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PREFACE TO THE FIRST EDITION

The creation of set theory can be traced back to the work of XIXth

century mathematicians who tried to find a firm foundation for calculus.

While the early contributors to the subject (Bolzano, Du Bois Reymond,

Dedekind) were concerned with sets of numbers or of functions, the

proper founder of set theory, Georg Cantor, made a decisive step and

started an investigation of sets with arbitrary elements. The series of

articles published by him in the years 1871-1883 contains an almost

modem exposition of the theory of cardinals and of ordered and well-

ordered sets. That step toward generalizations which Cantor made

was a difficult one was witnessed by various contradictions (antinomies

of set theory) discovered in set theory by various authors around 1900.

The crisis created by these antinomies was overcome by Zermelo who

formulated in 1904-1908 the first system of axioms of set theory. His

axioms were sufficient to obtain all mathematically important results

of set theory and at the same time did not allow the reconstruction of

any known antinomy. Close ties between set theory and philosophy of

mathematics date back to discussions concerning the nature of an-

tinomies and the axiomatization of set theory. The fundamental prob-

lems of philosophy of mathematics such as the meaning of existence in

mathematics, axiomatics versus description of reality, the need of con-

sistency proofs and means admissible in such proofs were never better

illustrated than in these discussions.

After an initial period of distrust the newly created set theory made

a triumphal inroad in all fields of mathematics. Its influence on math-

ematics of the present century is clearly visible in the choice of modern

problems and in the way these problems are solved. Applications of

set theory are thus immense. But set theory developed also problems

of its own. These problems and their solutions represent what is known

as abstract set theory. Its achievements are rather modest in comparison
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to the applications of set theoretical methods in other branches of math-

ematics, some of which owe their very existence to set theory. Still, abstract

set theory is a well-established part of mathematics and the knowledge

of its basic notions is required from every mathematician.

Recent years saw a stormy advance in foundations of set theory.

After breaking through discoveries of Godel in 1940 who showed relative

consistency of various set-theoretical hypotheses the recent works of

Cohen allowed him and his successors to solve most problems of inde-

pendence of these hypotheses while at the same time the works of Tarski

showed how deeply can we delve in the domain ot inaccessible cardinals

whose magnitude surpasses all imagination. These recent works will

certainly influence the future thinking on the philosophical foundations

of mathematics.

The present book arose from a mimeographed text of Kuratowski

from 1921 and from an enlarged edition prepared jointly by the two

authors in 1951. As a glance on the list of contents will show, we intended

to present the basic results of abstract set theory in the traditional order

which goes back still to Cantor: algebra of sets, theory of cardinals,

ordering and well-ordering of sets. We lay more stress on applications

than it is usually done in texts of abstract set theory. The main field

in which we illustrate set-theoretical methods is general topology. We

also included a chapter on Borel, analytical and projective sets. The

exposition is based on axioms which are essentially the ones of Zermelo-

Fraenkel. We tried to present the proofs of all theorems even ot the

very trivial ones in such a way that the reader teels convinced that they

are entirely based on the axioms. This accounts for some pedantry in

notation and in the actual writing of several formulae which could be

dispensed with if we did not wish to put the finger on axioms which we

use in proofs. In some examples we use notions which are commonly

known but which were not defined in our book by means ot the primitive

terms of our system. These examples are marked by the sign #.

In order to illustrate the role of the axiom of choice we marked by

a small circle ° all theorems in which this axiom is used. There is in the

book a brief account of the continuum hypothesis and a chapter on

inaccessible cardinals. These topics deserve a more thorough presen-

tation which however we could not include because of lack of space.
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Also the last chapter which deals with the descriptive set theory is

meant to be just an introduction to the subject.

Several colleagues helped us with the preparation of the text. Dr M.
Mczyski translated the main part of the book and Mr R. Kowalsky
collaborated with him in this difficult task. Professor J.o wrote a pen-

etrating appraisal of the manuscript of the 1951 edition as well as of the

present one. His remarks and criticism allowed us to eliminate many
errors and inaccuracies. Mr W. Marek and Mr K. Winiewski read

the manuscript and the galley proofs and helped us in improving our

text. To all these persons we express our deep gratitude.

Kazimierz Kuratowski

Andrzej Mostowski



PREFACE TO THE SECOND EDITION

The second edition of our Set Theory differs essentially from the

first—which was translated from the Polish edition (by Protessor M. M-
czyski)—by the extension of its content. Our aim was to introduce

the reader to some chapters of set theory which actually seem to be

especially attractive and are cultivated by a large and still growing

number of mathematicians.

The major changes introduced in the new edition are:

1 We wrote a new chapter on trees containing also a short introduc-

tion to the partition calculus and we completely rewrote Chapter 9 of

the old edition dealing with inaccessible cardinals.

2. We introduced four chapters on descriptive set theory which re-

place Chapter 10 of the old edition. These four chapters (which were

written by K. Kuratowski) contain

a. A short survey ot the theory of Borel sets and Borel-measurable

functions, preceded by a fairly general theory ol L-measurable t unctions

(where L is an arbitrary cr-lattice).

b. An insight into the theory of Souslin (analytic) sets and—more

generally—of projective sets.

c. Some results on measurable selectors, mostly found within the

last few years.

Some results presented in Chapters 1 1-14 are new as tar as we know,

whereas the first 10 chapters contain only results which are known

from the literature.

We consistently tried to remain within the tramework ot the classical

set theory. For this reason we did not include into our book any of

the exciting recent results in whose proofs one uses model theoretical

methods or notions borrowed from advanced parts ot mathematical

logic. See Mostowski [1].

We welcome this opportunity to express our gratitude—in addition

to persons mentioned in the Preface to the first edition to our younger
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colleagues, J. Kaniewski, W. Marek, R. Pol, and P. Zbierski who read

the manuscript, engaged in numerous discussions and provided many

suggestions and corrections.

It is also our pleasure to express our thanks to Dr B. S. Niven from

the White Agricultural Research Institute, South Australia, lor correct-

ing our English and to Mrs D. Wojciechowska for her help in preparing

our manuscript.

Finally our thanks go to the North-Holland Publishing Company,

as well as to the Polish Scientific Publishers and personally to

Mrs Z. Osek, Mr W. Muszyski and Mr J. Panz for their assistance

in the publication of this book.

Kazimierz Kuratowski

Andrzej Mostowski
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CHAPTER I

ALGEBRA OF SETS

§ 1. Propositional calculus

Mathematical reasoning in set theory may be presented in a very

clear form by making use of logical symbols and by basing argu-

ments on the laws of logic formulated in terms of such symbols.

In this section we shall present some basic principles of logic in

order to refer to them later in this chapter and in the remainder of

the book.

We shall designate arbitrary sentences by the letters p,q,r, ... We
assume that all of the sentences to be considered are either true or

false. Since we consider only sentences of mathematics, we shall be

dealing with sentences for which the above assumption is applicable.

From two arbitrary sentences, p and q ,
we can form a new sentence

by applying to p and to q any one of the connectives:

and, or, if ... then ... ,
if and only if.

The sentence p and q we write in symbols p/\q. The sentence

P^q is called the conjunction or the logical product of the sentences

p and q which are the components of the conjunction. The conjunc-

tion p/\q is true when both components are true. On the other hand,

if any one of the components is false then the conjunction is false.

The sentence p or q, which we write symbolically pvq, is called

the disjunction or the logical sum of the sentences p and q (the com-

ponents of the disjunction). The disjunction is true if either of the

components is true and is false only when both components are

false.

The sentence if p then q is called the implication of q by /?, where p
is called the antecedent and q the consequent of the implication. Instead



2 1. ALGEBRA OF SETS

of writing if p then q we write p - q. An implication is false if the

consequent is false and the antecedent true. In all other cases t e

implication is true.

If the implication p - q is true we say that q follows from p, if

we know that the sentence p is true we may conclude that the sentence

q is also true.
,

In ordinary language the sense of the expression 1 •••> en ...

does not entirely coincide with the meaning given above. However,

in mathematics the use of such a definition as we have given is

The sentence p if and only if q is called the equivalence of the

two component sentences p and q and is written p = q. This sentence

is true provided p and q have the same logical value; that is, either

both are true or both are false. If p is true and q false, or ii p is false

and q true, then the equivalence p = q is false.

The equivalence p = q can also be defined by the conjunction

(p
“

1
” 0) a (<7

“* P) •

The sentence it is not true that p we call the negation ot p and we

write ~\p. The negation ~\p is true when p is talse and false when p

is true. Hence HP has the logical value opposite to that ol p.

We shall denote an arbitrary true sentence by V and an arbitrary

false sentence by F; for instance, we may choose for V the sentence

2-2 = 4, and for F the sentence 2-2 = 5.

Using the symbols F and V, we can write the definitions ol truth

and falsity for conjunction, disjunction, implication, equivalence and

negation in the form of the following true equivalences.

(1) FaF=F,

(2) fvf = F,

(3) (F -* F) = V,

(4) (F = F) = V,

(5 )

FaV = F, VaF = F,

FvV = V, VvF = V,

(F -> V) = V, (V -> F) = F,

(F = V) = F, (V = F) = F,

-\F=V, ~\V = F.

Va V = V,

FvV = V,

(V - V) = V,

(V = V) = V,

Logical laws or tautologies are those expressions built up from the

letters p, q. r, ... and the connectives A, v, =,
—

1

which have the
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property that no matter how we replace the letters p, q, r, ... by arbi-

trary sentences (true or false) the entire expression itself is always true.

The truth or falsity of a sentence built up by means of connec-

tives from the sentences p, q ,
r, ... does not depend upon the meaning

of the sentences p,q,i\ ... but only upon their logical values. Thus

we can test whether an expression is a logical law by applying the

following method." in place of the letters p,q,r, ... we substitute the

values F and V in every possible manner. Then using equations (l)-(5)

we calculate the logical value of the expression for each one of these

substitutions. If this value is always true, then the expression is a

tautology.

Example. The expression {p/\q) (pvr) is a tautology. It contains

three variables p,q and /*. Thus we must make a total of eight sub-

stitutions, since for each variable we may substitute either F or V.

If, for example, for each letter we subtitute F, then we obtain

(FaF)-> (Fvf), and by (1) and (2) we obtain F -> F, namely V.

Similarly, the value of the expression (p/\q )
-* (/>vr) is true in each

of the remaining seven cases.

Below we give several of the most important logical laws together

with names for them. Checking that they are indeed logical laws is

an exercise which may be left to the reader.

(pvq) = (qvp)

[(pvq)vr] = [pv(qvr)\

(pAq) = (qAp)

[pA(qAr)] = [(pAq)Ar]

law of commutativity of disjunction ,

law of associativity of disjunction ,

law of commutativity of conjunction ,

law of associativity of conjunction ,

[p a (q v r)\ = [(p a q) v (p a r)] first distributive law
,

[p v (<7 A r )] — [(P v q) a (p v r)] second distributive law ,

(pvp) = p, (pAp) = p laws of tautology
,

(pAF) = F, (p a V) = p

(pvF) = /?, (pv V) = V

In these laws the far reaching analogy between propositional cal-

culus and ordinary arithmetic is made apparent. The major differ-

ences occur in the second distributive law and in the laws of taut-

ology and absorption. In particular, the laws of tautology show that

laws of absorption.
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in the propositional calculus with logical addition and multiplication

we need use neither coefficients nor exponents.

[{p -> f) a (q -/*)]-(/?-> r) law of the hypothetical syllogism ,

Throughout this book whenever we shall write an expression using

logical symbols, we shall tacitly state that the expression is true.

Remarks either preceding or following such an expression will always

refer to a proof of its validity.

§2. Sets and operations on sets

The basic notion of set theory is the concept of set. This basic con-

cept is, in turn, a product of historical evolution. Originally the theory

of sets made use of an intuitive concept of set, characteristic of the

so-called “naive” set theory. At that time the word “set” had the same

imprecisely defined meaning as in everyday language. Such, in par-

ticular, was the concept of set held by Cantor, 1

) the creator ot set

theory.

Such a view was untenable, as in certain cases the intuitive concept

proved to be unreliable. In Chapter II, §2 we shall deal with the

antinomies of set theory, i.e. with the apparent contradictions which

appeared at a certain stage in the development ot the theory and

l

) Georg Cantor (1845-1918) to whom we owe the creation of set theory was

a German mathematician, professor at the University of Halle. He published his

basic papers on set theory in “Mathematische Annalen” during the years 1879-1893.

These papers were reprinted in Cantor [7]; this volume contains also a biography

of Cantor written by E. Zermelo.

(pv-|p) ^ v

(p a \p) = F

p = 1~]p

~](pvq) = (~lpA~]q)

~I0 a?) = Clpv-|*)

0 - q) = Clq - “1/0

(p-*q) = CTpv*),

f -+ p, p-+p, p v.

law of excluded middle
,

law of contradiction
,

law of double negation ,

de Morgan s laws,

law of contraposition ,



2. SETS AND OPERATIONS ON SETS 5

were due to the vagueness of intuition associated with the concept

of set in certain more complicated cases. In the course of the polemic

which arose over the antinomies it became obvious that different

mathematicians had different concept of sets. As a result it became

impossible to base set theory on intuition.

In the present book we shall present set theory as an axiomatic

system. In geometry we do not examine directly the meaning of the

terms “point”, “line”, “plane” or other “primitive terms”, but from

a well-defined system of axioms we deduce all the theorems of geom-

etry without resorting to the intuitive meaning of the primitive terms.

Similarly, we shall base set theory on a system of axioms from which

we shall obtain theorems by deduction. Although the axioms have

their source in the intuitive concept of sets, the use of the axiomatic

method ensures that the intuitive content of the word “set” plays

no part in proofs of theorems or in definitions of set theoretical

concepts.

Sometimes we shall illustrate set theory with examples furnished by

other branches of mathematics. This illustrative material involving

axioms not belonging to the axiom system of set theory will be dis-

tinguished by the sign # placed at the beginning and at the end of

the text.

The primitive notions of set theory are “set" and the relation ”to be

an element of”. Instead of x is a set we shall write Z(x), and instead of

x is an element of y we shall write x e^.1

) The negation of the formula

x e y will be written as x non e y, or x y or “1C* E y)- To simplify the

notation we shall use capital letters to denote sets; thus if a formula

involves a capital letter, say A, then it is tacitly assumed that A is a set.

Later on we shall introduce yet another primitive notion: xTRv (x is

the relational type of y). We shall discuss it in Chapter II.

For the present we assume four axioms:

I. Axiom of extensionality: If the sets A and B have the same el-

ements then they are identical.

') The symbol e is derived from the Greek letter epsilon. The use of this letter

for the elementhood relation was introduced by Peano [2] who selected it as the

abbreviation of the Greek word “to be” (eotC). Many other mathematical and

logical symbols also originated with Peano.
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A. 1

)
Axiom of union: For any sets A and B there exists a set which

contains all the elements of A and all the elements of B and which does

not contain any other elements.

B. 1

)
Axiom of difference: For any sets A and B there exists a set

which contains only those elements of A which are not elements oj B.

C.
1

) Axiom of existence: There exists at least one set.

The axiom of extensionality can be rewritten in the following

form:

if for every x, x e A = x e B, then A = B,

where the equality sign between the two symbols indicates that they

denote the same object.

It follows from axioms I and A that for any sets A and B there

exists exactly one set satisfying the conditions of axiom A. In tact,

if there were two such sets C
x
and C2 ,

then they would contain the

same elements (namely those which belong either to A or to B) and,

by axiom I, C, = C2 .

The unique set satisfying the conditions ot axiom A is called the

union of two sets A and B and is denoted by AuB. Thus for any x

and for any sets A and B we have the equivalence

(1) xeAuB = (xeA)v(xeB).

Similarly, from axioms I and B, it follows that for any sets A and

B there exists exactly one set whose elements are all the objects belong-

ing to A and not belonging to B. This set, called the difference ot A

and B , is denoted by A-B. For any .y and for arbitrary sets A and B

we have

(2) x e A - B = (x e A) a (x B)

.

By means of de Morgan's law and the law ot double negation (§1,

p. 4) it follows that

(3) H(-vgT-£) ee ~](x e A) v (x e B),

i.e. .y is not an element of A — B if .y is not an element ot A or x is an

element of B.

') In Chapter II these axioms will be replaced by more general ones.
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Using the operations u and —
,
we can define two other operations

on sets.

The intersection A n B of A and B we define by

An B = A-(A-B).

From the definition of difference we have for any x

x e A n B = (a e A) a “](.v e A — B )

,

from which, by means of (3) and the first distributive law (see p. 3), it

follows that

x e A n B = (x e A) a [~|(x e A) v (a e B)]

= [(a e A) a “1(* e A)] v [(a e A) a (x e B)]

= Fv [(a- € A) a (x e 5)] = [(a e A) a (a e 5)],
and finally

(4) x e A n B = (xe A) a (a e B).

Hence the intersection of two sets is the common part of the factors;

the elements of the intersection are those objects which belong to both

factors.

The symmetric difference of two sets A and B is defined as

(5) A^-B = (A-B)kj(B-A).

The elements of the set A - B are those objects which belong to A and

not to B together with those objects which belong to B and not to A.

Exercises

1. Define the operations u, n, — by means of: (a) — , n, (b) — , u, (c) — ,
—

.

2. Show that it is not possible to define either the sum by means of the intersec-

tion and the difference, or the difference by means of the sum and the intersection

§3. Inclusion. Empty set

A set A is said to be a subset of a set B provided every element

of the set A is also an element of the set B. In this case we write

A c= B or B => A and we say that A is included in B. The relation

<= is called the inclusion relation.

The following equivalence results from this definition

(1) {for every x (a 6 A -> a e B)} = A c- B.
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Clearly, from A = B it follows that A c B, but not conversely.

If A cz B and A # B we say that A is a proper subset of B. If A is a

subset of B and B is a subset of A then A = B, i.e.

(.A cz B) a (B cz A) -» (A = B).

To prove this we notice that from the left-hand side ot the implica-

tion we have for every x

x e A — x g B and x e B -> .v e A ,

from which we obtain the equivalence x e A = x e B, and thus A = B

by axiom I.

It is easy to show that if A is a subset of B and B is a subset ot C,

then A is a subset of C:

(*2) (A c= B)a (B cz C) - (A ci C)

,

i.e. the inclusion relation is transitive.

The union of two sets contains both components; the intersection

of two sets is contained in each component:

(3) A a Ayj B, B cz A u B,

(4) A nB cz A, A nB cz B.

In fact, from p —
>
(pvq) it tollows that tor every v

x e A [(x e/l)v(i e £)],

from which, by 2 (l),')*e/l -+xe(AvB), and by (1) we obtain

A <= AvB. The proof of the second formula of (3) is similar, the

proof of (4) follows from the law (p/\q) -> p.

From 2 (2) it follows that

A — B cz A .

Thus the difference of two sets is contained in the minuend.

The inclusion relation can be defined by means ot the identity

relation and one of the operations u or n. Namely, the following

equivalences hold

(5) (/I cz B) = (A u B = B) = {A nB = A).

x

) 2 (1) denotes formula (1) in §2.
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In fact, i f A a B then for every x, x e A -* x e B; thus, by means of

the law (p - q) -* [{pvq) -> <7 ],

[(.V G A) V (jc 6 5)] -* (x E B)

which proves that A 'u B cz B. On the other hand, B cz A kj B and hence

A u B = B.

Conversely, if A kj B = B, then by (3) A <= B.

The second part of equivalence (5) can be proved in a similar manner.

It follows from axiom B that if there exists at least one set A then

there also exists the set A — A which contains no element. There exists

only one such set. In fact, if there were two such sets Z, and Z2 , then

(for every x) we would have the equivalence

X S Zy = X G Z2 .

This equivalence holds since both components are false. Thus, from

axiom I, Z
x
= Z2 .

This unique set which contains no element is called the empty set

and is denoted by 0. Thus for every x

x{0,
i.e.

(x G 0) = F.

The implication x e 0 -> x e A holds for every jc since the antecedent

of the implication is false. Thus

0Cz A,

i.e. the empty set is a subset of every set.

Formula 2(1) implies that

x e (A v 0) = (x e A)v (x e 0) = (x e A)v F = x e A
,

because pvF = p. From this we infer

A u 0 = A
,

and from
—

|
F = V

A-0 = A.

The identity A n B = 0 indicates that the sets A and B have no

common element, or—in other words—they are disjoint.

The equation B— A = 0 is equivalent to B c= A.
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The role played by the empty set in set theory is analogous to that

played by the number zero in algebra. Without the set 0 it would not

always be possible to perform the operations ot intersection and sub

traction and the calculus of sets would be considerably more com-

plicated.

§4. Laws of union, intersection, and subtraction

The operations of union, intersection, and subtraction on sets have

many properties in common with operations on numbers, namely, union

with addition, intersection with multiplication, and subtraction with

subtraction. In this section we shall mention the most important ot

these properties. We shall also prove several theorems indicating the

difference between the algebra of sets and arithmetic.

The commutative laws :

(1) Ayj B = BuA, A n B = B n A .

These laws follow directly from the commutative laws for disjunc-

tion and conjunction.

The associative laws :

(2) A u(5uC) = (A u B) uC, An(BnC) = (AnB)nC.

Again, these laws are direct consequences of the associative laws tor

disjunction and conjunction.

Formulas (1) allow us to permute the components ot any union or

intersection of a finite number of sets without changing the results. Simi-

larly, formulas (2) allow us to group the components ot such a finite

union or intersection in an arbitrary manner. For example:

du{fiu[Cu(i)u£)j} = [/(u(DuC)]u(5uf)

= (EuC)v[Bu(AuD)].

In other words, we may eliminate parentheses when pertorming the

operation of union (or intersection) on a finite number of sets.

The distributive laws :

A n(BuC) = (A n£) u(A nC),

/lu(£nC) = (A uB) n(A uC).
(3 )
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The proofs follow from the distributive laws for conjunction over

disjunction and disjunction over conjunction, given in §1.

The first distributive law is completely analogous to the correspond-

ing distributive law in arithmetic. Similarly, as in arithmetic, from this

law it follows that in order to intersect two unions we may intersect

each component of the first union with each component of the second

union and take the union of those intersections:

(AuBkj... u//)n(Iufu ... u T)

= (A n X) u (A n Y) u ... u (A n T) u (B n X) u (B n Y) u

... u(£nT)u ... u(H nX) u(//nF)u... u (HnT).

The second distributive law has no counterpart in arithmetic.

The laws of tautology.

(4) A u A = A ,
A n A = A .

The proof is immediate from the laws of tautology (pvp) = p and

{p/\p) = p.

We shall prove several laws of subtraction.

(5) A'u(B-A) = AkjB.

Proof. By means of (1) and (2) of § 2 we have

x e [A kj(B-A)] = (x e A) v [O e B) a 10 e A)],

from which, by the distributive law for disjunction over conjunction,

jc e [A kj(B— A)] = [0 E A) v(x e B)\ a [(* e A) v
-
](* G ^)]

= (x e A) v (x e B)

,

since (x e A) v ~\(x e A) = V, and V may be omitted as a component

of a conjunction. Thus

x e [A u {B— A)] = x e (A u B),

which proves (5).

From (5) we conclude that the operation of forming difference of sets

is not the inverse of the operation of forming their union. For example,

if A is the set of even numbers and B the set of numbers divisible by

3 then the set Av(B-A) is different from B
,
for it contains all even

numbers.
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On the other hand, if A <= B, we have by (5) and 3 (5)

A u(B-A) = B
,

as in arithmetic.

(6) A - B = A - (A n B )

.

Proof.

x e A — (A n B) = (x e A) a ~1(jc eA n B) = (x e A)a “IK-* e A) a (xe B)]

= (x e A) a l 1
(jc s A)v~j(x e B)]

= [(ie4a1(«4]v[(is/()a1x€8)]
= Fv[(i€4a1(j 6S)| = [(jce/OA~l(JceB)]

= x e A — B.

The distributive law for intersection over subtraction has in the

algebra of sets the following form

(7) An(B-C) = (AnB)-C.

This law follows from the equivalence

x e An(B-C) = [(* e A) a (x e B) a ~|(.x e C)]

= [(x g A n B) a
—

|
(a: £ C)]

= x e (A n B) — C

.

From (7) it follows that

A n (B—A) = (AnB)-A = (Bn A)-

A

= Bn(A-A) = Bn0 = 0.

Thus
An(B-A) = 0.

De Morgan’s laws for the calculus of sets take the following form

A-(BnC) = (A — B) u(A — C),

(8)
A-(BuC) = (A-B)n(A-C).

In the proofs we make use of de Morgan’s laws tor the prop-

ositional calculus.

The following identities are given without proof.

(9) (AkjB)-C = (A-C)yj(B-C),

(10) A-(B-C) = (A — B) u(A n C),

(11) A-(BuC) = (A-B)-C.
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The following formulas illustrate the analogy between the inclusion

relation and the “less than" relation in arithmetic:

(12) (A c B)a(C c D) -+ (AuC <= flu/)),

(13) (A c B) a (C c= D) -* {A nC a B nD),

(14) (A c B)a(C c Z)) -> (A-D c £-C).

From (14) it follows as an easy consequence that

(15) (C c D) -4 (/!-/) d A-C),

which is the counterpart of the arithmetic theorem:

x ^ y -* z—y ^ z— x.

Exercises

1. Prove the formula

N(AvB) = N(A) +N(B) —N(A nB)

,

where N(X) denotes the number of elements of the set X (under the assumption that

X is finite).

Hint: Express N(A — B) in terms of N(A) and N(AnB).

2. Generalize the result of Exercise 1 in the following way

N(A
1
vA 2 v ... u A n ) = ^ M(AtnAjnA k)- ...,

i i* j i* j * k

where the indices of the summations take as values the numbers from 1 to n, and

they are different from each other.

3. Applying the result of Exercise 2 show that the number of integers less than

n and prime to n is given by the formula

where p ly p 2 , ... , pr denote all different prime factors of n.

§5. Properties of symmetric difference
1

)

The symmetric difference A — B was defined in §2, p. 7 by the

formula

(0) A-B = (A-B)v(B-A).

*) The properties of symmetric difference were investigated very extensively by

Stone [1]; see also Hausdorff [2].
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The operation — is commutative and associative:

o)

(2 )

A-B = B-4,

A — (B— C) = (A-B)-C.

Formula (1) follows directly from (0).

To prove (2) we transform the left-hand and right-hand sides ot (2)

by means of (0):

A — (B—C) = A — [(B— C)u(C— B)]

= [A - [(B- C) u(C- B)]} u {
[(B- C) v(C—B)\— A}

.

Using (8), (9), (10), and (11) of § 4, we obtain

A^-(B^C)

= {[A — (B—C)]n[A — (C—B))}'u[(B—C)— A]'j[(C—B)— A]

= {
[(A - B)yj(A n C)] n [(A -C)u(An B)]} u [B-(Cu A)] u

u [C- (B u 4)] = [(A — B) n(A — C)] u [(A - B) n B] u

u[(/l-C)nC]u(/lnBnC)u [(B— (C urt)] u[C-(Bu/l)]

= [4-(BuC)]u[B-(Cu/0]u[C-(4 uB)]u(4n BnC).

Thus the set /l-(B-C) contains the elements common to all the

sets A, B, and C as well as the elements belonging to exactly one of

them.

To transform the right-hand side of (2) it is not necessary to repeat

the computation. It suffices to notice that by means of (1)

from which (substituting in the formula for A — {B — C) the letters C,

A, B for A, B
, C, respectively) we obtain

(A B) ^ C

= [C-(^luS)]u[/l-(fiuC)]u[fi-(Cu^)]u(Cnt4nfi)

= [4-(iluC)]u[B-(Cu^)]u[C-(/lufi)]u(^n5nC).

Thus the associativity of the operation has been proved. It follows

from (1) and (2) that we may eliminate parentheses when performing

the operation — on a finite number ot sets.

The operation of intersection is distributive over that is,
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( 3 ) A n(B — C) = (A n B) — (A n C)

.

In fact, it follows from (6) and (7) of § 4 that

A n(B — C) = An[(B-C)u(C-B)\

= [(AnB)-C]u[(AnC)-B]= [B n(A- C)]u[C n(A - B)]

= {Bn[A-(AnC)]}v{Cn[A-(AnB)]}

= [(AnB)-(AnC)\v[(AnC)-(AnB)\

= (A nB)^-(A nC).

The empty set behaves as a zero element for the operation —
,
that is,

(4) A^0 = A.

In fact, (A — 0) u(0 — A) = A u 0 = A .

The theorems which we have proved so far do not indicate any essen-

tial difference between the operations — and u. However, a difference

can be seen in the following theorems.

(5) A^A = 0.

In fact, A — A = (A — A) u(A — A) = 0.

The operation of union has no inverse operation. In particular, we

have seen that the operation of subtraction is not an inverse of the

union operation. However, there does exist an operation inverse to the

operation — : for any sets A and C there exists exactly one set B such

that A — B = C, namely B = A — C. In other words:

In fact, (2), (4) and (5) imply

A^-(A-^C) = (A — A) — C = 0^-C = C^0 = C,

which proves (6). If A — B = C then A — (A — B) = A —

C

and hence

B = A — C by means of (6).

Thus (6) and (7) indicate that the operation — does have an inverse:

the operation — itself.

In algebra and number theory we investigate systems of objects

usually called numbers with two operations -f and • (called addition and

(6)

(7) A — B=C-+B = A — C

.

A — (A — C) = C,
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multiplication). These operations are always performable on those objects

and satisfy the following conditions:

(i) x+y = y + x ,

(ii) x+ (y + z) = (x+y)+z,

(iii) there exists a number 0 such that x + 0 = x ,

(iv) for arbitrary x and y there exists exactly one number z — x—\

(the difference) such that y + z = x,

(v) x-y = yx ,

(vi) x- (y z) = (x- y)- z,

(vii) x- (y+z) = (x-y) + (x-z).

Such systems are called rings (more exactly: commutative rings). If

there exists a number 1 such that tor every x

(viii) x • \ — x,

then we say that the ring has a unit element.

The algebraic computations in rings are performed exactly as in arith-

metic. For, in proving arithmetic properties involving addition, subtrac-

tion and multiplication, we make use only ot the tact that numbers

form a commutative ring with unit.

Formulas (l)-(7) show that sets form a ring (without unit) if by

“addition” we understand the operation — and by “multiplication the

operation d. A peculiarity ot this ring is that the operation subtraction

coincides with the operation “addition” and, moreover, the “square" ot

every element is equal to that element.

Using — and n as the basic operations, calculations in the algebra

of sets are performed as in ordinary arithmetic. Moreover, we may omit

all exponents and reduce all coefficients modulo 2 (i.e., 2kA = 0 and

(2k +1) A = A).

This result is significant because the operations u and — can be

expressed in terms of — and n. Owing to this tact the entire algebra

of sets treated above may be represented as the arithmetic ot the ring

of sets. In fact, it can easily be verified that:

(8) AkjB = A- B-(A n£),

(9) A- B = A — (A nB).
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Formulas (8) and (4) imply the following theorem:

(10) if A and B are disjoint, then A uB = A — B.

The role which the symmetric difference plays in applications is illus-

trated by the following example.

Let T be a set and / a non-empty family of subsets of X; that is, /

is a set whose elements are subsets of X. Suppose that

(Fc= Z)a(Zg/)-> (Fe/),
( 11 )

(F e /) a (Z e /) -> (FuZ e /).

A family of sets satisfying these conditions is called an ideal. We say

that two subsets A, B of X are congruent modulo I if A — B e / and we

denote this fact by A = B (mod /) or by A = B if the ideal / is fixed.

Since 0 e /, it follows from (5) that A = A, i.e. the relation = is re-

flexive. (1) implies that (A = B) -*
( B = A), i.e. the relation = is sym-

metric.

Finally, the identity A — B= (A — C) — (B—C) implies that A — B
c= (A — C) u(B— C), because the symmetric difference of two sets is

contained in their union. By means of (11) we infer that

(A = B)a(B = C) -> (A = C),

i.e. the relation = is transitive.

Replacing the sign = by the sign = in the previous definitions, we

obtain new notions. For example, two sets A and B are said to be

disjoint modulo I provided A nB = 0 (see p. 9); we say that A is in-

cluded in B modulo I if A — B = 0, etc.

A notion dual to ideal is that of a filter. We say that a non-empty

family F consisting of subsets of A' is a filter if it satisfies the conditions

(F c= Z)a(FgF) - (Zef),

( Y e F) a (Z e F) (YnZeF).

Congruence modulo a filter F is defined in the dual way to that of the

congruence modulo an ideal: we say that A = Z?(modF) if (X— A)kj

u B g F and (X-B)uA eF or equivalently

[X-(AvB)]v(AnB)GF.
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Exercises

1. Show that the set Ay^A 2
- ... -A n contains those and only those elements

which belong to an odd number of sets A t (/ = t, 2, ...,/*)•

2. For A finite let N(A) denote the number of elements of A. Prove that if the

sets Ay, A 2 ,
A n are finite then

N(A i
— A 2

— ••• A n )

= Y
1

N(A l
)-2'£N(A l nAj) + 4 Y N(A,nAjnA k)-

i i.j

-8 E N(A l
nAjr>\Ak<~^Ai)+ ...

i»j * l

3. Show that

(A,\jA :u ... u/U-(8,u8;U ... uB.) c (A,-B t
)u ... v(A„—Bn),

(A
t
nA 2 n ... nA„)^(B,nB2 n ... nB„) <= ...

[Hausdorflf].

4. Show that for any ideal / the condition A — B implies

AkjC=BuC, Ar\C = BnC, A-C=B-C, C-A = C-B.

5. For any real number t denote by [/] the largest integer ^ t. Let A, be the set ot

rational numbers of the form [nt]/n, n = 1, 2, ... Prove that it / is the ideal com-

posed of all finite subsets of the set of rational numbers, then HÓ4 * = A y (
mod 7))

and A x is disjoint (modulo /) from A y for all irrational numbers x,y > 0, x # y.

6. Let / be an ideal. Then A = B mod / iff A is of the form A = (B-P)vQ

where Pel and Q e I.

7. Let / be an ideal. Write briefly A = B instead of A = B mod/. Show that

if A y = B
{
and A 2 = B2 ,

then

(A
1
'<jA 2 ) = (ByVBi), (A

t
nA 2 ) = (Ay-A 2) ='= (By-Bz).

§6. The set 1, complement

In many applications ot set theory we consider only sets contained

in a given fixed set. For instance, in geometry we deal with sets of points

in a given space, and in arithmetic with sets of numbers.

In this section A, B, ... will denote sets contained in a certain fixed

set which will be referred to either as the space or the universe and will

be denoted by 1. Thus for every A

A c: 1

,
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from which it follows that

(1) A nl = A, A u 1 = 1

.

The set l—

A

is called the complement of A and is denoted by A c

or —A:
— A = A c = 1 -A.

Clearly,

(2) A n — A = 0, Au-A = 1.

Since A = 1 — (1 —A), we obtain by (10) of § 4 the following

law of double complementation

(3) -~A=A.
Setting A = 1 in de Morgan’s laws (see 4 (8)) and substituting A

and B for B and C, we obtain

(4) -(AnB) = -Av-B, - (A u B) = - A n- B

.

Thus the complement of the intersection of two sets is equal to the union

of their complements and the complement of the union of two sets is equal

to the intersection of their complements.

It is worth noting that the formulas which we obtained by introducing

the notion of complementation are analogous to those of the prop-

ositional calculus discussed in §1. To obtain the laws of the propositional

calculus (see pp. 2-4) it suffices to substitute in (l)-(4) the equivalence

sign for the sign of identity and to interpret the letters A, B, ... as prop-

ositional variables and the symbols u, n, —
, 0, 1 as disjunction,

conjunction, negation, the false sentence and the true sentence, respect-

ively. Conversely, theorems of the algebra of sets can be obtained from

the corresponding laws of the propositional calculus simply by changing

the meaning of symbols. From this point of view calculations on sets

contained in a fixed set 1 can be simplified by using the operations

u, n,

Subtraction can be defined by means of the operation — and one of

the operations u or n. In fact, we have

A-B = An(l-B) = An-B
and

A-B = An-B = -(-AuB).
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The inclusion relation between two sets can be expressed by the ident-

ity

(5) (A c B) = (A n — B = 0)

.

For assuming A a B and multiplying both sides of the inclusion by

— B, we obtain An — B c= Bn — B and since B n — B = 0, we have

A n — B = 0. Conversely, if A n — B = 0, then

A = An 1 = A n(Bu-B)

= (A n B)u(A n-B) = (A nB)u0 = A n B a B.

Since (A = B) = (A c= B) a (B a A), it follows from (5) that

(A = B) = (A n-B = 0) a {Bn- A = 0)

,

and, since the condition (X = 0)a (Y = 0) is equivalent to Xu Y = 0,

(6) (A = B)= [(An-B)u(Bn-A) = 0] = (A--B = 0).

It follows directly from (5) that

(7) (A ^ B) = (— B a -A).

(compare with the law of contraposition, p. 4).

The system of all sets contained in 1 forms a ring where the oper-

ation — is understood as addition and n as multiplication. This ring

differs from the ring of sets considered in § 5 in that it has a unit el-

ement. The unit is namely the set 1. In fact, formula (1) states that the

set 1 satisfies condition (viii) of § 5 characterizing the unit element

of a ring.

Hence calculations in the algebra of sets are formally like those in

the algebra of numbers.

Exercises

1. The quotient of two sets is defined as follows A :B = Au—B. Find formulas

for A:(BuC) and for A:(BnC) (counterpart of de Morgan’s laws). Compute

Ar\(B: C).

2. Prove that for each filter F the congruence modulo F is a reflexive, symmetric

and transitive relation and that A = B (mod F) implies A u C = BuC, AnC = BnC
and X-A = X-B.
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§7. Constituents

In this section we shall consider sets which can be obtained from

n arbitrary sets by applying the operations of union, intersection, and

difference. We shall show that the total number of such sets is finite

and that they can be represented in a certain definite form {normal

form).

Let A l9 A 2 , • • • ,
A n be arbitrary subsets of the space 1. Throughout

this section these subsets will remain fixed.

Let

A} = 1 -Ai, A ? = A
t

for i' = 1 ,

2

, ... , n.

Each set of the form

A\l nA'22 n... nA l

n
n {ik = 0 or ik = 1 for k = 1,2,

will be called a constituent.

The total number of distinct constituents is at most 2”, because each

of the superscripts ik may have either one of the values 0 and 1. The

number of constituents may be less than 2”; for instance, if n = 2 and

A i
= 1— A 2 ,

then there are only three constituents:

0 = c\A °2 = A\ nA 2 ,
A 1

=A\c\A\, A 2 = A\nA 2 .

Distinct constituents are always disjoint.

In fact, if

S l = A'tnA'in ...nAhn and S2 = A{1 n A{2 n ... nA J
n
n

and if for at least one k ^ n, ik ^ jk ,
for instance ik = 0 and jk — 1,

then A l

k
k nA J

k
k = 0. Hence S1 nS2 = 0.

The union of all constituents is the space 1.

It suffices to notice that

1 = (Ai uA\) n (A 2 uA 2 ) n ... n(A% uAl).

By applying the distributive law of intersection with respect to union

on the right-hand side of the equation we obtain the union of all the

constituents.

The set A
t
is the union of all the constituents which contain the com-

ponent A°.
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If Slf S2 , ... Sh are all the constituents, then

1 — S
i
u S2 u • • • ^ ‘S'fc •

Therefore

A I
— (Tj O kSj) U (y4f O Sf) U • •• ^ (^i ^ ^h) •

If contains the component A}, then AinSp = 0 because AinA}

= Ain(l-Ai) = 0. On the other hand, if contains the component

A p, then AtnSp = Sp . Thus T; is the union of those constituents which

contain the component A ?. Q.E.D.

We shall now prove the following

Theorem 1 : Each non-empty set obtained from the sets A lf A 2 ,...,A„

by applying the operations of union ,
intersection and subtraction is the

union of a certain number of constituents.

Proof. The theorem is true for the sets A l9 A z , ..., A„. It suffices to

show that if X and Y are unions of a certain number of constituents

then the sets XuY, XnY, X-Y can also be represented as the union

of constituents (provided XuY, XnY,
X—Y are non-empty).

Assume that X and Y can be represented as unions of constituents:

X = S,uS2 u ... u, Y = SiUS2 u ... u S
t

.

It follows that

XuY = (S t
u ... u Sk) u (5\ u ... u5j).

Thus Xu Y is a union of constituents.

From the distributive law for intersection with respect to union, it

follows that

XnY = (S t nS l
)u(S

l
nS2)u ... uRnS,)u ...

... u(S,nSj)u ... u(Sk nS,).

S
t
n Sj = 0 if S

t # Sji otherwise S
t
nSj = S

t
. Thus Inhisa union

of constituents

XnY = S
tl
u Sh u ... uSip ,

or else is empty.

If among the constituents S
it ,

Si2 , ..., Sip occur all of the constitu-

ents Si ,
S2 , . .

. ,
Sk , then

X-Y = X-(XnY) c ftu ... u)-(5,u ... uSk)
= 0.
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Otherwise, let S
jl , Sj2 , ..., 5^ be those constituents among S^, S2 , ...

..., Sk which do not occur among the constituents Sij , £, .

We have

X-7 = X-(XnY)

= [(S
tl
u ... u^Juf^u ... u5y,)]-(S'

/l
u ... uS,,)

^ ^ (^i j
^ • CJ ^ip)

= (S^u ... ... \jSj
q
)n(S

i]L
u ... u S$]

Syj C7 ... {USj
q ,

because

(^u ... uSJnf^u ... u5J = 0.

Thus Iu7, XnY, and X—Y are representable as unions of con-

stituents. Q.E.D.

Theorem 2: From n sets by applying the operations of union, intersec-

tion, and subtraction at most 2 2 " sets can be constructed.

In fact, each such set, with the exception of the empty set, is a union

of constituents. Because the number of constituents cannot be greater

than 2", the number of distinct unions constructed from some (non-zero)

number of constituents cannot be greater than 2 2 " — 1

.

Of particular importance is the case where all of the constituents are

different from 0. In this case, we say that the sets A u ..., A n are inde-

pendent.

Theorem 3: If the sets A lf ...,A n are independent, then the number

of distinct constituents equals 2”.

Proof. If

(0) S = A\ l n ... n A l

n
n = A{ 1 n ... nA J

„
n

and not all of the equations i\ = j\, ..., /„ = jn hold, then S = 0. In

fact, if for example, ip = 1 and jp = 0, then intersecting both sides of

the last equation in (0) with A l

p we obtain S = 0. Thus if the sets

A
l
,...,A n are independent then equation (0) holds if and only if

i\ j i , ..., in jn . Q.E.D.

Example. Let the set Dm consist of sequences (z
l ,

...,r„) such that

each Zi equals either 0 or 1 but zm = 0. The sets D lt ..., Dn are inde-
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pendent. In fact, Dt consists of those sequences (r,
,
...,zn) for which

Zm = <m- ThUS O'l ,—»'») e D
'i'
n •••

.

We shall apply the concept of constituents to a discussion ot the fol-

lowing problem of elimination .*) We introduce the abbreviations

ri(A) = {A contains at least n elements},

r x

n (A ) = {A contains exactly n elements}.

Let be sequences of the numbers 0 and 1. Let

Pn-'-fPm be sequences ol non-negative integers. We are

interested in finding necessary and sufficient conditions tor the existence

of a set X satisfying the conjunction of the following conditions:

r'pfX nAi), r i

p
2

2
(Xn

A

2)

,

• ••> rp
n

n
{X n

A

n),

rhl-XnAJ, rj
q
2

2
(—Xn A 2 ), ... 5

r{'f-XnA n).

We assume at first that /z = 1. Writing /, j, p , q ,
/I instead ol Zi , A

,

/7 X ,
<gr

x , >4 ! ,
we obtain the solution:

(i)

(ii) [(* — j — 1) A r'p + qiA)]
V Ap + q(/l) .

In fact, if there exists a set X satisfying (i) and i = j = 1, then A

is the union of two sets containing respectively p and q elements, and

in this case A contains exactly p + q elements. It i = Ovy = 0 then A

is the union of two sets, one of which contains at least p elements and

the other at least q elements. Therefore A contains at least p + q el-

ements. Conversely, if condition (ii) is satisfied, then it suffices to choose

as X any subset of A containing p elements.

Assume that n > 1 and A lt ... f
A n are pairwise disjoint. If there

exists a set X satisfying (i), then writing Xs = X, s = 1,2, ...,«, we

conclude that

(i>0 r‘p\(Xs nA s)f, r{‘X-Xs nAs) for i=l,2, n

and by virtue of (ii)

(w) [(/, =j, = i)Ar‘, +„(^)]vr® +„0L), s = 1
,
2

,
n.

l

) Problems of elimination were extensively studied in the so-called algebra ol

logic late in the 19th century; see e.g. Schroder [1]. The particular problem discussed

here was formulated and solved by Skolem [1]; it found applications to some prob-

lems of mathematical logic; see Feferman-Vaught [1].
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Conversely, if (iv) holds then for every s ^ s ^ n) there exists

a set Xs satisfying (iii). Let

X— [(X
l
nA

l
)v(X2 nA 2)v... u (Xn n A^)] u

u(— n — A 2 n ... n — A„).

Therefore

—X = [(— u — y4j)n (-A"2 u-A 2)d ...

... n (-A"n u-T„)] n (/^ u ... uT„).

Since the sets A
t
are disjoint, we have A"nT s = JFs n/l s and —Xn

nA s
= —Xs nA s . By applying (iii) we obtain (i).

Next, we assume that for all r, s (1 ^ r, s ^ n) either A r = A s or

A r nA s = 0. We shall designate conditions (i) by
,
W2 , ..., Wn ,

Vl ,
K2 , ..., Kn . We shall show that if A r = A s then Wr

-+ Ws ,
or

Ws -» Wr ,
or else Wr /\WS = F. Indeed, if ir = is = 0, then Ws

-* Wr

if Pr ^ ps ,
and Wr —> Ws ifps < pr . If ir

— 1 and is
= 0, then Wr —> Ws

in case pr ^ps ,
and in case pr < ps ,

Wr a Ws
= F. Finally, if ir = is

= 1

then Wr -> Ws for ps = pr and otherwise Wr a Ws = F. Similarly it can

be shown that either Vr -* Vs , or Vs -> Fr , or Vr a Vs = F. We conclude

that either the conjunction of (i) is false or else we may omit from (i)

certain components and obtain an equivalent conjunction in which none

of the sets A s occurs more than once. Thus this case is reduced to the

preceding case.

Now we shall reduce the general case to the case in which the sets

A s are either identical or disjoint. For this purpose we note that if

MnN = 0, then

r°p {MyjN) = r“(/tf)v[r‘_,(M)Ar?(A0] v

v[/T_ 2(M)Ar°(A0]v ... v[^(M)Ar«(7V)],

r'p(MuN) = A n(N)] V a/T(A0] V ...

... v [TÓCM) a JTP(N)]

.

By induction, if the sets S
, , ..., Sh are pairwise disjoint, then rp(S ,

u
w ... u

S

h ) can be expressed equivalently as a disjunction of conjunc-

tions, where each conjunction has the form

rj
P\(s t

)

a

... a rixs,).
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Represent the sets A s as unions of constituents; then according

to the above remark, each of the conditions (i) can be expressed as

a disjunction of conjunctions each of which has the form

r^XnS,) a ... a ru
v
*

h
(Xn Sh)

,

or respectively,

r^(-XnS t ) a ... ar%(-XnSh).

Applying the distributive law for conjunction over disjunction, we

express the conjunction of conditions (i) as a disjunction, each of which

is a conjunction whose components have either the lorm I /(A n S
g)

or the form r}(—XnSg).
Sets occurring in each such conjunction are

either identical or disjoint. Thus the general case is reduced to the

preceding one.

Example. We shall find necessary and sufficient conditions for the

existence of a set X satisfying the conditions

XnAnB # 0, -XnAnB ^ 0,

XnA £ B, XnB £ A.

These conditions can be expressed equivalently as the conjunction of

the following six conditions:

r^XnAnB), r^XnAn-B), r%(Xn-AnB),

Ffr-XnAnB), rg(-XnAn-B), E$(—X n — AnB).

Hence we obtain the desired condition

n(A n B) A r?(A n - B) a Tf (-A n B)

.

In other terms, Ar\ — B and Bn — A have to be non-empty and

A nB has to contain at least two elements.

Exercises

1. Assuming that the set 1 is infinite and that A j, ...,A„ are finite, describe

a method of obtaining necessary and sufficient conditions for the existence ol

a finite set X satisfying the conjunction of conditions (i).

2. Let I be the unit //-dimensional cube, that is, the set ol sequences (.Vx , ... ,
a„) such

that 0 ^ xi ^ 1 (/ = 1,2 ,...,«). Let consist of those sequences (x lt xn) e I

where l/2^xm ^ 1. Show that the sets are independent. Give a ge-

ometrical interpretation for // = 2 and // = 3.
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§8. Applications of the algebra of sets to topology 1

)

In order to illustrate applications which the calculus developed in

the preceding sections has outside of the general theory of sets, we shall

examine the axioms of general topology and apply the algebra of sets

to establish several results.

In general topology we study a set 1, called the space
,
whose elements

are called points. We assume, moreover, that to every set A contained

in 1 there corresponds a set A also contained in 1 and called the closure

of A. The space 1 is called topological if it satisfies the following ax-

ioms (see also p. 116)
2
)

( 1 )
A u B = Au B,

rr —

(2)
A = A,

(3 )
A a A,

(4)
0 = 0.

In axioms (l)-(3) the letters A and B denote arbitrary subsets of the

space 1.

Axioms (1)—(4) are satisfied if, for example, 1 is the set of points of

the plane and if the closure operation A consists of adding to the set

A all points p such that every disc around p contains elements of A.

This interpretation will be referred to as the natural interpretation of

the axioms (l)-(4).

We shall show how, using only laws of the calculus of sets, it is

possible to deduce a variety of properties of the closure operation.

Proof. For every A we have A a 1, and by axiom (3), 1 cz 1.

!) The topological calculus presented in this section originated with Kuratowski

[6]; see also Kuratowski [1].

2
) In § 8 we apply not only axioms T, A, B, C but also axioms (l)-(4). Howevei,

we can deduce all theorems given in this section from the complete axiomatic system

of set theory given in Chapter II, treating axioms (l)-(4) as assumptions about the

operation of closure.
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(6) A — B d A-B.

Proof. From Bu(A — B) = AuB applying axiom (1) we obtain

Bu A — B — AuB. This implies that A a BuA — B and thus

A — B c= (B u A — B)— B = A — B— B <= A — B,

which proves (6).

(7) A a B A a B.

Proof. A a B is equivalent to the equation A u B = B. By axiom

(1), AuB = B, thus A a B (cf. 3 (5)).

(8) A n B a A n B.

Proof. Since A n B a A and A n B a B
,
theorem (7) implies AnB

c A and AnB a B
,
from which it follows that A n B a A n B.

(9) If A = A and B = B, then AnB = AnB.

Proof. In fact, AnB a AnB by axiom (3). But by (8) and by the

hypothesis of (9), AnB <=. A n B = A nB. Therefore A n B = AnB.
We call a set closed if it is equal to its closure. Theorem (9) states

that the intersection of two closed sets is closed, and axiom (1) that

the union of two closed sets is closed.

We call a set open if it is the complement of a closed set. By de

Morgan’s laws it follows that the union and intersection of two open

sets is open.

In the natural interpretation of axioms (1)—(4) closed sets are those

sets which contain all their accumulation points (cf. p. 32). Open sets

have the property: for every point p contained in the open set A there

exists a disc with centre p entirely contained in A.

The set
1

)

Int(/0 = 1 — 1 — 4 = A c ~ c

is called the interior of the set A. The interior of any set is clearly an

open set. # In the natural interpretation of axioms ( 1)— (4), the set

Int(4) consists exactly of those points p for which there exists a disc

with centre p entirely contained in A. #

L

) Instead of A we sometimes write A .
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(10) \ni{A)czA.

Proof. By axiom (3), A c c= A c ~, from which, by taking complements,

we obtain

1 —A c ~ ci 1 — A c
,

hence

A c ~ c c= A cc = A .

In particular, the relation Int(lnt(/i)) <= Int(/1) is a special case of

(10)

. This relation may be strengthened as follows:

(11) Int (int04)) = Int(/().

Proof. It follows from the definition of Int(/1) that

Int04) = A°~ c
,

Int (Int (A)) = [Int (A)]
c ~ c = [

A

c ~ c
]
c' c

•

By the law of double complementation we may eliminate two con-

secutive occurrences of the operation A c
;
we thus obtain

Int (Int 04)) = A 0" 0
,

and because A c'~ = A c~ by axiom (2), we obtain

Int(lnt(/1)) = A c ~ c = Int (A).

(12) Int04n£) = Int(^) nlnt(B).

Proof. By de Morgan’s laws

(A n B)c ~ c = (A c uBc)~ c
,

whence by axiom (1)

Int04 n B) = (An B)c ~ c = (A c ~ u 5C ")C
,

and a final application of de Morgan’s laws gives

Int(AnB) = A c ~ c nBc ~ c = lni(A) nlni(B)

.

As a simple consequence of (12) we have

(13) A c= B -+ Int(/1) c: Int(5).

In fact, the assumption A a B gives us A n B = A,

Int04) = Int(AnB) = Int(/*) nlnt(fi) <= Int(B).
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(14) Int (Int(/4)) = Int(/1).

Proof. By (10)

Int(Int(/l)) ci Int(/1),

whence by (7) and (2)

(140 Int (Int (^)) <= Int(/I).

On the other hand, by (11), (3), and (13)

Int(T) = Int(lnt(/1)) <= Int(lnt(T)),

and by (7) it follows that

(14 2 )
Int(T) c= Int(Int(^)).

Inclusions (140 and (14 2 ) imply (14).

Replacing Int(A') by Xc ~ c in (14), we obtain

(15)
jc-c-c-c- = A o-c-

Moreover, substituting A° for A and applying the law of double

complementation, we obtain

(16)
J-c-c-c- = A -c- 1)

Equations (15) and (16) show that if we apply in succession the

operations of complementation and closure to the set A, then we obtain

only a finite number of sets. Namely, if we start with the operation of

complementation, then we obtain the sets

The next set in this sequence would be ^4
C-C-C_C ”, but by (15) this

set equals A c ~ c ~. If, on the other hand, we start by applying the

operation ”, then we obtain the sets

The next set would be A c c c
, but by (16) it is equal to A c

.

Hence by applying the operations of complementation and closure

to an arbitrary set A we obtain at most 14 distinct sets.

') Formulas (15), (16) and the result quoted on p. 30 were given by Kuratowski

. Hintikka [1] extended this result to the case of “nested topologies”.

6
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Formulas (17) and (18) will be used in §9.

(17) If B = X~ c ~, then Int[Int(/4 — B) n B] = 0.

Proof. Clearly, A — B a Bc
,
whence by (13) and (7)

Int [Int"04

-

B) nfi]c Int [Int(5 c
) n B ]

.

Thus it suffices to show that

Int[Int(£c)n B] = 0.

Since Int(5 c
)
= Bcc ~ c~ = B~ c~ = X- c~- c~ = X~ c ~ c -, it follows by

formulas (12), (16), and (10) that

Int[Int(Z? c

) n B] = Int[Int(Z? c
)] n Int(Z?) = x~ c~ c~ c ~ c nBc ~ c

= X- c~ c nB c - c = Bc n Bc ~ c = 0.

(18) If A = A or B = B then Int(T) u Int(fi) = Int(/4u5).

Proof. From theorem (13) we conclude that Int(/1) c Int(^4 u B) and

Int (B) c= Int(T u B), which implies that Int(/4) vlnt(B) a Int(/1 u5).

Applying the closure to both sides of the inclusion, we obtain by (1)

and (7)

(18j) Int(^) ulnt(i?) c= lni(A u B).

For the proof of the opposite inclusion we suppose that, for instance,

B — B. We apply the identity

A u B u [1 — (A u 5)] = 1

,

from which by axiom (3) it follows that

A u B u l-(AuB) = 1

,

whence

B u 1 — (A u B) zd l— A.

Applying closure to both sides we obtain (since B = B):

Bul-(AuB) => l— A,

from which it follows that

[1
- 1 -A] u B ul-(du5) = 1

,

whence

Int(^) u5ul-(/lufl) = 1.
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It follows from this equation that

Int04) u 1 — (A u B) => 1 -B,

and thus

Int(^) u1-Uu5)d 1 - B.

Adding to both sides of this equation the set \-\-B = Int(£) we

obtain

Int(/1) u Int(£) ul-(ylufi) = 1

,

thus

Int(J) u Int(£) o 1 - 1 - (A u B) = Int04 u B) .

Applying closure to both sides of the inclusion we obtain by (1) and (3)

(18 2 )
Int(,4) u Int(5) => Int(^uJ?).

Inclusions (1

8

A ) and (18 2) prove theorem (18).

Exercises

1. Prove that if the set A is open, then

AnX = AnX for every set X.

2. Let Fr(/<) = An l—

A

(the boundary of A).

Prove that:

(a) Fr(A vB)kj Fr(/4 nB)yj [Fr(/1)n Fr(i?)] = Fr(/l)uFr(5) [A.H. Stone],

(b) Fr(A) = (Anl^DviA-A),

(c) A\jFr(A) = A,

(d) Fr[Int(/4)] <= Fr(A\

(e) Int[Fr(/4)] = /4nInt[Fr(/t)] = Int[Fr(/!)]-/!.

3. We call the set A a boundary set if 1 — A = 1 . The set A is called nowhere dense it

A is boundary.

Prove that:

(a) the union of a boundary set and a nowhere dense set is a boundary set;

(b) the union of two nowhere dense sets is nowhere dense;

(c) in order that the set Fr(/1) be nowhere dense it is necessary and sufficient that

A be the union of an open set and a nowhere dense set.

4. Let 1 be a space satisfying besides axioms (l)-(4) the tollowing axiom (vvheie

{/;} denotes the set consisting of the single element p):

{p} = {

P

}•

We say that the point p is an accumulation point of the set A it p 6 A — {p } (lor

the plane this condition is equivalent to the condition that p = lim pn ,
where pn
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e A—{p }). By A ' we denote the set of all accumulation points of the set A ,
called

the derivative of the set A. Prove the formulas:

(AuB)’ = A'vB', A’-B' <= (A-B)\ A” <= A\ A = AvA', A' = A\

5. Let 1 denote the space considered in exercise 4. We call the set A dense in it-

self if A <= A*.

Prove that:

(a) if the space 1 is dense in itself, then every open set is also dense in itself;

(b) if sets A and 1—A are boundary sets, then 1 is dense in itself;

(c) the sets Int[Fr(/4)] and A n Tnt[Fr(/i)] are dense in themselves.

6. Conditions (l)-(3) are equivalent to the condition

AuAvB=AvB [Iseki].

§9. Boolean algebras

We shall conclude this chapter with certain considerations of an axio-

matic character. If we examine the theorems of §§ 2-8, we notice that

the symbol e does not occur in the majority of them, though of course it

does appear in the definitions and proofs. This suggests developing

a separate theory to cover that part of the calculus of sets which does

not make reference to the 6 relation. In this theory we shall speak only

of the equality or inequality between objects and terms resulting from

these objects by performing certain operations on them. We shall

base this theory on a system of axioms, from which we shall be able

to prove all the theorems of the preceding sections in which the symbol e

does not occur. This theory, which is called Boolean algebra
,
has ap-

plications in many areas of mathematics. 1

)

Let K be an arbitrary set of elements, A and a operations of two

arguments always performable on elements of K and having values in

K. Finally, let o denote a particular element of K. We say that K is a

Boolean ring or Boolean algebra with respect to these operations and

to the element o if for arbitrary a,b,ceK the following equations

hold (axioms of Boolean algebra):

*) Boolean algebra originated with George Boole, an English mathematician

(1813-1864). His work [I] marks the beginning of mathematical logic. There are

many textbooks and monographs on Boolean algebra, e.g., Halmos [1], Sikorski [1].
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( 1 )
aAb = bA<*>

(2)
aAifiAc) = 0zAb)Ac ,

(3 )
gAo — a,

(4) aAa = o ,

(5)
aAb = bAa,

(6)
aA{bAc) = (aAb) ac,

(7)
a AO = o ,

(8)
aAa = a

,

(9) aA(bAc) = (aAb)A(aAC)-

We define the sum and the difference of elements of K by the equations

avb = aA[bA(<**b)],

a-b = aA{a/\b).

We call aAb the symmetric difference of a and b, a Ab the product

of a and b
,
and o the zero element}))

An example of a Boolean algebra is the family ot all subsets ot a

given fixed set 1 where the operations A «md a ore the set-theoretical

operations of symmetric difference and intersection and where o denotes

the empty set. We dealt with this interpretation of axioms (l)-(9) in § 6.
2
)

More generally, instead of considering all the subsets of the space 1,

we may limit ourselves to the consideration of any family of subsets K

of 1 where the symmetric difference and intersection of two sets belong-

ing to K also belong to K. Such a family is a Boolean algebra with

respect to the same operations as in the preceding example. Each

Boolean algebra of the type just described is called a field of sets.

We introduce Boolean polynomials. Let xlt x2 , ... be arbitrary letters.

1

) The fact that we are using the same symbols for operations in Boolean algebras

and for logical operations should not lead to misunderstanding.

2
) Similarly as in § 8, our exposition is based not only on the axioms of set theory

but also on the axioms of Boolean algebra and, in part, also on topological axioms.

As a matter of fact, we can deduce all theorems from the axioms of set theory given

in Chapter II, treating the axioms of Boolean algebra as assumptions about the oper-

ations A, a and the element o and the axioms of topology—as assumptions about

the closure operation. Similar remarks apply to §10.
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The symbols

(0 o,

(ii) x,,x2 , ...

are polynomials; if / and g are polynomials then the expressions

(ii) (f)A(g),

(iv) (/)A(g)

are polynomials. A polynomial is to be understood as a sequence of

symbols.

Let us suppose that AT is a Boolean algebra and that to every letter

Xj there corresponds a certain element aj e K. We define inductively

the value of a polynomial with respect to this correlation. The value

of polynomial (i) is the zero element of the algebra K
,
the values of

polynomials (ii) are the corresponding elements in K
;

if the values of

/ and g are the elements a and b, then the value of polynomial (iii) is

a/\b and the value of (iv) is ar\b.

The value of the polynomial / is denoted by fK(a x ,
a2 , ...); clearly

Let the polynomial / have the form ...(/?')A (/*") ..., and the poly-

nomial g the form ... ... where the periods denote sequences

of symbols which occur both in / and in g, and where h’ and h" are

polynomials. In this case we say that the polynomial g is immediately

transformable into the polynomial / by means of axiom (1). Similarly

we define immediate transformability by means of the remaining axioms

(2)-(9). We say that the polynomial g is transformable into f if there

exists a finite sequence of polynomials / = /j,/2 , ...,/fc = g such that

for each / (1 ^ i < k) the polynomial /i+1 is immediately transform-

able into the polynomial f by means of one of the axioms. In this

case we write f ~ g.

Clearly, f ~ f, f ~ g -+ g ~ f and f /N/ /X/ Jl >
j* /X/ /?. If / ~ g then

fniPi ,
a2 , ...) = gK (o i , •••) for every Boolean algebra K and arbitrary

elements aj e K.

Polynomials resulting from the expression f A/2A ••• A/* (or from

the expression /,a/2 a ... afk) by an arbitrary placement of parenth-

eses are mutually transformable into each other by means of axiom (2)

(or axiom (6)). For this reason we shall always omit parentheses when
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writing such polynomials. Moreover, we shall take no notice ot the

difference in the order of polynomials to which we apply successively

either one of the symbols A or a.

Theorem 1: Every polynomial is either transformable into o or into

some polynomial of the form s^A^iA ••• A^a* where each of the poly-

nomials Sj has the form a'^a^a ... AX;
( (A < h < ••• < hA ^ 1)>

and no two components Sj,sk (1 ^ j <k ^ h) are identical .

l

)

Proof. The theorem is clear for polynomials (i) and (ii). Assume

that it holds for polynomials / and g. If/ ~ o (or g ~ o), then (/)A(&)

- g and (/) a (g) - o (or (f)A(g) - / and (/) a (g) - o). At this point

we may assume that f ~ s^A^iA • Ash and g ~ fiA^A ••• A^-

Thus (f)A(g) ~ JiA^A ... A^aA'iA^A ... A'*. By applying (3)

and (4) we eliminate all redundant occurrences of components and

thus obtain (/)Afe) in the desired form. The theorem, therefore, holds

for formula (iii).

In the case of polynomial (iv) we apply axioms (9) and (5) and

obtain

(/)

a

(g) - [(s,A ••• Asa)a/JA ••• A[(*iA ... A*a)a tk]

~ A i
a / 1 )A ••• A(sp a t

q)A ••• A(sh Atk ).

By means of (5) and (8) each of the polynomials sp Atq
is transform-

able into the product of individual variables. Omitting as in the pre-

vious case redundancies we obtain the desired form. The theorem,

therefore, holds for formula (iv). Q.E.D.

Theorem 2: Let K be the field of all subsets of the non-empty set 1.

Iff is a polynomial such that ~\(f ~ o), then there exist sets A L , A 2 , •••

belonging to K such that fK (A l9 A 2 , ...) ^ 0.

Proof. By Theorem 1 we may limit ourselves to the case where /has

the form ^A^A ••• A*h and where each of the polynomials Sj is

a product of letters x
t

. Let n be the number of distinct letters x
t
oc-

curring in /. We shall prove the theorem by induction on n.

For n = 1 ,/~ Xi , thus we may choose any non-empty set tor the set

A[. Assume that the theorem holds for all numbers less than n and

l

) Theorem 1, as well as Theorem 2, is a scheme: for each polynomial /we obtain

a separate theorem.
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that the polynomial f contains exactly n distinct variables. If one of

the variables xp occurs in each of the expressions Sj, then / ~ xp
a g

where g contains less than n variables. By the induction hypothesis

there exist sets A
x ,
A 2 ,

... such that gK(A l9 A 2 > ...) ^ 0. Replacing A p

by 1 we leave the value of g unchanged (because g does not contain xp)
and we obtain the set 1 ngK(A x , A 2 , ...) ^ 0 as the value of /.

If none of the letters xp occurs in each of the Sj, then we substitute

in / the symbol o everywhere for some arbitrary xp . Thus we obtain

the polynomial g of fewer variables than / and “|(g ~ o). Hence in this

case the theorem follows from the induction hypothesis.

Theorem 3: Every equationf = g which is true for arbitrary sets (and

even for arbitrary subsets of a given non-empty set ) is derivable from

axioms (1 )— (9).

Proof. If the polynomial fAg has the value o for all A 1 ,A 2 ,...

contained in a non-empty set 1, then fAg ~ o and thus f ~ g. There-

fore polynomial g arises from / by transformation by means of axioms

(l)-(9) and by the general rule of logic which states that equal elements

may be substituted for each other.

Theorem 3 shows that the equations derivable from axioms (l)-(9)

are identical with the equations which are true for arbitrary sets. More-

over, this theorem provides a mechanical procedure for deciding when

an equation of the form/ = g is derivable from axioms (l)-(9). Namely,

it suffices to reduce the polynomial fAg by the method given in the

proof of Theorem 1 and to determine whether or not it is transformed

into o.

We introduce an order relation in Boolean algebra by the definition:

a ^ b = aAb = a.

Theorem 4: a ^ b = av b = b.

Proof. If aAb = a
,
then avb = aAbA(aAb) = aAbAa = b. Con-

versely, if avb = b, then aAbA(a^b) = b. Thus aAbAbA(aA b)

= bAb = o and aAoA(a*b) = o, whence aAaA(a^b) = aA° = a

and oA(a^b) = a; that is, aAb = a.

We call an element / of the Boolean algebra K a unit of K if

(10) aAi = a for all elements a e K.
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It is easy to prove that a unit
, if it exists ,

is unique.

In an algebra with a unit we define the complement of the element

a by the equation

— a = i/\a.

Axioms ( 1
)—(9) are very convenient in most calculations but are

seldom used to describe a Boolean algebra. In the next theorem we shall

present a different system of axioms, which is usually taken as the

basis of a Boolean algebra. We shall limit ourselt to the consideration

of Boolean algebras with a unit.

Theorem 5! If K is ci Boolean algebra with a unit
,
then the following

equations hold for all a, b ,
c e K:

(i) av b = b v a

,

( \~) a /\b = b a ,

(ii) av(bvc) = (avb)vc, (ii') aA(bAc) = (aa6)ac,

(iii) flvo = a ,
(iii) aAi — a ,

(iv) av — a = /, (iv') a a — a — o
,

(v) aA(bvc) = (aAb)v(aAc), (V) av(bAc) = (avb)A(avc).

Proof. Equations (i), (i') (ii), (ii')? (v)> (v ) are true ^ or ar^'

trary sets and thus are consequences of axioms (l)-(9). Equation (iii')

is identical with (10). We establish (iv') and (iv) as follows:

a a —a = a a (i/\a)

= a/\{aAa)

= aAa
= o

av - a = ^A 0'A«)A[^a (/*A«)]

= aA0*Atf)Ao

= (^A^)A /

= oAi

= i

by the definition of —a,

from (9) and (10)

from (8)

from (4);

by the definition of sum,

from (iv')

from (1), (2), (3)

from (4)

from (3).

A partial converse to Theorem 5 holds:

Theorem 6: If K is a set
,

o, i e K, and if v, a, — are operations

defined on elements of K satisfying equations (i)-(v'), then K is a Boolean
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algebra with respect to the operations a/\b = (aA—b)v(bA—a), a/\b

and the element o.

The proof of the theorem is not difficult and is left to the reader.

Equations (i)-(v') are most often used as axioms for a Boolean al-

gebra. In particular, it is worth noting the symmetry of these equations

with respect to the operations v and a .

We shall conclude this section by giving an interesting example of

a Boolean algebra.

Let 1 be an arbitrary topological space with a closure operator

(see § 8, p. 27). We call A c= 1 a regular closed set if

A = Int(/4).

By K we denote the family of all regular closed sets contained in 1.

Clearly, 0 and 1 belong to K since

lnt(0) = 0 = 0 and Int(l) = f = 1

.

If A g K then A = A, because

A = Int(^4) = Int(T) = A.

Thus every set belonging to K is closed (see § 8, p. 28). By theorem

8 (18) it follows that if A, B e K then

AkjB = Int(y4) u Int(Z?) = Int(Tu£),

which proves that A u B e K.

For A g K and B e K, let

AQB = Int(AnB), A' = Int(-7), AOB = (AQB') u(BQA').

It follows from this definition and from formula 8 (14) that if A e K
and B g K, then AQB g K, A' e K and AOB g K.

Theorem 7: K is a Boolean algebra with a unit with respect to the

operations O and Q.

Proof. It suffices to show that the operations u, O and ' satisfy

axioms (i)-(v') of Theorem 5.

Axioms (i)-(iii) are clearly satisfied. Axiom (i') follows from the

equation

AQB = Int(T n B) = Int(B r\A) = BQA .
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It is equally easy to show that axiom (iii') holds:

AQl = = lnt(A) = A.

To show that axiom (ii') holds we apply 8 (12) and (8) and obtain

Int[(/4(Dfl)nC] = Int(^O^) nlnt(C),

AQB = Int(/4 n B) = Int(,4) nlnt(B) c= Int(^) nlnt(£) = AnB;

it follows by (10) of § 8 that

(*) Int[(/IO£)nC] c (AQB)nC a A n B nC a B nC

.

Thus

Int {Int [(AO B) nC]} c: Int(BnC);

that is (see 8 (11)),

Int[(/IOnC] c= Int(£ nC) c= Int(5 nC) = BQC.

Since (by (*)) Int [(,40 B) nC] c A, we have

Int[04O*)nC] <= An (BQC)

,

whence we obtain

Int {Int [(/(O B) n C] }
c Int n (BQC)],

and hence

tnt [(/lO 5) nC] <= lnt[An(BQC)].

Taking closure on both sides of the inclusion, we obtain

Int[(.40^)nC] <= Int [.4 n (BOÓ],

that is, (AQB)QC <= AQ(BQC). The opposite inclusion is obtained

in an entirely similar manner. Thus we may consider the equation

(AQB)QC = AQ(BQC) as proved.

We examine axiom (v). We have

AQ(BuC) = Int[An(B uC)] = Int[(^ n B) u(A nj] .

The sets A
,
B and C are closed, thus (see 8 (9)) AnB = AnB and

A nC = A nC. By 8 (18) we conclude that

Int [(A nB)\j(An C)] = InR/Tn B) u Int(d n C)

= C40£)u(.40C).
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Thus

AQ(BvC) = {AOB)kj{AQC).

We check axiom (v') as follows. From the definitions,

A u (BO C) = Int(/t) u Int(£ n) .

By 8 (18) the right-hand side of the equation equals Int [T u(£ nC)],

which equals Int[(^ u5)n(/( uC)J, that is, (A uB)Q(A uC).

Axiom (iv') is an easy consequence of theorem 8 (17) and of the

fact that every regular closed set has the form X~ c ~.

Finally we prove that axiom (iv) holds. By 8 (18) we have

A uA' = Int(A)uInt(— A) = Int(Av — A),

since A = A. Thus we conclude immediately that AuA' = Int(l) = 1.

Theorem 7 is thus proved.

# Let us take the plane as the space 1. Every circle together with

its boundary is clearly a regular closed set. Since every non-empty

set of the form Int(/1) contains some circle, we conclude that the

Boolean algebra of regular closed sets in the plane has the following

property:

If A e K and A # 0, then there exists B such that B e K, 0 ^ B c= A

and B ^ A. #

Exercises

1. From every equation written in terms of variables, the symbols o and / and

the operations v
,
a and — we obtain a new equation by interchanging the symbols

o and i and the operations v and a. If the original equation is true in Boolean

algebra, then so is the equation obtained from it in this way (Principle of Duality).

2. Show that axioms (ii) and (ii') are derivable from axioms (i), (i'), (iii)-(v),

(iii')— (v0 [Huntington].

3. Show that every Boolean algebra is a ring with respect to the operation A as

addition and a as multiplication and that in this ring the square of each element

is equal to this element (we say that multiplication is an idempotent operation). If

the Boolean algebra has a unit, then so does the ring. Prove conversely that each

ring with a unit and with an idempotent multiplication is a Boolean algebra [Stone].

4. An element of a Boolean algebra is called an atom if a # o and for each a

the relation x < a implies x = o or x = a (thus the algebra of regular closed subsets

of a plane has no atoms). Show that the following algebra K has no atoms: Elements

of K are finite unions of real intervals without left end-points but with right end-

points and the operations v
,
a, — are respectively u ,

n, and complementation.
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5. Prove that the number of elements of a finite Boolean algebra has always the

form 2".

Hint : n is the number of atoms of the algebra.

6. The set of sentences of any mathematical theory is a Boolean algebra with

a unit if we identify sentences which are equivalent to each other on the basis of the

propositional calculus; the operations v
,
a, and - in this algebra correspond to

forming disjunctions, conjunctions and negations of sentences. The zero element is

any false sentence and the unit element is any true sentence.

§ 10. Lattices 1

)

The concept of a lattice is more general than that of a Boolean algebra.

Let L be an arbitrary set of elements, upon which are defined the oper-

ations v and a . We say that L is a lattice with respect to the oper-

ations v and a if the following equations hold (axioms of lattice theory)

( 1 )

(2)

(3)

(4)

ava = a,

awb = bva ,

av(bvc) = (avb)vc,

a a (a vb) = a
,

a/\a = a
,

a/\b = b/\a,

a a (b a c) = (a a b) a c
,

av(aAb) = a.

a v (b a c) = (av b) a (a v c).

We call a lattice distributive if

(5) a a (b v c) = (a a b) v (a a c)
,

We introduce an order relation between elements ot a lattice just as

we did for Boolean algebras:

(6)
a^b = avb = b

or, equivalently,

(7 )
a ^ b = aAb = a.

Similarly we define the elements o and / (if they exist in the given

lattice) as the elements satisfying conditions

(8) avo = a, a a i = a

for all a e L.

L

) The notion of a lattice originated essentially with Dedekind in connection

with his number theoretical studies. For a detailed exposition of lattice theory see

BirkhofT [11, Hermes [11 as well as books on universal algebras, e.g. Cohn [If
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It is easy to show that o is the smallest element in the lattice and

that i is the largest, namely,

(9) o < a < /

for every a e L.

Referring to Theorem 5, we observe that every Boolean algebra with

a unit is a distributive lattice with a zero and a unit. The converse does

not hold, as is shown by the following counter-example which itself

is important for numerous applications in topology. The family of all

closed subsets of an arbitrary topological space is a lattice (with the

natural interpretation of the operations: avb = aub, ar\b = anb).

However, this family is not in general a Boolean algebra, since the

difference of two closed sets need not be closed (for example, when

the space is the space of real numbers).

On the other hand, the following theorem holds.

Theorem: If A is a distributive lattice with o and i and iffor every

aeA there exists an element —aeA satisfying the equations

( 10) av(-a) = /, a a (-a) = o,

then (i) the element —a is unique
,
and (ii) A is a Boolean algebra with

a zero and a unit with respect to the operations v
,
a

,
and —

.

Proof. Suppose that the element a' also satisfies conditions (10).

Then a
f = a! a i = a' a {a\/ — a) = (a' a a) v (a' a — a) = ov(a'A—a)

= a' a— a. Similarly, —a= —aAa', therefore a' = —a.

For the proof of the second part of the theorem it suffices to show

that axioms (i)-(v') from p. 38 are satisfied. Axioms (i), (i'), (ii) and

(ii') hold in every lattice, (iii) and (iii') follow from the assumption

that o and i are zero and unit in A, (iv) and (iv') follow from the

assumption that condition (10) holds, and finally, (v) and (v') from the

assumption that the lattice is distributive.

The concept of Brouwerian lattice
!

) is intermediate between that of

lattice and Boolean algebra. We call a lattice with a unit Brouwerian if

*) The term “Brouwerian lattice” was introduced by McKinsey and Tarski [1]

in their algebraic study of intuitionistic (Brouwerian) logic. Rasiowa and Sikorski

[1] use for the same purpose a dual notion which they call “Heyting lattices”.
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for arbitrary elements a, b e L there exists an element of L called the

pseudo-difference of a and b and denoted by the symbol a — b such that

(a — b ^ c) = (a ^ bv c).

The family of closed subsets of a given space considered above is

a Brouwerian lattice, where the pseudo-difference of two closed sets A

and B is the closed set A — B.

We denote by —a the pseudo-complement of a , namely — a = i—a.

Notice that, in contrast to the operation of ordinary complementation,

the equation (-a) a a = 0 does not hold. This corresponds to the fact

that the law of the excluded middle does not hold in intuitionistic logic.

In the topological interpretation this means that the nowhere dense

set X-A nA, namely the boundary of A
,

is not necessarily empty. On

the other hand, the validity of the equation (-fl)va = i corresponds

to the law of contradiction in Brouwerian logic.

Examples and exercises

1. The set of natural numbers is a lattice with respect to the operation of taking

the greatest common divisor as the operation v and the least common multiple for

the operation a . The formula a ^ b means that b is a divisor of a. The number 1

is the unit of the lattice, and there is no zero element.

2. We consider euclidean w-space S n and the family L n of its linear subsets (points,

lines, planes and in general, A>dimensional subspaces where k < n) passing through

the origin. The family L„ is a lattice with respect to the operations v and a defined

by: AaB is the intersection of A and B\ A V B is the least linear subspace of

containing A and B. For example, if A and B are two planes, then AkjB is a 3-di-

mensional space if AnB is a straight line, and is a 4-dimensional space if AnB is

a point. The relation ^ is the ordinary inclusion relation. The zero element of the

lattice Ln is the one-point set consisting of the origin and the unit is the entire

space L„.

The lattice L n is not distributive but is modular. Namely, we call a lattice modu-

lar if

(a < c) -> [a v (b a c) = (a v b) A c]

.

It is worth noticing that in the lattice L n every increasing sequence a
x < a 2 < ...

contains at most //+1 elements.

3. Prove that the formula

(a ^ c) — [uv(Aac)^ (avb) a c]

holds in every lattice.

4. Prove that the two equations given in (5) are equivalent.
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5. Prove that the following formulas hold in every Brouwerian lattice

(x y) -* (x — z ^ y-z)A (z — y < z — x),

(x < y) = (x-y = o),

z— (xa >’) = (z-x)v(z-y),

(x v>’) -z = (x-z)v(y-z),

* r * \ ^-(-*)<*,
— — —x = — x [McKinsey-Tarski].

6. The family of compact subsets of a topological space is a lattice with respect to

the ordinary set theoretical operations u and n. If the space itself is not compact,

then the lattice does not have a unit; on the other hand, the lattice always has a

zero (see p. 137 for the definition of compact space).



CHAPTER II

AXIOMS OF SET THEORY. RELATIONS. FUNCTIONS

§ 1. Set-theoretical formulas. Quantifiers

We shall begin this chapter by reviewing certain logical notions. In

Chapter I, § 1, we dealt with sentences which have constant logical

values. Now we shall consider formulas ,
i.e. expressions which may

contain (free) variables and whose logical values depend on values

given to these variables. Instead of discussing these expressions in lull

generality we shall describe a class K ot formulas which will be used

in the rest of this book. We shall call K the class of pure set-theoretical

formulas.

We fix an arbitrary list of symbols x 9 y 9
z

9 ... 9
X

9
Y,Z,... which

will be called variables. Class K is defined by induction.

(A) Expressions of the form given below belong to K:

x is a set (abbreviated Z(A')), x e y, x = y

as well as a// expressions differing from them by a choice oj variables.

(B) If 0 and 0 belong to the class K, then so do the expressions

0 v 0, 0a09 0 -* 0, 0 = 0, and ~\0.

(C) If 0 belongs to K and v is any variable ,
then the expressions

V 0, /\ 0 belong to K.
V V

(D) Every element of K arises by a finite application of rules (A),

(B), (C).

All variables occurring in the “atomic” formulas (A) are the tree

variables of these formulas; formula ~~\0 has the same free variables

as 0; free variables of 0v0 are variables which are free in 0 or in 0
and the same is true for formulas 0a0, 0 -» 0

,
and 0 = 0. Finally,
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a variable is free in \ 0 or in V 0 if it is free in 0 and different

V V

from v.

Symbols v, a occurring in (B) are of course the familiar

propositional connectives which we discussed in Chapter I. Symbols f\

and \J are called the general and the existential quantifiers. They are

abbreviations of the words “for every” and “there exists”, respectively.

Thus e.g., /\ l(x = y)
-+ (y = x)] means that, for every x, if x = y,

X

then y = at; and V ~l(* = >0 means that there is an object x which
X

is different from y.

Notice that according to our definitions the variable v which occurs

in the formula /\ 0 and in the formula \/ 0 is not free in these

v v

formulas; we say that this variable is bound by the initial quantifier of

the formula. Thus quantifiers are operators which change free variables

into bound ones. A similar situation is known in the calculus: the

expression ;c
2

-t-.y
2 denotes (the value of) a function of two variables

i

but
\
(x2 +y 2)dx denotes (the value of) a function of one variable y.

o

Formulas which have no free variables are called sentences. We can

obtain a sentence from a formula by inserting in the front of the formula

enough quantifiers to bind all the free variables of the formula.

We shall use the abbreviations A 0(.v) and \J 0(.x) for the ex-
xeX xeX

pressions /\ [(x e X) -> 0(jc)] and V [(.v e X)

a

0(.v)], respectively. The
X *

operators A and V are called quantifiers limited to X. It should be

xeX xeX

noticed that the truth value of the formula /\ 0(x) is “true” for X = 0
xeX

whatever the formula 0(x) might be. Similarly the truth value of the

formula \J 0{x) for X = 0 is always “false”.

xeX

It is sometimes convenient to consider extensions of the class A and

use formulas containing additional primitive notions. We shall introduce

later in this chapter one additional primitive notion which although
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not strictly necessary simplifies many statements of set theory. In such

cases we modify the definition of class K by adding to formulas listed

in (A) new “atomic” formulas. If, e.g., the new primitive notions are

certain binary relations P,0, ... then the new atomic formula will

be P(x, y), Q(x, y), ... All other definitions remain unchanged. The

new class of formulas will be denoted by K[P,Q, ...] and called the

class of set-theoretical formulas with respect to P,Q,..d)

Theoretically speaking we should express all theorems given later in

this book as set-theoretical sentences in the sense explained above. In

practice however we shall use many self explanatory abbreviations which

will render the reading of formulas much easier.

Similarly as in the case of the propositional calculus there are many

formulas involving quantifiers which are true independently of the

meaning of atomic formulas out of which they are constructed and

independently of the values given to the free variables. We call such

formulas theorems of the predicate calculus. We shall give below several

examples of such formulas; a systematic exposition of how such formulas

can be obtained may be found in textbooks of mathematical logic.

(1) If a e A then f\ 0(x) -> 0(a) and 0(a) -> V 0(x).
xeA xeA

The second formula states that to prove an existential sentence of

the form V <£(*) ^ su ffices t0 find an object a belonging to the set A
xeA

and satisfying the condition 0(x). Such a proof of an existential sentence

is called effective.
2
)

(2) A t^O) a =
|A <*>(*) aA nv)|

,

X XX
(3 ) v i^o) v = IV 00) vV ^0)1 •

.v -V x

Thus the universal quantifier is distributive over conjunction and

the existential quantifier is distributive over disjunction.

M We shall use Greek capitals 0, V7 ... for set-theoretical formulas; we shall often

use more complicated symbols like @(x,y, ..., z) for formulas in which the variables

.v, y, ...» z are free.

2
) For a detailed exposition of principles of logic see e.g., Shoenfield [1].
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(4)

(5)

[A 0WvA v<x)\ -> [A [^wvnv)|,
X X X

V [0(*) A •/'(>)] - [V A*) a V !P(JC)|.

By means of simple counter-examples we conclude that the converse

implications are not, in general, true. The universal quantifier is not

distributive over disjunction and the existential quantifier is not distribu-

tive over conjunction.

(6) 1A^)] 5Vnw
(7) n|V a*)] = AnAA

Laws (6) and (7) are called de Morgan's laws. It follows from them

that

:

(6') ~iAnaa = Vaa
(7') iVn^wi s A a*)

Hence the existential quantifier can be defined in terms of the uni-

versal quantifier (and conversely, the universal quantifier in terms of

the existential).

The first equivalence above shows that the existential sentence \f &(

x

)

can be proved by deriving a contradiction from the assumption A~
X

Such proofs of existential sentences are often used but, in general, are

not effective, i.e. they do not give any method of constructing the object

satisfying the formula &(x).

If p is a sentence, then clearly we have

(8) A P = P>
X

(9) V P = P-
X

Moreover, it is easy to check that

(10) A tp v A*)] = \p vA <Hx)\

,

x x

(11) V t/>A A*)] = |/> A V A*)].
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By means of the law of the propositional calculus [p -»* <£(*)] = [~]p v

v0(y)] it follows easily from (10) that

(12)
* x

Observe that

(13) |(A 0w) - p\ = V -* p]-
X

In fact, it follows from (6) that the left-hand side of (13) is equiv-

alent to the disjunction and then, by (9), to the disjunc-

A

tion V |0(.v)v \/ p. By (3) we obtain V [~ v P] or v [^(*) P\-
X

Laws (1)— ( 1 3) are also valid for formulas with several free vari-

ables. Instead of p in (7)— (1 3) we can have any formula which does

not contain the variable y.

Note the following laws concerning formulas with two free variables:

A A y) = A A 0(x ’ -
v)>

x y y x

V V ®(x,y) = V V 0(.x,y).

(14)

(15)
a: y y x

Thus it makes no difference in which order we write universal or

existential quantifiers when they occur together. We usually write

/\ instead of A /\ and \/ instead of \/ V-
ay x y ay

( 16)

x y

(17)

IA 4>{x) vA no) = A A[^W vW
.v a- x y

= At0(.v)vyoo],
ay

IV '/wv n.v)| s v Vt^WA^o)]
x x x y

= Vt^WA'PO')].
ay

To prove (16) we substitute in (10) A ^00 for P an(^ observe that

\ v 0(.v) = A [¥'( v) v 0(.v)] by means of the same law (10).
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The proof of (17) is similar.

os) VA^m-AV^)-
x y y x

Proof. Using (1) twice, we obtain /\ &(x, y) -» &(x, y) and 0(x, y)
y

-> \J @(x, j). These implications hold for any x,y, hence
X

A A [A 0 (x > jO -> V 0 (x > y)\
x y y x

By means of (12) and (13) we obtain (18).

As an application of (18) we shall discuss the difference between

uniform and ordinary convergence of a sequence of functions. By the

definition of limit, the sentence /\ [lim/,(x) = /(x)] is equivalent to
x n — oo

the following

A A VA !fn+k(x)-f(x)\ < e.
e > 0 x k n

Interchanging the quantifiers /\ and \/ we obtain the definition of
x k

uniform convergence making k independent of x. The fact that k is

independent of x and depends only on e is apparent in the above formula

with the interchanged quantifiers.

The following diagram gives several other theorems concerning inter-

changing of quantifiers:

V A 0 (*,y) A V &(x,y)
x y y x

A ^ (-u >o— A ^ (*» x)—

V

<!)
(
x

>
x)

xy
*

A V (Kx>y)
y x x y

V '/'(Jr, v).

By means of simple counter-examples it is easy to check that none

of the above implications can be inverted.
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§ 2. Axioms of set theory

We shall introduce axioms upon which we shall base the rest ol

our exposition of set theory. The new axioms will allow us to form

new sets from given sets, and in this sense they do not differ trom the

axioms in Chapter I. On the other hand, the essential difference between

the new axioms and the old ones is that we shall now deal with sets

whose elements are also sets.
1

)

First of all we retain the axiom of extensionality

:

I. (Axiom of extensionality) If the sets A and B have the same

elements ,
they are identical. In symbols

/\[x e A = x e B] -> (A = B)

.

X

II. (Axiom of the empty set) There exists a set 0 such that no x

is an element of 0; symbolically :

V /\{xtP).
P X

Obviously, there is only one empty set.

IF. (Axiom of pairs)
2
) For arbitrary a, b, there exists a set which

contains only a and b. In symbols:

V A {(* G p) = [(* = °) v (x = *01} •

P X

III. (Axiom of unions) Let A be a family of sets. There exists a set

S such that x is an element of S if and only if x is an element oj some

set X belonging to A.

Symbolically:

(1) xeS= \J[(xeX)A(XeA)].
X

*) To make the terminology clearer we shall use the term a family oj sets instead

of a set of sets. Families of sets will be denoted by capital letters printed in bold-

faced italics A, B, X, Y, etc.

2
) This axiom can be derived from the remaining ones; therefore we do not give

it a separate number.
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By axiom I there exists at most one set S satisfying axiom III for

a given family of sets A. In fact, if besides (1)

xeS, = V [(xeX) A (XeA)],
X

then for any x
X E S 1

= X E S,

and, by axiom I, S x = S.

Axiom III states that there exists at least one set S satisfying for-

mula (1). We infer that for any A this set is unique. It is called the

union of the sets belonging to A and is denoted by [J A or [J X.
XeA

IV. (Axiom of power sets) For every set A there exists a family of

sets P which consists exactly of all the subsets of the set A :

(XeP) = (X cz A).

It is easy to prove that the set P is uniquely determined by A. This

set P is called the power set of A and is denoted by P(A).

V. (Axiom of infinity) There exists a family of sets A satisfying

the conditions'. 0 e A ; ifX e A, then there exists an element Y e A such

that Y consists exactly of all the elements of X and the set X itself

Symbolically:

V ((0 6 -4) A A V Au* s Y) = [(xeX)v(x = A')]}).

A XeA YeA x

Thus the set 0 belongs to A, moreover, the set N1 whose unique

element is 0 also belongs to A. Similarly the set N2 whose elements

are 0 and Nx belongs to A, etc.

VI. (Axiom of choice) For every family A of disjoint non-empty sets

there exists a set B which has exactly one element in common with each

set belonging to A :

!,A[^0|a [(X * 7) -» (Afn Y = 0)]}
X, YeA

- V A V A [O' e fln E) = O’ = *)].
B EeA x y

For easier reading of the formula, observe that the formula \/ A [(T
jc y

e B nE) = (y = x)] states that there exists an element x such that the
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conditions y e BnE and y = x are equivalent. Thus the element x is

the unique element of the intersection Bc\E and the formula above

asserts that this intersection contains exactly one element.

Not all mathematicians accept the axiom of choice without reserve,

some of them view this axiom with a certain measure of distrust.
1

)

Usually, we shall mark theorems which are proved using the axiom

of choice with the superscript °. As a rule the axiom of choice will be

used only in proofs of theorems which have not yet been proved without

the use of this axiom.

For each formula 0{x) of the class K we assume the following

axiom: 2
)

VI*. (Axiom of subsets for the formula 0). For any set A there

exists a set which contains the elements of A satisfying the formula 0

and which contains no other elements.

Symbolically this axiom can be written in the lollowing lorm:

There exists a set B such that /\ {(x e B) = [(x 6^4)aCP(x)]}

(we suppose that the variable B does not occur in 0).

x
) The axiom of choice occupies a rather special place among set theoretical

axioms. Although it was subconsciously used very early, it was explicitly formulated

as late as 1904 (see Zermelo [1]) and immediately aroused a controversy. Several

mathematicians claimed that proofs involving the axiom of choice have a different

nature from proofs not involving it, because the axiom ol choice is a unique set

theoretical principle which states the existence of a set without giving a method of

defining (“constructing”) it, i.e. is not effective. In the ensuing discussion in which

the leading mathematicians at the beginning of the present century took part

it became clear that there is no unique intuitive notion of a set. Thus one of the

results of the discussion was the growing conviction among mathematicians that it

is necessary to build set theory in the axiomatic way. For a detailed account of the

discussion mentioned above see Fraenkel, Bar-Hillel and Levy [1]. Many equivalent

formulations of the axiom of choice are known; see Rubin and Rubin [1] and Jech

[2]; there is also an extensive bibliography of works dealing with problems of the

logical independence of the axiom of choice and of several statements w'eaker than

this axiom but related to it; see Jech [2].

Stressing all the places in which the axiom of choice is used originated with

Sierpiski who, since 1918, has published numerous papers dealing with the axiom

of choice; see Sierpiski [23].

2
) This axiom is dependent on the remaining ones, therefore we do not give it

a separate number.



2. AXIOMS OF SET THEORY 55

If 0(x) contains free variables different from x, then they act as

parameters upon which B depends.

Clearly, the set B is uniquely determined by 0. It is denoted by

{x e A : 0{x:)}, which is read “the set of x which belong to A and for

which 00)”.

Finally, for every formula of the class K in which variables z and B

do not occur we have the following axiom:

VII0 . (Axiom of replacement for the formula 0) If for every x

there exists exactly one y such that 0(x, y) holds
,
then for every set A

there exists a set B which contains those and only those elements y for

which the condition 0(x, y) holds for some x e A.

Symbolically:

IA V At@(x>y) = (>' = z)]| -* AV A [O' eB)= V Ct>{x,y)].
x z y A B y xeA

The intuitive content of this axiom is as follows. Suppose that the

antecedent of the implication holds, namely, for every x there exists

exactly one element y satisfying 0(x, y). In this case we say that y
corresponds to x. The axiom states that for every set A there exists a

set B which contains all the elements y corresponding to elements of A
and which contains no other elements.

For instance, if 0(X, Y) is the formula Z(X) a (F = P(X)), then the

element corresponding to the set X is the power set P{X). By the axiom

of replacement, for every family of sets A there exists a family of sets

B which consists of all the power sets P(X) where XeA.
Observe that we have defined not just one axiom of replacement but

actually an infinite number of them. In fact, for every formula belong-

ing to the class K and not involving the variables B and z we have

a separate axiom. Similarly, axioms VI^ form an infinite collection of

axioms.

If the uniqueness condition occurring in the antecedent of axiom VII0

is satisfied, then the set B whose existence is asserted in the conclusion

of the axiom is unique. The proof follows immediately from axiom I.

We call the set B the image of A under the formula 0 and we denote

it by {0} “A.

Axioms I-VI and all of the axioms VII0 where 0 is an arbitrary

formula of the class K constitute an infinite system of axioms, which
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will be denoted by Z°. Eliminating the axiom of choice from the system

v° we obtain the axiom system denoted by I.

As already mentioned on p. 48, we can introduce new piimitive

notions P,Q, ... into set theory. Then we use axioms I-VI and all

axioms of the form VII0 ,
where 0 is an arbitrary formula of the class

K[P, Q, ...]. This system, which includes the system Z°
9

will be de-

noted by E°[P, Q ,
...]. If we omit the axiom of choice then we shall

be dealing with the system which we denote by Z[P,Q, .••]•

We can fully appraise the meaning which individual axioms have tor

set theory only after acquainting ourselves with conclusions which fol-

low from them. At this time we shall be content to make a few remarks

of a general character.

Axioms III, IV, VI, and VII are axioms of conditional existence,

that is, they allow us to conclude the existence ot certain sets assuming

the existence of others.

Constructions of sets based on axioms III, IV and VII are unique.

On the other hand, axiom VI does not assert the existence ot a unique

set! for a given family A of non-empty disjoint sets theie exist, in gen-

eral, many sets B satisfying the axiom of choice.

Axioms II and V are existential axioms: they postulate the existence

of certain sets independently of any assumptions concerning the exist-

ence of other sets.

We make a few more remarks of a more general nature. Axioms in

mathematical theories can play one ot two roles. There are cases where

the axioms completely characterize the theory, i.e., they constitute in

some sense a definition of the primitive notions ol the theory. Such is

the case, for instance, in group theory: we define a group as a set and

operations satisfying the axioms ot group theory. In other cases the

axioms formalize only certain chosen properties of the primitive notions

of the theory. In this case the purpose of the axioms is not to give a

complete description of the primitive notions but rather to give a sys-

tematization of the intuitive concept. This second point ot view is

taken in this book. There arise, of course, problems of a philosophical

nature related to establishing the intuitive truth of the axioms. However,

we shall not treat these problems here.

Since the intuitive content of the notion of set is not completely charac-
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terized by axioms I-VII, it is not surprising that the axioms do not

suffice for establishing certain results from intuitive set theory. As an

example of an intuitively obvious property of sets which cannot be

derived from the axioms I-VII we give the following:

If A is a non-empty family of sets, then there exists a set X such that

X e A and XnA = 0.

Many authors accept the so-called axiom of regularity, which states

that every family of sets has the property described above.

From the axiom of regularity it follows in particular that X eX for

no X and, more generally, X
1
e X2 e ... e Xn e X

t
for no X { ,

X2 , ... ,
Xn .

In this book we will not use the axiom of regularity.

In Chapter VIII-X we shall consider certain other axioms indepen-

dent of the axioms I-VII. 1

)

!

) The first axiomatization of set theory is due to Zermelo [21; the primitive

notions in this system were “set“ and e as in the system 27°. Zermelo did not have

axiom VII and used only axiom VI' which he called the
“
Aussonderungsaxiom” . The

formulation of this axiom given by Zermelo was rather ambiguous and gave rise

to serious discussions. The formulation which we have adopted was proposed by

Skolem [2]. It should be stressed that in this formulation we do not have a single

axiom VII and a single axiom VI' but schemata of axioms, each depending on an

arbitrary formula; for this reason it was necessary to formulate correctly the defi-

nition of set-theoretical formulas because without this definition the axioms would

not be unambiguously determined.

Axiom VII (of replacement) was proposed independently by Mirimanoff [1],

Fraenkel [1] and Skolem [1]; Fraenkel’s paper was most influential and for this

reason the axiom is usually credited to Fraenkel. The axiom of regularity was pro-

posed first by Mirimanoff [1].

Most recent expositions of set theory are based on a system of axioms called the

Zermelo-Fraenkel system and denoted by ZFC. The system can be obtained from

27° by adjoining the axiom of regularity as well as the assumption “every a is a set”;

in connection with this last axiom the primitive notion of a “set” can be eliminated.

The reason why we did not assume the axiom of regularity is our conviction

that it is very unnatural to exclude the possibility that there exist objects which are

not sets. It is to be noted that there appear recently papers which explicitly use

such objects; see e.g. Barwise [1].

Von Neumann [2] and [3] proposed another way of making precise the unclear

axiom VI of Zermelo and showed that the axiom of replacement can be similarly

reformulated. Instead of using formulas as did Skolem, von Neumann admitted
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Exercise

Show that axioms III, IV and VII can be replaced by a single axiom stating the

existence of the set S({<Z>}''POD) for every set A and for every propositional func-

tion 0 belonging to K [Hao Wang].

§3. Some simple consequences of the axioms

Starting with this section, our exposition of set theory will be based

upon the axioms of the system L°.

Theorem 1
:
(The existence of pair) For arbitrary a ,

b there exists

a unique set whose only elements are a and b.

Proof. Uniqueness follows from axiom I and existence from axiom II

.

The set, whose uniqueness and existence are stated in Theorem 1,

is called the unordered pair of elements a, b and is denoted by \a>b }.

If a = b then we simply write {«}.

Theorem 2: (The existence of union) For arbitrary sets A and B

there exists a set C such that

(.xeC)= [(xe/l)v(.\-efi)].

In fact, C = (J X.
Xe{A,B}

Theorem 2 asserts that axiom A (p. 6) is a consequence ot the

axioms L.

Theorem 3
:
(The existence of unordered triples, quadruples, etc.)

For arbitrary
,

a
9
b

i
c y

...,m there exist sets :
{a,b,c} whose only

elements are a,b and c; {a,b,c,d} whose only elements are a,b,c

and r/, ...; {a, b, ..., m} whose only elements are a t
b

, ..., m.

In fact, {a, b
,
c } = {a ,

b }
u {c}, {

a ,
b, c

,
d} = {

a

,
b y

c }
u {d}, etc.

The set

(1) <a,b> = ({«}, (a, 6})

a new primitive notion into set theory. This system was later reformulated by Bernays

[1] and Gbdel [1]. The advantage of the resulting system, called in the literature

“GB system”, is that it is based on a finite number of axioms. Still another system

of axioms was proposed by Morse [1]; see also Kelley [2].

For a critical exposition of the axioms of set theory now in use see Fraenkel,

Bar-Hillel and Levy [1] and from a different point of view Quine [1].
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is called an ordered pair}) We call a the first term of \a
,
by and b the

second term of by.

Theorem 4: In order that (a, by = <T, d) it is necessary and sufficient

that a = c and b = d.

Proof. The sufficiency of the condition is obvious. To prove its

necessity, suppose that <(#, by = (

c

,
dy. By means ol (1), it follows that

{
c}e(a,by and {c, d} e (a, by,

that is,

(i) {c} = {tf} or (ii) {

c

} = {
a,b },

and

(iii) {c, d} = {a} or (iv) {c,d} = {a,b}.

Formula (ii) holds if a = c = b. Formulas (iii) and (iv) are then

equivalent and it follows that c = d = a. Hence we obtain a = c = b = d

in which case the theorem holds. Similarly, one can check that the the-

orem holds for case (iii). It remains to be shown that the theorem holds

for cases (i) and (iv). We have then c = a and either c = b oi d = b.

If c = b then (ii) holds and this case has already been considered. If

d = b then a = c and b = d, which proves the theorem.

Corollary: If (a, by = <f>,dy then a = b.

By the definition of the set (xe,4:0(x)} axiom VI# implies the

following theorem.

Theorem 5:

(2) t e (x e A : <£(*)} = [0(0 a (/ e A)]

.

In particular, if &(x) -> (x e A) (in which case we say that the domain

of 0 is limited to A), then

(3) / e {x: 0(x)} = 0(0-

Equivalence (3) leads easily to the following theorems (with the

assumption that the domains of 0 and xIf are limited to A).

(4) {x: 0(;t)v0(x)} = {x: 0(x)} u{x: 0(x)},

(5) {x: 0(x)

a

0(x)} = {.x

:

0(x)} n {x: ^(x)},

(6) {x: “10W} = A- {x: 0(x)}.

J

) The definition of an ordered pair given here is due to Kuratowski [4]; see

also Wiener [1], where a closely related definition was also proposed.
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As an example we shall prove (4). For this purpose we apply equiv-

alence (3) to the formula 0(x)v li/(x) and we obtain

(i) te {*: 0(x) v^*)} = [0(t) v'F(t)].

According to (3) we have

0{t) = t e {x : 0(x)} and t ) = t e {x:
XP{

x

)}

;

thus it follows from (i) that

t e {.y: 0 (.y) v 0(a) }
= / g {.y: 0(x)} v t g {.y:

lP(x)

}

= t g {.y: 0(.y) }
u {.y: ^(.y)} ,

which proves (4).

Theorem 6: For every non-empty family of sets A there exists a unique

set containing just those elements which are common to all the sets of

the family A.

This set is called the intersection of the sets belonging to the family

A and is denoted by p (A ) or Pi X.
XeA

For we have:

n (A) =
X

If the family A is composed of sets X
x ,
X2 , ... ,

Xn (n finite), then

p (A) = X
x
nX2 n ... n3fn . In case A = 0, the operation P (A) is not

performable.

We conclude this section with a remark on so-called antinomies of

set theory. A naive intuition of set would incline us to accept an axiom

(stronger than axiom VI^) stating that for any formula there exists

a set B containing those and only those elements which satisfy this

formula.

The creator of set theory, Cantor, believed (at least at the beginning

of his work) that such an axiom was true.

However, it soon became apparent that the axiom formulated in

this way leads to a contradiction (to an antinomy).

Let us take as an example the formula
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0(x) = (.v is a set) a (.v .y) ,

which leads to Russell's antinomy})

We shall prove

Theorem 7: There exists no set Z such that

At(xeZ) = <P(xj]

.

X

Proof. If such a set existed, then the equivalence

(.y e Z) = (x is a set) a (x x)

would hold. From the assumption that Z is a set we obtain the con-

tradiction Z e Z = ~] (Z e Z).

Interdependence of the axioms

We have shown that axiom A (p. 6) follows from 27. Axiom B (p. 6)

follows from 27 as well, because A — B = {ie/1: I(y € 2?)}. Axiom C

(p. 6) follows directly from axiom II (the axiom of empty set) or from

axiom V (the axiom of infinity).

Axiom IF follows from the other axioms of the system 27. In fact,

let A be a family of sets such that 0 e A and such that there exists at

least one non-empty set belonging to A. Such a family exists by the

axiom of infinity. The set {a, b
}

is the set {d>}“A where 0 is the formula

[(.y = 0) a (y — a)] v [(* # 0) a (v = b)].

Axiom Vli (of subsets) is also a consequence of the other axioms

of the system 27. In fact, let A be a set and 0(x) a formula. If /\ [(y e A)
X

_> ~]0(x)], then the empty set satisfies the axiom of subsets. Other-

wise, let a be an arbitrary element of A such that 0(a). Denote by

lP(x,y) the formula [0(x)a (y = x)] v [~~
|$(y) a (>> = a)]. For every x

there exists exactly one y such that 0(y , >>) ;
namely this element v is

x or a ,
depending on whether 0(x) or

1
^(y). The set {0} A clearly

satisfies the thesis of axiom VI^.

') Russell’s antinomy was first published in an appendix to Frege [2]. For our

statement that Cantor believed in the truth of the contradictory axiom : there is

a set X of all objects x satisfying 0 (y)’\ see Cantor [2].
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Exercises

Show that

1. If XeA, then p)CO c IM)-

2. U(^iU^) = IMi)uU0*2).
3. If A t nA 2 ± 0, then f](A l nA 2) =>

§ 4. Cartesian products. Relations

The cartesian product of two sets X and Y is defined to be the set

of all ordered pairs <x, y} such that xeX and ye Y.

