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PREFACE 

Aus dem Paradies, das Cantor uns geschaffen, 

soil uns niemand vertreiben konnen. 

(No one can chase us out of the paradise that Cantor has 

created for us.) 

David Hilbert 

This textbook was prepared on the basis of courses and lectures by Andras 

Hajnal for mathematics majors at Roland Eotvos University in Budapest, 

Hungary. The first edition appeared in 1983; since then the book went 

through a number of new printings and editions. During each of these, new 

problems were added and the historical remarks were updated. A number 

of revisions have also been made in the present, the first English, edition. 

A significant one among these is that hints were added for the problems in 

Part II, and a completely new section (Section 20) discusses the so-called 

square-bracket symbol. 
The book consists of two parts and an Appendix to Part I. The first part 

contains a detailed non-axiomatic introduction to set theory. This introduc¬ 

tion is carried out on a quite precise, but intuitive level, initially presenting 

many of Cantor’s original ideas, including those on defining cardinals and 

order types as abstract objects. Only later, in Sections 8-11, do we discuss 

von Neumann’s definition of ordinals and prove results important even for 

mathematicians working in various areas other than set theory. This part is 

well suited for a one-semester undergraduate course, and it is generally used 

in Hungarian universities. As is customary in mathematics textbooks at 

Hungarian universities, each assertion announced in the text is accompanied 

by a complete and detailed proof. 
The Appendix attached to Part I gives details as to how the develop¬ 

ment of set theory described in Part I can be transformed into a rigorous 

development of axiomatic set theory. Particular attention is paid to the clar¬ 

ification of conceptual difficulties encountered in the axiomatic development. 

The precise notion of independence proofs in set theory is discussed. This 

is all the more necessary, since, in order to appreciate the significance and 

the connections among the results presented in Part II, the discussion of a 

number of independence results was indispensable. This Appendix can serve 

as auxiliary material for an undergraduate course in mathematical logic. 



Preface viii 

The second part of the book can be used as material for a one- or two- 

semester early graduate course. It gives a detailed survey of the combinatorial 

foundations of modern set theory and of those classical results of set theory 

that are needed for most students of the field. 

The nature of the book makes it impossible to include proofs of indepen¬ 

dence results requiring a familiarity with mathematical logic, but we include 

references to the most important ones among these results, since without an 

acquaintance of these it is impossible to find one’s way in the subject. 

A proportion of the problems attached to the sections in Part I are of 

the nature of simple exercises; the solution of these are completely left to 

the reader. For the more difficult problems marked with an asterisk * we 

include short hints at the end of Part I. These problems often build on earlier 

problems, and it is advisable to study them in the order given. 

Certain problems in Part II are much more difficult. These are used to 

expand on the material presented. Most of these discuss results published in 

the literature, and, in addition to hints for their solutions, we also include 

references to the literature. Although we consider presentation of the ma¬ 

terial in the book self-contained, in certain problems marked by the symbol 

+ we use concepts, such as, for example, that of the Riemann integral, not 
defined in the book. 

We would like to thank the ASL Committee on Translations, and par¬ 

ticularly to Steffen Lempp, for recommending an English translation of the 

book; Attila Mate, who, in addition to translating the book from Hungarian, 

also typeset it in and acted as one of its scientific referees; and 

Dr. William Weiss, Justin Moore, and Vojkan Vuksanovic, of the University 
of Toronto, for carefully reading the manuscript. 

Piscataway, New Jersey, December 1998 

Andras Hajnal 

Peter Hamburger 



PART I 

INTRODUCTION TO SET THEORY 





INTRODUCTION 

In creating set theory, Cantor primarily studied sets occurring in mathemat¬ 

ics, such as sets of the integers and the real numbers and their subsets. The 

reader with a certain grasp of mathematics has an intuitive picture of these. 

If we want to study sets in general, we have to clarify, when we consider 

a set as given, what kind of sets exist. In the initial, “romantic” period of 

set theory, this problem did not arise. Every “conceivable” set was thought 

to exist, every collection for which it was possible to say in some way what 

its elements were was considered a set. It soon tinned out, however, that 

this viewpoint is untenable, since, as we will see, the set of all elements can¬ 

not possibly exist. This turn of events eventually led to the development 

of axiomatic set theory. The usual axiomatic approach postulates only the 

existence of a single set, and other sets can be obtained from this set with the 

aid of the so-called conditional set existence axioms. In order to develop set 

theory along these lines, a number of theorems are needed which would be 

of no interest to the reader getting acquainted with the subject for the first 

time if no examples for their applications could be provided. This was one of 

the considerations that led us to present a half-intuitive, and half-axiomatic 

development of the subject. 
In what follows, we consider a few sets commonly used in mathematics, 

such as the set of integers, of the rationals, and of the reals. Beyond these, 

we only consider sets whose existence can be derived from the conventions 

enumerated below. These conventions in effect amount to the usual Zermelo- 

Fraenkel axiom system of set theory. This axiom system will be formulated 

in full precision only in the Appendix following Part I. There we will sketch 

how the axiomatic development of set theory can be carried out on the basis 

of these axioms, how the nonnegative integers, the rational and real numbers 

can be defined in this development, and how proofs of such elementary results 

about them can be obtained as are usually proved by referring to some “well- 

known” property of, say, the integers. 



■ 



1. NOTATION, CONVENTIONS 

In what follows, we are going to use the following shorthand: V stands for 

the words “for all,” 3, for “there exists,” for “not,” A, for “and,” V, for 

“or,” =>, for “implies,” <=>, for “if and only if.” 

The symbol = will also be used to connect logic expressions: F = G will 

mean that F and G “say the same thing.” Thus, for example, F = G = Ft is 

used to express that F, G, and H “say the same thing,” while the expression 

F <—> G •<=> H is never used (since parentheses are required to know 

how to read the latter). 

We will also use restricted quantifiers: 

(Vx : 0(x)) tp(x) will mean Vx (<p(x) =>• ip(x)) 

and 
(3x : 4>(x)) ip(x) will mean 3x (</>(x) A ip(x)). 

Depending on the form of (f>(x) here, restricted quantifiers can often be writ¬ 

ten in an abbreviated form. For example, (Vx : x < y) ip(x) can be abbrevi¬ 

ated to Vx < yip{x). 
1. The concept of a set and that of “being an element of” will not be 

defined, these notions will be considered fundamental. In general, sets will 

be denoted by Roman capitals A, B, ..., and elements will be denoted by 

lower case letters x, y, .... If A is a set, then for every conceivable thing or 

object x it is true either that x belongs to A or that x does not belong to A. 

In the former case, we say that x is an element of A, and in the latter, that 

x is not an element of A. These possibilities will be denoted by x 6 A and 

x ^ A, respectively. 
We will therefore imagine that a set can consist of arbitrary objects, or 

elements in other words, that is, of dogs, numbers, functions, and, primarily, 

of sets. It is expedient to agree that the statement x € y is meaningful for 

any two objects, and x € y is false if y is not a set. London is a city and it 

is not a set, therefore nothing is an element of it, and so [0,1] ^ London. 

2. The set of the nonnegative integers, of the rational numbers, and of the 

real numbers, will be denoted by u, Q, and R, respectively. 

3. If A and B are two sets that have the same objects as elements, then 

A and B are equal, that is, if for all x, x e A <=$> x 6 B then A = B. 
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4. We assume that there is a set that has no elements. According to 

Convention 3, there is only one such set. This set will be called the empty 

set and will be denoted by 0. 

5. If xo, ..., xn_i are elements, then {xo,... , xn_i} denotes the set with 

exactly these elements. For example, {x} is the set whose only element is x, 

and {x, y} is the set whole elements are x and y. Here xo, ..., xn do not all 

need to be distinct; e.g., {x,x} = {x} 

We agree often to denote a set by listing its elements in braces. If it is 

impossible to list these elements but there is a fairly clear way to indicate 

what these elements are, we will also use this way of denoting sets. For 

example, the set of nonnegative integers can be written as (0,1,..., n,...}. 

Definition 1.1. Let A and B be sets. We call the set A a subset of B if 

for all x G A we also have x G B; in symbols, we will then write A C B. 

If A C B and 3x G B such that x ^ A, then we will call A a proper subset 
of B-, in symbols, we will write A C B. 

It is easy to see in view of Convention 3 the following. 

Theorem 1.1. If A C B and B c A then A = B. 

* * 

* 

For the reader with a certain familiarity with mathematics, it is clear that 
the following convention is indispensable. 

6. If A is a set and $(x) is a property that is either true or false for each 

object x, then those elements of A for which <&(x) is true form a set; this 

set will be denoted by {x G A : <&(x)}. The set of even numbers can, for 

example, be described as {x G u> : x is divisible by 2}. If / is a real-valued 

function and $(x) is the property that / is defined at the place x and it is 

continuous there, then {x G R : $(x)} is the set of all points of continuity 
off. 

In this convention, we used the concept of a property but we have not de¬ 

fined it. In the axiomatic development, this concept can be precisely circum¬ 

scribed with tools from mathematical logic. In our not completely axiomatic 

development, this concept may mean an arbitrary meaningful property, in 

the way that it is usually understood in other, not rigorously axiomatized 
branches in mathematics. 

Using the conventions set down so far, we are able to prove that the set of 

all object or the set of all sets does not exist. This clearly contradicts earlier 

views that every set that can be “imagined” exists. This contradiction was 

first pointed out by the British philosopher Bertrand Russell, and for this 

reason it is called Russell’s antinomy (or Russell’s paradox). 

Theorem 1.2. There is no set A that has every set as its element. 

Proof. Assume that, on the contrary, there is a set A such that every 

set is an element of it. Define the property <f>(x) as follows: x is a set and 
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x x. This is undoubtedly a “mathematical” property. Then, according 

to Convention 6, there is a set B = {x e A : <$(£)}. B consists of all sets 

that are not elements of themselves. If we had B 6 B, then B would satisfy 

property d>, and so we would have B B, which is impossible. If we had 

B B, then $(B) would be true, and, according to the assumption about A, 

we would have B E A. Hence B £ B would hold by virtue of the definition 

of B. This is again impossible. Thus, the assumption made above leads to a 

contradiction, proving the validity of the theorem. 

* * 

* 

Theorem 1.2 shows that in general we cannot talk about the set of all 

sets satisfying a property Q(x). In spite of this, we will use the notation 

{x : 3>(z)} ^ ^ is possible to verify that, for the given <$, there is a set A 
such that each object x with property <&(:r) is an element of A\ indeed, in 

this case 

{x : <&(:r)} = {x € A : <&(x)}. 

If in what follows such a “dominating” set A is not explicitly given, it is 

because the existence of such a set is easy to establish, and it is left to the 

reader to do this. 
The next two conventions will ensure the existence of further sets given a 

set A for which it would not be possible to find a “dominating” set on the 

basis of the conventions set down so far. 
7. If A is a set, then all its subsets constitute a set; we denote it by P(A) 

and call it the power set of A. For example, if A = {0,1,2), then 

P(A) = {0, {0}, {1}, {2}, {0,1}, {0,2), {1,2}, {0,1, 2}}. 

Clearly, P(A) = {x : x C A}. The elements of P(A) are themselves sets. 

Those sets whose elements are also sets are often called set systems. We will 

not make this distinction systematically, since most sets that we will consider 

will have sets as their elements. 
8. If A is a set then the union of those elements of A that are themselves 

sets will be denoted by IJ A, and will simply be called the union of A. That 

is 
A = {x : 3y(x E y A y E ^4)}. 

For example, if A = {Mississipi, {0}, {1}}, then 

LP = {o>i}- 

9. The concept of function can be reduced to that of set. To this end, we 

need first to define the notion of ordered pair. 
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Definition 1.2. If x and y axe two objects, then the set {{x}, {x, y}} 

will be called the ordered pair formed by x and y, and it will be denoted by 

(x,y)- 

That (x, y) indeed corresponds to the intuitive notion of ordered pair is 
shown by the following theorem. 

Theorem 1.3. For arbitrary elements x, y, x', y', the relation (x,y) — 
(x1, y') holds if and only if x = x' and y = y'. 

Proof. The condition is clearly sufficient. To show that it is also necessary, 
assume that 

{{a;},{x,2/}} = {{x'},{x',y'}}. 

The set {a;} must be equal to an element of the set on the right-hand 

side. From this, it follows that {x} = {x'}, x = x', and {{x},{x,2/}} = 

{{*}» {x,y'}}. Hence we have {x,y} = {x,y'}, and so y = y' also follows. 

* * 

* 

10. Next we will define the notion of function. 

Definition 1.3. A set consisting of ordered pairs is called a function if 

for every x there is at most one y such that (x, y) £ f. The set of those 

elements x for which 3y((x, y) £ /) is called the domain of the function f 
and is denoted by D(/). 

If x 6 D(/), then the unique y for which (x,y) £ / is called the value of 
the function f assumed at the place x, and it is denoted by /(x). 

That is, a function f assigns a uniquely determined value f(x) to each 
element x of its domain D (/). 

The set {/(x) : x £ D(/)} of values of the function f is called its range, 
and is denoted by R(/). 

It follows from our conventions that the functions / and g are equal if and 
only if D(/) = D(<7) and for all x £ D(/) we have /(x) = g(x). 

The function / is called one-to-one if for x/y with x, y £ D (/) we have 

/(*) ^ /(*/)• 
A function is also called a mapping. We say that a function / maps the 

set A into the set B if D(/) - A, R(/) c B. This state of affairs will 

sometimes be indicated symbolically as / : A B. This expression is to be 
distinguished from / : x I-* y, the latter signifies that /(x) = y. 

The function f is said to map the set A onto the set B if D( f) = A and 
R (f) = B. 

If / is a one-to-one function, then its inverse function is the function g for 
which D(0) = R(/) and for all y £ R(f) we have f(g(y)) = y. 

If / and g are functions for which R(/) c D(g), then g o / is their 

composition, i.e., the function for which D(p o /) = D(/) and (g o f)(x) = 
g(f(x)) for all x £ D(/). 
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We will also use the following notation: If f is a function and A C D(/) is 
a set, the set 

{y ■ y e R(/) a 3x g A(f(x) = j/)} = {/(x): x e A} 

will be denoted by /“A This set is usually denoted by f(A). This can, 

however, lead to a misunderstanding, since A can also be an element of D(/). 

For this reason we need this notation, which is not used in other branches 

of mathematics. If there is no danger of misunderstanding, then, to simplify 

the task of the reader, we will also use the usual notation. 

Given a function / and a set A, we will write 

r\A) = {z € D(/) : 3y £ A(f(x) = y)}. 

We will use this notation even if the function /_1 is not defined. 

11. There are one-to-one assignments that cannot be considered functions 

in the light of the above conventions. For example, for each object x, we can 

assign {x}. This assignment is not a function, since its domain is not a set. 

If this assignment were a function, then every set would be an element of its 

domain, which is impossible in view of Theorem 1.2. In the development of 

set theory, such assignments also occur. For this reason we will give a name 

to such assignments. If to each object x we assign another object F(x) with 

the aid of a meaningful mathematical expression F, then this assignment F 

will be called an operation. 

The notion of operation described has not been defined, just as the notion 

of property was not defined above (in Convention 6); the same comments 

that apply to the use of the notion of property also apply to the use of the 

notion of operation. We remark that the notion of operation can be reduced 

to that of property. An operation F(x) can be defined with the aid of a 

two-variable property d>(x, y) such that for each x there is exactly one y for 

which this property holds, and this unique value y can be called F(x). 

We stipulate that if F is an operation and A is a set, then the values 

F(x) assigned to elements x of the set A also constitute a set; this set will 

be denoted by {F(x) : x £ A}. 

For example, if A = (0,1, 2}, then {{x} : x £ A} — {{0}, {!}, {2}}. 

It often happens that an operation is meaningfully defined only for ele¬ 

ments having a certain property. For example, in Convention 10 we defined 

the operations D and R, which assigned to a function / its domain D(/) 

and its range R(/), respectively. We may stipulate that the value of such an 

operation will be 0 for each set for which its value has not been defined. 

12. We will use the notation {A1 : 7 £ T} (instead of the more precise 

notation (Ay : 7 £ T)) in the sense that this is a function A for which 

D(A) = T and ^(7) = A7 for 7 £ F. We will use the customary notation 
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U7er^7 and fl7er^7 f°r the union and intersection, respectively, of sets; 

these are defined as 

U A7 = {x : 37 G T (x G A7)}, 

7er 

P| A7 = {x : V7 G T (x G A7)}. 

7er 

If A and B are two sets then A\ B will denote the set {x G A : x B}, the 

difference of the sets A and B. 

We will not enumerate the simple properties of the set operations; these 

properties can be found in a number of books, and we will assume that 

they are well known. We will also use the notation f]A = Hog a a f°r an 
arbitrary collection A of sets. As usual, we adopt the convention that in case 

A — 0 the expression Q A is defined only in case we work with the subsets 

of an underlying set X. In this case we put ff\A = X. We will also write 

A U B = (J{A, B} and A fi B = P|{A, B}. The sets A and B are called 
disjoint if A fl B = 0. 

At the end of this section, we would like to point out that in the spirit of 

Convention 6, from Convention 10 on we have defined sets without seeking 

a dominating set in definitions of the form {x : <&(:r)}. The conscientious 

reader can fill in these gaps by solving the problems listed below. 

Problems 

Verify the following assertions. 

1. If A is a set and x,y € A, then {x}, {x, y} 6 P(A), (x, y) G P(P(A)). 

2. If A is a set, then the set B of all ordered pairs formed from elements 
of A exists. 

3. If A is a set and {x, y} e A, then x, y G (J A. 

4. If A is a set and (x,y) G A, then x,y G (JIM- 

5. If / is a function, then D(/),R(/) C(JU/- 

6. If / is a function that maps the set A into the set B, then / C 

P(P(URB})). 
7. If / is a one-to-one function then /-1 C P (P (U{D(/), R(/)})). 

8. If / is the function described in Convention 12, then 

U^ = UR<A)- 
7er 



2. DEFINITION OF EQUIVALENCE. THE CONCEPT 

OF CARDINALITY. THE AXIOM OF CHOICE 

In Section 1, we enumerated all the conventions that we are going to use, with 

one exception. The omitted convention is the Axiom of Choice, which will 

be formulated in this section. Already, on the basis of our conventions so far, 

however, we are able to describe Cantor’s key idea that led to the development 

of set theory. We are going to define a property called equivalence between 

sets. This property will express the statement that two sets have the “same 

number” of elements. This is the first step towards defining the concept of 

one set having “more” elements than another. 

Definition 2.1. The state of affairs that the function f maps the set A 

onto the set B in a one-to-one way will be denoted as A B, and will be 

expressed as: A is equivalent to B according to the function /. The sets A 

and B will be called equivalent if there is a function f for which A~f B. In 

symbols: A ~ B. If A is not equivalent to B, then we will write A oo B. 

Sets equivalent to each other will be regarded as having the “same size.” 

This is justified in view of the following. 

Theorem 2.1. The property ~ is an equivalence property, that is, it 

satisfies the following three conditions: 

If A, B, C are arbitrary sets then 

1. A ~ A, that is, ~ is reflexive; 

2. if A ~ B then B ~ A, that is, ~ is symmetric; 

3. if A ~ B and B ~ C then A ~ C, that is, ~ is transitive. 

Proof. 1. Let Id a be the identity function on the set A, that is, the func¬ 

tion for which D(kU) = A and Id>i(a:) = x for all x. Then A ~id^ A. 

2. Assume that A ~ B, and let / be a function for which A B. Then 

f~l is a function with which B ~^-i A holds, and so B ~ A also holds. 

3. Assume that A ~ B and B ~ C. Let /, g be functions for which we 

have A B and B C. Then A ~gof C holds, and so A ~ C is satisfied. 

* * 

* 

We now know when two sets are said to have the “same size.” In what 

follows, our goal is to see that there is an operation which assigns the same 
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object to sets of the “same size,” and assigns different things to sets not of 

the “same size.” We will also introduce a name for such operations. 

Definition 2.2. We say that the operation F is compatible with the 

property ~ if for any two sets A, B we have 

F(A) = F{B) y=> A ~B. 

Before pursuing the goal we will make a small detour. The example below 

will show that it is possible to have two equivalent sets such that one is a 

proper subset of the other. That is, an (infinite) set may be equivalent to 

one of its proper subsets. 

Example. Let A = u> \ {0} = {1,2,...} and let f be the function for 

which D(/) = uj and f(n) = n + 1 for n E u. Then u> A. 

For the proof of the next theorem, acquaintance with the method of math¬ 

ematical induction is necessary. This method of proof is used in several 

branches of mathematics. In Section 9 we will show that proofs by mathe¬ 

matical induction are justified. Up to that point we will use this method of 

proof without any reservations. We would like to point out here that some 

proofs below will also use the well-known fact that it is possible to define 

functions on u by recursion. The justification of this fact will also be es¬ 

tablished in Section 9. We now return to our set goal. First we want to 

show that for finite sets, to be defined next, there is an operation that is 

compatible with the property ~. 

Definition 2.3. For an arbitrary n E uj denote by n the set 

{0,1,...,n - 1} (for n = 0 put 0 = 0}. The set A is called a finite set 

if there is an n E u such that A ~ n. The set A is called infinite if it is not 
finite. 

Theorem 2.2. If n and m are distinct elements of uj then moon. 

The assertion is easily proved by (mathematical) induction on the maxi¬ 

mum of m and n. The details will be left to the reader. 

* * 

* 

It follows from Theorem 2.2 that a finite set cannot be equivalent to any 

of its proper subsets. In view of Theorem 2.2, we can define the number of 

elements of A for a finite set A as the integer n E uj such that A ~ n. The 

operation so defined for finite sets is compatible with the property ~ on finite 

sets. We would like to extend this operation to infinite sets. 

If there were a set A consisting of all sets, then this could be accomplished 

easily. It is well known from algebra that the equivalence relation splits 

A up into pairwise disjoint equivalence classes, and so we would be able to 
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assign to each set the equivalence class containing it. However, this approach 
is not feasible in view of Theorem 1.2. 

For the formulation of the forthcoming statements we will need the Ax¬ 
iom of Choice. This is the axiom which elicited the most controversy among 
mathematicians in the course of the development of set theory. In most 
branches of mathematics, the Axiom of Choice and its consequences are ac¬ 
cepted and used. It is not always pointed out explicitly when it is made use 
of. As we mentioned, set theory can be partially developed without the Ax¬ 
iom of Choice, but such a development encounters a number of unnecessary 
difficulties. So we do not take this approach, and we will accept and use the 
Axiom of Choice. In the introductory sections (up to Section 10) we will 
nevertheless point out explicitly on each occasion when this axiom is used. 

Definition 2.4. The function will be called a choice function for the set 
system {A7 : 7 E T} if D (/) = T and for each element 7 of T we have 

f(l) € At 

Clearly, in order that such a choice function should exist, it is necessary 
that the sets A7 be nonempty. The Axiom of Choice states that this assump¬ 
tion is also sufficient. 

Axiom of Choice. For every system {A7 : 7 e T} of nonempty sets 
there is a choice function. 

We would like to point out that, for a finite index set T, the Axiom of 
Choice can easily be proved from our earlier conventions. For an infinite 
index set F, this axiom is not provable from the other usual axioms of set 
theory. 

Theorem 2.3. There is an operation that is compatible with the prop¬ 

erty 

A proof of this theorem, due to John von Neumann, uses the Axiom of 
Choice and is based on the theory of wellordered sets. This proof will be 
given later (see Theorem 10.1 below). Without using the Axiom of Choice 
the existence of such an operation cannot be proved on the basis of our 
conventions so far; if we had not assumed the Axiom of Choice, then the 
notion of cardinality to be defined below would have to be taken as a new 
primitive notion, and its compatibility with the equivalence property would 

have to be taken as an axiom. 

Definition 2.5. In what follows, a certain operation whose existence is 
claimed in Theorem 2.3 will be called the cardinality of A and will be denoted 

as |A|. 

According to Theorem 2.2, we may assume that if A is a finite set, then 
\A\ = n for the n € u for which n~ A. (Indeed, if F\ is an operation that is 
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compatible with ~, then we can easily define an operation F2 that does not 

assume any values in to. For example, the operation 

Ft(A) = (Fl(A),u,) 

is like this. If we then define F as 

F(A) = F2(A) if A is not finite 

and 

F (A) — n if ^4 is finite and A ~ n, 

then the operation so defined is compatible with the property ~ in view of 

Theorem 2.2, and we have \A\ (E to if A is finite.) The values of the operation 

|-A | are called cardinals. The nonnegative integers are called finite cardinals, 

and the cardinalities of infinite sets are called infinite cardinals. 

Infinite cardinals can be considered as generalizations of natural numbers. 

In the next four sections, we will show that there is an abundance of infinite 

cardinals, and, further, that the addition, multiplication, exponentiation, and 

the ordering according to size of the nonnegative integers can be extended to 

cardinals in such a way that a number of properties of these operations and 
of the ordering according to size are preserved. 



3. COUNTABLE CARDINAL, CONTINUUM CARDINAL 

According to Theorem 2.2 and the Example preceding it, the set u of non¬ 

negative integers is an infinite set that is not equivalent to n for any n 6 ui. 

Definition 3.1. The sets that are equivalent to u> are called countably 

infinite sets. 

The cardinality of u is denoted by N0- This notation was introduced by 

G. Cantor. (N, called aleph, is the first letter of the Hebrew alphabet.) 

The set A is called a countable set if it is either finite or countably infinite. 

In this section, we will prove the well-known elementary theorems about 

countable sets. First we give those proofs that do not need the Axiom of 

Choice. 

Theorem 3.1. fto is an infinite cardinal. 

Proof, a; is an infinite set. 

* * 

* 

Theorem 3.2. Every subset of a countable set is countable. 

Proof. In view of the transitivity of the property ~, it is sufficient to prove 

that every subset of u; is countable. Let A C u>. If A is finite, then there is 

nothing to prove; so we may assume that A is infinite. Define a function / 

on A with the stipulation that 

f(n) = \A n n\ 

for each n € A. That is, f[n) is the number of elements of A less than n. 

Since every subset of a finite set is finite, we have 

f(n) for n € A. 

If m < n and m, n £ A then 

A fl m C A n n, 

and so /(m) < /(n); that is, / is one-to-one. We will show that / maps A 

onto u. To this end, it is sufficient to show that for every k e u> we have 
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k G R(/). If n is the smallest element of A, then /(n) = 0, and so 0 G R(/). 

Assume that k G R(/). Then f(m) — k for some m G A. As A is infinite, it 

has an element that is greater than m. Let m' be the smallest among these. 

Then f(m') = k + 1, and so k + 1 G R(f)- 

* * 

* 

Corollary 3.1. The set A is countable if and only if either A = 0 or there 

is a function f that maps u> onto A. The latter statement expresses the fact 

that A can be written as a sequence A = {an :nGw}. 

Proof. The “only if” part of the statement is obvious. Assume that / 

maps u onto A. Define the function g on the set A such that 

g{n) = minffc : f(k) — n} for n G A. 

Then g maps the set A onto a subset of u> in a one-to-one way. Hence A is 
countable, according to the preceding theorem. 

* * 

* 

In what follows, we will prove that several sets that appear “larger” than 
u are in fact countable. 

Theorem 3.3. Let B = {(n,m) : n,m G u>}, that is, the set of ordered 

pairs formed by nonnegative integers. Then B is a countably infinite set. 

We will give two proofs. 

First Proof. Define the function / as follows: If (n,m) G B, then put 

/((n,m)) = 2" • 3n. 

According to the theorem on Unique Prime Factorization, / is one-to-one, 

and it maps B into u. Hence B is countable, according to Theorem 3.2. 

We remark that the theorem on Unique Prime Factorization can easily be 

proved by induction, and so the reader should consider the first proof just as 
acceptable as the next one. 
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Second Proof. The following arrangement shows the elements of B: 

(0,0), (0,1), (0,2),.. . .,(0,n),... 

v/ >/ v/ 

(1,0), (1,1), (1.2),.. .., (l,n), ... 

>/ >/ 

v/ 

(n, 0), (n, 1), (n, 2),. .., (n,n),... 

The set B can be arranged into a sequence as follows: ao = (0,0) is the 

first element of the sequence, ai = (0,1) and a-z = (1,0) are the next two 

elements of the sequence. If the first ("j1) elements of the sequence an are 

given, then in the next n + 1 steps we enumerate the elements of the (n + l)st 

secondary diagonal in the diagram, proceeding in the direction of the arrow. 

In this diagonal, we find those pairs (k, l) for which k + l = n + 1, and their 

order in the enumeration is determined by stipulating that those with smaller 

first elements come earlier. 

It may be worth pointing out that there is a simple explicit formula for 

the mapping defined above. Denoting this function by /, we have 

/((m, n)) = ^(m + n)(m + n + 1) + m. 
Li 

It is easy to show directly that this function maps the set of all ordered pairs 

of nonnegative integers onto the set of all nonnegative integers in a one-to-one 

way. The function / is sometimes called the Cantor pairing function. 

* * 

* 

In the proof of the next theorem, we need to use the Axiom of Choice. 

Theorem 3.4. The union of countably many countable sets is also count¬ 

able. That is, if {An : n € u} is a sequence of sets such that An is countable 

for each n £ u, then An is also a countable set. 

Proof. We may assume that An ^ 0 for n G u>, since by adding elements 

to the sets An their union can only increase. For an arbitrary n 6 u let 

Bn = {/ : / is a function A D(/) = wA R(f) = An}. 

According to our assumption, the set system {Bn : n € u} consists of 

nonempty sets. Therefore, by the Axiom of Choice, there is a choice function 
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/ for it. Denote by /„ the value of the function / assumed at n. Then we 

have 

An = {/»(&) : k € u} 

for each n € u. Let g be a function with domain the set of ordered pairs 

formed by elements of u>, and write 

g((n,k)) = fn(k) for n,keu. 

Then 

R(») = U A- 

Thus Un€o- An is countable according to Theorems 3.2 and 3.3. 

* * 

* 

We mentioned above that for an arbitrary finite system of nonempty sets, 

we can find a choice function without assuming the Axiom of Choice. In 

virtue of this remark, the proof of Theorem 3.4 shows the following: the fact 

that the union of finitely many countable sets is countable can be proved 
without the Axiom of Choice. 

Theorem 3.5. The set of rational numbers is countable. 

Proof. Let Q+ and Q- be the set of the positive and of the negative 
rational numbers, respectively. Then 

Q = Q+ U {0} U Q~. 

Each r e Q+ can be uniquely written in the form | of an irreducible fraction, 

where p,q e u. Hence Q+ is countable according to Theorems 3.2 and 3.3. 

Similarly, Q~ is also countable, and so Q is countable in view of Theorem 
3.4. 

* * 

* 

Theorem 3.6. If A is an infinite set, then it has a subset of cardinality 

No- 

Proof. Let / be a function that to each set X e P(A) with X / 0 assigns 

one of its elements f(X). Such a function / exists according to the Axiom 
of Choice. 

We are going to define a function g on u> by specifying the values g(n) € 

R(g) for each n e u via recursion. Let g(0) = f(A). This is well defined, 

since A is not empty; indeed, it is not even finite. Assume that n > 0, and 
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that g(i) has already been defined for each i < n. The set {$(0),... ,g(n-l)} 
is a finite set, and so 

A\{g(0),...,g(n- 1)} 

is not empty, since otherwise A would be finite. Let 

g(n) = f(A \ {9(0), ...,g(n- 1)}). 

Thus g(n) has been defined for all n 6 u. If i < n then g(n) ^ g(i), since 

g(n) i {g(0),...,g(n- 1)}. 

Therefore, g is a one-to-one function. Put A! — R(g). According to the 

definition of g, we have A' C A and, further, u ~g Aconsequently 

\A'\ = N0. 

* * 

* 

So far, we have discussed only results pertaining to finite and countably 

infinite sets. The next theorem is the first one that establishes the existence 

of an uncountable, i.e., non-countable, set. In the course of proving this 

theorem, Cantor discovered one of the most fundamental ideas of set theory, 

the “method of diagonalization.” 

Theorem 3.7. R is not countable. 

Proof. It is sufficient to prove that for an arbitrary nonempty countable 

set A e R there is a real number y e R \ A. As A is countable, it can be 

written in the form 
A = {on : n €E u>}. 

The real number an has a unique representation as a decimal fraction that 

does not consist purely of the digit nine from a certain point on. Denote by 

an>fc the fcth digit of an after the decimal point in this representation. Define 

the sequence yn by stipulating that 

_ f 0 if an n / 0, 

Vn l 1 if a„,„ = 0. 

Then 0.j/o ... yn ... is the decimal fraction representation of a real number y 

that does not consist of the digit nine from a certain point on. Furthermore, 

for an arbitrary n £ u, the nth digits of the numbers y and a„ after the 

decimal point are different; thus we have y / an in view of the uniqueness of 

the decimal fraction representation. Thus y A. 

* * 

* 

The cardinality of R is denoted by c and is called the cardinal continuum. 
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Theorem 3.8. If (a, b) cl is an arbitrary nonempty open interval, then 

l(M) I =c- 

Proof. If / is an arbitrary strictly increasing continuous function on (a, b), 

then, by the well-known theorem in elementary analysis, / maps (a, b) in a 

one-to-one way onto the open interval (a, (5) with 

a— lim fix), 3= lim fix). 
x-+a+(T V ^ x—ib—0 J K ’ 

Hence 

(«,>’) ~f (-f.f), 
where / is an appropriate linear function; in fact, 

j. / \ 7T JT 6 + fl 
f(x) = r-x-- • --. 

o — a 2 b — a 

Furthermore, (— |, f) ~tan R, where tan denotes the tangent function. 

* * 

* 

According to the theorems proven so far, the cardinals n e u, K0, and 

c are all distinct. It would be interesting to calculate the cardinalities of 

various simple sets at this point. We will do this later, in Section 6, when 

we are in possession of some general results. As we have seen, there are at 

least two distinct infinite cardinalities. We are now going to carry out our 

program of extending the arithmetic operations and the ordering according 
to size to cardinals. 



4. COMPARISON OF CARDINALS 

We start the extension of ordering according to size from numbers to cardinals 

by stipulating when a cardinal is less than or equal to another one. 

Definition 4.1. Let a and b be arbitrary cardinals. We say that the 

cardinal a is less than or equal to the cardinal b if there are sets A and B 

such that |A| = a, \B\ — b, and there is a one-to-one mapping of A onto a 

subset of B. This state of affairs will be denoted as a < b. 

In order to show the soundness of this definition we have to show that the 

property < does not depend on the choice of the sets A and B. 

Theorem 4.1. Let a and b be arbitrary cardinals and let A, A!, B, B' 

be sets for which \A\ = |A'| = a, \B\ = \B'\ = b. If there is a one-to-one 

function f for which D(f) = A and R(/) C B, then there is a one-to-one 

function g such that D (g) = A! and R(g) C B'. 

Proof. As |A| = |A'| and \B\ = \B'\, there are mappings h, k such that 

A! A and B B'. 
Let g = k o (f o h). Then D(#) = A1, R(g) C B'. The function g is 

one-to-one, since the functions /, h, k are one-to-one. 

* * 

* 

It is easy to verify the following. 

Corollary 4.1. For arbitrary cardinals a, b we have a < b if and only if 

there are sets A C B for which |A| = a and \B\ = b. 

* * 

* 

On the basis of this remark, we already know that m < n i{m,n e u and 

m is not greater than n in the ordering of integers; further, n < No if n £ u; 

finally, N0 < c. Indeed, these assertions follow from the relations m C n, 

nCu>,uCM, respectively. 
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Theorem 4.2. The property < defined for cardinals is reflexive and tran¬ 

sitive. 

Proof. The proof of reflexivity is obvious, since we have A C A for an 

arbitrary set A. For the proof of transitivity, assume that the cardinals a, b, 

c are such that 

a < b and b < c. 

Choose sets A, B, C and one-to-one functions /, g such that 

|A| = a, \B\ = b, \C\ = c, 

D (f) = A, R(/)C5, D (g) = B, and R (g)cC. 

Then the function h = g o f maps the set A into C in a one-to-one way. 

* * 

* 

We recall a lemma from algebra. This lemma is needed since it gives a 

condition to convert a property “of type <” into a property “of type <.” 

Lemma 4.1. Let < be a reflexive, transitive, and anti-symmetric prop¬ 

erty. The last attribute means that x < y and y < x imply x = y. Define 

the property x < y as saying that x < y and i / y. Then the property < is 

irreflexive and transitive. 

Proof. We have -i(x < x), since x = x. 

For the proof of transitivity, assume that we have x < y and y < z for the 
elements x, y, z. Then 

x < y and y < z. 

From this, we can conclude that x < z by the transitivity of the property <. 

If we had z — x, then we would also have 

V < x 

in view of y < z. Taking this together with x < y, we would obtain x = y in 

view of anti-symmetry; this would contradict the assumption x < y. Thus 
x f- z, and so x < z. 

* * 

* 

In view of this lemma, we will need the following theorem. 

Bernstein’s Equivalence Theorem 4.3. The property < defined for 
cardinals is anti-symmetric. 

For this, according to the definition of the property <, we need to prove 
the following assertion about sets: 
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If A, B are sets and f, g are one-to-one functions such that 

D(f) = A, R(/)CB, DOj) = B, and R(g) C A, 

then 

A~B 

that is, there is a function h such that A ~/l B. 

Before we formulate a somewhat more general theorem that will give this 

assertion as a consequence, we will introduce some notation concerning func¬ 

tions. 

Definition 4.2. If f is a function and A is a set, then the restriction of / 

to A, denoted as f\A, is the function whose domain is D(f)PiA, and which has 

the property that for every element x of D(/) n A we have (f\A)(x) = f(x). 

A similar notation will be used even if F is an operation; we point out that 

F\A is a function even in this case, according to Convention 11 in Section 1. 

Instead of Theorem 4.3 we will prove the following theorem. 

Theorem 4.4. Assume that A, B, f, g satisfy the conditions in the 

assertion given after Theorem 4.3. Then there are sets A!, B', A", B" such 

that 
A = A' U A", A! n A" = 0, 

B = B'U B", B' n B" = 0, 

and such that 

As a consequence, we have A ~ B. Indeed, we can define a one-to-one 

mapping h of A onto B as follows: 

fix) for x G A', 

g_1(x) for x G A". 
h(x) = | 

Proof. For the reader with a certain familiarity with mathematics, the 

following facts are well known: If / is an arbitrary function and [A1 : 7 6 T} 

is a set system for which Ay C D(/) for each 7 € T, then 

(1) 
7er 7€r 

Furthermore, if / is one-to-one, then 

/«n ^=n }“at 

7er 7er 
(2) 
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also holds. The proofs of assertions (1) and (2) are simple and they are left 

to the reader. 

If the sets A!, B', A", B" satisfy the requirements of the theorem, then 

the following relations hold: 

S'= f“A', 

B" = B\f “A', 

A" = g‘(B\f‘A'), 

A’ = A\g“(B\/“A’). 

The last relation suggests that we consider the mapping h(X) = A\ gu(B \ 

f“X), which sends an arbitrary subset X of A to another subset h(X) C A, 

and look for the “fixed point” of the mapping h, i.e., for a subset X C A 
such that h(X) = X. 

We will do this via “iteration.” By recursion, we define the sets An C A 

as follows: 

A0 = A, An+i = h(An) for n G u>. 

Let A! = nn€a, An and B' = f“A'. Then 

b' = n /“a. 

in virtue of (2). Put B" = B \ B'. Then we have 

B"= |J B\f“A„ 
r»Su/ 

according to the De Morgan identity. Let A!' — g“B". Then we have 

A" = U9“(BU“'V) 

by (1). Using the De Morgan identity again, we obtain 

A\A" = A\g“B» = h(A')= f| ^\»“(B\/“^.) = f| 4.+1- 
new new 

Taking into account that A0 = A, we obtain that 

P| ^n+i = P| An = A'. 
new new 

That is, we have 

A\A" = A' = h(A'). 
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As B' = f“A' and A" — g“B", the sets so constructed satisfy the require¬ 

ments of the theorem. 

* * 

* 

Definition 4.3. We say that cardinal a is less than cardinal b, or, in 

symbols, a < b, if a < b and a ^ b. 

The corollaries below show that these definitions are appropriate, and the 

property < is a generalization of the ordering of numbers. 

Corollary 4.2. For arbitrary cardinals a, b the relation a < b is true if 

and only if for any two sets A, B with \A\ = a, \B\ = b there is a B' C B 

with A B' and A no B. 

Proof. The first half of the condition is equivalent to the statement a < b, 

and the second half, to the statement a ^ b. 

* * 

* 

Corollary 4.3. The property < is irreflexive and transitive on cardinals. 

Proof. The property < is reflexive and transitive according to Theorem 

4.2, and it is anti-symmetric according to the Equivalence Theorem 4.3. 

Hence the assertion follows from Lemma 4.1 above. 

* * 

* 

Corollary 4.4. The property < on cardinals is an extension of the or¬ 

dering by size of numbers. 

Proof. Taking Theorem 2.2 into account, it is easy to see that in both 

orderings the statement “n is less than m” is equivalent to n ^ m for arbitrary 

n, m € u). 

* * 

* 

For the cardinals we met so far, we have 

0<l<2<---<n<---<N0<c. 

The question arises whether any two cardinals are comparable. With the aid 

of the Axiom of Choice, we will show (in Corollary 10.3) that the answer is 

affirmative, that is, for cardinals the property < is trichotomous. We mention 

here without proof that this trichotomy implies the Axiom of Choice. For 

the present, we will prove the special case of trichotomy saying that N0 is 

comparable to every cardinal: 
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Theorem 4.5. N0 is the smallest infinite cardinal. 

Proof. Let a be an infinite cardinal and let A be a set with |A| = a. 

According to Theorem 3.6, u> is equivalent of a subset of A, and so No < a. 

* * 

* 

We would like to point out that in the proof of Theorem 3.6 we used 

the Axiom of Choice; in fact, neither Theorem 3.6 nor Theorem 4.5 can 

be proved from the conventions of Section 1 alone; we will express this by 

saying that these results cannot be proved without assuming the Axiom of 

Choice (although in certain cases some related weaker assumptions might 
also suffice). 

The following theorem of G. Cantor ensures that there are infinitely many 

infinite cardinals, and, in fact, for every cardinal there is a cardinal that is 
larger. 

Theorem 4.6 (Cantor’s Theorem). For every set A we have 

|A| < |P(A)|. 

Proof. We have \A\ < |P(A)|, since the function {x}\A maps A into P(A) 

in a one-to-one way. For this reason, it is sufficient to show that A oo P(A). 

We use reduction ad absurdum. Assume, on the contrary, that there is a 
function / for which A rsj f P(A). . 

Let B — {a e A : a ^ /(a)}- Then B C A, and so B £ P(A). Thus, there 
is an element b € A for which f(b) = B, Then we have 

a e f(b) <==> a <£ f(a) 

for an arbitrary a G A, according to the definition of B. As be A, we may 
replace a with b here; we obtain 

be f{b) b £ f(b). 

This is a contradiction. Hence our assumption must be false; therefore A oo 
P(A). 

* * 

* 

A consequence of this theorem is that 

H<|p(«)|<---<|p»|<..., 
where the sets Pn(u;) are defined by recursion on n: 

P°(u;)=u; and Pn+1(u;) = P(Pn(u;)) for neu. 

We will state one more theorem in this section. We would like to mention 

that this cannot be proved without the Axiom of Choice either (see the 

remark after Theorem 4.5 for the precise meaning of this phrase). 
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Theorem 4.7. If the function f maps the set A onto the set B, then 

\B\<\A\. 

Proof. For each y € B let Ay = {a; E A : f(x) = y). According to the 

assumption, the set system {Ay : y E B} consists of nonempty sets. By the 

Axiom of Choice, there is a choice function g with g(y) E Ay for each y E B. 

It is obvious that g maps the set B onto a subset of A in a one-to-one way. 



5. OPERATIONS WITH SETS AND CARDINALS 

We now turn to the extension to cardinals of the operations defined for 

numbers. To this end, we need some results involving set operations. 

Definition 5.1. Let {Ay : 7 6 T} be a set system. The direct product 

or Cartesian product, denoted as X7er A, is defined as the set 

{/ : / is a function and D(/) = T and V7 € T(/(7) e Ay)}, 

that is the set of all choice functions for the given set system. 

Our definition is legitimate, since all elements of the set X7er A7 belong 

to the set 

p(p(p(ru (J a,))). 
7€r 

As a special case, the above definition also gives the direct product of 

two sets. If A0 and Ai are sets, then we write A0 x A1 = Xie2^t- This is 

isomorphic, but not identical to the set of ordered pairs taken from Aq and 

Ai. If there is no danger of misunderstanding, we will, in what follows, use 

the notation Aq x A\ also for the set formed by ordered pairs. 

In verifying certain properties of cardinal operations, the following “asso¬ 
ciative” law will be very useful. 

Theorem 5.1. Let {Ay : 7 6 T} be a set system. Assume that 

r= Ur*’ 
6&A 

where the sets Tj are pairwise without common elements, i.e., pairwise dis¬ 
joint. Then 

X A7~ X ( X Ay). 
7€r se A\ers > 

Proof. Denote the set on the left-hand side by T, and the one on the 
right-hand side by S. Define a mapping <& on T by putting 

D($(/)) = A for / e T, 
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and 

*(/)(*) = /|r* ^ <*eA. 

It is easy to check that T S. 

* * 

* 

The mapping <E> is usually called the “canonical” correspondence between 

the sets T and S. 
If there is no danger of misunderstanding, then the two isomorphic sets 

featured in Theorem 5.1 will be considered “identical.” 

Definition 5.2. Define the set A raised to the power B (or the set A to 

the B) as follows: 

{/ : D(/) = B A R(/) C A}. 

This set is denoted as BA. The reason for this peculiar notation is that 

below we will have to distinguish between the exponentiation of sets just 

introduced from the exponentiation of cardinals to be introduced later. From 

the definition it follows immediately that BA = Xbeb Ab with Ab = A for all 

beB. 

Definition 5.3. A set operation is said to be compatible with the prop¬ 

erty of equivalence if, when replacing its arguments with equivalent sets, the 

result of the operation will be equivalent to its original result. 

Theorem 5.2. The direct product, the exponentiation, and the disjoint 

union (i.e., the union of pairwise disjoint sets) are compatible with the equiv¬ 

alence property. 

Proof. Let 
{A7 : 7 £ I1} and {A^ : 7 <E T} 

be set systems such that 

A7 ~ A'1 for all 7 € T. 

Using the Axiom of Choice, for each 7 <E T we can pick a function </>7 for 

which 

A7 A't 

We will now verify the assertion about direct products. Let 

A=X^7, A' = X A’r 
7er 7^r 

Define a mapping $ of A onto A' as follows: for / G A let ^(/) be the 

element f of A! such that 

/'(7)=«/(7)) 
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holds for every 7 G V. Let fi,f2 G A with fi ^ f2, and let f[ = <h(/i), 

f-2 = ^K/2)■ Then there is a 7 G T such that flip/) ^ 72(7). As <^>7 is one- 

to-one, we then have /((7) 7^ f^i7), and so /( 7^/2- Thus $ is one-to-one. 

Furthermore, R(<&) = A' holds; indeed, if /' G A', and / is the element of A 

such that 

/(7) = 0-1(/'(7)) 

for all 7 G T, then <$(/) = Thus 

A ~<j> A\ 

To verify the assertion for disjoint union, assume that the sets A7 are 

pairwise disjoint, and that the sets A' are so, as well. Denote by A and A! 
the sets (J7er A7 and (J7er A7, respectively. Then we can define a mapping 

$ satisfying the relation A A! as follows: If x G A, then let $(x) = <^7(x) 
for the unique 7 for which x G A7. The verification of the requisite properties 

of $ will be left to the reader. (We remark that $ could also have been defined 

by the relation $ = U7€r<M 

Finally assume that A, A', B, B' are sets and (p, ip are functions such that 

A A', B B'. 

Define a mapping $ of the set BA as follows: For / G BA let 

$(/) = V'-10 / °(p- 

It is easy to verify that 

bA B'A!. 

* * 

* 

We remark that for operations with finitely many arguments the proof of 
Theorem 5.2 does not need the Axiom of Choice. 

Definition 5.4. Let {a7 : 7 G T} be a system of cardinals. 

1. Choose sets {A7 : 7 G T} such that |A7| = a7 for each 7 G T. The car¬ 

dinality of the set X7gr A7 is denoted as ri7gr a7 and JS called the product 
of the cardinals {a7 : 7 G T}. 

2. Choose pairwise disjoint sets {A7 : 7 G T} such that |A7| = a7 for each 

7 G T. The cardinality of the set U7€rA7 is denoted as E7Gra7 and is 
called the sum of the cardinals {a7 : 7 G T}. 

3. Let a and b be cardinals. Choose sets A, B such that \A\ = a, \B\ = b. 

The cardinality of the set BA is denoted as ab, and is called the 6th power of 
the cardinal a. 

We will be able to verify the soundness of these definitions only later, 
with the aid of a theorem of Section 10. At that point, we will show that 
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a cardinality operation described in Definition 2.5 can be chosen in such a 

way that cardinal a is a set of cardinality a itself. This will ensure that for 

an arbitrary set {a7 : 7 G T} of cardinals, we can find a system {A7 : 7 G T} 

of sets such that |A7| = a7 for each 7 G I\ (This statement would follow 

directly from the Axiom of Choice only if for every cardinal a there existed 

a set consisting of all sets of cardinality a. One can, however, prove with 

the aid of Theorem 1.2 that such a set does not exist.) If for an arbitrary 

system {a7 : 7 G T} of cardinals we can find sets {A7 : 7 G T) such that 

|A7| = a7 for each 7 G T, then the sets A^ = A7 x {7} are pairwise disjoint 

and A7 ~ A^ for every 7 G T. 

Finally, Theorem 5.2 ensures that the value of none of these operations 

depends on the choice of the sets in question. 

If ai and a2 are cardinals, then we will also use the notation 

do + °i = aii 

i£2 

do • Ol = Cbodi — Oj. 

i£ 2 

Naturally, we do not need the Axiom of Choice for the definition of a 4- b 

and a ■ b, but we do need it for the definition of operations with infinitely 

many arguments. We will, however, not call any special attention to this fact 

any more. 

Examples: 

a) No + No — No. 
b) N0 N0 = N0. 
a) and b) follow from Theorems 3.3 and 3.4. 

c) 2n° > N0. To verify this, we need to point out only that 2N° = |w2| and, 

further, w2 P(u>); indeed, there is a canonical one-to-one correspondence 

between the so-called characteristic functions, i.e., functions assuming only 

the values 0 and 1, on ui, and the set of all subsets of to. 

We can verify the following theorem without any difficulty. 

Theorem 5.3. The addition, the multiplication, and the exponentiation 

are extensions of the corresponding operations for nonnegative integers. 

Proof. Let A, B be finite sets such that \A\ = n, \B\ = m. Then 

\A x B\ = m • n, \bA\ = nm. 
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If A n B — 0 is also satisfied then 

\A U B\ — m + n. 

* * 

* 

Theorem 5.4. 

1. The addition and the multiplication are commutative operations. 

2. The addition and the multiplication are associative operations. 

3. The operations addition, multiplications, and exponentiation are in¬ 
creasing in the weak sense. 

Proof. Assertion 1 for addition follows from the commutativity of the 

union; for multiplication it follows from the fact that there is a canonical 

one-to-one mapping between A x B and B x A. Assertion 2 for addition 

follows from the associativity of union, for multiplication it follows from 

Theorem 4.1 used to make up for the non-associativity of the direct product. 

To verify Assertion 3, let a7, (7 e T) and a, a', b, b' be cardinals such 
that 

^ q>71 ^ ^ , b ^ b . 

We have to prove that 

Xa7 < X°7> 
7er 7er 

and 

n a7 < n x 
7er 7er 

b - lb' a < a . 

We carry out the proof only for addition, the other two operations can be 

handled similarly. We choose the sets A7 pairwise disjoint, the sets A'^ 
likewise, such that 

|A7| = o7, |A7| = a7 

for each 7 6 T. 

Making use of the inequalities a7 < a^, we may pick sets A" c such 

that A7 ~ A". According to Theorem 5.2, we have 

7er 7€P 
IK =E 

7er 7er 

* * 

* 

We would like to mention the following consequence of the Axiom of 
Choice: 
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If A — U7gr 1^1 ^ ]C7gr 1^71 • 

Indeed, choose pairwise disjoint sets A' and functions 07 such that A^ ~^>7 

Arf, and denote the set U7gr ^7 A'. The mapping 0 = U7gr ^7 maPs the 

set A' onto A, and 

m = U Ki = U iai- 
7er 7€r 

Thus |A| < |A'| according to Theorem 4.7. 

The operations described in Definition 5.4 are not strictly increasing. This 

is shown by the following examples: 

a) No + 0 = Mo + 1 = No + No = No, 

b) K0 • 1 = K0 • K0 = No- 
An example involving exponentiation will be given in Section 6. 

In order to prove the distributivity of multiplication over addition we need 

the distributive law for the corresponding set operations. This is stated in 

the following theorem. 

Theorem 5.5 (General Distributive Law). Given arbitrary set systems 

{A7i<5 : 5 e A7} for each 7 6 T, we have 

Furthermore, if the set systems consist of pairwise disjoint sets for each 7, 

then the summands occurring on the right-hand side are pairwise disjoint. 

Proof. Denote the set on the left-hand side by P, that on the right-hand 

side by R. We have 

/epsv7er(/(7)e (J A,,,) 
V <5GA7 ' 

= V7 G T3£ (/(7) e AltS) • 

(The difference between the use of = and <=4> was explained at the beginning 

of Section 1.) Using the Axiom of Choice, we can see this to be equivalent 

to 
(30 e X A7) V7er (/(7) e A^h)). 

7er 

This in turn in equivalent to the statement / € R. 

Now assume that 

A7j5 n A^S' = 0 for M'eA7, 5 ± S', and 7 G T. 

0, 0/ € x A7 with 0 7k 0'. 
7<=r 

Let 
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Then there is a 70 € T such that 

H7o) # <t>'(7o)- 

If we now have / 6 X7er and f G X7er ^7,<A'(7)> then 

/(7o) £ -^7o,<A(7o)’ / (7o) *= -^7o,</>'(7o)> 

and so / 7^ /'. Thus the summands of the set R are pairwise disjoint. 

* * 

* 

A similar general distributive law can be proved if the pair X? U is replaced 

with the pair fj, (J, or with the one (J, Q. These, however, will not be needed 

for now. 

Corollary 5.1. Given arbitrary systems {o7)<5 : 6 E A7} of cardinals for 
each 7 G T, we have 

n f x] a^’<5)= e 
7er ' <t>exj£r a7 Ner 7 

that is, there is a general distributive law of multiplication over addition for 
cardinals. 

Proof. Choose pairwise disjoint subsets A7 (5 such that 

1-Ay,(51 = a7,<5 for 5 € A7 and 7 e T. 

Using Theorem 5.5, the assertion follows. 

* * 

* 

Finally, we will show that the well-known identities of exponentiation for 
nonnegative integers also remain valid. 

Theorem 5.6. Let a, b, c, a7, &7 (7 E V) be arbitrary cardinals. Then 
the following identities hold: 

1. abc = (ab)c. 

2. Ifb= ]C7er 67> then a& = ]l7er a<>7- 

3■ If a = ri7er a7> then °6 = Il7er ar 

Proof. Pick the sets A, B, C such that \A\ = a, \B\ = b, |Cj = c. 

1- abc = \BxCA\. According to Theorem 5.1, we have 

b*ca~ X -4~x(x^)=c (ba) . 
(y,z)£BxC zeC'yeB ' V ' 
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The cardinality of the last set is (ab)c. 

2. Let B7 be pairwise disjoint sets such that 

B = [J £?7, and |F?7| = &7 for 7 e T. 

7er 

According to Theorem 5.1, we have 

bA~ X A~ X ( X a) = X S’A 
xgb 7ervxefi7 7 7er 

The cardinality of the last set is fl7er a&7 • 

3. Choose the sets A7 (7 € T) such that 

A ~ X A7 and |A7| = a7 for 7 G T. 
7€r 

Then 
a6 = |bA|. 

Further, according to Theorem 5.1, we have 

bA = x^x(xi7)~x(x a7) 
xeb x£B\e r 7 7crvx€B7 7 

= X (BAy). 
7er 

The cardinality of the last set is 

IK 
7€T 

* * 

* 

Corollary 5.2. Multiplication is “repeated” addition. Exponentiation 

is “repeated” multiplication. By this we mean that if a is a cardinal and 

\B\ = b, then 

a — ab and o = ab. 

x6B xGB 

Proof. Using the distributive law, we obtain 

^ a = a • 1 = a • b. 

x€B x6B 

The second assertion follows from the equality 

J a = 1 = ab. 

x&B 
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In fulfilling our promise made at the end of Section 3, we are now going to 

use the general theorems obtained so far to establish several simple results. 

It would be instructive if the reader established these results also directly 

(without the use of general theorems). 

Statement 6.1. If k G u and k ^ 0 then 

«S = Ho- 
Proof. We use induction. For k = 1 the assertion is obvious. Assume 

k > 1. According to the induction hypothesis, we have 

Ho = Ho-1N„ = Hq. 

We proved earlier that Nq = K0. 

* * 

* 

Statement 6.2. c = 2H°. 

Proof. We need to show that |R| = 2H°. We have |R| < |[0,1)| according 

to Theorem 3.8. Given an arbitrary x G [0,1), let x — [O.Xia^ .. .Xi.. .]2 be 

its binary expansion such that it does not consist purely of the digit 1 from 
a certain point on. 

This expansion induces a one-to-one mapping of [0,1) into “'2. Hence 

|R| < 2n°. On the other hand, given an arbitrary function / G “2, assign to it 

the real number xj whose decimal fraction expansion is Xf = 0./(0)/(l)_ 

In this way, / G w2 is mapped into R in a one-to-one way. Thus 2N° < |R| 
also holds. 

* * 

* 

Statement 6.3. If a is an infinite cardinal then a -h R0 = a. 

Proof. Let A be a set with |A| = a. According to Theorem 3.6, there is a 

set A' C A for which |A'| = N0- Let B = A\A' and b = \B\. Then a - b+tt0. 
Thus 

ft + No = {b + Mq) + Mq = b + Mq ■ 2 = b + Kq = a. 
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* * 

* 

Statement 6.4. For the n-dimensional Euclidean space En we have 

\En\ = c. 

Proof. \En\ = |aR| = cn = (2N°)n = 2H°n = 2*° = c. 

* * 

* 

Statement 6.5. The set of all sequences of real numbers has cardinality c. 

Proof. 

TRI = cHo = (2k°)No = 2h° = c. 

* * 

* 

Statement 6.6. Denote by T the set of all real functions. Then 

Proof. 

\p\ = |rR| = Cc = (2k°)c = 2Ho C = 22*0 > c, 

since according to Statement 6.4, we have c < ^0c < c2 = c. 

* * 

* 

Statement 6.7.+ Let C(R) be set of continuous real functions. Then 

|C(R)| = c. 

The symbol + after the number of the above statement indicates that 

the statement relies on mathematical concepts undefined in this book. As 

explained in the preface, this symbol is used to indicate problems relying on 

mathematical concepts undefined here. Such concepts do not usually occur 

in the main text of the book; the present section is an exception, since it 

discusses only illustrative examples rather than develops the theory that is 

the subject of the present book. 

Proof. According to a well-known theorem of elementary analysis, if / is a 

real function, then / is determined by its values assumed at rational points. 

Hence 
\C(R)\ < |qR| = cNo = c. 
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On the other hand, the constant functions are continuous; hence 

c < |C(R)| 

is also satisfied. 

* * 

* 

Statement 6.8. Define the sequence {cn : n £ u} of cardinals by recur¬ 
sion as follows: 

Co = H0, cn+i = 2C" for n £ u. 

By Cantor’s Theorem, we have 

c0 < Ci < • • • < cn < .... 

We claim that 

Cn = Cn for n e U). 

Proof. We use induction. For n = 0 we have 

Co = Hq = H0 = Co- 

Let n £ u>, and assume the assertion is true for n, that is, 

cn — cn- 

Then 

Hence 

Si+l 

Cn — Cn ' 2 Cn ‘ Cn — Cn- 

= (2Cn)2 = 2C"'2 = 2Cn = Cn+i- 

* * 

* 

Each of the infinite cardinals that we have met so far is one of the above 
cn’s. Therefore the question arises on the basis of Statement 6.8 whether the 
relation o2 = a is true for every infinite cardinal a? The answer is affirmative. 
This important statement is customarily called the Fundamental Theorem of 
Cardinal Arithmetic (see Theorem 10.3). This statement is also one of those 
results that can be proved only with the aid of the Axiom of Choice. We 
would like to mention without proof that this statement is equivalent to the 
Axiom of Choice. 
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Statement 6.9. Let the cardinal d be the sum of the cn’s above. Then 

we have d2 = d. 

Proof. 

rf2=(XCn) = X C<CJ = X( X Ci<^') 
'new ' (i,j)£vxuj k£u) Xmax<tj')=fc 

= ^ Cfc(2co +-f 2cfc_i 4- cfc) = ^ Cfc = ^ ck = d. 
k(zui k£u k£ui 

In the course of this calculation, we used the distributive law and State¬ 

ment 6.8. 

* * 

* 

The cardinal d is clearly greater than every cn, since cn < cn+i < d holds. 

Statement 6.10. For the cardinal d defined in the preceding passage, we 

have the relation dH° = 2d. 

Proof. 

2d=Cn = n 2c" = n00+1 - n &=d*°- 

n£uj n€u n£u> 

Thus 2d < dH°. Further 
(2y = 2^ = 2d, 

and so, noting that cardinal operations are increasing in the wider sense, we 

obtain 
d*0 < (2d)d = 2d. 

* * 

* 

With Statement 6.10 we have an example saying that exponentiation is 

not monotonic in the strict sense. 
Finally, we show the following generalization of Cantor s Theorem 4.6. 

Theorem 6.1. For any system {o7 : 7 <E T} of cardinals there is a cardi¬ 

nal that is larger than each of these cardinals. 

Proof. Let a' = £7er a7 and a = 2“'. If 7 G F then a7 < a! < a. 
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Theorem 6.1 shows that cardinals are very numerous, since there is no set 

that contains all of them. 

Here we would like to summarize the statements whose proofs we have 

yet to give. First of all, we need to establish assertions justifying proofs 

by induction and definitions by recursion. Secondly, we need to prove the 

existence of the cardinality operation; this will be accomplished with the aid 

of the Axiom of Choice. 

Since we have used these statements already, in establishing them we have 

to be careful not to use those results that were obtained by their application. 

Finally, we still owe proofs of the Trichotomy Theorem and of the Funda¬ 

mental Theorem of Cardinal Arithmetic; these proofs will require the Axiom 

of Choice. 

A key tool in these proofs is the theory of ordered sets. 

Problems 

1. Prove that the set of all finite subsets of u> is countable. 

2. Prove that if the cardinal a satisfies a < c then c + a = c. 

3. Prove that if a2 = a for each infinite cardinal a then b + c = be for any 
two infinite cardinals b, c. 

4. Prove that the cardinality of the set of all permutations of u has car¬ 
dinality 2n°. 

5. Prove that the set of irrational numbers has cardinality c. 

6. + Prove that the cardinality of every nonempty perfect set of reals has 
cardinality c. 

