B, < *) any element a e A is less than any element 

be B, and that in (B u A, *) any element be B is less than any element a e A. There¬ 

fore, (A and (B u +, «S*) should be considered distinct. 
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EXAM PLE 2. Let k be any nonzero finite ordinal number. Show that k + oo = oo 

and that oo + k ^ oo. Thus, the ordinal sum is in general not commutative. 

Proof. Since k = ord{0,1,2, ...,k- 1} and ord{k,k + 1,...} = oo, we have 

k + co = ord{0,1,2, \,k+\,...} = co 

and 

oo + k = ord{k,k +1, ...,0,1,2,...,k— 1} >- co 

Thus, oo+ k A co (see Problem 6(b), Exercise 7.2). 

Theorem 6. Let a, /?, and y be any ordinal numbers. Then 

(a) (a +P) + y = a + (P + y) (Associative Law) 

(b) P <y implies a + ft -< a + y 

(c) a + P = a + y implies p — y (Left Cancellation). 

Proof, (a) Exercise. 
(b) Let 04,0, (B,0), and (C,0) be well-ordered sets such that 

ord(v4,0 = a, ordOZ?,^') = P, ord(C,0) = y, A n B = 0, and A n C = 
0. Since P <y, by Theorem 4, B is order-isomorphic to some proper 

segment Cz of C; let g : B -» Cz denote this order-isomorphism. Let the 

disjoint unions A u B and duCbe endowed with the well-order rela¬ 

tions O defined in the beginning of this section. Then, under these well- 

order relations, the function 

/: A u B A u Cz 

defined by 

x if x e A 

g(x) if x e B 

is an order-isomorphism of A u B onto the proper segment A u Cz of 

A u C. Therefore, by Theorem 4, a + P ~< a + y. 

(c) Suppose on the contrary that there exist ordinal numbers a, p, and y 

such that a + p = a + y and P + y. By Theorem 5, we may assume that 

p «< y (the case y -< p may be handled similarly). Consequently, by part 

(b) above, we have a -I p -< a + y, a contradiction. 

It is worth mentioning here that although the ordinal sum is left can- 

cellative, it is not right cancellative. That is, P + a = y + a does not neces¬ 

sarily imply that P — y (see Problem 4). Similarly, in contrast to Theorem 

6(b), P<y does not imply p + a^y + a (see Problems 5 and 6). 
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Exercise 7.3 

1. Let (^4,,^!), (A2,^2), and (B2,^2) be well-ordered sets 

such that A1^A2, Bx « B2, AlnBl=0, and A2nB2 = 0. 
Prove that (At vj Bx,^*) « (A2 u B2,^). 

2. Show that a+0=a=0+a for any ordinal number a. 

3. Prove that the ordinal sum is associative: (a + /?) + y = a + (/? + y) 
for any ordinal numbers a, /?, and y. 

4. Show, by giving a counterexample, that the ordinal sum is not right 

cancellative: there exist ordinal numbers a, /?, and y such that 
P + ct = y + a, but /? / y. 

5. Prove the following modification of Theorem 6(b): If a, /?, and y 

are ordinal numbers such that P<y, then /? + a^y + a (see Prob¬ 
lem 6, below). 

6. Show that, in Problem 5, P -< y does not necessarily imply that 
/? + oc«<y + a (cf. Theorem 6(b)). 

7. Prove that a -< p if and only if a+ 1 (3. 

8. Prove the following converse of Theorem 6(b): If a + p -< a + y 
then p «< y. 

9. Let a and y be ordinal numbers such that a y. Prove that there 

exists a unique p such that a+P = y. [Such a P may be denoted by 

(-«) + ?•] 
10. Prove that a+ 1 >- a for any ordinal number. 

11. Is there an ordinal number that is greater than all the other ordinal 
numbers? 

4. MULTIPLICATION OF ORDINAL NUMBERS 

In cardinal arithmetic, the product of two cardinal numbers card A and 

card B is defined to be card 04 x B). In any attempt to define the “product” 

of ordinal numbers ord04,^) and ord(i?,^'X we must first decide what 

well-ordering to impose on the Cartesian product Ax B. Our natural 

preference is the so-called “lexicographic” ordering defined below. 

Definition 4. Let (A,^) and (B,^r) be well-ordered sets. Then the lexicographic 

ordering of Ax B is defined by: (a) If a < x then (a, b)^* (x,jO for 

any b and y in B. (b) If a — x and b <' y then (a, b) (x,y). 

Theorem 7. Let (A,<;) and (B,<') be well-ordered sets. Then the lexicographic 

ordering of A xB is a well-order relation on Ax B. 

Proof. It is clear that is a total order relation on Ax B. To show that the 
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total order relation is a well-ordering, let S' be an arbitrary nonempty 

subset of A x B. We shall prove that S contains a least element. First, 

we observe that the set 

pA(S) = {xeA | (x,y) e S for some y e B} 

is a nonempty subset of the well-ordered set A, and hence contains a 

least element, say a. Then consider the set 

{ye B | (a,y)eS} 

which is a nonempty subset of the well-ordered set B and hence contains 

a least element, say b. It is now quite obvious that the element {a, b) in S 

is the least element of S. Therefore, (AxB,C*) is a well-ordered set. 

Theorem 8. Let (T,,^), (A2,^2), (#i><i)> and (^2^2) be well-ordered sets 

such that « (A2,^2) and ~ (-62^2)- Then 

{A i x ~ (A2 x B2,^2) 

Proof. Let f:Al^>A2 and g:Bl-+B2 be order-isomorphisms. We leave it 

as an exercise for the reader to show that the function 

fxg\AlxBl^A2xB2 

defined by (fxg)(x,y) = (f(x),g(y)) for all (x,y)eAt xB1 is an order- 

isomorphism. 

Theorems 7 and 8 permit us to define the product of two ordinal numbers. 

Definition 5. For any ordinal numbers a and /8, the ordinal product /5a is defined 

by [hx = ord(Ax B,^*), where and (B,<') are well-ordered sets 

such that ord(y4,^) = a, ord(/?,<') =/5, and is the lexicographic 

ordering of AxB. 

Note that, according to Definition 5, ord(/4 x B,^*) is /5a, not a/5. The 

ordinal product is not commutative. 

EXAMPLE 3. Compare the ordinal products 2co and to2. 

Solution. Let (A,^) = {1,2,3,...} and (5,^') = {0,1} so that ord L4, <) = to 
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and ord(B,^') = 2. Let A x B be endowed with the lexicographic ordering 

so that 2ca = ord(^4 x B,^*). Then the function f:AxB^A given by 

( 2j - 1 
fU,k) = 

{V 

if k = 0 

if k = 1 

is an order-isomorphism. Therefore, 2co — to. 

Next, impose the lexicographic ordering <'* on BxA so that co2 = 

ord(5x We leave it to the reader to verify that ord(5x ,4,s$'*) = 
CO + CO. 

Therefore, 2co ± col. 

Theorem 9. Let a, P, and y be any ordinal numbers. Then 

(a) (yP)a = y(/Ja) (Associative Law) 

(b) y(a + P) = y(x + y[3 (Left Distributive Law). 

Proof. Exercise. 

Theorem 10. Let a, /?, and y be any ordinal numbers such that y >- 0. Then 

(a) a -< /I implies ya -< yp 

(b) ya. = yP implies a = p (Left Cancellation). 