The existence of this set can be proved as follows. If x e X and y e Y,

then {x, y} cluf and {x} a Xu Y, whence

<a-,.v> = {{-v}, eP(P(XuY)).

The set

!
t £7’:\/V(i = <*, >-»| ,

where T = P(P(XuY)),
xeX yeY

exists by means of axioms IV, VT and Theorem 2. This set contains

every ordered pair <x, y>, where x e X, y e Y, and contains no other

elements. Hence this set is the cartesian product of X and Y.

Since there exists at most one set containing exactly the pairs

x e X, y e Y, the cartesian product is uniquely determined by X and Y.

This product is denoted by X x Y.

If X = 0 or Y = 0, then obviously Xx Y = 0.

In spite of the arbitrary nature of X and 7, their cartesian product

can be treated in geometrical terms: the elements of the set Xx Y are

called points
,
the sets X and Y the coordinate axes. If z = <x, y> then

x is called the abscissa and y the ordinate of z. The fact that the set

of points in a plane can be treated as the cartesian product £ x <$ where

£ is the set of real numbers justifies the use of this terminology.

Certain properties of cartesian products are similar to the properties

of multiplication of numbers. For instance, the distributive laws hold:

(X
t
uX2 ) x f = Fj x yul2 x Y,

Yx(X
l
uX2 )

= YxX
y
uYxX2 ,

{.

X

t
-X2 ) x Y = X, x Y-X2 x y,

Yx{X,-X2 )
= YxX

t
-YxX2 .
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As an example we shall prove the first of these equations:

O, y> e (Xx
uX2) X Y = (xeXt

ul2 ) a (y e Y)

= (x g v x e X2 )A^ef)

= (x eX^Ay eY)v (x eX2 /\y eY)

= «x,y}eXl xY)v«x,y>eX2 xY)

= <jcj>£ftxyuJ2 xy).

The cartesian product is distributive over intersection:

(X, nX2) xY = (Xt xY)n (X2 x Y),

Yx(Xl
nX2 ) = (YxXi)n(YxX2).

The proof is similar to the previous one.

The cartesian product is monotone with respect to the inclusion re-

lation, that is,

(*) IfY # 0, then (

X

l
a X2) = (X, x Y c X2 x Y) = (Yx X, c YxX2).

In fact, let y e Y. Suppose that X
l <= X2 . Since (for i = 1,2)

«x,7>6Z
i
xT) = (x e X) a (y e Y),

we have the following implication

«*, y> eX,xY) -+ «*, y}eX2 xY);

hence x Y c= X2 x Y.

Conversely, if X
x
x Y c X2 x Y and jef, then

(x e Xx ) -> (xe Xi) a (y e Y) = ((x, y) eXt xY) - ((x, y) eX2 x Y)

= (xe X2 ) a (y e Y) -> (x e X2 ) ;

thus X1
cz X2 .

The proof of the second part of (*) is similar.

Using cartesian products, we can perform certain logical transforma-

tions. For instance, the formulas (p. 50)

A A 0 (x > y) = A 0(*, y) 3 A ^(z).
x y xy z

V V 0(x, y)
= V &(X, y) = V 0(z)

x y xy z
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allow us to replace two consecutive universal or existential quantifiers

by one quantifier binding the variable z = <x,y> which runs over the

cartesian product X x Y.

A subset R of a cartesian product X x Y is called a (binary) relation.

Instead of writing {a, b} e R, where R denotes a relation, we some-

times write aRb and read: a is in the relation R to b, or the relation R

holds between a and b.

The left domain (A) (or simply the domain )
of a relation R is defined

to be the set of all x such that <x, y> e R for some y\ the right domain

(Z) r) is the set of all y such that <x, y> e R for some x. The right do-

main of a relation is sometimes called the range
,
or the counter-domain ,

or the converse domain. The union F(R) of the left and right domains

of R is called the field of R.

In geometrical terminology we say that A is the projection of R on

the X-axis and A is the projection of R on the y-axis.

Thus we have

(1) D, = \xeX: \/<x,y) e /?), D
r = \y e Y: V <*> J> e *1 •

y x

These formulas prove the existence ot the sets D
x
and Dr .

If the free variables of the formula &(x,y) are limited to the sets

X and Y respectively, then the set R = {<x,y>: </>(*, >0} is a relation.

Clearly, &(x,y) = xRy = <x,y> e R. Hence

Theorem: The projection of the set {<(*, >’): &(x t y)} on the X-axis is

the set {x: V 0(x,y)l-
y

The relation {(x,y}:yRx} is called the inverse of R and is denoted

by R l

. Obviously, DfR 1

)
= DfiR) and D r

(R l

) = AW-
The relation |<x,y>: V (xSzazKv)I is called the composition of R

z

and S and is denoted by ROS. 1

) Obviously, DfROS) a DfS) and

DfROS) c= D
r
(R).

T We use this notation instead of the more natural SOR, because when writing

down a transformation, we normally put the symbol of the operation carried out

first in the second place (e.g. sin (log a)).



4. CARTESIAN PRODUCTS 65

The operation O is associative. In fact,

x(ROS)OTy s \J(xTzAzROSy)
z

= \J \J (xTzAzSt AtRy)
z t

= V V (xTzAzSt AtRy)
t z

= VIV (xTzAzSt) AtRy]
t z

= \/ (xSOTt a iRy)
t

= xRO(SOT)y.

Because of the associativity of O we may omit parentheses in ex-

pressions of the form ROSO ... O U.

We shall prove the formula

(RO) 1 = S lOR\
In fact,

x(ROSyy = yROSx

= \/ (ySz a zRx)
z

= \/ (xR‘zOzS‘y)
z

= xS*OR l

y.

Other properties of the operations 1 and O are given in the exercises.

Examples and exercises

1. Let X = Y = S’ (the set of real numbers). The set {<*,>>>: jc < >-} is that

part of the plane which lies above the straight line x = y. The set «xr, y): y = x2
}

is a parabola, its projection on the T-axis is the set {>’: \/(y = a2
)}.

2. Let A be a family of subsets of Xx Y. Let F{Z) denote the projection of the

set Z (where Z <= Xx Y) on the Z-axis and F(A) the family of all projections F(Z),

Z e A. Prove that

f[U C4>] = U [F(A)],

i.e. the projection of a union is equal to the union of the projections.
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3. Give an example showing that the projection of an intersection may be differ-

ent from the intersection of the projections.

4. Prove the formulas (RuS) 1 = R'uS*, (RnS)* = R lnS l and (R lY — R.

5. Prove the formulas

(RuS)OT= (ROT)kj(SOT), TO(RvS) = (TOR)u (TOS),

(RnS)OT^ (ROT)n(SOT), TO(RnS) <=
(TOR)n(TOS).

6. Prove that (XxY)' = YxX. Compute (XxY)O(ZxT).

§ 5. Equivalence relations. Partitions

A relation R is called an equivalence relation
x

) if for all x, y, z e F(R),

the following conditions are satisfied:

xRx (reflexivity)

,

xRy -> yRx (symmetry)

,

xRy a yRz —> xRz (transitivity).

Examples

1. Let x,y be straight lines lying in a plane. Let xRy it and only

if x is parallel to y. Then R is an equivalence relation.

2. Let C be a set of Cauchy sequences (ja x ,
a2 , ...» ani ...> ol rational

numbers. The relation R which holds between two sequences if and

only if lim (an -bn) = 0 is an equivalence relation.

3. Let X be the set of real numbers x such that 0 ^ x < 1. The re-

lation R which holds between two numbers a, b e X if and only if the

difference a-b is a rational number is an equivalence relation.
2
)

4. Let X be any set, K = P(X) and let / be an ideal in K (see p. 17).

The relation = which holds between two sets X, YeK it and only if

X—Yel is an equivalence relation.

5. Example 4 can be generalized in the following way. Let K be an

arbitrary Boolean algebra and I any subset ot K satisfying the con-

ditions:

a^bel->ael, (a e I)A(b e I) (avbel).

1

) The notion of an equivalence relation and of equivalence classes was first

investigated in full generality by Frege [1].

2
) Example 3 is due to Vitali [1] who proved that no set of representatives of the

relation defined in Example 3 is Lebesgue measurable.



5. EQUIVALENCE RELATIONS. PARTITIONS 67

Then / is called an ideal of K\ the relation = (Example 4) is an

equivalence relation.

We shall now give theorems which describe the structure of an

arbitrary equivalence relation.

Let C be any set. A family A of subsets of C (A c= P(C)) is called

a partition of Cif0^^,U(/4) = C and ^ie sets belonging to A are

pairwise disjoint (i.e. for any X, Y e A either X = Y or XnY = 0).

Theorem 1: If A is a partition of C, then the relation RA defined by

the formula

*RAy = V[(x 6 y) A 0 e r)]

YeA

is an equivalence relation whose field is C.

The proof of this theorem is left to the reader.

Teteorem 2: IfA and B are two different partitions of C, then RA ^ RB .

Proof. Suppose that RA = RB \
we shall show that A = B. Because

of the symmetry of the assumptions it suffices to prove that A a B.

So let YeA and let y e Y. Since (J (#) = C, there exists Z e B such

that y e Z. If x e Y then xRAy and hence xRBy. Because Z is the

unique element of B containing y,
we have x e Z. Similarly we can

show that x e Z —> x e Y, which proves that Y = Z and hence Y e B.

Theorem 3: For any equivalence relation R with field C# 0 there

exists a partition A of the set C such that R = RA .

Proof. Let

A =
j
Y c C: V A ORy = u e F)|

.

yeC ueC

Because of the reflexivity of R the elements of the family A are

non-empty and {_) (A) = C. If Y e A and Z e A, then for some y, z e C
the following formulas hold:

V (u e Y = uRy) , /\ (m 6 Z = uRz)

.

u u

From the symmetry and transitivity of R we infer that if Y and Z
have a common element, then they are identical. This proves that the

family A is a partition of C.

We show now that R = RA .
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Suppose that uRv. Denoting the set {zeC'.zRu} by Yu ,
we obtain

Yu e A and v e Yu ;
hence uRA v and R a RA .

Now suppose that uRA v; then there exist Y in A and an element y

such that f\(zRy = z e Y) and u e Y and v e Y. Therefore uRy and

z

vRy; by the symmetry and transitivity of R ,
it follows that uRc . This

proves that RA a R. Hence R = RA ,
Q.E.D.

It follows from Theorems 1-3 that every equivalence relation with

field C t^ 0 defines exactly one partition A of the set C and vice

versa.

If r = ra then sets of the family A are called equivalence classes

of R. The equivalence class containing an element x is denoted by

xJR , the family A itself is denoted by C/R. This iamily is called the

quotient class of C with respect to R.

Examples

For the relation R of Example 1 each equivalence class consists ot

all straight lines lying in the same direction (i.e. mutually parallel).

For the relation R of Example 2 each equivalence class consists of

all sequences of rational numbers convergent to the same real number.

Cantor defined real numbers as the equivalence classes with respect

to this relation.

A set of representatives ot an equivalence relation with field C is

a subset of C which has exactly one element in common with each

equivalence class.

The existence of a set of representatives for any equivalence relation

follows from the axiom of choice. Without the axiom of choice we

cannot prove the existence of a set of representatives even for very

simple relations. Such is the case lor the relation ot Example 3.

Exercises

1. Let / = {*: 0 < * < 1}; for X <= /, let X(r) denote the set of numbers be-

longing to I and having the form x+r+n where xgX and n is an integer. Show

that if Z is a set of representatives for the relation R ot Example 3, then

a) Z(r)nZ(s)
= 0 for all rational numbers r, s (r # s);

b) / = Z(r), where the union is over all rational numbers.

2. Show that the condition RA c RB is equivalent to the following: every set

Y e A is the union of some family A <= B.
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3. Show that if M is a non-empty family of equivalence relations with common
field C, then O (A/) is also an equivalence relation with field C.

4. Preserving the notation of Exercise 3 prove that there exists an equivalence

relation U with field C such that

a) Re M - R <= (/;

b) if V is an equivalence relation with field C and /\ [R e M -> R <= V], then
R

U <= V.

5. Assuming in Exercises 3 and 4 that A/ = {Rj, Rr), describeU (M) and U.

§ 6. Functions

A relation R c= XxY is called a function ) if

(1) A [xRyiAxRy2 -> O’j = y2)].

x,yi,y 2

Functions are denoted by letters f,g,h, The sets Dff) and

D r(f) are called respectively the domain and the range of the func-

tion /. We often write D(f) for /),(/) and Rg(/) for Dt(J). The follow-

ing terminology will be used: if D
x(f) = X and D

r(f)
<= Y then / is

called a mapping (or a transformation) ofX into Y; if, moreover, D r(f)

= Y then / is called a mapping of X onto Y. When Dff) = X,
we say

that the function / w defined on X.

The set of all mappings of X into Y is denoted by Yx . Instead of the

formula / e Yx we often use the more suggestive formulae /: X -* Y
or X Y.

Iff e Yx and x e X, then by the definition of domain there exists at

least one element y e Y such that xfy. On the other hand, it follows

from the definition of function that there exists at most one such

element. Hence the element y is uniquely determined. It is called the

value of/ at x and is denoted by f(x). Therefore, the formula y = f(x)

has the same meaning as xfy.

For /, g belonging to Yx
the following obvious equivalence holds:

(f=g) = A [/(*) = ?(*)]•
x,yeX

If ordered pairs are identified with points of a plane, the first term

with the abscissa and the second term with the ordinate, then it turns

out that a function is identical with its graph.

') The definition of a function given in Section 6 is due to Peano [I].
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Definition: A function f is said to be a one-to-one (or injective)

function if different elements of the domain have different values

under the function /:

(2) [f(x i) = f(x2)\ [xi = *2 ],

where and jv2 are arbitrary elements of the domain.

Theorem 1: IffeYx then fc
is a function if and only iff is one-

to-one. Moreover
, fc e X Y

» where Y, is the range off and f
c

is also a

one-to-one function.

Proof. The relation fc
is a function if and only it

A bf°x i
A >fCx2 -+ x i

=
xi,x2 ,y

that is, if

A b = f(x i) A y = f(x2 ) x i
= x2l-

xi,x2 ,y

Clearly, this formula is equivalent to (2). The second part of the

theorem follows from the formulas for the domain and range ot an

inverse relation (p. 64).

Theorem 2: Iff e Yx and g e Z y then the relation gOf is a function

and gOf e Zx
(in other words : if X -j

Y -> Z then X ,Z).

Proof. The definition of the composition ot two relations implies

the equivalences

xgOfz = V i(xfy) A bsz)}
y

= V [(fix) = y) A (siy) = Z )1

= g(f(x)) =

it follows that

A [(xgO/z,) a (xgOfz2) - r, = z2]

X,Zi,Z 2

and that every element of X belongs to the domain ot gOf.

Since the right domain of this relation is included in the range ot g,

gOfEZ
X

.

Theorem 2 implies the following formula

gOf(x) = g(f(x)) for xg26.
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Theorem 3: IffeYx
, g e Z 1 and the functions f and g are one-to-

one
,
then their composition is also one-to-one.

In fact,

S (/(*)) = #(/(*')) -/(*) = fix') ^ x = x'.

Definition: A one-to-one function whose domain and range are

the same set X is called a permutation of the set X.

The simplest permutation of X is the identity permutation Ix ,
that

is, the function defined by the formula Ix ix) = x for all x e X.

Theorem 4: Iff e Yx and f is a one-to-one function
,
then f cOf= Ix

and fOfc = IYl where T, is the range off
In fact, the equivalence fc

(y) = x = f(x) = y implies /c
(/(*)) = x,

thus/c O/ = Ix . The proof of the second formula is similar.

Let f e Yx
, g e Zx

, (p e TY and xp g Tz
. Hence the range of the func-

tion cpOf is contained in T and the same holds for the function xpOg.

If (pOf = xpO

g

then we say that the following diagram

Y
<p

T

commutes. This diagram shows that starting with an element x e X
we can obtain the element cpOfix) = yOg(x) in two ways: through an

element of the set Y or through an element of the set Z.

Definition: A function g is said to be an extension of a function
f

if / <= g • We also say that f is a restriction of g.

Theorem 5: In order that f c= g it is necessary and sufficient that

D\if) c A (g) and fix) = g(» for all x g Dff).

Proof. Necessity : Suppose that / eg. Then Dff) c= Dfg), for the

projection of a subset is a subset of the projection (see p. 65). If x
e A if) an<3 y = fix) then <x,y> ef hence <x,^> eg and y = g(x).

Sufficiency. Suppose that Dff) c= Z),(g) and f(x) = g(x) for all

x 6 AC/*)- If y> e/ then y = f{x) = g(x), therefore <x, y} e g, which
shows that / eg.

The restriction / of g for which Dff) = A will be denoted by g\A.
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The notion of a function should be distinguished from the notion of

an operation. By an operation we mean a formula &(x, y) with two

free variables satisfying the following conditions:

(W) A \j0(x,y), A T2) Oi = T2)]-
1

)

* y x,yuy2

These conditions state that for every x there exists exactly one object

y such that 0(x
, y). In general the set of all the pairs <x, y> such that

&(x,y) does not exist and hence no function / such that <£(x,j’)

= [y = f(x)] exists. For instance, such a function does not exist if

0(x, y) is the formula x = y. On the other hand, the following theorem

holds.

Theorem 6 : If a formula 0(x, y) satisfies conditions (W) and A is

an arbitrary set
,
then there exists a function fA with domain A and such

that for arbitrary x e A and arbitrary y

[y = fA (x)] = 0(x,y).

Namely, the required function fA is the set

{t eAxB: \f[(t = <*,T» a #(*,}>)]}
xy

where B denotes the image of A under the formula 0 (see p. 54).

In particular, if a formula 0 is of the form ... x ... = y (where on

the left-hand side of the equation we have an expression written in

terms of the letter x, constants, and operation symbols), then the func-

tion/! will be denoted by F [... x ...]. For example, using this notation,

xeA

Ix = F[x], f = F [/(*)]

.

xeX xeD(f)

Functions of more than one variable

Let XxYxZ = Xx(Yx Z), XxYxZxT=Xx(YxZxT) and simi-

larly for any number of sets. If X — Y = Z then instead ot XxXxX
we write X 3 and similarly for XxXxXxX. Subsets ol the cartesian

product of n sets are called n-ary relations.

If the domain of a function / is the cartesian product Xx Y, then /

is said to be a function of two variables. Similarly, it the domain ot /

l

) The formula 0 may contain other free variables acting as parameters.
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is the cartesian product XxYxZ, then we say that / is a function of

three variables. Instead of f(fx,yf) we write f(x, y).

Theorem 7: If a function f is a one-to-one mapping of the set XxY
onto the set Z, then there exist functions a and /?, mapping the set Z
onto X and Y respectively

,
such that /(a(z), /?(z)) = z for every z e Z.

Proof. It suffices to take for a the set of pairs <z, x> satisfying the

condition V [f(x,y) = z] and for 0 the set of pairs <z,y> satisfying
y

the condition V lf(x,y) = z\.

X

Complex functions and product-functions

Any two functions fe Yx and geZx determine the function h

e (YxZ)x
,
called a complex function

,
denoted by </, g} and defined by

the formula

h(x) = <f(x),g(x)}.

More generally, any two functions / e Yx and g e Zw determine the

function u e(YxZ)x *w
,
called the product-function

,
denoted by fxg

and defined as follows

u(x, w) = </(x), g(w)>.

To conclude this section we give a formulation of the axiom of

choice using the notion of function.

Theorem 8 : If A is a non-empty family of sets and 0 £ A, then there

exists a function fe ((J (A))A such that f(X)eX for every XeA.
Proof. Let h — F [{X}xX]. For XeA we have thus h{X) A 0

XeA

and, moreover, h(X)nh(Y)= 0 for X / Y. Applying the axiom of

choice to the family D r (h), we obtain a set which has exactly one el-

ement in common with each set h(X), XeA. As it is easy to show, this

set is the required function /.

A function with the properties mentioned in Theorem 8 is called

a choice function for the family A.

Theorem 8 shows that from the axioms 27° it is possible to derive the

existence of a choice function for an arbitrary non-empty family of

sets not containing the empty set. Conversely, it can be shown that

the axiom of choice follows from Theorem 8 and the axioms 27.
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Exercise

Let n ^

5

3 and let

X — ... c* A n~i ,

Bk = ...W /4fc + n-i» Ok = -^k+ l
^ ..• C1

/4fc +n_2 ,

where the indices are reduced modulo w. Let fk e T5*., k = 0, ..., /i— 1, be a sys-

tem of functions satisfying the condition

fk(x) = fk+ iCv) for x E Ck + 1 .

There exists a function fe Yx satisfying the equation fk = f\ Bk for every

k = 0, ..., n— 1

.

§ 7. Images and inverse images

Let A and B be arbitrary sets and R a relation such that R c= A x B.

For X <= A let

R\X) = \y. \J(xRy)\.
xeX

This set is called the image of X under the relation R. Clearly,

R l

: P(A) - P(B).

In particular, if /is a function then f\X) consists of values of the

function f on the set X. We shall write f
x {X) = {f(x): x e X}.

The same symbol will be used for operations, e.g. {vv,}'):.xe^},

{(J (X): Xe A}, etc. As we know, there exists neither a function

whose value for any jc is the pair <x, /> nor a function whose value

for any family X is the set U (X). However, every such operation

determines a function it we limit its domain to an arbitrary given set

(see Theorem 6.6). Thus, strictly speaking, it would be necessary to

replace the symbols y), (X), etc., in the formulas {<A, y) x e X},

{(J (X): X e A} by symbols for values of functions with domains X
and A, respectively.

It follows from the definition of inverse relation (p. 64) that it > c= 5

then the image of Y under the relation R l

is

R~ 1 (Y) = {x: VO* 1

*)! = l* : V(**>0l-
yeY yeY

This set is called the inverse image of Y under R. II R =/is a tunc-
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tion, then

f~\Y) = {*: V (fix) = ?)} = {x-m 6 y}.
.yeK

i.e. the following equivalence holds:

xEf-^Y)=f(x)eY.

If Y reduces to the one-element set {y}, then the set/
-1

()') is called

a coset of / determined by y. Distinct cosets are always disjoint, the

union of all cosets is the domain of /.

We shall now establish several simple properties of images and in-

verse images.

Theorem 1 : If R c= Ax B and Xl9 X2 are subsets of A
,
then

( 1 )
R l&i)vR l {X2) = R\X,kjX2),

(2) X, c -> R\X
x )

ci R'(X2),

(3) R l (X
t
nX2) c

Proof. Formula (1) follows from the equivalences

yeR'(X
t
uX2 ) = V {[(x eX

t ) v (x e X2 )\ a (xRy)}
X

= V [(* e JTi) a (x/?y)] v\/[(JC6 *2 ) a (xRy)]
X X

= yeR'{X,)vy e R'(X2 )

To prove (2) it suffices to notice that if X
t

<= X2 then X2 = X,
uJf2 .

Thus by means of (1) it follows that

R'(X2 )
= R'iX^vR'iX,)^ R'(X,).

Finally, formula (3) follows from the remark that X
l
nX2 <= Xt

for i= 1,2, whence, by (2), R , (X
I
r\X2 ) <= R'dX,) and R‘(X, n

X

2)

a R'(X2); and, in turn, we obtain R'(X
,
r\X2 ) <= R‘(X

t
) n R‘(X2).

Theorem 2: Iff e BA and T, <= D, Y2 a B, llien

(4) f-\Y^Y2) =/- , (r,)u/- ,

(y2 ).

(5) f-
1 (Yl nY2)=f-'(.Y1)nf-'(Y2),

(6)
/- ] (K,-r2 )

=/- ,

(yi)-/“'(y2)-
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Proof. (4) is a special case of (1). Formula (5) follows from the

equivalence

xef- 1 (Y1 nY2) ^f(x)eYl
nY2

= (/(*) 6 r,)A (fix) 6 Y2 )

= (x e/' 1
(y1)>A (x e/_1(K2))

= (xef-'(¥>)

The proof of (6) is similar.

Theorems 1 and 2 show that the operation of forming the image

under an arbitrary relation is additive, but it is not multiplicative. On
the other hand, the operation of obtaining the inverse image is both

additive and multiplicative.

Theorem 3: Iff: A -> B and iff is a one-to-one function ,
then for

any X
1 ,
X2 c- A the following formulas hold:

fl(x1 = f\X i)nf'(X2), fl{Xi—X2) = f l{X2)-f'{X2).

For the proof, substitute / 1
for /

_1
in Theorem 2.

Theorem 4: Iff: A -* B, Y c f*(A) and X a A, then

f‘ (/-'(¥))= Y, X))=>X.

The proof of the first formula can be obtained from the equivalence

y e/ 1 (/ 1

(o) = V [(* 6/"
1

(O) A (y = /(.x))]

= V [{fix) e Y) A (y = /(.V))] = (>• e Y)

.

X

The proof of the second formula follows from the implication

(xeX)^ (f(x) sf'(X)) ex6/->
(/,(*)).

In the formula just proved the inclusion sign cannot in general be

replaced by the equality sign. For instance, if/is a function of the real

variable x and /(;c) = x 2
,
then for X = {y: a: ^ 0} we have f~

l

(f
1
(X)')

^ X. But for one-to-one functions we obviously have f~
1
{f

1 (X
) )
= X.

Finally, let us note the following important

Theorem 5: IfS c Ax B and R c= Bx C, then(ROS) l (X)
= R l (S^JF))

for every set X a A.
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Proof.

y e (ROSy(X) = V (xROSy)
xeX

= V V [(*&) A (zRy)

)

xeX z

= V V i(xSz) a (
z/?

-
v)]

z xeX

= V [(- 6 S‘(JQ) A (r«v)|
z

In particular, it follows from Theorem 5 that if /: A ^ B and

g: B -> C, then (gOf)
l (X) = g

l (f'(X)) for every set X c A.

Exercises

1. Prove that f l(Xl)-f i (X2)^f l(Xx-X2) and f\Xnf~ l (Y)) = f 1(X)nY.

2. If g=f\A, then g~ 1 (Y)= Anf~ x (Y).

3. A value y of a function /is said to be of order n if the set f~
l

({y}) consists

of n elements. We say that a function f is of order ^ n if all of its values are of

order < n.

Prove that if a function / defined on a set X is of order ^ n and A ^ X, then

the restriction f\(j~\f
1 (A))-A) is of order < n— 1.

4. We are given a system of r+1 disjoint sets A 0 ,
A lf ..., A r included in X and

a function of order ^ n defined on X (n ^ r). Let J6 = /'(/t 0)n ... n f
l (A r). Prove

that the restriction /|(/L nf~ l (B)) is of order n—r.

5. Images and inverse images are used in topology, in particular to define the

notion of a continuous function.

Let X and Y be two topological spaces and let /: X -» Y. We say that / is con-

tituous if the inverse image of any open set in Y is an open set in X.

Prove that the following conditions are necessary and sufficient for a function f

to be continuous:

(a) inverse images of closed sets are closed,

(b

)

f l (A) ^f'(A),

(c) A^f-'[f l
(A)],

(d) f-
l (B)cif- 1 (B),

(e) <= B,

where A c X and B <= Y.

6. Let / be a one-to-one mapping of X onto Y (hence/-1 : Y -* X). We say that

/ is a homeomorphism if / and f~
l are continuous.
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Show that each of the conditions arising from (b)-(e) by substituting the equality

sign for the inclusion sign is a necessary and sufficient condition for a function

/ to be a homeomorphism.

7. Show by means of an example that the image of an open set need not be

open even though the function is continuous.

The same for closed sets.

8. Prove that the composition of two continuous functions is continuous.

9. Let h = <f,g) e (YxZ)x be a complex function. Show that

h l (A) <= f 1 (A)xg l (A

)

where A <= X
and

h~ l (Bx C

)

= f~
l (B)ng~ 1 (C) where B <= Y and C <= Z.

10. Let u = (fxg) e (Tx Z)Xx w be a product-function. Show that

u
l (A x C) = f* (A) x

g

l (C) where A X and C c W
and

u~ l (BxD) = f~
l (B)xg~ 1 (D) where B Y and D Z.

§ 8. Functions consistent with a given equivalence relation.

Factor Boolean algebras

The construction to be given in this section is one of basic import-

ance in abstract algebra.

Let R be an equivalence relation whose field is X, f a function of

two variables belonging to Xx * x
.

Definition: The function /is consistent with R if

A [(***1) A O’fiTi) (/(*, y) Rf(x 1 , >’,))]

.

Xt Xi *y 1 y i

A similar definition can be adopted for a function of arbitrarily

many arguments.

It results from the equivalence ,\Ry = (x e y/R) = (x/R = y/R

)

that

the definition of consistency can be expressed as follows: if xex
{
/R

and y eyJR, then f(x,y)/R = f(x l9 y 1)/R. In other words, the equiv-

alence class f(x,y)/R depends on the classes x/R and y/R but not on

the elements x, y themselves. This implies that there exists a function (p

with domain (X/R)x(X/R) satisfying for any x,yeX the formula

(p(x/R, y/R) = f(x ,
y)/R.
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Namely, 99 is the set of all pairs of the form <<A', A">, A), where

A, A', A" £ X/R and

V [(x £ A') a (7 £ A") a (/(x, >’) £ A)]

.

•*>.v

We say that the function 99 is induced from f by R.

The function A £ (X/R)x defined by the formula A(a') = xfR is called

the canonical mapping of X onto X/R. The function of two variables A 2

defined by the formula k 2 (x,y) = <x/R,y/R) is also called the can-

onical mapping of X 2 onto (X/R) 2
. A similar definition can be given

for functions of three and more variables.

Theorem 1: If a function f e XXxX
is consistent with an equivalence

relation R and 99 is the function induced from f by R, then the diagram

x 2-rx
/c

2

|

k

(X/R) 2—X/R

commutes.

Proof. For any pair <x, e X 2 the following formulas hold:

kOf(x,y) = k(f(x,y)) = f(x,y)/R,

<pOk 2(x,y)
= rp(k 2

(x, }>)) = <p(x/R, y/R) =f(x,y)/R.

Hence AO/ = 99OA 2
.

Example. Let X = K be a field of sets with unit U, I any ideal in K, R

the relation = mod / (see p. 17). The set K/R is denoted by K/I and is

called a factor Boolean algebra.

The functions f(X, Y) = XuY, g(X, Y) = XnY, and h(X) = U-X
are consistent with the relation = (see Exercise 1.5.4). The functions

induced from f g, h by the relation = will be denoted by V, A, and

—
,
respectively. Hence

CX/R)v (Y/R) = (Xu Y)/R
,

(X/R) a (Y/R) = (Xn Y)/R,

-(X/R) = (U—X)/R.

Theorem 2: The set K/I is a Boolean algebra with respect to the

operations v, a
,
—

,
with 0/R and U/R as the zero and the unit element

,

respectively.

Proof. It is sufficient to show that the operations v, a, — and

the elements 0/R and U/R satisfy axioms (i)-(v'), p. 38. For instance,
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we check axiom (i). Let a = X/R and b = Y/R ; then avb =
(.XuY)/R

and bva =
(YkjX)/R and hence awb = bv a. The remaining axioms

can be checked similarly.

Remark. The conditions X = 0 (mod/) and Xel are equivalent.

This proves that 0/R = I.

The factor algebras K/I may have properties quite different trom

those of K. Thus the construction leading from K to K/I allows us to

build new and interesting examples of rings.

Exercises

1. Generalize the example given above by taking any Boolean algebra as A

and any subset of K satisfying the conditions of Example 5.5 as I.
1

)

2. Let K be the field of all subsets of an infinite set U, and let / be the ideal

of all finite subsets of U. Show that the factor ring K l has no atoms.

§ 9. Order relations

Definition 1 : A relation R is said to be an order relation if it is

reflexive, transitive, and antisymmetric. The last condition means that

(.xRy) a (} Rx) -» (x = y).

A relation which is only reflexive and transitive is said to be a quasi-

order relation.

A pre-order relation is such that is transitive and satisfies the condi-

tion (jc/ty) -> (xRx)A(yRy) for arbitrary .x and y.

Instead of xRy we usually write x ^ R y or x ^ y. We also say that

the field of R is ordered (quasi-ordered, pre-ordered) without explicitly

mentioning R. It is necessary to remember, however, that an ordering

is by no means an intrinsic property of the set. The same set may be

ordered by many different relations.

Let X be a set ordered by a relation <. If are elements of X
and either x ^ y or y ^ x ,

then we say that .v and y are comparable
,

otherwise incomparable. If Y c= X and any two elements of Y are com-

parable, then we call Y a chain in X
;

if any two elements of Y are in-

comparable, then Y is called an antichain in X.

*) Example 5.5 denotes Example 5 in § 5. Similary, Example II. 5. 5 denotes

Example 5 in § 5, Chapter II, etc.
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A relation ^ is called connected in X if any two elements of X are

comparable. Connected order relations are called linear orderings. 1

)

These relations will be considered in detail in Chapter VI.

Examples

1. Every family of sets is ordered by the inclusion relation. If it is

linearly ordered by this relation, then it is called a monotone family.

2. Every lattice (in particular, every Boolean algebra) is ordered by

the relation a ^ b.

3. The set of natural numbers is ordered by the relation of divisi-

bility.

4. A family P is said to be a cover of a set A if A = i J (P ). A cover

P
{

is said to be a refinement of a cover P2 if for every X e P {
there

exists Y e P2 such that X a Y. The relation R, defined by

P2 RP 1 = (P
l

is a refinement of P2 ),

is a quasi-order relation in the set of all covers of A. It is not, how-

ever, an order relation, that is, there may exist two distinct P
:
and P2

such that P
l
RP2 and P2 RP {

.

On the other hand, if we limit the field of R to covers which consist

of non-empty disjoint sets (such covers are called partitions
;

cf. p. 67),

then R is an order relation.

Definition 2: A set A ordered (or quasi-ordered) by the relation

^ is said to be directed if for every pair x e A and y e A there exists

z e A such that a ^ z and y ^ z.

5. Every lattice is a directed set since x ^ xvy and y ^ xvy. In

particular, the family of all subsets of a given set X, as well as the

family of all closed subsets of a given topological space, is directed with

respect to the inclusion relation (either <= or =>).

6. The set of all covers of a given set A is directed with respect to

the relation R considered in Example 4. For, given two covers P i and

P2 ,
denote by P3 the family of all intersections of the form X n Y where

') Linear orderings were considered originally by Cantor [5], Partial orderings

were introduced by HausdorfT [3]. The use of the word “ordering” for what was

formerly called partial ordering originated with Bourbaki [1]. The convention is

not universally accepted and is often a source of confusion.
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XePi, YeP2 . It is easy to check that P3 is a cover and Pt RP3 as

well as P2 RP3 .

Definition 3: An ordered set A is said to be cofinal with its subset

B if for every x e A there exists y e B such that x ^ y. Analogously

we can define coinitial sets.

Example. The set of real numbers is cofinal and coinitial with the

set of integers.

If an ordered set A contains a greatest element, then A is cofinal with

the set composed of this element.

The greatest (least) element should be distinguished from the maxi-

mal (minimal) element. Namely, an element x of an ordered set A is

said to be maximal (jminimal ) if there is no element y in A such that

x < y (v < x). In linearly ordered sets the notions of greatest (least)

element and of maximal (minimal) element coincide. This is not always

the case for arbitrary ordered sets.

Definition 4: Let A be an ordered set, T any set and let / 6 A r
. An

element u e A is said to be the least upper bound of {/,} iff ^ u and

u is the least element having this property:

(i) A (ft< w)>
teT

(ii) A (ft < v) -> (u v).

teT

Replacing < by ^ ,
we obtain the definition of the greatest lower bound.

The least upper bound, if it exists, is uniquely determined. For sup-

pose that besides (i) and (ii) we have

co A if, < «o,
teT

(ii') A (ft < v) (“' < *0-
teT

Setting v = u in (ii') and applying (i), we obtain u < u. Likewise,

it follows from (ii) and (i') that u ^ u . Hence u = u ,
since the relation

^ is antisymmetric.

The proof of the uniqueness of the greatest lower bound is similar.

The least upper bound, if it exists, is denoted in the theory of or-

dered sets by \J f, the greatest lower bound by A ft • If T * s a finite

teT teT
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set T = {1 , 2, ... ,
n} and = a, f2 = 6, fn = h, then the least

upper bound of these elements is also denoted by avbv ... v/z, and

the greatest lower bound by a/\b/\ ... a h.

The greatest lower bound of all elements of A
,

if it exists, is called

the zero element and is denoted by 0^ or simply 0. Analogously, the

least upper bound of all the elements of A, if it exists, is called the

unit element and is denoted by \ A or 1.

Obviously, a/\b ^ a and a/\b^b'a/\b exists; similarly a ^ avb

and b < avb provided avb exists (in this case A is a directed set).

If a ^ b, then avb and a/\b exist and they equal b and a
,
respect-

ively. This implies that if a/\b and avb exist for all a, be A, A is

a lattice.

Definition 5: An ordering of a set A is said to be complete if for

every T and for every / e A T
there exist A f and \/ /,.

ter teT

Since every lattice is a set ordered by the relation a ^ b, this defi-

nition also explains the meaning of the term “complete lattice."

Examples and exercises

7. P{X) is a complete lattice (for an arbitrary set X) with respect to

the operations n, u. The existence of the least upper bound is a conse-

quence of axiom III, § 2, the existence of the greatest lower bound

follows from Theorem 3.6.

This example will be used in Chapter IV, § 1.

8. The family of all closed subsets of an arbitrary topological space

is a complete lattice under the operations n, u. In this case \/ Xt
is

t

the closure of the union of the sets Xti f\ Xt
is the intersection of Xt

.

t

9. Let A be any set. The family P(A 2
) (i.e. the family of relations

with fields included in A) is ordered by the inclusion relation. Prove that

the family of all transitive relations is a lattice and describe the mean-

ing of the operations a and v.

10. The same problem as in 9 for the family of all equivalence re-

lations.

An interesting class of order relations is provided by so-called trees.

Definition 6: We say that a set X ordered by the relation ^ is a
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pseudo-tree with respect to this relation if X is ordered by ^ and more-

over for each x in X the set 0R (x) = {y: y ^ x} of all predecessors

of x is a chain.

We shall omit the words “with respect to whenever possible.

A pseudo-tree is a tree if sets 0R (x) are not only linearly ordered

but are well-ordered; this notion will be defined and discussed later.

If T is a pseudo-tree and 5 c= T then obviously S is a pseudo-tree

with respect to the same relation limited to S; we call S a sub-pseudo-

tree of T.

Examples

1.

Figure 1 gives an example of a pseudo-tree consisting ot 15 points.

The relation x ^ y holds between points x and y if x is connected with

y by an arrow and x lies lower than y.

2. Let /: X -> X and let y ^ x mean that there is a non-negative

integer n such that y = fn
(x) where /" is the nth iteration of /, i.e.

f° = lx, f 1 = ff

2

= fOf, P = fOfOf, etc.

3. Let X be the set consisting of all finite sequences (a0 ,
a l , ..., an)

whose terms aj are either 0 or 1. Let x ^ y mean that x cz y. Then A

is a (pseudo-)tree; we call it the full binary tree.

Let A be a pseudo-tree. If B a X is a chain and there is no chain

in X which properly contains B, then we say that B is a branch ot X.

We shall prove later that each chain can be extended to a branch

(see Ch. VII ).

The set of all branches of a pseudo-tree can be provided with a very

natural topology which we call the tree topology. To define it let T be

a pseudo-tree and let T
t
be its sub-pseudo-tree consisting of all elements

of T which are comparable with t. We define now a closure operation:
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For each set A whose elements are branches of T we denote by A the

set of all branches B of T which have the following property: whenever

B c T
t ,

then there is a branch B' a T
t
which belongs to the set A.

It can easily be shown that the set of all branches of T is a topo-

logical space under this closure operation.

Exercises

1. Supply the proof of the last statement.

2. The set of all finite sequences whose terms are non-negative integers is a

(pseudo-)tree with respect to <=. Show that the set of all branches of this tree pro-

vided with the tree topology is homeomorphic with the space of irrational numbers
of the interval (0, 1).

3. Prove that each finite (pseudo-) tree is a sub-tree of the full binary tree.

4. Prove that a lattice is a pseudo-tree if and only if it is linearly ordered.

5. Let X be a set with 3 elements. How many mutually non-isomorphic (a) order

relations, (b) trees, (c) linear orderings with the field X exist?

6. Let T be a pseudo-tree. We call x an immediate successor of y if y < x but

there is no z such that y < z < x. Prove that if T is finite and each element y of T
has exactly one immediate successor, then T is linearly ordered. Give examples of

infinite trees for which this statement is false.

To conclude this section we introduce the important notion of the

similarity of ordered sets.

Definition 7: Two sets A and B ordered by the relations R and S
respectively are said to be similar if there exists a one-to-one function

/ mapping the set A onto B and satisfying for arbitrary x,yeA the

equivalence

xRy = f(x) Sf(y)

.

In this case we say that the function establishes the similarity of the

sets A and B (under the relations R and S).

For example, defining f(x) = — x for xe<j we obtain similarity

between the set $ ordered by ^ and the same set & ordered by

The notion of similarity is a special case of the more general notion

of isomorphism which will be treated in the next section.

§10. Relational systems, their isomorphisms and types

Let A be a set, R0 , /?, ,
... relations respectively of p0 ,P i, ---iPk-i

arguments in A
;

in other words, Rj a A pJ for j < k. The sequence

/A , *o, ^i) ••• » Rk-i?
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is called a relational system of characteristic (p0 ,P 1 , 1 ) and the

set /I is called the universe of the system.

Relational systems are investigated in many branches of mathematics,

especially in algebra. We may, for instance, consider a group as a re-

lational system of characteristic (3) and a ring as a relational system of

characteristic (3,3). Boolean algebras (see p. 33) may also be treated

as relational systems.

In order to simplify our treatment we shall investigate systems of

characteristic (2), that is, systems of the form (A
,
R), where R c= Ax A.

However, all proofs can easily be generalized to arbitrary systems.

Definition: Two relational systems (A, R> and <5, S> are said to

be isomorphic if there exists a one-to-one function /mapping A onto B

such that for all x,yeA

xRy = f(s)Sf(y).

Then we write (A, R} « <£, S> or briefly R « S if no confusion can

arise about the sets A and B.

The proof of the following theorem is immediate.

Theorem 1 : The relation « is reflexive ,
symmetric

,
and transitive.

We shall show that every property of the system (A
,
R) which can

be expressed by means of the propositional calculus and quantifiers

limited to the universe of the relational system, is also a property of

every system isomorphic to <A ,
R). We say that the property in ques-

tion is invariant under isomorphism.

Let 0 be a formula involving free variables x,y. Besides x,y,&
may involve an arbitrary number of other variables w0 » M i» •••,«*- 1

-

Suppose that 0 arises from formulas of the form

(1) Ui = Uj ,

(2) <i/ i} uj} ey

by means of operations of the propositional calculus and by means of

the quantifiers \/ and f\. Thus the variables x and y are not bounded
uex uex

by quantifiers. For such formulas we have
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Theorem 2 :

1

) If a function f is an isomorphism of the relational

systems (A, R> and (B, S) and if aQ ,a x , ak _ x
e A, then

(3) 0(A, R,a0 , = 0(B,S,f(ao),

Proof. If 0 is the formula (1), then the equivalence (3) follows

from the assumption that / is one-to-one. If 0 is the formula (2), then

(3) follows from the assumption that / is an isomorphism.

Suppose now that (3) holds for formulas 0 and 0’

.

By the laws of

the propositional calculus it follows that (3) also holds for the formulas

\0 and 0 v 0'

.

This implies that (3) holds for all the formulas which

can be obtained from 0 and 0' by applying operations of the prop-

ositional calculus. Hence, to prove the theorem for all formulas it

suffices to show that (3) holds for formulas arising from 0 by applying

a quantifier (existential or universal) to 0. It suffices to consider only

one of these quantifiers, for instance the existential quantifier.

Let W be the formula \J 0 and suppose that a
x , ...,ak _ x

e A. If
«0

0{A
,
R, a

x , ... ,
ak _ x ) then for some a0 belonging to A we have

0(A, R,a0 ,a x , ..., ak _ x ). By the induction hypothesis we thus obtain

0(B, S,f(a0),f(a x ), ... ,f(ak _ J), and it follows that 0(B, S,f(a x ), ...

•••>/(#*- 1 ))- Hence we have proved the implication

nA, R, ai9 ...,ak- x ) -> W(B
9 SJ(a x ), ...J(ak _ x )).

The proof of the converse implication is similar.

Example. The following properties of the system (A, R) are by

Theorem 2 invariant under isomorphism:

1. Reflexivity
:

/\ xRx.
xeA

2. Irreflexivity:

3. Symmetry:

4. Asymmetry:

Aiw
xeA

A [xRy -> yRx]

.

x,yeA

A [xRy -* no**)].
x.yeA

5. Antisymmetry: /\ [(x/?y) a (yRx) -> (x = >’)]

.

x.yzA

') Theorem 2 is a scheme: for each formula we obtain a separate theorem.
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6. Transitivity : /\ [(x/ty) a (yRz) -> (xRz)].

x,y, zeA

7. Connectedness : A [(*/ty) v (x = v) v O’R*)]

.

x,yeA

Two isomorphic systems are said to be of the same type. The mere

use of the word “type" in this expression does not presuppose that

there are objects which we call “types." All the theorems of set theory

could indeed be expressed without using this notion. However, the in-

troduction of the notion of type simplifies the axiomatic treatment of

the theory. Moreover, the use of this notion is justified by the fact

that Cantor himself developed set theory using this concept.

In order to deal with the notion of a type in an axiomatic way we

introduce a new primitive notion TR. The formula aTR</l, R} is read:

a is the type of the relational system <A ,
R). We also introduce a new

axiom.

Axiom VIII (of relational systems): For every system <A ,
R

where R c A 2 there exists exactly one object a such that aTR</I, R\

Moreover, for any systems (A, R) and (B, S') the following formula holds

(aTR</I ,
/?»a(£TR<£, S» - [(a = 0) = <A, R) * <B S}].

The unique object a such that aTR</l, R> is denoted by (A, R) or,

if there is no confusion, by R -

1

)

The object a is called a relational type if and only it there exists some

system </l, R} such that aTR</l, R).

Exercises

1. Let A have n elements and let r„ be the number ot relational types of systems

with field A. Show that the number r„ satisfies the inequality

2nl
ln\ < rn < 2n\

2. Prove that r 2 = 10 and r3 = 104 [Davis].
2
)

*) The notion of a type originated with Cantor [4]; however he dealt only with

the special case of types of linear orderings and his way of introducing types was

objectionable. The general notion appeared first in Russell and Whitehead [1].

Our way of introducing types differs from the way usually taken in expositions

based on the system ZFC (see note to p. 57) but is closer to ideas ot Cantor. It was

shown by Levy [3] that in the absence of the axiom of regularity one cannot define

types in the way used in the system ZFC.
2
) In connection with Exercise 1 see Davis [1]. He states in his paper that r4

= 3044 and r 5 = 291 96'8.



CHAPTER III

NATURAL NUMBERS. FINITE AND INFINITE SETS

In this chapter all theorems will be derived from axioms of — ° (cf.

p. 56). As usual, theorems not marked by ° do not involve the axiom

of choice in their proofs. Throughout this chapter we shall often write

0 instead of 0.

§1. Natural numbers 1

)

For any set X, let

X ' = Xu{X}.

The set X' will be called the successor of X.

Theorem 1 : There exists exactly one family of sets N such that

(i) 0 e N;

(ii) XeN -* X' e N;

(iii) if K satisfies (i) and (ii), then N c= K.

Proof. It follows from the axiom of infinity that there exists at

least one family R satisfying conditions (i) and (ii). Let 0 be the family

of all those subsets of R which satisfy (i) and (ii):

<t> = {S <z R: 0 e Sa /\(X e S X' e S)}

.

X

It is easy to show that P) (0) is the required family.

') The idea of defining natural numbers in set theory goes back to Frege [1],

although his way of defining them was very different from that presented in this

chapter. Our presentation which is now standard was initiated by von Neumann
[1]. A detailed analysis of the problem of what axioms are necessary to justify the

laws of arithmetic and other parts of mathematics was made by Bernays in his series

of papers [l]-[6].



90 HI. NATURAL NUMBERS. FINITE AND INFINITE SETS

The elements of N are 0, {0}, {0, {0}}, etc. These sets can be con-

sidered as the counterparts of natural numbers 0, 1,2, the oper-

ation ' as the counterpart of +1. We shall prove several theorems of

arithmetic which hold for the elements of TV.
1

)

In order to simplify the notation, the elements of N will be denoted

by the letters m, n,p, ... A set K is said to be inductive if it satisfies

conditions (i) and (ii).

(1) m en - m! c= n.

Proof. Let K = {/?: f\ (m e n -> m' c «)}. To prove (1) it suffices

rn

to show that iVc AT or, in other words, to show that the set K is induc-

tive. Condition (i) clearly holds. To prove (ii), let n e K and m e.
Hence m e n or m = n. In the first case, m <= n by the definition of K,

in the second case, m <= n because the sets are equal. Thus man ,

and consequently n' e K, which proves the theorem. The proof of (1)

is an example of a proof by induction.

(2) n$n.

The proof by induction consists in showing that the set {/?: n $ n}

is inductive.

(3) m! — n
r

-*• m = n.

Proof. It follows from m! = n' that m e ii

,

thus men or m = n

and by (1) m c n. Similarly we prove that n a m.

Peano showed that the arithmetic of natural numbers can be based

upon the following axioms:

(a) zero is a natural number ;

(b) every natural number has a successor ;

4

) The reader, who feels it unnatural that in our exposition the role ot natural

numbers is played by sets, can take as natural numbers some objects which are in

one-to-one correspondence with the sets belonging to N. Such objects may be, for

instance, the types of relational systems S(n) = <n, nxn), where n e N. This method

will be used in Chapter V, where we introduce cardinal numbers. Identifying natu-

ral numbers with the elements of the family N, we can base our treatment of arith-

metic on the axioms 27° only (mostly even on the axioms 27 without the axiom ol

replacement); whereas in order to identify them with the types of the systems S(n)

we would have to appeal to the axioms 27° [TR] and VI 1 1 -
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(c) zero is not a successor of any natural number’,

(d) natural numbers having the same successor are equal',

(e) a set which contains zero and which contains the successor of every

number belonging to this set contains all natural numbers.

It follows from (i), (ii), (3), (iii) and /?' # 0 that the elements of

the set N satisfy Peano's axioms.

(4) For arbitrary m,n exactly one of the following formulas holds’.

men, m = n, n e m.

Proof. (1) and (2) imply that every two of the above conditions are

mutually contradictory. To prove that for every pair m, n one of these

formulas holds, we use induction. Let

K(n) = {m \ m e nvm = nvn e m}

.

Theorem (4) is equivalent to /\ (N c K(n)), thus it suffices to prove
n

that every set K(n) is inductive.

The set A:(0) is inductive, for /f(0) consists of the set 0 and of those

m for which 0 e m and it is obvious that 0 e m — 0 e m' . Suppose that

the set K(n) is inductive, i.e. that N c= K{n). We shall prove that K{n')

is also inductive.

Condition (i): n' eN cz K(0) implies that //eOvn' = OvOg/i'.

Since the first two components of this disjunction are false, 0 e ri and

0 e K{n').

Condition (ii): Suppose that m g K(n'), that is, either m g n '
,
m = n'

or n' g m. In the second and the third case we obviously have n' e m'

and hence m' g K{n'). In the first case either m = n or m e n holds.

If m = n then m' = n' and hence m' e K(n'). If m e n then m e K(n)

and hence m' e K(n), for K(n) is inductive by assumption. We thus

obtain m' e nvm' = nvn' e m. The third component of this disjunction

is false, for it implies n e n, which contradicts (2). Hence we have only

the two possibilites, m’ e n and m' = n, which since n c= n'
,
prove that

m! g K(n'). This completes the proof of theorem (4).

(5) The set Z = {m: n e m} is identical with the intersection P of all

families K a N such that n e K and K satisfies (ii).
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Proof. Since tn <= m'
,
the set Z satisfies (ii). This proves that P ci Z,

for obviously ri e Z. It remains to be shown that if K satisfies (ii) and

ri e K
,
then Z a K. For this purpose, let L = {n: n e Z n e K}. It

suffices to show that N a L or, in other words, that L is an inductive

family.

Condition (i) obviously holds, for 0 $ Z.

To prove that L satisfies (ii), suppose that m e L. This means that

either m e K or m $ Z. In the first case m' e K, for K satisfies (ii), and

we obtain m' e L. The second case splits into three subcases depending

upon whether n e m, n = m or m e n. The first subcase contradicts the

assumption m $ Z. The second subcase implies m

'

= ri and hence

m! e K and finally m' e L, for K a L. In the last subcase we have by

(4) either m! e n or m' = n or n e rri

.

If either m! e n or m! = n
,
then

by (4) n $ rri
\
hence m' $ Z and finally rri e L. The condition n e m'

leads to a contradiction, for it implies that n emvn = m whereas by

assumption we have m e n.

In ordinary arithmetic the set of all numbers greater than n is defined

to be the common part of all sets which contain the successor of n

and which contain the successor of every number b which they con-

tain. Theorem (5) shows that the membership relation e in is the

counterpart of the relation “less than” between numbers. We shall

often write m < n or m < n instead of m e n or m e ri
,
respectively.

The existence of the set N allows us to define in set theory notions

analogous to those found in arithmetic and analysis. For example,

a function / whose domain is the set N is called an infinite sequence

and is sometimes denoted by (/<,,/1 , ...,/„, ...). If n eNthen a function

with domain n is said to be a finite sequence of n terms.

The set of all infinite sequences whose terms belong to A is clearly

A N
;
the set of all finite sequences of n terms in A is A n

. The set of all

finite sequences with terms in A can be defined as

{R cz N x A : (R is a function) a \/ (£>,(/?) = n)}.
neN

This definition implies the existence of the set of all finite sequences

with terms in A.
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Exercises

1. Show that if m, n e N, then m e // = (m <= w)a (m ^ «).

2. Show that if 0 # A" <= TV, then p) (AT) e Nr\K.

3. Prove that every non-empty family K c N contains an element k such that

knK = 0 (cf. the axiom of regularity, p. 57).

§ 2 . Definitions by induction

Inductive definitions are the most characteristic feature of the arith-

metic of natural numbers. The simplest case is the definition ot a

sequence 99 (with terms belonging to a certain set Z) satisfying the

following conditions:

(a) <p(0) = z, <p(n') = e(<p(n), n),

where zeZ and e is a function mapping ZxN into Z.

More generally, we consider a mapping / of the cartesian product

ZxN

x

A into Z and seek a function 90 e Z
NxA

satisfying the con-

ditions:

(b) <p(

0

,
a) = g(a), <p(n', a) = a), n, a),

where g e ZA
. This is a definition by induction with parameter a ranging

over the set A.

Schemes (a) and (b) correspond to induction “from n to n+V\
i.e. <p(n) or q>(n\a) depends upon cp(n) or (p(n,a ), respectively. More

generally, (p(n') may depend upon all values <p(m) where m < n

(i.e. m g n). In the case of induction with parameter, <p(n') may depend

upon all values 9o(m, a), where m ^ ri ; or even upon all values 9o(m, b ),

where m ^ n' and b e A. Tn this way we obtain the following schemes

of definitions by induction:

(c) 99(0) = z, 99(77') = h{(p\ n', /?),

(d) 99(0, a) = g(a), 99(7?', a) = H (99 1

(n' x A), n, a).

In the scheme (c), zgZ and JieZCx ", where C is the set of finite

sequences whose terms belong to Z; in the scheme (d), g e Z * and
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H e Z 1 * N * A
,
where T is the set of functions whose domains are in-

cluded in iVxd and whose values belong to Z. 1

)

Examples of definitions by induction

1. The function m + n\

m + 0 = m , m + ri = (m + n)'.

This definition is obtained from (b) if we set Z = A = N, g(a) == a
,

f(p, n, a) = p.

2. The function

This follows from (a) if we set Z = N, z = 0, e(p,n) = p + n.

3. Let Z = A = Xx
,
g(a)

= Ix and /(«, n, a) = uOa in (b). Then

(b) takes on the form

9?(0, a) = /*, (p(n, a) = <ip{n ,
fl)Oa.

The function cp(n,a) is denoted by u” and is called nth iteration of

the function a. Thus we have:

a°(x) = x , n
n/

(A') = for x e X, a e Xx and neN.

4. Let A = NN
. Let g(a) = a0 and f(u,n,a) = u + an , in (b). Then

(b) takes on the form

9>(0, a) = a0 ,
(p{n\ a) = y(n, a) + a n ,.

n

The function defined in this way is denoted by V] n
t . Similarly we

i = 0
n

define
[ J

a i9 max a
t

.

i = 0 i'c n

It is clear that the scheme (d) is the most general of all the schemes

discussed above. By appropriate choice of functions we can obtain

') Scheme (c) could be generalized by assuming that the domain of the function

h is not the whole set Cx N, but only the set of pairs of the form (c, n) where

c € Z". However, this generalization is not of great importance.

The theory of inductive definitions was first presented by Dedekind [1].
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from (d) any of the schemes (a)-(d). For example, taking the function

defined by

H(c, n, a) = f(c(n, a), n, a) for a e A
,
n e N, c e ZNxA

as H in (d), we obtain (b).

We shall now show that, conversely, the scheme (d) can be obtained

from (a). Let g and H be functions belonging to ZA and z lxNxA

respectively, and let cp be a function satisfying (d). We shall show that

the sequence W: = cp\{n' x A) can be defined by (a).

Obviously, XF„ e T for every n. The first term of the sequence XV is

equal to ^|(0'x/t), i.e. to the set

z* = K<0, dy, g(a)): ae A\.

The relation between xFn , and xIfn is given by the formula

Vn' = xA),

where the second component is

{(<«', a},<p(n', a)}: a e A\ = ((</*', fl>, H(^Pn ,n,a)): a e A\

.

Thus we see that the sequence lff can be defined by (a) if we sub-

stitute T for Z, z* for z and let

e(c, n) = cu {(</?', a}, H(c, n, a)) \ a e A
|

for ceT.

Now we shall prove the existence and uniqueness of the function

satisfying (a). This theorem shows that we are entitled to use defi-

nitions by induction of the type (a). According to the remark made

above, this will imply the existence of functions satisfying the formulas

(b), (c), and (d). Since the uniqueness of such functions can be proved

in the same manner as for (a), we shall use in the sequel definitions

by induction of any of the types (a)-(d).

Theorem 1 \ If Z is any set
,
zeZ and e e ZZxN

,
then there exists

exactly one sequence cp satisfying formulas (a).

Proof. Uniqueness : Suppose that cp
{
and cp 2 satisfy (a) and let K

= {n: (pfn) = cp2 {n)}. Then (a) implies that K is inductive. Hence

N a K and cp
x
= cp2 .
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Existence : Let 0(z, n
, ?) be the formula e(z, n) = t and let

xP{n, z, F)

be the following formula

(

F

is a function) a (D^F) = a?') a (F(0)
= z)a

a /\ 0(F(m), m, F(m')).

men

In other words, F is a function defined on the set of numbers < n such

that F(0) = z and F(tri) = e(F(m), m) for all m < n.

We prove by induction that there exists exactly one function Fn such

that xP{n, z, Fn). The proof of uniqueness of this function is similar

to that given in the first part of Theorem 1. The existence of Fn can

be proved as follows: for n = 0 it suffices to take {<0,z>} as Fn \ if

n e N and Fn satisfies P(n, z, Fn ), then Fn , = Fn u {</?', e(Fn (n), n))}

satisfies the condition xP(n\ z, Fn ,).

Now, we take as cp the set of pairs (jn 9
s) such that n eN, s e Z and

V [

xP(n
9
z, F)a(s = F(n))].

F

Since F is the unique function satisfying W(n,z
9
F) 9

it follows that

cp is a function. For n — 0 we have 9?(0) = F0 (0) = z; if n e N
9
then

99 (7
?') = Fn\ri) = e(Fn(n),n) by the definition of Fn ; hence we obtain

(p{n') = e(<p(n),n). Theorem 1 is thus proved.

We frequently define not one but several functions (with the same

range Z) by a simultaneous induction:

<K0) = z
9 v(°) = F

<p(n
r

) = f(<p(n), tp(n)
9 //), \p{ri) = g((p(n), ip(n), «),

where z, t e Z and /, g e zZxZx *.

This kind of definition can be reduced to the previous one. It suffices

to notice that the sequence satisfies the formulas

#0 = <z, f>, &„, = e(&n , n),

where we set e(u, n) = {/(Af(w), L(u), n ), g(A^(w), L(w), a;)), and K, L

denote functions such that K((x,y}) = x and Z.«A*,.y» = y, respect-

ively. Thus the function ft is defined by induction by means of (a).

We now define (p and y) by

(p(n) = K(&„) and ip(n) = L(&n).
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The theorem on inductive definitions can be generalized to the case

of operations. We shall discuss only one special case. Let 0 be a formula

such that

A A V 0 ,

z neN t

AAA [
0 (z >

n
> L)a0(z, n, t2 )

-+ t v = t 2 \.

z neN ti,t 2

Theorem 2: *) For any set S there exists exactly one sequence (p such

that

(fo = S and f\ 0(cpn ,
n, (pn).

neN

Proof. Uniqueness can be proved as in Theorem 1.

To prove the existence of op, let us consider the following formula

W*(n, S, F).

(F is a function) a (Z)
x (F)

= ri) a (F(0) = 5*)a /\ 0(F(m), m, F(m')).
men

As in the proof of Theorem 1, it can be shown that there exists

exactly one function Fn such that lF*(n, S
,
Fn ). To proceed further we

must make certain that there exists a set containing all the elements

of the form F„(n) where n e N. (In the case considered in Theorem 1

this set is Z, for the domain of the last variable of the formula 0 which

we used in the proof of Theorem 1 was limited to the set Z.) In the

case under consideration, the existence of the required set Z follows

from the axiom of replacement.

In fact, the uniqueness of F„ implies that the formula

F(n))\
F

satisfies the assumption of axiom VII. Hence by means of axiom VII

the image of N obtained by this formula exists. This image is the re-

quired set Z containing all the elements Fn (n).

The remainder of the proof is analogous to that of Theorem 1.

Example. Let 0(S, t) be the formula t = P(S). Thus for any set S

there exists a sequence (p such that (p0 = S and (pn , = P{(pn) for every

natural number n.

*) Theorem 2 is a scheme: for each formula we have a separate theorem.
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§3. The mapping 7 of the set NxN onto N and related mappings

Using definitions by induction, we shall now define several mappings

important in the sequel.

1. The mapping J of the set NxN onto N. Let for x,y eN

J(x,y) =
[

x+y
2
+ ')+ X .

Theorem 1: J is a one-to-one mapping of NxN onto N.

Proof. Suppose that 7(x
, >0 = J(a

,
b). We shall first prove that

x = a. In fact, if we suppose x > a, then x = a + r, r > 0. Thus we

would obtain

(

a + r t>’+l) + r =
(

a +
2
+1

).

This implies b > r+y, for ('j
is an increasing function. Hence b — r+

+y+ s where s > 0. Substituting this value for b in (1) and letting

c = a+ r+y+l, we obtain (^j+r = (^j- But this is not true for

r < c, since (t) + r < (?)
+ c =

(

C

\ *) ^ (°
2

*)
• In the same way il

can be shown that x < a does not hold. Hence x = a and we obtain

|o+>-+lj _ + 6 + y < b then we would have b = y+ t
,

t > 0;

and we would obtain (« + *+>)
5.

(

a+
^
+ :

)
>

(

a+
£
+1

). Likewise we

can derive a contradiction from the assumption that y > b. Therefore

the function 7 is one-to-one.

Now we shall prove that the range Z of 7 is identical with N. It

follows from 7(0,0) = 0 and 7(0, 1) = 1 that 0, 1 eZ. Suppose that

n e Z, i.e. that n = 7(x,y) for some x and y. If y > 0 then

n + 1 = 7(x
, y) + 1 =

|

A+
^
+

*| +x+ l — 7(x + 1 , y— l)eZ.

If y = 0 then

n =
(l)

+ x =
[

X
2

l

)>
thus n + 1 = f 2

]

)

+ 1 *

Assuming that x > 0, we can write |'

x

t
1

j
+ l in the form

(

! + (A

2

1)+1

)
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+ 1 = 7(1 , .X — 1); hence n+ 1 e Z. Finally, if jc = y = 0 then n = 0

and n+ 1 = 1. Hence n+\ e Z. Theorem 1 is thus proved.

Theorem 2: There exist functions K
,
L mapping N onto N such that

J (K(x), L(.\')) = X. Moreover , these functions satisfy the inequalities

(2) < x, L(x) ^ x.

The existence of the functions K and L follows from Theorem II. 6. 7;

the inequalities follow from x < J(x,y) and y ^ J{x,y).

Remark: The intuitive meaning of the functions J,K,L can be

illustrated by arranging the pairs <x, y) of natural numbers into the

following infinite array:

<0 ,
0> <0 ,

1 > <0 ,
2> ...

(3) <1,0> <1, 1> <1 , 2> ...

<2 , 0> <2 ,
1 > <2 ,

2> ...

and then ordering them in the sequence

(4) <0,0>, <0,1>, <1,0>, <0, 2>, <1,1> <2, 0>, ...

The pair occurs in the 7(x,j)th position in this sequence.

The nth term of this sequence occurs in the (AT(n)+l)th row and the

(L(n)+l)th column of (3).

2. The mapping of the set Nn+1 onto N. We shall define by induction

a sequence of one-to-one functions such that the A:th term of this

sequence (denoted by rk ) is a one-to-one mapping of the set N k + i

onto N. Identifying every one-term sequence with its only term, we let

r0 (x) = x for x g N
,

rk+1 (e) = J(rk (e\k'),ek+ j) for eeNk+2
.

Theorem 3: The function rk maps Nk+1 onto N and is one-to-one.

Proof. For k = 0 the theorem is obvious. Suppose now that it holds

for the number k. If e e N k + 2 then e\k' eNk+l
>
whence rk {e\ k') gN and,

by definition, rk+1 (e) e N. The function rk+l thus maps N k + 1 into N.
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The fact that rk+l is one-to-one follows from the implications:

T*+1 (e) = r*+I (e*) - {tMk') = Tt (e*\k')) a (ek+ ,
= ef+I )

- (e|*' = e*|*')A (et+l = e**+1 ) - (e = e*).

It remains to be shown that for every number n there exists a se-

quence e eNk+

2

such that rk (e) = n. By the inductive assumption there

exists a sequence feN k + l such that rk (f) = K(n). We let e to be the

sequence whose k+l initial terms coincide with those of/ and whose

last term is L(n). For this sequence e the following formula holds by

definition:

rt+1 (e) = J(rk(f), L(n)) = L(n)) = n.

3. The mapping of the set of all finite sequences of natural numbers

onto the set N. Let for eeNk + l

o0 (e) = J(k, rk (e)).

This function is a one-to-one mapping of the set of all non-empty

finite sequences of natural numbers onto N. We have the following:

Theorem 4: There exists a one-to-one mapping a of the set tf of all

finite sequences of natural numbers onto N which satisfies the condition

<r(0) = 0.

To prove this it suffices to let cr(e) = l+<r0 (e) tor non-empty se-

quences e and u(0) = 0.

4. The mapping J' of the set Nn+1 xNn+l onto the set Nn+l and of

the set Nn xNn onto the set NN
. Let n be a natural number. For e

,

/eNn+1
,

let

J\eJ)= FV(ek ,fk )],
k.n

K'(e) = F [A()] ,
L’(e) = F{L(et )}.

k^.n k.n

Hence if e and / are sequences with n+1 terms ek and fk (

k

^ n ),

respectively, then J'(e,f ) is the sequence of «+ 1 terms J{ek ,fk ) (

k

^ n);

and K'(e) and L\e) are sequences with the terms K(ek) and L(ek )

(k ^ «), respectively.
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Similar definitions will be applied to infinite sequences of natural

numbers. Let (p, xp e NN and let

ip) = FU(<Pk, y>k)],
keN

K*(<p)= F[K(<pk)\> L*{<p)= f[%)].
keN ke N

J'*((p,Y) is thus an infinite sequence whose Ath term is J{<pk ,xpk ),

K*(cp) and L*{(p) are infinite sequences whose Ath terms are K((pk) and

L((pk), respectively.

Theorem 5: The function J' is a one-to-one mapping of the set Nn+l x

XjYn+1 onto Nn+l
;
the function J* is a one-to-one mapping of Nn xNn

onto NN
.

Theorem 6: For any e e Nn+1 and for any (p e Nn
the following for-

mulas hold :

L'{e)) = e, J*(K*(<p), L*Qp)) = cp.

The proof of these theorems is left to the reader.

5. The mapping of the set NA
onto the set (Nn)

n
. For keN and for

(p e NN
let

<P
ik) = F[<Pj(k,n)}\

neN

thus the sequence (p
(k)

has as terms cpJ{k , 0) , 9>/a>2) ,
....

Theorem 7: The function M: <P~+ F fo>
<fc)

]
{which associates with

keN

every sequence (p the sequence (p
(0
\ (p

(1
\ <p

(2)
, ...) is a one-to-one map-

ping of the set NN
onto the set (Nn)

n
.

Proof. For every (p eNN we clearly have M{(p) e . The function

M is one-to-one. In fact, it follows from M{cp) = M(ip) that <p
ik) = y)

a)

for every natural number A. Thus (pj(k , m >
= y>j(k,m >

f° r anY k, m
,
and

by letting A = K{n) and m = L{n) we obtain <pn = ipn for all n. Finally,

every element of the set (Nn)
n

,
that is, every infinite sequence t whose

terms tk are elements of NN
for all natural A, can be represented as

M((f) for some (p . In fact, if (p is the sequence (pn = tK(n) {L{n)), then

cp
{k)

is the sequence whose nih term is tKU{kyn)) (L(J{k , //}))
= tk (n),

i.e. cp
(k) = tk for arbitrary A. Hence Mfp) = t. Q.E.D.
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The theory presented in this and the two preceding sections shows

that notions of arithmetic are reducible to set-theoretical ones. Thus

e.g., the sentence 2 + 2 = 4 is expressible by means of the set-theoretical

formulas defined in Section II. 1. Thus we can freely use in set theory

the notions of arithmetic.

In later sections we shall occasionally use various other mathematical

notions such as real numbers, real functions, etc., assuming that they

have been defined in set theory by means of the notions of arithmetic.

The details of these definitions need not be given here since they are

sufficiently well known.

§ 4. Finite and infinite sets

The notions introduced in § 1 and § 2 of this chapter allow us to

derive basic properties of finite and infinite sets from the axioms ot set

theory.

Definition: We say that a set X has n elements and we write | A^| = n

(where n e N) if there exists a one-to-one sequence with domain n and

range X. Such a sequence is called a one-to-one sequence with n terms.

A set X is finite if |A"| = n for some n e N, otherwise we say that

the set X is infinite.

A set X has 0 elements if and only if X is empty, for the only one-

to-one sequence with 0 terms is the empty sequence.

For every peN the set p has p elements; in fact, the function Ip

defined by Ip(x) = x for every x ep is a one-to-one sequence of p

terms whose range is p.

Theorem 1 : Iff is a one-to-one mapping of the set X onto the set Y,

then \X\ = n if and only if |T| = n.

Proof. If e is a one-to-one sequence of n terms with range X, then

fOe is also a one-to-one sequence (see p. 71) of n terms whose range

is Y.

Lemma: Iff is a one-to-one function , D(f) = Xu {a}, Rg(/) — Yu

u {/?} and a $ X, h T, then there exists a one-to-one function g such

that X -> Y and such that Y is the range of g.
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Proof. Let f{a) = a
x , fc

{b) = b x . If a
l = b then b x — a and the

function / maps X onto Y; thus it suffices to take g = f\X.
If a

x # b then a
x
eY and similarly b

x
eX. In this case, g is defined

as follows:

g(x) = f(x) if x 71 blf g(b
x )
= a

x
.

Checking that this function satisfies the lemma is left to the reader.

Theorem 2: Let n e N. The following conditions are equivalent :

co m = u\

(ii) There exist a set X
x
a X and an element a

x $ X x
such that \X

x \

= n and X = X
x
u {a

x }.

(iii) X # 0 and for every X2 and a2 , if a2 X2 and X = X2 u {a2 }

then \X2 \
= /7.

Proof, (i) (ii). Let e be a one-to-one sequence of n' terms with

range X. Condition (ii) is satisfied when a = en ,
X

x
= X— {a}.

(ii) — (iii). The condition X ^ 0 is an immediate consequence of (ii).

Letting Xt and a x denote respectively the set and element satysfying (ii),

we infer that X2 u{fl2 }
= X

x
and thus there exists a one-to-one

function mapping X1 Kj{a x } onto X2 v{a2 }. By means of the lemma
there exists a one-to-one function g mapping X1 onto X2 and hence,

by Theorem 1, \X2 \

= n.

(iii) (i). Let a be any element of X and let X
x
= X— {a}. By (iii)

we have \X
x \

= n and thus X
x

is the range of a one-to-one sequence e

of n terms. The sequence e' of n' terms defined by e'p = ep for p e /7 ,

e'n = a
,

is one-to-one and its range is X. Hence \X\ = n '

.

Theorem 3: If \X\ = m and |y| = n, then m ^ n if and only if there

exists a set Y
x
a Y such that the set X is a one-to-one image of Y ,

.

Proof. If m < n then man (see pp. 90 and 92). Suppose that Y
is the range of a one-to-one sequence e of n terms and X is the range

of a one-to-one sequence / of m terms. The function eO

f

c
is thus one-

to-one and maps X onto a subset of Y (for fel (X) = m a n).

Suppose now that there exist a set f, c F and a one-to-one function

/ mapping Y
x
onto X. To prove that m ^ n we shall use induction on n.

If 77 = 0 then Y = 0; hence Y
x
= X = 0 and, moreover, m = 0 and

m ^ 77 . Suppose that the theorem holds for some n e N and let
\

Y\ = n '

.

Hence Y = Y2 u{#}, where |T2 !

= n and a £ Y2 . Since X = f\Y x ), we
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have f l (X) = p(Y2 nYy)uf
l ({a} nYf>. The set is either

empty or equal to {a}. In the first case we have |F2 nF| = m. The

formulas F2 n Fx
c= Yl and \

YX \
= m show that the inductive hypothesis

holds; hence m ^ n and thus m < n'

.

In the second case Theorem 2

implies m = p' where p is a number such that \Y1 nYi \
= p. By the

inductive hypothesis, p ^ n, hence m = p' ^ ri . Thus the theorem is

proved.

Theorem 4: If\X\ = m,
\
Y\ = n andXnY = 0, then \XsjY\ = m + n.

Proof. The proof is by induction on n. For n = 0 we have Y = 0,

and the theorem holds. Suppose that the theorem holds for the number

n and let \Y\ = n '
. Thus Y = Y

{
u{a} where a^Yl

and hence Xu Y

= (Xu TO u {
a }, where a $ Y. It follows from the inductive hypothesis

that \XuYt \

= m + n and, by Theorem 2, = (m + n)’.

This proves the theorem because (m + n)' = m+ n' by the definition

of addition (see p. 94).

Corollary 5: For an arbitrary U the finite sets contained in V form

an ideal.

In fact, a subset of a finite set is finite by Theorem 3, and the union

of finite sets is finite by Theorems 3 and 4.

Theorem 6: If \X\ = m and
\
Y

\

= n, then the set X is a one-to-one

image of Y if and only if m = n.

Proof. If m = n, then X is obviously a one-to-one image of F,

because there exist one-to-one sequences mapping the set n onto A"

and F. Now suppose that A is a one-to-one image of F. Then m is

a one-to-one image of n. We shall prove by induction that m = n.

For n = 0 the theorem is obvious. Suppose that it is true for some

n and let m be a one-to-one image of n' . Hence m ± 0 and we may

assume m = p'
. Because p' = pu{p] and n' — nu{«}, p is, accord-

ing to the lemma, a one-to-one image of n. Hence by the inductive

hypothesis p — n and finally m = p' = which proves the theorem.

Corollary 7: (The so-called drawer principle of Dirichlet ) If \X\

= m
, |

F
|

= n, m > n and f is a function such that f l (X)
= F, then

the function f is not one-to-one.

Dirichlet formulated this theorem as follows:
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Ifm objects are put into n drawers and m > n, then at least one of the

drawers contains at least two objects.

Obviously, our function /is the function assigning to each object the

drawer in which it is contained.

We shall now apply the theorems just proved to draw certain con-

clusions about infinite sets.

Theorem 8: If a set X is infinite and X <= Y, then the set Y is infinite.

This is an immediate consequence of Theorem 3.

Theorem 9: IfX is infinite and Y finite
,
then the difference X—Y is

infinite.

This follows from Theorem 4.

Theorem 10: The set N is infinite.

Proof. By way of a contradiction suppose that \N\ = n where n e N.

Since n' c= N, we infer from Theorem 3 that the set has m elements,

where m is a certain element of N such that m ^ n. Because \p\ = p
for every p e N, we obtain n' ^ which contradicts formula (4)

(P- 91).

Corollary 1 1 : The range of a one-to-one infinite sequence is infinite.

In fact, such a set is a one-to-one image of N. If it were finite then,

by Theorem 1, N would also be finite.

From this theorem and from Theorem 8 we obtain

Theorem 12: If a set X contains a subset which is the set of terms of

an infinite one-to-one sequence
,
then X is infinite.

A set satisfying the hypothesis of Theorem 12 is called a Dedekind

infinite set.
1

) Theorem 12 can thus be expressed as follows:

If a set is Dedekind infinite ,
then it is infinite.

The converse theorem is also true, but its proof requires the axiom

of choice.

"Theorem 13: If a set X is infinite ,
then it is Dedekind infinite.

Proof. Let / be a choice function for the family P{X)— {0}. We
extend / by letting /(0) = x, where x is an arbitrary fixed element of

’) The definition of Dedekind infinite sets is due to Dedekind [1],
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X. Thus / assigns an element of X to every subset of X and in particu-

lar f(Y) e Y if Y # 0.

Now let us define by induction two sequences A e (
P(X))N and

aeXN
:

a0 = x, A o — {•*} >

On > = f(X— A„), A n > = An^ {cin'} '

We can prove by induction that the set A n is finite and A m c A n tor

m ^ n. Hence X—A n # 0 and thus an . eX—A„ and an e A„ tor every

n e N. The sequence a is one-to-one. In fact, it k < j then ak e A ky

but aj A k ,
for, letting j = n\ we have A k <= A n and aj = an , e X-A„

c X-A k . Hence a
} # ak . The set X is therefore Dedekind infinite,

because it contains the subset {#„: n e N) which is the set ot terms

of an infinite one-to-one sequence.

Exercises

1. iffe X Y
,
Y is an infinite set and X is finite, then at least one of the cosets of/

is infinite (Dirichlet's principle for infinite sets).

2. If \X\ = m and |T| = n, then \XxY\ = m-

n

and 1**1 = m\

3. If I*, |

= m for / = 1, 2, 3, \XjnXk \

= njk for j,k = 1,2, 3, \X2nX2nXz \

= n l2i ,
then

\X1
kjX2 kjX$\ = n x + n 2 + Hi —n l2— n22— «3i + n l22 .

Generalize this formula to the case of an arbitrary (finite) number of sets.

4. Prove that a set * <= N is infinite if and only if AV < ti-
nt xtX



CHAPTER IV

GENERALIZED UNION, INTERSECTION AND
CARTESIAN PRODUCT

In the present chapter our treatment will be based upon the axioms

w° as in the preceding chapters. Theorems which are not marked by

the symbol ° are theorems of the system Z.

The purpose of this chapter is to generalize the operations of union,

intersection and cartesian product for an arbitrary number of sets.

§ 1. Set-valued functions. Generalized union and intersection

Let F be a function from a non-empty set T into the family of all

subsets of a given fixed set SC. Thus F(t
)
e(P(T0). Instead of F(t ) we

shall write F
t

.

Let W be the range of F, that is, the family of sets F
t
where teT.

The union of the sets belonging to the family W is denoted by U F
t

t

or l (IT) (see p. 53), the intersection is denoted by f~) Ft
or Q (IT)

t

(see p. 60).

It is easy to show that

(1) xe{J F
t =\Z(xeFc), x e p| Ft = /\ (x e F

t).it ti
If the set T consists of the single element a

,
then

U F
t
= Fa = nF'l

teT teT

on the other hand, if T consists of two elements a and b, then

U F, = Fa vFh and C] Ft
= Fa nFb .

teT t^T
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Thus these notions are indeed generalizations of the notions of union

and intersection of sets to the case of an arbitrary family of sets.

It follows from (1) that the following equations hold for arbitrary

formula 0(x, y) of two variables with a limited domain:

(J{*: 0(.x,y)} = {.y: V #(*>?)}»

(2)

D{x: 0(x,y)} = {x:

y y

In fact, let F
y
= {a: 0(y,j>)}; we obtain

0(z, y) = ze {*: 0(x, y)} = z e Fy ,

and thus

z e {x: V 0(x, y)} = V 0(z, y)
y y

= V (z G Fy) = z e U F
y
= z g IJ {.y: 0(x, y)}.

y y y

The proof of the second equation in (2) is similar.

By (1), the formulas concerning quantifiers given in II. 1 lead to the

following formulas for the generalized operations:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

( 10 )

n f
i
cfi

c u f<>
t t

n(F,nC,) = n^nnc,.
t t t

U WvG,) = U 7w U G„
t I t

n7,unc, = <= nffiuc,),
I t IS t

U(f,nG,) <= U(fin(y = Uf.^UC,,
t ts It

-m)=u (-*;).
/ I

-(u =
i t

n (A uFt)
= Au r\Ft ,

t t

U (-4 nf,) = An(JF„( 11 )
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(12 ) IA.0
t

[a <= (n A)]

.

t

( 13 ) 1A (F, <= 4)1 ->
t

[CU F.) <= 4 ],
t

In formulas (8) and (9) the symbol “ — ” denotes complementation

with respect to the set 3C.

The proofs of the formulas above follow directly from the respective

formulas in II. 1. As an example we prove de Morgan’s law (8):

* e -(n f.)
t t

= n IA O e F,)]
t

= V (* e - F,)
t

= * eU (-F,),
t

where we apply successively formulas 1.2(2), 11.1(6), and (1) above.

The diagram on page 51 also leads to formulas for the generalized

operations. It suffices to replace the implication sign -> by the in-

clusion sign <=, and & by a function F of two arguments having sets

as values. In particular, the following important formula holds:

04) un^cDU^
t S St

This inclusion cannot in general be reversed (see p. 51).

Theorem 1 : The union F
t
is the unique set S satisfying the conditions'.

t

(15) A (F.czS),
t

(16) A IIAw <=*)]-($<= *)}.
x t

The intersection p F
t

is the unique set P satisfying the conditions'.

t

(15') A (P<=F,),
t

f\W/\{X F,j\^{X P)\.
X t

( 16 ')
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In other words, the union (J Ft
is the smallest set containing all the

t

sets F
t
and the intersection F

t
is the largest set included in each of

t

the sets F
t .

Proof. It follows from (3) and (13) that the union p| Ft
satisfies

t

conditions (15) and (16). Conversely, assuming that the set S satisfies

these conditions, we infer from (15) and (13) that (J Ft
c= S. Setting

t

X = yj Ft
in (16) and applying (3), we obtain 5 c y f

(
. Hence S

t t

= LM7
.-

t

The proof for intersection is similar.

Theorem 2: (Generalized associative laws) If T — [J Hu where
ueU

H is a set-valued function with domain U (i.e.. H e (P(Tf )), then

(17) U F, = u U F„
teT ueU KHu

(18) C\F, = n n f„
teT ueU teHu

Proof. Letting

s= Uf, and Su = U F„
teT teHu

we reduce equation (17) to the form

(19) 5 = u su .

usU

By assumption we have S => F
t
for every t e T, in particular for

every t e Hu . Thus S => Su by Theorem 1. On the order hand, suppose

that X 3 Su for arbitrary u e U. If t e T, then there exists u g U such

that t e Mu ,
whence it follows that Su => F

t ,
and thus X => F

t
. Since t

is arbitrary, we conclude that X zd S. Applying Theorem 1 we ob-

tain (19).

The proof of (18) is similar.

Theorem 3: (Generalized commutative laws) If cp is a permu-

tation of the elements of a set T, then

u Ft = u F<p( t ) > = n Fy
)

*

teT leT teT teT
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Proof. Let 5 Fnt) . If t e T, then t = <p(<p'(0)> and because
t

S z> Fnu) for arbitrary u e T, in particular for u = (p'(t), we have

S => F
t

. Conversely, if A" is a set such that X => F
t for t e T

,
then

X =? Fvity ,
because (p(t ) e T. Thus X => S', which shows that S is the

smallest set containing all the sets F
t

(i.e. S
t = (_J Ft ).

t

The proof of the second formula is similar.

Theorem 4: (Generalized distributive laws) 1 )//'

M=\JTU and K = \Y s P(M): /\(Kn Tu * 0)|

.

ueU ueU

then

(20) nuf.-unf..
ueU teTu YeK teY

(21 ) u n^nu^
ueU teT„ YeK leY

Proof. Suppose that YeK and u e U. By the definition of the

family K we have YnTu # 0; thus there exists t0 e YnTu . This implies

by (3) that

D F
t ^ F

to
cz [J Ft .

teY teTu

Since this inclusion holds for any u e U (where Y is constant), we infer

from Theorem 1 that

teY ueU teT„

Since Y is arbitrary, we obtain by (3) the following inclusion:

(22) urif^nuf,-
YeK teY ueU teTu

To prove the opposite inclusion, suppose that

(23) a e n u •

list/ tUTu

Let

(24) Y = {t e M: aeF,}.

The formulation of the general distributive law given in Theorem 4 is due

to Tarski [5].
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If ueU then by (23) aelJF,. Thus there exists t e Tu such that

ae F
t \

hence t e Y, which proves that Y r\Tu ^ 0. By the definition

of K we have Y e K. It now follows from (24) that /\ (a e F
t); that

teY

is, aeflf,. This shows that
teY

(25) «unf-
YeK teY

This together with (22) gives (20). To prove (21), replace F
t

in (20)

by S-Fti where S = U Ft- Then we obtain
teM

nu (s-F,) = unp-fi).
ueU teTu YeK teY

whence, by de Morgan’s laws (8) and (9) and by — (
— F

t )
= F

t ,
we

obtain (21).

A more familiar form of the generalized distributive laws is

°(20') nuf, = unf/W ,

ueU teTu feL ueU

°(2i'> un« = nufw
ueU teTu feL ueU

where L is the set of all choice functions / for the family Rg(T)

= {Tu : ue U}.

We shall prove only the first formula. Consider the families

-4 = (fl Fjiu)'- f £ 2,|

ueU
and B = YeK\.

YeK

In view of (20) the formula to be proved takes on the form (_J (T)

= (_j(Z?) and so it is sufficient to show that A = B. Now it feL and

if we put Y = Rg(/), then we obtain

(*) O Ff(u)
— O Ft-

ueU teY

Since Y e K, we obtain therefore A a B. Conversely, if YeK and

we denote by f0 a choice function for the family {Tu n Y: u e I/}, then

f0 eL and, since (*) is true, we infer B a A.

It should be stressed that equations (20') and (2T) require the axiom

of choice in the absence of which we could not claim that the function
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/o exists. Equations (20) and (21) on the contrary are provable without

the choice axiom.

We shall now generalize formulas II. 8 (l)-(4) concerning images

and inverse images of finite unions and intersections, to the case of

arbitrary unions and intersections.

Theorem 5: Let Fe (P(X))
T and let f e Y 2r

. Then

(26) / j(Uf.) = u/m
t t

(27) /’(n^) = n/'(f-)-
t t

If the function f is one-to-one
,
then the inclusion sign in (27) can be

replaced by the identity sign.

Proof. It follows from the definition of image that

y e/'(U Fi ) = V[(* e U Ft) A (y = /(x))]
t X t

= V [ V((x 6 Ft) A O'
= a*)))]

•X t

- V [ VO* e A
(y = /w))]

t X

= V (y £/‘(ft)) = y £U/m
r r

which proves (26). Similarly, by means of II. 1 (18) we obtain the

following equivalences:

y 6/*(n F<)
- V [(

x s n ^t )

a

(v = /(x))]
t X t

= V A [(* e a (t = /(*))]
X t

-"AV[(^ Ft) a (y = /(*))]
/ *

- A()'e/'(f,))^en/'W,
t t

whence it follows that (27) holds.

If the function /is one-to-one, then using (27) for the inverse func-

tion /
-1 and for the sets f x {F

t) we obtain

/-* (n/‘(f,)) <= n/- 1 (/‘(f,)) = n ft,
/ / /
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and by II.7 (2) it follows that

t t

Since (27) also holds, Theorem 5 is proved.

Theorem 6: If G e (P(T)) r and feYx then

(28) /- I (UG,) = U/' 1
(C.),

t t

(29) /- i (nc,) = n/' 1
(c,)-

t t

The proof can be obtained from the following equivalences which

are consequences of the definition of the inverse image (see p. 75).

y 6/“ 1 (U c.) = /(>’) e U g, = V IAy) e cj
/ t t

— V [>' e/
_1

(^i)] = >’ 6 U/H^i);
t i

y 6/- '(DC,)= /O') 6 n c. s A [/O') e CJ
/ t t

- AbO'‘(C,)] =^en/-'(G,)-
r r

Formulas (26) and (28) assert the additivity of the operation of

forming images and inverse images. Formula (29) asserts that the

operation of forming inverse images is multiplicative. The operation

of forming images is multiplicative, however, only for one-to-one

functions.

Examples

Let the set 1 be a topological space (see 1.8).

1. If F is a function whose values are closed sets (see p. 28), then

the intersection P = f

F

t
is also a closed set.

t

Proof. Since P c= F
( ,

we have P cz F
t

for every t
;
thus P a F

t ,

because F, = F
t

. This implies that P a f"
)
F

t
= P, hence P = P, for

t

P c P by axiom 1.8 (3).

2. If G is a function whose values are open sets
,

then the union S
= U G

t
is an open set.
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5

Proof. The sets 1— G
t
are closed, thus the intersection Q(l— Gt )

t

is also closed. By de Morgan’s law (9) the set 1— S is closed; hence

the set 5 is open.

3. If D is a function whose values are regular closed sets 1

) (cf. p. 39),

then the set S0 = [f Dt
is a regular closed set containing all the sets

t

D
t

. Moreover, every regular closed set containing all the sets D
t

also

contains the set S0 .

Proof. Clearly, S0 3 D
t ,

so that Int(5
,

0 ) Int(D
f); thus

(i) WSo) => InT(A) = Dt .

Since t is arbitrary, we infer by Theorem 1 that

Int(So) D UA and Int(S'o) => U D, = S0 .

t t

On the other hand, Int(50 ) <= S0 . Thus

Int(S’o) c: S0 = S0 ,

which proves that S0 = Int^o). Hence the set S0 is regular closed. It

follows from (i) that S0 contains each set Dt .

If Z is a regular closed set and Z =? D
t
for every t, then

Z => If Dt ,
thus Z = Z => D

t
= S0 .

t t

4. If D is a function whose values are regular closed sets
,
then the set

P0 = Int (: A) is a regular closed set included in each set Dt
. More-

t

over, every regular closed set included in each set Dt is also included in P0 .

Proof. Let X = f\

D
t

. We thus have
t

P0 = Int(Z) = Xc ~ c ~ hence Int(P0) = ^c-c-c-c-

Applying formula I. 8 (15), we have

!m(P0 )
= Zc" c " = P0 .

l

) The notion of a regular closed set is due to Lebesgue [1]. Theorems 3, 4, 5

were proved by Kuratowski [6]. Regular closed sets and their complements called

the regular open sets have found numerous applications in particular in proofs of

independence of set theoretic hypotheses from the axioms. See e.g. Rosser [1] and

Takeuti and Zaring [1]. The regular sets are called also domains (closed or open).
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Hence the set P0 is regular closed.

Since X cz D
t ,
we have Int(Z) cz Int(A) and Int(Z) c Int(D

f), that

is, P0 cz Int (Z)
f)
= D

t
for every t.

Finally, if Z is a regular closed set and Z cz D
t
for every /, then

Z cz HA- Hence Int(Z) cz Int(X) and Z = Int(Z) cz Int(Z) = P0 .

t

5.

As a result of the theorems proved in Examples 1 and 2, it is

possible to define a topological space by taking as primitive notion

either that of an open set or that of a closed set instead of closure.

Namely, we may conceive of a topological space as a set with a dis-

tinguished family of subsets F. Subsets belonging to the family F are

called closed sets. We suppose that F satisfies two conditions:

(i) IfW cz F, then p (IF) 6 F (that is, the intersection of an arbitrary

family of closed sets is closed).

(ii) If a family W is finite and W cz F, then P 0^) e F (that is, the

union of a finite number of closed set is closed).

We obviously assume that P 0 is the whole space.

If we take the notion of an open set as primitive, then denoting the

family of open sets by G we assume axioms dual to (i) and (ii):

(i') If W cz G then U (IF) e G.

(ii') If a family W is finite and W cz G, then P (IF) e G.

The system of axioms (i)-(ii) is equivalent to the system I. 8 (l)-(4).

The axioms (l)-(4) are satisfied if we define A by the formula A

= P) (fVA ), where fVA is the family of all closed sets containing the

set A. Then we have (A = A) = (A e F).

A similar remark can be made for the system (i')-(ii').

6. A family R cz F is said to be a closed base for the topological

space if for every A e F there exists W cz R such that A = P (IF).

A family R cz F is a closed subbase if the family of all finite unions

of the sets belonging to R is a closed base.

7. The notion of open base and subbase can be defined dually re-

placing F by G (= the family of open sets), intersection by union and

union by intersection.
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Exercises

1. Let Fe(P(&))t,
fetyK and SC = Let J\ = f\Ft . Prove that

t

f~
l (Y) = U/f

_100 for every Xcf.
t

2. Prove that

(U F.) *(U G.) = U (F, x G„)

.

t U t,u

(D F.) x (D G„) - n (f. X C„>.
/ u

3. Let T be any set and let K P(T).Lq{ the operation DK on Fe(P(X)) 7 be

defined by the formula

x E Dft(F) = {ti x E Ft } E K.

Find K for which the operation DK coincides with the operations of union and

intersection discussed above.

4. Show that if / is an ideal in P(T) and K = P(T)— I, then the operation/)^ is

distributive over finite unions; that is,

A(^ = G,uH,)->(.Dk(F)= Dk(G)uDk(H)).
t

5. Prove that the family of all intervals r < x < s, where r and s are rational

numbers, is a base for the space & of real numbers.

Prove that the sets {*: r < *} and {a: a: < r}, where r is rational, form an open

subbase for this space.

6. Let X be any set and R be any family of its subsets. Prove that the set X can

be considered as a topological space with the family R as an open subbase (resp.

closed subbase).

7. If X is a topological space and R is an equivalence relation with field X, then

XI

R

becomes a topological space when we assume that a set U <= X/R is open if

and only if the union S(U) = L_J Z is an open set in X.
ZeU

8. Prove that the canonical mapping X-*X/R is continuous if XjR has the

quotient topology defined in Exercise 7.

§ 2. Operations on infinite sequences of sets

We shall now consider a special case of the previous operations;

namely, where the domain T of the function F coincides with N, that

is, where F is an infinite sequence of sets. In analogy with infinite series

and products of real numbers, we write
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U Fn

00

or U Fn or F0 u Fx
u . .

.

n=0

nf.
00

or Fn or F0 nFl
n ...

n=

0

instead of
neN

instead of P| F„

.

neN

The following formulas follow immediately from formulas 1 (2)

00
00

U {* : (p
(n ’ *)} = l* : V7 ®(n ’ *))

»

/ , s. n=0 n=

0

oo
(

°? .

D{x‘- ®(n,x)} = jx: /\ 0(n,x) ),
n—0 n— 0

where <t>(n,x) is a formula with two free variables, n is limited to N
and x to a given set X.

Besides infinite union and intersection we consider the operations

LimsupFn {limit superior of the sequence F0i Fl , ...),

n= oo

LiminfFn (limit inferior of the sequence F0 ,Fly ...),

n= oo

defined as follows:

00 00 00 00

LimsupFn = n U^rt+k, LiminfF„ = (J H Fn+k-
n= co n=0 k=0 n— oo n— 0 k=0

It is easy to check that LimsupF„ is the set of those elements x

which belong to Fn for infinitely many n. Analogously, x belongs to

Liminf/^ if and only if it belongs to Fn for almost all n; that is, if

it belongs to all but a finite number of the Fn .

It is easily seen that

(2) LiminfFw c: LimsupF„.
n= oo n= oo

(see formula II. 1 (18)).

If the inclusion sign in (2) can be replaced by the equality sign, that

is, if the superior and inferior limits are equal, then their common value

is denoted by

LimF„,
n— oo

and is called the limit of the sequence F0i Flt .... In this case we also

say that the sequence is convergent.
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This terminology is similar to that used in the theory of real num-

bers. In order to emphasize this analogy, let us consider the notion of

the characteristic function of a given set.

Let the set 1 be given and X a 1. The function with domain 1

fx(x)
jl if xeX,

|0 if xel-X

is said to be the characteristic function of the set X. 1

)

It is easy to show that the sequence F0 ,Fi , ... of subsets of 1 is

convergent if and only if the sequence of the characteristic functions

of these sets converges to the characteristic function of LimF„.
n— oo

It is also easy to show that the following conditions are equivalent:

(4) Lim(F„-A) = 0,
n= oo

(4') LimFn =A,
n= oo

where the sign — denotes the symmetric difference of two sets. The

same equivalence holds for real numbers if we replace Fn — A by \Fn — A\.

Proof. Condition (4) is equivalent to the following: every element x

belongs to Fn — A for at most finitely many n. In other words, for

every x there exists n 0 such that n > n0 implies

x e Fn = x e A.

Suppose that xeLimsup/^, i.e. that x belongs to Fn for infinitely

many n. It follows from (5) that x e A and that x 6 F„ for all n > n0 ;

that is, x e Liminf/v Thus we have proved that (4) implies

Lim sup Fn a A a Lim infFn ,

n=co n=co

from which (4') follows by (2).

Conversely, suppose that (6) holds and xeA. Thus xeLiminfFn

and x e Fn for all n greater than some n0 . If, on the other hand, x $ A,

*) The characteristic functions of a set were introduced by de la Valle Poussin

[1]. They proved very convenient in the theory of real functions. Analogies between

limits of real sequences and sequences of sets expressed e.g. in formulas (4) and

(4') were stressed by Marczewski [3].
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then x £ LimsupFn and hence x $ Fn from an n0 on. Hence condition

(6) implies that (5) holds for every x if n > nQ .

Exercises

1. Prove that the characteristic function defined by (3) satisfies the following

conditions:

(a) f0(x) = 0,

(b) Mx) = 1,

(c) f-x(x) = 1 —fx(x),

(d) /a^b(x) = fA (x) -Mx),
(e) /a-b(x) = fA(x)-fAr,B(x).

00

2. Prove that if F0 c /r c F2
c ..., then U F„ = LimF„.

n= o n= oo

oo

3. Prove that if F0 3 Ft
=> ...» then F„ = LimF„.

n=

0

72 = oo

4. Prove that if F0 = 1, then
00

1 = (Fo-F1)u(F1-F2)v(F2-F3)kj ... u n F„.
71= 0

If, moreover, F0 => Fi :=>F2 13 then

00

u ... u O Fn = 1 - [(Fq-F^u (F2-F3)u ...].

72= 0

5. Prove that if k
v < k2 < ...» then

LiminfF,, LiminfF*n ,
LimsupF*

n
<= LimsupF„.

71= 00 71= 00 71=00 72=00

00 00

6. Prove that if O /l„r> O = 0, then
72= i 71=i

00 00

PM. c U M.n
72=1 n= 1

where B0 = 1.

00 00

7. (J /!„ = where = A
v
and Bn = .4„— (/fjU ... for n > 1.

71=1 72=1

8. Let Un^=^ = DU C.,„ and let U C„, m+l <= U C„. m . Prove
72 772 772 72 72 , 772 71, 772

that

00

>4 = Lim/1„, where /!„ = LJ (.tfi ... n,„)n(C1(*u ... vjC„, *).

72=00 /C=l

9. Prove that

(a) Liminf( -/!„) = — Limsup/f*.
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(b) L\m(—A n)
= — (Lim/l n),

(c) Liminf(/f nn Bn) = Liminf/t n r>LiminfF„,

(d) Lim sup (^„ui?,,) = Limsup/LuLimsupF,,,
00 . 00

(e) n1

A n <= LiminL4„ <= Limsup/l n
<=

n= I n =

1

(f) Liminf^„vjLiminf-fi„ <= Liminf(/4„uF„),

(g) Limsup(/*„nZ?n) Limsup/l„nLimsup F„,

(h) A— Liminf/^n <= Limsup(/1—A n),

A— Limsup/4„ c: Limsup(/I—A n);

show that the opposite inclusions do not hold in general.

10. A function / from sets into sets is said to be continuous if for every con-

vergent sequence F,
,
F2 , ... the following identity holds:

/(LimF„) = Lim/(F„).
n= oo n =* oo

Show that the functions IuK, XnY,
—X and generally F„ and Fn are

n n

continuous with respect to each variable.

11. Prove the following condition for a sequence F„ to be convergent: for every

sequence of pairs </«/,«/> such that lim/w/ = lim//,- = oo, we have
I = 00 I <= CO

O (Fm,-Fn .)
= 0. [Marczewski]

i

12. If A" is a family of subsets of N such that the complement of every set in K
is finite, DK(F) = Lim infF„; if K is a family of infinite subsets of N then DK (F)

= Lim sup F„ (see § 1, Exercise 3). Using this result, generalize the operations

Limsup, Lim inf for the case where the argument is a function defined on an arbitrary

set T (not necessarily on the set N).

§ 3. Families of sets closed under given operations

Let X be a fixed set and / a function of an arbitrary number of

variables, where each variable ranges over the subsets of X. For

simplicity let us suppose that / is a function of two variables; that is,

the domain of / is the cartesian product P(X) x P(X).

A family R cz P(X) is said to be closed under a given function f if

A [(K, g R) a (V2 e R) - (f(Yl ,
Y2 ) e »)]

Yu Y2

Theorem 1 : For each family R c P(X) there exists a family R x
such

that : 1. R a R
}
a P(X); 2. the family /?, is closed under the operation /;
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3. the family is the least family satisfying conditions 1 and 2, that

is, if R' satisfies the following two conditions

(1) ft <= ft' <= P{X) and /\ [(F, e R')a(Y2 e ft') - (/(F, , F2) e ft')],

Ylf Y 2

then R
t

cz R'.

Proof. Let K be the set of all families R' satisfying (1). K is a non-

empty set, for P{X) e K. The required family is the intersection Pi R'.
R’eK

The family R
v

satisfying conditions 1-3 is uniquely determined.

In fact, if R2 also satisfies the same conditions, then R
{
a R 2 ,

since

R
l

is the least such family. Similarly we obtain R 2 cz R 1 . Hence R
x

= R2 . We denote this family by R*.

Theorem 2: For arbitrary families R, /?, and R 2 the following condi-

tions hold

(i) R c R *,

(ii) R
x

cz R 2 -+ Rf c= R*,

(iii) R** = /?*.

Proof. Formula (i) follows from Theorem 1 (condition 1). Formula

(ii) follows from the fact that is a family closed under / and con-

taining
,
thus by minimality, R

*

3 R*. Finally, condition (iii) can

be proved as follows: (i) implies R* cz R**; since R* and

is closed under f we obtain R** cz /?* by minimality.

Theorems similar to 1 and 2 also hold for the case where there is

given not one function / but an arbitrary family of such functions

and /?* denotes the least family containing R and closed under all

these functions. Moreover, the domains of these functions may be

sequences of subsets of X. We shall not, however, formulate all of

these generalizations.

Example 1. Let / denote the union of sets, i.e. f(Yi, Y2 )
= ph.

The least family of sets containing R and closed under / is denoted

by Rs . This family consists of finite unions of the form U Yi where
i<n

n eN, n # 0 and Y =
(Y0 ,

Y
x , ..., F„_,) is a sequence of sets belong-

ing to R ; in other words, YeRn
.
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Similarly, if g is the function defined by g(Yj
,
Y2) = Y1 nY2 ,

then

the least family containing R and closed under g is denoted by Rd .

This family consists of all intersections of the form p| Yi where n eN,

n* 0, Ye Rn
.

Example 2. By a lattice of sets we mean any family of sets closed

under the operations A u B and A n B. If the lattice contains the space

and is also closed under the operation A — B then it is called an algebra

of sets. The least lattice of sets containing a given family R of sets is

said to be generated by R.

Theorem 3: The lattice of sets generated by R is identical with the

family Rsd . Moreover ,
Rsd = Rds .

Proof. First we prove the second part of the theorem. Let Z e R sd ,

that is, Z = n Yif where n e N, n # 0 and Y
x
e Rs for i < n. We show

i<n

by induction that Z e Rds . For n = 1 we have Z = Y0 e Rs and Rs
a Rds

because R c Rd . Suppose that the theorem holds for n = k and let Z
be the intersection of k+\ components F, belonging to Rs . In par-

ticular, let Yk = U Tj where m e N, m # 0 and Tj e R for j < m. Let

j <in

Z' = f~] Yt . By the induction hypothesis, Z' e Rds ,
thus Z' = [J Vh

i <k h <P

where p e N, p ^ 0 and Vh e Rd for h < p. Since Z = Z' nYk ,
we have

Z = Z'n (J Tj = U (Z'nTj) = U U (Vh nTj).
j<nt j<m j<mh<p

It follows now from Vh n Tj e Rd that Z e Rds . We have thus proved

that Rsd cz Rds . In a similar way we prove the opposite inclusion.

Now let us show that Rsd is the lattice of sets generated by R. It

is clear that the family Rsd is included in this lattice, for the operations

of union and intersection do not lead out of the lattice. On the other

hand, Rsd = (Rsd)d = Rds = (Rds)si thus the family Rsd is closed under

both union and intersection. Hence it contains the lattice generated

by R.

Exercises

1. Let R r be the least family of subsets of X closed under the operation Y
t
— V2 .

Prove that

(a) Rd <= Rr ,

(b) if X e R then Rs
c Rr .
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Show that the assumption X e R in theorem (b) is essential.

2. Prove that the least field of sets containing R is (R\jcR)sd where cR = {X-
-Y : YeR}.

3. Let /?r , and R/\ denote the least families containing R such that for every

non-empty family S R we have respectively (_J Y e R^, and p Y e R
,

. Prove
Yes ~ YeS

that Rsa = Rjz-

Hint. Use Theorem 1.4.

§4. cr-additive and ^-multiplicative families of sets

A family R of sets is said to be a-additive (resp. 6-niultiplicative) if

for every sequence H e RN the formula ip Hn e R (resp. p Hn e R)
n n

holds.

A (r-additive lattice of sets is called briefly a-lattice. Symmetrically,

a d-lattice of sets is a ^-multiplicative lattice of sets. We shall assume

that the cr-lattices under consideration (as well as the (5-lattices) contain

0 and X as members.