7. + Prove that the set of Lebesgue measurable functions on the interval 
[0,1] has cardinality cc. 

8. + Prove that the set of Riemann integrable functions on the interval 
[0,1] has cardinality cc. 
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We now turn to the discussion of the theory of ordered sets. For this we need 

the following definition. 

Definition 7.1. Let k G u. A function whose domain is k will be called 

an ordered A;-tuple. We will use the customary notation (do, . • •, Ufc-i) to 

denote ordered k-tuples. 

Although for k — 2 this notation is not identical to the ordered pair 

(ao, di), this will not cause any misunderstanding in what follows. If A is a 

set, then the set of ordered fc-tuples formed by elements of A are denoted by 

M. 

Definition 7.2. If A is a set, then we say that the set R is a k-place 

relation on the set A if R C -A. 

Let R be a k-place relation on A and let (do,..., dfc_i) G -A. We say that 

R is true on the ordered k-tuple (do,..., a^-i), or that the elements do,..., 

dfc_i are related by R if (do,..., dfc_i) G R. If (do,..., dfc_i) ^ R, then we 

say that R is false on the ordered k-tuple (do, • • •, dk-i) G R, or that the 

elements do,..., d^_i are not related by R. 

The two-place relations are called relations, in short. 

Examples: a) Let A be the set of all points of the plane and put 

R = {(P0, Pi,P2) G -A : the points P0, Pi, P2 lie on the same line}. 

Then R is a three-place relation on the plane. 
b) An example for a two-place relation on the set of the nonnegative 

integers is the ordering by size; that is, if A = u>, and < is the set {(ra, n) G 

?o> : n is less than m}, then < is a two-place relation on A. 

If R is a relation on A, then the fact that (x, y) G R is often denoted as 

xRy. For example, (m,n) G< is usually written as m < n. 

Definition 7.3. The pair {A, -<) is called an ordered set if -< is a relation 

that orders A, that is, the relation -< is irreflexive, transitive, and trichoto- 

mous on A. That is, 
Vx-ix -< x, 

Vx, y, z [(z -< y A y -< z) => x -< z], 
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and 
Vx, y [x -< y V x = y V y -< x], 

where the variables x, y, and z run over elements of A. 

We remark that if -< is only irreflexive and transitive on A, then we call 

(A, -<) a partially ordered set. 

For example, the pairs (u;, <) and (R, <) are ordered sets, where < is 

the well-known ordering by size of the nonnegative integers and of the real 

numbers, respectively. If A C M, then we can regard the pair (A, <) also as 

an ordered set, with the ordering inherited from R. This notation is imprecise 

in that < is a relation not on A, but on the larger set R. For situations when 

we need such fine distinctions, we are going to introduce a symbol: 

Definition 7.4. Given a k-place relation R on the set A and B C A, the 

relation S == R fl -B defined on B is denoted as R f B, and it is called the 

restriction of R to B. 

Definition 7.5. Given a two-place property $(x, y) and a set A, the 

relation 

S = {(x,y) <= -A : $(x,y)} 

on A is denoted as $ f A and is called the restriction of $ to A. 

In the same way as in the case of the property ~, we will describe what 

we mean by saying that the ordering of two ordered sets are “alike,” in other 

words, that two ordered sets are similar. 

Definition 7.6. Let (A, -<) and (A', -<') be ordered sets. We say that the 

function f is a monotonic (isomorphic) mapping of the ordered set (A, -<) 

onto the ordered set (A', -<') if 

1. A A'; 

2. For all x,y G A we have x -< y /(x) -<' f(y). 

This state of affairs will be denoted as 

(A, -<) <A',V). 

We say that the ordered set (A, -<) is similar to the ordered set (A', -<') if 
there is an f for which 

(A, -<) (A',V). 

(In symbols: (A, -<) ~ (A', -<').) 

For example, u is similar to u \ {0}, and (-§, f) is similar to R in the 

ordering according to size. We can write this in our notation as follows: 

(u;,x)~/ (u \ {0}, < f u; \ {0}), 

where D(/) = u and /(n) = n + 1 for n £ u>, and 

((_2’2) ,<r (_2’2)) (R,<^ 
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Theorem 7.1. The property of similarity is an equivalence property. 

Proof. Reflexivity is satisfied, since 

(A, -<) ~IdA (A, -<). 

To show symmetry, assume that for a function / we have 

(a,*) 

then 

Thus 

(A', -<') (A,*). 

<A,-«>*<A',V> 

implies 

(A',V)~<A,^). 

To establish transitivity, assume that 

(A, -<) ~ (A1, -<') and (A', -<') ~ (A", -<") 

hold. Choose functions / and g such that 

(A, -<) ~f (A', V) and (A', <') ~g (A", -<")• 

We know that for the composition function h — f o g we have 

Furthermore, h is monotonic, since for x,y e A we have 

A A". 

x -< y = f(x) ■<’ f(y) = g{f(x)) g(f(y))- 

Hence 
(A,*) =*» (A",*"), 

that is 
(A, X) k (A", 

* * 

* 

If (A,-k) is an ordered set, and it is clear from the context what the 

ordering -k is, then instead of (A, -<) we will call the set A itself an ordered 

set. In the same spirit, to say that (A, -<) is a finite ordered set means, in 

particular, that A is a finite set. The next theorem says that on a finite set 

there is only one “kind” of ordering. 
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Theorem 7.2. If (A, -<) is a finite ordered set such that |A| - n, then 

(A, -<) ~ (n, <), where < is the ordering of the set n according to size. 

Proof. The assertion of the theorem easily follows from Theorem 2.2 by 

induction on n. The details are left to the reader. 

* * 

* 

Definition 7.7. We say that the operation F is compatible with the 

(similarity) property ~ if for any two ordered sets (A, -<), (A', -<') we have 

F{(A, ■<)) — F((A', -<')) «=* (A)X)S(A'4 

Theorem 7.3. There is an operation that is compatible with the prop¬ 

erty 

Theorem 7.3 will be proved in Section 10, along with the analogous The¬ 

orem 2.3 concerning the property ~ (see Theorem 10.2). 

Definition 7.8. In what follows, type will denote a fixed operation com¬ 

patible with the property — ; such an operation exists according to Theorem 

7.3. The value of this operation on the ordered set (A, -<) will be denoted as 

type(A, -<) or type A(-<), and it will be called the order type of the ordered 
set (A, -<). 

Just as we did in the case of the cardinality operation, according to Theo¬ 

rem 7.2, we may assume that if A is finite and |A| = n, then type A(-^) = n. 

The order types of finite sets will be called finite order types, the other ones 

will be called infinite order types. The finite order types are the nonnegative 

integers. In what follows, order types will be denoted by Greek letters. We 

will, in particular, use the following notation: 

typea>(<) = u0, type Q(<) = rj0, typeK(<) = A0. 

Here < always denotes the ordering by size of the sets in question. We 

would like to add that the symbols u and u>q are firmly associated with the 

meaning defined above, so we will never use these symbols to mean anything 

else; however, the symbols rj0 and A0 are only loosely associated with the 

meanings defined above, and if there is no danger of misunderstanding, these 

symbols may be reused with other meanings. 

We remark that the similarity property is a “refinement” of the equivalence 

property on ordered sets. If (A, ■<) ~ (A', -<'), then A ~ A', but the converse 

is not true. For example, u ~ Q since both sets are countable, but uq / 770, 

since in the ordering by size of the set of rational numbers Q has no first 
element. 
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Order types can also be regarded as a generalization of the nonnegative 

integers. We can define extensions to order types of the usual operations, and 

we can study the properties of these operations. In this book, we will study 

this question only to the extent it is absolutely necessary for what follows. 

Before we do this, we introduce another concept, the concept of wellor- 

dered sets. These sets will be ordered sets that possess an important property 

of the nonnegative integers. 

Definition 7.9. The ordered set (A, -<) is called wellordered if every 

nonempty subset A! of A has a least element a in the ordering that is, 

there is an a € A' such that for each x € A! we have either a -< x or a = x. 

It is easy to see that every subset of a wellordered set is also wellordered 

by the inherited ordering. Furthermore, if (A, -<) ~ (A'then the set 

A is wellordered if and only if A! is so. This last remark justifies the next 

definition. 

Definition 7.10. The order types of wellordered sets are called ordinals. 

For example, the sets (u>, <) and (n, <) for n e w are wellordered, and 

so n and uo are ordinals; on the other hand, the order types r]0, Ao are not 

ordinals. 
We need to specify some of the usual notation. If -< is an ordering, then 

x X y is an abbreviation of x -< y or x — y. If (A, -<) is an ordered set, 

A! C A, and the set A! has a least element in the ordering -<, then this least 

element is denoted by min^ A'. 

Definition 7.11. Let {(A7, -<7) : 7 G T} be a system of ordered sets, 

and let -<r be an ordering of the set F. 
Assume that the sets A7 are pairwise disjoint. The ordered set (A, -<), 

where 
A=\jA, 

7er 

and for each x,y € A we put 

x -< y 4=^ 37, (5(xG A7, y G As and 

either 7 -<r $ or (7 = <5 and x -<7 y)), 

is called the ordered union with respect to the ordering -<r °f the set system 

{(Ay, -k7) : 7 € r}. 

In words: In the ordering -< “we put the sets A7 one after the other” accord¬ 

ing to the ordering -<r> and within each A7 we “keep the old ordering.” 

To show that this definition is sound, we are about to prove that -< is an 

ordering of A. For an arbitrary element x G A, there is exactly one 7 e F 

for which x e Ar Denote this 7 by y(x). Then 

x -< y <=> l(x) -<r 7(v) or (l(x) ~ l(v) an<^ x ^7(*) y)’ 
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Thus one can easily conclude that the relation -< is irreflexive, -from the 

relations -<7 and -<r being irreflexive. 

Next we verify trichotomy. If x,y G A then 

either 7(2;) -<r 7(2/) or 7(2/) -<r 70*0 or 7(2;) = 7(y) 

holds. In the first or second case, we have 

x -< y or y -< x. 

In the third case, 

x ^7(*) V or y ^7(s) x 

holds, and then either x -< y or y -< x is valid. 

To verify transitivity, assume that x ■< y and y -< z hold for the elements 

x, y, z of A. Then 

70*0 7(2/) and 7(y) 7(2) 

also hold. If in one of these two relations we actually have -<r in place of 

Xr, then 

7(x) -<r 7{*) 

holds, and so x ^ z holds. Hence we may assume that 

7 = 70*0 =7 (y) =7(*)- 

Then, according to the definition of -<, we have 

x -<7 y and y -<7 z. 

Therefore the assertion follows from the transitivity of -<7. 

Theorem 7.4. 1. The operation of ordered union with respect to a fixed 

ordered set (T, -<r) is compatible with the similarity property. 

2. If (Ay, -<7) are disjoint wellordered sets (7 e r) and (T, -<r) is a 

wellordered set, then the ordered union of the sets Ay with respect to -<r is 
wellordered. 

Proof. 1. Assume that for all 7 6 T we have 

(Ay, -<y) ~ (Ay, -<y) 

and all of the sets A7 and are pairwise disjoint. Denote the ordered union 

of these sets with respect to (T, -<r) by 

(A, -<) and (A', 
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respectively. According to the Axiom of Choice, there is a system 

{</>7 : 7 € T} of functions such that 

(A7, -<7) — <^7 (A7, -<7) 

holds for each 7 € T. Define a mapping / of A onto A! by stipulating that 

f(x) = 07(x) if x G A7 and 7 € T. From the proof of Theorem 5.2 we know 

that A A'. It is easy to see that / is monotonic; we leave the details to 

the reader. 

2. Denote by (A, -<) the ordered union described in the assertion being 

proved. Let A' C A, A' 7^ 0. Write 

r' = {7 g r: A'nA7/0}. 

Then D / 0, and so, (r, -<7) being wellordered, the element 

70 = min F1 

is well defined. 
As A7o n A' / 0 and A7o is wellordered, there is an element 

oo = min A^0 fl A'. 
^10 

It is clear that ao is the least element of A! in the ordering X. 

* * 

* 

After this preparation we can define the sum of order types. 

Definition 7.12. Let (r, -<r) be an ordered set, and let {07 : 7 G T} be 

a system of order types. Choose pairwise disjoint ordered sets (A7, -<7) such 

that we have type A7(-<7) = ©7. 
The order type of the ordered union with respect to (T, Xr) of the sets 

(A7, ^7) is denoted as E7er(^r) 07> and is calIed the sum with resPect to 
(r, ^r) of the order types {©7 : 7 E T}. 

The Yj notation is needed so that we can distinguish between the addition 

of order types and of cardinals. 
That this definition is sound can only be verified with the aid of a theorem 

to be established in Section 10. There we will show that the operation 

type A(-<) can be defined in such a way that type A(-<) is a set that consists of 

ordered sets similar to (A, -<). Then we can prove with the aid of the Axiom 

of Choice that, given an arbitrary system {07 : 7 6 T} of order types, it is 

possible to choose a system 

{(A7, -*<7) : 7 £ F} 
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of ordered sets such that typeA7(-<7) = 07 holds for every 7 6 T. We can 

then see that the A7’s can be chosen pairwise disjoint in the same way as 

in the case of the definition of sums of cardinals. Finally, this sum does not 

depend on the specific choice of the sets (A7, -<7) according to Theorem 7.4. 

This same theorem implies the following. 

Corollary 7.1. A sum of ordinals with respect to a wellordered set 

(r, -<r) is an ordinal. 

The definition naturally gives the sum of two order types. If ©0 and ©1 

are ordinals, then their sum ©0 + ©1 is defined as 

©o + ©i = ^ 0‘‘ 
*€2«) 

It is of course not necessary to use the Axiom of Choice to see that the 
definition of the sum of two order types is sound. 

Examples: 

u>o + 1 = type K 
= type(u> U (+oo})(<). 

u0 + u>o = type 10, ^,..., 1 — 1, ..., 2 1 (<). 
f 2 n 2 n J 

type(0,1) (< \ (0,1)) + 1 = type(0,1] (< f (0,1]). 

In this examples, < is the ordering of the reals according to size. 

Eneu k>0) which may also be denoted as u0 + • • • 4- u>0 + ..., represents 
the order type of an ordered set obtained by “placing ordered sets of order 

type ujq one after another” in a sequence of type ujq. 

Theorem 7.5. 1. The addition of order types is an extension of the ad¬ 
dition of nonnegative integers. 

2. The addition of order types is associative, but it is not commutative 
even for ordinals. 

Proof. 1. If n, m are finite order types, then 

n m = type A(-<) 

for a set A of n + m elements. Then, according to our conventions, 

type A(<) = n + m. 

Hence 

n + m = n + m. 
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2. The first part of the second assertion follows from the associativity of 

ordered union; the verification of this latter will be left to the reader. 

The lack of commutativity is shown by the following example: 

1+ WO ^ Wo + 1- 

In fact, 1 + u>o = uj0, as type(a; \ {0})(<) = u;o; on the other hand, 

Wo + 1 7^ Wo, 

since a set of order type u>o + 1 has a last element, while one of order type 

u>q has no last element. 

* * 

* 

In what follows we will define the product of two order types. To this end, 

we need the following definition. 

Definition 7.13. Let (A1 {A",<") be ordered sets. Their anti- 

lexicographic product will be defined as the ordered set (A, -<), such that 

A — A' x A", and the ordering -< of the set A satisfies the following condition: 

If 

X = (x', x") G A and y = (y', y") G A, 

then 

x <y x" y" or x" = y" and x' y'. 

To verify the soundness of this definition, we need to show that -< is an 

ordering of the set A. The irreflexitivy is obvious. 

Trichotomy can be verified as follows. Let 

x = (x',x"), y = (y',y") 

two arbitrary elements of the set A. Since -<" is an ordering of the set A", 

we have 
either x" -<" y" or y" -<" x" or x" = y". 

In the first two cases, we have x -< y or y -< x. If x" = y", then we have 

x -< y or y ■< x according as x' y' or y' <' x'. 

To verify transitivity, assume that we have 

x = (x',x") ^y= {y',y") 

and 
y <z = (.z',z"). 

Then we certainly have x" <" y" and y" ■<" z". If in either of these relations 

we also have -<" instead of then x < z holds. We may therefore assume 

that x" = y" = z". In this case, however, we have 

x' <' y' and y' -<' z' 

in view of our assumptions. Hence x' ■<' y' also holds. Thus we again have 

x -< z. 
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Theorem 7.6. 1. The anti-lexicographic product of ordered sets is com¬ 

patible with the similarity property. 

2. If the sets (A',^'), (A", -<") are wellordered, then their anti-lexico¬ 

graphic product (A, -<), is also wellordered. 

Proof. 1. Assume that 

{A1, -<’0) ~ {B\ -<i) and (A", -*<o) ~ (B", -<"). 

Choose monotonic mappings / and g witnessing these relations. Let (A, -<o), 

(J3, ^i) be the corresponding anti-lexicographic products. Define a mapping 

h of A into B as follows: For an arbitrary x = (x',x") E A put 

h{x) = (f(x'),g(x")). 

It can immediately be seen from the definition that h is one-to-one, it maps 

onto B, and is monotonic. 

2. Let X c A! x A", X ^ 0. Put 

X" = {x" E A": 3x'((x',x") EX)}. 

Then X" ^ 0. A" is wellordered, so we can consider the element a" = 

minx// X". Put 

X' = {x' e A' : (x',a") E X}. 

The set X' is again nonempty, and A! is nonempty. So there is an element 

a! — minX'. 

Let 

o = (a1, a"). 

It is clear that a is the least element of X in the ordering 

* * 

* 

Definition 7.14. Let ©" be arbitrary order types. Choose ordered 

sets for which type A'{■<') = 0' and type A"(<") = ©". The order type of 

the anti-lexicographic product of these sets is called the product of the order 

types ©' and O", and is denoted as O' x O". 

This definition is sound, since according to Theorem 7.6, the product it 

defines does not depend on the specific choice of the ordered sets A', A”. 

The following result is valid in view of Theorem 7.6. 
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Corollary 7.2. The product of ordinals is also an ordinal. 

Examples: ujq x 2 = type a; x 2(-<), where the ordering -X is given by the 

following enumeration: 

From this, it is clear that u x 2 = u>o 4- ujq. On the other hand, 2 x ujq is the 

order type of the set 2 x u given by the following enumeration: 

2 x u> = {(0,0), (1,0), (0,1), (1,1), 

Hence, clearly, 2 x u>o = uq. 

Theorem 7.7. 1. The multiplication of order types is an extension of the 

multiplication of nonnegative integers. 

2. The multiplication of order types is associative, but it is not commuta¬ 

tive even for ordinals. 

Proof. 1. If n, m are finite order types, then nxm is the order type of a set 

of cardinality n ■ m. The order type of this set is n ■ m, and so nxm = n-m. 

2. The first part of the assertion can be established by following the proof 

of Theorem 5.1, which was designed as a substitute of the associative law 

for Cartesian products, and then using the definition of ordered union. The 

details are left to the reader. 

The examples mentioned above show that wo x 2 ^ 2 x wo, and so multi¬ 

plication is not commutative even for ordinals. 

* 

As multiplication is not commutative, there may be two different distribu¬ 

tive laws. The following example shows that multiplication on the right is 

not distributive 

Uq = 2 X Uq = (1 + 1) X U>q ^ U!q + U)q. 

On the other hand, the following is true. 

Theorem 7.8. Given an arbitrary ordered set (r, -<r) and given order 

types 0, 07 7 € T, we have 

ex( E *»)= £ 
7er(xr) 

© x 07; 

7€l'(Xr) 
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that is, multiplication on the left is distributive. 

Proof. Choose pairwise disjoint ordered sets {(Ay,-<7) : 7 G T} and an 

ordered set (A1, -<') such that 

typeAy(-<7) = ©7 for 7GT 

and 

type A(x') --- 0 

hold. Then, according to the distributive law for sets, we have 

A'x (IK) = L 
7er 7er 

Denote this set by P; further, denote by 7r the order type on the left-hand 

side of the assertion of the theorem, and by p the one on the right-hand side. 

For each x G (J7<=r d-7, denote by 'y(x) the unique element 7 G T for which 

x G A7(a;). Then 

7r = typeP(-<*), p - typeP(-C*) 

for the appropriate orderings -<* and -<:** of the set P. We can see from 

the definitions of ordered union and of anti-lexicographic product that the 
relations 

(x,y) -<* {x',y') 

and 

(x,y) -<** {x',y') 

are both equivalent to the following: 

either 7(y) 7(*/') 

or 7(y) = lW) and V ^7(y) y' 

or y — y! and x -<' x'. 

Hence 7r = p. 

* * 

* 

Example: 

Wo = u0 X ( Y2 l) = W0 X Uq. 

n£w0(<) new0(<) 

For the sake of completeness, we introduce one more piece of notation. 



7. Ordered sets. Order types. Ordinals 53 

Definition 7.15. Given an ordered set (A, -<), we denote by y the rela¬ 
tion defined on A for which we have 

x y y <=$■ y -< x 

whenever x,y G A. 

Clearly, (A, y) is an ordered set, and for two arbitrary ordered sets A, A! 

we have 

(A,^)~(A',x') «=► (A,y)~(A’,y'). 

Hence the following definition makes sense. . 

Definition 7.16. Given an arbitrary order type 0, we denote by ©*, 

and call the reverse of 0, the order type 0* = type A(y), where (A, -<) is an 

ordered set of order type 0. 

Example: ujq = type{—n : m £ u;}(<), where < is the ordering of integers 

according to size. 

Problems 

1. Using the Axiom of Choice, prove that a set (A, -<) is wellordered if 

and only if it has no subset of order type u*. 
2. Prove that rj0 = t?q and A0 = Ag, where r/0 is the order type of the 

rationals, and A0 is that of the real numbers. 

3. Define an “ordering” of the order types as follows: we put 

©o Hi ©i 

if there are sets 

(A0,-^o)> (Ai,-<i) 

of order type 0o, 0i, respectively, such that A0 is similar to a subset of A1 

Prove that 

a) the definition is sound; 

b) A is reflexive and transitive; 

c) -< is not trichotomous; 

d) ■< is not antisymmetric. 
4. * Prove that if 0 is an arbitrary countable order type then 0 < r)0. 

5. * The ordered set (A, -<) is said to have a dense ordering if it is not 

empty, if it has an element preceding, and an element succeeding, any of its 

elements, and if it has an element between any two of its elements. Prove 

that if (A, -<) is countable and has a dense ordering, then type((A, -<)) = rj0. 

6. Prove that the set of irrational numbers is not similar to the set of real 

numbers. 
7. * Prove that for an arbitrary infinite order type 0 we have either u> A © 

or w ^ 0*. 
8. * Prove that if A c R and the set (A, <) or the set (A, >) is wellordered 

in the ordering inherited from K, then |A| < H0. 
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GOOD SETS. THE ORDINAL OPERATION 

We are now setting out on the course of giving proofs of theorems that we 

still “owe.” It will be easy to see that we use here only a few elementary 

definitions and theorems, and that for the formulations or proofs of these we 

do not need any results that we are yet going to establish. In this section, 

we will not use the Axiom of Choice. 

Definition 8.1. Let (A, -<) be an ordered set and let B C A. We say 

that B is an initial segment of A if, whenever x € B and y -< x, we also have 

y e B. 

A is clearly an initial segment of A. If B is an initial segment of A and 
B ^ A, we call B a proper initial segment of A. 

Example: Let B = {r € Q : r < \/2}. Then B is an initial segment of Q. 

Definition 8.2. Let (A, -<) be an ordered set and x G A. The set 

{y £ A : y -< or} is called the initial segment of A determined by x. It 
is denoted as A\ -< x. 

It is clear that A\ -< x is an initial segment of A. As shown by the above 

example, there is an ordered set that has a proper initial segment that is not 
determined by any of its elements. 

The next three theorems summarize the simplest fundamental properties 
of wellordered sets. 

Theorem 8.1. Every proper initial segment of a wellordered set is deter¬ 
mined by one of its elements. 

Proof. Assume (A, -<) is wellordered, and let B be one of its proper initial 

segments. Then A \ B ^ 0, and so there is an element 

x = min A \ B. 

We claim that we have 

B = A\ -< x. 

Indeed, if y € B then y < x, since otherwise we would have x ■< y, and 

so, B being an initial segment, we would have x e B. Thus y e B implies 
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y (E A| X x. Assume now that y € A\ X x. Then y 6 A and y X x. In view 

of the minimality of x, we therefore have y £ A\B. Thus y € B. 

* * 

* 

Theorem 8.2. If f is a monotonic mapping of a wellordered set (A, x) 

into itself, then we have x X f(x) for x € A. 

Proof. Denote by B the set {x £ A : f{x) X re}. Assume that, on the 

contrary to the assertion, we have -8^0. Then, A being wellordered, we 

can consider the element xq = minx B. Put yo = f(xo). According to the 

definition of B, we have yo X x$. In view of the mono tonicity of /, we have 

f(yo) -< f(xo) = y0. Thus /(y0) “< 2/o5 an<l so Vo is an element of B that is 
less than xo- This is a contradiction; thus B = 0, and so x ■< f(x) holds for 

every x 6 A. 

* * 

* 

Theorem 8.3. If (A, -<) and (A1, x') are similar wellordered sets, then 

there is exactly one monotonic mapping of A onto A1. 

Proof. Assume / and g are mappings such that 

(A, x) (A', x') and (A, x) {A', x'). 

Put h = g-1 o /. Then h_1 = /-1 o g. Both these mappings are mappings 

of A into itself. So, according to the preceding theorem, we have 

x ■< h(x) and x ^ h~1(x), 

that is, according to the second relation, we also have 

h(x) ^ x. 

Thus h is the identity mapping. Hence it follows that / = kU o g = g. 

* * 

* 

To understand the following definitions, we need some explanation. When 

we discussed sets above, we were usually concerned with subsets of u>, R, or of 

some given structure, or, in a “very abstract situation,” with sets of subsets 

of such sets. Whereas we never made an explicit restriction to this extent, 

we usually separated elements and sets. Even if we allowed for elements of a 

set to be sets themselves, we have never been concerned with the question of 

whether these sets occurring as elements were elements of each other or not. 
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Definition 8.3. Given an arbitrary set A, the relation Ea denotes the 

restriction of the property E to A, that is, 

A = {{x,y) :x,y E A and x E y}. 

The idea of studying this relation does not originate with Cantor. It 

originates with E. Zermelo and J. von Neumann. In retrospect, it appears 

natural that we need to study this relation, since in Section 1 we imposed 

stipulations precisely on the property E. We were unable to prove a number 

of our assertions exactly because we disregarded this relation, and so were 

unable to exploit our assumptions about the property E. 

Before continuing, we give some examples that may help the reader to get 

accustomed to the idea. 

If A does not consist of sets, then the relation Ea is of no use. For example, 

if A — {Sylvester P. Pussycat, 7} then 

Ga= 0. 

If A = 0 then 

0. 

If A = {0} then 

<Ea= 0. 

If A = {0, {0}} then 

€a= {(0, {0})}* 

If A = {0, {0}, {0, {0}}} then 

^={(0,{0}),(0,{0,{0}}),({0},{0,{0}})}. 

In the last three examples Ea is an ordering of the set A. If, on the other 
hand, A = {0, {0}, {{0}}}, then 

€*= {<0, {0}>, <{0},{{0}}», 

but since 0 ^ {{0}}, the relation Ea is not an ordering of A. 

We will define a kind of sets that we will temporarily call “good sets.” 
These are intended to be wellordered sets; further, for every wellordered set 
we want there to be exactly one good set that is similar to it. Having done 
this, we can define the order type operation in such a way that it should 
assign a good set to every wellordered set. That is, the good sets will be the 
ordinals. 
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Definition 8.4. We call a set A transitive if all its elements are sets, and 

for each element v of every element u of A, we also have v E A. This latter 

requirement can also be formulated by saying that each element of A must 

also be one of its subsets. 

We remark that if A is a transitive set then every element of its elements 

is also a set, etc. We may express this by saying that A consists of sets 
hereditarily. 

Definition 8.5. The set A is called good if it is transitive and it is 

wellordered by the relation Ea; that is, if A is transitive and (A, Ea) is 
a wellordered set. 

For example, 0, {0}, {0, {0}}, {0, {0}, {0, {0}}} are all good sets. 
However surprising it may be, it will turn out that there are many good 

sets. 

The next three theorems will enumerate the basic properties of good sets. 

Theorem 8.4. If A and B are good sets, then A fi B is also a good set. 

Proof. If A and B are transitive sets then A Hi? is also transitive. Indeed, 

A n B C A, and so the elements of A D B are also sets. If u E An B, then 

u E A, u E B, and so u C A, u C B, and so u C ACiB as well. (AC\B, Eadb) 

is wellordered, since Eadb is the ordering inherited from the wellordering Ea- 

* * 

* 

Theorem 8.5. Each element of a good set is also a good set. 

Proof. Assume that A is a good set and x E A. A is transitive, so x C A. 

Hence it follows that x consists of sets and is wellordered by Ex. Assume 

that u E x and v E u. Using the transitivity of A twice, we obtain that 

u E A, v E A. As Ea wellorders A, Ea is a transitive relation on A, and so 

v E u and u E x implies v E x. That is, for any u E x we also have u Ex. 

Thus x is a good set. 

* * 

* 

Before enunciating the next theorem, we would like to consider the fol¬ 

lowing. 

Lemma 8.1. Let A be a transitive set and assume that Ea orders A. A 

set B C A is then an initial segment of the ordering (A, Ea) if and only if B 

is a transitive set. 

Proof. Assume that B c A and B is an initial segment of A. Then, clearly, 

B also consists of sets only. If u E B then u E A as well, so u is a subset 

of A. If we now have v E u, then v is an element of A that precedes u in 
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the ordering eA‘, thus, B being an initial segment, we have v G B. Hence, if 

u e B then also u C B, and so B is transitive. 
Conversely, assume that B is a subset of A and it is transitive. If u G B 

and i)6 u, then we have v G B in virtue of u C J9; that is, B is an initial 

segment of A. 

* * 

* 

Theorem 8.6. If A is a good set and B is a transitive subset of A, then 

either B e A or B = A; thus B is also a good set. 

Proof. According to Lemma 8.1, B is an initial segment of the wellor- 

dered set (A, G^). We may assume that B is a proper initial segment, since 

otherwise we would have B = A. According to Theorem 8.1, there is an 

x G A such that B = A\ Ea x, the initial segment determined by x. We 

claim that B — x. If v G B, then we have dGi according to the definition 

oi A\ € a Ifuex, then we also have v G A in view of the transitivity of 

A, and so v G A\ Ga x = B. Thus B = x G A. It then follows from Theorem 

8.5 that B is a good set. 

* * 

* 

From now on, we will use a, P, 7, <5 to denote good sets. We are going to 

define an ordering of good sets. 

Definition 8.6. For arbitrary good sets a, (5, we put 

a < 0 <*=> a G p. 

Theorem 8.7. The property < just defined is a wellordering of good sets. 

By this we mean that the three usual properties of orderings are satisfied, 

and, furthermore, if for some property $ we have Bad*(a), then there is a 

least a for which <3>(a) holds. If there is such an 01, we will denote it by 
min<{a : $(a)}. 

We had to add the explanation because, as it will turn out later, the 
collection of all good sets does not form a set. 

Proof. The property < is irreflexive on good sets: Indeed, assume a < a; 

then a G a. Thus we would also have a G ex G at. This, however, is not 
possible since Ga is irreflexive on a. 

The property < is transitive on good sets: Indeed, assume that a < P and 

P < 7- Then aG/l and /? G 7. Now 7 is a transitive set; so we have a G 7, 
that is, a < 7. 

The property < is trichotomous on good sets: Indeed, assume that a ^ 

p. According to Theorem 8.4, a fi P is a good set, and so it is transitive; 
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furthermore, a Pi P is a subset of both a and (3. According to Theorem 8.6, 

the following two assertions hold: on the one hand, 

af] /3 = a or c* fI /3 G a, 

and on the other, 

a fl P = P or aCi @ £ /3. 

If the second part of both assertions hold, then 

a n p e a n p, 

which contradicts the already established irreflexivity. 

Hence, either 

aC\ P = a 

or 

a n p = p. 

As o: 7^ P, exactly one of these relations must be true, and so either 

a n p = p e a 

or 

a n p — a e p 

holds. 

The property < is a wellordering on good sets: Indeed, assume that $(a) 

is true for some property $ and for some good set a. Put 

A = {x € a : $(x)}. 

If A = 0, then a is the least good set with property <&. If A ^ 0, then, noting 

that ea wellorders a, the element min6ct A exists. According to Theorem 

8.5, this element is a good set. Denote min€a A by a0- «o has property 

$, according to its definition. If p < a0, then, a being transitive, we have 

P e a. Hence, P does not have property d>, according to the definitions of 

ao and A. 

We now formulate some important consequences of our results. 
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Corollary 8.1. If A consists of good sets and is transitive, then A is a 

good set. 

Proof. Ga wellorders the set A, since, according to Theorem 8.7, < is a 

wellordering property on good sets. As A is also transitive, it is a good set. 

* * 

* 

Corollary 8.2. There is no set that has each good set as an element. 

Proof. Assuming the assertion is false, there is a set A consisting of all 

good sets. This A is transitive since, according to Theorem 8.5, each element 

of a good set is also a good set. This means, according to the preceding 

corollary, that the set A itself is a good set; thus we have A € A. This 

contradicts the fact that the property < is irreflexive on good sets. 

* * 

* 

Corollary 8.3. If a < /3 then (/3, £p) cannot be mapped monotonically 

onto a subset of (a, Ga); hence, if a and (I are distinct good sets, then (a, Ga) 

is not similar to (j3, Ep). 

Proof. If, on the contrary, there is an / and an A C a such that 

((3,e0) ~f (A, Gar A), 

then / is a monotonic mapping that maps (3 into /3 and 

/(a) Gj3 a. 

This is impossible according to Theorem 8.2. 

The second part of the assertion follows from the first part, since if a ^ f3 

then either a < (3 or (3 < a. 

* * 

* 

The next theorem says that indeed there are many good sets. 

Existence Theorem 8.8. For every wellordered set (A, -<) there is ex¬ 

actly one good set a such that 

(A, -<) ~ (a,G0). 

Proof. According to Corollary 8.3, given an arbitrary wellordered set 

(A,-<), there is at most one such good set. Let A' consist of those ele¬ 

ments a; of A that determine initial segments for which such good sets exist; 
that is, 

A# = {*gA:3/3(A|-«*~<0, g„))}. 
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For an arbitrary x G A1, denote by (3X the unique good set (3 for which 

1 -< *,-<) ^ </3, E/3)). 

According to Theorem 8.3, there is exactly one function / that maps the 

initial segment A\ x monotonically onto Ac! denote this function by fx 
(x G A'). 

We need to make two simple observations. First, if 

<£,^> (fl',-0, 

then g maps an initial segment onto an initial segment, and an initial segment 

determined by an element onto an initial segment determined by an element. 

Second, for arbitrary good sets (3 G a we have 

(a, Ga)| -< (3 = (3. 

Therefore, if x G A' and y ~< x then /X|(A| -< y) maps the initial segment 

A\ -< y monotonically onto a good set; thus it follows that A' is an initial 

segment of A. In fact, the range of this mapping is (3y, and 

fx\{A\ <y) = fy. 

Furthermore, we also have 

(3y < Ac- 

Consider the set {Ac : x G A1}. This set consists of good sets. If 7 € f3x, 

then it follows from what was said before that 7 = (3y for some y € A'; in 

fact, it is easy to see this with 

y = min{2 G A\ -< x : 7 < fx{z)} 

(u < v abbreviates u < vV u = v). Thus the set {(3X : x € A'} is transitive, 

and so it is a good set in virtue of Corollary 8.1. Denote the set {Ac • x G A'} 
by a. Define a mapping / of A! by the stipulation 

/(*) = Ac (* e A'). 

As we have seen, this mapping is monotonic, and so 

(A',<A')^(a,Ga>. 

It is sufficient to show that A! = A. If this were not true, then according to 

Theorem 8.1 we would have 

A! — A\ -< x 
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for some x € A. This is impossible, since in this case we would have x 6 A 

by the definition of A', and so A! = A| -< x would imply x<x. 

* * 

* 

According to Theorem 8.8, there is an operation Tq defined on wellordered 

sets such that for a wellordered set (A, -<) its value Fo((A, -<)) is the unique 

good set a satisfying 
(A, -<) ~ (a, Ga). 

According to Theorem 8.8 and Corollary 8.3, this operation is compatible 

with the similarity property on wellordered sets. 
Therefore we may modify Definition 7.8 of the order type operation as 

follows. 

Definition 8.7. From now on, type A(-<) will denote an operation com¬ 

patible with similarity such that 

type A(-<) = ^0((A, -<)) 

if (A, -<) is wellordered. 

According to Definition 7.8, the ordinals are the values of the order type 

operation on wellordered sets, that is, the good sets. 

We summarize what we know so far about ordinals. 

The property a < /3 (i.e., a E /3) is a wellordering property on ordinals 

(Theorem 8.7). 

Each element and every transitive subset of an ordinal is an ordinal (The¬ 

orems 8.5, 8.6). 

a < P 4=4 a C p 

and 

a < P 4=4" a C P 

(Theorem 8.6). 

According to the stipulation made after Definition 7.8, if A is a finite set 

and |Aj = n, then, for the order type of A in an arbitrary ordering -4, we 

have type A(-<) = n. We will maintain this stipulation, so in what follows 

the nonnegative integers will be identified with the finite ordinals. 

0 = 0,1 = {0} = {0}, 2 = {0, {0}} = {0,1},.... 

This convention will make the symbol n used thus far superfluous, since for 
n G u, we have 

n= {0, l,...,n- 1} = n. 

According to the new notation, 

wo = typew(<) =u = {0,1, ...,n,...}. 

In what follows, we will use the symbol u. 



8. Wellordered sets. The ordinal operation 63 

Corollary 8.4. For arbitrary wellordered sets (A, -<), (A-<') we have 

type A(-<) < type A'(-<') 

if and only if the set (A, -<) is similar to an initial segment (A', -<') determined 
by an element. 

Proof. Let type A(-^) = a, typeA'(-d) = (3. We know that 

{A, ■<) ~ (a,ea), 

(A', -<’) ^ (p, ep). 

On the other hand, 

a < ft a = P\ G/j a A a E p. 

Thus the assertion follows from the transitivity of the similarity property. 

* * 

* 

Next we will establish a few simple theorems for ordinals. 

Theorem 8.9. The addition and multiplication of ordinals is weakly in¬ 
creasing in the first argument, and strictly increasing in the second argument. 

Proof. The assertions concerning weak monotonicity can be proved simi¬ 
larly as Assertion 3 of Theorem 5.4; we will not go into details. As for strict 
mono tonicity, assume that for the ordinals a, p, 7 we have p < 7. We claim 

that 

a + P < at + 7, 

a x p < a x 7. 

Choose disjoint ordered sets (A, -*<), (C, <') for which 

a = type A(-<), 7 = typeC(-0- 

According to Corollary 8.4, there is an x <E C such that, writing B = C\<’ x, 

we have 

type #(-<') = p. 
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Then AU B is the initial segment determined by x of the ordered sum AuC, 
and Ax Bis the initial segment determined by (a0, x) of the anti-lexicographic 

product AxC, where a0 = minx A. Then, using Corollary 8.4 again, we can 

see that 
a -i- /? < a -t- 7, a + P < a + J. 

* * 

* 

Strict monotonicity in the first argument is not true. This is illustrated 

by the following examples: 

0 < 1, but u) = 0 + u) = l+u, 

1 < 2, but u = 1 x w = 2 x w, 

as we saw in Section 7 above. 

Theorem 8.10. For an arbitrary ordinal a, the ordinal a 4- 1 is the least 

ordinal that is greater than a, and 

a -j- 1 = a U {a}. 

Proof. By the preceding theorem, we have a < a + 1. On the other hand, 

a U {a} is a transitive set that consists of ordinals, and so it is an ordinal. 

According to the definition of ordered sum, we have 

type(a U {a})(G) = a + 1, 

and so 

a + 1 = a U {a}. 

Finally, if a < P then a € P; hence 

a U {a} C P, a: U {a} < p. 

* * 

* 

Theorem 8.11. An arbitrary set A of ordinals has an upper bound, that 

is an ordinal that is greater than or equal to each element of A. The least 

upper bound is the ordinal (J A. 

Proof. According to Convention 8 in Section 1, we have |J A = (Jq(EA A. 

We claim that (J A is an ordinal. Indeed, (J A consists of ordinals, since all 

elements of ordinals are also ordinals. Further, |J A is transitive, since it is 
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a union of transitive sets. Thus (J A is an ordinal as claimed. If a G A, then 

a C IJ A, and so a < (J A; so (J A is an upper bound. Assume now that (3 is 

an upper bound of A. Then, for each a E A we have a < (3; and so we also 

have a C (3. Thus we have \J A C ft, and so (J A < (3 also holds. 

* * 

* 

If A is a set consisting of ordinals, then the ordinal is denoted by 

sup A. 

Definition 8.8. The ordinal a is called an ordinal of the first kind or a 

successor ordinal ifct = (3 + 1 for some (3. a is said to be of the second kind 

if it is not of the first kind. If a > 0 and is of the second kind, then a is 

called a limit ordinal. 

For example: u is a limit ordinal, 0 is an ordinal of the second kind, 1, 2, 

..., n, ..., and u + 1 are successor ordinals. 

Problems 

1. Show that 

sup{£ -i- 1 : £ 6 A} 

is the least ordinal that is greater than each element of A. 

2. Prove that if a < (3 then the equation a + £ = /? has a unique solution. 

3. Prove that 
sup{o: + rj + l : ri < £} = a + £. 

4. Prove that if £ is a limit ordinal then 

sup{a x r): rj < £} = a x 

5. Show that there are limit ordinals a and £ such that 

sup{77 + ot : p <£}:££ + a, 

sup {7/ x a : p 

6. * Show that for arbitrary ordinals (3 > 0 and a there are uniquely 

determined ordinals £, p such that 

a = (3 x £ + p and p < (3. 

(This equation is a generalization of division with remainder for positive 

integers.) 
7. * Without using the Axiom of Choice, prove that for every set A there is 

an ordinal a such that a 00 A' holds for every A! C A. (Hartog’s Theorem.) 

8. * Without using the Axiom of Choice, prove that if 

A n a = 0 and A x a ~ A U a 

then there is an A! c A such that a ~ A' or a B c ot such that A ~ B. 

9. * Prove that if for every infinite cardinal we have a2 = o, then the 

Axiom of Choice holds. (Tarski’s Theorem.) 



9. TRANSFINITE INDUCTION AND RECURSION. 

SOME CONSEQUENCES OF THE AXIOM OF 

CHOICE, THE WELLORDERING THEOREM 

In this section we will pay off two of our debts. Namely, we will prove the 

theorems on transfinite induction and transfinite recursion. After this, we 

will list the most familiar statements equivalent to the Axiom of Choice. As 

applications, we will establish some results of set theory that have frequent 

uses in the second part of the book and in other branches of mathematics, 

such as algebra, topology, etc. 

Transfinite Induction Theorem 9.1. Let d>(a) be an arbitrary prop¬ 

erty defined for ordinals. Assume that for every ordinal a the following 

assertion holds: If 3>(/3) is true for every f3 < a, then <£>(a) is also true. In 

these circumstances, $(a) is true for every a. Formally: 

Va (V/3 < a <h(/3) =>■ $(a)) => Va$(a). 

This theorem is a generalization of mathematical induction on nonnegative 

integers. The theorem remains true, with appropriate changes, if instead of 

ordinals we say nonnegative integers or any wellordered collection. 

Induction on nonnegative integers is usually formulated as follows. If <3>(0) 

and for every n < u> we have &(n) ==>• $(n +1), then <h(n) is true for every 
n£w. 

This cannot be translated to ordinals literally, since, for example, 0 is 

finite, and if a is finite then a -i- 1 is finite, and yet there is an ordinal (e.g. 

ui) that is not finite; that is, the literal translation fails for ordinals with the 

property $(a) meaning “a is finite.” The formulation of Theorem 9.1 has the 

advantage of being equally valid for ordinals and for nonnegative integers. 

It is also worth pointing out that the validity of <&(0) need not be required 

separately, since the statement V/? < 0 <&(/?) is true for any property <h. 

Proof. Assume, on the contrary, that there is a (3 for which <f>(/3) is false. 

Then, according to Theorem 8.7 there is a smallest ordinal a for which $(c*) 

is false. Then $ true for every (5 < a, and so it is also true for a, according 

to our assumptions. This is a contradiction, showing that <f>(a) is true for 
all a. 
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* * 

* 

The Transfinite Recursion Theorem will say that there always exists an 

operation F such that F (a) depends in a given way on how F was defined for 

ordinals [3 less than a. This is a much deeper assertion than the Transfinite 

Induction Theorem. Theorem 9.2 will also justify definition by recursion on 

nonnegative integers. 

Transfinite Recursion Theorem 9.2. Let G be an operation that as¬ 

signs a set G(f) to each function f. Then there is a unique operation defined 

for ordinals such that we have 

F(a) = G(F\a) 

for every ordinal a. 

Before we start out with the proof, we recall that the restriction of an 

operation to a set is a function (see Section 4). Theorem 9.2 indeed reflects 

our intentions expressed above, as can be seen by the following considerations. 

The way F is defined up to a is described by the function F|a; this function 

does not only give the values F(/3) for /3 < a, it also specifies how F(/3) 

depends on (3. We are looking for an F such that, for all a, F(a) depends “in 

a way expressed by the operation Gv on how F has been been specified up to 

a; that is, we want an F such that F(a) depends on F\a “in a way expressed 

by the operation G." The proof that follows fits in with the present intuitive 

framework; in the Appendix, we will outline how a more formal proof can be 

given along the same fines (see Theorem A5.1 below). 

Proof. First we show that for every ordinal a there is at most one function 

/ defined on a such that 

(1) Vp<a(m = G(f\0)), 

that is, “an / that up to a satisfies our defining equation.” 

Assume that there are functions f\ and f2 on a that satisfy (1). By 

transfinite induction on /?, we are going to show that 

fM = flip) 

for every ordinal (3 < a. In view of the Transfinite Induction Theorem, for 

this it is enough to show that if (3 < a and /i(t) = .Mt) f°r every 7 6 ft 

then h{(3) = f2{(3). If 

/i(t) = Mt) 

for every 7 < (3, then 

fl\P = f2\P, 
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and so 

fM = G(h\P)=G(f2\P) = MP). 

Thus /i = /2. 

Next we will show by transfinite induction that for every a there is a 

function satisfying (1). Assume that for every 7 < a there is a function 

that satisfies (1). Since we have already seen that there is at most one 

such function for each 7, we may denote the function satisfying (1) with 7 

replacing a by /7. (This is a somewhat vague description; more precisely, 

what is meant is that there is a function that to every 7 assigns /7.) 

Note that if S < 7 < a then /7 clearly satisfies (1) up to S, and so, in view 

of the uniqueness of ft, we have 

Is = f-y\8 for arbitrary ordinals S < 7 < a. 

We now distinguish two cases according as aj a = 7 + 1 is of the first 
kind, or b) a is of the second kind. 

a) Define / as follows: 

D(/) = a, 

/7(<5) for 6 < 7, 

G(/7) for S = 7. 

Then, for every 5 < 7 we have 

f\s = f^\s, 

and so for every S < a 

m = G(/,|S) = G(f\S) 

holds. 

b) For arbitrary 7 < a we have 

7 + 1 < a 

(note that this is true even in the case a = 0). Define f as follows: 

D(/) = a 

and 

V7<Q! /(7) = /7+1(7). 

Then we have 

/(T) = /7+i(7) = fs( 7) 
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for all 7 < S < a, and so 

/It = fs It 
holds for any arbitrary 7 < 5. Thus 

f(i) = fy+i<rt) = = G(fh) 
also holds. 

Thus / satisfies (1) in both cases. Hence, by the Transfinite Induction 

Theorem, for every a there is a (unique) function satisfying (1). 

Denoting this function by fQ for each a, we can define the operation F by 

F(<*) = fa+i(a) 

for every ordinal a. The claim that F satisfies the equation F(a) = G(F\a) 

can be established in a way similar to what was done in case b) when proving 

the existence of fa. Finally, for any two operations Fi, F2 satisfying the 

recursion equation F(a) — G(/|a) of the theorem, we have Fi(a) = F2(a). 

This can be proved by transfinite induction in the same way as the uniqueness 

of fa- 

* * 

* 

Theorem 9.3. The following five assertions are equivalent: 

a) Axiom of Choice. For each system {A7 : 7 G T} of nonempty sets 

there is a choice function. 
b) Wellordering Theorem (Zermelo’s Theorem). For every set A 

there is a relation -< that wellorders A. 

c) Teichmuller-Tukey Lemma. Let A be a set and a property 

defined on all finite subsets of A. Assume that B is a subset of A such that 

each finite subset of B has property <3>. Then B can be extended to a maximal 

subset M of A such that each finite subset of M has property $. (Here the 

ma.Yimfi.1ity of M means that no subset M' of A with M ^ M' is such that 

each Suite subset of M' has property <h.) 
d) Hausdorff’s Maximal Chain Theorem. An arbitrary partially 

ordered subset (P, -<) has a maximal ordered subset M; i.e., no subset M' 

of P with M C M' is ordered. (Partially ordered sets were described in 

DeSnition 7.3.) 
e) Zorn’s Lemma. Assume that in the partially ordered set (P, -<), every 

ordered subset R C P has an upper bound, that is, there exists an xR G P 

such that y -<xR for each y G R. Then there is an x G P that is a maximal 

element, that is, an element x such that there is no element ofP greater than 

x. (Zorn’s Lemma was discovered by K. Kuratowski in 1922 and rediscovered 

by M. Zorn in 1935.) 

The proof of the equivalence of these assertions will of course not rely on 

the Axiom of Choice. 



70 I. Introduction to set theory 

Proof. We will show that the implications a) => b), b) => c), c) d), 

d) ==4> e), and e) =4> a) hold. 
I .a) => b). It is enough to show that there is a function / and an ordinal 

such that a A. Indeed, a wellordering of A can then be defined as follows: 

x ■< y <=* f~l{x) < f~1(y) 

for every x,y G A. 
Let g be a choice function defined on all nonempty subsets of A, i.e., let 

g be such that 

g(X) for X C A with X # 0. 

We may extend g so that it is defined also for the empty set by putting 

<?(0) = a for some a £ A. Such an a exists, since according to Theorem 1.2, 
A cannot contain every set. 

Define an operation F by transfinite recursion on a as follows: 

Assume that F{(3) has been defined for all ordinals (3 < a. Put 

F(a) = g(A\{F(f3) :/?<«}). 

Considering that the argument of g is a subset of A, this definition is mean¬ 
ingful. 

This being the first application of the Transfinite Recursion Theorem, as 

an illustration, we will describe an operation G for which F(a) = G(F|a) 

holds. Since such an operation is usually easy to find, we will not go into 

such detail in the future. In the present case, 

G(!) = g(A \ R(/)) 

is an appropriate choice, since for an arbitrary operation F, we have 

R(F\a) = {Fifi) : (3 < a}. 

According to the Transfinite Recursion Theorem, F(oc) is defined for every 

a. In view of the choice of g, we have either F(a) e A or F(a) = a £ A. We 
are now going to see that if F(a) G A and 7 < a, then 

F(7) G A and ^(7) ^ F(ot). 

Indeed, 

F(a)=g(A\{F(f3)-.f3<a}), 

and so, if F(a) e A then 

A \ {J(0) : D < q} / 0 
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and 

F{a) EA\{F(p) :p<a}. 

Thus, F(a) ^ F(j), since 

F('t)tA\{F(P):f}<a}. 

On the other hand, as 

A\{F(t3):0<a}?9>, 

we have 

A \ {F(f3) : 0 < 7} # 0 

a fortiori, and so 

F(i)eA\{F(fi):l3<i}eA. 

We are next going to show that there is an a such that 

F(a) = a. 

Informally, this means that if we select elements F(0), JF(1), ... of A one 

after the other, we will eventually “run out of elements” of A. Put 

B = {x E A:3a (F(a) = a;)}. 

According to what we showed above, for every x G B there is exactly one a 

for which F(a) = x\ thus we may denote this a by F~1(x). Then 

C={F~1(x) :xeB} 

is a set according to Convention 11 in Section 1. On the other hand, 

C = {fi: F(P) € A}. 

We saw that if 7 < (5 E C, then 7 E C. C consists of ordinals and is 

transitive, and so it is an ordinal. From now on, denote this ordinal by a: 

a={p: F(P) E A}. 

Then F(a) = a, since otherwise we would have F(a) E A, and so a E a. We 

have 
F(a)=g(A\{F((3) :/?<«}), 

and so 
A \ {F{p) : p < a} = 0. 
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Thus, using the notation / = F\a, we have 

ct A. 

Thus we established the implication a) ==> b). 

We can now easily see without any reference to the other implications that 

the Wellordering Theorem is equivalent to the Axiom of Choice. Indeed, if 

tV 7 e r} 

is a system of nonempty sets, then, in possession of the Wellordering Theo¬ 

rem, we can directly specify a choice function: 

Let 

A=\jA1 

7er 

and let -< be a wellordering of A. Then 

fi'y) = min A7 

is a choice function. 

II. b) =>■ c). For the proof, consider the sets A, B described in the 

statement of c). According to the Wellordering Theorem, we can write the 
set A \ B as a sequence 

A\B = {aa : a < r/}, 

where the elements aa are distinct. We can now specify the elements of M. 

Naturally, B must be a subset of M. Using Transfinite Recursion, we will 

decide which elements of A \ B will also belong to M. In precise terms, we 

should say that we are going to define the characteristic function of M, but 

this would make our notation too complicated. 

Assume that a < r), and for all (3 < a we have already decided whether 
ap € M or a@ £ M. Write 

Ma = B U {ap : ap e M and (3 < a}. 

Put aa £ M if and only if every finite subset of Ma U {uQ} has property 

<3>. This completes the definition of the set M. Let X be an arbitrary finite 

subset of M. We claim that the set X has property <&. This is certainly true 

if A C B. If X <£ B, then, X being finite, there is a largest a such that 

aa £ X. Then X C Ma U {aa}, and so X has property <&, since otherwise 
we would not have put aa in M. 
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We have yet to show that M is maximal. For this, we have to show that 

if aa M then M U {aa} has a finite subset X that does not have property 

This is, however, true, since the reason we did not put aa in M was that 

Ma UK) had such a subset X, and 

Ma U {aa} C M U {aa}. 

This completes the proof of b) ==>■ c). 

III. c) =>• d). Let (P, -<) be a partially ordered set. Define the property 

<&(X) for each finite subset X of P by saying that <&(V) is false if and only 

if X has exactly two elements, that is, X = {u, v} with u/i;, and u A v, 

v ^ u. As the empty set has property according to c) there is a maximal 

set R such that each of its finite subsets has property $. Clearly, R is a 

maximal ordered subset. 

IV. d) => e). Let (P, -<) be a partially ordered set satisfying the assump¬ 

tions of Assertion e). According to d), P has a maximal ordered subset R. 

Let xr be an upper bound of R. We claim that xr is a maximal element of 

the set P. Indeed, if there were au£P such that xr -< u, then UU{m} would 

be an ordered subset of P larger than R. This contradicts the maximality 

of R. 

V. e) => a). Let {A7 : 7 e T} be a system of nonempty sets. Let P be 

the set of partial choice functions for this system, that is, 

P = {/ : / is a function and D(/) C T and V7 € D(/) /(7) 6 A7}. 

Define a relation on P by the stipulation 

f < 9 f § 9\ 

clearly, this is a partial ordering. If R C P is ordered, then |J R is a partial 

choice function, and, in fact, it is an upper bound of the set R. Thus, 

according to e), P has a maximal element, say /. We claim that / is a 

choice function for the set system {A7 : 7 6 T}. Indeed, if this is not the 

case, then there is a 7 6 T such that 7 ^ D(/). Then there is a function 

g defined on the set D(/) U {7} such that g agrees with / on D(/) and 

<7(7) e Ay. Then g is a partial choice function with / -< g, contradicting the 

maximality of /. 

* * 

* 
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The Axiom of Choice and the assertions equivalent to it can neither be 

proved nor disproved from the other usual axioms of set theory. We will not 

go into details at this point. 
As we mentioned in Section 2, from now on we will use the Axiom of 

Choice without necessarily pointing this out explicitly. 

Definition 9.1. 1. Let X be a nonempty set and let X C P(I). We say 

that T is a filter if it is not empty, 0 ^ T, and the following two properties 

are satisfied: 

(I) A,B ex ==► A n B e T; 

(II) Ae X and Ac B =» B^T. 
2. T is called an ultrafilter on X if it is a filter and for an arbitrary 

A € P(X) we have either AeForX\Ae T. 

3. T is said to have the Finite Intersection Property if for each finite 

T' e T we have ^ 0. 

As examples, we mention the following filters: 

a) fF = {X}, where X is an arbitrary nonempty set. 

b) If X is an arbitrary set and 0 ^ D C X, then Td — {X C X : D C Y} 

is also a filter. Filters of this type are called principal filters. It is clear that 

a principal filter is an ultrafilter if and only if D is a singleton, that is, a set 

having exactly one element. 

Ultrafilters not of this type can be obtained only with the aid of the 
following theorem. 

Theorem 9.4. Let X be a nonempty set and assume T C X has the 

Finite Intersection Property. Then T can be extended to an ultrafilter; i.e., 
there is an ultrafilter U C P(X) with T CU. 

Proof. According to the Teichmiiller Tukey Lemma, there is a system 

U C P(X) of sets such that F C U and U is a maximal set with the Finite 

Intersection Property. We claim that U is an ultrafilter. 

Clearly, U ^ 0 and 0 ^ U. Assume that A,B e U. HU' C U and U' is 
finite, then we have 

0 # P|(W' u {A, B}) = p|M' n (A n B), 

since U has the Finite Intersection Property. Thus UC{Af\B] also has the 

Finite Intersection Property. In view of U being maximal, we have AC\B e U. 

Assume that A eW, Ac B. IfU'cU and W is finite, then, using the 
Finite Intersection Property of U, we have 

0 £ p|z/n A c f]Wf)B, 

and so U U {B} has the Finite Intersection Property. Again using the maxi- 

mality of U, we have B e W. Thus, so far we have shown that U is a filter. 
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Assume now that A C X and X \ A £ U. Let U' C W be finite. Then, in 

view of the already verified intersection property, that is, Property (I) for U, 

we have (") U' E U, and by Property (II) we have Q U' (jt X \ A. Thus, for 

an arbitrary finite U' CU we have p|W' n A ^ 0; therefore, the set U. U {A} 

has the Finite Intersection Property. Hence A eU follows by the maximally 

of U. 

* * 

* 

Corollary 9.1. If X is infinite, then there is an ultrafilter U C P(X) 

that is not a principal filter. 

Proof. Let T = {X \ {a} : a E X}. As A is infinite, T has the Finite 

Intersection Property. According to Theorem 9.4, there is an ultrafilter U on 

X for which X C U. If U were a principal filter, then there would exist an 

a E X for which a E G for every G eU. This is, however, not possible since 

X \ {a} E U. 

* * 

* 

We would like to point out that we used the Axiom of Choice in the proof 

of Theorem 9.4. It is known that this theorem cannot be proved just by using 

the other axioms. It is known, further, that Theorem 9.4 even together with 

the other axioms does not imply the Axiom of Choice. 

Problems 

1. Let (P, -<) be a partially ordered set. Ac Pis called an independent 

set if for any two of its elements neither a -< b nor b -< a holds. Prove that 

every partially ordered set has a maximal independent subset. 

2. Prove that the assertion of the Teichmiiller-Tukey Lemma is no longer 

true if we say countable set instead of finite set in its formulation. 

3. Show that the following assertion is equivalent to the Axiom of Choice: 

Every set has an ordering, and in every partially ordered set there is a max¬ 

imal independent subset. 

4. For an arbitrary set X put 

H (X) = {/ : / is a function A |/| < N0 A D (/) ClA R(/) C 2}. 

Show that 
\H(X)\ = |A| whenever |A| > No- 

5. * For an ordinal n> u, write 

H(k) = H(H(k)) 
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with the function H defined in the preceding problem. For an arbitrary 

(f> e K2 and i < 2 put 

A+,i = {g€ H(k) : V/ € D(9) (/ C 4, =¥ g(f) = »)}. 

Show that for an arbitrary k G Hft2) the set 

o* ,k(<t>) : ^ ^ D(fc)} 

is not empty. 

6. * Let k be an infinite cardinal. Show that there are 22" many ultrafilters 

on k. 

7. Define the “exponentiation oft of ordinals” by transfinite recursion as 

follows: 

a0 = 1, a/3+1 = oft x a, = sup{c>!7 : 7 < £} 

for £ a limit ordinal. Prove that 

a) oft x oA = 

b) (a0ft = c^*7. 

8.* (Rado’s Selection Lemma) Let {Aa : a < /?} with k > u be a sequence 

of nonempty finite sets. Denoting by [/c]<w the set of finite subsets of k 

(for the definition of this symbol, see Section 12), for each V G [k]<w let 

fv € XQgy be a choice function for {Aa : a € V}. Then there is a 

choice function / G Xa€« Aa such that for each V G [«]<u; there is a V' with 
V C V G [«]<w for which f\V = fv>\V. 



10. DEFINITION OF THE CARDINALITY 

OPERATION. PROPERTIES OF CARDINALITIES. 

THE COFINALITY OPERATION 

In this section, we will present the remaining proofs that were omitted earlier. 

In the second part of the section, we will prove the Fundamental Theorem 

of Cardinal Arithmetic, and then we will prove some further results about 

cardinals. 

Theorem 10.1. The operation min<{a : a ~ A} is compatible with the 

property ~. 

Proof. According to the Wellordering Theorem, the expression min< {a : 

a: ~ A} is well defined for every set A. Denote this operation briefly by 

F(A). According to its definition, for arbitrary sets A, B we have A ~ F(A), 

B ~ F(B). Therefore we have A ~ B whenever F(A) = F(B). On the other 

hand, if A ~ B then for every a we have a ~ A <=>• a ~ B, and so 

F(A) = rrnnfa : a ~ A] = nun{a : o: ~ B} = F(B) 

holds. 

* * 

* 

Thus we have completed the proof of Theorem 2.3. Next we are going to 

modify Definition 2.5: 

Definition 10.1. The operation 

minlo: : o: ~ A} 
< 

is denoted by \A\. In words, this means that the cardinality of a set is the 

least ordinal that is equivalent to it. 

With this notation, we now have three different symbols for u>, as u> = 

u>o = No- Furthermore, for an arbitrary n e u we have |n| = n = n. This 

definition is the reason that we needed different symbols for the cardinal and 

the ordinal operations; namely, 

U> + UJ = U) (No + No — Nq), 
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but 
U> 4- U) 7^ U, 

and 

U • U! — u (N0 • No = N0), but OJ X u / u. 

As cardinals are also ordinals, in what follows we will also use lower case 

Greek letters (usually k, A) to denote cardinals. This may not be easy to get 

used to, but it is well worth doing, since identifying cardinals with ordinals 

often significantly simplifies the presentation of proofs. 

Corollary 10.1. For an arbitrary set A we have ||A|| = \A\, that is, |A| 

is a set of cardinality |A|. 

Proof. We have |A| ~ A, hence both sets have the same cardinality. 