Proof, (a) Let 04,^), (B'), and (C,^") be well-ordered sets such that 

ord(,4,i$) = a, ord(2?,^') = P, and ord(C,^") = y. If a < p, then there 

exists an element p e B such that A & Bp. Let q denote the least element 

of C, and let A x C and BxC be endowed with the lexicographic order¬ 

ings. It follows that Ax C is isomorphic to BpxC under the inherited 

ordering from BxC, and that Bp x C is the segment 

(B x C)(p> q) = {(x, y)e Bx C \ (x,y) <’* (p, q)} 

of BxC. This proves that ya < yP. 
(b) Suppose on the contrary that there exist ordinal numbers a, P, and 

y -< 0 such that ya = yp and a # p. We assume that a<P (the case where 

P<a may be treated similarly). Then, by part (a) of this theorem we 

have ya >- yp, a contradiction. 

It should be noted that although ordinal multiplication is left distribu¬ 

tive and left cancellative, it is neither right distributive nor right cancel- 

lative. (See Problems 4 and 9.) 
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Exercise 7.4 

1. Complete the proof of Theorem 8. 
2. Show that 

(a) Oa = 0 = aO and la = a = al for any ordinal number a 
(b) aP — 0 if and only if either a = 0 or p = 0. 

3. Verify that 
(a) m2 = a) + a) 
(b) kco = co for any finite ordinal k ^ 0. 

4. Show, by giving a counterexample, that ordinal multiplication is not 
right distributive, that is, (P + y)a — Pa + ya need not be true. 

5. Prove that ordinal multiplication is left distributive, that is, 
y(a + /?) — ya + yP for all ordinal numbers a, p, and y. 

6. Prove that ordinal multiplication is associative: (yP)a = y(Pa) for 
all ordinal numbers a, p, and y. 

7. Prove the following modification of Theorem 10(a): if a, P, and y 
are such that a -< P and y > 0, then ay py. (See Problem 8, below.) 

8. Show that, in Problem 7 above, a -< p and y >- 0 do not necessarily 
imply that ay -< Py (cf. Theorem 10(a)). 

9. Show, by giving a counterexample, that ordinal multiplication is 
not right cancellative: there exist ordinal numbers a, p, and y >0 
such that ay = Py, but a / p. 

10. Prove the following converse of Theorem 10(a): If a, P, and y are 
ordinal numbers such that ya -< yp and y >- 0, then a -< p. 

5. CONCLUSION 

It may seem natural now to explore the exponentiation of the ordinal 
numbers. We choose, however, to leave this to more advanced books. 
Instead, we shall first re-examine the ordering of the ordinal numbers, 
and then revisit the cardinal numbers from the ordinal-number-theoretical 
point of view. 

Theorem 11. Let a be an arbitrary ordinal number. Then the set of all ordinal 
numbers P such that P -< a is a well-ordered set whose ordinal number 
is a. 

Proof. Let CT^) be a well-ordered set whose ordinal number is a. For any 
ordinal number P with p «< a and any well-ordered set (B,^') with 
ord(B,^') = p, P is order-isomorphic to a proper segment Ab,beA, 
of A. It follows from Theorem 1 that the element b e A is uniquely deter¬ 
mined by the ordinal number p. Consequently, there is a well-defined 
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function 

/: {/? | p is an ordinal number with /? -< a} -> A 

given by/03) = b if 0 = ord(5,<) and B « It is quite routine, and 

therefore left to the reader, to show that the function / is an order- 

isomorphism. Therefore, the set {/? | p -< a} is well ordered and 

ord{/? | -< a} = a 

In view of Theorem 11, it may be convenient to identify the ordinal 

number a with the set {/3 \ p < a} and thus to regard each ordinal number 

as a well-ordered set (of ordinal numbers). For example: 

0 = 0 co + 2 = {0,1,2,...,co,<x>+ 1} 

1 = {0} 

2 = {0,1} 

3 = {0,1,2} 

col = {0,1, ...,(0,00+1,...} 

ail + 1 = {0,1, ...,oo, (u + 1, ...,0)2} 

Q) = {0,1,2,...} 

co + 1 = {0,1,2,...,co} 

Theorem 12. Any set of ordinal numbers is well ordered. 

Proof. Suppose on the contrary that there exists a set A of ordinal numbers 

that is not well ordered. Then there is a subset B of A that does not have a 

least element. Consequently, the set B contains a strictly decreasing 

infinite sequence of ordinal numbers >- a2 > a3 >- •••. This sequence 

is contained in {/? | /?<aj}, and hence, contradicting Theorem 11, the 

set {/? | /?-<aj} is not well ordered. This completes the proof of the 

theorem. 

Viewing ordinal numbers as sets, let us consider, for example, the set 

JA of all ordinal numbers a (a’s are sets!) with a equipotent to the set N 

of natural numbers. This set includes: 

co, co-1-1, ...,col, co2+ 1, ...,co3,co4, ...,co2,co3, ...,cow, ...,co' (co*0) 
,CO 
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According to Theorem 12, the set JT is well ordered, and hence there is 

a unique least ordinal number that is equipotent to N. It is called the 

initial ordinal for the set N. (It is not difficult to see that the initial ordinal 

for N is co.) In general, by the well-ordering principle and by Theorem 12, 

every set X has a (unique) initial ordinal. The initial ordinals satisfy the 

guiding rules C-l to C-4 for the cardinal numbers (see Section 1, Chapter 5). 

This suggests an alternate approach to the cardinal numbers. As a matter 

of fact, some authors introduce the ordinal numbers first and then define 

the cardinal number of a set as the initial ordinal of that set. There is a 

logical advantage to treating the cardinal numbers as the initial ordinals, 

but from a pedagogical and practical point of view we chose to explore 

the cardinal numbers before the ordinal numbers. 

In Theorem 12, we have carefully avoided the phrase “the set of all 

ordinal numbers.” As in the case of Russell’s paradox, the assumption 

of the existence of this set leads to a contradiction, known as the Burali- 

Forti paradox. 

Theorem 13. There does not exist a set of all ordinal numbers. 

Proof. Suppose on the contrary that there is a set S of all ordinal numbers. 

By Theorem 12, S is well ordered. The ordinal number of S, denoted 

by <t, must be a member of S’. It follows from Theorems 11 and 4 that 

a — ord {/? e S | «< cr} — ord Sa -< ord S = a 

which is a contradiction. 

Alternative Proof. Let S and o be as defined above. Then o is the largest ordinal 

number, which contradicts the fact that <x «< <x+ 1 (see Problem 10, Exer¬ 

cise 7.3). 

Exercise 7.5 

1. Prove that the function /: {p \ (1 -< a} -> A, given in the proof of 

Theorem 11, such that /(/?) = & if p — ord(5,^') for some well- 

ordered set and B x Ab is an order-isomorphism. 