We refer to a or-additive algebra of sets as a cr-algebra. Thus a a-

algebra is a family of sets closed under the operations A-B , AnB
and U A n (and by the de Morgan rule—under the operation p) A n \

n n

of course, the term (5-algebra can be used instead of cr-algebra).

The next theorems follow from Theorems 3.1 and 3.2 generalized

to the case of functions whose domains are sequences of sets.

Theorem 1 : For every family R there exists a unique family Bor(7?)

which is a-additive
,

(5-multiplicative
,
contains R and is the least family

with these properties.

Theorem 2: For every family R the following formulas hold :

Performing the operation p resp. p on sequences whose terms
n n

belong to Bor(/f), we obtain sets belonging to Bor(fl). This remark

(1)

(2)

(3 )

R = Bor(/f):

Bor(/f,) c Bor(/f.),

Bor(Bor(fl)) = Bor(ff).
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allows us to obtain a classification of sets belonging to Bor(/?). Namely,

for anv family R let Ra denote the family of sets of the form U H„
n

where H e RN and Ró the family of sets of the form C\Hn> where
n

H e Rn
. It is clear that R <= R -* (Ra a R'a)A(Rd <= R'd).

We define a a-additive family as a family R such that R = Ra and

a cr-multiplicative family as a family R such that R = R^. Since Bor(/?)

is both (T-additive and (7-multiplicative, we obtain (Bor(/?))ff
= Bor(/?)

= (
Bor(R))6 . From R <= Bor(/?) we have:

Theorem 3: The family Bor(fl) contains each of the following families

R-g )
R<j8 » R<jóo >

• • •

»

R&
> Rfio •> Rftad >

• * •

In general, no two of these families are equal; moreover, they do

not exhaust the whole family Bor(/?).

We shall describe a method which often allows us to decide whether

or not an individual set defined by a formula belongs to Bor(R).

Let &(i,j
9
...,k,x) be a formula in which the range of i,j\

is limited to N. Let

{x: &(i,j, *)},

W= {x: QW
where each of the symbols is either the universal or

the existential quantifier. We have

Theorem 4: Iffor any i,j,

,

k eN the set Zitj^ tk belongs to Bor (/?),

then W e Bor(R). 1

)

Proof. The proof is by induction on the number of quantifiers. It

h = 0, then W = Zifj,_ tk ;
thus W e Bor(R) by assumption. If the the-

orem holds for h— 1 quantifiers, then each of the sets

W
t = {x: Q’/ ...Q?>0(ij 9

...,k, x)}

l

) Theorem 4 gives a simple and easily applicable method of proving that ex-

plicitly definable sets are Borel. The method was invented by Kuratowski and

Tarski [1]; see also Kuratowski [7]. The method is also applicable to the projective

sets; see Chapter XIII.
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belongs to Bor(i?). Since W = U W
t
when Q' is the existential quan-

ieN

tifier, and W = Q when Q' is the universal quantifier, we have in
ieN

both cases W e Bor(/?). Q.E.D.

We obtain important examples by taking as R the family F of closed

sets in an arbitrary topological space X. In this case, Bor(/?) is called

the family of Borel sets of the space X. 1

)

As an example wre consider a sequence fn of continuous functions

and show that points x for which the sequence fn (x) converges is an

Fad-set.
The Cauchy condition for the convergence of a sequence of real

numbers a x , a2 , ...» an , ... can be written in the following form

A V ^ !/&]•
k m i

This implies that the set Z of points at which the values of the se-

quence of continuous functions /l5/2 ,
... converge is

(i) Z = \x: A V A [!/».+<(*) -/*.(*)! « 1/*]} -

Letting

k m i

Zk,m,i = {*: \fm+i(x)-fm(x)\ ^ 1 Ik},

we infer from (i) that

OO 00 00z-nunw
k = l m= I i=l

Since the set Zktmti (for fixed indices) is closed (because the func-

tions considered are continuous), the set Z is F
<rd •

Exercises

1. Prove that

(a) the intersection of two F^-sets is an F^-set,

(b) the union of an infinite sequence of F^-sets is an Fa-set.

Prove the analogous properties for Fat-sets and for Borel sets.

2. Prove that every set open in &n
is an F

ff
-set.

3. Prove that the Borel sets in £’n constitute the least cr-additive and ^-multipli-

cative family containing the family of all open sets.

*) After the name of the French mathematician E. Borel who first investigated

them.
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4. Prove the formulas which are obtained from (l)-(3) replacing Bor(/?) by Ra

or by Rs .

5. Give examples of (finite) families R such that R = R„= Rad and examples

of families R such that R ^ Ra # Rad = Ra^})

6. An ideal / is called a a-ideal if it is closed under countable unions. Show that

if A„ = Bn mod /, then ((_J A „ ) = (l_J B„)mod I.

n n

Hint. Show that

U An-U Rn C tU (An- Bn)] G /.

n n n

7. Let / be a 0-ideal, A a 0-lattice and

L = {E : V E = G mod/}.
GeA

Show that L is a 0-lattice.

§ 5. Reduction and separation properties

We say that the family R has the finite reduction property it for each

pair A 2 of members of R there exists a pair By, B2 of members

of R such that

(1) B
]

a Ay, B2 <= A 2 ,
By u B2 = Ay u A 2 and

By nB2 = 0.

The countable reduction property means that for each sequence

Ay, A 2 ,
... of members of R there is a sequence By, B2 , ... of disjoint

members of R such that

(2) Bn a A n for each n eN, and i J Bn = [J A n .

n n

Theorem 1 : IfR is a field, then Ra has the countable reduction property.

Proof. Let A n e Ra for n e N. Thus

A n
= A nQ {j A n y

kj . . . A nm vj ... 5
where A nm e R

.

Arrange the double sequence {n, m) in a single sequence and let

j = j(n, m) be the integer corresponding to the pair <n ,
m> (see III § 3).

Exercise 5 is connected with a problem proposed by Kolmogoroff; see Sier-

piski [3], p. 171.
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Let

Cnm A nm [ J Ajii,

where the union ranges over all pairs <k , /> such that

j(k, /) < j(n
, m)

.

Clearly, the sets Cnm are disjoint and thus the sets

Bn Cn0 LJ Cnl yj Cn 2 LJ •••

are the required sets.

Remark: If the additional condition

(3) U A n = X,
n

is fulfilled, then we have (X— Bn) e Ra .

Corollary 1 : Each o-algebra has the countable reduction property.

Corollary 2: (Separation Theorem) 1

) IfR is a field and ifF0 , Fly ...

is a sequence of members of the complement of Ra such that Fn = 0,
n

then there exists a sequence of sets Eq^E^ ... which ,
simultaneously

with their complements, are members of Ra and

Fn a En for each n eN, and En = 0.
n

It suffices to put Fn = X— A„ and En = X—Bn .

Exercises

Call a (metric separable) space 0-dimensional if it contains a countable base com-

posed of closed-open sets.

Show that in a O-dimensional space

(i) every open set is a countable union of closed-open sets;

(ii) if A and B are closed and disjoint, there exist two disjoint closed-open sets

G and H such that A <= G and B <= H\
(iii) apply Corollary 2 to show that given a finite system A 0 , ..., A k of disjoint

closed subsets of a O-dimensional space, there exists a system F0 , ..., Fk of disjoint

closed-open sets such that

X = Fq'u ... u/t and A t
<= Ft for i = 0 , 1 , ..., k.

’) The separation property was defined and studied by Lusin [4] in connection

with the theory of analytic and projective sets. The reduction property was introduced

by Kuratowski [10].
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§ 6. Generalized cartesian products

As in § 1, let F be a function whose values are subsets of the set X
and whose domain is a set T ^ 0.

Definition: The cartesian product n Ft is the set of all functions /
teT

whose domain is T and which satisfy the condition f(t) e F
t
for every

teT. That is,

I\Ft
= |/e 0: /\ [/(/) e F

f]| ,
where 0 = XT

.

teT teT

oo

If T = N we write n Fn instead of Yl F„. The elements of this

n=0 neN

cartesian product are sequences (p such that cpn e Fn for n e N.

If all the sets F
t
are identical, F, = Y, then we have n F. = r*.

teT

In this case the symbol n F
t
denotes the set of functions with domain

teT

T and range P{Y).

The set Y T
is called the cartesian power of the set Y.

For Fcf]f, let Y* denote the projection of Y on Ft . Thus Y x

is

teT

the set {/(/): / € Y}. Clearly, Y
i
c Y2 -> Y[ c= Y\ for every t e T.

Remark: Let T =
{ 1 , 2}. The cartesian product Yl Ft an^ the prod-

teT

uct F
x
x F2 are not identical. In fact, the first product has as elements

two-term sequences, the second product, ordered pairs. These two no-

tions are distinct. In practice, however, the distinction between these

two kinds of products is inessential, for we can always associate with

every pair <x, y} of F
x
x F2 the sequence {<1 ,

x>, <2, ^>} belonging to

[Urna one-to-one manner.
teT

If F,
0
= 0 for some t0 ,

then ]“] Ft = 0.

teT

In fact, if fe\] Ft ,
then f(t0) e Fto ;

thus Fto ^ 0.
teT

Theorem 1 : If a set T has a finite number of elements and F
t # 0

for every teT
,
then n F,*a.

teT

The proof is by induction on the number of elements of T. If T
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consists of one element, then the theorem clearly holds. Suppose that

it holds for the case where T consists of n elements. Let T
i = Tkj {g}

where a $ T. Suppose further that F
t / 0 for t e Ti . We shall show

that Y\ Ft ^ 0. In fact, the induction hypothesis gives n F, * 0 ;

teTi teT

thus let /eflf’c Let t0 e Fa . The set fx = /u«a, f0>} is a function
teT

belonging to fi Ft
. Consequently, the set F

t
is non-empty.

tsT i
tsTi

Theorem 1 also holds for arbitrary T if all factors F
t
are equal.

Theorem 2: If Y ^ 0, then YT # 0.

In the general case the proof that the cartesian product is non-empty

requires the axiom of choice.

Theorem 3: If F, # 0 for t e T, then
| [ F, # 0.')
teT

Proof. A choice function for the family
{
Ft : teT] is an element

of n^«
teT

In applications of cartesian products (e.g. in algebra, in topology)

we deal mostly with cases where certain operations are defined on

the sets Ft or where the sets F
t are topological spaces. We discuss

first the case where only one operation is defined on each set F
t

. For

convenience, we assume that this operation is binary. In other words,

we suppose that besides the function F e (P(A
r

))
7 we are given a func-

tion G such that G
t
e (

F

t)
F{XF ‘ for every t e T.

The function G induces a binary operation cp on the elements of

the cartesian product Y\ Ft
. Namely, we let for f,ge\[Ft

teT teT

y(f,g) = F[G,(f(t),g(t))].
teT

Thus tp(f, g ) is that element // of the cartesian product for which

h(t )
= G, (f(t), g(t)) for every t. The operation (p is called the car-

tesian product of the operations G
t

.

l

) B. Russell took Theorem 3 as an axiom instead of the axiom of choice. He

called this axiom the multiplicative axiom. See B. Russell and A. N. Whitehead,

[1], p. 536.
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In a similar way we define the cartesian product of relations. Let R
be a function such that (for every t e T) R

t
is a relation with its field

included in F
t

. The cartesian product of these relations is the relation q ,

whose field is included in
J~[
F

t ,
such that

teT

<f,g>ee= A [</(')> •?(')> e «,].
t

It should be pointed out that q is not the cartesian product n*.>
teT

because q is a binary relation; that is, q is a set of ordered pairs, whereas

J
/?

f
is a set of functions. However, we can associate in a natural

teT

way the cartesian product f] Rt
with the relation which holds between

teT

functions / and g if and only if the function h defined by h{t) = </(/ ),

g(t)} (that is, the function FKfO)* g(0>]) belongs to This
teT teT

relation coincides with the relation q defined above.

Clearly, the definitions can be applied without modifications to the

case where not just one but several operations (or relations) are defined

on each F
t

.

Example. Suppose that F
t

is a Boolean algebra with respect to the

operations v
t ,

a,, —
t
and the elements 0

r , 1,. Let v, a, — denote

the cartesian products of the operations v
t
A

t ,
—

t ,
respectively, and

let I, i denote the functions such that £(/) = 0, and i(t) = \ t for

all teT.

Theorem 4: The cartesian product P] Ft
is a Boolean algebra under

teT

the operations v, a, i, L.

Proof. To prove the theorem it suffices to check the axioms given

in I, §9. For instance, we check axiom (iv). Let /ef]^i it follows
teT

from the definition that fv —f is the function g such that g(/) = /(0 V

v —
tf(t) for every t. Since axiom (iv) holds in F

t ,
we have g(t) = l

f ,

thus g — i.

The Boolean algebra ]~[ F, is called the direct product of the Boolean
teT

algebras F
t

.
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In a similar way we can define the direct product of groups, rings,

and other algebraic systems.

The notion of a complex function determined by two functions / e Yx
,

g e Zx
(see Ch. II) can be generalized to any set of functions f e Y,

x

where teT. Namely

/;e(n y,v
teT

is defined as follows:

h(x) = {/t(*)}t6T .

Thus

[
w = /*(*)] = Awo = /tW].

t

Similarly, the notion of a product-function determined by the set of

functions /, e Y?', where teT, is defined as follows

w{*»} = {/fMW-

Thus u: y
t
and, for z e\\ X

t ,
we have

teT teT teT

[v = m(z)] = Ako =f(z( t))l-
t

Exercises

1. Prove that a Boolean algebra of 2" elements is the direct product of n Boolean

algebras of two elements.

Hint : Use induction on n.

2. Prove that if the relations R ( are (a) reflexive, (b) symmetric, (c) transitive,

then their cartesian product has the same properties. Give an example of a property

which does not hold for cartesian products although it holds for the individual

factors. In other words, find a function R and a property which holds for all relations

R t but does not hold for their cartesian product.

In the following two exercises we assume that H is a function such that Ht

e Ft
1 xt

\ Rt is an equivalence relation in F, , qp is the cartesian product of the

operations H, and q is the cartesian product of the relations R t .

3. Show that if each function Ht is consistent with R t ,
then cp is consistent with o.

4 . Let X be the function such that, for every t , Xt is the quotient function in-

duced from H, by means of R
t and let x be the quotient function induced from <p

by (j. Show that the following diagram is commutative:

H—(p

1 !•
X—X
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X

5.

Let ft
e Y t for t e T, and let h be the complex function determined by the func-

tions /,. Show that (comp. Exercise II. 7. 9)

h l (A
) jQ f\{A) where A X,

ter

*-0lA) - H/.-W where B, <= K,;

ter ter

in particular, if B, = Yt for all t except t0 ,
we have

/r'(nc,)=/r0'^,0 ).

ter

6.

Let ft e Yt* and let u be the product-function determined by these functions

for t e T. Show that (comp. Exercise II. 7.10)

u'([\ A,) = Y\fl(At) where A t
c Yt ,

ter ter

M
_1
(ri 50 = II/‘“ W where c y
ter ter

in particular, if e
]^[

Yt ,
we have

irHcp) =

t€T

ter

7.

Let /,: X, -» Y for / £ T. Put

Z = {2 : f\f,(z<) = /,.(z'’)}
tf'

»€T

and for fixed r0 denote by n the projection of the space Tj Xt on the X,
Q

axis.

Show that

f!0MZ)) = Qf.'m

(see Kuratowski [1], p. 153).

ter

§ 7. Cartesian products of topological spaces

For every t g T
,

let Ft be a topological space and let C
t
X denote

the closure of the set X a Ft
in the space F

t
. Hence C is a function

such that

C, g P(F,)p(Ft) for every t

.

Clearly, there are many different ways of defining the closure oper-

ation on the space Yi Ft • In fact, an arbitrary set can be made into
teT

a topological space in many different ways. Here we shall discuss one

of the special topologies on the space n F
t >

introduced by Tychonoff [I].

teT
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Let S be a finite subset of T and let Gs be an open set in the space

Fs for every s e S. We define the neighborhood determined by S and

by the sets Gs to be the following subset of the cartesian product /7

-n*=
teT

r= 1/6/7: /\f(s)eGs \.
seS

We shall prove that the intersection of two neighborhoods is a neigh-

borhood. In fact, if r is the neighborhood determined by a finite set

S and by open sets Gs (5 e S) and r' is the neighborhood determined

by a finite set S' and by open sets G's (5 e S'), then

rnr = {/e/7: A A (/(*) e Gs)
a (/O') e G,.)}

seS s'eS'

= |/e 77
: A (/(*) e Gs)

a A (/O') sG'.)a
seS-S' s'eS'-S

A A (/0)6Gs nC',)|.
seSrsS'

Thus rnT is the neighborhood determined by the finite set Su5'
and by the open sets G\\ where the sets G" are defined as follows:

Gt = G
t
for t e S—S f

, G't
' = G[ for teS'-S

, and G" = G
t
nG't for

/ e S nS'.

We define the closure of a set X a II to be the set CX of all fell
such that each neighborhood F containing / also contains at least

one element of X :

(*) A [(r is a neighborhood) a (/ e T) -* (FnX ^ 0)].
r

Theorem 1 : The cartesian product
J~[

F
t

is a topological space with
teT

respect to the closure defined by X = CX for X <= Yl Ft
teT

Proof. It is necessary to check that axioms 1.8 (l)-(4) hold.

Axioms (3) and (4) clearly hold.

Axiom (1). Let f e A; thus every neighborhood /"containing/ also

contains at least one element of A. Hence rn(AuB) # 0, which

implies / e A u B, and thus A a A u B. Similarly, Z? <= Au B. Hence

A uB cz A uB.

\
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Now suppose that/e A uB and/£ A. Thus for every neighborhood
r containing / we have fn (A u B) ^ 0 and for some F0 containing

/ we have F0 nA = 0. If r is an arbitrary neighborhood containing

/, then r n F0 is also a neighborhood containing f Therefore r n
n(AuB)^ 0, whence FnF0 nB^ 0 and hence rnB^ 0. This
shows that f e B.

Axiom (2). It suffices to show that Fcl Let/e7and let F be any

neighborhood containing /. Thus fnl ^ 0; let g e TnX. Hence r
is a neighborhood containing g. Since g eX, we have FnX ^ 0. This

shows that the condition (*) holds; hence f e X.

Examples of cartesian products of topological spaces

1. The Cantor set. This is the set C = {0, 1}
N

or, in other words,
the cartesian power of a two-element set. If we define a topology on

the set {0, 1} by letting X = X (the discrete topology), then C becomes
a topological space with the Tychonoff topology.

00

By assigning the real number V 2f(n)/3
n+1

to the element feC
n = 0

we obtain a one-to-one mapping rp of the set C onto the set of those

real numbers of the closed interval [0,1] whose triadic expansion

contains only the digits 0 and 2.

2. The generalized Cantor set CT is the cartesian power [0, 1}
T

.

The Tychonoff topology may be defined on this set similarly as on
the set C.

The generalized Cantor set may also be defined as the set of all

characteristic functions of subsets of T. In practice, we may identify

the set Cr with P{T). Therefore sometimes we shall treat the family

P{T) as a topological space. Similarly, the elements of the set CTxT
= {0, l}

7xT
can be identified with the set of all relations on T. In

fact, each element of the set CTxT is a characteristic function of a set

of ordered pairs of elements of T.

Theorem 2: The family Kt = [X a T: t eX) is both open and closed

in CT \
the family {7? c= T x T: tRs} is both closed and open in C, xT .

Proof. Let F denote the neighborhood in CT , determined by the

set S = {/} and by the open set G
t
= {1}. Then /ef =/(/)= 1;
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thus F consists of the characteristic functions of the sets belonging to

the family Kt
. Hence this family is an open set. Likewise, the neigh-

borhood determined by the set S and the open set G'
t = {0} consists

of the characteristic functions of the sets belonging to the family

P(T) —Kt
. This shows that the family Kt

is closed in CT .

The second part of the theorem follows from the first.

3. The Baire space. This is the cartesian power NN
or, in other

words, the set of infinite sequences of natural numbers. The topology

in NN
is defined as the Tychonoflf topology, where we define the closure

operation in iV to be J = X.

If a = (tf0 >
is a sequence of n terms (a e Nn

), then the

set Na = Nao an l = {e: e\n = a) is both open and closed in Ns
.

To see this, we notice that Na is the set of sequences satisfying the

conditions <pj
= aj where j < n; it thus coincides with the neighborhood

r in N determined by the set S = {0, 1 , ..., n— 1} and the open sets

Gj = {aj} for j < n. The complement of T is open in NN
, because it

coincides with the union of neighborhoods determined by the sets {j}

and by the open sets G

)

= N— {aj}, j < n.

Assigning the number

M i
I

i
I

X = -j
—

—

+ j -r + j —j- + • • •

I
<po + 1 !

<pi + 1
I

<pi +

1

to the element (peNN ,
we obtain a one-to-one mapping of the space

N" onto the set of irrational numbers in the open interval (0, 1). In

practice, we may identify the Baire space with the set of irrational

numbers in the open interval (0, 1).

4. The cartesian product of a finite number of spaces. The construc-

tion described in this section is used both in the case in which the set

T in the formula X =
P| Ft

is finite and also in the case in which T
teT

is infinite.

If T is a finite set, for instance T = {0, 1
1 }, then the car-

tesian products Y\ Vf> where for every t the set V
t

is open in F
t ,

form
t <n

an open base of Yl Ft •

t<n

5. The n-dimensional Euclidean space is the product «f
n where 8 is

the space of real numbers.
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6. The Hilbert cube is the product I
s where / denotes the closed

interval 0 ^ x ^ 1.

In later chapters we shall make use of the following theorem.

Theorem 3: IfX = ru is a cartesian product of topological spaces
teT

(with Tychonojf topology), Z, c= F, and Z
t

is a closed set in F
t for every

t € T, then the set PJ Zf
is also closed.

teT

Proof. Let P = Y\Zt
and let / P. For some s e T we thus have

teT

f(s)£Zs . The element of the subbase of X, determined by the one-

element set
{5 } and by the open set Fs — Zs , contains / and is disjoint

from P.

Exercises

1. The set of reflexive relations whose fields are included in T is closed in Ctx T-

Prove that the same holds for the sets of symmetric relations, the set of transitive

relations and the set of equivalence relations.

2. Prove that each neighborhood in the Baire space contains some neighborhood

of the form Na ,
where a is a finite sequence.

3. Show that the set {X ^ N: X is a finite set} is a Borel set in the space CN .

4 . Let / be any ideal in P(T). Show that taking as neighborhoods the sets of the

form {.g: f\ (g(s) e (7,)}, where S e I and Gs are open sets in Fs for s e S and de'
seS

fining the closure operation by (*), we obtain the function satisfying the axioms

of topology 1.8 (l)-(4).

§ 8. The Tychonoff theorem

A family R of subsets of the set X is said to have the finite intersection

property if every finite subfamily of R has a non-empty intersection.

A topological space X (that is, a set with an operation defined on

subsets of X and satisfying axioms L8 (1)— (4)) is said to be compact if

every family of closed subsets of X which has the finite intersection

property has a non-empty intersection. This definition implies that a

topological space is compact if and only if every family of open sets

whose union is X contains a finite subfamily whose union is also X.
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Although the following theorem belongs to topology rather than to

general set theory, we give it here because it has numerous appli-

cations in mathematical theories in general and in set theory in par-

ticular. Moreover, the means used in proving this theorem involve

little more than set-theoretical techniques.

°Theorem l :
(Tychonoff) Iffor every t 6 T the space F

t
is compact

,

then the space r = X\r< is also compact {relative to the Tychonoff
teT

topology).

Tn the proof of this theorem we make use of a lemma to be proved

in Chapter VII. 1

)

°Lemma : If R0 is a family of subsets of X with the finite intersection

property ,
then there exists the maximal family R <= P(X) containing R0

which also has the finite intersection property. That is to say, every

family of subsets ofX containing R and different from R contains a finite

subfamily with empty intersection.

We shall make use of the following two properties of maximal fam-

ilies R with the finite intersection property.

(i) If A e R and B e R, then A nB e R.

Suppose the contrary. Then the family arising from R by adding

to it A nB does not have the finite intersection property. Thus it con-

tains a finite subfamily with empty intersection. Clearly the set An B

belongs to this subfamily. Hence we conclude that there exists a finite

subfamily R' c R such that AnBnf^Y = 0, which contradicts the
YeR’

assumption that the family R has the finite intersection property.

(ii) If A <=. X and AnY ^ 0 for every YeR, then A e R.

In fact, if A $ R, then the family /?u{/4} does not have the finite

intersection property. Thus there exists a finite subfamily R' cz R such

that A n Q Y = 0. The intersection
|

Y belongs to R by (i). 1 his

YeR' YeR’

contradicts the assumption that AnY ^ 0 for every YeR.

Now to prove the Tychonoff theorem, let R0 be a family of closed

l

) The original proof of Tychonoff theorem was published in Tychonoff [1]. The

proof given here is taken from Bourbaki [2]. It was shown by Kelley [1] that Tych-

onoff theorem is equivalent to the axiom of choice on the basis of axioms X[TR],
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subsets of P with the finite intersection property. Let R denote any

maximal family of subsets of P with the finite intersection property,

containing R0 . For the proof of the theorem it now suffices to show

that n y # 0-
YeR

For arbitrary Z a P let Z denote the projection of Z into F
t
and let

R { = {Yj: Y e R}. The family R l

consists of closed subsets of F
t

. If

the sets Y{, j < n ,
belong to R‘ and Yj e R

,
then C]Yj ^ 0 because

j<n

the family R has the finite intersection property. This implies that

H Y) # 0 (see p. 129), whence p Yj # 0. Thus the family R has
j < n j<n

the finite intersection property. From the assumption that every Ft is

compact we infer that p Y x # 0. It now follows that there is an
YeR

f e P such that for every t e T, f(t) e p Y {

. We shall prove that/ e P Y.

YeR YeR

For this purpose suppose that YeR and that r is a neighborhood

containing/. We have to show that rnY # 0.

Let r be the neighborhood determined by a finite set S ci T and open

sets Gs
c: Fs (s e S), where clearly f(s) e Gs for s e S. Letting rs

=
{g : g(s) e Gs }, we have F = D rs .

seS

If Z is an arbitrary set belonging to R, then f(s) eZ s
;
thus Gs nZ s

# 0. This means that there exists zs e Gs such that for some function

g e Z we have gp) = zs ;
hence g e rs . Thus for any Z e R we have

rs n Z # 0.

By (ii) it follows that rs e R and by (i) P rs e R; that is, r e R,
seS

which implies fnf ^ 0. Thus every neighborhood containing/ has

elements in common with Y, consequently / e Y.

Examples

1. The sets C, CT ,
CTxT are compact.

2. Let 0(R
,

.Y,
, ..., xn) be a formula constructed from the formulas

(*) *i = Xj , <Xf ,Xj}eR

by applying only the operations of the propositional calculus. Such

formulas are called open. For a x , ... , an e T and for an arbitrary open
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formula 0 let

Z0 = Z<p(a iy ..., an)
=

{
ReTxT : 0(R, a

x , ... ,
an)}.

The set Z0 is both open and closed in CTxT . This fact follows from

Theorem 6.2 when 0 is one of the formulas (*). For other open formulas,

this property follows from the relationships between logical and set-

theoretical operations as well as from the remark that the finite union,

intersection, and complement of sets which are both open and closed

are again both open and closed.

Now, let 0j be an open formula with the free variables Xj l9 xj2 , ...

..., Xjn ,

and let ajl , aj2 , ..., ojn be elements of T (j e N). Since the set

CTxl is compact, we have

Theorem 2.
1

) Iffor every k e N the intersection Z0 (ajL , ..., ajn )

j <k
1 J

is non-empty
,

then the intersection f^] Z# (ajl , ... ,
ajn ) is also non-

jeN J J

empty.

This theorem asserts that if there exist relations Rk which satisfy the

conditions 0j for j < k (k =1,2, ...), then there also exists a “uni-

versal” relation ,/? which satisfies all of these conditions.

Exercise

1. Show that the Baire space NN is not compact.

§ 9. Reduced direct products

By combining the operation of cartesian product with forming of

equivalence classes we obtain new operations which have found

interesting applications in mathematical logic.

Let T be any set and F a function defined on T whose values are

non-empty sets. Let f be a function whose domain is F
t
x F, and whose

range is included in F
t

. Finally, let R
t
be a binary relation with field

included in F
t

. All arguments below can be generalized for the case in

which the number of functions or relations is greater than 1.

‘) Theorem 2 gives an interesting method of proving existential statements in

a non-effective way. See in this connection o and Ryll-Nardzewski [1].
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Let 1 be an ideal in P(T). Define the relation ~j in P = Y\ Ft by the
teT

formula

f~ig = {*• AO * g(0} e/.

Theorem 1: The relation ~ / is an equivalence relation in P.

The reflexivity of follows from 0 g /, symmetry is obvious, and

transitivity follows from the remark that for any /, g, h e P

{/: f(t) # g(/)} c {/: /(<) * A(f)} {f: /i(0 # g(0}-

Theorem 2: The cartesian product (p of the functions f is consistent

with ~j.

Proof. We have to show that if <?', e", d\ d" g P, then

(e' ~je")A(d' d") - [cp{e\ d') ~ 1 <p{ef d")\.

Let h' = <p(e\d'\ h" = <p(e'\d") and A = { t : /i'(0 * *"(0}. It

follows from the definition of (p that h'(t) = f(eft), J'(0)and simi-

larly h'ft) = f(e"(t), d'ftj). Hence t e A -> [eft) # e"(0]v

v [*/'(0 # whence it follows that

/I <= {/: eft) # e"(/)}u{* : */'(0 ¥* d'ft)} el.

From Theorem 1 and from the definition of the quotient class (Ch. II)

it follows that there exists the quotient class P/I of P with respect to

the relation /%/
j # We call P/I the direct product of the sets F

t
reduced

mod / or simply the reduced product}) Using Theorem IL8.1 and

Theorem 2 proved above, we infer that there exists the function cp/I

induced from (p by ~
7 and that tp/I maps the Cartesian product (P/I) x

x (P/I) into P/I. We call (p/I the reduced product of the functions f.

Finally we define in P/I a binary relation q/I. It holds between the

equivalence classes ell and dll of two functions e, d e P if and only

if
{
t :

<e(f),tf(0> We cal1 Ql1 the educed product of the

relations R
t

.

Let 0(x,y,z) be an arbitrary formula. The main problem of the

theory of reduced products can be stated as follows: When the sets

{

t

: 0(Ft ,f, R,)} are known, under what conditions do the set P/I,

the function q>/I and the relation q/I satisfy the formula </>?

In order to solve this problem, we consider more general formulas

l
) The notion of a reduced product is due to o [1]. For more references con-

cerning reduced products see Bell and Slomson [1].
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&(x,y,z
, ul9 ..., uk ) with an arbitrary number of free variables. Sup-

pose that e
x , ..., ek e P and let

A<t> =
1
1: R

t , eft), eft))}

(clearly, the set A0 depends not only on & but also on the elements

e x , ...,ek ; we do not write e
x , ..., ek in the symbol A# in order to sim-

plify the notation).

With this notation, the following theorems (i)-(iv) hold:

(i) A <Pv iF £ I = A,p
(fc
I v A\p

(fe
I

.

In fact, A0 vy = A0 uAw ; thus (see formula (11), p. 17) A0vV, e 1

= (A0 e /) a (Ay, e I), and (i) follows by de Morgan’s laws.

°(ii) If O is the formula \J 0, then
Uk

A0 tl= V['4**1).
ekeP

In fact, suppose that

Ae = (/: 0(Ft ,f, R
t , eft), ... , ^Jk_ 1 (0)} $ 1

For t e Aq there exists a* e Ft such that

R
t , eft), ek_ft), x).

Let X
t
denote the set of all these elements a*, and let X

t
= Ft

for t $ Ae .

Let ek be a choice function for the family consisting of all the sets X
t

.

We have ek e P and

0) ®(Ft,ft, Rr , eft), ...,eft))

for all teAQ . This implies Ae c= A 0 and thus A# $ I.

Conversely, if A0 <£ / then formula (1) holds for all t e A 0 . Thus for

these t

Rt, eft), ... ,ek-ft )).

This implies that teA& . Hence A0 c= A& and Ae $ I.

An ideal I is said to be prime if for any X c= T exactly one of the

conditions X e /, T—X e / holds.

The set {X c= T: x $ X} is an example of a prime ideal. In Chapter VII

we shall prove that every ideal can be extended to a prime ideal.
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(iii) If I is a prime ideal and XP is the formula then

In fact, Axp = T—Aq.

(iv) If I is a prime ideal
,
then

v $ I = (A# $ I) a (A,j, £ I);

moreover
, if S is the formula f\ & , then

Uk

As il= A
ckeP

Theorem (iv) follows from (i)-(iii).

A formula 0(.x, z,
, ..., uk) is said to be elementary if it can be

constructed from the formulas

(a) Ui = Uj

,

(b) y(Ui, uj) = u,,,
1

)

(c) <Ui,Uj>ez

by the propositional operations and the quantifiers \/, /\.
uex uex

The following theorem solves the problem stated above.

cTheorem 3: If I is a prime ideal
,
@(x, y, z, u

y , ... ,
uk) is an el-

ementary formula and e
1 , . .

. , ek are arbitrary elements of P, the

(2) 0(PII,<plI,QlI,e1 /I,...,ek/I)

= {t- $(Ft>ft>Rt *e\(t), £1-

Prcx)F. If 0 is one of the formulas (a), (b), (c), then (2) holds. In

fact, the left-hand side of (2) is equivalent to efl = ej/I in case (a),

to 9o/Hefl, ej/I) = eh/I in case (b), and to (ejl, e
7//> e g/I in case (c).

The right-hand side of (2) is then equivalent:

in case (a) to {/: eft) = ej(t)} $1,

in case (b) to {/: f (eft), eft)) = eft)} £ I,

in case (c) to {/: (eft), £,(/)> e R
t } $ I.

1
) We read this formula as: the value of y for the arguments u ( , u} is uk . We

could also write it as «wj, Uj>, uk> e y.
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From the definitions of the set P/I, the function tp/I, and the re-

lation q/I as well as from the definition of prime ideals it follows

that the left-hand and right-hand sides of (2) are equivalent.

In turn, it follows from Theorems (i)-(iv) that if (2) holds for formulas

0 and 0, then it also holds for the formulas arising from 0 and W

by the propositional operations and the quantifiers \/ and /A
\.

uex uex

In this way Theorem 3 is proved. 1

)

°Corollary 4: If 0(x,y,z) is an elementary formula, then

0(P/7, <?//, q/I) = {t: &{Ft ,ft ,R t)}tI.

This corollary follows from Theorem 3 if we assume that 0 does

not contain the variables u l9 ...,uk .

°Corollary 5: If 0(x, y, z) is an elementary formula and for every

t the formula &(F
t ,ft ,

R
t) holds

,
then 0(0//, cp/I, q/I).

This corollary follows directly from the previous corollary and trom

the remark that if / is a prime ideal then T $ I.

Examples

In the following we suppose that / is a prime ideal in P{T).

1. If the relations R
t
are reflexive, transitive and satisfy the con-

ditions:

A U<*> T> e Kri A [<T» *> e Rt\
-+ x =

•*, yeF t

A [«*, y> e /t,)v«y,x> € /?,)],

a-, yeFt

then the relation q/I satisfies the same conditions.

2. If F
t

is a field with respect to the operations of addition Jt
and

multiplication gt ,
then the set P/I is a field with (respect to the oper-

ations cp/I and \p/I, where (p and ip are the cartesian products of the

operations f, and gt ,
respectively.

Similarly, if each of the sets F, is an ordered field with respect to

the operations ft
and gt

and with respect to the order relation R
t ,

x

) Theorem 3 which is due to o [1] has found numerous applications which

may be found e.g. in Bell and Slomson [1] or Chang and Keisler [1]. See also

Chapter X, Section 7.
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then P/I is an ordered field with respect to the operations cp/I and ip/I

and the order relation q/I.

These properties follow by Corollary 5 from the remark that the

formulas “A
r

is a field under the operations D and M" and “

X

is a field

under these operations ordered by the relation R" are equivalent to

elementary formulas.

These examples show that if we are given a system of axioms and

a family of models of this system then by forming the reduced product

of this family we can obtain a new model of the same axioms. Other

applications of reduced products will be given in Chapter X, Section 7.

Exercises

1. By applying the lemma on p. 138, prove the existence of a prime ideal which

contains a given ideal ^ P(T).

2. Prove that if each of the sets F, is a Boolean algebra with respect to the

operations v
f ,

A
t ,
—

, and the elements 0,, l t and if for every t the condition

(*) A((* = 0t)v\/[(x = j v t z) A O 5* Of) a (z ^ O,)]}
X x,z

holds, then the set P\l is a Boolean algebra with respect to the operations v //,

a//, — // and the elements 1/7, ill, where v, a, — are the cartesian products

of the operations v t ,
a,, — and £, i are functions such that £(/) = 0, and i(t)

= 1, for every t. Moreover, P\I satisfies condition (*). Show that the ordinary car-

tesian product of Boolean algebras satisfying!*) may fail to satisfy this condition.

§ 10. Infinite operations in lattices and in Boolean algebras

The theorems in the previous sections of this chapter can be con-

sidered as theorems about the lattice P(X) (see Ch. I, §10). As we

know, this lattice is a Boolean algebra and a complete lattice. In a

natural way the question arises as to whether the theorems in § 1 can

be generalized to the case of arbitrary lattices, or complete lattices,

or Boolean algebras.

Suppose first that K is any ordered set and / e K r
. The following

theorems, analogous to Theorems 1.1-1. 3. hold:

Theorem 1: The least upper bound g = \J f, if it exists
, is the

teT

unique element of K satisfying the conditions

A (ft < ff) and /\ (f ^ a) - (g sc a).
teT teT
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A similar theorem holds for the greatest lower bound d — fi

.

teT

If the least upper bound \/f exists, it is called the supremum of
teT

the elements ft , teT. If the greatest lower bound \ft
exists, it is

teT

called the infimum of the elements f, t e T.

Theorem 2: If T = Hu and for every ueU the suprema \J f
ueU teHu

= gu exist and if the supremum \fft = g also exists
,
then the supremum

teT

\J gu exists and is equal to g (similarly for the infimum).
ueU

Theorem 3 : If y is a permutation of the set T and the supremum

\J ft = g exists, then the supremum \J fp{t) also exists and is equal
teT teT

to g (similarly for the infimum).

Theorem 1 is a restatement of the definition of the least upper bound.

Theorems 2 and 3 can be proved similarly to Theorems 1.2 and 1.3.

The following theorem holds for all ordered sets and is analogous

to 1(3).

Theorem 4: If the supremum \/ ft = g and the infimum /\f = d
teT teT

exist ,
then for all teT we have d < < g.

On the other hand, formulas 1 (4)— 1 (11) do not have counterparts

for arbitrary ordered sets.

Theorem 5: If the set K is a lattice, p, q e K v
,
and if the suprema

\J p t — g i
and \J qt = g2 exist, then the supremum \J (pt

vq
t) exists

and is equal to g v
vg2 (similarly for the infimum).

Proof, g! wg2 ^ pt
vq

t
for all teT. If /\ (x ^ pt

vq
t), then also

teT

/ \ (x ^ p t ), whence x ^ g i
‘, and similarly x ^ g2 ;

hence x ^ gt vg2
.'

teT

The assumption that AT is a lattice has been made in this theorem

in order to ensure the existence of pt
v

q

t
and giVg2 .

Theorem 6: If K is a lattice and the suprema \J f and \J (aAf)
teT teT
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exist, then

V (aAf ) < «A \//r
teT teT

(similarly for the infimum).

Proof. For every teT we have a/\ft < a and aa/
( </( < \Jft ;

teT

thus aAft ^ a a \J ft, whence the required formula follows.
teT

The inequality sign in Theorem 6 cannot in general be replaced by
the equality sign even in the case of complete lattices. However, the

following theorem holds.

Theorem 7: IfK is a Boolean algebra and the supremum \Jf exists,
teT

then for any aeK the supremum \/ (a af) exists and is identical to
teT

aA \J ft (similarly for the infimum).
teT

Proof. Since aAf ^ oa\Jf for every teT, it suffices to show
teT

that if (a af < a), then a a \Jf ^ x. From the assumptions it
teT teT

follows that —av (aAf) —avx; hence f < -avx for arbitrary

teT. We obtain / f ^ -avx, thus a a V/ f ^ a a (-a v x) < x.
teT teT

For Boolean algebras the following theorem holds (de Morgan’s
law).

Theorem 8. If the supremum \Jf = g exists, then so does the in-
ter

fimum f\ (—f) and is equal to —g (similarly with supremum and in-
ter

fimum interchanged).

Proof. Since/, ^ g, we have — g ^ —fi for every t e T. If x ^ —f
for every teT, then fi ^ —x; hence g < — x and x; ^ — g, whence

we obtain /\ (-/,) = -g.
teT

As the theorems above show, all basic theorems in § 1 can be

generalized to the case of complete Boolean algebras. For non-com-
plete Boolean algebras the theorems hold if we make the additional

assumption that all the necessary suprema and infima exist. It is interest-
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ing to notice that the distributive law stated in Theorem 7 does not

involve the complement sign, yet it can be proved only for Boolean

algebras. The general distributive law given in Theorem 1.4 is even

more peculiar. We shall prove that Boolean algebras of the form P{X)

are, in fact, the only Boolean algebras for which this theorem holds.

First let us assume two definitions.

Definition 1: A Boolean algebra K is said to be distributive if it

is complete and, moreover, if lor every set M and tor every function

f• M - K and for every partition of M into non-empty sets M = (J Tu
J ' ueU

the following identity holds:

(u AV/> = V A/»
ueU teTu YeK teY

where

(2) K = {YeP(M): A (Yr\T. # 0)}.
ueU

Definition 2: An element a is said to be an atom of a Boolean al-

gebra K if a e K, a # o and a < a -» a* = o. A Boolean algebra K is said

to be atomic if for every element a # o there is at least one atom a such

that a ^ a.

Theorem 9:
1

) Every complete and atomic Boolean algebra K is isomor-

phic to the field P(A) where A is the set of atoms of K. Namely ,
there

exists a one-to-one mapping 0 of K onto P(A) such that

(3) 'HV/.) = U
teT teT

<4) AA/> = n^/.)
teT teT

for any set T and for any function f e K 1
.

Proof. Let for a e K

0(a) = {a e A : a < a} .

This formula defines a function whose domain is K and whose values

are subsets of A. Clearly, a ^ y 0(a) <= 0(y).

‘) See Tarski [5].
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The function 0 is one-to-one. For suppose that x and y are elements
of the algebra K such that xf\y ^ o. We can assume that x—y ^ o.

By the assumption that A is atomic, there exists an atom a such that

a ^ x—y. It follows from the formulas aAx^a and a Ay ^ a that

cjax = o or a ax = a,

and

aAy = o or a Ay = a.

The formulas aax = o and aAy = o imply

a = a a (x-y) = (aax)-

(

a Ay) = o — o = o.

Hence a = o, which contradicts the fact that a is an atom (Definition

2). Similarly, the formulas a ax = a and aAy = a imply

a = a a (x-y) = (a ax)-

(

a Ay) = a- a = o,

which again contradicts Definition 2.

Thus, either aax = o and aAy = a, or a ax = a and aAy = o.

In the former case we have a non ^ x and a ^ y, in the latter a ^ x
and a non ^ y. Thus in both cases 0(x) # 0(y).

Letf e K r
. If a e (J 0(ft ), then there exists / 6 T such that a e 0(ft ).

teT

This implies V ft\ thus a E0(\l ft ).
teT teT

Hence we have proved that

(5) U <!>{/,)= <HV
teT teT

Now suppose that ae<P(\J /,); that is, a < \J ft . If a a/, = o for
teT teT

every /, then we have a = a-(aAf
t ) = a-f; thus

A («-/.)- «-V/.
teT teT

= a — (a a \Jft )
= a a = o,

teT

because a a \J f = a. But this conclusion contradicts the fact that
teT

aeA. Hence there exists teT such that o ^ aAf ^ a. This means
aAft

= thus a ^ f and finally a e 0(ft )
c: 1J 0(ft ). We have thus
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proved the following inclusion

<£(V/<) c U •£(/<) •

teT teT

This by (5) implies (3).

Formula (4) can be proved even more simply. We have

a = ®(A/<) = (°< A/.)
teT teT

= A («</.)
teT

= A («6 <£(/,))
teT

= flGflWt)-
teT

It remains to be shown that every set X a A can be represented as

<2>(x) for some x e K. For this purpose, let

T= X, f, = t, X=\Jf„
aeX

(this union exists because we assumed that K is a complete Boolean

algebra).

According to (3) we have

<£(*) = u <*>(«) = UM =
aeX aeX

because a is the unique atom included in a and hence @(

a

) = {a}.

In this way Theorem 9 is completely proved.

Theorem 10 :*) Every complete and atomic Boolean algebra K is

distributive.

Proof. According to Theorem 9 there exists a tunction (P which

establishes the isomorphism between K and the held ot subsets ol some

set A. By Theorem 4, § 1, formula (2) implies the formula

nuw =unm
ueU teTu YeK teY

*) See Tarski [5].



10 . INFINITE OPERATIONS IN LATTICES AND IN BOOLEAN ALGEBRAS 151

which by (3) and (4) implies

HA V/-) = *(V A/.)-
ueU teTu YeK teY

Since the function 0 is one-to-one, the formula above implies

formula (1).

Theorem 11: If the Boolean algebra K is complete and distributive
,

then it is atomic

Proof. Suppose that K is complete and distributive but not atomic.

Let a0 be an element # o which does not contain any atom. Let

Tu = {u, — u) for u e K and f = tAa0 for t e K. Since K = [J Tu , we
ueK

have equation (1), where M = K and where K is defined by (2) for

M = K. It follows from the definition of the set Tu that

y ft = fuVf-u = (a0 Au)v(a0 A -u) = a0 A(uv -u) = a0 ,

teTu

hence

A V /* = «o •

ueU teTu

It follows from (1) that there exists a set Y0 e K such that

f\ft ^ °-
teYo

Let

(6) b = A/t = a0 AA t.

teYo teYo

Since a0 contains no atom, b is not an atom. This means that there

exists an element c such that

(7) o # c ^ b and c # b

.

According to the definition of K (see (2)), Y0 nTc ^ 0; that is,

either ceY0 or —ceY0 . This implies by (6) that either b < c or

b ^ — c. In the former case we infer that b = c, in the latter case that

c ^ — c. Thus either c = b or c = o, which contradicts (7). This con-

tradiction completes the proof.

Example. The Boolean algebra K of regular closed sets in the plane

is complete but not distributive.
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For we proved in Chapter I, p. 39 that A" is a Boolean algebra with

respect to the operations IJ> O and Moreover, it was shown that

each element of K,
different from 0, contains a non-empty element

distinct from itself. The Boolean algebra K is thus not atomic. From

Examples 1.3 and 1.4 it follows that K is complete, from Theorem 11

it follows that K is not distributive.

This Boolean algebra K is an interesting example which shows that

not all laws which hold for the algebra of sets can be transferred to

the theory of Boolean algebras, even in the case of complete Boolean

algebras.
1

)

Exercises

1. Prove that the equation dual to (1) also holds in atomic Boolean algebras

(8) VA/*=AV/<-
ueU leTu YeK teY

Furthermore, show that there exist complete Boolean algebras in which (8) does

not hold.

2. Give an example of a Brouwerian lattice K such that tor some set T, tor some

function / e KT and for some element a e K we have

Q A (\/ ft) 7 \J («A/d-
teT teT

3. Give an example of a Brouwerian lattice K such that for some set T, for some

function / g Kr and for some a g K the supremum \/ /, exists but the supremum
teT

\/ (a aft) does not exist.

t

§11. Extensions of ordered sets to complete lattices

Wc shall prove that every ordered set can be treated as a subsystem

of a complete lattice (that is, of a lattice in which most laws of the

algebra of sets hold). We shall also solve a similar problem for Boolean

*) There are numerous other results concerning distributive Boolean algebras

which wc could not include in this book. The reader may tound bibliographical

references to these results in Sikorski [1].

In the whole Section 10 we dealt with the generalization of the operations of union

and intersection. Other set-theoretical operations were also generalized for Boolean

algebras. For instance the theory of cylindric algebras represents a generalization

to Boolean algebras of the cartesian multiplication. See Henkin, Monk and Tarski [1].
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algebras. For this purpose, we first introduce a general notion of em-

bedding of one system in another.

Definition 1: A relational system (A, R> is said to be a subsystem

of <

B

, S} if A a B and f\ [xRy = x.S>] (that is, R = (A xA)nS).
x, ye/

1

Definition 2: A system (B, S) is said to be an extension of the

system (A, R) if there exists a subsystem </?, , 5,) of the system <#, S')

isomorphic to (A
,
R).

In this case we also say that the system (A
,
R) is embedded isomorphi-

cally into the system <B , S) and that the function establishing the iso-

morphism embeds (A, R) in \B , S).

Theorem 1 : Every ordered set A can be embedded isomorphically in

the family of all subsets of some set (where the family is ordered by the

inclusion relation). Consequently
,
A can be embedded in some complete

and atomic Boolean algebra.

Proof. Let for a e A

0(a) = {x: x ^ a]

.

Because the relation ^ is transitive, we have

a^ b - 0(a) c= 0(b).

Since a e 0(a), we have O(a) c: O(b) -> a e 0(b) -* a ^ b. Hence

a ^ b = 0(a) c 0(b),

and it follows directly that

0(a) = 0(b) -> a = b.

Thus the function a -> 0(a) embeds A in the family of sets 0(a)

ordered by the inclusion relation. Clearly, this family can be extended

to the family P(X) where X = (J 0(a).
1 aeA

In general, the extension described in Theorem 1 preserves neither

suprema nor infima; that is, the equation a = bvc does not necess-

arily imply 0(a) = O(b) uO(c). We shall consider whether it is poss-

ible to extend the set A to a complete lattice preserving suprema and

infima.
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Let the function <p embed the ordered system (A, ^ A> in the or-

dered system (B, < B>-

Definition 3: The embedding cp preserves suprema if tor every set

T and for every function f e A T such that the supremum \/ ft
exists,

teT

the supremum \/ (p(f ) also exists and
teT

^(V/r) = N/K/;)-
teT teT

We admit a similar definition for the infima.

We shall now consider a construction which will extend any ordered

set to a complete lattice preserving suprema and infima. Let A be a set

ordered by the relation For any set X a A, let

X+ — \a e A: f\ (x < «)} ,
X~ = [a e A

: /\ {a < *)} .

xeX xeX

The next statements follow from the definitions above:

(1) IczY-* (X+ => Y +)a(X~ zd y~);

(2) for any Z c= A we have Z a Z + ~ and Z c= Z“ +
.

Proof. By definition,

(z e Z) a (z' e Z +
) -> (z^z'),

thus

(zsZ)-> A(z< z') -> (ze Z+-).
z'eZ+

The proof of the second part of (2) is similar.

(3) Z+_+ = Z + and Z~ + ~ = Z~

.

The inclusion Z +
c= Z+_+ follows from (2). If aeZ + ~ + then

/\ (z ^ a) and therefore /\ (z ^ a) since Z <= Z + ". Thus a e Z +
.

zeZ+_ zeZ

The proof of the second part of (3) is similar.

We now introduce the notion of a cut for ordered sets.
1

)

*) The notion of a cut originated with Dedekind [1] who used it in his construc-

tion of real numbers. The extension of Dedekind’s theory to arbitrary linearly ordered

sets is immediate. The much less obvious generalization to the case of arbitrary

ordered sets is due to Mac Neille [11.
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The pair (X, Y> is said to be a cut in the ordered set A if X+ = Y

and Y~ = X. The set X is called the lower section and Y the upper section

of the cut.

It follows from the definition that

(4) (x e X) a O e Y) -> (x ^ y).

In fact, every element of X +
is in relation ^ to every element of X.

It follows from (3) that

(5) Pairs <Z", Z_ +
> and <Z + ", Z +

> are cuts. Moreover ,
every cut can

be expressed in both of these forms.

Finally, it follows from the definition of a cut that

(6) If at A then the pair <{«}“, {tf}
+
> is a cut.

We can introduce an order relation between cuts:

<jt, y> ^ iu,vy = x a u.

Before we show that the relation < is indeed an order relation, we

first prove that

(7) (x, F> < <c/, vy = v c Y.

Proof. Suppose that X a U and v e V. If x e X, then x e U = V~
;

thus x Therefore v e X+ = Y, and finally V c Y. In a similar way

we prove the opposite implication.

It is now immediate that the relation ^ between cuts is reflexive,

antisymmetric, and transitive, i.e. < is an order relation.

Let ^ denote the family of all cuts.

(8) is a complete lattice.

Let £ c= sp and

s= u X, T= U
<*,*-•->62 <*-,*>e2

The cut <S'
+ ~, S +

y is the supremum of £. In fact, S a S + ~
and thus

<JF, ^+
> ^ <S + ", S +

y for every cut <W, Z+
> e £. If <A\ X+

> ^ <U,V>

for every <X ,
X+

y e £, then X c U and therefore S <= U. This implies

S+ z> U + = V, hence <S + ", S +
> ^ <t/, K>.
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Similarly we can prove that the cut <T~ ,
r~ + >is the infimum of fi.

(9) The function f(x) = <{*}-, {x} +
} embeds A in ¥ preserving

suprema and infima.

Proof. By definition the following equivalences hold:

x < y = M~ <= M" =f(x) <f(y).

Suppose that x = \/ <p, in the set A\ then m, < x and therefore
teT

f{<pt) < fix) for t g T.

Let <Z, y> be a cut such that f{(pt ) ^ {X, Y> for t e T. Then (>r
}“

<= X, and since <p t
e {9?,}", we obtain 9?, e X. For any y e Y we have

(p t ^ y,
thus x ^ y. This implies x e Y~ = X, hence {x}~ c= X and/(x)

< <A", y>. Thus f(x) = \/ f{<p t ) in the set s$.
t

The proof for the infimum is similar.

The next theorem follows from (9).

Theorem 2: Every ordered set A can be extended to a complete lattice
s$ preserving suprema and infima .

The lattice constructed above is called the minimal extension of

the ordered set A.

We now consider the case where A is a Boolean algebra.

First, observe that if Z, and Z2 are arbitrary subsets of an ordered

set A, then

(10) (Z,uZ2 )
+ = Z+nZ2

+
,

(Zj uZ2
)~ = ZfnZj.

Now let A be a lattice. We prove that if Y
x
and Y2 are upper sec-

tions of two cuts in A, then Y
x
r\Y2 is the set of all elements y x

vy2

where yt
e Y

t for i = 1,2. In fact, y x
vy2 ^ yL ; thus y x

vy2 e Y
x
for

/ = 1,2. Moreover, y e Y
x
nY2 -> y = yvy, where the first component

may be understood to be an element of Y
x
and the second to be an

element of Y2 .

Likewise we can prove that if X x
and X2 are lower sections of two

cuts in A, then X
x
nX2 is the set of all elements of the form x

x
ax2

where x
t
e X, for i = 1,2.

Combining the above with formula (10) we conclude that if A is a

lattice and <Z,
, T t >, <Z2 ,

F2 > are two cuts in A, then
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(X
l
uX2 )

+ = Y
x
nY2 = {yi vy2 : (y t e Yx)*{y2 e >"2)},

(11
' (r, uy2

)' = X
x
nX2 = {x,ax2 : (* t

e^)A(x2 eX2)}.

It follows from the definitions of supremum and infimum in s£ that

for any ordered set A and for any two cuts in A we have

( 12) ix^YC>yc29 Y2 y = i(xl
uX2)

+-Ax1
^x2 )

+
y

= <(finr2r, Y
x
nY2 >,

(13) <a"j ,
Y

x y a(x2 ,
Y2 y = <(r

1
ur2r,(r1

ur2
)- +

>

= <X
l
nX2 ,(Xl

nX2)
+
y.

Finally, observe that if A is a Boolean algebra and Z* = {-z: z e Z}

for any set Z cz A, then

(14) if (X, Yy is a cut in A ,
<T*,A'*> is also a cut in A.

The proof of this lemma is left to the reader.

Now we shall prove the following

Theorem 3: The minimal extension of a Boolean algebra is a Boolean

algebra.

Proof. Let be the minimal extension of a Boolean algebra A.

It suffices to show that is a distributive lattice with zero O and

with unit / and that for any cut (X, Yy e ^3 there exists a cut (Xi, YX/

€ such that

(15) <x, r>A<xt , y,> = o, <*,y>v<jr
1 ,yI > = /

(see p. 43, Theorem).

Clearly, the cut O = <{o}, A) is the zero of s# and l = <A, {/}> is

the unit. The cut <T*,A'*> defined by (14) satisfies conditions (15).

In fact, the lower section of <X, Y> A <T*, X*> is XnY* (see for-

mula (13)). The only element contained in X is o, because a e X pt

_ (a e X)/\( —

a

€ T) — (a < -a) - a = o. This proves the first

part of (15); the second part can be proved similarly.

It remains to show that the distributive law holds. Since the in-

equality (aAc)v(fcAc) < (ovi))AC holds in every lattice, it suffices to

show that if (X
, , y,>, <T2 ,

T2 >, and <£/, V > are three cuts in A, then

«x
t ,
y,>v<y2 , t2»

a

<c/, vy

4 «*,, y
1
>A<t/, K»v«AT2 , T2>A<t/, K».
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Applying (12) and (13), this formula can be reduced to the form

(Y, n Y2)~ nUcz [(.X

\

n U)+ n (X2 n U)+ ]~
;

that is, by (11) and by the definitions of Z + and Z-
,

(16) \(aeU) a /\ (a < y t
vy2) a

yieYl,y2eY2

A /\ (b ^ Xj A w) A (6 > X2 A w)j (tf 6)

.

^2^2, «et/

Suppose now that the elements a and b satisfy the antecedent of the

implication (16). For arbitrary x
l in X1 the inequality b^ x

x
a a holds.

This implies — avb ^ . Since Xj is arbitrary, we conclude that the

element y= —avb belongs to Y
y . Similarly we prove that y eY2 .

Because a satisfies the antecedent of (16), we obtain = ^
= —avb; hence a < a a (

— avb) = aAb ^ b. This proves (16) and
thus the theorem is proved.

§ 12. Representation theory for distributive lattices

The notion of ideal is the basic concept involved in the represen-

tation theory for distributive lattices.

Definition : A non-empty set / c A is said to be an ideal of the

distributive lattice A if

(O (a e I) a (b e I) (a v b e I)

,

(2) (a ^ b) a (b e /) -* (a e I).
1

)

An ideal / is said to be a prime ideal if / / A and for a, b e A,

(3) (aAb el) -> [(a el)v(be /)].

Examples

1. Let A be a lattice of sets (for instance, the lattice of all subsets

of an arbitrary set X) and let a be any element of the union U(A).

The family I of all sets M e A which do not contain a is a prime ideal

in the lattice A.

‘) In all subsequent investigations ideals can be replaced by filters (see Chapter I.

p. 17) simply by interchanging the symbols v and a, 0 and 1 and reversing the

sign



12. REPRESENTATION THEORY OF DISTRIBUTIVE LATTICES 159

2. The family of all finite sets M eA is an ideal in A.

3. If A is the family of all subsets of the set of real numbers, then

the family of all sets of Lebesgue measure zero is an ideal in A.

The set {x: x ^ a) is an ideal in any lattice. This ideal is called

the principal ideal generated by a.

We shall make use of the following general theorems concerning

ideals.

(4) (a v b e /) -* (a e /) a {b e I)

.

In fact, a < avb and b < avb. If avb e /, then ae I and b el

by (2).

(5)
a e I a/\b e I.

In fact, a a b ^ a.

(6) The set I*(b) of elements x such that x ^ ivb for some i e / is

an ideal and I c I*(b), b el*(b).

In fact, if x ^ i t
vb and y < i2 v6, then xvy < (i1 vi2)vb; there-

fore x v_y e /*(6), because /i v /2 e I. If x ^ ivb and y ^ x ,
then

y ^ ivb. Thus the set I*(b) is an ideal. The conditions I <= I*(b) and

b e I*(b) are obvious.

(7) Let the ideals It , for t e T, constitute a monotone family of ideals

such that a e I
t
and b £ 1

1 for every t. Then the union I = U It
is

an ideal and a e /, b I.

In fact, if x e I
tl
and yelt2 ,

then either both elements x, y belong

to /
fl ,

or both belong to /,
2

. In any case, (xv^)e/.

If

l

y e I
t
and x ^ y, then x e I

t ;
thus xeI. Hence the set / is an ideal

and a e I and b $ I.

(8) Jf it is not true that b < a, then there exists an ideal I such that

a e / and b $ I.

In fact, the set {x: x ^ a) is such an ideal.

Suppose that b ^ a is not true and let P0fb be the family of those

ideals which contain a but do not contain b.

(9) If the lattice A is distributive and b ^ a is false ,
then every maxi-

mal element I of the family Pa , b
is a prime ideal.
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In fact, suppose that xAyel. If x$I then the ideal / is a proper

subset of the ideal /*(*). Thus /*(*) does not belong to the family

Pab • Since a e I*(x), we have 6 e /*(*). Thus 6 ^ vx for some

ij 6 /. Similarly we show that if y $ /, then b < i2 vy for some i2 e /.

By the distributive law for the lattice A it follows that

(i) b = bAb < (i
l
vx)a (i2 v _y) = (ij a i2 ) v (/\ a y) v (x a i2 ) v (x a y)

.

By (5) the elements i
x
Ai2 ,

i x a y, and jca i2 belong to / and by as-

sumption xa y belongs to /. Thus the element denoted by the right-

hand side of (i) belongs to I. This implies by (2) that b s /, which con-

tradicts I ePa b . Hence the hypothesis that neither x nor y belongs to

/ leads to a contradiction. Since b $ /, we have / ^ A. Hence / is a

prime ideal.

It will be shown in Chapter VII, p. 258, that the following theorem

is a consequence of Theorems (7) and (8) (and of the axiom of choice).

(10) The family Pa b has a maximal element , that is, there exists

I eP
(l b such that I is not a proper subset of any ideal belonging

to Pa b .

We have introduced the notions of distributive lattice, Boolean

algebra, lattice of sets, and field of sets. The relations among these

notions are shown in the following scheme:

distributive lattice

/ \
lattice ol sets Boolean algebra with 1

\ ./

field of sets

We shall prove that every distributive lattice is isomorphic to a lattice

of sets and every Boolean algebra with l is isomorphic to a field of

sets.

Theorem 1 : Every distributive lattice is isomorphic to a lattice of sets.

Proof. Let A be a distributive lattice. With each a e A we associate

the family R(a) of prime ideals satisfying the condition a $ /. This

correspondence is one-to-one. In fact, if a # b, then either a ^ b or

b ^ a is false. By (9) and (10) there exists a prime ideal / such that

either / e Pa b or IePb a . In other words, there exists an ideal such
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that either a e / and b $ / or 6 e / and a £ /. In the first case we have

J e R(b) and I i R{a\ in the second case / e R(a) and / /?(6).

It follows from (1) and (4) that

/ e R(a v b) = av b £ I

= [(atl)v(bil)]

= [I e R(a) v/ e /?(&)]

= [/g /?(<?) u /?(/>)],

and from (3) and (5)

/ g R(aAb) = ar\b $ I

= (atl)A(btl)

= [I e R (a)] a [I e R(b)\

= I e R(a) n R(b);

thus

R(a v b) = R(a)vR(b) and R(aAb) = R(a)nR(b).

These formulas show that the class of all families R(a) is a lattice

of sets isomorphic to the lattice A.

"Theorem 2: Every Boolean algebra is isomorphic to a field of sets.

Proof. If the lattice A in Theorem 1 is a Boolean algebra, then it

has a zero element o and a unit element i and, moreover, for every

oeA there exists an element —qeA such that oa( — a) = o and

aV (
— a)

= /. Under the correspondence a -* R(a) the element o cor-

responds to the empty set and the element i corresponds to the whole

set A. Since A = R(av -a) = R(a)u R(-a) and o = R(aA(-a))

= R(a)nR(— a), we have R( — a)
= A — R{a). The set ot all families

R(a) is not only a lattice of sets but a field of sets as well. Q.E.D. *)

We shall give a topological interpretation of Theorem 2. Let A be

a Boolean algebra with the zero element o and the unit element i and

let P be the set of all prime ideals of A. We assume each of the families

l

) Theorems 1 and 2 are due to Stone [1]. Other related results dealing with

^-Boolean algebras may be found in Sikorski [1]. There exist also numerous papers

devoted to representations of other types of lattices.
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R{a) to be a neighborhood of every one of its elements. For any set

X c= P, let I eX if every neighborhood of / contains elements of X.

Theorem 3. (i) P is a compact topological space, (ii) The sets R(a)

are both open and closed in P. (iii) Every set in P which is both open

and closed is identical with one of the sets R{a).

Proof. The proof that the axioms of topology hold is left to the

reader.

To prove that P is a compact space, we let K be a family of closed

sets with the finite intersection property. We shall show that f~^X ^ 0.
XeK

Let AT* be the the family of all finite intersections of the form Q X
} ,

j <n

where n is an arbitrary natural number and Xj e K. The family K* is

thus a family of closed non-empty sets.

Let

1 = {a e A: \J (R(a)nl= 0)j.
XeK*

Clearly, a Y < a2 e / -> a
v
e I. If a

{ ,
a2 e I then for some Xlf X2 e AT*

we have R(a
1
)nX

l = 0 = R(a2)nX2 . Thus [R(a
{ ) uR(a2 )] nT)

= 0- Since Xx nX2 eAT* and R(a
{ ) uR(a2)

= R(a
l
v«2 ), we conclude

that a {
va2 el. Hence the set / is an ideal.

We show that i $ I. Suppose the contrary. Then for some X e AT*

we have R(i)nX = 0. This implies A nX = 0; that is, X = 0, which

contradicts the hypothesis that K has the finite intersection property.

From the formula just proved and from the fact that i $ l it follows

by (10) that there exists a prime ideal /0 => /. Thus this ideal is an

element of P. We shall show that I0 e f^| A".

XeK

Let X be an arbitrary set belonging to K and let R(a) be a neigh-

borhood ol /0 . This implies that a $ I0 . Therefore a $ /, which by the

definition of / shows that for every Y e K* we have R(a) n Y ^ 0. In

particular, we have R(a)nX^0. Hence every neighborhood of 70

has a non-empty intersection with X, and I0 e X = X. This shows that

I0 e ( X.
XeK

In this way part (i) of Theorem 3 is proved.
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The proof of (ii) follows from the fact that the family R(a) being

a neighborhood in P is open in P and its complement P-R(a) is also

open, because it is equal to R(— a), which is also a neighborhood in P.

Finally, to prove (iii) suppose that X is both open and closed in P

and let L = R(a)
c X}. Since every point belonging to the

open set X has at least one neighborhood R(a) which is contained in X,

we have [J Y — X and thus Xnf^\ (P—Y) = 0. Hence the inter-
red YeL

section of the family composed of the set X and the sets P—Y
,
where

YeL
,

is empty. Since this family consists of closed sets, it does not

have the finite intersection property. This means that there exists a finite

subset {R(a0). R(a l ), ,
R(an _ l )} of L such that Xn p|(P— R(aj))

j <n

= 0. This implies X =
( ) R(aj) = R(\J aj). Hence the set X is of
j < n j <n

the form R(a).

The space P constructed in Theorem 3 is called the Stone space of A.

The following corollary is a consequence of Theorem 3.

cCorollary 4: Every Boolean algebra with a unit is isomorphic to the

field of sets which are both open and closed in a compact space.

Exercises

1. Construct a lattice of sets isomorphic to the lattice N ordered by the relation

of divisibility.

2. Prove that if an ideal I ^ A in a distributive lattice A is maximal (that is, if

every ideal containing I is equal to either A or I), then / is a prime ideal. The

converse theorem is false.

3. Prove that if A is a Boolean algebra with unit, then an ideal / is prime if and

only if for arbitrary a e A either a e 1 or —a e I.

4. Show that in a Boolean algebra with a unit the notions of prime ideal and

maximal ideal are equivalent.

5. Show that the family of ideals in a distributive lattice A is, in turn, a distribu-

tive lattice with inclusion as the ordering relation.



CHAPTER V

THEORY OF CARDINAL NUMBERS

In this chapter and in the remainder of the book we shall use the

axiom system 27° [TR] (see p. 55) together with axiom VIII formulated

on p. 88. As usual, theorems not marked with the sign are proved

without using the axiom of choice.

§ 1. Equipollence. Cardinal numbers

We now introduce the notion of equipollence, one of the most

characteristic and important notions of set theory. 1

)

Definition: The set A is equipollent to the set B if there exists a one-

to-one function / with domain A and range B. We write A ~ B, and

we say that / establishes the equipollence of A and B.

Examples

1. If the set A is finite, i.e. the number of its elements is a certain

natural number /?, then the set B is equipollent to A if and only it B

contains exactly n elements. Thus the notion of equipollence is a gener-

alization to arbitrary sets of the notion, for finite sets, of having an

equal number of elements.

2. Let A be the interval a
x
< x < a2y B the interval b

x
< x < b 2 .

The function

f(x) = —

—

—(x-a
l ) + b

l

*) The notion of equipollence was first defined and systematically investigated

by Cantor. His first publication about this subject dates back to 1878. The notion

was also known to Bolzano [1], Section 20, but his work did not have much in-

fluence.
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is a one-to-one correspondence from A to B. By definition, A ~ B.

Theorem 1 : For arbitrary sets A
,
B, and C the followingformulas hold :

(1) A ~ A, (A ~ B) -* (B ~ A), (A ~ B)a(B ~ C) — (A ~ C).

Thus, equipollence is reflexive ,
symmetric and transitive.

Proof. The function IA (see p. 71) establishes the equipollence of

A with itself. If the function / establishes the equipollence of A and B

then the function fc establishes the equipollence of B and A (see p. 70).

If/ establishes the equipollence of A and B and g establishes the equi-

pollence of B and C, then the composition gOf establishes the equi-

pollence of A and C (see Theorem II. 6. 2).

The following formulas hold:

(Ax B) ~ (Bx A)
y

(A x {a}) ~ A ~ A la]

,
{a)A ~ {a},

[A x (B x C)] ~ [(A xB)xC],

(A
,

~ B
{ ) a (A 2 ~ B2 )

-*
[(A i

x A 2 ) ~ (B
,
x B2 )],

(A ~ B) - (P(A) ~ P(B)),

(A
j
~ B

t ) a (A 2 ~ B2)a (A
t
d A 2

~ 0= B
t
D B2 )

-»(/), u A 2 ~ B, uB2).

rxxr _ (KX)T

(YxZ)x ~ (FxZ1
),

(/( n 8 = 0) -* (U'" B ~ x rB
).

We omit the proofs of (2)-(7), which are not difficult. On the other

hand, we prove the important formulas (8)—(1 0).

Let f s YX * T
; hence / is a function of two variables x and t, where

.x ranges through the set X and t through the set T and where /takes

values in Y. For fixed t the function g, (with one variable x) defined

by g,(x) = f(x , t) is a function from X into Y, g, s Yx . The function F

defined by F(t) = g, associates with every / s T an element of the set

Yx
, so Fe(Yx

)
T

.

ff ft and f2 are distinct functions belonging to the set YXy ,
\ then

the corresponding functions F, and F2 are also distinct. In fact, if

(2 )

(3)

(4)

(5)

(6)

(7 )

(8 )

(9)

( 10)
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/,(j0 ,
/0 ) # /2 (a0 , ?0) then the elements Fft0) and F2 (t0) of the set Yx

are distinct.

Each function F e (Y
X
)
T corresponds in the manner described above

to some function f e YXxT,
namely, to the function / defined by f(x, t)

= gt(x), where gt = F(t).

It follows that the correspondence of the function / e YXxT to the

function F e (YX)
T

establishes the equipollence of the set YXxT with

the set (Y
x
y , which proves formula (8).

For the proof of (9) notice that if f e (Y x Z)x
,
then f(x) is, for

every x e X, an ordered pair <g(*), /?(.y)>, where g(;t) e Y and h(x) e Z.

Thus g e Yx and h e Zx
. It is easy to show that this correspondence

of the function / to the pair (g,h} determines a one-to-one mapping

of the set (YxZ)x onto the set Yx xZx
.

Finally, to prove (10) we associate with every function / e YA B the

ordered pair of restricted functions Again it is not difficult

to show that this correspondence is a one-to-one mapping of the set

Ya ^ b onto the set YA xYB
.

Equations (2) and (8)— (10) are particular instances of the following

theorems.

Theorem 2: (Commutative law) Let F e (P(A))X . If cp is a permu-

tation of the set X, then

(U) n^-nw
xeX xeX

Proof. Associate with every function /ef] Fx the composite func-
X

tion g = fO(p. Iff

i

# /2 then for some a* eX,fl (x) # /2 (jc). Thus set-

ting y = (p
c (x) we obtain /i(>(y)) t*/2 (<Kt))> that is, g/y) / g2 (y).

Hence the correspondence given by the equation g = fO(p is one-to-one.

The function g= fOcp belongs to the cartesian product fl /?(*>•
*

In fact, if xeX then f{yp{xj) e that ls
> g(x) e F<p(x)-

Finally, every function belonging to the cartesian product f] FHx)
X

can be represented as fOcp for some / e /x • In fact, it suffices to
jt

take for / the function gOcpc
.
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Theorem 3: (Associative law) Let F e (P(T)) V
. lfX = {J Ty ,

where
yeY

the sets T
y
are pairwise disjoint

;
then

02)

xeX yeY xeTy

(i3) a * ~ n o T
')-

yeY

Proof. Let Gy = 0 Fx . Gy
is the set of all functions / with domain

xeTy

Ty such that f(x) e Fx for x e Ty . f] Gy
consists of the functions g with

yeY

domain Y such that g(j’) e Gy
for yeY. We denote the value g(y) of

the function g by gy ;gy
is a function with domain Ty such that gy

(x)eFx .

We associate with the function g e fl Gy the function / defined by
yeY

the equation

(i) /(*) = g,(x),

where y belongs to the set T, and x e Ty .

The domain of/ is X; and for every x e X, f(x) e Fx . Thus / e f] Fx •

xeT

The correspondence between the functions g and / is one-to-one.

In fact, if g
(1) # g

(2) then there exists yeY such that g< X) ^ g£
2) and

thus there exists a e Ty such that gj/^x) ^ g
(

y
2)

(x). Hence, by (i), fin (x)

^/(2 ) (a).

It remains to be shown that to every function f^X\Fx there cor-
ner

responds a function g. For this purpose it suffices to notice that the

function g defined at y e Y by the equation

gy =f\Ty

belongs to the cartesian product f] Gy and also satisfies (i).

y

To prove formula (13) it suffices to let Fx = A in formula (12) for

each x.

Theorem 4: (Law of exponents for the cartesian product) Let

Fe (P(/f))
r

. For every set H

(n f'Y ~ n<*?).
teT teT

(14)



168 V. THEORY OF CARDINAL NUMBERS

Proof. We define the function of two variables on the set T x H
by the equation (7<f(h>

= F
t . We may represent the cartesian product

in two ways as the union of disjoint sets

TxH = U Th = U^r,
heH teT

where Th is the set of all pairs with the second coordinate equal to h

and H
t

is the set of all pairs with the first coordinate equal to t.

Applying Theorem 3 twice we obtain

(15) n c* ~ n ( n gx)

•

xeTxH teT xeHt

(16) n ~ n (n <?*) .

xeTxH heH xeTh

For x e H
t , x = </, h>. Thus Gx = Ft> which shows that

n gx = (f,)
h

'.

xeH t

On the other hand, since H
t
~ //,

(F,f‘ ~ F,
H and fl (/))“* ~ II

teT teT

Thus by (15) we get

(1 7) n u. ~ n (t
b

)

xeTxH teT

For a given h we associate the function g e n Gx with the function
xeTn

f where /(/) = g(t, h), obtaining

n g, ~ n f, .

xeTh teT

Applying (16) we obtain

(18) n Gx
xeTxH teT

Finally (14) follows directly from (17) and (18).

We shall now introduce the cardinal numbers. First we note a theorem

whose proof is immediate:
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Theorem 5 : For the sets A and B to be equipollent it is necessary and

sufficient that the relational systems (A ,
A x A) and (B.BxB} be

isomorphic.

We shall denote by A the relational type of the system (A , A x A ,

.

We shall call A the cardinal number or the power of the set A. From

Theorem 5 and Axiom II. 10. VIII we obtain the following:

Theorem 6: For arbitrary sets A
,
B the conditions A ~ B and A — B

are equivalent.

This theorem allows us to formulate statements about equipollence

as equations involving cardinal numbers.

The notion of a cardinal number is not indispensable.

We may formulate all theorems of set theory so that they are state-

ments, not about cardinal numbers or powers of sets, but rather about

relationships between cardinal numbers, which can always be stated in

terms of the notion of equipollence. On the other hand, many theorems

can be stated more intuitively if they are formulated as theorems about

cardinal numbers. For this reason it is convenient to introduce this

notion.

§ 2. Countable sets

If X is a finite set containing exactly n elements (see III, §3), then

Theorem 6, § 1 is satisfied if we set X = n (see Theorem IIT.4.6). In

the future we shall identify the cardinal number of a finite set of n

elements with the natural number n.

The theory of cardinality for finite sets is not essentially richer than

the arithmetic of the natural numbers. New notions appear when we

turn to infinite sets.

Definition: A set A is said to be countable (or denumerable) it it is

either finite or equipollent with the set of all natural numbers.

Clearly, two arbitrary infinite countable sets are always equipollent

(see Theorem 1.1). We shall denote the cardinal number of infinite

countable sets by a.
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In Chapter III, p. 92 we defined a sequence as a function with do-

main equal to the set of natural numbers. From this definition it

follows that a set is countable if and only if it is the range of a sequence

none of whose terms are equal. Speaking somewhat figuratively, a set

A is countable if its elements can be “arranged” in an infinite sequence

aO-> a i-> a2i &?>•> ••• •

Theorem 1: Every countable non-empty set is the range of an infinite

sequence. Conversely
, the range of any infinite sequence is countable

and non-empty.

Proof. The finite set whose elements are a0 ,
a

x , a 2 ,
a 3 , ..., ak is the

range of the infinite sequence:

/(0) — #o> •••> f(k) = f(k+ 1) = uk , ..., f(k+j) = ak , ...

Every infinite countable set is by definition the set of terms of an

infinite sequence.

To prove the converse we assume that X is the set of terms of ar

infinite sequence <p and that X is an infinite set. Let xp0 = q 0 and

Wn +

1

= <pm where m = min
|A (<Pk # w)l>

k j < //

or

xpn+l = <fo ^ there exists no A such that /\ (xpj # qk ).

j^n

We prove by induction that for every n there exists a number k such

that A ty # (pk ). It follows that A (yn+1 # \pj) and thus the se-
j^n j^n

quence ip has distinct terms. It remains to be shown that every element

of the set X is a term of the sequence xp.

For this purpose we assume that the set {A: qk is not a term of ip}

is non-empty and we let A 0 be the least element belonging to that set.

Clearly A 0 > 0. If i < k0 then q\ is a term of xp, say (pt
= xpm(i) . Let

m = max m{i). The smallest number A such that /\ (yk ^ xpj) is then
i<ko j^rn

A0 and thus from the definition of the sequence xp we obtain xpm+ ,

= (pKo > contradicting the definition of the number k0 .

In a similar manner we establish the following theorems.

Theorem 2: Every subset of a countable set is countable.
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Theorem 3: The union of two countable sets is countable.

Proof. Since the case where one of the given sets is empty causes

no difficulty, we assume that A is the set of terms of the sequence

a0 > ^1 > ^2 »
• • • 5 •> • • •

and that B is the set of terms of the sequence

b0 » >
• • • »

bn ,
...

The union of A and B is then the set of terms of the sequence

a0 5
b0 > i ,

b
i , a2 » b2 •> • • • >

nn ,
bn , . .

.

,

and is therefore countable.

From Theorem 3 it follows by induction that the union of an ar-

bitrary finite number of countable sets is countable.

A particular case of Theorem 3 is the following

Theorem 4: The union of a finite set with a countable set is countable.

Theorem 5: The cartesian product of two countable sets is countable.

Proof. If A and B are infinite countable sets, then A ~ N and

B ~ N; and thus A x B ~ Nx N. By Theorem 1.1 it follows that NxN
~ N, and thus Ax B ~ N.

If one or both of the sets A and B are finite, then A x B is equi-

pollent to a subset of NxN, that is, to a subset of N and the theorem

follows by Theorem 2.

Theorem 6: If the set A is countable
,
then the set of allfinite sequences

with terms in A is countable.

Proof. The theorem follows immediately from Theorem III. 3. 4.

Theorem 7: If ip is an infinite sequence whose elements are also in-

finite sequences
,
then the set X of elements x which are terms of the se-

quences ipn is countable.

Proof. By definition, X = \x:\/(x = ipmn)\
= {*: V (.v = Vk(p).l(P)) j

•

mn p

Thus X is the set of terms of the sequence (p defined by the equation

(Pp ~ V’Kcp), L(p) •

Theorem 8: IfA is a sequence whose elements arc non-empty countable

sets, then the union ; J
A n is countable.
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Proof. Let C„ be the set of sequences q> such that A n is the set of

terms of cp. By assumption C„ ^ 0 for all n e N. Therefore by the

axiom of choice there exists a sequence ip such that ipn e Cn for each n.

Thus the union (J A n is the set of those a* for which there exist m,
n

neN such that jc = ipmn ,
which proves the theorem on the basis of

Theorem 7.

Remark: The use of the axiom of choice is necessary for the proof

of Theorem 8. For every countable set A there exists an infinite sequence

containing all the elements of A among its terms. Yet there are in-

finitely many such sequences for a given set A and we have no way

of distinguishing between them. In other words, we have no way of

associating with every countable set an infinite sequence whose terms

contain all the elements of the given set.

Examples of countable sets

1 . The set of integers is countable.

In fact, it is the union NuN' where N' is the set of integers ^ 0.

Because N ~ N\ where the function /(/?) — —n establishes equipollence,

both sets N and N' are countable. It follows that the set NuN' is

countable.

2. The set of rational numbers is countable.

Indeed, the sequence cp defined by (pp = K(p)/ (L(p + 1)) contains all

the non-negative rational numbers among its terms and only such

numbers. Thus the set of non-negative rational numbers is countable.

From this we obtain that the set of negative rational numbers is countable

(see Example 1). Hence the set of all rational numbers is countable.

3. The set of polynomials of one variable with integral coefficients is

countable.

To every polynomial with integral coefficients there corresponds the

unique sequence of its coefficients. By Theorem 6 the set of all finite

sequences of integers is countable.

4. The set of algebraic numbers is countable.

In fact, with every polynomial we with rational coefficients may

associate a finite sequence whose terms are all the roots of the poly-



2. COUNTABLE SETS 173

nomial. We let the first term of the sequence be that root which has

the smallest modulus and among those of equal modulus that root

which has the smallest argument. Similarly, we let the second term of

the sequence be that root different from the first which has the smallest

modulus and the smallest argument among the roots having the same

modulus. In this way we define by induction the desired sequence. The

countability of the set of all algebraic numbers follows now from

Theorem 7.

We can obtain the same result from Theorem 8. But in this case

we have to use the axiom of choice.

Remark 1: Cantor used the notion of a cardinal number from 1878

on but defined it only in [5]. In free translation his definition reads:

“A cardinal number of a set M is the notion which arises from M by

abstraction from the nature of the elements of M and trom their order”.

See Cantor [5], Section 1. The complicated symbol M introduced by

Cantor indicated the double process of abstraction which leads from

a set M to its cardinal number. Many recent authors replace the Cantor

symbol by \M\ which is more convenient to print.

Frege [1] had a similar conception as Cantor. He was concerned

chiefly with natural numbers but mentioned the possibility of extend-

ing the notion of a number to arbitrary sets. See Frege [1], p. 96.

Remark 2: It can be shown that the following statement cannot be

proved in the system 27[TR]: The union of a denumerable famii\ of

disjoint unordered pairs is denumerable. See Jech [2], p. 95. This result

shows that Theorem 8 cannot be proved without the axiom of choice.

Exercises

1. Prove that the set of all intervals with rational endpoints (in the space ol

real numbers) is countable.

2. Prove that in 3-dimensional euclidean space (or more generally, in &n
) the

set of all spheres with radius of rational length and with center having rational

coordinates is countable.

3. Let / be a function with field contained in the set of real numbers. We say

that /has a proper extremum at the point a if there exists an interval P containing

a such that /(x) < f{a) for all x e P— {a } or else f(x) > f(a) for all x e P— {a}.

Prove that the set of proper extrema of such a function / is at most countable.

Hint: Use Exercise 1.
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Generalize the theorem to functions defined on the space S n (replacing P b>

an ^-dimensional sphere).

4. Prove that every disjoint family of intervals in the space of real numbers is

countable.

Hint : Use Exercise 1.

Generalize the theorem to families of disjoint open sets in the space 6n
using

Exercise 2.

5. Let Z be a set of points in the plane. We call the point p e Z isolated if there

exists an open circle K (i.e. without circumference) such that {/?} = ZnK. Prove

that the set of isolated points of a given set Z is countable.

Hint : Use Exercise 2.

Generalize the theorem to the space Sn (replacing circle by ball in the definition

of isolated point).

6. Prove that every monotonie discontinuous function from the set of real

numbers to the set of real numbers has a countable number of points of dis-

continuity.

Hint : Every monotonie function has both a limit from the right and a limit

from the left at every point; at points of discontinuity those limits are unequal.

Apply Exercise 4.

§ 3. The hierarchy of cardinal numbers

We shall prove that besides the finite cardinal numbers and the

number a there exists infinitely many other cardinal numbers.

For this purpose vve prove the following very useful theorem.

Theorem 1
:
(On diagonalization 1

)) If the domain T of function

F is contained in a set A and if the values of F are subsets of A, then

the set

Z = {teT: t$F(t)}

is not a value of the function F.

Proof. We have to show that for every teT, F(t) # Z. From the

definition of the set Z it follows that if teT, then

[teZ]= [ttF(t)l

Thus if F(t) = Z we obtain the contradiction:

(t e Z) = (ttZ).

l

) Theorem 1, one of the most important results in set theory, was proved by

Cantor in [4].
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For A = T Theorem 1 has a geometrical interpretation. We may

consider the set Ax A represented as a square (see p. 62, Chapter II).

We let R = «x, >’>: y e i^x)}. The set F(x) is the projection onto the

vertical axis of those pairs belonging to R which have first coordinate

equal to a*. The set Z is the projection onto the vertical axis of those

points along the diagonal of the square which do not belong to R. It is

then geometrically obvious that Z =£ F(x) for any x e A; for if <x, x>

g R
,
then .y g F(x) but x $ Z, and if <x, x> ^ R ,

then a: $ F(x) but x g Z.

This interpretation motivates calling Theorem 1 the Diagonalization

Theorem.

We apply Theorem 1 to prove that there exist distinct infinite car-

dinal numbers.

Theorem 2: The set P(A ) is not equipollent to A
,
nor to any subset of A.

For otherwise there would exist a one-to-one function whose domain

is a subset of A and whose range is the family of all subsets of A. But

this contradicts Theorem 1.

Theorem 3: No two of the sets

(1) A.P(A), P(P(A)), P(P(P(A)))

are equipollent.

Proof. Let Pk be the kth set in sequence (1) and suppose that there

exist k and / such that k > l and Pk is equipollent to a subset of P
t

.

The set Pk _ i
is clearly equipollent to a subset of Pk ,

namely to the

subset of singletons {x} where x g Pk _ x
. Thus the set Pk _ r

is equipol-

lent to a subset of P
t

. Repeating this argument we conclude that each

of the sets Pk -i, Pk - 2 » •••> Pi +

1

is equipollent to some subset of P,,

but this contradicts Theorem 2 because P
t + l = P{Pi).

Theorem 4: Let the family A have the property

j

For every X g A there exists a set Y g A which is not equipollent

| to any subset of X.

Then the union (_J (A) is not equipollent to any X e A nor to any sub-

set of X g A.

Proof. Assume that 1

j (A) ~ X
x

c= X e A. It follows that there

exists a one-to-one function / such that f 1

((J (A)) = X
x

. By assump-
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tion (2) there is a set Y e A which is not equipollent to any subset of

X. As Y c (J (A), we have f\Y) a f 1

((J (A)); that is, f\Y) <= X1

and consequently Y ~ f\Y) c X. The contradiction shows that it is

not the case that (^J {A) ~ X
x

.

Theorems 3 and 4 give us some ideas of how many distinct infinite

cardinal numbers exist. Starting with the set N ^of natural numbers

which has power a, we can construct the sets

(3) N, P(N) P(P(N)), P(P(P(N))), ...

no two of which are equipollent by Theorem 3. In this way we obtain

infinitely many distinct cardinal numbers.

By the axiom of replacement there exists the family A whose el-

ements are exactly all the sets (3) (see p. 97). By Theorem 2 the family

A satisfies condition (2); thus by Theorem 4 the union S = U (^)

has a cardinal number different from each of the sets (3) and from

each of their subsets. Again applying Theorem 3 we obtain the sequence

of sets

(4) S, P(S), P(P(S», P(P(P(S))), ...

no two of which are equipollent and none of which is equipollent to

any of the sets (3). We obtain in this way a new infinite quantity of

distinct cardinal numbers.

We obtain still other cardinals by constructing the family B con-

sisting of all the sets (3) and (4) and by constructing a new sequence

Q = U (B), P(Q). P(P(Q))> P(P(P(Q))).

We may continue this procedure indefinitely. We see that the hier-

archy of distinct infinite cardinals obtained in this way is incompar-

ably richer than the hierarchy of finite cardinals, which coincides with

the natural numbers.

As a further consequence of Theorem 2 we note the following.

Theorem 5: There exists no family of sets U which, for every set X,

contains an element Y equipollent to X.

Proof. By Theorem 2 the set /> (U(i/)) is not equipollent to any

subset of the set U (U) and hence it is not equipollent to any of the

sets Y belonging to U because Y e U implies Y a (J ((/).
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Theorem 6: There exists no set containing all sets.

For otherwise this set would satisfy the conditions of Theorem 5.

Theorem If. 3. 6 shows again that we cannot state as an axiom con-

sistent with our axiom system that there exists a set composed of all

elements which satisfy an arbitrary formula.

Theorem 5 is also another indication of the vastness of the hierarchy

of cardinal numbers, which is so “large” that it is impossible to con-

struct a set containing at least one set ot each power.

Exercises

1. Prove that the set NN is uncountable.

Hint: If <p is a sequence of elements of NN
,
then the sequence it defined by it„

= (p„(n)+ 1 is not a term of the sequence y .

2. Let X be a compact space # 0 having the property: for every finite set S and

for every open set G # 0 there exists an open non-empty set G* such that G* <= G

and G*nS = 0. Show that X ¥= a. Apply this inequality to show that the Cantor

set is uncountable.

Hint: Use the axiom of choice to associate with every open set G ^ 0 and every

finite set 5 <= Tan open subet G* = G*(G, S) c G such that G*nS = 0. Assuming

that (f is an infinite sequence of elements of X, let

Go = X, Gn+ ,
= G*(Gn , hPo , •••,?’«});

prove that
\

G„ # 0.
n

3.
1

) We say that the sequence b
x
,b 2 , ... of natural numbers increases taster

a ,

,

than the sequence a
{
,ct2 , ... if lim = 0. Prove the following statements:

n= oo b„

(i) for every sequence there exists another sequence which increases taster;

(ii) let Z be a set of sequences such that for every sequence , a 2 , ••• there exists

a sequence b ly b 2 ,
... belonging to Z which increases faster than a

l
,a 2 , ...; then

the set Z is uncountable.

Hint : Assume Z = N. We then may represent the elements of Z as the rows of

the table

a
l

.

1 » a l

.

2 > •••) ^l,m •••

a 2, 1 » #2, 2 >
d2 ,iD • • •

an , l > an, 2 1
•••

‘) In connection with Exercise 3 see Hardy [1]. Topics dealt with in Section 4

are all due to Cantor [5], Sections 2, 3 and 4.
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Using an appropriate diagonalization argument, define a sequence increasing

faster than every sequence in the table.

§ 4. The arithmetic of cardinal numbers

We shall define operations of addition, multiplication, and exponen-

tiation for cardinal numbers. The definitions will be chosen so that

they will coincide with the ordinary definitions for finite cardinals

(that is for the natural numbers).

Definition 1 : The cardinal number m is the sum of the cardinals

U! and n 2 ,

m = n ! +n2 ,

if every set of power m is the union of two disjoint sets, one of which

has power rti and the other of which has power n 2 .

Lemma 1: Given two arbitrary sets and A 2 ,
there exist sets B

x

and B2 such that

(0) A
1 ~ ,

A2 ~ B2 ,
B

{
n Bz = 0

.

Choose a
x
and a2 such that a

i =£ a 2 (for instance, a i = 0, a2 — {0}).

Then, by 1(4), the sets B y = {a 1
}xA

l
and B2 = {a2}xA 2 satisfy the

desired conditions.

Theorem 2: The sum rti+n 2 of any two given cardinals itj and it 2

always exists.

Proof. Assume that A
l = it! and A 2 = u 2 . Let B

{
and B2 satisfy

conditions (0). Then B
x
uB2 is the union of two disjoint sets of powers

it j
and n 2 . Clearly every set equipollent to B

{
uB2 has the same prop-

erty. Thus B
l
uB2 — it 1 +n 2 .

Moreover, we have proved that

A + B= AuB if AnB = 0.

Theorem 3: Addition of cardinal numbers is commutative and as-

sociative: for arbitrary cardinal numbers n 1 ,n 2 and it 3 ,
we have

it! +n2 = rt2 +n 1 ,( 1 )

(2) tti + (rt 2 +n 3) = (n 1 +n2)+n3 .
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Proof. If A = u 1 +rt2 then A = A
x
uA 2 ,

where A
x
nA 2 = 0, A

x

= n, and A 2 = n 2 . Thus A = A 2 uA x
and A = n 2 +n l ,

which proves

(1); the proof of (2) is similar.

Example. By Theorems 2(3) and 2(4) we have

(3) a + a = a, n + a = a.

Definition 2: The cardinal number m is the product of n
t
and it 2 ,

i.e.

m = n !
• n 2 ,

if every set of power m is equipollent to the cartesian product A
x
xA 2

where A x = n x
and A 2

— rt 2 .

Thus

A
j

* A 2 = A
t
x A 2 .

It is clear that, for arbitrary cardinals n x
and n 2 ,

the product n t *n 2

always exists.

Definition 2 is a generalization to the case of arbitrary cardinal num-

bers of the usual notion of multiplication: for example, we consider

the product 3 • 4 as the number of elements of a set which can be rep-

resented as three groups of four elements; that is, as the number of

elements in the set Ax B, where A contains exactly three elements,

and B four.

Theorem 4: Multiplication of cardinal numbers is commutative ,
as-

sociative, and distributive over addition :

(4) n i
* n 2 = n 2 * n,

,

(5) n x
• (n 2 *n 3 ) = (r^ •n 2)*n 3 ,

(6) Hi • (rt2 +n3) = n, • n2 +ni • n3 .

Proof. Equations (4) and (5) are immediate consequences of equa-

tions 1 (2) and 1(4). Equation (6) follows from the equations (see Chapter

II §4):

A
i
x (/1 2 LJ/4 3 )

= (/I
j
x A 2 ) (/4 j

x A 3 ) ,

[A 2 nA 3 = 0] -+ [(A
,
x A 2 ) n(A x

x A 3 )
= 0].

Theorem 5: 1 is the unit for multiplication ;
namely

,

(7) n - 1 = n.
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The proof follows from 1 (3).

Example. By Theorem 2.5

(8) a • a = a , a • n = a .

Denote the /7-fold product m • m • ... * m by m". By Definition 2, m"
is the power of the set of all sequences of /7-elements (ja ly a2i ..., a„>,

where a,, ..., an are elements of a set A of power m. In other words

(see Chapter II, § 6),

(A)
n = A\

Generalizing the example above, we obtain the following definition.

Definition 3: The cardinal m is the cardinal u raised to p-th power
,

m = tP,

if every set of power m is equipollent to the set A B
, where A = it

and B = p.

Thus

(A)* = A*.

It is clear that for every two cardinal numbers n and p the cardinal

tp always exists.

Theorem 6: For arbitrary cardinals u,p and q:

(9) 1tP
+

‘1 = UP • Tpl,

(10) (tt • p)
11 = tt‘1 • p

1

*,

(ID (n p)‘i = ixP- a,

(12) it
1 = tt.

(13) P = 1.

These equations follow directly from equations 1(4), 1(8)-1(10).

Theorem 7 : If A has power tit, then the set P(A)
(which consists of all

subsets of A) has power 2 m :

2* = P(A).

Proof. 2m is the power ot the set (0, l}'
4

, consisting of all functions

/

whose values are the numbers 0 and 1 and whose domain is the set A.
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Each such function is uniquely determined by the set Xf of those a for

which f{a) =
1 (/is the characteristic function of this set, see p. 119).

To distinct functions fx
and f2 correspond distinct sets X

fl and Xfl .

Thus associating with the function/ e {0, 1 }
A the set Xf <= A, we obtain

a one-to-one correspondence between the sets {0, 1 }

A and P(A).

§ 5. Inequalities between cardinal numbers. The Cantor-Bernstcin

theorem and its generalizations

We obtain the “less than" relation between cardinal numbers from

the following definition.

Definition: The cardinal number m is not greater than the cardinal

number rt,

m ^ it,

if every set of power m is equipollent to a subset of a set of power u.

If m ^ u and m ^ n we say that m is less than n or that n is greater

than m; we write m < rt or n > m.

For example,

(1) n < a,

(2) m < 2m .

For the proof of (2) we notice that m ^ 2m
,
because every set A

of power in is equipollent to the subset of P(A) consisting of all single-

tons of elements of A. Moreover, m ^ 2m by Theorem 3.2.

The following theorem is an interesting consequence of the defi-

nition of inequality.

Theorem 1 ‘.Iff is a function defined on the set X and f x (X) = Y,

then Y ^ X.

Proof. For any y in Y put W
y = {x eX: f(x) = y}. Since W

y ^ 0
and W

y
nlV

y
,
= 0 for y ^ y', there exists by the axiom, of choice a set

A containing exactly one element from every Wy . It follows that A is

equipollent to the family of all sets W
y and thus to the set/ 1 ^). Since

A is a subset of X, we conclude that Y ^ X.

Example. The projection of a plane set Q onto an arbitrary straight

line has power < Q. In this case the sets W
y

are the intersections

Q nL where L is a straight line parallel to the direction of the projection.
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Remark: We write m^*nifm = 0 or if every set of power m is

the image of every set of power n. It is an easy consequence of Theorem

1 that {m ^ u} = {m n}; we saw that the proof of this equivalence

uses the axiom of choice. Without using this axiom we are not even

able to prove the intuitive proposition that the conditions m n

and n < m are incompatible. 1

)

The relation < possesses many properties of its arithmetical coun-

terpart.

(3) (m ^ n) a (n < p) - (m < p)

(4) (rn ^ n) -» (m+p < n+p),

(5) (nt < n) -> (mp np),

(6) (rn n) (m? ^ n^),

(7) (m ^ n) - (p
m ^ p

n
).

Law (3) expresses the transitivity of the relation Laws (4)—(7)

express the monotonicity of addition, multiplication and exponentiation

with respect to

As an example we prove (3). Let A ,
B and C be sets ot power trt, tt

and p. By hypothesis, A is equipollent to a subset B
{

ot B and B to

a subset C
x
of C. Let /and g establish the equipollences A ~ B

{
and

B ~ C, . The composition gO/is one-to-one and maps A onto a subset

of C\ . Thus m ^ p. Q.E.D.

The laws of monotonicity do not hold for the relation < : for in-

stance, 2 < a but 2 + a = a + a = a- a = 2 -a; similarly, 2 < 3, but

2a = 3
a as will be shown in § 6.

In the arithmetic of natural numbers the laws converse to (4)-(7)

are called the cancellation laws for the relation ^ with respect to

l

) The fact that the proof of Theorem 1 rests on the existence of a choice set for

the family of all the sets Wy was pointed out by Levi [1] before the axiom of choice

was explicitly formulated.

The relation was introduced by Tarski and Lindenbaum [ 1 ].

Levy [11 proved that Theorem 1 is not provable in the system 2. [TR] provided

that this system is consistent. See Jech [2], p. 162, Problem 8.

Also the impossibility of proving the implication m n —> nt < u without the

axiom of choice was shown by Levy [1]. See also Sierpiski [20].
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the operations of addition, multiplication and exponentiation; these

theorems hold in arithmetic provided that p > 1. In the arithmetic of

arbitrary cardinal numbers all of the cancellation laws fail to hold:

it suffices to let m = 2, n = 3 and p = a to obtain a counterexample.

On the other hand, the cancellation laws with respect to addition,

multiplication and exponentiation hold for the relation <. They follow

without difficulty from the law of trichotomy which we now state but

which we shall prove only in Chapter VIII.

°For arbitrary cardinals m and n either m < it or it < lit.

In the remainder of this section we shall treat the question of the

asymmetry of the relation <. This problem was investigated already

by Cantor but not completely solved by him.

The asymmetry of the relation < is equivalent to the theorem:

(i) (m ^ n) a (n ^ nt) - (m = n)

.

In fact, if (i) holds, then the formulas m < n and n < in never hold

simultaneously; otherwise (i) would yield tit = n. Conversely, if the re-

lation < is asymmetric and satisfies the antecedent of implication (i),

then necessarily m = n, because otherwise the < signs in the antecedent

of the implication could be replaced by <, in contradiction to the

assumption of the asymmetry of <.

To prove (i) we first prove the following more general proposition.

Theorem 2:
1

) If A and B are sets and f and g are one-to-one
,
where

f e BA and g e A B
,
then the sets A and B can be represented as unions

of disjoint sets A = A
l
yj A 2 and B = B

l
u B2 ,

where

f l (A 1 ) = B
l

and g
l (B2 )

= A 2 .

Proof. We call the element aeA extendable if aeg l (B) and g
c (a)

ef l
(A). For extendable a we set a* = fc

(g
c (a)) and call a* the exten-

sion of a.

Now we construct a maximal sequence of successive extensions start-

ing with the element a. By n(a) we denote the largest natural number

such that there exists a sequence of n(a) terms constructed by starting

with a and taking successive extensions, provided that such a maximal

natural number exists. Otherwise, when for every natural number k

') Theorem 2 is due to Banach [I].
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there exists such a sequence of k terms, vve let n(a) = N. The sequence

defined by

(p0 (a) = a, <pj+1 (a) = (pj(a)* for j e n(a)

is the desired maximal sequence of successive extensions starting from

a. For non-extendable a we put n(a) = 1 and y0 (fl)
= a -

Tf n(a) is finite then we let

a) = iO).

We define

A 2 = {aeA: 11 (a) = Nv (s(a) eg l (B))A, (g
c (s(a)) $f'(A))}.

A,=A-A 2 , B, =f'(A 1), B, = B- B,

.

For the proof of the theorem it suffices to show that £*(#2 ) = A 2 ,

i.e. that

(8) b e B2 -* g(b) e A 2 ,

(9) A 2 czg l (B2 ).

Proof of (8). Assume b e B2 ,
that is, b and let a = g(b). If

b $f l {A) then a is not extendable, s(a) = a
,
and by definition we have

aeA 2 . If b ef l (A) then bef l (A 2 ) and b = f(a'), where a'eA 2 .

Clearly a' = /c
(g

c
(fl)), that is, a = a*; thus a* e A 2 . If n(a*) = N then

n(a) = N and a e A 2 ;
otherwise s(a*) = s(a) and again a e A 2 .

Proof of(9). Assume that a eA 2 . If a is extendable then a = g(/(fl*)).

If at the same time n(a) is finite, then .?(<?) = s(a*) and a* e A 2 . The

same is true if n{a) = N, because then n(a*) = N as well. Thus in both

cases a* ^ A
x ,f(a*) $ /‘(/I,) and thus /(a*) e B 2 . It follows a = g(/(fl*))

eg\B2 ).

If a is not extendable, then 5(a) = a and by the assumption that

a e A 2 we obtain a e g
l (B). If a were an element of g

1 (B
l ) then, by the

definition of the set £, , a would have the form g(f(a')) and would be

extendable contrary to the assumption. Thus aeg l (B2 ). Q.E.D.

As a corollary we have the Cantor-Bernstein theorem})

') The Cantor-Bernstein theorem was conjectured by Cantor but proved cor-

rectly first by Bernstein (see Borel [1]).

The proof given here is due to Banach [1] but based on an idea similar to that

invented by Bernstein. The applications to problems of finite decompositions are

due to Banach and Tarski [1].
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Theorem 3: If m ^ n and n ^ m then m = n.

Proof. Let A = m and B = rt. Since m ^ it, there exists a one-to-

one function / from A onto a subset of B. Since it ^ tit, there exists,

similarly, a one-to-one function g from B onto a subset of A. By Theorem

2, A = A
x
uA 2 ,

where A
x
and A 2 are disjoint; and B = 5, u B2 ,

where

B
x
and B2 are disjoint and where f { {A

x )
= B

x
and g

l (B2 )
= A 2 . Thus

A
t
~ B

t
and A 2 ~ B2 ;

hence A ~ B.

The Cantor-Bernstein theorem can be generalized as follows. Let R

be an equivalence relation on the family P(A) and let R satisfy the fol-

lowing two conditions:

(10) XRY -* \/ [(/is a one-to-one function)A /\ (ZRf l (Z))],

ffyX z C x

(11) (X
x
nl2

= 0 = Y
x
n Y2)a (X

x
RY

x
)a(X2 RY2 )

-+ (X
x
uX2 RY x

kjY2).

Theorem 4: If the relation R with field P{A ) satisfies for arbitrary

subsets of A the conditions (10) and (11), and ifX stands in the relation

R to some subset of Y and Y stands in the relation R to some subset ofX,

then XRY.

Proof. Assume that XRY
x
where Y

t
a Y, and YRX

x
where X

x
cz X.

From (10) it follows that there exist one-to-one functions / and g such

that / maps X into Y
x
and satisfies the condition that ZRf l (Z) for every

Z cz X; and similarly g maps Y into X
x
and satisfies TRg'(T) for all

Tc Y. By Theorem 2, X=X'uX" and Y= Y'vY", where X' nX"
= 0 and Y' nY" = 0 and where Y' =/’(X') and X" = g

1 {Y
n
). Since

X' c: X, we have X’Rf'(X'), that is, X'RY'; similarly, X"RY". Tt then

follows by (11) that XRY. Q.E.D.

We give two examples of relations satisfying conditions (10) and (11):

1. The relation of equipollence on subsets of A. Theorem 4 for this

relation is then identical with the Cantor-Bernstein theorem.

2. Let A = Sn
. We call two subsets X and Y of A equivalent by finite

decomposition if there exist a natural number k and two sequences

X0 ,...,Xk _ x
and T0 , ..., Yk _ x

such that

x = u xj, y = UYj,
j <k j <k
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Xi n Xj = 0 = Yi n T; for 0 ^ i <j < k,

X"i
and Yi are isometric for i < k.

If X and Y are equivalent by finite decomposition we write X ~ fin T.

Theorem 5: The relation ~fin satisfies conditions (10) and (11) and

is an equivalence relation on P(A).

We omit the proof.