* * 

* 

We remark that this property of the cardinality operation was used in 

Definition 5.4 when defining cardinal operations with infinitely many argu¬ 
ments. 

Corollary 10.2. An ordinal f is a cardinal if and only if for every 77 < £ 
we have 77 

Proof. £ is a cardinal if and only if |£| = £. Furthermore, |£| is the least 
ordinal that is equivalent to £. 

* * 

* 

Corollary 10.3. The partial ordering by size of the cardinals is the same 

as the ordering of ordinals. Hence, the partial ordering of cardinals is tri- 

chotomous, i.e., it is an ordering, and this ordering is also a wellordering. 

Proof. For the duration of this proof, denote by <* the partial ordering 

by size of cardinals described in Definition 4.1, and by <, the ordering of 

ordinals. Let k, A be cardinals. If « < A then k C A, and, A being a 

cardinal, we have k ^ \ according to Corollary 10.2. Hence we have k <* A 

also. Conversely, assume that k <* A. Then there is an A C A such that 

* ~ A- According to Corollary 8.3, typeA(e) < A. On the other hand, 

K tyPeA(£) by Corollary 10.2. Thus k < A. Since k = A is impossible by 
our assumption, we have n < A. 

* * 

* 

In the proof of Corollary 10.3 given above, we only used the definition of 

<*. Considering that < is antisymmetric for ordinals, we obtained a new 
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proof of Bernstein’s Equivalence Theorem, albeit one that uses the Axiom of 

Choice. 

We are going to show next that there is an operation that is compatible 

with the property This is the last result that we owe the proof of. 

Theorem 10.2. Define the operation F((A, -<)) for an arbitrary ordered 

set (A, -<) as follows: 

F((A,■<)) = {<|A|, -<') :Ve P(Vl) A (Ml, V) (A,■-<)}. 

That is, F((A, -<)) is the set of all ordered sets of form (|A|, -<’) that are 

similar to (A, -<). The operation so defined is compatible with the relation 

Proof. If (A, -<) is an arbitrary ordered set, then 

F((A, *))?!>, 

since there is an / for which A |A|, and then (|A|, -<') G F((A, -<:)) for 

the ordering -<' defined by the stipulation 

x -<' y /-1(z) -< f~1(y)- 

Furthermore, if 

and (|A|, -<') G F((A, -<) 

and so 

On the other hand, if 

then 

and the relation (|A|, -<' 

(A,-<) (Ai, -<i), 

i, then 

F((A,<)) / F((Ai,-ti)). 

€ FI (A, <)) implies 

<|>1|, V) e F((A!, Xi». 

Therefore, 
F((A, = F((A,, 
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holds if and only if 

(A,-<) ~ (Al5^i). 

* * 

* 

Thus we have also established Theorem 7.3. 

We can now stipulate that typeA(-<) denotes an operation whose val¬ 

ues for non-wellordered sets are given by the above operation F, and for 

wellordered sets are given by Definition 8.7. In this way, we obtained an op¬ 

eration that is compatible with similarity. This operation certainly satisfies 

the condition that, for non-wellordered sets, type(A, -<) is a set of ordered 

sets of order type (A, -<). This was needed for the definition of order types 

in the case of infinitely many arguments; aside from this, we will not need 

the particular form of the operation type (A, -<). 

The isomorphism types of arbitrary structures can be defined in a similar 

way. We will, however, not be concerned with this question here. 

Fundamental Theorem of Cardinal Arithmetic 10.3. For an arbi¬ 

trary cardinal k > u> we have n2 — k. 

Proof. The ordering according to size of the cardinals is a wellordering, 

and so we can use transfinite induction to prove the assertion. We already 

know that the assertion is true for k — u. Assume that n > u and the 

assertion is true for each cardinal A with u> < A < k. Then we have 

(1) A0+Ai<k and A0 • Ai < k for A0,Ai</t. 

Indeed, we may assume that Ao < Ai, and as we have k > uj, we may also 

assume Ai > u>. Thus, by the induction hypothesis we obtain 

Aq T Ai < 2Ai < A^ = Ai < k 

and 

• Ai < A^ < k. 

We have to show that k2 = k holds. Let A = k x k be the set of ordered 

pairs formed by elements of n. |A| = k2, and so it is enough to show that 

|A| < k. We claim that to this end it is enough to specify a wellordering ^ 
of |A| such that 

(2) |A| -< x\ < k 

holds for each element of x E A. Indeed, assume that satisfies (2). Let 

£ = typeA(-c). 
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If 77 < £, then we have |t/| < k in view of (2), and so rj < k. Thus £ C k, and 

so £ < k. Hence 

l£l <■£<*• 
We are now going to describe a wellordering satisfying requirement (2). 

For an arbitrary a < «, write 

Aa = {(£, rj) : max(£, rj) = a}. 

It is clear that the sets Aa are pairwise disjoint and 

A = U Aa. 
a<K 

Let -<a be the ordering of Aa inherited from the lexicographic product. This 

is a wellordering according to Theorem 7.6. Let -< be the ordering of the 

ordered union of the -<a’s with respect to the natural ordering < of k. Ac¬ 

cording to Theorem 7.4, -< is a wellordering. 

Next we show that -< satisfies (2). Let x G A. Then x G Aa for some 

a < k. By the definition of ordered union, we have 

A\ < x C |J Ap. 
0<a 

For an arbitrary (3 clearly 

Ap C (/? 4- 1) x (p 4-1) 

holds. Hence 

|A\ -< x\ < \(P + 1) X (£ + 1)1 < E la + 1|2 ^ + x)3- 
p<a P<a 

Noting that |a| < a < k, the right-hand side is less than k in view of (1). 

Hence 
|A| 

* * 

* 

As a consequence of the theorem just proved, we have 

A + k = A • k = max(A, k) 

for all cardinals A, k with max(A, k) > w; in fact, this is directly shown by 

the calculations carried out within the proof. In what follows, this relation 

will be used without any reference. 
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Corollary 10.4. For every k > u, the set of all finite sequences formed 

by elements of k has cardinality k. 

Proof. All we need to show is that 

£*” = «• 
n£u> 

As Kn+1 = Kn • k, it follows by induction from the preceding theorem that 

Kn — k for n with 1 < n < u>. Hence 

^2 = K • U) = K. 

ngw 

* * 

* 

Definition 10.2. The least cardinal greater than the cardinal k is de¬ 

noted as and is called the successor of k. That is, 

k+ = rmn{A : k < A}. 

The definition is sound since for every k we have 2K > k. We would like to 

point out that the notation just introduced will be used for finite cardinals 

as well. If k < ui, then «+ = «+ l = K-f-l. 

Theorem 10.4. For each n> u>, the cardinality of the set of ordinals of 
cardinality k is k+, that is, 

"+= |{« : Ifl = «}|. 

Proof. 

and 

Thus 

|£| £ n 4=>- £ > K 

|£| < K+ 4=4 £ < «+. 

|£| = K K < £ < K+. 

Therefore, 

{£ : |f| = «} = {£ : k < f < k+} = k+\k. 

On the other hand, 

K+ = (k+ \ «) U K, 
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and so 

k+ = |k+ \ «| + k = max(|«;+ \ «|, «). 

As k < k+, we obtain 

K+ = |k+ \k\ = |{£ : |£| = k}\. 

* * 

* 

In particular, we have 

that is, the least uncountable cardinal is the cardinality of the set of all 

countably infinite ordinals. 
The next theorem expresses the fact that the sum of several cardinals can 

be obtained by forming a maximum or a supremum. 

Theorem 10.5. Let A be a set of cardinals. Then 

1. sup A is a cardinal; 

2. If sup A is infinite, then 

y A = sup A. 

\£A 

Proof. We know that 

sup A = A. 

1. Denote the cardinal |supA| by k. Assume k < sup A; then k g A for 

some A e A. As A C sup A, we then have | A| < k < A. This is a contradiction, 

since A is a cardinal. 

Hence 
sup A| = sup A, 

and so sup A is a cardinal. 
2. Denote the cardinal sup A by k. In view of what we said above, we have 

« = (J A, and so the relation 

« < lAl 
a eA 

is immediate. On the other hand, we have 

Ew = £a 
\eA aeA 
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since the elements of A are cardinals. Furthermore, for A G A we have A C k, 

and so A < k; thus Ack + 1. Thus, using the assumption k > u, we obtain 

A £A 

< K • Itt + 1| K = K. 

* * 

* 

We will now introduce a new notation for infinite cardinals. 

Definition 10.3. Define the operation ua for an arbitrary ordinal a by 

transfinite recursion on a: 

Uq = U. 

Let a > 0 and assume that we have defined up for all (3 < a. Let ua be the 

least cardinal that is greater that each up defined so far. That is, 

ua = min{«; : k is a cardinal A V/? < a (k > Up)}. 

This definition is sound, since such a cardinal always exists according to 

Theorems 10.4 and 10.5. For historical reasons, we denote ua also as Na. 

This notation is dated to the times when cardinals were not identified with 

ordinals. Then ua denoted the least ordinal of cardinality Na. Today we 

often write Na instead of ua when we discuss statements involving mainly 
cardinals. 

Theorem 10.6. 

1. ua is an infinite cardinal. 

2. ua < up whenever a < (3. 

3. For an arbitrary cardinal k> u, there is an a such that k = ua. 

4. ua ~ supja^ : (3 < a} for any limit ordinal a. 

5. wq+1 = (u>a)+ for every a. 

Proof. Assertions 1 and 2 follow directly from the definition. 

3. Let k > u. In view of Assertion 2, up uniquely determines (3. Therefore 

the set {(3 : up < k} of ordinals exists, in view of Convention 11 of Section 1. 

Using Assertion 2 again, this is a transitive set, so itself is an ordinal. Put 

a = {(3 : up < «}. 

In view of ua being the least cardinal greater than all the up's, we have 

ua < k. We cannot have ua < k, since that would imply a e a. Hence 

k = u. 
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4. If a is a limit ordinal, then we also have (3 + 1 < a for each /3 < or, 

furthermore a > 0. Hence, for an arbitrary (3 < a we have 

sup{u;7 : 7 < a} > u^ > up. 

By virtue of the preceding theorem, supfa;^ : (3 < a} is a cardinal, and so 

supju^ : (3 < a) 

is precisely the least cardinal that is greater than each up. 

Assertion 5 is obvious from the definition. 

* * 

* 

Definition 10.4. Let k > u. We call k a successor cardinal if k — A+ 

for some A; we call k a limit, cardinal if it is not a successor cardinal. 

It is clear from the aforesaid that k — uQ is a successor cardinal if and 

only if a is a successor ordinal; further, if k is a limit cardinal then k = 

sup{A : A < «;} = Y1\<k where A runs over cardinals. For example, No> ^ 

are limit cardinals, and Ni, • • •, Nn, ... are successor cardinals. 

Definition 10.5. Let (A, -<) be an ordered set, and let B C A. We say 

that B is cofinal in A if for every x e A there is y G B for which x <y. 

For example, u is cofinal in (R, <); {u>} is cofinal in u -i- 1. 

HausdorfF Cofinality Theorem 10.7. Given an arbitrary ordered set 

(A, -<), there is a wellordered subset B cofinal in it such that 

type£(-<) < |A|. 

Proof. Consider a wellordering X i of A for which 

type A(-<i) = \A\. 

Define B as the set 

{y e A : Vz e A (y -< z => y <i z)}. 

We are about to show that B is cofinal in A. Let x € A. We claim that 

y = min{z € A : x < zj 

is an element of B. Indeed, if z € A and y -< z, then x < z, and so y -<i z 

also holds in view of the choice of y. Hence y e B. 
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It is easy to see that the two orderings are identical on the set B. Indeed, 

let y,z e B and assume that y -< z. It follows from the definition of B that 

y -<i z. Thus -< wellorders B, and 

type B(-<) = typeB(-<i) < typeA(-<i) = \A\. 

* * 

* 

Definition 10.6. Let (A, -<) be an arbitrary ordered set. The least or¬ 

dinal £ for which (A, -<) has a wellordered subset B of type £ cofinal in A is 

denoted as cf((A, -<)), and is called the cofinality of (A, -<). 

The definition is sound according to Theorem 10.7, and 

cf«A,^))<|A|. 

If 

(A,x)~(A',^), 

then clearly 

cf«A,x))=cf«A',^'>)- 

Thus the following definition is also sound. 

Definition 10.7. For an arbitrary order type 0, let (A, -<) be any ordered 

set with type((A, -<)) = 0. Then cf((A, -<)) is also denoted as cf(0), and is 

called the cofinality of 0. 

Clearly, cf((A, -<)) = 1 if and only if (A, -<) has a last element. If (A, -<) 

has no last element and A ^ 0, then 

cf((A, -<)) > u>. 

Examples: cf (n) = 1 if n > 0 and new; 

cf(a;) = a?; 

cf(ww) = u>, since {a;n : n G u} is cofinal in (u/^, <). 

In what follows, the following concept will be of fundamental importance. 

Definition 10.8. Let £ be an arbitrary ordinal. £ is said to be regular if 

cm=* > i, 
and it is said to be singular if 

1 < cf(0 < £. 
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Examples: u> is regular; 

u>v is singular; 

u> -fi u> is singular; 

but n for n £ u and u + 1 are neither regular nor singular. 

The next theorem exhibits an important property of the possible values 

for cf(0). 

Theorem 10.8. 1. For an arbitrary order type 0^0, cf(@) is either 1 

or it is a regular cardinal. 

2. Every regular ordinal is a cardinal. 

Proof. If the ordered set (A, -<) and the sets C, B with C C B C A are 

such that C is cofinal in B and B is cofinal in A, then C is clearly cofinal 

in A. From this, it immediately follows that 

Now let A be an ordered set with 

type((vl, -<)) = ©• 

Put 
p = cf(0) > 1. 

Choose a set B c A such that typel?(-<) = (3 and B is cofinal in A. Accord¬ 

ing to the remark made just before, we have 

cf(/3) = cf((B, -<)) > cf«A, -<)) = P- 

As cf(P) < P clearly holds, we obtain 

cf (P) =P> 1, 
and so cf(0) = P is a regular ordinal. 

Assertion 2 follows form the Hausdorff Cofinality Theorem. Indeed, let P 

be a regular ordinal, that is, 

d(P) = P> 1. 

According to Theorem 10.7 we have 

cf(P) < \P\ and \P\ < p. 

Thus P =\P\, and so p is a cardinal; it cannot be finite, since then cf(/?) < 1 

would hold. 

* * 

* 

It is worth pointing out that the theorem immediately implies that if 

f < U! is a limit ordinal, then cf(f) = w; that is, every countable limit 

ordinal has a subset of order type ui that is cofinal in it. 

As we have seen, not every infinite cardinal is regular. For example, is 

singular. The following corollary is however true. 
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Corollary 10.5. Every successor cardinal is regular. 

Proof. If k is an infinite cardinal, then it is a limit ordinal. Indeed, k = 

£ 4- 1 is not possible, since in this case we would have 

M = maxflf |, 1) = |f | < £ < «• 

Furthermore, we can see that if £ is a limit ordinal then a set A C £ is 
cofinal in (£, <) if and only if 

A = sup A = £. 

Now let n = A+ for some A > u>. Then n is a limit ordinal. Assume that 

A c k and type A(-<) < k. 

Then |A| < k, thus |A| < A. and, further, |£| < A for each £ 6 A. Thus 

| sup A\ < |^J a| < A2 = A < «, 

and so sup A < n. Thus A is not cofinal in k. 

* * 

* 

Not every regular cardinal is a successor cardinal; in fact, u is a regular 
limit cardinal. The question arises whether there are regular limit cardinals 
greater than u>. Regular limit cardinals are called inaccessible cardinals; 
occasionally, they are also called weakly inaccessible cardinals. A cardinal k 
that satisfies the requirement 

VA < k (2a < k) 

is called a strong limit cardinal; there are many strong limit singular cardi¬ 
nals. Strong limit cardinals that are regular (and therefore inaccessible) are 
called strongly inaccessible. In particular, a; is a strongly inaccessible cardi¬ 
nal. The problem of the existence of inaccessible cardinals greater than u 
will be discussed in Sections A9 of the Appendix and in Section 15. 

Next we give a characterization of cf(«) for infinite cardinals k. 

Theorem 10.9. For every infinite cardinal n, cf(«) is the least ordinal a 
such that there is a sequence < k : £ < a} of cardinals with 

J2 k* = k- 
£<a 
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Proof. Denote the least a satisfying the above requirement by ao- First we 

show that ao < cf(«:). Indeed, let A C k be a set such that type A(<) = cf(«) 

and A is cofinal in («,<). As we saw in the proof of Corollary 10.5, we then 

have (J A = k. Thus 

« < ICI ^ 

and so 

« = SlCI- 
CeA 

As |C| < k for C < «, we obtain that 

c*o < typeA(<) = cf(«). 

We next show that 

cf(«) < ao- 

As cf(«) < k, for the proof we may assume that cto < «• Choose a sequence 

{«£ : £ < ao} of ordinals such that < k for £ < ao and 

€<c*o 

Write 

A = {«£ : £ < ao}- 

We claim that A is cofinal in (k, <). Indeed, assinning that this is not the 

case, there is an ordinal p < n such that A C p. Therefore 

^ < \p\ |a0| < k 

C€ao 

in view of the assumption ao < This is a contradiction; therefore A must 

be cofinal in k. Then we have 

cf(/c) < cf((A, <)) 

according to what we said in the proof of Theorem 10.8. On the other hand, 

by the Hausdorff Cofinality Theorem, we have 

cf((A, <)) < |A| < | type A(<)| = |a0| < «o- 

Thus cf(/c) < ao- 
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Theorem 10.10. Let (A, -<) be an arbitrary ordered set, let B,C C A, 

and assume that B and C are both cohnal in A. Then 

cf((B, -<» == cf«C, -<)). 

Proof. Write 

cf((-B, -<)) = /?, cf((C, -<)) = 7. 

For reasons of symmetry, it is sufficient to prove that 

7 < P- 

According to the definition of cofinality, we can find sets Bi C B and Cx C C 

such that 

type((#i, -<)) = (3, type((Ci, -<)) = 7, 

and, further, B\ is cofinal in B and C\ is cofinal in C. Thus both B1 and C\ 

are cofinal in A. Let / be a function such that D(/) = B1 and 

f(x) = min{2/ € Ci : x ^ y}. 

As C1 is cofinal in A, this definition is sound. Now f“B 1 is cofinal in C, 

since for every z E A there is an x G Bi such that 

z x X f(x) G f“B 1. 

Thus 

type/“Si(-<) > 7. 

On the other hand, as f“B 1 C Ci, we also have typef“Bi(^.) < 7; that is 

type/“5i(-0 = 7. 

Now let g be a function such that D(^) = fuBx and 

g(y) = min{x :f{x) = y}. 

Then g is a monotonic mapping from / “Bx onto Bx, and so 

7 = type/“Si(^) < type^i(^) = (3. 
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Corollary 10.6. If k is a limit cardinal, then there is a strictly increasing 

sequence : £ < cf(«)} of cardinals such that 

Ki = K- 

£<cf(rc) 

Proof. If k is a limit cardinal, then the set 

A = {A < k : A is a cardinal} 

is cofinal in k, since for every £ < k, we have 

£<|£|+<«- 

Hence, according to Theorem 10.10, we have 

cf((A<)) = cf(«). 

Let B C A be such that B is cofinal in A, and so in k as well, and type £?(<) = 

cf(«). Let B = {k,£ : £ < cf(«)} be a strictly increasing enumeration of order 

type cf(«) of B. Then, as we saw earlier, 

*= Kz- 
f <cf(>c) 

* * 

* 

Problems 

1. Let k > u> and let {Aa : a < k} be a system of sets, each having 

cardinality k. Prove the following: 

a) There is a one-to-one choice function [Aa : a < k}. 

b) There are pairwise disjoint sets Ba C Aa such that \Ba\ = k for a < k. 

2. Prove that if © is the order type of an uncountable set, then for every 

a < Ui, we have either a ■< 0 or a* ■< © (the relation < for order types was 

defined in Problem 7.3). 
3. Prove that if k = and a is a limit ordinal, then cf(«) = cf(a). 

4. + For an arbitrary set X C R, let X' denote the set of accumulation 

points of X. For an arbitrary ordinal a, define the sequence by trans- 

finite recursion as follows: 

jf(°) = x, x(a+1) = (Xtoy n x, 
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X® = p|{V(/3) : (3 < £} 

if £ is a limit ordinal. Prove that 

a) there is an ordinal a < u>\ such that = V(a+1); 

b) if for the a in Part a) we have = 0, then X is countable; 

c) if F is closed and = p(a+1), then F \ F^ is countable, and F 

is a perfect set. 

5. The set system S is a <x-ring if for A,B € S we have A\B 6 S, and for 

every countable set S' C S we have (J<S' £ S- Prove that if Z C P(K) and 

\Z\ < 2n°, then there is a <r-ring S C P(R) such that Z C S and |«S| < 2N°. 

6. Define the cofinality of a partially ordered set (P,-<) as follows: 

1) For A C P, we say that A is cofinal in (P, -<) if for an arbitrary p € P, 
there is a q € A for which p < q. 

2) cf(P, -<) = min{|>l| : A is cofinal in (P, -;)}. 

a) Verify that with the notion of cofinality so defined, the Hausdorff Co¬ 

finality Theorem remains valid for partially ordered sets in the sense that 

every partially ordered set P includes a well-founded subset B that is cofinal 

in P. Here (B, -<) is said to be well-founded if every nonempty set X C B 

contains a -^-minimal element, i.e, an element u such that -i v -< u holds for 
each v e X. 

b) Show that cf(P, -<) may possibly be a singular cardinal. 

c) * Show that if cf(P, -<) is a singular cardinal, then P includes an infinite 

independent set. (Independent sets were defined in Problem 9.1.) 
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In the course of the proof of the Fundamental Theorem of Cardinal Arith¬ 

metic in the preceding section, we saw that we can always determine the 

values of the sum n + A and of the product k • A for infinite cardinals. In 

this section, we will discuss the operation A*. As we shall see, this will lead 

to much more difficult problems. At this point we only know that 2K > k 

according to Cantor’s Theorem (Theorem 4.6). This we obtained by reduc- 

tio ad absurdum, using the method of diagonalization, but this method is 

capable of establishing only that 2K is not equal to k. Thus the question 

immediately arises: is the equality 2K = k+ true? 

The cardinal 2N° has been the object of intensive study. The problem 

of determining the value of 2N° is called the Continuum Problem, and the 

assumption that 2*° = Ni is called the Continuum Hypothesis. The problem 

of determining the value of 2K is called the Generalized Continuum Problem, 

and the assumption that 2K = k+ for every cardinal n > u> is called the 

Generalized Continuum Hypothesis, customarily abbreviated as GCH. These 

problems and conjectures have already been discussed by Cantor. Since 

for many years no significant progress had been made on the resolution of 

these questions, the conviction emerged that the assumptions (axioms) of 

set theory are not sufficient to answer them. The unsolvability of these 

fundamental problems was one of the driving forces in the development of 

methods of axiomatic set theory and mathematical logic. 

In 1939, K. Godel showed that GCH cannot be disproved with the aid of 

the axioms of set theory. Somewhat more precisely, this means that if the 

axioms of set theory do not lead to a contradiction, then they do not lead 

to a contradiction even if we add the assumption V« > u> (2K = k+) to the 

axioms. 
Only much later, in 1963, P. Cohen proved that the assertion 2 0 = Ni 

cannot be proved from the axioms of set theory. Later, using his method, 

it was shown that even the assumption that the continuum is arbitrarily 

large” does not lead to a contradiction. In fact, the only restriction on the 

value of 2Ko is J. Konig’s Theorem to be proved below, according to which 

cf(2H°) 7^ U). 
What has been said above indicates that there are only a few results that 

say something significant about the behavior of the value of A . We will 

present the two most important ones among these. As we will show below, 
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these results are always sufficient for determining the value of XK under the 

assumption of GCH. 

Konig’s Theorem 11.1. Let {A^ : £ < a} and {«£ : ^ < a} be two 

systems of cardinals such that A^ < holds for every £ < a. Then 

£<« €<a 

Before we establish this theorem, we would like to point out that this result 

is in fact a generalization of Cantor’s Theorem. Indeed, putting A^ = 1 and 

= 2, we obtain the inequality |a| < 2la|. The theorem will be proved with 

the aid of a clever use of the diagonalization method. 

Proof. Denote the sum by A, and the product by k. Choose pairwise 

disjoint sets L£ such that 

= A and A$ = |L$| 

holds, and introduce the notation 

K=X*s- 
Z<a 

Then \K\ — k. We have to prove that 

k ^ A. 

Assume, on the contrary, that k < A, that is, there is an L C A and a 

mapping / for which L f K- 

The value f(x) of the function / at a place x E L is a function in K. 

Denote the value of this function at £ by /(x)(£). For an arbitrary £ < a, 
define the set 

Ki = {/(z)(0 : x E n L}. 

As 

IL$ Pi L\ < |L^| = A^ < K^, 

we have 

l-KIel < 
and so 

\ ^ 0 for all £ E a. 

Consider a choice function (f> such that 0(£) E holds for each £ < a. 
Then (j) is an element of K. We claim that 

# f(x) 
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holds for any xei. Indeed, if then, on the one hand, x G fi L for 

some £ < a, and so 

/(*)«) € K(, 

on the other hand, 0(£) ^ K{, and therefore 

/(*)(£) # <K0; 

thus /(x) / 4> holds. This contradicts the assmnption that / maps L onto K. 

This contradiction shows that our assumption was incorrect; that is, A < k 

indeed holds. 

* * 

* 

Corollary 11.1. Let : £ < ct} be a strictly increasing sequence of 

cardinals, where a is a limit ordinal and k0 > 0. Then 

< n «€• 
£<a 

Proof. We have 

yi ** < n - n ^ 
£<a £<« €<« 

The first inequality follows from Konig’s Theorem, as ^ < «c+1 for k < a. 

To see the second inequality, notice that if £, q < a and £ ^ r/ then £ + 1 / 

^4-1 and £ + 1 < a. Thus the product on the left-hand side is obtained 

from the product on the right-hand side by omitting certain factors, each of 

which is not less than 1. 

* * 

* 

Corollary 11.2. For each cardinal k> u>, we have 

kc{{k) > k. 

Proof. If k is regular, then 

«cf(*) = = 2K > K. 

Assume now that k is singular. Then k is a limit cardinal, and so, by 

Corollary 10.6, there is a strictly increasing sequence {«€ : £ < cf(/c)} of 

cardinals such that _ 

k= z2 K*- 
£<cf(/s) 
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We may assume that Ko > 0. Then 

K< J] K€ < 

£<cf(fi) 

* * 

* 

Corollary 11.3. Let n and A be cardinals such that k > u> and A > 2. 

Then cf(A*) > k. 

Proof. In view of the assumptions, \K is an infinite cardinal. We have 

(A«)cf(AK) > A« 

according to Corollary 11.2. On the other hand, if r < k, then 

(A'T = A*T = A*. 

Hence 

Cf(A“) £ K. 

* * 

* 

As a special case, this result implies the inequality cf(2K°) ^ K0. This 
latter implies 

2No 

for example. 

The next theorem shows that the value of ka can, on occasion, be calcu¬ 
lated from the values of rA for r < k. 

Bernstein-Hausdorff-Tarski Theorem 11.2. Let k > u and A be 

cardinals such that 0 < A < cf(At). Then, with t running over cardinals, we 
have 

T<K 

Proof. As A > 1, it follows from the monotonicity of cardinal exponen¬ 

tiation that the left-hand side is not smaller than the right-hand side. AK, 

according to its definition, equals the cardinality of the set A« of functions' 
We will show that this set satisfies the equality 

A« = 1J A£ 
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(here £ runs over ordinals). The set on the right-hand side is clearly a subset 

of the set on the left-hand side. Assume that / 6 xk. The range R(/) of 

/ is a subset of k of cardinality at most A. As A < cf(/t), the set R{f) is 

not cofinal in (k, <), according to the definition of cf(«). This means that 

there is a £ < n for which R(/) C f; thus / 6 A£. Therefore, the set on 

the left-hand side is also a subset of the set on the right-hand side; that is, 

the two sets are equal. Hence the assertion can be verified via the following 

calculation: 

«A = Z iA£i= Z = Z rAK£; i£i = r}| ^ (ZrA)*- 
£<k £<k . , T<« 

r is a cardinal 

* * 

* 

We give two examples as applications of this theorem. 

Example 1. For an arbitrary n G w, we have 

N*° = 2«o . Nn. 

This was the original form of Bernstein’s Theorem. We will prove the as¬ 

sertion by induction. The assertion is obvious for n = 0. Assume that the 

assertion is known to be true for an integer n. Using Theorem 11.2, we obtain 

= (E + E k*°) ■ ‘w = (E +2>t0 • *>) •*»+>• 
t=0 k<w *=0 

On the right-hand side, the sum in parentheses has only finitely many sum¬ 

mands; so the sum equals the largest one of these. Hence 

N*°+i = ' N«+i- 

Using the induction hypothesis, we obtain 

= «n° ■ *Wl = 2"° • • K+l = Z"0 • N.+1- 

If we assume the continuum hypothesis, N{J0 can be expressed even more 

simply: 

K° = 

for an arbitrary 1 < n < u. We cannot use Theorem 11.2 to calculate M^,0, 

as 
cf(^) = Ro- 

We certainly know by Theorem 11.1 that 
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Example 2. = X)a<Wl ^a°- 
In order to be able to use Theorem 11.2, we need to show that 

H0 < cf(NWl). 

We claim that 

cf(NWl) = u i. 

According to Theorem 10.9, we have 

cf(NWl) = cf(({Na : a < wi}, <)). 

The set {Na : a < Ui} has order type ui in the ordering <, and so its 

cofinality is u>i, since u>i is a successor cardinal, and so, according to Corollary 

10.5, it is regular. 
We can now use Theorem 11.2. According to this, we have 

Nf° = (£ 
a<u> i 

Here we can omit , since 

a<u>i a<a>i 

If one is unable to solve a problem in set theory, it may be worthwhile to 

examine the problem with the assumption of GCH. According to the result 

of Godel mentioned above, in set theory it is not possible to disprove a result 

proved with the aid of GCH. 

Theorem 11.3. Assuming the Generalized Continuum Hypothesis, for 
an arbitrary cardinal k, we have 

1 for A = 0, 

for 1 < A < cf(/c), 

K+ for cf(«) < A < K 

A+ for K < A. 

Proof. According to our assumption, we have 

2T = r+ 

for an arbitrary cardinal r > u>. If 1 < A < cf(/c), then 

* < rA) ‘ « < «( 53 2T A) - K(53(max(r> A))+) < «2 = « 
T<K T<K T< K 



11. Properties of the power operation 99 

holds according to Theorem 11.2. Thus nx = k. If cf(«) < A < k, then by 

Corollary 11.2 we have 

k < Kcf(re) < kx < 2kX = 2K = K+. 

Therefore k < kx < k+, and so nx = A+. Finally, if k < A, then 

2A < ka < 2kX = 2a = A+. 

* * 

* 

It is interesting to point out that for about fifty years it had been a gener¬ 

ally accepted belief that there is no essential restriction on kx other than the 

theorems stated and proved in this section. In a surprising turn of events, 

the following result was discovered in 1974. 

Silver’s Theorem 11.4. Let k be a singular cardinal with cf(«) > u>, 

and assume that the Generalized Continuum Hypothesis holds for cardinals 

less than k, that is 2X = A+ holds for A with uj < A < k. Then 2K = 

The proof of this theorem is surprisingly simple, but it needs some tools 

not yet discussed. The proof will be given in the second part of the book, 

after these tools have been introduced. In Sections 21 and 22, there is a 

brief survey of generalizations of Silver’s Theorem and other results about 

cardinal exponentiation. 

Problems 

1. Prove that if 2N" = Nw+1 for every nGw, then 2Nw = ^+1- 

2. For an arbitrary cardinal k > put [1(K) = m^n{r ; «T > *}■ Prove 

that noo is a regular cardinal. 

3. Prove that if k > u and k = E^<cf(«) for some secluence 0 < «o < 

• • • < < ... of cardinals, then we have 

«<*(*)= n 

4. Prove that we have 
N*1 = 2Nl • 

for every a < u>i- 
5. * Let k be an arbitrary cardinal, and let Ao be the least cardinal such 

that 2a° > k. Show that the operation /(A) = kx assumes only finitely many 

values for A < Ao- 
6. * Show that if 2Hl = N2, then N*° ± 



100 I. Introduction to set theory 

7. Denote by k<x the cardinal «r; this is called n to the weak 
T< A 

r is a cardinal 

power A. Assume that k > 2 and A > u>. Prove that 

a) k<x > A; 

b) «<A = Et0<t<a kT f°r an arbitrary tq < A; 

Ci) either there exists a r < A such that k<x = kt, 

C2) or there are cardinals A^ < A for £ < cf(A) such that the set {A^ : £ < 

cf(A)} is cofinal in A, the sequence (kx^ : £ < cf(A)) is strictly increasing, and 

«<A = Ec<cf(K) «A*- 

d) Prove that cf(/c<A) > A if c\) holds, and cf(«<A) = cf(A) if C2) holds. 

e) Show that 

(«<A)"={K t K‘ 

if Ci) holds, and 

(k<x)p = < 

«<A for 0 < P< A, 

Kp for P > A 

<A for 0
 

A
 

< cf(A), 
;A for cf(A) 

■<
 

V
I 

V
I 

P for A < p 

if C2) holds. 

f) Show that GCH implies 

k<a = 

K for A < cf(«), 

for cf(«:) < A < k+, 

for k+ < A. 



HINTS FOR SOLVING PROBLEMS 

MARKED WITH * IN PART I 

Section 7 

4. We may assume that © = typea;(^) for an appropriately chosen order¬ 

ing -< of u. Define the values g[n) of the mapping g : w -> Q by recursion as 

follows. If (g(i) : i < n) has been defined in such a way that we have 

g(i) < g(j) <=> * -< j 

for i,j < n, then there is a rational number r £ Q such that 

g(i) < r 4=> i -< n and r < g(j) <=> n -< j. 

Choose such a number r as g(n). 
The function g maps the ordered set (u, -<) onto a subset of (Q, <) mono- 

tonically. 
5. The proof is similar to that in Problem 4. Making use of the assumption 

that the ordering (u, ■<) is dense, we may also arrange for R(^) = Q to hold. 

7. Write © = type A(-<). If the assertion is false, then (A, -<) and (A, >-) 

are wellordered sets according to the assertion of Problem 1. Let B = {x € 

A : A has only finitely many elements smaller than x}. Then B is not empty, 

as Go = min A £ B. Put bo = min^_ B = max^ B. If A has no element larger 

than b0, then A is finite. If A has an element larger than 60, then let c0 be 

the smallest among these. In this case, there are only finitely many elements 

of A that are smaller than c0. This is a contradiction. 
8. Assume, for example, that (A, -<) is wellordered. For an arbitrary x £ 

A, we choose a number x* > x such that 

(x, x*) n A = 0. 

If (x, +oo) n A = 0, then x* > x can be chosen arbitrarily; if, on the other 

hand, By > x {y £ A), then we choose x* = min<{2/ £ A : x < y}. The 

intervals {(x,x*) : x £ A} are pairwise disjoint, and so A is countable. 
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Section 8 

6. As (3 x rj > r), there is an rj for which (3 x rj > a. Let £ = min{r/ : 

(3 x r) > a}. According to the assertion of Problem 4, £ is a successor ordinal, 

that is, it has form £ = £ + 1. Then 

a < /? x (£ + 1 ) = /? x £ + /?. 

On the other hand, (3 x £ C a. According to the assertion of Problem 2, there 

is a p with a = (3 x £ + p. Then p < (3 in view of the (weak) monotonicity 

of the operation -i-. 

7. Let 

B = {(A', -<') £ P(A) x P(A x A) : A' C A A (A', -<') is wellordered}. 

Let C = {type A'(-x') -j- 1 : (A',-<') e 5}. C consists of ordinals and it is 

transitive. Hence a = C satisfies the requirements of the problem. 
8. Let <j> be a mapping such that 

A x a Alla. 

If 3a G A V/3 < a (</>((a, /?)) e A), then the function ip : a -4 A defined by the 

stipulation ^(/3) = /?)) maps a in a one-to-one way onto a subset A! of 

A. We may therefore assume that Va € A 3/3 < a (0((o,/?)) £ a). Define the 

functions <7 : A -4 a and ip : A —> a as follows: 

9(a) = min{/3 : <p((a,0)) £ a), 

ip(a) = (p((a,g(a))) for o £ A. 

If o 7^ a', then (a,#(a)) 7^ (a',^(o/)), and so V,(a) 7^ ip maps A in a 
one-to-one way onto a subset of a. 

9. Let A be an arbitrary infinite set, and a be an ordinal such that a ^ A! 

for each A! C A; the existence of such an a is guaranteed by Problem 7. 

We may assume that A n a = 0. According to Problem 3 of Section 6, for 

arbitrary infinite cardinals, we have b+c = b-c. Thus we have A x a ~ AUa. 

According to Problem 8, by the choice of a there exist a set B C a and a 

one-to-one function / such that A B. Hence A can be wellordered. It 

is also easy to see, and we will prove in the next section, that the Axiom of 
Choice follows from this assertion. 

Section 9 

5. Let k £ H(K2). Then D(fc) < u. Thus there is a set X c k with 

\X\ < u such that for every (p,ip £ D(fc) with (p^ip,we have (p\X ^ ip\X. 
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Define g G H(k) as follows: D(g) = {(f>\X : (j) G D(k)} and g(4>\X) = k((f)). 

It is clear that 

9 £ : <t> € D(fc)}. 

6. According to the assertion of Problem 4, it is sufficient to prove that 

there are 22* ultrafilters on H(k). For each $ G 22 put <S<j> = {A: 

(j) e K2}. According to Problem 5, 5$ has the Finite Intersection Property. 

By Theorem 9.4, S$ can be extended to an ultrafilter U<s>. If $o / f°r 

$0,^1 € *22, then $o(0) ^ for some <t> e *2, saY = 0 and 
<&!{(f)) = 1. Then 

H A fax = 0, and Afai G Ufa for i < 2, 

and so Ufa ^ Ufa. Thus the number of ultrafilters is at least 22 . On the 

other hand, it is straightforward that their number is at most 22 . 

8. (Rado’s Selection Lemma) Writing X = 'Ka<KAa, for V G [«]<u; put 

Fv = {f ex: ay' (y c y' g [«]<w a / \v = fv\v)} 

and 
T = {Fy : y G [k]<u}. 

According to the assumptions, F has the Finite Intersection Property, and 

so, by Theorem 9.4, it can be extended to an ultrafilter U. For each a < k 

there is exactly one x G Aa such that X/3<K,^/a A? x {x} G U. Putting 

/(a) = x for this x, we will have / G Fv for every V G [k]w. 
If one wishes to invoke some facts from topology or mathematical logic, 

it may be observed that the result easily follows either from Tychonoff’s 

Theorem about the compactness of topological products of compact spaces 

or from the Compactness Theorem of First Order Logic. We will give an 

example for the application of the above result among the problems of Section 

19. 

Section 10 

6. c) According to Part a) of the problem we may assume that (P, -<) is 

well-founded (see Definition 16.2), cf((P, -<)) = A = |P| > cf(A) = k > u. 

For an arbitrary X C P, let 

X = {p£P :3qeXp<q}- 

We claim that for the set 

S = {X : X G [P]-*}, 

we have |S'| > A, where [P]-K = {x (z P: \x\ < «}. 
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Assume, contrary to the assertion, that |5| < A, and let 

S = {Xa : a < A} 

be an enumeration of S (possibly with repetitions). Let (A„ : v < n) be a 

sequence of cardinals such that supfA^ : v < k] = A. Using the relations 

cf((P, -<)) = A and \YU\ < k • X„ < A, 

where 

Yu = |J{** : « < A-}> 

for an arbitrary v < k, we can choose an xv E P with xu £ Yv. Let 

X = {xv : v < «}. Then X e [P]-'c and X ^ Xa for each cx < A. This is a 

contradiction, and so 151 > A. 

Assume now, on the contrary, that every independent subset of P is finite. 

For an arbitrary V E [P]<u\ put 

P(V) = {p e P :Vz eV q 5^ p}. 

As |[P]<W| = A, we have 

|{P(U) : V E [P]<w}| < A. 

Thus we will get a contradiction from our assumption if we prove that for 

each X E [P]-* the set X equals P(V) for some V E [P]-K. Let X E [P]-K. 

Then P \ X ^ 0, as 

cf((P, -<)) = A > K. 

Let V be the set of minimal elements of P\X. This set is not empty, because 

(P5 ~<) is well-founded, and V, being an independent set, is finite. We claim 

X = P{V). Clearly, X is an initial segment of P, and so no element of X 

can be greater than or equal to any element of V. Hence X c P(V). On the 

other hand, given p £ X, by virtue of the well-foundedness of (P, -<) there is 
a q E V such that q<p, and so p £ P(V). 

Section 11 

5. Let k be the least infinite cardinal for which the assertion of the problem 

is not true. Then there is a strictly increasing sequence (rn : n < u) of 

cardinals such that (nTn : n < u) is strictly increasing and for which 

2Tn < k for n < uj. 

We claim that if 

Vp < K (pT" < «) 
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holds for some n < u, then 

Kr" = k or kt” = rccf(K) 

according as 

rn < cf(«) or rn > cf(/c). 

Indeed, if rn < cf(tt), then Theorem 11.2 shows that 

KTn = pr" j/v = k. 

P<K 

If Cf(«) < Tn, then k is singular, as r„ < k. Put 

«= «€> 
£<cf(co) 

where («£:£< cf(«)) is a strictly increasing sequence of cardinals. Using 

the assertion of Problem 3, we can see that 

Krn _ Kcf (k)t„ = Y[ K = KCf(K). 

£<cf(ft) £<cf(/c) 

We may therefore assume that 

(Vn : no < n < w) 3p < k pT" > k 

for some no < w. Let 

pn = rmn{p : pTn > «} for n0 <n < u>. 

As the sequence rn is increasing, the sequence pn is weakly decreasing. Hence 

there is an ni > no such that 

u < pn = p < k for ni < n < u>. 

In this case, we have 

Krn _ prn and 2Tn < p for ni < n < w; 

this contradicts the minimality of k. 

6. If 2Nl = ^2 then 

for 2 <n <uj 

holds according to Theorem 11.2. By Problem 3 we have 

<°= n n- 
2<n<u) 

and so «•)-= n «*- n i<»=«2o- 
2 <n<w 2<ti<lj 

According to Corollary 11.2 of Konig’s Theorem, we have 

>K„ 

and so 

«2° 



jig , '1 >•.' 1 *>*£•• «v* 
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APPENDIX 

AN AXIOMATIC DEVELOPMENT 

OF SET THEORY 





INTRODUCTION 

We are going to sketch how the half-way intuitive and half-way axiomatic 

development given in the first eleven sections can be transformed into a 

rigorously axiomatic development. To follow this sketch, an elementary ac¬ 

quaintance with the basics of mathematical logic is needed. As this book 

considers only set theory, it is beyond its scope to provide the necessary 

background in mathematical logic. To facilitate matters, we will, however, 

explain the notation and clarify what is meant by an axiomatic development 

of set theory. 
In what follows, we will denote by Lq a first-order language that, in addi¬ 

tion to the variable symbols contains two two-place predicates: = (equality) 

and e (being and element of). L0 is called the language of the Zermelo- 

Fraenkel axiom system (see Section Al). In a strictly formal presentation, 

variable symbols would be specified as, say, Do, t>i, - For easier read¬ 

ability, we will use a variety of letters to denote variables. In particular, 

unless otherwise indicated, the letters x, y, z, u, v, w, A, B, C (possibly 

with subscripts) will always denote variables. 
Later we will consider languages L that are extensions of the language 

Lq. Such languages may contain other predicate and function symbols. We 

assume that the reader knows how to define terms and well-formed formulas 

in a language. The set of terms and well-formed formulas in a language L 

are denoted by Term(L) and Wff(L), respectively. We will use the symbols 

-i (not), A (and), V (or), => (implies), (if and only if) to denote the 

logical connectives, and 3 (there exists), V (for all) to denote the quantifiers 

of the language. 
A rigorous axiomatic foundation of set theory would mean that one enu¬ 

merates the well-formed formulas of the language L representing the axioms 

in an effective manner, and from these axioms, by using the axioms and 

the rules of inference of the first-order functional calculus one derives the 

well-formed formulas representing the known theorems of set theory. 

In practice, this program is rarely, if ever, carried out; formal proofs are 

very tedious, if not impossible, to read; it is more enlightening to indicate 

instead how such formal proofs could be obtained if one really took the 

time. Therefore, in what follows, if there is no danger of misunderstanding, 

instead of the well-formed formulas and terms of the language, we will use 

their customary, more readable, abbreviated forms. The conventions for 
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such abbreviated forms will not be listed here, since such abbreviations have 

already been used in the first part of the book. Such a convention is, for 

example, that instead of the formula (<MV>) +=>■ 0 we will write (f)Aip <==> 9 

in the same way as instead of (3 • 5) + 7 it is customary to write 3-5 + 7. 

Another, more important deviation from formal derivations is that during 

the discussion these formulas will be considered as statements invested with 

mathematical content, and from these we derive other formulas by using the 

usual arguments of mathematical practice. It is known by Godel’s Complete¬ 

ness Theorem that, in this case, a derivation based on the rules of functional 

calculus can also be given. 



Al. THE ZERMELO-FRAENKEL 

AXIOM SYSTEM OF SET THEORY 

Before we list the axioms of set theory, we make one more important remark. 

The fact that in the language we have the only predicate symbols = and G, 

and we do not introduce a one-place predicate symbol to say that something 

is a set implicitly means that we only discuss sets; other objects are of no 

concern to us. The attentive reader may have noticed that this practice was 

tacitly followed even in the first part of the book, after the introduction of 

good sets. That this will not impose undue restrictions on us will be clear 

exactly from the fact that the axiomatic development can be carried out in 

this way. 
The today generally accepted Zermelo -Fraenkel axiom system of set the¬ 

ory contains the following axioms. 

Axiom of Empty Set: 

A0 3 xVu(u^x). 

Here u x abbreviates -m G x. 

Axiom of Extensionality: 

Ai VxVy (Vu (it G x <=> u G y) =>• x = y). 

We actually have •< > in this formula in place of —V. This is because the 

symbol = is considered as a symbol of logic rather than of set theory. This 

means, according to the rules of logic, that equal objects behave the same 

way; formally, 
{x = y) =► (4>(x) *=>■ <f>(y)) 

for any formula (j). 

Axiom of Pairing: 

A2 (u G x <=> u = xV u = y) 

Axiom of Power Set: 

A3 Vx32/Vu (uGy 4=^ Vi/(u G u =>• v G a;)). 
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Axiom, of Union: 

A4 Vx3?/Vu (u G y <=> 3v (u G v A v G x)). 

Axiom 0/ Infinity: 

3x^ 3u(u GiA Vv(v ^ u)) A 

A5 

Vulu E x => 3t (t G x A Vw (w £ v 4=^ w € uV w = u) 

Axiom of Replacement: 

For an arbitrary well-formed formula <J)(u, v, xi,..., xn) of Lq all the free 

variables of which are among the pairwise distinct variables u, v, x\,..., xn, 

and for variables x and y different from those listed and from each other, we 

have 

A6(tf) 

Vxi...Vxn ^Vu3!u 0(u, v, xi,..., xn) 

\/x3yVu (v £ y -<=£- 3u (u € x A 0(u, v, xi,..., xn)} 

Here and in what follows 3!u <p{v) abbreviates the assertion “there is exactly 

one v for which 4>(v)f which stands for the formula 

3?; ^4>(v) A VWz (<p(v) — (j){z) v — z) j. 

The formula <j>(v) here may contain free variables other than v, not explicitly 

indicated here. It is important that, in expanding the abbreviation just dis¬ 

cussed, conflicts should be avoided. That is, the variable 2 must be different 
from the free variables occurring in (p(v). 

Note that the Axiom of Replacement is not a single axiom: A6(</>) is a 

separate axiom for each choice of the formula 4>. Such a group of axioms, 

described by specifying the way each axiom in the group can be obtained, is 

called an Axiom Scheme. For this reason, the Axiom of Replacement is more 

accurately referred to as the Axiom Scheme of Replacement. Each axiom 
A6(</>) is called an instance of this scheme. 

Axiom of Regularity: 

A7 Vx ^3it (u € x) 3v (v £ x A \/w (-1 (w e x A w e v)) 

The system of these axioms is denoted by ZF. 

These axioms correspond to the stipulations made in Section 1 as follows: 

Aq corresponds to Convention 4, Al to Convention 3, A2 to Convention 5, 
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A3 to Convention 7, A4 to Convention 8. A5 is equivalent to assuming the 
existence of u. Axiom A6(0) is implicitly stated in Convention 11. Finally, 
the Axiom of Regularity A7 has not been mentioned or used before. This 
is a simplifying assumption, invented by J. von Neumann, that is usually 
included among the Zermelo-Fraenkel axioms; we did not want to use it in 
the intuitive development given in Part I of the book. We will discuss its role 
in simplifying the development separately. It is worth noting that among the 
axioms given above, axioms Ao and A5 ensure that sets exist at all. Ao is 
in fact superfluous, since it follows from A5 immediately; the rationale for 
the inclusion of Ao is partly historical, and partly the fact that an important 
part of set theory can be developed without axiom A5. The reason axiom 
A 5 was given in this form was to simplify the technical difficulties involved 
in the definition of u> (see Definition A5.2 below). 

The rest of the axiom are conditional existence axioms, axioms by which 
the existence of some sets enables one to conclude the existence of certain 

other sets. 
Our aim below is to show that the other stipulations discussed in Section 1 

are meaningful and derivable in the axiom system presented, and to give 
helpful hints as to what order the theorems proven so far should be discussed 
in the axiomatic development. 



A2. DEFINITION OF CONCEPTS; 

EXTENSION OF THE LANGUAGE 

In Part I of this book, we did not only prove theorems (that is, derived 

formulas) from ZF; we also introduced new concepts. For example, we defined 

the property C, the operation {x, y}, and the concept of empty set. Our first 

objective is to clarify the role of this procedure in the axiomatic development. 

When, for example, we introduce the symbol C and use it in the formulation 

of further assertions, we in fact extend the language L0 used so far to a 

language L which also contains the new two-place predicate symbol C in 

addition to the symbols = and G. The property x C y is defined as 

(it G x => u G y)] 

that is, we add the formula 

VxVj/ (x c y 4=^ V«(u6i =$• u G y)) 

to ZF, and from then on we work in the extended system ZF'. 

In general, a new property will be described in an extension ZF' of ZF 

with the aid of an extension L' of the language Lq as follows. We add a new 

n-place relation symbol B to the current language L'\ in this way, we obtain 

an extended language L". Then we consider a suitable formula 0 G Wff(L') 
with free variables xi,..., xn, and we add the formula 

Vxi...Vxn(0(xi,...,xn) <=$■ B(xi,...,xn)) 

(defining the property B) to the current system ZF' to obtain the extended 
axiom system ZF". 

In defining the operation {x,j/}, we proceed as follows. We consider the 
formula 

0(x, y, z) = Vu (u G z <*=> it = x V u = y), 

which is called the defining postulate of the operation {,}. Then, with the 
aid of axioms Ai and A2, we prove that 

VxV2/3!z0(x, y,z) 
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holds, and we add the formula 

Vx\/y(f)(x,y,{x,y}) 

to the axioms; this formula is called the definition of the operation {,}. 

In general, if L' is an extension of the language, and we are given the 

axiom system ZF' with ZF C ZF' C Wff(L'), then in defining an n-place 

operation T we add the new n-place function symbol T to the language V\ 

consider an appropriate formula 

<f>(xi,...,xn,u) e Wff(L') 

(the defining postulate of T) all of whose free variables are among u,x 1,..., 

xn. We next prove that 

ZF' h Vxi.. .Vxn3!u0(xi,... ,xn, u), 

and then we add the formula 

Vxi . . . VXn 0(^1) • • * j Xn, J~{xi, . . . , Xn)) 

(the definition of T) to ZF' to obtain the extended axiom system ZF". 

A special case of defining new operations was the definition of new sets, 

e.g., the definition of the empty set. In this case, we add a 0-place function 

symbol, that is, a constant symbol, in our case the symbol 0, to the language, 

and consider the formula 

0(u) •<=>• Vu (-iv €. u); 

using axioms Ao and Ai, we prove that 3!tt0(u). Then we add the formula 

0(0) to the axiom system. 
It is to be observed that in the course of introducing new operations, we 

need to prove a theorem concerning the operation being well defined, whereas 

the introduction of new properties, such as e.g. C, can be carried out without 

any reference to the axioms given in the language L0. 
If T and Q have already been added to the language, their various com¬ 

positions are always defined, e.g., if T is a two-place function symbol and Q 

is a one-place function symbol, the composition F(x,G(y)) is, of course, a 

term of the language. Since the formula 

VxVy3\z (z = T{x,G(y))) 

is provable in the extended axiom system, we can further extend the axiom 

system and give a name, say 71, to this composition, by adding the axiom 

7i{x,y) = F(x,G(y))- 

It is important to point out that we in fact “stay in the original axiom 

system ZF” when we use this procedure of adding definitions. The relevant 

concept is described by the following. 
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Definition A2.1. Let L C L' be two arbitrary languages, and assume 

£ C £', £ C Wff(L), £' C Wff(L'). 

We say that E' is a conservative extension of E if for every (p 6 Wff(L), if 
£' h (f), then also E h (p. 

We say that £' is an effective conservative extension if the derivation of (p 

in E can be calculated from the derivation of (p in £'. 

Informally, an extension being conservative means that if a formula is 

provable in the extended system, then it is already provable in the original 

system. Effectiveness means that the proof of the formula in the extended 

system can “systematically” be converted to a proof in the original system. 

In fact, we will find it useful to work with a more restrictive concept of 
conservative extension: 

Definition A2.2. A conservative extension £' C Wff(L') of Ec Wff(L) 

is called a strict conservative extension if for every (p' e Wff(L') there is a 
formula (p e Wff(L) such that E' h (p' <==> (p. 

We say that £' is an effective strict conservative extension of E if it is 

an effective conservative extension, and if for every (p' 6 Wff(L') one can 

calculate a formula (p £ Wff(fy) such that E; I- (p' < )> (p, and the proof of 
(p' (p in E' can be calculated. 

In other words, a conservative extension is a strict conservative extension 

if every “new” formula is provably equivalent to an “old” formula; a strict 

conservative extension that is also an effective conservative extension is an ef¬ 

fective strict conservative extension if for every new formula an equivalent old 

formula can be found in a “systematic” way, and a proof of this equivalence 
can also be found in a “systematic” way. 

Theorem A2.1. The extensions used in the definition of concepts (prop¬ 

erties and operations) are effective strict conservative extensions. 

We will omit the proof of Theorem A2.1. This theorem certainly shows 

that when we develop set theory by repeatedly introducing new concepts we 

in effect stay within the framework of the original axiom system ZF. 



A3. A SKETCH OF THE 

DEVELOPMENT. METATHEOREMS 

We have already introduced the property x C y, the operation {x, y}, and 

the constant 0. The operation (x,y) described in Definition 1.2 can be given 

by the defining postulate 

<f>(x,y,z) = {{x},{x,y}}, 

and Theorem 1.3 can be proved about it in the same way as was done in 

Section 1, without the need for additional remarks. 
Next we are going to sketch how the rest of the definitions given in Section 

1 can be handled. 
Using axioms Ai, A2, and A4, we can obtain the operations P(x) and 

U x with the aid of the defining postulates 

(j)(x, y) = Vu (u G y <=>• u c x) 

and 
(f)(x, y) = Vu (it G y <=> 3v (u E v A v £ x). 

As we mentioned, the Axiom of Replacement A6(</>) G Wff(L0) corre¬ 

sponds to Convention 11 in Section 1. As an illustration, we will show that 

this axiom can be used to establish the assertion 

VxByVu (u G y <=$■ 3v (u = {v} A v G x)); 

that is, for every set x there is a set y whose elements are the values that the 

operation {u} assumes for elements of x. In Part I this set was denoted as 

y = {{u} ; u G x}. A convenient way to obtain this set would appear to be 

as follows. Write 
4>o = 4>(u,v) = (v = {«». 

Then, clearly, 
Vu3\v(f>o(u, v) 

holds, and so the assertion to be proved is apparently identical to the axiom 

A6(</»o). This argument, however, cannot be used, since (f>o is not a formula 

of the language Lo; it is a formula of a language L' obtained by extending 

the language L0 in a way described in Section A2. Thus A6(>o) is not an 

axiom of ZF. 
To make the above argument complete, we need the following theorem. 
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Theorem A3.1. Assume Lq C L', let ZF' be a strict conservative exten¬ 

sion of ZF, and let 0' C Wff(T'). Then ZF' h A6 (<£'). 

Proof. Write 

(j) z=z (f) (U, V, 3/i, . . . , Xn), 

where all the free variables of (ft are among u,v,x \,...,xn, and x and y are 

distinct variables different from them. According to Theorem A2.1, there is 

a formula </>(u, xn) E Wff(Lo) such that 

ZF' h <t>'(u,v,xlt...,x„) <=$> v,xx,. ..,xn). 

Then clearly 

ZF' h Vu3!i; (j)'(u, v, x±,..., xn) <=> VuBlv (j)(u, v, xi,..., xn). 

Thus we have 

ZF' h A6(<£) A6(0') and A6 e (cf) ZF'; 

Hence 

ZF' h A6(0'). 

* * 

* 

Theorem A3.1 says that the Axiom of Replacement can be used also for 

formulas of the extended language. Theorem A3.1 and Theorem A2.1 are 

not theorems of set theory, but statements that are outside set theory; they 

are statements about set theory. These types of statements are usually called 

metatheorems. A theorem of set theory must be given as a formula of the 

language Lq, or possibly as a formula of the extended language. A proof 

of a theorem of set theory is a formal derivation, according to the rules of 

first-order functional calculus, of the formula representing the theorem, from 
the formulas representing the axioms. 

Theorem A3.1 does not claim that a single formula is derivable in ZF', 

and for this reason alone it is not a theorem of the formal system. It in fact 

claims the derivability of an infinite number of formulas. Its proof is not a 

derivation in the formal sense; it is, rather, a description of a method, i.e., an 

algorithm, of how one can obtain a formal derivation from the axioms of ZF' 

of the statement A6((/>'). For each particular choice of 0' one can follow this 

method to construct a derivation of Ag ((/>') in ZF' and to convince oneself 

that A6(</>') is indeed a theorem of ZF'. For this reason, Theorem A3.1 is a 

theorem about, and not within, the formal system ZF'. 

As we mentioned above, our purpose here is not to give formal derivations 

of key results of axiomatic set theory; such a project would be unwieldy, 
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and the result totally unreadable. Our purpose is, rather, to show that it is 

possible to give such formal derivations, and, indeed, how these derivations 

can be obtained. Metatheorems, such as Theorem A3.1 above, are a great 

help in this respect, since they describe in a systematic way how a large 

number of similar formal derivations, useful in this project, can be obtained. 

In what follows, we will present and use a number of such metatheorems. 

We will not burden this outline by explicitly indicating on every occasion 

whether a result presented is a theorem within the formal system or whether 

it is a metatheorem about the formal system. The reader will, however, be 

well served by trying to make this distinction in each case on her (or his) 

own. 

Theorem A3.2. Given an operation P(u, x\,..., xn) all the free vari¬ 

ables of which are among the variables u, xi,... ,xn and x is a variable dif¬ 

ferent from these, it is possible to introduce an operation Q(x,xu.. .,xn) 

such that 

Vv (v € g(x,xxn) <=> 3u(u e X/\ fF{u,x1,...,xn) = u))- 

The operation Q[x, xu...,xn) described in this theorem will be denoted 

as {:F(u, xi,...,xn) : u 6 x). The theorem shows that in the axiomatic 
development we are justified to use the stipulations stated in Convention 11 

of Section 1. 

Proof. The operation F{u, x1,..., xn) is defined in some strict conserva¬ 

tive extension ZF1 in a language L' D Lq. Let (f>{u,v,xi,...,xn) be the 

formula 
V = J~ (U, 3»i, . . . , Xn) 

of the language L'. Clearly, ZF' h Vu3!u v, X\,..., xn). Thus, according 

to Theorem A3.1, we have 

ZF't-Vx3yVv(v£y (f)(u, v,xi,... ,xn) A u G x). 

Let tp(x, y,xi,..., xn) be the formula 

Vv(y€y «=> (f>(u,v,xi,. ..,xn) A u G x). 

According to the Axiom of Extensionality, we can then also derive the formula 

Vz3 lyip(x, y,xi,...,xn). 

We now extend the language L' by adding the (n + l)-place function symbol 

Q(x, 3?i, . . ., Xn) > 
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with the formula 

VzVzi... Vxn 4>(x, Q{x, xi,...,xn),xi,...,xn) 

being its definition. 

* * 

* 

Our next problem is that there are no axioms in ZF that correspond to 

Convention 6, which had basic importance for the intuitive development. We 

now turn to dealing with this problem. The following theorem corresponds 
to Convention 6. 

Theorem A3.3. Given a formula (p{u,xi,...,xn) and an operation 

JF(xi,.. .,xn) which do not have free variables other than those indicated, 
we can define an operation Q(xi,..., xn) such that 

Vu{ueQ(x i,...,xn) 4=^ u € J-(x\,..., xn) A </>(it, X\,..., xn)) 

holds in an appropriate extension of ZF. 

This operation Q will usually be denoted as 

{u e T(xi, ...,xn): (p{u, x\,..., x„)} 

Proof. Let L' be the extension of L0 in which (p and T are defined; let ZF' 

be the corresponding extension of ZF. We may assume that the operations 
{u} and U and the constant 0 are also defined in L' in ZF'. 

Let ip(u, v, x\,..., xn) be the an following formula of L'\ 

(0(u, x\,..., xn) A v = {u}) V (-'(/•(it, Xi,..., xn) A v = 0). 

Clearly, 

Vxx... \/xn^u3\vif{u, v,xi,..., xn). 

In view of this formula, we can introduce an operation H(it, xi, x2,..., xn) 
such that 

V^i • • • Vx„Vix^(it, H(u, *i,..., xn), xu...,xn) 

holds (i.e., the latter formula is the definition of H, while ip above is its 
defining postulate). 

Using Theorem A3.2 now, we can introduce the operation 

K(x, x\,..., xn) = (if(it, *i,..., xn) : u e x}. 

Hence we can also introduce the operation 

Q{x = \^K{fF(x\, . . . , xn), Xi,..., Xrf). 
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We claim that Q satisfies the requirements of the theorem. Let x\,...,xn 

be arbitrary sets. Assume u E Q{xi,... ,xn). Then by the definition of the 

operation (J there is a v such that u 6 v and 

V E K (fF (xi, ... 5 2-n) i j • • • > %n) • 

Then v = H(w,Xi,.. .,xn) for some w E F(xi,.. . ,x„), and v ^ 0 (as u E v). 

According to the definition of H, 

v = {w} 

holds, and so 
u = w 

in view of u E v. Thus 

u E T(xi,...,xn) and </>(u, xx,... ,xn). 