2. Prove that the initial ordinal for the set N is o. 

3. Show that every set has a unique initial ordinal. 

4. Let X and Y be sets. Prove that X ~ Y if and only if X and Y have the 
same initial ordinal. 

5. Let X and Y be sets. Prove that card X < card Y if and only if the 

initial ordinal of X is less than the initial ordinal of Y. 
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Appendix / The Peano Axioms 
for Natural Numbers 

The system of natural numbers 1,2,3,... serves as the starting point for 

constructing the system of integers, the system of rational numbers, the 

system of residue classes modulo an integer, etc. What really are natural 

numbers? Giuseppi Peano (1858-1932) answered this question with five 

axioms, the Peano axioms for natural numbers.1 

The Peano Axioms for Natural Numbers. There exists a set N of elements, called 

the natural numbers, satisfying the following axioms: 

1. there exists a special element in N which we denote by 1; 

2. for each element n 6 N, there exists a unique element n+, called the 

successor of n, in N; 

3. for all n e N, n+ / 1; 
4. if n, m e N and n+ — m +, then n = m; 

5. if P is a subset of N such that 1 e P, and n e P implies n+ e P, then 

P = N. 

It may be more convenient to write n +1 for the successor n+ of n, and 

we write 2 = 1 + 1, 3 = 2+1, 4 = 3+1, etc. 
Axiom 5 is the basis of mathematical induction. Addition of natural 

numbers is defined inductively by: 

1 + T = T+ 

x+ + y = (x+t) + 

(1) 

(2) 

Using (1), (2), and mathematical induction, the following basic properties 

of addition of natural numbers can be proved. 

(3) x + (y + z) = (x+y) + z (associative law) 

See G. Peano, Arithmetices Principia, Bocca, Turin, 1889. 
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(4) x + y = y + x (commutative law) 

(5) x + z = y + z implies x = y 
(cancellation law) 

We shall prove only (3) here and leave (4) and (5) to the reader as exercises. 

Proof (3). Let y and z be any two arbitrary members of N that are fixed through¬ 

out this proof. In order to prove (3) by mathematical induction, we first 

show that 

1 + (y + z) = (1 +y) + z 

This is accomplished by the following step-by-step derivation: 

1 + (y + z) = (y+z)+ by (1) 

= y+ + z by (2) 

= (1 +y) + z by (1) 

Thus, the associative law (3) is valid for x = 1 and the first requirement 

for mathematical induction is satisfied. Our next task is to show that the 

validity of 

k + (y + z) = (k+y) + z (induction hypothesis) 

implies the validity of 

k+ + (y + z) = (k+ +y) + z 

We have 

k+ + (y+z) = \k + (y + z)Y 

= l(k+y) + zy 

= (k+y)+ + z 

= (k+ +y) + z 

by (2) 

by induction hypothesis 

by (2) 

by (2) 

which was to be proved. The proof of (3) is now complete, by mathematical 

induction. 

Multiplication of natural numbers is defined inductively by: 

(6) 1 y = y 

(7) x+y = xy + y 

The following basic properties of multiplication can be derived from (6) 

and (7) by mathematical induction: 
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(8) x{yz) = (xy)z (associative law) 

(9) xy = yz (commutative law) 

(10) xz = yz implies x — y (cancellation law) 

(11) x(y + z) = xy + xz (distributive law) 

Properties (8), (9), and (10) for multiplication resemble properties (3), 

(4), and (5), respectively, for addition. The proofs for (8), (9), and (10) 

are similar to the proofs for (3), (4), and (5), and hence the proofs of these 

are again left to the reader. We prove the distributive law here. 

Proof (11). Letj> and z be any two arbitrary members of TV that are fixed through¬ 

out the proof. We shall prove (11) by mathematical induction on x. For 

x = 1, by (6), it is clearly true that 

1 {y + z) = \y + lz 

Thus, the first part of mathematical induction is satisfied. To complete 

the proof, we assume that 

k{y + z) — ky + kz 

is true for some k e N. Then 

k+{y+z) = k(y + z) + {y+z) by (7) 

= (ky + kz) + {y+z) by induction hypothesis 

= ky + \kz + (j> + z)] by (3) 

= ky + [{kz+y) + z] by (3) 

= ky + [(y+kz) + z] by (4) 

— ky + \_y + {kz+z)~] by (3) 

= (ky+y) + (kz + z) by (3) 

= k+y + k+z by (7) 

Therefore, by mathematical induction, (11) is valid. 

The concept of order in N can be introduced as follows: 

(12) x> y if and only if there exists zeN such that x = y + z. 

From this definition of order, it follows that 

(13) x > y and y > z imply x > z (transitive law) 

and 

(14) for any x and y in N, one and only one of the following holds: 

x>y, x=y, y>x (trichotomy law) 
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In fact, all known properties of natural numbers may be derived from 

the Peano axioms. In concluding this appendix, we state the following 

theorem, which asserts that the natural number system is unique. 

Theorem. Let N and N' be two sets satisfying the Peano axioms 1 through 5. 

Then there exists a one-to-one correspondence (called an isomorphism) 

f:N->N' such that /(l) = 1' and f(n+1) —f{n)+ V, where 1' denotes 

the special element of N' satisfying 1-5. 
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Answers to Selected Problems 

EXERCISE 1.1 

1. (S) 2. (S) 3. (N) 

7. (N) 8. (N) 9. (S) 

10. (S) 

20. 8, 16, 2" 

21. P 7 r • 

T T T 
T T F 
T F T 

T F F 

F T T 

F T F 

F F T 

F F F 

EXERCISE 1.2 

13. yes 14. yes 

4. (S) 5. (N) 6. (N) 

15. (4) and (5), (7) and (8), (9) and (10), (11) and (12) 

EXERCISE 1.3 

8. Neither this function has a derivative nor am I stupid. 

10. (a) ~(/?i Ap2 Ap3 A ••• Apn) = ~pt V ~p2 V ~p3 V ••• V ~pn 

(b) ~(jp, Vp2 Vp3 V ••• Mpn) = ~pi A ~p2 A ~p3 A ••• A ~pn 
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EXERCISE 1.4 

3. From the truth table: 

p A ~ q -> c P -* q 

T F F T F T T T T 

T T T F F T T F F 

F F F T F T F T T 

F F T T F T F T F 

1 3 2 4 1 5 1 2 1 

we conclude that p A^q -*■ c and p -+ q are equivalent. 

\ 

EXERCISE 1.5 

1. p A (p q) = p A ~{p A ~q) Def. of —> 
= p A (~p V q) DeM., D.N. 

= iP A ~p) V (p A q) Dist. 
= c V (p A q) p A ~p = c 

= P A q Com., Th. 7(b) 

=> q Simp. 

3. (/) A c) 0 ~[(j? A ~?) A ~c] Def. of -*■ 
<=> ~ (p A ~ q) V c DeM., D.N. 
0 ~ (p A ~ q) Th. 7(b) 

o(p^q) Def. of-> 

4. (p V q) A ~p = ~p A {p V q) 

= (~p A p) V (~p A q) 

= c V (~p A q) 
= ~p A q 

=> q 

5. (c-> p) = ~(c A ~p) 

= ~ c V p 

= / V p 

= t 

Therefore, c 

Def. of -> 

DeM., D.N. 

~c = t 

Com., Th. 7(a) 

Com. 

Dist. 

~p A p = c 

Com., Th. 7(b) 
Simp. 

7. (p V q q) o ~ [(/? V #) A ~q~\ 

o ~ (p V q) V q 

o q V (~p A ~q) 

<t> (q V ~ p) A {qV ~q) 

o(~p\/ q) A t 

Def. of ->■ 
DeM., D.N. 

De M., Com. 