We prove one more theorem about transformations. Like Theorem 2

it is a generalization of the Cantor-Bernstein theorem.

Theorem 6: (Mean-value thforem) Let A, B, C, A' and B' be sets

such that A => C => B, A' ^ B\ A ~ A' and B ~ B '
. Then there exists

a set C such that A' => C => B' and C ~ C'.
1

)

Proof. It suffices to prove the existence of a function h from A

into A' satisfying the following conditions:

(12) the restriction h\C is one-to-one
,

(13) h l (C) => B'

.

In fact, if h satisfies (12) and (13), then the desired set C is h
l

(C).

We define h as follows:

h(x) =
J/O)

\g
c (x)

for

for

x e A— X,

x eX,

where—for the present—

X

is an arbitrary subset of B and where /
and g are one-to-one functions such that f\A) = A' and g'iB') — B.

The function h defined in this way certainly satisfies condition (12)

provided that

(14) g-\X)nf'(C-X)= 0.

In fact, if h satisfies (14) then h(x
f

) = h(x") holds for no .v' and x"

such that x' e X and x" e C—X.
The function h satisfies (13) if besides satisfying (14) it also satisfies

(15) g~\X)Kjf\C-X)=> B\

because h l (C) = h l (X) kj h l (C- X) = g~\X)Kjf 1 (C-X).

*) The mean value theorem is due to Tarski. See Lindenbaum and Tarski [1],

Theorem 15, p. 303.
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Both condition (14) and condition (15) hold if

(16) g'(B'-f'(C-X)) = X.

To complete the proof it suffices to show that there exists a set

X c B satisfying (16). For this purpose we let F(X) = g
1 (#' —/‘(C— A"))

and we notice that

X
l
c X2 c B - F(X\) c F(X2 ) cz j5.

A function F from P(F) into P(F) will be called a monotonie function

on the subsets of B if it satisfies the condition above. Therefore it suf-

fices to prove the following lemma:

For every monotonie function on the subsets of a given set B
,
there

exists a set X such that F(X) = X.

We construct X as follows: let K = {X cz B: F(X) cz X}. The family

K is non-empty because B e K. We shall show that the condition F{X)

= X is satisfied by the set X0 = P) X.
XeK

In fact, X e K -> X0 cz X and thus by monotonicity X e K -> F(A'o)

a F(X) cz X. It follows that F(X0) c X for every X e K,
and hence

F(X0) cz P| X = X0 ,
so that F(X0) a X0 . By monotonicity it follows

XeK

moreover that F(F(X0)) <= F(X0), and thus F(A'0) e K, so X0 <= F(A"0).

We have F(X0) = X0 . Q.E.D.

The Cantor-Bemstein theorem is a consequence of Theorem 6. In

fact, if m ^ n then there exist sets X
,
Y such that X = m, Y = n and

X cz Y. If we assume moreover that n ^ nt, then X contains a subset

Z of power n. Putting in Theorem 6 A' = B' = B = Z, A = T, and

C = X, we conclude that there exists a set C such that A' zd C => B'

and C ~ C. Thus C = Z and C' ~ A", so Z ~ X, and consequently

m = n.

Exercises

1. We say that a cardinal number rt absorbs m if m + n = it. Show:

(a) rt absorbs m if and only if a-m ^ n;

(b) if n absorbs m, then every cardinal larger than tt absorbs m;

(c) rt absorbs m if and only if n absorbs k • m (k eN);

(d) n absorbs m if and only if it absorbs a-m. [Tarski]

2. Without using the axiom of choice show that m ^ a = lit a.

3. Without using the axiom of choice show that |(2
m <*m). [Tarski]
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4. Show that +n 5s a -+ 2 ul ^ 2
a

.

5. Show that the closed circle T is equivalent by finite decomposition to the

union TkjF, where F is an arbitrary line segment disjoint from 7V)

§ 6. Properties of the cardinals a and c

We introduce the following notation:

c = 2
a

.

The cardinal c is called the power of the continuum.

We often meet the cardinal c, as well as the cardinal a, in many

parts of set theory and its applications. We shall prove several for-

mulas concerning the numbers n {natural numbers), a and c.

(1) c = c+c.

In fact (see p. 180), c + c = 2c = 2 • 2° = 2 1 + 0 = 2° = c, because

1 + ci = ci.

(2) n < a < c.

The inequalities follow from equations 5(1) and 5(2).

(3) n + c = n+c = c.

In fact, by (2) we have (see 5 (4))

Cs^rt+C^Cl + C^ c+c,

and by (1)

c^/t + c^a+c^ c.

Applying the Cantor- Bernstein theorem, we obtain (3).

(4) c = c • c

.

Indeed, c = 2“ = 2
a+a = 2

a
• 2

a = c • c, because a + a = a.

(5) n • c = a • c = c (for // > 0).

By 4(2) and 4(5) we have the inequalities c ^ n • c n • c ^ c* c;

hence in view of (4) we obtain (5) by applying the Cantor-Bernstein

theorem.

l

) For a deeper analysis of problems dealt with in Section 5 see Tarski [9],
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By induction from (4) we obtain

(6) c" = c (for // > 0).

(7) na = aa = c
a = c (for n > 1).

In fact (see 4(10)),

c = 2a < na ^ aa < c
ft = (2

a
)

11 = 2a a = 2a = c,

whence (7) follows by applying the Cantor-Bernstein theorem.

The following equations concerning the number f
= 2 C are proved

similarly:

n + f
= a + f = c + f = f + f = f,

(8) n • f
= a • f = c •

f = f
•
f = f (for n > 0)

,

n c = ac = c
c = f

c = f (for n > 1).

We shall give examples of sets of powers c and 2 C
.

Theorem 1 : The Cantor set C has power c.

Proof. C = {0, \ }
N

,
so C = 2a by Theorem 4.7.

Theorem 2: The set of all infinite sequences of natural numbers has

power c.

Proof. This set is NN
. Therefore its power is aQ = c.

Theorem 3: The following sets have the power of the continuum :

(a) the set of irrational numbers in the interval (0, 1);

(b) the set of all points in (0, 1);

(c) the set 6 of all real numbers
;

(d) the set of all points of the space S n
, where n is a natural number.

Proof, (a) follows from Chapter IV, §7 and from Theorem 2. (b) fol-

lows from the observation that the interval (0, 1) is the union of

the countable set of rationals in (0, 1) and the set of irrationals in

(0, 1), which has power c. (c) holds because the function y = 1/2 +

H arctg.x is one-to-one and maps the set $ onto the interval (0, 1).

t »

(d) follows from (c) and equation (6).

Theorem 4: If A = c, B = a and B c A, then A — B= c.

Proof. By (6) we have that Ax A ~ A ; therefore it suffices to show

that if M is a countable subset of Ax A, then the difference Ax A — Mi
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has power c. The projection onto A of the points in M constitute at

most a countable set, which implies that there exists an element of A

which does not belong to the projection of M. The set {<0 ,
yy.yeA}

is disjoint from M and has power c, thus the difference A x A —M
has power ^ c. On the other hand, this set has power < c as a subset

of Ax A. Thus the difference AxA —M has power c by the Cantor-

Bernstein theorem.

Corollary 5: The set of transcendental numbers has power c.

Proof. It suffices to apply Theorem 4 to the case where A is the set

& of real numbers and B is the set of algebraic numbers.

This corollary, proved by Cantor in 1874, was one of the first appli-

cations of set theory to concrete mathematical problems.

Theorem 6: The set SN
of infinite sequences of real numbers has

power c.

Proof. SvN = c
a = c by (7).

Theorem 7: The set of continuous functions of one real variable has

power c.

Proof. Let rl9 r2 , ..., /*„, ... be an enumeration of all rational num-

bers. With every continuous function / of one real variable we asso-

ciate the sequence of real numbers

(9) f(r 1 )

,

f(r2 ) ,
...,/(rn), ...

If / and g are distinct then the corresponding sequences

f(r i )»/(r2 )y ••.,/(>„), ...» g(ri),g(r2), - •••

are also distinct. In fact, / # g implies that f(x) ^ g(x) for some x ;

so if r
kn

is a sequence of rationals converging to x
9
then it is not true

that f(rkn) = g(rkn) for every //, because in that case, by the continuity

of / and g, we would have

/(*) = lim/(A
n)
= lim g(rkn) = g(x)

.

n= 00 /i = 00

Thus the set of continuous functions of one real variable is equipollent

to the set of sequences (9), which has power < c by Theorem 4. On the

other hand, the set of continuous functions has power ^ c because it

contains all constant functions. Thus by Cantor-Bernstein theorem

we obtain Theorem 7.
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Theorem 8: The set of all functions of one real variable has

power 2 C
.

Proof. = c c = 2 C by (8).

Exercise

Prove that the family R of closed sets of the space £ has power c.

Hint : To prove that R ^ c associate with every X e R a family of intervals with

rational endpoints disjoint from X and show that the set of all such families has

power c. The inequality R 2? c holds because all one-element sets belong to R.

§ 7. The generalized sum of cardinal numbers

Let T be an arbitrary set, f a function defined on T with cardinal

numbers as values. Instead of f(x) we shall also write f*.

Assume that the function f satisfies the following condition

(W) j

there exists a set-valued function F(0)
defined on T such that

\
o) = f, for all x e T.

Condition (W) can easily be shown to hold for many functions f.

Such is the case, for instance, when f has only finitely many distinct

values. We shall show in Chapter VII that every f satisfies condition

(W), so that condition (W) does not actually affect the generality of

our treatment.

°Theorem 1 : There exists a set-values function F defined on T such

that

(1) K=U for xeT,

(2) Fx nFy
= 0 for x # y.

Moreover
, if F(1) and F(2) both satisfy (1) and (2), then

Proof. For * e T let

Fx = Fi
0) x {*},

where F{0)
is any function satisfying (W). If * # y then Fx nFy

- 0,

because the set Fx consists of ordered pairs with x as the second com-

ponent while F
y
consists of ordered pairs having y as the second com-
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ponent. Moreover, Fx = F(

x
0) =

fx . Thus F satisfies conditions (1)

and (2).

Assume now that functions F(1) and F{2)
satisfy conditions (1) and

(2)

. For every xe T the set @x of one-to-one functions from F^ onto
F< 2)

is non-empty. If x # y then &x n@y = 0, because every function

belonging to &x has domain Fx and therefore is different from every

function belonging to &y .

By the axiom of choice it follows that there exists a set W contain-

ing exactly one element in common with each of the sets &x . Let y x

be the only element of W n<Px \
then cpx is a one-to-one function from

the set F*n onto the set F< 2)
.

It is now easy to show that the function / = U ?x maps the union
xeT

U onto U Fx2) in a one-to-one manner. This completes the proof.
* x

Definition: The sum of the cardinal numbers
f x for xeT is the

cardinal Ufx ,
where F is any function satisfying (1) and (2).

*

We denote this sum by fx or by £f,:
xeT

(3) I f,
-

xeT xeT

The definition is correct since the number U Fx does not depend
X

on the choice of the function F satisfying conditions (1) and (2) and
since such a function always exists. However, we cannot prove the

existence of such a function without appealing to the axiom of choice,

so that the definition of the sum of an arbitrary set of cardinal num-
bers is based upon the axiom of choice. 1

)

If T — {I* 2}, then ^ f, = f, + f 2 . If T = N, then we shall also write
teT

fo+fl +f2+f3+ ••• or V f„
n = 0

and speak of the sum ot a series of cardinal numbers.

') The tact that the sum of an infinite sequence of cardinal numbers cannot be

properly defined without assuming the axiom of choice was pointed out by Sierpi-
ski in 1918. See Sierpiski [23], pp. 208-256.
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cTheorem 2: (Generalized commutative law) If y is an arbitrary

permutation of the set T
,
then E = E f9,(X )

.

For the proof it suffices to notice that

E fx = U Fx = U ^p(x) = E fy>(x) 1xxx x

where F is any function satisfying conditions (1) and (2). The equations

hold on the basis of Theorem IV. 1.3 and formula (3).

°Theorem 3: (Generalized associative law) If T = U Ty where
ye l

the sets T
y
are disjoint, then

Ef* = S(E U).
xe

T

ye/ xeTy

Proof. For y e /, let = E fx ,
that is, qy = f j Fx . Then

XeTy XfzTy

Ea» = U(U —)=~x .

yel yzl xeTy xeT

by Theorem IV. 9. 2. It follows that

Eg, = Ef*>
yeJ xeT

which proves Theorem 3.

°Theorem 4: (Generalized distributive law for multiplication

with respect to addition) The equation

(E fx) m = E (fx • "0
x x

holds for every cardinal m.

Proof. Let M = m. We have

(E fx)m = (U Fx) x M and E (fx
’ m) = U (Fx x M).XX XX

At the same time (see Exercise IV. 1.2)

(\JFx)xM= U(LxM).
X X

"Theorem 5: If g* ^ f, for xeT, then E 9x < E fx-
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Proof. Let Kx be the family of those X a Fx which have power Qx .

By assumption Kx # 0 for every xeT. It follows that there exists a

function G (see Theorem IV. 6.2) such that

G e f] Kx ,
that is, Gx eKx .

xeT

Therefore Gx cr Fx and Gx = This implies* ^ w ” — A A A

U <= U F* and LJ Gx — I 9*

:

X X * X

which proves that V qx ^ V fx .

X X

°Theorem 6: If S c= T then

If*.
xeS xeT

Proof. Let

\U for x e S,

9* =
(0 for x e T—S.

By Theorem 5,

Y 9* < E L, but
xeT xeT

H
Ws

uKWs

°Theorem 7: If fx = m for all x e T, and n = T, then

y f* = m • n .

xeT

Proof. Let M = m. For every .v there exists a one-to-one mapping

/ of the set Fx onto M ; let 0X be the set of all such functions. By the

axiom of choice there exists a set
XP containing exactly one element

from each of the sets 0X . Let fx be the unique element of T/n0x .

For t e ^J Fx we let

<p(t ) = </*(/), x>,

where x is the (unique) element of T such that t e Fx .

The function cp maps the union I J Fx onto M x T and is one-to-one.

In fact, if

(fitJ = (fXl {t x),xf> and (p(t 2 ) = (fx 2
{t 2),x2 >,
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then Xi # x2 implies t
l ^ t2y because t

x
and t 2 belong to the disjoint

sets Fx and FXl . On the other hand, if x t = x2 = x then, since fx is

one-to-one, (p(ti) # implies that /, ^ t 2 .

Therefore U Fx ~ Mx T, which proves Theorem 7.

°Theorem 8: If fx < m for x e T and n = T, then X! fx < m • u.

Proof. Letting m, = m for * e T, we have by Theorem 5 Yj fx

< rttx, and by Theorem 7 V rnx = m • it.

Examples

1. We shall calculate the sum kny where kn is a natural number

and n runs through the set of natural numbers. For this purpose we notice

that from Theorem 7 it follows that

(4) 1 + 1 + 1+ ... = 1 • a = a, a + a + a+ ... = a • a = a;

since, by Theorem 5,

00

14-1 + 1 + ... ^ ^ kn ^ Cl + Q + Q + ...,

n= 1

we have by the Cantor-Bernstein theorem

00

Z K = a.
n = 1

In particular

2 +2 +2 + ... = Q,

1 +2 -j- 3 + ••• = (i

,

1 ! + 2! + 3! + ... = q .

2. It follows from equation (4) that the union of a countable number

of countable sets is countable (see Theorem 2.8).

3. By Theorem 7, C+C+C+ ... = c * Cl = c. Similarly, the sum £ fx
xeT

where the power of T is c and where each fx equals c is itself equal

to c • c, that is to c.

§ 8. The generalized product of cardinal numbers

As before, we shall use the axiom of choice and assume that f is

a function having cardinal numbers as values and satisfying condition

(W) given on p. 191.
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Theorem 1: If the functions F(l) and F(2)
satisfy the condition F± l)

= f* = F^2) for x e T, then

IPr = rRF.
xeT xeT

Proof. As in the proof of Theorem 7.1, using the axiom of choice,

we show that there exists a set which for every xeT contains exactly

one function q>x which is one-to-one and maps Fjf* onto F£2) . With

each function /, e we associate the function /2 ,
where

xeT

(0 f2 (0 = <Pt(fM) for t e T.

Since fft) e Fr

(1) for every t e T, <pt (fi(t)) e (pt (F,(2)) = F/2)
,
which

proves that f2 (t) e F/ 2)
,
that is, f2 e n F

t

(2)
.

xeT

Iff[ 7 f'f then, for some t,fft) #= f[\t). Thus, since is one-to-one,

that is, f2 (t) f2 (t). Therefore the correspondence between

/

t
and f2

is one-to-one.

Finally, if _/% e fl F< 2) then the function fx
defined by the equation

fM = #(/2 (0)

belongs to and satisfies condition (1). Thus every function

belonging to f J F< 2) corresponds to some function belonging to n Fi
1}

.

Thus we have proved Theorem 1. This theorem leads to the follow-

ing definition.

Definition: The product of the cardinal numbers f* is the power of

the cartesian product J~[ Fx , where F is an arbitrary function such

that Fx = fx ; that is,

n f* = n F*> where y. = t,.
xeT xeT

Just as for generalized sum, the use of the notion of generalized

product rests upon the axiom of choice, without which we cannot

prove Theorem 1 which is the basis for the definition of product.



8. THE GENERALIZED PRODUCT OF CARDINAL NUMBERS 197

If T = {1,2}, then FI ft
=

f i
* f 2 - For this reason we write f0 ' fi

* •••

,

teT

00

0r n fn W^en T = N.
n = 0

From Theorems 1.2^1 we obtain directly the commutative
,
associative

and distributive laws :

nt*=n
X X

(where 9? is a permutation of T),

n (n t.) = n t*
yeU xeTy xeT

(where T = (J Ty and Ty
c\TV2 = 0 for y\ # y2 ),

yeU

(n f*)
a = n ft-

X X

If all of the values of the function f are identical, then multiplication

coincides with exponentiation; that is,

(2) if fx = f0 for xeT and t = T, then Y\ f* = fo •

.X

By equation (13), Theorem 1.3 we derive from the definition of

sum that

o) f^= n (H.
y

Finally we note without proof that

(4) if g* « f*, then f] 9* < FI L,
X X

analogously to Theorem 7.5.

Examples

1. In (2) let f0 = a and T = N. Since aa = c, we obtain

a • a • a • ... = c.

2. In (2) let f0 = 2 and T = N. From the equation 2a = c we have

2- 2- 2- ... = c.
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3. From (4) we have 2 • 2 • 2 • ... < 2 • 3 • 4 • 5 • ... and 2 • 3 • 4 • 5 • ...

^ a- a* a - .... Thus by Cantor-Bernstein theorem we conclude that

1 • 2 • 3 • 4 • ... = c.

In the same way it can be shown that k
l

• k2 • k3 • ... = c if for all n

kn > 1 •

°Theorem 2: (J. Konig [1]) If g* < fx for all x e T, then

z g* < n tx-

Proof. From the assumption that (W) holds (p. 191) it follows that

there exists a function F such that Fx = f T . We may assume, moreover,

that Fx nFy = 0 for x # y (see Theorem 7.1).

Arguing as in the proof of Theorem 7.5 we conclude that there

exists a function G such that Gx c Fx and Gx = $x . It follows that

Gx nGy = 0 for x # y and that Fx — Gx ^ 0.

We show first that

E 9x < n L-

Let/be an arbitrary function belonging to fl (Fx~Gx). Such a func-
.V

tion exists by Theorem IV. 6. 3. For every a e Gx let

X

for a$Gx ,

for aeGx .

Clearly, fa e\\ Fx . It a ^ b then fa # fb , because a and b either

belong to different sets Gx , Gy and then fa {x) = a eGx , fb (x) = f(x)
e ^x — Gx , and thus fa(x) ^ fb (.x); or else a and b belong to the same
set Gx and then fa (x) = a # b = fb (x).

Thus the functions fa constitute a subset of the cartesian product

Ylfx equipollent to the union M Gx , which proves formula (5).
X

It remains to show that

£ 3-x A f] fx-
X

(6)

X
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For this purpose we observe that every set S equipollent to the union

IJ Gx can be considered as a union of disjoint sets:
X

S - U where Hx = g.v .

X

Assume that S c: Fx ; let IieHx . Thus for every /, h{t) e F
t ,

X

and in particular Ii(x)eFx . Hence if h ranges over the set Hxy then

the elements h(x) form a set Kx contained in Fx ,
and so (see Theorem

5.1) Kx ^ Hx — c\x < Fx . It follows that Fx —Kx ± 0 for every x,

and hence Y\ (Cx
—Kx) # 0.

Let (p e Yl(Fx-Kx). Hence <p(x) $ Kx ,
and (p $ Hx ,

because h(x) e Kx
X

for all h belonging to Hx . This implies that the function (p belongs to

none of the sets Hx contained in the union S; that is, cp £ S and it follows

that S ^ fi Fx *
which proves (6).

X

Taking in Konig’s theorem Qx = 1, fx = 2, and m = T we obtain

Cantor's inequality m < 2 in (see 5(2)). Thus Konig’s theorem is a

generalization of this inequality.

Corollary 3: If m„ < m„ + ,
for n = 0,1,2,... and m 0 > 0, then

oo oo

X! m„ < H
n= 0 n=

0

Proof. By Konig’s theorem,

m 0 +m 1
+m 2 + ... <m 1 -m 2 Mn 3

- ...,

whence

m 0+m 1 +m 2 + ... <m0 *m 1 *m2
- ....

Corollary 4: For no cardinal n can na be represented as the sum

of an infinite strictly increasing sequence of cardinal numbers.

Proof. Let na = m 0 +m,+m 2 + .... Hence ntp ^ na and (see (4))

00 00

n < (n") 11 = n" = £
p =

0

p =

0

mp'

By Theorem 3, the sequence m0 ,m 1 ,tn2 ,... cannot be increasing.
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Thus in particular neither c nor 2 C
is the sum of an infinite increasing

sequence. On the other hand, the number

a + 2a + 2
2<1

+

and more generally the number

rt + 2
n + 2

2n
+

cannot be written as a cardinal raised to the power a.



CHAPTER VI

LINEARLY ORDERED SETS

§ 1. Introduction

The notion of a linearly ordered set was introduced in Chapter II,

§ 9, p. 81. A linear ordering is also called a total
,
complete or simple

ordering. 1

)

The types of relational systems (A, R>, where R is a linear order

relation, are called order types. The order type of the system (A
,
R>

will usually be denoted by A (although it would be more proper to

denote it by R).

Examples

1. For (p ,
xp e NN

,
let rp < xp if (p = xp or if the least n such that

cpn # xpn satisfies the conditions cpn < xpn . The relation < linearly orders

the set NN
. If A c= Nn

,
then the relation ^ restricted to A linearly

orders the set A.

2. The set A consisting of all natural numbers of the form 2" is

linearly ordered by the divisibility relation, that is, by the relation

(</n, /?): (m e A) a (n e A) a \J (m = kn) |.
k

3. The set NxN is linearly ordered by the relation R which holds

between pairs <w, n) and </?, q) if and only if (2m+ l)/2" ^ (2p + l)/29 .

This relation is isomorphic to the relation < in the set of real numbers

of the form (2m+l)/2".

4. Let P(m ) assert that m is an even number. The set N is linearly

ordered by the relation

‘) The notion of a linearly ordered set is due to Cantor [5]. Cantor’s paper

contains all the essential results which are given in the present Chapter.
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{</>?, n}
:
[P(m) a P(n) a (m ^ /;)] v [P(m) a

~
v

v
t

-
|P(w) a ~ a (n ^ m)]}

.

In this ordering every even number precedes every odd number.

Of two even numbers, the smaller precedes the larger; of two odd

numbers, the larger precedes the smaller.

Schematically this ordering can be illustrated by the sequence

2,4, 6, 8, 10, ,9, 7, 5, 3, 1,

where every number preceding a number x is written to the left of x.

5. The set of complex numbers is linearly ordered by the relation

{<*,/> [«(*) < /?W]V[/?(X) = *(>>)] A [/(.V) < /(>•)]}.

In this ordering a number x precedes a number y if the real part

R(x) of the complex number x is less than the real part R(y) of y. In

the case where the real parts of x and y are equal, x precedes y if

the imaginary part /(x) of x is less than the imaginary part /(>’) of y.

6. Let a. (n) be the number of distinct prime factors of the natural

number n. The set of natural numbers is linearly ordered by the relation

{<x,^>: [a(x) < a(>’)] v [a(x) = a(»] a (x < y)}.

7. The set of concentric circles is linearly ordered by the inclusion

relation.

Definition: An element x is said to be a first element of the linearly

ordered set A (with respect to the relation R) if xRy for all y e A. On
the other hand, it yRx for all y, then x is said to be a last element of

A (with respect to R). Generally speaking, not every set has a first or

last element; but it such an element exists, then it is uniquely de-

termined.

Theorem In a finite non-empty subset X of a linearly ordered set A
there is a first element and a last element.

Proof. The proof is by induction on the number of elements of

X. If X has only one element, then the theorem is obvious. Suppose

that the theorem holds for subsets with n elements. Let X = Yu {a}

where a £ Y and Y has n elements. Let b
{
be the first and b 2 the last

element of Y. Since A is linearly ordered, either a precedes b
{
or b

{
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precedes a. That element which precedes the other is clearly the first

element of Y. Similarly we show that one of the elements a and b 2 is

the last element of X.

In the case of linear order relations we usually speak of similarity

of relations instead of their isomorphism. The following theorem shows

that in the case of similarity the definition of isomorphism can be

simplified: instead of proving that two formulas xRy and f(x)Sf(y)

are equivalent it suffices to prove only the implication (1) below.

Theorem 2: In order that two sets A and B linearly ordered respectively

by relations R and S be similar it is necessary and sufficient that there

exists a one-to-one function f which maps the set A onto the set B so that

(1) xRy -+f(x)Sf(y)

for all x, y e A .

Proof. Clearly, it suffices to show that if x,yeA and f(x)Sf(y),

then xRy. Suppose the contrary: ~](xRy). Since the relation R is con-

nected in A
,
we have either .y = y or yRx. In the first case, xRy as the

relation R is reflexive in A
,
but this contradicts the hypothesis ~A(xRy).

In the second case, (1) implies f(y)Sf(x) and therefore f(x) = f(y) be-

cause 5 is antisymmetric. Since / is one-to-one, we infer that x = y,

which again contradicts ~](xRy). Hence the theorem is proved.

Similar sets are clearly equipollent. The converse theorem holds for

finite sets only.

Theorem 3: Two finite linearly ordered equipollent sets are similar.

Proof. Suppose that sets A and B, linearly ordered by relations R

and S
,
respectively, have n elements. For n = 0 the empty function

satisfies the conditions of Theorem 2, consequently it establishes the

isomorphism between the relations R and S.

Now suppose that Theorem 3 holds for sets with n elements and let

A and B have n+ 1 elements. Let a be the first element of A and b

the first element of B. By assumption, there exists a function fx
which

establishes the similarity between the sets A— {a} and B—{b}.

Let

f = fi ^{(a, b}}.

It is easy to check that / is a function which establishes the similarity

between A and B. In this way Theorem 3 is proved by induction.
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By means of a counterexample it can be shown that Theorem 3 is

false for infinite sets. For example, it fails for the set of natural num-

bers (see pp. 201 and 202, see Examples 4 and 6).

It follows from Theorem 3 that for any linearly ordered set A of n

elements we can put A = n.

Now we shall introduce some terminology. We say that x precedes y if

xRy and x ^ y.

In this case we write x -< K y (or * -< y if there is no confusion about

the relation R). We also write y * or y > *.

We say that y lies between x and z if

x<y<z or

If x e A and the set {y: x < y} has a first element, then this element

is called a direct successor of a (with respect to R). The last element

of {>>: y < x} (if one exists) is called a direct predecessor of a. Each

element x e A possesses at most one direct successor and at most one

direct predecessor.

A proper subset X of the set A is said to be an initial segment (a final

segment) if x e X implies that every element preceding x belongs to X
(every element after x belongs to X).

The set X cz A is said to be an interval if the condition x,yeX
implies that every element lying between * and y belongs to X.

Let

Or (x) = {y: (yRx)A(y ^ a)} = {y: y <x}.

The subscript R will sometimes be omitted.

It is easily seen that O^(.v) is an initial segment. However, not every

initial segment is of the form Or (x).

We say that an interval X of a linearly ordered set A precedes an

interval Y of A if

(.Y e X) a ( v e Y) -> x -< y .

Every family of disjoint intervals is linearly ordered by the relation

“X precedes Y or X = Y.”

Exercises

1. Let M be a family of subsets of a set Z such that

(i) M is a monotonie family,
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(ii) M is not included in any monotonie family of subsets of Z different from M.

Prove that the relation defined by the equivalence

xRv = {(* = y) V V [(* £ E) A (y e £)]}
EeM

linearly orders the set Z, The family of final segments of this set is identical with M})

2. Let M be a monotonie family of subsets of a set Z. Prove that the family of

all sets of the form U X and X, where S <= M, is monotonie.
XeS XeS

§ 2. Dense, scattered, and continuous sets

A set A is said to be densely ordered by an order relation -< if for

any two elements x, y e A there exists an element z e A between x and

y. We say then also that A is dense. In a densely ordered set no element

has either a direct successor or a direct predecessor. This property is

characteristic for densely ordered sets. In fact, if no element of the

set A has a direct predecessor and x
t y e A, x -< y, then x cannot be

the last element of the set {z: z < y} 9
for then x would be a direct

predecessor of y. Thus there exists z such that x -< z -< y. Hence the

set A is densely ordered.

All one-element sets, as well as the empty set, are densely ordered.

All other densely ordered sets contain infinitely many elements.

A set which is not densely ordered may contain a densely ordered

subset. For instance, the set consisting of all positive real numbers and

negative integers ordered by the relation ^ is not densely ordered,

because no element of this set lies between —2 and —1. However, this

set does contain a densely ordered subset.

A linearly ordered set which contains no infinite densely ordered

subset is said to be scattered. For instance, the set of integers and

the set composed of all fractions \/n (n = ±1, ±2, ...) are scattered

if the order relation is

Every subset of a scattered set is scattered.

Theorem 1 : IfA and B are two scattered subsets of a linearly ordered

set M, then the union AuB is also scattered.

*) The theorem stated in Exercise 1 shows that the theory of linearly ordered

sets can be reduced to the theory of monotonie families of sets. See Kuratowski [4].
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Proof. Suppose that there exists an infinite densely ordered subset

C of the set AkjB. Since C = (CnA)u (Cn B), either CnA or CnB
is infinite. Let CnA be infinite. Since this set is not densely ordered

(as a subset of the scattered set B), there exists a pair a
x ,

a2 of elements

of the set CnA such that a
x -< a2 and such that no element of CnA

lies between a x and a2 . This implies that for every x e C

(1) (a
x -< * -< a2 ) -4xe5.

Let B
{ = Cn{,x: a x -< x -< a2 }. This set is infinite, for there are

infinitely many elements of C between a
x
and a2 . If x t , x2 e B

x
and x

l

< x2 ,
then there exists x e C lying between x

x
and a2 \

thus x e B
x

. This

implies that the set B
x

is densely ordered. By (1), B x
c: B, which means

that B
x

is an infinite densely ordered subset of B. This contradicts the

assumption that B is a scattered set. Hence Theorem 1 is proved.

A set X contained in a linearly ordered set A is said to be densely

ordered in A if, for every two elements jc and y of the set A, there exists

an element z ofX lying between * and y. For example, the set of rational

numbers is densely ordered in the set of real numbers, where the order

relation is

It is clear that if a set X is densely ordered in A
,
then the sets A

and X are both densely ordered.

Ot course, two sets X and Y densely ordered in A which have neither

first nor last elements are always cofinal and coinitial. If a set X is cofinal

with Y and Y is cofinal with Z, then the sets X and Z are also cofinal.

A similar law of transitivity holds for coinitial sets.

Let <Z, F> be a cut in a linearly ordered set A. The intersection

Xn Y contains at most one element. In fact, if x, y e XnY, then x < y
and y < x\ thus * = y. If Xn Y = 0, then we say that the cut <Z, T>
determines a gap in the set A. If XnY = {«}, then we say that the

element a lies in the cut T>. It can easily be shown that in this case

X = {a}-, Y = {a} + and a = \/ * = A Y- A cut <A", Y> is said to
xeX yeY

be proper if X # 0 ^ Y.

A set A is said to be continuously ordered if no proper cut in A de-

termines a gap in A. We also say that A is continuous.

If (X
x ,

Tj) and <Z2 , F2 ) are cuts in A, then either Xt
c X2 or

X2 czX1 . In fact, suppose that aeX
x
-X2 and let beX2 . By con-
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nectedness, it follows that b precedes a
,
for in the opposite case we would

have aeX2 . Thus beX
x
and we obtain X2 <= X

{
. This implies the

following theorem.

Theorem 2: The minimal extension (see p. 155) of a linearly ordered

set is continuously ordered.

In fact, s$ is a complete lattice and, as has been shown before, the

ordering in ^3 is connected; thus it is linear. The complete linearly

ordered lattice
s
}> is continuously ordered, because if <O l5 £) 2> is a

proper cut in s

}3, then the supremum of the set O, lies in this cut.

Corollary 3:
1

) Every linearly ordered set can be extended to a con-

tinuously ordered set {preserving suprema and infima).

To conclude this section, we shall prove a theorem showing that the

study of any order type can be reduced to the study of dense and

scattered order types. For this purpose we need the notion of the or-

dered union of linearly ordered sets.

Let T be a set linearly ordered by the relation Q and let F and R be

functions defined for * e T and such that Rx is a relation linearly order-

ing the set Fx . Suppose that FXi r\FXi = 0 for x l # x2 .

Theorem 4: Let S be the relation which holds between two elements

a and b of the union
\f Fx if and only if either
X

a and b belong to the same component Fx and aRx b ,

or

a and b belong to different components Fx and FXz and x
x Q\2 .

Then the relation S linearly orders the union I j Fx .

JC

Proof. The reflexivity of S is obvious.

If a and b belong to different components of the union 1

J Fx ,
then

X
either aSb or bSa, because the relation Q orders the set of indices.

On the order hand, if a and b belong to the same component FXi
then either aSb or bSa, because the relation Rx is connected in Fx .

Thus the relation S is also connected.

If a e FXi ,
b e FXi ,

aSb and bSa, then x t Qx2 and x2 Qx This im-

plies that Xi = x2 ,
since the relation Q is antisymmetric.

') Corollary 3 goes back to Dedekind [1].
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Finally, suppose that a e Fx ,
b e F

y ,
c e Fzy aSb and bSc. These con-

ditions imply xQy and yQz; thus xQz. If then aSc. On the

other hand, i f i = z, then we have x = y = z, because xQy, yQz and

the relation Q is antisymmetric. By the definition of S we obtain aRx b

and bRx c. Since the relation Rx is transitive, we obtain aRx c and thus

aSc. Hence the relation S is also transitive.

Thus the relation S linearly orders the set ij Fx .

In the following, by the ordered union of linearly ordered disjoint

sets Fx we shall always understand the union l_
J Fx ordered by the

X

relation S defined in Theorem 4. In this case the relation O ordering

the set of indices is assumed to be fixed.

We say also that M Fx is the union of sets Fx over the indexing set T.
X

Let A be an arbitrary set, linearly ordered by the relation R. For

x,y e A let [x,y] denote the set of those z which equal either x or v,

or which satisfy one of the conditions x -< z -< y or y -< z -< x.

Clearly, [x, y] = [y, x]. We shall prove that for arbitrary .v, y, z e A

(2) [x,y] [x,z]u[z,y].

In fact, if t e [x;, y] and t = x or t = y, then clearly t e [x:, z] u[z, y].

If x -< t -< y and t = z or t «< z, then t e [x, z]. On the other hand, if

z -< /, then te[z,y]. Similarly, if y < t -< xr, then t e [.v, z] u[z, y].

Let Vx be the set of all y such that the set [a*,}'] is scattered.

Clearly, Vx ^ 0, because x eVx .

We shall prove that the set Vx is also scattered.

Suppose that on the contrary C c= Vx and that the set C is infinite

and densely ordered.

For any c
y , c2 6 C such that -< c2 we have by (2)

[Ci,C2 \ <= [c ly x]u[c2 ,x].

Thus the set
,
c2 \ is contained in the union of two scattered sets.

By Theorem 1 this union is scattered. But this is impossible, for be-

tween any two distinct elements of the set C there always lies at least

one other element of C. Thus the assumption that Vx is not scattered

leads to a contradiction.

The set Vx is an interval in the set A. In fact, suppose that y, z e Vx

and y -< t -< z. If * = t or x -< t
,
then [x, t] a [x, z]. Thus, as a sub-
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set of the scattered set [x, z], the set [x, t ] is also scattered. On the

other hand, if t < x, then [t, x] c
: [y, x]. This means that the set [/, x]

is scattered as a subset of the scattered set [y, x]. It follows now that

t eVx . Thus the set Vx is an interval.

If x # y, then either Vx n Vy = 0 or Vx = V
y

. In fact, if zeVx n Vy ,

then the set [x,jp], as a subset of the union [x, z] u[j’, z], is scattered.

It follows that if ueVx , then the set [u,y] is scattered because [u, y]
a [w, x]u[x,;>]. Similarly, from u e V

y it follows that ueVx . Thus
V = Vr x r

y •

Let A be the family of all the sets Vx . This family consists of dis-

joint non-empty subsets of A and is linearly ordered by the relation g
which holds between Vx and Vy if and only if Vx = Vv or Vr precedes

V
y (see p. 204).

The set A is the ordered union

A=\JP,
PeA

where the family A is linearly ordered by the relation g and each in-

terval P is linearly ordered by the relation R. In fact the union [J (A)

is contained in A and every element x of the set A belongs to Vx ;
thus

every * belongs to one component of the union U (A).

We now prove that the relation g is a dense ordering of the family A.

Suppose that Vx gVy and Vx ^ V
y ; that is, Vx n V

y = 0. This implies

that the interval [*, y] is not scattered, that is, for some z lying between

x and y one of the sets [x, z] and [z, y\, say the first, contains an infinite

densely ordered set M. If m,n,p are elements of the set M such that

x<m<«<p-<z, then the sets [x, n] and [n,y] contain infinite

densely ordered subsets. This shows that Vx gVn gVy
and Vx ^ Vn # V

y .

It this way we obtain the following theorem.

Theorem 5:
1

) Every ordered set is the union of scattered sets over a

densely ordered indexing set.

Exercises

1. Give an example of an infinite set which has a first element, has no last el-

ement, and in which every element except the first has a direct predecessor. More-
over, this set should not be similar to the set of natural numbers.

]

) Theorem 5 is due to Schonflies [1], p. 184. A detailed analysis of countable

scattered sets is given in Erdos and Hajnal [1].



210 VI. LINEARLY ORDERED SETS

2. Show that if the set X is densely ordered and if sets Xx and X2 are continu-

ously ordered and contain subsets dense in themselves and similar to X, then the

sets Xt and X2 are similar.

3. Prove that the set <5 of those relations RgP(IVxN) which densely order

their fields is a C75-set in the space P(XxN).

4. Show that the union of scattered sets over a scattered indexing set is itself scat-

tered.

5. Prove that if the sets Fx contain neither first nor last elements, and if they are

infinite and densely ordered, then the union U Fx is densely ordered (for any or-

xeT

dered set T).

6. Prove that if a set T is infinite, densely ordered and Fx # 0 for each a, then the

set U Fx contains a densely ordered subset.

xeT

7. Prove that if the union U Fx is continuous, then the set T has no gaps.

xeT

8. Prove that if a set T is continuously ordered and contains first and last el-

ements and if the sets Fx are continuously ordered, then the unionU Fx is con-
fer

tinuously ordered. [Hausdorff]

9. Give an example of a linearly ordered set A which contains a densely ordered

subset X which is not dense in A.

§3. Order types co , ij, and X

We shall illustrate the notion of order type by means ot examples.

Order type co. The order type co is the order type of the set N ordered

by the relation

Theorem 1 : A linearly ordered set A is of type co if and only if

(i) A has a first element a0 ,

(ii) every element x of the set A has a direct successor a*,

(iii) if a0 eX c= A and if the set X contains the direct successor of

every element of X,
then X = A.

Proof. Conditions (i), (ii), (iii) are invariant under any transform-

ation which preserves order. Since they are satisfied by the set of natural

numbers ordered by the relation <, they are necessary conditions for

a set A to be of type co.

Suppose now that the set A linearly ordered by the relation R sat-

isfies conditions (i), (ii), (iii). Let us define a tunction f which estab-
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lishes the similarity between A and the set of natural numbers as

follows:

0) m = a0 , f(n+l) = [/(*)]*.

These formulas define by induction the function /. It follows from

(1) that the range of/ contains a0 ,
and that it contains the direct suc-

cessor of every of its element. Condition (iii) implies that the range

of / coincides with A.

Let us prove that

(2) m < n -> f(m) < f(n)

.

It follows from (1) that formula (2) holds for n = m + 1. If we sup-

pose that (2) holds for some n, then (2) also holds for /7 + 1 . Indeed,

if f(m) <f(n), then f(m) < [f(n)]* 9 because f(n) < [/(«)]*.

It follows directly from (2) that

m # n -» f(m) ^ f(n) ,
m ^ n ->

The first of these formulas shows that the function / is one-to-one.

Together these formulas show by Theorem 1.2 that the function /
establishes a similarity between A and the set of natural numbers

ordered by <.

It should be stressed that the formula expressing the condition (iii)

above contains a variable X ranging over P(A). We say that such formulas

are of second order. The use of second order formulas in the characteriz-

ation of the order type oj is essential. We can easily show that elementary

formulas, i.e. ones in which all quantifiers are limited to A
,
cannot

characterize the order type co. This results from the following two

observations: (1) If a first order formula is valid in a relational system

(A, /?>, it is also valid in every reduced product of TV copies of (A, R)

reduced modulo any prime ideal (see Corollary IV. 9. 5); (2) If 91

= (A, R) has the order type oj and 9I„ = 91 for each n eN
,
then the

reduced product of the systems 9I„ modulo a prime ideal / <= P(N)

which contains all finite sets is not isomorphic to 91.

Order type rj. Before defining this type, we prove the following im-

portant theorem.

Theorem 2: Every two non-empty
,
denumerable

,
linearly ordered and

dense sets which have neither first nor last elements are similar.
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Proof. Let A and B be sets satisfying the assumptions of the the-

orem. To simplify notation, we shall use the same symbol to denote the

relations ordering both sets.

It follows from the assumptions that the sets A and B are infinite.

Thus there exist one-to-one sequences a e A N and b e B s such that

a l (N )
= A and A 1

(AO = B.

Let us define by induction two permutations (p and y> of the set N
such that the mapping f: ann) -> bvin)

establishes a similarity between

the sets A and B. For this purpose, let 99 (0) = y)(0) = 0. Now we con-

sider two cases depending upon whether n is even or odd.

Case 1 : n even.
1

) Let

(p(n+\) = min [A 0* # avU))],
k j^n

y>(n+ 1) = min(A {(

b

k 7^ b

k

) = (P<pu >
a<p(n +

1

>)]})•
k j^n

Case 2: n odd. The definition is similar, but the roles of (p and ip

are interchanged.

y>(n+ 1) = min[A(^k ^ Ka)) 1-

k j^n

(p{n+ 1 )
= min (A {(ak # anJ)) A Ka<pU) < ak) = (bvU) “< ^(h+d)]})-

k j^n

We shall prove by induction that if neN and j < n, then

(3)

(4)

(5 )

<p(n) # <P(J)>

ip(n) # y>(j),

It is clear that these formulas hold for n = 0. Suppose that n0 > 0

and that (3)-(5) hold for n < n0 . Let n0 = n'+\. The proof now splits

into two cases according as n’ is even or n is odd. We shall consider

onlv the first case.

Since the set A is infinite, there exist numbers k such that ak ^ aip(j)

for j ^ n . By definition, (p(n -1-1) is one of these numbers k. This

proves (3), for n = n +

1

— n0 .

l

) If 0 is a formula and there exists no n such that <£(//), then the symbol min 0(A)
k

shall denote the number 0.
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To prove the remaining formulas, let

P ~
»

J

^ /7 • a
v(./)

a
<P{n0)} > Q =

{./ ^ n • G<p(nn ) ^<p(7)}«

Thus

(p e P) a (q eQ) (anp) < anq)),

and since (5) holds by assumption for ;; ^ /?', we obtain

(pe P) a (qe Q) (&„(p) -< ^(g))

.

Since the set B is densely ordered, the formula above shows that

there exist numbers k such that b
y,(p) < bk for every p in P and bk < bvm

for every q in Q. It follows from the definition of xp that y)(n0 ) is one
of these numbers k. Thus bn„o) * bvU) for jeP\jQ. Moreover,

^V(«o)
=

(./ ^ 0) = ^<p(n0 )
**n Q,p(j)

and similarly tor > (jePvQ). In this way formulas (4) and (5) are

proved.

Formulas (3)-(5) show that the function /: ann) -> bv(n) establishes

similarity between the sets {ann) : neN} and {bv(n) : neN}. It remains

to be shown that these sets are identical with A and B respectively.

In other words, we have to show that every natural number occurs in

the sequences (p and xp. We consider only the sequence (p .

Suppose on the contrary that N-tp l (N) # 0 and let k 0 be the least

number in this set. Clearly, k0 > 0. For h < k0 ,
let nh denote the unique

number such that <p(nh ) = h and let n be an even number greater than

all numbers nh , h < k0 . Since ako # for all j < n
,
and for every

h < k0 there exists / ^ n such that an = namely j = nh , we obtain

k0 = min f\(ak # a^).
k j <n

This implies k 0 = (p(n+\), which contradicts k0 $(p
l (N).

Theorem 2 is proved.

Theorem 2 shows that there exists only one type of set which is

simultaneously ^ 0, densely ordered, countable and without first and

last elements. This type is denoted by rj.

An example of an ordered set of type rj is the set of rational num-

bers ordered by the relation Another example is given on p. 201

(Example 3).
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Sets of type /

7

have the following property of universality:

Theorem 3 : If B = rj and A is any denumerable linearly ordered set
,

then there exists a set C <= B such that A and C are similar.

Proof. We may assume that the set A is infinite. Using the notions

introduced in the proof of Theorem 2, we define the sequences (p and

yj as in Case 1. However, this time we do not confine n to even num-

bers only, but we let n be any natural number. Then formulas (3)-(5)

are satisfied. We can prove in the same way as in Theorem 2 that

<p'(N) = N and that the sets {
aHn) : n e N} and {bvW : neN} are simi-

lar. The first of these sets is equal to A and the second is contained

in B. This proves the theorem.

The order type X. We precede the definition by a theorem.

Theorem 4: Let A and B be sets satisfying the following conditions

:

(i) A and B are linearly and continuously ordered.

(ii) There exists subsets A l
c= A and B

{
c B dense in A and B respect-

ively which are both coinitial and cofinal with A and B respectively.

(iii) The sets A v and B t are of type r}.

Then A and B are similar.

We shall only outline the proof of this theorem. By Theorem 2 there

exists a function fi
which maps A 1 onto B

{
and preserves order. It can

easily be shown that the sets X(a) — A y
and Y(a) = A

{

+

determine a proper cut in the set A y
. Hence the pair £?

x = (/i(2f(tf)),

fl(Y{a)')) is a proper cut in the set B
x

.

Let

X{a) =\b€B: A (*> « v)l

.

yeQ

Y(a) = \b e B: /\(x^b)\.
xeP

It can easily be shown that the pair (X(a), Y(a)> is a proper cut in the

set B. Since B is continuous, there exists an element f(a) lying in this

cut: it is the last element of the set X(a) and simultaneously the first

element of the set

The mapping/ satisfies the condition a' ^ a" -> f(a') ^ J\a"). In

fact, if a' ^ a", then X(a') c A\a"). Thus ft (X(a'))aft (*(«")), which

proves that Y{a') => Y(a"). Hence f{a') ^ f(a").
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It remains to be shown that the function / is one-to-one and that it

maps the set A onto the set B. For this purpose, we repeat the previous

construction interchanging the roles of the sets A and B and obtain

a function g mapping B into A. One can show that /(g(6)) = b for every

b e B, which proves the theorem. 1

)

Theorem 4 enables us to admit the following definition.

A linearly ordered set A is of type X if it is continuous, contains

a subset A
x
of type rj which is dense in A

,
and is coinitial and cofinal

with A.

An example of a set of order type X is provided by

Theorem 5: If A is a set of order type rj then the set X obtainedfrom

the minimal extension of A by removing the first and the last elements

has the order type X.

The continuity results from Theorem 2.2. The set A' consisting of

all cuts <{0}", {<z}
+
> where a ranges over A is dense in X. Finally

if </% Q} is a proper cut of A then for any x in P not lying in the

cut <P,Q} the element <{*}“, {x} +
> precedes <P,Q> in X and so

A' is coinitial with X; we can show similarly that A' is cofinal with X
and so X has the order type X.

Taking for A the set of all rational numbers, we obtain that the set

£ of real numbers is ordered by the relation ^ in the type 2.

As an interesting application of Theorem 3 we prove

Theorem 6: Each linearly ordered set A which possesses an infinite

countable subset X dense in A is similar to a set of real numbers ordered

by the relation ^

.

To prove this theorem we use Theorem 3 and infer that X can be

*) Generalizations of Theorems 2 and 3 for sets of higher cardinalities arc dis-

cussed below in Chapter IX, Section 2.

Theorems 2 and 3 which were proved in Section 9 of Cantor’s 1895 paper

[5] assert that the order type rj is in a sense universal for all denumerable linear

orderings. In spite of their simplicity these theorems had a profound impact on

further development of set theory and model theory; see Chang-Keisler [1], Chapter

V. The method used in the proofs of these theorems is often called the “back-and-

forth” method.

Theorem 4 is also due to Cantor, l.c.. Section 11. Cantor used the letter “0” for

the order type of real numbers but later the letter “A” became universally accepted.
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mapped into the set Q of rational numbers < 1 so that x < x' implies

(x) < f{x') for arbitrary x, in X. Putting F(a) = sup {f(x): (^J)a
a (x < a vjc = at)} for each a in A, we obtain a mapping of A into

real numbers and verify immediately that a < b implies F(a) < F(b)

for each a, b in A. This proves that A is similar to the set F l (A) c <?,

Q.E.D.

We also add a remark concerning formulas expressing the character-

istic properties of the order type A. One of these formulas (expressing

the continuity of A) is not elementary because it contains a variable

ranging over arbitrary subsets of A. Similarly as in the case ot the order

type co one can show that it is not possible to characterize the order

type A by elementary sentences alone. This is an immediate corollary

of a basic theorem of logic called the Skolem-Lowenheim theorem

which says that for every uncountable relational system </4, R) there

is a countable subsystem (A', R'} such that exactly the same elementary

sentences are valid in (A, R) as in {A', R'>.

Also properties characterizing the order type r\ are not elementary

because the denumerability of a set is not expressible by elementary

sentences. Modifying slightly the proof given for the case of the order

type co, we can prove that no set of elementary sentences characterizes

the order type rj.

Sets of types co, rj
y
and A which we discussed in this section are either

denumerable or have the power c. In the next chapter we shall give

other examples of order types and of ordered sets whose cardinalities

are different from a and c. In this connection it is worthwhile to mention

the following metamathematical fact: In the system ~[TR] which, as

we remember, does not contain the axiom ot choice it is impossible to

prove that for every cardinal number there exists a linearly ordered set

whose power is this cardinal number. Thus for instance the theorem:

There exists a relation which linearly orders the set P{P{N)) cannot

be proved in the system <T[TR].

Exercises

1. Show that every dense and infinite set contains a subset of type rj.

2. Show that every infinite continuous set is of power ^ c.

3. Let r0 ,r,,... be an infinite sequence without repetitions consisting of all
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00

rational numbers. For c = cj/3J where c} = 0 or cj = 2, let Mc = {rj : cj = 2}
j =

o

and let c denote the type of the set Mc ordered by the relation Prove that every

denumerable order type can be represented in the form c.
1

)

4. Let CT = {c: c = r}. Show that the Cantor set C is the union l^J CT where
T

the union is over all denumerable order types and where the components of this

union are pairwise disjoint.

5. Show' that the set Cv is a C^-set in the space C.

6. Let M be a monotonie family of open subsets of the real line (or generally of

the space <?"). Prove that this family is similar to a set of real numbers (ordered

by <).

Hint : Let Px , P2 , ... be a sequence of all intervals with rational endpoints. Assume

that each interval occurs in this sequence infinitely many times. For a given set

G e M, let k it k2 , ... be a sequence of all natural numbers such that Pkn <= G.

The function

00
1

,(G) = I! iC’ ,(0) = 0
n = 1

establishes the required similarity.

7.

Prove that any two denumerable Boolean algebras without atoms are iso-

morphic. Each at most denumerable Boolean algebra can be isomorphically em-

bedded in a denumerable Boolean algebra without atoms.

Hint

:

Use the “back-and-forth” argument.

§4. Arithmetic of order types

We can define operations on order types which are similar to certain

operations in ordinary arithmetic just as we did in the case of cardi-

nal numbers. This arithmetic of order types allows us to simplify ar-

guments concerning linearly ordered sets.

Inverse types. It is easy to show that if a relation R linearly orders

the set A, then so does the inverse relation R l

(see p. 64). Of course,

the isomorphism of R and S implies the isomorphism of the inverse re-

lations R l and S l

.

The order type of the set A ordered by R l

is said to be the inverse

of the order type of the set A ordered by R. If the order type of A

1

) In connection with Exercises 3, 4, and 5 see Kuratowski [12]; see also Scott [2].
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ordered by R is a, then the order type of A ordered by R l
is denoted

by a*.

It follows from the equivalence ee xRy that

(1) a** = a.

Examples

1. If n is a finite order type then n* = n, because every two finite

equipollent sets are similar.

2. Likewise rj* = 7
]
and A* = A. On the other hand, co* i=- co because

a set of type co* (for example, the set of negative integers) possesses

a last element whereas a set of type co has no last element.

The sum of order types. Let a and p be two order types and let A

and B be two sets linearly ordered by R and S such that A = a, B = p.

We assume that A nB = 0. This assumption can always be satisfied,

for if A and B are not disjoint, then we can replace them by the sets

Ax {1} and Bx {2} which are similar to A and B and disjoint.

The sum a + P is defined by

ot+p = A kj B

where the set AkjB is ordered as follows: all elements of A precede

all elements of B and the order in each of the sets A and B is preserved.

In particular, if a and p are finite order types, the definition of the

sum oc + P coincides with the definition of the sum of natural numbers.

It is easy to see that the sum a + p does not depend on the sets A

and B but only upon their order types. Moreover, the following for-

mulas clearly hold:

(a + p) + y = a + (p + y), a + 0 = a = 0 + a.

On the other hand, the commutative law does not hold: for example,

o+ 1 # 1+w. In fact, l+u> = co (thus 1 +co is equal to the type of

the set of natural numbers), whereas co+l is the type of a set with

a last element.

Product of order types. Let a = A, p = B. The product oc • p of the

order types a and p is defined by the formula

a • p — A x B

,
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where the set A x B is ordered as follows. Let <*,>>> and be

two elements of Ax B. Then <jc, y> -<
, y^ if y -< y v . If y = y 1 ,

then <x, v> -< <Xj , yft) if x < x1 .

For example X • X or X 2
is the order type of the set of points in the

plane ordered as above.

It is easy to check that, just as for the sum, the product a •
ft
depends

only upon a and
ft.

For finite order types, the definition given above coincides with that

of multiplication of natural numbers. Moreover, we have for arbitrary

order types ot,ft,y the formulas:

(ctft)y = cf.(fty) ,
al = la = a, aO = Oa = 0.

Similarly as for addition, multiplication is not commutative. For

example, co2 ^ 2a>. In fact,

2oj — {1 , 2} xN = co, o>2 = TVx (1 , 2} = o) + o>.

The distributive law is satisfied only in the form

x(ft + y) = otft + ay.

In fact, let

oc = A, ft
= B, y = , Br\C = 0.

Then we have (see p. 62)

>x(ft + y) = A x (BuC) = Ax B uA x C

= A x B u A x C = ccft + ay,

because

(A x B) n (A x C) = 0.

Exponentiation of order types in the case of a finite exponent can

be defined by induction:

a0 = 1 ,
a"

+

1

= a” • a

.

No obvious counterpart of the arithmetical “less than'' relation

exists for order types. The most natural is the following relation of

embeddability: We say that an order type a is embeddable in the order

type ft if any set of type a is similar to a subset of any set of order

type p.
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The relation of embeddability is transistive and reflexive but not

symmetric: for instance rj is embeddable in rj+ 1 and conversely, although

rj rj+ 1. It is easy to give examples of types which are incomparable

with respect to the relation of embeddability (e.g. a>+co and co*+a)).
1

)

Exercises

1. Prove that y + y = y, A +1-1- A = A, A+A # A.

2. Using operations on the order type co, give an example of an infinite linearly

ordered set which possesses first and last elements such that every element except

the first has a direct predecessor and every element except the last has a direct suc-

cessor.

3. Prove that (a+ /3)* = /?*+a*.

4. Prove that y
2 = y.

5. Prove that (toy)
2 = (coy+a))

3
, but my # loy+w. [A. Davis-W. Sierpiski]

6. Prove that co
2

is the type of the set of natural numbers ordered by the following

relation: m precedes n if either m has fewer prime factors than n, or m has the same

number of prime factors as n and m ^ n.

7. Prove that a set A of type A 2 does not contain a subset which is denumerable

and dense in A.

§ 5. Lexicographical ordering

The product of order types is related to lexicographical ordering. In

order to define this ordering, let us assume that T is a set linearly or-

dered by the relation Q and let each x e T be associated with a set

Fx ordered by the relation Rx . We do not assume that the sets Fx are

disjoint. Let

^ = n^-
xeT

Thus P is the set of functions / whose domain is T such that /(x)

e Fx for all x e T.

Two arbitrary functions / and g belonging to P determine the set

£(/, g) = {xeT: f(x) # g(x)}

.

Clearly, /)(/, g )
= 0 if and only if / = g.

We now define a relation S in P in the following way: fSg holds if

!

) For deeper results concerning the relation of embeddability in the cases of

special classes of order types compare Laver [1] and [2].
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and only if either / = g or the set D(f,g) possesses a first element a0

and f{xo) RXog(x0).

This definition can be written in symbols as follows

fSg = if = g) v VI (/(*) £(*)) AA [(y <q *) (f(y) = £0))] I
•

.V y

If the relation S linearly orders the cartesian product P, then this

product is said to be lexicographically ordered (or ordered according to

the principle of first differences.*)

We shall investigate the conditions under which the relation S lin-

early orders P.

Theorem 1 : The relation S is reflexive
,
antisymmetric and transi-

tive in P.

Proof. The reflexivity of S is obvious.

Suppose that both fSg and gSf If the functions / and g are dis-

tinct, then the set D(/, g) has a first element a and this element satisfies

the conditions fix) Rx gix) and g(A) Rxfix). Since, by assumption, the

relation Rx orders Fx ,
we have fix) = gix), which is incompatible

with .x 6 D(/, g). Thus fSg and gSf imply / = g. This shows that the

relation S is antisymmetric.

Suppose that fSg and gSh. If/ = g or g = h then clearly fSh. Thus

we may assume that / # g and g ^ h. Hence the sets £)(/, g) and

Dig, h) have first elements a* and y respectively and these elements

satisfy the conditions:

fix) <

r

x
gix) , giy) < Ry hiy)

.

If z precedes x and y, then /(z) = g(z) = /?(z). On the other hand,

if z0 is that one of the elements a and y which precedes the other, then

we have either /(z0 ) < R g(z0 ) and g(z0 )
= /f(z0 ) (if a < q y), or /(z0)

= g(z0) and giz0) <R
z
Jiiz0) (if y < Q a), or finally fizf) < RJ\izf)

and g(z0) o
/i(z0 ) (if x = y). In any case /(z0) < R hiz0), which

shows that z0 is the first element of D(f, h). Hence fSh and it follows

that S is transitive.

Remark: The following example shows that the relation S need not

be connected.

*) The lexicographical and anti-lexicographical orderings were first defined by

Hausdorff. See his book [1].
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Let T be a set of type co* (for instance, the set of negative integers),

Fx = {0,1} and let Rx be the relation Let/ be the function whose

value is 0 for even numbers and 1 for odd numbers and let g(x)

= 1—f(x). Then the set D(f,g) is equal to T and therefore it has no

first element. Thus neither fSg nor gSf.

Theorem 2 : If T = n or T = co, then the relation S linearly orders

the set P})

For the proof, it suffices to show that S is connected in P. For this

purpose assume that ft
geP and f ^ g. The set D(f, g) is non-empty

and therefore it has a first element x. Since Rx is connected in FXi we

infer that f(x)Rx g(x) or g(x)Rxf(x). This implies that fSg or gSf.

Theorem 3: If the sets A lf ..., A n are of types al5 ..., a„, then the

set A 1
x A 2 x ... x A„ lexicographically ordered is of type an a rt_ 1 ... a x .

Proof. The proof is by induction on n. For n = 1 the theorem is

obvious. Suppose that it holds for n and consider the product P = A x
x

xA 2 x ... xAn+1 of (m+ 1) sets, with lexicographical ordering. Let B
= A 2 xA 3 x ... xAn+1 . Ordering the set A

t
xB lexicographically, we

obtain a set similar to P. Hence it suffices to show that A x
xB is of

type a„ +1 • a„ • ... • a 2
•

. But this follows directly from the definition

of the product of types.

The definition of anti-lexicographical ordering (ordering by the prin-

ciple of last differences) is similar to that of lexicographical ordering.

The notion of anti-lexicographical ordering rather than that of the lexi-

cographical ordering lies at the basis of the notion of the product

of types.

Examples

1. The product XX is the type of the set of complex numbers or-

dered lexicographically (where the complex number x+ iy is identified

with the ordered pair <*,>>».

2. The product r\X is the type of the set of complex numbers of the

form r+ iy, where r is a rational number and y is a real number, or-

dered anti-lexicographically. On the other hand, the product Xi] is the

*) In general, Theorem 2 holds when T is an arbitrary well-ordered set. See

Chapter VII.
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type of the same set ordered lexicographically. These types are distinct,

for a set of type Xr\ contains continuous intervals whereas a set of type

rjl does not.

3. Let T be the set of natural numbers with the usual ordering, let

Fx = {0, 1 }
for jc e T, and let Rx be the relation The lexicographical

ordering S is isomorphic in this case to the relation < in the Cantor
00

set C (understood as the set of real numbers of the form cj3” where
n= 1

cn = 0 or cn = 2 for n e N). In fact, associating with each function

00

/ellfj the number cf = Y\ 2f(n)/3
n+l

,
we see that cf < cg if and only

V «=o

iff ^ g and, moreover, the smallest number n0 such that f(rt0) # g{n0)

satisfies the inequality f(n0) < g(n0).

4. Again let T = N (where the order relation is <) and let Fn = N
for n eN. With each function f e NN we associate the real number

00

_ y 2-</<°> +/< l > + ~-+ /<n)+n+l >.

Clearly, 0 < rf < 1 and each real number x, 0 < a: < 1 ,
can be rep-

00

resented in this form in exactly one way. In fact, if * = X! 2 _<p(n)
is

n= 0

the binary representation of x with infinitely many digits different from

0, then the sequence (p is strictly increasing and 99(C)) > 0. Assuming

/(0) = 99 (0)—

1

and f(n) = (p(n) — (p{n— 1)— 1 for n > 0 ,
we obtain

x = rf .

In order that rf < rg it is necessary and sufficient that / # g and

that the smallest number n0 such that f(n0) # g{n0) satisfies the in-

equality /(/?0) > g(n0).

In this case the relation S of lexicographical ordering is similar to

the relation ^ in the set of numbers x,0 < x ^ 1. Hence the type of

this relation is 1 + 2 .



CHAPTER Vll

WELL-ORDERED SETS

§ 1. Definitions. Principle of transfinite induction

We say that a relation R well orders a set X if R linearly orders X
and every non-empty subset of X contains a first element (with respect

to the relation R). 1

)

Examples

1. Every set of type co is well ordered.

2. The set consisting of the number 1 and of all numbers of the

form 1 — 1/a?, n = 1,2, ... is well ordered by the relation The type

of this set is a>+ 1.

3. Let a(/?) be the number of distinct prime factors of the number /?.

The relation

{<x,y}: [a(x) < a(>’)]v ([a(x) = a(v)]A [x ^ y])}

well orders the set of natural numbers. The type of this set is ar (see

Exercise VI. 4. 6).

4. The ordered union (see p. 208) S = Fx ,
where the set T and

xeT

the component sets Fx are well ordered, is also well ordered.

For, let Y be a non-empty subset of S. The set of all x such that

YnFx 0 is a non-empty subset of T
, therefore it contains a first

element a*0 . Thus the intersection YnFXo is a non-empty subset of the

well-ordered set Fx and therefore it has a first element. This element

is clearly the first element of Y.

') The notion of a well-ordered set, one of the basic notions of set theory, is

due to Cantor [3]. It is interesting that the logically simpler notion of a linearly

ordered set was introduced by Cantor much later (in 1895) evidently in the course

of systematizing his results in the theory of well-ordered sets.
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5. The cartesian product of any finite number of well-ordered sets

is itself well ordered by the relation of lexicographical ordering.

6. Every subset of a well-ordered set is also well ordered.

The following two theorems are simple consequences of the definition.

Theorem 1 : In every well-ordered set there exists a first element.

Every element except the last element (if such exists) has a direct suc-

cessor.

Theorem 2': No subset of a well-ordered set is of type co*.

°Theorem 2" : If a linearly ordered set A is not well ordered, then it

contains a subset of type co*.

Proof. Let P be a non-empty subset of A which contains no first

element. Let

Q(x) =
{y : O -< X) a (y e />)} •

We have Q(x) # 0 for every x e P. By Theorem 1*1.6. 8 there exists

a function / defined for every x e P such that f(x) e Q(x).

Let p0 be any element of P. We define by induction a sequence /?,

,

p 2 »
••• letting pn =f(pn - 1 ) for n > 0.

Since f(x) < .v, this sequence is of type co*.

Theorems 2' and 2" imply the following.

Theorem 2: In order that a linearly ordered set be well ordered it is

necessary and sufficient that it contain no subset of type co*.

Theorem 3: Each initial segment of a well-ordered set A is of the

form 0(x) for some x e A.

In fact, if .v is the first element of the difference A—X, then 0(x)

= X (see p. 204).

Theorem 4: (Principle of transfinite induction 1

)) If a set A is

well ordered, B cz A and iffor every x e A the set B satisfies the con-

dition

(1) [
0(x) c B]->(jf6 B),

then B = A.

Proof. Suppose that A — B ± 0. Then there exists a first element x in

A — B. This means that if y<x then y^A — B, that is, y e B. This

*) The principle of transfinite induction was implicit in Cantor [6], pp. 336-339.

A first explicit formulation is due to Hessenberg [1], p. 53.
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shows that O(x) c B. Now it follows from (1) that x e B, which con-

tradicts the hypothesis that x $ B.

Theorem 4 can be reformulated as follows. Let a subset B of a well-

ordered set A be called hereditary if it satisfies condition (1). Then

Theorem 4 asserts that the only hereditary subset of A is the set A

itself.

For many formulas 0 it can be proved that the set {x e A: 0(x)}

is hereditary; consequently, for such formulas the theorem /\ 0(x)
xeA

holds. This method of proving theorems of the form A 0(x) is called
xeA

the method of transfinite induction. Of course, this method and the

method of proof by induction in ordinary arithmetic (which consists

in showing that the set
{
neN : @(n)} is inductive) are analogous.

We shall use transfinite induction to prove several theorems about

the similarity of well-ordered sets.

Let A be a set linearly ordered by the relation R. A function / which

establishes similarity between A and the set f 1 (A) contained in A ,
is

said to be an increasing function. Such functions satisfy the condition

(2) -v -< y ->/(x) <f(y).

Theorem 5: If a function f defined on a well-ordered set A is increas-

ing
,

then for every x we have xRf(x) (that is, x -< f(x) or x = f(x)).

Proof. Let B = {x: xRf(x)}. Let O(x) c B. We show that xeB.

In fact, let y e 0(x), that is y < x. By (2) it follows that f(y) <f(x).

Since y e B, we have yRf{y) and thus y -</(x). This shows that the

elementf(x) occurs after every element y of O(x), that is,/(x) e A — O(x).

Since x is the first element of A-O(x), we have xRf(x) and finally

x e B. Hence the set B is hereditary. Q.E.D.

Corollary 6: If the well-ordered sets A and B are similar
,
then there

exists only one function which establishes their similarity.

Proof. Suppose that the sets A and B are well ordered by R and S

and that there exist two functions / and g establishing similarity be-

tween A and B.

The function g
l Ofis clearly increasing in A (see p. 203). By Theorem

5 we thus have xRg1 (/(x)) for every x eA. Hence g(x)Sf(x). Consider-
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ing f cOg instead of g
cOf we have by the same argument f(x)Sg(x).

This implies /(a) = #(a), because S is antisymmetric.

Corollary 7: No well-ordered set is similar to any of its initial seg-

ments.

In fact, it the sets A and O(a) were similar, then the function /
establishing similarity would be increasing and would satisfy /(a) g O(x),

that is, f(x) -< x. But this contradicts Theorem 5.

Corollary 8: No two distinct initial segments of a well-ordered set

are similar.

For the proof, it suffices to apply Corollary 7 and to observe that,

given two distinct initial segments, one is always an initial segment of

the other.

Theorem 9:
1

) Let A and B be two well-ordered sets. Then either

(i) A and B are similar
,
or

(ii) the set A is similar to a segment of B, or

(iii) the set B is similar to a segment of A.

Proof. Let R and S be relations which well order A and B respect-

ively and let

Z = \xeA: \J Or (x) = 0^(y) )

.

yeB

In other words (see notation on p. 204):

x g Z = {the initial segment <9*(a) of A is similar to

some initial segment Os(y) of B }.

By virtue of Corollary 8, for given a 6 Z there exists only one such

segment. Thus there exists a function / defined on Z such that this

segment is of the form 0 s-(/(a)).

First we show that either Z = A or Z is a segment of A, that is,

there exists an a in A such that Z = 0R (a). In fact, let a -< a' e Z.

Since 0R (x) is a segment of Or (a'), the function establishing similarity

between 0R (x') and Os (f(a')) also maps Or (x) onto a segment of B.

Hence a g Z .

Similarly: either f l (Z) = B or else fx (Z) is a segment of B: f'(Z)
— Os(b). To show this it suffices to observe that

*) Theorem 9 is due to Cantor [6], p. 216.
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f'(Z) = j
yeB: V [y = /(*)]} = |jeS: \J Os(y) = 6>R (.x)|

.

xeZ xeZ

In fact, if Os (y) is similar to a segment of A then y is of the form

/(x) where x e Z.

Finally, observe that / establishes the similarity between Z and/ 1 (Z).

Indeed, we have just shown that x -< x' e Z implies that Os(/(.x)) is

a segment of Os (f(x')), therefore /(x) -</(*').

A priori we have one of the following four possibilities:

(i) Z = A and /*(Z) = B
,

(ii) Z — A and f l (Z) = Os(b),

(iii) Z = 0R (a) and f l {Z) = B
,

(iv) Z = 0R (a) and f
! (Z) = O s (b).

The first three possibilities correspond to those stated in the the-

orem. Case (iv) is impossible, because then 0R (tf) = Os(b

)

and thus,

by the definition of Z, a e Z; that is, a e 0R (a), which contradicts the

definition of a segment. Q.E.D.

Corollary 10: If A and B are well ordered,
then either A ^ B or

5^7. That is
,
powers of well-ordered sets obey the law of trichotomy.

§ 2. Ordinal numbers

By ordinal numbers (or ordinals ) we shall understand the order types

of well-ordered sets. Theorem 1.9 allows us to define a “less than

relation for ordinals.

Definition 1 : We say that an ordinal a is less than an ordinal (l ii

any set of type a is similar to a segment of a set of type p. We denote

this relation by a < p or p > a.

We write “a ^ /T instead of “a < p or a = p.”

Theorem 1 : For any ordinals ol and p one and only one of the for-

mulas a < p y
a = p, a > p holds.

This theorem is a direct consequence of Theorem 1.9.

Theorem 2: If a, p and y are ordinals and if a < p and p < y, then

a < y.
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Proof. Let A, B and C be sets of types a, ft and y, respectively. By
assumption, the set A is similar to a segment of the set B and B is

similar to a segment of C. Thus A is similar to a segment of C. Q.E.D.
The following formulas can be proved without difficulty:

(a ^ ft) a (ft ^ a) -* (a = ft), (a ^ ft) a (ft ^ y) -> (a ^ y).

Theorem 3: If the well-ordered sets A and B are of types a and ft and

if the set A is similar to a subset £, of the set B
, then a ^ ft.

Proof. If this were not so, then we would have
ft < a and then B

would be similar to a segment of B
x

. This contradicts Theorem 5.

We now examine sets of ordinal numbers.

Theorem 4: The set W(a) consisting of all ordinals less than a is

well ordered by the relation ^ . Moreover
, the type of W(a) is a.

Proof. Let A be a well-ordered set of type a. Associating the type

of the segment 0(a) with the element a e A we infer (by the axiom of

replacement) that the set V(cc) exists and simultaneously we obtain

a one-to-one mapping of A onto fL(a). It is easily seen that following

conditions are equivalent:

(i) a
{
precedes a2 or a

{
= a2 >

(ii) 0(a i) is a segment of 0(a2 ) or 0(a t ) = 0(a2 ),

(iii) the type of 0(a ,) is not greater than the type of 0(a2 ).

This shows that the relation ^ indeed orders fP(a) in type a.

Theorem 5: Every set of ordinals is well ordered by the relation ^

.

In other words, in any non-empty set Z of ordinals there exists a small-

est ordinal.

Proof. Let a e Z . If a is not the smallest ordinal of Z, then Zn
nJT(a) 0. Then in the set ZnW(a) there exists a smallest number

ft, as the set W(ol) is well ordered (see Theorem 4). At the same time

ft is the smallest ordinal in Z. In fact, if £eZ— JV(oc) then £ ^ a;

thus £ > ft.

Theorem 6 : For every set Z of ordinals there exists an ordinal greater

than all ordinals belonging to Z.

Proof. By the axiom of replacement there exists a set K whose

elements are all the sets W(a) corresponding to the ordinals n. belong-

16*
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ing to Z:

Consider the

IV(ot) e K = a 6 Z.

union of all sets belonging to K

s = ux.
xeK

By Theorem 5 the set S is well ordered by < . Let a be its order type.

For a e Z the set W{ol) is either a segment of S or identical with S.

In any case, a ^ o. This implies that a < <r+l for every a e Z. Thus

the ordinal <y+l is greater than every ordinal of Z.

Corollary 7: There exists no set of all ordinals.
1

)

Corollary 8: There exists a smallest ordinal not belonging to a

given set Z.

Let a $ Z (such an ordinal exists by Corollary 7). If a is not the

smallest ordinal not belonging to Z, then the set W(oc) — Z is non-

empty. The smallest number in this set (see Theorem 5) is simul-

taneously the smallest ordinal not belonging to Z.

Corollary 9 : If a set Z of ordinals has the property (y < £ e Z)

-(ye Z), then there exists an ordinal a such that Z = IY(cc).

Namely, this ordinal a is the smallest ordinal among all ordinals not

belonging to Z.

In fact, if | e Z then £ < a, because a £ would imply aeZ. Hence

Z c W(a).

On the other hand if e W(a) then 0 < <x and, by the definition of

a, p e Z. Therefore l¥(<x) <= Z.

§ 3. Transfinite sequences

An ordinal is said to be a limit ordinal if it has no direct predecessor.

Thus 0 is a limit ordinal.

Theorem 1: Each ordinal can be represented in the form X+ n where

X is a limit ordinal and n is a finite ordinal {natural number).

*) Before set theory was axiomatized, Corollary 7 was considered to be an an-

tinomy. It was discovered by Burali-Forti [1].



3. TRANSFINITE SEQUENCES 231

Proof. Let a be an ordinal, A a set of type a. Every set of the form

A-O(a) is said to be a remainder of A. Clearly,

A-0(af) c= A — 0(a2 ) = (a
l >- a2)v(a l = a2).

This implies that there exists no infinite increasing sequence of distinct

remainders. Therefore there exists only a finite number of m e N such

that there exists a remainder of power m. If n is the greatest such

number and if A — 0(a) is a remainder of power n, then the segment

0(a) has no last element. Thus 0(a) is the limit ordinal A. This implies

that a = X + n. Q.E.D.

By a transfinite sequence of type a or by an a-sequence we understand

a function rp whose domain is W(ol). If the values of this function (also

called the terms of the a-sequence) are ordinals and if y < p < a

implies rp(y) < (p(P), then we say that this a-sequence is increasing.

Let cp be a A-sequence of ordinals where A is a limit ordinal. By

Theorem 2.6 there exist ordinals greater than all the ordinals cp(y)

where y < A. The smallest such ordinal (see Corollary 2.8) is called

the limit of the A-sequence (p(y

)

for y < X and is denoted by lim y(y).
y <A

For example,

co = lim n = lim n 2
.

n<a> n<(o

We say that an ordinal A is cofinal with a limit ordinal a if A is the

limit of an increasing a-sequence:

(1) A = lim>(£).

An ordinal cofinal with a limit ordinal is clearly itself a limit ordinal.

The connection between this notion and the notion of cofinality for

sets is established by the following theorem.

Theorem 2: An ordinal X is cofinal with the Umil ordinal a if and

only if W(X) contains a subset of type a cofinal with 1F(A).

Proof. Let A be a subset of W(X) cofinal with W(X) and such that

A = a. For every ordinal £ < a there exists an ordinal <??(£) in A such

that the set [rj: (rj e A) a (r/ < <??(£))} is of type £. The sequence (p(£)

is clearly increasing and 7?(£) < A for £ < a, because <p(£) e A c W(X).
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If n < A then there exists an ordinal £ e A such that fi < £, because

the sets A and W(X) are cofinal. Thus ju < £ ^ <p(£) (see p. 228), which

proves that X is the least ordinal greater than all the ordinals >(£).

This proves (1).

Suppose in turn that (1) holds. Let A be the set of all terms of q>.

We have r\ < X for rj e A and consequently, since A is a limit ordinal,

there exists £ e W(X) such that rj < £. Conversely, if £ e W(X) then

£ < X and by the definition of limit there exists £' < a such that £

< <p(£'). This means that some ordinal in A is greater than £. Hence

the sets A and W(X) are cofinal.

It follows directly from the definition of limit that

(2) lim>(y) > (p{y) for y < X,
y<A

(3) !AO > ?>(?)]) = lim <p(y)}.
y<A y<A

Theorem 3 : If q> and tp are two increasing transfinite sequences ,
X is

a limit ordinal and £ = limy>(y), then

y < A

lim>(<5) = lim<p(v>(y)).
<5 <£ y <

A

Proof. If y < X then by (2) xp(y) < £ and again by (2) 9v(tp(y))

< lim9?(ó). Applying (3) we obtain

(4) lim>(y>(y)) < lim 99(^1).

y < A 3<{

If d < £ then by (3) we infer that for some ordinal y < X we have

y(y) ^ <5. Since the sequence (p is increasing, <p(y>(y)) ^ 95 (^)» an^

(3) it follows that lim^(v(y)) > 9°(ó).

y < A

Applying (3) again we obtain

lim99(9»(y)) ^ lim9?(<5).

y<A <5>£

This together with (4) proves Theorem 3.

It follows from Theorem 3 that if a limit ordinal rj is cofinal with

a limit ordinal £ and £ is cofinal with a limit ordinal A, then rj is cofinal

with A.
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We say that an a-sequence cp is continuous if for every limit ordinal

X < a we have

(p(X) = lim (f(y).
y <;.

Theorem 4: Let (p be an increasing continuous a-sequence. For a given

ordinal y < a, let

(5) x
y = lim where y0 = y and yn + ,

= (p{yn ).

n<(o

Then cp(x
Y)
= xy (when xy < a and yn < a for n = 1,2,...).

Proof. By (5) we have xY > yn+i = <p(y„ ), and it follows by (3) that

> Mm cp(y„) = (limyn)
= <K* y).

n< to n<w

On the other hand, ^ <p(x
y),

because the sequence <p is increasing

(see p. 226).

Each ordinal £ satisfying the equation q?(£) = £ is said to be a criti-

cal ordinal of the sequence cp. Thus Theorem 4 states that if y belongs

to the domain of an increasing continuous sequence cp
,
then there

exists a critical ordinal of this sequence greater than y ,
provided that

this sequence is defined for sufficiently large ordinals.

§ 4. Definitions bv transfinite induction

The theory discussed in this section is similar to the theory of induc-

tive definitions in arithmetic of natural numbers.

Theorem 1: (On definitions by transfinite induction 1

)) Given a

set Z and an ordinal a, let 0 denote the set of all £-sequences for £ < a

with values belonging to Z. For each function h e Z'
1
’ there exists one

and only one transfinite sequence f defined on £ < a and such that

(1) /(I) = h[f\W{£)\ for every £ ^ a.

Proof. We show first that there exists at most one sequence / satis-

fying condition (1). Suppose that g is a sequence defined on the set

W(a+1) and satisfying the condition

(2) g(£) = h[g\ W(£)] for every £ ^ a.

‘) The theorem on definitions by transfinite induction was known already to

Cantor [6], p. 231, although not in the full generality.
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Let B = {£: f(£) = g(£)}. If £ < a and W(£) c= B, then f[W(£)

= g\W(£), and by (1) and (2) f(£) = g(|), that is, £ e B. Thus we have

shown that the condition W{£) c= B implies £ e B. By the principle

of transfinite induction (p. 225) we infer that W(oi + \) c= B ; that is,

for every £ ^ a, we have f(£) = g(£). This means that the functions /
and g are identical.

We now prove that there exists a function / satisfying (1).

Suppose by way of contradiction that for given a such a function

does not exist. Clearly we may assume that a is the smallest ordinal

with this property; otherwise we can find the smallest ordinal with

this property in the set JV(a). Thus for each £ < a there exists a func-

tion ft satisfying the condition

(3) ffy) = h[ft\W(y)\ for every y < £.

It follows from the part of the theorem already proved that for a

given £ there exists exactly one function ft satisfying (3). We now infer

that if y ^ £ then f%\ W(y+ 1) — fY . Hence /y (C) = ff£) provided that

£ < y. This implies:

(4) Uy\ W(y)] = [/{| W(y)] for y « £.

Let

(3) /(£) = ff£) for £ < oc and /(a) = /?(Ca),

where Ca denotes the a-sequcnce such that C*(£) = ff£) for | < a.

The function /satisfies condition (1). In fact, if y ^ £ < a then by (3),

(4) and (5)

(6) f(y) = h [fY |
W(y)} = h [f |

W(y)\ = ffy)

,

whence f\ W(£) = ff\V{£) and by (3)

/(I) = h[ft\ W(£)\ = h[f\ W(£)\ for £<<x.

Finally, /(a) = h[f\W(a)\ y because by (5) /|lT(a) = Ca .

In applications of the theorem, the function h is often defined by

three formulas: the first gives the value h(cp) for the void sequence cp

(i.e. the value //(0)), the second the value h{cp) for sequences cp e Z0

whose type is not a limit ordinal (i.e. is of the form £+1), the third

gives the value h(cp) for sequences whose type A is a limit ordinal. For



4. DEFINITIONS BY TRANSFINITE INDUCTION 235

instance, the first formula may be of the form

h(0) = A,

the second of the form

h((f) = F(rp(£)),

and the third of the form

h(cp) = G((J (p(rj)) or h(<p) = G(P|
T}<X t]<?>

where F and G are given functions and A is a given set.

Then the sequence f which exists by Theorem 1, satisfies the con-

ditions

f(0) = A,

. /(f+ 1) = f(m),

AX) = G(U/W) or f(X) = G(n/W).
T)<X T]<X

Usually when we apply Theorem 1 to prove the existence of /, we
give only these three formulas.

Examples

1. Derivatives of order a.
1

) Let A be a subset of the real line (or.

more generally, A c= S n
). The derivative of order a of the set A is

defined by transfinite induction as follows

A (0) = A, A ( f +1) = A (i)
\ A a) = H A (v

\
y <A

where / is a limit ordinal ^ a.

In this case we have Z = P(A), h(0) = A, h(q) = [<p(!)]‘ if y is of

type |+1, h{(p) = pi cp(y) if (p is of type
y <A

2. Borel sets of type a.
2
) The family Fa of Borel sets of type a is

defined by transfinite induction:

(i) F0 is the family of all closed subsets (of a given space),

00 = (L : Fy)o or = (U Fv)ó for 0 < | < a,
y <1 y<£

*) We recall that the derivative of order 1, i.e. A\ is the set of limit points of

the set A.
2
) Borel sets were introduced by Borel [I].
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depending on whether £ is an even or an odd ordinal (ordinals ot the

form A + w, where A is a limit ordinal, are said to be even if n is even

and odd if n is odd). See page 125 for the definitions of a and 6.

In this case we have

/i(0) = F0 and h(<p) = (U or %) = (U'?’(r))«
y<$ y < £

depending on whether the type £ of cp is an even or an odd ordinal.

Similarly we define the family <7a by the conditions:

(iii) C0 is the family of open sets,

(iv) Gt = (U Gv)a
or Gt = (U Gv)» for 0 < £ < a,

y<£ y<*

depending on the character of £ (even or odd).

3. Analytically representable functions of class a.
1

) The set ot these

functions is denoted by 0a and is defined by transfinite induction as

follows:

(a) 0O is the set °f all real continuous functions (ot a real variable),

(b) 0 = (U 0y)k for 0 < £ ^ a,

y <£

where in general A^ denotes the set ot all functions which are limits

of convergent sequences ot t unctions belonging to the class I.

In this example:

z = p((S s ), h(&) = h(f)
= (U ?>(y))i>

y<t

where £ is the type of the sequence cp .

As another example of an application of Theorem 1 we prove the

following theorem.

') Baire functions were first studied in the book Baire [1]. The notion of a rank

of a set originated with Russell who introduced a classification ot sets into types .

He called objects which are not sets “objects oj type 0”. Sets whose elements are

of type n are called objects oj type n+ 1. Russell allowed only objects ot a finite type

and maintained that other sets are meaningless. This was the basic principle of his

“simple theory of types”. See Russell and Whitehead [1].

The aim of the theories of types was to eliminate antinomies from set theory.

Both theories are now obsolete but their role in the development of set theory can-

not be neglected. See Quine [1], Chapter XI.
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Theorem 2: Every limit ordinal of the form X = lim^) is cofinal
£<a

with some ordinal y ^ a.
1

)

Proof. According to Theorem 1, there exists an a-sequence xp such

that

(i) xp(£) is the smallest ordinal £ such that <p(£) < £ < X and A y(v)
ti<£

< £, if such an ordinal exists;

(ii) y(£) = X otherwise.

We consider two cases:

I. There exists no ordinal £ < a such that y>(£) = X. In this case the

sequence xp is increasing by (i) and (by induction) y(£) > <p(£) for all £.

Since X is the smallest ordinal greater than all the <p(£), we infer that

limy>(£) = X. Thus X is cofinal with a.

£<a

II. There exist ordinals £ < a such that y(£) = X. Let y be the

smallest such ordinal, that is, xp{y) = X and xp(rj) < X for r) < y. This

implies that y is a limit ordinal. In fact, y = d+ 1 then xj)(ó) < X and

therefore there exists an ordinal /u such that xp(d) < /jl < X and <p(S)

< /i < X, which contradicts xp{y) = X. It follows from (i) that for

£ t < £2 < y we have y>(£i) < y>(£2 ). This means that xp\ W(y) is in-

creasing. Let q = limy>(£). We shall show that q = X. For suppose
£<y

that o < X. The ordinal q is greater than all the xp(rj) for 77 < y and

therefore there exist ordinals < X greater than <p(y) and greater than

xp(7j) for rj < y (namely any ordinal greater than both g and <p(y) and

less than X satisfies these conditions). But this contradicts the assump-

tion xp(y) = X. Hence g ^ X. We have g ^ X, because xp(tj) < X for

£ < y. Thus X = g = limy>(£). This means that X is cofinal with y.
!<y

Q.E.D.

Although Theorem 1 is very general, it is still insufficient. The reason

is that in Theorem 1 we proved the existence of a function f whose

range is contained in a set Z given in advance, whereas in several cases

we have to construct a function whose range is not a subset of any set

known to us before. As an example we prove the following theorem:

') We do not suppose that the function (p is increasing.
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Theorem 3 : For every set A and every ordinal number a there exists

exactly one function with domain D{f)
= which satisfies the

conditions'.

(C0) /(0) = A ,

(Cj) 1+1 e £(/)-/(£+!) = P(/(D),

(C-,) (A is a limit number) a (A e £>(/)) -/(A) = U /(£)•
l<A

Proof. We first show by an easy induction that for every a there is

at most one function / with domain tV(oc) satisfying (C 0)-(C 2 ).

Assume that there is an ordinal a such that for no function / with

domain IT(a+l) conditions (C0)-(C 2 ) hold. We can assume that a is

the least such ordinal. Hence if £ < a then there exists exactly one

function / with domain W(i + 1) satistying (C0)-(C 2 ).

From the axiom of replacement it follows that there is a set S consist-

ing of all these functions f. Sincef c fn for £ < rj < a, we easily infer

that the set F = U (S) is a function with domain W(cl) which satisfies

(C 0)-(C 2 ). Mow we shall extend F by adding to it one more pair of

the form <a, X} so as to obtain a function with domain W(x+ 1) which

also satisfies (C0)-(C 2 ). It is easy to verify that it is sufficient to take

as X the set />
(

l )(Rg(F))) if a is a successor ordinal and the set

U (Rg(F)) if a is a limit number.

Thus the assumption that there are ordinals a for which an/ satisfy-

ing (C0)-(C 2 ) and having fT(a+l) as its domain does not exist results

in a contradiction. Theorem 3 is thus proved.

Theorem 3 allows us to introduce the notion of a rank ot a set.

We denote by Ra(A) the set /(a) where /is a unique function satisfy-

ing Theorem 3. If A = 0 then we write Ra instead of Ra(0).

Definition: The rank of a set X is the least ordinal a such that X e Rx .

We denote the rank of X by o(T).

Since R
?_

= U R whenever X is a limit number, it is clear that

£>(T) is always a successor ordinal. If £(3Q = a + 1, then X e Ra+

1

— Ra .

This property is characteristic for the rank of X. It can also be easily

proved that X e Y implies the inequality o(T) < g(Y) and that g(Y)

is the least successor ordinal greater than ^(30 for each X in Y.
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We shall use the sets Ra in later chapters (see X § 2, p. 285).

Theorem 3 above illustrates a general method of proving the existence

of functions satisfying recursive conditions. Other examples of such

functions are given in exercises below.

Exercises

1 . Prove that for each pair of ordinals (a, /) there exists a function / with domain

lV(cc)x Wif) such that /(!, 0) = 1, /(£, *7+1) = /(£, *
7)

* £, /(£, A) = lim /(£, a)
a <X

where A is a limit number and (£, *
7 + 1 ), (I, A) belong to the domain of /

Prove moreover that if a a' and p < /?' then the function /' corresponding

to the pair (a', p') is an extension of the function /corresponding to the pair (a, p).

Remark: The value /(£, *
7) is usually denoted by £/

2. Define in a similar manner a function / with domain fV(cc) such that for every

I < a the following equations hold: /(0) = a, /(£+ 1) = /*(/(£)), A < a->/(A)

= V1

/(£) (a and A denote here limit numbers).

Remark: The cardinal number /(£) is usually called the %-lh beth where “beth”

is the second letter of the Hebrew alphabet; see also p. 285.

§5. Ordinal arithmetic 1

)

The following theorem is a direct consequence of the definitions

given in Chapter VI, pp. 218-219

Theorem 1 : The sum and the product of two ordinal numbers are

ordinal numbers.

By means of Example 1.4 we obtain the following

Theorem 2: The ordered sum of ordinal numbers
,
where the indexing

set is well ordered
,

is itself an ordinal number.

The first part of Theorem 1 follows from Theorem 2, by letting the

indexing set be a two-element set. Similarly, assuming that the indexing

set is of type p and that all components are equal to a, we conclude

that a/? is an ordinal. We shall prove some arithmetic laws for the

ordinal addition and multiplication.

The first monotonic law for addition:

(1) (a < p) - (y + a < y + p).

Proof. Let C = y, B = p and BnC = 0. Since a < p, the set B

') Ordinal arithmetic discussed in Sections 5-7 is due to Cantor [3].
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contains a segment A of type a. The ordered sum CvA, which is of type

y + oc, is a segment of CuB, which is of type y + p. Thus y + a < y + p.

It follows from (1) (for a = 0) that

(2) (P > 0) (y + p > y).

Thus the sum of two ordinals different from 0 is greater than the first

component.

The second monotonic law for addition:

(3) (a ^ p) -> (a + y ^ p+ y).

In fact, assuming that A = a, B = p, C = y, A a B, B nC = 0 and

applying Theorem 2.3 to the ordered unions AuC and Z?uC, we

obtain (3).

In particular, it follows from (3) that

(4) P +y>y.

Thus the sum of two ordinals is not less than the second component.

On the other hand, from 1 + co = to we see that the sum does not need

to be greater than the second component (although the first component

is not zero).

Theorem 3: If cl ^ p then there exists exactly one ordinal y such

that cl = p+ y.

Proof. Let A = a, let ^ be a segment of A of type p and let y

= A-B. Clearly, a = P+ y- To prove the uniqueness of y suppose

that p + y ,
= p + y2 • By (1) this implies that y x y 2 and y 2 < y t

.

Thus y { = y 2 by Theorem 2.1.

It follows from Theorem 3 and formula (2) that the inequality cl ^ p

is a necessary and sufficient condition for the equation cl = P + x to

be solvable.

On the other hand, the equation a = x+ p is not always solvable,

for example we have to ^ x + 2 for every ordinal x.

In connection with Theorem 3 we introduce the following definition.

The difference of the ordinals cl and p (<x ^ p) is defined to be the

unique ordinal y such that a = p + y. This ordinal is denoted by ct — p.

Thus

(5 ) CL = p+(CL~p).
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For instance, co — n = co, because n+co = co. Similarly co
2 — co = co

2
,

because co+co 2 = (o
2

.

The monotonic laws for ordinal subtraction:

(6) (a > a,) (a-0 > a, -0),

(7) (0 > /?,)->(«-/*<

In order for the subtraction to be possible we assume in (6) that

<x
x ^ 0 and in (7) that a ^ 0.

Proof. For the purpose of obtaining a contradiction, suppose that

a — 0 ^ U\—0- From formulas (5) and (1) it follows that a = 0 +
+ (a — 0) ^ 0 + (<x

i —0) = a
1 ,
which contradicts the assumption a > a 1 .

Similarly, assume that a — 0 > <x — 0 x ;
then it follows from (5) and

(1) that a = 0 + (oi — 0) > 0+ (a — /?,). This contradicts 0 > 0 X , because

0 > 0i implies by (3) that 0+(ol — 0 x ) ^ 0 x + (oc — 0 X )
= a and conse-

quently we would obtain a > a.

The identity co — 2 = co — 3 = co shows that the symbol ^ in (7)

cannot in general be replaced by <.

The first monotonic law for ordinal multipilcation:

(8) (a < 0) -> (y(X < y0) for y > 0.

In fact, y0 is the type of the cartesian product CxB ordered anti-

lexicographically, where B = 0 and C = y. Let A = a and let A be

a segment of B. The cartesian product Cx A ordered anti-lexicographi-

cally is a segment of CxB. Q.E.D.

The second monotonic law for ordinal multiplication:

(9) (a < 0) (ccy < 0y).

To prove (9), we consider sets A, B,C of types a, 0 , y respectively,

and we assume that A c= B. Thus AxC a BxC which proves (9).

It follows from the identity 1
• co = 2 • co that the symbol ^ in (9)

cannot be replaced by <.

Left distributivity of ordinal multiplication with respect to

ORDINAL SUBTRACTION:

( 10 ) a (0 — y) = oc0— OLy for 0 ^ y.
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Proof. Since multiplication is left-distributive over addition (see

p. 219), we have by (5) a/5 = a [y + (f — y)] = oey + oe(f— y). This implies

(10) by the definition of subtraction.

We now prove a theorem about division of ordinal numbers.

Theorem 4: If f is an ordinal > 0, then for each ordinal a there exist

ordinals y and q such that

(11) a — Py + Q and q < p.

The ordinals y and q are then uniquely determined.

Proof. Since 1 ^ p, we have by (9) a ^ /5a. If a = foe, then it suf-

fices to let y = a and q = 0. Therefore suppose that a < foe. The prod-

uct foe is the type of the set BxA where B = f, A = a. It follows

from the hypothesis a < foe that the set BxA contains a segment

0((b,a}) of type a. Since

<y, x} e Oifb, a» = {(x < a) v [(a* = a) a (y < 6)]}

,

we have

0((b,a» = (BxOA(a))v(0B(b)x {a}),

where every element belonging to the first component precedes every

element belonging to the second component. Since the first component

is of type f- 0A {a) = fy and the second of type 0B {b) = q, we have

a = fy + Q where y < oe, q < f. In this way we have proved that there

exist ordinals y and g satisfying conditions (11).

To prove uniqueness, suppose that

( 12) fy + g = fyi+Qi, Q<f, Qi<f-

Let y > y 1
. Then y = yi + (y— yf) and

(13) fy+g = ftyi + iy-yfft+g = fyi+fiy-y^ + g.

Since y — y x ^ 1, we have by (8)

(1 4) P(y~Yi)>P-

It follows from (12) and (13) that

Pyi+Qi > Pyi+P(y~Y\),

whence by (14)

(15) Pyi+Qi > Pyi+P •
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As p > Qt ,
we obtain by (1) py x + P > Pyi+Qi . But this is impossible,

because (15) implies pyi+Qi > Pyi+Qi- Thus the hypothesis y > y l

leads to a contradiction. Similarly it can be shown that y x > y does

not hold. Hence y = y i

.

This formula and (12) imply that py + Q = Py+ Qi by (1) this for-

mula implies g = Q

Thus Theorem 4 is completely proved.

The ordinal y in (11) is called the quotient and q the remainder.

The following theorem is a consequence of Theorem 4.

Theorem 5: (The euclidean algorithm for ordinal numbers)

For any two ordinals a0 and a x different from 0, there exist a natural

number n and sequences a2 > •••> otn , Pi> •••> Pn such that a, > a 2 > ... >

<x„ > 0 and

CCq = CC
i fi T &2 >

— $2 P2 T $3 >
•••»

^n— 2 ^n-lft -1 — 1 ^nPn'

Proof. According to Theorem 4 and to the theorem on inductive

definitions, there exist infinite sequences cp and y) such that

<Po
= a0 » <p l

= a,, ip0 = y»i
= 1

and, for j > 1,

<Pj-i = WYV+i+Pi+i
and

<Pj+i <(Pj if <Pj ^ °»

<Pj+i = V>j+i = Q if <Pj
= °-

Since there exists no infinite decreasing sequence of ordinals, all terms

of (p from a certain term on are equal to 0. Let n' — min(<p; = 0).

j

Clearly, n ' > 0, because by assumption cp0 and (p x are ^ 0. To prove

the theorem it suffices to let n — n'— 1, ccj = cpj for 2 ^ j < n' and

Pj = V>j + 1
for 1 <7 < *'•

Now we shall prove several formulas concerning the operation of

taking limits (p. 231). We assume that A is a limit ordinal and that y

is an increasing /-sequence. Then we have

(16) lim[a + 99(£)] = a + lim^).
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Proof. Let p = lim 99(f). If f < A, then 99(f) < p and therefore

a + 99(f) < a + /L Let £ < a + /?; we shall prove that there exists £ < A

such that C < a + 99(f). If £ < a, then £ < a + 99(0); on the other hand,

if £ ^ a, then £ = a + (£— a) and £—

a

< (a + /?) — a ^ p. It follows

that for some £ < X we have £— a < 99(f), thus £ < a + 99(f). Hence
the ordinal a + p is the smallest ordinal greater than all ordinals a + >(£)

for £ < X. This proves (16).

(17) lim[a • 99(f)] = a • lim99(£).

Proof. We may clearly assume that a ^ 0. Let p = lim 99(f). For
£<A

£ < A we have 99(£) < p, thus a • 99(f) < a • p. Let £ < a • p. By The-

orem 4 there exist ordinals y and q such that £ = ocy + Q < a/? and

£ < a. It 7 ^ p then we have £ ^ ap + g ^ ccp, which contradicts the

hypothesis. Thus y < P, which implies that for some £ < l we have

y ^ >(£). Hence

£ ^ a • 99(f) + £> < a • 99(f) + a = a • [99(f) + 1]

,

and

£ < a • 99 (£+ 1),

because the function 9? is increasing by assumption. Since A is a limit

ordinal, we have £+ 1 < X and the formula £ < a •?>(£+ 1) shows that

£ is not greater than some ordinal of the form a • 99(17) where rj ^ A.

Thus the ordinal a/? is the smallest ordinal greater than all ordinals

ct'
(f

(rj) for 7] < X. This proves (17).

Remarks. Assuming 99(f) = £, we infer from (1) and (16) that the

function *s(f) = a + f is increasing and continuous {on the set \V(p) for

every p). It lollows Irom (8) and (17) that the function p{£) = a-f
possesses the same property. Theorem 3.4 implies that there exist critical

ordinals for the function s and for the function p. A critical ordinal

tor the Junction s is £ = a • co, and, more generally, every ordinal of

the form a*co + £> where q is an arbitary ordinal. In fact,

^(a - coT ^) = cc + cc-co + q = a(l + co) + £ = ci-co + q.

One ol the critical ordinals for the function p is lima", where a"
n<(o
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= a - a ... a. All critical ordinals for the function p will be determined

n

in the following section.

Exercises
1

)

1. Determine whether lim[9?(|)+ ^(l)l = limg?(£)+limv>(!).

2. Determine whether lim[>(£)]- a = [lim>(£)* a].

3. Prove that if + = a + /? and then a x < a.

4. Show that for every ordinal a there exists a finite number of ordinals such

that the equation a = £ + /?is solvable for £ (each such ordinal is called a remainder

of a).

5. Show that if a sequence <p is increasing, a = limgp(£) and if a = <p(£) + £>(£),

then there exists an ordinal p < A such that p(£) is constant for < £ < A and

this constant is equal to the smallest remainder of a.

§ 6. Ordinal exponentiation

The operation of ordinal exponentiation is defined by transfinite in-

duction as follows:

(1) r° = i,

(2) y*+1 =y*-y,

(3) / = limy5
,

i<a

where X is a limit ordinal.

We say that is the power of y, y is the base and a the exponent.

It follows from the definition that if y > 1, then

(4) a < p -* < y
p

.

We shall prove that

(5)
yS+n —

Proof. Given an ordinal £, let B denote the set of those £ e W(r)+ 1)

for which + ? We shall show that if £ ^ ??, then

(*) W(C)ciB-+£eB.

*) More material for exercises on ordinal arithmetic can be found in Sierpiski

[1], The theorem in exercise 5 is due to Hoborski [1].
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In fact, the following three cases are possible: (i) £ = 0; (ii) £ is not

a limit ordinal; (iii) £ is a limit ordinal > 0. In case (i), £ e B, because

y£+0 = = y* • 1 = y* • y°. In case (ii), £ = £1 + 1 where £ 1
e fF(£);

thus, by assumption, £ t 6 5. Hence we have y
l+Cl = y

1 y

^

and there-

fore

yf+C _ yl+(Ci + i) — y(f+Ci)+i — y£ + £i
• y = (y* •

y£i^y

= y’ (yh • y) = y»
•
yh + 1 = y* • y^

which shows that £efi. Finally, in case (iii), £ + £ is a limit ordinal,

thus

y*+c = lim y*.

a<se + C

Applying Theorem 3.3 to the functions 99(a) = y* and y»(a) = £ + a

we infer that

lim y
a = limyl+a

, y
i+ = limy* +at

.

a<£+ £ a<£ a <£

Since for a < £ we have a e fF(£), it follows that aeS, i.e. y’ +ot

= y* • y
a

. Thus

y£+£ = lim(y‘ • y
a
) = y* lim y

a = y
f

• y
5

,

a<C a<£

which implies that £efi.

Hence implication (*) is proved. By induction it follows that B
= W(?] + 1). Thus rj e B, which proves (5).

(6) (y
1)" = r"-

The proof is analogous to that of (5). Let B denote the set of those

£ e W(r]+ 1) for which (y^)
: = y*\ It suffices to show that implication

(*) holds. As previously we consider cases (i), (ii), and (iii). In case

(i) we have £ e B, because (y
1
)
0 = 1 = y° = y

f0
. In case (ii) we have

£ = £i + l, where £ x
satisfies the condition (y*) Cl = y*Cl . This formula

in turn implies

(y*)'’ = (y£)"i + 1 = (y*
6

)^ y
i — y*’ 1

y
1
* = y££i*£ = y£^ s i + 1) = y*’,

which shows that £e5. Finally, if £ is a limit ordinal > 0, then

(y’)
: — !im(y^)

a = limy^.
a<C a<C
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Since Theorem 3.3 implies that

lim y*
a — lim y

n = y^,
a <C ri<£C

we have £ e £. Hence formula (6) is proved.

(7) y > 1 —
> ^ £.

This formula follows from (4) by Theorem 1.5.

The operation of ordinal exponentiation allows us to find all critical

ordinals of the function /?(£) = oc • £ (compare p. 244). Namely these

critical ordinals are all ordinals of the form a
ft)+<T where a is any ordinal.

In fact,

/;(of
w+CT

)
= a • a" 4 * = a 1 + (w+CT) = of

(14c,)4<T = aw4(T
,

The function /(£) — y
st

is—according to (3) and (4)—increasing and

continuous (on every set W(ol)). Thus this function possesses critical

ordinals by Theorem 3.5. According to this theorem, those critical

ordinals can be obtained as the limits of the sequences a„ where a0

is an arbitrary ordinal and oc"
41 = y

<Xn
.

For example, assuming that y — co, a0 = 1 we have

a
{
= oj, a 2 = of°, a 3 = (o

c)W
, ...

The limit of this sequence,

e = lima„,
n <oj

is the smallest critical ordinal of the function or, i.e. the smallest or-

dinal satisfying the equality

(8) of = s.

Such ordinals s are called epsilon-ordinals.

Exercises

1. Let /. be a limit ordinal. Show that if the function <p is continuous on the set

and satisfies the conditions <p(0) = 1, 1) = y, (p{
rx + (>) = <p(a) •

rp(fi) for

a, ft, a+ /3 < A, then for | < A.

2. Show that if of = a + /> and # 0, then /? = a>£.

3. Show that for every ordinal a there exists an epsilon-ordinal greater than a.
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§ 7. Expansions of ordinal numbers for an arbitrary base

The operation of ordinal exponentiation can be used in order to

represent ordinal numbers in the form similar to decimal expansion

of natural numbers. For this purpose, we shall first prove the follow-

ing theorem.

Theorem 1 : If y > 1 and 1 ^ a < y*, then there exist ordinals r
] , P

and o such that

ol = y* • P + q, 0 ^ rj < £, p < y and o < y\

Proof. Let f be the smallest ordinal such that a < y\ Clearly, 0 < £

< If £ were a limit ordinal, then we would have y
: = lim y* and

A<C

y* < a for X < £. This implies y
c ^ a, which contradicts the definition

of £. Thus £ = rj+l, where

0 ^ r] < £ , y
n < a < y*+1 .