Conversely, if u E T(xi,... ,xn) and (f)(u,xi,... ,xn), then 

H(u,xi,.. .,x») = M, 

{u} E A(^(xi,...,a:n),xi,...,xn), 

u E \jK(F{x 

* * 

* 

Theorem A3.3 is often called the Axiom Scheme of Comprehension. Occa¬ 

sionally, this scheme is also listed as part of the axiom system, even though, 

as we just saw, each of its instances can be proved in ZF. We would like to 

point out that the proof we presented above is not “unnecessarily compli¬ 

cated.” It is known that if we omit the Axiom of Union A4, then the Axiom 

Scheme of Comprehension, i.e. Theorem A3.3, is no longer provable. 

Theorem A3.3 means that the possibilities opened up by Convention 6 are 

also available in the axiomatic development if property is taken to mean a 

property described by a first-order formula. 
It is our opinion that, for an axiomatic development, it is necessary to 

deal with the conceptual difficulties described in Sections A2 and A3. Since 

this would have been premature in the first part of the book, we decided to 

at first give a semi-axiomatic introduction to set theory. 



A4. A SKETCH OF THE DEVELOPMENT. 

DEFINITIONS OF SIMPLE OPERATIONS 

AND PROPERTIES (CONTINUED) 

In what follows, we will no longer point out repeatedly that after the intro¬ 

duction of each new concept we always work in an extended axiom system. 

One of the difficulties in following the development described in the first part 

of the book is that for the defined properties we often did not introduce sym¬ 

bols. For example, we said that a set is a relation if it consists of ordered 

pairs. This means that we introduced a one-place predicate (which may be 

denoted, e.g., by Rel(x)) with the aid of the following definition: 

Rel(x) <=$■ Vu £ x 3u3u; (u = (v,w)). 

(Here and in what follows we use Vu £ x (f) and 3u £ x (f> to abbreviate the 

formulas Vu (u £ x =s> 0) and 3u (u £ x A 0), respectively.) To make 

up for this lapse, here we introduce notation for the concepts introduced in 

Section 1, but for definitions given later, this task will mostly be left to the 
reader. 

We introduce the property Single valued (x) as follows: 

Singlevalued(x) -4=*> VuVuVw((u, v) £ x A (u,w) £ x => v = w). 

The property Function (x) can be given as 

Function(x) Rel(x) A Singlevalued(x). 

Then we need the operations defining domain and range: 

D(x) = {u £ [J |J x : 3u ((u, v) £ x)}, 

R(x) = {u £ UUx : 3w((«> v) £ x)}, 

According to Theorem A3.3, these definitions are sound, and it is easy to 
show that their definitions imply the formulas 

Vu (u £ D(x) <£=> 3u((u, v) £ x)), 
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Vu (y G R(x) Bu((u,v) e x)). 

The inverse operation can be described as 

x~l ={uG PP ^Jx : 3x3w (u = (v, w) A (w, v) G 2;)}; 

here Px, more usually written as P(x), denotes the power set of x; the formal 

definition was given in the preceding section. The definition is sound again 

by Theorem A3.3. With this definition, it is easy to show that 

VxVu (u G x_1 3v3w (u = (v, w) A (w, v) G x)}, 

that is x-1 is obtained by reversing the pairs in x. In describing the operation 

o used in defining the composition of functions, it is expedient to give the 

definition in more generality as follows: 

x o y = {z G PP |Jl> u y) : 
3u3v3w ((u, v) G y A (v, w) G x A z = (u, te))}. 

This definition is again sound, according to Theorem A3.3. With its aid, we 

can verify that x o y consists of all ordered pairs for which there is a v such 

that (u, v) G y and (v, w) G x. 
The value of the function x at the place y is a two-place operation that 

can be introduced, e.g., as follows: Consider the formula 

4>(x, y, z) = (3\z «y, z) G x) A (y, z) G x) V (->3h ((y, z) G x) A 2 = 0). 

We show that VxVyBlz 0(x, y, z), and then we take <£(x, y, z) to be the defining 

postulate of x(y), that is, we stipulate 

VxVy ^(x, y, x(y)). 

It is easy to see that x(y) is the unique z such that (t/, z) G x if there is 

exactly one such z, and it is 0 otherwise. 
In Section 2, we defined by Id a the identity function on the set A. This 

is a one-place operation that can be defined as follows: 

Idz = {(«, u):u(= x}. 

Rewriting Definition 2.1 presents no problems: 

One-one(x) Singlevalued(x) A Singlevalued(x~1), 

x ~z y <i y Punction(z) A One-one(z) A D(z) = x A P-^) 

x ~ y <=> 3z (x y). 

Having done this, we can proceed to prove Theorem 2.1, according to which 

~ is an equivalence property. 
At this point, we arrived at the hardest problem in presenting an axiomatic 

development in set theory. We defined the concept of “being the same size” 

for infinite sets, but we have no examples for infinite sets. In the semi- 

axiomatic development above, the role of Sections 2—7 was to overcome this 

difficulty, and the development of set theory was continued in Section 8. 



A5. A SKETCH OF THE DEVELOPMENT. 

BASIC THEOREMS, THE INTRODUCTION 

OF u> AND R (CONTINUED) 

Proceeding with the development, we next describe the notion of ordered set 

(A, -<) following Definition 7.3, and then the notion of monotone mapping 

similarly as given in Definition 7.6, without again giving examples for these 

notions. We define the concept of wellordered set as in Definition 7.9. Then 

we show that similarity ~ is an equivalence property (Theorem 7.1) and that 

it preserves the property of being wellordered. Having proved Theorems 

8.1-8.3, we then give the definition of €,4=Gf A as follows: 

G T A =£a= {(x, y) e PP(A) : x e A A y e A A x € y}] 

the definition can be justified by Theorem A3.3. 

We define the notions of transitive set and ordinal as 

Trans(x) <=> Vu(it£x u C x), 

Ordinal(a;) 4=^ Trans(:r) A (x, ex) is wellordered; 

then we can prove Theorems 8.4, 8.5 and 8.6. We remark that the procedure 

adopted in Section 8 of setting aside new variable symbols ato run 

over ordinals can easily be rephrased formally as carrying out a conservative 
extension as follows. 

Given Lq c U and ZF c ZF' C Wff(Z/), consider the extension L" 

of V by adding new variable symbols a, /?, 7,.... Having proved in ZF' 

that 3x Ordinal (x), for each new variable symbol ct and for each formula 

4>{x) € Wff(z) (with possibly other free variables, not indicated), we add the 
formulas 

Vo; 0(a) <=> \/x (Ordinal(a;) =4> 

and 

3a 0(a) <=$> 3x (Ordinal(a;) A 0(x)) 

to ZF . One can prove that this is a strict conservative extension. 
Define the ordering of ordinals as 

a < (3 4=^ a e/3; 
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then Theorems 8.7, 8.8, and Corollaries 8.1, 8.2, and 8.3 can be established 

in turn. The definition of the typeA(-<) operation given in Definition 8.7 

can be reproduced for wellordered sets by the following defining postulate: 

</>(x, y) <=>• (3A 3-< (x = (A, -<) is wellordered) 

A Ordinal(y) A (y, £y) ~ (A, -<)) 

\/(-i3A 3-< (x = (A, -<) is wellordered) A y = 0). 

Naturally, at this point we disregard the remark about finite sets made after 

Definition 8.7, since finite sets have not yet been defined in the axiomatic 

approach. 

We next define the operation x + 1 as x U {x}, and we prove Theorem 

8.10 in the form that for an arbitrary a the set a 4- 1 is the least ordinal 

greater than a, and then prove Theorem 8.11. 
Thereafter we prove Theorems 9.1 and 9.2. It is important to point out 

that both of these are metatheorems, and they are only theorems of the axiom 

system ZF7 for a given formula 0(x) or a given operation Q{x). Furthermore, 

parameters are also allowed in (f and Q. The case of Theorem 9.2 is somewhat 

subtle, so we will formulate it again and comment on its proof. The formal 

proof of Theorem 9.1 is more closely an imitation of the informal proof given 

above, and we will not comment on it further. 

Transfinite Recursion Theorem A5.1. Given an arbitrary operation 

G(x, xi,..., xn), there is an operation T(x, x\,..., xn) such that 

Vxi.. .VxnVo: f JF(q!, xi, . ..,xn) 

(*) ^ 
= Q (^(cc, xi,.. •, %n) |o, Xi,..., xn) J ■ 

If T and T' both satisfy (*), then 

Vxi... VxnVcc (F(a,xi,. • •, xn) = !F'(a,xi, - • •, £«)) • 

Sketch of Proof. Assume the symbol Q is contained in the language V 

with the axiom system ZF'. Consider the following formula $ 6 L': 

0(u, a, xi,..., xn) = 3/ (Function(/) A D(/) = a + 1 

A < a (/(/?) = G{f I/?, *i, • • •, ^n)) A u = /(a)) . 

Prove by transfinite induction on a that 

Vxi.. .Vx„Vo:3!u a, xi,.. .,xn). 
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The details of the proof are essentially the same as in the proof of Theorem 

9.2, but now we can make a rigorous appeal to the Axiom of Replacement in 

ZF' to justify the existence of / on the right-hand side of the symbol = in 

the formula defining Then we can introduce the new operation T in the 

usual way, by adding the new symbol T to L', and then adding the formula 

0(^"(ct, X\,..., xn), a, X\,..., Xn) 

to ZF'. 

Next we consider the Axiom of Infinity A5. With the notation introduced 

so far, this axiom can be written as (i.e., can be proven equivalent to, in the 
appropriate ZF' \{A5}) 

3a: (0 6 x A Vy G x (y 4- 1 6 x)). 

Definition A5.1. 

1- NL(a;) x = 0 V 3y {x = y -i- 1). 

NL(a;) says that if x is an ordinal then it is not a limit ordinal. 

2- Int(a;) <*=>• Ordinal(a;) A NL(a;) A Vy e x NL(j/). 

Int(a:) intends to say that x is a finite ordinal (i.e., a nonnegative integer). 

Lemma A5.1. If Int(a:) and y 6 x, then Int(y). 

Proof. Assume Int(a;) and y 6 x. a; is an ordinal, and so it is transitive. 

Thus if z G y, then z € x, and so NL(,z). We also have NL(y), as y 6 x. 
Thus Int(y). 

* * 

* 

Theorem A5.2. There exists the set of the finite ordinals, that is, there 
is a set A such that 

Vu (u € A Int(u)). 

Proof. Let x be a set satisfying the Axiom of Infinity. By transfinite 
induction, we prove that for all a we have 

Int(o:) =4> a £ x. 

^ a ~ 0 then a E x. If a > 0 and the assertion holds for every /3 < a, 

then in case a is not finite, the assertion holds vacuously. If a is finite 

then it has form a = (3 + 1 (according to Definition A5.1), and so by 
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Lemma A5.1, we also have Int(/3). Thus (3 6 x by the induction hypothesis, 

and so a = (3 + 1 G x, as x satisfies Axiom A5. Hence, the sought after set 

A = {a € x : Int(x)} 

exists according to Theorem A3.3. By Lemma A5.1, it is a transitive set that 

consists of ordinals. From now on this set will be denoted as u>. 

* * 

* 

Definition A5.2. u = {a : Int(a:)}. 

As a; is an ordinal, we have u £ u>, and so u> is not a finite ordinal. u> is 

the least ordinal that is not finite, since for (3 E u we have Int(/?). 

Next we state the theorem on induction (mathematical induction) and 

recursion on u. 

Theorem A5.3. 1. If 0 € x and in € w (n 6 x =* n + 1 6 x) then 

u C x. 
2. IfQ(x, *i,..., xn) is an arbitrary operation, then there is an operation 

T(y, xi,..., xn) such that, for arbitrary fixed sets xi,...,x„, the equation 

f(y) = T{y, xi,..., xn) defines a function f with D(/) = u such that 

'in < u> (f(n) = G(f\n,xi,.. 

These gissertions are immediate consequences of the Transfinite Induction 

and Transfinite Recursion Theorems. 
From now on we agree that the letters n, m,... when used as variables 

mn over elements of u (these letters can also be used outside the language, 

when discussing questions of syntax). 
At this point, we can define the operations addition, multiplication, and 

exponentiation for nonnegative integers by recursion as follows. 

Definition A5.3. 
1. n + 0 = n and n + (m 4- 1) = (n + m) + 1 for m,n < u>. 

2. n • 0 = 0 and n(m + 1) = n • m + n for m,n < u. 

3. n° = 1 and nm+1 = nm • n for m,n < u>. 

One can prove the usual algebraic properties of these operations by induc¬ 

tion. 
Then the set Z of integers can be defined in the usual way as the difference 

ring of u, the set of rational numbers, as the quotient field of Z, and the set 

of real numbers R, as the Dedekind-completion of Q. One can easily check 

that the set-theoretical constructions needed to do this can be described with 

the aid of the results presented so far. 



A6. THE ZFC AXIOM SYSTEM. A WEAKENING 

OF THE AXIOM OF CHOICE. REMARKS 

ON THE THEOREMS OF SECTIONS 2-7 

Axiom, of Choice: 

As 
Vx3/ ^Function(/) A D(/) = x 

A Vu E x (u 7^ 0 =>• /(it) E it)). 

We did not formulate the Axiom of Choice earlier, since it would have 

been quite lengthy to present it without defined concepts. 

In the literature, the axiom system ZFu{A8} is denoted by ZFC, where 

C refers to the word Choice. In ZFC we can prove the wellordering theorem, 

and with the aid of the latter we can give Definition 10.1 of the cardinality 

operation. There is nothing that we can add here to the discussion in Sec¬ 

tions 10 and 11; the discussion there can be considered satisfactory from an 
axiomatic point of view. 

There is one more point we would like to mention in connection with 

the Axiom of Choice. On several occasions we mentioned that the Axiom 

of Choice is used in the proofs of many classical theorems of mathematics. 

This does not mean, however, that the full force of the Axiom of Choice is 
needed for these proofs. 

A frequently discussed weakening of the Axiom of Choice is the Axiom of 
Dependent Choice (DC): 

VXV-ff ^ Rel(-R) A Vu E X3v € X uRv Va E X3f (Function(/) 

A D(/) =u A R(/) C A A /(0) = a A Vn E w (f(n)Rf(n + 1)))). 

In words: if every element it of A is in relation R with some element v of 

A, then for an arbitrary a E A there is a sequence {o0, oi,..., an,...} C A 

such that a0 = a and anRan+1 for every n. DC can be easily proved in ZFC, 

but it is known that ZF U{DC} does not imply the Axiom of Choice. The 

ambitious reader can check that the classical results of analysis and point set 
theory can be proved in ZFU{DC}. 
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In this section we would like to say a few more remarks about the theorems 

proved in Sections 2-7. 

The attentive reader might ask what precisely “assuming the existence 

of u" means. To dissolve any concerns on this point, we would remark that 

Theorem 2.2 can easily be proved from Definition A5.1 by induction, and 

Theorem 3.1 is an easy consequence of Theorem 2.2 and Definition A5.2. In 

the proof of Theorem 3.2, in order to avoid any reference to the cardinality 

operation defined with the aid of the Axiom of Choice, it is necessary to show 

that if n 6 u and A C n, then it is meaningful to talk about the “number 

of elements” of A; that is, there is an m < n such that A ~ m. This can 

be proved by induction on n. It is worthwhile to check that the proofs of 

Theorems 3.4 and 3.6 can also be carried out in ZFU{DC}. Theorem 3.8, 

of course, served only as an illustration, and the concepts discussed in it 

can only be defined after carrying out the procedure described at the end 

of Section A5. Sections 4, 5, and 6 discuss the ideas of Cantor’s classical 

set theory, and the proofs can be carried out essentially without change in 

the axiomatic framework. An exception is Theorem 6.1, but that result only 

served as an illustration. In its proof, it is preferable to avoid a reference to 

the addition of cardinals, since in order to justify the definition of cardinal 

addition, it is necessary to use the properties of the cardinality operation. 

The assertion can be deduced as a consequence of Theorem 8.11, as 

sup{a7 : 7 G T} = a 

exists, and 
a7 < |a| < 2|a| for 7 G T. 



A7. THE ROLE OF THE AXIOM OF REGULARITY 

As we mentioned above, we did not introduce the Axiom of Regularity during 

the discussion of intuitive set theory since it is somewhat unnatural. At 

this point we will establish some of its consequences and some statements 

equivalent to it, and we will indicate its role in simplifying the discussion. 

First we will prove some results in the axiom system ZF* = ZF \ {Ay}. 

Definition A7.1 (The Cumulative Hierarchy). For an arbitrary ordinal 

a, define Ra by transfinite recursion as follows: Rq = 0, Ra — P(Rp) for 

a — p -i- 1, and 

Ra = |J R(3 

0<a 

if a is a limit ordinal. We say that x has rank or x is ranked if there is an a 

such that x £ Ra. 

To indicate that x has rank, we will say R(x). The operation rk(a;) on 

ranked sets is defined as follows: 

rk(a;) = inin{a : x £ Ra}; 

rk(:r) is often called the rank of x. 

Theorem A7.1. 

1. Ra is transitive. 

2. Rp C Ra for P < a. 

3. rk(x) is a successor ordinal for an arbitrary ranked set x. 

4. If R(x) and y £ x, then rk(?/) < rk(x). 

5. If Vy e xR(y), then R(x). 

Proof. 1. We prove the assertion by transfinite induction. For a = 0 

the assertion is obvious. If a is a limit ordinal, then Ra is transitive, since, 

according to the induction hypothesis, it is a union of transitive sets. Assume 

next that a = (3 + 1 for some p and u G Ra = P(Rp). Then u C Rp. If 

v € u, then v £ Rp, and so v C Rp by the induction hypothesis; thus v € Ra. 

Hence u C Ra, and so Ra is transitive. 

2. We prove the assertion V/? < a (Rp c Ra) by transfinite induction on 

a. If a is not a successor ordinal, then the assertion is straightforward. If 
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a = (3 + 1, then Ra = P(Rp). Hence Rp 6 Ra, and so, by Assertion 1, 

Rp C Ra- If 7 < (3, then R^ C Rp C Ra according to the induction 

hypothesis. 

3. If x € Ra and a is not a successor ordinal, then there is a /? < a such 

that x G Rp. 

4. Assume a = rk(x) and y e x. Then x € Ra and a = [3 + 1 for some /?; 

thus x C Rp, and so y G Rp. Therefore, rk(y) < (3 < a = rk(x). 

5. Assume each element of x has rank. Put 

a = sup{rk(t/) : y 6 x}. 

Then for every y € x, there is a (3 < a for which t/ € i?/j. By Assertion 2 we 

then have x C i?a, and so x E R •,. 
u 7 a+1 

* * 

* 

Next we prove the following in ZF*. 

Theorem A7.2. A7 4=^ Vxi2(x). 

Proo/. Assume that VxP(x), and let x ^ 0 be arbitrary. Write 

a = min{rk(t/) : y E x}, 

and let j/ e x be a set such that rk(y) = a. If z € y, then we have 

rk(z) < rk(j/) = a 

according to Assertion 4 of Theorem A7.1, and so y fl x = 0. 

To prove the converse, for an arbitrary set x define the transitive closure 

T(x) of a set as follows. First define Tn(x) for n < u by recursion as follows: 

T0(z) = {z} and Tn+i(x) = |jTn(x) for n < u. 

Put 
T(x) = |J Tn(x). 

n<ui 

Then x £ T(x) and T(x) is transitive, since if u € T(x), then u e Tn{x) for 

some n e u, and then we also have 

u C Tn+ i(x) C T(x). 

It is easy to see that if T is a transitive set and x e T, then T(x) C T; 

thus the term transitive closure is indeed justified. Assume now, contrary to 
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the assertion to be proved, that A7 holds and yet there is a set, say, y, that 

has no rank. Let T = T(y). Then the set 

x = {z E T : -iR(z)} 

is not empty, since y e x. According to A7 there is a z e x with z fl x = 0. 

Then, T being transitive, we have z C T, and so every element of z has 

rank. Hence Assertion 5 of Theorem A7.1 implies that z has rank, and this 

contradicts the definition of x. 

* * 

* 

In the first part of the book, we said that the cardinality operation cannot 

be defined from the usual axioms of set theory without using the Axiom 

of Choice. When saying this, however, we did not include the Axiom of 

Regularity among the usual axioms. The following theorem shows that it is 

possible to define the cardinality operation in ZF. 

Theorem A7.3. Put 

F{x) = {y e i?rk(x) : y ~ x A Vz {z ~ y =*• rk(y) < rk(z))}. 

The set T{x) consists of the sets of minimal rank that are equivalent to x. 

The operation P(x) is compatible with the property ~. 

Proof. The definition of JF is sound according to Theorem A3.3. P(x) 

is not empty, since there is a ye RT k(x) such that y ~ x; for example, 

y — x is such. If T{x) = P(y), then x ~ y, since for an arbitrary z € fF(x) 

we have 2 ~ x and z ~ y. If x ~ y, then, again by the transitivity of 

the equivalence, for an arbitrary 2 we have z ~ x <—>• z ~ y. Hence 

2 € T{x) z € P(y). 

* * 

* 

Finally we show that in ZF (with the Axiom of Regularity) the concept 
of ordinal has a simpler definition than the one given earlier. 

Theorem A7.4. Ordinal(a;) Trans (a;) A Vy G x TYans(y). 

Proof. As each element of an ordinal is also an ordinal, it is clear that the 
left-hand side implies the right-hand side. 

The reverse implication is proved by transfinite induction on the rank of 

x. Assume that the assertion is true for every set that has rank less than 

that of x, and, further, that Trans(x) A \fy e x Trans(y) holds. Then for 

each y ex we have Trans(?/) A V« € y Trans(z); thus y is an ordinal by the 

induction hypothesis. Hence x is transitive and consists of ordinals, that is, 
it is an ordinal itself. 



A8. PROOFS OF RELATIVE CONSISTENCY. 

THE METHOD OF INTERPRETATION 

In the first part of the book, there were several assertions about which we 

said that they cannot be proved without the use of certain axioms. We now 

describe how a result concerning the unprovability of an assertion can be for¬ 

mulated precisely, and we will present two general methods that can be used 

to establish such results. According to the well-known Godel Incompleteness 

Theorem, the consistency (i.e., of the state of being contradiction free) of 

ZF cannot be proved inside ZF. On the other hand, it is known that, in an 

axiom system with sufficient expressive power, it is possible to formulate its 

own consistency. This formula is denoted by Con(E) for the axiom system 

E. As it is not possible to prove Con(ZF), it is possible to imagine a state 

of affairs such that one can prove, e.g., the formula 0 = 1 in ZF. For this 

reason we need the following definition. 

Definition A8.1. Let L0 C L, E C Wff(L), and let <f> 6 Wff(L). We 

say that the formula is relatively consistent with E if the formula Con(E) 

implies Con(E U {0}). The proof of such an implication is called a relative 

consistency proof. 

Most relative consistency proofs can be carried out in Peano Arithmetic, 

but we will be satisfied with proving the implication 

Con(E) =► Con(EU {<£}). 

in E itself. The simplest method used to prove relative consistency is the 

method of interpretation. We will illustrate this with the proof of 

Con(ZF*) =► Con(ZF), 

due to John von Neumann. 

Definition A8.2. Let H(x) be a property formulated in ZF* such that 

ZF* h Bx H(x), 

and let E(x,y) be a property with two variables. The pair H(x), E(x,y), 

which will be denoted by A, will be an interpretation of the language L0 
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of set theory in which the sets with property H(x) will be called sets in the 

model, and the property E(x,y) will be used to “interpret” the relation G. 

To clarify, for an arbitrary <f> G Wff(L0) we define the interpretation (fiA of 

4> as follows: We introduce the variables x,y,..., to run over sets x with 

property H(x). For arbitrary variables x, y,... in (f), the subformulas x G y 

and x = y in (j> will be replaced with E{x, y) and x — y, and the quantifiers 

Vx, 3x in (f) will be replaced with Vx and 3x. We say that A interprets the 

axiom system E C Wff(To) if for each <j6 G E the formula <pA is provable in 
ZF*. 

As we can see, the concept of interpretation is defined outside the formal 

system. We are now ready to establish the following. 

Theorem A8.1. Assume A interprets the system 

ZF c Wff(Lo) 

of formulas in ZF*. Then the implication 

Con(ZF*) =► Con(ZF) 

is provable in ZF*. 

The proof, easily given by using standard ideas in mathematical logic, will 

not be presented here. It should be intuitively clear that if one can derive 

a contradiction from ZF, then this contradiction can also be derived from 

the formulas {4>A : </> G ZF}. As these formulas can be proved in ZF*, this 

means that a contradiction can be derived from ZF* alone. Furthermore, 

if we have an algorithm for proving the formulas {(fiA : </> e ZF} in ZF*, 

then this algorithm also gives an algorithm to prove the relative consistency 

of ZF. Finally, if A interprets ZF, and certain notions (such as properties, 

operations, and constants) can be defined in ZF, then each of these concepts 

can also be interpreted, and its interpretation will satisfy the interpretation 
of its definition. 

Theorem A8.2. Con(ZF*) =*> Con(ZF). 

Proof. Let H(x) = R(x) (R(x) was defined in Definition A7.1), and 

E(x, y) = x G y. According to Theorem A8.1, we have to prove the formulas 

A0 , • ■., A5 , A7 , Aa (</>) in ZF . In what follows, it will be convenient to 
introduce the notion of class. 

Given an arbitrary property B(x) with x among its variables, instead of 

B(x), we will often write x € B and we call B a class. Operations whose 

natural definitions designate only sets as elements of its values will from now 

on be considered as defined also for classes. For example, if the class B 

consists of elements x with property B(x), then (J B consists of elements x 

with property 3y(x G y A B{y)). Some operations cannot be defined in this 
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way; for example, the operation {B} cannot be defined in this way since this 

would require that B be an element of the class {B}, whereas only sets can 

be elements of classes, according to the way we introduced classes above. We 

will also use the self-explanatory symbols 

BOB', BUB', BCB', |js 

Accordingly, we will write x G R instead of R(x). In Theorem A7.1 we 

proved that x C R holds for each x e R. We may call R a transitive class. 

In what follows, a number of assertions remain valid for any interpretation 

A in which H is a transitive class and x 6 y = E(x,y). Interpretations of 

this kind are called transitive interpretations. 

Next we study the interpretation of each of the axioms. 

Af = 3xVu (u £ x). 

We have 0 e R, Vu (u 0) and so, a fortiori, 

Vu (u ^ 0), 

that is, 0 satisfies Af. 

Af = VxVy (Vu (u ex 4=4> uey) 4=4> x = y). 

Let x,ij € R. Then x,y C R, and so 

Vu(uex 4=* u G y) <=> Vu(«Gi 4=> u£y). 

Hence Af follows from Ai. 

Af = VxVy3zVu (uGz 4=^ u = iV u = y). 

Let x,y e R. Then {x,y} € R according to Assertion 5 of Theorem A7.1. 

For z = {x,y}, we have 

Vu(uez 4=4> u = x\J u- y). 

A fortiori, we have 

Vu(uez 4=^ u = x\J u = y). 

Af = Vx3yVu {u€y 4=> u CA x). 

For x,u e R we have x, u C R\ hence 

fi (2^ x = Vfi (y € u =4- v (E x) = Vu (u € u —£* v £ i) = u C I. 
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According to the definition of R, we have P(x) G R. Write y = P(x). We 

have 

V« (u e ji <=>■ u g x), 

and so, a fortiori, 

\/u{u£y <*=> u G x)- 

Aa = Vx3?/Vu (w G y <==$■ 3n (u G v A h G x)). 

Let x G R; then (Jx C R according to Assertion 1 of Theorem A7.1, and so 

U x G R according to Assertion 5 of the same theorem. Write y = \J x. We 

have 

Vu (u G y <=>- 3n (u G n A n 6 x)). 

Hence, a fortiori, 

Vu (u G y <£=>■ 3n (it G n A v G x)). 

But 

3n (w G n A v G x)) •<=>• 3n (u G n A h G x)) 

as x C R. 

AA = 3x (0A G x A Vu (u G x =>• u UA {u}A G x)). 

It is easy to show by transfinite recursion that aGR holds for every ordinal 

a. Thus oj G R. We are going to show that x = u> satisfies AA. 
We saw in the proof of AA that 0 G R and 0A = 0. If u G R, then we 

have 

u U {u} G R 

by Assertion 5 of Theorem A7.1. By a calculation similar to the calculations 
above, it is easy to show that 

u UA {u}A = uU {u}; 

in particular, the left-hand side here is well defined. Thus tu indeed satisfies 

At 

Aa = Vx (x / 0A 3y(y G x A y nA x = 0A)). 

Let x G R, and assume that x/0A. Then, clearly, x/f), since 0A = 0. 

Let y be an element of x of minimal rank. Then, by Assertion 4 of Theorem 

A7.1 we have y n x = 0. For this y, we have y G R; hence y = y, and 

ynAx = ynx = V). 
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Aa: Let 0 e Wff(Lo), assume all variables of (f> are among u,v,xi,..., xn, 

and let x, y be variables different from these. 

Aa(0) = Vii.. .Vxn I Vu3!v (f)(u, v,xi,... ,xn) => 

Assume xi,..., xn,x e R are given, and assume that 

VtOu </>A (u,V,X 1, . • • , in) 

holds. Then, according to A6(0a), there is a y such that 

y = {v : u e x A 0A(u,u,Xi,... ,xn)}. 

According to Assertion 5 of Theorem A7.1, we have y € R, and so y — y 

satisfies the axiom. 

The theorem just proved shows that the Axiom of Regularity does not lead 

to a contradiction if there was no contradiction in ZF* itself. On the other 

hand, the “natural” model R of the Axiom of Regularity admits sufficiently 

many sets, so that its adoption does not represent a significant restriction. 

For this reason, in the current literature, and especially in the part of litera¬ 

ture concerned with axiomatic questions, the Axiom of Regularity is almost 

always assumed. 
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THE METHOD OF MODELS 

Let Lo C L', ZF C ZF' C Wff(L'). It may turn out that we can prove the 
consistency of a system £ in the axiom system ZF' by specifying a set model 
satisfying £. We will illustrate this method by presenting a sketch of the 
proof of the following theorem; this theorem was known in its essentials even 
to Zermelo. 

Theorem A9.1. The following is provable in ZF: If n > u is a strongly 
inaccessible cardinal, then the axioms of ZF hold on the structure 

%=(Rk,£ \Rk) 

(written, somewhat informally, also as (RK, e)). In ZFC, it can be proved 
that the Axiom of Choice also holds in (RK, e). 

According to Godel’s Completeness Theorem, this means that the consis¬ 
tency of ZF is provable in the axiom system 

ZFx = ZFu{3« > u (k is strongly inaccessible)}. 

Therefore, in view of Godel’s Second Incompleteness Theorem, in ZF one 
cannot prove the existence of strongly inaccessible cardinals greater than u. 

Thus we obtained a relative consistency proof; namely we established that 

Con(ZF) =*> Con(ZFu{-i3«; > u (k is strongly inaccessible}). 

A more precise formulation of theorem A9.1 can be given as follows. 
In the axiom system ZF, we redefine the syntactical concepts of language, 
formula, term, etc., for a language Lo that contains the only relation symbol 

£ in addition to the symbol for equality. We denote by ZF the set of formulas 
in this language corresponding to the formulas A0,..., A6 (<£), A7. Then we 
define what it means for a formula to be true or false in a structure in the 
usual way, and the theorem then says that 

(#«» £) (= (f> for any 0 e ZF. 
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In this form the result is not a metatheorem, since the property 

(Rk, E) (= <t> 

is definable in ZF. 

Proof of Theorem A9.1. We can proceed in close similarity to the proof 

of Theorem A8.2. Denoting by x, y,... the variables running over elements 

of Rk, noting that RK is a transitive set; and noting that, k being a limit 

ordinal, for each x E RK we also have P(x) E RK, the proofs of the assertions 

Rk |= Aj for i = 0, 1, 2, 3, 4, 5, 7 can be almost word for word copied from 

the proof of Theorem A8.2. 
Next, by using transfinite induction on a, we prove that we have |i2a| < « 

for a < n. Indeed, if a = (3 + 1, then 

D | < 2I**I < K, 

by the induction hypothesis and by k being strongly inaccessible. If a is a 

limit ordinal, then 

(3<a 

as k is a regular cardinal. Consider 

A6(0) € ZF for (/) = (f){u,v,xi,.. .,xn), 

and assume that for arbitrary x\,...,xn we have 

(Rk, e) (= Vu3!w <f>(u, xn). 

Then there is a function / with D(/) = RK, R(/) C i?(«) such that 

{RK,e) h <t>(u,f{u),x 

holds for each u € RK. Then 

rk(/(u)) < k for each u G RK- 

Now let x e Rk be arbitrary; then x G R^ for some 7 < k, and so |®| < k 

according to what we said above. Hence 

a d= sup{rk(/(u)) : u G x} < n, 

as k is regular. 
Write y = {/(u) :iiGi}. Then y C Ra, and so 

y ^ Ra+i 
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Thus y = y satisfies the axiom. 

Given x G RK and a choice function / on x, we have / € RK, and so we 

can also prove the assertion 

<*», e) 1= A„ 

in ZFC. 

* * 

* 

We would like to point out that the assumption k > u was used only in 

order to prove that u £ RK, and so, that (RK, e) |= A5. That is, the proof 

above shows that (jRw, e) (= ZF\{A5}. 
We would like to observe that the relative consistency of the nonexistence 

of strongly inaccessible cardinals can be proved by using the above ideas 

without any reference to the Incompleteness Theorems of Godel. To this 
end, we only have to establish the following lemma. 

Lemma A9.1. If k is the smallest strongly inaccessible cardinal greater 
than u>, then 

(Rk, 6) |= There is no strongly inaccessible cardinal greater than u. 

The proof will be left to the reader. 

The desire of proving the relative consistency of the existence of strongly 

inaccessible cardinals seems legitimate. It is, however, impossible to fulfill 
this desire. 

Theorem A9.2. If ZFC U{Con(ZFC)} is consistent then 

Con(ZFC) Con(ZFCU{3« > u> (k is strongly inaccessible)}) 

cannot be proved in ZFC. 

Proof. Assume 

ZFC h Con(ZFC) =» 

Con(ZFCu{3«; > u (k is strongly inaccessible)). 

Then, according to Theorem A9.1, we have 

ZFC U{Con(ZFC)} h Con(ZFCU{Con(ZFC)}). 

This is, however, impossible in view of Godel’s Second Incompleteness The¬ 
orem. 

* * 

* 

We point out that the existence of strongly inaccessible cardinals greater 

than u is equiconsistent with the existence of inaccessible cardinals greater 
than u. 



A9. Relative consistency proofs. Models 141 

Theorem A9.3. If there is a structure (M, e) such that (M, e) |= ZFC, 

and for some element k of M we have (M, e) |= (k is inaccessible), then 

there is an M1 C M such that 

(M', e) 1= ZFC and (M', e) \= k is strongly inaccessible. 

This theorem is an easy corollary of Godel’s results about constructible 

sets. A discussion of these results is beyond the scope of this book. 

The assumption of the existence of strongly inaccessible cardinals is usu¬ 

ally regarded as a natural strengthening of set theory. It follows from what 

was said above that it is not only impossible to prove their existence, it is 

also impossible to prove the consistency of their existence in a satisfactory 

way, at least by the present means of mathematics. This situation, however, 

does not differ very much from the situation that the proof of the consistency 

of the axiom system of set theory appears hopeless. 
In the second part of the book, we will see that the assumption of the 

existence of inaccessible cardinals, or even much larger cardinals, plays a 

significant role in modern set theory. The role of large cardinals is even more 

important in certain other axiomatic investigations in set theory that are 

not the subject of the present book. In what follows, it will turn out that 

the answers to a number of questions whose formulations have nothing to 

do with large cardinals per se depend on the existence of large cardinals. 

Thus the study of these questions would not be possible without a thorough 

investigation of large cardinals. 





PART II 

TOPICS IN COMBINATORIAL 

SET THEORY 





12. STATIONARY SETS 

In Definition 9.1 in the first part of the book, we discussed the concepts 

of filter and ultrafilter. The purpose of the present section is to describe a 

naturally arising filter on an ordinal £ (as the underlying set) with cf(£) > u. 

Before we can indicate the significance of this filter, we need to introduce 

a few simple concepts. 

Definition 12.1. Let X be a nonempty set, called the underlying set. 

For an arbitrary set A C P(X), the set {X \ A : A 6 A} is denoted as 

CO (A), and is called the dual of A. 

The dual of a filter on an under lying set X is called an ideal on X. We 

will also give a direct definition of ideals. 

Definition 12.2. Let X be a nonempty set. A set system I C P(I) is 

called an ideal on X if it is not empty and satisfies the following requirements. 

1.X&Z. 

2.IfA,BeZ then A U B e Z. 

3. If A el and B C A then B EX. 

It is clear that T C P(X) is a filter on X if and only if Co(Z) is an ideal. 

Our definition above slightly deviates from the one used in the literature. 

In the definition of ideal, it is not customary to include Condition 1. Set 

systems satisfying Conditions 1, 2, 3 are usually called proper ideals. We 

find our definition more useful. 

Definition 12.3. The set system Z C P(X) is called a prime ideal on X 

if it is an ideal and there is no ideal Z' C P(Y) on X for which Z ^ Z . 

It is easy to verify that I C P(I) is a prime ideal on X if and only if 

CO(J) is an ultrafilter; indeed, it is clear from the proof of Theorem 9.4 that 

an ultrafilter is a maximal filter. 

Definition 12.4. The ideal Z C P(X) is called a principal ideal on X if 

U zcz. 
Definition 12.5. Let k > u> be a cardinal. A filter T C P(X) is called 

a ^-complete filter if for every set system T' C T with \F\ < k we have 

or eZ. 
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Definition 12.6. Let k > u be a cardinal. An ideal Z C P(X) is called 

a ^-complete ideal if for every set system Z' C Z with \Z'\ < k we have 

U Z'ez. 

It is clear that JF 6 P(AT) is a ^-complete filter if and only if CO(T) is a 

/t-complete ideal on X. 

Filters and ideals that are u;i-complete are also called o-complete by tra¬ 

dition. A cr-complete ideal is also called a cr-ideal. 

Example: If X = R, then the sets of Lebesgue measure zero form a cr- 

complete ideal; similarly for the sets of first category. 

As can be seen from these examples, the elements of an ideal Z can be 

considered “small” subsets of the underlying set; the elements of the dual 

filter CO(X), “large” subsets; and those subsets that are not elements of the 

ideal, “not small” subsets. 

The successful applications of the Lebesgue measure and the Baire cate¬ 

gory show that the cr-ideals obtained in a natural way have great significance. 

In spite of this, only at a relatively late stage in the evolution of set theory 

was the theory of stationary sets developed, in its definitive form in 1956, as a 

result of the theorem of G. Fodor. This theory is of fundamental importance 

in set theory today, and it significantly simplifies the proofs of a number of 

results originally obtained prior to the existence of this theory. 

Definition 12.7. Given an arbitrary ordinal £, we call a set A C £ closed 

in £ if for each rj < £ and for each nonempty B C An tj we have sup B = 
U Be A. 

This is exactly the same as saying that A is closed in the ordering topology 

of the set (£, G). For this reason, if there is no danger of misunderstanding, 

we may say shortly that A is a closed subset of (or in) f, or, shortly, A is 
^-closed, or, simply, closed. 

Definition 12.8. Given an arbitrary ordinal the set A c £ is called a 

closed unbounded set in £ or, shortly, a club in £, or a £-club if A is closed 
in £ and it is cofinal in £. The set system 

{A C £ : 3B C A (B is a club in £)} 

is denoted byC(£). The elements ofC(£) are called £-large sets. 

As one can surmise, Definition 12.8 is not of much use unless we impose 

some restrictions on the ordinal £; for example, every cofinal subset of u is a 
club in u>. 

It is easy to see that C(£) is not empty for an arbitrary £ > 0; in fact, if 
77 < £, then 

In what follows we will denote by Lim(f) the set of limit ordinals less than 

It is easily seen that, for example, Lim(u;i) € Ciyjf). This example shows 
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that there is a club in u>i the complement of which has cardinality Ni; in 

fact, the set {r/ 4- 1 : rj < uq} clearly has cardinality Ni. 

The following theorem underlines the importance of our definition for 

cf(£) > w. 

Theorem 12.1. Assume £ is a limit ordinal with cf(£) > u. Then C(£) 

is a cf(£)-complete filter. 

Proof. It is sufficient to show that, given a system ^1 C P(() of clubs in 

£ with | .4.| < cf(£), the set QA. is a club in £. The assertion that P|A is a 

closed set is true for the intersection of closed sets in any topological space; 

even without any reference to topology, the assertion can easily be verified 

directly. 
We claim that Q A is cofinal in f. Let rj < f. By recursion on n, we are 

going to define a sequence {rjn : n 6 w} of ordinals. 

Put 770 = rj. Let n G and assume that we have defined rjn is such a way 

that Tjn < £. Pick a set 

A„C £\Vn, An^0 

such that we have 

\An\ < cf(0 and for every Ac A 

This is clearly possible, since A \ 7/n ^ 0 for A E A, and \A\ < cf(£). Put 

rjn+1 = sup An + 1. 

As |An| < cf(0, we have r/n+1 < £. This completes the definition of the 

sequence 

{Tjn : n < u)}. 

Clearly 

Tj = TjO < *' • < Vn < • • • < f • 

Put 
r = sup{7/n : n E uj}. 

Then rj < t < u; the latter inequality holds since cf(f) > u>. 

Let A G A. According to the construction, we have 

A n (j)n+i \ Tjn) ^ 0 for nEu, 

and so 
sup (A fl r) = t. 
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As A, being an element of A, is a club in {, this implies that r G A; thus 

r € f)A. 

Definition 12,9. The set A C { is called {-stationary if { \ A £ C({), 

that is, if A intersects every £-club. 

For historical reasons, we will introduce the following, somewhat redun¬ 

dant notation. The system of {-stationary sets is denoted by Stat({), the set 

system co(C({)), by ns({). The elements of ns({) are called {-nonstationary 

sets. Instead of {-stationary set and {-nonstationary set, we will often say 

stationary set in { and nonstationary set in {, respectively, or, somewhat less 

precisely, simply stationary set and nonstationary set. 

Note that, as {\?7 is a {-club for each { < r), every {-stationary subset of an 

ordinal { is cofinal in {. As we will see below, the concept of {-stationary sets 

is useful mainly if cf({) > u>, although on at least one occasion (in Definition 

20.5 below) the concept will be useful even if cf({) = to. We contemplate no 

use for stationary sets when cf({) < u>. Anyway, it is easy to see that, in 

the case when 0 < cf({) < u>, a subset of { is {-stationary if and only if its 

complement is bounded (i.e., not cofinal) in {. 

Theorem 12.1 leads to the following. 

Corollary 12.1. If { is a limit ordinal with cf({) > to, then ns({) is a 
cf(£)-complete ideal in {. 

As we mentioned already, Lim(u>i) is an wi-club. Hence B = {rj + 1 : r] < 

k>i} is a set of cardinality that is not stationary in ux. In what follows, 

we would like to give a characterization of stationary sets. To this end, we 
need the following definitions. 

Definition 12.10. Let { be an ordinal, and let (Ba : a < {) be a sequence 
of order type { of subsets of {. The set 

is denoted as Aa<£ Ba, and is called the diagonal intersection of the sequence 
{Ba : a < {). 

Definition 12.11. The filter fcP({) is called a normal filter if T is 
closed with respect to diagonal intersection. 

The requirement in the definition says that if each element of a sequence 

of length { belongs to T, then the diagonal intersection of this sequence also 

belongs to T. For a regular cardinal k > u replacing {, Theorem 12.1 can 
be sharpened as follows. 
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Theorem 12.2. Let k > u be a regular cardinal, and let {Ba : a G 

k} C P(k) be a sequence of order type k of K-clubs. Then Aa<K Ba is also a 

K-club. 

Proof. We are first going to show that 

B = A Bq 
a<K 

is /t-closed (i.e., closed in k). Assume that we have 

B' C q 

for some rj < k. Denote the union \JB' = sup B' by £. We have to show 

that £ € B. If £ is not a limit ordinal, then £ € B' C B. For this reason, we 

may assume that £ is a limit ordinal. Thus we have a + 1 < £ for a < £; 

consider a fixed a < £. Then 

sup(B' \{a+ 1)) = sup((£ \ (a 4- 1)) D 5') = £. 

On the other hand, by the definition of diagonal intersection, we have 

B'\(ail)cBttn fj. 

Ba is closed, and so 

sup(5' \ (a -i-1)) = £ e Ba. 

This holds for every a < £, and so 

«€ n 

Hence £ e B as we wanted to show. 
Next we claim that B is cofinal in k. We proceed similarly as in the proof 

of Theorem 12.1. 
Let T) < k. By recursion on n we define a sequence {r?n : n E u>} of 

ordinals. Let r/0 = V- Assume that we have already defined r]n < k for some 

n. Let 
An C K \ rjn 

be a set such that 
A„nBa/0 

for each a < r/n, and |An| < k. It is possible to choose An in such a way, 

since rjn < K an(l 

Ban(K\i7n)#0 for oc<T]n. 
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Let 77n+1 = supAn + 1. Then r)n+i < k, as k is a regular cardinal. This 

completes the definition of the sequence {r/n : n < u}. 

It is clear that 

T) = Vo < • • • < T)n < • • • < K. 

Write r = sup{r/n : n e u>}. As a> < k = cf(k), we can see that 

7] < T < K. 

We claim that r G B. To show this, let or < r. Then there is an n e u such 

that a < r)n. According to the construction, we have 

Ba H (//m+i \ Vm) # 0 whenever n < m < u>. 

Thus 

sup Ba n r = r € Ba, 

as Ba is closed in k. Since a < r was arbitrary, r G B also follows, as 
claimed. 

* * 

* 

The following definitions and Lemma 12.1 below make it possible to apply 
Theorem 12.2 to the ideal ns(k). 

Definition 12.12. Let A be a. set of ordinals. Let f be an ordinal-valued 

function with A C D(/). We say that f is a regressive function (or, a 

pressing-down function) on the set A if we have f(cx)<a for each a G A 
with a ^ 0, and we have /(0) = 0 if 0 e A. 

Definition 12.13. Let £ be an arbitrary ordinal. The ideal X c P(£) on 

£ is called a normal ideal on { (or in P(£)J if, for each subset A (£ 1 of £ 

and for every regressive function f on A, there is an ordinal p <f such that 

Lemma 12.1. Let £ be an arbitrary ordinal and T C P(f), a filter. The 
filter J~ is a normal filter if and only if I = co(^) is a normal ideal. 

Proof. First we are going to show that if the filter T is a normal filter, 
then I = co(JF) is a normal ideal. 

To this end, let A ^ X = co(X) and let / be a regressive function on A. 

Then we will show that there is a G £ such that /-1({«}) £ X. 

Assume the contrary. Then, for every a < £, we have 

t\f-1m) = Baex. 

As T is closed with respect to diagonal intersection, we have 

B= A Bq 6 T. 
<*<(, 
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We claim that 

Bn A = 0. 

We have 0 £ B, since B is a diagonal intersection. Given 0 < 77 6 A, we 

have f(rj) < rj and rj £ Bf^y Hence r) £ B, verifying our claim. We thus 

obtained that 

Act\B, 

and so A E 1 This contradicts the assumption that X. 
Next we are going to show that if X is a filter such that X = Co(Jr) is 

a normal ideal, then X is closed with respect to diagonal intersection. Let 

Ba e X, a < £. Assume, on the contrary, that 

B = A Ba ^ X, that is A d= £ \ B £ X. 
a<£ 

We define a regressive function on A. According to the definition of B, for 

each Tf E A there is an a < rj for which rj £ Ba. Let 

f[rj) — min{o: : a < r] Arj ^ Ba} for r) € A. 

Then / is a regressive function on A. As X is a normal ideal and A ^ X, 

there exists an a < £ such that 

r\{a})tx. 

Let C = 1 ({o}). As we just saw, C £ X. If r? € C, then f(rj) = a. Thus 

Ba n C = 0. This contradicts the assumption Ba e X. 

* * 

* 

Fodor’s Theorem 12.3. If k > u is a regular cardinal, then ns(k) is a 

normal ideal. 

The result was established by G. Fodor [F] in 1956. Several authors call 

this result the Pressing-Down Lemma; they also prefer to call pressing-down 

functions what we called regressive functions. 

Proof. According to Theorem 12.2, the filter C(k) is closed with respect 

to diagonal intersection. So, according to Lemma 12.1, ns(/c) = Co(C(k)) is 

a normal ideal. 

* * 

* 

We would like to note that it is not difficult to give a direct proof, one 

not relying on the concept of diagonal intersection, of Fodor s Theorem. We 

followed the approach described above, since in this way Theorems 12.2 and 
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12.3 can be proved similarly to the simpler Theorem 12.1. Fodor described 

his theorem in 1956 in terms of stationary sets and regressive functions. The 

concept of normal ideal was introduced by D. Scott in 1961. 

In what follows, we summarize the properties discussed so far of the set 

systems C(k), Stat(«), and Ns(«). 

If k > u is a regular cardinal, then, according to Theorems 12.1 and 12.2, 

C(k) is a ^-complete filter closed with respect to diagonal intersection, i.e., 

it is a normal filter, and, according to Theorem 12.3, ns(k) = CO(C(k)) is a 

normal ideal that, clearly, includes all subsets of cardinality less than k of k. 

Furthermore, the following assertions are straightforward: 

1. If A € Stat(«), then |A| = k. 

2. If Be C(k), then B 6 Stat(«;). 

3. If B E C(k) and A E Stat(«), then An B E Stat(«). 

The first assertion easily follows from the remark made just before, and 

the second assertion is obvious. As for the third assertion, it can be seen as 

follows. We know that 

A = (A n B) U (A \ B) and A\B6Ns(«). 

Thus 

AnB (fc ns(k). 

Notation: If X is a set and k is a cardinal, then [A']<'s denotes the set 

{A C X : |A| < «;}, and [A]*, the set {A C X : |A| = «}. Similarly, [A]-* 
denotes the set (A C A : |A| < «}. 

In what follows, the next lemma will often be used, so we include a proof 
here. 

Lemma 12.2. If k is a regular cardinal, X is a normal ideal on k, and 
[k]</s c X, then X is also K-complete. 

Proof. Let A < k, and let {Aa : a < A} be a set system such that 

Aa E X and A = (J{4, : c < A}. 

We use reduction ad absurdum. Assume that A X. As A < k, we have 

A EX, and so from A ^ I we can conclude that A\A ^ X. Define the function 
/ on the set A \ A as follows: Let 

f(v) = min{a < A : rj E Aa} 

for each r] E A \ A. Then / is a regressive function on the set A \ A. As 

A \ A ^ J, by the normality of the ideal J, there is an a < A such that 

Then Aa\ \£X holds, which contradicts the assumption Aa E X. 

* * 

* 

In what follows, we will often use the following characterization of station¬ 
ary sets. 
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Theorem 12.4 (W. Neumer). Let k > u be a regular cardinal, and let 

A C k. The set A is K-stationary if and only if for every regressive function 

f defined on A, there is an ct < k such that 

|/-1(M)n A\ = K. 

Proof. The “only if’ part of the theorem follows from Fodor’s Theorem, 

since every set stationary in k has cardinality k. To prove the converse, 

assume that A is not stationary in k, and let D be a K-club such that AnB — 

0. Define a function / on the set A as follows. For each £ e A let 

/(f) = LKBn«- 
We show that this function fails to satisfy the requirements in the theorem. 

It is clear that /(£) < £; in fact, / is even regressive. To see this, note that 

if B n £ = 0, then /(£) = 0. Further, if B D £ ^ 0 and a = sup(B D £)> then 

we have a e B, as B is closed in k. Thus a ^ A, since A fl B = 0. Hence 

a = /(fl < £ 

Let p < k be an arbitrary ordinal. As B is cofinal in k, there is an 77 e B 

for which p < rj. Then, for each £ > 77 we have /(£) > 77. Hence 

/_1({^}) C 77 + 1; 

that is, 

1 r\{p})\ < 

Corollary 12.2. Ifn > u is a regular cardinal, and X C P(k) is a normal 

ideal on k with C X, then NS(k) C X; that is, ns(/c) is the smallest 

extension of [«]<K to a normal ideal. 

Proof. According to Lemma 12.2, the ideal X is ^-complete. If A G ns(«) 

then, by Neumer’s Theorem, there is a regressive function f on A such that 

/-1({p}) e [k\<k for any p < k. 

Then, however, we have f~1({p}) £ X, and so A el. 

* * 

* 

It is worth pointing out that the following special case for k = u 1 of the 

“only if’ part of the above theorem was already proved in 1924 by P. S. 

Aleksandrov and P. S. Uryson: If / is a regressive function on then there 

is an ordinal a < uq such that |/_1(M)I = “>i. They used this to Prove 
that ui with the ordering topology is a non-metrizable topological space. 

From the theorems proved so far, one can see only that for /c = cf(/c) > u 

the elements of the set C(k) are “large,” and the nonstationary sets are 

“small.” The next result indicates that among the stationary sets there are 

some that are neither small nor large. 
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Theorem 12.5 (R. Solovay). Let k > u be a regular cardinal, and A C k, 

a K-stationary set. Then A can be split as the union of k many, pairwise 

disjoint, K-stationary sets. 

Even the case k = ui of this theorem is not easy; in fact, it is not obvious 

that ui can be split as the union of two disjoint ui stationary sets. In 

this section, we prove only the particular case, stated as Theorem 12.5A, 

involving successor cardinals of this theorem. The proof we describe here 

gives a stronger statement, which will be used in the solutions of the exercises 

below. It also helps one to understand Solovay’s proof given in Section 17. 

For another proof of Theorem 12.5A, see Theorem 17.2. 

Theorem 12.5A. Let k > u>, and let A C k+ be a k+-stationary set. 

Then A can be represented as the union of k many, pairwise disjoint, k- 

stationary sets. 

Before the proof, we give another definition. 

Definition 12.14. Let k > u) be a regular cardinal, and let A C k. We 

say that the function f is essentially bounded on the set A if there is an 

ordinal p < k such that the set {^eA: /(£) > p} is not stationary in k. 

In what follows, we will denote the set {£ E A : /(£) > p) by the symbol 

Mf > p)• 

Proof of Theorem 12.5A. We may assume that for the stationary set A C 

k+ we also have 

A C (k+ \ (k -i- l))f1 Lim(«;+). 

Define the function g on the set A by the stipulation #(£) = cf(£) for £ e A. 
As 

cf(£) < « for £ < 

9 is a regressive function on A. Thus, by Fodor’s Theorem, there is a sta¬ 

tionary subset B of A and a cardinal A < k+ such that 

9(0 = cf(£) = A 

holds for £ E B. Now, for each £ E B, choose a strictly increasing sequence 

Mv) - V< A) 

of ordinals tending to £, i.e., a sequence such that 

sup{1^(77) : rj < A} = £. 

For an arbitrary ordinal 77 < A, we define a function f^ on B by writing 

fij(£) = ^(77) for each £ E B. 
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Then, for each 77 < fv is a regressive function on B. We claim that there is 

an 77 < A for which the function fv is not essentially bounded on B. Indeed, 

assume, on the contrary, that the function fv is essentially bounded on B 

for each 77 < A. This means that for each ordinal 77 < A, there is an ordinal 

pv < k+ for which 

B, = B(lv > PV) 6 ns(k+). 

As k+ is a regular cardinal, we have 

p d= sup{p,, : 77 < A} < k+. 

The set system ns(«+) being a k+-complete ideal, we also have 

B \ |J Bv € Stat(«+). 

TJ<\ 

Hence there is an ordinal a such that 

a E B \ [J Brj and p < a. 

r/<A 

Then, by the definition of Bv we have 

va (jl) = fv(a) < PiV 

and so 

a = sup{i/a(f?) : ^ < A} < sup{p,, : 77 < A} = p. 

This contradicts the choice of a. Hence there is an ordinal 77 < A such that 

the function fv is not essentially bounded on B. Denote such a function fv 

by /. For each a < k, let 

Ba = r1{{a})nB 

and 
M = {a : Ba e Stat(/c+)}. 

The sets Ba for a e M are pairwise disjoint stationary sets, so to complete 

the proof of the theorem it is sufficient to show that \M\ = k+. Let (3 < k+. 
As the function / is not essentially bounded on B, we have 

B(f > (3) = {£ £ B : f{£) >P}e Stat(«+). 
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Thus, again by Fodor’s Theorem, there is a value a assumed by the func¬ 

tion / on a stationary subset of the set B(f > (3). Clearly, a> (3. This a is 

an element of M. Thus we obtained that M is cofinal in k+. Thus \M\ = k+. 

* * 

* 

We will prove Solovay’s Theorem in its full generality only in Section 17 

(cf. Theorem 17.3). The proof will only have to be carried out for regular 

cardinals k > uj that are limit cardinals. In Section 10, such cardinals were 

called inaccessible cardinals. (In the Appendix above we also gave some in¬ 

formation concerning the existence problems connected with such cardinals.) 

We find it useful to reflect at this point on what it would mean if Solovay’s 

Theorem were not true for a cardinal k > u> and for a stationary set k. For 

this, we need some preliminary remarks. 

Given an ideal X on the underlying set X and A ^ X, we denote by 

X + (X \ A) the set 

{Y C A : Y n A e X}. 

This is usually called the ideal generated by XU {A \ A}. 

Lemma 12.3. Let X be an ideal on the underlying set X, and assume 
A ^ X. Then 

1. X + (X \ A) is an ideal on X. 

2. IfX is a X-complete ideal, then X + (X \ A) is X-complete. 

3. If X = £ for some ordinal £ and X is a normal ideal, then X + (£ \ A) is 
normal. 

The proof is left to the reader. 

* * 

* 

It is now easy to see that the assertion that, for some regular cardinal 

k> u> and for some ^-stationary set A, Solovay’s Theorem is not true means 

the following: for the ideal X* = Ns(k) + (k;\ A) there are no k many pairwise 

disjoint subsets of k that do not belong to X*. This property of ideals is 
worthy of being a separate subject of study. 

Definition 12.15. Let X C P(k) be an ideal, and let X be an arbitrary 

cardinal greater than 1 but not greater than k. We say that X is a A-saturated 

ideal if for every system Q c P(«)\X of pairwise disjoint sets we have \Q\ < A. 

It is easy to show that X is a 2-saturated ideal if and only if it is a prime 
ideal. 

We mention that if there is an X with i/Ic/t and |A| < A such 

that k\X € X, then X is clearly A-saturated. If we want to study nontrivial 

A-saturated ideals, then we need to assume that 

[k]<x C X. 
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The concept of A-saturated ideals is often defined also for X > k. 

Definition 12.16. Let X c P(/c) be an ideal, and let X be a cardinal 

greater than k. We say that X is a A-saturated ideal if for every set system 

Q C P(/c) \ X such that AnB el for any two A,B £ £/ with A ^ B we have 

|0|<A. 

This is a natural generalization of Definition 12.15. If, for A < k, we call 

the ideals satisfying the requirements described in Definition 12.16 strongly 

X-saturated, then it is easy to see that, for ^-complete ideals, the property 

of A-saturatedness and strong A-saturatedness coincide. 

Definition 12.17. The ideal X C P(«) is called r-dense if there is a 

sequence {AQ : a < r} C P(/t) \ X of sets such that for every B C k with 

B £ X, there is an a < r such that Aa \ B 6 X. 

It is clear that if an ideal X C P(k) is r-dense then it is also r+-saturated. 

We will further clarify these concepts through the problems below and the 

attached hints at the end of the book. 

Problems 

1. For arbitrary cardinals «, A with k = cf(/c) > A = cf(A) > u>, denote 

the set 
{o < k : cf(a) = A} 

by SK}\. Prove that SKj\ e Stat(«). 

2. Show that 
a) if £ is a limit ordinal and B is a £-club, then there is a strictly increasing 

continuous sequence 
{av : v < cf(£)} C B 

of ordinals that is cofinal in B; being continuous here means that we have 

au = sup{aM : n < v} for each limit ordinal w, 

b) if we assume in addition that f is regular, then we can write B in the 

form 
B = {au : v < £}, 

where {au : v < £} is a strictly increasing continuous sequence. 

3. Let k be a cardinal with k > cf(k) > u>. 
a) Prove that the set A c « is K-stationary if and only if for every regres¬ 

sive function defined on a there is an ordinal a < « such that 

e Stat(/«). 

b) Show that it is not in general possible to replace /-1(a) with /_1({a}) 

in Part a) of this problem. 
c) Show that the assertion in Part a) of this problem remains valid if we 

replace the condition uf~\a) is stationary” with “/_1(a) is cofinal in k ” 
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4. Let k be a regular cardinal, A C «, |A| = k. Prove that the set 

{ct < k : A fl a is cofinal in a and type(A fla)=a} 

is a K-club. 

5. Assume the set A CwiX^i has order type ui\ in the anti-lexicographic 

product of the sets (u>i, <), (uq, <). (See Definition 7.13.) Prove that there 

is an ordinal a < uq such that the set 

B = {£ < a : {77 < a : (77, £) £ A] is cofinal in ct} 

is cofinal in a. 

6. Let k = cf(/c) > u>. Let {Aa : a < k} C P(/c) be a sequence consisting 

of pairwise disjoint sets. Prove that the set A = Ua<« is stationary if 

and only if either B = {min< Aa : a < k} £ Stat(«) or there is an a < u> for 

which Aa 6 Stat(ft). 

Definition. Let k = cf(«;) > ui, A 6 Stat(«). Denote by the 

following property. If {Aa : a < k} C Stat(«) n P(A), then the sequence 

{Aa : a < k} has a disjoint refinement consisting of stationary sets, that is, 

there are pairwise disjoint sets A'a C Aa with A'a e Stat(«). 

The assertion that J-q(k, A) always holds would be a joint generalization 

of Theorem 12.5 and of the assertion of Problem 10.16,). Property A) 

was first formulated by G. Fodor. It turns out that its validity is independent 

of the axiom system ZFC. In what follows, we formulate a few problems on 
this topic. 

Definition. We say that the sets A and B are almost disjoint if I AnB\ < 
\A\n\B\. 

7. Prove that if k = cf(«) > uj, then for each A C Stat(«) the ideal ns(«) 

is K+-saturated on A (i.e., the ideal ns(«) + (k \ A) is k+-saturated) if and 

only if there is no sequence {Ba : a < «;+} C P(A) of pairwise almost disjoint 
stationary sets. 

8. * Prove that if « = cf(«) > w, A C Stat(«), and for each B c A the 

ideal ns(k) is not «+-saturated on B, then F0(k, A) holds. 

9. * Prove that ^0(^1, A) is false for a set A 6 Stat(u;i) if and only if there 

is a set B C A with B £ Stat(uq) such that the nonstationary ideal on B, 
i.e., ns(u;i) + (u>i \ B), is uq-dense. 

10. * Assume that k is a regular cardinal such that 2A < k for A < «. Let 

{Aa : a < «+} be a sequence of order type k+ such that Aa e ns(«) for each 
a < k. Prove that there is a set D c k+ with 

and [J{.4a NS(/t). |£>| = k 



13. A-SYSTEMS 

In the next two sections, we will discuss a number of results, interesting in 

their own right and also applicable in several branches of mathematics; the 

proofs of many of these results use the theory of stationary sets. 