Dist. 

Com., q V ~e/ = / 
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Th. 7(a) 

De. M., D.N. 

Def. of-> 

<=> ~p V q 

o ~(p A ~q) 

(p -*■ q) 

9. (p->r) A (f->r)o(~pVr) A (~^Vr) Prob. 8 

o(r M ~p) A (r V ~g) Com. 

or V (~p A ~q) Dist. 

o ~(p V 9) V r De M., Com. 

o (p V 9 -» r) Prob. 8 

11. (p -> q) A (p ~q) o p M q) A p M ~q) 

o ~p V (q A ~q) 

o ~ p V c 
o ~p 

Prob. 8 

Dist. 

q A ~q = c 

Th. 7(b) 

12. (p -*■ 9) V (p -> r) o (~p V q) V (~p V r) 

o (~/7 V ~/?) V (q M r) 

o ~p V (9 V r) 

o(p^qV r) 

Prob. 8 

Assoc., Com. 

Idemp. 

Prob.8 

EXERCISE 1.6 

4. Substituting ~p(x) for <?(x) in ~[(Vx)(<7(x))] = (3x)(~g(x)), we have 

~[(Vx)(~/?(x))] = (3x)(p(x)) 

Negating both sides of the above equivalence and interchanging the left- and 

the right-hand sides, we conclude 

~[(3x)(/?(x))] ee (Vx)(~/>(x)) 

EXERCISE 1.7 

1. (a) Direct Proof: 

1. A V (B A C) 

2. B -»• D 

3. C —► A 
4. D A E ^ A V C 

5. ~A t c 
6. B A C 

7. B A C ^ D A E 

8. D A E 

9. AM C 

10. C 

1, 5, D.S. 

2, 3, C.D. 

7, 6, M.P. 

4, 8, M.P. 

9, 5, D.S. 

Answers to Selected Problems [145] 



(b) Indirect Proof: 

6. ~C 

7. B A C 

8. C 

9. C A ~C 

I.P. 

1, 5, D.S. 

7, Simp. 

6, 8, Conj. 

7. 

1. P A C-+ R 

2. i? -*• G 

3. //-»-/ 

4. 7/ 

5. ~G V / / ~(7> A C) 
3, 4, M.P. 

5, 6, D.S. 

2, 7, M.T. 

1, 8, M.T. 

2, Add. 

3, Com., DeM. 

1,4, M.T. 

5, DeM. 

6, Simp. 

6. ~7 
7. ~G > 

8. ~ R 

9. ~(P A C) 

8. 
1. W V H ^ L A S 

2. ~S7 ~77 

3. ~SV~L 

4. -(LAG) 

5. ~(WV 77) 

6. ~WA~H 

7. ~77 

1. E A S-+ G 

2. G -» H 

3. -77/ ~£ V -A 

4. — G 

5. ~(£A5) 

6. — 7s V ~A 

2, 3, M.T. 

1,4, M.T. 

5, DeM. 

EXERCISE 1.8 

1. We prove this theorem by mathematical induction on n. The theorem is 

easily verified for n = 1. The induction hypothesis is that k is an integer such 

that for all r with 0 < r ^ k, 

C(k,r) 
k\ 

r\(k — r)\ 
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Now consider C(k + \ , r). By Definition 7 and the induction hypothesis we 
have 

C(k+\,r) = C(k,r) + C(k,r- 1) 

k\ k\ 

r\(k — r)\ + (r — 1)! (A: — r + 1)! 

k\(k — r+1) k\r 

r\(k-r)\{k — r + 1) + r(r- 1)!(& — r+ 1)! 

£!(£+!) 

r\(k — r+ 1)! 

(*+!)! 
r\(k+1 — r)! 

which shows that the theorem is true for k+ 1 if it is true for k. The proof 

is now complete by the principle of mathematical induction. 

2. Theorem 8 may be used for this problem. If mathematical induction is to 

be used, prove first the following lemma by mathematical induction. 

Lemma. If n is a nonnegative integer and r is either less than zero or greater 

than n, then C(n,r) = 0. 

EXERCISE 2.1 

2. D c A c B <= C 

5. Suppose that A ^ 0; then for any element x, (x e A) -> (x e 0) is a true 

statement. Since x e 0 is false, in order that the conditional statement 

(x g A) -> (x e 0) be true, x e A must be false for all element x. Thus, we 

must have A — 0. 

6. (a) We verify the validity of the following argument: 

1. 
2. 

(x 6 A) -* (x 6 B), 

(y e B) A (y $ A), 

for all elements x 1 

for some element y f 
(Hyp. A cz B) 

3. (xefi)->(xe C), for all elements x (Hyp. BcC) 

/ A cz C (Concl.) 

4. (x e A) -*• (x e C), for all elements x 1, 3, Trans. 

5. y e B 2, Simp. 

6. y t A 2, Simp. 

7. y e C 3, 5, M.P. 

8. (y e C) A (y<£A), for some element y, 7, 6, Conj. 

9. A c C 4, 8, Def. c= 
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8. (a) false (b) false (c) false 

(d) false (e) false (f) true 

9. We shall prove this by mathematical induction on n. Since 

o—1 

the assertion is true for n — 1. Suppose that given a set with k elements, 

then for any integer r, there are exactly C(k, r) subsets with r elements (induc¬ 

tion hypothesis). Now consider an arbitrary set A — {a1,a2, ...,ak,ak + 1) 

with k+ 1 elements. The subsets of A with exactly r elements are those sub¬ 

sets of A — {ak+1} — {a1,a2,...,ak} with r elements, and those obtained by 

joining the element ak+l to each of the subsets of A — {ak + 1} with r—1 

elements. Therefore, by the induction hypothesis and Definition 7, there 

are exactly C(k,r)+ C(k,r — 1) = C(k+\,r) subsets of A with r elements. 

Hence, the proof is complete by the principle of mathematical induction. 

EXERCISE 2.2 

3. 0, {*}, {{y,z}}, {x,{y,z}} 

5. Observe that a set X g 0>{A : B) if and only if there exists a set Y e A — B) 
such that X = B u Y. 

(a) Therefore, the number of elements in PP{A : B) is the same as the 
number of elements of the power set A — B), that is, 2"-m. 

(b) If B — 0, then £?{A : B) = £P(A), which has 2"_0 — 2” elements. 

EXERCISE 2.3 

1. It is clear that A u B 2 B. To complete the proof, it remains to be shown 
that A u B c B: 

x e A u B = (x g A) V (x e B) Def. u 

=> (x e B) V (x e B) A ^ B 

= x g B Idemp. 
Hence A u B £ B and consequently A u B = B. 

6. (a) 1. (x g A) -> (x e C) 

2. (x 6 B) -* (x g C) / A u B c C 

3. (x 6 A) V (x g B) -> (x g C) V (x g C) 

4. (x e A) V (x g B) -> (x e C) 

5. (x e A u B) -> (x g C) 

6. AvB^C 

(Hyp. A^C) 

(Hyp. B c C/Concl.) 

1, 2, C.D. 

3, Idemp. 

4, Def. u 

5, Def. c 
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7. (i) C c (An 5) u C 

= A n(B\jC) 

(ii) Let C ^ A. Then 

C-4 n 5) u C = (,4 u C) n (5 u C) 

= /ln(i!uC) 

(Hyp.) 