By virtue of Theorem 5.4 there exist ordinals P and q such that

(X = y
n

• p + o, o < y*.

If p ^ y then we would have a ^ y
n

’ y + Q > y*+1 . Therefore P < y

and the ordinals p, rj and q satisfy the theorem.

Theorem 2: If y > 1 and 1 < a < /*, then there exist a natural

number n and sequences p i ,p2y ••,Pn and rji,i} 2 > ••• >Vn su°h that

( 1 ) a = y'lp 1
+y',2p2 + ••• + y

nn
Pn ,

(2) 7] > 7] x > )] 2 > ... > rjn* 0 < Pi < y for i = 1,2,

The proof is almost a repetition of that of Theorem 5.5. Namely,

we define by induction three sequences (p ,
such that

<po = a, To = min (a < y*),

<pj = y*J+l &j+i+<pj+i and <Pj+i < y'J+t
’ 7h+i < vj’ &j+i<v

if cpj # 0, and

9’j+i = Vj+i = fy+i = 0

if q>j = 0.
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The existence of these sequences follows from the theorem on defi-

nition by induction (see p. 233) and from Theorem 1. Clearly, cpj — 0

from a j on.

Now we let n* = m'\n((pj = 0), n = n* — 1 and ?]j = ipj9 f$j = for

1 ^ j < n*.

Formula (1) for ordinals pj and r\j satisfying condition (2) is called

the expansion of an ordinal number a for the base y. The ordinals pj

are called digits and the ordinals rp exponents of this expansion. If

y — co, then the digits are natural numbers.

Examples

a = co
2 +co- 5 + 9 is the expansion of the ordinal a for the base co.

To expand the same ordinal for the base 2 it suffices to notice that

co = lim 2" = 2", thus
n<a>

co
2 = (2“)

2 = 2W
* 2 and co • 5 = 2

w+2 + 2w .

Therefore

co
2 +co- 5 + 9 = 2<0,2 + 2G>+2 + 2

G) + 2 3 + 2°.

In a similar way we obtain

co" = 2 <°2
.

For epsilon-ordinals, the expansion for the base co is e = co
8

. Thus

an epsilon-ordinal e cannot be represented in the form (1) for y — co

with exponents smaller than e.

Two ordinals represented in the form (1) can be compared with

respect to their magnitude by means of the following theorem.

Theorem 3 : If rj > > ... > and y > dn for n ^ p, then

y-n > + y
*2 d2 + ••• +y^p-

Proof. From the assumption it follows that ^ £i + l and y — d x

> 0. This implies

y
'7 ^ y*iy = y^ 1 d 1 + y**(y — #i) ^ y* 1 /d 1 + y

il
>

Since y

*

l ^ y*2
y, we have y* 1 ^ y* 2 &2 + y*2

- Thus

y
n ^ y^ 1

'd'i + y^'O'z + 7^2
*

Repeating this operation, after p steps we obtain the inequality

y* ^ y* l & 1 +y*2&2 + ••• Ey^P + y- p
,
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from which the required inequality follows directly (since y
1" > 0).

Theorem 4: If

a = ... +y" i
- 1

fr_ 1 -fy'
n
ft+ ... + y

nn
p„

,

£ = + ... +yt?,- 1 ft_i+yf
'^i+ ... +y^P ,

where

Tj
l > ^ ^/i) Vi — 1 ^ ^ ^ ^ P >

0 < Pi, P„ < y, 0 < &i, < y,

and y
n
fi ^ y*"#i, then

(a > 0 = [foi > ftjvfa, = ft) a (ft > ft)].

Proof. Suppose that rji > ft. It follows from Theorem 3 that

y
mPi+ ... + y',n /? ^ y

ni > y
f
ft+ y

l+1
ft+ 1 + ... + y

lp
ft>,

therefore a > ft because by 5 (1) we have

a = y^!+ ... + y’"- 1ft-i+y'"ft+ ... +ynn
Pn

> y
niPi+ ... +y,l_1ft_i+yf

‘^i+ ••• + y
lp#P = ft

In turn, suppose that r]i
=

ft and ft > ft. It lollows Irom The-

orem 3 that

y^ft — ft) ^ y"' > y*‘+1 ft+i + ... + y*p
ft>.

This implies

y^'ft Ty^Oft — ft) > y^ft+yf<+1
ft+i + ... + yvft>,

or

y^'ft > y
l
ft + y*+1ft+ 1 + ... + y’ p

ft>.

Therefore we have

y
7
'ft + ... +y’ln

p„ > y
f'ft+ ... + y

fp
ft,

which shows that a > ft

Finally, if either r]i < ft or rji = ft and ft < ft, then applying an

analogous reasoning we obtain the inequality a < ft This concludes

the proof of Theorem 4.

Theorem 4 shows that expansions of ordinals possess properties

analogous to those of expansions of natural numbers. In both cases,
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comparing the magnitudes of two numbers, we consider the first non-

identical components of their expansions and we compare the exponents.

If the exponents are equal, we compare their coefficients.

Theorem 5: For a given base
,
every ordinal number can be represented

in the form (1) in exactly one way.

Proof. In fact, by virtue of Theorem 4, if

y',ip l + ... + y
n
'fin = y^fti+ •••

(where r] l > r]2 > ... > ?/„, li > I2 > ••• > Ip? 0 < /? l9 . < y,

0 <$!,..., < y), then n = p and r)k = |fc ,
= 0k for k ^ n.

Theorem 4 allows us to establish a connection between the notion

of power of ordinal numbers defined in § 6, and the notion of lexico-

graphical ordering introduced in § 5, Chapter VI.

Theorem 6: The power y
n is the order type of the set of those func-

tions belonging to the lexicographically ordered set W(y) W(n) which have

values 7^ 0 only for a finite number of arguments.

Proof. According to Theorem 2.4 y
n = W(yTI

). To each ordinal

a 6 W(yv
) there corresponds a unique expansion

y’11Pi+y'
l2
p2 + ••• + y

nn
Pn ?

where r) > Vi > V 2 > ••• > Vn and 0 </?!,...,/?„ < y. In turn, this

expansion can be associated with the function

e

iV(y)W(n) defined as

follows

fa (Vi) = Pi for / = 1,2, ...,«,

/a (l) = 0 for I 7* rj l9 r\ 2 , ..., rjn .

Conversely, each function g e W{yf (rl) which assumes values different

from 0 only for a finite number of arguments can be associated with

the ordinal a e W(yn
) such that g = fi.

Finally, it follows from Theorem 4 that/j precedes in the lexico-

graphical ordering of the set W(y) n {n) if and only if a < £.

As another application of expansion (1), we shall establish a charac-

teristic property of powers of the ordinal co.

Definition: An ordinal q is said to be a remainder of an ordinal a

if 0 7^ 0 and there exists an ordinal o such that a = o + q.
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Theorem 7: In order that every remainder of an ordinal cl be equal

to a it is necessary and sufficient that the ordinal cl be a power of the

ordinal co.
*

Proof. If every remainder of the ordinal cl equals a, then in the

expansion

CL = CO
,,1

/? 1
+o/,2

/?2 + ••• +(Dt,n

flt

we have n = 1 and /?, = 1, i.e. a = co
111

.

Suppose that a = cop and let o be a remainder of cl. Thus for a

certain cr we have

(3) cl = o + r> and o < cl, i.e. o < cop .

Let us expand a for the base co:

a = co^n+co'11 n
{ + ... +cor,knk .

We have p < p, i.e. r/ + l < p. Let r = cop— co’
I+1

. We obtain

cop ^ o+o)p ^ co n(n+ [)+cop = con(n+ \) + co
T,+ i + r

= coPin + 1 + co) + T = COv ' CO + T = (0
T,+ 1 + T = C0P

and we infer that cop = a+cop , that is, a = a + a. According to (3),

cr + £ = (T + a, which shows that q = a. Q.E.D.

Using expansions for the base co we can define two operations on

ordinals, called natural addition and natural multiplication}) These

operations have more properties in common with operations of addition

and multiplication of natural numbers than the operations of ordinal

addition and multiplication considered before.

In order to define these operations let us consider two ordinals

cl = co
T,1n l +co

n2n 2 + ... +co'lknk ,

p = aflm l +af1m2 + ... + co* l

nii.

Upon completing these expansions by powers of co with the coefficients

0, we obtain expansions with the same powers of co:

(4) a = cot'Pi +co*2p2 + ... +co^ph ,

(5) p = co(iq l +oo*
2q2 + ... +(o*h

qh .

') Natural addition and multiplication were discovered by Hessenberg [1],

pp. 591-594.
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The natural sum of a and ft
is defined to be

a ( + ) P = co^(p
l +q l

)-\-(o^(p 2 + q2 ) + ... +co**(ph+ qh).

The natural product a(-)^ is defined to be the ordinal arising by

formal multiplication of the expansions (4) and (5) as though they

were polynomials in co: multiplying two powers of co we take the natural

sum of the exponents and the terms obtained in this way are ordered

according to their magnitude.

Natural addition and natural multiplication are commutative.

Examples

1. A natural sum may be different from the ordinary sum, for in-

stance :

[co
2 +co + 1] (+) [co

3 +co] = co
3 +co 2 +co • 2 + 1 ,

[c0
2 +C0 + 1] + I/O

3 + co] = co
3 +co.

2. [co
2 +07+ 1] (

•

) [co
3 +co] = CO

5 + co
4 + co

3
• 2+C0~ +C0.

3. [co"
+1 +co"+l] (•) [co"

+1 +eo"+co]

= ft)
ffl,2 + 2+a)(B, 2 +i'2+

co"-
2 + co" +

2

+ co"
+

1

• 2 + co" + co

.

4. Expansions (4) and (5) can be rewritten as

a = coll/7,( + )col2/? 2 ( + ) ... (+ )(D*h
Pk,

P = w*'q
x (+ ) (oi2q 2 ( + ) ••• (+ )(^h

qh .

Exercises

1. Show that the sum oc( + )/?is an increasing function with respect to a as well

as with respect to

2. Show that for every ordinal y there exist at most finitely many pairs a, p

such that a(+)/5 = y.

3. Prove that if £ < co®* and tj < co®*, then £ • rj < et>®*.

Conversely, if an ordinal £ satisfies the condition

(6) (£ < £) A (r) < £)-(£•»?< C)

,

then there exists an a such that £ = co® .

Remark: The ordinals £ satisfying (6) for all £, r\ are called the principal ordinals

of multiplication})

') Principal ordinals for other operations were defined and investigated by

Jacobstahl [If, p. 149.
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§ 8. The well-ordering theorem

Well-ordered sets owe their importance mainly to the fact that for

each set there exists a relation which well orders it. This theorem,

called the well-ordering theorem or Zermelo's theorem 1

) is equivalent

to the axiom of choice on the basis of the axioms .T[TR]. In this section

we shall prove this equivalence and formulate several theorems equiv-

alent to Zermelo’s theorem. Some applications of these theorems will

also be given.

Theorem 1: If A is any set such that there exists a choice function

for the family P(A) — {0}, then there exists a relation well ordering A.

Proof. Let /be a choice function for the family P{A)— {0}; we can

extend this function to the whole family P(A) letting f(0) = p where

p is any fixed element which does not belong to A.

Now let C denote the family of relations RaAxA well ordering

their field. In virtue ol the axiom of replacement, there exists a set

consisting of all ordinals R where R e C. Let a be smallest ordinal

greater than every ordinal R of this set.

According to the theorem on definition by induction, there exists

a transfinite sequence cp of type a such that

9/ =/0*- fay* y] < £})•

If
<Pt # P then

<pf
e A - {<?„: r; < £} and <p$ # <p„ for r) < f. If for

all £ < a we had (p» # p ,
then there would exist a transfinite sequence

ot type a with distinct terms belonging to A. This implies that there

exists a relation well ordering a subset of A into type a. But this con-

tradicts the definition of a. Therefore there exists a smallest ordinal

such that (pp = p. This implies that A = {(pn
\ ?y < /?}, thus A is the set

ot all terms of a transfinite sequence of type whose terms are all

distinct. Consequently there exists a relation well ordering the set A
into type /}. Q.E.D.

Remark: In the proof above we used only ordinals of the form R
where R c A x A and the ordinal a. It is therefore easy to reformulate

the prool in such a way as to eliminate the notion of an ordinal. We

') The well-ordering theorem was first proved by Zermelo [1],
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simply replace R by the family of all relations S a Ax A which are

similar to R and a by the family of all well-ordering relations R c Ax A.

The proof thus modified can be based on axioms E and is independ-

ent of the axiom of replacement. 1

)

Another method of eliminating ordinal numbers consists in replacing

them by the so-called von Neumann s ordinals to be discussed in § 9.

The proof of Theorem 1 obtained by this modification is also based

only on the axioms E but this time with the axiom of replacement.

The converse to Theorem 1 is also true:

Theorem 2: If there exists a relation well ordering a set A, then there

exists a choice function for the family P(A) — {0}.

In fact, for XeP(A)-{0} we define f(X) to be the first element

of X in the given well-ordering.

The following corollary is a direct consequence of Theorem 1.

Corollary 3 : For every set A there exists a relation well ordering A .

Now we shall formulate the so-called maximum principle
,
which is

often used in place of the well-ordering theorem.

We shall use the terminology introduced in Chapter IV. If A is an

ordered set, then we call a chain of A any linearly ordered subset of A.

An upper bound of a subset B of A is any element x of A such that

x ^ b lor every b in B. An element a of A is called maximal if there

is no x such that x > a. We say that A is closed if every chain B a A
has a least upper bound in A.

Theorem 4: If A is an ordered set in which every chain has an upper

bound and if there exists a choice function ffor the family P(A) — {0},
then A has a maximal element.

Proof. As in the proof of Theorem 1 we extend f by putting /(0)
= p, where p is a fixed element not in A. Let a be the ordinal defined

in the proof of Theorem 1. By the theorem on definitions by transfinite

induction there exists a sequence rp of type a such that for each £ < a

<Pi=f(\xeA: f\ l(%eA) a (x > ?>„)]}).
»?<!

*) A proof of the well-ordering theorem on the basis of the system E° can be

found in numerous books, e.g. Fraenkcl [2].
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If <ps # p then <p„ # p and > <p„ for every tj < £. If we had <pL

/ p for each £ < a we would obtain a transfinite sequence of type a

with distinct terms belonging to A which would contradict the defi-

nition of a. Consequently there exists an ordinal £ such that = p. If

p is the smallest such ordinal, then there is no element x satisfying the

inequalities x > % for each rj < p. Hence every upper bound of the

set {<pn : rj < P} is a maximal element of A.

°Corollary 5: (The so-called Zorn maximum principle) In every

closed, ordered set there exists a maximal element.

The following theorem is a special case of Theorem 4.

Theorem 6: If A is a family of sets with the following property

(*) (1J I) e d for every monotonie family B <= A
XeB

and if there exists a choice function for the family P{A)— {0}, then there

exists a maximal element in A. 1

)

For the proof it suffices to notice that the family A is ordered by

the inclusion relation and the union [J X is the least upper bound of B.

XeB

Theorems 4 and 6 show that the existence of maximal elements

follows from the axiom ot choice. We now show that, conversely, the

axiom of choice follows from the existence of maximal elements.

Theorem 7: If for every family of sets A satisfying condition (*)

there exists a maximal element, then for every family Z of non-empty

sets there exists a choice function.

Proof. Let A be a family of functions / such that

(i) The domain of / is a family Cf c: Z.

(ii) f(X)eX for all XeCf .

Let us recall that a function / with domain Cf is the set of pairs

(X,f(X)} where X e Cf . Thus the formula^ c: f2 means that C
fl

<= Cf2

*) Theorem 6 was proved by Kuratowski in [5]. The maximum principle was

formulated by Zorn [1]. The main merit of Zorn’s paper were examples which

showed how easy it is to establish existential statements with the use ot the maximum

principle. Before Zorn’s paper such proofs used transfinite induction and were much

more cumbersome.
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and ffX) = f2 (X) for all X e C
fl

:

(1) /i = !(CA c= cy )a a [/,w =/,(*)]}

,

xeC/i

that is, the function /2 is an extension of the function fx
.

We shall show that the family A satisfies condition (*).

For this purpose, suppose that B is a chain included in A and let F
denote the union /J (

B). The elements of the set F are pairs of the form

<X, y) where X e Z. In fact, each component / of the union F is a set

of such pairs. If {X, y t y e F and (X, y2 } e F, then there exist fv
and

f2 such that <JF, y x } eB and {X, y2} e/2 e B. This implies that

Ti =fi(X) and y2 = f2 (X).
Since the family B is monotonie, we have either fx

c= f2 or f2 c= fx
.

By (1) we infer that in both cases y x = fx
{X) = f2 {X) = y2 .

Thus the set F satisfies the condition

[<X, y t ) eF] a [<X, y2> e F] -> (y t = y2),

i.e. F is a function. The domain of this function is Cf , i.e. a family
feB

included in Z.

If <X , y} e F then there exists a function f e B such that <X ,
e /.

This implies that y = f(X); hence y = F(X) = f(X) e X. Therefore the

function F belongs to the family A. This shows that this family satis-

fies condition (*).

By assumption there exists a maximal element f0 in the family A.

We shall show that Cfo = Z. Suppose the contrary. Then there exists

an element X of the difference Z—Cfo which is a non-empty set. Thus

there also exists an element x e X. Letting/ = f0 u{<X, a*)}, we obtain

fo <= /> fo ^ / and / e A. But this contradicts the hypothesis that /0 is

a maximal element in A.

Hence the function f0 satisfies the condition f0 (X) e X for all X e Z.

Q.E.D.

Applications

1. Extension of an order to a linear order.

Theorem 8: For every relation R0 ordering the set A there exists

a relation linearly ordering A which contains R0 .
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Proof. Let K be the family of relations ordering A and containing

R0 . It can easily be shown that this family satisfies condition (*) of

Theorem 6, therefore it contains a maximal element R.

We shall show that R is the required extension of R0 to a linear

order. Since R is by definition an order, it suffices to show that the

relation R is connected. Suppose on the contrary that there exist

elements a,beA such that We shall show that

the relation

R' = Ru {<x, y> :
(xRa) a (6Tty)} = RuS

orders A. This will provide a contradiction since R' 3 R and R' ^ R.

Clearly, xR'x for every x e A. To show that the relation R' is tran-

sitive, suppose that xR'y and yR'z. One of the following cases holds:

(i) (xRy) a (yRz);

(ii) (xity) a (yRa) a (bRz)

;

(iii) (xRa

)

a (bRy) a (yRz) ;

(iv) (xRa) a (bRy) a (yRa) a (bRz).

Case (iv) is impossible: it implies bRa, which contradicts the hypo-

thesis. In case (i) we obtain xRz since R is transitive. Therefore we

also have xR'z. In cases (ii) and (iii) we obtain (xRa) a (bRz) by the

transitivity of R, thus xSz and, consequently, xR'z. This shows that

R' is transitive.

Finally, in order to prove that R' is antisymmetric, suppose that

xR'y and yR'x. We now have the cases analogous to (i)-(iv) where z

is replaced by x. Cases (ii)-(iv) are impossible, case (i) implies .v = y.

Thus Theorem 8 is proved.

°2. Let A be a distributive lattice and /0 its ideal not containing

an element b (see p. 158). The family of all ideals I zd Iq ot the lattice A

not containing the element b satisfies condition (*) of Theorem 6.

Therefore there exist maximal elements of this family. In particular,

there exist maximal elements in the family Pa j, of those ideals which

contain a but which do not contain b (provided that a non ^ b
,

(see p. 159).

If, in particular, A is a lattice with unit i and I is an ideal different

from A (hence / does not contain /), then there exists at least one
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maximal ideal different from A and containing /. Such an ideal is prime

(see Exercise IV. 12.2).

°3. Let A = m > a 0 and let M be a family of a power ^ m such

that each element of M is a subset of A and has the power m. Then

there is a set Z such that

(2) Z cz A, Z = m, A-Z = m

and ZnX^0^X-Z for every X e M.

Proof. In virtue of the well-ordering theorem there is a smallest

ordinal a such that there exists a sequence of type a without rep-

etitions composed of all the elements of A. Let x
s
denote the |th term

of this sequence and let be the £th term of a sequence of type a

(not necessarily without repetitions) which contains all the elements

of M.

We define by transfinite induction two sequences p and q of type a.

Namely pt is the first term belonging to M
$
—S

s ,
and qh

is the first

term x

^

belonging to (Aft— {p^})
— where

= {/v n < fWOv n < £}•

The elements p* and qs
exist, because the set St is of power < m

and Mt is of power m.

The set Z consisting of all p

^

where | < a satisfies condition (2).

The theorem above has an interesting topological application.
1

) Let

A = & (thus m = c) and let M be a family of non-empty perfect sets

(a perfect set is a set identical with its derivative). Such sets are of

power c.
2
) Hence there is a set Z which has a point in common with

every perfect subset of the set £ and whose complement possesses the

same property.

It can be proved that such a set is non-measurable in the sense of

Lebesgue.

4. Let X be an arbitrary set, R * a family contained in P{X). We
shall prove that the set A of all families R with the finite intersection

’) The theorem given in Example 3 and its application are due to Bernstein [2].

2
) See also Kuratowski [1], p. 514.
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property satisfying the condition R* cz R cz P(X) possesses property (*)

(see p. 256).

Suppose that B cz A and that the set B is linearly ordered by in-

clusion. We shall show that l R e A. Clearly, it suffices to show that
ReB

this union possesses the finite intersection property. Let n e N and

Xi e B for i < n. For each i there is a family R
t
e B such that X

t
e R

t .

Since B is linearly ordered, one of these families, say R0 ,
contains all

the remaining families. This implies Xi e R0 for i < n and since R0

has the finite intersection property, we obtain Q X
t ^ 0. Q.E.D.

I

° It follows from Theorem 6 that for every family R0 cz P(X) with

the finite intersection property there is a maximal family R with the

finite intersection property such that R c= P(X) and R contains R0 .

# 5. Hamel's basis.
1

) A set X cz <? is said to be independent if for

any finite sequence x0 ,
x x , ... , x„_i of distinct elements of X the

equation r0 x0 + r1 x 1 + ... +rn _ 1
.Yn _i = 0 is satisfied by rational

numbers r0 ,
if and only if all these numbers are equal to 0. An

example of an independent set is {j 2, ] 3).

It is easy to show that if B is a monotonie family of independent

sets, then f\X is also an independent set. By Theorem 6 this implies
XeB

°Theorem 9: There exists a maximal independent set.

Such a set is called a Hamel basis for S.

If H is a Hamel basis, then every number * ^ 0 can be uniquely

represented in the form

(3) x = £ rfii,
i<n

where n eN, bi are distinct elements of the basis and r
t
rational coef-

ficients different from 0. For if there existed a number * not having

such a representation, then the set H u {x} would be independent,

contrary to the assumption that H is maximal. On the other hand,

if there were two representations V rfi'i = r'/bf, then the elements
i < n j <m

of the set
{b

'

0 , ... , ,
b'ó, would not be independent.

J

) Hamel’s basis was first defined in Hamel [1],



8. THE WELL-ORDERING THEOREM 261

°Corollary 10: There exist non-continuous functions of the real

variable x satisfying for all x,y the equation

f(x+y) = f{x) +f(y).

In fact, let H be a Hamel basis and let x0 e H. Denoting by f{x)

the number /*
0 such that in the expansion (3) x0 occurs with the coef-

ficient r0 ,
we obtain the required function. This function is not con-

tinuous, because it takes only rational values and is not constant.

The theory given in this section enables us to prove the theorem

mentioned on p. 191.

°Theorem 11: If f is a function defined on the set T whose values

are cardinal numbers
,
then there exists a function F defined on T such

that F
t
= f t for every t e T.

Proof. Let t e T. Since f,
is a cardinal, there exists a set X such

that f t
= X. According to Corollary 3 there exist an ordinal a and

a relation R such that R orders X into type a. Let a
f
be the smallest

ordinal with this property. Now we define the function Fby Ft
= fV(oc

().

6. Chains in pseudo-trees. As the last application of the maximal

principle we shall prove the following theorem which will be needed

later in Chapter IX.

Theorem 12: Each chain C in a pseudo-tree can be extended to a

branch.

Proof. The family of all chains which contain C satisfies the assump-

tions of the maximum principle and so contains a maximal element.

Exercises

1. A family A of sets is said to be inductive if it has the following properties:

(i) if XeA, then every finite set Y c X belongs to A,

(ii) if every finite set Y c X belongs to A, then Xg A.

Show (without the axiom of choice) that the maximum principle is equivalent to

the theorem: every inductive family possesses a maximal element. 1

)

2. Show (without the axiom of choice) that the maximum principle is equivalent

to the following theorem: every linearly ordered subset Z of an ordered set A (that

is, a set with the property x, y e Z -> [(x < y)v (y < x)] is contained in the maxi-

mal linearly ordered set included in A. 2
)

*) The formulation of the maximum principle given in Exercise 1 is due to leich-

mtiller [1], this paper contains also other useful forms of the maximum principle.

2
) The result in Exercise 2 is due to Birkhofif [1], p. 42.
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3. Show (without using the axiom of choice) that the maximum principle is

equivalent to the following theorem: for every family F of non-empty sets there

exists a maximal family of disjoint sets contained in F.
1

)

§9. Von Neumann’s method of elimination of ordinal numbers

In this section our exposition is based exclusively on the axioms

of 27.

We shall show that it is possible to define sets possessing exactly

the same properties as ordinal numbers. We shall establish a one-to-

one correspondence between those sets and types of well-ordering

relations.

Definition: 2
) A set A is said to be an ordinal number in the sense

of von Neumann (briefly: a VN ordinal) if it has the following properties:

1. Every element of A is a set.

2. If X e A then X c A.

3. If X,Yg A then X = Y or X e Y or YgX.
4. If 0 # B c A then there exists an X such that X g B andXn B = 0.

Examples of VN ordinals :

(i) the empty set N0 = 0,

(ii) the set Nx = {0},

(iii) the set N2 = \0, {0}) = {N0 ,N l },

(iv) the set N3 = {N0 ,
A,

,
N2 },

(v) the set = {N0 , Nx ,
N2 ,

(vi) the set Aw+1 = A^u{Aw }.

We prove several properties of VN ordinals.

5. If A is a VN ordinal then there exists no finite sequence of sets

Xly ... ,
Xk such that Xk e X

l
e X2 g ... e Xk _ {

e Xk e A.

Proof. Suppose that there exist sets X
t , ..., Xk with this property.

Let B = (V,, ...,Xk }. Since Xk g A, we have Xk a A by 2 and thus

*) For the exercise 3 see Vaught [1], Many similar results dealing with the maxi-

mum principle can be found in the books: Sierpiski [1], Rubin and Rubin [1].

2
) The definition of VN ordinals is due to von Neumann [1]. In the recent litera-

ture on abstract set theory it is customary to call the VN ordinals simply ordinals

and to identify cardinal numbers with initial ordinals. In this way it is possible to

eliminate from set theory the primitive notion of a relational type.
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Xk_ 1 e A. By the same aigument, Xk _ 2 eA and so forth. Therefore all

the sets Xl9 ... 9
Xk belong to A and consequently B a A. None of the

sets Xi satisfies condition 3. In fact, for i > 1 we have X
x_ x

eX
x
c\B

and for / = 1 we have Xk sX1
nB. Q.E.D.

6. If A is a VN ordinal and M e A, then M is also a VN ordinal.

Proof. We prove that M satisfies 1-4.

(i) If X g M, then we also have XeA because 2 implies M c A
,

and thus X is a set.

(ii) Suppose that X e M and Y e X. We have

YeXeMeA,
which in view of the inclusion M c A implies that Y eXe A; conse-

quently Y g A by 2. According to 3 we have either Y = M or M e Y
or Y g M. In the first case we obtain

M g X g M e A,

and in the second

MeYeXeMeA
,

which contradicts Theorem 5. Thus Y e M. As Y is arbitrary we infer

that X c M. Therefore the set M satisfies condition 2.

(iii) If X, Y e M, then X, Y e A because M a A. Thus 3 implies that

either X — Y or I g f or Y e X.

(iv) Suppose that 0 # B c M. The set B is thus a non-empty sub-

set of A and in view of 4 it contains an element X such that XnB = 0.

This shows that M itself satisfies condition 4.

7 . If A and B are VN ordinals
,
then

(A e B) = (A <= B) a (A ^ B).

Proof. If A e B, then A c B by 2 and A # B since otherwise we

would have B e B, contrary to 5. Suppose that A ^ B and A c= B.

The set B— A is therefore a non-empty subset of B and according to

4 there exists a set X e B—A such that Xn(B—A) = 0. Now it suf-

fices to show that X = A, because X = A together with X e B imply

A e B, which proves the theorem.

The condition X e B implies X c- B. Since Xn(B— A) = 0, we get

X—A = 0, that is, X cz A. Suppose that A—X ^ 0. Hence there exists
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a set Y such that YeA-X and YnA—X = 0. Since A-X <= B, we

infer that Y e B, and according to 3 we have either Y e X or X e Y

or X = Y. But Ye X is impossible, for YeA-X; similarly X e Y is

not the case, because it would imply X £ A —X, that is (in view of

X e A) X e X e A, contrary to 5; finally, we cannot have X — Y since

Y e A and X e B—A.

Hence we have proved that A-X = 0, i.e. A c X, which shows

that A = X.

8 . Each VN ordinal is well ordered by the inclusion relation.

Proof. It suffices to show that if A is a VN ordinal, then

(a) the inclusion relation is connected in A;

(b) every non-empty subset ot A has a first element.

Now (a) follows from 3, 6 and 7; and (b) follows from 4 and 7.

9 . If A and B are VN ordinals ,
then AnB is also a VN ordinal.

Proof. We show that AnB satisfies conditions 1-4.

(i) From XeAnB it follows that X e A; thus X is a set.

(ii) From XeAnB it follows that X e A and X e B; hence X cz A;

X c B and consequently X c= AnB.
(iii) From X, Y e A n B it follows that X,Ye A; thus X = Y or

le Y or YeX.
(iv) From & ^ M a AnB it follows that 0 # M a A; hence there

exists an X such that X e M and XnM = 0.

10. If A and B are VN ordinals ,
then either A a B or B c= A.

Proof. Suppose that A ^ A n B ^ B. From 9 and 7 it tollows that

AnB e A and AnBeB. This implies AnB e AnB, which contradicts

5 because AnB is a VN ordinal. Hence A = A n B or B = A n B.

11 . If A and B are distinct VN ordinals, then either A is a segment

of B or B is a segment of A. Consequently, these sets are not similar

(with respect to the inclusion relation).

Proof. Suppose that A # B; by 10 we have either A c B or B c A.

Suppose that the former holds. It follows from 7 that A e B, which

shows that the elements of A precede (in the set B) the element A.

Hence the set A is a segment' of B , consequently it cannot be similar

to B (see Corollary 1.7).
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12. For every relation R well ordering its field there exists exactly

one VN ordinal ordered by the inclusion relation similarly to R.

Proof. Let Z be the field of the relation R and H the set of those

z e Z for which there exists exactly one VN ordinal Nz satisfying the

condition: Nz is ordered by the inclusion relation similarly to the

segment 0(z) of the set Z; in this case we write Nz ~ 0(z).

Suppose that 0(x) c= //. We shall show that x e H. By 11 there

exists at most one VN ordinal similar to O(V). Hence it suffices to

show that there exists at least one such VN ordinal.

Let

Nx = {*: \J(z<x)a{X = AO).
z

We are going to show that Nx is a VN ordinal. In fact, condition

1 clearly holds.

IfNz e Nx and Y eNz ,
then Y is a VN ordinal. Moreover, since Y eNz

~ 0(z), we see by 11 that Y is similar to a segment of Nz \ hence Y is

similar to a segment O(t) of the set O(z). Since t -< z -< x, we obtain

t e 0(x) and, consequently, teH and Y ~ N
t . In view of 11 this

implies Y = N
t
and finally Y eNx ,

because N
t
eNx . Thus Nz c: Nx ;

that is, Nx satisfies condition 2.

Condition 3 follows directly from 10 and 7.

Now let B be a non-empty set contained in Nx and let z0 be the

smallest element of Z such that NZq g B. If there were Y e NZq such that

Y e B, then we would have Y = NZ where z -< z0 ,
which contradicts

the definition of z0 .

Hence the set Nx is a VN ordinal. If z Y < z2 < x
,
then NZx ~ O(zj)

and NZ2 ~ 0(z2 )• Thus NZl
is similar to a segment of NZi . This implies

by 11 that NZl
c= NZi and NZl ^ NZz . Therefore, Nx ~ 0(x), which

proves that x e H.

By induction we now infer that H = Z. The set

N* = {X: \/ (x e Z) a (X = Nx)}
X

is a VN ordinal ordered similarly to Z. The proof is analogous to that

carried out for the set Nx .

It follows from properties 12, 11, 8 that VN ordinals indeed satisfy

all the requirements for ordinal numbers.
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In connection with the reasoning just given it is worth mentioning

that in the proof of property 12 we made essential use of the axiom

of replacement. Without this axiom the existence of the sets Nx and

N* could not be proved.



CHAPTER VIII

ALEPHS AND RELATED TOPICS

In this chapter we shall discuss applications of the theory of well-

ordering to the arithmetic of cardinal numbers.

§ 1. Ordinal numbers of power a 1

)

The cardinal number of an ordinal £ is the power of any set or-

dered in type £. We denote this cardinal number by £.

Thus

£ = W).
Ordinals of power a can be treated as the types of well-ordered sets

of natural numbers. This fact implies the following theorem.

Theorem 1 : All ordinals of power a form a set.

Definition 1 : The smallest ordinal greater than every ordinal of

power a will be denoted by coj .

The existence of the ordinal co 1 follows from Corollary VII.2.8.

Theorem 2: (£ < coj) = (£ ^ a).

Proof. If £ < a, then £ < by Definition 1. Conversely, if £ < ,

then there exists an ordinal £ such that £ < £ and £ = a, thus £ ^ £ = a.

Definition 2:
2
)

= a> l9 i.e. N\ = tV(co ,).

In Theorem 2, letting £ = we obtain 4^ Q. On the other hand,

a ^ X, and thus we have the following corollary.

Corollary 3: > a.

!

) Called by Cantor numbers of the second class. According to C antor, the first

class consists of finite numbers.
2
) X is the Hebrew letter aleph.
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It follows that the set of ordinals £ such that £ ^ a, that is, the set

is uncountable.

Theorem 4: If m < then m < a.

In other words, there is no cardinal which lies between a and

Proof. Let m < Then there exists a set M c yV(coi) such that

M = m. Let M = £. Thus £ ^ co
l . Moreover, £ ^ co

t as otherwise

£ = cój and m = . Therefore, £ < co l and thus, by Theorem 2,

£ ^ a and thus m ^ a. O.E.D.

The following form of the induction principle holds for ordinals

£ < co t .

Theorem 5: Let the set A of ordinals satisfy the conditions'.

(1) 0 eA,

(2) £ e A -* (£+1) e A,

(3) if cp is an increasing sequence and if <p(n) e A for n e N, then

[lim^n)] e A.
n

Then Wioof) a A.

Proof. Suppose that the theorem does not hold. Let a be the least

ordinal such that a < co
{
and a $ A. From (1) it follows that a # 0. If

a is not a limit ordinal, then a = £+1 for a £ in A, whence by (2)

£+1 e A, and a e A, contrary to the definition of a. It remains to

examine the case in which a is a limit ordinal.

Since a < a, there exists a relation R which well orders the set N
of natural numbers into type a.

We define a sequence k0 ,k Xi ... of natural numbers by induction:

let k0 be the first element of the set N with respect to the relation R

and let kn+l be the least number k > kn such that 0R (kf) < 0R (k)

(where 0R (k) denotes, as usual, the segment of N determined by k).

Such a number k exists because a is a limit ordinal.

Let (p{n) = 0R(kn). Thus (p(n) < (p(n + 1). Moreover, cp(ri) < a for

n = 0, 1,2, ... ,
because 0R(kn) is a segment of a set of type a. If £ < a

then there exists a number m such that 0R(m) = £. Since the sequence

k0 ,k lf ... is increasing, it follows that for some n
,
0R{m)

c= 0R (kn),
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whence £ ^ 99(77). Hence a = lim^(/z). On the other hand, 99(77) < a
n<G>

implies 99(77) e A for n = 0
,

1
,
2

,
... and thus, by (3), a e A. But this

contradicts the definition of a.

Clearly the set ^(wj) satisfies conditions ( 1 ) and (2 ). In fact, a more

general theorem holds for W^of).

Theorem 6: //£ < co 1
and rj < a> L ,

then £ + 77 < a) l and £ •
77 < oj x .

For £ + 77
= £ + ?? and £ •

77 = £ •
77; since £ < a and 77 ^ a, a + a = a

= a • a, it follows that £ + 77 ^ a and £ •
77 < a.

Using the axiom of choice we shall show that the set W(to x) satisfies

condition (3).

°Theorem 7 : If 99(0) < 99(1) < ... and (p(n) < co
x ,

then lim 90(77) < co x .

n<(o

Proof. Let a = lim 90(72). Then W(oi) = {JW(cp{n)). The set PF(a),

n<io n

being a countable union of countable sets, is countable (see p. 171 ).

Thus oc < co
i

.

Application. Let Fa be the set defined on p. 235 .

°Theorem 8 : The family Fa>l
is identical with the family Bor of Borel

sets ( i.e . the least o-additive and d-multiplicative family containing all

closed sets).

Proof. By transfinite induction with respect to a it is easy to show

that for every a (in particular for a = coj, Fx <= Bor. It remains to

show that the family FCOi
is cx-additive and ^-multiplicative. For this

purpose let A" be a sequence of sets such that Xn e F0l for all n. Thus

for all 77 there is an ordinal a„ such that Xn e Fan ;
we may assume that

a„ is the least ordinal greater than cc
ll _ l

such that Xn e Fan . By Theorem 7

it follows that there exists p such that a„ < p < for every 77, more-

over, we may assume that p is, for instance, odd. Then (J X„ e (U Fy)a
y<P

= Fp+l a F
(0l

and
f 1

Xn e ( [_) Fy),5 = Fp+2 c F<o
x

•

y <0 + 1

Exercises

1. Prove (without using the axiom of choice) that if a < co t and ft < then

ccP < toj .

2. Let 0a be the family of analytically representable functions of class a (see

p. 236). Prove that the union i

J 0« is the least family of real functions such that

a<coi
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(i) every continuous function belongs to the family,

(ii) if /„ belongs to the family for neN and if f(x) = lim fn(x) for every a,
/»= 00

then / belongs to the family.

Discuss the role played by the axiom of choice in the proof of this theorem.

3. If {X2 }a<(0l is a sequence of type co
t of closed subsets of the space S or NN

m

and if Xa => Xtz+l for all a < to iy then there exists an ordinal P < a> 1 such that

Xa = Xp for all a ^
Hint: Denote by N0 , Afi , N2 , ... a sequence whose terms constitute an open

subbase of the space. Associate with the ordinal a where Xa # Xa+1 the least number
m such that Nm r\X(x ^ 0 = Nm—Xa+1 and show that with distinct a are associated

distinct natural numbers.

4. Prove that if A is an arbitrary subset of S (or of NN
), then for every transfinite

sequence ot derivatives of A (see p. 235) there exists a term A(0) such that A

W

= AW
for all a ^ /?, where < a>i

Hint

:

Notice that all derivatives A (a ) are closed sets and apply Exercise 3.

5. Prove the following theorem of Cantor-Bendixson: Every closed set A S
(or A Nn) is the union of a perfect set and of a countable set.

Hint: Show that the difference A—A‘ is a countable set (see Exercise V.2.5).

6. Show that 2 2 ° 3* without using the axiom of choice.

Hint: The set P{NxN) is the union ZulJ Zf, where Zt is the set of relations

£ <Ct>l

well-ordering their fields in type £ and where Z is the set of relations which are not

well-orderings.

§ 2. The cardinal N(m). Hartogs’ aleph 1

)

We now generalize the construction carried out in § 1 for the cardinal

a to the case of an arbitrary cardinal rn.

Theorem 1 : For every cardinal nt there exists a set

Z(m) = {£: £ < m}.

Proof. Let A = nt. Every relation R whose field is contained in

A is a subset ot Ax A, that is, R c P(AxA). Therefore there exists

a set R ot all relations R a P(AxA) which well order their fields.

Associate with every relation R e R its type. By the axiom of re-

placement we obtain the set Z(m) of ordinals such that

£ e Z(m) - £ ^ nt

.

') f he construction of N(m) which generalizes the construction given in Section 1

is due to Hartogs [1]. The letter “aleph” was first used by Cantor.
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Conversely, if £ ^ m, then there exists a relation R ordering a subset

of A in type £. Thus £ e Z(m). Q.E.D.

Theorem 2 : If £ e Z(m), then FT(£) c: Z(m).

For r] < £ implies that rj ^ £.

Definition: N(m) = Z(nt).

By this definition we have correlated with every cardinal m an aleph

Z(m). This operation is referred to as Hartog's aleph function.

Theorem 3 : N(m) 4^ tn.

Proof. The set Z(m), as a set of ordinals, is well ordered by the re-

lation ^ (see p. 229). Let £ = Z(mj. Suppose that K(m) ^ m, that is,

£ ^ tn. Then £ e Z(m) and thus by Theorem 2 the set JT(£) is a seg-

ment of Z(m). But this is impossible because by Theorem VIf.2.3

fT(£) = £ = Z(m), and no set is similar to its segment (p. 227).

Corollary 4: m < m + N(m).

The inequality ^ is obvious and the equation is impossible as it

implies that N(m) ^ tn.

Theorem 5: If there exists an ordinal £ of power m, then N(m) > tn.

Proof. By Theorem 2, JF(£) c= Z(m) and thus Ns

(m) ^ £ = tn;

hence, by Theorem 3, N(m) > nt.

Theorem 6: For every set X of ordinal numbers there exists an or-

dinal a such that £ < a for every £eL
Proof. Let S = (J fL(£), m = S and a = Z(tttj. Since £ = FT(£)

and FT(£) c: S for every £ e X, we have by Theorem 5

£ = fV(i) < S = m < N(m) = Z(m) = a.

Theorem 7: K(ttt) < 2s(m) ^ 2
2 'n

\

Proof. Let A = nt and let A" be the family of those relations R c A x A

which well order their fields. Clearly, X c= P(A x A). The set X is the dis-

joint union

(2) X = U X*
aeZ(m)

where Xa is the subfamily of X consisting of relations of type a. To

every subset Y <= Z(nt) there corresponds in a one-to-one manner the
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union l J
= F(Y) c X, therefore the family of subsets Y is of power

aeY

^ 2X = 2
im

\ Thus 2«(m) < 2
2m

\ Q.E.D.

Exercises

1. Using the axiom of choice, show that

(3) K(m) ^ 2m\

Hint : From the axiom of choice it follows that there exists a set T containing

exactly one element from each of the sets Xa (see formula (2)).

From the identity m 2 = m which we shall prove in §11, p. 309, we conclude

a stronger inequality, namely

X(m) ^ 2
m

.

2. In the definition of the set Z(m) and of the cardinal N(m) replace the relation

;C by sS* (see p. 182) and prove for so defined N*(m) the theorems analogous to

Theorems 3-5. [Lindenbaum]

§ 3. Initial ordinals

The ordinal cp is said to be an initial ordinal if (p is the least ordinal

£ such that £ = >; that is:

(1) y < (p -> y <q>.

For example, the ordinals co and are initial ordinals. We shall also

denote co by co0 in agreement with the notation for initial ordinals

which we shall introduce in this section.

Theorem 1 : For every infinite cardinal m, the type cp of the set Z(nt)

(that is, of the set of all ordinals of power ^ m) is an initial ordinal.

Since £ < y e Z(m) implies £ e Z(m), it follows that (see p. 230) Z(m)

= W(cp) for an ordinal cp. Thus the order type of Z(nt) is cp. We shall

now prove (1). Let y be an ordinal such that y < cp. Obviously y ^ f.

Now we remark that y ^ m because y < cp implies y e W{<p) = Z(m).

Since cp £ W(cp), we also have (p m and hence it follows that

ip y which proves that y < <p. Thus (1) holds.

The proof of the following more general theorem is similar.

Theorem 2: Ifm is a function defined in a set X and mx > a for every

x e X, then the ordinal (J Z(nt.x ) is an initial ordinal.

xeX
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For a given initial ordinal 99 we shall denote by P(cp) the set of all

initial ordinals ip < cp and we let

(2) i((p) = Pfp).

Definition 1 : The ordinal t((p) is said to be the index of the initial

ordinal 99.

Clearly, i(co) = 0, and f(coj) = 1.

Theorem 3: If ip and (p are initial ordinals and if ip < 99, then i(ip)

<

Proof. By assumption, ip e P(<p), and it follows that P(ip) is a seg-

ment of the set P(<p); thus P(ip) < ~P(<p).

Theorem 4: To distinct initial ordinals there correspond distinct indi-

ces.

Theorem 4 follows from Theorem 3.

Theorem 5: Every ordinal a is the index of some initial ordinal.

Proof. Suppose that a is not the index of any initial ordinal. Assume,

moreover, that a is the least ordinal having this property. We shall

show that these assumptions lead to a contradiction with Theorems 1

and 2.

In fact, if a = /?+l then let ip be such that i(ip) = ft,
and let 99

= Z(ip). By Theorem 1, 99 is an initial ordinal; moreover:

W((p) = Z(ip) = W(ip)Kj{y: (y = ip)}, whence P((p) = P(ip)u{ip}.

Thus i((p) = i(ip)+ 1 = a.

It remains to consider the case where a is a limit ordinal > 0. By

assumption, to every £ < a there corresponds exactly one ordinal ip$

(by Theorem 4) such that 1 (ip*) = £. Let 99 = IJ Z(^). By Theorem 2,

f <a

99 is an initial ordinal. Moreover, ipt e P{cp) for £ < a. Finally, if ip e P{pp),

then ip e Z{ip|) for some £ < a and thus ip < ip^ + x ,
which by Theorem 3

implies i(ip) < £+1 < a; therefore ip coincides with one of the ordinals

Vf, £ < a. Thus P((p) = oc, that is, i((p) = a.

On the basis of Theorem 5 we assume the following definition.

Definition 2: Let oja denote the initial ordinal whose index is equal

to a; that is, i(oja)
= a.



274 VIII. ALEPHS AND RELATED TOPICS

In this way we have associated with every ordinal an initial ordinal.

Every initial ordinal is associated with its index and distinct initial

ordinals are associated with distinct indices.

It is easy to check that the following theorems hold.

Theorem 6: (a < ($) = (coa < cop) = (coa < cóp).

Theorem 7: Z(coa)
= W(coa+1 ), in other words, X(coa) = coa + l ,

and

{ J Z(c%) = W(tox), when X is a limit ordinal.

f<A

Theorem 8: If X is a limit ordinal, then cov = lim cot.

s
6 <A

Thus the function (Ot is continuous, and it follows that the ordinal

cox is cofinal with X.

Theorem 9: Every initial ordinal is of the form cov for some y.

Proof. Assume that a > 0 and that

coa = coyi • n
t
+coV2 • n 2 + ... +(oVk • nk ,

where y t > y 2 > ... > y*.

By Theorem VII.7.4 it follows that

(3) a>Vl ^ coa < + 1).

Since y t ^ 0, y t
= 1 + Ó for some <5; thus

(oVx • (n
{ + 1) = • («! + 1) = co • ft>'

,

(/? 1 + 1).

The power of the ordinal t-rj equals the power of rj§, because one is

the power of the set lV(£)x W(rj) and the other is the power ot the

set W(rj) x W(£). Therefore

ft)
Vl

(/?! + 1) = («i + l)ft> * (O
3 — ft) • co

6 = coVl
,

and by (3) we have co yi = (ox . Since (oYl ^ coa ,
we hawe by (1)

ft)* = o>Vl
j

since ft)a is initial.

Theorem 10: Every limit ordinal i ^ 0 is cofinal with an initial or-

dinal a, where a is the least ordinal cofinal with X.

Proof. We shall prove that the least ordinal a cofinal with X is an

initial ordinal. Let y < a. It suffices to show that y # a (see formula

(1)). Suppose on the contrary that y = a. Then there exists a sequence cp

of type y whose values are exactly all ordinals £ < or, thus a = Wrxupif).
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It follows then by Theorem VII.4.2 that the ordinal a is cofinal with

some p ^ y. Thus 2 is cofined with /?, which contradicts the definition

of a.

For every limit ordinal a we shall denote by c/(a) the least £ such

that a is cofinal with a>|. Thus, for example,

cf(oj) = 0, c/(cO,) = 1, c/(cOa>) = 0, cf(«)
(0i )

= 1.

Clearly, for every limit ordinal a we have

(4) cf(oja) < a and c/(a) < a,

since a ^ a>a and thus a is cofinal with a>| for some £ ^ a. In §4 we

shall prove that, for every ordinal a,

°(5) cf(“>a+i) = a + 1

(see p. 278).

If cf(o)Y) = 7, we call cov a regular initial ordinal; otherwise it is

called a singular initial ordinal. We use the same terminology for alephs

which we shall introduce in the next section. Note that according to

(5) o)d+l is a regular initial ordinal for each <5.

From the definitions given above we obtain the following simple

result which we shall need in the next section: If 2 is a limit ordinal

and c/(2) < 2, then is lim<p(£) of an increasing sequence y of type

f <a

CL — OJc/(A) •

§4. Alephs and their arithmetic

Every cardinal number of an infinite well-ordered set, that is, any

power of an ordinal ^ m (see § 1, p. 267) is called an aleph.

The axiom of choice implies that every infinite cardinal is an aleph

(see Corollary VII.8.3). However, many theorems about alephs do

not require the use of the axiom of choice; in particular, the law ol

trichotomy (see p. 228) holds for alephs.

For every ordinal a, let

N* = d)a ,
i.e. = ^(wj.

In particular, N0 = a, N, = (see Definition 1.2). By Theorem
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3.7 we have

(0)

Theorem 1: If a < f then X« < X^.

Theorem 1 is an immediate consequence of Theorem 3.6.

Theorem 2: Ifm < Xa , then m is an aleph.

For m is then the power of a subset of a well-ordered set.

Theorem 3: The cardinal Xa+1 is the direct successor of Xa ; that is
,

there exists no cardinal m such that Xa < m < Xa+1 .

Proof. If in < Xa+1 then nt is the power of a subset of the set

fV(coa+l), and thus is the power of well-ordered set. Thus m is an aleph:

m = X^ and by Theorem 1, Xa < m < Xa+1 implies a < f} < a-Fl,

which is impossible.

The proof of Theorem 4 is similar.

Theorem 4: If a is a limit ordinal and if Xs < nt for every £ < a,

then m < Xa .

Theorems 3 and 4 imply that the hierarchy of alephs is in a certain

sense complete: it cannot be enriched by the introduction of new car-

dinals comparable with the alephs.

Theorem 5:
1

) X* = Xa for every a.

Proof. Let £ < coa and 7
;
< coa where £ # 0 or r\ ^ 0. Expanding

the numbers £ and ry at the base o> (see Theorem VII. 7. 5) and adding

whenever necessary terms with coefficient 0, we can represent £ and /y

uniquely in the form:

where y y > y 2 > ... > yk and for all / ^ k either /«, > 0 or n
t > 0.

By Theorem 3.9, coa is of the form «/. Since £ < cox and rj < coa ,

it follows by (1) that (see p. 250) X > y l .

Let 0(0, 0) = 0 and let

( 1 )

£ = ajyi • +wVl • m 2 + ... +(oVk • mky

rj — coVl • n
x
+(oV2 ’ n 2 + ... +coyk • nk ,

(2) 0(£, rj) = wVl • J(m
y , n^-t- ... -f co

Vk • J{mk ,
nk).

*) Theorem 5 was found by Hessenberg [1].
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In this way we have associated with every pair of ordinals £, rj smaller

than coa an ordinal 0 (£, rj) which is smaller than coa (since y x < A).

We prove that

(3) [0(1, rj) = 0(C, r)] - (£ = C)a (^ = t).

This formula is obvious in the case in which 0(£, rj) = 0 = 0(t, r),

for then £ = rj = 0 = £ = r, so suppose that 0(1, = 0(C, t) > 0.

Then £ > 0 or rj > 0 and £ > 0 or r > 0.

Let £ and r be represented as

£ = Cl)**
1 * /?1 +C'/2 * /?2 + ... + r«>'

>h
• Pht

(4)

r = a/ 1 •
<7 ,
+ar2 •

<?2 + • •• +w " *
<7/.,

where for every i ^ h either p t > 0 or q t > 0. Then

(5) 0(£, r) = co6i • J(p l9 qj)+ ... To/5 '1 - J(ph , qh).

Since all coefficients in the expansions (2) and (5) are positive and

since expansion at the base co is unique (see p. 251), it follows that

k = h, yi = di and nj) = /(/?,-, qj) for i = 1
,
2 , ..., k.

Thus nii = pi and = q t
for i ^ ^ and hence, by (1) and (4), £ = £

and rj = r. Thus (3) holds.

Finally, every # < a

)

a is a value of the function 0. For assume &

= eoVl • r l
+ojy

2

• r2 + ... -fcoy* • where r,
,
r2 ,

are positive; it

suffices to take as £ and rj the ordinals (1) where = /f(r,) and /?*

= L(r
f) for i = 1 , 2, ..., k. If # = 0 it suffices to let £ = rj = 0.

Therefore the function 0 establishes a one-to-one correspondence be-

tween elements of the set W((oa) and ordered pairs of elements of lV(oja).

Thus the sets fV(oja) and W(ora) x are equipollent. Q.E.D.

Corollary 6: K+ ^p = Nma* ( «,i3)
= K '^

p ,
where max(a,0) = a

if P and max(a, ($) = /3 if {3 ^ a.

Proof. Assume that max(a,/?) = a. Then ^ Xa and

^ K+Kp ^ K+K = 2Xa ^ xa
* x« = xa ,

Xa ^ * Kp < Na • = Xa ,

whence the desired identities follow by the Cantor-Bernstein Theorem

(p. 185).
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Theorem 7: tV(coa+l )
— W((oa) = Xa+1 .

Proof. Let IV(mx+1 ) = A and fV(coa) = B. The difference A- B is

a well-ordered set and thus its cardinal number is an aleph, which we

shall denote by Xy . The identity A = (A-B)uB implies that Ka+1
= Xy+Ka = Xmax(y ,a) ,

thus a + 1 = max(y, a). Asa < a+1, it follows

that y = a+ 1 .

°Lemma 8 : U F
t < £ Ft ,

where F is any function whose values are
teT teT

sets.

For

(6) E £ = {<;,*>: (t e T)a(x e F,) };
teT

on the other hand, the set U F
t

can be obtained from the set

teT

{</,*>: (t e T) a (x e F
t)} by the mapping/ defined by the formula

/«f, *» = x, and thus it has power less than or equal to that of the

latter (see Theorem V.5.1).

°Theorem 9: cf(cox+l ) = a+1.

Let P = cf(coa+l ). Then the ordinal co
p is cofinal with coa+l and there

exists a transfinite sequence cp of type co
p
whose limit is coa+1 . It follows

that if £ < coa + ,

,

then there exists an ordinal £ < o)p such that £ < 99 (C)

or, in other words,

(7) W+C))-
:<u>

p

Because lV(ajp) = X
/3 ,

and because for all C < ojp we have

fV(<p(.0) < K+1 ,
that is, ^(y(0 ) <

it follows by (7), the lemma and Theorem 7.8 that

k.+
. = u^(0) < E w(<p(0) < n# • K, =

C < C<(Op

Thus a+1 ^ max(a,/?) and a+1 ^ /?. At the same time (see 3(4))

cf(M<x+i ) ^ a + 1
,
that is, < a+ 1

,
and thus ft

= a+ 1 .

°Theorem 10: For arbitrary a,
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Proof. Since (£ ^ a) -* (X
f < N'a) and

{TTTTT} < Ka ,

it follows by Theorem 8, p. 195 that

K'K = x„,
fsSoc

which implies (8), because

X, « S X{ .

°Theorem 11: If ol = p+l, then

(9)

On the other hand, if a is a limit ordinal > 0, then

(10) I = K..
«<a

Proof. Let a = /? + 1 . Then (£ < a) = (| < ft) and by (8)

I R, = S
l<a

Suppose that a is a limit ordinal; then

= U W(p>d\
l<a

hence (by Lemma 8)

«, = W\) = u < I = I x
{ ,

!<<x |<a * <a

which implies (10), because by (8)

Sk; <k..
i<a

The following more general theorem can be proved in a similar

manner.

°Theorem 12. If cc is a limit ordinal
, (p is a transfinite increasing sequence

of type a and X = lim then
!<a

2 ^W) =
•

| <a
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Remark. It is interesting to note that the aleph Xj and more gen-

erally, the aleph X„ can be defined without appealing to the notions of

ordinal or cardinal numbers. In order to formulate the appropriate

theorem, we introduce the following definition: set A contained in

the cartesian product Xn = XxXx ... xX is finite in the direction of

the k-th axis provided that for every element (x
x ,

... , ,
xk+i , ... , xn)

belonging to .Y"
-1

the set

{xk • 1 > • • • »
Xk — i , Afc ,

Xk + i , . • • ,
A„) G A

f

is finite (more figuratively: every straight line parallel to the A:th axis

intersects A in a finite number of points).

The following theorem holds:

A necessary and sufficient condition for the set X to be of power ^ X„

(n finite ^ 0) is that the set Xn+2 be representable as a union A
{
u ...

KjAn+ 2 ,
where A k is finite in the direction of the k-th axis.

1

)

§ 5. The exponentiation of alephs

First of all we note the following elementary theorem.

Theorem 1: If a < ft, then X*^ = 2
s

p

.

Proof. From the inequality 2 < Xa < 2
s
* and from the laws of ex-

ponentiation for cardinal numbers (p. 181) we obtain

2
S/J
^ x£* ^ 2

Sa 's
^ = 2

SfJ

,

which implies the desired equality.

°Thhorem 2: (The Hausdorff recursion formula 2
).

Xct+ 1
•

Proof. We shall examine two cases.

Case I : a + 1 ^ f. Then by Theorem 1 we have

vs0
v> a + 1

‘) The characterization of given here is due to Sierpiski [22], Kuratowski [14],

and Sikorski [2].

2
) The Hausdorff recursion formula is due to Hausdorff [1].
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On the other hand, since K>+ , < < 2
k

')

,
we also have

(3) N, + ,
= 2

Xf>
• K,+ , « 2

K(i
• 2

Xp = 2
K

'
,+1</, = 2Kf .

By (2) and (3) it follows that

= 2*e = V& < «.+ , < 2
Ki> = Njf,

which implies ( 1 ).

Case II: /? < a+1. In this case,

(4) a » ’a + 1 ^ v>a+l »^a+ l
v>a+l »^a+i*

It remains to show that the opposite inequality also holds. For this

purpose we consider the set W(coa+l )”
((0P\ that is, the set of all trans-

finite sequences of type cop whose terms are less than coa+1 . We shall

show that

(5) c (J W(f)
Wito

fi>.

$ <U)(Z+ l

For if (p is a transfinite sequence of type co
p
< coa+ 1 ,

then (see Theorem

4.9) the set of its term is not cofinal with W(o)a+1 ). Thus there exists

an ordinal | < eoa+1 for which W(£) contains all the terms of the se-

quence 99 ;
hence 99 e W(£) W((

°P )
. Thus inclusion (5) holds.

As W(£) = for i < <u„+1 , it follows that

Therefore from (5), by Lemma 4.8 and by Theorem V.7.8 we obtain

£ <<wcr+l * <tua +

1

which together with (4) proves (1).

°Theorem 3: (The Tarski recursion formula 1

)) tf <p is an increas-

ing sequence of a limit type a and A = lim 99(^) and ft
< cf{a), then

£ < a

= V in particular
, = X for every limit ordinal a

£<a f <a

and for every
ft
< cf(ct).

Proof. By assumption, c/(A) = c/(a). Thus no transfinite sequence

of type o)
p with values in kF(A) is convergent to A, hence for every such

*) Tarski’s recursion formula is due to Tarski [2].
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sequence there exists £ < a such that this sequence belongs to

W(>(£))
IF<<#

*
,)

• Therefore

JV(X)Wi"0 c (J W(<p(£))WimP\
l<a

which implies that

X? I X*f{) •

£<0C

The opposite inequality follows from the remark that K ;.
^ a, which

implies that

xj* = x, • x^ x^ » Z X»ff,

.

£<a

°Theorem 4: (The generalized Hausdorff formula) For finite n,

(8) X^„ = X^-X.+ „.

Proof. For n = 1, (8) coincides with (1). Assume that (8) holds for

a particular w. Replacing in (1) a by a + n we obtain

. s>
^a + n + l ''a+n ”a + n+l>

thus by the induction hypothesis and by Corollary 4.6 it follows that

x&„+1 = x2»- x. + .- x. + „+l = x^- x. +n+

'

t
.

Thus (8) holds for n+ 1, and hence it holds for arbitrary finite n.

Setting a = 0 in (8) and using Theorem 1, we obtain the following

theorem.

°Theorem 5: (The Bernstein formula 1

)) For finite n,

(9) X^ = 2
kP X.

.

Examples

1. (9) implies that

X Ko '-\Ko v>
1
= Z vSj .

2. Theorem 1 implies that

0=2.
l

) See Bernstein [I]. For further formulas of the kind given in Theorems 2-4

see Bachmann 111.
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3. In formula (6) let a = co ly p = 0. Since c/(co x) = 1 ,
we have by

Theorem 4

vs^o V S>^°
•

We now give a theorem in the proof of which we shall use Konig's

theorem (p. 198):

°Theorem 6: If a is a limit ordinal and fi ^ c/(a), then for every

cardinal m

(10) X« # mT
Proof. Let £ = cf(a). Then the ordinal co| is cofinal with a; that is,

there exists an increasing sequence (p of type co
$
such that

lim^C) = a.

C <0)

By applying Theorem 4.12 it follows that

(11) K« = XX<{>-
C < W £

By Konig’s theorem we have

(12) s *w> < n •

C <o> C<a>

On the other hand, since X^j < X* and a) = X^ ^ X^, we obtain

(13) n
C < a>£

Formulas (11), (12) and (13) imply that

(14) N, <

If there existed a cardinal m such that X, = tn
N/
\ then we would

have

x£* = mw = m S/S = Xa ,

contrary to (14).

We conclude that (10) holds.

°Corollary 7 : If ft > cf(a), then Xa < X^.

From Theorem 6 it follows, in particular, that for no m and ft
do

the equations X ra
mX/?

,
X% = mHp

,
Xa = m

sp
hold (see p. 247 for

the definition of e); for (see p. 275) cf(oj) = cf((ow) = cf(e)
= 0.

*
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It also follows from Theorem 6 that if K
t0n = m

S/3

,
then p can

assume only one of the values 0, 1, ...,« — 1. In fact, cf(con) = n , and

thus for p ^ n the equation = m N/J
does not hold.

Corollary 8: X® # 2«N .

For = 2S ° implies that Nx° = 2So Xo = 2S ° = whereas by

Corollary 7 we have Xx° >
We shall conclude this section by evaluating the power of the set

Pn(M) = {X c= M: X = n}, where M = nt.

For m and n finite the power of Pn(M) is

°Theorem 9: If M is an infinite set of power m and if n ^ A/, then

P„(M) has power m".

Proof. Let Z be a fixed set of power n. To every X e Pn(M) there

corresponds in a one-to-one manner a non-empty family C(X) of func-

tions / e Mz such that f l (Z) = X; clearly, C(X')nC(X") = 0 for

X’ ^ X". By applying the axiom of choice we conclude that the

power of Pn(M) is not greater that Mz = in".

Conversely, to every function / e Mz
there corresponds the set

Af = {<z,/(z)>: (z g Z)}. This set has power n, because the set Z has

power it. Moreover, Af a Z x M and the set Zx M has power n • m = nt.

If f ^ f" and, for example, f'(z0) # f"(z0), then Af , ^ Af.,, as

(z0 ,f'(z0)yeAf , — Af ... It follows that the set Pn(ZxM) has power

^ mn and thus Pn(M ) has power ^ m" for the sets Pn(ZxM) and

Pn(M) are equipollent.

°Corollary 10: If M = m ^ a, then the set {X c= M \ X < m} has

power mr
-

r < m

§ 6. The exponential hierarchy of cardinal numbers

In Section 4 we saw that the sum and the product of two alephs

coincide with the greatest of them. Thus addition and multiplication of

alephs are extremely simple operations. On the other hand the operation

of exponentiation is by no means simple: given two ordinals a, /?, it is in
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general impossible to evaluate the ordinal £ satisfying the equation

x2* = X
{

.

In the present section we shall consider a class of cardinal numbers

for which the laws of exponentiation are relatively simple. In the defi-

nition of this class we shall make use of sets Rx which we defined

on p. 238. These sets satisfy the following recursive equations

R0 = 0, R. + i = p(R.), R> = UR- f < ^
where A is a limit number.

Let cu = The cardinals d| constitute the exponential hierarchy

of cardinals.
1

)

In order to derive arithmetic laws for these cardinals we must first

establish several properties of the sets R3 .

Theorem 1
:

(a) Rx c R
p for a < /?; (b) X e Rp -* X c= Rp .

Proof. The proof is by induction with respect to p. It suffices to

show that if po ^ 0, and if the theorem holds for all p < p0 ,
then it

also holds for p0 .

The case p0 = 0 is obvious. If po = /? + 1 and a < p0 , then a ^ p

and thus by assumption R3 <= Rp
and from (b) we obtain Rp <= Rp+l .

If po is a limit ordinal and a < P0 ,
then Ra c= R

Po
because R

Po
is the

union of all R$ for £ < p0 . Part (a) is proved.

Assume now that X e RPq ;
then p0 ± 0 and po either has the torm

P+ 1 or else it is a limit ordinal. In the first case X e P(Rp),
that is,

X c~ Rp and thus X c Rpq
by (a) proved above. If po is a limit ordinal,

then there exists p < po such that X e Rp and thus, by assumption,

X c- Rp
and by (a), X e RPq . Thus part (b) holds.

Theorem 2: Rx xRa a Ra+2 -

Proof. The elements of Ra x R% are pairs {X, Y) where X,YeRa .

As {X, Y} cz R^ and {X} a Ra ,
thus {X, Y) e R(X+l and {2f} e Ra+] .

It now follows that {X, y}( c= Ra+1 ,
and thus |{2f}, {X, T}|

e R%+ 2 • Q E.D.

Theorem 3: If a is a limit ordinal then Ra xRa a Ra .

The proof follows from Theorem 2.

') In the current literature the cardinals are usually denoted by the Hebrew

letter “beth” with the index £.
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Theorem 4: /?* => Nat where Na is the ot-th VN ordinal.

Proof. For a = 0, Ra = Na = 0. If Rx id Nx then Nx e P(R) = Rx+ i

and thus {A^} c Rx+l . As Nx a Ra ,
it follows that Nx u{Nx }

c Ra+U
whence Na+1 c Rx+1 . If a is a limit ordinal, and if the theorem holds

for £ < a, then since Nx c U Nx cz [J R = Rx .

£<a £<a

Theorem 5: Rn = 2" for n < co; a0 = N0 .

Proof. The first part of the theorem follows from the definitions

by induction.

To prove the second part of the theorem it suffices to prove that

there exists a one-to-one mapping vn of the set Rn into N where vn+ j

is an extension of vn .

Put v0 = 0; for Xe Rn+l let vn+l (X) = vn{X) if Xe Rn \ if X e Rn+ x
-

— Rn then let p„ + i(30 = Y] 2Vn(VJ\ where Y0 ,
Yx , ... , TJt_ 1 are the

j<k

elements of X ordered so that i’n (Iy-i) < vn(Yj) for 1 < j < k. It is

easy to show that the functions vn are one-to-one and that rn+1 is an

extension of vn .

Theorem 6: aa+1 = 2°*; cia < dp for a < p.

The theorem follows from the definitions and from Theorem 1.

Theorem 7: a* = a*.

Proof. The theorem is obvious for a = 0. If it holds for the ordinal

p, and if a = /?+l, then it also holds for the ordinal a, because a3

= Rp+l = 2°^; and thus ai = 2
<VJ+a/

*, which implies that a* = aa as

dp ^ Cty + Cty ^ ci^ = a^. Finally, if a is a limit ordinal, then by The-

orem 3 it follows that a* ^ aa ; and because aj ^ a*, we conclude that

(la (ta •

Corollary 8: da + dp = dx dp = a max(atl/3) .

The corollary follows from Theorem 7 with a proof similar to that

of the analogous theorem for alephs (see p. 277).

Theorem 9 : If a is a limit ordinal then

Uot /*
i

•

s
6 <0C
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Proof. On the one hand,

|<a |<a |<a

On the other, aa = aa • aa ^ aa • a by Theorem 4, since A* = a. But

since aa • a ^ a^, the desired equation follows by the Cantor-Bern-
£<a

stein theorem.

Remark. The axiom of choice is used in this theorem because the

very definition of the infinite sum of cardinal numbers demands the

use of this axiom.

We shall now establish several laws concerning exponentiation of

the cardinals cn.

Theorem 10: If ol ^ p then a*/ = a^ +1 .

Proof. at+i = < a? < (2“*)°^ = 2‘“"v = 2°f = a„+1 .

Theorem 11: If a + 1 > ft then
t = a, + 1

.

Proof. af+1 = T'^ = 2” = a, + l .

It is not possible to prove any simple formula for the power a“^,

where a is a limit ordinal and p < a. Certain fragmentary results in

this area are collected in Theorem 18 below. First we shall establish

certain relations between the hierarchy of alephs and the exponential

hierarchy.

°Theorem 12: For all a

< a,.

Proof. Let us proceed by induction.

By definition, K0 = ao-

Assume that (1) holds for all p < a. If a = /?i + l, then using

Theorem 3, p. 276 and Cantor’s theorem (p. 181(2)) we infer that

K. = K,1+ , < < 2°<’ 1 = a, i+l = a„.

If a is a limit ordinal, then (1) follows immediately from Theorem

9, p. 286.

Theorem 12 provides an estimation of alephs “from above” by

means of the exponential hierarchy. No estimation of the numbers

by means of alephs is possible, even for £ = 1.
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The well-ordering theorem implies that for every ordinal a there

exists an ordinal n(a) such that a* = N\(a) . The axioms of set theory

yield only fragmentary information about the ordinals 71 (a).
1

) The

following theorem is obvious.

°Theorem 13: a < p -> n (a) < 71 (f).

°Theorem 14: The function n is continuous (on every set of the form

W(a)).

Proof. Let a be a limit ordinal and let X = lim tt(^). Applying
£<<*

Theorem 4.12 we obtain

= X = X =
’

I < a £ < a

and thus X = n(a).

The following is an easy corollary of Theorem 14.

°Corollary 15: If a is a non-zero limit ordinal,
then cf(a) ^ 71(a).

Proof. Let cf(a) = 6 and let <p be an increasing sequence of type

cod such that a = lim <p(£). Then

71(a) = lim 7z((p(t;)) = limy(£),
I < a)S

* <a>&

where the composite sequence ip = TtOcp is increasing. Thus 71(a)

> (od ^ <5.

"Theorem 16: If 7i(y+l) is not a limit ordinal,
then 7i(y-fl) > y,

if 7i(y+ 1) is a limit ordinal,
then

cf(n(y+\)) > y.

Proof. The first part of the theorem is obvious since the t unction 71

is increasing.

Assume that 7i(y+l) is a limit ordinal and that d = cf(ji(y -t* 1)).

If <3 ^ y were true then by Corollary 5 •2 ^'*n(y+ 1 )
< N&ti) would a,so

be true, that is,

ay+1 <a +̂l = 2
ayKy = 2

0y = ay + 1

,

which is impossible. Thus d > y. Q.E.D.

x

) The question how much information about n(cc) can be deduced trom the

axioms of set theory has been discussed by Lake [1].
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Using the ordinals 71(a), we are now able to evaluate the power

where a is a limit ordinal.

Theorem 17: If a > 0 is a limit ordinal, then

Kg I

a. if P < </(<*),
a

* W+i >f c/(a) sS p <

Proof. Assume that p < cf(a). Clearly it suffices to show that

ci£“
#> ^ Qa . By Theorem 5.3,

*C> = Z < E nSS
i <a £ < 2

+ 1)

The last sum can be separated into two sums Y' and Y" where in

the first sum £ is such that jt(£+1) ^ p and in the second such that

p < tt(£+ 1). From Theorem 5.1 it follows that the £th component

of the sum Y' is equal to 2
S/J

; and as ^ < a cf(a) < ct«, we have

Y' < P' a* < ap
- aa = aa .

The £th component of the second sum = af+j

= Q| + 2 ,
because < N\

(|+ d = cu+1 . Thus

It follows that

£<a

a? ^ Qa + Qa = Q a

< 2
a^+ !

Assume now that <p is an increasing sequence of type ojcf(a)

convergent to a and that cf(a) < p < 71 (a). Then

a*/ < a?'w = a:* < 2
a
* = a, + ,

.

On the other hand,

a, + I
= 2““ = 2

K ”m = 2

= V

E s n(q?|)

n 2
x 'w{,) = n <v,

!<y £<y
= aE'* 1

*

which proves Theorem 17.

Corollary 18: If a is a limit ordinal then

Qa

^2+1

%+ I

if 7t(p) < cf(a),

if cf(a) ^ 7i (P) ^ 71(a),

if P ^ a.
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Corollary 18 shows that the difficulty in giving general formulas

for the powers is caused by the lack of knowledge about the values

of the function n.

§ 7. The continuum hypothesis

Cantor conjectured 1

) that = di. This hypothetical equation is

called the continuum hypothesis
, or CH for short. A more general hypoth-

esis is that the hierarchy of alephs is identical with the exponential

hierarchy, i.e., that X* = a s
e for each ordinal £. This hypothesis is

called the generalized continuum hypothesis or GCH.
Obviously we can simplify essentially the laws of exponentiation of

cardinals if we assume GCH.
It has been shown that CH can neither be proved nor disproved

on the basis of the axioms 27° [TR] provided that these axioms are

consistent. These logical results do not settle the question originally

asked by Cantor whether CH or GCH are true or false statements.

However it must be said that these seemingly obvious questions are

not very clear: the concepts of truth and falsity (as opposed to the

concept of the derivability from axioms) do not have a clear meaning

in abstract set theory. Thus we cannot rule out the possibility that

Cantor’s original questions will turn out to be simply meaningless.

In the present section we shall derive some theorems which illustrate

the role played by CH or GCH in establishing mathematical theorems.

Theorem 1 : In the system consisting of axioms 27° [TR] and VIII, the

hypothesis

( 1 )
= flor

for each ordinal a (i.e., the hypothesis GCH ) is equivalent to

!

) Cantor’s conjecture was first formulated by him in [1], Section 8. The consistency

ofGCH with other axioms of set theory was established by Godel in 1939 in [1] and its

independence by Cohen in 1964. The proofs of these results are easily available,

see e.g. Cohen [1]. Easton [1] showed that there are arbitrarily many functions /(£)

such that the assumption: for each regular a$” is consistent with the

axioms of set theory. For singular cardinals at the problem is not yet completely

solved.
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(C) Ifm is any cardinal number then there exists no cardinal r such

that m < t < 2m .

Proof. If m = X« then GCH implies that

2
m = 2

s
’ = 2

flflt = cia+1 = Xa+1 ,

and thus no cardinal lies between lit and 2
m

. Suppose now that there

is no cardinal between tn and 2
m

. We shall prove by induction that

(1) holds. For a = 0, (1) is obvious. If (1) holds for an a, then it also

holds for a+1 since

tt(X+ 1
Xa + I

> xa = a a ;

and if aa+1 # Xa+1 ,
then Xa+1 would lie between 2

a
* and a*. Finally, if

(1) holds for all £ < A where X is a limit ordinal, then

CU = IX = Z

The generalized continuum hypothesis implies a simplification ot

the laws of exponentiation ot cardinal numbers.

°Thforem 2: GCH implies :

(a) n(ct) = a for all a,

(b) if a is a limit ordinal and ft < a, then

|

a*

|tta+

1

for

for

P < cf(a),

cf(ot) < P < a •

Proof. Clearly, ;r(0) = 0. If a) = a, then X„(a+1) — aa +i by defi-

nition and thus by GCH N„(a+1) = K+i, which implies that*r(a+l)

= a+1. Finally, if X is a limit ordinal and if rc(a) = a for all a < 2,

then

X = y.n.f(A)

£<A
I = X,
£ < A

and thus tt(A) = A.

Formula (b) is a consequence of (a) and ot Theorem 6.17.

°Theorem 3: GCH implies that if
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then

(9 ‘y0f.<J+ 1
= C&\

(ii) ^y+ 1 .p
= Cly + 1

(iii) ^y+ 1 .p
= Clp

(iv) P tta

(v) sx.P tta+ l

(vi) S<z, p
= cip

VIII. ALEPHS AND RELATED TOPICS

if p > y+1, p is a limit ordinal,

if a and p are limit ordinals and p < cf(oc),

if a and p are limit ordinals and cf(tx) < p

if a and p are limit ordinals and p > a.

Proof, (i) 6 ^ a,, implies that

,“<5 ^ V ^ rt
a

<5

c£° < 2, a? ^ a:
0

• d = a?.
£<<5 + 1

(ii) By definition,

y+ 1 .0 = 1!

2^-** = E 2°>' = v av+ ,
= fi- ay+ ,

= a
e<£ s<p e<p

(iii) Similarly we have

y+ 1

•VV+ l.P = Cly+1 + 2-, al+l = lV
y+ 1 <£ </3

(iv) From Theorem 2 we obtain

*«./* = I!^ = I!aa = Q1 ^ = a8 .

£<£ £</*

(v) Similarly,

= o«+ S = aa +p-cf()- aa+1 = aa+1 .

c<*)^<P

(vi) From the elementary formula = a
s
c+1 for a < £ it

that

s*.p > S aJ = S al+ i
= ap ;

ix>S<P <*<£</?

on the other hand, it is clear that

X> a** ^ S <V + I] al' < «-aI+1+^ m + , ^ .

•?<£ f<a «sS £</3 <p

^ a,

follows
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The hypothesis GCH was used only to prove (iv) and (v). Using

Theorem 2 we can further obtain explicit values for sXt6+1 .

In a similar way we can also calculate the sum = Xl 0?'- We
£<«

shall give this result without proof.

°Theorem 4:

(i) f+ 1,0
=

(ii) tt'fi = ap +i if a is a limit ordinal and f} ^ a,

(iii) /aj3 = aa // a is a limit ordinal and fi < a.

Formula (i) reduces the evaluation of ty+ lt p to Theorem 2.

There are many simple properties of cardinal numbers which are

equivalent to the hypothesis GCH. We shall give several examples: 1

)

°Theorem 5: The hypothesis GCH is equivalent in the axiom system

Z° [TR] to each of the following formulas:

(i) A i
= n«+i),

a

(2) A (x,
K
: ,

< k£ 2),
a

(3) A(S«5ti“«.+i)-
3 |<3

Remark: Formula (3) states that for every set X of power Xa+1 the

family of all subsets Y <= X which are not equipollent with X has the

same power as X. For sets X whose power is an aleph with a limit index

such a formula is not true (provided we accept GCH ;
see Theorem 3 (v)).

Proof. GCH = (1), since

< N 3 + 1
^ 3+1

GCH -> (2), because

and

vj>K<3 0^3 Sv** 3 + 1

Ni+2 = (/ )
— Z — ^3+2*

») Several equivalences similar to those given in Theorem 5 can be found in Bach

mann [1). See also Sierpiski [1J.
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~1GCH 1(2). Assume that Na+1 < 2
s
*. Then

Ka+1 < X.+2 ^ 2
Na

and thus

3 + 2
< (2

S
*)

S‘ 3

which implies 1(2).

GCH - (3). Indeed, by GCH ^ = 5a+1 , a+l and by Theorem

3 (i) we easily obtain that

>a+ 1,« + 1
= a<z+ 1

= X3 + 1

(3) -> GCH. Indeed, (3) implies Xjfjj ^ Ka+1 and thus

< K+i < 2
Sa

,

whence Na+1 = 2
s
*.

°Theorem 6: The hypothesis GCH is equivalent in the system 27° [TR]

to the theorem :

(T) For every infinite set X
t the set P{X) can be represented as the union

UM of a strictly increasing sequence of sets M* equipollent with X.
£<<*

Proof. GCH — (T). Let X = X
y ;

from GCH it follows that the set

P{X) is equipollent with IF(W). Choosing for the image

of the set fV(co
{) we obtain the desired representation of P(X).

(T) -* GCH. Assume that we have a representation of P(X) as de-

scribed in (T) and let X = Ky . Then 2
Ny = Xy • a and thus a ^ Xy+1

and a ^ coy+ ,

.

Let S = U A/c. We shall show that P(X) = S. Indeed, S = Xy+1
* < 0>y+l

by the assumption that A/f c A/„, AL ^ Mn
and that = Ky for

£ < rj < a. If Y e P(X) then there exists rj < a such that Y e M
n

. Be-

cause M
n = K

y ,
it follows that the set M

n
cannot contain the entire

union S and thus there exists £ < wy+1 such that Mt —M
n # 0; hence

V < £ an(i V < Wy+i* Therefore, P(X) c= S; the opposite inclusion is

obvious. From the equation P(X) = S we infer that 2*y = S = X +

1

.

Q.E.D.
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The hypothesis GCH and even its particular case 2Ko = X, have many

consequences in various areas of mathematics and particularly in the

theory of real functions. We shall give only one characteristic example.

°Theorem 7:
1

) There exists a non-countable subset Z of the set of

real numbers <f such that the intersection of Z with every nowhere-dense

subset of £ is countable.

Proof. Let R be the family of closed nowhere-dense subsets of 6

(see p. 32). Since R = c (see the exercise on p. 191), there exists a sequence

F of type Wj whose set of terms coincides with the family R.

Let

There exist uncountably many indices £ such that Et # 0; otherwise

there would exist an ordinal a < co
l
such that

U F
n
= U F

n
for a < P <

i] < a t\ < fi

and then we would have l_J Fn = S' since every one-element set belongs
t] <a

to R. But then the set f would be the countable union of nowhere-

dense sets, in contradiction to one of the basic theorems of topology

due to Baire.

Let S denote the family of non-empty sets E*. By the axiom of choice

there exists a set Z containing exactly one point from each of these

sets. Therefore Z > X0 . Let H be a nowhere-dense subset of E. Because

the closure H of H is also nowhere-dense, it also belongs to R and thus

H = Ft for some £ < coj . Since ZnT < X0 ,
it follows that Zn H

^ N 0 •

Exercises

1. Derive from CH the following proposition: There exists a sequence {fn }n<io

of real functions such that <?x<? is the union {/„* : n < co}.

Hint : It follows from CH that there exists a mapping w: W(co
t )

-* <?. For £ < to
x

onto

let cct: N -* IF(£). For x = <p(£) put f„(x) = <p(a t (/*)). [Sierpiski]
onto s

2. Derive from CH the following proposition: (M) the union of less than 2S0

linear sets of measure 0 has measure 0.

‘) Theorem 7 is due to Lusin [1].
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3. Derive from CH the following proposition: (S) there exists a set X of power

2*o, X <= which has at most denumerably many points in common with every

set of measure 0.

Hint : Use the same method as in the proof of Theorem 7 and notice that a set

of measure 0 is a subset of a Gó
-set of measure 0.

4 . Derive CH from the conjunction of (M) and (S).

Hint : Let X be a set satisfying (S) and assume that Ni < 2S <>. If 5 is a subset

of X of power Ni> then X has measure 0 by (M) and hence 5 n X = S is at most

countable by (S). [Sierpiski]

§ 8. The number of prime ideals in the algebra P(A )

In Sections 8, 9, and 10 we shall present some applications of the

cardinal arithmetic which we developed in the present chapter. In

Section 8 we shall calculate the cardinal number of the set of prime

ideals of the algebra P{A) where A is an infinite set. In Section 9 we

shall present a theorem on the decomposition of an infinite set A into
aa

a union of subsets any two of which intersect in less than A elements.

Finally in Section 10 we shall evaluate the cardinal numbers of families

consisting of mutually disjoint open subsets of certain topological

spaces.

The reasons why we present these rather unrelated results here are

twofold: First they provide interesting applications of the theory of

alephs. Secondly these results have found important applications in

recent set-theoretical investigations. The interested reader will find

references to the pertinent works in the notes at the end of this chapter.

Let A be an infinite set of power m.

°Theorem 1: The field of sets P(A) contains 2 2 " 1

prime ideals})

First we reduce the proof to the following lemma:

°Lemma 1 : There exists a family S c= P(A) of power 2m such that

every finite subfamily S
{

c: S is independent (see p. 22).

With every function /e {0, 1}
S we associate the family

S(f) = {Z.[[(Ze S) a (/(Z) = 0)] v[(/f -Z 6 5) A (/(Z) =
1)]]J.

It is clear that distinct functions are associated with distinct families.

*) For m = No Theorem 1 was proved by Fichtenholz-Kantorovitch [1]; see

also Hausdorff [6], Tarski’s papers [4] and [7] contain the full proof of Theorem 1

as well as many related results.
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If A: is a natural number > 0, and if Z
x
e S(f) for / < k, then

y Z; ^ A. Indeed, assume for example that Z
x
eS for i <p and

i < k

that A — Z, e S for p ^ i < k. If the equation (J Z x
= A were true,

i <k

then letting B7 = A -Z
x
for p < / < k we would have p| (A-Z{

)n
i<p

n p| iVi = 0, contradicting the fact that the family composed of the

p^i^k

sets Z0 ,
and Wp ,

Wk _ x
is independent.

Let /(/) be the family composed of sets Z <= A having the Show-

ing property: there exists a finite number of sets Zt , ... , Z„ e S(f)

such that ZcZ,u ... uZ„. It is clear that

Z' c= Zel(f) -> Z' e 1(f)

and that

(Z E 1(f)) A (Z' E 1(f)) - (Z U Z' E /(/))•

Thus the family 1(f) is an ideal. Since no finite sum Z, u ... uZ„ of

elements of S(f) is equal to A
,

it follows that A ^ 1(f). Finally by

definition we have S(/) <= 1(f).

By VII. 8.2 there exists a maximal (and thus a prime) ideal J(f)

containing 1(f) (see Exercise IV. 12.2).

If/j # /2 ,
then J(f\) # /(/2 ). If for example/, (Z) = 0and/2 (Z) = 1,

then Z e S(fx ) a /(/,) and A-ZeS(f2 )
a J(f2) and thus the ideals

/(/,) and J(f2 ) are distinct, because otherwise A = Zu(A — Z) e J(f\)

in contradiction to the definition of prime ideal. Thus tne set of all

prime ideals is at least of the same power as the set of all functions

/e {0, 1}
S

,
that is, at least of power 2

2m
. On the other hand, every

prime ideal is contained in the family P(A) and thus the set of all prime

ideals has at most power 2 2 "1
.

It remains to prove the lemma. For this purpose we shall carry out

a series of reductions.

Let X be an arbitrary set and let R be a family of subsets of X. We

shall say that R is

(a) independent ,

(b) weakly independent ,

(c) very weakly independent ,

if respectively
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(a) every finite subfamily R x
c= R is independent,

(b) M — U Mt # 0 for arbitrary distinct M, M0 , Mk_ t e /?,

i<k

{k = 0
,

1
, 2 ,

. . .).

(c) M
y
—M2 # 0 for arbitrary distinct A/j

,

M2 e /?.

We say that the cardinal m satisfies condition (A), (B), or (C) pro-

vided there exists a set X of power m and a family R a P(X) of power

2
m

satisfying the condition (a), (b), or (c), respectively.

It is clear that if m satisfies condition (A), then for every set X of

power m there exists an independent family R cz P(X) of power 2
m

.

Similar theorems hold for conditions (B) and (C).

The lemma above is equivalent to the statement that every infinite

cardinal m satisfies condition (A).

We now show that conditions (A), (B), (C) are mutually equivalent.

The implications (A) -> (B) -> (C) are obvious. Thus it suffices to

show that

(0 (B) - (A);

(2) (C)-(B).

The scheme of proof of (1) and (2) is as follows: we assume that there

is a set X of power m and a family R cz P(X) of power 2
m

satisfying con-

dition (b) (respectively (c)) and we then construct a set K of the same

power m as well as a family S c P(X) of power 2
m

satisfying condition

(a) (respectively (b)).

Proof of (1). Let X be a set of power m and R a weakly indepen-

dent family of power 2
m

consisting of subsets of X. Let K denote the

family of all finite subsets of X. Clearly, K = U Kn ,
where Kn is the

n

family ot all subsets of X which contain exactly n elements. More-

over, Kn = mn = m (see p. 284), and thus "k = in • a = m.

For T e /?, let

X(T) =
{
ZeK

:

Z nf # 0},

and denote by S the family of all subsets of K having the form X(T).

We shall prove that every finite family {A^Tj), ... ,
X(Tk)}, where
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Tlf Tk are distinct elements of R ,
is independent. We shall show,

for example, that the set

X(T,)n... nX(Tp)n[K-X(Tp+1)]n ... n[K-X(Tk)]

is non-empty.

Indeed, from the assumption that R is weakly independent it fol-

k

lows that Tj- U T
x # 0 fory = 1 , 2, ..., p. If Xj is an element of this

i=p+ 1

difference, then the set {xly ...,xp } clearly belongs to X(Tj) and to

K— X(Ti) for j = 1 / = p + 1 , • • • , k.

From the independence proved above it follows in particular that

X{T) # X{T') for T # V

.

Therefore .S' is a family of power 2
m

con-

sisting of subsets of K and every finite subfamily S
{

<=. S is independent;

that is, the family S satisfies condition (a).

Proof of (2). Let A' be a set of power m and let R be a very weakly

independent family of power 2m consisting of subsets of X. For

every set Z let Z' = (J Z
n

;
thus Z' is the family of all finite sequences

neN

whose terms belong to Z.

Let K = X'; clearly, K = [J X
n and as X* = m" = m it follows that

neiV

K = m • a = m. Let S = {M': M e R}; clearly S is a family of subsets

of K and S = R = 2
m

since the mapping M -> M' is one-to-one.

We shall now show that the family S is weakly independent. Let

A/, A/0 , ... ,
Mk _ ,

be distinct elements of R and assume that M' a M \

.

i<k

From the assumption it follows that M—Mi / 0 for i < k\ let

g M-Mi for i < k. Thus the A'-term sequence <x0 , ..., xfc_i> belongs

to M' but does not belong to M\ because its ith term does not be-

long to Mi. Consequently, we have a contradiction which proves that

the family S is weakly independent.

Proof of the lemma. Let X and X' be two disjoint sets of power

m and let a one-to-one function f map X onto X' . For M c= X let

M* = Let S be the family of all sets M*. The family

S consists of subsets of the union K = X\jX\ where K = m+trt = TTt

and S = 2
m because the mapping M -> M* is one-to-one.
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If M
l # M2 and A/j

,
A/2 cz X, then Mf # Mf. For xe M

l
-M2

implies that x e Mf- Mf whereas xeM2-M l
implies that f(x)

e M*-M*. Thus S is very weakly independent, which proves that the

cardinal m has property (C); hence, by (1) and (2), m also has prop-

erty (A). This completes the proof of the lemma.

Exercises

1. Prove that if a Boolean algebra is finite and has 2" elements, then it contains
exactly n prime ideals.

Hint: Every prime ideal has the form {x: xa a = o}, where a is an atom.
2. The Boolean algebra K with unit of infinite power m contains at least 1 and

at most 2
m prime non-principal ideals.

Hint: Let at denote any element of K such that the ideal {x: x a, } is prime;
then there exists a proper ideal / containing all elements —a t .

3. We say that a subset X of the Boolean algebra K is a base for the ideal / if (1)

x c A (2) for every a el there exist finitely many ...,*„ elements of X such
that a < *iV *2v ... v*„, and (3) no proper subset of X satisfies conditions (1)

and (2).

Prove that an ideal is principal if and only if it has a one element base.

4. If /if = P(N) and I is a non-principal prime ideal, then no base for / is count-
able.

§ 9. m-disjoint sets

From the axiom of choice it follows that each family of mutually

disjoint non-void subsets ot a set A has a cardinal number ^ A. To
prove this we merely remark that such a family S has the same power
as any subset of A containing exactly one element in common with

each set in S.

Sierpiski discovered in 1928 that the inequality S^A need not

be valid if we replace the assumption that elements of S are mutually
disjoint by a weaker assumption that each pair of different elements

of S has a finite intersection. Such a family is called a. family of almost

disjoint sets. We indicated the proof of Sierpinski’s result in Exercise

I.5.4.
1

)

We now generalize the notion of almost disjoint sets:

l
) Fo r early results on almost disjoint sets see Sierpiski [11], Tarski [3], Interesting

applications of these sets were given by Rabin [1] and Jensen and Solovay [1].
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Definition 1 : For an infinite cardinal m we say that two sets X, Y

are m-disjoint if XnY < in.

Sierpinski’s result can be generalized to higher cardinalities:

Theorem 1: If m> K0 and A 0 = m then there exists a family S0

<= P(A o) of power N(m) consisting of in-disjoint sets and such that

= U (So).

Briefly we may say that each set of power lit can be decomposed into

N(m) m-disjoint subsets.

Proof. It will evidently be sufficient to find just one set A which

can be decomposed in the way indicated in the theorem and has the

power m. A one-one mapping of A onto A 0 will then enable us to obtain

the desired decomposition of A 0 .

Let m = W = W(a>J and F = Ww . Two functions /, g in F

(conceived as sets of ordered pairs) are Na-disjoint if and only if the

power of the set {£ < coa : f(£) = g(£)} is < NV
We shall construct a sequence of type coa+1 of disjoint functions.

To carry out this construction we need the

Lemma: If (p is a transfinite sequence of type y < coa+1 with range

contained in F, then there exists a function f e F which is tsa-disjoint

from each term (p$ of the sequence.

To see this we notice that the range of (p has the power ^ and

thus can be represented as the range of a function 0: W F. If £ < coa

then the set rj < £} is a proper subset of W because its power

is < Denoting by f{£) the first ordinal not in this set, we obtain

a function / e F which is Na-disjoint from every 0
n ,

because the

equation f(£) = 0
n(£)

can hold only if rj ^ £.

The lemma being proved, we denote by r a choice function for the

family of non-void subsets of F and agree additionally that 7^(0) = p

where p is an element not belonging to F. For each transfinite sequence (p

denote by B{(p) the set of all functions in F which are Xa-disjoint from

all the terms of cp which belong to F. Using the theorem on transfinite

induction, we obtain a function g: IF(r/>a+ j)
-> Fu {p} satisfying the

equation

= r(fl(gif»

for each £ < oa+l .
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Thus tor each | < coa+I the term g is a function which belongs

to F and is Xa-disjoint from all the functions gn , r\ < £, which belong

to F, provided that such functions exist; otherwise g = p.

We claim that g # p for each £ < coa+l . Otherwise there would
exist a smallest ordinal y < coa+1 such that gy = p and g\y would be

a sequence satisfying the assumptions of the lemma stated above. Hence
the set B(g\y) would not be void and gy

would be an element of this

set. This contradicts the assumption that p is not an element of F.

ff £ # V and £> V < M
<x +1 then g and gv are ^.-disjoint and hence

different. Thus the set 5 = Rg(g) has the power Ka+1 = K(m). Put

^ = U(S). Since each element of A is an ordered pair of ordinals

< o>a ,
we infer that A Wx W = Ka . On the other hand, A ^ g0

= Ka . Thus the cardinal number of A is and the decomposition

A = U (S) has the required properties.

Theorem 1 expressed in the language of Boolean algebras takes

on the following form:

Theorem 2: If A = and I is the ideal of P{A) consisting of all sets

whose powers are < m, then the quotient algebra P(A)jI has power

at least N\ +1 .

§ 10. Families of disjoint open sets

Let S' be a topological space. A cardinal w is called the weight of S'

it it is the smallest cardinal number such that S' has an open base of
power tn.

1

) The degree of disjointness (or briefly the degree of S') is

the least cardinal b such that every family of non-void open sets contains

at least one pair ot sets whose intersection is non-void.

For instance tor the Cantor space the weight is X0 and the degree
is . For the generalized Cantor space {0, 1}* with an infinite X

) The notion of weight of a topological space is of some importance in general
topology. The importance of the degree of disjointness for general set theory is due
to the (act that proofs of independence of several set-theoretical hypotheses, for
instance GCH, rest heavily on the evaluations of these degrees. Sec Cohen [1].
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the weight is X. The degree of this space is, surprisingly, again X,.

This will follow from Theorem 5 which we shall prove below.

Not every cardinal is the degree of a topological space. We shall

show that only regular cardinals have this property.

In order to obtain this result we need the relative notion of a degree.

For an open set X ^ 0 we call the degree of X the least cardinal

b(A') such that in each family F of power b(A') consisting of non-empty

open subsets of X there are at least two elements which have a non-

empty intersection.

An open set X ^ 0 will be called homogeneous if b(F) = b(AT for

each non-void open subset Y of X.

Lemma 1 : Each open set X ± 0 contains an homogeneous subset Y.

Proof. Letm be the least cardinal of the family (b(F)
: (0 # Y a X) a

a (F is open)}. Then nt = b(T) for some Y and if 0 # Z c Y then

b(Z) = m. Hence Y is homogeneous.

The crucial lemma is the following:

Lemma 2: If the degree of 9C is Xd where d is a positive limit number

then there is a homogeneous set X such that b(A') = X^.

Proof. We shall derive a contradiction from the assumption that

such a set does not exist. Thus we assume that

(1) b(Af) < X,

for each homogeneous set X.

Let us consider a set whose elements are all families of mutually

disjoint homogeneous sets and let H be a maximal such family. Obviously

H < Xa because H consists of mutually disjoint open sets. For each X
in H we have, by (1), b(2Q < X^, whence

v MX) 5C • Kj = N,.
XeH

We shall show that the sign ^ can be replaced by identity. Since ó

is a positive limit number, it is sufficient to show that for each | < 6

K
f ^ n bW.

Xelf
(2 )
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Thus let us assume that £ < <5 and let G be a family of power

consisting of mutually disjoint non-empty sets. From the maximality

of H it follows that for each XeG—H the family Hv{X} contains

at least two sets which are not disjoint, i.e. that XnY ^ 0 for some Y
in H. The same is also true if X e H because then we can take X as

the set Y. Using the axiom of choice, we find thus a function f: G -> H
such that X n f(X) / 0 for each X e G.

The power of the set {X e G. /(X) = Z) = f~ 1 (Z) is at most b(Z)

for each Z in H. This follows from the observation that correlating

X r\Z with a set X e

/

-1
(Z) we obtain a one-to-one mapping of /

-1
(Z)

into the family of mutually disjoint open subsets of Z and this family

has at most b(Z) elements. It follows that G = U {

/

_1 (Z): Z e H) has

the power at most b(Z) and hence (2) is proved. We proved thus
ZeH

(3) I b(AT) = XV
XeH

From this equation we see at once that if r\ < 6 then there is an X
in H for which b(X) > otherwise the left-hand side of (3) would

be ^ • H = max(X^, H) < NY Using the axiom of choice, we can

therefore establish the existence of an ordinal y ^ d and a sequence

where each X* e H such that, for each £ < y,

b(X
s) < t>(X;+I ) and 2 b(V) = X',.

£<y

In view of the above inequality there exists for each £ < y a fam-

ily of power b(A7) consisting of mutually disjoint non-empty subsets

of Xt+ ,

.

Using again the axiom of choice we select one such family and call

it (Vc. Hence the union U W, has power V b(A
r

i)
= and consists

£<y f<y
of mutually disjoint non-empty open sets. This contradicts the assump-

tion that is the degree of the space. Lemma 2 is thus proved.

From Lemma 2 we obtain easily

Theorem 3 : If X is homogeneous and b(T) = then is regular.

Proof. If 6 is a successor ordinal, the theorem is obvious. If Ó is

a limit number and is singular, then
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N* = I K,<f)
£<y

where y < and (p is an increasing mapping of lV(y) into W(b).

From y < it follows that there exists a family H = {*V f < y)
of mutually disjoint non-void open subsets X* of X.

Since X is homogeneous, we obtain

b(*t) = N, > NV(«).

whence we infer that there is a family of power consisting of

mutually disjoint non-empty open subsets of Xt. Using the axiom

of choice we select for each £ a family of this kind. Now the union

S = (J {' £ < y] has power which is a contradiction
<<y

because S is a family of mutually disjoint non-empty open sets. This

proves Theorem 3.

An immediate corollary from this theorem is
1

)

°Theorem 4 . If SC is a topological space with an infinite degree then

this degree is a regular cardinal.

We pass now to the second result mentioned in the introductory

remarks to the present section and prove

°Theorem 5: (Marczewski) If m is an infinite cardinal and {&i}iei

an arbitrary sequence of topological spaces each of which has weight

^ m and degree < m, then the Cartesian product p = n (#*») w///*

iel

Tychonoff topology has degree ^ m.

Proof. For each i in I let T
7

,- be an open basis of not containing 0
and such that /

7 ^ m. If S is a finite subset of I and G ef] (

F

s) then
seS

we call the set

B{S, G) = |/e P:A IM e Gj|
seS

a box. All boxes form an open basis of the space P. The number of

elements of .S' is called the order of the box.

Theorem 4 is due to Erdos and Tarski [1], Theorem 5 was first proved by Mar-

czewski [2]. Other related results can be found in Engelking and Karowicz [1].
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We shall proceed by contradiction and assume that there is a family

of power > m = of disjoint open subsets of P. Since each open

set 7^ 0 contains a box, we infer that there is a sequence

(4) {B{S% &): £ <coa+l }

consisting of mutually disjoint boxes. We abbreviate B(S*,G:
j as B

5
.

The order of each box in this sequence being finite, we can partition

the set of its terms into co classes collecting in the nth class all boxes

of order n. Hence one at least of these classes has power Xa+1 and we
can assume from the start that all the terms of the sequence (4) have

order n.

We shall reach a contradiction by showing that for some £ the set

S1 has more than n elements. In order to obtain this we need a characteri-

zation of disjoint boxes:

Lemma 6: Two boxes B(S
,
G), B(S f

, Gj are disjoint if and only if

there is an s in SnS' such that Gs n G' = 0.

Proof. If the condition is satisfied then the boxes are disjoint because

an /belonging to these boxes would satisfy the relations f(s) e Gs and

f(s) e G's . If the condition is not satisfied then Gs nG's / 0 for each

seSnS'. Therefore there exists a function / such that f(s) e Gs nG's
if and f(s) e Gs if s e S-S', f(s)eG's if s e S' -S, f(s) e &s

if s e I- (S uSj. Such a function (whose existence may easily be

established using the axiom of choice) belongs to both given boxes.

The lemma is thus proved.

Returning to the proof of the theorem we select an arbitrary £0 < ci>a+ ,

and notice that Bt
o
nBt = 0 for each £ > £0 . Using the lemma we

inter that for each £ > £0 there exists an element s, e S*° such that Gf°n

nGl, = 0. There are just n possible values for ss because the order

ot the box B$
o

is n. Hence the set of ordinals £ > £0 can be partitioned

into n sets according to the values of s$. Since one at least of these

sets must have the power Xa+1 we obtain an element and a set

c= IV(a> +1 ) of power Na+1 such that

(5) £0 tX0 , .v0 e £ 6 JT0 - (s0 e S*) a (Gf° nGf0 = 0)

.
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We shall replace X0 by a smaller set such that G;
0
be constant for £

in the smaller set. To obtain this we divide X0 into disjoint subsets,

putting two indices £ and £' into the same subset if and only if Gf
0

= Gf'. Since for each £ the set Gf0
is an element of the basis I\

0
of

the space #f
So ,

we see that the number of subsets into which we partitioned

X0 is at most equal to FSo and hence is ^ Xa . It follows that there

is a subset Y0 of X0 which has the power N, + 1
and is such that for

each £ in Y0 the set Gf0
is equal to one and the same set GSo . Thus

we obtain from (5)

l0 ^ T0 ,
s0 eS*°,

£ g T0 -» (sq e S’) a (Gf0
= GSq) ,

Gt°onG5o = 0.

We shall now iterate the above construction. Proceeding by induction

we assume that we already defined sets Y0 => Y
x

=> ... => T*_ l5 indices

£0 < £\ < ... < £k-\, elements of /, s09 sl9 ... 9
sk_ l9 and open sets

G« , G, , ..., Gs ,
so that for all i, k the following formulas hold:

Y
t
= N\ +1 ,

£i e T,-! — Tj, 5,eS5
',

£ e Yi - ( e SO a (G|
£

= Gs
,

e rSj),

G|;nGS( = 0.

Let be an element of Tk _i greater than £k - 1 . Since Bh nB5
= 0

for each | in T*^- {£*}, there is, for each such £, an element skf^ in

Sh such that e S* and Gfj t
nGf

fc|
= 0. Since there are but n possible

values for there is a subset Xk of Yk _ x
— {£*} such that Xk = N + x

and all the skJi where £ eXk have one and the same value sk . Using

the assumption that the weight of %
Sk

is < Na and rSk ^ K
,
we obtain

in the same way as above a subset Yk of Xk such that Yk = Xa+1 and

for all £ in Yk all the sets Gf
fc

are equal to one and the same set GSk e r$k
.

Our inductive construction is thus finished.

We claim now that 5; ^ sk for / < k. To prove this we notice that

sk eS*k and £k e Yk _ ,
- Yk <= Y

t
. From this we obtain Gfj = GS( .
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On the other hand, GfjnG
Sfc
= 0. Thus the equation = sk would

yield G
$k
= 0 against our assumption that the empty set does not

belong to rSk .

To finish the proof we notice that for £ in Yn we have £ e T
(
- for

each / ^ n and thus s
t e S* for i ^ n. Thus the set 5s" has at least n +

1

different elements s0 ,s l 9 ...,sH which contradicts the fact that the

order of all boxes B* is n. Theorem 5 is thus proved.

Exercises

1. Prove that if X is a uniform open set then b(yY) # Xo-

Hint: Ii X were uniform and b(3Q = So then X would contain two disjoint sub-

sets with the same property. Use this to obtain an infinite sequence of mutually

disjoint subsets of X. [Erdos and Tarski]

2. Find the weight of the product space P(3?i) given the weights of the spaces

3. Give examples of spaces with degree > Xi-
4. Generalize the theory of degrees of disjointness by replacing the family of

open sets by any ordered set without the minimal element and the relation of dis-

jointness by the relation d(x, y) = /\ ~|
[(z ^ .y)a (z < j)].

z

§ 11 . Equivalence of certain statements about cardinal numbers with the

axiom of choice

In the final section of this chapter we shall discuss the role of the
axiom of choice in the cardinal arithmetic. We saw that several theorems
proved in the previous sections required the axiom of choice. We shall

see now that this axiom cannot be eliminated from most of the proofs
because the theorems which we established are not only consequences
of the axiom of choice but are equivalent to it (on the basis of the
axioms r[TR]).

We shall also establish a result showing that a form of the generalized
continuum hypothesis implies the axiom of choice.

From the well-ordering theorem and thus indirectly from the axiom
ot choice (see p. 255) it follows that every cardinal is an aleph. Thus
the laws ot arithmetic tor cardinal numbers coincide with those for
alephs and we have the following theorem.