Let F be a system of sets. In trying to solve various problems in set theory, 

a question of the following type often arises: Is it true that if F has many 

elements, then there is a system F' C F having relatively many elements such 

that any two elements of F' are “very different” from each other? There are 

numerous quantitative formulations of this problem. Among the Problems 

below, we will mention a line of investigation that radically differs from the 

one discussed below. 
In this section, the concept of “very different” is made precise in the 

following definition. 

Definition 13.1. The set system F is called a A-system if there is a set 

D such that Fi D F2 = D for any two distinct elements F%, F2 of T. 

Paul Erdos and Richard Rado systematically studied the question that, 

given a set system of a certain cardinality consisting of sets of a specified 

size, how large a A-system it must include. 
In what follows, we will present only a sufficient condition due to them 

to ensure that F should include a A-system of the same cardinality as T 

itself. Theorem 13.1 giving this condition is one of the most frequently used 

results in set theory nowadays. The proof will rely on results of the preceding 

section. 

Theorem 13.1. Let k > u be a regular cardinal, X, an arbitrary cardinal 

less than k. Let F be a set system of cardinality k each of whose elements 

has cardinality X. If X, k are such that Vt < k < k), then there is a 

A-system F' C F with \F'\ = n. 

Remark: The condition assumed on the cardinals «, A in the theorem is 

often expressed by saying that « is inaccessible from X. 

Proof. We will first carry the proof out for the case « = w, since in this 

case the general method used in the second part of the proof is not applicable. 

According to the assumptions, we have A — n for some integer n with 

1 < n < u. If n = 1, then the assertion is obvious. Assume that n > 1 

and that for A = n - 1 the assertion has already been established. By our 
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assumptions, F consists of countably infinitely many sets of n elements each. 

We distinguish two cases. In the first case, we assume that there is an element 

x that belongs to infinitely many F £ F. Let 

Fl = {F e F : x <E F}. 

Then 

F11 — {F \ {x} : F G F1} 

is an infinite set system consisting of sets of n — 1 elements each. According 

to the induction hypothesis, there is a set Fm C Fn such that l^7111! = u> 

and Flu is a A-system. Then the set 

T' = {fU^Tef111} CT 

is an infinite A-system. 

We may therefore assume that there is no element x that belongs to in¬ 

finitely many sets in T. In this second case, by recursion we define a set 

{Fn:nEu} C F 

consisting of pairwise disjoint sets. Assume that we have already defined the 
sets 

Fq, Fi,..., Fjg-i e F. 

As 

I U{Fi : i < k} 

there is a set F e F such that 

< u and \F\ = u, 

F n U{Fi : * < k} = 0. 

Let Tfc be such a set. Then {Fn : n < u} is an infinite A-system; in fact, it 
consists of pairwise disjoint sets. 

For the remainder of the proof, we may therefore assume that n > u. 
According to the assumptions, we have 

| — K' A < K. 

Therefore, we may also assume that 

FCF (k). 

Let (Fa : a < k) be an enumeration of order type k of the system F, each 

element listed exactly once. Denote by A the smallest infinite cardinal greater 

than A. That is, A = A"*" if A > u>, and A = u> if A is finite. According to the 



13. A-systems 161 

assumptions on the cardinals A, k, we have A+ < 2A < k if A > u, and so it 

is certainly true that A is a regular cardinal that is greater than A but less 

than k. Put 

A = {a < k : cf(a) = A}. 

As A is a regular cardinal, we know according to Problem 12.1 that A £ 

Stat(«). Define the function g on the set A by putting 

g(a) = sup(Fa n a) 

for each a £ A. As \Fa\ < A and cf(a) = A is regular, we have 

g(a) = sup(Fa D a) < a. 

Thus g is a regressive function on A. According to Fodor’s Theorem, there 

is an ordinal p < k and a set B C A with B £ Stat(«;) such that 

g(a) = p for a 6 B. 

As p < k, we have 

|[p]-A| < | max(p, u;)|A < k, 

according to our assumptions. As \B\ = k and k is regular, there is a set 

C C B with \C\ = « and there is a set D C p with \D\ < A such that 

Faf]a = D for a £ C. 

By transfinite recursion we now define a sequence : p < k) such that 

the set system 

{Fa„ : /x < «} = T' C T 

is a A-system. Assume that (aM : \i < v) has already been defined for some 

ordinal v < k. Then 

< \v\ • A < K, 

and so 

Let 

sup{Fa>i : p<v) <k. 

av = min{a £ C : a > sup U(^ u : p, < u} Aa > supD}. 

This defines av, completing the definition of the sequence (aM : p < k). We 

are going to show that T' is a A-system. Let p < v < k. Then cx^ < otu- As 

olv £ C, we have 
Fa„ H olv — D C Fait. 
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Furthermore, by the definition of au, 

■Fq.^ C olv 

holds, and so 

Fa^Fav FaixnaunFa„=Fa^nD = D. 

* * 

* 

Problems 

1. Show that none of the conditions of Theorem 13.1 can be omitted. 

2. Prove that for all nonnegative integers n,k < u>, there is m < u such 

that every system of cardinality m of sets of n elements each includes a 

A-system of k elements. Denote by d(n, k) the smallest such integer m. 
3. Prove that 

d(n, 3) < 2n-1n! + 1. 

4. Prove that there is a set system F C [w]u with \T\ = 2K° that consists 

of pairwise almost disjoint sets. (See the definition before Problem 12.7.) 

5. * Prove that if A > k > u> and p = \<K, then there is a system T C [p]K 

consisting of pairwise almost disjoint sets such that \F\ = A*. 

6. Assume GCH, and let A > k > u> with cf(A) = cf(«). Prove that then 

there exists a system T C [p]K consisting of pairwise almost disjoint sets such 
that 1^1 > A. 

7. * Prove that if A > k > u, cf(A) # cf(«), and X e [A]K, then there is a 

f Cl, Y € [A]K 

such that Y is not cofinal in A. 

8. * Assume that GCH holds, and let A > « > u> with cf(A) ^ cf(«). Prove 

then that for an arbitrary set system T C [A]* consisting of almost disjoint 
sets, we have 

\F\ < A. 

9. Verify that if k > u is a regular cardinal and T C [k]k with l^l = « 

a set system consisting of pairwise almost disjoint sets, then there is a set 
C k for which A £ F and 

|AnF| < k 

holds for every set F (E F. 
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10. Show that if k > u and T C with \F\ = k is a system consisting 
of pairwise almost disjoint sets, then there is an 

x e [«]cf(K) (x i T) 

such that JFu {X} is a set system consisting of pairwise almost disjoint sets. 
11. Show that there is a set T C P(u>) for any two distinct elements A, B 

of which we have neither Ac B nor B C A, and for which l^7! = 2**°. 
12. Prove that if 

Fc[u}“, \F\=u, 

then there is a set B £ [u>]u' that intersects every element of T but does not 

include any of them. 
13. * Prove that there is a set system fcP(w) of cardinality 2K° consist¬ 

ing of pairwise almost disjoint sets for which there is no set B satisfying the 

conditions of Problem 13.12. 



14. RAMSEY’S THEOREM AND ITS 

GENERALIZATIONS. PARTITION CALCULUS 

In 1930, the British mathematical logician F. P. Ramsey proved the result, 

today known as Ramsey’s Theorem, that we will discuss at the beginning 

of this section. Ramsey’s set-theoretical theorem has surprising and deep 

applications in several branches of mathematics. We will discuss only one 

application to model theory, but we would like to mention that this theorem 

also has applications in geometry and analysis. 

The possibility of studying various generalizations of the theorem is even 

more important. The so-called Ramsey theory is now an important subject of 

finite combinatorics, while the study of its transfinite generalizations brought 

about an important branch of set theory, now called partition calculus, in the 

the wake of investigations by Paul Erdos and Richard Rado. The calculus 

of partitions has important applications outside set theory mainly in set- 

theoretic topology and universal algebra. In this section, we will give a 

glimpse of some results of partition calculus, without in any way aiming at 

completeness. For this reason, right at the outset, we formulate the problem 

studied in Ramsey’s Theorem in somewhat general terms. 

Definition 14.1. Let X be an arbitrary set, A, a cardinal, and 7, an 

ordinal. Given a mapping f of the set [X]A into 7, we call f a A-partition of 

(or with) 7 colors of the set X. If Y C X, v < 7, and /“[Y]A = {v}, then 

we say that Y is homogeneous of (or in) color v with respect to /. The set 

Y C X is said to be homogeneous with respect to / if it is homogeneous in 
some color v < 7- 

The aforementioned theorem of Ramsey says that if 1 < r, k < u and / is 

a ^-partition with r colors of an infinite set X, then there exists an infinite 

subset Y of X that is homogeneous with respect to /. 

The generalizations of this result investigate the question of how large 

a homogeneous subset can be guaranteed if the cardinality of the set X is 

large. In order to study this question quantitatively, we will introduce a 
general symbol. 

Definition 14.2. Let 7 be an ordinal, and let k, A, ku (v < 7) be cardi¬ 
nals. The symbol 

K —> («iv)£<7 
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is used to indicate that the following assertion is true: 

For an arbitrary set X of cardinality k and for every X-partition f of X 

with 7 colors, there is a set Y C X and an ordinal v < 7 such that Y is 

homogeneous in color v with respect to f and |Y| = ku. 

To indicate that this assertion is not true, it will be denoted as 

« -h M*<r 

Occasionally, in the problems but not in the main text, partition relations 

involving order types rather than cardinals are mentioned. The meanings of 

these can be described in a similar way. For example, given order types 0, 

0„, in the relation 

0 —* (®i/)£<7) 

the A-partition of a set of order type 0 is considered, and the existence of a 

homogeneous subset of order type is claimed for some v < 7. 

We observe that here we in effect defined a property 

R{k, A, 7, (ft„ : v < 7)) 

depending on the cardinals ft, A, the ordinal 7, and the sequence {kv : v < 7). 

The above, today generally accepted, graphic symbol, introduced by Richard 

Rado, is so devised that if we increase the cardinals on the left-hand side of 

the arrow (-►) in a true assertion, the resulting assertion will again be true, 

while if we decrease the cardinals or ordinals on the right-hand side of the 

arrow in a true assertion, the resulting assertion will again be true. If all 

cardinals kv are equal to r then it is natural to write 

k -» (r)} instead of ft (ftt/)*<7> 

k -ft (r)} instead of (fti/)*<7- 

This symbol describes a nontrivial assertion only if A > 1, 7 > 2, and 

kv > A; we will not bother the reader with discussing its truth value in the 

trivial cases. The combinatorial phenomenon discussed in Ramsey’s Theo¬ 

rem appears only for A > 2; we nevertheless want to mention the following 

assertion concerning the case A = 1. 
For each cardinal ft and every sequence (k„ : v < 7) of cardinals with 

0 < k„ < k for v < 7, the assertion 

ft —> (fti/)i<7 

is true if and only if, for every sequence (A„ : v < 7) of cardinals with A^ < ft„ 

for v < 7, the relation 

A„ < ft 
i/<7 

holds. Thus, for example, for ft > u the relation ft -> (ft)} holds if and only 

if 7 < cf(ft). , 
Next we present one among the several well-known proofs of Ramsey s 

Theorem; familiarity with this proof will be useful for us in later sections. 
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Ramsey’s Theorem 14.1. Assume 1 < r < u and 1 < k < u. Then 

u (u)k• 

Proof. We will prove the theorem by induction on r. For r = 1 the 

assertion is straightforward. 

Let r > 1 and assume that the assertion is true for r; we will show that it 

is true for r + 1 as well. Let / : [u;]r‘+1 —> k be an (r + l)-partition of u> with 

k colors. Let U C P(u;) be an ultrafilter that includes the set 

W \ A : A e M<"}; 

the existence of such an ultrafilter is guaranteed by Corollary 9.1. 

We are going to define an r-partition of u with k colors as follows. Let 

V G [u>]r. For an arbitrary i < k, denote by Fi(V) the set 

{x G u \ V : f(V U {a:}) = i}. 

We then clearly have 

a; = Fu|jFi(F), 
»<fc 

and the summands on the right-hand side are pairwise disjoint. Hence, by U 

being an ultrafilter, for an arbitrary V e [w]r there is exactly one i < k such 
that 

Fi(V) E U. 

Let f'{V) = i for this unique i. The mapping f so defined is an r-partition 

with k colors of u. We denote the set F/(v)(P) by G(V). Then 

G(V) G U 

holds for every element V G [oa]7'. 

We now define a sequence {xn : n < u} by recursion on n. If n < u and 

the sequence {xm :m <n) has already been defined, then put 

xn = min{P|{G(F) : V G [{xm : m < n}]r} \ rnax{xm + l:m<n}}. 

If n < r, then the set system [{xm : m < n}]r is empty; the intersection of 

the empty set system in the above formula is considered to be equal to u. 

The definition is sound, since the intersection of finitely many elements of U 
is an infinite subset of ui. Thus we have defined an infinite subset 

A = {xn : n G u} 

such that xq < xi < • • • < xn < ... holds. The function //|[A]r is an 

r-partition of the set A with k colors, and so, by the induction hypothesis, 
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there is a set Y C A with \Y\ = u that is homogeneous with respect to f. 

We claim that Y is homogeneous with respect to /. Let 

W0, Wi € [Y]r+1, zq = max Wo, z\ - maxWi, 

W0 = Vo U {*0}, W1=V1 U {Zl}, Vo, Vx € [F]r. 

Then, by our construction, 

*> € G(Vj) = Fm)<y,), 

and so 

f(Wj) = f(Vj) 
for j < 2. On the other hand, 

/'(Vo) = /'(Vt), 

as Y is homogeneous with respect to f. Thus 

/(Wo) = /(Wx), 

and so Y is homogeneous with respect to / as well. 

* * 

* 

Next we present an application of Ramsey’s Theorem to model theory. 

For this, the reader needs to be familiar with the fundamentals of the theory 

of first-order languages and structures. While we will include a definition of 

most of the required concepts, we would still recommend that the reader not 

conversant with the basics of mathematical logic skips these pages, at least 

on the first reading of this book. 

Definition 14.3. Prerequisites. Let L be a first-order structure, 2t = 

(.A, J) a structure of a signature corresponding to L. In our notation J 

is a function defined on the relation and function symbols of the first-order 

language L. 
Ifp is an n-place relation symbol for some n < uj, then J(p) is an n-place 

relation on the set A. 
If g is an n-place function symbol (n < uj), then J{g) is a function of n 

variables on the set A. 
If in particular n = 0, and C is a function symbol of 0 variables, called a 

constant symbol, then J (C) is an element of A. 
The set of well-formed formulas of the language L is denoted by Wff(L). 

If (f) e Wff(L), then V(<j>) denotes the set of free variables of the formula (j). 

If(j) (E Wff(L), V{4>) = {u0, • • •, Un—l}, *0,.. •,*n-i € A, and x = (x0,. • •, 
Xn_i), then Qt (= 0(x) indicates that the formula <\> is satisfied by 21 when 

we give the value Xi to the variable U{ for each i < n. We assume familiarity 

with the precise definition of this concept. 

For the rest of the prerequisites, we refer the reader to the monograph 

C. C. Chang-H. J. Keisler, Model Theory [C, K]. 
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Definition 14.4. Let L be a first-order language and let 21 = (A, J) be 

a structure of the corresponding signature. Let H C A and let -4 be an 

ordering of the set H. We call H a set of indiscernibles in 21 (with respect 

to the ordering -<) if for every formula 4> G Wff(L) with 

V(<j>) = {u0,...,Un-1}> n < u 

and for arbitrary sequences 

X = (x0,... ,x„_i) € nH, y = <2/0, • • ■, 2/n-i) € nH 

with 

xq -4 • • • -< xn-i, yo -4 • • • -4 yn-i 

we have 

21 (= ^(x) 4=* 21 (= ^(y). 

Definition 14.5. Let 21 = (A, J%) and 03 = fB,J\b) be structures of 

signatures corresponding to L. We say that the structure 21 is an elementary 

submodel of 23, or © is an elementary extension of 21, if A C B and for an 

arbitrary formula <j> e Wff(L) with V{(j)) = {w0,..., un_i} (n < u) and for 
each n-tuple x = (x0,.xn_i) G nA we have 

21 (= </>(x) 4=^ 23 (= </>(x). 

The fact that 21 is an elementary submodel of 23 is denoted as 2t -< 23. 

(The symbol -4 also has uses other than to indicate the elementary submodel 

property; e.g., we frequently use it as a generic symbol for orderings. We 

hope that the context will make it clear which use is meant.) 

After these preliminaries we can formulate the theorem of model theory 
already hinted at above: 

Ehrenfeucht-Mostowski Theorem 14.2. Let L be an arbitrary first- 

order language, and let 21 = (A, Ja) be a structure of the corresponding 

signature such that its underlying set A is infinite. Then 21 has an elementary 

extension 23 = (B, J<%) and there is an ordered set (H, -<) such that 

HcB\A, \H\ = u, 

and H is a set of indiscernibles in the structure 23 with respect to the ordering 
-4. 

Proof. We may assume that A = « for some cardinal k > u. Let L' be an 

extension of the language L by the addition of constant symbols 

{ca :a < k} and {dn : n < u) 
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not occurring in L. Consider the following sets of formulas: 

ro = {0(cao,...,ca„_1):0GWff(L) 

A \ V(<f)) | = n A 21 |= 0(ao,..., an-i) A Vi < n (a* < «)}; 

Ti={(t>(dio,...,din_1) <=> (t>(djo,...,djn_1) :</>€ Wff(L) 

A \V((J)) \ = n A i0 < ■ • • < in—l < u A j0 < • • • < jn-i < u}; 

r2 = {d* ^ dj : i ^ j Ai,j < , 

r3 = {ca ^ di : a < k Ai < u}. 

Let 

r = r0uriur2ur3. 

We claim that it is sufficient to prove that the set T of formulas is consistent. 

To see this, let ©' = (B, J') be a structure of signature corresponding to 

the language L' such that ©' (= T. Let © = (B, J®) be the restriction 

of this structure with signature corresponding to the language L\ that is, 

J*=J'\L. 
The embedding a t-» J'{ca) is one-to-one, as ©' \= F0. Hence we may 

assume that « C B. Again using the condition ©' (= T0, we can see that 

for arbitrary elements ao, • • •, c*n-i < k and for an arbitrary formula </> of L 

with n free variables, we have the relation 

Ql \= 4>{(Xo, . . . , Otf\—1) — © (= </>(cao, . . . , Can_j) 

Hence 21 -< ©. 

Put 

H = {J'(dn) : n < w}. 

Define the ordering ->< of H by the stipulation 

J'(dn) -< J'{dm) whenever n < m < u; 

-< is indeed an ordering, as ©; |= ^2- As ©/ [= Ti, the set H is a set of 

indiscernibles in the structure © with respect to the ordering Finally, the 

assumption ©' f= T3 ensures the requirement H C B \ A. 

In view of what has been said, it is sufficient to prove that the set T of 

formulas is consistent. By the Compactness Theorem of First-Order Logic, 

it is sufficient to show that any finite subset of T is consistent. 

Let r' be a finite subset of the set T of formulas. Let C be a finite subset 

of k such that we have ex £ C whenever the constant ca occurs in any formula 

in r'. Let n be an integer such that we have i < n whenever the constant d{ 
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occurs in any formula in T'. Let L" be the extension of the language L with 

the constant symbols ca (a 6 C) and dj (i < n). Finally, put 

r = {t/> e Wff(L) : 3k(k = \V(il>)\ A 3z0,...,• • •,3k-i < n 

io < • • * < *fc-1 A j0 < ■ ■ • < jk-i < n 

^(di0,... ,dik_1) <—> ip(dj0,..., djk_1)) G T j |. 

T* is clearly a finite set. 

Given an arbitrary 0 e T*, denote by m the cardinality of F(</>), and 

define an m-partition of k with 2 colors by putting 

f<p{{a0i • • • > am—i}) = 0 21 (= </»(a0, •.., am_i) 

for each increasing sequence ao < • • • < am_i < k of length m or ordinals. 

By repeated application of Ramsey’s Theorem, we find an infinite set 

D C k that is homogeneous for the mapping for each formula 4> e T*. 

Let 21" = (A,J") be a structure with signature corresponding to the 
language L" such that 

J"\L = J\L, J"{ca) = a for a e C, 

J"(di) € D\C, and J"(di) < J"{dj) whenever i < j < n. 

It is easy to show that by the homogeneity of D we have 

21" |= r'. 

* * 

* 

Next we turn to the discussion of the transfinite generalizations of Ram¬ 

sey’s Theorem. The question arises immediately whether Ramsey’s Theorem 

remains true if we replace u> with an arbitrary infinite cardinal «, that is, 
whether the assertion 

« («)* (r, k < u) 

or at least the assertion 

k (k)1 

holds for an arbitrary cardinal k>u>. 

Even before the above partition notation was invented, the Polish math¬ 

ematician W. Sierpinski proved that this is not true in general, and we will 

next discuss his ingenious counterexample showing this. Later, in Section 18, 

we will return to the question, for which infinite cardinals the assertion of 

Ramsey s Theorem remains valid, and in Section 18 we will discuss possible 
generalizations of Sierpinski’s example. 
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Sierpinski’s Theorem 14.3. 2N° 

Proof. Let (R, <) be the set of real numbers with the ordering < according 

to size, and let (R, -<) denote a wellordering of R. Define the mapping / : 

[R]2 2, i.e., a 2-partition of R with 2 colors, as follows: Given 

with x0 < Xx, 

for xq X\, 

for x\ -< xo. 

If H C R is homogeneous in color 0 with respect to /, then the ordering < of 

the real numbers according to size wellorders H. If H C R is homogeneous 

in color 1 with respect to /, then the ordering >, the reverse of the ordering 

of the real numbers according to size, wellorders H. The assertion therefore 

follows in view of Problem 8 in Section 7. 

A natural generalization of Sierpinski’s Theorem is the following: 

Theorem 14.4. 2K ■/» («+)| f°r every k > u. 

The simple proof of this theorem is outlined in Problems 14.1, 14.2, and 

14.3. 
In contrast to the somewhat misleading situation exemplified by Ramsey’s 

Theorem, on a larger underlying set the validity of partition relations changes 

as we increase the superscript r. 
First we discuss the case r = 2. For this, we will need a brief excursion to 

introduce some more notation. 

Definition 14.6. Let (ku : v < 7) be a sequence of cardinals. If k„ = t 

for 1 < v < r, then we will write 

k -> («h, (r)7-i)r instead of k -4 

Here 7 - 1 stands for the ordinal whose order type is type(7 \ {0}, <). If 7 

is finite, then we will write 

k-+ (K0,...,«7_i)r instead of n -4 («„)£<7- 

We will not announce the following theorem in its most general form. The 

ideas in its proof can be applied to prove all known partition relations of 

form k -> («i,)lKl such that k is a regular cardinal greater than u, k0 = «, 

and ku < k for 1 < u < 7. 

Erdos-Rado Theorem 14.5. Assume that p is a regular cardinal. Let 

X < p be a regular cardinal such that 

V <pW< A(p'V <p) 

holds, and let r < A. Then 
2 

P (P> Wt-i) • 

we put 

X = {xo,£i} G [R]2 

/(X) = { “ 
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Corollary 14.1. If k > u>, then 

(2*)+->((2")+,(k+)„)2. 

Proof. If p = (2,c)+, A = «+, t — «, then p is regular, 

p' < 2K for p' < p, 

\' < k for A; < A, 

and so 

p,X' <2K < p. 

Finally, A < p, as k+ < 2K < p. 

* * 

* 

Corollary 14.1 is the form most quoted in the literature of the Erdos-Rado 

Theorem; Theorem 14.5 is, however, more general and can be proved in the 

same way. For example, with the assumption of GCH, Theorem 14.5 shows 

that 

KWl+i (KWl+i>Kl)2> 

while the corollary has nothing to say about this relation, as RWl is not of 
the form 2K if GCH holds. 

Proof of Theorem If.5. Let / : [p]2 —» r be a 2-partition with r colors of 

the cardinal p. We have to show that, with respect to /, either there is a 

homogeneous set of cardinality p in color 0 or there is a homogeneous set of 

cardinality A of some other color. Let 

A = SPtX = {a < p: cf(a) = A}. 

As A is regular and A < p according to our assumptions, the set A is a 

stationary subset of the cardinal p (cf. Problem 1 in Section 12). 

Given a 6 A, we define an increasing sequence 

{(% : v < ia) C a 

of some order type £a by recursion on v\ the ordinal £a will be determined 
in the course of this recursion. 

Assume that for some a and u, the sequence {/?“ : p < v} has already 
been defined. Let 

% = sup{/?“ -i-1 : p < v) 
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and 

-4“ = {/? < a : 5“ < /? A /({/?, a}) > 0 

AVc<dW.ffl=/(W.“)))}- 

If the set A“ is empty, then we put £a = v and we will not continue the 

sequence {/?“ : p < u}. If A“ ^ 0, then put 

= nun A“. 

This completes the definition of the above sequences for all a G A. 

Assume first that there is an a G A for which £a > A. Then, for arbitrary 

ordinals p < u < A, we have 

/({/?.«}) = /({/£.«})><>• 

Define the function g : A —> r \ {0} by stipulating that 

$00 = /({/?.«»• 

As A -4 (A)*, there is a set 

H C A, |JET| = A, 

and an ordinal i/ with 
1 < u < T, 

such that 
g(p) = v for p E H. 

In this case, however, {/?“ : p G H} is a set of cardinality A that is homoge¬ 

neous in color u with respect to /. 
We may therefore assume for the rest of the proof that £a < A for each 

a e A. Let 
5a = sup{$? : v < £a}. 

As cf(a) = A for each a € A, we have 

5a < a for a£ A. 

According to Neumer’s Theorem, there is a set B C A and an ordinal S < p 

such that 
\B\ = p and 5a = 6 for a e B. 

Observing that 
< p for a E A, 
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an easy calculation shows that there is a set C C B such that \C\ = p and 

there is an ordinal £ < A, a sequence {/?„ : v < £} of ordinals, and a function 

g : £ —» r such that for an arbitrary a£C and v < £, we have 

= i and (3% = 

Indeed, the number of possible sequences 

(K-.v< U 

with < A and /?“ < <5 is less than p in view of the above inequality. In 

this case, we also have 

f({Pv,oc}) = g(v) 

in view of the definition of g above. 

We claim that the set C is homogeneous in color 0 with respect to /. Let 

a, a' G C with a < a'. Assume, on the contrary, that /({a, a'}) > 0. Then 

fm, a}) = /({/?“', a'}) =/({&, a}) 

holds for an arbitrary ordinal v < £Q = £a/ = £. Hence we have a G A^, but 

this contradicts the equality £a/ = £. 

The following is probably the simplest partition relation involving singular 

cardinals as the cardinality of the underlying set. The paper [D, M] contains 
Erdos’s proof of the case « > cf(At) for the theorem. 

Theorem 14.6 (Erdos; Dushnik Miller). 
have 

« —»• (k, u)2. 

For every cardinal « > u, we 

Proof. Let 

/ : M2 -> 2 

be a 2-partition with 2 colors. Let 

^(*>0 = {V e k\ {a;} : f({x,y}) = <} for i < 2. 

We clearly have 

k = {x} U F(x, 0) U F(x, 1). 

First we prove the following assertion: 

(l) If for each set A c k with |A| = k there is an x G A such that 

\F(x, 1) n A\ = k, then there is an infinite set X C k that is homogeneous in 
color 1 with respect to /. 
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To this end, suppose that the assumption of Assertion (1) is satisfied. By 

recursion on n, we define the elements x„£k and the sets An. Let Aq = k. 

Assume that the set An c k has been defined in such a way that 

|An| = k and X{ ^ An for i < n. 

Let xn be an element An for which 

\F(xn, 1) Ll An | = K, 

and let 

An+1 = \F(xn, 1) n An\. 

Then 

|An+i| = k and Xi £ An+1 for i < n. 

This completes the recursive definition. 

Let X = {xn : n e w}. It is clear that X is an infinite set homogeneous 

in color 1 with respect to /. 

Next we prove the theorem in the case when k is a regular cardinal. For 

this, it is enough to show that if k does not contain a subset of cardinality 

k that is homogeneous in color 0 with respect to /, then the assumption in 

Assertion (1) holds. 
Let A C k, |A| = k. Let H be a maximal subset of A homogeneous in 

color 0. There is such an H according to the Teichmiiller-Tukey Lemma; we 

may assume |H| < k, since otherwise there is nothing to prove. In view of 

H being maximal, for an arbitrary element y 6 A\ H, there is an x G H for 

which y € F(x, 1). Hence 

A \ H = 1) n A : x <E H}. 

As k is regular, there is an x € H such that 

|F(x,l)n A\ = k. 

Assume now that k is singular. Let 

(«£ : £ < cf(«)) 

be a strictly increasing sequence of cardinals less than k for which kq = cf(«) 

and «£ is a regular cardinal for each £ < cf(«), and, further, 

K= ^2 KS' 
C<cf(#c) 
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Now assume that there is no infinite set X C k that is homogeneous in color 1 

with respect to /. Then, according to (1) we may assume that there is a set 

A C k with \A\ = k such that 

|F(x, 1) n A\ < k 

for each x G A. 

Without loss of generality, we may assume that A = k. We are going to 

show that then the following assertion is also true: 

(2) For each regular cardinal A with cf(«) < A < k and every set B C k 

of cardinality A, there is a set C C B of cardinality A such that 

(JW*.!) xeC} < K. 

Indeed, for each £ < cf(«), let 

= {x € B : |F(x, 1)| < /t^}. 

Clearly, 

B= (J % 
C<cf(/t) 

Thus, by virtue of the assumptions about A, there is a f < cf(«) with \B^\ = A. 

An arbitrary C C B^ with \C\ = A satisfies the requirement of Asser¬ 
tion (2), since 

Uw*.1) x € C} < A • < K. 

Now, by transfinite recursion on £, we define the sequence (A$ : £ < cf(/c)) 

of sets. Let £ < cf(«), and assume that the sets Av C k, tj < f, have already 
been defined such that 

Av U (J{F(x, 1):iG Av} < K for V < £• 

Then the set 

K \ (U(F(x, 1) : X G Av A 77 < £} U U 
v<S 

still has cardinality k. Let B be a subset of cardinality of this set. By 

virtue of the already proven assertion for regular cardinals of the theorem, B 

has a subset C of cardinality that is homogeneous in color 0 with respect 

to /. According to Assertion (2) above, there is a subset of cardinality 
Av£ of C such that 

< K 
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holds. Thus we have completed the definition of the sequence of sets A 

It is clear from the construction that the sets A^ are pairwise disjoint and 

|A^1 = Let A = U£<c/(k) Then 

\A\ = ]C KS = K- 
£<cf(«) 

Let x,y e A with x ± y, x e A^, y e Av, r) < £. If rj = £, then f({x, y}) = 

0, since A^ is homogeneous in color 0 with respect to /. If rj < £, then 

f({x,y}) = 0 holds, because x ^ F(y, 1) according to the construction. 

Hence A is homogeneous in color 0 with respect to /. 

* * 

* 

We would like to point out that there is no known necessary and sufficient 

condition to ensure k -4 («, u>i)2 for any given singular cardinal k. The 

newest results in this area are found in [Sh, S]. 

The last result of this section concerns r-partitions with r > 2. 

Definition 14.7. For each cardinal A define the operation exp^A) by 

recursion on i < u: 

exp0(A) = A, expi+1(A) = 2exPi^A^ for i < u. 

Recall the notation 

2<K = ^^{2T : r < k A r is a cardinal} 

introduced in Problem 7 of Section 11. 

Erdos-Rado Theorem 14.7. For each cardinal k > u, for each ordinal 

7 < cf(«), and for every nonnegative integer r < u, we have 

[exp„(2<*)] + -> (*)i;+2. 

Before we set out to prove this result, we will describe some consequences 

and particular cases of this result. 

Taking into account that 2<A+ = 2A provided A > u>, we have 

[expr(«)]+ -4 (n+)rK+1 

for every k>lu. This assertion for r = 1, that is, 

(2*)+ -> (k+)2 
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follows from Theorem 14.5, while Theorem 14.7 in the corresponding case 

r — 0 gives a result that is incomparable to this. To illustrate this, assume 

that GCH holds. Theorem 14.5 gives, among others, the following relations 

X„+1 -> K+v (KoV)2 (k<U) 

and 

*^+1 “>• (N^+i, (^i)7)2 (7 < wi), 

while Theorem 14.7 gives the relations 

K+i (K«)i (* < u) 

and 

HWl+i (^i)? (7 < wi), 

since GCH implies 

= K,, 2<N" = Kw, and 2<K“i = NWl. 

We point out that the above result for superscript greater than 2 cannot 
be improved. This is shown by the following. 

Erdos-Hajnal-Rado Theorem 14.8. For each k > u> and each r < u> 
we have 

expr(/c) (k+)2+1. 

The case of r = 0 of this theorem is obvious, and the case r = 1 is identical 

to Theorem 14.4. Below, in the problems, there are hints indicating how to 
prove this theorem. 

The proof of Theorem 14.7 needs further preparations. 

Definition 14.8. Let p be a cardinal, 7 an ordinal, r < u>, and let 

f • [p]r+l -*■ 7 be an (r + l)-partition of p with 7 colors. The set H C p is 

said to be end-homogeneous with respect to f if for each V <E [p]r and for 
every a ,(3<p with V < a and V < /3, the equation 

f(VU{a}) = f(VU{P}) 

holds. Here V < a indicates that each element of V precedes a in the 
ordering < of ordinals. 

The main ingredient of the proof of Theorem 14.7 is the so-called Step¬ 

ping-up Lemma, stated next, which reduces the study of (r + l)-partitions 
to that of r-partitions. 
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Stepping-up Lemma 14.1. Let k > u be a cardinal, and let 7 < k, 

p = (2<>c)+, and r < u>. 

Let, further, f : [p]r+1 -* 7 be an (r + l)-partition with 7 colors of the 

cardinal p. Then there is a set H C p that is end-homogeneous with respect 

to f with 

typeH(<) = k 4-1. 

Proof. The construction used in the proof is similar to the one described 

in the proof of Theorem 14.5. For each ordinal a < p, we define the sequence 

fa} C a 

by transfinite recursion on v, where the ordinals fa will also be determined 

in the course of the construction. Let a < p be arbitrary, and assume that 

the sequence {/?“ : p < u} has already been defined for some ordinal u. Let 

&Z = sup{/^ 4- 1 : p < v) 

and 

Aav = {/? < a : < /3A 

V V € [{/% : p < u})r (.f(V U {/?}) = (f(V U {a})) }. 

If the set AZ is empty, then let fa = u, and the sequence {/?“ : p < will 

not be continued. If AZ 7^ 0, then let /?“ = min< AZ ■ This completes the 

definition of the above sequence for each a. 

If there is an ordinal a < p for which fa > k, then 

H = {(3Z : v < «} U {cc} 

is clearly a set of order type k + 1 that is end-homogeneous with respect 

to /. Thus, proceeding by reductio ad absurdum, we assume that we have 

£a < k for each a < p, and we will derive a contradiction. 

This derivation is based on the following two assertions: 

(1) For each a, a' with a' < a < p and for each v < £a, the assumption 

a' = PZ implies 

= v and Vp < v (P^ = P£)• 

The assertion Vp< v (/?£' = P%) easUy follows by transfinite induction on 

p, and then the equation £«' = v follows directly from the definition given 

above. 
(2) For each sequence {pu • v < f} C p, the cardinality of the set 

A = {a < p :(/£:*/< £«) = (P» : ^ < 0) 
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is at most 
l7|im. 

Indeed, assume, on the contrary, that for a given {/3V : v < £} C p, the 

cardinality of A is larger than claimed. Then there are a, a' G A such that 

a' < a and 

f(Vu{a'})= f(Vu{a}) 

holds for an arbitrary set V G [{/?„ : v < £}]r. This, however, implies 

a' 6 and so A“ ^ 0, but this contradicts the assumption £Q = £. 

Put 

= {« < P : = £} 

and 

S( = m: v<i):ae fl£} 

for an arbitrary £ G p. According to the first relation in Assertion (1), for 

each a G R$ and each v < a we have /?" G Ru, and so for each ordinal £, we 
have 

is«i < n ib-i- 
According to Assertion (2), 

l«el < |Sel-l7ll[{n 

holds for an arbitrary £. From these two formulas one can immediately prove 
by transfinite induction on £ that 

\R^\ < 207HC+1I+w) 

holds for every £. By our reductio ad absurdum assumption, we have £a < k 
for each a < p, and so 

p= U% 

hence 

p < £ l*el ^ 2<“- 

* * 

* 

Next we turn to the 

Proof of the Erdos-Rado Theorem If. 7. Let 

«o = «, and Kr+1 = (2<Kr)+ for r <u. 
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We need to prove that 

«r -> («)^+1 

holds for r < uj and 7 < cf(«). For r = 0, this is the obvious partition 

relation k —> («)*. 

The assertion is proved by induction on r. Let r < u>, and assume that 

the assertion is true for r. Let p = Kr+1, and let / : [p]r+1 —> 7 be an 

(r + l)-partition of p with 7 colors. According to the Stepping-up Lemma, 

there is a set H C p end-homogeneous with respect to / such that 

type H = Kr -i- 1. 

Write H in the form K U {a}, where K < a. 
Define the r-partition f of the set K with 7 colors by stipulating that 

f'(V) = f(V U {a}) for every V € [K]r. According to the induction hy¬ 

pothesis, there is a set L C K and an ordinal v < 7 such that \L\ = n and 

L is homogeneous in color v with respect to /'. We claim that L is also 

homogeneous with respect to f. Indeed, let V U {//} € [L]r+1, V < p,. As H 
is end-homogeneous with respect to /, we have 

f(Vu{p}) = f(Vu{a}) = f'(V) = v. 

* * 

* 

The proof of the theorem gives that lU{a} is also homogeneous in color v 

with respect to /, and so, in fact, we obtained a somewhat stronger statement 

ensuring the existence of a homogeneous set of order type k + 1. We will 

not introduce a symbol to denote this stronger statement here. 

Before closing this section, we introduce yet another general notion. 

Definition 14.9. The partially ordered set (T, -<) is called a tree if for 

each x E T the set 
T\ -< x = {y G T : y -< x} 

is wellordered. 

In the proof of Theorem 14.7, we tried to avoid all extraneous ingredients. 

We feel it is still fair to inform the reader of the implicit role trees played in 

the proof: 
Using the notation introduced in the proof, define the relation by the 

stipulation 
a! < a a' < a < £,& (a' = /?“); 

then the partially ordered set (p, -<) is a tree. 
Assertion (1) stated in the proof shows exactly that this is the case. The 

tree (p, -<) is called the canonical partition tree for the (r + l)-partition /. 

We will return to the role of this tree in Section 18. 
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Problems 

1. Let {A^ : v < k} be an arbitrary sequence of cardinals, and let P = 

Xi,<k A„. If f,g E P with f ^ g are arbitrary functions, then let 

S(f,g) = min{i/ < k : /(v) ± g{y)} 

and 

f<9 <=> fW,g))<g(S(f,g)). 

Prove that (P, -<) is an ordered set. The ordering -< is called the lexico¬ 

graphic ordering of P. 

2. Let A > u> be a regular cardinal, and let {fa : a < A} C P be a 

sequence such that fa<fpiora<(3< A. (Here P denotes the ordered set 

defined in the preceding problem.) Prove that there is a set I E [A]A and a 

sequence {ua : a € L) C k of ordinals such that va < vp and va = S(fa, fp) 

whenever a < (3 and a, (3 € L. 

3. Prove that 2K fa (k+)2 for k> uj. 

4. Prove that 2K fa (3)^ for k > u>. 

5. Prove that kn° fa for k > u. 

6. Prove that if n > u is a regular cardinal and we have AH° < k for all 
A < k, then k —» (/c, Ki)2. 

7. Prove that 

*cfW A (*+, (No)cf(«))2 

holds for k > u>. 

8. * Assume GCH holds. Show that if k is a singular cardinal, then 

k+74 (K+,(3)cf(K))2. 

9. Prove that GCH implies 

^w+l (N«) 
2 
n 

for all n < u>. 

10. Prove that if « is a singular cardinal and 

cf(«) fa (cf(/c),A)2 

holds, then 

k fa («, A)2 

also holds. 

11.* Prove that if « is a strong limit singular cardinal (see Section 10, 
after the proof of Corollary 10.5), then the assertion 

cf(«) -> (cf(*;),A)2 
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implies that 

n -4 (k, A)2. 

12. Let P = K2 for some k > u, let -< be the lexicographic ordering of P, 

and let -<o he a wellordering of P. Let {/, g,h} E [P]3, / -<o g -<o h. Define 

the set K C [P]3 by the stipulation 

f,g,he K «$=>• f < g and g y h. 

Prove that if X E [P]K and [X]3 D PC = 0, then there is a set Y E [X]K such 

that either 

f 9 <=> f <9 for f,g£Y 

f -<o 9 «=*> f ^ 9 for f,9€Y. 

13.* Prove that 

22*0 t4 

14.* Prove that for every k > No 



15. INACCESSIBLE CARDINALS. MAHLO CARDINALS 

We defined the concepts of inaccessible and strongly inaccessible cardinals in 

Section 10. In Section A9 of the Appendix, we discussed some consistency 

results and problems connected with inaccessible cardinals greater than u. 

We mentioned there that the assumption of the existence of such cardinals 

appears to be a natural extension of the axiom system of set theory. In what 

follows, we will study assumptions that lead to the existence of larger and 

larger cardinals. The consistency questions for such extensions are similar to 

those discussed in the Appendix. Roughly speaking, the nonexistence of new, 

larger cardinals is always relatively consistent, while the relative consistency 
of their existence is unprovable. 

Before we start searching for cardinals larger than merely inaccessible, we 

will sketch a model-theoretic characterization of inaccessible cardinals. We 

will not use this characterization afterwards, so readers not conversant in 

mathematical logic may well want to skip this discussion. 

In what follows, we will mainly study the set-theoretical properties of large 

cardinals. In order to express “how large” these cardinals are, it is, however, 

best to use methods from mathematical logic. Theorem 15.1 is perhaps the 

simplest example for the application of such methods. 

Definition 15.1. Let L' be the language of set theory supplemented with 
a one-place relation symbol A. 

We call the ordinal a > 0 first-order strongly indescribable if the following 

condition holds: For each sentence (i.e., formula with no free variables) 4> of 
L' and for every set A C Ra, if 

(Ra,e,A) \= 0, 

then there is a (3 with 0 < (3 < a such that 

(Ra, e, A n Rp) \= (j) 

(cf. DeGnition A7.1 for the meaning of Ra). (This is understood in the sense 

that A is represented by A in the structure; that is, 

((Ra, A) |= A(x)) <==$> x € A 

for each x e Ra.) 
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We call the ordinal a > 0 first-order indescribable if the above require¬ 

ment holds for sets A C a and structures (a, £, A) instead of A C Ra and 

</2a,e,A). 

The reason for the adjective “first-order” in the above definition is that 4> 

is a first-order formula. By using higher order formulas, one can formulate 

stronger indescribability properties; we will not discuss them here. 

To say that a is indescribable means, heuristically, that “whatever one 

says about a with a first-order formula, the same thing can also be said 

about a smaller ordinal.” 

Theorem 15.1. The ordinal a > 0 is a strongly inaccessible cardinal 

greater than u if and only if it is first-order strongly indescribable. 

The theorem remains valid if we omit both occurrences of the modifier 

“strongly.” 

Proof. 1. Assume that k > u is a strongly inaccessible cardinal. Let 

(f> £ Wff(L/) be a sentence such that 

(RK,e, A) \= f>. 

Then the following assertion holds in view of a well-known result in model 

theory: 
(1) There is an integer k < u and a function / : kRK -> RK such that the 

following holds. Let X C RK. If X is closed with respect to /, that is, if 

f“(kX) C X, then 
(x,e,Anx) 1=0. 

/ is called a Skolem function of in the structure (RK, £, A). 
In view of Assertion (1), it is enough to prove that there is an ordinal (3 

with 0 < (3 < k such that Rp is closed with respect to /, since then 

(Rp, e,AC\Rp) (= 4>. 

Define a sequence 
{/3n : n < u} C k 

of ordinals by recursion on n as follows: 
Let (3q with 0 < (3q < k be an arbitrary ordinal. If (3n has been defined 

for some n < u;, let 

Pn+1 = min{0 ■ f“(kRpn) 

We will prove (3n < k by induction on n. If (3n < k holds for some n < u>, 

then, as we have proved in Section A9, \Rp„ \ < « also holds in view of k 

being strongly inaccessible. In this case we have 

\fuRpn\<K, f“RpncRK, 



186 II. Combinatorial set theory 

and so, by the regularity of k and by Assertion 5 in Theorem A7.1, we can 

see that 
f“Rpn G Rj for some 7 < «. 

Thus /3n+1 < k also holds. Taking into account that k > u and k is regular, 

we obtain that 

P d= sup{/?n : n < u>} < k. 

It is easy to check that Rp is closed with respect to the function /. 

2. Assume now that a > 0 and a is not an inaccessible cardinal greater 

than u. We then have to prove that a is not first-order strongly indescribable. 

If a is not a limit ordinal, then a = P 4- 1 for some (3 < a. Let A = {P} C Ra, 

and let <f> = Bzo A(xo). It is obvious that 

(Ra, G, A) (= (f) 

and 
(Rp, e,AnRp) f= -i</> 

for any ft < a. We may therefore assume that a is a limit ordinal in what 

follows. It is easy to see that in this case an aggregate of finitely many 

relations with finitely many places each can be encoded with a single one- 

place relation. Hence it is sufficient to describe a language L" containing 

finitely many finite-place relation symbols and a sentence p in this language 
such that 

(Ra, iT) [= fj> 

and 

(Rp, G, J\Rp) f= for P < a. 

(See Definition 14.3 for the function J\ here J\Rp, by a slight abuse of 

notation, denotes the function on the relation and function symbols of the 

language whose values are the restrictions to Rp of the values of J.) 

According to our assumption, one of the following possibilities must hold: 

(I) a = u>, 

(II) a is singular, 

(III) 3p < a p;| < 2^1. 

In case (I), the formula 0 = Vx3y(x G y) shows that a is not strongly 
indescribable. 

In case (II), let P = cf(a) < a. Let /:/?—> a be a mapping of P onto a 

cofinal subset of a. Let r be the two-place relation on Ra for which 

r(x,y) x G D(/) A y = f(x). 

Let s0 be a one-place relation symbol, and let si be a two-place relation 

symbol in L", and let J(s0) = P and J(sx) = r. Let 

</> = (Ordinal(z) A-is0(a;)) AVx(s0(x) =4> 3t/S!(x,y)). 
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Here Ordinal(x) denotes the formula defined in Section A5, describing the 

concept of ordinal. We will use the following fact about this formula: For 

each ordinal 7 > 0 and for every x G i?7 

((R1, e) |= Ordinal(x)) +==> Ordinal(x). 

This result can easily be verified by using the methods discussed in the 

Appendix. It is clear that 

(Ra, e,J) |= <t>, 

as (3 < a. Now let 7 < a. If 

J\Ry) \= <\> 

then, according to our remarks above, we have 

(3 < 7 < a, 

since <f> says that there is an ordinal not less than (3 in A7. As 7 < a, there 

is an ordinal 5 < (3 such that 

f(S) > 7. 

In this case, however, 

{Jty.g.JlAy) (si(6,y)), 

and so 

(III) Let P < a, and let / be a mapping of Rpj^ onto a. As a is a limit 

ordinal, we have (3+1 < oc, and so Rp^ € Ra- Let 

r(x,y) «=*> x e Rp+x A y = f(x). 

Let L" be the language described in the discussion of Case (II), let (f) be the 

formula described there, and 

J(so)=Rp+v JM = r. 

Arguments similar to those given in the discussion of Case (II) show that a 

is not strongly indescribable in this case, either. 

* * 

* 
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It is easy to formulate a condition stronger than that there is a strongly 
inaccessible cardinal greater than u>: 

(*) For every cardinal A, there is an inaccessible cardinal greater than A. 
Assuming (*), denote by 

k0 < • • • < Kf < ... 

the increasing sequence of strongly inaccessible cardinals. Then k0 = u>, and 
Ki is the first inaccessible cardinal greater than to. 

If (*) holds, then for each ordinal £ we can define k^, but it is possible 
that > £ for every ordinal £. 

It is, however, possible to imagine that there is a strongly inaccessible 
cardinal Kg such that — £. 

An even stronger condition is the following: 
(**) For every cardinal A, there is a strongly inaccessible cardinal > A 

such that = £. 
Assuming (**), denote by the increasing sequence of strongly inaccessi¬ 

ble cardinals such that k£ = £. Condition (**) ensures that is defined for 
every ordinal £. An even stronger condition would be to require that there 
is a cardinal k| such that = £. 

It is clear that this procedure can be continued even in a transfinite way. 
If £ is the smallest ordinal such that = £, then the function / defined 

on the set A = {kv : 77 < £} of strongly inaccessible cardinals less than 
by the equation f(nv) = rj is a one-to-one regressive function; thus A is not 
/^-stationary. This observation motivates the following definition. 

Definition 15.2. A cardinal k > u is called a (strongly) Mahlo cardinal 
if the set 

{A : A < k A A is (strongly) inaccessible} 

is K-stationary. 

The assumption of the existence of Mahlo cardinals is much stronger than 
Conditions (*), (**),... above. 

To describe strengthenings of this assumption, it will be convenient to 
work with classes, which were discussed above, in Section A8. 

Definition 15.3. 1. The class of all sets is denoted by V, and the class 
of all ordinals is denoted by On. 

2. The class of inaccessible cardinals greater than u is denoted by M0, 
and the class of strongly inaccessible cardinals is denoted by M0. Clearly, 
Mo C Mq. 

Definition 15.4 (Mahlo operation). For an arbitrary class X C Mq, we 
put 

M(X) = {k £ X : kC\ X is K-stationary}. 

According to the definition, M{Mq) is the class of Mahlo cardinals, and 
M(M0), of the strongly Mahlo cardinals. 
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Definition 15.5. We define the classes Ma and Ma by transfinite recur¬ 

sion. We defined M0 and M0 in Definition 15.3. If a = (3 + 1 then 

Ma = M(Mp), Ma = M(Mp). 

If a is a limit ordinal then 

Ma = Pj Mp and Ma = Q Mp. 

0<a 0<a 

Ma and Ma are called the class of a-Mahlo and of strongly a-Mahlo cardi¬ 

nals, respectively. 

The proofs of the following assertions are left to the reader. 

Lemma 15.1. 1. M0 D • • • D Ma D ...; M0 D • • • D Ma D- 

2. If Ma ^ 0 (Ma / 0j, then 

Thus Ma -f- 0 {Ma / 0) are increasingly stronger “large cardinal” as¬ 

sumptions. 
We formulate one more possible strengthening. 

Definition 15.6. 

M°° — A Ma = {k : Va < k k 6 Ma}, 
a£ On 

M°° = A Ma = {« : Vo < n k e Ma}- 
a£ On 

It is interesting to point out that P. Mahlo introduced and studied the 

notion of Mahlo cardinals by using a direct definition in 1911, well before 

the appearance of the concept of stationary set. To this date, this is a 

useful concept that describes the largeness of a cardinal without the use 

of mathematical logic. In the next few sections, we are going to study set- 

theoretical assumptions that ensure the existence of much “larger” cardinals. 
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In the beginning of the 1930s, the Polish mathematician S. Banach raised 

the following problem: 

(*) For which infinite cardinals k is there a nontrivial measure p : P(/c) —> 

[0,1] defined on all subsets of k! The word “nontrivial” here means that 

p(n) = 1 and //({a}) = 0 for a < k. 

As usual, measures are required to be <r-additive, i.e., Ni-additive (that 

is, the measure of the union of countably many pairwise disjoint measurable 

sets must be the sum of the measures of these sets; here, of course, all subsets 

of n are required to be measurable). We will return to a detailed discussion 

of this problem in Section 17. Soon after the problem had been raised, it 

turned out that to clear up the question it was of primary importance to 
answer the following. 

(*') For which cardinals k does there exist a nontrivial measure p : P(x) —> 

{0,1}. 
This problem is equivalent to the following: 

(*") For which cardinals k is there an u;i-complete ultrafilter U C P(«) 
that is not a principal filter. 

The equivalence of problems (*') and (*") is shown by the canonical cor¬ 
respondence 

X 6 U <=$■ p(X) — 1 

between p and U. The actual proof of the equivalence is left to the reader. 

After giving some preliminary results, we will return to the discussion of the 
history of the problem. 

Lemma 16.1. If k is the smallest cardinal for which there is a o-complete 

ultrafilter that is not a principal filter, then every such filter is also n-com- 
plete. 

Proof. Let W C P(k) be a cr-complete ultrafilter that is not a principal 

filter. We need to prove that U is also ^-complete; that is, that the ideal 

X = CO (U), which is a prime ideal but not a principal ideal on k, is k- 
complete. 

Assume, on the contrary, that A < k and 

A = U{4, : Q < A} 
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is such that A ^ X and 

Let 

K,:a<A}cX. 

= K \ U A'i tOT a < A. 

P<a 

Then 
Aa 6 X, |J{Aa : a < A} = A, 

and the set Aa are pairwise disjoint. 

For each Y C A put 

K(Y) = |J{Aa : a £ Y} 

and let 
1={Y C A : K(Y) £ X}. 

As the sets Aa are pairwise disjoint, the mapping K preserves miions and 

intersections, and, further, K(A) = A. Hence it follows that X is an u)\- 

complete prime ideal in P(A). If X were a principal ideal, then we would 

have |JX £ X. In this case, we would have A \ (JX = {a} for some {a}, as X 

is a prime ideal. This is, however, impossible, since Aa £ X, and so {a} £ X. 

This contradicts the minimality of k. 

* * 

* 

The following definition is motivated by Lemma 16.1. 

Definition 16.1. An infinite cardinal k is called a measurable cardinal 

if there is a K-complete ultrafilter in P(k) that is not a principal filter. 

In the terminology of Definition 16.1, uj is a measurable cardinal (even 

though, obviously, it does not carry a cr-additive measure); thus, using this 

terminology, the question is whether there is a measurable cardinal greater 

than u>. The answer to this question is not known to this date. It will, 

however, turn out below that the assumption that there is a measurable 

cardinal’greater than a; is a typical “large cardinal” assumption, and, as for 

the consistency of this assumption, the remarks of Sections A9 and 15 apply 

the same way as they applied to the question of existence of inaccessible 

cardinals. 
The following theorem was already known in the beginning of the 1930s. 

Theorem 16.1 (A. Tarski). If k is a measurable cardinal, then k is 

strongly inaccessible. 

Proof. Let X C P(«) be a K-complete prime ideal on k that is not principal. 

Then {a} € X for each a < k, and so, by K-completeness, 

[«]<* Cl. 
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We will establish the following two assertions: 

(1) n is not singular. 

(2) If A < k, then 2A < k. 

Let 

k = [J{Aa : ot < cf(«)}, 

where 
Aa G [k]<k 

holds for a < cf(«). Assuming cf(«) < k, the ^-completeness of X implies 

k el, which contradicts the assumption that X is an ideal on k. This shows 

that (1) is true. 

Now assume that, for some A < k, (2) does not hold. As |A2| = 2A, we may 

assume that there is a set A C A2 with |A| = k, and there is a ^-complete 

ultrafilter U in P(A) that is not principal. 

Let 

Aa>i — {/ G A: f(a) = *} for a < A and i < 2. 

Then 

A Aa Q U Aa i and Aa o d Aa,\ — 0 

for every a < X. As U is an ultrafilter, for each o: < A there is exactly one 

i < 2 such that Aa^ G U. Let g G A2 be the function defined by Aa G U 

for each a < A. We have 

: oc < A} = {<?} G U 

by the ^-completeness of U.\ this, however, contradicts the assumption that 
the ultrafilter U is not principal. 

* * 

* 

For the further study of ideals and filters we need several results of a 

technical nature. These are formulated in Lemmas 16.2, 16.3, and 16.4. 

Definition 16.2. Let X be a class and R, a property with two variables; 

R is said to be well-founded on X if for an arbitrary set x C X with x ^ 0 

there is a u G x such that v £ x holds whenever uRu. 

In words: Each nonempty subset of X has an R-minimal element. 

Examples: For an arbitrary wellordered set (A, -<), the relation -< is well- 

founded on A. Axiom A7, which was discussed in Section A7 in detail, says 

precisely that the property G is well-founded on the class of all sets V. 

In what follows, we will use the following fact, already observed implicitly: 

R is well-founded on the class X if and only if there is no sequence {xn : 

n < u>} c X such that xn+iRa:n holds for every n < u. 



16. Measurable cardinals 193 

Definition 16.3. Let X be an arbitrary set, and X C P(X), an ideal on 

X. Denote by T the dual filter co(l). Consider the class xOn of ordinal- 

valued functions on X, and define three fundamentally important properties 

on this class: For arbitrary functions /, g 6 xOn put 

1. / =T 9 <=* {« € X : f(u) = g(u)} 6 T, 

2. / -<? 9 <=> {it G X : f (u) < y(u)} G X, 
3- / dr g <=> {u e X : f{u) < g(u)} e T. 

If there is no danger of misunderstanding, these properties will also be 

denoted as 

/ =z g, f g, f di 9, 

respectively. 

The following lemma describes the basic facts about these properties. 

Lemma 16.2. Let fF be a filter in P(X). Then 

1. f =jr g is an equivalence property on the class xOn; 

2- / g is irreflexive and transitive on the class xOn; 

3. / d? 9 is reflexive and transitive on the class x On; 
4. If the filter T is -complete, then is well-founded on the class 

xOn; 
5. If T is an ultrafilter, then for each /, g G xOn we have 

either f 9 or g -<? f or f 9, 

and so 

f dT 9 <=> / -<T 5 v / =T 9- 

Proof. 1. 

a) {u e X : f(u) = f(u)} = X <E T, 

and so =jr is reflexive on the class xOn. 

b) If / =t 9, then g =? f, since 

{u e X : /(it) = p(u)} = {ue X : g(u) = f{u)}, 

and so =? is symmetric on the class xOn. 

c) If / g and g =? h, then 

{ue X : f(u) = h(u)} D 

{u e X : f{u) = g(u)} n {u <E X : g(u) = h(u)} 6 U. 

Thus f =? g, and so the property =? is transitive on the class xOn. 
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In cases 2 and 3, the proofs of irreflexivity and reflexivity, respectively, are 

straightforward; the proof of transitivity is quite similar to that in case 1 .c), 

and it will be left to the reader. 

4. Assume, on the contrary, that there is a sequence {/n : n < u} C xOn 

such that 

fn+1 -<? fn 

holds for each n e u. 

Let 

An = {ue X : fn+i(u) < fn(u)}. 

We have An e X for each n according to our assumption. As X is u>i- 

complete, we have 

(~)AneX, 
n<u> 

and so 

n a» * »• 

n<ui 

If « € n„<w An, then 
fo{u) > ••• > fn(u). . . 

holds. This is a contradiction, since the ordering of the ordinals is a wellorder¬ 
ing. 

5. Let f,g e xOn. Then 

X = {ueX:f(u)<g(u)} 

U {« G X : g(u) < /(«)} U {u 6 X : f(u) = g(u)} e U. 

As X is an ultrafilter, exactly one of these three sets is an element of X. 

ifT- * 

* 

It is noteworthy that the innocent-looking Assertion 4 of Lemma 16.2 is 

the key ingredient of the proofs below. It is also to be observed that if a 

property < is transitive and reflexive on a set A, then x<y/\y<x\& 

an equivalence property. A transitive and reflexive property < is called a 

pre-ordering. On the set of all equivalence classes, a pre-ordering defines an 

ordering. We did not call attention to this in Lemma 16.2, since xOn is a 

proper class (i.e., not a set), so it is not even clear if one is allowed to consider 

equivalence classes. However, as we pointed out in Theorem A7.3, with the 

assumption of the Axiom of Regularity we can define a good substitute for 
the equivalence classes. In fact, put 

[f]r= {g £X On: g=j? f/\VhexOn(h=r g ==► rk($) < rk(ft))}; 
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that is, [f]jr is the set of elements g of minimal rank that are equivalent to 

/ with respect to T. It is easy to verify that 

[f]r = [9]? f =T 9 

holds for all elements f,g 6 x On. 
Lemma 16.2 shows that if 7 is an uq-complete ultrafilter in P(X) then 

the property 

[f]r -< \9]t («=» / 9) 

is a wellordering on the class 

{[f]r : / e xOn}. 

Definition 16.4. Let f : X Y and 1 C P(X). The operation * will 

be defined as follows: 

f*l={BcY:f-1(B)el}. 

Lemma 16.3. If f : X -> Y, 1 C P{X), and Z = f*l then 

1. Z is an ideal on Y, provided that Z is an ideal on X. 

2. Z is a K-complete ideal, provided that Z is a n-complete ideal on X. 

3. Z is a prime ideal, provided that Z is a prime ideal on X. 

Proof. 1. a) /-1(^) = X £ Z, and so Y £ Z. 

b) If B C B' and B' eZ then 

ri(B)cr\B')ez, 

and so 
r1(b) 61. 

c) If A, B e z then 

= /-1(A)U/"1(5) e Z, 

and so 
AUB eZ. 

2. The proof is similar to the proof of l.c). 

3. If B, B' C Y and B n B' = 0, then 

rI(B)nr1(B') = 0> 

and so either /-‘(B) € I or f~1{Bl) € X. Thus B e X or B' e X; this prop¬ 

erty implies that I is a prime ideal. (Prime ideals were defined in Definition 

12.3 as maximal ideals. As pointed out there, they are duals of ultrafilters, 
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and an alternative definition can be given, patterned on Definition 9.1 of ul¬ 

trafilters; the property corresponding to Convention 2 in the latter definition 

is confirmed by the above argument.) 

* * 

* 

Lemma 16.4. If k > u is a measurable cardinal, then there is a nonprin¬ 

cipal K-complete prime ideal Z C P(k) that is a normal ideal. 

Proof. Let I C P(k) be a K-complete prime ideal that is not principal, 

and put T = CO(Z); further, let 

Y = {/ G kk : Va < k /-1({a:}) € Z}. 

Then Y is a subset of the class KOn. As Z is not a principal ideal, we have 

^(M) = Hei 

for every a. Hence IdK e Y, and so, certainly, F / 0. According to Asser¬ 

tion 4 of Lemma 16.2, there is an element of Y that is minimal with respect 

to -<yr. Denote such an element by /o- By the definition of Y, we have 

/o : k -> K. 

Let Z = /o * Z. We claim that Z satisfies the requirements of the theorem. 

According to Lemma 16.3, Z is a K-complete prime ideal. Since /0 € F, for 
an arbitrary a < k 

/o^W)^ 

holds, and so we have 

M e Z; 

thus Z is not a principal ideal. 

We now establish that Z is normal. Put 

As Z and Z are prime ideals, we have 

Bt±=B€T = f^(B)^T= /0-‘(B) 11. 

Assume now that B £ Z, and let g be a function on k that is regressive on 

B. We may assume that 0 ^ B, as {0} 6 I, and so 

B\{0HZ. 
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Define the function h E kk by putting h(a) = g(fo(a)) for all a < k. As g is 

regressive on B and 0 ^ B, we have 

{a < k: h(a) < /o(a)} Z) {a < /« : /0(a) E B} = f^1(B) € T\ 

thus h -<jr f0. Then, by the minimality of /o, there is a p < k such that 

h-\{p})i x. 