Dist., Com. 

Prob. 1 

11. Since A £ C, by Problem 10 we have A u B £ C u 5. Since B ^ D, by 

Problem 10 again, C\jB=B<jC^DkjC=C<jD. Thus, A v B ^ 
Cu Z>. 

EXERCISE 2.4 

1. ^4 — (5 n ^4) = A n (5 n /!)' 

= A n (B' u A') 

= (An B') v (An A') 

= (A n B’) u 0 

= A - B 

Example 5 

De Morgan’s Th. 

Dist. 

Th. 5(c) 

Example 5, Th. 4(a) 

3. Let B £ A'. For any element x, if x e B then x e A'. That is, x $ A if x e B. 

Hence x <£ A n B for any x. Therefore A n B = 0. 

Conversely, if A n B = 0, then x e B implies x £ A. That is, (x e B) -» 

(x e A') is true. Thus, B c A'. 

4. (i) If (A-B)kj B = A, then B ^ (A-B) kj B = A. 

(ii) If B c A, then 

(A-B) u B = (A n B') u B 

— B \j (A n B') 

— (B u A) n (B kj B') 

= A n (B u B') 

= A n U 

= A 

Example 5 

Com. 

Dist. 

(Hyp. B <= A), 

Prob. 1 of 

Ex. 2.3 

Th. 5(c) 

A^U 

6. (a) (A — C) u (B-C) = (An C') u (B n C') 
= (C' nA)v (C' n B) 

= C' n (A u B) 

= (Au B)-C 

Example 5 

Com. 

Dist. 

Com., Example 5 

10. C—B = (A yjB) — B 

= (A v B) n B' 

= (An B') u (Bn B') 

= (A-B) u 0 

= A 

Hyp. C = 4 u B 

Example 5 

Com., Dist. 

Example 5, Th. 5(c) 

Hyp. A n B = 0 
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11. (A v B) — (A n B) 
= (A u B) n (A n B)' Example 5 

= (A u B) n (A' u B') De Morgan’s 
Th. 

= [(A u B) n /4'] u [(v4 u 5) n 5'] Dist. 
= [(^ n T') u (5 n ,4')] u [(A n B’) u (5 n 5')] Com., Dist. 

= [0 u (B n A')-] yj [(A n 5') u 0] Th. 5(c) 
= (B-A) u (.4-5) Example 5 

- (/4-£) u (B-A) Com. 

EXERCISE 2.6 

2. (a) {0} (b) [0,1] 
\ 

(c) [0,1/99] 

6. (a) “0^0/.)"*/ 

U Bin U Ai 
j= 1 L \i = 1 

- u 
j= 1 

U (bj n ^i) 
Li=l 

Th. 9 

Com. 

Th. 9 

EXERCISE 3.1 

2. A = 0 or B = 0 or A — B 

9. (jc,y) e (y4 x C) n (BxD) 
= [(x,y) e x C] A [(x,y) e5xD] 

= [(* e A) A (y e C)] A [(x e 5) A (y e £>)] 

= [(x e A) A (x e 5)] A [(y e C) A (y e D)~\ 

= (x e A n B) A (y e C n D) 

= (x,y) e (A n B) x (C n D) 

Hence, (4xC)n(BxD) = (ylnB)x(Cn D). 

Def. n 

Def. of x 

Assoc., Com. 

Def. n 

Def. of x 

11. (i) If a = c and b = d, then {a} = {c} and {a, b) — {c,d}. Consequently, 

{{«}, {a, b}} = {{c}, [c, d}}, or (a, b) = (c, d). 

(ii) Suppose {{a}, {a, 6}} = {{c}, {c, d}}. If a = b, then the ordered pair 

(a, b) is the same as the singleton set {{a}}. Since (a, b) — (c,d), we 

have {{c},{c, d}) = {{a}}. Consequently, {c} = {c, d) = {a} and hence 

a — b = c = d. If a A b then both (a, b) and (c, d) contain exactly one 

singleton set, {a} and {c} respectively. Hence, a — c. The sets (a, b) 

and (c,d) also contain exactly one “doubleton set,” [a, b) and {c, d) 

respectively, so that [a, b) = [c, d). Hence, be {c,d}, so that b = d. 

For if b — c then since a = c, we will have a — b, a contradiction. 

[150] Answers to Selected Problems 



EXERCISE 3.2 

3. (a) y e lm(9) = (x,y) e 9 for some x e A Def. of Im 

= (y,x)e9~1 for some xsA Def. of^2_1 

= >> e Dom(^2_1) Def. of Dorn 

EXERCISE 3.3 

1. (x,^) g X/O' = X e A and y e A for some A g O' 

= (x,y) e A x A for some A e O' 

= (x,y) G (J A x A 
Ae$ 

Def. X/0 

Def. of x 

Def. u 

6. (x,y) e XI(X/S) 

= (x,y) e A x A for some A g Xl$ Prob. I 

= (x,y) g (c/#) x (c/S) for some c e X, Def. X/S 

= {x,y)eS Th. 3(b) 

EXERCISE 3.4 

6. (a) [5, +oo) (b) [-1,1] (c) R 

9. 23, nm 

10. 2, n 

11. Let A = Dom(^) and B be any subset of Y containing Im(^). Show that 

g : A -* B is a function. 

12. Let (x,>0 g/. Since / is reflexive, (x, x) ef so that we must have y = x be¬ 

cause / is a function. That is, /(x) = x for all x e X, or f:X-*X is the 

identity function \x\ X^> X. 

13. /(x) = 1 — x for all x in [0,1] 

14. Let x be any element of X. Since (x,/(x))g f^g, we have (x,f(x))eg. 

That is, g(x) = /(x) Vx g X. By Theorem 7, /= g. 

EXERCISE 3.5 

4. (a) x g A => /(x) g f(A) Def. 9(a) 
=>xef-'(f{A)) Def. 9(b) 

Therefore, A 1 (f(A)). 

(b) y g/(/_1 (£))=> 3x g/-1 (B) such that y=f(x). Since xef~1(B), 

we have y = /(x) g B. Therefore, /(/"1 (5)) c B. 
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8. x e px(&) o x = px(x,y) for some (*>y) 6 ^ 
o x e Dom(^) 

Thus, px(@) = Dom(^). Similarly, pY(9%) = Im(^). 

9. (a) yef(Anf l{Bj) 
= [>> = /(x) for some xe A nf 1 (5)] Def. 9(a) 

= [j; = /(x) for some xe A and x e/_1C#)] Def. n 

= 7 e f{A) and y e B Def. 9 

= y e /(^4) n B Def. n 

Hence, /(/l n f~1{B)) = f{A) n 5. 
(b) Substituting X for y4 in (a) above, we have /(X n / 1 (B)) = /(X) n 5. 

Since X n f~1(B) = f~1(B), the last equality may be rewritten as 

f(rl(B)) =f(X) n 5 

EXERCISE 3.6 

7. The X-projection px\ XxY -+ X is injective, if 7 is a singleton set. 

11. m! 

12. (a) It is always true that f~1(f(A)) 2 A. [See Problem 4(a), Exercise 

3.5.] Therefore, it is sufficient now to show f~1(f(A)) £ A: For any 

xef~1(f(A)), we have f(x)ef(A). Consequently, /(x) =/(x') for 

some x' e A. Since/is injective, we must have x = x'; whence, xe A, 

and thus f~1(f(A)) £ A. 