Theorem 1

:

A f(m ^ it) v (n ^ m)] (law of trichotomy),
in, n£N

(l)
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(2) A [m2 = m]

.

m£N

(3) /\ [(m • n = m+n = tn)v(m • n = m+n = n)],
m, n£N

(4) /\ [(m 2 = n2
) -> (m = n)],

ttt, n£N

(5) A [(m < n)A (p < Cl) -» (m + p < 11 +cO],
m, n, p, q(fcN

(6) A [(m < n) A (p < q) (m • p < n • q)],
m,n,p,q^AT

(7) A [(m+p < n+p) -+ (m < it)],

(8) A [(m • p < u • p) -> m < n]

.

ttt, tt, p

Seemingly each of the laws (1)—(8) is a special consequence of the

axiom of choice. We shall show, however, that each of these laws in

conjunction with the axioms Z[TR] and VIII implies the axiom of

choice.

Theorem 2:
j

) If for every pair of infinite cardinals m and tt either

ttt ^ tt or tt ^ ttt, then there exists a choice function for every family

of non-empty sets.

Proof. Let X be an arbitrary infinite set and let rtt = X. By assump-

tion either m ^ K(fft) or X(ttt) ^ rtt. The second case is impossible

by Theorem 2.3; in the first case ttt is an aleph and thus there exists

a relation well ordering X. Therefore the hypothesis of the theorem

implies the well-ordering theorem, and thus the existence of the desired

choice function (see p. 255).

Remark: Theorem 2 can be expressed more concisely: formula (1)

for all infinite m and n implies the axiom of choice. We shall employ

this sort of abbreviated language; in the statements of other theorems

the word “implies” will be taken to denote the existence of a proof

which does not use the axiom of choice.

Lemma 3
: (3) - (2) - (4).

Theorem 2 is due to Hartogs [1].
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In fact, if m then by (3) m 2 = m. If m,it<£A, then by (2)

m 2 = m and u 2 = n, whence m 2 = rt
2 -> m = n.

Lemma 4: If p $N and p • X(P) = p+K(p), then p is an aleph. 1

)

Proof. Let A = p, B = N(p). By hypothesis there exists a partition

Ax B = PkjQ into two disjoint sets P and Q such that P = = N(p)

;

thus Q is an aleph and there exists a relation well ordering Q.

There are, a priori, two possibilities.

I. There exists a e A such that {a} x B c P. However, since {a} x B
= N(P)> it would then follow that N\P) ^ p contrary to Theorem 2.3.

Thus case I is impossible.

II. For every a e A, {{a}xB)r\Q # 0. As there exists a relation

well ordering 0, there exists a function which associates with every

aeA the first element q(a) of ({fl}xfi)n^. Moreover, as q(a) is of

the form (a, b> where b e B, it follows that q{a’) ^ q{a") for a' # a".

Thus the function q establishes a one-to-one mapping of A onto a subset

of Q\ hence A ^ Q and A is an aleph. Q.E.D.

Theorem 5: (4) implies the axiom of choice.

Proof. Let f be an arbitrary infinite cardinal. Let p = p
So

, m = p +
+ N(p) and rt = p • N(P)- Clearly,

p
2 = (p

So
)
2 = p

Ko = p,

which implies that p ^ p + 1 ^ p • p = p
2 = p and thus

P+1 = P-

Since 2 N‘(p) = N(p) = N(p)+1 = [N(p)] 2
, we obtain from these for-

mulas that

m 2 = [p + X(p)] 2

= p
2 +2p-K(p)+[K(p)] 2

= p + p[K(p)2] + K(p)

= p+p*K(p)+ N(p)

= p[l +K(p)] + X(p)

= p- K(p) + X(p)

= (P+DK(P)

*) Lemma 4 and Theorems 5-8 given below are due to Tarski [2],
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= P • K(P)

= P
2
[K(P)1

2

= n 2
.

Thus by (4) we have m = n, that is, p + N(p) = p • N(p), and thus p is

an aleph by Lemma 3. Since f < p, f is also an aleph. Q.E.D.

Corollary 6: Each of the formulas (2) and (3) implies the axiom

of choice.

Theorem 7: Each of the formulas (5) and (6) implies the axiom of

choice.

Proof. Let t be an infinite cardinal. Clearly

f ^ f + X(t) and X(f) ^ ! + N(f)

.

If the strict inequality were to hold in both of these formulas, then

by (5) we would obtain the false inequality f + N(f) < f + N(f). Thus

either ! = f + N(f) or X(f) = f + N(f). But the first equation im-

plies f ^ N(f) which contradicts Theorem 2.3. Thus the second equa-

tion holds, which implies f ^ X(f) and thus f is an aleph. It follows

that (5) implies the axiom of choice.

The proof of the second part of the theorem is similar, except that

instead of f+N(t) we examine the product f • X(f).

Theorem 8: Each of the formulas (7) and (8) implies the axiom of

choice.

Proof. Let ! be an arbitrary infinite cardinal. Let m = K0 • t ;
then

m+m = rrt. Now let n = N(m) and p = nt. Hence tn + p = m and

n + p = m+ N(m), which implies that m + p < n + p. If the equation

m + p = n + p were true, then the inequality m ^ N(m) would also be

true, in contradiction to Theorem 2.3. Hence m + p < n + p and by

(7) m < n, that is m < X(m). Thus f < N(m), which implies that

f is an aleph.

The proof of the second part of the theorem is similar; we replace

m by f
So and discuss the products m • p and n • p instead of the sums

m + p, n • p.

Similar to (2) is the following theorem:

( + ) A [m +m = nt].

m^N
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This theorem is obviously provable in the system 27° [TR]. It has

been proved that it is not provable in the system 27[TR]. In this respect

theorem ( + ) is similar to Theorems (l)-(8). However the adjunction

of ( + ) to the axioms of I[TR] does not yield a system equivalent

to 27° [TR] and so theorem ( + ) is essentially weaker than Theorems
(l)-(B) 1

.)

From Theorem 1 (proved with the axiom of choice) it follows that

for every infinite cardinal tit and for n e N, m" < 2m . Specker has

shown that the weaker theorem mn non ^ 2m can be proved without the

axiom of choice. We shall use this fact later (see p. 313).

Theorem 9:
2
) Ifm is infinite and n e N, then m” non ^ 2m .

Proof. Assume that A = m and that there exists a one-to-one func-

tion F mapping P(A) into An
. We shall show that there is a function /

which associates with every transfinite sequence y of distinct elements

of A an element of A which is not a term of y.

The theorem then follows from the existence of such a function /as
follows: Let a be the least ordinal of power N(m). By the theorem
on inductive definitions there exists an a-sequence \p such that y-

= /(vl£) for £ < a. By construction, tp^ is not a term of y>|£ and thus

Vs # Vr, for £ ^ y). We conclude that A ^ a = X(m) in contradiction

to Theorem 2.3.

It remains to construct the function /. For this purpose we choose

an integer k0 > 1 such that 2k
° > k n

0 and k0 distinct elements of A

:

“o, • • • , 1 • If y = <9?o , ...,<Pk- 1 ) with k < k0 ,
then we put f(y) = aj

where j = min/a,- # ys for .y < k). Assume now that y = <y0 , ...,

yk -i) with k ^ k0 distinct terms. Denote by S(y) the set {y0 , ..., <?*_,}.

There are 2
k
subsets of S(y); we may represent them as {yp. i e Z)

= S{y,Z) where Z is contained in {0, 1, ..., k- 1}. By the defi-

nition of F each F(S(y
,
Z)) is an //-termed sequence. Since there are

!

) The proof that the formula ( + ) does not imply the axiom of choice is very
difficult. It was found by Sageev [1]. The proof of independence of (+ ) from axioms
2.’[TR] is very easy.

Many results about formulas equivalent to the axiom of choice can be found
in Rubin and Rubin [1]. See also Jech [2].

“) T heorem 9 is really a lemma which we will need in Theorem 1 1 below.
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only kn sequences in A n whose terms are elements of S((p) and

since 2k > fc
n

,
we infer that there is at least one Z such that not all

terms of F(S(cp, Z)) belong to S(cp). We order sets Z similarly to the

lexicographical ordering of their characteristic functions and choose

the first Z0 with the property stated above. Now we define f(<p) as

the first term of F(Sfp ,
Z0)) which does not belong to S(cp).

Finally assume that the type of cp is an infinite ordinal a. Since a

is an aleph, there exists a one-to-one mapping of the set JV(oc) onto

the set W(oi)
n

. Let the ordinal £ < a correspond to the sequence

<£
(0)

, .... |
(n_1)

) under this mapping.

Let H = 0 if (jcpi o), ..., cp(n— 1)> does not belong to the set of values

of the function F, let Ht = Fc
((pp<», ... ,

otherwise, and let

Z0 = {<p,: H }, <a0 ,
= F{X0). If all of the elements aj

were terms of 7?, then for some £0 < a we would have <a0 ,

= <9?f(o), , <ft(n-Q>; thus this sequence would belong to the set of
° °

values of F, which implies that Ht
0
= X0 and (p$0

e X0 = cp
Q
e H^

0
. On

the other hand, from the definition of the set X0 it follows that cpt e X0

= (p^ t for every £. Thus some aj is not a term of (p and it suffices

to set f{(p) = cij where j is the least index such that aj has this property.

Corollary 10: If nt is an infinite cardinal then rrt+1 < 2
m

.

Proof. From the fact that 2
m > m it follows that 2

m ^ m + 1. If

m + l = 2
m

then, since m 2 ^ m * 2 ^ m+ 1, we would conclude that

m 2 ^ 2
m

,
contrary to Theorem 9.

We conclude this section with the proof of a theorem which implies

as an immediate consequence that the axiom ol choice follows from

the hypothesis (C) (see p. 291).

Theorem ll: 1
) If nt is an infinite cardinal and if neither between m

and 2
m

nor between 2
m and 2 2™ lies any cardinal

,
then in is an aleph.

Proof. Let us abbreviate the formula f\ |
(m < x < 2

m
) as //(nt).

X

Using Corollary 10 we obtain m ^ m+l < 2
m

,
whence m = m+l

by H(m). From m ^ m +m ^ 2
m

• 2 = 2m+1 it follows now m < 2m

^ 2
m

. H(m) implies that either nt = 2m or 2nt = 2
m

. But the second

‘) Theorem 1 1 was proved by Sierpiski [18]. The proof given in the text follows

Specker [1].



314 VIII. ALEPHS AND RELATED TOPICS

equation is impossible by Theorem 9 because m 2 ^ 2m.

We prove next that H(m) implies m 2 = m. For m ^ m 2 ^ 2
m

,

2
>n _ 2

m + m = 2
m

. The equation m 2 = 2
m

is impossible by Theorem 9.

Thus by //(m) we have that m 2 = m.

By Theorem 2.7 2 N(,n) ^ 2
2tn

and

2
m < 2

m + X(rn) < 2
(2m+s<m)) = 2

2Tn
• 2K(m)

<- 2 2m
. 2 2

m _ 2 2
'n ’2 = 2 2

”,+ 1 = 9
2m

thus, by H(2m), 2
m = 2

m + K(ttt) and X(m) ^ 2
m

. From

m < m + K(m) ^ m • K(m) sc 2
m

• X(m) ^ 2
m

• 2
m = 2

n,+1 = 2
m

it follows by //(m) that m + X(m) = m • K(m), which implies (see

Lemma 4) that m is an aleph.

Corollary 12:
1

) The hypothesis (C) implies the axiom of choice.

Exercises

1. Derive the Cantor inequality m < 2 ,n and its strengthened version t-m < 2 ,u

(for finite ! and infinite m) from Theorem 9. [Specker]

2. Prove that the following formulas are equivalent to the axiom of choice:

(a) A [(m+n = rn) v (m+n = it)],

ni.tt

(b) A Um • n = tit) V (ttt • u = u)]. [Leniewski]
m,n£N

3. Prove that the following formula is equivalent to the axiom of choice:

A [(m < * Tt) V (tt ^ * ttt)]

m,n£N

(the relation is defined on p. 182). [Lindenbaum]

Hint: Replace S(nt) by x*(nt) (defined in Exercise 2.2) in the proof of Hartogs’

theorem.

4. Prove that the following formula is equivalent to the axiom of choice:

A l(mP < mq
) -> (p < q)]. [Tarski]

m,p,q$N

(

Hint : Let ttt = 2 f J
, q = x(m) and show that m p = m ^ tttq and that the

formula tit p = mq would imply m > X(tit).

‘) The final corollary given on this page was discovered by Lindenbaum and

Tarski [1], who never published a proof of their result. Sierpiski [18] reconstructed

the proof of Lindenbaum and Tarski’s result.



CHAPTER IX

TREES AND PARTITIONS

The present chapter is devoted to the concept of a tree which plays

an important role in the recent works on abstract set theory. In the last

section we prove some simple partition theorems in order to introduce

the reader to the ideas of so-called combinatorial set theory.

§ 1. Trees

The notion of a pseudo-tree was introduced in Chapter II, Section 9.

We now define a special class of pseudo-trees:

Definition 1 : A pseudo-tree T is called a tree if for every / in T

the set 0(t) = {s e T: s ^ t} is well ordered. 1

)

Let T be a tree; we define by transfinite induction the levels of T.

The Oth level L0 is the set of the minimal elements of T. For a > 0

we define La = [t: /\ s e I

L — U L
s < t £<a |<a

For a < p the levels Lx and Lp are disjoint; if Lx is empty, then so

are all higher levels. It follows that there is a least ordinal a such that

L x = 0. This ordinal is called the height of the tree.

Each tree is the union of its levels. To prove this statement we show

that if x0 e T-
{J L then x must have a predecessor x

x < x0 which

£ <a

also belongs to T— [ j
whence by the axiom of choice we obtain

') The concept of a tree as defined in this book is widely used in various branches

of mathematics (e.g. in topology), in logic and in philosophy. It would not be easy

to pinpoint the origin of this concept. Some remarks about this question can be

found in Beth [1], p. 196 and Weyl [1], p. 53. Jech [1] contains a survey of recent

mathematical results on trees.
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an infinite descending sequence x0 > x t > ... However this contra-

dicts the assumption that T is a tree.

Finally we note the two easy theorems:

Each level is an antichain.

If B is a branch of a tree
,
then B intersects each level in exactly one

point.

An immediate successor of an element x of a tree is an element y > x
such that no element lies between x and y. The cardinal number of all

immediate successors of x is called the order of x. The order of T is the

supremum of orders of ail its elements.

A tree T is said to be of finite order if it has finitely many minimal

elements and its order is finite.

Example. Let Ta = {0, l}
,F(a)

be the set of all sequences {^s
t}|<a

with domain W(a) and terms equal to 0 or 1. The union Da = {7/
£ < a} ordered by inclusion is called the full binary tree of height a.

The elements of this tree are zero-one sequences with domains of the

form JT(£) where £ < a. A sequence / is a successor of g if g c /. It

is easy to see that Dx is indeed a tree: the predecessors of/ form a well-

ordered set. They are the partial functions f\W(rj) where p belongs

to the domain of /.

Sets Tt with £ < a are the levels of Dx . The initial level contains

just one element, the void set. The //th level consists of 2" functions

{<0, £0 )> <1, £ i), • ••, <« — 1, £„-i>} where for each j < n the element

Sj is either 0 or 1.

A branch B of Da is an increasing sequence {/^}|<a where fi e T5

for each £ < a. Remarking that T* has the power 2% we obtain

Theorem 1 : The full binary tree of height cc has ^ 2 * elements and

2a branches.

To prove the statement about branches it is sufficient to notice that

it B is a branch then U (B) = f is a function with domain !F(a) and
range {0, 1}. Conversely, if /is such a function then the set {/|fF(£):

£ < a} is a branch. Thus there is a one-to-one correspondence between

branches of Da and elements of Ta .

Two distinct branches B = {/|fL(£): £ < a} and B' = {/'|fT(£):

£ < a} have Ó common elements /| IT(£), £ < S
y where 6 is the least
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ordinal such that f(d) ^ /'(<S). In particular, if a = coY then any two

branches are Ny-disjoint and if a = co then any two branches are almost

disjoint (see p. 301). The decomposition of Dw into the union of

its branches gives thus the decomposition of a denumerable set into

2S ° almost disjoint subsets.

Later in this chapter we shall give two lemmas on the linear ordering

of a tree (in order not to interrupt proofs to be given later).

Let T be a tree of height a. For each £ < a we select (using the axiom

of choice) an arbitrary linear ordering of the £th level L| of T.

The set of immediate successors of a given xeL
^

is an interval. As

usual we shall abbreviate the conjunction (

x

# j>)a (x ^y) as x <% y.

We denote by 0(x) the set {z e T: z ^ x}. If x e Lt and rj < £ then

the intersection L
n
n 0(x) consists of exactly one element which we

shall denote by O
n
(x).

If x e Lt, x' e L$,
,
and neither x ^ x' nor x' ^ x then there is a least

ordinal d = <5(x, x') ^ min(|, £') such that Od(x) # Od (x').

Definition: We say that x precedes y in T if either x ^ y or x and y
are incomparable in T and 06(x) < d Od(y) where ó stands for <5(x, j>).

We write then x ^ y and x -< y if x ^ y.

Lemma A: ^ is a linear ordering of T.

We omit the proof of this lemma because it is very similar to the

proof that the lexicographical ordering of a cartesian product of linearly

ordered sets taken over the well-ordered argument is a linear ordering

(see Chapter VI, Section 5).

Lemma B: is an extension of

Proof. If x ^ y then x y by the definition of =^.

Lemma C: If x and y are immediate successors (in T) of an element

z e L
:
then x y = x < f+1 y.

Proof. From the assumptions it follows that x, y e Lt+X and c5(x, y)

— C+ L

Lemma D: If t e T then the set T
t = {z e T: t ^ z} is an interval

of T in the linear ordering

Proof. The statement says that if x, y e T(
and x ^ z y then

z e T
t

.
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To prove this we first remark that if x ^ z, then t ^ z in view of the

transitivity of ^ . If z ^ y, then z and t are comparable in T because

they both precede y. The case z < t would imply z < * which is in-

compatible with the assumption a: z and hence t < z.

It remains to consider the case where x is incomparable with z, z is

incomparable with y and

O
n
{x) <„ 0„(z), Oc

(z) < c 0: (y),

where rj = <5(>, z), £ = <5(z, y).

Let t e Lx . If rj > t, then Or (x) = O r (z) and from t < y it follows

that Or(x) = t. Thus we obtain t = Ox{x) = Ox (z), whence t ^ z.

We show similarly that t ^ z if £ > t. Therefore the lemma will be

proved if we show that the inequalities rj ^ r, £ ^ r cannot hold

simultaneously.

Assume otherwise. From the definitions of rj and £ we obtain

(1) [<?„(*) <, 0„(z)] AA [Of(x> = 0
{
(zj]

,

t<n

(2) [0:
(z) < C

O
c (>-)] a A [£>f(zJ = OfO')] .

£<C

If rj = £ we obtain from these formulas

(3) 0„(*) <„ 0,00
because <,, is transitive. If rj < £ then we obtain from (1) the inequality

Ofx) <r) On
{z) and from (2) the equation Ofz) = O^y), whence we

see that (3) is true also in this case. Finally, if r) > £ then Ofz) <
z 0: (y)

by (2) and Ofx) = Ofz) by (1), whence

(4) Ofx) < c
O

c (y).

Thus in every case either (3) or (4) holds. On the other hand, it follows

from 7] < r and £ < r that = O
n
(t ) = O

n(y) and Ofx) = Oft)
= Oz(y) because t < x and t ^ y. Thus neither (3) nor (4) is possible.

Lemma D is thus proved.

Collecting the results established in the lemmas we obtain

Theorem 2: If T is a tree ordered by the relation ^ then ^ can be

extended to a relation which orders T linearly and has the additional

property that each set T
t = {z e T: t ^ z] is an interval of T with respect

to the relation =^.

This theorem follows immediately from Lemmas A, B, D.
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°Theorem 3 : If T is a tree ordered by the relation ^ and if each element

of T has denumerably many immediate successors then ^ can be extended

to a relation ^ which linearly orders T and has the property that for

any t in T the set of immediate successors of t has the order type co with

respect to the relation =^.

To prove this theorem we use Lemmas A, B, C selecting suitable linear

orderings < r/
of the levels. For limit ordinals p including 0 we select

^ arbitrarily. If p = 7] { + \ we first divide L
n

into disjoint classes

collecting in one class all the elements of L
n
which have a common

immediate predecessor. Each class is ordered in type m and the set

of all classes is ordered arbitrarily. The ordering ^ thus obtained

has the property that immediate successors of an arbitrary element z

belonging to LTn are ordered in type co.

§ 2. The lexicographical ordering of zero-one sequences, rj^ sets

In this section we shall continue the study of linear orderings of

trees. More specifically, we shall consider the tree TmgL
introduced in

Section 1, and its lexicographical ordering. We shall find that these

orderings have interesting applications in the general theory of linearly

ordered sets.

In order to abbreviate the formulas we shall denote wa by q.

Let be the relation of lexicographical ordering of T
g ;

thus if/, g e T
e

then f< g if and only if/ # g and there is a £ < q such that /(£) = 0,

g(£) = 1 and f(C) = g(C) for all £ < £• We shall denote £ by S(f, g).

Hence

/-<*(/> sW/IHW*)) = g\W(6(f,g))]K

a[/W,*))-o] a [*(*(/;*))= 1].

As we proved on p. 221 the set T
e

is linearly ordered by =<.

Theorem 1 : Let A be a non-empty subset of TQ and letf0 be a sequence

in T
e
defined thus : /0 (£) = 1 if and only if there is a g in A such that

/o| W(f) = g|lT(C) and g(£) = 1. Then f0 is the least upper bound of A.

Proof. We have to show

(i) he A - h </0 ;

(ii) if h for each h in A ,
then f0 =^/
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If (i) were false there would exist h in A such that f0 -< h
,
whence

h\ W (d(f0 , /?)) = fo\W (<5(/0 , /?)) and h(d(J0 ,h))= 1, /0 (<5(/0 , h)) = 0.

However, from the last but one equation it follows f0 (<5(/0 ,
h)) = 1

in view of the definition of f0 . In this way we obtain a contradiction.

To prove (ii) let us assume that h =^/ for each h in A and /-</0 .

Hence we obtain the equations f\ W{6) = f0 \

W(S), f(d) = 0 and

/0 ((5) = 1 where we wrote 6 for d(/,/0).

The last equation proves by the definition of f0 that there exists

a g in A such that fQ \
W(d) = g\W(d) and g(S) = 1. Since g #/ and,

by assumption, g =^/, we obtain g\W(d(g
, f)) = f \W(Ó{g ,f)) and

g{p{gJ))<f{KgJ)\ The equations f0 \

W(d) = g\ W{6) and f0 (S)
= g(d) prove that S(g,f) > <5, whence we obtain /(<3) = £(<5). Since

f(S) = 0, we obtain g(<5) = 0 which is a contradiction.

Theorem 1 is thus proved. As an immediate corollary we obtain:

Theorem 2: Each non-empty subset A of TQ
has a least upper bound.

A similar theorem holds for lower bounds. The set T
e

is thus con-

tinuously ordered.

Example. Let A be a limit ordinal and f0 e T
Q
be such that /0 (l) = 0

for all | ^ A but for each £ < A there is a £ satisfying £ < £ < A and

/o(£) = L For 0 < £ < A denote by f a function which is 0 for all

the arguments ^ £ and otherwise coincides with /0 . Then /0 is the

least upper bound of {f\ 0 < £ < A}.

Proof. /c -< f0 because selecting a smallest o such that £ < a < A

and /oO) = 1 we obtain d(fc ,f0) = a and ffo) = 0, fQ (a) = 1.

Let us now assume that f g for each 0 < £ < A. We shall show

that/o ^ g. Assume otherwise. Then f0 (<5(/0 , g)) = 1 and £(<K/0 ,g))
= 0 whereas

/

0 (£) = g(£) for all £ < <5(/0 , g). The first equation proves

that d(f0 ,g) < A because f0 vanishes for all arguments ^ A. Select cr

such that d(f0 , g) < a < A and

/

0 (o’) = 1. Hence the functionfa satisfies

the relation fa \
W(d(f0 ,g)) = fQ\W(Ó(J0 ,g)), since /,(£) = /0 (£) for all

£ < o\ for the same reason the equations fa (d(f0 , g)) = f0 (f(fo, g))

= 1 are also true. Therefore, since g <f0 , g(b(f0 , g)) = 0, whence

g which contradicts the assumption that fa g. Our assertion

is thus true.

Theorem 3: Each non-empty subset A of T
Q

is cofinal and coinitial

with an ordinal < (oa .
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Proof. Let /I be a subset of Ta without a last element and let f0
be the least upper bound of A. We denote by X the least ordinal < q

such that £ ^ X ->

/

0 (£) = 0 and put X = q if such an ordinal does

not exist. Hence if £ < X then there is a a such that £ < cr < X, /0 (cr) = 1

and f0 (i) = 0 for all £ ^ X.

First we show that A is a limit number. Suppose conversely that

X = ^+1. Hence X < q. From the definitionsof X we obtain

/

0 (/f) = 1,

whence, in view of Theorem 1, there is g in A such that gj W(p) = f0 1
Wfi)

and g(ju) = 1. It follows that d(f0 ,g) > /1 ,
i.e. b(f0 ,g) > X. However

f0 takes on the value 0 for all arguments ^ X and so f0 (S(f0 ,g)) = 0

whereas the relation g =^/0 resulting from the definition of f0 proves

that either g = f0 or f0 (d(f0 ,g)) = 1. Hence we obtain f0 = g e A,

i.e. /o is the last element of A. Since this contradicts our assumption,

we see that X cannot be a successor ordinal.

From the example given above it follows now that f0 is the least

upper bound of the set {/c : O < C < X} and hence A is cofinal with

a set whose order type is X.

Corollary 4: IfX is a subset of Te
which is well ordered by then

the order type ofX is < o)a+l ;
similarly if X is well ordered by the in-

verse relation then the order type of this set is < cua+1 .

Proof. Otherwise X would contain a set ordered by (or by

in the type cox+ x
and could not be cofmal with a type X ^ coa = q.

We shall now apply the ordering of T(0 ,

:
to the following problem

concerning linearly ordered sets. Given a cardinal rn, does there exist

a linearly ordered set H such that every linearly ordered set of power

< m is similar to a subset of HI For the case m = N0 we have already

discussed this problem and solved it affirmatively (Chapter VI, p. 214).

Definition: A linearly ordered set H (of arbitrary power) is said

to be an rj-set
1

) if If ^ 0 and if for every two subsets A, R of power

< such that

(1) (a e A) a (b e B) (a < b)

The sets were defined by HausdorfT; see his book HausdorfT [1], p. 181.

In our exposition we follow Sierpiski [21].

Similar problems for other types of relations are discussed in model theory; see

Chang and Keisler [1].
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there exist u,v, w e H such that

(a e A) a (b e B) (u < a < v < b < w)

.

The y0-sets are simply sets which are densely ordered and have no

first and no last element.

°Theorem 1 : IfH is an rp-set and X is a linearly ordered set ofpower

< then X is similar to a subset of H.

Proof. Let X = Xa ,
a ^ £ and let r be a one-to-one sequence of

type coa whose range is equal to X; moreover, let % be a one-to-one

sequence (of type coy) whose range is the set H.

We shall define by transfinite recursion a sequence of elements of

H such that the range of the sequence is similar to X. The construction

is almost identical to the construction used in the analogous case of

sets of type y (p. 214).

For /

1

< coa let

% = min A{(Xc ^ <x^) = (xc <h %„(,))]},
C n<r

where -<x and <H denote the “less than" relation in the set X and

in the set //, respectively. The function min is to be understood in

such a way that min 4(C) = 0 in the case where ~M(t) for all £.

c

We shall prove by induction that (p ^ cp
n
for y < p < (ox . In fact,

let

C = {/1 < coa : A (<Pn * <Pn)}
r)<n

and assume that p < coa and IF(/<) c= C. To show that p e C it suffices

to show that there exists an element a e H such that for all y < ft.

a * Xvm and (a <h Xnn)) - (T/< <x*r,)-

For this purpose let

A = {xnv> : 0? < (Tn <x^)},

« = {Xvm (»; < -CjT,)}.

The sets A and B are of power < p < coa < Xe and satisfy (1), thus

there exist u, v> vr satisfying (2). If B = 0 then let a = w, if A = 0
let a = u, and if A ^ 0 # B let a = v.
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Since qp0 = 0, it follows from the inequality obtained above that

X<poo H%(p<n)
=

which completes the proof of the theorem.

We shall construct an rj-set, assuming that ro is a regular ordinal

(see Exercise 3).

Let He be the subset of Tat consisting of those sequences w e Tmt for

which there exists a number x < co such that qpH = 1 and qpa = 0 for

a > x.

Theorem 2: If a> is a regular ordinal then H is an rj-set.

Proof. Let A and B be subsets of H of powers < N
v
t and let a

and ft be one-to-one sequences of the types co

^

and a>v respectively

(ju, < £, v < £) such that the range of the sequence a is A and the range

of ft
is B. Assume that A and B satisfy condition (1).

For every g < oj

^

the term a
e

is itself a sequence of type co whose

terms are either 0 or 1 and there exists an ordinal x = x(g) < a) such

that <x
6 , x(e) = 1 and olq(T = 0 for o > x(g), We shall call the ordinal x

“critical” for the sequence a
e
and we shall employ similar terminology

for the sequences fiQ ,g < o>„, where by X(o) we denote the critical

ordinal of the sequence fta .

The regularity of co implies that the sequence of critical ordinals

for the sequences a
e , g < co^ is not cofinal with co. Thus there exists an

ordinal £ < co such that x(g) < £ for all g < co
tl

. Let cp
y
= 0 for y ^ £

and let qpf = 1. Then qp e H and qp «< a
e

for all g < co
fl

. Similarly

there exists an ordinal £' < <o such that 2(cr) < £' for all o < cov .

If rp
y
=1 for y ^ £' and xp

y
= 0 for y > £'

,

then xp e H and < xp

for all a < co
y

.

To prove the theorem it remains to construct a sequence ft e H
such that a

e < ft < for all g < and o < cov .

First we construct by transfinite induction a sequence ft* of type o)

which does not necessarily belong to H but is such that

a
e =< ft* < At for Q < a <

Let t be an ordinal ^ co and let (p e Tz . For y < t we put F(qp
, y)

= 1 if there exists an ordinal g < o such that qp\y
= ajy and oc

e>y = 1

and F((p, y) = 0 if there is no such g.



324 IX. TREES AND PARTITIONS

From the theorem on transfinite induction it follows that there

exists a sequence ft* of type co^ such that

ft* = F(#*| fV(y), y) for y < au;

thus

{&* = 1) = V At(a
<><3
= '^*)A(a

ey = 1)].

e <aV d< y

Assume that a
e > ft*; then there exists an ordinal y < cu^ such

that ct
Qy = 1, ft* = 0 and ocQd = ftf for ó < y. By the definition of

the sequence ft* it follows that ft* = 1, which is impossible. Thus

oc
Q ^ ft* for every g < co^.

In turn, assume that ft* > thus there exists an ordinal y < co
f

such that ft* = 1, f}ay = 0 and ft* = fa8 for 6 < y. From the defi-

nition of the sequence ft* it follows that for some g < cjo
fi

a
c |

W(y) = ft*\W(y) and oc
ey = 1.

Hence ot
Q

contrary to our assumptions.

We now modify the sequence ft* so as to obtain the desired sequence ft.

We examine two cases:

Case I: For every y0 < co
i

there exist y > y0 such that ft* = 1.

In this case ft* £ H$
and thus the strict inequality a8 < ft* <

holds lor arbitrary g < co

^

and o < co v . Let y0 be an ordinal such

that ft*
o = 1 . Let ft

y
= ft* for y ^ y0 and ft

y = 0 for y > y0 . Clearly

for every y0 the sequence ft belongs to H*. We shall show that we
can choose y0 in such a way that the sequence ft satisfies the desired

conditions.

Let y0 > max(t, CO- From ft* < it follows that there exist ordi-

nals ó such that ftf # fa8 and the least such ordinal 00 satisfies the

equations ftfQ = 0 and fiOt00 = 1. Thus d0 ^ C' (since fat8 = 0 for

d > CO; hence ft
8o < pa>8o and ftd = fat8 for d < S0 . Therefore ft < f$a .

For g < o)^ there exists an ordinal <50 ({?) such that a
e>(5o(e)

= 0 and

Ki* = ^ anC^ ^0r y < ^o(i?)> <X
Q .y = fty • CllOOSe /0 > ^0 ({?) f° r a^

g < co . The sequence ft obtained from ft* by the modification just

described satisfies the condition a
Q < ft for g < co^.

Case II. There exists y0 < co^ such that ft* = 0 for y > y0 .
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Let y, > max(y0 , C, £') and modify the sequence ft* so that d
y = ft*

for y # 7i and = 1. It is easy to check that the sequence obtained

in this way belongs to Hf and satisfies the condition a
Q < ft < f}a .

°Theorem 3: Ha+1 = 2
Sflt

; if £ w a //m/7 ordinal
,
then H = V 2

Sflf

.

a<|

Proof. Assume that | = a + 1 and y0 < . The set Z
yo

of those

sequences cp e T(0t for which yyo = 1 and <py
= 0 for y > y0 has a power

^ 2
S
“. Since Ht — U Z

yo ,
^ follows that

Vo <

< 2
Sa^ = 2

s
* Xa+1 ^ 2

Na
2
Sa = 2

s
*.

^ ^
Since Z

0Ja
has power 2‘ 3 and Z0,a

c= //
f ,

we conclude that H = 2
a

.

The proof of the second part of the theorem is similar.

Corollary 4: If 2
s
* = Na+1 ,

then there exists an r)a+x -set of

power Xa+ j

.

This corollary follows immediately from Theorems 2 and 3.

It can be shown that if 2
Sflt > Na+

1

then no rja+ j-set has power Xa+ x .

On the other hand, for ordinals | where co is not regular, every ^rset

has a power > This fact follows from the theorem (proved by Haus-

dorff) which states that every rya+1 -set contains a subset of power 2
s3

.

1

)

Exercises

1. Every two ry^-sets of power Xt are isomorphic. [Hausdorff]

Hint : Use an argument similar to that used in the proof of Theorem VI. 2. 2.

2. If H is an ^-set and if H' is a subset of H, dense in H, then H' is also an ^-set.

3. If oj^ is a singular ordinal, then every ry^-set is also an r)+1 -set.

4 . If R = r) and / is a non-principal prime ideal in the family P(N), then the reduced

direct product RNII is of type rji • [Kochen]

Hint : Let f„ and gm (n, m eN) be elements of RN such that {/: /„(/)^ gmO)} G I

for arbitrary n, m. The essential step in the proof depends upon the construction

of a sequence h e RN such that the sets {/: /„(/) ^ /*(/)} and {/: h(i) ^ gm(0} belong

to /. If /„(/) < /n+1 (i) and gm +i(i) < gmd) for all n, m , / eN, then let Xj be a de-

J

) A simple proof of Hausdorff’s theorem about powers of ?ya+1 -sets can be found

in Sierpiski [21]. In connection with Exercise 4 see Kochen [1]. Interesting algebraic

applications of the ^j-sets were found by Erdos, Gillman and Henriksen [1].
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creasing sequence of sets X not belonging to / such that X0 = N and O Xj = 0
j

and for / e Xj—XJ+ x
let

KO = TL/ku)(0+^L(j)(0].

If the sequences /„ and gm do not satisfy the inequalities above, then they can

be modified in such a way as to obtain functions belonging to the same classes mod /

and satisfying the desired inequalities. For example, monotonicity can be obtained

by letting fó(i) = f0 (i), f'+ 1(0 = max (/„'(/),/„(/)) and similarly for gm .

§3. Konig’s infinity lemma

The oldest and simplest but probably the most widely known theorem

on trees is the following “Konig’s lemma”. 1
)

Theorem 1: If T is an infinite tree with finite levels which for each

integer n has chains with at least n elements
,
then T has an infinite chain.

Proof. Let / be a choice function for the family of non-empty finite

subsets of T. Also we put /(0) = 0.

Consider the following property of elements of T :

0(a) = for each integer n there is a branch B such that B contains

x and at least n successors of x.

We claim that if a satisfies 0 then so does at least one immediate

successor of a. Otherwise for each y which immediately succeedes x

there is an integer n(y) such that every branch of T which contains y

has at most n(y) successors of y. Since there are only finitely many

immediate successors of a we obtain an integer n = max{/2 (j’): y is

an immediate successor of A'} such that for each immediate successor y
of x and each branch B containing y, this branch contains at most n

successors of y. Now consider a branch B0 containing a and calculate

the number of successors of x which belong to B0 . If a*! > a and x x e B0

then B0 must contain an immediate successor y0 of a and so the number

of successors of y which belong to B0 is at most n. The element y being

an immediate successor of a, we infer that the number of successors

of a which belong to B0 is at most n+ 1. This however contradicts the

assumption that a satisfies 0.

’) Konig’s lemma was first published in D. Konig [1].



3. KONIG’S infinity lemma 327

We prove in the same way that there is a minimal element x0 of T
which has the property O.

Now put r(x) =
{y : y is an immediate successor of xa 0(>>)},

g(X) =/CnX)) and define xn+1 = g(x„). We prove by induction that

0{xt) for each n. For n = 0 this is true because of the definition of x0 .

If 0(xn) is true for an integer n then the set r(xn) is non-empty as we
proved above and hence g(xn) e r(xn), whence the element g(xn), i.e.

x„ +1 , satisfies 0.

Since x„ < x,J+1 for each n, we obtained an infinite chain. Extending

this chain to a branch we obtain an infinite branch.

Example. Let / be the closed interval [0, 1] = {x: 0 ^ x ^ 1} of the

real numbers and suppose that I
j n = {x: y/2" ^ xs^ (j+ l)/2 n

}
forj< 2”,

n g N. Let G be a family of open intervals of the real numbers. We say

that G covers I
jt „ if there is an interval X e G such that Ij n a X.

Theorem 2\ If [^j (G) — I then there is an integer n such that G covers

all the intervals Ijtn for j < 2".

Proof. Let T0 be the family consisting of all the intervals IJfll where

j < 2" and n is an integer. T0 is a tree of order 2 under the relation

inverse to inclusion: X < Y = X => Y. Consider the sub-tree T of T0
consisting of those intervals X e T0 which are not covered by G. Note

that each element Ijn of T has exactly n predecessors.

The theorem will be proved if we show that there is an integer n

such that all chains in T have at most n elements. For suppose that n

satisfies this condition; if Ij n were not covered by G it would belong

to T and so would all its predecessors and hence we would obtain

a chain with /?+ 1 elements.

Now the theorem follows easily from Konig’s lemma. If T contained

chains of each finite power, it would contain an infinite chain

iieN}. Since the intervals Ijn>n are closed, their intersection p)/yn< „

n

is non-empty. But if x belongs to this intersection then x <£ ^ J (G) and

so we obtain a contradiction with the assumption of the theorem.

A slight generalization of Konig’s lemma is the following

Theorem 3 : If T is a tree of height o)a all levels of which are finite

then T has a branch of order type coa .
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Proof. Let/ be a choice function for the family of non-empty subsets

of T. From the assumption about the height of T it follows that for

each p < coa there is at least one chain of T whose order type is p. We
abbreviate as 0(a) the formula

for each p < toa there is a chain of type P with the minimal element a.

From the assumptions of the theorem we infer that there are elements

of L0 with the property 0. Let a0 be one of them. We now define a trans-

finite sequence {tff } of order type coa . For £ = 0 the element a0 has

been selected. It will therefore be sufficient to show how to define

a
y (y > 0) from a sequence Let A be the set of all terms of

this sequence.

If A is not a chain or if ~10(a) for at least one a in A or if at $ Ls

for at least one £ < y we put a
y
= a0 . Now assume that A is a chain,

0(a) for a e A, and at e L| for each £ < y.

Case I : y = d+ 1 . In this case we consider the finitely many immediate

successors of a6 and show just as in the proof of Konig’s lemma that

the set X = {a e L
y : (a6 < a) a 0(a)} is not empty. The element a

y

is defined as /(X).

Case II: y is a limit number. In this case we first remark that the

set X = {a e L
y

: 0(a)} is not empty. Otherwise a0 would not satisfy 0
because there would be no chains of type y+1 with the minimal el-

ement tf0 . Secondly, we remark that for each y e L
y
—X there is an ordinal

P(y) < oja such that no chain with the minimal element y has the order

type > p(y).

We claim that if £ < y then has a successor in X. Otherwise each

chain with the minimal element at would have the order type at most

(y
—

£) + max {/?(>>): y eLv — X). Indeed, such a chain either ends below

L
y
or its part lying above L

y
has the order type at most ma\{P(y):

y g L
y
— X). Since this contradicts the assumption 0(a$), our claim

is established.

For each x in X put Cx = [b e T: b < x} and claim that A a Cx

for some x in X. For if A — Cx # 0 then putting bx = f(A — Cx) we see

that x is not a successor of bx and therefore also not a successor of

any z ^ bx . If A — Cx ^0 for each x in X
,
we would obtain finitely

many elements bx corresponding to finitely many elements of X.
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Selecting the largest element from among
{
bx : x el} we would there-

fore obtain an element of A such that no x in X were its successor.

This contradicts the claim established above. Of course, the element x
such that A c Cx is unique. This unique element is taken as a

y
.

The sequence {^}| <(Da is thus defined. We prove by induction that

it is strictly increasing and this gives us the desired chain of type (oa .

Exercises

1. Give examples showing that the assumption that the tree T has finite order

is essential for the validity of the Theorem 1.

2. Derive the compactness of the Cantor set C (see p. 135) from Konig’s lemma.

3. Derive Konig’s lemma from Tychonoff’s theorem (see p. 138).

4. Prove that if A is a set of finite sequences with terms 0 or 1 such that /\[e e A
n

-* e\

n

e A] and such that for every n there is a sequence e in A with n terms, then

there exists an infinite sequence <p such that for every n in TV its restriction (p\n belongs

to A. Does this theorem hold for sequences with arbitrary integral terms?

5. Let A be a set of binary relations between non-negative integers, A <= P(NxN),
satisfying the following conditions:

(i) for every neN there exists in A a relation whose field contains //;

(ii) if R e A then Rn(nxn) e A for each n in TV.

Prove that there exists a relation R0 with field TV such that R0 n(nx n) e A for

every n in TV.

6. If mankind is to last forever, then at least one man living now will have male

descendents in every generation [Konig].

§ 4. Aronszajn’s trees 1

)

A cardinal m is said to have the tree property if every tree T of power m
such that each level of T has power < m has a branch of power m.

According to Konig’s lemma the cardinal X0 has the tree property.

We now ask what other cardinals have the tree property.

Theorem 1 : No singular cardinal has the tree property.

Proof. Suppose that A = rn where m is singular. Thus A can be

decomposed into a union
( j A s

of less than rrt mutually disjoint sets

i
rsr

such that A$ < m for each f. We may assume that A is well ordered

') The main result of this section (Theorem 2) is due to Aronszajn whose proof

appeared first in Kurepa [2]. See also Kurepa [1], p. 92. For further results on Aron-

szajn’s trees, their generalizations to higher cardinalities and other related types

of trees see Jech [1],
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by a relation Define a partial ordering -< on A by putting x < y

= V [(A' e A() a (ye At) a (* ^ >>)]. It is easy to check that A becomes
f

a tree under this ordering and that the sets A are the unique branches

of A. Hence m does not have the tree property.

For regular cardinals the problem is much more difficult. Given

a regular cardinal m > X0 ,
it cannot be generally decided on the

basis of axioms 27° [TR] whether m has or has not the tree property.

However for m = the problem has a solution:

^Theorem 2: There exists a tree A of height oj
t such that each level

of A and each chain of A are at most countable.

Trees with the property stated in the theorem are called Aronszajn

trees.

Proof. Let Q be the set of rational numbers and let ra be the set of

transfinite sequences of type a (i.e. functions) f: fV(a) -> Q which are

increasing: f(£) < f(rj) for £ < r] (a < oj,) and have the property

that Of = sup {/(I): £ < a} eQ.

We denote by 0 a choice function for the family of all sets I\.

In order to carry out the construction we need some preparatory

steps. For each limit ordinal (x < co
l
we select (using the axiom of

choice) a strictly increasing sequence {pan }„ <(0 which converges to

a: lim pan = a. Also for each pair v < w of rational numbers we select
n < co

a strictly increasing sequence rn such that v < rn < w for each n and

lim rn = w.
n < a>

Elements of the tree to be constructed will be transfinite sequences.

The ath level of the tree will consist of certain elements of ra . The

ordering will be the relation of inclusion, i.e. .v ^ y = x c y.

The definition of the tree will proceed by induction. We put L0

= {0}, assume that a > 0 and show how to define Lx from levels Lt

where £ < a.

Let us assume that the set \^J {Z^: £ < a} = L' is at most count-

able and that it has the following property:

(*) Either a is not a limit number or for arbitrary £ < a, arbitrary f
in Lt, arbitrary w in Q such that ay < w and arbitrary y\ such that £ < r]
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< a there is a g in L
t]
such that o

g = w andf a g. (If these conditions

are not satisfied, we put La = 0.)

We consider separately the cases in which a is a successor or a limit

number.

Case 1. a = y+ 1. In this case let La consist of all functions fe
such that f\W((x)eL

y
.

Case 2. a is a limit number. For each /in L

%

(£ < a) and each rational

w satisfying oy < w we define a function g e ra which we call an ex-

tension of/ and denote by gf, w . This function is equal to ljg„ where
n<o>

go — / and each g„ +1 is an extension of gn .

In order to define the functions gn we consider the sequence rn cor-

related with the pair oy and w. Thus oy < r0 < r
x < ... < rn < ... < w

and lim/y = w. Furthermore we consider the increasing sequence (5an

and denote by n0 the first integer such that /?a„0 > £. Let F0 be the

family of functions h which extend / belong to Lfia„o +it
ar|d satisfy

the equation h(p2no) = r0 . By (*), the family F0 is non-empty. Let

g0 = 0(FO) be a function selected from this family. Now let us assume

that gk has already been defined and gk and gk(Pa,n0+k)
= rk-

By (*) the family Fk+l of all functions h extending gk which satisfy

the conditions h e L
Px no+fc+1

and h((3at „0+k+l ) = rk+] is non-empty.

Let gk+l = 0(Fk+l ).

By an easy induction we prove that gk cz gk+1 , gk e Lp
a no+k +i

and gk (pa ,n0 +k)
= rk for each h. Hence [Jgk = g is a function in T*

because o
g = limr„ = w and g extends /

We define now L7 as the set of all functions gftW where fe U Lt
f <a

and Of < w.

The inductive definition of La is thus finished.

We shall now prove that (*) is valid for each a. Thus let a be a limit

number, f £ Lt where £ < a, of < w e Q and let £ < r) < a. We want

to show that there is a g in L
g
such that o

g = w.

We use induction on r\ . If rj = £+1 then we obtain g simply by

adding to / the pair <£, w>.

If rj is a limit number then we apply the same procedure as we did

above but replacing a by and r by w and obtain an extension g of/
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which by definition belongs to L,r Since a
g = w, the proof that (*)

is valid for all a is finished.

Now in order to prove Theorem 2 we remark that La is at most
denumerable. For this is true for a = 0 and if a = y+l then each /
in Ly gives rise to exactly K0 elements of Ly+1 . Finally if a is a limit

number and L
f

is at most denumerable for each £ < a then so is Lx

because each element of La is uniquely determined by a function

f e[J L and a rational number w > of .

!<a

Since (*) is valid for each a, we infer that La # 0 for all a< co
l .

Hence all the levels of the tree are at most denumerable and the height

of the tree is .

Exercises

1. Construct a binary Aronszajn tree.

Hint: Start from an Aronszajn tree in which the order of each element is infinite

and insert between each pair of consecutive levels La and Ia+1 suitable binary trees

each with exactly one minimal point lying on La .

2. Prove that there are 2*i isomorphism types of Aronszajn trees.

§ 5. Souslin trees

A tree S is a Souslin tree if it has the height and each of its chains

as well as each of its antichains is at most denumerable. Note that

a Souslin tree is an Aronszajn tree but not necessarily conversely.

The existence of Souslin trees is unprovable on the basis of axioms
27°; if these axioms are consistent then they remain so if we add to them
a sentence stating that Souslin trees exist.

Souslin trees are important chiefly because of their connections

with a famous question asked by Souslin in 1920: Let us call a linearly

ordered set X a Souslin set if every set of disjoint non-empty intervals

is at most denumerable but X is not similar to any subset of the real

numbers.

Souslin’s problem was whether such linear orders exist.
1

) We shall

prove

') Souslin s problem was stated in Fundamenta Mathematicae 1 (1920) 223.
The unsolvability of the Souslin problem on the basis of set theoretical axioms was
shown by Solovay and Tennenbaum [1].
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°Theorem 1 : If Souslin trees exist then so do Souslin sets and con-

versely.

Proof. First let us assume that A' is a Souslin set and let < be its

ordering. By Theorem 6, p. 215 no denumerable subset of X is dense

in X for otherwise X would be similar to a subset of the real numbers.

We construct a Souslin tree T whose elements will be intervals of X
ordered by inverse inclusion.

Let 0 be a function which correlates with every non-empty family

of infinite intervals of X a proper infinite sub-interval of an interval

belonging to the family. The existence of 0 follows from the axiom

of choice. Now we construct a transfinite sequence of type oj
t
con-

sisting of infinite intervals of X.

Let I0 = X; if 0 < a < co t ,
then let Fa be the family of infinite

intervals / of X with the property that for each £ < a the interval /

is either contained in f or disjoint from L. If the family Fa is non-void

then we put Ia = 0(Fa), otherwise /a = X.

The sequence {/|}f<a)l is thus defined and for arbitrary £ < rj < cuj,

we have either fnf = 0 or I
n

.

Let us note that the condition Fa = 0 is equivalent to the state-

ment: the set of endpoints of intervals /$, £ < a, is dense in X.

From Theorem 6, p. 2 1 5 we know that a linearly ordered set containing

an at most denumerable dense subset is similar to a set of real numbers.

Jdence X does not have dense denumerable subsets and therefore Fa ± 0
for each a < a)

l
.

We can now construct a Souslin tree. Let T be the set of all the

intervals £ < co l5 and let hold if and only if £ < rj and f f.

Obviously T is a tree and has the power An antichain of T consists

of mutually disjoint intervals and hence is at most denumerable.

We shall now show that T contains no non-denumerable chain. For

suppose that C =
{/„} is such a chain. The left endpoints of the in-

tervals /,, form a non-decreasing sequence of elements of X and the

right endpoints of the intervals Iv form a non-increasing such sequence.

The book of Devlin and Johnsbraten [1] contains a comprehensive exposition

of recent results connected with the Souslin problem.

The connection between the Souslin sets and Souslin trees which is established

in Theorem 1 was discovered by Miller [1].
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One at least of these sequences must have a non-denumerable set of

terms. Hence if T contained a non-denumerable chain, then so would X
and so X would not be a Souslin set.

We pass now to the proof of the converse implication. Thus we
assume the existence of a Souslin tree T0 and shall derive the existence

of a Souslin set.

The proof will proceed in two steps. First we shall modify T0 so

as to obtain a Souslin tree T with the additional property that for each

x in T there are exactly X0 immediate successors of jc. Such a tree

will be called normal. Secondly we shall linearly order the branches

of a normal tree T so as to obtain a Souslin set.

Construction of a normal Souslin tree. It is obvious from the defi-

nitions that a non-denumerable sub-tree of a Souslin tree is again

a Souslin tree. Also it is easy to see that at each level of a Souslin tree

there are elements which have non-denumerably many successors.

Otherwise the tree would be denumerable since every level of it is at

most denumerable.

It follows from these remarks that if we remove from T0 elements

which have only N0 successors, we still obtain a Souslin tree. Thus
we may assume that each * e T0 has X, successors in T0 .

From Theorem 3, p. 327 we infer that for each * in T0 there is an
ordinal rj(x) such that * has infinitely many successors on the

level of T0 . Of course, x has then infinitely many successors on each

level of T0 higher than rj(x).

We now construct a normal subtree T of T0 . We shall denote the

levels of T by Lt and the levels of T0 by L? . Let L0 = Lq and assume
that a > 0 and levels are already defined for £ < a so that

0) each is contained in a level

If a = 0+1 then we take 2(a) = sup {/;(*): * 6 Lf\ and La = Lj
(ct) .

Thus condition (1) is satisfied. It a is a limit number we define 2(a)
= sup (2(|): £ < a} and La = L°(a) and see again that (1) holds.

Thus the levels Z.a are defined for a < co
l ,

each x e has infinitely

many successors on the level L$+

1

and each L with £ > 0 is denumerable.
Hence T = £ < oq) is a normal Souslin tree. This accomplishes
the first part of the proof.
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The second part will rely on Theorem 3 proved in Section 1, p. 319.

According to this theorem there exists a linear ordering of T which

is an extension of ^ and has the property that for any r in T the im-

mediate successors of t are ordered by in type to.

Let now X be the set of all maximal branches of T. Each B is de-

numerable; let %B be the height of B, i.e. the least ordinal a such that

B n Lx = 0. For £ < xb let B5 be the unique element of BnL.
We order X by agreeing that B' B" if B' — B" or the least £ such

that B[ # B't satisfies Bt -< B'f. There must be such a £ because B' and

B" are branches, i.e. maximal chains.

We shall show that A" is a Souslin set with respect to this ordering.

First we have to show that is a linear ordering of X. The reflexivity

and connectedness of <| are obvious, and transitivity and antisymmetry

easy to prove (compare the proofs given for lexicographic orderings,

p. 221).

For each t in T denote by l
t
the set of branches containing t. We

easily show that if B\ B" e /, and B' <| B" then each branch lying

between B' and B" belongs to /,. Hence I
t is an interval of X.

In order to prove that X is a Souslin set we have to show that (1)

there is no denumerable set S c= X dense in X and that (2) each set of

disjoint intervals is at most denumerable.

Proof of (1). Let S c= X and let S be denumerable. There is a < to L

larger than heights of all branches in S. If t e L% then /, is an interval

of X and I
t
nS=0.

Proof of (2). Let J = [B, C] be an interval of X such that B <^C
and B ^ C. Let £7 be the least ordinal satisfying Bt ^ Q , hence

Since immediate successors of B
5

are ordered by < in type to we

can find a Zj e L$
J+ \

such that -< z3 and Zj is the immediate successor

of 2?t + j
with respect to the relation -<. It is clear that each branch

containing Zj lies inside the interval [B, C].

We claim that if J = [B, C] and J' = [B\ C] are two non-over-

lapping intervals of X
,

i.e. C <J B' or C <| B then Zj and Zj, are in-

comparable in T. Otherwise there would be a branch Z containing
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both Zj and Zj,. But then Z would lie inside J and inside J' contra-

dicting the fact that the intervals 7, J' do not overlap.

Now we see that if F is a family of non-overlapping intervals of X
then {zj\ J g F} is a set of the same cardinality as F consisting of

mutually incomparable elements of T. Since T is a Souslin tree, the family

F must be at most denumerable. Our theorem is thus proved.

§ 6. Some partition theorems

Let A be a set and n an integer. We denote by [/!]" the set of all sub-

sets of A with exactly n elements. Certain combinatorial problems

led Ramsey to ask the following question: suppose that [A] n
is de-

composed into two disjoint sets: [A]
n = Ju Y. Are there big subsets

B of A such that [5]” c= X or [B]
n a y? If n = 2 we can rephrase this

question in a more suggestive way: let us call elements of A “points’*

and pairs {x, y} “edges”. If {x,t} el we say that the edge is white

and if {x, y} e Y we say that it is black. Ramsey’s question can thus

be formulated as follows: if each edge is either white or black, is it

true that there is a big subset B of A such that all edges joining points

of B are of the same colour?

We shall generalize Ramsey’s question. Let / be a mapping of [/t]"

into a set L. If B c= A and the function /is constant on [5]” then we say

that B is a subset of A homogeneous for /.

Let A and L be two sets, A = ru, L = I. If for every /: [/4]
n -> L

css

there is a set B homogeneous for / such that B = n then we write

trt -+ (n)J. If there is an /: [/t]
n -+ L for which no homogeneous set

of power n exists then we write m +-> (n)". Theorems of this kind are

called partition theorems})

Below we shall prove 3 rather simple but by no means trivial par-

tition theorems. They have found numerous applications particularly

in logic.

We start with some obvious observations:

J

) The first partition theorem was established by Ramsey [I]. The theory of par-

titions was developed later mainly by Erdos and his collaborators; see Erdos and

Rado [1] and Erdos, Hajnal and Rado [1]. The symbols m -» (n)^ and m -+

(n)J
1 were introduced by Erdos.
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1. If m' ^ m and m ->• (it)” then tit' -* (n)”.

2. If n ^ it' and m (it)” then m -> (n')”.

3. If l ^ I' and ttt -*• (it)” then m -> (it)”, .

Also obvious are the following facts:

4. in (itt)”

.

5. //'lit is regular and tit > l then m — (m)^.

Remark 5 says simply that if a set of a regular power m is divided

in less than m disjoint parts, one at least of these parts has power itt.

We shall now prove a result which initiated the whole theory.

°Theorem 1 (Ramsey): If m, n are finite then X0 -» (X0)£,.

Proof. If n = 1 the theorem follows from 4. We make now the

inductive assumption

(1) N0 -» (N 0)m for each m ^ 1

and shall derive N0 (N 0)m
+1 for aa arbitrary m ^ 1. For m = 1

this statement is obvious in view of 4. Hence we can assume that m > 1

and that

(2) No - (No)m- >

Let A be a denumerable set and let /: [A]
n+X ->

{0, 1, ...,/n— 1}.

Let 0, W be choice functions for the family of non-empty subsets

of A and P(A) respectively. For each a in A define a function fa : [A —

— {<?}]” - {0, 1 , ... ,
m— 1 } by the equation fa(X) = /((a}uI). Call

a set B c= A — {a} an a — 0-set (or a-l-set) if it is infinite and fa(X)

< m — l or = m— 1 for each X in [5]”. Each infinite set contained

in A— {a} and homogeneous for fa is obviously either an a— 0-set

or a— 1-set. Now we distinguish two cases.

Case I. There is an infinite set A
t

c- A such that for each a in A
x

each infinite set B a A
t — {a} homogeneous for fa is an a-l-set.

In view of the inductive assumption, each infinite set X c= A
x
— {a},

where a is an arbitrary element of A
l ,

contains an infinite subset which

is homogeneous for the function fa limited to [Xf. Since we deal now
with the case I, this subset must be an a — 1-set. Therefore we can use the

function W and correlate with each infinite set X c= A
x
— {a} an infinite

set B{a,X) a X such that B(a, X) is an a-l-set.

Now we define a sequence {an }n<0J of elements of A y and a de-
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creasing sequence Bn of subsets of A
x . Put a0 = 0(A L ), B0 = B(a0 ,

A
i
— {«o}); thus B0 is an infinite a0 — 1-set. Let us assume that an , Bn

are defined and Bn is an infinite subset of A
t — {

an }. We put an+l = 0(Bn)

and Bn+l = B(an + l ,
Bn — {an+l }). Thus Bn+l is an infinite subset of

Bn —{an+ i) and hence also of A
L

.

We prove by induction that an e Bn — Bn+l and Bn is an an — 1-set.

Hence the set H =
{
an : n < co} is infinite. If X c [//]

n+1 and

X = {aPo , ..., aPn ) where p0 < p Y < ... < pn then a
Pl

,...,a
Pn are

elements of B
Po ,

whence {a
Pl , aPn } e [BPo]

n and since B
Po is an

aPo — 1-set we obtain /fl,o
({tf

Pl ,
= m- 1, i.e. f({aPo ,

= m— 1. Thus H is homogeneous for /.

Case II. For each infinite set A
y
a A there exists a e A, and an

infinite subset B a A
i — {a) which is homogeneous for fa and is an

a — 0-set.

In this case we use the functions 0 and KP to correlate with each

infinite set A
l
c A an element aiA^ and an infinite set B{A

l ) <= A
i
—

— {a^Ai)} which is an a^A^ — 0-set. Again we define by induction two

sequences For n = 0 we put a0 = a(A), B0 = B(A).

If an ,
Bn are defined and Bn is infinite we put an+ x

= a(Bn), Bn+ x = B(Bn).

We can then prove by induction that for each n
,
the set Bn is infinite,

Bn+1 a Bn ,
an e Bn

— Bn+l and Bn is an an — 0-set. Thus the set H
= {an : n < co] is infinite. If X = {aPo ,

a
Px , ,

a
Pn }

e [H]n+1 where

Po < Pi < ••• < Pn then a
Pl , ..., aPn belong to BPo and hence {a

Pl , ...

aPn } e [B
Pn]

n
. Since B

Pn is an aPo
- 0-set we infer /flPo

({tf
Pl , ... ,

aPn })

< m- 1, i.e. f({aPo , ...,aPn }) = f(X) < m- 1. Hence /: [H]n + l

{0, 1 , ... ,
aw — 2}.

In view of the inductive assumption (2) we obtain an infinite subset

of H homogeneous for the function / restricted to [//]"
+1

. This subset

is the required infinite subset of A homogeneous for /.

Ramsey’s theorem is thus proved.

Interesting problems arise when we discuss the existence of non-

denumerable homogeneous sets. In this connection we prove

’Theorem 2: 1

) If n is an integer
, m is infinite , b ^ 2

m and N(b)

- (K(m)): then K(2°) -* (K(m))”m
+1

.

') Theorem 2 is due to Simpson; see Keisler [1], p. 76.



6. SOME PARTITION THEOREMS 339

Proof. Let £ be a set of power N(2b
) and /: [£]

n+1 — / where /

is a set of power m. We shall assume that n > 0 because for n — 0 the

theorem follows immediately from Remark 4, p. 337. For X e [E]
n

and a e E—X we put fa(X) = f{X\j{a})\ thus fa : [E]
n

I.

A subset S of E will be called saturated with respect to f if there is

a function g : P(S)xE -+ S such that for each set M c S of power

at most b and each aeE—M the following formulas hold:

(1) g(M, a) tM and fa \
[M]n = fg{M , a) \

[M}\

Lemma: There is a saturated subset S of E of power 2b
.

In order to construct this set we start with an arbitrary set S0 c= E
of power 2b and extend it successively to form a transfinite sequence

{S
y }

where y ranges over ordinals such that y < b. For limit numbers y

we take as Sy
the union of all preceding S^s. Hence if all the S s have

power 2b then so has S
y

. Now we shall define Sy+l assuming that the

cardinal number of S
y

is 2b .

Let M range over subsets of S
y
of power < b; thus the family of

all ATs has power (2
b)* = b-2b = 2b (see p. 284).

• For each M let F(M ) be the set of functions h : [A/]" - /; the cardinal

number of F(M ) is thus ^ b b = 2b andfa \

[M]n e F(M) for each a e E— M.

We fix an arbitrary well-ordering of E and denote by g(M, a) the

earliest a' in E—M satisfying the equation

fa\W7 =fg<M, a) \WT.

Since the family {fa\[M]
n

: a e E—M} is contained in F(M), its power

is < 2b .

Thus for a given M of power ^ b there are at most 2b elements a'

having the form g(M, a).

We now define Sy+l as the set consisting of all the elements of S
y

and all the elements g(M
,
a) where M <= S and the power of M is

^ b. Hence the power of Sy+1 is ^ 2b -2b = 2b
.

The inductive definition of Sy+1 is thus finished. The cardinal of the

set S =
I

j Sy
where y ranges over ordinals satisfying y ^ b is <

2b
- X(b) = 2b

. IfM is a subset of S and the cardinal number of M is < b

then there is a y such that M c S
y

. Hence if a is an arbitrary element
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of E—M then g(M
,
a) e E—M and g(M,a) satisfies (1). Thus S is

saturated with respect to /. The lemma is thus proved.

We can now complete the proof of Theorem 2. Let ceE—S and

let h be defined by transfinite induction:

h(y) = g(Kz(h\W{y)-),c)

where, as before, y ranges over ordinals of power ^ b.

Since g satisfies (1), we obtain h{y) $ Rg(/i| W(y)) which proves

that the function h is one-to-one. Hence the range Rg(/i) of h is a subset

of E and has power N(b). In view of our assumptions there exists

a subset H of Rg(/?) which has power X(m) and is homogeneous for

fc • Let fc(X) = /0 for an arbitrary X in [H]
n

. We claim that H is homo-
geneous for/. To prove this let us consider arbitrary n + 1 elements

of H, e.g. h(y0), .,li(yn) where y0 < ... < y„.

Putting M = Rg(/?| lV(yn)) in (1), we obtain

fg(M . c) >
• • • > h{yn- 1 ) } ) • • • J h(,yn- l)} )

~ *0

because h(yi) e M for i < n. The left-hand side is equal tofh(yn) ({/?(y0 ) »
•••

... ,
h(yn - 1 )}) in view of the definition of h. Remembering the defi-

nition of the functions fa we obtain finally f({h(y0), ...» h(yn)}) = i0

which proves that H is homogeneous for /.

In order to express conveniently the contents of Theorem 2 let us

introduce the following inductive definition: for each cardinal m we
put cto(m) = tit, a„ +1 (tn) = 2a"(m). Remarking that X(tn) -(K(m))^
lor each infinite ttt and using induction, we obtain from Theorem 2

the following corollary:

Theorem 3 (Erdos-Rado): 1

) If ttt ^ X 0 afJd 0 ^ n < m then

Nv

(nn (ttt)) (K(m))m+1 .

Examples. 1. Putting ttt = K0 we obtain for // = 1,2,3 the following

non-trivial partition theorems:

(*) K(2*«) - (N\);
0 ,

( **)

x

) Theorem 3 was proved by Erdos and Rado [lj.
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2. N(2m) -* ( X(m))fn . This results directly from the Erdos-Rado

theorem for m = 1.

We finish this section by a theorem showing that N(2m ) in the last

example cannot be replaced by a smaller number.

°Theorem 4:
1

) 2m

Proof. Let m = coa and consider the set Tm ordered lexicographi-

cally by the relation <. Now consider any well ordering ^ of TCOx and

put for {x,y} e [Tm<x]
2

R{x, y}) = 0 if [x <y = X < y],

f({x,y})= 1 otherwise.

We shall show that no set H0 a Tma of power X(m) is homogeneous

for /. For assume otherwise. Thus either x -< y = x ^ y for all x, y
e H0 or x < y = y ^ x for all x, y e H0 . Since H0 is well-ordered

by it is well-ordered either by -< or by the relation inverse to -<.

However this contradicts Corollary 4, p. 321 and so the theorem

is proved.

Exercises

1. If X is a set quasi-ordered by a relation then the following conditions are

equivalent

:

(i) every descending sequence of elements of X is decreasing and every antichain

is finite ;

(ii) for each sequence f:N—>X there are integers i < j such that f ^ fj.

2. Use Ramsey’s theorem to prove: IfX is an infinite set of integers then X contains

an infinite subset Y such that either any two elements of Y are relatively prime or no

two elements of Y are relatively prime.

3. Let X be a linearly ordered set and let R0 ,
R Rk-i be binary relations

with the field X. Prove that there is an infinite set Y «= X such that if >t , y2 e Y and

Ti < Yz then y v Rjy2 = yiRtyz for arbitrary ij < k.

Hint : For Xi < x2 put ej(xit x2 ) = 0 or 1 according as x
x
Rjx2 or ^ non-RjX2

and define a mapping /: [X] 2 -> (0,1 }
k by putting /( {x\ ,

x2 }) = (e0(z l ,
z2), ...

... ,
ek_ l

(z 1 ,
z2 )) where z x = x\

,
z2 = x

'

2 if x x < x2 and z x = x'2 ,z2 = x\ if x'2 < Ax .

Define Y as a set homogeneous for /.

For Theorem 4 see Sierpiski [17].



CHAPTER X

INACCESSIBLE CARDINALS

§ L Normal functions and stationary sets

Before proceeding to the theory of inaccessible cardinals we collect

in this section some auxiliary definitions and theorems.

In the whole chapter co
t
denotes a regular initial ordinal > co. We

shall treat the set tV(coa) as a topological space with the order topology.

Thus for each X a W(co) the closure X is the set of ordinals £ e lV(co x)

with the property that for some Z c X the least upper bound of Z
is £. We leave to the reader the proof that tV(co ) is a topological space

and that an increasing mapping f: lV(co _.) W(co ) is continuous if

and only if for each limit number A < co and each increasing function

q>: W(co )
-> W(coa)

/(lim <?(£)) = lim /(</)(£)).
I < A £<A

A mapping /: JV(coJ -> W(co ) is called normal if / is increasing

and continuous. 1

) Obviously, the range of /is then cofinal with lV(coa).

Theorem 1 : If f: W(coa)
->• lV(coJ is normal then for each y < co,

there is a number £ > y critical (see p. 233) for f
Proof. Define a sequence {y„} n <a> by recursion: y0 = y+ 1, yn+l

— f(Yn)• The limit lim y„ is then critical for / and is > y.
n < co

Closed sets of the space W(co ) can be characterized as sets X c W(co )

such that for each A < co x and each increasing function cp: W(X) -» X,

lim 9?(£) eX.
f<A

Tn order to abbreviate the formulation of the next few theorems

we introduce the

1

) Normal functions were first investigated by Veblen [1].
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Definition: A set X a JV(coa) is normal in W(o)a) if it is closed and
cofinal with fV(coJ.

If a is fixed we shall refer briefly to “normal sets” without mention-

ing a.

Theorem 2: Iff: PV(coa) -> JV(coa) is normal then so is the set of its

critical numbers.

Proof. The set is closed because a limit of an increasing sequence of

critical numbers is itself critical. The cofinality with fV(coJ follows

from Theorem 1.

The next two theorems establish a connection between normal map-
pings and normal sets.

Theorem 3: The range of a normal mapping is a normal set.

Proof. If/ is normal then its range is obviously cofinal with W(a) ).

In order to prove that Rg(/) is closed let us assume that £ e Rg(fj.
Hence £ is either an element of Rg(/) or £ e W(coa) and £ is the

limit of an increasing sequence of type X < o)a whose terms belong

to Rg(/).

If £ = lim f(y6) where the sequence {/(>/)} is increasing then the

sequence {y^} is also increasing and since X < oj 2 ,
the limit p of this

sequence belongs to lV(co ). Since /is normal we obtain limf(y0) = f(p),
<5<A

whence £ = f(p) and therefore £ e Rg(/).

Theorem 4: Each normal set X c= f4
/(roa ) is the range of a normal

mapping fx : W(oja ) -> JV(oja).

Proof. We construct fx by induction: fx{£) is the minimal element

of X— {///): rj < £}. It is easy to see that there is exactly one func-

tion satisfying these conditions for each £ < coa ;
this unique function

is increasing, has the domain W(co y) and the range X. The function

fx is continuous, for if rp is an increasing sequence and cp e R/(wa)
w"a)

where X < oj
y then fx (<p(£))e X for £ < X and hence limfx (pp(£)) e X

£<A

since X is closed. Putting y = lim (yp{£)) we obtainfx {y) = lim fx(pp{£))
£ <A £<A

from the definition of fx .

Theorem 4 is thus proved.

The functionfx constructed above will be called an enumeration of X.
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It is easy to prove that this is the unique normal function with the

range X.

Definition: For each normal set X c= fV(coa) we denote by X' the set

of critical numbers offx • The set X' is called the derivative of X.

Higher order derivatives are defined by recursion: X(0) = X ; A
r($+1)

= [X<&Y; X a) = D {* (l)
: f < A}.

The normal function enumerating X(^ is called the £th derivative

of fx -

Theorem 5: IfX is a normal set and £ < co^ then X (
"

)
is also normal.

Proof. We use induction. For 1 = 0 the theorem is obvious. The

inductive step from £ to £+1 is immediate in view of Theorem 2.

Let X < coa be a limit ordinal and suppose that the theorem is true

for £ < X. The set X (2)
is closed because every intersection of closed

sets is closed. Thus it remains to show that T (A)
is cofinal with tV(coa).

Let y < coa . Since, by assumption, each T(f) where £ < X is co-

final with fV(coa), there exists an increasing sequence {xs)s<a such

that Xf eX (i) for each £ < X and y < x0 . The limit Ó = lim x* belongs
f < A

to W((oa) because co 2 is regular and X < coa . Moreover, x
t]
e for

rj ^ £ because the sets T (f) decrease when £ increases.

Hence <5 e X ( for each £ < X and therefore <5 e O X (& = T (;-)
.

i<a
Since ° > the theorem is proved.

"Theorem 6: Jf F is a non-empty family consisting of less than

normal sets then O (F) is normal.

Proof. The intersection of closed sets being closed, it remains to show

that for every y < (oa there exists an ordinal > y which belongs to

n (f).

We can assume that F is the range of a transfinite sequence {A'
{ }{<ij

whose terms are normal sets.

We define now a double sequence {y^, « } of ordinals (£ < /?, n < co)

such that y < yit „
eX($

\ yrjt „ < y^m for n ^ m and t) < £ < /? and

yv , n < Vo.n+i for V < P and arbitrary n < co.

To obtain this sequence we select first an ordinal y0t0 > y which

belongs to XQ and then an increasing sequence y *
t

0

(£ < /?) such that
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y^0 eXt. After this sequence is defined, we select the first element

y0A in X0 which is greater than all the ordinals y^0 and elements ySA
in X such that the sequence {y^,i}^<p is increasing. Continuing in

this way, we obtain the desired sequence. Putting 6 * = limy^,, we obtain
n <a>

ó e Xt because the sets X^ are closed.

We claim that S
$ = <5

n
for arbitrary £, < /?.- Let us assume that

i] < £. Hence yn>n < y^n+k < ó, whence 6
n < 6%. On the other hand,

y^„ < yo,n+i < yv,n+i, whence by letting n converge to co we obtain

^ d
n

.

Denoting now by 6 the common value of all <5|, we obtain 6 = dt e X
s

for each £ < X and hence ó e O X = O (F).
f<A

Another way of expressing Theorem 6 is this: The family of sets

Y c= W(coa) such that Y contains a normal set is an coa-complete filter.

The intersection of a family consisting of normal sets is not

necessarily normal. For instance each set of the form W(coa)— IV(£)

is normal for £ < coa but the intersection of these sets is empty and

thus not normal. However we can establish the following result:

Theorem 7:
1

) If {^}|<coa
is a transfinite sequence of normal sets

then the set X = {C < wa : £ e H X
v }

is normal.

Remark. The set X is sometimes called the diagonal intersection of

the sets X^

.

Proof. First we prove that X is closed. Let y = lim cp{£) where

/ < (ox and rp is an increasing sequence of elements of X. If q < y

then the inequality q < (p(£) < y holds from a certain £0 on. Since

<p(£) e n {X^: r] < cp(£)}, we obtain cp(£)eX
Q

. Letting £ increase

to / and taking the limit, we infer that y e X
Q
because X

Q
is closed. Hence

y e fl {X
e : q < y) and y e X.

Next we prove that X is cofinal with coa . To establish this we define

by transfinite induction a function /: W(c

o

a) -> fV(oj a + 1) such that

') Theorem 7 is due to Fodor [1] who obtained it by generalizing a result of

AlexandrofT and Urysohn [1]. Other results concerning regressive functions and

stationary sets can be found in Bachmann [1], Section 9.
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for each £,f(£) is the least element of the set

A;= n {K-W(f(V)+ l)]:rj< £}

or /(£) = coa if A is void.

We prove by transfinite induction that f(£) < co3 for each £ < w x .

Since A 0 = fV(coJ, this is certainly true for £ = 0. Let us assume that

there are ordinals £ such that /(£) = co x and let £0 be the least of them;

thus £0 > 0. For £ < £0 the set X
$
— W(f{£) + 1) is normal since it is

an intersection of two normal sets: X
5
and lV(co x)

— JF(/(£)+ 1 ). It

follows from Theorem 6 that the intersection of sets X^— !¥(/(£) + l)

taken over ordinals £ < £0 ,
i.e., the set A^

0
is normal and hence non-

empty. Thus /(so) is die least element of A
io

contrary to our assump-

tion that it is equal to co
x .

We have thus proved that / is a mapping of JT(coa) into W(coa). We
shall now show that it is increasing and continuous.

It follows from the definition that if < £ then f(£) e X
v
and f{£)

$ + in particular, /(£) > f(rj) and hence /is increasing. In

order to prove that /is continuous let us consider an increasing sequence

(p\ fV(A) — fV((oa) where A < (o x and put y = lim1©. We have to
£ <A

show' that f{y) = lim f(w(£)). The inequality f(y) ^ lim/(W£)) results
I < A £<A

immediately from the fact that / is an increasing function. Now let

rj < y. Thus r] < q?(£) from an ordinal £0 on and hence f(<p(£)) eXn
—

— W(f(rj) +
1 )
a Xfj

.

Taking the limit for £ -* X and remembering

that X
n

is closed, we obtain lim /'((£)) e X,r Since, in view of the mon-
£<A

otonicity of f lim/(y©)^ fF(/(/)+
1 ), we obtain lim/(>(£)) e X

t]
—

£< A

— fF(/(r;)+l) for each rj < y, whence lim/(<p(£)) 6 A
y
and therefore

limf((p(£))>f(y).
£ < A

Thus the function / is normal. If x is a critical number for / then

x =/M e A x a p) {X
v

: rj < x} which proves that x e X. Since the

set ol critical numbers of/is cofinal with tV(coa), so is X. Thus X is a nor-

mal set. Q.E.D.

We shall now introduce the notion of a stationary set.
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Definition: (Bloch [1]) A set S c fT(roa) is called stationary in

W(ojj) if 5 nX 0 for each normal set X.

For instance, each normal set is stationary in view of Theorem 6.

An example of a stationary set which is not normal is furnished by the

set S0 = {£ < coa : c/(£) = 0} (a > 1). To see that S0 is stationary it is

sufficient to select in an arbitrary normal X an increasing sequence

{£n}n<a>- Since lim £„ belongs to X and is cofinal with co, we obtain that

n<ut

lim £„ e S0 and so the intersection S0 nJ is non-empty. More generally,

tj<a>

the set {I < Ma : c/(£) = /?} is stationary whenever ft < oc.

Each stationary set has obviously the power because it inter-

sects every set of the form lV(coa)— IF(£).

An interesting result concerning stationary sets is connected with

the following notion:

Definition: A function g is called regressive in 1V((oa) if its domain X
is a subset of W(coa)— {0} and g(£) < £ for each £ in X.

°Theorem 8: Ifg: X -> tV(coa) is a regressive funcion whose domain is

a stationary set X then there is a stationary set S a X such that g|S

is constant.

Proof. Let A = Rg(g), let a be an increasing but not necessarily

normal mapping of an ordinal q ^ (oa onto A and put X
s = g

_1
({a(£)})

for £ < q. The theorem will be proved if we show that one at least of

the sets X^ £ < q, is stationary. Let us assume that this is not the case;

we shall derive a contradiction from this assumption.

Using the axiom of choice, we select for each £ <{) a set Z| which

is normal and disjoint from X. We shall distinguish two cases:

Case I: o < co .In this case the family {Zf. £ < {>} has power <

and hence Pi {Zf £ < is normal in view of Theorem 6. Since

X is stationary, there is an ordinal £ < coa such that C e X n O {Z%:

£ < q}. If g(0 = ai(rj) then rj < o and Ceg' 1 ({a(^)}), whence £ £

and so £ i P {Zy. £ < p} which is a contradiction.

Case II: o = coa . In this case we consider the set {£ < oj x : £ e P Zr }
T<|

which is normal by Theorem 7. If £ is an ordinal in this set which belongs

to X and if g(£) = a (rj) then £ eg
-1
({«W}) and so £ i Z^. On the

other hand, g(£) < £ since g is regressive, whence we obtain a (rj) < £
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and therefore r\ < £ because a is an increasing function. It follows

that £ 4 P) {Z
f : £ < £} and we again obtain a contradiction. Theorem 8

is thus proved.

§ 2. Weakly and strongly inaccessible cardinals 1

)

The idea of accessibility is as follows: trt = being a cardinal

number and 0 an operation on sequences of cardinals, we say that m
is 0-accessible if we can reach a cardinal ^ m by applying 0 to a sequence
of less than m cardinals each of which is < m. Thus, for instance, X0

is 0-inaccessible for an arbitrary operation which yields finite cardinals

when applied to finite arguments.

In this section we shall give an exact definition of inaccessible cardinals

and derive their simplest properties.

Definition: (a) A cardinal Xa is weakly inaccessible if a > 0, coa

is regular and a is a limit number.

(b) X* is inaccessible if it is weakly inaccessible and satisfies the

condition

(1) .1- < K - 2* < Na .

Sometimes we say strongly inaccessible instead of inaccessible. We
also olten speak of strong or weak inaccessibility of initial ordinals co3

instead of cardinals

Cardinals satisfying (1) are said to be strong limit cardinals.

In order to tie up the definitions with the introductory remark about
the concept of “0-inaccessibility” we notice the following evident

Theorem l:
2
) A cardinal in = Xa > 0 is weakly inaccessible if and

only if it satisfies the conditions :

’) The notion ot weakly inaccessible numbers is due to Hausdorff who spoke
about them as “Zahlen von exorbitanten Crosse” (see HausdortT [1], p. 131). Strongly
inaccessible cardinals were introduced by Sierpiski and Tarski [1], An early exposi-
tion ot inaccessible cardinals is in Tarski [6]; theorems proved in this section are
taken from the last named paper.

2
) Theorem 1 is stated in Tarski [6]. It is closely related to Theorem 3 of von

Neumann [4], p. 227, and also with investigations of Zermelo [3].
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(i) n < m -* K(rt) < m;

(ii) ifk< (oa and f is a sequence of cardinals such that Dom(f) = IV(k)

and ft < m for £ < 2, then V f e < m.

m is inaccessible if and only if it satisfies (ii) and

(iii) it < m -> 2" < m.

Proof. Condition (i) is equivalent to the statement that a is a limit

number. Condition (ii) states that coa is regular. Hence the conjunction

of (i) and (ii) is equivalent to the condition given in part (a) of the

definition above. This proves the first part of the theorem.

To prove the second it is sufficient to notice that condition (iii) implies

(ii) because N(n) ^ 2" (see p. 287).

Theorem 2: If a > 0, then the ordinal cox is weakly inaccessible if

and only if a = co x = c/(a).

Proof. Assume that a > 0 and that toa is weakly inaccessible. The

ordinal a is then a limit ordinal #0; let y = cf(a). If a < cox then,

since coa = limcot, it follows that cox is not regular. Thus a = coa since

£<a

p ^ ojp for all p.

Let y = cf(a). By the definition of y there is an increasing sequence

(p of type co
y
such that a = lim y?(£), ^lus 0J*

= ^ V < a

£<<oy !<«>y

then ojx would not be regular.

Conversely, assume that a = coa = cf(ct) > 0. Thus a is a limit

ordinal and to show that o
l

is weakly inaccessible it suffices to show

that it is regular. Assume thus that P is a limit ordinal ^ cox and that

co = lim <?(£). If 7 = cf(p) then P is the limit of an increasing sequence

\p of type ro
v

. Thus coa = lim^^f)) and ef(a) ^ y. On the other

I <«»y

hand, y ^ co
y
and co

y ^ p ,
because ^(£) ^ £ for £ > co

y
. Thus we

have the inequality cf(ct) ^ y ^ co
y ^ P ^ coa ;

hence from our initial

assumptions it follows that a = p. Thus coa is cofinal with no ordinal

< coa . Q.E.D.

Remark: The equation a = oy x does not characterize inaccessible or-

dinals. In fact, if p is a sequence of type co defined inductively by the
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formulas /?0 — 0, fin +i — then the ordinal a = lim/?„ satisfies the

equation a = cox (see p. 237), but cox is not regular since cf(a) = 0.

Theorem 3: The cardinal m = X is inaccessible if and only if y
= = cf{a) = n(y) > 0.

Proof. Let m be inaccessible. From Theorem 2 we obtain y = co
(X

= cf(y) > 0. Since a is a limit ordinal, we obtain n(y) = lim n{fi)

because the function n is continuous. Since the condition (iii) is satisfied,

we obtain that if p < y then N\ (/J) = 2
S
^ < X* and hence n(fi) < y[

Thus ji(a) = lim7i(/9) ^ a. Since a ^ 7i(y) as we proved on p. 288,
we finally obtain n{a) = a.

Now let us assume a = w, = cf(a) = n(ot) > 0. From Theorem 2
we infer that Xa is weakly inaccessible. If tt < Xa and it is infinite,

then it = X^ where /? < a, whence tt < ap and 2" ^ 2
af} = ap+l = X„(/3+ ,

,

< N n(a) = . Thus Na satisfies (iii) and is, therefore, an inaccessible

cardinal.

Our next aim is to exhibit a large number of operations 0 such
that inaccessible cardinals are ^-inaccessible. For this end we first prove

Theorem 4 : Xa is inaccessible if and only if there exists a family
R ^ 0 whose elements are sets and which satisfies the following con-
ditions :

(i) X e R X a /?,

(ii) XeR-> P(X)eR,

(iii) X c= RaX < R X e R,

(iv) R = X, > X0 .

Proof. If X is inaccessible then we put R = R() (see p. 285).
Property (i) results from Theorem 1, p. 285. If X e R then X 6 Rr,

tor some /> < tua , whence P(X) e Rp + ,
c Ra* m In order to prove (iii)

let us assume that Acz R and X < R and let ft(x) where x e R be the
first ordinal < cox such that x e R^x) . Since p(x) < co 2 and X < R
the set {fi(x) : a e X} is not cofinal with cox because otherwise to 2 would
not be legular. Hence there is an ordinal a < co,, surpassing all the
ordinals fi(x) and therefore X c= Ra , whence X e Rff+l a R ^. Finally

(iv) results from the equations R = a2 = N\ (a) = Xa , the last of which
was established in Theorem 3.
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Let now (i)-(iv) be satisfied. We first prove that satisfies con-

dition (iii) (p. 349). Thus let it < Xa and letX be a subset of R of power n.

By (iii) X e R, whence by (ii) and (i) P(X) and PP(X) belong to R and

PP(X) c R. Thus 2
2n

sc Xa and therefore 2
n < X\.

It remains to prove that satisfies (ii), p. 349.

Let f| < Ns

a for £ < X where X < coa . Using the axiom of choice we

correlate with each £ < X a set a R of power f{ . Let H
s = P(X

S)
and

let Z be a subset of R of power X. By (ii) Ht e R and by (iii) Z e R.

Let 99 be a one-one mapping of Z onto W(X). Each function /: Z -» R
is a subset of R because if x, y e R, then by (iii) {x}, {x, y } and <x, y}

are elements of R. Since the cardinal number of/ is Z = X, we infer

that f e R. Thus the set of all mappings /: Z - R is a subset of R.

Consider in particular mappings / such that /(z) e Hnz) for each z in Z.

The set of all these mappings has power Y\ ^(Z >
= Yl where I)e

zeZ f <

A

= // for each £ < X. Hence ^( 2 )
^ X and since, by Konig’s

zeZ

theorem (p. 198), X! < Yl fy*’ we infer that Y] f$ < X
r

which
£ < A |<A

S

£<A

proves the theorem. 1

)

Remark. Noting that the cardinal number of U £ < X) is

at most Y we can also infer from the above proof that the union
£< A

U of less than Na sets each of which belongs to R is itself an element

of R.

°Corollary 5: If A = X* where X* is inaccessible
,
then the family

Ps 7
(A) of subsets of A whose power is < Xa has power Xa .

Proof. Condition (iii) shows that PXa (/?) <= R and so the statement

is true for A = R and hence for each set of the same power as R.

1
) What we did in proving Theorem 4 amounts to an explicit definition of types

of relational systems in the model 91. This definition is due, in effect, to Scott [ 1 ]

who obtained it by a slight transformation of the construction due to Russell and

Whitehead [1] of integers within the type-theory.

In recent expositions of set theory, ordinals are usually identified with the von

Neumann ordinals Na and the notion of a relational type is avoided altogether. In

such expositions of set theory Theorem 2 is of course superfluous and can be re-

placed by Theorem 1

.
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§ 3. A digression on models of 27° [TR]

A model of the axioms 27° is a relational system of characteristic

<1 , 2> in which all axioms of 27° are true. In other words, it is an ordered

triple = <17, 5, E> consisting of a set U
, called the universe of the

model
, a set S <= U, and a binary relation E <= U x U. (See p. 86.)

The elements of 5 are “sets of the model” and E is the “elementhood
relation ol the model"; it should be stressed however that the elements

of 5 need not be sets and the relation E need not coincide with the

relation e.

In order to verify whether an axiom is or is not true in sDi we replace

the atomic formulas “x is a set” and “jc e y
n

(see p. 46) by statements of

the form “x e 5” and “<*, y> e E”, let the variables range over U and
verify whether the resulting proposition concerning 901 is or is not true.

Similar explanations can be given for the system 27° [TR]. Since we
have in this system one more atomic formula ,vTR y (jc is the type of the

relational system y, see p. 88) we define models of 27° [TR] as re-

lational systems of the form <U , S ,
E, T> where 5 c U, E <= UxU

and T a UxU. Again we require that all axioms of 27° [TR] be true in

the model.

In the present section we shall consider relational systems of the

lorm = </?, /?, Ef) where R is a family with the properties (i)-(iv)

given on p. 350 and ER = «A\ T> e R x R: X e Y}.

Relational systems ot this kind are called the natural models of set

theory.

Theorem 1 : All axioms of X° are true in s
3i.

Proof. Notice that in the relational system s
3\ the atomic formulas

is a set" and e /' are interpreted as x e R and e ER ,
i.e.

Cv G y) a (x e R) a (v e R). In order to prove the theorem we replace

in all axioms ot 2. the atomic lormulas by their interpretations and
verily that the resulting propositions are theorems of set theory.

1. The axiom ot extensionality is true in S
J? because if X, Y e R and

if, tor each x in R, the formulas (x,X}eER and <x, Y} e ER are

equivalent, then A [x g X = x e Y] and hence XnR = YnR. Since,
xeR

by (i), XnR = X and Yn R = Y, we obtain X = Y.
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2. The axiom of the empty set is true in 91 because 0 e R by (iii).

3. The axiom of unions is true in view of the final remark of Sec-

tion 2.

4. The axiom of power sets is true in 9t in view of (ii).

5. The axiom of infinity is true in 91 because the first infinite von

Neumann ordinal Na = {N0 ,Nl5 ...} is contained in /?, as we easily

prove by induction and hence, in view of (iv) and (iii), Nm e R.

6. The axiom of choice is true in 5? because if A' is a non-empty family

of non-empty disjoint sets and X e R then any choice set C for X is

contained in R in view of (i) and has the same cardinal number as X.

Hence C c= R and C e R.

7. All instances of the axiom scheme of replacement are true in 9L

We consider an instance of the scheme of replacement for a formula 0
with at least two free variables x, y. Assume that for every x in R there

is exactly one y in R such that 0(x, y) is true in 9L We say that y cor-

responds to x. If there are free variables other than x, y in 0 we assume

that they were given fixed values in R. If X e R then the set Y of those y

which correspond to elements x of X is contained in R and its cardinal

number is at most equal to that of X, hence it is c R and so Y e R.

This proves that this instance of the scheme of replacement for formula

0 is valid in 91.

In applications of Theorem 1 it is convenient to bear in mind the

following facts:

Theorem 2: If R satisfies (i)-(iv) then each von Neumann ordinal

whose power is < belongs to R; also if £ < coa then R e R.

Proof. N0 and R0 are = 0 and so belong to R. Let £ be the least

ordinal < a>a such that N
\ $ R. Hence Nt c= R and since = £ < N a ,

it follows e R.

If £ is the smallest ordinal < o)a such that R* i R then {/?,,: rj < £}

<= R and thus {R
n

: rj < £} e R. Since axiom 3 (of unions) is satisfied

in 9?, it follows that the set S = U ^ < £} g /?, whence R% e R

because S = Rt if £ is a limit number or P(S)
= R if £ has a pre-

decessor.

We shall now extend the relational system 91 so as to obtain a model

for 27° [TR].
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Lemma : Each X e R has power < R and there is a £ such that R
z
e R

and X has the same power as a subset of R _ .

Proof. Since P(X) e R, we have X < 2X = P(X) ^ R. There is an

ordinal £ such that X = N§, whence £ < R and R
s
e R. Since c= R ,,

the lemma is proved.

For each relational system (A
,
X) e R let = fi(A,X) be the least

ordinal < a such that Rp e R and there are relational systems <#, Y>

e Rp isomorphic to (A,X). The existence of (A,X) follows from

the lemma above. We denote by (A
,
X)* the set of relational systems

<B , Y) which belong to Rp
(A,X) and are isomorphic to (A, X).

°Theorem 3 : *) If Xa is inaccessible then all axioms of the system E° [TR]

are true in the relational system 9?* = </?3 ,
Rx ,

ERx ,
T> where T is the

binary relation {<U ,
V} e Ra x Ra : U is a relational system A (V = t/*)}.

The theorem is proved by showing that axiom VII of relational

types is true in 9?'. We leave the details to the reader.

The following remarks show the importance of Theorems 1 and 3

just proved. For each formula 0 with two free variables x, y such that

the formula /\ \/l 0(x,y) is provable in E° [TR] we can infer from
* y

Theorem 3 that if a e Ra then there is exactly one y in R such that

the formula 0 is true in 1R' for the elements .v, y. Denoting by 0a the

relation

{(x, y} e Ra x Ra : 0(x,y) is true in %},
we obtain thus the result that 0X is an operation and R2 is closed under

0a . This allows us to establish the ^-inaccessibility of Xa for oper-

ations XF which can be represented as 0a .

°Examples. 1. Let be inaccessible and let f be a function with

domain W(X) where X < cox such that is a positive cardinal < X*.

Then fe < N,.
£ <-1

Proof. Let <p(£) be an ordinal such that has the power ft. Hence

Ap(S) £ P-z •

Since the family F = {Nn^: £ < X] is contained in Rx and has

power < we obtain F e Rx . Let 0(x,y) be the formula:
u
y is the

‘) Theorem 3 is due to Sierpiski and Tarski [1],
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set of all functions with the common domain x such that /(z) ez for

each z e x”. 1
) Since the sentence /\ \J ! 0(x, y) is provable in r°[TR],

x y

we obtain from Theorem 3 that for every x in Ra there is exactly one y

in R such that the relation 0
X
holds between x and y. Taking x = F

we obtain y in Rx which is in relation &a to F. Hence x and y satisfy

in the formula 0. It is easy to verify that then y = Y] z and hence
zeF

y = Uh- Thus y < Ra which proves that

{<A

rif;<NV

2. Let f be a sequence as in the above example and let the type A of f

be a limit number. We define by induction the sequence g: g0 = To,

g|+1 = f^, Qrj
= X! 9c limit numbers rj. Then V g^ < Na .

£<ri l<A

Proof. By the theory of inductive definitions (see pp. 233-239)

there is a formula 0 such that f\ \J ! 0(x,y) is provable in 2. [1 R]
x y

and that for each transfinite sequence x = {x^}^ of sets the unique y

satisfying 0(x,y) has power V g t where q0 = 9i+i = 9^

= V g|
. Taking for x the sequence where we

£<v
easily prove that x e /?a and the unique y such that x, y satisfy 0 in 91*

has power V g t . Thus this cardinal number is < Ka .

We end this section by a result concerning fields of sets which will

be needed later.

We say that a family F of subsets of a fixed set X is m-complete if

p F' e F and M F' e F for every F' a F such that F' < rrt.

We can express this definition more briefly when we denote by pm (F)

and iJm (F) the families of all sets p iF ') and U iF ') respectively, where

F' ranges over subfamilies of F of power < m. Then F is m-complete

if and only if Um (F) = pm (i7) = F.

Ifm is infinite then obviously (Jm (Jm (F)
= U™ (F)

and HmO™ (F)

= Dmifh

"Theorem 4: If m is inaccessible then PmU™(^) = UmOm(^).

*) Strictly speaking, the formula 0 should be written without abbreviations.
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Proof. If then A = f
~) U Av where the powers

iel jeJi

p, Qi of/, Ji are < m and Au e F. Using the general law of distributivity

(see p. Ill), we obtain A = (J P Am where / ranges over f] Ji-

f iel iel

Since the power of this set is = Y\ 9 i < m, we obtain A e (Jm f)m F.

iel

The converse implication is proved similarly.

Theorem 5: If m is inaccessible ,
F a family of power nt consisting

of subsets of a fixed set X, then F can be extended to an m-complete

field of sets B a P{X) such that the power of B is m.

Proof. Let Fc = {X—A: A e F). The family B = Umpm (F\jFc)

obviously satisfies the equation B = B. In view of Theorem 4

it also satisfies the equation Bc = f^|mUm (FvFc) = (Jm pm (FuFfi

= B and hence B is an m-complete field of sets.

In order to evaluate the cardinal number of B it will be sufficient

to show that if G is a family of power ^ m then so are (Jm G and

f^)m G. But this follows at once from Corollary 2.5 because the set

of subfamilies G' of G such that G' < m has power m.

Exercises

Prove directly (without using theorems of this section) that the following condi-

tions are equivalent:

(a) Xa is inaccessible,

(b) X« > No and if A < w. and me < xa for $ < A then U < X*,
£<a

(c) Xa > Xo, Z X? = Xa and m < x« implies 2
m < X«. [Tarski]

V <

§ 4. Higher types of inaccessible numbers 1

)

Beginning with this section we shall discuss special types of inac-

cessible cardinals. Since their existence cannot be established on the

*) The “combinatorial” approach to inaccessible cardinals is due to Erdos and

Tarski [2], The basic paper in this field is Keisler-Tarski [1]. See also Drake [1].

Weakly compact cardinals were first defined by Tarski [9]; the name "weakly

compact” was chosen because these cardinals play a role in establishing for certain

infinitary languages properties similar to the compactness property of the usual

first order logic. [Continued on p. 357.]
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basis of the axioms Z° [TR], we shall carry out our discussion under

an additional hypothesis stating that inaccessible cardinals exist.

We first remark that for each ordinal £ there exists at most one

sequence S of type £+1 with the property (*) that for each r] ^ £

the 77th term Sfrj) of S
(

is the least inaccessible cardinal which is greater

than all 5^(0, £ < rj.

The hypothesis referred to above is that for each ordinal £ there

exists a sequence of type £+1 satisfying (*). We call this hypothesis

the axiom of inaccessible cardinals.

We denote by Ot the initial ordinal such that 9^ is the last term of

the sequence S,. Thus 0

%

is an enumeration of all inaccessible cardinals.

It is obvious that 9t increases with £:

£ < rj - Ot < 9
n

.

The function 6 is not continuous: in general, if X is a limit ordinal,

then lim Ot is different from E.g. if X = co then lim0£ is cofinal
!<A £< to

with o whereas 9
(l)

is not because 6

^

is not cofinal with any number

< Qu- As a matter of fact the places where 9 is continuous are extremely

rare if they exist at all.

Theorem 1 : 9A = lim Ot if and only if X = 9X .

f<A

Proof. If X < 6x then lim 9
f

is cofinal with X and so cannot be equal
i<a

to 9 k because is inaccessible. If X = then lim 9
$
= because

^ < A

^ £ and hence lim 9^ X = 9X .

£<A

Definition: A cardinal number m is 1 -inaccessible if there is an

ordinal X such that X = 9X and m = 9? .

Other equivalent characterizations of 1 -inaccessible cardinals are

given in the next theorem:

Theorem 2: The following conditions are equivalent:

Theorems given in this section are due to Erdos and Tarski [2]. More exact ref-

erences can be found in Keisler and Tarski [2], The importance of weakly compact

cardinals in meta-mathematics was particularly stressed by Silver [1]. A detailed

account of the results of all these authors can be found in Drake [1].
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Ol) A = 6,;

(ii!) There is an increasing sequence {^(l)}|< ?
where y ^ 0

?
such

that 0A = lim dHi) ;

£ <Y

(nij) The set
{
6 1 .‘ £ < 2} //as the order type dx .

Proof. The implication (ii) 00) results easily from Theorem 1.

The implication (hO) -* 0i) follows from the fact that the order type

of the set {Of. £ < X} is X.

It remains to prove the implication 00) 0*0)- Let us assume

(iii). Since 0

^

is regular, we obtain y — 0^, whence y ^ X. Since 0, > ®<h£)

for each £ < y, we obtain X > <p(£) ^ £ for each £ < y and hence

A > y- Thus we obtain X = y = 0A and the theorem is proved.

Higher classes of inaccessible numbers can be defined similarly.

We shall limit ourselves to indicating how to pass from the definition

of //-inaccessible cardinals to the definition of (// + l)-inaccessible car-

dinals.

First of all we assume that for each ordinal £ there exists an /z-in-

accessible cardinal 0J
n) such that the order type of the set {m: (m is

//-inaccessible) a (m < 0|
n)

)} is £. This assumption is similar to the

axiom of inaccessible cardinals.

Definition: We call the cardinal 0j
n) an (n+ l)-inaccessible cardinal

if X = 0<">.

It follows from this definition that an (// + l)-inaccessible cardinal

is an //-inaccessible cardinal but not necessarily conversely.

Repeating mutatis mutandum the proof of Theorem 2, we obtain

Theorem 3: The following three conditions are equivalent :

(•n+ l) A = 0f»;

(ii„ +1 ) There is an increasing sequence {<^(£)}t <y where y < 0[
n)

such that 0[
n) = lim 0{,'$

) ;

£<y

(iii„+i) The set {0|
n)

: £ < A) has the order type 0f\

We leave the proof of this theorem to the reader.

The hierarchy of //-inaccessible cardinals can be extended letting n

be transfinite. For instance a cardinal m is called an co-inaccessible

cardinal if it is an //-inaccessible cardinal for each n < co. We shall

not pursue this matter here.
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To achieve a greater symmetry we can call all inaccessible cardinals

the 0-inaccessible cardinals.

More interesting than the n-inaccessible cardinals are hvper-inac-

cessible cardinals also called Maldo cardinals.

Definition: 1

) A cardinal 0a is called a Mahlo cardinal if the set

f < a} is stationary in W(0a ).

The following theorem can be proved by induction:

Theorem 4: If 0X is a Mahlo cardinal then for each n < co the set

Sn = {0£
n)

: 6^ < 0a } is stationary in fF(0a).

Proof. For n = 0 the theorem follows from the definition of Mahlo
cardinals. Let us assume that it is true for an integer n and let (9* be

a Mahlo cardinal.

We have to prove that for each normal set X cz W(Qa) the inter-

section In5„ +1 is non-empty. To establish this we define by trans-

finite induction a normal function / such that all the elements of Sn nX
be values of /.

Let /(0) be the least element of S„nX, f(£+ 1) = the least element

of S„nX greater than /(£) and /(A) = lim/(£) if A is a limit number
£<A

< 6X . The function / is a normal mapping of lV(da) into tV(Oa); the

values of/(A) for a limit argument need not be inaccessible but /(£+l)
sSn nX for each £ < 0a .

The set of critical numbers of/being normal in 1V(0a), there is a critical

number k oif which belongs to the stationary set {

6

f : £ < a}. Hence

x = 0
Q

for a g < oc and the order type of the set {0^
n)

: 6^
n) < 0

Q }
is

0
Q
because each number f(£+ 1) where £ < x belongs to this set. Thus

by (hin+i) 0
Q
eSn+1 and since 0

Q
e X, we obtain the desired result.

An immediate corollary to Theorem 4 is

Corollary 5: For each n, a Maldo cardinal is an n-inaccessible

cardinal.

J

) Ideas developed in Section 4 are due essentially to Mahlo [1] although this

author considered weakly and not as we do strongly inaccessible cardinals: His

cardinal numbers are sometimes called “weakly Mahlo”. What we call here “Mahlo
cardinals” were originally called “o0-numbers.” See Mahlo [2].

An excellent exposition of the Mahlo’s theory and further references can be found

in Drake [1].
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Corollary 5 shows that the assumption that Mahlo cardinals exist is

incomparably stronger than the assumption that ^-inaccessible cardinals

exist for any fixed n in N. Much stronger results can be proved by

similar methods. For instance, one can show that a Mahlo cardinal

is ^-inaccessible for an arbitrary £ < 6a .

The concepts introduced above can be further generalized by intro-

ducing hyper-hyper-inaccessible cardinals, i.e. such cardinals 6
s

that

the set {0Q
: (

q

< £)a(0
s

is a Mahlo cardinal)} is stationary in W{d,).

Furthermore we can iterate this definition transfinitely many times

introducing higher and higher classes ot Mahlo cardinals. It is not

clear how far these constructions can be extended. The existence of

cardinals belonging to these classes but not to previous ones is probably

consistent with the axioms Z° [TR]. At present it can neither be said

how such consistency could be established nor whether the consider-

ation of the high inaccessible cardinals of this type can be of any use

in set theory.

§ 5. Weakly compact cardinals

The approach to the study of large cardinals via the notion of ac-

cessibility is not the only one possible. A different approach consists

of the study of combinatorial properties of cardinals and the search

for cardinals which possess these properties. A paradigm of very large

cardinals is, of course, K0 which before the creation of set theory

was thought to be “the infinite”. As an example of “combinatorial”

properties of this cardinal we may cite the theorems of Ramsey and

Konig. The study mentioned above centers around the question whether

there are cardinals other than X0 which possess these properties and

if so how are they interrelated to inaccessible and Mahlo classes.

In the remaining part of this chapter we shall describe some more

introductory results of these studies. For a mere complete presentation

the reader should consult sources quoted in the notes to this chapter.

We start with a property related to the Ramsey theorem. It follows

from this theorem that N0 -> (N0)i-

Definition 1 : A cardinal rn is weakly compact if m > N0 and

m -> (m)|.
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Theorem 1 : If rn is weakly compact then m is inaccessible.

Proof. Let m = wa . We have to show that coa is (i) regular and

(ii) strong limit (i.e. n < m - 2
n < m).

(i) Let us assume that coa = lim <p(£) where ft < coa and 99 e W(coa)
W(p)

.

£<P

Putting Xs = {rj: 99(f) ^ r\ < 99(1+ 1)} we obtain JV(coa)
I

where the sets X$ are disjoint. We define now a function f: [X] 2 - {0,1}

which has no homogeneous set of power m by putting for any U e [X] 2

f{U) = 0 if there is a £ < /? such that U c X and f(U) = 1 other-

wise. Let Y be a homogeneous set for /.

Hence we either have: (1) f{U) = 0 for each U e [Y]
2 or (2) f(U) = 1

for each U e [F]
2

. If (1) is the case then any two elements of Y belong

to one and the same set X, whence Y ^ 99(1+1) < aja . If (2) is the

case then no two elements of Y can belong to the same set X%, whence

we infer that Y < ft < cba .

(ii) Assume that n < m and let n = ajp, Tmp ={0,1 (to
P)

. We denote

by -< the relation of lexicographical order of and assume that

there exists a one-one mapping F of fV(coa) into T^.

For {£, Y]} g [Wfjof)]
2 we put/({|, rj}) = 0 if £ < rj = F(£) -< F{rj)

and /({£,?]}) = 1 otherwise. By weak compactness of coa there exists

a homogeneous set for/of power whence it follows that Twp contains

a subset of power which is either well-ordered by -< or well-ordered

by the relation inverse to -< . This contradicts Corollary 4, p. 321

and so the assumption that W(o)a) can be mapped in a one-one way

into is impossible. Hence 2" < m.

It can be shown that weakly compact cardinals are Mahlo cardinals.