But 

= {a<n: g(fo(a)) = p} = /0_1 

and so 

* * 

* 

The attentive reader may realize that, for the function /0 defined in the 

proof of Lemma 16.4, the equivalence class [/o] is the ftth element in the 

wellordering -<i of {[g]i : g € KOn}. For a normal ideal X, [IdK]x is the «th 

equivalence class; fm-thermore, for an arbitrary / <x IdK, we have [/]j = [qj] 

for some a < n, where a denotes the constant function with value a. 

After these preparations, we are in a position to establish the first result 

saying that a measurable cardinal must be a large inaccessible cardinal: 

Theorem 16.2. If k is a measurable cardinal greater than u, then k is a 

strong a-Mahlo cardinal for each a < k. 

Proof. According to Lemma 16.4, there is a nonprincipal K-complete prime 

ideal IcP(k) that is normal. By Corollary 12.2, we then have ns(k) C X. 

We will use the notation T = CO(X). As X is a prime ideal, we have 

A£T <=$■ A e T. 

As X is a normal ideal, for an arbitrary function that is regressive on a set 

A £ X, there is a uniquely determined ordinal 7 such that 

{ZeA:m= 

We will denote this ordinal by «(/)• 

We are going to prove the following assertion: 

(1) k \ Ma e X for each a < «; 

the assertion of the theorem follows from this, as we will show next. 
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Indeed, assuming that there is a (3 < k such that k ^ Mp, denote the least 

such (3 by a. According to Theorem 16.1 we have n £ M0, and so a > 0. 

Hence, by Definition 15.5 of the classes Ma, a has form (3 + 1; then we have 

k £ Mp. As k ^ Ma = M(Mp), it follows from Definition 15.4 of the Mahlo 

operation that the set n fl Mp is not /^-stationary; hence « fl Mp £ X. Then 

we have 

k = (k \ Mp) U (k fl Mp) £ X 

by virtue of (1). This is a contradiction. 

We prove Assertion (1) by transfinite induction on a. Let a < n be an 

ordinal such that k \ Mp £ X for every /3 < a. 

We distinguish three cases: 

(I) a = 0, 
(II) a is a limit ordinal, 

(III) a = /3 + 1. 

(I) By the definition of M0, we have 

k \ Mq = Aq U A\ U A2, 

where 

^0 — {0, u/}, 

Ai = {£ < k : £ is singular}, 

A2 ={(<k: 3r, <|(|f|<2l”l)}. 

It is enough to show that Ai £ X for i < 3. For i — 0 this is obvious. 

Assume, by contradiction, that Ax £ X. The function cf(£) is regressive 

on Ai, as cf(£) < £ if £ is singular. Thus there exists a cardinal A < k and a 

set ficdi with B £ X such that cf(£) = A whenever (efl. 
For each £ £ B, let 

{/*(£) : v < A} 

be a sequence of ordinals strictly increasing in v such that 

sup{/„(£) : v < A} = £. 

Then fu is a regressive function on B for every u < A. For each u < A, let 

dv = a(fv) 

and 

B„ = {UB: /„(£) = au}. 

Clearly, Bu £ X’. Put 

a = supfa^ : v < A}. 
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As k is a regular cardinal, we have a < k. The filter T is ^-complete, and so 

n BveT. 
v<\ 

Hence there is a £ such that 

fe n*\M. 
v<\ 

In this case, however, 

£ = sup{/p(0 : v < A} = sup{o!i/ : v < A} = a, 

which is a contradiction, and so 

Ax eX. 

Next assume, by contradiction, that ^ X. Define the function g on A<i 

by 
= min{|7/| : |£| < 2M}] 

clearly, g is a regressive function of A2. There is therefore a set C C A2 with 

C iX and a cardinal A such that 

/(0 = a for i G C. 

Thus 

id < 2' 

holds for each £ e C. As C is cofinal in k, we have f < 2A for every £ < k. 

Hence 
k < (2a)+ 

follows, which contradicts k's being strongly inaccessible. Therefore A2 e X. 

(II) 
k\M„= U(k\M„) 

P<a 

and so 
n \ Ma € X. 

(Ill) 

k \ Ma = (n\Mp)U («n (Af/3\Af(Mj9))). 
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By the induction hypothesis, it is sufficient to show that 

A=(kH{Mp\ M(Mp))} 6 X. 

Assume, on the contrary, that A ^ X. 
For each A G A, we have A 6 Mp, and, according to Definition 15.4 of the 

Mahlo operation, the set A D Mp is not stationary in A. Let the set Cx C A 

be a witness to this, that is, assume that 

(2) C\ C A is a A-club, and Cx ft Mp = 0. 

Define the set C C k as follows: 

C = {(<«:{A£i:^CA}ef}. 

We are going to show that 

(3) C is a Av-club. 

As we clearly have C D Mp = 0, (3) implies that 

Ac Mp e ns(/c), 

which contradicts our initial assumption A X. 

For the proof of (3), we first show that C is cofinal in k. Let 77 < k. Then 

Define the regressive function gv on A \ (77 -f 1) by putting 

9v(A) = min(CA \rj)- 

This definition is sound, since we have 77 < A for A <E A\ (77 + 1), and, further, 

Cx is cofinal in A. gv is a regressive function on A \ (77 + 1), and, clearly, 
a(gv) > V and a(gv) e C. 

We have yet to see that C is closed in k. To this end, pick the set D with 

0 / D c C, sup D — £ < k. 

For each 77 e D, put 

A„ = {A € A : 77 € Cx}. 

By the definition of C, we have Av G T whenever 77 € D. T is K-coinplete, 
and so 

£ = H AvCT. 
ri£D 
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Given any A G E with A > £, we have 

DcCx, 

and thus 

ZeCx 

since C\ is A-closed according to (2). Hence £ G C. 

* * 

* 

Corollary 16.1. If k > u> is a measurable cardinal, then for every non¬ 

principal normal K-complete prime ideal we have 

k \ M°° e X. 

Proof. 

k\M°° = k\ a («nAfa). 
a<K 

For each a < k 

k n Ma g J- — co(J) 

holds by virtue of (1) in the proof of the above theorem, and so 

A (k n Ma) 6 T. 
a<K 

* * 

* 

After the discovery of Theorem 16.1, the problem of whether the first 

strongly inaccessible cardinal could be measurable remained open for about 

thirty years. In 1961, W. P. Hanf, a student of A. Tarski, established a 

model-theoretic conjecture formulated by Tarski that implied the answer im¬ 

mediately. The proof given above is due to H. J. Keisler and A. Tarski. It 

is clear that Corollary 16.1 can be sharpened, for example, by iterating the 

operation M°°. These strengthenings, however, still do not give a real indi¬ 

cation of the size of measurable cardinals. A more accurate picture can only 

be gained by tools from model theory, and this is beyond the scope of the 

present book. Theorem 16.2 can be established under much weaker assump¬ 

tions on k (for example, for the much “smaller” weakly compact cardinals, 

defined in Section 18). 
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Problems 

Definition. Given a property R on the class X, denote by [u]r the class 

{v E X : uRu}. R is called set-like if [u]r is always a set; R is called 

extensional if u = v whenever u, v € X and [u]r = [u]r. 

1. (Theorem on Well-Founded Induction) Prove that if R is a well-founded 

set-like property on X, and $ is a property such that 

Vu (Vu E [u]r <&(w) =*> $(u)) 

holds, then we have 

Vu <&(u). 

2. (Theorem on Well-Founded Recursion) Prove that if R is a well-founded 

set-like property on X, and Q is an arbitrary operation, then there is a 

uniquely determined operation T on X such that, for every u € X, we have 

t(u) = q{?\ Hr). 

3. (Mostowski’s Collapsing Lemma) Prove that if R is an extensional well- 

founded set-like property on the class X, then there is a transitive class M 
and an operation T such that X ~yr M and 

uRu •$=$■ J-{u) 6 X(v) 

holds for every u, v G X. 

4. * Prove that if k is a measurable cardinal > u> and 

(VA : u < X < k)(2a = A+), 

then 

2K = K+. 

5. * Let k > u. Show that a discrete topological space of cardinality k can 

be embedded as a closed subspace into a power of the real line if and only if 

k is smaller than the first measurable cardinal greater than u (here the word 

embedding means a homeomorphic map into the space). 



17. REAL-VALUED MEASURABLE 

CARDINALS, SATURATED IDEALS 

In this section, we consider Problem (*) of S. Banach formulated in Sec¬ 

tion 16. 

Definition 17.1. Let S be a set system, S C P(X), and X > u. The 

function p : S -> [0,1] is said to be A-additive on S if for every system 

{Aa : a < r} C S 

of pairwise disjoint sets such that 

A — [J Aa € S and r < A 

a<r 

we have 

a<T 

It is to be noted that the sum J2a<r PiAa) can ^>e finite on^y ^ K-A-a) — 0 
except for countably many values of the subscript ot. Indeed, the sum of 

uncountably many positive numbers is infinite, since one can find a positive 

rational number that is smaller than infinitely many of these numbers. It is 

easy to verify the following analogue of Lemma 16.1: 

Lemma 17.1. If k is the least cardinal such that there is an Hi-additive 

function 
p : P(k) -> [0,1] 

that is not trivial, i.e., is such that 

p(K) = 1 and /*({«}) = 0 for a < «, 

then p is K-additive on P(k). 

The proof is completely analogous to that of Lemma 16.1, and we leave it 

to the reader. This lemma justifies the following definition. 
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Definition 17.2. The cardinal k is called a real-valued measurable car¬ 

dinal if there is a function 

fx : P(«) [0,1] 

that is K-additive on P(k) and is nontrivial, i.e, 

/x(k) = 1 and /Lt({a}) — 0 for ol < k. 

We remark that, according to our definition, every measurable cardinal 

(including u) is also real-valued measurable. The problem now is to deter¬ 

mine which cardinals k > u> can be real-valued measurable. The main goal of 

this section is to prove the analogue of Theorem 16.2: If n > u is real-valued 

measurable, then k is an cr-Mahlo cardinal for every a < n. This k is there¬ 

fore just as large in relation to the classes Ma as uncountable measurable 

cardinals are in relation to the classes Ma. 

As further pieces of information, we also mention the following results 

established by R. Solovay in 1966. 

a) Con(ZFCU{3«; > u «: is real-valued measurable}) •$=>• Con(ZFCU 

(3k > u> k is measurable}). 

b) Con(ZFCU{3/c > u k is measurable}) 4=4> Con(ZFCu{2K° is real¬ 
valued measurable}). 

Below we will prove results stronger than the just mentioned analogue of 
Theorem 16.2. 

Lemma 17.2. If k > u is a real-valued measurable cardinal and fi : 

P(k) —» [0,1] is a measure witnessing this, then 

Z = {A C k : n(A) = 0} 

is a K-complete Ki-saturated ideal such that 

[k]<k C I. 

Proof. The concept of A-saturated ideal was described in Definition 12.15. 
If we had a system 

Q C P(k) \ X |^| > Ki 

of pairwise disjoint sets, then the sum 

AeQ 

would be infinite. 

The other assertions about T are immediate. 
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Definition 17.3. The cardinal k > u is called a saturated cardinal if 

there is a K-complete, n-saturated ideal T on k such that [k]<k C X. 

According to this definition and Lemma 17.2, real-valued measurable car¬ 

dinals are also saturated cardinals. We will show that if k is a saturated 

cardinal, then k is very large. We would like to point out that the term 

“saturated cardinal” is not generally accepted in the literature; we introduce 

it here for the sake of brevity. 
Before we turn to the proofs of the main results, we establish a classical 

result from the 1930s, which serves as a supplement to the quoted results of 

Solovay, and shows that the “true” real-valued measurable cardinals are to 

be sought among cardinals not greater than 2H°. 

Theorem 17.1 (A. Tarski). If k > u, Z C P(«) is a K-complete, A- 

saturated ideal on k with [x]1 C X, and, further, 2<^ < k holds, then k is 

measurable. 

Corollary 17.1. If k > 2N° and k is real-valued measurable, then k is 

also measurable. 

The corollary is immediate from Lemma 17.2 and Theorem 17.1. 

Proof of Theorem 17.1. In view of the ^-completeness, we also have 

[«]<* C X. For this reason, we have |A| = k whenever case A£Z. Thus, if 

the ideal X + (k \ A) is 2-saturated then, by Lemma 12.3, the cardinal k is 

measurable. Therefore, by contradiction, we assume that 

(1) for each set A C k, there are sets B\ and B\ such that 

B°a U B\ = A, BAnBA = 0, and B\$Z for A <£ X and * < 2. 

Define the sets 
Af C k (/ € "2, v < A) 

by transfinite recursion on v. Put Ag = k. Let v > 0, and assume that the 

sets Af have already been defined for / G ^2 with p < v. If v is a limit 

ordinal, then put 
Af = : p<u}. 

If i/ = p + 1 for some p and / E |/2, then put 

Af = BAf if /(/*) = * (* < 2)‘ 

Next we prove the following assertion. 

(2) For each v < A, we have 

«=UM/: i€ "2)' 
A, n Aft = 0 whenever fo^fi w't^1 /»’/i e ^ 
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and, for each g < v and / G "2, 

a G Af implies a G Af^. 

We prove (2) by transfinite induction on v. For v = 0 the assertion is 

obvious. Assume that v > 0 and the assertion is true for each ordinal g < v. 

If u = g -i- 1 and a E k, then by the induction hypothesis there is a uniquely 

determined function g G M2 such that a G Ag and a G Ag\^ for g! < g. 

Thus, by (1) there is a uniquely determined i < 2 such that 

f = 9 U {(/x, *)} G v2 and a G Af. 

Then 

a G Ag|M/ = Ayr|M, for g' < g. 

If i/ is a limit ordinal, then for each g <v there is a uniquely determined 

9fj, G M2 for which a G Ag^. By the induction hypothesis, we have — g^\g' 
for gl < g. Thus 

/ = U 6 ^ a G 

and 

for g <v. 

Write 

Q! G Af 

<A2 = U^2 : " < A) and B = (J{Af : f e<x2AAf G X}. 

By the assumption on the cardinal k and by the ^-completeness of X, we 

have B G I. Let a G k \ B. By (2), we have a G Af for some / G A2. Using 
(2) again, by the definition of B we obtain 

AfW+1<£T for i/<A. 

For v < A, write 

By (1), Cv £ X, and, by (2), the sets Cu are pairwise disjoint. This contradicts 
the assumption that X is A-saturated. 

* * 

* 

Next we prove the classical analogue of Theorem 16.1, dating back to the 
1930s. 
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Theorem 17.2 (S. Ulam). If k > u is a saturated cardinal, then k is 

inaccessible. 

Proof. If k is a singular cardinal then, as we saw in the proof of Theorem 

16.1, there is no K-complete ideal I on k such that [k]1 C X. 

What we have to prove, therefore, is that if k = A+ for some A > u>, then 

k is not a saturated cardinal. To this end, we will construct a set system 

{4,:?<AM)<At)cP(A+) 

satisfying the following conditions. 

1. For each £ < A, 

holds whenever 77/77' and 77, 77' < A+. 

2. For each 77 < A+ we have 

A+ \ : f < A) < A+. 

A set system with these conditions is called a A~*~ Ulam matrix. Informally, 

in the Ulam matrix, each row consists of pairwise disjoint sets, and the 

union of each column almost covers the whole set. The above set system is 

constructed as follows. 
Let fp : (3 —> A be a one-to-one function for each /3 < A+. There is such 

a function, since \/3\ < A for (3 < A+. For every £ < A, rj < A+, and (3 < A+ 

put 
p E A^v <=> r) < P A fpirj) = 

We claim that this set system satisfies Conditions 1 and 2. 

1. Let £ < A and 77, v[ < A+, r; ^ 77'. If there were a p with 

p e A^tV n A^V’, 

then we would have 

77,77' < P and fp(ri) = fpW) = £, 

but this contradicts that fp is one-to-one. 

2. If 77 < A+, then 
r] e D(f0) 

for each P > rj] hence there is an ordinal £ < A such that 

f = fM- 

Thus 
A+ \ (77 + 1) C |J{Ac,n : £ < A}. 
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For the proof of Theorem 17.2, now consider a A+ Ulam matrix satisfying 

Conditions 1 and 2, and let X C P(A+) be a A+-complete ideal for which 

[A+]<A+ C X. Then, by Condition 2, we have 

a+ \ IK*-: (<e z. 

and thus 

for each q < A+. 

As the ideal X is A+-complete, there is a £ < A such that A^yT) £ X. Define 

the function / : A+ —» A by putting 

f(v) = min{£ < A : AC)T/ £ X} 

for each q < A+. Then there clearly exists a set L C A+ with \L\ = A+ and 
an ordinal £ < A such that 

f(v) = € for q e L. 

According to the definition of /, the set system {A^,, : q e L} consists of 

sets not belonging to X, and these sets are pairwise disjoint by virtue of 

Condition 1. As \L\ = A+, the ideal X is not A+-saturated. 

* * 

* 

Our next task is to verify the analogue of Lemma 16.4. 

Lemma 17.3. If /c > u a saturated cardinal, then there is a normal 
k-saturated ideal X on k such that 

[«]<K c x. 

Proof. Let X C P(«) be a ^-complete, ^-saturated ideal such that 

M<“ C Z; 

write T = co(J). Let 

Y = {/ G "On : Vp < « (/^({p}) G X A f{p) < K) }. 

Then Y is a subset of the class “On for which Id* e Y, since 

= {*>} €Z 
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holds for each p < k. Let /o be a minimal element of Y in the partial ordering 

such a minimal element exists according to Assertion 4 of Lemma 16.2. 

Let X = /0 * X. By Lemma 16.3, X is a ^-complete ideal. If p < n, then, by 

the definition of /o, we have /^({p}) £ X, and so {p} G X. Hence 

[«]<K G X. 

We claim that X is K-saturated. Indeed, if Q C P(k) consists of pairwise 

disjoint sets, then the same is true about the set system 

{/o_1(^) : A € <?}. 

As X is K-saturated, if \Q\ > k we have /_1(A) G X for some Ag5, and then 

A el. Write 
T = CO (X) = /0 * X. 

We claim that X satisfies the following: 

(1) If A G T and g is a regressive function on A, then there is an ordinal 

p such that 

p-1({p}) 

Claim (1) can be verified as follows, similarly as the analogous statement 

was established in the proof of Lemma 16.4: 
We may assume that 0 £ A, since A \ {0} G T provided A G T. Let g be 

a regressive function on the set A, and let h = g ° /o* Then 

{a < k : h(a) < /0(or)} D {a < k : /o(«) G A} G f, 

and so h f o- In view of the minimality of /0, there is a p < k such that 

h~\{p})tl-, 

here 
/i_1({p}) = {«<«: g(fo(a)) = p} = /0_1 (p_1((p}))- 

Thus 

In the remaining part of the proof, we will show that an arbitrary k- 

complete ideal X with [k]<k C X satisfying (1) can be extended to a normal 

ideal X. As X C X, the ideal X is clearly also ^-saturated, and we have 

[k\<k C X as well; by Lemma 12.2, X is also ^-complete. 

The method to be described can also be used to construct the ideal X = 

ns(X) by taking X to be [k]<k (instead of the X defined above), if beforehand 

we prove that, for each £ < k and for every regressive function / on /c \ £, 

there is a p < « such that |/"1({p}| = «• In this way, we can obtain a 
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proof of Fodor’s Theorem from Neumer’s Theorem. In Section 12 we derived 

Fodor’s Theorem directly, and then we used it to deduce Neumer’s Theorem; 

however, a direct proof of the latter is simpler than one of the former. 

Let 

X={A.C«;:3/(/is regressive on A and V p < k f x({p}) £ X)}. 

We claim that X satisfies the requirements stated above. Indeed, as n £ X", we 

also have k £ X according to Assertion (1). If A0, A1 £ X (A0 D A\ — 0), and 

/o, f\ are regressive functions witnessing this, then the regressive function 

/ = /o U /i is a witness that A ^ X for the set A = Ao U A\. 

Thus we only have to verify the normality of X. To this end, assume 

A £ X, and let / be a regressive function on A (D(/) = A). For each p < a, 

write 

r\{p}) = Ap. 

Assume, by contradiction, that Ap e X for each p < a, and let fp be a 

regressive function on the set Ap such that 

fp 1 ({<*}) £ i for a < k. 

Clearly, 

A = IM : P < «}> 

and the sets Ap are pairwise disjoint. Define the function g on the set A by 
putting 

g(a) = max{p,/p(a)} for a e Ap. 

g is a regressive function on A, since, given a £ Ap with a > 0, we have 
p = f(a) < a and fp(a) < a. 

Now fix o < k, and consider the a’s in A with 

a = g{pt) = max{/(a), //(a)(a)} 

(the second equation holds by the definition of g). Then either a = f (a) and 

/<r(a) < cr or = a and f(a) < a. Hence 

S-1(M) C + 1) : P < ^}- 

Then 

p_1({p}) £X, 

as X is ^-complete. Thus g witnesses A £ X. This is a contradiction. 

* * 

* 

Next we prove the analogue of Theorem 16.2. 
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Theorem 17.3 (R. Solovay). If k > u is a saturated cardinal, then k is 

an a-Mahlo cardinal for each a < k. 

Proof. According to Lemma 17.3, there is a normal ideal I C P(k) such 

that [«]<* C J. This X is also /^-complete. By Corollary 12.2 we then have 

ns(k) C X. 
We prove the following assertion. 

(1) k \ Ma G X holds each a < k. 

As we have k G M0 by Theorem 17.2, the assertion of the theorem fol¬ 

lows from this in exactly the same way as that of Theorem 16.2 did from 

Assertion (1) there. 
For the proof, we will use some ideas formulated in the proof of Theo¬ 

rem 12.5.A. For an arbitrary A C k and an arbitrary function / defined on 

A put 

A{f>p) = {teA:f{Z)>p}. 

We say that the function / G kk is essentially bounded on A if there is an 

ordinal a < k such that A(f > a) G X. 
In the last paragraph of the proof of Theorem 12.5.A, we in effect showed 

that if X is a normal, K-complete, and rc-saturated ideal in P(/c), then 

(2) For each A C k, every regressive function / on A is essentially bounded 

on A. 
The adaptation of that proof to the present situation is left to the reader. 

For an arbitrary function / regressive on A, we will denote by aA(f) its least 

essential bound. That is, 

a a (/) = min{a : A(f > a) G X}. 

We prove Assertion (1) by transfinite induction on a. We distinguish three 

cases. 

(I) a = 0. 
(II) a is a limit ordinal. 

(Ill) a = /3 + 1. 

(I) According to the definition of M0 we have k \ M0 = A0 U Ax U A2, 

where 

A0 = {£ < k : £ is a successor ordinal} U {0,u;}, 

Ai = {£ < k : £ is a singular limit ordinal}, 

A2 = {£ < k : £ is a successor cardinal}. 

It is sufficient to show that Ai G X for i < 3. It is obvious that 

A0 G ns(«) C X. 
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The assertion for A\ can be proved by using (2) in exactly the same way as 

Theorem 12.5.A was proved. Thus this proof will be left to the reader. 

Assume now that A2 £ X. Define the function / by putting 

/(0 = min {A < £ : £ = A+} for £ G A2. 

Then / is regressive and one-to-one on A2, and so 

A2 G ns(k) C X. 

(II) K \ = (J^<0(k \ Mp) e X. 

(III) Analogously as in the proof of Theorem 16.2, we have to show that 

A = kH (Mp \ M(Mp)) G X. 

Taking Definition 15.4 of the Mahlo operation into account, we have 

A G Mp and A D Mp C ns(A) for A G A. 

As A C ATp, from this it fo 11 ows also that 

An A e ns(A) for A G A. 

Next we are going to establish an auxiliary result, which will be used also 
in the proof of another theorem below. 

(3) Under the assumptions on the ideal X, for an arbitrary set B c k 

consisting of regular cardinals greater than u, the set 

C={AGfi:finAGNs(A)} 

belongs to X. 

From (3), it immediately follows that A G X, and so from now on we will 

confine ourselves to the proof of (3). Proceeding by reductio ad absurdum, 

we assume that C £ X, and so B ^ X as well. By Neumer’s Theorem, for 
each A G C there is a function f\ such that 

(4) fx is regressive on BnA, and for each p, we have 

\f\H{p})\<* for A GC. 

We right away formulate also a consequence of (4): 

For each p < «, define the function gp : C —> k by 

pp(A) =sup/A1({p}). 
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Then, taking into account that A is regular for A € C, we have gp(A) < A, 
and so gp is regressive on C. Put ap = ac(gP) for P < K- 

Turning back to the proof of (3), let £ E B be arbitrary. Define the 

function h^ on the set C \ (£ -i- 1) by putting h^(A) = /*(£)• Then 

MA) = fx(0 < t < A, 

and so h^ is regressive on C \ (£ -i- 1). There is therefore a smallest ordinal 
r] < £ such that 

C( ={AeC\(( + l):/i(£) = i)}^l 

Put /(£) = T)] this defines / as a regressive function on B. We are going to 
show that |/-1({p})| < « for every p; from this the conclusion will follow, 
since this implies B E ns(k) by Nemner’s Theorem, and so B E I also holds. 

To this end, pick an arbitrary p < k. If /(£) = p for some £ < k then 

f\(0 = P for A 6C^I, 

and so 
€ € /T1({p}) for A €C(4I. 

Thus, if A 6 Q ^ I, we have 

9pW > £; 

this imphes £ < ap. Thus 

/_1({p}) Cap<K. 

* * 

* 

Corollary 17.2. If « > u is a saturated cardinal and X C P(k) is a 

normal, K-saturated ideal with [k]<k C X then k\M EX. 

Proof. We have 
k \ M°° -k\ A Mq <E X 

a<K 

according to Theorem 17.3. 

* * 

* 

Further iteration of the Mahlo operation is possible here as well, but 
that will not give any significantly new results. We remark that the model- 
theoretic characterization of saturated cardinals is almost as nice as that of 
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measurable cardinals - except that it uses Boolean-valued models, whereas 

no model-theoretic characterization at all seems to exist for real-valued mea¬ 

surable cardinals; we will not discuss the model-theoretic characterization of 

saturated cardinals here. 

In concluding this section, we prove R. Solovay’s Theorem 12.5 announced 

previously, according to which, for each regular cardinal k > u>, every k- 

stationary set A C k can be represented as a union of k many pairwise 

disjoint K-stationary sets. 

Proof of Theorem 12.5. In view of Theorem 12.5.A, we may assume that 

k G M0, i.e., that k is an inaccessible cardinal. Let A C k be K-stationary. 

Assume, on the contrary, that the assertion is not true. As we saw in the 

proof of Theorem 12.5.A, this means exactly that the ideal X = NS +(k \ A) 

is K-saturated. We know that X is normal and [k]<k C X. Thus, by Theorem 

17.3 we have k \ M0 G X, and so may assume that A C M0. According to 

Assertion (3) in the proof of Theorem 17.3 we obtain that 

(1) {A G A : A n A G ns(A)} G X, 

that is, the set 

{A G A : An A G ns(A)} 

is not stationary in k. 

In the remaining part of the proof, we will show that (1) cannot hold for 

any set A G Stat(K) consisting of regular cardinals greater than u. 

To this end, first consider a set A c A > u (A is regular), and let A' be 

the set of limit points of X, i.e., 

A' = {£<k:0<£ = sup A fl £}. 

We claim that if X is cofinal in A, then X' n A is a A-club. 

The closedness of A' fl A is obvious; its being cofinal also follows, since for 
every sequence 

x0 < xi < • • • < xn < ..., {xn : n < u} C A 

we have sup{xn : n < u} < X. Assume now, on the contrary, that (1) holds 
for some K-stationary set A C k. Let £ be a K-club such that 

Bn{AGi:inAG ns(A)} = 0. 

Let B' be the set of limit points of the set B just defined. Then B' is also 
a K-club and B' c B. As the set A is K-stationary, we have A fl B' ^ 0. 

Let 

A = min(An B'). 
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Then A is a regular cardinal greater than u according to our assumptions. 

As A G B', the set B n A is cofinal in A. Thus (B n A)' is a A-club, according 

to our remark above. However, (B n A)' n A = B' n A. As A € B' C B and 

A e A, we have 

A n A £ ns(A), 

that is, A fl A is A-stationary. Therefore 

0^inAnfi'nA = AnB'nA, 

which contradicts the minimality of A. 

* * 

* 

Problems 

Definition. Let f,g E and write f -< g if there is an n0 G u> such 

that Vn > no (/(n) < g(n)). 
A set {fa : a < k} is said to be a /c-scale in “ui if we have fa -< fp 

whenever a < (3 < k, and for every g G woj there is an a < k such that 

g -< fa- 

1. Prove that if for a cardinal k > u> there is a «-scale in then k is not 

real-valued measurable. 
2. Prove that if 2K° = Ni, then there is an Ni-scale in 

3. Change the definition of A-saturated ideal as follows: I C P(k) is said 

to be A-saturated if for each system 

fCP(/t)\I 

almost disjoint fori we have \J~\ < A, where to say that T is almost disjoint 

for I means that we have F\ fl F2 E I whenever F\, F2 € T and F\ 7^ im¬ 

prove that, given k > u>, 2<A<«, and a ^-complete ideal J in P(k), 

the ideal I is A-saturated if and only if it is A-saturated in the new sense. 



18. WEAKLY COMPACT AND RAMSEY CARDINALS 

In this section, we will study the question, for which cardinals Ramsey’s 

Theorem will remain valid, and we will establish a number of important 

properties of these cardinals. 

Definition 18.1. The cardinal k is said to be weakly compact if 

n («) 2 

holds. 

This name, generally accepted in the literature, is justified by an equivalent 

model-theoretic formulation of the property for which the name is natural. 

Theorem 18.1. If k is weakly compact, then k is strongly inaccessible. 

Proof. If k is not strongly inaccessible, then one of the following two as¬ 
sertions holds: 

(1) There is a A < k such that 2A > «; 
(2) k is singular. 

If (1) holds, then by Theorem 14 .4 we have 

2a (A+)|, 

hence, a fortiori, 

k t4 (k)|. 

Therefore, it is enough to prove that 

A (A)S 

holds for each singular A. 

Let 

{Aa : a < cf(A)} 

be a set system consisting of pairwise disjoint sets such that 

[J{Aa : a < cf(A)} = A 
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and 

|Ac| < A for a < cf(A). 

Define a 2-partition / of A with 2 colors as follows. For each {x, y} E [A]2 

put 

f({xiV}) = 0 3a < cf(A)(x, y E Aa). 

It is easy to show that the partition / establishes the relation 

\y+(\,d(\)+)2. 

* * 

* 

In order to characterize weakly compact cardinals, we will need some 

further definitions. According to Definition 14.9, a partially ordered set 

(T, -<) is called a tree if the set 

T\ -< x = {y E T : y -< x} 

is wellordered for each x E T. 

Definition 18.2. Let (T, -<) be a tree. 

1. For each x E T, put 

ocT(x) = a{x) = type(T| X z(-<)). 

2. For each a, write 

Ta = {x E T : ar(x) = a}. 

3. (T, -><) is said to have height a if 

a = min{/3 : Tp = 0}. 

It is clear that ifx, y E Ta and x^y, then x 7Ky, since otherwise we would 

have a(x) < ot(y). 
4. Given k > uj, we call (T, -<) a /c-tree if it has height n and for each 

a < k we have \Ta \ < n. 
5. A maximal ordered subset of (T, -<) is called a branch of this tree. 

6. The cardinal k > u has the tree property if each n-tree (T, -<) has a 

branch of cardinality k. 
7. Given x E T and (3 < aT(x), we denote by x\Tfi the unique element of 

Tp for which y -< x. 

8. For each x,y ET with x ± y, we write 

5T(x,y) = min{P : x\Tp # y\tP}- 

The next lemma says that for each tree (T, ■<) the partial ordering -< can 

be extended to an ordering of T in a natural way. 
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Definition 18.3. Let (T, -<) be a tree of height a and for each (3 < a let 

-<p be an ordering ofTp. Define the relation -<* on T by putting 

x -<* y (i-n^)v(i//xA|//iA x\t5t(x, y) -<sT{x,y) v\y)) 

for each x,y € T. 
-<* is called the squashing of T with respect to (-</?: (3 < a). 

Lemma 18.1. Using the notation of Definition 18.3, -<* is an ordering of 

the set T. 

Proof. Enlarge the set Tp by adding a new element, i.e., put 

Tp = Tp U {oo^}, 

and define the ordering -<'p of Tp as an extension of -<p such that x -<'p oop 

for each x eTp. Given an arbitrary x G T with oct(x) = (3, let 

X* € X ^ 
7 <a 

be a sequence such that 

x*{yf) = x\t1 for 7 < [3 

and 

a;* (7) = oo7 for /? < 7 < a. 

Let -<** be the lexicographic ordering of X/3<a T'p, that is, the ordering such 

that 

9^"/^ 9(0) m 
with (3 being the least ordinal 7 for which 

9{l) ± /(7)- 

We will leave it to the reader to show that -<** is an ordering. As we have 

x y <=> x* -<** y* 

for each x,y G T, it follows that -<* is also an ordering. 

* * 

* 

Theorem 18.2. The following assertions are equivalent. 

a) k is weakly compact. 

b) k is strongly inaccessible and has the tree property. 

c) V7 < «Vr < u> k —> (k)7- 
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Proof. As the implication c) => a) is obvious, it is sufficient to verify the 

implications a) => b) and b) =>■ c). 

a) =$> b). Assume that k -> (k)Then k is strongly inaccessible accord¬ 

ing to Theorem 18.1. Let (T, -<) be a «-tree, let -*<a be an arbitrary ordering 

of Ta, and let -<* be the corresponding squashing of T, as described in Def¬ 

inition 18.3. It is clear that |T| = k; we may therefore assume that T = k. 

Define the 2-partition / of k with 2 colors similarly to the way it was done 

in the proof of Sierpinski’s Theorem 14.3. That is, put 

f({x,y}) = 0 x -<* y whenever x < y < n. 

The assumption k —»• (k)| implies the existence of a set H C k with \H\ = k 

that is homogeneous with respect to /. For reasons of symmetry, we may 

assume that H is homogeneous in color 0; that is, we have x -<* y whenever 

x,y G H and x < y. 

For each a < k, write 

Ta = U\{T0 :/?<«}. 

As k is regular, we have 

|Ta| < K 

for every a < k. Let 

x,y e « \ Ta with x\Ta ± y\roc. 

Then, as can immediately be seen from the definition of -<*, we have 

x -<* y 4=^ x\toc -<* y\ro- 

Now fix a < k. For each z € Ta, put 

Hz = {x e H \Ta : x\Ta = z}. 

As k is regular and |Ta| < k, there is a z E Ta for which 

\Hz\ = n. 

We show that there is only one such 2. Indeed, if we have 

and, for example, Zq -<* z\, then first pick an X\ £ HZl and then pick an 

Xq e HZo with xi < x0. Then we have Xi -<* x0 by the homogeneity of H, 

and this contradicts the assumption zq -<* z\. Note that from the uniqueness 

of 2, it follows that for each a < k there is a za € Ta such that \H\HZa \ < k. 

We claim that 
{za:a< «} 
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is an ordered subset of the tree (T, -«<). Indeed, let a, ft < k with a ^ /3. In 

view of the assertion just proved, there is an a; such that 

x C HZa n HZg. 

Then za <x and zp -< x and so za and zp are comparable in the tree (T, -<). 

It is also clear that {za : a < «;} is a branch of the tree T. 

b) =4> c). Assume that k is strongly inaccessible and has the tree property. 

By induction on r we are going to prove the relation k —> (k)I). For r = 1 this 

is obvious in view of the regularity of k (see the remark made after Theorem 

14.4). Assume that this relation is true for some r, and let 

/ : Mr+1 -> 7 

be an (r -fi l)-partition of k in 7 colors. Here we follow the proof of Theorem 

14.7, substituting k for the p used there. For each a < k, we define the 

sequence 

and, as we did in Definition 14.9, for a' -< a we define the partition tree 

T — (k, -<) by putting 

a' -< a <=> a' < a A 3u < £a (a' = /?“). 

The sets R^ defined in the proof of the Stepping-up Lemma 14.1 correspond 

to the sets in the tree T for £ < k. As we proved there, we have 

m\ = \Rz\ < 2^H?+i|+u/ < K 

for every £ < k, as k is strongly inaccessible. Thus the tree (k, -<) is a Ac-tree, 
and so it has a branch H of cardinality k. 

We claim that H is end-homogeneous with respect to /. To see this, 

assume V C [H]r, V < a, ex1 € H, and, for example, a' < a. Then a1 = (3* 
for some ordinal v < £a, and 

f(V U {a'}) = f(V U {/??}) = f(V U {a}). 

In view of the existence of the end-homogeneous set H of cardinality k, the 

assertion follows from the induction hypothesis, similarly as in the proof of 
Theorem 14.7. 

As a remark, we add that the implication b) =$> c) was proved by P. Erdos 

and A. Tarski in 1942, while the implication a) => b) is a consequence of 

a theorem of W. P. Hanf proved in 1961. The result that u has the tree 
property is a theorem of D. Konig. 

* * 

* 

Erdos and Tarski already proved in 1942 that every measurable cardinal 

is weakly compact. We will prove a stronger result. 
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Theorem 18.3 (F. Rowbottom). Let k > u> be a measurable cardinal 

and let f CP (k) be a nonprincipal normal ultrafilter, r < u, 7 < u, and let 

f : [/c]r -4 7 be an r-partition of the cardinal n in 7 colors. Then there is a 

set H E T that is homogeneous with respect to f. 

Proof. We will prove the assertion by induction on r. For r = 1, the 

assertion is straightforward. Assume that the assertion is true for some r. 

Consider 

/ : Mr+1 -> 7- 

For each a < «, we define the mapping 

fa : [k \ (a 4- l)]r -> 7 

by the stipulation 

a < V e [«]r =► fa(V) = /({a} U V). 

By the induction hypothesis for each a, there exist 

Ha C k \ (a + 1) (Ha e T) and va (va < 7) 

such that Ha is homogeneous in color va with respect to fa. Put 

H' = A Ha. 
a<n 

Then H' 6 T. Therefore, there is an H C H' (H E T) and an ordinal v < 7 

such that va = v for a e H. We claim that H is homogeneous with respect 

to / in color u. Let 

{a} 1)7 6 [if]r+1, a<F. 

Then, by the definition of diagonal intersection, we have V C Ha, and so 

a £ H imphes 
faiV) =ua = u- 

on the other hand, we have 

fa(V) = /({a) U V). 

♦ ♦ 
♦ 

Definition 18.4. Let n, X be cardinals and let 7 be an ordinal. The 

symbol 
k -4 (A)<w 

indicates that the following assertion holds: If, for each r < u, fr : [«]r -> 7 

is an r-partition of n in 7 colors, then there exists a set H C n with \H\ = k 

that is homogeneous with respect to each fr. To indicate that this assertion 

is not true, we write 

K -fr 

If K _> («)<w holds for each 7 < k, then we say that k is a Ramsey 

cardinal. 
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Corollary 18.1. If k is a measurable cardinal greater than u then k is a 

Ramsey cardinal. 

Proof. Let X be a normal prime ideal that is not principal, and let T — 

CO(X). Let 

fr : [«]r -> 7, r < w, 7 < « 

be given. According to Theorem 18.3, for each r < u there is a set Hr < u> 

with Hr 6 T that is homogeneous with respect to fr. As k > u>, we have 

H =f f| Hr e X, 
r <ui 

and so 

\H\ = K. 

* * 

* 

Corollary 18.1 had been established by P. Erdos and A. Hajnal in [E, H; 1] 

even before the concept of normal ideal was introduced. 

Theorem 18.4. If k > u is a measurable cardinal, then there is a A < « 

that is a Ramsey cardinal. 

It is to be noted that this theorem can be obtained as a corollary to a 

much more general result. In particular, it is a consequence of a result for 

measurable cardinals involving a higher order “indescribability” property of 

the type outlined after Definition 15.1. 

Proof of Theorem 18. f. Let k be a measurable cardinal, and let X C P(k) 

be a nonprincipal normal prime ideal, and put T = CO(X). We will prove the 

following much stronger assertion than the one announced in the theorem: 

{A < k : A is a Ramsey cardinal} C T. 

Assume that this assertion is false. Then 

A" = {A < k : A is not a Ramsey cardinal} £ T. 

Put 

A' = {A £ A" : A is regular}. 

Then A' £ JF according to the statement Ax £ X in the proof of Theorem 
16.2. 

For each A £ A! there is a 7 < A such that 

A A(A)<“ 
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holds, and so, by the normality of I, there is a 7 < k such that 

A=f{XeA':X-/> (A)<w} 6 T. 

For each A G A, let 

f\,r : [A]r 7 r < u 

be a sequence of partitions witnessing the relation 

A -h (A)<“. 

Fix an arbitrary r < u>. For every V € [«]r and v < 7, let 

Av,u = {A G A : V C A A fx>r(V) = u}. 

As 

holds for each V € Mr 

A \ sup V = [J{Av)t/ : v < 7} 

, we can define a partition 

fr : [«]r -> 7 

by stipulating that 

fr(V) = v <=> Ay,u € T 

for every V e [«]r. Note that r < u was arbitrary; that is, such an fr was 

defined for each r < u>. 
As k is measurable, by Corollary 18.1 it is a Ramsey cardinal. Hence there 

is a set H £ k with \H\ — k that is homogeneous with respect to each fr. 
First we claim that 

B = {\e A:\\n H\ = \} e J7. 

Assuming this is not true, we have 

C = {A G A : A fl H is not cofinal in A} e F, 

since the elements of A are regular cardinals. Let g be a function such that 

A n A c g{\) < A 

for each A e C. As g is regressive on the set C G J7, we have 

a(g) = a < k 

for some a < k with the notation introduced in the proof of Theorem 16.2. 

This is, however, impossible, since then 

{\e AiHnXca} eJ7 
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would hold; thus we would have H C a < n. Hence we indeed have B E T. 
For each the set Afl H is not homogeneous with respect to at least 

one of the partitions f\,ri r < u. That is, for each A € B, there is an integer 

r\ < uj and there are ordinals 

cto(A),..., ar.A_i(A) 6 H n A with «o(A) < • • • < arA-i(A), 

A)(A), • • -,Prx-i(X) e H f)\ with Po(X) < ■ ■ ■ < prx_1(X) 

such that 

V\ = (a,(A) : i < rA}, 

VL = {ft(A) : » < rA}, 

+ h,r,(VD- 

By the normahty of !F, there is an r < u and there are ordinals 

CXq ‘ Pq Pr^\ 

such that 

D =f {A € B : rx = r A Vi < r (a*(A) = ctj A /?j(A) = A)} £ T. 

In this case, however, for 

V = {a0,--.,o:r-i} 

and 

V' = {P0,...,Pr_1} 

we have 

MV) # fr(V'). 

This is a contradiction. 

* * 

* 

We will announce another theorem; this theorem is perhaps the best il¬ 

lustration of the extraordinary strengths of positive relations involving the 
symbol introduced in Definition 18.4. 

Theorem 18.5 (J. Silver). If k -4 (u;)<w, then there is a A < k that is 
weakly compact. 

This is a special case of a more general result given by Silver in [Si; 1]. 

The proof, relying on methods of model theory, will be omitted. We do 

not know of a proof based on combinatorial methods. Even if such a proof 

could be found, it would not properly show the power of the model-theoretic 

method. For more recent developments in this area, we refer to the book 
[Ka] by A. Kanamori. 

As we have mentioned several times, weakly compact cardinals are also 

“very large.” In fact, the following strengthening of Theorem 16.2 holds. 
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Theorem 18.6. If k > u is weakly compact, then k is a strongly a-Mahlo 

cardinal for each a < k. 

The main idea of the proof is similar to that of Theorem 16.2, but the proof 

is technically much more complicated; hence we omit the proof here. We will, 

however, present the key theorems and definitions needed for the proof. After 

a thorough understanding of the methods given in the preceding sections, the 

reader may be able to establish these results and in the end arrive at a proof 

of Theorem 18.6. 

Theorem 18.7 (J. Baumgartner). A cardinal k > u> is weakly compact 

if and only if for each sequence 

{fp : P < a} C kk 

of regressive functions there is a sequence 

{pp:P < k} 

of ordinals such that 

{£ < k : V/? 6 D (fp{£) = pp)} e Stat(«) 

holds for each D € [«]<*. 

As we indicated above, we will omit the proof. 

Definition 18.5. Given a weakly compact cardinal k > u>, denote by IF* 

the set of those subsets X of k for which Theorem 18.6 remains valid when 

replacing kk with xk, that is, X € T*K holds if and only if for each sequence 

{fp: P < a} C xk 

of regressive functions on X there is a sequence 

{pp:p< «} 

of ordinals such that 

\/D 6 [«]<*{£ eX:VpeD (fp{0 =pp)}£ Stat(«). 

Lemma 18.2. If k > u is a weakly compact cardinal, then J7* is a normal 

filter on n such that 

Ml n K = 0- 

X* is called the weakly compact filter on k. We have n E X* by The¬ 

orem 18.7. The other assertions of the lemma can be verified by an easy 

calculation. 

Lemma 18.3. If k> u is a weakly compact and oc < k, then 

n\Ma(ET*. 

The proof of this lemma is similar to that of Theorem 16.2. Theorem 18.6 

now easily follows from Lemma 18.3. 
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Problems 

1. Prove that, given A,k>u and 7 > 2, we have A —> if and only 

if, given arbitrary n-partitions [A]n = U^<7 f°r n < ui there is no < u and 

an X C A with \X\ = k that is homogeneous with respect to the partition 

U^<71™ f°r each n > n0. 

2. Prove the following assertions: 

a) 2K° t4 (u)fu. 
b) * A 74 (01)2“ if A is smaller than the least inaccessible cardinal greater 

than u>. 

c) If for all cardinals A' < A we have 

A' 7A (u))f w, 

then 

A 74 (a; 4- 1)2 u<- 

(For partition relations involving ordinals or order types, see the remark 

given after Definition 14.2.) 

3. * Prove that if ct is a limit ordinal and k —* (a)^w, then we have k —>• 

(<*)&■ 
4. Prove that k > u is weakly compact if and only if 

k —> (k, 4)3 

holds. 

Definition. 5 C P(k) is said to be a ^-complete field of sets if 

1. If A,B e S, then A\B e S; 

2. For each set S' 6 we have {JS1 C S. 

Given a field of sets S, a set J- C S is called a filter in S if it is not empty, 

0 ^ T, and the following two properties are satisfied: 

(I) A, B e T =► AdB eX; 

(II) AeF and AcBeS =4> B <= T. 

J- is called an ultrafilter in S if it is a filter in S and for arbitrary sets 

A,B € S with A U B € T we have either A e T or B e T. 

5.* We say that S' c S generates the ^-complete field S of sets if S is 

the Av-complete field of sets including S' that is the smallest with respect to 

inclusion. Prove that n is weakly compact if and only if, in every ^-complete 

field <S of at least k sets generated by one of its subsets of cardinality < k, 

every ^-complete filter can be extended to a ^-complete ultrafilter. 

Definition. The topological space (X, r) is said to be ^-compact if every 

open cover of X has a subcover of cardinality less than k (here r denotes the 
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set of open subsets of X). The weight of a topological space (X, r) is the 

smallest cardinal A such that (X, r) has a base of cardinality A. 

6. *+ Assume that k<k = k. Prove that k is weakly compact if and only 

if for each sequence {Xu :*/<«} of Hausdorff topological spaces where, for 

every v < «, Xu is K-compact and its weight is at most k, the topological 

product 

X Xv 

is K-compact. 

7. * Prove that if k is not weakly compact, then there is an ordered set 

(R, -<) with \R\ = k that has no wellordered subset of type k in the ordering 

-< or 
8. * Prove that if k<k = k and k is not weakly compact, then there is a 

/c-compact topological space X of cardinality n and of weight k such that X2 

is not K-compact. 
9. * Show that if n > u is weakly compact and n < u>, then 

k2 —> (K2,n)2. 

Here k2 denotes the order type of the anti-lexicographic ordering of « x k. 
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Definition 19.1. 1. The mapping F : X —> P(X) on the set X is said to 

be a set mapping if x ^ F(x) for each x G X. 

2. We say that the above set mapping has order A if \F(x) \ < A for each 

x € X. 

3. We call the set S C X free with respect to F if x £ F(y) for each 

x,y € S. 

We observe that, given a set mapping F of order A on X, if Y C X and 

Fy{X) = Y n F(X), then the set mapping is also of order A, and every set 

S C Y that is free with respect to Fy is also free with respect to F. We will 

frequently use this observation without calling attention to it explicitly. 

It was P. Turan who first pointed out that if the order of F is small and 

X is large, then often there is a large free subset. He proved the existence of 

a free subset of cardinality 2N° in the case when A = u and |X| = 2H°. The 

next lemma was established by D. Lazar in 1936. 

Lemma 19.1. Assume k > u is regular, k > A, and F is a set mapping 

of order A on k. Then there is a set S C k of cardinality k that is free with 
respect to F. 

Before setting out to prove this result it is worth noting that the assump¬ 

tion k > A would not be enough, since if we put F(a) = a for a < k, then F 

is a set mapping of order k on k and there is no two-element set that is free 
with respect to a. 

Proof. By transfinite recursion, we define the sequence 

{Xa : a < A} C -P(«) 

of sets. Let o: < A and assume that the set Xp has already been defined for 

each (3 < a. Let Xa be a maximal subset of 

« \ (J{*0 : P < “} 

that is free with respect to F. Such an Xa exists according to the Teich- 

miiller-Tukey Lemma. Thus we have defined the sets Xa for each a < A. 
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We claim that at least one of the sets Xa has cardinality k. Assume, on 

the contrary, that 

|Xa| < k for each a < A. 

Write 

Then 

y«l < l*<,l • A + |*o| < «■ 
Put 

Y = U{Ya : a < A}. 

Then we have |y| < k by the regularity of k. Assume that x G k\Y and 

a < A. Then 

: (3 < a} and x F(y) for each y 6 Xa. 

By the maximality of Xa, we therefore have 

F(x) n Aa ^ 0. 

As the sets Xa are pairwise disjoint, this implies that 

m*)i > a, 

which is a contradiction. 

* * 

* 

In what follows we prove two theorems concerning set mappings. The pos¬ 

sibilities of generalizing the results and ideas discussed here will be indicated 

in the problems below. 

Theorem 19.1 (G. Fodor). If A > u> and F : X -> P(X) is a set mapping 

of order A on the set X, then X can be represented as the union of at most 

A sets free with respect to F. 

For the proof, we will need the following: 

Definition 19.2. The set Y C n is said to be closed with respect to the 

set mapping F if for each u € Y we have F(u) C Y. 

Proof. Without loss of generality, we may assume that X = k for some 

cardinal k. We may assume that k > A. For every 7 < k, there is a 

set Y = y7 C k with |F7| < A and j e Yy such that Y1 is closed with 

respect to the set mapping F. Indeed, define YJf by recursion onn<u with 
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Y° = {7}, r7n+1 = Y” U {F(z) : z G r7n}. Then r7 = Un<w Y" satisfies the 

requirements. 

We now define the sets Xa for a < k by recursion on a. Assume Xp for 

(3 < a has already been defined. Put Za = [jp<aXp, 7a = min(K \ Za), 
and Xa = Yja \ Ya. Clearly, the Xa’s are pairwise disjoint and |XQ| < A 

for each a < n. Moreover, if (3 < a and y G Xp, then F(y) C Yl0, and so 

F(y) n XQ = 0. Finally, it is immediate that k = (Ja<K Ca¬ 

using the fact that |Xa| < A, we can see that there is a decomposition 

k = Ui/<^ such that \SV D Xa\ < 1 for every a < k and v < A. It is 

sufficient to decompose each Sv into the union of A sets free for F. 

For v < A, define a mapping : Sv —»■ A. Given a < k, if x G Sv fl Xa 

and $u has already been defined for y E SVC1 (Jp<a Xp, let 

$v{x) = min (A \ {$„(y) : y G F(x) D Sv fl U **})• 
P<a 

The sets §v 1 (p), p < A are free for F and 

S» = < *}• 

* * 

* 

We now prove the generalization of Lemma 19.1 for singular cardinals. It 

needs to be observed that this does not follow from Fodor’s Theorem 19.1, 

since, if A > cf(«), all the free sets there may have cardinalities less than k. 

Theorem 19.2 (Hajnal’s Set Mapping Theorem). Assume k > u>, n > A, 

and let F be a set mapping of order A on k. Then there is a set S C k of 

cardinality k that is free with respect to F. 

Proof. In view of Lemma 19.1, we may assume that k is singular. Let r 

be a regular cardinal that is smaller than k but greater than cf(«) and A, 

e-g-, 

r = ^max (A,cf(/?))^ . 

Let 

{«« : a < cf(«)} 

be an increasing sequence of cardinals such that k0 > r, na is regular for 
a < cf(«), and 

«= X] 
a<cf(«) 

We define the sequence 

{Sa : a < cf(/c)} C P(k) 
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of sets by transfinite recursion on a as follows. Assume that a < cf(/c) and 

that, for each (3 < a, we have already defined the sets Sp, and we have also 

defined a partition 

Sd = : V < r> 
of these sets into pairwise disjoint sets such that 

\Sp\ = \Sp)V\ = Kp for P < a and v < r. 

Put 

Za ~ : P < «} U (J{F(2/) '■ V € Sp A p < a}; 

then \Za\ < £/3<a ' A < Pkk 

Xa C K \ Za 

with |Aa| = kq. According to Lemma 19.1, there is a set 

Ya C Xa with |ya| = |xa| 

that is free with respect to F. For each y &Ya, put 

v(y) = sup{j/ < t : SP < a (SptU fl F(y) / 0)}. 

Noting that we have |F(y)| < A, the sets SptV are pairwise disjoint for p < a 

and v < r, and r is regular, we can conclude that 

v(v) < t. 

As Ka > r and Ka is regular, there is a set SQ C Ya and an ordinal va < r 

such that 
| Sa | = Ka 

and 
ua = u(y) for y e Sa- 

Let 
Sa = {Sa,v '• V < t) 

be an arbitrary partition of Sa into pairwise disjoint sets such that 

This completes 

Let 

|Sa,„| = for V < T. 

the definition of the sequence :«<«}• 

v = sup{Va + 1: oi < cf(«)}. 
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As r is regular and cf(tt) < r, we have u < r. Put 

S = : a < cf(K)l- 

Then 

151 = Ka = k- 

a< cf(fc) 

We claim that S is a free set with respect to F. Indeed, let x,y G S, x € SajU, 

y G SptV, a < (3. 

If a — P, then x F{y) and y £ F(x), as SatU C Ya and Ya is free with 

respect to F. 

If a < (3, then y ^ F(x), since y G Xp, F(x) C Zp, and Xp fl Zp = 0. On 

the other hand, x £ F(y); indeed, we have up < u, and so 

F(y) n satV = 0 

in view of the choice of up. 

* * 

* 

Problems 

Definition. Let k, A, and r be cardinals and let 

F : [k]t [k]<x 

or 

F : [k]<t -> [k]<x. 

We call F a set mapping of type r or of type < r, respectively, and of order 
A on k if 

F(v) n v = 0 

for each V G D(i7’). The set S C k is said to be free with respect to F if for 

each V c S with V G 0(F) we have F(V) 0 5 = 0. 

The meaning of the term set mapping of type 1 will be ambiguous, since 

in addition to the description given in this definition, a set mapping in the 

ordinary sense, that is, in the sense it was introduced in Definition 19.1, will 

also be called a set mapping of type 1. Furthermore, a mapping 

F : [«]r -> k or F : [«;]<T k 

such that 

F(V) i V 
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for each V £ D (F) will also be called a set mapping of order 2. There is no 

reason that these ambiguities should lead to a confusion. 

1. Prove that if k, l < u and if F is a set mapping of type k and order l 

on u, then there exists an infinite subset of uj that is free with respect to /. 

2. * If F : X —> P(X) is a set mapping, and there is a k < uj such that 

each finite subset of X is the union of k sets that are free with respect to F, 

then X itself is the union of k sets free with respect to F. 

3. * Prove that if k < u and F : X•—» P(X) is a set mapping of order k 

on the set X, then X is the union of at most 2k sets free with respect to F. 

4. * Let F be a set mapping defined on the set R of real numbers. Prove 

that if F(x) is a nowhere dense set for each x £ R, then for each a < 

there is a set of order type a that is free with respect to F. 

5. * Assume that 2H° = Hi. Prove that then there exists a set mapping F 

defined on the set R of real numbers such that for each ieR the elements 

of F(x) form a convergent u/-sequence tending to x, and there is no subset of 

cardinality Hi of R that is free with respect to F. (Hence, no free subset of 

cardinality Hi needs to exist under the assumptions of Problem 4 if 2H° = Hi.) 

6. * Prove the following generalization of Theorem 19.2: Given the as¬ 

sumptions of Theorem 19.2, let /t < k and let Xg C k for £ < // be sets of 

cardinality k. Then there is a set S' free with respect to F such that 

|SnAf| = k whenever £ < //. 

7. * Prove that for each k < uj there is a set mapping F of type k + 1 and 

order u>\ on u)k+1 such that there is no set of k + 2 elements that is free with 

respect to F. Show that there is no such set mapping on u>k+2- 

8. * Prove that for each k > u there is a set mapping of type u and of 

order 2 with respect to which there is no infinite free set. 

9. * Prove that if k > u and F is a set mapping of type 2 and of order k 

on (2*)+, then there is a set of cardinality k+ that is free with respect to F. 

10. * Prove that if 2N° = Hi, then there is a set mapping F of type 2 and 

of order 2 on u>\ with respect to which there is no free set of cardinality uq. 

11. Prove that if k > u is a real-valued measurable cardinal and /it is a 

measure witnessing this, and T C P(«) is such that \F\ — A = cf(A) > u for 

some X < k and //(F) > 0 for each F £ T, then there is a set T' C T with 

\T'\ = A such that D-F / 0. 
12. * Prove that if k > uj is a real-valued measurable cardinal and F is a 

set mapping of type < uj and order A on k for some A < k, then there is a 

set of cardinality k that is free with respect to F. 
13. * Prove that if k is real-valued measurable, then k has the tree prop¬ 

erty. 



20. THE SQUARE-BRACKET 

SYMBOL. STRENGTHENINGS OF 

THE RAMSEY COUNTEREXAMPLES 

In Theorem 14.3, we showed that Ramsey’s Theorem cannot be generalized 

by writing an arbitrary infinite cardinal k in place of u;. According to the 

former theorem, we have 

2N° -h (*i)l 

It occurred to P. Erdos that this counterexample may possibly be further 

strengthened by dividing the pairs of 2N° into, say, three classes in such 

a way that every set of cardinality Hi should include a pair from each of 

the three classes. The questions raised by pursuing this idea have not been 

completely resolved even today. Before we can outline the present state of 

knowledge in this area, we would like to introduce some new concepts. 

Definition 20.1. Let X be a cardinal, 7 > 2, and let f : [A]x —>7 be 

a X-partition of A with 7 colors. We say that the set B C A is completely 

inhomogeneous with respect to / if f“[B]x = 7. 

Definition 20.2. Given cardinals k, X, and p, and an ordinal 7, the 
symbol 

k -> [p\x 

indicates that the following assertion holds: 

For an arbitrary set X of cardinality k and for an arbitrary partition f : 

[X]A —> 7, there is a set Y with | Y| = p that is not completely inhomogeneous 
with respect to f. 

The negation of this assertion is denoted as 

« A M7, 

in the spirit of Definition 14.2. 

We remark that, similarly to the way it was done in Definition 14.2, the 

symbol k -> [«t,]£<7 can also be introduced. We will, however, not discuss 
this latter symbol here. 
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Similarly as before, this symbol describes an assertion of some relevance 

only in the case when A > 2, 7 > 2, and g > A. Furthermore, the following 

assertions are straightforward: 

K t fa) 2 '' '' ^ ^ M2) 

k -> fa]* =► « -y My if 7 < V- 

For this reason, for every negative partition relation 

k fa fa)% 

we may study the question of which of its strengthenings 

«fa Mi (7 > 2) 

hold. In this section, we will only study questions of the form 2K fa [«+]7. 

Some information about results of different forms will be contained in the 

problems below. 

Theorem 20.1. If k > u and 2K = «+, then 

K+ A [«+E+- 

Proof. Let [k+],‘ = (Aa : a < k} be a wellordering of type k+ of the set 

[k+]k] such a wellordering exists according to the assumptions on k. Write 

Sa = {A/3 : p < a A Ap C a}. 

For each a < n+ and /? < a, we define /({a,/?}) such that 

(1) For each S < ot and for each 7 < a with A7 € Sa, there is a /3 G A7 

such that f({a,/3}) = 5. 

This is possible according to Problem 1 b) in Section 10, as Sa C [k+]k 

and |Sa| < k. Let X C with |X| = and S < k be arbitrary. Pick 

7 < K+ such that A7 C X. Choose a E X such that max(7,5) < a and 

C a. Then we have f({a,/3}) = S for some (3 E A^ according to (1), and 

so 5Ef“[X]2. 

* * 

* 

We will establish a strengthening of this result. The frequently reusable 

method of the proof of this strengthening, namely, the choice of the auxiliary 

functions g E is due to W. Sierpinski. 
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Theorem 20.2. Assume k > u> and 2K = k+ . Then there is a 2-partition 

f : [k+]2 -* «+ with k+ colors such that for each X C k+ with |X| = k+ 

and for each Y C X with |y| = «, there is ay € T for which 

{/({«> 2/}) : a e A} = k+. 

Proof. Let {gp : /3 < k+} be a wellordering of type k+ of the set of all 

functions of cardinality k with domains and ranges that are subsets of k+ - 

such a wellordering exists according to the assumptions on k - and put 

Sa = {gp : (3 < k A D(^) C a}. 

For each a < k+ and (3 < a, define /({a, (3}) such that 

(2) 6 SQ 3(3 e D(^) /({a, /?}) = g^f3). 

Again, this is possible according to Problem 1 b) in Section 10. Assume we 

are given X C k+ with |AT| = k+ and Y C X with |T| = k. Proceeding via 

reductio ad absurdum, assume that the assertion to be proved is false, and 
for each (3 eY, define g : Y —> as 

g((3) = min{6 < k+ : Vo e X \ {(3 + 1) f({a, (3)) ± 5}. 

Then g — g^ for some 7 < k+. Let a E X be such that a > 7 and 

D(<?7) C a. Then we have /({a, (3}) = g{(3) for some (3 € Y according to (2); 
this contradicts the definition of g. 

* * 

* 

As a surprising turn of events, it was noticed only much later, in 1986, 

that the assertion of Theorem 20.1 can be established for many cardinals k 

even without the assumption 2K = k+ (see [To]): 

Todorcevic’s Theorem 20.3. If k = cf(«;) > u, then 

*+ -h [«+K+- 

In what follows we are going to present the method S. Todorcevic invented 

in order to establish this result, or, rather, we will present a generalization 

of this method developed by S. Shelah. Then we will establish Theorem 20.4 

below, and Theorem 20.3 will be an immediate consequence of this. To 

begin with, we will need a lemma that is a consequence of a basic result 

about elementary chains - this latter being a general tool of model theory 

and mathematical logic. We will announce this lemma only in the special 

case needed for the proof of Theorem 20.3, and we will give a direct proof of 
this special case. 
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Lemma 20.1. Let A = cf(A) > u>, and for each e G <UJX Un<u/ n^> 

let RL{x, y) be a two-place relation on A \ e, where e = maxR(e) 4- 1. Then 

there is a X-large set D C X such that the following assertion holds: 

If we have <5o,6i G D, e G <wtfo, e < <5o < ao < <5i < ctx < X, and 

Re(ao,cti), then 

V£o < (3t7q : Co < Vo < <fo) V£i < <S0 (^Vi ■ €i<m< So) RJdlo, »7i)- 

Proof. It is sufficient to establish the result for a single relation R(x,y). 