EXERCISE 3.7 

6. To show that / is injective, let /(x) = /(x') for any x and x' in X. Then 

using g of = \x, we have x = g °/(x) = g o/(x') = x'. Therefore, / is in¬ 

jective. To show that / is surjective, we use f°h = \Y and the following 
observation: 

f{X) 3 f(h(Y)) = ly(T) = Y, because h(Y) <= X 

Therefore, f{X) = Y and / is surjective. Thus, / is a bijection. Next observe 

that, using the results of Problems 4 and 5, we have 

g = g o iy = #°(/°/_1) = (g°f)°f~l = ix°r! =/_1 

and 

h = = /_1 o(/oA) = /_1 o lr =/_1 

9- (i) g°f:X-*Z is injective: Let # ° /(x) = g ° /(x') for some x and x' 
in X. Then since # is injective, and g(f(x)) = g(f (x')), we have/(x) = 
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Then /is injective implies that x = x'. This proves that g of 
is injective. 

(ii) To show g of is surjective, observe that 

g ofiX) = g{fiX)) 

= g(Y) 
= z 

Therefore, g °f is surjective. 

(iii) Now gof:X-+Zisa. bijection. Observe that 

/is surjective 

g is surjective 

tH 1 O
 

r-i 

1 O
 

1 0 

1 O
 

O
 

II Th. 15 

= 0°ly) °g 1 Prob. 5, 
Th. 15 

= g°g~l Prob. 4 

— lz Prob. 5 

'C
l 

1 

0
 

0
 

= /_1 °ig~log)°f Th. 15 

= /_1°(ly°/) Prob. 5, 
Th. 15 

= /_1°/ Prob. 4 

= h Prob. 5 
Therefore, by the result of Problem 6, we have 

/_1 °g~1 = (g°f)~1 

EXERCISE 4.1 

2. Suppose on the contrary that Y is infinite. Then since g~x : T-> X is a one- 

to-one correspondence, by Theorem 2, the set X must be infinite, a contra¬ 

diction. Therefore, Y is finite. 

4. Let f: A A be an injection such that f{A) # A. Then the function 

g \ Ax A Ax A defined by g(x,y) — (f(x),f(y)) is injective, and 

g(A x A) # A x A. Hence, Ax A is infinite. 

EXERCISE 4.2 

4. Let f\X—Y~Y—X. Then consider the function g : X^Y defined by 

9M=\m * XEXy~Yy 
j x if x e X n Y 

Since X-Y = X-(XnY) and Y-X = Y-(Xn Y), the function g : X-*Y 

is bijective. Hence, X ~ Y. 
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5. Let fy: Xy ~ Yy for each y e T. Define the function /: (J7erA’y Uyer^y 

by f(x) = /v(x) if x e Xy. Then since {Xy \ y e T} and [Yy \ y e T} are families 

of disjoint sets, /is a well-defined bijection. 

9. The function /: &{A) -* 2^ which takes each subset B of A to the character¬ 

istic function Xb '■ A {0,1} of B is clearly a bijection. 

EXERCISE 4.3 

4. Let /: A ~ N and g : B ~ N. Then the function h . Ax B ^ NxN defined 

by h(x,y) = (/(x),#(>>)) is a bijection. Hence, A x 5 ~ N x N. Consequently, 

by Theorem 10, A x B is denumerable. 

5. Let us express each rational number uniquely as plq, where p e Z, q e N, 

and the greatest common divisor of p and q is 1. Then the function /: Q -* 

Z x N defined by f(q/q) — (p, q) is an injection. Clearly, Z x {1} s/(Q) £ 

NxN. Therefore, by Theorem 8, /(Q) is denumerable and hence so is Q. 

6. Let ^ be the set of all circles in the Cartesian plane having rational radii 

and centers at points having both coordinates rational. Consider the func¬ 

tion /:^->QxQxQ defined by /(c) = (x, y, z) where (x,y) is the center 

and z the radius of the circle c eW. Then clearly / is an injection. Observe 

that, by Example 5, Q ~ N and hence QxQxQ~NxNxN~NxN~N, 

by Theorem 10. Now /(^) is an infinite subset of the denumerable set 

Q x Q x Q, so by Theorem 8,/(^) is denumerable. Hence, ^ is denumerable. 

7. Let At = Bx and Ak+1 = Bk+l — \Jj=lAj for each k e N. Then {Ak | k e N} 

is a denumerable family of disjoint countable sets. Furthermore, U/ceN^k = 

[jke^Bk and A1 = B{ is denumerable. By using the corollary to Theorem 

10, IJkeN^k may be shown to be denumerable, and hence so is UkeN-®k- 

EXERCISE 4.4 

4. Suppose on the contrary that the set of all irrational numbers between 0 

and 1 is denumerable. Since the set of all rational numbers between 0 and 1 

is denumerable, the union of these two sets, which constitutes the set of 

real numbers between 0 and 1, must be denumerable. This contradicts 

Theorem 12. Therefore, the set of all irrational numbers between 0 and 1 

is nondenumerqble. 

EXERCISE 5.1 
4 

2. 0 = card 0, card N, and card R 
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EXERCISE 5.2 

2. Let a be a transfinite cardinal number and let A be a set such that card A = a. 

Then the set A is an infinite set which, by Theorem 11 of Chapter 4, contains 

a denumerable subset A. That is, N ~ B £ A, which shows that cardN ^ a. 

6. Consider the sets B and C. Since B ~ B ^ C and C ~ A £ B, by the 

Schroder-Bernstein Theorem C ~ B. It follows from A ~ C and C ~ B 

that A ~ B. 

EXERCISE 5.3 

2. Let /: A ~ B. The function f'.A^B induces the function /* : 0>{A) -* 

0>(B) defined by/*(X) - f(X) for all X e A). Since/is bijective, so is/*. 

Therefore, 0>(A) ~ PP(B). 

3. Suppose on the contrary that there is a denumerable set A whose power 

set 0>(A) is denumerable. Then card A — card gP(A), which is a contra¬ 

diction to Cantor’s Theorem (Theorem 2). 

EXERCISE 5.4 

5. Since R ~ (0,1) ~ (1,2) and (0,1) £ (0,1) u (1,2) £ R, by the Schroder- 

Bernstein Theorem we have (0,1) u (1,2) ~ R which shows that c+c = c. 

EXERCISE 5.5 

3. Counterexample: Let x = 1, y — z — N0. Then x < y, but xz — yz = N0 

(Example 5(c)). 

EXERCISE 5.6 

5. For any by Theorems 8 and 10 and the fact that N0Nq = N0, we 

have 

c = 2No ^ ^ Ko° < (2Xo)No = 2NoNo = 2No = c 

Thus, «No = c = No0. 

8. We have c < N0 c ^ cc = c by Problem 6. Hence, N0 c-c. 
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EXERCISE 5.7 

2. Let H denote the classic Hilbert space. Then we have 

c ^ cardH ^ cx° = (2Xo)Xo = 2X°X° = 2Xo = c 

by Theorems 8 and 10. Hence, cardH — c = cardR. 

3. The set of lattice points in RXo has the cardinal number Kx° = c, by Prob¬ 

lem 5 of Exercise 5.6, and card RXo = cXo = c as shown in Problem 2 above. 