Even much stronger results can be proved but we shall not give the

proofs here.

In the following theorems we shall establish various properties of

weakly compact cardinals.

"Theorem 2: Each weakly compact cardinal m has the property

(A) IfX is a linearly ordered set of power m then X contains a subset

of power m which is well-ordered or inversely well-ordered.

The proof is the same as that of Theorem 4, p. 341; see also part

(ii) of Theorem 1.
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"Theorem 3 : If m is a cardinal with property (A), then it has the

property

(B) Each tree of power nt all of whose levels are of power < m has

a branch of power m.

Proof. Let I be a tree which satisfies the assumptions of (B). Ac-

cording to Theorem 3, p. 319 we extend the ordering relation < of T

to a linear ordering -< such that each sub-tree Tx = [y e T: x ^ y}

is an interval with respect to -<. By (A) there is a subset A ol T of power

m such that A is either well-ordered by < or inversely well-ordered.

We shall consider only the former case; the latter can be treated anal-

ogously by replacing -< by the converse ordering >. Let A° be an

initial segment of A of power m such that no proper initial segment

of A° is of power m and put A
y = {z e A°: y < z}; hence the power

of A
y

is nt for each y in A°. We claim that the set

C = {x e T: V A, c Tx )
yeA

is linearly ordered by < and has power m. Once this is established

the theorem will be proved because C can be extended to a branch.

Let x', x" e C and A y , a Tx>, Ar . c= Tx„. We can assume for instance

that y < y" or y' = y", i.e. A y
. <= A

y
,,. It follows that A y

, c= Tx , n Tx ..

and hence x" are comparable under ^ because for incomparable

x\ x" the intersection Tx , n Tx ,. is empty.

In order to evaluate the power of C it will be sufficient to show that

for each | less than the height % of T there is an element ot C which

belongs to the £th level of T.

First of all we remark that for each £ such that I < % the level

cannot be empty. Otherwise T would be equal to a union ot its levels

Ln where r] ranges over ordinals < £0 and £o < X- Hence, by our assump-

tion concerning the cardinals of levels, the power ol T would be < ttt.

Let | be arbitrary such that |

There are less than nt elements y of A° which lie on levels L
n
with

7
]
< £. Thus for some >’0 in A° the set A

yo
consists exclusively ot elements

of the levels L
rJ
with ?] > £. If x ranges over Lt then each z in A

yo
belongs

to one of the sub-trees Tx because if z e L
n
with rj > £ then z has

(exactly one) predecessor x e Lt. Thus the set A yo
ol power tit has been

represented as a union of less than m disjoint sets A
yo
n Tx and hence
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there exists x e L| such that A
yo
n Tx has power m. Thus A

yo
n Tx is

cofinal with A 0 . Since Tx is an interval (with respect to the ordering <),

it follows that A yo
c= Tx and hence x 6 C. Thus C contains an element

which lies on the level £ which proves the theorem.

The next property of weakly compact cardinals is expressed in terms

of m-complete fields of sets (see p. 355).

°Theorem 4: If nt is inaccessible and satisfies condition (B) then it

also satisfies the condition

(C) Every m-complete proper ideal / in an m-complete field of sets B

such that B = ttt can be extended to an m-complete maximal ideal.

Proof. Let m = Na and let be a transfinite sequence

consisting of all the elements of B. We shall write 1 = /j (2?), A° = A

and A 1 = 1— A as in Chapter I, p. 21.

Let T be a sub-tree of the full binary tree of height oja (see p. 316)

consisting of sequences /: 1V(y) -> {0, 1} such that y < (oa and 1 —

-
iJ A{(i)

/. The ordering of T is given by the ordinary relation

!<y

of inclusion.

The £th level of T consists of sequences /: 1F(£) {0, 1} and thus

has power 7} < m because m is inaccessible.

The height of T is coa . To see this we remark that

i = noN4) = un4 ({ ’

k<y s f<y _

where g ranges over {0, 1 y
V(v\ Since this set has power 2y < in and

/ is proper and m-complete, it cannot be the case that all the inter-

sections n A f
(l) are in I. Thus for at least one g the set 1 - (J A}~ 9(^

!<y ^

is not in / and we obtain a function /(£) = 1— g(£) which belongs

to the level Ly .

We apply now the assumption (B) and obtain a branch B ot T of

power m. The union (B) is a mapping/: lV(oja) -» [0, 1} such that

each restriction /|fL(y), y < oja can be extended to a function which

belongs to B.

We shall prove that the family J = {A^\ /(£) = 0} is the required

extension of /.

First we show that / c= J. From f(y)
= 1 it follows \

— A y
a fj At
£<y
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and hence 1 -{J A{(i) c= A y . Since the left-hand side is not an element

£<y

of /, we obtain A v I. Hence A y e I implies f(y) = 0, i.e. A y e J.

Next we show that J is an m-complete ideal.

Let A n
c= A

$
and A £ e J. We have to show Av e J. Since /(£) = 0,

we obtain An
a A £ <= 1J A{(C) for any y > max© rj). Also A{(rj)

is

C<y

a subset of IJ A{(C)
. Iff(rj) were equal to 1 we would obtain (J A{

(0 = 1

C<Y ^ <y

and hence - (J A£
(C) e /. Since this is impossible, we obtain f(rj) = 0,

i.e. ^ e J.

Let now fc/bea family of power < m and A a = U (F)- There

exists an ordinal y > o such that each set in F occurs among the first y

terms of the sequence A £
. Since F a J, the union A{f

(<J) ulj (F) is contained

in [J A f̂ \ Iff(a) were equal to 1 we would obtain (J A{(i) = 1 which

i<y £ <y

is impossible. This proves f(o) = 0 and A a e J.

Finally, in order to show that J is maximal it is sufficient to notice

that if A £ $ J then/© = 1, whence if 1 -A £ = A
n
we obtain f(rj) = 0

and so 1 —A £
e J. Thus the ideal is prime and hence maximal.

As the final result in this section we prove

°Theorem 5: IfVX is inaccessible and satisfies condition (C), it is weakly

compact.

Proof. Let A be a set of power m and /: [/l]
2 -» {0, 1}. For e = 0, 1

and each a in A denote by Ke (a) the set ot all x in A — {a} for which

/({x, a}) = e. Obviously, K0(a)v Kfa) = A— {a}.

Let B be an m-complete field of subsets of A which has power m
and contains all singletons {#}, a e A and all the sets Ke(a) for a e A,

£ = 0,1. The existence of such a field was proved in Section 3 (The-

orem 5). The family of sets X cz A of power < m is an m-complete

ideal in B and thus by (C) can be extended to a maximal m-complete

ideal J. Note that if X $ J then X = m because all sets of a smaller

cardinality belong to /.

We now repeat with minor changes the proof of Ramsey’s theorem

(p. 337).

Case I. There is a set A° $ J such that for each a in A° and each



5. WEAKLY COMPACT CARDINALS 365

B <= A° — {#} if B £ J then B nK0 (a) e J (since J is prime, we can also

write this as B nK
Y
(a) $ J).

Let 0 be a choice function for non-empty subsets of A. We define

transfinite sequences {<7f }
and {} by taking a0 = 0(A°), B0 = (A° —

- {tf0 }) n Kfa) and, inductively, a± = 0 (P Bv),
Bt = (P B^- {^}) n

>/<£ »/<£

nKfa). We can then show by induction that the sequence B is de-

creasing, at g O B
n
— Bt and, since J is m-complete, Bt $ J for each £.

If £ ^ for instance £ > £, then a
c
e Bt but at <£ Bt and hence a

: ^ at.

Moreover, a
c
e K

x
(a^), i.e., ^ }) = 1. Thus the set {<af. £ < wx }

is homogeneous for f and has power m.

Case II. For each set A° $ J there are a in A 0
,
B a A° — {a} such

that B r\K0 (a) $ J.

Using the axiom of choice, we correlate with each A° $ J a pair

a = 0(A°), B = W(A°) with these properties. Starting with A° — A
we define sequences {Bt}, {at} as follows:

a0 = 0(A), B0 = (A - {tf0 }) n K0 (a)

,

a* = 0(P B
n
-

{<a,n
: r\ < £}),

Tl<!

B* = ^(P B„- {a
tl

: rj ^ £})n/:0 (a).

We show by induction that Bt $ J for each £. For if this is true for

all r\ < £ then P B
n $ J because J is maximal and m-complete and

hence the difference P 5,- {a
v

: rj < £} does not belong to J either

because the set {a
n

: rj < £} having the power < m belongs to J. Since

e P B
n— {a^: rj < £}, we obtain av •=£ a% for rj < £. Now we can

rj <<?*

show that the set {a £ < wa } is homogeneous. For let £ < £; then

a
: g Bs because ar g P 5,- {atj

: rj < £) <= Bt and hence a? e K0 (at ),

n<C

i.e. f({as, a
: })

= 0.

Theorem 5 is thus proved.

As a corollary from Theorems 2-5 we obtain

Corollary 6: Ifm is inaccessible then each of the properties (A),

(B), (C) is equivalent to weak compactness of m.
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§ 6. Measurable cardinals

The notion of a measure was introduced to mathematics early in

the present century in connection with problems of the theory of real

functions. The theory of measure has lead to some purely set-theoretical

problems. In the present and next section we shall present an introduc-

tion to these problems, limiting ourselves only to the simplest “classical”

properties. 1

)

Before defining measures we shall introduce a notation. If SC is a set

and /: SC -> <S
+ a mapping of SC into non-negative real numbers then

we denote by XI /(•*) the least upper bound of the set consisting of
xeSC

real numbers of the form X] /(*) where SC is a finite subset of SC.

In the case where SC = N the sum X] f(n) is equal to lim sn where
neJV n-* oo

Sn= E /(»)•
i <n

Definition 1 : Whenever q is an infinite cardinal and A a set we
call a function m: P(A ) -> [0, 1] a c\-additive real-valued measure on A
if the following conditions are satisfied:

(1) m(0) = 0, m(A) —
1,

(2) m({x}) = 0 for each a* in A,

(3) m(U SC) = X] m(X) for each family SC c= P{A) consisting of
XeSC

mutually disjoint sets and such that SC < q.

*) The measure problem originated with Lebesgue in 1904. Lebesgue dealt only

with cr-additive real valued measures defined on sets of real numbers and required

that congruent sets have the same measure. Banach and Kuratowski [1] showed

that if the continuum hypothesis is true, then there exists no a-additive real-valued

measure defined for all sets of real numbers even if one does not require that the

measure be invariant under isometric transformations. Further results were obtained

by Uam [1] who proved most of the theorems given in the present section. The problem

whether there exists a ff-additive two-valued measure defined for all subsets of a set

whose power is the first inaccessible cardinal was solved by Tarski [9]. Tarski’s paper

was based on a new method which we shall present in Section 7. After 1962 the theory

of measurable cardinals made a quick progress and led to important and unexpected

results. More information about this subject can be found in Drake [1].
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We call (3) the condition of (\-additivity of m.

For q = N0 and q = we use the terms “finite additivity'’ and

“cr-additivity."

In the case in which the range of m consists of but two numbers

0, 1, we call m a two-valued c\-additive measure. A two-valued measure

is real valued but not necessarily conversely.

In order to simplify the terminology we shall use the expression

“q-<f measure" instead of “real-valued q-additive measure" and

“q-2 measure" instead of “two-valued q-additive measure."

It is obvious that if a q-^ measure (q-2 measure) exists on a set A
of power m then the same is true for every set of power m. This justifies

the following

Definition 2: A cardinal m is q-<^ measurable (or q-2 measurable)

if a q-<^ measure (or a q-2 measure) exists on a set of power m.

We also use terms measurable" and “cr-2 measurable" with an

obvious meaning.

It is also evident that if m is q-<f measurable then so is each cardinal

n > m. For if m is a q-<f measure on a set A and B => A then the

function m! defined by m'(Y )
= m(AnY) is a c\-<$ measure on B.

A similar remark applies to q-2 measure.

In the real function theory the problems of measure were concentrated

on finding a sufficiently large class of subsets of space for which a measure

could be defined so as to satisfy some invariance properties. E.g. in

Euclidean space one requires that two congruent measurable sets should

have the same measure. In abstract set theory we drop the require-

ments of invariance but assume from the start that measures be defined

for all subsets of the set under consideration. The main problem is

concerned with the cardinal number of a set on which a measure exists.

For further reference we notice some obvious properties of measures.

Let A be a set and m a c\-g measure on A.

Lemma 1
:

(a) If X c Y c: A then m(X) < m(Y);

(b) If X c= A then m(X) + m(A—X) = 1;

(c) If X, F c A then m(XuY) = m(X- Y) + m(Y-X) + m(X

n

Y);

(d) //Fc P{A), F < q and m(X) = 0 for each X in F then m(U(^r
))

= 0.
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We omit the obvious proof of this lemma.

Another obvious result is given in

Lemma 2: If m is a measure on A and B a A a set of positive

measure then the function m'(X) = m(X)/m(B) is a C\-S measure on B.

In order to establish a connection of the measures and Boolean

algebras, we introduce the notion of an ideal ol a measure:

Definition 3: For each m : P{A) -* [0, 1] we put Im{A) = {X <= A:

m(X) = 0}.

Lemma 3: If m is a (\-S measure on A then Im (A) is a q-additive

m-ideal in P(A). If in addition m is two-valued then Im(A ) is prime.

Proof. The first part follows immediately from Lemma 1 (a) and (d).

Now let m be two-valued; in order to prove that Im (A) is prime we

have to show that if XnY e Im (A) then at least one of the sets X, Y

is in Im (A). Let us assume therefore that X $ Im {A). Hence m{X) ^ 0,

whence m(A —X) = 0 and, since Y—X c; A—X, we obtain m(Y—X)
= 0. From X a Xu Y it follows that Xu Y £ Im(A ) and hence m(Xu Y)

= 1. Using Lemma 1 (c) and the assumption m(Xn Y) = 0, we obtain

m(X—Y) = 1, whence m{A — Y) = 1 which, by Lemma 1(b), entails

m(Y) = 0, i.e. Y e Im (A).

Lemma 3 allows us to solve completely the problem of finitely ad-

ditive two-valued measures. To formulate this result we shall denote

by Fin(T) the ideal of P(A) consisting of finite subsets of A.

Theorem 4: There is a one-one correspondence between finitely ad-

ditive two-valued measures on an infinite set A and prime ideals oj P(A)

containing Fin {A).

Proof. We saw in Lemma 2 that to each finitely additive two-valued

measure m there corresponds a prime ideal Im(A) c: P(A) containing

Fin(/1). Two different measures give rise to different ideals. If / is a prime

ideal containing Fin(/1) then putting m(X) = 0 if X e I and m(X) = 1

if X $ 1 we obtain a finitely additive two-valued measure and / = Im (A).

°Corollary: If A = m then there are 2 2 'n
finitely additive two-valued

measures on A (see p. 297).

The. problem of measures with a higher degree of additivity is much

more difficult.
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We shall evaluate the sizes of the least a-tf and er-2 measurable

cardinals. We shall denote them by mg and m2 . Obviously, mg < m 2 .

Theorem 5:
1

) mg and m2 are regular and > X0 .

Proof. If m is a a-? measure (or a a-2 measure) then m(X) = 0

for every denumerable set X. Hence both mg and m 2 are > X0 .

Let us assume that mg is singular, i.e. representable as a sum ^n,-
= ' 6/

where rt,- < mg and I < mg.

Let A = mg. We can represent A as U {Ap. i el} where A
t
= rtf

for i e I and the sets A if Aj are disjoint for i ^ j. Denote by m a o-$

measure on A and put for Y c /

m(Y) =
.

ieY

We easily verify that hi is a a-S measure on /. The verification

of conditions (1) and (3) is obvious; verifying (2) we use the assump-

tion A
t < m

g

which gives m({i}) = m(Ai) = 0. Since T< mg, we obtain

a contradiction.

For m 2 the proof is similar.

Theorem 6: nt^ is weakly inaccessible.

Proof. Let mg = Xa ;
it is sufficient to show that a is a limit number.

We shall derive a contradiction from the assumption a = /?+l.

We denote by A a set of power X^+j and by m a o-<$ measure

on A. In order to simplify the subsequent formulas we shall agree

that the letter £ with or without indices is a variable ranging over ordinals

< &>0+i and r\, r\' are variables ranging over tV(cop).

Lemma: There is a function

F: x W(cop+1 )
-* P(A)

with the properties

0) A??, I, )r,F(>;, f2 ) = 0 if (, * ( 2 ,

(ii) A- U F(v, f) < S,.

Remark. We can think of F as a matrix whose elements are sets

and which has X^ rows each consisting of mutually disjoint sets and

J

) Theorems 5-10 are due to Uam [1]. The lemma given here is also due to

Ulam; it has numerous applications in general topology. See Kuratowski [1].
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Xi3+1
columns such that the union of sets in any column differs from A

in at most elements.

Proof of the lemma. For each £ ^ cop let 0 t be the family of all

one-one mappings of W(£) onto W(cop). It is obvious that 0
$ ^ 0.

Let r be a choice function for the family consisting of all the 0t and

put ft = r{0f). Thus if £ ^ wp then ft is a one-one mapping of W(£)

onto W{oc>p).

Put F(rj, £) = {£': (£ < a>p + £') a (/^+|,(^)
= *?)}•

Condition (i) is satisfied because £' e F(rj
y | x ) nF(r], £2) implies

£,< cop + F, £2 < cop + i' and fafi+r(ii) = fop+i'tfz) from which

it follows that £ t = £2 because fap+* is a one-one mapping.

Condition (ii) is also satisfied because £' U F(t], £) implies that

for each rj either £ ^ a>p + £' orfWp+$>(£) ¥= V- If the inequality £ < cop +

+ £' were true, the value of f0ip +^{£)
would be an ordinal < cop and

hence the condition £' £ LJ F(r], £) would not be satisfied. Hence
n

£ ^ (Op+ £‘ and £' < £. Thus A- U F(r],£) c W{£).
n \

Having proved the lemma we now distinguish two cases:

Case 1. In each representation of d as a union ot X^ sets one at

least of these sets has a positive measure.

In this case each column of the matrix F has at least one element

with a positive measure. To see this we notice that A = U F(yh £) u
'/

u[/l— U F(r], I)] and the difference A — U F(v> £) has the measure 0

because of Lemma 2 and our assumption that there is no a additive

real valued measure on a set of power < X/3+ {
.

Hence for each £ there is a least r](£) such that m(F(r](£), £)) > 0.

Since rj(£) < cop and £ ranges over W((Op+l ), there exists an ordinal

Vo < such that for a non-denumerable set 5 c W(cop+ 1 ) the inequality

m(F(r]0 , £)) > 0 holds. The sequence {m(F(r]0 ,
£))}teS is thus an

increasing non-denumerable set of real numbers which is impossible.

Case 2. There is a representation A = (J A
f]

where m(Av)
= 0

n

for each >]. Putting A'
n = A

r/

— U A
c ,
we obtain
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A = U A'n
n

where A^nA^ = 0 for r) ^ r?' and m(A'n) = 0 for each yp

Putting m(Y) = m(U >4') we convince ourselves easily that m is

a a-S measure on W{cof). Since this contradicts the definition of

Ka as the least o-S measurable cardinal, Theorem 6 is proved.

For the cardinal m 2 we have a stronger result which we shall give

in Theorem 8 below. Before we formulate it we must first prove an

auxiliary but important

Theorem 7: If n is a q-2 measurable cardinal and p is the least q-2

measurable cardinal
,
then rt is p-2 measurable.

Proof. Let tn be a q-2 measure on a set A of power n and let f)

be the least cardinal such that m is not f) additive. Obviously, l) ^ tt

because A is the union of n sets of the form {x} and m(A) = 1, m({xj)

= 0. On the other hand, q < I).

From the definition of I) it follows that there is a family F <= P(A)

of power < l) consisting of mutually disjoint sets such that m(X) = 0

for each X e F and satisfying the equation m[U (^)] = 1- We define

now a measure m on F putting for Y cz F

m(Y) = m(U y) •

We easily verify that m is a q-2 measure on F and hence p ^ F < ^

which proves the theorem because m is tn additive for any m < l).

Corollary: m2 is m 2 -2 measurable.

°Theorem 8: m 2 is strongly inaccessible.

In view of Theorem 6 it is sufficient to show that nt < m 2 implies

2
m < m 2 . We assume the contrary and put m = Na . Hence there

is a cr-additive and therefore, by Theorem 7, an nt 2-additive two-

valued measure on every set of power 2 Ko(
. In particular we can take

the set Taa . Let m be an m 2
-2 measure on Tma .

If <p £ Ct where £ < to* then we put T{rp) = {/e <p czf} and

(pe = (p u{<£, £>} for e = 0, 1. It is obvious that T{rp) - T(^0)u

uT((p\) and T(rp0) n T((p\) = 0. Hence if m(T(yp)) = 1 then exactly

one of the sets T(rp0), T{(p\) has measure 1. Let e(<p) be 0 or 1 according
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as whether /;i(r(>0)) = 1 or m(T(<p\ )) =1. If m(T(<p)) = 0 let

e((p) = 0.

Using transfinite induction we define now a function g e Tma w'hich

satisfies the recursive equation

g(f) = «(*l»'(4))

for each £ < coa . We can then prove inductively that m(T(g\ IT(£))) = 1

for each £ < coa . For £ = 0 the equation is true because T(0) = Ta
and if the equation holds for all £ < £0 then it holds for £0 . If £0 is

a limit number then T(g| IF(£0)) = O T(g\ fF(£)) and since the measure
f <*0

w is Na additive, we obtain /n(r(g| IF(£0)))
= 1. If £0 = £ x + 1 then

by assumption m(T(g\ = 1, whence e(g| ^(£0) = 0 or 1

according as m(r(g| = 1 or m(T(g\ W7^) l)) = 1, whence we

infer that T(g|IF(£0)) = T(
<
g\W{^ x)g^ l)) has measure 1.

Since m is tn 2 additive and Na < m 2 ,
the intersection O T(g|IF(£))

£ <G>a

has measure 1. It is easy to see that this intersection consists of but one

element g. For

/S n T(g\ (f'(f)) = A (/I mi) = g\ mi)) = a [/(f) = s(f)] =f=g-
£ < Oa I < Wa £ < COjjj

We obtain thus the result that a set consisting of but one element

g of TMaL has measure 1. Since this is a contradiction, the theorem is

proved.

Theorems 6 and 8 are not true for arbitrary o-£ or o-2 measur-

able cardinals because every cardinal greater than is a-£ measur-

able and every cardinal greater than nt 2 is a-2 measurable. However

it is easy to see that without modifying the proofs of Theorems 6 and 8

we can establish the following result:

Theorem 9: Ifm is m-£ measurable then m is weakly inaccessible
;

ifm is iu-2 measurable then rtt is strongly inaccessible.

The next theorem was discovered by Ulam.

Theorem 10: m<? is either ^ 2 So or nt<? = m 2 .

Proof. Let A be a set of power nt^ and m a cr-additive real-valued

measure on A. Let us call a set X a A an atom if m(X) > 0 and for
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each decomposition X = X
i
ul2 into disjoint sets either m(X

x )
= m{X)

or m(X2) = m(X).

Case I. There is an atom X. In this case we put m(Y) = m(XnY):

m(X) and obtain a cr-additive two-valued measure on A.

Case II. There are no atoms. In this case we shall show that there

exists a cr-additive real-valued measure on T
(„. Since is defined

as the least cardinal for which there exists a cr-additive real-valued

measure, it will then follow that ^ T0) = 2So .

°Lemma: IfX c= A, m(X) > 0 then there is a decomposition X — Xx
uX2

into disjoint sets such that m{Xj)^^m{X) and m(X2 ) ^ ~m(X)

.

We prove this by contradiction. We assume therefore that for each

pair of disjoint sets Xi9 X2 such that X = X^ uX2 and mfXf) < m(X2 )

the inequality m(X
x ) < m(X) is true. Let us fix a function which

correlates with each set Z c A of positive measure a pair <Z\ Z">

of disjoint subsets of Z such that Z = Z' uZ" and 0 < m(Z') ^ m(Z ")

;

if m(Z )
= 0 let Z' = 0, Z" = Z.

We use now the theorem on definitions by transfinite induction

and obtain a sequence {L^}|<COl such that V0 = X' and for each

positive |

Vt = {A- u v,y.

It follows from the definition of the set Z' that m(V^) < y m(X).

Let i0 be the least ordinal such that V
(o = 0. Such an ordinal must

be < oj
j
because the sets # 0 are disjoint and have positive measures

and thus there can be only denumerably many of them. Rearranging

the sequence {F|}t <fo ,
we obtain a sequence {T„}„eN of disjoint sets of

positive measures. From the definition of £0 we infer that m(A— LJ F„)
n

s

= 0, whence V m{Yn)
= 1. Let 5 be the least integer such that V m{Yn)

neN n = 0

> m(X). Since, by assumption, in(Y0) < 3
m(X), we have s > 0

and £ m(Y„) < 4 m(X).
n = 0
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Put P = u Pi, Q = Ys ,
R = X— {P u Q) and p = m(P), q = m(0),

i < s

r = m(R) and a = m(X). Hence p ^ a/3, q ^ a/3 and p + q + r = a.

It follows that p + q ^ (2/3) a, r ^ a/3 and hence p + q ^ a/3 and

r ^ a/3. Thus the decomposition X = (P'uQ)uR has the properties

(P'uQJnR = 0, m(PuQ) ^ a/3, m(R) ^ a/3 contradicting the as-

sumption that no such decomposition exists.

Using the lemma and the axiom of choice, we infer that there exists

a function F: P(A) -> P(A) x P(A) such that if X a A and X has

a positive measure then F correlates with X a pair <JP*, X**) satisfying

the conditions

X=X*vX**, X*nX** = 0,

We shall now define a real-valued cr-additive measure on Tw . To

reach this result we shall correlate a set AX?) with every finite sequence

JSU{0, 1}- = Du .

neN

If s = 0, then we put AX?) — A. If ? e (0, l}n+I then we put AX?)

= AX?M* if sn = 0 and AX?) = AX?M** if sn = 1. By induction we

prove that AX?) has the measure ^|y)"/??(A') for each 5 of length n.

We can now prove that the function

m(Y) = m(U HAX?|aO)
seY neN

is a real-valued u-additive measure on T^.

Since any union U taken over the dense set is dense, we obtain
se<I>

m (0) = 0. If Y = then U O AX?M = A. To see this we notice
seY neN

that for every a e A either a e A"«0)) or fleA'((l» where <0> and

<1> are sequences of length 1 whose unique terms are respectively 0

and 1. If a e X((e0}) then either a e X((e0 , 0» or a eX((e0 , 1)) where

<£0 , £ i> is a two-term sequence. Continuing in this way we obtain

a e X((e0 , e lt ..., en _ ,)) and hence there exists a sequence s e

such that a eAX?|fl) for each n. It follows now that m{T^) = m(A) = 1.

If Y has just one element s and k is any integer then m(Y)
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= m (Pi AXy|«)) ^ m (P A%s|/7)) ^ (-§“)*• Since this inequality holds
n<k

for every k
,
we obtain m{Y) = 0.

Finally, let Y = U Yjt where the sets Yj are disjoint. We easily
jeN

see that

U P X(s\n) = U
|
U Pi ^(.v|/7)|.

seY n jeN seYj n

If j k
,
then U Pi AXs|rt) n U P A"(a-J/7) = 0 for the intersec-

seYj n seYk n

tion on the left-hand side is equal to U U P [X{s'\n) n X{s"\n)\
s'eYj s”eYk n

and for ^ s" the intersection P [^(.v'Ia?) nA^f'lfl)] is empty. Hence
n

we obtain m(Y) = A7?(U |U P A"(.v| «)]) = I m (u n ATM#.))
jeN seYj n jeN seYj n

= X rri(Yj). Theorem 10 is thus proved.
jeN

Corollary: 1

) If there is no weakly inaccessible cardinal < 2No
,

then 2 S° is not a-S measurable.

This corollary can be considerably strengthened. For instance, if

we assume that the set of weakly inaccessible cardinals ^ 2S ° has

power less than 2X °, then 2S ° is not o-S measurable and still stronger

results are known. However the simple question whether 2Ko is or

is not o-S measurable cannot be decided on the basis of the axioms

Z^fTR] alone.

§ 7. Measurable cardinals and reduced products 2
)

In this section we shall deal with cardinals m which are m-2-measur-

able. We shall call them measurable.

*) A result much stronger than the corollary given on this page has been proved

by Solovay [2].

2
) The present section contains a brief sketch of the method invented by Tarski

in [9] and later reformulated by Keisler and Tarski in [1] which has permitted these

authors to establish several strong results about measurable cardinals and also about

other types of large cardinals. The use of reduced products is not essential: in [9]

Tarski used instead a kind of compactness property for certain infinitary languages.

For a detailed presentation of the methods and results sec Drake [I].
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As we proved in Section 6, m is measurable if and only if for each

set A of power m the algebra P(A) contains an nt-additive prime ideal /

containing all sets {#}, aeA.
We shall sketch a method of obtaining results about measurable

cardinals by using the reduced products which we introduced in Chapter

IV, Section 9.

We shall need two auxiliary facts:

°Theorem 1 : Each measurable cardinal is inaccessible.

°Theorem 2: Each measurable cardinal is weakly compact.

Theorem 1 follows from Theorem 9, p. 372. In order to prove

Theorem 2 we repeat the proof of Theorem 5, Section 5 (p. 364) re-

placing the ideal J by the ideal of sets of measure 0.

Let us now describe the construction of reduced products in a way

adapted to the present situation.

Until the end of this chapter let m = be a measurable cardinal,

and U = Ua the set of all transfinite sequences y : fV(oi) -* JV(oc). We
shall simplify formulas by omitting the index a whenever possible.

As we proved in Chapter IV, p. 141, the relation

(p ~ y = {!: <p(£) = y>(£)} $ I

is an equivalence relation on U. We denote by y the equivalence class

containing (p (or, as we shall say, generated by (p) and denote by U the

set of these equivalence classes. On U we define a relation ^ by the

formula

(*) y ^ y = {£: <?°(£) ^ ^(£)} £ 1

If we agree to say that &(£) is valid almost everywhere (or for almost

all |) if {£: 0(£)} then the relation (*) can be expressed thus: cp is

almost everywhere smaller than or equal to y.

It can be verified immediately that if cp ~ y and y ~ y' then the

sets {£: <jp(£) ^ y(£)} and {^: (p\£) ^ y'(£)} either both belong to l

or none of them belongs to I. Thus the previous definition is correct.

The relational system (0 ,
is the reduced product of the system

{
[fV(oc), ^ a ), where is the relation ^ restricted to fV(a).

In some of the subsequent proofs we shall use a more general con-

struction in which the simple relational system (lT(a), ^ a )
will be
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replaced by a family of relational structures 53 1 = (JF(<p0 (£)), ^o( £)>

A$, •••) with the same characteristic (see p. 86) where £ ranges

over W(a) and <p0 is a mapping y0 : fF(a) -> IF(a).

The reduced product of the systems is the relational system

(V, ,
A, B, ...), where V consists of elements <jp e U generated by

functions (p: W(<x) - W(a) satisfying the inequalities <p(£) < <p0 (i)

for each £ < a. The relation A is defined by the equivalence

(**) A((jp, ip, ...) = {£: A f (<p(£), y>(£), ...)} i /;

the definitions of B and the other relations are similar. We prove as

in Chapter IV, p. 141 that these definitions are correct in the sense

that the right-hand side of (**) depends on <p, ip, ... and not on the

particular functions (p,xp, ... selected from the equivalence classes

> yy » • • •

It should be borne in mind that all the notions defined above depend

on a and /. In cases where it is important to stress this dependence

we shall add suitable indices to symbols <p, etc.

The notation which we have just explained will be used throughout

the rest of the chapter.

It follows from o’s theorem (p. 143) that the set 0 is linearly

ordered by the relation Moreover the following theorem holds.

°Theorem 3: The relation ^ well orders U.

In the proof we use only the fact that the union of countably many

elements of / belongs to /.

Let us assume that {q)n }
is a decreasing sequence of elements of U.

Hence <jpn+l < cpn for each n and therefore the set {£: <p„ + ,(£) < <?„(£)}

does not belong to /. The intersection of these sets for n = 0, 1, 2, ...

does not belong to / either and hence is not void. For any £ in this

intersection we have <^n+ i(£) < 9?„(£) f°r eac^ n • This however is im-

possible because W(a) is well ordered by

For y < a we shall denote by cY the constant function cy(£) = y

and by 1 the diagonal function t(£) — £. Obviously, cy and 1 belong

to U.

Lemma 1 : For each cp e U and y < v.

cp ^ cv if and only if (jp
= cd for some d ^ y.
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Proof. The verification that c6 ^ cy for d ^ y is left to the reader.

If (p < cY then the set {£: <p(£) < y} = U {<?(£) = <5} = U <p
_1

(^)
ó <y 6<y

does not belong to /. Since / is m-complete, one at least (and, in fact,

exactly one) set <p
-1

(<5) does not belong to /, whence we obtain <p(£) = ó

for almost all £, i.e. cp = c6 .

We shall call the elements cy the constants of U and denote by C
(or Ca) their set.

Lemma 2: C is ordered by in type a.

This follows immediately from Lemma 1.

Lemma 3: (i) There exists a function (p0 : IT(a) -> IV(a) such that

the predecessors of ip0 in U coincide with the constants', thus the order

type of {ip e U: ip < (p0 }
is a.

(ii) Moreover
,
given /? < a, we can select q?0 such that )0 (£) > p

for each £ < a.

Proof. The diagonal function i has the property that i(£) > y for

££ W(y+ 1). Since W(y+ 1) has y elements, it belongs to / because /

is m-complete. Hence {£: cy(£) < i(£)} is not in /, i.e. cy < ~i for each

y < a. Thus there are functions ip such that ip succeeds in U all the

elements cy (y < a) and in order to prove (i) it is sufficient to take as

cp0 the first ip with this property.

Proof of (ii). Let (p0 be a function satisfying (i) and /# < a any

ordinal. Since £>0 is not a constant, all the sets <p
_1

(£) where £ ^ fi

belong to I. Therefore if (p'0 differs from (p0 at most at points belonging

to U <p
_1

(£)> then ~
<Po and thus £'ó = <P- Thus we can change

the values of (p0 without affecting (j?0 and so that <p0 (£) is never ^ /?.

Definition: We shall say that a function (p0 represents a if it satisfies

Lemma 3(i).

Lemma 4: If y0 represents a then <p0 (£) l s an initial ordinal for almost

all £.

Proof. Put <p0 (£) = N
e(f)

. Obviously, g(£) ^ cog(S) < ?0 (£) <
for all £ < a. If the set {£: £>(£) < <^0 (£)} were not in /, we would

infer [> < f 0 and hence q = cy for some y < a. Thus we would infer

{?(£) = y for almost all £, whence <p0 (£) = and (p0 (S) < &>y+1 .

Since cog+l < a, it would follow that (p0 is a constant. Since this contra-
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diets the definition of cp0 we infer that <p0 (£) = q(£) almost everywhere

and hence cp0 (£) is an initial ordinal almost everywhere.

Using these lemmas, we can now prove

°Theorem 4: If m = is measurable
,

then there are weakly

compact cardinals < m.

Proof. We assume the contrary and derive a contradiction. Let

be an ordinal < a such that for no initial ordinal y between p and a

the cardinal y is weakly compact. We select a function (p0 e U represent-

ing a such that (p0 (£) > P for each £.

The main line of the argument will be as follows. We shall consider

relational systems 23
f = (JU(9?0 (£)), < Vo(f)» A\ »

sd where ^
<P0d)

is the “less than or equal to” relation restricted to fV(<p0(£)) and

A°, A\, St are relations to be defined later. A? and At will have two

arguments and S( one, i.e. St is a subset of W(fp0 (£))- The precise

definition of these relations will be given later; here we remark only

that A° and A\ will determine a function ft\ [fL()o(^))]
2

{0, 1}

such that /|({??, £}) = 0 if r)A°£ and £}) = 1 if £. We shall

select A ®
,
A\ so that each set homogeneous for f must have power

less than (p0 (£). The set S will be a set homogeneous for/^.

The above facts concerning A?, At, St are expressible in the form

that some formulas are true in 23$. Hence, by o’s theorem (p. 143),

these formulas are also true in the reduced product = <K, 4 ,A°,

A 1

, ) of the 23
{
’s. Hence A 0

,
A 1 will determine a function/: [V]

2

->• {0, 1} and S will be homogeneous for / We shall arrange the con-

struction so that be cofinal with V. This is possible because V has

power m and m is weakly compact in view of Theorem 2. Now we

again invoke o’s theorem. The formula that S is cofinal with V being

true in ^ must be true for almost all 23^, again in view of o’s theorem.

But this would imply that the homogeneous set S$
is cofinal with

W(y0 (£)) ancl thus has the same power as fV(<Po(£)) ls a contra "

diction with the choice of A?, A \

.

We proceed now to the details of the proof.
1

)

1

) We gave the proof of Theorem 4 as an illustration of the methods used in

recent papers on measurable cardinals. Much stronger results than Theorem 4 are

known. See Keisler and Tarski [1] and Drake [1].
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Let fa: [^(^o©)]
2 — {0, 1 } be a function such that there is no

set X ci PL(9?o(£)) homogeneous for ft of power <p0 (£). We define

two binary relations A ? ,
A\ cz JV(<p0 (i))

2
:

<*?, C> e A\ =f({r) , £)} = s.

Now we consider the relational systems

»*&) = (W(cp„({)), «„o({) , /<?, .)
where is a subset of which at present we leave arbitrary.

Whatever the final choice of will be, we can state that if >0 (|) is

an initial ordinal and is homogeneous with respect to f, then St

is not cofinal with JL(<p0 (£)). Remembering Lemma 4 we see that

(independently of the final choice of St) the following formula (0)

is true in 33|(S|) for almost all £ < a (the variables 77 , £ below range

over W(p0 (£))):

m IA[W A 5,(0 - Aftti, C)]v/\[S((,)aS.(9 - oil

- V A [Si© - c < i»j.

a f

The antecedent of this implication states that St is homogeneous

for f and the consequent states that St is not cofinal with W(cp0(£)\

Consider now the relations A 0 and A 1
in the reduced power s$

= (F, ^ ,
A 0

, A 1

,
S). The universe V of consists of elements y> in U

such that y(£) < ^0 (£) for each £. Hence in view of Lemma 3(i) ip e C
and each element of belongs to V. Thus V = C.

The formulas stating that A° and At are symmetrical, disjoint with

each other and that for each pair {//, £} with rj ^ £ either A^rj, £)

or Aj(rj,C) holds are true in 33
f(). Hence by o’s theorem they

are also true in S]L Tt follows that if we put

f\cn rcd = e = A e
(c\

,
c
:)

we obtain a mapping /: [V] 2 -> {0, 1}.

The cardinal number of V is m and thus is weakly compact (see

Theorem 2). Thus there exists a set S cz V homogeneous for / cofinal

with V. The key fact is the following

Lemma: There are sets St a W{(p0 {^)) such that for each y < <x

(*) cy eS = {£: yeSt}tI.
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It is sufficient to put S§ = {ye JT(a): y < <y0 (^) e 5}. We

have then S$ c JF(<y0 (£)) f°r eac^ £ < a - If cY e then <y0 (£) > y

implies y e St and, since for almost all £ the inequality <y0 (£) > y is

true, we infer the right-hand side of (*). Conversely, the right-hand

side of (*) obviously implies the left. This proves the lemma.

We select now as the S$
in the relational systems 23|() the sets

from the lemma. o’s theorem then proves that the formula (&) is

true in the reduced product of the relational systems 33t(iS|). Remember-

ing that the universe of the reduced product of the 3T() is C = V,

we infer that

| A [(,)a({)
- i°(„ f)] VA [S(,)a 5() - cf)]j

-* V / im) ^
n £

where the variables tj, £ range over V(cc). This however is a contra-

diction because is homogeneous for f (and thus the antecedent ol

the above formula is true) and cofinal with V (and thus the consequent

is false).

Theorem 4 is thus proved.

From the proof of Theorem 4 we can still draw the following import-

ant observation.

°Theorem 5: If m = is measurable and <y0 : W(cc) -* IT(a) rep-

resents a then Rg(<y0 ) contains m ordinals y such that y is weakly compact

(and thus inaccessible).

We give one more application of reduced products to the theory ol

measurable cardinals.

For each T c W(a) let M(T

)

be the set of initial ordinals y such

that there is a function / normal in lV(<x) such that Rg(/) cz T and

y = lim/(£).
I<y

lTheorem 6: If m = Ka is a measurable cardinal and T0 is the set

of those initial ordinals y < cc for which y is not weakly compact
,
then

« i M(T0).

Proof. Let us assume that aeM(T0 ), i.e., that there is a normal

function f such that Rg(/) <= T0 and a = lim/(£).
£<a
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We shall obtain a contradiction with Theorem 5 by showing that

there exists a function (p0 representing a such that Rg(9?0) c: T0 .

To construct (p0 we consider an arbitrary function yr. fV(a) -> IV(x)

which represents a (see Lemma 3) and put

<Po(£)
= SUP {/(v) : r\ < y(£)}.

Since / is a normal function and ip(£) < a, the supremum exists

and belongs to the range of /, i.e. to T0 .

It remains to prove that the predecessors of (f0 are exactly the con-

stants Cy.

If y < a then cy < y and hence y < y)(£) for almost all £, whence

f(y) < <Fo(£) for almost all £. Since y ^ f(y) in view of the normality

of /, we obtain y < cp0 (£), whence cY < (p0 . Now let d be such that

d < (p0 . For almost all £ we obtain #(£) < <y0 (£

)

and hence there

exists a smallest tj
s < y>(£) such that &(£) < /(^). The ordinal need

not be defined everywhere but only for £ in a set X $ I. Putting r)
s = 0

for £ $ X we obtain a function on fV(a) which satisfies the inequality

< rp(£) almost everywhere. Thus there is a d < a such that rjs = Ó

almost everywhere and it follows that &(£) < f(6) for almost all £. In

view of the m-completeness of /the function &(£) is almost everywhere

equal to an ordinal < /(<$) < a and hence 3 e C.

Theorem 6 is thus proved.

We shall now sum up the information about the size of measurable

cardinals supplied by the above theorems.

By Theorem 2 each measurable cardinal m is inaccessible. By Theorem

5 there are m inaccessible cardinals < m and hence m is 1-inaccessible.

By Theorem 6 m is a Mahlo cardinal. Replacing in the proof of Theorem

6 the set T0 by M(T0), MM(T0), ..., we may obtain the result that m
is not only a Mahlo cardinal, i.e. hyper-inaccessible but hyper-hyper-

inaccessible, hyper-hyper-hyper-inaccessible, etc.

All these results could be derived directly from Theorem 2 because

one can show that weakly inaccessible cardinals are also hyper-inac-

cessible, hyper-hyper-inaccessible, etc. At any rate Theorem 2 shows

that each measurable cardinal m is preceded by m weakly compact

cardinals and so these two notions do not coincide.
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A very unexpected phenomenon of fundamental importance was

discovered in connection with measurable cardinals. Assuming their

existence, we are able to solve some problems regarding sets of real

numbers which cannot be decided on the basis of axioms 27° [TR] alone.

Thus, for instance, it has been proved that the question whether non-

denumerable sets of the second projective class (PCA-sets) contain

a perfect subset is undecidable on the basis of 27° [TR] but becomes

decidable (in the positive sense) if one assumes that there exist measur-

able cardinals. 1

)

In view of these applications it would be highly desirable to establish

the consistency of additional axioms expressing the existence of large

cardinals, such as weakly compact or measurable ones. No solution

of this problem is in sight. There exist on the contrary several results

showing that meta-mathematical methods known at present are in-

sufficient to cope with this problem.

*) Drake [1] contains several results illustrating connections which exist between

large cardinals and properties of projective sets. Numerous research papers dealing

with these problems have appeared recently; the interested reader should consult

current issues of Annals of Mathematical Logic and other journals dealing with

foundations of mathematics.





INTRODUCTION TO DESCRIPTIVE SET THEORY

Historically the origin of descriptive set theory is connected with

the development of the so called “Theory of a real variable.” This

theory flourished at the end of the XIXth century and in the early

years of the present century. The most prominent authors at that time

were: Rene Baire [1], Emile Borel [1] and Henri Lebesgue [1]. Later,

the theory of a real variable was developed and essentially extended

by Felix Hausdorff [1], Hans Hahn [1], N. Lusin [5], W. Sierpiski [3]

and their schools—to become a vast mathematical discipline known
as descriptive set theory (see also Liapunov [2], Saks [1] and Kel-

dysh [1]).

This discipline is closely connected to topology, measure theory,

probability theory. It also has interesting applications to game theory

and to optimal control theory and thus—to some extent—to applied

mathematics (see Filippov [1], Olech [1], Wagner [1] where a further

literature can be found, see also Aumann [1], Cole [1], Jacobs [1],

Rockafellar [1], Sainte-Beuve [1], Valadier [1]).



CHAPTER XI

AUXILIARY NOTIONS

§ 1. The notion of a metric space. Various fundamental

topological notions

In this section we shall recall some elementary topological notions

and theorems which will be needed in the sequel. Most of the material

will be presented in the form of exercises; their solution can be found

in elementary textbooks on topology (see e.g. R. Engelking [1], J. L.

Kelley [1], K. Kuratowski [3]).

Let us add that several topological notions have been already intro-

duced in Chapters I-IV. In particular, the notion of topological space ,

of the closure operation, of the interior, etc.—in Chapter I, § 8, ot con-

tinuity and of homeomorphism—on pp. 77-78, ot compactness—on p. 137,

of open base and subbase—on p. 116.

Definition 1 : A set X is said to be a metric space it to every pair

of its elements, i.e. to every pair of points x, y belonging to the set X,

there is assigned a real number \x—y\ ^ 0, called the distance from

the point x to the point y ,
which satisfies the following three conditions:

(1) \x— y\ = 0 if and only if x = y,

(2) \x—y\ = \y-x\,

(3) \x-y\ + \y-z\ ^ \x-z\;

the last condition is the so-called triangle inequality.

1. Show that:

1° Every set of real or complex numbers forms a metric space it the

distance between two numbers * and y is understood to be the absolute

value of the difference of these numbers. (This justifies the symbol

we are using for the distance.)

2° The Euclidean A7-space, Sn (whose points are sequences of n real

numbers (x 1 ,x2t is a metric space under the usual definition
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of the distance from the point x = (Xj ,
x2 , ... ,

x„) to the point y

= Oi,J2 ,
• • •,.)'„) given by the Pythagorean formula

(4) \x-y\ = \Xi-y,\
2
\'

12
.

i = I

The same formula “metrizes” the cartesian product X
x
xX2 x ... xX„

of any n metric spaces, Xx
,X2 ,

... 9
Xn .

3° The set 0(X, 6) of bounded functions /: X -*• & forms a metric

space if the distance between two functions / and g is defined by the

formula

(5) \f-g\ = sup
|

jf(x) g (a')
I

.

Remark. An arbitrary set can be considered to be a metric space

if we assume that the distance between each pair of distinct points

is 1.

Definition 2: The least upper bound of the distances \x-y\ between

all pairs of points x and y in the metric space X is called the diameter

of the space X and is denoted by the symbol <5(A
r

). If A" is a circle or

sphere, then its diameter <5(2Q is the diameter in the usual sense.

Metric spaces with finite diameter are said to be bounded.

A mapping /: X -* Y where Y is a metric space, is called bounded

if the set f l (X) is bounded.

2. Show that if / and g are bounded mappings of the (arbitrary) set X

into the metric space Y, their distance \f-g\ given by formula (5) is

finite.

3. Show that each metric space X can be considered as a topological

space defining the closure as follows

o g A) = [\\J {a € A){\a—p\ < e).

e> 0 a

Definition 3: Call open r-ball with centre p the set

K(jp, r) = {x: \x-p\ < r}

.

4. Show that if the set P = {p, , p2 ,
••• , ••}, where n e N, is

dense in the space (i.e. P = X, in which case the space X is called separ-

able), then the family of all sets K(pn ,
r), where n g N and r g R (the

set of positive rationals), is a base of the space.
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(i) Apply this theorem to the case of the Euclidean n-dimensional

space Sn
.

(ii) Generalize Exercise V.2.5 to arbitrary metric separable spaces X;

namely, show that the set of isolated points of X is countable ,

(iii) Generalize the Theorem of Cantor-Bendixson (Exercise VII. 1.5)

to arbitrary metric separable spaces.

(iv) Show that each metric separable uncountable space contains

a (non-empty) dense-in-itself set.

(v) Show that if F is a family of open subsets of a metric separable

space, then F contains a countable subfamily C such that IJ C = U F
(Theorem of Lindelof).

5. Show that the distance is a continuous function of two variables.

Definition 4: Call a topological space respectively Hausdorff\
regular,

normal if the conditions

0) x # y,

(ii) x $ F,
where F is dosed,

(iii) F
l
r\F2 = 0, where Fx and F2 are closed imply the existence

of two open disjoint sets G and FI such that

O') x eG, y g H,

(ii') xeG, F c H
,

(iii') Fi a G, F2 c= H, respectively.

6. Show that each metric space is normal.

Hint : Apply the notion of the distance of a point p to a set A (#0):
o(p,A) = inf |/7 — A'|, where xeA; and use the equivalence

(6) [o(/>. A) = 0] = (peA ),

and the continuity of the function o (for constant A).

7. Express normality of the space in terms of the lattice of closed

subsets of the space.

Definition 5: The union of a sequence of closed sets F
x
u F2 kj ... is

called an Fa-set.

Symmetrically, the intersection of a sequence of open sets G
x
n

nG2 n ... is called a Gd-set.

8. Show that in each metric space each closed set F is a G^-set (in

other terms: each metric space is perfectly normal ).
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Hint. Put K(F, r) = {*: q(x
,
F) < r} and show that

00

(7) F= f]K(F, l /n).
11= l

Definition 6. The limit of a sequence of points p { , p2 , ... in a metric

space is defined by the formula

(8) (p = lim pn)
= /\ V A \Pn+k-p\ < £•

n= oo e > 0 n k

9. Show that, in a metric space, p e A iff p is of the form

(9) p = lim pn where pn e A for each neN.
n= oo

10. Show that if X and Y are metric spaces and /: X -> Y, then / is

continuous iff

(10) lim = x implies lim f(xn) = f(x)
n= oo n= oo

for each sequence x 9
xl9 x2 , ••• in X.

11. Let X and Y be two topological spaces and let S be an open sub-

base of Y. Let/: X -> Y. Suppose f~
1 (G

)

is open for each (7 e S'. Then

/ is continuous.

12. Show that if p = lim pn ,
T = / and Bn is the ball {.y: £(>’, F)

n= oo

< 1 /«}, then

(11) P e F = A V e
/i /c

13. Deduce from this that if f(x) = lim /„(*), then
//= 00

(12) [/w e fi = A V t/.+tW e
/J /c

and consequently

(13) /-‘(f)=nu/,;i(«.).

By definition (compare p. 51), the sequence of functions/,: X - K,

n = 1,2,..., converges uniformly to /: X -* Y if

A VA A !/«+*(*) -/t*)i
e>0 n x k

( 14)
< £ .
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14. Show that the uniform convergence means that there is an (in-

creasing) sequence m l9 m2 , ... such that

(15) |/(*) —/„n+ *(x)| < l/« for each xeX and k ^ 0.

15. Show that if the sequence /i,/2 ,
... converges uniformly to/ and

F — F and Bn — {y : q(y, F) < 1 /«}, then

(16) [/(-V) 6 F] = A [/»„(*) S B„]
n

and consequently

a?) /-w = n/;.w
n

16. Deduce from (17) that the limit of a uniformly convergent se-

quence of continuous functions is continuous.

17. Show that the distance of two points

x =
, *2 , •••) and y = (yL ,y2 ,...)

in the Hilbert cube JN can be defined by the formula

( 18) \x-y\ =
f] (l/2)n \xn—yn \

n=l

(i.e. the topology induced by this formula is consistent with the defi-

nition of product-topology given in § 7 of Chapter IV).

18. ^ denoting the Cantor discontinuum, show that the spaces

and %>
N

are homeomorphic. Similarly, N* and (Nn
)
n

are homeo-

morphic.

Represent each t in the form

(19) t = t l /3 + t2/9+ ... + tn/3
n + ...,

where tn is either 0 or 2.

Put

(20) g(t) = X.QJ2 + IJ4+ ... +IJ2-+ ...).

19. Show that g is a continuous function of c€ onto «/.

Deduce from this that the Hilbert cube JN
is a continuous image of

the Cantor discontinuum %>.
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20. Let f : X -* Y
t
be continuous for each t e T. Then the complex

function h: X -* f] Y
t
determined by the functions f is continuous.

teT

Hint : Show that h~ x (G) is open if G belongs to the subbase of
[~J

Y
t

composed of open subsets of Y, multiplied by n yv .

21. Urysohn embedding Theorem. Show that for every metric separ-

able space X there exists a homeomorphism h: X->JN
.

Hint: Let d(X) ^ 1 and let (p 1 ,p2 , •••) be dense in X. Put /„(.v)

= \x—

p

n \
and let h be the complex function defined by the functions /„.

22. Let f: Xt
-* Y be continuous for t e T. Show that the set E

= C\f x (X
t ) is a continuous image of a closed subset of the space X,

.

teT teT

Y is supposed to be Hausdorff.

Hint-. Consider the set 3 = {3 : /\ft {3') ='/,(3*')}, compare Exer-
tt'

cise IV.6.7.

23. Under the above assumptions, show that if the mappings f are

one-to-one (or homeomorphisms), then E is a one-to-one continuous

(or homeomorphic) image of a closed subset of \\X
t

.

teT

24. Let A a X and B c Y. Show that Ax B is closed (open) in

Xx Y iff A and B are closed (open).

25. Let A a X. Show that if A is G
() (Fa), so is A x Y; if A is a bound-

ary set (a nowhere dense set), then so is AxY.

Theorems on compactness (see p. 137).

26. Show that each compact subset of a Hausdorff space is closed.

27. Show that the image under a continuous function of a compact

space is compact.

28. Show that each compact metric space contains a countable

open base.

Hint: Consider for each n the family C„ of all (1 /n) balls and denote

by Dn a finite subcover of Cn . Show that is the required

base.

29. Show that each compact metric space is the continuous image of

a closed subset of the Cantor discontinuum c€.
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Hint : Use the Urysohn embedding theorem and the function g defined

by (20).

Remark. One can show that each closed non-empty subset of # is

a continuous image of Consequently each compact metric space is

a continuous image of

30. Show that each compact Hausdorff space is normal.

31. Show that each one-to-one continuous mapping of a compact

space into a Hausdorff space is a homeomorphism.

32. Show that each sequence of points in a compact metric space

contains a convergent subsequence.

33. Show that in a compact metric space each Cauchy sequence is

convergent (a sequence p ly p2 > ••• is Cauchy if for each e > 0 there is

k such that \pn
—pk \

< e for n > k).

In other terms (see § 3) each compact metric space is complete.

§ 2. Exponential topology. Compact-open topology

We denoted by P(X) the power set ofX (see p. 53), that is, the family

of all subsets of X. If we assume that X is a topological space, it seems

reasonable—instead of considering all possible subsets of X—to restrict

ourselves to closed subsets. This allows us to consider this restricted

family as a topological space.

Thus, let us denote by 2
X

the family of all closed non-empty subsets

of X. The topology in 2
X

,
called exponential topology (or Vietoris top-

ology), is defined by declaring that the family of sets which are either

of the form

(i) {F: FnU * 0}

or

(ii) {F: F c= U),

where U is open and F closed, is a subbase for that topology (see

Vietoris [1]).

Remarks. 1. One can show that if X is compact, then so is 2X
;
the

converse is also true (if X is T
x ) (see Michael [1]).

2. One can show also that if 2X is metrizable, then X is compact

(under the continuum hypothesis a stronger result has been shown,
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namely that normality of 2X implies compactness of X) (see Michael

[1] and Keesling [1]).

3. It has been shown recently that 2* is homeomorphic to the Hilbert

cube (see Schori and West [1]).

In view of the Remark 2 one cannot expect the space 2X to be metric

unless we impose very restrictive assumptions on X. Thus a further

limitation of subsets of X may be desirable. This leads to the notion

of the space K{X) of all compact non-empty subsets of X ; the topology

of K(X) is defined as in the case of 2X . Moreover, this topology is

metrizable ifX is metric; namely, one can define the (Hausdorff) distance

of two elements A and B of K{X) as the maximum of the two numbers

sup^(x, B) for x e A and sup^(y, A) for y e B.

Closed-set-valued functions

In topology we usually restrict the general notion of set-valued

functions F: Y -> P(X) to closed set-valued functions, i.e. to functions

F: Y-+2X
.

Assuming that X and Y are topological spaces, it is meaningful to

consider continuous closed-set-valued functions. Namely, according to

the general definition of continuity, the function F: Y -> 2X is continu-

ous if F~ 1 (G), for every G open in 2X
,

is open in Y. According to 1.11,

one can restrict the range of variability of the sets G to members of an

open subbase of 2X . This leads to the conclusion that F is continuous

iff both conditions (i') and (ii') are fulfilled:

(i') {y: F(y)nU #0} is open in Y if U is open in X
and

(ii') {y: F(y) a U
}

is open in Y if U is open in X.

If just one of these conditions is satisfied, we shall say that F is

semi-continuous
,
namely lower semi-continuous if condition (i') is

fulfilled and upper semi-continuous if (ii') is true.

Exercises

1. Show that if X is regular, then 2X is Hausdorff (the converse is also true if X
is a T

v
-space).

Hint : Let K and L be closed and p e K—L. Then there is an open G such that

p g G and GnL = 0.
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2. Let F,: Y -* 2X , i = 0, 1. If the functions F0 and F, are continuous, then so

is their union.

Hence, the union KkjL, considered as a mapping of 2X x 2X into 2X, is continuous.

3. Show that if A (
cr x is closed and A" is a F

t
-space, then

2A 0 r\A l _ 2
A°n2Al and generally

n At
1

4 . The family of all finite subsets of a Fx -space X is dense in 2X .

5. Let F, : Y -* 2X and A closed c X. Show that

(FoUf.rH1
A
) = Fo'(2

A
)nFr'(2

A
)

and

(lTf.)- i
(
2'4

) = n f,-h2
a
).

t t

6. Let E be a fixed closed-open subset of X. Put F(K) = KnE. Show that F is

continuous on 2X .

7. Let X = A 0 uAi where A 0 and A
t are closed and A 0 nAi — 0. Show that

2
A°^Al

1S homeomorphic to 2
A ° x 2

Al
.

8. Show that if X is normal, then the set «AT, L>: K <= L] is closed and the set

«AT, £>: KnL = 0} is open in 2*x2*.

9. Show that condition (ii') is equivalent to

(ii") {y: F(y) r\K ^ 0} is closed in Y if K is closed in X.

10 . Show that the union of two upper semi-continuous functions is upper semi-

continuous.

The same for lower semi-continuous functions.

In Exercises 11-14 we assume that X is compact metric and Y Hausdorff.

11 . Let D <= X x Y be closed. Put F(y) = {.y: (.y, _>’)££>} (= the “horizontal"

section). Show that F is upper semi-continuous.

12 . Let F: Y -* 2X . Show that the set

G(F)= «.y, >’).y e F(t)},

the graph of the relation x e F(y), is closed iff F is upper semi-continuous.

13 . Let/: X -* Y be continuous onto; then the inverse image of /, i.e./
-1

: Y -* 2X ,

is upper semi-continuous.

14 . Let F be upper semi-continuous. Then the inverse images under F of open

sets are Fa -sets (in other terms: Fis of the class 1 in the Baire classification).

Hint : Use the fact that each open subset of 2X is the countable union of some

members of the base of 2X . Then represent each open subset of X as the union of

a sequence of closed sets. (See Kuratowski [2], p. 70.)

15 . Show that there is a continuous choice-function on the space 2* (namely the

function assigning to each closed non-empty subset A of J the first point of A).
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16 . Show that there exists no continuous choice-function on the circle S (even

for the family of two-elements subsets of S).

17. Show that there is a choice-function of the first class for the space 2^ where Q
is the Hilbert cube (.2 = JN).

Hint: Let g: —> .2 be continuous onto and let h(A) denote the first point of

A el*. Put /= g o h o g~ l
. (See Kuratowski [2], p. 425.)

18 . Generalize the preceding statement to the case where H is an arbitrary compact

metric space.

Remark. The following statement motivates the denomination of semi-continuity

for set-valued mappings.

Let / be a real-valued function of a real variable.

According to the classical definition (of Baire) /is upper or lower semi-continuous

if for each real c

(y: f(x) < c} or (y: /(y) > c), respectively, is open.

19 . Write F(x) = {>>: y < /(y)} and show that F is upper (lower) semi-con-

tinuous iff / is such.

The compact-open topology

If X and Y are topological spaces, we consider—instead of the space

Y x of all functions f: X -» Y—the (more restricted) space of all continu-

ous functions /, denoted by (T*)top . It becomes topologically meaningful

when the following topology, called compact-open , is introduced. Given

a compact Cel and an open H <= Y, write

T(C, H) = {/: f 1 (C) c= //}

.

The compact-open topology of the space (T*) top is defined by con-

sidering the totality of all sets r(C
,
H ) as its open subbase. (See Fox

[1], also Kuratowski [2], § 44.)

Exercises

1. Let X be Hausdorff compact and Y arbitrary topological. Given fe (Yx) top ,

put w(/, y) = /(y). Show that the function w: (Tx) top xA' -* Y is continuous (this

property of / is called joint continuity).

2. Let X be Hausdorff compact and Y metric. Show that the space (T*) top is

metrizable. Namely, the distance of two elements /and g of this space can be defined

as follows (see also XI. 1(5)):

\f-g\ = sup|/(y)-^(y)| for x e X.

3. Show that the formulas V.l (8)— ( 1 0) remain valid for the compact-open topology,

the relation ~ meaning homeomorphism, all spaces being assumed metric and more-

over, A, B, X and T compact.

Hint

:

The proof is quite similar to the proof of the mentioned formulas (8)-(10).
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§ 3. Complete and Polish spaces

Let us recall that a sequence of points p l9 p2 y ... of a metric space

is a Cauchy sequence if for every e > 0 there is n such that \pn —pk \

< e for every k > n.

The space is complete if every Cauchy sequence is convergent. The
space is topologically complete if it is homeomorphic to a complete

space (e.g. an open interval is not complete, but is topologically com-

plete). See Frechet [1].

Topologically complete and separable spaces are called Polish spaces.

The following theorem can easily be proved.

Theorem 1 : The product XxY of two complete spaces is complete

when metrized by the formula

\z-zA = V\x
~ x i\

2
+\y-yi \

2

where z = <*, y} and z
{ = <.x

1 ,y 1 >.

The product X
x
xX2 x ... of complete spaces is complete when met-

rized by the formula

l3~t)l
l + l3 -t>

l

’

where 3 = (3
1

, 3
2

,
• ••), t) = ft

1

,!)
2

, ...) and 3" eXH ,
t)

n eXn .

In particular, the Euclidean space £n
y the space £N

, the Hilbert cube

—are Polish.

Theorem 2 (of Alexandrov, see [3]): Every Gd-subset A of a complete

space X is topologically complete
; more precisely : A is homeomorphic

to a closed subset of Xx £ ,v
.

Proof. Let A" be a metric space and A a (^-subset of X. Hence A
= G

{
n G2 n ... where Gn is open for n — 1 , 2 ,

. . . Put

Mx) = ,or -V66-

and for x e A put

f(x) = [fi(x),f2 (x) i ...], thus f:A—> £N .

Since /„ is continuous on Gny hence on A, it follows that / is continu-

ous on A. Furthermore—as easily seen—the graph of f i.e. the set



3. COMPLETE AND POLISH SPACES 397

Gr(/) = y = /(*)}, is closed in the complete space Xx6oN .

Consequently, Gr(/) is complete. Finally, A is homeomorphic to Gr(/).

Theorem 3: Every topologically complete subset E of a metric space

is a G0-set (in this space).

Proof. (Comp. Sierpiski [10].) Let X be metric, E <= X, Y complete

and h a homeomorphism of E onto Y.

Denote by Bn(y0) the open ball with center y0 and radius < l/n.

Since h~ 1 [Bn (/?(/?))] is open for each p e E, and contains /?, there is

in the space X an open set Kn(p) such that

(1) peK„(p), K„(p)nE a h~ l [Bn (h(p))] y d(Kn (p)) < l/n.

Put Gn = (J Kn (p). We shall prove that
peE

E=nGn,
n

and this will complete the proof.

Obviously, E c= p) Gn . So let x e p| Gn . We have to show that
n n

X 6 E.

Since * e Gn for /; = 1,2,..., there exists in E a sequence of points

/?, ,/? 2 , ... such that

(2) x e Kn (pn ), and hence x = lim/?n ,

n—co

by the last part of (1).

We shall show that h(px) y
h(p2 ), ... is a Cauchy sequence in Y.

So let e > 0 and l/n0 < e. By (2) we have for sufficiently large m
(say m ^ «j), pm e Kno(p„0), and consequently, by (1),

pm eh-
l [Bno (h(pnJi)\, i.e. \h(pm)-h(p„0)\

< 1 /n0 < e.

Thus, for m^ n l9 we have \h(pm)
— h(p„

x
)\ < 2e, which means that

the sequence h(p
l ) t

h(p 2 ), ... is Cauchy. Since Y is complete, there is

an y = lim h(pn). Put y = h(q), q e E. Since h is a homeomorphism,
n= oo

we have

q = lim pn ,
hence q = x, and therefore x e E.

n= oo

Remark. By virtue of Theorems 2 and 3, the Polish spaces can be

identified—from the topological point of view—with the Gd-subsets of

the Hilbert cube yN
.
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Theorem 4: The hyperspace
,
K(X), of compact subsets of a Polish

space X is Polish.

Proof. According to the above remark, we may consider A" as a Gd
-

subset of the Hilbert cube SL = . Then

K(X) = {F e 21 : F cj}.

This set is a Gd in 2£
; for put X = G

1
nG2 n where is open;

then

and the set {F: F a Gn } is open by definition of the exponential top-

ology.

Since 2J is compact (see Remark 2.1), hence complete, and K(X) is

Gd ,
it follows that K(X) is Polish (by Theorem 2).

Theorem 5 (see Kuratowski [2], p. 543): Every metric space X can

be embedded in a complete space.

More precisely : X is isometric to a subset of the (normed) space <$
x

of all continuous bounded functions f: X -> <?

.

The proof is based on two lemmas.

Lemma 1 : Denote as in 1 ,
3°, by (P(X, Y) the space of all bounded

functions f: X -+ Y metrized by the formula

If Y is complete
,
then so is &(X, Y).

The proof is quite elementary.

Lemma 2: 6 X
is closed in (P(X, 6), hence is complete (when metrized

by formula (3)).

This follows from the fact that the limit of a uniformly convergent

sequence of continuous functions is continuous (see 1, 16).

Proof of Theorem 5. We must define f: X -> <f
x such that

{F: Fez X} = O {F: F <= G„},
n

(3) I/1-/2I = sup I/, (.v) -f2 (x)\.

(4) \f*-fb\ = \a-b\.

Let p be a fixed point ot' X. Put

(5) fa(x) = \x-a\-\x-p\.
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Obviously, |/fl
(x)| ^ \a-p\ and hence fa is bounded and continuous.

Furthermore,

\fa{x)-fb(x) | = H*— tf| — I*—
&|| ^ \a-b\

and hence \fa —fb \ ^ \a — b\. On the other hand,

fa(o)-fb(p) = -\a-p\-\a-b\ + \a-p\,

and hence \fa -fb | ^ \a-b\. Formula (4) follows.

Remark. If X is bounded, (5) may be replaced by fa(x) = \x-a\.

Properties of complete spaces

Theorem 6 (of Cantor): If A t
=> A 2 => ... is a sequence of non-empty

closed sets such that lim d(A n) = 0, then the set A
l
nA 2 n ... consists

n= oo

of a single point.

Proof. Let pn e A„. The sequence p v ,p2 , ... is obviously a Cauchy
sequence. Hence it converges to a point p. For each n, we have p e A n .

The point p is the unique point belonging to the intersection of all A„,

because the diameter of this intersection is 0.

Theorem 7 (of Baire): Every set of the first category (i.e . a countable

union of nowhere dense sets) is a boundary set.

Proof. Let E = N
x
uiV2 u ..., where Nn is nowhere dense. Let B0

be a closed ball. We have to show that B0 — E # 0.

Define by induction the sequence of balls B0 id B
x

=> ... as follows.

Let Bn be a ball such that

Bn a Bn _ l —Nn and d(Bn) < l/n.

By Theorem 6, there is a point p e B0 n B
t
n ... It follows that p

e B0 — E, since

n«.cD (X-Nn) = X- u N„ = X-E.
n n n

Corollary 1 : The complement of a first category set is not of the

first category (unless the space is void).

Corollary 2: The countable intersection of dense Gd-sets is dense.

Theorp-m 8 (see also Chapter XII, § 6): Every Polish space is a one-

to-one continuous image of a closed subset of the space NN
.
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Proof. First, let us note that the interval J (as well as the real line

6°) satisfies the conclusion of the theorem.

For let A be the set of irrationals 0 < t < 1/2 and let B be composed

of a sequence tl9 12 ,
... of irrationals between 1/2 and 1 and converg-

ing to 1. Obviously, the set F = A uZ? is closed in NN and there is a

one-to-one continuous onto mapping /: F -* J (A is mapped onto NN

and B onto J —NN
).

It follows that the Hilbert cube £ = JN
satisfies our conclusion.

For let

g = /x/x ..., hence g : FN -> J,

and g is a one-to-one continuous onto mapping.

Since FN
is closed in (NN)

N and (Nn)
n

is homeomorphic to N v
,

it

follows that FN is homeomorphic to a closed subset C of NN
. Thus

there is a one-to-one continuous onto mapping h\ C -> 2L.

Consider now the general case of an arbitrary Polish space X. Ac-

cording to the remark to Theorem 3, X can be considered as a G& subset

of Si. Put D = h~ 1
(X). Hence D is Gd in C, hence in AA

. Consequently

(by Theorem 2), D is homeomorphic to a closed subset H of A A xSN
.

But SN is a one-to-one continuous image of a closed subset of A \

and hence so is NN x and finally—so is H. Our conclusion follows.

§ 4. L-measurable mappings

Definition 1 (see Kuratowski [8] and also Hausdorff [2], p. 267):

Let X and Y be metric, Y contains a countable open base and L

a family of subsets of X (i.e. L a P{X)) containing all open sets.

A mapping /: X -> Y is called an L-mapping if

(0)
/“ 1 (G) e L for each G open in Y.

If L is a cr-lattice, then /is obviously an L-mapping if (0) is fulfilled

by those G which belong to a countable open subbase of Y.

Remark. If L is a cr-algebra, the L-mappings are usually called L-

measurable .

Our terminology of L-mappings has been originated by the case

where L is a cr-lattice (for (5-lattices it would seem to be preferable to

replace G open by K closed).
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Examples. If L is the family of all open subsets of X, then / is an
L-mapping iff / is continuous.

If L is the family of all Lebesgue measurable subsets of the interval,

then L-mappings coincide with the Lebesgue measurable functions.

Theorem 1 : Let Ac- X and let f be the characteristic function of A.

Then f is an L-mapping iff A e L and (X— A) e L.

Because /
_1

(1) = A and /
_1

(0) = X-A.

Theorem 2: Let f: X -* Y and g: Y -> Z. If g is continuous andf is

an L-mapping then h = g°f: X -> Z is an L-mapping.

Because h~ 1 (G) = /-1
[g

-1
(G)].

Theorem 3: Let L be a o-lattice. Then the limit ofa uniform convergent

sequence of L-mappings /„: X - Y is an L-mapping.

Proof. Let F a Y be closed. Put f(x) = lim/n (;t) and Bn = {y:
n= ao

{?(>’> F) < 1 In}. By the uniform convergence (see 1(17)), there exists

an increasing sequence mn such that

r i (F) = r\f^{Bn).
n

This completes the proof. Because, for G = Y—F, we have

f-'(G) = U
n

and fm^iY— Bn ) e L by assumption.

Theorem 4 (on complex mappings): Let L be a o-lattice in the space

T, let f: T -> X and g: T -> Y, where X and Y are separable. Then the

complex mapping

h = </,*>: T^XxY

is an L-mapping iff the mappings f and g are L-mappings.

More generally
, if /„: T -* Xn for n = 1,2,... and ifXn is separable

,

then the complex mapping

h = fi /.: T-+ Y\X„
n n

is an L-mapping iff /„ is an L-mapping for each n = 1,2,...
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Proof. The condition is necessary. Let G be open in X
x

. We have

(1) {AU)eG} = {h(t)E(GxX2 xX3 x ...)}

and hence f{
l (G) = h~ l (G x X2 xX3 x ...).

Since G xX2 xX3 x ... is open and h is an L-mapping by assump-

tion, it follows that e L, and hence ft is an L-mapping.

The condition is sufficient. The proof is easily reduced to show that

fr 1(GxX2 xX3 x ...) e L, G being an open subset of X
x
and ft

being

supposed an L-mapping. But this follows at once from (1).

Definition 2: Let L c P(X) and M c P(Y). We denote by L®M
the family of all sets

(2) FxFsuch that EeL and FeM.

Definition 3: For each family L a P(X) we denote by L the rr-algebra

generated by L.

Lemma 1 : Let

XeL c P{X), Y e M c P(Y) and L®M c N.

Then the family

R = {E c X: (Ex Y)eN}

is a G-algebra and L a R. Consequently
,
L a R.

Proof. Let £„ cl and En xY e N for n = 1,2,... Put E = E
y
u

uE2 kj ... Then E c= X and ExYeN, because

Ex Y = (E
{
x Y)u(E2 x Y)u ...

Now let H = X—E, E c X and (ExY)e!\. Then H a X and

(HxY)e TV, because

HxY = Xx Y-Ex Y.

Finally, L a R. For let EeL. Then E a X and (ExY) e L®M,
since Y e M.

Moreover, since L is the smallest d-algebra containing L, we have

L c= R.

Lemma 2: Under the above assumptions
,
L®M a IS/.

Proof. Let EeL. Then, by Lemma 1, E e R, which means that

(Ex Y) e TV.
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Symmetrically, FeM implies that (XxF)eN. Since (ExF)

= (E x Y) n (X x F), we have (Ex F) e TV.

Theorem 5: Let, for j = 0,1, Lj c P(Xj) and let f: X
}
-> Y

i
be

a Lj-mapping. Suppose that L0@L l
c= TV and that TV is a a-lattice in

Xo xX
x

. Then the product function

(fo x/i) * Xq x X
i
—> Y0 xYl

is an TV-mapping.

Since TV is a cr-lattice, it suffices to show that

(/oX/i)''(GoXG,) eN for Gj open in Yj.

Now (by Exercise II. 7. 10) we have

C/oX/O-^oxGJ =f0
- l (G0)xfr

1 (G
1 )

c= tv,

because ff
l (G

J
)eL

j
(by assumption).

Corollary: If f: Xj -> T is an Lj-mapping
,
and if h(x0 ,

x x )
=

|/0 (.v0) —/i(^i)|, then h is an TV-mapping.

Consequently,

(3) {<*o, *i>: fo(xo) ^/i(*i)} e TV.

Because this set equals /z~
1 — (0)), which belongs to TV.

Theorem 5 can be generalized as follows.

Theorem 5a: Let for j = 1, 2, ..., Lj c= P (Xj) and let fj\ Xj -> Yj

be an Lj-mapping. Suppose that each set of the form A l
xA 2 x ...,

where A n e Ln andfor sufficiently high n, A n = X„, belongs to a o-lattice

N c= P(X0 x Xj x ...); then the product-function

OOOO 00

r\fj- n jo - n l
;=i 7=i y=i

w an N-mapping.

It suffices to show that

I(n/;)
-1(Gxr2 xr3 x •••)] 6 N

j

for each G open in Y
x

. Now this set equals

fp
l (G)xX2 xX3 ...

and hence belongs to TV.
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Theorem 6: Under the above assumptions put Y = Yl = Y2 = ...

and

3 = {3 : /i (3
1

) = fi(3
2
)
= •••} where 3 6^ xX2 x ...

Suppose that /}: Xj -* 7 iiy an Lj-mapping. Then

(n^)-3eiV.
y=i

Proof. Obviously,

3 e FI (Ti)~3 = VW(3J
)

j ii'

This completes the proof, because by (3)

{3 :mj
) # fAlj')} e N

for j and j' fixed.

Theorem 7: Under the same assumptions, put

^(3)=/i(3
1

) for 3 e 3-

Then g: 3 Y is an N-mapping and

00

w ^(3) =
j=

1

Formula (4) follows from Exercise IV. 6. 7.

To show that g is an 7V-mapping, let G be open in Y. Then denoting

by n the projection of X
x
xj2 x ... onto X1 ,

we have

g- i (G) = (fl
o7i)-\G)

= n

~

1

lfr
1 (G)\= [fr

1 (G)xX2 xX3 x ...]eN,

since e L
x
by assumption.

Theorem 8: (First Graph Theorem) Let L c P(X) and letf: X -> Y
be an L-mapping. Denote the graph off as usual, by

Gr(/) = {<x,y>: y = /(*)}.

Let G be the family of all open subsets of Y and let N be a G-latiice

<= P(XxY) such that L®G c N. Then

(5) [X

x

T— Gr(/)] e N.
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Proof. (5) follows from (3) by putting f0 = f /, = identity on Y
,

and = the family of open subsets of Y.

Corollary: Let L be a a-lattice containing all open subsets of X,

and let /: X -> X be an L-mapping. Put

I — (v: f(x) = .

Then
(.
X-I)eL

.

Proof. Put IW = Lx L and Y = X.

Remark. Let us recall that there is in 2
y an open subbase composed

of two kinds of families of open sets

{E: Er\U ^ 0} and {E: E <= U)

where U is open. (See § 2 (i) and (ii).)

Therefore, if G belongs to this subbase and if F~ 1 {G) e L, then

we have

F~ l {E: EnU # 0} eL or F~ x {E: E a U} e L.

In other terms, we have either

{jc: F(x)nU # 0} g L or {x: F(x) <= U} eL.

This leads to the notion of lower and upper-L mappings.

Definition 4: Let L cz P(X). We call F: X -*> P(Y) lower-L, respect-

ively upper-L, if

(6) {x: F(x)nU ^ 0} e L if U is open in Y,

equivalently

(6') {x: F(x) 4- K] e L if AT is closed in Y;

respectively

(7) {x: F(x) c U) e L if t/ is open in Y,

equivalently

(7') {x: F(x)nK = 0} e L if AT is closed in Y.

Obviously if L is the family of all open subsets of X, then F: X -* 2
Y

is lower(upper)-L if F is lower (upper) semi-continuous.

Definition 5 : We denote by G(F) the graph of the formula y e F(x),

i.e.

(8) G(F) = {<x,y>: yeF(x)}.
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Theorem 9: (Second Graph Theorem) Let G be the lattice of all

open subsets of Y, let L c= P(X) and let N be a o-lattice such that L®G
C= TV.

If F: X -> 2
Y

is upper-L
, then

(9) [Ix7-G(F)]eiV.

Proof. Let Glf G2 , ... be an open base of Y. Obviously,

y F{x) = \J (y e G„) A (F(x) nG„ = 0),
n

and hence

XxY- G(F) = U [{x: F(x) nGn = 0} x Gn ]

.

n

This completes the proof, since Gn e G and by (7')

{*: F(x) n Gn = 0} e L .

Remark : Theorem 8 can be deduced, of course, from Theorem 9.

Theorem 10: (Third Graph Theorem) Let C be the family of all

closed subsets of Y, X e L <= P(X), and N a d-lattice in XxY such that

L®C a N.

If F: X -> 2Y is lower-L, then G(F) e TV.

Proof. Let Glt G2 , ... be an open base of Y. Obviously,

[.v t /-(*)] = V [O e G„) A (G„ n F(x)) = 0]

,

n

and hence

G(F) = H [Ix(F-C,)]u[{r F(x)nG„*0}xY].
n

Our conclusion follows, because {x : F(x) nGn ^ 0} e L (by (6))

and L(x)C c: TV.

Theorem 11 (see Kuratowski [17]): Let L be a o and d-lattice of
subsets of X. Then for each mapping F: X -* K(Y), condition (6) is

equivalent to

(10) {a: F(x) nK # 0} e I for each K closed in Y.

Proof. Put briefly F~(E)= {x: F(x)nE ^ 0} for E c Y, and

note that

(11) f-(U E.) = u F-(E,).
t t
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1. (10) => (6). Let U = K
l
uK2 u ..., where K„ is closed. By (11)

we have F~(U) = U F~ (Kn) and F~(Kn) eL by (10).
n

Hence F~(U)eL (since L is countably additive).

2. (6) => (10). Let Ul9 U2 , ... be a countable open base of Y, closed

under finite unions. By assumption, F(x) is compact, and hence

{F(x)nK = 0} = V (F(x) c= U„)a (Kn Un = 0).
n

Hence {x: F(x)nK = 0} = (J {*: [F(x)n(Y-U„) = 0]}, where
n

n ranges over indices satisfying condition K n Un = 0. By (6) we have

{x: [F(x)n(Y-U„)
= 0} e L c

and this completes the proof (since V is countably additive).

Corollary 1 : If R is a a-a/gebra
,
then under the above assumptions

,

the conditions of being upper and lower R are equivalent.

Because, in this case, R' = R. (It is thus justified to use the term

“/?-measurable", e.g. Borel-measurable, 5*-measurable, etc., see also

Chapter XIII, § 3.)

Corollary 2: If F: X — K(Y) is upper (or lower) B-measurable,

then F is B-measurable.

Because K(Y) is metric separable (see § 2, Remarks).

Remark (due to J. Kaniewski): If we do not assume F(x) of being

compact (assuming only that F(x) is closed, i.e. F: X -> 2
r
), then

Theorem 1 1 is no more true (even if L is supposed to be a a-algebra

and Y—Polish).

Namely, let us put X = J (the interval 01), Y = J xNy
,
L = B(J)

(the cr-algebra of Borel subsets of the interval «/), p = the orthogonal

projection of Y onto X and F(x) = p~ l (x) for each x e X. Finally,

let K be a closed subset of Y such that p
x (K) is not Borel (for the exist-

ence of such a set, see Chapter XIII, § 1(3) and Theorem 12).

Condition (10) is not fulfilled, since obviously

{x: F(x)nK / 0} = {jc
:
p~*(x)nK ^ 0} = p

l (K),

while (6) is true, because p is an open mapping, which means that

p
x (U) is open for each open U a Y.
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The above remark answers in the negative a question raised by

C. J. Himmelberg [1], namely whether weak “L-measurability” (i.e.

condition (6)) implies “L-measurability”.

Sets open modulo an ideal

Let / be an ideal of subsets of the space X. Denote by L the family *

of sets open mod /. That means (see Exercise 1.5.6) that E e L iff E

is of the form

(12) E = G— A^jB where G is open and A, Bel.

Theorem 12: Suppose that f: X - Y and that I is a a-ideal. Then

is an L-mapping iff there exists A el such that the partial mapping

f\ (X— A) is continuous.

Proof. 1° The condition is necessary. Let U
l ,
U2 , ... be an open

base of Y. By assumption, /
_1

(t/„) e L. Therefore,

f~\Un)
= Gn -A n uBa ,

where Gn is open and A n e I and Bn e I.

Put A = U A n u U Bm . Hence A el. We have to show that the
n n

mapping g = f\(X—A ) is continuous. So let H be open in f; we must

show that the set g~ l (H)
= — A is open in X—A.

Now H = Ukl u Uk2 u ... and hence

r 1W = U f-'{Uk)-A = U (Gk -A k vBk)-A.
n n

Since A k u Bk a A, it follows that
*n h n 9

g-‘(H) = (U Gj-A,
n

which completes the proof since U Gk„
is open.

n

2° The condition is sufficient. Let A el and let g = f\(X— A) be

continuous. Therefore, if H is open in Y
y the set g \H) =f X (H)-A

is open in X—A
,
that is, there is G open in X such that f~

1 (H) —A
= G— A. Therefore,

(13)

= (G-A)'u [f~
1 (H)nA],
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Since A el, we have [f
l (H)r\A]eI and it follows by (13) that

f~
x (H)eL (comp. (12)). Hence /is an L-mapping.

§ 5. The operation (see Lusin and Souslin [1])

Definition: Let Sf denote the set of all finite sequences of natural

numbers and let A be a set-valued function defined on Sf. Thus

A(kl , ..., kn ), denoted also by Akv% ,kn ,
is a subset of the given space X,

and A : - P(X). Put
00

(!) s(A) = U n A 3]n ,

3 n= 1

where 3 = (3
1

, 3
2

, ...) ranges over NN and 3 |

n

denotes (3
1

... 3").

The set s/(A) is called “the result of the operation s applied to A ”.

A is called regular if

(^) -^3|n+l C -^3|n •

Define A* as follows

(3) A*„ = A
3

i 0T
3

I 32 n ... ndj]„.

One may easily show the following formulas

(4) J*(A*) = j*(A)

(thus every function A can be “regularized”), and for A regular

(^) LJ LJ fl ^(t)ii)m(3jk)
— U O ^(i)|i)(3|fc)

»

m 3 k 3 k

where (t)|/)(3 |/c) means t)

1
... p‘

3
1

... 3/

(6) Ayk <= Bsk implies 1)0^=11(18.#,
3 k 3 k

which means that the function srf is monotone
,

(7) x-U <= U UOv
3 tc 3 k

LJ
m

where we assume that A3k = X for k = 0.

Theorem 1 : If A is regular and

t(3l«) ^ (*)!«)] => (AiW nAm „ = 0),(8 )
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then

(?) un^,= nuv
3 n n 3

Proof. We have to show that the right-hand side of (9) is contained

in its left-hand side.

So let p belong to the right-hand side. It follows that there is an

index m
l (and only one) such that p e Amr Similarly, there is a pair

q l
m 2 such that p e A

qi „ lt and since Aqim2 <z A
qi ,

we have = m i .

Proceeding in this way, we define a sequence 3 = (m lf m2) m 3 ,
...).

Thus p 6 A 3 1„
for each n. This completes the proof.

Applications of the operation srf to complete spaces

Let A" be a complete space. We assume that

A: S? -+ 2*u {0},

i.e. that the sets Akl kn are closed (empty or not) subsets of X. More-

over, we assume that A is regular
,

i.e. that condition (2) is fulfilled,

and finally that

(10) lim 0(A
ilk)

= 0.
k— co

Put

(11) 3 = {3= A O.i* * 0)}-
k

Then, for 3 e 3> the set A
9 \i n/t 3 |

2 n ... reduces to a single point

(by Theorem 2.7); let us denote this point by /(3). Thus

(1 2) / (3) = u ru,i*.
a k

Put = {3 cNN
: (3

1 = «,) ... (3
* = «*)}.

Obviously the sets Ar
„

l ,h are closed-open in NN and form a base

of this space.

It is easy to show that

( 1 3 )

and that, consequently,

(14) 3 w closed in NN
.

We shall show that

the function f: 3 / J

(3 ) ts continuous .05)
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Proof. Let 3 £ 3> s > 0 and let & be an index such that h(A^ k) < e.

Hence, by (13),

Hf\3^i]k)] < e.

This shows that / is continuous at 3 ,
since is a neighborhood

of 3 .

(16) If X = U At and A i]k = U A
(i \

k)i for each 3 and k, then
* 1

f l

(3) = X-

Proof. Let x eX. We shall define by induction a sequence n
x ,

n 2 ,
...

Namely, let x e A ni and, assuming that x e A„v ..„k ,
let nk+1 be such

that x e A„v , Mk„k+1 . We denote by 3 the sequence n l9 n2 ,... Then

A' = /(3).

(17) If condition (8 ) is fulfilled,
then f is one-to-one

,
and we have (by

Theorem 3.6)

(no /‘(3) = nu%
k 3

and

(17") /‘(3n^J =/’ (3) ^

This follows easily from Theorem 1.

The next statement is obvious.

(18) If 3 e 3 implies that 3
fe = 0 or 2 for each k, then 3 is a Cantor

set (i.e. homeomorphic to the Cantor discontinuum).

Let us note also that

(1 9) if = u n/,n
3 k

and

(20) {3}=n^3l*> limóC/K,|*) = 0.

k Ac = co

Theorem 2: Suppose that conditions (2), (8) and (10) are satisfied.

Then under the assumption of (18), the set f' (3) *s a Cantor set .

Because 3 is (by (18)) a Cantor set, /is continuous (by (15)) and one-

to-one (by (17)), hence a homeomorphism (see Exercise 1.3).

Finally, let us show that iff is a continuous map ofNN
,
then, for each
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3 6NN
,
we have

(2D {/(3)} = n/'(^i*) = n/w.
/c

Because, by (20),

(22) z 1® =/ i(n ^

3

|l) <= n ci n
k k k

and, by the continuity of /, we have

lim = 0, hence lim
t jj = 0,

k—co k= oo

and finally, dfn/'PV)] = 0. Thus H/AT) reduces to a single
k k

point, namely to the point/®. Thus (21) follows from (22).

Remarks on Hausdorjf operations

The operation can be generalized as follows. Let A lt A-?,... be
a sequence of sets and B c Nn

. Put

xeH = VA*e
3efi n

We say that H is obtained from the sequence A l9 A 2 , ... by means
of a Hausdorjf operation with basis B.

See Hausdorft [2], p. 93, and independently Kolmogorov [1]. For
the development and applications ot Hausdorff operations see Kanto-
rovitch and Livensohn [1], Katetov [1], Liapounov [1] and [2], where
numerous references can be found. See also Oczan [1].

§ 6. The Lusin sieve (see Lusin [4])

Definition 1 : Let (M 0 denote the set of binary fractions

m 1 1

r ~ “

2*7 +
••• +~2*7 where 1 < A'j < ... < kn .

A set-valued mapping W : d#0 —> P(X), where X is the given space,

is called a sieve. We denote by L(W) the set of all points * such that

there is an infinite sequence r
i ,r2i ... satisfying conditions

(2) r
l < r2 < ... and ref) W(rn )

n

(L(fV) is said to be sifted by W).
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In other words, if

(3) Mx = {r: xe W(r)} or equivalently W(r) = {x: reMx },

then

(4) L(W) = {x: Mx is not well ordered by the relation r ^ s)

.

Remark. There is a one-to-one correspondence between the sets

@0 and Sf, namely the correspondence

(5) C(/*) = \k
i , k 2 ^1 )

• • • » kn kn — 1 }

where r is given by formula (1).

Theorem 1 (see Lusin and Sierpiski [1] and Sierpiski [9]): Let

H: Sf -> P(X) be regular and let fV(r) = //C(r) . Then s/(H) = L(W).

Proof. 1° Let xesJ(H). Then x e Hky n

H

klkz n ... Put

1 1 1

2 fc l 2 fel + * 2

Then (2) is fulfilled and hence x e L(W).

2° Let xgL(W). Hence (2) is fulfilled. Put

Put ky

and let

lim r„

n= oo

where 1 < /;?! < m 2 < •••

= m, and k n = for n > 1. Let jn be such that

f=l i= 1

Jn

i i

2^r+ ••• + 2’>
where 1 ^ q v < ... < <7s-

Hence q j

= m ly >-^qn
= tn„. It follows that the first n terms of

C(r
jn)

are identical to k
x ,

...,kn respectively. Since H is regular, we

have //C(r )
c= Hk k .

Hence
Jn

x e Hkl kn for n = 1 , 2, ... ,
i.e. xestf(H).

Remark. If X = S, the sieve has the following geometrical in-

terpretation. Put W{r) on the line y = r. Then MXq is the inter-

section of U fV(r) with the vertical line x = x0 .
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Definition 2: Let A = L(W). We call constituents of X— A (relative

to W) the sets

Ca = {x: Mx has order-type a}, a < coj

.

Thus

X-A = U Ca .

OC < CD!

Example. Let X = (the Cantor discontinuura). Let 3 e Then

3
1

3 = -y + -y-+... where 3
" = 0 or 2 .

Denote by = {A* 1 ,r2 , ...} the sequence of binary fractions. Let

^3 =
{
rn- 3" = 2} and 3 the order-type of /?

3 ,

and

cr
= {3‘ 3 = and JL(r) = {3: r e /?

3 ).

Then the sets Ca are the constituents of U Ca relative to the sieve W.
a < a>i

Note that CT ^ 0 for any countable order-type r (because 0to has
a dense order type).



CHAPTER XII

BOREL SETS. B -MEASURABLE FUNCTIONS
BAIRE PROPERTY

§ 1. Elementary properties of Borel subsets of a metric space

Let us recall that the family B(X) of Borel subsets of the space X
is, by definition, the c-algebra (see p. 126) generated by all closed sub-

sets of X.

In this definition, the term “closed” can be replaced by “open” since

every open subset of a metric space is an E^-set (countable union of

closed sets, see Chapter XI, § 1,8).

We have seen (comp. p. 241) that the family of Borel subsets of X
admits two natural classifications into classes:

B(X) = U Fa and B(X) = U G
t

cc<o)i <x<ct)i

where F0 is the family of closed sets, E, is the family Fa , ..., symmetric-

ally G0 is the family of open sets, G
x

is the family Gd ,
and so on. The

families Ea with even indices as well as the families Ga with odd indices

are countably multiplicative. The sets belonging to such a family will

be said to be of multiplicative class a. Similarly, the families Fx with

odd indices as well as the families Ga with even indices are countable

additive and form the additive class a. Thus the multiplicative class a

(additive class a) consists of the countable intersections (unions) of

sets of classes < a.

The classes with finite indices are denoted as follows:

E<y
,
Fad ,

F'ado ,
• • • j

G
ft ,

Gq0 , Gfia fi ,
...

The following properties of Ea and (7a-sets extend by induction to

classes of an arbitrary index.
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The complement of a set of class Fa is of class Ga . The finite union

and finite intersection of sets of the same class belong to that class.

Thus Fa with an odd index (and Ga with an even index) is a o-lattice.

Similarly, Fa with an even index (and Ga with an odd index) is a d-

lattice.

Every set of an additive class a is the union of an increasing sequence

of sets with indices £ < a. Every set of a multiplicative class a is the

intersection of a decreasing sequence of sets with indices £ < a. A set

is of class Fa (of class Ga ) relative to a set E if and only if it is the inter-

section of E with a set of class Fa (of class Ga).

* Observe that a Borel set of class a belongs to every (

F

or G) class

of a greater index. This follows by induction from the fact that every

open set is an Z^-set and every closed set is a G^-set.

The Cartesian product of two sets of class Fa (of class Gfi belongs

to the same class. For, the product of two open sets is open and the

product of two closed sets is closed and

(U^)x(Ufi,) = U (A„xBm),
n m nm

(rM„)x(ri») =
n m nm

In particular, the product of a set by an axis does not change its

class. From this and from the formula

n A
i
= n (Xi X ... x A

t
xXi+l x ...)

ieN i

we derive that the countable Cartesian product of sets of multiplicative

class a is of the multiplicative class a (the analogous theorem for ad-

ditive classes is not true, even for open sets).

A countable Cartesian product of Borel sets is a Borel set.

Theorem : If a subset Z of the Cartesian product X x Y is of class Fa

or of class Gx ,
then the sets

0) A
y = {x: [(x,y}eZ]} and {x: [<x, x>eZ]}

are of the same class (the second conclusion concerns the case where

X = Y).

Proof. The sets Zn{<x,j>: (>’ = >>o)} and Zn{<xj): (x = y)}

are of class Fa (GJ relative to {<x, ^>: (y = y0)} and {<x, y}: (x = jO},

respectively; the same is true of the sets (1).
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In a separable space
,
the family of open sets (as well as the family

of closed sets) has power ^ c. The same is true of each Borel class.

Since the family of Borel sets is the union of N', classes, it follows

that its power is ^ c = c. Therefore in every separable space of
power c there exist non-borelian sets.

The problem of an effective definition of a non-borelian set in the space

of real numbers will be treated in § 5.

The problem of proving without the continuum hypothesis the

existence of a non-borelian set in every uncountable separable space

is open.

§ 2. Ambiguous Borel sets

A set E which belongs to both F

'

a and <7a is said to be ambiguous

of class a; in symbols E e A a ;
for instance, a set both closed and open

is ambiguous of class 0; it is ambiguous of class 1, if it is both Fa and Gó .

Every Borel set of class a is ambiguous of the class a + 1

.

Clearly the complement of an ambiguous set is ambiguous (of the

same class). Therefore A a is an algebra', thus, the union, intersection

and difference of two ambiguous sets of class a are ambiguous of

class a.

Theorem 1 : Every set of additive class a > 0 is a countable union

of disjoint ambiguous sets of class a; hence Ga = A aa .

Proof. Let A = A
x
uA 2 u ... uA n u ... Then

(1) A = A
t
kj[A 2 -A 1

]kj ... u [A n -(A l
u ... ...

If each A n is of multiplicative class < a, then it is ambiguous of class a.

Hence the terms of (1) are disjoint ambiguous sets of class a.

Theorem 2 (of Lusin, see Sierpiski [8]): Every set of the additive

class a > 1 is a countable union of disjoint sets of multiplicative classes

< a.

Proof. Consider the decomposition (1). Since each A n is of a multi-

plicative class < a, then so is the union A
t
u ... Therefore

the set X—(A
x
u ... uA n _j) is of additive class < a. By Theorem 1

00

this set is of the form (J B", where B" are disjoint ambiguous sets
/=i



418 XII. BOREL SETS. fi-MEASURABLE FUNCTIONS. BAIRE PROPERTY

of classes < a (for a > 1). Thus
00 00

A = U U
n— 1 i=l

is the desired decomposition, because A n c\B” is of a multiplicative

class < a.

The following theorem can easily be shown (see e.g. Kuratowski

[1], P- 348).

Theorem 3: The family of Borel sets is the smallest family that con-

tains :

(i) all open sets;

(ii) the countable intersections of its elements;

(iii) disjoint countable unions of its elements.

Since, by Theorem 1, Ga = Aaa ,
where Aa (a > 0) is a field, it follows

by Theorem IV.5.1 that Ga has the countable reduction property:

Theorem 4: (Reduction Theorem) For every (finite or infinite)

sequence G
l ,
G2 ,

... of sets of additive class a > 0 there exists a se-

quence H1 , H2 , ... of disjoint sets of additive class a > 0 such that

Hi cz Gi and Hl uH2 u ... = G
1
uG2 u ...

Consequently
, if X — G

1
uG2 u ..., then the sets Hi are ambiguous

of class a.

Similarly, we deduce from Corollary IV.5.2 the following theorems.

Theorem 5: (Separation Theorem) IfFlf F2 , ... is a sequence of sets

of multiplicative class a > 0 such that F1 c\F2 r\ ... = 0, then there

exists a sequence E
l ,
E2 , ... of ambiguous sets of class a such that

Fi c= Ei and E
i
nE1 n ... = 0

.

In particular
, if A and B are two disjoint sets of multiplicative class

a > 0, then there exists an ambiguous set E of class a such that

(3) A c E and EnB = 0.

In other words
, if A c: C are two sets of class a > 0 such that A is

of the multiplicative class and C is of the additive class, then there exists

an ambiguous set E of class a such that

(4) A c E c C. •

(See Sierpiski [6] and [16] where many applications are given.)
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Theorem 6. If Fl
,F2 , ... is a sequence of sets of the multiplicative

class a > 0, then there exists a sequence B
{ ,
B2 ,

... of the additive class oc

such that

OO 00

Fi- n Fm Cl Bi and H #; = 0.
m = 1 i=l

Remark. If the space X is O-dimensional (separable), i.e. contains

a countable base of class A 0 (of closed-open sets), then the above

theorems are true also for the case a = 0. In particular, in that case,

each Fa-set is a countable union of disjoint closed sets.

§ 3. Borel-measurable functions

Let X and Y be metric.

Definitions: A function f: X -> Y is called Borel-measurable (briefly

B-measurable) if /
_1

(G) is Borel in X whenever G is open in Y.

More precisely: / is B-measurable of class a (briefly: is of class a)

if f~
1 (G) is of additive class a.

Equivalently: /is of class a iff~ 1 (F) is of multiplicative class a in X
whenever F is closed in Y. (Comp. p. 400.)

Obviously, the class 0 is composed of all continuous functions.

If / is one-to-one it is said to be a
(,
generalized) homeomorphism

of class a,/? if/ is of class a and its inverse /
_1

is of class fi.

Clearly, homeomorphisms of class 0,0 coincide with the homeo-

morphisms in the usual sense.

Theorem 1 : If R
] ,
R 2 ,

is an open base of Y, then f is of class a

if each set f~ x {Rn) is of additive class a.

Proof. Since G = ..., we have

f~\G) =f- 1 (Rkl)uf~
l (Rk2)u ...

It follows also that if the sets

/

-,
(/?„) are Borel

,
for n = 1,2, ...»

then the function / is B-measurable. In fact, its class is a, where a > a„

and where f~ 1 (Rn) is of class a„.

In particular, if Y is the space of real numbers
,
the functions of class a

can be defined by assuming that the sets {x: [a < f(x) < b]} are of

additive class a, for every a and b (which can be assumed to be rational).
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Corollary: If the space Y is discrete and the function f is of class a,

then the set f~
l (B) is ambiguous of class a for every B c= Y.

Because B is both closed and open in Y.

Theorem 2: Iff is a function of class a and B is a set of class
ft, then

the set j
~

1 (B) is of class ct + ft (which is multiplicative or additive accord-

ing to the class of B).

The proof is by transfinite induction (on /?). We use the identities

r'(u«.) = u/-‘(fi,), f-'(C\Bn) =
n n n n

and the implication < ft implies a + < ot + f.

In particular if/ is continuous
,

i.e. a = 0, then f~ l (B) is of class
ft.

Theorem 3: Iff: X -* Y is of class a and g: Y -> Z is of class
ft, then

the function h — g of is of class cc + {3.

Proof. We have

h-fF)=f-'[g- 1
(F)];

and hence, it the set F is closed, then g~ l (F) is of the multiplicative

class p, and /
-1

[g
_1

(F)] is, by Theorem 2, of class oc + fl.

In particular, if g is continuous, then the functions gof and fog are

of the same class as f
Theorem 4 : Iff is the characteristic function of the set E c= X, then f

is of class a iff E e A a .

Theorem 5: Let Y be separable and f: X -+ Y of class a. Then the

graph off i.e . the set

Gr(f) = y =/(*)}

is of the multiplicative class a.

This theorem is a particular case of Theorem XI.4.8, letting L — the

additive class a in X and N = the additive class a in XxY.
To give a more direct proof based on a different idea (see Haus-

dorff [2], p. 269), let us consider the function h(x,y) = \y—f(x)\.
Then

Gf(/) = {<WT>-* [h(x,y) = 0]} = /z

“ 1

(0)

.

Since the lunction h is of class a, the set /i
-1

(0) is of the multiplicative

class a.
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Remark. The condition of separability of Y can be removed using

a method of D. Montgomery [1], p. 532 (see also R. Engelking [2]).

Theorem 6 (See Hausdorff [2], p. 267): The limit of a convergent

sequence offunctions of class a is of class a + 1

.

Proof. Let f{x) = lim fn (x). Let F = F c= Y and write Bn = {j>:
11= CO

q(j, F) < 1//?}. Then by XI. 1 (13)

/-'(F) = n U/.+K4).
n k

Since the functionsfn are of class a, the setfn
~
+[(Bn ) is of the additive

class a. Consequently the set

/

_J (F) is of the multiplicative class a+1.
Thus, in particular, the limit of a sequence of continuous functions

is of class 1. The limit of a sequence of functions of finite classes is of

class co + 1

.

Theorem 7: The limit of a uniformly convergent sequence offunctions

of class a is of class a.

This is a particular case of Theorem XI.4.3.

Remark. The converse of Theorem 6 is not generally true for a = 1

(as shown by taking for Y a space composed of two points). However
it is true for Y = «/.

More generally, by the Lebesgue-Hausdorff theorem, for Y =
the class 0a of analytically representable functions (see p. 236) coincides

with the family of immeasurable functions of class a or a+1, (accord-

ing to as a is finite or infinite) see Lebesgue [1], p. 168 and Hausdorff [2],

Chapter 9.

For further generalizations, see de la Vallee Poussin [1], p. 118 and

S. Banach [2], p. 287.

§ 4. immeasurable complex and product functions

A pair of functions f: T -» X, g: T -* Y define a
“
complex

"

function

h: T XxY, namely h{t) = (f(t), g(t)).

Theorem 1 : Let the spaces X and Y be separable. The function h is

of class a iff the functions f and g (the “coordinates ") are of class a.

More generally
,

let X
x ,
X2 , ... be a sequence of separable spaces and

3: T - X
x
x X2 x ..., i.e. the function 3 represents a sequence of func-
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tions 3 i, 3 2 ,
... The function 3 is of class a iff each function 3 , is of this

class.

Theorem 1 follows directly from Theorem XI. 4.4 substituting

for L the additive class a in T.

Let f: Xi -> Y
t
and let 3 = [3

1

, 3
2

, ...] be a variable point of X
l
x

X2 x ...; then putting 9 (3) = [/ife
1),/^ 2

), ...] we get the product

function

t): X
t
x X2 x ... -> Y

t
x Y2 x ...

Theorem 2 : If each function f: Xt
- Y

t
is of class a, then so is t),

provided that the spaces Y
t
are separable.

If a separable space Y
t

is an image of a space X
{
under a mapping

of class a, then the space X, x Y2 x ... is also an image ofXx
xTx ...

under a mapping of class a.

This follows from Theorem XI.4.5a substituting for L
t
the family

of subsets of additive class a of Xh and for /V—the family of subsets

of class a of X
{
xX2 x ...

Theorem 3: Iff, i = 1,2,..., is a mapping of class a of a space

Xi onto a subset of a separable space Y, then the set

3 = {3-' t/i(3
l

) = />(3
2
)
= .*.]}, where % e (Xx xX2 x ...),

is of the multiplicative class a in X
{
xX2 x ...

Moreover
,
the function f* defined by the condition

/*(3)=/i(3
1

) for 3 E 3
is a mapping of class a 0/ 3 onto /* 1

(3) = f\(Xf) nf\(Xf) n ...

Finally, if the functions f are homeomorphisms of class ocfi then so

is the function /* (provided that X
t
are separable).

For the proof see Theorems XT. 4.6-7 .

Theorem 4: In order that the characteristic function of a sequence

of sets A
t ,
A 2 ,

... should be of class a it is necessary and sufficient that

each oj the sets be ambiguous of class a.

This is a direct consequence of Theorem 1 .

Examples, (i) It Y is separable and the functions /,: X
t
-* Y, f2 :

X2 -> Y are of class a, and h(xl9 x2 )
=

l/i (*,)-/, (x2 )|, then h is of

class a.



5. UNIVERSAL FUNCTIONS FOR BOREL CLASSES 423

We apply Theorem 2 to g(yi,y2 ) — l>’j — >’2 !, the distance being

a continuous function.

(ii) If/, and f2 are two real-valued functions of class a, then /i(*i)±

±f2 (x2 ), fi(x x )‘f2 (x2 ), ffxf) :/2 (x2 ) define functions of the same

class.

§ 5. Universal functions for Borel classes

Given a family F of sets and a set T, a universalfunction for F is a set-

valued function F: T -* F onto, i.e.