Indeed, if for each e there is a set that satisfies the requirements for the 

single relation R±(x,y), then 

D = {6 G Pi{£>e : e G <u,<5) : 6 < A} 

is a A-large set that satisfies the requirements of the lemma. 

For each X C A let 

j X' if sup X = A, 

\ A \ (supX 4- 1) otherwise; 

recah that here X' denotes the set of limit points of X. Let 

Ra = {/? < A : R(a, /?)}, 

L»0 = A Ren R — {« < A : supRa = A}, 
a<A 

Di=R, and D = DQC\DX. 

Let <S0 < «o < ^1 < on < A, 60A e D, and assume that i2(a0>«i) holds. 
Then Sx G D0 implies that sup Rao = A, and soa0 G R] hence 80 G Dx 

implies that sup(R n So) = S0. If a G R n 50, then 60 is a limit point of the 

set Ra C\ S0. This proves the assertion. 

* * 

* 

Returning to our preparations for the proof of Theorem 20.3, fix the car¬ 

dinal A = cf(A) > u>, and choose a set C = {Ca : a < X) satisfying the 

following requirements: 

(1) C a, Ca is cofinal and closed in a, and 0 G Ca. 

Later further requirements will be imposed upon C, but, for now, the defini¬ 

tions below depend only on Condition (1). 
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Definition 20.3. 1. Let a < P < A. Define an ordinal n(a,/3) < u> 

and a decreasing sequence of ordinals pn(a,/3) for n < n(a,/3) as follows: 

p0(a,/3) = (3. If pn(a,(3) — a, then let n = n(a,/3). If pn(a,P) > a, then let 

pn+1(a,0) = min(CPn{ctil3) \ a). 

Then we have a < pn+1(ct, (3) < pn(ct, (3) in view of (1), and so our definition 

is sound. 

2. For n < n{a, /3), define p~ (a, /?) as follows: Pq (a, /3) = 0, and ifn + 1 < 

n(a,(3), then put 

Pn+1(<*> P) = sup(C'pji(a>/3) n a). 

Observe that we have p~(a,(3) < a for n < n(a,/3). 

Following Todorcevic, the sequence 

P(<*,0) = (Pn(oc, (3) : n < n(a,/3)) 

is called the C-walk from f3 to a. The sequence of the ordinals p~ (a, (3) plays 
an important role in the proof. For this reason, we will introduce a notation 
for this sequence. 

Definition 20.4. For a < (3 < A and n < n(a, (3), put 

«»(“>/?) = (Pm(a,P) '■ m < n) 

and 

en(a, p) - max{p“ (a, p) : m < n} + 1 

Lemma 20.2. If a < p < X, n < n(a,0), and en(cx,p) < a' < a 

then pm(a',P) = pm(a,P) and p^(a',P) = P) for m < n, and so 

£n(a',P) = en(a,P). 

Proof. The first claim follows from Definition 20.3 by induction on m, and 
the second claim is a straightforward consequence of the first one. 

Definition 20.5. We call the set S C A a nonreflecting subset of A if 

S C Lim(A) and for every a £ Lim(A), we have S Ha <£ Stat(a). If S is also 

stationary in A, then we call it a nonreflecting stationary subset of A. 

This is the one place in the book where the concept of a-stationary set 
is useful even if cf(a) = u>. As we remarked after Definition 12.9 above, a 
subset of a is a-stationary in this case if and only if its complement is not 
cofinal in a. 
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Lemma 20.3. If k = cf(fc) > u, then 

S = {a < k+ : cf(ce) = k} 

is a nonreSecting stationary subset of A = k+. 

Proof. According to Problem 1 of Section 12, S is A-stationary. For each 

a G Lim(A), let Ba C a be a set cofinal in a consisting of successor ordinals 

such that typei?a(<) < k. Let 

Ca = {Ba U B'a) n a. 

Then we have Ca fl S = 0, since each limit element of Ca has cofinality less 

than n. 

* * 

* 

Theorem 20.4 (S. Todorcevic; S. Shelah). Assume A = cf(A) > u. If X 

has a nonreflecting stationary subset, then 

^ -fr Mv 

We would like to point out that Theorem 20.3 follows from Theorem 20.4 

in view of Lemma 20.3. 

Proof of Theorem 20.f. Let S' be a nonreflecting stationary subset of A. 

It is sufficient to establish the following assertion: 

(*) There is a function g : [A]2 —> A such that for each X C A with 

| A | = A we have 
S\s“[X]2 i Stat(A). 

The assertion of the theorem can be derived from (*) as follows. According 

to Solovay’s Theorem 12.5, there is a decomposition S = U$<a of & into 

pairwise disjoint A-stationary sets S^. Define the partition / : [A]2 —> A by 

the stipulation 

/({«»/?}) = £ 

Then / verifies the assertion of the theorem, since for every X G [A]A and 

every £ < A, we have <?“[A]2 fl ± 0. 
In what follows we will be concerned with establishing Assertion (*). Ac¬ 

cording to our assumptions on S, the set C described in (1) can be chosen 

such that the following condition is also satisfied: 

(2) Ca n S = 0 if a 6 Lim(A), and Ca = {0,a} if a = P + 1 is a 

successor ordinal. 

Next we will give the definition of the function g that will witness Asser¬ 

tion (*). 
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(3) For every a and (3 with a < (3 < A put ^({a, P}) = Pn({ot,/3}) if n 

is the unique integer satisfying the followign conditions: 

n<n(a,/3), e„(a,^) = e(= maxR(e) + l), en(a, p) = en(e, P), 

but Pn+i(a> P) / Pn+i(e>P)- 

Let ^({a,/?}) = 0 in every other case. 

Now let X c A with \X\ = A be given. For every e 6 <WA, we define a 

relation with the following stipulation: 

(4) For every £ and 77 with £ < 77 < A and for each e G <WA, put 77) 

if and only if f G 5, 77 G X, e = ^(£,77) for n = ti(£, 77), and 

e = maxR(e) 4- 1 < £. 

Let D = D(X) be a set consisting of limit ordinals and satisfying the 

requirements of Lemma 20.1 for the relations RL so defined. For the proof of 
Assertion (*) it is sufficient to show the following. 

(5) If S G S fl .D, then 5 = g({a, P}) for some a and P with a < p. 

Thus let 5 G S fl D. Choose ordinals Si > S with 5\ G D and P G X with 

P > Si, and put n = n(S, p) and e = en(6, P). We are going to show that 

(6) R,(S,/3) 

holds. 

To this end, we need to show only that e < S. As n(S, P) ~ n, the relation 

p~ (5, P) < 5 holds for i < n. Furthermore, since S G S and 

5 = Pn($,P) € CPn_^Sjp), 

the equation pn-i(S, P) = S 4- 1 follows in view of (2), and so p~(5,P) = 0, 
again in view of (2). Thus 

e = maxR(e) 4- 1 < S, 

as 8 is a limit ordinal. 

By Lemma 20.1, we can pick an ordinal S' with e < S' < 8 such that 

{7<^:Re(5',7)} 

is cofinal in 5. Next, we can choose an ordinal 7 with e < 7 < S and 7 g C$, 

and, finally, we can choose an a with 7 < a < S for which Rg(5',a) holds. 
We claim that 

(7) 0({a, P}) = $ and a,P<EX; 
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this is sufficient to establish Assertion (5). 

To establish this claim, note that Re(8\ ct) implies a € X and 

e = en(8',a) = en(8,0). 

According to Lemma 20.2 we have en(8\ ct) = en(e,a) and en(8, 0) = 

e^(a,0), and so en(e, a) = en(a,0). We have n < n(a,0), as a < S. On 

the other hand, pn(e, a) = pn(8', a) = S' (the latter equality holds in view of 

RL(8',a)), and so p“+1(e, a) < S', while we have 

Pn+i(a> P) = sup(Cs n a) > 7 >8' 

in view of the choice of 7; note that to justify the equality here we used the 

fact that pn(a,0) = pn(8,(3) = 8. 
Thus n = n(8,0) satisfies the requirements stipulated in (3) above; there¬ 

fore we have g({a,(3}) = pn(a,/3) = 5, and so (7) holds. This completes the 

proof of Theorem 20.4 

* * 

* 

The smallest cardinal for which Theorem 20.4 leaves the problem open 

whether the assumption 2K = is needed in Theorem 20.1 is It was 

first proved by S. Shelah that also holds in ZFC, and he 

generalized this result to a wide class of cardinals A. It is worth studying the 

paper [B, M] in connection with these results. 

In 1998, the status of Erdos’s original question is as follows. Elemen¬ 

tary examples involving forcing show that it is possible that 2N° = anything 

reasonable, but 2K° [Ni]^ holds. It was an open question whether it is 

consistent with ZFC that there is a cardinal k that is not excessively large 

such that k = 2H° and 2N° -» [Ni]§ holds. In [Sh; 3] Shelah showed that the 

answer is affirmative. In his model, however, 2N° is greater than ^2; thus, it 

is not known whether 

2No = N2 and 2No -7 [Ni]§ 

is consistent with ZFC. 

Problems 

1. Prove that if A C Mq+1 \ Mq+2, then A has a nonreflecting stationary 

subset. For the definition of Mahlo cardinals see Definitions 15.3-15.5. 

2. * Prove that for k > u>, we have 

« -fa [^o]2«o • 
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3. Prove that for n > u, there is a mapping Q : [«]w —> [[ft]1*']2*0 such that 

we have G(A) c [AY for each A G [«]w and Q(A) ft Q(B) = 0 for any two 

distinct A, B G [/c]u;. 

4. * Prove that for k > u, we have 

«fa [«]". 

5. * Prove that if 2**° is real-valued measurable, then 

2*o [2*0]^ 

holds. 

6.* Prove that 2N° fa [2K°]go. 



21. PROPERTIES OF THE POWER OPERATION. 

RESULTS ON THE SINGULAR CARDINAL PROBLEM 

In Section 11, we touched upon some independence results related to the 

Generalized Continuum Hypothesis. Using the concepts described in the 

Appendix, we will now formulate a very general independence result con¬ 

cerning this hypothesis. 

Easton’s Theorem 21.1. Let M be a countable transitive model of set 

theory (that is, ZFC) such that M (= GCH. Let f € M be a function such 

that 

M (={/ is a cardinal valued function defined 

on cardinals A (1) A (2)}, 

where 

(1) f(o) < /(r) whenever u < o < t; 

(2) cf f (r)>r for each t > u>. 

Then there is a transitive model N D M such that N f= ZFC, the cardinals 

and the cofinalities are the same in N as in M, and 

N |= Vr >u (r is regular ==> 2T = /(r)). 

W. B. Easton proved his theorem not long after P. J. Cohen’s discovery 

of the method of forcing. This theorem in effect says that it is not possible 

to prove a result stronger than Corollary 11.3 for 2T in the case when t is 

a regular cardinal. As a particular case of the theorem, it is, for example, 

possible that 2H° = Ni, 2Nl = K2)... 2N< = N6, but 2*B is “arbitrarily large.” 

After this theorem had been established, R. Solovay formulated the fol¬ 

lowing problem. 

The singular cardinal problem. 

a) Is it possible that for some singular cardinal X, we have 

(Vr : u < t < A)(2T = r+), but 2A > A+? 
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b) If X is a singular strong limit cardinal, is it then possible to give a bound 

in ZFC for 2X? 

Strong limit cardinals were defined after the proof of Corollary 10.5. Back 

in the early 1970s, M. Magidor proved that if we assume the consistency of 

the existence of a certain large cardinal that is “even larger than a measurable 

cardinal,” then one can prove the assertion 

Con(ZFCu{Vn < w2N" = Nn+i A 2K" = ^+2}). 

It was, however, not possible to generalize his method to arbitrary singular 

cardinals. As a great surprise to many mathematicians pursuing generaliza¬ 

tions of Magidor’s Theorem, J. Silver showed in 1974 that such a generaliza¬ 

tion is not possible, by establishing the following result. 

Silver’s Theorem 21.2. If 

X > cf(A) = k > u 

and 

{t < X : 2T = r+} € Stat(A) 

then 

2a = A+. 

This shows that the answer to Solovay’s Problem a) is negative if the 

cofinality of A is greater than u. Not much later, it turned out that the 

answer to b) is affirmative in certain circumstances. 

Galvin-Hajnal Theorem 21.3. If 

Ka = A > cf(A) = k > u 

is a strong limit cardinal then 

2k» = 2* < N(W„)+. 

Thus, for example, if NWl is a strong limit cardinal, then 2K"i < N(2*1)+. 

In the original proof of Theorem 21.2, Silver used model-theoretic meth¬ 

ods. Soon after the appearance of his proof, a number of people found a 

combinatorial proof of this theorem. In the remaining part of this section, 

we will give a proof of a common generalization of these two theorems given 

in Theorem 21.4. This proof uses a number of tools described in this book, 

and thus it gives a prominent illustration of the significance and strength of 
these tools. 

After the appearance of Silver’s result, R. B. Jensen proved that if 2A > A+ 

for some singular strong limit cardinal, then there is a model in which A is 

a measurable cardinal. The proof used methods from model theory, and so 
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its presentation is beyond the scope of this book. This result had a basic 

influence on the further development of the theory of large cardinals. The 

reader interested in these developments may consult A. Kanamori’s book 

[Ka]; we will not discuss these developments. We would, however, like to 

point out the significance of this result for the philosophy of mathematics. 

It shows that if one decides not to be concerned with measurable cardinals 

since “they are too large,” then one is not even able to investigate the possible 

values of 2K". 

The result of Magidor mentioned above shows that Silver’s Theorem does 

not remain valid for cardinals of cofinality u>. This made it even more sur¬ 

prising that in 1980 S. Shelah proved that the analogue of the Galvin-Hajnal 

Theorem remains valid for ; namely, he showed that if is a strong limit 

cardinal then 

2K" < N(2h0)+. 

This was the situation in 1983, when the first edition of this book was 

prepared. The result mentioned last above was soon improved by S. Shelah, 

who proved the following. 

Theorem (Shelah). For every limit ordinal a we have 

^t<a) < »(|«|«.))+- 

This theorem is a generalization of Theorem 21.3, but it does not imply 

Silver’s Theorem or Theorem 21.4 of Galvin and Hajnal. We will present the 

proof of this latter result in its original form. 
Shelah’s approach may be sketched as follows. Let a be a set of regular 

cardinals such that min a > |a|. Put 

pcf(a) = {cf( X A/U,<u) : U is an ultrafilter on the set a}; 
\£a 

here pcf stands for possible cofinalities. The cardinality of a cardinal power 

can be estimated by the cardinalities of certain sets of form pcf(o), and then 

the inequality |pcf(o)| < 2^ is proved. 
The following problem is unsolved at the time of this writing (1998). 

Problem (Shelah). Is it true that |pcf(a)| < |a|? 

If the answer to this question is affirmative then < (2K°)+ -NWl holds. 

This appears to be the strongest possible result, since, using large cardinal 

assumptions, Magidor and Shelah showed that for each ex < ui it is consistent 

with ZFC that 
2h° <KwA > Na 

holds. Through a detailed study of the operation pcf, Shelah also proved the 

following: 
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Theorem (Shelah). 

< K* • (2*°)+, 

«2; < nwb • (2Ni)+- 

Here the subscripts 4 and 5 are not misprints; they describe the best results 

known to date. A description of this new theory is beyond the scope of the 

present book. Shelah collected his results in this area in the book [Sh; 2]. 

Before studying this book, the reader interested in the area may consult the 

survey article [B, M], and even before that, Section 22 of the present book. 

In that section, we describe the proof that was presented by Shelah at the 

1980 ASL Summer Meeting in Patras, Greece. We expect that this proof can 

be followed with relative ease in the light of the material contained in this 

book, and the proof will be helpful for studying further results in this area. 

In the remaining part of the present section, k will denote a fixed regular 

cardinal greater than u, and /, g, h, k, l will denote functions in the class 

''On. We will use the symbols =, A, respectively, to abbreviate the 

symbols =yr, -<yr, 2<yr, introduced in Definition 16.3, whenever T stands for 

the filter C(k), usually called the club filter on k. If A e Stat(«) and T is 

the normal filter co(ns(«) + (k \ A)), then the corresponding symbols will 

be abbreviated as =a, -<a, ^a, respectively. We will use Assertions 1-5 of 
Lemma 16.2 without explicitly saying so. 

Definition 21.1. 1. Let f e KOn, T C KOn, A € Stat(k). We say that 

T is a system of almost disjoint transversals on / with respect to A, shortly 

T is an SADT for f on A if for each function g e T, we have 

9 ~^a f 

and for every g,h e T, the set 

A(g = h)=f {( e A: g($) = h(()} 

has cardinality less than k. If A = k, then we will say SADT instead of 
SADT on k. 

2- Ta(/) = sup{|.F| : T is an SADT for / on A}. We will write T(f) for 

3. T(f) = sup{T4(/) : A (E Stat(/c)}. 

4. n(/) = n?<j/(oi- 
The reason for the introduction of systems of almost disjoint transversals 

is explained by the following fundamental observation. 

Lemma 21.1. Let f € KOn. Define the function f £ KOn as follows: 

fit) = | X f(v) | for £ < k. 
v<i 
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Then 

Proof. Let 

{At : v < /(£)} 
be a wellordering of type /(£) of Xt,<£ f(v)- Write 

P = X /(0- 
i<K 

For each h e P, define the function by stipulating 

9h(0 = v h\£ = Al for £<k. 

Put 
P={gh:heP}. 

It is clear that g ~< f for h £ P. If ho, hi € P with ho ^ hi, then there is a 

£ < k such that h0(0 # hi(0> and so 9h0(v) ^ 9hi (v) whenever £ < r/ < k. 

Hence T is an SADT for F. As the correspondence h ■-* gn is clearly one-to- 

one, we have 

W) = \p\ = m < T(f). 

* * 

* 

The lemma thus enables us to estimate the product of k cardinals from 

above by some TA(f). While there seems to be no direct way to estimate 

products of cardinals in general, the following lemmas make it possible for 

us to estimate the cardinals TA(f). 
We start our discussion with a simple lemma: 

Lemma 21.2. If for f,g 

1/(01 < l$(0l>thea 

e "On, A e Stat(ft), and £ E A, we have 

TA(f)<TA(g). 

Proof. Let T be an SADT for / on A. For each f < k, choose a mapping 

(j)f such that 

/(0 A: c 9(0 
holds for each £ e A with some It is clear that if <f>(h)(0 = <^(M0) for 

each £ (E A, then 
Q = {(f>(h) :heF} 

is an SADT for g on A and \F\ = \G\. Hence 

TA(f)<TA(g). 

* * 

* 

The following definition of a technical nature allows us to obtain further 

estimates. 
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Definition 21.2. For each f 6 KOn, we define the rank ||/|| of the func¬ 

tion f by 

ll/ll =sup{||p|| + 1 :g -< /}. 

The definition is sound, since -< is well-founded on the class KOn; cf. 

Problem 2 of Section 16. 

We point out that ||/|| = 0 is true only if 

{£ < k : /(£) = 0} € Static). 

It is also easy to show by transfinite induction that for each v < k, we have 

ll/ll < v 4=4> {£ < k : /(£) < v] € Stat(/c). 

This observation will be generalized in Lemma 21.4. Before that, however, 

we summarize the basic facts about the rank operation. 

Lemma 21.3. 

1 -f*9=* ll/ll <NI- 
2 -fig =+ ll/ll <N|. 
3. If ||/|| = v, then for each /i < v there is a g < f such that ||^|| = /x. 

4. If f =g, then ||/|| = ||^||. 

5. If /(£) > 0 for each £ < k, then 

Ill/ll! <!!(/)• 

Proof. Assertions 1 and 2 are clear from the definition. Note, however, 

that the converses of these assertions are not true. 

3. We prove the assertion by transfinite induction on v. Assume that the 
assertion is true for every g < u, and let 

v= ||/|| = sup{||s|| + 1 :g ■< /}. 

Let g < v. Then there is a g < f such that 

^ < \\g\\ = g! <v. 

If g = g', then there is nothing to prove. If g < g', then, by the induction 
hypothesis, there is an h < g such that 

as h -< g -< f, we have 

h< f. 

4. The assertion immediately follows from Assertion 2. 
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5. Assume ||/|| = v. In view of Assertion 3, for each p < v, we can choose 

an /m ^ / such that 

II/mII = /*• 
By possibly changing f^ to zero on a nonstationary set, in view of our as¬ 

sumption and Assertion 4, we may suppose that 

f„eX /(()■ 
€<k 

Clearly, ^ jy whenever ^ ^ /i'. Hence 

m=k/m : v < v)\ < nc/)- 
* * 

* 

As a generalization of the assertion described before Lemma 21.3, for each 

v < k+ we define the functions hv £ KOn. 

Definition 21.3. 1. Let 

{<7m : p < (f)} C reOn, (f> < k. 

The function g is said to be the diagonal supremum of the functions g^, 

H<<f>, if g(0 = sup{gp(£) : p < £}• 
2. For each v with 0 < v < , let 

{va:ot< cf(i/)} 

be a strictly increasing sequence of ordinals such that 

v = sup{i/a 4- 1 : a < cf(i/)}. 

3. Define the function hv for v < n+ by transfinite recursion on v: 

<«(MO = o), 
and for v > 0, let hv be the diagonal supremum of the system 

{Ka + 1 : a < cf(i/)} 

of functions. 

In this definition, g 4- 1 is the function such that 

(0+ !)(£) = $(£+!) for £<«• 

If v = p 4- 1 is a successor ordinal, then 

cf(i/) = 1, vq — p, 

hi/ — h[i 4* 1. 
and so 



250 II. Combinatorial set theory 

Lemma 21.4. 

1. 

and 

< k for £ < k and v < k+, 

|{£ < k : /im(£) > /ii/(0}| < K whenever n <v < k+. 

2. If v < k+, then ||MI = u and 

Vg (Ml < v <=*■ 3A € Stat(«) (g ^A K)). 

Proof. 1. The first assertion immediately follows from the definition of 

the diagonal supremum, and the second one can be proved by transfinite 
induction on v. 

2. The assertion is proved by transfinite induction on v. For u = 0, we 

have already verified the assertion. Assume that v > 0 and that the assertion 

holds for each g < v. Then, by Assertion 1 of Lemma 21.3 and the already 

proven Assertion 1 of the present lemma, we have 

|JMI > v. 

Assume that we have g <Ah for some A G Stat(«), and 

Ml > ”, 

contrary to what is claimed. By Assertion 3 of Lemma 21.3, there is a g' < g 
such that 

Mil = v- 
Then there is a set 

A' c A, A' G Stat(«), 

such that 

g\Ci < MO ^ all £ G A!. 

By the definition of diagonal supremum, for each f G A! there is an 

a(0 < i H cf(i/) 

such that 

g'(0 < Mo(0- 
By Fodor’s Theorem, there is a set 

Be A', B g Stat(«), 
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and an ordinal 

such that 

Hence 

o; < cf(i/) 

a(£) = a for £ E B. 

9' Ka, 
and so, by the induction hypothesis we have 

M <va<v. 

This is a contradiction. Thus, if g h„ holds for some set A E Stat(/c) 

then 

M\ < v- 
This also proves the assertion H/i^ || = v. 

We have yet to show that if 

g(0 < K(0) i Stat(«) 

then 

\\g\\ > v- 
Indeed, if the assumption of this assertion holds, then hu -< g, and so, by 

Assertion 1 of Lemma 21.3 we have 

IIM < llffll) that v < Ml 

* * 

* 

Lemma 21.5. Assume that the function f E KOn is nondecreasing, con¬ 

tinuous (i.e., /(0 = sup{/(r/) : 77 < £} holds for each limit ordinal), the 

values of f are cardinals, and /(0) > u>. If 

p=E /(i)“ 
t?</c 

then 
T(k) < p. 

Proof. It is clearly sufficient to prove that for each set A E Stat(«), we 

have 

ta(1)<p■ 
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Let T be an SADT for / on A. Given B C A with B £ Stat(/c) and rj < n, 

write 

Tb„ = {g 6 T : V? 6 B fa«) < /fa))}. 

As JF is an SADT for /, we have 

go\B ^ gx\B whenever jo.Si^ and <7o#£i. 

Hence 

< lfa|B : 9 e < /fa)“ < p. 
We claim that 

T = U^.i : B £ Stat(«) A rj < «}. 

Let g E T, and put 

A' = {£ £ A : £ is a limit ordinal A <?(£) < /(£)}. 

As <7 /, we have A! £ Stat(/«). We define the mapping on the set A! 

by stipulating 

0<?(£) = min{?7: g(£) < f(g)}. 

In view of the continuity of /, the function <f>g is regressive on A'. Hence 

there is a set B C A' with B £ Stat(/t) and an 77 < k such that 

<£»(£) = 9 for (eB. 

Then 

p(0 < f(v) for ^5, 
and so 

9 € 
This proves the claimed equality. Hence 

\F\ = | |J{.Fb,„ : B £ Stat(«) A 77 < /c} | < 2K ■ p = p. 

* * 

* 

Definition 21.4. For each cardinal k > u>, let k+oc be the ath successor 
of k, that is, if k = then 

K+a = ^+a. 

K + 1 
= K + 

In particular, 

k+0 = k and 
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Theorem 21.4 (F. Galvin-A. Hajnal). Let k > u be a regular cardinal. 

Assume that the values of g are infinite cardinals, and f,g G KOn. Let 

X = max(f(y),2'c). 

Then 

T(g+f) < A+Il/I>. 

Proof. Let h = g+f, that is, 

m = m+m 

for each £ < «, and put 

v — 

We prove the assertion by transfinite induction on v. Let T be an SADT 

for h. 

(I) v = 0. Put 

A = {( < IS : /({) = 0}. 

According to Lemma 21.4, we have 

A = Stat(/t). 

Then T is an SADT for g on A, and so 

\?\ <TA(S)<T(j)=f(9)+0. 

(II) Assume v > 0 and assume that the assertion is true for each ordinal 

g, < u. Then for each k £ T, we have 

{f ■ m < g(()+m] e C(K). 

Let 
0fc(£) = min{r7: |fc(£)| < g+T1} and £ < k, 

provided the minimum is meaningful and 0fc(£) = 0 otherwise (i.e., when the 

set after the min sign is empty). We then have (f>k -< / for each k 6 T, since 

{£<«:^fc(£)>/( £)}C 

{£ < k : fc(£) > /»(£)} u {£ < « : /(0 = 0} € ns(k), 

as ||/|| = i/ > 0. Thus ||(/)fc|| < v for every keF. 

Let 
^, = {*6^: M ==#*}• 
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Then, by what we just said, we have 

Taking into account that X+u > \v\, as A > u, it is sufficient to prove that 

\T^\ < A+**+1 < A+" 

for each [i<v. Assume now, on the contrary, that 

|^>| > A+M+2 

for some fj, < v. 

For an arbitrary k G consider the set 

%(k) = {l E Fp : l -< k}. 

We claim that 

\U{k)\ < A+*\ 

Indeed, H(k) is an SADT for k, and so 

\H{k)\<T{k). 

By Lemma 21.2 

T(k) < Tfa++*) 

holds. By the induction hypothesis, we however have 

T(g+*k) < A+M. 

This proves our claim. 

Thus % is a set mapping of order A+/,+1 on the set In view of our 

assumption on the cardinality of by Theorem 19.2 there exists a set 

S C Tp of cardinality A+M+2 that is free with respect to H. As 

a+ah-2 > (2")+, 

we can pick a subset 

and a wellordering 

S' C S, | S'| = (2't)+, 

S' = {ka:a< (2*)+}. 

Define a 2-partition 4> of (2*)+ in k colors as follows: 
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Given a < (5 < (2K)+, put 

<t>({a,P}) = nnn{£ : ka(£) > kp((,)}. 

This definition is sound; indeed, S is free with respect to 7/, and so ka £ 

Thus 

{£ < k : fca(0 > ^(f)} € Stat(«}; 

on the other hand, the set 

{£ < « : ka{0 = %(£)} 

has cardinality less than k, and so 

{£ < k: ka(£) > kp(£)} ± 0. 

By Corollary 14.1 to the Erdos-Rado Theorem, (2K)+ —* (u/)* holds, and 

so there is a sequence 

{an : n < u}, a0 < • • • < an < • • • < (2K)+, 

and an ordinal £ < k such that 

{an :n<u>} 

is homogeneous in color £ with respect to </>. We then have 

kan (0 > kan+1 (£) 

for each n < u>; this is a contradiction. 

* * 

* 

Corollary 21.1. Let 

A > cf(A) = K > U, V < K. 

Assume that 
{r < A : 2T < r+l/} 6 Stat(A), 

where r runs over cardinals. Then 

2a < A+". 

Silver’s Theorem 21.2 given above is the special case of this for u = 1. 
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Proof. Let 

MO : f < «} 
be a strictly increasing continuous sequence of cardinals such that 

#(0) > k and A = sup MO : £ < «}. 

Then the set MO : £ < «} is a A-club, and so 

{£ < n 29^ < g(0+u} G Stat(«). 

We will prove the stronger assertion that if 

{£ < k : 29® < g{0+MO} G Stat(w) 

for some v < k+, then 2A < A+". We have 

2A = 29^\ 

29(v) < 2»(0-« = 2»«) for £ < «. 

r)<£ 

Thus, by Lemmas 21.1 and 21.2, we have 

2a = JJ(25) < T{29) < T(g+h•'). 

By Theorem 21.4, we have 

T(g+hv) < max(T(0,2's)+IIM. 

Furthermore, by Lemma 21.5, we have 

f(g) < J2 tk < E S a, 
r<A r<A 

since A is a strong limit cardinal in view of Assertion 1 of Lemma 21.4, 
according to the assumption 

{£ < « : 29^) < 0(£)+MO} 6 Stat(rc) 

made above. Finally, we have \\hu\\ =uby Assertion 2 of Lemma 21.4. Thus 

2A < T(g+h0 < A+I/. 
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* * 

* 

Corollary 21.2. If 

A = Ka > cf(A) — K > U! 

and X is a strong limit cardinal then 

2X < N(|a|«)+. 

Proof. Let 

{A5 : f < «} 

be a nondecreasing continuous sequence of cardinals such that 

A0 > « and 

£<K 

Then 
2a = A? = fj 2A<. 

Noting that A was assumed to be strong limit, we have 

J 2At) < 2a« < A. 

v<£ 

Defining / by the equation 

2a« = u;+/(0 (f. < *), 

we have 

for each £ < «, since 

By Lemma 21.1, we have 

o < m < a, 

u < 2a« < Na = A. 

2a = []((2a« :£<«)) <T(a>+'), 

where a? denotes the constant function with value u> on k. By Theorem 21.4, 

we have 
T(co+f) < max(2't,T(w))+l1^11. 
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As A = is strong limit, we have 

2K = KP 

for some /3 < a; furthermore, 

f(w) <K = 2*- 

Hence 

T<"+/> * W 
By Assertion 5 of Lemma 21.3, we have 

lii/iil<n(/)^i«r 
and so 

P + ll/ll < (M“)+. 

* * 

* 

Corollary 21.2 is equivalent to Theorem 21.3. 

Problems 

1. Prove that if 

{u <ux: N*° < Hi/+1 A 2^ < } G Stat(wi), 

then 

wi+r 

2. * Prove that if 2K° = and 2Nl > N2) then there is no uq-complete 

ideal in P(u;i) that is ^-saturated in the sense of Definition 12.16 and that 
includes [u>i]<Wl. 

3. * Prove that if 2K° is a real-valued measurable cardinal then 



22. POWERS OF SINGULAR 

CARDINALS. SHELAH’S THEOREM 

In this section, T will always denote an ultrafilter consisting of subsets of u>, 

and /, g, h, k, l, will denote functions in the class wOn. 

Without further reference, we will use the fact that, for the properties 

■<?, =?, 

introduced in Definition 16.3, we have 

diT <=> -<T V = F, 

and is an ordering on the class of equivalence classes {f]p- 

Theorem 22.1 (S. Shelah). Ifis a strong limit cardinal, then 

2k" < N(2h0)+. 

As we already mentioned in the preceding section, our goal here is to 

establish S. Shelah’s Theorem. For the proof, we will need a number of 

lemmas. 

Definition 22.1. 1. If}? d— {[g\r '• 9 -<T /}• 

2. cfjr(/) -<?)). 

3. f <g <=> Vn € u>(f(n) < g{n)). 

4. f 9 Vn € u>(/(n) < g(n)). 

5. V(f) = Xn<« f(n) = {ge“On:g^ /}. 
6. The system H C V(f) is called a cover of f if it is cofinal in V(f) with 

respect to the partial ordering, that is, if 

VgeV(f)3hen(g^h). 
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Lemma 22.1. If X > 2H° is a regular cardinal, and 

{fa : a < A} £ “On 

is strictly increasing in the ordering -<?, then there is a function 

f £ “On 

such that [f]jr is the least upper bound of the set {[fa: a < A}. 

We will use the notation 

sup{/a : a < A} 
T 

for this least upper bound. 

Proof. Let 

= {g : Va < A (fa -<? 5)}. 

We claim that there is a set £ C 1C such that 

|£| < 2n° and Vg £ lC3h £ C{h g\, 

we may express the latter relation here by saying that £ is downward cofinal 

in the set of upper bounds 1C. Assume, on the contrary, that there is no such 
a set C. Define the sequence 

{gv‘.v< (2No)+} c K 

by transfinite recursion as follows: Let g0 6 1C be arbitrary, and if the se¬ 

quence {g^ : p <v) has already been defined for some v < (2N°)+, then let 
gu € 1C be a function such that 

9u -<t g» 

for each g < v, such a gv exists by the assumption made above. Then, 

in exactly the same way as in the proof of Theorem 21.4, we arrive at a 

contradiction by using the particular case (2N°)+ -> (u;)£ of the Erdos- 
Rado Theorem. 

In fact, we want to show that the set C can even be chosen as a one- 

element set. To this end, we may assume that there is an element g in the 
set £ just described such that 

Va < A (fa< g)• 

Let 

C = {^(ra) : n < u A g € £}. 
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Then 

\C\ < \UC| < 2No, 

as |Cl < £. For each a < A, define the function /* 6 WC by putting 

/*(n) = min(C \ fa(n)) for each n < u. 

Then 

fa±f'a 

for each a < A. By our assumption that A > 2N° is regular, there is an 

/ € WC and an L C A such that 

|L| = A 

and 
/* = / for each a E L. 

We claim that this / satisfies the requirements of the theorem. Indeed, 

for each (3 < A, there is an a 6 I with ft < a, and so 

fp fa — fa = /• 

Thus [f]jr is an upper bound, i.e., f E K,. Assuming that [f]jr is not the 

least upper boimd, there is an h E K, with h f and a g E C with g h, 

i.e., there is a g E C with 

9 -<T /• 

As g EUC and g is an upper bound, 

fa di fa -<? 9 

holds for each a < A, since by the definition of /*, we have 

fa(n) < g(n) => f*(n) < g{n). 

This is impossible for any a E L, and so we indeed have 

/ = sup{/a : a < A}. 
T 

* * 

* 

Lemma 22.2. For each f, we have 

cfjr(f) =cfjr(cfo/). 
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Proof. For each n < u>, let An c f(n) be a set that is cofinal in f{n) and 

for which 

type An(<) = cf(/(n)). 

If g -<? f, then 

X = {n: g(n) < f(n)} € T. 

For each n E X, there is an h(n) E An such that 

g(n) E h(n). 

For this h, we have 

9 h, 

and 

[h]r € X An/P d= {[h]r : {n <u : h(n) 6 An} E T\. 
n£u> 

Hence the set Xn<Eu< An/T is cofinal in the ordered set ([[/Jyr, -<?), and so 

their cofinalities are equal according to Theorem 10.10. On the other hand, 
the ordered set 

X An/T 

is clearly similar to the set 

<[cfOfjjr, 

* * 

* 

Lemma 22.3. If f = N o g (i.e., f(a) = Nfl(o) for any a e D(g)) and 
g e «(2No)+, 

cf.t{I) < ^(2Ko)+- 

Proof. Let 

P = ^(2ko)+- 

Assuming cfp(f) > p, there is sequence 

{/«:«< P} 

strictly increasing in -<? such that 

h /• 

Clearly, we have 

(2N°)+ < K(2«o)+- 
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Even 
(2No)+ < N(2k0)+ 

holds, since the subscript (2H°)+ on the right-hand side is a limit ordinal. 
Write 

r = {7 < (2Ko)+ : (2No)+ < K7+1}. 

Then, by the inequality just stated, we have 

|r| = (2No)+. 

For each 7 e T, let 
P = sup{/c : £ < ^7+1}- 

This definition is sound in view of Lemma 22.1, as 

of(S7+1) = N7+1 > (2k»)+ for 7 6 T. 

We have p fn f, and so P -<r f, for each 7 e T. It is clear that 
7 + 1 

cf^(/7) = N7+1 for 7 er, 

since 

{[fs]r : 4 < *7+1) 

is cofinal in ([[/7J;f, -<?)■ Thus we certainly have 

cf^r(/7) / cf^r(/<5) whenever 7,5 6 T and 7 7^ <5. 

By Lemma 22.2, we have 

cf^(/7) = cf^(cfo/7); 

here we may assume that 

Cfo/7 c x ({0,1} u {K : V < g(n)}). 
n<ui 

The cardinality of the set on the right-hand side is at most 

nw«)+2i<2»«. 

n< u> 

This is a contradiction, since we have 

|r| = (2k°)+, 

as we saw above. 

* * 

* 

The next lemma is the first major step leading to the proof of the mam 

result. 
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Lemma 22.4. If 

f = Kog and yeu'(2*°) + , 

then there is a cover P C V(f) of f such that 

|ft|<N(2K0)+-22No. 

Proof. For an arbitrary ultrafilter T £ P(u;), let P? be a set such that 

the set 

{[/]jf : / £ Pt)i 

is cofinal in 

holds, and we have 

(I/l-F, -<?)■> 

[Hf\ < H(2«o)+ 

9 -< f 

for every g e P?. Such a set Pjr exists according to Lemma 22.3. Let 

P' = \J{Hr : T C P(w) A IF is an ultrafilter}, 

and put 

P = {max U" : P" £ [P']<u> ,P" # 0}. 

Here max P" is the fvmction k such that 

k(n) = max{<7(n) : g € P"}. 

Then 

\H\ = max(|'H/|, u>) < K(2«0)+ ■ 22*°. 

We claim that P is a cover of f. Assume, on the contrary, that, for some 
h -< /, none of the elements of the set 

D = {[g < h] : g eP} 

are empty, where 

\g <h\ = {n < u> : g(n) < 

the set [h < g], to be used below, can be defined analogously. As, for each 

P" £ ['H]<u, we have max P" eP, and, further, 

< h] : g £ P"} = [max P" < h], 
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the set system D has the Finite Intersection Property. Let T C P(u>) be an 

ultrafilter that includes D. Then 

uT c n' c n, 

and by the choice of Hp there is a g G H such that 

[h <g]eX. 

This is a contradiction, since [g < h] 6 D C T holds. 

* * 

* 

Lemma 22.5. Let 

a = (2N°)+. 

For each 7 < <7+, there is a set system 

such that 

and 

Ay C [N7]ct 

I Ay | < n7 • r+ 

VA e [N7]CT+3A e Ay {Ac X). 

Proof. We proceed by transfinite induction on 7. The assertion is obvious 

if N7 < o+, since then 

[N7]*+ = 0 for K7 < (7+ 

and 

|[M7]a+| = ((7+)<t+ = 2CT+ for H7 = (j+. 

Assume therefore that 

<r+ < N7 < Ka+ 

and, further, that the assertion is true for every 6 < 7 replacing 7. We 

distinguish two cases. 

(I) 7 = 5 + 1. 

(II) 7 is a limit ordinal. 
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(I) For each £ < we have 

|£| < 

and so there is an 

such that 

Put 

Then 

and for each 

A's c[£]ff+ with \A'C\ <N*-2aH 

VX e [£]<T+3A e^(AcI). 

Ay = l^J{^ : £ < ^<5+l}- 

|Ay|<^-2"+-K(5+1 = 2^.^7, 

* e [*5+1^’ 

there is a £ < Nj+1 such that 

* € R] , 

since 

cf(^+1) = ^+1 >^+- <5+1' ‘ <5+1 

Hence Ay satisfies the requirements. 

(II) Let 

As c [N5]"+ 

be a set system satisfying the requirements for each 6 < 7, and put 

Then 

Let 

•+ = IJi-4* : < T>- 

1+1 < (X>) -F+ <R, -2"+. 
<5<7 

X e [R,r+. 
As 7 is a limit ordinal, we have 

*r = IK*** =15 < T} 
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and 

X = (J{XnK* :5<7}. 

As cr+ is a regular cardinal and 7 < a+, we have 

|xnNa| = <7+ 

for some 5 < 7. In this case, however, there is an A C As such that 

A C X n Kg c X 

holds, and so Ay satisfies the requirements of the theorem. 

* * 

* 

We now turn to a detailed study of the set In what follows, we assume 

that 2N° < and so 

a+ = (2No)++ = Nno 

for some no < u> (here k++ abbreviates («+)+). Put 

S — Sn = Nfjg-i-tt-)-! \ l^no+n fbr Tl < U). 

Then = su{jn<u,sn is a partition of into pairwise disjoint sets. Put 

f = Kog, 

where g{n) = n0 + n + 1. Then, by Lemma 22.4, there is a cover K of / such 

that 

\n\ =’r < K„ 
,2Ko 

Let 

H = {fa ■ a < r} 

be a wellordering of order type r of U. By Lemma 22.5, we may pick a set 

system 

A C [r]ff+, \A\<T-r*, 

such that for each X C [T]a+, there is a set A C A with Ac. X. 

For each Y cNw, define the function gY C wOn by stipulating 

gY(n) = sup Sn n Y for n < u. 

Then we have gY 4- 1 -< / for Y C [HCu)]cr , since 

f(n) = Nn<>+n+i > <r+. 
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For each £ < let 0^ be a function such that 

£ If I* 

The set Y C is said to be (f)-closed if S C Y and, for each £,77 € Y, we 

have <j)£(r/) 6 F whenever 77 < £, and, further, we have 

^(M)cy 
whenever 77 < |£|. 

As we saw earlier, several times, in similar situations, for each f C Ku 

there is a smallest set F that is 0-closed; furthermore, we have |F| = |F| 

if |F| > <7+ (cf., e.g., the proof of the existence of transitive closure in the 

proof of Theorem A7.2). F will be called the 0-closure of Y. 

The key to the rest of the proof is the following definition. 

Definition 22.2. We call the set B 6 neat if it satisfies the fol¬ 

lowing three conditions: 

1. B is <f)-closed. 

2. There is a set X G [r]er+ with type A(<) = cr+ such that 

{/a : « G X} 

is a sequence that is increasing in the partial ordering -< and, for each n <u, 

the set 

lfa(n) : a G Xj C S„ (IB 

is cofinal in gs{n). 

3. If n < uj, then SnC\B includes a subset that is club in gB{r1). 

The set of neat sets will be denoted by B. 

Cofinality Lemma 22.6. For each Y G [HW]CT+, there is a neat set B G B 
such that Y C B. 

Consequently, 

= IK]'+| < 2’+• |s|. 

Proof. Define the sequence 

{Bv : v < a+) C P(NW) 

of sets and the sequence 

{au : v < <r+} C t 

of ordinals by transfinite recursion as follows. Let v < <r+ and assume that 

the sets BM have been defined for p < v such that 
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Let 

Then 

B'v = [J U 5 U F U {u;n : n < u>}. 
pO 

Put 

olv = min{o! < r : gB>v + 1 ^ fa}- 

The definition of au is sound, as H is a cover of / and we have gB'v 4-1 -< f 

in view of \B'V\ — cr+ (cf. the inequality gy + l < f mentioned at the point 

the function gy was defined above). Let 

^ = ^UR(jB;)UR(/J 

and _ 

Bv = 5", 

where the tilde on the right-hand side indicates the (/►-closure of B" described 

above. Then 

\BV\ = \B"\ — \B'V\ + u = a+. 

This completes the definition of the sequence {B„ : u < <r+}. Write 

B= |J B„. 

v<a+ 

It is clear that Y C B and \B\ = a+. We are going to show that B is neat. 

Indeed, B is (/(-closed, since it is a nondecreasing union of (/(-closed sets. Put 

X' = [ctu : v < <r+}. 

By the Erdos-Dushnik-Miller Theorem 14.6, there is a set X C X' with 

\X\ = <7+ such that 

av < av> whenever u < v' and au,a'„GX. 

Thus {fa : a 6 X} is increasing in the ordering -<, as 

far -< fa„ whenever \i < v. 

Given n < u and x e B n Sn, we have x € B'v for some v < <r+; thus 

X < fav(jf) <' ^no+n+l’ 

and so {/0„(n) : a„ 6 X} is a cofinal subset of B D Sn. 
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Finally, the set {gB'„ • v < 0"+} is a subset of B Pi Sn that is a club in 

9b(ti). 

if if 

* 

First Counting Lemma 22.7. If B0 and Bi are neat sets and gs0 — 

gs1, then B0 = Bx. Thus, writingC — {gs : B G B}, we have \B\ = \C\. 

Proof. It is sufficient to prove that 

Bq n uim, = B\ n uim 

holds for each m < u. We prove this by induction. If m = no, then 

B0 n uno = B i n uno = S. 

Assume that m = n0 + n + 1 and the assertion is true for uno+n. Let 

g G B0 D u>m. Then 

V < 9b0(m) = 

to see this, observe that Condition 2 in Definition 22.2 implicitly says that 

9b0 (m) / 0. By Condition 3 of neat sets, there is an rj < £ < ) such 

that £ G I?o C Bi, since, in view of cf{gB0{jn)) — cr+ > u, the intersection 

of the two closed unbounded sets whose existence is asserted by Condition 3 

in Definition 22.2 of the neat sets Bo and Bx with m replacing n is a closed 

unbounded set. We have G Bq in view of the properties of neat sets. 
By the choice of 

Mv) < l£l — wn0+n 

holds, and so 

Mv) ^ Bx 

by the induction hypothesis. Then 

M = <t> C Bu 

as Bx is also (^-closed. Thus Bq D u>m C Bx fl um. The reverse inclusion 

follows the same way, completing the proof. 

* * 

* 

Second Counting Lemma 22.8. 

|C| < Ml. 
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Proof. Let B be a neat set, let X e [r]CT+ be a set satisfying Condition 2 

of being a neat set, and let $(B) = A for some set A C A with Ac X. 

Then, for each n < u, 

gB(n) = sup{fa(n) : a e A} 

holds, since A is a subset of cardinality a+ of the set X of order type a+. 

Thus, if Bo and B\ are neat sets with $(Bq) = ®(Bi), then 

9b0 = gBx • 

* if 

* 

Putting Lemmas 22.6, 22.7, and 22.8 together, we obtain that 

K+ < 2<T+ • \B\ = 2a+ ‘ \C\ < 2a+ • \A\ <2a+ -t< 2CT+ • K- 

Thus < 2a • In the course of the proof we used only the assumption 

2n° < K- 

The conclusion is, however, true even without this assumption, since if < 

2k°, then 
= 2Ho°+ =2*+ 

We have thus proved the following. 

Theorem 22.2 (S. Shelah). 

K+<r+-K, 

where a — (2K°)+. 

If is a strong limit cardinal, then 

2n" = 2S"<*K" = Yl 2Nn < < ^(2«o)+. 
n<ui 

Equality here cannot hold, since 

cf(2N") > K 

by Corollary 11.3 to Konig’s Theorem, but 

cf(N(2«o)+) = (2Ko)+ < 

Hence, in this case we have 
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Section 12 

1. Let B G C(k). By transfinite recursion, one can pick a strictly increas¬ 

ing sequence {a„ : v < A} C B with supfc*^ : v < A} G 

2. Use the idea of Problem 1. 

3. Assertions a) and c) can be obtained by refining the proofs in the text. 

b) Let k > cf(«) and let {au : v < cf(«)} be the strictly increasing con¬ 

tinuous sequence of ordinals obtained in Problem 2. We may assume that 

ao = 0 and oq = cf(/t). Define / such that /(a) = a„ if au < a < a : x, 

f{o.v) = v if v < cf(ft). [F]. 

4. Otherwise, by Fodor’s Theorem, we would have B = {a < k : type(Afl 

a) = (3} for some B G Stat(«) and /3 < k. Then, however, A C (3q = min B 

would hold. 

5. Otherwise, by Fodor’s Theorem, there is a (3 < uq and a stationary set 

B C u>i such that, for every 7 with (3 < 7 < uq and for every aeB, the set 

A n {(7, (3) : (3 < a} is not cofinal in a. According to Problem 4, we then 

have |An {(7,/?) : f3 < uq}| < uq for every 7 with (3 < 7 < uq, and so the 
order type of A is not [H; 2]. 

6. If Aa G ns(«) for each a < k and B G ns(k), then A \ B G ns(k), 

as confirmed by the regressive function / defined by /(£) = min< Aa for 
£eAa\B. 

7. Assume that {Ca : a < «+} C Stat(«) is a sequence of order type k+ 

with CQ D Cp G ns(k) whenever a 7^ (3 and a, f3 < n+. For each a < k+, 

let {g(a,u) : v < «;} be an enumeration of order type k of a. Let Ba = 

Av<K(Ca \ Cg{a,v)). Then Ba G Stat(«) and \Ba n Bp\ < \Ba D Cp\ < k 

whenever (3 < a < k+ . 

8. It is enough to find a sequence A" C Aa with A!'a G Stat(«) for every 

oc < k that consists of pairwise disjoint sets. In view of Problem 7 and of 

the assumptions, for each a</twe can find a system consisting of pairwise 

almost disjoint K-stationary sets Ba^ C Aa, £ < «;+. Let 

X0 = {ct < k : |{£ < : B0^ n Aa G Stat(/c)}| = «+} . 

The system {Aa : a G A0} may be made almost disjoint by picking sets A" C 

Aa with A" G Stat(«) for every aGl0 such that Ap n A" G ns(k) holds for 
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f3 G k\Xq. Indeed, we may first pick A" = B0^ D Aa for an appropriately 

chosen £ < k+ such that B0^ D Aa G ns(«) whenever a G k \ X0. Using the 

result of Problem 6, we may shrink A" so that U{A" : a £ X0}C\Bp G ns(/c) 

holds as well whenever (3 G k\Xq. Repeat this procedure for the remaining 

set system (Aa : a G k \ Xo} (transfinitely). [B, H, M]. 

We remark that it is relatively consistent with ZFC that the condition 

of the present problem is satisfied for every regular n > u>; for example, 

the condition holds on the model on constructible sets, briefly mentioned in 

Section A9. Shelah proved in ZFC that ns(«) cannot be «+ saturated on 

S\,K if u < A = cf(A) < k = cf(/c). 
9. It is obvious that if ns(u;i) is uq-dense on A, then the ^-stationary 

sets Aa, a < u>i, showing this cannot be made disjoint. 

Assume now that for every stationary A C u>i, the nonstationary ideal on 

A is not Wi-dense. This means that 

(*) for every sequence {Ba : a < uq} C Stat(u;i), there is a set B C Bq 

with B € Stat(u>i) and Ba\B e Stat(u;i) for each a < ui\. 

According to the proof of Theorem 12.5.A there are functions n < uq, 

regressive on such that for each A G Stat(a;i), there is an n < ui for which 

fn is not essentially bounded on A. Assume we are given the ^-stationary 

sets {Aa : a < uq}. Let n(a) denote the smallest n for which /„ is not 

essentially bounded on Aa. 
Let X0 = {a : n(a) = 0}. The set system {Aa : a G X0} can be 

made disjoint by choosing sets A'a C Aa with A'a G Stat(u;i) such that /o is 

constant on each A'a and such that {minA^ : a G Xo} G ns(u;i). Using (*), 

we can then choose sets A° C A'a with A® G Stat(u>i) for each a. G Xo such 

that for every n with 1 < n < u, for every (3 < uq, and for every 7Gwj\ Xq 

we have 

fn\{P}) A'a \ A°a G Stat(w0 

whenever Z^"1 ({/?}) H A7 fl A'a G Stat(u;i). 

Let A0 = U{^a : a G X0} and A* = Aa \ A0 for a G wi \ X0. For 

aGwi\X0we have n(a) > 1, Zn(a) is not essentially bounded on A*, and, 

now continuing with (A^ : a G u>\ \ Xo} in place of {Aa : a < u;i}, the 

procedure can be repeated countably many times. [B, H, M]. 

10. From the assumptions on the cardinals, it can be easily seen that there 

is an a < k+ such that \{(3 < k+ : Ap fl (£ 4- 1) = Aa D (£ 4- 1)}| = 

for every £ < k. Hence there is a sequence {«£ : £ < «} C k+ of pairwise 

distinct ordinals such that Aa? fl (£ 4- 1) = Aa D (£ + 1) for each £ < Let 

A = U{Aa, : £ < «}. Then A \ Aa C \J{Aai \ (£ + 1) : £ < «} e ns(«). 
The proof can of course be carried out for an arbitrary normal ideal so as 

to obtain the corresponding assertion. The result is due to F. Galvin, and 

the proof can be found in [B, H, M]. 
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Section 13 

1. a) If A = k, then the sets Aa = a < k form a set system of cardinality 

k that does not include a A-system of three elements. 

b) Let A = min^A' : 3r < k (ta > k)} and T = {{/|£ '■ £ < : / £ 

TA}. Then l^l > k, the elements of T have cardinality A, and T does not 

include a A-system of cardinality r+. 

c) If k is singular, cf(«) < «o <•••<«£<•• • is an increasing sequence 
of cardinals with sup{«;^ : £ < cf(«)} = k, then 

j{£, “} : £ < cf(«) A < a < 

is a sequence of two-element sets that does not include any A-system of 

cardinality k. [E, R; 2]. 

2. See the hints for Problem 3. 

3. By induction. If T consists of n-element sets and it does not include a 

A-system having three elements, then there is a set of at most 2n elements 

that intersects every element of T. Hence d(n, 3) — 1 < 2n (d(n — 1, 3) — 1). 

4. Let Q = {rn : n < u} be a one-to-one enumeration of the rationals. 

Let Fx = {rik(x) : k < u} be such that rnk^ -4 x as k -4 oo. Then F = 

{Fx : x € M}, where R is the set of real numbers, satisfies the requirements. 

5. See the solution of Problem lb). 

6. Proof in the case when A > cf(«;): 

Let A^ form an increasing sequence of regular cardinals with 

A = sup{A^ : £ < cf(/c), A0 > c/(k)}. 

We construct a set system F = {Ea : a < A+} by transfinite recursion on 

a. Assuming that Fp C [A]cf(K) has been given for (3 < a, let ha : a -4 A be 
one-to-one. Put 

x“ = min (A€ \ (UW : K{P) < AJ U {x° : r) < £})) 

and 

Fa = {%£ '■ £ < cf(«)}. 

[T], 

7. Let A c A be cofinal in A with type A = cf(A) and put = X n £ for 

£ € A. Assume, by reductio ad absurdum, that \X^\ < k for £ e A. We have 

A = |J{A^ : £ £ A}; thus cf(/c) < cf(A), and so cf(«) < cf(A). Therefore, 

the sequence |A$| must be eventually constant; hence \X^\ < r for some 

t < k, i.e., we must have k = r+. The sequence of the A^’s cannot be 

eventually constant, as this would imply X = X% for some £; thus k > cf(A). 

Consequently, cf(/c) = k> cf(A), which is a contradiction. [T]. 
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8. For an arbitrary F E F, let F' be a bounded subset of F having 

cardinality k; the existence of such an F' is guaranteed by Problem 7. As 

Fq ± F[ whenever F0 ± Fx and F0, Fi E F, putting F' = {F' : F e f}, we 

have \F'\ = |F|. Now F' C [J{[£]* : £ < A}, and the latter set has cardinality 

k according to the assumptions. [T]. 

9. Let F = {Fa : a < «:}. As k = cf(«;), we have |Fa\[J{/3 < : Fp}\ = « 

for an arbitrary a < n. Let xa = min(Fa \ (U{F^ : (3 < a} U {xp : (3 < a})) 

and Fq = {xa :«<«}. 

10. If k = cf(«), then the assertion is identical to that of Problem 8. If 

cf(«) < k, let form an increasing sequence of cardinals such that sup{/^ : 

£ < cf(/c)} = k and write F = {Fa :«<«}. Define the sequence x$, 

£ < cf(k), by transfinite recursion by putting x^ = min(«; \ ((J{^a : a < «$} 

U {xrj : V < £}))• The set X = {x£ : £ < cf(«)} is almost disjoint to each 

element of F\ to show this, we do not need to use the assumption that the 

elements of F are pairwise almost disjoint. [T]. 

11. Let u = Aq U Ai, A0 n Ai = 0, and A0 Ax. Put 

F = {A U f“{Ao \i):Ac A0}. 

12. Let F = {Fn : n < u}. By induction, define pairwise distinct integers 

bn e Fn, an i Fn. Put B = {bn : n < u). [Be]. 
13. By Problem 4, there is a system Fq C [u]" with |F0| = 2H° of almost 

disjoint sets. Let Unew be a disjoint partition with |An| = N0 for new. 

Let F\ be the set of all transversals of the system of the sets An, i.e., 

Fi = {R(/) : / 6 X An}. 
n€u> 

Let $ be such that F\ Fq. Finally, put 

F = {An :new}U : n E $(F)} :Fefi}. 

The elements of F are pairwise disjoint, since the same is true for the elements 

of Fq. 
Assume B meets each An■ Then R(/) C B for some / E Xn€u> 

have R(/) = F e Fi and F fi \J{An : n E $(F)} E F. [Mi]. 

Section 14 

1. If f,g,h E P, then the set {6{f,g),6(f,h),6(g,h)} has at most two 

elements, and if / X g -< h or / >- g >- h, then 5(f, h) = min{*(/, 9), h)}. 
The assertion easily follows from this relation; this relation will also be fre¬ 

quently used in the solutions of some problems below. 

2. Let 

S0 = min{<5(/a, fp) : a, f3 < A A a ^ (3}, 
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(*0 = min{a < A : 3(3(a < (3 < A A 5(a, (3) = <^o)}, 

do = min{/3 < A : a0 < (3 A 5(fao, fp) = <50}. 

If d0 < (3 < A, then 5(fao,fp) = 60, and if d0 < P, 7 < A, then 6(fp, /7) > <50. 
Choose ao as the first element of L, and pick the other elements of L from 

the set L0 — {fa : do < a < A}. As \L \ Lq\ < A and A is a regular cardinal, 

the process of picking the elements of L appropriately can be continued up 

to A steps by transfinite recursion. 

3. Let P = K2, let -< be the ordering of P described in Problem 1, and let 

-*<o be an arbitrary wellordering of P. Define the disjoint partition [P]2 = 

K0 U K\ with the stipulation {/, g} e K0 «=>• / -<o 9 A / -< g. If there 

is a set of cardinality k homogeneous in, say, color 0, then there is a set 

{fa : a < k+} C P such that fa -< fp whenever a < (3 < k+. 

According to Problem 2, then there is a set L C ac+ and a sequence 

{5a : a < «+} C n of ordinals such that 5(^fai fp'} — 5a and 5a ^ 5p 
whenever a < (3 and a, (3 e L. In view of the choice of P, 5a < 5p would 

hold in this case; this is, however, impossible. 

The assertion for color 1 can be established similarly. 

4. Let P = K2 and define the 2-partition : [P]2 —> n by stipulating that 

«({/.«}) = Hf, g) for {/, 9} €[P]2. 
5. Let P = u'/c and let -< be the lexicographic ordering defined in Prob¬ 

lem 1. Let X0 be an arbitrary wellordering of P and define the 2-partition 

$ : [P]2 2 by stipulating that <&({/, g}) = 0 if and only if f ■< g and / -<o 9- 

If there is a set of cardinality k+ that is homogeneous in color 0, then ac¬ 

cording to Problem 2, we obtain that there is a set {/a : a < «+} C P and a 

sequence {5a : a < «+} such that 5a < 5p < u, fa ~< fp, and 5(fa, fp) = 5a 
whenever a < (3 < k+. 

Then, for some 5 and some ao < k+, we have <5 = 5ao = 5a whenever 

a0 < a < k+, and so fa{5) < fp(5) whenever a0 < a < (3 < k+. This is 
impossible; a contradiction. 

If there is a homogeneous set of cardinality ui in color 1, then there are 

sequences {fa : a < u>i} C P and {£a : a < k/i} C u such that 

fa >- fpi 5a < 5p whenever a < (3 < 

Then we again obtain a 5 and an ao < uq such that 5a = 5 whenever 

a0 < a < u>i. In this case, however, {fa(5) : a0 < a < uq} would be a 
decreasing sequence of ordinals. 

6. The assertion is a special case of Theorem 14.5. 

7. Let P = let -< be the lexicographic ordering defined in Problem 1, 

and let -<0 be an arbitrary wellordering of P. Define a 2-partition $ of P 

with cf(«) colors by stipulating that for each {f,g} e [P]2 with f ^ g we 
have 

If / “<o 9 j 

If 9 -<o / and 5{f,g) = 5 (5 < cf(«)). 
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We can see that there is no homogeneous set of cardinality k+ in color 0 as 

we saw this in Problem 3. Assume that S < cf(«) and there is an infinite 

homogeneous set in color 1 4- <5. Then we obtain a sequence {fn : n < u} 

such that 

fm>- fn, 1 + s = 5(fm, /„) whenever m <n<w. 

Thus we have /m(l + S) > /n(l + S) whenever m < n < u>, which is 

impossible. 
8. According to the assumptions, (n+)K = «<*(*) = «+. In view of what we 

proved in Problem 4, we may assume that k > ci(n). Let {«£ : £ < cf(/c)} C k 

be a sequence of cardinals such that u < < k and k = U^<cf(«) Let 

[k+]k = {Aa : a < k+} be a wellordering of [k+]k of type k+, Sa = {Ap : 

Ap C a A P < a}, and put 

Sa£ = {Ap E Sa : P < k^} whenever a < k+, £ < cf(/c). 

We will define a 2-partition $ : [k+]2 —* cf(«) of as follows: For each a < 

k+ and each £ < cf(«) we are going to define a set ^(a) C at with |$^(a)| < 

k$, and then we will specify <3> with the stipulation that, for {a, P} € [«+]2 
with p < a and for £ < cf(/c), 

4>({a, P}) = 1 -j- £ holds if and only if p E 

(Then, clearly, $({a,/?}) = 0 holds if and only if p £ U^<cf(«) ®e(°00 

If the following requirements are satisfied for a < k+ and £ < cf(/c), then 

$ will be a witness to the assertion to be proved. 

(1) If A E Sa£, then ^(a) D A ^ 0; 

(2) If p, 7 € $€(a), then P £ ^(7) and 7 i 
We are going to carry out transfinite recursion on a. Assume that P < a 

and (1) and (2) are satisfied and |$€(/?)| < k* holds for each £ < cf(rc); 

then it is sufficient to show that there is a set B = $$ (a) C ot that satisfies 

Conditions (1) and (2). We will omit the proof of this; however, there will 

be hints for the proof among the hints for the problems of Section 19. 