4. The cardinal number of the set of all functions of one real variable which 

assume only the values 0 and 1 is 2C, and the cardinal number of the set of 

all real-valued functions of n real variables in cc". Observe that, since 

c" = c and N0 c = c, we have 

Cc" = cc = (2Xo)c - 2XoC = 2C 

5. From the result of Problem 4 above, we have f = 2C. Observe now that 

f ^ f" < fXo < f = (2cy = 2CC = 2C = f 

EXERCISE 6.1 

2. We may assume that B # 0 (for if B = 0 then C = 0). The set 

{/_10)l yeB} 

forms a partition of A. By the axiom of choice, the set {f~l (y) \ y e B) 

has a set C of representatives such that C nf~1(y) is a singleton set for 

each y e B, so that the restriction of / to C, f \ C : C -»• B, is bijective. 

Hence, card A ^ card C = card B. 

8. Let g : {Ay | y e T} -> be a choice function, by the axiom of choice. 

Then there exists a function /: T -*■ (Jyer^4v defined by f(y) = g(Ay) e Ay 

for all y e T. Hence PyerAy # 0 if T # 0. 

EXERCISE 6.2 

12. Let ST be the set of all totally ordered subsets of A that contain B. ST can 

be partially ordered by the inclusion, £. Then the same proof for Theorem 2 

applies here to conclude that ST has a maximal member C, B c= C. 

EXERCISE 6.3 

2. Let (A,<) be a partially ordered set, and let the set 2T of all totally ordered 

subsets of (y4,^) be partially ordered by £. in order to apply Zorn’s lemma 

to 0T, £), let # be a chain in (5", c), and let K — (JCe^. C. We will show 
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that K g £T and hence it is an upper bound for c€. Indeed, if x,y e K, then 

x e D and y e E for some D e ^ and Ee^. But ^ is a chain in (3T, c); 

hence either D c= E or E £ D. Assume that E £ D; then x,y e D. But D 

is totally ordered, so that either x ^ y or y ^ x. Hence K is a totally ordered 

subset of 04,<)> so that Ke3~. Now by Zorn’s lemma (ST, s) has a 
maximal element. 

3. Let R be a ring with identity 1, and let the set si of all proper ideals of R 

be partially ordered by c. Let ^ be a chain in (si, £). Then (J/e^/is a 

proper ideal of R because l${JIe<gI, so that (JIe^Issi is an upper 

bound for c€. By Zorn’s lemma, (si, e) has a maximal member. 

4. Let V be a vector space, and let the set si of all linearly independent subsets 

of vectors in V be partially ordered by . Let ^ be a chain in (si, ^); then 

K= \JcevC is clearly linearly independent, and hence Ke si is an upper 
bound for c€. By Zorn’s lemma, (si, ?=) has a maximal member (which 

forms a basis for V). 

8. Let & be partially ordered by and let ^ be a chain in (3r, c=)- We shall 
show that % has an upper bound. The natural candidate for this upper 

bound is K = \JcevC- Let {xl5x2, be any finite subset of K. Then 

xt e Q for some Q e i = 1,2But, since ^ is a chain, there exists 

CeW such that C; c C for all i—\,2,...,n. Whence, {x1,x2, ...,x„} £ C 

and hence {xux2, e 3r. Therefore K eJ and hence it is an upper 

bound for c€. By Zorn’s lemma, (IF, c) has a maximal element. 

EXERCISE 6.4 

2. Since the set Q is denumerable, there exists a bijection /: Q ~ N. Define 

a relation ^ on Q by declaring that for any p and q in Q, p ^ q if and only 

if f(p)^f(q) in N under the natural ordering of the natural numbers. 

Since (N,0 is well ordered, so is (Q,0- 

7. If (.4,0 is well ordered, it cannot contain an infinite strictly decreasing 

sequence, for this would be a subset without a least element. Conversely, 

suppose that the totally ordered set (A,0 is not well ordered. Then there 

exists a subset B of A with no least element. Choose any at g B. Since 

is not the least element of B, we can choose a2e B such that al > a2. 

Similarly we can choose a3 e B such that a2> a3. Continuing, we have an 

infinite strictly decreasing sequence ax> a2> a2> . 

EXERCISE 7.2 

7. 03 
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EXERCISE 7.3 

4. Let a = co, p = 0, and y = 1. Then /? + a = co = y + a, but ^ y. 

6. Use the same example as Problem 4 above: P = 0-< 1 = y, but P + ot = 

y + a. 

11. No, for if a were the greatest ordinal number, then a+1 >-a, a contra¬ 

diction. 

EXERCISE 7.4 

4. Let a = co, p = y — 1. Then (/? + y) a = 2co = co, but /Ja + ya = co + co = co2. 

Thus, (^ly)a^ /?a + ya. 

8. Let a = 1, P = 2, and y = co. Then a < p and y >- 0, but ay = lco = co = 

2co = fiy. ' 

EXERCISE 7.5 

3. Let be any set. By the well-ordering principle, the set X can be well ordered. 

Let SP = {ord(2f,^) |< is a well-order relation on X}. By Theorem 12, the 

set SP is well ordered, and hence has a unique least element, the initial 

ordinal for X. 
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Glossary of 
Symbols and Abbreviations 

A 

V 

= (o) 

V 

3 

a e A 

a $ A 

{x,y, ...,z} 

{*!/?(*)} 
N 

Z 

Q 
R 

R+ 
A^B 

A£B 

A c= B 

A ^ B 

0 
An B 

A u B 

0(A) 

Oyer Cy 

Uyer 0 

02-1Q 
UJUiQ 

A 

UAe& A 

(a,b) 

AxB 

Dom(f) 

not... 

and 
or 

if ... then 

if and only if 

is equivalent to 

implies 

for all (for every) 

there exist (s) (for some) 

therefore 

a is an element of A 

a is not an element of A 

the set consisting of the elements x, y, and z 

set of all x such that p(x) is true 

set of all natural numbers 

set of all integers 

set of all rational numbers 

set of all real numbers 

set of all positive real numbers 

A is a subset of B 

A is not a subset of B 

A is a proper subset of B 

A is a superset of B 

empty set 

intersection of sets A and B 

union of sets A and B 

power set of A (the set of all subsets of A) 

intersection of the sets Cy where yeT 

union of the sets Cy where yeT 

intersection of sets Cl5 C2,..., C„ 

union of sets Cls C2, ■■■, C„ 
intersection of the family SF of sets A 

union of the family of sets A 

ordered pair of elements a, b 

Cartesian product of sets A and B 

domain of the relation M 



Im(^) image of the relation 01 

^r1 inverse of the relation 01 

Ax identity relation on X 

s equivalence relation 

x/S1 equivalent class determined by x and $ 

X/£ set of all equivalent classes x/<? where x e X 

O' partition of a set 

x/$ equivalence relation induced by the partition ‘S of X 

f: X^Y /is a function from X to Y 

\x : X-+X identity function on X 

XA : X -*■ {1,2} characteristic function where A ^ X 

f’ X ~ Y function/: X-» Y is a one-to-one correspondence 

2A set of all functions from A to {1,2} 

Ba set of all functions from A to B 

A~ B A is equipotent to B 

cardv4 cardinal number of the set A 

cardinal number of the set of natural numbers 

c cardinal number of the set of real numbers 

f cardinal number of the set of all functions from R to R 

Ax segment {a e A\a < x} of A, where (A,^) is a 

well-ordered set 

(A,^) « (B,<') the well-ordered sets (A,^) and (fi,sC) are order isomorphic 

ord (/!,<) ordinal number of (A,^) 