{A g F} = V [A = F(/)]
t

(compare Sierpiski
[
12 ], p. 82).

We shall assume subsequently that the space X (whose subsets are

elements of F) is separable metric. Let T = jV' = NN
. If F is of power

< c, there obviously exists a universal function for F. Hence any Borel

class Fj, or Ga can be substituted for F.

Theorem: For each a < (o t
there exists a universal function Ga with

respect to Ga such that the set (<3 ,x>: [x e Ga (3)]} is a Ga-set in the

product XxNy
(this set is called the graph of the relation x g

See XI, § 4 (8).

Proof (compare Lebesgue [1], p. 209). We shall use the following

notation. As usual, 3 e NN
is regarded as a sequence 3

(1)
, 3

(2)
,

... of

natural numbers. Since the space NN
is homeomorphic to (Ar/v

)
v (comp.

Chapter XI, § 1, 18), there is a one-to-one correspondence between

irrational numbers 3 and all sequences of irrational numbers 3(1) , 3(2) , ...

such that, for a fixed 3(n) is a continuous function of 3 . For example,

we can put

( 2
"- 1 +fc . 2")

0

To every transfmite limit ordinal X < 0)
x

let us assign a sequence

X 1 < X2 < ... converging to X (its existence follows from the axiom

of choice).

Let /?,, /? 2 ,
... be an open base of the space (containing the empty

set). We define the function G* as follows.
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1) Co(3) = U *,(•>;
n

2) ^+1(3) = n Ga ($(n)) or u Ca(3(«))> depending whether a is even
n n

or odd;

3) ^(3) = U G
,

A„(3(n ))
if A is a limit ordinal.

n

We have to prove that:

(i) the set Ga (3) is of class Ga ;

(ii) if A is of class <7a ,
there exists 3 e Ns such that A = Ga (3);

(iii) the set «3,x>: [x e <7a (3)]} is of class <7a .

Property (i) is a direct consequence of (iii).

Proof of (ii). First assume that A is of class G0 ,
i.e., an open set.

By definition of the base, A has the form A = [J Rkn . Let 3 be an
n

element of NN such that 3
(1) = k l9 3

(2) = k 2 , ... Then

^0(3) = LJ ^
3
<") = LJ ftk

n
= A.

n n

Thus condition (ii) is satisfied for a = 0 .

Assuming it tor a, we shall prove it for a-f- 1 . Let A be a set of class

C7a+1 . Then

A = n A n or A = U A„
n n

(according to as a is even or odd), where A„ is of class Gx . By hypothesis

there exists a sequence {3,,} such that A n = Ga ($„). By definition of the

function 3(n) ,
there exists 3 such that 3„ = 3(n) for every n. It follows

that

c«+i(3) = n GJi(n)) = A or G„+1 (3) = U G«(3(.))
= A

n n

according to as a is even or odd.

Now suppose that A = limA„ and that (ii) holds for each A„. If A

is a set ol class G*, then A = U A n where A n is of class Gan with oc„ < A.

n

Since the sequence {A„} converges to A, there exists a kn for each n

such that a„ < A
fcn . Therefore, A n is of class G . Hence there exists

k

n

3>t„ with A n = G
Akn(3kn). If i is different from all kn , let 3* be such that
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GA .(3i)
= 0. Hence A = U G

Xn (^n). As before, let 3 be such that
n

In = 3(n) • Then

^ = U G^(n)) = ^a(3) *

n

Proof of (iii). First observe that {<x, n>: (x g Rn)} is open in Xx N.

In other words, the formula xg Rn (of two variables) is of class G0 .

As the function 3”, for a fixed n, is continuous, then the formula x g R^n)

is also of class G0 . The same is true of the formula \/ (x g /?
3
<n>) which

n

is equivalent to xeU Consequently, the formula x g <70 (3)
n

is of class G0 and the set {<3, x>: [x e C70 (3)] } is open. Similarly, if the

formula x g G0 (3) is of class a, then so is x e C7a (3(n)), for a fixed n
,

since 3 (n) is a continuous function of 3. It follows that the formula

/\ [x g Ga (3(n))] (for an even a) is of class Ga+l (the case of a odd
n

is similar). Since

A t* e G„(3w)] ={«n c,(3w)} = {x s G« + ,(3)}.
n n

it follows that condition (iii) is satisfied for a + 1. Finally, if the formula

x g G

}

(3), for every n, is of class G^
n ,

then the formula \J [x g G^
n (3(„))]

is of class Gk . As before we infer that {<3, x>: [x g Ga (3)]} is of class Gx .

Remark. An analogous theorem on the classes Fa is true: For every a

there exists a universal function Fx such that the set {<3, x): [x g Fa (3)]}

is of class Fa . Namely, Fa (3) = X—Ga (3).

Existence of sets of class Gx which are not of class Fa (see Lusin [4],

p. 290). We shall prove the existence of such sets in the space NN
. Let

X — NN and consider the set

Xx = {3- [3 E Ca (3)]}

which is the projection, on the A A
axis, of the intersection of {

<(3>3
,

) :

[3 g 63(3')]} with the diagonal of N s xNn
,

i.e. with the set

[3 = 3']}- Since the set {<3, 3')** [3 eGa (3')]} is of class <7a ,
so is Za .

It remains to prove that Zx is not of class Fx . Suppose it is; then

N w — Zx is a Ga-set. Since the function Gx is universal, there exists a 30
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such that NN — Za = Ga (30). By the definition of Za , we have

{3o e ^ce(3o)

}

= {3o e Za )

.

This is a contradiction.

Remark 1: For the second part of the argument, compare the proof

of the “diagonalization” theorem of Chapter V, § 3. For a different

proof, see also Engelking, Flolsztyfiski, and Sikorski [1].

Remark 2: Problem of effectiveness. Our proof of existence of a set

of class Gx which is not of class Fa is not effective. That is, we have not

specified a function which assigns, to each a, a set with the required

property. By inspecting our argument, we see that the non-effectiveness

is due to the fact that we have not defined a function which assigns,

to each limit ordinal 2, a convergent sequence of ordinals < We
have, in fact, affirmed the existence without determining any specified

sequence of this kind. Actually, no effective definition of a sequence

convergent to A is known. Flowever, the problem of existence of G/sets

which are not //sets has been solved effectively using a different idea

(see Kuratowski [1], p. 372).

§ 6. Borel subsets of Polish spaces

Theorem (see Kuratowski [1], § 37): Every Borel subset of a Polish

spaceX is a one-to-one continuous image ofa closed subset of the space NN
.

Proof. First let us note that every open subset of X has the property

under consideration; because every Polish space has this property

(by Theorem XI. 3. 8).

Next, this property is closed under countable disjoint unions. For

let Fn be a closed subset of the set of irrationals in the interval in — 1, n)

and let /„ be continuous and one-to-one. Assume that the sets fk(F„),

n = 1
,
2 ,..., are disjoint; then the mapping/ = /i u/2 u ... is obviously

a continuous and one-to-one mapping of U Fn onto U fk{Fn ).

n n

Finally, the considered property is countably multiplicative. For

let Fn be closed in NN and fn be continuous and one-to-one. Then the

set F = PI Fn is closed in (A iV

)

iV

hence is homeomorphic to a closed
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subset of NN
. Moreover, Pi/*

1

(T
7
,,)

is a continuous and one-to-one
n

image of a closed subset of NN
(see Chapter XI, § 1 , 23).

This completes the proof, because the family B of Borel subsets

is the least family containing all open sets and closed under countable

disjoint unions and countable intersections (see Theorem 3.3).

Corollary (Theorem of Alexandrov-Hausdorff, see [1] and [4]):

Every uncountable Borel subset E ofa Polish space X has the cardinality c.

More precisely
,
E contains a Cantor set.

Because every uncountable closed subset ot N s contains a Cantor

set.

Remark. It will be shown later (Theorem XIII. 1.9) that every one-

to-one continuous image of a Borel set is Borel. Thus the Borel subsets

of a Polish space can be characterized as the one-to-one continuous

images of closed subsets of NN
(they are called also Lusin spaces

,
see

Bourbaki [2], p. 128).

We shall also see that any two Borel sets of the same cardinality are

always Borel-isomorphic (in Polish spaces).

§ 7. Further properties of Borel sets

Let us note here several important properties of Borel sets (which

will not be used in the next sections).

1 . Extension of continuous functions. Let X be metric and 1 complete.

Let A a X and /: A - Y continuous. Then there is a continuous ex-

tension of / on a (70-subset of X.

2. Extension of homeomorphisms. Lavrentiev Theorem (see [1]). Any

homeomorphism between two subsets of complete spaces can be ex-

tended to (/^-subsets of these spaces.

3. Extension of B-measurable functions (see Kuratowski [1], p. 434,

and Maitra and Rao [2]). Let X be metric and Y Polish. Let A a X

and f: A -* Y be of class a. Then there is an extension of / of class a

on a set of multiplicative class a+1. (See also Hansel! [1].)

4. Topological invariance of Borel classes. The Borel additive classes

with a > 1 (G
d<

7

,
etc.) and the multiplicative classes with a > 0 (Gd ,

etc.) are topological invariants.
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A simple proof is furnished by the Lavrentiev theorem (see [1] and
[2]). For historical references see Kuratowski [1], p. 432.

For the invariance under more general mappings (closed or open),

see in particular Frolik [1] and [3], Hausdorff [5], Taimanov [1] and
[2], and Jayne [1], where further references can be found.

§ 8. Baire property

Let us recall that a meager set (called also a set of the first category)

is a countable union of nowhere dense sets. It follows at once that the

family I of all meager subsets of a given {metric) space X is a o-ideal.

Definition 1 : We say that a set A a X has the Baire property if A
is open modulo /; which means that A is of the form

(1) A = (G-P)vR

where G is open and P and R are meager.

We denote by C(X), or briefly C, the family of all subsets ofX which
have the Baire property.

Theorem 1 : The family C is a o-algebra.

Proof. The cr-additivity of C follows from Exercise IV.4.6.

To show that A e C implies {X-A) e C, note that F e C for F closed.

This follows from the identity F = Int(F) u Fr(F), because Fr(F) is

nowhere dense, hence a member of /.

Now, by (1), X-A = (X-G)-Ru(P-R), hence (X-A)eC.
The following theorem follows from Theorem 1.

Theorem 2: Each Borel set has the Baire property.

Because every open set has the Baire property and the family B of
Borel sets (contained in A) is the least cr-algebra containing all open
sets. Thus B c C.

Tn order to prove the next theorem, we will have to establish some
properties of meager sets.

Definition 2: The set A cz X is said to be meager at the point p
it there is a neighborhood G ot p such that AnG is meager.

The set of points ot A where A is not meager is denoted by D{A).
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The following properties of the operator D can easily be established

(for metric separable spaces; however, they are valid in general for T
x

topological spaces, see Kuratowski [1], § 10).

1. (
D(A )

= 0) = (A is meager).

2. D(A-D(A)) = 0, i.e. A-D(A ) is meager.

3. D(A) c A.

4. D(A ) is closed.

5. (D(E) = 0)=> (p(A) = D(A-E) = D{AuE)).

Theorem 3: If A e C, then D(A)r\D(X-A) is nowhere dense.

In other terms, every open non-empty set contains a point where either

A or X— A is meager})

Proof. Assume that (1) is true. Then

X-A = CX-G)-Ru(P-R).

By 5 we have E(A) = D(G) and D(X—A) = D{X— G). Therefore,

by 3,

D(A)nD(X-A) = D(G)nD(X-G) c= G — G,

which completes the proof because G — G is nowhere dense.

Corollary: If A e C, then D(A) — A is meager.

Since

D(A)-A = (D(A)-A)nD(X-A)v(p(A)-A-D(X-A))

a [D(A)nD(X-A)]v[(X-A)-D(X-A)\,

the conclusion follows from Theorem 3 and Proposition 2.

Theorem 4: A e C iff' A is the union of a G^-set and of a meager set.

Proof. 1° The sufficiency follows from Theorem 2.

2° Let (1) be fulfilled. Since PuR is meager, we have

PvjR = N
1
uN2 u ..., where Nn is nowhere dense.

Put W = \jN2 u ... Thus W is a meager Fa
-set. Now since (PvR)

a W, we have A - W = G-W. Thus A -Wisa <7
r5
-set and A = (A- W)

u(AnW) is the required decomposition of A.

Theorem 5: If A e C(X) and B e C(Y), then Ax B e C(Xx T).

x

) This condition was originally taken as the definition of the Baire property.
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Proof. It is sufficient to show that AxY e C(XxY). In view of
Theorem 4, this is reduced to the well-known propositions (see Exercise
XI. 1.25): if Q is a G6 in X, then Q x Y is Gd in X x Y, and if P is meager
in X, then P x Y is meager in XxY.

Theorem 6: Every set E <= X is contained in an Fa-set Z such that

(E c A e C) => (Z- A is meager).

Proof. By 2, the set E—D(E) is meager. Hence

E—D(E) = utV2 u ..., where N„ is nowhere dense.

Put W = Ah uiV2 u ... and Z = WuD(E). Hence E <= Z. Since
D(E) is closed (by 4), the set Z is Fa .

Now let E c= A e C. Then

Z—A = (W—A) u (£>(£) — A) c= Wu (D(A)-A),

because E a A => D(E) <= D(A).

Finally, since W and D(A)-A are meager (by the Corollary), so
is Z—A.

Theorem 7: The Baire property is invariant under the sJ-operation
(see Nikodym

[ 1 ]^ p. 149).

Proof. Let

(2) E =
{J fl A

3 1„, where A i{n e C.
3 n

We can assume that A
3 |

rt+1 a A
3 1„, because A

i n can be replaced
by ^

3 |i
n ^ 3|2 n ••• <^A

3 i
n (since C is multiplicative).

Consider the set Z from Theorem 6 . More generally, for a given k,

let Z,, j* be such that

W U Pi ^(9 |jt)(# |«)
c ZMk e C,

3 n

® (UP) ^(9 |Ar)(3 [«)
<= A e C) => (Z^k — A is meager),

3 n

where (t)|k)(3 |n) means t)
1

... V)
k
$

l
... 3

".

Moreover, we can assume that

Z
tf\

k

c Aq\k,

because the set Z^k nA^k obviously fulfils the conditions imposed on
Z

9l k-
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Since E = Z—{Z—E) and since Z is Fa ,
it is sufficient to prove

that Z—E is meager.

Now, by formula XL5(7) and by virtue of (2) and (3), we have

z—e = z-un A„ tk <= z-u n z,i*c u u[z,i»-uz«.i.
t) k t) k t) k m

Since the operator U U is countable, it remains to show that
q k

the set in brackets [ ]
is meager. But this follows from (ii), where we

put

A L^i Zm)nt .

m

That can be done, because (see formula XI. 5(5))

U P ^(9lA:)(3|n) = U U Pi
3 n m 3 n

and by (i)

un A($\k)m($\ri) c Z(p|k)im
3 n

hence U P ^k^n) c U Z
( „| k)m = A.

3 n m

Remark 1: A c-algebra R of subsets of the space X will be called

an -algebra (a Marczewski algebra, see Marczewski [1], p. 209),

if each set E c X is contained in a set Z e R such that

(E c A e R) => (Z— A is hereditarily an R-set),

i.e. such that each subset of Z— A belongs to R.

A slight modification of the proof of Theorem 7 leads to the follow-

ing generalization of that theorem (which belongs to the general set

theory)

Theorem 7a: Each Jt-algebra is closed under the $4-operation.

Besides the family C, an important example of an .//-algebra consti-

tutes the family of Lebesgue-measurable subsets of the interval. Because

in this case one can take for Z a G^-set whose measure equals the

exterior measure of E. Hence, by Theorem 7a, the Lebesgue-measur-

ability is invariant under the s4-operation (see also Lusin and Sierpiski

[
1 ]).
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Remark 2 {on the duality between measure and Baire property): The
preceding remarks are connected with the duality between measure
and Baire property consisting in substituting sets having the Baire

property to measurable sets, and meager sets to sets of measure zero,

and vice versa. 1

)

Let us cite the following “duality principle” (due to P. Erdos and
W. Sierpiski, see Oxtoby [1], p. 75) shown under the continuum hy-

pothesis.

Let a be a formula involving—besides the terms of set theory—solely
the terms “set of measure zero” and “meager set”. Let a* be the formula
obtained from a by interchanging these two terms. Then a and a* are

equivalent.

Remark 3: There exists in the space £ of reals a set which does not

have the Baire property.

Such is the set of Vital

i

(which is not Lebesgue measurable either,

see [1]). This set is obtained in the following way.

We decompose £ into disjoint subsets by letting two numbers belong
to the same subset iff their difference is rational. By the axiom of choice

there exists a set containing a single element from each of these sets.

Such a set does not have the Baire property.

C-measurable mappings

According to the general definition (see Definition XI.4.1) a mapping

f: X -> Y is called C-measurable (or having the Baire property) if

W /
_1
(G)eC(A') whenever G is open in Y.

Since C is a a-lattice (even a cr-algebra), most of the theorems of
Chapter XI, § 4 can be applied to C. Let us mention, in particular,

the following statements.

Theorem 8: I being supposed metric separable
, the mapping f is

C-measurable iff there is a meager set P c= X such that the partial func-

tion f\{X—P) is continuous.

This follows from Theorem XI. 4.11.

’) This duality has been extensively studied by J. C. Oxtoby in [1] and by various

authors (see ibidem).
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Theorem 9: Every B-measurable mapping is C-measurable.

This follows at once from the fact that every Borel set has the Baire

property (Theorem 2).

Theorem 10: The limit of a convergent sequence of C-mappings is

a C-mapping.

This follows from Theorem XI. 1(1 3).

Theorem 11 :
(Graph Theorem) Assume that Y is separable. The graph

Gr(/) = y = f(x)}

of a C-mapping has the Baire property (in XxY).

This follows from Theorem XI.4.8, in virtue of Theorem 5.

Baire property in the restricted sense

Definition: A has the Baire property in the restricted sense (A e Cr)

if for every E <= X the set A n E has the Baire property relative to E,

i.e. AnEeC(E) for each E (see Lebesgue [1], p. 187, and e.g. Kura-

towski [1], p. 92).

The range of variability of E can be restricted in the above definition

to closed sets.

Of course, every Borel set belongs to Cr .

One shows (see Sierpiski [5], p. 319) that A e Cr iff for every closed

F cz X, A is the union of a G0-set and a set meager in E.

It follows that in Polish spaces the family Cr is a topological in-

variant.

However, one can show, under the continuum hypothesis, that Cr

is not an invariant of continuous one-to-one mappings, nor of the

Cartesian multiplication by an axis (see Sierpiski [14], p. 54).

It is also remarkable that, under the continuum hypothesis, the graph

of a Cr-mapping does not need to be Cr (/ is a Cr-mapping ifff~
l (G)

is Cr for each open G).

For the relation of Cr-sets to Lebesgue measurable sets see Saks [2],

p. 277, and Lusin [3], p. 147.



CHAPTER XIII

SOUSL1N SPACES. PROJECTIVE SETS

§ 1. Souslin spaces. Fundamental properties

Definition: A Souslin space is a metric space which is a continuous

image of the space NN
(of irrationals).

The family of all Souslin subsets of a space X, including 0, will be

denoted by 5(20 (or—briefly S if no confusion can occur).

IfX is Polish, the members of 5(20 are also called analytic sets. Their

complements are called coanalytic or Ot-sets.

Remark : The idea of the analytic set is due to M. Souslin and N. Lusin

(see [4]). The actual definition of a Souslin space is essentially due

to F. Hausdorff [2], p. 177.

For a more general approach to Souslin spaces, which do not need

to be metric or separable, see e.g. G. Choquet [1] and [2], Z. Frolik [2]

and [3], C. A. Rogers [1], M. Sion [2].

Obviously,

(1) Any continuous image of a Souslin space is Souslin.

(2) Any Souslin space is separable (contains a countable open base).

(3) 5(20 coincides with the family of projections on the X axis of

closed subsets of NN x X (for X Souslin).

For, if E e 5(20, then E is the projection on X of the graph of a con-

tinuous function f: NN — X such that E = f 1 (NN).

Theorem 1 : Every Polish space is Souslin.

Proof. Let G lf G2i ... be an open base of the Polish space X. We
may, of course, assume that S(Gn) < 1 and Gn ^ 0. Put A

t
= G

t
and

define Akvwmkn by induction, assuming that

A
00

LU
/=!

1

and S(A ki_kni) <
n + 1
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Consider the set Z and the function / of formula XI. 5(12). Since

A kl ... kn # 0, we have Z = NN and, by (16), / ! (Z) — X. Moreover,

/ is continuous (by XT. 5 (15)). This completes the proof.

Remark. Theorem 1, as well as its generalization, Theorem 6, can

also be deduced from Theorem XII.6.1.

Theorem 2. Countable unions
,
countable intersections and countable

products of Souslin sets are Souslin.

Proof. Let A n eS(X), for n= 1,2,..., and let /„: Ns -> A n be

continuous onto.

Put B = A
1
u A 2 u ... To show that B e S(X), denote by Nn the set

of irrationals of the interval (n — 1
,
n) and put

/(;c) = f„(x-n+ 1) for * eNn , n = 1,2, ...

Then / is a continuous mapping of N* = Nt vN2 u ... onto B. This

completes the proof, since N* is homeomorphic to NN
.

Put C = A l
n A 2 n ... To show that C e S(X), consider the space

D = (Nn)
n which is homeomorphic to NN

(see Chapter XI. 1.1 8). Now
C is a continuous image of a closed subset Z of D (see Chapter XI. 1.22)

and since D is Polish, so is Z. Therefore, by Theorem 1, C is Souslin.

Put P = A t xA 2 x ... Then the product-mapping /ix/2 x ... is a

continuous mapping of (Nn)
n onto P (see Chapter XI. 1.20). Since

(Nn)
n

is homeomorphic to NN
,
the proof is completed.

Theorem 3: The family S(X) of Souslin subsets ofX is invariant under

the operation s .

00

Proof. Let E = U H 4
d \„

where A i]n e 5(X). Thus
3 n—

1

(xeE) = V A (xgT
3 ,„).

3 n

Hence to show that E e S{X), it is sufficient to prove that

{<x,3>: x e A^n] e S(X x NN
) for fixed n

(because the continuous image—in this case the projection—of a Souslin

set is Souslin).

But this follows from the equivalence

(x e A
}1„) = V ••• V (3

1 = *,)a ... A (3" = k„) a (x e Akl ...k).
k i kn
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Theorem 4: Let X be Polish and E a X. Then E e S(X) iff E is the

result of the operation sd performed on closed subsets of X.

Proof. The sufficiency follows at once from Theorem 3. To prove
the necessity, suppose that E e S(X). We have to define closed sets

AkV "kn such that
00

(4) £-unv
3 n= 1

By assumption, there is /: NN - E continuous onto.

Referring to Chapter XI, § 5,

(5) A ilk = ypv)

.

Then, by XI. 5 (21), we have

(6) f(z) = n A ilk
k

and (4) follows.

Remark : As shown each Souslin set E can be represented in the form

(4) where the sets Akl „ mkn are closed and the system of these sets is

regular (see Kaniewski [1], Lemma 1).

It is worth noticing that the term “closed

"

can be replaced by “open”.

Put namely

°ki ...k.
= {*: e(x, Akl ...tn < 1/*)}.

Then, as easily seen,

00

e = u n g,i„.
3 n= 1

It follows also that E can be sifted by a sieve composed of open sets.

Corollary: Each E e S(X) is sifted by a sieve W: M0 — 2X .

This follows from Theorem XI.6.1.

Theorem 5: Every Souslin space has the Baire property (even in the

restricted sense
, Chapter XII, § 8).

Proof. This is a consequence of the invariance of the Baire property

under the operation s/ (see Theorem XII. 8. 7) and of Theorem 4; by
this theorem a Souslin space is the result of the operation sd performed
on closed sets, hence on sets having the Baire property.

The following theorem is a generalization of Theorem 1.
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Theorem 6: Every Borel subset of a Polish space is Souslin. Thus

B(X) c S(X). Hence B(X) c CA(X).

Proof. Let us recall (see p. 124) that B(X) is the least (7-additive

and ^-multiplicative family of sets containing all closed subsets of X.

By Theorem 2 the family is also cr-additive and ^-multiplicative

and by Theorem 1, S^JT) contains all closed subsets of X (because

a closed subset of a Polish space is Polish, hence Souslin). Therefore

B(X) c S(X).

Theorem 7: Every uncountable Souslin space Y has cardinality c.

More precisely
,
Y contains a Cantor set (see Souslin [1]).

Proof. Let /: NN -> Y be continuous onto. We are going to define

a Cantor set A a Nn such that the mapping f\A is one-to-one. This

will complete the proof.

For this purpose, we shall attach to each finite system k i9

where k
t

is either 0 or 2, a closed set A kl .„kn
c= NN so that (assuming

that the metric of NN
is complete):

(7) d(Akl ...kn) < l/n, AkV "kn # 0,

(8) A kl "kn a A kl kn l
and A kl ^ kn n A„

tl = 0

if (ki ... kn) # (ni
i

... mn).

According to Theorem XI. 5.2 the set

A = u n A i]n ,
where 3 e (0, 2)

N
,

3 n

is a Cantor set.

Now let g : Y -* NN be a selector for the inverse map:

g(y) e/
_1

0), thus /(g(y)) = y.

Put B=g'(Y). Since g is one-to-one, B is uncountable, Hence B

contains a (non-empty) dense-in-itself set D (see Exercise XI. 1.4 (iv)).

The sets A k k will be defined so that—in addition to the conditions

(7) and (8)—the two following conditions be fulfilled:

(9) Akv ..k. = Gk,...k.> where Gkl ,,kn is open and DnG
kl .,.K ^0,

( 10)
= 0

if (/:! ... kn) / (m
1 ... mn).

We proceed by induction. Let, for j = 0,2, Xj e D and x0 ± x
x

.
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Hence /(a'0) # f(xj) since/|D is one-to-one, and there are open Uj a Y
such that f(xj) e Uj and U0 nUl = 0. Therefore

xj ef~ l (U,) and nf-'(U,) = 0.

Since f~ l (Uj) is open, there exists an open Gj such that

Gj <= /-'(Uj), Xj e Gj and ó(Gj) < 1

.

Put Aj = Gj. Obviously, conditions (7), (9), (10) and the second
part of (8) are fulfilled for n = 1.

Now suppose (7)—(1 0) are fulfilled for a given n. We have to define

4kv ..knj
for j = 0,2.

Let xkl „'kj e DnG
kl„ kn and xkl „ mkm0 ^ xkl_kn2 . This can be assumed

by the second part of (9) since D is dense-in-itself.

It follows that f(xkV "kn0) =£ f(xkl '"kn2). Let Uk k j be open and
such that

f(xkv ..knj)
e UkX "knj and U

kl „

,

kno n Uk
t ...kn 2

= 0
and—as before—let Gkl kJ be open and such that

e G
*i-knj’ Gk^.kj <= Gk^ kn nf-\Uki knj )

and d(Gkl '"kaJ) < l/(n+l).

It is easy to check that the conditions (7)—(10) are satisfied for u+1.
Thus A is a Cantor set.

Moreover, f\ A is one-to-one. For let p and q be two distinct points
of A. Therefore there are (k t ... kn) ^ (/w x ... mn) such that p e A kl kn
and qeAmi '„mn ,

and it follows by (10) that /(p) ^ f(q).

Remark. The following extension ot Theorem 7 will be mentioned
in § 5. Namely, every PCA-set of cardinality > X, contains a Cantor set.

Another generalization—an extension to non-complete spaces—was
given by W. Hurewicz [1]. Namely, the result of the operation s/ per-
formed on closed subsets ot a metric separable space (not necessarily
complete) contains a Cantor set (provided that it is uncountable).

Theorem 8 (First Lusin’s Separation Theorem, see [4]): Let A and
B be two disjoint Souslin subsets of the Polish space X. Then there exists

a Borel set E such that

( 11 ) A c E and E n B = 0

.



1. SOUSLIN SPACES. FUNDAMENTAL PROPERTIES 439

Lemma: Let us say that two sets A and B are “ B-separable" if the

assertion of the theorem is fulfilled. Let P
{
,P2 , ... and Q t ,Q 2 ,

... be

sets such that each pair P„
, Qm is B-separable. Then the sets

P = Pi uP2 kj ... and Q = Q x
u Q 2 u ...

are B-separable.

Proof. Let Znm be Borel such that

^nm X Qw
It follows that

00 00 00

Pn <= n z„m <= n (X-Q„) = X-\J Qm = X-Q
m=\ m=

1

m—1

and hence
00 00 00

f=Uf,cunz„c x-q
n~l n— 1 m= 1

00 00

That means that the Borel set U Pi Zm„ separates P and Q.
n— 1 m= 1

Proof of the theorem. Suppose the contrary is true. Let A and B

be two disjoint Souslin sets which are not ^-separable.

Let f: NN -* A and g: NN -» B, both continuous onto. Using the

notation of Chapter XI, § 5, we have (writing f(E) instead of f1 {E))

A — f(N i ) vf(N2 ) u ... and B = g(N\) ug(N2 ) u ...

By the lemma there are two indices n {
and m

{
such that

f(Nni ) and g(Nmi ) are not ^-separable.

Since

00

/w,
/=i

00

i= l

we can define by induction two sequences 3 e NN and 1) eNN such that

( 12) f(Nz\k) and gfN^td are not ^-separable.

Since /(3) e A, g(p) g B and A n B = 0, we have 1/(3) — g(p)l > 0.
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By the continuity of / and g

,

we have

<5[/(AW]+%M,|*)] < l/(5)-£(t))l

for sufficiently large k.

Since f(f) ef(Ni[k) and g(t)) e g(NMk), it follows that

7(^W(AV) = 0

and hence the sets /(#,]*) and g(N
l) lk) are ^-separable, contrary to (12).

Corollary 1 (Souslin Theorem, see [1]): If the sets A and X-A
are Souslin

, then they are Borel.

For, if we let B = X-A, we get A = E.

Corollary 2 (Simultaneous Separation): IfA {
,A 2 , ... are disjoint

Souslin, then there are disjoint Borel sets B
t ,
B2 , ... such that A n c Bn

for n = 1,2,...

Proof. By Theorem 8, there are Borel sets Enm such that

4 n <= Enm and Enm nAm = 0 for n # m.

Let
oo

f'') Eim and Bn = Enm (Bl lj ... Bn_ j)

.

m— 2 mzfcn

Therefore A„ cz Bn . Because we have Bm a Emn and hence

(A„n Bm) cz (A„nEmn) = 0 for m < n.

Applications of the First Separation Theorem to Borel sets

Theorem 9. Every one-to-one continuous image of a Borel subset of
a Polish space is a Borel set (see Souslin [1]).

Proof. Since every Borel subset B of a Polish space is a one-to-one

continuous image ol a closed subset F of the space Ns
(see the Theorem

ot Chapter XII, § 6), the proof reduces to show that if / is a one-to-

one continuous mapping of F, then f l (F) is Borel.

Consider, as in § 5 of Chapter XI, the sets

= {3 eJV": (3
1 = »,) ... (3“ = **)}

and put F„v „k =
Since the sets . are disjoint forfixed k, so are the sets /' (T,

,
.»,)•

Now, by Corollary 2, tor each k, there exists a system of disjoint Borel
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sets B„ v „ nk such that

(13) <=

We are now going to define a mapping C: Sf -* B(X) (an operation

s/) such that

( 14 ) f'(F) = u n c„,
3 k

Put CHl = B
ni

and generally

(15) Cnv ..nk
— Bni "Mk n Cnim „Hk_ x

.

We shall prove by induction that

( 16*) /‘(fi., ...«*)
<= Cni ... nk .

For k = 1, this is obvious. Suppose (1

6

fc _ i) is true.

Since <= JFnvmMk_ x ,
we have

P(FnV '.n) C / 1
(/

r
n 1 ...nt_ 1),

hence (16*) follows by (1

6

fc _ t ) and (13).

Thus we have by (16*), (14) and (15)

/‘(fi.,....,) <= £»,...»* f\Fni ... n}.

Hence, for each 3 g F,

n/ 1

^,,) c= n cilk
a n/w

k k 3

and since (see XI.2 (21))

p{F) = u n/'(^i*) = u n/W),
3 k 3 k

we have (14).

Now since the mapping C: F -> /’(JF) is regular and the sets C
Wl>>> „k

are disjoint for fixed we have by Theorem XI. 5.1,

U n Cj|* = n U C
5 |fe, hence /*(F) = HU Cal*-

i k k 3 k i

Since the sets C
3 * are Borel, and, for a fixed k

,
the set U C*]*

3

a countable union of Borel sets, we conclude finally that / *(F) is Borel.

Theorem 9 can be generalized as follows.
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Corollary 1 : The term “continuous ” in Theorem 9 can be replaced

by “B-measurable”

.

Proof. Let f:F->Y be ^-measurable and one-to-one. By Theorem
XII.3.5 the graph of/, i.e. the set Gr(/) = {<*,/>: y = /(*)} is Borel

in the Polish space XxY, and the projection of Gr(/) into the 7-axis

is one-to-one. Then, according to Theorem 9, the set f\F) is Borel.

Corollary 2: Let
, as before, X and Y be Polish

,
E a X Borel and

/• E —+ Y be B-measurable and one-to-one. Then f is a Borel isomorphism
between E andf\E), i.e./-1 is B-measurable.

Proof. Put g = Z"
1 and let G be an open set relative to E. We have

to show that ^(G) is Borel. But g~ l {G) =f\G) and, since G is Borel

(in X),f 1 (G) is Borel by Corollary 1.

Remarks’. Any two Borel sets of the same cardinality {contained in

Polish spaces) are Borel-isomorphic (see Kuratowski [18], and [1], p. 450,

and for applications Mackey [1]).

Since the case of A and B countable is trivial, we may assume that

these sets are uncountable (hence of cardinality c). Let, according to

Theorem of Chapter XII, § 6, F and H be two closed (uncountable)

subsets ot the space NN and f\F—*A and g: H — B two one-to-one

^-measurable onto functions. It can be shown that the sets F and H
are Borel isomorphic. So let h: F -* H be a Borel isomorphism onto.

Then since/" 1
is ^-measurable (by Corollary 2),

go h of-l

is the required Borel isomorphism.

More precisely, one can show that if A and B are of multiplicative

classes a + 1 > 2 and fi+1 > 2 respectively, then there exists a general-

ized homeomorphism of A onto B of class a
, ft.

Let us note also that lor each pair of uncountable Polish spaces

there exists a generalized homeomorphism of class 1,1 (see K.uratowski

[1], P- 451).

Theorem 10: Let X be Polish. There exists a universal function F for
the Souslin subsets of X whose graph, G(F), is Souslin.

Proof. Put JT = NN
. We have to define F: jV' -> S(X) onto and

such that the set G(F) = {</,*>: x e F(t)} is Souslin (in JFxX).
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By the Theorem of Chapter XII, § 5, there is a universal function

for closed sets, i.e. a function H: JF -> 2XxJ onto, such that the set

G(H) = <.x,s>eH(t)}

is closed in JFxXx JF.

Put F(t) = projection of H(t) on X,
i.e.

F(t) = {x: V (.x, s') e H(t)}

.

S

F is universal because every Souslin subset of X is a projection of

a closed subset of XxJF (see 1 (3)). Furthermore, G(F) is Souslin,

because G(F) is obviously the projection of G(H) on JFxX.

Theorem 11: (Existence Theorem of Souslin) There exist
,

in the

space JF = NN
,
Souslin sets which are not Borel.

Proof. Let F be a universal function for S{JF) such that G(F) is

Souslin (see Theorem 10). Then the set

Z = {/: t e F(t)} is analytic and not coanalytic,

and vice versa

Z' = {/: t $ F{t)} is coanalytic and not analytic.

This follows from the Theorem V.2.1 on diagonalization. More

precisely, let A be the diagonal of AfxJF\ then Z is the projection

of AnG(F) on the axis of “ordinates” and Z' is the projection of

A-G(F). Since AnG(F) is Souslin, so is Z, and since Z' =Jr-Z,

Z' is CA.

Now, by the theorem on diagonalization, Z' is not Souslin, and hence

Z is not CA. Thus Z is a Souslin not Borel set (because by Theorem 6,

every Borel set is CA).

Remark (see Hurewicz [2]): In the space 2^ there are simple examples

of Souslin non-C4-sets (hence non-Borel sets). Such is the set of all

uncountable closed subsets ofJ

.

Such is also the set of all closed subsets

containing at least one irrational number.

Another interesting example of a non-Borel CA-set is the set ot

differentiable functions in the space £* (see Mazurkiewicz [2]. See also

Christensen [1], p. 12).
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§ 2. Applications of countable order types to Souslin spaces

Let us order the binary fractions r e in an infinite sequence
For a point t = (t

1
, t

2
, ...) of the Cantor discontinuum

define Cr by the condition

(O 0 e CJ = (f = 2).

Let

(2) R
t = {rn : t e Cr),

t = the order type of R
t
ordered by the relation r ^ 5

,

(3) Cr = {/: t = t}.

The mapping C: - 2^ is called a j/eve.

Let us recall that if r is an ordinal number a, then C* is called a
constituent of L =

{ t : t < c^}. Moreover, C T # 0 for any 1: e 3T
(i.e. for any countable ordinal type).

Definition 1 (Kuratowski [12]): Let us call Souslin (Borel or CA)
a formula q)(r i9 ..., r„), where r* e 3T, if the set

{<L> /«> 6^": <p(L, /')}

is Souslin (Borel or C4), where t
{
= r ly ..., /„ = r„.

The above definition can of course be extended to formulas <p(r
l , ...

..., Tn , A'x , ..., xm) involving variables ranging over Polish spaces
X Y

1 1 • • • » m •

Let us note that Definition 1 is “correct”, i.e. it does not depend
on the choice ot t l9 Otherwise stated, if s l9 ..., sn are points of
# such that s

t
= ri9 then

w^i > ••• > •W • 9^1 > ••• > *v)} — {\t

i

,
^(r

x ,
...

, /„)} .

Definition 2: We shall introduce the following relations in the

domain 2T (where r = t and o = s):

(i) (t ^ cr) = (R t
is similar to a subset of Rs),

(ii) (r < o) = \/(reRs)A(R t
is similar to /? s ninterval rl),

r

(iii) (t — o) = (R t
is similar to Rs).

In proving that the formulas t ^ o, r < o and r = o are Souslin,

we will use the following abbreviations. Let 3 e i.e. 3 = (3
1

, 3
2

, ...)
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where 3
” g^?0 >

an<^ let ^ ^o • Then

(4) 3 ^ A means A 3
" e A ,

n

(5) 3 means A \

r e A =* V r = 3"|»

r n

(6)
means A (3

" < 3
’”) => (V < vm)

,

mn

(7) z = A means 3 £ A c 3 ,

(8 ) 3 ~ means 3 < 3 •

Lemma: The sets

{<3 , />: 3 £ R
t }, R, S i}, {<3 , 0 : 3

=0 }

{<3. O' 3 = Rt} and {<3 ,
o>: 3 ~ »}

are Borel.

This follows at once from (4)-(8).

Theorem 1 : The relation r ^ a is Souslin.

Proof. We have

(7 < I) = V {(«. £ 3) (» s Rs) (3 < o)}

30

and the formula in braces is Borel (by the Lemma). Hence the set

{</, s>: t < 5 }
is Souslin.

Theorem 2: The relation r < o is Souslin.

Because

{i < s) =

V {(r g RS)(R t £ 3) (3 < t) c Rs) A [(P e < /O = V P = **]}•

3or P k

Theorem 3: The relation r = o is Souslin.

Because

(7 = 5)= V (3 — *»)(*> = ^s)(3 ~ 0).

30

Theorem 4: The relation r = o + n is Souslin.

Proof. Let p = n be the order type of Rp (p g W) and let R p = Rp — 2

denote the set obtained from Rp by shifting 2 to the left. Then, since

R s n R* = 0, the set Rs uR* is of order type s+p.
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Thus we have

(/ = ~s+p) = V(5 = Rt) (D = Rs vR*) (3 ~ d)
3d

and the analycity follows at once from (7) and (8).

Remark 1 : Theorem 4 can be extended to the sum of any finite number
of terms.

Remark 2. In a similar way one shows that the multiplication r
— O' n is Souslin (on 5~ 3

).

Theorem 5. There is a Souslin relation o — o(r, n) such that, whenever
a and

ft are ordinals, then

(^) [?(a ? n) = q(P, A)] => [n = k and a = ft],

(1^) Q(T,n)<a>
l iff x < coy .

Such is the mapping

(11) q(t, n) = (r* 2 + 1)* 2”.

Proof. By Theorem 4, (1 1) is Souslin for n fixed; hence it is a Souslin
relation.

Formula (9) can easily be shown (see e.g. Sierpiski [4], p. 330).

Theorem 6: Let p: X p and v: 3T *T be Souslin functions.
Then their composition v o p is Souslin.

More precisely, if the sets

A = i<x ’ O: t = p(x)} and B =
{</, *> : 5 = v(T)}

are Souslin, then so is the set

C = \(x,s}: 5 = r(p(x))j.

Because (<*, s) e C) = \ {
(/ = p(x))a (s = v(t))

j
and the sets A

and B are Souslin.

Theorem 7: Let E c= X be Souslin and let—according to Corollary
to Theorem 1.4— IF be the corresponding “sieve,” i.e. W: -> 2

X and

x e (X-E) = (p(x) < w,),

where p(x) denotes the order type of Mx = {/*: x e IV(r)}.
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Then the relation t = /u(x) is Souslin.

Because, for t e and * e X
,
we have

(' = n(x)) = V (3 = K) (0 = Mx) (3 ~ 0).
3°

§ 3. Coanalytic sets (C4-sets)

All spaces in §§ 3-5 will be understood to be Polish.

Let us recall that E is called coanalytic (or briefly a CA-set) if it can

be imbedded in a Polish space X so that X—E is Souslin (analytic).

By Theorems 1.6 and 1.12, every Borel set is coanalytic
,
and there

are coanalytic sets which are not Borel (not even Souslin). Such is also

the set L = {/: t < (see §2, Lusin and Sierpiski [2]).

Theorem 1 : Countable unions
,
countable intersections and countable

products of CA-sets are CA-sets.

Proof. The countable additivity of CT-sets follows at once from the

countable multiplicativity of Souslin sets (see Theorem 1.2). The same

concerns the countable multiplicativity of C4-sets.

Now let En c= Xn be CA (Xn is Polish). Since

£]X£2 x ... = (E1
xX2 xX3 x ...) n (X

x
xE2 xX3 x ...) n ...

,

our proof is reduced to show that if E a X is CA and Y is Polish, then

Ex Y is CA (in Xx Y). But this follows from the identity

lx Y-Ex Y = (X—E) x Y,

since (X-E)xY is Souslin (by Theorem 1.2).

Let us now recall that, according to Corollary to Theorem 1.4, if

E c= X is CA, then there exists a mapping W: -* 2X (called a sieve)

such that, writing

(1) Mx = {rel0 : xg fL(r)}

and

(2) /u(x) = order type of Mx relative to the inequality r ^ s,

we have

E = {x: p(x) is an ordinal number}.
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Hence (comp. Chapter XT, § 8)

(3) E = U Ca , where Ca = {x: jn(x) = a}
a < coi

(the sets Ca with a < o 1 are called the constituents of E ).

Theorem 2 (see Lusin [1]): The constituents Ca of a CA-set are Borel.

Thus any CA-set is an X, union of Borel sets.

Proof. Let a < coj and xeCa . We have to show that the set

Ca = {y e E: p(y) = ju(x)}

is Borel.

Since the relations r = a and r = r{.x) are Souslin (by Theorems 2.3

and 2.7), it follows (by Theorem 2.6) that the set Ca is Souslin.

On the other hand, since (x{x) and /u(y) are ordinals, we have

OCy) = M*)) = {ju(x) < p(y) * fx (x) }

,

and hence, by Theorem 2.2, Ca is a CA-set.

It follows that Ca is Borel (by Corollary 1 to Theorem 1.8).

For proofs under slighter assumptions, see Rogers and Willmott [2]

and Maitra [3].

Remark 1: It one does not assume the continuum hypothesis, the
following statement becomes meaningful.

Any coanalytic set which has the cardinality > vs
j
contains a Cantor set.

Proof. At least one of the constituents of E is uncountable (because
otherwise the cardinality o E would be x K

(
= Xj). Since any

uncountable Borel set contains a Cantor set (see Chapter XII, § 6,

Coroll.), our conclusion follows.

Corollary: The cardinality oj any uncountable coanalytic set is

either or c.

Remark 2: Let us add that the existence of uncountable CA-sets that
do not contain Cantor sets is consistent with Zermelo-Fraenkel axioms
ot set theory (announced by Gode [1] and proved by Solovay [1]).

Even more striking is the following result: the assumption that every
set ol power Nj is CA is consistent with ZF (see Martin and Solovay
[1], also Bukovsky [1] and Tall [1]).
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Remark 3. The following extension of Theorem 2 has been estab-

lished. The set

CT = {x: Mx has order-type r},

where r is any countable order-type (not necessarily an ordinal number),

is Borel (see Kunugui [1] and D. Scott [1] and for a partial result

Hartman [1]).

Theorem 3: (Lusin's Second Separation Theorem [2]) Let A and

B be two Souslin subsets of a Polish space X. Then there are two

CA -sets, D and H, such that

(4) A-BczD, B— A a H and D nH = 0

.

Proof (see Kuratowski [1], p. 491, also Blackwell [1]). Let ju(x)

be—as in (2)—the order type of the set Mx determined by the sieve

W of X— A, and let t(x) be, similarly, the order-type of Nx determined

by a sieve of X—B. Thus ju(x) < oj
1
and t(x) < nq iff x eX—A and

x g X— B, respectively.

By Theorem 2.1 the relation r < a is Souslin. It follows (applying

Theorem 2.6 and 2.7) that

(5) the set {x: ju(x) ^ t(a)} is Souslin.

Now put

D = Bc n{x: ju(x) ^ r(x)} c and H = A c n{x\ v(x) ^ /u(a)}
c

(where Ec means X—E).

Formula (4) holds. For, if xeA — B, /u(x) is not an ordinal while

v(x) is. Hence /u(x) ^ v(x) and therefore x e D. Thus A — B^D and

symmetrically B— A a H.

Next DnH=0. For suppose that xeDnH. Hence xeBc nA c
.

Then both, p(x) and v(x), are ordinals. Consequently we have either

p(x) < v(x) or v(x) < /u(x), and hence x £ D nH.

Finally, D and H are CA-sets by (5).

Corollary (simultaneous separation): If A {
,A 2 ,

... is a sequence of

Souslin sets, then there is a sequence C,
,
C2 ,

••• of disjoint CA-sets

such that

A n (A
i
c^... A n _ i

w A n + 1
. . .) Cn .
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Proof. By Theorem 3, there are C4-sets Dn and Hn such that

A„- U A k a Dn , U A k -A n czHn , Dn r\Hn = 0.
k^n k^n

Put Cn = Dn n Pi Hk . Thus Cn are disjoint CA-sets, and
k^n

An - U A k cz A„-A k <= U A n-A k cz Hk
k^n k^n

for every k ^ n. Therefore A n~U A k cz H Hk ,
which completes the

k^n k^n
proof.

For proofs based on different ideas, see H. Rogers [1] and Della-

cherie and Meyer [1].

Theorem 4 (see Kuratowski [10] and Novikov [2]): The family of
CA-sets has the countable reduction property.

In other terms
, if E X

,E2 ,
... is an infinite sequence of CA-sets, then

there exists a sequence Flt Fz ,
... of disjoint CA-sets such that

Fn cz En and U F„ = U Fn .

n n

Consequently, if X = U En ,
then the Fn are Borel sets.

n

Proof. Let Wn ,
Mnx , p n (x) and Cnx be as in (l)-(3). Thus

(6) En = U Cnx and Ctm = {x e En : ju„(x) = a}.
a <

By Theorem 2.7, the relation t = p„(x) is Souslin for each n.

Let o = q(t, n) be a Souslin relation satisfying Theorem 2.5. Hence,

by Theorem 2.6, the relation r = £>(/*„(*), n) is Souslin.

We define Fn as follows (comp. §2 (i)):

(7) (x e Fn) = (xe E„) a /\[q (/<*(*), k) «£ q (jnn(x), «)]

.

k^n

By Theorem 2.1, the sets Fn are CA.

Obviously, Fn a En .

Now, suppose that x e Fn nFk . Hence xeEn nEk and consequently,

pk (x) are ordinals, and so are q(juk (x), k) and q(pn {x), n). If k # n,

we have by (7)

Q(fik(x), k)^g(,

u

n (x), n)^q(juk (x), k).
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and this implies (for ordinals) that {?(//&(*), k ) = {?(//„(*), n )
and finally

n = k (by 2 (9)). This contradiction shows that the sets Fj , F2i ... are

disjoint.

It remains to prove that
00

(8) En cz U Fm .

nt= 1

So let, according to (6), x <z Cna and pn (x) = a. Hence Q(fi„(x),n)

< co Denote by m0 the smallest index such that

(9)
< co l .

Hence, for k # m0 ,
g(/u k (x), k)^ q (//mQ(x) ,

m0 ). Finally, ftmo(x) < co
{

by (9) (compare § 2 (10)).

Thus X g Emo and by (7), x e FWq .

This completes the proof of (8).

To prove the second part of the theorem, observe that, since the sets

F
l
,F2 , ... are disjoint, we have

X-Fr. = U Fk .

k^n

Thus X-Fn is CA and hence Fn is Borel, since Fn is simultaneously

a CA and a Souslin set.

Theorem 4 implies the following two “separation theorems' (Novikov

[2]).

Theorem 5: If A
t
,A 2 , ... ore Souslin and O A n = 0, then there

n

exists a sequence B l9 B2 ,
... of Borel sets such that

A n c: Bn and Pi Bn = 0.
n

Theorem 6: If A l9 A 2 ,
... are Souslin

,
then there exists a sequence

B l9 B2i ... of CA-sets such that

A n
- n Am C= Bn and H Bn = 0.

m n

§ 4. The cr-algebra S generated by Souslin sets and the S'-measurable

mappings

Definition 1 : We denote by S(X), or briefly by S, the o-algebra

generated by S{X) (i.e. the smallest o-algebra containing S and com-

posed of subsets of X).
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Definition 2 (comp. § 4 of Chapter XI): Let f: X -* Y. The map-

ping / is called S-measurable (or an S-mapping) if

(1) f~
1 {U)eS for each U open in Y.

Denoting by C the cr-algebra of sets having the Baire property and
lying in the space X, and by L the a-algebra of Lebesgue-measurable

sets (here X = >), we have

Theorem 1 : S a C and ifX = S cz L .

This follows from S cz C (see Theorem 1.5 and Theorem XII.8.7a).

Corollary: Let /: X -» Y be an S-mapping. Then f is a C-mapping
and consequently (see Theorem XII.8.8), there is a set P cz X of first

category such that f\X—P is continuous.

Theorem 2 : Let, for j = 0, 1, Xj be Souslin and EjeS(Xj). Then
(EoxE^eSiXoxX,).

This follows from Lemma XI.4.2.

Theorem 3: Let f: X —> Y and g: Y —» Z (where X, X, Z are Souslin).

Let g be continuous. Iff is -measurable
, then so is h = g of

Because h~\U) = /“ 1
fe”

1
(17)] and g~fU) is open if U is open.

Theorem 4 : Letf be S-measurable. Then denoting
,
as usual

,
the graph

off by

Gr(/) = {<x,y}: y =/(*)},

we have Gr(/) e S(X x Y).

Proof. By Theorem XI. 4. 8 and Theorem 2, the complement of

Gr(/) belongs to S(Xx Y). Since S(Xx Y) is an algebra, this completes
the proof.

Theorem 5: Let f: X - Y be B-measurable. If E cz Y is Souslin or
CA, then so is f~

l
(E).

Proof. Obviously the set f~
l (E) is the projection on the X-axis of

the intersection Gr(/)n(Tx£). If E is Souslin, then both factors are
Souslin, since the graph ol a ^-measurable mapping is Borel (see The-
orem XII. 3. 5).

Now, assume that E is CA. Since

(3 ) f-\E) =
it follows that /-'(£) is CA, because f~'(Y-E) is Souslin.
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Theorem 6: ///: X -> Y and Gr(/) is Souslin, then f is B-measurable

and consequently Gr(/) is Borelian.

Proof. Let E a Y be open. Then, as before, /
-1

(£) is the projection

of Gr(f)n(XxE), hence is Souslin, and by formula (3), f~
l {E) is CA.

It follows by Corollary 1 to Theorem 1.8 that f~
l (E) is Borel and hence

/ is ^-measurable.

Theorem 7: Let f: X -* Y be one-to-one, B-measurable and onto. Let

E c= X be a CA-set. Then so is f l (E).

Proof. Put g = f~
l

. By Corollary 1 to Theorem 1.9, g is im-

measurable. Since / = g~ l

,
we have f\E) = g~\E). This completes

the proof, because g
-1

(£) is CA by Theorem 5.

Upper and lower Souslin set-valued mappings

According to the general definition of upper and lower-L mapping

(see Definition XI.4.4) the mapping F: X -> P(Y) is called lower-

Souslin, or upper-Souslin, if

(4) {x: F(x) n

U

# 0} e S if U is open in Y

equivalently

(4') {x: F(x) 4= K] e S if K is closed in Y,

or

(5) {x: E(x) c= U] eS if U is open in Y

equivalently

(5') {x: F(x)nK = 0} e S if K is closed in Y.

Examples. The following two set-valued mappings are simple examples

of lower-Souslin mappings which are not upper-Souslin and vice-versa.

Let A be an analytic non-Borel subset of the interval X = (01). Let

Y = X and

F0 (x) = {y: 0 < y < 1} for x e A and F0 (x) = {0} for x$A,

Fj(x) = {y: 0 < y ^ 1} for x $ A and /q (x) = {0} for x e A.

Let F\ X -> P(Y). The graph of the formula y e F(x) is the set (see

Definition XI. 4. 5)

G(F) = {<*, y): yeF(x)}.
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1. First Graph Theorem: Let F: X^2 Y
. G(F) is Souslin iff F is

lower-Souslin.

Proof. 1° Let G(F) e S(X x Y). Obviously,

[F(x) nil ^ 0]= \/ [(ye F(x)) (

y

e U )\

.

Hence {x: F(x)nU # 0} is the projection on the A'-axis of the set

G(F)n(Xx U). This set is Souslin (by assumption), hence so is its

projection. Thus F is lower-Souslin.

2 Conversely, if F is lower-Souslin, then G(F) is Souslin according
to Theorem XI.4.10.

Remark: In part 1° of the proof we do not need to assume that F(x)
is closed.

2. Second Graph Theorem: Let F: X - 2 Y . If F is upper-Souslin,
then G(F) is a CA-set (in X x Y).

This is a direct consequence of Theorem XI.4.9.

Corollary: Let F: X->2 Y
. If F is both lower and upper-Souslin

,

then the graph G(F) is Borel.

Moreover
, if F: X -* K(Y), then F is B-measurable.

Proof. The first part follows from Theorems 1 and 2 by virtue of
Corollary 1 to Theorem 1.8. To show the second part of the corollary,
let K be closed c Y. By assumption, both sets

A = {x: F(x) n K ^ 0} and B = {x: F(x) cz K]

are Souslin.

Since the set U = Y— K is a countable union of closed sets, the set
{.v: I(x)nU 0} i s a jso Souslin. But obviously this set is identical
with X— B. Thus B and A — B are Souslin and hence Borel, which means
that F is lower-Borel, hence Borel (by Corollary 1 to Theorem 1.11).

3. The Inverse-Function Theorem: Iff: Y -> X is continuous onto
,

then f~
1

: X -> 2
Y

is lower-Souslin.

Proof. Since /is continuous, the set Gr(/) = {(x,y): x =/(v)} is

closed in A
r

x Y, hence is Souslin. Thus G(f~ 1

) = Gr(/) is Souslin and,
by the First Graph Theorem,/" 1

is lower-Souslin.
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§ 5. The PCA-sets and sets of higher projective classes

The PCA (called also 27j)sets are the continuous images of CA-sets

(in Polish spaces).

Theorem 1: Countable unions
,
countable intersections and countable

products of PCA-sets are PCA-sets.

The proof is completely similar to the proof of Theorem 1.2.

Corollary: Every member of the o-algebra is a PCA-set.

Remark 1: As we saw, the Souslin sets and the C4-sets have the

Baire property and are Lebesgue measurable (in the case of reals). It

is remarkable that the existence of non-measurable PCA-sets is con-

sistent with the axioms of set theory (see Gode [1], and also Addison

[2], Novikov [1]).

Theorem 2: Every PCA-set is the union of Borel sets.

Consequently
, if this set is of power >

,
it contains a Cantor set.

Proof. Let X be CA, Y—PCA and f: X -* Y continuous onto. By
formula 3(3), we have

X = U A a , where Aa is Borel.
a < a>i

Hence Y = U f(4 a), and since f(A a) is analytic, it follows by 3(3)
a. <<t)i

that /(T a) is a union of Kj Borel sets. Our conclusion follows.

Corollary: The cardinality of an uncountable PCA-set is either

Nj or c.

Remark 2: An interesting family of subsets of a Polish space has

been introduced by N. Lusin under the name of (C)-sets. The family

of (C)-sets is closed under the s operation and the subtraction (and

contains all Borel sets).

One shows that the (C)-sets are simultaneously PCA-sets and CPCA-
sets. The contrary is not true.

See Alexandrov [2], p. 165, Kantorovitch-Livensohn [2], p. 215-217,

and [2]. Also Sielivanovski [1] and Nikodym [2].

Remark 3: As in the case of CA-sets, the following reduction and

separation theorems are valid (Novikov [3]):

(i) one has to replace in Theorem 3.4, CA by PCA;
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(ii) one has to replace in Theorem 3.5, Souslin sets by CPCA-sets

and Borel sets by sets which are simultaneously PCA and CPCA.

Remark 4: An important property of PCA-sets is formulated in the

following statement, which is consistent with the axioms of set theory.

(G) There exists a well-ordering of class PCA of the set & of reals.

More precisely, there exists a well-ordering relation jc -< y of the

reals such that {<x,y>: x -< y} is PCA. (See Gode [1] and Addison

[2]; see also Mansfield [1] and [2], and Kuratowski [19].)

It is worth noticing that the statement (G) implies the existence of

very paradoxical projective sets (Kuratowski [15]), like:

(1) sets which are totally imperfect as well as their complements

(in the space of reals, F. Bernstein sets [2]),

(2) rarefied spaces, i.e. spaces in which every countable set is a G^-set,

(3) cr-spaces, i.e. spaces in which every F
CT
-set is Gd (Sierpiski [2]),

(4) p-spaces, i.e. spaces whose every nowhere dense set is countable

(Lusin [1] and Mahlo [1]).

Definition: Given a Polish space X, the family of projective sets is

the smallest family containing Borel sets and closed under complementa-

tion and continuous mappings (see Lusin [3]).

Thus the family B of Borel sets is the class 0 of projective sets, then

follows the class of Souslin subsets ofX—denoted also by PB or A—next

the OLsets, then the PCA-sets, CPCA-sets, and so on.

Our knowledge of projective sets is rather poor, e.g. as concerns

their cardinality, measurability, Baire property. Let us mention some

theorems.

Theorem 3: Each projective class is closed under countable union,

countable intersection and countable product.

This has been shown for the classes A and CA. The general case

{PCA... and CPC...) is completely similar.

Theorem 4: For each projective class, there is a universal function

whose graph G is of the same class.

Proof. There are two cases to be considered. If the projective class

is of the lorm CL, then the universal function for CL is the complement

of the universal function for L.
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If the projective class is of the form PL
,
then its universal function

is the projection of a universal function for the class L in the space

XxjC.

Theorem 5: (Existence Theorem) Each projective class contains a set

which does not belong to any preceding class.

Proof. We consider the universal function defined in Theorem 4

and apply the Theorem on Diagonalization (exactly like in Theorem

1.12). See also Mazurkiewicz [2] for interesting examples of projective

sets of functions.

Theorem 6: The space Nn
contains non-projective sets.

Proof. Let En be—accordingly to Theorem 5—a projective set which

is not of class n— 1 {n = 1,2, ...). We think of En as placed in the

interval (n—l
9 ri). Then the set E^ = E

l
uE2 x) ... is not projective.

Remark 5: The projective classes
,
except the class B and the class

CA, are invariant under the operation s (see Kantorovitch and Liven-

sohn [2] and Addison and Kleene [1]).

Remark 6: We call a formula rp(x) projective of class Ln if the set

{x: 9?(x)} is of class Ln .

It is easy to see that the operations v, a, \/, /\ performed

on projective formulas always lead to projective formulas. Together

with the rules mentioned in § 4 of Chapter IV they allow the evaluation

of the Borel or projective class of the set defined by this formula

(Kuratowski [7]).

This explains the fact that, by using the logical notation
,
one is not

lead outside the projective sets (Kuratowski and Tarski [1]).

Also—under very general hypotheses

—

transfinite induction does not

lead out of the projective sets (Kuratowski [11] and Kuratowski and

v. Neumann [1]).

Remark 7: As recently shown by L. Harrington [1], the following

statement is consistent with the Zermelo-Fraenkel axioms of set theory.

Every set of reals of cardinality less than c is of class CPCA.



CHAPTER XIV

MEASURABLE SELECTORS

There are essentially two selector problems (both closely related to

the axiom of choice in its various formulations).

The first concerns the case in which we are given a set-valued map-
ping F: X -* P(Y). Then we call selector for F any function /: X Y
such that

0 ) f(x) e F(x) for each x e X.

The second case is when a partition Q of a space X into (disjoint)

subsets is given. We call selector for Q any set W such that WnE is

a single point for each £ e Q.

Let us add that the choice problem is a particular case of the selector

problem of the first kind. Namely, we are given a family R of non-
empty (not necessarily disjoint) subsets of X and we are asking for

a function /: R - X such that /(£) e E for each E e R.

§ 1. The general selector theorem (see Kuratowski and Ryll-Nardzewski

[1]) and its consequences (see Kuratowski [17], Castaing [2], Coban
[I], Dauer and Van Vleck [1], Dellacherie [1], Himmelberg [l]-[3],

Leese [1], Maitra and Rao [1], Parthasarathy [1], Robertson [1],

Sunyah
[ 1 J, and Wagner [1], where a further extensive bibliography

is given)

Theorem 1 : Let Y be a Polish space
,
A a field of subsets of X (no

assumptions are made about the topology of X) and F: X -> 2y . Put
R = Aa (see Chapter XI, § 4). If

(2) F is lower-R,

then F admits a selector f such that

(?) f is an R-mapping.



1. THE GENERAL SELECTOR THEOREM 459

Proof. Let H = (rl9 r2 ,
r

t , ...) be a countable set dense in Y.

We may suppose, of course, that Y is complete and its diameter is < 1.

We shall define / as the limit of mappings /„: X -> //, where n

= 0, 1, ..., satisfying the following conditions:

(4)

„ fn is an /^-mapping,

(5)

„ Qlfn(x% F(x)] < 1/2”,

(6)

„ l/,W-/»-iWI < 1/2"- 1 for n > 0.

Let us proceed by induction. Put fo(x) = r
l

for each x € X. Thus

(4)0 and (5)0 are fulfilled.

Now, let us assume, for a given n > 0, that satisfies conditions

(4)„_! and (5)„_,. Put:

(7) C," = {x: eh, T(x)] < 1/2"},

(8) D! = {

x

: |r, -/._,(*)! < 1/2- 1

},

(9) A1 = C? n D1.

We have

( 10)
X — A 2 ...

For, x being a given point of X, there is by (5)n _!, y e F(x) such that

\y-fn-x(x)\ < 1/2"" 1
. As H = Y, there is i such that

\r,-y\ < 1/2” and \r,-y\ + \y-fn-i(x)\ < 1/2"
-1

.

Hence x e A ".

Denote by 5” the open ball {y: \y—r
t \
< 1/2”}. It follows that

(11) C? = {x: F(x)nB1 * 0},

(12) D1 =/„;l(Br 1
)-

Hence, by (2) and (4)„ _ , , Cf e R and D" e R, and therefore

(13) AleR.

Let us apply now Theorem IV. 5.1 stating that if A is a field and

R = A a ,
then conditions (10) and (13) imply (for a fixed //) the existence

of a sequence £?">£?"> ••• of disjoint sets such that

(14) QleR, Q" <= A"



460 XIV. MEASURABLE SELECTORS

and

(15)

We define fn : X -* H as follows:

(16) AW = n iff x g qi

We must show that/, satisfies conditions (4)„-(6)„.

By (16) and (14), we have/" 1

^) = Q? e R for each /. Consequently,

/ n
l (Z) £ R for each Z a H (because H is countable and R countably

additive). Thus (4)„ is fulfilled.

Let x be given. Put xeQl Then, by (14) and (9), x e C?, which
implies (5)„ in virtue of (16). Since AJ c D", it follows also that * e DJ,
which implies (6)„.

Thus the sequence /0 ,/i ... has been defined according to
conditions (4)n-(6)n .

By (6)„ and by the completeness of the space Y, this sequence con-
verges uniformly to a mapping/: X - Y. Hence condition (4)„ implies

(3) (see Theorem XI.4.3).

Finally, (1) follows from (5)„.

Corollary 1 : If R is a o-algebra and F is lower-R
, then F admits

an R-measurable selector f (for F compact-valued, see Castaing [1]).

Remark. In this case, the proof of the theorem (starting with formula
(13)) can be slightly simplified. Namely, we replace formula (16) by the
following

Corollary 2: For each Polish space Y there is a choice function
f: 2

Y -> Y of the first class of Baire.

f may be assumed to be continuous if dimY = 0 (i.e. Y contains a
countable base composed of closed-open sets).

^

Proof. Put in the Theorem 1: X = 2Y , A = the field of subsets of
2 r which are simultaneously F„ and (7.,, and F = the identity mapping
defined on 2 . According to the exponential topology, the sets { K:
Kr\G # 0} are open and the sets {K: Kr\Q # 0} are closed (in 2Y)
provided G is open and O is closed (in Y). Since G is F„ in Y, then
{Ai: ATo G ft 0} is Fa in 2r

, hence a member of A. It follows by Theorem

[/»(*) = r,] = [,r £ /f" - (Al u ... u/f!_,)].
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1
,
that there is a choice function f: 2Y -» Y satisfying (3). Since the

members of R are F
ff
-sets, / is of the first class.

In the particular case where dim Y = 0, we denote by A the field

of closed-open subsets of 2
Y

. By assumption, we have G = 0i vQ2 vj ...

,

where Qn is closed-open. Consequently, [K\ KnQn ^0}eA and

{.K : KnG # 0} e R. Since the members of R are open sets, it follows

by (4) that f~
1 (G) is open, i.e. that / is continuous.

The following theorem concerns the case of less restrictive assump-

tion on Y.

Theorem 2 (see Kuratowski [17], compare also Wagner [1]): Let

F: X -> 2y (where X and Y are Souslin) be lower-S
;
then there exists

an S-measurable selector f for F.

Proof. Put T = NN
. Since Y is Souslin, there is a continuous func-

tion g: T Y onto. Therefore, g' 1
: 2Y -» 2

T
. Put

H = g- 1 o F, i.e. //(x) = g
_1

(F(a')), hence H: X ^ 2
T

.

We shall prove that H is lower-Souslin.

By the First Graph Theorem of Chapter XIII, § 4, it suffices to show

that

G(H) e S(Xx T), i.e. {<*, />: / e H(x)} e S(XxT).

Now

[/ 6 //(*)] = [/eg' 1 (F(x))] = [g(0 e F(x)] = V 6 = «(')] [.

V

e f(*)l

.

Therefore, G(//) is the projection on XxT of the set

Z= {<a,^,/>: |> = s(0]WO>T, *> : D’eF(x)]}.

Since {<7 , />: [j = g(/)]} is closed and «x, 7>: [j> e F(a)]} = G(F)

is Souslin (by the First Graph Theorem applied to F), it follows that

Z is Souslin, and so is its projection, G(H).

Consequently, the mapping H\ X—> 2
T

is lower-Souslin, hence

lower-5. Since T is Polish and S is a u-algebra, Corollary 1 can be

applied to H. So let h be an S-measurable selector for H, and put

f = go h. Thus / is S-measurable and, since h(x) e H(x) = g
1 (F(a)),

it follows that f(x) e F(x).
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Another extension of Theorem 1 concerns the case where F(x) is

not assumed to be closed (in fact, F(x) will be Souslin).

Theorem 3: Let F(x) <= Y. If the graph G(F) is Sous/in, then there
is an S measurable selector for F.

Proof. Put T(x) = {x} x F(x). Hence T(x) is closed in G(F) and
thus T: X -» 2G(F) . We shall show that T is lower S. By the First Graph
Theorem of Chapter XIII, § 4 (in which we substitute G(F) for Y). it

suffices to show that G(T) is Souslin. Now

G(T) = {(xyz): [(yz) e T(x)]} =
{<.xyz): (y e F(x)) (z = x)}

= {(xyz): [(xy) e G(F)] a (z = x)}.

It follows that G(T) is Souslin (since G(F) is Souslin).

Apply now Theorem 2. It follows that there exists an ^-measurable
selector h for T. Hence h(x) e T(x), which means that h is of the form

h{x) = (x
, f{x)) e T(x), hence f(x) 6 F(x)

.

Finally, / is ^-measurable. Because

/

_1
(C/)_= Ir l (Xx U), and assum-

ing that U is open, we have h~ 1 (Xx U) e S.

Remark. There was an attempt made by V. A. Rokhlin to prove the
Corollary 1 to Theorem 1 (see Uspiehi IV (1949) Lemma 2, p. 85;
see also Amer. Math. Soc. Transl. 49 (1966) 71-240).

Unfortunately his argument is not valid. This remark was com-
municated to the authors by Dr R. Pol. See also Wagner [1], p. 3.

Applications to B-measurable mappings

According to the general definition, the mapping F: X -+ 2 Y
is said

to be of lower B-measurable class a (or briefly, of lower class a) if
(see Chapter XI, § 4 (6))

F(x) n U ^ 0] is of additive class a

whenever U c Y is open.

Theorem 1 implies the following statement.

Theorem 4 (see Kuratowski and Ryll-Nardzewski [1], p. 401)- Let
X be metric and Y Polish. If F: X -+ 2 Y

is of lower class a > 0, then
there is a selector f of class a.
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In particular
, if F is upper semi-continuous

,
then f is of class 1

.

If X contains a countable base of closed-open sets
,
then the theorem

is also true for a = 0.

To show Theorem 4, we substitute to A in Theorem 1 the family

A a (of ambiguous sets of class a).

Remark: As shown by J. Kaniewski and R. Pol [1], the separability

of Y can be omitted under some additional conditions.

See also Engelking [3] and oban [1], where the problem of omitting

separability is considered for lower semi-continuous mappings.

§ 2. Selectors for measurable partitions of Polish spaces

Let us recall that by a partition of the space X is meant a collection

Q of closed, disjoint, non-empty sets, whose union is X.

Definition 1 : Given a family R of subsets of X, we shall say that

Q is a lower-R or upper-R partition of X if

(1) U {E e Q: End # 0} e R for each open U a X,

or

(2) U {E e Q: EnK = 0} e R for each closed K a X,

respectively.

Obviously, if R denotes the family of open sets, then Q is lower

(upper)-/? iff Q is a lower (upper) semi-continuous decomposition of X
in the usual sense.

Given a partition Q of X, denote by P(x) the (unique) member of

Q containing x. Thus

(3) x e P(x) g Q and P : X - 2X .

P is called the
“
natural projection” of X onto Q (the quotient-space).

It is easily seen that, for each Z c= X, we have

(4) U {Eg Q EnZ # 0} = {x g X: P(x)nZ # 0}.

Consequently (comp. Definition XI.4.4),

(5) Q is a lower (upper)-/? partition of X

= P is a lower (upper)-/? mapping of X into 2X .
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Definition 2: A set W a X is called a selector for Q if WnE is

a singleton for each E e Q.

It follows that

(6) Iff is a selector for the mapping P: X -> 2
X and iff is constant

on each E e Q, then the set f\X) (the range off) is a selector

for Q.

Definition 3: We call saturated (with respect to the partition Q)
those sets which are unions of some members of Q and we denote
by U the family of all saturated subsets of X.

Obviously, U is a complete Boolean algebra of sets (i.e. closed under
the complementation and arbitrary unions and intersections). Let us

note that the atoms of U are just the members E of Q.
Given a subset Z of X, we say that A is the saturation ofZ if A is the

union ol all E e Q which intersect Z. With this terminology, Q is lower
(upper)-/? iff the saturation of each open (closed) set is a member of
R (of Rc

).

We are going to show the following theorem (see Kuratowski
and Maitra [1], see also Kuratowski [18]-[20]).

Theorem 1 : Let X be Polish and let A be any field of subsets of X.
Put R = Aa and assume that every open set of X belongs to R.

If the partition Q oj X is either lower or upper A, then there is a selector

W for Q such that (X— W) e R.

The prool will be based on the following lemmas.

Lemma 1 : Let R be a o-lattice containing all open subsets of X, and
let f: X —> X be an /?-mapping. Put

1 = {*: f(x) = x}.

Then (X—I)e R.

Put thermore, ijJ is a selector for P and iff is constant on each E e Q,
then we have f l (X) = /.

The first part of Lemma 1 is the Corollary to Theorem XI.4.8.

Now let y =/(

a

0) and x0 e E e Q. Since f is a selector for P, we
have J(x0) e P(x0 ) = E, i.e. y e E, and since / is constant on E, it

follows that f(y) =/(.v0), i.e. f(y) = y, and thus y e I.
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Lemma 2: If f: X -* X is a U-mapping,
then f is constant on each

E e Q.

Proof. By assumption, f~
1 (G) e U for each G open. It follows at

once that also /
_1

(/Q e U for K closed. In particular, f~
l {x

}
e U for

each x e X.

Now let x0 e E and f(x0) = y0 ,
i.e. x0 e/

-1
{>’0 }- It follows that

E c:/
_1

{>’0 }. Hence f x (E) <-f l

f~
1

{y0 } = {Lo}-

Proof of Theorem 1. 1. Suppose Q is lower-/!. Then so is P (by

(5)), and this means that, for each open U c Y, the set {x: P(x) n U
# 0} belongs to A. But this set belongs also to U. Put A

{
— An U.

Thus P is lower-,4 Since A
x

is a field in X, we can apply Theorem 1.1.

This implies the existence of a selector /: X -* X for P which is an Afa
mapping, i.e.

(7) f~
1 (G) e A la = (A nU)a <= (.Aa nUa) = R nU

for each open G a X, and this means that / is an /?-mapping and

a 17-mapping as well.

By Lemmas 1 and 2, f 1 (X) is a selector for Q and its complement

belongs to R.

2. Now, let Q be upper-,4. Hence so is P and therefore we have,

for each closed K c: X
,

(8) {x: P(x)nK ^ 0} e A c = A

since A is a field.

Let U be open <= X. Put U = K
x
kjK2 \j ..., where Kn is closed.

Obviously,

{x: P(x)nU # 0} = U {*: P(x)nKn * 0}.
n

It follows by (8) that

{x: P(x) nU # 0} e (A nU)a = A la

which means that P is lower-/! 1<T .

Applying Theorem 1.1, we conclude that there is a selector

f:X^>XforP satisfying (7). This completes the proof.

Corollary 1 (see also Bourbaki [2], Ex. 9(a), p. 262): Each semi-

continuous partition (<either lower or upper) of a Polish space admits

a Gd-selector.
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In this case we denote by A the family of sets which are simul-
taneously Fa and Gd .

Corollary 2: If R is any o-algebra containing all open sets
, then

every lower R-measurable partition admits an R-measurable selector

.

In particular we can substitute for R the a-algebra of Borel sets, of

sets having the Baire property
, the algebra S, the algebra of Lebesgue

measurable sets (in the last case for X = <$).

Remark 1 (see Maitra and Rao [2]). In the case of a Borel-measurable
partition, a more precise statement is true. Namely, if R is the family
of sets of additive class a, then each partition of upper class a admits
a selector ot multiplicative class oc-t-1, while a partition of lower class

a > 0 admits a selector of multiplicative class a.

Remark 2. Each lower-iS
1

partition of a Borel set (in a Polish space)
admits a C/l-selection (see Kaniewski [1], Corollary).

§ 3. Selectors for point-inverses of continuous mappings

Theorem 1 : Let f: Y -> X be continuous onto. Then there is an -
measurabie selector g for the inverse function f

~ x
: 2y ; i.e. a func-

tion g : X Y such that fg(x) = x.

Proof. By Theorem XIII. 4. 3, f 1

is lower Souslin. According to
Corollary 2.2, this completes the proof.

Remark 1. The function g (according to the Corollary of Chapter
XIII, § 1) has the Baire property (Chapter XII, § 8) and hence is con-
tinuous on the complement oj a set oj I category

In the case of reals, g is Lebesgue measurable.

The existence ol a Lebesgue-measurable function g such that fog
= 1 leads to the well-known v. Neumann Theorem (see v. Neumann [1]).

fn some important cases, the evaluation ot the selector can be more
precise. Consider namely the following theorem.

Theorem 2 (of Mazurkiewicz [1]): Let f: Nn - X be continuous
onto. Then there exists a CA-selector for the partition ofNN

into point-
inverses. Consequently

, each Souslin space is a one-to-one continuous
image of a CA-set (<contained in N s

). Moreover, the theorem remains
true when Nn

is replaced by any closed set F c N v
.
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Proof (see e.g. Kuratowski [1], p. 480). As usually each member

3 eA v
is represented in the form 3 = [3

1

, 3
2

, ...], where 3
n e N. Let

us consider their lexicographical ordering:

(1) [3 -<!)] = (3
1 « I)

1
) A A t(3

‘ < l)‘) v V (3
' < *>')]•

k i <k

It is easily seen that the set {<3 ,
t)>: 3 -< t)} is closed. Moreover, in

every non-empty closed set A a there exists the first element; such

is the point p(/l) = X
{
nX2 n ..., where X

x
is the set of all 3 e A such

that 3
1 assumes the minimum value; and Xn ,

with n > 1, is the set of

the 3 eX„_ x
such that 3

" assumes the minimum value. By the Cantor

Theorem (Theorem XI. 3.6) the intersection of the sets Xn reduces to

a single point.

Now let W be the set of the points p[/” J

(.*)], where .v runs over

that is,

(2) [ZeW]= [J e f] a A {[/(3) = /(>))]- [3 < 9]} •

W is a CA-set, since the formula in the braces
{ }

is borelian.

Moreover, the partial fonction f\W is one-to-one, since the conditions

3 e W,X) e W and /(3) = /(p) imply 3 -< h -< 3» and hence 3 = t). Finally,

we have f l(W) = f x
{F), since 3 can be replaced by p[/

_1
(x)] *n the

left side member of (2).

Remark 2. Since every uncountable Souslin set is of power c (by

Theorem XIII. 1.7), W is of power c.

Corollary 1: Every Souslin space is an N, union of Borel sets.

Proof. By Theorem 2, each Souslin space A is a one-to-one con-

tinuous image of a CA-set W. Since W is an K
1
union of Borel sets

(by Theorem 3.2) and any one-to-one continuous image of a Borel

set is Borel (by Theorem 1.9), our conclusion follows.

More generally:

Corollary 2: If E is a PCA-subset of a Polish space
,

then E is

an X, union of Borel sets
,
and consequently

, if the cardinality of E is

> X,, then E contains a Cantor set {and its cardinality is C).

Let FI be CA in a Polish space and let/: H - E be continuous onto.

We have

H= U C„ hence £=/(//)= U AC.).
aeon a<«>i
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Ca being supposed Borel, /(CJ is Souslin, hence, according to Cor-

ollary 1, is an N\ union of Borel sets, and so is E.

Theorem 3: (Generalization of Mazurkiewicz Theorem) Let

Y be an arbitrary Borel subset of a Polish space and let f: Y -> X
be continuous onto. Then there exists a CA selector for the partition of

Y into point-inverses.

In other terms
,
there is a set W a Y of class CA such that the partial

function f\W is one-to-one and f\W) = X.

Proof. Since Y is Borel, there is a closed subset F c Ns and a conti-

nuous and one-to-one function g: F -> Y onto (see Theorem XII.6.1).

Put h = fo g. Thus h: F - X is continuous onto. By Theorem 2, F
contains a CA -set H such that the function h\H is one-to-one and

h l (H) = X.

Put W = g\H). It is easy to see that IT is a selector for the par-

tition of Y into point-inverses f~
1
(x), where x ranges over X.

Moreover, W is a CT-set, because g is a one-to-one continuous

function defined on a Polish space F, and H is a CT-subset of F (see

Theorem XIII.4.7).

The following corollary is a “uniformization
,,

theorem (see also

Shchegolkov [1]).

Remark 3. Theorem 3 can be deduced from Remark 2 of § 2.

Corollary: Let Z a XxY be Borel. Then there is a CA selector

for the partition of Z into sections “parallel” to the Y-axis (see also

Theorem 5).

Substitute in the preceding theorem Z for Y and denote by / the

projection on the T-axis.

fn view of proving another important uniformization theorem,

namely the Theorem of Kunugui-Novikov, we introduce the following

notation. Let Z cz XxY. We put

(3) Zx = {y

:

<.x , y) e Z} for x e X,

(4) X(e) = [\x,y): q(j ,
Zx

) < e} for e > 0,

(3) />(*>>’) = w, i.e. p is the projection of Xx Y onto X,



3. SELECTORS FOR POrNT-INVERSES OF CONTINUOUS MAPPINGS 469

hence

(6) A- e p{Z) = \/ y e Zx

y

(we write p(Z) instead of p
l (Z)).

Tt is easy to see that

(?) (n z,y = n (zn

.

t t

(8) If Z is Sous/in
, then so is Z(s) for each e > 0 (X and Y being sup-

posed Polish).

This follows directly from the equivalence

(9) Kx,y}eZ(s)] = \J {(\y'-y\ < e) «j,/) 6 Z)},
y

the formula in brackets
{ } being Souslin.

oc

(10) If Zx
is closed in Y for each x e X, then O Z(\/n) = Z.

n= 1

Obviously, Z c= Z(\/n) for each n.

On the other hand, let <x, y) eZ(\/n) for each n. Then by (4) and

(9), there is yn such that \yn -y\ < \/n and y„ e Zx
. This implies that

y e Zx
,

i.e. <A'
, y) e Z.

(11) The set (Z{e))x
is open for each xeX,

because this set is the union of balls, U \y'—y\ < £, such that <x, y')
y'

eZ.

Let Z, =3 Z2 => ... and let Zx be compact for each x and n. Then

(12) p(DZH)
= Dp(Zn).

n n

By the compactness of Zx
,
we have by (6) for each a:, and

x ep(n zn) = \/ y e(D Z„)x =\J f\y eZx = /\\J y eZx
n

n y n y n n y

= /\ xep (Zn ) = x e Dp (zn)
n n

(where the equivalence “V A = A V” follows from the compact-
y n n y

ness of Zx
).
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Lemma: Let E c Xx Y and let Clt C2 , ... be CAsets in Xx Y such

that

(i) D c„ <= E,
n

(ii) E(l/2n) c- Cn ,

(iii) C„ is compact for each x and n.

Then p(E) is a CA-set.

Proof. Put D„ — C
t
n ... nCn . Since

E(\/2n) a E(l/2k) c Ck for k ^ n,

we have

(13) £(1/2/7) c= Dn for each n.

By (ii), £ <r fi E( l/2») c fl C„ = D D„.
n n n

Hence by (i) we have

(14) D Dn = E.
n

By (iii) and (7),

(15) Di is compact.

Hence by (12) and (14)

(16) p(E ) = /?(D £>n) = Pi
n n

Let R = (r ly r2 , ...) be dense in Y. Put

(17) Kn = U {*: <x, /•;> g £„}.
i

It follows that

(18) Kn ap(Dn) y

because (compare (6))

xe Kn
= (V r

{
g => * g p(Dn ).

i

We shall show that

(19) p(E) a K„ for each n.
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Let x ep(E). Hence there is y such that <x, >’> e E. Choose in so

that \r
in -y\ < l/2n. Therefore, by (9), <x, r

in} e £( 1 /2 /7) and hence by

(13), <*, r
in) e Dn ,

and x e Kn .

By (19), (18) and (16) we have

P(E) <= Pi Kn <= Op(Dn) = P(E) and hence p{E) = P) Kn .

n n n

This completes the proof, because Dn is CA and so is Kn (by (17)).

Theorem 4 (of Kunugui-Novikov): Let X be complete and Y
compact metric

,
E <z XxY a Bore/ set and p: XxY -» X the projection.

Let Ex be compact 1

) for each x e X. Then p\E) is a Borel set.

Proof (communicated by A. Maitra and R. Pol, see also Coban [2]):

Put A n = E(l/n)-E. According to (8), A n is Souslin, and by (10),

n A n = 0. Hence, by virtue of Theorem 4.5, there is a sequence
n

By, B2 ,
... of Borel sets such that

(20) A n <= Bn and H B„ = 0.
n

Put

(21) H„ = XxY-(E<jB„) and C„ = XxY- H„(l/2n).

Obviously,

(22) E{\ /n) n Hn = 0 and C„ a EuB„.

Let us check that the assumptions of Lemma are fulfilled.

First, C„ is CA, because Hn (\/n) is Souslin (by (8), since H„ is Souslin).

Next, (i) is fulfilled, because (by (22) and (20)):

(23) n cn <= ekj n = E.
n n

Since C„x = Y— [//„(l/2/?)]
x

,
we conclude from (11) that C„ is closed

(in Y), hence compact.

Finally, we shall show that (ii) is satisfied. Suppose it is not. Then
there is <x, y} e E(l/2n)-Cni i.e.

(x,yj g [E(\/2n)nHn (\/2n)\.

There exist, therefore, two points y L and y2 such that (see (9)):

\yi-y\ < 1/2/7, Tl e£x
, \y2 -y\ < 1/2/7, y2 g Hx

n ,

‘) For a generalization to cr-compact sections, see Arsjenin and Liapunov [I]

See also Larman [1].
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and consequently \y2 —y l \
< 1/tf, (x,y

e

E and <a, >’2> e //„. But

also (x, y2 } e E(\ /n). Thus E(\/n)nH
rt ^ 0, which contradicts (22).

By Lemma, />(£) is CA and simultaneously—is Souslin (as a con-

tinuous image of a Borel set). Therefore p{E) is Borel.

Theorem 5 (of Kondó): Let X and Y be Polish
,
E c= Xx Y a CA-set

and
,
as before , p: XxY -+ X the projection. Then there exists a selector

D of class CA for the family of point-inverses {p~ x

(a) n£}, a e p
l

(E).

In other terms : p
1 (D) = p

l (E) and p is one-to-one on D.

Proof. 1

) In view of Theorems XI. 3. 8 and XII. 4.7 we can assume that Y

is a closed subset of the space NN
. As usually, we write y = { v

1

, y
2

, ...}

for y e NN
(where v" e N).

Let = (0, r2 ,
r3 , ...) be the set of binary fractions.

According to § 6 of Chapter XI and Remark to Theorem XIII. 1.4,

there is a sieve W\ —> P(Xx Y) such that all the W(r) are open and

(24) E = {<a, _)’> : M(x
, y) is well ordered by the inequality > },

where M(x,y) = {/*: <a
, y} e U^r)}.

Put

(25) M(x,y)\r = {r' e M(x, y): r' > r) (thus M{x,y)\r
{
= M(x,y)).

Write

p(x,y,r) = order type of M(x, y)\r

.

Of course, ju(x, y ,
r) < o;, if <a, yj 6 E.

For each xep l (E) let us define by induction three sequences: an (.v)

of ordinals, kn (x) of natural numbers, and Fn (x) of subsets of K, where

n = 1,2,...; besides we put

(26) F0 (x) = {y: (x,y}eE},

(26a) ocn (a*) = min {p(x, y, r„)
: y e Fn _ 1

(a)}
,

(26b) kn(x) = min {/ : y eF^fxf p(x ,y,rn ) = «„(*)},

(26c) Fn (x) = {y: y e F„_,(a), y
n = kn (x), p(x ,y,rn )

= an (A*)}.

') This proof is essentially based on Sampei [1] and on ideas kindly commun-
icated to the authors by Dr P. Zbierski. Also the help of Mr J. Kaniewski and Dr
11. Pol is to be emphasized in this connection.
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It is easy to see that

(27) F0 (x) => F,(.x) => ...

Put

A(*) = <Ai (x),k2 (x), ...) for xep'(E),

D= {<*,£(*)>: xep'{E)}.

Obviously, />*(/)) = /?*(£) and the mapping /?|Z) is one-to-one.

Now, we shall show that

(28) if /*, e A/(x, A(x)) and \‘j < then <Xi(x) < otj(x)

.

Let ••• be a sequence such that yn e F„(x). For /? ^ max(/J)
we have by (27) j; e [F,-(x) n Fj(j)] and hence (by (26c)):

(29) ufa) = p (x , r,) and a,(x) = p(x
,

r,.).

Since it follows that a,(x) ^ a
7
(.v). It is sufficient to show

that there exists an n ^ max(/,y) such that

(30) r, e M(x
, yn)

.

We have <x, A(x)> e IFfo) because r
t
e M(x, A(x)). Since Wfa) is

open, formula (30) is fulfilled for sufficiently large n, because (by the

definitions of k(x) and Fn (x)): y'n = k
t
(x) for i ^ n and thus

lim yn = k(x) and hence lim (x,y„) = (x,k(.y)>.
n= co n — oo

Next we shall deduce from (28) that

(31) /)<=£.

It is sufficient to show that, for xep i (E), we have <x, A(x)> e E,

i.e. k(x) e F0 (x); in other terms, that

(32) the set M (x, k(x)) is well ordered.

Otherwise there would exist in M (x, A(x)) a sequence r
t < rit < ...

and we would have (by (28)):

ocifx) > cc i2 (x) > ...,

which is not possible.

Thus (31) is true.
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Now we are going to show that for each xep l (E)

(33) the set O Fn (x) reduces to k(x),
n

or equivalently—that

(34) k(x) e F„(x) for each n.

We proceed by induction. Since k(x) e F0 (x), we have to prove

(34) under the assumption that ^)ef„.j(.v) (where n ^ 1). By

the definition of k(x), it is sufficient to prove that

(35) //(.v, k(x), rn)
= a„(.x), i.e. that p(x

,
k(.v), r„) ^ a„(.x).

Suppose the contrary is true. Hence there exists i\ such that

r
ix > r„, rh e M (.v, k(x)) and p(x, k(x), rh ) ^ an (x).

It follows by (28) that p (x, k(x), ri{ )
> a

tl
(x). Proceeding further

this way, we would define a sequence r
fi < < ... of elements of

Ml (x, k(x)) contradicting (32).

It remains to show that D is a C/f-set. By (33) we have

(36) <x, y> g D = /\ y e Fn (x) .

o

We shall show that

(37) (x, y> $ D = [(*, y > $ E] v \J \/ {[(^(-v, /, rn) < p(x, y, rn)) v
y’ n> 1

V (p(x, /, rn) = p(x, y , /*„)) a (y'
n < v")] a

a /» o) = /*(*» 3% o)) A (y
j = /)]}

,

j<n

where the sign “<” between order types is defined as in XII. § 2 (ii) (it

coincides with the usual inequality in the case of ordinal numbers).

This will complete the proof of coanalycity of D, because the formula

in brackets
{ }

is analytic (according to § 2).

In order to show the implication from left to right in (37), let us

assume that <x,y) £ D and <x, y} e E. Then there is by (36) an index

n ^ 1 such that

(38) v Fn (x) and y e Fj(x) for j < n.

We shall check that the formula in brackets
{ } is true for y' = k(x).

First, it follows from (33) and from the definition of Fj(x) that
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(39) [i(x, /, rj) = <Xj(x) and y'j = kj(x) for each j ^ 1

.

By (38) we have y e Fn _ 1
(x)~ F„(x). Hence there are two possibilities:

either [/*(*, y, rj) # a„(.x)] or

[fi(x,y, rn)
= a„(x) and f * kn (x)].

In the first case, we have (by (39))

fi(x,}’, ''„) > ««(*) = rn)y

and in the second case

y> rn) = f(x ’
y'

>

r«) and y
n > £»(*) = y'n

•

Furthermore, we have .y e F}(x) for j < n and hence

/'(•V, y, rj) = aj(x) = /*(*,/, rj) and y
J = kj(x) = /'.

This completes the proof of the implication from left to right.

In order to show the implication in the opposite direction, let us

assume that <[jc, yj e D and that the right-hand side ot (37) is fulfilled.

We have to show that this leads to a contradiction.

Since, by (31), <*, y} e E, there exist an y' e Y and an n ^ 1 such

that the formula { }
is true; it follows also that /x(x, y, 0) is an ordinal

and so is ju(x,y', 0) because, if n = 1, then [x(x,y ,0) ^ [xipc^y, 0),

otherwise /x(x, y' 0) = fi(x, y, 0). Hence y
,s

) e E
,

i.e. y e F0 (x).

Since for each j ^ 1 we have (by (36)) y e F){x), it follows that,

for each j < n,

/u(x, /, rj) = /x(x, y, rj) = aj(x) and y
j = y

J = kj(x).

This implies by induction that y' e Fn ^ 1
{x). Now, according to the

formula in brackets { }, there are two possibilities:

either [/x(x, yj rn) < /u(x, y, rj)] or

[//(*, /> O = y> rn) and /" < /].

In both cases we are led to a contradiction: the first case contradicts

the definition of ctn {x

)

and the second—the definition of kn (x).

This contradiction completes the proof of the implication from right

to left in (37). Thus the proof of formula (37)—and therefore—ot

Theorem 5 is completed.

Remark 4. For a recent generalization of Theorem 5, see Ka-

niewski [1].
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of sets belonging to a family 60

interval 204

invariance under an isomorphism

86

inverse-function theorem 454

inverse image of a set under relation

74

inverse 64

of an order type 217

of a relation 64

inverse types 217

isolated point 174

isomorphic embedding of relational

systems 153

isomorphic relational systems 86

joint continuity 395

£th beth 239
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last element of the linearly ordered set

202

lattice, 42

complete 83

distributive 42

modular 44

lattice generated by a family of sets

123

law,

associative 167

associative, for addition of cardinal

numbers 178

associative, for multiplication of

cardinal numbers 179

associative, for the product of cardinal

numbers 197

commutative 166

commutative, for addition of cardinal

numbers 178

commutative, for multiplication of

cardinal numbers 179

commutative, for the product of

cardinal numbers 197

distributive, for cardinal numbers 197

distributive, for operations on sets

10

first distributive 3

first monotonie, for addition 239

first monotonie, for ordinal multipli-

cation 241

full binary tree 84

generalized associative 193

generalized commutative 193

generalized distributive, for multipli-

cation with respect to addition

193

second distributive 3

second monotonie, for addition 240

second monotonie, for ordinal

multiplication 241

law

of associativity of conjunction 3

of associativity of disjunction 3

law

of commutativity of conjunction 3

of commutativity of disjunction 3

of contradiction 4

of contraposition 4

of double complementation 19

of double negation 4

of excluded middle 4

of exponents for the cartesian product

167

of hypothetical syllogism 4

of trichotomy 308

laws,

associative, for operations on sets 10

commutative 10

distributive 10

logical (tautology) 2

monotonie, for ordinal subtraction 241

de Morgan’s 4, 12, 49

laws

of absorption 3

of subtraction 11

of tautology 3, 11

least upper bound 82

left distributivity of ordinal multiplica-

tion with respect to ordinal sub-

traction 241

lexicographical ordering 221, 319.

level of a tree 315

limit

of a sequence of points 389

of a sequence of sets 118

of A-sequence 231

limit ordinal 230

limit inferior 118

limit superior 118

linear (total, complete, simple) ordering

81, 201

L-mapping 400

logical product 1

logical sum 1

lower-^ mapping 405

lower measurability 400
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lower-/? partition 463

lower section of a cut 155

lower semi-continuity 393

lower-Souslin mapping 453

Lusin space 427

Mahlo cardinal 359

Mahlo classification of inaccessible

cardinals 359

mapping (transformation) 69

mapping of lower class a 462

Marczewski algebra 431

maximal element of an ordered

set 82, 255

maximum principle 261

m-complete family 355

m-disjoint sets 301

mean-value theorem 186

meager set 428

measurable cardinal 367, 375

measurable mapping (^-mapping) 400

measurable selectors 458

measure on a set 366

method of transfinite induction 226

metric space 386

model of axioms 352

modular lattice 44

monotone family 81

monotonie function on subsets 187

monotonie laws for ordinal subtraction

241

minimal element of an ordered set 82, 255

minimal extension of an ordered set 1 56

de Morgan’s laws 4, 12, 49

multiplicative axiom 130

natural addition 252

natural interpretation of axioms 27

natural model of set theory 352

natural multiplication 252

natural numbers 89

natural product 253

natural projection 463

natural sum 253

negation 2

von Neumann’s axiom system of set

theory 57

von Neumann’s ordinals 262

normal form of sets 21

normal function 342

normal set 343

normal space 388

normal tree 334

nowhere dense set 32

/zth iteration of a function 94

S

odd ordinal 236

one-to-one function 70

one-to-one sequence with n terms 102

open base 116

open formula 139

operation 72

operation s/ 409

order

of a function 77

of a tree 316

order relation 80

in Boolean algebra 37

in a lattice 42

order type 201

order type

embeddable in an order type 219

t] 211

A 214

co 210

ordered pair 59

ordered set 80

ordered union of ordered sets 208

ordering,

anti-lexicographical (by the principle

of last differences) 221, 222

lexicographical (by the principle of

first differences) 221

ordinal cofinal with a limit ordinal 231

ordinal exponentiation 245
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ordinal number (ordinal) 228

ordinal,

epsilon- 247

expansion of 249

exponent 249

even 236

initial 272, 273

limit 230

odd 236

power of 245

regular initial 275

singular initial 275

ordinal number in the sense of von

Neumann 262

ordinals,

natural addition of 252

natural multiplication of 252

natural sum of 253

quotient of 243

ordinate of a point 62

partition 81, 67, 463

pair,

ordered 59

unordered 58

partition theorems 336

PCA (Zi) -sets 455

permutation of a set 71

Peano axioms 90

perfect set 259

perfectly normal space 388

point,

accumulation 28, 32

isolated 174

points of the space 27

Polish space 396

power set 53

power

of a set 169

of an ordinal 245

of a cardinal number 180

of the continuum c 188

pre-order relation 80

prime ideal 142, 158

prime ideal of a distributive lattice 158

principal ideal generated by a lattice 159

principal ordinals of multiplication 253

principle

of duality 41

of induction for ordinals 268

of transfinite induction 225

of effectiveness 426

problem of elimination 24

product,

cartesian, see cartesian product

direct, of Boolean algebras 131

logical, of sentences 1

natural 253

reduced 141

product-function 73, 132

product

of cardinal numbers 178, 196

of order types 218

of ordinal numbers 239

projection of a relation 64

projective set 456

proof by induction 90

proper cut 206

proper extremum of a function 173

proper subset 8

property invariant under isomorphism 86

property of universality 214

pseudo-complement 44

pseudo-difference 44

pseudo-tree 84, 315

q-additive measure 366, 367

q-<f-measure 367

q-2-measure 367

quantifiers 47

quasi-order relation 80

quotient class of sets with respect to

a relation 68

quotient of ordinals 243
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range

of a relation 64

of a function 69

rank of a set 238

reduced product 141, 376

reduction theorem for Borel sets 418

refinement of a cover 81

regressive function 347

regular closed set 39,115

regular function 49

regular initial ordinal 275

regular open set 115

regular space 388

relation, 64

binary 64

equivalence 66

inclusion 7

inverse 64

“less than”, for cardinal numbers 181

rt-ary 72

order 80

order, in a Boolean algebra 37

order, in a .attice 42

pre-order 80

quasi-order 80

transitive 8

relation of preceding

for elements of a set 204

for intervals of a set 204

relational system 86

embedded into a relational system 153

relational type 5, 88

remainder

of an ordinal number 251

of a set 231

representation 378

result of the operation s4 409

ring 16

Russell’s antinomy 61

saturated set 464

saturation of a set 464

scattered set 205

second distributive law 3

second graph theorem 406, 454

second monotonie law for addition 240

second monotonie law for ordinal

multiplication 241

second separation principle 449

selector

for a mapping 458

for a partition 458, 464

semi-continuous function 393

sentence 47

separable space 387

separation theorem 128, 418

sequence,

a- 231

Cauchy 396

convergent 118

finite 92

infinite 92

one-to-one, with n terms 102

transfinite, of type a (or: a-sequence)

231

set, 4

analytic 434

Borel 126

Borel, of class a 235, 415

boundary 32

bounded 387

Cantor 135

closed 28, 116

closed ordered 255

continuous 206

continuously ordered 206

countable 169

Dedekind infinite 105

dense 205

dense in itself 33

densely ordered 205

densely ordered in linearly ordered set

206

denumerable 169
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set

directed 81

empty 9

tj- 321

finite 102

finite in the direction of the Arth axis 28

Fa 388

generalized Cantor set 135

hereditary 226

homogeneous 303

infinite 102 •

independent 260

inductive 90

meager 428

nowhere dense 32

of the first category 428

open 28

open modulo an ideal 408

ordered 80

perfect 259

power 53

projective 456

regular closed 39, 115

saturated 464

scattered 205

sifted 412

successor of 89

well-ordered 226

set

of representatives 68

of type A 215

sets,

Borel 415

(O- 455

cofinal 82

coinitial 82

congruent modulo ideal 17

disjoint 9

m-disjoint 300

disjoint modulo ideal 17

equipollent 164

equivalent by finite decomposition 185

independent 23, 260

set-valued function 393

sieve 412, 444

n-additive family of sets 124

c-algebra 124, 451

n-algebra 451

<r-ideal 127

cr-lattice 124, 416

(7-<?-mcasure 367

A^-set 455

similar sets 85

similarity of relations 203

singular initial ordinal 275

^-mapping 452

^-measurable mapping 452

Souslin formula 444

Souslin problem 332

Souslin set 332

Souslin space 434

Souslin tree 332

space (universe) 18

space,

Baire 136

bounded metric 387

compact topological 137, 139, 391

complete metric 396

Hausdorff 388

Lusin 427

metric 386

normal 388

Polish 396

regular 388

separable 387

Stone 163

topological 27

topologically complete 396

stationary set 347

Stone space 163

strong limit cardinals 348

strongly inaccessible cardinal 348

subbase 120

sub-pseudo-tree 84

subset 7
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subsystem of a relational system 153

successor of a set 89

sum,

logical 1

natural 253

sum

of cardinal numbers 178, 192

of elements of a Boolean algebra 34

of order types 218

of series of cardinal numbers 192

of sets 6

supremum of elements 146

symmetric difference

of sets 7

of elements of a Boolean algebra 34

Tarski recursion formula 281

tautology (logical law) 2, 11

theorem

on definitions by transfinite induction

233

on diagonalization 174

on the existence of pair 58

on the existence of union 58

on the existence of unordered triples,

quadruples, etc. 58

Theorems of

Addison 455, 456, 457

Alexandrov, P. 396

Alexandrov, P., Hausdorff 427

Aronszajn 329

Baire 399

Banach 183, 421

Banach-Kuratowski 366

Bernstein, F. 260, 282

Birkhoff, G. 262

Burali-Forti 230

Cantor, G. 174, 181, 190, 213, 214,

239-253, 290, 399

Cantor-Bendixson 270

Cantor-Bernstein 184

Castaing 458

Coban 458

Theorems of

Cohen, P. J. 291

Dauer 458

Dedekind 156

Dellacherie 458

Easton 291

Engelking 421

Engelking, Holsztyski, Sikorski 426

Erdds-Rado 340

Erdós, Sierpiski 432

Erdos, Tarski 297, 305, 308, 357

Fichtenholz-Kantorovitch 297

Fodor 345

Fox 395

Frolik 428

Godel 290, 455, 456

Hamel 261

Harrington 457

Hartogs 270, 309

Hausdorff 280, 282, 325, 421

Hessenberg 225, 276

Himmelberg 458

Huntington 41

Hurewicz 443

Jayne 428

Jónsson 214

Jónnson, Tarski 163

Kaniewski 407

Kaniewski, Pol 463

Kantorovitch-Livensohn 457

Keesling 393

Kleene 457

Kochen 325

Kondo 472

Kónig, D. 326

Konig, J. 198

Kunugui 449

Kunugui, Novikov 471

Kuratowski 58, 125, 280, 394, 398,

442

Kuratowski-Maitra 464

Kuratowski, v. Neumann 457

Kuratowski, Ryll-Nardzewski 458
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Theorems of

Kuratowski, Tarski 125, 457,

de la Vallee Poussin 421

Lavrentiev 427

Lebcsgue 421, 423

Lebesgue, HausdorlT 421

Levi B. 182

Lindelbf 388

Lindenbaum 265, 270, 272, 314

Lindenbaum, Tarski 182, 186

Lusin 295, 412, 417, 425, 438, 448, 449

Lusin, Sierpiski 413, 447

Lusin, Souslin 409o 140

Mackey 442

Mahlo 359

Maitra-Rao 427, 466

Mansfield 456

Marczewski 119, 305, 431

Mazurkiewicz 443, 457, 466, 468

McKinsey-Tarski 45

Mc Neille 154

Michael 392

Miller 333

Morley-Vaught 214

Mostowski 489

v. Neumann 466

Nikodym 430, 455

Novikov 450, 451, 455

Oxtoby 432

Peano 90

Ramsey 337

Rubin, H.-Rubin, J. 312

Russell-Whitehead 61, 130

Schonflies 209

Schori-West 393

Schróder-Bernstein 184-185

Scott D, 390

Selivanovski 455

Sierpiski 182, 192, 241, 280, 293,

296, 301, 313, 321, 423

Sierpiski, Tarski 354

Sikorski 280

Theorems of

Simpson 338

Skolem 27

Solovay 332

Solovay, Tenncnbaum 332

Souslin 437

Specker 437

Stone, A. H. 32

Stone, M. H. 163

Taimanov 428

Tarski 111, 148, 183, 186, 188, 281,

297, 310, 311, 314

Teichmiiller 260

Tychonoff 138

Ulam 366, 369, 372

Urysohn 391

Van Vleck 458

Vaught 262

Vitali 432

Wagner 458, 461

Wiener 59

Zermelo 57, 254

third graph theorem 406

topological space 27

topologically complete space 396

transfinite induction 226

transfinite sequence of type a 231

transformation (mapping) 69

transitive relation 8

tree 84, 315

of finite order 316

tree property 329

tree topology 84

TychonofT topology 133

type of a relational system 88

uniform convergence 389

union of sets 6, 53, 107

over an indexing set 208

unit element 83

of the ring 16

of a Boolean algebra 37
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universal function for a family of sets 423

universe (space) 18

universe of a relational system 86

unordered pair 58

upper-L mapping 405

upper section of a cut 155

upper semi-continuity 393

upper-Souslin mapping 453

upper-i? partition 463

value

of a Boolean polynomial 35

of a function 69

Vietoris topology 392

Vitali set 432

VN ordinal 262

weakly compact cardinal 360

weakly inaccessible cardinal 348

weight of topological space 302

well-ordered set 224

well-ordering theorem (Zermelo’s

theorem) 254

Zorn maximal principle 256

zero element 34, 83

Zermelo set theory 57

Zermelo-Fraenkel system (ZFC) 57
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