9. The assertion is a special case of Theorem 14.7. 

10. We may assume that k > cf(/c). Let k = U$<cf(/t)^£ be a disjoint 

partition of k such that |A^| < k for each £. Let [cf(/c)]2 = /o U be a 

2-partition verifying the assumption. Define a 2-partition [k]2 = JoU Ji such 

that 
{a,/?} € Jo if and only if there are £,77 < cf(/c) for which 

a <E At A p E Av A {£, 77} € Iq holds. 
The partition {Jo, Ji} is called a canonical expansion of the partition {Jo, h}- 

11. Assume / : [k]2 —* 2 is given. From the assumptions, it follows that 

\ < cf(«) < k, and so, according to Theorem 14.7, for each p < k there 
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is a v < k (in fact, we can take u = (2max^,A^)+) for which v -* (y,, A)2. 

Hence we may choose a sequence of pairwise disjoint sets A C «, £ < cf(«), 

such that, for each £ with appropriate and B$, we have |AI = < k, 

U,<CA = B€, < ^ < «f+1, «0 > 2rf(,s), k = sup{«c : £ < cf(«)}, and 

A is homogeneous in color 0 with respect to /. 

In view of the assumption 2^B^ < for each £ < cf(«) we can pick a set 

A| C A such that I = IAI = an<^ 

(1) if x, y e A\, z 6 B0 then f({x, z}) = f({y, z}). 

Using (1) and the inequality k0 > 2cf(K\ we may choose sets A| C A|, 

|A|| = such that 

(2) for each x,y G A* and 2: e A| we have f({x, z}) = f({y, z}). 

whenever 77 < £ < cf(«). 

The partition / restricted to the set A d= U^<cf(«) °f cardinality k 

is canonical in the same sense as the partition J defined in the solution of 

Problem 10 was canonical. Thus we can define the 2-partition [cf(«:)]2 = 

Iq U /i of the set cf(/c) by stipulating that for each {£,77} e [cf(«)]2 we have 

{^, 77} G Iq if and only if there are x e A|, y £ A2 such that 

/({£, v}) = 0) that is, if and only if each x 6 A2 and y e A2 satisfy 

= 0. 

The assumption cf(«) —> (cf(«),A)2 apphed with this partition gives the 

required conclusion. The assertion presented here is a special case of the 

general canonization lemmas, about which more information can be found in 
[E, H, M, R]. 

12. Let X = {fa : a < k} be such that fa -<Q f/3 whenever a < (3 < n. If 

we have fp -< fa whenever a < /3, then the second assertion of the problem 

holds with Y = X. Assume therefore that a0 and (3q are such that a0 < 

Po < k and fao -< fp0. As [A]3 n K = 0 by our assumptions, we must have 

f(30 Iff whenever (3q < /3 < k. For the same reason, we must have fp -< f1 

whenever /?0 < p < 7 < k, and so Y = {fa : (30 < a < «} satisfies the 
requirements. 

13. Let P = K2, where k = 2^°, let -< be the lexicographic ordering of P 

defined in Problem 1, and let -<0 be a wellordering of P. Let [k]2 = J0 u Ji 

be a 2-partition verifying the relation 2N° (A)! (see Problem 3). 

Let {/, g, h} e [P]3 be such that /0 -<0 g -<0 h. Put 
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{f,9,h}eS1 ^ fygyh. 

Put S = So U Si. Finally, define [P]3 = Jo U I\ as follows. If {/,g, h} G Kj 

for some j < 2, then put {/, g, h} 6 Ij. If {/, g, h} € S, then let A(/, <7, h) = 

{6(f,g),6(g,h)}. Clearly, we have A(f,g,h) G [rt]2; hence the following 

definition is sound: 

{/, S, M e Ij if and only if A(/, g, h) G Jj (j < 2). 

For reasons of symmetry, it is sufficient to show that there is no homogeneous 

set of cardinality Hi in color 0. Proceeding via reductio ad absurdum, assume 

there is X C P with |X| = Hi and [X]3 C Jo* As we have [A]3 D K\ = 0 

in this case, according to Problem 12 we have a Y C X with |T| = Hi for 

which we may assume that it has the form Y = {fa : a < u 1} such that 

fa -<0 f(3 A fa -< fp whenever a < (3 < u\ or fa -<0 fp A fa y fp whenever 

at < P < u 1. 
We may assume that the first of these alternatives holds. According to 

the assertion of Problem 2, there is an L C wi, \L\ = Hi, and {5a : a < 

u/i} C k = 2Ho such that 6{fa, fp) = Sa and Sa < 5p whenever ot, P G L and 

a < p. In view of the choice of P, if we have a, P G L and a < P, then even 

6a < 5p holds, and 

= A(/a,//3,/7), 

where 7 = L \ (P -i- 1). Hence, writing D = {6a : a G L}, we have \D\ = Hi 

and [D]2 C Jo, which is a contradiction. 
The assertion just proven is a special case of the so-called Negative Step¬ 

ping-up Lemma. 
14. We give two solutions of the problem. The first one is an ad hoc ap¬ 

proach. The second one can be used to establish a number of generalizations 

of the assertion. 
a) Let {Aa : a < kh°} be a wellordering of the set [«]H°. Define a 2- 

partition I0 U Ji of [«]N° by stipulating that Aa G Io if and only if Ap Aa 

for every P < ex¬ 
it X C [/c]No and a = min{/? : Ap C X}, then Aa G [X]H° and Aa G I0. 

If (Xn : n < u) is an arbitrary infinite sequence of infinite subsets of X 

increasing with respect to inclusion, then we have Xn G I\ for some n < u. 

b) First, it is easy to prove the assertion for k = H0 by transfinite in¬ 

duction. Now, assuming k > H0, consider a maximal system P C [n]H° of 

almost disjoint sets. For each F G P, we choose a partition [F]H° = I0 U 

that verifies the relation Ho -fa (^0)2° on [F}**0• Let {Fa : a < \P\} be a 

wellordering of P. For A G [/c]N°, write a(A) = min{/3 : |An Fp\ = H0}. Put 

A G Jo if and only if a = a (A) and A n Fa G Iq* . 

For all the problems of this section, see [E, H, M, R]. 
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Section 16 

1. The proof is similar to the the proof of Theorem A7.2. For each element 

u of X, we define a set TR(u) C X such that u E TR(u) and for v 6 

TR(u), we have [i/]r C Tr(u). (If T0R = {u} and TR+1 = (J{[w]r : 

then Tr = (Jn<w Tr satisfies these requirements - this argument is closely 

related to the proof of the existence of transitive closure given in the proof 

of Theorem A7.2.) If there is a u such that -id>(u) holds, then let T = {v 6 

Tr(u) : -i$(u)}. T is not empty, and in view of the well-foundedness of R, 

there is a v eT such that [u]r n T = 0. As [w]r C Tr(u), for every w with 

wRv, we have d>(u;); hence $(u) holds; this contradicts the relation v E T. 

2. The proof is similar to the proof of the Transfinite Recursion Theorem 

9.2 (cf. also Theorem A5.1). Using the statement proved in Problem 1, we 

first show that for every uEl, there is at most one function / that satisfies 

the functional equation restricted to TR(u), where TR(u) is the set defined 

in the solution of the preceding problem. Then, again using the statement 

of Problem 1, we conclude that for each u E X, there is exactly one such 

function fu. The operation T can then be defined as T = (J{/« :«El}. 

3. Using the Theorem of Well-Founded Recursion of Problem 2, we define 

the operation T{u) = {X(v) : uRu}. All the assertions are direct conse¬ 

quences of the Theorem of Well-Founded Induction given in Problem 1. 

4. Let T be a nonprincipal normal ultrafilter on k. For each a with 

u) < a < k, let (j)a be such that P(a) |o:|+ (except that 4>a = Ida, the 

identity function on a, for a < u). For each A C k, let E Xac* a be a 
function such that 

<3>a(c0 = </>a (^4 H a) whenever u < a < k. 

We claim that if A ^ B and A, B C k, then ^ Indeed, for some 

c*o < «, we have Aflao 7^ BCiao, and so Aria ^ BC\a whenever ao < a < /c; 

thus <&yi(a) 7^ $B(a) whenever a0 < a < k. It is therefore sufficient to prove 

that the set P = {[$]yr : $ g X«<k a+} ^as cardinality at most k+. As the 

property -<? given in Definition 16.3 is a wellordering of P, it is sufficient 

to establish that every proper initial segment of (P, -< ?) has cardinality at 

most k. For an arbitrary element $ of P, we have |<h(a)| < |a| < a whenever 

u < a < k. Let \I/a : $(a) |a| be one-to-one for each a with u> < a < k. 

The assertion now follows, since, given an arbitrary h with [h]jr < [$]yr, the 

function g defined by g(a) = T(/i(a)) is regressive, and so it is constant 
almost everywhere. [Sc]. 

5. First assume that k is smaller than the first measurable cardinal greater 

than w. As a discrete space of cardinality N0 can be embedded in E as a closed 

subspace, it is sufficient to prove that k can be embedded into a power of C, 

where C is a discrete space of cardinality tt0- Let P be the set of 1-partitions 

of k with N0 (pairwise disjoint, possibly empty) classes (i.e., with N0 colors), 

and for pEP, denote by pc, cEC, the classes of p (k = (J{pc : c E C}). 
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For each a < k define an element fa of PC by stipulating that fa(p) = c if 

and only if a G pc. We claim that {/a : a < k} is a discrete closed subspace 

of PC. Assume, on the contrary, that / € PC is a limit point of the set 

{fa ■ a < «}. For each p e P, put Fp = Pf(p)- 

It is easy to see that F = {Fp : p e P} is a filter on «. An additional 

important property of the filter F can be seen immediately: For any partition 

p of k into No classes, there is at least one class pc of p that belongs to F. 

This property implies that F is in fact an uq-complete ultrafilter. Finally, 

for a < k, we have {«} F, since otherwise / would have a neigborhood not 

containing any fp with a ^ (3 < k; thus F is nonprincipal. Then, according 

to Theorem 16.1, there is a measurable cardinal that is greater than u> but 

is not greater than k. 
Conversely, assume that there is a measurable cardinal A with u < A < n. 

It is sufficient to show that a discrete space of cardinality A cannot be embed¬ 

ded as a closed subspace into a power of R. Assume that for some cardinal 

<7, the set {fa : a < A} is a subspace of ‘'R, and let X be a nonprincipal 

A-complete prime ideal on A. For each £ < a there is an /(£) such that 

{a < A : /a(£) = /(()} £1. Then / is a limit point of the set {fa : a < A}. 

[K, T], 

Section 17 

1. Assume {/a : a < k} is a K-scale and p is a nontrivial real-valued 

measure on k. Write An>m = {a < « : /Q(n) = m}. Then Um=o4,m = K f°r 

each n 6 u>. For every n 6 u, there is a g(n) < u such that ^(Um=p(n) An,m) 

< l/2n+1. Thus 

p({a < k :Vn E u fa(n) < g(n)}) > 0, 

and yet \{a < k : Vn G u fa{n) < #(n)}| < k; this is a contradiction. 

2. It is sufficient to show that if /„ G ;, then there is an / € ; such 

that fn< f for each n < u. In fact, f{n) = max{/j(n) : i < n} + 1 is such a 

function. 
3. We have to show that, given Fa G P(«)\X for a < « such that FaC\Fp G 

1 whenever a < (3 < k, then there are sets F'a C Fa with F'a<fZ such that 

F'a n Fp = 0 whenever a < (3 < «. 

The sets F'0 = Fp\ \J{Fa : a < (5) satisfy these requirements. 

Section 18 

1. If the partitions (Jc<7 i? for n < u witness A -fr («)<w, then define J£ 

for £ < 7 and n with 1 < n < w as follows. If X = {xo,.. • ,£n-i} £ 

with xo < ■• • < xn~i, then put 

X £ n = 2fe(21 + 1) A {x0) • • •, xk-i] G /”. 
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Then, for each A C A with \A\ = k, there are infinitely many n’s such that 

A is not homogeneous with respect to (J^<7 J™- 

2. a) For X = (xo,..., £n-i} £ Mn, xo < ••• < xn-1, ^ > 0, put 

X G Iq Xq > n. 

b) Let k;o = min{A > u> : A is strongly inaccessible}. Given A with u < 

A < kq, it is sufficient to show that A ft (u)^ holds if A' ft holds for 

each A' with u < A' < A. Assuming the latter, according to the assertion of 

Problem 1, we can choose partitions [A']n = Iq(X') U /"(A') for each n < u 

such that there is no infinite set that is homogeneous for all but finitely 

many n’s. 

We distinguish two cases: (i) A is singular, or (ii) 2A > A for some A' < A. 

Ad (i). Let A = U^<cf(A) ^ be a disjoint partition such that |A^| = A^ < 

A. We are going to define the partitions [A]n = Iq (A) U J”(A). For X = 

{#0, • •. ,£n-i} € [A]n, put X = (£o, • •. ,£n_i}, where & is determined such 
that Xi € A^. If X C A^ for some £, then put X G Iq (A) «=> X G Iq(A^), 

where the partition [A^]" = Iq(A^) U I^(A^) is obtained from the partition 

[A^]n = Jff(A€) U 7”(A^) by mapping A^ onto A^ in a one-to-one way. If 

\X\ = \X\ = n>l then X G Iq (A) ^Ig /n(cf(A)). We put X G JJ( A) 

in all other cases. As for each A C A with | A\ = u>, we either have | An A^ | = u> 

for some £ or |{£ : A n A^ ^ 0}| > u, this partition verifies the assertion. 

Ad (ii). Write P = A2, let -< be the lexicographic ordering defined in 

Problem 1 of Section 14, and let -<o be a wellordering of P. Define the 

partitions [P]n = J0Uii by the following stipulations. Given {/0,..., /n_i) G 

[P]n with fo^Q-<0 /„_i: 

If n > 3 and f0 -< ft y f2, then {/0,..., /„_i} G Ifi. 

If n > 3 and /o >- fi -< /2, then {/0,..., /„_i} G I?. 

If n > 3, /0 -< • • • -< /„_i or /0 >- ••• >*- fn_ 1, and the sequence 

A(/o, • • •, fn-i) = Wo, /i), • • •, ^(/n-2, e [A']n_1 is strictly increas¬ 
ing, then we put 

{/o, • • • , /n-l} ^^ ^(/o, • • • , fn-l) £ Io(^)‘ 

We put {/o,..., fn-i} £ Iq in all other cases. 

The lemmas described in the hints for the solutions of the problems of 

Section 14 show that the partitions Iq, /[* satisfy the requirements. 

c) It follows from the assumption that, for each a < A and n > 1, there 

is a partition [a]2 = I” (a) U JJ*(a) such that each set A C a with \A\ = u 

is not homogeneous with respect to JJ(a) U I? (a) for infinitely many n. 

For each n > 2 and each {x0,..., xn-i} G [A]n with x0 < - •■ < xn-1} put 

{*o,...,*n-i} G Ig <—> {xq, ..., xn-2} £ 1(®»—i)* It is clear that this 
partition verifies the conclusion. [Si; 1]. 

3. Assume / : [«]* -» “2 is given for each i with 1 < i < u. Define 

g : [k]u -> 2 for n with 1 < n < u by stipulating that if n = 2* (2j + 1), 

X C [ft]n, X = {xq,...,xn_i}, and xq < ••• < xn_i < «, then g(x) = 



Hints for problems of Part II 283 

f({xo,..., Xj-i})(j); the latter denotes the value of the function f({xo,..., 

Xj-i}) e w2 at j. According to the assumptions, there is an A C k 

with type A(<) = a that is homogeneous with respect to g for each n. 

We claim that A is also homogeneous with respect to /. To see this, let 

X = {x0,...,xi-ij, Y = {yo,..., t/*—i}, X,Y G [A]’, x0 < ••• < ®»-i> 

yo < • • • < j/i—i) and j < uj be arbitrary. Choose a Z = {z0> • • •, zn-i} C A 
such that Xi_i,y*_i < zq < • • • < zn_i and n = 2*(2j +1). Then g(XUZ) = 

g(Y U Z), and so f{X)(j) = f{Y)(j) for each j. [Si; 1]. 

4. If k is weakly compact, then k -4 (k,4)3 holds according to Theo¬ 

rem 18.2 c/ Now assume that k is not weakly compact, and let the 2-partition 

[k]2 = J0UJi witness this. Define the 3-partition [k]3 = 7oU/i by stipulating 

that if {a, (3, 7} G [k]3 with a < (3 < k, then 

{at, 0,7} Eli {a,/3} e J0 A {/5,7} € Ji- 

Let A C k with | A| = k. There are a,/3 G A with a < (3 such that {a, (3} € 

Jo; otherwise A would be homogeneous of color 1 with respect to the partition 

J. If there is a 7 € A with (3 < 7 such that {/3,7} G Ji, then A includes a 

triple of color 1; we may assume therefore that {{3,7} G Jo for each 7 G A 

with P < 7. In this case, however, there are 7,5 G A with 7 < 5 such that 

{7, <5} G Ji; otherwise the set A \ (3 would be homogeneous of color 0 with 

respect to the partition J. Now let a < (3 < 7 < 8 < k be arbitrary. If 

{a,/3,7} G Ji, then {/J, 7,5} £ Ji- The 3-partition J witnesses « 7A («,4)3. 

[H; 1]. 
5. First assume that k is weakly compact, S is a K-complete field of sets 

generated by at most k elements, |<S| ^ k, and C S is a ^-complete filter in 

S. According to the assumptions we have k<k = k, and so S has cardinality 

k. Let {Aa : a < k} = S be a wellordering of S. For each a < 1c, we define a 

function fa : a -> 2 as follows. Choose an a;a G '• P < a and A^ G J}, 

and put fa(/3) = 1 if and only if xa G Ap. 
Let T = {fa\(3 : {3 < ct < k}. T ordered by inclusion is clearly a tree. Let b 

be a branch of cardinality k; such a branch exists according to Theorem 18.2. 

Put / = [J then / is a function on k. It is easy to see that U = {Aa : 

f(a) = 1} is an extension of T that is a ^-complete ultrafilter. 
Assume now that the assertion on the right-hand side of the biconditional 

formulated in the problem is true. Following the proof of Theorem 16.1, it 

is easy to show that « is strongly inaccessible. 
Let T be a K-tree. Let S be the ^-complete field of subsets of T generated 

by [T]<K U {T| y x : x G T}, where T\ y x = {y G T : x X y}. Let I be 

a prime ideal in S that is an extension of [T]<K. For each a < «, there is 

exactly one xa G Ta such that T| >z xa <£ X; hence {xa : a < «} is a branch 

of T. Thus k has the tree property. [K, T]. 
6. Assume first that k is weakly compact. Let {Xv : v < /c} be a sequence 

with the property described in the problem, and put T = X„<k x»- Tt 1S 

easy to see that the weight of T is also at most k. Let S be the field of 



284 II. Combinatorial set theory 

subsets of T generated by a base of cardinality < k of the space T. Let O be 

an open cover of T; without loss of generality, we may assume that O C S. 

Assume, contrary to the assertion to be established, that CO(O) generates a 

/■c-complete filter. According to Problem 5, this filter can be extended to a 

At-complete ultrafilter U in S, Let is < k be arbitrary. The set 

Uv = {Yv C Xv : Yv x X € U} 

is a K-complete ultrafilter in the ^-complete field of sets 

s„ = {y,cr,:y,xxr»e 5}. 
H<K 

In view of the ^-compactness of X„, Tv converges to a (single) point xu G X„; 

that is, Tv contains all neighborhoods of xv that belong to Sv. Indeed, as¬ 

suming on the contrary that each xv G Xv has a neighborhood GXv G 

fewer than k of these would cover X„, contradicting the ^-completeness of Tv. 

(As the space is HausdorflF, an ultrafilter cannot converge to more than one 

point.) Then, simply by the definition of topological product, and without 

the use of ^-completeness, we can conclude that T converges to (xv : is < k); 

i.e., that T contains all neighborhoods belonging to S of this point. On the 

other hand, OrI A = 0; hence O cannot cover this point, a contradiction. 

Now assume, conversely, that the assertion in the problem about «-com- 

pactness of products holds, and let T = (k, <) be a «-tree. Denote by Ta the 

a’s level of this tree. Let t £ k, and put Da=Ta U {t}. Da is /c-compact in 
the discrete topology. 

Let X = XQ<K Da. According to the assumption, X is ^-compact. For 

each a < k, define fa G X as follows. Given a < k, fix xa G Ta%, writing 
ba — T\ ^ xa, put 

fa 
Xa\TP 

t 

if (3 < a, 

otherwise. 

The set {fa : a < «}, being of cardinality k, has a k-accumulation point 

/ (i.e., a point every neighborhood of which contains at least k elements of 

the above set) in A; to see this, one needs to use the regularity of «, which 

follows from the assumptions. The set {/(a) : a < «} is a branch of the 
«-tree T. Thus k has the tree property. [K, T] 

7. If k is singular and k = Y2^<c{(k) kZ with < « for each ^ < cf(/c) 

then the sum of the with respect to the ordering > has the required 

property. If k < 2A for some X < k, then an arbitrary subset of cardinality 

k of (A2, -<) has the required property according to Problem 3 in Section 14, 

with being the lexicographic ordering defined in Problem 1 of Section 14. 

If k is strongly inaccessible and (T, -«) is a /c-tree that has no branch of 

length k, then the squashing (T, -<*) of T satisfies the requirements, as was 
shown in the proof of Theorem 18.2. 
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8. In the preceding problem, we saw that there is an ordered set (R, -<) 

of cardinality k that has no increasing or decreasing wellordered subset of 

order type n. We may assume that the ordering is dense, that is, for all 

x,y £ R with x -< y, there is a z € R such that x < z < y. All such orderings 

can be made complete: U R* = {S : S is an initial segment of R} and 

S -< S' <=> S ^ S' for any S, S' E R*, then (R, -<) can be embedded into 

(A*, -<) in a natural way. As every initial segment includes a wellordered 

cofinal subset of order type less than «, we have \R*\ < k<k — k. It is 

immediate that R* does not include an increasing or decreasing wellordered 

set of type k, and that R* is K-compact. 

In order to verify the assertion of the problem, it is sufficient to show that 

there are two ^-compact spaces Xi and X2 of weight k and cardinality k 

such that X\ x X2 is not K-compact. 

We claim that (i?*,-<) is also K-compact in the Sorgenfrey topology, de¬ 

fined as follows: The basic open sets in this topology are the intervals [a, b) 

closed on the left and open on the right. Omitting the easy proof of the n- 

compactness of the space so defined, let X\ be the space with the Sorgenfrey 

topology generated by intervals closed on the left and open on the right, and 

let X2 be the space with the similarly defined reverse-Sorgenfrey topology 

generated by intervals open on the left and closed on the right. In the prod¬ 

uct space Xi x X2, the diagonal is a closed discrete subspace of cardinality 

k. [H, J], 

9. Assume we are given / : [2k]2 —> 2. Let a = {(ao, on), (0:2,03)} and 
b = {(Pq,Pi), (/32,P3)} be two elements of [2k]2. Define the relation a b 

by stipulating that a b if and only if a* < aj <=> A < Pj and 

= ctj <=> Pi = Pj whenever i,j < 4 and i / j. This relation splits 

[2«]2 into finitely many equivalence classes. By repeated applications on 

Theorem 18.2, we obtain a set A C « with \A\ = k such that for all a, b e [2A]2 

with a ft we have f(a) = f(b). In 2k we can choose a subset B of 

order type k2 in the lexicographic ordering of 2k such that only such pairs 

a = {(a,P), (7,5)} occur in B for which a > P, 7 >6, and which are one 

of the following six types: 

(i) P < a < 5 < 7, (i*) S < 7 < p < a, 

(ii) p <5 <a< 7, (ii*) 6 < P< 7 < a, 

(iii) S < P < a < 7, (iii*) P <S < 7 < a. 

If we have /(a) = 1 for pairs a of one of these types, then for each n < u 

there is a homogeneous set of n elements in color 1. If f(a) = 0 for pairs a of 

each of these types, then B is a homogeneous set of order type k2 in color 0. 

[Sp]. 

Section 19 

1. Define the k+1-partition [u]k+1 = /0U/i with two colors by stipulating 
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that X G Io for X G [u>]fc+1 if and only if x € F{X \ {x}) for some x G X. 

If Y C uj with \Y\ — n > (l — 1 )k + 1, then Y is not homogeneous in color 0 

with respect to I, since a set of n elements has at most / (£) < (fc+J subsets 

of k + 1 elements in 70. By Ramsey’s Theorem, there is an infinite set A C u> 

such that [A]fc+1 C h. A is free with respect to /. [E, H; 1]. 

2. We will apply Rado’s Selection Lemma, described in Problem 8 of Sec¬ 

tion 9. For each a G X, let Aa = k, and for each V G [X]<w, let fy G vk 

be such that for every i < k the set /-1({0) free with respect to F; this 
is possible, since V can be represented as the union of k free sets, according 

to the assumptions. Let / G xk be a function satisfying the conclusion of 

Rado’s Selection Lemma. For each i < k, the set X{ = /-1({i}) is free with 

respect to F and X = P, E]. 

3. We will show that each finite subset V of X is the union of 2k free sets; 

we are going to use induction of |Vj = n. For this, it is enough to establish 

that in each nonempty subset V there is an x G V for which 

(*) \{v G V \ {x} : X G F{y) V y G F(a;)}| < 2k. 

Writing E = {{x,y} e [V]2 : x G F(y) V y G F(:r)}, we have \E\ < n(k — 1). 

If (*) were not true, we would have \E\ > 2k. [B, E]. 

4. We prove that there is even a free set of order type 770- We choose 

pairwise disjoint intervals {In : n < u} such that they form a set of order 

type 7/0 in the ordering < extended to intervals (/ < J if for each x G I 

and for each y G J we have x < y). Denote by J the a-ideal of sets of first 

category, and by S the set of nowhere dense sets. Pick An c In with An J. 

We are going to prove that there is a sequence xn G An such that the set 

{xn : n G u} is free with respect to F. Deviating from our standard notation, 

write F~\y) = {x : y G F(®)}, and put A0,m = {y G A0 : Am\F"1(y) G J} 

for each m with 0 < m < u>. We claim that A0 m G S for each m. Otherwise 

there would beafic A0,m with \B\ = u that is dense in some interval. But 

then p|{F-'iy) : y G B} = 0, i.e., UMm \ F-^y) : y G B} = Am £ J, 

which is a contradiction. Choose x0 G A0 \ lj^=1 A0 m and put = 

Am \ F~1(xq) \ F(x0). As A^ ^ J whenever 0 < m < uj, we can continue 
this procedure. [M]. 

5. Let K = {xa : a < uq} and [K]u; = {AQ : a < uq} be wellorderings of 

the set of the reals and of the set of all countably infinite subsets of the reals, 

respectively. Write Sa = {Ap : (3 < aAxa is a limit point of A/9n(-oo,a;a)}. 

We choose F(xa) to be an increasing sequence tending to xa and satisfying 

F(xa) nA^0 whenever Ap G Sa. 

Assume A C R with |A| = u)X. Let B c A be a countable set and a0 < uq 

be an ordinal such that xa is a limit point of Bn (—00, xa) whenever xa G A 

and a0 < a < ux. We have B — Aai for some aq < ux. If xa G A and 

a > max(a0,0:1), then F(xa) n A/0. [He]. 

6. We may assume that the sets X^ are pairwise disjoint. We follow the 

proof of Theorem 19.2. The proof proceeds differently depending on whether 
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k is regular or singular. We confine our comments to the more difficult case 

of k being singular. Instead of the sets Sa and Sa^ there, we define the sets 

sLsi,v C for £ < /i. 

The key point is that for y E Ya we need to define u(y) as 

v{y) = sup{i/ < t : 3(3 < a3£ < y(S^uC]F(y) ^ 0)}. 

7. We prove both assertions by induction on k. 
Ad 1. Let F0(a) = a for a < uq. Assume that Fk satisfies the assmnption 

for some k > 0. Write X E [u>fc+2]fc+2 in the form X = Y U {a} where Y < a, 
and let <j)a : a -4- uk+i be one-to-one. Fk+i(X) = ^»“1(Ffc((/>a“F)) satisfies 

the requirements of the problem. 

Ad 2. For k = — 1, the assertion is straightforward, since every one-element 

set is free. Assume that the assertion is true for some k > — 1, and let F be a 

set mapping of type k-1-2 and order uq on uk+z- Let a E Wfc+3 \ (U{-^P0 : 

X E [uk+2]k+2}Uuk+2). Put F{Y) = F{Y U{a})nWH2 for Y E [u;fc+2]fc+1. 

According to the induction hypothesis, there is a Z C uik+2 with \Z\ = k + 2 

that is free with respect to F. Then ZU{a} is a set of A; -t- 3 elements that 

is free with respect to F. [Ku]. 

8. First we prove the assertion for k = u>. For each X E the set X E 

[cj]w \{X} has cardinality 2N°. Hence, according to Problem 1 of Section 10, 

for each X E [uj]^ we can choose a set Yx ^ X such that Yx 7^ Yx< whenever 

X,X' E [u]“ with X ± X'. Pick f(Yx) E X \ Yx for each X E M", and 

choose f(Z) arbitrarily if Z <£ {Yx : X E [w]w}. Clearly, there is no infinite 

free set with respect to /. 
Now let k > ui and let T E be a system consisting of pairwise almost 

disjoint sets that is maximal with respect to inclusion. For each F E T let 

fF : [F]“ F be a set mapping such that there is no infinite subset of F 
that is free with respect to fF. Let T = {Fa : a < kn°} be a wellordering 

of T. For each X E [«]", put ol{X) = min{a < kk° : \Fa n X\ = w}, and 

put f(X) = fF(X n F) for F = Fa(X)- If Y E [k]w and a = a(F), then 

a(Z) = a for each Z E [YnFa]“, and so f\[YHFa]u = /FJ[TnFa]w; hence 

Y cannot be free with respect to F. 
With some care, the reader can check that these arguments work even if 

[AY (for any A C k) is taken to mean the set of all subsets of order type w 

rather than of cardinality u of the set A. [E, H; 4]. 

9. Write A = (2re)+. For each a < X and for each f3 E A \ {a}, put 

Fa((l) = F({a,P}). Fa is a set mapping type 1 and order k. According to 

Fodor’s Theorem 19.1, there are pairwise disjoint sets Aa^ for £ < k that 

are free with respect to Fa and A \ {a} = : ^ < «}• 

Define / : [A]2 —> k x k as follows. For each a and (3 with a. < (3 < A 

put f({a,/3}) = (£,77) if and only if (3 E Aa,^ and a E Ap^. According to 

Corollary 14.1, there is a set X C A with \X\ = k+ that is homogeneous 

with respect to / in, say, color (£,77). Then X is also a free set with respect 
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to F. Indeed, let a, 0,7 G X be such that a < 0 < 7. Then we have 

0,7 <= hence 7 £ F({a,(3}) and 0 £ ^({0,7})- Similarly, a,0 G A7)tJ; 

hence a £ F({0,7}). [E, H; 1]. 

10. Let {Aa : a < 07} = [u;i]w be a wellordering and put Sa = {P < a : 

Ap C a} for a < u>i. Let a < uq be arbitrary. According to Problem 1 of 

Section 10, there is an xp G Ap for each 0 G Sa such that xp ^ whenever 

P / 7 and 0,7 G Sa. Pick f({xp,a}) € Ap for each 0 G Sa, and choose 

f({y, a}) arbitrarily if y <£ {xp : 0 G 5a} and y < a. [E, H; 1]. 

11. Write F = {Fa : a < A}. We may assume that, for some real number 

5 > 0, we have p(Fa) > 5 for each a < A. Put Sa = (J{Fp : a < 0 < A}, 

and let S = fla<A Then //(-S') > 5; thus |5| 7^ 0. Furthermore, 5 = {£ < 

K : |{a < A : £ G Fa}| = A}. 

12. We may assume that cf(A) = A > u. Put F0 = F, and define the set 

mapping Fn of type < u by induction on n as follows: If Fn has already been 

defined and X G for some k with 1 < k < u, then put 

y G Fn+i(X) if and only if 

p({a < k : X < a Ay £ Fn (X U {a})}) > 0. 

We claim that Fn is a set mapping of order A for each n < u. For n = 0, 

this is true according to our assumptions. If we had {y^ : £ < A} C K+i(x) 
with pairwise distinct y^s for some X G [n]k, then, according to Problem 11, 

there would be an a with X < a < k and an L C A with |L| = A such that 

fe0GL}cfn(IUM). 

Put F(a) = for each a < k. Then F is a set mapping 

of type 1 and of order A on k. According to Theorem 19.1, there is a set 

S C k with p(S) > 0 that is free with respect to F. Define the sequence 

{au : v < «;} c S by transfinite recursion on v. Given v < k, assume that 

has already been defined for p < k. Write Av = {cxM : p < 1/}, and for 

X G [Av]k and for y G A„, put 

def ( {« : Av < oc < K Ay i Fn(XU {a})} 
Fn 1(X, y) — < if this set has measure 1, 

k \ Av otherwise. 

Pick an au with 

av = mines' n y) : X G [Av]k Ay £ Au An <u 
(*) 

Al<fc<w}\ |J W W : X e An<uAl<k<u}y 

Let A = {(*„ : v < k}. We claim that A is a set free with respect to F (and 
with respect to all of the Fn's). 
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Proceeding via reductio ad absurdum, assume, on the contrary, that, for 

some X G [A]fc with 1 < k < u and some y G A, there is an n < u such that 

y e Fn(x). 

Let k be the least possible such that this assertion holds. Then we have 

k > 1 in view of A C S. Writing a = max X, we have y < a in view of (*). 

If X' — X \ {a}, then, again by (*), we have y G Fn+i(X). This is in 

contradiction with k being least possible. [P; lj. 

13. Let T — (k, -<) be a /c-tree and let /z be a real-valued measure on k. 
Denote by Ta the cFs level of the tree for each a < k. For each a < k, there is 

an xQ G Ta such that /i(T| y xa) > 0. Put Aa = T\ y xa- There is an A C k 
with \A\ — k and a real number S > 0 such that y,(Aa) > 6 holds for each 

a G A. Writing [x] for the least integer not smaller than the real number 

x, put n — fl/<5] + 1. Define the 2-partition [A]2 = I0 U h by stipulating 

that for {a,/3} G [A]2, we have {a, (3) G I0 if and only if Aa D Ap = 0. As 

there is no set of cardinality n that is homogeneous in color 0 with respect 

to the partition J, by the Erdos-Dushnik-Miller Theorem 14.6, there is a set 

B C A with \B\ — k that is homogeneous in color 1 with respect to I. Then 

we have Aa fl Ap ^ 0 whenever a, (3 G B, and so {y : 3a G B (y -< xa)} is a 

branch of the K-tree T. [Si; 1]. 

Section 20 

1. Let 50 = AflM. According to the assumptions, So £ Stat(A). Let D 
be a A-large set. D C A \ Mq+1, S = S0DDe Stat(A). If £ G D, then there 

is a £-club QC( such that QnS C C{nMa = 0. If ^ ^ D and ^ G Lim(A), 

then S n f is bounded in f and Q = f \ sup(S fl 0 satisfies the requirement. 

2. This is a generalization of Problem 14 in Section 14. Solution b) given 

for that problem can be used, with slight modifications, to give a solution of 

the present problem. [E, H, R]. 
3. Given an arbitrary F G [k]w, we can easily define a function QF on 

[.F]w satisfying the requirements of the problem. Let T C [k]w be a maximal 

system of almost disjoint sets in and let T = {Ea : a < 1^1} be a 

wellordering. For each X G let c*(A) = min{a : \X fl Fa\ — uj}, and, 

with a = a(X) put 

Q(X) = [Y U (X \ Fa) : Y G QFa {X D Fa)}. 

[E, H; 4], 
4. First we present a proof due to R. Solovay for regular k > u>; the second 

proof works for arbitrary k > uj. 
a) Assuming k = cf(«) > w, let S = \J^<K be a decomposition of the set 

S of ordinals < k of cofinality wasa union of k pairwise disjoint stationary 

sets; this is possible according to Solovay’s Theorem 12.5 - a full proof of 
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this theorem is given after Corollary 17.2. For X C k with typeX(<) = u 
put 

f(X) = £ <=> supX £ S$. 

Given an arbitrary A G [tt]K, the set A' of its limit points is K-large, and so 

A! fl / 0 for each £ < n. 
b) In view of Problem 3, it is sufficient to show that there is a mapping 

H : [«]w -4 [/t]2*0 such that for each A G [«]*, we have 

(*) UW*): * e = "• 

Indeed, the result of Problem 3 ensures that for each % : [k]w —t [s]2" , there 

is an Ho : [«]w -4 k such that for every X G [«]u', 

H(X) = {U0(Y) : Y G G{X)} 

with the mapping G in Problem 3; then for every A C k, we have 

{J{H{X):XE[AY}C.U0“[AY. 

Thus the 'Ho corresponding to the H satisfying (*) verifies the partition 
relation in the problem. 

To establish the existence of an H satisfying (*), let / : [«]“' -4 k be a 

set mapping of type u and order 2 with respect to which there is no infinite 

free set; the existence of such a set mapping is guaranteed by Problem 8 of 

Section 19. For each V G [/c]<w, define the function Hv ’• [«]w -4 [k]<u,(c 

[k]^2*0) by stipulating the equality Hv{X) = {f(X U V') : V' C V} for 

every X G [/?]“'. Assume, by reductio ad absurdum, that no Hv satisfies the 

statement corresponding to (*) on any set Y G [«]*, i.e., for every V G [k]<u) 

and for every Y G [k]k, there is an A G [F]K such that 

U(«vW • x e [4]“} z y. 

Then, by recursion, we can define a sequence a0<ai<---< <*„<•••<« 

such that the set {an : n < u] is free with respect to /. 

With some care, the reader can check that the arguments used to solve 

Problems 3 and 4 work even if [A]w (for any X C k) is taken to mean the 

set of all subsets of order type u rather than of cardinality u> of the set X 
[E, H; 4]. 

5. We are going to prove the stronger assertion that if / : [2N°]2 -4 u>i, 
then there is a v < ui and an A c 2N° with \A\ = 2N° such that /“[A]2 c v. 
So, writing k = 2N°, assume we are given / : [k]2 -4 uq, and denote by I the 

K-complete ideal of sets of measure 0. Write T = co(I). We will only use 
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the fact that I is u>i-saturated. For each a < k, there is an ordinal u(a) < u\ 
such that, writing 

U{at) = {/? <«:«</? A /({a, p}) = v}, 

we have 

f(a) =f[j{fu(a) : v < i/(a)} 6 T. 

Using transfinite recursion, we may choose a sequence of ordinals a%, £, < k 
such that 

<*€ 6 p|{/(<*„) : V < £} &r £ < «• 

As we have i/(c^) =j/ona set of £’s of cardinality «, the assertion follows. 

[P; 2]. 
6. Write k = 2H°. We are going to define a sequence of functions /«:«-* 

R for n G u by recursion on n. Let /0 be an arbitrary one-to-one function. 

Assume that fi has already been defined for i < n. Given //, v < k, we 

will write f(n) < f(u) if fi(n) < fi{y) holds for every i < n. Assume that 

for every X C k with |X| = «, there are n,u G X such that f(n) < f(u). 
We want to define fn in such a way that conditions (i) and (ii) below are 

satisfied: 
(i) For each X G [«]K, there are n, v G X such that 

fit*) < /(v) and /„+i(/i) > fn+\{y)\ 

(ii) For each X G [k]k, there are n, v G X such that 

f(n) < f{y) and /„+i(/x) < fn+i(v). 

Let [k]w = {Aa : a < k} be a wellordering. We define /„+i(o:) by transfi¬ 

nite recursion on a in such a way that 

fn+i(a) ± P if P < a 

fn+i(a) ± sup{/„+i(/?) : P G Ay A f(P) < f(a)}, 

fn+i(a) ± inf {fn+i(P) : P E Ary A f(P) < /(<*)} 

whenever 7 < a and A7Ca. 
We claim that with this definition, (i) and (ii) above are satisfied. Assume, 

on the contrary, first that (i) is not satisfied for some X G [k]k. Define 

h : k —y Rn+2 by stipulating that h(u) = (/o(^)> • * -»fn+i{v)) for each v < K- 
Then there is an A G [X]w such that h“A is dense in h“X. Let A = A7 

for some 7 < k. Taking cf(/c) > u> into account, we can see that the set 

X0 = {a G X : 7 < a A A7 C a} also has cardinality «. By the assumption 

that (i) is not satisfied, we have 

/n+i(a) > sup{/„+i(/3) : P € Ary A f(P) < f(oi)} whenever a G Xq. 
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For some real e > 0 and some set Xx G [A0]K, we have 

fn+i(ot) ~ e > sup{/„+i(/?) : (3 G A1 A f(/3) < f(a)} whenever a G Xx. 

Now there is an Xi G [Xi]* such that |/n+i(ao) — /n+i(a:i)| < e/2 whenever 

cto, ai G X2■ Choose ao, ax G X2 with a0 7^ «i such that /(a0) < /(cti). 

As h“A1 is dense in h“X, there is a /? G such that \fn+i(P) — 

/n+i(«o)| < e/2 and 

Ifi(0) ~ /i(ao)| < /i(eti) - /i(a0) for i < n. 

Clearly, /(/?) < f(aQ) and fn+i(P) ^ (e^o)5 in contradiction to the as¬ 

sumption that (i) fails. Thus (i) has been established; (ii) can be established 

in the same way. The definition of the functions fn is now complete. 
Put 

{cx,P} € In 4=^ /(a) < /(/?) A /n+i(o!) > fn+i(P)- 

Then the In’s are pairwise disjoint and, for every X G [«]*, we have 

[X]2 fi In / 0 whenever n < u. 

[G, S], 

Section 21 

1. Let g(v) = and f(v) = 1 for v < ux. We have N • < R1*1 < 

T(9+f) < max(T(t/), 2Nl)+ < ^Wi+1 according to Theorem 21.4 and Lemmas 
21.1 and 21.5. 

2. According to Lemma 21.1 and the assumptions on the cardinalities, we 

have T(u)i) > K3, where wi is the constant function with value ujx on ux. 
Let J- be an SADT for with \J-\ — u>3. Let X c P(u>i) be an uA-complete 

ideal on ux with [tt>i]<“'1 C X. Define the set mapping 'H(g) = {h G T : {£ < 

u)X : h(£) < g(£)} X} on T. If g ^ h for g,h G X, then either g G H(h) 
or h G 71(g). According to Lemma 19.1, we must have \H(g)\ > u>2 for some 

9 G T. In the same way as in Lemma 21.2, it follows that there is a SADT W 
for the function u> (the constant function with value u) such that [H'\ = 
and 

=f {£ < : g(£) <u}(£l 

holds for g eW. Now there is an n < u and a set U" G W with \U"\ = u>2 
such that 

Ag = {£ < u/i : 9(0 = n}il 

for g G H". The set {A” : g g H") consists of almost disjoint sets. [Ke]. 

3. Suppose that 2K° < 2Kl. Instead of the real-valued measurabhty of 

K — 2K°, we will use only the weaker assumption that on k there is a n- 
complete ^-saturated ideal X C P(k) such that [k]<k g X. According to 
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Lemma 21.1 and the assumption on cardinalities, there is an SADT T with 

|F| = k+ for the function assuming the constant value k on wi. In the same 

way as in Problem 2, from this we can conclude that for some g G T' and 

for some T' C T with \T'\ = k, we have 

Ah d= {v < ui : h(v) < g{y)} <£ J whenever h G T'. 

As T is an SADT, for each h,k G T with h / k there is an ordinal v(h, k) < 
such that h{y) ^ k(u) whenever v(h,k) < v < According to the 

main assertion estabhshed in the solution of Problem 5 of Section 20, there 

is an ordinal vq < <jJ\ and there is a set T" C T' with \T"\ — k such that 

i/(h, k) < vQ whenever h, k G T" with h # k. Now there are a set T"' C T" 
with IJP7"! = k and an ordinal ui with i/0 < v\ < such that Vi G Ah 
whenever h G T'". It follows that the values h{vi) are pairwise distinct for 

h G T'", which is a contradiction, since h(ui) < g{yi) for all such h. [P; 1]. 



' 
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equivalence of sets, see sets, 

equivalence of 

Erdos-Dushnik-Miller Theo¬ 

rem, 174, 289 

Erdos-Hajnal-Rado Theo¬ 

rem, 178 

Erdos-Rado Theorem, 171, 

255, 260 

corollary of, 172 

for superscript > 2, 177 

proof of, 180 

essentially bounded function, 

see function, bounded, es¬ 

sentially 

exponentiation 

of cardinals, see cardi¬ 

nals, power of 

of integers, see integers, 

exponentiation of 

of ordinals, see ordinals, 

exponentiation of 

extension 

conservative, 116 

effective, 116 

effective strict, 116 

strict, 116 

elementary, see elemen¬ 

tary extension 

extensional class, see class, 

extensional 

extensionality 

axiom of, see axiom of 

Extensionality 

field of sets 

K-complete, 226 

^-complete 

generated, 226 

filter, 74 

club, see club filter 

/^-complete, 145 

normal, 148 

principal, 74 

<7-complete, 146 

weakly compact, 225 

Finite Intersection Property, 
74 

finite ordinal, see ordinal, 

finite 
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finite set, see set, finite 

first category, see category, 

first 

first kind, ordinal, see ordi¬ 

nal of the first kind 

first-order 

indescribable, see ordi¬ 

nal, indescribable, first-order 

indescribable ordinal, 

see ordinal, indescribable, 

first-order 

indescribable, strongly, 

see ordinal, indescribable, 

strongly first-order 

language, see language, 

first-order 

logic 
compactness theorem 

of, see Compactess Theorem 

of First-Order Logic 

structure, see structure, 

first-order 

Fodor’s Theorem, 151, 153, 

154, 156, 161, 210, 272 

alternative proof of, 210 

on set mappings, 229, 

230 

free set 
with respect to a set 

mapping, see set mapping, 

free set with respect to 

with respect to a set 

mapping 

of higher type, see set 

mapping of higher type, free 

set with respect to 

function, 8 

—s, composition of, 8, 

123 

—s, equal, 8 

additive 

A-, see additive func¬ 

tion 

bounded 

essentially, 154, 211 

choice, 13 

cover of, see cover, of a 

function on ordinals 

domain of, 8 

essentially bounded, see 

function, bounded, essen¬ 

tially 

inverse, 8 

A-additive, see additive 

function 

of n variables, 167 

one-to-one, 8 

onto, 8 

pressing-down, 150 

range of, 8 

rank of, see rank of a 

function on ordinals 

regressive, 150 

restriction of, 23 

Skolem, see Skolem 

function 

value of, 8, 123 

function symbol, 167 

Fundamental Theorem of 

Arithmetic, see prime fac¬ 

torization, unique 

Fundamental Theorem of 

Cardinal Arithmetic, see 

cardinal, arithmetic, funda¬ 

mental theorem of 

Galvin-Hajnal Theorem, 

244, 245, 253 

GCH, see Continuum Hy¬ 

pothesis, Generalized 

General Distributive Law, see 

distributive law, general 

Generalized Continuum Hy¬ 

pothesis, see Continuum 

Hypothesis, Generalized 
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Generalized Continuum 

Problem, see Continuum 

Problem, Generalized 

Godel’s Completeness Theo¬ 

rem, 110 

Godel’s Incompleteness The¬ 

orem, 133 

Godel’s Second Incomplete¬ 

ness Theorem, 138 

Godel’s Second Inomplete- 

ness Theorem, 140 

good set, see set, good 

Hajnal’s Set Mapping Theo¬ 

rem, 230 

Hartog’s Theorem, 65 

Hausdorff Cofinality Theo¬ 

rem, 85 

Hausdorff’s Maximal Chain 

Theorem, 69 

height of a tree, see tree, 

height of 

homogeneous set, 164 

end-, see end- 

homogeneous set 

ideal, 145 

generated by a set, 156 

^-complete, 146 

A-saturated, see ideal, 

saturated 

normal, 150 

prime, 145 

principal, 145 

proper, 145 

saturated, 156, 215 

strongly, 157 

cr-complete, 146 

strongly A-saturated, see 

ideal, saturated, strongly 

inaccessible cardinal, see car¬ 

dinal, inaccessible 

from A, see cardinal, 

inaccessible from A 

incompleteness theorem 

Godel’s, see Godel’s In¬ 

completeness Theorem 

second 

Godel’s, see Godel’s 

Second Incompleteness The¬ 

orem 

increasing operation, in the 

weak sense, see operation, 

increasing in the weak sense 

independent set of a partial 

order, see set, partially or¬ 

dered, independent subset 

of 

indiscernibles, 168 

induction 

mathematical, 66, 127 

on integers, see induc¬ 

tion, mathematical 

transfinite, 66 

theorem on, see 

Transfinite Induction Theo¬ 

rem 

infinite set, see set, infinite 

infinity 

axiom of, see axiom of 

Infinity 

inhomogeneous 

completely, 234 

initial segment, see set, or¬ 

dered, initial segment of 

integer 

—s, addition of, 127 

—s, exponentiation of, 
127 

—s, multiplication of, 

127 

nonnegative, 126 

interpretation, 133 

transitive, 135 

intersection 
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diagonal, 148 

of a set, see set, intersec¬ 
tion of 

inverse 

function, see function, 

inverse 

operation, see operation, 

inverse 

irreflexive property, see prop¬ 

erty, irreflexive 

isomophism of ordered sets, 

see mapping, monotonic 

fc-place relation, see relation, 

fc-place 

/{-compact, see compact, k- 

K-complete field of sets, see 

field of sets, /{-complete 

/{-complete filter, see filter, 

/{-complete 

/{-complete ideal, see ideal, 

/{-complete 

/c-scale, see scale 

/{-tree, see tree, n- 

Konig’s Theorem, 93, 94, 

105, 271 

A-additive 

function, see additive 

function 

A-saturated ideal, see ideal, 

saturated 

A-partition, see partition, A- 

language 

first-order, 167 

large set, see set, large 

least element, see set, 

wellordered, least element 

of 

legist upper bound of a set of 

ordinals, see ordinals, upper 

bound of a set of, least 

Lebesgue measure, see mea¬ 

sure, Lebesgue 

lexicographic ordering, see 

ordering, lexicographic 

limit 

cardinal, see cardinal, 

limit 

ordinal, see ordinal, 

limit 

Magidor’s Theorem, 244 

Mahlo 

cardinal, see cardinal, 

Mahlo 

operation, 188 

mapping, see function 

monotonic, 42 

mathematical induction, see 

induction, mathematical 

Maximal Chain Theorem, see 

Hausdorff’s Maximal Chain 

Theorem 

measurable 

cardinal, see cardinal, 

measurable 

set, see set, measurable 

measure, 190 

Lebesgue, 146 

o- additive, 190 

metatheorem, 118 

model theory 

application of Ramsey’s 

Theorem to, see Ramsey’s 

Theorem, application to 

model theory 

mono tonic mapping, see 

mapping, monotonic 

Mostowski’s Collapsing 

Lemma, 202 

multiplication of integers, see 

integers, multiplication of 

n-place relation, see relation, 

n-place 
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neat set, see set, neat 

Negative Stepping-up 

Lemma, see Stepping-up 

Lemma, Negative 

Neumer’s Theorem, 153, 173, 

210, 212, 213 

nonnegative 

integer, see integer, non¬ 

negative 

integers, see set, of non¬ 

negative integers 

nonreflecting 

stationary subset, 238 

subset, 238 

nonstationary set, see set, 

nonstationary 

normal 

filter, see filter, normal 

ideal, see ideal, normal 

one-to-one, see function, one- 

to-one 

onto function, see function, 

onto 

operation, 9 

compatible with 

a property, 12 

equivalence, 29 

similarity, 44 

increasing in the weak 

sense, 32 

inverse, 123 

order type, 44 

—s, product of, 50 

—s, sum of, 47 

cofinality of, 86 

reverse of, 53 

ordered 

fc-tuple, see tuple, or¬ 

dered 

pair, see pair, ordered 

set, see set, ordered 

tuple, see tuple, ordered 

union, see union, or¬ 

dered 

ordering 

dense, 53 

lexicographic, 182, 218 

pre-, see pre-ordering 

ordinal, 45 

—s, exponentiation of, 

76 

—s, upper bound of a 

set of, 64 

least, 64 

finite, 126 

indescribable 

first-order, 185 

strongly first-order, 

184 

limit, 65, 146 

of the first kind, 65 

of the second kind, 65 

regular, 86 

singular, 86 

successor, 65 

pair 

ordered, 8 

pairing 

axiom of, see axiom of 

Pairing 

paradox 

Russell’s, 6 

partially ordered set, see set, 

partially ordered 

partition, 164 

canonical, 278 

canonical expansion of, 

277 

color in, 164 

A-, 164 

r-, for 2 < r < u, 177 

square-bracket symbol, 
234-241 

tree 
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canonical, 181 

Peano Arithmetic, 133 

</>-closed, see set, closed, </>- 

postulate 

defining, 114 

power of a set, see set, power 

of 

power of cardinals, see cardi¬ 

nals, power of 

weak, see cardinals, 

power of, weak 

power set, see set, power 

axiom of, see axiom of 

Power Set 

pre-ordering, 194 

pressing-down function, see 

function, pressing-down 

prime factorization 

unique, 16 

prime ideal, see ideal, prime 

principal 

filter, see filter, principal 

ideal, see ideal, principal 

product 
anti-lexicographic, 49 

Cartesian, 28 

of cardinals, see cardi¬ 

nals, product of 
of order types, see order 

types, product of 

proper 

ideal, see ideal, proper 

initial segment, see set, 

ordered, proper initial seg¬ 

ment of 

subset, see subset, 

proper 

property, 6 

added to ZF, 114 

anti-symmetric, 22 

finite intersection, see 

Finite Intersection Property 

irreflexive, 22 

restriction of, 42 

set-like, 202 

two-variable, 9 

well-founded, see well- 

founded property 

quantifier 

restricted, 5 

quotient field, 127 

r-partition for 2 < r < u>, see 

partition, r-, for 2 < r < u 

Rado’s Selection Lemma, 76, 

286 

proof of, 103 

Ramsey cardinal, see cardi¬ 

nal, Ramsey 

Ramsey’s Theorem, 164, 165, 

166, 170, 171, 216, 234, 286 

application to model 

theory, 167 

range of a function, see func¬ 

tion, range of 

rank 

of a function on ordi¬ 

nals, 248 

of a set, see set, rank of 

rational numbers, see set of 

rational numbers 

real numbers, see set of real 

numbers 

real-valued measurable car¬ 

dinal, see cardinal, measur¬ 

able, real-valued 

recursion 

on u>, 127 

transfinite, 67 

theorem on, see 

Transfinite Recursion Theo¬ 

rem 

reflexive relation, see rela¬ 

tion, reflexive 
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regressive function, see func¬ 

tion, regressive 

regular ordinal, see ordinal, 

regular 

regularity 

axiom of, see axiom of 

Regularity 

relation 

fc-place, 41 

n-place, 167 

reflexive, 11 

restriction of, 42 

symbol, 167 

symmetric, 11 

transitive, 11 

relative consistency, see con¬ 

sistency, relative 

proof, see consistency, 

relative, proof of 

replacement 

axiom of, see axiom of 

Replacement 

scheme, see axiom of 

Replacement 

restricted quantifier, see 

quantifier, restricted 

restriction 

of a function, see func¬ 

tion, restriction of 

of a property, see prop¬ 

erty, restriction of 

of a relation, see rela¬ 

tion, restriction of 

reverse of an order type, see 

order type, reverse of 

reverse-Sorgenfrey topology, 

see topology, Sorgenfrey, 

reverse 

Russell’s 

antinomy, see paradox, 

Russell’s 

paradox, see paradox, 

Russell’s 

SADT, see transversals, sys¬ 

tem of almost disjoint 

saturated 

cardinal, see cardinal, 

saturated 

ideal, see ideal, satu¬ 

rated 

scale, 215 

second incompleteness theo¬ 

rem 

Godel’s, see Godel’s Sec¬ 

ond Incompleteness Theo¬ 

rem 

second kind, ordinal, see or¬ 

dinal of the second kind 

set, 5 

—s, equal, 5 

—s, equivalence of, 11 

—s, ordered 

similar, 42 

-like property, see prop¬ 

erty, set-like 

cardinality of, 13, 77 

closed 

268 

unbounded, see club 

with respect to a set 

mapping, see set mapping, 

closed set with respect to 

constructible, 141 

countable, 15 

countably infinite, 15 

element of, 5 

empty, 6 

field of —s, see field of 

sets 

finite, 12 

free 

with respect to a set 

mapping, see set mapping, 

free set with respect to 
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with respect to a set 
mapping of higher type, see 

set mapping of higher type, 
free set with respect to 

good, 56, 57 
homogeneous, see homo¬ 

geneous set 
infinite, 12 
intersection of, 10 
large, 146 
mapping, 228 

closed set with respect 
to, 229 

free set with respect 
to, 228 

of higher type, 232 
of higher type, free set 

with respect to, 232 
of order A, 228 
of type r, 232 
of type < r, 232 
Theorem, Hajnal’s, 

see Hajnal’s Set Mapping 
Theorem 

measurable, 190 
neat, 268 
nonstationary, 148 
of indiscernibles, see in- 

discernibles 
of nonnegative integers, 

5 
of ordinals 

closed, 146 
of rational numbers, 5, 

127 
of real numbers, 5, 127 

ordered, 41 
cofinality of, 86 
initial segment of, 54 
proper initial segment 

of, 54 
partially ordered, 42 

cofinality of, 92 

independent subset of, 
75 

0-closed, see set, closed, 

<h 
power, 7 
power of, 29 
rank of, 130 
stationary, 148 
sub¬ 

nonreflecting, see non¬ 
reflecting subset 

nonreflecting station¬ 
ary, see nonreflecting sta¬ 
tionary subset 

system, 7 
almost disjoint, 158, 

215 
A-, see A-system 
dual of, 145 

transitive, 57 
uncountable, 19 
union of, 7, 10 
wellordered, 45 

least element of, 45 
£-large, see set, large 
£-nonstationary, see set, 

nonstationary 
^-stationary, see set, sta¬ 

tionary 
Set Mapping Theorem 

Hajnal’s, see Hajnal’s 
Set Mapping Theorem 

Shelah’s Theorem 
on cardinal exponentia¬ 

tion, 271 
on powers of singular 

cardinals, 245, 259 

Sierpinski’s Theorem, 171, 
219 

generalization of, 171 
<T-additive, see measure, o- 

additive 
cr-complete 
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filter, see filter, a- 

complete 

ideal, see ideal, a- 

complete 

<7-ideal, see ideal, tr-complete 

signature of a structure, see 

structure, signature of 

Silver’s Theorem, 99 

on powers of singular 

cardinals, 244, 245, 255 

similar ordered sets, see sets, 

ordered, similar 

singular cardinal problem, 

the, 243 

singular ordinal, see ordinal, 

singular 

Skolem function, 185 

Solovay’s Theorem on Split¬ 

ting Stationary Sets, 154, 

156, 289 

proof of, 214 

Sorgenfrey topology, see 

topology, Sorgenfrey 

reverse, see topology, 

Sorgenfrey, reverse 

square-bracket partition sym¬ 

bol, see partition, square- 

bracket symbol 

squashing of a tree, see tree, 

squashing of 

stationary set, see set, sta¬ 

tionary 

Stepping-up Lemma, 179 

Negative, 279 

strict conservative extension, 

see extension, conservative, 

strict 

strong limit cardinal, see car¬ 

dinal, strong limit 

strongly first-order indescrib¬ 

able ordinal, see ordinal, 

indescribable, strongly first- 

order 

strongly inaccessible cardinal, 

see cardinal, inaccessible, 

strongly 

strongly A-saturated ideal, 

see ideal, saturated, 

strongly 

strongly saturated ideal, see 

ideal, saturated, strongly 

structure 

first-order, 167 

signature of, 167 

submodel 

elementary, see elemen¬ 

tary submodel 

subset, 6 

nonrefiecting, see nonre¬ 

flecting subset 

stationary, see nonre¬ 

flecting stationary subset 

proper, 6 

successor 

cardinal, see cardinal, 

successor 

of a cardinal, see cardi¬ 

nal, successor of a — 

ordinal, see ordinal, suc¬ 
cessor 

sum 

of cardinals, see cardi¬ 

nals, sum of 

of order types, see order 

types, sum of 

supremum 

diagonal, 249 

symmetric relation, see rela¬ 

tion, symmetric 

system of almost disjoint 

transversals, see transver¬ 

sals, system of almost dis¬ 

joint 

Tarski’s Theorem, 65 
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Teichmiiller-Tukey Lemma, 

69, 75, 175, 228 

Theorem 

on Well-Founded Induc¬ 

tion, see Well-Founded In¬ 

duction, Theorem on 

on Well-Founded Re¬ 

cursion, see Well-Founded 

Recursion, Theorem on 

Todorcevic-Shelah Theorem, 

The, 239 

Todorcevic’s Theorem, 236 

topology 

Sorgenfrey, 285 

reverse, 285 

transfinite induction, see in¬ 

duction, transfinite 

Transfinite Induction Theo¬ 

rem, 66 

Transfinite Recursion Theo¬ 

rem, 67, 125, 280 

transitive 

class, see class, transi¬ 

tive 

interpretation, see inter¬ 

pretation, transitive 

relation, see relation, 

transitive 

set, see set, transitive 

transversals 

system of almost dis¬ 

joint, 246 

tree, 181, 217 

branch of, 217 

height of, 217 

k- , 217 

partition 

canonical, see parti¬ 

tion tree, canonical 

property, 217 

squashing of, 218 

tuple 

ordered, 41 

two-variable property, see 

property, two-variable 

type, order, see order type 

Ulam matrix, 207 

ultrafilter, 74 

uncountable, see set, un¬ 

countable 

union 

axiom of, see axiom of 

Union 

of a set, see set, union of 

ordered, 45 

unique prime factorization, 

see prime factorization, 

unique 

upper bound of a set of or¬ 

dinals, see ordinals, upper 

bound of a set of 

value of a function, see func¬ 

tion, value of 

weak cardinal power, see car¬ 

dinals, power of, weak 

weak power of cardinals, see 

cardinals, power of, weak 

weakly compact cardinal, see 

cardinal, weakly compact 

weakly compact filter, see 

filter, weakly compact 

weakly inaccessible cardinal, 

see cardinal, inaccessible, 

weakly 

well-founded 

property, 192 

Well-Founded Induction 

Theorem of, 280 

Theorem on, 202 

Well-Founded Recursion 

Theorem of, 280 

Theorem on, 202 

wellordered, see set, 

wellordered 
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Wellordering Theorem, 69 

£-club, see club 

large set, see set, £-large 

£-nonstationary set, see set, 

nonstationary 

^-stationary set, see set, sta¬ 
tionary 

Zermelo’s Theorem, see 

Wellordering Theorem 

Zermelo-Fraenkel axiom sys¬ 

tem, see axiom, system, 

Zermelo-Fraenkel 

ZF, 112, see also axiom sys¬ 

tem, Zermelo-Fraenkel 

ZFC, see axiom system, 

Zermelo-Fraenkel with 

Choice 

Zorn’s Lemma, 69 
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