OJ ordinal number of (N,<) 

Add. Law of Addition: p=>pf q 

Simp. Laws of Simplification: p A q=>p, p A q=>q 

D.S. Disjunctive Syllogism: (pfq) A ~p=>q 
D.N. Law of Double Negations: ~(~p) = p 
Com. Commutative Laws: p A q = q A p, p\! q = q\l p 

Idemp. Laws of Idempotency :pAp=p, pfp=p 

Contrap. Contrapositive Law: (p ->/) = ( ~ <7 -> ~p) K 
DeM. De Morgan’s Laws: ~ {p A q) = ~p \/ ~ q, ~(p V /) = ~p A 
Assoc. Associative Laws: (p A q) A r = p A (q A r) 

(p V q) V r = p V (q V r) 
Dist. Distributive Laws: p A (q V r) = (p A q) V (p A r) 

p V (<7 A r) = (p V q) A (p V r) 
Trans. Transitive Law: (p -> q) A (q -> r) => (p -» r) 
C.D. Constructive Dilemmas: (p -» q) A (r -* s) => (p V r -> q V .s) 

(p -> q) A (r -> s) => (p A r -> q A s) 
D.D. Destructive Dilemmas: (p->/)A(r->.s)=>(~gV~.s->~pV ~r) 

(p-» q) A (r -» s) =>(~q A~i->~/)A ~r) 
M.P. Modus Ponens: (p -> q) A p => q 

M.T. Modus Tollens: (p -» q) A ~q^>~p 
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R.A. Reductio ad Absurdum: (p -*■ q) o (p A ~ q -* q A ~ q) 
Q.N. Rule of Quantifier Negation: ~[(Vx)(/>(x))] = (3x)(~p(x)) 

~[(3x)(/?(x))] = (Vx)(~/?(V)) 
Def. Definition 
I.P. Method of Indirect Proof 
Th. Theorem 
Hyp. Hypothesis 
Concl. Conclusion 
t tautology 
c contradiction 
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Index 

Absorption laws, 14 
Addition, law of (Add.), 10 
Aleph-null, 99 
Antichain, 116 
Argument, 20 
Associative laws (Assoc.), 12, 34, 132, 

135 
Axiom of cardinality, 93 
Axiom of choice, 83, 110 

Biconditional, 8 
Bijection, 71 
Binomial coefficient, 26 
Binomial theorem, 26 
Burali-Forti paradox, 138 

Cantor’s theorem, 96 
Cardinal number, 92 

finite, 93 
transfinite, 93 

Cardinal product, 100 
Cardinal sum, 98 
Cartesian product, 50 

generalized, 112 
Chain, 111 
Choice function, 110 
Commutative laws (Com.), 11, 34 
Complement, 36 
Component, 3 
Composition, 75, 77 
Conclusion, 20 
Conditional, 7 
Conjunction, 3 
Connective, 2 
Constructive Dilemmas (C. D.), 13 
Continuum hypothesis, 108 

generalized, 108 
Continuum problem, 97, 108 

generalized, 108 
Contradiction, 14 
Contrapositive law (Contrap.), 11 
Coordinate, 51 

Deductive method, 16 
Deductive reasoning, 16 
De Morgan’s laws (De M.),ll 

generalized, 27 
De Morgan’s theorem, 38 

generalized, 45 
Destructive Dilemmas (D. D.), 13 
Direct proof, 23 
Disjoint, 33 
Disjunction, 6 
Disjunctive Syllogism (D. S.), 10 
Distributive laws (Dist.), 12, 34 

generalized, 27, 45 
Domain, 54, 61 
Domain of discourse, 18 
Double negation, laws of (D. N.), 11 

Element, 28 
Empty set, 28 
Equipotence, 84 
Equivalence, 6, 10 
Equivalence class, 58 
Existential quantifier, 18 
Exportation law, 16 

Family, 42 
indexed, 42 

Finite character, 118 
Finite set, 28, 80 
Formal proof of validity, 22 
Function, 61 

bijective, 71 
characteristic, 64 
choice, 110 
constant, 64 
identity, 64 
inclusion, 67 
increasing, 123 
injective, 71 
inverse, 73 
one-to-one, 71 
restriction of, 106 
strictly increasing, 123 

Greatest lower bound, 113 

Hausdorff maximality principle, 115 
Hilbert space, 107 
Hypothesis, 20 

Idempotence, laws of (Idemp.), 11, 34 
If p then q, 7 



Image, 54, 61, 67 
Implication, 9 
Indirect proof, 22 
Induction hypothesis, 24 
Infinite set, 28, 80 
Initial ordinal, 138 
Injection, 71 
Intersection, 33, 43 
Interval 

closed, 47 
open, 44 

Inverse function, 73 
Inverse image, 68 

Lattice, 118 
Lattice point, 107 
Least element, 118 
Least upper bound, 113 
Lexicographic ordering, 113 
Linear order, 111 
Logical possibilities, 3 
Logically equivalent, 6 
Lower bound, 113 

Mathematical induction, 24 
Maximal element, 113 
Member, 42 
Minimal element, 113 
Modus Ponens (M. P.), 13 
Modus Tollens (M. T.), 13 

Negation, 2 

One-to-one correspondence, 71 
Ordered pair, 50 
Order-isomorphism, 126 
Ordinal number, 127 
Ordinal product, 134 
Ordinal sum, 131 

Partial order, 111 
Partition, 57 
Peano axioms for natural numbers, 139 
Permutation, 74 
Power set, 31 
Preimage, 61 
Premise, 20 
Principle of transfinite induction, 122 
Projection, 70 
Propositional predicate, 18 

4 

Quantifier, 18 
Quantifier negation, rule of (Q. N.), 19 

% 

Range, 61 
Reductio ad absurdum (R. A.), 13, 22 

Relation, 54 
antisymmetric, 111 
congruence, 56 
diagonal, 55 
equivalence, 55 
identity, 56 
inverse, 54 
reflexive, 55 
symmetric, 55 
transitive, 55 

Rules of inference, 16 

Schroder-Bernstein theorem, 94 
Segment, 121 
Set, 28 

countable, 85 
denumerable, 85 
finite, 28, 80 
infinite, 28, 80 
linearly ordered, 111 
nondenumerable, 89 
partially ordered, 111 
totally ordered, 111 
well-ordered, 118 

Set builder notation, 31 
Simplification, laws of (Simp.), 10 
Singleton set, 80 
Specification, axiom of, 31 
Statement, 1 

simple, 2 
compound, 2 

Subset, 29 
proper, 29 

Superset, 29 
Surjection, 71 

Tautology, 9 
Total order, 111 
Transitive law (Trans.), 12 
Truth table, 2 

simplified, 10 

Union, 33, 43, 65 
Unity, 34 
Universal quantifier, 18 
Universal set, restricted, 36 
Universe, 18 
Upper bound, 113 

Valid argument, 20 
Venn diagram, 39 

Well-Ordering Principle, 119 
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